
http://www.cambridge.org/9780521883405


This page intentionally left blank



A First Course in Fourier Analysis

This unique book provides ameaningful resource for appliedmathematics through Fourier
analysis. It develops a unified theory of discrete and continuous (univariate) Fourier analy-
sis, the fast Fourier transform, and a powerful elementary theory of generalized functions,
including the use of weak limits. It then shows how these mathematical ideas can be
used to expedite the study of sampling theory, PDEs, wavelets, probability, diffraction, etc.
Unique features include a unified development of Fourier synthesis/analysis for functions
on R, Tp, Z, and PN; an unusually complete development of the Fourier transform cal-
culus (for finding Fourier transforms, Fourier series, and DFTs); memorable derivations of
the FFT; a balanced treatment of generalized functions that fosters mathematical under-
standing as well as practical working skills; a careful introduction to Shannon’s sampling
theorem and modern variations; a study of the wave equation, diffusion equation, and
diffraction equation by using the Fourier transform calculus, generalized functions, and
weak limits; an exceptionally efficient development of Daubechies’ compactly supported
orthogonalwavelets; generalized probability density functionswith corresponding versions
of Bochner’s theorem and the central limit theorem; and a real-world application of Fourier
analysis to the study of musical tones. A valuable reference on Fourier analysis for a vari-
ety of scientific professionals, including Mathematicians, Physicists, Chemists, Geologists,
Electrical Engineers, Mechanical Engineers, and others.

David Kammler is a Professor and Distinguished Teacher in the Mathematics Department at
Southern Illinois University.





A First Course in
Fourier Analysis

David W. Kammler
Department of Mathematics
Southern Illinois University at Carbondale



CAMBRIDGE UNIVERSITY PRESS

Cambridge, New York, Melbourne, Madrid, Cape Town, Singapore, São Paulo

Cambridge University Press
The Edinburgh Building, Cambridge CB2 8RU, UK

First published in print format

ISBN-13    978-0-521-88340-5

ISBN-13    978-0-521-70979-8

ISBN-13 978-0-511-37689-4

© D. W. Kammler 2007

2008

Information on this title: www.cambridge.org/9780521883405

This publication is in copyright. Subject to statutory exception and to the provision of 
relevant collective licensing agreements, no reproduction of any part may take place 
without the written permission of Cambridge University Press.

Cambridge University Press has no responsibility for the persistence or accuracy of urls 
for external or third-party internet websites referred to in this publication, and does not 
guarantee that any content on such websites is, or will remain, accurate or appropriate.

Published in the United States of America by Cambridge University Press, New York

www.cambridge.org

paperback

eBook (EBL)

hardback

http://www.cambridge.org
http://www.cambridge.org/9780521883405


Mathematics: Source and
Substance

Profound study of nature is the most fertile source of mathematical
discoveries.

Joseph Fourier, The Analytical Study of Heat, p. 7

Mathematics is the science of patterns. The mathematician seeks
patterns in number, in space, in science, in computers, and in imagina-
tion. Mathematical theories explain the relations among patterns; func-
tions and maps, operators and morphisms bind one type of pattern to
another to yield lasting mathematical structures. Applications of mathe-
matics use these patterns to explain and predict natural phenomena that
fit the patterns. Patterns suggest other patterns, often yielding patterns
of patterns. In this way mathematics follows its own logic, beginning with
patterns from science and completing the portrait by adding all patterns
that derive from initial ones.

Lynn A. Steen, The science of patterns, Science 240(1988), 616.
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Preface

To the Student

This book is about one big idea: You can synthesize a variety of complicated func-
tions from pure sinusoids in much the same way that you produce a major chord
by striking nearby C, E, G keys on a piano. A geometric version of this idea forms
the basis for the ancient Hipparchus-Ptolemy model of planetary motion (Almagest,
2nd century see Fig. 1.2). It was Joseph Fourier (Analytical Theory of Heat, 1815),
however, who developed modern methods for using trigonometric series and inte-
grals as he studied the flow of heat in solids. Today, Fourier analysis is a highly
evolved branch of mathematics with an incomparable range of applications and with
an impact that is second to none (see Appendix 1). If you are a student in one of
the mathematical, physical, or engineering sciences, you will almost certainly find
it necessary to learn the elements of this subject. My goal in writing this book is
to help you acquire a working knowledge of Fourier analysis early in your career.

If you have mastered the usual core courses in calculus and linear algebra, you
have the maturity to follow the presentation without undue difficulty. A few of the
proofs and more theoretical exercises require concepts (uniform continuity, uniform
convergence, . . . ) from an analysis or advanced calculus course. You may choose to
skip over the difficult steps in such arguments and simply accept the stated results.
The text has been designed so that you can do this without severely impacting
your ability to learn the important ideas in the subsequent chapters. In addition, I
will use a potpourri of notions from undergraduate courses in differential equations
[solve y′(x) + αy(x) = 0, y′(x) = xy(x), y′′(x) + α2y(x) = 0, . . . ], complex analysis
(Euler’s formula: eiθ = cos θ+i sin θ, arithmetic for complex numbers, . . . ), number
theory (integer addition and multiplication modulo N , Euclid’s gcd algorithm, . . . ),
probability (random variable, mean, variance, . . . ), physics (F = ma, conservation
of energy, Huygens’ principle, . . . ), signals and systems (LTI systems, low-pass
filters, the Nyquist rate, . . . ), etc. You will have no trouble picking up these concepts
as they are introduced in the text and exercises.

If you wish, you can find additional information about almost any topic in
this book by consulting the annotated references at the end of the corresponding
chapter. You will often discover that I have abandoned a traditional presentation

xi

;
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in favor of one that is in keeping with my goal of making these ideas accessible
to undergraduates. For example, the usual presentation of the Schwartz theory
of distributions assumes some familiarity with the Lebesgue integral and with
a graduate-level functional analysis course. In contrast, my development of δ,
X, . . . in Chapter 7 uses only notions from elementary calculus. Once you master
this theory, you can use generalized functions to study sampling, PDEs, wavelets,
probability, diffraction, . . . .

The exercises (541 of them) are my greatest gift to you! Read each chapter
carefully to acquire the basic concepts, and then solve as many problems as you
can. You may find it beneficial to organize an interdisciplinary study group, e.g.,
mathematician + physicist + electrical engineer. Some of the exercises provide
routine drill: You must learn to find convolution products, to use the FT calculus,
to do routine computations with generalized functions, etc. Some supply historical
perspective: You can play Gauss and discover the FFT, analyze Michelson and
Stratton’s analog supercomputer for summing Fourier series, etc. Some ask for
mathematical details: Give a sufficient condition for . . . , given an example of . . . ,
show that, . . . . Some involve your personal harmonic analyzers: Experimentally
determine the bandwidth of your eye, describe what would you hear if you replace
notes with frequencies f1, f2, . . . by notes with frequencies C/f1, C/f2, . . . . Some
prepare you for computer projects: Compute π to 1000 digits, prepare a movie for
a vibrating string, generate the sound file for Risset’s endless glissando, etc. Some
will set you up to discover a pattern, formulate a conjecture, and prove a theorem.
(It’s quite a thrill when you get the hang of it!) I expect you to spend a lot of time
working exercises, but I want to help you work efficiently. Complicated results are
broken into simple steps so you can do (a), then (b), then (c), . . . until you reach
the goal. I frequently supply hints that will lead you to a productive line of inquiry.
You will sharpen your problem-solving skills as you take this course.
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Synopsis

The chapters of the book are arranged as follows:
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The mathematical core is given in Chapters 1–7 and selected applications are
developed in Chapters 8–12.

We present the basic themes of Fourier analysis in the first two chapters.
Chapter 1 opens with Fourier’s synthesis and analysis equations for functions on the
real line R, on the circle Tp, on the integers Z, and on the polygon PN . We discretize
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by sampling (obtaining functions on Z,PN from functions on R,Tp), we periodize by
summing translates (obtaining functions on Tp,PN from functions on R,Z), and we
informally derive the corresponding Poisson identities. We combine these mappings
to form the Fourier–Poisson cube, a structure that links the Fourier transforms,
Fourier series, and discrete Fourier transforms students encounter in their under-
graduate classes. We prove that these equations are valid when certain elementary
sufficient conditions are satisfied. We complete the presentation of basic themes by
describing the convolution product of functions on R,Tp,Z, and PN in Chapter 2.

Chapters 3 and 4 are devoted to the development of computational skills. We
introduce the Fourier transform calculus for functions on R by finding transforms
of the box, Π(x), the truncated exponential, e−x h(x), and the unit gaussian e−πx2

.
We present the rules (linearity, translation, dilation, convolution, inversion, . . . )
and use them to obtain transforms for a large class of functions on R. Various
methods are used to find Fourier series. In addition to direct integration (with
Kronecker’s rule), we present (and emphasize) Poisson’s formula, Eagle’s method,
and the use of elementary Laurent series (from calculus). Corresponding rules
facilitate the manipulation of the Fourier representations for functions on Tp and Z.
An understanding of the Fourier transform calculus for functions on PN is essential
for anyone who wishes to use the FFT. We establish a few well-known DFT pairs
and develop the corresponding rules. We illustrate the power of this calculus by
deriving the Euler–Maclaurin sum formula from elementary numerical analysis and
evaluating the Gauss sums from elementary number theory.

In Chapter 5 we use operators, i.e., function-to-function mappings, to organize
the multiplicity of specialized Fourier transform rules. We characterize the basic
symmetries of Fourier analysis and develop a deeper understanding of the Fourier
transform calculus. We also use the operator notation to facilitate a study of Sine,
Cosine, Hartley, and Hilbert transforms.

The subject of Chapter 6 is the FFT (which Gilbert Strang calls the most impor-
tant algorithm of the 20th century!). After describing the O(N2) scheme of Horner,
we use the DFT calculus to produce an N -point DFT with only O(N log2N) op-
erations. We use an elementary zipper identity to obtain a sparse factorization of
the DFT matrix and develop a corresponding algorithm (including the clever en-
hancements of Bracewell and Buneman) for fast machine computation. We briefly
introduce some of the more specialized DFT factorizations that can be obtained by
using Kronecker products.

An elementary exposition of generalized functions (the tempered distributions of
Schwartz) is given in Chapter 7, the heart of the book. We introduce the Dirac δ [as
the second derivative of the ramp r(x) := max(x, 0)], the comb X; the reciprocal
“1/x”, the Fresnel function eiπx2

, . . . and carefully extend the FT calculus rules to
this new setting. We introduce generalized (weak) limits so that we can work with
infinite series, infinite products, ordinary derivatives, partial derivatives, . . . .

Selected applications of Fourier analysis are given in the remaining chapters.
(You can find whole textbooks devoted to each of these topics.) Mathematical



To the Instructor xv

models based on Fourier synthesis, analysis done with generalized functions, and
FFT computations are used to foster insight and understanding. You will experience
the enormous “leverage” Fourier analysis can give as you study this material!

Sampling theory, the mathematical basis for digital signal processing, is the focus
of Chapter 8. We present weak and strong versions of Shannon’s theorem together
with the clever generalization of Papoulis. Using these ideas (and characteristics
of the human ear) we develop the elements of computer music in Chapter 11. We
use additive synthesis and Chowning’s FM synthesis to generate samples for musical
tones, and we use spectrograms to visualize the structure of the corresponding sound
files.

Fourier analysis was invented to solve PDEs, the subject of Chapter 9. We for-
mulate mathematical models for the motion of a vibrating string, for the diffusion
of heat (Fourier’s work), and for Fresnel diffraction. (The Schrödinger equation
from quantum mechanics seems much less intimidating when interpreted within the
context of elementary optics!) With minimal effort, we solve these PDEs, establish
suitable conservation laws, and examine representative solutions. (The cover illus-
tration was produced by using the FFT to generate slices for the diffraction pattern
that results when two gaussian laser beams interfere.)

Chapter 10 is devoted to the study of wavelets, a relatively new branch of math-
ematics. We introduce the basic ideas using the piecewise constant functions asso-
ciated with the Haar wavelets. We then use the theory of generalized functions to
develop the compactly supported orthogonal wavelets created by I. Daubechies in
1988. Fourier analysis plays an essential role in the study of corresponding filter
banks that are used to process audio and image files.

We present the elements of probability theory in Chapter 12 using generalized
densities, e.g., f(x) := (1/2)[δ(x + 1) + δ(x − 1)] serves as the probability density
for a coin toss. We use Fourier analysis to find moments, convolution products,
characteristic functions, and to establish the uncertainty relation (for suitably reg-
ular probability densities on R). We then use the theory of generalized functions to
prove the central limit theorem, the foundation for modern statistics!

To the Instructor

This book is the result of my efforts to create a modern elementary introduction to
Fourier analysis for students from mathematics, science, and engineering. There is
more than enough material for a tight one-semester survey or for a leisurely two-
semester course that allocates more time to the applications. You can adjust the
level and the emphasis of the course to your students by the topics you cover and
by your assignment of homework exercises. You can use Chapters 1–4, 7, and 9 to
update a lackluster boundary value problems course. You can use Chapters 1–4, 7,
8, and 10 to give a serious introduction to sampling theory and wavelets. You can
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use selected portions of Chapters 2–4, 6, 8, and 11 (with composition exercises!)
for a fascinating elementary introduction to the mathematics of computer-generated
music. You can use the book for an undergraduate capstone course that emphasizes
group learning of the interdisciplinary topics and mastering of some of the more
difficult exercises. Finally, you can use Chapters 7–12 to give a graduate-level
introduction to generalized functions for scientists and engineers.

This book is not a traditional mathematics text. You will find a minimal amount
of jargon and note the absence of a logically complete theorem-proof presentation of
elementary harmonic analysis. Basic computational skills are developed for solving
real problems, not just for drill. There is a strong emphasis on the visualization of
equations, mappings, theorems, . . . and on the interpretation of mathematical ideas
within the context of some application. In general, the presentation is informal,
but there are careful proofs for theorems that have strategic importance, and there
are a number of exercises that lead students to develop the implications of ideas
introduced in the text.

Be sure to cover one or more of the applications chapters. Students enjoy learning
about the essential role Fourier analysis plays in modern mathematics, science, and
engineering. You will find that it is much easier to develop and to maintain the
market for a course that emphasizes these applications.

When I teach this material I devote 24 lectures to the mathematical core (deleting
portions of Chapters 1, 5, and 6) and 18 lectures to the applications (deleting
portions of Chapters 10, 11, and 12). I also spend 3–4 hours per week conducting
informal problem sessions, giving individualized instruction, etc. I lecture from
transparencies and use a PC (with FOURIER) for visualization and sonification.
This is helpful for the material in Chapters 2, 5, 6, and 12 and essential for the
material in Chapters 9, 10, and 11. I use a laser with apertures on 35 mm slides
to show a variety of diffraction patterns when I introduce the topic of diffraction
in Chapter 9. This course is a great place to demonstrate the synergistic roles
of experimentation, mathematical modeling, and computer simulation in modern
science and engineering.

I have one word of caution. As you teach this material you will face the constant
temptation to prove too much too soon. My informal use of ?= cries out for the
precise statement and proof of some relevant sufficient condition. (In most cases
there is a corresponding exercise, with hints, for the student who would really like
to see the details.) For every hour that you spend presenting 19th-century advanced
calculus arguments, however, you will have one less hour for explaining the 20th-
century mathematics of generalized functions, sampling theory, wavelets, . . . . You
must decide which of these alternatives will best serve your students.
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1

Fourier’s representation for
functions on R, Tp, Z, and PN

1.1 Synthesis and analysis equations

Introduction

In mathematics we often try to synthesize a rather arbitrary function f using a
suitable linear combination of certain elementary basis functions. For example, the
power functions 1, x, x2, . . . serve as such basis functions when we synthesize f using
the power series representation

f(x) = a0 + a1x+ a2x
2 + · · · . (1)

The coefficient ak that specifies the amount of the basis function xk needed in the
recipe (1) for constructing f is given by the well-known Maclaurin formula

ak =
f (k)(0)
k!

, k = 0, 1, 2, . . .

from elementary calculus. Since the equations for a0, a1, a2, . . . can be used only
in cases where f, f ′, f ′′, . . . are defined at x = 0, we see that not all functions
can be synthesized in this way. The class of analytic functions that do have such
power series representations is a large and important one, however, and like Newton
[who with justifiable pride referred to the representation (1) as “my method”], you
have undoubtedly made use of such power series to evaluate functions, to construct
antiderivatives, to compute definite integrals, to solve differential equations, to jus-
tify discretization procedures of numerical analysis, etc.

1



2 Fourier’s representation for functions

Fourier’s representation (developed a century and a half after Newton’s) uses as
basis functions the complex exponentials

e2πisx := cos(2πsx) + i · sin(2πsx), (2)

where s is a real frequency parameter that serves to specify the rate of oscillation,
and i2 = −1. When we graph this complex exponential, i.e., when we graph

u := Re e2πisx = cos(2πsx)

v := Im e2πisx = sin(2πsx)

as functions of the real variable x in x, u, v-space, we obtain a helix (a Slinky!)
that has the spacing 1/|s| between the coils. Projections of this helix on the planes
v = 0, u = 0, x = 0 give the sinusoids u = cos(2πsx), v = sin(2πsx), and the circle
u2 + v2 = 1, as shown in Fig. 1.1.

Figure 1.1. The helix u = cos(2πsx), v = sin(2πsx) in
x, u, v-space together with projections in the x, u, the x, v,
and the u, v planes.
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Functions on R

Fourier discovered that any suitably regular complex-valued function f defined on
the real line R can be synthesized by using the integral representation

f(x) =
∫ ∞

s=−∞
F (s)e2πisx ds, −∞ < x < ∞. (3)

Here F is also a complex-valued function defined on R, and we think of F (s)ds
as being the amount of the exponential e2πisx with frequency s that must be used
in the recipe (3) for f . At this point we are purposefully vague as to the exact
hypotheses that must be imposed on f to guarantee the existence of such a Fourier
representation. Roughly speaking, the Fourier representation (3) is possible in all
cases where f does not fluctuate too wildly and where the tails of f at ±∞ are not
too large. It is certainly not obvious that such functions can be represented in the
form (3) [nor is it obvious that sinx, cosx, ex, and many other functions can be
represented using the power series (1)]. At this point we are merely announcing that
this is, in fact, the case, and we encourage you to become familiar with equation (3)
along with analogous equations that will be introduced in the next few paragraphs.
Later on we will establish the validity of (3) after giving meaning to the intentionally
vague term suitably regular.

Fourier found that the auxiliary function F from the representation (3) can be
constructed by using the integral

F (s) =
∫ ∞

x=−∞
f(x)e−2πisx dx, −∞ < s < ∞. (4)

We refer to (3) as the synthesis equation and to (4) as the analysis equation for f .
The function F is said to be the Fourier transform of f . We cannot help but notice
the symmetry between (3) and (4), i.e., we can interchange f, F provided that we
also interchange +i and −i. Other less symmetric analysis-synthesis equations are
sometimes used for Fourier’s representation, see Ex. 1.4, but we prefer to use (3)–(4)
in this text. We will often display the graphs of f, F side by side, as illustrated in
Fig. 1.2. Our sketch corresponds to the case where both f and F are real valued.
In general, it is necessary to display the four graphs of Re f , Im f , ReF , and ImF.
You will find such displays in Chapter 3, where we develop an efficient calculus for
evaluating improper integrals having the form (3) or (4).

Figure 1.2. The graph of a function f on R and its Fourier transform F on R.



4 Fourier’s representation for functions

Functions on Tp

We say that a function f defined on R is p-periodic, p > 0, when

f(x+ p) = f(x), −∞ < x < ∞.

Fourier (like Euler, Lagrange, and D. Bernoulli before him) discovered that a suit-
ably regular p-periodic complex-valued function on R can be synthesized by using
the p-periodic complex exponentials from (2). We will routinely identify any p-
periodic function on R with a corresponding function defined on the circle Tp hav-
ing the circumference p as illustrated in Fig. 1.3. [To visualize the process, think of
wrapping the graph of f(x) versus x around a right circular cylinder just like the
paper label is wrapped around a can of soup!] Of course, separate graphs for Re f
and Im f must be given in cases where f is complex valued.

Figure 1.3. Identification of a p-periodic function f on R with
a corresponding function on the circle Tp having the circumfer-
ence p.

The complex exponential e2πisx will be p-periodic in the argument x, i.e.,

e2πis(x+p) = e2πisx, −∞ < x < ∞,

when
e2πisp = 1,

i.e., when
s = k/p for some k = 0, ±1, ±2, . . . .

In this way we see that the p-periodic exponentials from (2) are given by

e2πikx/p, k = 0, ±1, ±2, . . . ,

as shown in Fig. 1.4.
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Figure 1.4. Real and imaginary parts of the complex exponen-
tial e8πix/p as functions on R and as functions on Tp.

Fourier’s representation

f(x) =
∞∑

k=−∞
F [k]e2πikx/p, −∞ < x < ∞, (5)

for a p-periodic function f uses all of these complex exponentials. In this case
F is a complex-valued function defined on the integers Z (from the German word
Zahlen, for integers). We use brackets [ ] rather than parentheses ( ) to enclose the
independent variable k in order to remind ourselves that this argument is discrete.
We think of F [k] as being the amount of the exponential e2πikx/p that we must use
in the recipe (5) for f . We refer to (5) as the Fourier series for f and we say that
F [k] is the kth Fourier coefficient for f . You may be familiar with the alternative
representation

f(x) =
a0

2
+

∞∑
k=1

{ak cos(2πkx/p) + bk sin(2πkx/p)}

for a Fourier series. You can use Euler’s identity (2) to see that this representation
is equivalent to (5), see Ex. 1.16. From time to time we will work with such cos, sin
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series, e.g., this form may be preferable when f is real or when f is known to have
even or odd symmetry. For general purposes, however, we will use the compact
complex form (5).

Fourier found that the coefficients F [k] for the representation (5) can be con-
structed for a given function f by using the integrals

F [k] =
1
p

∫ p

x=0
f(x)e−2πikx/p dx, k = 0,±1,±2, . . . . (6)

[Before discovering the simple formula (6), Fourier made use of clumsy, mathemat-
ically suspect arguments based on power series to find these coefficients.] We refer
to (5) as the synthesis equation and to (6) as the analysis equation for the p-periodic
function f , and we say that F is the Fourier transform of f within this context. We
use small circles on line segments, i.e., lollipops, when we graph F (a function on
Z), and we often display the graphs of f, F side by side as illustrated in Fig. 1.5. Of
course, we must provide separate graphs for Re f , Im f , ReF , ImF in cases where
f, F are not real valued. You will find such displays in Chapter 4, where we develop
a calculus for evaluating integrals having the form (6).

Figure 1.5. The graph of a function f on Tp and its Fourier
transform F on Z.

Functions on Z

There is a Fourier representation for any suitably regular complex-valued function
f that is defined on the set of integers, Z. As expected, we synthesize f from the
complex exponential functions e2πisn on Z, with s being a real parameter. Now for
any real s and any integer m we find

e2πi(s+m)n = e2πisn, n = 0,±1,±2, . . .

(i.e., the exponentials e2πisn, e2πi(s±1)n, e2πi(s±2)n, . . . are indistinguishable when
n is constrained to take integer values). This being the case, we will synthesize f
using

e2πisn, 0 ≤ s < 1
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or equivalently, using
e2πisn/p, 0 ≤ s < p,

where p is some fixed positive number. Figure 1.6 illustrates what happens when
we attempt to use some s > p. The high-frequency sinusoid takes on the identity or
alias of some corresponding low-frequency sinusoid. It is easy to see that e2πisn/p

oscillates slowly when s is near 0 or when s is near p. The choice s = p/2 gives the
most rapid oscillation with the complex exponential

e2πi(p/2)n/p = (−1)n

having the smallest possible period, 2.

Figure 1.6. The identical samples of e2πix/16 and e2πi17x/16 at
x = 0,±1,±2, . . . .

Fourier’s synthesis equation,

f [n] =
∫ p

s=0
F (s)e2πisn/p ds, (7)

for a suitably regular function f on Z, uses all of these complex exponentials on Z,
and the corresponding analysis equation is given by

F (s) =
1
p

∞∑
n=−∞

f [n]e−2πisn/p. (8)

We say that F is the Fourier transform of f and observe that this function is
p-periodic in s, i.e., that F is a complex-valued function on the circle Tp. Figure 1.7
illustrates such an f, F pair.
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Figure 1.7. The graph of a function f on Z and its Fourier
transform F on Tp.

We have chosen to include the parameter p > 0 for the representation (7) (instead
of working with the special case p = 1) in order to emphasize the duality that exists
between (5)–(6) and (7)–(8). Indeed, if we replace

i, x, k, f, F

in (5)–(6) by
−i, s, n, pF, f,

respectively, we obtain (7)–(8). Thus every Fourier representation of the form
(5)–(6) corresponds to a Fourier representation of the form (7)–(8), and vice versa.

Functions on PN

Let N be a positive integer, and let PN consist of N uniformly spaced points on the
circle TN as illustrated in Fig. 1.8. We will call this discrete circle a polygon even
in the degenerate cases where N = 1, 2.

Figure 1.8. The polygon P5.

The simplest Fourier representation [found by Gauss in the course of his study
of interpolation by trigonometric polynomials a few years before Fourier discovered
either (3)–(4) or (5)–(6)] occurs when f is a complex-valued N -periodic function
defined on Z. We will routinely identify such an N -periodic f with a corresponding
function that is defined on PN as illustrated in Fig. 1.9. Of course, we must provide
separate graphs for Re f , Im f when f is complex valued. Since f is completely
specified by the N function values f [n], n = 0, 1, . . . , N − 1, we will sometimes find
that it is convenient to use a complex N -vector

f = (f [0], f [1], . . . , f [N − 1])



Synthesis and analysis equations 9

Figure 1.9. Identification of an N -periodic discrete function on
Z with a corresponding function on the polygon PN .

to represent this function. This is particularly useful when we wish to process f
numerically. You will observe that we always use n = 0, 1, . . . , N − 1 (not n =
1, 2, . . . , N) to index the components of f .

The complex exponential e2πisn (with s being a fixed real parameter) will be
N -periodic in the integer argument n, i.e.,

e2πis(n+N) = e2πisn for all n = 0, ±1, ±2, . . .

when
e2πisN = 1,

i.e., when s = k/N for some integer k. On the other hand, when m is an integer we
find

e2πikn/N = e2πi(k+mN)n/N for all n = 0, ±1, ±2, . . . ,

so the parameters

s =
k

N
, s =

k ±N

N
, s =

k ± 2N
N

, . . .

all give the same function. Thus we are left with precisely N distinct discrete
N -periodic complex exponentials

e2πikn/N , k = 0, 1, . . . , N − 1.

The complex exponentials with k = 1 or k = N − 1 make one complete oscillation
on PN , those with k = 2 or k = N − 2 make two complete oscillations, etc., as
illustrated in Fig. 1.10. The most rapid oscillation occurs when N is even and
k = N/2 with the corresponding complex exponential

e2πi(N/2)n/N = (−1)n

having the smallest possible period, 2.
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Figure 1.10. Complex exponentials e2πikn/31 on P31.

Fourier’s synthesis equation takes the form

f [n] =
N−1∑
k=0

F [k]e2πikn/N , n = 0, ±1, ±2, . . . (9)

within this setting. Again we regard F [k] as the amount of the discrete exponential
e2πikn/N that must be used in the recipe for f , we refer to (9) as the discrete
Fourier series for f , and we say that F [k] is the kth Fourier coefficient for f . The
corresponding analysis equation

F [k] =
1
N

N−1∑
n=0

f [n]e−2πikn/N , k = 0, 1, . . . , N − 1 (10)
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enables us to find the coefficients F [0], F [1], . . . , F [N − 1] for the representation
(9) from the known function values f [0], f [1], . . . , f [N − 1]. We refer to F as the
discrete Fourier transform (DFT) or more simply as the Fourier transform of f
within this context. The formula (10) gives an N -periodic discrete function on Z

when we allow k to take all integer values, so we will say that F is a function on
PN . Again, we plot graphs of f, F side by side, as illustrated in Fig. 1.11. You
will find such displays in Chapter 4, where we develop a calculus for evaluating the
finite sums (9), (10). Later on, in Chapter 6, you will learn an efficient way to do
such calculations on a computer.

Figure 1.11. The graph of a function f on P31 and its Fourier
transform F on P31.

Summary

The following observations will help you remember Fourier’s synthesis and analysis
equations:

Functions on R Functions on Tp

(3) f(x) =
∫ ∞

s=−∞
F (s)e2πisxds (5) f(x) =

∞∑
k=−∞

F [k]e2πikx/p

(4) F (s) =
∫ ∞

x=−∞
f(x)e−2πisxdx (6) F [k] =

1
p

∫ p

x=0
f(x)e−2πikx/pdx

Functions on Z Functions on PN

(7) f [n] =
∫ p

s=0
F (s)e2πisn/pds (9) f [n] =

N−1∑
k=0

F [k]e2πikn/N

(8) F (s) =
1
p

∞∑
n=−∞

f [n]e−2πisn/p (10) F [k] =
1
N

N−1∑
n=0

f [n]e−2πikn/N .

• The Fourier transform F has the real argument s when f is aperiodic and the
integer argument k when f is periodic. The function f has the real argument x
when F is aperiodic and the integer argument n when F is periodic.
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• The argument of the exponentials that appear in the synthesis-analysis equations
is the product of ±2πi, the argument s or k of F , the argument x or n of f , and
the reciprocal 1/p or 1/N of the period if either f or F is periodic.

• The synthesis equation uses the +i exponential and all values of F to form f .
The analysis equation uses the −i exponential and all values of f to form F.

• The reciprocal 1/p or 1/N of the period serves as a scale factor on the analysis
equation in cases where either f or F is periodic. No such factor is used on the
synthesis equation.

During the opening scene of an opera you catch glimpses of the main characters,
but you have not yet learned the subtle personality traits or relationships that
will unfold during the rest of the performance. In much the same way, you have
been briefly introduced to the eight remarkable identities (3)–(10) that will appear
throughout this course. (You can verify this by skimming through the text!) At this
point, it would be very beneficial for you to spend a bit of time getting acquainted
with these identities. Begin with a function f from Exs. 1.1, 1.8–1.10, 1.13, 1.14,
evaluate the sum or integral from the analysis equation to find F , and then evaluate
the sum or integral from the synthesis equation to establish the validity of Fourier’s
representation for this f . (It is hard to find examples where both of these sums,
integrals can be found by using the tools from calculus!) See if you can determine
how certain symmetries possessed by f are made manifest in F by doing Exs. 1.2,
1.11, 1.15. Explore alternative ways for writing the synthesis-analysis equations as
given in Exs. 1.3, 1.4, 1.12, 1.16. And if you are interested in associating some
physical meaning with the synthesis and analysis equations, then do try Ex. 1.17!

1.2 Examples of Fourier’s representation

Introduction

What can you do with Fourier’s representation? In this section we will briefly
describe six diverse settings for these ideas that will help you learn to recognize the
patterns (3)–(10). Other applications will be developed with much more detail in
Chapters 8–12. (You may want to read the first few pages of some of these chapters
at this time!)

The Hipparchus–Ptolemy model of planetary motion

One of the most difficult problems faced by the ancient Greek astronomers was
that of predicting the position of the planets. A remarkably successful model of
planetary motion that is described in Ptolemy’s Almagest leads to an interesting
geometric interpretation for truncated Fourier series. Using modern notation we
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write
z1(t) = a1e

2πit/T1 , −∞ < t < ∞
with

a1 = |a1|eiφ1 , 0 ≤ φ1 < 2π

to describe the uniform circular motion of a planet P around the Earth E at the
origin. Here |a1| is the radius of the orbit, T1 is the period, and the phase parameter
φ1 serves to specify the location of the planet at time t = 0. Such a one-circle model
cannot account for the occasional retrograde motion of the outer planets Mars,
Jupiter, and Saturn. We build a more sophisticated two-circle model by writing

z2(t) = z1(t) + a2e
2πit/T2

with
a2 = |a2|eiφ2 , 0 ≤ φ2 < 2π.

The planet P now undergoes uniform circular motion about a point that under-
goes uniform circular motion around the Earth E at the origin, see Fig. 1.12. This
two-circle model can produce the observed retrograde motion (try a computer sim-
ulation using the data from Ex. 1.18!), but it cannot fit the motion of the planets
to observational accuracy.

Figure 1.12. The addition of uniform circular motions.

Proceeding in this way we obtain a geometric interpretation of the motion de-
scribed by the exponential sum

zn(t) = a1e
2πit/T1 + a2e

2πit/T2 + · · · + ane
2πit/Tn

using a fixed circle (called the deferent) and n− 1 moving circles (called epicycles).
Such a motion is periodic when T1, T2, . . . , Tn are integral multiples of some T > 0,
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in which case the sum is a Fourier series with finitely many terms. Hipparchus and
Ptolemy used a shifted four-circle construction of this type (with the Earth near
but not at the origin) to fit the motion of each planet. These models were used for
predicting the positions of the five planets of antiquity until Kepler and Newton
discovered the laws of planetary motion some 1300 years later.

Gauss and the orbits of the asteroids

On the first day of the 19th century the asteroid Ceres was discovered, and in
rapid succession the asteroids Pallas, Vesta, and Juno were also found. Gauss
became interested in the problem of determining the orbits of such planetoids from
observational data. In 1802, Baron von Zach published the 12 data points for the
orbit of the asteroid Pallas that are plotted in Fig. 1.13. Gauss decided to interpolate
this data by using a 360◦-periodic trigonometric polynomial

y(x) =
11∑

k=0

ck e
2πikx/360

with the 12 coefficients c0, c1, . . . , c11 being chosen to force the graph of y to pass
through the 12 known points (n · 30◦, yn), n = 0, 1, . . . , 11, i.e., so as to make

yn =
11∑

k=0

ck e
2πikn/12, n = 0, 1, . . . , 11.

Figure 1.13. Declination of the asteriod Pallas as a function of
right ascension as published by Baron von Zach. (Declination
and right ascension are measures of latitude and longitude on
the celestial sphere.)
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We recognize this as the synthesis equation (9) (with N = 12, F [k] = ck), and
use the corresponding analysis equation (10) to obtain the coefficients

ck =
1
12

11∑
n=0

yn e
−2πikn/12, k = 0, 1, . . . , 11.

Of course, it is one thing to write down such a formula and quite another to obtain a
numerical value for each of the ck’s. (Remember that Gauss did all of the arithmetic
by hand.) You will find Baron von Zach’s data in Ex. 1.19. Perhaps as you analyze
this data (with a computer!) you will share in Gauss’s discovery of a very clever
way to expedite such calculations.

Fourier and the flow of heat

Shortly after the above work of Gauss was completed, Fourier invented the rep-
resentations (5)–(6) and (3)–(4) (i.e., Fourier series and Fourier integrals) to use
for solving problems involving the flow of heat in solids. He first showed that the
temperature u(x, t) at time t ≥ 0 and coordinate x along a thin insulated rod of
uniform cross section is a solution of the partial differential equation

∂u

∂t
(x, t) = a2 ∂

2u

∂x2 (x, t)

with the thermal diffusivity parameter a2 depending on the material of which the rod
is made. (You will find an elementary derivation in Section 9.3.) Fourier observed
that the function

e2πisx · e−4π2a2s2t

satisfies the partial differential equation for every choice of the real parameter s. He
conceived the idea of combining such elementary solutions to produce a temperature
function u(x, t) that agrees with some prescribed initial temperature when t = 0.

For the temperature in a rod (that extends from x = −∞ to x = +∞) Fourier
wrote

u(x, t) =
∫ ∞

s=−∞
A(s)e2πisxe−4π2a2s2t ds

with the intention of choosing the amplitude function A(s), −∞ < s < ∞, to make
his formula to agree with the known initial temperature u(x, 0) at time t = 0, i.e.,
to make

u(x, 0) =
∫ ∞

s=−∞
A(s)e2πisx ds.

We recognize this identity as the synthesis equation (3) for the function u(x, 0) and
use the corresponding analysis equation (4) to write

A(s) =
∫ ∞

x=−∞
u(x, 0)e−2πisx dx, −∞ < s < ∞,
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thereby expressing A in terms of the initial temperature. In this way Fourier solved
the heat flow problem for a doubly infinite rod. You can work out the details for a
rod with an initial hot spot by solving Ex. 1.20.

For the temperature in a ring of circumference p > 0, Fourier used the p-periodic
solutions

e2πikx/p · e−4π2a2(k/p)2t, k = 0,±1,±2, . . .

of the diffusion equations (with s = k/p) to write

u(x, t) =
∞∑

k=−∞
ck e

2πikx/p · e−4π2a2(k/p)2t

with the intention of choosing the coefficients ck, k = 0,±1,±2, . . . to make

u(x, 0) =
∞∑

k=−∞
ck e

2πikx/p.

We recognize this as the synthesis equation (5) for the initial temperature u(x, 0)
and use the corresponding analysis equation (6) to express the coefficients

ck =
1
p

∫ p

x=0
u(x, 0)e−2πikx/p dx, k = 0,±1,±2, . . .

in terms of the known initial temperature. In this way Fourier solved the heat flow
problem for a ring.

Today, such procedures are used to solve a number of partial differential equations
that arise in science and engineering, and we will develop these ideas in Chapter 9.
It is somewhat astonishing, however, to realize that Fourier chose periodic functions
to study the flow of heat, a physical phenomenon that is as intrinsically aperiodic
as any that we can imagine!

Fourier’s representation and LTI systems

Function-to-function mappings are commonly studied in many areas of science and
engineering. Within the context of engineering we focus attention on the device that
effects the input-to-output transformation, and we represent such a system using a
diagram of the sort shown in Fig. 1.14. In mathematics, such function-to-function
mappings are called operators, and we use the notation

fo = Afi

or
A : fi → fo by fo(t) = (Afi)(t)

(where A is the name of the operator) to convey the same idea.
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fi

Input
→ System

A
fo

Output
→

Figure 1.14. Schematic representation of a system A.

In practice we often deal with systems that are homogeneous and additive, i.e.,

A(cf) = c(Af)
A(f + g) = (Af) + (Ag)

when f, g are arbitrary inputs and c is an arbitrary scalar. Such systems are said to
be linear. Many common systems also have the property of translation invariance.
We say that a system is translation invariant if the output

go = Agi

of an arbitrary τ -translate

gi(t) := fi(t+ τ), −∞ < t < ∞,

of an arbitrary input function fi is the corresponding τ -translate

go(t) = fo(t+ τ), −∞ < t < ∞
of the output

fo = Afi

to fi, i.e., when we translate fi by τ the system responds by shifting fo by τ ,
−∞ < τ < ∞. Systems that are both linear and translation invariant are said to
be LTI.

A variety of signal processing devices can be modeled by using LTI systems. For
example, the speaker for an audio system maps an electrical input signal from an
amplifier to an acoustical output signal, with time being the independent variable.
A well-designed speaker is more-or-less linear. If we simultaneously input signals
from two amplifiers, the speaker responds with the sum of the corresponding out-
puts, and if we scale the input signal, e.g., by adjusting the volume control, the
acoustical response is scaled in a corresponding manner (provided that we do not
exceed the power limitations of the speaker!) Of course, when we play a familiar CD
or tape on different occasions, i.e., when we time shift the input signal, we expect
to hear an acoustical response that is time shifted in exactly the same fashion (pro-
vided that the time shift amounts to a few hours or days and not to a few million
years!)

A major reason for the importance of Fourier analysis in electrical engineering is
that every complex exponential

es(t) := e2πist, −∞ < t < ∞
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(with s being a fixed real parameter) is an eigenfunction of every LTI system. We
summarize this by saying, An LTI system responds sinusoidally when it is shaken
sinusoidally. The proof is based on the familiar multiplicative property

es(t+ τ) = es(τ) · es(t)

of the complex exponential. After applying the LTI operator A to both sides of
this equation, we use the translation invariance to simplify the left side, we use the
linearity to simplify the right side, and thereby write

(Aes)(t+ τ) = es(τ) · (Aes)(t), −∞ < t < ∞, −∞ < τ < ∞.

We now set t = 0 to obtain the eigenfunction relation

(Aes)(τ) = α(s) · es(τ), −∞ < τ < ∞

with the system function

α(s) := (Aes)(0), −∞ < s < ∞

being the corresponding eigenvalue.
If we know the system function α(s), −∞ < s < ∞, we can find the system

response to any suitably regular input function fi. Indeed, using Fourier’s repre-
sentation (3) we write

fi(t) =
∫ ∞

s=−∞
Fi(s)e2πist ds

and approximate the integral of this synthesis equation with a Riemann sum of the
form

fi(t) ≈
N∑

k=1

Fi(sk)e2πiskt ∆sk.

Since the linear operator A maps

e2πist to α(s)e2πist

for every choice of the frequency parameter s, it must map the Riemann sum

N∑
k=1

Fi(sk)e2πiskt∆sk to
N∑

k=1

Fi(sk)α(sk)e2πiskt∆sk,

with the sum on the right being an approximation to the integral∫ ∞

s=−∞
Fi(s)α(s)e2πist ds.
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We conclude that A maps

fi(t) =
∫ ∞

−∞
Fi(s)e2πistds to fo(t) =

∫ ∞

−∞
Fi(s)α(s)e2πist ds

(provided that the system possesses a continuity property that enables us to justify
the limiting process involved in passing from an approximating Riemann sum to
the corresponding integral). In this way we see that the Fourier transform of the
output is obtained by multiplying the Fourier transform of the input by the LTI
system function α.

The above discussion deals with systems that map functions on R to functions
on R. Analogous considerations can be used for LTI systems that map functions on
Tp, Z, PN to functions on Tp, Z, PN , respectively, see Ex. 1.21.

Schoenberg’s derivation of the Tartaglia–Cardan formulas

The discrete Fourier representation of (9)–(10) can be used to find formulas for the
roots of polynomials of degree 2, 3, 4 (see I. Schoenberg, pp. 79–81). To illustrate
the idea, we will derive the familiar quadratic formula for the roots x0, x1 of the
quadratic polynomial

x2 + bx+ c = (x− x0)(x− x1)

as functions of the coefficients b, c. In view of the synthesis equation (9) we can
write

x0 = X0 +X1, x1 = X0 −X1

(where we take N = 2 and use x0, x1, X0, X1 instead of the more cumbersome x[0],
x[1], X[0], X[1]). It follows that

x2 + bx+ c =
{
x− (X0 +X1)

}{
x− (X0 −X1)

}
= x2 − 2X0x+ (X2

0 −X2
1 ),

and upon equating coefficients of like powers of x we find

b = −2X0, c = X2
0 −X2

1 .

We solve for X0, X1 in turn and write

X0 = − 1
2b, X1 = 1

2 (b2 − 4c)1/2.

Knowing X0, X1 we use the synthesis equation to obtain the familiar expressions

x0 = 1
2{−b+ (b2 − 4c)1/2}, x1 = 1

2{−b− (b2 − 4c)1/2}.
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The same procedure enables us to derive the Tartaglia–Cardan formulas for the
roots x0, x1, x2 of the cubic polynomial

x3 + bx2 + cx+ d = (x− x0)(x− x1)(x− x2)

in terms of the coefficients b, c, d. We define

ω := e2πi/3 =
−1 +

√
3i

2
so that we can use the compact form of the synthesis equations:

x0 = X0 +X1 +X2, x1 = X0 + ωX1 + ω2X2, x2 = X0 + ω2X1 + ωX2

to express x0, x1, x2 in terms of the discrete Fourier transform X0, X1, X2. After a
bit of nasty algebra (see Ex. 1.22) we find

x3 + bx2 + cx+ d = (x−X0)3 − 3X1X2(x−X0) −X3
1 −X3

2

so that

X0 = − b

3
, X1X2 =

b2 − 3c
9

, X3
1 +X3

2 =
−27d+ 9bc− 2b3

27
.

From the last pair of equations we see that Y = X3
1 , X

3
2 are the roots of the quadratic

polynomial

(Y −X3
1 )(Y −X3

2 ) = Y 2 − (X3
1 +X3

2 )Y + (X1X2)3

= Y 2 +
(

27d− 9bc+ 2b3

27

)
Y +

(
b2 − 3c

9

)3

,

i.e.,

X1 =


−

(
27d− 9bc+ 2b3

54

)
+

[(
27d− 9bc+ 2b3

54

)2

−
(
b2 − 3c

9

)3
]1/2




1/3

,

X2 =


−

(
27d− 9bc+ 2b3

54

)
−

[(
27d− 9bc+ 2b3

54

)2

−
(
b2 − 3c

9

)3
]1/2




1/3

.

Knowing X0, X1, X2 we use the synthesis equation to write

x0 = X0 +X1 +X2,

x1 = X0 − X1 +X2

2
+
i
√

3(X1 −X2)
2

,

x2 = X0 − X1 +X2

2
− i

√
3(X1 −X2)

2
.

The roots of a quartic polynomial can be found in a similar manner (but it takes
a lot of very nasty algebra to do the job!).
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Fourier transforms and spectroscopy

We can produce an exponentially damped complex exponential

y0(t) :=
{
e−αt e2πis0t if t > 0
0 if t < 0

by subjecting a damped harmonic oscillator (e.g., a mass on a spring with damping)
to a suitable initial excitation. Here α > 0 and −∞ < s0 < ∞. Graphs of y0 and
the Fourier transform

Y0(s) =
∫ ∞

0
e−2πist e−αt e2πis0tdt =

1
α+ 2πi(s− s0)

are shown in Fig. 1.15. The function Y0, which is called a Lorenzian, is concentrated
near s = s0 with an approximate width α/2π. (You can learn more about such
functions by doing Ex. 3.34 a little later in the course.)

Figure 1.15. The function y0(t) = e−αte2πis0t and its Fourier
transform Y0(s).

When we subject molecules to a burst of electromagnetic radiation (radio fre-
quency, microwave, infrared, . . . ) we induce various damped oscillations. The
resulting transient has the form

y(t) =



∑

k

Ake
−αkt e2πiskt if t > 0

0 if t < 0

with parameters αk > 0, −∞ < sk < ∞ that depend on the arrangement of the
atoms that form the molecules. We can observe these parameters when we graph
the Fourier transform

Y (s) =
∑

k

Ak

αk + 2πi(s− sk)
.

Within this context Y is said to be a spectrum.
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For example, when a sample of the amino acid arginine

O C C C C C CN NH+
2

O− NH+
3 H H H H NH2

H H H H

is placed in a strong magnetic field and subjected to a 500-MHz pulse, the individual
protons precess. The resulting free induction decay voltage, y(t), and corresponding
spectrum, Y (s), are shown in Fig. 1.16. (You can see the individual Lorenzians!)
Richard Earnst won the 1991 Nobel prize in chemistry for developing this idea into
a powerful tool for determining the structure of organic molecules.

Figure 1.16. FT-NMR analysis of arginine.
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1.3 The Parseval identities and related results

The Parseval identities

Let f, g be suitably regular functions on R with Fourier transforms F,G, respec-
tively. Using the synthesis equation for g and the analysis equation for f (and using
a bar to denote the complex conjugate), we formally write

∫ ∞

x=−∞
f(x)g(x) dx =

∫ ∞

x=−∞
f(x)

{∫ ∞

s=−∞
G(s)e2πisx ds

}
dx

?=
∫ ∞

s=−∞

∫ ∞

x=−∞
f(x)e−2πisxG(s) dx ds

=
∫ ∞

s=−∞
F (s)G(s) ds,

assuming that we can somehow justify the exchange in the order of the integration
processes in the step marked with the question mark (e.g., by imposing restrictive
hypotheses on f, g and using a suitable Fubini theorem from advanced calculus).
We refer to the resulting equation

∫ ∞

x=−∞
f(x)g(x) dx =

∫ ∞

s=−∞
F (s)G(s) ds (11)

as the Parseval identity for functions on R. Analogous arguments lead to the cor-
responding Parseval identities

∫ p

x=0
f(x)g(x) dx = p

∞∑
k=−∞

F [k]G[k] (12)

∞∑
n=−∞

f [n]g[n] = p

∫ p

s=0
F (s)G(s) ds (13)

N−1∑
n=0

f [n]g[n] = N
N−1∑
k=0

F [k]G[k] (14)

for functions on Tp, Z, PN , respectively. The period p or N appears as a factor
on the transform side of these equations. An exchange of infinite summation and
integration processes is involved in this heuristic derivation of (12)–(13). In contrast,
only finite sums are used in the derivation of (14) from the synthesis and analysis
equations (9)–(10) that we will establish in a subsequent discussion. You will find
alternative forms for the Parseval identities (11)–(14) in Ex. 1.24.
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The Plancherel identities

When we set g = f in (11)–(14) we obtain the equations

∫ ∞

x=−∞
|f(x)|2 dx =

∫ ∞

s=−∞
|F (s)|2 ds, (15)

∫ p

x=0
|f(x)|2 dx = p

∞∑
k=−∞

|F [k]|2, (16)

∞∑
n=−∞

|f [n]|2 = p

∫ p

0
|F (s)|2 ds, (17)

N−1∑
n=0

|f [n]|2 = N
N−1∑
k=0

|F [k]|2 (18)

that link the aggregate squared size (or energy) of a function f on R, Tp, Z,
PN , respectively, to that of its Fourier transform F . We will refer to (15)–(18)
as the Plancherel identities (although the names of Bessel, Lyapunov, Parseval, and
Rayleigh are also properly associated with these equations).

As we have noted, (15)–(18) can be obtained from (11)–(14) simply by setting
g = f . The corresponding identities are really equivalent, however, since we can ob-
tain a Parseval identity from the corresponding (seemingly less general) Plancherel
identity by using the polarization identities

fḡ = 1
4

{|f + g|2 + i|f + ig|2 + i2|f + i2g|2 + i3|f + i3g|2},
F Ḡ = 1

4

{|F +G|2 + i|F + iG|2 + i2|F + i2G|2 + i3|F + i3G|2}
together with the linearity of the Fourier transform process, see Ex. 1.25.

Orthogonality relations for the periodic complex exponentials

It is a simple matter to verify the orthogonality relations

∫ p

x=0
e2πikx/p e−2πi�x/p dx =

{
p if k = �,

0 otherwise,
k, � = 0,±1,±2, . . . (19)
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for the p-periodic complex exponentials on R. The corresponding discrete orthogo-
nality relations

N−1∑
n=0

e2πikn/Ne−2πi�n/N

=
{
N if k = �, �±N, �± 2N, . . ., k, � = 0,±1,±2, . . .
0 otherwise,

(20)

can be proved by using the formula

1 + z + z2 + · · · + zN−1 =
{
N if z = 1
(zN − 1)/(z − 1) otherwise

for the sum of a geometric progression with

z := e2πi(k−�)/N .

We easily verify that

z = 1 if k − � = 0,±N,±2N, . . .

while
zN = 1 for all k, � = 0,±1,±2, . . .

and thereby complete the argument. An alternative geometric proof of (20) is the
object of Ex. 1.26. Real versions of (19)–(20) are developed in Ex. 1.27.

The orthogonality relations (19), (20) are the special cases of the Parseval iden-
tities (12), (14) that result when the discrete functions F,G vanish at all but one
of the points of Z,PN , respectively, where the value 1 is taken.

Bessel’s inequality

Let f be a function on Tp and let

τn(x) :=
n∑

k=−n

cke
2πikx/p (21)

be any p-periodic trigonometric polynomial of degree n or less with complex coeffi-
cients ck, k = 0,±1,±2, . . . ,±n. By using the analysis equation (6) for the Fourier
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coefficients of f and the orthogonality relations (19), we find∫ p

x=0
|f(x) − τn(x)|2 dx

=
∫ p

x=0

{
f(x) −

n∑
k=−n

ck e
2πikx/p

}{
f(x) −

n∑
�=−n

c� e
−2πi�x/p

}
dx

=
∫ p

x=0
|f(x)|2 dx−

n∑
�=−n

c�

∫ p

x=0
f(x)e−2πi�x/p dx

−
n∑

k=−n

ck

∫ p

x=0
f(x)e2πikx/p dx

+
n∑

k=−n

n∑
�=−n

ckc�

∫ p

x=0
e2πikx/p · e−2πi�x/p dx

=
∫ p

x=0
|f(x)|2 dx− p

n∑
�=−n

c� F [�] − p
n∑

k=−n

ck F [k] + p
n∑

k=−n

ckck

=
∫ p

x=0
|f(x)|2 dx− p

n∑
k=−n

|F [k]|2 + p

n∑
k=−n

|F [k] − ck|2 (22)

when all of the integrals exist and are finite, e.g., as is certainly the case when f is
bounded and continuous at all but finitely many points of Tp.

If we specialize (22) by taking ck = F [k] for k = 0,±1,±2, . . . ,±n, the rightmost
sum vanishes and we find∫ p

x=0
|f(x)|2 dx− p

n∑
k=−n

|F [k]|2 =
∫ p

0

∣∣∣∣∣f(x) −
n∑

k=−n

F [k]e2πikx/p

∣∣∣∣∣
2

dx ≥ 0

for every choice of n = 1, 2, . . . . In this way we prove Bessel’s inequality,∫ p

x=0
|f(x)|2dx ≥ p

∞∑
k=−∞

|F [k]|2, (23)

a one-sided version of (16).

The Weierstrass approximation theorem

Let f be a continuous function on Tp. We will show that we can uniformly approx-
imate f as closely as we please with a p-periodic trigonometric polynomial (21).
More specifically, we will construct trigonometric polynomials τ1, τ2, . . . such that

lim
n→∞ max

0≤x≤p
|f(x) − τn(x)| = 0.
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This result is known as the Weierstrass approximation theorem. We need this result
to establish the validity of (5)–(6). The proof will use a few ideas from intermediate
analysis. (You may wish to jump to Section 1.4and come back later to sort out the
details.)

For each n = 1, 2, . . . we define the de la Vallée–Poussin power kernel

δn(x) := p−1 4n

(
2n
n

)−1

cos2n(πx/p), (24)

shown in Fig. 1.17. We will show that this nonnegative function has a unit area
concentrated at the origin of Tp. By using the Euler identity for cos and the binomial
formula, we write

δn(x) = p−1
(

2n
n

)−1{
eπix/p + e−πix/p

}2n

= p−1
(

2n
n

)−1{(
2n
0

)
e2πinx/p +

(
2n
1

)
e2πi(n−1)x/p

+
(

2n
2

)
e2πi(n−2)x/p + · · ·

+
(

2n
n

)
1 + · · · +

(
2n
2n

)
e−2πinx/p

}
. (25)

Figure 1.17. The de la Vallée–Poussin power kernel (24) for
n = 101, 102, 103.
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Moreover, after noting that

δn(0) = p−14n

(
2n
n

)−1

=
4nn!n!
p(2n)!

=
2n
p

2n− 2
2n− 1

2n− 4
2n− 3

· · · 2
3
<

2n
p

and observing that δn(x) is monotonic on (−p/2, 0) and on (0, p/2), we see that

δn(x) ≤ 2n
p

cos2n(πα/p) when α ≤ |x| ≤ p/2.

In this way we verify that the kernel δn has the following properties:
δn(x) ≥ 0 for −p/2 ≤ x < p/2 (positivity);

∫ p/2

−p/2
δn(x) dx = 1 (unit area); and

max
α≤|x|≤ p/2

δn(x) → 0 as n → ∞ when 0 < α < p/2 (small tail).

(26)

We now define

τn(x) :=
∫ p

u=0
f(u)δn(x− u)du, n = 1, 2, . . . , (27)

see Fig. 1.18. [After studying Chapter 2 you will recognize (27) as a convolution
product, and after studying Chapter 7 you will recognize (27) as an approximation
for the sifting relation (7.64) for Dirac’s delta. Here (7.64) refers to equation (64)
in Chapter 7.] We use (25), (27), and (6) to write

τn(x) =
(

2n
n

)−1{(
2n
0

)
F [n]e2πinx/p +

(
2n
1

)
F [n− 1]e2πi(n−1)x/p

+ · · · +
(

2n
2n

)
F [−n]e−2πinx/p

}
, (28)

and thereby see that τn is a p-periodic trigonometric polynomial of degree n or less
that is easily constructed from the Fourier coefficients (6) of f.

Figure 1.18. Construction of the approximation (27) to f on Tp.
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Suppose now that ε > 0 is given. We first choose 0 < α < p/2 so small that

|f(x) − f(u)| < ε/2 when |x− u| < α.

With α thus chosen, we use the tail hypothesis of ( 26) and select n so large that

max
α≤|x|≤ p/2

δn(x) <
ε

4Mp

where M > 0 is some uniform bound for |f(x)|. By using the unit area hypothesis
of ( 26) with the p-periodicity of δn we see that

f(x) =
∫ p

u=0
f(x)δn(x− u) du

[since f(x) is a constant with respect to the u-integration]. It follows that

f(x) − τn(x) =
∫ p

u=0
{f(x) − f(u)}δn(x− u) du

=
∫ x+p/2

u=x−p/2
{f(x) − f(u)}δn(x− u) du.

In conjunction with the positivity hypothesis of (26) and our choices for α, n this
leads to the uniform bound

|f(x) − τn(x)| ≤
∫

|x−u|≤α

|f(x) − f(u)|δn(x− u) du

+
∫

α≤ |x−u|≤ p/2
|f(x) − f(u)|δn(x− u) du

≤ max
|x−u|≤α

|f(x) − f(u)| ·
∫ p

u=0
δn(x− u) du

+ max
α≤ |x−u|≤ p/2

|f(x) − f(u)| · δn(x− u) · p

≤ ε

2
· 1 + 2M · ε

4Mp
· p = ε,

thus completing the proof.
You can use variations of this argument to study the pointwise convergence of

Fourier series, see Exs. 1.31, 1.32.
There is a second (mean square) form of the Weierstrass approximation theorem

that can be used when f is bounded on Tp and continuous at all points of Tp but
x1, x2, . . . , xm where jumps occur. In this case we can show that

lim
n→∞

∫ p

0
|f(x) − τn(x)|2 dx = 0



30 Fourier’s representation for functions

for suitably chosen trigonometric polynomials τ1, τ2, . . . . We will form τn as before,
noting that |τn(x)| ≤ M when M is a uniform bound for f . We let J(δ) be the por-
tion of Tp that remains after we remove small open intervals I1(δ), I2(δ), . . . , Im(δ)
of length δ centered at x1, x2, . . . , xm. We can then write

∫ p

0
|f(x) − τn(x)|2 dx ≤

m∑
�=1

∫
I�(δ)

|f(x) − τn(x)|2 dx+
∫

J(δ)
|f(x) − τn(x)|2 dx

≤ m · (2M)2 · δ + p · max
x∈J(δ)

|f(x) − τn(x)|2.

Given ε > 0 we can make

m · (2M)2 · δ < ε

2
by choosing a sufficiently small δ. Since f is continuous on J(δ), the above argument
shows that

lim
n→∞ max

x∈J(δ)
|f(x) − τn(x)| = 0,

so we will have
p · max

x∈J(δ)
|f(x) − τn(x)|2 < ε

2

for all sufficiently large n.

A proof of Plancherel’s identity for functions on Tp

Let f be a piecewise continuous function on Tp. We drop the nonnegative rightmost
sum from (22) to obtain the inequality∫ p

x=0
|f(x)|2 dx− p

n∑
k=−n

|F [k]|2 ≤
∫ p

x=0
|f(x) − τn(x)|2 dx

whenever τn is any p-periodic trigonometric polynomial (21) of degree n or less. We
have shown that the right-hand side vanishes in the limit as n → ∞ when we use
the construction (27), (29) of de la Vallée–Poussin to produce τ1, τ2, . . . , and in this
way we see that ∫ p

x=0
|f(x)|2dx− p

∞∑
k=−∞

|F [k]|2 ≤ 0.

In conjunction with the Bessel inequality (23), this proves the Plancherel identity
(16) for all piecewise continuous functions f on Tp. A proof of the Plancherel
identity (15) for suitably restricted functions f on R is given in Ex. 1.40.

Two essentially different piecewise continuous functions f, g on Tp cannot have
the same Fourier coefficients. Indeed, if F [k] = G[k] for all k = 0,±1,±2, . . . , then
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we can use Plancherel’s identity to write

∫ p

0
|f(x) − g(x)|2dx = p

∞∑
k=−∞

|F [k] −G[k]|2 = 0.

It follows that f(x) = g(x) at all points x where f and g are continuous.

1.4 The Fourier–Poisson cube

Introduction

Classical applications of Fourier analysis use the integral (3) or the infinite series (5).
Digital computers can be programmed to evaluate the finite sums (9)–(10) with
great efficiency, see Chapter 6. We are now going to derive some identities that
connect these seemingly unrelated forms of Fourier analysis. This will make it
possible for us to use discrete Fourier analysis to prepare computer simulations for
vibrating strings, diffusing heat, diffracting light, etc. (as described in Section 9.5).

The synthesis–analysis equations (3)–(4), (5)–(6), (7)–(8), (9)–(10) establish bidi-
rectional mappings f ↔ F , g ↔ G, φ ↔ Φ, γ ↔ Γ that link suitably regular func-
tions f, g, φ, γ defined on R, Tp, Z, PN and their corresponding Fourier transforms
F,G,Φ,Γ. We will formally establish certain connections between these four kinds
of univariate Fourier analysis. In so doing, we introduce eight unidirectional map-
pings f → g, f → φ, g → γ, φ → γ, F → G, F → Φ, G → Γ, Φ → Γ that serve to
link the unconnected adjacent corners of the incomplete cube of Fig. 1.19. In this
way we begin the process of unifying the various Fourier representations, and we
prepare some very useful computational tools.

Figure 1.19. Functions from the four Fourier transform pairs (3)–(4),
(5)–(6), (7)–(8), and (9)–(10) arranged on the corners of a cube.
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Discretization by h -sampling

Given a function f on the continuum R and a spacing parameter h > 0, we can
construct a corresponding discrete function φ on Z by defining

φ[n] := f(nh), n = 0,±1,±2, . . . .

We say that φ is constructed from f by h-sampling. The same process can be used
to construct a discrete function γ on PN from a function g on the continuum Tp, i.e.,
to construct an N -periodic function on Z from a p-periodic function on R, but in
this case we must take h := p/N (so that N steps of size h will equal the period p).
With this in mind we define

γ[n] := g
(np
N

)
, n = 0,±1,±2, . . . .

These discretization mappings f → φ and g → γ are illustrated in Fig. 1.20. The
discrete functions φ, γ provide good representations for f, g in cases where f, g do
not vary appreciably over any interval of length h.

Figure 1.20. Construction of functions φ, γ on Z,PN from func-
tions f, g on R,Tp by h-sampling.

Periodization by p -summation

Let f be a function on R and assume that f(x) rapidly approaches 0 as x → ±∞.
We can sum the translates

. . ., f(x+ 2p), f(x+ p), f(x), f(x− p), f(x− 2p), . . .
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to produce the p-periodic function

g(x) :=
∞∑

m=−∞
f(x−mp), −∞ < x < ∞

when p > 0. We say that the function g on Tp is produced from f by p-summation.
Analogously, when φ is a function on Z and φ[n] rapidly approaches 0 as n → ±∞
we can construct a function γ on PN , N = 1, 2, . . . by writing

γ[n] :=
∞∑

m=−∞
φ[n−mN ], n = 0,±1,±2, . . . .

These periodization mappings f → g and φ → γ are illustrated in Fig. 1.21. The
periodic functions g, γ provide good representations for f, φ when the graphs of f, φ
are concentrated in intervals of length p,N , respectively.

The Poisson relations

Let φ be a function on Z. We will assume that φ is absolutely summable, i.e.,

∞∑
m=−∞

|φ[m]| < ∞,

(to ensure that the above sum for γ[n] is convergent) and use the analysis equation
(10) to obtain the discrete Fourier transform

Γ[k] =
1
N

N−1∑
n=0

γ[n]e−2πikn/N

=
1
N

N−1∑
n=0

∞∑
m=−∞

φ[n−mN ]e−2πikn/N .

Now since e−2πikn/N is N -periodic in n and since every integer ν has a unique
representation

ν = n−mN with n = 0, 1, . . . , N − 1 and m = 0,±1,±2, . . . ,

we can write

Γ[k] =
1
N

∞∑
m=−∞

N−1∑
n=0

φ[n−mN ]e−2πik(n−mN)/N

=
1
N

∞∑
ν=−∞

φ[ν]e−2πikν/N .
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Figure 1.21. Construction of functions g, γ on Tp,PN from func-
tions f, φ on R,Z by p-summation, N -summation, respectively.

We now use the analysis equation (8) (with p replaced by q to avoid confusion at a
later point in the presentation) to obtain

Γ[k] =
q

N
· 1
q

∞∑
ν=−∞

φ[ν]e−2πi(kq/N)ν/q

=
q

N
Φ
(
kq

N

)
, k = 0,±1,±2, . . . .
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If we construct γ from φ by N -summation, then we can obtain Γ from Φ by q/N -
sampling and q/N -scaling. (The Fourier transform Φ of φ is assumed to be a
function on Tq, q > 0.)

Analogously, when f is a suitably regular function on R we can find the Fourier
coefficients of the p-periodic function

g(x) :=
∞∑

m=−∞
f(x−mp)

by writing

G[k] =
1
p

∫ p

x=0
g(x)e−2πikx/p dx

=
1
p

∫ p

x=0

∞∑
m=−∞

f(x−mp)e−2πikx/p dx

?=
1
p

∞∑
m=−∞

∫ p

0
f(x−mp)e−2πik(x−mp)/p dx

=
1
p

∫ ∞

ξ=−∞
f(ξ)e−2πikξ/p dξ

=
1
p
F

(
k

p

)
, k = 0,±1,±2, . . . .

Of course, we must impose a mild regularity condition on f to ensure that the
functions g,G are well defined and to ensure that the exchange of the summation
and integration processes is permissible. In this way we see that if g is formed from
f by p-summation, then G is formed from F by 1/p-sampling and 1/p-scaling.

We have used the analysis equations (4) and (6), (8) and (10) to obtain the
Fourier transform pairs

g(x) :=
∞∑

m=−∞
f(x−mp), G[k] =

1
p
F

(
k

p

)
, (29)

γ[n] :=
∞∑

m=−∞
φ[n−mN ], Γ[k] =

q

N
Φ
(
kq

N

)
, (30)

when f, φ are suitably regular functions on R,Z with Fourier transforms F,Φ on
R,Tq, respectively. Analogous arguments [using the synthesis equations (3) and
(7), (5) and (9)] can be used to obtain the Fourier transform pairs

φ[n] := f
(np
N

)
, Φ(s) =

∞∑
m=−∞

F

(
s− mN

p

)
, (31)

γ[n] := g
(np
N

)
, Γ[k] =

∞∑
m=−∞

G[k −mN ], (32)
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when f, g are suitably regular functions on R,Tp with Fourier transforms F,G on
R,Z, respectively, see Ex. 1.34. We will refer to (29)–(32) as the Poisson rela-
tions. You will observe the dual roles played by sampling and summation in these
equations.

The Fourier–Poisson cube

We use the Poisson relations together with the analysis and synthesis equations of
Fourier (as arranged in Fig. 1.19) to produce the Fourier–Poisson cube of Fig. 1.22.
Suitably regular functions f, g, φ, γ that are defined on R,Tp,Z,PN lie at the corners
of the left face of this cube, and the corresponding Fourier transforms F,G,Φ,Γ
defined on R,Z,TN/p,PN , respectively, lie on the corners of the right face. Of
necessity we must work with both p-periodic and q-periodic functions with q = N/p
in this diagram (and this is why we introduced the parameter q in the previous
section). The synthesis–analysis equations (3)–(10) allow us to pass back and forth
from function to transform. The process of h-sampling and p-summation provide us
with one-way mappings that connect adjacent corners of the left (function) face of
the cube, and Poisson’s formulas (29)–(32) induce corresponding one-way mappings
that connect adjacent corners of the right (transform) face of the cube.

Figure 1.22. The Fourier–Poisson cube is a commuting diagram
formed from the 8 mappings of (3)–(10) and the 8 mappings of
(29)–(32).
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You will observe that it is possible to move from the f corner to the γ corner
along the alternative routes f → g → γ or f → φ → γ. We use the Poisson relations
to verify that these mappings produce the same function γ:

γ[n] = g
(np
N

)
=

∞∑
m=−∞

f
(np
N

−mp
)
,

γ[n] =
∞∑

m=−∞
φ[n−mN ] =

∞∑
m=−∞

f
(
[n−mN ]

p

N

)
.

You can use similar arguments to verify that any two paths joining one corner of
the cube to another (in a way that is consistent with the arrows) correspond to the
same composite mapping. We summarize this by saying that the Fourier–Poisson
cube is a commuting diagram.

The Fourier–Poisson cube is a helpful way to visualize the connections between
(3)–(10) and (29)–(32). You will learn to work with all of these mappings as the
course progresses. Practical methods for finding Fourier transforms of functions on
R, i.e., for using the mappings f ↔ F , will be developed in Chapter 3. The Fourier
series mappings g ↔ G, φ ↔ Φ and the DFT mappings γ ↔ Γ will be studied in
Chapter 4. You will learn to use the equivalence of f → g → G and f → F → G
to find many Fourier series with minimal effort! The fast Fourier transform (FFT),
an efficient algorithm for effecting the mappings γ ↔ Γ on a computer, will be the
focus of Chapter 6. You will even learn to invert the one-way discretization maps
f → φ, g → γ (when F,G are suitably localized) as you study the sampling theorem
in Chapter 8. At this point, however, you will find it most helpful to work through
Exs. 1.35, 1.36 so that you will see how Poisson’s relations can be used to analyze
the error associated with certain discrete approximations to the integrals (6), (4)
for Fourier transforms on Tp,R, respectively.

1.5 The validity of Fourier’s representation

Introduction

In this section, we will establish the validity of Fourier’s representation for suit-
ably regular functions on PN ,Z,Tp,R and some of the arguments use ideas from
intermediate analysis. Focus on the flow of the argument as you read the proof for
the first time, skipping over the steps that you do not understand. You can come
back and sort out the troublesome details after you have studied the more concrete
material in Chapters 2–4.

We will continue to use the letter pairs f, F , g,G, φ,Φ, and γ,Γ (instead of the
generic f, F of (3)–(4), (5)–(6), (7)–(8), and (9)–(10)) to help you follow the course
of the argument as we move around the Fourier–Poisson cube, establishing in turn
the links γ ↔ Γ, φ ↔ Φ, g ↔ G, and finally, f ↔ F.
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Functions on PN

Let γ be any function on PN , i.e., let the complex numbers γ[0], γ[1], . . . , γ[N−1]
be given. Using the analysis equation (10) we define

Γ[k] :=
1
N

N−1∑
m=0

γ[m]e−2πikm/N , k = 0, 1, . . . , N − 1.

By using this expression together with the orthogonality relations (20) we find

N−1∑
k=0

Γ[k]e2πikn/N =
N−1∑
k=0

{
1
N

N−1∑
m=0

γ[m]e−2πikm/N

}
e2πikn/N

=
N−1∑
m=0

γ[m]
{

1
N

N−1∑
k=0

e2πikn/N · e−2πikm/N

}

= γ[n], n = 0, 1, . . . , N − 1,

i.e., the synthesis equation (9) holds. Thus we see that Fourier’s representation can
be used for any function on PN , so the bottom front link from the Fourier–Poisson
cube of Fig. 1.22 is secure.

Absolutely summable functions on Z

Let φ be an absolutely summable function on Z, i.e., φ[n] → 0 as n → ±∞ so
rapidly that

∞∑
n=−∞

|φ[n]| < ∞.

This hypothesis of absolute summability ensures that the Fourier transform

Φ(s) :=
1
q

∞∑
n=−∞

φ[n]e−2πisn/q

is well defined, with the series converging absolutely and uniformly on R to the
continuous q-periodic function Φ. Moreover, the same hypothesis guarantees that
the N -periodic discrete function

γ[n] :=
∞∑

m=−∞
φ[n−mN ], n = 0,±1,±2, . . .

is well defined by N -summation with the corresponding discrete Fourier transform
being given by the Poisson relation

Γ[k] =
q

N
Φ
(
kq

N

)
, k = 0,±1,±2, . . .
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of (30). We use these expressions for γ,Γ in the synthesis equation

γ[n] =
N−1∑
k=0

Γ[k]e2πink/N , n = 0,±1,±2, . . .

(which we have just established) to obtain the discrete Poisson sum formula

∞∑
m=−∞

φ[n−mN ] =
q

N

N−1∑
k=0

Φ
(
kq

N

)
e2πi(kq/N)(n/q), n = 0,±1,±2, . . . . (33)

As N → ∞, the translates φ[n − mN ], m = ±1,±2, . . . from the sum on the
left of (33) move off to ±∞, while the Riemann sums on the right converge to
a corresponding integral. Thus in the limit as N → ∞ (33) yields the Fourier
synthesis equation

φ[n] =
∫ q

s=0
Φ(s)e2πisn/q ds, n = 0,±1,±2, . . . .

In this way we prove that Fourier’s representation (7)–(8) is valid for any absolutely
summable function on Z. The four links at the bottom of the Fourier–Poisson cube
are secure when φ is such a function.

Continuous piecewise smooth functions on Tp

Let g be a continuous piecewise smooth function on Tp, i.e., g is continuous on Tp

and g′ is defined and continuous at all but a finite number of points of Tp where
finite jump discontinuities can occur. The graph of g on Tp is thus formed from
finitely many smooth curves joined end-to-end with corners being allowed at the
points of connection, e.g., as illustrated in Fig. 1.3. The Fourier coefficients

G[k] :=
1
p

∫ p

0
g(x)e−2πikx/p dx, k = 0,±1,±2, . . . ,

G1[k] :=
1
p

∫ p

0
g′(x)e−2πikx/pdx, k = 0,±1,±2, . . .

of g, g′ are then well defined. Since g(0+) = g(0−) = g(p−), we can use an integra-
tion by parts argument to verify that

G1[k] = (2πik/p)G[k], k = 0,±1,±2, . . . .

We use this identity with the real inequality

|ab| ≤ 1
2 (a2 + b2)
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and Bessel’s inequality (23) (for g′) to see that

∞∑
k=−∞

|G[k]| = |G[0]| +
p

2π

∑
k �=0

∣∣∣∣1kG1[k]
∣∣∣∣

≤ |G[0]| +
p

4π

∑
k �=0

{
1
k2 + |G1[k]|2

}

≤ |G[0]| +
p

2π

∞∑
k=1

1
k2 +

1
4π

∫ p

0
|g′(x)|2 dx

< ∞.

Thus the function
φ[k] := p G[−k], k = 0,±1,±2, . . .

is absolutely summable on Z. We have shown that any such function has the Fourier
representation

φ[k] =
∫ p

x=0
Φ(x)e2πikx/p dx, k = 0,±1,±2, . . . ,

where

Φ(x) :=
1
p

∞∑
k=−∞

φ[k]e−2πikx/p, −∞ < x < ∞.

After expressing φ in terms of G this synthesis–analysis pair takes the form

G[k] =
1
p

∫ p

x=0
Φ(x)e−2πikx/p dx, k = 0,±1,±2, . . .

Φ(x) =
∞∑

k=−∞
G[k]e2πikx/p, −∞ < x < ∞.

In this way, we see that the original function g and the auxiliary function Φ have the
same Fourier coefficients. We apply the Plancherel identity (16) to the continuous
p-periodic function g−Φ and thereby conclude that g = Φ. In this way we establish
the desired synthesis equation

g(x) =
∞∑

k=−∞
G[k]e2πikx/p, −∞ < x < ∞,

and prove that Fourier’s representation (5)–(6) is valid for any continuous piecewise
smooth function on Tp.
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Since the Fourier coefficients are absolutely summable, the sequence of partial
sums

sn(x) :=
n∑

k=−n

G[k]e2πikx/p, n = 0, 1, 2, . . .

of the Fourier series converges absolutely and uniformly on Tp to g. In particular,
all but finitely many of the trigonometric polynomials s0, s1, s2, . . . have graphs that
lie within an arbitrarily small ε-tube

{
(x, z): x ∈ Tp, z ∈ C, |g(x) − z| < ε

}
, ε > 0

drawn about the graph of g on Tp, see Fig. 1.23.

Figure 1.23. Any real ε-tube drawn about the graph of the con-
tinuous piecewise smooth function f from Fig. 1.3 contains the
graphs of all but finitely many of the partial sums s0, s1, s2, . . .
of the corresponding Fourier series.

The sawtooth singularity function on T1

In this section we study the convergence of the Fourier series of the 1-periodic
sawtooth function

w0(x) :=
{

0 if x = 0
1
2 − x if 0 < x < 1

(34)

that is continuously differentiable at all points of T1 except the origin, where a
unit jump occurs, see Fig. 1.24. Using integration by parts we compute the Fourier
coefficients

W0[k] :=
∫ 1

0

(
1
2

− x

)
e−2πikxdx

= − 1
2πik

{(
1
2

− x

)
e−2πikx

∣∣∣∣
1

x=0
+

∫ 1

0
e−2πikxdx

}

=
1

2πik
, k = ±1,±2, . . .



42 Fourier’s representation for functions

Figure 1.24. Graphs of the sawtooth singularity function (34)
as a 1-periodic function on R and as a function on T1.

with

W0[0] =
∫ 1

0

( 1
2 − x

)
dx = 0.

We will show that the slightly modified Fourier representation

w0(x) = lim
L→∞

L∑
k=−L

W0[k]e2πikx =
∞∑

k=1

sin(2πkx)
πk

(35)

(with the limits at ±∞ taken symmetrically) is valid at each point x. Since (35)
holds trivially when x = 0, we need only give a proof for points 0 < x < 1.

We construct a continuous piecewise smooth 1-periodic function

w1(x) := − 1
12

+
∫ x

u=0
w0(u) du, −∞ < x < ∞,

having the derivative w0(x) (at points x 	= 0,±1,±2, . . .), noting that

w1(x) = − 1
12

+
x

2
− x2

2
when 0 ≤ x ≤ 1.

The constant −1/12 has been chosen to make

W1[0] :=
∫ 1

0
w1(x) dx = 0,

and an integration by parts argument can be used to verify that

W1[k] =
1

(2πik)2
, k = ±1,±2, . . . ,

see (4.19)–(4.24) (i.e. equations (19)–(24) from Chapter 4). We have already shown
that such a function w1 has the Fourier representation

w1(x) =
∞∑

k=−∞
W1[k]e2πikx =

∞∑
k=1

−cos(2πkx)
πk(2πk)

, −∞ < x < ∞
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with this Fourier series converging absolutely and uniformly. This being the case,
we can establish (35), i.e., we can justify the term-by-term differentiation of the
Fourier series for w1, by showing that the series (35) converges uniformly on every
closed interval α ≤ x ≤ 1 − α with 0 < α < 1/2.

We will use a classic argument of Abel and Dedekind to verify that the sequence
of partial sums

sn(x) :=
n∑

k=−n

W0[k]e2πikx =
n∑

k=1

sin(2πkx)
πk

, n = 1, 2, . . .

of the Fourier series (35) converges uniformly on 0 < α ≤ x ≤ 1 − α. We introduce
the auxiliary functions

pk(x) := −cos(2πkx+ πx)
2 sin(πx)

, 0 < x < 1, k = 0, 1, 2, . . .

that have the two properties:

pk(x) − pk−1(x) =
cos(2πkx− πx) − cos(2πkx+ πx)

2 sin(πx)
= sin(2πkx), 0 < x < 1, k = 1, 2, 3, . . .

and
|pk(x)| ≤ 1

2 sin(πα)
for α ≤ x ≤ 1 − α, k = 1, 2, . . . .

When m > n > 0 and α ≤ x ≤ 1 − α we use the first of these to write

sm(x) − sn(x) =
sin{2π(n+ 1)x}

π(n+ 1)
+

sin{2π(n+ 2)x}
π(n+ 2)

+ · · · +
sin{2πmx}

πm

=
pn+1(x) − pn(x)

π(n+ 1)
+
pn+2(x) − pn+1(x)

π(n+ 2)
+ · · · +

pm(x) − pm−1(x)
πm

=
1
π

{( −1
n+ 1

)
pn(x) +

(
1

n+ 1
− 1
n+ 2

)
pn+1(x) + · · ·

+
(

1
m− 1

− 1
m

)
pm−1(x) +

(
1
m

)
pm(x)

}
.

We then use the second to obtain the uniform bound

|sm(x) − sn(x)|
≤ 1

2π sin(πα)

{
1

n+ 1
+

(
1

n+ 1
− 1
n+ 2

)
+ · · · +

(
1

m− 1
− 1
m

)
+

1
m

}

=
1

π(n+ 1) sin(πα)
when α ≤ x ≤ 1 − α, m > n > 0,

and thereby establish the validity of (35).
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The Gibbs phenomenon for w0

Before leaving this discussion, we will show how sn(x) converges to w0(x) in a neigh-
borhood of the point of discontinuity x = 0. The analysis will help you understand
the annoying ripples you will observe every time you approximate a discontinuous
function on Tp with a partial sum from its Fourier series. We find it convenient to
define

ξ := 2nx =
x

1/2n

so that ξ provides us with a measure of x in units of 1/2n. We can then write

sn(x) = sn(ξ/2n)

=
n∑

k=1

sin{2πk(ξ/2n)}
πk

=
n∑

k=1

sin{π(k ξ/n)}
π(k ξ/n)

· (ξ/n).

We regard this as a very good Riemann sum approximation

sn(x) ≈ G(ξ) (36)

to the Gibbs function

G(ξ) :=
∫ ξ

0

sin πu

πu
du (37)

when n is large and 2nx is of modest size. (A large x analysis is given in Ex. 1.37.)
The odd function G, shown in Fig. 1.25, takes the extreme values

G = .5894 . . . , .4514 . . . , .5330 . . . , .4749 . . . , .5201 . . . , . . .

that oscillate about the line G = 1/2 with decreasing amplitude at the points
ξ = 1, 2, 3, 4, 5, . . . , corresponding to the abscissas x = 1/2n, 2/2n, 3/2n, . . . .

Figure 1.25. The Gibbs function G of (37).
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Using the approximation (36) and the graph of Fig. 1.25, we see that when n
is large the graph of sn(x) will overshoot the value w0(0+) = 1/2 by about 9% of
the total jump J := w0(0+) − w0(0−) = 1 in w0, taking an extreme value close
to .59 near the abscissa x = 1/2n. This behavior, well illustrated in the plots of
sn in Fig. 1.26, is known as Gibbs phenomenon. It was observed by Michelson
when he plotted partial sums for dozens of Fourier series with his mechanical har-
monic analyzer, see Ex. 1.45, and subsequently described by J.W. Gibbs (see Nature
58(1898), 544–545, 59(1898), 200, and 59(1899), 606). (An earlier exposition was
given by Wilbraham, in 1841, see E. Hewitt and R.E. Hewitt, The Gibbs–Wilbraham
phenomenon: An episode in Fourier analysis, Arch. History Exact Sci. 21(1979),
129–160 for additional details.)

Figure 1.26. The partial sums s5, s10, s20 of the Fourier series
(35) for the sawtooth singularity function w0 of (34).

Piecewise smooth functions on Tp

Let g be a piecewise smooth function on Tp, i.e., g, g′ are continuous at all but
finitely many points of Tp where finite jump discontinuities can occur, and assume
that g has the midpoint regularization

g(x) = 1
2

{
g(x+) + g(x−)

}
at every point x. The graph of g on Tp is thus formed from finitely many smooth
curves and isolated midpoints, as illustrated in Fig. 1.27.

Figure 1.27. A piecewise smooth p-periodic function g on R

with midpoint regularization at points of discontinuity.
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Any such function g has the decomposition

g(x) = J1w0

(
x− x1

p

)
+ J2w0

(
x− x2

p

)
+ · · · + Jmw0

(
x− xm

p

)
+ gr(x), (38)

where 0 ≤ x1 < x2 < · · · < xm < p are the points where g has the nonzero jumps

J� := g(x�+) − g(x�−), � = 1, 2, . . . ,m, (39)

where w0 is the sawtooth singularity function (34), and where the function gr(x)
is continuous and piecewise smooth. The decomposition (38) for the function of
Fig. 1.27 is shown in Fig. 1.28.

Figure 1.28. The decomposition (38) for the piecewise smooth
function of Fig. 1.27.
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We know that the Fourier series for the continuous piecewise smooth function
gr converges uniformly on Tp to gr. Fourier’s representation is also valid for the
shifted and dilated sawtooth function

w0

(
x− x�

p

)
= lim

L→∞

L∑
k=−L

W0[k]e2πik(x−x�)/p

= lim
L→∞

L∑
k=−L

{
W0[k]e−2πikx�/p

}
e2πiks/p

with the convergence being uniform on the portion of Tp that remains after a
small interval centered at the point of discontinuity x = x� has been removed,
� = 1, 2, . . . ,m. Since each term from the decomposition (38) has a valid Fourier
representation, we can write

g(x) = lim
L→∞

L∑
k=−L

G[k]e2πikx/p, −∞ < x < ∞.

Once again we must sum the terms in a symmetric fashion.
From the above analysis we see that the partial sums of the Fourier series for

g converge uniformly on that portion of Tp that remains after m arbitrarily small
intervals centered at the points of discontinuity x1, x2, . . . , xm have been removed.
The term J� w0

(
(x−x�)/p

)
introduces a Gibbs overshoot near the point x = x�, as

illustrated in Fig. 1.29 for the function of Fig. 1.27. The graphs of all but finitely
many of these partial sums will be contained in the region obtained by adding to
the ε-tube about the graph of g the Gibbs ε-tubes{

(x, z): x ∈ Tp, z ∈ C, |x− x�| < ε, |z − g(x�) − tJ�| < ε, −.59 < t < .59},
� = 1, 2, . . . ,m

containing the singularities (together with their ±p,±2p, . . . translates), see
Fig. 1.30.

Figure 1.29. The partial sum s100 of the Fourier series for the
function of Fig. 1.27 exhibits the 9% Gibbs overshoot at each
point of discontinuity.
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Figure 1.30. All but finitely many of the partial sums of the
Fourier series for the function g of Fig. 1.27 lie in the region
formed by combining the ε-tube about g and the Gibbs ε-tubes
at the jumps of g.

Smooth functions on R with small regular tails

Let f and its derivative f ′ be defined and continuous on R, and let f ′′ be defined
and continuous at all but finitely many points of R where finite jump discontinuities
can occur. Assume further that the tails of f at ±∞ are small and regular in the
sense that

|f(x)| + |f ′(x)| ≤ T (|x|), −∞ < x < ∞ (40)

for some choice of the continuous, nonincreasing, integrable function T (x) on the
half line 0 ≤ x < ∞, and that ∫ ∞

−∞
|f ′′(x)| dx < ∞. (41)

These hypotheses ensure that the Fourier transforms

F (s) :=
∫ ∞

−∞
f(x)e−2πisxdx,

F1(s) :=
∫ ∞

−∞
f ′(x)e−2πisx dx, F2(s) :=

∫ ∞

−∞
f ′′(x)e−2πisx dx

are well-defined continuous functions on R.
Using the fundamental theorem of calculus, we write

f(x) = f(0) +
∫ x

0
f ′(ξ) dξ, −∞ < x < ∞, (42)

and since f ′ is absolutely integrable, the limits

f(±∞) = f(0) +
∫ ±∞

0
f ′(ξ) dξ (43)
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must exist. Since f itself is absolutely integrable, it follows that f(±∞) = 0.
Analogously, f ′(±∞) = 0 as well. Knowing that f, f ′ vanish at ±∞ we integrate
by parts to verify that

F2(s) = 2πis F1(s) = (2πis)2F (s), −∞ < s < ∞
with

s2|F (s)| =
1

4π2 |F2(s)| =
1

4π2

∣∣∣∣
∫ ∞

−∞
f ′′(x)e−2πisx dx

∣∣∣∣ ≤ 1
4π2

∫ ∞

−∞
|f ′′(x)| dx < ∞.

Thus the tails of F at ±∞ go to zero so rapidly that

|F (s)| < M/s2, s 	= 0 (44)

for some constant M.

We now show that the function

g(x) :=
∞∑

m=−∞
f(x−mp), p > 0,

produced by the p-summation process is continuously differentiable on Tp. Indeed,
by using the hypothesis (40) together with the integral test for convergence of an
infinite series, we find

∞∑
m=−∞

|f(x−mp)| ≤
∞∑

m=−∞
T (|x−mp|) ≤ 2

{
T (0) +

1
p

∫ ∞

0
T (ξ) dξ

}
< ∞,

and analogously,

∞∑
m=−∞

|f ′(x−mp)| ≤ 2
{
T (0) +

1
p

∫ ∞

0
T (ξ) dξ

}
< ∞.

Knowing that these series converge absolutely and uniformly on Tp, we conclude
that the function g is well defined and continuously differentiable with

g′(x) =
∞∑

m=−∞
f ′(x−mp).

Since f is absolutely integrable, the Fourier coefficients of the p-periodic function
g are given by the Poisson relation (29), i.e.,

G[k] =
1
p
F

(
k

p

)
, k = 0,±1,±2, . . . .
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We have already proved that Fourier’s representation is valid for a continuous piece-
wise smooth function on Tp, so

g(x) =
∞∑

k=−∞
G[k]e2πikx/p, −∞ < x < ∞.

After expressing g,G in terms of f, F , we obtain the continuous version of the
Poisson sum formula

∞∑
m=−∞

f(x−mp) =
∞∑

k=−∞

1
p
F

(
k

p

)
e2πikx/p, −∞ < x < ∞. (45)

[The discrete version appears in (33).]
The desired Fourier synthesis equation (3) is now obtained by using (45) in con-

junction with a suitable limiting argument. Indeed, for any choice of x, p > |x| and
L > 1/p, we use (45), (40), and (44) in turn to write

∣∣∣∣f(x) −
∫ ∞

−∞
F (s)e2πisx ds

∣∣∣∣
=

∣∣∣∣f(x) −
∞∑

m=−∞
f(x−mp) +

∞∑
k=−∞

1
p
F

(
k

p

)
e2πikx/p −

∫ ∞

−∞
F (s)e2πisx ds

∣∣∣∣
≤

∑
m�=0

|f(x−mp)| +
∣∣∣∣ ∑

|k|≤ Lp

1
p
F

(
k

p

)
e2πikx/p −

∫ L

−L

F (s)e2πisx ds

∣∣∣∣
+

∑
|k|>Lp

∣∣∣∣1pF
(
k

p

) ∣∣∣∣ +
∫

|s|>L

|F (s)| ds

≤ 2
∞∑

m=1

T (mp− |x|) +
∣∣∣∣ ∑

|k|≤ Lp

1
p
F

(
k

p

)
e2πikx/p −

∫ L

−L

F (s)e2πisx ds

∣∣∣∣
+

2
p

∑
k>Lp

M

(k/p)2
+ 2

∫ ∞

L

M

s2
ds.

Suppose now that ε > 0 is given. We will have

2
∫ ∞

L

M

s2
ds =

2M
L

<
ε

4
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and

2
p

∑
k>Lp

M

(k/p)2
≤ 2Mp

{
1

(Lp)2
+

1
(Lp+ 1)2

+
1

(Lp+ 2)2
+ · · ·

}

≤ 2Mp

∫ ∞

Lp−1

ds

s2
=

2Mp

Lp− 1
<
ε

4

provided that L > 16M/ε and Lp > 2. With L so chosen, we force∣∣∣∣ ∑
|k|≤ Lp

1
p
F

(
k

p

)
e2πikx/p −

∫ L

−L

F (s)e2πisx ds

∣∣∣∣ ≤ ε

4

by making the mesh 1/p in this approximating sum to the integral sufficiently
small, i.e., by choosing p sufficiently large. Finally, by using the monotonicity and
integrability of T , we see that

2
∞∑

m=1

T (mp− |x|) < 2
{
T (p− |x|) +

1
p

∫ ∞

p−|x|
T (u) du

}
<
ε

4

when p is sufficiently large. In this way we prove that∣∣∣∣f(x) −
∫ ∞

s=−∞
F (s)e2πisx ds

∣∣∣∣ < ε

for every choice of ε > 0, thereby establishing the validity of Fourier’s representation

f(x) =
∫ ∞

−∞
F (s)e2πisx ds, −∞ < x < ∞.

Indeed, all 12 links of the Fourier–Poisson cube of Fig. 1.22 are secure for such a
function f.

Singularity functions on R

We define the singularity functions

y0(x) := −1
4




(x+ 2)ex if x < 0
0 if x = 0
(x− 2)e−x if x > 0,

y1(x) := −1
4

{
(x+ 1)ex if x ≤ 0
(−x+ 1)e−x if x ≥ 0,

y2(x) := −1
4

{
xex if x ≤ 0
xe−x if x ≥ 0

(46)
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Figure 1.31. The singularity functions y0, y1, y2 of (46).

shown in Fig. 1.31 to use for the purpose of removing jump discontinuities from a
function on R and from its first two derivatives. By construction

y′
2(x) = y1(x), −∞ < x < ∞
y′′
2 (x) = y′

1(x) = y0(x), −∞ < x < 0 or 0 < x < ∞ (47)

with y1, y2 being continuous on R and with y0 being continuous at all points of R

except the origin, where we find

y0(0+) − y0(0−) = 1
y′
0(0+) − y′

0(0−) = 0.
(48)
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We will show that Fourier’s representation is valid for y0, y1, y2 and then use this
fact to show that Fourier’s representation can also be used for all piecewise smooth
functions having small regular tails. As a first step, we integrate by parts to verify
that y2 has the Fourier transform

Y2(s) :=
∫ ∞

x=−∞
y2(x)e−2πisx dx

= −1
4

∫ 0

−∞
x ex(1−2πis) dx− 1

4

∫ ∞

0
x e−x(1+2πis) dx

= −1
4

{
x

1 − 2πis
− 1

(1 − 2πis)2

}
ex(1−2πis)

∣∣∣∣
0

−∞

+
1
4

{
x

1 + 2πis
+

1
(1 + 2πis)2

}
e−x(1+2πis)

∣∣∣∣
∞

0

=
2πis

(1 + 4π2s2)2
, −∞ < s < ∞.

Using (47) and integration by parts, we then find in turn the Fourier transforms

Y1(s) :=
∫ ∞

x=−∞
y′
2(x)e

−2πisx dx = 2πis Y2(s) =
(2πis)2

(1 + 4π2s2)2
, −∞ < s < ∞,

Y0(s) :=
∫ ∞

x=−∞
y′
1(x)e

−2πisx dx = 2πis Y1(s) =
(2πis)3

(1 + 4π2s2)2
, −∞ < s < ∞

of y1, y0, respectively.
The smooth odd function y2 has small regular tails, so from the analysis of the

preceding section we know that y2 has the Fourier representation

y2(x) =
∫ ∞

s=−∞
Y2(s)e2πisx dx

= −2
∫ ∞

s=0

(2πs) sin(2πsx) ds
(1 + 4π2s2)2

, −∞ < x < ∞.

(49)

Moreover, since the integral of (49) and the integral obtained by formally differen-
tiating (49) with respect to x both converge uniformly, we can write

y1(x) = y′
2(x) = −2

∫ ∞

s=0

(2πs)2 cos(2πsx) ds
(1 + 4π2s2)2

, −∞ < x < ∞. (50)
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Thus, y1 has the Fourier representation

y1(x) =
∫ ∞

s=−∞
Y1(s)e2πisx ds. (51)

As a final step we will show that y0 has the Fourier representation

y0(x) = lim
L→∞

∫ L

s=−L

Y0(s)e2πisx ds (52)

(with symmetric limits on the integral), or equivalently, that

y0(x) = 2
∫ ∞

s=0

(2πs)3 sin(2πsx) ds
(1 + 4π2s2)2

, −∞ < x < ∞. (53)

Since (53) holds trivially at the point of discontinuity, x = 0, and since y0 is odd,
it is enough to verify that (53) holds at each point x > 0. We will show that the
integral of (53) converges uniformly on the interval α ≤ x < ∞ for every α > 0.
Since the same is true of the integral of (50), we thereby justify the process of
differentiating under the integral sign of (50) to produce (53). With this in mind,
we let ε > 0 be selected and let M > L > α > 0 be chosen with L lying to the right
of all of the local extreme points of the kernel

G(s) :=
2(2πs)3

(1 + 4π2s2)2
.

That portion of the tail of the integral in (53) between L and M is then uniformly
bounded by ∣∣∣∣

∫ M

s=L

G(s) sin(2πsx) ds
∣∣∣∣

=
1

2πx

∣∣∣∣
∫ M

L

G(s){−2πx sin(2πsx)} ds
∣∣∣∣

=
1

2πx

∣∣∣∣G(s) cos(2πsx)
∣∣M
s=L

−
∫ M

s=L

G′(s) cos(2πsx) ds
∣∣∣∣

≤ 1
2πα

{
G(M) +G(L) +

∣∣∣∣
∫ M

s=L

G′(s) ds
∣∣∣∣
}

≤ 2G(L)
2πα

< ε

if L is sufficiently large. Thus the integral of (53) converges uniformly on α ≤ x < ∞
and the validity of Fourier’s representation of y0 is established.
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Piecewise smooth functions on R with small regular tails

Let f be defined on R and assume that f is continuous except for finitely many
points x1 < x2 < · · · < xm where finite jumps

Jµ := f(xµ+) − f(xµ−), µ = 1, 2, . . . ,m

occur and where f has the midpoint regularization

f(xµ) = 1
2{f(xµ+) + f(xµ−)}, µ = 1, 2, . . .,m,

e.g., as illustrated in Fig. 1.32. Let f ′ be defined and continuous except for finitely
many points x′

1 < x′
2 < · · · < x′

m′ where finite jumps

J ′
µ := f ′(x′

µ+) − f ′(x′
µ−), µ = 1, 2, . . . ,m′

occur. Let f ′′ be defined and continuous except for finitely many points where finite
jump discontinuities can occur, and assume that∫ ∞

−∞
|f ′′(x)| dx < ∞.

Finally, assume that the tails of f at ±∞ are small and regular in the sense that

|f(x)| + |f ′(x)| < T (|x|), x 	= x′
1, . . . , x

′
m′

where T is continuous, nonincreasing, and integrable on the half line 0 ≤ x < ∞.
Using (46)–(48) we see that such a function f has the decomposition

f(x) =
m∑

µ=1

Jµ y0(x− xµ) +
m′∑

µ=1

J ′
µ y1(x− x′

µ) + fr(x), (54)

where fr, f
′
r are continuous on R, where

∫ ∞

−∞
|f ′′

r (x)| dx < ∞,

and where fr (like f, y0, y1) has small regular tails at ±∞. By using the Fourier
representations of fr, y0, y1 developed in the two preceding sections, we conclude
that

f(x) = lim
L→+∞

∫ L

−L

F (s)e2πisx ds, −∞ < x < ∞ (55)
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Figure 1.32. Piecewise smooth functions on R with small regu-
lar tails and midpoint regularization.

[i.e., (3) holds when the integration limits are taken in a symmetric fashion]. Here

F (s) :=
∫ ∞

−∞
f(x)e−2πisx dx

=
m∑

µ=1

Jµ e
−2πixµsY0(s) +

m′∑
µ=1

J ′
µ e

−2πix′
µsY1(s) + Fr(s), (56)

where Fr is the Fourier transform of fr. Thus Fourier’s representation is valid for
such a function f.

We now know that if f satisfies the above hypotheses, then the Fourier transform
F is well defined by the analysis equation (4), and the synthesis equation (3) can
be used to represent f provided that we rewrite (3) in the form (55). In view



The validity of Fourier’s representation 57

of the symmetry present in the synthesis–analysis equations (3)–(4), the same ar-
gument shows that if a function F satisfies the above hypotheses, then we can use
the synthesis equation (3) to construct a function f that will have F as its Fourier
transform provided that we rewrite (4) in the form

F (s) = lim
L→+∞

∫ L

−L

f(x)e−2πisx dx.

Thus if f, F are piecewise smooth functions having midpoint regularization at any
points of discontinuity, if at least one of the functions f, F has small regular tails,
and if f, F are linked by either (3) or (4), then f, F are linked by both (3) and (4).
This observation can be used to justify the use of Fourier’s representation (3)–(4)
for almost all of the common transform pairs of ordinary functions f, F that we
meet in the elementary applications of Fourier analysis.

Extending the domain of validity

We have shown that Fourier’s representation is valid for all functions defined on PN

and for certain large but not universal classes of functions defined on Z, Tp, and
R. The restrictive hypotheses that we have imposed can be weakened considerably,
e.g., a function on Tp or R has a valid Fourier representation if the following four
Dirichlet conditions are satisfied:
• ∫ |f(x)| dx < ∞, with the integral taken over the domain Tp or R of f ;
• At each point x in the domain of f , finite limits f(x+), f(x−) exist and

f(x) = 1
2{f(x+) + f(x−)};

• The points where f is discontinuous, if any, are isolated, i.e., there are only finitely
many such points in any bounded portion of the domain; and

• Any open interval (a, b) from the domain of f can be broken into subintervals
(a, x1), (x1, x2), . . . , (xn, b) on each of which f is monotonic by the deletion of
finitely many points x1, x2, . . . , xn [which depend on the choice of (a, b)].

You will find many other sufficient conditions in the literature, but there is still no
known necessary and sufficient condition for the validity of Fourier’s representation
of functions on Z, Tp, or R. Fourier believed (5)–(6) to be valid at all points when
f is continuous, but a half century after his death DuBois–Reymond constructed a
rather bizarre continuous function with a Fourier series that diverged at some points.
A simpler example of Fejér is developed in Ex. 1.44. Such points of divergence are
relatively rare, however, for in a remarkable theorem published in 1966, Carlson
proved that the set of points where the Fourier series of a given continuous function
on Tp fails to represent the function can be covered with a sequence of intervals
(a1, b1), (a2, b2), . . . having total length

∑
(bn − an) less than a preassigned ε > 0.

The search for a deeper understanding of Fourier’s representations (3)–(4),
(5)–(6), (7)–(8) has been most fruitful in spite of the fact that these basic validity
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questions remain unresolved, see Appendix 1. You have undoubtedly observed that
we must answer the questions:

What do I mean by function?

What do I mean by convergence?

as we formulate our theorems, e.g., we can allow our piecewise smooth functions
on Tp to have finite jumps if we use symmetric limits on the sum (5). Our sim-
ple sufficient conditions can be relaxed considerably, but the proofs become more
difficult. (You can find a remarkable 150-year summary of such work in the books
by Bochner, Titchmarsh, and Zygmund that are cited in the following references,
but you will need some understanding of Lebesgue’s theory of integration to follow
many of the arguments!)

We will briefly return to the validity question again in Chapter 7 after intro-
ducing you to a new concept of function and to a new definition for convergence,
see Fig. 1.33. We will even show that Fourier was right after all: Every continuous
p-periodic function is represented by its Fourier series . . . when we have the right
understanding of convergence!

Figure 1.33. Functions on R that are known to have a valid
Fourier representation: Piecewise smooth functions with small
regular tails and generalized functions (as defined in Chapter 7).
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Further reading

Benedetto, J.J. Harmonic Analysis and Applications, CRC Press, Boca Raton, FL,
1997.
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Bochner, S. Lectures on Fourier Integrals (English translation by M. Tenenbaum
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mathematics text.

Carslaw, H.S. An Introduction to the Theory of Fourier’s Series and Integrals, 3rd
ed., Macmillan and Company, New York, 1930; reprinted by Dover Publica-
tions, New York, 1950.
Fourier analysis as known in the early 20th century.

Champeney, D.C. A Handbook of Fourier Theorems, Cambridge University Press,
Cambridge, 1987.
A descriptive survey of basic Fourier analysis theorems that is written for
scientists and engineers.

Courant, R. and John, F. Introduction to Calculus and Analysis, Vol. I, John Wiley
& Sons, New York, 1965.
Chapters 7, 8 of this classic intermediate-level mathematics text have excep-
tionally nice expositions of uniform convergence, Fourier series, respectively.

Dym, H. and McKean, H.P. Fourier Series and Integrals, Academic Press, New
York, 1972.
A mathematical account of Fourier analysis with numerous applications.

Fourier, J. The Analytical Theory of Heat (English translation by A. Freeman),
Cambridge University Press, Cambridge, 1878; reprinted by Dover Publica-
tions, New York, 1955.
Fourier’s early 19th-century account of the series and transforms he created to
study the conduction of heat in solids.



60 Fourier’s representation for functions

Gaskill, J.D. Linear Systems, Fourier Transforms, and Optics, John Wiley & Sons,
New York, 1978.
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Goldberg, R.R. Fourier Transforms, Cambridge University Press, Cambridge, 1965.
A tightly written classical introduction to the Fourier transform of functions
on R (that uses Lebesgue and Riemann-Stieltjes integration).

González-Velasco, E.A. Fourier Analysis and Boundary Value Problems, Academic
Press, San Diego, CA, 1996.
Formal mathematics for solving partial differential equations interspersed
with historical accounts (and photographs) of Fourier, Poisson, Dirichlet,
Gauss, . . . .

Katznelson, Y. An Introduction to Harmonic Analysis, John Wiley & Sons, New
York, 1968.
An elegant first course in Fourier analysis for mathematics graduate students.

Körner, T.W. Fourier Analysis, Cambridge University Press, Cambridge, 1988.
A delightful intermediate-level introduction to Fourier analysis and selected
applications to probability, differential equations, etc.

Lanczos, C. Discourse on Fourier Series, Oliver & Boyd, Edinburgh, 1966.
A mid-20th-century introduction to Fourier analysis for scientists and engineers
by a distinguished mathematician with a gift for exposition.

Marshall, A.G. and Verdun, F.R. Fourier Transforms in NMR, Optical, and Mass
Spectrometry, Elsevier, Amsterdam, 1990.
Chapters 1–3 provide an introduction to the Fourier transform for chemists.

Natanson, I.P. Constructive Function Theory, Vol. I (English translation by
A.N. Obolensky), Frederick Unger Publishing, New York, 1964.
A classic intermediate-level exposition of uniform approximation by truncated
Fourier series, Fejér sums, etc.

Oppenheim, A.V., Willsky, A.S., and Young, I.T. Signals and Systems, Prentice
Hall, Englewood Cliffs, NJ, 1988.
Chapters 4–5 contain exceptionally well-written elementary accounts of discrete
and continuous Fourier analysis as used in electrical engineering.

Schoenberg, I.J. The finite Fourier series I, II, III, and IV, Mathematical Time
Exposures, Mathematical Association of America, Washington, DC, 1982.
A charming introduction to Fourier analysis of functions on PN with applica-
tions to geometry.



Exercises 61

Stade, E. Fourier Analysis, John Wiley & Sons, Hoboken, NJ, 2005.
A well-written modern introduction to Fourier analysis for mathematics grad-
uate students.

Stein, E.M. and Shakarchi, R. Fourier Analysis: An Introduction, Princeton Uni-
versity Press, Princeton, NJ, 2003.
An exposition of Fourier series, Fourier transforms, and finite Fourier analysis
for mathematics graduate students.

Titchmarsh, E.C. Introduction to the Theory of Fourier Integrals, 2nd ed.,
Clarendon Press, Oxford, 1948; reprinted by Chelsea, New York, 1986.
A mid-20th-century mathematical treatise for Fourier transforms of functions
on R.

Tolstov, G.P. Fourier Series (English translation by R.A. Silverman), Prentice Hall,
Englewood Cliffs, NJ, 1962; reprinted by Dover Publications, New York, 1976.
An exceptionally well-written elementary exposition of Fourier series (with a
brief introduction to the Fourier transform of functions on R).

Walker, J.S. Fourier Analysis, Oxford University Press, New York, 1988.
An intermediate-level introduction to the basic mathematical theory as well as
some of the principal applications of Fourier analysis.

Zygmund, A. Trigonometric Series, 2nd ed., Cambridge University Press,
Cambridge, 1959.
The definitive mathematical treatise on Fourier series.

Exercises

.. . .
....

. .. ........... .
..
. .. ....••• EXERCISE 1.1 In this exercise you will verify that Fourier’s representation (3)–(4)
is valid for the box function

f(x) :=




1 if − 1
2 < x < 1

2
1
2 if x = ± 1

2

0 if x < − 1
2 or x > 1

2 .

(a) Evaluate the integral (4) in this particular case and thereby show that

F (s) =

{
1 if s = 0
sin(πs)
πs

if s �= 0.
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(b) By using the fact that F is even, show that the synthesis equation (3) for f reduces
to the identity

f(x) ?=
∫ ∞

s=0
2

sin(πs)
πs

cos (2πsx) ds.

The integral is not easily evaluated with the techniques of elementary calculus. The
remaining steps will show you how this can be done.

(c) Use integration by parts to verify that∫ ∞

s=0
e−ps cos(πqs) ds =

p

p2 + (πq)2
, p > 0.

(d) Integrate the identity of (c) with respect to q from q = 0 to q = a to obtain∫ ∞

s=0
e−ps sin(πas)

πs
ds =

1
π

arctan

(
πa

p

)
.

(e) Let p → 0+ in the identity of (d), and thereby show that

∫ ∞

s=0

sin(πas)
πs

ds =




− 1
2 if a < 0

0 if a = 0
1
2 if a > 0.

(f) Use a trigonometric identity to write the integral from the synthesis equation of (b)
in the form∫ ∞

s=0

2 sin(πs) cos(2πsx)
πs

ds =
∫ ∞

s=0

sin[π(1 + 2x)s]
πs

ds+
∫ ∞

s=0

sin[π(1 − 2x)s]
πs

ds.

(g) Finally, use the result of (e) (with a = 1 ± 2x) to evaluate the integrals of (f) and
thereby verify the synthesis identity from (b).

Note. As you study Chapter 3 you will learn that we almost never perform such tedious
calculations. We use the analysis of Section 1.5 to infer that the identity from (b) is valid!

.. . .

...

...
....... .....

..

.. ... ...••• EXERCISE 1.2 Let f be a suitably regular function on R. We use (2) with (4) to
write

F (s) =
∫ ∞

x=−∞
cos(2πsx)f(x) dx− i

∫ ∞

x=−∞
sin(2πsx)f(x) dx.

The first integral is an even function of s and the second integral is an odd function of s.
What can you say about the Fourier transform F if you know that f is

(a) even? (b) odd?

(c) real-valued and even? (d) real-valued and odd?

(e) pure imaginary and even? (f) pure imaginary and odd?

(g) hermitian, i.e., f(x) = f(−x)? (h) antihermitian, i.e., f(x) = −f(−x)?
(i) real? (j) pure imaginary?

Hint. You should discover some connection between (g), (h) and (i), (j).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 1.3 Let g be a suitably regular function defined on the half line x ≥ 0.

(a) Use (3)–(4) to derive the cosine transform pair

g(x) = 2
∫ ∞

s=0
G(s) cos(2πsx) ds, G(s) = 2

∫ ∞

x=0
g(x) cos(2πsx) dx

that shows how to synthesize g from cosine functions.

Hint. Specialize (3)–(4) to the case where f is the even function

f(x) :=

{
g(x) for x ≥ 0

g(−x) for x < 0.

(b) Derive the analogous sine transform pair

g(x) = 2
∫ ∞

s=0
G(s) sin(2πsx) ds, x > 0, G(s) = 2

∫ ∞

x=0
g(x) sin(2πsx) dx, s > 0

that shows how to synthsize g from sine functions.

Note. The cosine and sine transforms of a real-valued function are real-valued.

. .

.

. ... .......... ... .......••• EXERCISE 1.4 A factor of 2π is included in the arguments of the exponential
functions that appear in (3) and (4). In this exercise you will determine what happens
when we remove this factor.

(a) Some authors define the Fourier transform by replacing (4) with the integral

F1(ξ) :=
∫ ∞

x=−∞
f(x)e−iξx dx, −∞ < ξ < ∞.

Use F (s) = F1(2πs) in (3) and thereby show that

f(x) =
1
2π

∫ ∞

ξ=−∞
F1(ξ)e

iξx dξ, −∞ < x < ∞.

The 2π reappears and destroys the symmetry!

(b) Likewise, show that when we replace (4) by

F2(ξ) :=
1√
2π

∫ ∞

x=−∞
f(x)e−iξx dx, −∞ < ξ < ∞,

the synthesis equation takes the form

f(x) =
1√
2π

∫ ∞

−∞
F2(ξ)e

iξx dξ, −∞ < x < ∞.

Symmetry is restored, but we must still contend with a pair of 2π’s in our equations.
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(c) More generally, show that if we replace (4) by the analysis equation

F3(ξ) := A

∫ ∞

x=−∞
f(x)e−iαξx dx, −∞ < ξ < ∞,

where α, A are any nonzero real constants, then we must use the synthesis equation

f(x) =
|α|
2πA

∫ ∞

ξ=−∞
F3(ξ)e

iαξx dξ, ∞ < x < ∞.

Note. The 2π’s must appear in the exponentials from (9)–(10). We have chosen to include
the optional 2π’s in the exponentials from (3)–(8) to make it easier for you to remember
the analysis and synthesis equations in all four settings.

.
.

.. . .
......... ....
.. ..... ....••• EXERCISE 1.5 Let f be a suitably regular function on R.

(a) What function do we obtain when we take the Fourier transform of the Fourier trans-
form of f?

Hint. Change the sign of x in the synthesis equation (3)!

(b) What function do we obtain when we take the Fourier transform of the Fourier trans-
form of the Fourier transform of the Fourier transform of f?

. ..

.
.. ......... .... .. ... ....••• EXERCISE 1.6 Let the complex-valued function f on Tp, p > 0, be defined by
specifying f(x) for 0 ≤ x < p. Explain what we mean when we say that f is

(a) even on Tp; (b) odd on Tp;

(c) continuous on Tp; (d) continuously differentiable on Tp;

(e) absolutely integrable on Tp; (f) p/2-periodic on Tp.

. .
.

.. .......... .... ... ..... ...••• EXERCISE 1.7 Sketch the graphs of f(x), f(−x), f(x− 1), f(1 − x) when

f(x) :=

{
1 − x 0 ≤ x ≤ 1

0 otherwise

is a function on:

(a) R; (b) T1; (c) T2.

.
....

. . .

....... ..... .
..
.. .. ....••• EXERCISE 1.8 Let f be a p-periodic trigonometric polynomial of degree N or less,
i.e.,

f(x) :=
N∑

k=−N

cke
2πikx/p,

for some choice of p > 0, N = 0, 1, 2, . . ., and complex coefficients ck, k = 0,±1, . . . ,±N.
Show that f is given by (5) when (6) is used to define F .
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Hint. Multiply both sides of the defining equation for f by e−2πi�x/p, integrate from x = 0
to x = p, and use the orthogonality relations (19) to show that

F [k] =

{
ck if k = 0,±1, . . . ,±N
0 otherwise.

Note. The class of p-periodic functions for which the Fourier representation (5)–(6) is
valid includes the set of all trigonometric polynomials. This is analogous to the fact that
the set of functions for which the Newton representation (1) is valid includes the set of all
algebraic polynomials.

.

.

. . ..
.
. ......... ... .......••• EXERCISE 1.9 In this exercise you will verify that Fourier’s representation (5)–(6)
is valid for the Poisson kernel

f(x) :=
1 − r2

1 − 2r cos(2πx) + r2
, −∞ < x < ∞.

Here r is a real parameter with 0 ≤ r < 1.

(a) Sketch the graph of f when r = 0, .5, .9, .99.

(b) Use the identity 1 + z + z2 + z3 + · · · = 1/(1 − z), |z| < 1, with z = re2πix to show
that ∞∑

k=0

rke2πikx =
{1 − r cos(2πx)} + i r sin(2πx)

1 − 2r cos(2πx) + r2
.

(c) Use the result of (b) to show that

f(x) =
∞∑

k=−∞
r|k|e2πikx, −∞ < x < ∞.

In this way you obtain (5) with F [k] := r|k| for each k = 0,±1,±2, . . . .
(d) A direct computation of the integrals

F [k] =
∫ 1

x=0

(1 − r2)e−2πikx

1 − 2r cos(2πx) + r2
dx, k = 0,±1,±2, . . .

from the analysis equation (6) is fairly difficult. In this case, however, we can use the
rapidly converging series from (c) to write

F [k] =
∫ 1

x=0

( ∞∑
�=−∞

r|�|e2πi�x

)
e−2πikx dx =

∞∑
�=−∞

r|�|
(∫ 1

x=0
e2πi�xe−2πikx dx

)
.

Evaluate the remaining integrals and verify that (6) does yield F [k] = r|k|.

Note. It is not so easy to find a function (other than a trigonometric polynomial) where
we can evaluate the integrals (6) and sum the series (5) using the tools from calculus. We
need the analysis of Section 1.5 to show that a suitably regular p-periodic function can be
represented by its Fourier series!
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 1.10 Let N be a positive integer and let f be defined on Z by

f [n] :=

{
1 if n = 0,±1,±2, . . . ,±N
0 otherwise.

(a) Show that f has the p-periodic Fourier transform

F (s) =
1
p




2N + 1 if s = 0
sin{(2N + 1)πs/p}

sin(πs/p)
if 0 < s < p.

Hint. Set z = e−iπs/p in the formula

N∑
n=−N

z2n = z−2N
2N∑
n=0

z2n =
z2N+1 − z−2N−1

z − z−1 , z �= ±1.

(b) Verify that f has the Fourier representation

f [n] =
∫ p

0

sin{(2N + 1)πs/p}
p sin(πs/p)

e2πins/pds, n = 0,±1,±2, . . .

of (7)–(8).

(c) Without performing any additional computation, write down the Fourier series (5)
for the p-periodic function

g(x) =

{
2N + 1 if x = 0,±p,±2p, . . .
sin{(2N + 1)πx/p}

sin(πx/p) otherwise.

Hint. Use (a) and the duality between (5)–(6) and (7)–(8).

. .
..

.. ..

......... ... .. .... ....••• EXERCISE 1.11 Answer the questions from Ex. 1.2 when f is a suitably regular
function on Tp.

Hint. F [k] =
1
p

∫ p/2

x=−p/2
cos

(
2πkx
p

)
f(x) dx− i

p

∫ p/2

x=−p/2
sin

(
2πkx
p

)
f(x) dx.

. . .... .......... .... ... ..... ...••• EXERCISE 1.12 Let g be a suitably regular real-valued function defined on the
“right” half of Tp, i.e., for 0 ≤ x < p/2.

(a) Use (5)–(6) to derive the cosine transform pair

g(x) = G[0] + 2
∞∑

k=1

G[k] cos

(
2πkx
p

)
, 0 ≤ x <

p

2
, G[k] =

2
p

∫ p/2

x=0
g(x) cos

(
2πkx
p

)
dx

that shows how to synthsize g from cosine functions.
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(b) Derive the analogous sine transform pair

g(x) = 2
∞∑

k=1

G[k] sin

(
2πkx
p

)
, 0 < x <

p

2
, G[k] =

2
p

∫ p/2

0
g(x) sin

(
2πkx
p

)
dx.

Hint. Adapt the analysis of Ex. 1.3 to this setting.

. .

.

. ... .......... .. ... ......••• EXERCISE 1.13 In this exercise you will establish (9)–(10) when N = 2, 4.

(a) Let N = 2 so that e−2πi/N = −1. Show that the function f on P2 with components
f [0] := a, f [1] := b has the discrete Fourier transform F with components F [0] =
(a+ b)/2, F [1] = (a− b)/2, and then verify that f has the representation (9).

(b) Let N = 4 so that e−2πi/N = −i. Find the components of the discrete Fourier
transform F of the function f on P4 with components f [0] := a, f [1] := b, f [2] := c,
f [3] := d, and verify that f has the representation (9).

. . ..

.. .
...
.. . ...
..... ...... ....••• EXERCISE 1.14 Find complex coefficients c0, c1, . . . , c5 such that

5∑
k=0

cke
2πikn/6 = n, n = 0, 1, . . . , 5.

Hint. The coefficients c0, c1, . . . , c5 play the role of F [0], F [1], . . . , F [5] in the synthesis
equation (9). Use the corresponding analysis equation (10) to obtain c0 = 5/2, c1 =
−1/2 + (

√
3/2)i, . . . , c5 = −1/2 − (

√
3/2)i.

Note. A generalization of this result is given in Ex. 4.26.

. ....
..

..
.. ............ ... .....••• EXERCISE 1.15 Answer the questions from Ex. 1.2 when f is a function on PN .

Hint. F [k] =
1
N

∑
−N/2<n≤N/2

cos
(2πkn

N

)
f [n] − i

N

∑
−N/2<n<N/2

sin
(2πkn

N

)
f [n].

.
..
. ..... ......... .... .. .....••• EXERCISE 1.16 In this exercise you will rewrite the synthesis and analysis equa-
tions (3)–(10) using the familiar sine and cosine functions.

(a) Show that if (3)–(4) hold, then

f(x) =
∫ ∞

s=0
a(s) cos(2πsx) ds+

∫ ∞

s=0
b(s) sin(2πsx) ds,

where

a(s) := 2
∫ ∞

x=−∞
f(x) cos(2πsx) dx, b(s) := 2

∫ ∞

x=−∞
f(x) sin(2πsx) dx.

Hint. Use (3)–(4) and Euler’s identity (2) with a(s) := F (s) + F (−s),
b(s) := i[F (s) − F (−s)].
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(b) Show that if (5)–(6) hold, then

f(x) =
a0
2

+
∞∑

k=1

{
ak cos

(
2πkx
p

)
+ bk sin

(
2πkx
p

)}
,

where

ak :=
2
p

∫ p

x=0
f(x) cos

(
2πkx
p

)
, bk :=

2
p

∫ p

x=0
f(x) sin

(
2πkx
p

)
.

(c) Show that if (7)–(8) hold, then

f [n] =
∫ p/2

s=0
a(s) cos

(
2πsn
p

)
ds+

∫ p/2

s=0
b(s) sin

(
2πsn
p

)
ds,

where

a(s) :=
2
p

∞∑
n=−∞

f [n] cos

(
2πsn
p

)
, b(s) :=

2
p

∞∑
n=−∞

f [n] sin

(
2πsn
p

)
.

(d) Show that if (9)–(10) hold, then

f [n] =
a0
2

+
(N−2)/2∑

k=1

{
ak cos

(2πkn
N

)
+ bk sin

(2πkn
N

)}
+
aN/2

2
cos(nπ)

if N = 2, 4, 6, . . . , and

f [n] =
a0
2

+
(N−1)/2∑

k=1

{
ak cos

(2πkn
N

)
+ bk sin

(2πkn
N

)}
if N = 1, 3, 5, . . . ,

where

ak :=
2
N

N−1∑
n=0

f [n] cos
(2πkn

N

)
, bk :=

2
N

N−1∑
n=0

f [n] sin
(2πkn

N

)
.

. .
..

.. . .

........ ....

.. ..... ....••• EXERCISE 1.17 This exercise will show you how to attach units to the variables
s, x, k, n that appear in the dimensionless expressions

sx,
kx

p
,

sn

p
,

kn

N

from the complex exponentials in (3)–(4), (5)–(6), (7)–(8), and (9)–(10). Let α > 0 be a
unit of time, e.g., we might use α = 10−15 sec, 10−3 sec, 1 sec when we work with light
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waves, sound waves, water waves, respectively. We rewrite the above expressions in the
form (

s

α

)
(xα),

(
k

αp

)
(xα),

(
s

αp

)
(nα),

(
k

αN

)
(nα),

identifying the first factor with frequency, F, and the second with time, t.

(a) Within this context, x measures time in units of α and s measures frequency in units
of 1/α when f is a function on R. What is the analogous meaning of x, s, n, k when
f is a function on Tp? Z? PN?

(b) When f is a function on Tp, xα ranges over a time interval of length T = αp and
frequency is quantized in units of ∆F = 1/T . The product gives the reciprocity
relation

T ∆F = 1.

Find the analogous reciprocity relations for functions on Z and PN .

Hint. There are two such relations when f is a function on PN .

(c) The accoustical waveform

w(t) := e−(t/1 sec)2 · cos{2π · 200 Hz · t}
corresponds to a flute-like tone with a pitch of 200 Hz that sounds from t ≈ −2 sec to
t ≈ 2 sec. What values of the frequency parameter s or k correspond to the frequencies
F = ±200 Hz when we set α = 10−3 sec and examine the Fourier transform of the
function

f
R
(x) := w(xα) on R? f

T
(x) :=

∞∑
m=−∞

w([x+ 100m]α) on T100?

f
Z
[n] := w(nα) on Z? f

P
[n] :=

∞∑
m=−∞

w([n+ 1000m]α) on P1000?

(d) If α is “inappropriately chosen,” we cannot locate the frequencies F > 0 and −F in
the Fourier transforms of the processed functions f

T
, f

Z
, f

P
as given in (c). Explain

why we might wish to impose the respective constraints

1
2p

< Fα, Fα <
1
2
,

1
2N

< Fα <
1
2
.

Hint. When we work on Tp, frequency is quantized in units of 1/αp so we cannot expect
to detect a frequency less than 1/2αp.

Note. Newton and Fourier discovered the first principles of dimensional analysis that are
used in this exercise, see H.E. Huntley, Dimensional Analysis, McDonald & Co., London,
1952; reprinted by Dover Publications, New York, 1967, pp. 33–37.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 1.18 The planets Earth, Mars orbit the sun with periods TE = 1 yr,
TM = 1.88 yr at a mean distance 1 au := 150 ·106 km, 1.52 au = 228 ·106 km, respectively.
In this exercise you will use the simple approximations

ZE(t) := e2πit/1 yr, Zm(t) := 1.5e2πit/2 yr

to study the motion of Mars as seen from Earth.

(a) Draw concentric circles with radii 1, 1.5 and label points A,B, . . . , I on each that
locate Earth, Mars at times t = 0, 1/4, . . . , 8/4 yr.

(b) Draw the orbit Z(t) = ZM (t) −ZE(t), 0 ≤ t ≤ 2 yr, that shows the position of Mars
as seen from Earth. This orbit corresponds to one of the two circle approximations
of Hipparchus and Ptolemy as described in the text.

(c) Normally Mars moves across the night sky in the same direction as the moon. There
is a three-month period every other year, however, when this planet moves in the
opposite direction. Use your analysis from (b) to explain this retrograde motion.

Note. Lagrange was the first to recognize the connection between Fourier analysis and the
ancient Hipparchus–Ptolemy model for planetary motion, see H. Goldstein, A History of
Numerical Analysis from the 16th through the 19th Century, Springer-Verlag, New York,
1977, p. 171.

.
...
..

....... .... .... .... ...••• EXERCISE 1.19 The direction a telescope must be pointed in order to see a given
star, planet, asteroid, . . . is specified by giving the right ascension and declination, i.e.,
the longitude and lattitude of the corresponding point on the celestial sphere. In 1802,
Baron Von Zach published the observed declination

y = 408, 89, −66, 10, 338, 807, 1238, 1511, 1583, 1462, 1183, 804

(in minutes) for the orbit of the asteroid Pallas at the right ascension x = 0◦, 30◦,
60◦, . . . , 330◦, respectively, see Fig. 1.13. As you analyze this data you will share in a
very important discovery of Gauss.

(a) Use the analysis equation (10) to find the coefficients c0, c1, . . . , c11 for the trigono-
metric polynomial

y(x) =
11∑

k=0

cke
2πikx/360

that fits the data at the 12 points (0,408), (30,89), . . . ,(330,804).

Hint. Use a computer. You should find c0 = 780.5833, c1 = −205.5072 + 360.1139i,
. . . .

Note. Gauss used real arithmetic and did such computations by hand!

(b) Explain how to use symmetry to reduce the amount of computation in (a).

Hint. Compare ck with c12−k and use Ex. 1.15(i).

(c) The above form for y(x) is equivalent to

y(x) = Re

{ 6∑
k=−5

cke
2πikx/360

}
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when x is a multiple of 30◦ (and we set c−k := c12−k, k = 1, 2, . . . , 5), but the latter
is preferable when this is not the case. Explain why.

(d) The 12-term trigonometric polynomial found in (a) exactly interpolates the twelve
data points, but only half of the coefficients seem to contribute to the sum in a
significant way. For this reason Gauss was undoubtedly motivated to fit the data
approximately using a smaller number of terms. For example, he could exactly fit
the six even data points (with x = 0, 60, 120, . . . , 300) using

ye(x) =
5∑

k=0

ceke
2πikx/360

and he could equally well fit the six odd data points (with x = 30, 90, 150, . . . , 330)
using

yo(x) =
5∑

k=0

coke
2πikx/360,

and then use either of these trigonometric polynomials to generate a curve analogous
to the one sketched in Fig. 1.13. Compute the six coefficients cek and the six coefficients
cok.

Hint. Compute dk := cok · e2πik/12 before you compute cok. You will find

ce0 = 780.6667, ce1 = −205.3333 + 359.9779i, . . . ,

co0 = 780.5000, co1 = −205.6810 + 360.2500i, . . . .

(e) What symmetry is possessed by the coefficients you have computed in (d)? Is it
necessary to compute all 12 of these coefficients directly? Explain.

Hint. Compare cek, c
o
k with ce6−k, c

o
6−k, respectively.

(f) You now have two equally valid choices cek (based on the six even data points) and cok
(based on the six odd data points) for the kth coefficient of a six-term trigonometric
sum to use for fitting the given data. How would you combine these two estimates to
produce a better coefficient c∗k that depends on all twelve data points? Compare the
c∗k’s produced by your “natural” choice with the coefficients you obtained in (a).

(g) Show that the observations of (b), (e), (f) lead to the relations

ck = 1
2 (cek + cok), ck+6 = 1

2 (cek − cok), k = 0, 1, . . . , 5.

In this way you see that all 12 of the 12-term coefficients c0, c1, . . . , c11 can be obtained
from the eight 6-term coefficients cek, c

o
k, k = 0, 1, 2, 3, with about one-third of the

effort!

Note. The recursive use of this observation leads to an FFT algorithm. For additional
details, see Ex. 6.24 and M.T. Heideman, D.H. Johnson, and C.S. Burrus, Gauss and
the history of the fast Fourier transform, Arch. Hist. Exact Sci. 34(1985), 265–277.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 1.20 Fourier derived the formula

u(x, t) =
∫ ∞

s=−∞
A(s)e2πisxe−4π2a2s2t ds

for the temperature u at the point x, −∞ < x < ∞, at time t ≥ 0 along an infinite
one-dimensional rod with thermal diffusivity a2. Suppose that when t < 0 the rod is held
at the uniform temperature u = 0. At time t = 0 that portion of the rod from x = −1/2
to x = +1/2 is instantaneously heated to the temperature u = 100 (e.g., by using a laser),
thereby producing the initial temperature∫ ∞

s=−∞
A(s)e2πisx ds = u(x, 0+) :=

{
100 if |x| < 1

2

0 if |x| > 1
2 .

Use the analysis equation (4) together with the Fourier transform pair of Ex. 1.1 to find
A, and thereby produce a formula for u(x, t).
Note. An extensive discussion of such problems is given in Section 9.3, and plots of u(x, t)
vs. x at times t = 0+, .001/a2, .01/a2, .1/a2 are shown in Fig. 9.8. Fourier’s formula
predicts temperature distributions that match our physical intuition of how an initial hot
spot in a conducting rod dissipates over time!

.. .

.

... .

........ .... .... .... ...••• EXERCISE 1.21 Let h > 0 and let the averaging operator

(Ahf)(x) :=
1
2h

∫ x+h

x−h

f(u) du, −∞ < x < ∞

be applied to any suitably regular function f on R.

(a) Show that Ah is linear and translation invariant.

(b) Let es(x) := e2πisx for −∞ < s < ∞. Show that

Ahes = α(s) · es where α(s) :=

{
1 if s = 0

sin(2πsh)/2πsh otherwise.

(c) Assume that f has the Fourier representation (3). What is the corresponding Fourier
representation for Ahf?

(d) Assume that f has the Fourier representation (5). What is the corresponding Fourier
representation for Ahf?

.
...
..

....... .... .... ..... ...••• EXERCISE 1.22 In this exercise you will verify certain algebraic identities that
Schoenberg used to derive the Tartaglia-Cardan formula for the roots x0, x1, x2 of a cubic
equation x3 + bx2 + cx+ d = 0.

(a) Let xn =
∑2

k=0Xkω
kn, n = 0, 1, 2, where ω := e2πi/3. Show that

(x− x0)(x− x1)(x− x2) = (x−X0)
3 − 3X1X2(x−X0) − (X3

1 +X3
2 ).

Hint. ω3 = 1 and 1 + ω + ω2 = 0.
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(b) Using (a), show that

X0 = − b

3
, X1X2 =

b2 − 3c
9

, X3
1 +X3

2 = −27d− 9bc+ 2b3

27
.

. ...
.
.
...
.. . ...
..... ...... ....••• EXERCISE 1.23 In this (experimental) exercise you are to use a piano to do har-
monic analysis and harmonic synthesis of simple vocal tones, see, Section 11.1. Depress
the damper pedal (the rightmost one) of a piano, thereby allowing the strings to vibrate
freely. Shout sustained vowels aaaa . . . , eeee . . . , iiii . . . , oooo . . . , uuuu . . . , semivowels
rrrr . . . , ���� . . . , wwww . . . , jjjj . . . , fricative consonants zzzz . . . , ssss . . . , vvvv . . . ,
f f f f . . . , θθθθ . . . , shhh . . . , or nasal consonants nnnn . . . , mmmm . . . of various pitches
toward the sounding board and then listen as the strings return the waveform you have
generated. During the vocalization process you produce a more or less periodic waveform
that induces some of the piano strings to vibrate, with shorter, longer strings being stim-
ulated by higher, lower pitches and with stronger, weaker vibrations being induced by
louder, softer components of the given frequency in the tone. In this way each tone in-
duces a characteristic pattern of vibration of the piano’s strings, i.e., these strings serve to
analyze the original waveform. After you stop producing sound, the piano strings continue
to vibrate, and at this point they serve to synthesize the periodic waveform associated
with your vocalization.

.
..
. ..... ........ ..... .. .....••• EXERCISE 1.24 In this exercise you will informally derive alternative forms of
the Parseval identities (11), (12), (13), (14) by suitably using the corresponding synthesis-
analysis equations and freely interchanging the limiting processes associated with integra-
tion and summation.

(a) Use (3)–(4) to show that∫ ∞

x=−∞
f(x)g(x) dx =

∫ ∞

s=−∞
F (s)G(−s) ds,

∫ ∞

x=−∞
f(x)G(x) dx =

∫ ∞

s=−∞
F (s)g(s) ds

when F,G are the Fourier transforms of the suitably regular functions f, g on R.

(b) Use (9)–(10) to show that

N−1∑
n=0

f [n]g[n] = N

N−1∑
k=0

F [k]G[−k],

N−1∑
n=0

f [n]G[n] =
N−1∑
k=0

F [k]g[k]

when F,G are the Fourier transforms of the functions f, g on PN .
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(c) Use (5)–(6) to show that

∫ p

x=0
f(x)g(x) dx = p

∞∑
k=−∞

F [k]G[−k]

when F,G are the Fourier transforms of the suitably regular functions f, g on Tp.

(d) Use (7)–(8) to show that

∞∑
n=−∞

f [n]g[n] = p

∫ p

s=0
F (s)G(−s) ds

when F,G are the Fourier transforms of the suitably regular functions f, g on Z.

(e) Use (5)–(6) and (7)–(8) to show that

∫ p

x=0
f(x)G(x) dx =

∞∑
k=−∞

F [k]g[k]

when F,G are the Fourier transforms of the suitably regular functions f, g on Tp, Z,
respectively.

.
...
..

....... .... .... .... ...••• EXERCISE 1.25 In this exercise you will derive the Parseval relations from the
seemingly less general Plancherel identities.

(a) Let a, b be complex numbers. Show that

ab̄ = 1
4{|a+ b|2 + i|a+ ib|2 + i2|a+ i2b|2 + i3|a+ i3b|2}.

(b) Use the polarization identity of (a) (on a point-by-point basis) to derive the Parseval
identities (11), (12), (13), (14) from the corresponding Plancherel identities (15), (16),
(17), (18).

. ..
..

.

.......... . ... .. ...... ...••• EXERCISE 1.26 In this exercise you will use properties of the centroid (from cal-
culus) to prove the discrete orthogonality relation (20).

(a) Let N = 6 and let ω := e2πi/6 = (1 +
√

3i)/2. Given some k = 0, 1, . . . , 5 we will
place a unit mass at each point z0 := 1, z1 := ωk, z2 := ω2k, . . . , z5 := ω5k in the
complex plane. Sketch the six mass distributions that are produced in this way, and
use symmetry to explain why the centroid is at the origin when k = 1, 2, 3, 4, 5.

Hint. When k = 3 you will end up with a mass of size 3 at z = ±1.

(b) Generalize (a) and thereby prove (20) for each N = 2, 3, . . . .
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 1.27 In this exercise you will derive real versions of the orthogonality
relations (19), (20).

(a) Let k, � be nonnegative integers. Use suitable trigonometric identities to show that

∫ p

x=0
cos

(
2πkx
p

)
cos

(
2π�x
p

)
dx =



p if k = � = 0

p/2 if k = � �= 0

0 otherwise,∫ p

x=0
cos

(
2πkx
p

)
sin

(
2π�x
p

)
dx = 0,

∫ p

x=0
sin

(
2πkx
p

)
sin

(
2π�x
p

)
dx =

{
p/2 if k = � �= 0

0 otherwise.

(b) Let k, � take the values 0, 1, . . . , N − 1. Show that

N−1∑
n=0

cos
(2πkn

N

)
cos

(2π�n
N

)
=




N if k = � = 0, N/2

N/2 if k = � and k �= 0, N/2

N/2 if k = N − � and k �= 0, N/2

0 otherwise,

N−1∑
n=0

cos
(2πkn

N

)
sin

(2π�n
N

)
= 0,

N−1∑
n=0

sin
(2πkn

N

)
sin

(2π�n
N

)
=




N/2 if k = � and k �= 0, N/2

−N/2 if k = N − � and k �= 0, N/2

0 otherwise.

..
.
. ..
...
.. ........ .... .....••• EXERCISE 1.28 Let f be a piecewise smooth function on Tp.

(a) Let τn be an arbitrary p-periodic trigonometric polynomial (21) of degree n or less,
and let sn be the corresponding nth partial sum of the Fourier series for f . Use (22)
to show that ∫ p

0
|f(x) − sn(x)|2 dx ≤

∫ p

0
|f(x) − τ(x)|2 dx

with equality if and only if τ = sn. The truncated Fourier series gives the best least
squares approximation to f by a p-periodic trigonometric polynomial of degree n or
less!

(b) Derive the identity∫ p

0
|f(x) − sn(x)|2 dx = p

∞∑
k=n+1

{∣∣F [k]
∣∣2 +

∣∣F [−k]
∣∣2} .

The quality of the optimal least squares approximation depends on how rapidly the
Fourier coefficients F [k] go to zero as k → ±∞!
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 1.29 Let f be a function on PN with Fourier transform F . Let m be
a nonnegative integer with 2m+ 1 ≤ N , and let

τm[n] :=
m∑

k=−m

cke
2πikn/N , sm[n] :=

m∑
k=−m

F [k]e2πikn/N .

(a) Show that
N−1∑
n=0

∣∣f [n] − sm[n]
∣∣2 ≤

N−1∑
n=0

∣∣f [n] − τm[n]
∣∣2

with equality if and only τm = sm. The truncated discrete Fourier series gives the
best least squares approximation, see Ex. 1.28(a).

(b) Derive the identity

N−1∑
n=0

∣∣f [n] − sm[n]
∣∣2 = N

∑
m<k<N−m

∣∣F [k]
∣∣2.

The quality of the optimal least squares approximation depends on the size of the
“high-frequency” Fourier coefficients, cp. Ex. 1.28(b).

. .
....

. ........ ..... ...
.. .. ....••• EXERCISE 1.30 In the book we use the Weierstrass theorem to show that∫ p

0
|f(x)|2 dx ≤ p

∞∑
k=−∞

∣∣F [k]
∣∣2

when f is any piecewise continuous function on Tp. (In conjunction with (23), this gives
(16).) Show that this inequality also holds when f is any square integrable function on Tp

that is continuous except for finitely many points where jumps can occur.

Hint. Use (22) and the inequality |a+ b|2 ≤ 2|a|2 + 2|b|2 to write

∫ p

0
|f(x)|2 dx− p

∞∑
k=−∞

∣∣F [k]
∣∣2 ≤

∫ p

x=0
|f(x) − τ(x)|2 dx

≤ 2
∫ p

x=0
|f(x) − fc(x)|2 dx+ 2

∫ p

x=0
|fc(x) − τ(x)|2 dx.

Here fc is any continuous function on Tp and τ is a trigonometric polynomial. When ε > 0
is given, you can make the first integral on the right less than ε/2 by properly choosing
fc, and you can then make the second integral less than ε/2 by properly choosing τ . Fill
in the details.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 1.31 In this exercise you will examine a proof of the validity of
Fourier’s representation (5)–(6) that uses the real, even, p-periodic Dirichlet kernel

δn(x) :=
1
p

n∑
k=−n

e2πikxp =




(2n+ 1)/p if x = 0,±p,±2p, . . .

sin{π(2n+ 1)x/p}
p sin(πx/p)

otherwise.

(a) Verify the above formula for the sum that defines δn.

(b) Let f be a square integrable function on Tp that is continuous except for finitely
many points where jumps can occur. Show that the symmetrically truncated Fourier
series (5) has the integral representation

sn(x) :=
n∑

k=−n

F [k]e2πikx/p =
∫ p

u=0
f(u)δn(x− u) du, n = 0, 1, 2, . . . .

Thus, we can verify that Fourier’s representation (5) holds at the point x (when the
limits are taken symmetrically) by showing that

f(x) = lim
n→∞

∫ p

0
f(u)

sin{π(2n+ 1)(x− u)/p}
p sin{π(x− u)/p} du.

(c) Try to establish the validity of Fourier’s representation at some point x where f is
continuous by replacing the de la Vallée–Poussin power kernel with the above Dirichlet
kernel in the proof of the Weierstrass theorem as given in the text. Why does this
attempt fail?

(d) Show that

sn(x) − f(x) =
∫ p

u=0
{f(u) − f(x)}δn(x− u) du = Φ+[−n] − Φ−[n], n = 0, 1, 2, . . .

where (for fixed x) Φ± are the Fourier transforms of the p-periodic functions

φ±(v) :=
{f(x+ v) − f(x)}e±πiv/p

2i sin(πv/p)
.

(e) Show that if f has a derivative at x, then the functions φ± have removable singularities
at v = 0,±p,±2p, . . . with

lim
v→mp

φ±(v) =
f ′(x)
2πi/p

, m = 0,±1,±2, . . . .

(f) Using (d)–(e) show that if f is any square integrable piecewise continuous function
on Tp with a derivative at the point x, then

f(x) = lim
n→∞

n∑
k=−n

F [k]e2πikx/p.

Hint. Use Bessel’s inequality to show that Φ±[n] → 0 as n → ±∞.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 1.32 In this exercise you will prove the Weierstrass theorem by using
the real, even p-periodic Fejér kernel

δn(x) :=
1

(n+ 1)p




(n+ 1)2 if x = 0,±p,±2p, . . .

sin2{π(n+ 1)x/p}
sin2(πx/p)

otherwise.

(a) Show that

δn(x) =
1

(n+ 1)p

n∑
k=−n

(n+ 1 − |k|)e2πikx/p.

Hint.
n∑

k=−n

(n+ 1 − |k|)zk = z−n

{ n∑
�=0

z�

}2

=

{
z(n+1)/2 − z−(n+1)/2

z1/2 − z−1/2

}2

, z �= 1.

(b) Let f be a continuous function on Tp and for n = 0, 1, 2, . . . let

σn(x) :=
∫ p

0
f(u)δn(x− u) du.

Show that σ0, σ1, σ2, . . . is a sequence of p-periodic trigonometric polynomials that
converges uniformly to f.

Hint. Does δn have the properties (26)?

. ..

.
.. ......... .... .. ... ....••• EXERCISE 1.33 Let f be a continuous function on Tp and let sn, σn be as in
Exs. 1.31 and 1.32.

(a) Verify that

σn(x) =
1

n+ 1
{s0(x) + s1(x) + s2(x) + · · · + sn(x)}, n = 0, 1, 2, . . . .

(b) Show that if lim sn(x) = L at some point x, then limσn(x) = L.

Hint. First use (a) to show that

|σn+m − L| ≤
nmax

k≤n
|sk − L| +mmax

k>n
|sk − L|

n+m+ 1
.

(c) Show that if the Fourier series converges at some point x, then it must converge to
f(x).

Hint. Use (b) and Ex. 1.32(b).

.. .

.

... .

........ .... .... .... ...••• EXERCISE 1.34 Establish the Fourier transform pairs (31), (32) when f, g are
suitably regular functions on R, Tp.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 1.35 In this exercise you will analyze a simple numerical procedure for
computing Fourier coefficients of a suitably regular function g on Tp.

(a) Let N = 2M + 1 where M = 1, 2, . . . , and let the vector

γ :=

[
g(0), g

(
p

N

)
, g

(2p
N

)
, . . . , g

(
(N − 1)p

N

)]

be generated from samples of g. Explain why the discrete Fourier transform Γ of γ
is close to the vector

(G[0], G[1], G[2], . . . , G[M ], G[−M ], . . . , G[−2], G[−1])

of Fourier coefficients of g when the tails of G at ±∞ are small and when M is large.

Hint. Use (32) to show that

∣∣Γ[k] −G[k]
∣∣ ≤

∞∑
m=−∞

m�=0

∣∣G[k −mN ]
∣∣.

(b) Verify that Γ[k] is just the Riemann sum approximation

G[k] ≈ 1
p

N−1∑
n=0

g
(
n
p

N

)
e−2πi(k/p)(np/N) p

N
, k = 0,±1, . . . ,±M

for the corresponding integral of the analysis equation (6).

Note. You may wish to try this numerical scheme with the function g from Ex. 1.9.

.. . .

..

... ...
........

..

. ... ....••• EXERCISE 1.36 In this exercise you will analyze a numerical procedure for com-
puting samples of the Fourier transform F of a suitably regular function f on R.

(a) Let N = 2M + 1 where M = 1, 2, . . . . Show that the discrete Fourier transform of
the vector[
pf(0), pf

(
p

N

)
, pf

(2p
N

)
, . . . , pf

(
Mp

N

)
, pf

(−Mp

N

)
, . . . , pf

(−2p
N

)
, pf

(−p
N

)]
of p-scaled samples of f is close to the N -vector[

F (0), F

(
1
p

)
, F

(
2
p

)
, . . . , F

(
M

p

)
, F

(
−M
p

)
, . . . , F

(
−2
p

)
, F

(
−1
p

)]

of samples of F when the tails of both f and F are small and when p,N are chosen
so that both p and N/p are large.
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Hint. Use the discrete Fourier transform pair

γ[n] :=
∞∑

m=−∞
f
(
np

N
−mp

)
, Γ[k] =

1
p

∞∑
m=−∞

F

(
k

p
−m

N

p

)

from (29) and (32) to show that the error in component k = 0,±1, . . . ,±M is bounded
by

max
−M≤n≤M

p

∞∑
m=−∞

m�=0

∣∣∣f (np
N

−mp
)∣∣∣ +

∞∑
m=−∞

m�=0

∣∣∣∣F
(
k

p
−m

N

p

)∣∣∣∣ .
(b) Verify that Γ[k] is just the truncated Riemann sum approximation

F

(
k

p

)
≈

M∑
m=−M

f
(
mp

N

)
e
−2πikp

mp
N

p

N
, k = 0,±1, . . . ,±M

for the corresponding integral of the analysis equation (4).

Note. You may wish to try this numerical scheme with the Fourier transform pair

f(x) = e−πx2
, F (s) = e−πs2

from Appendix 2. If you use p = 8 and N = 64, you can compute approximations to
F (k/p) that are accurate to 16 decimal places!

.
.

.. . .
......... ....
.. .... ....••• EXERCISE 1.37 Let w0 be the 1-periodic sawtooth singularity function of
(34)–(35). When x is small, we can study the Gibbs phenomenon by using the approxima-
tion (36)–(37) from the book. In this exercise you will develop the large x approximation
of Bochner that reveals the structure shown in Fig. 1.26.

(a) Let sn be the nth partial sum of (35). Show in turn that

s′n(x) =
sin{(2n+ 1)πx}

sin(πx)
− 1, sn(x) =

∫ x

0

sin{(2n+ 1)πu}
sin(πu)

du− x for |x| < 1.

Hint. Use Ex. 1.31(a).

(b) Using (a), show that when |x| < 1,

sn(x) = w0(x) + G{(2n+ 1)x)} − 1
2 sgn(x) +Rn(x)

where G is the Gibbs function (37) and

Rn(x) :=
1
π

∫ πx

0

( 1
sinu

− 1
u

)
sin{(2n+ 1)u} du.

(c) Use an integration by parts argument to show that

|Rn(x)| ≤ C

2n+ 1
, |x| ≤ 1

2

for a suitably chosen constant C.

Note. I am indebted to Henry Warchall for bringing this analysis to my attention and for
pointing out that we can choose C = 1/π in (c).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 1.38 Let f be an absolutely integrable function on R that is continuous
except for finitely many points where jumps can occur.

(a) Show that the Fourier transform F is well defined by (4).

(b) Show that F is uniformly continuous.

Hint. Let A be that portion of R within the union of tiny intervals (b1, a2),
(b2, a3), . . . , (bN−1, aN ) containing the points of discontinuity of f and the semi-
infinite intervals (−∞, a1), (bN ,+∞). You can then write

|F (s+ h) − F (s)| =

∣∣∣∣
∫ ∞

x=−∞
f(x)e−2πisx{e−2πihx − 1} dx

∣∣∣∣
≤

∫
A

2|f(x)| dx+
N∑

n=1

∫ bn

an

|f(x)||e−2πihx − 1| dx.

How must a1 < b1 < a2 < b2 < · · · < aN < bN and h be chosen to make this less
than some preassigned ε > 0?

(c) Show that F (s) → 0 as s → ±∞. This is known as the Riemann–Lebesgue lemma.

Hint. Let A, a1, b1, . . . , aN , bN be as in (b) and write

|F (s)|=
∣∣∣∣
∫

A

f(x)e−2πisx dx+
N∑

n=1

∫ bn

an

{f(x)−yn(x)}e−2πisx dx+
N∑

n=1

∫ bn

an

yn(x)e−2πisx ds

∣∣∣∣
≤

∫
A

|f(x)| dx+
N∑

n=1

∫ an

bn

|f(x) − yn(x)| dx+
N∑

n=1

∣∣∣∣
∫ bn

an

yn(x)e−2πisx dx

∣∣∣∣
where yn is a step function (i.e., a piecewise constant function) on the interval
an ≤ x ≤ bn. You can make the first and second expressions small by suitably choos-
ing A and y1, y2, . . . , yn. When s �= 0, the third expression can be majorized by a
finite sum of terms of the form

∣∣∣∣
∫ β

α

C e−2πisxdx

∣∣∣∣ ≤
∣∣∣ C
πs

∣∣∣ .

.
.
.. ..
..
.. ...
...... .. .... ....••• EXERCISE 1.39 Let f be an absolutely integrable function on R that is continuous
except for finitely many points where jumps can occur. In this exercise you will show that
Fourier’s representation (55) is valid at any point x where f is differentiable. (You may
wish to refer to Ex. 1.31 as you sort out the details.)
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(a) Show that

fL(x) :=
∫ L

−L

{∫ ∞

−∞
f(u)e−2πisu

}
e2πisx du ds =

∫ ∞

−∞
f(u)δL(x− u) du,

where

δL(x) :=
∫ L

−L

e2πisx ds =

{
2L if x = 0

sin(2πLx)/πx otherwise.

Thus we can show that (55) holds at some point x by showing that fL(x) → f(x) as
L → ∞.

(b) Use the result of Ex. 1.1(e) to show that

fL(x) − f(x) =
∫ ∞

u=−∞
{f(u) − f(x)}δL(x− u) du = Φ(−L) − Φ(L),

where (for fixed x) Φ is the Fourier transform of

φ(v) :=
f(x+ v) − f(x)

2πiv
, v �= 0.

(c) Show that f has the representation (55) at any point x where f is differentiable.

Hint. Verify that the Fourier integrals for Φ are well defined at ±L and then use the
Riemann–Lebesgue lemma of Ex. 1.38(c) to see that Φ(±L) → 0 as L → ∞.

.... .......... ....
.. ..... ....••• EXERCISE 1.40 In this exercise you will prove that the Plancherel identity (15)
is valid for any function f having the representation (54). In conjunction with Ex. 1.25,
this shows that the Parseval identity (11) is valid for all such functions f, g.

(a) Let f have the representation (54), let

f0(x) :=
m∑

µ=1

Jµz(x− xµ) where z(x) :=
1
2




−ex if x < 0

0 if x = 0

e−x if x > 0,

and let f1 := f − f0. Explain why the functions f0, f1 and the Fourier transform F1
of f1 are all piecewise continuous absolutely integrable functions on R.

(b) Verify that∫ ∞

−∞
f1(x)f1(x) dx =

∫ ∞

−∞
F1(s)F1(s) ds,

∫ ∞

−∞
f0(x)f1(x) dx =

∫ ∞

−∞
F0(s)F1(s) ds.

Hint. The functions f1(x)F1(s) and f0(x)F1(s) are absolutely integrable on the plane
−∞ < x < ∞, −∞ < s < ∞, so it is possible to interchange the order of the x and
s integrations.
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(c) Using (b), verify that the proof of Plancherel’s identity can be reduced to showing
that ∫ ∞

x=−∞
|f0(x)|2 dx =

∫ ∞

s=−∞
|F0(s)|2 ds

whenever f0 is a function of the form given in (a).

(d) Using (c), verify that the proof of Plancherel’s identity can be reduced to showing
that ∫ ∞

x=−∞
z(x− xµ)z(x− xν) dx =

∫ ∞

s=−∞
Z(s)e−2πixµsZ(s)e2πixνs ds

whenever −∞ < xµ ≤ xν < ∞.

(e) Using (d), verify that the proof of Plancherel’s identity can be reduced to showing
that ∫ ∞

x=−∞
z
(
x+

h

2

)
z
(
x− h

2

)
dx =

∫ ∞

s=−∞
|Z(s)|2e2πihs ds

whenever h ≥ 0.

(f) Show that

Z(s) = − 2πis
1 + 4π2s2

,

∫ ∞

−∞
z
(
x+

h

2

)
z
(
x− h

2

)
dx =

1
4
(1 − h)e−h, h ≥ 0,

and thereby establish the identity (e).

Hint. The singularity function y1 has the Fourier representation (51).

. .
..

..

..

.. ....

...... ...

. .. ....••• EXERCISE 1.41 Let a1 < b1 ≤ a2 < b2 ≤ · · · ≤ aN < bN , and for each
n = 1, 2, . . . , N , let

fn(x) :=
∫ bn

x=an

Fn(s)e2πisx ds

where Fn is a piecewise smooth function on [an, bn] with∫ bn

s=an

|Fn(s)|2 ds = 1.

Show that f1, f2, . . . , fn satisfy the orthogonality relations∫ ∞

x=−∞
fn(x)fm(x) dx =

{
1 if n = m = 1, 2, . . . , N

0 if n �= m.

Hint. In view of Ex. 1.40, you can use the Parseval identity (11).
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 1.42 Let F be a piecewise smooth function on R with small regular
tails at ±∞, let Y be any piecewise smooth function on the finite interval a ≤ x ≤ b, and
let

f(x) :=
∫ ∞

−∞
F (s)e2πisx ds, fa,b(x) :=

∫ b

a

F (s)e2πisx ds, y(x) :=
∫ b

a

Y (s)e2πisx ds.

(a) Show that∫ ∞

−∞
|f(x) − y(x)|2 dx =

∫ ∞

−∞
|f(x)|2 dx−

∫ b

a

|F (s)|2 ds+
∫ b

a

|F (s) − Y (s)|2 ds,

and thereby obtain a version of (22) that is appropriate for functions on R.

Hint. Use the Plancherel identity from Ex. 1.40.

(b) Show that ∫ ∞

−∞
|f(x) − fa,b(x)|2dx ≤

∫ ∞

−∞
|f(x) − y(x)|2dx

with equality if and only if y = fa,b. The truncated Fourier transform gives the best
least squares approximation, see Exs. 1.28 and 1.29.

(c) Derive the identity∫ ∞

−∞
|f(x) − fa,b(x)|2 dx =

∫ a

−∞
|F (s)|2 ds+

∫ ∞

b

|F (s)|2 ds.

The quality of the optimal least squares approximation depends on the size of the
“high-frequency” portion of the Fourier transform.

. ..
..

.

.......... . ... .. ..... ...••• EXERCISE 1.43 In this exercise you will study the Gibbs phenomenon associated
with Fourier’s representation of piecewise smooth functions on R with small regular tails.
The analysis parallels that of Ex. 1.37.

(a) Show that the glitch function from Ex. 1.40 has the Fourier representation

z(x) :=
1
2




−ex if x < 0

0 if x = 0

e−x if x > 0

=
∫ ∞

0

4πs sin(2πsx)
1 + 4π2s2

ds.

(b) Let

zL(x) :=
∫ L

0

4πs sin(2πsx)
1 + 4π2s2

ds

be the approximation to z that uses only the complex exponentials having frequencies
in the band −L ≤ s ≤ L, see Ex. 1.42. Show that

zL(x) = z(x) + G(2Lx) − 1
2 sgn(x) +RL(x)
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where G is the Gibbs function (37) and

RL(x) :=
∫ ∞

L

sin(2πsx)
πs(1 + 4π2s2)

ds.

Hint. Use the integral from Ex. 1.1(e).

(c) Let f be a piecewise smooth function with small regular tails, and let F be the Fourier
transform. Describe the appearance of the approximation

fL(x) :=
∫ L

−L

F (s)e2πisx ds

to the function in a neighborhood of some point where f has a jump discontinuity.

. .......

.
.. ............ .... .....••• EXERCISE 1.44 This exercise will introduce you to Fejér’s example of a continu-
ous 1-periodic function having a Fourier series that diverges at the point x = 0.

(a) For n = 1, 2, . . . we define

fn(x) := 2π sin{2π(n+ 1)x} ·
n∑

k=1

sin(2πkx)
πk

.

Use (35) and your knowledge of the Gibbs phenomenon (as illustrated in Fig. 1.26
and analyzed in Ex. 1.37) to explain why fn is bounded.

(b) Use a suitable trigonometric identity to show that

fn(x) =
cos(2πx)

n
+

cos(2 · 2πx)
n− 1

+ · · · +
cos(n · 2πx)

1
− cos{(n+ 2) · 2πx}

1

− cos{(n+ 3) · 2πx}
2

− · · · − cos{(2n+ 1) · 2πx}
n

,

and thereby determine the values of the partial sums

Sn,m(x) :=
m∑

k=−m

Fm[k]e2πikx, m = 0, 1, 2, . . .

of the Fourier series for fn at x = 0.

(c) Show that we can define a continuous 1-periodic function by writing

f(x) :=
∞∑

n=1

1
n2 f2n3 (x).
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(d) Show that the mth symmetric partial sum of the Fourier series for f takes a value in
excess of

1
n2

{
1
1

+
1
2

+
1
3

+ · · · +
1

2n3

}
> n ln 2

when x = 0, m = 2n3
, and thereby prove that the Fourier series diverges at this

point.

Note. The Fourier series does converge to f when we use the weak limit concept that
will be introduced in Section 7.6.

. .
....

. ....... ......
..
.. .... ...••• EXERCISE 1.45 This exercise will introduce you to a cleverly designed mechanical
device for harmonic synthesis that was invented at the end of the 19th century.

(a) Study the mechanical linkage of Fig. 1.34 to see how uniform circular motion can be
used to produce the displacement function y(t) = y0 + c cos(2πst+ α).

Figure 1.34. A mechanical linkage that produces a sinusoidal displacement.

(b) One large spring with force constant K, and N smaller springs each with force con-
stant k are configured as shown in Fig. 1.35. Let y be the displacement of the lower
end of the large spring when the upper ends of the small springs are given the small
displacements y1, y2, . . . , yN . Explain why the large spring has the elongation L+ y
and the nth small spring has the elongation � + yn − (a/A)y, n = 1, 2, . . . , N . Here
L is the elongation of the large spring and � is the common elongation of the small
springs when y = y1 = y2 = · · · = yN = 0.
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(c) Show that the apparatus from Fig. 1.35 mechanically sums the displacements
y1, y2, . . . , yN in the sense that

y = C

N∑
n=1

yn where C :=
{
N

[
a

A
+
�

L

]}−1
.

Hint. The moments balance when
N∑

n=1

[
�+ yn −

(
a

A

)
y
]
ka = [L+ y]KA.

Note. Michelson and Stratton built an 80 term harmonic synthesizer using springs (as
shown in Fig. 1.35) to sum displacements yn(t) = cn cos(2πnt+αn), n = 1, 2, . . . , 80,
produced with a somewhat more sophisticated linkage than the one shown in Fig. 1.34.
A graph of the sum was drawn by a pen driven by y(t). A fascinating collection of such
graphs and a photograph of this old “supercomputer” can be found in A. Michelson
and S. Stratton. A new harmonic analyzer, Am. Jour. Sci-Fourth Ser. V(1898),
1–13.

Figure 1.35. A mechanical device that uses springs to add small displacements.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 1.46 Let the function y have the representation

y(t) :=
N∑

k=1

cke
2πiskt, −∞ < t < ∞

where N=1, 2, . . . and the (not necessarily uniformly spaced) frequencies s1<s2< · · ·<sN
are known but where c1, c2, . . . , cN are unknown complex parameters. In this exercise you
will develop an analysis equation that can be used to find these coefficients.

Such problems occasionally arise in the natural sciences. For example, the height of sea
water in a given harbor is well modeled by a sum of sinusoids that correspond to the earth’s
rotation (with the sun, moon giving rise to terms with frequencies 2/day, 1.9323/day), to
the moon’s revolution about the earth, to the earth’s revolution about the sun, to the
moon’s motion out of the plane of the earth’s equator, etc., see R.A.R. Tricker, Bores,
Breakers, Waves, and Wakes, American Elsevier, New York, 1965, pp. 1–22.

(a) Show that for each k = 1, 2, . . . , N

ck = lim
t1→−∞

1
t2 − t1

∫ t2

t=t1

e−2πiskty(t) dt = lim
t2→+∞

1
t2 − t1

∫ t2

t=t1

e−2πiskty(t) dt .

In particular, if we have observed y(t) at all times t ≤ t0, we can use the above
analysis equation to find c1, c2, . . . , cN and then predict y(t) at all times t > t0.

(b) Show that the above trigonometric sum vanishes for −∞ < t < ∞ if and only if
c1 = c2 = · · · = cN = 0.

(c) Assume that c1, c2, . . . , cN are all nonzero. Show that y is p-periodic for some p > 0,
if and only if the products ps1, ps2, . . . , psN are all integers. (This will be the case
when s1, s2, . . . , sN are commensurate, i.e., sk/s� is a rational number for each choice
of k, � = 1, 2, . . . , N with sk �= 0.)

Note. In cases where the frequencies s1 < s2 < · · · < sN are not commensurate, the
trigonometric sum y is not periodic. Such a function is almost periodic, however, in the
sense that for every choice of ε > 0 there are infinitely many ε-approximate periods pn,
with

|y(x+ pn) − y(x)| < ε, −∞ < x < ∞, n = 0,±1,±2, . . . .

These pn’s are more or less uniformly distributed on the real line in the sense that ev-
ery interval of length B contains at least one of them when B > 0 is sufficiently large,
see H. Bohr, Almost Periodic Functions, Julius Springer, Berlin, 1933; English translation
by H. Cohn, Chelsea, New York, 1947, pp. 32, 80.
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Convolution of functions
on R, Tp, Z, and PN

2.1 Formal definitions of f ∗ g, f � g

In elementary algebra you learned to combine functions f, g by using the binary
operations of pointwise addition, subtraction, multiplication, and division, i.e.,

f + g, f − g, f · g, f/g.

For example, when f, g are functions on R or Z we define

(f · g)(x) := f(x) · g(x), x ∈ R

or
(f · g)[n] := f [n] · g[n], n ∈ Z.

We will use the symbols ∗, � for two closely related binary operations, convolution
and correlation, that will appear from time to time in the remainder of the book.
The purpose of this short chapter is to introduce you to these two new operations
that result from the accumulation of certain pointwise arithmetic products.

We define the convolution product f ∗ g of two suitably regular functions f, g by
writing

(f ∗ g)(x) :=
∫ ∞

u=−∞
f(u)g(x− u) du

when f, g (and f ∗ g) are functions on R, (1)

(f ∗ g)(x) :=
∫ p

u=0
f(u)g(x− u) du

when f, g (and f ∗ g) are functions on Tp, (2)

89
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(f ∗ g)[n] :=
∞∑

m=−∞
f [m]g[n−m]

when f, g (and f ∗ g) are functions on Z, (3)

(f ∗ g)[n] :=
N−1∑
m=0

f [m]g[n−m]

when f, g (and f ∗ g) are functions on PN . (4)

The integral, sum for computing (f ∗ g)(x), (f ∗ g)[n] gives the aggregate of all
possible products f(u)g(x − u), f [m]g[n − m] with arguments that sum to x, n,
respectively. We must impose conditions on f, g to ensure that the integral or sum
for f ∗ g is well defined. For example, when f, g are piecewise continuous functions
on R we can form f ∗g if one of the functions is bounded and the other is absolutely
integrable.

You will observe that (1)–(4) give four distinct ways to combine functions f, g,
and it would not be inappropriate for us to introduce four distinct symbols, e.g.,
�

R
, �

Tp
, �

Z
, �

PN
, for the corresponding binary operations. In practice, this proves

to be unnecessarily cumbersome, and we will use the same symbol ∗ in (1)–(4). You
must determine the context (i.e., ask the question, “Are f and g functions on R,
Tp, Z, or PN?”) when you assign meaning to f ∗ g.

We define the correlation product f � g of two suitably regular functions f, g by
writing

(f � g)(x) :=
∫ ∞

u=−∞
f(u)g(u+ x) du

when f, g (and f � g) are functions on R, (5)

(f � g)(x) :=
∫ p

u=0
f(u)g(u+ x) du

when f, g (and f � g) are functions on Tp, (6)

(f � g)[n] :=
∞∑

m=−∞
f [m]g[m+ n]

when f, g (and f � g) are functions on Z, (7)

(f � g)[n] :=
N−1∑
m=0

f [m]g[m+ n]

when f, g (and f � g) are functions on PN . (8)

The overbar denotes the complex conjugate. We again use the context to determine
which meaning (5)–(8) is intended for f � g.
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Correlation and conjugation are closely related

When f, g are suitably regular functions on R we can use the change of variable
u := −v in (5) to write

(f � g)(x) =
∫ ∞

v=−∞
f(−v)g(x− v) dv

in the form of a convolution product. Similar arguments can be used with (6)–(8),
so we can always express � in terms of ∗ by writing

f � g = f† ∗ g. (9)

Here f† is the hermitian conjugate of f , i.e.,

f†(x) := f(−x) when f is a function on R or Tp,

f†[n] := f [−n] when f is a function on Z, PN ,

see Exs. 1.2, 1.11, 1.15. Since
f†† = f

we can use (9) to write

f ∗ g = (f†)† ∗ g = f† � g (10)

and thereby express ∗ in terms of �. From now on we will focus on the convolution
product. You can always use (9) to convert a statement about f ∗g to an equivalent
statement about f � g.

2.2 Computation of f ∗ g

Direct evaluation

When f and g have a particularly simple structure, we can use the defining integral
or sum to obtain f ∗ g.
Example Let h > 0. Find a simple expression for the convolution product of the
piecewise continuous function f on R and

ah(x) :=
{

1/2h if −h < x < h

0 otherwise.
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Solution We use (1) to write

(f ∗ ah)(x) =
∫ ∞

−∞
f(u)ah(x− u) du

=
1
2h

∫
−h<x−u<h

f(u) du

=
1
2h

∫ x+h

x−h

f(u) du, (11)

i.e., (f ∗ ah)(x) is the average value of f on the interval [x− h, x+ h].

Example Find a simple expression for the convolution product of the piecewise
continuous function f on Tp and

ek(x) := e2πikx/p, k = 0,±1,±2, . . . .

Solution We use (2) with the analysis equation for f to write

(f ∗ ek)(x) =
∫ p

u=0
f(u)e2πik(x−u)/p du

= e2πikx/p · p · 1
p

∫ p

0
f(u)e−2πiku/p du

= pF [k]ek(x), k = 0,±1,±2, . . . . (12)

In particular,

e� ∗ ek =
{
p ek if k = �

0 if k �= �.

The sum of scaled translates

When f, g are functions on PN , we can use (4) to write

(f ∗ g)[n] = f [0] · g[n]+ f [1] · g[n− 1]+ f [2] · g[n− 2]+ · · ·+ f [N − 1] · g[n− (N − 1)].

We regard f [0], f [1], f [2], . . . , f [N − 1] as scalars that are applied to the translated
“vectors” g[n], g[n− 1], g[n− 2], . . . , g[n− (N − 1)], respectively. The same idea can
be used when f, g are functions on Z, but the sum may have infinitely many terms.

Example Find the convolution product of

f = (f [0], f [1], f [2], f [3]) := (3, 1, 4, 1),
g = (g[0], g[1], g[2], g[3]) := (5, 9, 2, 6).
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Solution We compute f ∗ g on P4 by summing translates as follows:

(f ∗ g)[0] = 3 · 5 + 1 · 6 + 4 · 2 + 1 · 9 = 38
(f ∗ g)[1] = 3 · 9 + 1 · 5 + 4 · 6 + 1 · 2 = 58
(f ∗ g)[2] = 3 · 2 + 1 · 9 + 4 · 5 + 1 · 6 = 41
(f ∗ g)[3] = 3 · 6 + 1 · 2 + 4 · 9 + 1 · 5 = 61

We check our work using the identity
(∑

f [n]
)(∑

g[n]
)

=
∑

(f ∗ g)[n] of Ex. 2.26,
i.e.,

(3 + 1 + 4 + 1) · (5 + 9 + 2 + 6) = 9 · 22 = 198 = 38 + 58 + 41 + 61.

Example Let f be a function on Z with

f [n] :=
{

1 if n = 0 or n = 1
0 otherwise.

Find a formula for the components of f1 := f , f2 := f ∗ f , f3 := f ∗ (f ∗ f), . . . .

Solution We use a sum of translates to write

(f ∗ g)[n] = g[n] + g[n− 1], n = 0,±1,±2, . . . ,

and thereby produce f1, f2, f3 as shown in Fig. 2.1. In conjunction with the Pascal
triangle relation for the binomial coefficients this gives the formula

fm[n] =
(
m

n

)
.

Figure 2.1. Convolution products f1 = f , f2 = f ∗ f , f3 = f ∗ f ∗ f .
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Example Let f := (1, 1, 0, 0, 0, 0) be a function on P6. Find a formula for the
components of

f1 := f, f2 := f ∗ f, f3 := f ∗ (f ∗ f), . . . .

Solution We use a sum of translates to write

(1, 1, 0, 0, 0, 0) ∗ (a0, a1, a2, a3, a4, a5)
= (a0, a1, a2, a3, a4, a5) + (a5, a0, a1, a2, a3, a4)
= (a5 + a0, a0 + a1, a1 + a2, a2 + a3, a3 + a4, a4 + a5).

We then use this cyclic version of the Pascal triangle relation to write

f1 = (1, 1, 0, 0, 0, 0), f2 = (1, 2, 1, 0, 0, 0), f3 = (1, 3, 3, 1, 0, 0)
f4 = (1, 4, 6, 4, 1, 0), f5 = (1, 5, 10, 10, 5, 1), f6 = (2, 6, 15, 20, 15, 6), . . .

and thereby see that

fm[n] =
(
m

n

)
+
(

m

n+ 6

)
+
(

m

n+ 12

)
+ · · · .

The sliding strip method

We often find it necessary to compute the convolution product of functions f, g that
are defined piecewise on R, e.g.,

f(x) :=
{

1 if 0 < x < 1
0 otherwise,

g(x) :=
{
x if 0 < x < 2
0 otherwise.

(13)

In such cases it is sometimes possible to split the integral of (1) into a sum of
subintegrals that we can evaluate by using the fundamental theorem of calculus. In
practice, however, we are usually overwhelmed with the task of determining how
the various limits of integration depend on the argument x. For example, when f, g
are the simple functions of (13) we find

(f ∗ g)(x) =
∫

0<u<1
and

0<x−u<2

f(u)g(x− u) du =
∫ max{0,min{1,x}}

min{1,max{0,x−2}}
(x− u) du. (14)

There is a much better way to organize such a calculation, and we will use
the functions (13) to illustrate the procedure. For representative choices of x we
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will sketch the graphs of f(u) and g(x − u) as functions of u, form the integrand
f(u)g(x− u), and evaluate the integral (1).

We can obtain the graph of g(x− u) as a function of u by reflecting g(u) to get
g(−u) and then translating g(−u) by x to get g(−(u − x)) = g(x − u). As an
alternative, we simply reflect the graph of g(u) about the line u = x/2 to obtain
g(u − 2(u − x/2)) = g(x − u) as shown in Fig. 2.2. If you observe that the point
u = x on the graph of g(x − u) corresponds to the point u = 0 on the graph of
g(u), you will find it easy to visualize how g(x − u) slides along the u-axis as the
parameter x increases from −∞ to +∞.

Figure 2.2. Construction of g(x − u) from g(u) by reflection
followed by translation and by folding.

For each real argument x we evaluate the integral of f(u) · g(x−u) (by using the
formula for the area of a right triangle!) as shown in Fig. 2.3. In this way we obtain
the convolution product

(f ∗ g)(x) =
1
2




x2 if 0 ≤ x ≤ 1
2x− 1 if 1 ≤ x ≤ 2
−x2 + 2x+ 3 if 2 ≤ x ≤ 3
0 otherwise

shown in Fig. 2.4. Of course, you could also obtain this result by evaluating the
integral in (14), but by now you should be convinced that the analysis of Fig. 2.3
gives the desired result with much less effort.
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Figure 2.3. Sliding strip computation of the convolution prod-
uct of the functions (13).
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Figure 2.4. The convolution product of the functions (13).

Example Find the convolution product f ∗ g when

f(x) := g(x) :=
{

1 if − 1
2 < x < 1

2

0 otherwise.

Solution Visualize f(u) as a fixed box with edges at u = ±1/2 and visualize g(x−u)
as a box with edges at u = x± 1/2. As x increases from −∞ to +∞, g(x−u) slides
along the x-axis from u = −∞ to u = +∞. The boxes first make contact when
x = −1 [i.e., when the right edge of g(x − u) at u = x + 1/2 coincides with the
left edge of f(u) at u = −1/2]. The area under the product f(u)g(x − u) linearly
increases from 0 to 1 as x increases from −1 to 0 (where the boxes coincide). The
overlap area linearly decreases from 1 to 0 as x increases from 0 to 1 [where the left
edge of g(x − u) at u = x − 1/2 coincides with the right edge of f(u) at u = 1/2].
There is no overlap when x > 1. In this way we find

(f ∗ g)(x) =




0 if x ≤ −1
1 + x if −1 ≤ x ≤ 0
1 − x if 0 ≤ x ≤ 1
0 if 1 ≤ x

=
{

1 − |x| if |x| ≤ 1
0 if |x| ≥ 1,

as shown in Fig. 2.5.

Figure 2.5. The convolution product of two boxes.
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Example Let α > 0, β > 0. Find the convolution product of

f(x) :=
{
e−αx if x ≥ 0
0 if x < 0,

g(x) :=
{
e−βx if x ≥ 0
0 if x < 0.

Solution After noting that f(u) is nonzero on [0,+∞) and that g(x−u) is nonzero
on (−∞, x] we write

(f ∗ g)(x) =




0 if x ≤ 0∫ x

u=0
e−αu e−β(x−u) du if x ≥ 0

=




0 if x ≤ 0
x e−αx if x ≥ 0 and β = α

e−βx − e−αx

α− β
if x ≥ 0 and β �= α.

(15)

Once we visualize f(u) and g(x−u) it is easy to determine the limits of integration
and perform the calculation that gives f ∗ g as shown in Fig. 2.6.

Figure 2.6. The convolution product (15) of truncated exponen-
tials with β = α.

Example Find the convolution product f ∗ g for the functions of Fig. 2.7.

Solution The step functions f, g are constant on every interval (n, n + 1),
n = 0,±1,±2, . . . , so we can easily obtain

(f ∗ g)(1) = 3, (f ∗ g)(2) = 7, (f ∗ g)(3) = 3, (f ∗ g)(4) = 2,
(f ∗ g)(n) = 0 for n = 0,−1,−2, . . . and n = 5, 6, 7, . . .

by adding areas of rectangles. Since (f ∗ g)(x) is linear on every interval
n < x < n+ 1, n = 0,±1,±2, . . . , we can produce the graph of f ∗ g as shown
in Fig. 2.7 by connecting the dots with line segments. You can find each of the
convolution products from Exs. 2.1 and 2.2 by using this procedure.



Computation of f ∗ g 99

Figure 2.7. The piecewise linear convolution product f ∗ g of
step functions f, g.

Variations of the sliding strip method can be used to find the convolution product
of functions f, g on Tp. Of course, you can move from g(u) to g(−u) to g(x − u)
by using reflection on Tp followed by translation on (i.e., rotation around) Tp. The
integral of f(u) · g(x− u) over Tp then gives (f ∗ g)(x). If you wish, you can regard
f as a p-periodic function on R, define

g0(x) :=
{
g(x) if 0 ≤ x < p

0 otherwise

on R, compute f ∗ g0 on R (as described above), and set

(f ∗ g)(x) = (f ∗ g0)(x) for 0 ≤ x < p.

You can also define

f0(x) :=
{
f(x) for 0 ≤ x < p

0 otherwise,
g0(x) :=

{
g(x) for 0 ≤ x < p

0 otherwise

as functions on R, compute f0 ∗ g0 on R (as described above), and take

(f ∗ g)(x) = (f0 ∗ g0)(x) + (f0 ∗ g0)(x+ p) for 0 ≤ x < p.

This third alternative clearly displays the wraparound effect that can occur when
f, g are not suitably localized on Tp.

Example Let 0 < α ≤ 1. Find f ∗ f when

f(x) :=
{

1 if 0 ≤ x < α

0 if α < x < 1

is a function on T1.
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Solution If we define

f0(x) :=
{

1 if 0 ≤ x < α

0 if x < 0 or x ≥ α

as a function on R, we find

(f0 ∗ f0)(x) =



x if 0 ≤ x ≤ α

2α− x if α ≤ x ≤ 2α
0 otherwise.

When 0 < α ≤ 1/2 there is no wraparound effect and we write

(f ∗ f)(x) = (f0 ∗ f0)(x) =



x if 0 ≤ x ≤ α

2α− x if α ≤ x ≤ 2α
0 if 2α ≤ x ≤ 1.

When 1/2 < α < 1 there is a wraparound effect, see Fig. 2.8, and we have

(f ∗ f)(x) = (f0 ∗ f0)(x) + (f0 ∗ f0)(x+ 1) =




2α− 1 if 0 ≤ x ≤ 2α− 1
x if 2α− 1 ≤ x ≤ α

2α− x if α ≤ x ≤ 1.

Figure 2.8. The functions f and f ∗ f on T1 when α = .1 and
when α = .6.
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The sliding strip method can be used to obtain the convolution product of
functions f, g on Z or PN . For such discrete functions we compute (f ∗ g)[n] by
summing f [m]g[n−m] with respect to m [instead of integrating f(u)g(x− u) with
respect to u].

Generating functions

When a, b are suitably regular functions on Z we can form the corresponding gen-
erating functions

A(z) :=
∞∑

n=−∞
a[n]zn, B(z) :=

∞∑
n=−∞

b[n]zn.

The coefficients of the product

A(z) · B(z) =
∞∑

k=−∞

∞∑
m=−∞

a[m]b[k]zm+k =
∞∑

n=−∞

{ ∞∑
m=−∞

a[m]b[n−m]
}
zn

are the components of a ∗ b. If you can find the power series for A(z) · B(z), you
can compute the convolution product a ∗ b. For example, the identity

(3 + z + z2) · (1 + 2z) = 3 + 7z + 3z2 + 2z3

corresponds to

(. . . , 3, 1, 1, 0, . . . ) ∗ (. . . , 1, 2, 0, . . . ) = (. . . , 3, 7, 3, 2, 0, . . . ).

You can use various techniques from algebra, calculus, . . . to find the power series
for A(z) · B(z) and thereby find the convolution product a ∗ b.
Example Let α, β be complex numbers with 0 < |α| < 1, 0 < |β| < 1, and let

a[n] :=
{
αn if n = 0, 1, . . .
0 otherwise,

b[n] :=
{
βn if n = 0, 1, . . .
0 otherwise.

Find the convolution product a ∗ b on Z.

Solution When |z| is sufficiently small, the formula for the sum of a geometric
progression gives the generating functions

A(z) :=
∞∑

n=0

αnzn =
1

1 − αz
, B(z) =

∞∑
n=0

βnzn =
1

1 − βz
.
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When α �= β we write

A(z) · B(z) =
1

1 − αz
· 1
1 − βz

=
1

(α− β)z
·
{

1
1 − αz

− 1
1 − βz

}

=
1

(α− β)z

∞∑
m=0

(αm − βm)zm =
∞∑

n=0

αn+1 − βn+1

α− β
zn

and thereby show that

(a ∗ b)[n] =



αn+1 − βn+1

α− β
if n = 0, 1, . . .

0 otherwise.

When α = β we use a similar argument to obtain

(a ∗ b)[n] =
{

(n+ 1)αn if n = 0, 1, . . .
0 otherwise.

You may wish to compare these results to those of (15).

2.3 Mathematical properties of the convolution
product

Introduction

There are a number of basic properties of the convolution product that follow from
the defining relations (1)–(4).

The Fourier transform of f ∗ g

Let f, g be suitably regular functions on R and let q := f ∗ g. We use the definition
of the Fourier transform together with (1) to write

Q(s) :=
∫ ∞

x=−∞
(f ∗ g)(x)e−2πisx dx

=
∫ ∞

x=−∞

∫ ∞

u=−∞
f(u)g(x− u)e−2πisx du dx

?=
∫ ∞

u=−∞

∫ ∞

x=−∞
f(u)g(x− u)e−2πisx dx du
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=
∫ ∞

u=−∞
f(u)e−2πisu ·

∫ ∞

x=−∞
g(x− u)e−2πis(x−u) dx du

=
∫ ∞

u=−∞
f(u)e−2πisu ·G(s) du

= F (s) ·G(s),

assuming that we can justify the exchange of limits in the ?= step. In this way we
see that the Fourier transform converts convolution into ordinary multiplication.
With such informal arguments we find

q(x) := (f ∗ g)(x) on R has the FT Q(s) = F (s) ·G(s) on R, (16)

q(x) := (f ∗ g)(x) on Tp has the FT Q[k] = p · F [k] ·G[k] on Z, (17)

q[n] := (f ∗ g)[n] on Z has the FT Q(s) = p · F (s) ·G(s) on Tp, (18)

q[n] := (f ∗ g)[n] on PN has the FT Q[k] = N ·F [k] ·G[k] on PN . (19)

These four equations, Fourier’s synthesis–analysis equations, Parseval’s identities,
and Poisson’s relations are the most basic identities of elementary Fourier analysis!

An indirect scheme for finding convolution products is suggested by (16)–(19),
e.g.,

f
FT

........ ..
.........

................. F, g
FT

....... ...
.........

................. G, F ·G IFT
...... ...
.........

............... f ∗ g
when f, g (and f ∗ g) are functions on R, (20)

f
DFT

........ ..
...

.......
................. F, g

DFT
........ ..
...

.......
.................. G, N · F ·G IDFT

........ ..
........

................. f ∗ g
when f, g (and f ∗ g) are functions on PN . (21)

You will learn to use this very powerful method for computing f ∗ g as you study
Chapters 3 and 4.

