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Mathematics: Source and

Substance

Profound study of nature is the most fertile source of mathematical
discoveries.

Joseph Fourier, The Analytical Study of Heat, p. 7

Mathematics is the science of patterns. The mathematician seeks
patterns in number, in space, in science, in computers, and in imagina-
tion. Mathematical theories explain the relations among patterns; func-
tions and maps, operators and morphisms bind one type of pattern to
another to yield lasting mathematical structures. Applications of mathe-
matics use these patterns to explain and predict natural phenomena that
fit the patterns. Patterns suggest other patterns, often yielding patterns
of patterns. In this way mathematics follows its own logic, beginning with
patterns from science and completing the portrait by adding all patterns
that derive from initial ones.

Lynn A. Steen, The science of patterns, Science 240(1988), 616.
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Preface

To the Student

This book is about one big idea: You can synthesize a variety of complicated func-
tions from pure sinusoids in much the same way that you produce a major chord
by striking nearby C, E, G keys on a piano. A geometric version of this idea forms
the basis for the ancient Hipparchus-Ptolemy model of planetary motion (Almagest,
2nd century; see Fig. 1.2). It was Joseph Fourier (Analytical Theory of Heat, 1815),
however, who developed modern methods for using trigonometric series and inte-
grals as he studied the flow of heat in solids. Today, Fourier analysis is a highly
evolved branch of mathematics with an incomparable range of applications and with
an impact that is second to none (see Appendix 1). If you are a student in one of
the mathematical, physical, or engineering sciences, you will almost certainly find
it necessary to learn the elements of this subject. My goal in writing this book is
to help you acquire a working knowledge of Fourier analysis early in your career.

If you have mastered the usual core courses in calculus and linear algebra, you
have the maturity to follow the presentation without undue difficulty. A few of the
proofs and more theoretical exercises require concepts (uniform continuity, uniform
convergence, . .. ) from an analysis or advanced calculus course. You may choose to
skip over the difficult steps in such arguments and simply accept the stated results.
The text has been designed so that you can do this without severely impacting
your ability to learn the important ideas in the subsequent chapters. In addition, I
will use a potpourri of notions from undergraduate courses in differential equations
[solve ¥/ (z) + ay(x) = 0, ' (x) = xy(x), y"(x) + o?y(x) = 0,...], complex analysis
(Euler’s formula: e? = cos §+i sin #, arithmetic for complex numbers, ... ), number
theory (integer addition and multiplication modulo N, Euclid’s ged algorithm, ... ),
probability (random variable, mean, variance, ...), physics (F = ma, conservation
of energy, Huygens’ principle, ...), signals and systems (LTI systems, low-pass
filters, the Nyquist rate, . .. ), etc. You will have no trouble picking up these concepts
as they are introduced in the text and exercises.

If you wish, you can find additional information about almost any topic in
this book by consulting the annotated references at the end of the corresponding
chapter. You will often discover that I have abandoned a traditional presentation

x1
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in favor of one that is in keeping with my goal of making these ideas accessible
to undergraduates. For example, the usual presentation of the Schwartz theory
of distributions assumes some familiarity with the Lebesgue integral and with
a graduate-level functional analysis course. In contrast, my development of 9,
II, ... in Chapter 7 uses only notions from elementary calculus. Once you master
this theory, you can use generalized functions to study sampling, PDEs, wavelets,
probability, diffraction, ... .

The exercises (541 of them) are my greatest gift to you! Read each chapter
carefully to acquire the basic concepts, and then solve as many problems as you
can. You may find it beneficial to organize an interdisciplinary study group, e.g.,
mathematician 4+ physicist + electrical engineer. Some of the exercises provide
routine drill: You must learn to find convolution products, to use the FT calculus,
to do routine computations with generalized functions, etc. Some supply historical
perspective: You can play Gauss and discover the FFT, analyze Michelson and
Stratton’s analog supercomputer for summing Fourier series, etc. Some ask for
mathematical details: Give a sufficient condition for ..., given an example of ... |
show that, ... . Some involve your personal harmonic analyzers: Experimentally
determine the bandwidth of your eye, describe what would you hear if you replace
notes with frequencies ¥y, Fo, ... by notes with frequencies C'/Fy, C'/Fq, ... . Some
prepare you for computer projects: Compute 7 to 1000 digits, prepare a movie for
a vibrating string, generate the sound file for Risset’s endless glissando, etc. Some
will set you up to discover a pattern, formulate a conjecture, and prove a theorem.
(It’s quite a thrill when you get the hang of it!) I expect you to spend a lot of time
working exercises, but I want to help you work efficiently. Complicated results are
broken into simple steps so you can do (a), then (b), then (c), ... until you reach
the goal. I frequently supply hints that will lead you to a productive line of inquiry.
You will sharpen your problem-solving skills as you take this course.
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Synopsis
The chapters of the book are arranged as follows:
1
Fourier’s
Representation
2
Convolution
3
FT Calculus
R
6 5 4
The FFT FT Operators [« FT Calculus
Tp7 Z7 ]PN
10 8 7 9
Wavelets Sampling Generalized i PDEs
Functions
11 12
Musical Probability
Tones

The mathematical core is given in Chapters 1-7 and selected applications are
developed in Chapters 8—12.

We present the basic themes of Fourier analysis in the first two chapters.
Chapter 1 opens with Fourier’s synthesis and analysis equations for functions on the
real line R, on the circle T,, on the integers Z, and on the polygon Px. We discretize



xiv  Preface

by sampling (obtaining functions on Z, Py from functions on R, T},), we periodize by
summing translates (obtaining functions on T),, Py from functions on R, Z), and we
informally derive the corresponding Poisson identities. We combine these mappings
to form the Fourier—Poisson cube, a structure that links the Fourier transforms,
Fourier series, and discrete Fourier transforms students encounter in their under-
graduate classes. We prove that these equations are valid when certain elementary
sufficient conditions are satisfied. We complete the presentation of basic themes by
describing the convolution product of functions on R, T,,Z, and Py in Chapter 2.

Chapters 3 and 4 are devoted to the development of computational skills. We
introduce the Fourier transform calculus for functions on R by finding transforms
of the box, II(z), the truncated exponential, e~ h(z), and the unit gaussian e~ ™"
We present the rules (linearity, translation, dilation, convolution, inversion, ...)
and use them to obtain transforms for a large class of functions on R. Various
methods are used to find Fourier series. In addition to direct integration (with
Kronecker’s rule), we present (and emphasize) Poisson’s formula, Eagle’s method,
and the use of elementary Laurent series (from calculus). Corresponding rules
facilitate the manipulation of the Fourier representations for functions on T, and Z.
An understanding of the Fourier transform calculus for functions on Py is essential
for anyone who wishes to use the FFT. We establish a few well-known DFT pairs
and develop the corresponding rules. We illustrate the power of this calculus by
deriving the Euler—Maclaurin sum formula from elementary numerical analysis and
evaluating the Gauss sums from elementary number theory.

In Chapter 5 we use operators, i.e., function-to-function mappings, to organize
the multiplicity of specialized Fourier transform rules. We characterize the basic
symmetries of Fourier analysis and develop a deeper understanding of the Fourier
transform calculus. We also use the operator notation to facilitate a study of Sine,
Cosine, Hartley, and Hilbert transforms.

The subject of Chapter 6 is the FFT (which Gilbert Strang calls the most impor-
tant algorithm of the 20th century!). After describing the O(N?) scheme of Horner,
we use the DFT calculus to produce an N-point DFT with only O(N logy N) op-
erations. We use an elementary zipper identity to obtain a sparse factorization of
the DFT matrix and develop a corresponding algorithm (including the clever en-
hancements of Bracewell and Buneman) for fast machine computation. We briefly
introduce some of the more specialized DFT factorizations that can be obtained by
using Kronecker products.

An elementary exposition of generalized functions (the tempered distributions of
Schwartz) is given in Chapter 7, the heart of the book. We introduce the Dirac § [as
the second derivative of the ramp r(z) := max(z,0)], the comb III; the reciprocal
“1/a”, the Fresnel function e'™* . and carefully extend the FT calculus rules to
this new setting. We introduce generalized (weak) limits so that we can work with
infinite series, infinite products, ordinary derivatives, partial derivatives, ... .

Selected applications of Fourier analysis are given in the remaining chapters.
(You can find whole textbooks devoted to each of these topics.) Mathematical
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models based on Fourier synthesis, analysis done with generalized functions, and
FF'T computations are used to foster insight and understanding. You will experience
the enormous “leverage” Fourier analysis can give as you study this material!
Sampling theory, the mathematical basis for digital signal processing, is the focus
of Chapter 8. We present weak and strong versions of Shannon’s theorem together
with the clever generalization of Papoulis. Using these ideas (and characteristics
of the human ear) we develop the elements of computer music in Chapter 11. We
use additive synthesis and Chowning’s FM synthesis to generate samples for musical
tones, and we use spectrograms to visualize the structure of the corresponding sound

files.

Fourier analysis was invented to solve PDEs, the subject of Chapter 9. We for-
mulate mathematical models for the motion of a vibrating string, for the diffusion
of heat (Fourier’s work), and for Fresnel diffraction. (The Schrédinger equation
from quantum mechanics seems much less intimidating when interpreted within the
context of elementary optics!) With minimal effort, we solve these PDEs, establish
suitable conservation laws, and examine representative solutions. (The cover illus-
tration was produced by using the FFT to generate slices for the diffraction pattern
that results when two gaussian laser beams interfere.)

Chapter 10 is devoted to the study of wavelets, a relatively new branch of math-
ematics. We introduce the basic ideas using the piecewise constant functions asso-
ciated with the Haar wavelets. We then use the theory of generalized functions to
develop the compactly supported orthogonal wavelets created by I. Daubechies in
1988. Fourier analysis plays an essential role in the study of corresponding filter
banks that are used to process audio and image files.

We present the elements of probability theory in Chapter 12 using generalized
densities, e.g., f(z) := (1/2)[0(z + 1) + d(xz — 1)] serves as the probability density
for a coin toss. We use Fourier analysis to find moments, convolution products,
characteristic functions, and to establish the uncertainty relation (for suitably reg-
ular probability densities on R). We then use the theory of generalized functions to
prove the central limit theorem, the foundation for modern statistics!

To the Instructor

This book is the result of my efforts to create a modern elementary introduction to
Fourier analysis for students from mathematics, science, and engineering. There is
more than enough material for a tight one-semester survey or for a leisurely two-
semester course that allocates more time to the applications. You can adjust the
level and the emphasis of the course to your students by the topics you cover and
by your assignment of homework exercises. You can use Chapters 1-4, 7, and 9 to
update a lackluster boundary value problems course. You can use Chapters 14, 7,
8, and 10 to give a serious introduction to sampling theory and wavelets. You can
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use selected portions of Chapters 2—4, 6, 8, and 11 (with composition exercises!)
for a fascinating elementary introduction to the mathematics of computer-generated
music. You can use the book for an undergraduate capstone course that emphasizes
group learning of the interdisciplinary topics and mastering of some of the more
difficult exercises. Finally, you can use Chapters 7-12 to give a graduate-level
introduction to generalized functions for scientists and engineers.

This book is not a traditional mathematics text. You will find a minimal amount
of jargon and note the absence of a logically complete theorem-proof presentation of
elementary harmonic analysis. Basic computational skills are developed for solving
real problems, not just for drill. There is a strong emphasis on the visualization of
equations, mappings, theorems, ... and on the interpretation of mathematical ideas
within the context of some application. In general, the presentation is informal,
but there are careful proofs for theorems that have strategic importance, and there
are a number of exercises that lead students to develop the implications of ideas
introduced in the text.

Be sure to cover one or more of the applications chapters. Students enjoy learning
about the essential role Fourier analysis plays in modern mathematics, science, and
engineering. You will find that it is much easier to develop and to maintain the
market for a course that emphasizes these applications.

When I teach this material I devote 24 lectures to the mathematical core (deleting
portions of Chapters 1, 5, and 6) and 18 lectures to the applications (deleting
portions of Chapters 10, 11, and 12). T also spend 3-4 hours per week conducting
informal problem sessions, giving individualized instruction, etc. I lecture from
transparencies and use a PC (with FOURIER) for visualization and sonification.
This is helpful for the material in Chapters 2, 5, 6, and 12 and essential for the
material in Chapters 9, 10, and 11. I use a laser with apertures on 35 mm slides
to show a variety of diffraction patterns when I introduce the topic of diffraction
in Chapter 9. This course is a great place to demonstrate the synergistic roles
of experimentation, mathematical modeling, and computer simulation in modern
science and engineering.

I have one word of caution. As you teach this material you will face the constant

temptation to prove too much too soon. My informal use of 2 cries out for the
precise statement and proof of some relevant sufficient condition. (In most cases
there is a corresponding exercise, with hints, for the student who would really like
to see the details.) For every hour that you spend presenting 19th-century advanced
calculus arguments, however, you will have one less hour for explaining the 20th-
century mathematics of generalized functions, sampling theory, wavelets, ... . You
must decide which of these alternatives will best serve your students.
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Fourier’s representation for
functions on R, Ty, Z, and PN

1.1 Synthesis and analysis equations

Introduction

In mathematics we often try to synthesize a rather arbitrary function f using a
suitable linear combination of certain elementary basis functions. For example, the
power functions 1, z, 2, ... serve as such basis functions when we synthesize f using
the power series representation

f(z) =ao+ a1 +agaz® +--- . (1)

The coefficient a;, that specifies the amount of the basis function z* needed in the
recipe (1) for constructing f is given by the well-known Maclaurin formula

A _
ap = Kl 5 k—0,1,2,...
from elementary calculus. Since the equations for ag, a1, as,... can be used only
in cases where f, f’, f”,... are defined at z = 0, we see that not all functions

can be synthesized in this way. The class of analytic functions that do have such
power series representations is a large and important one, however, and like Newton
[who with justifiable pride referred to the representation (1) as “my method”], you
have undoubtedly made use of such power series to evaluate functions, to construct
antiderivatives, to compute definite integrals, to solve differential equations, to jus-
tify discretization procedures of numerical analysis, etc.



2 Fourier’s representation for functions

Fourier’s representation (developed a century and a half after Newton’s) uses as
basis functions the complex exponentials

eQWis;c

= cos(2msx) + i - sin(2msx), (2)

where s is a real frequency parameter that serves to specify the rate of oscillation,
and i2 = —1. When we graph this complex exponential, i.e., when we graph

u := Re €™ = cos(2msx)

2misx

v:=Ime = sin(27s)

as functions of the real variable x in z,u,v-space, we obtain a helix (a Slinky!)
that has the spacing 1/|s| between the coils. Projections of this helix on the planes
v =0, u=0, x =0 give the sinusoids u = cos(2wsz), v = sin(27sx), and the circle

AANINA
VAVAYVAYAYS

S

LU0

WANNNS
AR

8

Figure 1.1. The helix u = cos(2wsz), v = sin(27sz) in
x,u, v-space together with projections in the z,u, the z,v,
and the u, v planes.
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Functions on R

Fourier discovered that any suitably regular complex-valued function f defined on
the real line R can be synthesized by using the integral representation

f(z) = / F(s)e*™5% ds, —oo < x < oo. (3)
S§=—00
Here F is also a complex-valued function defined on R, and we think of F(s)ds
as being the amount of the exponential e?™* with frequency s that must be used
in the recipe (3) for f. At this point we are purposefully vague as to the exact
hypotheses that must be imposed on f to guarantee the existence of such a Fourier
representation. Roughly speaking, the Fourier representation (3) is possible in all
cases where f does not fluctuate too wildly and where the tails of f at +oo are not
too large. It is certainly not obvious that such functions can be represented in the
form (3) [nor is it obvious that sinz, cosz, €, and many other functions can be
represented using the power series (1)]. At this point we are merely announcing that
this is, in fact, the case, and we encourage you to become familiar with equation (3)
along with analogous equations that will be introduced in the next few paragraphs.
Later on we will establish the validity of (3) after giving meaning to the intentionally
vague term suitably regular.
Fourier found that the auxiliary function F' from the representation (3) can be
constructed by using the integral

oo
F(s) = / flx)e ™% dg,  —00 < s < 0. (4)
We refer to (3) as the synthesis equation and to (1) as the analysis equation for f.
The function F' is said to be the Fourier transform of f. We cannot help but notice
the symmetry between (3) and (4), i.e., we can interchange f, F provided that we
also interchange +i and —i. Other less symmetric analysis-synthesis equations are
sometimes used for Fourier’s representation, see Ex. 1.4, but we prefer to use (3)—(4)
in this text. We will often display the graphs of f, F' side by side, as illustrated in
Fig. 1.2. Our sketch corresponds to the case where both f and F' are real valued.
In general, it is necessary to display the four graphs of Re f, Im f, Re F', and Im F.
You will find such displays in Chapter 3, where we develop an efficient calculus for
evaluating improper integrals having the form (3) or (4).

f(@) F(s)

Figure 1.2. The graph of a function f on R and its Fourier transform F on R.



4 Fourier’s representation for functions

Functions on T),

We say that a function f defined on R is p-periodic, p > 0, when
flx+p) = f(z), —oo<z<o0.

Fourier (like Euler, Lagrange, and D. Bernoulli before him) discovered that a suit-
ably regular p-periodic complex-valued function on R can be synthesized by using
the p-periodic complex exponentials from (2). We will routinely identify any p-
periodic function on R with a corresponding function defined on the circle T, hav-
ing the circumference p as illustrated in Fig. 1.3. [To visualize the process, think of
wrapping the graph of f(z) versus x around a right circular cylinder just like the
paper label is wrapped around a can of soup!| Of course, separate graphs for Re f
and Im f must be given in cases where f is complex valued.

f(x)
()

—p 0 p oz
Figure 1.3. Identification of a p-periodic function f on R with

a corresponding function on the circle T, having the circumfer-
ence p.

2misx

The complex exponential e will be p-periodic in the argument z, i.e.,

627rzs(w+p) — 627”3307 —00 < T < 00,

when
e27rzsp — 17

i.e., when
s=k/p forsomek =0, +1, £2,....

In this way we see that the p-periodic exponentials from (2) are given by
e¥mike/p =0, £1, £2,.. .,

as shown in Fig. 1.4.
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AWNAN
p/\/A\/ \/ \/p/z

/\ A\
/2 \/ \/ \/p/Q

Figure 1.4. Real and imaginary parts of the complex exponen-
tial e3™@/P as functions on R and as functions on T,.

Fourier’s representation

fl@)= > Flke*™* /P —00 <a < o0, (5)

k=—o00

for a p-periodic function f uses all of these complex exponentials. In this case
F is a complex-valued function defined on the integers Z (from the German word
Zahlen, for integers). We use brackets [ | rather than parentheses () to enclose the
independent variable k in order to remind ourselves that this argument is discrete.
We think of F[k] as being the amount of the exponential e>7***/P that we must use
in the recipe (5) for f. We refer to (5) as the Fourier series for f and we say that
F[k] is the kth Fourier coefficient for f. You may be familiar with the alternative
representation

F@) = 2+ {an cos(2mka /p) + by sin(2mkz /p)}

2
k=1

for a Fourier series. You can use Euler’s identity (2) to see that this representation
is equivalent to (5), see Ex. 1.16. From time to time we will work with such cos, sin
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series, e.g., this form may be preferable when f is real or when f is known to have
even or odd symmetry. For general purposes, however, we will use the compact
complex form (5).

Fourier found that the coefficients F'[k] for the representation (5) can be con-
structed for a given function f by using the integrals

1 /7 .
Flk] = p/ fl@)e 2™ kelP dy k= 0,£1,42,... . (6)
=0

[Before discovering the simple formula (6), Fourier made use of clumsy, mathemat-
ically suspect arguments based on power series to find these coefficients.] We refer
to () as the synthesis equation and to (6) as the analysis equation for the p-periodic
function f, and we say that F' is the Fourier transform of f within this context. We
use small circles on line segments, i.e., lollipops, when we graph F' (a function on
Z), and we often display the graphs of f, F' side by side as illustrated in Fig. 1.5. Of
course, we must provide separate graphs for Re f, Im f, Re F', Im F' in cases where
f, F are not real valued. You will find such displays in Chapter 4, where we develop
a calculus for evaluating integrals having the form (6).

F[k]
f(z)
< T >
0 = ol

Figure 1.5. The graph of a function f on T, and its Fourier
transform F' on Z.

Functions on Z

There is a Fourier representation for any suitably regular complex-valued function
f that is defined on the set of integers, Z. As expected, we synthesize f from the
complex exponential functions e?"*" on Z, with s being a real parameter. Now for
any real s and any integer m we find

627ri(s+m)n _ eQﬂ'isn’ n = 07 :l:l, :|:2, o
(i.e., the exponentials e27%", e2milsEl)n - p2mi(sk2)n - gre indistinguishable when
n is constrained to take integer values). This being the case, we will synthesize f
using 4

627r7,sn’ 0<s<l1
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or equivalently, using
e27risn/p7 0<s< P,

where p is some fixed positive number. Figure 1.6 illustrates what happens when
we attempt to use some s > p. The high-frequency sinusoid takes on the identity or
alias of some corresponding low-frequency sinusoid. It is easy to see that e>7is"/P
oscillates slowly when s is near 0 or when s is near p. The choice s = p/2 gives the
most rapid oscillation with the complex exponential

eQﬂi(p/2)n/p — (_1)n

having the smallest possible period, 2.

e N A

2miz/16 2mil7x/16 4t

Figure 1.6. The identical samples of e and e

z=0,+1,42,....

Fourier’s synthesis equation,

fln] = /io F(s)ezmsn/‘” ds, (7)

for a suitably regular function f on Z, uses all of these complex exponentials on Z,
and the corresponding analysis equation is given by

F<s>=; S flnlezmiensr, (8)

n=—oo

We say that F' is the Fourier transform of f and observe that this function is
p-periodic in s, i.e., that F'is a complex-valued function on the circle T,. Figure 1.7
illustrates such an f, F' pair.
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flnl

mv‘rTTTTmHHH , mﬁmmm 0 s

0 n

Figure 1.7. The graph of a function f on Z and its Fourier
transform F' on T,.

We have chosen to include the parameter p > 0 for the representation (7) (instead
of working with the special case p = 1) in order to emphasize the duality that exists
between (5)—(6) and (7)—(8). Indeed, if we replace

i, =, k, f, F

in (5)-(6) by
_i7 S, N, va f7

respectively, we obtain (7)—(8). Thus every Fourier representation of the form
(5)—(6) corresponds to a Fourier representation of the form (7)—(8), and vice versa.

Functions on Py

Let IV be a positive integer, and let Py consist of N uniformly spaced points on the
circle Ty as illustrated in Fig. 1.8. We will call this discrete circle a polygon even
in the degenerate cases where N = 1, 2.

3 2

e I

0

Figure 1.8. The polygon Ps.

The simplest Fourier representation [found by Gauss in the course of his study
of interpolation by trigonometric polynomials a few years before Fourier discovered
either (3)—(4) or (5)—(6)] occurs when f is a complex-valued N-periodic function
defined on Z. We will routinely identify such an N-periodic f with a corresponding
function that is defined on Py as illustrated in Fig. 1.9. Of course, we must provide
separate graphs for Re f, Im f when f is complex valued. Since f is completely
specified by the N function values f[n], n =0,1,..., N — 1, we will sometimes find
that it is convenient to use a complex N-vector

f:(f[O},f[l],...,f[N—l])
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Figure 1.9. Identification of an N-periodic discrete function on
Z with a corresponding function on the polygon Py.

to represent this function. This is particularly useful when we wish to process f
numerically. You will observe that we always use n = 0,1,...,N — 1 (not n =
1,2,...,N) to index the components of f.

The complex exponential e>™*" (with s being a fixed real parameter) will be

N-periodic in the integer argument n, i.e.,
e2mis(ntN) — g2misn for all p = 0, £1, £2, ...

when
eQﬂzsN — 1’

i.e., when s = k/N for some integer k. On the other hand, when m is an integer we
find
e2mikn/N — 2milktmNOn/N - for o]l p = 0, +1, £2, ...,

so the parameters

k kN  Ek+2N
s—N, s = N s = N

all give the same function. Thus we are left with precisely N distinct discrete
N-periodic complex exponentials

e kn/N -k =0,1,...,N —1.
The complex exponentials with £k =1 or K = N — 1 make one complete oscillation
on Py, those with £ = 2 or k = N — 2 make two complete oscillations, etc., as

illustrated in Fig. 1.10. The most rapid oscillation occurs when N is even and
k = N/2 with the corresponding complex exponential

eZﬂ'i(N/Q)n/N _ (_1)17,

having the smallest possible period, 2.
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a1 T T

g BT

S i LA —

Figure 1.10. Complex exponentials e27%7/31 on Py, .
Fourier’s synthesis equation takes the form
N—-1
fin] = Flk]e> /N p =0, £1, £2,... (9)
k=0

within this setting. Again we regard F'[k] as the amount of the discrete exponential
e2™n/N that must be used in the recipe for f, we refer to (9) as the discrete
Fourier series for f, and we say that F[k] is the kth Fourier coefficient for f. The
corresponding analysis equation

N-1
1 .
FIK =+ 3 flnle /N k=01, N1 (10)
n=0
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enables us to find the coefficients F'[0], F[1],..., F[N — 1] for the representation
(9) from the known function values f[0], f[1],..., f[N — 1]. We refer to F' as the
discrete Fourier transform (DFT) or more simply as the Fourier transform of f
within this context. The formula (10) gives an N-periodic discrete function on Z
when we allow k to take all integer values, so we will say that F' is a function on
Px. Again, we plot graphs of f, F side by side, as illustrated in Fig. 1.11. You
will find such displays in Chapter 4, where we develop a calculus for evaluating the
finite sums (9), (10). Later on, in Chapter 6, you will learn an efficient way to do
such calculations on a computer.

fln] Flk]
0 T 0 Y

Figure 1.11. The graph of a function f on P3; and its Fourier
transform F' on Ps3;.

Summary

The following observations will help you remember Fourier’s synthesis and analysis
equations:

Functions on R Functions on T,

(3) f(x):/oo F(s)e?™°ds  (5) f(z)= Z Flk]e2mika/p

T k=—00
- - e |
(4) F(S) = / f(l.)ef%rzsmdx (6) F[k;] = / f<$)672ﬂ7’km/pdx
T== P Jz=0
Functions on Z Functions on Py

P , N-1 A
(7)  fln] :/ F(S)GZﬂ'zsn/pds 9)  fln] = Z F[k]ezmkn/zv
3 k=0

e N-1
(8) F(s):; S Sl (10) F[k]:%zjc[n]e—%ikn/zv.
n=0

n=—oo

e The Fourier transform F' has the real argument s when f is aperiodic and the
integer argument k& when f is periodic. The function f has the real argument x
when F' is aperiodic and the integer argument n when F' is periodic.
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e The argument of the exponentials that appear in the synthesis-analysis equations
is the product of £27i, the argument s or k of F', the argument x or n of f, and
the reciprocal 1/p or 1/N of the period if either f or F' is periodic.

e The synthesis equation uses the +i exponential and all values of F' to form f.
The analysis equation uses the —i exponential and all values of f to form F.

e The reciprocal 1/p or 1/N of the period serves as a scale factor on the analysis
equation in cases where either f or F' is periodic. No such factor is used on the
synthesis equation.

During the opening scene of an opera you catch glimpses of the main characters,
but you have not yet learned the subtle personality traits or relationships that
will unfold during the rest of the performance. In much the same way, you have
been briefly introduced to the eight remarkable identities (3)—(10) that will appear
throughout this course. (You can verify this by skimming through the text!) At this
point, it would be very beneficial for you to spend a bit of time getting acquainted
with these identities. Begin with a function f from Exs. 1.1, 1.8-1.10, 1.13, 1.14,
evaluate the sum or integral from the analysis equation to find F', and then evaluate
the sum or integral from the synthesis equation to establish the validity of Fourier’s
representation for this f. (It is hard to find examples where both of these sums,
integrals can be found by using the tools from calculus!) See if you can determine
how certain symmetries possessed by f are made manifest in F' by doing Exs. 1.2,
1.11, 1.15. Explore alternative ways for writing the synthesis-analysis equations as
given in Exs. 1.3, 1.4, 1.12, 1.16. And if you are interested in associating some
physical meaning with the synthesis and analysis equations, then do try Ex. 1.17!

1.2 Examples of Fourier’s representation

Introduction

What can you do with Fourier’s representation? In this section we will briefly
describe six diverse settings for these ideas that will help you learn to recognize the
patterns (3)—(10). Other applications will be developed with much more detail in
Chapters 8-12. (You may want to read the first few pages of some of these chapters
at this time!)

The Hipparchus—Ptolemy model of planetary motion

One of the most difficult problems faced by the ancient Greek astronomers was
that of predicting the position of the planets. A remarkably successful model of
planetary motion that is described in Ptolemy’s Almagest leads to an interesting
geometric interpretation for truncated Fourier series. Using modern notation we
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write

27Tit/T1
)

z1(t) = aqe —00 < t < 00

with ‘
= lai]e™, 0< ¢y <2r

to describe the uniform circular motion of a planet P around the Earth E at the
origin. Here |a;| is the radius of the orbit, T} is the period, and the phase parameter
¢1 serves to specify the location of the planet at time ¢ = 0. Such a one-circle model
cannot account for the occasional retrograde motion of the outer planets Mars,
Jupiter, and Saturn. We build a more sophisticated two-circle model by writing

z92 (t) = z1 (t) + (1262‘”“/T2
with '
as = |agle’®?, 0 < ¢o < 2m.

The planet P now undergoes uniform circular motion about a point that under-
goes uniform circular motion around the Earth E at the origin, see Fig. 1.12. This
two-circle model can produce the observed retrograde motion (try a computer sim-
ulation using the data from Ex. 1.18!), but it cannot fit the motion of the planets
to observational accuracy.

P at z(t
AN P at z(t) s
S—Epicycle

S~— Deferent

Figure 1.12. The addition of uniform circular motions.

Proceeding in this way we obtain a geometric interpretation of the motion de-
scribed by the exponential sum

Zn(t) = ale2ﬂ'zt/T1 4 a262ﬂ'zt/T2 4t ane%”/Tn

using a fixed circle (called the deferent) and n — 1 moving circles (called epicycles).
Such a motion is periodic when 77,75, ..., T, are integral multiples of some T" > 0,
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in which case the sum is a Fourier series with finitely many terms. Hipparchus and
Ptolemy used a shifted four-circle construction of this type (with the Earth near
but not at the origin) to fit the motion of each planet. These models were used for
predicting the positions of the five planets of antiquity until Kepler and Newton
discovered the laws of planetary motion some 1300 years later.

Gauss and the orbits of the asteroids

On the first day of the 19th century the asteroid Ceres was discovered, and in
rapid succession the asteroids Pallas, Vesta, and Juno were also found. Gauss
became interested in the problem of determining the orbits of such planetoids from
observational data. In 1802, Baron von Zach published the 12 data points for the
orbit of the asteroid Pallas that are plotted in Fig. 1.13. Gauss decided to interpolate
this data by using a 360°-periodic trigonometric polynomial

11
y(x) — Z Cr 627rik:x/360

k=0

with the 12 coefficients cg, c1,...,c11 being chosen to force the graph of y to pass
through the 12 known points (n - 30°,y,), n =0,1,...,11, i.e., so as to make

11
Yn = ch e ikn/12 -y —0,1,...,11.
k=0

Declination
(min) ° o

1000 +

[ ] (¢]

360° Right ascension
(degrees)

Figure 1.13. Declination of the asteriod Pallas as a function of
right ascension as published by Baron von Zach. (Declination
and right ascension are measures of latitude and longitude on
the celestial sphere.)
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We recognize this as the synthesis equation (9) (with N = 12, F[k] = ¢), and
use the corresponding analysis equation (10) to obtain the coefficients

11
_ 1 —2mikn/12 _
ck—ﬁz_:oyne . k=0,1,...,11.

Of course, it is one thing to write down such a formula and quite another to obtain a
numerical value for each of the ¢’s. (Remember that Gauss did all of the arithmetic
by hand.) You will find Baron von Zach’s data in Ex. 1.19. Perhaps as you analyze
this data (with a computer!) you will share in Gauss’s discovery of a very clever
way to expedite such calculations.

Fourier and the flow of heat

Shortly after the above work of Gauss was completed, Fourier invented the rep-
resentations (5)—(6) and (3)—(4) (i.e., Fourier series and Fourier integrals) to use
for solving problems involving the flow of heat in solids. He first showed that the
temperature u(x,t) at time ¢t > 0 and coordinate x along a thin insulated rod of
uniform cross section is a solution of the partial differential equation

ou 5, 0%u

—(z,t) = a"—(x,t

S t) = S (1)
with the thermal diffusivity parameter a? depending on the material of which the rod
is made. (You will find an elementary derivation in Section 9.3.) Fourier observed
that the function

. 2 2.2
627T28$'€ 4r%a”s“t

satisfies the partial differential equation for every choice of the real parameter s. He
conceived the idea of combining such elementary solutions to produce a temperature
function u(x,t) that agrees with some prescribed initial temperature when ¢ = 0.

For the temperature in a rod (that extends from z = —oo0 to x = 4+00) Fourier
wrote

o0 - 2 2.2
u(x,t) _ / A(8)627msxe—47r a’s tdS
S§=—00
with the intention of choosing the amplitude function A(s), —co < s < 00, to make
his formula to agree with the known initial temperature u(x,0) at time t = 0, i.e.,
to make
o .
u(x,0) = / A(s)e?™5 s,
S$=—00

We recognize this identity as the synthesis equation (3) for the function u(z,0) and
use the corresponding analysis equation (4) to write

As) = / u(x,0)e > dx,  —oo < s < 00,

=—00
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thereby expressing A in terms of the initial temperature. In this way Fourier solved
the heat flow problem for a doubly infinite rod. You can work out the details for a
rod with an initial hot spot by solving Ex. 1.20.

For the temperature in a ring of circumference p > 0, Fourier used the p-periodic

solutions
G2k /p | e—47r2a2(k/p)2t’ k=0,+1,42, ...

of the diffusion equations (with s = k/p) to write

o0
u(x,t) — Z Cr eQﬂ'ik;v/p . 6747r2a2(k/p)2t

k=—o0

with the intention of choosing the coefficients ¢, k = 0,+1,42,... to make

u(x,0) = Z cp €27kE/P,

k=—o0

We recognize this as the synthesis equation (5) for the initial temperature u(z,0)
and use the corresponding analysis equation (6) to express the coefficients

1 p .
Ck: = - / u(xa 0)6_27mkx/p dxv k - 07 il? :t27 tet
P Jz=o0

in terms of the known initial temperature. In this way Fourier solved the heat flow
problem for a ring.

Today, such procedures are used to solve a number of partial differential equations
that arise in science and engineering, and we will develop these ideas in Chapter 9.
It is somewhat astonishing, however, to realize that Fourier chose periodic functions
to study the flow of heat, a physical phenomenon that is as intrinsically aperiodic
as any that we can imagine!

Fourier’s representation and LTI systems

Function-to-function mappings are commonly studied in many areas of science and
engineering. Within the context of engineering we focus attention on the device that
effects the input-to-output transformation, and we represent such a system using a
diagram of the sort shown in Fig. 1.14. In mathematics, such function-to-function
mappings are called operators, and we use the notation

fo = Afi

A fz - fo by fo(t) = (Afz)(t)

(where A is the name of the operator) to convey the same idea.
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fi System fo
e A _
Input Output

Figure 1.14. Schematic representation of a system A.

In practice we often deal with systems that are homogeneous and additive, i.e.,

A(cf) =c(Af)
A(f+g)=(Af)+(Ag)

when f, g are arbitrary inputs and c is an arbitrary scalar. Such systems are said to
be linear. Many common systems also have the property of translation invariance.
We say that a system is translation invariant if the output

9o = Ag;
of an arbitrary 7-translate
gi(t) = fi(t+7), —o0<t< 0,
of an arbitrary input function f; is the corresponding 7-translate
9go(t) = folt+7), —00<t< o0

of the output
fo = Afi

to f;, i.e., when we translate f; by 7 the system responds by shifting f, by 7,
—00 < T < 0o. Systems that are both linear and translation invariant are said to
be LTI.

A variety of signal processing devices can be modeled by using LTI systems. For
example, the speaker for an audio system maps an electrical input signal from an
amplifier to an acoustical output signal, with time being the independent variable.
A well-designed speaker is more-or-less linear. If we simultaneously input signals
from two amplifiers, the speaker responds with the sum of the corresponding out-
puts, and if we scale the input signal, e.g., by adjusting the volume control, the
acoustical response is scaled in a corresponding manner (provided that we do not
exceed the power limitations of the speaker!) Of course, when we play a familiar CD
or tape on different occasions, i.e., when we time shift the input signal, we expect
to hear an acoustical response that is time shifted in exactly the same fashion (pro-
vided that the time shift amounts to a few hours or days and not to a few million
years!)

A major reason for the importance of Fourier analysis in electrical engineering is
that every complex exponential

es(t) = EQMSt, —00 <t < 00
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(with s being a fixed real parameter) is an eigenfunction of every LTI system. We
summarize this by saying, An LTI system responds sinusoidally when it is shaken
sinusoidally. The proof is based on the familiar multiplicative property

es(t+7) =es(7) - es(t)

of the complex exponential. After applying the LTI operator A to both sides of
this equation, we use the translation invariance to simplify the left side, we use the
linearity to simplify the right side, and thereby write

(Aes)(t+7) =es(7) - (Aes)(t), —00<t< 00, —00<T < 00.
We now set ¢t = 0 to obtain the eigenfunction relation
(Aes) (1) = als) - es(1), —oco<T <00
with the system function
a(s) == (Aes)(0), —oo< s <

being the corresponding eigenvalue.

If we know the system function a(s), —oco < s < o0, we can find the system
response to any suitably regular input function f;. Indeed, using Fourier’s repre-
sentation (3) we write

filt) = / T F(s)eds

§=—00

and approximate the integral of this synthesis equation with a Riemann sum of the
form

N
fl(t) ~ Z Fi(Sk)BQﬂ—iskt Ask.
k=1

Since the linear operator A maps

2mist 2mist

e to  «a(s)e
for every choice of the frequency parameter s, it must map the Riemann sum

N

N
ZFi(sk)eQ’”s"‘tAsk to ZFi(sk)a(sk)ezms’“tAsk,
k=1 k=1

with the sum on the right being an approximation to the integral

/ h Fi(s)a(s)e*™ st ds.

§=—00
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We conclude that A maps

fl(t) = /Oo Fi(s)e2ﬂ'i3td5 to fo(t) = /OO Fi(s)a(s)e%rist ds

— 00 — 00

(provided that the system possesses a continuity property that enables us to justify
the limiting process involved in passing from an approximating Riemann sum to
the corresponding integral). In this way we see that the Fourier transform of the
output is obtained by multiplying the Fourier transform of the input by the LTI
system function a.

The above discussion deals with systems that map functions on R to functions
on R. Analogous considerations can be used for LTI systems that map functions on
T,, Z, Py to functions on T), Z, Py, respectively, see Ex. 1.21.

Schoenberg’s derivation of the Tartaglia—Cardan formulas

The discrete Fourier representation of (9)—(10) can be used to find formulas for the
roots of polynomials of degree 2, 3, 4 (see I. Schoenberg, pp. 79-81). To illustrate
the idea, we will derive the familiar quadratic formula for the roots xg,x; of the
quadratic polynomial

22 +bx +c= (v —x0)(x — 21)

as functions of the coefficients b,c. In view of the synthesis equation (9) we can
write
zo = Xo + X1, 1 =Xo— Xy

(where we take N = 2 and use x, 21, Xo, X1 instead of the more cumbersome 0],
z[1], X[0], X[1]). It follows that

224+ br+c= {;E— (Xo ~|—X1)}{x— (Xo —Xl)}
=2? - 2Xoz + (X7 — X3),

and upon equating coefficients of like powers of z we find
b=—2X,, c=X2 - X2
We solve for Xg, X in turn and write
Xo=-%b,  X;=1(® 40"
Knowing X, X; we use the synthesis equation to obtain the familiar expressions

xo = ${~b+ > —4c)?}, @y = 1{-b— (b* —4c)'/?}.
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The same procedure enables us to derive the Tartaglia—Cardan formulas for the
roots xq, 1, X2 of the cubic polynomial

23+ b fer+d=(x —20)(x — 1) (T — 22)
in terms of the coefficients b, ¢, d. We define

 omijz_ —1+ V3i
w =€ = 72

so that we can use the compact form of the synthesis equations:
.’EOIXO+X1+X2, I :X0+(UX1 +w2X2, .’EQIX0+(U2X1 +wX2

to express xg, 1, xo in terms of the discrete Fourier transform X, X, Xo. After a
bit of nasty algebra (see Ex. 1.22) we find

23+ br? +ex+d= (v — Xo)® - 3X1 Xo(x — Xo) — X} — X3
so that

b b2 — 3¢

—27d + 9be — 26°
Xo=-3 XiXo=——7"=., X{+X}= + e .

27

From the last pair of equations we see that Y = X3, X3 are the roots of the quadratic
polynomial

(Y -~ XHY - X3) = V2 — (X} + XDY + (X, Xo)°

27d — 9bc + 2b° b2 —3c\°
— Y2 e 1
) ()

ie.,
- 11/2) 1/3
wo_ ) (27— 9bc+ 2PN | [ (27d — 9be + 20° 2 (=3’ /
b 54 54 9 ’
- 11/2) /3
o — ) (27d=9bc+20%\ | (27d — 9bc+ 267 2 =3\’ /
o 54 54 9

Knowing Xg, X1, X2 we use the synthesis equation to write
zo = Xo + X1 + Xo,
X1+ Xo n Z\/g(Xl — Xg)

I :XO_ 9 2 )
X1+ Xo  iV3(X1 — Xa)
) :XO_ B — D) .

The roots of a quartic polynomial can be found in a similar manner (but it takes
a lot of very nasty algebra to do the job!).
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Fourier transforms and spectroscopy

We can produce an exponentially damped complex exponential
e~ ot g2misot  if ¢ > ()
0 ift <0

by subjecting a damped harmonic oscillator (e.g., a mass on a spring with damping)
to a suitable initial excitation. Here o > 0 and —oo < sg < oo. Graphs of yy and
the Fourier transform

Y()(S) — /Oo 6727rist efat eQ‘n’isotdt —_ 1
0 o+ 2mi(s — sg)

are shown in Fig. 1.15. The function Yp, which is called a Lorenzian, is concentrated
near s = so with an approximate width «/27. (You can learn more about such
functions by doing Ex. 3.34 a little later in the course.)

Reyo ReY)

L f 50 S

Im yq Im Y,

i s

f : W 5

Figure 1.15. The function yo(t) = e~ **e?™0t and its Fourier
transform Yp(s).

When we subject molecules to a burst of electromagnetic radiation (radio fre-
quency, microwave, infrared, ... ) we induce various damped oscillations. The
resulting transient has the form

Ape” Okt 2Tkt if ¢ 5 ()
y(t) =9 *
0 ift<0

with parameters ap > 0, —co < s, < oo that depend on the arrangement of the
atoms that form the molecules. We can observe these parameters when we graph

the Fourier transform A
k
Y(s) = .
(5) gak—i-%ri(s—sk)
Within this context Y is said to be a spectrum.
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For example, when a sample of the amino acid arginine

H H H H
I T
O0=—C—C—C—C—C—N—C==NHj

O NHf H H H H NH,

is placed in a strong magnetic field and subjected to a 500-MHz pulse, the individual
protons precess. The resulting free induction decay voltage, y(t), and corresponding
spectrum, Y (s), are shown in Fig. 1.16. (You can see the individual Lorenzians!)
Richard Earnst won the 1991 Nobel prize in chemistry for developing this idea into
a powerful tool for determining the structure of organic molecules.

[ L.“%‘MWWWW*_
et i

Free induction decay samples

L |

6000 Hz

L .
( Fﬁ 6000 Hz

DFT of the FID samples

Figure 1.16. FT-NMR analysis of arginine.
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1.3 The Parseval identities and related results

The Parseval identities
Let f, g be suitably regular functions on R with Fourier transforms F, G, respec-

tively. Using the synthesis equation for g and the analysis equation for f (and using
a bar to denote the complex conjugate), we formally write

/:_O_OO f(@)g(x) do = /:_O_OO flx) {/::OO G(s)e2mise ds} da
- / iooo / O_OOO f(2)e ™G (s) dx ds

- [ reGwas

assuming that we can somehow justify the exchange in the order of the integration
processes in the step marked with the question mark (e.g., by imposing restrictive
hypotheses on f, g and using a suitable Fubini theorem from advanced calculus).
We refer to the resulting equation

/OO f(2)g(x)dx = /00 F(s)G(s)ds (11)

=—0Q S=—00

as the Parseval identity for functions on R. Analogous arguments lead to the cor-
responding Parseval identities

/ f(z dx—pZF G7] (12)

k=—o00

for functions on T, Z, Py, respectively. The period p or N appears as a factor
on the transform side of these equations. An exchange of infinite summation and
integration processes is involved in this heuristic derivation of (12)—(13). In contrast,
only finite sums are used in the derivation of (14) from the synthesis and analysis
equations (9)—(10) that we will establish in a subsequent discussion. You will find
alternative forms for the Parseval identities (11)—(14) in Ex. 1.24.
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The Plancherel identities

When we set g = f in (11)—(14) we obtain the equations

| @ra= [ ire)PRas (15)

=—00 S§=—00

[ ir@ras=p Y- i (16

S P = / " \F(s)P ds, (17)
N—-1 N—-1
S P =N S |F [k (18)
n=0 k=0

that link the aggregate squared size (or enmergy) of a function f on R, T,, Z,
Py, respectively, to that of its Fourier transform F. We will refer to (15)—(18)
as the Plancherel identities (although the names of Bessel, Lyapunov, Parseval, and
Rayleigh are also properly associated with these equations).

As we have noted, (15)—(18) can be obtained from (11)—(14) simply by setting
g = f. The corresponding identities are really equivalent, however, since we can ob-
tain a Parseval identity from the corresponding (seemingly less general) Plancherel
identity by using the polarization identities

f
F

QI
Il

UIF+ gl +ilf +igl* + | f + %> + | f + P9},
HIF + G +4|F +iG|* + i*|F +*G|* + *|F + *G|*}

Q)
Il

together with the linearity of the Fourier transform process, see Ex. 1.25.

Orthogonality relations for the periodic complex exponentials

It is a simple matter to verify the orthogonality relations

p , , if k=10
/ e?mike/p o= 2mile/p g — {p ' ’ ko0=0,+1,+2,...  (19)
=0 0 otherwise,
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for the p-periodic complex exponentials on R. The corresponding discrete orthogo-
nality relations

N-1 ‘

Z e27mkn/Ne—2ﬂ'i€n/N

n=0
_{N k=004 N,{+2N,. .., k{=0+1,42,. .. 0
o otherwise,

can be proved by using the formula

N fz=1

T+z422 442N _{
(2N —1)/(z —1) otherwise

for the sum of a geometric progression with

oo p2mi(k—0)/N

We easily verify that
z=1 ifk—£=0,+N,£2N,...

while
N =1 forallk,0=0,+1,+2,...

and thereby complete the argument. An alternative geometric proof of (20) is the
object of Ex. 1.26. Real versions of (19)—(20) are developed in Ex. 1.27.

The orthogonality relations (19), (20) are the special cases of the Parseval iden-
tities (12), (14) that result when the discrete functions F, G vanish at all but one
of the points of Z, Py, respectively, where the value 1 is taken.

Bessel’s inequality
Let f be a function on T, and let
n
Ta(z) = > epe®™helP (21)
k=—n

be any p-periodic trigonometric polynomial of degree n or less with complex coeffi-
cients ¢, k = 0,+1,42, ..., £n. By using the analysis equation (6) for the Fourier
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coefficients of f and the orthogonality relations (19), we find

[ 1@ = s

=0

_/ { Z Cr eQﬂ'zkx/p} {f(a:)— i Cee—Qﬂ'Mx/p} dx

k=—n l=—n
:/ |2 dr — Z CZ/ f —27m£m/pdx
=0 {=—n
_ Z Ck/ f 27rzk:z/pd.,r
k=—n
+ Z Z ckcé/ 27T’Lk}l‘/p 727rzﬁz/pdx
k=—nl=—n
g UCIRIETS SETI TR SRR GRS S
r= l=—n k=—n k=—n
D
= [ @R 3 IFHE 3 1R -l (22
r= k=—n k=—n

when all of the integrals exist and are finite, e.g., as is certainly the case when f is
bounded and continuous at all but finitely many points of T),.
If we specialize (22) by taking ¢, = F[k| for k = 0,41, 42, ..., £n, the rightmost
sum vanishes and we find
2

/ - 3 P /|f(x Flkle2™ /7| dz >0

k=—n k=—n
for every choice of n =1,2,.... In this way we prove Bessel’s inequality,
/ \f(2)]2dz > p Z | k] (23)
= k=—o00

a one-sided version of (16).
The Weierstrass approximation theorem

Let f be a continuous function on T,. We will show that we can uniformly approx-

imate f as closely as we please with a p-periodic trigonometric polynomial (21).