Algebraic structure

The convolution product that we have defined by (1), (2), (3), or (4) has many
of the familiar properties of pointwise multiplication. We easily verify that ∗ is
homogeneous,

(αf) ∗ g = α(f ∗ g) = f ∗ (αg),

and that ∗ distributes over addition,

f ∗ (g1 + g2) = (f ∗ g1) + (f ∗ g2)
(f1 + f2) ∗ g = (f1 ∗ g) + (f2 ∗ g),
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by using the corresponding properties of the integrals or sums in (1)–(4). These
give the linearity relation

( M∑
m=1

αmfm

)
∗
( N∑

n=1

βngn

)
=

M∑
m=1

N∑
n=1

αmβn(fm ∗ gn) (22)

when f1, . . . , fM , g1, . . . , gN are suitably regular functions and α1, . . . , αM ,
β1, . . . , βN are scalars. A simple change of variables (u′ := x − u or m′ := n −m)
in (1), (2), (3), or (4) shows that ∗ is commutative,

f ∗ g = g ∗ f, (23)

whenever these products are defined, see Ex. 2.19.
The associativity property,

f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3, (24)

that allows us to write
f1 ∗ f2 ∗ · · · ∗ fN

(without inserting parentheses to specify the order in which these products are
formed) is true — most of the time, see Ex. 2.20. Since the Fourier transform of
f ∗ g is a scalar multiple of F ·G you might expect the associativity of ∗ to follow
from that of · , and this is the case when f1, f2, f3, f1 ∗ f2, f2 ∗ f3, (f1 ∗ f2) ∗ f3,
f1 ∗ (f2 ∗f3) are all suitably regular or equivalently when the Fourier transforms F1,
F2, F3, F1 ·F2, F2 ·F3, (F1 ·F2) ·F3, F1 · (F2 ·F3) are all suitably regular. It is not so
easy to convert such vague statements into useful theorems, however. We will study
such products and convolution products more carefully in Chapters 7 and 12. For
now, you might like to see what can go wrong and explore a possible fix by working
through Exs. 2.35 and 2.36.

You will recall that the function 1 serves as a multiplicative identity for · , i.e.,

1 · f = f · 1 = f.

The functions

δ[n] :=
{

1 if n = 0
0 if n = ±1,±2, . . . ,

δ[n] :=
{

1 if n = 0
0 if n = 1, 2, . . . , N − 1

serve as identities for the convolution product of functions on Z, PN , i.e.,

δ ∗ f = f ∗ δ = f. (25)

No ordinary function on R or Tp serves as an identity, see Ex. 3.40. (We will create
generalized functions δ and X for this purpose in Chapter 7.)
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A number of interesting new mathematical structures can be obtained by replac-
ing · by ∗ within some familiar context. You can find the convolution square root
s of a function a (on R, Tp, Z, or PN ) by solving

s ∗ s = a,

and use it to find roots of the quadratic equation

a ∗ x ∗ x+ b ∗ x+ c = 0.

You can formulate conditions for the convergence of the infinite series

a0 + a1 ∗ x+ a2 ∗ x ∗ x+ · · · .
You can devise procedures for solving a linear equation

a ∗ x = b

or a system of linear equations

a11 ∗ x1 + a12 ∗ x2 = b1

a21 ∗ x1 + a22 ∗ x2 = b2.

Related exercises can be found in Chapters 3 and 4. (You will work more efficiently
after you learn a few basic skills for taking Fourier transforms.)

Translation invariance

Let f, g be suitably regular functions on R, and let −∞ < a < ∞. The function
g(x+a) results when we a-translate g, and with a slight abuse of notation we write

f(x) ∗ g(x+ a) =
∫ ∞

u=−∞
f(u)g{(x− u) + a} du

=
∫ ∞

u=−∞
f(u)g{(x+ a) − u} du

= (f ∗ g)(x+ a).

In this way we show that the convolution product is translation invariant: If we
convolve f with the a-translate of g, we obtain the a-translate of f ∗g (see Ex. 2.21).
Analogous arguments show that the convolution product of suitably regular func-
tions on Tp, Z, or PN are translation invariant. Since the convolution product f ∗ g
is linear in g, the corresponding convolution operator

Ag := f ∗ g (26)

is always LTI.
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A function g on PN can be written as a sum of translates of the identity δ for the
convolution product, i.e.,

g[n] = g[0] · δ[n] + g[1] · δ[n− 1] + g[2] · δ[n− 2]
+ · · · + g[N − 1] · δ[n− (N − 1)].

If we pass g through an LTI system A, we obtain the output

(Ag)[n] = g[0] · (Aδ)[n] + g[1] · (Aδ)[n− 1] + g[2] · (Aδ)[n− 2]
+ · · · + g[N − 1] · (Aδ)[n− (N − 1)].

In this way we see that A has the representation (26) with

f := Aδ (27)

being known as the impulse response of the system A. The same argument can be
used when f is a function on Z provided that we can apply A to an infinite series
on a term-by-term basis. After introducing generalized functions in Chapter 7 we
will see that the representation (26) or (27) can be used for many LTI operators
that are applied to functions on R or Tp.

Differentiation of f ∗ g

When f, g are suitably regular functions on R we can write

(f ∗ g)′(x) =
d

dx

∫ ∞

u=−∞
f(u)g(x− u) du

?=
∫ ∞

u=−∞
f(u)g′(x− u) du

= (f ∗ g′)(x).

Of course, we must impose hypotheses on f, g that allow us to exchange the order
of differentiation and integration, see Ex. 2.34. Since f ∗ g = g ∗ f , it follows that

(f ∗ g)′ = f ′ ∗ g = f ∗ g′

(f ∗ g)′′ = f ′′ ∗ g = f ′ ∗ g′ = f ∗ g′′

...

with
(f ∗ g)(n) = f (m) ∗ g(n−m), m = 0, 1, . . . , n (28)
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when f has m derivatives and g has n − m derivatives for some m = 0, 1, . . . , n.
The corresponding Leibnitz rule

(f · g)(n) =
n∑

m=0

(
n

m

)
f (m) · g(n−m) (29)

from calculus requires both f and g to have n derivatives.
We can use (28) and the linearity (22) to write

p(D){f ∗ g} = f ∗ {p(D)g} (30)

when
p(D) := c0 + c1D + c2D2 + · · · + cnDn, D :=

d

dx
and c0, c1, . . . , cn are constants. This identity will prove to be useful when we study
ordinary and partial differential equations.

As you compute convolution products of functions on R, you will observe that f∗g
is always smoother than either f or g, see Figs. 2.4–2.7 and 2.9 (which corresponds
to Ex. 2.7). Of course, an integration process such as (1) will always produce a
function that is smoother than the integrand. The identity (28) shows that f ∗ g
also inherits all of the smoothness of f plus all of the smoothness of g. Exercises
2.29 and 2.37 will help you sort out the details.

Figure 2.9. The functions P, P ∗ P, and P ∗ P ∗ P.

2.4 Examples of convolution and correlation

Convolution as smearing

A discrete representation of Jefferson’s Monticello is obtained by specifying real
numbers s[n], n = 0, 1, . . . , 319 as shown in Fig. 2.10. A corresponding blurred
image

b[n] :=
1
17

{s[n− 8] + s[n− 7] + · · · + s[n+ 8]}
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Figure 2.10. A discrete representation s, of Jefferson’s Monti-
cello together with a blurred image b = a ∗ s.

(with indices taken mod 320) is also shown in Fig. 2.9. The blurred image b does
not exhibit any of the fine detail (sharp corners, chimneys, dome rings, . . . ) that is
present in the original scene function s.

You will observe that we can use a discrete version of (11) to write

a ∗ s = b, (31)

where

a[n] :=
{

1/17 if n = 0,±1,±2, . . . ,±8
0 if n = ±9,±10, . . . ,±159, 160

(32)

is a discrete box. Knowing a (i.e., knowing the characteristics of the defective
“camera” that produced the blurred image b) we can attempt to reconstruct s from
b by solving the convolution equation (31). In view of (19), the DFTs of a, s, b
satisfy

A[k] · S[k] = 320B[k], k = 0, 1, . . . , 319

so we can synthesize s from

S[k] = 320
B[k]
A[k]

.

[After you learn a bit more about DFTs you will find it easy to verify that the A[k]
for (32) is never 0.] Such deconvolution techniques can be used to sharpen blurred
images, enhance old audio recordings, etc.
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Echo location

Geologists locate a layer of oil bearing sedimentary rock by sending a real signal
x(t) into the earth, listening for an attenuated echo Ax(t− T ) from that layer, and
using the time shift T to determine the depth of the oil. The scheme is complicated
by the fact that the attenuation parameter A is normally so small that the reflected
signal is buried in the noise from mini earthquakes, thermal creaking, freeway and
runway vibrations, etc. Figure 2.11 shows a chirp x and a noise-contaminated echo

e(t) := Ax(t− T ) + n(t).

It does not seem possible to determine the time shift T from such data.

Figure 2.11. An FM chirp, x(t), and a noise-contaminated echo
e(t) = Ax(t− T ) + n(t).

As you may have guessed, however, the transmitted signal x has been designed
with some care. (Bats, dolphins, and whales use similar frequency-modulated chirps
for echo location!) The autocorrelation function

(x � x)(t− T ) =
∫ ∞

u=−∞
x(u)x(u+ t− T ) du
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has a sharp peak at t = T , as shown in Fig. 2.12. If A is not too small, the
correlation product

(x � e)(t) =
∫ ∞

u=−∞
x(u)e(u+ t) du

= A (x � x)(t− T ) +
∫ ∞

u=−∞
x(u)n(u+ t) du

will have a corresponding peak that reveals the precise location of T , see Fig. 2.12.
We do the impossible by computing x � e!

Figure 2.12. The autocorrelation (x � x)(t − T ) and the corre-
lation product (x � e)(t) for the functions x, e of Fig. 2.11.

Convolution and probability

The probability of throwing the integer n with a fair die is given by the discrete
density

p[n] :=
{

1/6 if n = 1, 2, . . . , 6
0 otherwise.

We can throw the integer 6 with a pair of dice if the first and second come up 1
and 5, 2 and 4, 3 and 3, 4 and 2, or 5 and 1. Assuming that the dice are thrown
independently, the probability for throwing a 6 is obtained by writing

p[1] · p[5] + p[2] · p[4] + p[3] · p[3] + p[4] · p[2] + p[5] · p[1].
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In this way we see that

p2[n] :=
∞∑

m=−∞
p[m]p[n−m] = (p ∗ p)[n], n = 0,±1,±2, . . .

gives the probability of throwing the integer n with a pair of dice.
If we have 3 dice we will obtain the integer n if we throw 1 with the first die and

n − 1 with the remaining two, 2 with the first and n − 2 with the remaining two,
etc. This analysis gives the formula

p3[n] =
∞∑

m=−∞
p[m]p2[n−m] = (p ∗ p ∗ p)[n]

for the probability of throwing the integer n with three dice. Analogously,

p4[n] = (p ∗ p ∗ p ∗ p)[n], p5[n] = (p ∗ p ∗ p ∗ p ∗ p)[n], . . .

give the probabilities for throwing the integer n with 4, 5, . . . dice.
You can generate the probability densities p2, p3, . . . by using the sliding strip

method to convolve p with p, p2, . . . as follows.

n 1 2 3 4 5 6

6p[n] 1 1 1 1 1 1

n 2 3 4 5 6 7 8 9 10 11 12

36(p∗p)[n] 1 2 3 4 5 6 5 4 3 2 1

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

216(p∗p∗p)[n] 1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1

You can also compute p, p ∗ p, p ∗ p ∗ p, . . . in cases where the face numbers
1, 2, 3, 4, 5, 6 on the die are replaced by other integers, e.g., when the six faces are
numbered 1, 1, 1, 2, 2, 3 we begin with the density

p[n] :=




3/6 if n = 1
2/6 if n = 2
1/6 if n = 3
0 otherwise,

see Ex. 2.30.
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Convolution and arithmetic

Let A, B be positive integers with the base 10 representations

A = a0 + a110 + a2102 + · · · , B = b0 + b110 + b2102 + · · · .
The digits an, bn take values 0, 1, . . . , 9, and we will assume that an, bn are defined
for all n = 0,±1,±2, . . . . We can form the product C := A · B by computing the
convolution product c = a ∗ b of the digit strings and writing

C = c0 + c110 + c2102 + · · · .
The “digits” c0, c1, c2, . . . that we obtain in this way may take values greater than
9, so we must use a suitable carrying process to obtain the canonical base 10 form

C = c′0 + c′1 10 + c′2 102 + · · ·
with digits c′0, c

′
1, c

′
2, . . . that take the values 0, 1, . . . , 9.

You will recognize these steps in the following computation of the product 3141 ·
5926 = 18613566.

107 106 105 104 103 102 101 100

3 1 4 1
× 5 9 2 6

3×6 1×6 4×6 1×6
3×2 1×2 4×2 1×2

3×9 1×9 4×9 1×9
3×5 1×5 4×5 1×5
15 32 35 61 23 26 6

1 8 6 1 3 5 6 6

When we use the familiar elementary school algorithm for multiplication, we do a
portion of the carrying process as we write each line. In the above computation we
allow “digits” greater than 9 in the intermediate steps but we reduce the “digits”
to canonical form in the last line.

We can also regard the digit strings a, b for A,B as functions on PN and generate
a ∗ b within this context provided that N is large enough to avoid wraparound
effects. For example, we can use the function d on P64 with

d[0] = 6, d[1] = 7, . . . , d[30] = 1, d[31] = · · · = d[63] = 0

to represent the digits of

2100 = 1267650600228229401496703205376 .

Figure 2.13 shows d, d ∗ d, and the digits of 2100 · 2100 on P64.
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Figure 2.13. Computation of 2100 · 2100 by convolving digit
strings on P64.

Suppose that we wish to find the product of two M -digit numbers. If we use the
usual elementary school algorithm, we must multiply each digit in the multiplicand
by each digit in the multiplier, thus forming M2 digit–digit products in the course
of the calculation. You can easily write down 4 or 9 such products when M = 2
or 3, but not even the fastest computer can form the 109 · 109 digit–digit products
that would be required for the multiplication of billion digit integers. How then is
it possible to compute a billion digits of π = 3.14159 . . . ?

The fast Fourier transform (FFT), an algorithm we will describe in Chapter 6,
uses a small multiple of N log2N arithmetic operations to produce the discrete
Fourier transform of an N -component vector. If we use the FFT with (21), we can
compute the convolution product of N -component vectors by expending a small
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multiple of N log2N arithmetic operations. This makes it possible to multiply
two M -digit integers using a small multiple of 2M log2(2M) arithmetic operations.
(When you compare M2 = 1018 with 2M log2 2M = 62 · 109 for M = 109, you will
see that the familiar elementary school algorithm is hopelessly inefficient!) You will
find additional details for this multiplication scheme in Ex. 2.31.

You can add, subtract, multiply large integers by adding, subtracting, convolving
the digit strings and then reducing the resulting “digits” to canonical form. If you
keep track of exponents, e.g.,

(123 · 10−30) · (456 · 1022) = (123 · 456) · 10−8

you can add, subtract, multiply floating point numbers. A trick from calculus
provides an efficient scheme for doing division. (Don’t even think of coding the
wretched long-division algorithm from elementary school!) Newton’s iteration

xν+1 := xν · (2 − a · xν), ν = 0, 1, . . .

for computing the root, 1/a, of f(x) := a − 1/x, uses only multiplication and
subtraction. The iterates converge quadratically, so if x0 is good to 10 digits, then
x1, x2, x3, . . . will be good to 20, 40, 80, . . . digits. Once you have computed the
reciprocal 1/a to the desired precision, you can find the quotient b/a = b · (1/a) by
using fast multiplication. The familiar Newton iteration

xν+1 :=
xν + a

2xν
, ν = 0, 1, . . .

then leads to a fast algorithm for computing
√
a, a > 0.

If you like to code, you can use these ideas to develop software for doing “high-
precision” calculations using +, −, ×, ÷, √ . You may not reach a billion digits
on your PC, but you can use the AGM iteration

a0 := 1, b0 :=
1√
2
, t0 :=

1
4
, x0 := 1

aν+1 := (aν + bν)/2, bν+1 :=
√

(aν · bν), tν+1 := tν − xν · (aν+1 − aν)2,
xν+1 := 2xν , ν = 0, 1, . . .

to compute a few thousand digits of

π =
a2

t
=

(a+ b)2

4t
,

where a := lim aν , b := lim bν , t := lim tν (see J.M. Borwein and P.B. Borwein, Pi
and the AGM, John Wiley & Sons, New York, 1987, p. 48).
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Further reading

Bracewell, R.N. The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill,
New York, 2000.
A nice introduction to convolution is given in Chapter 3 of this popular text
for scientists and engineers.

Briggs, W.L. and Henson, V.E. The DFT, SIAM, Philadelphia, 1995.
Properties of the discrete convolution product and numerous applications are
described in this book.

Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd
ed., John Wiley & Sons, New York, 1957.
Chapter 9 describes the convolution of functions on Z within the context of
probability theory.

Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 2, John
Wiley & Sons, New York, 1966.
Chapter 5 describes the convolution of functions on Tp, R within the context
of probability theory.

Gaskill, J.D. Linear Systems, Fourier Transforms, and Optics, John Wiley & Sons,
New York, 1978.
An exposition of convolution as used in optics is given in Chapters 6 and 9.

Henrici, P. Applied and Computational Complex Analysis, Vol. 3, John Wiley &
Sons, New York, 1986.
Discrete convolution (with corresponding fast algorithms for arithmetic and for
manipulating power series) is discussed in Chapter 13.

Oppenheim, A.V., Willsky, A.S., and Young, I.T. Signals and Systems, Prentice
Hall, Englewood Cliffs, NJ, 1983.
An exposition of convolution as used in systems theory is given in Chapter 3.

Schoenberg, I.J. Mathematical Time Exposures, Mathematical Association of
America, Washington, D.C., 1982.
Convolution within the context of geometry is discussed in Chapter 6.

Stade, E. Fourier Analysis, John Wiley & Sons, Hoboken, NJ, 2005.
Chapter 5 develops various mathematical properties of the convolution product.

Walker, J.S. Fast Fourier Transforms, 2nd ed., CRC Press, Boca Raton, FL, 1996.
Many applications of convolution can be found in this elementary text.
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Exercises

. .

.
. .......... ....
.. .... ....••• EXERCISE 2.1 Find the following convolution products (of functions on R).

(a)

1

1 ∗

1

1 (d)

0 1 2 3

1 ∗

0 1 2 3

1

(b)

1

1 ∗

0 1 2 3

1 (e)

1

1 ∗

a a+ 1

1

(c)

1

1 ∗

0 1 2 3

1 (f)

a a+ 1

1 ∗

b b+ 1

1

.
...
..

....... .... .... ..... ...••• EXERCISE 2.2 Functions f, g on R are given by the following graphs.

............................................................................. .....

0 1 2 3 x

1

2

3 f

............................................................................... .......

0 1 2 3 x

1

−1

g

Find the following convolution and correlation products.

(a) f ∗ f (b) f ∗ g (c) g ∗ f (d) g ∗ g
(e) f � f (f) f � g (g) g � f (h) g � g

. .

.

... .

........ .... .... .... ...••• EXERCISE 2.3 Let h be the Heaviside function,

h(x) :=

{
1 if x > 0

0 if x < 0.

Find the following convolution products:

(a) h2 := h ∗ h
(b) h3 := h ∗ h ∗ h
(c) hn := h ∗ h ∗ · · · ∗ h (with n factors of h)

(d) h(x− x1) ∗ h(x− x2) ∗ · · · ∗ h(x− xn) where x1, x2, . . . , xn are any real numbers.
(e) {xmh(x)} ∗ {xnh(x)} where m,n are nonnegative integers.

Hint: This convolution product is a scalar multiple of hm+n+2.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 2.4 Let f(x) := h(x)e−x where h is the Heaviside function of Ex. 2.3.
Find the following convolution products.

(a) f2 := f ∗ f
(b) f3 := f ∗ f ∗ f
(c) fn := f ∗ f · · · ∗ f (with n factors of f)

(d) {xnf(x)} ∗ {xmf(x)} where m,n are nonnegative integers.

. . ..

.. .
...
.. . ...
..... ..... ....••• EXERCISE 2.5 Let f(x) := e−|x|. Show that (f ∗ f)(x) = (1 + |x|)e−|x|.

Hint. When x < 0 you can split the integral over R into easily evaluated integrals over
(−∞, x), (x, 0), (0,∞). Do this and then make clever use of symmetry!

. . .
..
.... .......... ...
. ... ....••• EXERCISE 2.6 Let f(x) := e−πx2

, −∞ < x < ∞.

(a) Verify that f(u)f(x− u) = e−2π(u−x/2)2 e−πx2/2.

(b) Using (a), show that (f ∗ f)(x) = Ie−πx2/2 where I :=
∞∫

−∞
e−2πy2

dy.

Note. In Chapter 3 you will learn an easy way to show that I = 1/
√

2.

..
.
. . .
.
.. ......... ..... .....••• EXERCISE 2.7 For n = 0, 1, 2, . . . we define the B-spline Bn on R by writing
B0 := P, B1 := P ∗ P, B2 := P ∗ P ∗ P, . . . where

P(x) :=

{
1 for |x| < 1

2

0 for |x| > 1
2 .

Graphs of B0, B1, B2 are shown in Fig. 2.9.

(a) For which values of x is Bn(x) > 0?

(b) Show that Bn is differentiable with

B′
n(x) = Bn−1(x+ 1

2 ) −Bn−1(x− 1
2 ), n = 1, 2, . . . .

Hint. Begin with the defining integral for Bn = P ∗Bn−1.

(c) For which values of m is B(m)
n continuous?

(d) Express B(n)
n as a sum of scaled translates of B0 = P.

Hint. Use (b) to express B′′
n in terms of Bn−2, B′′′

n in terms of Bn−3, etc.

Note. The B-splines have many applications in numerical analysis. We use the
formula

Bn(x)=
1
n

{
[ 12 (n+ 1) + x]Bn−1(x+ 1

2 ) + [ 12 (n+ 1) − x]Bn−1(x− 1
2 )
}
, n = 1, 2, . . .

recursively [with B0(x) = P(x)] when we want to evaluate Bn at some point x, see
Ex. 3.31.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 2.8 Let

f(x) :=

{
1 for 0 ≤ x < 1 or 3 ≤ x < 4

0 for 1 ≤ x < 3,
g(x) := x for 0 ≤ x < 4

be regarded as functions on the circle T4. Find the following convolution products:

(a) f ∗ f (b) f ∗ g (c) g ∗ g
. ..
..

.. .

......... ... .. ..... ....••• EXERCISE 2.9 Let

ek(x) := e2πikx/p, k = 0,±1,±2, . . .

ck(x) := cos(2πkx/p), k = 0, 1, 2, . . .

sk(x) := sin(2πkx/p), k = 1, 2, 3, . . .

be regarded as functions on the circle Tp. Find the following convolution products:

(a) ek ∗ e� (b) ek ∗ c� (c) ek ∗ s� (d) ck ∗ c� (e) ck ∗ s� (f) sk ∗ s�
. .
.
.. .
........ .... .... ..... ...••• EXERCISE 2.10 Let f be a function on Z with f [n] := 1/n! when n = 0, 1, . . .
and f [n] = 0 when n = −1,−2, . . . . Let f1 := f , f2 := f ∗ f , f3 := f ∗ f ∗ f , . . . . Find a
simple formula for the components of fm, m = 1, 2, . . . .

Hint. Make use of the Maclaurin series for ex.

. .
.

.. .......... .... ... ..... ...••• EXERCISE 2.11 Let f, δ be functions on Z with δ[0] := 1 and δ[n] := 0 if
n = ±1,±2, . . . . Let the translation parameters m,m1,m2 be integers. Find simple
expressions for the following convolution products:

(a) δ[n−m1] ∗ δ[n−m2] (b) δ[n−m] ∗ f [n] (c) δ[n−m1] ∗ f [n−m2]

. . ..... ........... .... .. ..... ...••• EXERCISE 2.12 Let δ,∆, h be functions on Z with

δ[n] :=

{
1 if n = 0

0 otherwise,
∆[n] :=




−1 if n = 1

1 if n = 0

0 otherwise,

h[n] :=

{
1 if n = 0, 1, 2, . . .

0 otherwise.

(a) Show that ∆ ∗ h = h ∗ ∆ = δ.

(b) Let ∆1 := ∆, ∆2 := ∆ ∗ ∆, ∆3 := ∆ ∗ ∆ ∗ ∆, . . . . Find a simple formula for ∆p[n],
p = 1, 2, . . . .

(c) Let h1 := h, h2 := h ∗ h, h3 := h ∗ h ∗ h, . . . . Find a simple formula for hp[n],
p = 1, 2, . . . .

Hint. When n ≥ 0, h2[n] = (n+ 1)/1!, h3[n] = (n+ 1)(n+ 2)/2!, . . . .

(d) Using (a), show that if p, q are nonnegative integers, then

∆p ∗ hq =




∆p−q if p > q

δ if p = q

hq−p if q > p.

Note. You may wish to compare this result to that of Ex. 2.24(c).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 2.13 Let f, g be suitably regular p-periodic functions on R having the
Fourier series

f(x) =
∞∑

k=−∞
F [k] e2πikx/p, g(x) =

∞∑
k=−∞

G[k] e2πikx/p.

(a) Formally multiply these Fourier series and combine like terms to obtain the Fourier
series for the product f ·g. In so doing, you should make suitable use of the convolution
product F ∗G.

(b) Formally convolve these Fourier series and simplify to obtain the Fourier series for the
convolution product f ∗ g. In so doing, freely make use of the result from Ex. 2.9(a).

. .......

.
.. ............ ... .....••• EXERCISE 2.14 Find the convolution product f ∗g when the functions f, g on P4
are given by:

(a) f := (1, 2, 3, 4), g := (1, 0, 0, 0); (b) f := (1, 2, 3, 4), g := (0, 0, 1, 0);

(c) f := (1, 2, 3, 4), g := (1,−1, 0, 0); (d) f := (1, 2, 3, 4), g := (1, 1, 1, 1).

. . .
..
... ....
.......
..
. .... ....••• EXERCISE 2.15 Find the convolution products f ∗ f , f ∗ f ∗ f , f ∗ f ∗ f ∗ f when
the function f on P4 is given by:

(a) f := (1, 1, 0, 0); (b) f := (1,−1, 0, 0); (c) f := (1, 0, 0, 0);

(d) f := (0, 1, 0, 0); (e) f := (0, 1, 0, 1); (f) f := (1, 1, 1, 1).

.
.
.. ..
..
.. ........ ... .... ....••• EXERCISE 2.16 A function f on P4 has the components f [0] = −1, f [1] = f [2] =
f [3] = 1. Find the convolution product f ∗ f :

(a) by using a direct computation;

(b) by writing f [n] = u[n] − 2δ[n] where

u[n] := 1, n = 0, 1, 2, 3, δ[n] :=

{
1 if n = 0

0 if n = 1, 2, 3,

and using algebraic properties of the convolution product with the identities u∗u = 4u,
u ∗ δ = u, δ ∗ δ = δ.

. . ..
.
..
...
.. . ...
..... ..... ....••• EXERCISE 2.17 Find the convolution product f ∗ f when:

(a) f is a function on P5 having components f [0] = f [1] = 0, f [2] = 1, f [3] = 2, f [4] = 3;

(b) f is a function on Z having the components of (a) with f [n] = 0 if n < 0 or n > 4;

(c) f is a function on T5 given by the following graph.

................................................................................................................... ......

1 2 3 4 50 x

f(x)

1

2

3

(d) f is a function on R given by the graph of (c) with f(x) = 0 if x < 0 or x > 5.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 2.18 Find all functions f on P2 such that:

(a) f ∗ f = 1 := (1, 1); (b) f ∗ f = δ := (1, 0).

.. .
....

.. ....... ......
..
.. .... ...••• EXERCISE 2.19 Show that the convolution product is commutative, i.e.,
f1 ∗ f2 = f2 ∗ f1 when f1, f2 are suitably regular functions on:

(a) R; (b) Tp; (c) Z; (d) PN .

Hint. Set u′ := x− u or m′ := n−m in the defining integral or sum.

. . .
..

..

...... ...... .. .... ...••• EXERCISE 2.20 Show that the convolution product is associative, i.e.,
f1 ∗ (f2 ∗ f3) = (f1 ∗ f2) ∗ f3 when f1, f2, f3 are suitably regular functions on:

(a) R; (b) Tp; (c) Z; (d) PN .

Hint. Give an informal argument in which you freely interchange the order of integration
or summation. (Conditions that justify such an interchange of limits for functions on Z, R

can be found in Exs. 2.35 and 2.36.)

... . .
.......... ....

.. .... ....••• EXERCISE 2.21 Let f1, f2 be functions on R and assume that f1 ∗ f2 is well
defined.

(a) Show that if we translate f1 or f2, then f1 ∗ f2 is translated in the same direction by
the same amount, i.e.,

f1(x+ a) ∗ f2(x) = (f1 ∗ f2)(x+ a) = f1(x) ∗ f2(x+ a), −∞ < a < ∞.

(b) Draw a sketch to illustrate the result of (a) in the case where f1, f2 are rectangular
pulses, see Ex. 2.1.

(c) Formulate a rule for computing f1(x+ a1) ∗ f2(x+ a2) ∗ · · · ∗ fn(x+ an).

.. . .

.

...
......... .... ...

.. ... ...••• EXERCISE 2.22 Let the functions f, g on R be given by

f(x) :=

{
1 if 0 ≤ x ≤ 2

0 otherwise,
g(x) :=

{
1 if 0 ≤ x ≤ 3

0 otherwise.

(a) Find and sketch the convolution product f ∗ g.
(b) Use (a) to find and sketch the convolution product of the functions

f4(x) :=
∞∑

m=−∞
f(x− 4m), g4(x) :=

∞∑
m=−∞

g(x− 4m)

on the circle T4.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 2.23 This exercise will help you determine where certain convolution
products must vanish.

(a) Let f1, f2 be piecewise continuous functions on R that vanish when x < a1, x < a2,
respectively. Such functions are said to have a finite past. Show that f1 ∗ f2 is a
well-defined continuous function that vanishes when x ≤ a1 + a2.

(b) Let f1, . . . , fn be piecewise continuous functions on R that vanish when x <
a1, . . . , x < an, respectively. What can you infer about f1 ∗ · · · ∗ fn?

(c) Formulate an analogous result for the convolution product f1 ∗ · · · ∗ fn of piecewise
continuous functions on R that have finite futures.

(d) Let f1, . . . , fn be piecewise continuous functions that vanish outside of the finite
intervals [a1, b1], . . . , [an, bn], respectively. What can you infer about the convolution
product f1 ∗ · · · ∗ fn?

Note. You can use Exs. 2.1, 2.7, etc. to illustrate this result.

. . .
..

..
.
.. ............ .. ......••• EXERCISE 2.24 Let D be the derivative operator, i.e., (Df)(x) := f ′(x), and let
h1 = h, h2 = h ∗ h, h3 = h ∗ h ∗ h, . . . where h is the Heaviside function, of Ex. 2.3.

(a) Show that the convolution integrals

(h ∗ f)(x) =
∫ x

−∞
f(u) du, (h ∗ f ′)(x) =

∫ x

−∞
f ′(u) du

are well defined when f is continuous, f ′ is piecewise continuous, and both f and f ′
are absolutely integrable on R.

(b) Using (a), show that D(h ∗ f) = h ∗ (Df) = f when f is suitably regular.

(c) Let p, q be nonnegative integers. Show that if f, f ′, . . . , f (p−1) are continuous and
absolutely integrable, and if f (p) is piecewise continuous and absolutely integrable
then

Dp(hq ∗ f) =




Dp−qf if p > q

f if p = q

hq−p ∗ f if q > p.

Note. You may wish to compare this result to that of Ex. 2.12(d).

. ...
.
.
...
.. . ...
..... ...... ....••• EXERCISE 2.25 Let fn(x) := xne−πx2

, n = 0, 1, 2. Use the differentiation rule
(28) with the known convolution product f0 ∗ f0 from Ex. 2.6 to find:

(a) f0 ∗ f1; (b) f1 ∗ f1; (c) f0 ∗ f2.
Hint. Observe that f ′

0 = −2πf1 so that f0 ∗ f1 = (−1/2π)(f0 ∗ f0)′.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 2.26 In this exercise you will establish a multiplicative relation for the
convolution product.

(a) Let f, g be piecewise continuous, absolutely integrable functions on R. Show that∫ ∞

x=−∞
(f ∗ g)(x) dx =

{∫ ∞

x=−∞
f(x) dx

}{∫ ∞

x=−∞
g(x) dx

}
.

Hint. Since f(u)g(x− u) is absolutely integrable on R
2 you can exchange the limits

of integration.

(b) Formulate an analogous result for functions f, g on Tp.

(c) Let f, g be functions on PN . Show that

N−1∑
n=0

(f ∗ g)[n] =

{N−1∑
n=0

f [n]

}{N−1∑
n=0

g[n]

}
.

(d) Formulate an analogous result for functions f, g on Z.

Note. A nonnegative function f on R, Tp or Z, PN is said to be a probability density if its
global integral or sum is 1. This exercise shows that the convolution product of probability
densities is a probability density.

. . ..

.
..
........ .... .. ... ....••• EXERCISE 2.27 Let c := (c0, c1, . . . , cN−1), d := (d0, d1, . . . , dN−1) and let C,D

be the corresponding N ×N circulant matrices

C =




c0 cN−1 cN−2 . . . c1
c1 c0 cN−1 . . . c2
c2 c1 c0 . . . c3
...

...
...

...
cN−1 cN−2 cN−3 . . . c0


 , D =




d0 dN−1 dN−2 . . . d1
d1 d0 dN−1 . . . d2
d2 d1 d0 . . . d3
...

...
...

...
dN−1 dN−2 dN−3 . . . d0


 .

(a) Show how to relate the matrix vector product CxT to the convolution product c ∗ x
on PN when x := (x0, x1, . . . , xN−1).

(b) Using (a), show that CD is the circulant matrix corresponding to c ∗ d.

(c) Show that C and D commute, i.e., CD = DC.

. .
.

.. .......... .... .... ..... ...••• EXERCISE 2.28 In this exercise you will derive Taylor’s formula (from elementary
calculus) by using certain convolution products.

(a) Let h be the Heaviside function of Ex. 2.3. Use the fundamental theorem of calculus
to show that if g is continuously differentiable for x ≥ 0 and g(0) = 0, then

g(x) = [(hg′) ∗ h](x), x ≥ 0.

(b) Show that if f is twice continuously differentiable for x ≥ 0, then[
((hf ′′) ∗ h) ∗ h

]
(x) = f(x) − f(0) − xf ′(0), x ≥ 0.

Hint. Use (a) with g(x) = f ′(x) − f ′(0) and with g(x) := f(x) − f(0) − xf ′(0).
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(c) More generally, show that if f is n times continuously differentiable for x ≥ 0, and
we define h1 := h, h2 := h ∗ h, h3 := h ∗ h ∗ h, . . . , then

[(hf (n)) ∗ hn](x) = f(x) − f(0) − xf ′(0)
1!

− x2f ′′(0)
2!

− · · · − xn−1f (n−1)(0)
(n− 1)!

, x ≥ 0.

(d) Using (c) and the compact formula for hn obtained in Ex. 2.3, show that if f is n
times continuously differentiable for x ≥ 0, then

f(x) =
n−1∑
k=0

xkf (k)(0)
k!

+
1

(n− 1)!

∫ x

u=0
f (n)(u)(x− u)n−1 du, x ≥ 0.

Note. This formula holds if we allow f (n) to have isolated points of discontinuity where
finite jumps occur. We can also shift the point of expansion from x = 0 to x = a and
remove the restriction x ≥ a.

.
.
.. ..
..
.. ...
...... .. .... ....••• EXERCISE 2.29 Explain why:

(a)
......
......
.......
.................................

....

a1

A1
∗

............................................. .

a2

A2 =
..
....
....
...
..
..
...
..
.

......
......
......
...

a1 + a2

Slope = A1 ·A2
at x = a1 + a2

(b)
.......................................

...............

b1

B1 ∗
..............

......
...

.....
....

....
.....

.......
.

b2

B2

=

.......................

.......
.......

.......
...

b1 + b2

Slope = −B1 ·B2
at x = b1 + b2

Note. You should assume that all of these functions are piecewise smooth. The 1st, 2nd
factors in (a) vanish to the left of a1, a2 while the 1st, 2nd factors of (b) vanish to the
right of b1, b2, respectively, so you can use Ex. 2.23.

..
.
. . .
...
.. ....... ...... .....••• EXERCISE 2.30 Find the probability density functions

p1[n] := p[n], p2[n] := (p ∗ p)[n], p3[n] := (p ∗ p ∗ p)[n], p4[n] := (p ∗ p ∗ p ∗ p)[n]

for throwing the integer n with 1, 2, 3, 4 fair dice when the six faces of each die are marked
with the integers:

(a) 1,1,2,2,3,3; (b) −1,−1,−1, 1, 1, 1; (c) 1,1,1,2,2,3.

Hint. Construct paper strips to facilitate a sliding strip computation of the convolution
products . . . or use a computer!



124 Convolution of functions

.. .

.

... .

........ .... .... ..... ...••• EXERCISE 2.31 The product 123 × 456 = 56088 can be obtained by computing
(3, 2, 1, 0, 0, 0) ∗ (6, 5, 4, 0, 0, 0) = (18, 27, 28, 13, 4, 0) and then reducing the components of
this convolution product on P6 to digits by using the base 10 carrying process

(18, 27, 28, 13, 4, 0) ....... ...
..

.....
............... (8, 28, 28, 13, 4, 0) ........ ...

.
.......
................. (8, 8, 30, 13, 4, 0)

........ ...
..

.......
............... (8, 8, 0, 16, 4, 0) ....... ..

..
.......
................ (8, 8, 0, 6, 5, 0).

This exercise will help you understand this algorithm so that you can write a computer
program to multiply large integers having thousands, millions, and even billions of digits.

We select a base β = 2, 3, . . . , a precision index M = 1, 2, . . . and a corresponding vector
length N := 2M , e.g., the above example uses β = 10, M = 3, and N = 6. An N -vector
a = (a[0], a[1], . . . , a[N − 1]) with integer components represents

I(a) := a[0] + a[1]β + a[2]β2 + · · · + a[N − 1]βN−1.

We say that a is reduced if a[n] = 0, 1, . . . , β − 1 for each n = 0, 1, . . . , N − 1, and we say
that a is half length if a[n] = 0 for n = M,M + 1, . . . , N − 1.

(a) Verify that I(a) ≤ βM − 1 when a is reduced and half length, with this bound being
the best possible.

(b) Show that if a,b are reduced and half length, then I(a) · I(b) = I(a∗b), i.e., we can
multiply large integers by convolving strings of “digits” on PN .

(c) Show that if a,b are reduced and half length, then I(a ∗ b) = I(c) for some reduced
N -vector c, i.e., show that I(a) · I(b) does not have more than N “digits”. You can
use the algorithm

c := a ∗ b

For n = 0, 1, . . . , N − 2 do:

carry := �c[n]/β�
c[n] := c[n] − carry · β
c[n+ 1] := c[n+ 1] + carry

to find c. Here �x� is the largest integer that does not exceed x.

(d) Show that if a,b are reduced and half length, then (a ∗ b)[n] ≤ M(β − 1)2.

(e) Suppose that your computer can exactly represent every integer 1, 2, . . . , P when do-
ing routine floating point arithmetic. The above algorithm will allow you to multiply
integers up to size S := βM − 1 provided you choose β,M such that M(β− 1)2 ≤ P .
What constraints does this impose on M and on S when:

(i) P = 224 − 1 (typical short precision) and β = 10? β = 100? β = 2?

(ii) P = 256 − 1 (typical long precision) and β = 10? β = 100? β = 2?

Note. In practice, small errors are introduced when the components of a ∗b are computed
by using (21) with the FFT (as described in Chapter 6). It can be shown that the modulus
of each such error is bounded by a small multiple of (β2/P )·M ·log2M . We can completely
eliminate the error in a computed approximation to (a ∗ b)[n] by rounding to the nearest
integer if we choose β,M to ensure that the modulus of each error is less than 1/2.
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.
.
.. ..
..
.. ........ ... ..... ....••• EXERCISE 2.32 Let P be a polygon in the complex plane with the vertices
v0, v1, . . . , vN−1 (i.e., P consists of the N line segments joining v0 to v1, v1 to v2, . . . , vN−2
to vN−1, and vN−1 to v0). Let P′ be the polygon obtained from P by using as vertices the
N midpoints w0 := (vN−1+v0)/2, w1 := (v0+v1)/2, . . . , wN−1 := (vN−2+vN−1)/2 of the
sides of P (i.e., P′ consists of the N line segments joining w0 to w1, w1 to w2, . . . , wN−2
to wN−1, and wN−1 to w0). It is a simple matter to construct P′ when P is given.
The inverse, known as Kasner’s problem, requires us to find P when P′ is given. In this
exercise you will solve Kasner’s problem using the discrete convolution product.

(a) Sketch P,P′, and P′′ = (P′)′ in the cases where P is a scalene triangle, a rectangle,
a kite (i.e., a quadrilateral having orthogonal diagonals that are of unequal length),
and a pentagonal star (with vn = e4πin/5).

(b) Let v = (v0, v1, . . . , vN−1), w = (w0, w1, . . . , wN−1), and a = (1
2 ,

1
2 , 0, 0, . . . , 0) be

regarded as functions on PN . Verify that the construction of P′ from P requires us
to compute w = a ∗ v when v is given while the construction of P from P′ requires
us to solve the linear convolution equation a ∗ v = w for v when w is given.

(c) When N = 3, 5, 7, . . . we regard a := ( 1
2 ,

1
2 , 0, 0, . . . , 0), b := (1,−1, 1,−1, . . . ,

1,−1, 1), δ := (1, 0, 0, . . . , 0) as functions on PN . Verify that a ∗ b = b ∗ a = δ
(i.e., that b is the inverse of a with respect to the convolution product). Use this fact
to show the convolution equation a ∗ v = w has a unique solution and then express
the components of v in terms of the components of w.

(d) When N = 4, 6, 8, . . . we set

b := 1
4 (3,−1,−1, 3), 1

6 (5,−3, 1, 1,−3, 5), 1
8 (7,−5, 3,−1,−1, 3,−5, 7), . . .

and regard a := ( 1
2 ,

1
2 , 0, 0, . . . , 0), c := (1,−1, 1,−1, . . . , 1,−1), δ := (1, 0, . . . , 0), as

functions on PN . Verify that

a ∗ c = c ∗ a = 0, a ∗ b = b ∗ a = δ − 1
N

c, c ∗ v = αc

where α := v0 − v1 + v2 − v3 + · · · + vN−2 − vN−1, and then use these relations to
prove the following statements:

(i) If c ∗ w �= 0, then the convolution equation a ∗ v = w has no solution.

(ii) If c ∗ w = 0, then v is a solution of the convolution equation a ∗ v = w if and
only if v has the representation v = b ∗ w + βc for some choice of the scalar β.

(e) Find polygons P′
0, P′

1, P′∞ so that the inverse Kasner problem has no solution,
exactly one solution, infinitely many solutions, respectively.

Note. A geometric technique for constructing P from P′ can be found in Schoenberg,
pp. 60–63.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 2.33 Let f, g be piecewise continuous functions on R with f being
absolutely integrable and with g being bounded.

(a) Show that f ∗ g is well defined by (1).

Hint. Write |f(u)g(x− u)| ≤ B|f(u)|, where B is a bound for |g|.
(b) Show that f ∗ g is continuous.

Hint. Choose a1, x1, . . . , aK , xK so that

g0(x) := g(x) −
K∑

k=1

akh(x− xk)

is bounded and continuous on R.

. ..
..

.. .

......... ... .. ..... ....••• EXERCISE 2.34 In this exercise you will study differentiation of the convolution
product. Let g be a continuous function on R with a piecewise continuous derivative g′.
Let f be a piecewise continuous function on R, and assume that f(u)g(x−u), f(u)g′(x−u)
are absolutely integrable functions of u for each choice of x (so that f ∗ g and f ∗ g′ are
well defined). Show that f ∗ g is differentiable with (f ∗ g)′(x) = (f ∗ g′)(x) at each point
x where f ∗ g′ is continuous.

Hint. First show that

(f ∗ g)(x+ h) − (f ∗ g)(x)
h

− (f ∗ g′)(x) =
1
h

∫ h

v=0
{(f ∗ g′)(x+ v) − (f ∗ g′)(x)} dv.

.. .
....

.. ....... ......
..
.. ... ...••• EXERCISE 2.35 In this exercise you will study the associativity of the convolution
product of functions on Z.

(a) Let α �= 0 be a complex number and let f1, f2, f3 be defined on Z by

f1[n] := αn, f2[n] :=




1 if n = 0

−α if n = 1

0 otherwise,

f3[n] :=

{
αn n = 0, 1, 2, . . .

0 otherwise.

Show that f1 ∗ f2, (f1 ∗ f2) ∗ f3, f2 ∗ f3, f1 ∗ (f2 ∗ f3) are all well defined but
(f1 ∗ f2) ∗ f3 �= f1 ∗ (f2 ∗ f3).

(b) Let f1, f2, f3 be (arbitrary) functions on Z. Show that

{f1 ∗ (f2 ∗ f3)}[n] =
∞∑

p=−∞

∞∑
q=−∞

f1[p]f2[n− p− q]f3[q],

{(f1 ∗ f2) ∗ f3}[n] =
∞∑

q=−∞

∞∑
p=−∞

f1[p]f2[n− p− q]f3[q].

Although these double sums have exactly the same summands, the first summation
is done by columns and the second is done by rows.
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(c) A sufficient condition for the two double sums of (b) to exist and be equal is that

∞∑
p,q=−∞

|f1[p]f2[n− p− q]f3[q]| < ∞ for all n.

Use this result to verify that (f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3) when:

(i) f1, f2, f3 all have finite pasts (i.e., each is a translate of some function that vanishes
when its argument is negative); or

(ii) two of the three functions f1, f2, f3 are support limited, i.e., they vanish for all but
finitely many values of their arguments; or

(iii) two of the functions f1, f2, f3 are absolutely summable and the third is bounded.

. .
..
.
.
.. ......... ..... .. ....••• EXERCISE 2.36 In this exercise you will study the associativity of the convolution
product of piecewise continuous functions on R.

(a) Let f1, f2, f3 be defined on R by

f1(x) := h(x) :=

{
1 if x > 0

0 if x < 0,
f2(x) := (e−x2/2)′ = −x e−x2/2, f3(x) := h(−x).

Show that f1 ∗ f2, (f1 ∗ f2) ∗ f3, f2 ∗ f3, and f1 ∗ (f2 ∗ f3) are all well defined but
(f1 ∗ f2) ∗ f3 �= f1 ∗ (f2 ∗ f3).

(b) Let f1, f2, f3 be (arbitrary) functions on R that are continuous except for finitely
many points where finite jumps can occur. Show that

{f1 ∗ (f2 ∗ f3)}(x) =
∫ ∞

u=−∞

∫ ∞

v=−∞
f1(u)f2(x− u− v)f3(v) dv du,

{(f1 ∗ f2) ∗ f3}(x) =
∫ ∞

v=−∞

∫ ∞

u=−∞
f1(u)f2(x− u− v)f3(v) du dv.

Although the integrands are identical, the first integration uses vertical slices and the
second uses horizontal slices of the plane, see Ex. 2.35(b).

(c) A sufficient condition for the two double integrals of (b) to exist and be equal is that∫∫
R2

|f1(u)f2(x− u− v)f3(v)| du dv < ∞ for all x.

Use this to verify that (f1 ∗ f2) ∗ f3 = f1 ∗ (f2 ∗ f3) when:

(i) f1, f2, f3 all have finite pasts; or

(ii) two of the three functions f1, f2, f3 are support limited, i.e., they vanish outside
some finite interval; or

(iii) two of the functions f1, f2, f3 are absolutely integrable and the third is bounded.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 2.37 Let f be a complex-valued function defined on R. We write
f ∈ S0 provided that f, f ′ are continuous except at a finite number of points (if any) where
the one-sided limits f(x+), f(x−), f ′(x+), f ′(x−) exist and are finite. For n = 1, 2, . . .
we write f ∈ Sn provided that f, f ′, . . . , f (n−1) are continuous and f (n) ∈ S0, e.g., h(x),
xh(x), x2h(x), . . . lie in S0, S1, S2, . . . , respectively. In this exercise you will verify that
convolution preserves and promotes smoothness by showing that if f, g have finite pasts
[see Ex. 2.23(a)] and if f ∈ Sm, g ∈ Sn, then f ∗g ∈ Sm+n+1. This increase of smoothness
can be seen in the solutions of Exs. 2.3, 2.4, and 2.7.

(a) Let x1, . . . , xK be the points, if any, where f (m), f (m+1), g(n), g(n+1) have jump
discontinuities, let

ak := f (m)(xk+) − f (m)(xk−), bk := f (m+1)(xk+) − f (m+1)(xk−),

ck := g(n)(xk+) − g(n)(xk−), dk := g(n+1)(xk+) − g(n+1)(xk−),

let h1 := h, h2 := h ∗ h, . . . , and let the functions f0, g0 be defined so that

f(x) = f0(x) +
K∑

k=1

{akhm+1(x− xk) + bkhm+2(x− xk)},

g(x) = g0(x) +
K∑

k=1

{ckhn+1(x− xk) + dkhn+2(x− xk)}.

Show that f0, g0 have finite pasts and that f0 ∈ Cm+1, g0 ∈ Cn+1 (i.e., f0 has m+1
continuous derivatives and g0 has n+ 1 continuous derivatives).

(b) Show that f0 ∗ g0 ∈ Cm+n+2.

(c) Show that f0 ∗ hp ∈ Cm+p+1 and g0 ∗ hp ∈ Cn+p+1, p = 1, 2, . . . .

(d) Show that hp ∗ hq ∈ Sp+q−1, p = 1, 2, . . . .

(e) Finally, using (a)–(d) show that f ∗ g ∈ Sm+n+1.

Note. An analogous argument can be used when f, g have finite futures.
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The calculus for finding
Fourier transforms of
functions on R

3.1 Using the definition to find Fourier transforms

Introduction

If you want to use Fourier analysis, you must develop basic skills for finding Fourier
transforms of functions on R. In principle, you can always use the defining integral
from the analysis equation to obtain F when f is given. In practice, you will quickly
discover that it is not so easy to find a transform such as∫ ∞

−∞

sin(πx)
πx

e−2πisx dx = 2
∫ ∞

0

sin(πx)
πx

cos(2πsx) dx

by using the techniques of elementary integral calculus, see Ex. 1.1.
In this chapter, we will present a calculus (i.e., a computational process) for

finding Fourier transforms of commonly used functions on R. You will memorize a
few Fourier transform pairs f, F and learn certain rules for modifying or combining
known pairs to obtain new ones. It is analogous to memorizing that (xn)′ = nxn−1,
(sinx)′ = cosx, (ex)′ = ex, . . . and then using the addition rule, product rule,
quotient rule, chain rule, . . . to find derivatives. You will need to spend a bit of
time mastering the details, so do not despair when you see the multiplicity of drill
exercises!

Once you learn to find Fourier transforms, you can immediately use Fourier’s
analysis and synthesis equations, Parseval’s identity, and the Poisson relations to
evaluate integrals and sums that cannot be found by more elementary methods. You
will also need these skills when you study various applications of Fourier analysis
in the second part of the course.

129
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The box function

The box function

P(x) :=
{

1 for −1
2 < x < 1

2

0 for x < − 1
2 or x > 1

2

and the cardinal sine or sinc function

sinc(s) :=
sin(πs)
πs

, s < 0 or s > 0

are two of the most commonly used functions in Fourier analysis. We often simplify
the definition of such functions by omitting the values at the singular points. When
pressed, we use midpoint regularization and write

P(x0) = 1
2

{
lim

x→x0+
P(x) + lim

x→x0− P(x)
}

= 1
2 when x0 = ± 1

2 ,

sinc(0) = 1
2

{
lim

s→0+
sinc(s) + lim

s→0−
sinc(s)

}
= 1

to fill in the holes.
Since f := P is even, we can simplify the Fourier transform integral by writing

F (s) =
∫ ∞

−∞
P(x)e−2πisx dx =

∫ ∞

−∞
P(x) cos(2πsx) dx.

We then use calculus to find

F (s) =
∫ 1/2

−1/2
cos(2πsx) dx =

sin(2πsx)
2πs

∣∣∣∣
1/2

x=−1/2
= sinc(s),

see Fig. 3.1.

Figure 3.1. The box f(x) = P(x) and its Fourier transform
F (s) = sinc(s).
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The Heaviside step function

We define the Heaviside step function

h(x) :=
{

1 if x > 0
0 if x < 0,

see Ex. 2.3, and use h to create functions that vanish on a half line. For example,

sin(2πx)e−xh(x) =
{

sin(2πx)e−x if x > 0
0 if x < 0,

h(1 − x) =
{

1 if x < 1
0 if x > 1,

h
( 1

2 + x
)
h
( 1

2 − x
)
= P(x),

h(x) − h(−x) = sgn(x) :=
{

1 if x > 0
−1 if x < 0,

∞∑
n=1

h(x− n) =




0 if x < 1
1 if 1 < x < 2
2 if 2 < x < 3
...
.

The truncated decaying exponential

We can find the Fourier transform of the truncated decaying exponential

f(x) := e−xh(x)

by writing

F (s) =
∫ ∞

x=0
e−xe−2πisx dx

= lim
L→+∞

∫ L

0

d

dx

{−e−(1+2πis)x

1 + 2πis

}
dx

?= lim
L→+∞

1 − e−(1+2πis)L

1 + 2πis

=
1

1 + 2πis

=
1

1 + 4π2s2
− 2πis

1 + 4π2s2
.
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(We justify the step ?= by applying the fundamental theorem of calculus to the real
and imaginary parts of the integrand.) In this case we must display both ReF and
Im F as shown in Fig. 3.2.

Figure 3.2. The truncated decaying exponential f(x) := e−xh(x)
and its Fourier transform F (s) = 1/(1 + 2πis).

The unit gaussian

We define the unit gaussian
f(x) := e−πx2

and use the fact that f is even to write

F (s) =
∫ ∞

−∞
e−πx2

e−2πisx dx =
∫ ∞

−∞
e−πx2

cos(2πsx) dx.

We will use an indirect argument to evaluate this integral.
Since the integrand and its derivative with respect to s rapidly approach 0 as

x → ±∞, we can write

F ′(s) =
∫ ∞

−∞
e−πx2 ∂

∂s
cos(2πsx) dx,

and in this way we see that

F ′(s) + 2πsF (s) =
∫ ∞

−∞
e−πx2{(−2πx) sin(2πsx) + (2πs) cos(2πsx)} dx

=
∫ ∞

−∞

d

dx
{e−πx2

sin(2πsx)} dx = 0.
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It follows that
d

ds
{eπs2

F (s)} = eπs2{F ′(s) + 2πsF (s)} = 0,

so that

eπs2
F (s) = F (0), −∞ < s < ∞.

We use a familiar trick from multivariate calculus to find the positive constant

F (0) =
∫ ∞

−∞
e−πx2

dx.

We write

F (0)2 =
{∫ ∞

x=−∞
e−πx2

dx

}{∫ ∞

y=−∞
e−πy2

dy

}

=
∫ ∞

x=−∞

∫ ∞

y=−∞
e−π(x2+y2) dy dx

=
∫ ∞

r=0

∫ 2π

θ=0
e−πr2

r dθ dr

=
∫ ∞

r=0
e−πr2

2πr dr = 1,

and thereby see that F (0) = 1. In this way we obtain the Fourier transform

F (s) = e−πs2

(that turns out to be the very same function as f) as shown in Fig. 3.3.

Figure 3.3. The unit gaussian f(x) := e−πx2
and its Fourier

transform F (s) := e−πs2
.
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Summary

You will eventually memorize a number of the Fourier transform pairs f, F from
Appendix 2. For now, make sure that you know that:

f(x) := P(x) has the FT F (s) = sinc(s) ; (1)
f(x) := e−xh(x) has the FT F (s) = 1/(1+2πis) ; (2)

f(x) := e−πx2
has the FT F (s) = e−πs2

. (3)

3.2 Rules for finding Fourier transforms

Introduction

Throughout this section, f, f1, f2, . . . and g will be suitably regular functions on
R with the corresponding Fourier transforms F, F1, F2, . . . and G. If we obtain g
from some modification of f , then there will be a corresponding modification of
F that produces G as illustrated in Fig. 3.4. Likewise, if we obtain g from some
combination of f1 and f2, then there will be a corresponding combination of F1 and
F2 that produces G. Such observations form the rules of our calculus for finding
Fourier transforms. We will now state a number of such rules, give simple informal
derivations, and illustrate how they are used.

Figure 3.4. Action (raise left hand) and reaction (raise right
hand) with mirror images is analogous to the mappings f → g
and F → G of a Fourier transform rule.



Rules for finding Fourier transforms 135

Linearity

Let c, c1, c2, . . . be complex scalars. We verify the scaling rule

g(x) := c f(x) has the FT G(s) = c F (s) (4)

by writing

G(s) :=
∫ ∞

−∞
c f(x)e−2πisx dx = c

∫ ∞

−∞
f(x)e−2πisx dx = c F (s).

We verify the addition rule

g(x) := f1(x) + f2(x) has the FT G(s) = F1(s) + F2(s) (5)

by writing

G(s) :=
∫ ∞

−∞
{f1(x) + f2(x)}e−2πisx dx

=
∫ ∞

−∞
f1(x)e−2πisx dx+

∫ ∞

−∞
f2(x)e−2πisx dx = F1(s) + F2(s).

When taken together, (4) and (5) give the linearity rule

g(x) := c1f1(x)+· · ·+cmfm(x) has the FT G(s) = c1F1(s)+· · ·+cmFm(s). (6)

You are familiar with this property from your work with derivatives and integrals.

Reflection and conjugation

We verify the reflection rule

g(x) := f(−x) has the FT G(s) = F (−s) (7)

by writing

G(s) :=
∫ ∞

−∞
f(−x)e−2πisx dx =

∫ ∞

−∞
f(u)e−2πi(−s)u du = F (−s).

Example Show that the Laplace function

g(x) := e−|x| has the FT G(s) = 2/(1 + 4π2s2). (8)

Solution We know that

f(x) := e−xh(x) has the FT F (s) = 1/(1 + 2πis).
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Since g(x) = f(x) + f(−x), see Figs. 3.2 and 3.5, we can use the addition and
reflection rules to write

G(s) =
1

1 + 2πis
+

1
1 − 2πis

=
2

1 + 4π2s2
.

Figure 3.5. The Laplace function f(x) = e−|x| and its Fourier
transform F (s) = 2/(1 + 4π2s2).

We verify the conjugation rule

g(x) := f(x) has the FT G(s) = F (−s) (9)

by writing

G(s) :=
∫ ∞

−∞
f(x)e−2πisx dx =

∫ ∞

−∞
f(x)e−2πi(−s)x dx = F (−s).

Example Derive the hermitian conjugation rule

g(x) := f(−x) has the FT G(s) = F (s). (10)

Solution We use the reflection and conjugation rules in turn to see that

f(−x) has the FT F (−s),
f(−x) has the FT F (− − s) = F (s).

You may find it instructive to use the rules (7), (9), and (10) to formulate answers
for Ex. 1.2!

Translation and modulation

Let x0 be a real parameter. We verify the translation rule (or shift rule)

g(x) := f(x− x0) has the FT G(s) = e−2πisx0 · F (s) (11)
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by writing

G(s) :=
∫ ∞

−∞
f(x− x0)e−2πisx dx = e−2πisx0

∫ ∞

−∞
f(u)e−2πisu du = e−2πisx0F (s).

You will notice that the same algebraic sign is used with the two appearances of x0
in (11). You will undoubtedly find it helpful to use the same sign shift mnemonic
to remind yourself of this fact, e.g.,

P(x+ 1) has the FT e+2πissinc s,

P(x− 1) has the FT e−2πissinc s.

Example Find the Fourier transform of

g(x) :=




1 if 0 < x < 1
2 if 1 < x < 2
0 if x < 0 or x > 2.

Solution We write
g(x) = P(x− 1

2 ) + 2P(x− 3
2 )

and then use (6), (11), and (1) to obtain

G(s) = {e−πis + 2e−3πis}sinc s.

Let s0 be a real parameter. We verify the modulation rule (or transform shift
rule)

g(x) := e2πis0x · f(x) has the FT G(s) = F (s− s0) (12)

by writing

G(s) =
∫ ∞

−∞
e2πis0x f(x)e−2πisx dx =

∫ ∞

−∞
f(x)e−2πi(s−s0)x dx = F (s− s0).

In this case opposite algebraic signs are associated with the two appearances of s0.

Example Find the Fourier transform of

g(x) :=
{

cosπx if − 1
2 < x < 1

2

0 otherwise.
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Solution We use Euler’s formula for the cosine to write

g(x) = 1
2

{
eiπx + e−iπx

}
P(x)

= 1
2e

2πi(1/2)xP(x) + 1
2e

−2πi(1/2)xP(x),

and then use (6), (12), and (1) to obtain

G(s) = 1
2 sinc(s− 1

2 ) + 1
2 sinc(s+ 1

2 ).

Dilation

Let a �= 0 be a real parameter. We verify the dilation rule (or similarity rule)

g(x) := f(ax) has the FT G(s) =
1
|a|F

( s
a

)
(13)

by writing

G(s) :=
∫ ∞

−∞
f(ax)e−2π is x dx =




1
a

∫ ∞

−∞
f(u)e−2πi(s/a)u du if a > 0

1
a

∫ −∞

+∞
f(u)e−2πi(s/a)u du if a < 0

=
1
|a|F

( s
a

)
.

You will notice that the dilation factors a, 1/a that we use with f, F are reciprocals.
If we compress one of these functions, then we stretch the other by the same amount.

Example Find the Fourier transform of

g(x) :=
{

1 if −1 < x < 1
0 if x < −1 or x > 1.

Solution We observe that g(x) = P(x/2) and use the dilation rule to write

G(s) = 2 sinc(2s).

We obtain the same result (in a slightly different form) if we observe that
g(x) = P(x+ 1/2) + P(x− 1/2) and use the translation rule to write

G(s) = (eπis + e−πis) sinc s = 2 cosπs
sinπs
πs

= 2
sin(2πs)

2πs
.

(The removable singularity at x = 0 has no effect on the integral that gives G.)
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Example Show that the normal density

g(x) :=
1√
2πσ

e−(x−µ)2/2σ2
has the FT G(s) = e−2πisµ e−2π2σ2s2

. (14)

Here σ, µ are real parameters with σ > 0.

Solution We use (3), (13), and (11) in turn to see that

e−πx2
has the FT e−πs2

,

1√
2π σ

e−x2/2σ2
=

1√
2π σ

e−π(x/
√

2π σ)2 has the FT e−π(
√

2πσs)2=e−2π2σ2s2
,

1√
2π σ

e−(x−µ)2/2σ2
has the FT e−2πisµ e−2π2σ2s2

.

These functions and their transforms are shown in Fig. 3.6.

Figure 3.6. The unit gaussian f , the dilate fσ, the translated
dilate g, and the corresponding Fourier transforms F , Fσ, G.
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Example Find the Fourier transform of g(x) := cos(2πβx)e−π(x/α)2 . Here α, β
are parameters with α > 0, β > 0.

Solution Since

g(x) = 1
2e

2πiβxe−π(x/α)2 + 1
2e

−2πiβxe−π(x/α)2

we can use the dilation and modulation rules to write

G(s) =
α

2
e−πα2(s−β)2 +

α

2
e−πα2(s+β)2 ,

see Fig. 3.7.

Figure 3.7. The function g(x) := cos(2πβx)e−πx2/α2
and its

Fourier transform G(s).

You must exercise some care when you use two or more of the rules in succession.
For example, the functions

g1(x) := f(a(x+ b)), g2(x) := f(ax+ b) = f

(
a

(
x+

b

a

))

are obtained when we a-dilate and b-translate as follows:

f(x) a-dilate−−−−−−→ f(ax) b -translate−−−−−−−−→ f(a(x+ b)),

f(x) b -translate−−−−−−−−→ f(x+ b) a-dilate−−−−−−→ f(ax+ b).

Make sure that you understand why the correct Fourier transforms are given by

G1(s) =
e2πibs

|a| F
( s
a

)
, G2(s) =

e2πi(b/a)s

|a| F
( s
a

)
,

e.g., by sorting out the details in Ex. 3.1.
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Inversion

In cases where Fourier’s synthesis equation is valid we can formally verify the
exceptionally powerful inversion rule

g(x) := F (x) has the FT G(s) = f(−s) (15)

by simply writing

G(s) =
∫ ∞

−∞
F (x)e−2πisxdx =

∫ ∞

−∞
F (x)e2πix(−s)dx = f(−s).

Of course, it takes the detailed analysis from Section 1.5 to show that this argu-
ment is valid when either f or F is a piecewise smooth function on R with small
regular tails.

By applying the inversion rule to (1), (2), and (8) we find

g(x) = sincx has the FT G(s) = P(s), (16)

g(x) = 1/(1 + 2πix) has the FT G(s) = esh(−s), (17)

g(x) = 2/(1 + 4π2x2) has the FT G(s) = e−|s|. (18)

You will recall from your work on Ex. 1.1 that such Fourier transforms are not
easily derived from the definition!

Derivative and power scaling

In cases where f is a suitably regular function on R we can verify the derivative
rule

g(x) := f ′(x) has the FT G(s) = 2πis · F (s) (19)

by using an integration by parts:

G(s) =
∫ ∞

−∞
f ′(x)e−2πisx dx

?= e−2πisxf(x)
∣∣∣∣
∞

x=−∞
+ 2πis

∫ ∞

−∞
f(x)e−2πisx dx

?= 2πisF (s).

The argument is rigorous when f is a continuous function with a piecewise smooth
derivative and both f(x), f ′(x) [or both F (s), s·F (s)] satisfy the sufficient conditions
for Fourier’s representation as given in Section 1.5, see Ex. 3.41.
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These hypotheses can also be used when we verify the power scaling rule

g(x) := x · f(x) has the FT G(s) = (−2πi)−1F ′(s) (20)

by writing

G(s) =
∫ ∞

−∞
x f(x)e−2πisx dx

?=
1

−2πi
d

ds

∫ ∞

−∞
f(x)e−2πisx dx

= (−2πi)−1F ′(s).

Example Show that

g(x) := 2xe−πx2
has the FT G(s) = (−i)2se−πs2

. (21)

Solution We can express g in terms of the unit gaussian by writing

g(x) = − 1
π

d

dx
{e−πx2} or g(x) = 2x{e−πx2},

so we can use (3) with either the derivative rule or the power scaling rule to obtain

G(s) = − 1
π

2πis e−πs2
or G(s) = 2(−2πi)−1 d

ds
{e−πs2}.

Example Let −∞ < α < ∞, β > 0, and n = 0, 1, . . . . Show that

g+(x) :=
1

(x+ α+ iβ)n+1 has the FT

G+(s) =
−2πi
n!

(−2πis)nh(s)e2πiαs e−2πβs,

g−(x) :=
1

(x+ α− iβ)n+1 has the FT

G−(s) =
+2πi
n!

(−2πis)nh(−s)e2πiαs e+2πβs.

(22)
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Solution We use (17), (13), (4), (19), (4), (11), and (9) in turn to see that

1
1 − 2πix

has the FT h(s)e−s,

1
1 − 2πi(x/2πβ)

has the FT (2πβ)h(s)e−2πβs,

1
x+ iβ

has the FT (−2πi)h(s)e−2πβs,

(−1)nn!
(x+ iβ)n+1 has the FT (−2πi)(2πis)nh(s)e−2πβs,

1
(x+ iβ)n+1 has the FT (−2πi)

(−2πis)n

n!
h(s)e−2πβs,

1
(x+ α+ iβ)n+1 has the FT (−2πi)

(−2πis)n

n!
h(s)e2πiαse−2πβs,

1
(x+ α− iβ)n+1 has the FT (+2πi)

(−2πis)n

n!
h(−s)e2πiαse2πβs.

You can now use (22) in conjunction with a partial fraction decomposition to
find the Fourier transform for any rational function f(x) := p(x)/q(x), where p, q
are polynomials with deg q > deg p and q has no zeros on R, see Ex. 3.12. It is
surprising how much you can do with these simple rules!

Example Find the Fourier transform of f(x) := 1/(1 + x4).

Solution The function f has the partial fraction decomposition

f(x) =
1
4

{
α+ iα

x+ α+ iα
+

−α+ iα

x− α+ iα
+

α− iα

x+ α− iα
+

−α− iα

x− α− iα

}
,

where α :=
√

2/2, see Ex. 3.13. Using (22) we take Fourier transforms term by term
to obtain

F (s) = 1
4 (α+ iα)e2πiαs(−2πi)e−2παsh(s) + 1

4 (−α+ iα)e−2πiαs(−2πi)e−2παsh(s)

+ 1
4 (α− iα)e2πiαs(2πi)e2παsh(−s) + 1

4 (−α− iα)e−2πiαs(2πi)e2παsh(−s).

Convolution and multiplication

In cases where f1, f2 are suitably regular functions on R we can formally verify the
convolution rule

g(x) := (f1 ∗ f2)(x) has the FT G(s) = F1(s) · F2(s) (23)
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by writing

G(s) :=
∫ ∞

x=−∞

∫ ∞

u=−∞
f1(u)f2(x− u)e−2πisx du dx

?=
∫ ∞

u=−∞

∫ ∞

x=−∞
f1(u)e−2πisuf2(x− u)e−2πis(x−u) dx du

=
∫ ∞

u=−∞
f1(u)e−2πisuF2(s) du

= F1(s)F2(s).

We must impose hypotheses to ensure that f1, f2, f1∗f2 have valid Fourier represen-
tations and to facilitate the above change in the limits of integration, see Ex. 3.44.
Similar considerations apply when we formally verify the multiplication rule

g(x) := f1(x) · f2(x) has the FT G(s) = (F1 ∗ F2)(s) (24)

by writing

G(s) :=
∫ ∞

x=−∞
f1(x)f2(x)e−2πisx dx

=
∫ ∞

x=−∞

∫ ∞

σ=−∞
F1(σ)e2πiσxf2(x)e−2πisx dσ dx

?=
∫ ∞

σ=−∞
F1(σ)

∫ ∞

x=−∞
f2(x)e−2πi(s−σ)xdx dσ

=
∫ ∞

σ=−∞
F1(σ)F2(s− σ) dσ.

Example Show that

g(x) := Λ(x) has the FT G(s) = sinc2s , (25)

g(x) = sinc2x has the FT G(s) = Λ(s), (26)

where the triangle function is given by

Λ(x) :=
{

1 − |x| if −1 < x < 1
0 otherwise.

Solution We recall that Λ = P∗P (as shown in Fig. 2.5), so we can use the convo-
lution rule with (1) to obtain (25), see Fig. 3.8, and we can use the multiplication
rule with (16) to obtain (26).
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Figure 3.8. The triangle f(x) = Λ(x) = (P ∗ P)(x) and its
Fourier transform F (s) = sinc2s.

Example Find the Fourier transform of the piecewise linear function g shown in
Fig. 3.9.

Figure 3.9. A continuous piecewise linear function g.

Solution We can express g in the form

g(x) = y1Λ(x− 1) + y2Λ(x− 2) + y3Λ(x− 3) + y4Λ(x− 4) + y5Λ(x− 5).

(The left and right sides both vanish when x ≤ 0 or x ≥ 6, both are linear on
the intervals [0, 1], [1, 2], . . . , [5, 6], and both take the values 0, y1, . . ., y5, 0 when
n = 0, 1, . . ., 5, 6.) We use this with (6), (11), and (25) to write

G(s) = {y1e−2πis·1 + y2e
−2πis·2 + y3e

−2πis·3 + y4e
−2πis·4 + y5e

−2πis·5}sinc2(s).

Example Find a continuous solution of the forced differential equation

y′(x) + y(x) = P(x)

assuming that y(x) = 0 for all sufficiently large negative values of x, see Fig. 3.10.

Solution Since y′(x) = −y(x) when x < −1/2 or x > 1/2 we can conclude that
both y and y′ are piecewise smooth functions with small regular tails. We Fourier
transform each term of the differential equation to obtain

(2πis)Y (s) + Y (s) = sinc s
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Figure 3.10. The solution of the differential equation y′(x) + y(x) = P(x)
that vanishes when x ≤ −1/2.

and thereby find

Y (s) = sinc s · 1
1 + 2πis

.

We then use (1), (2), and the convolution rule (23) to see that

y(x) =
∫ ∞

u=−∞
P(u)h(x− u)e−(x−u) du

=




0 for x < −1/2
1 − e−x−1/2 for −1/2 ≤ x ≤ 1/2
(e1/2 − e−1/2)e−x for x > 1/2.

Summary

You have now seen the elements of the Fourier transform calculus for functions
on R. Exercises 3.2–3.12 provide the drill you will need to master this calculus, and
Exs. 3.19–3.21 will help you visualize the meaning of these rules. You may refer to
(1)–(26) (or to the tables in Appendices 2 and 3) as you are learning this material,
but before you finish your study of this chapter you should memorize these basic
identities.

As you find Fourier transforms you can freely use your knowledge of algebra,
trigonometry, calculus,. . . . For example, you can easily verify that

f(x) :=
2 sin2(πx)

πx

has the equivalent representations:

f(x) = 2πx · sinc2(x)

= i{e−πix − eπix} sinc(x)

= i{2 sinc(2x) − 2eiπx sinc(x)}
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and then use (26) and (20), (12) and (1), (12)–(13) and (1) to obtain the corre-
sponding expressions:

F (s) = i

{
d

ds
Λ(s)

}

= i

{
P
(
s+

1
2

)
− P

(
s− 1

2

)}

= i

{
P
(s

2

)
− 2P

(
s− 1

2

)}

for the Fourier transform. Of course, you can also verify that

f(x) = g(x) · sinc(x), g(x) := 2 sin(πx),

but it makes no sense to use (24) and write

F (s) = (G ∗ P)(s)

since you cannot find the Fourier transform G for g (at this point in the course).
The rules apply only when the functions are suitably regular!

3.3 Selected applications of the Fourier transform
calculus

Evaluation of integrals and sums

The analysis and synthesis equations of Fourier, the Parseval and Plancherel iden-
tities, and the Poisson relations link suitably regular functions and their Fourier
transforms. We will now present several examples to show how these links allow
us to evaluate various integrals and sums that cannot be found with the usual
techniques of elementary calculus.

Example Find the value of the integral

I(α) :=
∫ ∞

−∞
e−αx2

dx, α > 0.

Solution We use (3) with the dilation rule to see that

f(x) := e−αx2
= e−π(

√
α x/

√
π)2 has the FT F (s) =

√
π

α
e−π2s2/α,
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and then use the analysis equation to write

I(α) =
∫ ∞

−∞
f(x)e−2πi0x dx = F (0) =

√
π

α
.

Example Find the value of the integral

I(α) :=
∫ ∞

−∞

sin(πx) cos(2παx)
πx

dx, −∞ < α < ∞.

Solution We know that the even function

f(x) = sinc(x) has the FT F (s) = P(s),

so we can use Fourier’s analysis equation to write

I(α) =
∫ ∞

−∞
f(x)e−2πiαx dx = F (α) = P(α) =




1 if |α| < 1
2

1
2 if |α| = 1

2

0 if |α| > 1
2 .

The midpoint regularization of P is essential when α = ± 1
2 .

Example Find the value of the integral

I :=
∫ ∞

−∞

dx

(1 + x2)2
.

Solution We use (18) and the dilation rule to see that

f(x) =
1

1 + x2 has the FT F (s) = πe−2π|s|, (27)

and then use Plancherel’s identity (1.15) to write

I =
∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|F (s)|2 ds = 2π2

∫ ∞

0
e−4πs ds =

π

2
.

Example Find the value of the integral

I :=
∫ ∞

−∞

(
sinx
x

)3

dx.
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Solution We use (16), (26), and the dilation rule to see that

f(x) :=
sinx
x

= sinc
(x
π

)
has the FT F (s) = πP(πs),

g(x) :=
(

sinx
x

)2

= sinc2
(x
π

)
has the FT G(s) = πΛ(πs),

and then use Parseval’s identity (1.11) to write

I =
∫ ∞

−∞
f(x)g(x) dx =

∫ ∞

−∞
F (s)G(s) ds = π2

∫ 1/2π

−1/2π

Λ(πs) ds

= π2 1
2π

(
1 +

1
2

)
=

3
4
π.

[We use the formula for the area of a trapezoid to find the area under Λ(πs) between
−1/2π and +1/2π.]

You will observe from these examples that the Parseval identity or Plancherel
identity allows us to exchange one integral for another that may (or may not!) be
easier to evaluate.

Example Find the value of the sum

S(p) :=
∞∑

m=−∞

1
1 +m2p2 , p > 0.

Solution We use (27) and the Poisson sum formula (1.45) to write

S(p) =
∞∑

m=−∞
f(mp) =

∞∑
k=−∞

1
p
F

(
k

p

)
=
π

p

∞∑
k=−∞

e−2π|k/p|

=
π

p

{
2

∞∑
k=0

(e−2π/p)k − 1

}
=
π

p
coth

(
π

p

)
.

The Poisson relation allows us to replace an intractable sum with a geometric pro-
gression that we can evaluate easily!

Evaluation of convolution products

Now that you know how to find Fourier transforms, you can evaluate the convolution
product g := f1 ∗ f2 of suitably regular functions f1, f2 on R by

• finding the Fourier transforms F1, F2 of f1, f2,
• forming the product G := F1 · F2, and
• finding the inverse Fourier transform g of G,

see (2.20). We will give three examples to illustrate this process.
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Example Evaluate the convolution integral

g(x) :=
∫ ∞

u=−∞

sinπu
πu

sinπ(x− u)
π(x− u)

du.

Solution The integral defines g = f ∗ f where

f(x) := sincx has the FT F (s) = P(s).

Thus
G(s) = F (s) · F (s) = P(s) · P(s) = P(s),

and by taking the inverse Fourier transform we find

g(x) = sincx.

(We can ignore the singular points at s = ±1
2 when we write P · P = P since both

sides of this equation have the same midpoint regularization.)

Example Find the convolution product g = f1 ∗ f2 of the normal densities

f1(x) :=
1√

2π σ1
e−(x−µ1)2/2σ2

1 , f2(x) :=
1√

2π σ2
e−(x−µ2)2/2σ2

2 .

Here σ1, µ1, σ2, µ2 are real parameters with σ1 > 0, σ2 > 0.

Solution We use the transform pair (14) to find F1, F2 and write

G(s) = F1(s) · F2(s)

= e−2πiµ1se−2πσ2
1s2 · e−2πiµ2se−2π2σ2

2s2

= e−2πiµse−2π2σ2s2
,

where µ := µ1 + µ2, σ2 := σ2
1 + σ2

2 . We again use (14) to see that

g(x) =
1√
2πσ

e−(x−µ)2/2σ2
.

You can find g by evaluating the convolution integral (see Ex. 2.6), but this indirect
calculation is much easier!

Example Let f1 = f , f2 = f ∗ f , f3 = f ∗ f ∗ f, . . . where f is the normal density

f(x) :=
e−(x−µ)2/2σ2

√
2π σ

with −∞ < µ < ∞ and σ > 0. Find a simple expression for fn(x).
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Solution We first use (14) to write

Fn(s) = F (s)n = e−2πisnµe−2π2nσ2s2
,

and then use (14) to see that Fn is the Fourier transform of

fn(x) =
e−(x−nµ)2/2nσ2

√
2πnσ

.

The Hermite functions

The Hermite polynomials are defined by the Rodrigues formula

Hn(x) := (−1)nex2{
Dne−x2}

, n = 0, 1, 2, . . . , (28)

where D := d/dx is the derivative operator, e.g.,

H0(x) = 1, H1(x) = −ex2{
e−x2}′ = 2x, H2(x) = ex2{

e−x2}′′ = 4x2 − 2, . . . .

These polynomials satisfy the two-term recursion

H ′
n(x) = (−1)nD

{
ex2

Dne−x2}
= (−1)n

{
2xex2

Dne−x2
+ ex2

Dn+1e−x2}
= 2xHn(x) −Hn+1(x) (29)

and the three-term recursion

Hn+1(x) := (−1)n+1ex2{
Dn+1e−x2}

= (−1)nex2{
Dn(2xe−x2

)
}

= (−1)nex2{
2xDn(e−x2

) + n(2x)′Dn−1(e−x2
)
}

= 2xHn(x) − 2nHn−1(x). (30)

[We use the Leibnitz differentiation rule (2.29) in the third step of (30).]
We will show that the Hermite function

fn(x) := Hn(
√

2π x)e−πx2
has the FT Fn(s) = (−i)nHn(

√
2π s)e−πs2

, (31)

i.e., that f0, f1, f2, f3, . . . are eigenfunctions of the Fourier transform operator with
the corresponding eigenvalues 1,−i,−1, i, . . . , see (3), (21). Graphs of f0, f1, f2, f3
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Figure 3.11. The Hermite functions fn(x) := Hn(
√

2πx)e−πx2
,

n = 0, 1, 2, 3.

are shown in Fig. 3.11. These functions appear in quantum mechanics, physical
optics, statistics, . . . . We first use the two-term recursion (29) to write

fn+1(x) := Hn+1(
√

2π x)e−πx2

=
{
2
√

2π xHn(
√

2π x) −H ′
n(

√
2π x)

}
e−πx2

=
√

2π xfn(x) − 1√
2π
f ′

n(x), (32)
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and then use the power scaling and derivative rules to obtain the corresponding
relation

Fn+1(s) =
√

2π
1

−2πi
F ′

n(s) − 1√
2π

2πis Fn(s)

= (−i)
{√

2π sFn(s) − 1√
2π
F ′

n(s)
}

for the Fourier transforms. Now if Fn(s) = (−i)nfn(s) for some n = 0, 1, 2, . . . ,
then we can use this relation with (32) to write

Fn+1(s) = (−i)
{√

2π s(−i)nfn(s) − 1√
2π

(−i)nf ′
n(s)

}
= (−i)n+1fn+1(s).

Since f0 is the unit gaussian, F0(s) = (−i)0f0(s), so the inductive proof of (31) is
complete. Additional properties of the Hermite functions are developed in Ex. 3.37.

Smoothness and rates of decay

When f(x), f ′(x), . . . , f (n)(x) are suitably regular functions on R we can use the
derivative rule to find the corresponding Fourier transforms F (s), (2πis)F (s), . . . ,
(2πis)nF (s) and thereby obtain the analysis equation:

(2πis)nF (s) =
∫ ∞

x=−∞
f (n)(x)e−2πisx dx. (33)

We majorize the integral by writing

|(2πis)nF (s)| ≤
∫ ∞

−∞
|f (n)(x)| dx,

and thereby see that F (s) decays at least as fast as 1/sn in the limit s → ±∞.
Exercise 3.42 shows that the analysis equation (33) holds when f, f ′, . . . , f (n−1)

are continuous, f (n) is piecewise continuous, and all of these functions are abso-
lutely integrable. These hypotheses are a bit stronger than necessary for the 1/sn

decay rate, however, and we can verify that snF (s) → 0 as s→ ± ∞ by applying the
Riemann–Lebesgue lemma (from Ex. 1.38) to the integral of (33).

In elementary applications of Fourier analysis we often work with polynomial
splines that vanish outside some finite interval. In this case f (n) is piecewise constant
for some n = 0, 1, . . . , and we can use (33) to show that F (s) decays to zero as fast
as 1/sn+1 when s → ±∞, see Ex. 3.43. For example, f(x) := Λ(x) has a piecewise
constant derivative and F (s) = sinc2(s) decays like 1/s2 as s → ±∞.
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When f(x), (−2πix)f(x), . . . , (−2πix)nf(x) are suitably regular functions on R

we can use the power scaling rule to find the corresponding Fourier transforms
F (s), F ′(s), . . . , F (n)(s) and thereby obtain the analysis equation

F (n)(s) :=
dn

dsn

∫ ∞

x=−∞
f(x)e−2πisx dx =

∫ ∞

x=−∞
(−2πix)nf(x)e−2πisx dx. (34)

In particular, if f is piecewise continuous and f(x), xf(x), . . . , xnf(x) are all abso-
lutely integrable (as in the case when f is a probability density with finite absolute
moments of orders 0, 1, . . . , n), then F, F ′, . . . , F (n) are continuous functions that
vanish at s = ±∞, see Ex. 3.42.

We conclude this section with an observation of Fourier. Although we derived
(33) with the understanding that n = 0, 1, 2, . . . , the integral from the corresponding
synthesis equation

f (n)(x) =
∫ ∞

s=−∞
(2πis)nF (s)e2πisx ds (35)

may be perfectly well defined for other values of n. For example, since

f(x) := e3πisx sincx has the FT F (s) = P(s− 3
2 )

we can use (35) to synthesize the derivatives

f (n)(x) =
∫ 2

s=1
(2πis)ne2πisx ds, n = 0, 1, . . . ,

the antiderivative

f (−1)(x) =
∫ 2

s=1
(2πis)−1e2πisx ds,

see Ex. 3.30, and the fractional derivative

f (1/2)(x) =
∫ 2

s=1
(2πis)1/2e2πisx ds.
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Further reading

Bracewell, R.N. The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill,
New York, 2000.
Chapter 6 of this widely used text gives the rules for Fourier transforms of
functions on R and Chapter 22 has a pictorial dictionary with 60 of the most
frequently encountered Fourier transform pairs.

Champeney, D.C. Fourier Transforms and Their Physical Applications, Academic
Press, New York, 1973.
Chapter 2 gives the rules for Fourier transforms of functions on R and a pictorial
dictionary that has 53 transform pairs.

Gradshteyn I.S. and Ryzhiki, I.M. Tables of Integrals, Series, and Products, 5th ed.
(edited by A. Jeffrey), Academic Press, New York, 1993. (A CD-ROM version
is also available from the publisher.)
This highly evolved encyclopedia has a very large number of Fourier integrals
that cannot be found by using the elementary Fourier transform calculus.

Oberhettinger, F. Tables of Fourier Transforms and Fourier Transforms of Distri-
butions, Springer-Verlag, New York, 1990.
A few less common Fourier transforms can be found in this little reference.

Oppenheim, A.V., Willsky, A.S., and Young, I.T. Signals and Systems, Prentice
Hall, Englewood Cliffs, NJ, 1983.
A practical introduction to the Fourier transform rules for functions on R is
given in Chapter 4 of this electrical engineering text.

Pinkus, A. and Zafrany, S. Fourier Series and Integral Transforms, Cambridge
University Press, Cambridge, 1997.
Chapter 3 of this intermediate-level mathematics text has a nice exposition of
the rules for Fourier transforms of functions on R.

Walker, J.S. Fourier Analysis, Oxford University Press, New York, 1988.
Chapter 6 of this intermediate-level mathematics text develops the rules for
Fourier transforms of functions on R.
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Exercises

. .
....

. ........ ..... ...
.. .. ....••• EXERCISE 3.1 You will often have occasion to express the Fourier transform of
f(ax + b) in terms of the Fourier transform F (s) of f(x). (Here a, b are real parameters
with a �= 0.) This exercise will help you learn to do this correctly.

(a) Sketch the graphs of P(x), P(x− 3), and P(2x− 3) = P(2(x− 3/2)).

(b) Sketch the graphs of P(x), P(2x), and P(2(x− 3)).

Note. In (a), a right 3-translate is followed by a 2-dilate; in (b) a 2-dilate is followed
by a right 3-translate. The order of these operations is important!

(c) Find the Fourier transforms of b1(x) := P(2x− 3) and b2(x) := P(2(x− 3)) from (a)
and (b).

(d) Set b(x) := P(2x) and check your answers to (c) by applying the translation rule to

b1(x) = b(x− 3
2 ), b2(x) = b(x− 3), b2(x) = b1(x− 3

2 ).

. . ..... ........... .... .. ..... ...••• EXERCISE 3.2 Find the Fourier transform of each of the following functions.

(a) f(x) = −P(x+ 1) + P(x− 1) (b) f(x) = P(x+1/2)+P(x−1/2)

(c) f(x) = cos(4πx) · P(x) (d) f(x) = P(2x− 1)

(e) f(x) = x · P(x) (f) f(x) = sgn(x) · P(x)

(g) f(x) = P(2x) · P(3x) (h) f(x) = P(x+ 1/4) · P(x− 1/4)

(i) f(x) = P(x− 2) ∗ P(x+ 3) (j) f(x) = P(x) ∗ P(x) ∗ P(x)

(k) f(x) = P(x) ∗ P(2x) ∗ P(4x) (l) f(x) = P(x) · e−x

Hint. Sketch the graph of f for (b), (f), (g), (h); use the modulation rule for (c); use the
analysis equation for (l); . . . .

. .
.

.. .......... .... ... ...... ...••• EXERCISE 3.3 Find the Fourier transform of each of the following functions.

(a)

1 2 3

1
(b)

0 1 2−1−2

1
2
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(c)
.....
.....
.....
......
.............................................................................

0 1 2 3 4

1

2 (d)

.......
.......
.......
.......
.......
.

.......
.......
.......
......
......
..

......
......
......
......
.... .......................

.........................

.......................

0 1 2 3−1−2−3

1

2

3

4

5

(e)

.........
.........

.........
.........

........
...........................................................................

0 1 2 3−1−2−3

1

Hint. Synthesize these functions using scaled translates of dilates of P(x) and Λ(x).

. .......

.
.. ............ .... .....••• EXERCISE 3.4 Find the Fourier transform of each of the following functions.

(a) f(x) = cos(4πx) · sinc(x) (b) f(x) = sin(4πx) · sinc2(x)

(c) f(x) = sinc3(x) (d) f(x) = sinc(2x) ∗ sinc(3x)

(e) f(x) = x · sinc2(x) (f) f(x) = [e−2πix · sinc(x)] ∗ [e2πix · sinc(x)]

.
..
. ..... ........ ..... .. .....••• EXERCISE 3.5 Find the Fourier transform of each of the following functions.

(a) f(x) = e−x2
(b) f(x) = cos(8πx) · e−x2

(c) f(x) = ex−x2
(d) f(x) = 2x · e−x2

(e) f(x) = (4x2 − 2) · e−x2
(f) f(x) = e−x2 · e−x2

(g) f(x) = e−x2 ∗ e−x2
(h) f(x) =

∫ 1/2

−1/2
e−(x−u)2du

Hint. Observe that (d), (e) are derivatives and (h) is a convolution product.

. ...
.
.
...
.. . ........ ..... .....••• EXERCISE 3.6 Let a > 0, b > 0. Find the Fourier transform of each of the
following functions.

(a) f(x) = cos(πax)P(x/2b) (b) f(x) = sin(πax) sin(πbx)/x

(c) f(x) = cos(πax) sin(πbx)/x (d) f(x) = sin(πax) sin(πbx)/x2

. ...
.
.
...
.. . ........ ..... .....••• EXERCISE 3.7 Let a > 0, b > 0. Find the Fourier transform of each of the
following functions.

(a) f(x) = 1/(x2 + a2) (b) f(x) = cos(πbx)/(x2 + a2)

(c) f(x) = x/(x2 + a2) (d) f(x) = x/(x2 + a2)2

(e) f(x) = {1/(x2 + a2)} ∗ {1/(x2 + b2)} (f) f(x) = {1/(x2 + a2)} · {1/(x2 + b2)}
Hint. When a �= b you can use partial functions for (f).
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 3.8 Let a, b, c be real parameters with a > 0 and with b2 − 4ac < 0.
Find the Fourier transforms of each of the following functions.

(a) f(x) = 1/(ax2 + bx+ c) (b) f(x) = e−(ax2+bx+c)

Hint. Complete the square.

.
.

.. . .
......... ....
.. ..... ....••• EXERCISE 3.9 Find the Fourier transform of each of the following functions.

(a) f(x) = cos(x)P(x/π) (b) f(x) = Λ(2x+ 1) · Λ(2x− 1)

(c) f(x) = sin(10πx) e−5x h(x) (d) f(x) = sinc(4x) ∗ sinc2(2x)

(e) f(x) = 1/(x+ i) (f) f(x) = 1/(x+ i)3

(g) f(x) = e−|2πx| sinc(x) (h) f(x) = e−|2x+5|

(i) f(x) = e−3x2
(j) f(x) = 1/(x2 + 2x+ 2)

(k) f(x) =
∫ ∞

−∞
e2πisx−s4

ds (l) f(x) =
∫ ∞

−∞

cos(2πsx)
1 + s4

ds

.
...
..

....... .... .... ..... ...••• EXERCISE 3.10 Let u(x) := e−αx h(x) where α > 0 and h(x) is the Heaviside
step, and let u1 := u, u2 := u ∗ u, u3 := u ∗ u ∗ u, . . . .
(a) Find the Fourier transform of u1 and then use the convolution rule to deduce that

un+1 has the Fourier transform Un+1(s) = (α+ 2πis)−n−1.

(b) Use the power scaling rule and the fact that

Un+1(s) =
(−2πi)−n

n!
dn

dsn
(α+ 2πis)−1

to deduce that un+1(x) = xn e−αx h(x)/n!, n = 0, 1, . . ..

Note. Compare this calculation with the brute force analysis of Ex. 2.4.

. ..
..

.

.......... . ... .. ..... ...••• EXERCISE 3.11 Let g(x) := sgn(x) e−|x|.

(a) Write down the integral that defines the Fourier transform G(s) and use the fact that
g is odd to show that

G(s) = −2i
∫ ∞

0
e−x sin(2πsx) dx.

You can evaluate this integral with an integration by parts argument . . . or you can
use the Fourier transform calculus.

(b) Observe that g(x) = d(x) − d(−x) where d(x) := e−x h(x). Use this with the known
Fourier transform of d to find G.

(c) Observe that g = −f ′ where f(x) := e−|x|. Use this with the known Fourier transform
of f to find G.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 3.12 From the partial fraction decomposition

f(x) :=
2

1 + 4π2x2 =
1

1 + 2πix
+

1
1 − 2πix

we obtain the Fourier transform F (s) = es h(−s) + e−s h(s) = e−|s|. Use this procedure
to find the Fourier transforms of

(a) g1(x) :=
2

x2 − 4x+ 5
; (b) g2(x) :=

2x− 4
x2 − 4x+ 5

.

Hint. Use the translation and dilation rules with the identity g1(x) = f{(x − 2)/2π} to
check your answer for (a).

. .. .....
.. ...
....... ..... ....••• EXERCISE 3.13 In this exercise you will use an elementary (but tedious) argu-
ment to find the Fourier transform of f(x) = 1/(1 + x4). (An alternative computation of
this Fourier transform is given in Section 7.5.)

(a) Let α :=
√

2/2. Verify that f has the partial fraction decomposition

f(x) =
1
4

{
α+ iα

x+ α+ iα
+

−α+ iα

x− α+ iα
+

α− iα

x+ α− iα
+

−α− iα

x− α− iα

}
.

Hint. You can obtain the roots of x4 + 1 by deleting from the set of roots of
x8 − 1 = (x4 − 1)(x4 + 1) the roots ±1,±i of x4 − 1.

(b) Using (a) and (22), show that

F (s) = 1
4 (α+ iα)e2πiαs (−2πi)e−2παsh(s) + 1

4 (−α+ iα)e−2πiαs(−2πi)e−2παsh(s)

+ 1
4 (α− iα)e2πiαs(+2πi)e2παsh(−s) + 1

4 (−α− iα)e−2πiαs(+2πi)e2παsh(−s).

(c) Using the fact that F (like f) must be even, show that

F (s) = π sin
{√

2π|s| +
π

4

}
e−

√
2π|s|.

(d) Use (c) (with the analysis equation (1.10) to evaluate the following integrals.

(i)
∫ ∞

−∞

dx

1 + x4 (ii)
∫ ∞

−∞

cos(πx) dx
1 + x4

. .

.

. ... .......... .. .. ......••• EXERCISE 3.14 Find f1 ∗ f2 (as the inverse Fourier transform of F1 · F2) when:

(a) f1(x) = 2 sinc(2x), f2(x) = 4 sinc(4x); (b) f1(x) = 2 sinc(2x), f2(x) = sinc2(x);

(c) f1(x) = f2(x) = e−πx2
; (d) f1(x) = f2(x) = 2/(1 + 4π2x2);

(e) f1(x) = 1/(1 + 2πix), f2(x) = 1/(1 − 2πix).
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 3.15 Let a > 0. Use the fact that sinc(x), sinc2(x) have the Fourier
transforms P(s), Λ(s) together with a suitably chosen synthesis equation, Parseval’s rela-
tion, . . . to show that:

(a)
∫ ∞

−∞

( sin ax
x

)
dx = π; (b)

∫ ∞

−∞

( sin ax
x

)2
dx = aπ;

(c)
∫ ∞

−∞

( sin ax
x

)3
dx =

3a2π

4
; (d)

∫ ∞

−∞

( sin ax
x

)4
dx =

2a3π

3
.

. ....
.

........ .... ..... .... ...••• EXERCISE 3.16 Let a, b be real with a > 0. Use your knowledge of Fourier
analysis to evaluate the following definite integrals.

(a)
∫ ∞

0

cos(bx)
x2 + a2 dx (b)

∫ ∞

0

sin(ax) cos(bx)
x

dx

(c)
∫ ∞

0
e−ax cos(bx) dx (d)

∫ ∞

0
cos(bx)e−ax2

dx

.. . .

...

.. .
....... .....

..

.. .... ...••• EXERCISE 3.17 Let a > 0, b > 0. Use Parseval’s identity to show that:

(a)
∫ ∞

−∞

dx

(x2 + a2)(x2 + b2)
=

π

ab(a+ b)
; (b)

∫ ∞

−∞

sin(πax)
x(x2 + b2)

dx =
π

b2
{1 − e−πab}.

. .
..

.. . .

........ ....

.. ..... ....••• EXERCISE 3.18 Show that the n-translates of sinc are orthonormal, i.e.,∫ ∞

−∞
sinc(x− n) · sinc(x−m) dx =

{
1 if n = m

0 if n �= m,
n,m = 0,±1,±2, . . ..

. . .... .......... .... ... ..... ...••• EXERCISE 3.19 Let V (s) be the Fourier transform of the Volkswagen function v.

.....
....
.....
......
.......

.............................................................

0 2 x

1 v(x)

Express the Fourier transform of each of the following functions in terms of V .

(a)

....
....
......
.....
.....
..............................................................

1 3

1 (b)

.....
......

..................
.......
.......

.........................................

−2 0

1

(c)

.
.....
............

.............
......
.......

..............................................

0 2

1 (d)

....
....
.....
.....
.......
..........

................................................................
....
.....
.....
........

..............................................................

−2 2

1
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(e)

....
....
....
....
.....
....
......
......
......
.........
........

........................................................................................................................

0 4

2

(f)

....
....
.....
.....
......
......................................................................

......
................

.........
.....
..................................................

−2 2

1

. .
....

. ... ...
....... ...

. .. ....••• EXERCISE 3.20 Let f have as its Fourier transform the following function F .

.................................................................................................. ......

0 1 2 3 s

1

2

3

F (s)

Sketch the graph of the Fourier transform of the function:

(a) f(−x); (b) 2f(2x); (c) e4πixf(x);

(d) e6πixf(−x); (e) (1/2πi)f ′(x); (f) (f ∗ f)(x);

(g) f(x) · f(x); (h) f(x) · sinc(x); (i) {f(x+ 1
2 ) − f(x− 1

2 )}/2i.
.
.
. . ...
.
. ......... .... .......••• EXERCISE 3.21 Let F be the Fourier transform of the following function f .

.............................................................................................................................. .......

1 2−1−2 x

1

f(x)

Sketch the graph of the function that has as its Fourier transform:

(a) F (−s); (b) 2 cos(2πs)F (s); (c) (−2πi)−1F ′(s);
(d) (F ∗ F )(s); (e) F (s)2; (f) (F ∗ sinc)(s);

(g) F (s) · sinc(s); (h) 2−1F (2−1s); (i)
∞∑

n=0

2−nF (2−ns).

. . .
..
.... .......... ...
. .... ....••• EXERCISE 3.22 Let F be the Fourier transform of a suitably regular function f
on R. Express each of the following in terms of f :

(a)
∫ ∞

−∞
F (−s)e2πisx ds; (b)

∫ ∞

−∞
F (−s)e2πisx; (c)

∫ ∞

−∞
F (s− 5)e2πisx ds;

(d)
∫ ∞

−∞
F (2s)e2πisx ds; (e)

∫ ∞

−∞
s2F (s)e2πisx ds; (f)

∫ ∞

−∞
cos(2πs)F (s)e2πisx ds;

(g)
∫ ∞

−∞
F ′′′(s)e2πisxds; (h)

∫ ∞

−∞
sF (2s)e−2πisxds; (i)

∫ ∞

−∞
1
2 [F (s) + F (s)]e2πisxds.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 3.23 Let f be a suitably regular function on R with the Fourier trans-
form F . What can you deduce about F if you know that:

(a)
∫ ∞

−∞
f(x) dx = 1? (b)

∫ ∞

−∞
xf(x) dx = 1? (c)

∫ ∞

−∞
cos(2πx)f(x) dx = 0?

(d) f ′(0) = 0? (e)
∫ ∞

−∞
|f(x)|2 dx = 1? (f) f(x) = f(−x)?

. . ..... ........... .... .. ...... ...••• EXERCISE 3.24 Let f be a suitably regular function on R, let a, a0, a1, . . . be real,
and let h > 0. Formulate the Fourier transform rule “g(x) := · · · has the FT G(s) = · · · ”
when g is given by:

(a) g(x) := cos(2πax)f(x); (b) g(x) := sin(2πax)f(x);

(c) g(x) := {f(x+ h) − f(x− h)}/2h; (d) g(x) :=
n∑

k=0

akf(x+ kh);

(e) g(x) :=
n∑

k=0

akf
(n)(x); (f) g(x) :=

∫ h/2

−h/2
f(x+ u) du.

Hint. You can write the integral from (f) as a convolution product.

. ..

.
.. ......... ....
. .... ....••• EXERCISE 3.25 Let f1, f2, . . . , fm be suitably regular functions on R, and let
f := f1 ∗ f2 ∗ · · · ∗ fm. Let a1, a2, . . . , am be real, let n1, n2, . . . , nm be nonnegative
integers, and let a be real with a �= 0. Use rules from the Fourier transform calculus to
derive the following identities.

(a) f1(x− a1) ∗ f2(x− a2) ∗ · · · ∗ fm(x− am) = f(x− a1 − a2 − · · · − am)

(b) f (n1)
1 (x) ∗ f (n2)

2 (x) ∗ · · · ∗ f (nm)
m (x) = f (n1+n2+···+nm)(x)

(c) f1(ax) ∗ f2(ax) ∗ · · · ∗ fm(ax) = |a|1−m f(ax)

.
...
..

....... .... .... .... ...••• EXERCISE 3.26 The cross-correlation product f1�f2 of the suitably regular func-
tions f1, f2 is defined by (2.5).

(a) Derive the cross-correlation rule:

g(x) := (f1 � f2)(x) has the FT G(s) = F 1(s) · F2(s).

(b) Specialize (a) to obtain the autocorrelation rule:

g(x) := (f � f)(x) has the FT G(s) = |F (s)|2.

(c) Use (b) to obtain Plancherel’s identity∫ ∞

−∞
|f(u)|2 du =

∫ ∞

−∞
|F (s)|2 ds.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 3.27 What can you infer about the Fourier transform F of the suitably
regular function f on R if you know that f satisfies:

(a) the integral equation f(x) =
∫ ∞

−∞
f(u) sinc(x− u) du?

(b) the differential equation f ′(x) + f(x) = e−πx2
?

(c) the difference equation f(x+ h) − 2f(x) + f(x− h) = 0?

(d) the dilation equation f(x) = f(2x) + f(2x− 1)?

. . .
..

..
.
.. ............ .... .....••• EXERCISE 3.28 Use your knowledge of Fourier analysis to find a function f that
satisfies the given integral equation.

(a)
∫ ∞

u=0
f(u) cos(2πux) du = e−x, 0 ≤ x < ∞

(b)
∫ ∞

u=0
f(u) sin(2πux) du =

{
1 if 0 < x < 1

0 if 1 < x < ∞

(c)
∫ ∞

u=−∞
e−|x−u|f(u) du = (1 + |x|)e−|x|, −∞ < x < ∞

Hint. Use the result of Ex. 2.5.

(d)
∫ ∞

−∞
f(u)f(x− u) du = e−πx2

. ..
..
.... .......... ...
. ... ....••• EXERCISE 3.29 Let g be a piecewise smooth function on R with small regular
tails, and suppose that we wish to find such a function f that satisfies the differential
equation

−f ′′(x) + f(x) = g(x), −∞ < x < ∞.

(a) Fourier transform the differential equation and thereby show that any suitably regular
solution can be written in the form

f(x) =
1
2

∫ ∞

u=−∞
e−|x−u|g(u) du.

(b) Find the function f and sketch its graph when g(x) := P(x).

(c) Find the function f and sketch its graph when g(x) := e−|x|.

Hint. Use the result of Ex. 2.5.

Note. When f is given by the integral of (a) and c1, c2 are constants, the function
f(x) + c1e

x + c2e
−x is also a solution of the differential equation. This general solution

does not have small regular tails or a Fourier transform unless c1 = c2 = 0.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 3.30 Let f be a suitably regular function on R with the Fourier trans-
form F , let

g(x) :=
∫ x

u=−∞
f(u) du,

and assume that g(x) → 0 as x → ±∞ so rapidly that g has a Fourier transform G.

(a) State the antiderivative rule for expressing the Fourier transform G of g in terms of
the Fourier transform F of f .

Note. We must impose some condition on f to guarantee that F (s)/s is well behaved
in a neighborhood of s = 0.

(b) Using (a), show that the function

g(x) := arctan(ax) − arctan(bx), a > b > 0

has the Fourier transform

G(s) =
i{e−2π|s|/b − e−2π|s|/a}

2s
.

. .
.

.. .......... .... .... .... ...••• EXERCISE 3.31 Use the Fourier transform calculus to prove the recursion relation
for B-splines that is given in the note following Ex. 2.7.

. ....
. ........ .... ..... ... ...••• EXERCISE 3.32 Use your knowledge of Fourier analysis to construct continuously
differentiable, absolutely integrable functions f, g on R such that f(x) · g(x) �= 0, and
(f ∗ g)(x) = 0 for every choice of x.

Hint. Consider sinc2(x) + sinc2(
√

2x).

.
...
..

....... .... .... .... ...••• EXERCISE 3.33 Let α > 0, and let let ν = 1, 2, . . .. Verify that

f(x) :=
xν−1e−x/α

αν(ν − 1)!
h(x) has the FT F (s) = (1 + 2πiαs)−ν

(a) by using (2) with the dilation and power scaling rules;

(b) by using the analysis equation to show that

F ′(s) = − 2πiαν
1 + 2πiαs

F (s), F (0) = 1,

and then solving this initial value problem.

Note. The argument from (b) can be used with any positive value of ν provided we replace
(ν − 1)! with Euler’s gamma function

Γ(ν) :=
∫ ∞

u=0
xν−1e−x dx

in the definition of f .
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 3.34 Many complex physical systems can be modeled by using a num-
ber of independent damped harmonic oscillators, with the response to an initial excitation
having the form

y(t) :=
M∑

m=1

e−αmt{Am cos(2πsmt) +Dm sin(2πsmt)}h(t).

Here Am, Dm, sm > 0, αm > 0 are parameters, m = 1, 2, . . . ,M . Such a function might
represent the accoustical wave produced by ringing a large bell (see Fig. 11.10) or the free
induction decay from an FT-NMR (see Fig. 1.16). In this exercise you will analyze the
Fourier transform, i.e., the spectrum of such a transient. Within this context, we use the
independent variable t instead of x.

(a) Use the dilation rule and the modulation rule with (2) to show that

y0(t) := e−α0t+2πis0th(t) has the FT Y0(s) =
1 − i u(s)

α0{1 + u2(s)} .

Here u(s) := 2π(s− s0)/α0 and α0, s0 are real parameters with α0 > 0.

Note. The function y0 satisfies the damped harmonic oscillator equation

y′′
0 (t) + 2α0y

′
0(t) + (4π2s 2

0 + α2
0)y0(t) = 0.

(b) Plot Re Y0, Im Y0 as functions on R, and plot Y0(s), −∞ < s < ∞, as an orbit in
the complex plane C, showing the effects of the parameters α, s0.

Hint. Your graphs will resemble those of Fig. 1.15 and the orbit will be a circle.
(c) Plot the Fourier transforms of

yc(t) := e−α0t cos(2πs0t)h(t), ys(t) := e−α0t sin(2πs0t)h(t)

as functions on R, showing the effects of the parameters α0, s0.

Hint. Use the conjugation rule and the analysis from (b).

(d) Describe the Fourier transform of y (as given above) in the case where α1, . . . , αM

are small and positive, where s1, . . . , sM are positive and well separated, and where
A1, . . . , Am, D1, . . . , Dm are nonnegative real numbers.

Note. To learn more about the use of such spectral methods in chemistry, see A.G.
Marshall and F.R. Verdun, Fourier Transforms in NMR, Optical, and Mass Spectroscopy,
Elsevier, New York, 1990.

.
..

..

..

.. ......... ....

. .. ....••• EXERCISE 3.35 In this exercise you will show that the Fresnel function

f(x) := eiπx2
has the FT F (s) = {(1 + i)/

√
2}e−iπs2

.

We will use this particular Fourier transform pair when we study diffraction in Section 9.4.

(a) Use the alternating series test from calculus to show that the integrals∫ ∞

−∞
sin(πx2) dx,

∫ ∞

−∞
cos(πx2) dx
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are well defined and positive.

Hint.
∫ ∞

0
sin(πx2) dx =

∞∑
m=0

∫ √
m+1

√
m

sin(πx2) dx.

(b) Use polar coordinates to verify that∫ ∞

−∞
e−π(α−i)x2

dx ·
∫ ∞

−∞
e−π(α−i)y2

dy =
i

1 + αi
, α > 0,

and thereby show that

I :=
∫ ∞

−∞
eiπx2

dx =
1 + i√

2
.

Note. For alternative derivations, see Section 4.4 or R. Weinstock, Amer. Math.
Monthly 97 (1990), 39–42.

(c) Use (b) and the identity x2 − 2xs = (x− s)2 − s2 to show that

F (s) :=
∫ ∞

−∞
eiπx2

e−2πisx dx =
1 + i√

2
e−iπs2

.

(d) Show that f has the Fourier representation (1.3).

Hint. Begin by using (c) to write f(x) = F (x)/I.

Note. We can use the Fourier representation (1.3)–(1.4) for the Fresnel function even
though neither f nor F have small tails:

|f(x)| = 1, −∞ < x < ∞, and |F (s)| = 1, −∞ < s < ∞.

.. .
....

.. ....... ......
..
.. ... ...••• EXERCISE 3.36 Use the Fourier transform pair of Ex. 3.35 to show that:

(a) f(x) := cos(πx2) has the FT F (s) = cos{π(s2 − 1/4)};

(b) f(x) := sin(πx2) has the FT F (s) = − sin{π(s2 − 1/4)};

(c) f(x) := |x|−1/2 has the FT F (s) = |s|−1/2;

(d) f(x) := sgn(x)|x|−1/2 has the FT F (s) = −i sgn(s)|s|−1/2.

Hint. Use the substitution u2 = 2|s|x in the analysis equation integrals for (c), (d).

. .
..

.. ..

......... ... .. ..... ....••• EXERCISE 3.37 In this exercise you will use the generating function

g(x, t) := e−(x−t)2

to establish an orthogonality property of the Hermite functions (31).

(a) Find the Maclaurin series for g(x, t) with respect to the argument t and thereby show
that

e−(x−t)2 =
∞∑

n=0

Hn(x)e−x2 tn

n!
.
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(b) Use the identity∫ ∞

−∞
Hm(x)e−(t−x)2 dx = (−1)me−t2

∫ ∞

−∞
e2tx{Dme−x2} dx

and an integration by parts argument to show that∫ ∞

−∞
Hm(x)e−(t−x)2 dx = (2t)m

√
π, m = 0, 1, . . . .

(c) Combine (a), (b) and thereby show that∫ ∞

−∞
Hm(x)Hn(x)e−x2

dx =

{
2nn!

√
π if m = n

0 if m �= n.

(d) Using (c), show that∫ ∞

−∞
fm(x)fn(x) dx =

{
2nn!/

√
2 if m = n

0 if m �= n.

Note. When f is a suitably regular function on R we can write

f(x) =
∞∑

n=0

cnfn(x) with cn :=
√

2
2nn!

∫ ∞

−∞
f(x)fn(x) dx, n = 0, 1, . . . .

Norbert Wiener used this series and the corresponding

F (s) =
∞∑

n=0

(−i)ncnfn(s)

to study the Fourier transform of square integrable functions on R, see Norbert Wiener,
The Fourier Integral and Certain of Its Applications, Dover, New York, 1958, pp. 46–71.

.

.

. . ..
.
. ......... ... .......••• EXERCISE 3.38 This exercise will show you an alternative way to find the Fourier
transform of the Hermite functions fn(x), n = 0, 1, . . . as given in (31).

(a) Suitably modify the expansion of Ex. 3.37(a) to show that

e−πx2 · e2πxt/
√

π/2 · e−t2 =
∞∑

n=0

fn(x)
tn

n!
.

(b) Replace t by it and formally take Fourier transforms on a term-by-term basis to show
that

e−π(s−t/
√

π/2)2 · et2 =
∞∑

n=0

(i)nFn(s)
tn

n!
,

where Fn(s) is the Fourier transform of fn(x).
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(c) Use (a)–(b) to show that
Fn(s) = (−i)nfn(s).

Note. We can make the informal argument of (b) rigorous by using the uniform bound
|fn(x)|2 ≤ 2n+1n! together with the theory of weak limits that will be developed in
Section 7.6.

.
..

.. . .

........ ....

.. ..... ....••• EXERCISE 3.39 Let f be a suitably regular function on R, let s be a fixed real
parameter, and let

z(x, s) :=
∫ x

0
f(u)e−2πisu du, −∞ < x < ∞.

(a) Give a geometric interpretation of the differential relation

z(x+ dx, s) = z(x, s) + e−2πisx · {f(x) dx}.

(b) Give a geometric interpretation of the relation

F (s) = lim
x→+∞ z(x, s) − lim

x→−∞ z(x, s).

(c) Let f(x) := P(x). Show that

z(x, s) =
1 − e−2πisxc

2πis
where xc :=




− 1
2 if x ≤ − 1

2

x if − 1
2 ≤ x ≤ 1

2
1
2 if x ≥ 1

2 ,

and plot the circular arcs z(x, s), −∞ < x < ∞, that correspond to s = 1/2, 1, 3/2.

(d) Let f(x) := e−xh(x). Show that

z(x, s) =




0 if x ≤ 0

1 − e−x(1+2πis)

1 + 2πis
if x > 0,

and plot the spiral z(x, s), −∞ < x < ∞, that corresponds to s = 1.

.. .

.

... .

........ .... .... .... ...••• EXERCISE 3.40 In this exercise you will show that no ordinary function δ can
serve as a convolution product identity for functions on R.

(a) Formally use the convolution rule to show that if δ ∗ g = g when g(x) := e−πx2
, then

δ must have the Fourier transform ∆(s) := 1, −∞ < s < ∞.

(b) What happens when you try to synthesize a function δ on R by using the ∆ of (a)?

(c) Explain why dn(x) := n sinc(nx) is a reasonable approximate convolution product
identity when n is large and positive.

(d) Explain why dn(x) := ne−πn2x2
is a reasonable approximate convolution product

identity when n is large and positive.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 3.41 Fourier’s representation is valid if either f or F is a piecewise
smooth function with small regular tails. We must impose additional regularity conditions
if we wish to use the derivative rule (19) or the power scaling rule (20). For example, we
can use Fourier’s representation with g(x) := f ′(x), G(s) = 2πisF (s) if either

• f(x), f ′(x) are both piecewise smooth functions with small regular tails and f(x) is
continuous, or

• F (s), sF (s) are both piecewise smooth functions with small regular tails.
We can use Fourier’s representation with g(x) := (−2πix)f(x), G(s) = F ′(s) if either

• f(x), xf(x) are both piecewise smooth functions with small regular tails, or
• F (s), F ′(s) are both piecewise smooth functions with small regular tails and F (s) is

continuous.
In this exercise you are to prove these statements as follows.

(a) Let f be a continuous, absolutely integrable function on R with an absolutely inte-
grable derivative f ′ that is defined and continuous except for finitely many points of
R. Show that ∫ ∞

−∞
f ′(x)e−2πisx dx = 2πis

∫ ∞

−∞
f(x)e−2πisx dx.

Hint. Verify that f(x) → 0 as x → ±∞ (1.43), and integrate by parts.

(b) Let f be defined and continuous except for finitely many points of R, and assume
that both f(x) and xf(x) are absolutely integrable on R. Show that

F (s) :=
∫ ∞

−∞
f(x)e−2πisx dx

has a uniformly continuous derivative

G(s) :=
∫ ∞

−∞
(−2πix)f(x)e−2πisx dx

that vanishes at ±∞.

Hint. Verify that∣∣∣∣F (s+ h) − F (s)
h

−G(s)

∣∣∣∣ = 2π

∣∣∣∣
∫ ∞

−∞

{
e−2πihx − 1 + 2πihx

−2πihx

}
xf(x)e−2πisxdx

∣∣∣∣
and then suitably modify the argument of Ex. 1.38(b) using the bounds

|eiθ − 1| ≤ |θ|, |eiθ − 1 − iθ| ≤ θ2/2, −∞ < θ < ∞.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 3.42 In this exercise you will establish a link between the smoothness
of an absolutely integrable function f and the rate at which the Fourier transform F goes
to zero as s → ±∞.

(a) Let f, f ′, . . ., f (m) be absolutely integrable on R, let f, f ′, . . ., f (m−1) be continuous,
and let f (m) be continuous except for finitely many points of R. Show that F (s),
sF (s), . . ., smF (s) are uniformly continuous functions on R that vanish at ±∞.

Hint. Use the analysis of Exs. 3.41(a) and 1.38.

(b) Let f(x), xf(x), . . ., xmf(x) be absolutely integrable on R and let f be continuous
except for finitely many points of R. Show that F (s), F ′(s), . . . , F (m)(s) are uniformly
continuous functions on R that vanish at ±∞. (Compare this with Ex. 12.14.)

. .
....

. ........ ..... ...
.. .. ....••• EXERCISE 3.43 Let n = 0, 1, . . . , let a0 < a1 < · · · < aM , and let f be a piecewise
polynomial function on R with

f(x) = 0 if x < a0 or x > aM

f (n+1)(x) = 0 if am−1 < x < am, m = 1, 2, . . .,M.

(a) Assume that n ≥ 1 and that f, f ′, . . . , f (n−1) are all continuous. Show that sn+1F (s)
is bounded and thereby prove that F (s) approaches zero as fast as 1/sn+1 when
s → ±∞.

Hint. Begin with the analysis equation (33) for f (n).

(b) Let k be a positive integer and assume that f, f ′, . . . , f (k−1) are all continuous. What
can you infer about the rate that F (s) approaches zero as s → ±∞?

. . .
..

..

...... ...... .. .... ...••• EXERCISE 3.44 Let f, g be piecewise smooth functions with small regular tails,
and let F,G be the corresponding Fourier transforms. In this exercise you will show that
the multiplication rule can be used with f · g, f ·G, F · g, F ·G, and the convolution rule
can be used with f ∗ g, F ∗G.

(a) Show that ∫ ∞

x=−∞
(f ∗ g)(x)e−2πisx dx = F (s) ·G(s).

Hint. Since
∫∫

|f(u)g(x−u)| du dx < ∞, you can exchange the order of integration.

(b) Use Parseval’s identity with f(x) and γ(x) := g(x0 − x) (see Ex. 1.40) to show that∫ ∞

s=−∞
F (s) ·G(s)e+2πisx ds = (f ∗ g)(x).

Note. Together (a)–(b) establish the convolution rule for f ∗g and the multiplication
rule for F ·G.
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(c) Use Parseval’s identity to show that∫ ∞

x=−∞
f(x) · g(x)e−2πisx dx = (F ∗G)(s).

(d) Show that ∫ ∞

s=−∞
(F ∗G)(s)e+2πisx ds = f(x) · g(x).

Hint. Use (c) with the representation theorem from Section 1.5.

Note. Together, (c)–(d) establish the convolution rule for F ∗G and the multiplication
rule for f · g.

(e) Show that ∫ ∞

x=−∞
f(x) ·G(−x)e−2πisx dx = (F ∗ g)(s).

Hint. Since
∫∫

|f(x)g(σ)| dσ dx < ∞, you can exchange the order of integration.

Note. In this way we establish the product rule for f(x) · G(−x) [and likewise for
f(x) ·G(x), F (x) · g(x).] We need an additional hypothesis to obtain the convolution
rule for F ∗g (or for f∗G). For example, if the function G is continuously differentiable
except for finitely many points of R, we can use (e) with the representation theorem
of Ex. 1.39 to write ∫ ∞

s=−∞
(F ∗ g)(s)e+2πisx ds = f(x) ·G(−x).

.
.
.. ..
..
.. ........ ... .... ....••• EXERCISE 3.45 Construct an absolutely integrable function f on R such that:

max
|x|≥L

f(x) = 1 for every L > 0;

F, F ′, F ′′, . . . are uniformly continuous on R;

F, F ′, F ′′, . . . all vanish at ± ∞.

Hint. You can use a sum of suitably translated and dilated triangles, see Ex. 3.42.

. .

.

. ...
. ......... .... .......••• EXERCISE 3.46 Let f be a piecewise smooth function on R that vanishes outside
some finite interval. Show that

∞∑
m=−∞

f(x−m) = 1

(i.e., we can partition unity with the 1-translates of f) if and only if

F (k) =

{
1 for k = 0

0 for k = ±1,±2, . . ..

Note. The B-splines from Ex. 2.7 serve as examples.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 3.47 Use your knowledge of Fourier analysis to find a function f on
R that has the specified properties.

(a)
∫ ∞

−∞
f(u)f(x− u) du = f(x), −∞ < x < ∞,

∫ ∞

−∞
f(u) sinc(x− u) du = f(x), −∞ < x < ∞, and

∫ ∞

−∞
|f(x)|2 dx = 1.

(b) f(−x) = f(x), −∞ < x < ∞,∫ ∞

−∞
f(u) sinc(x− u) du = 0, −∞ < x < ∞,

∫ ∞

−∞
|f(x)| dx < ∞, and

∫ ∞

−∞
|f(x)|2 dx = 1.



4

The calculus for finding
Fourier transforms of
functions on Tp, Z, and PN

4.1 Fourier series

Introduction

Now that you know how to find Fourier transforms of functions on R, you can
quickly learn to find Fourier transforms of functions on Tp, i.e., to construct the
Fourier series

f(x) =
∞∑

k=−∞
F [k]e2πikx/p (1)

when f is given. In principle, you can always obtain F by evaluating the integrals
from the analysis equation

F [k] =
1
p

∫ p

0
f(x)e−2πikx/p dx, k = 0,±1,±2, . . . , (2)

but this is often quite tedious. We will present several other methods for finding
these coefficients. You can then select the procedure that requires the least amount
of work!

You will recall from your study of Chapter 1 that the synthesis equation (1) for
f on Tp can be written as the analysis equation

f(−s)
p

=
1
p

∞∑
n=−∞

F [n]e−2πisn/p

173
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for F on Z. In view of this duality, every Fourier series (1) simultaneously tells us
that

f(x) has the FT F [k], and

F [k] has the FT
f(−s)
p

.
(3)

Direct integration

You can evaluate the integrals (2) with the techniques from elementary calculus
when the function f is a linear combination of segments of

xn · eαx · e2πiβx, n = 0, 1, 2, . . . , −∞ < α < ∞, −∞ < β < ∞.

You will use the integration by parts formula

∫ b

x=a

f(x)q(x) dx = f(x)q(−1)(x)
∣∣∣∣
b

x=a

−
∫ b

x=a

f ′(x)q(−1)(x) dx

=
{
f(x)q(−1)(x) − f ′(x)q(−2)(x)

}∣∣∣b
x=a

+
∫ b

x=a

f ′′(x)q(−2)(x) dx

... (4)

for such calculations. Here q(−1), q(−2), . . . are successive antiderivatives of

q(x) = e2πikx/p or cos(2πkx/p) or sin(2πkx/p), k = ±1,±2, . . ..

When f is a polynomial, the integrated term will eventually disappear from the
right side of (4), and the resulting identity,

∫ b

x=a

f(x)q(x) dx = f(x)q(−1)(x) − f ′(x)q(−2)(x)

+ · · · + (−1)n−1f (n−1)(x)q(−n)(x)
∣∣∣b
x=a

, f (n) ≡ 0, (5)

is known as Kronecker’s rule. The k = 0 integral is usually done separately.
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Example Find the Fourier series for the p-periodic sawtooth function f shown in
Fig. 4.1.

Figure 4.1. A p-periodic sawtooth function f(x) := x, −p/2 < x < p/2.

Solution We use the odd symmetry of f with Kronecker’s rule to write

F [k] :=
1
p

∫ p/2

x=−p/2
x e−2πikx/p dx

=
−i
p

∫ p/2

x=−p/2
x sin

(
2πkx
p

)
dx

=
−2i
p

∫ p/2

0
x sin

(
2πkx
p

)
dx

=
−2i
p

{
x

−p
2πk

cos
(

2πkx
p

)
+
( p

2πk

)2
sin
(

2πkx
p

)} ∣∣∣∣∣
p/2

0

= (−1)k ip

2πk
, k = ±1,±2, . . ..

Since f is odd, F [0] = 0 and thus

f(x) := x, − p

2
< x <

p

2
has the FS

∑
k �=0

(−1)k+1e2πikx/p

2πik/p
. (6)

We can also combine the ±k terms and use Euler’s formula to write

f(x) =
p

π

∞∑
k=1

(−1)k+1 sin(2πkx/p)
k

,

see Exs. 1.11 and 1.16(b).
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Example Find the Fourier series for the p-periodic piecewise parabolic function
f shown in Fig. 4.2.

Figure 4.2. A p-periodic parabolic function f(x) = x2, −p/2 ≤ x ≤ p/2.

Solution We exploit the even symmetry of f as we compute

F [0] :=
1
p

∫ p

0
f(x) dx =

2
p

∫ p/2

0
x2 dx =

p2

12
,

and then use Kronecker’s rule to find

F [k] :=
1
p

∫ p/2

−p/2
x2e−2πikx/p dx

=
2
p

∫ p/2

0
x2 cos

(
2πkx
p

)
dx

=
2
p

{
x2
( p

2πk

)
sin
(

2πkx
p

)
+ 2x

( p

2πk

)2
cos

(
2πkx
p

)

− 2

(
p

2πk

)3

sin
(

2πkx
p

)}∣∣∣∣∣
p/2

x=0

= 2(−1)k+1
( p

2πik

)2
, k = ±1,±2, . . ..

In this way we show that

f(x) = x2, − p

2
≤ x ≤ p

2
has the FS

p2

12
+
∑
k �=0

(−1)k+12e2πikx/p

(2πik/p)2
. (7)

Elementary rules

There are rules for working with Fourier transforms of functions on Tp that are
analogous to those for working with Fourier transforms of functions on R. You will
instantly recognize the linearity rule

g(x) := c1f2(x)+ · · ·+cmfm(x) has the FT G[k] = c1F1[k]+ · · ·+cmFm[k], (8)
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the reflection and conjugation rules

g(x) := f(−x) has the FT G[k] = F [−k], (9)

g(x) := f(x) has the FT G[k] = F [−k], (10)

the translation and modulation rules

g(x) := f(x− x0) has the FT G[k] = e−2πikx0/pF [k], −∞ < x0 < x, (11)
g(x) := e2πik0x/pf(x) has the FT G[k] = F [k − k0], k0 = 0,±1,±2, . . . , (12)

as well as the convolution and multiplication rules

g(x) := (f1 ∗ f2)(x) has the FT G[k] = pF1[k] · F2[k], (13)
g(x) := f1(x) · f2(x) has the FT G[k] = (F1 ∗ F2)[k]. (14)

You can always use these rules when the functions f, f1, f2, . . . are piecewise smooth.
The derivative rule

g(x) := f ′(x) has the FT G[k] =
(

2πik
p

)
· F [k] (15)

can be used when f is continuous and f ′ is piecewise smooth. The form of the com-
plex exponential e2πikx/p that we use for Fourier’s representation of functions on Tp

accounts for the form of the complex exponentials in (11)–(12) and for the multi-
plier in (15). The mnemonic convolution gets the constant will help you remember
to include the factor p with (13) but not with (14).

Example Derive the convolution rule (13).

Solution When f1, f2 are piecewise smooth functions on Tp and g := f1 ∗ f2, we
can write

G[k] :=
1
p

∫ p

x=0
g(x)e−2πikx/p dx

=
1
p

∫ p

x=0

∫ p

u=0
f1(u)f2(x− u)e−2πikx/p du dx

=
1
p

∫ p

u=0
f1(u)e−2πiku/p

∫ p

x=0
f2(x− u)e−2πik(x−u)/p dx du

=
∫ p

u=0
f1(u)e−2πiku/pF2[k] du

= pF1[k] · F2[k].

Example Show that

w0(x) := 1
2 − x, 0 < x < 1 has the FS

∑
k �=0

e2πikx

2πik
. (16)
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Solution From the graph of the sawtooth function f in Fig. 4.1 we see that

w0(x) = −f (x− 1
2

)
when we set p = 1 in (6). We use the translation rule and the Fourier coefficients
F [k] from (6) to write

W0[k] = −e−2πik/2 F [k] =

{
0 if k = 0

1
2πik

if k = ±1,±2, . . . ,

and thereby obtain (16).

Example Show that

w1(x) :=
−x2

2
+
x

2
− 1

12
, 0 ≤ x ≤ 1, has the FS

∑
k �=0

e2πikx

(2πik)2
. (17)

Solution We can construct w1 from the piecewise parabolic function of (7) by
writing

w1(x) = −1
2

(
x− 1

2

)2

+
1
24

= −1
2
f

(
x− 1

2

)
+

1
24

when p = 1. We then use the translation rule to obtain the Fourier coefficients

W1[k] =




−1
2
F [0] +

1
24

−1
2
e−2πik/2F [k]

=




0 if k = 0
1

(2πik)2
if k = ±1, ±2, . . ..

We can compute

W1[0] :=
∫ 1

0
w1(x) dx = −1

6
+

1
4

− 1
12

= 0,

observe that
w′

1(x) = w0(x),

and use the derivative rule with (16) to obtain

W1[k] =
W0[k]
2πik

=
1

(2πik)2
, k = ±1, ±2, . . ..

We can verify that

(w0 ∗ w0)(x) =
∫ x

0

( 1
2 − u

) ( 1
2 + u− x

)
du

+
∫ 1

x

( 1
2 − u

) (− 1
2 + u− x

)
dx = w1(x), 0 ≤ x ≤ 1,
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and then use the convolution rule with (16) to write

W1[k] = w0[k] · w0[k] =

{0 if k = 0
1

(2πik)2
if k = ±1,±2, . . ..

There are many ways to use these rules!

Poisson’s relation

Let f be a piecewise smooth function on R that has small regular tails. We can use
the Poisson relation (1.29) to see that

g(x) :=
∞∑

m=−∞
f(x−mp) (with f on R and g on Tp)

has the FS
∞∑

k=−∞

1
p
F

(
k

p

)
e2πikx/p. (18)

In particular, when we are given a piecewise smooth function g on Tp we can always
choose a cutoff parameter −∞ < a < ∞, take

f(x) :=
{
g(x) if a ≤ x < a+ p

0 otherwise,

find the Fourier transform F of f , and obtain the Fourier series for g from (18).
The skills that you have acquired for finding Fourier transforms of functions on R

can be used to find Fourier series for functions on Tp! You may find it interesting to
learn that this remarkable computational tool was discovered (but not published) by
Gauss more than ten years before it appeared in a paper of Poisson (see C.F. Gauss,
Schönes Theorem der Wahrscheinlichkeitsrechnung, C.F. Gauss Werke, Band 8,
Königlichen Gesellschaft der Wissenschaften, Göttingen, 1900, pp. 88–89).

Example Find the Fourier series for the p-periodic function g of Fig. 4.3.

Figure 4.3. A p-periodic train of triangles.
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Solution We write

g(x) =
∞∑

m=−∞
Λ
(
x−mp

p/2

)
,

use the Fourier transform calculus to see that

f(x) := Λ
(

2x
p

)
has the FT F (s) =

p

2
sinc2

(ps
2

)
,

and use Poisson’s relation (18) to write

g(x) =
∞∑

k=−∞

1
2

sinc2
(
k

2

)
e2πikx/p.

There is no need for the usual integration by parts!
We can tidy things up a bit by observing that

G[k] =
1
2

sinc2
(
k

2

)
=




1
2

if k = 0

0 if k = ±2,±4, . . .
2

π2k2 if k = ±1,±3, . . . ,

and writing

g(x) =
1
2

+
4
π2

{
cos(2πx/p)

12 +
cos(6πx/p)

32 +
cos(10πx/p)

52 + · · ·
}
.

Example Find the Fourier series for the p-periodic sawtooth function f shown in
Fig. 4.1.
Solution We use the power scaling rule to see that

q(x) := xP
(
x

p

)

has the Fourier transform

Q(s) = − 1
2πi

d

ds

{
sin(πps)
πs

}
= − 1

2πi

{
p cos(πps)

s
− sin(πps)

πs2

}
, s �= 0

[with Q(0) = 0]. We use Poisson’s relation to find

F [k] =
1
p
Q

(
k

p

)
=




0 if k = 0
(−1)k+1

2πik/p
if k = ±1,±2, . . . ,

and thereby obtain (6).
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Example Find the Fourier series for the p-periodic box train g shown in Fig. 4.4
when 0 < α < p.

Figure 4.4. A p-periodic train of boxes.

Solution You can find the Fourier transform of f(x) := P(x/α) in your head and
mentally use Poisson’s relation to write

g(x) =
∞∑

k=−∞

α

p
sinc

(
kα

p

)
e2πikx/p.

Example Use Poisson’s relation to derive the translation rule (11) from the cor-
responding translation rule for functions on R.

Solution Let f be a piecewise smooth p-periodic function and let

d(x) :=
{
f(x) if 0 ≤ x < p

0 otherwise,
g(x) := f(x− x0).

By construction

f(x) =
∞∑

m=−∞
d(x−mp), g(x) =

∞∑
m=−∞

d(x− x0 −mp),

and we can use Poisson’s relation (twice) to write

G[k] =
1
p
e−2πikx0/pD

(
k

p

)
= e−2πikx0/pF [k].

You can derive all of the rules (8)–(14) in this way, see Ex. 4.8.

Example Let α > 0. Find the Fourier transform of the sampled gaussian

gα[n] := e−π(nα/p)2 , n = 0,±1,±2, . . ..

Solution We write gα[n] = f(n/p) where the even function

f(x) := e−π(αx)2 has the FT F (s) =
1
α
e−π(s/α)2 .
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We now use the analysis equation (for functions on Z), inversion rule (for functions
on R), and Poisson’s relation to write

Gα(s) :=
1
p

∞∑
n=−∞

f

(
n

p

)
e−2πisn/p =

1
p

∞∑
k=−∞

f

(
−k

p

)
e−2πiks/p

=
∞∑

m=−∞
F (s−mp) =

1
α

∞∑
m=−∞

e−π(s−mp)2/α2
.

Bernoulli functions and Eagle’s method

We begin with

w0(x) =

{0 if x = 0, 1
1
2

− x if 0 < x < 1
(19)

and take suitable antiderivatives to obtain polynomials

w1(x) = −x2

2
+
x

2
− 1

12
, 0 ≤ x ≤ 1

w2(x) = −x3

6
+
x2

4
− x

12
, 0 ≤ x ≤ 1

w3(x) = −x4

24
+
x3

12
− x2

24
+

1
720

, 0 ≤ x ≤ 1

...

(20)

with

w′
n(x) = wn−1(x), n = 1, 2, . . . (and x �= 0, 1 when n = 1) (21)∫ 1

0
wn(x)dx = 0, n = 0, 1, . . . , (22)

see Ex. 4.22. We have found the Fourier representations (16), (17) for w0 and w1,
and studied the convergence of these series in Section 1.5. We will now use (16)
with (21)–(22) and the derivative rule to obtain the 1-periodic Bernoulli functions

wn(x) :=
∞∑

k=−∞
k �=0

e2πikx

(2πik)n+1 , n = 0, 1, . . . , − ∞ < x < ∞, (23)
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shown in Fig. 4.5. You should try to remember the Fourier series (23) and the
polynomial forms (19)–(20) for w0, w1, w2. The most important thing about these
functions is that they have been constructed so that

w(m)
n (0+) − w(m)

n (0−) =
{

1 if m = n

0 if m = 0, 1, . . . , n− 1, n+ 1, n+ 2, . . ..
(24)

Figure 4.5. The first four Bernoulli functions.

You may recall that in Section 1.5 we used scaled translates of w0(x/p) and
w1(x/p) to remove jump discontinuities from a p-periodic function f and its deriva-
tive. We will now use a generalization of this idea to construct Fourier series for



184 FT calculus for functions on Tp, Z, and PN

piecewise polynomial functions on Tp. The overall scheme is an elementary vari-
ation of Eagle’s method that will be developed within a more general context in
Section 7.5 and Ex. 7.75.

Example Find the Fourier series for the p-periodic box train of Fig. 4.4.

Solution The function g has jumps +1,−1 at x = −α/2, α/2. We remove these
jumps (1.38) by forming

c(x) := g(x) − w0

(
x+ α/2

p

)
+ w0

(
x− α/2

p

)
.

Each term is a p-periodic broken line, so c is also such a function. In view of (24),
neither c nor c′ have jump discontinuities, so this p-periodic broken line must be a
constant. Since w0 has the average value 0, we can find this constant by evaluating
the integral

c(x) =
1
p

∫ p/2

−p/2
g(u) du =

1
p

∫ α/2

−α/2
1 · du =

α

p
.

In this way we see that

g(x) =
α

p
+ w0

(
x+ α/2

p

)
− w0

(
x− α/2

p

)
.

We now use this representation with (23) to obtain the Fourier series

g(x) =
α

p
+
∑
k �=0

{
e2πik(x+α/2)/p

2πik
− e2πik(x−α/2)/p

2πik

}

=
∞∑

k=−∞

α

p
sinc

(
αk

p

)
e2πikx/p.

Example Find the Fourier series for the p-periodic ramp train of Fig. 4.6.

Figure 4.6. A p-periodic train of ramps.
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Solution The function f has a jump −1 at x = α and the derivative f ′ has jumps
1/α,−1/α at x = 0, α. We remove these jumps by forming

c(x) := f(x) + w0

(
x− α

p

)
− p

α
w1

(
x

p

)
+
p

α
w1

(
x− α

p

)
,

and with reasoning analogous to that used for the previous example, we conclude
that the p-periodic piecewise polynomial function c is the constant

c(x) =
1
p

∫ p

0
f(u) du =

1
p

∫ α

0

u du

α
=

α

2p
.

In this way we deduce that

f(x) =
α

2p
+
p

α
w1

(
x

p

)
− w0

(
x− α

p

)
− p

α
w1

(
x− α

p

)

and use (23) to obtain the Fourier series

f(x) =
α

2p
+
∑
k �=0

1
(2πik)2

{ p
α

− e−2πikα/p
(
2πik +

p

α

)}
e2πikx/p.

You can look at Fig. 4.6 and immediately write down this series!

Laurent series

In your study of calculus you learned to work with power series such as

ez = 1 + z +
z2

2!
+
z3

3!
+ · · · ,

1
1 − z

= 1 + z + z2 + z3 + · · · , |z| < 1,

and you may remember developing the Laurent series

1 − r2

(1 − rz)(1 − r/z)
=

1
1 − rz

+
r/z

1 − r/z
=

∞∑
k=−∞

r|k|zk, 0 < r < |z| < 1
r

to solve Ex. 1.9. A Laurent series

C(z) =
∞∑

k=−∞
ckz

k, z ∈ C, a < |z| < b (25)
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is a complex power series that may contain terms with z−1, z−2, . . . as well as terms
with 1, z, z2, . . .. If the Laurent series (25) converges within some nondegenerate
closed annulus that contains the unit circle (i.e., for a ≤ |z| ≤ b where a ≤ 1, a < b,
b ≥ 1), then you can produce a corresponding Fourier series by setting z = e2πix/p,
i.e.,

f(x) := C(e2πix/p) has the FS
∞∑

k=−∞
cke

2πikx/p (26)

see Tolstov, pp. 105–112.

Example Find the Fourier series for the function f(x) := cos{e2πix/p}.

Solution We set z = e2πix/p in the Maclaurin series

C(z) := cos z = 1 − z2

2!
+
z4

4!
− z6

6!
+ · · ·

for the cosine function and thereby obtain the Fourier series

f(x) = 1 − e4πix/p

2!
+
e8πix/p

4!
− e12πix/p

6!
+ · · · .

Example Find the Fourier series for f(x) := sin2(2πx/p).

Solution We define

C(z) :=
(
z − z−1

2i

)2

= −1
4
z−2 +

1
2

− 1
4
z2

and write
f(x) = C(e2πix/p) = −1

4
e−4πix/p +

1
2

− 1
4
e4πix/p.

Example Show that

f(x) :=
3

5 − 4 cos(2πx/p)
has the FS

∞∑
k=−∞

(
1
2

)|k|
e2πikx/p. (27)

Solution We define

C(z) :=
3

5 − 4(z + z−1)/2
=

3z
(2z − 1)(2 − z)

,

use the partial fraction decomposition

C(z) =
2

2 − z
+

1
2z − 1

=
1

1 − (z/2)
+

(1/2z)
1 − (1/2z)
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and the formula for the sum of a geometric progression to obtain the Laurent series

C(z) =
∞∑

k=−∞

(
1
2

)|k|
zk,

1
2
< |z| < 2,

and thereby find F [k] = 2−|k|.

Example Show that the Dirichlet kernel

f(x) :=
sin{(2m+ 1)πx/p}

sin(πx/p)
has the FS

m∑
k=−m

e2πikx/p, m = 0, 1, . . .. (28)

Solution We set w := eiπx/p, z := w2 = e2πix/p and write

f(x) =
(w2m+1 − w−(2m+1))/2i

(w − w−1)/2i
=
z2m+1 − 1
zm(z − 1)

=
m∑

k=−m

zk =
m∑

k=−m

e2πikx/p.

In each of the previous three examples we were asked to find the Fourier series for
a continuous rational function of cos(2πx/p) and sin(2πx/p). It is possible to find
the Fourier series for any such function by using the Laurent series method together
with manipulations that are familiar from elementary calculus. Additional details
are best developed with concepts from complex analysis that are beyond the scope
of this book.

Dilation and grouping rules

When f is a p-periodic function on R and m = 1, 2, . . . , the dilate f(mx) is
p-periodic as well as p/m-periodic. We can verify the dilation rule

g(x) := f(mx) has the FT G[k] =
{
F [k/m] if k = 0,±m,±2m, . . .
0 otherwise

(29)

by using the synthesis equation for f to write

g(x) =
∞∑

κ=−∞
F [κ]e2πiκmx/p =

∑
m|k

F [k/m]e2πikx/p.

We obtain G by packing m − 1 zeros between successive components of F , see
Fig. 4.7. (Within the context of digital signal processing we say that G results
from upsampling F , see Fig. 10.19.) The dilation rules for functions on R and for
functions on Tp are quite different!

Let f be p-periodic and let m = 1, 2, . . .. We sum the p/m translates of f to
produce a p/m-periodic function

fm(x) := f(x) + f
(
x− p

m

)
+ f

(
x− 2p

m

)
+ · · · + f

(
x− (m− 1)p

m

)
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Figure 4.7. The functions f(x), g(x) := f(3x) on Tp and their
Fourier transforms F [k], G[k] on Z.

that has the p-periodic dilate fm(x/m), see Fig. 4.8. We verify the corresponding
grouping rule

g(x) :=
m−1∑
�=0

f
( x
m

− �
p

m

)
has the FT G[k] = mF [mk] (30)

by using the synthesis equation for f and the discrete orthogonality relation (1.19)
to write

g(x) =
m−1∑
�=0

∞∑
κ=−∞

F [κ]e2πiκ(x/m−�p/m)/p

=
∞∑

κ=−∞
F [κ]e2πiκx/mp ·

m−1∑
�=0

e−2πiκ�/m

=
∞∑

κ=−∞
F [κ]e2πiκx/mp ·

{
m if κ = 0,±m,±2m, . . .
0 otherwise

=
∞∑

k=−∞
mF [mk]e2πikx/p.

You will observe that the Fourier transform G is a scaled dilate (or downsampling)
of F , so the dual of (30) gives the dilation rule for functions on Z, see Appendix 3.
The dilation rules for functions on R and for functions on Z are quite different!

We will not use the somewhat exotic rules (29)–(30) as much as the basic rules
(8)–(15) [but (29)–(30) will be needed for our analysis of filter banks in Section 10.4].
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Figure 4.8. The functions f(x), f3(x), g(x) = f3(x/3) and their
Fourier transforms F [k], F3[k], G[k].

We have included (29)–(30) to help you understand some of the corresponding
identities for working with DFTs that we will describe a bit later in this chapter.

Example Let f be a suitably regular p-periodic function with the Fourier series

f(x) =
∞∑

k=−∞
F [k]e2πikx/p,

and assume that f is p/m-periodic for some m = 2, 3, . . .. Show that F [k] = 0 when
k �= 0,±m,±2m, . . ..

Solution We can apply the translation rule (11) to

f
(
x− p

m

)
− f(x) = 0

and reach the conclusion from the resulting identity

(e−2πik/m − 1)F [k] = 0, k = 0,±1,±2, . . ..

We can also verify that

g(x) :=
m−1∑
�=0

f
( x
m

− �
p

m

)
= mf

( x
m

)
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and reach the conclusion from the identity

∞∑
k=−∞

F [k]e2πikx/mp = f
( x
m

)
=

∞∑
κ=−∞

F [mκ]e2πimκ/mp

that results from the synthesis equation for f and grouping rule (30).

4.2 Selected applications of Fourier series

Evaluation of sums and integrals

Now that you know how to find Fourier series, you can use the analysis and synthesis
equations of Fourier or the identities of Parseval and Plancherel to evaluate many
sums and integrals that cannot be found with the tools of calculus.

Example Show that

1 − 1
3

+
1
5

− 1
7

+ · · · =
π

4
.

Solution From the analysis in Section 1.5 we know that the piecewise linear func-
tion from Fig. 4.1 is represented by the symmetric form of its Fourier series (6). In
particular, when p = 1 we have

x =
1
π

∞∑
k=1

(−1)k+1 sin(2πkx)
k

, − 1
2
< x <

1
2
.

We obtain the desired identity by setting x = 1/4.

Example Find the value of the sum

S := 1 +
1
22 +

1
32 +

1
42 + · · · .

Solution We apply Plancherel’s identity (1.16) to the Fourier series (6) (with p = 1)
to obtain

S =
4π2

2

∑
k �=0

∣∣∣∣ (−1)k+1

2πik

∣∣∣∣
2

= 2π2
∞∑

k=−∞
|F [k]|2

= 2π2
∫ 1/2

−1/2
|f(x)|2dx = 4π2

∫ 1/2

0
x2dx =

π2

6
.
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Example Find the value of the integral

Ik :=
∫ 1

0

3 cos(2πkx) dx
5 − 4 cos(2πx)

, k = 0, 1, . . ..

Solution Let f(x) := 3/(5 − 4 cos 2πx). Using (27), we write

Ik =
∫ 1

0

3 e−2πikx

5 − 4 cos 2πx
dx = F [k] =

(
1
2

)|k|
, k = 0,±1,±2, . . ..

The polygon function

Let PN be the regular N -gon with vertices e2πik/N , k = 0, 1, . . . , N − 1, in the
complex plane, and let

p := 2N sin
( π
N

)
be the corresponding perimeter. Let f(x) be the p-periodic function that results
when we specify the points of PN using the arclength x (measured counterclockwise
from the vertex at 1) as a parameter. Thus Re f , Im f are piecewise linear functions
that interpolate the points

(np
N
, cos

(
2πn
N

))
,
(np
N
, sin

(
2πn
N

))
,

respectively, see Fig. 4.9. We will show how to use rules from the Fourier transform
calculus to find the Fourier series for the polygon function f . (A Kronecker rule
calculation is singularly unappealing!)

We define
g(x) := e−2πix/p f(x)

and use the modulation rule ( 12) to conclude that

G[k] = F [k + 1], k = 0,±1,±2, . . ..

The function g is p/N -periodic (a clockwise rotation by 2π/N cancels the coun-
terclockwise advance of x by p/N), so we can use the translation rule (11) to see
that

G[k] = 0 when k �= 0,±N,±2N, . . ..

The functions g, g′ satisfy

g′(x) +
2πi
p
g(x) = e−2πix/p f ′(x) = e−2πix/p C, 0 < x < p/N
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Figure 4.9. Construction of the polygon function f by
parametrization of the regular N -gon PN and by piecewise linear
interpolation of cos(2πx/p), sin(2πx/p) when N = 6.

where

C :=
f(p/N) − f(0)

p/N
=
e2πi/N − 1

p/N
=

2πi
p
eiπ/N sinc

(
1
N

)
.

Since g, g′ are p/N -periodic we can use the derivative rule (15) to write

2πim
p/N

G[mN ] +
2πi
p
G[mN ]

=
N

p

∫ p/N

x=0
C e−2πix/p e−2πimNx/p dx

= − p

2πi
|C|2

1 +mN
.
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With a bit of algebra we find

G[mN ] =
sinc2(1/N)
(1 +mN)2

, m = 0, ±1, ±2, . . . ,

and thereby obtain the Fourier series

f(x) =
∞∑

m=−∞

sinc2(1/N)
(1 +mN)2

e2πi(1+mN)x/p. (31)

Rates of decay

Let f, f ′, . . . , f (n−1) be continuous p-periodic functions and let f (n) be piecewise
continuous and absolutely integrable on the interval [0, p). You can use repeated
integration by parts to write(

2πik
p

)n

F [k] =
1
p

∫ p

0
f (n)(x)e−2πikx/p dx (32)

and thereby show that F [k] decays to zero at least as fast as 1/kn in the limit
k → ±∞, e.g., as done in Exs. 3.42 and 3.43. For variety, we will give an alternative
argument based on Poisson’s relation (18).

We define the B-splines

B0 := P, B1 = P ∗ P, B2 = P ∗ P ∗ P, . . . ,

and recall that Bn+1, B
′
n+1, . . . , B

(n)
n+1 are continuous functions that vanish when

|x| > 1 + n/2, see Ex. 2.7. We verify that the 1-translates of Bn+1 form a partition
of unity by using Poisson’s relation (18) to write

∞∑
m=−∞

Bn+1(x−m) =
∞∑

k=−∞
sincn+2(k)e2πikx = 1. (33)

We define

g(x) := f(x)Bn+1

(
x

p

)
on R and use (33) to write

f(x) = f(x)
∞∑

m=−∞
Bn+1

(
x

p
−m

)

=
∞∑

m=−∞
f(x−mp)Bn+1

(
x−mp

p

)

=
∞∑

m=−∞
g(x−mp).
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A second application of Poisson’s relation now gives

F [k] =
1
p
G

(
k

p

)
, k = 0,±1,±2, . . .. (34)

The function g on R has the same smoothness as the function f on Tp, so we can
use (34) to see that the Fourier coefficients F [k] have the same rate of decay as the
Fourier transform G(s) of g, as developed in Exs. 3.42 and 3.43.

Equidistribution of arithmetic sequences

Let x0, γ be real numbers with 0 ≤ x0 < 1 and with γ being irrational. For
n = 1, 2, . . . let

xn := x0 + nγ +mn,

where the integer mn is chosen to make 0 ≤ xn < 1. Thus x0, x1, x2, . . . is the
arithmetic progression x0, x0 + γ, x0 + 2γ, . . . on the circle T1. We will show that
these numbers are more or less evenly distributed around the circle. [You can use
this idea to generate “random” numbers from [0,1)!] More specifically, we will show
that

lim
N→∞

1
N + 1

N∑
n=0

f(xn) =
∫ 1

0
f(x) dx (35)

when I is any interval from T1 and

f(x) :=
{

1 if x ∈ I

0 if x �∈ I

is the corresponding indicator function. This result is known as Weyl’s equidistri-
bution theorem.

When g is a suitably regular function on T1 we define

EN{g} :=
1

N + 1

N∑
n=0

g(xn) −
∫ 1

0
g(x) dx,

and we set
ek(x) := e2πikx, k = 0,±1,±2, . . ..

We easily verify that

|EN{ek}| ≤ 2, N = 1, 2, . . . , k = 0,±1,±2, . . . , (36)

EN{e0} = 0, N = 1, 2, . . . , and (37)
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EN{ek} =
1

N + 1

N∑
n=0

e2πik(x0+nγ) −
∫ 1

0
e2πikx dx

=
e2πikx0

N + 1
e2πik(N+1)γ − 1
e2πikγ − 1

→ 0 as N → ∞ when k = ±1,±2, . . .. (38)

The identity (37) gives (35) when I has length 1. Henceforth we will assume that
the length of this interval is less than 1.

Given any sufficiently small ε > 0 we construct continuous piecewise linear func-
tions �ε, uε as shown in Fig. 4.10. We observe that

EN{f} ≤ 1
N + 1

N∑
n=0

uε(xn) −
∫ 1

0
f(x) dx ≤ EN{uε} + ε.

There is an analogous lower bound, so

EN{�ε} − ε ≤ EN{f} ≤ EN{uε} + ε. (39)

Figure 4.10. The functions �ε, f, uε used in the proof of Weyl’s
equidistribution theorem.
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We use the Fourier representation for uε(x) and (36) to write

|EN{uε}| =

∣∣∣∣∣∣EN

{ ∑
|k|≤m

Uε[k]ek +
∑

|k|>m

|Uε[k]|ek

}∣∣∣∣∣∣
≤
∑

|k|≤m

|Uε[k]| |EN{ek}| + 2
∑

|k|>m

|Uε[k]|. (40)

The Fourier coefficients of the continuous piecewise linear function Uε[k] decay
as fast as 1/k2, so the second term on the right of (40) will be less than ε when m
is sufficiently large. We can then use (37)–(38) to see that the first term will be less
than ε when N is sufficiently large. In conjunction with (39) and a similar analysis
for �ε, this shows that

|EN{f}| ≤ 3ε

when N is sufficiently large and thereby proves (35).

4.3 Discrete Fourier transforms

Direct summation

You can find a number of commonly used discrete Fourier transforms by evaluating
the finite sum from the analysis equation

F [k] :=
1
N

N−1∑
n=0

f [n]e−2πikn/N .

For example, you can verify that

f [n] := δ[n] has the FT F [k] =
1
N
, (41)

f [n] := 1 has the FT F [k] = δ[k] , (42)

see Fig. 4.11, by evaluating such terms in your head (and using the discrete orthog-
onality relation (1.20) for (42)). Here

δ[n] :=
{

1 if n = 0,±N,±2N, . . .
0 otherwise

is the discrete delta [which serves as the identity (2.20) for the convolution product].



Discrete Fourier transforms 197

Figure 4.11. The discrete delta f [n] = δ[n] and its Fourier trans-
form F [k] = 1/N when N = 11.

When m = 1, 2, . . . evenly divides N , we define the discrete comb

cm[n] :=
{

1 if n = 0,±m,±2m, . . .
0 otherwise

(43)

on PN . The subscript m specifies the spacing between adjacent teeth and
m′ := N/m gives the number of teeth. We verify that

f [n] := cm[n] has the FT F [k] =
1
m
cN/m[k] (44)

by writing

Cm[k] :=
1
N

N−1∑
n=0

cm[n]e−2πikn/N =
1
N

m′−1∑
n′=0

e−2πik·mn′/mm′

=



m′

N
if k = 0,±m′,±2m′, . . .

0 otherwise
=

1
m
cm′ [k],

see Fig. 4.12. When we specialize (44) by setting m = N , m = 1, we obtain the
DFTs (41), (42), respectively.

Figure 4.12. The discrete comb f [n] = c3[n] and its Fourier
transform F [k] = 1

3 c4[k] when N = 12.
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You can always use a brute force calculation to find a DFT when N is “small.”
(When N is “large” we do such calculations on a computer using one of the fast
algorithms that we will describe in Chapter 6.)

Example Find the DFT of f := (1, 2, 3, 4).

Solution Here N = 4, e−2πi/N = −i, and f [n] = n+1, n = 0, 1, 2, 3, so we can use
the analysis equation to write

4F [0]= 1 · (−i)0·0 + 2 · (−i)1·0 + 3 · (−i)2·0 + 4 · (−i)3·0 = 10

4F [1]= 1 · (−i)0·1 + 2 · (−i)1·1 + 3 · (−i)2·1 + 4 · (−i)3·1 = −2 + 2i

4F [2]= 1 · (−i)0·2 + 2 · (−i)1·2 + 3 · (−i)2·2 + 4 · (−i)3·2 = −2

4F [3]= 1 · (−i)0·3 + 2 · (−i)1·3 + 3 · (−i)2·3 + 4 · (−i)3·3 = −2 − 2i.

In this way we see that

f := (1, 2, 3, 4) has the DFT F = 1
2 (5,−1 + i,−1,−1 − i). (45)

Several discrete Fourier transforms can be found by suitably manipulating the
formula

1 + z + z2 + · · · + zN−1 =
zN − 1
z − 1

, z �= 1

for the sum of a geometric progression.

Example Let r be a complex number. Show that

f [n] := rn, n = 0, 1, . . . , N − 1 has the FT

F [k] =




1 if e2πik/N = r
rN − 1

N(r e−2πik/N − 1)
otherwise.

(46)

Solution We sum a geometric progression as we write

F [k] :=
1
N

N−1∑
n=0

(r e−2πik/N )n =
1
N



N if e2πik/N = r

(r e−2πik/N )N − 1
r e−2πik/N − 1

otherwise

and this gives (46). Figure 4.13 shows f, F when r = .8, N = 100. You might
compare this illustration to Fig. 3.2.

Other examples can be found in Exs. 4.26–4.28.
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Figure 4.13. The function f [n] = .8n, n = 0, 1, . . . , N − 1 and
its Fourier transform F [k] when N = 100.

Basic rules

By now you will undoubtedly expect to see certain rules for working with Fourier
transforms of functions on PN . You can always use the linearity rule

g[n] := c1f1[n]+ · · ·+cmfm[n] has the FT G[k] = c1F1[k]+ · · ·+cmFm[k], (47)

the reflection and conjugation rules

g[n] := f [−n] has the FT G[k] = F [−k], (48)

g[n] := f [n] has the FT G[k] = F [−k], (49)

the translation and modulation rules

g[n] := f [n− n0] has the FT G[k] = e−2πikn0/NF [k], n0 = 0,±1,±2, . . . , (50)

g[n] := e2πik0n/Nf [n] has the FT G[k] = F [k − k0], k0 = 0,±1,±2, . . . , (51)

the convolution and multiplication rules

g[n] := (f1 ∗ f2)[n] has the FT G[k] = NF1[k] · F2[k], (52)
g[n] := f1[n] · f2[n] has the FT G[k] = (F1 ∗ F2)[k], (53)

and the inversion rule

g[n] := F [n] has the FT G[k] =
1
N
f [−k]. (54)

The form of the complex exponential e2πikn/N that we use for Fourier’s represen-
tation of functions on PN accounts for the form of the complex exponentials in
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(50)–(51). The convolution rule (52) gets the constant, N , and the inversion rule
(54) gets the inverse constant, 1/N , as is the case in (13) and (3).

Example Let k0 = 0,±1,±2, . . .. Find the discrete Fourier transform of f [n] :=
cos(2πk0n/N).

Solution We use Euler’s formula to write

f [n] = 1
2e

2πik0n/N · 1 + 1
2e

−2πik0n/N · 1

and apply the modulation rule (51) to (42) to obtain

F [k] = 1
2δ[k − k0] + 1

2δ[k + k0],

see Fig. 4.14. Since f is both even and N -periodic, we can always replace k0 by one
of the integers 0, 1, . . . , 	N/2
 without changing f . (The floor function 	x
 is the
largest integer that does not exceed the real argument x.)

Figure 4.14. The function f [n] = cos(2πk0n/N) and its Fourier transform F [k]
when N = 100 and k0 = 4.

Example Derive the inversion rule (54).

Solution We use the analysis equation for g := F and the synthesis equation for
f to write

G[k] :=
1
N

N−1∑
n=0

F [n]e−2πikn/N =
1
N

N−1∑
n=0

F [n]e2πin(−k)/N =
1
N
f [−k].

Example Let N = m ·m′ where m,m′ are positive integers and assume that f is
an m-periodic function on PN . Show that F [k] = 0 when k is not a multiple of m′.

Solution We can use the translation rule (50) and the periodicity

f [n+m] − f [n] = 0
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to write
(e2πikm/N − 1)F [k] = (e2πik/m′ − 1)F [k] = 0

and thereby conclude that F [k] = 0 when m′ � | k.
We can reach the same conclusion by observing that

f = g ∗ cm
where

g[n] :=
{
f [n] if n = 0, 1, . . . ,m− 1
0 if n = m,m+ 1, . . . , N − 1,

and using the convolution rule (52) with (44) to write

F [k] = NG[k] · 1
m
cm′ [k].

Rules that link functions on PN with functions on PN/m and Pm·N

Let (a, b, c, d) represent a function on P4 and assume that

(a, b, c, d) has the DFT (A,B,C,D).

(Here a, b, c, d, A,B,C,D are complex scalars.) We will show that

(a, 0, b, 0, c, 0, d, 0) has the DFT 1
2 (A,B,C,D,A,B,C,D),

(a, 0, 0, b, 0, 0, c, 0, 0, d, 0, 0) has the DFT 1
3 (A,B,C,D,A,B,C,D,A,B,C,D),

...

and that

(a, b, c, d, a, b, c, d) has the DFT (A, 0, B, 0, C, 0, D, 0),
(a, b, c, d, a, b, c, d, a, b, c, d) has the DFT (A, 0, 0, B, 0, 0, C, 0, 0, D, 0, 0),

...

see Figs. 4.15 and 4.16. The first of these patterns illustrates the zero packing rule
(or upsampling rule)

g[n] :=
{
f [n/m], n = 0,±m,±2m, . . .
0 otherwise

(with f on PN/m and g on PN )

has the FT G[k] =
1
m
F [k], (55)
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Figure 4.15. The effects of zero packing (N = 81, m = 3) on a
function f and its Fourier transform F .

Figure 4.16. The effects of repetition (N = 81, m = 3) on a
function f and its Fourier transform F .

and the second illustrates the repeat rule

g[n] := f [n] (with f on PN/m and g on PN )

has the FT G[k] =
{
F [k/m] if k = 0,±m,±2m, . . .
0 otherwise.

(56)
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We can easily prove (55) by using the analysis equation for g and the analysis
equation for f to write

G[k] :=
1
N

N−1∑
n=0

g[n]e−2πikn/N =
1
N

N/m−1∑
n′=0

f [n′]e−2πikmn′/N =
1
m
F [k].

We will use the zero packing rule to derive the FFT in Section 6.2.
For the proof of (56) we simply verify that we can synthesize g by writing

N−1∑
k=0

G[k]e2πikn/N =
N/m−1∑

k′=0

F [k′]e2πimk′n/N = f [n] =: g[n].

You may wish to compare Fig. 4.7 with Figs. 4.15 and 4.16 as you visualize the
meaning of these rules.

If you begin with the fact that

f = 1 on P1 has the FT F = 1 on P1

you can use the zero packing rule, repeat rule to obtain (41), (42). You can then
derive (44) by applying the repeat rule to (41) or by applying the zero packing rule
to (42), see Ex. 4.36.

The rules (55), (56) use processes that produce functions on PN from functions
on PN/m. We will now introduce two rules using processes that produce functions
on PN from functions on Pm·N , m = 1, 2, . . ..

Let (a, b, c, d, e, f) represent a function on P6 and assume that

(a, b, c, d, e, f) has the DFT (A,B,C,D,E, F ).

(As before, a, . . . , f, A, . . . , F are complex scalars.) We will show that

(a+ d, b+ e, c+ f) has the DFT 2 · (A,C,E),
(a+ c+ e, b+ d+ f) has the DFT 3 · (A,D),

and that

(a, c, e) has the DFT (A+D,B + E,C + F ),
(a, d) has the DFT (A+ C + E,B +D + F ).

The first of these patterns illustrates the summation rule

g[n] :=
m−1∑
�=0

f [n− �N ] (with f on Pm·Nand g on PN )

has the FT G[k] = mF [mk], (57)
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and the second illustrates the decimation rule (or downsampling rule or sampling
rule)

g[n] := f [mn] (with f on Pm·Nand g on PN )

has the FT G[k] =
m−1∑
�=0

F [k − �N ],
(58)

see Figs. 4.17 and 4.18.

Figure 4.17. The effects of summation (N = 27, m = 3) on a
function f and its Fourier transform F .

Figure 4.18. The effects of decimation (N = 27, m = 3) on a
function f and its Fourier transform F .
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We establish (57) by using the analysis equation for f to write

G[k] :=
1
N

N−1∑
n=0

{m−1∑
�=0

f [n− �N ]
}
e−2πikn/N

=
1
N

N−1∑
n=0

m−1∑
�=0

f [n− �N ]e−2πik(n−�N)/N

=
1
N

mN−1∑
n′=0

f [n′]e−2πimkn′/mN = m · F [mk].

We prove (58) by using the synthesis equation for f to write

N−1∑
k=0

G[k]e2πikn/N =
N−1∑
k=0

{m−1∑
�=0

F [k − �N ]
}
e2πikn/N

=
N−1∑
k=0

m−1∑
�=0

F [k − �N ]e2πi(k−�N)mn/mN

=
mN−1∑
k′=0

F [k′]e2πik′mn/mN = f [mn] =: g[n].

You may wish to compare Fig. 4.8 with Figs. 4.17 and 4.18 as you visualize the
meaning of these rules.

As stated in (57) and (58), the summation rule is a discrete form of
N -periodization and the decimation rule is a discrete form of m-sampling as
described in Section 1.4. With this in mind we form a totally discrete version
of the Fourier–Poisson cube from Fig. 1.22, as shown in Fig. 4.19. This cube is a
commuting diagram that uses decimation and summation to link Fourier transform
pairs f, F on PNPQ; g,G on PNP ; φ,Φ on PNQ; and γ,Γ on PN . You might find
it instructive to express g, φ, γ in terms of f , to express γ in terms of g, φ, and to
work out the relations that connect the corresponding Fourier transforms.

Dilation

Dilation is a straightforward process when we work with functions on R, and the
dilation rule (3.13) is easy to state, easy to use, and easy to prove. Things are
considerably more complicated when we work with functions on PN , because in this
context dilation can involve decimation as well as permutation. We will present two
special versions of the dilation rule for functions on PN , and show how they can be
combined to handle the general situation.

When we form the dilate g[n] := f [mn] we will always assume thatm is an integer.
Since f is an N -periodic function on Z, the indices mn can be taken modulo N ,
and we lose no generality if we assume that m takes one of the values 1, 2, . . . , N .
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Figure 4.19. The discrete Fourier–Poisson cube.

We consider first the case where the dilation parameter m = 1, 2, . . . , N − 1
and the basic period N = 2, 3, . . . are relatively prime, i.e., the greatest common
divisor of m and N is 1. When we reduce the (nonzero) dilated indices m · 1,
m ·2, . . . ,m · (N−1) modulo N we get some rearrangement of the (nonzero) indices
1, 2, . . . , N − 1, so there is some integer m′ = 1, 2, . . . , N − 1 such that

mm′ ≡ 1 (modN),

see Ex. 4.51. For example, if N = 7, m = 3, and we reduce the indices

3 · 1, 3 · 2, 3 · 3, 3 · 4, 3 · 5, 3 · 6

modulo 7, we obtain the indices

3, 6, 2, 5, 1, 4

so m′ = 5. In view of this discussion, we can verify the P -dilation rule

g[n] := f [mn] (with gcd(m,N) = 1)
has the FT G[k] = F [m′k] where mm′ ≡ 1 (mod N),

(59)
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by writing

G[k] :=
1
N

N−1∑
n=0

f [mn]e−2πikn/N =
1
N

N−1∑
n=0

f [mn]e−2πi(km′)(mn)/N

=
1
N

N−1∑
n′=0

f [n′]e−2πi(km′)n′/N = F [m′k].

The components of g,G are obtained by suitably permuting the components of f, F ,
respectively, see Fig. 4.20.

Figure 4.20. The effects of P -dilation (N = 69, m = 5, m′ = 14)
on a function f and its Fourier transform F .

We consider next the case where the dilation parameter m = 1, 2, . . . , N is a
divisor of N so that g[n] := f [mn] is obtained by repeating the decimated values
f [0], f [m], f [2m], . . . , f [N −m], see Fig. 4.21. The resulting D-dilation rule

g[n] := f [mn] (with m|N)

has the FT G[k] =




m−1∑
�=0

F

[
k

m
− �N

m

]
if m|k

0 otherwise

(60)
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Figure 4.21. The effects of D-dilation (N = 69, m = 3) on a
function f and its Fourier transform F .

can be verified by using (58) and (56) or by simply writing

N−1∑
k=0

G[k]e2πikn/N =
N/m−1∑

k′=0

m−1∑
�=0

F

[
k′ − �N

m

]
e2πik′mn/N

=
N/m−1∑

k′=0

m−1∑
�=0

F

[
k′ − �N

m

]
e2πi(k′−�N/m)mn/N

=
N−1∑
k=0

F [k]e2πikmn/N = f [mn] =: g[n].

We are now ready to consider the case where the dilation parameter m is an
arbitrary integer 1, 2, . . . , N . We find a factorization

m = d1d2 · · · drµ

where d1, d2, . . . , dr are divisors of N and where µ,N are relatively prime. We can
then write

f1[n] := f [d1 · n]
f2[n] := f1[d2 · n] = f [d1d2 · n]

...
fr[n] := fr−1[dr · n] = f [d1d2 · · · dr · n]
g[n] := fr[µ · n] = f [d1d2 · · · drµ · n].

We use the D-dilation rule (60) to generate F1 from F , F2 from F1, . . . , and Fr

from Fr−1. We then use the P -dilation rule (59) to generate G from Fr.
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Poisson’s relations

You know how to use the Poisson relation (1.29) to construct a Fourier series (18)
from a function on R and its Fourier transform. We will now use the Poisson
relations (1.29)–(1.32) to produce DFTs that are not easily found by other methods.

Suppose first that f is an absolutely summable function on Z with the Fourier
transform F on Tp. We can then use the summation rule

g[n] :=
∞∑

m=−∞
f [n−mN ] (with f on Z and g on PN )

has the FT G[k] =
p

N
F
(
k
p

N

)
(61)

that we establish by writing

G[k] :=
1
N

N−1∑
n=0

g[n]e−2πikn/N =
1
N

N−1∑
n=0

∞∑
m=−∞

f [n−mN ]e−2πikn/N

=
1
N

N−1∑
n=0

∞∑
m=−∞

f [n−mN ]e−2πik(n−mN)/N =
1
N

∞∑
n′=−∞

f [n′]e−2πikn′/N

=
p

N
F
(
k
p

N

)
.

Example Let m be a nonnegative integer with 2m + 1 ≤ N . Show that the
centered box function

gm[n] :=




1 if n = 0, 1, . . . ,m
0 if n = m+ 1, . . . , N −m− 1
1 if n = N −m, . . . , N − 1

has the FT G[k] =




2m+ 1
N

if k = 0

sin{(2m+ 1)kπ/N}
N sin{kπ/N} if k = 1, 2, . . . , N − 1.

(62)

Solution We use (28) with (3) to see that

f [n] :=
{

1 if n = 0,±1, . . . ,±m
0 otherwise

has the FT F (s) =
1
p

sin{(2m+ 1)πs/p}
sin(πs/p)

,

and then use (61) (with m replaced by m′) to obtain (62).
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We can use the inversion rule (54) to rewrite the sampling rule as follows. Let f
be a function on Tp that has absolutely summable Fourier coefficients F [k] (e.g., as
is the case when f is continuous and f ′ is piecewise smooth). We can then use the
sampling rule

g[n] := f
(np
N

)
(with f on Tp and g on PN )

has the FT G[k] =
∞∑

m=−∞
F [k −mN ]. (63)

Example Find the discrete Fourier transform of

g[n] :=
3

5 − 4 cos(2πn/N)
.

Solution We use (27) and (63) to write

G[k] =
∞∑

m=−∞

( 1
2

)|k+mN | =
∞∑

m=0

( 1
2

)k+mN +
∞∑

m=1

( 1
2

)mN−k

=

( 1
2

)k +
( 1

2

)N−k

1 − ( 1
2

)N , k = 0, 1, . . . , N − 1.

The summation rule (61) and sampling rule (63) produce discrete Fourier trans-
form pairs from functions on Z and Tp. Suppose now that f is a smooth function
on R with small regular tails. The function f and its Fourier transform are then
linked by the Poisson sum formula (1.45), and we can use the sample-sum rule

g[n] :=
∞∑

m=−∞
f

(
a · n−mN√

N

)
(with f on R and g on PN )

has the FT G[k] =
1

|a|√N
∞∑

m=−∞
F

(
1
a

· k −mN√
N

)
. (64)

Here a is a nonzero real dilation parameter.
We will establish (64) when a=1. The extension to all real a�=0 is then done by

using the dilation rule (3.13). We set p:=
√
N and use the Poisson sum formula

(1.45) to verify the synthesis equation for g by writing

N−1∑
k=0

G[k]e2πikn/N =
1
p

N−1∑
k=0

∞∑
m=−∞

F

(
k −mN

p

)
e2πi(k−mN)n/N

=
∞∑

k′=−∞

1
p
F

(
k′

p

)
e2πik′(np/N)/p =

∞∑
m=−∞

f
(
n
p

N
−mp

)
= g[n].
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Example For m = 0, 1, 2, . . . we define the discrete Hermite function

gm[n] :=
∞∑

µ=−∞
Hm

{√
2π
N

(n− µN)

}
e−π(n−µN)2/N (65)

where Hm is the Hermite polynomial (3.28), see Fig. 4.22. Show that

gm[n] has the FT
(−i)m

√
N

gm[k]. (66)

Figure 4.22. The discrete Hermite functions (64) when m = 0, 1, 2, 3 and N = 128.
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Solution We recall from (3.31) that

fm(x) := Hm(
√

2π x)e−πx2
has the FT (−i)mfm(s)

and use the sample-sum rule (64) (with a = 1) to see that

gm[n] =
∞∑

µ=−∞
fm

(
n− µN√

N

)

has the Fourier transform

Gm[k] =
1√
N

∞∑
µ=−∞

Fm

(
k − µN√

N

)
=

(−i)m

√
N

∞∑
µ=−∞

fm

(
k − µN√

N

)
=

(−i)m

√
N

gm[k].

In this way we construct eigenfunctions for the discrete Fourier transform operator,
see Ex. 5.17.

4.4 Selected applications of the DFT calculus

The Euler–Maclaurin sum formula

In this section you will learn how to find a simple formula for any sum of the form

S := P(0) + P(1) + · · · + P(N),

where P is a polynomial, e.g., you will learn how to derive the formula

12 + 22 + · · · +N2 = N(N + 1)(2N + 1)/6 (67)

from elementary calculus.
We begin by showing that the rth Bernoulli function (23) satisfies the identity

1
2
wr(0+) +

N−1∑
n=1

wr

( n
N

)
+

1
2
wr(1−) =

wr(0)
Nr

, r = 0, 1, 2, . . .. (68)

When r = 1, 2, . . . the function wr is continuous and piecewise smooth, so we can
use the sampling rule (63) to find the Fourier transform of wr(n/N). In this way
we see that

N−1∑
n=0

wr

( n
N

)
= N

∞∑
m=−∞

Wr[0 −mN ] =
1
Nr

∞∑
m=−∞

m�=0

1
(2πim)r+1 =

wr(0)
Nr

.
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Since w0(x) is odd, the identity (68) also holds when r = 0 provided that we use
midpoint regularization and define w0(0) := 0.

We will now N -periodically extend the polynomial segment P(x), 0 ≤ x < N to
all of R and use Eagle’s method to write

P(x) = C + J0 · w0

( x
N

)
+ J1 ·Nw1

( x
N

)
+ J2 ·N2w2

( x
N

)
+ · · · , 0 < x < N

where

C :=
1
N

∫ N

0
P(x) dx

is the average value of P on 0 ≤ x ≤ N and

Jr := P(r)(0+) − P(r)(N−)

is the jump in the rth derivative at the knot point x = 0, r = 0, 1, . . .. We use this
expression for P(x) with (68) to see that

1
2
P(0) +

N−1∑
n=1

P(n) +
1
2
P(N)

= N · C + J0 · w0(0) + J1 · w1(0) + J2 · w2(0) + · · · .
Since wr(0) = 0 when r = 0, 2, 4, . . . we can rearrange this result to obtain the
Euler–Maclaurin sum formula

N∑
n=0

P(n) =
1
2
{P(0) + P(N)} +

∫ N

0
P(x) dx

+ {P ′(0+) − P ′(N−)} · w1(0) + {P ′′′(0+) − P ′′′(N−)} · w3(0) + · · · .
(69)

The universal constants

w1(0) =
−1
12
, w3(0) =

1
720

, w5(0) =
−1

30240
, w7(0) =

1
1209600

, · · · (70)

can be obtained from the generating function of Ex. 4.22.

Example Use the Euler–Maclaurin formula to derive (67).

Solution We set P(x) := x2 and use (69)–(70) to write

N∑
n=0

n2 =
1
2
{02 +N2} +

∫ N

0
x2 dx− 1

12
{0 − 2N}

=
N2

2
+
N3

3
+
N

6
=
N(N + 1)(2N + 1)

6
.
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The discrete Fresnel function

We will show that the discrete Fresnel function

g[n] := e2πin2/N (on PN ) has the FT

G[k] =
(1 + i){1 + (−1)k(−i)N}

2
√
N

· e−πik2/2N .
(71)

This unusual Fourier transform pair, illustrated in Fig. 4.23, is used in number
theory, optics, accoustics, communication theory, etc.

Figure 4.23. The discrete Fresnel function g and the Fourier
transform G as given in (71) when N = 91.

We begin by defining the function

f(x) := e2πix2/N , 0 ≤ x < N

on TN . The function f is continuous on TN [f(0+) = 1, f(0−) := f(N−) = 1] and
the derivatives f ′, f ′′, . . . are defined and continuous except at the origin where

f ′(0+) − f ′(0−) := f ′(0+) − f ′(N−) = −4πi.

This being the case, we can use the sampling rule (63) to see that g has the Fourier
transform

G[k] =
∞∑

m=−∞
F [k −mN ],

where the Fourier coefficients are given by the analysis equation

F [k −mN ] =
1
N

∫ N

0
e2πix2/N · e−2πi(k−mN)x/Ndx.
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We complete the square in the exponent of the integrand for the even m Fourier
coefficients and thereby write

F [k − 2µN ] =
1
N

∫ N

0
e2πix2/N · e−2πi(k−2µN)x/N dx

= e−2πi(k/2−µN)2/N · 1
N

∫ N

0
e2πi(x−k/2+µN)2/N dx

= e−πik2/2N · 1
N

∫ (µ+1)N−k/2

µN−k/2
e2πiu2/N du.

A similar computation for the odd m Fourier coefficients gives

F [k − (2µ+ 1)N ] = e−2πi(k/2−N/2−µN)2/N · 1
N

∫ N

0
e2πi(x−k/2+N/2+µN)2/N dx

= e−2πi(k2/4+N2/4−kN/2)/N · 1
N

∫ N

0
e2πi(x−k/2+N/2+µN)2/N dx

= (−1)k(−i)Ne−πik2/2N · 1
N

∫ (µ+1)N+N/2−k/2

µN+N/2−k/2
e2πiu2/N du.

We now use these expressions as we form the sum

G[k] =
∞∑

µ=−∞
F [k − 2µN ] +

∞∑
µ=−∞

F [k − (2µ+ 1)N ]

= e−πik2/2N · 1
N

{∫ ∞

−∞
e2πiu2/N du+ (−1)k(−i)N

∫ ∞

−∞
e2πiu2/N du

}

= {1 + (−1)k(−i)N}e−πik2/2N ·
√
NI

where
I :=

∫ ∞

−∞
e2πit2 dt.

This Fresnel integral is independent of N and k, so we can determine its value by
setting k = 0, N = 1 in the formula for G[k], and writing

1 = (1 − i) · I.
In this way we find I = (1 + i)/2 and complete the verification of (71).

You may struggle a bit with the details of this argument, but you will have no
trouble evaluating the Gauss sum

SN :=
N−1∑
n=0

e2πin2/N =
√
N ·




1 if N = 1, 5, 9, . . .
0 if N = 2, 6, 10, . . .
i if N = 3, 7, 11, . . .
1 + i if N = 4, 8, 12, . . .

(72)
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by using (71) to write

SN =
N−1∑
n=0

g[n] = N ·G[0] =
√
N

2
· (1 + i){1 + (−i)N}.

You may be interested to learn that it took Gauss several years to derive this
result for his proof of the law of quadratic reciprocity in number theory. Exercises
4.51–4.59 will show you some of the other fascinating connections between number
theory and discrete Fourier analysis.

Further reading

Briggs, W.L. and Henson, V.E. The DFT, SIAM, Philadelphia, 1995.
Chapter 3 gives the rules for Fourier transforms of functions on PN , and the
appendix has a pictorial dictionary of 15 DFT pairs. Chapter 9 includes a nice
discussion of the Euler-Maclaurin sum formula.

Brown, J.W. and Churchill, R.V. Fourier Series and Boundary Value Problems, 7th
ed., McGraw-Hill, New York, 2006.
Elementary techniques for finding Fourier series are described in Chapter 2 of
this highly evolved text for scientists and engineers.

Č́ižek, V. Discrete Fourier Transforms and Their Applications, Adam Hilger,
Boston, 1986.
Rules for Fourier transforms of functions on PN are developed in Chapter 4.

Courant, R. and John, F. Introduction to Calculus and Analysis, Vol. I, John Wiley
& Sons, New York, 1965.
Various Fourier series and a nice introduction to the Bernoulli functions can
be found in Chapter 8 of this classic applied mathematics text.

Henrici, P. Applied and Computational Complex Analysis, Vol. 3, John Wiley &
Sons, New York, 1986.
Chapter 13 of this applied mathematics treatise has an exceptionally well writ-
ten introduction to discrete Fourier analysis.

Oppenheim, A.V. and Schafer, R.W. Digital Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1975.
Chapter 3 introduces the Fourier transform calculus for functions on PN within
an engineering context.
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Schroeder, M.R. Number Theory in Science and Engineering, 2nd ed., Springer-
Verlag, New York, 1986.
Elementary number theory is used to evaluate Gauss sums and DFTs of Legen-
dre sequences, discrete Fresnel functions, . . . in Chapter 15 of this fascinating
text.

Tolstov, G.P. Fourier Series (English translation by R.A. Silverman), Prentice Hall,
Englewood Cliffs, NJ, 1962; reprinted by Dover Publications, New York, 1976.
Integration is used to find a number of basic Fourier series in Chapter 1. Power
series are used to obtain a few less common Fourier series in Chapter 4.

Walker, J.S. Fourier Analysis, Oxford University Press, New York, 1988.
Chapter 1 has an introduction to Fourier series. An elementary introduction
to Poisson’s relation is given in Chapter 12.

Exercises

.. . .
...

. .. ...........
..
. ... ....••• EXERCISE 4.1 Let 0 < α < p and let f be a p-periodic function with

f(x) :=

{
1 for 0 < x < α

0 for α < x < p.

Find the Fourier series for f by using:

(a) Kronecker’s rule (5) to evaluate

1
p

∫ α

0
1 · e−2πikx/p dx;

(b) the known Fourier series (16) for the Bernoulli function w0 and the identity

f(x) = w0

(
x

p

)
− w0

(
x− α

p

)
+
α

p
; and

(c) Poisson’s relation (18) and the identity

f(x) =
∞∑

m=−∞
P
(
x− α/2 −mp

α

)
.

. .
..

..

..

.. ...

...... ....

. ... ....••• EXERCISE 4.2 Use Poisson’s relation to find the Fourier series for each of the
following p-periodic functions on R.

(a) f(x) := | sin(πx/p)| (b) f(x) := max{cos(2πx/p), 0}

(c) f(x) :=
∞∑

m=−∞
e−π(x−mp)2 (d) f(x) :=

∞∑
m=−∞

e−a|x−mp|, a > 0
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 4.3 Let f(x) := x when 0 < x < 1. Find the Fourier series for f if:

(a) f is 1-periodic; (b) f is even and 2-periodic; (c) f is odd and 2-periodic.

. .
....