More specifically, we will construct trigonometric polynomials 71, 73, ... such that
lim max |f( ) — Tn(x)| = 0.

n—oo 0<z
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This result is known as the Weierstrass approximation theorem. We need this result
to establish the validity of (5)—(6). The proof will use a few ideas from intermediate
analysis. (You may wish to jump to Section jand come back later to sort out the
details.)

For each n =1,2,... we define the de la Vallée—Poussin power kernel

2n
n

Gn(z) = p~Lan < >_1 cos?™ (z/p), (24)

shown in Fig. 1.17. We will show that this nonnegative function has a unit area
concentrated at the origin of T),. By using the Euler identity for cos and the binomial
formula, we write

-1
su@) = (%) ey

n

-1
:pfl 2n 2n eQﬂina}/p+ 2n eQﬂ'i(nfl)x/p
n 0 1

n <2n> 627T¢(n—2)z/p + ...

2
2 2 )
+ <nn>1+.“+ (22>e—2mmc/p}. (25)
On ()
60/pt
n = 1000

—p} 2

Figure 1.17. The de la Vallée-Poussin power kernel (24) for
n = 10,102,103,
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Moreover, after noting that

211)_1 _ 4"nln!

5,(0) = p~t4m

0 =r <n p(2n)!
22 -22n—4 2 2n
 p 2n—12n-3 3 P

and observing that d,(z) is monotonic on (—p/2,0) and on (0,p/2), we see that

2
On(z) < M os? "(ra/p) when a < |z| < p/2.
b

In this way we verify that the kernel 4,, has the following properties:
dn(z) >0 for —p/2 <z <p/2 (positivity);

p/2
/ On(z)dxr =1 (unit area); and (26)
—p/2
max On,(x) -0 asn— oo when 0 < a<p/2 (small tail).
a<|z|< p/2
We now define
P
Tn(x) := fw)op(x —u)du, n=1,2,..., (27)
u=0

see Fig. 1.18. [After studying Chapter 2 you will recognize (27) as a convolution
product, and after studying Chapter 7 you will recognize (27) as an approximation
for the sifting relation (7 64) for Dirac’s delta. Here (7.64) refers to equation (64)
in Chapter 7.] We use ( , and (6) to write

() = ( ) {( ) Je2minalp | <21”>F[n _ 1]e2min=)z/p

4 (2n> F|—n]e~2mine/p } (28)

2n

and thereby see that 7, is a p-periodic trigonometric polynomial of degree n or less
that is easily constructed from the Fourier coefficients (6) of f.

fw) - 6p(z —u)
~ f(z) Op(z —u)

Figure 1.18. Construction of the approximation (27) to f on T).
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Suppose now that € > 0 is given. We first choose 0 < o < p/2 so small that
|f(x) — f(u)] <e/2 when |z —u| < a.

With « thus chosen, we use the tail hypothesis of ( L))Gand select n so large that

€

On
aégllixp/? () < 4Mp

where M > 0 is some uniform bound for |f(z)|. By using the unit area hypothesis
of ( 2)6With the p-periodicity of d,, we see that

fo = | :f(w)&z(x—u) du

[since f(z) is a constant with respect to the u-integration]. It follows that

F@) = (@) = [ {F@) — F)}oule — ) du

u=0

x+p/2
- / (@) — F(u)}on( — ) du.

=x—p/2

In conjunction with the positivity hypothesis of (26) and our choices for a,n this
leads to the uniform bound

f@) - m@I < [ 1f@) - @l w)du

le—u[<a

" /a< lz—u|< p/2 |f(fL‘) B f(u)|5n<l' — u) du

i

< max |[f(z) — f(u)]- On (x — u) du
lz—u|<o u=0

a _ O — ) -

e 1(@) = f(w)] bl =)
€ €

<—-142M-—-p=

S ARy VAL

thus completing the proof.
You can use variations of this argument to study the pointwise convergence of

Fourier series, see Exs. 1.31, 1.32.

There is a second (mean square) form of the Weierstrass approximation theorem
that can be used when f is bounded on T, and continuous at all points of T, but
1,3, ...,T,; where jumps occur. In this case we can show that

p
lim |f(z) = Tn(z) > dz =0
n—oo 0



30 Fourier’s representation for functions

for suitably chosen trigonometric polynomials 71, 7o, .... We will form 7,, as before,
noting that |7,,(z)| < M when M is a uniform bound for f. We let J(4) be the por-
tion of T, that remains after we remove small open intervals I1(6), 12(0), ..., [,n(0)
of length 0§ centered at z1,zo,...,x,,. We can then write

INCEACIEDS

(=1
<m-(2M)? -0+ p- max |f(z) — 7a(2)|?.
z€J(0)

/12(5)|f<x>—m<x>| dz + / (@) = (@) da

J(3)

Given € > 0 we can make

m-(2M)2 -6 < %
by choosing a sufficiently small §. Since f is continuous on J(¢), the above argument
shows that

1' —In = 07
i ma [ f(x) = (@)]

so we will have .
2
. — Tn < -
p- max |f(z) — 7n(z)] 3

for all sufficiently large n.

A proof of Plancherel’s identity for functions on T,

Let f be a piecewise continuous function on T,. We drop the nonnegative rightmost
sum from (22) to obtain the inequality

P n P
| ip@rde—p Y IFRE < [ 1f@) - o) do
=0 ke—mn =0
whenever 7, is any p-periodic trigonometric polynomial (21) of degree n or less. We
have shown that the right-hand side vanishes in the limit as n — co when we use
the construction (27), (29) of de la Vallée—Poussin to produce 71, 7o, ..., and in this

way we see that

D oo
| 1@l —p > |FW <o

z=0 k=—o00
In conjunction with the Bessel inequality (23), this proves the Plancherel identity
(16) for all piecewise continuous functions f on T,. A proof of the Plancherel
identity (15) for suitably restricted functions f on R is given in Ex. 1.40.

Two essentially different piecewise continuous functions f,g on T, cannot have

the same Fourier coefficients. Indeed, if F[k] = G[k] for all k = 0,+1,+2,..., then
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we can use Plancherel’s identity to write

/ “1f@) —a@)Pde=p 3 |FIK - GIK? = 0.

k=—o00

It follows that f(z) = g(x) at all points  where f and g are continuous.

1.4 The Fourier—Poisson cube

Introduction

Classical applications of Fourier analysis use the integral (3) or the infinite series (5).
Digital computers can be programmed to evaluate the finite sums (9)—(10) with
great efficiency, see Chapter 6. We are now going to derive some identities that
connect these seemingly unrelated forms of Fourier analysis. This will make it
possible for us to use discrete Fourier analysis to prepare computer simulations for
vibrating strings, diffusing heat, diffracting light, etc. (as described in Section 9.5).

The synthesis—analysis equations (3)—(4), (5)—(6), (7)—(8), (9)—(10) establish bidi-
rectional mappings f < F, g < G, ¢ < @, v < I" that link suitably regular func-
tions f, g, ¢, defined on R, T, Z, Py and their corresponding Fourier transforms
F.G,®,T'. We will formally establish certain connections between these four kinds
of univariate Fourier analysis. In so doing, we introduce eight unidirectional map-
pings f—g, f—>¢,9g—>v, 0> F—-G, F—®& G-I, P —T that serve to
link the unconnected adjacent corners of the incomplete cube of Fig. 1.19. In this
way we begin the process of unifying the various Fourier representations, and we
prepare some very useful computational tools.

fonR (3)-(9) FonR
1 71
s | y -
gonTp | (5)—(6) ’ |
| T |GonZ :
I
I I
| ! | '
I | I
: I | I Transforms
| I
. | |
Functions : | :
I | I |
I I
| |
I I
| ' | '
| lponz (1)) | ldonT,
| v T 7
e 7
7/ /
I, I
~y on IP’Nw \VF on Py

(9)—(10)

Figure 1.19. Functions from the four Fourier transform pairs (3)—(4),
(5)—(6), (7)—=(8), and (9)—(10) arranged on the corners of a cube.
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Discretization by h-sampling

Given a function f on the continuum R and a spacing parameter h > 0, we can
construct a corresponding discrete function ¢ on Z by defining

o[n] = f(nh), n=0,£1,£2,....

We say that ¢ is constructed from f by h-sampling. The same process can be used
to construct a discrete function vy on Py from a function g on the continuum T, i.e.,
to construct an N-periodic function on Z from a p-periodic function on R, but in
this case we must take h := p/N (so that N steps of size h will equal the period p).
With this in mind we define

np

~[n] ::g(ﬁ>, n=0,+1,42, ... .

These discretization mappings f — ¢ and g — -y are illustrated in Fig. 1.20. The
discrete functions ¢,y provide good representations for f,g in cases where f,g do
not vary appreciably over any interval of length h.

f(x) ¢[n]

AT

0% x 01 n

g(z) N v[n]
0 h = 0 1 n

Figure 1.20. Construction of functions ¢, on Z,Py from func-
tions f,g on R, T, by h-sampling.

Periodization by p-summation

Let f be a function on R and assume that f(z) rapidly approaches 0 as x — +oo.
We can sum the translates

HERE) f($+2p),f(x+p),f($),f($—p),f($—Qp),-~-
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to produce the p-periodic function

Z flx —mp), —oco<z<o00

m=—0oQ

when p > 0. We say that the function g on T}, is produced from f by p-summation.
Analogously, when ¢ is a function on Z and ¢[n] rapidly approaches 0 as n — oo
we can construct a function v on Py, N =1,2,... by writing

> gln—mN], n=0%1,42,... .

m=—0oQ

These periodization mappings f — g and ¢ — ~ are illustrated in Fig. 1.21. The
periodic functions g,y provide good representations for f, ¢ when the graphs of f, ¢
are concentrated in intervals of length p, N, respectively.

The Poisson relations

Let ¢ be a function on Z. We will assume that ¢ is absolutely summable, i.e.,

oo

S Jolml| < oc,

m=—0o0

(to ensure that the above sum for y[n] is convergent) and use the analysis equation
(10) to obtain the discrete Fourier transform

N-1
Z ,y[n]e—kan/N

k] =

2| =
3
(=]

Z

Z\H
HM

=

00
E n—mN —27rzkn/N.

Now since e~ 27*7/N js N-periodic in n and since every integer v has a unique
representation

v=n—mN withn=0,1,...,N—1 and m=0,+1,%2,...,
we can write
1 oo N-1
1—\ — Z Z¢n_mN] —27ik(n—mN)/N
m n=

0

=—00

:% Z ¢[l/]6727rikzu/1\/.

v=—00
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f(x) ¢[n]
/I\ il
0
fla =

x 0 n

¢ln+N] ¢ ¢[n — N]
W J M‘M |

~N 0 N n

g9(z) v[n]
M/IW\ Al M‘M Lalll
—-D 0 p z -N 0 N n

g(z) v[n]
S R S R
0 s 0 T

Figure 1.21. Construction of functions g,y on T,, Py from func-
tions f,¢ on R,Z by p-summation, N-summation, respectively.

We now use the analysis equation (8) (with p replaced by ¢ to avoid confusion at a
later point in the presentation) to obtain

—_

Z B[] *Qﬂi(kQ/N)V/q

v=—00

kq
L k=0+1,42,....
<N>7 b) b b

_i,
N ¢
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If we construct v from ¢ by N-summation, then we can obtain T' from ® by ¢/N-
sampling and ¢/N-scaling. (The Fourier transform ® of ¢ is assumed to be a
function on T, ¢ > 0.)

Analogously, when f is a suitably regular function on R we can find the Fourier
coefficients of the p-periodic function

> fla—mp)

m=—o0
by writing

p .
G[k] = / g(x)eﬂ’”km/p dx
p

_ / Z f mp —27rzka:/p dx

m*—oo

; Z / f T — mp —27Tzk(m mp)/p dx

m=—0oo

_ 1 * —2rmike/p
- /5 LGS ¢

_lp <k> k=0,+1,42, ... .
P \p

Of course, we must impose a mild regularity condition on f to ensure that the
functions g, G are well defined and to ensure that the exchange of the summation
and integration processes is permissible. In this way we see that if g is formed from
f by p-summation, then G is formed from F by 1/p-sampling and 1/p-scaling.

We have used the analysis equations (4) and (6), (8) and (10) to obtain the
Fourier transform pairs

> ste-mp. b= 1r (k). (29)

m=-—00 p p
mzz_ooqﬁ[n—m]\f], T[k] = Nq) (%’) (30)

when f, ¢ are suitably regular functions on R,Z with Fourier transforms F,® on
R, T,, respectively. Analogous arguments [using the synthesis equations (3) and
(7), (5) and (9)] can be used to obtain the Fourier transform pairs

o= (L), a()= 3 F (s - mN) (31)

m=—0oQ

~[n] ::g(%), Tk = Y Glk—mN], (32)
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when f, g are suitably regular functions on R, T, with Fourier transforms F,G on
R,Z, respectively, see Ex. 1.34. We will refer to (29)—(32) as the Poisson rela-
tions. You will observe the dual roles played by sampling and summation in these
equations.

The Fourier—Poisson cube

We use the Poisson relations together with the analysis and synthesis equations of
Fourier (as arranged in Fig. 1.19) to produce the Fourier—Poisson cube of Fig. 1.22.
Suitably regular functions f, g, ¢, v that are defined on R, T,, Z, Py lie at the corners
of the left face of this cube, and the corresponding Fourier transforms F,G,®, I’
defined on R,Z, Ty, Py, respectively, lie on the corners of the right face. Of
necessity we must work with both p-periodic and ¢-periodic functions with ¢ = N/p
in this diagram (and this is why we introduced the parameter ¢ in the previous
section). The synthesis—analysis equations (3)—(10) allow us to pass back and forth
from function to transform. The process of h-sampling and p-summation provide us
with one-way mappings that connect adjacent corners of the left (function) face of
the cube, and Poisson’s formulas (29)—(32) induce corresponding one-way mappings
that connect adjacent corners of the right (transform) face of the cube.

fonR synthesis analysis FonR
p-sum 1/p sample & 1/p scale
g onTp synthesis analysis GonZ
Functions p/N-sample N/p-sum
p/N-sample N-sum Transforms
bonZ synthesis analysis ®on Ty,p
N-sum 1/p sample & 1/p scale
I'onP
v onPnN  synthesis analysis N

Figure 1.22. The Fourier—Poisson cube is a commuting diagram
formed from the 8 mappings of (3)-(10) and the 8 mappings of
(29)~(32).
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You will observe that it is possible to move from the f corner to the ~ corner
along the alternative routes f — g — v or f — ¢ — . We use the Poisson relations
to verify that these mappings produce the same function ~:

Ao =g (5F) = Zf(——mp)
- Y ohmm= 3 £ (lo-mM)

m=—0o0
You can use similar arguments to verify that any two paths joining one corner of
the cube to another (in a way that is consistent with the arrows) correspond to the
same composite mapping. We summarize this by saying that the Fourier—Poisson
cube is a commuting diagram.

The Fourier—Poisson cube is a helpful way to visualize the connections between
(3)-(10) and (29)—(32). You will learn to work with all of these mappings as the
course progresses. Practical methods for finding Fourier transforms of functions on
R, i.e., for using the mappings f < F', will be developed in Chapter 3. The Fourier
series mappings g <« G, ¢ < ® and the DFT mappings v < I' will be studied in
Chapter 4. You will learn to use the equivalence of f - g - G and f — F — G
to find many Fourier series with minimal effort! The fast Fourier transform (FFT),
an efficient algorithm for effecting the mappings v < I'" on a computer, will be the
focus of Chapter 6. You will even learn to invert the one-way discretization maps
f— ¢, g — 7 (when F, G are suitably localized) as you study the sampling theorem
in Chapter 8. At this point, however, you will find it most helpful to work through
Exs. 1.35, 1.36 so that you will see how Poisson’s relations can be used to analyze
the error associated with certain discrete approximations to the integrals (6), (4)
for Fourier transforms on T,, R, respectively.

1.5 The validity of Fourier’s representation

Introduction

In this section, we will establish the validity of Fourier’s representation for suit-
ably regular functions on Py, Z, T), R and some of the arguments use ideas from
intermediate analysis. Focus on the flow of the argument as you read the proof for
the first time, skipping over the steps that you do not understand. You can come
back and sort out the troublesome details after you have studied the more concrete
material in Chapters 2—4.

We will continue to use the letter pairs f, F, g,G, ¢, ®, and ~,T (instead of the
generic f, F' of (3)—(4), (5)—(6), (7)—(8), and (9)—(10)) to help you follow the course
of the argument as we move around the Fourier—Poisson cube, establishing in turn
the links v < T', ¢ < &, g < G, and finally, f < F.
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Functions on Py

Let v be any function on Py, i.e., let the complex numbers v[0],v[1],..., [N —1]
be given. Using the analysis equation (10) we define
=
o —2mikm /N _ _
F[k:].—NmZ:Ofy[m]e , k=0,1,...,N—1.

By using this expression together with the orthogonality relations (20) we find

N-1

Z F[k]QQWikn/N _ Nz: { 1 Z_l'}’ }e—Qﬂikm/N}e%rikn/N
=0

k=0

O

m=
N-1 1 N-1
,Y[m]{ Z eZﬂzkn/N . eQWzkm/N}

m
=7
i.e., the synthesis equation (9) holds. Thus we see that Fourier’s representation can

be used for any function on Py, so the bottom front link from the Fourier—Poisson
cube of Fig. 1.22 is secure.

I
(]

Absolutely summable functions on Z

Let ¢ be an absolutely summable function on Z, i.e., ¢[n] — 0 as n — +o00 so
rapidly that

(o]

> [9ln]] < oo

n=—oo

This hypothesis of absolute summability ensures that the Fourier transform

Z ¢ 727risn/q

n=—oo

is well defined, with the series converging absolutely and uniformly on R to the
continuous g¢-periodic function ®. Moreover, the same hypothesis guarantees that
the N-periodic discrete function

> gln—mN| n=0+1,+2,. ..

m=—0oo

is well defined by N-summation with the corresponding discrete Fourier transform
being given by the Poisson relation

T[k] = N(I) (?\?) k=0,+1,42,...
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of (30). We use these expressions for +,T" in the synthesis equation

z

ynl =) Tk ™ /N p=0,41,42,...
0

>
I

(which we have just established) to obtain the discrete Poisson sum formula

0o N-1
q ka\ oritkq/Ny(n/q) _
m_z;m¢[n_mN]NkZoq)(N>e a Don=0,4£1,+2,.... (33)

As N — oo, the translates ¢p[n — mN]|, m = +1,£2 ... from the sum on the
left of (33) move off to +oo, while the Riemann sums on the right converge to
a corresponding integral. Thus in the limit as N — oo (33) yields the Fourier
synthesis equation

q .
é[n] =/ B(s)e?™ M ds, n=0,+1,42,... .
s=0

In this way we prove that Fourier’s representation (7)—(8) is valid for any absolutely
summable function on Z. The four links at the bottom of the Fourier—Poisson cube
are secure when ¢ is such a function.

Continuous piecewise smooth functions on T,

Let g be a continuous piecewise smooth function on T,, i.e., g is continuous on T,
and ¢’ is defined and continuous at all but a finite number of points of T, where
finite jump discontinuities can occur. The graph of g on T, is thus formed from
finitely many smooth curves joined end-to-end with corners being allowed at the
points of connection, e.g., as illustrated in Fig. 1.3. The Fourier coefficients

1 [P .
Glk] := - / g(x)e 2mke/P gy |k =0,41,42, ...,
P Jo
1 [P .
G1[k] == - / g (x)e 2mika/pdy | =0,41,42,...
P Jo

of g, ¢’ are then well defined. Since g(0+) = g(0—) = g(p—), we can use an integra-
tion by parts argument to verify that

G111k = 2mik/p)Glk], k=0,£1,£2,... .
We use this identity with the real inequality

ab| < A(a® + 1?)
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and Bessel’s inequality (23) (for ¢’) to see that

ki@wu |+k2#0 Leuk \
|+Z{k2+|G1 }

k0

D 1 1 [P

NP
75 Bl d
+27T Pt k:2+477/0 9 (z)[" dz

Thus the function
olk] :=p G[—k], k=0,£1,%£2,...

is absolutely summable on Z. We have shown that any such function has the Fourier
representation

p .
o[k —/ O(z)e?™ kP dy k=0,41,42,...,
=0

where

Z o[k] _27”"“”/”, —0 << .

k—foo

After expressing ¢ in terms of G this synthesis—analysis pair takes the form

1 [P )
G[k] — / (I)(l,)e—Qﬂzkw/de’ ]{j :Ojj:]_,j:Q,
P Jz=0
Z G|k]e>™ike/p, —00 < T < 0.
k=—o00

In this way, we see that the original function g and the auxiliary function ® have the
same Fourier coefficients. We apply the Plancherel identity (16) to the continuous
p-periodic function g — ® and thereby conclude that ¢ = ®. In this way we establish
the desired synthesis equation

Z Glkle¥mike/P  _oo <z < 00,
k=—o0

and prove that Fourier’s representation (5)—(6) is valid for any continuous piecewise
smooth function on T,
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Since the Fourier coefficients are absolutely summable, the sequence of partial
sums

sp(z) == Z Glk|e*™*=/P 1 =0,1,2,...
k=—n

of the Fourier series converges absolutely and uniformly on T, to g. In particular,
all but finitely many of the trigonometric polynomials sg, s1, so, ... have graphs that
lie within an arbitrarily small e-tube

{(z,2): 2 €Ty, 2z€C, |g(z) — 2| <€}, €>0

drawn about the graph of g on T, see Fig. 1.23.

% g+
0 /;\f(w)—e

Figure 1.23. Any real e-tube drawn about the graph of the con-
tinuous piecewise smooth function f from Fig. 1.3 contains the
graphs of all but finitely many of the partial sums sg, s1, s2, . . .
of the corresponding Fourier series.

The sawtooth singularity function on T;

In this section we study the convergence of the Fourier series of the 1-periodic
sawtooth function
() {0 ifex=0 (34)
wo(x) =
0 % —z if0<z<l1

that is continuously differentiable at all points of T; except the origin, where a
unit jump occurs, see Fig. 1.24. Using integration by parts we compute the Fourier
coefficients
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wo ()
1/2
/ ‘ wo ()
-1 0 1 x —
0 z
—-1/2
Figure 1.24. Graphs of the sawtooth singularity function (34)
as a 1-periodic function on R and as a function on T;.
with )
Wy 0] —/ (3 —z) dz =0.
0
We will show that the slightly modified Fourier representation
L co .
, 2rkx)
— 2mikx _ Sln(
wo(x) = lim_ k__LWO[k]e ; — (35)

(with the limits at £oo taken symmetrically) is valid at each point z. Since (35)
holds trivially when z = 0, we need only give a proof for points 0 < x < 1.

We construct a continuous piecewise smooth 1-periodic function
1 x
wi(x) := —12+/ wo(u) du, —oo <z < o0,
=0

having the derivative wo(z) (at points = # 0,+1,42,...), noting that

1 x  x?
wl(m):_ﬁ+§_?

The constant —1/12 has been chosen to make

when 0 < x < 1.

W1[0] ::/0 wi(x)dx =0,

and an integration by parts argument can be used to verify that

1
Wl[k?]:m, k::l:].,j:2,,

see (4.19)—(4.24) (i.e. equations (19) (24) from Chapter 4). We have already shown
that such a function w; has the Fourier representation

= ke = cos(2mkzx)
wl(l'): Z Wl[k}]€2 k :Z_W, —o0o < T <0
k=1

k=—00
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with this Fourier series converging absolutely and uniformly. This being the case,
we can establish (35), i.e., we can justify the term-by-term differentiation of the
Fourier series for wq, by showing that the series (35) converges uniformly on every
closed interval « < x <1—a with 0 < a < 1/2.

We will use a classic argument of Abel and Dedekind to verify that the sequence
of partial sums

n ) n . 2 k
Sn(x) = Z Wolk]e* ke = Z M, n=12,...

wk
k=—n k=1

of the Fourier series (35) converges uniformly on 0 < @ < z < 1 — . We introduce
the auxiliary functions

cos(2mkx + 7x)

0 1, k=0,1,2,...
2 sin(rx) DA Y

pr(z) = —

that have the two properties:

cos(2wkx — wx) — cos(2mkx + )

pr(z) = pr-1(z) = 2 sin(mx)

=sin(2rkz), O0<z<1, k=1,2,3,...

and

Ipk(z)] < fora<z<l-—a, k=12,....

~ 2 sin(ma)
When m >n >0 and o <z <1 — o we use the first of these to write

sin{27(n + 1)z}  sin{27(n + 2)z} R sin{27wma}

Sm(x) — sp(x) =

m(n+1) m(n + 2) ™m
_ Pnt1(2) = pn(x) | prga(®) —pna(@) | pm(@) — pm-a (@)
B m(n+1) m(n+2) ot ™m

~H(Sh) @+ (3 - ) @)+

(- 2o (o}

We then use the second to obtain the uniform bound

|$m () — sn(z)|

< 1 1 n 1 1 n n 1 1 +1
~ 27 sin(ma) | n+1 n+1l n+4+2 m—1 m m

1
= . whena <z <1l—a, m>n>0,
m(n+ 1)sin(re)

and thereby establish the validity of (35).
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The Gibbs phenomenon for wg

Before leaving this discussion, we will show how s,,(x) converges to wo(z) in a neigh-
borhood of the point of discontinuity z = 0. The analysis will help you understand
the annoying ripples you will observe every time you approximate a discontinuous
function on T, with a partial sum from its Fourier series. We find it convenient to

define
T

::2 = —
§=2me =0

so that ¢ provides us with a measure of z in units of 1/2n. We can then write

sn(2) = 5n(£/2n)
_ z”: sin{27k(£/2n)}

mk
k=1

We regard this as a very good Riemann sum approximation

sn(x) ~ G(§) (36)
to the Gibbs function ¢
sin wu
56 = [ T (37)

when n is large and 2nx is of modest size. (A large = analysis is given in Ex. 1.37.)
The odd function G, shown in Fig. 1.25, takes the extreme values

G=.5804..., 4514..., .5330..., A7T49..., 5201..., ...

that oscillate about the line § = 1/2 with decreasing amplitude at the points
€=1,2,3,4,5,..., corresponding to the abscissas z = 1/2n,2/2n,3/2n, ... .

S(z)

Figure 1.25. The Gibbs function G of (37).
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Using the approximation (36) and the graph of Fig. 1.25, we see that when n
is large the graph of s, (z) will overshoot the value wy(04) = 1/2 by about 9% of
the total jump J := wp(0+) — wp(0—) = 1 in wy, taking an extreme value close
to .59 near the abscissa = 1/2n. This behavior, well illustrated in the plots of
Sp in Fig. 1.26, is known as Gibbs phenomenon. It was observed by Michelson
when he plotted partial sums for dozens of Fourier series with his mechanical har-
monic analyzer, see Ex. 1.45, and subsequently described by J.W. Gibbs (see Nature
58(1898), 544-545, 59(1898), 200, and 59(1899), 606). (An earlier exposition was
given by Wilbraham, in 1841, see E. Hewitt and R.E. Hewitt, The Gibbs—Wilbraham
phenomenon: An episode in Fourier analysis, Arch. History Ezact Sci. 21(1979),
129-160 for additional details.)

S5 510 520

0 \\/1 0 \/1 0 W1
Figure 1.26. The partial sums ss, s19, S2¢ of the Fourier series
(35) for the sawtooth singularity function wq of (34).

Piecewise smooth functions on T,

Let g be a piecewise smooth function on T,, i.e., g,¢’ are continuous at all but
finitely many points of T, where finite jump discontinuities can occur, and assume
that g has the midpoint reqularization

g9(@) = 3{g(z+) + g(z—)}

at every point x. The graph of g on T, is thus formed from finitely many smooth
curves and isolated midpoints, as illustrated in Fig. 1.27.

/./. )

-D p €

Figure 1.27. A piecewise smooth p-periodic function g on R
with midpoint regularization at points of discontinuity.
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Any such function g has the decomposition

g(x) = Jywg (x _p:Cl) + Jowg <I _pr) + -+ Ipwo (m _p$m> +gr(7), (38)

where 0 < 27 < 29 < --- < x,,, < p are the points where g has the nonzero jumps
Jo:=g(xe+) — g(xe—), £=1,2,...,m, (39)

where wy is the sawtooth singularity function (34), and where the function g, ()
is continuous and piecewise smooth. The decomposition (38) for the function of
Fig. 1.27 is shown in Fig. 1.28.

/./. ././

—-p €1 p x

—-p T D x
gr(z)
-p p l’

Figure 1.28. The decomposition (38) for the piecewise smooth
function of Fig. 1.27.
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We know that the Fourier series for the continuous piecewise smooth function
gr converges uniformly on T, to g,.. Fourier’s representation is also valid for the
shifted and dilated sawtooth function

L
wo (ZC — 1'2) — lim Wo[k_]e%rik(mfmg)/p

L
p -7

L
-, 35 iy

with the convergence being uniform on the portion of T, that remains after a
small interval centered at the point of discontinuity x = xz, has been removed,
¢ =1,2,... ,m. Since each term from the decomposition (38) has a valid Fourier
representation, we can write
L
g(x) = lim Glk)e*™*2/P _oo < & < 0.

L—oco
k=—L

Once again we must sum the terms in a symmetric fashion.

From the above analysis we see that the partial sums of the Fourier series for
g converge uniformly on that portion of T, that remains after m arbitrarily small
intervals centered at the points of discontinuity z1,zs,..., %, have been removed.
The term .J, wo((x — xg)/p) introduces a Gibbs overshoot near the point x = x4, as
illustrated in Fig. 1.29 for the function of Fig. 1.27. The graphs of all but finitely
many of these partial sums will be contained in the region obtained by adding to
the e-tube about the graph of g the Gibbs e-tubes

{(z,2): 2 €Ty, 2€C, |z —zy| <€, |z—glzy) —tJo| <€, —.59 <t < .59},
(=1,2,....m

containing the singularities (together with their +p,42p,... translates), see

Fig. 1.30.
“A /\le

Figure 1.29. The partial sum s19g of the Fourier series for the
function of Fig. 1.27 exhibits the 9% Gibbs overshoot at each
point of discontinuity.

5100 () 4
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Figure 1.30. All but finitely many of the partial sums of the
Fourier series for the function g of Fig. 1.27 lie in the region
formed by combining the e-tube about g and the Gibbs e-tubes
at the jumps of g.

Smooth functions on R with small regular tails

Let f and its derivative f’ be defined and continuous on R, and let ' be defined
and continuous at all but finitely many points of R where finite jump discontinuities
can occur. Assume further that the tails of f at +oo are small and regular in the

sense that
[f@)]+1f (@) < T(|z]), —o0o<z<o0 (40)

for some choice of the continuous, nonincreasing, integrable function T'(z) on the
half line 0 < x < oo, and that

/OO |f" (x)| dz < oc. (41)

— 00

These hypotheses ensure that the Fourier transforms
F(s) :—/ f(z)e ™52 dy,
— 00

Fi(s) = / T P@)e T dr, Fys) = / T e 2mist gy

are well-defined continuous functions on R.
Using the fundamental theorem of calculus, we write

f(2) = 1(0) + / PO de, —so< <o (42)

and since f’ is absolutely integrable, the limits

+oo
f(200) = £(0) + / £(€) de (43)
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must exist. Since f itself is absolutely integrable, it follows that f(+oo0) = 0.
Analogously, f/(+o00) = 0 as well. Knowing that f, f’ vanish at +o0o we integrate
by parts to verify that

Fy(s) = 2mis Fi(s) = (2mis)*F(s), —o00 < s <00
with

1
T 42

// —27rzsx dr

1 oo
&2
[E(s)| = e 2|F2( < 47r2/ |f" (z)| dz < oo.

Thus the tails of F' at +00 go to zero so rapidly that
|F(s)| < M/s*, s#0 (44)

for some constant M.
‘We now show that the function

S fl@—mp), p>0,

produced by the p-summation process is continuously differentiable on T,. Indeed,
by using the hypothesis (40) together with the integral test for convergence of an
infinite series, we find

o0 o0 1 oo
S fe-mp)l< S T<|w—mp>§2{T<o>+p/O T(f)d€}<oo

m=—0o0 m=—o0

and analogously,

o0

S If (@ —mp)| < Q{T(O) +;/OOO () dg} < o0

m=—0oQ

Knowing that these series converge absolutely and uniformly on T,, we conclude
that the function g is well defined and continuously differentiable with

> i@ —mp).

Since f is absolutely integrable, the Fourier coefficients of the p-periodic function
g are given by the Poisson relation (29), i.e

Gl =L <k> k= 0,41,42,. .. .
p p
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We have already proved that Fourier’s representation is valid for a continuous piece-
wise smooth function on T,, so

g(x) = Z Glk)e*™*=/P _oo < 2 < 0.

k=—00

After expressing ¢g,G in terms of f, F', we obtain the continuous version of the
Poisson sum formula

[oe]

f: flx—mp) = Z ;F (i) Amhe/p oo < g < o0. (45)

m=—0oo k=—o00

[The discrete version appears in (33).]

The desired Fourier synthesis equation (3) is now obtained by using (45) in con-
junction with a suitable limiting argument. Indeed, for any choice of z, p > |z| and
L > 1/p, we use (45), (40), and (44) in turn to write

‘ f(z) — / h F(s)e*™*7 ds

= < 1 [k , %0 ,
= ’f(.’E) - Z f(.’E — mp) + Z -F <> eQWZk'r/p / F(s)627rzsx ds
p \p .
m=-—00 k=—o00
1 k 2mikx / g 2misx
§Z|f($—mp)|+ Z -Fl|l—-]e P F(s)e ds
m0 ki< o NP ~L
1 k
+ Y |=F <>‘+/ |F(s)| ds
wLp ! P \P |s|>L

<2 T(mp-—|z|) +

1 : o :
Z _F (k> eQ‘n’Zkl‘/p _/ F(S)e}msm ds
-L

m=1 wi< p? NP
2 M < M

L2y Mo 2/ M s,
P IR TrIER A

Suppose now that € > 0 is given. We will have
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and

2 M 1 1 1
p 2 T < 2Mp{<Lp>2 M7 SRR (e +}

k>Lp
* ds 2Mp €
<oy [ G= <
Lp—1 P

provided that L > 16M /e and Lp > 2. With L so chosen, we force

1 , L ,
Z il ) <k> e27mkw/p _ / F(s)e27ms:r ds
p p -L

|[k|< Lp

<

=] o

by making the mesh 1/p in this approximating sum to the integral sufficiently
small, i.e., by choosing p sufficiently large. Finally, by using the monotonicity and
integrability of T', we see that

23" T(mp — |a]) < 2{T<p ~pal)+ 2

p—|z|

oo

T(u) du} <

|

m=1

when p is sufficiently large. In this way we prove that

'f(a:)—/oo F(s)e*™s* ds

§=—00

<€

for every choice of € > 0, thereby establishing the validity of Fourier’s representation

f(z) = / F(s)e?™ % ds,  —00 < & < 0o,

— o0

Indeed, all 12 links of the Fourier—Poisson cube of Fig. 1.22 are secure for such a
function f.

Singularity functions on R

We define the singularity functions

. (r+2)e® ifzx<0
yo(x) := ~1 0 ifxe=0
(r—2)e ™ ifx >0,
1((z+1)e” ifx <0 (46)
vi(z) = —~ o
4 ((—z+1)e if x>0,

(2) 1{:}069c ifz<O
T) = ——
2 rze ™ ifzx>0



52 Fourier’s representation for functions

() | 50

i T
Y1 () 25

1 x
Y2 (z) .10

1 x

Figure 1.31. The singularity functions ¥, y1, y2 of (46).

shown in Fig. 1.31 to use for the purpose of removing jump discontinuities from a
function on R and from its first two derivatives. By construction

ys () = y1(z), —00 <z < 00

47
yé’(x)zyi(x):yo(aj), —o<r<0orl<z<oo ( )

with y1,y2 being continuous on R and with yy being continuous at all points of R
except the origin, where we find

(48)
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We will show that Fourier’s representation is valid for yg, y1, y2 and then use this
fact to show that Fourier’s representation can also be used for all piecewise smooth
functions having small regular tails. As a first step, we integrate by parts to verify
that yo has the Fourier transform

Ya(s) ::/ Yo (x)e 25T dy

1 [ : I :
— _4/ T em(1—27rzs) dr — 4/ T e—x(1+2ﬂ'zs) dx
e 0

0

— _1 € _ 1 ez(1727ris)
4 1—-2mis (1 —2mis)? .

1 x 1 —x(142mis)
+ 4{ 1+ 2nis T (11 2nis)? }e

- 2mis
—m, —00 < § < 0.

[ee]

0

Using (47) and integration by parts, we then find in turn the Fourier transforms

oo ) 27 2

Yi(s) = / yh(x)e 2™ dy = 2mis Ya(s) = m, —00 < 5 < 00,
> —2misx . 2mis 3

Yo(s) ::/ Yy (x)e 2™ dy = 2mis 1/1(8):(1:_47382)2, —00 < § < 00

of 1, yo, respectively.
The smooth odd function y, has small regular tails, so from the analysis of the
preceding section we know that y, has the Fourier representation

yo(x) = /00 Ya(5)e* ™% dx
= (49)
_2/00 (27s) sin(2wsx) ds

Y (1 n 47‘1’282)2 , —oo<x < o0

Moreover, since the integral of (49) and the integral obtained by formally differen-
tiating (49) with respect to & both converge uniformly, we can write

—00 < < 00. (50)

* (2ms)? cos(2mwsz) ds
— ! = -2 (
yi(z) = y5(x) /S:O (1+4n2s2)2
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Thus, y; has the Fourier representation

(o]
y(z) = / Y7 (s)e*™5% ds. (51)
S=—00

As a final step we will show that yo has the Fourier representation

L

yo(z) = LILH;O i Yy(s)e*™ 5 ds (52)

(with symmetric limits on the integral), or equivalently, that

* (27s)2 sin(27sz) ds
yo(z) = 2/5_0 ( (1> +47§232)2> , —00 <z < 00. (53)

Since (53) holds trivially at the point of discontinuity, = 0, and since yq is odd,
it is enough to verify that (53) holds at each point > 0. We will show that the
integral of (53) converges uniformly on the interval a < z < oo for every a > 0.
Since the same is true of the integral of (50), we thereby justify the process of
differentiating under the integral sign of (50) to produce (53). With this in mind,
we let € > 0 be selected and let M > L > a > 0 be chosen with L lying to the right
of all of the local extreme points of the kernel

2(2ms)3
(1 +47m2s2)2 -

That portion of the tail of the integral in (53) between L and M is then uniformly
bounded by

G(s) :==

‘ /J_WL G(s) sin(2msz) ds

1

2rx

M
/ G(s){—2nz sin(2wsx)}ds
L

G(s) cos(2msz)| _ / G'(s) cos(2msz) ds

+ /i G'(s)ds }

2rx

1
— M L
27704{G( +a

2G(L)

2mo

IN

<

<€

if L is sufficiently large. Thus the integral of (53) converges uniformly on o < x < o0
and the validity of Fourier’s representation of yq is established.
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Piecewise smooth functions on R with small regular tails

Let f be defined on R and assume that f is continuous except for finitely many
points 1 < xy < -+ < T, where finite jumps

J#::f(:vu—l—)—f(x#—), /‘1’:1727"'7m

occur and where f has the midpoint regularization

flan) = 3{flxp+) + fl@—)}, p=1,2,...,m,

e.g., as illustrated in Fig. 1.32. Let f’ be defined and continuous except for finitely
many points ) < x4 < --- < 2, where finite jumps

o= o +) = fl,=), p=12,....m

occur. Let f” be defined and continuous except for finitely many points where finite
jump discontinuities can occur, and assume that

/OO |f" (x)|dzx < oo.

Finally, assume that the tails of f at +0o are small and regular in the sense that

[f@]+ 1 @) <T(xl), = #a),... 2,

where T is continuous, nonincreasing, and integrable on the half line 0 < z < oo.
Using (46)—(48) we see that such a function f has the decomposition

F@) =Y Juyole —xu) + Y Jpwle —a)) + fr(), (54)
p=1 pn=1
where f,, f/ are continuous on R, where

/ @) de < oo,

— o0

and where f, (like f,yo,y1) has small regular tails at +0o. By using the Fourier
representations of f.,yo,y1 developed in the two preceding sections, we conclude

that
L

f(z)= lim F(s)e*™% ds, —o00 <z < 00 (55)
L—+o0 _I
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D- - - - ©
D- - - - O

Figure 1.32. Piecewise smooth functions on R with small regu-
lar tails and midpoint regularization.

[i.e., (3) holds when the integration limits are taken in a symmetric fashion|. Here

F(s):= / f(z)e 2™ dg
=D Jue TTIY(s) + Y Ty e YA (s) + Fi(s), (56)
pn=1 p=1
where F,. is the Fourier transform of f,.. Thus Fourier’s representation is valid for
such a function f.

We now know that if f satisfies the above hypotheses, then the Fourier transform
F is well defined by the analysis equation (4), and the synthesis equation (3) can
be used to represent f provided that we rewrite (3) in the form (55). In view
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of the symmetry present in the synthesis—analysis equations (3)—(4), the same ar-
gument shows that if a function F' satisfies the above hypotheses, then we can use
the synthesis equation (3) to construct a function f that will have F' as its Fourier
transform provided that we rewrite (4) in the form

— 727rzsac

Thus if f, F' are piecewise smooth functions having midpoint regularization at any
points of discontinuity, if at least one of the functions f, F' has small regular tails,
and if f, F" are linked by either (3) or (4), then f, F' are linked by both (3) and (4).
This observation can be used to justify the use of Fourier’s representation (3)—(4)
for almost all of the common transform pairs of ordinary functions f, F' that we
meet in the elementary applications of Fourier analysis.

Extending the domain of validity

We have shown that Fourier’s representation is valid for all functions defined on Py
and for certain large but not universal classes of functions defined on Z, T,, and
R. The restrictive hypotheses that we have imposed can be weakened considerably,
e.g., a function on T, or R has a valid Fourier representation if the following four
Dirichlet conditions are satisfied:

e [|f(z)]dz < co, with the integral taken over the domain T, or R of f;
e At each point x in the domain of f, finite limits f(x+), f(z—) exist and

f@) = {f (@) + flz—)}

e The points where f is discontinuous, if any, are isolated, i.e., there are only finitely
many such points in any bounded portion of the domain; and
e Any open interval (a,b) from the domain of f can be broken into subintervals
(a,x1), (z1,22),...,(zn,b) on each of which f is monotonic by the deletion of
finitely many points 1,2, ..., z, [which depend on the choice of (a,b)].
You will find many other sufficient conditions in the literature, but there is still no
known necessary and sufficient condition for the validity of Fourier’s representation
of functions on Z, T,, or R. Fourier believed (5)—(6) to be valid at all points when
f is continuous, but a half century after his death DuBois—Reymond constructed a
rather bizarre continuous function with a Fourier series that diverged at some points.
A simpler example of Fejér is developed in Ex. 1.44. Such points of divergence are
relatively rare, however, for in a remarkable theorem published in 1966, Carlson
proved that the set of points where the Fourier series of a given continuous function
on T, fails to represent the function can be covered with a sequence of intervals
(a1,b1), (az,b2),... having total length > (b, — a,) less than a preassigned € > 0.
The search for a deeper understanding of Fourier’s representations (3)—(4),
(5)—(6), (7)—(8) has been most fruitful in spite of the fact that these basic validity
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questions remain unresolved, see Appendix 1. You have undoubtedly observed that
we must answer the questions:

What do I mean by function?

What do I mean by convergence?

as we formulate our theorems, e.g., we can allow our piecewise smooth functions
on T, to have finite jumps if we use symmetric limits on the sum (5). Our sim-
ple sufficient conditions can be relaxed considerably, but the proofs become more
difficult. (You can find a remarkable 150-year summary of such work in the books
by Bochner, Titchmarsh, and Zygmund that are cited in the following references,
but you will need some understanding of Lebesgue’s theory of integration to follow
many of the arguments!)

We will briefly return to the validity question again in Chapter 7 after intro-
ducing you to a new concept of function and to a new definition for convergence,
see Fig. 1.33. We will even show that Fourier was right after all: Every continuous
p-periodic function is represented by its Fourier series ... when we have the right
understanding of convergence!

Ordinary functions on R

Generalized functions

Piecewise smooth
functions with small
regular tails

Figure 1.33. Functions on R that are known to have a valid
Fourier representation: Piecewise smooth functions with small
regular tails and generalized functions (as defined in Chapter 7).
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Further reading

Benedetto, J.J. Harmonic Analysis and Applications, CRC Press, Boca Raton, FL,
1997.

A modern introduction to Fourier analysis.
Bochner, S. Lectures on Fourier Integrals (English translation by M. Tenenbaum
and H. Pollard), Princeton University Press, Princeton, NJ, 1959.

An exceptionally well written mid-20th-century mathematical treatise for
Fourier transforms of functions on R.

Briggs, W.L. and Henson, V.E. The DFT, STAM, Philadelphia, 1995.
A comprehensive introduction to discrete Fourier analysis.

Brown, J.W. and Churchill, R.V. Complex Variables and Applications, 6th ed.,
McGraw-Hill, New York, 1996.

You will find the elements of complex arithmetic and a discussion of complex-
valued functions in the first few sections of this highly evolved undergraduate
mathematics text.

Carslaw, H.S. An Introduction to the Theory of Fourier’s Series and Integrals, 3rd
ed., Macmillan and Company, New York, 1930; reprinted by Dover Publica-
tions, New York, 1950.

Fourier analysis as known in the early 20th century.
Champeney, D.C. A Handbook of Fourier Theorems, Cambridge University Press,
Cambridge, 1987.
A descriptive survey of basic Fourier analysis theorems that is written for
scientists and engineers.
Courant, R. and John, F. Introduction to Calculus and Analysis, Vol. I, John Wiley
& Sons, New York, 1965.
Chapters 7, 8 of this classic intermediate-level mathematics text have excep-
tionally nice expositions of uniform convergence, Fourier series, respectively.
Dym, H. and McKean, H.P. Fourier Series and Integrals, Academic Press, New
York, 1972.
A mathematical account of Fourier analysis with numerous applications.
Fourier, J. The Analytical Theory of Heat (English translation by A. Freeman),

Cambridge University Press, Cambridge, 1878; reprinted by Dover Publica-
tions, New York, 1955.

Fourier’s early 19th-century account of the series and transforms he created to
study the conduction of heat in solids.
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Gaskill, J.D. Linear Systems, Fourier Transforms, and Optics, John Wiley & Sons,
New York, 1978.

Chapters 1-7 provide elementary introduction to Fourier analysis for physicists.

Goldberg, R.R. Fourier Transforms, Cambridge University Press, Cambridge, 1965.
A tightly written classical introduction to the Fourier transform of functions
on R (that uses Lebesgue and Riemann-Stieltjes integration).

Gonzdlez-Velasco, E.A. Fourier Analysis and Boundary Value Problems, Academic
Press, San Diego, CA, 1996.

Formal mathematics for solving partial differential equations interspersed
with historical accounts (and photographs) of Fourier, Poisson, Dirichlet,
Gauss, ... .

Katznelson, Y. An Introduction to Harmonic Analysis, John Wiley & Sons, New
York, 1968.
An elegant first course in Fourier analysis for mathematics graduate students.

Koérner, T.W. Fourier Analysis, Cambridge University Press, Cambridge, 1988.
A delightful intermediate-level introduction to Fourier analysis and selected
applications to probability, differential equations, etc.

Lanczos, C. Discourse on Fourier Series, Oliver & Boyd, Edinburgh, 1966.
A mid-20th-century introduction to Fourier analysis for scientists and engineers
by a distinguished mathematician with a gift for exposition.

Marshall, A.G. and Verdun, F.R. Fourier Transforms in NMR, Optical, and Mass
Spectrometry, Elsevier, Amsterdam, 1990.
Chapters 1-3 provide an introduction to the Fourier transform for chemists.

Natanson, I.P. Constructive Function Theory, Vol. T (English translation by
A.N. Obolensky), Frederick Unger Publishing, New York, 1964.
A classic intermediate-level exposition of uniform approximation by truncated
Fourier series, Fejér sums, etc.

Oppenheim, A.V., Willsky, A.S., and Young, I.T. Signals and Systems, Prentice
Hall, Englewood Cliffs, NJ, 1988.
Chapters 4-5 contain exceptionally well-written elementary accounts of discrete
and continuous Fourier analysis as used in electrical engineering.

Schoenberg, I.J. The finite Fourier series I, II, III, and IV, Mathematical Time
Ezposures, Mathematical Association of America, Washington, DC, 1982.

A charming introduction to Fourier analysis of functions on Py with applica-
tions to geometry.
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Stade, E. Fourier Analysis, John Wiley & Sons, Hoboken, NJ, 2005.

A well-written modern introduction to Fourier analysis for mathematics grad-
uate students.

Stein, E.M. and Shakarchi, R. Fourier Analysis: An Introduction, Princeton Uni-
versity Press, Princeton, NJ, 2003.

An exposition of Fourier series, Fourier transforms, and finite Fourier analysis
for mathematics graduate students.

Titchmarsh, E.C. Introduction to the Theory of Fourier Integrals, 2nd ed.,
Clarendon Press, Oxford, 1948; reprinted by Chelsea, New York, 1986.

A mid-20th-century mathematical treatise for Fourier transforms of functions
on R.

Tolstov, G.P. Fourier Series (English translation by R.A. Silverman), Prentice Hall,
Englewood Cliffs, NJ, 1962; reprinted by Dover Publications, New York, 1976.

An exceptionally well-written elementary exposition of Fourier series (with a
brief introduction to the Fourier transform of functions on R).

Walker, J.S. Fourier Analysis, Oxford University Press, New York, 1988.

An intermediate-level introduction to the basic mathematical theory as well as
some of the principal applications of Fourier analysis.

Zygmund, A. Trigonometric Series, 2nd ed., Cambridge University Press,
Cambridge, 1959.

The definitive mathematical treatise on Fourier series.

Exercises

» EXERCISE 1.1 In this exercise you will verify that Fourier’s representation (3)—(4)
is valid for the box function
if —% <z< %

. 1
ifx=+£5

fz) =

S N

ifm<—%or:c>%.

(a) Evaluate the integral (4) in this particular case and thereby show that

1 ifs=0
F(s) =4 sin(ns) if5£0
s '
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(b) By using the fact that F' is even, show that the synthesis equation (3) for f reduces
to the identity

f(x) z /SCX; 2 % cos (2mwsx) ds.

The integral is not easily evaluated with the techniques of elementary calculus. The
remaining steps will show you how this can be done.

(c) Use integration by parts to verify that

o0
e P% cos(mgs ds:#, p > 0.
/s:o (ngs) p? + (mq)?

(d) Integrate the identity of (c) with respect to ¢ from ¢ = 0 to ¢ = a to obtain

o sin(mas) 1 Ta
/ e PP ds= —arctan | — | .
s=0 s T P

(e) Let p — 0+ in the identity of (d), and thereby show that

- . —% ifa<o0
/ %ds: 0 ifa=0
s=0 i ifa>o0.

(f) Use a trigonometric identity to write the integral from the synthesis equation of (b)
in the form

/°° 2sin(rs) cos(2mse) /°° sin[ﬂ(1+2w)81ds+/°° sin[r(1 - 22)s] ,
\ s 5=0

s -0 s s

=0

(g) Finally, use the result of (e) (with a = 1 £ 2z) to evaluate the integrals of (f) and
thereby verify the synthesis identity from (b).

Note. As you study Chapter 3 you will learn that we almost never perform such tedious
calculations. We use the analysis of Section 1.5 to infer that the identity from (b) is valid!

» EXERCISE 1.2 Let f be a suitably regular function on R. We use (2) with (4) to

write
o0

oo
F(s) = / cos(2msx) f(x) dox — z/ sin(2wsx) f(x) d.

r=—00 TrT=—00
The first integral is an even function of s and the second integral is an odd function of s.
What can you say about the Fourier transform F' if you know that f is

(a) even? (b) odd?

(c) real-valued and even? (d) real-valued and odd?

(e) pure imaginary and even? (f) pure imaginary and odd?

(g) hermitian, i.e., f(z) = f(—z)? (h) antihermitian, i.e., f(z) = —f(—x)?
(i) real? (j) pure imaginary?

Hint. You should discover some connection between (g), (h) and (i), (j).
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» EXERCISE 1.3 Let g be a suitably regular function defined on the half line z > 0.

(a) Use (3)—(4) to derive the cosine transform pair

oo

g(z) = 2/ G(s)cos(2msx)ds, G(s)= 2/ g(x) cos(2msz) dx

=0 =0
that shows how to synthesize g from cosine functions.
Hint. Specialize (3)—(4) to the case where f is the even function

fg(x) forz>0
f@) = { g(—z) for z <O.

(b) Derive the analogous sine transform pair

[ee]

g(z) = 2/ G(s)sin(2msz)ds, x >0, G(s)= 2/ g(z)sin(2wsx) dz, s> 0
s=0 =0

that shows how to synthsize g from sine functions.

Note. The cosine and sine transforms of a real-valued function are real-valued.

= EXERCISE 1.4 A factor of 27 is included in the arguments of the exponential
functions that appear in (3) and (4). In this exercise you will determine what happens
when we remove this factor.

(a) Some authors define the Fourier transform by replacing (4) with the integral
o .
Fi(¢§) := / f(:c)eﬂgz dr, —oo<{ < oo.
T=—00
Use F(s) = F1(27s) in (3) and thereby show that

flx) 1 / F1(§)ei£:C d¢, —oo <z < oo.
3

= % .

The 27 reappears and destroys the symmetry!

(b) Likewise, show that when we replace (4) by

oo

Fa(€) i= — Fl2)e 87 dp, —o0 < € < o0,

RERVEZ .
the synthesis equation takes the form
1 o i€
flr) = — Fr(§)e'~" d¢, —oo <z < oo.
V2T ) _ o

Symmetry is restored, but we must still contend with a pair of 27’s in our equations.
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(c) More generally, show that if we replace (4) by the analysis equation
0 .
F3(&) := A/ f(:z;)eﬂa& dr, —oo <& < oo,
T=—00
where «, A are any nonzero real constants, then we must use the synthesis equation

|O‘| > iaéx
flz)=—— F3(&)e d¢, oo << oo.
2mA £=—oo

Note. The 27’s must appear in the exponentials from (9)—(10). We have chosen to include
the optional 27’s in the exponentials from (3)—(8) to make it easier for you to remember
the analysis and synthesis equations in all four settings.

= EXERCISE 1.5 Let f be a suitably regular function on R.

(a) What function do we obtain when we take the Fourier transform of the Fourier trans-
form of f?

Hint. Change the sign of x in the synthesis equation (3)!

(b) What function do we obtain when we take the Fourier transform of the Fourier trans-
form of the Fourier transform of the Fourier transform of f?

= EXERCISE 1.6 Let the complex-valued function f on Tp, p > 0, be defined by
specifying f(x) for 0 < z < p. Explain what we mean when we say that f is

(a) even on Ty; (b) odd on Ty;
(¢) continuous on Tp; (d) continuously differentiable on Tp;
(e) absolutely integrable on Tp; (f) p/2-periodic on T)p.

» EXERCISE 1.7 Sketch the graphs of f(x), f(—z), f(z — 1), f(1 — ) when

f(x):{l—m 0<z<1

0 otherwise

is a function on:

(a) R; (b) Ty (c) To.

» EXERCISE 1.8 Let f be a p-periodic trigonometric polynomial of degree N or less,
ie.,
N

f(a:) = Z Ck:@?ﬂ'ik?m/p7

k=—N

for some choice of p > 0, N =0,1,2,..., and complex coefficients ¢, k = 0,+1,...,£N.
Show that f is given by (5) when (6) is used to define F.
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Hint. Multiply both sides of the defining equation for f by e_zmex/p, integrate from x = 0
to x = p, and use the orthogonality relations (19) to show that

cp ifk=0+1,...,+N
Flk] =

0 otherwise.

Note. The class of p-periodic functions for which the Fourier representation (5)—(6) is
valid includes the set of all trigonometric polynomials. This is analogous to the fact that
the set of functions for which the Newton representation (1) is valid includes the set of all
algebraic polynomials.

» EXERCISE 1.9 In this exercise you will verify that Fourier’s representation (5)—(6)
is valid for the Poisson kernel
1—r?

= , —oo<x<00.
/(@) 1 — 2rcos(2nzx) + r2 oS

Here r is a real parameter with 0 < r < 1.
(a) Sketch the graph of f when r =0, .5, .9, .99.

(b) Use the identity 1+ z+ 22 + 2% +--- = 1/(1 — 2), |2| < 1, with z = 7e?™* to show
that

i ok 2miks _ {1 — rcos(2mrx)} + i rsin(2nzx)
— N 1 — 2rcos(2nx) + r2 '

(c) Use the result of (b) to show that

oo
flx) = Z rlk‘e%ikw, —00 < = < 00.
k=—oc0
In this way you obtain (5) with F[k] := rI5l for each k = 0,+1,+2,....
(d) A direct computation of the integrals

1 2\ —2mikx

1_

F[k}:/ (—r7e Sde, k=0,%£1,42,...
w0 1 —2rcos(2mz) + 7

from the analysis equation (6) is fairly difficult. In this case, however, we can use the
rapidly converging series from (c) to write

1 0 . .
Flk] = / < rele%im) e~ 2k Gy My </ (2mite  —2mike da:).
z l Z ¢ Z =0

=0 \p=—_ o =—00

Evaluate the remaining integrals and verify that (6) does yield F[k] = rl*!,

Note. Tt is not so easy to find a function (other than a trigonometric polynomial) where
we can evaluate the integrals (6) and sum the series (5) using the tools from calculus. We
need the analysis of Section 1.5 to show that a suitably regular p-periodic function can be
represented by its Fourier series!
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» EXERCISE 1.10 Let N be a positive integer and let f be defined on Z by
1 ifn=0,+1,42,...,+N
fln] =

0 otherwise.

(a) Show that f has the p-periodic Fourier transform

2N +1 ifs=0
F(s) = =< sin{(2N + 1)ws/p} fo<s<p
sin(mws/p) '

Hint. Set z = ¢ "™5/P in the formula

N _oN_
2N+ _ —2N-1

2N
E Z?TL = 272N E 2277, = —1 B z # +1.
zZ—Zz
n=0

n=—N

(b) Verify that f has the Fourier representation

P .
fnl / SN VTs/p) amins/ngs =0, 41,42, .
0 psin(mws/p)

of (7)—(8).
(c) Without performing any additional computation, write down the Fourier series (5)
for the p-periodic function

9N +1 if £ =0,£p, £2p,...
g(x) = sin{(2N + 1)z /p} otherwise
sin(mx /p) .

Hint. Use (a) and the duality between (5)—(6) and (7)—(8).

» EXERCISE 1.11 Answer the questions from Ex. 1.2 when f is a suitably regular
function on T).

p/2 . p/2
Hint. Flk] = - / cos(””“””) o) do— "t / sm<2”’”> f(z) da.
P Ja=—p/2 p P Ja=—p/2 b

» EXERCISE 1.12 Let g be a suitably regular real-valued function defined on the
“right” half of Tp, i.e., for 0 < z < p/2.

(a) Use (5)—(6) to derive the cosine transform pair

9(z) = G[0] +2’;G[k} cos<27rkx> , 0<2< g, Glk] = 2/30 g(x) cos(Qﬂmj) dz

p P Juo p

that shows how to synthsize g from cosine functions.
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(b) Derive the analogous sine transform pair

g(@) =2 Glk]sin <2wkx>, 0<a<Z Gl = 2/ #(z)sin (kax) .
k=1 p P Jo D

Hint. Adapt the analysis of Ex. 1.3 to this setting.

= EXERCISE 1.13 In this exercise you will establish (9)—-(10) when N = 2,4.

(a) Let N =2 so that e 2™/N — _1_ Show that the function f on Py with components
fI0] := a, f[1] := b has the discrete Fourier transform F' with components F[0] =
(a+0b)/2, F[1] = (a — b)/2, and then verify that f has the representation (9).

(b) Let N = 4 so that e 2™/N = _i Find the components of the discrete Fourier
transform F' of the function f on P4 with components f[0] := a, f[1] := b, f[2] :== ¢,
f[3] := d, and verify that f has the representation (9).

» EXERCISE 1.14 Find complex coefficients cg, ¢y, ..., c5 such that

5
che2mkn/6 =n, n=0,1,...,5.
k=0
Hint. The coefficients cg,c1,...,c5 play the role of F[0], F[1],..., F[5] in the synthesis

equation (9). Use the corresponding analysis equation (10) to obtain c¢g = 5/2, ¢; =
—1/24 (V3/2)i,...,c5 = —1/2 — (v/3/2)i.

Note. A generalization of this result is given in Ex. 4.26.

» EXERCISE 1.15 Answer the questions from Ex. 1.2 when f is a function on Py.

Hint. F[k] :% 3 cos<27jr\];n> - 3 sin<27§5n> fInl.

—N/2<n<N/2 —N/2<n<N/2

» EXERCISE 1.16 In this exercise you will rewrite the synthesis and analysis equa-
tions (3)—(10) using the familiar sine and cosine functions.

(a) Show that if (3)—(4) hold, then

flz) = / a(s) cos(2msx) ds + / b(s) sin(2wsz) ds,
s=0 s=0
where
a(s) = 2/ f(z) cos(2msz) dz, b(s) := 2/ f(z) sin(27wszx) dx.

Hint. Use (3)—(4) and Euler’s identity (2) with a(s) := F'(s) + F'(—s),
b(s) :=i[F(s) — F(—s)].
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(b) Show that if (5)—(6) hold, then

f(x):% Z{ kcos<2ﬂ-kx>+bksin<2ﬂpkx>},

P P
ap = 2 f(x)cos(%rpkm) , b= 2 f(m)sin(Qkax> .

p x=0 p x=0

where

(c¢) Show that if (7)—(8) hold, then

p/2 p/2
fln] = / a(s) cos ( 275”) ds + / b(s) sin < 27T5n> ds,
s=0 b s=0 p

Z fln (27Tsn>7

n=—oo

where

- . [ 2msn
Z f[n]sm( » >

n=—oo

(d) Show that if (9)—(10) hold, then

_ao (27kn . (2mkn } an/2
fin] = 2 + ; {akc05< N )—i—bksm( N ) + 5 cos(n)
if N=2,4,6,...,and
(N-1)/2 9k 5
_ao ™ wkn
fin] = 5 + Z {akcos <7N ) bksm( N )}
k=1
if N=1,3,5
where
2 ok p ok
wkn gin (2R
ag ::Nzof[n}cos( N ) = Z ( )
n= n=0

» EXERCISE 1.17 This exercise will show you how to attach units to the variables
s,x, k,n that appear in the dimensionless expressions

sp, FToosmo kn

) p ) p ) N
from the complex exponentials in (3)—(4), (5)—(6), (7)—(8), and (9)—(10). Let a > 0 be a
unit of time, e.g., we might use @ = 10 " sec, 107 sec, 1 sec when we work with light
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waves, sound waves, water waves, respectively. We rewrite the above expressions in the

form
(e ()e (e Gi)en

identifying the first factor with frequency, F', and the second with time, .

(a) Within this context,  measures time in units of o and s measures frequency in units
of 1/a when f is a function on R. What is the analogous meaning of z, s,n, k when
f is a function on Tp? Z? Py?

(b) When f is a function on Tj, za ranges over a time interval of length T = ap and
frequency is quantized in units of AF = 1/T. The product gives the reciprocity
relation

TAF =1.
Find the analogous reciprocity relations for functions on Z and Py .

Hint. There are two such relations when f is a function on Py .

(¢) The accoustical waveform
w(t) := ¢~ (t/15e0)* cos{2m - 200 Hz - t}

corresponds to a flute-like tone with a pitch of 200 Hz that sounds from ¢ =~ —2 sec to
t ~ 2 sec. What values of the frequency parameter s or k correspond to the frequencies
F = +200 Hz when we set a = 1072 sec and examine the Fourier transform of the

function
fR(x) = w(za) on R? fT(x) = Z w([z + 100m]a) on T1pg?
fyIn] == w(na) on Z?  f[n] := Z w([n + 1000m]a) on P1ggp?

(d) If a is “inappropriately chosen,” we cannot locate the frequencies F' > 0 and —F in
the Fourier transforms of the processed functions fT, fZ’ fl}” as given in (c). Explain
why we might wish to impose the respective constraints

1 1 1 1
— < F F - — < F —.
2p< a, Fa<g, & <Fa<g

Hint. When we work on T, frequency is quantized in units of 1/ap so we cannot expect
to detect a frequency less than 1/2ap.

Note. Newton and Fourier discovered the first principles of dimensional analysis that are
used in this exercise, see H.E. Huntley, Dimensional Analysis, McDonald & Co., London,
1952; reprinted by Dover Publications, New York, 1967, pp. 33-37.
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» EXERCISE 1.18 The planets Earth, Mars orbit the sun with periods T = 1 yr,
Ty = 1.88 yr at a mean distance 1 au := 150- 10° km, 1.52 au = 228- 10° km, respectively.
In this exercise you will use the simple approximations

ZE(t) = eQﬂ'it/l yI‘7 Zm(t) - 1.562ﬂit/2 yr
to study the motion of Mars as seen from Earth.

(a) Draw concentric circles with radii 1, 1.5 and label points A, B,...,I on each that
locate Earth, Mars at times t =0,1/4,...,8/4 yr.

(b) Draw the orbit Z(t) = Zp;(t) — Zg(t), 0 <t < 2 yr, that shows the position of Mars
as seen from Earth. This orbit corresponds to one of the two circle approximations
of Hipparchus and Ptolemy as described in the text.

(¢) Normally Mars moves across the night sky in the same direction as the moon. There
is a three-month period every other year, however, when this planet moves in the
opposite direction. Use your analysis from (b) to explain this retrograde motion.

Note. Lagrange was the first to recognize the connection between Fourier analysis and the
ancient Hipparchus—Ptolemy model for planetary motion, see H. Goldstein, A History of
Numerical Analysis from the 16th through the 19th Century, Springer-Verlag, New York,
1977, p. 171.

= EXERCISE 1.19 The direction a telescope must be pointed in order to see a given
star, planet, asteroid, ... is specified by giving the right ascension and declination, i.e.,
the longitude and lattitude of the corresponding point on the celestial sphere. In 1802,
Baron Von Zach published the observed declination

y = 408, 89, —66, 10, 338, 807, 1238, 1511, 1583, 1462, 1183, 804

(in minutes) for the orbit of the asteroid Pallas at the right ascension z = 0°, 30°,
60°,...,330°, respectively, see Fig. 1.13. As you analyze this data you will share in a
very important discovery of Gauss.

(a) Use the analysis equation (10) to find the coefficients cg,cy,...,c11 for the trigono-
metric polynomial
11
y(@) = Z o 2Tk T/360
k=0

that fits the data at the 12 points (0,408), (30,89), ... ,(330,804).
Hint. Use a computer. You should find ¢g = 780.5833, ¢; = —205.5072 + 360.11394,

Note. Gauss used real arithmetic and did such computations by hand!
(b) Explain how to use symmetry to reduce the amount of computation in (a).
Hint. Compare ¢ with ¢1o_p and use Ex. 1.15(i).
(c) The above form for y(x) is equivalent to
6

y(z) = Re{ Z ck627rz'kz/360}

k=—5



Exercises 71

(d)

(f)

(8)

when z is a multiple of 30° (and we set c_j := c19_g, k= 1,2,...,5), but the latter
is preferable when this is not the case. Explain why.

The 12-term trigonometric polynomial found in (a) exactly interpolates the twelve
data points, but only half of the coefficients seem to contribute to the sum in a
significant way. For this reason Gauss was undoubtedly motivated to fit the data
approximately using a smaller number of terms. For example, he could exactly fit
the six even data points (with = 0,60, 120, ...,300) using

5

ye(f) _ Z CieQWikx/SGo
k=0
and he could equally well fit the six odd data points (with = 30,90, 150, ...,330)

using
5

o 2mikxz /360
yo(z) = Y cfe?m /30,
k=0

and then use either of these trigonometric polynomials to generate a curve analogous

to the one sketched in Fig. 1.13. Compute the six coefficients ¢}, and the six coefficients
o

Ck.

o 2mik/12

Hint. Compute dy, := ¢}, before you compute ¢f. You will find

c§ = 780.6667, cf = —205.3333 + 359.9779i,. ..,
cg = 780.5000, cf = —205.6810 + 360.25004,. .. .

What symmetry is possessed by the coefficients you have computed in (d)? Is it
necessary to compute all 12 of these coefficients directly? Explain.

Hint. Compare cf,, ¢, with cg_y, cg_}., respectively.

You now have two equally valid choices cf, (based on the six even data points) and cj,
(based on the six odd data points) for the kth coefficient of a six-term trigonometric
sum to use for fitting the given data. How would you combine these two estimates to
produce a better coefficient ¢, that depends on all twelve data points? Compare the
¢;’s produced by your “natural” choice with the coefficients you obtained in (a).

Show that the observations of (b), (e), (f) lead to the relations
ek =3k +¢0), chre=5(ck—cp), k=0,1,...,5.

In this way you see that all 12 of the 12-term coefficients cg, c1, . .., c11 can be obtained
from the eight 6-term coefficients cf, ¢, k = 0,1,2,3, with about one-third of the
effort!

Note. The recursive use of this observation leads to an FFT algorithm. For additional
details, see Ex. 6.24 and M.T. Heideman, D.H. Johnson, and C.S. Burrus, Gauss and
the history of the fast Fourier transform, Arch. Hist. Exact Sci. 34(1985), 265-277.
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» EXERCISE 1.20 Fourier derived the formula

oo
u(x,t) :/ A(s)€2ﬂ'isme—47r2a252t ds
S=—00

for the temperature u at the point x, —oco < x < oo, at time ¢ > 0 along an infinite
one-dimensional rod with thermal diffusivity a’. Suppose that when ¢ < 0 the rod is held
at the uniform temperature u = 0. At time ¢ = 0 that portion of the rod from x = —1/2
to x = +1/2 is instantaneously heated to the temperature u = 100 (e.g., by using a laser),
thereby producing the initial temperature

o° P 100 if |z| <
A(s)e ds = u(x,0+) :=

s=—00 0 if |z| >

[T

Use the analysis equation (4) together with the Fourier transform pair of Ex. 1.1 to find
A, and thereby produce a formula for u(z,t).

Note. An extensive discussion of such problems is given in Section 9.3, and plots of u(z, t)
vs. x at times t = 0+, .001/a?, .01/a?, .1/a® are shown in Fig. 9.8. Fourier’s formula
predicts temperature distributions that match our physical intuition of how an initial hot
spot in a conducting rod dissipates over time!

» EXERCISE 1.21 Let h > 0 and let the averaging operator

1 x+h
(AR f)(x) ::2h/ . flu)du, —oco<z<o0

be applied to any suitably regular function f on R.
(a) Show that Aj is linear and translation invariant.
(b) Let es(z) := €2™5% for —oo < s < co. Show that

1 ifs=0
Apes = afs)-es where a(s) i =4 ]
sin(2wsh)/2mwsh otherwise.

(c) Assume that f has the Fourier representation (3). What is the corresponding Fourier
representation for Ay f7

(d) Assume that f has the Fourier representation (5). What is the corresponding Fourier
representation for Ay f?

= EXERCISE 1.22 In this exercise you will verify certain algebraic identities that
Schoenberg used to derive the Tartaglia-Cardan formula for the roots zg, x1, 2 of a cubic
equation 22+ b’ +cex+d=0.

(a) Let xy, = Zi:o Xpw™, n=0,1,2, where w := e2™/3. Show that
(x —20) (@ —1)(x — x2) = (z — X0)* = 3X1 X2(w — Xo) — (X7 + X3).

Hint. w2 =1and 1 +w+w? =0.
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(b) Using (a), show that

27d — 9be + 23

b b2 — 3¢
Xo=—=, X1Xo= >

X3+ x5 =—
3’ 9 ) 1+ X2

® EXERCISE 1.23 In this (experimental) exercise you are to use a piano to do har-
monic analysis and harmonic synthesis of simple vocal tones, see, Section 11.1. Depress
the damper pedal (the rightmost one) of a piano, thereby allowing the strings to vibrate

freely. Shout sustained vowels aaaa ..., eeee ... ,iiii..., 0000 ..., uuuu... , semivowels
rrer ..., L0000 ... wwww ..., ]jjj ..., fricative consonants zzzz ..., ssss ..., VVVV ...,
ffff..., 6000 ..., shhh ... or nasal consonants nnnn ..., mmmm ... of various pitches

toward the sounding board and then listen as the strings return the waveform you have
generated. During the vocalization process you produce a more or less periodic waveform
that induces some of the piano strings to vibrate, with shorter, longer strings being stim-
ulated by higher, lower pitches and with stronger, weaker vibrations being induced by
louder, softer components of the given frequency in the tone. In this way each tone in-
duces a characteristic pattern of vibration of the piano’s strings, i.e., these strings serve to
analyze the original waveform. After you stop producing sound, the piano strings continue
to vibrate, and at this point they serve to synthesize the periodic waveform associated
with your vocalization.

» EXERCISE 1.24 In this exercise you will informally derive alternative forms of
the Parseval identities (11), (12), (13), (14) by suitably using the corresponding synthesis-
analysis equations and freely interchanging the limiting processes associated with integra-
tion and summation.

(a) Use (3)—(4) to show that

/:O F@g(w) do = /OO F(s)G(—s) ds,

=—0C0 8§=—00

/;_OO f(2)G(z)dz = /:)_OO F(s)g(s) ds

when F, G are the Fourier transforms of the suitably regular functions f, g on R.

(b) Use (9)—(10) to show that

N-1 N-1

> flnlgln) = N Y FIKGI-k],
n= k=

N-1 N-1 ’

> fnlGln] = > Flklglk]

n=0 k=0

when F, G are the Fourier transforms of the functions f, g on Py.
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(c) Use (5)—(6) to show that

D o0
| f@aae=p Y FiGEH
=0 k——o00
when F, G are the Fourier transforms of the suitably regular functions f, g on T}.

(d) Use (7)—(8) to show that

oo P
> st =p [ PG

n=-—00 5=0

when F, G are the Fourier transforms of the suitably regular functions f, g on Z.

(e) Use (5)—(6) and (7)—(8) to show that

JARCECITE S

=0 k=—o00

when F, G are the Fourier transforms of the suitably regular functions f, g on Tp, Z,

respectively.

= EXERCISE 1.25 In this exercise you will derive the Parseval relations from the

seemingly less general Plancherel identities.

(a) Let a,b be complex numbers. Show that

ab = t{|a +b* +ila +ib|* + i*|a + i%b|* + i*|a + i°b]?}.

(b) Use the polarization identity of (a) (on a point-by-point basis) to derive the Parseval
identities (11), (12), (13), (14) from the corresponding Plancherel identities (15), (16),

(17), (18).

» EXERCISE 1.26 In this exercise you will use properties of the centroid (from cal-

culus) to prove the discrete orthogonality relation (20).

(a) Let N = 6 and let w := e2mi/6 — (1 ++/3i)/2. Given some k = 0,1,...,5 we will
place a unit mass at each point zg := 1, 21 := w”, 20 := w?* ... 25 := w”* in the
complex plane. Sketch the six mass distributions that are produced in this way, and

use symmetry to explain why the centroid is at the origin when k = 1,2,3,4,5.
Hint. When k = 3 you will end up with a mass of size 3 at z = +1.
(b) Generalize (a) and thereby prove (20) for each N =2,3,... .
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» EXERCISE 1.27 In this exercise you will derive real versions of the orthogonality
relations (19), (20).

(a) Let k, ¢ be nonnegative integers. Use suitable trigonometric identities to show that

ifk=4=0

p
P
/ cos(zﬂ-]m) cos(zﬂ-&) dr=4¢ p/2 iftk=(+#0
=0 p p

0 otherwise,
/p (27rka:> . (27r€m>
cos sin dr =0,
=0 p p
/p . (2wkz . ([ 2mlx p/2 ifk=(#0
sin sin| —— | dx =
=0 p p 0 otherwise.
(b) Let k, ¢ take the values 0,1,..., N — 1. Show that
N ifk=¢=0, N/2

iy (%kn) (%én) N/2 ifk=fand k#0, N/2

cos cos =
o N N N/2 ifk=N—¢and k #0, N/2

0 otherwise,

N-1

cos(%-kn) Sin(%’ﬁn) -0

N N ) 7
n=0
N1 N/2 ifk=/(and k #0, N/2
. (27kn\ . [(27in .
Zsm( )sm(i): —N/2 ifk=N-—{and k #0,N/2
< N N

n=

0 otherwise.

= EXERCISE 1.28 Let f be a piecewise smooth function on T).

(a) Let T, be an arbitrary p-periodic trigonometric polynomial (21) of degree n or less,

and let s, be the corresponding nth partial sum of the Fourier series for f. Use (22)
to show that

P 4
m—snxde_ z) — 7(2)|? dz
/0f<> (@) </0|f() (@)

with equality if and only if 7 = s5. The truncated Fourier series gives the best least

squares approximation to f by a p-periodic trigonometric polynomial of degree n or
less!

(b) Derive the identity

’ — Snl(T 2 X = 3 2 — 2
[ 0= sePar=p S {|rwf+|ri-nl}.

k=n+1

The quality of the optimal least squares approximation depends on how rapidly the
Fourier coefficients F'[k] go to zero as k — £oo!
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» EXERCISE 1.29 Let f be a function on Py with Fourier transform F. Let m be
a nonnegative integer with 2m + 1 < N, and let

Tm(n] == i CkeQﬂikn/N’ smn] = i F[k]EZM‘kn/N.
k=—m k=—m
(a) Show that
N-1 ) N-1 ,
S 1#t) = sl < 7 |fln] = ]
n=0 n=0

with equality if and only 75, = sm. The truncated discrete Fourier series gives the
best least squares approximation, see Ex. 1.28(a).

(b) Derive the identity

N—-1
Sl sl =N S [FR)
n=0

m<k<N-—m

The quality of the optimal least squares approximation depends on the size of the
“high-frequency” Fourier coefficients, ¢p. Ex. 1.28(b).

» EXERCISE 1.30 In the book we use the Weierstrass theorem to show that

P o
[ r@ra<s 3 jrwf

k=—o00

when f is any piecewise continuous function on Tp. (In conjunction with (23), this gives
(16).) Show that this inequality also holds when f is any square integrable function on T),
that is continuous except for finitely many points where jumps can occur.

Hint. Use (22) and the inequality |a + b|? < 2|a|? + 2|b|? to write

/pf<x>|2dxp 3 |F[k:]|2</p F(@) — (@) de
0 ~ Jz=0

k=—o00

P P
< 2/0 () = fole) P do + 2/0 fela) — (@) da.

Here f. is any continuous function on T, and 7 is a trigonometric polynomial. When € > 0
is given, you can make the first integral on the right less than €/2 by properly choosing
fe, and you can then make the second integral less than €/2 by properly choosing 7. Fill
in the details.
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» EXERCISE 1.31 In this exercise you will examine a proof of the validity of
Fourier’s representation (5)—(6) that uses the real, even, p-periodic Dirichlet kernel

" (2n+1)/p if £ =0,+p,£2p, ...

on(x) == ;7 Z €2ﬂikwp = sin{m(2n + 1)x/p}

— therwise.
he—n p sin(mz/p) otherwise

(a) Verify the above formula for the sum that defines dn,.

(b) Let f be a square integrable function on T) that is continuous except for finitely
many points where jumps can occur. Show that the symmetrically truncated Fourier
series (5) has the integral representation

n ' p
sn(x) == Z F[k,]e%mkw/p — / fwon(zr —u)du, n=0,1,2,....
u=0

k=—n
Thus, we can verify that Fourier’s representation (5) holds at the point = (when the
limits are taken symmetrically) by showing that
P .
. sin{w(2n 4+ 1)(z —u)/p
flay= tim_ [ ppir@n D@ = u/p)
n—oo [, psin{w(x — u)/p}

du.

(c) Try to establish the validity of Fourier’s representation at some point = where f is
continuous by replacing the de la Vallée—Poussin power kernel with the above Dirichlet
kernel in the proof of the Weierstrass theorem as given in the text. Why does this
attempt fail?

(d) Show that

P
sn(z) — f(x) / {f(w) — f(x)}on(x —u)du = PL[-n] — P_[n], n=0,1,2,...

=0
where (for fixed ) ®+ are the Fourier transforms of the p-periodic functions

_ {etv) — @y

$x(v) 2i sin(mwv/p)

(e) Show that if f has a derivative at z, then the functions ¢+ have removable singularities
at v =0,%p,£2p,... with

: _ (=) _
vgr;lwqﬁi(v) = 2mifp’ m=0,+1,£2,....

(f) Using (d)—(e) show that if f is any square integrable piecewise continuous function
on Tp, with a derivative at the point z, then

flz)= lim > Flkle*m /P,
k=—n

Hint. Use Bessel’s inequality to show that ®+[n] — 0 as n — *oo.
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» EXERCISE 1.32 In this exercise you will prove the Weierstrass theorem by using
the real, even p-periodic Fejér kernel

(n+1)2 ifx=0,+p,£2p, ...
1
— )
n(z) : (ntp)sin {r(n+ 1)z/p} otherwise.
sin?(mx /p)

(a) Show that
n
o 1 2 : 2mikx/p
=—n

(n+1)
n . "t 2 Ln+1)/2 _ —(n+1)/2) 2
. —n
Hint. Z(n—i—l—\kﬂ)z =z {Zz} z{ 21 }, z # 1.
k=—n £=0
(b) Let f be a continuous function on Tj and for n =0,1,2,... let
P
on(x) := / f(W)on(z — u) du.

0

Show that g, 01,09, ... is a sequence of p-periodic trigonometric polynomials that

converges uniformly to f.

Hint. Does §y, have the properties (26)7

» EXERCISE 1.33 Let f be a continuous function on T, and let sp, on be as in
Exs. 1.31 and 1.32.
(a) Verify that
1
n—+

on(x) = 1{30(37) +s1(x) +s2(z) + -+ sn(x)}, n=0,1,2,....

(b) Show that if lim sy () = L at some point z, then lim oy (z) = L.
Hint. First use (a) to show that

nmax |sg — L| + mmax|sy — L|
=n k>n

—L| <
|onm < n+m+1

(c) Show that if the Fourier series converges at some point z, then it must converge to
f(@).
Hint. Use (b) and Ex. 1.32(b).

» EXERCISE 1.34 Establish the Fourier transform pairs (31), (32) when f,g are
suitably regular functions on R, T),.
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» EXERCISE 1.35 In this exercise you will analyze a simple numerical procedure for
computing Fourier coefficients of a suitably regular function g on T.

(a) Let N =2M + 1 where M =1,2,..., and let the vector

= [9(0)79 (%) 9 (%) eed (WJ:’W))]

be generated from samples of g. Explain why the discrete Fourier transform I' of ~
is close to the vector

(G0}, G), G2, ..., GIM), G[—M], ..., G[-2], G[-1])

of Fourier coefficients of g when the tails of G at +co are small and when M is large.

Hint. Use (32) to show that

m=—0oQ

m##0

(b) Verify that I'[k] is just the Riemann sum approximation

N-1

D\ —2mi(k/p)(np/N) P _
Z()g(nN)e N k=0,+1,...,£#M
n=

Glk] ~

for the corresponding integral of the analysis equation (6).

Note. You may wish to try this numerical scheme with the function g from Ex. 1.9.

» EXERCISE 1.36 In this exercise you will analyze a numerical procedure for com-
puting samples of the Fourier transform F' of a suitably regular function f on R.

(a) Let N =2M + 1 where M = 1,2,... . Show that the discrete Fourier transform of
the vector

[pf(O),pf (%) .of (%p) oS (%) pf (_TMP) pf (—sz) pf (‘Wp)}
of p-scaled samples of f is close to the N-vector

o) G)or (5) 2 (5)r (3) ()]

of samples of F' when the tails of both f and F' are small and when p, N are chosen
so that both p and N/p are large.
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Hint. Use the discrete Fourier transform pair

= 30 () =g 3 #(ong)

m=—0oo m=—0o0

from (29) and (32) to show that the error in component £ = 0, £1, ..., £M is bounded
by
= n - k N
P
P _ FIE—mZ).
7MH%?1X§M P Z ‘f<N mp)‘+ Z ‘ (P mP)‘
m=—0o0 m=—0oQ
m#0

(b) Verify that I'[k] is just the truncated Riemann sum approximation

M
k mp\ —2mikmP p
M)~ - p N =
F<p) EMf<N)e N k=01 xM
m=—

for the corresponding integral of the analysis equation (4).
Note. You may wish to try this numerical scheme with the Fourier transform pair
flx) = eﬂmz, F(s) = e
from Appendix 2. If you use p = 8 and N = 64, you can compute approximations to

F(k/p) that are accurate to 16 decimal places!

®» EXERCISE 1.37 Let wg be the 1l-periodic sawtooth singularity function of
(34)—(35). When z is small, we can study the Gibbs phenomenon by using the approxima-
tion (36)—(37) from the book. In this exercise you will develop the large x approximation
of Bochner that reveals the structure shown in Fig. 1.26.

(a) Let sp be the nth partial sum of (35). Show in turn that

s/n(m):w—l, sn(m):/ Mdu—mf0r|$|<l.
0

sin(mzx) sin(ru)
Hint. Use Ex. 1.31(a).
(b) Using (a), show that when |z| < 1,
sn(z) = wo(z) +G{(2n + 1)a)} — 5 sgn(z) + Rn(z)
where G is the Gibbs function (37) and

Rn(z) == ;_/Omc ( L _ %) sin{(2n + 1)u} du.

sinu
(c) Use an integration by parts argument to show that

C
<
(@) < 57

1
‘93 ‘ < 5
for a suitably chosen constant C'.

Note. I am indebted to Henry Warchall for bringing this analysis to my attention and for
pointing out that we can choose C = 1/7 in (c).
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» EXERCISE 1.38 Let f be an absolutely integrable function on R that is continuous
except for finitely many points where jumps can occur.

(a) Show that the Fourier transform F is well defined by (4).
(b) Show that F' is uniformly continuous.

Hint. Let A be that portion of R within the union of tiny intervals (b1,as),
(b2,a3),...,(by_1,an) containing the points of discontinuity of f and the semi-
infinite intervals (—oo,a1), (by, +00). You can then write

(F(s + h) — F(s)| = ’ / R G

< / 2|f<x>|dm+2 / 2l _ 1 da.

How must a1 < by < a2 < b < --- < ay < by and h be chosen to make this less
than some preassigned ¢ > 07

(c) Show that F'(s) — 0 as s — %oo. This is known as the Riemann-Lebesgue lemma.

Hint. Let A, a1,b1,...,an,by be as in (b) and write

s>|‘ / Fw)e™ 25 4y +Z / —ya(@)}e T da +Z / e—2miss ds‘

< [ i |dx+2/ 7)o

where yp is a step function (i.e., a piecewise constant function) on the interval
an < x < bp. You can make the first and second expressions small by suitably choos-

ing A and y1,¥2,...,Yn. When s # 0, the third expression can be majorized by a
finite sum of terms of the form

B .
/ Ce—%rzsacdx <
«

—27rzsx d.’lf‘

an

ws |’

» EXERCISE 1.39 Let f be an absolutely integrable function on R that is continuous
except for finitely many points where jumps can occur. In this exercise you will show that
Fourier’s representation (55) is valid at any point z where f is differentiable. (You may
wish to refer to Ex. 1.31 as you sort out the details.)
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(a) Show that

o) = | LL{ / Zf<u)e—2m}e2mdud5: / Zf<u>6L<x—u>du,

where
L .
. 2L fz=0
dp(x) == / T g = { .

L sin(2rLx)/mx  otherwise.

Thus we can show that (55) holds at some point = by showing that fr(z) — f(z) as
L — oo.

(b) Use the result of Ex. 1.1(e) to show that

oo

fo(e) - f(x) = / (F(u) — ()} (e — u) du = B(—L) — B(L),

u=—00
where (for fixed z) ® is the Fourier transform of

_ fatv) — f()

2mv

o(v) : , v #0.

(c) Show that f has the representation (55) at any point x where f is differentiable.

Hint. Verify that the Fourier integrals for ® are well defined at £L and then use the
Riemann-Lebesgue lemma of Ex. 1.38(c) to see that ®(+L) — 0 as L — oo.

» EXERCISE 1.40 In this exercise you will prove that the Plancherel identity (15)
is valid for any function f having the representation (54). In conjunction with Ex. 1.25,
this shows that the Parseval identity (11) is valid for all such functions f,g.

(a) Let f have the representation (54), let

m ) —e¥ ifxr<0
fo(z) :== Z Juz(x —xyu) where z(z) = 5 0 ifz=0
p=1 e ifx >0,

and let f; := f — fo. Explain why the functions fo, f1 and the Fourier transform F}
of f1 are all piecewise continuous absolutely integrable functions on R.

(b) Verify that

/ fi(@) fi(z) dz = / Fy(s)Fi(s) ds, / fo(@)fi(z)dx = / Fo(s)F1(s) ds.

— 00 — 00

Hint. The functions f1(z)Fy(s) and fo(z)F1(s) are absolutely integrable on the plane
—0 << oo, —00 < 8§ < 00, 80 it is possible to interchange the order of the xz and
s integrations.
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(c) Using (b), verify that the proof of Plancherel’s identity can be reduced to showing

that
/ o) da = / (Fos)? ds
TrT=—00 S=—00

whenever f( is a function of the form given in (a).

(d) Using (c), verify that the proof of Plancherel’s identity can be reduced to showing
that

o0 o0 . .
/ 2 —zp)z(x —xv)de = / Z(s)e_zmm“sZ(s)e%”ﬁ"S ds
T=—00 S=—00

whenever —oo < xy <y < 00.
(e) Using (d), verify that the proof of Plancherel’s identity can be reduced to showing

that

o0 oo
/ z(m—l—ﬁ) z (a:— ﬁ) da::/ |Z(s)|?e2™h* s
T=—00 2 2 §=—00
whenever h > 0.

(f) Show that

27is h h 1 _h
= - — — = = — — >
Z(s) T an2a?’ /_ Z(x—f—Q)z(m 2) dx 4(1 h)e ™™, h >0,

and thereby establish the identity (e).
Hint. The singularity function y; has the Fourier representation (51).

» EXERCISE 1.41 Let a; < by < ag2 < by < -+ < any < by, and for each
n=12,...,N, let

brn
e [ mama

=a,
where F, is a piecewise smooth function on [an, bn]| with
bn
/1 |Fo(s))? ds = 1.
S§=an

Show that f1, fa,..., fn satisfy the orthogonality relations

& - 1 fn=m=1,2,...,N
L:MRWMM@M{Oﬁn#m

Hint. In view of Ex. 1.40, you can use the Parseval identity (11).
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» EXERCISE 1.42 Let F be a piecewise smooth function on R with small regular
tails at oo, let Y be any piecewise smooth function on the finite interval ¢ < z < b, and
let

0o b b
f(CL') ::/ F(s)e2ﬂisx dS, fa7b(1.) ::/ F(s)eQ‘ﬂ'iSﬂE ds, y(m) ::/ Y(S)eQTrisx ds.

— 00

(a) Show that

[e%) oo b b
./ |f@>—ywn%m:1/ If@)%m—:/lF®)2@4i/IF@)—Y@NQM,

oo _
and thereby obtain a version of (22) that is appropriate for functions on R.
Hint. Use the Plancherel identity from Ex. 1.40.

(b) Show that

/‘um—nmﬂms/ (&) — ya) e

— 00 — 00

with equality if and only if y = f, 5. The truncated Fourier transform gives the best
least squares approximation, see Exs. 1.28 and 1.29.

(c) Derive the identity
| 1@ p@lae= [ reRass [ reRas
— 0 —o0 b

The quality of the optimal least squares approximation depends on the size of the
“high-frequency” portion of the Fourier transform.

» EXERCISE 1.43 In this exercise you will study the Gibbs phenomenon associated
with Fourier’s representation of piecewise smooth functions on R with small regular tails.
The analysis parallels that of Ex. 1.37.

(a) Show that the glitch function from Ex. 1.40 has the Fourier representation

- itz <0 oo
4mssin(2msx)

== fr—=0 = [ ZrESMUTSE)y
z(x) 3 0 ifz=0 /0 T+ an2s2 s
e ® ifx>0

(b) Let

L .
4rssin(2msx)
= ——d
(@) /O 1+4n2s2 °°

be the approximation to z that uses only the complex exponentials having frequencies
in the band —L < s < L, see Ex. 1.42. Show that

21(x) = 2(x) + G(2La) — §sgn(x) + Rp ()
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where G is the Gibbs function (37) and

sin(2msx)
R = — _ds.
L(@) /L ws(1 + 4w2s2) ’
Hint. Use the integral from Ex. 1.1(e).

(c) Let f be a piecewise smooth function with small regular tails, and let F' be the Fourier
transform. Describe the appearance of the approximation

L
fr(x) ::/ F(s)ezmsx ds
L

to the function in a neighborhood of some point where f has a jump discontinuity.

» EXERCISE 1.44 This exercise will introduce you to Fejér’s example of a continu-
ous l-periodic function having a Fourier series that diverges at the point z = 0.

(a) Forn=1,2,... we define

sin(2mkx)

fn(z) =27 sin{2n(n + 1)z} - Z =

k=1

Use (35) and your knowledge of the Gibbs phenomenon (as illustrated in Fig. 1.26
and analyzed in Ex. 1.37) to explain why fp is bounded.

(b) Use a suitable trigonometric identity to show that

fal(z) = cos(2mx) . cos(2 - 2mx) T cos(n - 27x) - cos{(n +2) - 2z}
n n—1 1 1
_cos{(n+3) 2mx} . cos{(2n + 1) - 27z}
2 . 7

and thereby determine the values of the partial sums

m
Snm(@) = > Fulkle®™ 7 m=0,1,2,...
k=—m
of the Fourier series for f, at x = 0.

(c) Show that we can define a continuous 1-periodic function by writing

o0

J@) =" =5 fy (@),

n=1
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(d) Show that the mth symmetric partial sum of the Fourier series for f takes a value in

excess of

i l_;’_l_i_l_i_..._’_i >nln2
217273 N A

3
when £ = 0, m = 2" | and thereby prove that the Fourier series diverges at this
point.

Note. The Fourier series does converge to f when we use the weak limit concept that
will be introduced in Section 7.6.

» EXERCISE 1.45 This exercise will introduce you to a cleverly designed mechanical
device for harmonic synthesis that was invented at the end of the 19th century.

(a) Study the mechanical linkage of Fig. 1.34 to see how uniform circular motion can be

used to produce the displacement function y(t) = yg + ccos(2wst + ).

e 0 =27st+ «

~

<

[ VAR Y

A ] |

~
<

1
[
1
T

»

The disk rotates at
/—7 [ /’ frequency s about

a fixed center.
y(t) = yo + c cos(2mst + a) A pin is located at distance ¢ from the
center of the disk, and as the disk turns the
vertical component of the pin’s motion is
transferred to a slotted member that is
constrained to move in a vertical direction

This movable member slides up and
down on a fixed vertical support.

Figure 1.34. A mechanical linkage that produces a sinusoidal displacement.

(b) One large spring with force constant K, and N smaller springs each with force con-
stant k are configured as shown in Fig. 1.35. Let y be the displacement of the lower
end of the large spring when the upper ends of the small springs are given the small
displacements y1,¥s2,...,yn. Explain why the large spring has the elongation L + y
and the nth small spring has the elongation £ + yn — (a/A)y, n = 1,2,..., N. Here
L is the elongation of the large spring and ¢ is the common elongation of the small
springs when y =y1 =ya =--- =yny =0.
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(c) Show that the apparatus from Fig. 1.35 mechanically sums the displacements

Y1,Y2,---,ynN in the sense that
al a (17!
yzczzlyn where C' := {N [Z—i—f}} .
n=

Hint. The moments balance when
N

> [£+yn - (%) y} ka =L + y] KA.

n=1

Note. Michelson and Stratton built an 80 term harmonic synthesizer using springs (as
shown in Fig. 1.35) to sum displacements yn (t) = cn cos(2mnt + ay), n = 1,2,...,80,
produced with a somewhat more sophisticated linkage than the one shown in Fig. 1.34.
A graph of the sum was drawn by a pen driven by y(t). A fascinating collection of such
graphs and a photograph of this old “supercomputer” can be found in A. Michelson
and S. Stratton. A new harmonic analyzer, Am. Jour. Sci-Fourth Ser. V(1898),
1-13.

<— Movable
members
slide up
and down
on fixed
vertical
supports

\ Axis of rotation

Figure 1.35. A mechanical device that uses springs to add small displacements.
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» EXERCISE 1.46 Let the function y have the representation

N
y(t) = cheQMS’“t, —0 <t< oo
k=1
where N=1,2,... and the (not necessarily uniformly spaced) frequencies s; <s2 <---< sy
are known but where ¢y, c2, ..., cy are unknown complex parameters. In this exercise you

will develop an analysis equation that can be used to find these coefficients.

Such problems occasionally arise in the natural sciences. For example, the height of sea
water in a given harbor is well modeled by a sum of sinusoids that correspond to the earth’s
rotation (with the sun, moon giving rise to terms with frequencies 2/day, 1.9323/day), to
the moon’s revolution about the earth, to the earth’s revolution about the sun, to the
moon’s motion out of the plane of the earth’s equator, etc., see R.A.R. Tricker, Bores,
Breakers, Waves, and Wakes, American Elsevier, New York, 1965, pp. 1-22.

(a) Show that for each k =1,2,...,N

1 t2 ; 1 b2 ;
cp, = lim / e 2Tkl () dt = Tim / e 2Tkt (1) dt
t1——oo tg — 1 =ty to——+oo to — 11 t=t,

In particular, if we have observed y(t) at all times ¢ < tp, we can use the above
analysis equation to find ¢y, ca,...,cn and then predict y(t) at all times ¢t > tp.

(b) Show that the above trigonometric sum vanishes for —co < ¢t < oo if and only if
01202:---201\/’:0.

(c) Assume that c1,ca,...,cn are all nonzero. Show that y is p-periodic for some p > 0,
if and only if the products psi,psa,...,psy are all integers. (This will be the case
when s1, s9,..., 8N are commensurate, i.e., si /sy is a rational number for each choice
of k,=1,2,..., N with s #0.)