. ........ ..... ...
.. .. ....••• EXERCISE 4.4 Suitably manipulate the Fourier series (23) for the Bernoulli func-
tions w0, w1, w2 and thereby show that when 0 < x < 1:

(a)
∞∑

k=1

sin(2πkx)
k

=
π

2
(1 − 2x); (b)

∞∑
k=1

cos(2πkx)
k2 =

π2

6
(1−6x+6x2);

(c)
∞∑

k=1

sin(2πkx)
k3 =

π3

3
(x−3x2+2x3); (d)

∞∑
k=1

cos(2πkx)
k4 =

π4

90
(1−30x2+60x3−30x4).

.. . .

.

...
......... .... ...

.. .... ...••• EXERCISE 4.5 Let −∞ < s < ∞ with s �= 0,±1,±2, . . .. Derive each of the
following Fourier series.

(a) e2πisx =
∞∑

k=−∞
sinc(k − s)e2πikx, − 1

2 < x < 1
2

(b) sin(2πsx) =
2 sin(πs)

π

{
1 · sin(2πx)

12 − s2
− 2 · sin(4πx)

22 − s2
+ · · ·

}
, − 1

2 < x < 1
2

(c) cos(2πsx) =
2 sin(πs)

π

{
1
2s

+
s · cos(2πx)

12 − s2
− s · cos(4πx)

22 − s2
+ · · ·

}
, − 1

2 ≤ x ≤ 1
2

(d) csc(πs) =
2
π

{ 1
2s

+
s

12 − s2
− s

22 − s2
+ · · ·

}
(e) cot(πs) =

2
π

{ 1
2s

− s

12 − s2
− s

22 − s2
− · · ·

}
Note. The series of (d)–(e) are usually obtained by using tools from complex analysis!

.
...
..

....... .... .... .... ...••• EXERCISE 4.6 Let −∞ < s < ∞ and let f be a 2π-periodic function with

f(x) :=




cosh(2sx) for |x| < π

2
− cosh{2s(x− π)} for |x− π| < π

2
.

Find the Fourier series for f and thereby show that:

(a) cosh(2sx) =
4 cosh(πs)

π

{ cosx
4s2 + 12 − 3 · cos 3x

4s2 + 32 +
5 · cos 5x
4s2 + 52 − · · ·

}
, −π

2
< x <

π

2
;

(b) sech(πs) =
4
π

{ 1
4s2 + 12 − 3

4s2 + 32 +
5

4s2 + 52 − · · ·
}

, −∞ < s < ∞.

. . .
..

..
........ .... .. ... ....••• EXERCISE 4.7 Set z = e2πix/p in a suitably chosen Laurent series (25) to find

the Fourier series for the p-periodic function:

(a) f(x) = cos3(2πx/p); (c) f(x) = − log{1−αe2πix/p}, |α| < 1;

(b) f(x)=1/(1 − αe2πix/p), |α|<1; (d) f(x)= − log{1−2α cos(2πx/p)+α2}, |α|<1.
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Note. When we set α = 1 in (d) we obtain the Fourier series

− log

∣∣∣∣2 sin

(
πx

p

)∣∣∣∣ =
∞∑

k=1

cos(2πkx/p)
k

, x �= 0,±p,±2p, . . ..

.
...

. .... ......... .... ... .....••• EXERCISE 4.8 Within the context of suitably regular p-periodic functions on R,
formally derive:

(a) the reflection rule; (b) the conjugation rule; (c) the translation rule;

(d) the modulation rule; (e) the multiplication rule; (f) the convolution rule;

(g) the derivative rule; (h) the inversion rule.

Hint. You can use a direct argument . . . or you can use Poisson’s relation (18) to obtain
the desired result from a corresponding rule from Chapter 3.

. . ..

.. .
...
.. . ...
..... ..... ....••• EXERCISE 4.9 Let b, r be 2π-periodic functions on R with

b(x) :=

{
1 for 0 < x < π

0 for π < x < 2π,
r(x) :=

{
x for 0 < x < π

0 for π < x < 2π.

Verify that b, r have the Fourier series

b(x) =
1
2

+
∑
k �=0

i[(−1)k − 1]
2πk

eikx, r(x) =
π

4
+
∑
k �=0

{
i(−1)k

2k
+

(−1)k − 1
2πk2

}
eikx,

and then use the Fourier transform calculus to find the Fourier series for

(a) t(x) := (b ∗ b)(x) = r(x) + r(−x); (b) f(x) := b(x)−b(−x) = 2b(x)−1 = t′(x);

(c) g(x) := r(x) + r(x− π); (d) j(x) := r(π−x)−r(π+x) = 2πw0(x/2π);

(e) d(x) := b(x− π/4) − b(x+ π/4); (f) pn(x) := b(x) sin(nx), n = 1, 2, . . ..

.
..
. ..... ......... .... .. .....••• EXERCISE 4.10 Let f be a suitably regular function on Tp, let −∞ < x0 < ∞,
and let m = 1, 2, 3, . . .. What can you infer about the Fourier transform F if you know
that:

(a) f(x) = f(x)? (b) f(x) = f(−x)? (c) f(x+ p/m) = f(x)?

(d) f(x+ p/2) = −f(x)? (e) f(x0+x) = f(x0−x)? (f) f(x0+x) = −f(x0−x)?

(g)
∫ p

0
f(x) dx = 1? (h)

∫ p

0
|f(x)|2dx = 1?

(i) f(x) =
1
p

∫ p

0
f(u)

sin{(2m+ 1)π(x− u)/p}
sin{π(x− u)/p} du?

Hint. Do you recognize the Dirichlet kernel (28) in (i)?
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 4.11 A 1-periodic function on R having the Fourier series

f(x) =
∞∑

k=−∞
cke

2πikx

(with F [k] replaced by ck) takes the values

f(x) :=

{
1 if 0 < x < 1/10

0 if 1/10 < x < 1.

Sketch the graph of f on [0, 1] and corresponding graphs of the functions represented by
the following Fourier series.

(a)
∞∑

k=−∞
c−ke

2πikx (b)
∞∑

k=−∞
{(−1)kck}e2πikx (c)

∞∑
k=−∞

{ ∞∑
m=−∞

cmck−m

}
e2πikx

(d)
∞∑

k=−∞
c2ke

2πikx (e)
∞∑

k=−∞
{ikck}e2πikx (f)

∞∑
k=−∞

{ck−5 − ck+5)/2i}e2πikx

(g)
∞∑

k=−∞
c3ke

2πikx (h)
∞∑

k=−∞
{ck+c−k}e2πikx (i)

∞∑
k=−∞

{ ∞∑
m=−∞

cmc2k−m

}
e2πikx

Hint. Write (−1)k = e2πik(1/2) when you analyze (b).

.. . .

.

...
......... .....

..

.. ... ...••• EXERCISE 4.12 Sketch the graph of the 6-periodic function on R that has the
Fourier coefficients:

(a) F [k] := (1/6) sinc2(k/6); (b) F1[k] := (−1)kF [k];

(c) F2[k] :=

{
F [k/3] if k = 0,±3,±6, . . .

0 otherwise;
(d) F3[k] := 2F [2k];

(e) F4[k] :=
∞∑

�=−∞
(1/6) sinc(�/6)F [k − �]; (f) F5[k] := (2πik/6)F [k];

Hint. Use Poisson’s relation (18) to determine f from (a).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 4.13 Let 4-periodic functions f1, f2, f3 on R be constructed from the
4-periodic function f on R as shown in the following graphs.

........................ ............................................................................................... ....... ........

....

....

....

....

...

...

....

....

....

....

........

.......

..........................................
....
....
....
.....
...
....
..

0 1 2 3 4 x

f(x)

1

......................................................................... ..................................................... ...........

....

....

....

....

...

...

....

....

....

....

........

.......

.........
......
.....
......
......
......
...............................

0 1 2 3 4 x

f1(x)

1

...................... ........................ ..................... ..................................................... .......

....

....

....

....

....

....

....

...

....

....

....

....

....

...

...

....

....

....

.......

.....

........................................

...
.....
.....
......
.....
.....
.............

...
....
...
....
....
....
.

..............................

0 1 2 3 4 x

f2(x)

1

..................... . ................................................................................................... ........
....
....
....
....
....
....
....
....
....
........
......

..............................................
......
......
....
......
....
....

....
...
....
....
....
....
.....
.

....
....
....
....
...
....
.

0 1 2 3 4 x

f3(x)

1

Find the Fourier series for f1, f2, f3 using coefficients from f(x) =
∞∑

k=−∞
cke

2πikx/4.

Hint. This is the flip side of Ex. 4.11.

. .... ..... ......... .. .. ......••• EXERCISE 4.14 Let w0, w1, . . . be the Bernoulli functions as defined by (23) (and
developed in Ex. 4.22).

(a) Show that
∞∑

k=1
1/k2n = 1

2 (2π)2n

∫ 1

0
w2

n−1(x) dx, n = 1, 2, . . ..

(b) Show that 1/12 + 1/22 + 1/32 + · · · = π2/6.

(c) Show that 1/14 + 1/24 + 1/34 + · · · = π4/90.

. .

.

. ... .......... .... ......••• EXERCISE 4.15 Let N = 1, 2, . . . and let f(x) := (1 + eix)N , −∞ < x < ∞.

(a) Find the Fourier series for f (using p = 2π).

(b) Use Plancherel’s identity to show that

(
N

0

)2

+

(
N

1

)2

+ · · · +

(
N

N

)2

=

(
2N
N

)
.

Hint. [(1 + eix)(1 + e−ix)]N = [eix/2 + e−ix/2]2N
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 4.16 An ellipse with eccentricity 0 < ε < 1 has the equation
r(θ) = 1/(1 + ε cos θ) in polar coordinates.

(a) Verify that the major and minor radii of this ellipse are given by

a := 1
2

{
[r(θ) cos θ]max − [r(θ) cos θ]min

}
= (1 − ε2)−1,

b := [r(θ) sin θ]max = (1 − ε2)−1/2.

(b) Show that r(θ) = C(eiθ) where C(z) := 2z/(εz2 + 2z + ε).

(c) Verify that C has the partial fraction decomposition

C(z) = (1 − ε2)−1/2
{

1
1 + ρz

− (ρ/z)
1 + (ρ/z)

}
with ρ :=

ε

1 + (1 − ε2)1/2
.

Hint. Observe that −ρ and −1/ρ are the roots of εz2 + 2z + ε.

(d) Show that C is given by the Laurent series

C(z) = (1 − ε2)−1/2
∞∑

k=−∞
(−ρ)|k|zk, ρ < |z| < 1/ρ.

(e) Use (b) and (d) to show that

r(θ) = (1 − ε2)−1/2
∞∑

k=−∞
(−ρ)|k|eikθ = (1 − ε2)−1/2

{
1 + 2

∞∑
k=1

(−ρ)k cos kθ

}
.

(f) Use the Fourier series (e) to evaluate the integrals∫ π

0

cos kθ
1 + ε cos θ

, k = 0, 1, 2, . . ..

(g) Use The Fourier series (e) to show that

[r(θ)]2 = (1 − ε2)−1
∞∑

k=−∞

{ ∞∑
m=−∞

(−ρ)|m|(−ρ)|k−m|
}
eikθ,

and thereby verify that the ellipse has the area

1
2

∫ 2π

θ=0
[r(θ)]2dθ =

π

(1 − ε2)3/2
.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 4.17 Let 0 < α < p and let f be a p-periodic function with

f(x) :=

{
x2 for 0 < x < α

0 for α < x < p.

(a) Explain why

f(x) = 2p2w2

(
x

p

)
− α2w0

(
x− α

p

)
− 2αpw1

(
x− α

p

)
− 2p2w2

(
x− α

p

)
+
α3

3p

where w0, w1, . . . are the Bernoulli functions (23).
(b) Using (a) verify that

F [k] =
2!α3

p

R2(2πikα/p)
(2πikα/p)3

e−2πikα/p, k = ±1,±2, . . .

where

Rn(z) := ez − 1 − z − z2

2!
− · · · − zn

n!
, n = 1, 2, . . ..

Note. This expression shows the pattern for F [k] that results when x2 is replaced by
xn, n = 1, 2, . . . , in the definition of f , see Appendix 2.

.. . .
....

. .. ...........
..
. ... ....••• EXERCISE 4.18 Let a > 0, b, c be real numbers with a2 + b2 = c2, let p > 0,
and let

f(x) :=
∞∑

k=−∞

e2πikx/p

k2 + 2bk + c2
, −∞ < x < ∞.

(a) Show that f is the Fourier series of the p-periodic function f with

f(x) =
π

2a

(
eπ(a−ib)(2x/p−1)

sinh{π(a− ib)} +
e−π(a+ib)(2x/p−1)

sinh{π(a+ ib)}

)
when 0 ≤ x ≤ p.

(b) Specialize (a) to the case where x = 0 and thereby show that
∞∑

k=−∞

1
k2 + 2bk + c2

=
π

2a

(
eπ(a+ib)

sinh{π(a+ ib)} +
e−π(a−ib)

sinh{π(a− ib)}

)
.

(c) Specialize (c) to the case where b = 0 and thereby show that
∞∑

k=−∞

1
k2 + c2

=
π

c tanh(πc)
.

(d) Using (c), show that
∞∑

k=1

1
k2 = lim

c→0+

1
2

{ ∞∑
k=−∞

1
k2 + c2

− 1
c2

}
=
π2

6
.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 4.19 The Bessel function Jk of the first kind with order
k = 0,±1,±2, . . . and argument −∞ < α < ∞ can be defined by writing

eiα sin x =:
∞∑

k=−∞
Jk(α)eikx, −∞ < x < ∞.

i.e., Jk(α) is the kth Fourier coefficient of the 2π-periodic function f(x, α) := eiα sin x.
Use this generating function and your knowledge of Fourier analysis to prove the following
identities.

(a) Jk(α) = (1/π)
∫ π

0
cos{α sinx− kx} dx (b) 1 = J2

0 (α) + 2
∞∑

k=1
Jk(α)2

Hint. Analysis equation Hint. Plancherel identity

(c) cos{α sinx} = J0(α) + 2
∞∑

k=1
J2k(α) cos(2kx) (d) kmJk(α) → 0 as k → ∞,

sin{α sinx} = 2
∞∑

k=1
J2k−1(α) sin{(2k − 1)x} m = 0,±1,±2, . . .

Hint. Synthesis equation and (g) Hint. See (32)

(e) 2kJk(α) = αJk−1(α) + αJk+1(α) (f) Jk(α) = Jk(α)

Hint. fx(x, α) = iα cosx · f(x, α) Hint. f(−x, α) = f(x, α)

(g) J−k(α) = (−1)k Jk(α) (h) Jk(−α) = (−1)k Jk(α)
Hint. f(x+ π, α) = f(−x, α)

(i) α2 J ′′
k (α) + αJ ′

k(α) + α2 Jk(α) = k2Jk(α) (j) 2J ′
k(α) = Jk−1(α) − Jk+1(α)

Hint. α2 fαα + αfα + α2 f = −fxx

... . .
.......... ....

.. .... ....••• EXERCISE 4.20 Let f1, f2, and f := f1 ∗ f2 be functions on T5 with

f1(x) :=
∞∑

m=−∞
P(x− 5m), f2(x) :=

∞∑
m=−∞

P
(
x− 5m

2

)
.

(a) Sketch the graphs of f1, f2, and f .

(b) On the interval [−5/2, 5/2], f can be expressed as a linear combination of suitably
translated triangle functions. Use this fact and Poisson’s relation (18) to find an
expression for the Fourier coefficients of f .

(c) Use Poisson’s relation (18) to find the Fourier coefficients of f1, f2 and then use the
convolution rule to find another expression for the Fourier coefficients of f .

.... .......... ....
.. ..... ....••• EXERCISE 4.21 Let f be real and 2π-periodic on R. By using the transformation

x = r cos θ, y = r sin θ

we see that the graph G of r = f(θ) (in polar coordinates) corresponds to the orbit

z(θ) := r cos θ + ir sin θ = f(θ)eiθ
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in the complex plane, e.g., the cardioid r = 2(1 − cos θ) and the 3-leaf rose r = 2 sin 3θ
have the orbits z = −1 + 2eiθ − e2iθ and z = i{e−2iθ − e4iθ}, respectively.

(a) Show that if z is hermitian, i.e., z(−θ) = z(θ), then G is symmetric about the x-axis.
What is the corresponding property of the Fourier coefficients Z[k]?

(b) Show that if z is antihermitian, i.e., z(−θ) = −z(θ), then G is symmetric about the
y-axis. What is the corresponding property of the Fourier coefficients Z[k]?

(c) Show that if z(θ + 2π/N) = z(θ)e2πi/N for some (minimal) N = 2, 3, . . . , then G
has an N -fold axis of symmetry. What is the corresponding property of the Fourier
coefficients Z[k]?

Hint. Refer to the analysis of the polygon function of Fig. 4.9.

(d) More generally, show that if z(θ + 2π/N) = z(θ)e2πim/N for some (minimal)
N = 2, 3, . . . and some m = 1, 2, . . . , N − 1 that is relatively prime to N , then G
has an N -fold axis of symmetry. What is the corresponding property of the Fourier
coefficients Z[k]?

(e) Describe the symmetry of the epicycloid zn(θ) := (n+ 1)eiθ − ei(n+1)θ generated by
a point on a circle of radius 1 that rolls outside a circle of radius n = 1, 2, 3, . . ..

(f) Describe the symmetry of the hypocycloid zn(θ) := (n− 1)eiθ + e−(n−1)iθ generated
by a point on a circle of radius 1 that rolls inside a circle of radius n = 1, 2, 3, . . ..

Note. You may wish to experiment with computer-generated plots of such
decimated Fourier series, e.g., try viewing z(θ) := eimθ

{
1 + e6iθ/2 + e12iθ/3

}
,

m = −6,−5, . . . , 6.

. ... .... .......... .. .. ......••• EXERCISE 4.22 In this exercise you will develop a generating function for the
Bernoulli functions (23), see Exs. 3.37 and 4.19. Let β0(x), β1(x), β2(x), . . . be defined to
be the coefficients of 1, u, u2, . . . in the Maclaurin series expansion

−uexu

eu − 1
=:

∞∑
n=0

βn(x)un.

(a) Find the first two terms of the u-power series for the left side and thereby show that
β0(x) = −1, β1(x) = 1

2 − x.

(b) Differentiate both sides of the above relation with respect to x and (after some ma-
nipulation) show that β′

n(x) = βn−1(x), n = 1, 2, . . ..

(c) Integrate both sides of the above relation from x = 0 to x = 1 and thereby show that∫ 1

0
βn(x) dx = 0, n = 1, 2, . . ..

Note. From (b) and (c) you can infer that wn−1(x) = βn(x) when 0 < x < 1,
n = 1, 2, . . ..
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(d) Suitably manipulate the relation

− dm

dxm

{
uexu

eu − 1

}
=

∞∑
n=0

β
(m)
n (x)un

and thereby show that when n = 1, 2, . . .

β
(m)
n (0+) − β

(m)
n (1−) =

{
1 if m = n− 1

0 otherwise.

(e) Use the generating relation to deduce that βn(1 − x) = (−1)nβn(x), n = 1, 2, . . . ,
i.e., βn is even or odd with respect to the point x = 1

2 .

Note. The Bernoulli polynomials Bn(x) := −n!βn(x), n = 1, 2, . . . are commonly used
in numerical analysis, number theory,. . . . For additional details (see K.S. Williams,
Bernoulli’s identity without calculus, Math. Mag. 70(1997), 47–50).

.. .
....

.. ....... ......
..
.. .... ...••• EXERCISE 4.23 Let f be a continuous function on [0, L] with f(0) = f(L) = 0,
and assume that f ′ is piecewise smooth. In this exercise you will use Fourier analysis to
derive Wirtinger’s inequality.

(a) Odd extend f to [−L,L] using f(−x) := −f(x), 0 ≤ x ≤ L, and then verify that the
Fourier series

f(x) =
∑
k �=0

ck e
2πikx/2L, f ′(x) =

∑
k �=0

dk e
2πikx/2L

are related in such a manner that dk = (πik/L)ck, k = ±1,±2, . . ..

(b) Use Plancherel’s identity (for f, f ′) together with the identity of (a) to show that∫ L

0
|f ′(x)|2 dx ≥ π2

L2

∫ L

0
|f(x)|2 dx

with equality if and only if f is a scalar multiple of sin(πx/L).

. .
..

.. . .

........ ....

.. .... ....••• EXERCISE 4.24 A simple, piecewise smooth, positively oriented, closed curve
z(t), 0 ≤ t ≤ L in the complex plane is parametrized using arc length so that |z′(t)| = 1
at points where z′ is continuous. In this exercise you will prove that the enclosed area, A,
is maximized when the curve is a circle.

(a) Use Green’s formula from calculus and Parseval’s identity to show that

A =
1
2

Im
∫ L

0
z′(t)z(t)dt = π

∞∑
k=−∞

k
∣∣Z[k]

∣∣2.
Here Z[k], k = 0,±1,±2, . . . are the Fourier coefficients of z.

(b) Show that

L =
∫ L

0
|z′(t)|2dt =

(
4π2

L

) ∞∑
k=−∞

k2∣∣Z[k]
∣∣2.
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(c) Show that
L2

4π
−A = π

∞∑
k=−∞

(k2 − k)
∣∣Z[k]

∣∣2,
and thereby prove that the enclosed area takes the maximum value A = L2/4π if and
only if the curve is a circle z(t) = Z[0] + Z[1]e2πit/L with radius

∣∣Z[1]
∣∣ = L/2π.

.
.
. . ..
.
. ......... ... .......••• EXERCISE 4.25 Let f be a function on Z that is both p0-periodic and p1-periodic
where p0 > p1 are positive integers. In this exercise you will show that f is periodic with
period p = gcd(p0, p1).

(a) Let m0,m1 be integers. Show that f [m0p0 +m1p1 + n] = f [n], n = 0,±1,±2, . . ..

(b) Let the positive integers d1, d2, . . . , dk and p0 > p1 > p2 > · · · > pk be constructed
by using the Euclidean algorithm so that

p0 := d1 ·p1+p2, p1 := d2 ·p2+p3, . . . , pk−2 := dk−1 ·pk−1+pk, pk−1 := dk ·pk.

Show that pk is the greatest common divisor of p0, p1.

Hint. Observe that pk

∣∣pk−1, pk

∣∣pk−2, . . . , pk

∣∣p0.
(c) Show that f is p-periodic.

. .
.. . .

.

.. ......... ..... .....••• EXERCISE 4.26 In this exercise you will show that the ramp function f [n] := n,
n = 0, 1, . . . , N − 1 on PN has the Fourier transform

F [k] =
1
2

{
N − 1 if k = 0

i cot
(
kπ

N

)
− 1 if k = 1, 2, . . . , N − 1.

(a) Verify that

N−1∑
n=0

nzn = z
d

dz

N−1∑
n=0

zn =
(N − 1)zN+1 −NzN + z

(z − 1)2
, z �= 1,

and then use this identity with zk := e−2πik/N to derive the above expression for F
by evaluating the discrete sum from the analysis equation.

(b) Verify that
f [n] − f [n− 1] = 1 −Nδ[n]

and then use this identity with the translation rule to derive the above expression
for F .

(c) Apply Plancherel’s identity to f, F and thereby show that

N−1∑
k=1

cot2
(
kπ

N

)
=

(N − 1)(N − 2)
3

, N = 2, 3, . . ..
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 4.27 In this exercise you will find the Fourier transform of the signum
function f on PN .

(a) Let N := 2M , M = 1, 2, . . . , and let

f [n] :=




1 if n = 1, 2, . . . ,M − 1

0 if n = 0,M

−1 if n = −1,−2, . . . ,−(M − 1).

Show that

F [k] =

{
− 2i
N

cot
(
kπ

N

)
if k = ±1,±3,±5, . . .

0 if k = 0,±2,±4, . . ..

(b) Let N := 2M + 1, M = 0, 1, . . . , and let

f [n] :=




1 if n = 1, 2, . . . ,M

0 if n = 0

−1 if n = −1,−2, . . . ,−M.

Show that

F [k] =




− i

N
cot
(
kπ

2N

)
if k = ±1,±3,±5, . . . ,±(2M − 1)

i

N
tan
(
kπ

2N

)
if k = 0,±2,±4, . . . ,±2M.

Hint. The tricks from Ex. 4.26 may be useful.

. .
..

.. . .

........ ....

.. .... ....••• EXERCISE 4.28 Let N be a “large” positive integer with a “small” divisor
m = 2, 3, . . . , let 0 < α < 1 with αN � 1, let

f [n] := αn, n = 0, 1, . . . , N − 1,

be a function on PN , and let

fm[n] := f
[
n− N

m

]
, n = 0, 1, . . . , N − 1,

be the cyclic translate. Show that we obtain m “circles” when we plot 1/Fm[k],
k = 0, 1, . . . , N − 1, as points in the complex plane.

.. .
....

.. ....... ......
..
.. .... ...••• EXERCISE 4.29 Let −∞ < α < ∞, let f be the function on PN with

f [n, α] := e2πiαn/N , n = 0, 1, . . . , N − 1,

and let F [k, α] be the corresponding discrete Fourier transform.

(a) Explain why the samples f [n, α] always seem to come from sinusoids having a fre-
quency parameter in the interval −N/2 ≤ α < N/2. In (b)–(d) we will assume that
this is the case.

Hint. Consider f [n, α+mN ], m = ±1,±2, . . . , and see Ex. 1.17(d).
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(b) Show that

F [k, α] = e−πi(N−1)(k−α)/N sinc(k − α)
sinc{(k − α)/N} .

(c) Let g[n, α] := w[n] · f [n, α] so G[k, α] = (W ∗F )[k, α]. Here the nonnegative function
w on PN is a window that is used to smoothly turn on and turn off the samples of
the complex exponential. What happens in the two extreme cases where w[n] := 1,
n = 0, 1, . . . , N − 1, and where w[n] := δ

[
n− �N/2	

]
, n = 0, 1, . . . , N − 1?

(d) Let w be the hanning window w[n] := 1
2{1 − cos[π(2n+ 1)/N ]}. Show that

W [k] = − 1
4e

iπ/N δ[k − 1] + 1
2δ[k] − 1

4e
−iπ/N δ[k + 1]

G[k, α] = − 1
4e

iπ/NF [k − 1, α] + 1
2F [k, α] − 1

4e
−iπ/NF [k + 1, α].

Note. A computer-generated plot of
∣∣F [k, α]

∣∣ vs k will have a peak at k = �α	 or k = 
α�,
but as k moves away from α the graph will decay like |k − α|−1 when α �= 0,±1,±2, . . ..
(Here � 	 and 
 � are the floor and ceiling functions, e.g., �π	 = 3, 
π� = 4.) In contrast,
the graph of |G[k, α]| decays like |k − α|−3. Thus the hanning window helps us to resolve
closely spaced peaks in the spectrum corresponding to a sum c1f1[n, α1] + c2f [n, α2] +
· · · + cMf [n, αM ], see Ex. 3.34.

.
.
.. ..
..
.. ...
...... .. .... ....••• EXERCISE 4.30 Let f , g be defined on Z, PN by writing

f [n] :=

(
N − 1
n

)
, g[n] :=

∞∑
m=−∞

f [n−mN ].

Here N = 2, 3, . . . and the binomial coefficient vanishes when n < 0 or n ≥ N .

(a) Show that f , g have the Fourier transforms

F (s) = p−1(1 + e−2πis/p)N−1, G[k] = N−1(1 + e−2πik/N )N−1.

(b) Apply Plancherel’s identity to f and thereby show that

N−1∑
n=0

(
N − 1
n

)2

= 4N−1
∫ 1

0
{cosπs}2N−2 ds =

(
2N − 2
N − 1

)
.

This is the identity of Ex. 4.15(b).

(c) Apply Plancherel’s identity to g and thereby show that

N−1∑
n=0

(
N − 1
n

)2

=
4N−1

N

N−1∑
k=0

{
cos
(
kπ

N

)}2N−2
.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 4.31 Find the Fourier transform of the function

g[n] :=
∞∑

m=−∞
f [n−mN ]

on PN that is constructed from the function f on Z when:

(a) f [n] :=

{
1 if n = 0,±1,±2, . . . ,±L (where N ≥ 2L+ 1)

0 otherwise;

(b) f [n] :=

{
1 if n = ±L (where N ≥ 2L+ 1)

0 otherwise;

(c) f [n] :=

{
αn if n = 0, 1, 2, . . . (where 0 < α < 1)

0 if n = −1,−2, . . ..

. ....
. ......... ... ..... .... ...••• EXERCISE 4.32 Let f, g be real functions on PN and let y := f + ig. Show that
we can obtain the Fourier transforms of f, g from the Fourier transform of y by writing

F [k] =
1
2
{Y [k] + Y [−k]}, G[k] =

1
2i

{Y [k] − Y [−k]}, k = 0, 1, . . . , N − 1.

.
....

. . .

....... ..... .
..
.. .. ....••• EXERCISE 4.33 The 1st, 2nd, . . . backward differences of a function f on PN are
defined by

∇f [n] := f [n] − f [n− 1], ∇2f [n] := ∇f [n] − ∇f [n− 1], . . . .

(a) Show that ∇mf ≡ 0 for some m = 1, 2, . . . if and only if f is a constant function.

Hint. Express the Fourier transform of ∇mf in terms of F .

Note. If f is a function on Z, then ∇mf ≡ 0 if and only if f is a polynomial of degree
m− 1 or less.

(b) Let q be a function on PN . When is it possible to find a function f on PN such that

∇mf [n] = q[n]?

. .
..

.. ..

......... ... .. ..... ....••• EXERCISE 4.34 The discrete Bernoulli functions w0,w1,w2, . . . on PN have the
properties

N−1∑
n=0

wm[n] = 0, ∇m+1wm[n] = δ[n] − 1
N

when ∇ is the backward difference operator of Ex. 4.33.

(a) Show that wm is uniquely determined by these two properties.

(b) Find a simple expression for the Fourier transform Wm of wm.
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(c) Let m = 0, 1, . . . be chosen with 2m+ 1 ≤ N . Express the box function

bm[n] :=

{
1 if n = 0,±1, . . . ,±m
0 if m < |n| ≤ N/2

as a linear combination of translates of w1 (plus a constant).

Note. You can construct piecewise-polynomial functions on PN from these discrete
Bernoulli functions, but the theory is more complicated (and less useful) than that for
the Bernoulli functions (23) on Tp.

..
.
. ..
...
.. ........ ..... .....••• EXERCISE 4.35 Given a function f on PN (with f [n] �= 0 for some n) we define

R{f} :=

∑N−1
n=0 |f [n+ 1] − f [n]|2

4
∑N−1

n=0 |f [n]|2
.

(a) Use Plancherel’s identity to express R{f} in terms of the discrete Fourier transform
of f .

(b) Using (a), show that 0 ≤ R{f} ≤ 1.

(c) When is R{f} = 0? When is R{f} = 1?

(d) Prove the following discrete Wirtinger inequality: For any complex numbers
0 = f [0], f [1], . . . , f [M − 1], f [M ] = 0,

M−1∑
n=0

|f [n+ 1] − f [n]|2 ≥ 4 sin2
(
π

2M

)M−1∑
n=0

|f [n]|2

with equality if and only if f [n] = C sin(nπ/M) for some constant C.

Hint. Odd extend f to create a function on P2M and use (a) with a suitable modifi-
cation of Ex. 4.23.

. ...
.
.
...
.. . ........ ..... .....••• EXERCISE 4.36 The discrete Fourier transform of the 1-vector (1) is the 1-vector
(1). Use this fact with the repeat rule and the zero packing rule to find the DFT of:

(a) δ[n] :=

{
1 if n = 0

0 if n = 1, 2, . . . , N − 1;

(b) u[n] := 1, n = 0, 1, . . . , N − 1;

(c) cm[n] :=

{
1 if m|n
0 if m� |n, n = 0, 1, . . . , N − 1 when m|N.

Note. If you forget the constants 1/m, 1 associated with the zero packing and repeat rules
(55)–(56), you can use the analysis of (a)–(b) to determine them!
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 4.37 Let (A,B,C,D) be the discrete Fourier transform of the vector
(a, b, c, d). Find the discrete Fourier transform of:

(a) (a, d, c, b); (b) (c, d, a, b); (c) (a,−b, c,−d);
(d) (A,B,C,D); (e) (a, b, c, d, a, b, c, d); (f) (a, 0, 0, b, 0, 0, c, 0, 0, d, 0, 0);

(g) (a, c); (h) (b, d); (i) (d+ b, a+ c).

.. .

.

...
......... .... ....

.. ... ...••• EXERCISE 4.38 Let (A,B,C,D), (E,F,G,H) be the discrete Fourier transforms
of (a, b, c, d), (e, f, g, h), respectively. Use the zero packing and translation rules to find
the discrete Fourier transform of:

(a) (a,0,b,0,c,0,d,0); (b) (0,e,0,f,0,g,0,h); (c) (a,e,b,f,c,g,d,h).

Note. You can find the DFT of an N -vector by suitably combining the DFT’s of two
vectors having N/2 components. The recursive use of this idea leads to a fast algorithm
for computing the DFT of a vector withN = 2m components, m = 1, 2, . . . , see Section 6.2.

. ....
.

........ .... ..... ... ...••• EXERCISE 4.39 Let f, g be 3-periodic, 4-periodic functions on P12, respectively.

(a) Show that f ∗ g = C where C is a constant.

Hint. Determine the zero, nonzero structure of F,G.

(b) Express C in terms of f [0], f [1], f [2] and g[0], g[1], g[2], g[3].

. ....
.

........ .... ..... ... ...••• EXERCISE 4.40 Given a vector f and µ = 1, 2, . . . we form f (µ) by concatenating
µ copies of f and we form f [µ] by inserting µ− 1 zeros after each component of f , e.g.,

(a, b)(3) = (a, b, a, b, a, b), (a, b)[3] = (a, 0, 0, b, 0, 0).

Let the vectors f1, . . . , fm with N1, . . . , Nm components have the discrete Fourier trans-
forms F1, . . . , Fm and let N be the least common multiple of N1, . . . , Nm.

(a) Show that

g := f
(N/N1)
1 + · · · + f

(N/Nm)
m has the FT G = F

[N/N1]
1 + · · · + F

[N/Nm]
m .

(b) Show that

g := f [N/N1] + · · · + f
[N/Nm]
m has the FT G =

N1
N

F (N/N1) + · · · + Nm

N
F

(N/Nm)
m .

. . .
..

..

...... ...... .. .... ...••• EXERCISE 4.41 In this exercise you will find all functions f on P4 that satisfy
the convolution equation f ∗ f = (1, 0, 0, 0).

(a) Show that f [n] is a solution if and only if F [k] = ± 1
4 for each k = 0, 1, 2, 3.

(b) Show that if f [n] is a solution, then so is −f [n], f [−n], f [n− 2] and f [n].

(c) Find all 16 solutions.

Hint. (1, 0, 0, 0), 1
2 (−1, 1, 1, 1), 1

2 (1, i, 1,−i), 1
2 (0, 1 + i, 0, 1 − i).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 4.42 Prove that δ is the only possible multiplicative identity (2.25) for
the convolution product of functions on PN .

. . .
..
... .......... ...
. .... ....••• EXERCISE 4.43 Let a = (a0, a1, . . . , aN−1), a

′ = (a′
0, a

′
1, . . . , a

′
N−1) be complex

vectors. We say that a′ is a multiplicative inverse of a (with respect to the convolution
product) if a ∗ a′ = a′ ∗ a = δ := (1, 0, 0, . . . , 0).

(a) How are the components of the Fourier transforms A = (A0, A1, . . . , AN−1),
A′ = (A′

0, A
′
1, . . . , A

′
N−1) of a, a′ related when a ∗ a′ = δ?

(b) Formulate a necessary and sufficient condition for a to have a multiplicative inverse.

(c) Formulate a procedure for finding the multiplicative inverse of a (if such exists).

Note. You can test your procedure by finding the multiplicative inverse (−5, 7, 1, 1)
of (1/24) · (0, 1, 2, 3).

. ...
.
.
...
.. . ...
..... ...... ....••• EXERCISE 4.44 Let a, b, c be functions on PN . Find necessary and sufficient
conditions for:

(a) a ∗ x = 0 to have a solution x �= 0;

(b) a ∗ x = b to have a unique solution x;

(c) a ∗ x ∗ x+ b ∗ x+ c = 0 to have 2N distinct solutions x;

Hint. Formulate your answers in terms of the discrete Fourier transforms A,B,C.

. . ..
.
..
...
.. . ...
..... ..... ....••• EXERCISE 4.45 Let a00, a01, a10, a11, b0, b1 be complex N -vectors. Show that
there are uniquely determined complex N -vectors x0, x1 such that

a00 ∗ x0 + a01 ∗ x1 = b0

a10 ∗ x0 + a11 ∗ x1 = b1

if and only if the N -vector determinant

d := det

∣∣∣∣ a00 a01
a10 a11

∣∣∣∣ := a00 ∗ a11 − a10 ∗ a01

has a multiplicative inverse as defined in Ex. 4.43.

.
..

..

..

.. ......... ....

. ... ....••• EXERCISE 4.46 Let a, b be functions on Z with

a[0] = 5, a[1] = 9, a[2] = 2, a[3] = 6,

b[0] = 15, b[1] = 32, b[2] = 35, b[3] = 61, b[4] = 23, b[5] = 26, b[6] = 6,

and with all other components being 0. Solve the convolution equation a ∗ x = b to find
the unknown function x on Z.

Hint. A, B are polynomials in z := e−2πis/p.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 4.47 Let f = (f [0], f [1], . . . , f [N−1]) and let m = 2, 3, . . .. Show that
each of the following procedures can be used to generate a vector g = (g[0], g[1], . . . , g[mN−
1]) with g[mn] = f [n], n = 0, 1, . . . , N − 1. Such interpolation schemes can be used when
we want to draw a smooth curve through a modest number of data points. (Try each one
on the asteroid orbit data from Ex. 1.19!)

(a) Insert m − 1 zeros after each component of f , convolve the result with the mN
component vector (m,m−1, . . . , 1, 0, . . . , 0, 1, 2, . . . ,m−1), and scale the convolution
product by 1/m.

(b) Insert (m − 1)N zeros after the last component of F = (F [0], F [1], . . . , F [N − 1]),
and take the inverse Fourier transform of the resulting mN component vector.

(c) Insert (m−1)N zeros between the “middle” components F
[
�N/2	

]
and F

[
�N/2	+1

]
of F =

(
F [0], F [1], . . . , F [N − 1]

)
and take the inverse Fourier transform of the

resulting mN component vector.

Note. The scheme (c) produces a smooth interpolant that can be calculated quickly
by using the FFT.

. . .
...
..

....... .... .... .... ...••• EXERCISE 4.48 Let f be a suitably regular p-periodic function on R, let
N = 1, 2, . . . , let h := p/N , and let

A[k] :=
1
p

N−1∑
n=0

hf(nh)e−2πiknh/p

be the trapezoid rule approximation for the corresponding Fourier coefficient F [k],
k = 0,±1,±2, . . ..

(a) Show that A[k] − F [k] =
∑
µ�=0

F [k − µN ].

(b) Assume that f, f ′, . . . , f (m−1) are continuous and that f (m) is piecewise smooth.
Explain why

p

∞∑
k=−∞

∣∣(2πik/p)mF [k]
∣∣2 =

∫ p

0

∣∣f (m)(x)
∣∣2dx,

and use this identity to deduce that∣∣A[k] − F [k]
∣∣ ≤ Chm when |k| ≤ N/2.

Here C is a constant (that depends on f and m but not on h.)

(c) Compare the error estimate of (b) with the error bound for trapezoid rule integration
from your elementary calculus textbook.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 4.49 Let (x[n], y[n]), n = 0, 1, . . . , N − 1 be the Cartesian coordinates
of the vertices of a simple, positively oriented N -gon P, and let z[n] := x[n] + iy[n],
n = 0, 1, . . . , N − 1.

(a) Show that the triangle with vertices 0, aeiα, beiβ (where a > 0, b > 0, and
0 ≤ α < β < π) has the area 1

2 Im {(beiβ)(aeiα)}.

(b) Show that P has the area

A =
1
2

Im
N−1∑
n=0

z[n+ 1]z[n] =
N

2

N−1∑
k=0

sin
(2πk
N

) ∣∣Z[k]
∣∣2.

(c) Show that

A =
1
2

N−1∑
n=0

{
y[n+ 1] − y[n− 1]

}
x[n] = −iN

N−1∑
k=0

sin
(2πk
N

)
Y [k]X[k].

.
.. . .

.

.. ......... ... .......••• EXERCISE 4.50 Let P be a simple N -gon with vertices z[0], z[1], . . . , z[N − 1] (in
the complex plane). The area, A, and and the perimeter,

L :=
N−1∑
n=0

|z[n+ 1] − z[n]|,

are related in such a manner that

A ≤ L2

4N tan(π/N)

with equality if and only if P is a regular N -gon. [Compare this with Ex. 4.24.] Show
that this is so by proving each of the following statements.

(a) If two adjacent sides of a simple polygon are not equal, the area can be increased
without changing the perimeter.

Hint. Consider the set of all triangles having a fixed base and perimeter.

(b) If every side of the N -gon has length L/N , then

L2 = N

N−1∑
n=0

∣∣z[n+ 1] − z[n]
∣∣2 = 4N2

N−1∑
k=0

sin2
(
kπ

N

) ∣∣Z[k]
∣∣2.

(c) If every side of the N -gon has length L/N , then

L2 − 4N tan
(
π

N

)
A = 4N2

N−1∑
k=2

{
sin(kπ/N) sin([k − 1]π/N)

cos(π/N)

}∣∣Z[k]
∣∣2.

Hint. Use the area formula from Ex. 4.49(b).

(d) The area A is maximized when z[n] = Z[0] + Z[1]e2πin/N , n = 0, 1, . . . , N − 1.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 4.51 Let m = 1, 2, . . . and N = 2, 3, . . . be relatively prime, i.e., there
is no d = 2, 3, . . . such that d|m and d|N . In this exercise you will show that there is some
m′ = 1, 2, . . . , N − 1 such that m ·m′ ≡ 1 (mod N), a fact that is needed for the proof of
the P -dilation rule (59). You can do this by verifying the following assertions.

(a) None of the integers m, 2m, . . . , (N − 1)m is divisible by N .

(b) No difference km− �m with 0 < � < k < N is divisible by N .

(c) The remainders that result when we divide m, 2m, . . . , (N − 1)m by N include each
of the integers 1, 2, . . . , N − 1.

. .
..

.. .

........ .... .... .... ...••• EXERCISE 4.52 Let m = 1, 2, . . . , let P be a prime, and assume that P� |m. Prove
Fermat’s theorem: mP−1 ≡ 1(mod P ).

Hint. Begin by using the result of Ex. 4.51 to show that

m · 2m · 3m · · · · · (P − 1)m ≡ 1 · 2 · 3 · · · · · (P − 1) (mod P ).

.
.. . .
......... ....

.. ..... ....••• EXERCISE 4.53 Let f be a function on PN , let m = 2, 3, . . . , N − 1, and let
g[n] := f [mn], n = 0,±1,±2, . . .. Prove the following assertions.

(a) If m and N are relatively prime, then G[mk] = F [k], k = 0,±1,±2, . . ..

(b) If m|N , then G[mk] = Fm[k], k = 0,±1,±2, . . . , where Fm is the discrete Fourier
transform of the scaled and sampled function

fm[n] :=

{
mf [n] if m|n
0 otherwise

on PN .

.. . .

...

.. .
....... .....

..

.. ... ...••• EXERCISE 4.54 Let f be a function on PN , let m = 2, 3, . . . , N − 1, and assume
that m and N are relatively prime. Let

f0[n] := f [n], f1[n] := f0[mn], f2[n] := f1[mn], . . .

be the successive m-dilates of f .

(a) Show that f1 can be obtained by suitably permuting the components of f0. (This is
not the case when m,N have a common divisor d = 2, 3, . . ..)

(b) Show that the above sequence of m-dilates is p-periodic, i.e., fk+p = fk, for some
p = 2, 3, . . . , N − 1.

(c) Find the period p = p(m) of (b) for each m = 2, 3, . . . , 12 when N = 13.

Hint. p = 12 for m = 2, 6, 7, 11.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 4.55 Let P be a prime, let n = 1, 2, . . . , P − 1, let a0, a1, . . . , an be
integers, and assume that a0 �≡ 0 (mod P ). Show that the polynomial congruence

a0x
n + a1x

n−1 + · · · + an−1x+ an ≡ 0 (mod P )

has at most n distinct solutions x = 0, 1, . . . , P − 1.

Hint. If x and x0 are such solutions, then

a0(x
n − xn

0 ) + a1(x
n−1 − xn−1

0 ) + · · · + an−1(x− x0)

= (x− x0){a0x
n−1 + · · · } ≡ 0 (mod P ).

Use this (with Ex. 4.51) to prove the result by mathematical induction.

. .... ..... ......... .. .. ......••• EXERCISE 4.56 Let P = 3, 5, 7, 11, . . . be an odd prime.

(a) Show that the polynomial congruence x(P−1)/2 ≡ 1 (mod P ) has precisely (P − 1)/2
distinct solutions

x ≡ 12, 22, . . . ,
[
P − 1

2

]2
(mod P )

from 0, 1, . . . , P − 1.

Hint. Use the results of Exs. 4.51, 4.52, and 4.55.

(b) Show that the polynomial congruence x(P−1)/2 ≡ −1 (mod P ) has precisely (P−1)/2
distinct solutions from 0, 1, . . . , P − 1.

Hint. Use Ex. 4.55 with (a) and the identity

xP−1 − 1 = {x(P−1)/2 − 1} · {x(P−1)/2 + 1}.

Note. When x ≡ k2 (mod N) for some k = 1, 2, . . . , N − 1 we say that x is a quadratic
residue modulo N , and if x �≡ 0, 12, . . . , (N − 1)2 we say that x is a quadratic nonresidue
modulo N . This exercise shows that there are precisely (P − 1)/2 quadratic residues and
(P − 1)/2 quadratic nonresidues among x = 1, 2, . . . , P − 1 when P is an odd prime.

.. . .
....

. .. ...........
..
. ... ....••• EXERCISE 4.57 Let P = 3, 5, 7, 11, . . . be an odd prime, and let the P -periodic
Legendre function be defined on Z by writing

�[n] :=




0 if n ≡ 0 (mod P )

1 if n ≡ 12, 22, . . . , (P − 1)2 (mod P )

−1 otherwise.

In this exercise you will find the Fourier transform L of �.

(a) Use Ex. 4.56 to show that �[n] ≡ n(P−1)/2 (mod P ), n = 0,±1,±2, . . ..

(b) Verify that � has the multiplicative property �[k ·n] = �[k] · �[n], k, n = 0,±1,±2, . . . .

(c) Show that if k ≡ 12, 22, . . . , (P −1)2 (mod P ), then �[k ·n] = �[n], n = 0,±1,±2, . . . ,
i.e., � is not changed by k-dilation.
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(d) Show that L[k] = L[1] · �[k], k = 0,±1,±2, . . . , and thereby show that � is an eigen-
function of the discrete Fourier transform.

Hint. Use (b) to write �[n] = �[kn] · �[k] when k ≡ 1, 2, . . . , P − 1 (mod P ).

(e) Show that

L[1] =




1√
P

if P ≡ 1 (mod 4)

−i√
P

if P ≡ 3 (mod 4).

Hint. Use (72) with the identity

PL[1] =
P−1∑
n=0

{�[n] + 1}e−2πin/P =
P−1∑
n=0

e−2πin2/P .

. .
..

.. .

........ .... .... ..... ...••• EXERCISE 4.58 Let m,M be positive integers, let N := m ·M , and let
fm[n] := e2πimn2/N . Show that |Fm| is a comb with

√
M |Fm[k]| =




√
2 if k = 0,±2m,±4m, . . . and M = 4, 8, 12, . . .√
2 if k = ±m,±3m,±5m, . . . and M = 2, 6, 10, . . .

1 if k = 0,±m,±2m, . . . and M = 1, 3, 5, . . .

0 otherwise.

Hint. Use the repeat rule (56) and the formula (71) for F1.

.
....

. . .

....... ..... .
..
.. .. ....••• EXERCISE 4.59 Let P = 3, 5, 7, 11, . . . be an odd prime and let r be a primitive
root modulo P , i.e., r0, r1, . . . , rP−2 are congruent modulo P to some rearrangement of
the integers 1, 2, . . . , P − 1. (For example, r = 3 is a primitive root modulo 7 since
30, 31, . . . , 35 have the remainders 1, 3, 2, 6, 4, 5 when divided by 7.) From Ex. 4.52 we
know that rP−1 ≡ 1 (mod P ) so the discrete function

f [n] := e2πirn/P , n = 0,±1,±2, . . .

is N -periodic with period N := P − 1.

(a) Show that f has the autocorrelation product f 	 f = P · δ − 1.

(b) Show that the discrete Fourier transform of f has the modulus

∣∣F [k]
∣∣ =




1
P − 1

if k ≡ 0 (mod N)
√
P

P − 1
otherwise.

Hint. Use (a) and the correlation product rule.

Note. This result has been used as the basis for a design of concert halls having desirable
accoustical properties (see M.R. Schroeder, pp. 163–167).



5

Operator identities
associated with Fourier
analysis

5.1 The concept of an operator identity

Introduction

In the preceding two chapters we developed a calculus for finding Fourier transforms
of functions on R, Tp, Z, and PN , and the corresponding rules are succinctly stated
in Appendix 3. Each of these rules involves a pair of function-to-function mappings,
i.e., a pair of operators. In this chapter we will study these operators and the
elementary relations that link them to one another. The change in emphasis will
enable us to characterize the symmetry properties associated with Fourier analysis,
to deepen and unify our understanding of the transformation rules that we use so
often in practice, and to facilitate our study of the related sine, cosine, Hartley, and
Hilbert transforms. Later on, we will use operators to describe fast algorithms for
computing the DFT, to describe fast algorithms for computing with wavelets, to
analyze thin lens systems in optics, etc.

Operators applied to functions on PN

It is easy to illustrate these ideas when we work with functions defined on PN ,
i.e., with functions that can be identified with complex N -vectors. From linear
algebra we know that any linear mapping A : C

N → C
N can be represented by an

N ×N matrix of complex coefficients. In particular, the discrete Fourier transform

239
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operator F defined by the analysis equation

F




f [0]
f [1]

...
f [N − 1]


 :=




N−1
N−1∑
n=0

f [n]e−2πi·0·n/N

N−1
N−1∑
n=0

f [n]e−2πi·1·n/N

...

N−1
N−1∑
n=0

f [n]e−2πi·(N−1)·n/N




is a linear operator that is represented by the N ×N complex matrix

F :=
1
N




1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2N−2

...
...

...
...

1 ωN−1 ω2N−2 · · · ω(N−1)(N−1)


 , ω := e−2πi/N . (1)

The reflection operator R, defined by writing

Rf [n] := f [−n], n = 0,±1,±2, . . .

(when we think of f as being an N -periodic function on Z), or by writing

R




f [0]
f [1]
f [2]

...
f [N − 1]


 :=




f [0]
f [N − 1]
f [N − 2]

...
f [1]




(when we think of f as being a column N -vector) is also a linear operator that is
represented by the N ×N real matrix

R :=




1 0 0 · · · 0 0
0 0 0 · · · 0 1
0 0 0 · · · 1 0
...

...
...

...
...

0 0 1 · · · 0 0
0 1 0 · · · 0 0



. (2)

Using such notation we can formulate the rules of discrete Fourier analysis in
terms of certain operator identities. For example, the inversion rule

g[n] := F [n] has the FT G[k] = N−1f [−k]
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of (4.54) can be written in the argument-free form

g := Ff has the FT Fg = N−1Rf,

which is more succinctly expressed by writing

F(Ff) = N−1Rf

when f is any function on PN . In this way we see that the inversion rule of discrete
Fourier analysis is equivalent to the function-free operator identity

F 2 = N−1R,

which links the matrices (1) and (2). Operator identities that are equivalent to
the other rules for taking discrete Fourier transforms can be found in an analogous
fashion.

Blanket hypotheses

In Chapter 1, we proved that Fourier’s representation can be used for every function
on PN and for large classes of functions defined on Z, Tp, and R. We will presently
introduce a number of operators A,A1,A2, A3, . . . that are useful in Fourier anal-
ysis. Each of these operators will be defined on some complex linear space of such
suitably regular functions, and each will have a range that is contained in some
complex linear space of such functions.

When two operators A1,A2 share a common domain and

A1f = A2f

for all functions f in that domain, we will write

A1 = A2,

thereby defining operator equality. Given an operator A and a complex scalar α,
we define the scalar products αA,Aα by setting

(αA)f :=α(Af)
(Aα)f :=A(αf)

for all functions f in the domain of A. Analogously, given operators A1,A2 having
a common domain, we define the operator sum A1 + A2 by setting

(A1 + A2)f := (A1f) + (A2f)
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for all functions f in the common domain. Finally, when the range of A2 is included
in the domain of A1, we define the operator product A1A2 by setting

(A1A2)f := A1(A2f)

for all functions f in the domain of A2. We will let I denote the identity operator
and define

A0 := I, A1 := A, A2 := AA, A3 := A(A2), . . .

in cases where the range of A is contained in its domain.
We will always work in a context where operator addition and operator multipli-

cation are associative, i.e.,

A1 + (A2 + A3) = (A1 + A2) + A3

A1(A2A3) = (A1A2)A3,

and where scalar multiplication and operator multiplication distribute over operator
addition, i.e.,

α(A1 + A2) = (αA1) + (αA2)
(A1 + A2)α = A1α+ A2α

A1(A2 + A3) = (A1A2) + (A1A3)
(A1 + A2)A3 = (A1A3) + (A2A3).

Operator addition is always commutative, i.e.,

A1 + A2 = A2 + A1,

but operator multiplication is not, i.e., we will frequently encounter situations where

A1A2 �= A2A1.

All of our operators will be real homogeneous, i.e.,

Aα = αA

when the scalar α is real, but in a few cases we will work with nonlinear operators
(such as complex conjugation) for which

Aα = αA.

Most of our operators will be linear, however, and satisfy the familiar rules from
the algebra of complex N ×N matrices.



Operators generated by powers of F 243

With this preparation, we are now ready to introduce a number of operators
that are useful in the study of Fourier analysis. Our presentation will focus on the
various relations that link these operators with little or no regard for the precise
definition of regularity that is used to specify the underlying function spaces. While
such technical considerations are of unquestioned value, they lie beyond the scope
of this introductory text.

5.2 Operators generated by powers of F

Powers of F

We define the Fourier transform operator F by writing

(Ff)(s) :=
∫ ∞

x=−∞
f(x)e−2πisx dx, −∞ < s < ∞,

(Ff)[k] := p−1
∫ p

x=0
f(x)e−2πikx/p dx, k = 0,±1,±2, . . . ,

(Ff)(s) := p−1
∞∑

n=−∞
f [n]e−2πisn/p, 0 ≤ s < p,

(Ff)[k] := N−1
N−1∑
n=0

f [n]e−2πikn/N , k = 0, 1, . . . , N − 1,

(3)

and we define the reflection operator R by writing

(Rf)(x) := f(−x) for −∞ < x < ∞,

(Rf)(x) := f(−x) =
{
f(0) for x = 0
f(p− x) for 0 < x < p,

(Rf)[n] := f [−n] for n = 0,±1,±2, . . . ,

(Rf)[n] := f [−n] =
{
f [0] for n = 0
f [N − n] for n = 1, 2, . . . , N − 1

(4)

when f is a suitably regular function on R, Tp, Z, PN , respectively.
We could introduce subscripts R, Tp, Z, PN to specify one of the operators from

(3) or from (4). For example, the inversion rules for functions on R, Tp, Z, PN

correspond to the operator identities

FRFR = RR, FZFTp
= p−1RTp

, FTp
FZ = p−1RZ, FPN

FPN
= N−1RPN

.
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Likewise, the reflection operators of (4) are involutions (i.e., if we reflect twice we
return to the original function), so we have

RRRR = IR, RTp
RTp

= ITp
, RZRZ = IZ, RPN

RPN
= IPN

.

We will drop such cumbersome subscripts, however, and simply write

F 2 = β−1R , (5)

R2 = I (6)

for these two sets of equations with the understanding that the universal constant
β takes the values

β := 1, p, p,N (7)

when the operators on either side of (5), (6) are (initially) applied to suitably regular
functions defined on R, Tp, Z, PN , respectively. You will quickly learn to use the
context to interpret the uncluttered expressions from (5), (6), and similar relations.

We will freely combine operator identities such as (5)–(6) using the algebraic
properties discussed previously. For example, we have

FR = F(βF 2) = βF 3 = (βF 2)F = RF (8)

and
F 4 = (F 2)(F 2) = (β−1R)(β−1R) = β−2R2 = β−2I. (9)

By using (9) together with (5) and (6) we obtain the expressions

F−1 = β2F 3 = βRF = βFR (10)

for the inverse of the Fourier transform operator.
From (9) and (10) it follows that

F 4m = β−2mI, F 4m+1 = β−2mF, F 4m+2 = β−2mF 2, F 4m+3 = β−2mF 3,

m = 0,±1,±2, . . . .

This being the case, any polynomial

C(F) := c0I + c1F + c2F
2 + · · · + cnFn

of degree n = 1, 2, . . . in F can be written as a polynomial

A(F) = a0I + a1F + a2F
2 + a3F

3

of degree 3 or less with

a0 :=c0 + β−2c4 + β−4c8 + · · · , a1 := c1 + β−2c5 + β−4c9 + · · · ,
a2 :=c2 + β−2c6 + β−4c10 + · · · , a3 := c3 + β−2c7 + β−4c11 + · · · .

We will now introduce a number of operators of this form. Of course, any two such
operators must commute with one another, see Ex. 5.1.



Operators generated by powers of F 245

The even and odd projection operators

The even, odd parts of a function f are obtained by writing

1
2{f(x) + f(−x)}, 1

2{f(x) − f(−x)}, −∞ < x < ∞,

1
2{f(x) + f(p− x)}, 1

2{f(x) − f(p− x)}, 0 ≤ x < p,

1
2{f [n] + f [−n]}, 1

2{f [n] − f [−n]}, n = 0,±1,±2, . . . ,
1
2{f [n] + f [N − n]}, 1

2{f [n] − f [N − n]}, n = 0, 1, . . . , N − 1

when f is defined on R, Tp, Z, PN , respectively. You will recognize these as the
functions

Pef , Pof

where the even and odd projection operators are succinctly defined by writing

Pe := 1
2 (I + R), Po := 1

2 (I − R). (11)

From the definitions (11) and the involutory property (6) of R, we immediately
obtain the projection relations

Pe + Po = I, P2
e = Pe, P2

o = Po, PePo = PoPe = 0, (12)

and the identities

Pe − Po = R, PeR = RPe = Pe, PoR = RPo = −Po (13)

that link Pe,Po, and R.

Example Show that P2
e = Pe.

Solution We use (11), (6), (11) in turn to write

P2
e := 1

2 (I + R) 1
2 (I + R) = 1

4{I2 + 2R + R2}
= 1

4{I + 2R + I} = 1
2{I + R} =: Pe.

The normalized exponential transform operators

The presence of the scale factor β in (5) and (9) [as well as in the Plancherel
identities (1.15)–(1.18)] is an indication that the operator F and its iterates change
the overall size of a function f defined on Tp, Z, or PN (except when p = 1, N = 1).
For this reason we are motivated to introduce the normalized exponential transform
operators

E− := β1/2F, E+ := β−1/2F−1 (14)
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observing that we then have

(E±f)(s) =
∫ ∞

x=−∞
f(x)e±2πisx dx, −∞ < s < ∞,

(E±f)[k] = p−1/2
∫ p

x=0
f(x)e±2πikx/p dx, k = ±1,±2, . . . ,

(E±f)(s) = p−1/2
∞∑

n=−∞
f [n]e±2πisn/p, 0 ≤ s < p,

(E±f)[k] = N−1/2
N−1∑
n=0

f [n]e±2πikn/N , k = 0, 1, . . . , N − 1,

when f is a suitably regular function on R, Tp, Z, PN , respectively. The symbols
E−, E+ remind us of the −i, +i exponential kernels we use to construct these
operators. Although it is a bit of a nuisance to include the scale factors β±1/2, it is
quite easy to recall and use the scalar-free operator identities

E+E− = I, E−E+ = I, (15)

E2
− = R, E2

+ = R, (16)

RE− = E+, E−R = E+,
(17)

RE+ = E−, E+R = E−,

which can be derived from (14) by using (5), (6), and (8).
The factorization I = E+E− is a succinct way to summarize the analysis and

synthesis equations of Fourier. Indeed, we can recover a suitably regular function
f from the Fourier transform

F := (β−1/2E−)f

by applying the operator β1/2E+, i.e.,

(β+1/2E+)F = (β+1/2E+)(β−1/2E−)f = f.

The normalized cosine transform and sine transform operators

After viewing the Euler identities

cos θ =
1
2
{eiθ + e−iθ}, sin θ =

1
2i

{eiθ − e−iθ}
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we are motivated to define the normalized cosine transform and sine transform
operators

C :=
1
2
{E+ + E−}, S :=

1
2i

{E+ − E−}. (18)

We immediately deduce the operator identities

E+ = C + iS, E− = C − iS (19)

(which remind us of the Euler identities eiθ = cos θ+ i sin θ, e−iθ = cos θ− i sin θ),

C2 = Pe, S2 = Po, (20)

C2 + S2 = I, C2 − S2 = R, (21)

and the commutation relations

SC = CS = 0,
CR = RC = C,
SR = RS = −S,

(22)

see Ex. 5.3.

Example Show that C2 + S2 = I.

Solution We use (18) with (15) and (16) to write

C2 =
1
2
(E+ + E−)

1
2
(E+ + E−) =

1
4
{E2

+ + E+E− + E−E+ + E2
−} =

1
2
(I + R),

S2 =
1
2i

(E+ − E−)
1
2i

(E+ − E−) = −1
4
{E2

+ − E+E− − E−E+ + E2
−} =

1
2
(I − R),

and thereby obtain both of the relations (21).
The factorization Pe = CC succinctly summarizes the analysis and synthesis

equations that are associated with the cosine transform. Indeed, we can recover
any suitably regular even function f from

Fc := Cf

by applying the operator C, i.e.,

CFc = CCf = Pef = f.

Analogously, we can recover any suitably regular odd function f from the sine
transform

Fs := Sf

by applying the operator S, i.e.,

SFs = SSf = Pof = f,

see Exs. 1.3 and 1.12.
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The normalized Hartley transform operators

The normalized Hartley transform operators

H+ := C + S, H− := C − S (23)

are real analogues of the operators E+,E− from (19). These operators are involu-
tory, i.e.,

H2
+ = I, H2

− = I, (24)

and they satisfy the commutation relations

H+H− = H−H+ = R, (25)

H+R = RH+ = H−,
(26)

H−R = RH− = H+,

analogous to (15) and (16).

Example Show that H2
+ = I.

Solution We begin with (23) and then use (22), (21) in turn to write

H2
+ = (C + S)(C + S) = C2 + CS + SC + S2 = C2 + S2 = I.

The factorization I = H+H+ leads to the symmetric synthesis-analysis equations

f = H+Fh, Fh := H+f

for Hartley analysis. The real-valued function

cas θ := cos θ + sin θ

(with cas being an abbreviation for cos and sin) that is used in the construction of
a Hartley transform plays a role analogous to the complex-valued function

cis θ := cos θ + i sin θ
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(with cis being an abbreviation for cos and i sin) that is used to construct a Fourier
transform. These synthesis-analysis equations take the form

f(x) =
∫ ∞

s=−∞
Fh(s)cas(2πsx) ds, Fh(s) =

∫ ∞

x=−∞
f(x)cas(2πsx) dx,

f(x) = p−1/2
∞∑

k=−∞
Fh[k]cas(2πkx/p), Fh[k] = p−1/2

∫ p

x=0
f(x)cas(2πkx/p),

(27)

f [n] = p−1/2
∫ p

s=0
Fh(s)cas(2πsn/p), Fh(s) = p−1/2

∞∑
n=−∞

f [n]cas(2πsn/p),

f [n] = N−1/2
N−1∑
k=0

Fh[k]cas(2πkn/N), Fh[k] = N−1/2
N−1∑
n=0

f [n]cas(2πkn/N),

when f is a suitably regular function on R, Tp, Z, PN , respectively. The Hartley
transform Fh is always real valued when f is real valued. This is a very nice property
that the Fourier transform does not have.

Connections

From (11) and (22) we see that the operators C,S (like the functions cos, sin) are
even, odd in the sense that

PeC = C, PoC = 0,
PeS = 0, PoS = S,

(28)

so when we apply Pe,Po to the transform operators of (19) and (23) we find

PeE± = C, PoE± = ±iS, (29)
PeH± = C, PoH± = ±S. (30)

With the aid of these identities we easily obtain the relations

E− = β1/2F = C − iS = (Pe − iPo)H+ (31)

C = PeH+ = PeE− = β1/2PeF (32)

S = PoH+ = iPoE− = β1/2iPoF (33)

H+ = C + S = (Pe + iPo)E− = β1/2(Pe + iPo)F (34)

that link the transforms associated with F, E−, C, S, and H+.



250 Operator identities associated with Fourier analysis

Example Find the Hartley transform (27) of f(x) := e2πixP(x).

Solution We use the calculus from Chapter 3 to find the Fourier transform

(Ff)(s) = sinc(s− 1),

and we then use Pe,Po to obtain

(Cf)(s) = (PeFf)(s) =
1
2
{sinc(s− 1) + sinc(s+ 1)},

(Sf)(s) = (iPoFf)(s) =
i

2
{sinc(s− 1) − sinc(s+ 1)}.

We add these to produce

(H+f)(s) = (Cf)(s) + (Sf)(s)

=
1
2
{sinc(s− 1) + sinc(s+ 1)} +

i

2
{sinc(s− 1) − sinc(s+ 1)}.

Example Find the Hartley series (27) for the 4-periodic function f with

f(x) :=
{

1 if 0 < x < 1
0 if 1 < x < 4.

Solution The function f is generated by summing the 4-translates of
P(x− 1/2), so we can use Poisson’s relation to find the Fourier coefficients

(Ff)[k] =
1
4
e−2πi(1/2)(k/4) sinc

(
k

4

)

=
1
4

{
cos
(
kπ

4

)
− i sin

(
kπ

4

)}
sinc

(
k

4

)
.

We use Pe,Po (with the β1/2 factor) to obtain

(Cf)[k] = 41/2(PeFf)[k] =
1
2

cos
(
kπ

4

)
sinc

(
k

4

)
,

(Sf)[k] = 41/2(iPoFf)[k] =
1
2

sin
(
kπ

4

)
sinc

(
k

4

)
,

and form

(H+f)[k] = (Cf)[k] + (Sf)[k] =
1
2

cas
(
kπ

4

)
sinc

(
k

4

)
.

In this way we find the Hartley series

f(x) =
1
4

∞∑
k=−∞

cas
(
kπ

4

)
sinc

(
k

4

)
cas
(

2πkx
4

)

[which requires an additional factor of β−1/2 = 1/2, see (27)].
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Tag notation

Newton used the symbol ḟ for the derivative of the function f . The tag, ˙, indicates
that the function f has been processed by applying the derivative operator, D.
The superscript prime, ′, is used for the same purpose in elementary calculus. We
will use the caret, ∧, the klicka, ∨, and, the tilde, ∼, as superscripts to show that
F,R,H+ have been applied to a function, i.e., we write

f ′ := Df, f∧ := Ff, f∨ := Rf, f∼ := H+f. (35)

Operator identities such as

f∧∧ = β−1f∨, f∧∧∧∧ = β−2f, f∨∨ = f, f∨∧ = f∧∨, f∼∼ = f

can be expressed compactly with this notation. A string of tags is always applied
from left to right, e.g.,

f∨′∧ :=
(
(f∨)′)∧.

In contrast, a string of operators is always applied from right to left, e.g.,

FDRf := F(D(Rf)).

5.3 Operators related to complex conjugation

The bar and dagger operators

We define the bar and dagger operators

Bf := f, Df := Rf (36)

using an overbar to denote the complex conjugate. Like R, the operators B,D are
involutory, i.e.,

B2 = I, D 2 = I, (37)

and the operators R, B, D commute, i.e.,

RB = BR = D, BD = DB = R, DR = RD = B. (38)

Example Show that BD = R.
Solution When f is a function on R we have

(BDf)(x) := B(f(−x)) := f(−x) = f(−x) =: (Rf)(x).

The same argument works when f is a function on Tp, Z, or PN .
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We will use the bar, −, and dagger, †, as superscripts to show that B,D have
been applied, i.e.,

f− := Bf, f† := Df. (39)

We can use this tag notation to rewrite (37)–(38) in the form

f−− = f, f†† = f,

f−∨ = f∨− = f†, f†− = f−† = f∨, f∨† = f†∨ = f−.

The operators B, D are additive, i.e.,

B(f1 + f2) = (Bf1) + (Bf2), D(f1 + f2) = (Df1) + (Df2),

but not homogeneous since

B(αf) = ᾱf− = ᾱ(Bf), D(αf) = ᾱf† = ᾱ(Df)

agree with α(Bf), α(Df) only in those cases where f is the zero function or the
scalar α is real. We express this lack of homogeneity by writing

Bα = ᾱB, Dα = ᾱD (40)

when α is any complex scalar. Thus neither B nor D is linear. In particular,
neither of these operators can be represented by N × N matrices when we work
with functions defined on PN .

Since the kernel functions cos, sin, cas that are used to construct the operators
C, S, H± are all real valued it is easy to see that B, D commute with these
operators, i.e.,

BC = CB, DC = CD,

BS = SB, DS = SD,

BH± = H±B, DH± = H±D.

(41)

In contrast, by using (19), (41), and (40), we find

E±B = (C ± iS)B = BC ± iBS = BC ∓ BiS = B(C ∓ iS) = BE∓. (42)

We use this relation with (17) and (38) to obtain the commutation identities

E±B = DE±, E±D = BE±. (43)

Since F is a real scalar multiple of E− we also have

FB = DF, FD = BF. (44)
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The real, imaginary, hermitian, and antihermitian projection operators

We define the real and imaginary projection operators

Pr := 1
2 (I + B), Pi := 1

2 (I − B) (45)

and note that
Prf = 1

2 (f + f−)

is the real part of f and

Pif =
1
2
(f − f−) = i

{
1
2i

(f − f−)
}

is the pure imaginary part of f including the factor i, see Ex. 5.10. Likewise, we
define the hermitian and antihermitian projection operators

Ph := 1
2 (I + D), Pa := 1

2 (I − D) (46)

so that
Phf = 1

2 (f + f†), Paf = 1
2 (f − f†)

are the hermitian, antihermitian parts of f , respectively. Since B, D are both
involutory, the projection relations

Pr + Pi = I, P2
r = Pr, P2

i = Pi, PrPi = PiPr = 0 (47)

Ph + Pa = I, P2
h = Ph, P2

a = Pa, PhPa = PaPh = 0 (48)

analogous to (12) and the identities

Pr − Pi = B, PrB = BPr = Pr, PiB = BPi = −Pi (49)
Ph − Pa = D, PhD = DPh = Ph, PaD = DPa = −Pa (50)

analogous to (13) are easily verified. You should have no difficulty remembering (or
with minimal effort deriving) such relations when they are needed.

Symmetric functions

The commuting operators R, B, D have been used to define the six commuting
projection operators Pe, Po, Pr, Pi, Ph, Pa of (11), (45), and (46). Common
symmetry properties used in Fourier analysis can be formulated in terms of these
operators. Indeed, a function f is said to be even, odd, real, pure imaginary,
hermitian, antihermitian according as

Pef = f, Pof = f, Prf = f, Pif = f, Phf = f, Paf = f,
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or equivalently as

Rf = f, Rf = −f, Bf = f, Bf = −f, Df = f, Df = −f,

respectively.
Four other symmetries can be formulated using products of Pe, Po, Pr, Pi. A

function f is said to be real-even, real-odd, pure imaginary-even, pure imaginary-
odd, according as

PrPef = f, PrPof = f, PiPef = f, PiPof = f,

respectively. A routine calculation [see Ex. 5.13(a)] shows that every product of
powers of Pe, Po, Pr, Pi, Ph, Pa reduces to 0, I or one of the ten projections Pe,
Po, Pr, Pi, Ph, Pa, PrPe, PrPo, PiPe, PiPo, given above. In this way we verify
that the symmetry list of Ex. 1.2 is complete.

Less common symmetries can be generated from these operators in other ways.
For example, a symmetry is associated with each of the projections

I − PrPe, I − PrPo, I − PiPe, I − PiPo.

These are complementary to PrPe, PrPo, PiPe, PiPo in the same way that Po,
Pi, Pa are complementary to Pe, Pr, Ph, respectively, see Ex. 5.13(b).

Symmetric operators

Operators, like functions, can possess certain symmetry properties. We say that an
operator A preserves the symmetry of being even, odd when

APe = PeA, APo = PoA,

respectively. Using (11), we see that A preserves these symmetries if and only if

AR = RA.

Each of the transform operators F, C, S, H± commutes with R so each of these
operators preserves the symmetries of being even and odd.

Analogously, we say that A preserves the symmetry of being real, pure imaginary
when A commutes with the projections Pr, Pi, respectively, in which case

AB = BA.

Likewise, we say that A preserves the symmetry of being hermitian, antihermitian
when A commutes with the projections Ph, Pa, respectively, in which case

AD = DA.
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The transform operators C, S, H± commute with B, D so they preserve all four of
these symmetries. On the other hand, we see from (44) that the Fourier transform
operator F does not commute with either B or D, so F cannot preserve any of
these symmetries.

Using the commutation relations (38) we find

PrPe = 1
4 (I + R + B + D), PrPo = 1

4 (I − R + B − D),

PiPe = 1
4 (I + R − B − D), PiPo = 1

4 (I − R − B + D),
(51)

and thereby conclude that A preserves the symmetries of being real-even, real-
odd, pure imaginary-even, pure imaginary-odd if and only if A commutes with the
operators

R + B + D, −R + B − D, R − B − D, −R − B + D,

respectively. Since the transform operators C, S, H± commute with R, B, D, they
preserve all four of these product symmetries. On the other hand, by using (44) we
verify that F commutes with both R + B + D and R − B − D but not with either
−R+ B − D or −R− B + D. Thus F preserves the symmetries of being real-even
and pure imaginary-even but preserves neither the symmetry of being real-odd nor
the symmetry of being pure imaginary-odd.

In summary, we have shown that the Fourier transform operator F preserves only
four of the ten common symmetries of Fourier analysis while the real operators C,
S, H± preserve all ten of them.

5.4 Fourier transforms of operators

The basic definition

In the previous two chapters we formulated a number of rules for taking Fourier
transforms. Each of these rules has the form

g := Af has the FT g∧ = A∧f∧ (52)

where A, A∧ are certain operators. For example, the reflection rule

g := Rf has the FT g∧ = Rf∧

has this form with A = A∧ = R, and the conjugation rule

g := Bf has the FT g∧ = Df∧
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has this form with A = B and A∧ = D. The rule (52) is valid provided that

F(Af) = A∧(Ff)

whenever f is a function in the domain of A , and in this way we see that (52) is
equivalent to the operator identity

FA = A∧F.

When A, A∧ are related in this manner, i.e., when

A∧ := FAF−1 (53)

we will say that the operator A∧ is the Fourier transform of the operator A. The
notation has been chosen so that we can write the transformation rule (52) in the
easily remembered form

(Af)∧ = A∧f∧. (54)

We will use the commuting diagram of Fig. 5.1 to visualize the two equivalent ways
we can form the function (54).

Figure 5.1. The commuting diagram for the rule (52).

Example Show that

R∧ = R, B∧ = D, D∧ = B. (55)

Solution We use (8) and (44) with the definition (53) to write

R∧ = FRF−1 = RF F−1 = R,

B∧ = F B F−1 = D F F−1 = D,

D∧ = F D F−1 = B F F−1 = B.

These operator transforms correspond to the reflection rule, the conjugation rule,
and the hermitian conjugation rule.
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Example Let a be a nonzero real parameter. Find the Fourier transform of the
dilation operator

(Saf)(x) := f(ax) (56)

that is applied to suitably regular functions on R.

Solution We know that

f(ax) has the FT
1
|a|f

∧
( s
a

)
,

i.e.,

Saf has the FT
1
|a|S1/af

∧,

so

S∧
a = |a|−1S1/a. (57)

Example The multiplication and convolution operators

Mgf := g · f, Cgf := g ∗ f (58)

are defined when both g and f are suitably regular functions on R, Tp, Z, or PN .
Show that

Cg = βF−1Mg∧F. (59)

This factorization corresponds to the indirect scheme for finding convolution prod-
ucts as given in (2.20) and (2.21).

Solution The convolution rule

(g ∗ f)∧ = β g∧ · f∧

from (2.16)–(2.19) corresponds to the operator identity

F Cg = βMg∧F,

which we can rearrange to produce (59).

Example Let the repeat and zero packing operators

R 2 :=




1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1


 , Z 2 :=




1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0
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be applied to 3-component column vectors (i.e., functions on P3), and let the deci-
mation and summation operators

Ξ2 :=


 1 0 0 0 0 0

0 0 1 0 0 0
0 0 0 0 1 0


 , Σ3 :=


 1 0 0 1 0 0

0 1 0 0 1 0
0 0 1 0 0 1




be applied to 6-component column vectors (i.e., functions on P6). Show that R2,
Z2 have the Fourier transforms

R∧
2 = Z 2, Z∧

2 = 1
2R 2

that correspond to the rules (4.56), (4.55) when N = 6, and that Ξ2, Σ3 have the
Fourier transforms

Ξ∧
2 = Σ3, Σ∧

3 = 2Ξ2,

which correspond to the rules (4.58), (4.57) when N = 3.

Solution Let ω := e−2πi/6. We use the fact that ω3 = −1, ω6 = 1 to verify that

F R 2 =
1
6




1 1 1 1 1 1
1 ω ω2 ω3 ω4 ω5

1 ω2 ω4 ω6 ω8 ω10

1 ω3 ω6 ω9 ω12 ω15

1 ω4 ω8 ω12 ω16 ω20

1 ω5 ω10 ω15 ω20 ω25







1 0 0
0 1 0
0 0 1
1 0 0
0 1 0
0 0 1




=
1
3




1 1 1
0 0 0
1 ω2 ω4

0 0 0
1 ω4 ω8

0 0 0


 =

1
3




1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0




 1 1 1

1 ω2 ω4

1 ω4 ω8


 = Z 2F,

and thereby show that
R∧

2 := F R 2F
−1 = Z 2.

We use the transpose of this matrix identity and the symmetry of F to write

Ξ∧
2 :=FΞ2F

−1 = F ZT
2F

−1 = (F−1 Z 2F)T = RT
2 = Σ3.

Finally, we use the complex conjugates of these two identities to write

R 2 = R 2 = F
−1

Z 2F = (6F)Z 2(3F)−1 = 2Z∧
2

Ξ2 = Ξ2 = F
−1

Σ3F = (3F)Σ3(6F)−1 = 1
2Σ

∧
3 .
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Algebraic properties

By using (53) (and the linearity of F) we see that the process of taking the Fourier
transform of an operator is linear, i.e.,

(α1A1 + α2A2)∧ = F(α1A1 + α2A2)F−1

= α1(FA1F
−1) + α2(FA2F

−1)

= α1A
∧
1 + α2A

∧
2 ,

and multiplicative, i.e.,

(A1A2)∧ = F(A1A2)F−1

= (FA1F
−1)(FA2F

−1)

= A∧
1 A∧

2 .

More generally, if α1, α2, . . . , αm are scalars and A1,A2, . . . ,Am are operators, we
have

(α1A1 + α2A2 + · · · + αmAm)∧ = α1A
∧
1 + α2A

∧
2 + · · · + αmA∧

m, (60)

(A1A2 · · · Am)∧ = A∧
1 A∧

2 · · · A∧
m, (61)

provided that these sums and products are all well defined.

Example Show that

P∧
r = Ph, P∧

i = Pa, P∧
h = Pr, P∧

a = Pi. (62)

Solution We use (45), (46), and (55) to write

P∧
r := 1

2 (I + B)∧ = 1
2 (I∧ + B∧) = 1

2 (I + D) =: Ph,

P∧
h := 1

2 (I + D)∧ = 1
2 (I∧ + D∧) = 1

2 (I + B) =: Pr.

A similar argument is used for the other two identities.
We can use (60)–(61) to move from the rule-based calculus of Chapters 3, 4

to an operator-based calculus. We again construct a table of functions f1, f2, . . .
with known Fourier transforms f∧

1 , f
∧
2 , . . . (Appendix 2), but instead of listing var-

ious rules (Appendix 3) we construct an equivalent table of elementary operators
A1,A2, . . . with known Fourier transforms A∧

1 ,A
∧
2 , . . . (Appendix 4). It is then

possible to find the Fourier transform of any function g that can be generated by
applying some operator in the algebra generated by A1,A2, . . . to some function
in the linear space spanned by f1, f2, . . . . For example, it is possible to find the
Fourier transform of

g := A1(2A2 − 3A3)(f1 + 3f2)
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by writing

g∧ = 2A∧
1A

∧
2f

∧
1 − 3A∧

1A
∧
3f

∧
1 + 6A∧

1A
∧
2f

∧
2 − 9A∧

1A
∧
3f

∧
2 .

The rules force us to focus on detailed point-by-point manipulations; the corre-
sponding operator notation helps us develop a global view of the corresponding
mappings.

Duality

There is often a close connection between the Fourier transform rule

Af has the FT A∧f∧

and the dual rule
A∧f has the FT A∧∧f∧.

(Notice that the same operator A∧ appears on the right side of the rule and on the
left side of the dual rule.)

The simplest situation occurs when the operator A commutes with F (as is the
case when A = R,Pe,Po,F, . . . .) We can then use (53) to see that A∧ = A and
thereby conclude that the rule and its dual are identical. In particular, the reflection
rule and the inversion rule are each self dual.

There is a fundamental relation that links the operators A∧∧ and A . We use
(53) with (5) and (6) to write

A∧∧ = (F 2)A(F 2)−1

= (β−1
r R)A(β−1

d R)−1

= (βd/βr)RAR (63)

where βd, βr are the 1, p, p,N factors we associate with functions that lie in the
domain, range of A, respectively. This is one situation where our notation must
account for differences in the domain and range of A . Figure 5.2 shows an alter-
native derivation of this factorization that is based on the identities (10) and (6).

Example For real values of the parameter a and for suitably regular functions on
R, we define the translation and modulation operators

(Taf)(x) := f(x+ a), (Eaf)(x) := e2πiax · f(x). (64)

Use (63) to show that

(Taf)∧ = Eaf
∧ has the dual (Eaf)∧ = T−af

∧.
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Figure 5.2. Pictorial derivation of the factorization (63) from
the commuting diagram of Fig. 5.1.

Solution From the translation rule (3.11) and from the modulation rule (3.12) we
already know that

T∧
a = Ea, E∧

a = T−a (65)

so that
T∧∧

a = T−a.

We can also use (63) (with βd = βr = 1) to derive this result by writing

(T∧∧
a f)(x) = RTaR{f(x)} = RTa{f(−x)} = R{f(−(x+ a))}

= f(x− a) = (T−af)(x)

whenever f is a suitably regular function on R. We must use opposite signs with
the two parameters in the modulation rule (3.12) because RTaR = T−a!

Example For m = 1, 2, . . . and for functions f on PM we use the repeat and zero
packing operators

(Rmf)[n] := f [n], (Zmf)[n] :=

{
f
[ n
m

]
if m|n

0 otherwise
(66)

to construct functions on PM ·m. Use (63) to show that

(Rmf)∧ = Zmf
∧ has the dual (Zmf)∧ = m−1Rmf

∧. (67)
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Solution From the repeat rule (4.54) and the zero packing rule (4.53) we already
know that

R∧
m = Zm, Z∧

m = m−1Rm

so that
R∧∧

m = m−1Rm.

It is easy to derive this result from (63). We have βd = M , βr = mM and

RRm = RmR

(with the left R reflecting mM -vectors and the right R reflecting M -vectors). Thus

R∧∧
m =

(
M

mM

)
RRmR = m−1RmR2 = m−1Rm.

The nuisance factor m−1 is just the βd/βr ratio!

Example For p > 0 and for suitably regular function f on R we use the summation
and sampling operators

(Σpf)(x) :=
∞∑

m=−∞
f(x+mp), (Ξpf)[n] := f(np)

to construct functions on Tp and Z. Derive the dual (1.31) of Poisson’s relation

(Σpf)∧ = p−1Ξ1/pf
∧

from Eq. (29) in Chapter 1.

Solution We will use (63) with βd = 1, βr = p, and the commutation relation

RΣp = ΣpR.

(The left R is applied to functions on Tp and the right R is applied to functions
on R.) We write

Σ∧∧
p =

(
1
p

)
RΣpR = p−1ΣpR2 = p−1Σp,

and in this way we obtain the desired dual rule

(Ξ1/pf)∧ = Σpf
∧.

After you have assimilated the concept of an operator transform (and taken a
fresh look at Fig. 3.4) you may find it helpful to spend a few minutes studying the
A,A∧ pairs that are tabulated in Appendix 4. There is no better way to develop
an overview of the various rules from the Fourier transform calculus!
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5.5 Rules for Hartley transforms

The Hartley transform of a function on R, Tp, Z, and PN is defined by (27). We
have already shown that you can convert a Fourier transform to the corresponding
Hartley transform by using (34), i.e.,

f∼ = β1/2{Pe + iPo}f∧

= β1/2
{

1
2
(f∧ + f∧∨) +

i

2
(f∧ − f∧∨)

}
= β1/2{γf∧ + γ−f∧∨} (68)

where
γ :=

1 + i

2
, γ− =

1 − i

2
.

In this section we will show how you can use operator notation to derive a set of
rules for working with Hartley transforms.

We define the Hartley transform of an operator A by writing

A∼ := H+AH−1
+ = H+AH+, (69)

[analogous to (53)]. We can then use the corresponding Hartley transform rule

g := Af has the Hartley transform g∼ = A∼f∼

i.e.,
(Af)∼ = A∼f∼, (70)

[analogous to (55)]. The dual rule takes the form

g := A∼f has the Hartley transform g∼ = Af∼

since we always have
A∼∼ = H2

+AH2
+ = A.

Using the defining relation (69), it is easy to see that

A∼ = A when H+A = AH+. (71)

We noted earlier that A commutes with H+ when

A = B,D,Pe,Po,Pr,Pi,Ph,Pa,H+, . . . (72)

so the corresponding self-dual Hartley transform rules are particularly simple.
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In all other cases, we will use the operator identities

H+ = β1/2(Pe + iPo)F = β1/2(γI + γ−R)F

H+ = β−1/2F−1(Pe − iPo) = β−1/2F−1(γ−I + γR)

for the left, right H+ in (69) to obtain the fundamental relation

A∼ = (βr/βd)1/2(γI + γ−R)A∧(γ−I + γR). (73)

We must again use notation that allows us to distinguish between the β associated
with the domain and the β associated with the range of the operator A. Since the
list (72) includes all of the inhomogeneous operators that we commonly encounter,
we will further simplify (73) by using the identities γγ = i/2, γγ− = γ−γ = 1/2,
γ−γ− = −i/2 to see that

A∼ = 1
2 (βr/βd)1/2{A∧ + RA∧R + iA∧R − iRA∧} when A i = iA. (74)

The identity (74) shows how to produce A∼ from A∧, i.e., how to find a Hartley
transform rule from the corresponding Fourier transform rule.

When the operator A preserves even and odd symmetry the four-term sum from
(74) collapses, and we find

A∼ = (βr/βd)1/2A∧ when AR = RA and A i = iA. (75)

In this way we see that the various dilation, grouping, decimation, repeat, sum-
mation, and sampling rules for finding Hartley transforms are (apart from a scale
factor) identical to the corresponding rules for finding Fourier transforms.

When A exchanges even and odd symmetry the sum (74) again collapses, but
this time we find

A∼ = −i(βr/βd)1/2RA∧ when AR = −RA and A i = iA. (76)

We can use this identity to obtain the derivative and power scaling rules for Hartley
transforms.

Example Let f be a suitably regular function on R. Use (74) to derive the
derivative and power scaling rules

f ′(x) has the Hartley transform −2πs · f∼(−s) , (77)

x · f(x) has the Hartley transform (2π)−1 · f∼′(−s). (78)

Solution From the derivative rule (3.19) we know that the derivative and power
scaling operators

(Df)(x) := f ′(x), (Pf)(x) := 2πix · f(x) (79)
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are related in such a manner that

D∧ = P.

Now

DR{f(x)} = D{f(−x)} = −f ′(−x) = −R{f ′(x)} = −RD{f(x)},
so we can use (76) to write

D∼ = −iRD∧ = −iRP.

In this way we see that f ′(x) has the Hartley transform

−iRP{f∼(s)} = −iR{2πis · f∼(s)} = −2πs · f∼(−s).
We use the reflection rule with the dual

−2πx · f(−x) has the Hartley transform f∼′(s)

to obtain the power scaling rule. For iterates of D, P, see Ex. 5.37.

The full four-term sum from (74) must be used to derive the translation, modu-
lation, convolution, and multiplication rules for Hartley transforms, so these rules
are a bit more complicated than the corresponding rules for Fourier transforms.

Example Find the translation rule for Hartley transforms of functions on R.

Solution We use (74) with (64)–(65) to write

T∼
a =

1
2
{T∧

a + RT∧
a R + iT∧

a R − iRT∧
a }

=
1
2
{Ea + REaR + iEaR − iREa}

=
1
2
{Ea + E−a} − 1

2i
{Ea − E−a}R

and thereby show that

g(x) = f(x+ a) has the Hartley transform
g∼(s) = cos(2πas)f∼(s) − sin(2πas)f∼(−s). (80)

Example Derive the convolution rule

(f∗g)∼[k] =
N1/2

2
{f∼[k]g∼[k]+f∼[k]g∼[−k]+f∼[−k]g∼[k]−f∼[−k]g∼[−k]} (81)

for Hartley transforms of functions on PN .
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Solution We use (74) with (58)–(59), the condensed notation

〈g〉 := Mg,

the identity,

R〈g〉 = 〈g∨〉R,

and (32)–(33) to write

C∼
g =

1
2
{C∧

g + RC∧
g R + iC∧

g R − iRC∧
g }

=
N

2
{〈g∧〉 + R〈g∧〉R + i〈g∧〉R − iR〈g∧〉}

=
N

2
{〈g∧〉 + 〈g∧∨〉 + i〈g∧〉R − i〈g∧∨〉R}

= N{〈Peg
∧〉 + 〈iPog

∧〉R}
= N1/2{〈Peg

∼〉 + 〈Pog
∼〉R}.

This identity is equivalent to (81).
You will find additional Hartley transform rules in Exs. 5.37–5.39. Similar argu-

ments can be used to develop rules for working with the transforms associated with
S and C, see Ex. 5.40.

5.6 Hilbert transforms

Defining relations

We define the odd signum function on R, Tp, Z, PN by writing

sgn(x) :=




1 if x > 0
0 if x = 0
−1 if x < 0,

sgn(x) :=




1 if 0 < x < p/2
0 if x = 0, p/2
−1 if p/2 < x < p,

(82a)
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sgn[n] :=




1 if n = 1, 2, . . .
0 if n = 0
−1 if n = −1,−2, . . . ,

sgn[n] :=




1 if n = 1, 2, . . . , 	(N − 1)/2

0 if n = 0 or N/2 (when N is even)
−1 if n = N − 1, N − 2, . . . , N − 	(N − 1)/2
,

(82b)

respectively. We then form the Hilbert transform operator

H := −iF−1M sgnF, (83)

which acts by applying the factor −i · sgn in the Fourier transform domain. We use
the tag, #, as a superscript to show that H has been applied, i.e.,

f# := Hf.

Thus when f is a suitably regular function on R, Tp, Z, PN we have

f#(x) = −i
∫ ∞

s=−∞
sgn(s)f∧(s)e2πisx ds,

f#(x) = −i
∞∑

k=−∞
sgn[k]f∧[k]e2πikx/p,

f#[n] = −i
∫ p

s=0
sgn(s)f∧(s)e2πisn/p ds,

f#[n] = −i
N−1∑
k=0

sgn[k]f∧[k]e2πikn/N ,

respectively.

Operator identities

We will now develop operator identities that give the basic rules for working with
Hilbert transforms.

As a first step we use (83) to write

H 2 = −F−1M sgn2F,

and thereby see that

H 2f = −f when f∧ = sgn2 · f∧. (84)
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In particular, −H serves as an inverse for H when we work with suitably regular
functions on R, with absolutely summable functions on Z, with piecewise smooth
functions on Tp that have ∫ p

0
f(x) dx = 0,

or with functions on PN that have

N−1∑
n=0

f [n] = 0 and
N−1∑
n=0

(−1)nf [n] = 0 (when N is even).

The symmetry-preserving properties of H follow from the identities:

HR = −RH, (85)
H B = B H, (86)
H D = −D H, (87)

e.g., (85) shows that even functions have odd Hilbert transforms and vice versa,
(86) shows that real functions have real Hilbert transforms, and (87) shows that
hermitian functions have antihermitian Hilbert transforms and vice versa.

Example Show that H commutes with B.

Solution We use (83), (44), and the odd parity of sgn to write

H B = −iF−1M sgnF B

= −iF−1M sgnD F

= iF−1D M sgnF

= iBF−1M sgnF

= B H.

We use the factorization (59) with the factorization (83) to verify that

H Cg = CgH. (88)

This operator identity then leads to the convolution rule

(f ∗ g)# = f# ∗ g = f ∗ g# (89)

for Hilbert transforms.
When we work with suitably regular functions on R, the translation, derivative,

and dilation rules correspond to factorizations

Ta = F−1EaF,

D = F−1MqF, q(s) := 2πis,

Sa = F−1|a|−1S1/aF, a < 0 or a > 0
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that are analogous to those of (59) and (83). We use these in conjunction with (83)
to obtain commutation relations

H Ta = TaH, −∞ < a < ∞ (90)
HD = DH (91)

H Sa =
{

SaH, a > 0
−SaH, a < 0,

(92)

which give translation, derivative, and dilation rules for Hilbert transforms of func-
tions on R.

The Kramers–Kronig relations

Let F be a suitably regular function on R that vanishes on the half line s ≤ 0,
and let

f(x) :=
∫ ∞

0
F (s)e2πisx ds.

Since sgn · F = F , we can write

Hf = −iF−1M sgnFf = −iF−1(sgn · F ) = −iF−1F = −i f

or equivalently,
H{fR + i fI} = −i{fR + i fI}

when fR, fI are the real and imaginary parts of f . Since H commutes with B,
HfR, HfI are real, so we can equate the real and imaginary parts of this identity
to obtain the Kramers–Kronig relations

HfR = fI , HfI = −fR when F (s) = 0 for s ≤ 0. (93)

With analogous arguments, we also find

HFR = −FI , HFI = FR when f(x) = 0 for x ≤ 0. (94)

You can use (93) or (94) and your knowledge of Fourier analysis to generate a num-
ber of Hilbert transform pairs. You can then obtain additional Hilbert transform
pairs by using the rules that correspond to (84)–(88) and (90)–(92).

Example Derive the following Hilbert transforms:

g(x):
1

1 + x2

x

1 + x2

−2x
(1 + x2)2

1
1 + (x− 1)2

g#(x):
x

1 + x2

−1
1 + x2

1 − x2

(1 + x2)2
x− 1

1 + (x− 1)2
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Solution We know from (3.22) that

f(x) :=
1

1 − 2πix
=

1
1 + (2πx)2

+
2πix

1 + (2πx)2
has the FT F (s) = h(s)e−s,

so we can use (93) to see that

fR(x) :=
1

1 + (2πx)2
has the Hilbert transform fI(x) :=

2πx
1 + (2πx)2

.

We now use (92), (84), (91), (90) to fill in the above table with

g1 :=S1/2πfR g2 :=Hg1 g3 :=Dg1 g4 :=T−1g1

g#
1 = S1/2πfI g#

2 = Hg#
1 g#

3 =Dg#
1 g#

4 = T−1g
#
1 .

The analytic function

Let f be a suitably regular function on Tp with the Fourier representation

f(x) =
∞∑

k=−∞
ake

2πikx/p. (95)

We combine f with the Hilbert transform (or conjugate function)

f#(x) =
∞∑

k=−∞
−i sgn[k]ake

2πikx/p (96)

to form

f(x) + if#(x) =
∞∑

k=−∞
ak{1 + sgn[k]}e2πikx/p

= a0 + 2
∞∑

k=1

ake
2πikx/p

= A(e2πix/p)

where
A(z) := a0 + 2a1z + 2a2z

2 + 2a3z
3 + · · · (97)

is said to be the analytic function for the f of (95).
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Since a−1, a−2, . . . do not appear in (97), we cannot recover f from A. On the
other hand, we can generate a Hilbert transform pair

g(x) :=
1
2
{A(e2πix/p) + A(e−2πix/p)},

g#(x) :=
1
2i

{A(e2πix/p) − A(e−2πix/p)}

from any power series A that converges on the unit circle.

Example Find the Hilbert transforms and the analytic functions that corre-
spond to

fk(x) := cos(2πkx), gk(x) := sin(2πkx), k = 1, 2, . . . .

Solution The function fk on T1 has the Fourier representation

fk(x) = 1
2e

−2πikx + 1
2e

2πikx,

so we use (96) and (84) to write

f#
k (x) = (−i){− 1

2e
−2πikx + 1

2e
2πikx

}
= sin(2πkx),

g#
k (x) = f##

k (x) = − cos(2πkx).

Knowing f, f#, g, g# we use Euler’s relations to see that

fk(x) + i f#
k (x) = e2πikx, gk(x) + i g#

k (x) = −i e2πikx

and thereby obtain the corresponding analytic functions

Af (z) = zk, Ag(z) = −i zk.

Further reading

Bracewell, R.N. The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill,
New York, 2000.
Operator notation is used from time to time in this well-known text.

Bracewell, R.N. The Hartley Transform, Oxford University Press, New York, 1986.
Chapter 3 develops the rules for Hartley transforms.
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Hildebrand, F.B. Introduction to Numerical Analysis, McGraw-Hill, New York,
1956.
Chapter 5 of this classic applied mathematics text contains an informal ele-
mentary introduction to the use of operators in numerical analysis.

Kaplan, W. Operational Methods for Linear Systems, Addison-Wesley, Reading,
MA, 1962.
Chapter 2 of this text introduces scientists and engineers to the operators of
systems analysis.

Mirsky, L. An Introduction to Linear Algebra, Clarendon Press, Oxford, 1955;
reprinted by Dover Publications, New York, 1982.
Most linear algebra books include some discussion of linear operators and the
algebra of matrices. Mirsky gives a detailed elementary exposition of these
topics in Chapters 3, 4.

Exercises

. .
..

.. ..

......... ... .. .... ....••• EXERCISE 5.1 Let A1 := Q1(F), A2 := Q2(F) where Q1,Q2 are polynomials.
Carefully explain why A1A2 = A2A1.

. .
..

.. .

........ .... .... .... ...••• EXERCISE 5.2 Let α > 0 and let f(x) := e−αxh(x).

(a) Sketch Pef and Pof.

(b) Explain why F commutes with Pe and Po.

(c) Use the identities F(Pef) = Pe(Ff) and F(Pof) = Po(Ff) to find the Fourier
transforms of Pef , Pof .

.
...
..

....... .... ..... ... ...••• EXERCISE 5.3 Show that the reflection operator R and the normalized cosine
transform and sine transform operators C,S satisfy the commutation relations (22).

. ..

.
.. ......... ....
. .... ....••• EXERCISE 5.4 Let F be the Fourier transform operator that is applied to suitably
regular functions on R.

(a) Use the Maclaurin series for cosx, sinx to show that

cos(F) = a0I − a2R, sin(F) = (a1I − a3R)F

where a0, a1, a2, a3 are certain constants.

(b) Express the cosine transform operator C and the sine transform operator S in terms
of I, R, F, RF.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 5.5 Let α, γ be scalars. Find a simple expression for the inverse of
each of the following operators.

(a) αI + γR, α2 − γ2 �= 0 (b) αPe + γPo, αγ �= 0

(c) αE+ + γE−, α2 − γ2 �= 0 (d) αC + γS, αγ �= 0

(e) αH+ + γH−, α2 − γ2 �= 0

.
.. . .

.

.. ......... ..... .....••• EXERCISE 5.6 A suitably regular p-periodic function f can be expressed in the
alternative forms

f(x) =
a0
2

+
∞∑

k=1

{
ak cos

(
2πkx
p

)
+ bk sin

(
2πkx
p

)}

=
∞∑

k=−∞
ck cis

(
2πkx
p

)
=

∞∑
k=−∞

dk cas

(
2πkx
p

)
,

where cis θ := cos θ+i sin θ, cas θ := cos θ+sin θ. We use the coefficients to define functions
a, b, c, d on Z:

a[k] :=

{
ak if k ≥ 0

a−k if k < 0,
, b[k] :=



bk if k > 0

0 if k = 0

−b−k if k < 0,

, c[k] := ck, d[k] := dk.

(a) Show how to obtain a, b, c, d from Cf and Sf .

Hint. Begin with c = Ff = (1/
√
p){Cf − iSf}.

(b) Express ak, bk, ck, dk in terms of suitable definite integrals involving f.

(c) Express a, b in terms of c and in terms of d.

Hint. Use (a) and the operators Pe, Po, R, e.g., write a = 2Pec = c+ Rc.

(d) Express c in terms of d and in terms of a, b.

(e) Express d in terms of a, b and in terms of c.

(f) What can you infer about a, b, c, d if you know that f is real valued? pure imaginary
valued?

(g) What can you infer about a, b, c, d if you know that f is even? odd?

(h) What can you infer about a, b, c, d if you know that f is hermitian? antihermitian?

Note. You may wish to compare the present operator-based analysis to the component-
based analysis you used for Ex. 1.11.
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. . .
....

..

...... ........ ..... ...••• EXERCISE 5.7 Let f(x) :=
∞∑

m=−∞
g(x−mp) where p > 0 and where g is a suitably

regular function on R with the Hartley transform

g∼(s) :=
∫ ∞

−∞
g(x)cas(2πsx) dx.

(a) Find a Poisson formula that enables you to express the coefficients of the Hartley
series

f(x) =
∞∑

k=−∞
dk cas

(
2πkx
p

)

in terms of g∼.

Hint. Use a direct argument . . . or manipulate the identity d =
√
p(Pe + iPo)Ff .

(b) Using (a), find the Hartley series for

f(x) :=

{
1 if 0 < x < p/4

0 if p/4 < x < p.

.. . .
......... ....

.. .... ....••• EXERCISE 5.8 Let f be the function on PN with components f [n] := n,
n = 0, 1, . . . , N − 1.

(a) Find the components (Cf)[k], (Sf)[k], k = 0, 1, . . . , N − 1, of the normalized cosine
transform, sine transform of f .

Hint. Use (32), (33) with the Fourier transform of f that is given in Ex. 4.26.

(b) Show that the normalized Hartley transform (27) of f has the components

f∼[k] =
N1/2

2



N − 1 if k = 0

−1 − cot
(
πk

N

)
if k = 1, 2, . . . , N − 1.

.
..
.

........ .... ..... .... ...••• EXERCISE 5.9 Let N = 2, 3, . . . , let f be the N -periodic discrete function with

f [n] :=

{
1 if n = 0, 1

0 if n = 2, 3, . . . , N − 1,

and let f1 := f , f2 := f ∗ f , f3 := f ∗ f ∗ f , . . . .

(a) Show that f∧
m[k] = N−1(1 + e−2πik/N )m.

(b) Show that f∼
m[k] = 2mN−1/2 cosm(πk/N)cas(πmk/N).

Hint. Use (a) with (34).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 5.10 Let the complex-valued function f have the representations

f = fr + fi = fR + ifI ,

where fr := fR and fI are real valued, and where fi := ifI is pure imaginary. (Thus fi

is the imaginary part of f with the i and fI is the imaginary part of f without the i.) Let
the operators Pr, Pi, PI be defined by writing

Prf := fr, Pif := fi, PIf := fI .

(a) Express Pr, Pi, and PI in terms of the complex conjugation operator B.

(b) Find simple expressions for the products PrPr, PIPI , PrPI , PIPr.

Note. If you compare your answers from (b) with (12), (47), (48) you will understand
why we have chosen to work with Pr, Pi in this text.

. . .
..

..
.
.. ............ ... .....••• EXERCISE 5.11 A group of Fourier analysis students are learning to use a com-
puter subroutine, DFT. After initializing the integer variable N = 1, 2, . . . and the
N -component real arrays fR, fI , you can use the command

DFT (N, fR, fI , FR, FI)

to tell the computer to load the N -component real arrays FR, FI with the real and imag-
inary parts of the discrete Fourier transform

F [k] = FR[k] + iFI [k], k = 0, 1, . . . , N − 1

of the complex vector

f [n] := fR[n] + ifI [n], n = 0, 1, . . . , N − 1.

(a) “I think we can use DFT to compute an inverse Fourier transform,” says one student,
who suggests the pseudocode

DFT (N, fR, fI , FR, FI)

fR := FR

fI := FI

DFT (N, fR, fI , FR, FI)

fR := FR

fI := FI

DFT (N, fR, fI , FR, FI)

FR := N2 · FR

FI := N2 · FI .
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“That’s terribly inefficient,” says a second student. “The pseudocode

DFT (N, fR, fI , FR, FI)

For k = 1, 2, . . . , �N/2�
Swap FR[k] and FR[N − k]

Swap FI [k] and FI [N − k]

FR := N · FR

FI := N · FI

will do the job with only one DFT computation!”
“I don’t like componentwise operations,” says a third student, who recommends

the pseudocode

fI := −fI

DFT (N, fR, fI , FR, FI)

FI := −N · FI

FR := N · FR.

Write down the operator identities that underlie these three approaches to com-
puting an inverse Fourier transform. Which one do you think is the best? Why?

(b) “I need to compute the Fourier transforms of two real N -vectors, f, g,” said one
student. “I guess I’ll use the pseudocode

DFT (N, f, 0, FR, FI)

DFT (N, g, 0, GR, GI)

to do the job.”
“I think you could get by with just one call to DFT,” says a second student. “You

can write
DFT (N, f, g, TR, TI)

and then suitably process TR, TI to find FR, FI , GR, GI .”
“That will never work,” says a third student, “because the Fourier transform scram-

bles the real and imaginary parts; you cannot get both F and G without using DFT
twice.”

Give operator identities which show that the second student is right! Supply corre-
sponding pseudocode [analogous to that in (a)] for computing FR, FI , GR, GI from
TR, TI .

.. .
....

.. . .

..... ......
..
.. ... ...••• EXERCISE 5.12 Verify the following identities.

(a) f∧ = f∨∧∨ = f−∧† = f†∧− (b) f∧∨ = f∨∧ = f−∧− = f†∧†

(c) f∧− = f∨∧† = f−∧∨ = f†∧ (d) f∧† = f∨∧− = f−∧ = f†∧∨
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 5.13 The identity, reflection, bar, and dagger operators are used to
construct the projection operators Pe, Po, Pr, Pi, Ph, Pa, see (11), (45), and (46).

(a) Show that there are exactly 10 distinct nonzero products that can be formed from a
string of one or more of these projection operators.

Hint. In addition to the above six you will find Pre := PrPe, Pro := PrPo,
Pie := PiPe, Pio := PiPo.

(b) Let P be one of the operators Pre, Pro, Pie, Pio, and let Q := I − P. Verify that
P2 = P, Q2 = Q, PQ = QP = 0, analogous to (12), (47), (48).

(c) We associate hermitian symmetry with Ph since f is hermitian if and only if Phf = f .
Likewise we associate real symmetry with P∧

h = Pr. Make a table showing P,
the symmetry associated with P, and the symmetry associated with P∧ for the 10
projection operators P of (a).

. ....
.. ..... ........... .... .....••• EXERCISE 5.14 Let A be a linear operator applied to the functions on PN . Such
an operator can be represented by an N ×N matrix {amn}N−1

m,n=0, i.e.,

(Af)[m] :=
N−1∑
n=0

amnf [n], m = 0, 1, . . . , N − 1.

(a) Show that A commutes with R, B, D if and only if amn = a−m,−n, amn = amn,
amn = a−m,−n, respectively. Here matrix indices are taken modulo N , i.e.,
a−m,−n := aN−m,N−n when m,n = 1, 2, . . . , N .

(b) What must be true of amn if A preserves the symmetry of being even? real? hermi-
tian?

. .... ..... ........... .. ......••• EXERCISE 5.15 In this exercise you will develop properties of the four fundamen-
tal projections

Qk :=
1
4

3∑
�=0

(−i)k�E�
+ =

1
4

3∑
�=0

(+i)k�E�−

when these operators are applied to a suitably regular function f defined on R or PN . (In
these two cases the domain of E+,E− is the same as the range!)

(a) Use the definition to show that

Q0 + Q1 + Q2 + Q3 = I, QkQ� =

{
Qk when k = �

0 when k �= �.

(b) Verify that Q0 = 1
2 (Pe + C), Q1 = 1

2 (Po + S), Q2 = 1
2 (Pe − C), Q3 = 1

2 (Po − S),
and thereby show that each of the projections Q0, Q1, Q2, Q3 is real with Q0, Q2
preserving even symmetry and with Q1, Q3 preserving odd symmetry.

(c) Show that E+Qk = (+i)kQk, E−Qk = (−i)kQk, k = 0, 1, 2, 3.
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(d) Use (a) and (c) to show that f has the decomposition f = f0 + f1 + f2 + f3 where

E+fk = (+i)kfk, E−fk = (−i)kfk, F fk = (−i)kβ−1/2fk, k = 0, 1, 2, 3,

i.e., f0, f1, f2, f3 are eigenfunctions of the operators E+, E−, F (or they are zero
functions). Here β = 1, N when f is defined on R, PN , respectively.

Hint. fk := Qkf.

(e) Show that if we know f and f∧, we can find the projections of (d) using

fk(x) = 1
4{f(x) + ikf∧(x) + (−1)kf(−x) + (−i)kf∧(−x)}

when f , f∧ are defined on R and

fk[n] = 1
4{f [n] +

√
Nikf∧[n] + (−1)kf [−n] +

√
N(−i)kf∧[−n]}

when f , f∧ are defined on PN .

.
...
..

....... .... .... .... ...••• EXERCISE 5.16 In this exercise you will show how the fundamental projections
Q0, Q1, Q2, Q3 (from Ex. 5.15) can be used to represent an arbitrary polynomial in the
Fourier transform operator F in cases where F is applied to functions defined on R or
on PN . Since F 4 is a scalar multiple of the identity operator, I, we can assume that the
polynomial has the form P(x) := c0 + c1x+ c2x

2 + c3x
3 where c0, c1, c2, c3 are complex

numbers.

(a) Show that P(E+)Qk = P((+i)k)Qk, P(E−)Qk = P((−i)k)Qk, k = 0, 1, 2, 3.

Hint. Use Ex. 5.15(c).

(b) Show that

P(E+) = P(1)Q0 + P(i)Q1 + P(−1)Q2 + P(−i)Q3

P(E−) = P(1)Q0 + P(−i)Q1 + P(−1)Q2 + P(i)Q3.

Hint. Apply P(E±) to the identity I = Q0 + Q1 + Q2 + Q3 from Ex. 5.15(a).

(c) Express I, Pe, Po, R, C, S, H+, E+, E− in terms of Q0, Q1, Q2, Q3.

Hint. You can show that R = Q0 − Q1 + Q2 − Q3 by setting P(x) := x2 in (b) or
by suitably manipulating the identities of Ex. 5.15(b).

(d) A polynomial in F can be written as a linear combination of I, E+, E2
+ = R, and

E3
+ = E−. Show that

A0I +A1E+ +A2E
2
+ +A3E

3
+ = a0Q0 + a1Q1 + a2Q2 + a3Q3

if and only if the coefficients Ak, an are related in such a manner that

(A0, A1, A2, A3) = (a0, a1, a2, a3)
∧.
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(e) Let

A :=A0I +A1E+ +A2E
2
+ +A3E

3
+ = a0Q0 + a1Q1 + a2Q2 + a3Q3,

B :=B0I +B1E+ +B2E
2
+ +B3E

3
+ = b0Q0 + b1Q1 + b2Q2 + b3Q3.

Show that

AB = BA = a0b0Q0 + a1b1Q1 + a2b2Q2 + a3b3Q3 = C0I+C1E+ +C2E
2
+ +C3E

3
+

where

(C0, C1, C2, C3) := (A0, A1, A2, A3) ∗ (B0, B1, B2, B3).

(f) Show that A := a0Q0 + a1Q1 + a2Q2 + a3Q3 is an involution (i.e., A2 = I) if and
only if A is one of the 16 operators

±(Pe ± Po), ± (Pe ± S), ± (C ± Po), ± (C ± S).

Note. The Hartley transform operators, ±H±, are the only such involutions that actu-
ally transform both the even and the odd parts of functions to which they are applied!

(g) Let A0, A1, A2, A3 be complex numbers and let A := A0I +A1E+ +A2E2
+ +A3E3

+.
Devise a procedure for finding the corresponding coefficients B0, B1, B2, B3 for the
inverse operator B = B0I +B1E+ +B2E2

+ +B3E3
+ when such an inverse exists.

. ...
.
.
...
.. . ........ .... .....••• EXERCISE 5.17 In this exercise you will determine the multiplicities n0, n1, n2,
n3 of the eigenvalues λ = 1/

√
N , −i/√N , −1/

√
N , i/

√
N of the N ×N discrete Fourier

transform matrix F, or equivalently, of the eigenvalues λ = 1,−i,−1, i of the normalized
operator E−. [The argument is taken from L. Auslander and R. Tolimieri, Bull. Amer.
Math. Soc. 1 (1979), 847–897.]

(a) Show that E−f = (−i)kf if and only if Qkf = f , k = 0, 1, 2, 3, see Ex. 5.15.

(b) Show that nk is the multiplicity of the eigenvalue λ = 1 of Qk, k = 0, 1, 2, 3.

(c) Use (b) and Ex. 5.15(a) to show that n0 + n1 + n2 + n3 = N .

(d) Use (b) and Ex. 5.15(b) to show that n0 + n2 = �N/2� + 1.

Hint. Since Q0 + Q2 = Pe, n0 + n2 is the dimension of the space of even functions
on PN .

(e) Show that n0 − in1 − n2 + in3 = 1, 0,−i, 1 − i when N ≡ 1, 2, 3, 4 (mod 4).

Hint. Recall from linear algebra that the trace
∑

ann of a matrix A = {amn}N−1
m,n=0

gives the sum of its eigenvalues, and use the expression (4.72) for the Gauss sum.
(f) Using (c)–(d), show that n0, n1, n2, n3 are given by the following table:

N n0 n1 n2 n3
4m m+ 1 m m m− 1
4m+ 1 m+ 1 m m m
4m+ 2 m+ 1 m m+ 1 m
4m+ 3 m+ 1 m+ 1 m+ 1 m

Note. Q2 = 0 if N = 1, Q1 = 0 if N = 1, 2, and Q3 = 0 if N = 1, 2, 3, 4.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 5.18 The following operators are applied to functions on PN . Find
each eigenvalue and determine its multiplicity.

(a) C (b) S (c) R (d) H+

Hint. When E−f = λf , you can write E+f = E3−f = λ3f and E+f = λf . Use this with
the results of Ex. 5.17.

.
...
..

....... .... .... .... ...••• EXERCISE 5.19 Let the translation, exponential modulation operators Ta,Ea

from (64) be applied to functions on R, and let R, B, D be the reflection, bar, and
dagger operators. (Here −∞ < a < ∞.) Show that these operators satisfy the following
relations:

(a) RTa = T−aR (b) BTa = TaB (c) DTa = T−aD

(d) REa = E−aR (e) BEa = E−aB (f) DEa = EaD

Note. Appendix 4 shows how to define translation and exponential modulation operators
for functions on Tp, Z, PN , and you can use the above identities within such settings.

.
.

.. . .
......... ....
.. .... ....••• EXERCISE 5.20 Let the dilation, translation, exponential modulation, derivative,
and power scaling operators Sb, Ta, Ea, D, P from (56), (64), and (79) be applied to
suitably regular functions on R. (Here −∞ < a < ∞ and −∞ < b < ∞ with b �= 0.)
Show that these operators satisfy the following relations:

(a) TaSb = SbTa·b (b) EaSb = SbEa/b (c) DSb = bSbD (d) PSb = b−1SbP

. . .
..

..

...... ...... .. .... ...••• EXERCISE 5.21 Find the 4 × 4 matrix that corresponds to each of the following
operators (when these operators are applied to functions on P4):

(a) E+, E− [use (14)] (b) R, Pe, Po [use (3) and (11)]

(c) C, S [use (18)] (d) H+, H− [use (23)]

(e) Q0, Q1, Q2, Q3, [use Ex. 5.15(b)] (f) Mg, Cg, [use (58)]

(g) T0, T1, T2, T3 (h) E0, E1, E2, E3

Note. If you wish, you can verify that these matrices satisfy identities such as C2+S2 = I,
RE+ = E−, H2

+ = I, T 2
1 = T2, . . . .

.

.

... .

........ .... .... .... ...••• EXERCISE 5.22 Let F be the discrete Fourier transform matrix (1). The inversion
rule corresponds to the relation F 2 = N−1R where R is the matrix (2). What property
of F corresponds to:

(a) the reflection rule? (b) the translation rule? (c) Parseval’s identity?

Hint. Use the identity F = BFB = RF for (c).

.. .

...

.. . .
...... ......

..

.. .... ...••• EXERCISE 5.23 A Fourier transform rule and its dual are often quite dissimilar.
Explain why we do not get substantially new rules from the dual of the dual and from the
dual of the dual of the dual.

Hint. Observe that (RAR)∧ = RA∧R.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 5.24 Let X be the operator that exchanges the real and imaginary
parts of a complex-valued function, i.e.,

Xf := fI + ifR when f = fR + ifI

(with fR, fI being real-valued).

(a) Show that X = iB [where B is the bar operator (36)].

(b) Show that X2 = I by using the definition of X.

(c) Show that X2 = I by using the identity of (a).

(d) Find a simple expression for the operator X∧.

(e) Let f = fR + ifI , f∧ = FR + iFI where fR, fI , FR, FI are real valued. Express the
Fourier transform rule associated with X in terms of fR, fI , FR, FI .

. ...
.
.
...
.. . ........ ..... .....••• EXERCISE 5.25 Find the Fourier transform of each of the following operators that
are applied to suitably regular functions on R.

(a) The averaging operator

(Ahf)(x) :=
1
2h

∫ x+h

x−h

f(u) du, h > 0.

Hint. Use (53) and (59).

(b) The low-pass filter operator

(Lσf)(x) :=
∫ σ

s=−σ

f∧(s)e2πisx ds =
∫ σ

s=−σ

{∫ ∞

u=−∞
f(u)e−2πisu du

}
e2πisx ds,

which removes from the Fourier representation of f all sinusoids having frequencies
outside the band −σ < s < σ.

(c) The high-pass filter operator

(Hσf)(x) :=
∫

|s|>σ

f∧(s)e2πisx ds =
∫

|s|>σ

{∫ ∞

u=−∞
f(u)e−2πisu

}
e2πisx ds,

which removes from the Fourier representation of f all sinusoids having frequencies
within the band −σ < s < σ.

.. . .
...

. .. ...........
..
. .... ....••• EXERCISE 5.26 Let h > 0, α > 0, and let the operators D, Th, Sα be defined by
(35), (64), and (56). Let c0, c1, . . . , cn be complex scalars and let

P(x) := c0 + c1x+ · · · + cnx
n.

Find the Fourier transform of:

(a) The differential operator {P(D)f}(x) := c0f(x) + c1f
′(x) + · · · + cnf

(n)(x);

(b) The difference operator {P(Th)f}(x) := c0f(x) + c1f(x+ h) + · · · + cnf(x+ nh);

(c) The dilation operator {SαP(Th)f}(x) := c0f(αx)+c1f(αx+h)+ · · ·+cnf(αx+nh).
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 5.27 Let p > 0, q > 0, and let the operator

(Jf)(x) := f(px/q)

map the function f on Tp to the function Jf on Tq.

(a) Find the Fourier transform J∧ of the operator J and draw a commuting diagram to
illustrate the corresponding mappings.

(b) Find J∧∧ by taking the Fourier transform of J∧F where F := f∧ is a function on Z.

Hint. Assume that the Fourier transforms of F , J∧F are functions on Tp, Tq,
respectively.

(c) Find J∧∧ by simplifying the operator identity J∧∧ = (βd/βr)RJR.

.. . .

.

...
......... .....

..

.. .... ...••• EXERCISE 5.28 A linear operator A is said to be translation invariant (LTI),
modulation invariant (LMI) provided that A commutes with every translation operator
Th, every exponential modulation operator Eh, respectively.

(a) Show that A is LTI if and only if A∧ is LMI.

(b) Show that the multiplication operator Mg is LMI.

(c) Using (a)–(b), show that the convolution operator Cg is LTI.

(d) Let A be an invertible LMI operator. Show that A−1 is also LMI.

(e) Let A be an invertible LTI operator. Show that A−1 is also LTI.

.. . .

...

.. .
...... ......

..

.. ... ...••• EXERCISE 5.29 Let A be an operator that is applied to the functions on PN .

(a) Show that A is LMI (see Ex. 5.28) if and only if A = MAu, i.e., Af := (Au) · f ,
where u is the function on PN with u[n] = 1, n = 0, 1, . . . , N − 1.

Hint. Use matrix representations for A and Em.

(b) Show that A is LTI (see Ex. 5.28) if and only if A = CAδ, i.e., Af := (Aδ)∗f , where
δ is the function on PN with δ[0] = 1 and δ[n] = 0 for n = 0, 1, . . . , N − 1.

Hint. Use Ex. 5.28(a) with the representation of (a).

(c) Let ek[n] := e2πikn/N . Show that A is LTI if and only if e0, e1, . . . , eN−1 are eigen-
functions of A.

(d) Let A be an LTI operator with impulse response r and frequency response λ, i.e.,
r[n] := (Aδ)[n], n = 0, 1, . . . , N − 1 as in (b) and Aek = λ[k] · ek, k = 0, 1, . . . , N − 1
as in (c). How are the functions r and λ related?

.. . .

.

...
......... .... ...

.. ... ...••• EXERCISE 5.30 The following operators are applied to functions on PN . Find
their eigenvalues and corresponding eigenfunctions.

(a) The translation operator Tm.

(b) The negative discrete Laplacian A with (Af)[n] := −f [n− 1] + 2f [n] − f [n+ 1].

Hint. λk = 4 sin2(kπ/N).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 5.31 Let f be a function on PN with f∧[k] �= 0 for k = 0, 1, . . . , N −1
and let T := T1 be the unit translation operator. Show how to find coefficients
c0, c1, . . . , cN so that

{c0I + c1T + c2T
2 + · · · + cN−1T

N−1}f = g

when the function g on PN is specified. (Thus f, Tf, T 2
f, . . . ,TN−1

f form a basis for
the N -dimensional linear space of complex functions defined on PN .)

Hint. {g∧/f∧}∧

Note. N. Weiner proved the following generalization of this result: Let f be an absolutely
integrable function on R with f∧(s) �= 0, −∞ < s < ∞. Let g be an absolutely integrable
function on R, and let ε > 0 be given. Then there exist real numbers a1 < a2 < · · · < aN

and complex scalars c1, c2, . . . , cN such that

∫ ∞

−∞

∣∣∣∣g(x) −
N∑

n=1

cn(Tanf)(x)

∣∣∣∣dx < ε.

.
.
. . ..
.
. ......... ... .......••• EXERCISE 5.32 When we work with functions on R and use the dilation operator
(56) with a > 1:

(i) (Saf)(x) := f(ax) is a “compressed” version of f ;

(ii) (S1/af)(x) := f(x/a) is a “stretched” version of f ;

(iii) SaS1/a = I; and

(iv) S∧
a S∧

1/a = I∧ simplifies to S1/aSa = I.
Write down the operator definitions that correspond to (i)–(ii) and the operator identities
that correspond to (iii)–(iv) when we work with functions on:

(a) Tp; (b) Z; (c) PN .

Hint. Use m = 2, 3, . . . in place of a > 1. Give two answers for (c), one using the dilation
operator Sm [with gcd(m,N) = 1] and one using the decimation operator Ξm (with m|N).
All of the required operators are defined in Appendix 4.

. ...
.
.
...
.. . ...
..... .... .....••• EXERCISE 5.33 Sketch graphs for the functions at the four corners of the follow-
ing commuting diagrams. All of the required operators are defined in Appendix 4.

(a)

............................................... ...... .....................................................

......................................... ..... ....... .....................................................
................................
..
....
..

.................................
.
....
.

F F

f S3f

f∧ Z 3f
∧

S3

G3

Z 3

S3

f(x) :=
∞∑

�=−∞
P
(
x− 12�

3

)
(on T12)
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(b)

........................................ ...... ...... ...................................................

.............................................. ...... ....................................................
............................
.....
..
....
.

............................

....
.
.....
.

F F

f R 3f

f∧ Z 3f
∧

R 3

Σ3

Z 3

Ξ3

f [n] :=

{
1 if n = 0, 1, 11

0 if n = 2, 3, . . . , 10
(on P12)

. .
..

.. ..

......... ... .. ..... ....••• EXERCISE 5.34 When a > 0 the sample-sum operator

(Xaf)[n] :=
∞∑

m=−∞
f

(
a√
N

[n−mN ]

)

[from (4.64)] maps a suitably regular function f on R to a function Xaf on PN .

(a) Show that
Xa = ΣNΞ

a/
√

N

where Ξp is the p-sampling operator for functions on R and ΣN is the N -summation
operator for functions on Z, as defined in Appendix 4.

(b) Use (a) and the multiplicative property (61) of the operator Fourier transform to
verify that

X∧
a =

1
a
√
N

Ξ1/a
√

N
Σ√

N/a

where now Σq is the q-summation operator for functions on R and Ξq/N is the
q/N -sampling operator for functions on Tq, q :=

√
N/a, as defined in Appendix 4.

(c) Using (b), show that

X∧
a =

1
a
√
N

X1/a.

(d) Verify that X∧∧
a = N−1Xa by using the identity from (c).

(e) Verify that X∧∧
a = N−1Xa by using the identity (63).

.
...
..

....... .... .... ..... ...••• EXERCISE 5.35 Let m = 1, 2, . . . . The end padding operator

(Pmf)[n] :=

{
f [n] if n = 0, 1, . . . , N − 1

0 if n = N,N + 1, . . . ,mN − 1

maps a function f on PN to a function f on PmN .

(a) Show that F = mΞmFPm when Ξm is the m-decimation operator for functions on
PmN .

Hint. You must show that (mFPmf)[mn] = Ff [n].

(b) Write the operator identity of (a) in terms of matrices in the case where m = 2 and
N = 3.
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(c) Show that ΞmF−1PmF = I.

Hint. Use (a) and the identity ΞmR = RΞm.

(d) Using (c) explain why g := F−1PmFf is said to interpolate f , see Ex. 4.47(b).

Note. Form strings of zeros with N or 2N or 3N . . . zeros in each string and with a
total of (m−1)N zeros in all of the strings. Insert these zero strings before, between,
or after the components f [0], f [1], . . . , f [N − 1] of an f on PN to produce a function
P ′

mf on PmN . The operator identities of (a), (c) will hold with P ′
m in place of Pm.

Exercise 4.47(c) gives one such example.

. .. .....
.. ...
....... ..... ....••• EXERCISE 5.36 Show that A distributes over the convolution product, i.e.,

A(f ∗ g) = (Af) ∗ (Ag) for all f, g

if and only if

A∧(f∧ · g∧) = (βr/βd)(A∧f∧) · (A∧g∧) for all f∧, g∧.
Use this result to verify that the following operators distribute over the convolution prod-
uct. All of the required operators are defined in Appendix 4.

(a) R, B, D for functions on R, Tp, Z, PN (b) Ea, |a|Sa, Σp for functions on R

(c) Em, Sm, Gm for functions on Tp (d) Em, Zm, ΣN for functions on Z

(e) Em, Sm (when m,N are relatively prime), ΣN/m (when m|N), Zm, m−1Rm for
functions on PN

. ....
..

..
.. ............ ... .....••• EXERCISE 5.37 Let R, D, P, be the reflection, derivative, and power scaling
operators for functions on R, as given in (4) and (79).

(a) Use the identities D∼ = iPR, PR = −RP to show that

(Dn)∼ = (−1)n(n−1)/2(i P)nRn, n = 0, 1, 2, . . . .

(b) Use (a) to show that g(x) := f (n)(x) has the Hartley transform

g∼(s) = (−1)n(n+1)/2(2πs)nf∼((−1)ns) = (2πs)n



f∼(s) if n = 0, 4, 8, . . .

−f∼(−s) if n = 1, 5, 9, . . .

−f∼(s) if n = 2, 6, 10, . . .

f∼(−s) if n = 3, 7, 11, . . .

when f is a suitably regular function on R.
(c) Rearrange the identity of (a) and thereby show that g(x) := xnf(x) has the Hartley

transform

g∼(s)=(−1)n(n−1)/2(2π)−n(f∼)(n)((−1)ns)=(2π)−n




(f∼)(n)(s) if n = 0, 4, 8, . . .

(f∼)(n)(−s) if n = 1, 5, 9, . . .

−(f∼)(n)(s) if n = 2, 6, 10, . . .

−(f∼)(n)(−s) if n = 3, 7, 11, . . . .

Hint. The identity D∼∼ = D may be useful.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 5.38 In this exercise you will derive expressions for the Hartley trans-
forms of various operators using a compact tag notation. For this purpose we define

A∧ := FAF−1 = E−AE+,

A∨ := RAR,

A∼ := H+AH+,

A� := (Pe + iPo)A(Pe − iPo) = 1
4

{
(1 + i)I + (1 − i)R

}
A
{
(1 − i)I + (1 + i)R

}
,

A� := 1
2{A + RAR + AR − RA}.

(a) Explain why the transformations associated with the tags ∧, ∨, ∼, �, �, all commute,
i.e., A∧∨ = A∨∧

,A∧∼ = A∼∧
, . . . ,A�	 = A	�

.

(b) You know that A∧∧ = A∨
,A∨∨ = A,A∼∼ = A. Show that A�� = A∨,

A		 = A.

(c) Derive the identities A∼ = A∧�, A∧ = A∼∨� that show how the � transformation
can be used to change the Fourier transform of an operator to the Hartley transform,
and vice versa.

(d) Show that if A is a linear operator and A commutes with R, then A� = A, and
A∼ = A∧. Give examples of operators A for which this is the case.

(e) Use (c) and the identities T∧
a = Ea, E∧

a = T−a from Appendix 4 to show that
T∼

a = E�
a , E∼

a = T �
−a.

(f) Show that M �
g∧ = β−1/2M	

g∼ .

Hint: It is sufficient to show that M �
g∧f = β−1/2M	

g∼f when f is even and when f
is odd.

(g) Use (c),(f), the identity C∧
g = βMg∧ , and (b) in turn to show that

C∼
g = β1/2M	

g∼ , M∼
g = β−1/2C	

g∼ .

. .
..

.. ..

......... ... .. ..... ....••• EXERCISE 5.39 In this exercise you will develop properties of the products

f � g := 1
2{f ∗ g+ f ∗ g∨ + f∨ ∗ g− f∨ ∗ g∨}, f 
 g := 1

2{f · g+ f · g∨ + f∨ · g− f∨ · g∨}

(These products are commutative and associative, and both of them distribute over addi-
tion.)

(a) Show that

f∗g = 1
2{f�g+f�g∨+f∨�g−f∨�g∨}, f ·g = 1

2{f
g+f
g∨+f∨
g−f∨
g∨}.
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(b) Verify the following eight product rules for working with Fourier and Hartley trans-
forms:

(f ∗ g)∧ = βf∧ · g∧, (f ∗ g)∼ = β1/2f∼ 
 g∼

(f · g)∧ = f∧ ∗ g∧, (f · g)∼ = β−1/2f∼ � g∼

(f � g)∧ = βf∧ 
 g∧, (f � g)∼ = β1/2f∼ · g∼

(f 
 g)∧ = f∧ � g∧, (f 
 g)∼ = β−1/2f∼ ∗ g∼

Note. The operators Kgf := g � f , Ngf := g 
 f have the transforms K∧
g = βNg∧ ,

N∧
g = Kg∧ , K∼

g = β1/2Mg∼ , N∼
g = β−1/2Cg∼ .

. . .
..
.... .......... ...
. ... ....••• EXERCISE 5.40 In this exercise you will use operator methods to deduce rules for
working with (normalized) cosine transforms and sine transforms. These transforms will
be denoted by using the superscripts c, s as tags, i.e.,

fc := C f, fs := S f.

(a) Show that when f∧ is known, we can write

fc = β1/2Pef
∧, fs = i β1/2Pof

∧.

(b) Show that we can find the cosine and sine transforms of Af when we know the cosine
and sine transforms of f by using the relations

(Af)c = Accf
c + Acsf

s, (Af)s = Ascf
c + Assf

s,

where

Acc := CAC, Acs := CAS, Asc := SAC, Ass := SAS.

(c) Show that if A commutes with S, C (as is the case when A = R, B, D, Pe, Po,
Pr, Pi, Ph, Pa, . . . ), then

(Af)c = A(fc), (Af)s = A(fs).

(d) Show that when A is linear we can write

Acc = PeA
∧Pe, Acs = −iPeA

∧Po, Asc = iPoA
∧Pe, Ass = PoA

∧Po.

(e) Use (b) and (d) to show that if A is a linear operator that commutes with R, then

(Af)c = A∧
fc, (Af)s = A∧

fs.

In particular, the various dilation, grouping, decimation, zero packing, repeat, sum-
mation, and sampling rules are identical to those for taking Fourier transforms.
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(f) Use (b) and (d) to obtain the translation rules

(Taf)c =
1
2
(Ea+E−a)fc+

1
2i

(Ea−E−a)fs, (Taf)s = − 1
2i

(Ea−E−a)fc+
1
2
(Ea+E−a)fs.

(g) Use (b) and (d) to obtain the modulation rules

(Eaf)c = (PeT−a)fc − i(PeT−a)fs, (Eaf)s = i(PoT−a)fc + (PoT−a)fs.

(h) Use (b) and (d) to obtain the convolution rules

(f ∗ g)c = β1/2{gc · fc − gs · fs}, (f ∗ g)s = β1/2{gs · fc + gc · fs}.

(i) Use (b) and (d) to obtain the multiplication rules

(f · g)c = β−1/2{gc ∗ fc − gs ∗ fs}, (f · g)s = β−1/2{gs ∗ fc + gc ∗ fs}.

. . ..... .......... .... ... ..... ...••• EXERCISE 5.41 In this exercise you will derive rules for taking Hilbert transforms
of suitably regular functions on R. For example, we can use (84) to deduce the operator
identity H 2 = −I that corresponds to the inversion rule

g(x) := f#(x) has the Hilbert transform g#(x) = −f(x).

Use operator identities from the text to formulate an analogously stated version of the
Hilbert transform

(a) reflection rule, (b) conjugation rule, (c) translation rule,

(d) derivative rule, (e) dilation rule, (f) convolution rule.

.
.

.. . .
......... ....
.. .... ....••• EXERCISE 5.42 Let f0(x) := eπixsincx be a function on R. Make a table with
the columns

Formula for f Graph of f∧ Graph of f#∧ Formula for f#

and then supply the entries for each of the following:

(a) f = f0 (b) f = Bf0 (c) f = Pef0

(d) f = Pif0 (e) f = S1/2Pef0 (f) f = f0 ∗ (Pef0)

Hint. Use the Hilbert transform rules from Ex. 5.41.

.... .......... ....
.. ..... ....••• EXERCISE 5.43 Let f, g be suitably regular functions on R. Use the Parseval and
Plancherel relations to derive the corresponding identities∫ ∞

−∞
f(x)g(x) dx =

∫ ∞

−∞
(Hf)(x)(Hg)(x) dx,

∫ ∞

−∞
|f(x)|2 dx =

∫ ∞

−∞
|(Hf)(x)|2 dx

that link f, g to their Hilbert transforms.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 5.44 Let f, g be suitably regular functions on R. Verify that

f ∗ g = −f# ∗ g#

(a) by using the convolution rule for Fourier transforms [with (83)];

(b) by using the convolution rule (89) for Hilbert transforms [with (84)].

. ... .... .......... .. ... ......••• EXERCISE 5.45 For a suitably regular function f on R we define

(P+f)(x) :=
∫ ∞

0
f∧(s)e2πisx dx, (P−f)(x) :=

∫ 0

−∞
f∧(s)e2πisx ds.

(a) Use the Kramers–Kronig relations (93) to find operator identities linking P+, Pr,
Pi, H.

(b) Find corresponding operator identities linking P−, Pr, Pi, H.

. ....
..

..
.. ............ ... .....••• EXERCISE 5.46 Let F be a piecewise smooth function on [−σ, σ], let

f(x) :=
∫ σ

s=−σ

F (s)e2πisx ds,

let β ≥ σ, and let
g(x) := cos(2πβx)f(x).

(a) Find a simple expression for the Hilbert transform, g#, of g.

(b) Sketch the curve g + ig# [i.e., (x, g(x), g#(x)), −∞ < x < ∞], in the particular case
where f(x) := Λ(x) and β = 5.

.
..

..

..

.. ......... ... .... ....••• EXERCISE 5.47 Let the Hilbert transform operator H be applied to a suitably
regular function f on Tp with

f(x) = a0 +
∞∑

k=1

{
ak cos

(
2πkx
p

)
+ bk sin

(
2πkx
p

)}
.

(a) Express Hf in terms of the coefficients ak, bk.

(b) Set certain coefficients to zero in the series for f and Hf and thereby obtain series
for HPef and HPof .

(c) Find the Hilbert transform rules

g := Pef has the Hilbert transform g# = · · · ,
g := P0f has the Hilbert transform g# = · · · .

(d) Use the rules (c) to find HPef and HPof .



290 Operator identities associated with Fourier analysis

.. .

.

... .

........ .... .... ..... ...••• EXERCISE 5.48 Let H be the Hilbert transform operator (83) for suitably regular
functions on Z, and let the function sgn(x) on Tp be defined by (82).

(a) Show that i sgn∧[k] =

{ 2
πk

if k = ±1,±3,±5, . . .

0 otherwise.

(b) Show that H g = i sgn∧ ∗ g when g is a suitably regular function on Z.

Note. See Ex. 7.55.

(c) Use (a) and (b) to show that

(H g)[k] =
2
π

∞∑
�=−∞

g[k − 2�− 1]
2�+ 1

.

(d) Let f be a real piecewise smooth function on Tp that vanishes on the half circle
−p/2 < x < 0, and let

a[k] :=
2
p

∫ p/2

0
f(x) cos

(
2πkx
p

)
dx, b[k] :=

2
p

∫ p/2

0
f(x) sin

(
2πkx
p

)
dx

be the coefficients for the cosine series and for the sin series for f on the interval
0 < x < p/2. Show that

H a = b, H b = −a,
and express these Kramers–Kronig relations by using the representation of H that is
given in (c).

. .
.

.. .......... .... ... ..... ...••• EXERCISE 5.49 Let H be the Hilbert transform operator (83) for functions on
PN and let the function sgn[n] on PN be given by (82).

(a) Show that H δ and i sgn∧ have the same Fourier transforms and thereby prove that

H δ = i sgn∧.

Note. The components of sgn∧ are given in Ex. 4.27.

(b) Show that Hf = i sgn∧ ∗ f .

Note. Analogous results are given in Exs. 5.4 and 7.55.
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The fast Fourier transform

6.1 Pre-FFT computation of the DFT

Introduction

In this chapter we will study the problem of computing the components

F [k] :=
1
N

N−1∑
n=0

e−2πikn/Nf [n], k = 0, 1, . . . , N − 1

of the discrete Fourier transform of given complex numbers f [0], f [1], . . . , f [N − 1].
We write these relations in the compact form

F = F f ,

where

f :=




f [0]
f [1]

...
f [N − 1]


 , F :=




F [0]
F [1]

...
F [N − 1]




are complex N -component column vectors and where the N ×N DFT matrix

F :=
1
N




1 1 1 · · · 1
1 ω ω2 · · · ωN−1

1 ω2 ω4 · · · ω2N−2

...
...

...
...

1 ωN−1 ω2N−2 · · · ω(N−1)(N−1)
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is expressed in terms of powers of

ω := e−2πi/N = cos(2π/N) − i sin(2π/N).

We will use indices 0, 1, . . . , N − 1 (rather than 1, 2, . . . , N) for the rows of vectors
and for the rows and columns of matrices. When it is necessary, we will use a
subscript to specify the size of a matrix, e.g., I8, F16 will denote the 8 × 8 identity
matrix and the 16 × 16 DFT matrix, respectively.

Given an N ×N matrix
A := {akn}N−1

k,n=0

and an N -vector
b := {bn}N−1

n=0 ,

we can evaluate the components of

c := Ab :=
{ N−1∑

n=0

aknbn

}N−1

k=0

by using the algorithm

For k = 0, 1, . . . , N − 1 do:
S := 0
For n = 0, 1, . . . , N − 1 do:

S := S + akn · bn
ck := S.

The cost of this computation is approximately N2 operations when we define an
operation to be the work we do as we execute the statement

S := S + akn · bn
from the inner loop. [More specifically, we fetch akn, bn, and the “old” value of S
from storage; we form the product akn · bn and the sum S+ (akn · bn); and we store
this result as the “new” value of S.] Of course, complex arithmetic requires more
effort than real arithmetic, and by using the real-imaginary decomposition

SR + i SI = SR + i SI + (aR + i aI)(bR + i bI)

=
{
(SR + aR · bR) − aI · bI

}
+ i

{
(SI + aR · bI) + aI · bR

}
we verify that

1 complex operation = 4 real operations.

In this way we see that the naive matrix·vector computation of an N -point DFT
requires approximately N2 complex operations or 4N2 real operations.
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Horner’s algorithm for computing the DFT

In practice we always exploit the structure of F when we compute a DFT. (It makes
no sense to generate and store the N2 elements of F since each element is one of
the N complex numbers N−1, N−1ω, . . . , N−1ωN−1.) For example,

N F [k] = f [0] + f [1]ωk + f [2](ωk)2 + · · · + f [N − 1](ωk)N−1

is a polynomial with coefficients f [0], f [1], . . . , f [N−1] and argument z := ωk. This
being the case, we can use Horner’s algorithm to evaluate N F [k], e.g., when N = 4
we write

4F [k] = f [0] + (ωk){f [1] + (ωk){f [2] + (ωk)f [3]}}

and evaluate F [k] by computing in turn

z := e−2πik/4

S1 := f [3]
S2 := f [2] + z · S1

S3 := f [1] + z · S2

S4 := f [0] + z · S3

F [k] := S4/4.

Algorithm 6.1 is a natural generalization. This Horner algorithm is easy to use, easy
to code, and numerically stable. It requires approximately N2 complex operations
to produce an N -point DFT (just like the above matrix·vector algorithm).

z := 1

ω := e−2πi/N

For k = 0, 1, . . . , N − 1 do:

S := f [N − 1]

For � = 2, 3, . . . , N do:

S := f [N − �] + z · S
F [k] := S/N

z = z · ω
Algorithm 6.1. Computation of the DFT with Horner’s scheme.



294 The fast Fourier transform

Other pre-FFT methods for computing the DFT

The numerical task of evaluating a real trigonometric polynomial lies at the heart
of applied Fourier analysis, see Ex. 6.2, and many schemes for carrying out such
computations were devised in the century and a half that links Fourier to the devel-
opment of digital computers. Kelvin, Michelson and Stratton, and others invented
special-purpose mechanical analog computers for this purpose near the close of the
19th century, see Ex. 1.45. The most influential numerical analysis text from the
first half of the 20th century included well-designed flow charts for 12-point and
for 24-point harmonic analysis, see Ex. 6.4 and Appendix 5. Physicists confronted
with the task of analyzing X-ray diffraction data devised a clever paper strip pro-
cedure for finding Fourier coefficients by adding parallel columns of integers, see
Ex. 6.5. Such methods proved to be satisfactory in cases where there was a small
fixed N and where only 2- to 3-digit accuracy was required. For more exacting
calculations, a real version of the Horner algorithm was developed, see Ex. 6.1,
and this was the accepted standard prior to the development of the Cooley–Tukey
algorithm.

How big is 4N2?

You cannot appreciate the scientific revolution that was initiated by the FFT until
you understand what it means to pay 4N2 real operations to purchase an N -point
DFT at Horner’s market . You should have no difficulty doing the arithmetic for
one 3-digit real operation S := S + a · b in 102 sec. (This allows plenty of time for
you to check your work.) If you could sustain this rate of computation, you could
generate a 12-point DFT in about

4 · 122 operations · 102 sec
operation

· 1 min
60 sec

· 1 hr
60 min

= 16 hr.

What would motivate you to carry out such a task? (You have seen the problem
that motivated Gauss in Ex. 1.19!)

Digital computers changed the unit cost, but the curse of 4N2 remained. In the
1950s a digital computer that was capable of performing 103 operations/sec could
do a 100-point DFT in about

4 · 1002 operations · 1 sec
103 operations

= 40 sec,

but a 1000-point DFT took 4000 sec = 1.1 hr. In 2000 a PC that was capable of
107 operations/sec could do a 1000-point DFT in about

4 · 10002 operations · 1 sec
107 operations

= .4 sec.
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This seems fast, but if we use Horner’s algorithm to compute one such DFT for
each frame of a 1000-frame movie (see Section 9.5) we must wait 400 sec = 6.7 min
to see the result.

The announcement of a fast algorithm for the DFT

In 1965, James W. Cooley and John W. Tukey published a new and substantially
faster algorithm for computing the DFT of an N -vector on a digital computer. They
showed that when N is a composite integer with the factorization

N = P1P2 · · ·Pm

(where P1, P2, . . . , Pm are chosen from the integers 2, 3, 4, . . . ), then it is possible to
reduce the cost for computing the DFT of an N -vector from

N2 = N · {P1 P2 · · ·Pm} to N · {(P1 − 1) + (P2 − 1) + · · · + (Pm − 1)}

complex operations. The cost reduction is most dramatic in cases where P1 =
P2 = · · · = Pm = 2 when we pass from

N2 = 22m to 2m ·m = N log2N

complex operations. For example, when N = 1024 = 210 we reduce the cost from

N2 = 1, 048, 576 to N log2N = 10, 240

complex operations. The new algorithm cut the price of a 1024-point DFT calcu-
lation by a factor of 100! Such dramatic reductions in computational cost made it
practical to do Fourier analysis on a digital computer, and this helps to explain why

J.W. Cooley and J.W. Tukey, An algorithm for the machine computation of
complex Fourier series, Math. Comp. 19(1965), 297–301

is the most frequently cited mathematics paper that has ever been written.
In the next section we will give an elementary derivation of the FFT using the

rules from the DFT calculus. Later on we will show how to derive the FFT by fac-
toring the matrix F. Alternative derivations are developed in Exs. 6.24 and 6.25.
Perhaps the most natural is that of Gauss. It is now clear that the most impor-
tant algorithm of the 20th century was created by Gauss in 1805, published in his
collected works in 1866, and completely forgotten until a decade after the appear-
ance of the Cooley–Tukey algorithm, when Herman Goldstine, who was writing a
history of numerical analysis, discovered Gauss’s terse (neo-Latin!) description of a
fast way to compute a DFT see M.T. Heideman, D.H. Johnson, and C.S. Burrus,
Gauss and history of the fast Fourier transform, Arch. Hist. Exact Sci. 34(1985),
265–277.
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6.2 Derivation of the FFT via DFT rules

Decimation-in-time

From your study of the DFT calculus you will recall that when

(a, b, c, d) has the DFT (A,B,C,D)

we can use the translation rule (4.50) to see that

(d, a, b, c) has the DFT (A,ωB, ω2C,ω3D), ω := e−2πi/4,

and we can use the zero packing rule (4.55) to see that

(a, 0, b, 0, c, 0, d, 0) has the DFT 1
2 (A,B,C,D,A,B,C,D).

The same relations are expressed by the commuting diagrams of Fig. 6.1. We use
a 4-component initial vector to illustrate the action of the translation, exponential
modulation, zero packing, and repeat operators T−1, E−1, Z 2, R 2. The modu-
lation parameter must be changed to ω := e−2πi/N when E−1 is applied to an
N -component vector.

Figure 6.1. Commuting diagrams for the translation and zero
packing rules.



Derivation of the FFT via DFT rules 297

Figure 6.2. Assembly of (f0, f1, . . . , f7) from (f0), . . . , (f7).

Figure 6.2 shows how we can assemble an 8-component vector (f0, f1, . . . , f7)
from the eight 1-component vectors

(f0), (f4), (f2), (f6), (f1), (f5), (f3), (f7)

by using the mappings Z 2, T−1 together with vector addition. We will now replace
every vector and every operator in Fig. 6.2 with its Fourier transform to obtain



298 The fast Fourier transform

Figure 6.3. Generation of (F0, F1, . . . , F7) from (f0), . . . , (f7).

Fig. 6.3. The resulting diagram shows how to generate the DFT

(F0, F1, . . . , F7) := (f0, f1, . . . , f7)∧

from
(f0)∧ = (f0), (f4)∧ = (f4), . . . , (f3)∧ = (f3), (f7)∧ = (f7)

by using the operators R 2 and E−1 together with vector addition. (We use an ast-
erisk, ∗, to denote vector components from the intermediate stages of this process.)
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It is easy to analyze the work required to compute a discrete Fourier transform
in this manner. We must perform N − 1 complex multiplications when we apply
E−1 to an N -vector, so the 7 appearances of E−1 in Fig. 6.3 correspond to

(8 − 1) + 2 · (4 − 1) + 4 · (2 − 1) = 8 · 3 − 7

complex multiplications. We can perform a single real scaling by 1/8 at the begin-
ning or end of the process instead of repeatedly applying the factors of 1/2, and
this takes 16 real multiplications. The 7 vector additions correspond to

8 + 2 · 4 + 4 · 2 = 8 · 3

complex additions. Since the effort required to apply R 2 is negligible, the DFT can
be computed by expending approximately 8 · 3 complex operations.

The natural generalization of this analysis shows that it is possible to compute
the DFT of an N -vector with no more than N log2N complex operations when
N = 2m, m = 1, 2, . . . . The new scheme is N2/(N log2N) times faster than the
naive algorithms from the preceding section, and this explains why we say that
Fig. 6.3 gives a fast Fourier transform or FFT.

Decimation-in-frequency

In practice the components of the data vector are often samples of some time-
varying signal, so the index n used with f measures time and the index k used with
f∧ measures frequency, see Ex. 1.17. For this reason the FFT of Fig. 6.3 is said to
be based on a decimation-in-time, as shown in Fig. 6.2. We will now develop an
alternative scheme that is based on a decimation-in-frequency.

You will recall that when

(a, b, c, d, e, f, g, h) has the DFT (A,B,C,D,E, F,G,H)

we can use the modulation rule (4.51) to see that

(a, ωb, ω2c, ω3d, ω4e, ω5f, ω6g, ω7h) has the DFT (B,C,D,E, F,G,H,A),

ω := e−2πi/8,

and we can use the summation rule (4.57) to see that

1
2 (a+ e, b+ f, c+ g, d+ h) has the DFT (A,C,E,G),

see Fig. 6.4. We use an 8-component initial vector to illustrate the action of the mod-
ulation, translation, summation, and decimation operators E−1, T1, Σ4, and Ξ2.
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Figure 6.4. Commuting diagrams for the modulation and sum-
mation rules.

Figure 6.5 shows how we can disassemble an 8-component vector
(F0, F1, . . . , F8) := f∧ into the eight 1-component vectors

(F0), (F4), (F6), (F2), (F1), (F5), (F3), (F7)

by using the mappings Ξ2 and T1. We will now replace every vector and every
operator in Fig. 6.5 with its inverse Fourier transform. The resulting diagram of
Fig. 6.6 shows how to generate

(F0) = (F0)∧, (F4) = (F4)∧, . . . , (F3) = (F3)∧, (F7) = (F7)∧

from the data vector
(f0, f1, . . . , f7)

by using the operators Σ4, Σ2, Σ1, E−1. (We again use an asterisk, ∗, to denote
vector components from the intermediate stages of this process.)

You should have no difficulty showing that we expend no more than 8 ·3 complex
operations as we compute an 8-point DFT by using the mappings of Fig. 6.6 (pro-
vided that we perform a single scaling by 1/8 to account for all of the 1/2’s). The
natural generalization of this analysis allows us to compute the DFT of an N -vector
with no more than N log2N complex operations when N = 2m, m = 1, 2, . . . . We
now have two fast ways to produce a DFT!
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Figure 6.5. Disassembly of (F0, F1, . . . , F7) into (F1), . . . , (F7).

Recursive algorithms

The computational trees of Figs. 6.3 and 6.6 are formed by suitably connecting a
number of identical mapping structures as shown in Fig. 6.7. This being the case,
you can write code for one of these building blocks and then use this code recursively
to calculate a DFT. Exercises 6.6 and 6.7 will help you sort out the details.

Such schemes lead to stable algorithms. If we work on a computer having unit
roundoff ε, our computed approximation F a

k to Fk satisfies a bound of the form

|F a
k − Fk| ≤ (2 log2N + 3) · max

0≤n<N
|fn| · ε+O(ε2), k = 0, 1, . . . , N − 1.

In contrast, when we use the Horner algorithm we find

|F a
k − Fk| ≤ {(3/2)N + 2} · max

0≤n<N
|fn| · ε+O(ε2), k = 0, 1, . . . , N − 1
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Figure 6.6. Generation of (F0), . . . , (F7) from (f0, f1, . . . , f7).

Figure 6.7. The mapping structures that give the trees of
Figs. 6.3 and 6.6.
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(see P. Henrici, Applied and Computational Complex Analysis, Vol. 3, John Wiley &
Sons, New York, 1986, pp. 9–14). This analysis suggests (and experience confirms)
that the FFT gives more accurate results than the slow algorithms described earlier.

If you work in a computing environment that does not permit recursion or if you
want to write a somewhat more efficient nonrecursive code, you must create data
structures to keep track of the vectors that appear in the large trees that generalize
those of Figs. 6.3 and 6.6. We will presently introduce matrix factorizations to
simplify this process.

6.3 The bit reversal permutation

Introduction

We encounter the permutation

(f0, f1, f2, f3, f4, f5, f6, f7) → (f0, f4, f2, f6, f1, f5, f3, f7)

when we use the assembly of Fig. 6.2 or the disassembly of Fig. 6.5. If we express
the subscripts in base 2 notation, we see why this mapping is known as the bit
reversal permutation.

0 = (000)2 → (000)2 = 0
1 = (001)2 → (100)2 = 4
2 = (010)2 → (010)2 = 2
3 = (011)2 → (110)2 = 6
4 = (100)2 → (001)2 = 1
5 = (101)2 → (101)2 = 5
6 = (110)2 → (011)2 = 3
7 = (111)2 → (111)2 = 7

It is easy to see how this mapping originates. At the first stage of the process
we map

(f0, f1, f2, f3, f4, f5, f6, f7) to (f0, f2, f4, f6, f1, f3, f5, f7).

In so doing we right cyclically permute the three base 2 index bits, placing the
low-order bit (0 for an even index, 1 for an odd index) in the high-order position
(0 for the first half, 1 for the second half), i.e., f [(b3b2b1)2] is placed in position
(b1b3b2)2. At the second stage we map

(f0, f2, f4, f6, f1, f3, f5, f7) to (f0, f4, f2, f6, f1, f5, f3, f7).
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The net effect this time is to right cyclically permute (i.e., interchange) the two
low-order index bits. Thus we move the component f [(b3b2b1)2] that we previously
placed in position (b1b3b2)2 to position (b1b2b3)2.

Analogously, when N = 16, we successively move the component f [(b4b3b2b1)2]
from its original position (b4b3b2b1)2 to positions (b1b4b3b2)2, (b1b2b4b3)2, and
(b1b2b3b4)2. The process generalizes, and when N = 2m, m = 1, 2, . . . , the overall
effect is to move f [(bmbm−1 · · · b2b1)2] to position (b1b2 · · · bm−1bm)2 for every choice
of b1, b2, . . . , bm = 0, 1. Of course, when r = (b1b2 · · · bm)2 is the bit-reversed form
of n = (bmbm−1 · · · b1)2, then n is also the bit-reversed form of r, so the permutation
can be carried out simply by swapping the values of f [r] and f [n]. The positions of
f [0] = f [(0 0 · · · 0)2] and f [N − 1] = f [(1 1 · · · 1)2] are never changed by this
process.

We will now develop several algorithms for performing the bit-reversal permu-
tation. This discussion will help you understand the corresponding section of an
FFT code (e.g., the lines between statements 8 and 20 in the FFT code given in
Appendix 6). If you have no interest in such details, you can skip the remainder of
this section.

A naive algorithm

Let N = 2m for some m = 1, 2, . . . . Elementary algorithms for applying the bit
reversal permutation to an N -vector f often have the following structure.

For n = 1, 2, . . . , N − 2 do:
Find the integer r = (b1b2 · · · bm−1bm)2 that

corresponds to n = (bmbm−1 · · · b2b1)2
If r > n, then swap f [r] and f [n]

When we are given an index

n = (bmbm−1 . . . b2b1)2 = b1 + b2 · 2 + b3 · 22 + · · · + bm · 2m−1

we can generate in turn the bits b1, b2, b3, . . . and compute the corresponding Horner
sequence b1, 2b1 + b2, 2(2b1 + b2) + b3, . . . for

r = (b1b2. . . bm−1bm)2 = bm + bm−1 · 2 + bm−2 · 22 + · · · + b1 · 2m−1.

For example, when m = 5 and n = 11 = (01011)2, this leads to the following
calculation of r = (11010)2 = 26.

11 ÷ 2 = 5 with remainder b1 := 1, r1 := 1
5 ÷ 2 = 2 with remainder b2 := 1, r2 := 2r1 + b2 = 3
2 ÷ 2 = 1 with remainder b3 := 0, r3 := 2r2 + b3 = 6
1 ÷ 2 = 0 with remainder b4 := 1, r4 := 2r3 + b4 = 13
0 ÷ 2 = 0 with remainder b5 := 0, r5 := 2r4 + b5 = 26
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In this way we see that Algorithm 6.2 performs the bit reversal permutation. The
cost is approximately 3N log2N integer operations.

For n = 1, 2, . . . , N − 2 do:
r := 0
d := n

For k = 1, 2, . . . ,m do:

q := �d/2�
b := d− 2q

r := 2r + b

d := q

If r > n, then swap f [r] and f [n]

Algorithm 6.2. A naive scheme for applying the bit reversal
permutation to f [0], f [1], . . . , f [N − 1] when N = 2m.

The reverse carry algorithm

When we execute Algorithm 6.2, each computation of the bit-reversed index r = r[n]
from the index n is done ab initio. Since we compute r[1], r[2], . . . , r[N − 2] in turn,
there is some advantage to be gained from a recursive scheme that uses a known
value of r[n] to facilitate the computation of r[n+ 1]. If n is even, this can be done
with a simple addition as illustrated in the following calculation of r[23] = 29 from
r[22] = 13 when N = 25.

Mirror

n = (10110)2

+ 1 = (00001)2

n+ 1 = (10111)2

(01101)2 = r[n]

+(10000)2 = N/2

(11101)2 = r[n+ 1]

Indeed, when r[n] < N/2 we always have

r[n+ 1] = r[n] +N/2.

If n is odd, (i.e. r[n] ≥ N/2), it is still possible to generate r[n + 1] from r[n],
but we must now mirror the carrying process associated with addition in base 2
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arithmetic as illustrated in the following calculation of r[12] = 6 from r[11] = 26
when N = 25.

Mirror

n = (01011)2

+ 1 = (00001)2

carry ↑

(11010)2 = r[n]

+ (10000)2 = N/2

reverse carry↑

Mirror

n− 1 = (01010)2

+ 2 = (00010)2

carry ↑

(01010)2 = r[n] −N/2

+ (01000)2 = N/4

reverse carry↑
Mirror

n− 1 − 2 = (01000)2

+ 4 = (00100)2

n+ 1 = (01100)2

(00010)2 = r[n] −N/2 −N/4

+ (00100)2 = N/8

(00110)2 = r[n+ 1]

Algorithm 6.3 uses this reverse carry process to perform the bit reversal permuta-
tion. It costs approximately 4N integer additions (including those used for compar-
isons), N divisions by 2, and slightly less than N/2 swaps to execute this algorithm.

r := 0
For n = 1, 2, . . . , N − 2 do:

k := N/2

While r ≥ k do:

r := r − k

k := k/2

r := r + k

If r > n, then swap f [r] and f [n]

Algorithm 6.3. The reverse carry scheme for applying the bit
reversal permutation to f [0], f [1], . . . , f [N − 1] when N = 2m.
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The Bracewell–Buneman algorithm

The reverse carry algorithm for generating a complete set of n, r pairs for a given
N = 2m is based on the idea of generating r[n + 1] from r[n]. We will now show
that it is possible to produce a more efficient algorithm by using storage to gain
speed.

Let m = 1, 2, . . . . For each n = 0, 1, 2, . . . , 2m − 1 we form rm[n] by reversing
the bits of n so that

rm[(bmbm−1. . . b2b1)2] := (b1b2. . . bm−1bm)2,

e.g., r2[3] = (11)2 = 3, r3[3] = (110)2 = 6, r4[3] = (1100)2 = 12, . . . . Now since

rm+1[(bm+1bm. . . b2b1)2] = (b1b2. . . bmbm+1)2
= 2 · (b1b2. . . bm)2 + bm+1

= 2rm[(bmbm−1. . . b2b1)m] + bm+1,

we can write

rm+1[n] =
{

2rm[n] if n = 0, 1, . . . , 2m − 1
2rm[n− 2m] + 1 if n = 2m, 2m + 1, . . . , 2m+1 − 1.

This identity shows that we can get the left half of row m+ 1 from the table:

n: 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r1[n]: 0 1
r2[n]: 0 2 1 3
r3[n]: 0 4 2 6 1 5 3 7
r4[n]: 0 8 4 12 2 10 6 14 1 9 5 13 3 11 7 15

by doubling row m, and we can then get the right half of row m + 1 by adding 1
to each component of the left half. This idea underlies the following algorithm for
generating the bit-reversed indices rm[0], rm[1], . . . , rm[N − 1] when N = 2m.

r[0] := 0
M := 1
While M < N do:

For k = 0, 1, . . . ,M − 1 do:

T := 2r[k]

r[k] := T

r[k +M ] := T + 1

M := 2M
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After initializing the array r, we can perform the bit reversal permutation using

For n = 1, 2, . . . , N − 2 do:
If r[n] > n, then swap f [n] and f [r[n]].

There is really no reason why we should fetch the bit-reversed index for each
n = 1, 2, . . . , N −2 since we only perform a swap when rm[n] > n. This observation
led R. Bracewell and O. Buneman to devise a more efficient scheme that generates
only those bit-reversed pairs n, r for which r > n. The algorithm gains additional
speed by using a small integer storage array with at most

√
2N components.

The Bracewell–Buneman algorithm uses a certain left-right decomposition of the
base 2 representations of n, r. We illustrate the idea with N = 26. A 6-bit index n
has the representation

n := (b6b5b4b3b2b1)2 = 8p+ q

where
p := (b6b5b4)2, q := (b3b2b1)2.

It follows that
r6[n] = (b1b2b3b4b5b6)2 = 8r3[q] + r3[p].

We want to find the 6-bit reversed pairs n, r with r > n. In view of this decompo-
sition, all such pairs can be obtained from 3-bit integers p, q with

8r3[q] + r3[p] > 8p+ q

or equivalently, with
r3[q] > p.

(In the case where r3[q] = p, we also have r3[p] = q so that r6[n] = n.) It follows
that every bit-reversed pair n, r with r > n occurs precisely once in the list

n = 8p+ q, r = 8r3[q] + r3[p]: q = 1, 2, . . . , 7 and p = 0, 1, . . . , r3[q] − 1.

More generally, when N = 2m and m = 2µ is even, we obtain every bit-reversed
pair n, r with r > n precisely once in the list

n = 2µp+ q, r = 2µrµ[q] + rµ[p]: q = 1, 2, . . . , 2µ − 1 and p = 0, 1, . . . , rµ[q] − 1.

This left-right representation of n, r must be modified slightly when there is an
odd number of index bits. For example, when N = 27 we write

n := (b7b6b5b4b3b2b1)2 = 8p+ q
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where

p := (b7b6b5b4)2, q := (b3b2b1)2,= (0b3b2b1)2,

and observe that

r7[n] = (b1b2b3b4b5b6b7)2 = 16r3[q] + r4[p] = 8r4[q] + r4[p].

Thus every bit-reversed pair n, r with r > n occurs precisely once in the list

n = 8p+ q, r = 8r4[q] + r4[p]: q = 1, 2, . . . , 7, p = 0, 1, . . . , r4[q] − 1.

More generally, when N = 2m and m = 2µ+ 1 is odd, we obtain every bit-reversed
pair n, r with r > n precisely once in the list

n = 2µp+ q, r = 2µrµ+1[q]+ rµ+1[p] : q = 1, 2, . . . , 2µ −1, p = 0, 1, . . . , rµ+1[q]−1.

These even m and odd m representations for n, r are used to derive the following
algorithm for the bit reversal permutation when N = 2m with m = 2µ+λ for some
µ = 1, 2, . . . and some λ = 0, 1.

For q = 1, 2, . . . , 2µ − 1 do:
For p = 0, 1, . . . , rµ+λ[q] − 1 do:

n′ := 2µp+ q

r′ := 2µrµ+λ[q] + rµ+λ[p]

Swap f [n′] and f [r′]

To avoid the repeated computation of rµ+λ[0], rµ+λ[1], . . . , rµ+λ[2µ−1], we can gen-
erate these indices with the efficient double-add one algorithm and store them in an
auxiliary integer array (with 2µ+λ ≤ √

2N components) as part of the initialization
process. We can also improve efficiency by doing part of the computation of n′, r′
outside the inner loop. In this way we obtain the exceptionally fast Bracewell–
Buneman Algorithm 6.4 for the bit reversal permutation. After sorting out the
details of this algorithm you should have no difficulty reading the corresponding
lines of the FFT code from Appendix 6.
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µ+ := �(m+ 1)/2� (so µ+ := µ+ λ)
M := 1
r[0] := 0
For ν = 1, 2, . . . , µ+ do:

For k = 0, 1, . . . ,M − 1 do:

T := 2r[k]

r[k] := T

r[k +M ] := T + 1

M := M +M

If m is odd, then M := M/2 (so M := 2µ)

For q = 1, 2, . . . ,M − 1 do:

n′ := q −M

r′′ := r[q] ·M
For p = 0, 1, . . . , r[q] − 1 do:

n′ := n′ +M (so n′ := Mp+ q)

r′ = r′′ + r[p] (so r′ := Mr[q] + r[p])

Swap f [n′] and f [r′]

Algorithm 6.4. The exceptionally efficient Bracewell–Buneman
scheme for applying the bit reversal permutation to
f [0],f [1], . . . , f [N − 1] when N = 2m.

6.4 Sparse matrix factorization of F when N = 2m

Introduction

In this section we will produce a factorization

F = Mm Mm−1 · · ·M 1B
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of the matrix F when N = 2m. Each of the matrices B,M 1, . . . ,Mm will have a
very small number of nonzero elements in each row. (Such matrices are said to be
sparse.) With minimal effort we can then compute

f0 := Bf , f1 := M 1f0, f2 := M 2f1, . . . , fm := Mmfm−1,

and thereby obtain

fm = MmMm−1 · · ·M 1Bf = F f .

There is no reason to save the string of vectors that we generate during this process,
so we carry out the calculation with an in-place algorithm

f := Bf

For µ = 1, 2, . . . ,m do:

f := Mµf

that successively overwrites the original f with f0, f1, . . . , fm. The matrices
B,M 1, . . . ,Mm have simple structures that facilitate the writing of readable code.

The zipper identity

For clarity we will take N = 8 and set ω := e−2πi/8 as we derive the critical relation
that gives the complete sparse factorization. Since the kth column of a matrix
product A1A2 can be found by applying A1 to the kth column of A2, we easily
verify that

F8 =
1
8




1 1 1 1 1 1 1 1
1 w2 w4 w6 w w3 w5 w7

1 w4 w8 w12 w2 w6 w10 w14

1 w6 w12 w18 w3 w9 w15 w21

1 w8 w16 w24 w4 w12 w20 w28

1 w10 w20 w30 w5 w15 w25 w35

1 w12 w24 w36 w6 w18 w30 w42

1 w14 w28 w42 w7 w21 w35 w49







1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1



.

Next, we use the identities

ω2 = e−2πi/4, ω4 = −1, ω8 = 1
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to express each of the 4 × 4 blocks from the left matrix factor in terms of F4, i.e.,

1
4




1 1 1 1
1 ω2 ω4 ω6

1 ω4 ω8 ω12

1 ω6 ω12 ω18


 = F4,

1
4




1 1 1 1
ω ω3 ω5 ω7

ω2 ω6 ω10 ω14

ω3 ω9 ω15 ω21


 =




1
ω

ω2

ω3


F4,

1
4




1 ω8 ω16 ω24

1 ω10 ω20 ω30

1 ω12 ω24 ω36

1 ω14 ω28 ω42


 = F4,

1
4



ω4 ω12 ω20 ω28

ω5 ω15 ω25 ω35

ω6 ω18 ω30 ω42

ω7 ω21 ω35 ω49


 =



−1

−ω
−ω2

−ω3


F4,

with the missing matrix elements all being 0. In this way we produce the factoriza-
tion

F8 =
1
2




1 1
1 ω

1 ω2

1 ω3

1 −1
1 −ω

1 −ω2

1 −ω3




[
F4 04

04 F4

]



1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 1



.

The same argument gives the zipper identity

F2M =
1
2
Q2M

[
FM 0M

0M FM

]
S2M , M = 1, 2, . . . (1)

where

Q2M :=

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 1

1 ω

1 ω2

. . . . . .
1 ωM−1

1 −1

1 −ω

1 −ω2

. . . . . .
1 −ωM−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

with ω := e−2πi/(2M), (2)

and where we obtain the shuffle permutation

S2M := [δ0, δM , δ1, δM+1, δ2, δM+2, . . . , δM−1, δ2M−1] (3)
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by performing a perfect 2-shuffle of the 2M columns δ0, δ1, . . . δ2M−1 of the identity

I2M := [δ0, δ1, δ2, . . . , δM−1
∣∣ δM , δM+1, . . . , δ2M−1]. (4)

Exponent notation

Given an M ×M matrix A and the M ×M zero matrix 0 we define

A(1) := A, A(2) :=
[
A 0
0 A

]
, A(3) :=


A 0 0

0 A 0
0 0 A


 , . . . (5)

thereby producing M ×M , 2M × 2M , 3M × 3M , . . . block diagonal matrices with
1, 2, 3, . . . copies of A along the diagonal. We easily verify the power rule

[A(p)](q) = A(pq), p, q = 1, 2, . . . (6)

and the product rule

[AB](p) = A(p)B(p), p = 1, 2, . . . (7)

for this new exponent. In addition, we have

[αA](p) = αA(p), p = 1, 2, . . . (8)

when α is any complex scalar,

[AT](p) = [A(p)]T, p = 1, 2, . . . (9)

(where the tag, T, denotes the matrix transpose) and

[A−1](p) = [A(p)]−1, p = 1, 2, . . . (10)

when A is nonsingular.

Sparse matrix factorization of F

Using the exponent (5) we write the zipper identity (1) in the compact form

F2M = 1
2Q2MF

(2)
M S2M , M = 1, 2, . . . . (11)
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This identity makes it possible for us to factor FN when N = 2m. For example, we
unzip F16 by using (11) and (6)–(8) to write

F16 = 1
2Q16F

(2)
8 S16

= 1
2Q16

[
1
2Q8F

(2)
4 S8

](2)
S16

= 1
4Q16Q

(2)
8 F

(4)
4 S(2)

8 S16

= 1
4Q16Q

(2)
8

[
1
2Q4F

(2)
2 S4

](4)
S(2)

8 S16

= 1
8Q16Q

(2)
8 Q(4)

4 F
(8)
2 S(4)

4 S(2)
8 S16

= 1
8Q16Q

(2)
8 Q(4)

4

[
1
2Q2F

(2)
1 S2

](8)
S(4)

4 S(2)
8 S16

= 1
16Q16Q

(2)
8 Q(4)

4 Q(8)
2 F

(16)
1 S(8)

2 S(4)
4 S(2)

8 S16

= 1
16Q16Q

(2)
8 Q(4)

4 Q(8)
2 B16,

where
B16 := S(8)

2 S(4)
4 S(2)

8 S16

and we use the fact that
F

(16)
1 = [1](16) = I16.

Analogously,

F2m =
1

2m
Q2mQ(2)

2m−1Q
(4)
2m−2 · · · Q(2m−1)

2 B2m , m = 1, 2, . . . (12)

where

B2m := S(2m−1)
2 S(2m−2)

4 · · · S(2)
2m−1S2m . (13)

The action of B2m

The shuffle permutation S8 maps f := (f0, . . . , f7)T to

S8f = [δ0, δ4, δ1, δ5, δ2, δ6, δ3, δ7]f
= f0 δ0 + f1 δ4 + f2 δ1 + f3 δ5 + f4 δ2 + f5 δ6 + f6 δ3 + f7 δ7

= (f0, f2, f4, f6, f1, f3, f5, f7)T,
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and the shuffle permutation S4 maps the half vectors (f0, f2, f4, f6)T,
(f1, f3, f5, f7)T from S8f to (f0, f4, f2, f6)T, (f1, f5, f3, f7)T, respectively. Since
S2 = I2, we have

B8f := S(4)
2 S(2)

4 S8f = (f0, f4, f2, f6, f1, f5, f3, f7)T,

i.e., B8 is the bit reversal permutation for 8-component vectors.
We can also follow the permutation process by keeping track of the index of the

cell that contains the component of f that is originally found in cell n. For example,
when N = 16 we find

f [(b4b3b2b1)2]
S16

......

..
.....
......................... cell (b1b4b3b2)2

S(2)
8

.. ....
.

.......
........................ cell (b1b2b4b3)2

S(4)
4

......

..
.....
......................... cell (b1b2b3b4)2,

so
B16 := S(8)

2 S(4)
4 S(2)

8 S16

is the bit reversal permutation for the 16-component vectors. Analogously, we
see that (13) is the bit reversal permutation for vectors with 2m components,
m = 1, 2, . . . .

An FFT algorithm

The factorization (12) corresponds to a fast algorithm for computing the DFT of
any vector of length N = 2m. The in-place computation of




f0
f1
...

f2M−1


 := Q2M




f0
f1
...

f2M−1


 :=




1 1

1 ω

1 ω2

. . . . . .
1 ωM−1

1 −1

1 −ω

1 −ω2

. . . . . .
1 −ωM−1







f0
f1
f2
...

fM−1

fM

fM+1
fM+2

...
f2M−1




(with ω := e−2πi/(2M)) can be done with the one-loop algorithm

For λ = 0, 1, . . . ,M − 1 do:[
fλ

fλ+M

]
:=

[
1 ωλ

1 −ωλ

] [
fλ

fλ+M

]
.

(14)
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More generally, the in-place computation of

f := Q(K)
2M f

when N = K · 2M , i.e., the computation of



fκ·2M

fκ·2M+1
...

fκ·2M+2M−1


 := Q2M



fκ·2M

fκ·2M+1
...

fκ·2M+2M−1


 for each κ = 0, 1, . . . ,K − 1

can be done with the two-loop algorithm

For λ = 0, 1, . . . ,M − 1 do:
For κ = 0, 1, . . . ,K − 1 do:[

fκ·2M+λ

fκ·2M+λ+M

]
:=

[
1 ωλ

1 −ωλ

] [
fκ·2M+λ

fκ·2M+λ+M

]
.

We fetch or generate ωλ only once when we order the loops in this way. We must
do such a computation for each Q-factor of F2m . In addition, we must carry out
the initial bit reversal permutation and the final scaling by 1/2m. In this way we
see that the matrix factorization (12) gives us the in-place FFT of Algorithm 6.5.
This algorithm corresponds to the decimation-in-time FFT of Fig. 6.3, but it takes
a bit of effort to verify that this is in fact the case, see Ex. 6.16(a).

Perform the bit reversal permutation on f [0], f [1], . . . , f [2m − 1].
For µ = 1, 2, . . . ,m do:

ω := e−2πi/2µ

U := 1

For λ = 0, 1, . . . , 2µ−1 − 1 do:

For κ = 0, 1, . . . , 2m−µ − 1 do:[
f [κ · 2µ + λ]
f [κ · 2µ + λ+ 2µ−1]

]
:=

[
1 U
1 −U

] [
f [κ · 2µ + λ]
f [κ · 2µ + λ+ 2µ−1]

]

U := ωU

For k = 0, 1, . . . , 2m − 1 do:
f [k] := f [k]/2m

Algorithm 6.5. Naive decimation-in-time FFT based on (12)
when N = 2m.
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An alternative FFT algorithm

Since the DFT matrix F2m is symmetric we can use (12) and (9) to write

F2m = FT
2m

=
[

1
2m

Q2m Q(2)
2m−1 · · · Q(2m−1)

2 B2m

]T

=
1

2m
BT

2m

[
Q(2m−1)

2

]T

· · ·
[
Q(2)

2m−1

]T[
Q2m

]T

=
1

2m
B2m

[
QT

2

](2m−1)

· · ·
[
QT

2m−1

](2)[
QT

2m

]
. (15)

In the last step we use the fact that

BT
2m = B2m , m = 1, 2, . . . . (16)

[Two applications of B2m return a vector to its original state, so

B2m B2m = I2m ,

and the columns of B2m , i.e., the permuted columns of I2m , are orthonormal, so

BT
2m B2m = I2m .

The symmetry (16) follows from these two relations.]
We can easily move from the matrix factorization (15) to an in-place FFT. At

the heart of the computation is the vector replacement




f0
f1
...

f2M−1


:=QT

2M




f0
f1
...

f2M−1


:=




1 1

1 1

1 1

. . . . . .
1 1

1 −1

ω −ω

ω2 −ω2

. . . . . .
ωM−1 −ωM−1







f0
f1
f2
...

fM−1

fM

fM+1
fM+2

...
f2M−1
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(with ω := e−2πi/(2M)), which can be done with the one-loop algorithm

For λ = 0, 1, . . . ,M − 1 do:[
fλ

fλ+M

]
:=

[
1 1
ωλ −ωλ

] [
fλ

fλ+M

]
,

analogous to (14). By combining this inner loop with suitable outer loops, we
obtain the FFT of Algorithm 6.6. This algorithm corresponds to the decimation-
in-frequency FFT of Fig. 6.6, see Ex. 6.16(b).

For µ = m,m− 1, . . . , 1 do:

w := e−2πi/2µ

U := 1

For λ = 0, 1, . . . , 2µ−1 − 1 do:

For κ = 0, 1, . . . , 2m−µ − 1 do:[
f [κ · 2µ + λ]
f [κ · 2µ + λ+ 2µ−1]

]
:=

[
1 1
U −U

] [
f [κ · 2µ + λ]
f [κ · 2µ + λ+ 2µ−1]

]

U := wU

Perform the bit reversal permutation on f [0], f [1], . . . , f [2m − 1].

For k = 0, 1, . . . , 2m − 1 do:
f [k] := f [k]/2m

Algorithm 6.6. Naive decimation-in-frequency FFT based on
(15) when N = 2m.

Precomputation of sk := sin(2πk/N)

Algorithms 6.5 and 6.6 make use of the complex numbers

e−2πik/N = cos
(

2πk
N

)
− i sin

(
2πk
N

)
, k = 0, 1, . . . , N − 1,

in the innermost loop. We can use storage to gain speed by precomputing the real
numbers

ck := cos
(

2πk
N

)
, sk := sin

(
2πk
N

)
, k = 0, 1, . . . , N − 1,
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and retrieving them as needed. In practice, we find it preferable to generate and
store only s0, s1, . . . , sN/4 since we can use the symmetries

sk = sN/2−k = −sN/2+k = −sN−k, k = 0, 1, . . . , N/4

ck = −cN/2−k = −cN/2+k = cN−k = sN/4−k, k = 0, 1, . . . , N/4

to obtain all of the other values of sk, ck when N = 2m. This enables us to reduce
the required storage by a factor of 8.

The usual numerical procedures for evaluating sin θ, 0 ≤ θ ≤ π/2, require approx-
imately 5, 8 real operations for 8, 16 decimal places of accuracy. We will describe
a clever scheme of Buneman that makes it possible to compute s0, s1, . . . , sN/4 by
using only slightly more than N/4 real operations. (Some alternative procedures
are described in Ex. 6.19.) We begin with

s0 := sin(0) = 0, sN/8 := sin(π/4) = 1/
√

2, sN/4 := sin(π/2) = 1,

and then use the trigonometric identity

sin(α) = 1
2 sec(β){sin(α− β) + sin(α+ β)}

to pass from this coarse grid to finer ones. Indeed, since

sin
(π

8

)
=

1
2

sec
(π

8

){
sin

(π
8

− π

8

)
+ sin

(π
8

+
π

8

)}
sin

(
3π
8

)
=

1
2

sec
(π

8

){
sin

(
3π
8

− π

8

)
+ sin

(
3π
8

+
π

8

)}

we can use the known values of skN/8, k = 0, 1, 2, to generate

sN/16 =
1
2

sec
(π

8

)
(s0 + sN/8),

s3N/16 =
1
2

sec
(π

8

)
(sN/8 + s2N/8).

We can then use the known values of skN/16, k = 0, 1, 2, 3, 4, to generate

sN/32 =
1
2

sec
( π

16

)
(s0 + sN/16),

s3N/32 =
1
2

sec
( π

16

)
(sN/16 + s2N/16),

s5N/32 =
1
2

sec
( π

16

)
(s2N/16 + s3N/16),

s7N/32 =
1
2

sec
( π

16

)
(s3N/16 + s4N/16),
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etc. Buneman even devised a clever recursion

h3 = 1/
√

2, hµ+1 = {2 + 1/hµ}−1/2, µ = 3, 4, . . . , (17)

for computing the half secants

hµ :=
1
2

sec
(

2π
2µ

)
, µ = 3, 4, . . . , (18)

that are used in this process, see Ex. 6.18. These ideas are used in Algorithm 6.7
and in the FFT code from Appendix 6.

s[0] := 0

s[N/8] := 1/
√

2
s[N/4] := 1

h := 1/
√

2
k := N/8
While k > 1 do:

h := {2 + 1/h}−1/2

� := k/2

For j = �, �+ k, �+ 2k, . . . , N/4 − � do:

s[j] = h · (s[j − �] + s[j + �])

k := k/2

Algorithm 6.7. Buneman’s clever scheme for generating
s[k] := sin(2πk/N), k = 0, 1, . . . , N/4, when N = 2m.

Application of Q4M

We will now use (12) to develop an algorithm that minimizes the time spent in
retrieving the precomputed sk’s. We observe that the application of the matrix

Q2 :=
[

1 1
1 −1

]
(19)

can be accomplished by simply adding and subtracting vector components, and to
exploit this possibility we will apply Q(N/2)

2 outside the inner loop of our FFT. The
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remaining factors Q(N/4M)
4M , 4M = 4, 8, 16, . . . can be applied in a unified manner.

The pattern is well illustrated by using 4M = 16 with

Q16 :=




1 1

1 c1−is1

1 c2−is2

1 c3−is3

1 −i

1 −c3−is3

1 −c2−is2

1 −c1−is1

1 −1

1 −c1+is1

1 −c2+is2

1 −c3+is3

1 i

1 c3+is3

1 c2+is2

1 c1+is1




(20)

and

cλ := cos
(

2πλ
16

)
, sλ := sin

(
2πλ
16

)
, λ = 1, 2, 3.

Each cλ, sλ pair appears exactly four times in the matrix (20), and after examining
the structure it is easy to see that we can compute

f := Q4M f , M = 1, 2, . . .

by using the algorithm

f0
fM

f2M

f3M


 :=




1 0 1 0
0 1 0 −i
1 0 −1 0
0 1 0 i






f0
fM

f2M

f3M




For λ = 1, 2, . . . ,M − 1 do:

s := sin(2πλ/4M)

c := cos(2πλ/4M)

fλ

f2M−λ

f2M+λ

f4M−λ


 :=




1 0 c− is 0
0 1 0 −c− is
1 0 −c+ is 0
0 1 0 c+ is






fλ

f2M−λ

f2M+λ

f4M−λ


 .

(21)
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Now that you understand the structure of the innermost loop, you should be able
to see how the factors of F2m from (12) are applied as we execute Algorithm 6.8.

Perform the bit reversal permutation on f [0], f [1], . . . , f [N − 1]
by using Algorithm 6.4 (apply BN )

Precompute s[κ] := sin(2πκ/N), κ = 0, 1, . . . , N/4 using Algorithm 6.7

For κ = 0, 1, . . . , 2m−1 − 1 do: (apply Q(N/2)
2 )[

f [2κ]
f [2κ+ 1]

]
:=

[
1 1
1 −1

] [
f [2κ]
f [2κ+ 1]

]

For µ = 2, 3, . . . ,m do: (apply Q(N/2µ)
2µ )

M := 2µ−2

For κ = 0, 1, . . . , 2m−µ − 1 do:




f [κ·4M ]

f [κ·4M+M ]

f [κ·4M+2M ]

f [κ·4M+3M ]


 :=




1 0 1 0

0 1 0 −i

1 0 −1 0

0 1 0 i


 ·




f [κ·4M ]

f [κ·4M+M ]

f [κ·4M+2M ]

f [κ·4M+3M ]




For λ = 1, 2, . . . ,M − 1 do:

Fetch s := sin(2πλ/4M) from s[λ · 2m−µ]

Fetch c := sin(2π(M − λ)/4M) from s[(M − λ) · 2m−µ]

For κ = 0, 1, . . . , 2m−µ − 1 do:




f [κ·4M+λ]

f [κ·4M+2M−λ]

f [κ·4M+2M+λ]

f [κ·4M+4M−λ]


 :=




1 0 c−is 0

0 1 0 −c−is

1 0 −c+is 0

0 1 0 c+is


 ·




f [κ·4M+λ]

f [κ·4M+2M−λ]

f [κ·4M+2M+λ]

f [κ·4M+4M−λ]




For k = 0, 1, . . . , 2m − 1 do: (apply 1/N)

f [k] := f [k]/2m

Algorithm 6.8. A decimation-in-time FFT that is based on (12)
and (21) when N = 2m.
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A corresponding FORTRAN code is given in Appendix 6. The code uses sepa-
rate real arrays to hold the real and imaginary parts of f0, f1, . . . , fN−1 with the
three vector replacement statements being unpacked and written in terms of real
arithmetic in the natural manner. The two essential complex products

(c− is)f [κ · 4M + 2M + λ], (c+ is)f [κ · 4M + 4M − λ]

and the four essential complex sums from the inner loop require 8 real multiplica-
tions and 12 real additions. Since this loop is executed a total of

(m− 1) · (M − 1) · N

4M
≈ 1

4
N log2N

times, the cost of executing the algorithm is approximately 2N log2N real multipli-
cations and 3N log2N real additions. (This is a bit more precise than an operation
count.) Improvements in the running time can be made by using a different radix,
as described in Ex. 6.22.

At this point you have a basic understanding of the FFT when N = 2m. In the
following sections we will introduce important generalizations that make a good
algorithm even better!

6.5 Sparse matrix factorization of H when N = 2m

The zipper identity and factorization

We will use ideas from the preceding section to develop Bracewell’s fast algorithm
for applying the discrete Hartley transform matrix

HN := N−1/2
{
cas

(
2πkn
N

)} N−1

k,n=0

when N = 2m for some m = 1, 2, . . . , see (5.27). In this case the zipper identity
takes the form

H2M =
1√
2
T2MH (2)

M S2M , M = 1, 2, . . . , (22)

where T2M is a sparse real matrix having the 2 × 2 block structure

T2M :=
[
IM XM

IM −XM

]
, M = 1, 2, . . . (23)

with

XM :=




1 0 0 . . . 0
0 c1
0 c2
...

. . .
0 cM−1


 +




0 0 . . . 0 0
0 s1
0 s2
. .. .. .
0 sM−1


 (24)
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and

ck := cos
(

2kπ
2M

)
, sk := sin

(
2kπ
2M

)
, k = 1, . . . ,M − 1,

see Ex. 6.17. By using (22) and (13), we immediately obtain the sparse real factor-
ization

H2m = 2−m/2T2mT(2)
2m−1T

(4)
2m−2 · · · T(2m−1)

2 B2m (25)

that leads to a fast Hartley transform or FHT.

Application of T4M using precomputed sk’s

We will use (25) to develop an FHT that is analogous to the FFT of Algorithm 6.8.
The matrix

T2 :=
[

1 1
1 −1

]

is identical to the matrix (19) for the FFT. The structure of T4M , M = 1, 2, . . . is
well illustrated by the matrix

T16 :=




1 1
1 c1 s1

1 c2 s2
1 c3 s3

1 1
1 s3 −c3

1 s2 −c2
1 s1 −c1

1 −1
1 −c1 −s1

1 −c2 −s2
1 −c3 −s3

1 −1
1 −s3 c3

1 −s2 c2
1 −s1 c1




(26)

with

cλ := cos
(

2πλ
16

)
, sλ := sin

(
2πλ
16

)
, λ = 1, 2, 3.

Each cλ, sλ pair appears exactly four times in the matrix (26), and after examining
the structure it is easy to see that we can compute

f := T4M f , M = 1, 2, . . .
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by using the algorithm



f0
fM

f2M

f3M


 :=




1 0 1 0
0 1 0 1
1 0 −1 0
0 1 0 −1






f0
fM

f2M

f3M




For λ = 1, 2, . . . ,M − 1 do:

s := sin(2πλ/4M)

c := cos(2πλ/4M)

fλ

f2M−λ

f2M+λ

f4M−λ


 :=




1 0 c s
0 1 s −c
1 0 −c −s
0 1 −s c






fλ

f2M−λ

f2M+λ

f4M−λ


 .

(27)

After examining the parallel structures of (12) and (25), it is easy to see that we
can convert the FFT of Algorithm 6.8 into the FHT of Algorithm 6.9 by using (27)
instead of (21) for the inner loop and replacing 2m by 2m/2 for the final scaling.

Although the FFT and FHT algorithms are quite similar, the FHT has two
important advantages in cases where we work with real data. Since the 4 × 4
matrices that appear in the FHT algorithm have real elements, it is possible to
use a single real array of length N to hold the components of f . Each of the
4-vector replacements in the inner loop of the FHT requires computation of the 4
real products

c·f [κ·4M+2M+λ], s·f [κ·4M+2M+λ], c·f [κ·4M+4M−λ], s·f [κ·4M+4M−λ],

and 6 real additions. Since this loop is executed approximately (N/4) log2N times,
the total cost of the computation is approximately N log2N real multiplications
and 1.5N log2 N real additions. When we use the FFT we must provide storage
for both the real and imaginary parts of f and the total cost is approximately
2N log2N real multiplications and 3N log2 N real additions. In this way we see
that Bracewell’s FHT uses half as much storage and half as many operations as the
FFT when we work with real data. [Perhaps this will help you understand why
the minor differences between Algorithm 6.8 and Algorithm 6.9 are protected by
the first U.S. patent ever issued for a mathematical algorithm, see E.N. Zalta, Are
algorithms patentable? Notices AMS 35(1988), 796–799.]

The FHT can be used to cut the cost of other kinds of computations that are
often done with the FFT. For example, if we wish to generate the DFT f∧ of a
given real N -vector f , we can use the FHT to compute f∼ and then use the identity

f∧ =
1√
N

(Pe − iP0)f∼,
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Perform the bit reversal permutation on f [0], f [1], . . . , f [N − 1]
by using Algorithm 6.4 (apply BN )

Precompute s[κ] := sin(2πκ/N), κ = 0, 1, . . . , N/4 using Algorithm 6.7

For κ = 0, 1, . . . , 2m−1 − 1 do: (apply T (N/2)
2 )[

f [2κ]
f [2κ+ 1]

]
:=

[
1 1
1 −1

] [
f [2κ]
f [2κ+ 1]

]

For µ = 2, 3, . . . ,m do: (apply T (N/2µ)
2µ )

M := 2µ−2

For κ = 0, 1, . . . , 2m−µ − 1 do:




f [κ·4M ]

f [κ·4M+M ]

f [κ·4M+2M ]

f [κ·4M+3M ]


 :=




1 0 1 0

0 1 0 1

1 0 −1 0

0 1 0 −1


 ·




f [κ·4M ]

f [κ·4M+M ]

f [κ·4M+2M ]

f [κ·4M+3M ]




For λ = 1, 2, . . . ,M − 1 do:

Fetch s := sin(2πλ/4M) from s[λ · 2m−µ]

Fetch c := sin(2π(M − λ)/4M) from s[(M − λ) · 2m−µ]

For κ = 0, 1, . . . , 2m−µ − 1 do:




f [κ·4M+λ]

f [κ·4M+2M−λ]

f [κ·4M+2M+λ]

f [κ·4M+4M−λ]


 :=




1 0 c s

0 1 s −c

1 0 −c −s

0 1 −s c


 ·




f [κ·4M+λ]

f [κ·4M+2M−λ]

f [κ·4M+2M+λ]

f [κ·4M+4M−λ]




For k = 0, 1, . . . , 2m − 1 do: (apply 1/
√
N)

f [k] := f [k]/2m/2

Algorithm 6.9. A decimation-in-time FHT that is based on (25)
and (27) when N = 2m.
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see (5.31). The cost of computing f∧ in this way is about half of that required
by the direct application of the FFT. (An equally efficient alternative is given in
Ex. 6.8.) Analogously, the computation of the discrete convolution product f ∗ g
of given real N -vectors f ,g can be done by using the FHT in conjunction with the
identity from (5.81).

6.6 Sparse matrix factorization of F

when N = P1P2 · · ·Pm

Introduction

Let N = P1P2 · · ·Pm where m = 2, 3, . . . and Pµ = 2, 3, . . . for each µ = 1, 2, . . . ,m.
In this section we will use a generalization of the zipper identity (11) to factor FN .
The factorization will facilitate the development of an algorithm that allows us to
compute an N -point DFT with approximately

N{(P1 − 1) + (P2 − 1) + · · · + (Pm − 1)}
complex operations. In cases where N is highly composite, this gives us a fast
Fourier transform.

The zipper identity for FMP

The structure of the generalized zipper identity is well illustrated using N = 12
with the factors M = 4, P = 3. We form the 12 × 12 permutation matrix

S4,3 := [δ0, δ4, δ8, δ1, δ5, δ9, δ2, δ6, δ10, δ3, δ7, δ11]

by performing a perfect 3-shuffle of the columns δ0, δ1, . . . , δ11 of the 12×12 identity
matrix, I12, and observe that

F12 =
1
12




1 1 1 1 1 1 1 1 1 1 1 1
1 ω3 ω6 ω9 ω ω4 ω7 ω10 ω2 ω5 ω8 ω11

1 ω6 ω12 ω18 ω2 ω8 ω14 ω20 ω4 ω10 ω16 ω22

1 ω9 ω18 ω27 ω3 ω12 ω21 ω30 ω6 ω15 ω24 ω33

1 ω12 ω24 ω36 ω4 ω16 ω28 ω40 ω8 ω20 ω32 ω44

1 ω15 ω30 ω45 ω5 ω20 ω35 ω50 ω10 ω25 ω40 ω55

1 ω18 ω36 ω54 ω6 ω24 ω42 ω60 ω12 ω30 ω48 ω66

1 ω21 ω42 ω63 ω7 ω28 ω49 ω70 ω14 ω35 ω56 ω77

1 ω24 ω48 ω72 ω8 ω32 ω56 ω80 ω16 ω40 ω64 ω88

1 ω27 ω54 ω81 ω9 ω36 ω63 ω90 ω18 ω45 ω72 ω99

1 ω30 ω60 ω90 ω10 ω40 ω70 ω100 ω20 ω50 ω80 ω110

1 ω33 ω66 ω99 ω11 ω44 ω77 ω110 ω22 ω55 ω88 ω121




S4,3
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=
1
3




1 1 1
1 ω ω2

1 ω2 ω4

1 ω3 ω6

1 ω4 ω8

1 ω5 ω10

1 ω6 ω12

1 ω7 ω14

1 ω8 ω16

1 ω9 ω18

1 ω10 ω20

1 ω11 ω22




F
(3)
4 S4,3

with ω := e−2πi/12. This factorization process generalizes in a natural manner, and
in this way we obtain the zipper identity

FMP =
1
P

QM,P F
(P )
M SM,P , M, P = 1, 2, . . . . (28)

The MP ×MP matrix

QM,P :=




W0,0 W0,1 · · · W0,P−1
W1,0 W1,1 · · · W1,P−1

...
WP−1,0 WP−1,1 · · · WP−1,P−1


 (29)

is formed from the M ×M diagonal blocks

Wk,� = ωk�M




1
ω�

ω2�

. . .
ω(M−1)�


 , (30)

using powers of ω := e−2πi/MP , and the permutation matrix

SM,P := [δ0, δM , δ2M , . . . , δ(P−1)M , δ1, δ1+M , δ1+2M , . . . , δ1+(P−1)M ,

. . . , δM−1, δ2M−1, δ3M−1, . . . , δPM−1]
(31)

is obtained by performing a perfect P -shuffle of the columns δ0, δ1, . . . , δMP−1 of
the identity matrix IMP .

You will observe that QM,2 and SM,2 are identical to the matrices Q2M and S2M

from (2)–(3). A single subscript (specifying the size of the matrix) was all that we
needed for the derivation of (12). Within the present context we must specify both
of the factors M , P , and we do this by using them as subscripts (with the order
being important!) The product of these subscripts now gives the size of the matrix.
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Factorization of FP1P2···Pm

We use the zipper identity (28) with P = Pm, P = Pm−1, . . . , P = P1 in turn
[together with (6)–(8)] to write

FP1P2···Pm =
1
Pm

QP1···Pm−1,Pm · F
(Pm)
P1···Pm−1

· SP1···Pm−1,Pm

=
1

Pm−1Pm
QP1···Pm−1,Pm · Q(Pm)

P1···Pm−2,Pm−1
· F

(Pm−1Pm)
P1···Pm−2

· S(Pm)
P1···Pm−2,Pm−1

· SP1···Pm−1,Pm

...

=
1

P1P2 · · ·Pm
QP1···Pm−1,Pm · Q(Pm)

P1···Pm−2,Pm−1
·

· · · · Q(P3···Pm)
P1,P2

· Q(P2···Pm)
1,P1

· SP1,P2,... ,Pm
(32)

where the final factor

SP1,P2,...,Pm := S(P3···Pm)
P1,P2

S(P4···Pm)
P1P2,P3

· · ·S(Pm)
P1···Pm−2,Pm−1

SP1···Pm−1,Pm (33)

is a permutation matrix. This factorization depends on our choice of P1, P2, . . . , Pm

(e.g., when N = 12 we can use P1 = 2, P2 = 2, P3 = 3; P1 = 2, P2 = 3, P3 = 2;
P1 = 3, P2 = 2, P3 = 2; P1 = 2, P2 = 6; P1 = 6, P2 = 2; P1 = 3, P2 = 4; or P1 = 4,
P2 = 3).

From (29)–(30) we see that each row of QM,P has exactly P nonzero entries with
the first of these being a 1. This being the case, it will take no more than P − 1
complex operations per component to apply QM,P to a compatible vector, and the
same is true of Q(K)

M,P , K = 1, 2, . . . . Thus we expend approximately

N(P1 − 1) +N(P2 − 1) + · · · +N(Pm − 1)

complex operations as we apply the factors of (32). Of course, this reduces to
N log2N when P1 = P2 = · · · = Pm = 2.

An FFT

We will use (32) to develop a fast algorithm for computing the DFT. At the heart
of an in-place computation we must carry out the vector replacement

f := QM,P f .
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We will place the nonzero elements of QM,P that lie in rows λ, λ+M,λ+ 2M, . . . ,
λ+ (P − 1)M in the matrix

Ωλ,M,P :=




1 ωλ ω2λ · · · ω(P−1)λ

1 ωλ+M ω2(λ+M) · · · ω(P−1)(λ+M)

1 ωλ+2M ω2(λ+2M) · · · ω(P−1)(λ+2M)

...
1 ωλ+(P−1)M ω2[λ+(P−1)M ] · · · ω(P−1)[λ+(P−1)M ]


 ,

ω := e−2πi/MP , and thereby see that the replacement can be done by writing

For λ = 0, 1, . . . ,M − 1 do:

fλ

fλ+M

fλ+2M

...
fλ+(P−1)M


 := Ωλ,M,P



fλ

fλ+M

fλ+2M

...
fλ+(P−1)M


 .

You should now be able to see how the FFT of Algorithm 6.10 successively applies
the factors

Q(N/P1)
1,P1

,Q(N/P1P2)
P1,P2

,Q(N/P1P2P3)
P1P2,P3

, . . . ,Q(N/P1···Pm)
P1···Pm−1,Pm

from (32).
A direct application of the P ×P matrix Ωλ,M,P in the inner loop would require

P (P − 1) complex multiplications and the same number of complex additions. In
practice, there are clever tricks that we can use to reduce this effort, and most of
these exploit the fact that the matrix has the factorization

Ωλ,M,P = PFP




1
ωλ

ω2λ

. . .
ω(P−1)λ


 , ω := e−2πi/MP . (34)

For example, when P = 2 we can generate

[
f ′
0
f ′
1

]
:= Ωλ,M,2

[
f0
f1

]
=

[
1 1
1 −1

] [
1

ωλ

] [
f0
f1

]

by computing in turn

t := ωλ · f1, f ′
0 := f0 + t, f ′

1 := f0 − t.
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Permute f [0], f [1], . . . , f [N − 1] using SP1,P2,... ,Pm

M := 1
P := 1
K := N

For µ = 1, 2, . . . ,m do:

M := M · P
P := Pµ

K := K/P

ω := e−2πi/MP

For λ = 0, 1, . . . ,M − 1 do:

For κ = 0, 1, . . . ,K − 1 do:




f [λ +κMP ]

f [λ+ M+κMP ]
...

f [λ+(P−1)M+κMP ]


 := Ωλ,M,P




f [λ +κMP ]

f [λ+ M+κMP ]
...

f [λ+(P−1)M+κMP ]




For k = 0, 1, . . . , N − 1 do:

f [k] := f [k]/N

Algorithm 6.10. Naive decimation-in-time FFT based on (32)
when N = P1P2 · · ·Pm.

This eliminates one complex multiplication and reduces the per component cost
from 4 real multiplications and 4 real additions to 2 real multiplications and 3 real
additions. Analogously, when P = 4 we can generate



f ′
0
f ′
1
f ′
2
f ′
3


 :=




1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i







1
ωλ

ω2λ

ω3λ






f0
f1
f2
f3




by computing in turn

t1 := ωλ · f1, t2 := ω2λ · f2, t3 := ω3λ · f3,
s1 := f0 + t2, s2 := t1 + t3, d1 := f0 − t2, d2 := t1 − t3,

f ′
0 := s1 + s2, f ′

1 := d1 − i d2, f ′
2 := s1 − s2, f ′

3 := d1 + i d2.
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If we neglect the multiplications by i [since we can compute

(a+ ib) + i(c+ id) = (a− d) + i(b+ c)

by performing two real additions that are equivalent to one complex addition] we
see that this eliminates 9 complex multiplications and 4 complex additions. The
per component cost for applying Ωλ,M,4 is thus reduced from 12 real multiplications
and 12 real additions to 3 real multiplications and 11/2 real additions. When N is
a power of 4, this leads to an FFT that uses approximately

N log2N · {1.5 real multiplications + 2.75 real additions}.
In contrast, Algorithm 6.8 uses

N log2N · {2 real multiplications + 3 real additions}.
Exercise 6.22 shows how to reduce the cost to

N log2N · {1.33 real multiplications + 2.75 real additions}
when N is a power of 8.

The permutation SQ,P

If we lay down the components of f = (f0, f1, . . . , f11)T in 4 rows

f0 f1 f2
f3 f4 f5
f6 f7 f8
f9 f10 f11

and then pick them up by columns we produce the perfect 4-shuffle

(f0, f3, f6, f9, f1, f4, f7, f10, f2, f5, f8, f11)T

of f . The analogous perfect P -shuffle of the columns δ0, δ1, . . . , δPQ−1 of the
PQ× PQ identity matrix gives the shuffle permutation

SQ,P := [δ0, δQ, δ2Q, . . . , δ(P−1)Q, δ1, δ1+Q, δ1+2Q, . . . , δ1+(P−1)Q,

. . . , δQ−1, δ2Q−1, δ3Q−1, . . . , δQP−1].
(35)

Using this definition it is easy to verify that

δq+pQ appears in column p+ qP of SQ,P ,

SQ,P δp+qP = δq+pQ, (36)
SQ,P puts fp+qP into position q + pQ, (37)
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(for all p = 0, 1, . . . , P − 1, q = 0, 1, . . . , Q− 1), and to see that

SQ,P f = (f0, fP , f2P , . . . , f(Q−1)P , f1, f1+P , f1+2P , f1+(Q−1)P ,

. . . , fP−1, f2P−1, f3P−1, . . . , fQP−1)T
(38)

is a perfect Q-shuffle of f . You will note that the subscripts on the right-hand side
of (35) mostly jump by Q (when P > 2) while those on the right-hand side of (38)
mostly jump by P (when Q > 2).

Using (36) we see that
SP,QSQ,P = IPQ,

and thereby infer that
S−1

Q,P = SP,Q. (39)

Since SP,Q is a permutation matrix, this implies that

ST
Q,P = SP,Q, (40)

see Ex. 6.13. In particular,

fTSQ,P = (ST
Q,P f)T = (SP,Qf)T

= (f0, fQ, f2Q, . . . , f(P−1)Q, f1, f1+Q, f1+2Q, . . . , f1+(P−1)Q,

. . . , fQ−1, f2Q−1, f3Q−1, . . . , fPQ−1),

[and this is precisely the action that we required during the derivation of the zipper
identity (28)!].

The permutation SP1,P2, ... ,Pm

Using (37) (with fn replaced by f [n]) we see that

SQ,P maps f [p+ qP ] to position q + pQ when
p = 0, 1, . . . , P − 1, q = 0, 1, . . . , Q− 1 and N = PQ. (41)

More generally,

S(R)
Q,P maps f [p+ qP + rPQ] to position q + pQ+ rPQ when

p = 0, 1, . . . , P − 1, q = 0, 1, . . . , Q− 1, r = 0, 1, . . . , R− 1
and N = PQR. (42)

We will use (41)–(42) to determine the action of the permutation (33) that is needed
for Algorithm 6.10.
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The pattern is well illustrated by the case where m = 4 and N = P1P2P3P4. We
choose an index n = 0, 1, . . . , N − 1, write this index in the form

n = p4 + p3P4 + p2P3P4 + p1P2P3P4

for suitably chosen

p1 = 0, 1, . . . , P1 − 1, p2 = 0, 1, . . . , P2 − 1,
p3 = 0, 1, . . . , P3 − 1, p4 = 0, 1, . . . , P4 − 1,

and then follow f [n] as we apply in turn the factors SP1P2P3,P4 , S(P4)
P1P2,P3

, S(P3P4)
P1,P2

of SP1,P2,P3,P4 . Using (41) we see that the initial application of SP1P2P3,P4 moves
f [n] from position

n = p4 + (p3 + p2P3 + p1P2P3)P4

to position
n′ = (p3 + p2P3 + p1P2P3) + p4(P3P2P1).

Using (42) we see that the subsequent application of S(P4)
P1P2,P3

moves f [n] from
position

n′ = p3 + (p2 + p1P2)P3 + p4(P3P2P1)

to position
n′′ = (p2 + p1P2) + p3(P2P1) + p4(P3P2P1).

Again using (42) we see that the final application of S(P3P4)
P1,P2

moves f [n] from position

n′′ = p2 + p1P2 + (p3 + p4P3)(P2P1)

to position
r = p1 + p2P1 + p3P2P1 + p4P3P2P1.

This argument can be used for any m = 2, 3, 4, . . . , so if

n = pm + pm−1Pm + pm−2Pm−1Pm + · · · + p1P2P3 · · ·Pm (43)

for some choice of

p1 = 0, 1, . . . , P1 − 1, p2 = 0, 1, . . . , P2 − 1, . . . , pm = 0, 1, . . . , Pm − 1,

then SP1,P2,... ,Pm
maps f [n] to position

r = p1 + p2P1 + p3P2P1 + · · · + pmPm−1Pm−2 · · ·P1. (44)

(The choice P1 = P2 = · · · = Pm = 2 gives the bit reversal permutation B2m .)
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A suitable generalization of Algorithm 6.2 for bit reversal can be used to find the
r that corresponds to n. For example, when P1 = 3, P2 = 5, P3 = 7, P4 = 11 and
we are given the index

n = 1153 = 9 + 6 · (11) + 4 · (7 · 11) + 2 · (5 · 7 · 11)

we can produce the corresponding index

r = 2 + 4 · (3) + 6 · (5 · 3) + 9 · (7 · 5 · 3) = 1049

with the following calculation.

1153 ÷ 11 = 104 with remainder p4 := 9, r1 := 9
104 ÷ 7 = 14 with remainder p3 := 6, r2 := 7r1 + 6 = 69
14 ÷ 5 = 2 with remainder p2 := 4, r3 := 5r2 + 4 = 349
2 ÷ 3 = 0 with remainder p1 := 2, r4 := 3r3 + 2 = 1049

Algorithm 6.11 uses these ideas to generate the index r when P1, P2, . . . , Pm and n =
0, 1, . . . , N − 1 are given. By reversing the order of P1, P2, . . . , Pm, Algorithm 6.12
allows us to generate the index n that corresponds to a given r = 0, 1, . . . , N − 1.
The identity

S−1
P1,P2,... ,Pm

= SPm,Pm−1,... ,P1 , (45)

which expresses the relationship between these two algorithms, generalizes (39).

r := 0
d := n

For µ = m,m− 1, . . . , 1 do:

q := �d/Pµ�
p := d− Pµ · q
r := p+ Pµ · r
d := q

Algorithm 6.11. Computation of the r from (44) when the n
from (43) is given.
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n := 0
d := r

For µ = 1, 2, . . . ,m do:

q := �d/Pµ�
p := d− Pµ · q
n := p+ Pµ · n
d := q

Algorithm 6.12. Computation of the n from (43) when the r
from (44) is given.

If we can choose the factors P1, P2, . . . , Pm so that

P1 = Pm, P2 = Pm−1, P3 = Pm−2, . . . , Pm = P1, (46)

then (45) shows that SP1,P2,... ,Pm is self reciprocal, i.e., the symmetry (46) makes it
possible to carry out the permutation by simply swapping f [n] and f [r] whenever
r > n. For example, when N = 12 and we take P1 = 2, P2 = 3, P3 = 2 we find

n: 0 1 2 3 4 5 6 7 8 9 10 11
r[n]: 0 6 2 8 4 10 1 7 3 9 5 11

and we can apply S2,3,2 by swapping f [1] and f [6], f [3] and f [8], f [5] and f [10].
In the absence of the symmetry (46) this is never the case. For example, when

N = 12 and we take P1 = 2, P2 = 2, P3 = 3 we find

n: 0 1 2 3 4 5 6 7 8 9 10 11
r[n]: 0 4 8 2 6 10 1 5 9 3 7 11

so the application of S2,2,3 requires us to cyclically permute

f [1], f [4], and f [6]; f [2], f [8], f [9], and f [3]; f [5], f [10], and f [7].

If we reverse the order of the factors and take P1 = 3, P2 = 2, P3 = 2 we find

n: 0 1 2 3 4 5 6 7 8 9 10 11
r[n]: 0 6 3 9 1 7 4 10 2 8 5 11

so the application of S3,2,2 requires us to cyclically permute

f [1], f [6], and f [4]; f [2], f [3], f [9], and f [8]; f [5], f [7], and f [10].

The cycles are the same as those for S2,2,3 = S−1
3,2,2, but the direction is reversed!
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Algorithm 6.13 provides a simple scheme for applying the permutation
SP1,P2, ... ,Pm . This algorithm uses an auxiliary array. If you wish to do the per-
mutation without using two data arrays, you can precompute the indices for the
various cycles. For example, if you wish to apply S2,2,3 you can precompute

(−1, 6, 4,−2, 3, 9, 8,−5, 7, 10)

(with negative indices marking the start of each cycle) and then perform the per-
mutation by writing

T := f [1], f [1] := f [6], f [6] := f [4], f [4] := T,

T := f [2], f [2] := f [3], f [3] := f [9], f [9] := f [8], f [8] := T,

T := f [5], f [5] := f [7], f [7] := f [10], f [10] := T.

In cases where P1, P2, . . . , Pm have the symmetry (46), you can develop a very
efficient generalization of the Bracewell–Buneman algorithm that does the permu-
tation in place by performing the necessary swaps. This is particularly effective
when P1 = P2 = · · · = Pm.

For n = 0, 1, . . . , N − 1 do:
r := 0
d := n

For µ = m,m− 1, . . . , 1 do:

q := �d/Pµ�
p := d− Pµ · q
r := p+ Pµ · r
d := q

g[r] := f [n]
For n = 0, 1, . . . , N − 1

f [n] := g[n]

Algorithm 6.13. A naive scheme for applying the permutation
SP1,P2,... ,Pm when f [0], f [1], . . . , f [N − 1] and
N = P1P2 · · ·Pm are given.
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Closely related factorizations of F,H

Since F is symmetric, we can transpose (32) to produce the factorization

FP1P2···Pm
=

1
P1P2 · · ·Pm

SPm,Pm−1,... ,P1 · [QT
1,P1

](P2···Pm)

· [QT
P1,P2

](P3···Pm) · . . . · [QT
P1···Pm−2,Pm−1

](Pm) · QT
P1···Pm−1,Pm

,

(47)

which gives the Gentleman–Sande version of the FFT, see (15) and Ex. 6.16(b).
There are factorizations of the Hartley transform matrix HP1P2···Pm that corre-

spond to (32) and (47). These can be derived with the zipper identity of Ex. 6.23.

6.7 Kronecker product factorization of F

Introduction

In the years following the publication of the Cooley–Tukey algorithm, dozens of
other FFTs were discovered by Gentleman and Sande, Pease, Stockham, Singleton,
Burrus, de Boor, Winograd, Temperton, and many others. These variations facili-
tated the development of more elegant codes, more efficient access of data, somewhat
smaller operation counts, etc. Most of these FFTs can be derived from the Cooley–
Tukey factorization (32) by using a mathematical construct known as the Kronecker
product (or direct product or tensor product). We will develop some of the basic
properties of the Kronecker product and show how they are used to produce useful
sparse factorizations of the matrix F. You should consult Van Loan’s book and the
references cited therein for a comprehensive treatment of this topic.

The Kronecker product

Let A,B be K × L, M ×N matrices with elements

A[k, �], k = 0, 1, . . . ,K − 1, � = 0, 1, . . . , L− 1,
B[m,n], m = 0, 1, . . . ,M − 1, n = 0, 1, . . . , N − 1.

We define the Kronecker product A ⊗ B to be the KM × LN matrix

A ⊗ B :=




A[0, 0]B A[0, 1]B · · · A[0, L− 1]B
A[1, 0]B A[1, 1]B · · · A[1, L− 1]B

...
...

...
A[K − 1, 0]B A[K − 1, 1]B · · · A[K − 1, L− 1]B


 (48)
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with the elements

(A⊗B)[m+ kM,n+ �N ] := A[k, �]B[m,n]. (49)

Each block of A ⊗ B is a scalar multiple of B, and the elements of A serve as the
scale factors, e.g., [

1
2

]
⊗ [3, 5] =

[
1 [3, 5]
2 [3, 5]

]
=

[
3 5
6 10

]
,

[ 3 5 ] ⊗
[

1
2

]
=

[
3
[

1
2

]
5
[

1
2

] ]
=

[
3 5
6 10

]
,

[
1 2 3
4 5 6

]
⊗

[
1 0
0 1

]
=




1 0 2 0 3 0
0 1 0 2 0 3
4 0 5 0 6 0
0 4 0 5 0 6


 ,

[
1 0
0 1

]
⊗

[
1 2 3
4 5 6

]
=




1 2 3 0 0 0
4 5 6 0 0 0
0 0 0 1 2 3
0 0 0 4 5 6


 .

You will immediately recognize the special Kronecker product

A(P ) = IP ⊗ A (50)

from (5) and recall how the corresponding algebraic identities

IQ ⊗ (IP ⊗ A) = IPQ ⊗ A (51)
IP ⊗ (AB) = (IP ⊗ A)(IP ⊗ B) when AB is defined (52)
IP ⊗ (αA) = α(IP ⊗ A) (53)

(IP ⊗ A)T = IP ⊗ AT (54)

from (6)–(9) were used to derive the sparse factorizations (12), (15), (32), and
(47). Indeed, the exponent notation (5) provides a gentle introduction to the use of
identities such as (51)–(54).

It is a fairly simple matter to verify that (48) has the algebraic properties

A ⊗ (B ⊗ C) = (A ⊗ B) ⊗ C, (55)
(A + B) ⊗ C = (A ⊗ C) + (B ⊗ C) when A + B is defined, (56)
C ⊗ (A + B) = (C ⊗ A) + (C ⊗ B) when A + B is defined, (57)
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that we would demand from any binary operation that carries the name product,
but there are situations (as illustrated above) where

A ⊗ B �= B ⊗ A.

Example Verify (55) when A,B,C are 2 × 2 matrices.

Solution We use (48) four times as we write

A ⊗ (B ⊗ C) =
[
a11B ⊗ C a12B ⊗ C
a21B ⊗ C a22B ⊗ C

]

=



a11

[
b11C b12C
b21C b22C

]
a12

[
b11C b12C
b21C b22C

]

a21

[
b11C b12C
b21C b22C

]
a22

[
b11C b12C
b21C b22C

]



=
[
a11B a12B
a21B a22B

]
⊗ C

= (A ⊗ B) ⊗ C.

You can use a similar argument to prove (55) or you can use Ex. 6.26(a).
The Kronecker product (48) also has the special properties

(αA) ⊗ B = α(A ⊗ B) = A ⊗ (αB), (58)
(A ⊗ B)(C ⊗ D) = (AC) ⊗ (BD) when AC and BD are defined, (59)

(A ⊗ B)T = AT ⊗ BT, (60)

(A ⊗ B)−1 = A−1 ⊗ B−1 when A−1 and B−1 are defined, (61)
IP ⊗ IQ = IPQ when P = 1, 2, . . . , Q = 1, 2, . . . . (62)

Example Verify the multiplication rule (59) when A,B,C,D are 2 × 2 matrices.

Solution Using (48) and the definition of the matrix product we write

(A ⊗ B)(C ⊗ D) =
[
a11B a12B
a21B a22B

] [
c11D c12D
c21D c22D

]

=
[

(a11c11 + a12c21)BD (a11c12 + a12c22)BD
(a21c11 + a22c21)BD (a21c12 + a22c22)BD

]
= (AC) ⊗ (BD).

You can use a similar argument to prove (59) or you can use Ex. 6.26(b).
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Rearrangement of Kronecker products

Let x, y be column vectors with 2, 3 components. When we use (38) to perform a
perfect 2-shuffle of the components of x ⊗ y we find

S2,3(x ⊗ y) = S2,3

[
x1y
x2y

]
= S2,3




x1y1
x1y2
x1y3

x2y1
x2y2
x2y3




=




x1y1
x2y1

x1y2
x2y2

x1y3
x2y3




=


 y1xy2x
y3x


 = y ⊗ x.

More generally, when x,y have P,Q components for some P,Q = 1, 2, . . . an anal-
ogous argument shows that

SP,Q(x ⊗ y) = y ⊗ x. (63)

Using (63) we can easily derive the commutation relation

SP,Q(A ⊗ B) = (B ⊗ A)SP,Q, (64)

which holds when A is P × P and B is Q × Q. Indeed, if we are given any P,Q
component column vectors x,y we can use (59) and (63) to write

{SP,Q(A ⊗ B)}(x ⊗ y) = SP,Q{(Ax ⊗ By)}
= (By) ⊗ (Ax)
= (B ⊗ A)(y ⊗ x)
= {(B ⊗ A)SP,Q}(x ⊗ y).

Since the set of all such vectors x ⊗ y spans the linear space of PQ component
column vectors (see Ex. 6.29), this establishes (64).

Routine manipulations of Kronecker product factorizations make use of (55), (59)
and (63) or (64). We will give two examples to illustrate how this is done.



342 The fast Fourier transform

Example Verify the shuffle permutation identity

SP,QR = SPR,QSPQ,R. (65)

Solution Let p,q, r be any P,Q,R component column vectors. Using (63) and the
associativity (55) of the Kronecker product, we see that

SP,QR(p ⊗ (q ⊗ r)) = (q ⊗ r) ⊗ p
= q ⊗ (r ⊗ p)

= SPR,Q

(
(r ⊗ p) ⊗ q

)
= SPR,Q

(
r ⊗ (p ⊗ q)

)
= SPR,QSPQ,R

(
(p ⊗ q) ⊗ r)

= SPR,QSPQ,R

(
p ⊗ (q ⊗ r)

)
.

Since the set of all such vectors p⊗(q⊗r) spans the linear space of PQR component
column vectors, this establishes (65).

Example Show that B16 = (S2,2 ⊗ I4)(S2,4 ⊗ I2)S2,8.

Solution Let a, b, c, d be any 2-component column vectors. Using (13) and (50)
together with (63) (and the associativity of the Kronecker product) we write

B16(a ⊗ b ⊗ c ⊗ d)
= (I4 ⊗ S2,2)(I2 ⊗ S4,2)(S8,2)(a ⊗ b ⊗ c ⊗ d)
= (I4 ⊗ S2,2)(I2 ⊗ S4,2)(d ⊗ a ⊗ b ⊗ c)
= (I4 ⊗ S2,2)(d ⊗ c ⊗ a ⊗ b)
= d ⊗ c ⊗ b ⊗ a.

Analogously,

(S2,2 ⊗ I4)(S2,4 ⊗ I2)(S2,8)(a ⊗ b ⊗ c ⊗ d)
= (S2,2 ⊗ I4)(S2,4 ⊗ I2)(b ⊗ c ⊗ d ⊗ a)
= (S2,2 ⊗ I4)(c ⊗ d ⊗ b ⊗ a)
= d ⊗ c ⊗ b ⊗ a,

and this establishes the above identity for B16. The same argument show that

B2m = (S2,2 ⊗ I2m−2)(S2,4 ⊗ I2m−3) · · · (S2,2m−2 ⊗ I2)S2,2m−1 . (66)
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Parallel and vector operations

Let A, B be P ×P , Q×Q matrices and let the PQ component column vector x be
partitioned into Q component column blocks x0,x1, . . . ,xP−1. When we evaluate

(IP ⊗ B)x =




B
B

. . .
B







x0
x1
...

xP−1




we can process x0,x1, . . . ,xP−1 separately to produce Bx0,Bx1, . . . ,BxP−1. On
the other hand, when we evaluate

(A ⊗ IQ)x =




A[0, 0]IQ A[0, 1]IQ · · · A[0, P − 1]IQ

A[1, 0]IQ A[1, 1]IQ · · · A[1, P − 1]IQ

...
...

...
A[P − 1, 0]IQ A[P − 1, 1]IQ · · · A[P −1, P −1]IQ







x0
x1
...

xP−1




we must scale and sum the vectors x0,x1, . . . ,xP−1 as we compute

A[k, 0]x0 +A[k, 1]x1 + · · · +A[k, P − 1]xP−1, k = 0, 1, . . . , P − 1.

For this reason we refer to the computation of (IP ⊗ B)x as a parallel operation
and to the computation of (A ⊗ IQ)x as a vector operation. As you might surmise,
computers have been designed to do such computations with great efficiency.

If we want to evaluate (A⊗B)x on a computer that excels at parallel operations,
we use (59), (64), and (39) to produce a factorization

A ⊗ B = (A ⊗ IQ)(IP ⊗ B) = SQ,P (IQ ⊗ A)SP,Q(IP ⊗ B),

which allows us to apply A ⊗ B to x with parallel operations and sorts. If we use
a computer that excels at vector operations we might prefer the factorization

A ⊗ B = (A ⊗ IQ)SQ,P (B ⊗ IP )SP,Q,

which uses vector operations and sorts. In this way we can modify the elementary
factorizations (12) and (32) to produce algorithms that run efficiently on a particular
computer.
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Stockham’s autosort FFT

We use the commutation relation (64) to write (11) in the alternative form

F2M =
1
2
Q2MSM,2(FM ⊗ I2).

We then use this new zipper identity with (59) and (62) to factor F16 by writing

F16 =
1
2
Q16S8,2(F8 ⊗ I2)

=
1
4
Q16S8,2((Q8S4,2(F4 ⊗ I2)) ⊗ I2)

=
1
4
Q16S8,2(Q8 ⊗ I2)(S4,2 ⊗ I2)(F4 ⊗ I4)

...

=
1
16

(Q16 ⊗ I1)(S8,2 ⊗ I1)(Q8 ⊗ I2)(S4,2 ⊗ I2)

(Q4 ⊗ I4)(S2,2 ⊗ I4)(Q2 ⊗ I8)(S1,2 ⊗ I8). (67)

This shows the pattern for Stockham’s autosort factorization of FN with vector
operations when N = 2m. We must provide an additional array of storage to
carry out the rearrangement of the data that takes place just before we apply Q2 ⊗
IN/2,Q4 ⊗ IN/4, . . . , but this eliminates the need for the bit reversal permutation.

An alternative Stockham factorization uses only parallel operations. We begin
with the Cooley-Tukey factorization

F16 =
1
16

Q16(I2 ⊗ Q8)(I4 ⊗ Q4)(I8 ⊗ Q2)(S2,2 ⊗ I4)(S2,4 ⊗ I2)S2,8

with the expression (66) for B16. When A, B are P × P , Q × Q we can use (59)
to obtain the commutation rule

(IP ⊗ B)(A ⊗ IQ) = A ⊗ B = (A ⊗ IQ)(IP ⊗ B), (68)

which allows us to rearrange the above factors of F16 and write

F16 =
1
16

(I1 ⊗ Q16)(S2,1 ⊗ I8)(I2 ⊗ Q8)(S2,2 ⊗ I4)

· (I4 ⊗ Q4)(S2,4 ⊗ I2)(I8 ⊗ Q2)(S2,8 ⊗ I1).
(69)

This shows the pattern for the factorization of FN when N = 2m.
There are analogous Stockham factorizations of FN when N = P1P2 · · ·Pm, and

we can use these (or the corresponding transposed factorizations) as frameworks for
developing FFT codes, see Ex. 6.34. You now have all of the concepts that you will
need to sort out the details!
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Further reading

Bracewell, R. The Hartley Transform, Oxford University Press, New York, 1986.
The FHT as seen by its creator.

Brigham, E.O. The Fast Fourier Transform and Its Applications, Prentice Hall,
Englewood Cliffs, NJ, 1988.
A pictorial, intuitive approach to FFT algorithms with selected applications in
science and engineering.

Cooley, J.W. and Tukey, J.W. An algorithm for the machine computation of complex
Fourier series, Math. Comp. 19(1965), 297–301.
This initial presentation of the FFT is the most frequently cited mathematics
paper ever written . . . and you can actually read it!

Tolimieri, R., An, M., and Lu C., Algorithms for Discrete Fourier Transform and
Convolution, Springer-Verlag, New York, 1989.
A mature (but exceptionally readable) exposition of fast algorithms for Fourier
analysis.

Van Loan, C. Computational Frameworks for the Fast Fourier Transform, SIAM,
Philadelphia, 1992.
The definitive mathematical exposition of the FFT (using MATLAB).

Walker, J.S. Fast Fourier Transforms, 2nd ed., CRC Press, Boca Raton, FL, 1996.
An elementary introduction to the FFT with selected applications to PDEs,
optics, etc., illustrated with PC software created by the author.

Exercises

. .. .....
.. ...
....... ..... ....••• EXERCISE 6.1 Many computational tasks of Fourier analysis require us to find
the value of some polynomial

P (c0, c1, . . . , cN−1; z) := c0 + c1z + c2z
2 + · · · + cN−1z

N−1

when the complex coefficients c0, c1, . . . , cN−1 and a point z = eiθ on the unit circle of
the complex plane are given. The naive Horner algorithm

P := cN−1

For n = N − 2, N − 3, . . . , 0 do:

P := cn + z · P
P (c0, c1, . . . , cN−1; z) := P



346 The fast Fourier transform

uses complex arithmetic. In this exercise you will study alternative algorithms that use
real arithmetic. For this purpose we define

C(α0, α1, . . . , αm; θ) := α0 + α1 cos θ + α2 cos 2θ + · · · + αm cosmθ

S(α0, α1, . . . , αm; θ) := α1 sin θ + α2 sin 2θ + · · · + αm sinmθ

where m = 0, 1, 2, . . . and where the coefficients α0, α1, . . . , αm are real.

(a) Let cn = an + ibn where an, bn are real, n = 0, 1, . . . , N − 1. Show that

P (c0, c1, . . . , cN−1; e
iθ) ={C(a0, a1, . . . , aN−1; θ) − S(b0, b1, . . . , bN−1; θ)}

+ i{C(b0, b1, . . . , bN−1; θ) + S(a0, a1, . . . , aN−1; θ)}.

(b) Set P = R+ iX with R,X real in the above Horner algorithm and thereby show that
C(α0, α1, . . . , αN−1; θ), S(α0, α1, . . . , αN−1; θ) can be computed as follows:

c := cos θ

s := sin θ

R := αN−1

X := 0

For n = N − 2, N − 3, . . . , 1, 0 do:

T := αn + c ·R− s ·X
X := s ·R+ c ·X
R := T

C(α0, α1, . . . , αN−1; θ) := R

S(α0, α1, . . . , αN−1; θ) := X.

(c) How many real additions and multiplications must be done when we compute a C, S
pair by using the algorithm of (b)? How many must be done when we evaluate the
real and imaginary parts of P (c0, c1, . . . , cN−1; e

iθ) by using the decomposition of (a)
together with the algorithm of (b)?

(d) Show that

C(α0,α1, . . . , αm−1, A,B; θ) = C(α0, α1, . . . , αm−2, αm−1 −B,A+ 2B cos θ; θ),

S(α0,α1, . . . , αm−1, A,B; θ) = S(α0, α1, . . . , αm−2, αm−1 −B,A+ 2B cos θ; θ).

Hint. Use the trigonometric identities

cos{(m+ 1)θ} = 2 cos θ cos(mθ) − cos{(m− 1)θ},
sin{(m+ 1)θ} = 2 cos θ sin(mθ) − sin{(m− 1)θ}.
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(e) Use (d) to verify that C(α0, α1, . . . , αN−1; θ) and S(α0, α1, . . . , αN−1; θ) can be found
by using the following real algorithm of Goertzel.

A := 0

B := 0

u := 2 cos θ

For n = N − 1, N − 2, . . . , 0 do:

T := A

A := αn −B

B := T + u ·B
C(α0, α1, . . . , αN−1; θ) := A+B · cos θ

S(α0, α1, . . . , αN−1; θ) := B · sin θ

(f) How does the cost of Goertzel’s algorithm compare with that of (b)?

.. . .
....

. .. ........... .
..
. ... ....••• EXERCISE 6.2 Suppose that you have created efficient macros cpoly, spoly for
computing

cpoly(α0, α1, . . . , αm; θ) :=
m∑

k=0

αk cos(kθ), spoly(α0, α1, . . . , αm; θ) :=
m∑

k=1

αk sin(kθ)

when the real numbers α0, α1, . . . , αm, θ are given, e.g., as described in Ex. 6.1(e). Show
how to use cpoly, spoly to do the following computational tasks.

(a) Let the complex N -vector f have the discrete Fourier transform F, and let

f [n] = fR[n] + ifI [n], F [k] = FR[k] + iFI [k]

where fR, fI , FR, FI are real valued. Compute FR[k], FI [k] when fR[n], fI [n],
n = 0, 1, . . . , N − 1 are given.

Hint. FR[k] = N−1 · cpoly(fR[0], . . . , fR[N − 1]; 2πk/N) + · · · .

(b) Let y be the trigonometric polynomial

y(x) :=




a0
2

+
M∑

k=1

{
ak cos

(
2πkx
p

)
+ bk sin

(
2πkx
p

)}
if N = 2M + 1

a0
2

+
M−1∑
k=1

{
ak cos

(
2πkx
p

)
+ bk sin

(
2πkx
p

)}
+
aM

2
cos

(
2πMx

p

)
if N = 2M.

Compute values for ak, bk that will make y(np/N) = yn, n = 0, 1, . . . , N − 1 when N
and the real numbers y0, y1, . . . , yN−1 are given.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 6.3 Suppose that you have created efficient macros flip, bar, chopm, ft
for computing

flip(x0, x1, x2, . . . , xN−1) := (x0, xN−1, xN−2, . . . , x1),

bar(x0, x1, x2, . . . , xN−1) := (x0, x1, x2, . . . , xN−1),

chopm(x0, x1, x2, . . . , xN−1) := (x0, x1, x2, . . . , xm−1), m = 1, 2, . . . , N, and

ft(x0, x1, x2, . . . , xN−1) := (X0, X1, X2, . . . , XN−1).

Here xn is the complex conjugate of xn and

Xk :=
1
N

N−1∑
n=0

xn e
−2πikn/N , k = 0, 1, . . . , N − 1.

Show how to use flip, bar, chopm, ft (and the binary vector operations of componentwise
addition, subtraction, multiplication) to carry out the following computational tasks.

(a) Compute the vector f when the complex N -vector F := f∧ is given.

(b) Compute the convolution product f ∗ g when the complex N -vectors f ,g are given.

(c) Compute the autocorrelation f � f when the complex N -vector f is given.

(d) Let N = 2M and let a0, b0, a1, b1, . . . , aM , bM be given with b0 = bM = 0. Compute
the vector y = (y0, y1, . . . , yN−1) of samples

yn :=
a0
2

+
M−1∑
k=1

{
ak cos

(2πkn
N

)
+ bk sin

(2πkn
N

)}
+
aM

2
cos

(2πMn

N

)
,

n = 0, 1, . . . , N − 1.

(e) Let y = (y0, y1, . . . , yN−1) be given with N = 2M . Compute a = (a0, a1, . . . , aM ),
b = (b0, b1, . . . , bM ) so that ak, bk and yn are related as in (d).

Hint. Use the result of Ex. 1.16.

.
....

. . .

....... ..... .
..
.. .. ....••• EXERCISE 6.4 Let f := (f0, f1, . . . , f11) be a complex vector with the discrete
Fourier transform F = (F0, F1, . . . , F11), and let α := 1

2 (1 +
√

3 i), β := 1
2 (

√
3 + i). Use

the summation rule from (4.57) to derive the following expressions for F0, F1, . . . , F11.

(a) 12F0 = (f0 + f2 + f4 + f6 + f8 + f10) + (f1 + f3 + f5 + f7 + f9 + f11)

12F6 = (f0 + f2 + f4 + f6 + f8 + f10) − (f1 + f3 + f5 + f7 + f9 + f11)

(b) 12F4 = (f0 + f3 + f6 + f9) − α (f1 + f4 + f7 + f10) − α (f2 + f5 + f8 + f11)

12F8 = (f0 + f3 + f6 + f9) − α (f1 + f4 + f7 + f10) − α (f2 + f5 + f8 + f11)

(c) 12F3 = (f0 + f4 + f8) − i (f1 + f5 + f9) − (f2 + f6 + f10) + i (f3 + f7 + f11)

12F9 = (f0 + f4 + f8) + i (f1 + f5 + f9) − (f2 + f6 + f10) − i (f3 + f7 + f11)
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(d) 12F2 = {(f0 + f6) − (f3 + f9)} + α {(f1 + f7) − (f4 + f10)}
− α {(f2 + f8) − (f5 + f11)}

12F10 = {(f0 + f6) − (f3 + f9)} + α {(f1 + f7) − (f4 + f10)}
− α {(f2 + f8) − (f5 + f11)}

(e) 12F1 = (f0 − f6) + β (f1 − f7) + α (f2 − f8) − i(f3 − f9)

− α (f4 − f10) − β (f5 − f11)

12F11 = (f0 − f6) + β (f1 − f7) + α (f2 − f8) + i (f3 − f9)

− α (f4 − f10) − β (f5 − f11)

12F5 = (f0 − f6) − β (f1 − f7) + α (f2 − f8) − i (f3 − f9)

− α (f4 − f10) + β (f5 − f11)

12F7 = (f0 − f6) − β (f1 − f7) + α (f2 − f8) + i (f3 − f9)

− α (f4 − f10) + β (f5 − f11)

Note. A real version of this analysis was used to produce the Whittaker–Robinson flow
chart for 12-point harmonic analysis, see Appendix 5.

.. . .
....

. .. ...........
..
. ... ....••• EXERCISE 6.5 In this (historical) exercise you will learn about the paper strip
method for doing Fourier analysis. Suppose that we wish to compute 3-digit approxima-
tions for

yn := a0 +
M∑

k=1

{
ak · cos

(2πkn
N

)
+ bk · sin

(2πkn
N

)}

when the real coefficients a0, a1, b1, . . . , aM , bM are given, see Ex. 6.1 and Ex. 6.2. We
create paper strips labeled

100·Ck, 200·Ck, . . . , 900·Ck, 100·Sk, 200·Sk, . . . , 900·Sk,

10·Ck, 20·Ck, . . . , 90·Ck, 10·Sk, 20·Sk, . . . , 90·Sk,

1·Ck, 2·Ck, . . . , 9·Ck, 1·Sk, 2·Sk, . . . , 9·Sk,

with k = 0, 1, . . . ,M for the C’s and k = 1, 2, . . . ,M for the S’s. Each strip has N
identically sized cells indexed with n = 0, 1, . . . , N − 1. In the nth cell of the strip labeled
α · Ck, α · Sk is the integer closest to α · cos(2πkn/N), α · sin(2πkn/N), respectively. For
example, when N = 12 we produce the strip

100·C1 100 87 50 0 −50 −87 −100 −87 −50 0 50 87

and print the negative

−100·C1 −100 −87 −50 0 50 87 100 87 50 0 −50 −87
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on the reverse side. To evaluate

yn = .352 − .826 · cos
(2πn
N

)
+ .074 · cos

(4πn
N

)
+ .169 · sin

(2πn
N

)
we align the strips labeled

300·C0, −800·C1, 100·S1,

50·C0, −20·C1, 70·C2, 60·S1,

2·C0, −6·C1, 4·C2, 9·S1,

add the (signed) integers in the N columns, apply the scale factor 10−3 to these sums,
and thereby obtain y0, y1, . . . , yN−1.

(a) Let 〈α〉 denote the rounded value of the real number α, i.e.,

〈α〉 :=

{�α� if �α� − α ≤ 1
2

�α	 if�α� − α > 1
2 .

How big is the error

10−3 ·
{

826 · cos
(2π

12

)
−

〈
800 · cos

(2π
12

)〉
−

〈
20 · cos

(2π
12

)〉
−

〈
6 · cos

(2π
12

)〉}
associated with the C1 terms of the above sum when n = 1?

Hint. Use a calculator!

(b) How many C strips and how many S strips must we create if we wish to compute
3-digit discrete Fourier transforms for arbitrary N = 12 component vectors?

(c) What is the maximum number of strips that we must fetch when we evaluate a
particular set of yn’s (to 3 digits) when N = 12 and M = 6?

(d) Use the paper strip method to compute a 3-digit approximation to the discrete Fourier
transform of f = (0, 6, 12, 18, 24, 30).

Hint. Use a calculator to create the C strips and the S strips that you need for this
particular task. You can use Ex. 4.26 to find the exact DFT

F = (15,−3,−3,−3,−3,−3) + i
√

3 · (0, 3, 1, 0,−1,−3).

(e) Show that the cost for computing a d-digit approximation to a complex N -point
discrete Fourier transform is about 2N2d integer additions (if we neglect the cost of
fetching and filing the paper strips!).

. .
.

.. .......... .... .... .... ...••• EXERCISE 6.6 In this exercise you will analyze a recursive algorithm for com-
puting the discrete Fourier transform of a complex vector f := (f0, f1, . . . , fN−1) when
N = 2m for some m = 0, 1, . . . . We define

even(f0, f1, . . . , fN−1) := (f0, f2, f4, . . . , fN−2)

odd(f0, f1, . . . , fN−1) := (f1, f3, f5, . . . , fN−1)

two(f0, f1, . . . , fN−1) := 1
2 (f0, f1, . . . , fN−1, f0, f1, . . . , fN−1)

mod(f0, f1, . . . , fN−1) := (f0, ω f1, . . . , ω
N−1 fN−1), ω := e−2πi/N .
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We use these mappings to define rfft recursively by writing:

If N = 1, then

rfft(f) := f ;

else

rfft(f) := mod(two(rfft(odd(f)))) + two(rfft(even(f))).

(a) Write down the operator identity that underlies this computation of f∧ = rfft(f).

Hint. Examine Figs. 6.1, 6.2, 6.7, and observe that the macros two, mod are based
on the repeat and exponential modulation operators.

(b) How many times will rfft be “called” in the process of computing the DFT of a vector
with N = 2m components?

(c) How many simultaneously active copies of rfft must be used during the computation
of (b), i.e., how deep is the recursion?

. . .
..
.... .......... ...
. ... ....••• EXERCISE 6.7 Let f , even, odd, mod be as in Ex. 6.6, let

sum(f0, f1, . . . , fN−1) := 1
2 (f0 + fN/2, f1 + fN/2+1, . . . , fN/2−1 + fN−1),

let bit be the bit reversal permutation, and let & denote the associative operation of vector
concatenation, e.g., (1, 2) & (3, 4) := (1, 2, 3, 4).

(a) Let the operator b be defined recursively by writing:

If N = 1, then

b(f) := f ;

else

b(f) := b(even(f))& b(odd(f)).

Show that b(f) = bit(f).

(b) Let the operator pfft be defined recursively by writing:

If N = 1, then

pfft(f) := f ;

else

pfft(f) := pfft(sum(f)) & pfft(sum(mod(f))).

Show that f∧ = bit(pfft(f)).

Hint. Examine Figs. 6.4, 6.5, 6.7, and observe that the macros sum, mod are based
on the discrete summation and exponential modulation operators.



352 The fast Fourier transform

.. .

.

... .

........ .... .... ..... ...••• EXERCISE 6.8 Let f := (f0, f1, . . . , f2M−1) be a real vector with N := 2M com-
ponents, M = 1, 2, . . . , and let g := g0 + ig1 where

g0 := (f0, f2, f4, . . . , f2M−2), g1 := (f1, f3, f5, . . . , f2M−1).

(a) Using the projection operators Ph, Pa express g∧
0 , g∧

1 in terms of g∧.

Hint. Use Ex. 5.11(b).

(b) Using the operators R2, E−1 (as in Fig. 6.7) express f∧ in terms of g∧
0 , g∧

1 .

(c) Combine the expressions of (a), (b) and thereby express f∧ in terms of g∧.

(d) Using (c), show that it is possible to compute the DFT of a real vector having 2M
components with only slightly more effort than that required to compute the DFT of
a complex vector having M components.

Note. This procedure allows us to compute the DFT of a real N -vector in half the time
required to compute the DFT of a complex N -vector when N = 2m, m = 1, 2, . . . (and
when we use an FFT to generate the DFTs.)

. . ..... .......... .... ... ...... ...••• EXERCISE 6.9 In this exercise you will learn one way to compute the discrete
Fourier transform of a large vector f that must be split into segments for processing. We
again use & to denote the associative operation of vector concatenation, from Ex. 6.7,
and we use various operators from Appendix 4.

(a) Let N = 2, 4, 6, . . . , let f0, f1 be N -vectors, let f := f0 & f1 (so that f has 2N
components), and let e1 be the N -vector with e1[n] := e−2πin/2N , n = 0, 1, . . . , N−1.
Show that we can find the 2N component Fourier transform F := f∧ by computing
in turn the N -vectors

g0 := F{(Ξ2f0) & (Ξ2f1)}, g1 := Me1F{(Ξ2T1f0) & (Ξ2T1f1)},
F0 := 1

2{g0 + g1}, F1 := 1
2{g0 − g1},

and taking F = F0 &F1.

Hint. Suitably use Z 2, T−1 to obtain f from

(Ξ2f0) & (Ξ2f1) = (f [0], f [2], f [4], . . . , f [2N − 2]),

(Ξ2T1f0) & (Ξ2T1f1) = (f [1], f [3], f [5], . . . , f [2N − 1]),

apply the Fourier transform operator, and simplify the result.

(b) Let N = 4, 8, 12, . . . , let f0, f1, f2, f3 be N -vectors, let f := f0 & f1 & f2 & f3
(so that f has 4N -components), and let e0, e1, e2, e3 be the N -vectors with
ek[n] := e−2πikn/4N , n = 0, 1, . . . , N − 1. Show that we can find the 4N -component
Fourier transform F := f∧ by computing in turn the N -vectors

g0 := F{Ξ4f0) & (Ξ4f1) & (Ξ4f2) & (Ξ4f3)},
g1 := Me1F{Ξ4T1f0) & (Ξ4T1f1) & (Ξ4T1f2) & (Ξ4T1f3)},
g2 := Me2F{Ξ4T2f0) & (Ξ4T2f1) & (Ξ4T2f2) & (Ξ4T2f3)},
g3 := Me3F{Ξ4T3f0) & (Ξ4T3f1) & (Ξ4T3f2) & (Ξ4T3f3)},
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F0 := 1
4{g0 + g1 + g2 + g3}, F1 := 1

4{g0 − ig1 − g2 + ig3},
F2 := 1

4{g0 − g1 + g2 − g3}, F3 := 1
4{g0 + ig1 − g2 − ig3},

and taking F = F0 &F1 &F2 &F3.

Note. After writing the last 4 equations in the compact form

Fk =
1
4

3∑
n=0

e−2πikn/4gn,

you should be able to figure out a corresponding algorithm for computing the
(mN)-component Fourier transform F := f∧ of f := f0 & f1 & · · · & fm−1, when
f0, f1, . . . , fm−1 are N -vectors and m = 2, 3, . . . is a divisor of N .

.
..

..

..

.. ......... ....

. .. ....••• EXERCISE 6.10 In this exercise you will use the DFT calculus to show that there
is a fast algorithm for computing the discrete Fourier transform of an N -vector f when N
is highly composite but not necessarily a power of 2.

(a) Let N = MP where M,P = 2, 3, . . . , let f := (f0, f1, . . . , fN−1), and let

g0 := ΞP f , g1 := ΞP T1f , . . . , gP−1 := ΞP TP−1f

where ΞP is the decimation operator and Tm is the translation operator. Explain
why

f = ZP g0 + T−1ZP g1 + · · · + T−P+1ZP gP−1,

and then use this identity to show that

P f∧ = RP g∧
0 + E−1RP g∧

1 + · · · + E−P+1RP g∧
P−1.

Here ZP , RP , Em are the zero packing, repeat, and exponential modulation opera-
tors.

(b) Within the context of (a), show that we can compute P f∧ by computing
g∧
0 ,g

∧
1 , . . . ,g

∧
P−1 and then expending (P − 1)N complex multiplications and a like

number of complex additions to combine these vectors.

(c) Let N = P1P2 · · ·Pm where Pµ = 2, 3, . . . for each µ = 1, 2, . . . ,m and m = 2, 3, . . . .
Using (b), show that we can compute the discrete Fourier transform of an N -vector
f by expending approximately (P1 +P2 + · · · +Pm)N complex multiplications and a
like number of complex additions.

(d) Let N = P1P2 · · ·Pm as in (c). Show that

P1 + P2 + · · · + Pm ≥ mN1/m ≥ (1.8841. . . ) · log2N.

In this way you show that the algorithm of (b)–(c) requires at least 1.88N log2N
complex operations.

Hint. Minimize x1 + x2 + · · · + xm subject to the constraints x1 > 0, x2 > 0, . . . ,
xm > 0, x1x2 · · ·xm = N , and then minimize µN1/µ/ log2N , µ > 0.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 6.11 Let rm be the bit reversal map for the integers 0, 1, . . . , N − 1
when N := 2m, i.e., rm[(bmbm−1 · · · b1)2] := (b1b2 · · · bm)2 where bµ = 0, 1 for each
µ = 1, 2, . . . ,m.

(a) For how many indices n = 0, 1, . . . , 2m − 1 is rm[n] = n?

(b) How many swaps f [n] ↔ f
[
r[n]

]
must be performed when we apply the bit reversal

permutation BN to an N -vector f?

. .
..

.. .

........ .... .... ..... ...••• EXERCISE 6.12 Suppose that you wish to apply the bit reversal permutation
to the complex N -vector f when N := 2m, i.e., overwrite f [0], f [1], . . . , f [N − 1] with
f
[
rm[0]

]
, f

[
rm[1]

]
, . . . , f

[
rm[N − 1]

]
. Here rm is the bit reversal map from Ex. 6.11.

(a) Show that the naive bit reversal permutation Algorithm 6.2 requires approximately:

3N log2N integer multiplies, 2N log2N integer additions, and 2N array read/writes.

(b) Show that the Bracewell–Buneman Algorithm 6.4 requires approximately:

N integer multiplies, N integer additions, and 2.5N array read/writes

after the bit reversed indices have been precomputed and stored.

. .
..

.. . .

......... ... .. .... ....••• EXERCISE 6.13 Let p0, p1, . . . , pN−1 be some rearrangement of the indices
0, 1, . . . , N − 1, and let the N ×N permutation matrix P be defined by

P(f [0], f [1], . . . , f [N − 1])T := (f [p0], f [p1], . . . , f [pN−1])
T.

(a) What are the elements of P?

(b) Show that PTP = PPT = I.

(c) What must be true of p0, p1, . . . , pN−1 if P2 = I?

. . .
..

..

...... ...... .. .... ...••• EXERCISE 6.14 Let F16 have the sparse matrix factorization (12) with N = 24.

(a) Write down each nonzero element (either a 1 or some power of ω := e−2πi/16) of the
five matrix factors.

(b) Write down each nonzero element of the five matrix factors that result when we
simplify

F16 = FT
16 = 16−1{Q16Q

(2)
8 Q(4)

4 Q(8)
2 B16}T.

(c) Show that when we simplify

F16 = 16−1F
−1
16 =

{
Q16Q

(2)
8 Q(4)

4 Q(8)
2 B16

}−1

we obtain the factorization of (b).

Hint. Observe that Q−1
2M = 1

2 Q
T
2M .
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.
.
.. ..
..
.. ........ ... ..... ....••• EXERCISE 6.15 In this exercise you will learn how Mason flow diagrams are used
to represent FFT algorithms. We use the flow diagram

............................................................... ......

........
..........

........
.......

..........
.........

.........
..........

...........
......

•

• •x0

x1

y0a
b

for a scalar computation of the form y0 := ax0 + bx1. The values of x0, x1 are taken from
the input nodes at the feet of the arrows, scaled by the complex numbers a, b written near
the heads of the arrows, and added to produce the output y0. To avoid unnecessary clutter
we sometimes delete a factor of 1, e.g., we use the diagram

............................................................... ........

.......
..........

..........
.........

.......
........

.......
..........

..........
......

............................................................... ........

................................................................................. .....
.

•

• •

•

x0

x1

y0

y1

b0

b1

for the butterfly relations y0 := x0 + b0x1, y1 := x0 + b1x1.

(a) Convince yourself that the FFT corresponding to the factorization

F4 =
1
4




1 0 1 0
0 1 0 ω
1 0 −1 0
0 1 0 −ω






1 1 0 0
1 −1 0 0
0 0 1 1
0 0 1 −1






1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 , ω = e−2πi/4

can be represented by the following Mason flow diagram.

......................................................... ....... ......................................................... ....... ....................................................... ....... ....................................................... .......

.......................................................... ...... ......................... ............................. ....... ........................................................ .......

......................................................... ....... ......................... ............................... ....... ........................................................ .....

......................................................... ....... .......................................................... ....... .......................................................... ...... ....................................................... .....

........
........

.........
........

.......
........

........
.........

........
...........
......................................................................................... .....

..

........
.......

........
........

........
........

.......
.........

.......
.........
............................................................................................. .....
..

.......
........

........
.......

.......
........

.......
.........

........
.........
......................................................................................... .....
..

......
......
......
.....
.....
.....
......
.....
.....
.....
....
......
......
.....
.....
.....
...
.....
.....
.....
....
.......
........

.....
.....
.....
.....
...
.....
......
.....
.....
.....
....
......
......
......
.....
.....
.....
.....
.....
.....
.....
......
............................................................................................................................ ....
...

...................................................................................................................... ....
..

• • • • •

• • • • •

• • • • •

• • • • •f [0]

f [1]

f [2]

f [3]

F [0]

F [1]

F [2]

F [3]

−1
ω

−1

−1

−ω 1/4

1/4

1/4

1/4

Apply

B4

Apply
Q

(2)
2

Apply

Q4

Scale

(b) Construct the Mason flow diagram associated with the factorization

F8 = 8−1Q8Q
(2)
4 Q(4)

2 B8.

(c) Construct the Mason flow diagram associated with the factorization

F8 = 8−1B8(Q
T
2 )(4)(QT

4 )(2)QT
8 .
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 6.16 Let N = 2m for some m = 1, 2, . . . . A tree with 1 vector of
length N , 2 of length N/2, 4 of length N/4, . . . is produced when we use the Fourier
transform calculus to create a fast algorithm for computing the DFT of an N -component
vector, see Figs. 6.3 and 6.6. In this exercise you will show that these trees correspond
to factorizations of FN that provide structures for storing the intermediate results of the
computations.

(a) Let N = 2M . Use the decimation-in-time identity

f = Z 2Ξ2f + T−1Z 2Ξ2T1f

i.e., (f0, f1, . . . , fN−1) = (f0, 0, f2, 0, . . . , fN−2, 0) + (0, f1, 0, f3, . . . , 0, fN−1) to de-
rive the zipper identity (11) which leads to the factorization (12).

(b) Let N = 2M . Use the decimation-in-frequency identity

f∧ = Z 2Ξ2f
∧ + T−1Z 2Ξ2T1f

∧ = Z 2
{ 1

2ΣM f
}∧

+ T−1Z 2
{ 1

2ΣME−1f
}∧

to derive the zipper identity

F2M = 1
2ST

2MF
(2)
M QT

2M ,

which leads to the factorization (15).

. .
..

.. ..

......... ... .. .... ....••• EXERCISE 6.17 In this exercise you will establish the zipper identity (22) that
gives the factorization (25) for Bracewell’s FHT.

(a) Let XM be given by (24) and let

RM :=

[
cas

{
2πk(2�+ 1)

2M

}] M−1

k,�=0
.

Show that (22) follows from the identity
√
M XMHM = RM .

(b) Prove the matrix identity of (a).

Hint. Use cas(α+ β) = cos(α)cas(β) + sin(α)cas(−β) to establish the equality

cos
{
πk

M

}
cas

{2πk�
M

}
+ sin

{
πk

M

}
cas

{
2π(M − k)�

M

}
= cas

{
2πk(2�+ 1)

2M

}

of the elements in row k = 0, 1, . . . ,M − 1 and column � = 0, 1, . . . ,M − 1.

.. . .

...

.. .
....... .....

..

.. .... ...••• EXERCISE 6.18 Buneman’s precomputation of sin(2πk/2m), k = 0, 1, . . . , 2m−2

makes use of the half secants h3, h4, . . . from (18). Verify that hµ can be generated by
means of the recursion (17).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 6.19 Suppose that you wish to compute and store

ωk := cos
(2πk
N

)
− i sin

(2πk
N

)
, k = 0, 1, . . . , N − 1

for use in an FFT code. Approximately how many real additions and multiplications are
required for each of the following?

(a) Use direct calls of sin, cos for each ωk. Assume that sin and cos can be computed
to 8-place, 16-place accuracy by using 5, 8 real additions and a like number of real
multiplications.

(b) Use Buneman’s Algorithm 6.7 to generate the real and imaginary parts of the ωk’s.

(c) Use direct calls of sin, cos to generate

ω2µ = cos

(
2π2µ

N

)
− i sin

(
2π2µ

N

)
, µ = 0, 1, . . . ,m− 1

and then compute

[
ω2
ω3

]
= ω2 ·

[
1
ω1

]
,



ω4
ω5
ω6
ω7


 = ω4 ·




1
ω1
ω2
ω3


 , . . . .

(d) Use direct calls of sin, cos to generate

ω1 = cos
(2π
N

)
− i sin

(2π
N

)
and then compute

ω2 = ω1 · ω1, ω3 = ω1 · ω2, ω4 = ω1 · ω3, . . . .

Note. If we work on a computer with unit roundoff ε, the size of the errors associated
with (a)–(d) will be of O(ε), O(mε), O(mε), O(Nε).

. .... ..... ........... .. ......••• EXERCISE 6.20 Let f , g be N component vectors with N = 2m for some
m = 0, 1, 2, . . . .

(a) Show that the convolution product of f ,g is given by

f ∗ g = N2RNFN{(FN f) ◦ (FNg)}
where RN ,FN is the reflection operator, FN is the discrete Fourier transform oper-
ator, and the vector product ◦ is taken componentwise.

(b) Explain why (Pf) ◦ (Pg) = P(f ◦ g) when P is any permutation operator.
(c) Use (a) and (b) with (12) and (15) to show that

f ∗ g = N−1RNQN{(QT
N f) ◦ (QT

Ng)}
where

QN := QNQ(2)
N/2Q

(4)
N/4 · · · Q(N/2)

2 .

This gives us a fast algorithm for computing f ∗ g that does not make use of the bit
reversal permutation.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 6.21 In this exercise you will study Bluestein’s clever scheme for find-
ing the DFT of a vector f with N components, N = 2, 3, 4, . . . , by using an FFT that
works with vectors having 2m components, m = 1, 2, . . . .

(a) Show that the components of the DFT are given by Bluestein’s identity

F [k] = N−1e−πik2/N
N−1∑
n=0

{f [n]e−πin2/N}eπi(k−n)2/N .

(b) Let M = 2m, m = 1, 2, . . . be chosen so that 2N − 1 ≤ M < 4N − 2, and let

u[n] :=

{
f [n]e−πin2/N if n = 0, 1, . . . , N − 1

0 if n = N,N + 1, . . . ,M − 1

v[n] :=



eπin2/N if n = 0, 1, . . . , N − 1

0 if n = N,N + 1, . . . ,M −N − 1

eπi(M−n)2/N if n = M −N + 1,M −N + 2, . . . Y,M − 1

be defined on PM . Verify that the sums from (a) can be expressed in terms of the
convolution product u ∗ v by writing

N−1∑
n=0

{f [n]e−πin2/N}eπi(k−n)2/N = (u ∗ v)[k], k = 0, 1, . . . , N − 1.

Hint. The choice M ≥ 2N − 1 was made to avoid the wraparound effect illustrated
in Fig. 2.8. The indices k = N,N + 1, . . . ,M − 1 are not used with this identity.

(c) Using (a), (b), and the identity of Ex. 6.20(a), show that we can compute the DFT
of f by expending approximately 6N log2N complex operations when N is large.
Bluestein’s scheme gives us an FFT in cases where N is not a power of 2!

Hint. Use the operation count (M/2) log2M for applying FM and neglect N in
comparison to N log2N .

. ..
..

.

.......... . ... .. ..... ...••• EXERCISE 6.22 We must compute the two complex products

(c− is) · f [κ · 4M + 2M + λ], (c+ is) · f(κ · 4M + 4M − λ]

and 4 complex additions in the innermost loop of the radix 2 FFT given in Algorithm 6.8,
so the whole algorithm uses approximately

N log2N · {2 real multiplications + 3 real additions}.

In this exercise you will show that this operation count can be reduced by 18% when
N = 2m is large.

(a) Let x, y be real 8-vectors. Show how to evaluate the real and imaginary parts of the
components of the complex 8-vector 8F8(x + iy) by using 4 real multiplications and
52 real additions.
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Hint. Define the real 8-vectors r, s, t, u, v, w by

r + is := Q(4)
2 B8(x + iy), t + iu := Q(2)

4 (r + is), v + iw := Q8(t + iu),

and note that we do not need to multiply when we compute

i(a+ ib) = −b+ ia, (1 + i)(a+ ib) = (a− b) + i(a+ b).

(b) Show that the application of the diagonal matrix of twiddle factors from (34) can be
done by using 28 real multiplications and 14 real additions (when P = 8).

(c) Show that the use of (a) and (b) within the inner loop of Algorithm 6.10 makes it
possible for us to generate the DFT of a complex vector having N = 8n components
by expending approximately

N log2N · {1.33 real multiplications + 2.75 real additions}.

Note. The cost factors in { } increase only slightly when P1 = · · · = Pm−1 = 8,
Pm = 2 or 4, and m is “large.”

. .. .....
.. ...
...... .. .... ....••• EXERCISE 6.23 Let P,M be positive integers, let N = MP , and let HN be the
N ×N Hartley transform matrix.

(a) Derive the zipper identity HMP = P−1/2TM,P H(P )
M SM,P where

TM,P :=




X0,0 X0,1 · · · X0,P−1
X1,0 X1,1 · · · X1,P−1

...
XP−1,0 XP−1,1 · · · XP−1,P−1




is an MP ×MP matrix formed from the M ×M blocks

Xk,� :=



c�kM

c�kM+�

c�kM+2�

. . .
c�kM+(M−1)�


 −



s�kM

s�kM+�

s�kM+2�

. .
.

s�kM+(M−1)�




using

cν := cos
( 2πν
MP

)
, sν := sin

( 2πν
MP

)
, ν = 0, 1, . . . ,MP,

and SM,P is the shuffle permutation (31).
(b) Use (a) with P = Pm, P = Pm−1, . . . , P = P1 in turn to find a sparse factorization

of HP1P2···Pm
.

Hint. Examine (32) before you begin.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 6.24 In this (historical) exercise you will learn how Gauss derived the
FFT using interpolation by trigonometric polynomials.

(a) Let the complex numbers y0, y1, . . . , yN−1 and the corresponding uniformly spaced
real abscissas tn := t0 + n · T/N , n = 0, 1, . . . , N − 1, be given. Here −∞ < t0 < ∞,
T > 0, and N = 1, 2, . . . . Show that the T -periodic trigonometric polynomial

y(t) :=
N−1∑
k=0

ck e
2πikt/T

interpolates the data, i.e., y(tn) = yn, n = 0, 1, . . . , N − 1, when

ck := e−2πikt0/T · Yk with Yk :=
1
N

N−1∑
n=0

e−2πikn/Nyn, k = 0, 1, . . . , N − 1.

Thus the interpolation problem can be solved by computing the DFT of
y0, y1, . . . , yN−1 and then using a suitable exponential modulation to account for
the choice of the initial abscissa t0 and the period T . Approximately N2 complex
operations are required to solve the problem in this way.

(b) Suppose now that N is composite with the factorization N = MP for some
M = 2, 3, . . . and P = 2, 3, . . . . Gauss observed that the coefficients c0, c1, . . . , cN−1
of (a) can be found by solving P +M smaller interpolation problems as follows.

(i) For each r = 0, 1, . . . , P −1 find the M coefficients of the T -periodic trigonometric
polynomial

yr(t) :=
M−1∑
µ=0

c
(r)
µ e2πiµt/T ,

which passes through the M points

(tr, yr), (tr+P , yr+P ), (tr+2P , yr+2P ), . . . , (tr+(M−1)P , yr+(M−1)P ).

(The motivation for solving such interpolation problems with decimated data
sets is developed in Ex. 1.19.)

(ii) For each µ = 0, 1, . . . ,M − 1 find the p coefficients of the T/M -periodic trigono-
metric polynomial

Cµ(t) :=
P−1∑
λ=0

Cµλ e
2πiλMt/T ,

which takes the values c
(0)
µ , c

(1)
µ , . . . , c

(P−1)
µ at the corresponding points

t0, t1, . . . , tP−1 (and, in view of the periodicity, at the corresponding points
tmP , tmP+1, . . . , tmP+P−1 as well, m = 1, 2, . . . ,M − 1).
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(iii) For each µ = 0, 1, . . . ,M − 1 and each λ = 0, 1, . . . , P − 1 set

cµ+λM := Cµλ,

and with c0, c1, . . . , cN−1 thus defined, take

y(t) =
N−1∑
k=0

ck e
2πikt/T

as the solution to the interpolation problem of (a). Show that this procedure
produces the ck’s of (a). The analysis of Ex. 1.19 is something that most of us
would do in the process of solving the particular interpolation problem associated
with the orbit of Pallas; the above generalization is the work of a genius!

Hint. Use (i), (ii), (iii) in turn to show that

yr+mP =
M−1∑
µ=0

c
(r)
µ e2πiµtr+mP /T =

M−1∑
µ=0

Cµ(tr+mP ) e2πiµtr+mP /T

=
M−1∑
µ=0

P−1∑
λ=0

Cµλ e
2πi(µ+λM)tr+mP /T =

N−1∑
k=0

ck e
2πiktr+mP /T

for each r = 0, 1, . . . , P − 1 and for each m = 0, 1, . . . ,M − 1.

(c) Let N = P1P2 · · ·Pm where Pµ = 2, 3, . . . for each µ = 1, 2, . . . ,m. Show
that the recursive use of the Gauss procedure allows us to solve the N -point in-
terpolation problem (and thus compute an N -point DFT) using approximately
N · (P1 + P2 + · · · + Pm) complex operations.
Note. With tongue in cheek, Gauss observed that “Experience will teach the user that
this method will greatly lessen the tedium of mechanical calculations.”

Hint: When N = P1M1 the Gauss procedure reduces the cost from N2 to
P1M

2
1 +M1P

2
1 operations. When M1 = P2M2 each of the length M1 interpola-

tion problems can be solved by using the Gauss procedure, thereby reducing the cost
to M1P

2
1 + P1[M2P

2
2 + P2M

2
2 ] operations.

(d) Specialize (a)–(b) to the case where t0 = 0 and N = 2M , and thereby show that
Gauss’s procedure produces the matrix factorization

F2M =
1
2

[
IM IM

IM −IM

][
IM

ΛM

][
FM

FM

]
S2M

where S2M is the shuffle permutation (3) and

ΛM :=




1
ω

ω2

. . .
ωM−1


 , ω := e−2πi/2M

is the diagonal matrix of twiddle factors. [The familiar zipper identity (11) is obtained
by multiplying the first pair of matrices from the Gauss factorization.]
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 6.25 In this (historical) exercise you will learn how Cooley and Tukey
derived the FFT by using nested summation.

(a) Let N = 23, let ω := e−2πi/8, and let each index n, k = 0, 1, . . . , 7 be expressed in
base 2 form, i.e.,

n = (ν3ν2ν1)2 := ν3 · 22 + ν2 · 2 + ν1, k = (κ3κ2κ1)2 := κ3 · 22 + κ2 · 2 + κ1

with each bit νj , κj taking the values 0,1. Corresponding multiindices are used to
specify the components of an N -vector f and its DFT F, i.e., we write

f [ν3, ν2, ν1] := f [n], F [κ3, κ2, κ1] := F [k]

when n, k have the above base 2 representations. Show that

F [κ3, κ2, κ1] =
1
8

1∑
ν1=0

1∑
ν2=0

1∑
ν3=0

f [ν3, ν2, ν1]ω
(4ν3+2ν2+ν1)(4κ3+2κ2+κ1)

=
1
8

1∑
ν1=0

{ 1∑
ν2=0

{ 1∑
ν3=0

f [ν3, ν2, ν1]ω
4ν3κ1

}
ω2ν2(2κ2+κ1)

}
ων1(4κ3+2κ2+κ1).

Hint:
7∑

n=0
=

1∑
ν1=0

1∑
ν2=0

1∑
ν3=0

(b) Using (a), verify that the DFT of an 8-vector can be obtained by performing the
following computations.

f1[κ1, ν2, ν1] :=
1∑

ν3=0

f [ν3, ν2, ν1]ω
4ν3κ1 , ν1, ν2, κ1 = 0, 1

f2[κ1, κ2, ν1] :=
1∑

ν2=0

f1[κ1, ν2, ν1]ω
2ν2(2κ2+κ1), ν1, κ1, κ2 = 0, 1

f3[κ1, κ2, κ3] :=
1∑

ν1=0

f2[κ1, κ2, ν1]ω
ν1(4κ3+2κ2+κ1), κ1, κ2, κ3 = 0, 1

f4[κ3, κ2, κ1] := f3[κ1, κ2, κ3], κ1, κ2, κ3 = 0, 1

F [κ3, κ2, κ1] := 8−1f4[κ3, κ2, κ1], κ1, κ2, κ3 = 0, 1.

(c) Show that approximately 8 complex operations must be expended to generate each
of the arrays f1, f2, f3 in (b).

Note. The Cooley–Tukey derivation of (a)–(c) extends at once to the case where N = 2m,
m = 1, 2, . . . . When N = P1P2. . . Pm with Pµ = 2, 3, 4, . . . for each µ = 1, 2, . . . ,m we
write

n = ν1 + P1ν2 + P1P2ν3 + · · · + (P1P2 · · ·Pm−1)νn

k = κm + Pmκm−1 + PmPm−1κm−2 + · · · + (PmPm−1 · · ·P2)κ1
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where νj , κj = 0, 1, . . . , Pj − 1, j = 1, 2, . . . ,m and use the multiindex notation

f [ν1, ν2, . . . , νm] := f [n], F [κ1, κ2, . . . , κm] := F [k]

to derive the mixed radix Cooley–Tukey algorithm.

.
.
.. ..
..
.. ...
...... .. .... ....••• EXERCISE 6.26 In this exercise you will use the definition (48) to deduce three
properties of the Kronecker product.

(a) Let A,B,C be K × L, M ×N , P ×Q matrices. Use (48) to show that

{A⊗(B ⊗ C)}
[
(p+mP ) + k(MP ), (q + nQ) + �(NQ)

]
=A[k, �] · B[m,n] · C[p, q]

={(A ⊗ B) ⊗ C}
[
p+ (m+ kM)P, q + (n+ �N)Q

]
when k = 0, 1, . . . ,K−1, � = 0, 1, . . . , L−1, m = 0, 1, . . . ,M −1, n = 0, 1, . . . , N −1,
p = 0, 1, . . . , P − 1, q = 0, 1, . . . , Q− 1 and thereby obtain the associative rule (55).

(b) Let A,B,C,D be K × L, M ×N , L× P , N ×Q matrices (so that AC and BD are
defined). Use (48) to verify that

(A ⊗ B)[m+ kM,n+ �N ] = A[k, �] · B[m,n]

(C ⊗ D)[n+ �N, q + pQ] = C[�, p] · D[n, q]

and thereby obtain the product rule (59).

(c) Establish the transpose rule (60).

Note. Such subscript-based arguments are convincing, but not memorable!

. . .
....

. ... ...
....... ...

. .. ....••• EXERCISE 6.27 Let A,B be square matrices with inverses A−1,B−1. Show that
the Kronecker product A ⊗ B has the inverse (61).

Hint. Make use of the product rule (59) proved in Ex. 6.26.

. .

.

. ... .......... .... .......••• EXERCISE 6.28 Let A,B be matrices with the eigenvectors a,b and the corre-
sponding eigenvalues α, β. Show that a⊗b is an eigenvector of A⊗B with the eigenvalue
αβ.

.
.
. . ..
.
. ......... ... .......••• EXERCISE 6.29 Let e0 := (1, 0)T, e1 := (0, 1)T.

(a) Form the 8 Kronecker products eβ3 ⊗ eβ2 ⊗ eβ1 with βµ = 0, 1 for µ = 1, 2, 3.

(b) Give a simple description of eβm
⊗eβm−1⊗ · · · ⊗eβ1 when βµ = 0, 1 for µ = 1, 2, . . . ,m,

and thereby prove that these Kronecker products form a basis for C
N when N = 2m.

Hint. Let n := (βmβm−1 · · ·β1)2.
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(c) For P = 2, 3, . . . we create the P -vectors

eP,0 := (1, 0, 0, . . . , 0)T, eP,1 := (0, 1, 0, . . . , 0)T, . . . , eP,P−1 := (0, 0, . . . , 0, 1)T.

Let N = P1P2 · · ·Pm with Pµ = 2, 3, . . . for each µ = 1, 2, . . . ,m. Show that the
Kronecker products

ePm,pm
⊗ ePm−1,pm−1 ⊗ · · · ⊗ eP1,p1 , pµ = 0, 1, . . . , Pµ − 1, µ = 1, 2, . . . ,m,

form a basis for C
N .

. ....
. ......... ... ..... ... ...••• EXERCISE 6.30 An N ×N matrix P is said to be a permutation matrix if every
row and every column of P has precisely one 1 with the other N − 1 elements being 0.

(a) Show that the Kronecker product P := P1 ⊗ P2 ⊗ · · · ⊗ Pm of permutation matrices
P1,P2, . . . ,Pm is also a permutation matrix.

(b) Find a simple expression for the inverse of the matrix P from (a).

Hint. Use Ex. 6.13(b) and (61).

. .
..

.. .

........ .... .... .... ...••• EXERCISE 6.31 Let P,Q,R be positive integers. In this exercise you will show
that

SQR,P SRP,QSPQ,R = IPQR

and then use this identity to obtain a more general relation of the same form.

(a) Use (63) [and (55)] to verify that

SQR,P SRP,QSPQ,R(p ⊗ q ⊗ r) = p ⊗ q ⊗ r

when p,q, r are column vectors with P,Q,R components, and thereby prove the
identity.

(b) Use (41) to show that when we apply SQR,P SRP,QSPQ,R to a PQR component
column vector f , the position of the component f [r+ qR+ pRQ] is unchanged. This
gives a second proof of the identity.

(c) Rearrange the identity and thereby show that

SN/P1,P1
SN/P2,P2

= SN/P1P2,P1P2
.

Here N := P1P2 · · ·Pm where P1, P2, . . . , Pm are positive integers and m ≥ 2.

(d) Use (c) to show that

SN/P1,P1
SN/P2,P2

· · ·SN/Pm,Pm
= IP1P2···Pm

,

and thereby generalize the identity of (a)–(b).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 6.32 Verify that each of the following matrices have the same effect
on the vector a⊗b⊗c⊗d (when a, b, c, d are 2-component column vectors), and thereby
obtain 4 factorizations of the bit reversal permutation B16.

(a) (I8 ⊗ S1,2)(I4 ⊗ S2,2)(I2 ⊗ S4,2)(I1 ⊗ S8,2)

(b) (I1 ⊗ S2,8)(I2 ⊗ S2,4)(I4 ⊗ S2,2)(I8 ⊗ S2,1)

(c) (S8,2 ⊗ I1)(S4,2 ⊗ I2)(S2,2 ⊗ I4)(S1,2 ⊗ I8)

(d) (S2,1 ⊗ I8)(S2,2 ⊗ I4)(S2,4 ⊗ I2)(S2,8 ⊗ I1)

Hint. Use (59) and (63), freely associating the factors of the Kronecker product to
facilitate the computation.

.
.
. . ..
.
. ......... ... .......••• EXERCISE 6.33 This exercise will introduce you to the remarkable two-loop FFTs
of Pease and Glassman.

(a) Show how to rearrange the Cooley–Tukey factorization

16F16 = Q16(I2 ⊗ Q8)(I4 ⊗ Q4)(I8 ⊗ Q2)B16

to obtain the factorization

16F16 ={(Q2 ⊗ I8)(∆16 ⊗ I1)S8,2}{(Q2 ⊗ I8)(∆8 ⊗ I2)S8,2}
{(Q2 ⊗ I8)(∆4 ⊗ I4)S8,2}{(Q2 ⊗ I8)(∆2 ⊗ I8)S8,2}B16.

The 2M × 2M matrix

∆2M := diag{1, 1, . . . , 1; 1, ω, ω2, . . . , ωM−1}, ω := e−2πi/2M

has been chosen so that

Q2M := (Q2 ⊗ Im)∆2M .

This factorization can be generalized to the case where N = 2m, m = 1, 2, . . . .

(b) Let M = N/2 and let K = 1, 2, . . . , 2m. When we analyze

g := (Q2 ⊗ IM )(∆K ⊗ IN/K)SM,2f

we find that gm and gm+M depend on two components of f . Sort out the details!

(c) Use (a) and (b) to develop a fast two-loop algorithm for evaluating the DFT of a
vector f with N = 2m components.

Note. The same matrices Q2 ⊗ IM , SM,2 appear at each stage of the computation;
only the scale factors in the second half of the diagonal matrix ∆K ⊗ IN/K change
from step to step. You could design a special-purpose computer that uses hardware
instead of software to do these mappings!
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 6.34 In this exercise you will develop the Stockham sparse factoriza-
tion of FP1P2···Pm

that uses parallel operations. An elegant FORTRAN code for the
resulting algorithm can be found in C. de Boor, The FFT as nested multiplication, with
a twist, SIAM J. Sci. Stat. Comp. 1(1980), 173–177.

(a) Show that

SP1,P2,P3,P4 := (IP3P4 ⊗ SP1,P2)(IP4 ⊗ SP1P2,P3)SP1P2P3,P4

has the alternative representation

SP1,P2,P3,P4 = (SP3,P4 ⊗ IP1P2)(SP2,P3P4 ⊗ IP1)SP1,P2P3P4 .

Hint. Apply both matrices to an arbitrary p1 ⊗ p2 ⊗ p3 ⊗ p4 where p1, p2, p3, p4
are column vectors with P1, P2, P3, P4 components.

(b) Derive the Stockham factorization

P1P2P3P4 · FP1P2P3P4 =(I1 ⊗ QP1P2P3,P4)(SP4,1 ⊗ IP1P2P3)

(IP4 ⊗ QP1P2,P3)(SP3,P4 ⊗ IP1P2)

(IP3P4 ⊗ QP1,P2)(SP2,P3P4 ⊗ IP1)

(IP2P3P4 ⊗ Q1,P1)(SP1,P2P3P4 ⊗ I1).

This factorization can be generalized to the case where N has m = 2, 3, . . . factors.

Hint. Begin with the Cooley–Tukey factorization (32), replace SP1,P2,P3,P4 with the
second representation from (a), and use the commutation identity (68).

(c) When x0,x1,x2,x3 are 3-component column vectors, it is easy to verify that

(S2,2 ⊗ I3)




x0
x1
x2
x3


 =




x0
x2
x1
x3


 ,

i.e., S2,2 shuffles the blocks x0,x1,x2,x3. Describe the action of the permutation
SP,Q ⊗ IR that appears in the factorization of (b).
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Generalized functions on R

7.1 The concept of a generalized function

Introduction

Let y(t) be the displacement at time t of a mass m that is attached to a spring
having the force constant k as shown in Fig. 7.1. We assume that the mass is at
rest in its equilibrium position [i.e., y(t) = 0] for all t ≤ 0. At time t = 0 we begin
to subject the mass to an impulsive driving force

fε(t) :=
{
p/ε if 0 < t < ε

0 otherwise.
(1)

When the duration ε > 0 is “small,” this force simulates the tap of a hammer that
transfers the momentum ∫ ε

0
fε(t) dt = p

to the mass and “rapidly” changes its velocity from y′(0) = 0 to y′(ε) ≈ p/m.

Figure 7.1. An undamped mass–spring system with the displace-
ment function y(t) and the forcing function f(t).

367
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You should have no trouble verifying that

yε(t) :=
p

mω2ε




0 if t ≤ 0
1 − cosωt if 0 ≤ t ≤ ε

sin(ωε) sin(ωt) − [1 − cos(ωε)] cos(ωt) if t ≥ ε

(2)

is a twice continuously differentiable function that satisfies the forced differential
equation

my′′(t) + k y(t) = fε(t) (3)

for the motion (except at the points t = 0, t = ε where y′′
ε is not defined), see

Ex. 7.1. Here
ω :=

√
k/m

so that sin(ωt), cos(ωt) are solutions of the unforced differential equation

my′′(t) + k y(t) = 0.

Now as ε → 0+, the response function (2) has the pointwise limit

y0(t) := lim
ε→0+

yε(t) =
p

mω

{
0 if t ≤ 0
sin(ωt) if t ≥ 0,

(4)

and it is natural to think of y0 as the response of the system to an impulse

f0(t) = lim
ε→0+

fε(t) (5)

of strength ∫ ∞

−∞
f0(t) dt = lim

ε→0+

∫ ∞

−∞
fε(t) dt = p (6)

that acts only at time t = 0 as illustrated in Fig. 7.2. The physical intuition is
certainly valid, and such arguments have been used by physicists and engineers
(e.g., Euler, Fourier, Maxwell, Heaviside, Dirac) for more than two centuries. And
for most of this time such arguments have been suspect! After all, the limit (5)
gives us a function f0 that vanishes everywhere, so how can the integral (6) have a
value p �= 0?

Such anomalies cannot be resolved within a context where function, integral,
and limit have the usual definitions from elementary calculus, but in what is now
regarded as one of the most stunning achievements of 20th-century mathematics,
Laurent Schwartz (building on the insights of Heaviside, Dirac, Temple, . . . ) de-
veloped a perfectly rigorous theory of generalized functions (or distributions) for
analyzing such phenomena. We will present an elementary introduction to the gen-
eralized functions that have Fourier transforms illustrated by the Venn diagram of
Fig. 1.33. (Such generalized functions correspond to the tempered distributions of
Schwartz.) As you master these ideas you will acquire certain computational skills
that are absolutely essential in modern science and engineering.
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Figure 7.2. Imagination of an impulsive driving function
f0 = limε→0+ fε that produces the response y0 = limε→0+ yε

to the mass–spring system of Fig. 7.1.

Functions and functionals

In Fourier analysis we often work with ordinary functions that map R to C. Such
a function f is properly defined when we have some rule for producing the complex
number f(x) that corresponds to an arbitrary x from the domain R. Common
examples include

f(x) := e−πx2
, f(x) := sincx, f(x) := e2πix.

We will now introduce certain functionals that map S to C. Here S is a linear space
of exceptionally well behaved ordinary complex-valued functions on R. (A precise
definition will be given in the next section.) Such a functional f is properly defined
when we have some rule for producing the complex number f{φ} that corresponds
to an arbitrary function φ from the domain S, see Fig. 7.3. Common examples
include

f{φ} :=
∫ ∞

−∞
e−πx2

φ(x) dx, f{φ} := φ(0), f{φ} :=
∞∑

n=−∞
φ(n).

We use braces { } to remind ourselves that the argument φ is a function instead
of a number.
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Figure 7.3. The mappings that correspond to a function and to
a functional.

We will often find it convenient to use the same name for a function and for
a closely related functional. For example, when we are given a suitably regular
function f on R we will define the corresponding fundamental functional

f{φ} :=
∫ ∞

−∞
f(x)φ(x) dx (7)

on S. The formula (7) shows us how to find the value of the functional f at the
argument φ by suitably processing the function f . The same formula allows us to
evaluate the function f at any argument x0 (where the function f is continuous) by
suitably processing the functional f . Indeed, for each n = 1, 2 , . . . we construct a
nonnegative function φn from S such that

φn(x) = 0 when |x− x0| > 1/n,∫ x0+1/n

x0−1/n

φn(x) dx = 1,

and we then use the integral mean value theorem from calculus to see that

f(x0) = lim
n→∞

∫ ∞

−∞
f(x)φn(x) dx = lim

n→∞ f{φn}, (8)

see Fig. 7.4 and Ex. 7.2. (A similar argument was used in the proof of the Weierstrass
theorem in Section 1.3.)

We routinely identify function with functional when we make measurements with
devices that report local averages. For example, suppose that we use a ther-
mometer to measure the temperature, f(x0), at the coordinate x0 within a certain
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Figure 7.4. Visualization of the analysis that leads to (8).

gas column. Since the bulb of the measuring device occupies some nonzero vol-
ume of space, the instrument cannot possibly determine the temperature at the
dimensionless “point” x0. At best, the thermometer gives some local average∫ ∞

−∞
f(x)φ(x) dx

with the function φ being determined by the position, size, shape, composition, . . . of
the bulb. Similar considerations apply when we use a photometer, magnetometer,
pressure gauge, . . . .

The class of fundamental functionals (7) is a large one, but there are many func-
tionals that do not have this form. The Dirac delta functional

δ{φ} := φ(0) (9)

is the most important. It is easy to show that there is no ordinary piecewise con-
tinuous function δ for which

δ{φ} =
∫ ∞

−∞
δ(x)φ(x) dx (10)

whenever φ is a function from S, see Ex. 7.3, but we will invent a generalized function
δ that corresponds to the functional (9). We then use (9) to assign meaning to the
“integral” on the right side of (10), i.e.,∫ ∞

−∞
δ(x)φ(x) dx := δ{φ} := φ(0).

You will often encounter a generalized function f and a deceptively familiar ex-
pression ∫ ∞

−∞
f(x)φ(x) dx
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as you study the remainder of this text. In each case there is a corresponding
well-defined functional f , and you can assign meaning to the “integral” by using

∫ ∞

−∞
f(x)φ(x) dx := f{φ}

instead of the definition of integral that you learned in a calculus or analysis class. At
first it may seem a bit confusing to associate a new meaning with an old expression,
but you will quickly discover that the use of this integral notation will minimize the
time that it takes to learn how to do analysis with generalized functions. You will
remember an analogous situation from calculus. The Leibnitz notation dy/dx for a
derivative is not an ordinary “quotient,” but it can be manipulated like one when
you use the chain rule or when you use substitution to evaluate integrals.

Schwartz functions

A complex-valued function φ on R is said to be a Schwartz function provided that

φ, φ′, φ′′, . . . are all defined and continuous on R, and

lim
x→±∞x

nφ(m)(x) = 0 for each m = 0, 1, 2, . . . and n = 0, 1, 2, . . . . (11)

(Here φ(0) := φ, φ(1) := φ′, φ(2) := φ′′, . . . .) The first condition forces φ and its
derivatives to be exceptionally smooth, and the second forces φ and its derivatives
to have exceptionally small tails at ±∞. Indeed, φ(m)(x) goes to 0 faster than 1/xn

goes to 0 as x → ±∞ in the sense that

lim
x→±∞

φ(m)(x)
1/xn

= 0, n = 1, 2, . . . .

We will let S denote the linear space of all such Schwartz functions.

Example Show that φ(x) := e−x2
is a Schwartz function.

Solution The function φ and its derivatives

φ′(x) = −2xe−x2
, φ′′(x) = (4x2 − 2)e−x2

, . . .

are continuous, and by using (3.28) we write

lim
x→±∞x

nφ(m)(x) = lim
x→±∞(−1)mxnHm(x)e−x2

= 0

for each m = 0, 1, 2, . . . and n = 0, 1, 2, . . . .
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Example Let a < b be given. Construct a Schwartz function φ such that

φ(x) > 0 if a < x < b and φ(x) = 0 for x ≤ a or x ≥ b.

Solution We define

v(x) :=
{

0 if x ≤ 0
e−1/x if x > 0,

(12)

and after observing that

lim
x→0+

v(x) = lim
x→0+

e−1/x = lim
u→+∞e

−u = 0,

lim
x→0+

v′(x) = lim
x→0+

1
x2 e

−1/x = lim
u→+∞u

2e−u = 0,

lim
x→0+

v′′(x) = lim
x→0+

(
1
x4 − 2

x3

)
e−1/x = lim

u→+∞(u4 − 2u3)e−u = 0,

...

we conclude that v, v′, v′′, . . . are well defined and continuous on R. This being the
case,

φ(x) := v(x− a)v(b− x) =
{
e−(b−a)/{(x−a)(b−x)} if a < x < b

0 otherwise
(13)

and its derivatives are defined and continuous on R. By construction, φ(x) = 0
when x ≤ a or x ≥ b, so (11) also holds.

Example Let a < b < c < d be given. Construct a Schwartz function φ such that

φ(x) = 0 for x ≤ a, φ(x) = 1 for b ≤ x ≤ c, φ(x) = 0 for x ≥ d,

φ′(x) > 0 for a < x < b, φ′(x) < 0 for c < x < d.
(14)

Such a mesa function is shown in Fig. 7.5.

Figure 7.5. The mesa function (15) with the properties (14).
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Solution We construct a scaled antiderivative

g(x; a, b) :=

∫ x

−∞ v(u− a)v(b− u) du∫ b

a
v(u− a)v(b− u) du

for the Schwartz function from the preceding example with

g(x; a, b) = 0 for x ≤ a, g(x; a, b) = 1 for x ≥ b,

g′(x; a, b) > 0 for a < x < b.

The product
φ(x) := g(x; a, b)g(−x; −d,−c) (15)

[analogous to the product h(x − a)h(d − x) of Heaviside functions] is a Schwartz
function that has all of the properties (14).

When φ ∈ S and m = 0, 1, 2, . . . we can use (11) to see that

Bm := max−∞<x<∞ |φ(m)(x)|, Cm := max−∞<x<∞ |x2φ(m)(x)|

are well defined and finite. We bound φ(m) by writing

|φ(m)(x)| ≤
{
Bm if x2Bm ≤ Cm

Cm/x
2 otherwise,

and thereby show that ∫ ∞

−∞
|φ(m)(x)| dx < ∞.

Since the smooth function φ has small regular tails, we can use the analysis from
Section 1.5 to see that the Fourier transform

φ∧(s) :=
∫ ∞

−∞
φ(x)e−2πisx dx

is well defined, continuous, and absolutely integrable on R, and that Fourier’s rep-
resentation

φ(x) =
∫ ∞

−∞
φ∧(s)e2πisx ds

is valid at every point. Moreover, a Schwartz function satisfies all of the “extra”
hypotheses we introduced in Chapter 3 when we described the derivative rule, the
power scaling rule, etc., see Exs 3.41 and 3.44. We can freely use all of the rules
from the Fourier transform calculus when we work with Schwartz functions!
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The class S has a number of closure properties that we will use from time to time.
It is fairly easy to show that if φ(x) is a Schwartz function, then so is

c φ(x), c ∈ C;
φ(x− x0), −∞ < x0 < ∞;
φ(ax), a < 0 or a > 0;

e2πis0xφ(x), −∞ < s0 < ∞;
xnφ(x), n = 0, 1, 2, . . . ;

φ(m)(x), m = 0, 1, 2, . . . ; and

φ(x).

Example Let φ ∈ S, let n = 1, 2, . . . , and let ψ(x) := xnφ(x). Show that ψ ∈ S.

Solution We use the Leibnitz rule (2.29) to see that

ψ(m)(x) =
min(n,m)∑

k=0

(
m

k

)
(xn)(k)φ(m−k)(x), m = 0, 1, 2, . . . ,

is continuous, and then use (11) to infer that

|xpψ(m)(x)| ≤
min(n,m)∑

k=0

(
m

k

)
n!|xn−k+pφ(m−k)(x)|

→ 0 as x → ±∞

when p = 0, 1, 2, . . . .
It takes a bit more effort to show that if φ is a Schwartz function, then so is the

Fourier transform
φ∧(s) :=

∫ ∞

−∞
φ(x)e−2πisx dx,

see Ex. 7.5, the quotient

ψ(x) :=
{
φ(x)/(x− x0) if x �= x0

φ′(x0) if x = x0

=
∫ 1

t=0
φ′(tx+ (1 − t)x0) dt, −∞ < x0 < ∞, (16)

in those cases where φ(x0) = 0, and the antiderivative

ψ(x) :=
∫ x

−∞
φ(u) du (17)
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in those cases where ∫ ∞

−∞
φ(u) du = 0. (18)

Example Show that (17) is a Schwartz function when φ is a Schwartz function
satisfying (18).

Solution Since ψ′ = φ, ψ′′ = φ′, . . . it is enough to show that xnψ(x) → 0 as
x → ±∞ for each n = 0, 1, 2, . . . . We define

Dn := max−∞<x<∞ |xn+2φ(x)|

and obtain the desired limits from the bounds

|xnψ(x)| =
∣∣∣∣xn

∫ x

−∞
φ(u) du

∣∣∣∣ ≤
∣∣∣∣xn

∫ x

−∞
Dnu

−n−2 du

∣∣∣∣ = Dn

(n+ 1)|x| , x < 0,

|xnψ(x)| =
∣∣∣∣xn

∫ ∞

x

φ(u) du
∣∣∣∣ ≤

∣∣∣∣xn

∫ ∞

x

Dnu
−n−2 du

∣∣∣∣ = Dn

(n+ 1)x
, x > 0.

The class S is also closed under certain binary operations. Indeed, if φ1, φ2 ∈ S,
then

φ1 + φ2, φ1 · φ2, and φ1 ∗ φ2

are all Schwartz functions, see Ex. 7.6.

Functionals for generalized functions

A complex-valued function g on R is said to be slowly growing if

lim
x→±∞

g(x)
xn

= 0

for some choice of n = 0, 1, 2, . . . , e.g., the functions

x3 + x, e−πx2
, sinx, x ln |x|

are slowly growing while
ex, e−x, ex2

are not. In this section we will use functions that are both continuous and slowly
growing (CSG) to construct functionals for generalized functions on R.

We will frequently form the product g · φ of a CSG function g and a Schwartz
function φ. Such a product is always a bounded, continuous, absolutely integrable
function that vanishes at ±∞. The continuity of the product follows from that of g



The concept of a generalized function 377

and φ. Since g is CSG there is some m = 0, 1, 2, . . . and some M1 > 0 (depending
on g) such that ∣∣∣∣ g(x)

(1 + x2)m

∣∣∣∣ ≤ M1, −∞ < x < ∞,

and since φ is a Schwartz function there is some M2 > 0 (depending on m and φ)
such that

|(1 + x2)m+1φ(x)| ≤ M2, −∞ < x < ∞.

The resulting bound

|g(x)φ(x)| =
∣∣∣∣ g(x)
(1 + x2)m

∣∣∣∣ · |(1 + x2)m+1φ(x)| · 1
1 + x2 ≤ M1M2

1 + x2

shows that g · φ is bounded and absolutely integrable with limx→±∞ g(x)φ(x) = 0.
In view of this discussion we will always represent a CSG function g with the
fundamental functional

g{φ} :=
∫ ∞

−∞
g(x)φ(x) dx, φ ∈ S.

Now if g happens to have an ordinary CSG derivative g′, then a careful integration
by parts allows us to write

∫ ∞

−∞
g′(x)φ(x) dx = lim

L→−∞
U→+∞

∫ U

L

g′(x)φ(x) dx

= lim
L→−∞
U→+∞

{
g(x)φ(x)

∣∣∣∣
U

L

−
∫ U

L

g(x)φ′(x) dx
}

= −
∫ ∞

−∞
g(x)φ′(x) dx, φ ∈ S.

In this way we see that g′ can be represented by the functional

g′{φ} := −
∫ ∞

−∞
g(x)φ′(x) dx, φ ∈ S. (19)

You will notice that the integral from (19) is well defined (since φ′ ∈ S when φ ∈ S),
even in cases where the CSG function g is not differentiable or in cases where g is
differentiable but the integrand g′(x)φ(x) from the fundamental functional for g′ is
not (Riemann or Lebesgue) integrable. We will use the functional (19) to represent
the generalized derivative of the CSG function g.



378 Generalized functions on R

Analogously, when g, g′, . . . , g(n) are all CSG for some n = 1, 2, . . . we find∫ ∞

−∞
g(n)(x)φ(x) dx = −

∫ ∞

−∞
g(n−1)(x)φ′(x) dx = (−1)2

∫ ∞

−∞
g(n−2)(x)φ′′(x) dx

= · · · = (−1)n

∫ ∞

−∞
g(x)φ(n)(x) dx, φ ∈ S,

so we can use the functional

g(n){φ} := (−1)n

∫ ∞

−∞
g(x)φ(n)(x) dx, φ ∈ S, (20)

to represent g(n). The integral from (20) is well defined (since φ(n) ∈ S when
φ ∈ S), even in cases where the CSG function g does not have ordinary derivatives
g′, g′′, . . . , g(n) or in cases where g(n) exists but g(n)(x)φ(x) is not integrable. We
will use (20) to represent the generalized nth derivative of the CSG function g.

The time has come for a very important definition. We will say that f is a
generalized function if f = g(n) for some choice of the CSG function g and for some
nonnegative integer n. In keeping with our previous discussion, we will use the
integral notation∫ ∞

−∞
f(x)φ(x) dx := f{φ} := g(n){φ} := (−1)n

∫ ∞

−∞
g(x)φ(n)(x) dx, φ ∈ S, (21)

when we work with f .
We will also routinely use function notation within this context, and this necessi-

tates a new understanding of equality. Given generalized functions f1, f2 and a < b
we will say that

f1(x) = f2(x) for a < x < b provided that
f1{φ} = f2{φ} for each φ ∈ S with φ(x) = 0 when x < a or x > b.

(22)

In the case where a = −∞ and b = +∞ we simply write

f1 = f2 provided that f1{φ} = f2{φ} for each φ ∈ S. (23)

We will also write

f = f0 or f(x) = f0(x) for −∞ < x < ∞

when the generalized function f is the fundamental functional

f{φ} =
∫ ∞

−∞
f0(x)φ(x) dx, φ ∈ S
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of a CSG function f0 or the ordinary derivative f0 = g′ of a CSG function g that
is continuously differentiable except for certain isolated points of R, e.g., f0(x) =
sgn(x), 	x
, log |x|.

7.2 Common generalized functions

Introduction

In this section you will learn to recognize a few generalized functions that will
be needed for the study of sampling, PDEs, wavelets, probability, diffraction, etc.
Later on you will master the rules for manipulating these “functions” and find that
it is really very easy to do Fourier analysis within this new context.

Functions from calculus

The ordinary power function

pn(x) := xn, n = 0, 1, 2, . . . , (24)

is CSG, so we can use the fundamental functional

pn{φ} :=
∫ ∞

−∞
xnφ(x) dx, φ ∈ S (25)

to obtain a corresponding generalized function. Using the definition (19), we con-
struct the functional

p′
n{φ} := −

∫ ∞

−∞
xnφ′(x) dx, φ ∈ S

for the generalized derivative, and use a careful integration by parts to show that

p′
n{φ} = npn−1{φ}, φ ∈ S.

In this way we see that pn has the generalized derivative

p′
n = n pn−1

that corresponds to the differentiation rule (xn)′ = nxn−1 from calculus.
Analogously, the generalized functions

s{φ} :=
∫ ∞

−∞
sin(x)φ(x) dx, c{φ} :=

∫ ∞

−∞
cos(x)φ(x) dx, φ ∈ S
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have the generalized derivatives

s′ = c, c′ = −s

corresponding to the rules sin′(x) = cos(x), cos′(x) = −sin(x) from calculus.
The ordinary exponential function is not slowly growing, and the functional

e{φ} :=
∫ ∞

−∞
exφ(x) dx

is not defined for every φ ∈ S. Indeed,

ψ(x) :=
{
e−1/xe−√

x for x > 0
0, for x ≤ 0

is a Schwartz function with

e{ψ} =
∫ ∞

0
(exe−1/xe−√

x) dx = +∞.

There is no generalized function of the form (20) that corresponds to ex (or to
e(α+iβ)x, −∞ < α < ∞, −∞<β < ∞ when α �= 0).

Dirac’s delta function

The ramp function

r(x) :=
{
x for x > 0
0 for x ≤ 0

(26)

is CSG, so we represent r by the fundamental functional

r{φ} :=
∫ ∞

−∞
r(x)φ(x) dx =

∫ ∞

0
xφ(x) dx, φ ∈ S.

The generalized derivative r′ is represented by

r′{φ} := −
∫ ∞

−∞
r(x)φ′(x) dx = −

∫ ∞

0
xφ′(x) dx

= −xφ(x)
∣∣∣∣
∞

0
+
∫ ∞

0
φ(x) dx =

∫ ∞

0
φ(x) dx, φ ∈ S,

so we can write
r′ = h (27)

where h is the Heaviside step function, see Fig. 7.6.
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Figure 7.6. The CSG ramp r from (26) and its generalized
derivatives r′ = h, r′′ = δ.

We define Dirac’s delta function

δ := r′′, (28)

and determine the corresponding functional by writing

δ{φ} := r′′{φ} := (−1)2
∫ ∞

−∞
r(x)φ′′(x) dx

=
∫ ∞

0
xφ′′(x) dx =

∫ ∞

0

d

dx
[xφ′(x) − φ(x)] dx

= φ(0), φ ∈ S,

as given by (9). We graphically represent δ by using an arrow of unit length as
shown in Fig. 7.6. The generalized nth derivative of δ,

δ(n) := r(n+2), n = 0, 1, 2, . . . ,
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is obtained from the functional

δ(n){φ} := r(n+2){φ} := (−1)n+2
∫ ∞

−∞
r(x)φ(n+2)(x) dx

= (−1)n

∫ ∞

0
xφ(n+2)(x) dx = (−1)n

∫ ∞

0

d

dx

[
xφ(n+1)(x) − φ(n)(x)

]
dx (29)

= (−1)nφ(n)(0), n = 0, 1, 2, . . . , φ ∈ S.

From (22) and (29) we see that

δ(n)(x) = 0 for −∞ < x < 0, n = 0, 1, 2, . . . ,

δ(n)(x) = 0 for 0 < x < ∞, n = 0, 1, 2, . . . ,
(30)

but these “values” do not determine the “integral”∫ ∞

−∞
δ(n)(x)φ(x) dx := δ(n){φ} = (−1)nφ(n)(0), φ ∈ S. (31)

Example Evaluate ∫ ∞

−∞
δ′(x)x e−x2

dx.

Solution Using (31) we find∫ ∞

−∞
δ′(x)x e−x2

dx := −
∫ ∞

−∞
δ(x)

(
x e−x2)′

dx = −e−x2
+ 2x2e−x2

∣∣∣∣
x=0

= −1

(even though the “integrand” seems to vanish at each “point” x).

Example We define the normalized truncated power function

σn(x) :=
{
xn/n! if x > 0
0 if x ≤ 0,

n = 0, 1, 2, . . .. (32)

Find the generalized derivatives.

Solution The first n derivatives

σ′
n = σn−1, σ′′

n = σn−2, . . . , σ(n−1)
n = σ1 = r, σ(n)

n = σ0 = h (33)

are ordinary functions, but we must use the delta function as we write

σ(n+1)
n = δ, σ(n+2)

n = δ′, σ(n+3) = δ′′, . . . . (34)
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The comb X

The piecewise linear antiderivative

q(x) :=
∫ x

0
τ(u) du (35)

of the slowly growing floor function

τ(x) := 	x
 := m when m ≤ x < m+ 1 and m = 0,±1,±2, . . . (36)

is continuous as shown in Fig. 7.7. This antiderivative is also slowly growing [as we
see by integrating the inequality u− 1 ≤ τ(u) ≤ u from u = 0 to u = x], so we can
use the fundamental functional

q{φ} :=
∫ ∞

−∞
q(x)φ(x) dx, φ ∈ S. (37)

Figure 7.7. The CSG “parabola” q from (35) and its generalized
derivatives q′ = τ , q′′ = X.
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The ordinary derivative of q(x) has jump discontinuities at x = 0,±1,±2, . . . ,
but we can use

q′(x) = m for m < x < m+ 1 and m = 0,±1,±2, . . . ,

lim
m→±∞ q(m)φ(m) = 0 when φ ∈ S,

∞∑
m=−∞

[q(m)φ(m) − q(m+ 1)φ(m+ 1)] = 0 when φ ∈ S

with a careful integration by parts to write

q′{φ} := −
∫ ∞

−∞
q(x)φ′(x) dx =

∞∑
m=−∞

∫ m+1

m

−q(x)φ′(x) dx

=
∞∑

m=−∞

{
q(m)φ(m) − q(m+ 1)φ(m+ 1) +

∫ m+1

m

mφ(x) dx
}

=
∫ ∞

−∞
τ(x)φ(x) dx, φ ∈ S. (38)

This allows us to identify the generalized derivative q′ with the function τ of (36).
The second generalized derivative

X := q′′ (39)

is known as the comb function (from the appearance of the graph in Fig. 7.7), the
shah function (from the name of the Cyrillic letter X), or the sampling function
(from the identity

X{φ} =
∞∑

n=−∞
φ(n), φ ∈ S (40)

that specifies its action). We derive (40) by using (38) (with φ replaced by φ′) and
the fundamental theorem of calculus to write

X{φ} := (−1)2
∫ ∞

−∞
q(x)φ′′(x) dx =

∞∑
m=−∞

−m
∫ m+1

m

φ′(x) dx

=
∞∑

m=−∞
[−mφ(m+ 1) +mφ(m)]

=
∞∑

m=−∞
{φ(m) + [(m− 1)φ(m) −mφ(m+ 1)]}

=
∞∑

m=−∞
φ(m), φ ∈ S.
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[Since m2φ(m) is bounded, the last sum converges absolutely.] Analogously,

X(n){φ} = (−1)n
∞∑

m=−∞
φ(n)(m), φ ∈ S, n = 0, 1, 2, . . . . (41)

From (41) we see that

X(n)(x) = 0 for m < x < m+ 1, m = 0,±1,±2, . . . , (42)

but these “values” do not determine the “integral”

∫ ∞

−∞
X(n)(x)φ(x) dx := X(n){φ} = (−1)n

∞∑
m=−∞

φ(n)(m), φ ∈ S. (43)

The functions x−1, x−2, . . .

The ordinary function log |x| has an integrable singularity at the origin, but the
antiderivative


(x) :=
∫ x

0
log |u| du = x log |x| − x (44)

is CSG, so we write


{φ} :=
∫ ∞

−∞
(x log |x| − x)φ(x) dx, φ ∈ S.

We use a careful integration by parts to show that


′{φ} =
∫ ∞

−∞
log |x|φ(x) dx, φ ∈ S, (45)

and we identify 
′(x) with the ordinary function log |x|, see Fig. 7.8.
The ordinary functions x−1, x−2, x−3, . . . can be obtained from the ordinary

derivatives of 
(x) by writing

x−1 = 
′′(x), x−2 = −
′′′(x), x−3 = 
′′′′(x)/2!, . . ..

We obtain corresponding generalized functions by using the generalized derivatives
of 
 to define the inverse power functions

p−1 := 
′′, p−2 := −
′′′, p−3 := 
′′′′/2!, . . . . (46)



386 Generalized functions on R

Figure 7.8. The CSG function 
 from (44) and its generalized
derivatives 
′, 
′′ = p−1.

We must use some care, however, because the improper integral for the fundamental
functional ∫ ∞

−∞

φ(x)
xn

dx (47)

is not well defined unless the Schwartz function φ has a zero of multiplicity n at
the origin. [We did not have this problem with the functionals (25) for the power
functions (24).]

Given φ ∈ S we define

φ1(x) := φ(x) − φ(0)
φ2(x) := φ(x) − φ(0) − xφ′(0)

φ3(x) := φ(x) − φ(0) − xφ′(0) − x2φ′′(0)/2!
...

(48)
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and observe that
φ(n)

n (x) = φ(n)(x), n = 1, 2, . . . . (49)

We use Taylor’s formula (see Ex. 2.28) with the fact that

φn(0) = φ′
n(0) = · · · = φ(n−1)

n (0) = 0

to infer that there is a continuous function ψn such that φn(x) = xnψn(x),
−∞ < x < ∞, and thereby verify that

lim
x→0

log |x|φ1(x) = 0, (50)

lim
x→0

x1−nφn(x) = 0, n = 2, 3, . . . . (51)

We will use (48)–(51) to obtain simple expressions that describe the action of the
inverse power functions p−1, p−2, p−3, . . . .

We begin by showing that

p−1{φ} = lim
L→∞

∫ L

−L

φ(x) − φ(0)
x

dx, φ ∈ S. (52)

Indeed, using (46), (44), (45) (with φ replaced by φ′), (49), and (50) in turn we
write

p−1{φ} := 
′′{φ} := (−1)2
∫ ∞

−∞
(x log |x| − x)φ′′(x) dx

= −
∫ ∞

−∞
log |x|φ′

1(x) dx

= lim
L→+∞

lim
ε→0+

{
−
∫ −ε

−L

log |x|φ′
1(x) dx−

∫ L

ε

log |x|φ′
1(x) dx

}

= lim
L→+∞

lim
ε→0+

{
−log |x|φ1(x)

∣∣∣∣
−ε

−L

+
∫ −ε

−L

φ1(x)
x

dx

−log |x|φ1(x)
∣∣∣∣
L

ε

+
∫ L

ε

φ1(x)
x

dx

}

= lim
L→+∞

{
−log |x|φ1(x)

∣∣∣∣
L

−L

+
∫ L

−L

φ1(x)
x

dx

}

= lim
L→+∞

∫ L

−L

φ1(x)
x

dx,

and in conjunction with the defining relation (48) for φ1 this gives (52).
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An alternative representation,

p−1{φ} =
∫ ∞

0

φ(x) − φ(−x)
x

dx, φ ∈ S, (53)

is obtained by using

∫ 0

−L

φ(x) − φ(0)
x

dx = −
∫ L

0

φ(−x) − φ(0)
x

dx

for the left half of the integral (52).
An analogous argument gives corresponding expressions for the functionals

p−2, p−3, . . . . We simply replace φ by the φ2, φ3, . . . from (48), i.e.,

p−2{φ} = lim
L→+∞

∫ L

−L

φ(x) − φ(0) − xφ′(0)
x2 dx, φ ∈ S,

p−3{φ} = lim
L→+∞

∫ L

−L

φ(x) − φ(0) − xφ′(0) − (x2/2)φ′′(0)
x3 dx, φ ∈ S,

...

.

(54)

By using (52) and (54) we see that

p−n(x) = x−n for −∞ < x < 0, n = 1, 2, . . . ,

p−n(x) = x−n for 0 < x < ∞, n = 1, 2, . . . ,
(55)

but these “values” do not determine the “integral”∫ ∞

−∞
p−n(x)φ(x) dx := p−n{φ}

= lim
L→+∞

∫ L

−L

x−n

{
φ(x) −

n−1∑
k=0

xkφ(k)(0)/k!
}
dx, φ ∈ S.

(56)

Summary

At this point you should understand how a CSG function g is used with the func-
tional (20) and an elementary notion of integration to produce a generalized function
f = g(n), n = 0, 1, 2, . . . . Ordinary CSG functions such as

x2 − x, e2πix, x2 sin(x), eiπx2
, x log |x|
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can be represented with n = 0, but we must use n ≥ 1 when we construct the
functionals (9), (40), (52) for δ, X, p−1.

In cases where f is a slowly growing ordinary function that is locally integrable,
i.e., ∫ b

a

f(x) dx

is well defined for every choice of −∞ < a < b < ∞, we can construct a CSG
antiderivative

g(x) :=
∫ x

0
f(u) du

and use the fundamental functional for f to represent the generalized derivative g′.
We used such antiderivatives (26), (35), (44) for

r′(x) = h(x), q′(x) = 	x
, 
′(x) = log |x|
to define δ, X, p−1. A thorough study of this construction of generalized functions
from slowly growing, locally integrable functions is best done within a context that
includes Lebesgue’s theory of integration. After you master the use of δ, X, p−1
and a few less exotic generalized functions you may wish to explore such ideas in
more detail.

7.3 Manipulation of generalized functions

Introduction

It is one thing to define generalized functions and quite another to use them for
some worthwhile purpose! In this section you will learn to form a linear combination

c1f1(x) + c2f2(x), c1, c2 ∈ C

of generalized functions f1, f2 and to construct the

translate f(x− x0), −∞ < x0 < ∞,

dilate f(ax), a < 0 or a > 0,
derivative f ′(x),
Fourier transform f∧(x),
product α(x) · f(x), (when α is suitably regular), and
convolution product (β ∗ f)(x) (when β is suitably regular)

for a generalized function f . In each case there is a corresponding functional of
the form (20). The new understanding of sum, translate, dilate, . . . will reduce to
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the familiar classical concept when f is a suitably regular ordinary function on R,
but the extensions will facilitate a far more powerful (and useful!) form of Fourier
analysis than that developed in Chapters 1–5.

The linear space G

Given generalized functions f1, f2 and complex scalars c1, c2 we define

f := c1f1 + c2f2

by using the functional

f{φ} := c1f1{φ} + c2f2{φ}, φ ∈ S. (57)

The same relation can be expressed by using the integral notation

∫ ∞

−∞
[c1f1(x) + c2f2(x)]φ(x) dx = c1

∫ ∞

−∞
f1(x)φ(x) dx+ c2

∫ ∞

−∞
f2(x)φ(x) dx,

φ ∈ S. (58)

We will verify that (57) defines a generalized function.
A CSG function g always has the CSG antiderivatives

g(−1)(x) :=
∫ x

0
g(u) du, g(−2)(x) :=

∫ x

0
g(−1)(u) du,

g(−3)(x) :=
∫ x

0
g(−2)(u)du, . . ..

(59)

Now if
f1 = g

(n1)
1 , f2 = g

(n2)
2

where g1, g2 are CSG and n1, n2 are nonnegative integers, we will define n :=
max(n1, n2) and use antiderivatives to construct the CSG function

g := c1g
(n1−n)
1 + c2g

(n2−n)
2 .

A routine calculation then shows that

g(n){φ} = c1g
(n1)
1 {φ} + c2g

(n2)
2 {φ} = f{φ}, φ ∈ S.

In this way we see that the set of generalized functions is a linear space that we will
call G.
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Translate, dilate, derivative, and Fourier transform

When f is a suitably regular ordinary function on R and φ ∈ S we can use a change
of variable, an integration by parts, or Parseval’s identity [see Ex. 1.24(a)] to write∫ ∞

−∞
f(x+x0)φ(x) dx =

∫ ∞

−∞
f(x)φ(x−x0) dx, −∞ < x0 < ∞, (60)

∫ ∞

−∞
f(ax)φ(x) dx =

∫ ∞

−∞
f(x)|a|−1φ

(x
a

)
dx, a < 0 or a > 0,

(61)∫ ∞

−∞
f ′(x)φ(x) dx =

∫ ∞

−∞
f(x)[−φ′(x)] dx, (62)

∫ ∞

−∞
f∧(x)φ(x) dx =

∫ ∞

−∞
f(x)φ∧(x) dx. (63)

You can use these identities when f is a generalized function and φ ∈ S provided
you regard each of these “integrals” as notation for a corresponding functional!
Such manipulations are valid because we define the translate, dilate, derivative,
and Fourier transform

f1(x) := f(x+ x0), f2(x) := f(ax), f3(x) := f ′(x), f4(x) := f∧(x)

of a generalized function f by using the functionals

f1{φ} := f{φ1}, f2{φ} := f{φ2}, f3{φ} := f{φ3}, f4{φ} := f{φ4}

where

φ1(x) := φ(x− x0), φ2(x) := |a|−1φ
(x
a

)
, φ3(x) := −φ′(x), φ4(x) = φ∧(x)

are Schwartz functions when φ ∈ S. [You will find these Schwartz functions on the
right hand side of (60)–(63).] Of course, (62) is perfectly consistent with (20). We
can express these definitions more succinctly by writing

(Tx0f){φ} := f{T−x0φ}, (Saf){φ} := f{|a|−1S1/aφ},
(Df){φ} := f{−Dφ}, (Ff){φ} := f{Fφ}, φ ∈ S,

but you will find that it is much easier to work with the equivalent integral notation
of (60)–(63). The following examples will show you how to manipulate general-
ized functions and introduce you to the art of definition chasing that is always
used within this context. (To help you sort out the details, we will provide terse
justifications for the links in the first few deductive chains.)
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Example Find the linear functional that represents δ(x− x0) when
−∞ < x0 < ∞.

Solution The functional for f(x) := δ(x− x0) is

f{φ} =
∫ ∞

−∞
δ(x− x0)φ(x) dx Integral notation

:=
∫ ∞

−∞
δ(x)φ(x+ x0) dx Change of variable using (60)

:= φ(x0), φ ∈ S. Action of δ from (9)

The corresponding “integral”∫ ∞

−∞
δ(x− x0)φ(x) dx = φ(x0), φ ∈ S (64)

is known as the sifting relation for δ. No ordinary function has this property!

Example Find the linear functional that represents δ(ax) when a < 0 or a > 0.

Solution The functional for f(x) := δ(ax) is

f{φ} =
∫ ∞

−∞
δ(ax)φ(x) dx Integral notation

:=
1
|a|
∫ ∞

−∞
δ(x)φ

(x
a

)
dx Change of variable using (61)

= |a|−1φ(0), φ ∈ S. Action of δ from (9)

The functionals for δ(ax) and |a|−1δ(x) are identical, so we write

δ(ax) = |a|−1δ(x) when a < 0 or a > 0. (65)

Example Find the linear functional that represents δ′′(x).

Solution The functional for f(x) := δ′′(x) is

f{φ} =
∫ ∞

−∞
δ′′(x)φ(x) dx Integral notation

:= −
∫ ∞

−∞
δ′(x)φ′(x) dx Integrate by parts using (62)

:= (−1)2
∫ ∞

−∞
δ(x)φ′′(x) dx Integrate by parts using (62)

= (−1)2φ′′(0), φ ∈ S. Action of δ from (9)

Of course, this agrees with (31).
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Example Find the Fourier transform of δ.

Solution The functional for δ∧(s) is

δ∧{φ} =
∫ ∞

−∞
δ∧(s)φ(s) ds Integral notation

:=
∫ ∞

−∞
δ(x)φ∧(x) dx Parseval’s identity (63)

= φ∧(0) Action of δ

=:
∫ ∞

−∞
1 · φ(s) ds, φ ∈ S. Analysis equation for φ

In view of this representation we write

δ∧(s) = 1 (66)

and regard δ∧ as an ordinary CSG function on R as shown in Fig. 7.9.

Figure 7.9. The Dirac delta function and its Fourier transform.

Example Find the Fourier transform of X.

Solution We use a special version

∞∑
n=−∞

φ(n) =
∞∑

k=−∞
φ∧(k), φ ∈ S (67)
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of the Poisson sum formula (1.45) as we write

X∧{φ} =
∫ ∞

−∞
X∧(s)φ(s) ds Integral notation

:=
∫ ∞

−∞
X(x)φ∧(x) dx Parseval’s identity (63)

:=
∞∑

n=−∞
φ∧(n) Action of X from (40)

=
∞∑

n=−∞
φ(n) Poisson sum formula (67)

=:
∫ ∞

−∞
X(s)φ(s) ds, φ ∈ S. Action of X from (40)

The functionals for X and X∧ are identical, so we write

X∧(s) = X(s), (68)

see Fig. 7.10.

Figure 7.10. The comb function and its Fourier transform.

Example Find the Fourier transform of the power function p1(x) := x.

Solution The functional for p∧
1 (s) is

p∧
1 {φ} =

∫ ∞

−∞
p∧
1 (s)φ(s) ds Integral notation

:=
∫ ∞

−∞
p1(x)φ∧(x) dx Parseval’s identity (63)

:=
∫ ∞

−∞
xφ∧(x) dx Action of p1 from (25)

=
1

2πi
φ′(0) Synthesis equation for φ′

=:
−1
2πi

δ′{φ}, φ ∈ S, Action of δ′ from (29)
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so we write
p∧
1 (s) =

−1
2πi

δ′(s).

The function p1(x) := x does not have an ordinary Fourier transform, but it does
have a generalized Fourier transform!

Example Find the Fourier transform of the inverse power function p−1.

Solution The functional for p∧
−1(s) is

p∧
−1{φ} =

∫ ∞

−∞
p∧

−1(s)φ(s) ds Integral notation

:=
∫ ∞

−∞
p−1(x)φ∧(x) dx Parseval’s identity (63)

=
∫ ∞

0

φ∧(x) − φ∧(−x)
x

dx Action of p−1 from (53)

=
∫ ∞

x=0

∫ ∞

s=−∞
φ(s)

(
e−2πisx − e2πisx

x

)
ds dx Analysis equation for φ

= −πi
∫ ∞

x=−∞

∫ ∞

s=−∞
φ(s)

sin(2πsx)
πx

ds dx Euler’s identity

?= −πi
∫ ∞

s=−∞
φ(s)

∫ ∞

x=−∞

sin(2πsx)
πx

dx ds

= −πi
∫ ∞

s=−∞
φ(s) sgn(s)

∫ ∞

u=−∞
sinc(u) du ds Change of variable

=
∫ ∞

s=−∞
[−πi sgn(s)]φ(s) ds, φ ∈ S. Synthesis equation for P

The exchange of the order of integration at ?= is valid when φ ∈ S, see Ex. 7.17. The
functional for p∧

−1 is identical to the fundamental functional for the slowly growing
function −πi sgn(s), so we write

p∧
−1(s) = −πi sgn(s), (69)

see Fig. 7.11.

Figure 7.11. The inverse power function p−1 and its Fourier
transform.
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The identities (64)–(69) are of fundamental importance, and we will use them
repeatedly in the remainder of the text. You should learn them at this time!

Each of the functionals (60)–(63) can be expressed in the form (20), i.e., the
translate, dilate, derivative, and Fourier transform of a generalized function (as
defined above) are also generalized functions. We will show that this is true for the
Fourier transform and leave the other three cases for Ex. 7.21.

Let f = γ(µ) where γ is CSG and µ is a nonnegative integer. Replace γ by the
antiderivative γ(−2) from (59), if necessary (and augment µ accordingly) to ensure
that γ is twice continuously differentiable. Choose p = 0, 1, 2, . . . to ensure that

γp(x) :=
γ(x)

(1 + 4π2x2)p

has small regular tails, and let Γp be the corresponding bounded, continuous Fourier
transform on R. Given φ ∈ S we use the derivative rule, the power scaling rule, and
Parseval’s identity to write∫ ∞

−∞
f(s)φ∧(s) ds :=

∫ ∞

−∞
γ(µ)(s)φ∧(s) ds

:= (−1)µ

∫ ∞

−∞
γ(s)Dµφ∧(s) ds

:=
∫ ∞

−∞
γp(s)(1 + 4π2s2)p(−D)µφ∧(s) ds

=
∫ ∞

−∞
Γp(x)(1 − D2)p[(2πix)µφ(x)] dx

where D is the derivative operator. In this way we see that the functional f∧ from
(63) is a linear combination of the functionals∫ ∞

−∞
x�Γp(x)φ(k)(x), 
 = 0, 1, . . . , µ, k = 0, 1, . . . , 2p,

which have the form (20). Since G is a linear space, this shows that f∧ ∈ G, i.e.,
that f∧ = g(n) for some CSG function g and some nonnegative integer n.

Reflection and conjugation

When f is a suitably regular ordinary function on R and φ ∈ S we can write∫ ∞

−∞
f∨(x)φ(x) dx =

∫ ∞

−∞
f(x)φ∨(x) dx, (70)

∫ ∞

−∞
f−(x)φ(x) dx =

∫ ∞

−∞
f(x)φ−(x) dx, (71)



Manipulation of generalized functions 397

∫ ∞

−∞
f†(x)φ(x) dx =

∫ ∞

−∞
f(x)φ†(x) dx, (72)

where
f∨(x) := f(−x), f−(x) := f(x), f†(x) := f(−x). (73)

You can use each of these identities when f is a generalized function and φ ∈ S

since we define f∨, f−, f† by using the functionals

f∨{φ} := f{φ∨}, f−{φ} := f{φ−}, f†{φ} := f{φ†}.
[Of course, (70) can be obtained by setting a = −1 in (61).]

A generalized function f is said to be

even, odd, real, pure imaginary, hermitian, antihermitian

when

f∨ = f, f∨ = −f, f− = f, f− = −f, f† = f, f† = −f,
respectively. Thus, δ is even and real since

δ∨{φ} := δ{φ∨} = φ∨(0) = φ(0) = δ{φ}, φ ∈ S, and

δ−{φ} := δ{φ−} = φ−(0) = φ(0) = δ{φ}, φ ∈ S.

Example Let f be a generalized function. Show that f ′ is odd, even when f is
even, odd, respectively.

Solution The desired conclusion follows from the identity

f
′∨{φ} = −f∨′{φ}, φ ∈ S,

that we establish by writing∫ ∞

−∞
f ′∨(x)φ(x) dx :=

∫ ∞

−∞
f ′(x)φ∨(x) dx := −

∫ ∞

−∞
f(x)φ∨′(x) dx

=
∫ ∞

−∞
f(x)φ′∨(x) dx =:

∫ ∞

−∞
f∨(x)φ′(x) dx

=: −
∫ ∞

−∞
f∨′(x)φ(x) dx, φ ∈ S.

Example Let f be a generalized function. Show that

f∨∧ = f∧∨, f−∧ = f∧†, f†∧ = f∧− (74)

and thereby extend the observations of Ex. 1.2 to the present context.
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Solution Since φ∧∨ = φ∨∧ when φ ∈ S we can use (63) and (70) to write

f∨∧{φ} = f{φ∧∨} = f{φ∨∧} = f∧∨{φ}, φ ∈ S.

The other two identities are proved in a similar fashion.

Multiplication and convolution

When f , α, β are suitably regular ordinary functions on R and φ ∈ S, we can write

∫ ∞

−∞
[α(x) · f(x)]φ(x) dx =

∫ ∞

−∞
f(x)[φ(x) · α(x)] dx (75)

and then use∫ ∞

v=−∞

∫ ∞

u=−∞
f(u)β(v − u)φ(v) du dv ?=

∫ ∞

u=−∞

∫ ∞

v=−∞
f(u)β(v − u)φ(v) dv du

to write ∫ ∞

−∞
[β ∗ f ](x)φ(x) dx =

∫ ∞

−∞
f(x)[φ ∗ β∨](x) dx. (76)

You can use (75) when f is a generalized function and α is an ordinary function
with the property that

φ · α ∈ S when φ ∈ S (77)

because we define the product α · f by using the functional

[α · f ]{φ} := f{φ · α}, φ ∈ S

which corresponds to (75). Likewise, you can use (76) when f is a generalized
function and β is a generalized function with the property that

φ ∗ β ∈ S when φ ∈ S (78)

because we define the convolution product β ∗ f by using the functional

[β ∗ f ]{φ} := f{φ ∗ β∨}, φ ∈ S

that corresponds to (76).
We use the Leibnitz formula

(φ · α)(m) =
m∑

k=0

(
m

k

)
α(k) · φ(m−k)
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to see that (77) holds when the functions

α, α′, α′′, . . . are all CSG, (79)

e.g., as is the case when

α(x) = φ(x) where φ ∈ S;
α(x) = xn where n = 0, 1, 2, . . . ;

α(x) = e2πis0x where −∞ < s0 < ∞;

α(x) = eiπρx2
where −∞ < ρ < ∞; and

α(x) = P(x)/Q(x) where P,Q are algebraic or trigonometric
polynomials and Q has no real zeros.

Since you might reasonably expect to find

β ∗ φ ?= [β∧ · φ∧]∧∨,

you will not be surprised to learn that (78) holds when the functions

β∧, β∧′, β∧′′, . . . are all CSG, (80)

[see (92)]. The sufficient conditions (79), (80) will serve for the subsequent appli-
cations and guarantee that the functionals (75), (76) have the form (20), see Ex.
7.21.

We will show how (75)–(76) allow us to simplify certain expressions involving

δ(k)
x0

(x) := δ(k)(x− x0), −∞ < x0 < ∞, k = 0, 1, 2, . . . . (81)

Example Let α, α′, α′′, . . . be CSG. Show that

α(x) · δ(x− x0) = α(x0)δ(x− x0).

Solution We use (75) and the sifting relation (64) as we write∫ ∞

−∞
[α(x) · δ(x− x0)]φ(x) dx :=

∫ ∞

−∞
δ(x− x0)[φ(x)α(x)] dx

= φ(x0)α(x0)

=
∫ ∞

−∞
[α(x0)δ(x− x0)]φ(x), φ ∈ S.

You can use an analogous argument to show that

α(x) · δ(k)(x− x0) =
k∑

�=0

(
k




)
(−1)k−�α(k−�)(x0)δ(�)(x− x0), (82)

see Ex. 7.13.
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Example Let f be a generalized function. Show that

δ ∗ f = f, (83)

i.e., show that δ serves as an identity for the convolution product (and recall
Ex. 3.40).

Solution We first use (76) to show that

ψ ∗ δ = ψ when ψ ∈ S

by writing

∫ ∞

−∞
[ψ ∗ δ](x)φ(x) dx :=

∫ ∞

−∞
δ(x)[φ ∗ ψ∨](x) dx

= [φ ∗ ψ∨](0)

=
∫ ∞

−∞
ψ(x)φ(x) dx, φ ∈ S.

We then use (76) a second time to write

∫ ∞

−∞
[δ ∗ f ](x)φ(x) dx :=

∫ ∞

−∞
f(x)[φ ∗ δ∨](x) dx

=
∫ ∞

−∞
f(x)[φ ∗ δ](x) dx

=
∫ ∞

−∞
f(x)φ(x) dx, φ ∈ S.

You can use an analogous argument to show that

[ψ ∗ δ(k)
x0

](x) = ψ(k)(x− x0), −∞ < x0 < ∞, k = 0, 1, . . . (84)

when ψ is a Schwartz function and

[δ(k)
x0

∗ f ](x) = f (k)(x− x0), −∞ < x0 < ∞, k = 0, 1, . . . (85)

when f is a generalized function, see Ex. 7.13.

Example Let g be CSG and let ψ ∈ S. Show that

ψ ∗ g(n) = [ψ ∗ g](n) = ψ(n) ∗ g, n = 0, 1, 2, . . . . (86)
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Solution We chase definitions as we write∫ ∞

−∞
[ψ ∗ g(n)](x)φ(x) dx :=

∫ ∞

−∞
g(n)(x)[φ ∗ ψ∨](x) dx

:= (−1)n

∫ ∞

−∞
g(x)[φ ∗ ψ∨](n)(x) dx

= (−1)n

∫ ∞

−∞
g(x)[φ(n) ∗ ψ∨](x) dx

=: (−1)n

∫ ∞

−∞
[ψ ∗ g](x)φ(n)(x) dx

=:
∫ ∞

−∞
[ψ ∗ g](n)(x)φ(x) dx, φ ∈ S,

∫ ∞

−∞
[ψ ∗ g(n)](x)φ(x) dx = (−1)n

∫ ∞

−∞
g(x)[φ ∗ ψ∨](n)(x) dx

=
∫ ∞

−∞
g(x)[φ ∗ ψ(n)∨](x) dx

=:
∫ ∞

−∞
(ψ(n) ∗ g)(x)φ(x) dx, φ ∈ S.

Let f be a generalized function and let ψ ∈ S. We set f = g(n) where g is CSG
and n is a nonnegative integer, and use (86) to write

ψ ∗ f = ψ(n) ∗ g, (ψ ∗ f)′ = ψ(n+1) ∗ g, (ψ ∗ f)′′ = ψ(n+2) ∗ g, . . . . (87)

Since the convolution product of the CSG function g and a Schwartz function is
always CSG (see Ex. 7.18), this shows that ψ ∗ f and all of its derivatives are CSG.

Example Show that x · p−1(x) = 1 when p−1 is the inverse power function.

Solution We use (53) as we write∫ ∞

−∞
[x · p−1(x)]φ(x) dx :=

∫ ∞

−∞
p−1(x)[φ(x) · x] dx

=
∫ ∞

0

xφ(x) − (−x)φ(−x)
x

dx

=
∫ ∞

−∞
1 · φ(x) dx, φ ∈ S.

You can extend this argument to establish the generalized power rule

xm · pn(x) = pm+n(x), m = 0, 1, 2, . . . , n = 0,±1,±2, . . . , (88)

see Ex. 7.16.
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We have chosen the decidedly asymmetric notation α · f , β ∗ f to help you re-
member that these products are only defined when α, β satisfy (77), (78). We can
restore some symmetry by setting

f · α := α · f, f ∗ β := β ∗ f
(to make the products commute), but you will need to remember the restrictions.
Many products, e.g.,

δ · δ, δ · p−1, 1 ∗ 1, x ∗ x2

are not defined, and the familiar associativity relations

[f1 · f2] · f3 ?= f1 · [f2 · f3],
[f1 ∗ f2] ∗ f3 ?= f1 ∗ [f2 ∗ f3]

do not always hold within this context. The insightful little examples of Schwartz,

[δ(x) · x] · p−1(x) = [0] · p−1(x) = 0
δ(x) · [x · p−1(x)] = δ(x) · [1] = δ(x)

and

[1 ∗ δ′(x)] ∗ sgn(x) = [0] ∗ sgn(x) = 0
1 ∗ [δ′(x) ∗ sgn(x)] = 1 ∗ [2δ(x)] = 2,

will help you see what can go wrong. For other examples, see Ex. 2.36.

Division

Let g be a generalized function and let α, α′, α′′, . . . be CSG. If 1/α,
(1/α)′, (1/α)′′, . . . are also CSG, we can solve the linear equation

α · f = g

by setting
f := (1/α) · g.

We verify this by writing∫ ∞

−∞

[
α(x) · [(1/α(x)) · g(x)]]φ(x) dx

:=
∫ ∞

−∞
[(1/α(x)) · g(x)][φ(x) · α(x)] dx

:=
∫ ∞

−∞
g(x)

[
[φ(x) · α(x)] · (1/α(x))

]
dx

=
∫ ∞

−∞
g(x)φ(x) dx, φ ∈ S.
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We will show that this solution is unique. Indeed, if α · f1 = g and α · f2 = g, then
f0 := f1 − f2 is a solution of the homogeneous equation α · f0 = 0 with∫ ∞

−∞
f0(x)φ(x) dx =

∫ ∞

−∞
f0(x)

[
[φ(x) · (1/α(x))] · α(x)

]
dx

=:
∫ ∞

−∞
[α(x) · f0(x)][φ(x) · (1/α(x))] dx

= 0, φ ∈ S.

Example Find the generalized solution of eiπx2 · f(x) = e−πx2
.

Solution The functions

α(x) := eiπx2
, 1/α(x) = e−iπx2

and all of their derivatives are CSG, so we can write

f(x) = e−iπx2 · e−πx2
.

You must use some care when you form such quotients. The following example
shows what can happen when 1/α is continuous but not slowly growing.

Example Show that there is no generalized solution of e−πx2 · f(x) = 1.

Solution Let α(x) := e−πx2
and assume that f is a generalized solution. Since

α∧ = α = α∨, we can write∫ ∞

−∞
(α ∗ f∧)(x)φ(x) dx :=

∫ ∞

−∞
f∧(x)[(φ ∗ α)(x)] dx

:=
∫ ∞

−∞
f(x)[(φ ∗ α)∧(x)] dx

=
∫ ∞

−∞
f(x)[φ∧(x) · α(x)] dx

=:
∫ ∞

−∞
[α(x) · f(x)]φ∧(x) dx

=
∫ ∞

−∞
1 · φ∧(x) dx

=
∫ ∞

−∞
δ(x)φ(x) dx, φ ∈ S,

i.e., α ∗ f∧ = δ. This is impossible since the convolution product of the
Schwartz function α and the generalized function f∧ is CSG but δ is not, see (87)
and Ex. 7.3.
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We will now consider the homogeneous equation

(x− x0)n · f(x) = 0 (89)

where −∞ < x0 < ∞ and n = 1, 2, . . . . In this case α(x) := (x − x0)n and its
derivatives are CSG but 1/α(x) has a singularity at x = x0. Using (82) we see that

(x− x0)n · δ(k)(x− x0) = 0 when k = 0, 1, . . . , n− 1,

so the generalized function

f(x) = c0δ(x− x0) + c1δ
′(x− x0) + · · · + cn−1δ

(n−1)(x− x0) (90)

satisfies (89) for every choice of the constants c0, c1, . . . , cn−1. It takes a bit more
effort to show that every generalized solution has this form, see Ex. 7.23. A few
examples will show you how to use this result.

Example Find all generalized solutions of x · f(x) = 1.

Solution We have shown that x · p−1(x) = 1, see (88). We use (89)–(90) (with
x0 = 0, n = 1) to solve the homogeneous equation

x · [f(x) − p−1(x)] = 0

by writing
f(x) = p−1(x) + c δ(x)

where c is an arbitrary constant.

Example Find all generalized solutions of x2 · f(x) = sin2(πx).

Solution We solve the homogeneous equation

x2 · [f(x) − π2 sinc2(x)] = 0

by writing
f(x) = π2 sinc2(x) + c0δ(x) + c1δ

′(x)

where c0, c1 are arbitrary constants.

Example Find all generalized solutions of (x2 − 1) · f(x) = 1.

Solution We formally write

1
x2 − 1

=
1
2

[
1

x− 1
− 1
x+ 1

]
=

1
2
[p−1(x− 1) − p−1(x+ 1)],
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and use translates of (88) to see that

(x2 − 1) · 1
2 [p−1(x− 1) − p−1(x+ 1)]

= 1
2 [(x+ 1)(x− 1)p−1(x− 1) − (x− 1)(x+ 1)p−1(x+ 1)]

= 1
2 [(x+ 1) · 1 − (x− 1) · 1] = 1.

We then solve the homogeneous equation

(x2 − 1) · [f(x) − 1
2p−1(x− 1) + 1

2p−1(x+ 1)
]

= 0

(using Ex. 7.24) to obtain

f(x) = 1
2p−1(x− 1) − 1

2p−1(x+ 1) + c δ(x− 1) + d δ(x+ 1)

where c, d are arbitrary constants.

7.4 Derivatives and simple differential equations

Differentiation rules

The following differentiation rules can be used with generalized functions f, f1, f2.

[c1f1(x) + c2f2(x)]′ = c1f
′
1(x) + c2f

′
2(x), c1, c2 ∈ C

[f(x− x0)]′ = f ′(x− x0), −∞ < x0 < ∞
[f(ax)]′ = a f ′(ax), a < 0 or a > 0

[α(x) · f(x)]′ = α(x) · f ′(x) + α′(x) · f(x), α, α′, α′′, . . . are CSG

[(β ∗ f)(x)]′ = (β′ ∗ f)(x) = (β ∗ f ′)(x), β∧, β∧′, β∧′′, . . . are CSG

You can establish such rules by using the familiar differentiation rules from calculus
and chasing definitions.
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Example Show that (α · f)′ = α · f ′ + α′ · f.
Solution When f is a generalized function and α, α′, α′′, . . . are CSG∫ ∞

−∞
[α(x) · f(x)]′φ(x) dx := −

∫ ∞

−∞
f(x)[φ′(x)α(x)] dx

= −
∫ ∞

−∞
f(x)

(
[φ(x)α(x)]′ − φ(x)α′(x)

)
dx

=:
∫ ∞

−∞

(
f ′(x)[φ(x)α(x)] + f(x)[φ(x)α′(x)]

)
dx

=:
∫ ∞

−∞
[α(x) · f ′(x) + α′(x) · f(x)]φ(x) dx, φ ∈ S.

Example Use the product rule to find the second derivative of the ramp r(x) :=
x · h(x) where h is the Heaviside function.

Solution We use the Leibnitz formula

r′′(x) = (x)′′ · h(x) + 2(x)′ · h′(x) + x · h′′(x)

(which follows from the above product rule) together with the identities

h′ = δ, h′′ = δ′, . . .

from (34) to write
r′′(x) = 2δ(x) + x · δ′(x).

We use (82) (with x0 = 0, k = 1) to reduce this to the r′′ = δ of (28).

Derivatives of piecewise smooth functions with jumps

We will often have occasion to form the generalized derivative of a slowly growing
ordinary function f that has a continuous slowly growing ordinary derivative except
for certain isolated points x1, x2, . . . , xm where f and f ′ can have jump discontinu-
ities. The simplest such function

h(x− x1) =
{

1 if x > x1

0 if x < x1

has the generalized derivative

h′(x− x1) = δ(x− x1)

even though h′(x − x1) = 0 for x < x1 and for x > x1, see Fig. 7.6. Now if f has
the jump

Jµ := f(xµ+) − f(xµ−)
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at the point x = xµ, µ = 1, 2, . . . ,m, the piecewise smooth function

f0(x) := f(x) −
m∑

µ=1

Jµh(x− xµ)

will be continuous. We can then write

f ′(x) = f ′
0(x) +

m∑
µ=1

Jµδ(x− xµ),

with the generalized function f ′
0 being represented by the fundamental functional

of the ordinary derivative, see Fig. 7.12. [The fact that f ′
0(x) is not defined at the

points x1, x2, . . . , xm is of no consequence.] We will give three examples to illustrate
this process.

Figure 7.12. A piecewise smooth function f and its generalized
derivative f ′ = f ′

0 + f ′
s.

Example Let f(x) := Π(x). Find f ′, f ′′, . . . .

Solution We observe that

f(x) = h(x+ 1
2 ) − h(x− 1

2 )

and write
f ′(x) = δ(x+ 1

2 ) − δ(x− 1
2 ).

The term δ(x+ 1
2 ) comes from the jump +1 at the left edge of the box and the term

−δ(x − 1
2 ) comes from the jump −1 at the right edge of the box. Knowing f ′, we

find
f (n+1)(x) = δ(n)(x+ 1

2 ) − δ(n)(x− 1
2 ), n = 0, 1, . . . .
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Example Let f(x) := e−xh(x). Find f ′, f ′′, . . . .

Solution The function f has a jump +1 at x = 0, so we have

f ′(x) = −e−xh(x) + δ(x) = −f(x) + δ(x).

[We can verify this directly by writing∫ ∞

−∞
f ′(x)φ(x) dx := −

∫ ∞

−∞
f(x)φ′(x) dx

= −
∫ ∞

0
e−xφ′(x) dx

= φ(0) −
∫ ∞

0
e−xφ(x) dx

=
∫ ∞

−∞
[δ(x) − f(x)]φ(x) dx, φ ∈ S.]

Knowing f ′ = −f + δ, we compute in turn

f ′′(x) = f(x) − δ(x) + δ′(x), f ′′′(x) = −f(x) + δ(x) − δ′(x) + δ′′(x), . . . .

Example Show that the function (4) [shown in Fig. 7.2] is a solution of the
differential equation

my′′
0 (t) + k y0(t) = p δ(t)

when m > 0, k > 0, and ω :=
√
k/m.

Solution We compute in turn

y′
0(t) =

{
0 if t < 0
p

m
cos(ωt) if t > 0,

y′′
0 (t) =

p

m
δ(t) +

{
0 if t < 0
−ωp

m
sin(ωt) if t > 0,

m y′′
0 (t) + k y0(t) = p δ(t) +

p

m

[
−mω +

k

ω

]
sin(ωt)h(t) = p δ(t).

The equation f (n) = 0

Let f be a generalized function and assume that

f ′(x) = 0 for a < x < b,
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i.e., f ′{φ} = 0 whenever φ is a Schwartz function that vanishes when x < a or
x > b, see (22). We will show that

f(x) = c for a < x < b

where c is some constant. (This takes some effort because the familiar mean value
theorem from calculus cannot be used in the present context!)

Let γ, φ be Schwartz functions that vanish when x < a or x > b, with∫ ∞

−∞
γ(x) dx = 1.

We set
c :=

∫ ∞

−∞
f(x)γ(x) dx, A :=

∫ ∞

−∞
φ(x) dx,

and form the antiderivative

ψ(x) :=
∫ x

a

[φ(u) −Aγ(u)] du.

By construction, ψ is a Schwartz function that vanishes when x < a or x > b, so∫ ∞

−∞
f(x)[φ(x) −Aγ(x)] dx =

∫ ∞

−∞
f(x)ψ′(x) dx =: −

∫ ∞

−∞
f ′(x)ψ(x) dx = 0,

[see (17), (18)]. In this way we find∫ ∞

−∞
f(x)φ(x) dx = Ac =

∫ ∞

−∞
c φ(x) dx,

and thereby show that f(x) = c for a < x < b.
It is easy to extend this result to higher derivatives. For example, if

f ′′(x) = 0 for a < x < b

we find in turn

f ′(x) = c1 for a < x < b,

[f(x) − c1x]′ = 0 for a < x < b,

f(x) − c1x = c0 for a < x < b,

f(x) = c0 + c1x for a < x < b.

Analogously, if
f (n)(x) = 0 for a < x < b
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then
f(x) = c0 + c1x+ · · · + cn−1x

n−1 for a < x < b

where c0, c1, . . . , cn−1 are suitably chosen constants.

Example Find all generalized solutions of the differential equation

f ′′(x) = δ(x+ 1) + 2δ′(x− 1).

Solution We can take antiderivatives and write

f ′(x) = h(x+ 1) + 2δ(x− 1) + c1,

f(x) = (x+ 1)h(x+ 1) + 2h(x− 1) + c0 + c1x.

We can also use the fact that f ′′(x) vanishes for −∞ < x < −1, for −1 < x < 1,
and for 1 < x < ∞ to write

f(x) =



a0 + b0x for −∞ < x < −1
a1 + b1x for −1 < x < 1
a2 + b2x for 1 < x < ∞,

f ′′(x) = (a1 − a0 − b1 + b0)δ′(x+ 1) + (b1 − b0)δ(x+ 1)
+ (a2 − a1 + b2 − b1)δ′(x− 1) + (b2 − b1)δ(x− 1).

We force f to satisfy the differential equation by choosing the parameters so that

a1 − a0 − b1 + b0 = 0, b1 − b0 = 1, a2 − a1 + b2 − b1 = 2, b2 − b1 = 0,

i.e., a1 = a0 + 1, b1 = b0 + 1, a2 = a0 + 3, b2 = b0 + 1.

Example Let f be a generalized function and assume that f(x) = 0 for −∞ <
x < 0 and for 0 < x < ∞. Show that f is a finite linear combination of δ, δ′, δ′′, . . . .

Solution We know that f = g(n) for some CSG function g and some nonnegative
integer n. Since g(n)(x) = 0 for −∞ < x < 0 and for 0 < x < ∞, we can write

g(x) =
{
pL(x) for −∞<x< 0
pR(x) for 0 < x < ∞

where pL, pR are polynomials of degree n− 1 or less. In this way we see that

g′(x) = [pR(0) − pL(0)]δ(x) +
{
p′

L(x) for −∞<x < 0
p′

R(x) for 0 < x < ∞,

g′′(x) = [pR(0) − pL(0)]δ′(x) + [p′
R(0) − p′

L(0)]δ(x)

+
{
p′′

L(x) for −∞<x < 0
p′′

R(x) for 0 < x < ∞,

...
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and thereby obtain the representation

f(x) = g(n)(x) =
n−1∑
ν=0

[p(n−1−ν)
R (0) − p

(n−1−ν)
L (0)]δ(ν)(x). (91)

Solving differential equations

On occasion we will find it necessary to construct a generalized solution of a differ-
ential equation

f (n)(x) + c1f
(n−1)(x) + · · · + cnf(x) = d(x)

when the (constant) coefficients c1, c2, . . . , cn and the driving function d(x) are
given. In some cases this can be done by splicing together ordinary solutions on
certain intervals (ak, bk), k = 1, 2, . . . ,m. We will give two examples to illustrate
the procedure. Additional details can be found in Exs. 7.25 and 7.30, the next
section, and Kaplan’s text.

Example Construct a generalized solution of the differential equation

f ′′(x) − f ′(x) − 2f(x) = −δ(x).

Solution The characteristic equation r2 − r − 2 = 0 has the roots r = −1, r =
2, so any linear combination of the ordinary functions e−x, e2x will satisfy the
homogeneous equation

y′′(x) − y′(x) − 2y(x) = 0.

Since f satisfies this homogeneous equation for −∞ < x < 0 and for 0 < x < ∞,
we can write

f(x) =
{
aLe

−x + bLe
2x for x < 0

aRe
−x + bRe

2x for x > 0

where aL, bL, aR, bR are certain constants. We must set aL = 0, bR = 0 to ensure
that f is slowly growing. We then compute

f ′(x) = (aR − bL)δ(x) +
{

2bLe2x for x < 0
−aRe

−x for x > 0,

f ′′(x) = (aR − bL)δ′(x) − (aR + 2bL)δ(x) +
{

4bLe2x for x < 0
aRe

−x for x > 0,
f ′′(x) − f ′(x) − 2f(x) = −(2aR + bL)δ(x) + (aR − bL)δ′(x).

The right-hand side reduces to −δ(x) when aR = bL = 1/3, so

f(x) =
1
3

{
e2x for x < 0
e−x for x > 0.
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Example Construct a generalized solution of the differential equation

f ′′′′(x) − f(x) = δ(x).

Solution The characteristic equation r4 − 1 = 0 has the roots r = −1, r = 1,
r = −i, r = i, so any linear combination of e−x, ex, e−ix, eix will satisfy the
homogeneous equation

y′′′′(x) − y(x) = 0.

The 8 parameters from

f(x) =
{
aLe

−x + bLe
x + cLe

−ix + dLe
ix if x < 0

aRe
−x + bRe

x + cRe
−ix + dRe

ix if x > 0

can be reduced to 2 by requiring f to be slowly growing (aL = 0, bR = 0) and using
the constraints

f(0+)−f(0−) = 0, f ′(0+)−f ′(0−) = 0, f ′′(0+)−f ′′(0−) = 0, f ′′′(0+)−f ′′′(0−) = 1.

This is a bit tedious, however, so we attempt to construct a particular solution by
taking a linear combination of the even functions e−|x|, sin |x| (deleting the even
solution cosx of the homogeneous equation). We observe that the function

e−|x| + sin |x| = 1 − |x| + x2/2 − |x|3/6 + x4/24 − · · ·
+ |x| − |x|3/6 + · · ·

= 1 + x2/2 − |x|3/3 + x4/24 + · · ·

and its first two derivatives are continuous at x = 0, while the third has a jump of
−4. In this way we find

f(x) = − 1
4

(
e−|x| + sin |x|)+ a cosx+ b sinx

where a, b are arbitrary constants.
In the next section you will learn how to show that there are no other generalized

solutions for the differential equations from these two examples.
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7.5 The Fourier transform calculus for
generalized functions

Fourier transform rules

Let f, f1, f2 be generalized functions with the generalized Fourier transforms
f∧, f∧

1 , f
∧
2 . Now that you know how to manipulate generalized functions you can

use the following Fourier transform rules.

c1f1(x) + c2f2(x) has the FT c1f
∧
1 (s) + c2f

∧
2 (s), c1, c2 ∈ C

f(−x) has the FT f∧(−s)
f−(x) has the FT f∧−(−s)

f(x− x0) has the FT e−2πisx0 · f∧(s), −∞ < x0 < ∞
e2πis0x · f(x) has the FT f∧(s− s0), −∞ < s0 < ∞

f∧(x) has the FT f(−s)
f(ax) has the FT |a|−1f∧(s/a), a > 0 or a < 0

f (n)(x) has the FT (2πis)n · f∧(s), n = 1, 2, . . .

xn · f(x) has the FT (−2πi)−n[f∧](n)(s), n = 1, 2, . . .

α(x) · f(x) has the FT (α∧ ∗ f∧)(s), α, α′, α′′, . . . are CSG

(β ∗ f)(x) has the FT β∧(s) · f∧(s), β∧, β∧′, β∧′′, . . . are CSG

Each rule can be established by chasing definitions and using corresponding iden-
tities for taking Fourier transforms of Schwartz function. Since you are thoroughly
familiar with such patterns from your study of Chapter 3, you will quickly learn to
use them within this new setting.

Example Establish the inversion rule for generalized Fourier transforms.

Solution Given a generalized function f we write

∫ ∞

−∞
f∧∧(x)φ(x) dx :=

∫ ∞

−∞
f∧(x)φ∧(x) dx :=

∫ ∞

−∞
f(x)φ∧∧(x) dx

=
∫ ∞

−∞
f(x)φ(−x) dx =:

∫ ∞

−∞
f(−x)φ(x) dx, φ ∈ S

and thereby conclude that
f∧∧(x) = f(−x).
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Example Let f be a generalized function and let α, α′, α′′, . . . be CSG. Establish
the product rule

(α · f)∧ = α∧ ∗ f∧. (92)

Solution Let ψ ∈ S. We chase definitions to find

∫ ∞

−∞
[ψ · α]∧(x)φ(x) dx :=

∫ ∞

−∞
[ψ(x) · α(x)]φ∧(x) dx

:=
∫ ∞

−∞
α(x)[φ∧(x)ψ(x)] dx =

∫ ∞

−∞
α(x)[φ ∗ ψ∧∨]∧(x) dx

=:
∫ ∞

−∞
α∧(x)[φ ∗ ψ∧∨](x) dx =:

∫ ∞

−∞
[ψ∧ ∗ α∧](x)φ(x) dx, φ ∈ S,

and thereby show that

[ψ · α]∧ = ψ∧ ∗ α∧ when ψ ∈ S.

We use this special version of the product rule to verify that

φ ∗ α∧ ∈ S when φ ∈ S

and thereby infer that α∧ ∗ f∧ is well defined, see (76) and (78). We then derive
the general product rule by writing

∫ ∞

−∞
[α · f ]∧(x)φ(x) dx :=

∫ ∞

−∞
[α(x) · f(x)]φ∧(x) dx

:=
∫ ∞

−∞
f(x)[φ∧(x)α(x)] dx =

∫ ∞

−∞
f(x)[φ ∗ α∧∨]∧(x) dx

=:
∫ ∞

−∞
f∧(x)[φ ∗ α∧∨](x) dx =:

∫ ∞

−∞
[α∧ ∗ f∧](x)φ(x) dx, φ ∈ S.

Basic Fourier transforms

We know from (66) that
δ(x) has the FT 1,

so we can use the derivative and translation rules to see that

δ(n)(x) has the FT (2πis)n, n = 0, 1, 2, . . . (93)

δ(x− x0) has the FT e−2πisx0 , −∞ < x0 < ∞, (94)
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and then use the inversion rule to see that

xn has the FT (−2πi)−nδ(n)(s), n = 0, 1, 2, . . . (95)

e2πis0x has the FT δ(s− s0), −∞<s0 < ∞. (96)

We can use (95)–(96) to find the Fourier transform of any algebraic or trigonometric
polynomial.

Example Find the Fourier transform of the polynomial f(x) := (x− 1)3.

Solution We can write
f(x) = x3 − 3x2 + 3x− 1

and then use (95) to obtain

F (s) =
δ′′′(s)

(−2πi)3
− 3δ′′(s)

(−2πi)2
+

3δ′(s)
−2πi

− δ(s).

We can also use (95) with the translation rule to write

F (s) = e−2πis · δ′′′(s)
(−2πi)3

.

You can use (82) to show that these two expressions are equivalent.

Example Find the Fourier transforms of

fc(x) := cos(2πx), fs(x) := sin(2πx).

Solution We use (96) with the Euler identities

fc(x) =
1
2
[e2πix + e−2πix], fs(x) =

1
2i

[e2πix − e−2πix]

to write

Fc(s) =
1
2
[δ(s− 1) + δ(s+ 1)], Fs(s) =

1
2i

[δ(s− 1) − δ(s+ 1)],

as shown in Fig. 7.13.
We know from (69) that the inverse power function

p−1(x) has the FT −πi sgn(s).

We use (46) to write

p−n(x) =
(−1)n−1

(n− 1)!
p
(n−1)
−1 (x), n = 1, 2, . . . ,
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Figure 7.13. The functions fc(x) := cos(2πx), fs(x) := sin(2πx)
and their Fourier transforms.

and then use the derivative rule to see that

p−n(x) has the FT − πi
(−2πis)n−1

(n− 1)!
sgn(s), n = 1, 2, . . . . (97)

In Chapter 3 you learned how to find the ordinary Fourier transform of a suitably
regular rational function by using (3.22). Now that you have (95) and (97), you can
find the generalized Fourier transform of any rational function.

Example Find the Fourier transform of f(x) := (x2 + 1)/(x2 − 1).

Solution We form the partial fraction expansion

f(x) =
x2 + 1
x2 − 1

= 1 +
1

x− 1
− 1
x+ 1

= 1 + p−1(x− 1) − p−1(x+ 1)

and then Fourier transform term by term to obtain

F (s) = δ(s) + e−2πis(−πi) sgn(s) − e2πis(−πi) sgn(s)
= δ(s) − 2π sin(2πs) sgn(s)
= δ(s) − 2π sin(2π|s|).

Example Let y be a generalized solution of the homogeneous differential equation

y′′′′(x) − y(x) = 0.

Show that
y(x) = c eix + d e−ix

for suitably chosen constants c, d.
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Solution We Fourier transform the differential equation to obtain

[(2πis)4 − 1] · Y (s) = 0

or equivalently,
[(2πs)2 + 1][2πs+ 1][2πs− 1] · Y (s) = 0.

Since [(2πs)2 + 1]−1 and its derivatives are CSG, we can use Ex. 7.25 to write[
s+

1
2π

] [
s− 1

2π

]
Y (s) = 0,

Y (s) = c δ

(
s− 1

2π

)
+ d δ

(
s+

1
2π

)
,

y(x) = c eix + d e−ix

where c, d are constants.
You will often find that it is necessary to determine the Fourier transform of

some rational function when you analyze simple physical systems such as those in
the following two examples.

Example Find the generalized solution of the differential equation

y′′(t) + ω2y(t) =
p

m
δ(t)

that vanishes for −∞ < t < 0, see Fig.7.2.

Solution We Fourier transform the differential equation to obtain

[(2πis)2 + ω2] · Y (s) =
p

m
.

From the equivalent algebraic identity(
s− ω

2π

)(
s+

ω

2π

)
· Y (s) = − p

4π2m

we can use Ex. 7.24 to see that

Y (s) = c δ
(
s− ω

2π

)
+ d δ

(
s+

ω

2π

)
− p

4πmω

(
1

s− ω/2π
− 1
s+ ω/2π

)

where c, d are arbitrary constants, so

y(t) = c eiωt + d e−iωt − p

4πmω
(eiωt − e−iωt)(iπ) sgn(t)

= c eiωt + d e−iωt +
p

2mω
sin(ωt) sgn(t).
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Since we want y to vanish for −∞ < t < 0, we determine c, d so that

c eiwt + d e−iwt =
p

2mω
sin(ωt),

and in this way we obtain the response function (4), i.e.,

y(t) =
p

mω
sin(ωt)h(t).

Example A naive automobile suspension system is shown in Fig. 7.14. The mass,
spring, and shock absorber process the wheel elevation function x(t) (determined by
the shape of the roadbed and the speed of the car) to produce a smoother elevation
function y0 + y(t) for the carriage. The constant y0 is the elevation of the carriage
when x(t) = 0 for −∞<t<∞. The system is governed by the differential equation

my′′(t) = −k[y(t) − x(t)] − d[y′(t) − x′(t)]

where m, k, and d are positive constants. Show that y = yδ ∗ x where yδ is the
response of the system to the unit impulse δ [see Exs 7.51, 7.52, and 5.28].

Figure 7.14. An automobile suspension system that links the
elevation x(t) of the wheel and the elevation y(t) of the carriage.

Solution We Fourier transform the differential equation

my′′(t) + dy′(t) + ky(t) = dx′(t) + kx(t)

to obtain
[m(2πis)2 + d(2πis) + k] · Y (s) = [d(2πis) + k] ·X(s).

The characteristic polynomial

P(r) := mr2 + dr + k



The Fourier transform calculus for generalized functions 419

has roots

r± :=
−d± √

d2 − 4mk
2m

with negative real parts, so

P(2πis) = m(2πis)2 + d(2πis) + k �= 0 for −∞ < s < ∞,

and 1/P(2πis), [1/P(2πis)]′, [1/P(2πis)]′′, . . . are CSG. This being the case,

Y (s) = Yδ(s) ·X(s)

where

Yδ(s) :=
d(2πis) + k

m(2πis)2 + d(2πis) + k

corresponds to the impulsive input x(t) = δ(t) with X(s) = 1. In this way we find
the response

y(t) = (yδ ∗ x)(t)
to an arbitrary generalized input x.

The impulse response, yδ, satisfies the homogeneous equation

my′′ + dy′ + ky = 0

on (−∞, 0) and on (0,+∞). Since r+, r− have negative real parts, we must have
yδ(t) = 0 for t < 0. We equate the singular parts of

my′′
δ (t) + dy′

δ(t) + kyδ(t) = d δ′(t) + k δ(t)

to obtain
m{yδ(0+)δ′ + y′

δ(0+)δ} + d{yδ(0+)δ} = d δ′ + k δ

and thereby find

yδ(0+) =
d

m
, y′

δ(0+) =
km− d2

m2 .

We can solve the homogeneous differential equation on (0,+∞) with these initial
conditions to find yδ(t) for t ≥ 0. [This is much easier than finding the inverse
Fourier transform of the rational function Yδ(s).]

You can use this procedure to analyze any linear system

P(D)y = Q(D)x

where

P(D) := a0 + a1D + · · · + anDn

Q(D) := b0 + b1D + · · · + bmDm

are polynomials in the derivative operator D and P(z) �= 0 when Re z = 0, see
Ex. 7.51.
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When we study diffraction in Chapter 9, we will often use the fact that

eiπx2
has the FT

1 + i√
2
e−iπs2

(98)

from Ex. 3.35. It is easy to derive this result within the present context. Indeed,

f(x) := eiπx2

and its ordinary derivatives are CSG, so the generalized functions f , F := f∧ satisfy

f ′(x) = 2πix · f(x),
2πis · F (s) = −F ′(s),

[eiπs2 · F (s)]′ = 0,

eiπs2 · F (s) = c

where c is a constant. Since e−iπs2
and its derivatives are also CSG, we can write

F (s) = c e−iπs2
.

The value
c =

1 + i√
2

=:
√
i

can be obtained from the Parseval identity
∫ ∞

−∞
eiπx2 · e−πx2

dx =
∫ ∞

−∞
c e−iπs2 · e−πs2

ds,

as in Ex. 7.45, or from the analysis leading to (4.71).

Fourier transforms from derivatives

In principle we can find the Fourier transform of any suitably regular function f on
R by evaluating the integral

F (s) :=
∫ ∞

−∞
f(x)e−2πisx dx.

The direct evaluation of such Fourier integrals is notoriously difficult, however, and
we almost always prefer to use more efficient indirect procedures. The following ex-
amples will show you how to find many Fourier transforms by computing generalized
derivatives. Be prepared to be impressed!
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Example Find the Fourier transform of f(x) := Λ(x) from (3.25).

Solution We compute the generalized derivatives

f ′(x) =




0 if x < −1
1 if −1 < x < 0
−1 if 0 < x < 1
0 if 1 < x,

f ′′(x) = δ(x+ 1) − 2δ(x) + δ(x− 1)

(see Fig. 7.15), and then use (94) with the derivative rule to write

(2πis)2 · F (s) = e2πis · 1 − 2 · 1 + e−2πis · 1

= (eπis − e−πis)2,

or equivalently,
s2 · [F (s) − sinc2(s)] = 0.

Figure 7.15. The function Λ(x) and its generalized derivatives
Λ′(x),Λ′′(x).



422 Generalized functions on R

In view of (89)–(90) this implies that

F (s) = sinc2(s) + c0δ(s) + c1δ
′(s)

for suitably chosen constants c0, c1. The piecewise smooth function f(x) vanishes
when |x| ≥ 1, so the Fourier transform F must be an ordinary function on R. This
a priori knowledge allows us to set c0 = c1 = 0 and thereby obtain

F (s) = sinc2(s)

(without ever evaluating an integral!).
Ex. 7.39 shows that this procedure, known as Eagle’s method, can be used to find

the Fourier transform of any piecewise polynomial function that vanishes outside
some finite interval [a, b].

Example Find the Fourier series for the 2-periodic function g with g(x) := x2 for
−1 < x < 1, see Fig. 4.2.

Solution We form the support-limited function

f(x) :=
{
x2 if − 1 < x < 1
0 otherwise,

compute the generalized derivatives

f ′(x) = δ(x+ 1) − δ(x− 1) +
{

2x if − 1 < x < 1
0 otherwise,

f ′′(x) = δ′(x+ 1) − δ′(x− 1) − 2δ(x+ 1) − 2δ(x− 1)

+
{

2 if − 1 < x < 1
0 otherwise,

f ′′′(x) = δ′′(x+ 1) − δ′′(x− 1) − 2δ′(x+ 1) − 2δ′(x− 1)
+ 2δ(x+ 1) − 2δ(x− 1),

and then use (93) with the derivative and translation rules to write

(2πis)3 · F (s) = e2πis[(2πis)2 − 2(2πis) + 2] − e−2πis[(2πis)2 + 2(2πis) + 2].

We know that F is an ordinary function on R, so the quotient

F (s) :=
e2πis[(2πis)2 − 2(2πis) + 2] − e−2πis[(2πis)2 + 2(2πis) + 2]

(2πis)3

has a removable singularity at the origin. We use the analysis equation to find

F (0) =
∫ 1

−1
x2 dx =

2
3
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(since this is much easier than a calculation based on l’Hôpital’s rule). Knowing F ,
we use Poisson’s relation (4.18) to obtain the Fourier series

g(x) =
∞∑

k=−∞

1
2
F

(
k

2

)
e2πikx/2.

You can use this procedure to find the Fourier series for any piecewise polynomial
p-periodic function on R. Details are given in Exs. 7.73 and 7.74. You may wish
to convince yourself that such a calculation is equivalent to the Bernoulli function
expansions that were developed in Section 4.1.

Example Find the Fourier transform of f(x) := e−|x| from (3.8).

Solution We write

f(x) :=
{
ex if x < 0
e−x if x > 0,

f ′(x) =
{
ex if x < 0
−e−x if x > 0,

f ′′(x) = −2δ(x) +
{
ex if x < 0
e−x if x > 0,

and thereby see that
−f ′′(x) + f(x) = 2δ(x).

We Fourier transform this differential equation and write

(4π2s2 + 1)F (s) = 2.

Since 1/(1 + 4π2s2) and its derivatives are all CSG, we immediately obtain

F (s) =
2

1 + 4π2s2

(without ever evaluating an integral!).

Example Find the Fourier transforms of the ordinary functions

f(x) :=
1
2
sgn(x) and h(x) :=

{
1 if x > 0
0 if x < 0.

Solution These functions have the generalized derivatives

f ′(x) = δ(x) and h′(x) = δ(x)

so their Fourier transforms must satisfy

2πis · F (s) = 1 and 2πis ·H(s) = 1.
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Using (88) we see that

s ·
[
F (s) − p−1(s)

2πi

]
= 0 and s ·

[
H(s) − p−1(s)

2πi

]
= 0

so

F (s) =
p−1(s)

2πi
+ c δ(s) and H(s) =

p−1(s)
2πi

+ d δ(s)

where c, d are constants that we must determine.
The odd function f must have an odd Fourier transform, and since δ is even we

must set c = 0 and write

f(x) =
1
2
sgn(x) has the FT F (s) =

1
2πis

:=
p−1(s)

2πi
.

[In conjunction with the inversion rule, this gives (69)!] After observing that

h(x) = f(x) +
1
2

we see that

h(x) has the FT H(s) =
1

2πis
+

1
2
δ(s). (99)

Example Find the Fourier transform of f(x) := |x2 − 1|.
Solution Let

g(x) :=
{

2(1 − x2) if −1 < x < 1
0 otherwise.

Since g′ has the jumps 4, 4 and g′′ has the jumps −4, 4 at the points x = −1, x = 1,
we find

g′′′(x) = 4δ′(x+ 1) + 4δ′(x− 1) − 4δ(x+ 1) + 4δ(x− 1),

and thereby obtain

G(s) =
4e2πis(2πis− 1) + 4e−2πis(2πis+ 1)

(2πis)3

(with the singularity at s = 0 being removable). We have chosen g to make

f(x) = x2 − 1 + g(x),

so we can use (95) to write

F (s) =
δ′′(s)

(−2πi)2
− δ(s) +G(s).

(In this case we cannot obtain the singular part of F from f ′′′ = g′′′.)
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Ex. 7.39 shows how such techniques can be used to find the Fourier transform of
any piecewise polynomial function with finitely many knots.

Example Find the Fourier transform of f(x) := 1/(1 + x4).

Solution We use the power scaling rule as we Fourier transform

(1 + x4) · f(x) = 1

to obtain the differential equation

F (4)(s) + (2π)4F (s) = (2π)4δ(s).

The characteristic polynomial

P(r) = r4 + (2π)4

has the roots

r =
√

2π(1 + i),
√

2π(1 − i),
√

2π(−1 + i),
√

2π(−1 − i),

and since F must be both even and slowly growing, we can write

F (s) = e−√
2π|s|[c sin(

√
2π|s|) + d cos(

√
2πs)]

for suitably chosen constants c, d. From the differential equation, we see that

F (0+) − F (0−) = 0, F ′(0+) − F ′(0−) = 0,

F ′′(0+) − F ′′(0−) = 0, F ′′′(0+) − F ′′′(0−) = (2π)4,

and since

F (s) = d+ (c− d)|
√

2πs| − c|
√

2πs|2 + (c+ d)|
√

2πs|3/3 + · · ·
we must have

c− d = 0, 12(c+ d)
(
√

2π)3

3
= (2π)4

so that
c = d =

π√
2
.

In this way we obtain the Fourier transform

F (s) = π e−√
2π|s| sin

(√
2π|s| +

π

4

)
.