Note. In cases where the frequencies s; < sg < --- < sy are not commensurate, the
trigonometric sum y is not periodic. Such a function is almost periodic, however, in the
sense that for every choice of € > 0 there are infinitely many e-approximate periods py,
with

ly(x + pn) — y(z)| <, —o00 < = < 00, n=0,+£1,4£2,....

These pn’s are more or less uniformly distributed on the real line in the sense that ev-
ery interval of length B contains at least one of them when B > 0 is sufficiently large,
see H. Bohr, Almost Periodic Functions, Julius Springer, Berlin, 1933; English translation
by H. Cohn, Chelsea, New York, 1947, pp. 32, 80.



2

Convolution of functions
on R, T,, Z, and Py

2.1 Formal definitions of f xg, f xg

In elementary algebra you learned to combine functions f,g by using the binary
operations of pointwise addition, subtraction, multiplication, and division, i.e.,

f+g9, f-9. f-9. flg

For example, when f, g are functions on R or Z we define
(f-9)(x) == f(x)-g(x), zeR

or
(f-9)n] = fln]-g[n], neZ

We will use the symbols %, x for two closely related binary operations, convolution

and correlation, that will appear from time to time in the remainder of the book.

The purpose of this short chapter is to introduce you to these two new operations

that result from the accumulation of certain pointwise arithmetic products.

We define the convolution product f * g of two suitably regular functions f, g by
writing

(o) = [ T f)gle - u)du

=—00

when f, g (and f % g) are functions on R, (1)

(Fe0@ = [ fwgle - ) du

when f, g (and f * g) are functions on T, (2)

89
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(f *9)ln }j flm m]

when fyg (and f x g) are functions on Z, (3)
N-1
(fxg)n] =Y flm]
m=0
when f, g (and f % g) are functions on Py . (4)

The integral, sum for computing (f * g)(x), (f * g)[n] gives the aggregate of all
possible products f(u)g(x — w), flm]g[n — m] with arguments that sum to z, n,
respectively. We must impose conditions on f, g to ensure that the integral or sum
for f x g is well defined. For example, when f, g are piecewise continuous functions
on R we can form f*g if one of the functions is bounded and the other is absolutely
integrable.

You will observe that (1)—(4) give four distinct ways to combine functions f, g,
and it would not be inappropriate for us to introduce four distinct symbols, e.g.,
®pr B, @, @ for the corresponding binary operations. In practice, this proves

P N

to be unnecessarily cumbersome, and we will use the same symbol * in (1)—(4). You
must determine the context (i.e., ask the question, “Are f and g functions on R,
Ty, Z, or Pn?7”) when you assign meaning to f * g.

We define the correlation product f * g of two suitably regular functions f, g by
writing

o

w*gxx>:3/ F@)g(u + ) du

=—00

when f, g (and f x g) are functions on R, (5)

(Fra)a)= [ Fgtutz)du

u=0
when f, g (and f * g) are functions on T, (6)
(f*g)ln) == > flmlglm+n]
when f, ¢ (and f x g) are functions on Z, (7)

when f, g (and f % g) are functions on Py. (8)

The overbar denotes the complex conjugate. We again use the context to determine
which meaning (5)—(8) is intended for f * g.
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Correlation and conjugation are closely related

When f, g are suitably regular functions on R we can use the change of variable
u:= —v in (5) to write

o0

(f % 9)(z) = / T v)de

—~

in the form of a convolution product. Similar arguments can be used with (6)—(8),
so we can always express x in terms of * by writing

frg=flxg. (9)

Here f1 is the hermitian conjugate of f, i.e.,

fi(z) := f(—x) when f is a function on R or T,,

fT[n] := f[-n] when f is a function on Z, Py,
see Exs. 1.2, 1.11, 1,15 Since
ft=1
we can use (9) to write
frg=(NTxg=Fflxg (10)

and thereby express * in terms of x. From now on we will focus on the convolution
product. You can always use (9) to convert a statement about f g to an equivalent
statement about f xg.

2.2 Computation of f xg

Direct evaluation
When f and g have a particularly simple structure, we can use the defining integral
or sum to obtain f x g.

Example Let h > 0. Find a simple expression for the convolution product of the
piecewise continuous function f on R and

1/2h if —h <z <h
ap(x) ==

0 otherwise.
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Solution We use (1) to write

(Fcan)e) = [ Fwan(e — ) du
1
= — flu)du
2h —h<z—u<h ( )
1 ac+h
= ﬁ o f(u) du, (11)
i.e., (f *ap)(x) is the average value of f on the interval [z — h,z + h]. n

Example Find a simple expression for the convolution product of the piecewise
continuous function f on T, and

ep(x) = e2mka/P =0, 4£1,42, ... .
Solution We use (2) with the analysis equation for f to write

(Fre@) = [ Flu)emanrp gy

u=0
. 1 [P .
_ e27r1km/p p- / f(u)ef%rzku/p du
P Jo
= p Flklex(z), k=0,£1,£2,... . (12)
In particular,
{pek ifk=1/¢

ep* e =

R0 k£ -

The sum of scaled translates

When f, g are functions on Py, we can use (4) to write

(f xg)n] = fI0]- g[n] + f1] - gln = 1]+ f[2] -g[n = 2] +- -+ fIN = 1] - g[n — (N = 1)].

We regard f[0], f[1], f[2],-.., f[IN — 1] as scalars that are applied to the translated
“vectors” g[n],gln—1],g9[n—2],...,g[n — (N — 1)], respectively. The same idea can
be used when f, g are functions on Z, but the sum may have infinitely many terms.

Example Find the convolution product of

f=(f10], £, £21, £18)) = (3, 1,4, 1),
g9 = (9001, 9[1],9[2], 9[3]) := (5,9,2,6).
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Solution We compute f * g on Py by summing translates as follows:

(Fxg)0]=3-54+1-6+4-2+1-9=238
(Fxg)1]=3-941-54+4-6+1-2=53
(f*g)[2] =3-241-94+4-5+1-6=41
(Fxg)3]=3-64+1-24+4-9+1-5=61

We check our work using the identity (3" f[n]) (3 g[n]) = >(f * g)[n] of Ex. 2.26,

ie.,

(B3+1+4+1)-(5+9+2+6) =9-22 =198 = 38 4 58 + 41 + 61. n

Example Let f be a function on Z with

1 fn=0orn=1
finl = {

0 otherwise.

Find a formula for the components of f1 := f, fo:=f*f, fs:=f*x(f*f),....

Solution We use a sum of translates to write
(fxg)lnl =g[n] +gln—1], n=0%1,%2,...,

and thereby produce fi, fo, f3 as shown in Fig. 2.1. In conjunction with the Pascal
triangle relation for the binomial coefficients this gives the formula

fmn] = (ZZ) ) (]

fs

N p—

W p—u

Figure 2.1. Convolution products fi = f, fo=f*f, fs=fx f*f.
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Example Let f := (1,1,0,0,0,0) be a function on Ps. Find a formula for the
components of

Jii=f, for=fxf, fa=fx(fxf), . ...
Solution We use a sum of translates to write

(17 17 07 07 07 0) * (ao» ai,0a2, 03,04, a5)
= (GO?a17a27 as, G4, a5) + (a57a07a17a27a’37a4)

= (as + ap, a0 + a1, a1 + az, a2 + as, as + as, as + as).

We then use this cyclic version of the Pascal triangle relation to write

f1=1(1,1,0,0,0,0), f2=(1,2,1,0,0,0), f3=1(1,3,3,1,0,0)
fa=(1,4,6,4,1,0), fs=(1,5,10,10,5,1), fs=(2,6,15,20,15,6),...

and thereby see that

ot = (1) + (0a) + (o) + :

The sliding strip method

We often find it necessary to compute the convolution product of functions f, g that
are defined piecewise on R, e.g.,

f(x)::{l fo<zx<l1 g(m)::{x fo<z<?2 (13)

0 otherwise, 0 otherwise.

In such cases it is sometimes possible to split the integral of (1) into a sum of
subintegrals that we can evaluate by using the fundamental theorem of calculus. In
practice, however, we are usually overwhelmed with the task of determining how
the various limits of integration depend on the argument z. For example, when f, g
are the simple functions of (13) we find

max{0,min{1,z}}

o)) = / f(u)g(x_u)du_/ (r—u)du.  (14)
o<u<l1 min{l,max{0,z—2}}
and
0<z—u<?2

There is a much better way to organize such a calculation, and we will use
the functions (13) to illustrate the procedure. For representative choices of = we
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will sketch the graphs of f(u) and g(xz — u) as functions of u, form the integrand
f(u)g(z — u), and evaluate the integral (1).

We can obtain the graph of g(z — u) as a function of u by reflecting g(u) to get
g(—u) and then translating g(—u) by x to get g(—(u — z)) = g(z — u). As an
alternative, we simply reflect the graph of g(u) about the line u = z/2 to obtain
g(u—2(u—x/2)) = g(x — u) as shown in Fig. 2.2. If you observe that the point
u = x on the graph of g(x — u) corresponds to the point v = 0 on the graph of
g(u), you will find it easy to visualize how g(x — u) slides along the w-axis as the
parameter z increases from —oo to +oo.

reflect translate
g(u) g(z —u)
| VY 7N \
0 u u 0 a: u
fold
o) | gle—w
0 u=1x/2 x u

Figure 2.2. Construction of g(z — u) from g(u) by reflection
followed by translation and by folding.

For each real argument x we evaluate the integral of f(u)-g(x —u) (by using the
formula for the area of a right triangle!) as shown in Fig. 2.3. In this way we obtain
the convolution product

x? ifo<z<1
1201 if1<z<?
(fxg)(z)= 5 ) .
2| —z+2x+3 if2<x<3
0 otherwise

shown in Fig. 2.4. Of course, you could also obtain this result by evaluating the
integral in (14), but by now you should be convinced that the analysis of Fig. 2.3
gives the desired result with much less effort.
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g(x —u)
: f(w) If £ <0
1 11
5 i (f *g)(x) = 0.
QZI—Q xT 0 1 ;
g(x —u)
: f(w) fo<az<l1
| 1—_: ,
T —2 0o 1 Y
g(x —u)
I\ fi1<z<2
:1 132 (.’13—1)2
E (fxg)(z) = IR
v u
If2<x<3
2 _1)2
(f*g)(x)—%_ (= 21)
3 u
g(x —u)
flu) f3<a
1 1
E (f xg)(z) =0.
0 1 I2 3T,

Figure 2.3. Sliding strip computation of the convolution prod-
uct of the functions (13).
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51 (f * 9)(x)
3/2

1/2

f(x)
1 — *

N - ===
8

o

— 1

(\)

w

8

0 1 0
Figure 2.4. The convolution product of the functions (13).

Example Find the convolution product f * g when

() = g(z) = {1 if —5 <z <3

0 otherwise.

Solution Visualize f(u) as a fixed box with edges at v = +1/2 and visualize g(x—u)
as a box with edges at u = x+1/2. As z increases from —oo to +00, g(z —u) slides
along the z-axis from v = —co to u = 400. The boxes first make contact when
x = —1 [i.e., when the right edge of g(x — u) at u = x + 1/2 coincides with the
left edge of f(u) at w = —1/2]. The area under the product f(u)g(x — u) linearly
increases from 0 to 1 as x increases from —1 to 0 (where the boxes coincide). The
overlap area linearly decreases from 1 to 0 as x increases from 0 to 1 [where the left
edge of g(x — u) at w = x — 1/2 coincides with the right edge of f(u) at u = 1/2].
There is no overlap when x > 1. In this way we find

0 if z<~-1
l+2 if-1<2<0 1—Jz| if|z] <1

U@ =91, 4 0<ac1 {0 if |z] > 1,
0 if 1<z

as shown in Fig. 2.5. n
f(x) g9(x) (f = g)(x)
e T -
-1/2 1/2 = —1/2 1/2 = -1 0 1 =z

Figure 2.5. The convolution product of two boxes.
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Example Let o> 0,8 > 0. Find the convolution product of

{e‘” ifz>0 {eﬁm ifz>0
g\zr) =

7@ =1, if 2 < 0, 0 ifz<o.

Solution  After noting that f(u) is nonzero on [0, 4+00) and that g(z —u) is nonzero

on (—oo,x] we write

0 ifx <0
(f *g)(x) = /x e e BE@=) gy if ¢ > 0
u=0
0 ifx <0
| peras if 2> 0and §= o
SR DA

ifx >0 and 8 # a.
a—p

(15)

Once we visualize f(u) and g(z —u) it is easy to determine the limits of integration

and perform the calculation that gives f % g as shown in Fig. 2.6.

f(z) /(@) (f = [)(z)

0 T 0 x 0

Figure 2.6. The convolution product (15) of truncated exponen-

tials with 8 = a.

Example Find the convolution product f * g for the functions of Fig. 2.7.

Solution The step functions f,g are constant on every interval (n,n + 1),

n=0,+1,4£2 ..., so we can easily obtain

(fx9)(1)=3, (fx9)2)=T7, (f*x9)3)=3, (fxg)4) =2,
=0 forn=0,-1,-2,... and n=25,6,7,...

(f *g)(n)

by adding areas of rectangles. Since (f % g)(z) is linear on every interval
n<x<n+1l, n=0,+1,42 ..., we can produce the graph of f x g as shown
in Fig. 2.7 by connecting the dots with line segments. You can find each of the

convolution products from Exs. 2.1 and 2.2 by using this procedure.
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(f*g)(z)

f(37> 71

3 | g9(z) I
2 N : 2 T ‘*1 T
| ! l 3t

11 % * 11— i = 921

| B N
0 1 2 3 7 0 1 2 T 0O 1 2 3 4 5 7T

Figure 2.7. The piecewise linear convolution product f x g of
step functions f,g.

Variations of the sliding strip method can be used to find the convolution product
of functions f,g on T,. Of course, you can move from g(u) to g(—u) to g(z — u)
by using reflection on T, followed by translation on (i.e., rotation around) T,. The
integral of f(u) - g(x —u) over T, then gives (f * g)(x). If you wish, you can regard
f as a p-periodic function on R, define

{g(m) ifo<z<p

T) =
9o(x) 0 otherwise

on R, compute f * go on R (as described above), and set

(fxg)(x)=(f*go)(x) for0<z<p.
You can also define

flz) for0<z<p glx) for0<z<p
. go(x) :=
0 otherwise,

fo(z) ==

0 otherwise
as functions on R, compute fy * go on R (as described above), and take

(f*g9)(x) = (foxgo)(x) + (fo* go)(x+p) for0<z<p.

This third alternative clearly displays the wraparound effect that can occur when
f, g are not suitably localized on T,.

Example Let 0 < a <1. Find f * f when

1 ifo<z<a
0 fa<z<l

)= {

is a function on Tj.
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Solution If we define

if r <o
fo(-’lf)i—{1 Vs

0 ifz<Oorz>a«

as a function on R, we find

T fo<z<a«a
(foxfo)(x)=R2a—2 ifa<z<2a
0 otherwise.

When 0 < a < 1/2 there is no wraparound effect and we write

T fo<z<a
(f* )z) = (fox fo)(z) = Q20 —2 fa<z<2
0 if2a0 <2 <1.

When 1/2 < o < 1 there is a wraparound effect, see Fig. 2.8, and we have

20—1 if0<x<2a0—1

(f* (@) = (fox fo)(x) + (fo* fo)(x+1) = qz if2a-1<z<a

20—z fa<z<l. ™
a=.1
f I*f
0 z 0 T
a=.6

f f*f
0 = 0 =

Figure 2.8. The functions f and f % f on T; when a = .1 and
when a = .6.
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The sliding strip method can be used to obtain the convolution product of
functions f,g on Z or Py. For such discrete functions we compute (f * g)[n] by
summing f[m]g[n — m] with respect to m [instead of integrating f(u)g(z — u) with
respect to u.

Generating functions

When a, b are suitably regular functions on Z we can form the corresponding gen-
erating functions

A(z) = Z aln]z", B(z):= Z b[n]z".
The coefficients of the product
Az)-B(z)= > Y ambk]lz" = > { > a{m]b[n—m}}z"
k=—o00 m=—0o0 n=—00 ~M=—00

are the components of a * b. If you can find the power series for A(z) - B(z), you
can compute the convolution product a * b. For example, the identity

(B424+2%) - (1422) =3+ 72+32%+223
corresponds to
(...,3,1,1,0,...)%(...,1,2,0,...) = (...,3,7,3,2,0,...).
You can use various techniques from algebra, calculus, ... to find the power series

for A(z) - B(z) and thereby find the convolution product a x* b.
Example Let o, 3 be complex numbers with 0 < |a| <1, 0 < || < 1, and let

aln] ==

" ifn=0,1,... " ifn=0,1,...
{a if n b[n]::{ﬂ if n

0  otherwise, 0  otherwise.

Find the convolution product a x b on Z.
Solution When |z| is sufficiently small, the formula for the sum of a geometric
progression gives the generating functions

[oe]

> 1 1
A= Dot = = B = 300 =
n=0

n=0
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When « # 3 we write

A) Be) = o o = 15)2'{1—1az_1—15z}

and thereby show that

n+1 _ gn+1
o p

(@b ={ a5

0 otherwise.

ifn=0,1,...

When a = 3 we use a similar argument to obtain

n+Da™ ifn=01,...
@eofu = £ .
0 otherwise.
You may wish to compare these results to those of (15). [

2.3 Mathematical properties of the convolution
product

Introduction

There are a number of basic properties of the convolution product that follow from
the defining relations (1)—(4).

The Fourier transform of f xg

Let f, g be suitably regular functions on R and let ¢ := f *x g. We use the definition
of the Fourier transform together with (1) to write

m@f/m (f * g)(@)e>7%% da

= / / f(u)g(z —w)e™ ™ du dx

L / / f(u)g(z —w)e 2™ dx du
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— / f(u)€—27risu . / g(x _ u)e—Zm’s(w—u) dx du

=—00 =—0

assuming that we can justify the exchange of limits in the Z step. In this way we
see that the Fourier transform converts convolution into ordinary multiplication.
With such informal arguments we find

q(z) = (f*xg)(x) onR hasthe FT Q(s)= F(s)-G(s) on R, (16)
q(z) == (f*g)(x) onT, hasthe FT Q[k]=p-F[k]-G[k] onZ, (17)
q[n] = (f*g)[n] onZ hasthe FT Q(s)=p-F(s)-G(s) onT,, (18)
q[n] == (f *g)[n] on Py has the FT Q[k] = N-F[k]-G[k] onPx. (19)

These four equations, Fourier’s synthesis—analysis equations, Parseval’s identities,
and Poisson’s relations are the most basic identities of elementary Fourier analysis!

An indirect scheme for finding convolution products is suggested by (16)—(19),
e.g.,

FT FT IFT
f = g - “u, G’ F-G »7 f * g

when f,g(and f * g) are functions on R, (20)

DET DFT IDFT
Py F, g Py G7 N -F.-G 7= f * g

when f,g(and f % g) are functions on Py. (21)

You will learn to use this very powerful method for computing f * g as you study
Chapters 3 and 4.

Algebraic structure

The convolution product that we have defined by (1), (2), (3), or (4) has many
of the familiar properties of pointwise multiplication. We easily verify that * is
homogeneous,

(af)xg=a(f*g) = f*(ag),

and that x distributes over addition,

Fx(g1+g2) = (f*g1)+ (f*g2)
(fitfo)xg=(fr*xg)+ (f2*9),
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by using the corresponding properties of the integrals or sums in (1)—(4). These
give the linearity relation

(mi “mfm> * (i ﬁngn) = éi}lamﬂn(m  gn) (22)

n=1
when fi,...,fm, 91,...,9n are suitably regular functions and «,...,an,
B1,..., 0N are scalars. A simple change of variables (v’ := x —u or m' :=n —m)
in (1), (2), (3), or (4) shows that * is commutative,
frg=gx*f, (23)

whenever these products are defined, see Ex. 2.19.
The associativity property,

fix(fax f3) = (f1* f2) * fs, (24)

that allows us to write
fix fox-x fn

(without inserting parentheses to specify the order in which these products are
formed) is true — most of the time, see Ex. 2.20. Since the Fourier transform of
f * g is a scalar multiple of F' - G you might expect the associativity of * to follow
from that of -, and this is the case when f1, fo, f3, f1 * fo, fo * f3, (f1 * f2) * f3,
f1x(f2x f3) are all suitably regular or equivalently when the Fourier transforms Fy,
FQ, Fg, F1 'FQ, FQ 'Fg, (F1 Fg) 'Fg, F1 . (F2 Fg) are all suitably regular. It is not so
easy to convert such vague statements into useful theorems, however. We will study
such products and convolution products more carefully in Chapters 7 and 12. For
now, you might like to see what can go wrong and explore a possible fix by working
through Exs. 2.35 and 2.36.

You will recall that the function 1 serves as a multiplicative identity for -, i.e.,

1 f=f-1=F

The functions

1 ifn=0 1 ifn=0
d[n] == ) d[n] :== _
0 ifn==+1,42,..., 0 ifn=1,2,...,N—-1

serve as identities for the convolution product of functions on Z, Py, i.e.,
dxf=fx6=Ff. (25)

No ordinary function on R or T, serves as an identity, see Ex. 3.40. (We will create
generalized functions ¢ and III for this purpose in Chapter 7.)
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A number of interesting new mathematical structures can be obtained by replac-
ing - by % within some familiar context. You can find the convolution square root
s of a function a (on R, T, Z, or Py) by solving

s*s=a,
and use it to find roots of the quadratic equation
axr*xx+bxxr+c=0.
You can formulate conditions for the convergence of the infinite series
ag+arxxr+ag*xxr*xxr+---.
You can devise procedures for solving a linear equation
axx =20
or a system of linear equations

a1l * T1 + a2 * r9 = by

91 * X1 + a9 * Tg = bo.

Related exercises can be found in Chapters 3 and 4. (You will work more efficiently
after you learn a few basic skills for taking Fourier transforms.)

Translation invariance

Let f, g be suitably regular functions on R, and let —o0o < a < oo. The function
g(x + a) results when we a-translate g, and with a slight abuse of notation we write

f@)+gla+a)= | T fwe{(e —w) + a) du

=—00

_ / T el + a) — u) du

=—00

— (fxg)(x +a).

In this way we show that the convolution product is translation invariant: If we
convolve f with the a-translate of g, we obtain the a-translate of fxg (see Ex. 2.21).
Analogous arguments show that the convolution product of suitably regular func-
tions on T, Z, or Py are translation invariant. Since the convolution product f * g
is linear in g, the corresponding convolution operator

Ag:=fxg (26)

is always LTIL.
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A function g on Py can be written as a sum of translates of the identity ¢ for the
convolution product, i.e.,

gln] = g[0] - 6[n] + g[1] - 6[n — 1] + g[2] - 6[n — 2]
+...+g[N_1}.§[n—(N—l)}.

If we pass g through an LTI system A, we obtain the output

(Ag)ln] = gl0] - (Ad)[n] + g[1] - (A)[n 1] + g[2] - (AB)[n 2]
o gIN = 1] (AG)n — (V -~ 1))

In this way we see that A has the representation (26) with

f=Ad (27)
being known as the impulse response of the system A. The same argument can be
used when f is a function on Z provided that we can apply A to an infinite series
on a term-by-term basis. After introducing generalized functions in Chapter 7 we

will see that the representation (26) or (27) can be used for many LTI operators
that are applied to functions on R or T,.

Differentiation of fxg

When f, g are suitably regular functions on R we can write

(/@ =1 [ e —uau
LT g -
— (Frg)(a)

Of course, we must impose hypotheses on f, g that allow us to exchange the order
of differentiation and integration, see Ex. 2.34. Since f x g = g * f, it follows that

(fxg) =fxg=fxg
(fxg) ' =f"xg=f g =fxg"

with



Examples of convolution and correlation 107

when f has m derivatives and g has n — m derivatives for some m = 0,1,...,n.
The corresponding Leibnitz rule

n

a3 () oo -

m=0

from calculus requires both f and g to have n derivatives.
We can use (28) and the linearity (22) to write

p(D)N{f * g} = f+{p(D)g} (30)
when p
p(D) = co+ D+ eD?+--- +¢,D, D::d—
T

and cg, c1, ..., c, are constants. This identity will prove to be useful when we study

ordinary and partial differential equations.

As you compute convolution products of functions on R, you will observe that fxg
is always smoother than either f or g, see Figs. 2.4-2.7 and 2.9 (which corresponds
to Ex. 2.7). Of course, an integration process such as (1) will always produce a
function that is smoother than the integrand. The identity (28) shows that f * g
also inherits all of the smoothness of f plus all of the smoothness of g. Exercises
2.29 and 2.37 will help you sort out the details.

IT % I1 IT + IT + II

M= =-=== =
]H

) =

8
\
—_
—
8
|
[N
N
8

Figure 2.9. The functions IT, IT * IT, and IT * IT * II.

2.4 Examples of convolution and correlation

Convolution as smearing

A discrete representation of Jefferson’s Monticello is obtained by specifying real
numbers s[n], n = 0,1,...,319 as shown in Fig. 2.10. A corresponding blurred
image
1
bln] := 1—7{5[71—8] +s[n—=T]+---+s[n+8]}
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- sln]
n
320

bln]
n
320

Figure 2.10. A discrete representation s, of Jefferson’s Monti-
cello together with a blurred image b = a * s.

(with indices taken mod 320) is also shown in Fig. 2.9. The blurred image b does
not exhibit any of the fine detail (sharp corners, chimneys, dome rings, ...) that is
present in the original scene function s.

You will observe that we can use a discrete version of (11) to write
a*s=~o, (31)

where

(32)

{1/17 ifn=0,41,42,...,48
aln] :=

0 if n = 49, +10, . ..,+159, 160

is a discrete box. Knowing a (i.e., knowing the characteristics of the defective
“camera” that produced the blurred image b) we can attempt to reconstruct s from
b by solving the convolution equation (31). In view of (19), the DFTs of a,s,b
satisfy

A[k] - S[k] = 320B[k], k=0,1,...,319
so we can synthesize s from
BIk]
Alk]
[After you learn a bit more about DFTs you will find it easy to verify that the A[k]

for (32) is never 0.] Such deconvolution techniques can be used to sharpen blurred
images, enhance old audio recordings, etc.

S[k] = 320
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Echo location

Geologists locate a layer of oil bearing sedimentary rock by sending a real signal
x(t) into the earth, listening for an attenuated echo Az(t —T') from that layer, and
using the time shift 7" to determine the depth of the oil. The scheme is complicated
by the fact that the attenuation parameter A is normally so small that the reflected
signal is buried in the noise from mini earthquakes, thermal creaking, freeway and
runway vibrations, etc. Figure 2.11 shows a chirp z and a noise-contaminated echo

e(t):=Ax(t —T) +n(t).

It does not seem possible to determine the time shift T from such data.

=)

NAN ‘
VVVTY t

e(t) = Az(t —T) 4+ n(t)

Hh\ ||‘\ I \\HVIL[“‘““L’ IHHJlHl H‘“H| ]HH \‘ |N |
WL

Figure 2.11. An FM chirp, z(t), and a noise-contaminated echo
e(t) = Ax(t —T) + n(t).

As you may have guessed, however, the transmitted signal x has been designed
with some care. (Bats, dolphins, and whales use similar frequency-modulated chirps
for echo location!) The autocorrelation function

(xxz)(t—T)= /OO z(uw)rx(u+t—T)du

=—00
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has a sharp peak at t = T, as shown in Fig. 2.12. If A is not too small, the
correlation product

(xxe)(t) = /OO z(u)e(u+t)du

=—00
o)

=A(x*xz)(t—-T)+ / z(uw)n(u+t) du

=—00

will have a corresponding peak that reveals the precise location of T, see Fig. 2.12.
We do the impossible by computing z x e!

L (exx)(t=T)

\/\J'U\/ t
T

L (@xe)(t)

. A\ M /\/\/\A (\ /\ /\A/\/\A/\,
AR A ww o

Figure 2.12. The autocorrelation (z * x)(¢t — T') and the corre-
lation product (x % e)(t) for the functions xz, e of Fig. 2.11.

Convolution and probability
The probability of throwing the integer n with a fair die is given by the discrete

density
1/6 ifn=1,2,...,6
pln] = .
0 otherwise.

We can throw the integer 6 with a pair of dice if the first and second come up 1
and 5, 2 and 4, 3 and 3, 4 and 2, or 5 and 1. Assuming that the dice are thrown
independently, the probability for throwing a 6 is obtained by writing

p[1] - p[5] + p[2] - pl4] + p[3] - p[3] + p[4] - p[2] + p[5] - p[1].
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In this way we see that

oo

p2(n] = Z plmlpln —m] = (p*xp)[n], n=0,£1,4£2, ...

m=—00

gives the probability of throwing the integer n with a pair of dice.

If we have 3 dice we will obtain the integer n if we throw 1 with the first die and
n — 1 with the remaining two, 2 with the first and n — 2 with the remaining two,
etc. This analysis gives the formula

o

ps[n] = > plmlpa[n —m] = (p* p*p)[n]

for the probability of throwing the integer n with three dice. Analogously,
paln] = (pxp*pxp)n], ps[n]=(pxpxpxp*p)n],...

give the probabilities for throwing the integer n with 4,5, ... dice.

You can generate the probability densities ps,ps,... by using the sliding strip
method to convolve p with p, ps,... as follows.

6p[n] 1 1 1 1 1 1
n 2 3 5 6 7 8 10 11 12
36(psp)fn] | 1 2 3 4 5 6 5 4 3 2 1

n| 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
216(p*p*p)[n] 1 3 6 10 15 21 25 27 27 25 21 15 10 6 3 1

You can also compute p, p* p, p*p *p, ... in cases where the face numbers
1,2, 3,4, 5, 6 on the die are replaced by other integers, e.g., when the six faces are
numbered 1, 1, 1, 2, 2, 3 we begin with the density

3/6 ifn=1

. 2/6 ifn=2

Pl=4 06 i =g
0 otherwise,

see Ex. 2.30.
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Convolution and arithmetic

Let A, B be positive integers with the base 10 representations

A=ag+0a110+a10® +--- | B=by+b10+b10* + --- .
The digits a,, b, take values 0,1,...,9, and we will assume that a.,, b, are defined
for all n = 0,4+1,4+2,... . We can form the product C := A - B by computing the

convolution product ¢ = a * b of the digit strings and writing
C=co+c110 4107 4 - -+ .

The “digits” cg, c1,ca2,... that we obtain in this way may take values greater than
9, so we must use a suitable carrying process to obtain the canonical base 10 form

C=cy+ci10+ch10% + -

with digits ¢, ¢}, ch, ... that take the values 0,1,...,9.
You will recognize these steps in the following computation of the product 3141 -
5926 = 18613566.
107 | 10 | 10° | 10* |10® | 10% | 10' | 10°
3 1 4 1
X 5 9 2 6
3x6 | 1x6 [4x6 |1x6
3X2 | 1x2 [4x2 |1x2
3x9 |1x9 [4x9 |1x9
3x5 | Ix5 |4x5 |1x5
15 32 35 61 23 26 6
1] 8 6 1 3 5 6 6

When we use the familiar elementary school algorithm for multiplication, we do a
portion of the carrying process as we write each line. In the above computation we
allow “digits” greater than 9 in the intermediate steps but we reduce the “digits”
to canonical form in the last line.

We can also regard the digit strings a, b for A, B as functions on Py and generate
a * b within this context provided that N is large enough to avoid wraparound
effects. For example, we can use the function d on Pgy with

dj0] =6,d[1] =17,...,d[30] = 1,d[31] = --- = d[63] =0
to represent the digits of
2190 — 1267650600228229401496703205376 .
Figure 2.13 shows d, d * d, and the digits of 2100 . 2100 on Pg,.
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j I L )
OWMMW | Mmm .
OWH Rt R Rl -

2100 . 2100

The canonical digits of on Pgy

Figure 2.13. Computation of 2190 . 2100 by convolving digit
strings on Pgy.

Suppose that we wish to find the product of two M-digit numbers. If we use the
usual elementary school algorithm, we must multiply each digit in the multiplicand
by each digit in the multiplier, thus forming M? digit-digit products in the course
of the calculation. You can easily write down 4 or 9 such products when M = 2
or 3, but not even the fastest computer can form the 10° - 10° digit-digit products
that would be required for the multiplication of billion digit integers. How then is
it possible to compute a billion digits of 7 = 3.14159...7

The fast Fourier transform (FFT), an algorithm we will describe in Chapter 6,
uses a small multiple of N log, N arithmetic operations to produce the discrete
Fourier transform of an N-component vector. If we use the FFT with (21), we can
compute the convolution product of N-component vectors by expending a small
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multiple of Nlog, N arithmetic operations. This makes it possible to multiply
two M-digit integers using a small multiple of 2M log,(2M) arithmetic operations.
(When you compare M? = 10*® with 2M log, 2M = 62 - 10° for M = 10°, you will
see that the familiar elementary school algorithm is hopelessly inefficient!) You will
find additional details for this multiplication scheme in Ex. 2.31.

You can add, subtract, multiply large integers by adding, subtracting, convolving
the digit strings and then reducing the resulting “digits” to canonical form. If you
keep track of exponents, e.g.,

(123-1073Y) - (456 - 10%?) = (123 - 456) - 10~®

you can add, subtract, multiply floating point numbers. A trick from calculus
provides an efficient scheme for doing division. (Don’t even think of coding the
wretched long-division algorithm from elementary school!) Newton’s iteration

Tyr1 =2, (2—a-x,), v=01,...

for computing the root, 1/a, of f(z) := a — 1/x, uses only multiplication and
subtraction. The iterates converge quadratically, so if xg is good to 10 digits, then
r1,T2,x3,... will be good to 20,40,80,... digits. Once you have computed the
reciprocal 1/a to the desired precision, you can find the quotient b/a =b- (1/a) by
using fast multiplication. The familiar Newton iteration

, v=0,1,...

then leads to a fast algorithm for computing v/a, a > 0.

If you like to code, you can use these ideas to develop software for doing “high-
precision” calculations using +, —, X, +, NE You may not reach a billion digits

on your PC, but you can use the AGM iteration

1 1
ﬁ , =
apy1 = (ay, +b,)/2, byg1 = \/(a,, b)), turr =t — oy (apgr — av)27

Ty41 =2z, v=01,...

ag = ]., b() =

to compute a few thousand digits of

2 bQ
S Chl)

t 4t

where a := lima,, b :=limb,, ¢t := limt, (see J.M. Borwein and P.B. Borwein, Pi
and the AGM, John Wiley & Sons, New York, 1987, p. 48).
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Further reading

Bracewell, R.N. The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill,
New York, 2000.

A nice introduction to convolution is given in Chapter 3 of this popular text
for scientists and engineers.
Briggs, W.L. and Henson, V.E. The DFT, SIAM, Philadelphia, 1995.

Properties of the discrete convolution product and numerous applications are
described in this book.

Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 1, 2nd
ed., John Wiley & Sons, New York, 1957.

Chapter 9 describes the convolution of functions on Z within the context of
probability theory.

Feller, W. An Introduction to Probability Theory and Its Applications, Vol. 2, John
Wiley & Sons, New York, 1966.

Chapter 5 describes the convolution of functions on T,, R within the context
of probability theory.

Gaskill, J.D. Linear Systems, Fourier Transforms, and Optics, John Wiley & Sons,
New York, 1978.

An exposition of convolution as used in optics is given in Chapters 6 and 9.

Henrici, P. Applied and Computational Complex Analysis, Vol. 3, John Wiley &
Sons, New York, 1986.

Discrete convolution (with corresponding fast algorithms for arithmetic and for
manipulating power series) is discussed in Chapter 13.

Oppenheim, A.V., Willsky, A.S., and Young, I.T. Signals and Systems, Prentice
Hall, Englewood Cliffs, NJ, 1983.

An exposition of convolution as used in systems theory is given in Chapter 3.

Schoenberg, 1.J. Mathematical Time Ezxposures, Mathematical Association of
America, Washington, D.C., 1982.

Convolution within the context of geometry is discussed in Chapter 6.

Stade, E. Fourier Analysis, John Wiley & Sons, Hoboken, NJ, 2005.
Chapter 5 develops various mathematical properties of the convolution product.

Walker, J.S. Fast Fourier Transforms, 2nd ed., CRC Press, Boca Raton, FL, 1996.
Many applications of convolution can be found in this elementary text.
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Exercises

@ EXERCISE 2.1 Find the following convolution products (of functions on R).

@ 1 « 1 @ T T o« I
1 1 0 1 2 3 0 1 2 3

(b) 1 | * 1 | | | (e) 1 | * ]-T | |
1 0 1 2 3 1 aa+1

(@ o« T (£) 1T T 1T O
1 0 1 2 3 aa+1 b b+

= EXERCISE 2.2 Functions f,g on R are given by the following graphs.
3t/ g

Ll
— ol 1 i ) i 3 T
-1 —

Find the following convolution and correlation products.

(a) fxf (b) fxg (c) g=f (d) gxg
(e) fxf (f) Fxg (8) g*f (h) gxg
» EXERCISE 2.3 Let h be the Heaviside function,
h(z) = {1 %fiL'>O
0 ifx<O.

Find the following convolution products:

(a) hg:=hx*h

(b) hg:==hxhxh

(¢) hpn:=hxhx---xh (with n factors of h)

(d) h(x —x1) * h(x — x2) * - - - x h(x — xpn) where 21, 2,...,2Ty are any real numbers.
(e) {z™h(x)} * {z"h(x)} where m,n are nonnegative integers.

Hint: This convolution product is a scalar multiple of hy,4ny2.
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» EXERCISE 2.4 Let f(z):= h(z)e”* where h is the Heaviside function of Ex. 2.3.
Find the following convolution products.

(a) fo:=fx*f

(b) fa:=fxfxf

(¢) fn:i=f=f---*f (with n factors of f)
)

(d) {z"f(z)} *{z" f(z)} where m,n are nonnegative integers.

» EXERCISE 2.5 Let f(z) := e 1®l. Show that (f * f)(z) = (1 + |=|)e” 1.
Hint. When z < 0 you can split the integral over R into easily evaluated integrals over
(=00, ), (x,0), (0,00). Do this and then make clever use of symmetry!
®» EXERCISE 2.6 Let f(z) :=¢ ™, —00 < z < 00.
(a) Verify that f(u)f(z —u) = e=2m(u=2/2)* o—ma®/2,

o0
(b) Using (a), show that (f * f)(z) = T ™ /2 where I := f e 2y dy.

—0

Note. In Chapter 3 you will learn an easy way to show that I = 1/v/2.

= EXERCISE 2.7 For n = 0,1,2,... we define the B-spline By, on R by writing
By :=1I, By :=1I%1I, By :=1I I« II, ... where

I1(z) = {1 for |z| <

0 for |x| >

= D=

Graphs of By, By, Bs are shown in Fig. 2.9.
(a) For which values of x is Bn(z) > 07
(b) Show that By, is differentiable with

Bh(x) =Bp_1(z+ %) — Bp_1(z — 3), n=12,....

Hint. Begin with the defining integral for By, = I1 % B;,_1.
)

(c) For which values of m is Bflm continuous?

(d) Express BT(LH) as a sum of scaled translates of By = II.
Hint. Use (b) to express Bj, in terms of By, _2, By in terms of B, _3, etc.
Note. The B-splines have many applications in numerical analysis. We use the

formula

1
Bn(x):E {[%(n—l— 1)+ z]Bp—1(z + %) + [%(n—# 1) —z]Bp—1(x — %)} ,n=1,2,...
recursively [with Bg(x) = II(z)] when we want to evaluate B, at some point z, see
Ex. 3.31.



118 Convolution of functions

» EXERCISE 2.8 Let
1 for0<z<lor3<z<4
T) = - - z):=x for0<xz<4
/(@) {O for 1 <z < 3, 9(@) B

be regarded as functions on the circle T4. Find the following convolution products:

(a) fxf (b) fxg (c) g*yg
= EXERCISE 2.9 Let
er(x) := e%“m/p, kE=0,£1,4£2,...

ci(x) := cos(2mkx/p), k=0,1,2,...
sp(x) :=sin(2wkx/p), k=1,2,3,...
be regarded as functions on the circle Tp. Find the following convolution products:
(a) ep*eq (b) ek xcy (c) erxse (d) cpxee (e) ck*sy (f) sp*se

» EXERCISE 2.10 Let f be a function on Z with f[n] := 1/n! when n = 0,1,...
and f[n] =0 whenn=—-1,-2,.... Let fi:=f, fo:=f«f, fs:=f*xf*f,.... Find a
simple formula for the components of fm, m =1,2,....

Hint. Make use of the Maclaurin series for e”.
» EXERCISE 2.11 Let f,d be functions on Z with §[0] := 1 and d[n] := 0 if

n = 1,42, .... Let the translation parameters m,mi,ma be integers. Find simple
expressions for the following convolution products:

(a) d[n — my] *d[n — ma] (b) d[n —m] * fln] (c) d[n—m1]* fln —ma]

m EXERCISE 2.12 Let §, A, h be functions on Z with

-1 ifn=1

1 ifn=0 1 ifn=0,1,2,...
d[n] := Aln]:=1<1 ifn=0 hln] :=

0 otherwise, . 0 otherwise.
0 otherwise,

(a) Show that Axh=hx A =9.
(b) Let A1 :=A, Ay :=AxA, Az3:=AxAxA,.... Find a simple formula for Ap[n],

p=1,2,....
(c) Let hy := h, hg := hxh, h3 := hxh*h,.... Find a simple formula for hp[n],
p=1,2,....

Hint. When n >0, ho[n] = (n+1)/1!, hg[n] = (n+ 1)(n +2)/2!, ...
(d) Using (a), show that if p, ¢ are nonnegative integers, then
Ap_q ifp>gq
Apxhg=149 ifp=gq
hg—p ifg>p.
Note. You may wish to compare this result to that of Ex. 2.24(c).
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» EXERCISE 2.13 Let f,g be suitably regular p-periodic functions on R having the
Fourier series

f(x): Z F[k] eZ‘Irikl'/P’ g(iﬂ): Z G[k] eQﬂikz/p'
k=—oc0 ke —o0

(a) Formally multiply these Fourier series and combine like terms to obtain the Fourier
series for the product f-g. In so doing, you should make suitable use of the convolution
product F' x G.

(b) Formally convolve these Fourier series and simplify to obtain the Fourier series for the
convolution product f * g. In so doing, freely make use of the result from Ex. 2.9(a).

» EXERCISE 2.14 Find the convolution product f *g when the functions f, g on P4
are given by:

(a) f = (17 27374)7 g = (170,070); (b) f = (17 27374)7 g = (07 07170);

(C) f = (1727374)’ g:: (17717070); (d) f = (17273’4)7 g:: (1717171)'
m» EXERCISE 2.15 Find the convolution products f* f, f* fx f, f* f* f* f when
the function f on P4 is given by:

(a) f:=(1,1,0,0); (b) f:=(1,-1,0,0); (c) f:=(1,0,0,0);

(d) f:=(0,1,0,0); (e) f:=(0,1,0,1); (f) f:=(1,1,1,1).
» EXERCISE 2.16 A function f on P4 has the components f[0] = —1, f[1] = f[2] =
f[3] = 1. Find the convolution product f * f:

(a) by using a direct computation;

(b) by writing f[n] = u[n] — 26[n] where

1 ifn=0
uln] =1, n=0,1,2,3, J[n]:= 1 "
0 ifn=1,2,3,
and using algebraic properties of the convolution product with the identities uxu = 4u,
uxd=u,dx9d =79.

» EXERCISE 2.17 Find the convolution product f * f when:

(a) f is a function on P5 having components f[0] = f[1] =0, f[2] =1, f[3] = 2, f[4] = 3;
(b) f is a function on Z having the components of (a) with f[n] =0if n <0 or n > 4;

(¢) f is a function on Ty given by the following graph.

3t f(z) —
2 —
L —
0O 1 2 3 4 5 r
(d) f is a function on R given by the graph of (¢) with f(z) =0if z <0 or > 5.
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» EXERCISE 2.18 Find all functions f on Py such that:
(a) fxf=1:=(1,1); (b) fxf=4d:=(1,0).

» EXERCISE 2.19 Show that the convolution product is commutative, i.e.,
f1 % fo = fox f1 when f1, fo are suitably regular functions on:

(a) R; (b) Tp; (©) Z; (d) Py.

Hint. Set u' := 2 —u or m’ := n — m in the defining integral or sum.

= EXERCISE 2.20 Show that the convolution product is associative, i.e.,
fi*(fax f3) = (f1* f2) * f3 when f1, fa, f3 are suitably regular functions on:

(a) R; (b) Ty (c) Z; (d) Py.

Hint. Give an informal argument in which you freely interchange the order of integration
or summation. (Conditions that justify such an interchange of limits for functions on Z, R

can be found in Exs. 2.35 and 2.36.)

®= EXERCISE 2.21 Let f1,fo be functions on R and assume that f; * fo is well

defined.

(a) Show that if we translate fi or fa, then fi * fo is translated in the same direction by

the same amount, i.e.,

filx+a)* fa(x) = (f1 * fo)(x + a) = fi(z) * fa(x +a), —oc0<a<oo.

(b) Draw a sketch to illustrate the result of (a) in the case where f1, fo are rectangular

pulses, see Ex. 2.1.

(c) Formulate a rule for computing f1(x + a1) * fa(z + ag) * - - * fn(x + an).

» EXERCISE 2.22 Let the functions f, g on R be given by

@) 1 ifo<z<2 () 1 if0<z<3
)= x) =
0 otherwise, g 0 otherwise.

(a) Find and sketch the convolution product f * g.

(b) Use (a) to find and sketch the convolution product of the functions

fa(@)i= > flw—4m), ga(z):= Y glz—4m)

on the circle Ty4.
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» EXERCISE 2.23 This exercise will help you determine where certain convolution
products must vanish.

(a)

(b)

Let f1, fo be piecewise continuous functions on R that vanish when = < a1, = < a2,
respectively. Such functions are said to have a finite past. Show that f1 x fa is a
well-defined continuous function that vanishes when = < a1 + as.

Let fi1,...,fn be piecewise continuous functions on R that vanish when z <
ai,...,xr < an, respectively. What can you infer about fi *--- % f?

Formulate an analogous result for the convolution product fi *---* f, of piecewise
continuous functions on R that have finite futures.

Let f1,..., fn be piecewise continuous functions that vanish outside of the finite
intervals [a1,b1], ..., [an, bn], respectively. What can you infer about the convolution
product fy x--- % fp?

Note. You can use Exs. 2.1, 2.7, etc. to illustrate this result.

= EXERCISE 2.24 Let D be the derivative operator, i.e., (Df)(x) := f'(x), and let
hi1=h, ho =hxh, h3 =hxh=xh, ... where h is the Heaviside function, of Ex. 2.3.

(a)

(b)
()

Show that the convolution integrals

(hx f)(x) = / Flu)du, (hx f)(a) = / £ () du

—00

are well defined when f is continuous, f’ is piecewise continuous, and both f and f’
are absolutely integrable on R.

Using (a), show that D(h * f) = h* (Df) = f when f is suitably regular.

Let p,q be nonnegative integers. Show that if f, f',..., f (P=1) are continuous and
absolutely integrable, and if f ®) is piecewise continuous and absolutely integrable
then
DPTIf  ifp>gq
DP(hq+f) =1 f if p=gq
hg—p* f ifqg>p.

Note. You may wish to compare this result to that of Ex. 2.12(d).

» EXERCISE 2.25 Let fn(z) := a:”e‘”Q, n = 0,1,2. Use the differentiation rule
(28) with the known convolution product fg * fo from Ex. 2.6 to find:

(a) fox fi; (b) f1* f1; (¢) fo* fa
Hint. Observe that f{) = —27f1 so that fo* f1 = (—1/2m)(fo * fo)’.
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» EXERCISE 2.26 In this exercise you will establish a multiplicative relation for the
convolution product.

(a) Let f,g be piecewise continuous, absolutely integrable functions on R. Show that

/:mu»ﬁg)(x)dx - {/xi)of(w) dx}{/m;g@)dx}.

Hint. Since f(u)g(x — u) is absolutely integrable on R? you can exchange the limits
of integration.

(b) Formulate an analogous result for functions f, g on T)p.

(c) Let f,g be functions on Py. Show that

N-1 N-1 N—-1
D (frg)n] = {Z f[n]}{z g[n]}-
n=0 n=0 n=0

(d) Formulate an analogous result for functions f, g on Z.

Note. A nonnegative function f on R, T;, or Z, Py is said to be a probability density if its
global integral or sum is 1. This exercise shows that the convolution product of probability
densities is a probability density.

= EXERCISE 2.27 Let c:= (cg,c1,...,¢ny-1),d:=(do,d1,...,dny—1) and let C,D
be the corresponding N X N circulant matrices

co CN_1 CN_2 ... C1 do dy_1 dy_o ... dy

c1 co CN_1 ... C2 dy do dn_1 ... d2

C= co c1 co | D= do d1 do ... ds
CN-1 CN-2 CN-3 --- € dy-1 dy-—2 dy-3 ... do

(a) Show how to relate the matrix vector product CxT to the convolution product ¢ *x
on Py when x := (zg,%1,...,TN_1)-

(b) Using (a), show that CD is the circulant matrix corresponding to ¢ x d.
(¢) Show that C and D commute, i.e., CD = DC.

» EXERCISE 2.28 In this exercise you will derive Taylor’s formula (from elementary
calculus) by using certain convolution products.