You used (3.22) (and a lot more algebra!) to obtain this result in Ex. 3.13.
You can use this procedure to find the Fourier transform of any rational function

f that is defined on all of R, see Ex. 7.42.
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Support- and bandlimited generalized functions

A generalized function β is said to be σ-support-limited for some σ > 0 if β(x) = 0
for x < −σ and for x > σ, e.g., Π(x) is σ-support-limited when σ ≥ 1/2, δ(x) is
σ-support-limited when σ > 0, and e−πx2

is not σ-support-limited for any σ > 0.
A generalized function α is said to be σ-bandlimited for some σ > 0 if α∧(s) = 0

for s < −σ and for s > σ, e.g., sinc(x) is σ-bandlimited when σ ≥ 1/2, x2 is
σ-bandlimited when σ > 0, and e−πx2

is not σ-bandlimited for any σ > 0. Of
course, α is σ-bandlimited if and only if α∧ is σ-support-limited.

As we develop sampling theory in Chapter 8, we will often have occasion to form
products α · f , β ∗ f where α is σ-bandlimited, β is σ-support-limited, and f is an
arbitrary generalized function. We will now verify that such generalized functions
α, β satisfy the sufficient conditions (79), (80) and thereby show that these products
are well defined.

Let β = g(m) where g is CSG and m is a nonnegative integer, and assume that β
is σ-support-limited. Then g(m)(x) = 0 for x < −σ and for x > σ, so we can write

g(x) = pL(x)h(−σ − x) + γ(x) + pR(x)h(x− σ) (100)

where pL, pR are polynomials of degree m − 1 or less, where h is the Heaviside
function, and where

γ(x) is continuous for − σ ≤ x ≤ σ with
γ(x) = 0 for x < −σ or x > σ,

(101)

see Fig. 7.16. We takem generalized derivatives of (100) to obtain the representation

β(x) = γ(m)(x) +
m−1∑
µ=0

[cµδ(µ)(x+ σ) + dµδ
(µ)(x− σ)] (102)

where

cµ := −p(m−µ−1)
L (−σ), dµ := p

(m−µ−1)
R (σ), µ = 0, 1, . . . ,m− 1.

Figure 7.16. The truncated polynomials pL, pR and the function
γ for the CSG function g that gives a σ-support-limited β = g(m).
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Now if γ satisfies (101), the Fourier transform

γ∧(s) =
∫ σ

−σ

γ(x)e−2πisx dx

and its derivatives

[γ∧(s)](n) =
∫ σ

−σ

(−2πix)nγ(x)e−2πisx dx, n = 1, 2, . . .

are continuous and bounded with

∣∣∣[γ∧(s)](n)
∣∣∣ ≤ (2πσ)n

∫ σ

−σ

|γ(x)| dx, n = 0, 1, 2, . . . .

This being the case,

β∧(s) = (2πis)m γ∧(s) +
m−1∑
µ=0

(2πis)µ [cµe2πiσs + dµe
−2πiσs] (103)

and all of its derivatives are CSG. You have often observed that the Fourier trans-
form of a function with “small tails” must be “very smooth.” In this extreme case
where β has “zero tails,” the functions β∧, β∧′, β∧′′, . . . are all CSG.

Finally, when α is σ-bandlimited we apply the above argument to the σ-support-
limited function β = α∧∨ and thereby conclude that α = β∧ and all of its derivatives
are CSG. You can now add the σ-bandlimited functions to the list following (79)!

7.6 Limits of generalized functions

Introduction

If you dislike the tedious δ− ε arguments from calculus or chafe a bit at restrictions
on the term-by-term differentiation of infinite series, you may not look forward to
yet another study of limits. But you cannot do analysis without limits, and you
must learn a few new concepts before you can make sense of the relations (4) or (5),
before you can work with infinite series of generalized functions, or before you can
use Fourier analysis to find generalized solutions of partial differential equations.
The theory is easy to learn and exceptionally powerful. You will more than double
your ability to use generalized functions for solving problems as you master the
ideas in this short section!
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The limit concept

Let f, f1, f2, . . . be generalized functions. When we feed these functionals some
Schwartz function φ, we produce a complex number f{φ} and a sequence of complex
numbers f1{φ}, f2{φ}, . . . . If we have

lim
n→∞ fn{φ} = f{φ} whenever φ ∈ S,

we will write
lim

n→∞ fn = f.

In some situations we will associate a generalized function fλ with each (real or
complex) value of the parameter λ in some neighborhood of a (finite or infinite)
point L. If we have

lim
λ→L

fλ{φ} = f{φ} whenever φ ∈ S,

we will write
lim
λ→L

fλ = f.

We will use the unadorned terms limit and converge in the usual fashion, e.g.,
we say that f1, f2, . . . converges to f or that f is the limit of f1, f2, . . . when
f = limn→∞ fn. In cases where the context admits some competing notion (e.g.,
pointwise limit, uniform convergence) we will add the modifier generalized or weak
to specify that we are using this new limit concept.

Example Let fn(x) := nΠ(nx), n = 1, 2, . . . . Show that limn→∞ fn = δ.

Solution Let φ be any Schwartz function. We use the integral mean value theorem
from calculus to write

fn{φ} =
∫ ∞

−∞
nΠ(nx)φ(x) dx = n

∫ 1/2n

−1/2n

φ(x) dx = φ(ξn)

for some choice of ξn in the interval (−1/2n, 1/2n). Since φ is continuous, we have

lim
n→∞ fn{φ} = lim

n→∞φ(ξn) = φ(0) = δ{φ}.

You can use a similar argument to interpret the limit (5) from Fig. 7.2.

Example Let es(x) := e2πisx. Show that lims→±∞ es = 0 even though |es(x)| = 1
for all real values of s and x.

Solution Let φ ∈ S. Since φ∧ ∈ S we can write

lim
s→±∞es{φ} = lim

s→±∞

∫ ∞

−∞
φ(x)e2πisx dx = lim

s→±∞φ
∧(−s) = 0.
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Example For n = 0, 1, . . . and h > 0 we define

Pn,h(x) :=
1
hn

n∑
m=0

(−1)n−m

(
n

m

)
δ(x−mh), (104)

see Fig. 7.17. Show that limh→0 Pn,h = (−1)nδ(n).

Figure 7.17. The monopole P0,h, the dipole P1,h, and the
quadrupole P2,h from (104).

Solution Let φ ∈ S. We observe that

P1,h{φ} =
1
h

[φ(h) − φ(0)] =
1
h

∫ h

u1=0
φ′(u1) du1,

P2,h{φ} =
1
h2 [φ(2h) − 2φ(h) + φ(0)] =

1
h2

∫ h

u2=0

∫ h

u1=0
φ′′(u1 + u2) du1 du2,

...

and use a multivariate version of the integral mean value theorem to see that

lim
h→0

Pn,h{φ} = φ(n)(0) = (−1)nδ(n){φ}.

Example For all λ < µ we define

fλµ(x) :=
∫ µ

λ

e2πisx ds.

Show that
lim

λ→−∞
lim

µ→+∞fλµ = δ,
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thereby giving meaning to the synthesis equation

δ(x) =
∫ ∞

−∞
1 · e2πisx ds,

which corresponds to (66).

Solution The CSG function fλµ is represented by the fundamental functional

fλµ{φ} =
∫ ∞

x=−∞

{∫ µ

s=λ

e2πisx ds

}
φ(x) dx

=
∫ µ

s=λ

∫ ∞

x=−∞
φ(x)e2πisx dx ds

=
∫ µ

s=λ

φ∧(−s) ds, φ ∈ S,

so

lim
λ→−∞

lim
µ→+∞ fλµ{φ} =

∫ ∞

−∞
φ∧(−s) ds = φ(0) = δ{φ}, φ ∈ S

(with the order of the iterated limits being of no importance).

Example Let f be a generalized function with the derivative f ′. Show that

f ′(x) = lim
h→0

f(x+ h) − f(x)
h

. (105)

Solution Let φ ∈ S be given. We will define

Ih :=
∫ ∞

−∞

f(x+ h) − f(x)
h

φ(x) dx−
∫ ∞

−∞
f ′(x)φ(x) dx

= h−1
∫ ∞

−∞
f(x)[φ(x− h) − φ(x) + hφ′(x)] dx, h < 0 or h > 0,

and show that Ih → 0 as h → 0. We choose a CSG function g and nonnegative
integer n such that f = g(n) and use Taylor’s formula (from Ex. 2.28) to write

Ih = h−1
∫ ∞

−∞
g(n)(x)[φ(x− h) − φ(x) + hφ′(x)] dx

= (−1)nh−1
∫ ∞

−∞
g(x)[φ(n)(x− h) − φ(n)(x) + hφ(n+1)(x)] dx

= (−1)nh−1
∫ ∞

−∞
g(x)

∫ h

u=0
(h− u)φ(n+2)(x− u) du dx.
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We choose some m = 1, 2, . . . so that

M :=
∫ ∞

−∞

|g(x)|
(1 + x2)m

dx

is finite, and we set

B(H) := max−∞<x<∞[1 + (|x| +H)2]m · |φ(n+2)(x)| when H ≥ 0

to ensure that∫ ∞

−∞

|g(x)|
(1 + x2)m

· (1 + x2)m|φ(n+2)(x− u)| dx ≤ M ·B(H) when |u| ≤ H.

We can now use this bound to write

|Ih| ≤ |h|−1
∫ |h|

u=0
(|h| − u)

∫ ∞

−∞
|g(x)φ(n+2)(x− u)| dx du

≤ M ·B(H) · |h|
2

when 0 < |h| < H,

and thereby conclude that Ih → 0 as h → 0.

Example Let f be a generalized function. Show that

lim
h→0

f(x+ h) = f(x). (106)

Solution Let φ ∈ S. We use (105) to write

lim
h→0

∫ ∞

−∞
[f(x+ h) − f(x)]φ(x) dx = lim

h→0
h

∫ ∞

−∞

f(x+ h) − f(x)
h

φ(x) dx

= 0 ·
∫ ∞

−∞
f ′(x)φ(x) dx = 0.

Infinite series of generalized functions

Let f, fν , ν = 0,±1,±2, . . . be generalized functions. We will write

f =
∞∑

ν=0

fν or f = f0 + f1 + f2 + · · ·

provided that

f = lim
n→∞

n∑
ν=0

fν ,
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and we will write

f =
∞∑

ν=−∞
fν or f = · · · + f−2 + f−1 + f0 + f1 + f2 + · · ·

provided that

f = lim
m→−∞

−1∑
ν=m

fν + lim
n→+∞

n∑
ν=0

fν .

Example Show that

X(x) =
∞∑

ν=−∞
δ(x− ν). (107)

Solution Let φ ∈ S be given. The series (40) converges absolutely, so we can set
δν(x) := δ(x− ν) and use the sifting relation (64) to write

lim
m→−∞
n→+∞

( n∑
ν=m

δν

)
{φ} = lim

m→−∞
n→+∞

n∑
ν=m

δν{φ} = lim
m→−∞
n→+∞

n∑
ν=m

φ(ν) = X{φ}.

Example Let f be the 1-periodic function with

f(x) = w1(x) := −1
2
x2 +

1
2
x− 1

12
when 0 ≤ x ≤ 1

where w1 is the Bernoulli function (4.20) from Fig. 4.5. Show that the corresponding
Fourier series

f(x) =
∞∑

k=−∞
k �=0

e2πikx

(2πik)2
(108)

is weakly convergent.

Solution Let φ ∈ S be chosen, and let

M := max−∞<x<∞

∣∣∣∣
∞∑

n=−∞
φ(x+ n)

∣∣∣∣.
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The Fourier series for the continuous piecewise smooth function f converges uni-
formly, so we can write

∣∣∣∣
∫ ∞

−∞
f(x)φ(x) dx−

∫ ∞

−∞

n∑
k=m
k �=0

e2πikx

(2πik)2
φ(x) dx

∣∣∣∣
=
∣∣∣∣
∫ 1

x=0

(
f(x) −

n∑
k=m
k �=0

e2πikx

(2πik)2

)( ∞∑
n=−∞

φ(x+ n)
)
dx

∣∣∣∣
≤ M

(∑
k<m

1
|2πk|2 +

∑
k>n

1
|2πk|2

)

→ 0 as m → −∞ and n → +∞.

You can use an analogous argument to see that any continuous, piecewise smooth,
p-periodic function on R has a weakly convergent Fourier series.

Example Let a0, a1, a2, . . . be complex numbers and assume that the series

f(x) = a0δ(x) + a1δ
′(x) + a2δ

′′(x) + · · · (109)

converges. Show that aν = 0 for all but finitely many values of ν = 0, 1, 2, . . . .

Solution Since every term of the series vanishes for −∞ < x < 0 and for
0 < x < ∞, the same is true of f , so we can use (91) to write

f(x) =
n−1∑
ν=0

cνδ
(ν)(x)

for some choice of n = 1, 2, . . . and some choice of the coefficients c0, c1, . . . , cn−1.
Now let m = n, n+ 1, . . . be selected. We construct a mesa function φ ∈ S that

takes the constant value 1 in some neighborhood of the origin (as in Fig. 7.5) and
then set

ψ(x) := (xm/m!)φ(x).

By construction, ψ is a Schwartz function with

ψ(ν)(0) =
{

1 if ν = m

0 otherwise,

so

(−1)mam = lim
k→∞

( k∑
ν=0

aνδ
(ν)
)

{ψ} =
( n−1∑

ν=0

cνδ
(ν)
)

{ψ} = 0.



434 Generalized functions on R

Transformation of limits

Let f, f1, f2, . . . and g, g1, g2, . . . be generalized functions. If you can show that

lim
n→∞fn(x) = f(x), lim

n→∞gn(x) = g(x)

then you can use each of the following.

lim
n→∞ [c fn(x) + d gn(x)] = c f(x) + d g(x), c, d ∈ C

lim
n→∞ fn(x− x0) = f(x− x0), −∞ < x0 < ∞,

lim
n→∞ fn(ax) = f(ax), a < 0 or a > 0,

lim
n→∞ f (k)

n (x) = f (k)(x), k = 1, 2, . . . ,

lim
n→∞ f∧

n (s) = f∧(s),

lim
n→∞ α(x) · fn(x) = α(x) · f(x), α, α′, α′′, . . . are CSG,

lim
n→∞ (β ∗ fn)(x) = (β ∗ f)(x), β∧, β∧′, β∧′′, . . . are CSG.

Corresponding transformations can be used when

lim
λ→L

fλ(x) = f(x), lim
λ→L

gλ(x) = g(x).

You can establish these rules by chasing definitions.

Example Let limn→∞ fn = f . Show that limn→∞ f ′
n = f ′.

Solution Given any φ ∈ S we write

f ′{φ} =
∫ ∞

−∞
f ′(x)φ(x) dx Integral notation

:=
∫ ∞

−∞
f(x)[−φ′(x)] dx Definition of f ′

= lim
n→∞

∫ ∞

−∞
fn(x)[−φ′(x)] dx Since lim fn=f

=: lim
n→∞

∫ ∞

−∞
f ′

n(x)φ(x) dx Definition of f ′
n

= lim
n→∞ f ′

n{φ}, Integral notation

and this proves that limn→∞ f ′
n = f ′.
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Example Let limn→∞ fn = f . Show that limn→∞ f∧
n = f∧.

Solution Given any φ ∈ S we write

f∧{φ} =
∫ ∞

−∞
f∧(s)φ(s) ds Integral notation

:=
∫ ∞

−∞
f(x)[φ∧(x)] dx Definition of f∧

= lim
n→∞

∫ ∞

−∞
fn(x)[φ∧(x)] dx Since lim fn=f

=: lim
n→∞

∫ ∞

−∞
f∧

n (s)φ(s) ds Definition of f∧
n

= lim
n→∞ f∧

n {φ}, Integral notation

and this proves that limn→∞ f∧
n = f∧.

The rules for transforming weak limits are exceptionally useful when we work
with infinite series. Indeed, if you can somehow show that

f(x) =
∞∑

ν=−∞
fν(x)

then you can write

f(x− x0) =
∞∑

ν=−∞
fν(x− x0), −∞ < x0 < ∞,

f(ax) =
∞∑

ν=−∞
fν(ax), a < 0 or a > 0,

f (k)(x) =
∞∑

ν=−∞
f (k)

ν (x), k = 1, 2, . . . ,

f∧(s) =
∞∑

ν=−∞
f∧

ν (s),

α(x) · f(x) =
∞∑

ν=−∞
α(x) · fν(x), α, α′, α′′, . . . are CSG, and

(β ∗ f)(x) =
∞∑

ν=−∞
(β ∗ fν)(x), β∧, β∧′, β∧′′, . . . are CSG.

We will give a few examples to show what can be done with such transformations.



436 Generalized functions on R

Example Use the weakly convergent series (107) to show that X∧ = X.

Solution We Fourier transform (107) term by term to obtain the unusual (but
weakly convergent!) infinite series

X∧(s) =
∞∑

ν=−∞
e−2πiνs.

We use this series with the special Poisson sum formula (67) to write

X∧{φ} = lim
m→−∞
n→+∞

n∑
ν=m

∫ ∞

−∞
e−2πiνsφ(s) ds = lim

m→−∞
n→+∞

n∑
ν=m

φ∧(ν)

=
∞∑

ν=−∞
φ∧(ν) =

∞∑
ν=−∞

φ(ν) = X{φ}, φ ∈ S.

This gives a second proof of (68)!

Example Use the Fourier series (108) to show that X∧ = X.

Solution We have shown that (108) converges weakly, so we can differentiate this
series term by term to obtain the weakly convergent series

f ′(x) =
∞∑

k=−∞
k �=0

e2πikx

2πik
, f ′′(x) =

∞∑
k=−∞
k �=0

e2πikx.

After examining the graphs of f, f ′, f ′′ as shown in Fig. 7.18, we see that

X(x) = f ′′(x) + 1 =
∞∑

k=−∞
e2πikx.

We take Fourier transforms term by term and use (107) to write

X∧(s) =
∞∑

k=−∞
δ(s− k) = X(s).

This gives a third proof of (68)!

Example Let p > 0, so that

f(x) :=
1
p
X
(
x

p

)
has the FT F (s) = X(ps).

Express f and F in terms of translates of δ.
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Figure 7.18. The piecewise parabolic Bernoulli function f from (108)
and its derivatives f ′, f ′′.

Solution We dilate (107) term by term and use (65) as we write

f(x) =
1
p

∞∑
n=−∞

δ

(
x

p
− n

)
=

∞∑
n=−∞

δ(x− np),

F (s) =
∞∑

n=−∞
δ(ps− n) =

1
p

∞∑
n=−∞

δ

(
s− n

p

)
,

(110)

see Fig. 7.19. The spacing 1/p for the comb F is the reciprocal of the spacing p
for the comb f . [Compare this with (4.44).] It is very easy to derive (110) by
using X.

Figure 7.19. The dilated comb and its Fourier transform as given in (110).
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Example Let c0, c1, c2, . . . be complex numbers and assume that the power series

f(x) = c0 + c1x+ c2x
2 + · · ·

converges weakly. Show that cν = 0 for all but finitely many values of ν.

Solution Since the power series converges weakly, we can take Fourier transforms
term by term to obtain

f∧(s) = c0δ(s) + c1
δ′(s)
−2πi

+ c2
δ′′(s)

(−2πi)2
+ · · · .

Our previous analysis of (109) shows that cν = 0 for all but finitely many ν.
You may be surprised by this result. The familiar Maclaurin series

1 − x2/2! + x4/4! − x6/6! + · · · , x− x3/3! + x5/5! − x7/7! + · · ·
from calculus converge pointwise to the generalized functions cosx, sinx, but these
power series do not converge weakly. You can freely use the new notion of limit
with Fourier series but not with power series!

Partial derivatives

Let u(x, t) be a generalized function of x for each choice of the parameter t in some
real interval (a, b). We will write

ux(x, t) for the generalized derivative lim
h→0

u(x+ h, t) − u(x, t)
h

of u(x, t) with t being fixed, see (105);

u∧(s, t) or U(s, t) for the generalized Fourier transform
of u(x, t) with t being fixed; and

ut(x, t) for the generalized limit lim
h→0

u(x, t+ h) − u(x, t)
h

when this limit exists.

(111)

Since the process of taking generalized derivatives and Fourier transforms commutes
with that of taking generalized limits we can always write

(ut)x(x, t) = (ux)t(x, t)

(ut)∧(s, t) = (u∧)t(s, t)
(112)

when ut is defined. We will routinely use such relations as we solve partial differ-
ential equations in Chapter 9.
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Example Let f be a generalized function. Show that

lim
h→0

e−2πihx − 1
h

f(x) = −2πix · f(x).

Solution We Fourier transform and reflect the limit

lim
h→0

f∧(s+ h) − f∧(s)
h

= f∧′(s)

from (105) to obtain the desired result.

Example Let u(x, t) := Π(x − ct) where c > 0 and where t is a real parameter.
Show that ut(x, t) = −c ux(x, t).

Solution We will calculate ux, ut and verify that ux = −c ut. Since the box
Π(x− ct) has jumps +1,−1 at x = ct− 1

2 , x = ct+ 1
2 , we have

ux(x, t) = δ(x− ct+ 1
2 ) − δ(x− ct− 1

2 ).

Now when 0 < h < 1/c we find

Π(x− ct− ch) − Π(x− ct) =




−1 if ct− 1
2 < x < ct− 1

2 + ch

+1 if ct+ 1
2 < x < ct+ 1

2 + ch

0 otherwise

and when −1/c < h < 0 we find

Π(x− ct− ch) − Π(x− ct) =




+1 if ct− 1
2 + ch < x < ct− 1

2

−1 if ct+ 1
2 + ch < x < ct+ 1

2

0 otherwise.

It follows that

ut(x, t) := lim
h→0

h−1[Π(x− ct− ch) − Π(x− ct)]

= c[−δ(x− ct+ 1
2 ) + δ(x− ct− 1

2 )]

= −cux(x, t).

For a more efficient argument, we can use (105) to write

ut(x, t) := lim
h→0

Π(x− ct− ch) − Π(x− ct)
h

= −c lim
h→0

u(x− ch, t) − u(x, t)
−ch

= −cux(x, t).
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7.7 Periodic generalized functions

Fourier series

Let p > 0, let f be a generalized function, and assume that f is p-periodic, i.e.,

f(x+ p) = f(x) for −∞ < x < ∞. (113)

We will show that f can be represented by a weakly convergent Fourier series

f(x) =
∞∑

k=−∞
cke

2πikx/p (114)

with the corresponding weakly convergent series

f∧(s) =
∞∑

k=−∞
ckδ

(
s− k

p

)
, (115)

giving the generalized Fourier transform. (You will soon learn how to find the
Fourier coefficient ck, k = 0,±1,±2, . . . .) Fourier and his contemporaries tried to
establish such a representation for an arbitrary p-periodic continuous function, but
they were unsuccessful because they did not have a suitable limit concept.

We begin by writing
f(x) = g(n)(x)

where g is CSG and n is a nonnegative integer. We will replace g by an antiderivative
(59), if necessary (and augment n accordingly), to make sure that g is continuously
differentiable. Since f is p-periodic, we then have

[g(x+ p) − g(x)](n) = 0 for −∞ < x < ∞,

and this implies that
g(x+ p) − g(x) = q(x) (116)

where q is a polynomial of degree n− 1 or less.
We determine coefficients a0, a1, . . . , an−1 such that

q(x) = a0x
[0] + a1x

[1] + a2x
[2] + · · · + an−1x

[n−1]

where

x[0] := 1, x[1] := x, x[2] := x(x− p), x[3] := x(x− p)(x− 2p), . . . .

These factorial powers have the forward differences

(x+ p)[k] − x[k] = kp · x[k−1], k = 1, 2, . . . ,
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so the polynomial

q0(x) :=
n∑

k=1

ak−1
x[k]

kp

of degree n or less has the forward difference

q0(x+ p) − q0(x) =
n∑

k=1

ak−1
(x+ p)[k] − x[k]

kp
= q(x). (117)

We now set
g0(x) := g(x) − q0(x)

and use (116), (117) to see that

g0(x+ p) = g(x+ p) − q0(x+ p)
= [g(x) + q(x)] − [q0(x) + q(x)]
= g0(x) for −∞ < x < ∞.

Since g0 is a continuously differentiable p-periodic function on R, the analysis from
Section 1.5 shows that the Fourier coefficients

G0[k] :=
1
p

∫ p

0
g0(x)e−2πikx/p dx, k = 0,±1,±2, . . .

are absolutely summable. This guarantees that the ordinary Fourier series

g0(x) =
∞∑

k=−∞
G0[k]e2πikx/p

converges weakly. We repeatedly differentiate this series term by term and write

f(x) = g(n)(x) = g
(n)
0 (x) + q

(n)
0 (x) =

∞∑
k=−∞

(
2πik
p

)n

G0[k]e2πikx/p + q
(n)
0 (0).

(Since q0 is a polynomial of degree n or less, q(n)
0 is a constant.) In this way we

show that f has the representation (114) with

ck =



q
(n)
0 (0) if k = 0(
2πik
p

)n
G0[k] if k = ±1,±2, . . .

(118)

and

|ck| ≤
{(

2π
p

)n
· 1
p

∫ p

0
|g0(x)| dx

}
|k|n, k = ±1,±2, . . . . (119)



442 Generalized functions on R

Example Find the Fourier transform of the 5-periodic generalized function

f(x) :=
∞∑

n=−∞
Π(x− 5n). (120)

Solution We use Poisson’s relation (4.18) to obtain the Fourier series

f(x) =
∞∑

k=−∞

1
5

sinc
(
k

5

)
e2πikx/5.

This series converges weakly (differentiate the antiderivative!), so we can take
Fourier transforms term by term to obtain

f∧(s) =
∞∑

k=−∞

1
5

sinc
(
k

5

)
δ

(
s− k

5

)
, (121)

see Fig. 7.20.

Figure 7.20. The 5-periodic function f from (120) and the
corresponding generalized Fourier transform f∧ from (121).

Example Use (107) to infer that X, X∧ are 1-periodic and thereby show that
X∧ = X.

Solution We translate (107) term by term to infer that

X(x+ 1) =
∞∑

ν=−∞
δ(x+ 1 − ν) =

∞∑
ν=−∞

δ(x− ν) = X(x).

Knowing that X is 1-periodic, we use (115) (with p = 1) to write

X∧(s) =
∞∑

k=−∞
ckδ(s− k)
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for suitably chosen ck’s. Since e−2πix and each of its derivatives is CSG, we can
apply this factor to the terms of (107) and then use (82) to see that

e−2πix · X(x) =
∞∑

ν=−∞
e−2πix · δ(x− ν) =

∞∑
ν=−∞

δ(x− ν) = X(x).

We then use the modulation rule to show that X∧ is 1-periodic,

X∧(s+ 1) = X∧(s),

and thereby infer that ck is independent of k, i.e.,

X∧(s) = cX(s)

for some constant c. Finally, we use the Parseval identity as we write

∞∑
n=−∞

e−πn2
=
∫ ∞

−∞
X(x)e−πx2

dx

=
∫ ∞

−∞
X∧(s)e−πs2

ds = c

∫ ∞

−∞
X(s)e−πs2

ds = c
∞∑

n=−∞
e−πn2

and thereby show that c = 1. This gives a fourth proof of (68)!

Example Let p > 0 and assume that the zero function z(x) = 0 is given by the
weakly convergent series

z(x) =
∞∑

k=−∞
dke

2πikx/p.

Show that dk = 0 for each k [and thereby prove that the representation (114) is
unique].

Solution Let k = 0,±1,±2, . . . be selected. We construct a mesa function φk ∈ S

such that

φk

(
k

p

)
= 1 and φk(x) = 0 when

∣∣∣∣x− k

p

∣∣∣∣ ≥ 1
p
,

see Fig. 7.5. Since

z∧(s) =
∞∑

ν=−∞
dνδ

(
s− ν

p

)



444 Generalized functions on R

we can then write

dk = lim
m→−∞
n→+∞

n∑
ν=m

dνφk

(
ν

p

)
= z∧{φk} = 0.

If the series (114) converges weakly, then the limit function f is p-periodic and
(119) shows that the coefficients are slowly growing in the sense that

|ck| ≤ B · |k|n when k = ±1,±2, . . . (122)

for some choice of B > 0 and some nonnegative integer n. We will now establish
the converse.

Let ck, k = 0,±1,±2, . . . satisfy (122) and let p > 0 be selected. Given φ ∈ S we
set

C := max
|x|≥1

∣∣∣∣xn+2 · φ
(
x

p

)∣∣∣∣
and use this bound with (122) to see that

∑
k �=0

∣∣∣∣ckφ
(
k

p

)∣∣∣∣ ≤ ∑
k �=0

∣∣∣∣Bkn · k2φ

(
k

p

)
· k−2

∣∣∣∣ ≤ BC
∑
k �=0

k−2 < ∞.

In this way we see in turn that

∞∑
k=−∞

ckφ

(
k

p

)
, φ ∈ S

converges absolutely, that
∞∑

k=−∞
ckδ

(
s− k

p

)

converges weakly, and that
∞∑

k=−∞
cke

2πikx/p

converges weakly to a generalized function f that is p-periodic.

Example Let p > 0. For which values of the complex parameter z does the series

∞∑
k=−∞

z|k|e2πikx/p

converge weakly?

Solution The series converges weakly if and only if the coefficients z|k| are slowly
growing, i.e., if and only if |z| ≤ 1.
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The analysis equation

A p-periodic generalized function f can be synthesized by the Fourier series (114),
but the expression (118) for the ck’s is a bit unwieldly for routine use. We will
suitably modify the familiar formula

ck =
1
p

∫ p

0
f(x)e−2πikx/p dx, k = 0,±1,±2, . . .

to obtain an analysis equation that makes sense within the present context.
When we use a = −1, b = c = 0, d = 1 for the mesa function of Fig. 7.5, we

obtain the tapered box

b(x) :=

∫ 1
|x| β(u) du∫ 1
0 β(u) du

(123)

where

β(u) :=
{
e−1/[x(1−x)] if 0 < x < 1
0 otherwise.

(124)

From (123) we see that b is a Schwartz function with

b(x) = b(−x) for −1 < x < 1,
b(x) > 0 for −1 < x < 1
b(x) = 0 for −∞ < x ≤ −1 or 1 ≤ x < ∞,

(125)

as shown in Fig. 7.21. We use (123) with the symmetry

β(u) = β(1 − u), −∞ < u < ∞

to see that
b(x) + b(1 − x) = 1 for 0 < x < 1

or equivalently (since b is even),

b(x) + b(x− 1) = 1 for 0 < x < 1. (126)

Figure 7.21. The tapered box b from (123).
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By using (125)–(126) we easily compute the samples

B(k) :=
∫ ∞

−∞
b(x)e−2πikx dx =

∞∑
n=−∞

∫ n+1

n

b(x)e−2πikx dx

=
∞∑

n=−∞

∫ 1

0
b(x+ n)e−2πikx dx =

∫ 1

0
[b(x) + b(x− 1)]e−2πikx dx

=
∫ 1

0
1 · e2πikx dx =

{
1 if k = 0
0 if k = ±1,±2, . . .

(127)

of the Fourier transform. Since b and B are Schwartz functions, we can use (107),
(82), and (127) to write

B(s) · X(s) =
∞∑

k=−∞
B(s) · δ(s− k) =

∞∑
k=−∞

B(k) · δ(s− k) = δ(s)

and thereby obtain the weakly converging series

∞∑
k=−∞

b(x− k) = (b ∗ X)(x) = 1. (128)

Now let f be a p-periodic generalized function with the Fourier series (114). We
evaluate f at the Schwartz function e−2πikx/pb(x/p) and use (127) to write

∫ ∞

−∞
f(x)

[
e−2πikx/p b

(
x

p

)]
dx =

∫ ∞

−∞

( ∞∑
�=−∞

c�e
−2πi(k−�)x/p

)
b

(
x

p

)
dx

=
∞∑

�=−∞
c�

∫ ∞

−∞
e−2πi(k−�)x/p b

(
x

p

)
dx

= p
∞∑

�=−∞
c�B(k − 
)

= p ck, k = 0,±1,±2, . . . .

In this way we obtain the desired analysis equation

ck =
1
p

∫ ∞

−∞
f(x)e−2πikx/p b

(
x

p

)
dx, k = 0,±1,±2, . . . (129)

for the Fourier coefficients of a p-periodic generalized function f .
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Convolution of p-periodic generalized functions

When f, g are piecewise smooth ordinary functions on Tp, we use the familiar inte-
gral ∫ p

0
f(u)g(x− u) du

from (2.1) to define the convolution product. We will now introduce a corresponding
definition that allows us to work with generalized functions on Tp. [In essence, we
will formally replace du by b(u/p)du and change the limits in the above integral to
±∞, see (129).]

Let p > 0, let

f(x) =
∞∑

k=−∞
cke

2πikx/p, g(x) =
∞∑

k=−∞
dke

2πikx/p (130)

be arbitrary p-periodic generalized functions, and let

bp(x) := b

(
x

p

)
.

Since bp is a Schwartz function, we can form the product bp · f , and since bp · f is
p-support limited we can form the convolution product (bp · f) ∗ g. We will define

f � g := (bp · f) ∗ g (131)

and show that within this context (2.18) takes the form

(f � g)(x) =
∞∑

k=−∞
p ckdke

2πikx/p. (132)

Here ∗ is the convolution product for generalized functions on R and � is the new
convolution product for generalized functions on Tp. Indeed, we first convolve the
p-bandlimited function b∧p with

f∧(s) =
∞∑

�=−∞
c�δ

(
s− 


p

)

to obtain the ordinary function

(b∧p ∗ f∧)(s) =
∞∑

�=−∞
c�b

∧
p

(
s− 


p

)
=

∞∑
�=−∞

p c�B(ps− 
),

and then use (127) to evaluate

(bp · f)∧
(
k

p

)
= (b∧p ∗ f∧)

(
k

p

)
= p ck, k = 0,±1,±2, . . . . (133)
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We multiply

g∧(s) =
∞∑

k=−∞
dkδ

(
s− k

p

)

by the bandlimited function (bp · f)∧, use (82) and (133) to write

[(bp · f)∧ · g∧] (s) =
∞∑

k=−∞
dk(bp · f)∧(s)δ

(
s− k

p

)

=
∞∑

k=−∞
dk(bp · f)∧

(
k

p

)
δ

(
s− k

p

)
=

∞∑
k=−∞

p ckdkδ

(
s− k

p

)
,

and thereby obtain (132).
You can use (132) to verify that � has all of the algebraic properties that we would

demand of a convolution product on Tp. Indeed, the set of p-periodic generalized
functions is closed under �, � is commutative and associative, � distributes over
addition, and the dilated comb

δp(x) :=
1
p
X
(
x

p

)
=

∞∑
�=−∞

δ (x− 
p) =
∞∑

k=−∞

1
p
e2πikx/p (134)

is the multiplicative identity for � with

δp � f = f � δp = f,

when f is p-periodic.

Discrete Fourier transforms

Let f be a function on PN and let F be the corresponding discrete Fourier transform.
The N -periodic sequence f [n], n = 0,±1,±2, . . . is slowly growing, so we can define
the generalized function

g(x) :=
∞∑

n=−∞
f [n]δ(x− n).

Since f is N -periodic, we can use (65) and (107) to see that

g(x) =
N−1∑
n=0

f [n]
∞∑

m=−∞
δ(x− n−mN) =

N−1∑
n=0

f [n]
1
N

∞∑
m=−∞

δ

(
x− n

N
−m

)

=
N−1∑
n=0

f [n]
1
N

X
(
x− n

N

)
.
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We Fourier transform this identity and use (107), (65), (82) in turn to write

g∧(s) =
N−1∑
n=0

f [n]e−2πinsX(Ns) =
N−1∑
n=0

f [n]e−2πins
∞∑

k=−∞
δ(Ns− k)

=
N−1∑
n=0

f [n]e−2πins 1
N

∞∑
k=−∞

δ

(
s− k

N

)

=
∞∑

k=−∞

(
1
N

N−1∑
n=0

f [n]e−2πikn/N

)
δ

(
s− k

N

)

=
∞∑

k=−∞
F [k]δ

(
s− k

N

)
.

Example Find the Fourier transform of

g(x) =
∞∑

m=−∞
f [n]δ(x− n) (135)

when f is the 12-periodic function on Z with

f [n] = Λ
(n

3

)
when n = 0,±1, . . . ,±6. (136)

Solution We use the table from Appendix 2 to see that the 12-periodic DFT of f
has the components

F [k] =
1
4

sinc2(k/4)
sinc2(k/12)

when k = ±1, . . . ,±6. (137)

We then use the above analysis to write

g∧(s) =
∞∑

k=−∞
F [k]δ

(
s− k

12

)
, (138)

as shown in Fig. 7.22.

Figure 7.22. The 12-periodic generalized function g from (135)–
(136) and the corresponding generalized Fourier transform g∧
from (137)–(138).
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Connections

In Chapter 1 we showed how to construct the Fourier transform of a suitably regular
function on Tp, Z, or PN from the Fourier transform of some corresponding function
on R by using p-summation or h-sampling, see Fig. 1.22. The generalized Fourier
transform (GFT) that we have studied in this chapter allows us to accomplish the
same objective. Indeed, by using (114)–(115) and the above analysis of the DFT
we see that:

If f on Tp has the FT F on Z, then (139)
f(x) has the GFT

∞∑
k=−∞

F [k]δ
(
s− k

p

)
;

If f on Z has the FT F on Tp, then (140)∞∑
n=−∞

f [n]
1
p
δ

(
x− n

p

)
has the GFT F (s);

If f on PN has the FT F on PN , then
(141)∞∑

n=−∞
f [n]δ(x− n) has the GFT

∞∑
k=−∞

F [k]δ
(
s− k

N

)
.

In principle, you can use these identities to solve the various exercises from Chapter 4
(but in practice you will find that it is usually much easier to use more elementary
direct methods!).

7.8 Alternative definitions for generalized functions

Functionals on S

After reading this chapter and working some of the exercises, you may wish to
consult other references to enhance your understanding of generalized functions.
You will quickly discover that there are three ways to specify the corresponding
functionals on S.
(i) The functional f has the representation

f{φ} = (−1)n

∫ ∞

−∞
g(x)φ(n)(x) dx, φ ∈ S

of (20) where g is CSG and n is some nonnegative integer.
(ii) The functional f is given by

f{φ} = lim
ν→∞

∫ ∞

−∞
fν(x)φ(x) dx, φ ∈ S

where f1, f2, . . . are Schwartz functions that have been chosen to ensure that
the limit exists (for every choice of φ ∈ S).
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(iii) The functional f is linear, i.e.,

f{cφ} = c f{φ} when c ∈ C, φ ∈ S

f{φ1 + φ2} = f{φ1} + f{φ2} when φ1, φ2 ∈ S,

and continuous in the sense that

lim
ν→∞ f{φν} = 0

whenever φ1, φ2, . . . is a sequence from S with the property

lim
ν→∞ max−∞<x<∞ |xnφ(m)

ν (x)| = 0

for every choice of n = 0, 1, . . . and m = 0, 1, . . . .
The properties of generalized functions can be developed from (i) as done in this

text, from (ii) as done in the well-known monograph of M.J. Lighthill, or from
(iii) as done in the treatise of L. Schwartz (and almost all advanced mathematics
books that deal with this portion of functional analysis). You can use elementary
arguments to show that (i) implies (ii) [Ex. 7.81] and that (i) implies (iii) [Ex. 7.82].
More sophisticated concepts (which lie beyond the scope of this text) are needed
to show that (ii) implies (i) and that (iii) implies (i). You can find proofs for these
structure theorems in Jones, pp. 81–90, or in Richards and Youn, pp. 137–140.

Other test functions

L. Schwartz used (iii) with the test functions

E := {φ : φ, φ′, φ′′, . . . are continuous on R},
S := {φ ∈ E : xnφ(m)(x) → 0 as x → ±∞ for each m,n = 0, 1, . . . } and

D := {φ ∈ E : φ(x) = 0 for all sufficiently large values of |x|}

to construct corresponding sets of generalized functions (or distributions) on R.
When we replace S by D, E in (iii) we get a larger, smaller class of functionals
because D ⊂ S, E ⊃ S, respectively. The test functions E, S, D are closed under dif-
ferentiation, so we can always differentiate the corresponding generalized functions.
(The generalized functions that correspond to D contain ordinary functions of rapid
growth, e.g., ex, so they are particularly useful for solving differential equations.)
Unfortunately, the test functions E, D are not closed under Fourier transformation,
so we cannot Fourier transform the corresponding generalized functions. We must
use the test functions S when we do Fourier analysis!
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Further reading

Bracewell, R.N. The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill,
New York, 2000.
Chapter 5 gives an informal introduction to the generalized functions most
commonly used in electrical engineering. The subsequent chapters show how
such generalized functions are used in practice.

Hörmander, L. The Analysis of Linear Partial Differential Equations I, Springer-
Verlag, New York, 1983.
A tightly written treatise on distribution theory and Fourier analysis.

Jones, D.S. The Theory of Generalized Functions, 2nd ed., Cambridge University
Press, Cambridge, 1982.
A comprehensive intermediate-level mathematical monograph that builds on
Lighthill’s introduction.

Kaplan, W. Operational Methods for Linear Systems, Addison-Wesley, Reading,
MA, 1962.
Dirac’s δ is introduced informally in Chapter 2 and used to solve various ordi-
nary differential equations (with constant coefficients).

Lighthill, M.J. An Introduction to Fourier Analysis and Generalized Functions,
Cambridge University Press, Cambridge, 1958.
A mathematically correct elementary introduction to generalized functions.

Lützen, J. The Prehistory of the Theory of Distributions, Springer-Verlag, New
York, 1982.
An account of the origins of distribution theory with selected quotations from
the work of Fourier, Heaviside, Dirac, Schwartz, . . . .

Richards, J.I. and Youn, H.K. Theory of Distributions, Cambridge University Press,
Cambridge, 1990.
A modern nontechnical introduction to the theory of distributions.

Schwartz, L. Mathematics for the Physical Sciences, Addison-Wesley, Reading, MA,
1966.
An introduction to distribution theory by its creator!

Strichartz, R. A Guide to Distribution Theory and Fourier Transforms, World
Scientific Publishing Company, Hackensack, NJ, 2003.
A very readable exposition of the elements of distribution theory with selected
applications.
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Exercises

. ..
.
.
...
.. . ...
..... ...... ....••• EXERCISE 7.1 Let fε, yε be given by (1), (2).

(a) Verify that yε(0−) = yε(0+), yε(ε−) = yε(ε+), y′
ε(0−) = y′

ε(0+), y′
ε(ε−) = y′

ε(ε+),
and thereby show that yε, y′

ε are continuous functions on R.

(b) Verify that yε(t) satisfies the differential equation (3) at each point t �= 0, ε.

(c) What feature of the model allows us to distinguish between the tap of a tack hammer
and a blow from a sledgehammer?

. .
.
. ..
..
.. ...
...... .. .... ....••• EXERCISE 7.2 In this exercise you will sort out the details for the construction (8)
that allows us to recover the values of a suitably regular function from the corresponding
fundamental functional.
(a) Let f, φ be continuous real-valued functions with φ being nonnegative for a ≤ x ≤ b.

Show that there is some point ξ with a ≤ ξ ≤ b such that∫ b

a

f(x)φ(x) dx = f(ξ) ·
∫ b

a

φ(x) dx.

Hint. Begin with the inequality

m ≤ f(x) ≤ M for a ≤ x ≤ b

where m,M are the minimum, maximum values taken by f , and then make suitable
use of the intermediate value theorem.

(b) Let f be continuous for a ≤ x ≤ b and let φ be any nonnegative Schwartz function
such that

φ(x) = 0 for |x| ≥ 1 and
∫ 1

−1
φ(x) dx = 1.

[You can use the construction of (14)–(15) to produce such a function.] Use (a) to
show that

lim
n→∞

∫ b

a

f(x) [nφ(n(x− x0))] dx = f(x0), a < x0 < b.

..
.
. . .
.
.. ......... ...... .....••• EXERCISE 7.3 Show that the Dirac functional (9) is not the fundamental func-
tional (7) of some piecewise smooth slowly growing function on R.

Hint. Apply (7) to the sequence of dilates φn(x) = φ(nx), n = 1, 2, . . . , of a Schwartz
function φ that has been constructed in such a manner that φ(x) > 0 for −1 < x < 1 and
φ(x) = 0 otherwise.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 7.4 Use the mesa function from Fig. 7.5 to construct a Schwartz func-
tion φ with the following properties.

(a) Let −∞ < a < b < c < d < ∞ and let p be a polynomial. Construct φ ∈ S such that

φ(x) = 0 for x ≤ a or x ≥ d;

φ(x) lies between p(x) and 0 for a ≤ x ≤ b or c ≤ x ≤ d; and

φ(x) = p(x) for b ≤ x ≤ c.

(b) Let a0, a1, . . . , an be constants and let ε > 0. Construct φ ∈ S such that

φ(0) = a0, φ
′(0) = a1, . . . , φ

(n)(0) = an; and

φ(x) = 0 for |x| ≥ ε.

. . .
..

..

...... ...... .. .... ...••• EXERCISE 7.5 Show that if φ ∈ S, then φ∧ ∈ S.

Hint. Use the results of Ex. 3.42 and the fact that

Dn{(−2πix)mf(x)} has the FT (2πis)n(Dmf∧)(s)

when f is a suitably regular function on R and D is the derivative operator.

. ..
..

..

......... . ... .. .... ....••• EXERCISE 7.6 Let φ1, φ2 ∈ S. Show that φ1 ∗ φ2 ∈ S.

Hint. You can work with φ∧
1 · φ∧

2 and use Ex. 7.5, or you can use the defining integral
(2.1).

.. .

.

... .

........ .... .... .... ...••• EXERCISE 7.7 Find the value of each of the following “integrals.”

(a)
∫ ∞

−∞
δ(3x)e−πx2

dx (b)
∫ ∞

−∞
δ(x− 2)e−πx2

dx (c)
∫ ∞

−∞
δ′(x)e−πx2

dx

(d)
∫ ∞

−∞
δ′(2x)e−πx2

dx (e)
∫ ∞

−∞
δ′(x−1)e−πx2

dx (f)
∫ ∞

−∞
δ′′(x)e−πx2

dx

(g)
∫ ∞

−∞
[cos(πx)δ(x)]e−πx2

dx (h)
∫ ∞

−∞
[sin(πx)δ′(x)]e−πx2

dx (i)
∫ ∞

−∞
(δ′∗δ′)(x)e−πx2

dx

. .
.

.. .......... .... ... ...... ...••• EXERCISE 7.8 Find and simplify the functional f{φ}, φ ∈ S, that is used to
represent the generalized function f when:
(a) f(x) = x2; (b) f(x) = δ(3x); (c) f(x) = �x�;
(d) f(x) = δ′(2x); (e) f(x) = log |x|; (f) f(x) = Π′(x);
(g) f(x) = sin(ex); (h) f(x) = δ′′(x− 5); (i) f(x) = �x− (1/2)�′;

(j) f(x) :=
27

(x2 + 5x+ 4)2
=

2
x+ 4

+
3

(x+ 4)2
− 2
x+ 1

+
3

(x+ 1)2
.



Exercises 455

.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 7.9 Let g(x) := h(ax + b) where a, b are real, a �= 0, and h is the
Heaviside function.

(a) Find a simple expression for the functional

g(n){φ} =
∫ ∞

−∞
g(n)(x)φ(x) dx, φ ∈ S, n = 1, 2, . . . .

Hint. Sketch the graph of h(ax+ b) when a > 0 and when a < 0.

(b) Using (a), explain why we write

g(n)(x) = sgn(a) δ(n−1)
(
x+

b

a

)
, n = 1, 2, . . . .

.
.
.. .

...
.. ........ ... .... ....••• EXERCISE 7.10 A generalized function f is even, odd when f∨ = f , f∨ = −f ,
respectively.

(a) Show that f is even, odd if and only if f{φ} = 0 whenever φ ∈ S is odd, even,
respectively.

(b) Show that δ(n) is even, odd when the nonnegative integer n is even, odd, respectively.

(c) Show that pn is even, odd when the integer n is even, odd, respectively. The power
function pn is defined by (24) when n is nonnegative and by (46) when n is negative.

....
.. ..... .........
... ... .....••• EXERCISE 7.11 Find and simplify the functional f{φ}, φ ∈ S, that is used to
represent the generalized function f when:
(a) f(x) = p1(x) · δ′(2x); (b) f(x) = (δ′ ∗ p−1)(x); (c) f(x) = x2 · X(x);
(d) f∧(s) = δ′′(s); (e) f∧(s) = 2Π(2s)∗X(s); (f) f∧(s) = |s|.

. ....
.. ..... ........... ... .....••• EXERCISE 7.12 Let P,Q be polynomials and let D be the derivative operator.
Show that ∫ ∞

−∞
{P(x) · [Q(D)δ](x)}φ(x) dx = {[P(−D)Q](−D)φ}(0), φ ∈ S.

Hint. Begin with the special case where P(x) = xm and Q(x) = xn.

. . ... .
....

. . ......... ...... ....••• EXERCISE 7.13 Let α, α′, α′′, . . . be CSG, let f be a generalized function, and
let δ(k)

x0 be given by (81).

(a) Derive the identity (82) for the product α · δ(k)
x0 .

Hint. Use the Leibnitz rule (2.29) and the sifting relation (64) to simplify∫ ∞

−∞
[α(x) · δ(k)(x− x0)]φ(x) dx := (−1)k

∫ ∞

−∞
δ(x− x0)[φ(x) · α(x)](k) dx, φ ∈ S.

(b) Derive the identity (85) for the convolution product δ(k)
x0 ∗ f .
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 7.14 Let a, b, c, d be real numbers with a > 0 and c > 0 and let
m,n = 0, 1, 2, . . . . Find a simple representation for the convolution product β ∗ f when:

(a) β(x) = δ(ax+ b), f(x) = cos(cx+ d); (b) β(x) = e−ax2
, f(x) = cos(cx+d);

(c) β(x) = Π(x), f(x) = X(n)(x); (d) β(x) = δ(n)(x), f(x) = δ(m)(x);
(e) β(x) = δ(ax+ b), f(x) = X(x); (f) β(x) = δ′(ax+b), f(x) = sgn(x).

.. . .

.

...
......... .... ...

.. .... ...••• EXERCISE 7.15 Find the following convolution products.

(a)
0 1

1 ....................................... *
0 1

1 ...... ....

(b)
0 1−1

1

.......
.......
......
.......
.......
.......
......
....................................... *

0 1

1

−1

............. ....

(c)
0 1−1

1

.......
......
......
.......
......
.......
..................................................... *

......................................................................... ....................... ...................... ...................... ....................... ......................................

......

......

......

3
2
1

.....
...........

...
.....
.............

.......

1 2 3 4 5

(d)
0 1

2− 1
2

1
2

....... .........

*
0 1

2− 1
2

1
2......... ....

(e)

1 .......................................................................................

e−x

*
0 p

1......... .............. ....... .................. ...
· · · · · ·

(f)
1 2

1

−1

.....................................................................................

*

1

−1......... ............... ..
.
...

........

...... ....
...........

· · · · · ·

−3 3−2 210−1

. .
.

.. .......... .... ... ...... ...••• EXERCISE 7.16 In this exercise you will establish the power rule (88) for the
generalized power functions of (24) and (46).

(a) Explain why xm · pn(x) = pm+n(x) when m,n are nonnegative integers.

(b) Show that xm · p−n(x) = pm−n(x) when m is a nonnegative integer and
n = 1, 2, . . . .



Exercises 457

Hint. Use the functionals of (53)–(54) and the identity

[xmφ(x)](k)

k!

∣∣∣∣
x=0

=




0 if k = 0, 1, . . . ,m− 1

φ(k−m)(0)
(k −m)!

if k = m,m+ 1, . . .

that follows from the Leibnitz rule (2.29).

Note. In view of (a)–(b), you can write pm1 · (pm2 · pn) = (pm1 · pm2) · pn when m1,m2
are nonnegative integers and n is any integer.

. .
..

..

..

.. ...

...... ....

. ... ....••• EXERCISE 7.17 In this exercise you will show that∫ ∞

s=−∞

∫ ∞

x=−∞

φ(s) sin(sx)
x

dx ds =
∫ ∞

x=−∞

∫ ∞

s=−∞

φ(s) sin(sx)
x

ds dx

when φ is a Schwartz function. This identity (with x replaced by 2πx) is used to obtain
the Fourier transform (69) for p−1.

(a) Explain why it is sufficient to observe that∫ ∞

s=0

∫ ∞

x=0

φ(s) sin(sx)
x

dx ds

is well defined and then show that each of the integrals∫ N

x=0

∫ ∞

s=N

∣∣∣∣φ(s) sin(sx)
x

∣∣∣∣ ds dx,
∫ ∞

x=N

∫ ∞

s=0

φ(s) sin(sx)
x

ds dx,

∫ ∞

s=N

∫ ∞

x=N

φ(s) sin(sx)
x

dx ds,

∫ N

s=0

∫ ∞

x=N

φ(s) sin(sx)
x

dx ds,

has the limit 0 as N → +∞ when φ ∈ S.

(b) Verify that∫ N

x=0

∫ ∞

s=N

∣∣∣∣φ(s) sin(sx)
x

∣∣∣∣ds dx ≤ N

∫ ∞

s=N

|sφ(s)|ds → 0 as N → ∞.

(The same argument works when the limits are reversed.)

(c) Use an integration by parts to verify that∣∣∣∣
∫ ∞

x=N

1
x2

∫ ∞

s=0
φ(s)

∂

∂s
[cos(sx)] ds dx

∣∣∣∣→ 0 as N → ∞.

(d) Verify that∣∣∣∣
∫ ∞

s=N

φ(s)
∫ ∞

x=N

sin(sx)
x

dx ds

∣∣∣∣ ≤
∫ ∞

s=N

|φ(s)|
∣∣∣∣
∫ ∞

u=Ns

sinu
u

du

∣∣∣∣ ds → 0 as N → ∞.

Hint. The areas associated with (sinu)/u form an alternating series.
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(e) Use an integration by parts (with the Riemann–Lebesgue lemma from Ex. 1.38) to
verify that∣∣∣∣
∫ N

s=0
φ(s)

∫ ∞

x=N

sin(sx)
x

dx ds

∣∣∣∣ =

∣∣∣∣
∫ N

s=0
Φ′(s)g(Ns) ds

∣∣∣∣
≤|Φ(N)g(N2)|+

∣∣∣∣
∫ N

0

Φ(s)
s

sin(Ns) ds

∣∣∣∣→ 0 asN→∞

where Φ(s) :=
∫ s

0 φ(u)du, g(s) :=
∫∞

x=s
sin u

u du.

. ....
. . .
....... .... .... ... ....••• EXERCISE 7.18 Let g be a CSG function and let φ ∈ S. Show that

f(x) :=
∫ ∞

−∞
g(u)φ(x− u) du

is well defined, continuous, and slowly growing.

Hint. Choose m = 0, 1, 2, . . . to make g(u)[1+u2]−m absolutely integrable, and then write

g(u)φ(x− u) = {g(u)[1 + u2]−m}[1 + (x− u− x)2]mφ(x− u)

=
∑
k,�

ck�x
� · {g(u)[1 + u2]−m} · {(x− u)kφ(x− u)}

for suitably chosen constants ck�.

. .

.
. .......... ....
.. ..... ....••• EXERCISE 7.19 Let f, β, β1, β2, . . . be generalized functions and assume that
β∧, β∧

1 , β
∧
2 , . . . and all of their derivatives are CSG.

(a) Explain why you can freely associate and commute the factors from the convolution
product of f , β1, β2, . . . , βn, e.g., (β1 ∗ β2) ∗ f = β2 ∗ (β1 ∗ f).

(b) Use (a) with the identity (β ∗ f)′ = δ′ ∗ (β ∗ f) from (85) to derive the differentiation
rule (β ∗ f)′ = β′ ∗ f = β ∗ f ′.

(c) Let −∞ < x0 < ∞ and let fx0(x) := f(x+x0). Use (a) with the identity (β ∗ f)x0 =
δx0 ∗ (β ∗ f) from (85) to derive the translation rule (β ∗ f)x0 = βx0 ∗ f = β ∗ fx0 .

Note. Now you can use this analysis to solve Ex. 2.21.

. .
....

. ........ ..... ...
.. .. ....••• EXERCISE 7.20 Let f be a generalized function and assume that

f = g
(m1)
1 and f = g

(m2)
2

where g1, g2 are CSG and m1,m2 are nonnegative integers, e.g.,

δ(x) = [xh(x)]′′ and δ(x) =
1
2
[x2h(x) − x]′′′.

(a) Use (60) to show that f = g
(m1)
1 and f = g

(m2)
2 produce the same functional for the

translate f(x− x0), −∞ < x0 < ∞.
(b) Use (63) to show that f = g

(m1)
1 and f = g

(m2)
2 produce the same functional for the

Fourier transform f∧(s).
Note. Similar arguments are used for the dilate, derivative, α-product, and β-convolution
product.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 7.21 In this exercise you will show that the linear space

G = {g(m): g is a CSG function on R, m = 0, 1, . . .}
of generalized functions is closed under the operations of translation, dilation, differen-
tiation, α-multiplication, and β-convolution as defined by (60)–(62) and (75)–(76). Let
f = γ(µ) where γ is CSG and µ is a nonnegative integer. Show that it is possible to express
each of the following in the form g(m) where g is a CSG function and m is a nonnegative
integer (which depend on γ and µ).

(a) f(x+ x0) where −∞ < x0 < ∞ (b) f(ax) where a < 0 or a > 0 (c) f ′(x)

(d) α(x) · f(x) where α, α′, α′′, . . . are CSG

Hint. Use the Leibnitz rule (2.29) and (59) to write

α · γ(µ) = (α · γ)(µ) −
(
µ

1

)
(α′ · γ)(µ−1) +

(
µ

2

)
(α′′ · γ)(µ−2) − · · · = g(µ).

(e) (β ∗ f)(x) where β∧, β∧′, β∧′′, . . . are CSG.

Hint. Use (d), the convolution rule, and the closure of G under Fourier transformation
(which was established in the text).

. .. .....
.. ...
....... ..... ....••• EXERCISE 7.22 Let x1 < x2 < · · · < xm, let f be a generalized function, and
assume that f(x) = 0 for x < x1, x1 < x < x2, . . . , xm−1 < x < xm, and xm < x. Show
that there is some nonnegative integer n and constants cµk such that

f(x) =
m∑

µ=1

n∑
ν=0

cµνδ
(ν)(x− xµ).

Hint. Modify the analysis that leads to (91).

..
.
. ..
...
.. ........ .... .....••• EXERCISE 7.23 Let f be a generalized function, let −∞ < x0 < ∞, let
n = 0, 1, . . . , and assume that (x − x0)n · f(x) = 0. Show that f has the representation
(90).

Hint. Set g(x) := f(x+x0), observe that (g∧)(n) = 0, and use the analysis from Section 7.4.

. . ..
.
..
...
.. . ...
..... ...... ....••• EXERCISE 7.24 Let the polynomial P have the real roots α1 < · · · < αr with
multiplicities n1, . . . , nr, respectively, and assume that the other roots of P, if any, have
nonzero imaginary parts. Let f be a generalized function and assume that

P(x) · f(x) = 0.

Show that f has the representation

f(x) =
r∑

µ=1

nµ−1∑
ν=0

cµνδ
(ν)(x− αµ)

for some choice of the constants cµν . You can organize the demonstration as follows:
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(a) Show that

{(x− α1)
n1(x− α2)

n2 · · · (x− αr)nr } · f(x) = 0.

Hint. You can divide by a polynomial that has no real roots.

(b) Let α, β be distinct real numbers, let n = 1, 2, . . . , and let ν = 0, 1, . . . , n − 1. Show
that the inhomogeneous equation

(x− α)n · g(x) = δ(ν)(x− β)

has a generalized solution g of the form

g(x) = c0δ(x− β) + c1δ
′(x− β) + · · · + cνδ

(ν)(x− β)

where c0, c1, . . . , cν are constants.

(c) Use the result of Ex. 7.23 with (b) to determine in turn the structure of the generalized
solutions g1(x), g2(x), . . . , gr−1(x), f(x) of (x−α1)n1 · g1(x) = 0, (x−α2)n2 · g2(x) =
g1(x), . . . , (x− αr−1)nr−1 · gr−1(x) = gr−2(x), (x− αr)nr · f(x) = gr−1(x).

. ..

.
.. ......... .... .. ... ....••• EXERCISE 7.25 Let the polynomial P have the distinct pure imaginary roots
2πiβ1, . . . , 2πiβr with multiplicities n1, . . . , nr, respectively, and assume that the other
roots of P, if any, have nonzero real parts. Let f be a generalized function and assume
that

P(D)f(x) = 0,

where D is the derivative operator. Show that f has the representation

f(x) =
r∑

µ=1

nµ−1∑
ν=0

cµνx
νe2πiβµx

for some choice of the constants cµν . Thus every generalized solution of the differential
equation is a slowly growing ordinary solution.

Hint. Use Ex. 7.24.

. . .
..

..

...... ...... .. ..... ...••• EXERCISE 7.26 Find all generalized functions f that satisfy each of the following
homogeneous equations.

(a) (x2 − 1) · f(x) = 0 (b) (x4 − 1) · f(x) = 0 (c) (x4 − 1)2 · f(x) = 0

(d) (D2 − 1)f(x) = 0 (e) (D4 − 1)f(x) = 0 (f) (D4 − 1)2f(x) = 0

Hint. Use the representations from Exs. 7.24 and 7.25.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 7.27 Find all generalized solutions for each of the following inhomo-
geneous equations.

(a) (x− 1) · f(x) = δ(x) (b) (x+ 1) · f(x) = δ(x) (c) (x2 − 1) · f(x) = δ(x)

(d) (x2 + 1) · f(x) = δ(x) (e) (x4 − 1) · f(x) = δ(x) (f) (x4 + 1) · f(x) = δ(x)

(g) (D − 1)f(x) = δ(x) (h) (D + 1)f(x) = δ(x) (i) (D2 − 1)f(x) = δ(x)

(j) (D2 + 1)f(x) = δ(x) (k) (D4 − 1)f(x) = δ(x) (l) (D4 + 1)f(x) = δ(x)

Hint. Construct a particular solution to combine with solutions of the corresponding
homogeneous equation, and use the results from Exs. 7.24 and 7.25.

. .
..

..

..

.. ...

...... ....

. .. ....••• EXERCISE 7.28 Let β be a σ-support limited generalized function, let g(x) := |x|,
and let f := β ∗ g. Show that f ′′ = 2β.

. .. .... .......... .. ... ......••• EXERCISE 7.29 Let f be a generalized function, let g be an ordinary CSG func-
tion, and assume that x · f(x) = g(x) for −∞ < x < ∞.

(a) Show that

f{φ} =
∫ ∞

−∞

g(x)
x

· φ(x) dx

when φ ∈ S and φ(0) = 0.

Hint. Use (16) to see that there is a Schwartz function ψ such that xψ(x) = φ(x).

(b) Show that

f(x) =
g(x)
x

for −∞ < x < 0 and for 0 < x < ∞.

(c) Give an example to show that f is not determined by the ratios from (b).

. .
..
.
.
.. ......... ..... .. ....••• EXERCISE 7.30 Let P(D) be a polynomial in the derivative operator D, let f be
a generalized function, let −∞ ≤ a < b ≤ ∞, and assume that

[P(D)f ](x) = 0 for a < x < b.

Show that f(x) = y(x) for a < x < b where y is some ordinary solution of

[P(D)y](x) = 0 for −∞ < x < ∞
(which is slowly growing if a = −∞ or b = +∞).

Hint. Begin with a representation f = Dmg where g, g′, . . . , g(n) are CSG and n := deg P.
The function g must then be a solution of the homogeneous equation Dm[P(D)g] = 0.

. .. .....
.. ...
....... ..... ....••• EXERCISE 7.31 Let f, β be generalized functions and assume that β∧, β∧′,
β∧′′, . . . are CSG. Establish the convolution rule (β ∗ f)∧ = β∧ · f∧.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 7.32 Let f be a generalized function and let

f1 := Π ∗ f, f2 := Π ∗ Π ∗ f, f3 := Π ∗ Π ∗ Π ∗ f, . . . .
Show that fn is an ordinary CSG function when n is sufficiently large.

Hint. Begin with f = g(m) where g is CSG and m is a nonnegative integer.

. .

.

... .

........ .... .... ..... ...••• EXERCISE 7.33 Find the Fourier transform of each of the following generalized
functions. In so doing, freely use the rules from the Fourier transform calculus together
with (93)–(96).

(a) f(x) = δ(x−1)+δ(x+1) (b) f(x) = e2πix · δ(x) (c) f(x) = δ′(5x)

(d) f(x) = 3x2 + 2x+ 1 (e) f(x) = sin(4πx) (f) f(x) = cos2(πx)

(g) f(x) = δ′(x) ∗ x (h) f(x) = x · δ′(x) (i) f(x) = 2πx · cos(2πx)

(j) f(x) = δ′(x+1) ∗ δ′′(x−1) (k) f(x) = e−πx2 · 2πx (l) f(x) = e−πx2 ∗ 2πx

(m) f(x) = δ(2x+1) ∗ δ(4x+2) (n) f(x) = δ′′(x)−4π2x2 (o) f(x) = cos(x) · δ′′(x)

. ..

.
. .......... ....
.. .... ....••• EXERCISE 7.34 Verify each of the following identities by showing that the cor-
responding Fourier transforms are equal. In so doing, freely use the rules from the
Fourier transform calculus together with (93)–(96). The parameters a, b are real and
m,n = 0, 1, 2, . . . .

(a) δ(ax) = |a|−1δ(x), a �= 0 (b) δ(ax+b) = |a|−1δ(x+(b/a)), a �= 0

(c) x δ(x) = 0 (d) x δ′(x) = −δ(x)
(e) [δ(ax)]′ = aδ′(ax), a �= 0 (f) [δ(ax)]′′ = a2δ′′(ax)

(g) δ(x− a) ∗ δ(x− b) = δ(x− a− b) (h) δ(m)(x) ∗ δ(n)(x) = δ(m+n)(x)

(i) xnδ(m)(x) =

{
0 if n > m

(−1)n[m!/(m− n)!]δ(m−n)(x) if n ≤ m

.. .
....

.. ....... ......
..
.. ... ...••• EXERCISE 7.35 Derive the addition formula for the cosine as follows.

(a) Find the Fourier transform of cos(px), −∞<p<∞.

(b) Using (a) and the product rule, find the Fourier transform of

f(x) = cos(αx) cos(βx), −∞ < α < ∞, −∞ < β < ∞.

(c) Using (a) with p = α± β, find the Fourier transform of

g(x) = 1
2{cos(α+ β)x+ cos(α− β)x}.

(d) Using (b), (c) derive the familiar trigonometric identity

cosα cosβ = 1
2{cos(α+ β) + cos(α− β)}.



Exercises 463

.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 7.36 Find the Fourier transform for each of the following generalized
functions. In so doing, freely use the rules from the Fourier transform calculus together
with the identities p∧

−1(s) = −πi sgn(s) and sgn∧(s) = (πi)−1p−1(s) from the text.

(a) f(x) = sgn(3x) (b) f(x) = e4πix · sgn(x)

(c) f(x) = e2πix · h(x− 1) (d) f(x) = sin(x) · sgn(x)

(e) f(x) = 1/(x− 1) (f) f(x) = 1/(x− 1)2

(g) f(x) = 1/(x2 − 4) (h) f(x) = δ′(x) ∗ log |x|
(i) f(x) = x · (1/x) (j) f(x) = sin(πx) · (1/πx)

(k) f(x) = {Π(x+ 1) − Π(x− 1)} ∗ sgn(x) (l) f(x) = cos(πx) · (1/πix)

.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 7.37 Find the δ identity in the Fourier transform domain that corre-
sponds to each of the following.

(a) 1 · f(x) = f(x)

(b) e2πiax · e2πibx = e2πi(a+b)x, −∞ < a < ∞, −∞ < b < ∞
(c) (xn)′ = nxn−1, n = 1, 2, . . .

(d) xn · xm = xn+m, n,m = 0, 1, . . .

(e) (1 − 2πix)2 = 1 + 2 · (−2πix) + (−2πix)2

(f) x · (1/x) = 1

Note. See Ex. 7.16 for the law of exponents as used in (d), (e), (f).

. . ... .
....

.. . ..

..... ..... ....••• EXERCISE 7.38 Find the Fourier transform of each of the following generalized
functions assuming that a > 0, −∞ < b < ∞, and n = 1, 2, . . . .

(a) f(x) = δ(n)(ax+ b) (b) f(x) = xn·δ(n)(ax+b) (c) f(x) = cosn(ax+ b)

(d) f(x) = (x+b)n·(x+b)−n (e) f(x) = (x+ a)−n (f) f(x) = (x+ ia)−n

...
.. .... .......... .... .. .....••• EXERCISE 7.39 Let x1 < x2 < · · · < xm and let

f(x) :=



f0(x) for x < x1

fµ(x) for xµ < x < xµ+1, µ = 1, 2, . . . ,m− 1

fm(x) for xm < x

where f0, f1, . . . , fm are all polynomials of degree n or less. In this exercise you will show
that f has the Fourier transform

F (s) =
1
2

{
f0

(−D
2πi

)
+ fm

(−D
2πi

)}
δ(s) +

m∑
µ=1

n∑
ν=0

[
f (ν)(xµ+) − f (ν)(xµ−)

] e−2πisxµ

(2πis)ν+1

where D is the derivative operator

(a) Verify that

f (n+1)(x) =
m∑

µ=1

n∑
ν=0

[f (ν)(xµ+) − f (ν)(xµ−)]δ(n−ν)(x− xµ).
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(b) Show that there are constants c0, c1, . . . , cn such that

F (s) = c0δ(s)+c1δ
′(s)+· · ·+cnδ(n)(s)+

m∑
µ=1

n∑
ν=0

[
f (ν)(xµ+)−f (ν)(xµ−)

] e−2πixµs

(2πis)ν+1 .

(c) Explain why the Fourier transform of

g(x) := f(x) − 1
2 [fm(x) + f0(x)] − 1

2 [fm(x) − f0(x)]sgn(x)

is a smooth ordinary function on R.

(d) Show that the Fourier transform of [fm(x) − f0(x)]sgn(x) is a linear combination of
the inverse power functions p−1, p−2, . . . , p−n−1.

(e) Show that the δ, δ′, . . . terms in the Fourier transform F can be obtained from the
formula

1
2
{Fm(s) + F0(s)} =

1
2

{
f0

(−D
2πi

)
+ fm

(−D
2πi

)}
δ(s).

Note. The Fourier transform F has no δ, δ′, . . . , δ(n) terms when fm = −f0 and no
p−1, p−2, . . . , p−n−1 terms when fm = f0.

.... .......... ....
.. ..... ....••• EXERCISE 7.40 Find the Fourier transform of each of the following functions.
You may wish to use the analysis of Ex. 7.39 to expedite the process.

(a) .........................................

.........................................

f(x)
1

−1
−1 1 x

(b) .........
.........

.........
.........

.........
.........

........................................

f(x)

1

0 1 2 3 x

(c)

.............................................. ...
...
...
..
...
..
...
...
...
...
...
...

..

..1

2

−1

f(x)

10 2 x

· · ·
(d)

...

...

...

..

...

..

...

...

...

...

...

...

...

...

...

..

...

..

...

...

...

...

...

...

x

1
f(x)

−1

−1 1

· · ·

· · ·

(e) f(x) = |x| (f) f(x) = x · |x|

(g) f(x) = max{1 − x2, 0} (h) f(x) = max{1, x2}

(i) f(x) =

{
x2 if 0 < x < 1

0 otherwise
(j) f(x) =

{
x2 if x ≥ 0

0 if x ≤ 0
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 7.41 You can find the Fourier transform of any rational function by
using (3.22) (95), and (97) with a partial fraction decomposition. Use this method to find
the Fourier transform of each of the following rational functions.

Note. You cannot obtain the Fourier transform of (x − α)−n by letting β → 0+ in
the Fourier transform for (x− α− iβ)−n, and you cannot obtain the Fourier transform
for (x− α− iβ)−n, by simply making the substitution γ = α+ iβ in the Fourier trans-
form for (x− γ)−n. You can use the conjugation rule to obtain the Fourier transform of
(x− α+ iβ)−n from that of (x− α− iβ)−n.

(a) f(x) =
1

1 + x2 =
1
2i

{ 1
x− i

− 1
x+ i

}

(b) f(x) =
4x5

x4 − 1
= 4x+

1
x+ 1

+
1

x− 1
− 1
x+ i

− 1
x− i

(c) f(x) =
27

(x2 + 5x+ 4)2
=

2
x+ 4

+
3

(x+ 4)2
− 2
x+ 1

+
3

(x+ 1)2

(d) f(x) =
32

(x2 + 2x+ 5)2
=

i

x+ 1 + 2i
− 2

(x+ 1 + 2i)2
− i

x+ 1 − 2i
− 2

(x+ 1 − 2i)2

..
.
. ..
...
.. ....... ..... .....••• EXERCISE 7.42 Suppose that we want to find the Fourier transform of the ratio-
nal function f(x) := P(x)/Q(x) where P,Q are polynomials. We write

Q(x) · f(x) = P(x)

and use the power scaling rule to obtain the differential equation

Q
( D

−2πi

)
F (s) = P

( D
−2πi

)
δ(s)

where D is the derivative operator. In this way we see that

F (s) = h(s)F+(s) + h(−s)F−(s) + c0δ(s) + c1δ
′(s) + · · ·

where F+, F− are solutions of the homogeneous equation

Q
( D

−2πi

)
F (s) = 0

which are slowly growing on (0,+∞), (−∞, 0), respectively, and where c0, c1, . . . are
suitably chosen constants. Use this representation to find the Fourier transform of each of
the following rational functions.

(a) f(x) =
1

1 − 2πix
(b) f(x) =

1 − 2πix
1 + 2πix

(c) f(x) =
1

(2πix)2

(d) f(x) =
1

1 + (2πx)2
(e) f(x) =

1
1 − (2πx)2

(f) f(x) =
(2πx)2

1 − (2πx)2

Hint. The functions (c)–(f) are all even.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 7.43 Find the simplified form of the Parseval identity∫ ∞

−∞
f∧(x)φ(x) dx =

∫ ∞

−∞
f(s)φ∧(s) ds

which results when φ is an arbitrary Schwartz function and f is specified as follows. Assume
that −∞ < x0 < ∞, −∞ < s0 < ∞, p > 0, and n = 0, 1, 2, . . . .

(a) f(s) = e2πix0s (b) f(s) = δ(s− s0) (c) f(s) = (2πi)−nδ(n)(s)

(d) f(s) = (−2πis)n (e) f(s) = e2πix0sX(ps) (f) f(s) = − 1
πi
p−1(s)

. .

.

... .

........ .... .... .... ...••• EXERCISE 7.44 Find the Fourier transform of each of the following generalized
functions. In so doing, freely use the rules from the Fourier transform calculus together
with (98).

(a) f(x) = eix
2

(b) f(x) = eiπ(x2−2x) (c) f(x) = 2πix eiπx2

(d) f(x) = cos(πx2) (e) f(x) = cos(πx) cos(πx2) (f) f(x) = cos2(πx2)

.. .

.

... .
......... ... ....

.. ... ...••• EXERCISE 7.45 In this exercise you will use the Parseval identity∫ ∞

−∞
eiπx2

e−πx2
dx =

∫ ∞

−∞
c e−iπs2

e−πs2
ds

to determine the constant c for the Fourier transform (98).

(a) Show that c = (a+ ib)/(a− ib) where

a+ ib :=
∫ ∞

−∞
e−π(1−i)x2

dx.

(b) Use polar coordinates to show that

(a+ ib)2 =
∫ ∞

−∞

∫ ∞

−∞
e−π(1−i)(x2+y2) dx dy =

1 + i

2
.

(c) Use (a), (b) to obtain c = (1 + i)/
√

2.

. . .... .......... .... ... ..... ...••• EXERCISE 7.46 The diffraction kernel (with wavelength λ = 1) is defined by

γ
d
(x) :=




1 − i√
2d
eiπx2/d if d > 0

δ(x) if d = 0

1 + i√−2d
eiπx2/d if d < 0.

(a) Use (98) to find the Fourier transform Γ
d

of γ
d
.

(b) Explain why the convolution product of γ
d

and a generalized function f is well defined.

(c) Show that γ
d1

∗ γ
d2

= γ
d1+d2

.

(d) Find a simple expression for the inverse of the Fresnel operator A
d
f := γ

d
∗ f .
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 7.47 In this exercise you will show that the floor function

f(x) := �x� := n for n ≤ x < n+ 1, n = 0,±1,±2, . . .

has the Fourier transform

F (s) =
∞∑

k=1

δ(s− k) − δ(s+ k)
2πik

− δ(s)
2

− δ′(s)
2πi

.

(a) Verify that f(x)−x+ 1
2 is the derivative of the weakly convergent Fourier series (108)

and thereby obtain the above expression for F .

(b) Observe that g(x) := f(x)+ 1
2 is an odd function with the derivative g′(x) = f ′(x) =

X(x). Find the odd solution of 2πis · G(s) = X(s) and thereby obtain the above
expression for F .

. .
..

..

..

.. ....

...... ...

. ... ....••• EXERCISE 7.48 The function f(x) := |x|−1/2 is locally integrable and slowly
growing, so we can use the fundamental functional

f{φ} :=
∫ ∞

−∞
|x|−1/2φ(x) dx, φ ∈ S

to define a generalized function.

(a) Show that the generalized Fourier transform of f is represented by the fundamental
functional of the ordinary function

F (s) = 2
∫ ∞

0

cos(2π|s|x)√
x

dx, s �= 0.

(b) Use the transformation u2 = 2|s|x to show that F (s) = |s|−1/2.

Hint. Use (98) with s = 0 to obtain the integral of cos(πu2).

.. . .

..

... ...
........

..

. ... ....••• EXERCISE 7.49 In this exercise you will use the even CSG function

g(x) :=
∫ x

0
sgn(u) log |u| du = |x| log |x| − |x|

to construct generalized functions

1
|x| ,

1
x|x| ,

1
x2|x| , . . . .

(a) Explain why we might identify the generalized function

fn(x) := (−1)n
g(n+2)(x)

n!

with the ordinary function sgn(x)/xn+1, n = 0, 1, . . . .
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(b) Show that f0 is represented by the functional

f0{φ} =
∫

|x|<1

φ(x) − φ(0)
|x| dx+

∫
|x|>1

φ(x)
|x| dx, φ ∈ S.

(c) Use the functional of (b) to show that x · f0(x) = sgn(x).

(d) Find all even generalized functions f that satisfy x · f(x) = sgn(x).

Note. The function p−1 is the unique odd solution of x · f(x) = 1, so there is only
one sensible choice for “1/x”. Unfortunately, “1/|x|” is not unique.

(e) Show that f0 does not satisfy the dilation relation

|a| · f0(ax) = f0(x), a < 0 or a > 0

that corresponds to the ordinary algebraic identity |a|/|ax| = 1/|x|.
(f) Use (c) to show that

f0(x) has the FT F0(s) = −2 log |s| + C

where C is a constant that can be determined from the Parseval identity

f0{φ} = F0{φ}, φ(x) := e−πx2
.

Note. It can be shown that C = −2γ−2 log(2π) = −4.83018 . . . where γ := .57721 . . .
is Euler’s constant, see Richards and Youn, pp. 73–74.

(g) Use (f) to show that

f(x) := log |x| has the FT F (s) = 1
2{Cδ(s) − f0(s)}.

(h) Use (f) to show that

fn(x) has the FT Fn(s) =
(−2πis)n

n!
[−2 log |s| + C], n = 0, 1, 2, . . . .

. ..
..

.

.......... . ... .. ..... ....••• EXERCISE 7.50 Find and correct the flaw(s) in the following arguments.

(a) “We know that
δ(x) = 0 for x < 0 and for x > 0

δ(2x) = 0 for x < 0 and for x > 0.

Since 2 · 0 = 0 we must have

δ(x) = δ(2x) for −∞<x<∞.”

(b) “Let f(x) := e−xh(x) where h is the Heaviside function. Since

f ′(x) = −e−xh(x) = −f(x)
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we can use the derivative rule to write

2πis F (s) = −F (s).

From the equivalent identity

(2πis+ 1)F (s) = 0, −∞ < s < ∞
we see that f has the Fourier transform F (s) ≡ 0.”

(c) “Let x · f(x) = g(x) where g is CSG. We have

f{φR} =
∫ ∞

−∞

g(x)
x

φR(x) if φR ∈ S and φR(x) = 0 when x < 0

f{φL} =
∫ ∞

−∞

g(x)
x

φL(x) if φL ∈ S and φL(x) = 0 when x > 0.

Given φ ∈ S, we write φ = φL + φR where φR(x) = 0 for x < 0, φL(x) = 0 for x > 0
and use the linearity of f to conclude that

f{φ} =
∫ ∞

−∞

g(x)
x

φ(x) dx, φ ∈ S.”

(d) “Let f(x) := x2 · h(x). Since
f ′′(x) = 2h(x)

we can use the derivative rule to write

(2πis)2F (s) = δ(s) +
2

2πis
and thereby obtain

F (s) =
δ(s)

(2πis)2
+

2
(2πis)3

.”

(e) “Let f(x) := cos(2πx). Since

f ′′(x) + 4π2f(x) = 0

we write
(2πis)2F (s) + 4π2F (s) = 0,

i.e.,
(s2 − 1)F (s) = 0,

and thereby conclude that

F (s) = c+δ(s+ 1) + c−δ(s− 1).

Since c+, c− are arbitrary constants, we can take c+ = 0, c− = 1 and write

F (s) = δ(s− 1).”
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 7.51 Let P,Q be polynomials, and assume that P has no pure imag-
inary roots (including 0).

(a) Let x be a generalized function. Show that there is a unique generalized solution of
the differential equation

[P(D)y](t) = [Q(D)x](t)

(where D is the derivative operator).

Note. Such differential equations do not have unique solutions when we work with
ordinary functions.

(b) Let the operator A be defined by writing Ax := y when y is obtained from x as in
(a). Show that A is linear and translation invariant.

Hint. See Ex. 5.28.

(c) Let yδ := Aδ be the impulse response of A. Show that Ax = yδ ∗ x.
Note. This convolution product is well defined because y∧

δ and its derivatives are
CSG.

(d) Let h be the Heaviside function and let yh := Ah be the step response of A. Show
that yδ = y′

h.

(e) Let eσ(t) := e2πiσt with −∞ < σ < ∞. Show that Aeσ = λσ · eσ where λσ is a
complex constant that you should express in terms of P, Q, and σ.

. ....
.

........ .... ..... ... ...••• EXERCISE 7.52 In this exercise you will learn an algebraic approach for solving
certain differential equations.

(a) Given a complex number λ with Re λ �= 0, we define

gλ(x) :=

{
eλxh(x) if Re λ < 0

−eλxh(−x) if Re λ > 0

where h is the Heaviside function. Show that

(δ′ − λδ) ∗ f = δ

if and only if f = gλ.

(b) Let the polynomial P have roots λ1, λ2, . . . , λn with nonzero real parts and let g be
a generalized function. Show how to find the generalized function f that satisfies the
forced differential equation P(D)f = g or equivalently,

(δ′ − λ1δ) ∗ (δ′ − λ2δ) ∗ · · · ∗ (δ′ − λnδ) ∗ f = g.

Hint. From (a) you know that convolution with gλ undoes convolution with δ′ − λδ.

(c) Use (b) to solve
f ′′(x) + 2f ′(x) + f(x) = e−xh(x) + δ′(x).

(d) Why can’t you use the procedure of (b) to solve δ′ ∗ f = g by using the fact that
δ′ ∗ h = δ?
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 7.53 The following systems map a generalized function x(t) to a gen-
eralized function y(t). Find and sketch the step response yh (to the Heaviside step x = h),
the impulse response yδ (to x = δ), and the frequency response Yδ := y∧

δ for each of them.

(a) y′ + y = x (b) y′ − y = x

(c) y′′ + 2y′ + 10y = x (d) y′′ + 2y′ + y = 2x′ + x

Hint. Use the analysis of Exs. 7.51 and 7.52.

. .......

.
.. ............ .... .....••• EXERCISE 7.54 Let a00, a01, a10, a11 be complex constants with a00a11 �= a01a10.
Find generalized functions f00, f01, f10, f11 such that[

a00δ a01δ
′

a10δ
′ a11δ

′′

]
∗
[
f00 f01
f10 f11

]
=

[
δ 0
0 δ

]
.

. .... ..... ........... .. ......••• EXERCISE 7.55 The Hilbert transform of a suitably regular function f can be
defined by writing

(Hf)(x) := −i
∫ ∞

s=−∞
f∧(s) · sgn(s)e2πisx ds

[as done in (5.83)], by writing

(Hf)(x) :=
1
π

∫ ∞

u=−∞

f(u)
x− u

du,

or by writing
Hf := f ∗ π−1p−1

where p−1 is the generalized inverse power function of (46) and (52). Reconcile these
definitions.

. ....
.. ..... ........... ... .....••• EXERCISE 7.56 Solve the following convolution equations.

(a)
∫ ∞

−∞
e−|x−u|f(u) du = x4, (b) −2f ′′(x) +

∫ ∞

−∞
e−|x−u|f(u) du = x4.

. .

.

. ... .......... .. .. ......••• EXERCISE 7.57 The rules for taking Fourier transforms of generalized functions
can be deduced from the corresponding rules for taking Fourier transforms of Schwartz
functions by “chasing definitions.”

(a) Let f be a generalized function and let g(x) := f(x − x0) where −∞ < x0 < ∞.
Justify each step in the following proof of the translation rule.∫ ∞

−∞
g∧(s)φ(s) ds =

∫ ∞

−∞
g(x)φ∧(x) dx=

∫ ∞

−∞
f(x− x0)φ

∧(x) dx=
∫ ∞

−∞
f(x)φ∧(x+ x0) dx

=
∫ ∞

−∞
f∧(s){e−2πix0s · φ(s)} ds=

∫ ∞

−∞
{e−2πix0s · f∧(s)}φ(s) ds, φ ∈ S

∴ g∧(s) = e−2πix0s · f∧(s)

(b) Give an analogous proof of the dilation rule.

(c) Give an analogous proof of the derivative rule.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 7.58 A generalized function f is said to be nonnegative provided that
f{φ} ≥ 0 whenever φ is a nonnegative Schwartz function. Which of the following general-
ized functions, if any, are nonnegative?

(a) f(x) = e−πx2
(b) f(x) = log |x| (c) f(x) = 1/x2

(d) f(x) = δ(x) (e) f(x) = X(x) (f) f(x) = δ(x) − δ′′(x)

. ..

.
.. ......... ....
. .... ....••• EXERCISE 7.59 In this exercise you will find a power series for the Fourier trans-
form F (s) of the function

f(x) := e−4π4x4
.

(a) Show that F ′′′(s) = sF (s). (The constant 4π4 was chosen to simplify this differential
equation.)

(b) Show that F (0) = I0, F ′(0) = 0, F ′′(0) = −I2 where

I0 :=
∫ ∞

−∞
e−4π4x4

dx, I2 := 4π2
∫ ∞

−∞
x2e−4π4x4

dx.

(c) Using (a), (b), obtain the rapidly converging series

F (s) = I0

(
1 +

1 · s4
4!

+
1 · 5 · s8

8!
+

1 · 5 · 9 · s12
12!

+ · · ·
)

− I2

(
s2

2!
+

3 · s6
6!

+
3 · 7 · s10

10!
+

3 · 7 · 11 · s14
14!

+ · · ·
)
.

. ..
..

..

......... . ... .. .... ....••• EXERCISE 7.60 Verify that each of the following weak limits is δ.

(a) lim
σ→0+

e−x2/2σ2

√
2π σ

(b) lim
a→+∞

sin(ax)
πx (c) lim

λ→+∞
λe−2λ|x|

(d) lim
d→0+

(1−i)eiπx2/d

√
2d

(e) lim
λ→+∞

λ b(λx) (f) lim
N→∞

b(x)
N∑

n=−N

e2πinx

Note. The tapered box (125) is used in (e), (f).

. ..

.
.. ......... .... .. .... ....••• EXERCISE 7.61 Verify each of the following X identities.

(a) X(x− n) = X(x), n = 0,±1,±2, . . .

(b) (Π ∗ X)(x) = 1

(c) sinc(x) · X(x) = δ(x)

(d) cos(nπx) · X(x) =
1
2

{
X
(
x

2

)
+ (−1)nX

(
x− 1

2

)}
, n = 0,±1, . . .

(e) X(x) + X
(
x− 1

n

)
+ X

(
x− 2

n

)
+ · · · + X

(
x− n− 1

n

)
= nX(nx)
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(f) eiπx2 · X(x) =
1
2
X
(
x

2

)
− 1

2
X
(
x− 1

2

)
Hint. You can use a direct argument based on (40), you can use the series (107) and known
properties of δ, or you can use (68) to establish the identity for the Fourier transforms.

..
.
. ..
...
.. ........ ..... .....••• EXERCISE 7.62 Find each of the following weak limits.

(a) lim
σ→0+

∫ x

u=−∞

e−u2/2σ2

√
2π σ

du (b) lim
σ→0+

∫ ∞

u=−∞
|x− u|e

−u2/2σ2

√
2π σ

du

(c) lim
σ→0+

∫ ∞

u=−∞
|x− u| d

du

{
e−u2/2σ2

√
2π σ

}
du (d) lim

σ→0+
e−σ2x2

∞∑
n=−∞

e−(x−n)2/2σ2

√
2π σ

(e) lim
a→+∞ δ(x− a) (f) lim

N→+∞

N∑
n=−N

e2πinx

(g) lim
h→0+

δ(x+ h) − 2δ(x) + δ(x− h)
h2 (h) lim

h→0+

�x+ h� − �x�
h

(i) lim
p→0+

pX(px) (j) lim
p→+∞ X(px)

.
.
.. ..
..
.. ........ ... .... ....••• EXERCISE 7.63 Let hα(x) := e−αxh(x), α ≥ 0, be an approximation to the
Heaviside function h. In this exercise you will determine the Fourier transform of h by
using the weak limit limα→0+Hα(s).

(a) Show that

lim
α→0+

∫ ∞

−∞
hα(x)φ(x) dx =

∫ ∞

−∞
h(x)φ(x) dx

when φ ∈ S and thereby prove that hα converges weakly to h as α → 0+.

(b) Verify that the Fourier transform Hα of hα has the real, imaginary parts

HR,α(s) :=
α

α2 + 4π2s2
, HI,α(s) :=

−2πs
α2 + 4π2s2

.

(c) Show that

lim
α→0+

∫ ∞

−∞
HR,α(s)Φ(s) ds = 1

2Φ(0)

when φ ∈ S and thereby prove that HR,α converges weakly to 1
2δ as α → 0+.

Hint.

∣∣∣∣
∫ ∞

−∞
HR,α(s)[Φ(s) − Φ(0)] ds

∣∣∣∣ ≤ max
|s|≤ε

|Φ(s) − Φ(0)| ·
∫

|s|≤ε

HR,α(s) ds

+ 2 · max−∞<s<∞ |Φ(s)| ·
∫

|s|≥ε

HR,α(s) ds.



474 Generalized functions on R

(d) Show that

lim
α→0+

∫ ∞

−∞
HI,α(s)Φ(s) ds =

∫ ∞

−∞

Φ(s) − Φ(0)
−2πs

when φ ∈ S and thereby prove that HI,α converges weakly to (−1/2π)p−1.

(e) Use (b)–(d) to obtain the Fourier transform (99) of the Heaviside function h. [The
pointwise limit of Hα(s) gives the first (but not the second) term of this sum.]

.
..

.. . .

........ ....

.. ..... ....••• EXERCISE 7.64 Let f be a 1-periodic generalized function on R and let

δD,n(x) :=
n∑

k=−n

e2πikx, δF,n(x) :=
1

n+ 1

n∑
�=0

δD,�(x), n = 0, 1, 2, . . .

be the 1-periodic Dirichlet and Fejer kernel functions from Exs. 1.31 and 1.32. Establish
each of the following weak limits.

(a) lim
n→+∞ δD,n = X (b) lim

n→+∞ δF,n = X

(c) lim
n→+∞ δD,n � f = f (d) lim

n→+∞ δF,n � f = f

Note. The convolution product � is defined by (131).

.. . .

.

...
......... .... ...

.. ... ...••• EXERCISE 7.65 In this exercise you will show that

f(x) := sech(πx) has the FT F (s) = sech(πs).

(a) Verify the pointwise limits

sech(πx) = 2
∞∑

ν=0

(−1)νe−(2ν+1)π|x|, x < 0 or x > 0

sech(πs) =
4
π

∞∑
ν=0

(−1)ν(2ν + 1)
4s2 + (2ν + 1)2

, −∞ < s < ∞.

Hint. Use the identity

sech(u) =
2e−|u|

1 + e−2|u|
to establish the first and use the result of Ex. 4.6(b) for the second.

(b) Establish the bounds∣∣∣∣2
∞∑

ν=n

(−1)νe−(2ν+1)π|x|
∣∣∣∣ ≤ 2e−(2n+1)π|x|,

∣∣∣∣ 4π
∞∑

ν=n

(−1)ν(2ν + 1)
4s2 + (2ν + 1)2

∣∣∣∣ ≤ 4
2n+ 1

for the tails of the series in (a).

Hint. Use the alternating series test.

(c) Using (b) show that the series from (a) both converge weakly.

(d) Show that the term-by-term Fourier transform of one of the series from (a) gives the
other.
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.
.
.. ..
..
.. ........ ... ..... ....••• EXERCISE 7.66 Find and correct the flaw(s) in the following arguments.

(a) “Let fn(x) := e2πinx ·nΠ(nx), n = 1, 2, . . . . Since limn→∞ nΠ(nx) = δ(x) and since
α(x) · δ(x) = α(0) · δ(x) when α(x) := e2πinx we can write

lim
n→∞ fn(x) = 1 · δ(x) = δ(x).”

(b) “Let fα(x) := 1
2δ(x) +

∞∑
m=1

e−αmδ(x −m), α ≥ 0. Since f0 = limα→0+ fα, we can

write

F0(s) = lim
α→0+

Fα(s) = lim
α→0+

{
1
2
+

∞∑
m=1

e−(α+2πis)m
}

=
1
2
+

e−2πis

1 − e−2πis
= − i

2
cot(πs),

and thereby obtain the functional

F0{φ} = − i

2

∫ ∞

s=−∞
cot(πs)φ(s) ds, φ ∈ S.”

.

.

. . ..
.
. ......... ... .......••• EXERCISE 7.67 Two Fourier analysis students are trying to prove that

δ(x− a) =
∞∑

n=0

(−a)n
n!

δ(n)(x)

where −∞ < a < ∞.
“It’s easy if you work in the transform domain since the series

e−2πias =
∞∑

n=0

(−1)n(2πis)n · a
n

n!

is certainly correct,” says one of the students.
“I think you have to use Schwartz functions,” says the second. “Use Maclaurin’s

formula from calculus to write∫ ∞

−∞
δ(x− a)φ(x) dx = φ(a) =

∞∑
n=0

φ(n)(0)
an

n!

=
∞∑

n=0

{∫ ∞

−∞
(−1)nδ(n)(x)φ(x) dx

}
an

n!
=
∫ ∞

−∞

{ ∞∑
n=0

(−a)n
n!

δ(n)(x)

}
φ(x) dx

when φ ∈ S.”

(a) Find the flaw in the first argument.

(b) Find the flaw in the second argument.

(c) Explain why the δ(n) series does not converge weakly.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 7.68 Use a suitable weakly converging series to find the Fourier trans-
form of each of the following generalized functions.

(a) f(x) = eP(x)

(b) f(x) = 1/(2 − e−πx2
)

(c) f(x) = 1 +
e−πx2

1!
+
e−πx2 ∗ e−πx2

2!
+
e−πx2 ∗ e−πx2 ∗ e−πx2

3!
+ · · ·

(d) f(x) = cos[sin(2πx)]

Hint. Use Ex. 4.19(c).

.
...
..

....... .... ..... .... ...••• EXERCISE 7.69 In this exercise you will study transformations of the limit

∂

∂λ
δ(x− λ) := lim

h→0

δ(x− λ− h) − δ(x− λ)
h

where λ (like x) is a real parameter).

(a) Show that the partial derivative has the expected form

∂

∂λ
δ(x− λ) = −δ′(x− λ).

(b) What identity results when you transform the limit by replacing δ with the derivative
δ′?

(c) What identity results when you transform the limit by replacing δ with the Fourier
transform δ∧?

(d) What identity results when you transform the limit by replacing δ with α ·δ? Assume
that α, α′, α′′, . . . are CSG functions on R.

.. . .

...

.. .
...... ......

..

.. ... ...••• EXERCISE 7.70 Let f, g be p-periodic generalized functions with the Fourier series

f(x) =
∞∑

k=−∞
cke

2πikx/p, g(x) =
∞∑

k=−∞
dke

2πikx/p.

Find the Fourier series for each of the following.

(a) af(x) + bg(x) where a, b ∈ C (b) f(−x)
(c) f(x− x0) where −∞ < x0 < ∞ (d) f(x)

(e) e2πik0x/p · f(x) where k0 = 0,±1,±2, . . . (f) (f � g)(x) where � is given by (131)

(g) (f · g)(x) in the case where f is (h) f (m)(x) where m = 0, 1, 2, . . .
σ-bandlimited for some σ > 0

(i) f(mx) where m = 1, 2, . . . (j)
m−1∑
�=0

f(x/m−�p/m) wherem = 1, 2, . . .

Note. You can freely manipulate the Fourier series for p-periodic generalized functions!
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 7.71 Let f be a p-periodic generalized function with the Fourier co-
efficients . . . c−2, c−1, c0, c1, c2, . . . . What can you infer about these coefficients if you
know that:

(a) f(−x) = f(x) (reflection symmetry)?

(b) f
(
p

2
− x
)

= f
(
p

2
+ x
)

(reflection symmetry)?

(c) f
(
x+

p

2

)
= f(x) (translation symmetry)?

(d) f
(
x+

p

2

)
= −f(x) (glide symmetry)?

Hint. The function g(x) := e2πix/p · f(x) is p/2-periodic.

. .... ..... ......... .. .. ......••• EXERCISE 7.72 In this exercise you will use three methods to solve the differential
equation

y′(t) + µ y(t) = x(t)

when the forcing function is the periodic δ train

x(t) := A

∞∑
m=−∞

δ(t−mp) =
A

p
X
(
t

p

)
.

Here µ, A, p are positive constants. (For an interesting interpretation, regard y as the
blood concentration of a medicinal drug that is injected in equal doses at intervals of
length p.)

(a) Show that the solution y, if any, is unique.

(b) Show that the solution y, if any, is p-periodic.

(c) Use the fact that y′(t)+µ y(t) = 0 for 0 < t < p to infer that the p-periodic extension
of the ordinary function

y(t) =
Ae−µt

1 − e−µp
, 0 < t < p

satisfies the differential equation.

(d) Use the differential equation and the Fourier series for x(t) to determine the Fourier
coefficients for the Fourier series

y(t) =
∞∑

k=−∞
cke

2πikt/p.

[You can then check your work by using the analysis equation (1.6) with the p-periodic
function from (c).]
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(e) Find the generalized function g that satisfies the differential equation

g′(t) + µ g(t) = δ(t),

observe that g satisfies the condition (80), and construct

y(t) = (g ∗ x)(t)
by summing a certain geometric series. [Since

(g ∗ x)′ + µ(g ∗ x) = (g′ + µ g) ∗ x = δ ∗ x = x,

this procedure must give the same solution found in (c)!]

(f) Show that the ordinary function y from (c)–(e) will satisfy
1
2
A ≤ y(t) ≤ 2A for −∞ < t < ∞

provided that log 2 ≤ µ p ≤ log 3. (We can control the concentration of the drug by
our choice of p and A!)

. .
..

.. . .

......... ... .. .... ....••• EXERCISE 7.73 Let β be a σ-support-limited generalized function with the
Fourier transform B and let p > 0.

(a) Show that we can define a p-periodic generalized function f by writing

f(x) =
∞∑

k=−∞
β(x− kp).

Hint. Convolve β with p−1X(x/p).

(b) Show that the Fourier transform is given by the weakly converging series

f∧(s) =
∞∑

k=−∞

1
p
B

(
k

p

)
δ

(
s− k

p

)
.

(c) Show that f has the Fourier series

f(x) =
∞∑

k=−∞

1
p
B

(
k

p

)
e2πikx/p,

i.e., show that Poisson’s relation can be used in this context.

(d) Find the Fourier series when β(x) := δ(m)(x) and m is a nonnegative integer.

(e) Find the Fourier series when

β(x) :=




β1(x) for x1 < x < x2

β2(x) for x2 < x < x3

...

βm−1(x) for xm−1 < x < xm

βm(x) for xm < x < x1 + p

where β1, β2, . . . , βm are polynomials of degree n or less and
x1<x2< · · ·<xm<x1+p.

Hint. Use the analysis from Ex. 7.39 and see Ex. 7.75.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 7.74 Use Poisson’s relation to find the Fourier series for the
2-periodic function

g(x) :=
∞∑

m=−∞
f(x− 2m)

where

f(x) :=




− sin2(πx) if −1 < x < 0

sin2(πx) if 0 < x < 1

0 otherwise.

Hint. First show that

f ′′′(x) + 4π2f ′(x) = 2π2[−δ(x+ 1) + 2δ(x) − δ(x− 1)].

. .
.
. ..
..
.. ...
...... .. .... ....••• EXERCISE 7.75 Let f be an ordinary p-periodic function on R, let m = 1, 2, . . . ,
let 0 ≤ x1 < x2 < · · · < xm < p, and assume that f (n+1)(x) = 0 at all points 0 ≤ x < p
except for x1, x2, . . . , xm (i.e., assume that f is a piecewise polynomial function). Let
f, f ′, f ′′, . . . have the jumps

Jµ := f(xµ+) − f(xµ−), J ′
µ := f ′(xµ+) − f(xµ−), J ′′

µ := f ′′(xµ+) − f ′′(xµ−), . . .

at the point xµ, µ = 1, 2, . . . ,m, and let

A :=
1
p

∫ p

0
f(x) dx

be the average value of f .

(a) Express the coefficients ( ) for

f (n+1)(x) =
m∑

µ=1

{Jµ · ( ) + J ′
µ · ( ) + J ′′

µ · ( ) + · · · }

in terms of dilates of derivatives of X.

(b) Express the coefficients ( ) for the Fourier transform

f∧(s) = Aδ(s) +
m∑

µ=1

{Jµ · ( ) + J ′
µ · ( ) + J ′′

µ · ( ) + · · · }

of f in terms of X.

(c) Find the coefficients ( ) for the Fourier series

f(x) = A+
∞∑

k=−∞
k �=0

m∑
µ=1

{Jµ · ( ) + J ′
µ · ( ) + J ′′

µ · ( ) + · · · }e2πikx/p.

(d) Express f(x) as a linear combination of translates of dilates of the Bernoulli functions
(4.23) plus the constant A.

Note. Such formulas were developed by A. Eagle, A Practical Treatise on Fourier’s
Theorem and Harmonic Analysis, Longmans, Green & Co., London, 1925, pp. 57–59.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 7.76 Let g(x) = α(x)·f(x) where f is a p-periodic generalized function
having the Fourier series

f(x) =
∞∑

k=−∞
cke

2πikx/p,

and where α, α′, α′′, . . . are CSG. Express the Fourier transform of g in terms of A := α∧
and the ck’s, and then specialize this general formula to the case where:

(a) α(x) = e−πx2
, f(x) = cos(2πx); (b) α(x) = sinc2(x), f(x) = X(x);

(c) α(x) = (1 − 2πix)−1, f(x) = X(x).

.
....

. . .

....... .... .... .... ....••• EXERCISE 7.77 What can you infer about the Fourier transform f∧ of the gen-
eralized function f on R if you know that:

(a) sin(2πx) · f(x) = 0? (b) cos(2πx) · f(x) = 0?

(c) f ′(x+ 1) = f ′(x)? (d) f(x+1) = f(x) and f(x+
√

2) = f(x)?

(e) f ′(x+ 1) = f(x)? (f) f(x+ 1) = f(x) ∗ e−πx2
?

.... .......... ....
.. ..... ....••• EXERCISE 7.78 Let f be a generalized function, let p > 0, and assume that
∆n

pf = 0 where (∆pf)(x) := p−1[f(x+ p) − f(x)].

(a) Show that f has the representation

f(x) =
∞∑

k=−∞
(c0k + c1kx+ · · · + cn−1,kx

n−1) e2πikx/p

where c0k, c1k, . . . , cn−1,k are slowly growing complex coefficients. (It is easy to see
that the converse also holds.)

Hint. Begin by observing that ∆n−1
p f is a p-periodic generalized function with the

weakly convergent Fourier series (114).

(b) Show that f has the representation

f(x) = f0(x) + xf1(x) + · · · + xn−1fn−1(x)

where f0, f1, . . . , fn−1 are suitably chosen p-periodic generalized functions.

... . .
.......... ....

.. ..... ....••• EXERCISE 7.79 Let a(x), d(x) be p-periodic generalized functions with the
Fourier series

a(x) =
∞∑

k=−∞
αke

2πikx/p, d(x) =
∞∑

k=−∞
δke

2πikx/p.

What conditions must we impose on the coefficients to ensure that the convolution equation

a� f = d
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has a unique p-periodic generalized solution

f(x) =
∞∑

k=−∞
cke

2πikx/p ?

[Here � is given by (131).]

.
..
. ..... ........ ..... ... .....••• EXERCISE 7.80 Let the polynomials P,Q and the LTI operator A be as defined
in Ex. 7.51.

(a) Find the Fourier series for y
X

:= AX.

Hint. First find y∧
X

.

(b) Let x be a 1-periodic generalized function having the Fourier series

x(t) =
∞∑

k=−∞
cke

2πikt.

Show that Ax is 1-periodic and find the corresponding Fourier series.

(c) Let x be a 1-periodic generalized function. Show that

Ax = y
X

� x.

Note. The function y
X

serves as the impulse response for A when we work with
generalized functions on T1.

. ... .
....

. .......... ..... ....••• EXERCISE 7.81 We use the tapered box (123) to construct the Schwartz functions

bn(x) := nb(nx), mn(x) := Π
(
x

2n

)
∗ b(x), n = 1, 2, . . .

that serve as approximate convolution and multiplication identities when n is large.

(a) Sketch the graphs of bn and mn.

(b) Sketch the graphs of mn · f and bn ∗ (mn · f) when f(x) := |x| and n is large.

(c) Let g be CSG and let φ ∈ S. Show that lim
n→∞

∫∞
−∞ |g(x)| |(φ ∗ bn)(x) − φ(x)|dx = 0.

Note. Observe that min
|x−u|≤1/n

φ(u) ≤ (φ ∗ bn)(x) ≤ max
|x−u|≤1/n

φ(u).

(d) Let f be a generalized function. Show that lim
n→∞bn ∗ f = f.

(e) Let g be CSG and let φ ∈ S. Show that lim
n→∞

∫
|x|≥n−2 |g(x)(φ ∗ bn)(x)| dx = 0.

(f) Let f be a generalized function. Show that lim
n→∞mn · f = f.

(g) Let f be a generalized function. Show that lim
n→∞bn ∗ (mn · f) = f.
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Note. In this way you show that every generalized function is the weak limit of some
sequence of Schwartz functions.

Hint. ∣∣∣∣
∫ ∞

−∞
g(x)[mn(x) · (φ ∗ bn)(x) − φ(x)](m) dx

∣∣∣∣
≤
∫ ∞

−∞
|g(x)| · |(φ(m) ∗ bn)(x) − φ(m)(x)| dx

+
∫ ∞

−∞
|g(x)| · [1 −mn(x)] · |(φ(m) ∗ bn)(x) − φ(m)(x)| dx

+
m∑

�=1

(
m

�

)∫ ∞

−∞
|g(x)| · |m(�)

n (x)| · |(φ(m−�) ∗ bn)(x)| dx.

.
.

.. . .
......... ....
.. ..... ....••• EXERCISE 7.82 Show that the linear functional

f{φ} := (−1)µ
∫ ∞

−∞
g(x)φ(µ)(x) dx, φ ∈ S

that is constructed from a CSG function g and a nonnegative integer µ is Schwartz con-
tinuous, i.e.,

lim f{φν} = 0

whenever φ1, φ2, . . . ∈ S are chosen in such a manner that

lim
ν→∞ max−∞<x<∞ |xnφ

(m)
ν (x)| = 0

for every choice of n = 0, 1, . . . and m = 0, 1, . . . .

Note. The Hahn-Banach theorem from functional analysis can be used to prove that every
Schwartz continuous linear functional has such a representation.
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Sampling

8.1 Sampling and interpolation

Introduction

As I speak the word Fourier, a microphone converts the pressure wave from my
voice into an electrical voltage f(t), 0 ≤ t ≤ .5 sec. The sound card in my computer
discretizes this signal by producing the samples

f(nt), n = 0, 1, . . . , 4000, t := 1/8000 sec.

Figure 8.1 shows the (overlapping) line segments joining

(nt, 0) to (nt, f(nt)), n = 0, 1, . . . , 4000.

You can identify the hissy initial consonant “f”, the three long vowels “o”, “e”, “a”
(as in boat, beet, bait), and the semivowel “r” (as in burr).

Figure 8.1. An audio signal for the spoken word Fourier.

483
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An expanded 80-sample segment of the 10-msec interval .33 sec ≤ t ≤ .34 sec (a
part of the “e” sound) is shown in Fig. 8.2. It would appear that we have enough
sample points to construct a good approximation to the original audio signal.

Figure 8.2. An 80-sample segment of the “e” sound from the
spoken word Fourier.

In practice, we work with a quantized approximation of the sample f(nt). For
example, the Fourier recording uses 1 byte := 8 bits per sample, with one bit
specifying the sign of f(nt) and with seven bits specifying the modulus |f(nt)| to
within 1 part in 127 (of some fixed maximum modulus). It takes 4000 bytes of
storage for the Fourier recording, more than we need for a page of this text with

1 byte
character

· 80 characters
line

· 45 lines
page

=
3600 bytes

page
.

A digitized sound file that uses 8000 8-bit samples/sec is of telephone quality.
For high fidelity we must increase the sampling rate and reduce the quantization
error. A compact disk recording uses 44100 16-bit samples/sec or

44100 samples
sec

· 3600 sec
hour

· 2 bytes
sample

=
318 Mbytes

hour
.

Digitized sound files are very big!

Shannon’s hypothesis

Let f be a function on R, let t > 0, and let

fn := f(nt), n = 0,±1,±2, . . . . (1)

It is easy to produce a function y on R that interpolates f at the sample points, i.e.,

y(nt) = fn, n = 0,±1,±2, . . . . (2)
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For example, the broken line

y(t) :=
∞∑

n=−∞
fnΛ

(
t− nt

t

)
, −∞ < t < ∞ (3)

satisfies (2). When t is small, this approximation will be close to f . Figure 8.3
shows the broken-line approximation (3) for the sample points from Fig. 8.2.

Figure 8.3. The broken-line interpolant (3) for the sample points
from Fig. 8.2.

In this chapter, however, we have a more ambitious goal. A good approximation
is not good enough! We want to reconstruct f precisely from the samples (1), i.e.,
we want to produce an interpolating function y with y(t) = f(t) for all t, not just
for t = 0,±t,±2t, . . . . Of course, this is possible only if we have certain a priori
knowledge of the function f . For example, if we know that f ′′ ≡ 0, then we can use
(3) to recover f with no error.

In sampling theory, we follow Claude Shannon and assume that f is σ-bandlimited,
i.e., we assume that f can be synthesized from the complex exponentials e2πist with
−σ ≤ s ≤ σ. The fact that (3) reproduces f when f ′′ ≡ 0 is an odd curiosity, but
Shannon’s hypothesis is of enormous practical importance. After all, the sounds
made by the human voice are contained well within the 27.5–4186 Hz range of the
piano keyboard (see Appendix 8), and the human ear does not respond to frequen-
cies above 20000 Hz. Thus speech, music signals are (essentially) σ-bandlimited
with σ = 4000 Hz, σ = 20000 Hz, respectively.

For purposes of mathematical analysis, we will allow the Fourier transform F of
our function f to be an arbitrary σ-support-limited generalized function on R. This
forces f to have the representation

f(t) = tm
∫ σ

−σ

Γ(s)e2πist ds+
m−1∑
µ=0

tµ [cµe2πiσt + dµe
−2πiσt] (4)
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where m is a nonnegative integer, Γ(s) is a continuous complex-valued function for
−σ ≤ s ≤ σ, and cµ, dµ ∈ C for µ = 0, 1, . . . ,m, see (7.103). Using (4), we note
that f, f ′, f ′′, . . . are all well defined, and it is a fairly simple matter to verify that

|f (k)(t)| ≤ B · (2πσ)k · (1 + |t|m) · (1 + km), −∞ < t < ∞, k = 0, 1, . . . (5)

where B is a constant that depends on m, Γ, and the constants cµ, dµ, see Ex. 8.19.
You can then use this bound to show that f is represented by the pointwise con-
vergent Maclaurin series

f(t) =
∞∑

k=0

f (k)(0)
tk

k!
, −∞ < t < ∞,

with the convergence being uniform on every finite interval, see Ex. 8.20.

The Nyquist condition

We will use pure complex exponentials to determine the appropriate size for the
sampling interval t > 0. You will observe that

f1(t) := e2πis1t, f2(t) := e2πis2t, s1 �= s2,

have precisely the same t-samples

e2πis1nt = e2πis2nt for all n = 0,±1,±2, . . .

when (s2 − s1)t is an integer. We eliminate this possibility if we choose t so that
|s2 − s1|t < 1. In particular, we can distinguish between the t-samples of the
σ-bandlimited functions

f1(t) := e−2πiσt, f2(t) := e2πiσt

if the sampling interval t satisfies the Nyquist condition

2σt < 1. (6)

We often observe aliasing when we violate (6), i.e., when we do not take at least
two samples per cycle of the band frequency σ. For example, the chirp

f(t) = sin[2π(5t+ 27t2)], 0 ≤ t ≤ 1 (7)

is shown in Fig. 8.4 along with samples taken with t := 1/64. The local frequency
increases linearly from 5 to 59 as t increases from 0 to 1, so we have at least two
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samples/cycle on the left half of the curve but not on the right. Indeed, the samples
appear to come from the alias

fa(t) :=
{
f(t) if 0 ≤ t ≤ 1/2
f(1 − t) if 1/2 ≤ t ≤ 1,

(8)

which is also shown in Fig. 8.4. A less exotic example of aliasing appears in Fig. 1.6.

Figure 8.4. The chirp (7) and a corresponding alias (8) that
results when the Nyquist condition (6) is violated.

8.2 Reconstruction of f from its samples

A weakly convergent series

Let f be σ-bandlimited and let t > 0. Since f, f ′, f ′′, . . . are CSG, we can write

f(t) · X
(
t

t

)
= f(t) ·

∞∑
n=−∞

δ

(
t

t
− n

)
= f(t) ·

∞∑
n=−∞

tδ(t− nt)

=
∞∑

n=−∞
tf(t) · δ(t− nt) =

∞∑
n=−∞

tf(nt)δ(t− nt),

F (s) ∗ tX(ts) = F (s) ∗
∞∑

m=−∞
tδ(ts−m) = F (s) ∗

∞∑
m=−∞

δ
(
s− m

t

)

=
∞∑

m=−∞
F (s) ∗ δ

(
s− m

t

)
=

∞∑
m=−∞

F
(
s− m

t

)
,
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with all of the infinite series converging weakly. From these identities we obtain the
Poisson relation

∞∑
m=−∞

F
(
s− m

t

)
=

∞∑
n=−∞

t f(nt)e−2πints, (9)

which we will use to reconstruct f from its t-samples.
Let 0 < α < 1 and let b be the tapered box of (7.123) and Fig. 7.21. We mollify

the unit box by defining

Rα(s) :=
2
α
b

(
2s
α

)
∗ P(s). (10)

The scaled dilate of b is an approximate delta that vanishes when |s| ≥ α/2, so Rα

is a mesa function with

Rα(s) = 1 when |s| ≤ 1 − α

2
, Rα(s) = 0 when |s| ≥ 1 + α

2
,

as shown in Fig. 8.5. The Fourier transform of (10) is the Schwartz function

rα(t) = B(αt/2) · sinc(t). (11)

Figure 8.5. Construction of the damped sinc function rα and
the mollified box Rα via (11) and (10).
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Let σ, t satisfy the Nyquist condition (6). We choose 0 < α < 1 so that

0 < σ <
1 − α

2t
<

1
2t

. (12)

The t-dilate of Rα will then be a mesa function with

Rα(ts) = 1 if |s| ≤ 1 − α

2t
, Rα(ts) = 0 if |s| ≥ 1 + α

2t
,

so that

Rα(ts) · F
(
s− m

t

)
=
{
F (s) if m = 0
0 if m = ±1,±2, . . . .

(13)

(This product is well defined since Rα ∈ S.) We use (13) and (9) to write

F (s) =
∞∑

m=−∞
Rα(ts) · F

(
s− m

t

)
= Rα(ts) ·

∞∑
m=−∞

F
(
s− m

t

)

= Rα(ts) ·
∞∑

n=−∞
t f(nt)e−2πints =

∞∑
n=−∞

f(nt)e−2πints · tRα(ts),

and thereby obtain

f(t) =
∞∑

n=−∞
f(nt)rα

(
t− nt

t

)
. (14)

The weakly convergent series (14) allows us to reconstruct the σ-bandlimited func-
tion f from its t-samples! Figure 8.6 illustrates the steps that we used to produce
this remarkable interpolation formula.

Example Let f , rα, t be as in the above discussion. Show that the series (14)
converges uniformly on every finite interval.

Solution The σ-bandlimited function f is slowly growing, so we can write

|f(nt)| ≤ B|n|m, n = ±1,±2, . . .

for a suitable choice of B > 0 and the nonnegative integer m. Since rα ∈ S we can
also write

|ra(u)| ≤ C

|u|m+2 for |u| ≥ 1
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Figure 8.6. Development of the exact interplation formula (14)
for a σ-bandlimited function f .

when C > 0 is suitably chosen. Let M be any positive integer and let t be any
point in the interval −Mt ≤ t ≤ Mt. Given ε > 0 we will then have

∑
|n|>N

∣∣∣∣f(nt)rα

(
t− nt

t

)∣∣∣∣ ≤ 2
∞∑

n=N+1

B nm · C

(n−M)m+2

≤ 2BC(M + 1)m
∞∑

n=N+1

1
(n−M)2

≤ 2BC(M + 1)m

N −M

< ε

when N is sufficiently large.
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The cardinal series

In some situations we can eliminate the mollification parameter α from (14) by
replacing rα(u) with

sinc(u) = lim
α→0+

rα(u),

see (11). The resulting cardinal series representation

f(t) =
∞∑

n=−∞
f(nt) sinc

(
t− nt

t

)
(15)

for a suitably regular σ-bandlimited function f is the best known identity from
sampling theory. This remarkable formula was discovered independently by the
mathematicians E. Borel and J.M. Whittaker as well as the electrical engineers
V. Kotel’nikov and C.E. Shannon, who first recognized its significance in commu-
nication theory.

We cannot establish (15) by simply replacing Rα with R0 := P in the above
argument because we cannot justify term-by-term multiplication by P in the steps
leading to (14) without imposing additional regularity conditions on f . It seems
best to use a completely different approach.

Let f be a σ-bandlimited function with an ordinary Fourier transform F , let
0 < 2σt ≤ 1, and assume that F, F ′ are continuous except at finitely many points
where jumps can occur. We will use the validity of Fourier’s representation for f
and for the t−1-periodization (9) of F (as established in Section 1.5) to show that
the cardinal series (15) converges uniformly (and weakly) on R.

As a first step, we use the Plancherel identity for (9) to write

t
∞∑

n=−∞
|f(nt)|2 =

∫ 1/2t

−1/2t
|F (s)|2 ds < ∞. (16)

We choose integers M < N for the summation limits. Using the synthesis equation
for functions on R, the Cauchy–Schwartz inequality

∣∣∣∣
∫ b

a

α(s)β(s) ds
∣∣∣∣
2

≤
∫ b

a

|α(s)|2 ds ·
∫ b

a

|β(s)|2 ds,
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the synthesis equation for functions on T1/t, and Plancherel’s identity for functions
on T1/t in turn, we write

∣∣∣∣f(t) −
N∑

n=M

f(nt) sinc
(
t− nt

t

) ∣∣∣∣
2

=
∣∣∣∣
∫ 1/2t

−1/2t

{
F (s) −

N∑
n=M

f(nt)e−2πints tP(ts)
}
e2πist ds

∣∣∣∣
2

=
∣∣∣∣
∫ 1/2t

−1/2t

{
F (s) −

N∑
n=M

t f(nt)e−2πints

}{
P(ts)e2πist

}
ds

∣∣∣∣
2

≤
∫ 1/2t

−1/2t

∣∣∣∣F (s) −
N∑

n=M

t f(nt)e−2πints

∣∣∣∣
2

ds ·
∫ 1/2t

−1/2t
|e2πist|2 ds

=
1
t

∫ 1/2t

−1/2t

∣∣∣∣ ∑
n<M

t f(nt)e−2πints +
∑
n>N

tf(nt)e−2πints

∣∣∣∣
2

ds

=
∑

n<M

|f(nt)|2 +
∑
n>N

|f(nt)|2. (17)

In conjunction with (16), this inequality establishes the uniform (and the weak)
convergence of (15). Related identities for f ′, f ′′, . . . are given in Ex. 8.17.

A σ-bandlimited function f is also σ′-bandlimited when σ′ ≥ σ, and this simple
observation leads to a useful generalization of (15). When

σ ≤ σ′ ≤ 1
2t

we can replace

sinc
(
t− nt

t

)
by 2σ′t sinc[2σ′(t− nt)], and

tP(ts) by tP
( s

2σ′
)

in the first three lines of (17), and thereby show that

f(t) = (2σ′t)
∞∑

n=−∞
f(nt)sinc[2σ′(t− nt)].
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Equivalently, we can write

f(t) = a

∞∑
n=−∞

f(nt) sinc
[
a

(
t− nt

t

)]
when 2σt ≤ a ≤ 1, (18)

with the series converging uniformly (and weakly) on R.

Example Let a1, a2, t, t1, t2 be real numbers with 0 < a1 ≤ a2 ≤ 1 and t > 0.
Show that

∞∑
n=−∞

sinc
{
a1(t1 − nt)

t

}
sinc

{
a2(t2 − nt)

t

}
=

1
a2

sinc
{
a1(t2 − t1)

t

}
. (19)

Solution The function

f(t) :=
1
a2

sinc
{
a1(t− t1)

t

}

is σ-bandlimited with σ = a1/2t. We use this function with t := t2, a := a2 in (18)
to obtain (19). Related identities are developed in Exs. 8.13 and 8.14.

You can use (14) with any σ-bandlimited generalized function f , but our proof
of (15) only covers the case where F is a piecewise smooth ordinary function. The
following examples show what can happen to the cardinal series when we allow F
to be a generalized function.

Example Let f(t) := 2πit [so that F (s) = −δ′(s)] and let t := 1. Show that the
corresponding cardinal series

∞∑
n=−∞

2πin · sinc(t− n)

does not converge weakly.

Solution Let the Schwartz function φ be constructed so that

φ∧(s) = s when − 1
2 ≤ s ≤ 1

2 ,

see Ex. 7.4. We use Parseval’s identity to write

2πin
∫ ∞

−∞
sinc(t− n)φ(t) dt = 2πin

∫ ∞

−∞
e2πinsP(s)φ∧(s) ds

=
∫ 1/2

−1/2
2πins · e2πins ds =

{
0 if n = 0
(−1)n if n = ±1,±2, . . . ,
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and observe that the series

∞∑
n=−∞

∫ ∞

−∞
2πin · sinc(t− n)φ(t) dt =

∞∑
n=−∞

n �=0

(−1)n

does not converge.

Example Let f(t) := e2πis0t [so that F (s) = δ(s− s0)] and let t > 0 be selected
so that −1 < 2s0t < 1. Show that f is given by the weak limit

f(t) = lim
N→∞

N∑
n=−N

f(nt) sinc
(
t− nt

t

)
. (20)

Solution Let φ ∈ S be selected. The piecewise smooth t−1-periodic function

∞∑
m=−∞

φ∧
(
s− m

t

)
P
{
t
(
s− m

t

)}

and its derivative are continuous except at the points s = ±1/2t,±3/2t, . . . where
there can be jump discontinuities. This being the case, the analysis from Section 1.5
shows that the (symmetrized) Fourier series converges to φ∧(−s0) at the point
s = −s0. In this way we see that

∫ ∞

−∞
e2πis0tφ(t) dt = φ∧(−s0)

= lim
N→∞

N∑
n=−N

{
t
∫ 1/2t

−1/2t
φ∧(s)e−2πints ds

}
e−2πints0

= lim
N→∞

N∑
n=−N

e2πints0

∫ ∞

−∞
e2πints · tP(ts)φ∧(s) ds

= lim
N→∞

N∑
n=−N

e2πints0

∫ ∞

−∞
sinc

(
t− nt

t

)
φ(t) dt

= lim
N→∞

∫ ∞

−∞

{ N∑
n=−N

e2πints0 sinc
(
t− nt

t

)}
φ(t) dt.
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Recovery of an alias

Let f be σ-bandlimited and let

fm(t) := e2πimt/t · f(t) (21)

where t > 0 and m is a nonzero integer. By construction,

fm(nt) = f(nt) for all n = 0,±1,±2, . . . .

Now if 2σt < 1, we can use (14) and (21) to write

fm(t) = e2πimt/t ·
∞∑

n=−∞
fm(nt)rα

(
t− nt

t

)
(22)

with the series converging weakly on R. Similarly, if 2σt ≤ 1 and F is piecewise
smooth, we can use (15) and (21) to write

fm(t) = e2πimt/t ·
∞∑

n=−∞
fm(nt) sinc

(
t− nt

t

)
(23)

with the series converging uniformly (and weakly) on R. If we know the phase shift
parameter m/t, we can reconstruct fm from its t-samples, even when t is much
larger than the Nyquist sample size t/(2σt + 2|m|) for this function.

Fragmentation of P

Let k1, k2, . . . , kM be integers and let − 1
2 = s0 < s1 < · · · < sM = 1

2 . We split P
into

Pµ(s) :=
{

1 if sµ−1 ≤ s < sµ

0 otherwise,
µ = 1, 2, . . . ,M,

sum translates of these fragments to produce

P (s) :=
M∑

µ=1

Pµ(s− kµ), (24)

and synthesize the corresponding basis function

p(t) :=
∫ ∞

−∞
P (s)e2πist ds, (25)

as illustrated in Fig. 8.7.
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Figure 8.7. Construction of the functions P, p by using trans-
lates of fragments of P.

Now let F be a piecewise smooth support-limited function, let

f(t) =
∫ ∞

−∞
F (s)e2πist ds,

and let t > 0. We will not require f to be 1/2t-bandlimited [as we did for the
proof of (15)], but we will insist that

F (s) = P (ts) · F (s) (26)

so the points where F (s) �= 0 can be covered by M intervals having the collective
length 1/t. Since the 1-translates of [−1

2 ,
1
2 ) exactly cover R, we must have

∞∑
m=−∞

P (s−m) = 1

and

P (s)P (s−m) =
{
P (s) if m = 0
0 if m = ±1,±2, . . . .
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We use this identity with (26) to see that

P (ts) · F
(
s− m

t

)
= P (ts) ·

{
P
[
t
(
s− m

t

)]
F
(
s− m

t

)}

= {P (ts)P (ts−m)}F
(
s− m

t

)
=
{
F (s) if m = 0
0 if m = ±1,±2, . . . ,

at each point s. In conjunction with (9) this leads us to conjecture that

F (s) =
∞∑

n=−∞
t f(nt)e−2πintsP (ts)

and

f(t) =
∞∑

n=−∞
f(nt) p

(
t− nt

t

)
. (27)

A minor variation of the argument from (17) gives the bound

∣∣∣∣f(t) −
N∑

n=M

f(nt) p
(
t− nt

t

) ∣∣∣∣
2

≤
∑

n<M

|f(nt)|2 +
∑
n>N

|f(nt)|2, (28)

see Ex. 8.21. In this way we establish (27) and verify that the series converges
uniformly (and weakly) on R. Both (15) and (23) are special cases of (27).

8.3 Reconstruction of f from samples of a1∗f, a2∗f, . . .

Filters

Let a be a support-limited generalized function with the Fourier transformA, and let
f be σ-bandlimited. For simplicity, we will again assume that F, F ′ are continuous
except for finitely many points where finite jumps can occur. We will use the
function a to filter f by writing

g := a ∗ f, G = A · F. (29)

For example, when

a(t) = δ(t− t0), δ(k)(t),
1
2h

P
(
t

2h

)
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with −∞ < t0 < ∞, k = 0, 1, 2, . . . , h > 0, we find

g(t) = f(t− t0), f (k)(t),
1
2h

∫ t+h

u=t−h

f(u) du,

respectively.
From (29) we see that g, like f , is σ-bandlimited, so we can use (16) to show that

the t-samples of g are square summable with

t
∞∑

n=−∞
|(a ∗ f)(nt)|2 ≤

∫ 1/2t

−1/2t
|A(s) · F (s)|2 ds (30)

when 0 < 2σt ≤ 1.

Samples from one filter

Let a, f, g be as above, let 0 < 2σt ≤ 1, and assume that

A(s) �= 0 for − 1
2t

≤ s ≤ 1
2t

. (31)

We will show that it is possible to reconstruct f from the t-samples of g.
The bandlimited function A is continuous so we can define

P (s) :=




1
A(s)

if − 1
2t

≤ s ≤ 1
2t

0 otherwise,
(32)

p(t) :=
∫ 1/2t

−1/2t
P (s)e2πist ds, (33)

γ(t) := g(t) · X
(
t

t

)
=

∞∑
n=−∞

t g(nt)δ(t− nt), (34)

Γ(s) = G(s) ∗ tX(ts) =
∞∑

m=−∞
G
(
s− m

t

)
. (35)

We use (35) with (32) and (29) to show that

P (s) · Γ(s) =
∞∑

m=−∞
P (s) ·G

(
s− m

t

)
= P (s) ·G(s) = F (s)
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at each point s, and then informally use (34) to write

f(t) =
∞∑

n=−∞
g(nt) · t p(t− nt). (36)

If we replace P by a suitable mollification Pα (see Fig. 8.5), we can justify the
term-by-term multiplication and convolution that we use in this derivation.

It is a bit easier to modify the argument of (17) by writing

∣∣∣∣f(t) −
N∑

n=M

t g(nt)p(t− nt)
∣∣∣∣
2

=
∣∣∣∣
∫ 1/2t

−1/2t

{
F (s) −

N∑
n=M

t g(nt)e−2πintsP (s)
}
e2πist ds

∣∣∣∣
2

=
∣∣∣∣
∫ 1/2t

−1/2t

{
G(s) −

N∑
n=M

t g(nt)e−2πints

}
{P (s)e2πist} ds

∣∣∣∣
2

≤
∫ 1/2t

−1/2t

∣∣∣∣G(s) −
N∑

n=M

t g(nt)e−2πints

∣∣∣∣
2

ds ·
∫ 1/2t

−1/2t
|P (s)|2 ds

= t
{ ∑

n<M

|g(nt)|2 +
∑
n>N

|g(nt)|2
}

·
∫ 1/2t

−1/2t

ds

|A(s)|2 . (37)

In conjunction with (30) this shows that the series (36) converges uniformly (and
weakly) on R.

The Papoulis generalization

When the σ-bandlimited function f and the filter a are suitably regular and
0 < 2σt ≤ 1, we can reconstruct f from the samples

(a ∗ f)(nt), n = 0,±1,±2, . . . .

If we are given two, three, . . . times as much data in each sampling interval, we
might reasonably expect to use steps that are two, three, . . . times as large. For
example, we might reasonably expect to reconstruct f from the samples

f(n·2t), f ′(n·2t), n = 0,±1,±2, . . .

or
f(n·3t), f ′(n·3t), f ′′(n·3t), n = 0,±1,±2, . . .
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when 0 < 2σt ≤ 1. We will now present the clever analysis that A. Papoulis created
to obtain the corresponding interpolation formulas.

Let a1, a2, . . . , aK be support-limited generalized functions, and let f be a
σ-bandlimited function with a piecewise smooth Fourier transform F . The filtered
function

gκ := aκ ∗ f with FT Gκ = Aκ · F (38)

is then σ-bandlimited, so we can define

γκ(t) := gκ(t) · X
(

t

Kt

)
=

∞∑
n=−∞

Kt gκ(n·Kt)δ(t− n·Kt) (39)

and write

Γκ(s) = Gκ(s) ∗KtX(Kts) =
∞∑

m=−∞
Gκ

(
s+

m

Kt

)

=
∞∑

m=−∞
Aκ

(
s+

m

Kt

)
F
(
s+

m

Kt

)
(40)

for each κ = 1, 2, . . . ,K. Our goal is to reconstruct f from the samples

gκ(n·Kt), n = 0,±1,±2, . . . , κ = 1, 2, . . . ,K,

see Fig. 8.8, or equivalently from the periodic functions Γ1,Γ2, . . . ,ΓK .
We will assume that 0 < 2σt ≤ 1 [but insist that F (±σ) = 0 when 2σt = 1]. For

notational convenience, we will use

S :=
1
2t

for the upper bound on σ and

H :=
1
Kt

=
2S
K

(41)

for the periodization parameter from (40). Since the sampling step, Kt, in (39) is
K times larger than the Nyquist step t, the periodization parameter, H, in (40)
is K times smaller than the parameter 1/t, which is guaranteed to separate the
translates of F (compare Figs. 8.6 and 8.9). As many as K terms of (40) can
contribute to the value of Γκ at a given point s. In particular,

K∑
λ=1

Aκ(s+ (λ− 1)H) · F (s+ (λ− 1)H) = Γκ(s), κ = 1, 2, . . . ,K

when −S ≤ s < −S +H. (42)
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Figure 8.8. Comparison of the Shannon samples and the Papoulis sam-
ples that are used to reconstruct a σ-bandlimited function f when 2σt ≤ 1.

Figure 8.9. The functions F (s), F (s+H), F (s+ 2H) can be nonzero on
[−S,−S +H) when H = 2S/3.
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If A1, A2, . . . , AK are suitably regular, we can solve this system ofK linear equations
to find the K unknowns

F (s), F (s+H), . . . , F (s+ (K − 1)H) when −S ≤ s < −S +H.

In this way we obtain F (s) for −S ≤ s < S, so we can synthesize

f(t) =
∫ S

−S

F (s)e2πist dt.

It is one thing to see that such a reconstruction is feasible, but quite another to
work out the details, especially in the way that Papoulis did! We will describe the
procedure he used to find the interpolation formula.

We abandon (42) and use the system of K linear equations

K∑
κ=1

Aκ(s+ (λ− 1)H)Pκ(s, t) = e2πi(λ−1)Ht, λ = 1, 2, . . . ,K (43)

to find the K unknown functions

P1(s, t), P2(s, t), . . . , PK(s, t) when −S ≤ s < −S +H, −∞ < t < ∞.

Of course, we must impose a suitable regularity condition on the filters a1, a2, . . . , aK

[the same as that required for (42)] to ensure that this can be done for each s.
We now define

pκ(t) :=
1
H

∫ −S+H

−S

Pκ(s, t)e2πist ds, −∞ < t < ∞, (44)

and let
〈Pκ(s, t)e2πist〉H

denote the H-periodic extension of

Pκ(s, t)e2πist, −S ≤ s < S +H

to −∞ < s < ∞. We use the analysis equation integral

1
H

∫ −S+H

−S

Pκ(s, t)e2πist · e−2πins/H ds = pκ

(
t− n

H

)

with (41) to obtain the Fourier series

〈Pκ(s, t)e2πist〉H =
∞∑

n=−∞
pκ(t− n·Kt)e2πin Kts. (45)
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We also rewrite (43) in the form

K∑
κ=1

Aκ(s+ (λ− 1)H)Pκ(s, t)e2πist = e2πi(s+(λ−1)H)t,

λ = 1, 2, . . . ,K, −S ≤ s < −S +H,

and thereby see that

K∑
κ=1

Aκ(s)〈Pκ(s, t)e2πist〉H = e2πist, −S ≤ s < S. (46)

The hard work is done! We formally use (46), (45), and (38) in turn to write

f(t) =
∫ S

−S

F (s)e2πist ds

=
∫ S

−S

F (s)
K∑

κ=1

Aκ(s)〈Pκ(s, t)e2πist〉H ds

=
∫ S

−S

F (s)
K∑

κ=1

Aκ(s)
∞∑

n=−∞
pκ(t− n·Kt)e2πin Kts ds

?=
K∑

κ=1

∞∑
n=−∞

pκ(t− n·Kt)
∫ S

−S

F (s)Aκ(s)e2πin Kts ds

=
K∑

κ=1

∞∑
n=−∞

pκ(t− n·Kt)
∫ S

−S

Gκ(s)e2πin Kts ds

=
K∑

κ=1

∞∑
n=−∞

gκ(n·Kt)pκ(t− n·Kt),

and thereby obtain the Papoulis formula

f(t) =
K∑

κ=1

∞∑
n=−∞

gκ(n·Kt)pκ(t− n·Kt) (47)

for reconstructing f from the Kt-samples of g1, g2, . . . , gK .
You can use this procedure to find a multitude of useful interpolation formu-

las, see Ex. 8.24. As you work through the details with a particular set of filters
a1, a2, . . . , aK you can check to make sure that the system (43) is nonsingular, that
the Fourier series (45) makes good sense, etc. In most cases it is easier to do an
a posteriori analysis to establish the formula (47).
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Example Show how to recover the σ-bandlimited function f from the samples
f(n · 2t), f ′(n · 2t), n = 0,±1,±2, . . . when 2σt ≤ 1 and F is piecewise smooth.

Solution We define S := 1/2t, H := 1/2t, and use the filters

a1(t) := δ(t) with FT A1(s) = 1,
a2(t) := δ′(t) with FT A2(s) = 2πis.

We solve the linear equations

1 · P1(s, t) + 2π is · P2(s, t) = 1

1 · P1(s, t) + 2πi(s+H) · P2(s, t) = e2πiHt

from (43) to obtain

P1(s, t) =
H + s− s e2πiHt

H
, P2(s, t) =

e2πiHt − 1
2πiH

(when −S ≤ s < 0 and −∞ < t < ∞), and then compute

p1(t) :=
1
H

∫ 0

−H

P1(s, t)e2πist ds =
1
H2

∫ 0

−H

{(H + s)e2πist − s e2πi(H+s)t} ds

=
1
H2

∫ H

−H

(H − |s|)e2πist ds = sinc2(Ht),

p2(t) :=
1
H

∫ 0

−H

P2(s, t)e2πist ds =
e2πiHt − 1

2πiH2

∫ 0

−H

e2πist ds

=
t(e2πiHt − 1)(1 − e−2πiHt)

(2πiHt)2
= t sinc2(Ht).

We use these expressions with (47) to obtain the interpolation formula

f(t) =
∞∑

n=−∞
{f(n·2t) + (t− n·2t)f ′(n·2t)} sinc2

(
t− n·2t

2t

)
(48)

for recovering f from the samples f(n·2t), f ′(n·2t). [The analogous formula

f(t)=
∞∑

n=−∞

{
f(n·3t) +

(t− n·3t)
1!

f ′(n · 3T ) +
(t− n·3t)2

2!
f ′′(n·3t)

}
sinc3

(
t− n·3t

3t

)

for recovering f from the samples f(n·3t), f ′(n·3t), f ′′(n·3t) reveals the general
pattern.]
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8.4 Approximation of almost bandlimited functions

Let f have the piecewise smooth Fourier transform F , and assume that the tails of
F are small in the sense that

|F (s)| ≤ G(|s|), −∞ < s < ∞

where G is a continuous, decreasing, integrable function on 0 ≤ s < ∞. We will
show that any such almost bandlimited function f is well approximated by the
cardinal series when the sampling interval t > 0 is sufficiently small.

With this in mind we split F into the segments

Fm(s) :=

{
F (s) if − 1

2t
≤ s− m

t
<

1
2t

0 otherwise,
m = 0,±1,±2, . . . , (49)

and set

fm(t) :=
∫ ∞

−∞
Fm(s)e2πist ds, m = 0,±1,±2, . . . . (50)

We show that

f(t) =
∞∑

m=−∞
fm(t) (51)

(with the series converging uniformly for −∞ < t < ∞) by using (50), (49), and
the tail hypothesis to write

∞∑
m=−∞

|fm(t)| ≤
∞∑

m=−∞

∫ ∞

−∞
|Fm(s)| ds =

∫ ∞

−∞
|F (s)| ds < ∞.

We also use the tail hypothesis to verify that

∞∑
m=−∞

∞∑
n=−∞

fm(nt) sinc
(
t− nt

t

)
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converges absolutely (so that we can switch the order of the m,n summations), see
Ex. 8.26. We can then use (51) with the alias lemma (23) to write

∣∣∣∣f(t) −
∞∑

n=−∞
f(nt) sinc

(
t− nt

t

) ∣∣∣∣
=
∣∣∣∣

∞∑
m=−∞

fm(t) −
∞∑

n=−∞

∞∑
m=−∞

fm(nt) sinc
(
t− nt

t

) ∣∣∣∣
=
∣∣∣∣

∞∑
m=−∞

{
fm(t) −

∞∑
n=−∞

fm(nt) sinc
(
t− nt

t

)}∣∣∣∣
=
∣∣∣∣

∞∑
m=−∞

{1 − e−2πimt/t}fm(t)
∣∣∣∣

≤ 2
∑
m�=0

|fm(t)| ≤ 2
∫

|s|>1/2t
|F (s)| ds. (52)

Given ε > 0, we will have

∣∣∣∣f(t) −
∞∑

n=−∞
f(nt) sinc

(
t− nt

t

) ∣∣∣∣ < ε, −∞ < t < ∞,

if we choose t > 0 so that ∫
|s|>1/2t

|F (s)| ds < ε

2
.

Each term of the cardinal series is 1/2t-bandlimited, so the same is true of the
approximating sum, see Ex. 8.6.

Example Apply the above analysis to

f(t) := sinc(2t− 1),

and thereby show that the bound (52) is sharp.

Solution The Fourier transform

F (s) = e−πis · 1
2
P
(s

2

)
vanishes when |s| > 1, so f is σ-bandlimited with σ = 1. If we use the sample
spacing t = 1 (twice as large as the Nyquist sample spacing 1/2σ = 1/2), we find

f(nt) = sinc(2n− 1) = 0 for n = 0,±1,±2, . . . .
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The error bound

|sinc(2t− 1)| =
∣∣∣∣f(t) −

∞∑
n=−∞

f(nt) sinc
(
t− nt

t

) ∣∣∣∣ ≤ 2
∫

|s|>1/2t
|F (s)| ds = 1

of (52) is sharp when t = 1/2.

Example Use (52) to estimate the error in the approximation

1
1 + t2

≈
∞∑

n=−∞

1
1 + n2t2 sinc

(
t− nt

t

)

when t = 1, 1/2, 1/4, 1/8.

Solution Since

f(t) =
1

1 + t2
has the FT F (s) = π e−2π|s|,

the bound from (52) is given by

2
∫ ∞

|s|>1/2t
|F (s)| ds = 4

∫ ∞

s=1/2t
π e−2πs ds = 2 e−π/t.

When t = 1, 1/2, 1/4, 1/8 the error does not exceed 2e−π ≈ 8.64 · 10−2, 2e−2π ≈
3.73 · 10−3, 2e−4π ≈ 6.98 · 10−6, 2e−8π ≈ 2.43 · 10−11, respectively.

We will now generalize (17). The resulting real-world sampling theorem shows
that we can produce an arbitrarily good uniform approximation to an almost ban-
dlimited function f by truncating a cardinal series.

As a first step, we use the Cauchy–Schwartz inequality∣∣∣∣
∞∑

n=−∞
αnβn

∣∣∣∣
2

≤
∞∑

n=−∞
|αn|2

∞∑
n=−∞

|βn|2 (53)

and the identity
∞∑

n=−∞
sinc2(τ − n) = 1, −∞ < τ < ∞

from Ex. 8.14 to write∣∣∣∣ ∑
n<M

f(nt) sinc
(
t− nt

t

) ∣∣∣∣
2

≤
∑

n<M

|f(nt)|2,
∣∣∣∣ ∑

n>N

f(nt) sinc
(
t− nt

t

) ∣∣∣∣
2

≤
∑
n>N

|f(nt)|2.
(54)



508 Sampling

We use the tail hypothesis [as in Ex. 8.26(c)] to show that the series

∞∑
m=−∞

F
(
s− m

t

)

converges uniformly on R to a bounded t−1-periodic function with the Fourier
coefficients t f(nt), n = 0,±1,±2, . . . . We then use Bessel’s inequality to write

∞∑
n=−∞

|f(nt)|2 ≤ 1
t

∫ 1/2t

−1/2t

∣∣∣∣
∞∑

m=−∞
F
(
s− m

t

) ∣∣∣∣
2

ds < ∞.

Knowing that F is absolutely integrable and that the samples f(nt) are square
summable, we use (52) and (54) to obtain the bound

∣∣∣∣f(t) −
N∑

n=M

f(nt) sinc
(
t− nt

t

) ∣∣∣∣ ≤
∣∣∣∣f(t) −

∞∑
n=−∞

f(nt) sinc
(
t− nt

t

) ∣∣∣∣
+
∣∣∣∣ ∑

n<M

f(nt) sinc
(
t− nt

t

) ∣∣∣∣+
∣∣∣∣ ∑

n>N

f(nt) sinc
(
t− nt

t

) ∣∣∣∣
≤ 2

∫
s>1/2t

|F (s)| ds+

{∑
n<M

|f(nt)|2
}1/2

+

{∑
n>N

|f(nt)|2
}1/2

.
(55)

If we are given some ε > 0, we can make the integral less than ε/3 by choosing a
sufficiently small sampling interval t > 0. We can then make each of the sums less
than ε/3 by suitably choosing M,N . In this way we produce a truncated cardinal
series approximation to f with

∣∣∣∣f(t) −
N∑

n=M

f(nt) sinc
(
t− nt

t

) ∣∣∣∣ < ε for −∞ < t < ∞. (56)

We can almost reconstruct any almost bandlimited function f from finitely many
t-samples. This remarkable inequality is the mathematical foundation for digital
signal processing!

Further reading

Higgins, J.R. Sampling Theory in Fourier and Signal Analysis, Clarendon Press,
Oxford, 1996.
A rigorous graduate-level introduction to the mathematics of sampling theory.
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Higgins, J.R. Five short stories about the cardinal series, Bull. Amer. Math. Soc.
12(1985), 45–89.
A definitive history of the sampling theorem and its generalizations.

Marks II, R.J. Introduction to Shannon Sampling and Interpolation Theory,
Springer-Verlag, New York, 1991.
A graduate-level text in sampling theory for electrical engineers.

Oppenheim, A.V., Willsky, A.S., and Young, I.T. Signals and Systems, Prentice
Hall, Englewood Cliffs, NJ, 1983.
Chapter 8 provides an exceptionally well written elementary introduction to
the sampling theorem for scientists and engineers.

Papoulis, A. Signal Analysis, McGraw-Hill, New York, 1977.
Chapter 6 contains Papoulis’s own exposition of his sampling theorem.

Zayed, A.I. Advances in Shannon’s Sampling Theory, CRC Press, Boca Raton, FL,
1993.
A mathematical monograph dealing with the sampling theorem, its generaliza-
tions, and its connections to other branches of mathematics.

Exercises

. .
....

.... ...
....... ...

. .. ....••• EXERCISE 8.1 Let fk be σk-bandlimited, k = 1, 2, . . . ,K. How must t > 0 be
chosen to ensure that we can recover f from the samples f(nt), n = 0,±1,±2, . . . when:
(a) f := f1 · f2 · · · · · fK? (b) f := f1 ∗ f2 ∗ · · · ∗ fK?

Note. An additional regularity is needed to ensure that the convolution product is well
defined, e.g., you may assume that F1, F2, . . . , FK are piecewise smooth ordinary functions
on R.

.
.
.. .

...
.. ........ ... .... ....••• EXERCISE 8.2 A certain computer sound card records and plays at a rate of
20,000 samples/sec. The card is used to generate samples f0, f1, f2, . . . , f39999 of the
audio waveform produced when a human voice slowly reads the words Joseph Fourier.
Describe what you would hear when you play the samples:

(a) f0, f1, f2, . . . , f39999? (b) f39999, f39998, f39997, . . . , f0?
(c) f0, f2, f4, f6, . . . , f39998? (d) f0, f0, f1, f1, f2, f2, . . . , f39999, f39999?

(e)
f0 + f1 + f2

3
,
f1 + f2 + f3

3
,
f2 + f3 + f4

3
, . . . ,

f39997 + f39998 + f39999
3

?

(f)
f0 + f20000

2
,
f1 + f20001

2
,
f2 + f20002

2
, . . . ,

f19999 + f39999
2

?

Note. Regard f0, f1, . . . as samples of the audio waveform. In practice such samples are
scaled, quantized, and shifted to produce nonnegative integers (e.g., 0, 1, 2, . . . , 255 for an
8-bit sound card).
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..

.

...
......... .....

..

.. ... ...••• EXERCISE 8.3 When you are at reading distance from the following grating your
eye will see 101 black bars separated by 100 white bars.

When you are far away, the whole grating will appear to be a uniform shade of gray.

(a) Experimentally determine the maximum distance D where your eye can resolve these
bars when they are horizontal and when they are vertical.

(b) The images your eye can see are σ-bandlimited for some choice of σ. Use the result
of (a) to estimate σ (with the unit cycles/radian).

(c) When your are at reading distance from the graytone image of Fig. 8.10 your eye will
see the individual pixels, but when your are far away your eye will perceive the image
as a fine glossy photograph. Use the result from (a) to predict the distance where
this transition occurs . . . and then confirm (or disprove) your prediction by actually
observing the phenomenon.

Figure 8.10. An 80 pixel by 100 pixel graytone image of Joseph Fourier.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 8.4 Let N = 3, 4, 5, . . . , let t > 0, and let

γ(t) :=
∞∑

n=−∞
cos
(2πn
N

)
· t δ(t− nt).

(a) Show that γ(t) = cos(2πσmt) · X(t/t) when

σm :=
1
Nt

+
m

t
, m = 0,±1,±2, . . . .

(b) Find and sketch the Fourier transform Γ of γ, showing the effects of the parameters
N,t, and m.

(c) Find a simple formula for the function f(t) that has the Fourier transform

F (s) := Rα(ts) · Γ(s)

where Rα is given by (10) (see Fig. 8.5) and 0 < α ≤ 1/3.

Note. We can generate a pure sinusoidal tone by using N samples of the cosine
function, a suitable choice of the sampling interval t > 0, and a suitable low-pass
filter Rα.

.. . .
....

. .. ...........
..
. ... ....••• EXERCISE 8.5 Let f, g be σ-bandlimited functions with G,G′, G′′, . . . being con-
tinuous. Let t > 0 and assume that 0 < 2σt < 1. Show that

(g ∗ f)(t) =
∞∑

n=−∞
t f(nt)g(t− nt).

. . .
..

..
.
.. ............ .. ......••• EXERCISE 8.6 Let f1, f2, . . . be a sequence of σ-bandlimited generalized func-
tions that has the weak limit f . Show that f is σ-bandlimited.

. . ..

.. .
...
.. . ...
..... ..... ....••• EXERCISE 8.7 Let f be a σ-bandlimited generalized function on R. What can
you infer about f if you also know that:

(a) f is p-periodic? (b) f is support limited?

Hint.
∑

f(t − mp) is a p-periodic bandlimited function that vanishes on an interval
centered at t = p/2 when p is large and f is support limited.

.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 8.8 Let f be a σ-bandlimited generalized function, let 0 < β < 1, let
t > 0, and assume that 0 < 2σt < 1. The generalized function

qβ,t(t) :=
∞∑

m=−∞

1
β
P
(
t− nt
βt

)

is said to be a pulse amplitude carrier, and the product

gβ,t(t) := f(t) · qβ,t(t)

is said to be a pulse amplitude modulation of f .
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(a) Explain why gβ,t is a well-defined generalized function.

(b) Prepare representative sketches of f, F and of gβ,t, Gβ,t, showing the effects of the
parameters σ, β, and t.

(c) Show how to recover f from gβ,t.

Hint. Multiply Gβ,t by Rα(ts) using an α that satisfies (12).

Note. In view of this result you can periodically eavesdrop on N concurrent conver-
sations and then perfectly reconstruct each of them!

.. . .

...

.. .
....... .....

..

.. .... ...••• EXERCISE 8.9 Let M,t = 1, 2, . . . and let N := M · t. In this exercise you will
develop an interpolation formula for recovering a suitably bandlimited function f on PN

from the samples f [mt], m = 0, 1, 2, . . . ,M − 1.

(a) Show that γt := f ·t ct has the Fourier transform Γt = F ∗ cM . Here ct, cM are the
discrete combs on PN with tooth spacing t,M , respectively, see (4.43) and (4.44).

(b) Let p be a function on PN and assume that the discrete Fourier transforms of p, f
are related in such a manner that

P [k] · F [k] = F [k], k = 0, 1, . . . , N − 1

P [k − t ·M ] · F [k] = 0, k = 0, 1, . . . , N − 1, t = 1, 2, . . . ,t − 1.

Show that F = Γt · P and thereby obtain the interpolation formula

f [n] =
1
M

M−1∑
m=0

f [mt] · p[n−mt].

(c) Find the p that corresponds to the box

P [k] :=

{
1 if k ≡ 0, 1, . . . ,M − 1(mod N)

0 otherwise.

(d) Find the p that corresponds to the shifted box

P [k] :=

{
1 if k ≡ L,L+ 1, . . . , L+M − 1(mod N)

0 otherwise.

.. . .

...

...
....... .....

..

.. .... ...••• EXERCISE 8.10 In this exercise you will develop a sampling theorem for a suitably
bandlimited function on Z.

(a) Let t = 1, 2, 3, . . . . Find a simple expression for the (1-periodic) generalized Fourier
transform of the comb

ct[n] :=

{
1 if n = 0,±t,±2t, . . .
0 otherwise

on Z.
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(b) Let Fσ(s) be a generalized function on R that vanishes when |s| > σ and let

f [n] := F∧∨
σ (n), n = 0,±1,±2, . . .

be the corresponding slowly growing function on Z. Show that

γ[n] := ct[n]f [n], n = 0,±1,±2, . . .

has the (1-periodic) generalized Fourier transform

Γ(s) =
1
t

∞∑
n=−∞

Fσ

(
s− n

t

)
.

(c) Show how to recover f from the samples f [nt], n = 0,±1,±2, . . . when 2σt < 1.

Hint. Multiply Γ(s) by tRα(ts) using an α that satisfies (12).

. . .
..
... .......... ...
. .... ....••• EXERCISE 8.11 Several Fourier analysis students are trying to find a simple ex-
pression for the cardinal series

f(t) :=
∞∑

m=−∞
sinc(t−mN)

where N is a positive integer.
“Each partial sum is σ-bandlimited with σ = 1/2 so the same is true of f ,” says

the first.
“Yes, and since the limit is obviously N -periodic this forces f to be a trigonometric

polynomial,” adds the second.
“This is going to be easy,” says a third, “since f is a real function that takes the

values 1, 0, 0, . . . , 0 when t = 0, 1, 2, . . . , N − 1.”
“Wait a minute,” exclaims a fourth student. “I’m not even convinced that the sum

is properly defined.”

(a) Use the observations of the first three students to show that

f(t) =




1 if t = 0,±N,±2N, . . .
sin(πt)

N sin(πt/N)
if N = 1, 3, 5, . . . and t �= 0,±N,±2N, . . .

sin(πt)
N tan(πt/N)

if N = 2, 4, 6, . . . and t �= 0,±N,±2N, . . . .

(b) Explain why the above sum converges weakly as well as uniformly on every finite
interval.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 8.12 Let f be a trigonometric polynomial

f(t) :=
K∑

k=−K

cke
2πikt/p

and let t := p/(2N + 1) where N ≥ K. Use the cardinal series

f(t) =
∞∑

n=−∞
f(nt) sinc

(
t− nt

t

)
to derive the interpolation formula

f(t) =
2N∑
n=0

f(nt)
sinc{(t− nt)/t}
sinc{(t− nt)/p} , 0 ≤ t < p.

Hint. Use the identity from Ex. 8.11(a).

. ..
..

.

.......... . ... .. ...... ...••• EXERCISE 8.13 Let M = 2, 3, . . . and let m = 1, 2, . . . ,M − 1. Show that
∞∑

n=−∞

1
(m+ nM)2

=
{
π

M
csc
(
mπ

M

)}2

and thereby generalize the identity of Ex. 4.14.

Hint. Use (19) with a1 = a2 = 1, t = π and t1 = t2 = mπ/M .

. . ..
..

..
.......... . ... .. ..... ...••• EXERCISE 8.14 In this exercise you will establish several properties of the basis
functions for the cardinal series.

(a) Let M < N be positive integers and let t ≥ 0. Show that∣∣∣∣
N∑

n=M

sinc(t+ n)

∣∣∣∣ ≤ 2
πM

.

Hint. The identity

sinc(t+ n) =
sin(πt)
π

(−1)
t+ n

n

shows that the terms alternate in sign and decrease in modulus.

(b) Let M < N be integers and let −∞ < t < ∞. Show that∣∣∣∣
N∑

n=M

sinc(t− n)

∣∣∣∣ ≤ 3.

(c) Let −∞ < t < ∞. Show that
∞∑

n=−∞
sinc(t− n) = 1.
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Hint. Work with the Fourier series for the piecewise smooth 1-periodic function f
with

f(x) := e2πitx when − 1
2 < x < 1

2 .

(d) Let −∞ < t < ∞. Show that

∞∑
n=−∞

sinc2(t− n) = 1 when −∞ < t < ∞.

Hint. Use Plancherel’s identity with the Fourier series from (c) or use (19).

...
.. .... .......... .... ... .....••• EXERCISE 8.15 In this exercise you will establish a minimum bandwidth charac-
terization of the sinc function.

(a) Find a (1/2t)-bandlimited function on R that interpolates the points (0, 1) and
(nt, 0), n = ±1,±2, . . . .

(b) Show that there is no σ-bandlimited function f that interpolates the points of (a)
when 2σt < 1.

....
.. ..... .........
... ... .....••• EXERCISE 8.16 Let N := M · t where M,t are positive integers and let the
complex numbers y0, y1, . . . , yM−1 be given. There are many ways to produce a function
f on PN that interpolates the data in the sense that

f [mt] = ym, m = 0, 1, . . . ,M − 1.

Show how to construct such a function f that has the “smallest” possible bandwidth.

Hint. See Ex. 4.47.

. .......

.
.. ............ ... .....••• EXERCISE 8.17 Let f be a σ-bandlimited function with a piecewise smooth
Fourier transform F , let t > 0 with 2σt ≤ 1, and let k = 1, 2, . . . . In this exercise
you will generalize (15) by showing that

f (k)(t) =
∞∑

n=−∞

f(nt)
tk

sinc(k)
(
t− nt

t

)

with the series converging uniformly (and weakly) on R.

(a) Let M,N be integers with M < N . Show that

f (k)(t) −
N∑

n=M

f(nt)
tk

sinc(k)
(
t− nt

t

)

=
∫ 1/2t

−1/2t
(2πis)k

{
F (s) −

N∑
n=M

t f(nt)e−2πints

}
e2πist ds.
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(b) Show that

∣∣∣∣f (k)(t) −
N∑

n=M

f(nt)
tk

sinc(k)
(
t− nt

t

) ∣∣∣∣
2

≤ 1
2k + 1

(
π

t

)2k
{∑

n<M

|f(nt)|2 +
∑
n>N

|f(nt)|2
}
.

Hint. Suitably modify the proof of (17).

.
.. . .
......... ....

.. ..... ....••• EXERCISE 8.18 Let f be a σ-bandlimited function with a piecewise smooth
Fourier transform F , and let

M := max−∞<t<∞ |f(t)|.

In this exercise you will derive Bernstein’s bound

|f (k)(t)| ≤ (2πσ)kM, −∞ < t < ∞, k = 1, 2, . . .

for the derivatives of f .

(a) Let −∞ < u < ∞, −∞ < τ < ∞, and let t := 1/2σ. Use Ex. 8.17 to show that

f ′(u+ τ) =
∞∑

n=−∞
f(nt + τ)

cos{π(u− nt)/t} − sinc{(u− nt)/t}
u− nt

,

set u = t/2, and thereby obtain

f ′
(
τ +

t
2

)
=

8σ
π

∞∑
n=−∞

(−1)n+1f(nt + τ)
(2n− 1)2

.

(b) Use (a) with the identity
∞∑

n=−∞

1
(2n− 1)2

=
π2

4

from Ex. 8.13 to show that

|f ′(t)| ≤ 2πσM, −∞ < t < ∞.

(c) Use (b) to derive the above Bernstein bound for f (k)(t).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 8.19 In this exercise you will establish the bound

|f (k)(t)| ≤ B · (2πσ)k · (1 + |t|m) · (1 + km), −∞ < t < ∞, k = 0, 1, 2, . . .

for the kth derivative of a σ-bandlimited function f . Here m > 0, σ > 0, and the constant
B depend on f (but not on t or k).

(a) Derive such a bound for the function g(t) := t2 cos(2πσt).

Hint. Begin by using the Leibnitz rule (2.29) to write

g(k)(t) = [cos(2πσt)](k) · t2 +

(
k

1

)
[cos(2πσt)](k−1) · 2t+

(
k

2

)
[cos(2πσt)](k−2) · 2.

(b) Let Γ(s) be continuous for −σ ≤ s ≤ σ and let

f0(t) :=
∫ σ

−σ

Γ(s)e2πistds, −∞ < t < ∞.

Show that

|f (k)
0 (t)| ≤ (2πσ)k

∫ σ

−σ

|Γ(s)| ds, k = 0, 1, . . . .

(c) Use the representation (4) together with the Leibnitz rule (2.29) and (b) to establish
the above bound for f (k).

. . .
..
.... ......... .
... .... ....••• EXERCISE 8.20 Let f be a σ-bandlimited function on R.

(a) Show that f is entire, i.e., show that the Maclaurin series (4) converges to f(t) for
every choice of the point −∞ < t < ∞.

Hint. Use Taylor’s formula from Ex. 2.28 with the bound from Ex. 8.19.

(b) Show that f is of exponential type 2πσ, i.e., show that for every choice of ε > 0 there
is a constant B(ε) (that depends on f and ε) such that

∣∣∣∣f(0) + f ′(0)
z

1!
+ f ′′(0)

z2

2!
+ · · ·

∣∣∣∣ ≤ B(ε)e(2πσ+ε)|z|

for every choice of the point z ∈ C.

Note. The Paley–Wiener theorem (from complex analysis) asserts that a square integrable
function f on R is σ-bandlimited if it has the properties (a) and (b).
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 8.21 Let the basis function (25) be constructed from the fragmentation
(24) of P, let t > 0, and let C := {s : P (ts) = 1}. Let f have a piecewise smooth Fourier
transform F that satisfies (26).

(a) Show that the piecewise smooth function

G(s) :=
∞∑

n=−∞
F
(
s− n

t

)

is represented by the Fourier series

G(s) =
∞∑

n=−∞
t f(nt)e−2πints

at each point s where G is continuous.

Hint. Use the identity∫ 1/t

0
G(s)e2πints ds =

∫
C

F (s)e2πints ds

to evaluate the Fourier coefficients and then use the representation theorem from
Chapter 1.

(b) Show that (28) holds and thereby establish the uniform (and weak) convergence of
the series (27).

Hint. Suitably modify the argument of (17), using (26) and the identities∫
C

ds =
1
t
,

∫
C

∣∣∣∣F (s) −
N∑

n=M

t f(nt)e−2πints

∣∣∣∣
2

ds =
∫ 1/t

0

∣∣∣∣G(s) −
N∑

n=M

t f(nt)e−2πints

∣∣∣∣
2

ds.

.
.

.. . .
......... ....
.. .... ....••• EXERCISE 8.22 Let m,n = 0,±1,±2, . . . .
(a) Show that ∫ ∞

−∞
sinc(t−m)sinc(t− n) dt =

{
1 if m = n

0 if m �= n.

Hint. Use Parseval’s identity.
(b) Show that ∫ ∞

−∞
p(t−m)p(t− n) dt =

{
1 if m = n

0 if m �= n

when p is constructed from a fragmentation of P by using (24)–(25).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 8.23 Let f be a σ-bandlimited function with a piecewise smooth
Fourier transform F , and let

g(t) := (H f)(t) := −i
∫ σ

−σ

sgn(s)F (s)e2πist ds

be the corresponding Hilbert transform, see (5.83) and Ex. 7.55. Let t > 0 and assume
that 2σt ≤ 1.

(a) Use an informal argument to derive the sampling series

f(t) = −
∞∑

n=−∞
g(nt) sin

{
π(t− nt)

2t

}
sinc
{
t− nt

2t

}
.

Hint. Observe that G(s) = A(s) · F (s) when

A(s) :=

{−i sgn(s) if |s| < 1/2t
0 otherwise.

(b) Show that

t
∞∑

n=−∞
|g(nt)|2 =

∫ 1/2t

−1/2t
|F (s)|2 ds.

(c) Let M,N be integers with M < N . Show that∣∣∣∣f(t)+
N∑

n=M

g(nt) sin

{
π(t− nt)

2t

}
sinc
{
t− nt

2t

} ∣∣∣∣
2

≤
∑

n<M

|g(nt)|2 +
∑
n>N

|g(nt)|2.

In conjunction with (b) this shows that the series of (a) converges uniformly (and
weakly) on R.

Hint. Suitably adapt the argument of (17) after writing

f(t)+
N∑

n=M

t g(nt)a(t−nt) =
∫ 1/2t

−1/2t
A(s)

{
−G(s)+

N∑
n=M

t g(nt)e−2πints

}
e2πist ds.

.
..
. ..... ......... .... ... .....••• EXERCISE 8.24 Let f be a σ-bandlimited function with a piecewise smooth
Fourier transform F , let t > 0 with 2σt ≤ 1, and let 0 < α < 1. In this exercise you will
use the Papoulis analysis to recover f(t), −∞ < t < ∞, from the bunched samples

f(n·2t − αt), f(n·2t + αt), n = 0,±1,±2, . . . .

(a) Verify that

f(n·2t − αt) = (a1 ∗ f)(n·2t), f(n·2t + αt) = (a2 ∗ f)(n·2t)

when
a1(t) := δ(t− αt), a2(t) := δ(t+ αt).
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(b) Let gκ(t) := (aκ ∗ f)(t), γκ(t) := gκ(t) · X(t/2t), κ = 1, 2. Show that

det

∣∣∣∣∣
A1(s) A1(s+ 1/2t)

A2(s) A2(s+ 1/2t)

∣∣∣∣∣ = 2i sin(απ) �= 0

and thereby prove that F (s), F (s+1/2t) can be uniquely determined from the linear
equations

A1(s)F (s) +A1(s+ 1/2t)F (s+ 1/2t) = Γ1(s)

A2(s)F (s) +A2(s+ 1/2t)F (s+ 1/2t) = Γ2(s)

of (42) when −1/2t ≤ s ≤ 0.

(c) Show that the linear equations

A1(s)P1(s, t) + A2(s)P2(s, t) = 1

A1(s+ 1/2t)P1(s, t) +A2(s+ 1/2t)P2(s, t) = e2πit/2t

from (43) have the solution

P1(s, t) = e2πiαts(eπiα − eπit/t)/(eπiα − e−πiα)

P2(s, t) = −e−2πiαts(e−πiα − eπit/t)/(eπiα − e−πiα)

when −1/2t ≤ s ≤ 0.

(d) Show that the corresponding basis functions

pk(t) := 2t
∫ 0

−1/2t
Pk(s, t)e2πistds, k = 1, 2

from (44) are given by

p1(t) =
−t{cos(πα) − cos(πt/t)}

π(t+ αt) sin(πα)
, p2(t) =

t{cos(πα) − cos(πt/t)}
π(t− αt) sin(πα)

.

(e) Use (a), (d), and (47) to obtain the interpolation formula

f(t) =
t{cos(πα) − cos(πt/t)}

π sinπα

∞∑
n=−∞

{
f(n·2t + αt)
t− n·2t − αt

− f(n·2t − αt)
t− n·2t + αt

}
.

. ..

.
.. ......... .... .. .... ....••• EXERCISE 8.25 Let f1, f2 be σ-bandlimited functions with piecewise smooth
Fourier transforms F1, F2, and let t := 1/2σ. In this exercise you will show how to
recover f1, f2 from the t/2-samples of

f(t) := f1(t) · e−2πiσt + f2(t) · e2πiσt.

(You can combine two conversations f1, f2 to form f , transmit samples of f over a phone
line, and reconstruct f1, f2 at the other end!)
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(a) Show how to obtain F1, F2 from F .

(b) Informally derive the sampling series

f1(t) =
1
2

∞∑
n=−∞

inf
(
nt
2

)
sinc
(2t− nt

2t

)
, f2(t) =

1
2

∞∑
n=−∞

(−i)nf
(
nt
2

)
sinc
(2t− nt

2t

)
.

Hint. Begin with γ(t) := f(t) · X(2t/t).

(c) Use (17) with the σ-bandlimited functions fk(t), fk(t+ t/2) to show that

fk(t) =
∑

n=even
fk

(
nt
2

)
sinc
(2t− nt

2t

)
=
∑

n=odd

fk

(
nt
2

)
sinc
(2t− nt

2t

)
, k = 1, 2

with each of these series converging uniformly for −∞ < t < ∞.

(d) Use (c) with the identities

inf
(
nt
2

)
= f1

(
nt
2

)
+(−1)nf2

(
nt
2

)
, (−i)nf

(
nt
2

)
= (−1)nf1

(
nt
2

)
+f2

(
nt
2

)
to show that the modified cardinal series of (b) converge uniformly (and weakly) for
−∞ < t < ∞, and provide bounds for the truncation errors.

Note. Analogously we can recover the σ-bandlimited functions f1, f2, . . . , fK from the
t/K-samples of

f(t) := f1(t) · e2πi(−K+1)σt + f2(t) · e2πi(−K+3)σt + · · · + fK(t) · e2πi(K−1)σt.

.
..

..

..

.. ......... ... .... ....••• EXERCISE 8.26 Let f have the piecewise smooth Fourier transform F and assume
that

|F (s)| ≤ G(|s|), −∞ < s < ∞
where G is continuous, decreasing, and integrable on 0 ≤ s < ∞. In this exercise you will
show that ∞∑

m=−∞

∞∑
n=−∞

∣∣∣fm(n) sinc
(
t− nt

t

)∣∣∣ < M, −∞ < t < ∞

where fm is given by (49)–(50), t > 0, and M is a constant (that depends on t and G).
This absolute convergence allows us to exchange the order of the m,n summations in (52).

(a) Use the Cauchy–Schwartz inequality (53) and the identity of Ex. 8.14(d) to show that

∞∑
n=−∞

∣∣∣fm(n)sinc
(
t− nt

t

)∣∣∣ ≤
{ ∞∑

n=−∞
|fm(n)|2

}1/2

.

(b) Use (16) with the tail hypothesis to show that
∞∑

n=−∞
|fm(n)|2 =

1
t

∫ ∞

−∞
|Fm(s)|2 ds ≤ 1

t2 max
{
G(|s|)2 :

∣∣∣s− m

t

∣∣∣ ≤ 1
2t

}
.
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(c) Use (a), (b) with the tail hypothesis to show that

∞∑
m=−∞

∞∑
n=−∞

∣∣∣∣fm(n) sinc
(
t− nt

t

) ∣∣∣∣ ≤ G(0) + 2G
( 1

2t

)
+ 2G

( 3
2t

)
+ 2G

( 5
2t

)
+ · · ·

≤ 3G(0) + 2
∫ ∞

1/2t
G(s) ds.

.. .

.

... .

........ .... .... .... ...••• EXERCISE 8.27 Two Fourier analysis students are trying to construct a good
σ-bandlimited approximation g to a suitably regular function f when σ > 0 is specified.

“I think I’ll go with a least squares approximation and choose the σ-bandlimited
function g that minimizes the integral∫ ∞

−∞
|f(t) − g(t)|2 dt”

says the first.
“I like the idea of using least squares,” says the second, “but I would rather minimize

the sum ∞∑
n=−∞

|f(nt) − g(nt)|2

with t := 1/2σ.

(a) Show how to synthesize the σ-bandlimited function g1 that minimizes the integral.

Hint. Use Plancherel’s identity.

(b) Show how to synthesize the σ-bandlimited function g2 that minimizes the sum.

Hint. The minimum is 0.

Note. The mapping that takes f to g1 is LTI, but the mapping that takes f to g2 is
not.

.
...
..

....... .... .... ..... ...••• EXERCISE 8.28 Let ε > 0, σ > 0, B > 0 be given. Construct a continuously
differentiable function f with a piecewise smooth absolutely integrable Fourier transform
F such that ∫ ∞

−∞
|f(t)|2 dt < ε,

F (s) = 0 for −σ < s < σ, and

|f(0)| > B.

Hint. Suitably choose A > 0, α > 0, β > α/2 and set f(t) := A cos(2πβt) sinc(αt).
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Partial differential equations

9.1 Introduction

Vibrating strings on bows, lyres, dulcimers, . . . are as old as civilization. The plane
vibration of such a string can be specified by a displacement function u(x, t) which
depends on a space variable, x, and a time variable t. Fix t = t0 and u(x, t0) gives
a snapshot of the shape of the whole string at that time. Fix x = x0 and u(x0, t)
specifies the trajectory of the corresponding spot on the string as time evolves.
From personal observation, you undoubtedly know that when the string emits an
audible tone it moves much too fast for you to see such time slices or follow such
point trajectories without using a stroboscope, high-speed camera, etc. (You can
generate traveling waves, stationary waves, . . . that you can see by shaking one end
of a long suitably tensioned rope or Slinky!)

In 1747 d’Alembert used a bit of elementary physics to derive a new mathematical
construct, the partial differential equation (PDE),

∂2u(x, t)
∂t2

= c2
∂2u(x, t)
∂x2

which specifies the local behavior of the displacement function (see Section 9.2).
Here c > 0 is a constant. We will use the subscripts x, t as tags [in keeping with
(5.35)] to write this equation in the compact form

utt = c2uxx. (1)

By means of a clever change of variables, d’Alembert managed to solve this equation
and find a general form for the displacement function, see Ex. 9.1.

From that time partial differential equations have been used to model physical
processes that take place on a continuum of space. There are dozens of named PDEs
that succinctly summarize corresponding laws of nature, and you will certainly en-
counter them as you study physics, chemistry, geology, engineering, physiology, . . . .

523
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Perhaps you have already learned to construct solutions by using the elementary
but powerful separation of variables technique, e.g., as described in W.E. Boyce
and R.C. DiPrima, Ordinary Differential Equations and Boundary Value Problems,
8th ed., John Wiley & Sons, New York, 2004, pp. 603–638.

In this chapter we will use Fourier analysis to study three linear constant coeffi-
cient PDEs from mathematical physics, the wave equation (1), the diffusion equation

ut = a2uxx, (2)

and the diffraction equation
ut = (iλ/4π)uxx (3)

where a > 0 and λ > 0 are constants. It is easy to see that these PDEs have the
particular solutions

e2πi[sx−ν(s)t], −∞ < s < ∞, (4)

with
ν(s) = ±cs, ν(s) = −2πia2s2, ν(s) = λs2/2,

respectively. We can synthesize the corresponding general solutions

u(x, t) =
∫ ∞

−∞

{
A+(s)e2πisct +A−(s)e−2πisct

}
e2πisx ds, (5)

u(x, t) =
∫ ∞

−∞

{
A(s)e−4π2a2s2t

}
e2πisx ds, (6)

u(x, t) =
∫ ∞

−∞

{
A(s)e−πiλs2t

}
e2πisx ds (7)

from these particular solutions and use the Fourier transform calculus to express the
functions A+, A−, A in terms of certain initial values of u, ut. As you work through
the details in the following sections of the chapter you will see the extraordinary
power and elegance of this procedure.

A PDE is best studied within some definite physical context. We will show how
(1), (2), (3) arise within settings where the names wave equation, diffusion equation,
and diffraction equation are most natural. Simple concepts (Newton’s second law
of motion, conservation of energy, Huygens’ principle) allow us to formulate math-
ematical models that use PDEs with initial conditions (and boundary conditions)
to capture the essence of the physics without getting bogged down with irrelevant
details. A mathematical model allows us to make formal deductions that we can
interpret within a meaningful physical setting.

As we derive the PDEs we will tacitly assume that each u(x, t), ux(x, t),
ut(x, t), . . . we encounter is a suitably smooth ordinary function of the variables
x and t. Once we formulate the mathematical model, however, we will routinely
extend the class of admissible u’s. We will allow u(x, t) to be a generalized function
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of x (as described in Chapter 7) for each value of the parameter t. The partial
derivatives of u will be defined in terms of weak limits

ux(x, t) := lim
h→0

u(x+ h, t) − u(x, t)
h

, uxx(x, t) := lim
h→0

ux(x+ h, t) − ux(x, t)
h

, . . .

ut(x, t) := lim
h→0

u(x, t+ h) − u(x, t)
h

, utt(x, t) := lim
h→0

ut(x, t+ h) − ut(x, t)
h

, . . . .

You will quickly discover that this convention enables us to handle various limits
with minimal effort, e.g., as will be done in our study of bowed, plucked, and struck
strings.

Example Show that u(x, t) := P(x− ct) satisfies the wave equation (1) with

lim
t→0+

u(x, t) = u(x, 0) = P(x)

lim
t→0+

ut(x, t) = ut(x, 0) = −c{δ(x+ 1
2 ) − δ(x− 1

2 )}.

Solution A routine calculation (given at the end of Section 7.6) shows that

ux(x, t) = δ(x− ct+ 1
2 ) − δ(x− ct− 1

2 ) = −c−1 ut(x, t)

uxx(x, t) = δ′(x− ct+ 1
2 ) − δ′(x− ct− 1

2 ) = c−2 utt(x, t),

so this u satisfies (1). The weak continuity relation (7.106) then gives the weak
limits for u(x, 0+) and ut(x, 0+).

The equations (1), (2), (3) can be extended to a multivariate setting, e.g., (2)
takes the form

ut = a2{uxx + uyy}, ut = a2{uxx + uyy + uzz} (8)

when we work with 2,3-space variables. We obtain Laplace’s equation

uxx + uyy = 0, uxx + uyy + uzz = 0 (9)

when we set ut = 0 in (8) so that we can find steady-state (i.e., time invariant)
solutions. Fourier analysis can be used to solve such PDEs on special domains, see
Ex. 9.48. A meaningful discussion of Laplace’s equation and the 2,3-dimensional
versions of (1), (2) is best done within a context that admits space domains bounded
by suitably regular curves in R

2 or suitably regular surfaces in R
3. You can find

such a treatment in the PDE texts given in the references.
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9.2 The wave equation

A physical context: Plane vibration of a taut string

We consider the plane motion of a taut string that has a linear mass density ρ. We
assume that a smooth function u(x, t) gives the displacement of the string from the
x-axis at coordinate x and time t. We assume that the string is perfectly flexible, i.e.
(unlike a rod), it offers no resistance to bending. This being the case, the sections
of the string that lie to the left and to the right of the point x supply balancing
tensile forces directed along the local tangent line which makes an angle

θ(x, t) := arctanux(x, t)

with the x-axis as shown in Fig. 9.1.

Figure 9.1. A segment of a string under tension and the forces
used with Newton’s second law in (10).

From trigonometry,

cos θ(x, t) =
1√

1 + tan2 θ(x, t)
=

1√
1 + u2

x(x, t)
,

sin θ(x, t) =
tan θ(x, t)√

1 + tan2 θ(x, t)
=

ux(x, t)√
1 + u2

x(x, t)

when −π/2 < θ(x, t) < π/2. We will assume that ux is uniformly small, with u2
x

being negligible in comparison to 1. We can then use the approximation

cos θ(x, t) ≈ 1

to identify the magnitude of the tensile force with that of its horizontal component,
replacing both by the constant τ . To the same degree of approximation

sin θ(x, t) ≈ ux(x, t),

and (with an appropriate sign) we use τ ux(x, t) for the vertical component of the
tensile force at coordinate x.
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The segment of the string that we associate with the small interval [x, x+ h] has
mass ρh. We neglect the effects of gravity, air resistance, etc. in comparison to the
vertical components of the large tensile forces that act at the ends of the segment
as shown in Fig. 9.1. We can then use Newton’s second law to write

ρhutt(x+ h/2, t) = mass · acceleration at center of mass
= force
= τ ux(x+ h, t) − τ ux(x, t). (10)

We divide both sides of this equation by the mass, ρh, and then let h → 0 to obtain

utt(x, t) = (τ/ρ)uxx(x, t).

In this way we obtain the wave equation (1) with

c := (τ/ρ)1/2. (11)

The above derivation is quite informal, and you should understand that we cannot
use (1) to determine the exact motion of any real string. Real strings stretch, they
resist bending (if ever so slightly), they move horizontally as well as vertically, they
are damped by air resistance, etc., so a precise analysis requires suitably framed
arguments from continuum mechanics [see, S. Antman, The equations for large
vibrations of strings, Amer. Math. Monthly 87(1980), 359–370]. Nevertheless, (1)
does capture the essence of the taut string and serves as a good mathematical model.
We will now use Fourier analysis to construct solutions of this PDE.

The wave equation on R

Let f, g be generalized functions on R. We will construct the unique generalized
solution of the wave equation (1) that has the initial position

u(x, 0) := f(x) (12)

and the initial velocity
ut(x, 0) := g(x). (13)

If such a solution exists, we can Fourier transform (1), (12), and (13) to obtain

Utt(s, t) = c2(2πis)2U(s, t), U(s, 0) = F (s), Ut(s, 0) = G(s).

Using the fact that the initial value problem

y′′(t) + ω2y(t) = 0, y(0) = A, y′(0) = B
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from ordinary differential equations has the solution

y(t) = A cos(ωt) + (B/ω) sin(ωt)

(when ω > 0), we then write

U(s, t) =
{
F (0) + tG(0) if s = 0
F (s) cos(2πcst) + {G(s)/2πcs} sin(2πcst) otherwise.

(14)

You will recognize the equivalent

U(s, t) =
1
2
e2πictsF (s) +

1
2
e−2πictsF (s) + t sinc(2cts) ·G(s)

as the Fourier transform of the d’Alembert formula

u(x, t) =
1
2
f(x+ ct) +

1
2
f(x− ct) +

1
2c

P
( x

2ct

)
∗ g(x). (15)

[Of course, d’Alembert worked with ordinary functions and wrote (15) in the form

u(x, t) =
1
2
f(x+ ct) +

1
2
f(x− ct) +

1
2c

∫ ct

ξ=−ct

g(x− ξ) dξ

when he derived this result by other means some 250 years ago!] We can use the
wave kernel

r(x, t) :=

{
0 if t = 0
1
2c

P
( x

2ct

)
otherwise

(16)

that has the partial derivative

rt(x, t) =
1
2
δ(x+ ct) +

1
2
δ(x− ct), (17)

see Ex. 9.8, to write (15) in the compact form

u(x, t) = rt(x, t) ∗ f(x) + r(x, t) ∗ g(x). (18)

At this point it is easy to see that our initial value problem always has a solution.
Given f, g we can use (15) to construct u. A straightforward calculation then shows
that this u satisfies (1), (12), and (13).

Example Solve utt = c2 uxx with the initial position and velocity

u(x, 0) :=
e−x2/2σ2

√
2π σ

, ut(x, 0) = 0

where σ > 0.
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Solution The d’Alembert formula (15) gives

u(x, t) =
e−(x+ct)2/2σ2

2
√

2π σ
+
e−(x−ct)2/2σ2

2
√

2π σ

with u and its partial derivatives being ordinary functions that satisfy the PDE
in the ordinary fashion. You can use the physical context to interpret this result.
If a motionless taut string is forced to assume the shape of a gaussian and then
suddenly released, two half-sized gaussians emerge from the initial distortion and
travel to the left and to the right with the wave velocity c.

Example Solve the two initial value problems

utt = c2 uxx with u(x, 0) = P(x), ut(x, 0) = 0 and (19)

vtt = c2 vxx with v(x, 0) = 0, vt(x, 0) = P(x). (20)

Solution We use the d’Alembert formula (15) to write

u(x, t) =
1
2
P(x+ ct) +

1
2
P(x− ct), (21)

v(x, t) =
1
2c

P
( x

2ct

)
∗ P(x)

=




1
2c

min
{

1, 2ct,
1
2

+ ct− |x|
}

if |x| ≤ 1
2

+ ct

0 if |x| > 1
2

+ ct.

(22)

Although u, v are ordinary functions with the time slices shown in Fig. 9.2, the
partial derivatives utt, uxx, vtt, vxx are all generalized functions of x for each value
of t. The functions u, v are linked, and by using (16)–(18) we write

u = rt ∗ P = (r ∗ P)t = vt.

This relation is consistent with the time slices from Fig. 9.2.
You can again use the physical context to interpret the solutions. For example,

the spreading plateau (22) is the response of a taut quiescent string to a blow from
a broad hammer that instantly imparts momentum to the segment − 1

2 < x < 1
2 . If

we sit at some point x0 with |x0| > 1
2 , we do not feel the effect of the hammer blow

until the time interval
|x0| − 1

2

c
≤ t ≤ |x0| + 1

2

c

when the string rises linearly from u = 0 to u = 1/2c (where it remains).
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Figure 9.2. Time slices for the functions (21), (22) that
satisfy (19) and (20), respectively.

Let w be a generalized function with the Fourier transform W . We can construct
traveling solutions

w(x+ ct), w(x− ct)

of the wave equation (1) that move left, right with the wave velocity c. Each time
slice of such a solution is a translate of w, so these waves do not change shape as
they advance. We can formally synthesize such traveling waves from the complex
exponential solutions

e2πis(x+ct), e2πis(x−ct), −∞ < s < ∞

of (1) by writing

∫ ∞

−∞
W (s)e2πis(x+ct) ds,

∫ ∞

−∞
W (s)e2πis(x−ct) ds. (23)

We obtain the same functions when we use d’Alembert’s formula (15) with the
initial position w(x) and the initial velocity ±cw′(x).
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We can use a traveling wave to transmit a message along a taut string. For
example, if we want to transmit a message encoded with the bit string b1, b2, . . . , bN
(where bn = 0 or 1 for each n) we can launch a traveling wave constructed from a
suitable mollification of

w(x) =
N∑

n=1

bnP(x+ n).

The wave will travel along an ideal taut string with no attenuation, carrying our
message at the wave velocity c. Of course, we cannot send a nondissipative wave
along a real string, but we can produce comparable electromagnetic waves. When
you see a star in the night sky, the retina of your eye has just processed a traveling
light wave that has completed a journey of some 1013–1016 km!

Nondissipative traveling waves are possible because of a remarkable conservation
law associated with most ordinary solutions u of the wave equation (1). The integral

Et{u} :=
∫ ∞

−∞
{c2|ux(x, t)|2 + |ut(x, t)|2} dx (24)

is a constant of the motion! [When scaled by ρ/2, see (11), the c2 u2
x integral gives

the potential energy and the u2
t integral gives the kinetic energy of the string at

time t.] Indeed, when the initial position (12) and the initial velocity (13) are
piecewise smooth square integrable functions on R, we can use Plancherel’s identity
(1.15) with (14) (and a bit of algebra) to write

Et{u} =
∫ ∞

−∞
{|2πiscU(s, t)|2 + |Ut(s, t)|2} ds

=
∫ ∞

−∞
{|2πscF (s) cos(2πsct) +G(s) sin(2πsct)|2

+ | − 2πscF (s) sin(2πsct) +G(s) cos(2πsct)|2} ds

=
∫ ∞

−∞
{|2πisc F (s)|2 + |G(s)|2} ds

= E0{u}.

The wave equation on Tp

We will specialize the results of the preceding section to the case where the initial
position f and the initial velocity g are both p-periodic with p > 0. The d’Alembert
formula (15) then gives a generalized solution u(x, t) of the wave equation that is
p-periodic in x.
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Example Solve the two initial value problems

utt = c2 uxx, u(x, 0) =
1
p
X
(
x

p

)
, ut(x, 0) = 0, and (25)

vtt = c2 vxx, v(x, 0) = 0, vt(x, 0) =
1
p
X
(
x

p

)
. (26)

Solution We will define

rp(x, t) := r(x, t) ∗ 1
p
X
(
x

p

)
=

∞∑
m=−∞

r(x−mp, t) (27)

so that we can use (18) with (16)–(17) to write

v(x, t) = r(x, t) ∗ 1
p
X
(
x

p

)
= rp(x, t), (28)

u(x, t) = rt(x, t) ∗ 1
p
X
(
x

p

)
= rp

t (x, t)

=
1
2p

X
(
x+ ct

p

)
+

1
2p

X
(
x− ct

p

)
. (29)

You can visualize the evolution of v as follows. At time t = 0 a string at rest
is subjected to impulsive blows at the points x = 0,±p,±2p, . . .. The blow at
x = kp produces a spreading box with height 1/2c, center x = kp, and width 2ct at
time t. When these spreading boxes collide at times p/2c, 2p/2c, 3p/2c, . . . the string
undergoes additional jumps of size 1/2c as shown in Fig. 9.3.

The function u is a sum of traveling combs. You can easily verify that this
function is periodic in time with the period T = p/c.

When f, g are p-periodic we usually find it preferable to work with the weakly
convergent Fourier series

f(x) =
∞∑

k=−∞
F [k]e2πikx/p, g(x) =

∞∑
k=−∞

G[k]e2πikx/p. (30)

Since the solution of

utt = c2 uxx, u(x, 0) = f(x), ut(x, 0) = g(x) (31)

is a p-periodic generalized function of x for each choice of t, we can also write

u(x, t) =
∞∑

k=−∞
U [k, t]e2πikx/p.
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Figure 9.3. Time slices for the functions u = rp
t and v = rp that

satisfy (25) and (26), respectively.

The kth Fourier coefficient is a function of time, and by using (31) we see that

Utt[k, t] = c2
(

2πik
p

)2

U [k, t], U [k, 0] = F [k], Ut[k, 0] = G[k]. (32)
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We solve this initial value problem [see (14)] to find

U [k, t] = F [k] cos
(

2πkct
p

)
+ tG[k] sinc

(
2kct
p

)
. (33)

We can use (33) to express u in terms of the Fourier coefficients from (30), i.e.,

u(x, t) =
∞∑

k=−∞

{
F [k] cos

(
2πkct
p

)
+ tG[k] sinc

(
2kct
p

)}
e2πikx/p. (34)

We can also use (33) with the modulation rule, the convolution rule, and the Fourier
series

rp(x, t) =
t

p

∞∑
k=−∞

sinc
(

2kct
p

)
e2πikx/p

for (27) to obtain the d’Alembert formula

u(x, t) = 1
2f(x+ ct) + 1

2f(x− ct) + rp(x, t) � g(x)

that corresponds to (15). Here � is the convolution product (7.131) for generalized
functions on Tp. [We can use (2.2) when g is suitably regular.]

Example Find the Fourier series for a traveling Λ that goes around Tp, p > 2,
with velocity c as shown in Fig. 9.4.

Figure 9.4. A traveling triangle wave on Tp, p > 2.

Solution We use Poisson’s relation (4.18) as we write

u(x, t) =
∞∑

m=−∞
Λ(x− ct−mp) =

∞∑
k=−∞

1
p

sinc2
(
k

p

)
e2πik(x−ct)/p.
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Of course, you can get the same result by using (34) with

f(x) =
∞∑

m=−∞
Λ(x−mp) =

∞∑
k=−∞

1
p

sinc2
(
k

p

)
e2πikx/p

g(x) = −c
∞∑

m=−∞
Λ′(x−mp) =

∞∑
k=−∞

− c

p

(
2πik
p

)
sinc2

(
k

p

)
e2πikx/p.

A taut string of infinite length may be only a figment of our mathematical imagi-
nation, but we can use the above analysis to study a string of length L > 0. We will
assume that the functions f, g from (31) are odd and periodic with period p := 2L.
This being the case, the Fourier coefficients F [k], G[k] are odd, U [k, t] is an odd
function of k, and (34) can be rewritten in the form

u(x, t) =
∞∑

k=1

{
ak cos

(
πkct

L

)
+ bk sin

(
πkct

L

)}
sin
(
πkx

L

)
(35)

where

ak := 2i F [k], bk := 2iG[k]
(

L

πkc

)
, k = 1, 2, . . . . (36)

In view of the parity and periodicity, we have

u(−x, t) = −u(x, t), u(L− x, t) = −u(x− L, t) = −u(L+ x, t)

for all values of t, and we will say that u satisfies the boundary conditions

u(0, t) = 0, u(L, t) = 0 (37)

for a finite string with fixed endpoints even in cases where it makes no sense to
evaluate u at the points x = 0, x = L.

Of course, when f, g are suitably regular ordinary functions, (35) produces an
ordinary solution of (31) that satisfies (37). We can then use the analysis equations
for f, g to write

ak =
2
L

∫ L

0
f(x) sin

(
πkx

L

)
dx,

bk =
2
πkc

∫ L

0
g(x) sin

(
πkx

L

)
, k = 1, 2, . . . , (38)

and thereby express the coefficients (36) in terms of the initial position and velocity
of the string on the interval 0 ≤ x ≤ L.
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Example Find all separable solutions u(x, t) = v(x) · w(t) of the wave equation
utt = c2 uxx that satisfy the boundary conditions (37).

Solution In view of the previous discussion, we can assume that v is an odd 2L-
periodic generalized function of x. Since u satisfies the wave equation we have

v(x)w′′(t) = c2v′′(x)w(t)

and

w′′(t)V [k] = c2w(t)
(

2πik
2L

)2

V [k], k = 0,±1,±2, . . ..

If V [k] �= 0 for some k = 1, 2, . . . we see in turn that

w′′(t) +
(
πkc

L

)2

w(t) = 0

and

w(t) = ak cos
(
πkct

L

)
+ bk sin

(
πkct

L

)

for some coefficients ak, bk. Since V is odd, the function u must have the form

u(x, t) =
{
ak cos

(
πkct

L

)
+ bk sin

(
πkct

L

)}
sin
(
πkx

L

)
. (39)

Each point on the string vibrates with the frequency

fk =
kc

2L
=

k

2L

(
τ

ρ

)1/2

(40)

(a formula found by Mersenne in 1648) and with the shape sin(πkx/L) as shown in
Fig. 9.5. Any generalized solution of the wave equation that satisfies the boundary
conditions (37) can be synthesized from such normal vibrational modes by using the
weakly converging series (35)!

Figure 9.5. The normal vibrational modes (39) corresponding
to k = 1, 2, 3 for a taut string with fixed endpoints.
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Example Find the series (35) for a vibrating string with fixed ends when the
initial position and velocity are given by u(x, 0) := x(L− x), ut(x, 0) := 0.

Solution We use Kronecker’s rule (4.5) with (38) to write

ak =
2
L

∫ L

0
x(L− x) sin

(
πkx

L

)
dx

=
2
L

{
x(L− x)

[
−
(
L

πk

)
cos
(
πkx

L

)]
− (L− 2x)

[
−
(
L

πk

)2

sin
(
πkx

L

)]

+ (−2)

[(
L

πk

)3

cos
(
πkx

L

)]}∣∣∣∣∣
L

0

=




8L2

π3k3 if k = 1, 3, 5, . . .

0 if k = 2, 4, 6, . . . ,

and thereby find

u(x, t) =
8L2

π3

{
cos(πct/L) sin(πx/L)

13 +
cos(3πct/L) sin(3πx/L)

33

+
cos(5πct/L) sin(5πx/L)

53 + · · ·
}
.

We can make a taut string vibrate by bowing it (violin, cello, . . . ), by plucking it
(guitar, harp, . . . ), or by striking it (piano, dulcimer, . . . ). We will use generalized
functions [not the integrals (38)] to analyze the corresponding motions.

Example Let 0 < x0 < L. When we bow, pluck, strike a string at the point
x = x0, we cause it to vibrate with the initial position and velocity functions

ub(x, 0) = 0, ub
t(x, 0) = min

{
x

x0
,
L− x

L− x0

}
, (41)

up(x, 0) = min
{
x

x0
,
L− x

L− x0

}
, up

t (x, 0) = 0, (42)

us(x, 0) = 0, us
t (x, 0) = − Lc2

x0(L− x0)
δ(x− x0), (43)

on the interval 0 ≤ x ≤ L. Find the corresponding series (35) for the displacement
functions.

Solution We use the wave equation ub
tt(x, t) = c2ub

xx(x, t) with (41) to find

ub
tt(x, 0) = c2ub

xx(x, 0) = 0

ub
ttt(x, 0) = c2ub

txx(x, 0) = − Lc2

x0(L− x0)
δ(x− x0) when 0 < x < L.
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In conjunction with (42), (43) this gives

up(x, 0) = ub
t(x, 0), up

t (x, 0) = ub
tt(x, 0),

us(x, 0) = ub
tt(x, 0), us

t (x, 0) = ub
ttt(x, 0),

and it follows that

up(x, t) = ub
t(x, t),

us(x, t) = up
t (x, t) = ub

tt(x, t).

We produce an odd 2L-periodic function by suitably extending the definition of
us

t (x, 0), and use the series (7.107) for X to write

us
t (x, 0) =

−Lc2
x0(L− x0)

∞∑
m=−∞

{
δ(x− x0 −m 2L) − δ(x+ x0 −m 2L)

}

=
−c2

2x0(L− x0)

{
X
(
x− x0

2L

)
− X

(
x+ x0

2L

)}

=
−c2

2x0(L− x0)

∞∑
k=−∞

{
eπik(x−x0)/L − eπik(x+x0)/L

}

=
−2c2

x0(L− x0)

∞∑
k=1

sin
(
πkx0

L

)
sin
(
πkx

L

)
.

We can then write

us
t (x, t) =

−2c2

x0(L− x0)

∞∑
k=1

sin
(
πkx0

L

)
sin
(
πkx

L

)
cos
(

2πkt
T

)

and take antiderivatives term by term to obtain

us(x, t) =
−2c2

x0(L− x0)

∞∑
k=1

(
L

πck

)
sin
(
πkx0

L

)
sin
(
πkx

L

)
sin
(

2πkt
T

)
, (44)

up(x, t) =
2c2

x0(L− x0)

∞∑
k=1

(
L

πck

)2

sin
(
πkx0

L

)
sin
(
πkx

L

)
cos
(

2πkt
T

)
, (45)

ub(x, t) =
2c2

x0(L− x0)

∞∑
k=1

(
L

πck

)3

sin
(
πkx0

L

)
sin
(
πkx

L

)
sin
(

2πkt
T

)
, (46)
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where
T := 2L/c (47)

is the period of the fundamental vibrational mode. (Are you impressed? If not,
try deriving (44)–(46) by evaluating the corresponding integrals (38)!) The musical
tone emitted by the string depends on the point of excitation [through the common
factor sin(πkx0/L)] and on the mode of excitation (through the exponent 1, 2, or
3 that we place on k). You can use these series to determine the shape of the
string at any time t. The time slices shown in Fig. 9.6 will help you to visualize
the motion.

Figure 9.6. Time slices u(x, k T/10), k = 0, 1, . . . , 9, for the
struck, plucked, and bowed strings as given by (44), (45), and
(46) when x0 = L/10.
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9.3 The diffusion equation

A physical context: Heat flow along a long rod

We consider the flow of heat along a long, perfectly insulated, homogeneous rod that
has a uniform cross-sectional area A. The insulation ensures that no heat energy is
conducted or radiated from the sides of the rod into the surrounding environment.
We assume that a smooth function u(x, t) gives the temperature of all points having
the coordinate x (measured along the axis of the rod) at time t, see Fig. 9.7.

Figure 9.7. A segment of a rod and the heat flows that are used
with (48) to derive the diffusion equation (49).

Heat energy will flow from a hot segment of the rod into cooler adjacent re-
gions, with the flow being greatest in regions where u changes most rapidly with
respect to x. Following Fourier, we will assume that the rate at which heat flows
through the cross section of the rod at coordinate x is given by −κAux(x, t).
The thermal conductivity κ is a constant that depends on the composition of
the rod (e.g., κ = 420 joules/(sec · m ·◦C) for silver, a good conductor, and
κ = 1.2 joules/(sec · m ·◦C) for glass, a poor conductor.)

Suppose we are given an isolated segment of the rod that has length h and a
uniform temperature. When we add heat energy to this segment, the temperature
will rise. We will assume that the amount of additional heat is proportional to
the change in temperature. For the constant of proportionality we will use the
product of the volume, Ah, the mass density ρ, and the specific heat capacity C,
another constant that depends on the composition of the rod. Of course, the same
proportionality constant allows us to determine the rate at which heat is added to
the segment when we know the rate at which the temperature changes with respect
to time.

We will now focus our attention on the segment of the rod between the coor-
dinates x and x + h as shown in Fig. 9.7. The heat that flows into this segment
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through its left and right faces causes the temperature to rise, so we can write

−κAux(x, t) + κAux(x+ h, t) = rate of heat influx
= rate of heat storage
= CAhρut(x′, t), (48)

where x′ is a suitably chosen point within the segment. We divide both sides by
CAhρ, and then let h → 0 to obtain the PDE

ut(x, t) =
(
κ

Cρ
)
uxx(x, t). (49)

In this way we obtain the diffusion equation (2) with

a2 :=
κ

Cρ . (50)

Like κ, C, and ρ, the thermal diffusivity a2 is a constant that depends on
the composition of the rod (e.g., a2 = 1.7 · 10−4 m2/sec for silver and a2 =
5.8 · 10−7 m2/sec for glass).

If you regard temperature as a measure of the concentration of heat energy, you
will find it very easy to see that the PDE (2) can be used to study other diffusion
processes. For example, we can replace the rod with a long tube filled with water,
air, . . . and let u(x, t) be the concentration of some dye, perfume, . . . at coordinate
x and time t. You can interpret the above derivation of (49) within such contexts.

Heat flow is a far more complicated process than the above derivation suggests,
so you should consult a treatise, e.g., the one by Carslaw and Jaeger, if you must
perform a precise analysis of this phenomenon. (In practice the “constants” κ, ρ,
and C depend on both u and x.) Fourier’s simple model (49) is sufficiently accurate
for our purposes, however, and we will now construct solutions of this PDE.

The diffusion equation on R

Let f be a generalized function on R. We will construct the unique generalized
solution of the diffusion equation (2) that has the initial temperature

u(x, 0) = f(x). (51)

If such a solution exists, we can Fourier transform (2) and (51) to obtain

Ut(s, t) = a2(2πis)2U(s, t), U(s, 0) = F (s).

Using the fact that the initial value problem

y′(t) + α y(t) = 0, y(0) = A
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has the solution
y(t) = Ae−αt, t ≥ 0,

we then write
U(s, t) = e−4π2a2s2tF (s), t ≥ 0. (52)

The gaussian factor
K(s, t) := e−4π2a2s2t, t ≥ 0

is the Fourier transform of the diffusion kernel

k(x, t) :=



δ(x) if t = 0,

e−x2/4a2t

√
4πa2t

if t > 0,
(53)

a normal density with mean µ = 0 and variance σ2 := 2a2t. We recognize

U(s, t) = K(s, t) · F (s)

as the Fourier transform of

u(x, t) = k(x, t) ∗ f(x). (54)

The convolution product (54) is defined for every choice of f and for every t ≥ 0,
and you can verify that the resulting u satisfies both (2) and (51), see Ex. 9.35. Of
course, when f is a suitably regular ordinary function and t > 0, we can also write

u(x, t) =
1√

4πa2t

∫ ∞

−∞
f(ξ)e−(x−ξ)2/4a2t dξ. (55)

The gaussian kernel is a Schwartz function, so we can use (54) to infer that
u, ux, uxx, . . . are CSG functions of x when t > 0 is fixed. You can begin with any
generalized temperature f (no matter how badly behaved) and an instant t > 0
later the diffusion process will give you a supersmooth temperature profile u(x, t)!
[In cases where the generalized function f is support limited, we can use (53) to see
that u is a Schwartz function of x when t > 0.]

Example Solve ut = a2uxx with the initial temperature

u(x, 0) =
e−x2/2σ2

√
2π σ

, σ > 0.

Solution The convolution product (54) of (zero mean) normal densities having the
variances 2a2t, σ2 is the normal density

u(x, t) =
e−x2/2σ2(t)
√

2π σ(t)
, t ≥ 0
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with

σ(t) := (σ2 + 2a2t)1/2.

You can use the context to interpret this result. For example, when σ 	 1 the
rod has a tightly focused hot spot that spreads smoothly as the rod cools.

Example Solve ut = a2uxx with the initial temperature u(x, 0) = P(x).

Solution We can use (55) to write

u(x, t) =
1√

4πa2t

∫ 1/2

ξ=−1/2
e−(x−ξ)2/4a2t dξ, (56)

and express the integral in terms of the error function from Ex. 9.22. We can also
use (52) to write

U(s, t) = e−4π2a2s2t sinc(s)

and synthesize

u(x, t) =
∫ ∞

s=−∞
U(s, t)e2πisx ds =

∫ ∞

−∞
e−4π2a2s2t sinc(s) cos(2πsx) dx,

as in Ex. 1.20. Figure 9.8 shows a few selected time slices of the temperature u.
The discontinuous u(x, 0) = P(x) [with the decidedly unphysical initial temperature
gradient ux(x, 0) = δ(x+ 1/2) − δ(x− 1/2)] is instantly mollified. The box rapidly
evolves into an approximate gaussian (see Ex. 9.28) that spreads in accordance with
the analysis from the previous example.

Figure 9.8. Time slices for the solution (56) of ut = a2uxx with
u(x, 0) = P(x).
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Example Solve ut = a2uxx with the initial temperature u(x, 0) = x2.

Solution We use (52) to obtain

U(s, t) = e−4π2a2s2t δ′′(s)
(−2πi)2

,

and then simplify the synthesis integral by writing

u(x, t) = − 1
4π2

∫ ∞

−∞
e−4π2a2s2t cos(2πsx)δ′′(s) ds

= − 1
4π2

∂2

∂s2

{
e−4π2a2s2t cos(2πsx)

}∣∣∣∣
s=0

= x2 + 2a2t.

An alternative analysis is given in Ex. 9.26.
When u(x, t) is a suitably regular ordinary solution of (2), we can scale

Et{u} :=
∫ ∞

−∞
u(x, t) dx (57)

(by CρA) to obtain the total heat energy stored in the rod at time t. Indeed, if
the initial temperature f is piecewise smooth and absolutely integrable, we can use
(54) with the fact the diffusion kernel (53) has unit area to write

Et{u} =
∫ ∞

x=−∞

∫ ∞

ξ=−∞
k(x− ξ, t)f(ξ) dξ dx =

∫ ∞

ξ=−∞
f(ξ) dξ = E0{u}, t > 0,

see Ex. 2.26. The energy integral (57) is conserved by the diffusion process!
There are many ways to rearrange the heat energy in a rod without changing

the integral (57). You know from experience, however, that heat never flows up a
temperature gradient: the hottest spot on the rod (if any) does not get even hotter
at some later time. A simple proof of this observation follows from the fact that (53)
is a positive kernel with unit area. Indeed, if the initial temperature is a piecewise
smooth absolutely integrable function with

m ≤ f(ξ) ≤ M, −∞ < ξ < ∞ (58)

for some choice of the constants m,M , then for each choice of x and t > 0 we must
also have

mk(x− ξ, t) ≤ f(ξ)k(x− ξ, t) ≤ M k(x− ξ, t).

We integrate these inequalities from ξ = −∞ to ξ = +∞ and use (55) to see that

m ≤ u(x, t) ≤ M, −∞ < x < ∞, t > 0. (59)



The diffusion equation 545

The values of u(x, t) at time t > 0 never lie beyond the extremes m,M that bound
u(x, 0) when t = 0! This is known as the extreme value principle for solutions of
the diffusion equation (2). We can use this principle to show that a small change
in the initial temperature f produces a small change in u, see Ex. 9.25.

On occasion, we wish to study the flow of heat in a semi-infinite rod corresponding
to the interval 0 ≤ x < ∞. We must then specify some boundary condition at the
end, x = 0. For example, we set u(0, t) = c, t ≥ 0, if the end is kept at some
constant temperature, and we set ux(0, t) = d, t ≥ 0, if there is a constant flow of
heat into the rod at x = 0. In many cases we can suitably extend the domain of u
to −∞ < x < ∞ and solve the problem by using (54). The following examples will
show you how this is done.

Example Find the solution of ut = a2uxx on the half line x ≥ 0 with the boundary
condition

u(0, t) = 1, t ≥ 0 (60)

and the initial temperature

u(x, 0) =
{

1 if 0 ≤ x ≤ 1
0 otherwise.

(61)

Solution We can find u if we can find the function

v(x, t) := u(x, t) − 1

that satisfies the diffusion equation with the homogeneous boundary condition

v(0, t) = 0, t ≥ 0

and the initial condition

v(x, 0) =
{

0 if 0 ≤ x ≤ 1
−1 if 1 < x.

We can construct such a function v by using (55) with the odd initial temperature

f(x) =




1 if x < −1
0 if − 1 ≤ x ≤ 1
−1 if 1 < x

on all of R. In this way we obtain

u(x, t) = 1 +
1√

4πa2t

∫ ∞

ξ=1

{
e−(x+ξ)2/4a2t − e−(x−ξ)2/4a2t

}
dξ

= 1 − 1√
4πa2t

∫ 1+x

1−x

e−ξ2/4a2t dξ, (62)

see Ex. 9.22. Figure 9.9 shows a few selected time slices of the temperature u.
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Figure 9.9. Time slices for the solution (62) of ut = a2 uxx on
0 ≤ x < ∞ with the boundary condition (60) and the initial
temperature (61).

Example Find the steady-state solution of ut = a2uxx on the half line x ≥ 0
when u satisfies the time-varying boundary condition

u(0, t) = c0 + c1 cos
(

2πt
T

)
, t ≥ 0. (63)

Here c0, c1, and T > 0 are constants.

Solution We consider the forced diffusion equation

vt(x, t) = a2vxx(x, t) + δ(x)e2πit/T (64)

on the line −∞ < x < ∞. (The forcing term allows us to inject or remove heat
at the point x = 0 so we can control the temperature at that point.) We Fourier
transform the PDE and the initial condition

v(x, 0) = f(x)

to obtain

Vt(s, t) + 4π2a2s2V (s, t) = e2πit/T ,

V (s, 0) = F (s).

It is easy to verify that this forced ordinary differential equation has the solution

V (s, t) = [F (s) −A(s)]e−4π2a2s2t +A(s)e2πit/T (65)

where
A(s) :=

1
4π2a2s2 + 2πi/T

=
1
π

T

L2s2 + 2i
(66)

and
L := (4πa2T )1/2. (67)
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The first term on the right side of (65) is a transient that converges weakly to the
zero function as t → +∞. We discard this transient, e.g., by choosing F (s) = A(s),
and focus our attention on the steady-state portion

V (s, t) = A(s)e2πit/T .

We use the dilation rule and the fact that

e−2π(1+i)|x| has the FT
1
π

1 + i

s2 + 2i
, (68)

[see Ex. 9.31], to obtain the steady-state solution

v(x, t) =
T

(1 + i)L
e−2π(1+i)|x|/Le2πit/T (69)

of (64). Since (69) is a solution of the diffusion equation at each point where t > 0
and x �= 0, we see that the same is true of

u(x, t) = c0 + c1e
−2π|x|/L cos

[
2π
(
t

T
− |x|

L

)]
. (70)

By design, (70) satisfies the forced boundary condition (63).
For Fourier’s classical interpretation of this result, we let u(x, t) be the tem-

perature at depth x ≥ 0 and time t in a large slab of soil that is subjected to a
seasonal variation of temperature (63) at all points on the surface. Using the ap-
proximate diffusivity a2 ≈ 4.8 · 10−7 m2/sec for soil and T = 1 year with (67), we
find L ≈ 13.8 m. At half that depth, the phase lag in (70) causes the soil to be
cold in summer and warm in winter, see Fig. 9.10. The temperature fluctuations
decrease as x increases and you can use this observation to determine how deep you
must bury a water pipe to keep it from freezing, see Ex. 9.32.

Figure 9.10. Slices of u(x, t), 0 ≤ t ≤ T , at selected choices of
x when u is given by (70) and c0 = 0, c1 = 1.
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The diffusion equation on Tp

We will specialize the above analysis to the case where the initial temperature f
is p-periodic with p > 0. The convolution product (54) then gives a generalized
solution of (2) that is p-periodic in x.

Example Solve the initial value problem

ut = a2uxx, u(x, 0) =
1
p
X
(
x

p

)
. (71)

Solution We use (54) to see that

u(x, t) = kp(x, t),

where

kp(x, t) := k(x, t) ∗ 1
p
X
(
x

p

)
=

∞∑
m=−∞

k(x−mp, t). (72)

In particular,

kp(x, t) =
1√

4πa2t

∞∑
m=−∞

e−(x−mp)2/4a2t when t > 0. (73)

You can interpret this formula as follows. At time t = 0, a heat energy impulse
(of size CρA) is injected at each point x = 0,±p,±2p, . . . in a rod that is everywhere
at temperature u = 0. Each impulse gives rise to one of the spreading gaussian hot
spots from (73). When t is large, these gaussians overlap and it is not so easy to
compute u by using (73). We can use the Poisson relation (4.18) to write

kp(x, t) =
1
p

∞∑
k=−∞

e−(2πak/p)2te2πikx/p, (74)

and thereby see that u converges to the constant 1/p as t → +∞, see Fig. 9.11.

Figure 9.11. Time slices for the function u = kp from (72) that
satisfies (71).
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Example Solve ut = a2uxx with the initial temperature u(x, 0) = cos(2πx/p).

Solution Using (52) and (7.82), we write

U(s, t) = e−4π2a2s2t 1
2

{
δ

(
s− 1

p

)
+ δ

(
s+

1
p

)}

= e−4π2a2t/p2 1
2

{
δ

(
s− 1

p

)
+ δ

(
s+

1
p

)}
,

and thereby find

u(x, t) = e−4π2a2t/p2
cos
(

2πx
p

)
.

When we work with p-periodic functions, we usually find it advantageous to use
Fourier series. If

u(x, t) =
∞∑

k=−∞
U [k, t]e2πikx/p

is the solution of ut = a2uxx with the initial temperature

f(x) =
∞∑

k=−∞
F [k]e2πikx/p,

then the kth Fourier coefficient must satisfy

Ut[k, t] +
(

2πak
p

)2

U [k, t] = 0, U [k, 0] = F [k].

We solve this initial value problem to find

U [k, t] = F [k]e−(2πak/p)2t, k = 0,±1,±2, . . . ,

and synthesize

u(x, t) =
∞∑

k=−∞
F [k]e−(2πak/p)2te2πikx/p. (75)

You will observe that U [k, t] is the product of the Fourier coefficient F [k] for f and
the corresponding p scaled Fourier coefficient from the p-periodic diffusion kernel
(74). We can use the convolution rule for p-periodic functions to see that

u(x, t) = kp(x, t) � f(x). (76)
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Example A circle with circumference p > 0 is made from a thin rod. At time
t = 0 the right half of the circle has temperature u = +1 and the left half has
temperature u = −1. Find the temperature function at time t > 0.

Solution We use the Fourier series

f(x) =
∑

k=odd

2e2πikx/p

πik
=




1 if 0 < x <
p

2
−1 if

p

2
< x < p

with (75) to write

u(x, t) =
4
π

{
e−(2πa/p)2t sin

(
2πx
p

)
+

1
3
e−(6πa/p)2t sin

(
6πx
p

)

+
1
5
e−(10πa/p)2t sin

(
10πx
p

)
+ · · ·

}
.

On occasion we want to study the flow of heat in a finite rod with the space
coordinates 0 ≤ x ≤ L. We must then introduce a suitable boundary condition at
each end. For example, we might specify the temperature u or the (scaled) heat
flux ux. It is sometimes possible to eliminate such boundary conditions by using
symmetry. We will give three examples to show how this is done.

Example Let 0 < x0 < L. A rod of length L initially has the temperature

u(x, 0) = f(x) :=
{

1 if 0 ≤ x ≤ x0

0 if x0 < x ≤ L.

The ends of the rod are insulated so that

ux(0, t) = 0, ux(L, t) = 0 for t > 0.

Find the temperature in the rod at time t > 0 by solving the diffusion equation
ut = a2uxx subject to these constraints.

Solution Let p := 2L. We extend f from [0, L] to R by writing

f(x) =
∞∑

m=−∞
P
(
x−m 2L

2x0

)
=

∞∑
k=−∞

x0

L
sinc
(
kx0

L

)
e2πikx/2L.

By construction, this p-periodic function has the even symmetries

f(−x) = f(x), f(L− x) = f(L+ x).
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We produce a solution of the diffusion equation that has the initial temperature f
by using (75) to write

u(x, t) =
∞∑

k=−∞

x0

L
sinc
(
kx0

L

)
e−(2πak/2L)2te2πikx/2L

=
x0

L
+

2x0

L

∞∑
k=1

sinc
(
kx0

L

)
e−(πak/L)2t cos(πkx/L).

Since u is a smooth function of x that inherits the symmetries

u(−x, t) = u(x, t), u(L− x, t) = u(L+ x, t)

of f , ux must vanish at x = 0 and x = L.

Example A rod of length L at the uniform temperature u = 0 is given an impulse
of heat to produce an initial temperature u(x, 0) = f(x) := δ(x − x0). Find the
temperature at time t > 0 if the ends of the rod are held at the temperature
u(0, t) = 0, u(L, t) = 0 for t ≥ 0.

Solution Let p = 2L. We extend the initial temperature from [0, L] to R by writing

f(x) =
∞∑

m=−∞
δ(x− x0 −m 2L) −

∞∑
m=−∞

δ(x+ x0 −m 2L)

=
1

2L

{
X
(
x− x0

2L

)
− X

(
x+ x0

2L

)}

=
1

2L

∞∑
k=−∞

{e2πik(x−x0)/2L − e2πik(x+x0)/2L}

= − i

L

∞∑
k=−∞

sin
(
πkx0

L

)
e2πikx/2L.

By construction, this p-periodic function has the odd symmetries

f(−x) = −f(x), f(L− x) = −f(L+ x).

We produce a solution of the diffusion equation that has the initial temperature f
by using (75) to write

u(x, t) = − i

L

∞∑
k=−∞

sin
(
πkx0

L

)
e−(2πak/2L)2te2πikx/2L

=
2
L

∞∑
k=1

sin
(
πkx0

L

)
e−(πak/L)2t sin(πkx/L).
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The smooth function u inherits the symmetries

u(−x, t) = −u(x, t), u(L− x, t) = −u(L+ x, t)

of f , so u must vanish at x = 0 and x = L.

Example The ends of a rod of length L are kept in water baths with temperatures
u = 0, u = 100 until thermal equilibrium is reached. The water baths are then
reversed, i.e., the boundary conditions are switched. Find the temperature at all
points of the rod at time t > 0 after the switch.

Solution We must solve the diffusion equation ut = a2uxx for 0 < x < L subject
to the initial condition

u(x, 0) = 100
(
1 − x

L

)
, 0 < x < L, (77)

and the boundary conditions

u(0, t) = 0, u(L, t) = 100 for t > 0. (78)

We know that the rod will eventually reach thermal equilibrium at the temperature

u∞(x, t) := 100
x

L
, 0 < x < L.

The difference
v(x, t) := u(x, t) − u∞(x, t)

satisfies the diffusion equation for 0 < x < L with the initial temperature

v(x, 0) = u(x, 0) − u∞(x, 0) = 200
(

1
2

− x

L

)
, 0 < x < L,

and the boundary conditions

v(0, t) = 0, v(L, t) = 0, t ≥ 0.

We L-periodically extend v(x, 0) to obtain the odd scaled Bernoulli function

f(x) = 200
∞∑

k=−∞
k �=0

e2πikx/L

2πik

of (4.23), and then use (75) to write

v(x, t) = 200
∞∑

k=−∞
k �=0

e−(2πak/L)2te2πikx/L

2πik

=
200
π

∞∑
k=1

e−(2πak/L)2t sin(2πkx/L)
k

.
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In this way we find
u(x, t) = v(x, t) + 100

x

L
when 0 ≤ x ≤ L and t > 0, see Fig. 9.12.

Figure 9.12. Time slices for the solution of the diffusion equa-
tion ut = a2uxx with the initial condition (77) and the boundary
conditions (78).

9.4 The diffraction equation

A physical context: Diffraction of a laser beam

When a laser beam (with a diameter of a few millimeters) passes through a suit-
ably prepared 35-mm slide, there is a point-by-point modification of the phase and
amplitude of the light wave. The emergent beam spreads to form a spot (with
a diameter of a few centimeters) on a screen placed a few meters from the slide.
The intensity of the light varies from point to point within the spot, and in this
way we obtain a diffraction pattern that corresponds to the image on the slide.
(A striking collection of photographs of such diffraction patterns can be found in
G. Harburn, C.A. Taylor, and T.R. Welberry, Atlas of Optical Transforms, G. Bell
& Sons, London, 1975.)

A precise analysis of this phenomenon must be based on Maxwell’s equations,
e.g., as done in the classic treatise of Born and Wolf. We will give a simplified
derivation that can be used when the light is monochromatic with wavelength λ,
e.g., λ = .6328 · 10−3 mm for the red light from a He–Ne laser. The same derivation
can be used for sound waves, water waves, etc. provided that all of the waves
have a common wavelength and the dimensions (as measured in wavelengths) are
comparable to those for the diffraction of a laser beam.
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We will use the coordinate z to measure distance along the axis of the laser beam.
The coordinates x, y will locate points in a plane perpendicular to the beam. In
this chapter we will suppress the y-coordinate and analyze the way a univariate
diffraction pattern evolves as we vary the parameter z, i.e., as we position the
viewing screen at various points along the z-axis.

Suppose that we have a source of waves at the coordinate ξ on the line perpen-
dicular to the z-axis at the origin as shown in Fig. 9.13. Circular waves emanate
from this point and travel to an observation point with coordinates (x, z). (You can
produce such water waves with λ = 1 cm by touching the surface of a still lake with
the tip of a pencil that oscillates up and down along its axis with a frequency of
12.5 Hz, see Ex. 9.47.) Let U(x, z, t) be a real measure of the size of the disturbance
at the point (x, z) and time t. For example, when we work with water, sound, or
light waves we can let U represent the vertical displacement of the surface of the wa-
ter from its equilibrium position, the departure of air pressure from its equilibrium
value, or the x-component of the electric field vector at the point in question.

Figure 9.13. The parameters ξ, x, z, and λ that are used for (79)–(80).

At the source, we expect U to be proportional to some sinusoid

cos
{

−2π
t

T
+ φ

}

that has the period T > 0 and the initial phase φ. As we travel away from the
source along a ray, we pass over one complete wave each time we move a distance
λ, so we expect the disturbance U to be proportional to

cos
{

2π
(
r

λ
− t

T

)
+ φ

}

when we are at a distance r from the source. We expect the amplitude of the
disturbance to diminish as r increases, and we must include some factor to specify
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the strength of the source. These considerations lead us to assume that U has the
form

U(x, z, t) = Aa(r) cos
{

2π
(
r

λ
− t

T

)
+ φ

}
, (79)

where
r :=

[
(x− ξ)2 + z2]1/2

, (80)

A > 0 is a scalar, and a(r) is a well-behaved function of r (which we will determine
presently). Huygens, a contemporary of Newton, introduced such wave forms for
his study of diffraction three centuries ago!

We will now describe two approximations that greatly simplify the subsequent
analysis. We first use the binomial series with (80) to write

r = z

{
1 +

(x− ξ)2

z2

}1/2

= z

{
1 +

(x− ξ)2

2z2 − (x− ξ)4

8z4 +
(x− ξ)6

16z6 − · · ·
}
, |x− ξ| < z. (81)

For example, when |x − ξ| = 1 cm and z = 1 m (reasonable choices for the laser
beam diffraction analysis) the terms of this series have the numerical values

r = 1 m ·
{

1 +
1

2 · 104 − 1
8 · 108 +

1
16 · 1012 − · · ·

}
,

and you will readily see why we choose to use the approximation

a(r) ≈ a(z)

for the amplitude reduction factor that appears in (79). On the other hand, when
|x− ξ| = 1 cm, z = 1 m, and λ = .6328 · 10−3 mm, the same series gives

r

λ
=

1 m
.6328 · 10−6 m

·
{

1 +
1

2 · 104 − 1
8 · 108 +

1
16 · 1012 − · · ·

}
= 1.58. . . · 106 + 79.0 . . . − .00197 . . . + · · · .

The very large z/λ ratio forces us to use at least two terms of the series if we want to
compute the cosine factor from (79) with reasonable accuracy. Such considerations
lead us to replace (79) with the Fresnel approximation

U(x, z, t) = Aa(z) cos
{

2π
(
z

λ
− t

T

)
+
π(x− ξ)2

λz
+ φ

}
. (82)

You can safely use this approximation when x, ξ, z, and λ satisfy both

|x− ξ|2 	 z2 and |x− ξ|4 	 λ z3. (83)
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Suppose now that we have two point sources on the line z = 0 at coordinates
ξ1, ξ2 with the amplitudes A1, A2 and the initial phases φ1, φ2. We will assume that
we can find the resulting disturbance at (x, z) by adding the two corresponding
functions (82). To facilitate the analysis we use complex arithmetic and write

U(x, z, t)

= A1 a(z) cos
{

2π
(
z

λ
− t

T

)
+
π(x− ξ1)2

λz
+ φ1

}

+A2 a(z) cos
{

2π
(
z

λ
− t

T

)
+
π(x− ξ2)2

λz
+ φ2

}

= Re
{[
A1e

iφ1 · a(z)eiπ(z−ξ1)2/λz +A2e
iφ2 · a(z)eiπ(x−ξ2)2/λz

]
· e2πi(z/λ−t/T )

}
.

(84)
We will introduce a reduced wave function

u(x, z) := A1e
iφ1 · a(z)eiπ(x−ξ1)2/λz +A2e

iφ2 · a(z)eiπ(x−ξ2)2/λz

with modulus
A(x, z) := |u(x, z)|,

and choose 0 ≤ φ(x, z) < 2π so that

u(x, z) = A(x, z)eiφ(x,z).

We can use this expression with (84) to write

U(x, z, t) = Re{u(x, z) · e2πi(z/λ−t/T )}
= Re{A(x, z)eiφ(x,z) · e2πi(z/λ−t/T )}
= A(x, z) cos

{
2π
(
z

λ
− t

T

)
+ φ(x, z)

}

= |u(x, z)| cos
{

2π
(
z

λ
− t

T

)
+ φ(x, z)

}
.

When we add the wave functions (82) for two point sources, we obtain a T -periodic
disturbance U at (x, z) that has the amplitude |u(x, z)|. The energy density of a
wave is always proportional to the square of its amplitude, so the diffraction pattern
will be bright, dark at points where |u(x, z)|2 is large, small, respectively.

It is easy to generalize this analysis. If we have point sources at ξ1, ξ2, . . . , ξM
with amplitudes A1, A2, . . . , AM and initial phases φ1, φ2, . . . , φM , our reduced wave
function takes the form

u(x, z) =
M∑

m=1

Ame
iφm · a(z)eiπ(x−ξm)2/λz,
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and |u(x, z)| is the amplitude of the resulting disturbance U at (x, z). Of course,
we can replace such a sum by an integral. Indeed, suppose that we are given a
suitably regular complex-valued source function u(ξ, 0), −∞ < ξ < ∞. We will
regard |u(ξ, 0)|dξ as the amplitude of an infinitesimal point source at ξ and use the
phase of u(ξ, 0) for the initial phase of this source. The reduced wave function is
then given by

u(x, z) =
∫ ∞

−∞
u(ξ, 0) · a(z)eiπ(x−ξ)2/λz dξ, (85)

and |u(x, z)| is the amplitude of the resulting disturbance U at (x, z). For simplicity,
we use the limits −∞,∞ for the integral. [The functions u(ξ, 0), −∞ < ξ < ∞,
and u(x, z), −∞ < x < ∞, will be suitably localized near the axis of the laser beam
when (85) really does correspond to a diffraction pattern.]

We will determine the function a(z) by forcing (85) to satisfy a natural consistency
relation. By using the convolution rule, the dilation rule, and the fact that

eiπx2
has the FT eiπ/4 · e−iπs2

[from (7.98)], we obtain the Fourier transform

U(s, z) = eiπ/4a(z)
√
λz e−iπλzs2 · U(s, 0) (86)

of (85). Now if we use (85) to advance some initial source function u(x, 0) from
z = 0 to z = z1, (86) shows that the Fourier transform changes from

U(s, 0) to eiπ/4a(z1)
√
λz1 e

−iπλz1s2 · U(s, 0).

If we then use (85) to advance the new source function u(x, z1) from z = z1 to
z = z1 + z2, (86) shows that the Fourier transform changes from

eiπ/4a(z1)
√
λz1 e

−iπλz1s2 · U(s, 0) to

eiπ/4a(z2)
√
λz2 e

−iπλz2s2 · eiπ/4a(z1)
√
λz1 e

−iπλz1s2 · U(s, 0).

Of course, if we use (85) to advance u(x, 0) from z = 0 to z = z1 + z2 in a single
step, we can use (86) to see that the Fourier transform changes from

U(s, 0) to eiπ/4a(z1 + z2)
√
λ(z1 + z2) e−iπλ(z1+z2)s2 · U(s, 0).

We insist that two successive steps of size z1, z2 should produce the same effect as
a single step of size z1 + z2, and this will be the case when we define

a(z) :=
e−iπ/4
√
λz

, (87)
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see Ex. 9.36. In this way we complete the derivation of the Fresnel convolution
equation

u(x, z) =
∫ ∞

−∞
u(ξ, 0)

e−iπ/4
√
λz

eiπ(x−ξ)2/λz dξ (88)

that will serve as our univariate mathematical model for diffraction. Since we have
chosen a(z) to make

U(s, z) = U(s, 0) · e−iπλzs2
,

it is easy to compute the partial derivative

Uz(s, z) = −iπλs2U(s, z) =
iλ

4π
(2πis)2U(s, z),

and thereby see that the reduced wave function must satisfy the partial differential
equation

uz(x, z) =
iλ

4π
uxx(x, z). (89)

This is the diffraction equation (3) with z (position along the laser beam) in place
of t.

When you take a course in quantum mechanics, you will learn to use a complex
wave function Ψ(x, t) that evolves in accordance with Schrödinger’s equation

1
2m

(
h

2πi

)2
∂2

∂x2 Ψ(x, t) + V (x, t) · Ψ(x, t) = − h

2πi
∂

∂t
Ψ(x, t)

to predict the behavior of a particle with a small mass m in the presence of a
potential V (x, t). (The parameter h = 6.626 · 10−34 joule sec is Planck’s constant.)
We say that the particle is free when V (x, t) ≡ 0, in which case Ψ(x, t) evolves in
accordance with the diffraction equation

Ψt =
ih/m

4π
Ψxx.

In the rest of this section we will analyze the way the reduced wave function
u(x, z) for a diffracting laser beam evolves as we move away from the source function
along the axis of the beam. Of course, if we move with velocity v = 1, we can
simply identify t with z in (89) and we will do so. This will make it easier for
you to compare solutions of the diffraction equation with solutions of the wave and
diffusion equations. [And you will already know how to visualize the time evolution
of Ψ(x, t) for a free particle when you study quantum mechanics!]
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The diffraction equation on R

Let f be a generalized function on R. We will construct the unique generalized
solution of the diffraction equation (3) that has the initial source

u(x, 0) := f(x). (90)

In the Fourier transform domain we have

Ut(s, t) =
iλ

4π
(2πis)2U(s, t) = −iπs2λU(s, t), U(s, 0) = F (s).

We solve this initial value problem to obtain

U(s, t) = F (s)e−iπs2λt, (91)

observing that the product is well defined since the exponential

Γ(s, t) := e−iπs2λt

and its partial derivatives Γs,Γss, . . . are all CSG. The function Γ is the Fourier
transform of the diffraction kernel

γ(x, t) :=




e−iπ/4
√
λt

eiπx2/λt if t > 0

δ(x) if t = 0

eiπ/4
√−λte

iπx2/λt if t < 0,

(92)

from Ex. 7.46, so we can use the convolution rule to write

u(x, t) = γ(x, t) ∗ f(x), (93)

in parallel with (18) and (54). Of course, when the source f is a suitably regular
ordinary function we can use the corresponding integral

u(x, t) =
e−iπ/4
√
λt

∫ ∞

ξ=−∞
f(ξ)eiπ(x−ξ)2/λt dξ, t > 0. (94)
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Example Solve ut = (iλ/4π)uxx with the initial source

f(x) = δ(x− a) + δ(x+ a), a > 0.

Solution Using (93) and the sifting relation (7.64) for δ, we find

u(x, t) =
e−iπ/4
√
λt

{
eiπ(x−a)2/λt + eiπ(x+a)2/λt

}

=
2e−iπ/4eiπ(x2+a2)/λt

√
λt

cos(2πax/λt).

The Fresnel factor eiπx2/λt causes the real and imaginary parts of the t-slices of u
to oscillate wildly, but the intensity

|u(x, t)|2 =
4
λt

cos2
(
π

2ax
λt

)

is well behaved. You will find it instructive to interpret this result within the context
of Thomas Young’s famous 1801 experiment that demonstrated the wave nature of
light. The δ’s from u(x, 0) correspond to two coherent (i.e., in phase) sources of
light passing through infinitesimally small slits separated by the distance 2a. Our
expression for |u(x, t)|2 shows that the diffraction pattern at distance t consists of
a series of alternating bright and dark fringes with period λt/2a.

Example Solve ut = (iλ/4π)uxx with the initial source u(x, 0) = P(x).

Solution We can express the solution in terms of the Fresnel function

F(r) :=
∫ r

ρ=0
eiπρ2/2 dρ. (95)

(Many mathematical handbooks have tables for the real and imaginary parts of this
function, and most mathematical software packages include code for evaluating F
numerically.) By using (94) with a routine change of variable we find

u(x, t) =
e−iπ/4
√
λt

∫ 1/2

ξ=−1/2
eiπ(x−ξ)2/λt dξ

=
e−iπ/4

√
2

∫ (x+1/2)/
√

λt/2

(x−1/2)/
√

λt/2
eiπρ2/2 dρ

=
1 − i

2

{
F
(
x+ 1/2√
λt/2

)
− F
(
x− 1/2√
λt/2

)}
. (96)
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Figure 9.14 shows a few selected t-slices of the intensity |u|2. This function corre-
sponds to the diffraction pattern produced by shining a laser beam through a slit.
When the viewing screen is close to the slit, we see a (slightly fuzzy) image of the
slit. When we are far away, the diffraction pattern consists of a system of uniformly
spaced bright fringes that diminish in intensity as we move away from the center.

Figure 9.14. Selected t-slices for the intensity |u(x, t)|2 of the re-
duced wave function (96) that corresponds to the slit u(x, 0) = P(x).

Example Solve ut = (iλ/4π)uxx with the initial source

u(x, 0) =
e−x2/4σ2

(2πσ2)1/4 , σ > 0. (97)

[The function u(x, 0) is real, i.e., the light is coherent, and |u(x, 0)|2 is a normal
density with the standard deviation σ.]

Solution We use the dilation rule to find the Fourier transform of the gaussian
(97), and then use (91) to see that

U(s, t) = (8πσ2)1/4e−π(4πσ2+iλt)s2
.
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When α, β are real numbers with α > |β|,

e−π[x/(α+iβ)]2 has the FT (α+ iβ)e−π[(α+iβ)s]2 ,

see Ex. 9.39, so we can write

u(x, t) =
(8πσ2)1/4

√
4πσ2 + iλt

e−πx2/(4πσ2+iλt) (98)

provided we use the square root that has a positive real part. The real and imaginary
parts of the t-slices of u oscillate wildly when t > 0, but we can use a bit of algebra
to verify that the intensity

|u(x, t)|2 =
{

8πσ2

|4πσ2 + iλt|2
}1/2

e
− 2πx2·4πσ2

|4πσ2+iλt|2 =
e−x2/2σ2(t)
√

2π σ(t)
(99)

is a normal density with the standard deviation

σ(t) :=

{
σ2 +

(
λt

4πσ

)2
}1/2

. (100)

When the laser beam is coherent and the intensity is gaussian at the source plane
t = 0, the diffracted beam will have a gaussian intensity for each t > 0. As the
beam advances, the diffraction process causes it to spread in accordance with (100).
For example, a He–Ne gaussian laser beam with λ = .6328 · 10−3 mm and σ = 1
mm will form a spot with σ(t) ≈ 19 km after traveling the t = 384 · 103 km from
the earth to the moon!

We will show that it is possible to translate a diffraction pattern by suitably
adjusting the phase of the source function. Indeed, let u0, u be solutions of the
diffraction equation (3) with the source functions

u0(x, 0) = f0(x), u(x, 0) = e2πiβxf0(x) (101)

where β is a real parameter. We use (91) and the modulation rule to write

U(s, t) = F0(s− β)e−iπs2λt

= F0(s− β)e−iπ[(s−β)2+2βs−β2]λt

= eiπβ2λte−2πi(βλt)sU0(s− β, t).

We easily verify that this is the Fourier transform of

u(x, t) = eiπβ2λt e2πiβ(x−βλt) u0(x− βλt, t) (102)
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by using the translation and modulation rules. The phase factor that we apply in
(101) translates the intensity

|u(x, t)|2 = |u0(x− βλt, t)|2

of the t-slice by βλt.

Example Solve ut = (iλ/4π)uxx with the initial source

u(x, 0) = e2πiβx e−x2/4σ2

(2πσ2)1/4 , σ > 0, −∞ < β < ∞. (103)

Solution We use (102) with the expressions (98)–(100) for u0 to write

u(x, t) = eiπβ2λte2πiβ(x−βλt) (8πσ2)1/4
√

4πσ2 + iλt
e−π(x−βλt)2/(4πσ2+iλt) (104)

and

|u(x, t)|2 =
e−(x−βλt)2/σ2(t)

√
2π σ(t)

. (105)

When we apply the phase function e2πiβt to the coherent (real) source (97), the
diffracted gaussian beam swings through the angle arctan (βλ). We can aim the
beam by properly choosing the parameter β! [You will find the formulas (104),
(105) in most quantum mechanics texts, where they are used for the analysis of a
traveling gaussian wave packet.]

Example Solve ut = (iλ/4π)uxx with the initial source

u(x, 0) = e2πiβ(x+a) e
−(x+a)2/4σ2

(2πσ2)1/4 + e−2πiβ(x−a) e
−(x−a)2/4σ2

(2πσ2)1/4 ,

σ > 0, β > 0, a > 0.

Solution We obtain the left term of the source by shifting (103) a units to the left,
and we obtain the right term by shifting (103) a units to the right and changing
the sign of β. Since the diffraction equation is linear and translation invariant, we
can use (104) to write

u(x, t) = eiπβ2λt (8πσ2)1/4
√

4πσ2 + iλt

{
e2πiβ(x+a−βλt)e−π(x+a−βλt)2/(4πσ2+iλt)

+ e−2πiβ(x−a+βλt)e−π(x−a+βλt)2/(4πσ2+iλt)
}
.
(106)

The left term gives a spreading gaussian beam with an axis along the ray from
x = −a, t = 0 to x = 0, t = a/βλ. The right term gives a spreading gaussian beam
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with an axis along the ray from x = a, t = 0 to x = 0, t = a/βλ. In the region
where the beams overlap, there are interference fringes, e.g., at the crossover point

|u(x, a/βλ)|2 =
e−x2/2σ2(t)
√

2π σ(t)
|2 cos(2πβx)|2,

see Fig. 9.15. The cover illustration of this book shows |u(x, t)|2 as a color density
with x increasing from left to right and with t increasing from top to bottom.

Figure 9.15. Selected t-slices for the intensity |u(x, t)|2 of the
colliding gaussian beams (106) when a = 1, σ = .1, and β = 4.5.

When u(x, t) is a suitably regular ordinary solution of (3), we can scale the integral

Et{u} :=
∫ ∞

x=−∞
|u(x, t)|2 dx (107)

to obtain the energy the diffracted beam deposits on a screen at distance t from the
source (during a unit interval of time). Indeed, if the source function f is piecewise
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smooth and square integrable, we can use Plancherel’s identity (1.15) with (91) to
write

Et{u} =
∫ ∞

−∞
|F (s)e−iπs2λt|2 ds =

∫ ∞

−∞
|F (s)|2 ds = E0{u}, t > 0.

In this way we see that the energy integral (107) is conserved.
In practice, it is almost never possible to evaluate the integral (94) by using the

techniques from calculus and elementary Fourier analysis. We must use numeri-
cal methods (as we did for the graphs in Fig. 9.14) or we must find some other
simplification. Fraunhofer, a contemporary of Fourier and Fresnel, found an excep-
tionally useful way to approximate u(x, t) and |u(x, t)|2 when the diffraction screen
is far from the source. Let f be a piecewise smooth function and assume that f is
essentially a-support limited in the sense that

f(x) ≈ 0 when |x| > a

for some a > 0. Let t � a2/λ so that

ξ2

λt
≈ 0 when −a ≤ ξ ≤ a.

We can then approximate the integral (94) by writing

u(x, t) ≈ e−iπ/4
√
λt

∫ a

−a

f(ξ)eiπ(x−ξ)2/λt dξ

=
e−iπ/4eiπx2/λt

√
λt

∫ a

−a

f(ξ)e−2πiξx/λteiπξ2/λt dξ

≈ e−iπ/4eiπx2/λt

√
λt

∫ a

−a

f(ξ)e−2πiξx/λt dξ

≈ e−iπ/4eiπx2/λt

√
λt

F
( x
λt

)
(108)

where F is the Fourier transform of f . In this way we see that the initial intensity

|u(x, 0)|2 = |f(x)|2 evolves into |u(x, t)|2 ≈ 1
λt

∣∣∣∣F ( xλt
) ∣∣∣∣

2

(109)

when t is large. You will observe this phenomenon as you examine the t-slices from
Fig. 9.14 [where P2(x) evolves into |λt|−1 sinc2(x/λt)]. With a bit of analysis, you
can verify that the Fraunhofer approximation (109) can also be used for the gaussian
beams (98) and (104) when t � σ2/λ.
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We can use (23) to construct a localized solution of the wave equation that travels
without changing its shape. The diffraction equation has no such solutions. When
the source u(x, 0) is localized, the intensity |u(x, t)|2 spreads out as t increases, e.g.,
as seen in Fig. 9.14, (99)–(100), and (109). There is a simple explanation for this
phenomenon. It is easy to verify that

e2πis[x−(λs/2)t]

is a solution of the diffraction equation that travels with the phase velocity

c(s) :=
λs

2
, −∞ < s < ∞. (110)

This nonlocalized wave moves left, right when s < 0, s > 0, and it moves fast, slow
when |s| is large, small. We combine such traveling sinusoids when we synthesize

u(x, t) =
∫ ∞

−∞
F (s)e2πis[x−c(s)t] ds

from the Fourier transform (91). The integral has components that travel with
different velocities (unless F is a translate of δ), so |u(x, t)|2 disperses as t increases.
(A caravan on an interstate highway will maintain its form when every vehicle has
the same velocity, but it will disperse if the cars, trucks, buses, motorcycles, . . .
travel at different speeds!)

The diffraction equation on Tp

We will specialize the above analysis to the case where the source function f is
p-periodic with p > 0. The convolution product (93) then gives a generalized
solution of (3) that is p-periodic in x.

Example Solve the initial value problem

ut =
(
iλ

4π

)
uxx, u(x, 0) =

1
p
X
(
x

p

)
. (111)

Solution We use (92)–(93) to see that u(x, t) = γp(x, t) where

γp(x, t) := γ(x, t) ∗ 1
p
X
(
x

p

)
,

in parallel with (27) and (72). We can then use Poisson’s relation (4.18) to see that
γp is given by the weakly convergent series

γp(x, t) =
e−iπ/4
√
λt

∞∑
m=−∞

eiπ(x−mp)2/λt

=
1
p

∞∑
k=−∞

e−iπk2λt/p2
e2πikx/p (112)
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when t > 0. Every summand has modulus 1, so both of these series diverge at each
point x. We cannot use such series to produce t-slices of γp that correspond to the
time slices of rp, kp shown in Figs. 9.3 and 9.11!

Example Solve ut = (iλ/4π)uxx with the initial source u(x, 0) = cos(2πx/p),
p > 0.

Solution Using (91) and (7.82) we write

U(s, t) = e−iπs2λt 1
2

{
δ

(
s+

1
p

)
+ δ

(
s− 1

p

)}

= e−iπλt/p2 1
2

{
δ

(
s+

1
p

)
+ δ

(
s− 1

p

)}
,

and thereby find

u(x, t) = e−iπλt/p2
cos
(

2πx
p

)
.

When we work with p-periodic functions we often use Fourier series. If

u(x, t) =
∞∑

k=−∞
U [k, t]e2πikx/p

is the solution of ut = (iλ/4π)uxx with the initial source

f(x) =
∞∑

k=−∞
F [k]e2πikx/p,

then the kth Fourier coefficient must satisfy

Ut[k, t] +
iπλk2

p2 U [k, t] = 0, U [k, 0] = F [k].

We solve this initial value problem to find

U [k, t] = F [k]e−iπλtk2/p2
, k = 0,±1,±2, . . .,

and synthesize

u(x, t) =
∞∑

k=−∞
F [k]e−iπλtk2/p2

e2πikx/p. (113)

We use (112) with the convolution product (7.131) (for functions on Tp) to write

u(x, t) = γp(x, t) � f(x). (114)

The kernel γp(x, t) is 2p2/λ-periodic in t (as well as p-periodic in x), and the same
is true of u(x, t).
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Example Solve ut = (iλ/4π)uxx when the initial source is a periodic gaussian
train

u(x, 0) =
∞∑

m=−∞

e−(x−mp)2/4σ2

(2πσ2)1/4 , σ > 0, p > 0.

Solution We use Poisson’s relation (4.18) to find the Fourier series

u(x, 0) =
(8πσ2)1/4

p

∞∑
k=−∞

e−4π2σ2k2/p2
e2πikx/p,

and then use (113) to write

u(x, t) =
(8πσ2)1/4

p

∞∑
k=−∞

e−4π2σ2k2/p2
e−iπλtk2/p2

e2πikx/p. (115)

Selected t-slices for the intensity |u(x, t)|2 are shown in Fig. 9.16.

Figure 9.16. Selected t-slices for the intensity |u(x, t)|2 of a p-periodic train
of diffracting gaussian beams corresponding to (115) with σ = .02p.
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The reduced wave function u(x, t) for a laser beam must vanish when it meets
an ideal silver mirror. (The electric field of the electromagnetic wave is zero at the
surface of a perfect conductor.) We can use odd symmetry to eliminate one or two
such boundary conditions.

Example A coherent laser beam illumines a slit of width 2a centered at the point
x = x0 between ideal silver mirrors at x = 0, x = L. (Here 0 < x0−a < x0+a < L.)
Solve ut = (iλ/4π)uxx with the boundary conditions u(0, t) = 0, u(L, t) = 0, t ≥ 0
and the initial source

u(x, 0) = f(x) = P
(
x− x0

2a

)
, 0 ≤ x ≤ L

to determine the intensity |u(x, t)|2 of the diffraction pattern on a screen that is at
distance t from the source.

Solution We extend the initial source from [0, L] to R by writing

f(x) =
∞∑

m=−∞

{
P
(
x− x0 −m 2L

2a

)
− P
(
x+ x0 −m 2L

2a

)}
.

By construction this 2L-periodic function has odd symmetry with respect to x = 0,
x = L, so f satisfies the given boundary conditions. We use Poisson’s relation (4.18)
to find the Fourier series

u(x, 0) =
−2ia
L

∞∑
k=−∞

sin
(
kπx0

L

)
sinc
(
ka

L

)
e2πikx/2L,

and then use (113) to write

f(x) =
4a
L

∞∑
k=1

sinc
(
ka

L

)
sin
(
kπx0

L

)
sin
(
kπx

L

)
e−iπλtk2/4L2

. (116)

Some unusual piecewise constant t-slices of the corresponding intensity |u(x, t)|2 are
shown in Fig. 9.17. Exercise 9.46 will help you understand this phenomenon.

There is a variation of the Fraunhofer approximation (109) that is useful for
analyzing the diffraction pattern that results when we window a p-periodic source.
Let g be a piecewise smooth p-periodic function with the Fourier series

g(x) =
∞∑

k=−∞
G[k]e2πikx/p. (117)
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Figure 9.17. Selected t-slices for the intensity |u(x, t)|2 obtained
from 4000 terms of (116) when x0 = 7L/8 and a = L/16.

The function g might correspond to some p-periodic pattern (i.e., a univariate crys-
tal) on a 35-mm slide. We will choose some small σ > 0 and illumine the slide with
a wide coherent gaussian laser beam to produce the localized source function

u(x, 0) = f(x) := (8πσ2)1/4e−4π2σ2x2 · g(x). (118)

The function f has the Fourier transform

F (s) =
e−s2/4σ2

(2πσ2)1/4 ∗
∞∑

k=−∞
G[k]δ

(
s− k

p

)
=

∞∑
k=−∞

G[k]
e−(s−k/p)2/4σ2

(2πσ2)1/4 . (119)

We will assume that the laser beam illumines many periods of g, i.e., that σp 	 1.
This hypothesis makes it impossible for the gaussians from (119) to have appreciable
overlap, allowing us to write

|F (s)|2 ≈
∞∑

k=−∞
|G[k]|2 e

−(s−k/p)2/2σ2

√
2π σ

. (120)
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We will also assume that σ2λt � 1. This hypothesis allows us to use the Fraunhofer
approximation (109) with (120) to see that

|u(x, t)|2 ≈ 1
λt

∞∑
k=−∞

|G[k]|2 e
−(x/λt−k/p)2/2σ2

√
2π σ

.

For simplicity, we will replace each normal density with a Dirac δ, i.e.,

1
λt

e−(x/λt−k/p)2/2σ2

√
2π σ

≈ 1
λt
δ

(
x

λt
− k

p

)
= δ

(
x− kλt

p

)
,

[see Ex. 7.60(a)] and write

|u(x, t)|2 ≈
∞∑

k=−∞
|G[k]|2δ

(
x− kλt

p

)
. (121)

In this way we see that the far-field diffraction pattern for (118) is a train of spots.
We can determine p from the spot-to-spot separation λt/p, and we can determine
the modulus (but not the phase) of the Fourier coefficient G[k] from the intensity
of the corresponding spot, k = 0,±1,±2, . . .. It is surprising how much we can infer
about the crystal g from the diffraction pattern (121)!

9.5 Fast computation of frames for movies

We have included a few graphs of t-slices of u(x, t) to help you follow the evolution
of selected solutions of the wave equation, the diffusion equation, and the diffraction
equation (see Figs. 9.2, 9.8, and 9.14), but these static illustrations are not nearly
so memorable as computer-generated movies that show hundreds of such t-slices
in quick succession. You can produce such a movie by using a corresponding for-
mula for u(x, t) (as given in the preceding sections of this chapter) together with
the animation feature of a good mathematical software package. You will quickly
discover that it takes a prodigious amount of computer time to generate a movie
when we simply evaluate u(x, t) at each point (x, t) of a suitably chosen grid. We
will show you a much faster way to do the numerical analysis when the function
u is p-periodic. (You can simulate the early evolution of any localized u on R by
showing the movie for some corresponding periodization, see Fig. 1.22.)

Let u(x, t) be a p-periodic generalized function of x for each t ≥ 0. The coefficients
of the corresponding Fourier series

u(x, t) =
∞∑

k=−∞
Ck(t)e2πikx/p (122)
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are then functions of t. In particular, the solutions (34), (75), and (113) of the
wave, diffusion, and diffraction equations have this form with

Ck(t) = F [k] cos(2πkt/T ) + tG[k] sinc(2kt/T ), T :=
p

c
, (123)

Ck(t) = F [k]e−k2t/T , T :=
p2

4π2a2 , (124)

Ck(t) = F [k]e−2πik2t/T , T :=
2p2

λ
, (125)

respectively. [The parameter T serves as a period in (123) and (125).]
We will choose a suitably large discretization index K = 1, 2, . . . , set N := 2K,

define

xn :=
np

N
, n = 0, 1, . . . , N − 1,

and approximate u(xn, t) with the truncated series

un(t) : =
K∑

k=−K+1

Ck(t)e2πikxn/p

=
N/2∑

k=−(N/2)+1

Ck(t)e2πikn/N , n = 0, 1, . . . , N − 1. (126)

You will immediately see that the coefficient vector

[C0(t), C1(t), . . . , CN/2(t), C−N/2+1(t), . . . , C−1(t)]T (127)

is the discrete Fourier transform (DFT) of the vector

[u0(t), u1(t), u2(t), . . . , uN−1(t)]T. (128)

You can generate N approximate samples for a t-slice of u by evaluating the compo-
nents of the vector (127) [e.g., by using the formulas (123), (124), or (125)] and then
using the FFT to find the N components of the inverse DFT (128), see Exs. 5.11
and 6.3. When you are working with a resolution of N = 512 samples per t-slice
this procedure will be about 50 times faster than direct evaluation. You can use
your PC to produce movies that simulate a vibrating string, heat flow in a rod, a
diffracting laser beam, and various other natural phenomena, see Exs. 9.18, 9.19,
9.20, and 9.47.
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Further reading

Born, M. and Wolf, E. Principles of Optics, 6th ed., Pergamon Press, Oxford, 1993.
The physics of diffraction is in Chapter 8 of this treatise.

Brown, J.W. and Churchill, R.V. Fourier Series and Boundary Value Problems, 7th
ed., McGraw-Hill, New York, 2006.
Traditional treatments of the diffusion and wave equations can be found in this
highly evolved elementary text.

Carslaw, H.S. and Jaeger, J.C. Conduction of Heat in Solids, Clarendon Press,
Oxford, 1959.
The definitive classical treatise on the diffusion equation.

Haberman, R. Applied Partial Differential Equations, 4th ed.,
Prentice Hall, Upper Saddle River, NJ, 2003.
A well-written introduction to PDEs for scientists and engineers.

Main, I.G. Vibrations and Waves in Physics, 3rd ed., Cambridge University Press,
New York, 1993.
An exceptionally well motivated elementary introduction to wave motion.

Morrison, M.A. Understanding Quantum Physics, Prentice Hall, Englewood Cliffs,
NJ, 1990.
The mathematics of the diffraction equation is interpreted within the context
of quantum mechanics in Chapter 4 of this undergraduate physics text.

Saleh, B.E.A. and Teich, M.C. Fundamentals of Photonics, John Wiley & Sons,
New York, 1991.
Gaussian beams are analyzed in Chapter 3 of this graduate-level engineering
text. A nice exposition of the use of Fourier analysis in optics is in Chapter 4.

Tricker, R.A.R. Bores, Breakers, Waves and Wakes, American Elsevier, New York,
1965.
An exceptionally well written simplified introduction to water waves (with
striking illustrations!).

Walker, J.S. Fast Fourier Transforms, 2nd ed., CRC Press, Boca Raton, FL, 1996.
Chapter 4 shows how the FFT is used to evaluate the filtered Fourier
series solutions of the wave equation, the diffusion equation, and the diffraction
equation.



574 Partial differential equations

Exercises

.. .
....

.. ....... ......
..
.. .... ...••• EXERCISE 9.1 Let u(x, t) be a twice continuously differentiable ordinary function
that satisfies the wave equation utt = c2 · uxx. In this exercise you will use a classical
argument of d’Alembert to show that u is a sum of traveling waves, i.e.,

u(x, t) = w+(x+ ct) + w−(x− ct)

for suitably chosen functions w+, w−. (A more general modern argument is required for
Ex. 9.5.)

(a) Let ξ := x+ ct, η := x− ct. Verify that

∂

∂η

∂

∂ξ
u
(
ξ + η

2
,
ξ − η

2c

)
= 0.

(b) Use (a) to show in turn that

∂

∂ξ
u
(
ξ + η

2
,
ξ − η

2c

)
= w′

+(ξ), u
(
ξ + η

2
,
ξ − η

2c

)
= w+(ξ) + w−(η).

Hint. When (∂/∂η)w(ξ, η) = 0, you can conclude that w(ξ, η) is a function of ξ (that
is not necessarily a constant).

. ..

.
.. ......... .... .. ... ....••• EXERCISE 9.2 Verify the expression (22) for the convolution product
(1/2c)P(x/2ct) ∗ P(x).

. .
..

.. . .

........ ....

.. .... ....••• EXERCISE 9.3 Let u(x, t) satisfy the wave equation utt = c2uxx for
−∞ < x < ∞, t ≥ 0. Sketch slices of u at suitably chosen times 0 = t0 < t1 < t2 < · · · to
show the motion when:

(a) u(x, 0) = Λ(x), ut(x, 0) = 0; (b) u(x, 0) = 0, ut(x, 0) = Λ(x);
(c) u(x, 0) = sgn(x), ut(x, 0) = 0; (d) u(x, 0) = 0, ut(x, 0) = sgn(x).

. . .
..

..

...... ...... .. .... ...••• EXERCISE 9.4 The bivariate wave polynomials u[n](x, t), v[n](x, t) are defined to
be the solutions of

u
[n]
tt = u

[n]
xx , u

[n](x, 0) = xn, u
[n]
t (x, 0) = 0, n = 0, 1, 2, . . .

v
[n]
tt = v

[n]
xx , v[n](x, 0) = 0, v

[n]
t (x, 0) = xn, n = 0, 1, 2, . . . .

(a) Derive a simple formula for u[n](x, t) and thereby obtain

1, x, x2 + t2, x3 + 3xt2, x4 + 6x2t2 + t4

when n = 0, 1, 2, 3, 4.

Hint. You can specialize the d’Alembert formula (15) or you can simplify the synthesis
equation that corresponds to (14).
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(b) Derive a simple formula for v[n](x, t) and thereby obtain

t, xt, x2t+ t3/3, x3t+ xt3, x4t+ 2x2t3 + t5/5

when n = 0, 1, 2, 3, 4.

(c) How must we modify u[n], v[n] if we want to work with the wave equation utt = c2uxx

instead of utt = uxx?

Note. You can use linear combinations of the dilated functions u[n], v[n], n = 0, 1, 2, . . . to
solve the wave equation utt = c2uxx when u(x, 0) and ut(x, 0) are arbitrary polynomials.

.
..
. ..... ........ ..... ... ....••• EXERCISE 9.5 Let u be a generalized solution of the wave equation utt = c2uxx

for −∞ < x < ∞, t ≥ 0. Show that u(x, t) = w+(x+ ct) +w−(x− ct) for suitably chosen
generalized functions w+, w−, i.e., show that u is a sum of traveling waves.

Hint. Begin by replacing g by δ′ ∗ g(−1) in (15) where g(−1) is an antiderivative of g.

.
..
. ..... ......... .... ... .....••• EXERCISE 9.6 Let u(x, t) be the solution of the wave equation utt = c2uxx for
−∞ < x < ∞, t ≥ 0 with u(x, 0) = f(x), ut(x, 0) = g(x). What can you infer about
u(x, t) at time t > 0 if you know that:

(a) f(x) = f(−x), g(x) = g(−x)? (b) f(x) = −f(−x), g(x) = −g(−x)?
(c) f(x0 + x) = f(x0 − x), (d) f(x0 + x) = −f(x0 − x),

g(x0 + x) = g(x0 − x)? g(x0 + x) = −g(x0 − x)?

(e) f(x+ p) = f(x), g(x+ p) = g(x)? (f) g(x) = ±cf ′(x)?

.
.. . .

.

.. ......... ... .......••• EXERCISE 9.7 Let u(x, t; f, g) denote the solution of the wave equation utt =
c2uxx, for −∞ < x < ∞, −∞ < t < ∞ that satisfies the initial conditions u(x, 0) = f(x),
ut(x, 0) = g(x).

(a) Show that u(x,−t; f, g) = u(x, t; f,−g).
(b) What conditions, if any, must be imposed on f, g to ensure that the movie showing

u(x, t; f, g) from t = 0 to t = +∞ will be identical to the time-reversed movie showing
u(x, t; f, g) from t = 0 to t = −∞?

. .. .....
.. ...
...... .. ..... ....••• EXERCISE 9.8 Let r be the wave kernel (16).

(a) Show that r has the generalized partial derivative (17) by evaluating the generalized
limit lim

h→0
[r(x, t+ h) − r(x, t)]/h.

Hint. Sketch the graph of [r(x, t+ h) − r(x, t)]/h.

(b) Show that r has the generalized partial derivative (17) by finding the Fourier trans-
form R(s, t), computing the partial derivative Rt(s, t), and finding the inverse Fourier
transform of Rt(s, t).

(c) Show that r satisfies the wave equation rtt = c2rxx.



576 Partial differential equations

.. .

.

... .

........ .... .... ..... ...••• EXERCISE 9.9 Let r be the wave kernel (16) and let t1 > 0, t2 > 0.

(a) Show that r(x, t1 + t2) = r(x, t1) ∗ rt(x, t2) + rt(x, t1) ∗ r(x, t2).
Hint. Use (16) and (17) to evaluate and sketch r(x, t1 + t2), r(x, t1) ∗ rt(x, t2),
rt(x, t1)∗r(x, t2), or work with the corresponding identity for the Fourier transforms.

(b) Show that rt(x, t1 + t2) = rt(x, t1) ∗ rt(x, t2) + rtt(x, t1) ∗ r(x, t2).
Hint. Suitably differentiate the identity from (a).

(c) Let f, g be generalized functions. We can use (18) with t = t1 to produce

u(x, t1) = rt(x, t1) ∗ f(x) + r(x, t1) ∗ g(x),
differentiate to obtain

ut(x, t1) = rtt(x, t1) ∗ f(x) + rt(x, t1) ∗ g(x),
and then use (18) with t = t2 to obtain

u(x, t1 + t2) = rt(x, t2) ∗ u(x, t1) + r(x, t2) ∗ ut(x, t1).

We can also use (18) with t = t1 + t2 to produce

u(x, t1 + t2) = rt(x, t1 + t2) ∗ f(x) + r(x, t1 + t2) ∗ g(x).
Show that these two processes give the same function u(x, t1 + t2).

. . .
..

..

...... ...... .. .... ...••• EXERCISE 9.10 The localized stimulation of a taut string produces a disturbance
that can be detected at some distant point of observation. Let u be a solution of the
wave equation utt = c2uxx with an initial position u(x, 0) = f(x) and an initial velocity
ut(x, 0) = g(x) that vanish outside some finite interval a ≤ x ≤ b. Let x0 be our point of
observation, and let

tmin := max
{

0,
∣∣∣x0
c

− a+ b

2c

∣∣∣− b− a

2c

}
, tmax :=

∣∣∣x0
c

− a+ b

2c

∣∣∣+ b− a

2c
.

(a) Show that we cannot detect the disturbance before the time tmin, i.e., u(x0, t) = 0 if
0 ≤ t < tmin.

(b) Show that the string is quiescent after the time tmax, i.e., u(x0, t) = A if t > tmax,
where A is a constant that depends on g.

.. . .

...

...
....... .....

..

.. ... ...••• EXERCISE 9.11 Suppose you are holding one end of a semi-infinite motionless
taut string and that you wish to create a traveling triangle wave (having the shape of Λ)
that moves off to infinity. How should you choose the forcing function d (i.e., how should
you move the free end of the string) so that the solution of

utt(x, t) = c2uxx(x, t) for 0 < x < ∞, t ≥ 0

u(0, t) = d(t), t > 0

u(x, 0) = ut(x, 0) = 0, 0 ≤ x < ∞
has the desired form?

Hint. Begin with a traveling triangle on a taut string that stretches from −∞ to +∞.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 9.12 A taut string with ends at x = 0, x = L is governed by the wave
equation utt = c2uxx. The end at x = 0 is fixed so that u(0, t) = 0, t ≥ 0. You hold the
end at x = L in your hand and move it so that

u(L, t) = d(t), t ≥ 0

where d is some control function. In this exercise you will learn how to choose d (in terms
of the initial position and velocity) so that you can shake the string to rest in some finite
time.

(a) Find the displacements u(0, t), u(L, t), t ≥ 0 for a taut string that satisfies the wave
equation utt = c2uxx for −∞ < x < ∞, t ≥ 0 when

u(x, 0) = Λ

(
x− L/2
L/2

)
− Λ

(
x+ L/2
L/2

)
, ut(x, 0) = 0.

Hint. Use the d’Alembert formula (15) and the odd symmetry of u(x, 0).

(b) Let f be a continuous function that vanishes at x = 0, x = L, and let

u(x, 0) = f(x), ut(x, 0) = 0 for 0 ≤ x ≤ L.

Find a continuous control function d that will make

u(x, 2L/c) = 0, ut(x, 2L/c) = 0 for 0 ≤ x ≤ L.

Hint. Suitably generalize the result of (a).

Note. If f(L) �= 0, it takes a bit more time to shake the string to rest with a continuous
control function d.

(c) Let g be a bounded piecewise continuous function, and let

u(x, 0) = 0, ut(x, 0) = g(x) for 0 ≤ x ≤ L.

Find a continuous control function d that will make

u(x, 2L/c) = 0, ut(x, 2L/c) = 0 for 0 ≤ x ≤ L.

Hint. You may wish to use the result of Ex. 9.10.

. .....

.
.. ............ ... .....••• EXERCISE 9.13 A vibrating string with fixed ends at x = 0, x = L has the initial
position and velocity u(x, 0) = sin2(πx/L), ut(x, 0) = 0, 0 ≤ x ≤ L.

(a) Show that the displacement function (35) has the coefficients

ak =

{
− 8
πk(k2 − 4)

if k = 1, 3, 5, . . .

0 if k = 2, 4, 6, . . .,
bk = 0, k = 1, 2, . . ..

(b) Let T := 2L/c be the period of (35). Show that there are 6 times 0 < t1 < t2 < · · · <
t6 < T when u(x, t) has a substantial flat spot. Express these times in terms of T
and sketch the corresponding time slices.

Hint. Odd extend u(x, 0) from [0, L] to [−L,L], and then 2L-periodically extend u
to R. You can then use the d’Alembert formula.

Note. This vibrational mode makes a good movie!
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 9.14 A taut string has its ends fixed at x = 0, L. When the string
vibrates, the resulting audio wave is a mixture of pure sinusoids having the frequencies
f1, f2, . . . as given by (40). Let k = 2, 3, . . . be chosen, let κ = 1, 2, . . . , k − 1, and let
x0 := κL/k [so that x0 is a node of the kth vibrational mode (39)]. Show that if we
cause the string to vibrate by striking, plucking, or bowing it at the point x0, then the
frequencies fk, f2k, f3k, . . . will be missing from the corresponding audio wave.

Note. This observation is due to Helmholtz.

. .

.
. .......... ....
.. ..... ....••• EXERCISE 9.15 Let u be an ordinary solution of the wave equation utt = c2uxx

for −∞ < x < ∞, t ≥ 0.

(a) Assume that u(x, 0) and ut(x, 0) are bounded with

|u(x, 0)| ≤ M0, |ut(x, 0)| ≤ M1 for −∞ < x < ∞.

Show that

|u(x, t)| ≤ M0 +M1t for −∞ < x < ∞, t ≥ 0.

(b) Let u(x, 0) be bounded as in (a) and assume that

∣∣∣∣
∫ b

a

ut(x, 0) dx

∣∣∣∣ ≤ I1 whenever −∞ ≤ a < b ≤ ∞.

Show that

|u(x, t)| ≤ M0 +
I1
2c

for −∞ < x < ∞, t > 0.

(c) Let u(x, 0), ut(x, 0) be bounded as in (a), let u(x, 0) and ut(x, 0) be p-periodic, and
assume that ∫ p

0
ut(x, 0) dx = 0.

Show that

|u(x, t)| ≤ M0 +
M1p

2c
b

(
2ct
p

)
for −∞ < x < ∞, t > 0

where

b(τ) :=
∞∑

m=−∞
Λ(τ − 1 − 2m).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 9.16 Let u(x, t) satisfy the wave equation utt = c2uxx for 0 < x < 1,
t ≥ 0, with the boundary conditions u(0, t) = u(1, t) = 0 for t ≥ 0, and the initial
conditions u(x, 0) = f(x), ut(x, 0) = 0. Sketch the orbit

u(x, t) + iut(x, t), 0 ≤ x ≤ 1

(in the complex plane) at suitably chosen times 0 = t0 < t1 < t2 < · · · < tm = T , T := 1/c
to show the motion when:

(a) f(x) = sin(πx); (b) f(x) = sin(2πx); (c) f(x) = Λ(2x− 1).

Hint. You may wish to prepare slices of u(x, t), ut(x, t) analogous to those from Fig. 9.6
and use them to produce the orbit for (c).

Note. You can use your computer to generate movies that show the time evolution of such
orbits. The one that corresponds to f(x) = sin2(πx) is most unusual!

. .
..

..

..

.. ...

...... ....

. ... ....••• EXERCISE 9.17 This exercise will help you formulate a vectorized procedure for
generating time slices for a movie of a vibrating string. We will use the binary operators
+, −, ◦ for the componentwise sum, difference, product of two vectors, we will apply cos,
sinc componentwise, and we will use F for the DFT operator, e.g.,[

1
2

]
+

[
3
4

]
=

[
4
6

]
,

[
1
2

]
◦
[

3
4

]
=

[
3
8

]
,

cos

[
1
2

]
=

[
cos(1)
cos(2)

]
.

(a) Let C(t) be the vector (127) with the components (123), and let u(t) be the vector
(128) with the components (126). Convince yourself that we can write

Fu(t) = a ◦ cos(2πtf) + tb ◦ sinc(2tf)

where f = T−1[0, 1, 2, . . . ,K−1,K,K−1, . . . , 1]T, and a, b are certain N component
vectors.

Note. You can use the subsequent analysis to model the discrete string of Ex. 9.18
and the stiff string of Ex. 9.19 if you suitably modify the components of f .

(b) Show that a = Fu(0), b = Fu̇(0). If you are given K samples of the position
and velocity of the string from [0, L], you can odd extend them to produce the N
component vectors u(0), u̇(0) and then use the FFT to obtain the coefficient vectors
a, b.

(c) Given t ≥ 0 we compute in turn

a ◦ cos(2πtf) + tb ◦ sinc(2tf) and u(t) = F−1{a ◦ cos(2πtf) + tb ◦ sinc(2tf)}.
Estimate the number of operations that we expend to produce the time slice u(t)
(assuming that we use the FFT to apply F−1).

Note. You can simulate the motion of the string by computing time slices at
t = mT/M , m = 0, 1, . . . ,M − 1 and showing them periodically!
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(d) You can generate time slices for the orbit u(t) + i u̇(t), see Ex. 9.16. Show that

u(t) + i u̇(t) = F−1{(a + ib) cos(2πtf) + t(b − i 4π2f ◦ f ◦ a)sinc(2tf)}.

Hint. You can use the expression from (a) to find F u̇(t).

.. .
....

.. . .

..... ......
..
.. .... ...••• EXERCISE 9.18 A massless thread of length L with endpoints fixed at x = 0,
x = L is stretched with tension τ . Tiny beads, each with mass m, are attached at the
points x = d, 2d, . . . , (M − 1)d where d := L/M as shown in Fig. 9.18. In this exercise you
will analyze the plane vibration of the system using u[n, t] for the displacement of the nth
bead at time t ≥ 0, n = 1, 2, . . . ,M − 1.

Figure 9.18. The thread and bead model for a vibrating string that
is used for Ex. 9.18.

(a) Suitably modify (10) and thereby show that the time evolution of the system is
governed by the coupled differential equations.

utt[n, t] =
(
τ

md

)
{u[n− 1, t] − 2u[n, t] + u[n+ 1, t]}, n = 1, 2, . . . ,M − 1,

provided that we introduce the boundary conditions u[0, t] = 0, u[M, t] = 0 for the
ends of the thread at x = 0, x = Md. You must now find the solution that has
the initial position and velocity u[n, 0] = f [n], ut[n, 0] = g[n], n = 0, 1, . . . ,M when
the discrete functions f, g are given.

(b) Odd extend u, f, g to obtain functions on P2M and then show that the DFT of u
satisfies the uncoupled differential equations

Utt[k, t] =
(
τ

md

)
{e−2πik/2M − 2 + e2πik/2M}U [k, t] = −ω[k]2U [k, t],

U [k, 0] = F [k], Ut[k, 0] = G[k]

where

ω[k] := 2
(
τ

md

)1/2 ∣∣∣sin( kπ2M

)∣∣∣ , k = 0, 1, . . . , 2M − 1.
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(c) Use (b) to find U [k, t], k = 0, 1, 2, . . . , 2M − 1, and thereby show that

u[n, t] =
M−1∑
k=1

{
2i F [k] cos(ω[k]t) + 2iG[k]

sin(ω[k]t)
ω[k]

}
sin
(
πkn

M

)
where

2i F [k] =
2
M

M−1∑
n=0

f [n] sin
(
πkn

M

)
, 2iG[k] =

2
M

M−1∑
n=0

g[n] sin
(
πkn

M

)
.

You may wish to compare these identities to (35) and (38).

(d) Find all separable solutions u[n, t] = v[n] · w(t) of the coupled differential equations
from (a).

(e) Verify that

wk[n, t] := exp
{2πikn

2M
− iω[k]t

}
is a solution of the coupled differential equations [from (a)] that travels with the
velocity

ck :=
Md

πk
ω[k], k = 1, 2, . . . ,M − 1.

Since c1 > c2 > · · · we cannot synthesize a traveling wave from two or more such
solutions [as was done in (23)]. There is no d’Alembert formula within this discrete
setting!

. .
..

..

..

.. ...

...... ....

. .. ....••• EXERCISE 9.19 The motion of a vibrating string that is not perfectly flexible can
be modeled by using the partial differential equation

utt(x, t) = a uxx(x, t) − b uxxxx(x, t)

where a, b are positive constants.

(a) Show that this PDE has the particular solutions e2πis[x−c(s)t], e2πis[x+c(s)t] where
c(s) :=

√
a+ 4π2bs2 is the corresponding phase velocity.

(b) Show that the solution of the PDE with the initial position and velocity u(x, 0) =
f(x), ut(x, 0) = g(x) is given by

u(x, t) =
∫ ∞

−∞
{F (s) cos[2π s c(s)t] +G(s) t sinc[2s c(s)t]}e2πisx ds.

(c) Show that an odd p-periodic solution of the PDE can be represented by a Fourier
series

u(x, t) =
∞∑

k=1

{
ak cos

[
2π
k

p
c

(
k

p

)
t

]
+ bk sin

[
2π
k

p
c

(
k

p

)
t

]}
sin

(
2πkx
p

)
.

(d) A perfectly flexible string with ends fixed at x = 0, x = L has the frequencies (40).
What are the corresponding frequencies for the stiff string?
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 9.20 A stiff string (governed by the PDE of Ex. 9.19) has fixed ends
at x = 0 and x = L. We can make the string vibrate by bowing it, by plucking it, or by
striking it at some point x0, 0 < x0 < L. Find the solutions ub(x, t), up(x, t), and us(x, t)
that correspond to the initial conditions (41), (42), and (43).

Hint. Make suitable use of (44)–(46) and the analysis from Ex. 9.19.

. .
.

.. .......... .... .... ..... ...••• EXERCISE 9.21 A number of elementary PDEs have traveling wave solutions

e2πi[sx−ν(s)t]

that can be used to synthesize more general solutions, see (5) and (7). When the PDE has
the form P(Dt,Dx)u = 0 where P is a bivariate polynomial in the operators

Dt =
∂

∂t
, Dx =

∂

∂x
,

we can use the characteristic equation P(−2πiν, 2πis) = 0 to find the function ν(s). Find
ν(s) for each of the following, assuming a > 0 and b ≥ 0.

(a) ut = a ux (transport equation)

(b) utt = a uxx − b u (Klein–Gordon equation)

(c) utt = −a uxxxx (vibrating bar equation, see Ex. 9.19)

.. .

.

... .
......... ... .... .... ...••• EXERCISE 9.22 Let v be the solution of the diffusion equation vt = a2vxx for

−∞ < x < ∞, t ≥ 0 with v(x, 0) = sgn(x).

(a) Set f(x) = sgnx in (55) and thereby show that

v(x, t) = erf

(
x√
4a2t

)
where erf(x) :=

2√
π

∫ x

0
e−ξ2

dξ.

Most mathematical software packages include code for the error function erf and a
calculator approximation is given in Appendix 7.

(b) Let x1 < x2 < · · · < xn and let c0, c1, . . . , cn be real. Find the solution of the
diffusion equation ut(x, t) = a2uxx(x, t) for −∞ < x < ∞, t ≥ 0 with

u(x, 0) =




c0 if x < x1
c1 if x1 < x < x2
...
cn−1 if xn−1 < x < xn

cn if xn < x.

Hint. Observe that

u(x, 0) =
1
2
(c0 + cn) +

1
2

n∑
m=1

(cm − cm−1)sgn(x− xm)

and make suitable use of the function v from (a).

Note. The diffusion kernel (53) is given by k = (1/2)vx.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 9.23 Let u, v be obtained by solving

vt = vxx for −∞ < x < ∞, t ≥ 0 with v(x, 0) = f(x)

ut = a2uxx for −∞ < x < ∞, t ≥ 0 with u(x, 0) = f
(
x− x0
h

)
.

Here f is a generalized function, −∞ < x0 < ∞ and h > 0. Express u in terms of v.

.
.
.. ..
..
.. ...
...... .. .... ....••• EXERCISE 9.24 Let u be the solution of the diffusion equation ut = a2uxx for
−∞ < x < ∞, t ≥ 0 with

u(x, 0) =
∞∑

n=−∞
cnΛ
(
x− nh

h

)
.

Here h > 0 and the coefficients cn, n = 0,±1,±2, . . . are absolutely summable so that
u(x, 0) is continuous, piecewise linear, and absolutely integrable. Express u in terms of
translates of dilates of the basis function

v(x, t) :=
∫ x+1

x−1
Λ(x− ξ)

e−ξ2/4t

√
4πt

dξ

that satisfies vt = vxx for −∞ < x < ∞, t ≥ 0 with v(x, 0) = Λ(x). (You can express v in
terms of the exponential function and the error function of Ex. 9.22.)

Hint. Use the analysis of Ex. 9.23.

. . .
..
.... ......... .
... .... ....••• EXERCISE 9.25 Let f1, f2 be piecewise smooth and absolutely integrable func-
tions on R and assume that

|f1(x) − f2(x)| ≤ C when −∞ < x < ∞

for some choice of C > 0. Let u1, u2 be solutions of the diffusion equation (2) with the
initial temperatures u1(x, 0) = f1(x), u2(x, 0) = f2(x). Show that

|u1(x, t) − u2(x, t)| ≤ C when −∞ < x < ∞, t ≥ 0.

Note. Solutions of the diffraction equation do not have this continuity property. You can
use the analysis from Ex. 9.42 to construct a counterexample.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 9.26 The bivariate diffusion polynomial w[n](x, t) is defined to be the
solution of

w
[n]
t = w

[n]
xx , w[n](x, 0) = xn, n = 0, 1, 2, . . ..

(a) Use (52) to show that

w[n](x, t) =
1

(−2πi)n

∫ ∞

−∞
e−4π2s2t+2πisxδ(n)(s) ds

and thereby obtain the formula

w[n](x, t) =
∂n

∂αn
{eαx+α2t}

∣∣∣∣
α=0

.

(b) Derive the explicit representation

w[n](x, t) = n!
�n/2�∑
k=0

tk

k!
xn−2k

(n− 2k)!
,

and thereby obtain

1, x, x2 + 2t, x3 + 6xt, x4 + 12x2t+ 12t2

when n = 0, 1, 2, 3, 4.

Hint. Multiply the power series for eαx and eα
2t.

(c) How must we modify w[n] if we want to work with the diffusion equation ut = a2uxx

instead of ut = uxx?

Note. You can use linear combinations of the dilated functions w[n], n = 0, 1, 2, . . .
to solve the diffusion equation ut = a2uxx when u(x, 0) is an arbitrary polynomial.

.. .
....

.. . .

..... ......
..
.. ... ...••• EXERCISE 9.27 Let u(x, t) be the solution of the diffusion equation ut = a2uxx

for −∞ < x < ∞, t ≥ 0 with u(x, 0) = f(x). What can you infer about u(x, t) at time
t > 0 if you know that:

(a) f(x) = f(−x)? (b) f(x) = −f(−x)? (c) f(x0+x) = f(x0−x)?
(d) f(x0+x) = −f(x0−x)? (e) f(x+ p) = f(x)? (f) f(x+p/2) = −f(x)?

. ..

.
.. ......... .... .. ... ....••• EXERCISE 9.28 When we solve the diffusion equation ut = a2uxx,
−∞ < x < ∞, t ≥ 0 with the initial temperature

f(x) = P(x), Λ(x), e−πx2
, δ(x)

we observe that u is well approximated by

u(x, t) ≈ e−x2/4a2t

√
4πa2t
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when t is large. Sharpen this observation by showing that

lim
t→∞ max−∞<x<∞

∣∣∣∣∣
√

2a2t u(
√

2a2t x, t) − e−x2/2
√

2π

∣∣∣∣∣ = 0

when f has a bounded, continuous Fourier transform with F (0) = 1.

Hint. Use (52) with the synthesis equation to write∣∣∣∣∣
√

2a2t u(
√

2a2t x, t) − e−x2/2
√

2π

∣∣∣∣∣ =
∣∣∣∣
∫ ∞

−∞

{
F

(
r√
2a2t

)
− 1

}
e−2π2r2+2πirx dr

∣∣∣∣
≤ max

|r|≤L

∣∣∣∣F
(

r√
2a2t

)
− 1

∣∣∣∣ 1√
2π

+
{
1 + max−∞<s<∞ |F (s)|

}∫
|r|≥L

e−2π2r2
dr.

.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 9.29 A rod of length L = 2 has the initial temperature

u(x, 0) = P(x− 1), 0 ≤ x ≤ 2.

Find the Fourier series for the temperature u(x, t), 0 ≤ x ≤ 2, t ≥ 0 when u satisfies the
boundary conditions:

(a) u(0, t) = 0, u(2, t) = 0, t ≥ 0; (b) u(0, t) = 0, ux(2, t) = 0, t ≥ 0;

(c) ux(0, t) = 0, ux(2, t) = 0, t ≥ 0.

Hint. Use symmetry to eliminate the boundary conditions, e.g., when solving (b) create
an 8-periodic function of x on R using

u(4 − x, t) := u(x, t), 0 ≤ x ≤ 2

u(−x, t) := −u(x, t), 0 ≤ x ≤ 4

u(x+ 8n, t) := u(x, t), −4 ≤ x ≤ 4, n = ±1,±2, . . ..

...
.. .... ..........
... ... .....••• EXERCISE 9.30 In this exercise you will find the solution of the diffusion equation
ut = a2uxx for 0 < x < 1, t ≥ 0 that has the boundary values

u(0, t) = 0, u(1, t) = 1 + t, t ≥ 0

and the initial values
u(x, 0) = x, 0 ≤ x ≤ 1.

(a) Let w[n], n = 0, 1, . . . be the bivariate diffusion polynomials of Ex. 9.26, and let

v(x, t) := u(x, t) − 1
6a2 {(6a2 − 1)w[1](x, a2t) + w[3](x, a2t)}.

Verify that

vt(x, t) = a2vxx(x, t), 0 ≤ x ≤ 1, t ≥ 0,

v(0, t) = v(1, t) = 0, t ≥ 0, and

v(x, 0) = (x− x3)/6a2, 0 ≤ x ≤ 1.
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(b) Find the Fourier coefficients c1, c2, . . . for

v(x, t) =
∞∑

k=1

cke
−π2a2k2t sin(πkx),

e.g., by using Kronecker’s rule.

Note. You can use this procedure to solve the diffusion equation when the boundary
values are polynomials in t.

. ..

.
.. ......... ....
. .... ....••• EXERCISE 9.31 Let f(x) := e−2π(1+i)|x|. Show that

f ′′(x) = 4π2(1 + i)2f(x) − 4π(1 + i)δ(x)

and thereby obtain the Fourier transform (68) used in the derivation of (70).

.. .

...

.. . .
...... ......

..

.. .... ...••• EXERCISE 9.32 Assume that the temperature of the soil in a certain neighbor-
hood can be well approximated by a translated sinusoid (63) that has a maximum of 26◦C
on July 1 and a minimum of −10◦C on January 1 of each year.

(a) Use (70) with L = 13.8 m to determine how deep you should bury the water pipes to
keep them from freezing.

Hint. Water freezes at 0◦C.

(b) If the pipes are buried at this depth, when are they most likely to freeze?

Hint. There is a phase shift in (70).

.. . .
......... ....

.. ..... ....••• EXERCISE 9.33 Find the steady-state solution of the diffusion equation
ut = a2uxx on the half line x ≥ 0 when the temperature at the end is a T -periodic square
wave with

u(0, t) =

{
1 if 0 < t < T/2

−1 if T/2 < t < T.

Hint. Use (69) (or a direct computation) to see that

e−2π
√

|k| x/Le2πi(k t/T−sgn k
√

|k| x/L), k = 0,±1,±2, . . .

is a solution of the diffusion equation when T and L are related by (67), and then use a
series of such terms to synthesize u(x, t).

. ..

.
.. ......... ....
. .... ....••• EXERCISE 9.34 Let k be the diffusion kernel (53) and let γ be the diffraction
kernel (92).

(a) Show that k, γ have the weak limits limt→0+ k(x, t) = δ(x), limt→0 γ(x, t) = δ(x).

(b) Show that

k(x, t1) ∗ k(x, t2) = k(x, t1 + t2), t1 ≥ 0, t2 ≥ 0,

γ(x, t1) ∗ γ(x, t2) = γ(x, t1 + t2), −∞ < t1 < ∞, −∞ < t2 < ∞.

(c) Why are the identities of (a), (b) important?

Hint. Begin with (54) and (93).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 9.35 Let f be a generalized function, let k be the diffusion kernel (53),
and let u(x, t) be given by (54). In this exercise you will establish the weak limits

lim
h→0

u(x, t+ h) − u(x, t)
h

= a2uxx(x, t), t ≥ 0, and lim
t→0+

u(x, t) = f(x),

i.e., you will prove that u satisfies (2) with the initial condition (51).

(a) Let f have the Fourier transform F = G(n) where G is CSG and n = 0, 1, 2, . . ..
Explain why it is sufficient to show that

lim
h→0

1
h

∫ ∞

−∞
G(s)

{[
e−4π2a2s2h − 1 + 4π2a2s2h

]
e−4π2a2s2tφ(s)

}(n)
ds = 0, t ≥ 0,

lim
h→0+

∫ ∞

−∞
G(s)

{[
e−4π2a2s2h − 1

]
φ(s)
}(n)

ds = 0

whenever φ is a Schwartz function.

(b) Let m,m1,m2 be nonnegative integers, let t ≥ 0 be fixed, and let |h| ≤ 1 with
t+ h ≥ 0. Show that there are polynomials Pm1,m2(s),Qm(s) such that

|{e−4π2a2s2t}(m1){e−4π2a2s2h − 1 + 4π2a2s2h}(m2)| ≤ h2Pm1,m2(s)

|[e−4π2a2s2h − 1]m| ≤ hQm(s).

(c) Use (b) with the Leibnitz rule (2.29) to establish the limits of (a).

Note. Similar arguments can be used to show that (18) satisfies (1), (12), (13) and that
(93) satisfies (3), (90).

. ....
.. ..... ........... ... .....••• EXERCISE 9.36 Let (86) be written in the form U(s, z) = A(z)e−iπλzs2

U(s, 0).
This exercise will help you understand why we set A(z) = 1 to obtain (87).

(a) Show that if A(z) is differentiable, then the consistency relation A(z1 + z2) =
A(z1)A(z2) (from the text) implies that A(z) = eiαz , α := A′(0).

(b) Show that if we want the energy integral∫ ∞

−∞
|u(x, z)|2 dx

to be independent of z [when u(x, 0) is piecewise smooth and square integrable], then
we must have |A(z)| = 1, i.e., α must be real. We removed such a factor e2πiz/λ

when we passed from U(x, z, t) to the reduced wave function u(x, z), so we choose
A(z) = 1.

Note. It is not so easy to find the phase shift e−iπ/4 from (87) if we do not make use
of the Fourier transform (7.98) (see Born and Wolf, pp. 370–375).
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 9.37 Let v(x, t) be the solution of the diffraction equation vt =
(iλ/4π)vxx for −∞ < x < ∞, t ≥ 0 with v(x, 0) = sgn(x).

(a) Set f(x) = sgn(x) in (94) and thereby show that

v(x, t) = (1 − i)F
(

x√
λt/2

)
, t > 0

where F is the Fresnel function (95).

Note. The diffraction kernel (92) is given by γ = (1/2)vx.

(b) Use (a) to find the diffraction pattern of a straight edge, i.e., find the intensity
|u(x, t)|2 that results when we solve the diffraction equation with the initial wave
function u(x, 0) = h(x). Here h is the Heaviside function.

. .
..

.. ..

......... ... .. ..... ....••• EXERCISE 9.38 Let u(x, t) satisfy the diffraction equation ut = (iλ/4π)uxx for
−∞ < x < ∞ and t ≥ 0 with the initial wave function

u(x, 0) =
1
h
P
(
x− a

h

)
+

1
h
P
(
x+ a

h

)
where 0 < h < 2a. (This is a more accurate mathematical model for Young’s double slit
experiment than the one given in the text.)

(a) Express u(x, t) in terms of the Fresnel function (95).

Hint. Use translates of dilates of (96) or use the analysis from Ex. 9.37(a).

(b) Find the Fraunhofer approximation for u(x, t) when t 	 a2/λ.

(c) Sketch the intensity |u(x, t)|2 as a function of x when t 	 a2/λ is fixed, showing the
effects of the parameters a, h.

. .
...
.

....... .... ..... ... ...••• EXERCISE 9.39 Let f(x) = e−π(α+iβ)2x2
where α, β are real and α > |β|.

(a) Show that the Fourier transform of f has the form F (s) = F (0)e−πs2/(α+iβ)2 .

Hint. f ′(x) = i(α+ iβ)22πif(x).

(b) Show that F (0)2 = 1/(α+ iβ)2.

Hint. Use polar coordinates to integrate f(x) · f(y).

(c) Show that Re F (0) > 0 and thereby obtain the identity

F (s) =
e−πs2/(α+iβ)2

α+ iβ

that was used to derive (98).

Note. This formula for F can also be used when α = |β| �= 0.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 9.40 This exercise will help you determine the phase velocity of
a sinusoidal solution

w(x, t, s) := e2πi[sx−ν(s)t], ν(s) := λs2/2

of the diffraction equation and the group velocity of a wave packet

u(x, t) =
∫ ∞

−∞
A(s)e2πi[sx−ν(s)t] ds

corresponding to an amplitude function A that is localized near s = s0.

(a) Show that w(x, t, s0) travels with the phase velocity

c(s0) :=
ν(s0)
s0

=
λs0
2

, s0 �= 0.

The high-frequency (large |s|) sinusoids travel faster than the low-frequency (small
|s|) sinusoids.

(b) When A is suitably localized near s = s0 we can use the linear approximation

ν(s) ≈ ν(s0) + (s− s0)ν
′(s0)

to write

u(x, t) ≈
∫ ∞

−∞
A(s)e2πi{sx−[ν(s0)+(s−s0)ν′(s0)]t} ds.

Show that this implies
|u(x, t)| ≈ |u(x− ν′(s0)t, 0)|

and thereby show that |u| travels with the group velocity

cgroup(s0) := ν′(s0) = λs0

when t is small.

Note. You will observe this phenomenon in (105).

(c) Let u1(x, t), . . . , u4(x, t) be the solutions of the diffraction equation with

u1(x, 0) = P(x), u2(x, 0) = sinc(x), u3(x, 0) = e−|x|, u4(x, 0) = e−πx2
.

The functions |u1(x, t)|2, . . . , |u4(x, t)|2 will all spread as t increases. Which one will
disperse the fastest? Which one will disperse the slowest?

(d) When we use A(s) = δ(s − s0) we find u(x, t) = w(x, t, s0). Show that the analysis
of (b) can be reconciled with the analysis of (a) in this case.

.. . .

..

... ...
........

..

. .... ....••• EXERCISE 9.41 Let u(x, t) be a solution of the diffraction equation
ut = (i λ/4π)uxx for −∞ < x < ∞, t ≥ 0. Does |u(x, t)|2 evolve into |U(x/λt, 0)|2/λt as
t → +∞ (i.e., is the Fraunhofer approximation valid) when:

(a) u(x, 0) = δ(x− a) + δ(x+ a), a > 0? (b) u(x, 0) = cos(2πx/p), p > 0?

(c) u(x, 0) = e−π x2/α2
cos(2π x/p), α > 0, p > 0?
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 9.42 Let N = 1, 2, . . .. Show how to construct a solution u(x, t) of the
diffraction equation ut = (iλ/4π)uxx for −∞ < x < ∞, t ≥ 0 such that

max−∞<x<∞ |u(x, 0)| ≤ 1, and max−∞<x<∞ |u(x, 1)| ≥ N.

Hint. Use (104) with x replaced by x+βλ to construct a gaussian beam that travels (with
spreading) from x = −βλ to x = 0 as t increases from t = 0 to t = 1. You can combine
such gaussian beams having β = M

√
2/λn, n = 1, 2, . . . where M is a large positive

integer.

Note. In view of this analysis, you cannot formulate a bound for a solution of the diffraction
equation that is comparable to the bound of Ex. 9.15 for the wave equation or the bound
of (58)–(59) for the diffusion equation.

. ..
..

.

.......... . ... .. ...... ...••• EXERCISE 9.43 Let u(x, t) be the solution of the diffraction equation ut =
(iλ/4π)uxx for −∞ < x < ∞, t ≥ 0 with u(x, 0) = f(x). What can you infer about
|u(x, t)|2 at time t > 0 if you know that:

(a) f(x) = f(−x)? (b) f(x) = −f(−x)? (c) f(x0+x) = f(x0−x)?
(d) f(x0+x) = −f(x0−x)? (e) f(x+ p) = f(x)? (f) f(x+p/2) = −f(x)?

. .
..

.. . .

........ ....

.. .... ....••• EXERCISE 9.44 Let u(x, t; f) denote the solution of the diffraction equation ut =
(iλ/4π)uxx for −∞ < x < ∞, −∞ < t < ∞ with the initial source u(x, 0) = f(x).

(a) Show that u(x,−t; f) = u(x, t; f).

(b) What conditions, if any, must be imposed on f to ensure that the movie showing
|u(x, t; f)|2 from t = 0 to t = +∞ will be identical to the time-reversed movie
showing |u(x, t; f)|2 from t = 0 to t = −∞?

.
.

.. . .
......... ....
.. .... ....••• EXERCISE 9.45 Let u(x, t) satisfy the diffraction equation ut = (iλ/4π)uxx for
0 < x < L, t ≥ 0 with the boundary conditions u(0, t) = 0, u(L, t) = 0 for t ≥ 0. Sketch
t-slices of |u(x, t)|2 to show how the intensity evolves when

(a) u(x, 0) = (2/L)1/2 sin(πx/L); (b) u(x, 0) = (2/L)1/2 sin(2πx/L);

(c) u(x, 0) = (1/L)1/2{sin(πx/L) + sin(2πx/L)}.

. . .
..

..

...... ...... .. ..... ...••• EXERCISE 9.46 Let u(x, t) be given by the Fourier series (113) and let T := 2p2/λ
(so that u is T -periodic in t as well as p-periodic in x). Show that:

(a) u(x, t+ T/2) = u(x+ p/2, t);

(b) u(x, t+ T/4) = 1
2{(1 − i)u(x, t) + (1 + i)u(x+ p/2, t)};

(c) u(x, t+ T/8) = 1
4{(

√
2 − √

2i)u(x, t) + 2u(x+ p/4, t) + (−√
2 +

√
2i)u(x+ p/2, t)

+2u(x+ 3p/4, t)}.

Hint. First observe that
3∑

n=0

cnu(x+ np/4, t) = u(x, t+ T/8)
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when
3∑

n=0

cne
2πink/4 = e−2πik2/8, k = 0,±1,±2, . . . .

Note. This analysis will help you understand the piecewise constant structure of the
graphs of |u(x, T/2n)|2, n = 1, 2, 3, . . . shown in Fig. 9.17.

.. . .
....

. .. ...........
..
. ... ....••• EXERCISE 9.47 When a small-amplitude sinusoidal wave travels on water that is
much deeper than the wavelength λ, the velocity is given by the formula

c =

√
gλ

2π

where g is the gravitational constant (see I.G. Main, pp. 236–257).

(a) Calculate the velocity for such water waves with λ = 1 cm, 1 m, 100 m, and 10 km.

Note. When an earthquake occurs in midocean, the long low-frequency waves are the
first to arrive at a distant detector!

(b) Derive the expressions

c(s) =
√

g

2πs
, cgroup(s) =

1
2

√
g

2πs
, s > 0

for the phase velocity and the group velocity, see Ex. 9.40.

(c) Explain why we might use the formula

u(x, t) =
∫ ∞

−∞
{F (s) cos[2π s c(s)t] +G(s) t sinc[2s c(s)t]}e2πisx dx

to simulate the water level at time t and coordinate x in a long deep canal when

u(x, 0) = f(x) and ut(x, 0) = g(x).

Note. The choices f(x) = P(x), g(x) = 0 and f(x) = 0, g(x) = P(x) make interesting
movies!

.
..
. ..... ........ ..... ... ....••• EXERCISE 9.48 In this exercise you will use Fourier analysis to find a solution of
Laplace’s equation uxx(x, y) + uyy(x, y) = 0 for −∞ < x < ∞, y ≥ 0, that takes specified
values u(x, 0+) = f(x) on the boundary line y = 0.

(a) Let g(x, y) be a generalized function of x for each y ≥ 0 and assume that

gxx(x, y) + gyy(x, y) = 0 for −∞ < x < ∞, y ≥ 0, g(x, 0+) = δ(x).

Show that the Fourier transform of g (with respect to x) satisfies

Gyy(s, y) − 4π2s2G(s, y) = 0, G(s, 0) = 1.
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(b) Within the context of (a), show that

g(x, y) =
1
π

y

x2 + y2 .

You may assume that g(x, y) and G(s, y) are slowly growing as x → ±∞, s → ±∞,
and y → +∞.

(c) Using (b), show that

u(x, y) =
1
π

∫ ∞

−∞

y f(ξ)
(x− ξ)2 + y2 dξ, −∞ < x < ∞, y > 0

satisfies Laplace’s equation with the boundary values u(x, 0+) = f(x), −∞ < x < ∞,
when f is a suitably regular function of x.
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Wavelets

10.1 The Haar wavelets

Introduction

We use dilates of the complex exponential wave

w(x) := e2πix, −∞ < x < ∞

when we write the familiar Fourier synthesis equation

f(x) =
∫ ∞

−∞
F (s)w(sx) ds

for a suitably regular function f on R. (The function F is the Fourier transform
of f .) For example, the identity

e−x2/2σ2

√
2π σ

=
∫ ∞

−∞
e−2π2σ2s2

e2πisx ds =
∫ ∞

−∞
e−2π2σ2s2

cos(2πsx) ds

shows how to synthesize a normal density by combining waves of constant amplitude,

e−2π2σ2s2
cos(2πsx),

which stretch from x = −∞ to x = +∞. When 0 < σ � 1, this density is an
approximate delta with 99.7% of its integral in the tiny interval −3σ ≤ x ≤ 3σ.
Almost perfect destructive interference must occur at every point |x| > 3σ. Such
a synthesis has mathematical validity (a proof is given in Section 1.5), but it is
physically unrealistic. In practice, we cannot produce the audio signal for a 1-ms
“click” by having tubas, trombones, . . . , piccolos play sinusoidal tones of constant
amplitude for all eternity!
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In this chapter you will learn to synthesize a function f with localized, oscillatory
basis functions called wavelets. We use the prototype Haar wavelet

ψ(x) :=




1 if 0 ≤ x < 1
2

−1 if 1
2 ≤ x < 1

0 otherwise
(1)

to introduce the fundamental concepts from an exciting new branch of analysis
created by mathematicians, electrical engineers, physicists, . . . during the last two
decades of the 20th century. More sophisticated wavelets for audio signal processing,
image compression, etc. are described in the following sections.

You will observe that the wavelet (1) oscillates. The positive and negative parts
of ψ have the same size in the sense that

∫ ∞

−∞
ψ(x) dx = 0. (2)

You will also notice that the wavelet (1) has the width or scale a = 1. This being
the case, the dyadic (power of 2) dilates

. . . , ψ(2−2x), ψ(2−1x), ψ(x), ψ(2x), ψ(22x), . . .

have the widths

. . . , 22, 21, 1, 2−1, 2−2, . . .

as shown in Fig. 10.1. Since the dilate ψ(2mx) has width 2−m, its translates

ψ(2mx− k) = ψ(2m[x− k 2−m]), k = 0,±1,±2, . . . (3)

nicely cover the whole x-axis. We use the complete collection of all such dyadic
dilates of integer translates of ψ to write the synthesis equation

f(x) =
∞∑

m=−∞

∞∑
k=−∞

F [m, k]ψ(2mx− k) (4)

for a suitably regular function f on R. (With somewhat picturesque language we
refer to ψ as the mother wavelet for this expansion.) The coefficient function F is
a real, complex-valued function on Z

2 when f is a real, complex-valued function on
R, respectively. We say that F is the discrete wavelet transform of f .
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Figure 10.1. Dyadic dilates of integer translates of the Haar wavelet (1).

Interpretation of F [m,k]

It is natural to associate some meaning with the coefficient F [m, k] that specifies the
amount of the wavelet ψ(2mx− k) needed for the synthesis (4). Since this function
vanishes except when

0 ≤ 2mx− k < 1, i.e., k 2−m ≤ x < (k + 1)2−m,

we see that F [m, k] gives us information about the behavior of f near the point x =
k 2−m at the scale 2−m. For example, the coefficients F [−10, k], k = 0,±1,±2, . . .
correspond to variations of f that take place over intervals of length 210 = 1024 while
the coefficients F [10, k], k = 0,±1,±2, . . . reveal fluctuations of f over intervals of
length 2−10 = .000976 . . . .
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This observation will help you understand why (4) gives us an exceptionally
efficient scheme for representing a support-limited signal f . If f does not fluctuate
wildly near x = x0, neither the large- nor small-scale basis functions from (4) will
make a significant contribution to the sum f(x0). (Basis functions having widths of
1 km or 1 mm are of little use when f is a half circle with a 1-m radius!) Moreover,
for each fixed choice of the scale index m, there are only finitely many coefficients
F [m, k] that contribute to the value of f at x = x0. Thus f(x0) can be well
approximated by using a relatively small number of terms from (4).

When we work with waves, the spatial frequency (e.g., as measured in cycles per
meter) is the reciprocal of the wavelength, a natural measure of scale. Since the
wavelet ψ(2mx− k) has the scale 2−m, we might reasonably expect the modulus of
its Fourier transform to exhibit peaks near one or both of the points s = ±2m. The
Haar wavelet (1) has the Fourier transform

Ψ(s) = i e−iπs sin(πs/2) sinc(s/2),

see Ex. 10.1, and

ψ(2mx− k) has the FT e−2πik 2−ms 2−mΨ(2−ms).

We plot |Ψ(2−ms)|2 to see how “energy” is distributed across the spectrum of the
wavelet ψ(2mx− k). This “energy” is more or less concentrated in bands of width
2m centered near s = ±2m, as shown in Fig. 10.2.

Figure 10.2. The functions |Ψ(2−ms)|2, m = −1, 0, 1, 2 that
correspond to the Haar wavelet (1).

You may find it helpful to interpret (4) within a musical context where we compose
f from “notes” that correspond to the wavelets ψ(2mx − k). We are not allowed
to use all of the keys from the piano keyboard (as specified in Appendix 8); we
must produce our composition from the notes . . . , C2, C3, C4, C5, . . . with the
(approximate) frequencies f = 2m, m = . . . , 26, 27, 28, 29, . . . , see Section 11.1.
Furthermore, we are not allowed to vary the duration of these tones; we must
always play . . . , C2, C3, C4, C5, . . . as . . ., whole, half, quarter, eighth, . . .
notes. Indeed, we always play from the fixed musical score shown in Fig. 10.3, but
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Figure 10.3. Two measures from a musical score for discrete
wavelet synthesis and a corresponding equal-area tiling of the
time-frequency plane using the points (k 2m, 2m).

we do not always play the same thing. We are free to choose the coefficient F [m, k]
that specifies how loudly (and with what phase, up-down or down-up) we sound the
“note” ψ(2mx− k). As astonishing as it may seem, this gives us enough flexibility
to play anything we please! We will now give a proof of this remarkable assertion.

Arbitrarily good approximation

Let f be a continuous, absolutely integrable, real-valued function on R, and assume
that f(x) → 0 as x → ±∞. We will show how to construct an arbitrarily good
discrete wavelet approximation for f . The argument, which is adopted from the
multiresolution analysis of S. Mallat and Y. Meyer, makes use of the scaling function
(or father wavelet)

φ(x) :=
{

1 if 0 ≤ x < 1
0 otherwise

(5)

that goes with the Haar wavelet (1). Later on we will carry out an analogous
construction with other choices of ψ and φ.
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We begin by using φ to produce a good piecewise constant approximation for f .
The function φ(2mx− k) vanishes except when k 2−m ≤ x < (k + 1)2−m, so

αm[k] := 2m

∫ ∞

−∞
f(x)φ(2mx− k) dx = 2m

∫ (k+1)2−m

k 2−m

f(x) dx (6)

is the average value of f on the interval [k 2−m, (k + 1)2−m]. This average lies
between the minimum and maximum of f on the interval, and it follows that

|f(x) − αm[k]| ≤ max{|f(x) − f(x′)| : k 2−m ≤ x′ ≤ (k + 1)2−m}
≤ max{|f(x′′) − f(x′)| : x′, x′′ ∈ R, |x′ − x′′| ≤ 2−m}
=: ωm when k 2−m ≤ x ≤ (k + 1)2−m. (7)

The step function approximation or frame

fm(x) :=
∞∑

k=−∞
αm[k]φ(2mx− k) (8)

takes the constant value αm[k] on the interval k 2−m ≤ x < (k + 1)2−m, so we can
use (7) to write

|f(x) − fm(x)| ≤ ωm, −∞ < x < ∞. (9)

Since f is a continuous function that vanishes at x = ±∞, it follows that ωm → 0
as m → +∞. In this way we see that it is possible to produce an arbitrarily good
uniform approximation for f on R by using (6) and (8) with some sufficiently large
scaling index m.

We are now ready to introduce the simple (but exceptionally powerful) idea that
underlies wavelet analysis: the “wide” dilates φ(x/2), ψ(x/2) can be written as
linear combinations of the “narrow” translates φ(x), φ(x− 1), i.e.,

φ(x/2) = φ(x) + φ(x− 1),
ψ(x/2) = φ(x) − φ(x− 1).

(10)

By inspection, we invert the system (10) and write

φ(x) = 1
2φ(x/2) + 1

2ψ(x/2),

φ(x− 1) = 1
2φ(x/2) − 1

2ψ(x/2).
(11)

For our present purpose we combine these equations to obtain the identity

α0φ(x) + α1φ(x− 1) =
α0 + α1

2
φ(x/2) +

α0 − α1

2
ψ(x/2),
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Figure 10.4. A pictorial proof of the identity (12) when m = k = 0.

as shown in Fig. 10.4, or more generally,

α0φ(2mx− 2k) + α1φ(2mx− 2k − 1)

=
α0 + α1

2
φ(2m−1x− k) +

α0 − α1

2
ψ(2m−1x− k) (12)

where α0, α1 are arbitrary scalars. In this way we derive a splitting

fm(x) =
∞∑

k=−∞
{αm[2k]φ(2mx− 2k) + αm[2k + 1]φ(2mx− 2k − 1)}

=
∞∑

k=−∞

1
2
{αm[2k] + αm[2k + 1]}φ(2m−1x− k)

+
∞∑

k=−∞

1
2
{αm[2k] − αm[2k + 1]}ψ(2m−1x− k)

=: fm−1(x) + dm−1(x) (13)

of the frame fm. Here

fm−1(x) :=
∞∑

k=−∞
αm−1[k]φ(2m−1x− k)

with
αm−1[k] := 1

2{αm[2k] + αm[2k + 1]}

= 2m−1
∫ (2k+1)2−m

2k2−m

f(x) dx+ 2m−1
∫ (2k+2)2−m

(2k+1)2−m

f(x) dx

= 2m−1
∫ (k+1)21−m

k 21−m

f(x) dx

= 2m−1
∫ ∞

−∞
f(x)φ(2m−1x− k) dx
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in keeping with (6), and analogously,

dm−1(x) :=
∞∑

k=−∞
βm−1[k]ψ(2m−1x− k) (14)

with

βm−1[k] :=
1
2
{αm[2k] − αm[2k + 1]}

= 2m−1
∫ ∞

−∞
f(x)ψ(2m−1x− k) dx. (15)

Figure 10.5 illustrates this splitting process. (The graphs are filled to make it easier
for you to see the steps.) An approximating frame fm from the left side of one row
is the sum of the frame fm−1 (left) and the detail dm−1 (right) from the following
row. If you observe the way a pair of adjacent “narrow” ribbons from the graph
of fm is replaced by a corresponding “wide” ribbon in the graph of fm−1 and a
corresponding “wide” Haar wavelet in the graph of dm−1, you will understand how
we can produce these functions by using (12).

The splitting (13) leads at once to the synthesis equation (4). Indeed, given
integers I ≤ J we write

fJ+1 = fJ + dJ = fJ−1 + dJ−1 + dJ = · · · = fI + dI + dI+1 + · · · + dJ , (16)

and thereby see that∣∣∣∣f −
J∑

m=I

dm

∣∣∣∣ = |f − fJ+1 + fI | ≤ |f − fJ+1| + |fI |.

In conjunction with (14), (9) and the inequality

|fI(x)| ≤ max
k

|αI [k]| ≤ 2I

∫ ∞

−∞
|f(x)| dx

that follows from (8) and (6), this allows us to write∣∣∣∣f(x) −
J∑

m=I

∞∑
k=−∞

βm[k]ψ(2mx− k)
∣∣∣∣ ≤ ωJ+1 + 2I

∫ ∞

−∞
|f(ξ)| dξ, −∞ < x < ∞.

Since ωJ+1 → 0 as J → +∞ and 2I → 0 as I → −∞, this shows that the synthesis
equation (4) holds at each point x (with the convergence being uniform) provided
that we identify F [m, k] with βm[k], i.e., provided that we use the analysis equation

F [m, k] := 2m

∫ ∞

−∞
f(x)ψ(2mx− k) dx, m, k = 0,±1,±2, . . . (17)

to obtain F from f . We really can play anything we like from the musical score of
Fig. 10.3 (if we use sufficiently many measures, see Ex. 10.2)!
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Figure 10.5. Piecewise constant frames (left) and corresponding
details (right) for the Haar wavelet approximation of a normal
density.
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Wavelets are used to analyze audio signals, EKGs, images, . . . that do not have
the perfect smoothness of the normal density. Figure 10.6 shows frames and details
for a function f that represents the silhouette of a city skyline. You will again
observe the local use of (12) as we move from top to bottom, constructing each
pair fm−1, dm−1 from the previous fm. You will also notice a new phenomenon. At
every scale there are large wavelet coefficients that correspond to the points where f
has jump discontinuities, see Ex. 10.3. We can use these large coefficients to locate
the edges of the buildings!

You can develop some feeling for the efficiency of the wavelet synthesis (4) by
studying Figs. 10.5 and 10.6. Each detail dm shown in these illustrations is an
inner sum from (4). As your eye focuses on the ribbon to the right of the point
x = k 2−m from the graph of dm(x), you see the size and sign of the summand
F [m, k]ψ(2mx − k) from (4)! When f is localized, only finitely many terms from
an inner sum of (4) make a significant contribution to f . When f is smooth and
slowly varying on some interval [a, b], only finitely many terms from the outer sum
of (4) make a significant contribution to f on any [c, d] ⊂ (a, b).

From your study of linear algebra, you will recognize that the integral represen-
tation (17) for the coefficients F [m, k] follows from the orthogonality relations∫ ∞

−∞
ψ(2mx− k)ψ(2m′

x− k′) dx =
{

2−m if m′ = m and k′ = k

0 otherwise
(18)

for the Haar wavelets that appear in (4). It is a simple matter to verify (18). Indeed,
the wavelet ψ(2mx) has width 2−m, so its 2−m translates (3) have nonoverlapping
supports, see Fig. 10.1. In this way we see that (18) holds when m′ = m. On
the other hand, when the wavelets from the integrand of (18) have different scales,
the “wide” wavelet takes the same constant value (0, 1, or −1) at each point of
the interval where the “narrow” wavelet is nonzero, again See Fig. 10.1. Since the
integral of the “narrow” wavelet is zero, (18) also holds when m′ �= m.

Successive approximation

The above analysis facilitates a brief discussion of an exceptionally important feature
of the wavelet representation (4). Suppose that we want to transmit a function f
over a digital communication channel. We will assume that the approximation

f ≈ fJ+1 = fI + dI + dI+1 + · · · + dJ

from (8) and (16) is sufficiently accurate for our purposes. When f is suitably
localized, only finitely many of the coefficients αI [k] for the frame fI and only
finitely many of the coefficients βm[k] for the detail dm, m = I, I + 1, . . . , J will
make a significant contribution to the approximation. You can see this as you
examine the frames and details shown in Figs. 10.5 and 10.6.

Within this context we suitably quantize and transmit in turn the nonzero co-
efficients for fI , dI , dI+1, . . . , dJ . At the other end of the communication channel,
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Figure 10.6. Piecewise constant frames (left) and correspond-
ing details (right) for the Haar wavelet approximation of a city
skyline.
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the coarse approximation fI is constructed just as soon as the required coefficients
for this frame arrive. The refinements

fI+1 = fI + dI , fI+2 = fI+1 + dI+1, . . . , fJ+1 = fJ + dJ

(as shown from bottom to top on the left side of Figs. 10.5 and 10.6) are generated
one by one as the coefficients for the details dI , dI+1, . . . , dJ are received. You may
well recall viewing such successive approximations while downloading a large image
file from a site on the Internet.

Coded approximation

Figure 10.5 shows selected frames and details for the normal density

f(x) :=
e−(x−µ)2/2σ2

√
2π σ

with µ =
1
2

and σ =
1
16
.

When x lies outside the interval [0, 1] this function is relatively small, with

f(x)
f(1/2)

≤ e−32 = 1.26 . . . · 10−14 for |x− 1/2| ≥ 1/2.

To this level of precision fm, dm, m = 0, 1, 2, . . . all vanish outside [0, 1], so we can
truncate the series (8), (14) and write

fm(x) =
2m−1∑
k=0

αm[k]φ(2mx− k),

dm(x) =
2m−1∑
k=0

βm[k]ψ(2mx− k).

(19)

We facilitate numerical analysis by introducing the coefficient vectors

αm := (αm[0], αm[1], . . . , αm[2m − 1])T,

βm := (βm[0], βm[1], . . . , βm[2m − 1])T
(20)

to encode the functions (19). Such vectors for the frames and details of Fig. 10.5
are displayed in Fig. 10.7. Of course, if we are given the vectors αm, βm, we can
use (19) to construct the functions fm, dm. Conversely, if we are given the step
functions fm, dm, we can produce the vectors (20) by using the right hand limits

αm[k] = fm(k 2−m
+), βm[k] = dm(k 2−m

+)
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Figure 10.7. Vectors of coefficients α5, . . . ,α1 and β4, . . . ,β1
that encode the frames f5, . . . , f1 and details d4, . . . , d1 shown in
Fig. 10.5. Each coefficient has been scaled by 100 and rounded
to an integer.

or by using the integrals

αm[k] = 2m

∫ ∞

−∞
fm(x)φ(2mx− k) dx =

∫ 1

0
fm(2−mk + 2−mu)φ(u) du,

βm[k] = 2m

∫ ∞

−∞
dm(x)ψ(2mx− k) dx =

∫ 1

0
dm(2−mk + 2−mu)ψ(u) du.

(21)
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Such expressions follow from the fact that

fm(x) = αm[k]φ(2mx− k) when k 2−m ≤ x < (k + 1)2−m,

dm(x) = βm[k]ψ(2mx− k) when k 2−m ≤ x < (k + 1)2−m.

We will use the splitting fm = fm−1 + dm−1 with (19) to establish identities that
link certain components of the coefficient vectors αm, αm−1, βm−1. Indeed, by
restricting the splitting to the interval 2k 2−m ≤ x < (2k + 2)2−m we see that

αm[2k]φ(2mx− 2k) + αm[2k + 1]φ(2mx− 2k − 1)

= αm−1[k]φ(2m−1x− k) + βm−1[k]ψ(2m−1x− k). (22)

In conjunction with (12) (as seen in Fig. 10.4) this gives us Mallat’s relations

αm[2k] = αm−1[k] + βm−1[k],

αm[2k + 1] = αm−1[k] − βm−1[k]
(23)

and

αm−1[k] = 1
2{αm[2k] + αm[2k + 1]},

βm−1[k] = 1
2{αm[2k] − αm[2k + 1]}

(24)

for these coefficients. Make sure that you can see the sums and differences (23) as
you synthesize αm from αm−1 and βm−1 in Fig. 10.7. For example, the k = 4, 5
components of α3 are obtained from the k = 2 components of α2, β2 by writing
382 = 200 + 182, 18 = 200 − 182. Likewise, make sure that you see how (24)
produces αm−1 and βm−1 from αm. For example, the k = 4 components of α3, β3
are obtained from the k = 8, 9 components of α4 by writing 382 = (546 + 218)/2,
164 = (546 − 218)/2.

Figure 10.8 will help you visualize how we do analysis and synthesis with the
coefficient vectors from Fig. 10.7. We use (24) at each node of Mallat’s herringbone
algorithm to produce the 16, 8, 4, 2, 1, 1 component vectors β4,β3,β2,β1,β0,α0
from the 32-component vector α5. We use (23) at each node of Mallat’s reverse
herringbone algorithm when we reconstruct α5 from α0,β0,β1,β2,β3,β4. Equiv-
alently, the herringbone algorithm enables us to split the initial frame f5 into its
constituent parts, the details d4, d3, d2, d1, d0, and the frame f0. The reverse her-
ringbone algorithm allows us to reconstruct the frame f5 from f0, d0, d1, d2, d3, d4.
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Figure 10.8. Mallat’s herringbone algorithm (left) is used with
(24) to split a frame into its constituent details. The reverse
herringbone algorithm (right) is used with (23) when we assemble
a frame from its constituent details.

Suppose now that we are given an arbitrary vector αm withN := 2m components.
We concatenate the corresponding α0,β0,β1, . . . ,βm−1 to form a vector

αw
m := α0 & β0 & β1 & · · · & βm−1

:= (α0[0], β0[0], β1[0], β1[1], . . . , βm−1[2m−1 − 1])T (25)

having 1 + 1 + 2 + 4 + · · · + 2m−1 = 2m components, see Exs. 6.7 and 6.9. We say
that αw

m is the discrete wavelet transform (DWT) of αm. The tag, w, is analogous
to the tag, ∧, for the DFT.
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As we use (24) to generate αm−1,βm−1 from αm, we perform one addition and
one multiplication (by 1/2) per component. Since each of these half-sized vectors
has 2m−1 components the cost is 2m operations. This being the case, when we use
the herringbone algorithm

αm � αm−1 & βm−1

� αm−2 & βm−2 & βm−1

...

� α1 & β1 & β2 & · · · & βm−1

� α0 & β0 & β1 & · · · & βm−1 =: αw
m (26)

to compute the DWT we expend 2m +2m−1 + · · ·+2 = 2 · 2m − 2 ≈ 2N operations.
Each mapping from the chain (26) is represented by a sparse matrix (with one or
two nonzero entries per row). The product of these sparse matrices gives the dense
matrix for the DWT, see Ex. 10.4 [and compare this with (6.12), (6.25), etc.].

Analogously, as we use (23) to generate α1 from α0 and β0, α2 from α1 and
β1, . . . we perform one addition per component. This being the case, when we use
the reverse herringbone algorithm

αw
m = α0 & β0 & β1 & · · · & βm−1

� α1 & β1 & β2 & · · · & βm−1

...

� αm−1 & βm−1

� αm (27)

to invert the DWT we expend 2 + 4 + · · · + 2m ≈ 2N additions. The matrices that
correspond to the mappings (27) give a sparse factorization for the inverse of the
DWT.

It is very easy and surprisingly inexpensive to do analysis and synthesis with Haar
wavelets when we use (26), (27) with Mallat’s relations (24), (23) that follow from
the dilation equations (10). Once you see how these thoroughly modern constructs
fit together within this elementary context you will be well prepared to study gener-
alizations that lead to exceptionally powerful new tools for signal processing. [Haar
did not forsee such developments in 1910 when he introduced the synthesis equation
(4) and used (18) to obtain the coefficients (17).]
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10.2 Support-limited wavelets

The dilation equation

Let c0, c1, . . . , cM be real numbers with

M∑
m=0

cm = 2. (28)

We will construct a support-limited generalized scaling function φ by solving the
dilation equation

φ(x) =
M∑

m=0

cmφ(2x−m) (29)

subject to the normalization condition

Φ(0) = 1. (30)

We use this function φ to produce a corresponding wavelet

ψ(x) :=
M∑

m=0

(−1)mcM−mφ(2x−m). (31)

When we choose the coefficients

M = 1, c0 = 1, c1 = 1 (32)

the equations (29), (31) give the relations (10) that link the scaling function (5)
and the Haar wavelet (1) from the preceding section. The generalization makes it
possible for us to find other functions φ, ψ that work together in much the same
way. (You will understand why we reverse the order of the coefficients and alternate
the signs in (31) later on when you work Ex. 10.44.)

We will solve (29) by iteration. With this in mind we define

φ0(x) := δ(x),

φn(x) :=
M∑

m=0

cmφn−1(2x−m), n = 1, 2, . . . ,
(33)

observing that each of these generalized functions vanishes outside the interval
[0,M ]. The Fourier transforms

Φ0(s) := 1,

Φn(s) :=
1
2

M∑
m=0

cme
−2πims/2Φn−1

(s
2

)
, n = 1, 2, . . . ,

(34)
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are allM -bandlimited. We use the recursion (34) with the trigonometric polynomial

T (s) :=
1
2

M∑
m=0

cme
−2πims (35)

to see that

Φ1(s) = T
(s

2

)
, Φ2(s) = T

(s
2

)
T
(s

4

)
, Φ3(s) = T

(s
2

)
T
(s

4

)
T
(s

8

)
, . . .

(36)
or equivalently,

φ1(x) = 2τ(2x), φ2(x) = 2τ(2x) ∗ 4τ(4x), φ3(x) = 2τ(2x) ∗ 4τ(4x) ∗ 8τ(8x), . . .
(37)

where

τ(x) :=
1
2

M∑
m=0

cmδ(x−m) (38)

is the inverse Fourier transform of (35), see Ex. 10.7.

Example Let M = 0 and c0 = 2. Find the corresponding sequences (37), (36).

Solution When M = 0, c0 = 2 we use (38) and (35) to find

τ(x) = δ(x), T (s) = 1.

Since 2νδ(2νx) = δ(x), ν = 1, 2, . . . , the convolution products of (37) and the
products of (36) give

φn(x) = δ(x), Φn(s) = 1, n = 1, 2, . . . .

The limit φ(x) = δ(x) is the solution of the dilation equation

φ(x) = 2φ(2x)

with Φ(0) = 1.

Figure 10.9 shows the sequences (37), (36) that correspond to the coefficients (32)
(with deltas represented by vertical line segments). The functions φ1, φ2, φ3, . . .
converge weakly to the scaling function (5) for the Haar wavelet. Figure 10.10
shows the sequences (37), (36) that correspond to the coefficients

M = 3, c0 =
1 +

√
3

4
, c1 =

3 +
√

3
4

, c2 =
3 − √

3
4

, c3 =
1 − √

3
4

. (39)

In this case φ1, φ2, φ3, . . . converge weakly to the scaling function for a wavelet that
was designed by Ingrid Daubechies in 1988.
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Figure 10.9. The functions φn (left) and Re Φn, Im Φn (right),
n = 1, 2, 3, 4, 5, from the sequences (37), (36) that correspond to
the Haar coefficients (32).
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Figure 10.10. The functions φn (left) and Re Φn, Im Φn (right),
n = 1, 2, 3, 4, 5, from the sequences (37), (36) that correspond to
the Daubechies coefficients (39).
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Example Show that the sequences (37), (36) have the weak limits

φ(x) = P
(
x− 1

2

)
, Φ(s) = e−πis sinc(s)

when we use the coefficients (32).

Solution We use the trigonometric polynomial

T (s) = 1
2{1 + 1 · e−2πis} = e−πis cos(πs)

with (36) to write

Φn(s) = T
(s

2

)
T
(s

4

)
· · ·T

( s

2n

)
= e−πis(1−2−n) cos

(πs
2

)
cos

(πs
4

)
· · · cos

(πs
2n

)
,

and thereby infer that

|Φn(s)| ≤ 1 for −∞ < s < ∞ and n = 1, 2, . . . .

The cosine product telescopes when we use the identity

cos(u) =
sin(2u)
2 sin(u)

to write

Φn(s) = e−πis(1−2−n) sin(πs)
2 sin(πs/2)

sin(πs/2)
2 sin(πs/4)

· · · sin(πs/2n−1)
2 sin(πs/2n)

= e−πis sinc s
eπis/2n

sinc(s/2n)
. (40)

This enables us to see that Φ1(s),Φ2(s),Φ3(s), . . . converges uniformly to the func-
tion e−πis sinc(s) on every finite interval. Since these functions are uniformly
bounded, the sequence has the weak limit

lim
n→∞ Φn(s) = e−πis sinc(s) =: Φ(s).

Weak limits are preserved by the Fourier transform (and its inverse), so we also
have

lim
n→∞φn(x) = P

(
x− 1

2

)
= φ(x).

[An alternative proof within a probabilistic context follows (12.71).] Know-
ing φ, we use (31) with the coefficients (32) to produce the Haar
wavelet (1).
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We will present an analogous argument to establish the weak convergence of (36),
(37) when c0, c1, . . . , cM satisfy (28). Let A ≥ 1, B > 0 be chosen so that

|T (s)| ≤ A, 0 ≤ s ≤ 1, (41)
|T ′(s)| ≤ B, 0 ≤ s ≤ 1. (42)

We use (28) and (42) with the identity

T (s) = T (0) +
∫ s

0
T ′(σ) dσ

to see that
|T (s)| ≤ 1 +B|s|, −∞ < s < ∞. (43)

We then majorize the products (36) by writing

|Φn(s)| =
n∏

ν=1

∣∣∣T ( s

2ν

)∣∣∣ ≤
n∏

ν=1

{
1 +

B|s|
2ν

}
≤

n∏
ν=1

eB|s|/2ν ≤ eB|s|,

− ∞ < s < ∞, n = 1, 2, . . . . (44)

An argument of Daubechies allows us to replace the exponential envelope from
(44) with one that is slowly growing. We use (44) to see that

|Φn(s)| ≤ eB , n = 1, 2, . . . when |s| ≤ 1.

If |s| > 1, we will choose the positive integer N = N(s) so that

2N−1 < |s| ≤ 2N

and consider in turn the cases where n ≤ N , n > N as we write

|Φn(s)| =
n∏

ν=1

∣∣∣T ( s

2ν

)∣∣∣ ≤ AN ≤ A1+log2 |s| = A|s|log2 A, |s| > 1, n ≤ N,

|Φn(s)| =

∣∣∣∣∣
N∏

ν=1

T
( s

2ν

)∣∣∣∣∣
∣∣∣∣

n−N∏
ν=1

T
( s

2N+ν

) ∣∣∣∣ ≤ AN
∣∣∣Φn−N

( s

2N

)∣∣∣ ≤ A|s|log2 A eB ,

|s| > 1, n > N.

We combine these three bounds for Φn(s) to obtain the envelope

|Φn(s)| ≤ C{1 + |s|log2 A}, −∞ < s < ∞, n = 1, 2, . . . (45)

where C := AeB .
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We now have the tools we need to show that Φ1,Φ2,Φ3, . . . converges both point-
wise and weakly. Given b > 0 and positive integers m < n, we use (36), (44), (45)
to write

|Φn(s) − Φm(s)| =
∣∣∣∣

m∏
ν=1

T
( s

2ν

) ∣∣∣∣ ·
∣∣∣∣

n−m∏
ν=1

T
( s

2m+ν

)
− 1

∣∣∣∣
= |Φm(s)| |Φn−m(s/2m) − 1|
≤ C{1 + |s|log2 A}{eB|s|/2m − 1}
≤ C{1 + blog2 A}{eBb/2m − 1} when |s| ≤ b. (46)

Since eBb/2m → 1 as m → ∞, we can use this bound to infer that
Φ1(s),Φ2(s),Φ3(s), . . . is a Cauchy sequence that converges uniformly on [−b, b]
to a continuous function Φ represented by the infinite product

Φ(s) :=
∞∏

ν=1

T
( s

2ν

)
, −∞ < s < ∞. (47)

By using (45) we see that the limit function is slowly growing with

|Φ(s)| ≤ C{1 + |s|log2 A}, −∞ < s < ∞. (48)

It takes a little extra effort to establish the weak convergence. Let χ be a Schwartz
function. (The symbol φ is reserved for the scaling function when we work with
wavelets!) We use (46), (45), (48) to see that∣∣∣∣

∫ ∞

−∞
Φ(s)χ(s) ds−

∫ ∞

−∞
Φn(s)χ(s) ds

∣∣∣∣
≤
∫

|s|≤b

|Φ(s) − Φn(s)| |χ(s)| ds+
∫

|s|≥b

|Φ(s) − Φn(s)| |χ(s)| ds

≤ max−∞<s<∞ |χ(s)| · C{1 + blog2 A}{eBb/2n − 1}2b

+ 2C
∫

|s|≥b

{1 + |s|log2 A}|χ(s)| ds.

Now let ε > 0 be given. Since {1 + |s|log2 A}|χ(s)| rapidly approaches zero as
s → ±∞, the integral term will be less than ε/2 when b is sufficiently large. For
any such b, the first term will also be less than ε/2 for all sufficiently large n. In
this way we see that

lim
n→∞Φn{χ} = Φ{χ} when χ ∈ S, (49)

and thereby prove that (47) is the weak limit of the sequence (36).
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Three important properties of the generalized function

φ := (Φ)∧∨ =
(

lim
n→∞ Φn

)∧∨
(50)

follow at once from (49). First, weak limits are preserved by reflection and Fourier
transformation, so φ is the weak limit of the sequence φ1, φ2, φ3, . . . from (37), i.e.,

lim
n→∞φn{χ} = φ{χ} when χ ∈ S. (51)

Second, weak limits are also preserved by dilation, translation, scaling, and addition,
so we can use (50) and (33) to see that φ = limφn satisfies the dilation equation
(29). Third, each of the functions (37) vanishes outside the interval [0,M ], so the
same must be true of the weak limit φ, i.e.,

φ(x) = 0 for x < 0 and for x > M. (52)

You may wish to show that (50) is the only support-limited solution of (29)–(30),
see Ex. 10.9.

Smoothness constraints

The Fourier transform (47) of the solution of the dilation equation (29)–(30) is
bandlimited, so Φ and each of its derivatives is continuous and slowly growing, see
(7.130). In contrast, a φ produced from (28), (35), (47), and (50) is almost never
an ordinary function much less one that is continuous or continuously differen-
tiable. If we want φ to be a smooth ordinary function, we must choose coefficients
c0, c1, . . . , cM that make the infinite product (47) go to zero rapidly at ±∞, see
Exs. 3.41, 3.42, and 12.14. We will now show how this is done.

The trigonometric polynomial (35) is 1-periodic with T (0) = 1, so we can use
(47) to see that

Φ(q 2m) =
m∏

ν=1

T

(
q 2m

2ν

) ∞∏
ν=1

T

(
q 2m

2m+ν

)
= T (0)m Φ(q) = Φ(q) (53)

when q = ±1,±2, . . . and m = 1, 2, . . . . From this identity we see that a necessary
condition for Φ(s) to vanish in the limit as s → ±∞ is that Φ(q) = 0 for each
q = ±1,±2, . . . . Now any nonzero integer q has the factorization q = (2r + 1)2m

for some r = 0,±1,±2, . . . and m = 0, 1, 2, . . . . We use this representation with
(53), (47), and the 1-periodicity of T to see that

Φ(q) = Φ(2r + 1)

= T

(
2r + 1

2

)
T

(
2r + 1

4

)
T

(
2r + 1

8

)
· · ·

= T

(
1
2

)
T

(
2r + 1

4

)
T

(
2r + 1

8

)
· · · .
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Every such product includes the factor T ( 1
2 ), so we can force Φ to vanish at every

nonzero integer q by choosing c0, c1, . . . , cM to make

T

(
1
2

)
=

1
2

M∑
m=0

(−1)mcm = 0. (54)

The constraint (54) is a necessary (but not sufficient) condition for φ to be piecewise
smooth.

The trigonometric polynomial (35) vanishes at s = 1
2 if and only if T has 1+e−2πis

as a factor, i.e.,
T (s) = 1

2 (1 + e−2πis)T1(s) (55)

where

T1(s) =
1
2

M−1∑
m=0

c1me
−2πims

is a trigonometric polynomial of degree M − 1, see Ex. 10.14. This factorization of
T produces a corresponding factorization of Φ. Indeed, we can use (47), (55), and
(40) to write

Φ(s) =
∞∏

ν=1

{
1
2
(1 + e−2πis/2ν

) · T1

( s

2ν

)}

?=
{ ∞∏

ν=1

1
2
(1 + e−2πis/2ν

)
}

·
{ ∞∏

ν=1

T1

( s

2ν

)}

= e−πissinc(s)
∞∏

ν=1

T1

( s

2ν

)
. (56)

From (55) we see that T1(0) = 1 when T (0) = 1, so our previous analysis shows
that this infinite product of T1’s converges weakly. The remaining details associated
with the factorization ?= are left for Ex. 10.15.

The sinc factor on the right side of (56) approaches zero like 1/s when s → ±∞.
The bandlimited product of T1’s is slowly growing, and we can use (48) to write∣∣∣∣

∞∏
ν=1

T1

( s

2ν

) ∣∣∣∣ ≤ C1{1 + |s|p1}, −∞ < s < ∞

where C1 is a constant and

p1 := log2

{
max

0≤s≤1
|T1(s)|

}
.

If p1 < 1, we can use this growth estimate with (56) to show that Φ(s) → 0 at least
as fast as |s|p1−1 when s → ±∞.
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We will generalize (56). Suppose that

T
( 1

2

)
= T ′ ( 1

2

)
= · · · = T (K−1) ( 1

2

)
= 0 (57)

for some K = 1, 2, . . . ,M , i.e., that the coefficients c0, c1, . . . , cM satisfy the
moment constraints

M∑
m=0

(−1)mmkcm = 0 for k = 0, 1, . . . ,K − 1. (58)

The equivalent conditions (57), (58) hold if and only if T has the factorization

T (s) =
{ 1

2 (1 + e−2πis)
}K

TK(s) (59)

where

TK(s) =
1
2

M−K∑
m=0

cKme
−2πims

is a trigonometric polynomial of degree M −K with TK(0) = 1, see Ex. 10.14. In
such a situation we can use (56) to see that

Φ(s) = {e−πis sinc(s)}
∞∏

ν=1

T1

( s

2ν

)
= {e−πis sinc(s)}2

∞∏
ν=1

T2

( s

2ν

)

· · · = {e−πis sinc(s)}K
∞∏

ν=1

TK

( s

2ν

)
.

(60)

If the exponent

pK := log2

{
max

0≤s≤1
|TK(s)|

}
(61)

is less than K, we can use (60) and the bound (48) (applied to TK) to see that
Φ(s) → 0 at least as fast as |s|pK−K when s → ±∞.

Example Let φ be the scaling function that corresponds to the Daubechies coef-
ficients (39) [as shown in Figs. 10.10 and 10.14]. Show that φ is continuous.

Solution With a bit of algebra we verify that

T (s) := 1
8{(1 +

√
3) + (3 +

√
3)e−2πis + (3 − √

3)e−4πis + (1 − √
3)e−6πis}

=
{ 1

2 (1 + e−2πis)
}2 · 1

2{(1 +
√

3) + (1 − √
3)e−2πis}.

The factor
T2(s) := 1

2{(1 +
√

3) + (1 − √
3)e−2πis}
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takes its maximum modulus
√

3 at s = 1
2 , so (61) gives the exponent p2 = log2

√
3 =

.79248 . . ., and Φ(s) decays at least as fast as |s|p2−2 = |s|−1.207 ... when s → ±∞.
In this way we see that the continuous function Φ is absolutely integrable, and
thereby infer that φ is continuous, see Ex. 1.38.

Example Let M = 1, 2, . . . and let

cm =
2

2M

(
M

m

)
, m = 0, 1, . . . ,M. (62)

Find the corresponding scaling function φ.

Solution The coefficients (62) have been chosen so that

T (s) =
1

2M

M∑
m=0

(
M

m

)
e−2πims =

{
1
2
(1 + e−2πis)

}M

.

We use (60) to see that

Φ(s) = {e−πis sinc(s)}M = e−2πi(M/2)s sincM (s)

and then use the Fourier transform calculus to write

φ(x) = BM−1(x−M/2). (63)

The B-spline is defined by

B0 := P, B1 := P ∗ P, B2 := P ∗ P ∗ P, . . . ,

as in Ex. 2.7. The function

φ(M−1) = P′ ∗ P′ ∗ · · · ∗ P′ ∗ P (with M factors)

is piecewise constant and φ(k) is continuous when k = 0, 1, . . . ,M − 2.
We introduced the constraints (58) in an attempt to generate a smooth scaling

function φ and a smooth wavelet ψ. We will now show that these constraints
produce a wavelet ψ that has K vanishing moments. With this in mind, we define

R(s) :=
1
2

M∑
m=0

(−1)mcM−me
−2πims (64)

and use (35) to write

R(s) =
1
2

M∑
µ=0

(−1)M−µcµe
−2πi(M−µ)s = (−1)Me−2πiMs T

(
1
2

− s

)
. (65)
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In this way we see that the K-fold zero of T at s = 1
2 produces a K-fold zero of R

at s = 0, i.e., (58) implies that

R(0) = R′(0) = · · · = R(K−1)(0) = 0. (66)

We Fourier transform (31) and use (64) to write

Ψ(s) =
1
2

M−1∑
m=0

(−1)mcM−me
−2πims/2Φ

(s
2

)
= R

(s
2

)
Φ
(s

2

)
. (67)

Since Φ is bandlimited, the functions Φ,Φ′,Φ′′, . . . are continuous, and we can use
(66)–(67) to see that

Ψ(0) = Ψ′(0) = · · · = Ψ(K−1)(0) = 0 (68)

when c0, c1, . . . , cM satisfy (58). Of course, this K-fold zero of Ψ at s = 0 is
equivalent to the moment conditions∫ ∞

−∞
xkψ(x) dx = 0, k = 0, 1, . . . ,K − 1 (69)

when these integrals are well defined, e.g., as is the case when φ and therefore ψ
is piecewise smooth. From (69) we see that every dilate of every translate of ψ is
orthogonal to a given polynomial of degree K−1 or less, so all of the corresponding
detail functions must vanish. [We cannot use the Haar wavelet (1) to reduce the
error when we approximate a constant function!] Indeed, we will now show that
any such polynomial can be synthesized from dyadic dilates of integer translates of
the scaling function φ.

Order of approximation

Let the support-limited scaling function φ be obtained from (29)–(30) using coef-
ficients c0, c1, . . . , cM that satisfy both (28) and (58). From (60) we see that the
Fourier transform has a factorization

Φ(s) = {sinc(s)}KG(s)

where G and each of its derivatives is continuous and slowly growing on R. Since
the sinc function vanishes at every nonzero integer, we can use the Leibnitz formula
(2.29) to see that

Φ(n) = Φ′(n) = · · · = Φ(K−1)(n) = 0 for each n = ±1,±2, . . . . (70)

We will use this zero structure to develop a fundamental identity that makes it
possible for us to analyze the quality of a wavelet approximation.
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Let P be a polynomial of degree K − 1 or less. Since P is bandlimited and φ is
support-limited, the generalized function

f := φ ∗ (P · X)

is well defined, and we can use properties of the weak limit to write

f(x) = φ(x) ∗
∞∑

k=−∞
P(x)δ(x− k) = φ(x) ∗

∞∑
k=−∞

P(k)δ(x− k) =
∞∑

k=−∞
P(k)φ(x− k).

From (7.82) and (70) we see that

Φ(s)δ(ν)(s− n) = 0 when ν = 0, 1, . . . ,K − 1 and n = ±1,±2, . . . ,

and thereby infer that

Φ(s)P∧(s− n) = 0 when n = ±1,±2, . . . .

We use this relation with the definition of f to write

F (s) = Φ(s) ·
{

P∧(s) ∗
∞∑

n=−∞
δ(s− n)

}
= Φ(s) ·

∞∑
n=−∞

P∧(s− n)

=
∞∑

n=−∞
Φ(s) · P∧(s− n) = Φ(s) · P∧(s)

or equivalently,
f = φ ∗ P.

We equate these expressions for f to obtain an identity

∞∑
k=−∞

P(k)φ(x− k) = (φ ∗ P)(x) when P(K) ≡ 0 (71)

that uses samples of P to synthesize φ ∗ P.
Now since Φ(0) �= 0, the convolution product Q = φ ∗ P is a polynomial that has

the same degree as P, and we can solve this linear equation to find P when Q is
given, see Ex. 10.17. This being the case, (71) shows that we can exactly represent
any polynomial of degree K − 1 or less with a linear combination of the integer
translates of φ.

Example Let the support-limited scaling function φ be constructed from coeffi-
cients c0, c1, . . . , cM that satisfy (28), (58), and let

µk :=
Φ(k)(0)
(−2πi)k

=
∫ ∞

−∞
xkφ(x) dx, k = 0, 1, 2, . . . . (72)
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(The derivatives of the bandlimited function Φ are always defined. We can use the
integrals when φ is piecewise smooth, see (12.38) and (12.40)]. Show that

∞∑
k=−∞

φ(x− k) = 1 if K ≥ 1, (73)

∞∑
k=−∞

{k + µ1}φ(x− k) = x if K ≥ 2, (74)

∞∑
k=−∞

{k2 + 2µ1k + [2µ2
1 − µ2]}φ(x− k) = x2 if K ≥ 3. (75)

Solution In view of (71) we must show that

φ(x) ∗ 1 = 1,
φ(x) ∗ {x+ µ1} = x,

φ(x) ∗ {x2 + 2µ1x+ [2µ2
1 − µ2]} = x2

when K ≥ 1, 2, 3, respectively. We work with the corresponding Fourier transforms,
using (7.82), (30), (72) as we write

Φ(s) · δ(s) = Φ(0)δ(s) = δ(s),

Φ(s) ·
{
δ′(s)
−2πi

+ µ1δ(s)
}

= − 1
2πi

{Φ(0)δ′(s) − Φ′(0)δ(s)} + µ1Φ(0)δ(s) =
−δ′(s)

2πi
,

Φ(s) ·
{

δ′′(s)
(−2πi)2

+ 2µ1
δ′(s)

(−2πi)
+ [2µ2

1 − µ2]δ(s)
}

=
1

(−2πi)2
{Φ(0)δ′′(s) − 2Φ′(0)δ′(s) + Φ′′(0)δ(s)}

− 2µ1

2πi
{Φ(0)δ′(s) − Φ′(0)δ(s)} + [2µ2

1 − µ2]Φ(0)δ(s) =
δ′′(s)

(−2πi)2
.

An alternative analysis is given in Ex. 10.18, and Ex. 10.19 shows how to express
µ1, µ2, . . . in terms of the coefficients c0, c1, . . . , cM .

A polynomial f of degree K − 1 or less can be synthesized from a linear combi-
nation of the translates φ(x − k), k = 0,±1,±2, . . . . Since the scaling function φ
vanishes when x < 0 or when x > M , at most M such translates contribute to the
sum on any interval (k, k + 1) with integer endpoints. In particular, when K ≥ 1
we can write

φ(x− k) + φ(x− k + 1) + · · · + φ(x− k +M − 1) = 1 for k < x < k + 1
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even in cases where φ is not an ordinary function! We will now use these observations
to study the error that results when the function f is piecewise polynomial or
piecewise smooth.

Suppose that we wish to approximate a piecewise linear function f with a linear
combination of the translates φ(x − k), k = 0,±1,±2, . . . of the scaling function
that corresponds to the Daubechies coefficients (39). In this case K = 2, M = 3,
and we can use (73), (74) to write

Ax+B = [A(k + µ1) +B]φ(x− k) + [A(k − 1 + µ1) +B]φ(x− k + 1)
+ [A(k − 2 + µ1) +B]φ(x− k + 2) for k ≤ x ≤ k + 1 (76)

where

µ1 :=
∫ 3

0
xφ(x) dx =

3 − √
3

2
= .63397 . . . ,

see Ex. 10.20. Figure 10.11 shows an approximation

f0(x) =
31∑

k=−2

α0[k]φ(x− k)

to a discontinuous broken line on [0, 32]. The function f has jumps at the knots
x = 4, 28, and the derivative f ′ has jumps at the knots x = 12, 20. You will observe
that f0 coincides with f on the intervals [0, 2], [6, 10], [14, 18], [22, 26], and [30, 32].
The line segments (76) that lie to the left and to the right of a knot at x = κ require
different coefficients for the basis functions φ(x− κ+ 1), φ(x− κ+ 2) that straddle
the knot, so we do not expect f0 to match f on intervals |x− 4| < 2, |x− 12| < 2,
|x− 20| < 2, |x− 28| < 2 centered at the four knots.

Figure 10.11. Approximation of a discontinuous broken line
(with knots at x = 4, 12, 20, 28) using integer translates of the
Daubechies scaling function φ from Fig. 10.10.

It is easy to generalize this observation. Let f be a piecewise polynomial function
with f (K)(x) = 0 except at certain knots x = κ1, κ2, . . . . We will approximate f
with the frame

f0(x) =
∞∑

k=−∞
α0[k]φ(x− k)
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using a scaling function φ obtained from coefficients satisfying (28) and (58). In
view of (71), we can choose coefficients α0[k] to make f0 coincide with f except
on certain intervals that contain the knots. If the knot κν is an integer, we must
exclude the interval |x− κν | < M − 1 (as done in the preceding paragraph). If the
knot κν is not an integer, we may need to expand this error interval, but it is never
necessary to exclude an interval larger than |x− κν | < M .

We can reduce the size of the error intervals by using a more accurate frame

fm(x) =
∞∑

k=−∞
αm[k]φ(2mx− k) (77)

with basis functions of width M/2m, m = 1, 2, . . . . It is now possible to choose the
coefficients αm[k] to make fm coincide with f except on the intervals |x − κν | <
M/2m, ν = 1, 2, . . . centered at the knots. The size of the error f(x) − fm(x) on
the interval |x − κν | < M/2m depends on φ and the jumps in f, f ′, . . . at x = κν .
(This is the wavelet analog of the Gibbs phenomenon for Fourier series!)

The accuracy index K determines how well a wavelet frame (77) can approximate
a smooth function f . Indeed, if f, f ′, . . . , f (K−1) are continuous on some interval
|x− x0| < r, we can use Taylor’s formula

f(x) = f(x0) + (x− x0)
f ′(x0)

1!
+ · · · +

(x− x0)K−1

(K − 1)!
f (K−1)(x0)

+
1

(K − 1)!

∫ x

x0

f (K)(u)(x− u)K−1 du

to analyze the error, see Ex. 2.28. It is possible to choose coefficients αm[k] to make
(77) coincide with the Taylor polynomial in some neighborhood of x = x0 provided
that M 2−m < r. The remainder term from Taylor’s formula gives the error in this
approximation, so we have

|f(x) − fm(x)| ≤ 1
(K − 1)!

∫ x

x0

|f (K)(u)(x− u)K−1| du

≤ CK2−mK when |x− x0| < 2−m.

Here CK is a bound for f (K)(x)/K!. The local error decays at least as fast as 2−mK ,
m = 1, 2, . . . at points where f is sufficiently smooth.

Of course, we must expect a slower rate of decay when we relax the smoothness
hypothesis. If f, f ′, . . . , f (L−1) are continuous but f (L) has an isolated jump dis-
continuity at x = x0, then we can produce a wavelet approximation (77) with a
local error bounded by CL2−mL on some interval surrounding the jump when m is
sufficiently large and L = 1, 2, . . . ,K − 1.
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Orthogonality constraints

Throughout this subsection we will assume that the φ, ψ of (29)–(31) are piecewise
continuous ordinary functions that vanish outside the interval [0,M ]. We intro-
duce this hypothesis to ensure that certain inner product integrals are well defined.
We will also assume that the corresponding coefficients c0, c1, . . . , cM satisfy (54).
[Later on we will see that this additional condition follows from the normalization
constraint (28) and certain orthogonality constraints (87) that we need for the anal-
ysis.] These hypotheses are satisfied by the Daubechies scaling functions we will
introduce presently, see Ex. 10.28.

We want to produce a scaling function φ that is orthogonal to its integer translates
in the sense that

∫ ∞

−∞
φ(x)φ(x− k) dx =

{
1 if k = 0
0 if k = ±1,±2, . . . .

(78)

We will deduce corresponding (necessary) conditions for the coefficients
c0, c1, . . . , cM and then obtain the complete set of orthogonality relations

∫ ∞

−∞
φ(2mx− k)φ(2mx− k′) dx =

{
2−m if k′ = k

0 otherwise,
(79)∫ ∞

−∞
φ(2mx− k)ψ(2m′

x− k′) dx = 0 if m′ ≥ m, (80)

∫ ∞

−∞
ψ(2mx− k)ψ(2m′

x− k′) dx =
{

2−m if m′ = m and k′ = k

0 otherwise
(81)

which make it possible for us to generalize the analysis from Section 10.1.
We use the 1-periodic auxiliary function

A(s) :=
∞∑

m=−∞
|Φ(s+m)|2, −∞ < s < ∞, (82)

to establish a connection between the orthogonality relations (78) and the coeffi-
cients c0, c1, . . . , cM . [In practice, both Φ(s) and sΦ(s) are bounded on R, so this
series converges uniformly on every finite interval.] We obtain the initial value

A(0) = 1 (83)
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by setting s = 0 in (82) and using (30), (70). By using Parseval’s identity we see
that A has the Fourier coefficients∫ 1

0
A(s)e−2πiks ds =

∫ 1

0

∞∑
m=−∞

|Φ(s+m)|2e−2πiks ds

=
∞∑

m=−∞

∫ 1

0
|Φ(s+m)|2e−2πik(s+m) ds

=
∫ ∞

−∞
Φ(s) Φ(s)e−2πiks ds

=
∫ ∞

−∞
φ(x)φ(x− k) dx, k = 0,±1,±2, . . . ,

and since φ vanishes outside the interval [0,M ] we can write

A(s) =
M−1∑

k=−(M−1)

{∫ M

0
φ(x)φ(x− k) dx

}
e2πiks.

In this way we prove that φ satisfies (78) if and only if A(s) ≡ 1.
The trigonometric polynomials T (s) and A(s) are inextricably linked. Using the

identity Φ(2s) = T (s)Φ(s) from (47) with the 1-periodicity of T , we find

A(2s) =
∞∑

m=−∞
|Φ(2s+m)|2

=
∞∑

m=−∞

∣∣∣T (s+
m

2

)
Φ
(
s+

m

2

)∣∣∣2

=
∞∑

µ=−∞

{∣∣∣∣T
(
s+

2µ
2

)
Φ
(
s+

2µ
2

)∣∣∣∣
2

+
∣∣∣∣T
(
s+

2µ+ 1
2

)
Φ
(
s+

2µ+ 1
2

)∣∣∣∣
2
}

= |T (s)|2A(s) +
∣∣T (s+ 1

2

)∣∣2 A (
s+ 1

2

)
. (84)

In particular, if φ satisfies the orthogonality relations (78), then A(s) ≡ 1 and

|T (s)|2 +
∣∣T (s+ 1

2

)∣∣2 = 1, −∞ < s < ∞. (85)

Example Find T and A when we choose the coefficients

M = 3, c0 = 1, c1 = 0, c2 = 0, c3 = 1. (86)
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Solution We have

T (s) :=
1
2

M∑
m=0

cme
−2πims =

1
2
{1 + e−6πis} = e−3πis cos(3πs),

and by using (40) (with s replaced by 3s on the right side) we see that

Φ(s) = e−3πis sinc(3s).

Knowing Φ, we find in turn

φ(x) =
1
3
P
(
x− 3/2

3

)
,

∫ 3

0
φ(x)φ(x− k) dx =

1
9




3 if k = 0
2 if k = ±1
1 if k = ±2
0 if k = ±3,±4, . . . ,

A(s) =
1
9
{e−4πis + 2e−2πis + 3 + 2e2πis + e4πis}

=
1
9
{3 + 4 cos(2πs) + 2 cos(4πs)}.

You will observe that

|T (s)|2 +
∣∣T (s+ 1

2

)∣∣2 = cos2(3πs) + sin2(3πs) = 1,

but A(s) �≡ 1 in this case.
We will use (35) to express (85) in terms of the coefficients c0, c1, . . . , cM . We set

cm := 0 when m < 0 or m > M so that we can use ±∞ for the limits of summation.
We display the summation index, but condense the notation by omitting the limits.
For our present purpose, we write

|T (s)|2 +
∣∣T (s+ 1

2

)∣∣2 =
1
4

M∑
m=0

M∑
µ=0

{cme2πims · cµe−2πiµs

+ cme
2πim(s+1/2) · cµe−2πiµ(s+1/2)}

=
1
4

∑
m

∑
µ

cmcµ[1 + (−1)m−µ]e2πi(m−µ)s

=
1
4

∑
m

∑
κ

cmcm−κ[1 + (−1)κ]e2πiκs

=
1
2

∑
k

{∑
m

cmcm−2k

}
e4πiks
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by using the transformations κ := m − µ, κ := 2k and exchanging the summation
order. In this way we see that (85) is equivalent to the orthogonality constraints

∑
m

cmcm−2k =
{

2 if k = 0
0 if k = ±1,±2, . . . .

(87)

We can now summarize the main result of this analysis. If we want φ to satisfy
(78), then we must choose coefficients c0, c1, . . . , cM that satisfy (87)!

Unfortunately, this necessary condition is not sufficient. The coefficients (86)
satisfy the constraints (87), but the corresponding scaling function is not orthogonal
to its translates by ±1,±2. If you examine the above argument you will quickly
identify the problem: A(s) ≡ 1 implies but is not implied by (85). In practice, we
almost always have

T (s) �= 0 for −1/2 < s < 1/2, (88)

and we can use this hypothesis with (85) to prove that A(s) ≡ 1, see Ex. 10.24. If we
choose coefficients c0, c1, . . . , cM that satisfy (28), (54), (87), if the corresponding
T satisfies (88), and if the corresponding φ is piecewise continuous, then φ will be
orthogonal to its translates by ±1,±2, . . . .

The k = 0 constraint from (87) serves to normalize c0, c1, . . . , cM . We will verify
that this normalization is compatible with that of (28).

Example Let c0, c1, . . . , cM satisfy the orthogonality constraints∑
m

cmcm−2k = 0 for k = ±1,±2, . . . .

Show that any two of the conditions∑
m

cm = ±2,
∑
m

(−1)mcm = 0,
∑
m

c2m = 2

[from (28), (54), and (87)] implies the third.

Solution {∑
m

cm

}2

+
{∑

m

(−1)mcm

}2

=
∑
m

{cmcm + (−1)mcm(−1)mcm}

+ 2
∑
m

{cmcm+1 + (−1)mcm(−1)m+1cm+1}

+ 2
∑
m

{cmcm+2 + (−1)mcm(−1)m+2cm+2}

+ · · ·
= 2

∑
m

c2m + 4
∑
m

cmcm+2 + 4
∑
m

cmcm+4 + · · · = 2
∑
m

c2m.
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You will notice that when M is even, (87) includes the constraint

cMc0 = cMcM−2(M/2) = 0.

Since we routinely use c0 for the first nonzero coefficient, we will always take
M = 1, 3, 5, . . . when we choose coefficients that satisfy (87).

We will show that the orthogonality constraints

∑
m

cm · (−1)mcM−m−2k = 0 if k = 0,±1,±2, . . . (89)

are satisfied automatically.

Example Let M = 1, 3, 5, . . . . Show that any c0, c1, . . . , cM and the correspond-
ing alternating flip cM ,−cM−1, cM−2, . . . ,−c0 satisfy (89).

Solution Using the transformation µ := M −m− 2k we write

∑
m

(−1)mcmcM−m−2k =
∑

µ

(−1)M−µ−2kcM−µ−2kcµ = −
∑

µ

(−1)µcµcM−µ−2k.

Given (78), (87), and (89) it is a simple matter to establish (79)–(81). In so doing,
it is always sufficient to consider the cases with m = 0 and k = 0. For example, by
setting u := 2mx− k and writing

∫ ∞

−∞
φ(2mx− k)φ(2mx− k′) dx = 2−m

∫ ∞

−∞
φ(u)φ[u− (k′ − k)] du

we see that (79) follows from (78).
We show that φ is orthogonal to ψ and its translates by using (29), (31), (79),

and (89) as we verify that

∫ ∞

−∞
φ(x)ψ(x− k) dx =

∫ ∞

−∞

∑
m

cmφ(2x−m)
∑

µ

(−1)µcM−µφ(2x− 2k − µ) dx

=
∑
m

∑
µ

cm(−1)µcM−µ

∫ ∞

−∞
φ(2x−m)φ(2x− 2k − µ) dx

=
∑
m

∑
µ

cm(−1)µcM−µ

{
1/2 if m = µ+ 2k
0 otherwise

=
1
2

∑
m

cm(−1)mcM−m+2k = 0.
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Using (29), we then write in turn∫ ∞

−∞
φ(x)ψ(2x− k) dx =

∑
m

cm

∫ ∞

−∞
φ(2x−m)ψ(2x− k) dx = 0,

∫ ∞

−∞
φ(x)ψ(4x− k) dx =

∑
m

cm

∫ ∞

−∞
φ(2x−m)ψ(4x− k) dx = 0,

...

and thereby obtain (80).
Analogously, we use (31), (79), and (87) to see that∫ ∞

−∞
ψ(x)ψ(x− k) dx =

∑
m

∑
µ

(−1)mcM−m(−1)µcM−µ

∫ ∞

−∞
φ(2x−m)φ(2x−2k−µ) dx

=
∑
m

∑
µ

(−1)m+µcM−mcM−µ

{
1/2 if m = µ+ 2k
0 otherwise

=
1
2

∑
m

cM−mcM−m+2k

=
{

1 if k = 0
0 if k = ±1,±2, . . . .

We then use (31) and (80) to write∫ ∞

−∞
ψ(x)ψ(2m′

x− k) dx =
∑
m

(−1)mcM−m

∫ ∞

−∞
φ(2x−m)ψ(2m′

x− k) dx

= 0 when m′ = 1, 2, . . .

and thereby complete the proof of (81).
The dilation identities (10) and (11) that link the Haar wavelet (1) and its scal-

ing function (5) give rise to Mallat’s clever herringbone algorithm as illustrated in
Figs. 10.7 and 10.8. You will recognize (29), (31) as natural generalizations of (10).
We will now identify the corresponding generalizations of (11).

Example Let c0, c1, . . . , cM satisfy (28) and the orthogonality constraints (87),
and let φ, ψ be the support-limited scaling function and wavelet from (29)–(31).
Show that

φ(2x) =
1
2

�M/2	∑
k=0

{c2kφ(x+ k) + cM−2kψ(x+ k)}, (90)

φ(2x− 1) =
1
2

�M/2	∑
k=0

{c2k+1φ(x+ k) − cM−2k−1ψ(x+ k)}. (91)
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Solution We use (29), (31) and the transformation m = 2k + µ to write∑
k

{c2kφ(x+ k) + cM−2kψ(x+ k)}

=
∑

k

∑
m

{c2kcm + (−1)mcM−2kcM−m}φ(2x+ 2k −m)

=
∑

µ

∑
k

{c2kc2k+µ + (−1)µcM−2k−µcM−2k}φ(2x− µ).

If µ is even, then M − 2k− µ is odd (since M is odd) and we can use (87) to write∑
k

{c2kc2k+µ + cM−2k−µcM−2k} =
∑

k

{c2kc2k+µ + c2k+1c2k+1+µ}

=
{

2 if µ = 0
0 if µ = ±2,±4, . . . .

If µ is odd, then M − 2k − µ is even and∑
k

{c2kc2k+µ − cM−2k−µcM−2k} =
∑

k

{c2kc2k+µ − c2kc2k+µ}

= 0, µ = ±1,±3, . . . .

In this way we verify (90). A similar argument gives (91).

Daubechies wavelets

For each M = 1, 3, 5, . . . there are coefficients c0, c1, . . . , cM that are normalized by
(28) [so we can solve the dilation equation (29)], that satisfy the moment constraints
(58) with K := (M + 1)/2 [so we can exactly represent any polynomial of degree
K − 1 or less using φ(x− k), k = 0,±1,±2, . . .], and that satisfy the orthogonality
constraints (87) [a necessary condition for the functions φ(x−k), k = 0,±1,±2, . . .
to be pairwise orthogonal]. It is enough to use k = 1, 2, . . . ,K − 1 with (87)
(since cm = 0 when m < 0 or m > M and since the k = 0 normalization is
implied by the other constraints). We can find c0, c1, . . . , cM by solving a system
of 1 +K + (K − 1) = M + 1 equations. We will now show how to do this.

Example Use (28), (58) to find c0, c1 when K = 1, M = 1.

Solution We solve the linear equations

c0 + c1 = 2
c0 − c1 = 0

associated with the normalization and moment constraints to obtain the Haar co-
efficients (32). There are no additional orthogonality constraints in this case.
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Example Use (28), (58), and (87) to find c0, c1, c2, c3 when K = 2, M = 3.

Solution We must solve the system of equations

c0+ c1+ c2+ c3 = 2
c0− c1+ c2− c3 = 0

0 c0− 1 c1+ 2 c2− 3 c3 = 0
c0c2 + c1c3 = 0.

Using (59) we see that the three linear equations are satisfied when

1
2{c0 + c1e

−2πis + c2e
−4πis + c3e

−6πis} =
{ 1

2 (1 + e−2πis)
}2 { 1

2 (γ0 + γ1e
−2πis)

}
,

i.e., when

c0 =
γ0

4
, c1 =

2γ0 + γ1

4
, c2 =

γ0 + 2γ1

4
, c3 =

γ1

4
(92)

for certain real numbers γ0, γ1 with γ0 + γ1 = 2 (to make (92) satisfy (28)). We use
the nonlinear orthogonality constraint with (92) and this sum to write

0 = γ0(γ0 + 2γ1) + (2γ0 + γ1)γ1 = γ0(2 + γ1) + (γ0 + 2)γ1 = 4 + 2γ0γ1,

and thereby see that γ0γ1 = −2. From the quadratic polynomial

(γ − γ0)(γ − γ1) = γ2 − (γ0 + γ1)γ + γ0γ1 = γ2 − 2γ − 2

we find γ0 = 1 +
√

3, γ1 = 1 − √
3, and by using these roots with (92) we obtain

the Daubechies coefficients (39). You may wish to analyze the effect of choosing
γ0 = 1 − √

3, γ1 = 1 +
√

3 by solving Ex. 10.12.
A more sophisticated analysis is needed when M = 2K − 1 with K = 3, 4, . . . .

Using (59) (as in the preceding example) we see that the coefficients c0, c1, . . . , cM
satisfy the linear constraints (28), (58) if and only if the trigonometric polynomial
(35) has the factorization

T (s) =
{ 1

2 (1 + e−2πis)
}K Γ(s) (93)

where
Γ(s) = 1

2{γ0 + γ1e
−2πis + γ2e

−4πis + · · · + γK−1e
−2πi(K−1)s}, (94)

and the K real coefficients γ0, γ1, . . . , γK−1 have the sum 2 so that T (0) = Γ(0) = 1.
We define

Q(s) := |T (s)2| = T (s)T (−s) = {cos(πs)}2KΓ(s)Γ(−s), (95)
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and observe that Q is a real, nonnegative, even, 1-periodic trigonometric polynomial
of degree M = 2K − 1 with

Q(k) ( 1
2

)
= 0 for k = 0, 1, . . . , 2K − 1. (96)

We want the coefficients of T to satisfy the orthogonality constraints (87), so we
can use the equivalent identity (85) to write

Q(s) = 1 −Q
(
s+ 1

2

)
. (97)

In conjunction with (96) this enables us to see that

Q(0) = 1, Q(k)(0) = 0 for k = 1, 2, . . . , 2K − 1. (98)

The conditions (96), (98) uniquely determine the 1-periodic trigonometric poly-
nomial Q. Indeed, since Q′ is odd, since Q′ has degree 2K − 1, and since Q′ has
zeros of multiplicity at least 2K − 1 at s = 0 and s = 1

2 , it follows that

Q′(s) = −I−1{sin(2πs)}2K−1

for some constant I �= 0. Since Q(0) = 1 and Q(1/2) = 0, we must have

Q(s) = 1 − I−1
∫ s

0
{sin(2πu)}2K−1 du (99)

where

I =
∫ 1/2

0
{sin(2πu)}2K−1du =

1
π

2
3

4
5

6
7

· · · 2K − 2
2K − 1

, K = 2, 3, . . . .

(We use the Wallis formula from calculus to evaluate this integral.) Figure 10.12
shows the Q that we obtain when K = 3 and M = 5. You can see the symmetry
(97)!

Figure 10.12. The maxflat trigonometric polynomial (93) that
satisfies (96), (98) when K = 3, M = 5.
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For the subsequent analysis we need an alternative formula. We will show that

Q(s) = {cos2(πs)}K
K−1∑
k=0

(
2K − 1
k

)
{cos2(πs)}K−1−k{sin2(πs)}k. (100)

By using the familiar identities

cos2(πs) = {1 + cos(2πs)}/2, sin2(πs) = {1 − cos(2πs)}/2

it is easy to see that (100) is a real, nonnegative, even, 1-periodic trigonometric
polynomial of degree M = 2K − 1 that satisfies (96). Moreover, since sin2(πs) and
cos2(πs) are interchanged when we replace s by s+ 1

2 , we also have

Q(s) +Q
(
s+ 1

2

)
= {cos2(πs)}K

K−1∑
k=0

(
2K − 1
k

)
{cos2(πs)}K−1−k{sin2(πs)}k

+ {sin2(πs)}K
K−1∑
k=0

(
2K − 1
k

)
{sin2(πs)}K−1−k{cos2(πs)}k

=
2K−1∑
k=0

(
2K − 1
k

)
{cos2(πs)}2K−1−k{sin2(πs)}k

= {cos2(πs) + sin2(πs)}2K−1 = 1.

In this way we verify that (100) satisfies (97) and thereby establish the equivalence
of (99), (100).

We will now remove the factor {cos2(πs)}K from both (95) and (100). The
remaining task is to find coefficients γ0, γ1, . . . , γK−1 for (94) so that the reduced
trigonometric polynomial

Q0(s) :=
K−1∑
k=0

(
2K − 1
k

)
{cos2(πs)}K−1−k{sin2(πs)}k (101)

has the spectral factorization

Q0(s) = Γ(s)Γ(−s). (102)
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To simplify the exposition, we will consider the case where K = 3, M = 5, and

Q0(s) =
2∑

k=0

(
5
k

)
{cos2(πs)}2−k{sin2(πs)}k

= cos4(πs) + 5 cos2(πs) sin2(πs) + 10 sin4(πs). (103)

The analysis extends at once to cases where K = 4, 5, . . . .
The function (103) is even, strictly positive, and 1-periodic. By using Euler’s

formula and a bit of algebra we verify that

Q0(s) =
1
8
{38 − 18[e2πis + e−2πis] + 3[e4πis + e−4πis]}.