(a) Let h be the Heaviside function of Ex. 2.3. Use the fundamental theorem of calculus
to show that if g is continuously differentiable for z > 0 and g(0) = 0, then

9(z) = [(hg) x h(z), @ >0.
(b) Show that if f is twice continuously differentiable for x > 0, then
[(hf") k) x k] (z) = f(z) = f(0) =2 f'(0), «>0.
Hint. Use (a) with g(x) = f'(z) — f'(0) and with g(z) := f(z) — f(0) — zf'(0).
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(c) More generally, show that if f is n times continuously differentiable for > 0, and
we define h1 :=h, ho ;= hxh, h3 :=h*hxh,..., then

of'(0) 20 ")
1

oL >

[(hf ™) hnl(2) = (@) = £(0) = =5 T 1)

(d) Using (c) and the compact formula for hy obtained in Ex. 2.3, show that if f is n
times continuously differentiable for z > 0, then

n—1

e x ~
fla)=>" ! (0)+(n11)!/u_0f(n)(u)(x—u)" Ydu, x>0

k!
k=0

Note. This formula holds if we allow f () to have isolated points of discontinuity where
finite jumps occur. We can also shift the point of expansion from x = 0 to z = a and
remove the restriction x > a.

» EXERCISE 2.29 Explain why:

Slope = Aj - As
at x = a1 +ag
(a) Aq / o * 2 N, . = ) ,,,.f
“ a2 a1 n az
Slope = —Bj - Bg
at x = b1 + b2
(b) Bi ~// % _ \
B 2 \.'\‘_.. - ) 4\\\
b1 bo b1 + bo

Note. You should assume that all of these functions are piecewise smooth. The 1st, 2nd
factors in (a) vanish to the left of aj,as while the 1st, 2nd factors of (b) vanish to the
right of by, bo, respectively, so you can use Ex. 2.23.

= EXERCISE 2.30 Find the probability density functions

piln] :=plnl, p2[n] = (pxp)n], psln]:= (pxp*p)n], paln]:=(p*p*p*p)n]
for throwing the integer n with 1, 2, 3, 4 fair dice when the six faces of each die are marked
with the integers:
(a) 17172725373; (b) _17_15_1713171; (C) 171)17272)3'
Hint. Construct paper strips to facilitate a sliding strip computation of the convolution
products ... or use a computer!
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» EXERCISE 2.31 The product 123 x 456 = 56088 can be obtained by computing
(3,2,1,0,0,0) * (6,5,4,0,0,0) = (18,27,28,13,4,0) and then reducing the components of
this convolution product on Pg to digits by using the base 10 carrying process

(18,27,28,13,4,0) - (8,28,28,13,4,0) % (8,8,30,13,4,0)

This exercise will help you understand this algorithm so that you can write a computer
program to multiply large integers having thousands, millions, and even billions of digits.

We select a base 3 =2,3,..., a precision index M = 1,2, ... and a corresponding vector
length N := 2M, e.g., the above example uses f = 10, M = 3, and N = 6. An N-vector
a = (a[0],a[l],...,a[N — 1]) with integer components represents

I(a) := al0] + a[1]8 + a[2]3 + -+ + a[N — 13" 1.
We say that a is reduced if ajn] = 0,1,...,8 — 1 for each n =0,1,..., N — 1, and we say
that a is half length if a[n] =0forn=M,M +1,...,N — 1.
(a) Verify that Z(a) < M — 1 when a is reduced and half length, with this bound being
the best possible.
(b) Show that if a, b are reduced and half length, then Z(a)-Z(b) = Z(a*b), i.e., we can
multiply large integers by convolving strings of “digits” on Py .

(c) Show that if a, b are reduced and half length, then Z(a * b) = Z(c) for some reduced
N-vector c, i.e., show that Z(a) - Z(b) does not have more than N “digits”. You can
use the algorithm

c:=axb

Forn=0,1,...,N — 2 do:
carry := [c[n]/f]
c[n] := ¢[n] — carry - 8

c[n + 1] := ¢[n + 1] 4 carry
to find c. Here |z is the largest integer that does not exceed x.
(d) Show that if a, b are reduced and half length, then (a * b)[n] < M(8 — 1)

(e) Suppose that your computer can exactly represent every integer 1,2, ..., P when do-
ing routine floating point arithmetic. The above algorithm will allow you to multiply
integers up to size S := M — 1 provided you choose 8, M such that M(B— 12 <P
What constraints does this impose on M and on S when:

(i) P = 2%* — 1 (typical short precision) and 8 = 10? 8 = 100? 8 = 2?

(ii) P = 2°0 — 1 (typical long precision) and 8 = 10? 3 = 100? 3 = 27
Note. In practice, small errors are introduced when the components of a b are computed
by using (21) with the FFT (as described in Chapter 6). It can be shown that the modulus
of each such error is bounded by a small multiple of (ﬁ2/P) -M -logy M. We can completely

eliminate the error in a computed approximation to (a * b)[n] by rounding to the nearest
integer if we choose 3, M to ensure that the modulus of each error is less than 1/2.
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» EXERCISE 2.32 Let B be a polygon in the complex plane with the vertices
v, V1, ---,VN_1 (i-€., P consists of the NV line segments joining vg to v1, v1 to va, ..., vN_2
tovn_1, and v_1 tovg). Let P’ be the polygon obtained from 3 by using as vertices the
N midpoints wg := (vy_1+v0)/2, w1 := (vo+v1)/2,...,wn_1 := (VNy_o+vN_1)/2 of the
sides of I3 (i.e., P’ consists of the N line segments joining wg to w1, w1 to wa,. .., WyN_o
to wy_1, and wy_1 to wp). It is a simple matter to construct ‘,]3/ when ‘B is given.
The inverse, known as Kasner’s problem, requires us to find 3 when B’ is given. In this
exercise you will solve Kasner’s problem using the discrete convolution product.

(a)

(b)

(d)

Sketch B, P’, and P = (P’)’ in the cases where P is a scalene triangle, a rectangle,
a kite (i.e., a quadrilateral having orthogonal diagonals that are of unequal length),
and a pentagonal star (with v, = 64””/5).

Let v = (vg,v1,...,0N-1), W = (wp,w1,...,wN_1), and a = (%, %,0,0,...,0) be
regarded as functions on Py;. Verify that the construction of 3 from P requires us
to compute w = a * v when v is given while the construction of 3 from B’ requires
us to solve the linear convolution equation a * v = w for v when w is given.

When N = 3,5,7,... we regard a := (%, %,O,O,...,O)7 b = (1,-1,1,—-1,...,
1,-1,1), 6 := (1,0,0,...,0) as functions on Pp. Verify that a*xb = bxa = §
(i.e., that b is the inverse of a with respect to the convolution product). Use this fact
to show the convolution equation a * v.= w has a unique solution and then express
the components of v in terms of the components of w.

When N =4,6,8,... we set
b:= %(37 _17 _173)7 %(57 _3: 1: 17 _375)7 %(77 _5737 _17 _1737 _577): cee

and regard a := (3, 3,0,0,...,0), c:= (1,—1,1,—1,...,1,—1), § := (1,0,...,0), as
functions on Py . Verify that

1
axc=cx*xa=0, a*b:b*a:(s—ﬁc, c*xVv=ac

where o :=vg —v1 +v2 —v3+---+vN_2 —UN_1, and then use these relations to
prove the following statements:

(i) If ¢ * w # 0, then the convolution equation a * v = w has no solution.

(ii) If ¢ x w = 0, then v is a solution of the convolution equation a x v = w if and
only if v has the representation v = b * w + (B¢ for some choice of the scalar 3.

Find polygons B, B1, P so that the inverse Kasner problem has no solution,
exactly one solution, infinitely many solutions, respectively.

Note. A geometric technique for constructing 8 from 3’ can be found in Schoenberg,
pp- 60-63.
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» EXERCISE 2.33 Let f,g be piecewise continuous functions on R with f being
absolutely integrable and with g being bounded.

(a) Show that f * g is well defined by (1).

Hint. Write |f(u)g(z — u)| < B|f(u)|, where B is a bound for |g|.
(b) Show that f * g is continuous.

Hint. Choose a1,x1,...,ax,XK So that

K

go(z) = g(x) — Z aph(x — )

k=1

is bounded and continuous on R.

» EXERCISE 2.34 In this exercise you will study differentiation of the convolution
product. Let g be a continuous function on R with a piecewise continuous derivative g¢’.
Let f be a piecewise continuous function on R, and assume that f(u)g(z—u), f(u)g'(x—u)
are absolutely integrable functions of u for each choice of = (so that f * g and f * ¢’ are
well defined). Show that f * g is differentiable with (f * g)'(x) = (f * ¢')(x) at each point
x where f * ¢’ is continuous.

Hint. First show that

h
(f*g)(x+h})1—(f*g)(x) C(frd) @) = 2/120{(f*g/)(m+v) —(f ) (@)} do.

)

m» EXERCISE 2.35 In this exercise you will study the associativity of the convolution
product of functions on Z.

(a) Let a # 0 be a complex number and let f1, f2, f3 be defined on Z by

1 ifn=0
n . e _fa" n=0,1,2,...
filn]:==a",  faln]:=q —a ifn=1 fa[n] = .
otherwise.
] 0 th
0 otherwise,

Show that f1 * fa, (f1 * f2) * fa, fo * f3, f1 * (f2 * f3) are all well defined but
(f1# f2) x fs # f1 % (fa = f3).

(b) Let f1, f2, f3 be (arbitrary) functions on Z. Show that

oo oo

{fix(fox Ml = > Y filblfaln—p—dlfsldl,

{(frefo)x fatll = > Y filblfaln—p—dlfalal.

Although these double sums have exactly the same summands, the first summation
is done by columns and the second is done by rows.
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(¢) A sufficient condition for the two double sums of (b) to exist and be equal is that

o0

3" IAlplfeln —p— dlfsld] < oo for all n.

P,q=—00
Use this result to verify that (f1 * f2) * f3 = f1 * (f2 * f3) when:

(i) f1, f2, f3 all have finite pasts (i.e., each is a translate of some function that vanishes
when its argument is negative); or

(ii) two of the three functions f1, f2, f3 are support limited, i.e., they vanish for all but
finitely many values of their arguments; or

(iii) two of the functions f1, f2, f3 are absolutely summable and the third is bounded.

» EXERCISE 2.36 In this exercise you will study the associativity of the convolution
product of piecewise continuous functions on R.

(a) Let f1, f2, f3 be defined on R by

1 ifz>0

0 ifx<O fa(x) == (6—952/2)/ - e_gg?/z’ f3(x) := h(—2x).

fi(x) :=h(x) = {

Show that f1 * fa, (f1 * f2) * f3, fa* f3, and f1 * (f2 * f3) are all well defined but
(f1* f2) x f3 # f1 % (f2 % f3).

(b) Let fi, f2, f3 be (arbitrary) functions on R that are continuous except for finitely
many points where finite jumps can occur. Show that

{fi*x(faxf3)}(z) = /_ /_ f1(u) fo(x —u —v) f3(v) dv du,

(Grepm@= [ [ A= 0o da

Although the integrands are identical, the first integration uses vertical slices and the
second uses horizontal slices of the plane, see Ex. 2.35(b).

(c) A sufficient condition for the two double integrals of (b) to exist and be equal is that

// |f1(u)fo(x —u—v)f3(v)|dudv < co for all .
R2

Use this to verify that (f1 * fo) * f3 = f1 * (f2 * f3) when:
(1) f1, f2, f3 all have finite pasts; or

(ii) two of the three functions fi, fo, f3 are support limited, i.e., they vanish outside
some finite interval; or

(iii) two of the functions f1, fa, f3 are absolutely integrable and the third is bounded.
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» EXERCISE 2.37 Let f be a complex-valued function defined on R. We write
fe S0 provided that f, f' are continuous except at a finite number of points (if any) where
the one-sided limits f(xz+), f(z—), f'(z+), f' (z—) exist and are finite. For n = 1,2,...
we write f € S™ provided that f, f’,..., f("fl) are continuous and f(”) e S, eg., h(z),
xh(x), :172h(ac)7 ... liein S°, 81,52, ..., respectively. In this exercise you will verify that
convolution preserves and promotes smoothness by showing that if f, g have finite pasts
[see Ex. 2.23(a)] and if f € S™, g € 8™, then fxg € S™F" 1 This increase of smoothness
can be seen in the solutions of Exs. 2.3, 2.4, and 2.7.

(a) Let x1,...,zk be the points, if any, where f(m), f(m+1), g(”), g("+1) have jump
discontinuities, let

ag = fO @) = F (@), b= FD @) — U (),
cr =g (@pt) — 0" (@e=), di= g0 (@) — g0 (@),

let hy :=h, ha := hxh, ..., and let the functions fy, gg be defined so that
K
F(@) = fo(@) + > Aarhmi1(z — 2x) + bphma( — z4)},
k=1
K
9(@) = go(@) + Y _{ekhn1(z — o) + dihnio(@ — z5)}
k=1

Show that fg, go have finite pasts and that fo € C™*, g € C"*! (ie., fo has m+1
continuous derivatives and gg has n + 1 continuous derivatives).

(b) Show that fo % go € C™ "2,
¢) Show that fo *hp € C™TPT and gg xhp € C"TPTL p=12, ... .
P P
(d) Show that hp xhg € SPTI71 p=1,2,... .
(¢) Finally, using (a)—-(d) show that fx g € ST+,

Note. An analogous argument can be used when f, g have finite futures.
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The calculus for finding

Fourier transforms of
functions on R

3.1 Using the definition to find Fourier transforms

Introduction

If you want to use Fourier analysis, you must develop basic skills for finding Fourier
transforms of functions on R. In principle, you can always use the defining integral
from the analysis equation to obtain F’ when f is given. In practice, you will quickly
discover that it is not so easy to find a transform such as

/ SIH(W.TU) e 2miST 0 — 2/ Sln(ﬂx) COS(Q?TSJJ) dz
— 00 0

T ™r

by using the techniques of elementary integral calculus, see Ex. 1.1.

In this chapter, we will present a calculus (i.e., a computational process) for
finding Fourier transforms of commonly used functions on R. You will memorize a
few Fourier transform pairs f, F' and learn certain rules for modifying or combining

known pairs to obtain new ones. It is analogous to memorizing that (z")" = na"~1,
(sinz) = coszx, (e*) = €%, ... and then using the addition rule, product rule,
quotient rule, chain rule, ... to find derivatives. You will need to spend a bit of

time mastering the details, so do not despair when you see the multiplicity of drill
exercises!

Once you learn to find Fourier transforms, you can immediately use Fourier’s
analysis and synthesis equations, Parseval’s identity, and the Poisson relations to
evaluate integrals and sums that cannot be found by more elementary methods. You
will also need these skills when you study various applications of Fourier analysis
in the second part of the course.

129
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The box function

The box function

1 for 1 <z<d
H(ac)::{ 2 2

0 fora:<—%orx>%

and the cardinal sine or sinc function

sinc(s) := sm(7rs)7 s<0ors>0
s

are two of the most commonly used functions in Fourier analysis. We often simplify
the definition of such functions by omitting the values at the singular points. When
pressed, we use midpoint regularization and write

T—xo+ T—T0o—

() = 1 { lim II(z)+ lim H(I)} =1 when zy =+,

sinc(0) = £ {51_1)1(1)14r sinc(s) + sl_i)%l_ sinc(s)} =1

to fill in the holes.
Since f := II is even, we can simplify the Fourier transform integral by writing

F(s) = / h (z)e 2™ dg = / b II(z) cos(2msx) dx.

— 00 —oo

We then use calculus to find

1/2 in(2 1/2
F(s) = / cos(2msx) dx = sin(2rsz) = sinc(s),
—1/2 2ms z=—1/2
see Fig. 3.1.
1 f(@) 1 ‘ F(s)
—1/211/2 @ I 5

Figure 3.1. The box f(x) = II(x) and its Fourier transform
F(s) = sinc(s).
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The Heaviside step function

We define the Heaviside step function
1 ifz>0
h(z) == l v
0 ifx <0,
see Ex. 2.3, and use h to create functions that vanish on a half line. For example,
sin(2rz)e™* if x>0

sin(2rx)e”*h(z) = {0 <0

1 ifx<1
0 ifzx>1,

h(l—x):{

h(3+a)h (5 - 2)=TI(x),

1 ifz>0
h(z) — h(—x) = sgn(z) = {_1 fo <0
0 ifz<l1

- 1 ifl<z<?2
Zh(x_n): 2 if2<z<3
n=1 .

The truncated decaying exponential

We can find the Fourier transform of the truncated decaying exponential

f(x) :=e " "h(x)
by writing

F(S) —_ / efmef%rism dr

=0
L d _67(1+27ris)$
= lim — K ——— b dx
L—+too J, dz { 1+ 2mis }
1— 87(1+27ris)L
im —F
L—+o00 1+ 2mis
1
14 2mis
1 2mis
1+4nm2s2 14 4n2s2°
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(We justify the step Z by applying the fundamental theorem of calculus to the real
and imaginary parts of the integrand.) In this case we must display both Re F' and
Im F' as shown in Fig. 3.2.

f(z) Re F'(s)
1 1
i)
0 1 x 0 1 s
1+Im F(s)

Figure 3.2. The truncated decaying exponential f(z) := e "h(x)
and its Fourier transform F(s) = 1/(1 4+ 2mis).

The unit gaussian

We define the unit gaussian
flx) =€

and use the fact that f is even to write

F(s) = / e ST gy — / e cos(2msx) dx.

— 00 — 00

We will use an indirect argument to evaluate this integral.

Since the integrand and its derivative with respect to s rapidly approach 0 as
r — +00, we can write

F’(s):/ efngcos(%rsx) de,

oo ds

and in this way we see that

oo

F'(s) 4+ 2msF(s) = / e‘”Q{(—ch) sin(2mwsx) + (2ms) cos(2msz)} dx

— 00

> d
= / @{67”2 sin(2wsx)} dx = 0.

— 00
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It follows that
e Fls)) = ¢ (F/(5) + 2msF ()} =0,
s

so that
6”2F(s) = F(0), —o0<s<o0.

We use a familiar trick from multivariate calculus to find the positive constant

F(0) = / e da.

We write

F(0)2 = {/j e~ dx}{/:oo e~ dy}

_ e ] /OO 71-(:E2+y2) dydaj‘

e
— =—00

00 27
= / / e~ r df dr
r=0 J60=0

o0 2
:/ e " 2rrdr =1,
r=0

and thereby see that F'(0) = 1. In this way we obtain the Fourier transform
F(s) = e s

(that turns out to be the very same function as f) as shown in Fig. 3.3.

| f@) | F()

77'('1'2

Figure 3.3. The unit gaussian f(x) :=e and its Fourier

transform F(s) := e s’
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Summary

You will eventually memorize a number of the Fourier transform pairs f, F' from
Appendix 2. For now, make sure that you know that:

f(z) :=11(x) has the FT F(s) = sinc(s); (1)
f(x):=e*h(z) hasthe FT F(s)=1/(1+2mis); (2)
f(z):=e™"  hasthe FT F(s)=e ™. (3)

3.2 Rules for finding Fourier transforms

Introduction

Throughout this section, f, f1, f2,... and g will be suitably regular functions on
R with the corresponding Fourier transforms F, Fi, F5,... and G. If we obtain ¢
from some modification of f, then there will be a corresponding modification of
F that produces G as illustrated in Fig. 3.4. Likewise, if we obtain ¢ from some
combination of f; and fs, then there will be a corresponding combination of F; and
F, that produces G. Such observations form the rules of our calculus for finding
Fourier transforms. We will now state a number of such rules, give simple informal
derivations, and illustrate how they are used.

Function World Transform World
Mirror

Action: f — g Reaction: F — G

Figure 3.4. Action (raise left hand) and reaction (raise right
hand) with mirror images is analogous to the mappings f — g
and F' — G of a Fourier transform rule.
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Linearity
Let ¢, c1,ca,... be complex scalars. We verify the scaling rule

g(x) :=c f(x) hasthe FT G(s)=cF(s) (4)
by writing

G(s) := /00 c flx)e ™5 dy = ¢ /_00 f(z)e ™% dg = ¢ F(s).

— 00

We verify the addition rule
g(x) :== fi(z) + fa(x) has the FT G(s) = Fi(s) + F»(s) (5)

by writing
Gs) = [ (Ao + fola))e " do
= /OO fi(z)e ™% dg 4 /OO fa(z)e 257 dg = Fy(s) + Fa(s).

When taken together, (4) and (5) give the linearity rule

g(z) :=cr1fi(x)+ - +emfm(z) hasthe FT G(s) =c1Fi(s)+ - +emFm(s). (6)
You are familiar with this property from your work with derivatives and integrals.
Reflection and conjugation

We verify the reflection rule
g(x):= f(—z) hasthe FT G(s)= F(—s) (7)

by writing
G(s) :== / f(=z)e 2™ dg = / f(u)e™ 2™ =) gy, = F(—s).
Example Show that the Laplace function
g(z) ;== e71®l has the FT G(s) = 2/(1 + 4n2s?). (8)

Solution We know that

f(z):=e ®h(x) hasthe FT F(s)=1/(1+4 2mis).



136 F'T calculus for functions on R

Since g(xz) = f(x) + f(—z), see Figs. 3.2 and 3.5, we can use the addition and
reflection rules to write

G(s) 1 n 1 2
s) = = .
1+ 2mis ' 1—2mis 1+ 4n2s? "
x F(s
I JM
0 1 z 0 1 s
Figure 3.5. The Laplace function f(z) = e~!*! and its Fourier
transform F(s) = 2/(1 + 4n%s?).
We verify the conjugation rule
g(x) := f(x) hasthe FT G(s)= F(—s) (9)
by writing
G(s) :== / f(z)e ™% dg = / f(x)e2mi(=9)r dp = F(—s).
Example Derive the hermitian conjugation rule
g(x) := f(—z) has the FT G(s)= F(s). (10)
Solution We use the reflection and conjugation rules in turn to see that
f(=z) has the FT F(—s),
f(=z) has the FT F(——s)=F(s). n

You may find it instructive to use the rules (7), (9), and (10) to formulate answers
for Ex. 1.2!

Translation and modulation
Let xo be a real parameter. We verify the translation rule (or shift rule)

g(x) := f(x —x¢) has the FT G(s) = e 2™5%0 . F(s) (11)
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by writing
G(S) — / f(x _ x0)€72ﬂ'isx dr = 627Ti8$o/ f(u)ef%risu du = 6727T’L‘SJ?0F(S).

You will notice that the same algebraic sign is used with the two appearances of xg
n (11). You will undoubtedly find it helpful to use the same sign shift mnemonic
to remind yourself of this fact, e.g.,

O(z+1) hasthe FT e™™sincs,
II(z —1) has the FT e ?™sincs.

Example Find the Fourier transform of

1 fo<x<l
glx)=4¢2 ifl<z<?2
0 ifz<Oorax>2.

Solution We write
g(x) =T(z — 3) +2M(z — 3)

and then use (6), (11), and (1) to obtain
G(s) = {e ™ + 2e~ 3™ }sinc s. n

Let so be a real parameter. We verify the modulation rule (or transform shift
rule)

g(z) = €% . f(z) hasthe FT G(s)= F(s— so) (12)
by writing
G(S) — / eQﬂisoz f(x)e—%risoc dr = / f(x)€—27n‘(s—so):p do = F(S _ 30)'

In this case opposite algebraic signs are associated with the two appearances of sg.

Example Find the Fourier transform of

costr if —l<x<i
g() :={ 2 ?

0 otherwise.
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Solution We use Euler’s formula for the cosine to write

g(:v) — %{ez’wx + e—iwm}H(m)
— %62771’(1/2)9011(1,) + %(3—271'1‘(1/2)3&11(1,)7

and then use (6), (12), and (1) to obtain

G(s) = 3sinc(s — 1) + 3sinc(s + 3). n

Dilation

Let a # 0 be a real parameter. We verify the dilation rule (or similarity rule)

g(x) := f(ax) hasthe FT G(s)= VLF (2) (13)

by writing

1 [ .
= / f(u)e 2mis/Du gy if g >0
e . aJ_o
G(s) :—/ flax)e ™% dy = .
a

/ f(u)e2™/Du gy if g < 0

You will notice that the dilation factors a, 1/a that we use with f, F' are reciprocals.
If we compress one of these functions, then we stretch the other by the same amount.

Example Find the Fourier transform of

1 if-1<x<1
g(x) = .
0 ifz<—-lorz>1.

Solution  We observe that g(z) = II(z/2) and use the dilation rule to write
G(s) = 2sinc(2s).

We obtain the same result (in a slightly different form) if we observe that
g(x) =II(x +1/2) + II(x — 1/2) and use the translation rule to write

, , : (2
G(s) = (€™ + e ™) sincs = 2cos s SIS _ g sin(27s)
s 27s

(The removable singularity at 2 = 0 has no effect on the integral that gives G.) m
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Example Show that the normal density

]. 2 2 - 2 2.2
g(x) == maef(xf”) /20" has the FT G(s) = e 2™isk =27 078", (14)

Here o, u are real parameters with o > 0.
Solution  We use (3), (13), and (11) in turn to see that

2 2

e has the FT e TS

)

1 2 /6 2 1 2 2 2 2.2
—x°/20° _ —m(x/V2m o) h —m(V2mos)* _ _—2n°0c"s
e =———c¢ as the FT e =e
Vamo Varo ’

1 2 2 . 2 2 2
—(z—p)*/20 has the FT —2misp ,—27°0%s
e as the e e .
V21 o
These functions and their transforms are shown in Fig. 3.6. ]
f(x) F(s)
1 1
0 l’ 0 S
(2mo?)~1/2 4 fo(x) F,(s)
1
0 UU 0 S
(2mo2)~1/2 | 9(x) Re G(s)
1
AAW/\WAWA ‘
IVALVAVI\VAVALY
‘ s
T
0 a Im G(s)
JAWA WAWA
VUVUNVV s

Figure 3.6. The unit gaussian f, the dilate f,, the translated
dilate g, and the corresponding Fourier transforms F, F,, G.
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Example Find the Fourier transform of g(z) := cos(27rﬁx)e_”(x/°‘)2. Here a,
are parameters with a > 0, 5 > 0.

Solution Since

g(a:) — %632%1'63:6771’(3:/&)2 + %67271'1:5.726771'(13/&)2

we can use the dilation and modulation rules to write

see Fig. 3.7. [

Figure 3.7. The function g(z) := cos(2rBz)e~™ /%" and its
Fourier transform G(s).

You must exercise some care when you use two or more of the rules in succession.
For example, the functions

g1(z) == fla(z+ b)), ga(x):= flax+b) = f (a ($+ Z))

are obtained when we a-dilate and b-translate as follows:

(@) a-dilate flaz) b-translate Fla(z + b)),
b-translate a-dilate
flz) ———== f(x+Db) R flaz +b).

Make sure that you understand why the correct Fourier transforms are given by

e27‘ribs s e2ﬂ'i(b/a)s

Gils) = = F (2), Galsy=———F(2),

a |al a

e.g., by sorting out the details in Ex. 3.1.
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Inversion

In cases where Fourier’s synthesis equation is valid we can formally verify the
exceptionally powerful inversion rule

g(x) == F(z) hasthe FT G(s)= f(—s) (15)

by simply writing
G(s) :/ F(x)e 2™ dy :/ F(z)e?™ (=) dg = f(—s).

Of course, it takes the detailed analysis from Section 1.5 to show that this argu-
ment is valid when either f or F is a piecewise smooth function on R with small
regular tails.

By applying the inversion rule to (1), (2), and (8) we find

g(z) = sincx has the FT G(s) = II(s), (16)
g(x) =1/(1+2miz) has the FT G(s) =¢e’h(—s), (17)
g(z) = 2/(1 +4n%2?) has the FT G(s) = e l°l. (18)

You will recall from your work on Ex. 1.1 that such Fourier transforms are not
easily derived from the definition!

Derivative and power scaling

In cases where f is a suitably regular function on R we can verify the derivative
rule
g(z) := f'(x) hasthe FT G(s)=2mis-F(s) (19)

by using an integration by parts:
© .
G(S) _ / f/(w)efmmsar dx
—0oC

; e—27risacf(m)

o0
+ 27ris/ f(z)e ™5 dy
rT=—0Q — 00
L orisF (s).
The argument is rigorous when f is a continuous function with a piecewise smooth

derivative and both f(x), f'(x) [or both F(s), s-F(s)] satisfy the sufficient conditions
for Fourier’s representation as given in Section 1.5, see Ex. 3.41.
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These hypotheses can also be used when we verify the power scaling rule
g(x) ==z - f(x) hasthe FT G(s) = (—2mi) " F/(s) (20)

by writing

Gls) = / o f@)e2mion gy

— o0

? 1 d > —2misx
= Tomids | f(x)e dx

= (=2mi) " F/(s).
Example Show that

g(x) == 2z~ ™"  has the FT G(s) = (—i)2se‘”2. (21)

Solution We can express g in terms of the unit gaussian by writing

o) =~ (e} or gla) =20},

so we can use (3) with either the derivative rule or the power scaling rule to obtain

1 > d 2
G(s) = —=2mise” ™" G(s) = 2(=2mi) "t —{e ™ ).
(s) —2mise or G(s) (—2mi) = {e } -
Example Let —co < a <oo,8>0,andn=0,1,.... Show that
(2) ! has the FT
T) = as the
I (@ +a+if)t!
G+(8) _ :T’L(_zﬂ_is)nh(s)e%nas 67271—’88,
. n! (22)
- = has the FT
9-(z) G a g s the
27 )
G (8) _ +2m (—27T7;8)nh(—8)627”a8 e+27rﬁs.

n.
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Solution  We use (17), (13), (4), (19), (4), (11), and (9) in turn to see that

1
T 9riz has the FT  h(s)e™*,
— 2mix
1 —4TPSs
T(x/%rﬁ) has the FT (271'5)}7,(8)6 2mf s
1
ey has the FT  (—2mi)h(s)e ™53,
x+i
(_1>nn' . s\ —27Bs
@+ i)t has the FT  (—27i)(27is)"h(s)e )
T +1p)"
1 . (727.”'8)71 —270s
W has the FT (—27TZ)Th(S)€ N
1 . (_271-2.8)” 2mias | —27P3s
@ tatif)r has the FT (—27m)Th(s)e e )
1 . (—27Ti8)n 2mias 270s
@t has the FT (+27TZ)T}'L(—S)€ e’ TP, n

You can now use (22) in conjunction with a partial fraction decomposition to
find the Fourier transform for any rational function f(z) := p(z)/q(x), where p, q
are polynomials with degq > degp and ¢ has no zeros on R, see Ex. 3.12. It is
surprising how much you can do with these simple rules!

Example Find the Fourier transform of f(z) := 1/(1 + z*).

Solution The function f has the partial fraction decomposition

1 o+ ia —a +ia o — —a — o
4 |+ a+ia T — o+ T+ oa—ix r—a—1ix

where a := v/2/2, see Ex. 3.13. Using (22) we take Fourier transforms term by term
to obtain

F(s) = (o +ia)e?™es (=27i)e 2T h(s) + +(—a + ia)e 2™ (=27i)e 2T h(s)

1 1
1 1
+ 1 (a — ia)e®™ s (270) e h(—s) + 1 (—a — ia)e 2T (27i)e? S h(—s).

Convolution and multiplication

In cases where f1, fo are suitably regular functions on R we can formally verify the
convolution rule

g(x) == (f1 * f2)(z) hasthe FT G(s) = Fi(s)- Fa(s) (23)
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by writing
G(s) := / / fi(u) fo(z — u)e™ 2™ duy dx

L[ hwe - e e dodu

o0

_ / FL(w)e 2 By (s) du

=—00

= F1 (S>FQ(S).

We must impose hypotheses to ensure that f1, f2, f1* f2 have valid Fourier represen-
tations and to facilitate the above change in the limits of integration, see Ex. 3.44.
Similar considerations apply when we formally verify the multiplication rule

g(xz) :== fi(z) - fo(x) hasthe FT G(s) = (Fy * Fy)(s) (24)

by writing

6= [ R

=—0C

— / / F1 (0_)627Tiawf2 (x)e—Qm'sx do dz

£ / Fy (0)/ fo(2)e 2™~ 4y do

=—00

/a T R(0)Ry(s— o) do.

=—00

Example Show that

g(x) := A(z) hasthe FT G(s) = sinc’s, (25)
g(x) = sinc’z  has the FT G(s) = A(s), (26)
where the triangle function is given by

1- if -1<z<1
A(z)::{ lz| i x

0 otherwise.

Solution We recall that A = TI+1II (as shown in Fig. 2.5), so we can use the convo-
lution rule with (1) to obtain (25), see Fig. 3.8, and we can use the multiplication
rule with (16) to obtain (26). n



Rules for finding Fourier transforms 145

Figure 3.8. The triangle f(z) = A(x) = (Il « II)(z) and its
Fourier transform F(s) = sinc’s.

Example Find the Fourier transform of the piecewise linear function g shown in
Fig. 3.9.

g9()

Ys
Y2 Y4

Figure 3.9. A continuous piecewise linear function g.

Solution We can express g in the form
g(x) = nA(z —1) + yoA(x — 2) + ysA(z — 3) + yaA(z — 4) + ysA(x — 5).

(The left and right sides both vanish when 2z < 0 or > 6, both are linear on
the intervals [0,1],[1,2],...,[5,6], and both take the values 0,y1,...,y5,0 when
n=0,1,...,5,6.) We use this with (6), (11), and (25) to write

G(S) — {yle—Qwis‘l 4 y2e—2m’s~2 + y3€—2m’s~3 + y4e—27ris~4 + y5e—2wis‘5}sin02 (S) -

Example Find a continuous solution of the forced differential equation

y'(z) + y(x) = ()
assuming that y(z) = 0 for all sufficiently large negative values of z, see Fig. 3.10.

Solution Since y'(z) = —y(z) when x < —1/2 or x > 1/2 we can conclude that
both y and 3’ are piecewise smooth functions with small regular tails. We Fourier
transform each term of the differential equation to obtain

(2mis)Y (s) + Y (s) = sincs
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Ty 12 @

Figure 3.10. The solution of the differential equation y'(z) + y(z) = I1(x)
that vanishes when z < —1/2.

and thereby find
1

14 2mis’
We then use (1), (2), and the convolution rule (23) to see that

Y (s) =sincs -

y(x) = /00 I (u)h(z —u)e” @™ dy

0 for =< -1/2
={1—e®71/2 for —1/2 <2 <1/2
(el/? —e~12)e=® for x> 1/2.

Summary

You have now seen the elements of the Fourier transform calculus for functions
on R. Exercises 3.2—-3.12 provide the drill you will need to master this calculus, and
Exs. 3.19-3.21 will help you visualize the meaning of these rules. You may refer to
(1)-(26) (or to the tables in Appendices 2 and 3) as you are learning this material,
but before you finish your study of this chapter you should memorize these basic
identities.

As you find Fourier transforms you can freely use your knowledge of algebra,

trigonometry, calculus,. ... For example, you can easily verify that
2sin®(rx)
flo) = 22T
I

has the equivalent representations:
f(z) = 27z - sinc?(x)
= i{e ™" — ™} sinc(x)

= i{2sinc(2z) — 2¢"™ sinc(z)}
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and then use (26) and (20), (12) and (1), (12)—(13) and (1) to obtain the corre-

sponding expressions:

d
F(s)=1i3 —A
0 =i{ 520
1 1
—i{II )1 (s— =
SUCHELICH)
—iqT () —2m -
B 2 2
for the Fourier transform. Of course, you can also verify that
f(x) = g(z) - sinc(x), g(x):=2sin(mx),
but it makes no sense to use (24) and write

F(s) = (G +I)(s)

since you cannot find the Fourier transform G for g (at this point in the course).

The rules apply only when the functions are suitably regular!

3.3 Selected applications of the Fourier transform

calculus

Evaluation of integrals and sums

The analysis and synthesis equations of Fourier, the Parseval and Plancherel iden-
tities, and the Poisson relations link suitably regular functions and their Fourier
transforms. We will now present several examples to show how these links allow
us to evaluate various integrals and sums that cannot be found with the usual

techniques of elementary calculus.

Example Find the value of the integral

e 2
I(o) :—/ e dx, a>0.

— o0

Solution  We use (3) with the dilation rule to see that

f(l') = e—ocxz — e_ﬂ(ﬁz/ﬁ)Q has the FT F(S) — \/?6

(&%

—25% /o

?
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and then use the analysis equation to write

Ia) = /_O; f(2)e™ 0% 4y = F(0) = \/Z.

Example Find the value of the integral

I(a) = / > sin(r) cos(2maz)

T

dr, —o00o<a< .
— 00

Solution We know that the even function
f(z) =sinc(z) has the FT F(s) = II(s),
so we can use Fourier’s analysis equation to write

if |a| <
if o] =
if |a| >

O N =

I(a) = /OO f(z)e ™% 4y = F(a) = H(a) =

The midpoint regularization of II is essential when o = i%.

Example Find the value of the integral

e dx
1:= —_—.
| e

Solution  We use (18) and the dilation rule to see that

f(z) = has the FT  F(s) = me 278!,

1+ 22

and then use Plancherel’s identity (1.15) to write

I= / @) de = / F(s)? ds = 22 / et ds = 1.
[0]

— o0 — o0

Example Find the value of the integral

© /eing\?
I:= / ( ) dr.
oo T

N~ N~ N~
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Solution We use (16), (26), and the dilation rule to see that

f(z) = sinw_ sinc(%) has the FT F(s) = nll(rws),
: 2
g(z) := (SH;I> = sinc? (%) has the FT G(s) = mA(ws),

and then use Parseval’s identity (1.11) to write

1/27

I= /_O; f(x)g(z)dz = /oo F(s)G(s)ds = 7r2/ A(ms) ds

—o0 —1/2m

1 1\ 3
2
7r27r<+2> 4"

[We use the formula for the area of a trapezoid to find the area under A(ms) between
—1/27 and +1/27.] m

You will observe from these examples that the Parseval identity or Plancherel
identity allows us to exchange one integral for another that may (or may not!) be
easier to evaluate.

Example Find the value of the sum
1
S(p) = g —, p>0.

1+m?2p?’

m=—0Q

Solution  We use (27) and the Poisson sum formula (1.45) to write
oo

Sp)= Y. fmp)= > 1F<k> =T 3 el

m=-—0o0 k:—oop p k=—00

o0
== 22(6_2”/p)k =" coth<w> .
r | &= p p
The Poisson relation allows us to replace an intractable sum with a geometric pro-
gression that we can evaluate easily! n

Evaluation of convolution products

Now that you know how to find Fourier transforms, you can evaluate the convolution
product g := f1 * f2 of suitably regular functions fi, fo on R by

o finding the Fourier transforms Fy, F5 of fi, fa,
o forming the product G := F} - F5, and
o finding the inverse Fourier transform ¢ of G,
see (2.20). We will give three examples to illustrate this process.
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Example Evaluate the convolution integral

o) = / sin7u sin(x — ) o
w mu  mw(x—u)

Solution The integral defines g = f * f where
f(z) :=sincx has the FT F(s)=II(s).

Thus
Gls) = F(s) - F(s) = I1(s) - T1(s) = T1(s),

and by taking the inverse Fourier transform we find
g(x) = sincz.

(We can ignore the singular points at s = :I:% when we write II - IT = II since both
sides of this equation have the same midpoint regularization.) ™

Example Find the convolution product g = f; * fo of the normal densities

fl(x) = 1 e*(mfﬂl)z/QJ%’ f2(x) — ;67(17[142)2/20’%.

V2T oy V21 o9
Here o1, p1, 02, po are real parameters with o > 0, o2 > 0.
Solution We use the transform pair (14) to find Fp, Fy and write
G(s) = Fi(s) - Fa(s)
—27riu156—27r0fs2 . 6—27Tiu236—27r2ags2

=e

o 5.2 2.2
—e 27r1;436 27TO'S’

where p1 1= py + p2, 02 := 0? + 03. We again use (14) to see that

1 —@w?/20®
2no

g(x) =

You can find g by evaluating the convolution integral (see Ex. 2.6), but this indirect
calculation is much easier! n

Example Let f1=f, fo=fxf, fs=f*f*f,... where f is the normal density

e—(e—p)?/20°
V2mo

with —oco < < 0o and o > 0. Find a simple expression for f,(z).

flz) =
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Solution We first use (14) to write
Fn(S) _ F(S)n — e*271"L‘511,u6727r2nc72527
and then use (14) to see that F), is the Fourier transform of
e—(w—nu)2/2n02
n\T) = |
fu(@) V2mno
The Hermite functions
The Hermite polynomials are defined by the Rodrigues formula
Hy(z) = (~1)"e* {D"e "}, n=0,1,2,..., (28)
where D := d/dx is the derivative operator, e.g.,
Hy(z) =1, Hi(x) = —e$2{67$2}/ =2z, Hy(z) = emQ{e*IQ}” =4z -2, ...
These polynomials satisfy the two-term recursion
():( )nD{ean —x}
=(-1)" {er”"” D"e " + eIZD"“e*“EQ}
— 20 H,(2) — Hyya (o) (29)
and the three-term recursion
Hyi(2) = (~1)"+He” (Dt le"}
= (—1)"e {D"(2ze"")}
= (—1)"e™ {QxD”(e_xQ) + n(2x)/D”_1(6_$2)}
=2zxH,(x) — 2nH,_1(x). (30)
[We use the Leibnitz differentiation rule (2.29) in the third step of (30).]
We will show that the Hermite function
folz) = Hy(V27 x)ff”Q has the FT F,(s) = (—i)"H, (V27w 8)67”2, (31)
i.e., that fo, f1, f2, f3,... are eigenfunctions of the Fourier transform operator with

the corresponding eigenvalues 1, —i,—1,4,..., see (3), (21). Graphs of fo, f1, fo, f3
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1, fo(z)

4 | 4"
542, f(a)

B | TANS.
] 4

Figure 3.11. The Hermite functions f,, () := H,(v27z)e ™,
n=20,1,2,3.

are shown in Fig. 3.11. These functions appear in quantum mechanics, physical
optics, statistics, ... . We first use the two-term recursion (29) to write

2

fn—i—l(ﬂf) = Hn-l—l(\/%l')eiﬂ—m
= {2V2r 2 H, (V27 z) — H,(V27 2)}e ™™

= V2 afa(r) - —=f(2), (32)
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and then use the power scaling and derivative rules to obtain the corresponding
relation

1

1
/ - .
—27riF (s) 27is Fp(s)

" V2T

= (—i) {\/ﬂan(s) - \/1271*"72(8)}

Fn—i—l(s) = \/%

for the Fourier transforms. Now if F,(s) = (—i)" f,(s) for some n = 0,1,2,...,
then we can use this relation with (32) to write

Fupa(s) = (—i) {m S(=i)" fals) — V}ﬁ(z’)“ﬂxs)} () ().

Since fy is the unit gaussian, Fy(s) = (—i)°fo(s), so the inductive proof of (31) is
complete. Additional properties of the Hermite functions are developed in Ex. 3.37.

Smoothness and rates of decay

When f(x), f'(x),..., f("(x) are suitably regular functions on R we can use the
derivative rule to find the corresponding Fourier transforms F'(s), (2mwis)F(s),...,
(2mis)™F'(s) and thereby obtain the analysis equation:

o0

(2mis)"F(s) = / ) (2)e 277 g, (33)

r=—00

We majorize the integral by writing

(2nis)"F(5) < [ 71 (@) da,

and thereby see that F'(s) decays at least as fast as 1/s™ in the limit s — +o0.
Exercise 3.42 shows that the analysis equation (33) holds when f, f/,..., f(»=1
are continuous, f(") is piecewise continuous, and all of these functions are abso-
lutely integrable. These hypotheses are a bit stronger than necessary for the 1/s"
decay rate, however, and we can verify that s"F(s) — 0 as s — 4 0o by applying the
Riemann—Lebesgue lemma (from Ex. 1.38) to the integral of (33).

In elementary applications of Fourier analysis we often work with polynomial
splines that vanish outside some finite interval. In this case f(™) is piecewise constant
for some n =0,1,..., and we can use (33) to show that F(s) decays to zero as fast
as 1/s"*1 when s — +o0, see Ex. 3.43. For example, f(x) := A(z) has a piecewise
constant derivative and F(s) = sinc?(s) decays like 1/s as s — F-00.
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When f(z), (—2miz) f(x),...,(—2miz)" f(z) are suitably regular functions on R
we can use the power scaling rule to find the corresponding Fourier transforms
F(s),F'(s),...,F™(s) and thereby obtain the analysis equation

o0

f(z)e™2ms® dg = / (—2miz)" f(z)e 2™ dx.  (34)

T=—00 Tr=—00

F(n)<3) = ji
S’I’L

In particular, if f is piecewise continuous and f(x),zf(z),...,x" f(z) are all abso-
lutely integrable (as in the case when f is a probability density with finite absolute
moments of orders 0,1,...,n), then F, F’ ... , F(™) are continuous functions that
vanish at s = oo, see Ex. 3.42.

We conclude this section with an observation of Fourier. Although we derived
(33) with the understanding that n = 0,1, 2, ..., the integral from the corresponding
synthesis equation

FM () = /00_ (2mis)" F(s)e*™ % ds (35)

may be perfectly well defined for other values of n. For example, since

f(z) :=e**Tsincz has the FT F(s)=TII(s— 3)

[S][eV

we can use (35) to synthesize the derivatives
2 .
f(x) = / (2mis)"e*™* ds, n=0,1,...,
s=1

the antiderivative )
V() = / (2mis) ~1e?™57 s,
s=1

see Ex. 3.30, and the fractional derivative

2
f(1/2)(x):/ (2mis)1/2e2mi57 (g,
s=1
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Further reading

Bracewell, R.N. The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill,
New York, 2000.

Chapter 6 of this widely used text gives the rules for Fourier transforms of
functions on R and Chapter 22 has a pictorial dictionary with 60 of the most
frequently encountered Fourier transform pairs.

Champeney, D.C. Fourier Transforms and Their Physical Applications, Academic
Press, New York, 1973.
Chapter 2 gives the rules for Fourier transforms of functions on R and a pictorial
dictionary that has 53 transform pairs.

Gradshteyn I.S. and Ryzhiki, .M. Tables of Integrals, Series, and Products, 5th ed.
(edited by A. Jeffrey), Academic Press, New York, 1993. (A CD-ROM version
is also available from the publisher.)

This highly evolved encyclopedia has a very large number of Fourier integrals
that cannot be found by using the elementary Fourier transform calculus.
Oberhettinger, F. Tables of Fourier Transforms and Fourier Transforms of Distri-

butions, Springer-Verlag, New York, 1990.
A few less common Fourier transforms can be found in this little reference.

Oppenheim, A.V., Willsky, A.S., and Young, I.T. Signals and Systems, Prentice
Hall, Englewood Cliffs, NJ, 1983.
A practical introduction to the Fourier transform rules for functions on R is
given in Chapter 4 of this electrical engineering text.

Pinkus, A. and Zafrany, S. Fourier Series and Integral Transforms, Cambridge
University Press, Cambridge, 1997.

Chapter 3 of this intermediate-level mathematics text has a nice exposition of
the rules for Fourier transforms of functions on R.

Walker, J.S. Fourier Analysis, Oxford University Press, New York, 1988.

Chapter 6 of this intermediate-level mathematics text develops the rules for
Fourier transforms of functions on R.
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Exercises

» EXERCISE 3.1 You will often have occasion to express the Fourier transform of
f(az +b) in terms of the Fourier transform F'(s) of f(z). (Here a,b are real parameters
with a # 0.) This exercise will help you learn to do this correctly.

(a) Sketch the graphs of I1(z), II(z — 3), and II(2z — 3) = II(2(z — 3/2)).
(b) Sketch the graphs of II(z), II(2z), and II(2(z — 3)).

Note. In (a), a right 3-translate is followed by a 2-dilate; in (b) a 2-dilate is followed
by a right 3-translate. The order of these operations is important!

(¢) Find the Fourier transforms of by (x) := II(2z — 3) and ba(z) := II(2(x — 3)) from (a)
and (b).

(d) Set b(z) := II(2x) and check your answers to (c¢) by applying the translation rule to

bi(z) = bz —3), ba(z) =bx—3), ba(x) =b1(x—3)

#» EXERCISE 3.2 Find the Fourier transform of each of the following functions.

(a) f(z)=-1I(z+1)+1I(z - 1) (b) f(x) =1l(z+1/2)+1I(z—1/2)
(c) f(z) = cos(4mz) - II(z) (d) f(z) =12z -1)

(e) fz) == II(z) (f) f(z) = sgn(z) - I(z)

(g) f(x) =1(2z) - II(3z) (h) f(z) =I(z+1/4) - T(z - 1/4)
(i) f(z) =1l(z —2) » (z +3) () f(z) = (z) * I1(z) * I1(z)

(k) f(z) = I(z) » L1(22) + I1(4z) D) f(z)=T(z)-e*

Hint. Sketch the graph of f for (b), (f), (g), (h); use the modulation rule for (c); use the
analysis equation for (1); ... .

» EXERCISE 3.3 Find the Fourier transform of each of the following functions.

— 2l
1

@ (b)
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2
(c) (@) 5
1 b . : i
01 5 5 i 3
2
3 9 1 0 1 2 3 3 -2-1 0 1 2 3

Hint. Synthesize these functions using scaled translates of dilates of II(z) and A(x).