We replace the complex exponential e2πis by z to obtain the auxiliary function

P0(z) =
1
8
{38 − 18[z + z−1] + 3[z2 + z−2]}

with P0(1) = Q0(0) = 1. Since Q0 is strictly positive, P0 has no root z with |z| = 1.
From symmetry we see that if z is a root of P0, then so is z−1. It follows that P0
has the factorization

P0(z) =
z−2(z − ζ1)(z − ζ2)(z − ζ−1

1 )(z − ζ−1
2 )

(1 − ζ1)(1 − ζ2)(1 − ζ−1
1 )(1 − ζ−1

2 )

=
{

(1 − ζ1z
−1)(1 − ζ2z

−1)
(1 − ζ1)(1 − ζ2)

}{
(1 − ζ1z)(1 − ζ2z)
(1 − ζ1)(1 − ζ2)

}
(104)

where ζ1, ζ2 are the complex roots of the polynomial z2P0(z) that lie inside the unit
circle |z| = 1. In view of (104) the trigonometric polynomial

Γ(s) :=
(1 − ζ1e

−2πis)(1 − ζ2e
−2πis)

(1 − ζ1)(1 − ζ2)

gives us a spectral factorization (102).
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We can use Newton’s iteration to compute the roots

ζ1 = .28725 . . . + .15289 . . . i, ζ2 = .28725 . . . − .15289 . . . i

of P0, and then expand the factored form of Γ to obtain the explicit display

Γ(s) =
1
2
{3.76373 . . . − 2.16227 . . . e−2πis + .39853 . . . e−4πis}

of the coefficients γ0, γ1, γ2 from (94). Finally, we convolve the string γ0, γ1, γ2 with
the weighted binomial coefficients 1/8, 3/8, 3/8, 1/8 [i.e., we use (93)] to produce
the Daubechies coefficients

c0 = .47046 . . . , c1=1 .14111 . . . , c2=.65036 . . . ,
c3 = −.19093 . . . , c4=−.12083 . . . , c5= .04981 . . .

(105)

that satisfy (28), (58) (with K = 3) and (87).
It is easy to understand the above numerical analysis, but it is somewhat cumber-

some to produce a corresponding computer code that will work with an arbitrary K.
We will describe a much more efficient algorithm that uses the FFT. From (102),
(104) and the Maclaurin series

−log(1 − w) = w +
w2

2
+
w3

3
+ · · · , |w| < 1

[with a complex argument, see (4.25), (4.26) and Ex. 4.7], we obtain the Fourier
series

logQ0(s) = log{Γ(s)Γ(−s)}

= −log{(1 − ζ1)(1 − ζ2)} −
∞∑

k=1

ζk
1 + ζk

2

k
e−2πiks

−log{(1 − ζ1)(1 − ζ2)} −
∞∑

k=1

ζk
1 + ζk

2

k
e+2πiks.

The Fourier coefficients for log Γ(s), log Γ(−s) appear in the left, right half of the
spectrum. These series converge rapidly, so the approximation

logQ0

( n
N

)
≈ −log{(1 − ζ1)(1 − ζ2)} −

�(N−1)/2	∑
k=1

(
ζk
1 + ζk

2

k

)
e−2πikn/N

−log{(1 − ζ1)(1 − ζ2)} −
�(N−1)/2	∑

k=1

(
ζk
1 + ζk

2

k

)
e2πikn/N ,

n = 0, 1, . . . , N − 1
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will be good to working precision when N is sufficiently large. (Since |ζ1| = |ζ2| =
.325 . . ., you can verify that the modulus of the error does not exceed 10−16 when
N ≥ 64.)

Figure 10.13 will help you understand how this observation makes it possible for
us to compute γ0, γ1, γ2. We use (103) to create a real, even vector with components

logQ0

( n
N

)
, n = 0, 1, . . . , N − 1,

and then use the FFT to compute the corresponding real, even discrete Fourier
transform. We discard the left half of this DFT (i.e., we divide the index 0 com-
ponent by 2 and replace components having the indices N/2�, . . . , N − 1 by 0),
thereby producing a very accurate approximation for the discrete Fourier transform
of the vector with components

log Γ
(−n
N

)
, n = 0, 1, . . . , N − 1.

We use the FFT to compute the inverse transform and apply the exponential func-
tion componentwise to obtain a very accurate approximation for the vector with
components

Γ
(−n
N

)
=

1
2

2∑
m=0

γme
2πimn/N , n = 0, 1, . . . , N − 1.

A final application of the FFT gives γ0/2, γ1/2, γ2/2. Knowing γ0, γ1, γ2, we com-
pute the corresponding coefficients c0, c1, . . . , c5 as described above. An alternative
scheme that avoids the final convolution is described in Ex. 10.27. It is easy to write
a computer code to carry out this calculation using an arbitrary K = 1, 2, . . . . You
may need to experiment a bit to determine a suitable N . The choice N ≈ 20K is
a good place to start.

You now know how to compute coefficients c0, c1, . . . , cM that satisfy (28), (58)
[with K = (M + 1)/2], and (87) when M = 1, 3, 5, . . . is given. Knowing these
coefficients you can use (37) as illustrated in Fig. 10.10 (or the more efficient al-
gorithms from Ex. 10.40) to find the corresponding scaling function φ and then
use (31) to generate the wavelet ψ that goes with this φ. Figure 10.14 shows the
Daubechies functions φ, ψ for M = 1, 3, 5, 7. These functions are continuous when
M = 3, 5, 7, . . . , see Ex. 10.28.
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Figure 10.13. Computation of γ0, γ1, γ2 for the Daubechies
wavelet with M = 5. The trigonometric polynomial Q0 is given
by (103) and (for illustrative purposes) we use N = 24 samples.
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Figure 10.14. The Daubechies scaling function φ (left) and
wavelet ψ (right) for M = 1, 3, 5, 7.
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10.3 Analysis and synthesis with Daubechies wavelets

Coefficients for frames and details

We have expended a great deal of effort constructing coefficients c0, c1, . . . , cM
that give rise to support-limited functions φ, ψ satisfying the two scale relations
(29), (31), (90), (91), the moment conditions (69), and the orthogonality relations
(79)–(81). Such functions can be used in much the same way as the Haar wavelet
(1) and its scaling function (5) from Section 10.1. We will now fill in some of the
details associated with this generalization.

Given a suitably regular function f on R, we define corresponding frames

fm(x) :=
∑

k

αm[k]φ(2mx− k), m = 0,±1,±2, . . . , (106)

and details

dm(x) :=
∑

k

βm[k]ψ(2mx− k), m = 0,±1,±2, . . . , (107)

using the coefficients

αm[k] :=

∫∞
−∞ f(x)φ(2mx− k) dx∫∞

−∞ φ(2mx− k)2 dx
=
∫ M

0
f(2−mk + 2−mu)φ(u) du, (108)

βm[k] :=

∫∞
−∞ f(x)ψ(2mx− k) dx∫∞

−∞ ψ(2mx− k)2 dx
=
∫ M

0
f(2−mk + 2−mu)ψ(u) du. (109)

We can use (106)–(109) with any piecewise continuous function f on R. There may
be infinitely many nonzero terms in the series (106)–(107), but only finitely many
contribute to the values taken by the sums on any bounded interval, see Ex. 10.29.
In practice, f is almost always support-limited, so only finitely many terms of these
series are nonzero.

Figure 10.15 shows certain frames (106) and details (107) that correspond to a
normal density f and the jagged functions φ, ψ constructed from the Daubechies
coefficients (39). Powers of 4 have been applied to d4, d5, . . . , d8 so we can show all
of these graphs with a common scale. You should compare these M = 3 approxi-
mations with the corresponding M = 1 approximations from Fig. 10.5.
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Figure 10.15. Frames (left) and corresponding details (right)
for a Daubechies wavelet approximation of a normal density using
the coefficients (39). Observe that d4, d5, . . . , d8 have been scaled
by 4, 42, . . . , 45.
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There are three things you should observe about fm and dm. First, the coefficients
(108) and (109) have been chosen to make fm and dm the orthogonal projections of
f onto the linear spaces spanned by the pairwise orthogonal functions φ(2mx− k),
k = 0,±1,±2, . . . and ψ(2mx − k), k = 0,±1,±2, . . ., respectively. Second, fm is
orthogonal to dm in the sense that∫ ∞

−∞
fm(x)dm(x) dx = 0, m = 0,±1,±2, . . . (110)

(provided that this integral is well defined). You can verify this by using the or-
thogonality relations (80) with the representations (106), (107). Third,

fm+1 = fm + dm, m = 0,±1,±2, . . . . (111)

This important identity makes it possible for us to perform a multiresolution analysis
using ψ and φ in place of the prototypes (1) and (5). You can verify (111) by using
the two scale identities (29), (31), (90), and (91), see Ex. 10.30.

The coefficients (108)–(109) are determined by the values f takes on the interval
[2−mk, 2−m(k +M)]. When m is large, this interval is small and simple estimates
produce good approximations for the integrals. Indeed, if f is continuous in some
neighborhood of x = 2−mk, then we can use (108) with (30) to see that

αm[k] =
∫ ∞

−∞
f(2−mk + 2−mu)φ(u) du ≈ f(2−mk)

∫ M

0
φ(u) du = f(2−mk) (112)

when m is sufficiently large. Analogously, if f (K) is continuous in a neighborhood
of x = 2−mk, then we can use (109) with Taylor’s formula and (69) to see that

βm[k] =
∫ ∞

−∞

{
K−1∑
n=0

f (n)(2−mk)
(2−mu)n

n!

+
1

(K − 1)!

∫ 2−mu

0
f (K)(2−mk + v)(2−mu− v)K−1 dv

}
ψ(u) du

≈ f (K)(2−mk)
(K − 1)!

∫ M

0
ψ(u)

∫ 2−mu

0
(2−mu− v)K−1 dv du

= 2−mK f (K)(2−mk)
K!

∫ M

0
uKψ(u) du (113)

when m is sufficiently large. Figures 10.5 and 10.15 use K = 1 and K = 2, respec-
tively. You can see the frame coefficient approximation (112) on the left sides of
these illustrations, and you can observe the 2−mK decay of the detail coefficients
[as predicted by (113)] on the right.
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It is easy to bound the error in the frame approximation f ≈ fm. We will assume
that f is a continuous, support-limited function on R. This guarantees that the
modulus of continuity

ω(h) := max{|f(x) − f(x′)|: x, x′ ∈ R, |x− x′| ≤ h}, h ≥ 0, (114)

is well defined and that ω(h) → 0 as h → 0+. When 0 ≤ x ≤ 2−m, we use (106),
(73), (30), (108), in turn to write

|f(x) − fm(x)| =
∣∣∣∣f(x) −

∑
k

αm[k]φ(2mx− k)
∣∣∣∣

=
∣∣∣∣∑

k

{f(x) − αm[k]}φ(2mx− k)
∣∣∣∣

≤ max |φ| ·
0∑

k=−M+1

∣∣∣∣
∫ M

u=0
[f(x) − f(2−mk + 2−mu)]φ(u) du

∣∣∣∣
≤ max |φ| ·M · ω(2−mM) ·

∫ M

0
|φ(u)| du.

The argument immediately extends to the case where x lies in the interval
[k 2−m, (k + 1)2−m], k = 0,±1,±2, . . ., and in this way we prove that

|f(x) − fm(x)| ≤ M · max |φ| ·
∫ M

0
|φ(u)| du · ω(2−mM), −∞ < x < ∞, (115)

[generalizing (9)]. You can use (115) to show that it is possible to replace the Haar
wavelet (1) by the Daubechies wavelet ψ for some M = 3, 5, 7, . . . when we use the
synthesis equation (4) and the analysis equation (17), see Ex. 10.31.

If f has some additional smoothness, e.g., if f (p) is continuous and bounded for
some p = 1, 2, . . . ,K, then we can sharpen the bound (115). From (107) and a
slight refinement of (113) we see that

|dm(x)| =
∣∣∣∣∑

k

βm[k]ψ(2mx− k)
∣∣∣∣ ≤ M · max |ψ| · max

k
|βm[k]| ≤ Cp 2−mp (116)

where

Cp := M · max |ψ| ·
∫ M

0
up|ψ(u)| du · max |f (p)|

p!
.

We use (111) and (116) with n = m+ 1,m+ 2, . . . to write

|f(x) − fm(x)| = |f(x) − fn(x) + dm(x) + dm+1(x) + · · · + dn−1(x)|
≤ |f(x) − fn(x)| + Cp{2−mp + 2−(m+1)p + 2−(m+2)p + · · · }
≤ |f(x) − fn(x)| + 2Cp2−mp.
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Using (115) we see that |f(x) − fn(x)| → 0 as n → ∞, so

|f(x) − fm(x)| ≤ 2M · max |ψ| ·
∫ M

0
up|ψ(u)| du · max |f (p)|

p!
· 2−mp,

−∞ < x < ∞. (117)

The error in the frame approximation (106) will decay at least as fast as 2−mK

when we use the smoothness index K = 1, 2, . . . to construct φ, ψ provided that f
is sufficiently smooth!

The operators L−, H−, L+, H+

In practice, we never use the functions φ, ψ and we never use the integrals
(108)–(109) for computation. Serious numerical analysis is done with the coeffi-
cients αm[k], βm[k] that encode the frames and details (106)–(107). The algo-
rithms are based on a suitable generalization of Mallat’s relations (23), (24) for
the Haar wavelets. We will now derive these extensions using four linear operators
constructed from the coefficients c0, c1, . . . , cM .

We begin by expressing αm−1[k] and βm−1[k] in terms of the coefficients αm[n],
n = 0,±1,±2, . . ., [as in (24)]. Using (108), (29) and the transformations v :=
2u− µ, n := 2k + µ we find

αm−1[k] :=
∫ ∞

−∞
f(2−m+1k + 2−m+1u)φ(u) du

=
∑

µ

cµ

∫ ∞

−∞
f(2−m · 2k + 2−m · 2u)φ(2u− µ) du

=
1
2

∑
µ

cµ

∫ ∞

−∞
f [2−m · (2k + µ) + 2−mv]φ(v) dv

=
1
2

∑
µ

cµαm[2k + µ]

=
1
2

∑
n

cn−2kαm[n].

Analogously, by using (109) and (31) we find

βm−1[k] :=
∫ ∞

−∞
f(2−m+1k + 2−m+1u)ψ(u) du

=
∑

µ

(−1)µcM−µ

∫ ∞

−∞
f(2−m · 2k + 2−m · 2u)φ(2u− µ) du

=
1
2

∑
n

(−1)ncM−n+2kαm[n].
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We introduce the linear operators

(L−α)[k] :=
1
2

∑
n

cn−2kα[n], k = 0,±1,±2, . . . , (118)

(H−α)[k] :=
1
2

∑
n

(−1)ncM−n+2kα[n], k = 0,±1,±2, . . . (119)

on the linear space of sequences. (Here α, L−α, and H−α are functions on Z.) We
then condense the above notation and write

αm−1 = L−αm, m = 0,±1,±2, . . . , (120)
βm−1 = H−αm, m = 0,±1,±2, . . . . (121)

In this way we obtain the desired generalization of Mallat’s relations (24).
We can also express αm[k] in terms of the coefficients αm−1[n], βm−1[n], n =

0,±1,±2, . . ., [as in (23)]. Indeed, by using the defining identity (108) with (111),
the series (106), (107), the two scale equations (29), (31), and the orthogonality
relations (78) we see that

αm[k] =
∫ ∞

−∞
fm(2−mk + 2−mu)φ(u) du

=
∫ ∞

−∞
{fm−1(2−mk + 2−mu) + dm−1(2−mk + 2−mu)}φ(u) du

=
∫ ∞

−∞

{∑
n

αm−1[n]φ(2−1k + 2−1u− n)

+
∑

n

βm−1[n]ψ(2−1k + 2−1u− n)
}
φ(u) du

=
∑

n

∑
µ

{cµαm−1[n] + (−1)µcM−µβm−1[n]}
∫ ∞

−∞
φ(u+ k − 2n− µ)φ(u) du

=
∑

n

{ck−2nαm−1[n] + (−1)kcM−k+2nβm−1[n]}.

We introduce the linear operators

(L+α)[k] :=
∑

n

ck−2nα[n], k = 0,±1,±2, . . . , (122)

(H+β)[k] :=
∑

n

(−1)kcM−k+2nβ[n], k = 0,±1,±2, . . . (123)
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on the linear space of sequences. (Here α, L+α, β, and H+β are functions on Z.)
In this way we obtain the desired generalization

αm = L+αm−1 + H+βm−1 (124)

of Mallat’s relations (23).
We use the operators (118)–(119), (122)–(123) when we move down, up the her-

ringbones on the left, right of Fig. 10.16. Each of the coefficients c0, c1, . . . , cM
appears once in each of the sums (118), (119), so we expend M + 1 operations per
component as we generate αm−1, βm−1 from αm. Since M is odd, exactly half of
these coefficients appear in each of the sums (122), (123), so we also expend M + 1
operations per component as we generate αm from αm−1 and βm−1.

Figure 10.16. The operators (118)–(119) are used with Mallat’s
herringbone (left) when we split a frame into its constituent
details. The operators (122)–(123) are used with the reverse her-
ringbone (right) to reassemble a frame from its details.

The operators (118), (119), (122), and (123) that we construct from the
Daubechies coefficients c0, c1, . . . , cM satisfy the identities

L+L− + H+H− = I, (125)
L−L+ = I, H−L+ = 0, (126)
L−H+ = 0, H−H+ = I. (127)

We will give simple arguments based on (120), (121), and (124). Straightfor-
ward (but somewhat tedious) manipulations of the sums can be used to show that
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(125)–(127) hold whenever c0, c1, . . . , cM satisfy the orthogonality constraints (87),
see Ex. 10.33. The piecewise smoothness of φ [that was used to prove (120), (121),
(124)] is not required.

Example Use (120), (121), and (124) to establish (125).

Solution Let αm be an arbitrary function on Z. [The series (106) gives the corre-
sponding piecewise smooth function on R.] We use (120), (121) to define

αm−1 := L−αm, βm−1 := H−αm,

and then use (124) to recover αm by writing

αm = L+αm−1 + H+βm−1

= L+(L−αm) + H+(H−αm)
= (L+L− + H+H−)αm.

Example Use (120), (121), and (124) to establish (126), (127).

Solution Let αm−1 be an arbitrary function on Z, and let βm−1 be the zero function
on Z. We use (124) to define

αm := L+αm−1 + H+0,

and then use (120), (121) to recover

αm−1 = L−αm = L−L+αm−1,

0 =: βm−1 = H−αm = H−L+αm−1.

In this way we prove (126). A similar argument (with an arbitrary βm−1 and with
αm−1 := 0) gives (127).

We use the operators L+, H+ when we want to replace the basis functions
φ(2mx− k), ψ(2mx − k), k = 0,±1,±2, . . . from the series (106)–(107) with the
“narrower” basis functions φ(2m+px−k), k = 0,±1,±2, . . . associated with a more
accurate frame fm+p, p = 1, 2, . . . .

Example Let α, β be functions on Z and let m = 0,±1,±2, . . . . Show that

∑
k

α[k]φ(2mx− k) =
∑

k

(Lp
+α)[k]φ(2m+px− k), p = 1, 2, . . . , (128)

∑
k

β[k]ψ(2mx− k) =
∑

k

(Lp−1
+ H+β)[k]φ(2m+px− k), p = 1, 2, . . . . (129)
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Solution Let αm := α, βm := 0 so that (124) gives αm+1 = L+α. We use these
coefficients with the series (106)–(107) for the corresponding functions from (111)
and thereby write

∑
k

(L+α)[k]φ(2m+1x− k) =
∑

k

α[k]φ(2mx− k).

In this way we can see that (128) holds when p = 1. It follows that

∑
k

(Lp
+α)[k]φ(2m+px− k) =

∑
k

(Lp−1
+ α)[k]φ(2m+p−1x− k), p = 1, 2, . . . ,

so (128) holds for every p = 1, 2, . . . .
An analogous argument with αm := 0, βm := β, αm+1 = H+β shows that

(129) holds when p = 1. We then use (128) to see that (129) also holds when
p = 2, 3, . . . .

We use the operators L−,H− when we want to replace the basis functions
φ(2mx−k), k = 0,±1,±2, . . . from (106) with the “wider” functions ψ(2m−1x−k),
ψ(2m−2x− k), . . . , ψ(2m−px− k), φ(2m−px− k), k = 0,±1,±2, . . ., p = 1, 2, . . . .

Example Let α be a function on Z, and let p = 1, 2, . . . . Show that

∑
k

α[k]φ(2mx− k) =
∑

k

(Lp
−α)[k]φ(2m−px− k)

+
p∑

n=1

∑
k

(H−Ln−1
− α)[k]ψ(2m−nx− k). (130)

Solution We set αm := α and use (120)–(121) to write

αm−1 = L−α, βm−1 = H−α,

αm−2 = L2
−α, βm−2 = H−L−α,

αm−3 = L3
−α, βm−3 = H−L2

−α,

...

αm−p = Lp
−α, βm−p = H−Lp−1

− α,

see Fig. 10.16. We use these expressions as we replace each function from

fm = fm−p + dm−p + dm−p+1 + · · · + dm−1

by the corresponding series (106) or (107), and thereby obtain (130).
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Samples for frames and details

We often have occasion to produce samples of a frame or detail associated with the
wavelet analysis of some function f , e.g., as shown in Fig. 10.15. As a rule, we
cannot use the defining relations (106)–(109) for this purpose since we do not have
a simple formula for evaluating φ and ψ. [The Haar prototypes (5), (1) are notable
exceptions!] Instead, we use the operators L−, H−, L+, H+ with Mallat’s herring-
bones from Fig. 10.16 to generate good approximate samples. We will illustrate the
process using the gaussian

f(x) := e−128(x−1/2)2 (131)

and the Daubechies coefficients (39) with M = 3. Graphs of the corresponding φ, ψ
are shown in Fig. 10.14.

We begin by computing the samples f(2−8k), k = 0,±1,±2, . . . . The top central
illustration from Fig. 10.17 shows the points

(2−8k, f(2−8k)), k = 0,±1,±2, . . . .

The graph of f is well represented by the broken line through these points. (The
modulus of the error is bounded by .0005.) The approximation

α8[k] ≈ f(2−8k), k = 0,±1,±2, . . .

from (112) is somewhat less accurate, but you may not notice the difference on the
scale used for the illustration. (The modulus of this error is bounded by .024, see
Ex. 10.35.)

From (120) we see that

α7 = L−α8, α6 = L−α7, . . .

so we can generate approximate coefficients for the frames f7, f6, . . . by applying
L−,L

2
−, . . . to the approximate coefficients α8 for the frame f8. Plots of the corre-

sponding points

(2−8+nk,
(
Ln

−α8)[k]
)
, k = 0,±1,±2, . . .

are shown in the center (and lower left) of Fig. 10.17 for each n = 0, 1, 2, 3, 4.
There are approximately 64, 32, 16, 8, 4 significant ordinates when n = 0, 1, 2, 3, 4,
respectively. We halve the number of significant ordinates each time we apply L−.
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Figure 10.17. Construction of approximate samples fa
4 , d

a
4 for

the frame f4 and the detail d4 when f is a gaussian and φ, ψ
correspond to the Daubechies coefficients (39).
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The operator L+ has the opposite effect. From (128) we see that

f4(x) =
∑

k

α4[k]φ(24x− k) =
∑

k

(L+α4)[k]φ(25x− k)

=
∑

k

(L2
+α4)[k]φ(26x− k) = · · · .

Plots of the corresponding points(
2−4−nk, (Ln

+α4)[k]
)
, k = 0,±1,±2, . . .

are shown on the left side of Fig. 10.17 for each n = 0, 1, 2, 3, 4. There are approxi-
mately 4, 8, 16, 32, 64 significant ordinates when n = 0, 1, 2, 3, 4, respectively. We
double the number of significant ordinates each time we apply L+. From (112) (with
f replaced by f4) we see that

f4(2−4−nk) ≈ (Ln
+α4)[k]

when n is large. The upper left illustration from Fig. 10.17 gives a reasonable
approximation for the frame f4. (The modulus of the error is bounded by .13.)

We use a slight modification of this process when we compute samples for a detail.
From (121) we have

β4 = H−α5,

and the points

(2−4k, β4[k]) =
(
2−4k, (H−L3

−α8)[k]
)
, k = 0,±1,±2, . . .

are plotted in the lower right illustration from Fig. 10.17. You will observe that
H−, like L−, halves the number of significant ordinates. Using (129) we see that

d4(x) =
∑

k

β4[k]ψ(24x− k) =
∑

k

(H+β4)[k]φ(25x− k)

=
∑

k

(L+H+β4)[k]φ(26x− k) = · · · .

Plots of the corresponding points(
2−5−nk, (Ln

+H+β4)[k]
)
, k = 0,±1,±2, . . .

are shown on the right side of Fig. 10.17 for each n = 0, 1, 2, 3. You will observe
that H+, like L+, doubles the number of significant ordinates. In this case we have

d4(2−5−nk) ≈ Ln
+H+β4[k]
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when n is large. The upper right illustration from Fig. 10.17 gives a reasonable
approximation to the detail d4. (The modulus of the error is bounded by .10.)

We summarize the above discussion with the following generalization. We can
generate approximate samples

fm(2−m−pk) ≈ Lp
+Lq

−f(2−m−qk),

dm(2−m−pk) ≈ Lp−1
+ H+H−Lq−1

− f(2−m−qk)
(132)

for the frame fm and detail dm that correspond to a given function f (and the
coefficients c0, c1, . . . , cM ) by applying the operators

Lp
+Lq

−, Lp−1
+ H+H−Lq−1

−

to the sample sequence

f(2−m−qk), k = 0,±1,±2, . . . .

The precision index p = 1, 2, . . . allows us to specify the density of the ordinates we
compute for fm, dm. The precision index q = 1, 2, . . . specifies the density of the
initial samples of f and controls the overall accuracy of the process. [The errors in
the approximations (132) go to zero like 2−q when f is a smooth function.]

The operators P−,P+

The approximation (112) introduces errors at the beginning and at the ends of the
chains of mappings shown in Fig. 10.17. We start with samples of f (instead of the
coefficients α8) and we end up with the coefficients L4

+α4 (instead of samples of f4)
or with the coefficients L3

+H+β4 (instead of samples of d4). We will now show how
to reduce the size of the first error and eliminate the second by using a preprocessing
operator P− and a postprocessing operator P+.

We work with Daubechies coefficients c0, c1, . . . , cM for some M = 3, 5, . . . . The
corresponding scaling function φ is continuous, and φ(x) = 0 when x ≤ 0 or x ≥ M .
We need the samples φ(n), n = 0,±1,±2, . . . for our analysis. We will determine
φ(1), φ(2) when M = 3. Exercise 10.38 shows how to find numerical values for
φ(1), φ(2), . . . , φ(M − 1) when M = 5, 7, . . . .

Example Find the ordinates φ(1), φ(2) for the scaling function that corresponds
to the Daubechies coefficients (39) with M = 3.

Solution Using the dilation equation (29) we write

φ(1) = c0 φ(2) + c1 φ(1) + c2 φ(0) + c3 φ(−1) = c1 φ(1) + c0 φ(2)

φ(2) = c0 φ(4) + c1 φ(3) + c2 φ(2) + c3 φ(1) = c3 φ(1) + c2 φ(2)
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or equivalently, [
φ(1)
φ(2)

]
=

1
4

[
3 +

√
3 1 +

√
3

1 − √
3 3 − √

3

] [
φ(1)
φ(2)

]
.

We solve this homogeneous system of linear equations subject to the constraint
φ(1) + φ(2) = 1 from (73) to obtain

φ(1) =
1 +

√
3

2
, φ(2) =

1 − √
3

2
when M = 3. (133)

From (106) we obtain the identity

fm(2−mk) =
∑

�

αm[�]φ(2m · 2−mk − �)

= φ(1)αm[k − 1] + φ(2)αm[k − 2] + · · · + φ(M − 1)αm[k −M + 1]

that links the coefficients αm[k] and the samples fm(2−mk). This relation is inde-
pendent of m, so if we define the operator P+ by writing

(P+α)[k] := φ(1)α[k − 1] + φ(2)α[k − 2] + · · · + φ(M − 1)α[k −M + 1] (134)

(when α is a function on Z), then

fm(2−mk) = (P+αm)[k], k = 0,±1,±2, . . . (135)

for each index m. The operator P+ maps αm to the 2−m-samples of fm (with no
error).

We would like to construct an inverse P− for (134) that maps the 2−m-samples
of fm to the coefficients αm (with no error), so that

αm[k] = P−fm(2−mk), k = 0,±1,±2, . . . (136)

for each index m. We will derive an explicit representation for P− when M = 3.
Exercise 10.39 shows how we can apply P− numerically when M = 5, 7, . . . .

Example Find an explicit representation for the inverse of the operator P+ given
by (134) when the ordinates (135) correspond to the Daubechies coefficients (39)
with M = 3.

Solution Using (134) and (133) we see that

(P+α)[k] =
1 +

√
3

2
α[k − 1] +

1 − √
3

2
α[k − 2], k = 0,±1,±2, . . . (137)

when M = 3. We will set γ := P+α and solve this equation for α = P−γ.
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When α, γ are suitably regular, their 1-periodic Fourier transforms satisfy

∞∑
k=−∞

γ[k]e−2πiks =
1
2
{(

√
3 + 1)e−2πis − (

√
3 − 1)e−4πis}

∞∑
k=−∞

α[k]e−2πiks

so that

∞∑
k=−∞

α[k]e−2πiks =
2e2πis

√
3 + 1

{
1 −

(√
3 − 1√
3 + 1

)
e−2πis

}−1 ∞∑
κ=−∞

γ[κ]e−2πiκs

=
2√

3 + 1

∞∑
n=0

(√
3 − 1√
3 + 1

)n

e−2πi(n−1)s
∞∑

κ=−∞
γ[κ]e−2πiκs

=
2√

3 + 1

∞∑
k=−∞

{ ∞∑
n=0

(√
3 − 1√
3 + 1

)n

γ[k + 1 − n]
}
e−2πiks.

In this way we obtain the formula

(P−γ)[k] :=
2√

3 + 1

∞∑
n=0

(√
3 − 1√
3 + 1

)n

γ[k + 1 − n], k = 0,±1,±2, . . . (138)

that gives α in terms of γ when M = 3. [You can use (137), (138) to verify that

P+P− = P−P+ = I

when these operators are applied to slowly growing functions on Z.]
We derive an exact representation

fm(2−m−pk) = P+Lp
+αm[k] = P+Lp

+Lq
−αm+q[k] = P+Lp

+Lq
−P−fm+q(2−m−qk)

for samples of the frame fm by using the identities (135), (128), (120), (136) for
P+, L+, L−, P−. The corresponding exact representation

dm(2−m−pk) = P+Lp−1
+ H+H−Lq−1

− P−fm+q(2−m−qk)

for samples of the detail dm also uses the identities (129), (121) for H+, H−. We
replace fm+q by the known function f on the right side of these expressions to
obtain approximations

fm(2−m−pk) ≈ P+Lp
+Lq

−P−f(2−m−qk), k = 0,±1,±2, . . . ,

dm(2−m−pk) ≈ P+Lp−1
+ H+H−Lq−1

− P−f(2−m−qk), k = 0,±1,±2, . . . ,
(139)
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that are much more accurate than those from (132). When f is sufficiently smooth,
the errors in (132) go to zero like 2−q while the errors in (139) go to zero like 2−Kq,
see Ex. 10.34. The improvement can be quite dramatic. By using P−,P+ we can
reduce the maximum error modulus for the approximate components of f4(2−8k),
α8[k], d4(2−8k) at the top of Fig. 10.17 from .13, .024, .090 to the unobservable
.0011, .00092, .00041, respectively.

10.4 Filter banks

Introduction

The flow diagram of Fig. 10.18 shows how we use the operators L−,H− and L+,H+

from (118)–(119) and (122)–(123) to do analysis and synthesis. We split a frame
coefficient sequence αm into certain constituent parts, i.e., the frame coefficient
sequence αm−1 and the detail coefficient sequence βm−1 from the next coarser level.
We then reassemble αm from these constituent parts. (In practice, we do not
tear a sequence apart and immediately reassemble it. That is why we include
. . . in the diagram!) We combine analysis forks and synthesis forks to form the
herringbone structures shown in Fig. 10.16. We use these herringbone algorithms
to prepare data for coarse-to-fine transmission, to compress data, to filter data, etc.
Such applications are possible because the synthesis fork is a perfect inverse for the
analysis fork.

Figure 10.18. Flow diagram for analysis and synthesis using the
operators (118)–(119) and (122)–(123).
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Factorization of L−,H−,L+,H+

We will factor the operators L−,H−,L+,H+. Each block from Fig. 10.18 is replaced
by two blocks that correspond to the factors. Figure 10.19 shows the resulting two-
stage filter bank. Such filter banks (originally created by electrical engineers to
compress speech signals for digital communication systems) facilitate the design
of hardware for wavelet-based signal processing. Mathematical structures from
wavelet analysis can be interpreted within a filter bank context and vice versa.
Indeed, Daubechies produced the coefficients (39) by designing a corresponding filter
bank!

Figure 10.19. Flow diagram for analysis and synthesis with a
two-channel filter bank that uses convolution, dilation (delete
each odd index component), and zero packing (insert a zero after
each component).

We will use the discrete dilation or downsampling operator

(S2α)[k] := α[2k], k = 0,±1,±2, . . . , (140)

and the zero packing or upsampling operator

(Z2α)[k] :=
{
α[k/2] if k = 0,±2,±4, . . .
0 if k = ±1,±3, . . .

(141)

to produce these factorizations. The operator S2 compresses the data stream by
deleting the components with odd indices. The operator Z2 expands the data stream
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by inserting a zero after each component. You will immediately observe that

(S2Z2α)[k] = α[k], k = 0,±1,±2, . . . and

(Z2S2α)[k] =
{
α[k] if k = 0,±2,±4, . . .
0 if k = ±1,±3, . . . .

(142)

In the first case S2 removes zeros introduced by the initial application of Z2; in
the second, Z2 inserts zeros to replace the odd components deleted by the initial
application of S2.

The operators L−,H− are best described in terms of convolution and downsam-
pling. Using (118) and the identity

(c∨ ∗ α)[2k] =
∑

n

c∨2k−nα[n] =
∑

n

cn−2kα[n],

we see that
L−α = 1

2S2(c∨ ∗ α). (143)

Here ∨ is the reflection tag from (5.35), i.e.,

b∨n := b−n, n = 0,±1,±2, . . .

when b is a sequence. Analogously, using (119) we see that

H−α = 1
2S2(d∨ ∗ α) (144)

where
dn := (−1)ncM−n, n = 0,±1,±2, . . . . (145)

The operators L+,H+ are best described in terms of upsampling and convolution.
Using (122) and the identity

{c ∗ (Z2α)}[k] =
∑
m

ck−m(Z2α)[m] =
∑

n

ck−2nα[n],

we see that
L+α = c ∗ (Z2α). (146)

Analogously, using (123) and (145) we see that

H+α = d ∗ (Z2α). (147)

We produce the desired factorizations of L−,H−,L+,H+ by using the operator

(Cbα)[k] :=
∑

n

b[k − n]α[n]
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to display the convolution products from (143), (144), (146), (147). (The notation
∗b is used in Fig. 10.19.) Indeed, we set

c−[n] :=
1√
2
c−n, c+[n] :=

1√
2
cn,

d−[n] :=
(−1)n

√
2
cM+n, d+[n] :=

(−1)n

√
2
cM−n, n = 0,±1,±2, . . . ,

(148)

and write

L− =
1√
2

S2Cc− , L+ =
√

2 Cc+Z2, (149)

H− =
1√
2

S2Cd− , H+ =
√

2 Cd+Z2. (150)

There is a troublesome 1
2 that appears in (143), (144) but not in (146), (147).

We have chosen to associate a factor 1/
√

2 with each of the sequences c−, d−, c+, d+

in (148). The resulting normalization∑
n

c±[n] =
√

2 (151)

is commonly used with filter banks. (This is different from the normalization (28)
we have been using for c0, c1, . . . , cM .) We routinely drop the

√
2 factors from (149),

(150) when we display the corresponding filter bank in Fig. 10.19.
You should understand how this filter bank generalizes the data flow for frame and

detail coefficients as shown in Fig. 10.18. We are free to choose “arbitrary” sequences
c−, c+, d−, d+ when we design a filter bank. The data flow does not correspond to
the wavelet analysis of (120), (121), and (124) unless we use (148) to produce
c−, c+, d−, d+ from suitably chosen coefficients c0, c1, . . . , cM .

Fourier analysis of a filter bank

We will analyze the filter bank from Fig. 10.19. You may find it helpful to interpret
the analysis within a context where the input sequence is obtained by sampling a
bandlimited audio signal f , e.g., as shown in Fig. 8.1. The sample α[n] = f(nt) is
taken at time t = nt where t > 0 is the sampling interval. When f is σ-bandlimited
and 2σt < 1, the spectrum of the original signal can be found by restricting the
1-periodic Fourier transform

A(s) :=
∑

n

α[n]e−2πins (152)
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to the interval |s| < 1
2 . The edges s = ± 1

2 correspond to the Nyquist frequency
f = 1/2t. [To see this, replace s by s/t in (8.9).]

There are four filters specified by the sequences c−, d−, c+, d+. We will assume
that these sequences are real and that they have finitely many nonzero components.
The Fourier transform converts convolution into multiplication, so the filters c±, d±
act by introducing the factors

C±(s) :=
∑

n

c±[n]e−2πins, D±(s) :=
∑

n

d±[n]e−2πins (153)

in the Fourier transform domain.
Figure 10.20 shows graphs of the trigonometric polynomials constructed by using

(153) and (148) with the Daubechies coefficients (39). By design,

|C±(s)|2 ≈
{

2 if |s| < 1
4

0 if 1
4 < |s| < 1

2 ,
|D±(s)|2 ≈

{
0 if |s| < 1

4

2 if 1
4 < |s| < 1

2 ,

but these max flat approximations are admittedly crude. When we multiply A(s)
by C±(s), D±(s) we suppress (but do not eliminate) the high- and low-frequency
portions of the spectrum. We say that c±, d± produce low- and high-pass filters.
The phases of these trigonometric polynomials are also important, as we shall see
presently.

Figure 10.21 shows the Fourier transform of the filter bank from Fig. 10.19. You
will recognize the trigonometric polynomials C±, D± that come from the four filters.
The grouping operator

1
2 (GA)(s) := 1

2{A( 1
2s) +A( 1

2s+ 1
2 )} (154)

and the dilation operator
(S2A)(s) := A(2s) (155)

for functions on T1 are the Fourier transforms of the downsampling and upsampling
operators (140), (141) for functions on Z, see (4.30) and (4.29). You will observe
that

( 1
2G2S2A)(s) = A(s)

when A is 1-periodic but

(S2
1
2G2A)(s) = 1

2{A(s) +A(s+ 1
2 )}, (156)

see (142). (We introduce aliasing when we replace the odd samples of α with zeros!)
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Figure 10.20. Graphs of the 1-periodic hermitian trigonomet-
ric polynomials C±(s), D±(s) constructed from the Daubechies
coefficients (39) by using (148) and (153).

Figure 10.21. Fourier transform of the two-channel filter bank
from Fig. 10.19.
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Figure 10.22 shows what happens when we process an obviously contrived spec-
trumA(s) with a filter bank that uses the trigonometric polynomials from Fig. 10.20.
The initial analysis filters split A(s) into low- and high-frequency components
C−(s)A(s), D−(s)A(s). You can see the low-frequency “half circle” in the first
and the (phase distorted) high-frequency “L’s” in the second. The filters are not
perfect, however, so you can also see a small admixture of high- and low-frequency
components in these spectra.

Aliasing is introduced when we halve the sampling rate. In accordance with (154)
we average the high and low portions of the filtered spectra to obtain the low- and
high-frequency outputs

A−(s) := 1
2{C−( s

2 )A( s
2 ) + C−( s

2 + 1
2 )A( s

2 + 1
2 )},

B−(s) := 1
2{D−( s

2 )A( s
2 ) +D−( s

2 + 1
2 )A( s

2 + 1
2 )} (157)

of the analysis fork of the filter bank. We have more or less separated the low-
frequency “half circle” from the high-frequency “L’s,” but both of these spectra
seem to be hopelessly contaminated with errors.

In accordance with (155), we dilate the inputs A−(s), B−(s) to the synthesis fork
to form A−(2s), B−(2s). We then apply the synthesis filter factors C+(s), D+(s)
and add the products to obtain the output

A+(s) = 1
2{C−(s)C+(s) +D−(s)D+(s)}A(s)

+ 1
2{C−(s+ 1

2 )C+(s) +D−(s+ 1
2 )D+(s)}A(s+ 1

2 ). (158)

Figure 10.22 shows perfect reconstruction at this point, i.e., A+ = A. This will be
the case for an arbitrary initial spectrum when

C−(s+ 1
2 )C+(s) +D−(s+ 1

2 )D+(s) = 0 (159)

[i.e., the aliasing term A(s+ 1
2 ) does not appear in (158)] and

C−(s)C+(s) +D−(s)D+(s) = 2 (160)

[i.e., the spectrum A(s) is not distorted]. The trigonometric polynomials from
Fig. 10.20 satisfy (159)–(160), so the output is the same as the input in Fig. 10.22.

Perfect reconstruction filter banks

A perfect reconstruction filter bank has four real sequences c−, c+, d−, d+ (each with
finitely many nonzero components) that satisfy the antialiasing constraint (159)
and the antidistortion constraint (160). (A relaxed definition that allows transla-
tion of the output is given in Ex. 10.41.) There is a vast literature dealing with
the design of such filter banks. We will give a few examples to introduce these
ideas.
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Figure 10.22. Flow of a contrived spectrum A(s) through the
filter bank of Fig. 10.21 when C±, D± are the trigonometric poly-
nomials shown in Fig. 10.20.



Filter banks 663

Example Let m−,m+, n−, n+ be integers and let

c−[n] := δ[n−m−], d−[n] := δ[n− n−],
c+[n] := δ[n−m+], d+[n] := δ[n− n+].

(161)

Show that these translation filters satisfy the constraints (159)–(160) for a perfect
reconstruction filter bank if and only if

m− +m+ = 0, n− + n+ = 0, and m− + n− is odd. (162)

Solution These translation filters have the Fourier transforms

C−(s) = e−2πim−s, C+(s) = e−2πim+s, D−(s) = e−2πin−s, D+(s) = e−2πin+s.

We observe that

C−(s+ 1
2 ) = e−2πim−(s+1/2) = (−1)m−e−2πim−s,

D−(s+ 1
2 ) = e−2πin−(s+1/2) = (−1)n−e−2πin−s,

and use these expressions to write the antialiasing, antidistortion constraints (159),
(160) in the form

(−1)m−e−2πi(m−+m+)s + (−1)n−e−2πi(n−+n+)s = 0,

e−2πi(m−+m+)s + e−2πi(n−+n+)s = 2.

The second constraint holds (for all s) if and only if each exponential is identically
1, i.e., m− +m+ = 0 and n− + n+ = 0. The first holds when, in addition, precisely
one of the integers m−, n− is odd. (The integers m−, n− must have opposite parity
to ensure that we retain the odd indexed components of α in one branch of the
filter bank and the even indexed components in the other. The indices m−,m+ and
n−, n+ must each have sum zero to ensure that the initial α[n] ends up in the nth
component of the output when n is even and when n is odd.)

We motivated the introduction of a filter bank by factoring the operators
L−,L+,H−,H+ we use to manipulate the frame and detail coefficients (108)–(109).
We are no longer constrained by this interpretation. The coefficients c0, c1, . . . , cM
from (148) need not correspond to piecewise smooth functions φ, ψ that we can
use for the integrals (79)–(81) and (108)–(109). What matters now is perfect re-
construction, and the following example shows that this filter bank property is a
logical consequence of the orthogonality constraints (87).

Example Let real coefficients c0, c1, . . . , cM (with M = 1, 3, 5, . . .) be selected
subject to the orthogonality constraints (87). Show that the corresponding filters
c−, c+, d−, d+ from (148) satisfy the constraints (159)–(160) for perfect reconstruc-
tion.
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Solution We express C−, C+, D−, D+ in terms of the trigonometric polynomial (35)
by using (148) to see that

C+(s) =
1√
2

∑
n

cne
−2πins =

√
2 T (s),

D+(s) =
1√
2

∑
n

(−1)ncM−ne
−2πins =

1√
2

∑
m

(−1)M−mcme
−2πi(M−m)s

= −e−2πiMs

√
2

∑
m

cme
2πim(s−1/2) = −

√
2 e−2πiMsT (−s+ 1

2 ),

and analogously

C−(s) =
√

2T (−s), D−(s) = −
√

2e2πiMsT (s+ 1
2 ).

Since M is odd and T is 1-periodic, we can use these expressions to write

C−(s+ 1
2 )C+(s) +D−(s+ 1

2 )D+(s) = 2T (−s+ 1
2 )T (s)[1 + (−1)M ] = 0.

Since c0, c1, . . . , cM are real and (87) is equivalent to (85), we can also write

C−(s)C+(s) +D−(s)D+(s) = 2{T (−s)T (s) + T (s+ 1
2 )T (−s− 1

2 )} = 2.

(You may wish to compare this analysis with that of Ex. 10.32.)
There are many filter banks that do not have the coefficient symmetry of (148).

We will consider the less restrictive case where

d−[n] = σ(−1)nc+[n+N ], d+[n] = σ(−1)nc−[n−N ]. (163)

Here σ = ±1 and N is an odd integer. The filters d−, d+ are obtained by translating
c+, c−,−N,+N steps, respectively, and then changing the signs of the components
that have even indices (if σ = −1) or odd indices (if σ = +1), see Fig. 10.23. Using
the translation and modulation rules for functions on Z, we find

D−(s) = σ(−1)Ne2πiNsC+(s+ 1
2 ), D+(s) = σ(−1)Ne−2πiNsC−(s+ 1

2 ). (164)
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Figure 10.23. The coefficient symmetry (148) (top) and (163)
(bottom). The diagonal mappings use translation (illustrated
here with N = 3) and sign oscillation. The horizontal, vertical
mappings from the more symmetric upper diagram use reflection,
reflection with sign oscillation, respectively.

Since C+ is 1-periodic, σ2 = 1, and N is odd, we can use these expressions to write

C−(s+ 1
2 )C+(s) +D−(s+ 1

2 )D+(s) = C−(s+ 1
2 )C+(s){1 + (−1)N} = 0,

C−(s)C+(s) +D−(s)D+(s) = C−(s)C+(s) + C−(s+ 1
2 )C+(s+ 1

2 ).

In this way we see that filters with the symmetry (163) automatically satisfy the
antialiasing constraint (159). They also satisfy the antidistortion constraint (160)
when the product

Q(s) := 1
2C−(s)C+(s) (165)

and its half-period translate have the sum

Q(s) +Q(s+ 1
2 ) = 1. (166)
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You can verify that (166) is equivalent to the biorthogonality constraint

∑
m

c+[m]c−[2k −m] =
{

1 if k = 0
0 if k = ±1,±2, . . .

(167)

on the filters c−, c+, see Ex. 10.43. [This generalizes (87).]
In view of this analysis, we can use the following procedure to find real coefficients

for a perfect reconstruction filter bank. We first choose some 1-periodic hermitian
trigonometric polynomial Q that satisfies (166) and that has the hermitian factors
C−, C+ of (165). The coefficients (i.e., inverse Fourier transforms) of C−, C+ give
us the filters c−, c+. We then use (163) to obtain the filters d−, d+. You may wish
to show that every perfect reconstruction filter bank can be found in this way,
see Ex. 10.44.

Example A 1-periodic hermitian trigonometric polynomial

Q(s) = cos4(πs)[cos2(πs) + 3 sin2(πs)]

that satisfies (166) is obtained by setting K = 2 in (100). Factor Q and thereby
find filters c−, c+ for a perfect reconstruction filter bank. [You can then use (163)
to find corresponding d−, d+.]

Solution We use Euler’s identities and a bit of algebra (see Ex. 10.45) to write

2Q(s) =
1
16

[eiπs + e−iπs]4[−e2πis + 4 − e−2πis]

=
1
32

[eiπs + e−iπs]4 · [(1 −
√

3)e2πis + (1 +
√

3)]

· [(1 −
√

3)e−2πis + (1 +
√

3)]

= 2e−6πis ·
(
e2πis + 1

2

)4(
e2πis − ζ

1 − ζ

)(
e2πis − ζ−1

1 − ζ−1

)
(168)

where

ζ :=
√

3 − 1√
3 + 1

= .26794 . . . , ζ−1 =
√

3 + 1√
3 − 1

= 3.73205 . . . .

There are twenty distinct ways we can form an ordered pair of products from the
factors

e2πis + 1, e2πis + 1, e2πis + 1, e2πis + 1, e2πis − ζ, e2πis − ζ−1
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of (168). The coefficient strings for ten such pairs of trigonometric polynomials are
as follows.

1, 4, 6, 4, 1 and −1, 4,−1
1, 3, 3, 1 and −1, 3, 3,−1
1, 2, 1 and −1, 2, 6, 2,−1
1, 1 and −1, 1, 8, 8, 1,−1
1 and −1, 0, 9, 16, 9, 0,−1

−ζ, 1 and −ζ−1, 1−4ζ−1, 4−6ζ−1, 6−4ζ−1, 4−ζ−1, 1

−ζ, 1−ζ, 1 and −ζ−1, 1−3ζ−1, 3−3ζ−1, 3−ζ−1, 1

−ζ, 1−2ζ, 2−ζ, 1 and −ζ−1, 1−2ζ−1, 2−ζ−1, 1

−ζ, 1−3ζ, 3−3ζ, 3−ζ, 1 and −ζ−1, 1−ζ−1, 1

−ζ, 1−4ζ, 4−6ζ, 6−4ζ, 4−ζ, 1 and − ζ−1, 1

(You can see the binomial coefficients that come from 1, 2, 3, 4 powers of the factor
e2πis + 1.) We reverse the order of these pairs to obtain the other ten.

We must account for the remaining factor

e−6πis

8(1 − ζ)(1 − ζ−1)
= −e−6πis

16

from (168). We do this by partitioning the −1/16 and three left shifts (correspond-
ing to e−2πi3s) between a pair of coefficient strings from the above list. For example,
we can use the second pair to produce

c−[−3] = 1, c−[−2] = 3, c−[−1] = 3, c−[0] = 1,

c+[0] =
1
16
, c+[1] =

−3
16
, c+[2] =

−3
16
, c+[3] =

1
16
,

and we can use the eighth pair to produce

c−[−3] =
−ζ√

8(1 − ζ)
, c+[0] =

−ζ−1
√

8(1 − ζ−1)
,

c−[−2] =
1 − 2ζ√
8(1 − ζ)

, c+[1] =
1 − 2ζ−1

√
8(1 − ζ−1)

,

c−[−1] =
2 − ζ√
8(1 − ζ)

, c+[2] =
2 − ζ−1

√
8(1 − ζ−1)

,

c−[0] =
1√

8(1 − ζ)
, c+[3] =

1√
8(1 − ζ−1)

,
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or equivalently,

c−[−3] =
1 − √

3
4
√

2
, c−[−2] =

3 − √
3

4
√

2
, c−[−1] =

3 +
√

3
4
√

2
, c−[0] =

1 +
√

3
4
√

2
,

c+[0] =
1 +

√
3

4
√

2
, c+[1] =

3 +
√

3
4
√

2
, c+[2] =

3 − √
3

4
√

2
, c+[3] =

1 − √
3

4
√

2

(169)

as expected from (39) and (148). (All unspecified components are set to 0.) You
should have no trouble finding c−, c+ pairs for the other 18 factorizations.

We can use this procedure to design various filter banks. In practice, we prefer
to use filters with a “small” number of nonzero coefficients, but we also want filters
with the “smoothness” that comes from sufficiently many factors of e2πis + 1. We
can experiment with several choices for c−, c+, d−, d+ to see how they perform for a
particular application. For example, the FBI has a massive collection of digitized
fingerprint images scanned at 500 pixels/inch. A filter bank is used to compress
these files so that they can be stored and transmitted more efficiently. The filters
c−, c+, d−, d+ that work best for this purpose were obtained from a factorization of
(100) (with K = 4) as described in Ex. 10.46.

Compression and reconstruction

Using a digitizing tablet and a computer, I generated 513 points

g[n] = x[n] + i y[n], n = 0, 1, . . . , 512,

along the handwritten “Gauss” from a signature of the great mathematician. The
corresponding broken line image is shown at the top of Figs. 10.24 and 10.25.
(Germans often write ß in place of ss.) We use the analysis fork of a filter bank
to compress a signal so that it can be stored or transmitted more efficiently. We
then process the compressed file with the synthesis fork to obtain a good (but not
perfect) reconstruction. We will use the univariate Gauss signature to illustrate
these ideas.

The operators L−, H−, L+, H+ are applied to functions on Z, so before we begin
the analysis we must suitably extend g. There are several ways to do this. The zero
extension

g[n] = 0 if n < 0 or n > 512

that we have used elsewhere does not work well in this context. The jumps in g
at n = 0, n = 512 introduce undesirable ripples in the reconstructed images, see
Fig. 10.11. We could eliminate such ripples by using the extension

g[n] =
{
g[0] if n < 0
g[512] if n > 512,

but this would force us to make special provision for storing components of L−g,
H−g, L−L−g, H−L−g, . . . that lie beyond the edges of the original image.
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Figure 10.24. A 513-point trace g of a Gauss signature (top)
and the reconstruction Lp

+Lp
−g corresponding to the 2p : 1 com-

pression Lp
−g, p = 1, 2, 3, 4, 5, where the filter bank uses the

Daubechies coefficients from (39), (148) (left) and the 9/7 FBI
coefficients from Ex. 10.46 (right).
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Figure 10.25. A 513-point trace g of a Gauss signature (top) and
reconstructions from the 1/4, 1/

√
32, 1/8, 1/

√
128, 1/16 most

significant components of (170) when the filter bank uses the
Daubechies coefficients from (39), (148) (left) and the 9/7 FBI
coefficients from Ex. 10.46 (right).
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We will use symmetry to avoid such boundary conditions. We define

g[−n] := g[n], n = 1, 2, . . . , 511

and then 1024-periodically extend g to all of Z. When we apply L−, H− to a function
on P2N we obtain functions on PN . When we apply L+, H+ to a function on PN we
obtain functions on P2N . This being the case, we will always store the components
from one period and forget about any edge effects. (If each filter preserves even
symmetry, we need only store the components from a half period!)

In particular, the periodic functions

g,L−g,H−g,L
2
−g,H−L−g, . . . ,L

5
−g,H−L4

−g

from Mallat’s herringbone (from Fig. 10.16) are represented by vectors

α10,α9,β9,α8,β8, . . . ,α5,β5

that have
1024, 512, 512, 256, 256, . . . , 32, 32

components, respectively. We form 1024 component vectors

α10 � α9 & β9
� α8 & β8 & β9
...

� α5 & β5 & β6 & β7 & β8 & β9

[analogous to (26)]. These maps are all reversible since the operators L−, H−, L+,
H+ come from a perfect reconstruction filter bank. We expend approximately µN
operations as we implement

αm+1 � βm&αm or βm&αm � αm+1

when the filters c−, c+ together have µ nonzero coefficients and αm,βm each have
N components, see Ex. 10.47.

We compress the Gauss signature file by discarding coefficients from some of the
high-frequency details. The approximation

g ≈ L+L−g

results when we replace the components of β9 with zeros. Since α9 has only half as
many coefficients as α10, we achieve a 2 : 1 compression ratio. The approximation

g ≈ L2
+L2

−g
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results when we replace the components of β9 and β8 with zeros. Since α8 has
only a fourth as many components as α10, we achieve a 4 : 1 compression ratio.
Analogously,

g ≈ Lp
+Lp

−g

gives a 2p : 1 compression ratio, p = 1, 2, 3, 4, 5. Figure 10.24 shows such broken-line
approximations for the Gauss signature. The Daubechies filters from (39) and (148)
were used to produce the images on the left. The scaling function for this c+ (as
shown in Fig. 10.14) has jagged corners so the same is true of the reconstructed
signatures. The images on the right side of Fig. 10.24 were produced with the 9/7
FBI filters from Ex. 10.46. The smooth 4 : 1 and 8 : 1 approximations are clearly
superior to the corresponding ones that come from the four tap filters.

There are natural limits to the compression ratios we can achieve in this way.
Our initial file seems to oversample the Gauss signature, so almost any reasonable
scheme gives us a 2 : 1 compression with no loss of quality. At the other extreme,
neither of the 32 : 1 compressions at the bottom of Fig. 10.24 are legible. (They do
a surprisingly good job, however, considering they come from only 17 “points”!)

We will now describe a way to generate improved approximations with compres-
sion ratios in the intermediate range from 4 : 1 to 16 : 1. We first use the analysis
operators L−, H− to find the 1024 components of the vector

α5 & β5 & β6 & β7 & β8 & β9 (170)

as described above. We produced the 4 : 1 compressions of Fig. 10.24 by replacing
the components of β9, β8 with zeros. A few of the discarded coefficients correspond
to significant localized details of the signature while some of the retained coefficients
make no essential contribution to the final image. This time we will locate the largest
(by modulus) 256 components and replace all of the others with zeros. Analogously,
we will produce

√
32 : 1, 8 : 1,

√
128 : 1, 16 : 1 compressions by locating the largest

181, 128, 91, 64 components and replacing the others with zeros. After this is
done, we use the synthesis operators L+,H+ to generate the corresponding broken-
line approximations shown in Fig. 10.25. Most of these reconstructed images are
legible, and the 8 : 1 reconstruction from the 9/7 FBI filters is as good as the
original!

Audio files and two-dimensional image files (that we process row by row and
column by column) can be compressed and reconstructed in a similar fashion. You
can find additional details in the references for this chapter. At some point, however,
you will want to use your computer to experiment with these ideas. The subject
is still relatively new, and you may very well make a discovery that does not yet
appear in the scientific literature!
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Further reading

Daubechies, I. Ten Lectures on Wavelets, SIAM, Philadelphia, 1992.
A definitive graduate level introduction to the mathematical theory of wavelets.

Hubbard, B.B. The World According to Wavelets, 2nd ed., A.K. Peters, Wellesley,
MA, 1998.
A charming nontechnical introduction to the ideas of wavelet analysis and the
people who created them.

Meyer, Y. Wavelets: Algorithms and Applications, SIAM, Philadelphia, 1993.
An interdisciplinary introduction to the use of wavelets for signal and image
processing.

Misiti, M., Misiti, Y., Oppenheim, G., and Poggi, J.-M. Wavelet Toolbox for Use
with MATLAB, The Math Works, Inc., Natick, MA, 1996.
An illustrated introduction to sophisticated software for signal and image pro-
cessing with wavelets.

Stollnitz, E.J., Derose, T.D., and Salesin, D.H. Wavelets for Computer Graphics,
Morgan Kaufmann Publishers, Inc., San Francisco, 1996.
An introduction to the use of wavelets for representing images, curves, and
surfaces.

Strang, G., and Nuygen, T. Wavelets and Filter Banks, Wellesley-Cambridge Press,
Wellesley, MA, 1996.
A widely used textbook written for engineers and scientists.

Van Fleet, P.J. Discrete Wavelet Transformations: An Elementary Approach with
Applications, Wiley-Interscience, Hoboken, NJ, 2007.
A well-written introduction to wavelets for undergraduates.

Walnut, D.F. An Introduction to Wavelet Analysis, Birkhäuser, Boston, 2002.
A well-written introduction to wavelets for mathematics graduate students.

Wavelet Digest, http://www.wavelet.org
This Internet site will provide you with a listing of books, software, bibliogra-
phies, current research papers, on-line tutorials, etc., that deal with wavelets.
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Exercises

. .
.

.. .......... .... .... ..... ...••• EXERCISE 10.1 Let ψ be the Haar wavelet (1).

(a) Show that ψ has the Fourier transform

Ψ(s) = i e−iπs sin
(
πs

2

)
sinc

(
s

2

)
.

(b) Show that ∫ ∞

0
|Ψ(s)|2 ds =

1
2
.

Hint. Use Plancherel’s identity (1.15).

(c) A numerical integration can be used to verify that

∫ 2

0
|Ψ(s)|2 ds = .4278 . . . .

What does this imply about the functions shown in Fig. 10.2?

.. . .

...

.. .
....... .....

..

.. ... ...••• EXERCISE 10.2 Two Fourier analysis students are trying to make sense of the
musical score from Fig. 10.3.

“I am an accomplished pianist,” says the first, “and I know from experience that
you cannot play anything either of us would call music by pressing only the keys
C1, C2, . . . , C8 from this unimaginative, repetitive score.”

“A mathematical proof compels belief!” says the second. “How can you argue with
the picture proof from Fig. 10.5 that even shows us the amplitude and phase of the
notes?”

“I argue because the conclusion is ridiculous!” responds the pianist. “There is
something about the proof that makes no sense within the normal context of music.

Resolve this conflict.

Hint. Musicians are accustomed to beat rates that range from 40/min to 200/min.
What (quarter note) beat rate corresponds to the score of Fig. 10.3? Assume that the
quarter note C4 is represented by a suitably dilated Haar wavelet (1) with a support
of 1/261.6 Hz.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 10.3 Use the analysis equation (17) to find the coefficients F [m, k] for
the Haar wavelet synthesis (4) of the function

f(x) =

{
1 if 0 < x < 1

3

0 otherwise.

Hint. The nonzero coefficient is 2m/3 whenm = 0,−1,−2, . . . and 1/3 whenm = 1, 2, . . . .
You may find it helpful to observe that

1
3

= (.010101 . . . )2

and that the critical wavelet is centered at

x = (.010)2, (.011)2, (.01010)2, (.01011)2, . . .

when m = 1, 2, 3, 4, . . . .

. .......

.
.. ............ .... .....••• EXERCISE 10.4 Let the real column vectors αm,βm, m = 0, 1, 2, . . . , from (20)
have components linked by (24).

(a) Write down the 8 × 8 matrices M3,1,M3,2,M3,3 for the linear mappings

α3
M3,1
� α2 &β2

M3,2
� α1 &β1 &β2

M3,3
� α0 &β0 &β1 &β2

of (26).

Hint. Use 0,1, and h := 1
2 for the elements.

(b) Find the 8 × 8 product matrix

M3 := M3,3M3,2M3,1

for the Haar wavelet transform

α3
M3
� αw

3 .

Hint. You should obtain (h3, h3, h2, 0, h, 0, 0, 0)T for the first column.

(c) Write down the 16 × 16 matrix M4 for the Haar wavelet transform

α4
M4
� αw

4 .

Note. The matrix Mn has (n + 1)2n nonzero elements, n = 1, 2, . . . , so a direct
application of this matrix requires approximately N log2N operations (N := 2n),
about the same as an N -point FFT. Mallat’s fast herringbone algorithm does the
same task with about N operations!
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 10.5 We usually use the data structures (25)–(27) when we work with
Mallat’s relations (23), (24). If we have been given a long train of samples (e.g., from
an audio signal) we may prefer to perform the computation in place. For example, when
N = 8 we can write

α3 = (α3[0], α3[1], α3[2], α3[3], α3[4], α3[5], α3[6], α3[7])

� (α2[0], β2[0], α2[1], β2[1], α2[2], β2[2], α2[3], β2[3])

� (α1[0], β2[0], β1[0], β2[1], α1[1], β2[2], β1[1], β2[3])

� (α0[0], β2[0], β1[0], β2[1], β0[0], β2[2], β1[1], β2[3]).

At each step αm[2k], αm[2k + 1] are overwritten by αm−1[k], βm−1[k], respectively.

(a) Let α have N = N02m components for some m = 1, 2, . . . and N0 = 1, 2, . . . .
Formulate an in place algorithm that overwrites α with the partial discrete Haar
wavelet transform obtained from m steps of the above scheme.

Note. Algorithm 6.5 performs an in place calculation of the discrete Fourier transform.

(b) Formulate an in-place inverse for the algorithm of (a).

. . ..
..

..
.......... . ..... ...... ...••• EXERCISE 10.6 In this exercise you will study ordinary solutions of the dilation
equation

φ(x) = 2φ(2x), −∞ < x < ∞.

(The generalized solution φ = δ was found in the text.)

(a) Let φ be an ordinary solution of the above dilation equation, let a > 0, and assume
that you know

φa(x) :=

{
φ(x) if a ≤ x < 2a

0 otherwise.

Show how to find φ at each point of (0,∞).

Hint. Sum suitably scaled dilates of φa.

(b) Find or construct several essentially different ordinary solutions of the above dilation
equation.

(c) Show that φ ≡ 0 is the only continuous solution of the above dilation equation.

(d) Show that no support-limited ordinary solution of the above dilation equation satisfies
(30).

.
....

. . .

....... ..... .
..
.. ... ....••• EXERCISE 10.7 In this exercise you will derive (37) by using a dilation rule for
the convolution product.

(a) Let φ0, φ1, φ2, . . . and τ be given by (33) and (38). Show that

φn(x) = 2τ(2x) ∗ 2φn−1(2x), n = 1, 2, . . . .

(b) Show that if g := f1 ∗ f2 ∗ · · · ∗ fm, then

2g(2x) = 2f1(2x) ∗ 2f2(2x) ∗ · · · ∗ 2fm(2x).
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(c) Use (a) and (b) to derive (37).

Note. In the text we obtain (37) from (36).

.
.. . .

.

.. ......... ...... .....••• EXERCISE 10.8 Let φ satisfy the dilation equation (29) and let τ be given by
(38).

(a) Show that
φ(x) = 2τ(2x) ∗ 2φ(2x).

(b) More generally, show that

aφ(ax) = 2aτ(2ax) ∗ 2aφ(2ax) when a > 0.

(c) Use (b) to derive the identity

φ(x) = φn(x) ∗ 2nφ(2nx), n = 0, 1, 2, . . . ,

where φ0, φ1, φ2, . . . are given by (37).

. .. .....
.. ...
...... .. .... ....••• EXERCISE 10.9 Let c0, c1, . . . , cM satisfy (28), and let φ be a support-limited
generalized solution of the dilation equation (29) with Φ(0) = 0. Show that φ = 0. [In
this way you prove that there is at most one support-limited solution of (29)–(30).]

Hint. Use the factorization

Φ(s) = Φn(s) · Φ
(
s

2n

)
, n = 0, 1, 2, . . .

from Ex. 10.8 with the uniform bound (45) to show that Φ vanishes on every interval
[−b, b].

. . .
..

..
.
.. ............ .. ......••• EXERCISE 10.10 Let c0, c1, . . . , cM satisfy (28) and let φ be the support-limited
generalized solution of (29), (30). Let p = 1, 2, . . . be chosen, and let

θ0(x) := δ(p)(x)

θn(x) :=
M∑

m=0

2pcmθn−1(2x−m), n = 1, 2, . . . ,

see (33). Show that φ(p) is the weak limit of θ0, θ1, θ2, . . . .

...
.. .... ..........
... .... .....••• EXERCISE 10.11 Let M ≥ 1, let c0, c1, . . . , cM satisfy (28), and assume that
c0 �= 0, cM �= 0. Show that the dilation equation (29) has no solution of the form

φ(x) =
N∑

n=1

anδ(x− xn)

with 0 ≤ x1 < x2 < · · · < xN and an �= 0 for each n.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 10.12 Let c0, c1, . . . , cM satisfy (28) (with cm = 0 when m < 0 or
m > M) and let φ, ψ be the corresponding support-limited generalized functions from
(29)–(31). Express in terms of φ, ψ the solution of (29)–(31) that we obtain when we
replace cm by:

(a) the reflection cRm = c−m, m = 0,±1,±2, . . . ;

(b) the translate cTm = cm−m0 , m = 0,±1,±2, . . . where m0 is an integer;

(c) the reflected translate cRT
m = cM−m, m = 0,±1,±2, . . . .

.. .
....

.. . .

..... ......
..
.. .... ...••• EXERCISE 10.13 Let c0, c1, . . . , cM satisfy (28) and assume that the correspond-
ing support-limited generalized solution of (29)–(30) has the symmetry φ(x) = φ(M − x),
−∞ < x < ∞. Show that cm = cM−m, m = 0, 1, . . . ,M .

Note. Such symmetry is incompatible with the orthogonality constraints (87) when
M > 1. (Additional details can be found in Chapter 8 of Daubechies’ monograph.)

. . .... .......... .... ... ...... ...••• EXERCISE 10.14 Let P be a polynomial and let K = 1, 2, . . . .

(a) Show that (1 + z)K evenly divides P(z) if and only if

P(−1) = P ′(−1) = · · · = P(K−1)(−1) = 0.

Hint. Taylor’s formula from Ex. 2.28.

(b) Show that (1 + e−2πis)K evenly divides T (s) := P(e−2πis) if and only if

T
( 1

2

)
= T ′ ( 1

2

)
= · · · = T (K−1) ( 1

2

)
= 0.

Note. We use this result to produce the factorizations (55) and (59).

. .
..

.. . .

........ ....

.. .... ....••• EXERCISE 10.15 Let c0, c1, . . . , cM satisfy (28) and assume that (35) has the
factorization (55). For n = 1, 2, . . . let

Φn(s) :=
n∏

ν=1

T
(
s

2ν

)
, Fn(s) :=

n∏
ν=1

T1

(
s

2ν

)
, Pn(s) :=

n∏
ν=1

1
2
(1 + e−2πis/2ν

).

Establish the identity

lim Φn = limPn · limFn

from (56) when these limits are taken pointwise and when they are taken weakly.

Hint. You know from the text that Φ1,Φ2, . . . converges pointwise as well as weakly to a
bandlimited function Φ.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 10.16 In this exercise you will show that “graphical convergence” of
φ1, φ2, . . . that you observe in Figs. 10.9 and 10.10 cannot occur unless the corresponding
coefficients c0, c1, . . . , cM satisfy the regularity condition T

( 1
2

)
= 0.

(a) Let N = 1, 2, 3, . . . , let a0, a1, . . . , aN be real, let

f [e](x) :=
∑

m=even

amδ
(
x− m

N

)
, f [o](x) :=

∑
m=odd

amδ
(
x− m

N

)
, f(x) := f [e](x)+ f [0](x),

and let F [e], F [o], F be the corresponding Fourier transforms. Show that

F [e](s) =
1
2

{
F (s) + F

(
s+

N

2

)}
, F [o](s) =

1
2

{
F (s) − F

(
s+

N

2

)}
.

(b) Let c0, c1, . . . , cM satisfy (28) and let φ1, φ2, . . . be given by (37)–(38). Let φ[e]
n be

obtained by removing from φn the δ’s at x = (2m+ 1)/2n, m = 0, 1, . . . . Show that
φ

[e]
n has the Fourier transform

Φ[e]
n (s) = Φn−1(s) · 1

2

{
T
(
s

2n

)
+ T

(
s

2n
+

1
2

)}
.

Hint. Use (a), (36), and the 1-periodicity of (35).

(c) After examining Figs. 10.9 and 10.10 you might reasonably conjecture that
φ

[e]
1 , φ

[e]
2 , . . . has the weak limit 1

2φ. Show that this is the case only if T
( 1

2

)
= 0.

Hint. Use (b) to show that
1
2Φ(s) = Φ(s) · 1

2

{
T (0) + T

( 1
2

)}
when limφ

[e]
n = 1

2 φ.

Note. When M = 2, c0 = 1, c1 = 0, c2 = 1 we have T ( 1
2 ) = 1. You may wish to find

the weak limits of the corresponding sequences φ[e]
1 , φ

[e]
2 , . . . and φ[o]

1 , φ
[o]
2 , . . . .

(d) Let M = 1 and let c0 + c1 = 2. What additional constraints must you impose on
c0, c1 to ensure that

limφ
[e]
n = limφ

[o]
n ?

.
.
.. ..
..
.. ........ ... ..... ....••• EXERCISE 10.17 Let φ be a support-limited generalized function with φ∧(0) = 1
[e.g., as is the case for any scaling function obtained from (28)–(30)]. In this exercise you
will study the convolution equation φ ∗ P = Q associated with (71).

(a) Show that if P is a polynomial of degree n, then so is φ ∗ P.

Hint. Use the differentiation rule (φ ∗ P)(k) = φ ∗ P(k), k = 0, 1, . . . from Ex. 7.19.

(b) Let Q be a polynomial of degree n. Show that there is a unique polynomial P (of
degree n) such that φ ∗ P = Q.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 10.18 Derive the formula
∞∑

k=−∞
{k3 + 3µ1k

2 + [6µ2
1 − 3µ2]k + [6µ3

1 − 6µ1µ2 + µ3]}φ(x− k) = x3 if K ≥ 4

that follows (73), (74), and (75).

Hint. In view of (71) you can find a0, a1, a2 to make∫ ∞

−∞
{(x− u)3 + a2(x− u)2 + a1(x− u) + a0}φ(u) du = x3

or you can simplify

P∧(s) =
1

Φ(s)
· δ′′′(s)
(−2πi)3

by using (7.82) and (72).

.
.

.. . .
......... ....
.. .... ....••• EXERCISE 10.19 Let c0, c1, . . . , cM satisfy (28) and let

Mk :=
M∑

m=0

cmm
k, k = 0, 1, 2, . . . .

Let φ be the support-limited scaling function of (29)–(30) and let µ0, µ1, µ2, . . . be the
moments of (72).

(a) Show that

µk =
1

2k+1

k∑
�=0

(
k

	

)
µ�Mk−�, k = 0, 1, . . . .

Hint. Use the chain rule and the Leibnitz rule (2.29) for the kth derivative of

Φ(2s) = Φ(s) · T (s).

(b) Using (a), derive the recursion

µ0 = 1, µk =
1

2(2k − 1)

k−1∑
�=0

(
k

	

)
µ�Mk−�, k = 1, 2, . . .

for expressing the moments (72) in terms of c0, c1, . . . , cM .

.
..
.

........ .... ..... .... ...••• EXERCISE 10.20 Let µ1, µ2 be moments (72) of the scaling function φ for the
Daubechies coefficients (39). Show that

µ1 =
3 − √

3
2

, µ2 =
6 − 3

√
3

2
.

Hint. First use the analysis from Ex. 10.19 to derive the identities

µ1 =
1
2
M1, µ2 =

1
6
[M2 +M2

1 ].
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 10.21 Let µ1, µ2 be the moments (72) for a piecewise continuous
support-limited scaling function φ constructed from coefficients c0, c1, . . . , cM that sat-
isfy (28), (58) with K ≥ 3, and (87). Show that µ2 = µ2

1.

Hint. Multiply (75) by φ(x) and integrate.

. ... .
....

. .......... ...... ....••• EXERCISE 10.22 Let the scaling function φ be constructed from (28)–(30), and
assume that φ is continuous. Show that

∞∑
k=−∞

φ
(
k

2p

)
= 2p for each p = 0, 1, 2, . . . .

Hint. Use (73) with a suitable induction.

. .... ..... ......... .. .. ......••• EXERCISE 10.23 Let φ be the support-limited scaling function of (28)–(30) cor-
responding to the Daubechies coefficients (39).

(a) Use (72)–(74) to verify that

φ(x) + φ(x+ 1) + φ(x+ 2) = 1

µ1φ(x) + (µ1 − 1)φ(x+ 1) + (µ1 − 2)φ(x+ 2) = x

when 0 ≤ x ≤ 1.

(b) Express φ(x + 1) and φ(x + 2) in terms of φ(x) when 0 ≤ x ≤ 1 and thereby show
that φ is determined by its values in [0, 1].

Hint. The moment µ1 is given in Ex. 10.20.

Note. More generally, the Daubechies scaling function φ with M = 2K − 1 is determined
by its values on [0,K − 1], K = 2, 3, . . . .

. .. .....
.. ...
....... ..... ....••• EXERCISE 10.24 Let the trigonometric polynomial (35) be chosen so that T (0) =
1, T (−s) = T (s), |T (s)|2 + |T (s+ 1

2 )|2 = 1, and T (s) �= 0 for 0 ≤ s < 1
2 . Assume further

that the series (82) converges uniformly on every finite interval to a continuous function
A. Show that A(s) ≡ 1 [and thereby establish the orthogonality relations (78)].

Hint. Suppose that A takes its maximum or minimum value at some point s0 with
0 < s0 < 1. Use (84) and (85) to show that

min
{

A
(
s0
2

)
,A
(
s0
2

+
1
2

)}
≤ A(s0) ≤ max

{
A
(
s0
2

)
,A
(
s0
2

+
1
2

)}
and thereby infer that A(s0) = A(s0/2) = A(s0/4) = · · · .
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 10.25 Let c0, c1, . . . , cM satisfy the orthogonality constraints (87)
with c0 �= 0, cM �= 0 and M = 1, 3, 5, . . . . Show that∑

n

{ck−2ncm−2n + (−1)m−kcM−m−2ncM−k−2n} =

{
2 if k = m

0 otherwise.

Hint. Observe that you can write the sum in the form∑
�=even

c�+kc�+m + (−1)m−k
∑

�=odd

c�−mc�−k,

and then consider separately the cases where k is even, odd and m is even, odd.

. . .... .......... .... ... ...... ...••• EXERCISE 10.26 Let c0, c1, . . . , cM satisfy (28) and the orthogonality constraints
(87). Let

θ0(x) := P
(
x− 1

2

)
, θn(x) :=

M∑
m=0

cmθn−1(2x−m), n = 1, 2, . . . ,

and assume that θ0, θ1, θ2, . . . converges uniformly on R to a piecewise continuous function
θ.

(a) Show that θ1, θ2, . . . and θ vanish outside the interval [0,M ].

(b) Show that θ satisfies the dilation equation (29)–(30).

(c) Show that ∫ ∞

−∞
θn(x− k)θn(x− 	) dx =

{
1 if k = 	

0 if k �= 	, n = 1, 2, . . .

and ∫ ∞

−∞
θ(x− k)θ(x− 	) dx =

{
1 if k = 	

0 if k �= 	.

(d) What goes wrong when we try to use this cascade algorithm with the coefficients (86)?

. .
....

. ........ ..... ...
.. .. ....••• EXERCISE 10.27 Two Fourier analysis students are trying to modify the algo-
rithm of Fig. 10.13 so that it will generate the Daubechies coefficients c0, c1, . . . , cM with-
out using the discrete convolution product

(c0, c1, . . . , cM ) = 2−K(1, 1, 0, . . . , 0) ∗ · · · ∗ (1, 1, 0, . . . , 0) ∗ (γ0, γ1, . . . , γK−1, 0, . . . , 0).

“The algorithm produces the coefficients of Γ from samples of Q0(s) = Γ(s)·Γ(−s),”
says the first student, “so if we begin with samples of Q(s) = T (s) ·T (−s) from (100)
we will end up with the desired coefficients of T .”

“Your program will abort” responds the second. “The best way to avoid the con-
volution is to apply the factor cosK(nπ/N) to the sample Γ(−n/N) from the penul-
timate step of the algorithm.”

(a) What is wrong with the first suggestion?

(b) Show that the second suggestion will work (when N is sufficiently large).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 10.28 In this exercise you will show that the functions φ, ψ from
Fig. 10.14 are continuous when M = 2K − 1 with K = 2, 3, 4, . . . .

(a) Show that the trigonometric polynomial (101) has the maximum

Q0

(1
2

)
=

(
2K − 1
K − 1

)
.

(b) Show that (
2K − 1
K − 1

)
≤ 3 · 4K−2 when K = 2, 3, 4, . . . .

(c) Use (a)–(b) to establish the bound

|Γ(s)| ≤
√

3 2K−2

for the (hermitian) trigonometric polynomial Γ from the spectral factorization (102).

(d) Use (61) (with TK = Γ) and (c) to show that

pK := log2 max
0≤s≤2π

|Γ(s)| ≤ K − 1.2.

(e) Use (48) with (d) to bound the infinite product from (60) and thereby show that
|Φ(s)| and |s1.2 · Φ(s)| are bounded on R when K ≥ 2.

(f) Use (e) with Ex. 1.38 to show that φ is continuous.

(g) Show that ψ is continuous.

Note. You can sharpen the analysis slightly by using

K − 1
2

log2

(
2K − 1
K − 1

)
in place of 1.2 when K = 3, 4, . . . .

. .. .....
.. ...
....... ..... ....••• EXERCISE 10.29 Let φ(x) be a piecewise continuous function that vanishes when
x ≤ 0 or x ≥ M .

(a) Show that at most M − 2 + �b	 − 
a� +
⌈

a� − a

⌉
+
⌈
b− �b	

⌉
terms contribute to the

sum

f0(x) =
∞∑

k=−∞
α0[k]φ(x− k)

on the finite interval a ≤ x ≤ b. Here � 	, 
 � are the floor, ceiling functions from
Ex. 4.29.

(b) Find a similar estimate for the number of terms that contribute to the sum

fm(x) =
∞∑

k=−∞
αm[k]φ(2mx− k)

on [a, b].
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 10.30 Let φ, ψ be piecewise continuous support-limited functions that
satisfy the orthogonality relations (79)–(81) and the two scale relations (29), (31),(90),
(91). Let f be a piecewise continuous function on R, and let fm, dm be given by
(106)–(109). Establish the multiresolution identity (111) by working out the details for
the following argument.

(a) Use (90), (91) to establish the identity

φ(2m+1x− k) =
1
2

∑
n

{ck−2nφ(2mx− n) + (−1)kcM−k+2nψ(2mx− n)}

when m = 0,±1,±2, . . . and k = 0,±1,±2, . . . .

Hint. Consider separately the cases where k is even and where k is odd.

(b) Use (a) with (108)–(109) to show that

αm+1[k] =
∑

n

{ck−2nαm[n] + (−1)kcM−k+2nβm[n]}.

(c) Use (106)–(107) with (29), (31), and (b) to show that

fm(x) + dm(x) = fm+1(x), −∞ < x < ∞, m = 0,±1,±2, . . . .

.. . .
......... ....

.. .... ....••• EXERCISE 10.31 Let f be a continuous, absolutely integrable function on R, and
assume that f(x) → 0 as x → ±∞. Let φ, ψ be the Daubechies scaling function, wavelet
for some M = 3, 5, . . . (as described in Section 10.2). Let the wavelet transform F be
defined by (17) [using Daubechies’ ψ in place of the Haar wavelet (1)]. In this exercise you
will establish the synthesis equation (4) [using Daubechies’ ψ in place of the Haar wavelet
(1)].

(a) Let fm be defined by (106) and (108). Show that

|fm(x)| ≤ M2m · {max |φ|}2 ·
∫ ∞

−∞
|f(x)| dx.

(b) Let dm be defined by (107) and (109). Show that

f(x) = lim
I→−∞
J→+∞

J∑
m=I

dm(x) =:
∞∑

m=−∞

∞∑
k=−∞

βm[k]ψ(2mx− k)

and thereby establish (4) (with F [m, k] := βm[k]).

Hint. Use (115) and (a) with the inequality∣∣∣∣f(x) −
J∑

m=I

dm(x)

∣∣∣∣ ≤ |f(x) − fJ+1(x)| + |fI(x)|.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 10.32 Let c0, c1, . . . , cM satisfy the orthogonality constraints (87)
with c0 �= 0, cM �= 0 and M = 1, 3, 5, . . . . Give a direct argument to show that the
operators L−, H− L+, H+ from (118), (119), (122), (123) satisfy the identities:

(a) (125); (b) (126); (c) (127).

Hint. You may wish to use (89) and the identity of Ex. 10.25.

. . .
..
... .......... ...
. .... ....••• EXERCISE 10.33 Use (125)–(127) to verify the following identities for the opera-
tors (118)–(119), (122)–(123) constructed from coefficients c0, c1, . . . , cM that satisfy (87),
see Ex. 10.32.

(a) (L+L−)(L+L−) = L+L− (c) (L+L−)(H+H−) = (H+H−)(L+L−) = 0

(b) (H+H−)(H+H−) = H+H− (d) L+L+L−L−+L+H+H−L−+H+H− = I

. ....
..

..
.. ............ .... .....••• EXERCISE 10.34 Let f be a suitably smooth function on R, and let fm be the
frame (106) having coefficients (108) computed with the Daubechies scaling function φ
obtained from the coefficients (39). In this exercise you will analyze the errors associated
with the approximations

αm[k] ≈ f(2−mk), αm[k] ≈ fm(2−mk), and f(2−mk) ≈ fm(2−mk).

(a) Use (108) (with Taylor’s formula) to show that

αm[k] − f(2−mk) = µ1f
′(2−mk) · 2−m + µ2

f ′′(2−mk)
2!

· 2−2m + · · ·

≈ 3 − √
3

2
f ′(2−mk) · 2−m when m is large.

Hint. The moments µ1, µ2 are evaluated in Ex. 10.20.

(b) Show that

αm[k] − fm(2−mk) ={φ(1) + 2φ(2)}f ′(2−mk) · 2−m

+
1
2
{(2µ1 − 1)φ(1) + (4µ1 − 4)φ(2)}f ′′(2−mk) · 2−2m + · · ·

≈3 − √
3

2
f ′(2−mk) · 2−m when m is large.

Hint. Begin by deriving the identity

αm[k] − fm(2−mk) = φ(1){αm[k] − αm[k − 1]} + φ(2){αm[k] − αm[k − 2]}

and then use (108) with Taylor’s formula. The samples of φ are given in (133).
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(c) Use (a) and (b) to show that

f(2−mk) − fm(2−mk) = 1
2{(2µ1 − 1)φ(1) + (4µ1 − 4)φ(2)

− µ2}f ′′(2−mk) · 2−2m + · · ·
≈ 1

4f
′′(2−mk) · 2−2m when m is large.

Note. If f is a suitably smooth function and φ is a piecewise continuous scaling
function constructed from coefficients c0, c1, . . . , cM that satisfy (28) and (58), then
we can use a similar analysis to show that

αm[k] − f(2−mk) ≈ C1f
′(2−mk) · 2−m

αm[k] − fm(2−mk) ≈ C2f
′(2−mk) · 2−m

f(2−mk) − fm(2−mk) ≈ C3f
(K)(2−mk) · 2−mK

when m is sufficiently large. Here C1, C2, C3 are constants that depend on φ (but not
on m, k, or f).

.. .
....

.. . .

..... ......
..
.. ... ...••• EXERCISE 10.35 Let fm, αm be constructed from f(x) := e−128x2

(a translate
of the function f from Fig. 10.17) as described in Ex. 10.34.

(a) Show that max |f ′(x)| = 16e−1/2, max |f ′′(x)| = 256.

(b) Use (a) with the analysis from Ex. 10.34 to show that

max |αm[k] − f(2−mk)| ≈ 6.15 · 2−m

max |αm[k] − fm(2−mk)| ≈ 6.15 · 2−m

max |f(2−mk) − fm(2−mk)| ≈ 64 · 4−m

when m is large.

Note. These approximations are quite good even when m = 8.

. .
....

. ........ ..... ...
.. ... ....••• EXERCISE 10.36 Let f be a continuous support-limited function on R with the
modulus of continuity (114). Let φ be a piecewise continuous support-limited scaling
function constructed from (29)–(30) using coefficients c0, c1, . . . , cM that satisfy (28) and
(58) with K ≥ 1. Show that∣∣∣∣f(x) −

∑
k

f(2−mk)φ(2mx− k)

∣∣∣∣ ≤ M · max |φ| · ω(2−mM), −∞ < x < ∞.

Hint. Begin by studying the proof of (115).
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 10.37 Let φ be a piecewise continuous scaling function that vanishes
outside of the interval [0,M ], M = 1, 2, 3, . . . , and assume that φ satisfies the orthogonality
relations (79) as well as (73) and the constraint∫ M

0
φ(x) dx = 1

from (30). Let fm be the approximation of (106) and (108) for the Heaviside function

f(x) :=

{
1 if x > 0

0 if x < 0.

(a) Show that

f(x)−f0(x) =



I1φ(x+ 1) + I2φ(x+ 2) + · · · + IM−1φ(x+M − 1)

when x > 0

(I1 − 1)φ(x+ 1) + (I2 − 1)φ(x+ 2) + · · · + (IM−1 − 1)φ(x+M − 1)

when x < 0.

Here

In :=
∫ n

0
φ(x) dx, n = 1, 2, . . .

(with In = 1 when n ≥ M).

(b) Find a corresponding expression for f(x) − fm(x), m = 0,±1,±2, . . . .

Note. You can use this result to study the Gibbs ripple illustrated in Fig. 10.11.

.. . .

..

... ...
........

..

. ... ....••• EXERCISE 10.38 Let M = 2K − 1 for some K = 2, 3, 4, . . . , let c0, c1, . . . , cM be
obtained from the spectral factorization of (100), and let φ be the corresponding support-
limited scaling function from (29)–(30). This exercise will show you how to compute the
samples φ(n), n = 1, 2, . . . ,M−1 that are used to define the operator (134) and its inverse.

(a) Let α[n] := φ(n), n = 0,±1,±2, . . . (so that α is a function on Z). Show that

α = S2(c ∗ α)

where S2 is the dilation operator (140).

Hint. Use the dilation equation (29) with x replaced by n.

(b) Show that when M = 7,

φ[1]
φ[2]
φ[3]
φ[4]
φ[5]
φ[6]


 =



c1 c0 0 0 0 0
c3 c2 c1 c0 0 0
c5 c4 c3 c2 c1 c0
c7 c6 c5 c4 c3 c2
0 0 c7 c6 c5 c4
0 0 0 0 c7 c6






φ[1]
φ[2]
φ[3]
φ[4]
φ[5]
φ[6]


 .
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Analogously, when M = 3, 5, 7, . . . we can find c0, c1, . . . , cM numerically, form the
matrix [c2i−j ]M−1

i,j=1, and obtain φ(1), φ(2), . . . , φ(M − 1) by suitably normalizing the
components of an eigenvector that corresponds to the eigenvalue λ = 1.

(c) Use the identity of (a) with (143) to show that

α∨ = 2L−α
∨

where α is the sample function from (a), ∨ is the reflection tag (5.35), and L− is the
operator (118).

Note. If you work with wavelets you will have code that allows you to apply the
operator L− to a function on P2M . Here is an easy way to compute φ(1), . . . , φ(M−1).
Set

α0 :=
1

M − 1
(0, 1, 1, . . . , 1) on PM

and compute
αn+1 :=

{
2L−(P2αn)∨

}∨
, n = 0, 1, 2, . . . .

Here
P2(x0, x1, . . . , xM−1) := (x0, x1, . . . , xM−1, 0, 0, . . . , 0)

is the end padding operator of Ex. 5.35 (that doubles the number of components).
The sequence α0,α1, . . . rapidly converges to

α := (0, φ[1], φ[2], . . . , φ[M − 1])

when M is of modest size, e.g., M ≤ 21.

. ..
..

.

.......... . ... .. ..... ...••• EXERCISE 10.39 The operator (134) has the representation

P+α = p ∗ α
where

p[n] :=

{
φ(n) if n = 1, 2, . . . ,M − 1

0 otherwise.

When φ is one of the Daubechies scaling functions from Section 10.2 with M = 3, 5, . . . , 21,
you can (numerically) verify that

P (s) :=
M−1∑
n=1

φ[n]e−2πins

has the factorization

P (s) = e−2πis
M−2∏
n=1

(
1 − ζne

−2πis

1 − ζn

)

with |ζn| < 1 for each n. Within this context you will learn to solve P+α = γ to find
α = P−γ.
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(a) Let α, γ be bounded functions on R and let |ζ| < 1. Show that

γ[k] = α[k] − ζ α[k − 1], k = 0,±1,±2, . . .

if and only if

α[k] = γ[k] + ζ γ[k − 1] + ζ2γ[k − 2] + · · · , k = 0,±1,±2, . . . .

(b) Let γ be a bounded sequence on Z and let p, P be as described above. Show that
there is a unique bounded solution α to the equation p ∗ α = γ.

Hint. Write p = C · (. . . , 0, 1, . . . ) ∗ (. . . , 1,−ζ1, . . . ) ∗ · · · ∗ (. . . , 1,−ζM−1, . . . ) where
C �= 0 is a constant, and then use (a).

(c) Let γ be a suitably localized function on Z. Explain why the same is true of the
solution α of p ∗ α = γ.

(d) Let γ be a function on Z that is suitably localized in [0, N ] for some sufficiently large
N . Explain how you would use the FFT to compute a good approximate solution of
p ∗ α = γ and thereby obtain α = P−γ.

Note. Exercise 10.38 shows how to compute the samples φ(1), φ(2), . . . , φ(M − 1)
that you need for this purpose.

. . ..

.. .
...
.. . ...
..... ..... ....••• EXERCISE 10.40 This exercise will show you two ways to compute samples
φ(n/2m), ψ(n/2m) for the Daubechies scaling functions and wavelets shown in Fig. 10.14.
Both schemes make use of the samples φ(n), n = 0,±1,±2, . . . from Ex. 10.38.

(a) Knowing φ(n), n = 0,±1,±2, . . . , explain how to compute in turn the samples
φ(n/2m), n = 0,±1,±2, . . . for each m = 1, 2, . . . .

Hint. Use the dilation equation (29).

(b) Knowing the samples φ(n/2m−1), n = 0,±1,±2, . . . , explain how to compute the
samples ψ(n/2m), n = 0,±1,±2, . . . .

(c) For an alternative calculation, show that

φ(n/2m) = (P+Lm
+ δ)[n], n = 0,±1,±2, . . . , m = 1, 2, . . .

ψ(n/2m) = (P+Lm−1
+ H+δ)[n], n = 0,±1,±2, . . . , m = 1, 2, . . . ,

where L+, H+, P+ are the operators (122), (123), and (134).

Hint. Use (128), (129), and (135).

. . .
..

..
.
.. ............ ... ......••• EXERCISE 10.41 Suppose that the output of the filter bank from Fig. 10.19 is a
translate of the input, i.e., α+[n] = α[n− n0], n = 0,±1,±2, . . . for some integer n0. (In
practice, the output is always delayed, i.e., n0 > 0.)

(a) Suitably generalize the constraints (159)–(160) (that were derived for the case where
n0 = 0).

(b) Express the constraints from (a) in terms of convolution products of the filter coeffi-
cient sequences c−, d−, c+, d+.

Hint. Let ca−[n] := (−1)nc−[n], da
−[n] := (−1)nd−[n].
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 10.42 Let c−, c+, d−, d+ be real sequences (each with finitely many
nonzero components) and assume that the Fourier transforms (153) satisfy the constraints
(159), (160) for a perfect reconstruction filter bank. Let m−, m+, n−, n+ be integers.
Show that the translated sequences

ct−[n] := c−[n−m−], ct+[n] := c+[n−m+],

d t
−[n] := d−[n− n−], d t

+[n] := d+[n− n+]

produce a perfect reconstruction filter bank if and only if m− +n− is even and m− +m+ =
n− + n+ = 0.

Hint. When ct−, ct+, dt
−, dt

+ correspond to a perfect reconstruction filter bank you can use
the antialiasing constraint (159) to write[

1 1
(−1)m−e−2πi(m−+m+)s (−1)n−e−2πi(n−+n+)s

][
C−

(
s+ 1

2

)
C+(s)

D−
(
s+ 1

2

)
D+(s)

]
=

[
0
0

]
,

and thereby infer that (−1)m− = (−1)n− and that m− +m+ = n− + n+.

. ..
..

.

.......... . ... .. ...... ...••• EXERCISE 10.43 Let c−, c+ be real sequences (each with finitely many nonzero
components), let C−, C+ be the Fourier transforms (153), and let Q be given by (165).
Show that the biorthogonality constraint (167) is equivalent to (166).

.

.

... .

........ .... .... .... ...••• EXERCISE 10.44 Let c−, c+, d−, d+ be real sequences (each with finitely many
nonzero components) and assume that the Fourier transforms (153) satisfy the constraints
(159), (160) for a perfect reconstruction filter bank. In this exercise you will show that d−,
d+ and c−, c+ must be linked by a suitably scaled variation of the alternating flip relations
(163). For this purpose we will set z := e2πis and write

C−(s) =
C−(z)
zm− , C+(s) =

C+(z)
zm+

, D−(s) =
D−(z)
zn− , D+(s) =

D+(z)
zn+

where m−, m+, n−, n+ are integers and C−, C+, D−, D+ are polynomials that do not
vanish at z = 0.

(a) Use (159) to show that m− +m+ = n− + n+ and that

(−1)m−C−(−z)C+(z) + (−1)n−D−(−z)D+(z) = 0.

(b) Use (160) (and the identity m− +m+ = n− + n+) to show that

C−(z)C+(z) + D−(z)D+(z) = 2zm−+m+ .

(c) Show that

C−(−z) = (−1)m−D+(z) · P(z)

D−(−z) = −(−1)n−C+(z) · P(z)

for some polynomial P.

Hint. From (b) you know that C+ and D+ have no common factors.
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(d) Show that P(z) = −azp for some constant a �= 0 and some integer p.

Hint. Use (b) with the factorizations from (c).

(e) Show that
C−(z)
zm− · C+(z)

zm+
− (−1)p+m+−n− C−(−z)

(−z)m− · C+(−z)
(−z)m+

= 2

and thereby infer that N := p+m+ − n− is odd.

(f) Show that

D−(s) = −aC+

(
s+ 1

2

)
e2πiNs

D+(s) = −a−1C−
(
s+ 1

2

)
e−2πiNs.

(g) Show that

d−[n] = a(−1)nc+[n+N ]

d+[n] = a−1(−1)nc−[n−N ].

.. . .
....

. .. ...........
..
. ... ....••• EXERCISE 10.45 In this exercise you will use three methods to find the trigono-
metric polynomial Q that corresponds to the Daubechies scaling function with M = 3, see
Fig. 10.14.

(a) Use (35) with the coefficients (39) to verify that

Q(s) := |T (s)|2 =
1
16

{8 + 9 cos(2πs) − cos(6πs)}.

(b) Derive the above formula for Q by using (99) with K = 2.

(c) Derive the above formula for Q by using (100) with K = 2.

. . ..

.. .
...
.. . ...
..... ..... ....••• EXERCISE 10.46 In this exercise you will find the coefficients for the 9/7 FBI
filters that are used to compress digitized fingerprint files.

(a) Let K = 4. Show that the trigonometric polynomial

Q(s) = cos8(πs){cos6(πs)+ 7 cos4(πs) sin2(πs)+ 21 cos2(πs) sin4(πs)+ 35 sin6(πs)}

from (100) can be written in the form

Q(s) =
z−7

212 · (z + 1)8 · {−5 + 40z − 131z2 + 208z3 − 131z4 + 40z5 − 5z6}

where z := e2πis.
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(b) Verify that the 6th-degree polynomial from (a) has the roots

ζ = .32887 . . . , η = .28409 . . .+ .24322 . . . i

and thereby produce the factorization (165) with

C−(s) =
√

2 z−4
(
z + 1

2

)4 (z − η)(z − η)(z − η−1)(z − η−1)
(1 − η)(1 − η)(1 − η−1)(1 − η−1)

C+(s) =
√

2 z−3
(
z + 1

2

)4 (z − ζ)(z − ζ−1)
(1 − ζ)(1 − ζ−1)

.

(c) Use a computer to obtain the coefficients

c−[0] = .85269867 . . . , c+[0] = .78848561 . . . ,

c−[±1] = .37740285 . . . , c+[±1] = .41809227 . . . ,

c−[±2] = −.11062440 . . . , c+[±2] = −.04068941 . . . ,

c−[±3] = −.02384946 . . . , c+[±3] = −.06453888 . . . ,

c−[±4] = .03782845 . . . ,

of the polynomials C−, C+ from (b).

(d) Find corresponding coefficients d−, d+ for a perfect reconstruction filter bank.

. ..
..

.. .

......... ... .. .... ....••• EXERCISE 10.47 Let c−, d− and c+, d+ be coefficients for a perfect reconstruc-
tion filter bank, and let L−,H− and L+,H+ be the corresponding analysis and synthesis
operators from (149)–(150). Let µ be the number of nonzero coefficients from c− and d−
(as well as from c+ and d+, see Ex. 10.44). Let α be a function on PN and assume that
N = N0 · 2m for some positive integers N0,m.

(a) Show that we expend approximately µN operations when we split α into its con-
stituent parts

H−α, H−L−α, H−L2
−α, . . . , H−Lm−1

− α, Lm
− α.

(b) Show that we expend approximately µN operations when we reassemble α from the
constituent parts of (a).

Hint. Suitably generalize the analysis associated with (26) and (27).
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Musical tones

11.1 Basic concepts

Introduction

In 1799 Ludwig Von Beethoven composed his Sonata No. 8 in C minor Pathétique
and published the corresponding 18-page music score, see Fig. 11.1. A few years
ago John O’Connor used a Hamburg Steinway piano to create an audio signal from
Beethoven’s score, and TELARC� produced a digital recording of the concert. I
purchased a compact disk with this recording, and my home stereo system converts
the 13 million samples into a faithful representation of O’Connor’s rendition of
Beethoven’s work.

Figure 11.1. A portion of the Adagio from the 18-page score for
Beethoven’s Sonata No. 8 in C minor.

693



694 Musical tones

As I listen to the sonata, I hear a collage of musical tones that correspond to the
individual chords of the composition. When O’Connor strikes the keys for a chord,
the piano produces an audio signal w(t). From your study of sampling in Chapter 8,
you know that we can reconstruct a musical tone from its t-samples (provided that
t satisfies the Nyquist condition). We can synthesize the audio signal for the sonata
by adding the w’s for the individual musical tones, and we can obtain t-samples
for the sonata by adding corresponding t-samples of these w’s.

In this chapter we will explore a natural extension of these ideas. We will mathe-
matically define some function w(t), use a computer to prepare a file of t-samples,
and produce the corresponding audio signal by sending these samples to the com-
puter’s sound card. For example, if we play the samples

wn := sin
{

2π · 440 Hz · n1 sec
8000

}
, n = 0, 1, . . . , 8000

at a rate of 8000 samples/sec we produce a 440-Hz sine tone that lasts for 1 sec.
(If your sound card expects an input of 1-byte integers, you can replace each wn by
w′

n := �128(wn + 1)�.)
As you study this material you will find it very beneficial to create and play

such sound files. You might think that the musical tone from the above sam-
ples w0, w1, . . . , w8000 is comparable to that produced by striking the A4 key from
a Hamburg–Steinway piano since both correspond to the same 440-Hz pitch, see
Appendix 8. The pitch is the same, but your ear can easily distinguish between the
simplistic computer-generated sinusoid and the rich auditory sensation produced by
the time-varying overtones in the sound that comes from a concert piano!

Perception of pitch and loudness

The human auditory system will respond to a sinusoidal pressure wave

w(t) := A sin(2πft) (1)

when the amplitude A > 0 and the frequency f > 0 are suitably chosen. We will
briefly describe how these parameters affect our perception of the pitch and loudness
of such a tone. You can find additional details in the psychoacoustics chapter of
The Computer Music Tutorial or Benson’s text as cited in the references.

The pitch of (1) is determined by the frequency parameter f . As a rule, you can
hear the tone when

20 ≤ f ≤ 20000 Hz.

(Of course, there are individual differences: The lower limit varies from 20 to
60 Hz and the upper limit varies from 8000 to 25000 Hz.) Within this range, the
ear perceives frequency on a logarithmic scale, i.e., the musical interval between
tones having the frequencies f1, f2 is determined by the ratio f2/f1. For example,
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when you press in turn the piano keys for the frequencies

. . . , 110, 220, 440, 880 Hz, . . .

(see Appendix 8), you will find that successive tones seem to be evenly spaced in
pitch. You can use any consecutive tones from this sequence to sing the first two
notes of Dorothy’s “Somewhere, over the rainbow, . . . ” from the Wizard of Oz.

The physical intensity of the pressure wave (1) is proportional to the square of
the amplitude A (and independent of the frequency). When f ≈ 3000 Hz, your
ear will respond to intensities that range from 10−12 watt/m2 at the threshhold of
hearing to 1 watt/m2 near the threshold of pain. (Comparable light intensities can
be obtained by viewing a 100-watt light bulb from distances of 1000 km and 1 m!)
When f is fixed, the ear perceives loudness on a logarithmic scale, and we use

10 log10

(
I2
I1

)
= 10 log10

(
A2

2

A2
1

)
= 20 log10

(
A2

A1

)

to compare the loudness of tones having the intensities I1, I2 and corresponding am-
plitudes A1, A2. We attach the dimensionless decibel (dB) unit to such expressions.
For example, when

w1(t) := A sin(2πft) and w2(t) := 2A sin(2πft)

we say that the tone w2 is

20 log10

(
2A
A

)
= 6.02 dB

louder than the tone w1. As a rule of thumb (based on countless experiments
with human subjects) the loudness of the tone (1) seems to double whenever the
intensity increases by 10 dB, i.e., when the amplitude A increases by the factor√

10 = 3.16 . . . .
The Fletcher–Munsen contours from Fig. 11.2 show how the perception of loud-

ness varies with f as well as A, see Fig. 4 from H. Fletcher and W.A. Munsen, Loud-
ness: Its definition, measurement, and calculation, J. Acous. Soc. Am. 5(1933),
82–108. The bottom curve specifies the amplitude A0(f) for a just audible tone
(1) at the frequency f . [We measure A0(f) in dB relative to the minimum am-
plitude that occurs near f = 3000 Hz between C7 and C8.] For example, as f
increases 3 octaves from 130.8 Hz at C3 to 1046 Hz at C6, A0(f) decreases by ap-
proximately 30 dB. Thus the amplitude for a just audible C3 tone is approximately
1030/20 ≈ 31.6 times larger than that for a just audible C6 tone. When we jump
from one of these contours to the one that lies directly above, the loudness more or
less doubles. You can use such contours to determine the amplitude for a tone (1)
that has a desired loudness level.
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Figure 11.2. Relative intensity (in dB) as a function of fre-
quency (in octaves) for tones (1) that seem to be equally loud.
The frequency for C4 (middle C) is 261.6 Hz.

Ohm’s law

When you listen to a sinusoidal tone

w(t) := A sin(2πft+ φ)

you perceive a pitch that depends on the frequency f and a loudness that depends
on both f and the amplitude A > 0. The phase parameter φ has no effect on what
you hear, see Ex. 11.4. The same is (more or less) true when you listen to sums of
such sinusoids. Your eye can easily see the difference between the graphs of

w1(t) := sin(2π 400t) + sin(2π 500t) + sin(2π 600t)

w2(t) := sin(2π 400t) + sin(2π 500t) − sin(2π 600t),
(2)

see Fig. 11.3, but you cannot hear any difference between the corresponding audio
signals, i.e., your ear is phase deaf. This phenomenon, known as Ohm’s law of
acoustics, allows us to simplify the mathematical expressions we use to synthesize
a musical tone.
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Figure 11.3. The audio signals w1 and w2 from (2).

For example, suppose that we want to create a sound file for some p-periodic
audio signal w. We can use Fourier’s representation to write

w(t) = A0 +
∞∑

k=1

Ak sin(2πkft+ φk),

where f := 1/p, where A0, A1, . . . are nonnegative, and where φ1, φ2, . . . are real.
We only hear the terms with 20 ≤ kf ≤ 20000 Hz and the ear is phase deaf, so we
lose no generality by taking

w(t) =
∑

20/f≤k≤20000/f

Ak sin(2πkft). (3)

(In particular, when f > 10000 Hz the tone we hear is a pure sinusoid!) We can
use Goertzel’s algorithm from Ex. 6.1, to compute the t-samples of such a sin sum.

Scales

At some time you have probably learned to sing the familiar diatonic scale

do re mi fa sol la ti do

to consecutive tones

C D E F G A B C

from a piano keyboard. Choir directors often specify a musical interval by using the
tones from this familiar sequence, e.g., the fourth, fifth, and eighth (or octave), is the
musical interval between the initial do and the following fa, sol, and do, respectively.
You use these musical intervals when you sing

Here ↑fourth comes the bride . . . ,

Twinkle, ↑fifth twinkle, little star . . . ,

Some- ↑eighth where, over the rainbow . . . ,

(whether or not you begin at the pitch associated with some C).
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The octave, which corresponds to a 2/1 frequency ratio, is the fundamental mu-
sical interval in every culture. Most people instinctively identify tones that differ
by an octave. You may have observed that when men and women sing together in
“unison,” they usually sing an octave apart. You may have also noticed that you
tend to shift up or shift down by one octave when you are singing a melody that
becomes too low or too high for your voice.

Musicians from different cultures subdivide the octave by adding 5 or 7 or 11 or
more intermediate tones to form a scale. (Functioning flutes from the time of the
Egyptian pharaohs allow us to hear such scales that are more than 4000 years old.)
The theoretical development of the familiar diatonic scale of Western music dates
from the time of Pythagoras. You may be surprised to learn that music was one
of the four major divisions of Greek mathematics! (The others were arithmetic,
geometry, and astronomy. Add rhetoric, logic, and grammar and you have the
original seven liberal arts.)

A simple instrument provided the link between mathematics (as you know it) and
music. A monochord consists of a string stretched between two fixed supports on
top of a resonating box. The tension is adjusted so that the frequency of vibration
is in the audible range. By placing a movable bridge between the two fixed supports
you can shorten the effective length of the vibrating string without changing the
tension so that you can produce different tones, see Ex. 11.6. From your study
of the vibrating string in Chapter 9, you know that the frequency and the length
are inversely proportional, see (9.40). The Pythagoreans of ancient Greece did not
know this, however, for they had no way to determine the actual frequency of an
audible tone. They could hear the musical interval associated with measurable
lengths L1, L2, however, and relate this musical interval to the ratio L1/L2.

For example, suppose that the initial tone is produced by an unstopped mono-
chord having the length L1 = L. If we stop the string at its midpoint, the new
length is L2 = (1/2)L, the frequency ratio is f2/f1 = L1/L2 = 2/1, and the musical
interval is an octave. If you place the bridge 1/3 or 1/4 of the distance from one
end, the longer segment has the length L2 = (2/3)L or L2 = (3/4)L, the frequency
ratio is 3/2 or 4/3, and the pitch rises by a fifth or a fourth. [After observing that
(2/1) = (3/2) · (4/3) you should have no trouble understanding what a musician
means by saying that an eighth is a fifth more than a fourth!]

After discovering the link between the ratios 4/3, 3/2, 2/1 and certain musical
intervals (that they called the diatesseron, the diapente, and the diapason) the
Pythagoreans quickly developed the eight-tone Pythagorean scale with the following
relative frequencies, see Ex. 11.7:

do re mi fa sol la ti do

1 9
8

81
64

4
3

3
2

27
16

243
128 2

t t s t t t s
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There are five steps t with a frequency ratio 9/8 = 1.125 and two smaller steps s
with a frequency ratio 256/243 = 1.053 . . . . This ttsttts division of the octave
corresponds to the major scale of Western music. (You can hear a close approxima-
tion by playing C – C on the white keys of a modern piano.) Cyclic permutations
of the ttsttts steps gave the Pythagoreans six other scales for music composition,
e.g., the sequence tsttstt (produced by playing A – A on the white keys of a
piano) corresponds to the minor scale of Western music.

Some five centuries later Claudius Ptolemy (who wrote Concerning Harmonics
as well as The Almagest) adjusted three of the Pythagorean tones to produce the
following just scale that includes the ratios 5/4 and 5/3 for a perfect third and a
perfect sixth.

do re mi fa sol la ti do

1 9
8

5
4

4
3

3
2

5
3

15
8

2
1

t t′ s′ t t′ t s′

This scale has 3, 2, 2 steps t, t′ s′ with corresponding frequency ratios 9/8 = 1.125,
10/9 = 1.100, 16/15 = 1.066 . . . .

The rapid evolution of keyboard instruments and keyboard music during the 17th
century led to the development of the equal-tempered scale

do re mi fa sol la ti do

1 ρ2 ρ4 ρ5 ρ7 ρ9 ρ11 2

t′′ t′′ s′′ t′′ t′′ t′′ s′′

which uses the frequency ratios

ρ := 21/12 = 1.0594 . . . , ρ2 = 1.1224 . . .

for the steps s′′ and t′′. You hear these tones as you play C – C on the white notes
of a properly tuned piano. The black notes correspond to the missing frequency
ratios ρ, ρ3, ρ6, ρ8, and ρ10. By using the black keys as well as the white ones,
you can begin at any key and play the equal-tempered scale! In exchange for this
flexibility, you must accept the approximations

ρ4 = 1.2599 . . . , ρ5 = 1.3348 . . . , ρ7 = 1.4983 . . . , ρ9 = 1.6817 . . .

for the frequency ratios

5
4

= 1.2500 . . . ,
4
3

= 1.3333 . . . ,
3
2

= 1.5000 . . . ,
5
3

= 1.6666 . . .

of the perfect third, fourth, fifth, and sixth.
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In 1939, the International Standards Association (which is responsible for the
S.I. definition of the meter, kilogram, second, . . .) agreed to a worldwide standard
of 440 Hz for Concert A, the note A4 from the piano keyboard. Thus the 88 keys
of a properly tuned piano have the frequencies 440ρn Hz, n = −48,−47, . . . , 39, as
given in Appendix 8.

Musical notation

The system that we use for writing music (as illustrated in Fig. 11.1) reached its
present form approximately four centuries ago. The notation allows us to specify
the pitch, the loudness, the duration, and the moment in time for each tone in a
composition. We will briefly explain how this is done so that you can use a music
score to prepare a sound file to play on your computer!

A musician measures time with a rather flexible unit known as a beat. (When
you sing

Twink–le, twink–le, lit–tle star · · ·
each syllable gets one beat until you reach star, which gets two.) For simplicity, we
will limit our discussion to cases where the beat is assigned to a quarter note as
described below. Italian words are used to specify an approximate beat rate, e.g.,

Larghissimo, Adagio, Andante, Moderato, Allegro, Presto

(very slow) (very fast)

are associated with rates that run from 40 to 200 beats per minute. (An “equation”

can be used for more precision, e.g., = 90 specifies 90 beats/minute.)
A note pictogram

whole note half note quarter note eighth note sixteenth note

4 beats 2 beats 1 beat 1
2 beat 1

4 beat

is used to specify the duration of a tone and a corresponding rest pictogram

whole rest half rest quarter rest eighth rest sixteenth rest

4 beats 2 beats 1 beat 1
2 beat 1

4 beat

is used to specify the duration of a period of silence. When we append a dot to

such a pictogram, the duration is increased by 50%, e.g., • gets 3 beats.
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The pitch of a tone is specified by the vertical position of the corresponding note
on a staff of five horizontal lines as shown in Fig. 11.4. You will observe that middle
C (i.e., C4 with a frequency of 261.6 Hz) occurs on the first ledger line that lies
below, above a staff that bears the treble clef, bass clef symbol, respectively. We
prefix a sharp sign, , or a flat sign, , to a note to indicate that the pitch must be
raised, lowered by one semitone. A collection of sharps or flats placed immediately
after the clef symbol is known as a key signature. All of the corresponding notes
(including those that differ by one, two, . . . octaves) are to be raised or lowered by
a semitone. A natural sign, , is used to circumvent this convention.

Figure 11.4. The pitch of notes having various vertical positions
on a five-line staff bearing the treble clef (top) and the bass clef
(bottom). Corresponding piano keys and numerical values for
the frequencies are given in Appendix 8.

We write a sequence of notes and rests from left to right along a staff (continuing
the sequence on subsequent staffs in the same way that you read the lines of this
text). The staff provides a Cartesian coordinate system with frequency increas-
ing (exponentially) along the vertical axis and with time increasing (more or less
linearly) along the horizontal axis.

We specify the loudness of a section of music by using the symbols

ppp pp p mp mf f ff fff

very soft very loud

that serve as abbreviations for the Italian pianississimo, . . . , fortississimo. Such
prescriptions (like those used for the beat rate) are very elastic and subject to
artistic interpretation.
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Example Find the frequency for each note in the score from Fig. 11.5.

Figure 11.5. A simple music score.

Solution We use Fig. 11.4 to identify the notes

C4, C5, B4, G4, A4, B4, C5,

and then use Appendix 8 to obtain the corresponding frequencies

261.6, 523.2, 493.9, 392.0, 440.0, 493.9, 523.2 Hz.

11.2 Spectrograms

Introduction

In this section you will learn how to produce a spectrogram from t-samples
. . . , w0, w1, w2, . . . of a real audio signal w(t). A spectrogram is a computer-
generated picture that shows the frequencies present in an audio signal at each
moment of time, and in this sense it is much like a music score. Figure 11.6 shows
a seven-note music score and spectrograms made from three corresponding audio
signals. Computer-generated samples of a gaussian damped sinusoid were used to
generate each tone in the first sound file, and you can easily identify each note from
the music score with a corresponding spot in the spectrogram. Tones produced by
real musical instruments are not so simple, as you will discover when you examine
the spectrograms prepared from digital recordings of a piano and of a singing so-
prano. You should expect to find integral multiples of the fundamental frequency
in the spectrum of a tone produced by a vibrating piano string, and you can clearly
see them in the second spectrogram from Fig. 11.6. As you study the third spectro-
gram, you will identify the overtones from the soprano’s voice and observe how they
changed with time as she adjusted her mouth and throat to sing various vowels and
semivowels.
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Figure 11.6. A music score and spectrograms from three cor-
responding sound files. In each case, time increases from 0 to 6
seconds along the horizontal axis, and frequency ranges from 0
to 4000 Hz along the vertical axis. (The notes C4, G4, A4 have
the frequencies 261.6, 392.0, 440 Hz, respectively.)

The computation

We will now describe the numerical process that we use to produce a spectrogram.
We begin by selecting a resolution index N = 2, 3, . . . and defining corresponding
limits of summation

N− :=
⌊−N + 1

2

⌋
, N+ :=

⌊
N

2

⌋
.

We will use the N samples wm+n, n = N−, . . . , N+ (with indices centered at m) to
estimate the frequency content of w(t) at time mt, see Fig. 11.7.
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Figure 11.7. Colorization of the pixels for a spectrogram.
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We weight these samples with a suitable window function to form

ym[n] :=
1
2

{
1 + cos

(
2πn
N

)}
· wm+n, n = N−, . . . , N+, (4)

and then use the FFT to obtain the discrete Fourier transform

Ym[k] =
1
N

N+∑
n=N−

ym[n]e−2πikn/N . (5)

(The window suppresses ringing in the discrete transform, see Ex. 4.29.) Since ym

is real, Ym is hermitian, and we take

pm,k := |Ym[k]|2 = |Y −
m [−k]|2, k = 1, 2, . . . , N+ (6)

as a measure of the energy in the audio signal w(t) at time t = mt and frequency
f = k/Nt.

The sampling interval t determines the highest (Nyquist) frequency, 1/2t, that
we can hope to detect by processing the samples . . . , w0, w1, w2, . . . . The frequency
separation, 1/Nt, is determined jointly by t and the choice of N , see Ex. 1.17.
(Recall that k = 1 corresponds to one oscillation during a time interval of length
Nt.) The spectrograms from Fig. 11.6 were made with t = 1/8000 sec andN = 640.
Thus the Nyquist frequency is 4000 Hz and the frequency separation is 12.5 Hz.
(This is a bit less than one semitone at the 261.6-Hz frequency for the lowest note,
C4, from the score.)

We use the nonnegative numbers pm,1, pm,2, . . . , pm,N+ to color the mth column
of pixels for the spectrogram of w. If we want to produce a high-quality gray-tone
picture, we must assign a color index

pure black: 0, 1, 2, . . . , 255 : pure white

to each pixel, see Fig. 11.7. A colorization based on a straightforward quantization
of pm,k produces a spectrogram with color intensities that correspond to energy.
The spectrograms for this text were all produced by quantizing log pm,k since the
resulting color intensities correspond more closely to the response of the human ear.

Slowly varying frequencies

When the phase function θ from a mathematically defined audio signal

w(t) := sin{θ(t)} (7)

has a smooth and slowly varying derivative, we can use Taylor’s formula to write

w(t+ τ) = sin
{
θ(t) + τ θ′(t) +

(
τ2

2

)
θ′′(t) + · · ·

}

≈ sin
{

2π
[
θ′(t)
2π

]
τ + θ(t)

}
,
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(when τ is small) and thereby see that w has the local frequency

f(t) :=
θ′(t)
2π

(8)

at time t. For example, the audio signals

w1(t) := sin{2π · 500t},
w2(t) := sin{2π · [500t+ (50/π) sin(2πt)]},
w3(t) := sin

{
2π · [500t+ (125/2)t2]

} (9)

for a sinusoid, a vibrato, and a chirp have the slowly varying frequencies

f1(t) = 500,

f2(t) = 500 + 100 cos(2πt),

f3(t) = 500 + 125t.

(10)

Spectrograms from corresponding computer-generated sound files with 0 ≤ t ≤ 4 sec
are shown in Fig. 11.8. You can see the graphs of the local frequency functions (10)!

Figure 11.8. Spectrograms from computer-generated sound files
for the audio signals (9) using 0 ≤ t ≤ 4 sec, t = 1/8000 sec,
N = 640. (These spectrograms were cropped at 1500 Hz.)
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11.3 Additive synthesis of tones

Introduction

You can easily tell the difference between tones produced by a flute, a xylophone,
an oboe, a piano, and a trumpet, even when they all have the same nominal pitch,
loudness, and duration. Musicians use the term timbre to denote the attributes of
a sound that facilitate such classifications. During the mid-19th century, Hermann
Helmholtz devised a way to identify the harmonics in sustained musical tones by
using cleverly designed glass resonators. In this way, he showed that the timbre
of the periodic tone (3) is determined by the relative sizes of the (nonnegative)
amplitudes A1, A2, . . . .

The tones we use for music do not always have perfect harmonics, however, and
they correspond to notes that are localized in time. For these reasons we replace
(3) with a finite sum of the form

w(t) =
K∑

k=1

Ak(t) sin(2πfkt), (11)

where the amplitude envelopes A1(t), A2(t), . . . are suitably chosen functions of
time and f1, f2, . . . are corresponding frequencies. If you record samples of a tone
produced by a flute, a xylophone, . . . , you can use the spectrogram analysis from
the preceding section to obtain approximations for A1(t), A2(t), . . . and f1, f2, . . . .
[Although many natural tones are well modeled by (11), you should not expect to
find an exact fit to the recorded data.] Once you know the approximate amplitude
envelopes and frequencies, you can compute samples of (11) to create a sound file
for a tone with a timbre that is quite similar to the one from your recording.

Of course, there is no reason why you must be restricted to envelopes and frequen-
cies that have been obtained in this way. You can arbitrarily choose A1(t), A2(t), . . .
and f1, f2, . . . , compute samples of (11), and use your sound card to play the cor-
responding tone. With a bit of experimentation you can create tones that have
musically interesting (but unfamiliar!) timbres.

Amplitude envelopes

Figure 11.9 shows four amplitude envelopes and the audio waves that result when
they are used to modulate a 320-Hz sinusoid. The envelope A1 has an impulsive
attack (that may cause the sound card to emit an annoying little click) followed by
an exponentially decaying release. The corresponding tone has a timbre much like
the tone produced by a xylophone. The gaussian envelope A2 gives a tone with a
timbre similar to that produced by a flute. This envelope was used to create the
“notes” you see in the first spectrogram of Fig. 11.6. The trapezoid envelope A3
allows us to hear the sustained central portion of the corresponding tone without
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Figure 11.9. Amplitude functions and the corresponding audio
waves for tones that have a frequency of 320 Hz and a duration
of approximately 1/8 sec.

modulation. Short linear attack and release segments smoothly turn the sound on
and off. The envelope A4 has a long exponentially growing attack followed by a
short linear release. The timbre of this tone is pleasing but unfamiliar (unless you
listen to xylophone recordings played backwards!).
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Synthesis of a bell tone

When a large brass bell is struck by its clapper, the impulse excites a number of
vibrational modes. The energy in each mode decays more or less independently due
to sound radiation and internal losses, i.e., each mode has an exponential envelope
as shown in Fig. 11.9. The audio signal is well modeled by a wave

w(t) =
K∑

k=1

Ake
−t/τk sin(2πfkt), (12)

where fk, τk, Ak, k = 1, 2, . . . ,K are suitably chosen parameters. During the man-
ufacturing process the bell is tuned (by using a large bell lathe to remove bits of
metal from the inner surface of the casting) so that the five lowest frequencies have
the approximate ratios 1 : 2 : 2.4 : 3 : 4. The lowest of these frequencies is that
of the residual hum; the nominal pitch is two octaves higher. A tone with the
timbre of a large bell can be produced from samples of (12) with the parameters
shown in Fig. 11.10, see T.D. Rossing, The acoustics of bells, Amer. Sci. 72(1982),
440–447. A spectrogram allows you to visualize the evolution of the corresponding
audio wave.

Figure 11.10. Parameters for the bell tone (12) and a corresponding
spectrogram using 0 ≤ t ≤ 30 sec, t = 1/4000 sec, N = 1000.
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Synthesis of string tones

Let f be the fundamental frequency of a vibrating string with fixed ends at
x = 0, x = L, and let 0 < α < 1. If we strike, pluck, bow the string at the
excitation point x0 := αL, the displacement function has the form

u(x, t) = A

∞∑
k=1

sin(πkα)
k�

sin
(
πkx

L

)
sin(2πkft+ φ�),

where A, φ� are constants and � = 1, 2, 3, respectively [see (9.44) and (9.46)]. You
can produce various string tones from computer-generated samples of

w(t) = A(t)
K∑

k=1

sin(πkα)
k�

sin(2πkft). (13)

The timbre depends on the choice of α, �, K and the amplitude envelope A(t).
Try using a trapezoidal envelope with α = 1/7 and � = 1, 2, 3 to approximate the
timbre of a piano string, a guitar string, and a bowed violin string, respectively.
Exercise 11.12 will show you an efficient way to compute the samples in the case
where K = ∞.

You will quickly discover that tones generated from samples of (13) do not have
the richness of those produced by a real stringed instrument. When a string vi-
brates, it exerts forces [proportional to ux(0+, t), ux(L−, t)] on the end supports.
These forces excite vibrational modes of sounding boards, air cavities, etc. that then
radiate acoustic energy to the surrounding air. The wave (13) models the sound
emitted by the string (a very poor radiator!) but neglects the sound that comes
from the other parts of the instrument. More sophisticated wave forms can be de-
veloped from mathematical models that use the principles of musical acoustics, e.g.,
as given in Benade’s text.

Synthesis of a brass tone

Shortly after the discovery of the FFT, several mathematically inclined musicians
used windowed DFTs to analyze the time evolution of various musical tones. They
found that brass tones are well approximated by a sum (11) with harmonic frequen-
cies f, 2f, 3f, . . . . Figure 11.11 shows the (smoothed) amplitude envelopes from one
such study, see J.A. Moorer, J. Grey, and J. Strawn, Lexicon of analyzed tones,
Part 3: Trumpet, Comp. Music J. 2(1978), No. 2, 23–31. The tone is colored by
the delayed attack and early decay of the higher harmonics (from the portion of the
spectrum where the ear is most sensitive). You can use these envelope functions (or
simple broken-line approximations) with (11) to generate samples for a tone having
a timbre much like that of a trumpet. Goertzel’s algorithm from Ex. 6.1 can be
used to expedite the computation of the samples.
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Figure 11.11. Amplitude envelopes for synthesizing a trumpet tone from
(11) (when using the harmonic frequencies fk = k · 311 Hz, k = 1, . . . , 10).

11.4 FM synthesis of tones

Introduction

In the early 1970s the musician John Chowning was experimenting with audio
signals of the form

w(t) := sin{2πfct+ µ sin(2πfmt)}. (14)
The carrier frequency, fc, the modulation frequency, fm, and the modulation index,
µ, are real parameters. When fc is in the audible range and µfm is “small,” w is
locally sinusoidal with a time-varying frequency

f(t) = fc + µfm cos(2πfmt)

that oscillates between fc − µfm and fc + µfm, e.g., as illustrated in the middle
spectrogram from Fig. 11.8. Chowning discovered that (14) has a radically different
sound when µfm is “large.” His analysis of this phenomenon led to a U.S. patent
for the technological innovation that underlies Yamaha’s DX7 digital synthesizer.
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The spectral decomposition

The Bessel function Jk(µ) of the first kind with order k = 0,±1,±2, . . . and real
argument µ can be defined by writing

eiµ sin(x) =:
∞∑

k=−∞
Jk(µ)eikx, −∞ < x < ∞, (15)

i.e., Jk(µ) is the kth Fourier coefficient of the 2π periodic function of x on the left
side of (15). These functions are real valued and have the symmetries

Jk(−µ) = (−1)kJk(µ) = J−k(µ), −∞ < µ < ∞, k = 0,±1,±2, . . . , (16)

from Ex. 4.19. Graphs of J0, J1, J2, J3 are shown in Fig. 11.12.

Figure 11.12. The Bessel functions J0, J1, J2, J3 on [0, 15].
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We use (15) to write

e2πifcteiµ sin(2πfmt) =
∞∑

k=−∞
Jk(µ)e2πifcte2πikfmt,

and from the imaginary part of this identity we obtain the spectral decomposition

sin{2πfct+ µ sin(2πfmt)} =
∞∑

k=−∞
Jk(µ) sin{2π(fc + k fm)t}. (17)

In this way we see that the audio signal (14) can be synthesized from pure sinusoids
having the frequencies fc + k fm, k = 0,±1,±2, . . . .

The modulation parameter µ controls the number of significant terms that are
present in the sums (15) and (17). From graphs such as those shown in Fig. 11.13,
Chowning observed that

Jk(µ) ≈ 0 when |k| > |µ| + 1 (18)

so that

sin{2πfct+ µ sin(2πfmt)} ≈
∑

|k|≤|µ|+1

Jk(µ) sin{2π(fc + k fm)t}. (19)

Figure 11.13. Plots of |Jk(µ)|2, k = 0,±1, . . . ,±40 when µ = 4, 8, 16, 32.
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By applying Plancherel’s identity (1.17) to (15), we see that

∞∑
k=−∞

|Jk(µ)|2 = 1, −∞ < µ < ∞,

and with a bit of numerical analysis we can verify that 96% of this sum comes from
the terms with |k| ≤ |µ| + 1 when |µ| ≤ 100, see Ex. 11.15. This allows us to assess
the quality of the Chowning approximations (18) and (19).

Example Use Chowning’s rule to determine the (significant) frequencies present
in the audio signal w(t) := sin{2π · 200t+ .5 · sin(2π · 10t)}.

Solution When µ = .5 the sum from (19) has terms with k = 0,±1, so we obtain
the frequencies

f = 200 + k · 10 = 190, 200, 210 Hz.

(The three sinusoids combine to produce a vibrato that oscillates between 195 Hz
and 205 Hz with a frequency of 10 Hz!)

Example Use Chowning’s rule to determine the (significant) frequencies present
in the audio signal w(t) := sin{2π · 200t+ 2 · sin(2π · 400t)}.
Solution When µ = 2 the sum from (19) has terms with k = 0,±1,±2,±3, so we
obtain the frequencies

f = 200 + k · 400 = −1000, −600, −200, 200, 600, 1000, 1400.

By using (16) we see that

J−k(µ) sin(−2πft) = (−1)k+1Jk(µ) sin(2πft),

so we can combine the terms from (19) with f = ±200, with f = ±400, and with
f = ±600. In this way we see that the audio signal has the (significant) frequencies

f = 200, 600, 1000, 1400 Hz.

(Such 1 : 3 : 5 : 7 harmonics are characteristic of tones produced by woodwinds!)
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Dynamic spectral enrichment

A variety of interesting musical tones can be generated from t-samples of an audio
signal

w(t) := A(t) · sin{2πfct+ µ(t) · sin(2πfmt)} (20)
where the amplitude envelope A and the modulation index µ are now suitably
regular functions of time, see (14). The attack and release of the tone are determined
by A as described in the preceding section. The remarkable new feature is the use
of the slowly varying function µ(t) to control the number of frequencies

fc, fc ± fm, fc ± 2fm, . . .

that sound at time t. [Compare this tone to that of (14).]

Example Describe the tone associated with

w(t) := sin{2π · 100t+ .3125t · sin(2π · 100t)}, 0 ≤ t ≤ 32 sec. (21)

Solution The modulation index µ(t) := .3125t increases from 0 to 10 as t increases
from 0 to 32, so the tone begins as a pure 100-Hz sinusoid and evolves into an
electronic twang as the frequencies 200 Hz, 300 Hz, . . . are added, see Fig. 11.14.
Chowning’s rule predicts that a new frequency will arise whenever µ increases by
1, i.e., every 3.2 sec, and this is confirmed by the spectrogram. Since µ(32) +
1 = 11, Chowning’s rule predicts that the 12 frequencies 100, 200, . . . , 1200 Hz will
sound at time t = 32 sec. [The spectrogram was produced by using a sensitive
log quantization that shows 3 additional frequencies from the 4% of the energy
neglected by the approximation (19).]

Figure 11.14. A spectrogram for the tone (21) using 0 ≤ t ≤ 32
sec, t = 1/4000 sec, N = 640.
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After a good deal of experimentation, Chowning and his coworkers learned to
choose functions A and µ to produce tones having the timbre (but not always the
spectrum) of those from familiar musical instruments. For example, a surprisingly
good bell tone can be produced from samples of

w(t) := e−αt · sin{2πfct+ b e−βt · sin(2πfmt)} (22)

using the parameters given with Fig. 11.15. The spectrogram allows you to see how
the initial clang (from a cluttered spectrum) evolves into an exponentially damped
sinusoid. This bell tone is more lively and realistic than the one produced from
(12) (using the parameters from Fig. 11.10) even though it takes much less effort
to compute samples of (22) than it does to compute samples of (12), see Ex. 11.13.

Figure 11.15. Parameters for the Chowning bell tone (22) and
a corresponding spectrogram using 0 ≤ t ≤ 30 sec, t = 1/4000 sec,
N = 1000.

Once you understand these basic ideas, you can use FM synthesis to design un-
usual new musical tones. For example, if you use a positive α and a negative β in
(22), the spectral bandwidth will grow with time but all of the components will be
exponentially damped as shown in Fig. 11.16.
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Figure 11.16. Parameters for an ethereal musical tone (22) and a
corresponding spectrogram using 0 ≤ t ≤ 30 sec, t = 1/4000 sec,
N = 1000.

You can have a lot of fun producing tones from t-samples of (20), but you should
always be aware of the constraints imposed by the Nyquist condition (8.6). A local
application of Chowning’s rule (19) shows that (20) can contain the frequencies

fc, fc ± fm, . . . , fc ± (�|µ(t)|� + 1)fm

at time t, so you must choose t so that

2t
{
fc +

(�|µ(t)|� + 1
)
fm

}
< 1 (23)

to avoid the unexpected effects of aliasing.
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11.5 Synthesis of tones from noise

Introduction

You can produce a hissing sound by sending a stream of random numbers
r1, r2, . . . , rN to the sound card of your computer. The audio signal is given by
the cardinal series

r(t) :=
N∑

n=1

rn sinc
(
t− nt

t

)
, (24)

where t > 0 is the sampling interval.
A random number generator is used to produce r1, r2, . . . , rN as follows. We

carefully choose three positive integers M , a, and c. (A table of suitable values,
e.g., M = 714025, a = 4096, b = 150889, can be found in W.H. Press et al.,
Numerical Recipes, Cambridge University Press, New York, 1986, pp. 191–199.)
Given an initial seed k0 = 0, 1, . . . ,M − 1 we generate the integers

kn := akn−1 + c (mod M), n = 1, 2, . . . , N. (25)

When N � M these integers seem to be independently and randomly chosen from
{0, 1, . . . ,M − 1} [see (4.35)] even though they are completely determined by (25)!
Likewise, the scaled translates

rn := 2kn/M − 1, n = 1, 2, . . . , N

seem to be independently and randomly chosen from [−1, 1] with a common uniform
density. (You will find a thorough study of such random sequences in D. Knuth, The
Art of Computer Programming, Vol. 2, Seminumerical Algorithms, Addison-Wesley,
Reading, MA, 1969, pp. 1–160.)

We will analyze the spectral characteristics of (24) and show how to produce
interesting musical tones by processing such stochastic signals.

White noise

The audio signal (24) has the Fourier transform

R(s) =
{ N∑

n=1

rne
−2πints

}
tP(ts). (26)

We will use ∫ ∞

−∞
|r(t)|2 dt =

∫ ∞

−∞
|R(s)|2 ds



Synthesis of tones from noise 719

as a measure of the total energy in the signal (24) so that

|R(s)|2 =
∣∣∣∣

N∑
n=1

rne
−2πints

∣∣∣∣
2

t2P(ts) (27)

is a density that shows how energy is distributed across the spectrum. Figure 11.17
shows a representative signal r(t) and the corresponding spectral density |R(s)|2.

Figure 11.17. An audio signal (24) constructed with N = 25
random numbers from [−1, 1] and the corresponding spectral den-
sity (27). An average of 100 such spectral density curves (bottom)
is well approximated by the expected spectral density (30).
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Suppose now that the r1, r2, . . . , rN from (27) are independent random variables.
The expected spectral density

Pr(s) := 〈|R(s)|2〉 =

〈∣∣∣∣
N∑

n=1

rne
−2πints

∣∣∣∣
2

t2P(ts)

〉
(28)

[as defined in (12.33)] then provides us with a representative function that depends
on the probability densities associated with r1, r2, . . . , rN (but not on the particular
samples that we have selected). We will further assume that rn has the mean µ = 0
and the common variance σ2, 0 < σ < ∞, for each n = 1, 2, . . . , N , i.e.,

〈rn〉 = 0, n = 1, 2, . . . , N, and

〈rmrn〉 =
{
σ2 if n = m = 1, 2, . . . , N
0 otherwise.

(29)

After writing∣∣∣∣
N∑

n=1

rne
−2πints

∣∣∣∣
2

=
{ N∑

m=1

rme
2πimts

}{ N∑
n=1

rne
−2πints

}

=
N∑

m=1

N∑
n=1

rmrne
2πi(m−n)ts

we can use (29) to see that

Pr(s) = Nσ2t2P(ts). (30)

In particular, every frequency in the band [−1/2t, 1/2t] is equally likely to be
found in the signal r, and the energy integral∫ ∞

−∞
PN (s) ds = Nσ2t

increases by σ2t each time we add another term to (24) or (28). You can ap-
proximate the function (30) by averaging a large number of independently chosen
functions |R(s)|2, see Fig. 11.17 (provided that the higher moments of the rn’s are
finite).

A signal (24) that has the expected power spectrum (30) is said to be white
noise. When t ≈ 10−4 sec, such a signal has a hissing sound like a radio tuned to
static. When t ≈ 10−2 sec, the sound rumbles like thunder. The first graph from
Fig. 11.17 illustrates the structure of such white noise (but we must use a much
larger value of N to produce representative signals).

You can use an amplitude envelope to change the timbre of white noise. For
example, when we apply an exponentially growing amplitude envelope to the signal
(24), the sound changes from a hiss to a whoosh (like that emitted by a rocket at
a fireworks display!). Corresponding spectrograms are shown in Fig. 11.18.
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Figure 11.18. Spectrograms for white noise (left) and for white
noise with an exponentially growing amplitude envelope (right)
using 0 ≤ t ≤ 16 sec, t = 1/8000 sec, N = 640.

Filtered noise

Let r1, r2, . . . , rN be random numbers as in the preceding section, and let rn = 0
when n < 1 or n > N (to simplify the limits of summation in the subse-
quent discussion). We convolve this sequence with certain real filter coefficients
. . . , c−1, c0, c1, . . . to obtain a sequence

wn :=
∞∑

m=−∞
cmrn−m, n = 0,±1,±2, . . . (31)

which has some additional regularity. The corresponding audio signal

w(t) :=
∞∑

n=−∞
wn sinc

(
t− nt

t

)
(32)

can be produced by sending the stream of wn’s to a sound card. In practice, only
finitely many of the cm’s are nonzero, so the sums (31) and (32) are finite. An
analysis of (32) will show how we can choose the cn’s to create interesting new
musical tones.

By using the convolution rule
∞∑

n=−∞
wne

−2πints =
∞∑

m=−∞
cme

−2πimts ·
∞∑

n=−∞
rne

−2πints

we see that (32) has the Fourier transform

W (s) =
{ ∞∑

n=−∞
wne

−2πints

}
tP(ts) = C(s) ·R(s) (33)
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where R is given by (26) and

C(s) :=
∞∑

m=−∞
cme

−2πimts. (34)

The spectral density

|W (s)|2 = |C(s) ·R(s)|2 = |C(s)|2 ·
∣∣∣∣

N∑
n=1

rne
−2πints

∣∣∣∣
2

t2P(ts)

depends on r1, r2, . . . , rN , but within the context that led to (30) we see that w has
the expected spectral density

Pw(s) = |C(s)|2 ·Nσ2t2P(ts). (35)

We can vary the timbre by using C to shape the spectral density and by using an
amplitude envelope to control the attack and release of the tone!

Example Let a > 0 be fixed. Find the function (34) that results when we filter a
random sequence using the gaussian coefficients

cm :=
1
a
e−πm2/a2

, m = 0,±1,±2, . . . . (36)

Solution We use Poisson’s relation (4.18) with p = 1/t as we write

C(s) :=
∞∑

m=−∞

t
at
e−π(mt)2/(at)2e−2πimts =

∞∑
m=−∞

e−πa2t2(s−m/t)2 .

In particular,

C(s) ≈ e−πa2t2s2
when |s| ≤ 1/2t and a � 1. (37)

You can use the coefficients (36) to remove most of the high-frequency components
from (24), leaving a spectrum centered at the origin. You can then use simple
modulation to translate this spectrum, e.g., the tone (32) produced from

wn :=
{ ∞∑

m=−∞
cmrn−m

}
cos(2πfnt), n = 0,±1,±2, . . . (38)

will have a spectrum centered at the frequencies ±f , 0 < f < 1/2t. Figure 11.19
shows spectrograms for two tones produced in this way together with the
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corresponding expected spectral density functions. The first gives a steady (mid- to
low-frequency) roar and the second gives a warble that fluctuates about a frequency
of 1000 Hz. You should compare these spectrograms to those given in Fig. 11.18.

Figure 11.19. Spectrograms for tones produced from the sam-
ples (32) and (38) with the gaussian filter coefficients (36) us-
ing a = 4 (left) and a = 50, f = 1000 (right). In both cases
0 ≤ t ≤ 16 sec, t = 1/8000 sec, and N = 640.

11.6 Music with mathematical structure

Introduction

You can use your computer to prepare sound files for a variety of musical tones
and combine them to produce some aesthetic effect, i.e., you can create music!
At the most elementary level this involves forming a tone sequence for a simple
melody, see Fig. 11.6, using the amplitude envelope to adjust the timbre. Musicians
have various rules for forming chords, for constructing chord sequences, and for
transforming chord sequences, and you may wish to use your computer to study such
basic principles of harmony, see Robert W. Ottman, Elementary Harmony, Theory
and Practice, 5th ed., Prentice Hall, Englewood Cliffs, NJ, 1998. The computer
allows you to go far beyond such classical notions, however. You can imagine some
auditory phenomenon and generate samples for the corresponding sound file. We
will show that it is possible to use a bit of mathematics as you work with these
ideas.
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Transformation of frequency functions

We consider a simple music theme consisting of a succession of notes played one
by one. We construct a corresponding step function by defining f(t) to be the
frequency of the note that is played at time t. (We do not bother to define f at
points that separate consecutive notes.) Such a frequency function for the Twinkle,
twinkle, little star theme of Fig. 11.6 is shown at the top of Fig. 11.20.

Figure 11.20. A frequency function f(t), 0 ≤ t ≤ 6 sec, for the score
from Fig. 11.6 and spectrograms that correspond to the theme, f(t),
the inversion a/f(t), the retrogression, f(6 − t), and the inverted ret-
rogression a/f(6 − t). The constant a is the product of the frequencies
261.6 Hz, 523.2 Hz for C4, C5 and t = 1/8000 sec, N = 640.

We can mathematically transform a frequency function f , e.g., form

cf(t), f(ct),
a

f(t)
, f(b− t),

a

f(b− t)
(39)

and generate a sound file for the corresponding transformed theme. Musicians
routinely use the transformations (39) that preserve or invert the frequency ratio
for two consecutive notes. When the ratio is preserved the musical interval is the
same before and after the transformation. When the ratio is inverted, the size of the
interval is preserved but the direction of movement is reversed, e.g., when the ratio
changes from 3/2 to 2/3 we go up, down by a fifth before, after the transformation.
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The frequency scaling f(t) → cf(t), c > 0, preserves all of the musical intervals,
so the transformed theme is identical to the original except for being higher, lower
in pitch when c > 1, c < 1. Musicians use the term transposition to refer to this
process. If each note of the theme has a frequency 440ρn, n = 0,±1,±2, . . . from
the equal-tempered scale and if c = ρm for some m = 0,±1,±2, . . . , then each note
of the transposition will have a frequency from the equal-tempered scale. Of course,
this is the reason for the development and widespread use of this scale.

The time dilation f(t) → f(ct), c > 0, uses exactly the same musical intervals, but
the transformed theme is played at a faster, slower rate than the original when c > 1,
c < 1. Musicians use the terms diminution, augmentation for such transformations.

When we subject a theme to the mapping f(t) → a/f(t), a > 0, we produce what
musicians call an inversion. The inversion of a familiar tune is melodic (since we
use the same musical intervals) but quite unlike the original (since we reverse the
direction of movement at each step). If each note from the theme has a frequency
from the equal-tempered scale and a = 4402 ρm for some m = 0,±1,±2, . . . , then
each note of the inversion will have a frequency from the equal-tempered scale.
J.S. Bach had an uncanny ability to combine themes with their inversions in his
keyboard compositions, see Ex. 11.20.

We obtain the retrogression of a theme corresponding to the frequency function
f(t), 0 ≤ t ≤ b, by using the transformation f(t) → f(b − t). A sound file for
the retrogression can be obtained from a sound file for the theme by reversing the
order of the samples. The mapping f(t) → a/f(b − t) produces the inversion of
the retrogression, see Fig. 11.20. Of course, when the theme and its inversion have
frequencies from the equal-tempered scale, the same is true of the retrogression and
inverted retrogression. You will find systematic use of inversion, retrogression, and
inverted retrogression in the classical music of Bach, Haydn, Mozart, and Beethoven
as well as in the contemporary music of Arnold Schoenberg.

You can experiment with transformations other than those given in (39), but it
is not so easy to produce aesthetically pleasing effects. For example, the mapping
f(t) → f(t) + d, d > 0, raises the pitch of each note, but in most cases the trans-
formed theme will contain unfamiliar intervals that are offensive to the musically
trained ear.

Risset’s endless glissando

We will describe an intriguing auditory anomaly that was created by Jean Claude
Risset for his computer-generated composition Mutations I. Let

y(t) := sin(2πf0 · eαt/α)

where f0 := 784 Hz (the frequency of G5) and α := log(1.5)/8 sec. By design, y
has the local frequency

f(t) = f0 e
αt
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which increases by a factor of 1.5 (i.e., one musical fifth) during any 8-sec interval.
We apply a gaussian amplitude envelope to y and obtain

g(t) = e−βt2 sin(2πf0 · eαt/α). (40)

We use β := 4/322 to effectively localize the tone in the interval −32 sec ≤ t ≤
32 sec. The frequency of g increases from 155 Hz (inaudibly soft) to 784 Hz (loud)
to 3964 Hz (inaudibly soft) during this time, as shown in the left spectrogram of
Fig. 11.21.

Figure 11.21. Spectrograms for the function g of (40) and the
8-periodic function w of (41) using t = 1/8000 sec, N = 640.

We now periodize g by defining

w(t) :=
∞∑

m=−∞
g(t+ 8 m). (41)

As we listen to w we hear a chord formed from the 8-translates of g. No translate
of g is audible for more than 64 sec, so the chord contains at most 8 notes at any
time t. By design, these notes are separated by 1, 2, . . . musical fifths, so the chord
is harmonious. And by design, the local frequency of each note is strictly increasing
so we hear an endless glissando (even though we know that a strictly increasing
function cannot be periodic!).



Further reading 727

The spectrogram on the right side of Fig. 11.21 will help you make sense of this
auditory anomaly. The 8 curves come from the translates of g that sound during
the interval 0 ≤ t ≤ 8. These curves join to form a smooth spiral when we wrap the
spectrogram around a right circular cylinder with circumference 8. (The same spiral
is obtained when we wrap the left spectrogram around such a cylinder.) Risset’s
glissando is analogous to the visual illusion of a spinning barber pole!

Further reading

Benade, A.H. Fundamentals of Musical Acoustics, 2nd ed., Oxford University Press,
New York, 1976; reprinted by Dover Publications, New York, 1990.
An exceptionally well written elementary introduction to the physics of music.

Benson, D.J. Music: A Mathematical Offering, Cambridge University Press,
Cambridge, 2000.
A delightful modern exposition of the mathematics of music.

Dodge, C. and Jerse, T.A. Computer Music: Synthesis, Composition, and Perfor-
mance, Macmillan, New York, 1985.
One of the first textbooks to present the fundamentals of computer music for
musicians.

Helmholtz, H.L.F. On the Sensations of Tone (English translation by A.J. Ellis),
Longmans, London, 1885; reprinted by Dover Publications, New York, 1954.
The classic 19th-century treatise on the physics and the psychological percep-
tion of musical tones.

Pierce, J.R. The Science of Musical Sound, W.H. Freeman, New York, 1983.
A well-illustrated elementary exposition of musical tones.

Roads, C. and Strawn, J. eds., Foundations of Computer Music, MIT Press,
Cambridge, MA, 1985.
You will find John Chowning’s original paper on FM synthesis reprinted in this
collection.

Roads, C. et al., The Computer Music Tutorial, MIT Press, Cambridge, MA, 1996.
A comprehensive elementary introduction to computer music (with a 92-page
bibliography!).

Smith III, J.O. Mathematics of the Discrete Fourier Transform with Audio
Applications, 2nd ed., Booksurge Publishing. Seattle WA, 2007.
You will find many helpful ideas for working with sound files in this text.
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Exercises

. .
.

.. .......... .... ... ..... ...••• EXERCISE 11.1 An 8-bit binary number (b8b7 · · · b1)2 can represent each integer
0, 1, . . . , 255. After shifting the origin to the center of this range we obtain the relative
amplitudes ±.5,±1.5, . . . ,±127.5 for driving a speaker attached to an 8-bit sound card.

(a) Explain why the dynamic range (between the softest and the loudest sounds) for an
8-bit digital recording is approximately 48 dB.

(b) How many bits per sample must we use if we want to reproduce the full 140-dB
dynamic range of human hearing as shown in Fig. 11.2?

... . .
.......... ....

.. ..... ....••• EXERCISE 11.2 Two Fourier analysis students are trying to determine the infor-
mation content of a musical signal.

“You have to use 40,000 samples/sec if you want to reproduce all the frequencies
the ear can hear, and there is no way to encode the incredible dynamic range of an
auditory signal with less than 3 bytes/sample,” says the first. “A good recording has
to contain 120,000 bytes/sec.”

“Nonsense!” responds the second. “There are only 88 piano keys, so with 2 bytes
I can easily specify which note to play and how loud to play it. Nobody can play
more than 25 notes/sec, so I can record anything that anybody can play on a piano
by using no more than 50 bytes/sec.”

Are these arguments valid? Why or why not?

Hint. Compare the music produced by a player piano to that you might hear at a Van
Cliburn concert.

Note. One byte of information allows us to specify one item from 256 possible choices, two
bytes of information allow us to specify one item from 2562 possible choices, etc.

.. . .

.

...
......... .... ...

.. ... ...••• EXERCISE 11.3 Two Fourier analysis students are trying to distinguish seismic
signals that come from earthquakes from those that are generated by an underground
nuclear explosion. In both cases the energy is carried by wave packets having frequencies
in the range .01 to 10 Hz.

“The seismograms look so much alike that I don’t see how we can tell one from the
other,” says the first.

“Maybe we can hear the difference,” says the second. “We could sample the seismic
signals at one rate and then play them at another to make them audible.”

(a) Determine suitable sampling and playback rates for this proposal.

(b) Do you think that it will work? Why or why not?

.. .

...

.. . .
...... ......

..

.. ... ...••• EXERCISE 11.4 The piano notes C4 (middle C), E4, G4 have the fundamental
frequencies fC = 261.6 Hz, fE = 329.6 Hz, fG = 392.0 Hz. We press the corresponding
keys at times τC , τE , τG to produce

w(t) = sin{2πfC(t− τC)} + sin{2πfE(t− τE)} + sin{2πfG(t− τG)}
when t > max{τC , τE , τG}. (Our model neglects amplitude variation, overtones, etc.)
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(a) How small must τC , τE , τG be to ensure that the phase variations |2πfCτC |, |2πfEτE |,
|2πfGτG| do not exceed .1 radian?

(b) Use (a) and your auditory experiences with such chords to argue that, “The human
ear is phase deaf.”

. . ..
.
..
...
.. . ...
..... ..... ....••• EXERCISE 11.5 Show that the Fourier coefficients of

w1(t) :=
1
2

− �ft�, w2(t) := − 1
π

log |2 sin(πft)|

have the same modulii |W1[k]| = |W2[k]|, k = 0,±1,±2, . . . (so that these audio waves
sound the same!).

Hint. See Ex. 4.7.

. ... .... .......... .. .. ......••• EXERCISE 11.6 Attach small binder clips to the ends of a 300-mm ruler and
stretch a rubber band (having a width of approximately 1 mm and an unstretched cir-
cumference of approximately 150 mm) around the ruler and clips lengthwise. The clips
position the rubber band string away from the ruler so that it can vibrate. When you
hold the ruler against the top of a desk or table (to serve as a resonator) you should get
an audible tone when you pluck the string. Place a third binder clip between the ruler
and the string to serve as a bridge. You can use the scale on the ruler to position the
bridge precisely so that you can produce a tone with a predictable pitch. You now have a
functioning monochord!

(a) Convince yourself that you can produce the musical intervals of an octave (e.g., using
bridge positions of 200 and 100 mm) and of a fifth (e.g., using bridge positions of 200
and 133 mm).

(b) Calculate positions for the bridge that will enable you to play do, re,. . . , do using the
scale of Pythagoras.

(c) Calculate positions for the bridge that will enable you to play Twinkle, twinkle, little
star using the scale of Pythagoras.

. ... .... .......... .. .. ......••• EXERCISE 11.7 In this exercise you will explore several features of the scale of
Pythagoras.

(a) When we pass from the frequency f to the frequency (3/2)f , (2/3)f we say that we
go up, down a musical fifth. When we pass from the frequency f to the frequency
(2/1)f , (1/2)f we say that we go up, down a musical octave. Show that we can pass
from do to re, mi, . . . , do by going up or down by fifths and octaves.

Hint. To reach re you go up two fifths and down one octave: F 2O−1.

(b) How many fifths, fourths (with ratios 3/2, 4/3) can you play with the notes do, re, . . . ,
do from the scale of Pythagoras?

(c) Find the first seven terms of the following sequence. Begin at fa and generate tones
that are one, two, . . . fifths higher. Then lower each such tone by some multiple of
the octave to produce a result in the do, re, . . . , do range. Any two consecutive tones
from this sequence will harmonize.
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(d) Adjacent notes of the Pythagorean scale differ by a tone (ratio 9/8) or a hemitone
(ratio 256/243). Show that two hemitones give a tone to the same accuracy that 12
fifths ≈ 7 octaves. [The sequence from (c) is 12-periodic to the same accuracy.]

Note. The musical interval associated with 312/219 = 1.0136 . . . is known as the comma
of Pythagoras. It amounts to about a quarter of a hemitone.

. ..
..

.

.......... . ... .. ..... ....••• EXERCISE 11.8 Let w(t) := sin{2π(100t + 3900t2)}, 0 ≤ t ≤ 1 sec, and for
N = 1, 2, . . . let

wN (t) :=
N∑

n=0

w
(
n

N

)
· sinc(Nt− n)

be the cardinal series approximation that uses N samples/sec.

(a) Use (8) to find the local frequency function for w.

(b) Sketch spectrograms to show what you would hear when you listen to w8000, w12000,
and w16000.

Hint. There are aliasing effects.

. . .
...
..

....... ...... .. .... ...••• EXERCISE 11.9 Create an audio wave w(t), 0 ≤ t ≤ 40 sec for a sound having a
local frequency f(t) that rises at a constant rate of 1/4 octave per second from an initial
value of f(0) = 20 Hz.

Hint. Use (8) with the differential equation [log2 f(t)]′ = 1
4 .

. .
..

.. . .

........ ....

.. .... ....••• EXERCISE 11.10 Doppler’s formula f = f0/(1 + v/vs) gives the frequency we
hear when a sound source with frequency f0 moves away from us with velocity v. Here vs

is the velocity of sound. This gives the expression

f(t) =
f0

1 + γ cos(2πfbt)

for the frequency we hear at time t when a steady hum with frequency f0 is emitted from
the tip of a helicopter blade that rotates with velocity vb = γ vs and frequency fb. Show
that this leads to the audio wave

w(t) := sin

{
f0
fb

2√
1 − γ2

arctan

[(
1 − γ

1 + γ

)1/2

tan(πfbt)

]}

for the sound of a chopper. (This tone was created by David Eubanks.)

Note. Try f0 = 23.5 Hz, fb = 8 Hz, γ = .956.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 11.11 In this exercise you will analyze an auditory anomaly associated
with the Weierstrass function

w(t) :=
∞∑

k=0

αk sin(2πβkf0t).

We choose 0 < α < 1 (to make the sum converge rapidly), 0 < f0 < 20 Hz (to make the
first term inaudible), and β := 213/12 = 2.1189 . . . (so that successive terms differ in pitch
by an octave plus a semitone).

(a) Show that w(2t) = α−1w(2−1/12t) − α−1 sin(2πf02−1/12t).

Note. The second term on the right is inaudible.

(b) When we record speech, music, . . . at 40,000 samples/sec and then play the recording
at 80,000 samples/sec, we hear the speech, music, . . . transposed up in pitch by one
octave. What happens when we try this with w?

. ....
.. ..... .........
... .... .....••• EXERCISE 11.12 You can use additive synthesis with (13) to produce a variety
of tones having string like timbres. This exercise will show you an efficient way to compute
the samples.

(a) Let 0 < α < 1 and let boxα(x), triα(x) be obtained by 1-periodically extending the
functions shown in Fig. 11.22 from [−1/2, 1/2] to all of R.

Fig. 11.22. Functions that we periodize to form boxα and triα.

Show that

boxα(x) =
2

α(1 − α)

{⌊⌊
x+

α

2

⌋
−
(
x+

α

2

)
+ 1 + α

⌋
− α

}
,

triα(x) = min
{ 2
α

(
x+

α

2
−
⌊
x+

α

2

⌋)
,

2
1 − α

(
−x− α

2
−
⌊
−x− α

2

⌋)}
− 1,

where � � is the floor function.

Hint. Verify that these expressions give 1-periodic functions that take the correct
values when −1/2 < x < 1/2.



732 Musical tones

(b) Verify that boxα, triα have the Fourier series

boxα(x) =
4

πα(1 − α)

{
sin(πα) cos(2πx)

1
+

sin(2πα) cos(4πx)
2

+
sin(3πα) cos(6πx)

3
+ · · ·

}
,

triα(x) =
2

π2α(1 − α)

{
sin(πα) sin(2πx)

12 +
sin(2πα) sin(4πx)

22 +
sin(3πα) sin(6πx)

32 + · · ·
}
.

Hint. Observe that

tri′α(x) = boxα(x), box′
α(x) = X

(
x+

α

2

)
− X

(
x− α

2

)
.

Note. When you use the expressions from (a) to generate samples of boxα(ft) or
triα(ft), you get all of the terms from the � = 1 or � = 2 series from (13) without
evaluating a single sin or cos!

. . .
...
..

....... ...... .. .... ...••• EXERCISE 11.13 Estimate the number of real operations we must do to generate

30 sec · 44,100
samples

sec
= 1,323,000 samples

for a CD quality digital sound file of a bell tone when we use:

(a) (12) with the parameters of Fig. 11.10 (additive synthesis);

(b) (22) with the parameters of Fig. 11.15 (FM synthesis).

Hint. An operation is the work we do as we evaluate S := S + a · b. Assume that each
evaluation of sin or exp requires 8 operations.

. ..

.
.. ......... .... .. ... ....••• EXERCISE 11.14 You can use (16) to simplify (17) when the frequencies fc, fm

are commensurate.

(a) Verify that

sin{2πft+ µ sin(2πft)}
= {J0(α) − J2(α)} sin(2πft) + {J1(α) + J3(α)} sin(4πft)

+ {J2(α) − J4(α)} sin(6πft) + · · · .
(b) Find the analogous expansion for sin{2πft+ µ sin(4πft)}.

.
...
..

....... .... .... ..... ...••• EXERCISE 11.15 In this exercise you will quantify Chowning’s rule (19) by
developing a numerical bound for the fraction

Sm(µ) :=
∑

|k|≥m

|Jk(µ)|2, µ ≥ 0, m = 0, 1, . . .

of the “energy” in the FM kernel

f(x) := eiµ sin(2πx) =
∞∑

k=−∞
Jm(µ)e2πikx

that lies outside the frequency band −m < k < m.
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(a) Let N be a positive integer, and let

gµ[n] := eiµ sin(2πn/N), n = 0,±1,±2, . . .

be obtained by sampling f . Show that g has the discrete Fourier transform

Gµ[k] =
∞∑

ν=−∞
Jk+νN (µ).

(b) Derive the bound

|Jk(µ)| ≤ µ2 + µ

k2 , µ ≥ 0, k = ±1,±2, . . . .

Hint. Begin by writing

|(2πik)2Jk(µ)| =

∣∣∣∣
∫ 1

0
f ′′(x)e−2πikx dx

∣∣∣∣ ≤
∫ 1

0
|f ′′(x)| dx.

Note. An analogous argument can be used to show that

|Jk(µ)| ≤ µ3 + 3µ2 + µ

|k|3 , |Jk(µ)| ≤ µ4 + 6µ3 + 4µ2 + µ

k4 , . . . .

(c) Let N = 2M . Use (a) and (b) to show that

|Jk(µ) −Gµ[k]| ≤ 2(µ2 + µ)
M2 ,

when k = 0,±1,±2, . . . ,±M and µ ≥ 0.

Note. In view of (c) we can compute

Sm(µ) ≈
∑

m≤|k|<M

|Gµ[k]|2

to any desired precision by choosing a sufficiently large N = 2M . The table

�µ� + 2

�µ� + 3

�µ� + 4

4.08 · 10−2

6.44 · 10−3

7.43 · 10−4

4.10 · 10−2

1.00 · 10−2

2.01 · 10−3

4.10 · 10−2

1.60 · 10−2

8.33 · 10−3

m
max

0≤µ≤5
Sm(µ) max

0≤µ≤10
Sm(µ) max

0≤µ≤100
Sm(µ)

shows that Chowning’s rule accounts for 96% of the “energy” of the FM kernel (when
|µ| ≤ 100). [The approximation Jk(µ) ≈ Gµ[k] for |k| < N/2 is much more accurate than
the bound (c) would suggest. Indeed, the above table can be computed with N = 256!]
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 11.16 Derive the following generalizations of (17) that use 2 modulat-
ing frequencies f1, f2:

(a) sin{2πfct+ µ1 sin(2πf1t) + µ2 sin(2πf2t)}

=
∞∑

k1=−∞

∞∑
k2=−∞

Jk1(µ1)Jk2(µ2) sin{2π(fc + k1f1 + k2f2)t},

(b) sin{2πfct+ µ1 sin[2πf1t+ µ2 sin(2πf2t)]}

=
∞∑

k1=−∞

∞∑
k2=−∞

Jk1(µ1)Jk2(k1µ2) sin{2π(fc + k1f1 + k2f2)t}.

You should then be able to write down corresponding formulas for parallel FM synthesis
and cascade FM synthesis that use 3, 4, . . . modulating frequencies. These audio signals
can have very wide bandwidths (that depend on µ1, µ2, . . .), and we must use some care
when we prepare digital sound files. If the coefficient of sin{2π(fc + k1f1 + k2f2 + · · · )}
is nonnegligible, then we must choose a sampling interval t that satisfies the Nyquist
condition

2(fc + k1f1 + k2f2 + · · · )t < 1.

. .
..

.. .

........ .... .... .... ...••• EXERCISE 11.17 Sketch a spectrogram for each of the following, with time on the
horizontal axis (0 ≤ t ≤ 4 sec) and with frequency on the vertical axis (0 ≤ f ≤ 4000 Hz).

(a) w(t) = sin(2π · 400t) + sin(2π · 500t) + sin(2π · 600t)

Hint. The spectrogram for this major chord has 3 horizontal lines!

(b) w(t) = sin(2π · 1000t) · sin(2π · 200t)

(c) w(t) = sin(2π · 1000et/2)

(d) w(t) = sin{2π · 2000t+ 500 · sin(2πt)}

(e) w(t) = sin{2π · 2000t+ 100t · sin(2πt)}

(f) w(t) = sin{2π · 2000t+ 4 · sin(2π · 200t)}

Hint. Use Chowning’s rule (19).

(g) w(t) = sin{2π · 200t+ 5 · sin(2πt/2) · sin(2π · 400t)}
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 11.18 Let r1, r2, . . . , rN be independently chosen random numbers
with mean µ = 0 and variance σ2, 0 < σ < ∞, as in the text. Find the expected
spectral density for (32) when the wn’s are given by:

(a) r1, r1 + r2, r2 + r3, . . . , rN−1 + rN , rN ;

(b) r1, 2r1 + r2, r1 + 2r2 + r3, . . . , rN−2 + 2rN−1 + rN , rN−1 + 2rN , rN ;

(c) r1, 0, r2, 0, r3, 0, . . . , rN−1, 0, rN ;

(d) r1, r1, r2, r2, r3, r3, . . . , rN−1, rN−1, rN , rN .

.. . .
....

. .. ...........
..
. ... ....••• EXERCISE 11.19 Let M = 1, 2, . . . . The weighted binomial coefficients

cm :=
1

2M

(
M

m

)
, m = 0,±1,±2, . . .

can be used in place of the coefficients (36) to remove high frequencies from the expected
power spectrum (35) of (32).

(a) Show that
C(s) = {e−πist cos(πst)}M .

(b) Sketch |C(s)|2, −1/2t ≤ s ≤ 1/2t when M = 1 and when M � 1.

..
.
. ..
...
.. ........ .... .....••• EXERCISE 11.20 The theme from Goldberg’s Aria Grand uses the half-second
quarter notes

that are
A#5 A5 G5 F5 D5 D#5 F5 A#4

13 12 10 8 5 6 8 1

semitones (ratio 21/12) above the fA := 440 Hz frequency of A4. Find the notes for the
transformation that results when we replace the frequency function f(t), 0 ≤ t ≤ 4 sec by:

(a) 2f(t); (b) (2/3)f(t); (c) 2f2
A
/f(t); (d) f(4 − t); (e) 2f2

A
/f(4 − t).

You can then play the theme and these transformations on a piano!

Note. Johann Sebastian Bach used time translates of this theme and its transpositions (a),
(b), its inversion (c), its retrogression (d), and its inverted retrogression (e) to construct
his Diverse Kanons (see Don Dorsey, Bach Busters, TELARC�, 1995).

.
.
.. ..
..
.. ........ ... .... ....••• EXERCISE 11.21 Let T be a mapping that has the frequencies 440ρn,
n = 0,±1,±2, . . . from the equal tempered keyboard for its domain and range.

(a) Show that T(f) = 440ρκ[logρ(f/440)] where κ is a function that maps Z into Z.

(b) Find the κ functions that correspond to transposition and to inversion.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 11.22 You must hear a number of cycles of a sinusoidal audio signal
before you can recognize its pitch. This exercise will help you quantify this observation.
For simplicity, we will work with a complex wave function

w(t) :=
e−t2/4σ2

4
√

2πσ2
e2πift

where 0 < σ < ∞ and f > 0.

(a) Using Table 2 of Appendix 7, convince yourself that 98% of the integral of |w(t)|2
comes from the interval

|t| ≤ 2.326σ

and that 98% of the integral of |W (s)|2 comes from the interval

|s− f | ≤ 2.326
4πσ

.

We will say that the tone sounds on the first interval and that the spectrum is
contained in the second.

(b) Show that if we want the spectrum to be contained in the interval

2−1/12f ≤ s ≤ 21/12f

(i.e., within one semitone of f), then we must choose σ and f so that

σf ≥ 2.326
4π(1 − 2−1/12)

= 3.29 . . .

and the length of the interval during which the tone sounds is at least

2 · 2.326σ ≥ 15.3 . . .
f

,

i.e., we must hear approximately 15 cycles of the tone. [This drops to 8 cycles if we
replace 98% by 90% in (a) and to 4 cycles if we also relax the semitone to a tone.]

(c) Can a tuba play C2 (65.4 Hz) as a hemidemisemiquaver (64th note) during a march
with a tempo of 120 quarter-note beats per minute?

.
...
..

....... .... ..... .... ...••• EXERCISE 11.23 Almost all of the sound for the gaussian damped sinusoid

γτ,f (t) := e−2π2t2/τ2
sin(2πft), −∞ < t < ∞

with nominal frequency f > 0 is emitted during the interval −τ/2 < t < τ/2, τ > 0. Can
you distinguish between computer-generated graphs of |W1(s)|2 and |W2(s)|2 when:

(a) w1(t) = γ1,100(t), w2(t) = γ1,200(t)?

(b) w1(t) = γ1,100(t), w2(t) = γ2,100(t)?

(c) w1(t) = γ1,100(t), w2(t) = γ1,100(t− 2)?

(d) w1(t) = γ1,100(t) + γ1,200(t), w2(t) = γ1,100(t) + γ1,200(t− 2)?
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Probability

12.1 Probability density functions on R

Introduction

A liter bottle filled with air (at room temperature and pressure) holds approximately
2.7 · 1022 molecules of N2, O2, CO2, . . . that fly about at high-speed colliding with
one another and with the walls of the bottle. We cannot hope to keep track of every
particle in such a large ensemble, but in the mid-19th century, Maxwell showed that
we can deduce many statistical properties about such a system. For example, he
found the probability density

f(v) :=
4√
π

v2

α3 e
−v2/α2

, v ≥ 0 (1)

for the speed V of a given gas molecule, see Fig. 12.1. (The parameter

α :=
√

2κT/m

depends on the massm of the molecule, the absolute temperature T and Boltzmann’s
constant κ = 1.3806 . . . · 10−23 joule/K.) We use the integral∫ v2

v1

f(v) dv

to find the probability that a molecule will have a speed in the interval v1 < V < v2.

Figure 12.1. The Maxwell density (1) with parameter α > 0.

737
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Example Use Maxwell’s density to find the fraction of N2 molecules (with
m = 4.65 · 10−26 kg) in a warm room (with T = 300 K) that have speeds less
than v0 = 1000 km/hr = 278 m/sec.

Solution We use (1) with the parameter

α =
{

2 · 1.3806 · 10−23 joule/K · 300 K
4.65 · 10−26 kg

}1/2

= 422 m/sec

and the Maclaurin series for the exponential to compute

∫ v0

0
f(v)dv =

4√
π

∫ v0/α

0
u2e−u2

du

=
4√
π

{
u3

3
− u5

5 · 1!
+

u7

7 · 2!
− u9

9 · 3!
+ · · ·

} ∣∣∣∣
.658...

0
≈ .166.

Approximately one-sixth of the N2 molecules have speeds less than 1000 km/hr!
We can use the density function (1) to compute the average (or expected) value

of certain functions of the molecular speed V .

Example Use Maxwell’s density to find the average speed and the average kinetic
energy for an N2 molecule when T = 300 K.

Solution The average speed is given by the integral

〈V 〉 :=
∫ ∞

0
vf(v) dv =

4α√
π

∫ ∞

0
u3e−u2

du =
2√
π
α,

and the average kinetic energy is given by〈
1
2
mV 2

〉
:=
∫ ∞

0

1
2
mv2f(v) dv =

2√
π
mα2

∫ ∞

0
u4e−u2

du =
3
4
mα2.

When T = 300 K we find α = 422 m/sec (as in the above example), so

〈V 〉 = 476 m/sec,
〈

1
2
mV 2

〉
= 6.21 · 10−21 joule.

Random processes occur in most areas of science and engineering, and you will
find it advantageous to learn certain basic skills for manipulating probability den-
sities and evaluating (or closely approximating) related integrals. This chapter will
show you how Fourier analysis can be used to expedite such calculations. After
learning a few basic concepts you will routinely write down integrals that solve
problems analogous to those given above. You might even enjoy deducing the form
of Maxwell’s density (1) from considerations of symmetry, see Ex. 12.26.
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Generalized probability densities

We say that an ordinary function f is a probability density on R provided that

f(x) ≥ 0 for −∞ < x < ∞, and
∫ ∞

−∞
f(x) dx = 1.

We will immediately extend this definition so that we can assign positive atoms of
probability to isolated points of the real line. We say that a generalized function f
is a probability density on R provided that

∫ ∞

−∞
f(x)φ(x) dx ≥ 0 when φ ∈ S is nonnegative, and (2)

lim
n→∞

∫ ∞

−∞
f(x)e−πx2/n2

dx = 1. (3)

For example,

f(x) :=
1
a
P
(
x− µ

a

)
, −∞ < µ < ∞, a > 0, (uniform density)

f(x) :=
e−(x−µ)2/2σ2

√
2π σ

, −∞ < µ < ∞, σ > 0, (normal density)

f(x) :=
e−|x|/α

2α
, α > 0, (Laplace density)

f(x) :=
1
6

6∑
k=1

δ(x− k), (die-toss density)

f(x) :=
1
2n

n∑
k=0

(
n

k

)
δ(x− k), n = 0, 1, 2, . . . , (binomial density)

f(x) := e−α
∞∑

k=0

αk

k!
δ(x− k), α > 0, (Poisson density)

are all probability densities on R.
An antiderivative

g = f (−1)

of a probability density f can be represented by an ordinary function that has finite
limits at ±∞, see Ex. 12.12. When we select the constant of integration so that

lim
x→−∞ g(x) = 0, lim

x→+∞ g(x) = 1
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and assign function values so that
g(x+) = g(x) for −∞ < x < ∞

we will say that g is the distribution function for f . We can always recover a
probability density f from its distribution function g by writing

f = g′.
Of course, when f is an ordinary probability density we have

g(x) =
∫ x

−∞
f(ξ) dξ.

You will observe such relations as you examine the f, g pairs shown in Fig. 12.2 or
when you use the table for the distribution function of the standard normal density
that is given in Appendix 7.

Figure 12.2. The uniform, standard normal, coin flip, and die-
toss densities together with the corresponding distribution func-
tions.
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The characteristic function of a probability density f is defined to be the Fourier
transform

F := f∧.

(Most authors use the +i instead of the −i Fourier transform for the characteristic
function, and many use a different 2π convention, see Ex. 1.4. You must exercise
some caution when you compare formulas for characteristic functions in this text
with those you find in a probability text or a statistics text!) You can use the Fourier
transform calculus from Chapters 3 and 7 to find the characteristic functions for
common probability densities. We will presently show that F is always a bounded,
continuous ordinary function on R as illustrated in Fig. 12.3. We can always recover
a probability density f from its characteristic function F by writing

f = F∧∨.

Our primary purpose for introducing F is to facilitate the calculation of convolution
products (e.g., as done in Section 3.3), but we will also show that characteristic
functions can be used to find moments and to construct new probability densities.

12.2 Some mathematical tools

Introduction

We will now present several specialized limits and inequalities that are needed for
our study of characteristic functions, expectations, and the central limit theorem.
You may wish to skim over the material in this section during your first reading.
After you see how we use these tools you will have a bit more motivation to sort
through the details.

Gaussian mollification and tapering

For each n = 1, 2, . . . we define the gaussian density

γn(x) := n e−π(nx)2 , (4)

noting that

Γn(s) = e−π(s/n)2 (5)

[as used in (3)] is the Fourier transform. It is fairly easy to show that

lim
n→∞ γn = δ and lim

n→∞ Γn = 1,
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Figure 12.3. The uniform, coin flip, truncated exponential, and
die-toss densities together with the corresponding characteristic
functions.
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see Fig. 12.4. These are special cases (f = δ, F = 1) of the weak limits

lim
n→∞ γn ∗ f = f (6)

lim
n→∞ Γn · F = F (7)

that hold for every choice of the generalized functions f, F (not just when f is a
probability density and F is a characteristic function).

Figure 12.4. The gaussians γn,Γn from (4), (5) with n = 2, 5, 20.

Example Establish the weak limits (6) and (7).

Solution Weak limits are preserved by the Fourier transform so it is sufficient to
prove (7). Let F = G(m) where G is CSG and m is a nonnegative integer. Given
φ ∈ S we must verify that

lim
n→∞

∫ ∞

−∞
G(x)[Γn(x)φ(x)](m) dx =

∫ ∞

−∞
G(x)φ(m)(x) dx.

By using the Leibnitz rule (2.29) we see that it is sufficient to show that

lim
n→∞

∫ ∞

−∞
G(x)Γ(k)

n (x)φ(m−k)(x) dx = 0 when k = 1, 2, . . . ,m and (8)

lim
n→∞

∫ ∞

−∞
G(x)[1 − Γn(x)]φ(m)(x) dx = 0. (9)

From the Rodrigues formula (3.28) for the Hermite polynomials we see that

Γ(k)
n (x) =

dk

dxk
e−(

√
πx/n)2 =

(√
π

n

)k

· (−1)kHk

(√
πx

n

)
e−(

√
πx/n)2.

It follows that

|Γ(k)
n (x)| ≤ Ck

nk
, n = 1, 2, . . .
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for some constant Ck. Using this bound we write∣∣∣∣
∫ ∞

−∞
G(x)Γ(k)

n (x)φ(m−k)(x) dx
∣∣∣∣ ≤ Ck

nk

∫ ∞

−∞
|G(x)φ(m−k)(x)| dx

and thereby obtain (8).
Given L > 0 we majorize the integral from (9) by writing∣∣∣∣
∫ ∞

−∞
G(x)[1 − Γn(x)]φ(m)(x) dx

∣∣∣∣
≤
∫

|x|≤L

|G(x)[1 − Γn(x)]φ(m)(x)| dx+
∫

|x|≥L

|G(x)[1 − Γn(x)]φ(m)(x)| dx

≤ max−∞<x<∞ |G(x)φ(m)(x)| · 2L[1 − Γn(L)] +
∫

|x|≥L

|G(x)φ(m)(x)| dx. (10)

Let ε > 0 be selected. Since Gφ(m) rapidly approaches 0 at ±∞, we can choose
L > 0 so that ∫

|x|≥L

|G(x)φ(m)(x)| dx < ε

2
.

With L so chosen, we will then have

max−∞<x<∞ |G(x)φ(m)(x)| · 2L[1 − Γn(L)] <
ε

2

for all sufficiently large n. In conjunction with (10), this proves (9).

Fundamental inequalities

Let f be a probability density and let φ1, φ2 be real Schwartz functions. We obtain
the monotonicity relation∫ ∞

−∞
f(x)φ1(x) dx ≤

∫ ∞

−∞
f(x)φ2(x) dx when φ1 ≤ φ2 (11)

by using (2) (with φ := φ2 − φ1).
Suppose that φ is a real Schwartz function with b ≤ φ(x) ≤ B, −∞ < x < ∞ for

suitably chosen constants b, B. We use (11) to see that

b

∫ ∞

−∞
f(x)Γn(x) dx ≤

∫ ∞

−∞
f(x)Γn(x)φ(x) dx ≤ B

∫ ∞

−∞
f(x)Γn(x) dx, n = 1, 2, . . . ,

and then use (3), (7) to write

b ≤
∫ ∞

−∞
f(x)φ(x) dx ≤ B. (12)
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This allows us to deduce that a probability density is real, i.e.,

f = f, (13)

and to establish the max bound∣∣∣∣
∫ ∞

−∞
f(x)φ(x) dx

∣∣∣∣ ≤ max−∞<x<∞ |φ(x)|. (14)

Let φ1, φ2 ∈ S be complex valued. We choose β ∈ C with |β| = 1 so that

β

∫ ∞

−∞
f(x)φ1(x)φ2(x) dx =

∣∣∣∣
∫ ∞

−∞
f(x)φ1(x)φ2(x) dx

∣∣∣∣.
For each real value of t

|t φ1(x) + β φ2(x)|2 = t2φ1(x)φ1(x) + t{β φ1(x)φ2(x) + β φ1(x)φ2(x)} + φ2(x)φ2(x)

is a nonnegative Schwartz function, so we can use (2) [and (13)] to see that

t2
∫ ∞

−∞
f(x)|φ1(x)|2 dx+ 2t

∣∣∣∣
∫ ∞

−∞
f(x)φ1(x)φ2(x) dx

∣∣∣∣+
∫ ∞

−∞
f(x)|φ2(x)|2 dx ≥ 0.

A nonnegative quadratic polynomial must have a nonpositive discriminant, and
within the present context this observation gives us the Cauchy–Schwartz inequality

∣∣∣∣
∫ ∞

−∞
f(x)φ1(x)φ2(x) dx

∣∣∣∣
2

≤
∫ ∞

−∞
f(x)|φ1(x)|2 dx ·

∫ ∞

−∞
f(x)|φ2(x)|2 dx. (15)

Example Let f be a probability density and let φ ∈ S. Show that

∣∣∣∣
∫ ∞

−∞
f(x)φ(x) dx

∣∣∣∣
2

≤
∫ ∞

−∞
f(x)|φ(x)|2 dx. (16)

Solution We use (15) (with φ1 = Γn, φ2 = φ) and (11) to write

∣∣∣∣
∫ ∞

−∞
f(x)Γn(x)φ(x) dx

∣∣∣∣
2

≤
∫ ∞

−∞
f(x)Γ2

n(x) dx ·
∫ ∞

−∞
f(x)|φ(x)|2 dx

≤
∫ ∞

−∞
f(x)Γn(x) dx ·

∫ ∞

−∞
f(x)|φ(x)|2 dx.

In conjunction with the limits (3), (7) this gives (16).
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Example Let f be a probability density. Show that the max bound (14) holds
even when φ ∈ S is complex valued.

Solution We use (16) with the real version of (14) to write∣∣∣∣
∫ ∞

−∞
f(x)φ(x)

∣∣∣∣
2

≤
∫ ∞

−∞
f(x)|φ(x)|2 dx ≤ max−∞<x<∞ |φ(x)|2 =

{
max−∞<x<∞ |φ(x)|

}2

and thereby prove (14) when φ ∈ S is complex.

Example Let f be a probability density and let φ ∈ S with φ ≥ 0. Show that∣∣∣∣
∫ ∞

−∞
f(x)φ(x)e−2πisx dx

∣∣∣∣ ≤
∫ ∞

−∞
f(x)φ(x) dx, −∞ < s < ∞. (17)

Solution When fφ = 0, (17) holds trivially. In all other cases fφ is a scaled
probability density, so we can use (7) with the complex version of (14) to write∣∣∣∣

∫ ∞

−∞
f(x)φ(x)e−2πisx dx

∣∣∣∣ = lim
n→∞

∣∣∣∣
∫ ∞

−∞
f(x)φ(x)Γn(x)e−2πisx dx

∣∣∣∣
≤ lim

n→∞

∫ ∞

−∞
f(x)φ(x) dx · max−∞<x<∞ |Γn(x)e−2πisx|

=
∫ ∞

−∞
f(x)φ(x) dx.

12.3 The characteristic function

F is bounded and continuous

Let f be a probability density and let F := f∧ be the corresponding characteristic
function. For n = 1, 2, . . . and −∞ < s < ∞ we define

Fn(s) :=
∫ ∞

−∞
f(x)Γn(x)e−2πis dx. (18)

We use the max bound to verify that Fn is bounded and continuous by writing

|Fn(s)| ≤ max−∞<x<∞ |Γn(x)e−2πisx| = 1

and

|Fn(s+ h) − Fn(s)| =
∣∣∣∣
∫ ∞

−∞
f(x)Γn(x){e−2πi(s+h)x − e−2πisx} dx

∣∣∣∣
≤ max−∞<x<∞ Γn(x)|e−2πihx − 1| → 0 as h → 0.
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We will show that F1, F2, . . . converges to F and thereby show that the characteristic
function is bounded and continuous.

As a first step we use (17) and (3) to write

|Fm(s) − Fn(s)| =
∣∣∣∣
∫ ∞

−∞
f(x){Γm(x) − Γn(x)}e−2πisx dx

∣∣∣∣
≤
∫ ∞

−∞
f(x)|Γm(x) − Γn(x)| dx

=
∣∣∣∣
∫ ∞

−∞
f(x)Γm(x) dx−

∫ ∞

−∞
f(x)Γn(x) dx

∣∣∣∣
→ 0 as m,n → ∞.