» EXERCISE 3.4 Find the Fourier transform of each of the following functions.

(a) f(x) = cos(4mz) - sinc(x) (b) f(z) = sin(4nz) - sinc?(z)
(¢) f(x) = sinc®(z) (d) f(x) = sinc(2x) * sinc(3x)
(e) f(x) =z -sinc?(x) () f(x) = [e" 2™ . sinc(x)] * [e*™ . sinc(z)]

» EXERCISE 3.5 Find the Fourier transform of each of the following functions.

(a) fl@)=e" (b) f(z) = cos(8mz) - e~ *

(¢) flx)=e"" (d) flz) =20 e "

(¢) f(z) = (42% —2) e~ ) fl@)=e e

(8) fla)=e @ xe™® (h) f(z) = /1/2 o~ (@=w)? g
—1/2

Hint. Observe that (d), (e) are derivatives and (h) is a convolution product.
®» EXERCISE 3.6 Let a > 0, b > 0. Find the Fourier transform of each of the
following functions.

(a) f(z) = cos(max) I1(z/2b) (b) f(x) = sin(mwax) sin(wbzx)/x

(¢) f(x) = cos(max)sin(wbx)/x (d) f(z) = sin(raz) sin(nbz) /x>

= EXERCISE 3.7 Let a > 0, b > 0. Find the Fourier transform of each of the
following functions.

(a) f(z) =1/(a® +a?) (b) f(z) = cos(mbz)/(z2 + a?)
() f(z) =z/(z® +a?) (A) f(z)==2/(2" +a®)?
(e) fl&) ={1/(" +a®)}«{1/(@®+ b))} () fx) ={1/(="+a®)} {1/(=" +b7)}

Hint. When a # b you can use partial functions for (f).
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» EXERCISE 3.8 Let a,b,c be real parameters with a > 0 and with b* — 4ac < 0.
Find the Fourier transforms of each of the following functions.

(a) f(z)=1/(az® + bz + c) (b) f(z) = e~ (aa’+bute)
Hint. Complete the square.

= EXERCISE 3.9 Find the Fourier transform of each of the following functions.

(a) f(x) = cos(z) (z/x) (b) f(z)=AR2z+1) A2z —1)
(c) f(z) = sin(107z) e~ h(z) (d) f(z) = sinc(4z) * sinc?(2z)
(e) flz)=1/(z+1) ) f(z)=1/(z+14)°

(8) f(z) = e 1?™lsinc(a) (h) f(z) = e~ |22+5]

(i) flz)=e?" () f(@)=1/(@®+2z+2)

(k) f(z) = / _ rise—s" g 0 f(z)= / . % ds

= EXERCISE 3.10 Let u(x) := e~ “* h(z) where a > 0 and h(z) is the Heaviside
step, and let w1 := u, uo ‘= u*xu, U3 ;= UK U*XU,....

(a) Find the Fourier transform of u; and then use the convolution rule to deduce that
Up 41 has the Fourier transform U, 1(s) = (a + 2mis) "L,

(b) Use the power scaling rule and the fact that

(—2mi)™" 4"

Unt1(s) = ds—n(a + 27Ti5)_1

n!
to deduce that upy1(z) = 2" e ** h(z)/n!, n=0,1, ....

Note. Compare this calculation with the brute force analysis of Ex. 2.4.

® EXERCISE 3.11 Let g(z) := sgn(z) e 1®l.

(a) Write down the integral that defines the Fourier transform G(s) and use the fact that
g is odd to show that

o0
G(s) = —Qi/ e 7 sin(2mwsz) dz.
0

You can evaluate this integral with an integration by parts argument ... or you can
use the Fourier transform calculus.

(b) Observe that g(z) = d(z) — d(—z) where d(z) := e~ % h(z). Use this with the known
Fourier transform of d to find G.

(c) Observe that g = —f" where f(x) := e~ 1*l. Use this with the known Fourier transform
of f to find G.
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» EXERCISE 3.12 From the partial fraction decomposition

2 1 1

f(l') = 1+ 4n242 = 1+ 2mix + 1 —2mx

we obtain the Fourier transform F(s) = e® h(—s) 4+ e *h(s) = e~ *|. Use this procedure
to find the Fourier transforms of

2 2x — 4
(a) g1(z) == 224z 15’ (b) g2(z) := 2 _—dz+5

Hint. Use the translation and dilation rules with the identity g1(x) = f{(z — 2)/27} to
check your answer for (a).

» EXERCISE 3.13 In this exercise you will use an elementary (but tedious) argu-
ment to find the Fourier transform of f(x) = 1/(1 + z%). (An alternative computation of
this Fourier transform is given in Section 7.5.)

(a) Let o := /2/2. Verify that f has the partial fraction decomposition

fz) =

1{ a+ 1« —a+ i« n a — 1o —a—ia}
4 lz+a+ic z—a+ia zz+a—ia zTz—a—ial)’

Hint. You can obtain the roots of z* + 1 by deleting from the set of roots of
28 — 1= (z* — 1)(2* + 1) the roots £1, +i of 2* — 1.

(b) Using (a) and (22), show that

L(a +i)e®™ (—27mi)e 2T h(s) + L(—a +ia)e” T (—2mi)e 2T h(s)
+ f(a— i)™ (1277) 2T h(—s) + 3(—a— io)e 2T (L) e M B (—s).

—~

(c) Using the fact that F' (like f) must be even, show that

F(s) = wsin{\/§7r|s| + g} e V2lsl,
(d) Use (c) (with the analysis equation (1.10) to evaluate the following integrals.

oo
. dx cos(mx) dx
() / T+ 21 (ii) / 1(

. x + 24

= EXERCISE 3.14 Find f1 * f2 (as the inverse Fourier transform of F; - F5) when:
(a) fi(z) = 2sinc(2z), fo(z) = 4sinc(4z); (b) fi(z) = 2sinc(2z), fo(z) = sian(x);
(©) fi(@) = falx) = e ™ (d) fi(@) = fa(x) = 2/(1 + 47°2?);
(e) fi(z) =1/(1+ 2miz), fo(x) = 1/(1 — 2mix).
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» EXERCISE 3.15 Let a > 0. Use the fact that sinc(z), sinc?(z) have the Fourier
transforms II(s), A(s) together with a suitably chosen synthesis equation, Parseval’s rela-
tion, ... to show that:

°° /sinaz  rsinaz 2
(a) / ( ) dx = T, (b) / ( - ) dx = arm;
T
— 00 — 00
0o . 3 2 o] . 4 3
(c) / (smax) dr — 3a 7T; (d) / (smaw) do — 2a 71"
oo T 4 oo T 3

» EXERCISE 3.16 Let a,b be real with a > 0. Use your knowledge of Fourier
analysis to evaluate the following definite integrals.

o [ e o [,

(©) /0 e cos(bz) da () /0 " cos(br)e di

» EXERCISE 3.17 Let a >0, b > 0. Use Parseval’s identity to show that:

° dx B T ) * sin(mazx) _ T _ omab
(2) / i@ ) aary P /_Oo @2 ) =l b

— o0

W EXERCISE 3.18 Show that the n-translates of sinc are orthonormal, i.e.,

< . 1 ifn=m
sinc(z — n) - sinc(z — m) dx = n,m=0,£1,+2, ....
0 ifn#m,

— 00

» EXERCISE 3.19 Let V(s) be the Fourier transform of the Volkswagen function v.

0 2 z
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o P \ (f) 1

P Y|/ —

0 4 -2 2

» EXERCISE 3.20 Let f have as its Fourier transform the following function F'.

F(s)

3 —
)
A

0o 1 2 3
Sketch the graph of the Fourier transform of the function:
(a) f(=x); (b) 2f(2); (c) '™ f(x);
(d) " f(—x); (e) (1/2mi)f (w); ) (f = )=);
(g) flx)- f(x); (h) f(x) - sinc(z); () {fl@+3)— flz—3)}/2i.
= EXERCISE 3.21 Let F be the Fourier transform of the following function f.
f(z)

-2 -1 1 2 =z
Sketch the graph of the function that has as its Fourier transform:
(a) F(—s); (b) 2cos(2ms)F(s); (¢) (=2mi) " L1F'(s);
(d) (Fx*F)(s); (e) F(s)? (f) (F *sinc)(s);

(g) F(s) - sinc(s); (h) 271F(@2 7 1s); (i) > 27"F@2"s).
n=0

» EXERCISE 3.22 Let F be the Fourier transform of a suitably regular function f
on R. Express each of the following in terms of f:

@ [ s w [ Zﬂ—s)e%m; © [ O;F<s—

— 00

5)6271'1'53: dS;

(d) / - F(25)e2™5% ds;

— 00

o0 .
(g) / F///(S)e27rzsxds;

— 00

(e) / SQF(s)e%isz ds;
—00

oo .
(h) / sF(2s)6_2mmds;

(f) / cos(ZWS)F(s)ezmsz ds;

— 00

0 [ 3re)+ P
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» EXERCISE 3.23 Let f be a suitably regular function on R with the Fourier trans-
form F. What can you deduce about F' if you know that:

(a) / flx)de =17 (b) / zf(x)dx =17 (c) / cos(2mz) f(x) de = 07

(d) f'(0) =07 (e) / [f@)Pde =17 (f) f(z) = f(—z)?
#» EXERCISE 3.24 Let f be a suitably regular function on R, let a, ag, a1, ... be real,
and let h > 0. Formulate the Fourier transform rule “g(z) :=--- has the FT G(s) =---”
when ¢ is given by:
(a) g(z) := cos(2max) f (x); (b) g(x) := sin(2maz) f (x);
(c) g(x) :={f(x+h) = flz—h)}/2h; (d) g(z) = apf(z+kh);
k=0
n h/2
(©) 9) = > ™ ) 0 s0)= [ fetwan
k=0 —h/2

Hint. You can write the integral from (f) as a convolution product.

= EXERCISE 3.25 Let f1, fo,..., fm be suitably regular functions on R, and let
f = fixfox---%x fm. Let ar,a2,...,am be real, let ny,n2,...,nm be nonnegative
integers, and let a be real with a # 0. Use rules from the Fourier transform calculus to
derive the following identities.

() fi(e—a)* oo —az) -5 fin(e = am) = [l —a1 —az =~ a)
(b) S (@) # f572) (@) 5o fi) (@) = fO ) ()
(©) fi(az)  folaz) -~ % fm(ax) = |a]' "™ f(az)

= EXERCISE 3.26 The cross-correlation product fi % fo of the suitably regular func-
tions f1, f2 is defined by (2.5).

(a) Derive the cross-correlation rule:

g(z) := (fi x fo)(z) has the FT G(s) = F1(s)- Fa(s).

(b) Specialize (a) to obtain the autocorrelation rule:

g(z) = (f = f)(z) has the FT G(s) = |F(s)|°.

(c) Use (b) to obtain Plancherel’s identity

/_Z ) du = /_Z | (s)]? ds.
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» EXERCISE 3.27 What can you infer about the Fourier transform F of the suitably
regular function f on R if you know that f satisfies:

o0
(a) the integral equation flx) = / f(u)sinc(z — u) du?

(b) the differential equation f'(x) + f(z) = e~
(c) the difference equation  f(z + h) — 2f(z) + f(x — h) =07
(d) the dilation equation flx)=f(2x) + f(2z — 1)?

&= EXERCISE 3.28 Use your knowledge of Fourier analysis to find a function f that
satisfies the given integral equation.

(a) /OO f(u)cos(2ruz)du=c¢" %, 0<x<oo
u=0

1 ifo<z<1
0 ifl<z<oo

(b) /—0 f(w) sin(2ruz) du = {

oo
(c) / e_lgg_ulf(u) du= (1+ |ch|)6_|9€‘7 —00 < x < 00
U=—00
Hint. Use the result of Ex. 2.5.

(@ / F(u) (@ — ) du = e~

» EXERCISE 3.29 Let g be a piecewise smooth function on R with small regular

tails, and suppose that we wish to find such a function f that satisfies the differential
equation

—f"(2) + f(z) = g(z), —o0 <z < o00.

(a) Fourier transform the differential equation and thereby show that any suitably regular
solution can be written in the form

(b) Find the function f and sketch its graph when g(z) := II(x).
(c¢) Find the function f and sketch its graph when g(x) := el
Hint. Use the result of Ex. 2.5.

Note.  When f is given by the integral of (a) and c1,ca are constants, the function
f(x) 4+ c1€” + coe™ " is also a solution of the differential equation. This general solution
does not have small regular tails or a Fourier transform unless ¢; = c2 = 0.
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» EXERCISE 3.30 Let f be a suitably regular function on R with the Fourier trans-
form F, let

9(2) = / m_oo () du,

and assume that g(x) — 0 as x — Fo00 so rapidly that g has a Fourier transform G.

(a) State the antiderivative rule for expressing the Fourier transform G of ¢ in terms of
the Fourier transform F' of f.

Note. We must impose some condition on f to guarantee that F(s)/s is well behaved
in a neighborhood of s = 0.

(b) Using (a), show that the function

g(z) := arctan(ax) — arctan(bz), a>b>0
has the Fourier transform
Z-{e—27r|s|/b _ e—QW\s\/a}

Gls) = 2s

» EXERCISE 3.31 Use the Fourier transform calculus to prove the recursion relation
for B-splines that is given in the note following Ex. 2.7.

» EXERCISE 3.32 Use your knowledge of Fourier analysis to construct continuously
differentiable, absolutely integrable functions f,g on R such that f(z) - g(z) # 0, and
(f x g)(z) = 0 for every choice of x.

Hint. Consider sinc?(x) 4 sinc?(v2 z).
» EXERCISE 3.33 Let a >0, and let let v = 1,2, .... Verify that

r_e
a’(v—1)!

u—le—x/a

flz) = h(z) hasthe FT F(s)= (14 2mias)” "’

(a) by using (2) with the dilation and power scaling rules;
(b) by using the analysis equation to show that

2miay

F =
(s) 1+ 2mias

F(s), F(0)=1,

and then solving this initial value problem.

Note. The argument from (b) can be used with any positive value of v provided we replace
(v — 1)! with Euler’s gamma function

I'(v) ::/ 2’ e da
u

=0
in the definition of f.
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» EXERCISE 3.34 Many complex physical systems can be modeled by using a num-
ber of independent damped harmonic oscillators, with the response to an initial excitation
having the form

M
y(t) ==Y e A cos(2msmt) + Diy sin(2msmt) bh(t).
m=1
Here A, Dm, sm > 0, am > 0 are parameters, m = 1,2,..., M. Such a function might

represent the accoustical wave produced by ringing a large bell (see Fig. 11.10) or the free
induction decay from an FT-NMR (see Fig. 1.16). In this exercise you will analyze the
Fourier transform, i.e., the spectrum of such a transient. Within this context, we use the
independent variable ¢ instead of x.

(a) Use the dilation rule and the modulation rule with (2) to show that
1—iu(s)
ao{l +u?(s)}

Here u(s) := 2m(s — sp)/ap and g, so are real parameters with o > 0.

yo(t) := e_a°t+2m50th(t) has the FT Yy(s) =

Note. The function yg satisfies the damped harmonic oscillator equation
Y0 (t) + 20000(t) + (4n”sG + af)yo(t) = 0.
(b) Plot Re Yp, Im Yj as functions on R, and plot Yj(s), —0co < s < oo, as an orbit in

the complex plane C, showing the effects of the parameters a, sq.

Hint. Your graphs will resemble those of Fig. 1.15 and the orbit will be a circle.
(c) Plot the Fourier transforms of

ye(t) := e~ cos(2msot)h(t), ys(t) := e~ *°'sin(2msot)h(t)
as functions on R, showing the effects of the parameters «ayg, sq.

Hint. Use the conjugation rule and the analysis from (b).

(d) Describe the Fourier transform of y (as given above) in the case where a1,...,ans
are small and positive, where s1,...,s)s are positive and well separated, and where
Ai,...,Am, D1,..., Dy, are nonnegative real numbers.

Note. To learn more about the use of such spectral methods in chemistry, see A.G.
Marshall and F.R. Verdun, Fourier Transforms in NMR, Optical, and Mass Spectroscopy,
Elsevier, New York, 1990.

» EXERCISE 3.35 In this exercise you will show that the Fresnel function
f(z) := ¢™  has the FT F(s)={(1+ i)/\/ﬁ}e_msz.
We will use this particular Fourier transform pair when we study diffraction in Section 9.4.

(a) Use the alternating series test from calculus to show that the integrals

o0 o0
/ sin(meQ) dx, / cos(ﬂxQ) dx
—0o0 — o0
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are well defined and positive.

S > vm+1
Hint. / sin(rz?) do = Z / sin(rz?) da.
0 m=0 vm

(b) Use polar coordinates to verify that

>~ —m(a—i)z? > —m(a—i)y? {
e dx - e Yody = -, a>0,
oo oo 1+ az

and thereby show that
 ima? 1+
I:= / e dr = .
. NG

Note. For alternative derivations, see Section 4.4 or R. Weinstock, Amer. Math.
Monthly 97 (1990), 39-42.

(¢) Use (b) and the identity #? — 2zs = (z — s)? — % to show that

o0 .
F(s) = / gime® g=2mise gy 14 —ins®,
o V2

(d) Show that f has the Fourier representation (1.3).

Hint. Begin by using (c) to write f(z) = F(z)/I.

Note. We can use the Fourier representation (1.3)—(1.4) for the Fresnel function even
though neither f nor F' have small tails:

[f(x)] =1, —co<z<oo, and |F(s)|=1 —oo<s<o0.

» EXERCISE 3.36 Use the Fourier transform pair of Ex. 3.35 to show that:

(a) f(z) := cos(ma?) has the FT  F(s) = cos{n(s® —1/4)};
(b) f(x) := sin(nz?) has the FT  F(s) = —sin{r(s®> — 1/4)};
(c) flz) = |a|~/? has the FT  F(s) = |s|~'/?;

(d) f(z):= :sgn(gg)|a:|7l/2 has the FT  F(s) = —isgn(s)|s|71/2.
Hint. Use the substitution u? = 2|s|z in the analysis equation integrals for (c), (d).
= EXERCISE 3.37 In this exercise you will use the generating function
gla,t) = eV’

to establish an orthogonality property of the Hermite functions (31).
(a) Find the Maclaurin series for g(x,t) with respect to the argument ¢ and thereby show

that
2 > 2 M
—(x—t —
e~ (0" = E Hp(z)e ™ o
n=0
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(b) Use the identity
> —(t—x)? m_—t2 * 2tx m _—ax?
Hpy(x)e dr = (—-1)"e e“{D"e™" }dx
— 00 —0o0
and an integration by parts argument to show that

oo
/ Hm(2)e” 0% gz = (207, m=0,1,....
(¢) Combine (a), (b) and thereby show that

> 2™n! if m=
/ Ho () H ()= dw:{ niym ifm=n

0 if m #n.

(d) Using (c), show that

> _ 2"n!/V/2 ifm=n
/_oo fmn(@) () dio = {0 if m o .

Note. When f is a suitably regular function on R we can write

flz) = Z enfn(z) with cp := 2\7{751!

n=0

oo
/ f@) fn(x)de, n=0,1,....
— 00
Norbert Wiener used this series and the corresponding

F(s) =Y (=i)"enfals)
n=0

to study the Fourier transform of square integrable functions on R, see Norbert Wiener,
The Fourier Integral and Certain of Its Applications, Dover, New York, 1958, pp. 46-71.

® EXERCISE 3.38 This exercise will show you an alternative way to find the Fourier

transform of the Hermite functions fn(z), n =0,1,... as given in (31).

(a) Suitably modify the expansion of Ex. 3.37(a) to show that

oo
2 2 n
e~ _627m:t/\/7r/2_67t :§ :fn(m)i'
n:

n=0

(b) Replace t by it and formally take Fourier transforms on a term-by-term basis to show

that

)

e ms=t/NT/2)? | > ()" Fu(s) %,
n=0

where F,(s) is the Fourier transform of f(z).
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(c) Use (a)—(b) to show that
Fn(s) = (=4)" fa(s).

Note. We can make the informal argument of (b) rigorous by using the uniform bound
|fn(:v)|2 < 2"T1pl together with the theory of weak limits that will be developed in
Section 7.6.

= EXERCISE 3.39 Let f be a suitably regular function on R, let s be a fixed real
parameter, and let

z(z, s) = / f(u)e_2msu du, —oo < x < oo.
0

(a) Give a geometric interpretation of the differential relation
z(x +dx, s) = z(x,s) + e 2misT {f(z)dz}.
b) Give a geometric interpretation of the relation
g

F(s) = zgrfoo z(x,s) — ZEIPOO z(x,s).

(¢) Let f(z):=1II(z). Show that

) —% ifac<—%
1_6—271'18:1:(; 1 1
z(x,8) = ———  wherez¢c:=< z if —5<z<s5
(@, 5) 27is ¢ ) 21_ =2
3 lf.'EZE,

and plot the circular arcs z(z, s), —oo < & < oo, that correspond to s =1/2, 1, 3/2.
(d) Let f(z):=e “h(z). Show that
0 ifz <0
z(;zj7 5) = 1— 671(14»271'1'5)
14 2mis
and plot the spiral z(z, s), —oo < & < oo, that corresponds to s = 1.

» EXERCISE 3.40 In this exercise you will show that no ordinary function ¢ can
serve as a convolution product identity for functions on R.

2
(a) Formally use the convolution rule to show that if § * g = g when g(z) := e~ ™" | then
0 must have the Fourier transform A(s) :=1, —o0 < s < 0.
(b) What happens when you try to synthesize a function § on R by using the A of (a)?
(¢) Explain why dn(z) := nsinc(nz) is a reasonable approzimate convolution product
identity when n is large and positive.
2,2
(d) Explain why dp(x) := ne” ™ © is a reasonable approzimate convolution product
identity when n is large and positive.
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» EXERCISE 3.41 Fourier’s representation is valid if either f or F' is a piecewise
smooth function with small regular tails. We must impose additional regularity conditions
if we wish to use the derivative rule (19) or the power scaling rule (20). For example, we
can use Fourier’s representation with g(x) := f'(x), G(s) = 2misF(s) if either

o f(z), f'(x) are both piecewise smooth functions with small regular tails and f(z) is

continuous, or

e F(s),sF(s) are both piecewise smooth functions with small regular tails.
We can use Fourier’s representation with g(z) := (—=2wiz)f(x), G(s) = F'(s) if either

e f(z),zf(x) are both piecewise smooth functions with small regular tails, or

e F(s), F'(s) are both piecewise smooth functions with small regular tails and F(s) is
continuous.

In this exercise you are to prove these statements as follows.

(a) Let f be a continuous, absolutely integrable function on R with an absolutely inte-
grable derivative f’ that is defined and continuous except for finitely many points of
R. Show that

o . - |
/ f/(w)e—%rlsﬂ? dr = 27Ti8/ f(x)e—Qﬂ'zsm de.

Hint. Verify that f(z) — 0 as ¢ — +oo (1.43), and integrate by parts.

(b) Let f be defined and continuous except for finitely many points of R, and assume
that both f(z) and zf(z) are absolutely integrable on R. Show that

F(s) := / Z fz)e 2™ dy

has a uniformly continuous derivative

G(s) := / (727Tix)f(x)e_2msx dx

that vanishes at +o0.

Hint. Verify that

G(s)

=27

F(s+h) = F(s)
h

oo 6—27riha? — 1+ 2mwihz xf(x)e—Qﬂ*iszdx
- —2mihx

and then suitably modify the argument of Ex. 1.38(b) using the bounds

e — 1] < 10|, [€% —1—1i0) < 6%/2, —00 <0 < .
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» EXERCISE 3.42 In this exercise you will establish a link between the smoothness
of an absolutely integrable function f and the rate at which the Fourier transform F' goes
to zero as s — Fo0.

(a) Let f, f,..., £(™) be absolutely integrable on R, let f, £/, ..., ™1 be continuous,

and let f™) be continuous except for finitely many points of R. Show that F(s),
sF(s),...,s™F(s) are uniformly continuous functions on R that vanish at +co.

Hint. Use the analysis of Exs. 3.41(a) and 1.38.

(b) Let f(z), z=f(z),..., 2" f(x) be absolutely integrable on R and let f be continuous
except for finitely many points of R. Show that F(s), F'(s), ..., F™)(s) are uniformly
continuous functions on R that vanish at +oo. (Compare this with Ex. 12.14.)

» EXERCISE 3.43 Letn=0,1,...,letag < aj < --- < ap, and let f be a piecewise
polynomial function on R with
fl@)=0 ifz<ag or x >ap

f(n'H)(m):O ifap—1 <z <am, m=1,2,.. M.

(a) Assume that n > 1 and that f, f',..., £=1 are all continuous. Show that s"HLE(s)
is bounded and thereby prove that F(s) approaches zero as fast as 1/s" ! when
s — Fo0.

Hint. Begin with the analysis equation (33) for f(”).

(b) Let k be a positive integer and assume that f, ..., f(k_l) are all continuous. What
can you infer about the rate that F'(s) approaches zero as s — 007

= EXERCISE 3.44 Let f, g be piecewise smooth functions with small regular tails,
and let F, G be the corresponding Fourier transforms. In this exercise you will show that
the multiplication rule can be used with f-g, f- G, F - g, F' - G, and the convolution rule
can be used with f*xg, F'xG.

(a) Show that
/ (f * g)(x)e ™% dp = F(s) - G(s).

=—00

Hint. Since // |f(u)g(z —u)|dudx < oo, you can exchange the order of integration.

(b) Use Parseval’s identity with f(z) and y(z) := g(xo — =) (see Ex. 1.40) to show that

/ F(s) - G(s)e+2msx ds = (f *g)(x).

§=—00

Note. Together (a)—(b) establish the convolution rule for f*g and the multiplication
rule for F'- G.
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(c) Use Parseval’s identity to show that
oo
[ @ s s = ()G

(d) Show that
/ (F *G)(s)e™*™% ds = f(x) - g(x).

s=—00
Hint. Use (c) with the representation theorem from Section 1.5.

Note. Together, (c)—(d) establish the convolution rule for F'+G and the multiplication
rule for f - g.

(e) Show that
/ f(z)- G(—w)e_zmsx dx = (F * g)(s).

=—00
Hint. Since / |f(x)g(o)| do dx < oo, you can exchange the order of integration.

Note. In this way we establish the product rule for f(z) - G(—z) [and likewise for
f(x) -G(z), F(z)-g(x).] We need an additional hypothesis to obtain the convolution
rule for F'xg (or for f*G). For example, if the function G is continuously differentiable
except for finitely many points of R, we can use (e) with the representation theorem
of Ex. 1.39 to write

/ (F * g)(s)e™>™ 5% ds = f(z) - G(—a).

§=—00

» EXERCISE 3.45 Construct an absolutely integrable function f on R such that:

max f(z) =1 for every L > 0;

|z|>L
F, F/, F", ... are uniformly continuous on R;
F,F',F"” ... all vanish at =+ ococ.

Hint. You can use a sum of suitably translated and dilated triangles, see Ex. 3.42.

= EXERCISE 3.46 Let f be a piecewise smooth function on R that vanishes outside
some finite interval. Show that

(i.e., we can partition unity with the 1-translates of f) if and only if
1 fork=0
F(k) =
0 fork==1,+2, ...

Note. The B-splines from Ex. 2.7 serve as examples.
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» EXERCISE 3.47 Use your knowledge of Fourier analysis to find a function f on
R that has the specified properties.

(a) / ) (o — u)du = f(x), —s0<a< o0,

/ fu)sinc(z —u)du = f(z), —oo<z<oo, and

/OO F@)Pde=1.

(b) f(=2) = f(z), —oo<x < oo,

oo
/ fw)sine(zx —u)du =0, —oo < x < 00,

/OO |f(z)]dx < 00, and

/OO @) de=1.
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The calculus for finding

Fourier transforms of
functions on Ty, Z, and Py

4.1 Fourier series

Introduction

Now that you know how to find Fourier transforms of functions on R, you can
quickly learn to find Fourier transforms of functions on T,, i.e., to construct the
Fourier series

fx)= ) FlKe*™*e/? (1)

k=—oc0

when f is given. In principle, you can always obtain F' by evaluating the integrals
from the analysis equation

1 [P .
Flk] = / f(z)e 2™ ke/Pdy | =0,41,42,..., (2)
P Jo

but this is often quite tedious. We will present several other methods for finding
these coefficients. You can then select the procedure that requires the least amount
of work!

You will recall from your study of Chapter 1 that the synthesis equation (1) for
f on T, can be written as the analysis equation

173
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for F' on Z. In view of this duality, every Fourier series (1) simultaneously tells us
that

f(z) hasthe FT FIk], and

F[k] has the FT f(;s) )

Direct integration

You can evaluate the integrals (2) with the techniques from elementary calculus
when the function f is a linear combination of segments of

e 2Ty —0,1,2,..., —co<a<oo, —x <3< .

You will use the integration by parts formula

/ f(@)q(z)dx = f(z)q" Y (z) / f(x (z) dw

= (/) R - / F(2)a ) (@) da

for such calculations. Here ¢(—1), ¢(=2), ... are successive antiderivatives of
q(z) = ™F*/P or  cos(2mkx/p) or sin(2rkxz/p), k==41,42,....

When f is a polynomial, the integrated term will eventually disappear from the
right side of (4), and the resulting identity,

/ F@)q(z) dz = f(2)g V() — F(z)g? ()
b

o ()T @) @) M =0, (5)

is known as Kronecker’s rule. The k = 0 integral is usually done separately.
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Example Find the Fourier series for the p-periodic sawtooth function f shown in
Fig. 4.1.

f(x)

P2y !
/—p/Q  p/2 /E
YA Ve

Figure 4.1. A p-periodic sawtooth function f(z) ==z, —p/2 <z < p/2.

X

-

Solution We use the odd symmetry of f with Kronecker’s rule to write

1 [p/2 o
F[k] = / x e 2k /P gy
p r=—p/2
—i [P/? , <27rkx)
= — x sin dx
P Je=—p/2 p
—2i [P/ (%m)
= — x sin dx
P Jo p
2
_ 2 ;v_—pcos 2rkx +( P )2 2rkx v/
P 27k P 27k P o
ip
= (D", k=41,+2
I £2,
Since f is odd, F[0] = 0 and thus
D P _1)k+1€27rikz/p
= - = =~ has the FS 6
f(z) ==, 5 <% <35 hasthe Z Smik/p (6)

k0

We can also combine the £k terms and use Euler’s formula to write

fa) = pi e in 27;’69:/19)7
k=1

3 \

see Exs. 1.11 and 1.16(b). n
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Example Find the Fourier series for the p-periodic piecewise parabolic function
f shown in Fig. 4.2.

ASIAN.

Figure 4.2. A p-periodic parabolic function f(z) = 2%, —p/2 <z < p/2.
Solution We exploit the even symmetry of f as we compute

1/17 9 P/22 p?
= - fxdx:/ rdr = —,
P Jo (@) D Jo 12

and then use Kronecker’s rule to find

1 [P/? .
Flk] := / wle2mika/p gy
p —p/2

2 [P/ 2
= / 22 cos < 7rk:x> dx
P Jo p

2
= 2(—1)k+1 (ﬁ) L k=41,42,.. ..

In this way we show that

k—i—l 2nikx/p
p p? 2e
<a<y hastheFS —+kz ()

w\@

fa)=a?, - it

Elementary rules

There are rules for working with Fourier transforms of functions on T, that are
analogous to those for working with Fourier transforms of functions on R. You will

instantly recognize the linearity rule

g(x) :=ci1fo(x)+ -+ cmfm(x) hasthe FT Glk] = ciFilk]+- - +cmFnlk], (8)
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the reflection and conjugation rules

g(x) := f(—z) hasthe FT G[k|= F[—k], 9)
g(x) :== f(x)  hasthe FT G[k] = F[—k], (10)

the translation and modulation rules
g(x) == f(x — x0) has the FT  G[k] = e 2"*20/PR[k], —o00 < 29 < x, (11)
g(x) := ¥ o2/ f(1)  has the FT G[k] = F[k — ko], ko =0,41,+2,..., (12)

as well as the convolution and multiplication rules

g(x) := (f1 * f2)(x) hasthe FT GIk] = p Fi[k] - F»[k], (13)

g(x) = f1(z) - fa(x) has the FT GIk] = (Fy * Fy)[k]. (14)

You can always use these rules when the functions f, f1, f2, ... are piecewise smooth.
The derivative rule

g(x) = f'(z) has the FT G[k] = <27;”“ ) . Flk] (15)

can be used when f is continuous and f’ is piecewise smooth. The form of the com-
plex exponential e27#*®/? that we use for Fourier’s representation of functions on T,
accounts for the form of the complex exponentials in (11)—(12) and for the multi-
plier in (15). The mnemonic convolution gets the constant will help you remember
to include the factor p with (13) but not with (14).

Example Derive the convolution rule (13).

Solution When fi, fo are piecewise smooth functions on T, and g := f1 * f2, we
can write

p .
Glk] == 1/ g(z)e=2mke/P g
P Jz=o0

p .
= / fi(w) fo(x — w)e™2mk2/P qy da
P Jz=0Ju=0

D . p .
i fl (u)e—Z‘mku/p/ fQ(CL' _ u)e—2ﬂ'zk(:r—u)/p dx du
P Ju=o0 =0
p .
= f1(w)e= 2 k/P By (k] du
u=0

::pfﬁ[k]~f§[k} |

Example Show that

eQﬂ'zkz

P 2mwik

wo(z) =4 -z, 0<z<1 hastheFS

(16)
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Solution From the graph of the sawtooth function f in Fig. 4.1 we see that
wo(x) = —f (lU - %)

when we set p = 1 in (6). We use the translation rule and the Fourier coefficients
F[k] from (6) to write

, 0 if k=0
W()[k’] _ _672mk/2 F[k‘] = { 1‘ if k= +1,4+2,...,
2mik
and thereby obtain (16). n
Example Show that
2 2mika
wy(x) = % g - 1—12, 0 <z <1, hastheFS ]; (Zﬂik)2' (17)

Solution We can construct w; from the piecewise parabolic function of (7) by

writing )
1 1 1 1 1 1
o) == (f”‘g) +24—‘2f(x‘2) T

when p = 1. We then use the translation rule to obtain the Fourier coefficients

1 1
—F[0] 4 o 0 if k= 0
mik = 7 ® =1
_56727r1k/2F[k,] (271’7,]{;)2 if k= :|:17 :l:2,
We can compute
1
1 1 1
W10 :/ wi(z)de =—=+ - — —= =0,
0] 0 6 4 12

observe that
wi (z) = wo (),
and use the derivative rule with (16) to obtain
Wk 1
k = =
Wik = 5o (2mik)?’

k=41,42, ...
We can verify that

(o x wo)(@) = [ (5= u) (3 +u-a)du
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and then use the convolution rule with (16) to write

0 iftk=0
Wilk] = wolk] - wolk] = {1 ifk=41,42, ...

(2mik)?

There are many ways to use these rules! n

Poisson’s relation

Let f be a piecewise smooth function on R that has small regular tails. We can use
the Poisson relation (1.29) to see that

g(z) := i f(z —mp) (with f on R and g on T),)

m=—o0o
—~ 1 [k :
has the FS ) —F () e2mikz/p, (18)
k=—o0 p p
In particular, when we are given a piecewise smooth function g on T, we can always
choose a cutoff parameter —oo < a < 00, take

f(2) = {g(x) ifa<zx<a+p

0 otherwise,

find the Fourier transform F' of f, and obtain the Fourier series for g from (18).
The skills that you have acquired for finding Fourier transforms of functions on R
can be used to find Fourier series for functions on T,! You may find it interesting to
learn that this remarkable computational tool was discovered (but not published) by
Gauss more than ten years before it appeared in a paper of Poisson (see C.F. Gauss,
Schénes Theorem der Wahrscheinlichkeitsrechnung, C.F. Gauss Werke, Band 8,
Koniglichen Gesellschaft der Wissenschaften, Goéttingen, 1900, pp. 88-89).

Example Find the Fourier series for the p-periodic function g of Fig. 4.3.

. g(x)

Figure 4.3. A p-periodic train of triangles.
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Solution We write

o= 3 A58

use the Fourier transform calculus to see that

flay = (2

and use Poisson’s relation (18) to write

1 k ;
g(zr) = Z 3 sinc? (2) e2mike/p,

k=—00

> has the FT F(s) = gsinc2 (%) ,

There is no need for the usual integration by parts!
We can tidy things up a bit by observing that
1

1 k
G[k] = 2sinc2<2> =<0 if k=42,+4, ...
TkQ lfk?::tl,ig,,
™

and writing

1 4 [cos(2mz/p) cos(6mz/p) cos(10mz/p)

Example Find the Fourier series for the p-periodic sawtooth function f shown in
Fig. 4.1.

Solution We use the power scaling rule to see that

T
q(x) =1l <>
(z) ’
has the Fourier transform

Oy — — L4 {Sir1(7rps)}:_21{pcos(wps)_sin(wps)}’

s i s ms2

o7i ds s70

[with Q(0) = 0]. We use Poisson’s relation to find
0 ifk=0

Fig =10 (%) =4 o

— ifk==%1,£2,...
p p 27rlk/p 1 ) ) )

and thereby obtain (6). [
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Example Find the Fourier series for the p-periodic box train g shown in Fig. 4.4
when 0 < a < p.

1. 9()
w4 —% 0 % p x

Figure 4.4. A p-periodic train of boxes.

Solution You can find the Fourier transform of f(x) := II(z/a) in your head and
mentally use Poisson’s relation to write

g(x) = Z Zsin(t(;) e?mike/p n

Example Use Poisson’s relation to derive the translation rule (11) from the cor-
responding translation rule for functions on R.

Solution Let f be a piecewise smooth p-periodic function and let

d(z) = {g(z) ifo<z<p

otherwise,

g(x) := f(x — o).

By construction
fle)y=">_ dl@—mp), g(z)= Y dlx—wo—mp),
and we can use Poisson’s relation (twice) to write
1 —2mikzo/ k —2mikzo/
G[k] = —e OPD(—- | =€ o/P Fk]. n
p p
You can derive all of the rules (8)—(14) in this way, see Ex. 4.8.

Example Let a > 0. Find the Fourier transform of the sampled gaussian

galn] i= /P’ 0 1,42
Solution We write go[n] = f(n/p) where the even function

2 1 5
f(z) == e ™" hasthe FT F(s)= —e ™/
(67
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We now use the analysis equation (for functions on Z), inversion rule (for functions
on R), and Poisson’s relation to write

Gals) = ]13 i ¥ (Z) e 2misn/p _ ]19 i ¥ (_I;) o—2miks/p

n=-—oo k=—o0
- 1 — —m(s—mp)?/a>
= Z F(s—mp)=— e P . u
m=—0oQ a m=—0oC
Bernoulli functions and Eagle’s method
We begin with
0 ifx=0,1
wop(z) =41 19
o(@) {2—x ifo<z<1 (19)

and take suitable antiderivatives to obtain polynomials

2 1
-z ;2 <z<1
w@)=-5+5 -5 0=z
3 2 =z
_ r_r 0<az<l1
( ) _ xt n x3 x? 1 <1
W =Ty T T T TS
with
wh(r) =w,_1(x), n=1,2,... (and x # 0,1 when n = 1) (21)
1
/wn(m)dx:(), n=20,1,..., (22)
0

see Ex. 4.22. We have found the Fourier representations (16), (17) for wy and wy,
and studied the convergence of these series in Section 1.5. We will now use (16)
with (21)—(22) and the derivative rule to obtain the 1-periodic Bernoulli functions

eQﬂ'ikx

(2mik)n+1’
=—00
k#£0

Wy (x) == n=0,1,..., —oo<z< o0, (23)



Fourier series 183

shown in Fig. 4.5. You should try to remember the Fourier series (23) and the
polynomial forms (19)—(20) for wg, w;,ws. The most important thing about these
functions is that they have been constructed so that

1 ifm=n

(M) (04) — (™ (0— :{ 24

504 W0

83.10-2y wi(@)

1.4-10—4, ws(x)

AN AN
RYAVARVALYE:

Figure 4.5. The first four Bernoulli functions.

You may recall that in Section 1.5 we used scaled translates of wg(z/p) and
w1 (x/p) to remove jump discontinuities from a p-periodic function f and its deriva-
tive. We will now use a generalization of this idea to construct Fourier series for
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piecewise polynomial functions on T,. The overall scheme is an elementary vari-
ation of Fagle’s method that will be developed within a more general context in
Section 7.5 and Ex. 7.75.

Example Find the Fourier series for the p-periodic box train of Fig. 4.4.

Solution The function g has jumps +1,—1 at = —«a/2, a/2. We remove these
jumps (1.38) by forming

Each term is a p-periodic broken line, so ¢ is also such a function. In view of (24),
neither ¢ nor ¢’ have jump discontinuities, so this p-periodic broken line must be a
constant. Since wy has the average value 0, we can find this constant by evaluating

the integral
c(x):/ g(u)du:/ 1 du=2.
PJ_p2 PJ—a/2 p

In this way we see that

g(z) = < + wp <m+0‘/2> — wp <$_O‘/Q> '

p p p

We now use this representation with (23) to obtain the Fourier series

Q(I):E‘f‘z

=« ak
= Z — sinc <) e2mikz/p ]
p p

eQﬂik(:E+a/2)/p eZﬂik(m—a/2)/p
{ omik B 2mik }

Example Find the Fourier series for the p-periodic ramp train of Fig. 4.6.

Figure 4.6. A p-periodic train of ramps.
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Solution The function f has a jump —1 at x = a and the derivative f’ has jumps
1/a, =1/ at © = 0, . We remove these jumps by forming

o=t (55) 1 () - (5

and with reasoning analogous to that used for the previous example, we conclude
that the p-periodic piecewise polynomial function c¢ is the constant

1 /[P 1 [*ud
c(x):/ f(u)du:/ e
P Jo pPJo « 2p
In this way we deduce that
e x T—« r—a
=g ()= (591 (5)
p « p p «Q p

and use (23) to obtain the Fourier series

o 1 p —2mika . p wikx
1) = gy 2 mie o ¢ (i ) e

You can look at Fig. 4.6 and immediately write down this series! n

Laurent series

In your study of calculus you learned to work with power series such as

2 23

z
z _ [
€—1+Z+2!+3!+ )

1
=142+ 22+282+, |2l <1,
1-=2
and you may remember developing the Laurent series

oo

1—r2 1 r/z 1
= = E kI z
(I—=rz)(1—1/z2) 1—rz+1—r/z kiiooT ol <r<|z|<r
to solve Ex. 1.9. A Laurent series
C(z) = E ez, 2€C, a<|z|<b (25)

k=—o00
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is a complex power series that may contain terms with 27!, 272, ... as well as terms

with 1,2,22%, .... If the Laurent series (25) converges within some nondegenerate
closed annulus that contains the unit circle (i.e., for a < [z| < b where a <1, a < b,
b > 1), then you can produce a corresponding Fourier series by setting z = e2miz/p,
i.e.,

f(x) := C(e*™™/P)  has the FS Z cpe?mike/p (26)
k=—o00
see Tolstov, pp. 105-112.
Example Find the Fourier series for the function f(x) := cos{e?™**/P}.
Solution We set z = ¢*™*/P in the Maclaurin series

22 2t 2

C(z)::coszzl—g—l—ﬂ—a—#“'

for the cosine function and thereby obtain the Fourier series

e47'riz/p eSTriz/p el27rix/p

f@ =1t~ —a " "

Example Find the Fourier series for f(z) := sin®(272/p).
Solution We define

23
and wite omiz) U ogmiap V1 aniny
f(z)=Cl(e p):—ze p+§_1€ P, n
Example Show that
3 s 1\ E

fl@) == Teos(@n/p) has the FS k;)o <2> e?mike/p, (27)

Solution We define
3 3z

= 5 i B e

use the partial fraction decomposition

2 I 1 (1/2z)
2—z+22—1_1—(z/2) 1—(1/22)

C(z) =



Fourier series 187

and the formula for the sum of a geometric progression to obtain the Laurent series

> 1\ ¥ 1
C(z) = Z (2) 2F, §<|z\<2,

k=—oc0
and thereby find F[k] = 2~ 1%l n
Example Show that the Dirichlet kernel
2 2 1 m )
f(z) = sing( n + Drz/p} has the FS Z e2mike/p m = 0,1, ... (28)
sin(mz/p) it

Solution We set w := e”””/p 2= w? = e2™@/P and write
fa) = (w2t — =t /94 _ 22l 1 Z K Z 2rike/p o
(w—w=t)/2i zm(z —1) '
k=—m k=—m

In each of the previous three examples we were asked to find the Fourier series for
a continuous rational function of cos(2wz/p) and sin(27x/p). It is possible to find
the Fourier series for any such function by using the Laurent series method together
with manipulations that are familiar from elementary calculus. Additional details
are best developed with concepts from complex analysis that are beyond the scope
of this book.

Dilation and grouping rules

When f is a p-periodic function on R and m = 1,2,..., the dilate f(max) is
p-periodic as well as p/m-periodic. We can verify the dilation rule
if k=0,+m,+2m, ...

. (29)
otherwise

g(x) := f(mz) hasthe FT Glk] = {é’[k/m]

by using the synthesis equation for f to write

oo
Z F[Ii]@Qﬂmmz/p _ Z F[k/m]e%rikx/p.
K=—00 m|k
We obtain G by packing m — 1 zeros between successive components of F', see
Fig. 4.7. (Within the context of digital signal processing we say that G results
from upsampling F', see Fig. 10.19.) The dilation rules for functions on R and for
functions on T, are quite different!
Let f be p-periodic and let m = 1, 2, .... We sum the p/m translates of f to

produce a p/m-periodic function

Jm() i_f(m)-kf(x—:;)Jrf(x_f:)+...+f<x_(m_l)p>

m
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f(x) i
@ ,TTHHMTP
— 01 k
0 T
GIK]
(z)
w ,WHHMT?
— 03 k
0 T

Figure 4.7. The functions f(z), g(z) := f(3z) on T, and their
Fourier transforms F[k|, G[k] on Z.

that has the p-periodic dilate f,,(x/m), see Fig. 4.8. We verify the corresponding
grouping rule

g@) =S f (3 - e%) has the FT  G[k] = mF[mk] (30)

by using the synthesis equation for f and the discrete orthogonality relation (1.19)
to write

m—1 (%)
1= 5 55 Pt
=0 K=—o00
o0 m—1
= Z Flg]e?mine/mp. Z o= 2mint/m
R=T =0
= Z F[K]e27riﬁw/mp ) {m if kK = (‘)7 :|:m, :|:2m, o
K=—00 0 otherwise

= Z mF[mke*™ke/p,

k=—o00

You will observe that the Fourier transform G is a scaled dilate (or downsampling)
of F, so the dual of (30) gives the dilation rule for functions on Z, see Appendix 3.
The dilation rules for functions on R and for functions on Z are quite different!
We will not use the somewhat exotic rules (29)—(30) as much as the basic rules
(8)—(15) [but (29)—(30) will be needed for our analysis of filter banks in Section 10.4].
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/) o
— Tt MTTHHHHHHHHHHTW
— 03 !
0 T
fole) o= Ei:f(x —tp/3) FylK]
oyl
— 03 K
0 T
G[k]

Figure 4.8. The functions f(z), f3(x), g(x) = f3(x/3) and their
Fourier transforms F[k|, F3lk], G[k].

We have included (29)—(30) to help you understand some of the corresponding
identities for working with DFTs that we will describe a bit later in this chapter.

Example Let f be a suitably regular p-periodic function with the Fourier series

oo

fx)= ) FlKe*™*err,

k=—c0

and assume that f is p/m-periodic for some m = 2,3, .... Show that F[k] = 0 when
k#0,+m,+2m, ....

Solution We can apply the translation rule (11) to
p
fz=2) = r@)=o0
m
and reach the conclusion from the resulting identity
(e Zmk/m _ \Flk] =0, k=0,41,+2, ...

We can also verify that

H

m—

F =) = ()

£=0



190 FT calculus for functions on Ty, 7, and Py

and reach the conclusion from the identity

i F[k]e%rikz/mp =f (%) — i F[mK]eQﬂimI{/mp

k=—o00 K=—00

that results from the synthesis equation for f and grouping rule (30). n

4.2 Selected applications of Fourier series

Evaluation of sums and integrals

Now that you know how to find Fourier series, you can use the analysis and synthesis
equations of Fourier or the identities of Parseval and Plancherel to evaluate many
sums and integrals that cannot be found with the tools of calculus.

Example Show that
1 1 n 1 1 n oo
3 5 7 4
Solution From the analysis in Section 1.5 we know that the piecewise linear func-
tion from Fig. 4.1 is represented by the symmetric form of its Fourier series (6). In
particular, when p = 1 we have

1 & sin(27kx) 1 1

= =N (mpr 2 -

T= > (1) — 5 <T <

k=1
We obtain the desired identity by setting z = 1/4. n
Example Find the value of the sum
1 1 1
S=ltgtgtpt

Solution We apply Plancherel’s identity (1.16) to the Fourier series (6) (withp = 1)
to obtain

2

47‘(’ k+1 e
— o2
Z 27rzk " k:Z_OO
1/2 1/2 2
= 27r2/ |f(z)]2dx = 47r2/ ridr = —. n
—1/2 0 6
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Example Find the value of the integral

I, - /1 3 cos(2rkx) dm’ k=01, ...
o b —4cos(2mx)

Solution Let f(x):=3/(5 —4cos2nz). Using (27), we write

1 367271"”431} 1 k|
Iy = —dr=Flk]|= | = k=0,£1,£2, ....
i /0 5— dcos2ma %] <2> ’ D -

The polygon function

Let P be the regular N-gon with vertices e?™*/N k = 0,1,...,N — 1, in the
complex plane, and let

s
= 2N si (—)
D sin|

be the corresponding perimeter. Let f(z) be the p-periodic function that results
when we specify the points of Py using the arclength x (measured counterclockwise
from the vertex at 1) as a parameter. Thus Re f, Im f are piecewise linear functions
that interpolate the points

N,COS N , N,sm N ,

respectively, see Fig. 4.9. We will show how to use rules from the Fourier transform
calculus to find the Fourier series for the polygon function f. (A Kronecker rule
calculation is singularly unappealing!)
We define
g(a) = 27 £ ()

and use the modulation rule ( 19 to conclude that
Glk] = Flk+1], k=0,+1,£2, ...

The function g is p/N-periodic (a clockwise rotation by 27/N cancels the coun-
terclockwise advance of = by p/N), so we can use the translation rule (11) to see
that

Glk] =0 when k # 0,+£N,+2N, ....

The functions g, g’ satisfy

9mi . .
g (x) + g(x) = e 2"/ fl(z) = e 2"/P O, 0 < 2 < p/N
p
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f(x)
_/ |

1
Re f(z) \ /
| \\// | e
—11
1
Im f(z)
\—/p T
—11

Figure 4.9. Construction of the polygon function f by
parametrization of the regular N-gon P and by piecewise linear
interpolation of cos(2mz/p), sin(2wx/p) when N = 6.

where

- (&

_f/N)—f0) N1 2wy (]
C = /N = oIN 7 smc<>.

Since g, g" are p/N-periodic we can use the derivative rule (15) to write

2mim 271
——— GImN]+ — G[mN
T Gl (mA]

p
/N
— g /p Ce—27riz/p e—QﬂimN:r/p dx
P Jz=0

p |C]?

2mi 1+ mN’
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With a bit of algebra we find

2
sinc*(1/N)
GmN| = —————= =0, £1, +2,...
[m ] (1 _"_ mN)Q Y m ) ) b )
and thereby obtain the Fourier series
Z sinc? 1/N p2mi(l+mN)z/p. (31)
. (1+mN)?
Rates of decay
Let £, f,..., Y be continuous p-periodic functions and let f(™) be piecewise

continuous and absolutely integrable on the interval [0,p). You can use repeated
integration by parts to write

(27;]{;)”1?[]@ _ ;/Op f(n)(x)e—%rilm’/p dr (32)

and thereby show that F[k] decays to zero at least as fast as 1/k™ in the limit
k — 400, e.g., as done in Exs. 3.42 and 3.43. For variety, we will give an alternative
argument based on Poisson’s relation (18).

We define the B-splines
By:=1I, By =IIxII, By=II*II=xII,...,

and recall that B,i1, B, 1,... ,Bfﬁgl are continuous functions that vanish when
|x] > 1+n/2, see Ex. 2.7. We verify that the 1-translates of B, 11 form a partition
of unity by using Poisson’s relation (18) to write

Z Bhi1(z—m) = Z sinc" T2 (k)e? ke = 1. (33)

m=—o0 k=—o00
We define
ole)i= 1) Boi (2

on R and use (33) to write

F0 =16 Y Bur (£ -m)

m=—0oQ

=S e ) B (“’ _pmp>

m=—0oQ

oo

= Y gla—mp).

m=—0oQ
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A second application of Poisson’s relation now gives

i = La <k) C k=041,42 ... (34)
yy yy

The function g on R has the same smoothness as the function f on T,, so we can
use (34) to see that the Fourier coefficients F'[k] have the same rate of decay as the
Fourier transform G(s) of g, as developed in Exs. 3.42 and 3.43.

Equidistribution of arithmetic sequences

Let zg,v be real numbers with 0 < zy < 1 and with « being irrational. For
n=12,...let

Ty = To + Ny + Mp,
where the integer m,, is chosen to make 0 < z,, < 1. Thus zg,x1,Z2, ... is the
arithmetic progression xg,zo + v, zo + 27, ... on the circle T;. We will show that
these numbers are more or less evenly distributed around the circle. [You can use

this idea to generate “random” numbers from [0,1)!] More specifically, we will show
that

]\}—>00N—|—1n0 n)—/f (35)

when [ is any interval from T; and

flz) = {1 ifrel

0 ifxgl

is the corresponding indicator function. This result is known as Weyl’s equidistri-
bution theorem.

When g is a suitably regular function on T; we define

N 1
Bn{oh = 5 2o 0(en) = [ alw)da,
n=0

and we set _
ep(x) = ™Rk =0,41,42, ...

We easily verify that

|Ex{ex}| <2, N=1,2,..., k=0,+1,42 ..., (36)
EN{B()} = 0, N = 1,2, ceey and (37)



Selected applications of Fourier series 195

N 1

1 - .

En{er} = —— 3 e2mikCrotny) _ / J2mike g
N+14 ;

e2mikzo 627Tik(N+1)’y -1

T N+1 ek — 1

—0 as N — oo when k ==£1,+2, ... (38)

The identity (37) gives (35) when I has length 1. Henceforth we will assume that
the length of this interval is less than 1.

Given any sufficiently small € > 0 we construct continuous piecewise linear func-
tions £, u. as shown in Fig. 4.10. We observe that

1

N 1
Enx{f} < N1 nz;;ue(:rn) —/O f(z)dx < En{uc} +e.

There is an analogous lower bound, so

En{l.} — e < En{f} < En{uc} +e (39)
. le(z) e e
= .

1 : :
()
| / \
esb— Ji E— o

Figure 4.10. The functions /., f, u. used in the proof of Weyl’s
equidistribution theorem.
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We use the Fourier representation for u.(z) and (36) to write

Bvtud = |Ex{ ¥ Ultlew+ 3 Wilkes }

|k|<m |k|>m
< > UK Exfer} +2 ) |U[H]- (40)
[k|<m |k|>m

The Fourier coefficients of the continuous piecewise linear function U.[k] decay
as fast as 1/k?, so the second term on the right of (40) will be less than ¢ when m
is sufficiently large. We can then use (37)—(38) to see that the first term will be less
than € when N is sufficiently large. In conjunction with (39) and a similar analysis
for /., this shows that

[En{f}] < 3¢

when N is sufficiently large and thereby proves (35).

4.3 Discrete Fourier transforms

Direct summation

You can find a number of commonly used discrete Fourier transforms by evaluating
the finite sum from the analysis equation

N-1

Flk = % nz:% Flnje=2mikn/N
For example, you can verify that
fln] = 6[n] has the FT P[] = —, (41)
fln] =1 has the FT  Flk] = d[k], (42)

see Fig. 4.11, by evaluating such terms in your head (and using the discrete orthog-
onality relation (1.20) for (42)). Here

1 ifn=0,£N,£2N, ...
d[n] = .
0 otherwise

is the discrete delta [which serves as the identity (2.20) for the convolution product].
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fln) = d[n] Flk] =
N
Py, 0 n

Figure 4.11. The discrete delta f[n] = d[n] and its Fourier trans-
form F[k] = 1/N when N = 11.

1
N
_7
0 k

]Pll

When m = 1,2, ... evenly divides N, we define the discrete comb

(43)

{1 ifn=0,tm,+2m, ...
emln] =

0 otherwise

on Pn. The subscript m specifies the spacing between adjacent teeth and
m’ := N/m gives the number of teeth. We verify that

1
= Flkl=— 44
f[n] := cm[n] has the FT F[k] ch/m[k:] (44)
by writing
| N-1 =
- —27ikn/N _ —2mik-mn’ /mm’
Conlk] =5 D emlnle =y ¢
n=0 n’=0
ml 3 ! !/
il = 1
N if k=0,+m’,+£2m/, ... = LIk,
0 otherwise m

see Fig. 4.12. When we specialize (44) by setting m = N, m = 1, we obtain the
DFTs (41), (42), respectively.

ln] = sl FIK = SealH]
P1o 0 /: P2 0 ‘;’

Figure 4.12. The discrete comb f[n] = ¢3[n] and its Fourier
transform F[k] = % c4[k] when N = 12.
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You can always use a brute force calculation to find a DFT when N is “small.”
(When N is “large” we do such calculations on a computer using one of the fast
algorithms that we will describe in Chapter 6.)

Example Find the DFT of f:= (1,2,3,4).

Solution Here N =4, e 2™/N = —j and f[n] =n+1,n =0,1,2,3, so we can use
the analysis equation to write

AF(0]= 1+ (=)0 42+ (=)0 4+ 3 (=i)?0 + 4~ (=i)** = 10
AF]=1-(=)% 4+ 2 (=)' 4+ 3 (=)L +4- (—i)3t = -2+ 2i
AF2)=1-(=i)2 42 (=i)12 4+ 3. (=i)22 4+ 4. (—i)32 = -2
4F[3]=1-(=i)"3 4+ 2 (=)13 +3. (=i)?3 +4- (—i)33 = -2 —-2i
In this way we see that
f:=1(1,2,3,4) hasthe DFT F =1(5,—1+14,—1,—1—1). (45)

Several discrete Fourier transforms can be found by suitably manipulating the
formula
N—1 _ 2N —1

1+z4224- 42N , z#1
z—1
for the sum of a geometric progression.
Example Let r be a complex number. Show that
fln]:==r", n=0,1,...,N —1 has the FT
if L2mik /N
1 N ife r (46)
Flk] = rv —1 therwi

N e 2 k/N — 1) otherwise.

Solution We sum a geometric progression as we write
N if e27k/N —

otherwise

1 = 1
— Z 7271'7,k:/N — (T 6727r7lk:/N)N —1
N =0 N re—2mik/N _ |

and this gives (46). Figure 4.13 shows f, F’ when r = .8, N = 100. You might
compare this illustration to Fig. 3.2. [

Other examples can be found in Exs. 4.26—4.28.
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Re f[k]

Pioo

Pioo

]P)100

Figure 4.13. The function f[n] =.8", n=0,1,...,N —1 and
its Fourier transform F[k] when N = 100.

Basic rules

By now you will undoubtedly expect to see certain rules for working with Fourier
transforms of functions on Py. You can always use the linearity rule

gln] :=c1filn]+- - +cmfm[n] has the FT Glk] = c1 Fi[k]+- - +cmFnlk], (47)

the reflection and conjugation rules

f[-n] has the FT GIlk] = F[—k], (48)

gln] :
gln] :

[n]  has the FT GI[k| = F[—k], (49)

the translation and modulation rules

gln] := fln —no] has the FT G[k] = e 2" /N k], ng = 0,41, 42,..., (50)
gln] := e***o™/N f[n]  has the FT G[k] = F[k — ko), ko =0,%£1,+2,..., (51)

the convolution and multiplication rules

gln] == (f1 % fo)[n] has the FT G[k] = NF|[k] - F»[k], (52)
gln] := fi[n] - fa[n] has the FT GIk] = (F} % Fy)[k], (53)

and the inversion rule

gln] = Fln] has the FT  G[k] = % Fl=H]. (54)

The form of the complex exponential e2™**"/N that we use for Fourier’s represen-
tation of functions on Py accounts for the form of the complex exponentials in
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(50)—(51). The convolution rule (52) gets the constant, N, and the inversion rule
(54) gets the inverse constant, 1/N, as is the case in (13) and (3).

Example Let kg = 0,+1,+2, .... Find the discrete Fourier transform of f[n] :=
cos(2mkon/N).

Solution We use Euler’s formula to write

f[n] _ %62m'kon/N 1+ %e—Zm'kon/N 1

and apply the modulation rule (51) to (42) to obtain

F[k] = 30[k — ko] + 5[k + ko],

see Fig. 4.14. Since f is both even and N-periodic, we can always replace ko by one
of the integers 0,1,...,|N/2| without changing f. (The floor function |z| is the
largest integer that does not exceed the real argument z.) n

fIn] = cos(2mkon/N)

Figure 4.14. The function f[n] = cos(2nkon/N) and its Fourier transform F'[k]
when N = 100 and ko = 4.

Example Derive the inversion rule (54).

Solution We use the analysis equation for g := F' and the synthesis equation for
f to write

1 N-1 _ 1 N-1 ‘ 1
G[/{Z] — N Z F{n]e—kan/N _ N Z F[n]627rzn(—k)/N _ Nf{_k] -
n=0 n=0

Example Let N =m-m’ where m, m’ are positive integers and assume that f is
an m-periodic function on Py. Show that F[k] = 0 when k is not a multiple of m’.

Solution We can use the translation rule (50) and the periodicity

fln+m] = fln] =0
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to write ' o
(627mk:m/N . 1)F[k‘] — (627rzk/m . 1)F[k’] -0

and thereby conclude that F[k] = 0 when m’ [ k.
We can reach the same conclusion by observing that

f:g*cm
where
fln] if n=0,1,....m—1
gln] == .
0 if n=mm+1,...,N—1,

and using the convolution rule (52) with (44) to write

FIk = NGk - %cm/ k). .

Rules that link functions on Py with functions on Py/,, and Py, v
Let (a,b,c,d) represent a function on P, and assume that

(a,b,c,d) has the DFT (A, B,C,D).
(Here a,b,c,d, A, B,C, D are complex scalars.) We will show that

(a,0,b,0,¢,0,d,0) has the DFT 1(A,B,C,D, A, B,C, D),
(a,0,0,b,0,0,¢,0,0,d,0,0) has the DFT 1(4,B,C,D, A, B,C,D, A, B,C, D),

and that

(a,b,c,d,a,b,c,d) has the DFT (A,0,B,0,C,0,D,0),
(a,b,¢,d,a,b,¢c,d,a,b,c,d) has the DFT (A,0,0,B,0,0,C,0,0,D,0,0),

see Figs. 4.15 and 4.16. The first of these patterns illustrates the zero packing rule
(or upsampling rule)

gln] == {f[n/mL n=0,£m,£2m, ...

0 otherwise (with f on Py, and g on Py)

has the FT G| = %F[k], (55)
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fln] F[k]
Por 0 K Py 0 k

gln] Gl

]P)Sl ]P81 0 k

Figure 4.15. The effects of zero packing (N =81, m = 3) on a
function f and its Fourier transform F'.

flnl Flk]

Ps, 0 k

Pg,

Figure 4.16. The effects of repetition (N =81, m = 3) on a
function f and its Fourier transform F.

and the second illustrates the repeat rule

g[n] := f[n] (with f on Py, and g on Py)
Flk/m] ifk=0,£m,+2m, ... (56)

has the FT G[k| = {0 otherwise
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We can easily prove (55) by using the analysis equation for g and the analysis
equation for f to write

1 — —27ikn/N 1 Mt n,—2mikmn’ /N 1
Glk] := i Z glnle = Z fln'le = EFW
n=0 n’=0

We will use the zero packing rule to derive the FFT in Section 6.2.
For the proof of (56) we simply verify that we can synthesize g by writing

N-1 N/m—1
Z G[k]e%rikn/]\’ _ Z F[k/]e%rimk n/N _ f[n] —. g[n]
k=0 k’=0

You may wish to compare Fig. 4.7 with Figs. 4.15 and 4.16 as you visualize the
meaning of these rules.

If you begin with the fact that
f=1onP; hasthe FT F=1onlP;

you can use the zero packing rule, repeat rule to obtain (41), (42). You can then
derive (44) by applying the repeat rule to (41) or by applying the zero packing rule
to (42), see Ex. 4.36.

The rules (55), (56) use processes that produce functions on Py from functions
on Py/y,. We will now introduce two rules using processes that produce functions
on Py from functions on P,,,.x, m=1,2, ....

Let (a,b,c,d, e, f) represent a function on Pg and assume that
(a,b,c,d,e, f) hasthe DFT (A,B,C,D,E,F).

(As before, a,..., f, A,..., F are complex scalars.) We will show that

(a+d,b+e,c+ f) hasthe DFT 2.(A,C,E),
(a+c+eb+d+ f) hasthe DFT 3-.(A,D),

and that

(a,¢,¢) has the DFT (A+D,B+ E,C + F),
(a,d)  hasthe DFT (A+C+E,B+D+F).

The first of these patterns illustrates the summation rule

=

gln] :== f[n — ¢N] (with f on P,,.yand g on Py)
£=0
has the FT  G[k] = mF[mk], (57)
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and the second illustrates the decimation rule (or downsampling rule or sampling
rule)

g[n] := flmn] (with f on P,,.yand g on Py)

m—1
58
has the FT  G[k ZFk (N1, (58)
=0

see Figs. 4.17 and 4.18.

]P)Sl

Figure 4.17. The effects of summation (N =27, m = 3) on a
function f and its Fourier transform F.

flnl

<o >
P 0 n P 0 k

Figure 4.18. The effects of decimation (N =27, m =3) on a
function f and its Fourier transform F.
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We establish (57) by using the analysis equation for f to write

GIK] = }VN_l{mz_l fin— av]}ewm/zv

I
|
=
3\

|
[
3
S
I
:\
S~
3
=
I
3
=
3
=

8) by using the synthesis equation for f to write

ot

We prove (

2

-1 N—-1,m—1
G[k]eQﬂikn/N _ Z{ FU{? _ KN]}@QWM"/N
0 k=0 ™ ¢
N—-1m-—1
_ F[k _ [N]e%ri(k—éN)mn/mN

B
I

k=0 ¢=0
mN—1 ‘

_ F[k/]eZﬂ'zk mn/mN _ f[mn] — g[n]
k’'=0

You may wish to compare Fig. 4.8 with Figs. 4.17 and 4.18 as you visualize the
meaning of these rules.

As stated in (57) and (58), the summation rule is a discrete form of
N-periodization and the decimation rule is a discrete form of m-sampling as
described in Section 1.4. With this in mind we form a totally discrete version
of the Fourier—Poisson cube from Fig. 1.22, as shown in Fig. 4.19. This cube is a
commuting diagram that uses decimation and summation to link Fourier transform
pairs f,F on Pypg; 9,G on Pyp; ¢, P on Pyg; and v,I' on Px. You might find
it instructive to express g, ¢,y in terms of f, to express 7 in terms of g, ¢, and to
work out the relations that connect the corresponding Fourier transforms.

Dilation

Dilation is a straightforward process when we work with functions on R, and the
dilation rule (3.13) is easy to state, easy to use, and easy to prove. Things are
considerably more complicated when we work with functions on Py, because in this
context dilation can involve decimation as well as permutation. We will present two
special versions of the dilation rule for functions on Py, and show how they can be
combined to handle the general situation.

When we form the dilate g[n] := f[mn] we will always assume that m is an integer.
Since f is an N-periodic function on Z, the indices mn can be taken modulo N,
and we lose no generality if we assume that m takes one of the values 1,2,..., N.
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fonPnpg synthesis analysis FonPxpg

Q-sum Q-scale & Q-decimate

G on
Pnp

g onPnp synthesis analysis

Functions P-decimate P-sum

P-decimate Posum Transforms

¢ on
PNQ

synthesis analysis ® on Png

Q-sum Q-scale & Q-decimate

I'onP
vonPn  synthesis analysis N

Figure 4.19. The discrete Fourier-Poisson cube.

We consider first the case where the dilation parameter m = 1,2,..., N — 1
and the basic period N = 2,3, ... are relatively prime, i.e., the greatest common
divisor of m and N is 1. When we reduce the (nonzero) dilated indices m - 1,
m-2, ...,m-(N —1) modulo N we get some rearrangement of the (nonzero) indices
1,2,..., N — 1, so there is some integer m’ = 1,2,..., N — 1 such that

mm' =1 (modN),
see Ex. 4.51. For example, if N = 7, m = 3, and we reduce the indices
3-1, 3-2, 3-3, 3-4, 3-5, 3-6
modulo 7, we obtain the indices
3, 6, 2, 5 1, 4
so m’ = 5. In view of this discussion, we can verify the P-dilation rule
gln] := flmn] (with ged(m, N) =1)

has the FT Glk] = F[m'k] where mm’ =1 (mod N),
(59)
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by writing
1 N-1 1 N-1
— —2mikn/N _ —27i(km”)(mn)/N
Glk] N nz:% flmnle N nz:% flmnle
1 N-1
_ N f[n/]e—Qﬂ'i(km yn' /N _ F[m’kz]

0

n’!

The components of g, G are obtained by suitably permuting the components of f, F
respectively, see Fig. 4.20.

fln] Flk]

Pgo 0 n Py 0 k

Figure 4.20. The effects of P-dilation (N =69, m =5, m' = 14)
on a function f and its Fourier transform F.

We consider next the case where the dilation parameter m = 1,2,..., N is a
divisor of N so that g[n] := f[mn] is obtained by repeating the decimated values
f10], fim], f[2m], ..., f[N —m], see Fig. 4.21. The resulting D-dilation rule

gln] := flmn] (with m|N)

has the FT G[k] =

)
0 otherwise
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TS <
Pso " Psg k

Figure 4.21. The effects of D-dilation (N =69, m = 3) on a
function f and its Fourier transform F.

can be verified by using (58) and (56) or by simply writing

N-1 N/m—1m-—1
G[k]e%rik:n/N _ Z Z F |:k/ :| 2mik’mn/N
k=0 =0 (=0
N/m 1m—1
— Z Z F |:k, :| 2mi(k’—¢N/m)mn/N
=0 ¢=0
N—-1 ‘
= Y F[K]e*™ /N = flmn] =: g[n].
k=0

We are now ready to consider the case where the dilation parameter m is an
arbitrary integer 1,2,..., N. We find a factorization

m=d1d2-~~dr,u

where di,ds, . ..,d, are divisors of N and where u, N are relatively prime. We can
then write

filn] := fldi - n]
fa[n] == fild2 - n] = fld1ds - n]

foln] = forldy 0] = fldyds -~ dy 1)
gln] == frlp-n] = fldida - dpp - nl.

We use the D-dilation rule (60) to generate Fy from F, F5 from Fi,..., and F,
from F,._;. We then use the P-dilation rule (59) to generate G from F;.
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Poisson’s relations

You know how to use the Poisson relation (1.29) to construct a Fourier series (18)
from a function on R and its Fourier transform. We will now use the Poisson
relations (1.29)—(1.32) to produce DFTs that are not easily found by other methods.

Suppose first that f is an absolutely summable function on Z with the Fourier
transform F' on T,. We can then use the summation rule

gln] = Z fln—mN] (with f on Z and g on Py)

has the FT  G[k] = % F (k%) (61)
that we establish by writing
| Nl _ | N1 e A
G[k] == N ZO g[n]e_%”k”/N = ZO mzoof[n - mN]e_2mk"/N
_ NZ_I i Fln — mN]e~2rik(n-mN)/N _ 1 i Fl/Je=2mikn /N
n=0 m=—oc N

1
N
~5e(5)

Example Let m be a nonnegative integer with 2m + 1 < N. Show that the
centered box function

1 ifn=0,1,...,m
gm[n] =<0 ifn=m+1,....N—m—1
1 ifn=N-m,...,N—1

2mN+ 1 Y
if k= N -1
N sin{kw/N} ey
Solution We use (28) with (3) to see that
fn] = 1 ifn=0,£1,...,£m has the FT  F(s) lsin{(2m + V)ws/p}
" |0 otherwise P sin(ms/p) ’

and then use (61) (with m replaced by m') to obtain (62). n
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We can use the inversion rule (54) to rewrite the sampling rule as follows. Let f
be a function on T), that has absolutely summable Fourier coefficients F[k] (e.g., as
is the case when f is continuous and f’ is piecewise smooth). We can then use the
sampling rule

glnl = f (n—]\‘?) (with f on T, and g on IP’N)

has the FT  G[k Z F[k — mN]. (63)

m=—0Q

Example Find the discrete Fourier transform of

3
5—4cos(2mn/N)’

gln] ==

Solution We use (27) and (63) to write

m=—o0 m:O m:l
1 k 1 N—k
:—(2) +(12)N 5 k:()?l,,N_l |
1-(3)

The summation rule (61) and sampling rule (63) produce discrete Fourier trans-
form pairs from functions on Z and T,. Suppose now that f is a smooth function
on R with small regular tails. The function f and its Fourier transform are then
linked by the Poisson sum formula (1.45), and we can use the sample-sum rule

i f(a-n_\/TN> (with f on R and g on Py)

m:;l:stheFT GIk] ; (1 k\/%N) (64)

Ialf
Here a is a nonzero real dilation parameter.
We will establish (64) when a=1. The extension to all real a0 is then done by

using the dilation rule (3.13). We set p:=v N and use the Poisson sum formula
(1.45) to verify the synthesis equation for g by writing

N-1 00
G[k]ezm'kn/N Z Z (k' mN) p2mi(k—mN)n/N
k=0 k=0 m=—o0
= io: EF <k> e2mik! (np/N)/p _ i f <n£ — mp)
k'=—00 p p m=-—00 N

= g[n].
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Example For m =0,1,2, ... we define the discrete Hermite function
gmn] = i H,, <4/ 21(71 — uN) e~ (n=uN)?/N (65)

where H,, is the Hermite polynomial (3.28), see Fig. 4.22. Show that

gm[n] has the FT (?/%ngm[k]. (66)

go[n]

Figure 4.22. The discrete Hermite functions (64) whenm = 0,1,2,3 and N = 128.
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Solution  We recall from (3.31) that

Fn(z) = Hy (V21 2)e™™  has the FT  (—i)™ f(s)

and use the sample-sum rule (64) (with a = 1) to see that

gm[n] = i fm <n\_/%N>

p=—00

has the Fourier transform

In this way we construct eigenfunctions for the discrete Fourier transform operator,
see Ex. 5.17. [

4.4 Selected applications of the DF'T calculus

The Euler—Maclaurin sum formula

In this section you will learn how to find a simple formula for any sum of the form
S:=P0O)+P(1)+---+P(N),
where P is a polynomial, e.g., you will learn how to derive the formula
12422 4... + N2 = N(N +1)(2N +1)/6 (67)

from elementary calculus.
We begin by showing that the rth Bernoulli function (23) satisfies the identity

1 i R | w,(0)

2w (0 ( ) “wp(l=)= ——2 r=0,1,2,.... 68

S5 (04) + nEZI wr (3 + 2wr( ) G r (68)
When r = 1,2, ... the function w, is continuous and piecewise smooth, so we can

use the sampling rule (63) to find the Fourier transform of w,(n/N). In this way
we see that

3 o N 1 - 1 wy(0)
; w, ( N) =N m;m W0 —mN] =+ m;m @rim) = N7
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Since wo(x) is odd, the identity (68) also holds when r = 0 provided that we use
midpoint regularization and define wq(0) := 0.

We will now N-periodically extend the polynomial segment P(z), 0 <z < N to
all of R and use Eagle’s method to write

Plx)=C+ Jy - wo(N>+J1 Nw1<N)+J2 N2w2<;>+...’ O<z<N

1 N
C = N/o P(z)dx

is the average value of P on 0 < x < N and

where

gy =P (0+) = PO(N-)

is the jump in the rth derivative at the knot point z =0, r = 0,1, .... We use this
expression for P(z) with (68) to see that

N—1 1
0)+ Y P(n)+ 5PAY)
=N-C+Jy-wo(0) + Jy - wi(0) + Jy - wo(0) + - -

Since w,(0) = 0 when r = 0,2,4, ... we can rearrange this result to obtain the
Euler—Maclaurin sum formula

ZP 7{77 0) +P(N }+/ Pz

+{P(04) = P/(N=)} w1 (0) 4+ {P"(04) = P"(N=)} - ws(0) + -+ .

(69)
The universal constants
—1 1 —1 1
@ =15, w0 =755 w0 =555 0= 59600 (70)
can be obtained from the generating function of Ex. 4.22.
Example Use the Euler—-Maclaurin formula to derive (67).
Solution  We set P(x) := x? and use (69)—(70) to write
o 1 N 1
an—{OQ—I—NQ}—l-/ 2 dr — —{0 - 2N}
" "3 0 12
N2 N3 N N(N+1)@2N+1)
= — = . ]

o T3 T T 6
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The discrete Fresnel function
We will show that the discrete Fresnel function

gln] := e2min® /N (on Py) has the FT
A+ D1+ (CDMEDNY ey (7Y
2V N '

This unusual Fourier transform pair, illustrated in Fig. 4.23, is used in number
theory, optics, accoustics, communication theory, etc.

Glk] =

Re g and Im ¢ Re G and Im G

Figure 4.23. The discrete Fresnel function g and the Fourier
transform G as given in (71) when N = 91.

We begin by defining the function
f(z):= 62”"’”2/1\7, 0<z<N

on Tx. The function f is continuous on Ty [f(0+) =1, f(0—) := f(N—) = 1] and
the derivatives f/, f, ... are defined and continuous except at the origin where

£/(04) = F(0=) i= £/(04) = f(N-) = ~dai.

This being the case, we can use the sampling rule (63) to see that g has the Fourier
transform

Glk] = i Flk — mN],

m=—0o0

where the Fourier coefficients are given by the analysis equation

N
Flk —mN] = ]1[/ p2mia® /N | j=2mi(k—mN)z/N j..
0
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We complete the square in the exponent of the integrand for the even m Fourier
coefficients and thereby write

1N, .
F[k _ QNN] _ N/ 627r7,m2/N X 6—27r7,(k—2p,N)93/N dx
0

N
6—27ri(k/2—uN)2/N . ]17/ eQwi(w—k/2+uN)2/N dr

—k
N Jun—k)2

A similar computation for the odd m Fourier coefficients gives

N
Flk — (2u+ 1)N] = e—2mi(k/2=N/2—uN)?/N ]if/ e2mi(z—k/2+N/2+uN)?/N 1.

N
_ eani(k2/4+N2/4ka/2)/N . 1/ e27ri(acfk/2+N/2+uN)2/N dx
0

(W+1)N+N/2—k/2
- (_1)k<_i>Ne—m'k2/2N . 1/ g p2miu® /N g
N JuN+N/2—k/2

We now use these expressions as we form the sum

Z Flk — 2uN] + Z Flk — (2u+1)N]

p=—00 p=—00

— o~ mik?/2N ]if{/oo 2Ny 4 (—1)F ()N /Oo g2min’ /N du}
_ {1 + (_1)k(_i)N}ef7rik2/2N . \/NI

0o L
I::/ 2™ dt.

This Fresnel integral is independent of N and k, so we can determine its value by
setting k = 0, N = 1 in the formula for G[k], and writing

1=(1-4)- I

In this way we find I = (14 ¢)/2 and complete the verification of (71).

You may struggle a bit with the details of this argument, but you will have no
trouble evaluating the Gauss sum

where

1 if N=1,5,9, ...
N, 0 if N =2,6,10, ...
- VY itN=3711, ...
1+ if N=4,812, ...

(72)
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by using (71) to write

Sy = i gln] = N - G[0] = */f S+ i) {1+ (=)}

You may be interested to learn that it took Gauss several years to derive this
result for his proof of the law of quadratic reciprocity in number theory. Exercises
4.51-4.59 will show you some of the other fascinating connections between number
theory and discrete Fourier analysis.

Further reading

Briggs, W.L. and Henson, V.E. The DFT, SIAM, Philadelphia, 1995.

Chapter 3 gives the rules for Fourier transforms of functions on Py, and the
appendix has a pictorial dictionary of 15 DFT pairs. Chapter 9 includes a nice
discussion of the Euler-Maclaurin sum formula.

Brown, J.W. and Churchill, R.V. Fourier Series and Boundary Value Problems, 7th
ed., McGraw-Hill, New York, 2006.

Elementary techniques for finding Fourier series are described in Chapter 2 of
this highly evolved text for scientists and engineers.

Cizek, V. Discrete Fourier Transforms and Their Applications, Adam Hilger,
Boston, 1986.

Rules for Fourier transforms of functions on Py are developed in Chapter 4.
Courant, R. and John, F. Introduction to Calculus and Analysis, Vol. I, John Wiley
& Sons, New York, 1965.
Various Fourier series and a nice introduction to the Bernoulli functions can
be found in Chapter 8 of this classic applied mathematics text.
Henrici, P. Applied and Computational Complex Analysis, Vol. 3, John Wiley &
Sons, New York, 1986.
Chapter 13 of this applied mathematics treatise has an exceptionally well writ-
ten introduction to discrete Fourier analysis.
Oppenheim, A.V. and Schafer, R.W. Digital Signal Processing, Prentice Hall,
Englewood Cliffs, NJ, 1975.

Chapter 3 introduces the Fourier transform calculus for functions on Py within
an engineering context.
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Schroeder, M.R. Number Theory in Science and Engineering, 2nd ed., Springer-
Verlag, New York, 1986.

Elementary number theory is used to evaluate Gauss sums and DFT's of Legen-
dre sequences, discrete Fresnel functions, ... in Chapter 15 of this fascinating
text.

Tolstov, G.P. Fourier Series (English translation by R.A. Silverman), Prentice Hall,
Englewood Cliffs, NJ, 1962; reprinted by Dover Publications, New York, 1976.

Integration is used to find a number of basic Fourier series in Chapter 1. Power
series are used to obtain a few less common Fourier series in Chapter 4.

Walker, J.S. Fourier Analysis, Oxford University Press, New York, 1988.

Chapter 1 has an introduction to Fourier series. An elementary introduction
to Poisson’s relation is given in Chapter 12.

Exercises

» EXERCISE 4.1 Let 0 < a < p and let f be a p-periodic function with

1 for0<z<a
f(@) ==
0 fora<z<p.

Find the Fourier series for f by using:

(a) Kronecker’s rule (5) to evaluate

[ ;
L / 1. e—27mkx/p dz;
PJo

(b) the known Fourier series (16) for the Bernoulli function wg and the identity

f(z) =wo <;> —wp <x;a)+g; and

(c) Poisson’s relation (18) and the identity

fw= 3 1 (“’a/jmp> .

m=—0Q

» EXERCISE 4.2 Use Poisson’s relation to find the Fourier series for each of the
following p-periodic functions on R.

(a) f(z):=|sin(mz/p)| (b) f(x) := max{cos(2mx/p),0}
(© f@)i= 3 e m@—mn)’ @) f@@)= 3 eale=mrl g5

m=—0oo m=—0o0
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» EXERCISE 4.3 Let f(x) := 2 when 0 < z < 1. Find the Fourier series for f if:
(a) fis 1-periodic; (b) f iseven and 2-periodic; (c) fisodd and 2-periodic.

» EXERCISE 4.4 Suitably manipulate the Fourier series (23) for the Bernoulli func-
tions wp, w1, w2 and thereby show that when 0 < z < 1:

(c) cos(2msx) =

00 2 kz) S 2 k 2

@ ¥ = TR _ T (1~ 22, ®) 3 =7 oslZrhe) %(1—6m+6x2>;
27k ? 27k
() Zsm( mha) 7; (z—32°+22%);  (d) ZCOS( ko) _ (1 302%+602° —302").
» EXERCISE 4.5 Let —c0 < s < oo with s # 0,+1,%2,.... Derive each of the
following Fourier series.
(a) e2™isT — . S sinc(k — s)e? R —s<z< 3
=—00

, 2sin(ws) [ 1-sin(2rz) 2 -sin(4wz) 1 1

(b) sin(2wsx) = - { Z_2 22— +o 0,5 <z < g
2 sin(7s) {1 L5 cos(2mz) s -cos(4mz) b }7 _% <o< %

T 2s 12 — 52 22 — 52

2 1 s s
(d) csc(ms) = ;{gnLl —52722—32+.”}
2

it ate )
2s 12 -2 22 42

Note. The series of (d)—(e) are usually obtained by using tools from complex analysis!

(e) cot(ms) =

» EXERCISE 4.6 Let —co < s < oo and let f be a 2w-periodic function with

cosh(2sz) for |z| < g

—cosh{2s(x —m)} for |z — 7| < 5

Find the Fourier series for f and thereby show that:

4 cosh(ms) coS 3.cos3x | 5-cosbx
{ —--~},— <z <

)

4s2 +12 452432 ' 452 4 52

ol 3
S

(a) cosh(2sx) = -

4 1 3 5
b h = — —_ —
(b) sech(ms) = — {452 T2 1243 i1

-~},—oo<s<oo.

@ EXERCISE 4.7 Set z = ¢2™%/P in a suitably chosen Laurent series (25) to find

the Fourier series for the p-periodic function:
(a) f(x) = cos®(2ma/p); (©) f(z) = —log{1—ae®™*/P} |a| < 1;
(b) f(z)=1/(1 — ae®™™®/P) |a|<1; (d) f(z)=—log{1—2a cos(2wxz/p)+a’}, |a|<1.
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Note. When we set a« = 1 in (d) we obtain the Fourier series

o]
2sin <m>‘ :EM, x#0,£p,£2p, .. ..
p

—log
k
k=1

» EXERCISE 4.8 Within the context of suitably regular p-periodic functions on R,
formally derive:

(a) the reflection rule; (b) the conjugation rule; (c) the translation rule;
(d) the modulation rule; (e) the multiplication rule; (f) the convolution rule;
(g) the derivative rule; (h) the inversion rule.

Hint. You can use a direct argument ... or you can use Poisson’s relation (18) to obtain

the desired result from a corresponding rule from Chapter 3.

» EXERCISE 4.9 Let b,r be 27-periodic functions on R with

b(x) 1 forO<z<m () x forO<z<m
T) = =
0 form<zx<2m, 0 form<z<2rm.

Verify that b, r have the Fourier series

1 (S L | 7 =) (=1D)F -1 ke
b(x):%JrZ[( 23rk ]ek’ T(‘T):4+Z{(2k) +(27)rk2 }ek’

k=0 k0

and then use the Fourier transform calculus to find the Fourier series for
(a) t(z):=(bxd)(x) =r(x) +r(-z);  (b) f(z):=b(z)=b(-z)=2b(x)-1="t(z);
(©) g@) = r()+r(x —m) (d) j(a) = r(m—a)—r(r+z) = 2o (a/2m);
(e) d(z):=b(x —w/4) — bz + 7/4); (f) pn(z) :=b(z)sin(nz), n=1,2,....

» EXERCISE 4.10 Let f be a suitably regular function on Tp, let —co < zg < oo,

and let m = 1,2,3, .... What can you infer about the Fourier transform F' if you know
that:

(a) f(z)= f(x)? (b) f(z) = f(—z)? (c) flxz+p/m)=f(x)?
(d) flz+p/2)=—f(z)? (e) f(zotz)= f(zo—z)? () flzot+z) = —f(zo—2)?

P 2
/ e O

sm{ (2m + 1)7T(37 —u)/p}
/ flu sin{m(z — u)/p} au?

Hint. Do you recognize the Dirichlet kernel (28) in (i)?
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» EXERCISE 4.11 A 1-periodic function on R having the Fourier series

(with F[k] replaced by cg) takes the values

1 if0<z<1/10
flz) = ,
0 if1/10<z< 1.

Sketch the graph of f on [0, 1] and corresponding graphs of the functions represented by
the following Fourier series.

(a) k_io: e pe2mHRT (1) k_io: {(=1)*c,}e2™ e (c) k_io: { :f:‘ cmckm}e%rikm
(d) k‘if ciGQﬂ'ikI (e) kii {ikck}e%rikx (f) ki {Ck—5_ck+5)/2i}e2ﬂ—ikx

(g) § cgke%ikw (h) f {Ck+0_k}62”ikx (i) ioj { f cmc2k_m}627rik:ac

k=—o0c0 k=—00 k=—o0c0 \m=—00

Hint. Write (—1)* = e>™F(1/2) when you analyze (b).

» EXERCISE 4.12 Sketch the graph of the 6-periodic function on R that has the
Fourier coefficients:

(a) FIk] := (1/6) sinc(k/6); (b) Filk] = (~1)* Flk;
(©) Falk] = {FW?’] WR=05856 ) Ryl = 2R (R,

0 otherwise;
(e) Fulk]:= e—i (1/6) sinc(¢/6)Fk — £]; (f) F5[k] := (2mik/6) Fk];

Hint. Use Poisson’s relation (18) to determine f from (a).
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» EXERCISE 4.13 Let 4-periodic functions f1, f2, f3 on R be constructed from the
4-periodic function f on R as shown in the following graphs.

oo .
Find the Fourier series for fi, f2, f3 using coefficients from f(z) = > ck62ﬂ1k1/4‘
k=—o0

Hint. This is the flip side of Ex. 4.11.

= EXERCISE 4.14 Let wg, w1, ... be the Bernoulli functions as defined by (23) (and
developed in Ex. 4.22).

0o 1
2n __ 1 2n 2 _
-2 n—1 ) — Ly 4y e
(a) Show that > 1/k 5(2m) / wy_1(x)dz, n=1,2
0

k=1
(b) Show that 1/12 +1/22 +1/3%2 4+ ... = x2/6.
(c) Show that 1/1* +1/2% +1/3% + ... = x1/90.

= EXERCISE 4.15 Let N =1,2, ... and let f(z) := (1 +¢*)V, 0 < 2 < co.
(a) Find the Fourier series for f (using p = 27).

(b) Use Plancherel’s identity to show that
N2+ N2+...+ N\’ (2N
0 1 NJ) \N)

Hint. [(1+ e®)(1 + e~ )N = [¢i*/2 4 ¢~ ix/2]2N
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» EXERCISE 4.16 An ellipse with eccentricity 0 < € < 1 has the equation
r(0) = 1/(1 + ecos @) in polar coordinates.

(a) Verify that the major and minor radii of this ellipse are given by
a:= %{[7’(0) €08 O] max — [r(0) cos G]min} =(1- 62)71,
b= [r(60) sin Olmax = (1 — €2)"1/2.

(b) Show that r(6) = C(e'?) where C(z) := 2z/(e2? + 2z + ).
(c) Verify that C has the partial fraction decomposition

N2l b (/) withp e €
)= =) {sz 1+(p/z)} the: 14 ( '

Hint. Observe that —p and —1/p are the roots of €z’ + 2z +e.

(d) Show that C is given by the Laurent series

Cl2)=1-)2 " (=pMF p<zl <1/p.
k=—o00
(e) Use (b) and (d) to show that
r(@)=1—-)2 N (—pMet = (1 - 62)1/2{1 +2) (—p)" cost}.
k=—00 k=1

(f) Use the Fourier series (e) to evaluate the integrals

™
_cosk0 g9,
o l-+ecost

(g) Use The Fourier series (e) to show that

o0 oo

rof -7 3 { Y callepmfen

k=—o00 “m=—00

and thereby verify that the ellipse has the area

1 2 T
2/9 [r(0))%do = a=apn

=0
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» EXERCISE 4.17 Let 0 < a < p and let f be a p-periodic function with
2
¢ for0<ax<a
flz) =
0 fora<z<np.

(a) Explain why

— _ _ 3
flx) = 2p2ws ) 2wy r-a) 2apwi rmo) 2p%wo r-a) e
P P p p 3p

where wg, w1, ... are the Bernoulli functions (23).
(b) Using (a) verify that

2la® Ra(2mika/p) 727rzka/p

FIM = =0 Grika/p)?

k=+1,42, ...

where

2
z 2"

Rn(z)::ezflfzfa fffff o n=12 ...

Note. This expression shows the pattern for F[k] that results when z? is replaced by
2", n=1,2, ..., in the definition of f, see Appendix 2.

» EXERCISE 4.18 Let a > 0, b,c be real numbers with a® + b = ¢2, let p > 0,

and let
27T’Lk}l‘/p

(a) Show that f is the Fourier series of the p-periodic function f with
T ew(afib)(Qac/pfl) efﬂ(a+ib)(2$/p71)
fl@)==—1|—= . + — -
sinh{m(a —ib)} sinh{m(a + ib)}

) when 0 < z < p.

(b) Specialize (a) to the case where z = 0 and thereby show that

1 - 7(a+1ib) e (a—1b)
k—E: k2 420k + 2 2a (sinh{ﬂ'(a +1ib)} + sinh{r(a — zb)}) ’

(c) Specialize (c) to the case where b = 0 and thereby show that

T
Z k2 4+¢2  ctanh(mc)’
k=—o00

(d) Using (c), show that
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» EXERCISE 4.19 The Bessel function Jj, of the first kind with order
k=0,%£1,£2, ... and argument —oo < a < 0o can be defined by writing
oo
glosine _, Z Jk(a)eim, —o0 <z < 0.
k=—o00
i.c., Ji(a) is the kth Fourier coefficient of the 27-periodic function f(z,a) := *5n%,
Use this generating function and your knowledge of Fourier analysis to prove the following
identities.

a o)

(a) Jip(a) = (1/71')/ cos{asinz — kx} dx (b) 1=J3(a)+2 . Jp(a)?
0 k=1

Hint. Analysis equation Hint. Plancherel identity

(¢) cos{asinz}= Jo(a)+ Qkio:l Jop(a) cos(2kz) (d) k™ Jg(a) — 0 as k — oo,

sin{asinz) = 2 gjl Top_1(a) sin{ (2k — 1)} m=0,+1,42, ...
Hint. Synthesis equation and (g) Hint. See (32)
(e) 2kJi(a) = aJp_1(a) + aJpy1(a) () Tk(a)i@é)
Hint. fo(w,a) = iacos - f(z,0) Hint. F=z,a) = f(z,a)
(8) J_rla) = (-1)F Jp(a) (h) Ji(—a) = (-1)F Ji(a)

Hint. f(z+7m,a) = f(—z,a)

(1) o® T (@) + adiy(a) +a® Jy(@) = K2 Jp(a) () 2J4(a) = Ty-1(a) = Jry1(a)
Hint. o faa +afa + o? f=—fzz

= EXERCISE 4.20 Let f1, f2, and f := f1 * fo be functions on T5 with

fu@) = i M(x—5m), fale) = i ().

m=—0oQ m=—0oQ

(a) Sketch the graphs of fi, fo, and f.

(b) On the interval [—5/2,5/2], f can be expressed as a linear combination of suitably
translated triangle functions. Use this fact and Poisson’s relation (18) to find an
expression for the Fourier coefficients of f.

(c) Use Poisson’s relation (18) to find the Fourier coefficients of f1, fo and then use the
convolution rule to find another expression for the Fourier coefficients of f.

= EXERCISE 4.21 Let f be real and 27-periodic on R. By using the transformation
x=rcosf, y=rsind
we see that the graph & of r = f(0) (in polar coordinates) corresponds to the orbit
z(0) :=rcosf + irsinf = f(G)eig
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in the complex plane, e.g., the cardioid r = 2(1 — cos ) and the 3-leaf rose r = 2sin 30

have the orbits z = —1 + 2610

(a)

(b)

()

(d)

(f)

e? and z = i{e” 2% — 19}, respectively.

Show that if z is hermitian, i.e., z(—6) = z(0), then & is symmetric about the z-axis.
What is the corresponding property of the Fourier coefficients Z[k]?

Show that if z is antihermitian, i.e., z(—0) = —z(6), then & is symmetric about the
y-axis. What is the corresponding property of the Fourier coefficients Z[k]?

Show that if z(0 + 27/N) = z(Q)eQWi/N for some (minimal) N = 2,3,..., then &
has an N-fold axis of symmetry. What is the corresponding property of the Fourier
coefficients Z[k]|?

Hint. Refer to the analysis of the polygon function of Fig. 4.9.

More generally, show that if z(6 + 27/N) = z(0)e>™/N for some (minimal)
N =2,3,... and some m = 1,2,...,N — 1 that is relatively prime to N, then &
has an N-fold axis of symmetry. What is the corresponding property of the Fourier
coefficients Z[k]?

Describe the symmetry of the epicycloid zn(6) := (n + 1)e’ — ("t generated by

a point on a circle of radius 1 that rolls outside a circle of radius n =1,2,3, .. ..

Describe the symmetry of the hypocycloid zn(0) := (n — 1)ei€ + e~ (n—1)i0 generated
by a point on a circle of radius 1 that rolls inside a circle of radius n =1,2,3, ....

Note.  You may wish to experiment with computer-generated plots of such
decimated Fourier series, e.g., try viewing z(6) := '™ {1+6619/2+612’9/3},
m = —6,—5,...,6.

= EXERCISE 4.22 In this exercise you will develop a generating function for the
Bernoulli functions (23), see Exs. 3.37 and 4.19. Let Bo(z), B1(z), B2(x), ... be defined to
be the coefficients of 1, u, u2, ... in the Maclaurin series expansion

el 0 N
e Zﬁn(x)u .
n=0

Find the first two terms of the u-power series for the left side and thereby show that
Bo(z) = —1, Bi(z) = 3 — x.

Differentiate both sides of the above relation with respect to z and (after some ma-
nipulation) show that £}, (z) = Bn_1(z), n = 1,2, ....

Integrate both sides of the above relation from x = 0 to x = 1 and thereby show that
1
/ Bn(x)dz =0, n=1,2,....
0

Note. From (b) and (c) you can infer that wp_1(z) = Bn(z) when 0 < z < 1,
n=12,...
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(d) Suitably manipulate the relation
d™ | ue® (m)
i {2
and thereby show that when n =1,2, ...

(m)(0+) )(1_):{1 ifm=n-1

0 otherwise.