This proves that F1(s), F2(s), . . . is a Cauchy sequence that has a pointwise limit

F∞(s) := lim
n→∞Fn(s), −∞ < s < ∞,

with |F∞(s)| ≤ 1 for each s and with

|F∞(s) − Fn(s)| ≤ 1 −
∫ ∞

−∞
f(x)Γn(x) dx, −∞ < s < ∞. (19)

Using (19) and (3) we see that F∞ is the uniform limit of the continuous functions
F1, F2, . . . , so F∞ must be continuous. Knowing that F1, F2, . . . and F∞ are all
bounded and continuous we again use (19) and (3) to see that∣∣∣∣

∫ ∞

−∞
{F∞(s) − Fn(s)}φ(s) ds

∣∣∣∣ ≤
{

1 −
∫ ∞

−∞
f(x)Γn(x) dx

}
·
∫ ∞

−∞
|φ(x)| dx

→ 0 as n → ∞
when φ ∈ S. In this way we establish the weak limit

lim
n→∞Fn = F∞. (20)

We will now identify F∞ with the characteristic function F . The convolution
product γm ∗ f is a bounded continuous probability density, see Ex. 12.10, so
(γm ∗ f) · Γn has the ordinary Fourier transform

Fmn(s) :=
∫ ∞

−∞
(γm ∗ f)(x)Γn(x)e−2πisx dx. (21)

We will establish the weak limit

lim
m→∞Fmn = Fn, (22)
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so we can use (20), (22), (21), (6), (7) in turn to write

F∞ = lim
n→∞Fn

?= lim
n→∞ lim

m→∞Fmn = lim
n→∞ lim

m→∞{(γm∗f)·Γn}∧ = lim
n→∞{f ·Γn}∧ =: F

and thereby obtain the representation

F (s) = lim
n→∞

∫ ∞

−∞
f(x)Γn(x)e−2πisx dx, −∞ < s < ∞ (23)

for the characteristic function F . This identification of F with F∞ allows us to see
that F is continuous and bounded with

|F (s)| ≤ 1, −∞ < s < ∞. (24)

Example Show that F1n, F2n, . . . converges weakly to Fn [when these functions
are constructed from the probability density f by using (21) and (18)].

Solution We use (14) with the Schwartz function Γns(x) := Γn(x)e−2πisx to write

|Fmn(s) − Fn(s)| =
∣∣∣∣
∫ ∞

−∞
{(γm ∗ f)(x) − f(x)}Γns(x) dx

∣∣∣∣
=
∣∣∣∣
∫ ∞

−∞
f(x){(γm ∗ Γns)(x) − Γns(x)} dx

∣∣∣∣
≤ max−∞<x<∞ |(γm ∗ Γns)(x) − Γns(x)|.

Given ε > 0 we will choose M > 0 to ensure that

max
|x|≥M

|(γm ∗ Γns)(x) − Γns(x)| ≤ max
|x|≥M

{(γm ∗ Γn)(x) + Γn(x)} < ε

for all m = 1, 2, . . . and −∞ < s < ∞. If s is constrained to lie in some finite
interval −L ≤ s ≤ L, we will also have

max
|x|≤M,|s|≤L

|(γm ∗ Γns)(x) − Γns(x)| < ε

for all sufficiently large m. In this way we see that

|Fmn(s) − Fn(s)| < ε when −L ≤ s ≤ L

and m is sufficiently large, i.e., F1n, F2n, . . . converges uniformly to Fn on every
finite interval [−L,L].
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We will use this uniform convergence to establish the weak limit (22). Let φ ∈ S

be selected. Since |Fmn(s)| ≤ 1, |Fn(s)| ≤ 1 we can write∣∣∣∣
∫ ∞

−∞
Fmn(s)φ(s) ds−

∫ ∞

−∞
Fn(s)φ(s) ds

∣∣∣∣ ≤
∫ ∞

−∞
|Fmn(s) − Fn(s)| · |φ(s)| ds

≤ max−∞<s<∞ |φ(s)| ·
∫

|s|≤L

|Fmn(s) − Fn(s)| ds+ 2
∫

|s|≥L

|φ(s)| ds.

Given ε > 0, we can choose L > 0 to make

2
∫

|s|≥L

|φ(s)| ds < ε/2.

Since F1n, F2n, . . . converges uniformly to Fn on [−L,L] we will also have

max−∞<s<∞ |φ(s)| ·
∫

|s|≤L

|Fmn(s) − Fn(s)| ds < ε/2

when m is sufficiently large. It follows that∣∣∣∣
∫ ∞

−∞
Fmn(s)φ(s) ds−

∫ ∞

−∞
Fn(s)φ(s) ds

∣∣∣∣ < ε

when m is sufficiently large. Since ε > 0 is arbitrary, the proof of (22) is complete.

Bochner’s characterization of F

We now know that the characteristic function (23) of a probability density f is
continuous and bounded with

F (0) = 1. (25)

A characteristic function is also nonnegative semidefinite in the sense that∫ ∞

−∞
F (s)(ψ ∗ ψ†)(s) ds ≥ 0 for all ψ ∈ S (26)

[as we see by using the Parseval relation
∫ ∞

−∞
F (s)(ψ ∗ ψ†)(s) ds =

∫ ∞

−∞
f(x)|ψ∧(x)|2 dx

with (2)]. Bochner discovered that any F having these four properties must be a
characteristic function. We will give a proof and then use this characterization to
show that the set of generalized probability densities is closed under convolution.
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Let F be a continuous and bounded function on R that satisfies (25) and (26).
We will prove that f := F∧∨ is a probability density. Let φ ∈ S be selected with
φ ≥ 0. For each m,n = 1, 2, . . . we define ψmn so that

ψ∧
mn = {Γn · [φ+ 1/m]}1/2. (27)

We verify that ψmn ∈ S, and then show that f is nonnegative by using (7), (27),
the Parseval relation, and (26) in turn to write∫ ∞

−∞
f(x)φ(x) dx = lim

n→∞ lim
m→∞

∫ ∞

−∞
f(x)Γn(x)[φ(x) + 1/m] dx

= lim
n→∞ lim

m→∞

∫ ∞

−∞
f(x)|ψ∧

mn(x)|2 dx

= lim
n→∞ lim

m→∞

∫ ∞

−∞
F (s)(ψmn ∗ ψ†

mn)(s) ds ≥ 0.

Since F is continuous and bounded, we can use the Parseval relation, the fact that
γn is an approximate δ, and the hypothesis (25) to see that

lim
n→∞

∫ ∞

−∞
f(x)Γn(x) dx = lim

n→∞

∫ ∞

−∞
F (s)γn(s) ds = F (0) = 1.

In this way we verify that f has the properties (2), (3) of a probability density.

Products of characteristic functions

Let f1, f2 be probability densities and let F1, F2 be the corresponding characteristic
functions. Since F1, F2 are continuous and bounded, the same is true of

F (s) := F1(s) · F2(s), −∞ < s < ∞, (28)

so this pointwise product is a well-defined generalized function represented by the
fundamental functional

F{φ} :=
∫ ∞

−∞
F1(s)F2(s)φ(s) ds, φ ∈ S.

[We do not assume that F1 ·φ ∈ S whenever φ ∈ S, so the discussion following (7.75)
does not apply within the present context.] The convolution rule

(f1 ∗ f2)∧ = F1 · F2

and the corresponding Parseval relation will be valid within this setting if we define
the convolution product

f = f1 ∗ f2 (29)
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of the probability densities f1, f2 by writing

f1 ∗ f2 := (F1 · F2)∧∨. (30)

We will show that (29) is a probability density by verifying that (28) satisfies the
Bochner conditions for a characteristic function.

The function (28) is continuous and bounded with F (0) = 1 (since these prop-
erties are possessed by the characteristic functions F1, F2). We must show that F
also satisfies (26). Let ψ ∈ S be selected and let n = 1, 2, . . . . The convolution
product of a generalized probability density and a probability density from S is a
smooth bounded probability density (see Ex. 12.10), so

{f1 ∗ γn} · {f∨
2 ∗ |ψ∧|2}

is a smooth, nonnegative, integrable function on R. This being the case, we can use
(7) with Parseval’s relation (and the convolution rule) to write∫ ∞

−∞
F (s)(ψ ∗ ψ†)(s) ds = lim

n→∞

∫ ∞

−∞
{F1(s)Γn(s)} · {F2(s)(ψ ∗ ψ†)(s)} ds

= lim
n→∞

∫ ∞

−∞
(f1 ∗ γn)(x) · (f∨

2 ∗ |ψ∧|2)(x) dx ≥ 0.

In this way we see in turn that (26) holds, that F = F1 · F2 is a characteristic
function, and that f = f1 ∗ f2 is a probability density.

More generally, if f1, f2, f3, f4, . . . are probability densities with the characteristic
functions F1, F2, F3, F4, . . . , then

F1 · F2, F1 · F2 · F3, F1 · F2 · F3 · F4, . . .

are characteristic functions and the corresponding

f1 ∗ f2, f1 ∗ f2 ∗ f3, f1 ∗ f2 ∗ f3 ∗ f4, . . .
are probability density functions. Such products and convolution products are al-
ways commutative and associative, see Ex. 2.36.

Periodic characteristic functions

Let p > 0. From your work with p-periodic generalized functions in Section 7.7,
you know that when the probability density f is a weighted sum of δ(x − k/p),
k = 0,±1,±2, . . . , then the characteristic function F must be p-periodic. More gen-
erally, if 0 ≤ x0 < 1/p and f is a weighted sum of δ(x−x0−k/p), k = 0,±1,±2, . . . ,
then e2πisx0F (s) must be p-periodic. We will show that this is the case precisely
when

|F (p)| = F (0) = 1 (31)
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and
|F (s)| < 1 for 0 < s < p, (32)

as illustrated by the characteristic functions on the right side of Fig. 12.3.
Indeed, let F be a characteristic function and assume that (31) holds for some

p > 0. To simplify the analysis we will further assume that F (p) = 1. [If this is
not the case, we apply the following argument to the translate f(x + x0) where
0 ≤ x0 < 1/p is chosen to make e2πipx0F (p) = 1.] From (13), it follows that
F (−p) = F (p) = 1, so we can use the pointwise limit (23) to see that

lim
n→∞

∫ ∞

−∞
f(x)Γn(x)[1 − cos(2πpx)] dx = F (0) − F (p)/2 − F (−p)/2 = 0.

Since the integrand is nonnegative, we can use this limit with (7) and the max
bound to write∣∣∣∣

∫ ∞

−∞
f(x)[1 − cos(2πpx)]φ(x) dx

∣∣∣∣
=
∣∣∣∣ lim

n→∞

∫ ∞

−∞
f(x)Γn(x)[1 − cos(2πpx)]φ(x) dx

∣∣∣∣
≤ lim

n→∞ max−∞<x<∞ |φ(x)| ·
∫ ∞

−∞
f(x)Γn(x)[1 − cos(2πpx)] dx

= 0 when φ ∈ S,

i.e.,
f(x)[1 − cos(2πpx)] = 0.

We use the modulation rule to see that

F (s+ p) − 2F (s) + F (s− p) = 0, −∞ < s < ∞,

and (since F is bounded) thereby deduce that F is p-periodic, see Ex. 7.78.
In view of this analysis, we see that a characteristic function F can be classified

as follows. Either
|F (s)| < 1 for 0 < s < ∞

(in which case |F | is aperiodic) or there is some p > 0 such that

|F (s)| < 1 for 0 < s < p and |F (p)| = 1

[in which case e2πisx0F (s) is p-periodic for some choice of 0 ≤ x0 < 1/p], or

|F (s)| = 1 for all 0 < s < ∞

[in which case F (s) = e2πisx0 for some choice of −∞ < x0 < ∞].
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12.4 Random variables

Probability integrals

Let f be a probability density on R. In practice we use f to compute probabilities
and to compute certain averages, i.e., statistics, as illustrated by the examples in
Section 12.1. We will now introduce some notation to facilitate such calculations.

When f is an ordinary function, the integral∫ b

a

f(x) dx

gives us the portion of the total probability mass that f assigns to the interval (a, b)
as illustrated in Fig. 12.5. We say that

P{a < X < b} =
∫ b

a

f(x) dx

is the probability of finding a random variable X in the interval (a, b) when X
has the density f . In cases where f is a generalized function, we must introduce
notation that allows us to specify whether we should include atoms of probability,
if any, at the endpoints of the interval, e.g.,

P{X ≤ b} =
∫ b+

−∞
f(x) dx, P{a < X < b} =

∫ b−

a+

f(x) dx, P{X = a} =
∫ a+

a−
f(x) dx.

Figure 12.5. The probability P{a < X < b} is obtained by
integrating the probability density f over (a, b) when f is an
ordinary function (left) or by summing the atoms of probability
within (a, b) when f is a train of weighted deltas (right).

We use the mesa functions from Fig. 12.6 to give a precise meaning to such improper
integrals by writing∫ b+

−∞
f(x) dx := lim

ε→0+
lim

a→−∞

∫ ∞

−∞
f(x)m−+(x; a, b, ε) dx,

∫ b−

a+

f(x) dx := lim
ε→0+

∫ ∞

−∞
f(x)m+−(x; a, b, ε) dx,

∫ a+

a−
f(x) dx := lim

ε→0+

∫ ∞

−∞
f(x)m−+(x; a, a, ε) dx.
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Figure 12.6. Mesa functions used to define integrals of a gener-
alized probability density f .

[These mesa functions are defined by suitably modifying the parameters that appear
in (7.15). Such notation is seldom required for practical purposes, however, and we
will routinely work with improper integrals of f in the remainder of this chapter.

Example Find P{X < 3} when X is a random variable with the die-toss density

f(x) :=
1
6

6∑
k=1

δ(x− k).

Solution The density f is shown in Fig. 12.2. It has atoms of probability, each
with mass 1/6, at the points x = 1, 2, . . . , 6. Only those at x = 1, 2 lie to the left of
3, so

P{X < 3} = 1
6 + 1

6 = 1
3 .

Equivalently,
P{X < 3} = g(3−) = 1

3

where g is the distribution function for the die-toss density as shown in Fig. 12.2.
Of course, we can also write

P{X < 3} :=
∫ 3−

−∞
f(x) dx := lim

ε→0+
lim

a→−∞

∫ ∞

−∞
f(x)m−−(x; a, 3, ε) dx

= lim
ε→0+

lim
a→−∞

1
6

6∑
k=1

m−−(k; a, 3, ε) =
1
6

+
1
6

=
1
3
.

Example Let X be a random variable with the standard normal density

f(x) =
e−x2/2
√

2π
.

Find P{−1 < X < 1}, P{−2 < X < 2}, and P{−3 < X < 3}.
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Solution The distribution function for the standard normal density is usually called
Φ. Since Φ′ = f we can use the fundamental theorem of calculus to write

P{−1 < X < 1} =
∫ 1

−1
f(x) dx = Φ(1) − Φ(−1).

Appendix 7 has a table for Φ, and you can evaluate Φ on many scientific calcula-
tors. (If yours does not include this function, you may wish to write a program to
approximate Φ by using the formula given in Appendix 7.) Using the table we find

P{−1 < X < 1} = .8413 − .1587 = .6826,

and analogously,

P{−2 < X < 2} = .9772 −.0228 = .9544,
P{−3 < X < 3} = .9987 −.0013 = .9974.

The standard normal density (as shown in Fig. 12.2 and Appendix 7) has 68%, 95%,
99.7% of its probability mass within 1, 2, 3 units of the origin!

Expectation integrals

Let f be a probability density on R, and let X be a corresponding random variable.
We will frequently have occasion to compute an average value for some suitably
regular function q(X). For this purpose we use the expectation integral

〈q(X)〉 :=
∫ ∞

−∞
q(x)f(x) dx. (33)

[You may recall that we computed the average speed 〈V 〉 and the average kinetic en-
ergy 〈(1/2)mV 2〉 for a molecule of N2 by using (33) with Maxwell’s density (1).] We
limit our consideration to cases where the product q · f is a well-defined generalized
function that is subject to a max bound∣∣∣∣

∫ ∞

−∞
q(x)f(x)φ(x) dx

∣∣∣∣ ≤ M · max−∞<x<∞ |φ(x)|, φ ∈ S. (34)

Here 0 ≤ M < ∞ is a constant that depends on f and q but not on φ. [When q · f
is an ordinary function, we take

M =
∫ ∞

−∞
|q(x)|f(x) dx

provided that this integral is finite.] We can then use mollification, mesa functions,
and suitable limits to interpret (33), e.g., as done in Ex. 12.13.
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We easily verify that the expectation integral is linear by observing that it is both
homogeneous and additive

〈αq(X)〉 = α〈q(X)〉, α ∈ C,

〈q1(X) + q2(X)〉 = 〈q1(X)〉 + 〈q2(X)〉

(when all of these expressions are well defined). Since f ≥ 0, we also have

〈q(X)〉 ≥ 0 when q ≥ 0

and
|〈q1(X) · q2(X)〉|2 ≤ 〈q1(X)2〉 · 〈q2(X)2〉. (35)

We prove the Cauchy–Schwartz inequality (35) by suitably modifying the argument
used to establish (15).

When we are given a probability density f we will routinely compute two funda-
mental statistics, the mean

µ := 〈X〉 (36)

and the variance

σ2 := 〈(X − µ)2〉 = 〈X2〉 − 2µ〈X〉 + µ2〈1〉 = 〈X2〉 − 〈X〉2 (37)

(provided that 〈X〉, 〈X2〉 are well defined). The nonnegative square root of the
variance is called the standard deviation, σ ≥ 0. The mean locates the “center”
(more precisely the centroid) of the density f and the standard deviation serves as
a measure of its effective “width.”

Example Find the mean and standard deviation for the die-toss density.

Solution We suitably extend the sifting property of δ to write

〈q(X)〉 =
1
6

∫ ∞

−∞
{δ(x− 1) + δ(x− 2) + · · · + δ(x− 6)}q(x) dx

=
1
6
{q(1) + q(2) + · · · + q(6)}

when q is continuous at the points x = 1, 2, . . . , 6. [Since each atom of probability
has the same weight, 〈q(X)〉 is the ordinary arithmetic average of q(1), q(2), . . . , q(6)
when we work with the die-toss density!] We compute

〈X〉 = 1
6{1 + 2 + · · · + 6} = 7

2 , 〈X2〉 = 1
6{12 + 22 + · · · + 62} = 91

6 ,

and then use (36), (37) to write

µ = 〈X〉 = 3.5, σ = {〈X2〉 − 〈X〉2}1/2 =
{ 91

6 − 49
4

}1/2 = 1.7078 . . . .
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Example Find the mean and standard deviation for the truncated exponential
density f(x) := h(x)e−x.

Solution Using the formula∫ ∞

0
xne−x dx = n!, n = 0, 1, 2, . . .

from calculus, we compute

〈X〉 =
∫ ∞

0
x e−x dx = 1, 〈X2〉 =

∫ ∞

0
x2e−x dx = 2,

and then use (36), (37) to write

µ = 〈X〉 = 1, σ = {〈X2〉 − 〈X〉2}1/2 = 1.

Let n = 0, 1, . . . . We define the nth moment

m(n) := 〈Xn〉 =
∫ ∞

−∞
xnf(x) dx (38)

of the probability density f provided that∣∣∣∣
∫ ∞

−∞
xnf(x)φ(x) dx

∣∣∣∣ ≤ Mn · max−∞<x<∞ |φ(x)|, φ ∈ S (39)

for some constant 0 ≤ Mn < ∞ (e.g., we take

Mn =
∫ ∞

−∞
|xn|f(x) dx

in cases where f is an ordinary function and the integral is finite). When xnf(x)
is subject to the max bound (39), the characteristic function F has n uniformly
continuous derivatives and we can use the power scaling rule to see that

m(n) =
F (n)(0)
(−2πi)n

, (40)

see Ex. 12.14. Sometimes this formula gives us the moments m(0),m(1), . . . with
minimal effort.

Example Find the moments for the Dirac density f(x) := δ(x).

Solution Since F (s) = 1, we can use (40) to see that

m(0) = 1, m(n) = 0 for n = 1, 2, . . . .
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Example Find the moments (38) for the standard normal density

f(x) :=
e−x2/2
√

2π
.

Solution Using (3.14) and the power series for the exponential we see that

F (s) = e−2π2s2
= 1 − 2π2s2

1!
+

(2π2s2)2

2!
− (2π2s2)3

3!
+ · · ·

= 1 +
(−2πis)2

2 · 1!
+

(−2πis)4

22 · 2!
+

(−2πis)6

23 · 3!
+ · · · .

We equate this series to the one from Maclaurin’s formula

F (s) = F (0) +
F ′(0)s

1!
+
F ′′(0)s2

2!
+
F ′′′(0)s3

3!
+ · · ·

and thereby obtain

m(n) =
F (n)(0)
(−2πi)n

=




0 if n = 1, 3, 5, . . .
n!

2n/2(n/2)!
if n = 0, 2, 4, . . . .

In particular, the standard normal density has the mean and variance

µ = 〈X〉 = m(1) = 0, σ2 = 〈X2〉 − 〈X〉2 = m(2) = 1.

Example Find the moments for the Cauchy density f(x) := 1/[π(1 + x2)].

Solution We have m(0) = 1, but m(1),m(2), . . . are not defined! The absolute nth
moment ∫ ∞

−∞
|xn|f(x) dx =

∫ ∞

−∞

|xn|
π(1 + x2)

dx

is infinite for each n = 1, 2, . . . , and the characteristic function F (s) = e−2π|s| is
not differentiable at s = 0.

Functions of a random variable

LetX be a random variable with the probability density fX . We often have occasion
to form a new random variable

Y := r(X) (41)
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by using a suitably regular real-valued function r on R. In such a situation we can
often find the corresponding probability density fY as follows. We compute

〈e−2πisr(X)〉 :=
∫ ∞

−∞
e−2πisr(x)fX(x) dx (42)

and thereby obtain the characteristic function

FY (s) = 〈e−2πisY 〉 = 〈e−2πisr(X)〉 (43)

for Y . The inverse Fourier transform

fY = F∧∨
Y

(44)

then gives us the desired density. Analogously, we compute

〈r(X)〉 :=
∫ ∞

−∞
r(x)fX(x) dx, 〈r(X)2〉 :=

∫ ∞

−∞
r(x)2fX(x) dx

(when they exist), and thereby obtain the mean and variance

µY := 〈Y 〉 = 〈r(X)〉, (45)

σ2
Y

:= 〈Y 2〉 − 〈Y 〉2 = 〈r(X)2〉 − 〈r(X)〉2 (46)

for Y . We will give three examples to illustrate these ideas.

Example Let X be a random variable with the mean µ, the variance σ2, and the
probability density fX . Find the mean, variance, and probability density for the
random variable

Y := aX + b. (47)

Here a, b are real parameters with a �= 0.

Solution We use the linearity of the expectation integral to write

〈aX + b〉 = a〈X〉 + b,

〈(aX + b)2〉 = a2〈X2〉 + 2ab〈X〉 + b2,

and then use (45), (46) with (36), (37) to obtain

µY = aµ+ b, (48)

σ2
Y

= a2σ2. (49)

We use (43) to find the characteristic function

FY (s) = 〈e−2πis(aX+b)〉 = e−2πisb〈e−2πi(as)X〉 = e−2πisbFX(as).
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We then use the dilation and translation rules to see that FY is the Fourier transform
of the probability density

fY (y) =
1
|a|fX

(
y − b

a

)
. (50)

Example Let X be a random variable with the uniform density fX(x) :=
(1/π)P(x/π). Find the mean, variance, and probability density for Y := sin(X).

Solution We easily find

µY = 〈sin(X)〉 =
1
π

∫ π/2

−π/2
sinx dx = 0, σ2

Y
= 〈sin2(X)〉 =

1
π

∫ π/2

−π/2
sin2x dx =

1
2
.

For the characteristic function FY we write

FY (s) = 〈e−2πis sin(X)〉 =
1
π

∫ π/2

−π/2
e−2πis sin(x) dx =

1
π

∫ 1

−1

e−2πisy√
1 − y2

dy (51)

(using the transformation y = sinx at the last step). The second integral from (51)
is found in the analysis equation for

fY (y) =




1

π
√

1 − y2
if −1 < y < 1

0 otherwise.
(52)

[You can obtain the explicit formula

FY (s) = J0(2πs) (53)

for the characteristic function FY by using the generating function

eiα sin x =
∞∑

k=−∞
Jk(α)eikx

for the Bessel functions (see Ex. 4.19) to evaluate the first integral from (51).]

Example Let X be a random variable with the Cauchy density fX(x) := 1/[π(1+
x2)]. Find the probability density for the reciprocal Y := 1/X.
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Solution We use (42) and (43) with a careful change of variables to write

FY (s) = 〈e−2πis/X〉

=
∫ 0−

−∞

e−2πis/x

π(1 + x2)
dx+

∫ +∞

0+

e−2πis/x

π(1 + x2)
dx

= −
∫ −∞

0−

e−2πisy

π(1 + y−2)
· dy
y2 −

∫ 0+

+∞

e−2πisy

π(1 + y−2)
· dy
y2

=
∫ ∞

−∞

e−2πisy

π(1 + y2)
dy. (54)

In this way we see that Y has the same Cauchy density fY = fX as X.

The uncertainty relation

It is impossible to synthesize a highly localized function f on R without a substan-
tial contribution from the high-frequency components. When the “width” of f is
small, the “width” of F must be large. We will quantify this observation within
a context where |f |2 (not f !) serves as a probability density. For example, when
f is the reduced wave function for a diffracting laser beam (with finite energy) we
can normalize |f |2 to obtain a probability density that shows where the energy is
concentrated. The t-slices from Fig. 9.14 show the evolution of such a density from
the P of a slit to the dilated sinc2 of the far-field diffraction pattern.

Let f be a continuous piecewise smooth function on R with a continuous piecewise
smooth Fourier transform F . We will assume that f is square integrable with

∫ ∞

−∞
|f(x)|2 dx = 1.

In view of Plancherel’s identity (1.15) we must also have

∫ ∞

−∞
|F (s)|2 ds = 1.

We will assume that the means

µf :=
∫ ∞

−∞
x |f(x)|2 dx, µF :=

∫ ∞

−∞
s |F (s)|2 ds (55)

and the variances

σ2
f

:=
∫ ∞

−∞
(x− µf )2|f(x)|2 ds, σ2

F
:=
∫ ∞

−∞
(s− µF )2|F (s)|2 ds (56)
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of the probability densities |f |2, |F |2 are finite, see Fig. 12.7. We will show that the
standard deviations σf , σF of such densities satisfy the uncertainty relation

σfσF ≥ 1
4π

. (57)

(Within an appropriate context, this inequality is equivalent to the Heisenberg
uncertainty principle of quantum mechanics!)

Figure 12.7. The standard deviations σf , σF of the probability
densities |f |2, |F |2 must satisfy the uncertainty relation (57).

We first establish (57) for the case where µf = µF = 0. By using Plancherel’s
identity, the Cauchy–Schwartz inequality

∣∣∣∣
∫ ∞

−∞
f(x)g(x) dx

∣∣∣∣
2

≤
∫ ∞

−∞
|f(x)|2 dx ·

∫ ∞

−∞
|g(x)|2 dx (58)

for square integrable functions, and an integration by parts we write

σ2
fσ

2
F =

∫ ∞

−∞
x2|f(x)|2 dx ·

∫ ∞

−∞
s2|F (s)|2 ds

=
1

4π2

∫ ∞

−∞
|x f(x)|2 dx ·

∫ ∞

−∞
|2πis F (s)|2 ds

=
1

4π2

∫ ∞

−∞
|x f(x)|2 dx ·

∫ ∞

−∞
|f ′(x)|2 dx

≥ 1
4π2

∣∣∣∣
∫ ∞

−∞
x f(x)f ′(x) dx

∣∣∣∣
2

≥ 1
4π2

∣∣∣∣Re
{∫ ∞

−∞
x f(x)f ′(x) dx

}∣∣∣∣
2

=
1

16π2

∣∣∣∣
∫ ∞

−∞
x
d

dx
|f(x)|2 dx

∣∣∣∣
2
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=
1

16π2

∣∣∣∣
∫ ∞

−∞
|f(x)|2 dx

∣∣∣∣
2

=
1

16π2 .

For the general case where µf �= 0 or µF �= 0, we define the modulated translate

g(x) := e−2πiµF xf(x+ µf )

of f , and verify in turn that∫ ∞

−∞
|g(x)|2 dx =

∫ ∞

−∞
|f(x+ µf )|2 dx = 1,

µg :=
∫ ∞

−∞
x |g(x)|2 dx =

∫ ∞

−∞
(x+ µf − µf )|f(x+ µf )|2 dx = 0,

σ2
g

:=
∫ ∞

−∞
x2|g(x)|2 dx =

∫ ∞

−∞
(x+ µf − µf )2|f(x+ µf )|2 dx = σ2

f
.

We use the modulation and translation rules to write

G(s) = e2πiµf (s+µF )F (s+ µF ),

and verify in turn that∫ ∞

−∞
|G(s)|2 ds =

∫ ∞

−∞
|F (s+ µF )|2 ds = 1,

µG :=
∫ ∞

−∞
s |G(s)|2 ds =

∫ ∞

−∞
(s+ µF − µF )|F (s+ µF )|2 ds = 0,

σ2
G

:=
∫ ∞

−∞
s2|G(s)|2 ds =

∫ ∞

−∞
(s+ µF − µF )2|F (s+ µF )|2 ds = σ2

F
.

We use these identities with the above zero means version of (57) to write

σf σF = σg σG ≥ 1
4π

and thereby show that (57) holds when µf �= 0 or µF �= 0. You may wish to verify
that equality occurs if and only if

f(x) = Ae−(x−µ)2/4σ2
(59)

with |A| = (2πσ2)−1/4, σ > 0, and −∞ < µ < ∞, see Ex. 12.27 and (9.97).
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12.5 The central limit theorem

Sums of independent random variables

Let f(x1, x2) be a suitably regular nonnegative function on R
2 with∫ ∞

−∞

∫ ∞

−∞
f(x1, x2) dx1 dx2 = 1.

We use this bivariate density to describe two random variables X1, X2. We say that

P{(X1, X2) ∈ D} =
∫∫
D

f(x1, x2) dx1 dx2

is the probability of finding (X1, X2) in some suitably regular domain D ⊆ R
2 when

X1, X2 have the joint probability density f . Since

P{a < X1 < b} =
∫ b

x1=a

∫ ∞

x2=−∞
f(x1, x2) dx2 dx1,

P{a < X2 < b} =
∫ b

x2=a

∫ ∞

x1=−∞
f(x1, x2) dx1 dx2,

we immediately see that X1, X2 have the univariate probability densities

fX1
(x1) =

∫ ∞

x2=−∞
f(x1, x2) dx2, fX2

(x2) =
∫ ∞

x1=−∞
f(x1, x2) dx1.

We will consider only bivariate probability densities that can be written as a product

f(x1, x2) = fX1
(x1)fX2

(x2)

of the corresponding univariate probability densities. When this is the case we say
that the random variables X1, X2 are independent. Within this context we have

〈X1 ·X2〉 =
∫ ∞

−∞

∫ ∞

−∞
x1x2 fX1

(x1)fX2
(x2) dx1 dx2

=
∫ ∞

−∞
x1fX1

(x1) dx1 ·
∫ ∞

−∞
x2fX2

(x2) dx2

= 〈X1〉 · 〈X2〉, (60)

or more generally,

〈q1(X1) · q2(X2)〉 = 〈q1(X1)〉 · 〈q2(X2)〉
when q1, q2 are suitably regular functions on R and these expectation integrals are
well defined.
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We often have occasion to form the sum of independent random variables X1, X2.
When the corresponding probability densities fX1

, fX2
are suitably regular (e.g.,

bounded and piecewise continuous), we can write

P{a < X1 +X2 < b} =
∫∫

a<x1+x2<b

fX1
(x1)fX2

(x2) dx1 dx2

?=
∫ b

x=a

∫ ∞

u=−∞
fX1

(u)fX2
(x− u) du dx,

see Fig. 12.8. In this way we see that X1 +X2 has the probability density

fX1+X2
= fX1

∗ fX2
. (61)

When fX1
, fX2

are arbitrary generalized probability densities we work with the
corresponding characteristic functions and write

FX1+X2
(s) = 〈e−2πis(X1+X2)〉

= 〈e−2πisX1〉 · 〈e−2πisX2〉
= FX1

(s) · FX2
(s). (62)

Since we have shown that a product of characteristic functions is also a characteristic
function, we can again use (61) to obtain the probability density for X1 + X2
provided that we use (30) to define the convolution product.

Figure 12.8. The differential area du dx associated with the
transformation x1 = u, x2 = x− u that we use to derive (61).
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Example Let X1, X2 be independent random variables with the means µX1
, µX2

and the variances σ2
X1
, σ2

X2
. Show that X1 +X2 has the mean

µX1+X2
= µX1

+ µX2
(63)

and the variance
σ2

X1+X2
= σ2

X1
+ σ2

X2
. (64)

Solution We can use expectation integrals with (60) to obtain (63), (64) by writing

〈X1 +X2〉 = 〈X1〉 + 〈X2〉,

〈(X1 +X2)2〉 − 〈X1 +X2〉2 = 〈X2
1 〉 + 2〈X1X2〉 + 〈X2

2 〉
− 〈X1〉2 − 2〈X1〉〈X2〉 − 〈X2〉2

= 〈X2
1 〉 − 〈X1〉2 + 〈X2

2 〉 − 〈X2〉2.

We can also use (62) with (40) and the Leibnitz formula (2.29) to see that X1 +X2
has the nth moment

m(n)
X1+X2

=
F

(n)
X1+X2

(0)
(−2πi)n

=
n∑

ν=0

(
n

ν

)
F

(ν)
X1

(0)
(−2πi)ν

F
(n−ν)
X2

(0)
(−2πi)n−ν

=
n∑

ν=0

(
n

ν

)
m(ν)

X1
m(n−ν)

X2
(65)

when all of these moments are defined. In particular,

m(1)
X1+X2

= m(1)
X1

+m(1)
X2
, m(2)

X1+X2
= m(2)

X1
+ 2m(1)

X1
m(1)

X2
+m(2)

X2
,

and we obtain (63), (64) by using these moment relations with the identities

µX = m(1)
X
, σ2

X
= m(2)

X
− [m(1)

X
]2.

More generally, we will say that the random variables X1, X2, . . . , Xn are inde-
pendent when their joint probability density on R

n is the product

f(x1, x2, . . . , xn) = fX1
(x1)fX2

(x2) · · · fXn
(xn)

of the corresponding univariate probability densities fX1
, fX2

, . . . , fXn
. The sum

X1 +X2 + · · · +Xn will then have the probability density

fX1+X2+···+Xn
= fX1

∗ fX2
∗ · · · ∗ fXn

, (66)
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the characteristic function

FX1+X2+···+Xn
= FX1

· FX2
· · · · · FXn

, (67)

the mean
µX1+X2+···+Xn

= µX1
+ µX2

+ · · · + µXn
, (68)

(when the means µX1
, µX2

, . . . , µXn
are all defined), and the variance

σ2
X1+X2+···+Xn

= σ2
X1

+ σ2
X2

+ · · · + σ2
Xn

(69)

(when the variances σ2
X1
, σ2

X2
, . . . , σ2

Xn
are all defined).

Example Let each of the independent random variables X1, X2, . . . , Xn have the
Bernoulli density f(x) := q δ(x)+p δ(x−1) where p ≥ 0, q ≥ 0, and p+q = 1. Find
the probability density, the mean, and the variance for the sum X1 +X2 + · · ·+Xn.

Solution The probability density f has the Fourier transform F (s) = q+ p e−2πis,
so we can use (67) to obtain the characteristic function

FX1+X2+···+Xn
(s) = (q + p e−2πis)n =

n∑
k=0

(
n

k

)
pkqn−ke−2πiks.

The inverse Fourier transform gives the binomial density

fX1+X2+···+Xn
(x) =

n∑
k=0

(
n

k

)
pkqn−kδ(x− k).

The random variables X1, X2, . . . , Xn have the common mean

µ = q · 0 + p · 1 = p

and the common variance

σ2 = {q · 02 + p · 12} − {q · 0 + p · 1}2 = pq,

so we can use (68), (69) to write

µX1+X2+···+Xn
= np, σ2

X1+X2+···+Xn
= npq.
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Example Let each of the independent random variables X1, X2, . . . , Xn have the
standard normal density

f(x) :=
e−x2/2
√

2π

(with mean µ = 0 and variance σ2 = 1). Show that

X :=
1√
n

(X1 +X2 + · · · +Xn)

also has the standard normal density f .

Solution Since X1, X2, . . . , Xn are independent and since f has the Fourier trans-
form F (s) = e−2π2s2

we can write

FX(s) = 〈e−2πis(X1+X2+···+Xn)/
√

n〉
= 〈e−2πisX1/

√
n〉〈e−2πisX2/

√
n〉 · · · 〈e−2πisXn/

√
n〉

= F (s/
√
n)n

= F (s).

Example Let each of the independent random variables X1, X2, . . . , Xn have the
Cauchy density

f(x) :=
1

π(1 + x2)
.

Show that

X :=
1
n

(X1 +X2 + · · · +Xn)

also has the Cauchy density f .

Solution Since X1, X2, . . . , Xn are independent and since F (s) = e−2π|s| we can
write

FX(s) = 〈e−2πis(X1+X2+···+Xn)/n〉
= 〈e−2πisX1/n〉〈e−2πisX2/n〉 · · · 〈e−2πisXn/n〉
= F (s/n)n

= F (s).
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Example Let each of the independent random variables B1, B2, B3, . . . have the
Bernoulli density

b(x) := 1
2δ(x) + 1

2δ(x− 1),

and for n = 1, 2, . . . let

Sn :=
1
2
B1 +

1
4
B2 + · · · +

1
2n
Bn.

(We obtain Sn = (.B1B2 . . . Bn)2 by randomly choosing the bits B1, B2, . . . , Bn

from {0, 1}.) Find the probability density functions fS1 , fS2 , fS3 , . . . , and show that
this sequence has the weak limit

f(x) :=
{

1 if 0 < x < 1
0 otherwise.

Solution We define Xn := 2−nBn and use (50) with the dilation identity (7.65)
for δ to see that

fXn
(x) = 2nb(2nx) =

1
2
δ(x) +

1
2
δ

(
x− 1

2n

)
. (70)

Since Sn is the sum of the independent random variables X1, X2, . . . , Xn we can
use (66) and the sifting property of δ to write

fS1
(x) = fX1

(x)

=
1
2

{
δ(x) + δ

(
x− 1

2

)}
,

fS2
(x) = (fX1

∗ fX2
)(x) = fS1

(x) ∗ 1
2

{
δ(x) + δ

(
x− 1

4

)}

=
1
2

{
fS1

(x) + fS1

(
x− 1

4

)}

=
1
4

{
δ(x) + δ

(
x− 1

4

)
+ δ

(
x− 2

4

)
+ δ

(
x− 3

4

)}
,

...
fSn

(x) = (fX1
∗ fX2

∗ · · · ∗ fXn
)(x)

=
1
2

{
fSn−1

(x) + fSn−1

(
x− 1

2n

)}

=
1
2n

{
δ(x) + δ

(
x− 1

2n

)
+ δ

(
x− 2

2n

)
+ · · · + δ

(
x− 2n − 1

2n

)}
.

(71)
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The probability mass for Sn is evenly distributed over the 2n points x = k/2n,
k = 0, 1, . . . , 2n − 1, so we might reasonably expect fSn

to have the weak limit f ,
see Figs. 12.9 [and 10.9]. We prove this by using (71) and the definition of the
Riemann integral to write

lim
n→∞

∫ ∞

−∞
fSn

(x)φ(x) dx = lim
n→∞

1
2n

2n−1∑
k=0

φ

(
k

2n

)
=
∫ 1

0
φ(x) dx

=
∫ ∞

−∞
f(x)φ(x) dx when φ ∈ S.

[We obtain Vieta’s formula

cos
(

2πs
2

)
· cos

(
2πs
22

)
· cos

(
2πs
23

)
· · · · =

sin 2πs
2πs

(72)

from the corresponding

lim
n→∞FX1

· FX2
· · · · · FXn

= F.] (73)

Figure 12.9. The convolution products fS2 = fX1
∗ fX2

, fS3 =
fX1

∗ fX2
∗ fX3

and the weak limit of fX1
∗ fX2

∗ fX3
∗ · · · when

fX1
, fX2

, fX3
, . . . are given by (70).
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The ubiquitous bell curve

Let f be the common probability density for the independent random variables
X1, X2, X3, . . . . We will assume that f has a well-defined mean µ and variance σ2

with 0 < σ2 < ∞. From (66), (68), and (69) we know that the sums

S1 := X1, S2 := X1 +X2, S3 := X1 +X2 +X3, . . . (74)

have the probability density functions

f1 := f, f2 := f ∗ f, f3 := f ∗ f ∗ f, . . . (75)

with the means
µ1 = µ, µ2 = 2µ, µ3 = 3µ, . . . (76)

and the variances

σ2
1 = σ2, σ2

2 = 2σ2, σ2
3 = 3σ2, . . . . (77)

Example Find simple expressions for fn, µn, σn [as given by (75)–(77)] when we
begin with the truncated exponential density f(x) := h(x)e−x.

Solution The probability density fn has the characteristic function

Fn(s) = F (s)n = (1 + 2πis)−n =
F (n−1)(s)

(n− 1)!(−2πi)n−1 ,

so we can use the power scaling rule to obtain the formula

fn(x) =
1

(n− 1)!
h(x)xn−1e−x, (78)

(from Exs. 2.4 and 3.10). We have shown that the truncated exponential density
f has the mean µ = 1 and the variance σ2 = 1, so we use (76) and (77) to see
that fn has the mean µn = n and the standard deviation σn =

√
n. Plots of

f1, f2, f4, f8, f16, f32 are shown in Fig. 12.10. When n is “large,” fn is well approxi-
mated by a normal density (a gaussian bell curve!) with center x = n and “width”√
n.
It is a remarkable fact that the probability density fn from the sequence (75)

almost always assumes the shape of a gaussian bell curve when n is “large”. This
observation (first made by Gauss, Laplace, . . . at the beginning of the 19th century)
has many practical implications, and we will give a precise analysis of this important
phenomenon. With this in mind we introduce the random variable

Un :=
Sn − nµ√

nσ
(79)

and use (47)–(50) with (76) and (77) to see that the corresponding probability
density

βn(x) =
√
nσ fn(

√
nσ x+ nµ), n = 1, 2, . . . (80)
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Figure 12.10. The probability densities f1, f2, f4, f8, f16, f32 from (78).

has the mean 0 and the variance 1. We have chosen the translation parameter
nµ to “center” βn at the origin. (This eliminates the drifting you see in Fig.
12.10.) We have chosen the dilation parameter

√
nσ to normalize the “width”

of βn. (This eliminates the spreading that you see in Fig. 12.10.) Figure 12.11
shows the probability densities β4 that correspond to four choices for f . In the two
cases where f is piecewise smooth, β4 is well approximated by the standard normal
density

β(x) :=
e−x2/2
√

2π

(with mean 0 and variance 1). In the two cases where f is discrete the same is true of
β4, and the amplitudes of the δ’s are well approximated by some constant multiple
of uniformly spaced samples of β. We will show that the sequence β1, β2, β3, . . .
converges weakly to β, i.e.,

lim
n→∞

∫ ∞

−∞
βn(x)φ(x) dx =

∫ ∞

−∞
β(x)φ(x) dx for all φ ∈ S. (81)

Using (75) and (80) we see that fn, βn have the characteristic functions

Fn(s) = F (s)n

Bn(s) = e2πinµs/
√

n σFn

(
s√
nσ

)
=
{
e2πiµs/

√
n σF

(
s√
nσ

)}n

, n = 1, 2, . . . .
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Figure 12.11. The probability density β4 from (80) (right) that
corresponds to f (left) when f is the uniform density on [0, 1],
the ramp density on [0, 2], the die-toss density, and the coin flip density.

We will establish (81) by showing that B1, B2, B3, . . . converge weakly to the char-
acteristic function

B(s) = e−2π2s2

of the standard normal density. Since the expression within the braces of (82) is the
1/

√
n dilated characteristic function of the probability density σf(σx + µ) (which

has mean 0 and variance 1), we lose no generality if we assume that µ = 0, σ = 1
and we will do so in the remainder of this proof.

Let φ ∈ S and let ε > 0 be given. From Section 12.3 we know that the character-
istic functions Bn, B are continuous and bounded (with maximum modulus 1), so
we can write∣∣∣∣

∫ ∞

−∞
Bn(s)φ(s) ds−

∫ ∞

−∞
B(s)φ(s) ds

∣∣∣∣
≤
∫ ∞

−∞
|Bn(s) −B(s)| · |φ(s)| ds

≤ max−∞<s<∞ |φ(s)| ·
∫ L

−L

|Bn(s) −B(s)| ds+ 2
∫

|s|>L

|φ(s)| ds (83)
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when L > 0. We will choose L so that

2
∫

|s|>L

|φ(s)| ds < ε

2
. (84)

Using the inequality

|an − bn| = |a− b| · |an−1 + an−2b+ · · · + bn−1| ≤ n|a− b| when |a| ≤ 1, |b| ≤ 1

we write

|Bn(s) −B(s)| =
∣∣∣∣F
(

s√
n

)n

−B

(
s√
n

)n ∣∣∣∣ ≤ n

∣∣∣∣F
(

s√
n

)
−B

(
s√
n

) ∣∣∣∣
≤ n

∣∣∣∣F
(

s√
n

)
− 1 +

2π2s2

n

∣∣∣∣+ n

∣∣∣∣B
(

s√
n

)
− 1 +

2π2s2

n

∣∣∣∣.
(85)

Since the mean and variance of f are well defined, the derivatives F ′, F ′′ of the
characteristic function F are defined and continuous on R, see Ex. 12.14. We use

F (0) = 1, F ′(0) = −2πiµ = 0, F ′′(0) = (−2πi)2(σ2 + µ2) = −4π2

from (25), (40) with Taylor’s formula (from Ex. 2.28) to write

F (s) = F (0) + sF ′(0) +
s2

2
F ′′(0) +

∫ s

0
[F ′′(u) − F ′′(0)](s− u) du

= 1 − 2π2s2 +
∫ s

0
[F ′′(u) − F ′′(0)](s− u) du.

It follows that∣∣∣∣F
(

s√
n

)
− 1 +

2π2s2

n

∣∣∣∣ ≤ L2

2n
· max

|u|≤L/
√

n
|F ′′(u) − F ′′(0)| when |s| ≤ L, (86)

and analogously,

∣∣∣∣B
(

s√
n

)
− 1 +

2π2s2

n

∣∣∣∣ ≤ L2

2n
· max

|u|≤L/
√

n
|B′′(u) −B′′(0)| when |s| ≤ L. (87)

The functions F ′′, B′′ are continuous, so we can use (85)–(87) to see that

max−∞<s<∞ |φ(s)| ·
∫ L

−L

|Bn(s) −B(s)| ds < ε

2
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for all sufficiently large n. In conjunction with (83) and (84) this shows that∣∣∣∣
∫ ∞

−∞
Bn(s)φ(s) ds−

∫ ∞

−∞
B(s)φ(s) ds

∣∣∣∣ < ε

for all sufficiently large n. Since ε > 0 is arbitrary, we can write

lim
n→∞

∫ ∞

−∞
Bn(s)φ(s) ds =

∫ ∞

−∞
B(s)φ(s) ds, φ ∈ S,

and since the Fourier transform preserves weak limits, the proof of (81) is complete!
The hypothesis 0 < σ2 < ∞ is essential for this argument. The function fn

from (75) does not assume the shape of a gaussian bell when we use the Dirac
density f(x) = δ(x) (with σ = 0) or the Cauchy density f(x) = 1/[π(1 + x2)] (with
σ = +∞).

The law of errors

We will now interpret (81) within a probabilistic context. Since βn is the probability
density for the random variable Un of (79), we can use the mesa functions of Fig. 12.6
to write∫ ∞

−∞
βn(x)m+−(x; a, b, ε) dx ≤ P{a < Un < b} ≤

∫ ∞

−∞
βn(x)m−+(x; a, b, ε) dx

when −∞ < a < b < ∞ and ε > 0 is sufficiently small. Using (81) we see that

lim
ε→0+

lim
n→∞

∫ ∞

−∞
βn(x)m+−(x; a, b, ε) dx =

∫ b

a

β(x) dx.

The same is true when we replace m+− by m−+, so we can use the squeeze theorem
for limits to see that

lim
n→∞P

{
a <

X1 +X2 + · · · +Xn − nµ√
nσ

< b

}

=
∫ b

a

e−x2/2
√

2π
dx, −∞ ≤ a < b ≤ ∞ (88)

(whenX1, X2, X3, . . . are independent identically distributed random variables with
mean µ and variance 0 < σ2 < ∞). This result is known as the central limit theorem
(or as the law of errors). It explains why the standard normal density is the most
important probability density that you will encounter in the study of statistics!

In practice we routinely use the approximation

P

{
a <

X1 +X2 + · · · +Xn − nµ√
nσ

< b

}
≈
∫ b

a

e−x2/2
√

2π
dx, (89)
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which corresponds to (88). (An analysis of the error can be found in Feller, Vol. 2,
pp. 505–509.) Equivalent rearrangements of (89), e.g.,

P{a < X1 +X2 + · · · +Xn < b} ≈
∫ (b−nµ)/

√
n σ

(a−nµ)/
√

n σ

e−x2/2
√

2π
dx (90)

often facilitate the analysis for a particular application.

Example What is the probability of finding at most 950 zeros in a string of 10,000
randomly chosen digits? Assume that the digits are selected independently and that
a given digit is equally likely to be 0, 1, . . . , 9.

Solution Let X1, X2, X3, . . . be independent random variables with each having
the Bernoulli density

f(x) =
9
10
δ(x) +

1
10
δ(x− 1).

These random variables serve as counters with Xk = 1, 0 when the kth digit is, is
not a zero. The density f has the moments

〈X〉 =
9
10

· 0 +
1
10

· 1 =
1
10
, 〈X2〉 =

9
10

· 02 +
1
10

· 12 =
1
10

that we use with (36), (37) to find the mean µ = .1 and standard deviation σ = .3.
The sum X1 +X2 + · · ·+X10000 gives the number of zeros that appear in the string
of 10,000 digits, so we compute

950 − nµ√
nσ

=
950 − 10000 · .1

100 · .3 = −5
3

and use (90) [with Table 1N from Appendix 7] to write

P{X1 +X2 + · · · +X10000 < 950} ≈
∫ −5/3

−∞

e−x2/2
√

2π
= .0478.

Example Assume that the time T it takes a checkout clerk to process a customer
is a random variable having the truncated exponential density

f(t) :=
1
α

{
e−t/α if t > 0
0 if t < 0

with α = 2 min. What is the probability that the clerk will service at least 70
customers during a 120-minute shift?
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Solution Using (36), (37) we find the mean µ = α and the standard deviation
σ = α from the moments

〈T 〉 =
∫ ∞

0
t f(t) dt = α

∫ ∞

0
u e−u du = α,

〈T 2〉 =
∫ ∞

0
t2f(t) dt = α2

∫ ∞

0
u2e−u du = 2α2.

Let the independent random variables T1, T2, . . . , T70 be the times for processing
the 1st, 2nd, . . . , 70th customers. Assuming that the queue is never empty, we
compute

120 min − 70α√
70 α

= −1.195 . . .

and use (90) to estimate the desired probability

P{T1 + T2 + · · · + T70 < 120} ≈
∫ −1.195

−∞

e−x2/2
√

2π
dx = .116.

Example A marker is initially at the origin of the x-axis. Each time a fair coin is
tossed the marker is moved 1 unit to the right, left when the coin comes up heads,
tails, respectively. What is the probability of finding the marker at some coordinate
|x| ≤ 5 after 100 tosses?

Solution Let X1, X2, X3, . . . be independent random variables with each having
the coin flip density

f(x) :=
1
2
δ(x+ 1) +

1
2
δ(x− 1).

The sum S100 := X1 +X2 + · · ·+X100 gives the position of the marker after n = 100
tosses. The coin flip density has the mean µ = 0 and the standard deviation σ = 1,
so we compute

±5 − nµ√
n σ

= ±.5

and use (90) to write

P{|X1 +X2 + · · · +X100| ≤ 5} ≈
∫ .5

−.5

e−x2/2
√

2π
= .3829 . . . .

You can use (66) to show that S100 has the binomial density

f100(x) =
1

2100

50∑
k=−50

(
100

50 + k

)
δ(x− 2k),
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and thereby obtain the exact probability

P{|S100| ≤ 5} =
1

2100

2∑
k=−2

(
100

50 + k

)
= .3827 . . . .

The estimate based on (90) is remarkably accurate!
We often have occasion to estimate some parameter associated with a probabil-

ity density function f by observing corresponding independent random variables
X1, X2, . . . , Xn. For example, we might reasonably use

Mn :=
1
n

{X1 +X2 + · · · +Xn} (91)

to estimate the mean µ and use

Vn :=
1

n− 1
{(X1 −Mn)2 + (X2 −Mn)2 + · · · + (Xn −Mn)2} (92)

to represent the variance σ2, see Ex. 12.20. The following examples show how the
central limit theorem can help us assess the quality of such estimates.

Example Let the independent random variables X1, X2, X3, . . . have a common
probability density function f with mean µ and variance 0 < σ2 < ∞, and let ε > 0.
Prove the law of large numbers

lim
n→∞P

{∣∣∣∣X1 +X2 + · · · +Xn

n
− µ

∣∣∣∣ < ε

}
= 1, (93)

and thereby show that we can confidently use the arithmetic mean (91) to estimate
µ when n is “large.”

Solution Let L > 0. When n > (Lσ/ε)2 we have

1 ≥ P

{∣∣∣∣X1 +X2 + · · · +Xn

n
− µ

∣∣∣∣ < ε

}

= P

{∣∣∣∣X1 +X2 + · · · +Xn − nµ√
nσ

∣∣∣∣ <
√
n ε

σ

}

≥ P

{∣∣∣∣X1 +X2 + · · · +Xn − nµ√
nσ

∣∣∣∣ < L

}
.

We obtain (93) by using this inequality together with

lim
L→+∞

lim
n→∞P

{∣∣∣∣X1 +X2 + · · · +Xn − nµ√
nσ

∣∣∣∣ < L

}
= lim

L→+∞

∫ L

−L

e−x2/2
√

2π
= 1

and a suitable modification of the squeeze theorem for limits.
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Example A thick coin has the shape of a right circular cylinder with diameter
d > 0 and height h > 0. When we drop the coin on the floor, it will land on one
of its flat faces with probability p and it will land on its edge (the curved surface)
with probability q := 1−p. (The unknown parameter p increases from 0 to 1 as the
ratio d/h increases from 0 to ∞.) We can estimate p by dropping the coin n times,
observing the number of times m that it lands on a flat face, and taking p ≈ m/n.
How large should we choose n if we want this estimate of p to be within ±10% of
its true value with a probability of 95%?

Solution Let X1, X2, X3, . . . be independent random variables with each having
the Bernoulli density f(x) := q δ(x) + p δ(x − 1). The sum X1 + X2 + · · · + Xn

corresponds to the number of times in n tosses that the coin lands on one of its
faces. The density f has the mean µ = p and the variance σ2 = pq, so we can use
the central limit theorem to write

P

{∣∣∣∣X1 +X2 + · · · +Xn

n
− p

∣∣∣∣ < .1 p
}

= P

{∣∣∣∣X1 +X2 + · · · +Xn − nµ√
nσ

∣∣∣∣ ≤ .1 p
√
n√

pq

}
≈
∫ .1

√
np/q

−.1
√

np/q

e−x2/2
√

2π
dx.

From Table 2 of Appendix 7 we see that Φ(1.960) = .975, so that

∫ 1.960

−1.960

e−x2/2
√

2π
dx = .950.

To the accuracy of the above approximation we will have

P

{∣∣∣∣X1 +X2 + · · · +Xn

n
− p

∣∣∣∣ < .1p
}

≥ .95

when

.1
√
np/q ≥ 1.960,

i.e.

n ≥ 384(1 − p)/p.

Assuming that p ≥ 1/2, we can accomplish our purpose using n = 384 tosses.
You might try to find p for the plastic spool from a role of ScotchTM tape. (I used

n = 400 tosses to obtain the estimate p = .80 for such a spool with d = 36 mm and
h = 19 mm!)
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Further reading

Feller, W. An Introduction to Probability Theory and its Applications, Vol. 2, John
Wiley & Sons, New York, 1966.
A classic graduate-level text on probability. Chapter 15 contains a thorough
discussion of characteristic functions and a proof of the central limit theorem.

Goldberg, R.R. Fourier Transforms, Cambridge University Press, Cambridge, 1965.
The traditional proof of Bochner’s theorem can be found in Chapter 5.

Körner, T.W. Fourier Analysis, Cambridge University Press, Cambridge, 1988.
An elegant elementary proof of the central limit theorem (for bounded contin-
uous densities) is given on pp. 347–361.

Lukacs, E. Characteristic Functions, 2nd ed., Griffin, London, 1970.
A detailed study of characteristic functions for their intrinsic mathematical
interest.

Papoulis, A. Probability, Random Variables, and Stochastic Processes, McGraw-Hill,
New York, 1965.
An exceptionally well written introduction to probability theory for scientists
and engineers.

Exercises

.
.

.. . .
......... ....
.. ..... ....••• EXERCISE 12.1 The faces of an equilateral tetrahedron are marked with the spots

• , •• , ••• , •••• . When we roll the tetrahedron we count all of the spots that are visible
on the three upper faces.

(a) Sketch the generalized probability density f on R for rolling X spots.

(b) Sketch the corresponding distribution function g.

(c) Find a simple formula for the characteristic function F .

(d) Find the mean µ and the variance σ2 for f .

(e) Sketch the probability density f ∗ f for rolling S2 spots with two such tetrahedra.

(f) Find p{S3 ≤ 20} when S3 is the number of spots that you roll with three such
tetrahedra.
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 12.2 Let X1, X2 be independent random variables with each having
the truncated exponential density f(x) := α−1e−x/α·h(x), α > 0. Show that Y := X1−X2
has the Laplace density

fY (y) =
1
2α

e−|y|/α

(a) by computing the convolution product f(x) ∗ f(−x);
(b) by inverting the characteristic function F (s) · F (−s).
...

.. .... ..........
... .... .....••• EXERCISE 12.3 The Poisson density with parameter α > 0 is defined by

f(x) := e−α
∞∑

k=0

αk

k!
δ(x− k).

(a) Use the Maclaurin series for the exponential to find the characteristic function

F (s) = exp{α(e−2πis − 1)}.

(b) Find the moments m(1), m(2) by evaluating the series

m(1) = e−α
∞∑

k=0

kαk

k!
, m(2) = e−α

∞∑
k=0

k2αk

k!

from (38) and by using the characteristic function of (a) with (40).

(c) Show that f has the mean µ = α and the variance σ2 = α.

(d) Show that if X1, X2 are independent random variables that have Poisson densities
with the parameters α1, α2, then X1 +X2 has a Poisson density with the parameter
α1 + α2.

.. . .
....

. .. ...........
..
. ... ....••• EXERCISE 12.4 The gamma density with parameters ν > 0, α > 0 is defined by

f(x) :=




xν−1e−x/α

ανΓ(ν)
if x > 0

0 if x < 0
where Γ(ν) :=

∫ ∞

0
uν−1e−u du, ν > −1

2

is the gamma function. [You may choose to remember that Γ(n+ 1) = n!, n = 0, 1, 2, . . .
and Γ

( 1
2

)
=

√
π.]

(a) Show that f has the characteristic function F (s) = 1/(1 + 2πiαs)ν .

Hint. Suitably adapt the argument from Ex. 3.33.

(b) Show that f has the moments m(n) = [ν(ν + 1) · · · (ν + n− 1)]αn, n = 0, 1, 2, . . . .

Hint. You can use (38) with the recursion Γ(u+ 1) = uΓ(u) . . . or you can use (40).

(c) Show that f has the mean µ = αν and the variance σ2 = α2ν.

(d) Show that if X1, X2 are independent random variables that have gamma densities
with parameters ν1, α and ν2, α, then X1 +X2 has a gamma density with the param-
eters ν1 + ν2, α.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 12.5 Let T1, T2, T3, . . . be the times between successive events that
occur at random but that occur at some constant average rate

λ ≈ n

T1 + T2 + · · · + Tn
(when n is large).

For example, the events might be clicks of a Geiger counter that register the disintegration
of atomic nuclei, earthquakes along some geologic fault line, or cars passing some fixed
point along a busy expressway. In this exercise you will study such a Poisson process.

(a) Let f(t) be the probability density for the random time T between successive events.
The probability that an event does, does not occur in a small interval of length ∆t
will then be approximately λ∆t, 1 − λ∆t, respectively (provided that we can neglect
the possibility of having 2 or more events). Explain why

f(t)∆t ≈ (1 − λ∆t)N−1 · λ∆t when ∆t = t/N

and N = 1, 2, . . . is large, and then use a suitable limit to infer that

f(t) := λ e−λth(t)

where h is the Heaviside function.

(b) Let T1, T2, T3, . . . each have the truncated exponential density f with parameter λ > 0
as derived in (a). Show that Sk := T1 + T2 + · · · + Tk has the probability density

fk(t) :=
λ(λt)k−1

(k − 1)!
e−λth(t), k = 1, 2, . . . .

(Selected graphs for the case where λ = 1 are shown in Fig. 12.10.)

(c) Show that the probability pk(t) for exactly k events in some interval of length t > 0
is given by the Poisson density

pk(t) =
(λt)k

k!
e−λt, k = 0, 1, . . .

with parameter α = λt, see Ex. 12.3.

Hint. pk(t) = P{Sk ≤ t} − P{Sk+1 ≤ t}.
. ..
..

.

.......... . ... .. ..... ...••• EXERCISE 12.6 A random variable X(t) has the Poisson density

p(x) =
∞∑

k=0

(λt)k

k!
e−λtδ(x− k).

Within the context of Ex. 12.5, X(t) is the number of events that occur in some interval of
length t ≥ 0. Use such a density with a suitable choice of λ to answer each of the following.

(a) Earthquakes occur along the New Madrid fault at an average rate of 1/200 years.
What is the probability of having no earthquake during the next 25 years?

(b) A 1000-page book has 100 typographical errors. What is the probability of having 2
or more errors on a single page?

(c) A Fourier analysis class has 30 students. What is the probability that 2 or more of
them have birthdays on the day the final exam is scheduled?
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 12.7 Let f be a probability density on R, let γ ∈ S with 0 ≤ γ(x) ≤ 1
for −∞ < x < ∞, and let φ ∈ S. Show that:

(a)

∣∣∣∣
∫ ∞

−∞
f(x)γ(x)φ(x) dx

∣∣∣∣ ≤ max−∞<x<∞ |φ(x)| ·
∫ ∞

−∞
f(x)γ(x) dx;

(b)

∣∣∣∣
∫ ∞

−∞
(f ∗ γ)(x)φ(x) dx

∣∣∣∣ ≤ max−∞<x<∞ |φ(x)| ·
∫ ∞

−∞
γ(x) dx;

(c)

∣∣∣∣
∫ ∞

−∞
f(x)[1 − γ(x)]φ(x) dx

∣∣∣∣ ≤ max−∞<x<∞ |φ(x)| ·
{

1 −
∫ ∞

−∞
f(x)γ(x) dx

}
.

.
..
. ..... ......... .... ... .....••• EXERCISE 12.8 Let f be a probability density on R. Show that the sequence of
translates f(x), f(x− 1), f(x− 2), f(x− 3), . . . converges weakly to 0.

Hint. Use the max bounds of (14) and Ex. 12.7(c) with

∫ ∞

−∞
f(x− k)φ(x) dx =

∫ ∞

−∞
f(x)[1 − Γn(x)]φ(x+ k) dx+

∫ ∞

−∞
f(x)Γn(x)φ(x+ k) dx.

. .

.

. ... .......... .. .. ......••• EXERCISE 12.9 Let f be a probability density on R and let

Mk(x) := m−+(x; −k, k, ε), k = 1, 2, . . .

where m−+ is the mesa function of Fig. 12.6 and 0 < ε ≤ 1 is fixed.

(a) Show that the sequence M1f,M2f,M3f, . . . converges weakly to f .

Hint. Use the max bound (14).

Note. A somewhat more sophisticated argument can be used to show that
M1f,M2f,M3f, . . . converges weakly to f when f is a generalized function that
is not a probability density.

(b) Show that lim
k→∞

∫ ∞

−∞
Mk(x)f(x) dx = 1.

Hint. Observe that∫ ∞

−∞
Mk(x)f(x)Γn(x) dx ≤

∫ ∞

−∞
Mk(x)f(x) dx ≤ 1

and then use the result from (a).
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 12.10 Let the generalized function f and the Schwartz function γ be
probability densities on R, and let

fγ(x) :=
∫ ∞

−∞
f(u)γ(x− u) du, −∞ < x < ∞,

i.e., the ordinate fγ(x) obtained by applying the functional f to the x-translate of the
Schwartz function γ∨.

(a) Use the max bound (14) to show that fγ is bounded and continuous.

(b) Show that fγ = γ ∗ f , i.e., show that∫ ∞

−∞
fγ(x)φ(x) dx =

∫ ∞

−∞
f(x)(φ ∗ γ∨)(x) dx, φ ∈ S.

Hint. Let f = g(m) where g is continuous and |g(x)| ≤ B(1+x2)q for some B > 0 and
q = 0, 1, . . . . The function g(u)γ(m)(x − u)φ(x) is then continuous and absolutely
integrable on R

2.

(c) Show that fγ is a probability density.

(d) Show that f ′
γ , f

′′
γ , . . . are defined, bounded, and continuous on R.

Hint. You may wish to use the results of Exs. 7.18 and 7.19.

(e) Is fγ ∈ S?

.. . .

.

...
......... .... ...

.. ... ...••• EXERCISE 12.11 A generalized function f is said to be max-bounded if there is
some constant M such that

|f{φ}| ≤ M · max−∞<x<∞ |φ| when φ ∈ S.

[The inequality (14) shows that every probability density is max bounded with M = 1.]

(a) Let f0, f1, f2, f3 be probability densities on R, let α0, α1, α2, α3 be nonnegative con-
stants and let f(x) = α0f0(x) + α1i f1(x) + α2i

2f2(x) + α3i
3f3(x). Show that f is

max-bounded.

Note. F. Riesz has shown that every max-bounded generalized function has this form.

(b) Give an example of a generalized function f ≥ 0 that is not max bounded.

.... .......... ....
.. ..... ....••• EXERCISE 12.12 Let f be a probability density on R, and let the mesa function

hkn(x) := m−+(x; 0, n, 1/k), n = 1, 2, . . . , k = 1, 2, . . .

with flat width n and with edge width ε = 1/k serve as an approximation to the Heaviside
step. (Figure 12.6 shows how m−+ is constructed.) In this exercise you will show that we
can construct the distribution function g for f by writing

gkn(x) :=
∫ ∞

−∞
hkn(x− ξ)f(ξ)dξ, gk(x) := lim

n→∞ gkn(x), g(x) := lim
k→∞

gk(x).
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(a) Sketch the gk(x) that corresponds to the coin flip density of Fig. 12.2. Be sure to
show the effect of the edge width parameter ε = 1/k.

(b) Let k be fixed. Show that gk1(x), gk2(x), . . . converges pointwise to a nondecreasing
function gk with gk(−∞) = 0 and gk(+∞) = 1.

Hint. Use the bound from Ex. 12.9(b).

(c) Let x ∈ R, let α > 0, and let hk := lim
n→∞hkn. Show that

gk(x) − gk(x− α) ≤ max
−1/k≤ξ≤α

|hk(ξ) − hk(ξ − α)|

and thereby show that gk is continuous.

Hint. Use the max bound (14).

(d) Show that gk1, gk2, . . . converges weakly to gk.

Hint. hk(x) = hkn(x) + hk(x− n− 1/k).

(e) Show that g1, g2, . . . converges pointwise to a nondecreasing function g with
g(−∞) = 0, g(+∞) = 1.

Hint. You may wish to verify that gk(x− 1/k) ≤ g(x) ≤ gk(x).

(f) Show that g1, g2, . . . converges weakly to g.
Hint. Write

|g(x) − gk(x)| ≤
∣∣∣gk(x) − gk

(
x− 1

k

)∣∣∣ ≤
∣∣∣∣f(x) ∗

{
hk(x) − hk

(
x− 1

k

)}∣∣∣∣
and use the bound from Ex. 12.7(b).

(g) Show that f = g′.

Hint. Observe that∣∣∣∣
∫ ∞

−∞
f(x)φ(x) dx−

∫ ∞

−∞
g′
kn(x)φ(x) dx

∣∣∣∣ =

∣∣∣∣
∫ ∞

−∞
f(x){φ(x) + (h∨

kn ∗ φ′)(x)} dx
∣∣∣∣.

.
.
. . ..
.
. ......... ... .......••• EXERCISE 12.13 Let f be a probability density on R, let n = 1, 2, . . . and assume
that xnf(x) satisfies the max bound (39). Show that the nth moment m(n) is well defined
by writing

m(n) := lim
a→−∞ lim

b→+∞

∫ ∞

−∞
xnf(x)m−+(x; a, b, 1) dx,

and thereby infer that
|m(n)| ≤ Mn.

Here m−+ is the mesa function of Fig. 12.6.

Hint. The integral is a monotonic function of a and of b when a < 0 and b > 0.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 12.14 Let f be a probability density on R and assume that x f(x)
is max bounded [i.e., (39) holds with n = 1] so that f has a well-defined first moment,
see Ex. 12.13. In this exercise you will show that the characteristic function F = f∧ is
continuously differentiable. An analogous argument shows that F (n) is continuous when
xnf(x) is max bounded, n = 2, 3, . . . . [Compare this with Ex. 3.42.]

(a) When we approximate eit by a Taylor polynomial, the remainder is

Rn(t) := eit − {1 + it+ (it)2/2! + · · · + (it)n/n!}, n = 0, 1, 2, . . . .

Show that |Rn(t)| ≤ |t|n+1/(n+ 1)!, −∞ < t < ∞.

Hint. R0(t) = i
∫ t

0 e
iu du, Rn+1(t) = i

∫ t

0 Rn(u) du.

(b) Let Fn be defined by (18). Show that Fn has the derivative

F ′
n(s) =

∫ ∞

−∞
−2πixf(x)Γn(x)e−2πisx dx

by verifying that

lim
h→0

∫ ∞

−∞
f(x)

{
e−2πixh − 1 + 2πixh

h

}
Γn(x)e−2πisx dx = 0.

Hint. Use the inequality |R1(t)| ≤ |t|2/2 from (a) and the max bound (14).

(c) Show that F ′
n is continuous.

Hint. Use the hypothesis that x f(x) is max bounded.

(d) Let m−−,m−+,m++ be the mesa functions of Fig. 12.6, and let

hL(x) = lim
a→−∞m−−(x; a, 0, 1),

h0(x) = m−+(x; 0, 0, 1),

hR(x) = lim
b→+∞

m++(x; 0, b, 1)

so that hL(x) + h0(x) + hR(x) = 1. Show that

∫ ∞

−∞
x f(x)Γn(x)hL(x) dx,

∫ ∞

−∞
x f(x)Γn(x)hR(x) dx, n = 1, 2, . . .

are bounded nonincreasing, nondecreasing sequences that have limits µL, µR, respec-
tively.
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(e) Show that the sequence F ′
1, F

′
2, F

′
3, . . . converges uniformly on R.

Hint. When n > m you can use (17) to write

|F ′
n(s) − F ′

m(s)| ≤
∫ ∞

−∞
−2πx f(x)[Γn(x) − Γm(x)]hL(x) dx

+

∣∣∣∣
∫ ∞

−∞
2πx f(x)[Γn(x) − Γm(x)]h0(x) dx

∣∣∣∣
+
∫ ∞

−∞
2πx f(x)[Γn(x) − Γm(x)]hR(x) dx.

Use (d) to bound the first and third terms and use (14) to bound the second term.

(f) Show that F ′ is continuous.

Hint. Use (e) and the weak limit (23).

Note. You may wish to compare this analysis with that given in Ex. 3.41.

.

.

. . ..
.
. ......... ... .......••• EXERCISE 12.15 Let F be the characteristic function of a probability density f
on R, and let a > 0, −∞ < x0 < ∞, n = 2, 3, . . . . Show that the following are also
characteristic functions, and express the corresponding probability densities in terms of f .

(a) e−2πix0sF (s) (b) F (as) (c) F (s)

(d) F (s)n (e) |F (s)|2 (f) F (s)/(2 − F (s))

. ...
.
. .
...
.. ........ .... .....••• EXERCISE 12.16 Which of the following generalized functions, if any, satisfy
Bochner’s nonnegativity condition (26)?

(a) F (s) := e−s2
(b) F (s) := (−1)ne−s2

H2n(s), see (3.28)
(c) F (s) := −δ′′(s) (d) F (s) := −1/s2

(e) F (s) := X(s) (f) F (s) :=
∞∑

k=−∞
sinc(k/5)δ(s− k/5)

. .
.
. ..
..
.. ...
...... .. ..... ....••• EXERCISE 12.17 Find the smallest p > 0, if any, such that F is p-periodic and the
smallest q > 0, if any, such that |F (q)| = 1 ) [as in (31)–(32)] when F is the characteristic
function of the probability density:

(a) f(x) := δ(x− 1);

(b) f(x) := a0δ(x) + a1δ(x− 1), a0 > 0, a1 > 0, a0 + a1 = 1;

(c) f(x) := a1δ(x− 1) + a2δ(x− √
2), a1 > 0, a2 > 0, a1 + a2 = 1;

(d) f(x) := a0δ(x) + a1δ(x− 1) + a2δ(x− √
2), a0 > 0, a1 > 0, a2 > 0, a0 + a1 + a2 = 1.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 12.18 Let f be a probability density on PN , i.e., f [n] ≥ 0 for
n = 0, 1, . . . , N − 1 and f [0] + f [1] + · · · + f [N − 1] = 1. In this exercise you will de-
velop properties of the characteristic function F := f∧ on PN .

(a) Show that NF [0] = 1 and |NF [k]| ≤ 1 for k = 1, 2, . . . , N − 1.

(b) Show that F [−k] = F [k], k = 0, 1, . . . , N − 1.

(c) Let q be the smallest integer 1, 2, . . . , N such that |NF [q]| = 1, and let n0 be the
smallest index 0, 1, . . . , N − 1 with f [n0] > 0. Show that

f [n+ n0]e
−2πiqn/N = f [n+ n0] for each n = 0, 1, . . . , N − 1

and thereby deduce that F [k]e2πikn0/N is q-periodic, that q|N , and that

f [n] =
q−1∑
	=0

α[�] δ

[
n− n0 − �

N

q

]

for some choice of the nonnegative numbers α[0], α[1], . . . , α[q − 1] with sum 1.

Hint. Observe that

|N F [q]| =

∣∣∣∣
N−1∑
n=0

f [n+ n0]e
−2πiq(n+n0)/N

∣∣∣∣ =

∣∣∣∣
N−1∑
n=0

f [n+ n0]e
−2πiqn/N

∣∣∣∣ ≤ 1

with f [n0] > 0.

(d) Show that
N−1∑
k=0

F [k](ψ ∗ ψ†)[k] ≥ 0

when ψ is any function on PN . [This is analogous to (26).]

Note. A function F on PN , is a characteristic function if and only if NF [0] = 1 and
F is nonnegative in this sense.

. .
.

.. .......... .... .... ..... ...••• EXERCISE 12.19 Find all of the moments m(n), n = 0, 1, 2, . . . for the uniform
density f(x) = P(x):

(a) by evaluating the integrals (38);

(b) by using the formula (40) in conjunction with the Maclaurin series

sinu
u

= 1 − u2

3!
+
u4

5!
− u6

7!
+ · · · .
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 12.20 Let X1, X2, X3, . . . be independent random variables with each
having the probability density f that has the mean µ and the variance 0 < σ2 < ∞. Show
that the sample mean (91) and the sample variance (92) have the expectations

〈Mn〉 = µ, 〈Vn〉 = σ2.

Hint. First derive the algebraic identity

Vn =
1

n(n− 1)


(n− 1)

n∑
k=1

X2
k −

n∑
k,	=1
k 	=	

XkX	


 .

. .
....

.... ...
....... ...

. .. ....••• EXERCISE 12.21 A certain car runs a 600-km race at the constant velocity V .
The velocity is a random variable with the probability density

fV (v) =

{
1/100 if 200 < v < 300 km/hr

0 otherwise,

i.e., all velocities in the interval from 200 to 300 km/hr are equally likely.

(a) Find the probability density fT (t) for the time T := 600/V it will take the car to
finish the race.
Hint. The random variable T does not have a uniform density.

(b) Find 〈V 〉, 〈T 〉 (and observe that 〈T 〉 
= 600/〈V 〉).

.. . .
....

. .. ...........
..
. ... ....••• EXERCISE 12.22 Let X be a random variable with the density fX and let
Y := X2. The generalized derivative of the distribution function

P{Y ≤ y} = P{−√
y ≤ X ≤ √

y} =
∫ √

y+

−√
y−

fX(x) dx, y ≥ 0

gives the formula

fY (y) =
d

dy

{∫ √
y+

−√
y−

fX(x) dx

}

for the density fY . Use this approach to find fY when:

(a) fX(x) = e−x2/2/
√

2π, see Ex. 12.25;

(b) fX(x) = 1
4δ(x+ 1) + 1

2δ(x) + 1
4δ(x− 1).

Hint. First sketch the “integral” as a function of y.
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 12.23 Let X1, X2, . . . , Xn be independent random variables with the
probability densities f1, f2, . . . , fn and the distribution functions g1, g2, . . . , gn.

(a) Show that Xmax := max{X1, X2, . . . , Xn} has the probability density

fmax = {g1 · g2 · · · · · gn}′.

Hint. P{Xmax ≤ x} = P{X1 ≤ x, X2 ≤ x, . . . , Xn ≤ x}.

(b) Show that Xmin := min{X1, X2, . . . , Xn} has the probability density

fmin = −{(1 − g1) · (1 − g2) · · · · · (1 − gn)}′.

Hint. P{Xmin ≤ x} = 1 − P{X1 > x, X2 > x, . . . , Xn > x}.

(c) Find a simple expression for fmax and fmin when X1, X2, . . . , Xn each have the die-
toss density.

(d) Find a simple expression for fmax and fmin when X1, X2, . . . , Xn each have the
standard normal density function.

. ....
. ......... ... ..... ... ...••• EXERCISE 12.24 Three Fourier analysis students are discussing the probability
densities from Ex. 12.23 for the case where n = 2.

“I know that X1 +X2 has the probability density f1 ∗ f2,” says the first.
“Yes, and since Xmin +Xmax = X1 +X2 we must have fmin ∗ fmax = f1 ∗ f2,”
adds the second.
“That’s what I thought until I computed the two convolution products and got
different results in the case where X1, X2 have the coin flip density,” said the
third.

(a) Verify that the third student is correct.

(b) What is wrong with the argument of the second student?

. ..
..

.. .

......... ... .. .... ....••• EXERCISE 12.25 Let X1, X2, X3, . . . be independent random variables with the
standard normal density

fXk
(x) =

e−x2/2
√

2π
, k = 1, 2, 3, . . . .

(a) Show that Wk := X2
k has the characteristic function

FWk
(s) =

( 1
1 + 4πis

)1/2
.

Hint.
∫∫ · · · dx dy =

∫∫ · · · r dr dθ.
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(b) Show that Yn := X2
1 +X2

2 + · · · +X2
n has the chi-squared density

fYn
(y) =



yn/2−1e−y/2

2n/2Γ(n/2)
if y > 0

0 if y < 0

with n degrees of freedom.

Hint. The density fYn
is a gamma density with the parameters n/2, 2 so you can

use the analysis from Ex. 12.4 to find the corresponding mean µYn
= n and variance

σ2
Yn

= 2n.

.
..

..

..

.. ......... ....

. ... ....••• EXERCISE 12.26 In this exercise you will use symmetry to derive the form of the
probability density (1) for the speed V of a gas molecule.

(a) Let the random variables V1, V2, V3 correspond to the components of the velocity of
a gas molecule that has mass m. Explain why we might expect the joint probability
density to have the form

f(v1, v2, v3) = p(v1) · p(v2) · p(v3)
for some choice of the univariate probability density p.

(b) Explain why we might expect the joint probability density to have the form

f(v1, v2, v3) = q(v21 + v22 + v23)

for some choice of the function q.

(c) Differentiate the identity

p(v1) · p(v2) · p(v3) = q(v21 + v22 + v23)

from (a), (b) and thereby deduce that

p(vk) =
e−(mv2

k)/2E√
2πE/m

, k = 1, 2, 3

for some choice of the constant E > 0. In this way you can show that V1, V2, V3 each
have a normal density with mean 0 and variance E/m.

Note. Our argument does not allow us to deduce that E = κT . It takes a bit of
physics to evaluate this constant!

(d) Let Wk := mV 2
k /2, k = 1, 2, 3. Show that Wk has the characteristic function

FWk
(s) =

( 1
1 + 2πiEs

)1/2
.

Hint.
∫ ∞

−∞
e−(α+iβ)x2

dx = {π/(α+ iβ)}1/2 when α > 0, see Ex. 9.39.
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(e) Show that W := W1 +W2 +W3 has the characteristic function

FW (s) =
( 1

1 + 2πiEs
)3/2

and the probability density

fW (w) =



( 4
πE3

)1/2
w1/2e−w/E if w > 0

0 if w < 0.

Hint. Use Ex. 12.4 to find the inverse Fourier transform.

(f) Show that V := (2W/m)1/2 has the probability density (1) (with κT replaced by E).

Note. As an alternative to (d)–(f) you can use spherical coordinates to deduce that

f(v1, v2, v3) · 4πv2dv = fV (v) dv

when v := (v21 + v22 + v23)1/2. In conjunction with (a) and (c) this shows that V has
the probability density (1).

. ..
..

.

.......... . ... .. ..... ...••• EXERCISE 12.27 In this exercise you will determine when equality occurs in the
uncertainty relation (57). Equality occurs in the Cauchy–Schwartz inequality (58) if and
only if the two functions are linearly dependent. This being the case, we see from the
derivation of (57) (for the case where µf = 0) that equality occurs if and only if f is a
solution of some differential equation

f ′(x) = αx f(x), α ∈ C

and |f |2 is a probability density.

(a) Show that if f ′(x) = αx f(x), then

1
x

(
f ′(x)
x

)′
= |α|2f(x).

(b) Solve the second-order differential equation from (a) and thereby show that

f(x) = A+e
|α|x2/2 +A−e−|α|x2/2

for suitably chosen constants A+, A− ∈ C.

(c) Show that the solution from (b) gives a probability density |f |2 if and only if

|α| =
1

2σ2 , A+ = 0, |A−| =
( 1

2πσ2

)1/4

for some σ > 0.

(d) When does equality occur in (57) if we do not require µf = 0?
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.
.
.. .

...
.. ........ ... ..... ....••• EXERCISE 12.28 A box contains a very large number of $1, $2, $5, $10, and $20
bills in the ratios 20 : 10 : 4 : 2 : 1 (so there are 20 times as many $1 bills as there are $20
bills, etc.)

(a) Create a generalized probability density f for drawing a bill worth X dollars.

(b) Find the mean µ and the variance σ2 for the density of (a).

Hint. You should find µ = 2.70 . . . and σ2 = 13.23 . . . .

(c) Suppose you are given the chance to draw 50 bills from the box at random. What is
the exact probability that you will draw a total of $1000, i.e., what is the probability
that you will draw nothing but $20 bills?

(d) Use the approximation (90) from the central limit theorem to estimate the probability
that the 50 bills that you draw in (c) will be worth at least $200.

.

.

. . ..
.
. ......... .... .......••• EXERCISE 12.29 Let S10 be the sum that we throw with 10 fair dice. Use (90)
(with the second set of limits as given below) to estimate the following probabilities.

(a) P{30 ≤ S10 ≤ 40} = P{29.5 < S10 < 40.5}
(b) P{S10 = 35} = P{34.5 < S10 < 35.5}
(c) P{S10 > 50} = P{S10 > 50.5}

Note. The half-integer shifts usually result in a much more accurate estimate. Can
you explain why?

. ... .
....

. .......... ..... ....••• EXERCISE 12.30 Suppose we want to compute the sum of real numbers
x1, x2, . . . , xn on a computer that can only add integers. We round xk to the nearest
integer mk so that

xk = mk + εk where |εk| ≤ 1
2 , k = 1, 2, . . . , n

and approximate
n∑

k=1

xk by
n∑

k=1

mk.

(Replace 1/2 by 10−d/2 if you want to round each xk to d decimal places.) Assume that
ε1, ε2, . . . , εn are independent random variables with each having the uniform density P(x)
and use (90) to answer the following questions about the round-off error

En :=
n∑

k=1

xk −
n∑

k=1

mk =
n∑

k=1

εk.

(a) What is the largest possible value for En?

(b) Estimate P{|E100| < d} when d = 2.

(c) Estimate P{|E100| < d} when d = 5.

(d) Find a simple formula for the d(n) that will make P{|En| < d(n)} = .95 when n is
“large.”
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.. .

.

... .

........ .... .... ..... ...••• EXERCISE 12.31 Let f1 := P, f2 = P ∗ P, f3 = P ∗ P ∗ P, . . . , see Ex. 2.7. In
this exercise you will derive an exact formula and an approximate formula for fn.
(a) Show that

fn(x) =
1

(n− 1)!

{[
x+

n

2

]n−1

+
−
(
n

1

)[
x+

n− 2
2

]n−1

+

+

(
n

2

)[
x+

n− 4
2

]n−1

+
− · · · + (−1)n

(
n

n

)[
x− n

2

]n−1

+

}

where

[x]+ :=

{
x if x ≥ 0

0 otherwise.

Hint. Write P(x) = h(x+ 1/2) − h(x− 1/2) and use the analysis from Ex. 2.3.

(b) Show that the integer translates of fn give a partition of unity, i.e.,

∞∑
k=−∞

fn(x− k) = 1, n = 1, 2, . . . .

(c) When n = 3, 4, . . . , fn is well approximated by a gaussian density (as illustrated in
Fig. 12.11). Find a formula for the gaussian density that corresponds to fn.

Hint. Suitably rearrange the approximation
√
nσ fn(

√
nσ x+ nµ) ≈ β(x)

from (80) and (81).

. . .
..

..
....... ..... .. ... ....••• EXERCISE 12.32 Find the weak limit of the sequence F1, F2, . . . when:

(a) Fn(s) = {sinc(s/
√
n)}n; (b) Fn(s) = {cos(s/

√
n)}n;

(c) Fn(s) =
{
e2πis/

√
n/(1 + 2πis/

√
n)
}n

.

Hint. From the proof of the central limit theorem you know that

lim
n→∞

(
1 − as2

n
+ · · ·

)n

= e−as2

when a > 0 and the remainder is suitably small.

.
...
..

....... .... .... .... ...••• EXERCISE 12.33 Suppose that we make an arbitrary number of equally good
independent observations X1, X2, . . . , Xn of some unknown parameter. We let f denote
the common probability density for the observational errors. The likelihood function

L(x) := f(x−X1)f(x−X2) · · · f(x−Xn)

then gives the relative probability of making observations with errors ε1 := x−X1, ε2 :=
x−X2, . . . , εn := x−Xn when the true value of the parameter is x, −∞ < x < ∞. Gauss
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made the very plausible assumption that L is maximized when x = (X1+X2+· · ·+Xn)/n,
i.e., that the most probable value for x is the arithmetic mean of the samples. In this
exercise you will show that this forces f to be a normal density, see E. Whittaker and
G. Robinson, The Calculus of Observations, 4th ed., Blackie & Son Ltd., Glasgow, 1962.

(a) Let f be a positive probability density with continuous derivatives f ′, f ′′. Set n = 3
and use the Gauss postulate to deduce that if ε1 + ε2 + ε3 = 0, then

(ln f)′(ε1) + (ln f)′(ε2) + (ln f)′(ε3) = 0.

(b) Show that (ln f)′′ = c for some choice of the constant c.

Hint. Set ε3 = −ε1 − ε2 in the identity from (a) and then take partial derivatives
with respect to ε1 and ε2.

(c) Show that f is a normal density with the mean zero.

. ... .
....

. . ......... ...... ....••• EXERCISE 12.34 Let X1, X2, X3, . . . be independent random variables that have
the uniform density P(x − 1

2 ) on (0, 1). (A scheme for generating X1, X2, X3, . . . is de-
scribed in Section 11.5.)

(a) Show that Y1, Y2, Y3, . . . are independent random variables that have the truncated
exponential density e−yh(y) when Yk := − log(Xk), k = 1, 2, . . . .

(b) Show that Y1, Y2, Y3, . . . are independent random variables that have the standard
normal density e−y2/2/

√
2π when

Y2k−1 := (−2 logX2k−1)
1/2 cos(2πX2k)

Y2k := (−2 logX2k−1)
1/2 sin(2πX2k), k = 1, 2, . . . .

This is known as the Box-Muller transformation.

Hint. Write

x1 = e−(y2
1+y2

2)/2, x2 =
1
2π

arctan

(
y2
y1

)
,

and evaluate the Jacobian for the transformation to obtain the joint probability den-
sity

f(y1, y2) =

∣∣∣∣∂(x1, x2)
∂(y1, y2)

∣∣∣∣
for Y1, Y2.

(c) Show that Y1, Y2, Y3, . . . are independent random variables with a probability density
that closely approximates the standard normal density when

Yk := X12k +X12k−1 + · · · +X12k−11 − 6, k = 1, 2, . . . .

[If you have a fast algorithm for producing X1, X2, X3, . . . this may be less costly
than the scheme from (b).]



796 Probability

.. .

.

... .

........ .... .... ..... ...••• EXERCISE 12.35 You wish to play a game of chance but suspect that the die
held by your opponent has been loaded to make one of the faces appear more frequently
than the others. You hold a fair die and suggest throwing both dice, using the sum mod
6 (e.g., 2 + 2 → 4, 1 + 5 → 6, 3 + 4 → 1) to determine each move.

(a) Show that this has the same effect as replacing your opponents loaded die with your
fair die.

(b) Summarize the analysis of (a) with a suitable convolution identity for probability
densities on PN .

.. . .

...

.. .
....... .....

..

.. ... ...••• EXERCISE 12.36 Let f be a probability density on PN and let f1 := f , f2 := f∗f ,
f3 := f ∗ f ∗ f, . . . .
(a) Suppose that |NF [k]| < 1 for each k = 1, 2, . . . , N − 1. Show that

lim
m→∞ fm[n] =

1
N
, n = 0, 1, . . . , N − 1.

Note. For “almost all” probability densities f on PN , the sequence f1, f2, f3, . . .
becomes constant . . . not gaussian!

(b) Let n0 be the smallest index 0, 1, . . . , N − 1 with f [n0] > 0, and let p be the largest
integer divisor of N such that

f [n] = f [n] · cp[n− n0] for each n = 0, 1, . . . , N − 1.

[Here cp is the comb (4.43) on PN with tooth spacing p.] Show that

lim
m→∞ fm[n+mn0] =

p

N
cp[n], n = 0, 1, . . . , N − 1.

Hint. Use the representation from Ex. 12.18(c) with pq = N .

. . .
..

..

...... ...... .. .... ...••• EXERCISE 12.37 Let 0 < p < 1, let q = 1 − p, and let N = 2, 3, . . . be chosen.
Show that

lim
m→∞

{(
m

n

)
pnqm−n+

(
m

n+N

)
pn+N qm−n−N +

(
m

n+ 2N

)
pn+2N qm−n−2N +· · ·

}
=

1
N

for each n = 0, 1, . . . , N − 1.

Hint. Use the result of Ex. 12.36.

.... .......... ....
.. ..... ....••• EXERCISE 12.38 Let the random variable X represent the number of turns of a
roulette wheel, and assume that X has the probability density

f(x) :=
e−(x−µ)2/2σ2

√
2π σ

where µ � σ � 1. The probability density

g(x) :=
∞∑

m=−∞
f(x−m)
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on T1 determines the relative frequencies for the numbers on the wheel. Show that g is
almost uniform in the sense that

|g(x) − 1| < 2e−2π2σ2

1 − e−2π2σ2 .

Hint. Use Poisson’s formula and the inequality e−2π2σ2k2
< e−2π2σ2k, k = 1, 2, . . . .

..
.
. . .
...
.. ....... ..... .....••• EXERCISE 12.39 Let f be a probability density on Tp, i.e., f is a p-periodic
generalized function and bp · f is a probability density on R. Here bp(x) := b(x/p) is a
dilate of the tapered box (7.123) shown in Fig. 7.21. [An ordinary p-periodic function f
is a probability density on Tp if f is nonnegative and

∫ p

0 f(x)dx = 1.] In this exercise you
will develop properties of the Fourier coefficients

c[k] =
1
p

∫ ∞

−∞
f(x)bp(x)e−2πikx/p dx, k = 0,±1,±2, . . .

of f as given by (7.129), i.e., you will study the characteristic function c on Z.

(a) Show that p c[0] = 1 and |p c[k]| ≤ 1 for k = ±1,±2, . . . .

(b) Show that c[−k] = c[k].

(c) Suppose there is some smallest q = 1, 2, . . . such that |p c[q]| = 1. Let 0 ≤ x0 < p/q

be chosen so that p c[q]e2πiqx0/p = 1. Show that

f(x+ x0)e
−2πiqx/p = f(x+ x0) for −∞ < x < ∞ ,

and thereby deduce that c[k]e2πikx0/p is a q-periodic function of k and that

f(x) =
q−1∑
	=0

α[�]
1
p
X
(
x− x0 − �p/q

p

)

for some choice of the nonnegative numbers α[0], α[1], . . . , α[q − 1] with sum 1.

Note. Analogous properties for characteristic functions on R, PN are given in Section 12.3
and Ex. 12.18.

. . .
..

..
.
.. ............ .... .....••• EXERCISE 12.40 Let f be a probability density on Tp with the Fourier coeffi-
cients c[k], k = 0,±1,±2, . . . (as defined in Ex. 12.39) and let f1 := f , f2 := f � f ,
f3 = f � f � f , . . . where � is the cyclic convolution product from (7.131) and (7.132).

(a) Assume that |p c[k]| < 1 for each k = 1, 2, . . . . Establish the weak limit

lim
m→∞ fm(x) = 1/p.

Note. For “almost all” probability densities f on Tp, the sequence f1, f2, f3, . . .
becomes constant . . . not gaussian, see Ex. 12.36(a).
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Hint. First use Parseval’s identity and the convolution rule to see that∫ ∞

−∞
[p fm(x) − 1]Φ(x) dx =

∑
k 	=0

(p c[k])mφ(k/p)

when φ ∈ S and Φ = φ∧.

(b) Assume that q = 1, 2, . . . and 0 ≤ x0 < p/q can be chosen as in Ex. 12.39(c). Establish
the weak limit

lim
m→∞ fm(x+mx0) =

1
p
X
(
qx

p

)
.

Hint. First use the representation from Ex. 12.39 to show that

fm(x+mx0) =
q−1∑
	=0

αm[�]
1
p
X
(
x− �p/q

p

)

where α1 := α, α2 = α ∗ α, α3 = α ∗ α ∗ α, . . . are functions on Pq.

.

.

... .

........ .... .... ..... ...••• EXERCISE 12.41 Let X1, X2, X3, . . . be independent random variables with the
common density

d(x) :=
1
9
{δ(x− 1) + δ(x− 2) + · · · + δ(x− 9)}

on R. The random variable Lk := log10Xk takes each of the values log10 1, log10 2, . . . ,
log10 9 with probability 1/9. We will let

f(x) :=
1
9
{X(x) + X(x− log10 2) + · · · + X(x− log10 9)}

be the corresponding probability density on T1, see Ex. 12.39. The sum

Sn := L1 + L2 + · · · + Ln ≡ log10(X1 ·X2 · . . . ·Xn)(mod 1)

then has the corresponding probability density fn on T1 where f1 := f , f2 := f � f ,
f3 := f � f � f , . . . . In this exercise you will use fn to determine the probability that
the product X1 ·X2 · · · · ·Xn has the leading digit 1,2, . . . ,9.

(a) Find P{S2 = 0}, P{S2 = log10 1.2}, P{S2 = log10 4}.

Hint. S2 = 0 when X1X2 = 1 or 10.

(b) Find the weak limit of the sequence f1, f2, f2, . . . .

Hint. Use the known Fourier series for X to find the Fourier series for f and for fn.

(c) Suppose that you form all of the 920 products d1 · d2 · · · · · d20 of the single digits
dk = 1, 2, . . . , 9. Approximately what percent of these products will have the leading
digit 1? 1 or 2? 9?

Note. The Benford density for the most significant digit can be used in many other
contexts, see J. Boyle, An application of Fourier series to the most significant digit problem,
Amer. Math. Monthly 101(1994), 879–885.
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Appendix 1 The impact of Fourier analysis

Is it possible to prove that the definitions, equations, patterns, theorems, . . . that
comprise the body of mathematics known as Fourier analysis have value as well as
validity? Consider the following:
• The function concept; the Riemann and Lebesgue integrals; the concepts of

pointwise, uniform, and mean square convergence; Cantor’s theory of sets; the
Schwartz theory of distributions; . . . were all invented in an attempt to answer
the question: When is Fourier’s representation valid?, see

E.B. VanVleck, The influence of Fourier’s series on the development of
mathematics, Science 39(1914), 113–124;
W.A. Coppel, J.B. Fourier — On the occasion of his two hundredth birthday,
Amer. Math. Monthly 76(1969), 468–483;
S. Bochner, Fourier series came first, Amer. Math. Monthly 86(1979), 197–199;
E.A. González-Velasco, Connections in mathematical analysis: The case of
Fourier series, Amer. Math. Monthly 99(1992), 427–441.

• The most frequently cited mathematics paper ever written,
J.W. Cooley and J.W. Tukey, Math. Comp. 19(1965), 297–301,

describes a clever scheme for doing Fourier analysis on a computer. The FFT,
which Gilbert Strang calls the most important algorithm of the 20th century,
initiated a revolution in scientific computation. The bibliography in

E.O. Brigham, The Fast Fourier Transform and Its Applications, Prentice Hall,
Englewood Cliffs, NJ, 1988

will point you to some of the applications.
• The first U.S. patent for a mathematical algorithm was assigned to Stanford

University for R. Bracewell’s FHT, a variation of the FFT. After reading
E.N. Zalta, Are algorithms patentable? Notices AMS 35(1988), 796–799,

see if you can figure out why knowledgeable individuals would invest thousands
of dollars seeking patent protection for this particular algorithm.

A-1
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• The power and flexibility of Fourier analysis have facilitated an incredibly diverse
range of applications to modern mathematics, science, and engineering. It is
easy to verify this assertion: Feed the key word “Fourier,” to any internet search
engine and explore some of the links you are given.

• Approximately 3/4 of the Nobel prizes in physics were awarded for work done
using the tools and concepts of Fourier analysis. Examine the abstracts from

F.N. Magill, ed., The Nobel Prize Winners — Physics, Vols. 1–3, Salem Press,
Englewood Cliffs, NJ, 1989

with a knowledgeable physicist and see how close you come to this estimate!
• Herbert Hauptman (a mathematician) and Jerome Karle shared the 1985

Nobel prize in chemistry for showing how to use Fourier analysis to determine
the structure of large molecules from X-ray diffraction data, see

W.A. Hendrickson, The 1985 Nobel Prize in Chemistry, Science 231(1986),
362–364;
Mathematics: The unifying thread in science, Notices AMS 33(1986), 716–733.

• Francis Crick, James Watson, and Maurice Wilkins won the 1962 Nobel prize in
medicine and physiology for discovering the molecular structure of DNA. Fourier
analysis of X-ray diffraction data played an essential role in this work, see

F. Crick, What Mad Pursuit, Basic Books, Inc., New York, 1988, pp. 39–61.
• Alan Cormack and Godfrey Hounsfield won the 1979 Nobel prize in medicine for

the development of computer assisted tomography. Paul Lauterbur and Peter
Mansfield won the 2003 Nobel prize in Medicine for their discoveries concern-
ing magnetic resonance imaging. Today detailed medical images are routinely
produced by using Fourier analysis to process X-ray and nuclear spin signals, see

C.L. Epstein, Introduction to the Mathematics of Medical Imaging, Pearson
Education, Upper Saddle River, NJ, 2003.

• The sophisticated instruments of modern science now produce signals instead of
numbers as the basic data for scientific research. It is impossible to describe
the function of an FT-NMR spectrum analyzer, an X-ray diffraction machine,
a seismic recorder, . . . without using the vocabulary and concepts of Fourier
analysis, see

A.G. Marshall and F.R. Verdun, Fourier Transforms in NMR, Optical, and
Mass Spectroscopy, Elsevier, New York, 1990

to develop some appreciation for what is involved in learning to use an FT-NMR
spectrum analyzer.

• The amazing technology and consumer products associated with digital signal
processing (compact disk players, high-definition TV, digital phones, . . . ) rest
on the mathematical base of Fourier analysis. You can confirm this by examining
the sampling chapter from an introductory text such as

A.V. Oppenheim, A.S. Willsky, and I.T. Young, Signals and Systems, Prentice
Hall, Englewood Cliffs, NJ, 1983.
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• During the past half-century Fourier analysis has transformed the study of optics
(with Fourier optics being the name now used for the new discipline). A lens acts
by changing phase quadratically; Fresnel diffraction is “factored” into succesive
operations of phase transformation, Fourier transformation, dilation, and phase
transformation; and any converging lens has the inherent ability to take a Fourier
transform optically, see

J.W. Goodman, Introduction to Fourier Optics, 3rd ed., Roberts & Company,
Englewood, CO, 2005.

• There is an extraordinary high rate of return on your investment of time in
learning Fourier analysis. You will experience the Fourier advantage as you
“speed learn” the applications chapters of this text and when you take sub-
sequent courses in PDEs, Quantum Mechanics, Signals and Systems, Fourier
Optics, . . . !
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Appendix 2 Functions and their Fourier transforms

REGULAR FUNCTIONS ON R

f(x), −∞ < x < ∞ F(s), −∞ < s < ∞

P(x) :=

{
1 if |x| < 1/2

0 if |x| > 1/2
sinc(s) :=

sin(πs)
πs

sinc(x) P(s)

Λ(x) :=

{
1 − |x| if |x| ≤ 1

0 otherwise
sinc2(s)

sinc2x Λ(s)

e−xh(x)
1

1 + 2πis
Here h(x) :=

{
1 if x > 0

0 if x < 0.

xne−αxh(x), α > 0 and n = 0, 1, 2, . . . .
n!

(α+ 2πis)n+1

2
1 + 4π2x2 e−|s|

e−|x| 2
1 + 4π2s2

e−(1+iβ)|x|, −∞ < β < ∞ 2(1 + iβ)
(1 + iβ)2 + 4π2s2

1
(x+ α− iβ)n+1 , −∞ < α < ∞,

β > 0, and n = 0, 1, 2, . . .

2πi(−2πis)n

n!
e2πi(α−iβ)sh(−s)

1
(x+ α+ iβ)n+1 , −∞ < α < ∞,

β > 0, and n = 0, 1, 2, . . .

(−2πi)(−2πis)n

n!
e2πi(α+iβ)sh(s)

e−πx2
e−πs2

Hn(
√

2π x)e−πx2
, n = 0, 1, 2, . . . (−i)nHn(

√
2π s)e−πs2

Here Hn(u) := eu
2
(−D)ne−u2

is the
nth Hermite polynomial.
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REGULAR FUNCTIONS ON R – Continued

f(x), −∞ < x < ∞ F(s), −∞ < s < ∞

bα(x) :=

{
1 if 0 < x < α

0 if x < 0 or x > α, α > 0
α sinc(αs)e−πiαs

xnbα(x), n = 0, 1, . . . n!αn+1Rn(2πiαs)e−2πiαs

(2πiαs)n+1

Here Rn(z) := ez −
{
1 + z

+
z2

2!
+ · · · +

zn

n!

}
.

tα(x) :=

{
α− |x− α| if 0 < x < 2α

0 otherwise, α > 0
α2sinc2(αs)e−2πiαs

Π(x/2)
π
√

1 − x2
J0(2πs)

Here J0(u) :=
∫ 1

0
eiu sin 2πt dt

is the regular zero-order
Bessel function.

2
√

1 − x2 Π(x/2)
J1(2πs)

s
Here J1(u) :=

∫ 1

0
eiu sin 2πt−2πit dt

is the regular first-order
Bessel function.

sechπx sechπs

sech2 πx 2s cosechπs

arctan
( 1

2x2

)
πe−|πs| sinc s

arctanαx− arctanβx, α > β > 0
−i
2s

{e−2π|s|/α − e−2π|s|/β}

ανxν−1e−αxh(x)
Γ(ν)

, α > 0, ν > 0
(

α

α+ 2πis

)ν

Here Γ(z) :=
∫ ∞

0
uz−1e−u du is Euler’s

gamma function.

ex e−ex

Γ(1 + 2πis)
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GENERALIZED FUNCTIONS ON R

f(x), −∞ < x < ∞ F(s), −∞ < s < ∞

δ(x) 1

δ(n)(x), n = 0, 1, . . . (2πis)n

1 δ(s)

xn, n = 0, 1, . . . (−2πi)−nδ(n)(s)

e2πis0x, −∞ < s0 < ∞ δ(s− s0)

cos(2πs0x), −∞ < s0 < ∞ 1
2
δ(s+ s0) +

1
2
δ(s− s0)

sin(2πs0x), −∞ < s0 < ∞ i

2
δ(s+ s0) − i

2
δ(s− s0)

X(x) =
∞∑

m=−∞
δ(x−m) X(s)

1
x

:= {x log |x| − x}′′ −πi sgn s

1
(x+ α)n+1 , −∞ < α < ∞, n = 0, 1, 2, . . .

−πi(−2πis)ne2πiαssgn s
n!

sgnx
1
πis

h(x) :=
1
2
(1 + sgnx)

1
2
δ(s) +

1
2πis

xnh(x), n = 0, 1, . . .
δ(n)(s)

2(−2πi)n
+

n!
(2πis)n+1

|x|−1/2 |s|−1/2

|x|α, α > −1 −2
sin(απ/2)α!
(2π|s|)α+1

|x|αsgnx, α > −1 −2i
cos(απ/2)α! sgn s

(2π|s|)α+1

tanhπx −i cosech(πs)
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GENERALIZED FUNCTIONS ON R – Continued

f(x), −∞ < x < ∞ F(s), −∞ < s < ∞

G(x) :=
∫ x

0

sinπu
πu

du
P(s)
2πis

sgnx sincx − i

π
log

∣∣∣∣s+ 1/2
s− 1/2

∣∣∣∣
eiπx2 1 + i√

2
e−iπs2

cosπx2 cosπ
(
s2 − 1

4

)

sinπx2 − sinπ
(
s2 − 1

4

)

E(x) :=
∫ x

0
eiπu2

du
1 + i√

2
e−iπs2

2πis

e−π(α+iβ)2x2
, α ≥ |β| 1

α+ iβ
e−πs2/(α+iβ)2

and α+ iβ �= 0

REGULAR FUNCTIONS ON Tp

f(x), 0 < x < p F[k], k = 0,±1,±2, . . .

e2πik0x/p, k0 = 0,±1,±2, . . . δ[k − k0] :=

{
1 if k = k0

0 otherwise

cos(2πk0x/p), k0 = 0,±1,±2, . . .
1
2
δ[k + k0] +

1
2
δ[k − k0]

sin(2πk0x/p), k0 = 0,±1,±2, . . .
i

2
δ[k + k0] − i

2
δ[k − k0]

bα(x) :=

{
1 if 0 < x < α ≤ p

0 if α < x < p

(
α

p

)
sinc

(
kα

p

)
e−πikα/p

tα(x) :=



α− |x− α|

if 0 < x < 2α ≤ p

0 if 2α < x < p

(
α2

p

)
sinc2

(
kα

p

)
e−2πikα/p
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REGULAR FUNCTIONS ON Tp – Continued

f(x), 0 < x < p F[k], k = 0,±1,±2, . . .

xnbα(x), n = 0, 1, 2, . . .




αn+1e−2πikα/p

p (n+ 1)
if k = 0

n!αn+1e−2πikα/pRn(2πikα/p)
(2πikα/p)n+1

otherwise

Here Rn(z) := ez −
{
1 + z +

z2

2!
+ · · · +

zn

n!

}
.

∣∣∣∣sin πxp
∣∣∣∣ 2

π(1 − 4k2)

− log

∣∣∣∣2 sin

(
πx

p

)∣∣∣∣
{

0 if k = 0
1

2|k| otherwise

eiα sin(2πx/p), −∞ < α < ∞ Jk(α)
Here Jk is the regular kth-

order Bessel function.

Broken line connecting the points:(
np

N
, e2πin/N

)
, n = 0, 1, . . . , N

{
sinc2(1/N)

k2 if k ≡ 1 (mod N)

0 otherwise

1 − r2

1 − 2r cos(2πx/p) + r2
, 0 < |r| < 1 r|k|

(Poisson kernel)

(2m+ 1)
sinc{(2m+ 1)x/p}

sinc(x/p)
, m = 0, 1, 2, . . .

{
1 if k = 0,±1, . . . ,±m
0 otherwise

(Dirichlet kernel)

(2m+ 1)
sinc2{(2m+ 1)x/p}

sinc2(x/p)
, m = 0, 1, 2, . . .




1 − |k|/(2m+ 1)

if k = 0,±1, . . . ,±2m

0 otherwise
(Fejér kernel)
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REGULAR FUNCTIONS ON Tp – Continued

f(x), 0 < x < p F[k], k = 0,±1,±2, . . .

4m cos2m

(
πx

p

)
(

2m
m

) , m = 0, 1, 2, . . .

(
2m
m− k

)
(

2m
m

)
(de la Vallée-Poussin power kernel)

1
1 + ε cos(2πx/p)

, 0 < ε < 1
1√

1 − ε2

{
−ε

1 +
√

1 − ε2

}|k|

ω0

(
x

p

)
:=

1
2

− x

p

{
0 if k = 0

(2πik)−1 otherwise

ω1

(
x

p

)
:= − 1

12
+

1
2

(
x

p

)
− 1

2

(
x

p

)2 {
0 if k = 0

(2πik)−2 otherwise

ω2

(
x

p

)
:= − 1

12

(
x

p

)
+

1
4

(
x

p

)2

− 1
6

(
x

p

)3 {
0 if k = 0

(2πik)−3 otherwise

ω3

(
x

p

)
:=

1
720

− 1
24

(
x

p

)2

+
1
12

(
x

p

)3

− 1
24

(
x

p

)4 {
0 if k = 0

(2πik)−4 otherwise
...

ωn−1

(
x

p

)
:=

−1
n!
Bn

(
x

p

)
, n = 1, 2, . . .

{
0 if k = 0

(2πik)−n otherwise

Here Bn is the nth Bernoulli polynomial.
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REGULAR FUNCTIONS ON Tp – Continued

f(x), −p/2 < x < p/2 F[k], k = 0,±1,±2, . . .

sgnx

{
0 if k = 0,±2,±4, . . .

−2i/(πk) if k = ±1,±3,±5, . . .

x p

{
0 if k = 0

i (−1)k/(2πk) if k = ±1,±2, . . .

|x| p




1/4 if k = 0

2/(π2k2) if k = ±2,±4,±6, . . .

0 if k = ±1,±3,±5, . . .

x2 p2
{

1/12 if k = 0

(−1)k/(π2k2) if k = ±1,±2, . . .

eαx, −∞ < α < ∞ (−1)k sinh(αp/2)
(αp/2) − iπk

P
(
x

α

)
, 0 < α ≤ p

α

p
sinc

(
αk

p

)

Λ
(
x

α

)
, 0 < α ≤ p/2

α

p
sinc2

(
αk

p

)

P
(
x− p/4

α

)
− P

(
x+ p/4

α

)
, 0 < α ≤ p/2

−2iα
p

sin
(
kπ

2

)
sinc

(
αk

p

)

Λ

(
x− p/4

α

)
− Λ

(
x+ p/4

α

)
, 0 < α ≤ p/4

−2iα
p

sin
(
kπ

2

)
sinc2

(
αk

p

)

Broken line connecting the points:(
−p

2
, 0
)
,
(
−αp

2
,−1

)
,
(
αp

2
, 1
)
,
(
p

2
, 0
)
,

2
π2α(1 − α)

sin(αkπ)
k2 , 0 < α < 1
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REGULAR FUNCTIONS ON Z

f [n], n = 0,±1,±2, . . . F(s), 0 < s < p

δ[n] :=

{
1 if n = 0

0 otherwise
1
p

P
(

n

2m+ 1

)
, m = 0, 1, . . .

(2m+ 1) sinc{(2m+ 1)s/p}
p sinc(s/p)

Λ
(

n

2m+ 1

)
, m = 0, 1, . . .

(2m+ 1)2 sinc2{(2m+ 1)s/p}
p sinc2(s/p)

r|n|, |r| < 1
1 − r2

p{1 − 2r cos(2πs/p) + r2}

rnh(n) =

{
rn, n = 0, 1, . . .

0, n = −1,−2, . . . , |r| < 1
1 − re2πis/p

p{1 − 2r cos(2πs/p) + r2}
(
m

n

)
, m = 1, 2, . . .

2m

p
cosm(πs/p) e−πims/p

Jn(α) :=
∫ 1

0
eiα sin 2πt−2πint dt

1
p
e−iα sin(2πs/p)

Here Jn is the regular nth-order
Bessel function.

bm[n] :=

{
1 if n = 0, 1, . . . ,m− 1

0 otherwise, m = 1, 2, . . .
m sinc(ms/p)
p sinc(s/p)

e−πi(m−1)s/p

tm[n] :=



m−|n−m+1|

if n = 0, 1, . . . , 2m−2

0 otherwise, m = 1, 2, . . .

m2 sinc2(ms/p)
p sinc(s/p)

e−2πi(m−1)s/p

n bm[n],
e−πi(m−1)s/p

2p sin2(πs/p)

{
(m− 1) sin

(
πms

p

)
sin

(
πs

p

)

+ im sin

(
πs

p

)
cos

(
πms

p

)

−i sin
(
πms

p

)
cos

(
πs

p

)}
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REGULAR FUNCTIONS ON PN

f [n], n = 0,1, . . . ,N − 1 F[k], k = 0,1, . . . ,N − 1

δ[n] :=

{
1 if n = 0

0 otherwise
1
N

1 δ[k]

cm[n] :=

{
1 if m|n
0 otherwise

cm′ [k]
m

Here m,m′ are positive integers and
mm′ = N .

δ[n− n0], n0 = 0,±1,±2, . . .
e−2πikn0/N

N

e2πik0n/N , k0 = 0,±1,±2, . . . δ[k − k0]

e2πiαn/N , 0 ≤ α ≤ N e−πi(N−1)(k−α)/N sinc{k − α}
sinc{(k − α)/N}

n
1
2



N − 1 if k = 0

−1 + i cot(πk/N),

if k = 1, 2, . . . , N − 1

rn, r �= 1
1 − rN

1 − r e−2πik/N

bm[n] :=

{
1 if n = 0, 1, . . . ,m− 1

0 if n = m,m+ 1, . . . , N − 1
m sinc(mk/N)
N sinc(k/N)

e−πik(m−1)/N

Here m = 1, 2, . . . , N is the width
of the box.

P
(

n

2m+ 1

)
:= b2m+1[n+m]

(2m+ 1) sinc{(2m+ 1)k/N}
N sinc(k/N)

Here m is a positive integer with
2m+ 1 ≤ N .

sgn[n] :=




0 if n = 0

1 if n = 1, 2, . . . ,M

−1 if n = M + 1, . . . , 2M − 1



i tan(kπ/2N)

if k = 0, 2, . . . , 2M

−i cot(kπ/2N)

if k = 1, 3, . . . , 2M − 1

Here N = 2M + 1 is odd.
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REGULAR FUNCTIONS ON PN – Continued

f [n], n = 0,1, . . . ,N − 1 F[k], k = 0,1, . . . ,N − 1

sgn[n] :=




0 if n = 0,M

1 if n = 1, 2, . . . ,M − 1

−1 if n = M + 1, . . . , 2M − 1




−(2i/N) cot(kπ/N)

if k = 1, 3, . . . , 2M − 1

0 if k = 0, 2, . . . , 2M − 2

Here N = 2M is even.

tm[n] :=



m− |n−m+ 1|

if n = 0, 1, . . . , 2m− 2

0 if n = 2m− 1, . . . , N − 1

m2

N

{
sinc(mk/N)
sinc(k/N)

}2

e−2πik(m−1)/N

Here m is a positive integer with
2m− 1 ≤ N .

Λ(n/m) :=




1 − (n/m)

if n = 0, 1, . . . ,m− 1

0 if n = m,m+ 1, . . . , N −m

1 − (N − n)/m

if n = N −m+ 1, . . . , N − 1

m

N

{
sinc(mk/N)
sinc(k/N)

}2

hm[n] :=
∞∑

µ=−∞
Hm

{√
2π
N

(n− µN)

}
e−π(n−µN)2/N ,

(−i)m√
N

hm[k]

Here Hm(u) := eu
2
(−D)m(e−u2

) is the
mth Hermite polynomial.

e2πin2/N (1 + i){1 + (−1)k i−N}
2
√
N

e−πik2/(2N)

(
n

P

) σP√
P

(
k

P

)
Here N = P is an odd prime, and Here σP :=

{
1 if P ≡ 1 (mod 4)

i if P ≡ 3 (mod 4)the Legendre symbol
(

n
P

)
takes the values 0, 1,−1
when n(P−1)/2 ≡ 0, 1,−1 (mod P ).

e2πimn2/P
(
m

P

) σP√
P
e2πim′k2/P

Here N = P is an odd prime Here m′ = 1, 2, . . . , P − 1 is chosen

and m = 1, 2, . . . , P − 1. so that 4mm′ ≡ −1 (mod P ).
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Appendix 3 The Fourier transform calculus

BASIC RELATIONS: REGULAR FUNCTIONS ON R

Name Relation

Synthesis f(x) =
∫ ∞

s=−∞
F (s)e2πisx ds

Analysis F (s) :=
∫ ∞

x=−∞
f(x)e−2πisx dx

Parseval
∫ ∞

x=−∞
f(x)g(x) dx =

∫ ∞

s=−∞
F (s)G(s) ds

Convolution (f ∗ g)(x) :=
∫ ∞

u=−∞
f(u)g(x− u) du

FOURIER TRANSFORM RULES: REGULAR FUNCTIONS ON R

Name Function Transform

Linearity c1f1(x) + c2f2(x) c1F1(s) + c2F2(s)

Reflection f(−x) F (−s)
Conjugation f(x) F (−s)
Translation f(x− x0) e−2πisx0 F (s)

Modulation e2πis0x · f(x) F (s− s0)

Convolution (f1 ∗ f2)(x) F1(s) · F2(s)

Multiplication f1(x) · f2(x) (F1 ∗ F2)(s)

Inversion F (x) f(−s)
Derivative f ′(x) 2πis · F (s)

Power scaling x · f(x) (−1/2πi)F ′(s)

Dilation f(ax) |a|−1F (s/a)

a �= 0 is real
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BASIC RELATIONS: REGULAR FUNCTIONS ON Tp

Name Relation

Synthesis f(x) =
∞∑

k=−∞
F [k]e2πikx/p

Analysis F [k] :=
1
p

∫ p

x=0
f(x)e−2πikx/p dx

Parseval
∫ p

x=0
f(x)g(x) dx = p

∞∑
k=−∞

F [k]G[k]

Convolution (f ∗ g)(x) :=
∫ p

u=0
f(u)g(x− u) du

FOURIER TRANSFORM RULES: REGULAR FUNCTIONS ON Tp

Name Function Transform

Linearity c1f1(x) + c2f2(x) c1F1[k] + c2F2[k]

Reflection f(−x) F [−k]
Conjugation f(x) F [−k]
Translation f(x− x0) e−2πikx0/p F [k]

Modulation e2πik0x/p · f(x) F [k − k0]

Convolution (f1 ∗ f2)(x) pF1[k] · F2[k]

Multiplication f1(x) · f2(x) (F1 ∗ F2)[k]

Inversion
f on Z

F (x) (1/p) f [−k]

Derivative f ′(x) (2πik/p) · F [k]

Dilation f(mx), m = 1, 2, . . .
{
F [k/m] if m|k
0 otherwise

Grouping
m−1∑
�=0

f(x/m− �p/m
)
, mF [km]

m = 1, 2, . . .

Summation
f on R

∞∑
m=−∞

f(x−mp) (1/p)F (k/p)
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BASIC RELATIONS: REGULAR FUNCTIONS ON Z

Name Relation

Synthesis f [n] =
∫ p

s=0
F (s)e2πisn/p ds

Analysis F (s) :=
1
p

∞∑
n=−∞

f [n]e−2πisn/p

Parseval
∞∑

n=−∞
f [n]g[n] = p

∫ p

0
F (s)G(s) ds

Convolution (f ∗ g)[n] :=
∞∑

m=−∞
f [m]g[n−m]

FOURIER TRANSFORM RULES: REGULAR FUNCTIONS ON Z

Name Function Transform

Linearity c1f1[n] + c2f2[n] c1F1(s) + c2F2(s)

Reflection f [−n] F (−s)
Conjugation f [n] F (−s)
Translation f [n− n0] e−2πisn0/p · F (s)

Modulation e2πis0n/p · f [n] F (s− s0)

Convolution (f1 ∗ f2)[n] pF1(s) · F2(s)

Multiplication f1[n] · f2[n] (F1 ∗ F2)(s)

Inversion
f on Tp

F [n] (1/p) f(−s)

Power scaling n · f [n] (−p/2πi)F ′(s)

Dilation f [mn], m = 1, 2, . . .
1
m

m−1∑
�=0

F (s/m− �p/m)

Zero packing

{
f [n/m] if m|n
0 otherwise,
m = 1, 2, . . .

F (ms)

Sampling
f on R

f(n/p)
∞∑

m=−∞
F (s−mp)
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BASIC RELATIONS: FUNCTIONS ON PN

Name Relation

Synthesis f [n] =
N−1∑
k=0

F [k]e2πikn/N

Analysis F [k] :=
1
N

N−1∑
n=0

f [n]e−2πikn/N

Parseval
N−1∑
n=0

f [n]g[n] = N
N−1∑
k=0

F [k]G[k]

Convolution (f ∗ g)[n] :=
N−1∑
m=0

f [m]g[n−m]

FOURIER TRANSFORM RULES: FUNCTIONS ON PN

Name Function Transform

Linearity c1f1[n] + c2f2[n] c1F1[k] + c2F2[k]

Reflection f [−n] F [−k]
Conjugation f [n] F [−k]
Translation f [n− n0] e−2πikn0/N · F [k]

Modulation e2πik0n/N · f [n] F [k − k0]

Convolution (f1 ∗ f2)[n] N F1[k] · F2[k]

Multiplication f1[n] · f2[n] (F1 ∗ F2)[k]

Inversion F [n] (1/N) f [−k]
Repeat
f on PN/m

f [n]
{
F [k/m] if m|k
0 otherwise

Zero packing
f on PN/m

{
f [n/m] if m|n
0 otherwise

(1/m)F [k]
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FOURIER TRANSFORM RULES: FUNCTIONS ON PN – Continued

Name Function Transform

Decimation
f on Pm·N

f [mn]
m−1∑
�=0

F [k − �N ]

Summation
f on Pm·N

N−1∑
�=0

f [n− �N ] mF [mk]

Dilation
f on PN

f [mn], F [m′k],

Here m,N are Here mm′ ≡ 1 (mod N)
relatively prime.

Dilation
f on PN

f [mn]




m−1∑
�=0

F [k/m− �N/m]

if m|k
0 otherwiseHere m|N .

Sampling
f on Tp

f(np/N)
∞∑

m=−∞
F [k −mN ]

Summation
f on Z

∞∑
m=−∞

f [n−mN ] (p/N)F (kp/N)

Sample-sum
f on R

∞∑
m=−∞

f(α [n−mN ])
∞∑

m=−∞
|β|F (β[k −mN ])

α := a/
√
N, a �= 0 β := a−1/

√
N
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Appendix 4 Operators and their Fourier transforms

OPERATORS USED TO DESCRIBE COMMON SYMMETRIES

Name A A f A∧

Reflection R f∨ R

Bar B f− D

Dagger D f† B

Even projection Pe
1
2 (f + f∨) Pe

Odd projection Po
1
2 (f − f∨) Po

Real projection Pr
1
2 (f + f−) Ph

Imaginary projection Pi
1
2 (f − f−) Pa

Hermitian projection Ph
1
2 (f + f†) Pr

Antihermitian projection Pa
1
2 (f − f†) Pi

Note. f∨(x) := f(−x), f−(x) := f(x) when f is defined on R, Tp,

f∨[n] := f [−n], f−[n] := f [n] when f is defined on Z, PN ,
and f† := f∨−.
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OPERATORS THAT ARE POLYNOMIALS IN F

Name A A f A∧

Identity I f I

Reflection R f∨ R

Fourier transform F f∧ F

Normalized exponential E− β1/2f∧ E−

Normalized exponential E+ β1/2f∧∨ E+

Normalized cosine C PeE−f C

Normalized sin S iPoE−f S

Normalized Hartley H+ (C + S)f H+

Normalized Hartley H− (C − S)f H−

Fundamental projection Q0
1
2 (Pe + C)f Q0

Fundamental projection Q1
1
2 (Po + S)f Q1

Fundamental projection Q2
1
2 (Pe − C)f Q2

Fundamental projection Q3
1
2 (Po − S)f Q3

Note. We use β := 1, p, p,N when f is defined on R, Tp, Z, PN ,
respectively.
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OTHER OPERATORS WHERE f AND A f
HAVE THE SAME DOMAIN

Name A A f Domain f ,A f A∧

Translation Ta f(x+ a) R,Tp Ea

Translation Tm f [n+m] Z,PN Em

Exponential
modulation Ea e2πiax · f(x) R T−a

Exponential
modulation Em e2πimx/p · f(x) Tp T−m

Exponential
modulation Ea e2πian/p · f [n] Z T−a

Exponential
modulation Em e2πimn/N · f [n] PN T−m

Convolution Cg g ∗ f R,Tp,Z,PN βMg∧

Multiplication Mg g · f R,Tp,Z,PN Cg∧

Derivative D f ′
R,Tp P

Power scaling P 2πix · f(x) R −D

Power scaling P (2πin/p) · f [n] Z −D

Grouping Gm, m �= 0
|m|−1∑
�=0

f

(
x

m
+
�p

m

)
Tp |m|Sm

Zero packing Zm, m �= 0
{
f [n/m] if m|n
0 otherwise

Z Sm

Dilation Sa, a �= 0 f(ax) R |a|−1S1/a

Dilation Sm, m �= 0 f(mx) Tp Zm

Dilation Sm, m �= 0 f [mn] Z |m|−1Gm

Dilation Sm, mm′ ≡ 1 f [mn] PN Sm′

(mod N)

Dilation Sm, m|N f [mn] PN Zm ΣN/m

Note. Each subscript a is real and each subscript m is an integer.
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OTHER OPERATORS WHERE f AND A f
HAVE DIFFERENT DOMAINS

Name A A f f A f A∧

Decimation Ξm f [mn] PN ·m PN ΣN

Summation ΣN

m−1∑
µ=0

f
[
n− µN

]
PN ·m PN mΞm

Repeat Rm f [n] PN/m PN Zm

Zero packing Zm

{
f [n/m] if m|n
0 otherwise

PN/m PN (1/m) Rm

Sampling Ξ1/p f(n/p) R Z Σp

Summation Σp

∞∑
m=−∞

f(x−mp) R Tp (1/p)Ξ1/p

Sampling Ξp/N f(np/N) Tp PN ΣN

Summation ΣN

∞∑
m=−∞

f [n−mN ] Z PN (p/N)Ξp/N

Sample-sum Xa

∞∑
m=−∞

f

(
a√
N

[n−mN ]
)

R PN (a2N)−1/2X1/a

Note. Each subscript m is a positive integer, p > 0, n = 1, 2, . . . ,

and a < 0 or a > 0.
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Appendix 5 The Whittaker–Robinson flow chart
for harmonic analysis

θ = 0◦ u0= = ×10

30◦ u1= =

60◦ u2= =

90◦ u3= =

120◦ u4= =

150◦ u5= =

180◦ u6= =

210◦ u7= =

240◦ u8= =

270◦ u9= =

300◦ u10= =

330◦ u11= =

1st-order sums and differences

(u0 to u6)

(u11 to u7)

Sums (v0 to v6)

Diffs. (w1 to w5)
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2nd-order sums and differences

(v0 to v3)

(v6 to v4)

Sums (p0 to p3)

Diffs. (q0 to q2)

(w1 to w3)

(w5 to w4)

Sums (r1 to r3)

Diffs. (s1 to s2)

Scaling by 1/2 and
√

3/2

p1 = p2 = q2 = r1 =

(0.500 × line above) h1 = h2 = l2 = m1 =

q1 = r2 = s1 = s2 =

(0.866 × line above†) l1 = m2 = n1 = n2 =

† For mental computation use .866x ≈ x− (1/10)x− (1/30)x.
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3rd-order sums and differences

p0 = p1 = q0 = l1 =
p2 = p3 = l2 =

Sum of 1st column
Sum of 2nd column

Sums = 12a0 = 6a1

Diffs. = 12a6 = 6a5

p0 = h1 = p0 = p3 =
p3 = h2 = h1 = h2 =

Sum of 1st column
Sum of 2nd column

Sums
Diffs. = 6a4 = 6a2

m1 = m2 = q0 =
r3 = q2 =

Sum of 1st column
Sum of 2nd column

Sums = 6b1
Diffs. = 6b5 = 6a3

n1 = r1 =
n2 = r3 =

Sums = 6b2
Diffs. = 6b4 = 6b3
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Final scaling

a0 = a1 = a2 = a3 = a4 = a5 = a6 =

b1 = b2 = b3 = b4 = b5 =

Result

u = a0 + a1 cos θ + a2 cos 2θ + a3 cos 3θ + a4 cos 4θ + a5 cos 5θ + a6 cos 6θ + b1 sin θ
+ b2 sin 2θ + b3 sin 3θ + b4 sin 4θ + b5 sin 5θ

Checks

u0 = a0 + a1 + a2 + a3 + a4 + a5 + a6

w1 = b1 + 2b3 + b5 + 1.732(b2 + b4)

Whittaker, E. and Robinson, G. The Calculus of Observations, 4th ed., Blackie
& Son, Ltd., London, 1962, insert at p. 270.
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Appendix 6 FORTRAN code for a radix 2 FFT

subroutine fft(fr,fi,mp,isw)
c
c This FORTRAN subroutine computes the discrete Fourier transform
c
c ft(k+1)=scale*sum f(j+1)*exp(isn*2*pi*i*j*k/n), k=0,1,...,n-1
c
c of the complex array
c
c f(j+1)=fr(j+1)+i*fi(j+1), j=0,1,...,n-1, where
c
c n =2**mp
c i =sqrt(-1)
c isn =+1 if isw.gt.0
c =-1 if isw.lt.0
c scale=1 if isw=-1 or +1
c =1/n if isw=-2 or +2
c =1/sqrt(n) if isw=-3 or +3.
c
c Computations are done in place, and at the time of return the real
c arrays fr,fi have been overwritten with the real and imaginary parts
c of the desired Fourier transform.
c
c The code is based on the presentation of the FFT given in the
c text ’A First Course in Fourier Analysis’ by David W. Kammler.
c

implicit real*8 (a-h,o-z)
parameter(zero=0.d0,one=1.d0,two=2.d0)

c
c To change the code to single precision, delete the above implicit
c real*8 statement, delete the d0’s in the above parameter statement
c that defines zero,one,two, and replace dsqrt by sqrt in the equations
c defining rrootn, rroot2, and in the first equation of the do 6 loop.
c

parameter(maxmp=10,maxds=257,maxdir=32)
dimension fr(*),fi(*),s(maxds),ir(maxdir)

c
c To accomodate a larger vector f, insert a larger value of maxmp and
c corresponding values of maxds=2**(maxmp-2)+1 and
c maxdir=2**[(maxmp+1)/2)] in the above parameter statement.
c

data lastmp,maxs/0,0/
isws=isw**2
if((mp.lt.0).or.(mp.gt.maxmp).or.(isws.eq.0).or.(isws.gt.9)) then
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write(*,2)
2 format(’ Improper argument in FFT Subroutine’)

stop
endif

if(mp.eq.0) return
if(mp.eq.lastmp) then

if(mp.eq.1) go to 20
if(mp.gt.1) go to 14

endif
c
c At the time of the first call of the subroutine with a given value of
c mp.gt.0, initialize various constants and arrays that depend on mp
c but not fr,fi. On subsequent calls with the same mp, bypass this
c initialization process.
c

lastmp=mp
n =2**mp
temp =n
rn =one/temp
rrootn=dsqrt(rn)
nh =n/2
if(mp.eq.1) go to 20
if(mp.eq.2) go to 8
if(mp.lt.maxs) then

nsn=2**(maxs-mp)
else

nsn=1
endif

c
c When mp.le.maxs, the spacing parameter nsn is used to retreive sine
c values from a previously computed table.
c

if(mp.le.maxs) go to 8
c
c When n=8,16,32,... and mp.gt.maxs, precompute
c s(j+1)=sin((pi/2)*(j/nq)), j=0,1,2,...,nq, for use in
c the subsequent calculations.
c

nq =n/4
ne =n/8
rroot2 =one/dsqrt(two)
maxs =mp
s(1) =zero

c =sin(0*pi/4)
s(ne+1)=rroot2

c =sin(1*pi/4))
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s(nq+1)=one
c =sin(2*pi/4)

if(mp.eq.3)go to 8
h=rroot2

c =.5*sec(pi/4)
c
c Pass from the course grid to a finer one by using the trig identity:
c
c sin(a)=(.5*sec(b))*(sin(a-b)+sin(a+b)).
c
c (This clever idea is due to 0.Buneman, cf. SIAM J. SCI. STAT.
c COMPUT. 7 (1986), pp. 624-638.)
c

k=ne
do 6 i=4,mp

h =one/dsqrt(two+one/h)
c =half secant of half the previous angle

kt2=k
k =k/2

c =n/2**i
do 4 j=k,nq,kt2

4 s(j+1)=h*(s(j-k+1)+s(j+k+1))
6 continue
8 continue

c
c Prepare a short table of bit reversed integers to use in the
c subsequent bit reversal permutation.
c

muplus=(mp+1)/2
m =1
ir(1) =0
do 12 nu=1,muplus

do 10 k=1,m
it =2*ir(k)
ir(k) =it

10 ir(k+m)=it+1
12 m=m+m

c
c If mp is odd, then m=m/2.
c

itemp=2*(mp/2)
if(itemp.ne.mp) then

m=m/2
endif

c
c The parameters n,nh,nq,ne,m,lastmp,maxs,nsn,rn,rrootn,rroot2 and the
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c arrays ir(*), s(*) are now suitably initialized.
c

14 continue
c Apply the bit reversal permutation to the array f using the
c Bracewell-Buneman scheme.
c

do 18 iq=1,m-1
npr =iq-m
irpp =ir(iq+1)*m
do 16 ip=0,ir(iq+1)-1

npr =npr+m
npr1 =npr+1
irp1 =irpp+ir(ip+1)+1
tempr =fr(npr1)
tempi =fi(npr1)
fr(npr1) =fr(irp1)
fi(npr1) =fi(irp1)
fr(irp1) =tempr

16 fi(irp1) =tempi
18 continue
20 continue

c
c Apply the mp Q-matrices.
c
c Carry out stage 1 of the FFT using blocks of size 2x2 and apply
c the desired scale factor.
c

if(isws.eq.1) then
scale=one

elseif(isws.eq.4) then
scale=rn

else
scale=rrootn

endif
do 22 k=0,nh-1

k1 =2*k+1
k2 =k1+1
tempr =(fr(k1)-fr(k2))*scale
tempi =(fi(k1)-fi(k2))*scale
fr(k1)=(fr(k1)+fr(k2))*scale
fi(k1)=(fi(k1)+fi(k2))*scale
fr(k2)=tempr

22 fi(k2)=tempi
if(mp.eq.1) return

c
c Carry out stages 2,3,...,mp of the FFT using blocks



FORTRAN code for a radix 2 FFT A-31

c of size mxm = 4x4,8x8,...,nxn.
c

mcap=1
kcap=n/4
do 32 mu=2,mp

c
c At this point mcap=2**(mu-2) and kcap=2**(mp-mu).
c
c Deal first with the quadruplet of components where sin=0 or cos=0.
c

do 24 k=0,kcap-1
k0=k*4*mcap+1
k1=k0+mcap
k2=k0+2*mcap
k3=k0+3*mcap
tempr =fr(k0)-fr(k2)
tempi =fi(k0)-fi(k2)
fr(k0)=fr(k0)+fr(k2)
fi(k0)=fi(k0)+fi(k2)
fr(k2)=tempr
fi(k2)=tempi
if(isw.lt.0) then

fr(k3)=-fr(k3)
fi(k3)=-fi(k3)

endif
temp1 =fr(k1)+fi(k3)
temp2 =fi(k1)-fr(k3)
fr(k1)=fr(k1)-fi(k3)
fi(k1)=fi(k1)+fr(k3)
fr(k3)=temp1
fi(k3)=temp2

24 continue
if(mcap.eq.1) go to 30

c
c Now deal with the remaining mcap-1 quadruplets of components where sin,
c cos are both nonzero.
c
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do 28 lamda=1,mcap-1
indx =nsn*lamda*kcap+1
sn =s(indx)

c =sin((2*pi)*(lamda/mcap))
indx =nq-indx+2
cs =s(indx)

c =cos((2*pi)*(lamda/mcap))
if(isw.lt.0) then

sn=-sn
endif

do 26 k=0,kcap-1
k4m=k*4*mcap+1
k0 =k4m+lamda
k1 =k4m+2*mcap-lamda
k2 =k4m+2*mcap+lamda
k3 =k4m+4*mcap-lamda
r1 =cs*fr(k2)-sn*fi(k2)
r2 =cs*fi(k2)+sn*fr(k2)
temp1 =fr(k0)-r1
temp2 =fi(k0)-r2
fr(k0)=fr(k0)+r1
fi(k0)=fi(k0)+r2
fr(k2)=temp1
fi(k2)=temp2
r1 =cs*fr(k3)+sn*fi(k3)
r2 =cs*fi(k3)-sn*fr(k3)
temp1 =fr(k1)+r1
temp2 =fi(k1)+r2
fr(k1)=fr(k1)-r1
fi(k1)=fi(k1)-r2
fr(k3)=temp1

26 fi(k3)=temp2
28 continue
30 mcap=mcap*2

kcap=kcap/2
32 continue

return
end
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Appendix 7 The standard normal probability
distribution

TABLE 1N. Values for Φ(x) := 1√
2π

∫ x

−∞
e−u2/2 du, x ≤ 0
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−4 40x

.4

x 9 8 7 6 5 4 3 2 1 0
−3.9 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000 .0000
−3.8 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001
−3.7 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001
−3.6 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0001 .0002 .0002
−3.5 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002 .0002
−3.4 .0002 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003 .0003
−3.3 .0003 .0004 .0004 .0004 .0004 .0004 .0004 .0005 .0005 .0005
−3.2 .0005 .0005 .0005 .0006 .0006 .0006 .0006 .0006 .0007 .0007
−3.1 .0007 .0007 .0008 .0008 .0008 .0008 .0009 .0009 .0009 .0010
−3.0 .0010 .0010 .0011 .0011 .0011 .0012 .0012 .0013 .0013 .0013
−2.9 .0014 .0014 .0015 .0015 .0016 .0016 .0017 .0018 .0018 .0019
−2.8 .0019 .0020 .0021 .0021 .0022 .0023 .0023 .0024 .0025 .0026
−2.7 .0026 .0027 .0028 .0029 .0030 .0031 .0032 .0033 .0034 .0035
−2.6 .0036 .0037 .0038 .0039 .0040 .0041 .0043 .0044 .0045 .0047
−2.5 .0048 .0049 .0051 .0052 .0054 .0055 .0057 .0059 .0060 .0062
−2.4 .0064 .0066 .0068 .0069 .0071 .0073 .0075 .0078 .0080 .0082
−2.3 .0084 .0087 .0089 .0091 .0094 .0096 .0099 .0102 .0104 .0107
−2.2 .0110 .0113 .0116 .0119 .0122 .0125 .0129 .0132 .0136 .0139
−2.1 .0143 .0146 .0150 .0154 .0158 .0162 .0166 .0170 .0174 .0179
−2.0 .0183 .0188 .0192 .0197 .0202 .0207 .0212 .0217 .0222 .0228
−1.9 .0233 .0239 .0244 .0250 .0256 .0262 .0268 .0274 .0281 .0287
−1.8 .0294 .0301 .0307 .0314 .0322 .0329 .0336 .0344 .0351 .0359
−1.7 .0367 .0375 .0384 .0392 .0401 .0409 .0418 .0427 .0436 .0446
−1.6 .0455 .0465 .0475 .0485 .0495 .0505 .0516 .0526 .0537 .0548
−1.5 .0559 .0571 .0582 .0594 .0606 .0618 .0630 .0643 .0655 .0668
−1.4 .0681 .0694 .0708 .0721 .0735 .0749 .0764 .0778 .0793 .0808
−1.3 .0823 .0838 .0853 .0869 .0885 .0901 .0918 .0934 .0951 .0968
−1.2 .0985 .1003 .1020 .1038 .1056 .1075 .1093 .1112 .1131 .1151
−1.1 .1170 .1190 .1210 .1230 .1251 .1271 .1292 .1314 .1335 .1357
−1.0 .1379 .1401 .1423 .1446 .1469 .1492 .1515 .1539 .1562 .1587
−.9 .1611 .1635 .1660 .1685 .1711 .1736 .1762 .1788 .1814 .1841
−.8 .1867 .1894 .1922 .1949 .1977 .2005 .2033 .2061 .2090 .2119
−.7 .2148 .2177 .2206 .2236 .2266 .2296 .2327 .2358 .2389 .2420
−.6 .2451 .2483 .2514 .2546 .2578 .2611 .2643 .2676 .2709 .2743
−.5 .2776 .2810 .2843 .2877 .2912 .2946 .2981 .3015 .3050 .3085
−.4 .3121 .3156 .3192 .3228 .3264 .3300 .3336 .3372 .3409 .3446
−.3 .3483 .3520 .3557 .3594 .3632 .3669 .3707 .3745 .3783 .3821
−.2 .3859 .3897 .3936 .3974 .4013 .4052 .4090 .4129 .4168 .4207
−.1 .4247 .4286 .4325 .4364 .4404 .4443 .4483 .4522 .4562 .4602
−.0 .4641 .4681 .4721 .4761 .4801 .4840 .4880 .4920 .4960 .5000
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TABLE 1P. Values for Φ(x) := 1√
2π

∫ x

−∞
e−u2/2 du, x ≥ 0
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−4 40 x

.4

x 0 1 2 3 4 5 6 7 8 9
.0 .5000 .5040 .5080 .5120 .5160 .5199 .5239 .5279 .5319 .5359
.1 .5398 .5438 .5478 .5517 .5557 .5596 .5636 .5675 .5714 .5753
.2 .5793 .5832 .5871 .5910 .5948 .5987 .6026 .6064 .6103 .6141
.3 .6179 .6217 .6255 .6293 .6331 .6368 .6406 .6443 .6480 .6517
.4 .6554 .6591 .6628 .6664 .6700 .6736 .6772 .6808 .6844 .6879
.5 .6915 .6950 .6985 .7019 .7054 .7088 .7123 .7157 .7190 .7224
.6 .7257 .7291 .7324 .7357 .7389 .7422 .7454 .7486 .7517 .7549
.7 .7580 .7611 .7642 .7673 .7704 .7734 .7764 .7794 .7823 .7852
.8 .7881 .7910 .7939 .7967 .7995 .8023 .8051 .8078 .8106 .8133
.9 .8159 .8186 .8212 .8238 .8264 .8289 .8315 .8340 .8365 .8389

1.0 .8413 .8438 .8461 .8485 .8508 .8531 .8554 .8577 .8599 .8621
1.1 .8643 .8665 .8686 .8708 .8729 .8749 .8770 .8790 .8810 .8830
1.2 .8849 .8869 .8888 .8907 .8925 .8944 .8962 .8980 .8997 .9015
1.3 .9032 .9049 .9066 .9082 .9099 .9115 .9131 .9147 .9162 .9177
1.4 .9192 .9207 .9222 .9236 .9251 .9265 .9279 .9292 .9306 .9319
1.5 .9332 .9345 .9357 .9370 .9382 .9394 .9406 .9418 .9429 .9441
1.6 .9452 .9463 .9474 .9484 .9495 .9505 .9515 .9525 .9535 .9545
1.7 .9554 .9564 .9573 .9582 .9591 .9599 .9608 .9616 .9625 .9633
1.8 .9641 .9649 .9656 .9664 .9671 .9678 .9686 .9693 .9699 .9706
1.9 .9713 .9719 .9726 .9732 .9738 .9744 .9750 .9756 .9761 .9767
2.0 .9772 .9778 .9783 .9788 .9793 .9798 .9803 .9808 .9812 .9817
2.1 .9821 .9826 .9830 .9834 .9838 .9842 .9846 .9850 .9854 .9857
2.2 .9861 .9864 .9868 .9871 .9875 .9878 .9881 .9884 .9887 .9890
2.3 .9893 .9896 .9898 .9901 .9904 .9906 .9909 .9911 .9913 .9916
2.4 .9918 .9920 .9922 .9925 .9927 .9929 .9931 .9932 .9934 .9936
2.5 .9938 .9940 .9941 .9943 .9945 .9946 .9948 .9949 .9951 .9952
2.6 .9953 .9955 .9956 .9957 .9959 .9960 .9961 .9962 .9963 .9964
2.7 .9965 .9966 .9967 .9968 .9969 .9970 .9971 .9972 .9973 .9974
2.8 .9974 .9975 .9976 .9977 .9977 .9978 .9979 .9979 .9980 .9981
2.9 .9981 .9982 .9982 .9983 .9984 .9984 .9985 .9985 .9986 .9986
3.0 .9987 .9987 .9987 .9988 .9988 .9989 .9989 .9989 .9990 .9990
3.1 .9990 .9991 .9991 .9991 .9992 .9992 .9992 .9992 .9993 .9993
3.2 .9993 .9993 .9994 .9994 .9994 .9994 .9994 .9995 .9995 .9995
3.3 .9995 .9995 .9995 .9996 .9996 .9996 .9996 .9996 .9996 .9997
3.4 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9997 .9998
3.5 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998 .9998
3.6 .9998 .9998 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
3.7 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
3.8 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999 .9999
3.9 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
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TABLE 2. Critical values for Φ(x) := 1√
2π

∫ x

−∞
e−u2/2 du

x Φ(x) x Φ(x) x Φ(x) x Φ(x)

−3.719 .0001 −0.706 .24 0.025 .51 0.772 .78
−3.090 .001 −0.674 .25 0.050 .52 0.806 .79
−2.576 .005 −0.643 .26 0.075 .53 0.842 .80
−2.326 .01 −0.613 .27 0.100 .54 0.878 .81
−2.054 .02 −0.583 .28 0.126 .55 0.915 .82
−1.960 .025 −0.553 .29 0.151 .56 0.954 .83
−1.881 .03 −0.524 .30 0.176 .57 0.994 .84
−1.751 .04 −0.496 .31 0.202 .58 1.036 .85
−1.645 .05 −0.468 .32 0.228 .59 1.080 .86
−1.555 .06 −0.440 .33 0.253 .60 1.126 .87
−1.476 .07 −0.412 .34 0.279 .61 1.175 .88
−1.405 .08 −0.385 .35 0.305 .62 1.227 .89
−1.341 .09 −0.358 .36 0.332 .63 1.282 .90
−1.282 .10 −0.332 .37 0.358 .64 1.341 .91
−1.227 .11 −0.305 .38 0.385 .65 1.405 .92
−1.175 .12 −0.279 .39 0.412 .66 1.476 .93
−1.126 .13 −0.253 .40 0.440 .67 1.555 .94
−1.080 .14 −0.228 .41 0.468 .68 1.645 .95
−1.036 .15 −0.202 .42 0.496 .69 1.751 .96
−0.994 .16 −0.176 .43 0.524 .70 1.881 .97
−0.954 .17 −0.151 .44 0.553 .71 1.960 .975
−0.915 .18 −0.126 .45 0.583 .72 2.054 .98
−0.878 .19 −0.100 .46 0.613 .73 2.326 .99
−0.842 .20 −0.075 .47 0.643 .74 2.576 .995
−0.806 .21 −0.050 .48 0.674 .75 3.090 .999
−0.772 .22 −0.025 .49 0.706 .76 3.290 .9995
−0.739 .23 0.000 .50 0.739 .77 3.719 .9999
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Approximation for Φ(x) := 1√
2π

∫ x

−∞
e−u2/2 du

Φ(x) =
1
2

{
1 + erf

(
x√
2

)}

erf(x) :=
2√
π

∫ x

0
e−u2

du

≈ sgn(x) ·
{

1 − P0 + P1|x| + P2|x|2
Q0 +Q1|x| +Q2|x|2 + |x|3 · e−x2

}
(to 6 decimals when −10 ≤ x ≤ 10)

P0 = 3.53221659121 Q0 = 3.53221617055

P1 = 2.153997718487 Q1 = 6.139719523819

P2 = 0.57404837033548 Q2 = 3.9690911552337

Hart, J.F. et al., Computer Approximations, John Wiley & Sons, New York, 1968,
pp. 136–140, 290.
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Appendix 8 Frequencies of the piano keyboard

The standard piano keyboard has 88 keys with A4 tuned to 440 Hz and with the
uniform semitone ratio 21/12 = 1.05946 . . . . The 7+ octave range (27.5 to 4186 Hz)
includes the 5+ octave range (60 to 2000 Hz) of the human voice, and is included
in the 10- octave range (20 to 20000 Hz) of the human ear.

C8 4186.
B7 3951.
A7 3520.
G7 3136.
F7 2794.
E7 2637.
D7 2349.
C7 2093.
B6 1976.
A6 1760.
G6 1568.
F6 1397.
E6 1319.
D6 1175.
C6 1046.
B5 987.8
A5 880.0
G5 784.0
F5 698.5
E5 659.3
D5 587.3
C5 523.2
B4 493.9
A4 440.0
G4 392.0
F4 349.2
E4 329.6
D4 293.7
C4 261.6
B3 246.9
A3 220.0
G3 196.0
F3 174.6
E3 164.8
D3 146.8
C3 130.8
B2 123.5
A2 110.0
G2 98.00
F2 87.31
E2 82.41
D2 73.42
C2 65.41
B1 61.74
A1 55.00
G1 49.00
F1 43.65
E1 41.20
D1 36.71
C1 32.70
B0 30.87
A0 27.50

A# 0 29.14

C# 1 34.85
D# 1 38.89

F# 1 46.25
G# 1 51.91
A# 1 58.27

C# 2 69.30
D# 2 77.78

F# 2 92.50
G# 2 103.8
A# 2 116.5

C# 3 138.6
D# 3 155.6

F# 3 185.0
G# 3 207.6
A# 3 233.1

C# 4 277.2
D# 4 311.1

F# 4 370.0
G# 4 415.3
A# 4 466.2

C# 5 554.4
D# 5 622.2

F# 5 740.0
G# 5 830.6
A# 5 932.3

C# 6 1109.
D# 6 1245.

F# 6 1480.
G# 6 1661.
A# 6 1865.

C# 7 2217.
D# 7 2489.

F# 7 2960.
G# 7 3322.
A# 7 3729.





Index

Abel–Dirichlet argument, 43
absolutely integrable, 48–50, 57, 81–82,

90, 122, 126–127, 164, 169–171,
179

absolutely summable, 38, 40–41, 127,
210

additive synthesis, ix
of solution to PDE, 15, 524
of tone, 707–711, 718–723, 730–732

alias, 7, 486, 495, 506, 659, 717, 730
Almagast, 12, 699
almost bandlimited, 505
almost periodic, 88
alternating flip, 609, 629, 665, 690
analysis equation

for almost periodic f , 88
for Dirac δ, 429
of Fourier, 3, 6–7, 10
for periodic generalized f , 446
using sin, cos, 12–13, 66–68, 247
for wavelets, 600, 640

antiderivative
of generalized function, 390
of probability density, 379

antiderivative rule, 164
arginine spectrum, 22, 165
arrow notation for δ, 381
audio signal, xiii, 483–484, 509, 593,

602, 672, 693–694
autocorrelation, 109, 162, 238
automobile suspension, 418
averaging operator, 72

B-spline, 117, 164, 171, 193, 462, 794
Bach, J.S., 725, 735
backward difference, 230 (see also

forward difference)
bandlimited function, 426

almost, 505
bound for derivatives, 517
convolution of, 511
discrete, 512, 515
for ear, 485, 728
for eye, 510
limit of sequence, 511
Maclaurin series for, 486, 517
multiplication by, 477, 487
recovery from samples, 489, 491, 497,

511
recovery from filtered samples, 499,

503
series for derivative, 515
structure of, 427, 485

bar operator, 251
tag, 252

Beethoven sonata, 693
bell curve, 771, 794
bell tone, 709, 716, 732
Benford’s density for first digits, 798
Bernoulli discretized string, 580

Bernoulli functions, 41–42, 177, 182,
552

for creating comb, 432
discrete, 230
and Eagle’s method, 184, 479
for Euler–Maclaurin formula, 212,

225
for evaluating sums, 221
properties, 43–44, 182–183, 212, 225
for synthesis of Fourier series, 184

Bernstein’s bound, 516
Bessel functions, 224, 712–714, 732–734,

760
Bessel’s inequality, 26, 77
biorthoganality constraint, 666, 690
bit reversal permutation, 303, 354

algorithms, 305–307, 310
via even-odd sorts, 303, 314–315, 351
via Kronecker products, 342, 365
operation count, 354
via perfect shuffles, 314–315, 342

Bluestein’s chirp FFT, 358
Bochner, S., 59, A1
brass tone, 710

analysis of Gibbs phenomenon, 80
characterization of densities, 749

Bohr, H., 88
Born and Wolf, 553, 573, 587
boundary conditions for PDE, 535, 545,

550–552, 569, 585
box function, 130
Bracewell, R., 115

bit reversal, 307–310
FHT, 323–326, A1

brass tone, 710
bunched samples, 519
Buneman’s tricks, 308, 319–320

C for complex numbers, 41, 165
cardinal series, 491, 513

basis functions, 141, 160, 493,
514–515

convergence, 492–493
generalization, 497, 515

Carlson’s theorem, 57
carrier frequency, 711
cascade algorithm, 682
Cauchy–Schwartz inequality, 491, 507,

521, 745, 756, 762, 792
ceiling function � �, 229, 683
central limit theorem, 771–775

applications 775–779, 793
for probability densities on PN , 796
for probability densities on Tp, 797

centroid, 74, 756
characteristic functions, 741

Bochner’s characterization, 749
boundedness, 748
for computing moments, 757
continuity, 748

characteristic functions (cont.)
convention for 2π, 741
from expectation integrals, 759
periodic, 752
for probability densities on PN , 788
for probability densities on Tp, 797
products of, 750
smoothness, 786
for sums of random variables, 765,

767
via weak limit, 748

chirp signal, 109, 487, 706, 797
for Bluestein’s FFT, 358

Chowning, J., xiii, 711, 716
Chowning’s rule, 713–717, 732
circulant matrix, 122
closure

of G, 390, 396, 459
of S, 375–376, 454
of probability densities, 787
of symmetries, 277

coherent light, 560, 561
comb function on PN , 197, 796
comb function X on R, 383, 393, 432,

437, 448
commensurate, 88
commuting diagram, 37, 205, 256
commuting operators, 122
complex exponentials

on R, Tp, Z, PN , 2, 4, 6, 9
as eigenfunctions of LTI systems, 18

compression of signal
via filter bank, 668–670
via interpolation, 71, 234

concatenation of vectors, 351, 352,
607–608, 671, 675

Concerning Harmonics, 699
conjugation, 62

operator, 251
tag, 292

conjugation rule, 136, 177, 199, 413
conservation of energy, 24, 531, 544,

565
convention for 2π, 63, 741
convolution, 89–90

algebraic properties, 103, 120, 122,
126–127, 233

of bandlimited functions, 511
and correlation, 91
differentiation, 106, 121, 126, 401
via FFT, 113, 357
via FHT, 265
as filtering, 497
of generalized functions, 398, 400,

461
via generating function, 101
identity, 104, 118–120, 168, 196, 400,

408 (see also Dirac delta)
indirect, 103, 149, 158
and LTI systems, 105, 282, 470, 481

I-1
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convolution (cont.)
of ordinary functions, 89–90
of periodic generalized functions, 447
of probability densities, 110, 123, 150,

751
via sliding strip, 94
as smearing, 107
and smoothness, 107, 123, 126, 128,

401
for solving ODEs, 145, 470, 481
for solving PDEs, 528, 534, 542, 548,

559, 567
square root, 105, 232
support, 121
translation, 120, 162

convolution rule, 103, 143, 170, 177,
199, 257, 286, 413

for Hartley transforms, 265, 286
for Hilbert transforms, 268, 289

Cooley–Tukey, 295, 362, A1
correlation, 90, 109, 162
cos operator, 246, 287
cos transform, 63, 66, 247, 287
cosine signal, 511
CSG function, 376

dagger operator, 251
tag, 252

d’Alembert, 523
d’Alembert formula, 528, 574, 575
Daubechies, I., xiii, 610, 614, 631
Daubechies wavelets, 631, 639
decay of Fourier transform, 153, 170,

193, 376, 786
decibel, 695
decimation (downsampling) rule, 188,

204, 258
deconvolution, 108, 679
definition chasing, 391, 471
delta function on PN , 196
density (see probability density)
derivative operator, 121, 251, 285

tag, 251
derivative rule

for convolution, 106, 401
for Fourier transform, 141, 169, 413
for generalized functions, 377, 405,

413
for Hartley transform, 265, 285
for Hilbert transform, 269
of Leibnitz, 107

detail for wavelet approximation, 600,
640

computation of, 606, 608, 649, 652
DFT, 11, 291

eigenvalues, 279
fast algorithms (see FFT)
via geometric progression, 198, 227
via Horner’s algorithm, 293
via paper strips, 294, 349
via Poisson’s relations, 209
for problems of harmonic analysis,

348
of real vector, 276, 352
via rules, 199–208
via summation, 196
table, A12

DHT, 249
fast algorithms (see FHT)

dice, 110, 123, 793
loaded, 796
tetrahedral, 780

differential equation, 163, 281, 408
via convolution, 470
for finding Fourier transform, 132,

164, 420–425
homogeneous, 408, 416, 460
inhomogeneous, 146, 367, 408,

410–412, 417, 419, 461, 470,
477

differentiation of
generalized function, 377, 405
piecewise smooth function, 406–408,

525
diffraction, 553

from edge, 588
of gaussian beam, ii, 561–564
from periodic source, 568–571
from slits, 560–561, 588

diffraction equation, 524
with boundary conditions, 569
conservation of energy, 565
derivation, 553–558, 587
Fourier synthesis, 524, 567, 571–572
Fraunhofer approximation, 565, 569
initial condition, 557, 559, 566, 587
kernel, 466, 559, 566, 586
no extreme value principle, 590
symmetry, 590

diffusion equation, 15, 524
with boundary conditions, 545, 550,

551, 552, 585
conservation of energy, 544
derivation, 540
extreme value principle, 545
forced, 546, 585–586
Fourier synthesis, 524, 549, 571–572
initial condition, 541, 548, 587
kernel, 542, 548, 586
polynomial solutions, 544, 584
smoothness of solutions, 542, 584
symmetry, 584

digitized sound file, xiii, 483–484,
508–509, 593, 602, 672, 693–694

dilate of wavelet, 594
dilation equation, 163, 281, 598, 609

and multiresolution analysis, 599,
645–646, 650

solution via infinite product, 615,
677

symmetry, 678
uniqueness of solution, 616, 677

dilation operator, 258, 283, 656, 659
dilation rule, 138, 140, 187, 219, 205–

207, 236, 257, 413
dimensional analysis, 69
dipoles, 429
Dirac delta, 371, 380, 392–393

approximations, 28, 77–78, 168, 474
dilation property, 392
discrete, 196
and Eagle’s method, 421–425, 479
as identity for convolution product,

400
not an ordinary function, 168, 453
sifting property, 392
as solution of dilation equation, 610

Dirichlet conditions, 57, 77
Dirichlet kernel, 66, 187, 219, 474

discrete function (see also function
on Z)

Fourier transform (see DFT)
wavelet transform, 594

discretization (sampling), 32, 483–484
dispersion

of heat, 543
of light waves, 566
of water waves, 591

distribution (tempered), x, 368, 451
distribution function, 740

via limits, 784
for max, min of random variables,

790
for standard normal density, 755,

A33
dual rule, 260, 280
duality for Fourier analysis and

synthesis, 8, 66
DuBois–Reymond, 57
DWT, 607, 675

via herringbone, 608, 646
operation count, 608, 692
using operators, 646
in place, 676

dyadic dilate, 594

Eagle’s method, 184, 422, 479
eavesdrop, 512, 520
echo location, 109
eigenfunctions of operators, 18, 282

of FN 279
eigenvalues, 279–280, 282

of F, 151, 167, 212
of Kronecker product, 363
of LTI system, 18, 282

end padding operator, 234, 284, 688
equidistribution of arithmetic sequence,

194
error function, 582, A36
errors

for computation of ωk , 357
for computing sum with round off,

793
for fast arithmetic, 124
for FFT, 301
for frame, detail coefficients, 649–655,

685–686
for least squares, 75–76, 84
for sampling theorems, 492, 497, 499,

507
Euclidean algorithm for gcd, 227
even

function, 62, 64, 247
generalized function, 397, 455
projection, 245

expectation integral, 720, 738, 755–761,
764

for independent random variables,
764

for spectral density, 720
Euler

gamma function, 164
identity for sin, cos, 1, 67
Maclaurin sum formula, 213

exponent notation, 313
via Kronecker products, 339

exponential operators, 245
extreme value principle, 545



Index I-3

factorial powers, 440
factorization

of convolution operator, 257
of DFT matrix, 314, 329, 338
of DHT matrix, 324, 359
of L±, H± from filter bank, 656
of Q for filter bank, 666

fast arithmetic, 113–114, 124
fast convolution, 113, 357
FBI filters, 672, 691
Fejer kernel, 78, 474
Fejer example of divergent Fourier

series, 57, 85
Fermat theorem, 236
FFT

Bluestein’s scheme, 358
Cooley–Tukey, 295, 349
decimation in frequency, 299, 318,

338
decimation in time, 296, 316, 322,

331
via DFT rules, 296, 299, 353
FORTRAN code, A27
for frames of movies, 572
Gauss discovery, 70, 295, 360
impact, 294–295, A1
via flow chart , 348, A23
via Kronecker product, 344, 365–366
via Mason flow diagram, 355
via matrix factorization, 310, 329,

356
operations, 295, 323, 332, 353, 358
in place, 311
with precomputed sines, 318, 322
via recursive algorithm, 301, 350,

351
via segments, 352
for spectral factorization, 637
for spectrogram, 705
Stockham’s autosort, 344, 366
three loop algorithm, 313, 318,

322
two loop algorithm, 365
via zipper identity, 312, 314, 328

FHT
advantages, 325, 327
patent, 325, A1
three loop algorithm, 326
via zipper identity, 324, 356, 359

filter
via convolution, 497
FBI, 672, 691
for filter bank, 659
high-, low-pass, 281, 511, 659
for sampling, 497, 519
for shaping noise, 721
translation, 663

filter bank, 655
Fourier analysis, 658
perfect reconstruction, 661, 689
using up, down sampling, 656

Fletcher–Munsen contours, 695–696
floor function � �, 124, 200, 229, 383,

467, 683, 703, 717, 731
FM synthesis of tone, 711–717

parallel and cascade, 734
forward difference, 118, 440, 480
Fourier

analysis and synthesis, 3–11, 15, 73,
86

Fourier (cont.)
validity, 37–58

big pixel image, 510
and dimensional analysis, 69
and heat conduction, 15, 72, 541
impact of work, A1–A3
quote, iii
sketch, xv, 134
spoken word, 483, 509

FOURIER, ii, xiv, xv (check author’s
web site for additional details)

Fourier coefficient, 5, 10, 441, 446
rate of decay, 193, 441

Fourier–Poisson cube, 31, 36–37, 205
Fourier series, 5, 173

via Bernoulli functions, 184, 218,
437

convergence, 39–48, 75, 77
via differentiation, 422, 479
for generalized functions, 440–441
via integration, 174
via Laurent series, 185
via Poisson’s formula, 179, 478
via Riemann sum, 79
via rules, 176–179, 191–192
to solve PDEs, 532, 535, 538, 549,

567
uniqueness, 30, 78
weak convergence, 58, 433, 441

Fourier transform (R, Tp, Z, PN ), 3, 6,
7, 11

rules, A14–A18
tables, A1–A13

Fourier transform (R)
calculus, 129, 114, 146
decay at infinity, 153, 170
via differentiation, 132, 421–425
of generalized function, 413
via integration, 129–131
of periodic functions, 444
of probability density, 746–752
via rules, 134–147, 413
smoothness, 48, 81, 153, 169, 786
table, A1–A7

Fourier transform operator, 240, 243
tag, 251

Fourier transform of operator, 255, 259
fractional derivatives, 154
fragmentation of P, 495, 518
frame for wavelet approximation, 598,

640
computation, 606, 608, 649, 652
illustrations, 601, 603, 650, 669

Fraunhofer approximation, 565, 569,
571, 588–589

frequency
carrier-modulation, 711
of concert A, 700
function for tune, 723
local, 706, 730
for piano keyboard, A37
and pitch, 694
via spectrogram, 705
units for, 73
of vibrating string, 536
via wavelet coefficients, 596

Fresnel
approximation, 555
convolution equation, 558
function, 165, 420, 560, 588

Fresnel (cont.)
discrete, 214

integrals, 165, 215, 420, 466
FT-NMR spectrum, 22, 165, A2
function

on R, Tp, Z, PN , 3–5, 8
bandlimited, 426
CSG, 376
entire, 517
frequency, 724
generalized, 58, 368, 378–379, 524
locally integrable, 389, 467
of operator, 244, 272, 277–278, 281,

283
probability density, 739
of random variable, 758–760, 789
Schwartz, 372–374
slowly growing, 376
support-limited, 426

functional, 369
continuous, 451
fundamental, 370, 377–378
integral notation, 372, 378
linear, 390, 451

FWT
via coefficients, 606
via matrix factorization, 675
via operators, 645–646
in place, 676

G for generalized functions, 390
Gauss

asteroid orbit, 14, 70
discovery of FFT, 71, 295, 360
interpolation, 8, 14, 360
law of errors, 771, 794
Poisson sum formula, 179
signature, 669–670
sums, 215

gaussian function, 132, 741
for mollification and tapering, 743

gaussian laser beam, 561
interfering, 564
pointing, 562
spreading, 562

gcd, 206, 227
generalized function, 367–372,

378
bandlimited, 426
closure, 390, 459
“continuity”, 431
convolution, 398–399
via CSG functions, 378
division, 402–405, 459
Fourier transform rules, 413
as functional, 369–372, 376, 382, 384,

388, 451
integral notation, 371, 378, 390–391
via limit of Schwartz functions, 450,

482
limits, 427–439
via locally integrable functions, 389,

467
multiplication, 398–399, 402
as ordinary function, 58, 376, 379
partial derivatives, 438–439, 525
periodic, 440–448
as probability densities, 739
as scaling function, 616, 623
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generalized function (cont.)
as solution to PDE, 524–525, 528,

541, 559, 587
special structure, 408–410, 427, 441,

459–464
table of Fourier transforms, A4–A6
transformations, 389–405, 458
“values”, 378, 382

generating function for
Bernoulli polynomials, 225
Bessel functions, 224
function on Z, 101
Hermite polynomials, 166
Hermite function, 167

geometric progression, 25, 65–66, 228
GFT, 450
Gibbs phenomenon, 44, 47–48, 80, 84

for wavelets, 624, 687
glissando of Risset, 725
Goertzel algorithm, 347
grouping operator, 659
grouping rule, 187

Haar wavelet, 594
analysis, 600, 606
Fourier transform, 596
scaling function, 597
synthesis, 594, 606

hanning window, 229
Hartley transform, 248, 249

advantages, 248, 255, 263, 279
via Fourier transform, 249, 251
via rules, 263, 265–266, 285
tag, 251

heat flow, xiii, 15, 72, 540–553,
582–587

Heaviside function, 116, 131, 380, 424
Helmholtz, H., 707
Hermite functions, 151, 166

discrete, 211
Hermite polynomials, 151, 160
hermitian conjugation, 62

operator, 251
tag, 252

hermitian conjugation rule, 136
Hilbert transform, 266, 471

via analytic function, 270
via Kramers–Kronig relations, 269
via rules, 267, 288
for sampling theorem, 519
tag, 267

Hipparchus–Ptolemy model, 12, 70
Horner’s algorithm

for DFT, 293
for other tasks, 345–347

Huygens synthesis of waves, 555

i for
√−1, 2

impulse response, 282, 481
automobile suspension, 418
mass on spring, 367–368, 408, 417,

453
for ODE, 419, 470, 471
for PDE (see kernel)

independent random variables, 764
infinite product, 615
infinite series, 1, 5

of bandlimited functions, 489, 491,
497, 503, 505

of generalized functions, 431, 435

infinite series (cont.)
of sinusoids, 5, 440
of solutions for PDE, 16, 532, 549,

567
weak convergence of, 431, 440

initial “conditions” for PDEs, 587
integral notation, 371, 378
interpolation

of bandlimited function, 485, 489,
491, 497, 503, 505

using FFT, 234, 284
of Pallas orbit, 14, 70, 360
by piecewise linear function, 145, 234,

485
by trigonometric polynomials, 70, 284,

360, 514
inverse power function, 387, 395
inversion rule, 141, 174, 199, 240, 413
involution, 251, 279
isoperimetric inequality, 226, 235

jumps in f, f ′, . . . , 46, 55, 123, 184
and Eagle’s method, 184, 479
and generalized derivatives, 406
and Gibbs phenomenon, 47, 84, 624
removing, 46, 55

Kasner’s problem, 125
kernel

de la Vallée-Poussin, 27
diffraction, 466, 559, 566, 586
diffusion, 542, 548, 586
Dirichlet, 66, 187, 474
Fejer, 78, 474
Poisson, 65
wave, 528, 532, 575, 576

Kramers–Kronig relations, 269, 289–290
Kronecker product, 338

algebraic properties, 339, 363
eigenvalues, 363
rearrangement, 341

Kronecker rule, 174

Laplace’s equation, 525, 591
Laplace function, 135
laser beam, 553
Laurent series

for ellipse, 222
for Fourier series, 185, 187, 218

law of large numbers, 778
least squares approximation

and Fourier synthesis, 75–76, 84
and sampling theory, 492, 497, 522

Legendre function, 237
Leibnitz notation, 372
Leibnitz rule for differentiation, 107,

375, 398, 455, 457, 459
Liberal arts, 698
Lighthill, M.J., 451–452
likelihood function, 794
lolipop plots, 6
Lorenzian, 22
LTI system, 16, 72, 282, 470, 522, 738

Maclaurin series, 1, 522, 738
for bandlimited function, 486, 517
and weak convergence, 438

Mallat’s herringbone algorithm, 606–607,
645–646 (see also FWT)

Mars orbit, 13, 70
Mason flow diagram for FFT, 355
max bound

for generalized function, 784
for probability density, 745, 783

max flat trigonometric polynomial, 633
Maxwell density, 737, 791
mean µ, 756, 759

for sum of random variables,
766–767

Mersenne’s formula for frequency, 536
mesa function, 373, 454, 754 (see also

tapered box)
Michelson and Stratton harmonic

analyzer, 87
midpoint regularization, 45
mirror

for boundary condition, 569
for Fourier Transform rules, 134
for reverse carry algorithm, 305

mnemonic, 137, 177, 200
modulation

frequency, 711
index, 711, 715

modulation rule, 137, 177, 199, 260,
413

modulus of coninuity, 598, 643
moments

for probability density and
smoothness, 757, 785

for sum of random variables, 766
for wavelet, 618, 621, 680–681

monochord, 698, 729
monotonicity relation, 744
Monticello, 107
mother wavelet, 594
movies

computing frames with FFT, 571
for diffracting laser beam, 572, 590
for heat flow, 572
for vibrating string, 572, 575, 577,

579–581
for water waves, 591

multiplication using FFT, 113
multiplication of generalized functions,

398
multiplication rule, 144, 170, 177, 199,

413
multiresolution analysis, 597, 642,

684
music

as mathematics, 698
beat, 700
interval, 694, 697–699
loudness, 696, 701
pictogram, 700
pitch, 694, 700, 702, A37
samples, 693, 707–708, 715, 732
scales, 697–700
score, 693, 701–703

for wavelets, 597, 600, 674
spectrogram, 703, 724
timbre, 707
transformation, 725, 735

musical tone, 694
via additive synthesis, 73, 707–711
for bell, 709, 716
for brass, 710
via computer, 694, 700, 715, 718
via FM synthesis, 711–717, 734
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musical tone (cont.)
information content, 728
local frequency, 705–706
loudness, 695, 728
from monochord, 729
from noise, 718–723
for string, 710, 731

N2 molecule, 738
Newton’s “method”, 1
Newton’s iteration, 114, 636
Nobel prize, 22, A2
noise

filtered, 721
sound of, 720, 723
white, 718

normal density, 139, 150, 739, 772, 775,
794, 795

distribution function, 740, A33
normal vibration modes, 536, 702
Nyquist condition, 486, 705, 717

odd
function, 62, 64, 247
generalized function, 397, 455
projection, 245

Ohm’s law of acoustics, 696, 729
orbit

for cardiod, rose, . . . , 225
for Mars, 13, 70
for Pallas, 14, 70
symmetry of, 225
for vibrating string, 579

order of approximation, 620, 642–644
operation, 292
operation count

for additive, FM synthesis of tone,
732

for bit reversal permutation, 354
for FFT, 299, 323, 327, 358
for FHT, 325
for FWT, 608, 646, 692
for naive DFT, 292, 294

operators, 16, 239, A19–A22
blanket hypotheses, 241–242
from complex conjugation, 251–253
factorization of, 257
for filter bank, 656–660
Fourier transform of, 255–256,

A19–A22
Hartley transform of, 263
LTI, 16, 72, 282, 470
for Mallat’s herringbone, 645
from powers of F, 243
for pre-, post-processing, 652
projection, 245, 253–254, 277
symmetry preserving, 254, 282

orthogonal projection, 642
orthogonality relations

via centroid, 74
for complex exponentials, 24–25
for Hermite functions, 166
for sin, cos, 75
for sinc functions, 160
for wavelets, 602, 625, 642

PN for polygon, 8
Paley–Wiener theorem, 517
Pallas, 14, 70, 361

Papoulis sampling theorem, 503–504,
519

parallel operation for FFT, 343
Parseval identities, 23–24, 73–74

for evaluating integrals, 83, 149
for evaluating sums, 190, 221, 226
for generalized functions, 391, 466
link to convolution, 170
validity, 24, 82 (see also Plancherel)

partial derivative of generalized
function, 438

partial fractions, 143, 416
partition of unity, 171, 446, 622
PDE, xiii, 523, 587
periodic function, 4, 8, 33, 440

for ear, 697
periodization, 32, 535, 550, 569, 671
phase deaf, 697, 729
pi, computation of, 113–114
piano

equitempered scale, 699
for harmonic synthesis, 73
keyboard frequencies, A37

piecewise
constant, 81
continuous, 26, 76–77, 81, 121–123,

126–128
polynomial, 117, 145, 170, 380,

382–383, 463, 623
smooth, 39, 42, 45, 55, 57, 83–85,

123, 406, 491, 505, 623
pitch perception, 694
Plancherel identities, 24

via autocorrelation, 162
for evaluating integrals, 148
for evaluating sums, 190, 221, 224,

226, 491
validity, 30, 76, 82–83

Poisson probability density, 781–782
Poisson process, 782
Poisson relations, 33–36

for evaluating sums, 149
for finding Fourier series, 179, 262,

478, 488
for unifying Fourier analysis, 36–37

Poisson sum formula, 39, 50, 393, 488
polarization identity, 24, 74
polygon function, 191
power functions, 329, 395, 401, 456

truncated, 382
power scaling rule, 142, 413
primitive root, 238
probability density function, 122, 154,

739 (see also random variable)
Benford, 798
Bernoulli, 767, 769, 776, 779
binomial, 239
bivariate, 764
Cauchy, 758, 760, 775
from characteristic function, 741
chi squared, 791
closure, 787
coin flip, 740, 742, 777
convolution of, 765
die-toss, 739, 742, 754, 756, 773
Dirac, 757, 775
from distribution function, 740
gamma, 781
Laplace, 739, 781
Maxwell, 737, 791

probability density function (cont.)
Poisson, 739, 781
standard normal, 139, 150, 739–740,

754, 758, 768
for sum of random numbers, 765–766,

768
truncated exponential, 742, 757, 771,

777
uniform, 739, 742

products
of generalized functions, 398
of probability functions, 750

projection operators, 245, 253–254,
277–278, 281, 642

Ptolemy, C., 12, 699
pulse amplitude, 511
Pythagoras and music, 698, 729–730

quadratic residue, 237
quantization of samples, 484
quantum mechanics

Schrödinger equation, 558
uncertainty relation, 762
wave packet for free particle, 563

R for real numbers, 3
ramp function, 227, 381
random number generator, 194, 718
random variables, 753

characteristic function for, 759, 767
generation of, 194, 718, 795
independent, 764
joint density, 764
max, min of, 790
via probability density, 253
sum of independent, 764

random walk, 777
rational function, 143, 159, 416–

419, 465
real world sampling theorem, 507
reciprocity relations, 69
recursion (see recursion)
recursive algorthm for FFT, 350–351
reduced wave function, 556
reflection of light at mirror, 569
reflection operator, 240, 243

tag, 251
reflection rule, 135, 177, 199, 413
regular tails, 48, 53, 55, 82, 85
relatively prime, 206, 236
repeat rule, 202, 232, 257, 261
response of LTI system, 282, 419, 470,

471
Riemann sum, 39, 44

for Fourier coefficient, 79
for Fourier transform, 79
and Gibbs phenomenon, 44

Riemann-Lebesgue lemma, 81, 458
Risset’s glissando, 725
Rodrigues formula, 151
rules

for derivatives of generalized
functions, 405

for Fourier transforms of functions
on PN , 199–212, A17–A18
on R, 132–147, A14
on Tp, Z, 176–182, 187–190,

A15–A16
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rules (cont.)
for Fourier transforms of generalized

functions, 413
for manipulation of generalized func-

tions, 389

S for Schwartz functions, 372
same sign shift, 137 (see also

mnemonic)
sample-sum rule, 210, 212, 284
samples for Daubechies wavelet, 652,

687, 689
sampling, 32, 483

rate for audio, 484
for wavelet analysis, 649, 668, 685

sampling function (see comb function)
sampling rule, 210, 214, 262
sampling theorem

for almost bandlimited functions, 505
when F is piecewise smooth, 491,

497
using filters, 498, 501, 503
using fragments of P, 495
for generalized functions, 487
for real-world signals, 507

scale for music, 697–700, 729
scale for wavelet approximation,

595–596
scaling function for wavelets, 597, 609
Schoenberg, I., 19, 72, 125
Schrödinger’s equation, xiii, 558
Schwartz, L., xii, 368, 451
Schwartz functions, 372–374, 482

closure of, 375
semitone, 699
Shah function (see comb function)
Shannon, C., xiii, 484, 491
Shannon’s sampling theorem, 491
shift rule (see translation rule)
shuffle permutation, 312, 332

action, 315, 332, 341–342
operator identities, 314, 333, 342,

364
products for FFT, 314, 365

signum function, 228, 380, 424
for Hilbert transform, 267

sin operator, 63, 67, 246–247
sin transform, 63, 67, 247, 287
sinc function, 130

properties, 141, 160, 493, 514–515
singularity function

on R, 51–52, 55, 82–83
on Tp, 41–42, 46

slowly growing function, 376
slowly growing sequence, 444
smoothness of
B-spline, 117, 193
convolution product, 107, 123, 126,

128, 401
Fourier transform, 48, 81, 153, 169,

454
solution of diffusion equation, 542
solution of dilation equation, 616–619

soil temperature, 547, 586
sparce matrix factorization, 311, 675
spectral

density, 719–720
enrichment, 715, 731
factorization, 634, 682

spectrogram
for bell tone, 616, 709
generation of, 702–704
for Risset’s glissando, 726
for shaped noise, 721, 723
for Twinkle, Twinkle, 703

spectroscopy, 21
spectrum of arginine, 22
standard deviation σ, 756
standard normal probability distribution,

A33
step response, 470, 471
Stockham’s autosort FFT, 344, 366
Strang, G., xii, A1
structure of this book, xi
suitably regular, 3
sum of independent random variables,

765
and central limit thoerem, 771–779
mean, variance for, 767
probability density for, 766

summation rule, 204, 209, 258,
262

support-limited function, 426
support-limited wavelets, 609
synthesis

using bandlimited functions, 75–76,
84, 489, 491, 497, 499, 503

using cas, 249
using complex exponentials, 3, 5, 7,

10, 430, 440
using sin, cos, ix, 67, 247
using solutions of PDE, 15, 524,

582
using wavelets, 594, 597, 684

symmetry
for boundary conditions, 535, 545,

550–552, 569, 585
for deriving the Maxwell density, 791
via Fourier transforms, 62, 64, 66–67,

477
via operators, 239, 254–256, 277
for solutions of PDEs, 575, 584,

590

Tp for circle, 4
tag notation, 251–252, 267, 286, 607
tapered box, 445–447, 488
Tartaglia formula for roots of cubic, 19,

72
Taylor’s formula, 122, 624, 685, 786
temperature, 15–16, 540–553
test functions, 451
thick coin, 779
timbre of tone, 707
transformation of music theme,

724–725
transformation shift rule (see

modulation rule)
translation invariant, 17, 282 (see also

LTI)
translation rule, 136, 140, 177,

199, 413
trapazoid rule

and Euler–Maclaurin formula, 213
and Fourier coefficients, 234

tree diagram for FFT, 298, 302
triangle function, 144

truncated exponential, 131, 143, 165,
470

truncated power function, 382

uncertainty relation, 736, 761, 792
unification of Fourier analysis

via Fourier–Poisson cube, 36
via generalized functions, 448–550

unit gaussian function, 132
units for s, x, k, n, 68
universal constant β, 244
upsampling (see zero packing)

validity of Fourier’s representation
for generalized functions, 413,

440–441, 450
impact on mathematics, A1–A3
for ordinary functions, 37–58, 77,

81–82, 85
validity of wavelet representation, 600,

684
variance σ2, 756, 759

for sum of random variables,
766–767

vector operation for FFT, 343
velocity of traveling wave

group, 589
phase, 566, 589
on string, 528
on water, 591

vibrating string, 523
bowed, plucked, struck, 537, 582
discretized, 580
equation of motion, 526
frequency, 536
normal vibrational modes, 536
overtones, 578
send message, 526
shake to rest, 577
with stiffness, 581
tone synthesis, 539, 710, 731

Vieta’s formula, 570

water waves, 554, 591
wave equation, 523, 527

with boundary conditions, 532,
535

conservation of energy, 531
derivation, 526
Fourier synthesis, 524, 532
initial conditions, 527, 531, 587
kernel, 528, 532, 575, 576
polynomial solutions, 574
symmetry, 575
traveling solution, 529–530, 534,

575–576
velocity, 592

wavelet, 594
analysis equation, 600, 640
coefficients, 609
continuity, 683
Daubechies, 610, 614
via dilation equation, 609
frame-detail, 598–604
Haar’s prototype, 594
mother-father, 594, 597
music score, 597, 600, 674
samples, 687
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wavelet (cont.)
scaling function, 597, 609
having smoothness, 616, 683
support-limited, 594, 616, 677
synthesis equation, 594, 684
vs wave, 593

weak limit, 428
for central limit theorem, 772
for “continuity”, 431
for derivative, 430
for Fourier series, 440–441, 450
for initial conditions, 587
for partial derivative, 438

weak limit (cont.)
for sampling theorem, 489
for solving dilation equation, 614
for solving PDEs, 587
transformations of, 434

Weierstrass theorem, 26, 29, 76, 78
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