(e) Use the generating relation to deduce that 8n(1 — z) = (=1)"Bn(z), n = 1,2,...,
i.e., Bp is even or odd with respect to the point x = %

Note. The Bernoulli polynomials Bp(x) := —n!Bn(z), n = 1,2, ... are commonly used
in numerical analysis, number theory,.... For additional details (see K.S. Williams,
Bernoulli’s identity without calculus, Math. Mag. 70(1997), 47-50).

= EXERCISE 4.23 Let f be a continuous function on [0, L] with f(0) = f(L) = 0,
and assume that f’ is piecewise smooth. In this exercise you will use Fourier analysis to
derive Wirtinger’s inequality.

(a) Odd extend f to [-L, L] using f(—z) := —f(x), 0 < x < L, and then verify that the

Fourier series
f(x) _ Z cx 627rz'l€$/2L7 f/(.T) _ Z d eZwikx/ZL
k0 k0
are related in such a manner that dy = (mik/L)cg, k = £1,£2, .. ..
(b) Use Plancherel’s identity (for f, f') together with the identity of (a) to show that

/O @) dx>/ 2)2 do

with equality if and only if f is a scalar multiple of sin(wz/L).

» EXERCISE 4.24 A simple, piecewise smooth, positively oriented, closed curve
z(t), 0 < t < L in the complex plane is parametrized using arc length so that |2/(t)| = 1
at points where 2z’ is continuous. In this exercise you will prove that the enclosed area, A,
is maximized when the curve is a circle.
(a) Use Green’s formula from calculus and Parseval’s identity to show that

1 o - 2

—— / = J—
A= Im/o dWEMdt=n Y k|Z[K]|"

k=—o0

Here Z[k], k = 0,£1,+2, ... are the Fourier coefficients of z.

(b) Show that
L / 47T2 = 2
L=/O |2/ (t)dt = <L> Yo K |zk]

k=—o00
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(c) Show that

and thereby prove that the enclosed area takes the maximum value A = L? /47 if and
only if the curve is a circle z(t) = Z[0] + Z[1]e>™"/F with radius |Z[1]| =L/2m.

= EXERCISE 4.25 Let f be a function on Z that is both pg-periodic and p;-periodic
where pg > p1 are positive integers. In this exercise you will show that f is periodic with

period p = ged(po, p1)-
(a) Let mg, m1 be integers. Show that f[mopg +mip1 +n] = fln], n =0,+1,£2, ....

(b) Let the positive integers dj,da,...,d; and pg > p1 > pa > --- > pi be constructed
by using the Fuclidean algorithm so that

po :=di-p1+p2, p1:=d2-p2+p3, ..., Pk—2 :=dk—1"Pk-1+DPk; Pk—1:= d D
Show that p;. is the greatest common divisor of pg, p1.

Hint. Observe that p|pr—1, Pk|Pr—2, ---, Pk|P0-
(¢) Show that f is p-periodic.

= EXERCISE 4.26 In this exercise you will show that the ramp function f[n] := n,

n=20,1,...,N — 1 on Py has the Fourier transform
1 N -1 ifk=0
Flk] ==
(%] 2 icot(k—ﬂ>—1 ifk=1,2,...,N—1.
N

(a) Verify that

N-1 N-1

Zmn_zizzn_(N—l)ZNH—NZNJrz a1

T dz B (z—1)2 ’ ’
n=0 n=0

and then use this identity with z; := e~ 2mk/N ¢4 derive the above expression for F'
by evaluating the discrete sum from the analysis equation.
(b) Verify that
fIn] = fln—1] =1 - Nd[n]
and then use this identity with the translation rule to derive the above expression
for F.

(c) Apply Plancherel’s identity to f, F' and thereby show that
N-1

km N—-—1)(N -2
;cotQ(N) :%, N=23, ...
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» EXERCISE 4.27 In this exercise you will find the Fourier transform of the signum
function f on Py.

(a) Let N:=2M, M =1,2,..., and let
1 ifn=1,2.. M-1
fln]:==<¢0 ifn=0,M
1 ifn=-1,-2,...,—(M—1).
Show that

21 km
—= — if k ==+1
Flk] = Ncot(N) if k= 41,43,+5,
0 if k=0,£2,+4, ....

(b) Let N:=2M +1, M =0,1,..., and let
1 ifn=1,2,....,.M
fln]:=<0 ifn=0
1 ifn=—1,-2,...,—M.
Show that

i km .
_NCOt(W) lfk—:tl,:tg,:l:g),,:t(QM—].)
Flk] =

7 km .

Ntan(ﬁ) 1fk—07:t2,:|:47,:|:2M
Hint. The tricks from Ex. 4.26 may be useful.

= EXERCISE 4.28 Let N be a “large” positive integer with a “small” divisor
m=2,3,...,let 0 < a <1 with o™ < 1, let
fln]:==a", n=0,1,...,N —1,

be a function on Py, and let

n=0,1,...,N—1

)

fulo] = £ [n = 2]

m

be the cyclic translate. Show that we obtain m “circles” when we plot 1/Fn[k],
k=0,1,...,N — 1, as points in the complex plane.

» EXERCISE 4.29 Let —co < a < 00, let f be the function on Py with
fln,a] := eQﬂan/N, n=0,1,...,N —1,
and let F[k,a] be the corresponding discrete Fourier transform.

(a) Explain why the samples f[n,a] always seem to come from sinusoids having a fre-
quency parameter in the interval —N/2 < o < N/2. In (b)—(d) we will assume that
this is the case.

Hint. Consider f[n,a+ mN], m = =+1,£2, ..., and see Ex. 1.17(d).
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(b) Show that

sinc(k — )

_ _—mi(N-1)(k—a)/N
Flk, o] =e sinc{(k — a)/N}~

(c) Let g[n,a] :==wn]- f[n,a] so Gk, o] = (W x F)[k, a]. Here the nonnegative function
w on Py is a window that is used to smoothly turn on and turn off the samples of
the complex exponential. What happens in the two extreme cases where w[n] := 1,
n=20,1,...,N — 1, and where w[n] ::5[71— |_N/2J]7 n=0,1,...,N—17

(d) Let w be the hanning window w(n] := ${1 — cos[r(2n + 1)/N]}. Show that
WIk] = — 3™ /N [k — 1] + 30[k] — ge= /N o[k + 1]
Glk, o] = =™ NFlk —1,0] + L F[k, o] — e "™/ NF[k +1,q].

Note. A computer-generated plot of |F[k, a]| vs k will have a peak at k = |a] or k = [«],

but as k moves away from « the graph will decay like |k — oz|_1 when o # 0,£1,+£2, .. ..
(Here | | and [ ] are the floor and ceiling functions, e.g., |7| = 3, [7] = 4.) In contrast,
the graph of |G|k, o]| decays like |k — a|™3. Thus the hanning window helps us to resolve
closely spaced peaks in the spectrum corresponding to a sum ¢y f1[n, a1] + ca f[n, ag] +
-+ cepr fn, apr), see Ex. 3.34.

» EXERCISE 4.30 Let f, g be defined on Z, P by writing
N-1 -
= B = — mN].
fln] ( . ) glnl ==Y fln—mN]
m=-—00
Here N = 2,3, ... and the binomial coefficient vanishes when n < 0 or n > N.

(a) Show that f, g have the Fourier transforms

F(S) :p—l(l +e—27ris/p)N—1, G[k] — N_1(1+€_27Tik/N)N_1.

(b) Apply Plancherel’s identity to f and thereby show that

N-1 2 1

N -1 N-1 2N—2 2N -2
Z =4 {cos s} ds = .

n 0 N-—-1
n=0
This is the identity of Ex. 4.15(b).

(c) Apply Plancherel’s identity to g and thereby show that
N

> () S ()

n=0 k=0
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» EXERCISE 4.31 Find the Fourier transform of the function

glnl = > fln—mN]

m=—o00
on P that is constructed from the function f on Z when:
1 ifn=0,£1,42,...,+£L (where N > 2L+ 1)
(a) fln]:= ,
0 otherwise;

1 ifn==2L (where N>2L+1)

0 otherwise;

(b) fln] = {

o™ ifn=0,1,2,... (where0<a<1)

(c) fln] = {() ifn=-1,-2,....

» EXERCISE 4.32 Let f, g be real functions on Py and let y := f + ig. Show that
we can obtain the Fourier transforms of f, g from the Fourier transform of y by writing

1

Flk = S (Y[ + VT R}, GIK

» EXERCISE 4.33 The 1st, 2nd,... backward differences of a function f on Py are
defined by

Vin] = fln] = fln=1), V*fln]:= Vf[n] = V fln—1],

(a) Show that V™ f =0 for some m = 1,2, ... if and only if f is a constant function.
Hint. Express the Fourier transform of V™ f in terms of F.

Note. If f is a function on Z, then V™ f = 0 if and only if f is a polynomial of degree
m — 1 or less.

(b) Let ¢ be a function on Py. When is it possible to find a function f on Py such that
V" fln] = q[n]?

» EXERCISE 4.34 The discrete Bernoulli functions t0g,101,102, ... on IPx have the
properties

1

N-—1
;) mn] =0, V™ w,,[n] =6n] — ~

when V is the backward difference operator of Ex. 4.33.
(a) Show that ton, is uniquely determined by these two properties.

(b) Find a simple expression for the Fourier transform 2., of 10,
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(¢c) Let m =0,1, ... be chosen with 2m + 1 < N. Express the box function
1 ifn=041,...,4+m
bm|[n] := .
0 ifm<|n] <N/2

as a linear combination of translates of tv; (plus a constant).

Note. You can construct piecewise-polynomial functions on Py from these discrete
Bernoulli functions, but the theory is more complicated (and less useful) than that for
the Bernoulli functions (23) on Ty.

= EXERCISE 4.35 Given a function f on Py (with f[n] # 0 for some n) we define

Encp 41 —f[ nll*
430 |fln)

R{f}:=

(a) Use Plancherel’s identity to express R{f} in terms of the discrete Fourier transform
of f.

(b) Using (a), show that 0 < R{f} < 1.

(¢) When is R{f} =07 When is R{f} =17

(d) Prove the following discrete Wirtinger inequality: For any complex numbers

:f[o]vf[lL af[M_l]vf[M]:Oa

M—1 M—1
2 Sl 1) = i) 2 dsi (537) 2 ISP

with equality if and only if f[n] = Csin(nn/M) for some constant C.

Hint. Odd extend f to create a function on Poy; and use (a) with a suitable modifi-
cation of Ex. 4.23.

® EXERCISE 4.36 The discrete Fourier transform of the 1-vector (1) is the 1-vector
(1). Use this fact with the repeat rule and the zero packing rule to find the DFT of:

1 ifn=0
(a) é[n] := .

0 ifn=1,2,...,N —1;
(b) uln]:=1,n=0,1,...,N —1;
1 if min

¢) cmn] =
() emn} {0 if m{n, n=0,1,...,N —1 when m|N.

Note. If you forget the constants 1/m, 1 associated with the zero packing and repeat rules
(55)—(56), you can use the analysis of (a)—(b) to determine them!
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» EXERCISE 4.37 Let (A, B,C, D) be the discrete Fourier transform of the vector
(a,b,c,d). Find the discrete Fourier transform of:

(a) (aa da ¢, b): (b) (C, d) a, b)a (C (a7 _ba c, _d);
(d) (A,B,C,D); (e) (a,b,c,d,a,b,c,d); (f) (a,0,0,b,0,0,c,0,0,d,0,0);
(8) (a,c); (h) (b, d); (i) (d+ba+c).

» EXERCISE 4.38 Let (A,B,C,D), (E,F,G, H) be the discrete Fourier transforms
of (a,b,¢,d), (e, f,g,h), respectively. Use the zero packing and translation rules to find
the discrete Fourier transform of:

(a) (a‘70’b707C’0)d70); (b) (O’e’o7f’0)g70’h); (C) (a7e7b7f7c7g7d7h)'

Note. You can find the DFT of an N-vector by suitably combining the DFT’s of two
vectors having N/2 components. The recursive use of this idea leads to a fast algorithm
for computing the DFT of a vector with N = 2" components, m = 1,2, ..., see Section 6.2.

» EXERCISE 4.39 Let f, g be 3-periodic, 4-periodic functions on P12, respectively.
(a) Show that f * g = C where C is a constant.

Hint. Determine the zero, nonzero structure of F,G.
(b) Express C in terms of f[0], f[1], f[2] and ¢[0], g[1], g[2], g[3].

= EXERCISE 4.40 Given a vector f and = 1,2, ... we form f(“) by concatenating
u copies of f and we form f[M by inserting p — 1 zeros after each component of f, e.g.,
(@,5)® = (a,b,a,b,a,b), (a,b) = (a,0,0,b,0,0).

Let the vectors fi,..., fm with Ny,..., Ny, components have the discrete Fourier trans-
forms F1i,...,Fy and let N be the least common multiple of Nq,..., Nm.

(a) Show that

gi= FVND o gD s the BT G = FINV/NY 4y /N

(b) Show that

= EXERCISE 4.41 In this exercise you will find all functions f on P4 that satisfy
the convolution equation f * f = (1,0,0,0).

(a) Show that f[n] is a solution if and only if F[k] = :I:% for each k =0,1,2,3.

(b) Show that if f[n] is a solution, then so is — f[n], f[-n], f[n — 2] and f[n].

(c) Find all 16 solutions.

Hint. (1,0,0,0), $(-1,1,1,1), 3(1,4,1,—i), 2(0,1+1i,0,1 — ).
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» EXERCISE 4.42 Prove that § is the only possible multiplicative identity (2.25) for
the convolution product of functions on Ppy.

» EXERCISE 4.43 Let a = (ag,a1,...,any_1), @’ = (ag,a},...,a/y_;) be complex
vectors. We say that a’ is a multiplicative inverse of a (with respect to the convolution
product) if a xa’ =a’ xa =6 :=(1,0,0,...,0).

(a) How are the components of the Fourier transforms A = (Ag, A1,..., An_1),
Al = (A), AL, .. Ay ) of a, df related when a x o’ = §?

(b) Formulate a necessary and sufficient condition for a to have a multiplicative inverse.

(¢) Formulate a procedure for finding the multiplicative inverse of a (if such exists).
Note. You can test your procedure by finding the multiplicative inverse (—5,7,1,1)
of (1/24)-(0,1,2,3).

#» EXERCISE 4.44 Let a,b,c be functions on Py. Find necessary and sufficient
conditions for:

(a) a*x =0 to have a solution x # 0;
(b) a*x = b to have a unique solution z;
(c) axz*xx+b*xz+c=0to have 2N distinct solutions ;

Hint. Formulate your answers in terms of the discrete Fourier transforms A, B, C.

» EXERCISE 4.45 Let aqg,a01,a10,a11,b0,b1 be complex N-vectors. Show that
there are uniquely determined complex N-vectors xg,x; such that

ago * o + agl * 1 = by

ajg*xxg+ail xxry = by
if and only if the N-vector determinant

apo  ao1
aip a1l

d := det = apo * ai1 — aip * ag1

has a multiplicative inverse as defined in Ex. 4.43.

» EXERCISE 4.46 Let a,b be functions on Z with
al0) =5, afl]=9, a[2]=2, a[3]=6,
b[0] = 15, b[1] =32, b[2] =35, b[3] =61, bl4]=23, b[5]=26, bl6]=6,

and with all other components being 0. Solve the convolution equation a * x = b to find
the unknown function = on Z.

Hint. A, B are polynomials in z := e 2mis/p
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» EXERCISE 4.47 Let f = (f[0], f[1],..., f[N —1]) and let m = 2,3, .... Show that
each of the following procedures can be used to generate a vector g = (g[0], g[1], ..., g[mN—
1]) with g[mn] = fn], n =0,1,..., N — 1. Such interpolation schemes can be used when
we want to draw a smooth curve through a modest number of data points. (Try each one
on the asteroid orbit data from Ex. 1.19!)

(a) Insert m — 1 zeros after each component of f, convolve the result with the mN
component vector (m,m—1,...,1,0,...,0,1,2,...,m—1), and scale the convolution
product by 1/m.

(b) Insert (m — 1)N zeros after the last component of F' = (F[0], F[1], ..., F[N —1]),
and take the inverse Fourier transform of the resulting m/N component vector.

(c) Imsert (m—1)N zeros between the “middle” components F[LN/QJ] and F[LN/2J +1]

of F = (F[O],F[l], ..., F[N — 1]) and take the inverse Fourier transform of the
resulting mN component vector.

Note. The scheme (c) produces a smooth interpolant that can be calculated quickly
by using the FFT.

= EXERCISE 4.48 Let f be a suitably regular p-periodic function on R, let
N=1,2,...,let h:=p/N, and let

N—-1
1 —2miknh/p
Alk] == hf(nh
k=23 nsune

n=0

be the trapezoid rule approximation for the corresponding Fourier coefficient F[k],
k=0,+1,+2,....

(a) Show that Alk] — F[k] = Y. F[k — uN].
n#0

(b) Assume that f, f/,.. .,f(mfl) are continuous and that f(m) is piecewise smooth.
Explain why

P
p Z (2mik/p)" FIk|* = /O |10 ()| dr,

k=—o00
and use this identity to deduce that
|A[k] — Fk]| < Ch™ when [k| < N/2.

Here C'is a constant (that depends on f and m but not on h.)

(c) Compare the error estimate of (b) with the error bound for trapezoid rule integration
from your elementary calculus textbook.
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» EXERCISE 4.49 Let (z[n],y[n]), n =0,1,..., N — 1 be the Cartesian coordinates
of the vertices of a simple, positively oriented N-gon ‘B, and let z[n] := z[n] + iy[n],
n=01,...,N—1.

(a) Show that the triangle with vertices 0, ae’®, be® (where a > 0, b > 0, and
0 < @< B < ) has the area & Im {(be”3 )(aei®)}.

(b) Show that I3 has the area
N-1 N—

,_.

A== Im Zz[n+17 % Sln(27rk) [k']|2
n=0 k=0
(¢) Show that
1 N-l iy 27k
A=3 > {yln+1] —yln —1}eln] = —iN sm( ) Y{k]X[k].
n=0 k=0

» EXERCISE 4.50 Let B be a simple N-gon with vertices z[0], z[1], ..., 2[N — 1] (in
the complex plane). The area, A, and and the perimeter,

N-—1
L= |z[n+1] - 2[n]],
n=0

are related in such a manner that
L2
AL ———M——
~ 4N tan(w/N)

with equality if and only if P is a regular N-gon. [Compare this with Ex. 4.24.] Show
that this is so by proving each of the following statements.

(a) If two adjacent sides of a simple polygon are not equal, the area can be increased
without changing the perimeter.

Hint. Consider the set of all triangles having a fixed base and perimeter.
(b) If every side of the N—gon has length L/N, then

N—-1
L? —NZ ‘z[n—l—l —z[n :4N2 sin ( ) [k]|2
k=0

(c) If every side of the N-gon has length L/N, then

L2 —4Ntan< ) — 4N? Z {Sm(kw/Nco?i(/[N)_ 1]7T/N)} |2 [k]|”.

Hint. Use the area formula from Ex. 4.49(b).
(d) The area A is maximized when z[n] = Z[0] + Z[1]e>™™/N n=0,1,...,N — 1.
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» EXERCISE 4.51 Let m=1,2,...and N = 2,3, ... be relatively prime, i.e., there
isnod = 2,3, ... such that d/m and d|N. In this exercise you will show that there is some
m' =1,2,...,N — 1 such that m -m’ =1 (mod N), a fact that is needed for the proof of
the P-dilation rule (59). You can do this by verifying the following assertions.

(a) None of the integers m,2m,..., (N — 1)m is divisible by N.
(b) No difference km — ¢m with 0 < £ < k < N is divisible by N.

(¢) The remainders that result when we divide m,2m, ..., (N — 1)m by N include each
of the integers 1,2,..., N — 1.

» EXERCISE 4.52 Letm =1,2,...,let P be a prime, and assume that P{m. Prove
Fermat’s theorem: m*' =1 = 1(mod P).

Hint. Begin by using the result of Ex. 4.51 to show that

m-2m-3m---- - (P—1m=1-2-3---- - (P —1) (mod P).

@ EXERCISE 4.53 Let f be a function on Py, let m = 2,3,...,N — 1, and let
g[n] :== flmn], n =0,£1,4+2, .... Prove the following assertions.

(a) If m and N are relatively prime, then G[mk] = F[k], k = 0,£1,£2, .. ..

(b) If m|N, then G[mk] = Fnlk], k = 0,£1,4£2,..., where Fy, is the discrete Fourier
transform of the scaled and sampled function

fonln] = {mf[n] if m|n

0 otherwise

on Pp.

#» EXERCISE 4.54 Let f be a function on Py, let m =2,3,..., N — 1, and assume
that m and N are relatively prime. Let

foln] == fn],  filn] == folmn],  fa[n] := fi[mn],
be the successive m-dilates of f.

(a) Show that f1 can be obtained by suitably permuting the components of fy. (This is
not the case when m, N have a common divisor d = 2,3, ....)

(b) Show that the above sequence of m-dilates is p-periodic, i.e., fyy, = fi, for some
p=23,...,N— 1.

(c) Find the period p = p(m) of (b) for each m =2,3,...,12 when N = 13.
Hint. p =12 for m =2,6,7,11.
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» EXERCISE 4.55 Let P be a prime, let n = 1,2,..., P — 1, let ag,a1,...,an be
integers, and assume that ag Z 0 (mod P). Show that the polynomial congruence

aoz” + alxn_l

+ -+ an_1z+ an =0 (mod P)
has at most n distinct solutions x = 0,1,...,P — 1.

Hint. If z and zg are such solutions, then

ag(z"™ — z0) + al(mn_l — xg_l) + - tap—1(z —x0)

= (z — z0){apz™ ' +---} =0 (mod P).

Use this (with Ex. 4.51) to prove the result by mathematical induction.

= EXERCISE 4.56 Let P =3,5,7,11, ... be an odd prime.

(a) Show that the polynomial congruence 2P=1/2 =1 (mod P) has precisely (P —1)/2
distinct solutions

142
r=1%2% ..., [Q] (mod P)

from 0,1,..., P — 1.
Hint. Use the results of Exs. 4.51, 4.52, and 4.55.

(b) Show that the polynomial congruence P=D/2 =1 (mod P) has precisely (P—1)/2
distinct solutions from 0,1,..., P — 1.

Hint. Use Ex. 4.55 with (a) and the identity

)

2PN = P2y (P2

Note. When z = k? (mod N) for some k = 1,2,...,N — 1 we say that x is a quadratic

residue modulo N, and if = # 0, 12, ey (N = 1)2 we say that = is a quadratic nonresidue
modulo N. This exercise shows that there are precisely (P — 1)/2 quadratic residues and
(P — 1)/2 quadratic nonresidues among z = 1,2,..., P — 1 when P is an odd prime.

» EXERCISE 4.57 Let P =3,5,7,11, ... be an odd prime, and let the P-periodic
Legendre function be defined on Z by writing

0 ifn=0 (mod P)
n]:=41 ifn=122% ... (P—-1)? (mod P)
—1 otherwise.
In this exercise you will find the Fourier transform L of £.
(a) Use Ex. 4.56 to show that £[n] = n(P=1)/2 (mod P), n=0,+1,42, ....
(b) Verify that £ has the multiplicative property ¢[k-n] = £[k]-£[n], k,n = 0,£1,4+2, ....

(c) Show that if k = 12,22, ..., (P—1)? (mod P), then £[k-n] = £[n], n = 0,41, 42, ...
i.e., £ is not changed by k-dilation.
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(d) Show that L[k] = L[1] - ¢[k], k = 0, £1,+2,..., and thereby show that £ is an eigen-
function of the discrete Fourier transform.

Hint. Use (b) to write £[n] = £[kn] - £[k] when k =1,2,...,P — 1 (mod P).
(e) Show that

1

— fP=1 (mod 4)
L = \f

—— if P =3 (mod 4).

NGz ( )

Hint. Use (72) with the identity
pl ) P-1 L,
PL[l] = Z{g[n} + 1}6—2mn/P _ Z e—27mn /P.

n=0 "0

» EXERCISE 4.58 Let m, M be positive integers, let N :=m - M, and let
fmln] == 2mimn* /N Show that |Fim| is a comb with

V2 ifk=0,42m,+4m, ... and M =4,8,12, ...
V2 ifk=4m,+3m,+t5m, ... and M = 2,6,10, ...
1 ifk=0,£m,£2m, ... and M =1,3,5, ...

0 otherwise.

VM |FmK]| =

Hint. Use the repeat rule (56) and the formula (71) for Fi.

» EXERCISE 4.59 Let P =3,5,7,11, ... be an odd prime and let » be a primitive

root modulo P, i.e., 7“0,7"1, ... 77“P_2 are congruent modulo P to some rearrangement of

the integers 1,2,...,P — 1. (For example, r = 3 is a primitive root modulo 7 since
30,31, .. ,35 have the remainders 1,3,2,6,4,5 when divided by 7.) From Ex. 4.52 we
know that 7 ~1 =1 (mod P) so the discrete function

fln) =™ P L =0, 41,42, ..
is N-periodic with period N := P — 1.
(a) Show that f has the autocorrelation product fx f =P -6 — 1.
(b) Show that the discrete Fourier transform of f has the modulus

% if k=0 (mod N)
| F k]| =

ﬁ otherwise.

P-1

Hint. Use (a) and the correlation product rule.

Note. This result has been used as the basis for a design of concert halls having desirable
accoustical properties (see M.R. Schroeder, pp. 163-167).
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Operator identities

associated with Fourier
analysis

5.1 The concept of an operator identity

Introduction

In the preceding two chapters we developed a calculus for finding Fourier transforms
of functions on R, T, Z, and P, and the corresponding rules are succinctly stated
in Appendix 3. Each of these rules involves a pair of function-to-function mappings,
i.e., a pair of operators. In this chapter we will study these operators and the
elementary relations that link them to one another. The change in emphasis will
enable us to characterize the symmetry properties associated with Fourier analysis,
to deepen and unify our understanding of the transformation rules that we use so
often in practice, and to facilitate our study of the related sine, cosine, Hartley, and
Hilbert transforms. Later on, we will use operators to describe fast algorithms for
computing the DFT, to describe fast algorithms for computing with wavelets, to
analyze thin lens systems in optics, etc.

Operators applied to functions on Py

It is easy to illustrate these ideas when we work with functions defined on Py,
i.e., with functions that can be identified with complex N-vectors. From linear
algebra we know that any linear mapping A : CN¥ — C¥ can be represented by an
N x N matrix of complex coefficients. In particular, the discrete Fourier transform

239
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operator F defined by the analysis equation

_ N—1 4 -
Nfl E f[n]6727rz-0-n/N
f10] N
1] N=1 Y fn]e~2miln/N
F . = n=0

& .2'N1 N
NS flalemmrnn

is a linear operator that is represented by the N x N complex matrix

1 1 1 1
1 w u‘)2 . wal

F .= % 1 (A)2 (,u4 e w2N—2 . wi= 6727‘{'7:/1\/'. (1)
1 WwN-1 w2N—2 ... L (N-D(N-1)

The reflection operator R, defined by writing
Rf[n] := fl]-n], n=0,£1,%+2, ...

(when we think of f as being an N-periodic function on Z), or by writing

£[0] £[0]

£11] SIN ~ 1]

r| 2 || V-2
fIN=1] £1]

(when we think of f as being a column N-vector) is also a linear operator that is
represented by the N x N real matrix

(100 - 00 ]
00 --01
000 -+ 10

R = (2)
0/01 - 00
(0|10 - 00 |

Using such notation we can formulate the rules of discrete Fourier analysis in
terms of certain operator identities. For example, the inversion rule

g[n] := F[n] has the FT G[k] = N~ f[—k]
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of (4.54) can be written in the argument-free form
g:=Ff hasthe FT Fg=N"'Rf,
which is more succinctly expressed by writing
FFf)=N"'Rf

when f is any function on Py. In this way we see that the inversion rule of discrete
Fourier analysis is equivalent to the function-free operator identity

F2=N"'R,

which links the matrices (1) and (2). Operator identities that are equivalent to
the other rules for taking discrete Fourier transforms can be found in an analogous
fashion.

Blanket hypotheses

In Chapter 1, we proved that Fourier’s representation can be used for every function
on Py and for large classes of functions defined on Z, T, and R. We will presently
introduce a number of operators A, A1, Az, Ags, ... that are useful in Fourier anal-
ysis. Fach of these operators will be defined on some complex linear space of such
suitably regular functions, and each will have a range that is contained in some
complex linear space of such functions.

When two operators Aj, Ay share a common domain and
A f=Aqf
for all functions f in that domain, we will write
Ay = As,

thereby defining operator equality. Given an operator A and a complex scalar «,
we define the scalar products aA, Aa by setting

(@A) f =a(Af)
(Aa)f =A(af)

for all functions f in the domain of A. Analogously, given operators A;, As having
a common domain, we define the operator sum A; + As by setting

(A + Az f = (ALf) + (Aaf)
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for all functions f in the common domain. Finally, when the range of A5 is included
in the domain of A;, we define the operator product A;1As by setting

(A1 AL) f = Ay (Azf)

for all functions f in the domain of A5. We will let I denote the identity operator
and define

A =1, A':=A, A?:=AA, A®:=AA%,

in cases where the range of A is contained in its domain.

We will always work in a context where operator addition and operator multipli-
cation are associative, i.e.,

A+ (Ax+ Asz) = (A1 + Az) + As
A (A2A3) = (A1 A2)As,

and where scalar multiplication and operator multiplication distribute over operator
addition, i.e.,

alA; + Az) = (aAy) + (aAs)
(A1 + Ag)a = Aja + Asa
A (A + Az) = (A1 Az) + (A1 A3)
(A1 + A2)Az = (A1 A3) + (A2A3).

Operator addition is always commutative, i.e.,
A+ Az = Az + Ay,
but operator multiplication is not, i.e., we will frequently encounter situations where
A1 Az # AA;.
All of our operators will be real homogeneous, i.e.,
Ao =aA

when the scalar « is real, but in a few cases we will work with nonlinear operators
(such as complex conjugation) for which

Aa =aA.

Most of our operators will be linear, however, and satisfy the familiar rules from
the algebra of complex N x N matrices.
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With this preparation, we are now ready to introduce a number of operators
that are useful in the study of Fourier analysis. Our presentation will focus on the
various relations that link these operators with little or no regard for the precise
definition of regularity that is used to specify the underlying function spaces. While
such technical considerations are of unquestioned value, they lie beyond the scope
of this introductory text.

5.2 Operators generated by powers of F

Powers of F

We define the Fourier transform operator F by writing

(Ffis) = /00 f(x)e ™ ™% dx,  —o00 < 5 < 00,

=—00

p .
(FF)[K] = p_l/ flx)e 2mke/pde |k =0,41,%2,...,

(Ff)(s Z flnle=2™=/P 0 < s <p,
(Ff)k 1Zf Je2mikn/N -k =0,1,...,N — 1,
n=0

and we define the reflection operator R by writing

(Rf)(z) := f(—=x) for —oo <z < o0,

o [ £(0) forx =0
L A
(Rf)[n] :== fl—n] forn=0,+1,£2,...,

T f10] forn=20
(Rf)[n] = fl n}{f[N—n] forn=12,...,N—1

when f is a suitably regular function on R, T,, Z, Py, respectively.

We could introduce subscripts R, T,, Z, Px to specify one of the operators from
(3) or from (4). For example, the inversion rules for functions on R, T,, Z, Py
correspond to the operator identities

FrIr = Rr, FzF71, :P_lRTp, Fr,Fz =p 'Rz, FpyFpy = N 'Rp,.
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Likewise, the reflection operators of (4) are involutions (i.e., if we reflect twice we
return to the original function), so we have

RrRr =1Ir, Rr,Rr, =Ir,, RzRz =1z, Rp,Rp, =1Ip,.
We will drop such cumbersome subscripts, however, and simply write

F?=37'R, (5)
R? =1 (6)

for these two sets of equations with the understanding that the universal constant
0 takes the values
6:=1,p,p,N (7)
when the operators on either side of (5), (6) are (initially) applied to suitably regular
functions defined on R, T,, Z, Py, respectively. You will quickly learn to use the
context to interpret the uncluttered expressions from (5), (6), and similar relations.
We will freely combine operator identities such as (5)—(6) using the algebraic
properties discussed previously. For example, we have

FR =F(3F?) = 6F° = (BF*)F =RF (8)
and
F1=(F)(F") = (F'R)(F'R) = 'R = 47°L (9)
By using (9) together with (5) and (6) we obtain the expressions
F =523 = BRF = BFR (10)

for the inverse of the Fourier transform operator.
From (9) and (10) it follows that

3_~4m _ ﬂ*Zm:[’ 374777,-1—1 _ 6727719" 5417’7,—‘,-2 _ ﬂ72m:}«27 gj4m+3 _ ﬂ72777,3137
m=0,+1,42,. ...

This being the case, any polynomial
CF)i=coll+aF+eF?+ - +c,F"
of degree n = 1,2, ... in F can be written as a polynomial
AF) = aol + a1 F + axF? + a3 F>
of degree 3 or less with

ap :=cp + 5_264 + ,6_408 +--, ai1:=c1+ ﬁ_205 + 6_469 + -
ag :==ca+ B 2o+ B e+, azi=cs+ B e+ B e+

We will now introduce a number of operators of this form. Of course, any two such
operators must commute with one another, see Ex. 5.1.
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The even and odd projection operators

The even, odd parts of a function f are obtained by writing

—00 < x < 00,

~
— =

z) + f(=2)},

~
—~
8
~
|
~
T
8
~
inad

31 3t

{f@)+fp—2)}, 3{fx)—flp—=)}, 0<z<p,

s{f[n] + fl=nl}, sifln] = fl=nl},  n=0+1%2,...,
s{fIn) + fIN =nl}, 3{fln] = fI[N —n]}, n=0,1,...,N -1

when f is defined on R, T,, Z, Py, respectively. You will recognize these as the
functions

P.f, Pof

where the even and odd projection operators are succinctly defined by writing
P.:=1iI+R), P,:=1(I-R). (11)

From the definitions (11) and the involutory property (6) of R, we immediately
obtain the projection relations

P.+P,=1, P’=P, P:=P, P.,P,=P,P.=0, (12)

and the identities
pP.-P,=R, P.R=RP.=P., P,R=RP,=-P, (13)

that link P.,P,, and R.
Example Show that P2 = P..
Solution We use (11), (6), (11) in turn to write

P2:=iI+R);I+R)=1{I>+2R+R?}
=H{I+2R+1I} = H{I+ R} =P.. -

The normalized exponential transform operators

The presence of the scale factor § in (5) and (9) [as well as in the Plancherel
identities (1.15)—(1.18)] is an indication that the operator F and its iterates change
the overall size of a function f defined on T), Z, or Py (except when p =1, N =1).
For this reason we are motivated to introduce the normalized exponential transform

operators
E_:=p'Y2F, E;:=p 25! (14)
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observing that we then have

oo

EBN = [ S a,

—00 < § < 00,

(B f) K] = p~'/? / F(@)eF2miRle gy 41,49,
(E:I:f —1/2 Z f i27'risn/p7 0<s<p,
(BLf)[K] = N~V/2 Z fl)e=2mon /N g =0,1,.. N~ 1,

when f is a suitably regular function on R, T,, Z, Py, respectively. The symbols
E_, E; remind us of the —¢, +¢ exponential kernels we use to construct these
operators. Although it is a bit of a nuisance to include the scale factors ¥/, it is
quite easy to recall and use the scalar-free operator identities

E.E_ =1,
E? =R,

RE_ =E,,
RE, =E_,

E_E, =1, (15)
E? — R, (16)
ER=E,,

(17)
E,R=E_,

which can be derived from (14) by using (5), (6), and (8).

The factorization I = ELE_

a succinct way to summarize the analysis and

synthesis equations of Fourier. Indeed, we can recover a suitably regular function

f from the Fourier transform

F:=(B"""E.)f

by applying the operator 5V/2E,, i.e.,

(BT12E4)F

= (BTPEL)(BYPEL) f = f.

The normalized cosine transform and sine transform operators

After viewing the Euler identities

1 ,
cosf = 5{6’9 + e Y,

1 .
ng = — 0
sin 5 {e

6—1‘9}
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we are motivated to define the normalized cosine transform and sine transform
operators

C = %{E++E,}, S i %{E+—E,}. (18)

We immediately deduce the operator identities
E,=C+iS, E_=C-iS (19)
(which remind us of the Euler identities e = cos + i sinf, e~ = cos — i sin ),
c?=pP, S*=P, (20)
C*+S8*=1, C?-S*=R, (21)

and the commutation relations
SC=CS=0,
CR=RC=C, (22)
SR =RS = -8,

see Ex. 5.3.
Example Show that C?> +S8? =1
Solution We use (18) with (15) and (16) to write

1 1 1 1
C%= 5B +E ) (By +E) = Z{E2+ +E,E_+E_E, +E*} = ;(I+R),

1 1 1 1
S*°= —(E;-E.)—~(Ey-E_.)=——{E> -E,E_-E_E, +E’}=_(I-R
22.( + )21.( + ) 4{ T + ++E2} 2( ),
and thereby obtain both of the relations (21). n

The factorization P, = CC succinctly summarizes the analysis and synthesis
equations that are associated with the cosine transform. Indeed, we can recover
any suitably regular even function f from

F.:=Cf
by applying the operator C, i.e.,
CF.=CCf=P.f =/

Analogously, we can recover any suitably regular odd function f from the sine
transform

Fs:=Sf
by applying the operator S, i.e.,

SF,=SSf=P,f =,
see Exs. 1.3 and 1.12.
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The normalized Hartley transform operators

The normalized Hartley transform operators
H, =C+S, H_.=C-S8 (23)

are real analogues of the operators E , E_ from (19). These operators are involu-
tory, i.e.,

H? =1, H? =1L, (24)

and they satisfy the commutation relations

H_|_H_ - H_H+ - ].:{7 (25)
H+R - RH+ - H_,
(26)
H R=RH =H.,
analogous to (15) and (16).
Example Show that H2 =1.
Solution We begin with (23) and then use (22), (21) in turn to write
H? =(C+8S)(C+8S)=C*+CS+SC+8*=C*+8*=1L -

The factorization I = HLH_ leads to the symmetric synthesis-analysis equations
f=HiF, F,:=H,f
for Hartley analysis. The real-valued function
casf := cosf + sinf

(with cas being an abbreviation for cos and sin) that is used in the construction of
a Hartley transform plays a role analogous to the complex-valued function

cisf :=cosf +isinf
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(with cis being an abbreviation for cos and i sin) that is used to construct a Fourier
transform. These synthesis-analysis equations take the form

flz) = /io_ F,(s)cas(2msz) ds, Fy(s) = /io_ f(x)cas(2msz) dx,

f@) =972 3 Filieas(erke/p). Rk =57 [ facas(emho/p)
k=—o00 v=0 (27)

fln) = p=/” / :Fms)eas(mn/p), Fu(s) =p/2 S flnfeas(2msn/p).

n=—oo

N-1 N-1
fln] = N7'2N " Fy[k|cas(2nkn/N),  Fy[k] = N~/ f[n]cas(2rkn/N),
k=0 n=0

when f is a suitably regular function on R, T,, Z, Py, respectively. The Hartley

transform F}, is always real valued when f is real valued. This is a very nice property
that the Fourier transform does not have.

Connections

From (11) and (22) we see that the operators C,S (like the functions cos, sin) are
even, odd in the sense that

rp.C=C, P,C=0,

28
P.S=0, P,S=S, (28)
so when we apply P., P, to the transform operators of (19) and (23) we find
P.E.=C, P,E,=+iS, (29)
P.H,.=C, P,HL=+S. (30)

With the aid of these identities we easily obtain the relations

E_=p2F=C-iS=(P,—iP,)H,
C=PH, =P.E_=73"’P.F
S=PH,=iP,E_=p3Y%P.F

H =C+S=(P.+iP,)E_=("Y*P.+iP,)F

that link the transforms associated with F, E_, C, S, and H,..
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Example Find the Hartley transform (27) of f(x) := 2™ TI(x).

Solution We use the calculus from Chapter 3 to find the Fourier transform

(FF)(s) = sinc(s - 1),

and we then use P., P, to obtain
1
(CH(s) = (PTFf)(s) = i{sinc(s — 1) +sinc(s + 1)},

(SF)(s) = (iP,FF)(s) = %{sinc(s 1) — sine(s + 1)}
We add these to produce

(Hyf)(s) = (Cf)(s) + (Sf)(s) .
= %{sinc(s —1)+sinc(s+ 1)} + %{sinc(s — 1) —sinc(s + 1)}.

Example Find the Hartley series (27) for the 4-periodic function f with

)= {

1 ifo<z<1
0 ifl<azx<4

Solution The function f is generated by summing the 4-translates of
IT(x — 1/2), so we can use Poisson’s relation to find the Fourier coefficients

(Ff)[k] = 3672”(1/2)%/4) sinc <Z>

(Y () e
=71\ 7 isin{ sinc{ 7 ).
We use P,, P, (with the 3'/2 factor) to obtain

(A = 42 F N = g eos (T Jsine ()
(ST =42 P = gsin( ) sine( 7).

Ll = (CHE+ S = (7))

In this way we find the Hartley series

15 a7 e ) o225

k=—o00

[which requires an additional factor of 3=/2 = 1/2, see (27)].
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Tag notation

Newton used the symbol f for the derivative of the function f. The tag, ', indicates
that the function f has been processed by applying the derivative operator, D.
The superscript prime, ’, is used for the same purpose in elementary calculus. We
will use the caret, *, the klicka, v, and, the tilde, ~, as superscripts to show that
F,R,H_ have been applied to a function, i.e., we write

ff=Df, [fr=Ff [f'=Rf [T=H.f (35)

Operator identities such as
f/\/\ — ﬁ—lf\/ f/\/\/\/\ — /3—2]0 fVV _ f fV/\ —_ f/\\/ fNN — f

can be expressed compactly with this notation. A string of tags is always applied
from left to right, e.g.,
f\///\ — ((fV)/)/\.

In contrast, a string of operators is always applied from right to left, e.g.,

FDRS := F(D(RF)).

5.3 Operators related to complex conjugation

The bar and dagger operators

We define the bar and dagger operators
Bf:=f, Df:=Rf (36)

using an overbar to denote the complex conjugate. Like R, the operators B, D are

involutory, i.e.,
B2=1, D>=1I, (37)

and the operators R, B, D commute, i.e.,

RB=BR=D, BD=DB=R, DR=RD-==a5. (38)

Example Show that BD = R.

Solution When f is a function on R we have

(BDf)(x) := B(f(—x)) := f(—2z) = f(—z) = (Rf)(2).

The same argument works when f is a function on T, Z, or Py. ™
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We will use the bar, —, and dagger, T, as superscripts to show that B, D have
been applied, i.e.,
f~=Bf fl:=Df (39)
We can use this tag notation to rewrite (37)—(38) in the form
o= =7,
V== ==Y =Y =
The operators B, D are additive, i.e.,

B(fi+ f2) = (Bf1) +(Bf2), D(fi+ f2) =(Df1) + (Df),

but not homogeneous since
B(af)=af” =a(Bf), D(af)=afl =a(Df)

agree with a(Bf), a(Df) only in those cases where f is the zero function or the
scalar « is real. We express this lack of homogeneity by writing

Ba=aB, Da=aD (40)

when « is any complex scalar. Thus neither B nor D is linear. In particular,
neither of these operators can be represented by N x N matrices when we work
with functions defined on Py

Since the kernel functions cos, sin, cas that are used to construct the operators
C, S, H. are all real valued it is easy to see that B, D commute with these

operators, i.e.,
BC=CB, DC=CD,

BS =SB, DS=SD, (41)
BH, = H.B, DH,. = H.D.

In contrast, by using (19), (41), and (40), we find
E.B=(C+tiS)B=BC+iBS=BCFBiS=B(CFiS)=BE;. (42)
We use this relation with (17) and (38) to obtain the commutation identities
E.B=DE.,, E.D=BE.. (43)
Since F is a real scalar multiple of E_ we also have

FB =DF, FD=BF. (44)
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The real, imaginary, hermitian, and antihermitian projection operators

We define the real and imaginary projection operators

P,.:=3i1I+B), P;:=11I-B) (45)

1
2

and note that
P.f=35(f+/)

is the real part of f and
P =50 - =i 50—}

is the pure imaginary part of f including the factor ¢, see Ex. 5.10. Likewise, we
define the hermitian and antihermitian projection operators

P,:=11I+D), P,:=3(I-D) (46)

so that
th: %(f"’fT)? Paf: %(f_fT)

are the hermitian, antihermitian parts of f, respectively. Since B, D are both
involutory, the projection relations

P, +P,=1, P2=P, P?=P;, PP,=PP,=0 (47)
P,+P,=1, P;=P,, P:=P, P,P,=P,P,=0 (48)

analogous to (12) and the identities

P,—P,=B, P,B=BP,=P,, P,B=BP,=-P, (49)
P,-P,=D, P,D=DP,=P,, P,D=DP,=-P, (50)

analogous to (13) are easily verified. You should have no difficulty remembering (or
with minimal effort deriving) such relations when they are needed.

Symmetric functions

The commuting operators R, B, D have been used to define the six commuting
projection operators P., P,, P, P; Py, P, of (11), (45), and (46). Common
symmetry properties used in Fourier analysis can be formulated in terms of these
operators. Indeed, a function f is said to be even, odd, real, pure imaginary,
hermitian, antihermitian according as

Pef:f7 Pof:fa Prf:fa sz:fa th:fa Paf:f7
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or equivalently as

Rf=f, Rf=-f, Bf=/f Bf=-f Df=f Df=-f

respectively.

Four other symmetries can be formulated using products of P, P,, P, P;. A
function f is said to be real-even, real-odd, pure imaginary-even, pure imaginary-
odd, according as

PrPef = fa PrPof = fa PiPef = f7 PiPof = fa

respectively. A routine calculation [see Ex. 5.13(a)] shows that every product of
powers of P., P,, P,., P;, Py, P, reduces to 0, I or one of the ten projections P,
p,, P., P;, P, P, P.P., PP, P;,P., P;P,, given above. In this way we verify
that the symmetry list of Ex. 1.2 is complete.

Less common symmetries can be generated from these operators in other ways.
For example, a symmetry is associated with each of the projections

I-P,P., I-P,P,, I-P,P., 1-P,P,.

These are complementary to P,.P., P.P,, P,P., P;P, in the same way that P,
P;, P, are complementary to P., P,., P, respectively, see Ex. 5.13(b).

Symmetric operators

Operators, like functions, can possess certain symmetry properties. We say that an
operator A preserves the symmetry of being even, odd when

AP, =P.A, AP,=P,A,
respectively. Using (11), we see that A preserves these symmetries if and only if
AR = RA.

Each of the transform operators F, C, S, Hy commutes with R so each of these
operators preserves the symmetries of being even and odd.

Analogously, we say that A preserves the symmetry of being real, pure imaginary
when A commutes with the projections P,., P;, respectively, in which case

AB = BA.

Likewise, we say that A preserves the symmetry of being hermitian, antihermitian
when A commutes with the projections Py, P, respectively, in which case

AD =DA.
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The transform operators C, S, H. commute with B, D so they preserve all four of
these symmetries. On the other hand, we see from (44) that the Fourier transform
operator F does not commute with either B or D, so F cannot preserve any of
these symmetries.

Using the commutation relations (38) we find

PP, =
PP, =

I+R+B+D), PP,=

(51)
I+R-B-D), P,P,=

1
4
1
4

and thereby conclude that A preserves the symmetries of being real-even, real-
odd, pure imaginary-even, pure imaginary-odd if and only if A commutes with the
operators

R+B+D, -R+B-D, R-B-D, -R-B+0D,

respectively. Since the transform operators C, S, Hy commute with R, B, D, they
preserve all four of these product symmetries. On the other hand, by using (44) we
verify that F commutes with both R+ B + D and R — B — D but not with either
—R+B—-Dor —R—B+D. Thus F preserves the symmetries of being real-even
and pure imaginary-even but preserves neither the symmetry of being real-odd nor
the symmetry of being pure imaginary-odd.

In summary, we have shown that the Fourier transform operator F preserves only
four of the ten common symmetries of Fourier analysis while the real operators C,
S, H, preserve all ten of them.

5.4 Fourier transforms of operators

The basic definition

In the previous two chapters we formulated a number of rules for taking Fourier
transforms. Each of these rules has the form

g:=Af hasthe FT ¢"=A"f" (52)
where A, A" are certain operators. For example, the reflection rule

g:=Rf hasthe FT g¢"=Rf"
has this form with A = A" = R, and the conjugation rule

g:=Bf hasthe FT ¢"=Df"
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has this form with A = B and A" = D. The rule (52) is valid provided that
F(Af) = ANTf)

whenever f is a function in the domain of A, and in this way we see that (52) is
equivalent to the operator identity

FA=A"TF.
When A, A" are related in this manner, i.e., when
A" =FAF ! (53)

we will say that the operator A" is the Fourier transform of the operator A. The
notation has been chosen so that we can write the transformation rule (52) in the
easily remembered form

(Af)" =AM (54)

We will use the commuting diagram of Fig. 5.1 to visualize the two equivalent ways
we can form the function (54).

A
f Af

F F

S (Af)" = A"f

.A/\

Figure 5.1. The commuting diagram for the rule (52).

Example Show that
R"=R, B"=D, D"'=3B. (55)

Solution We use (8) and (44) with the definition (53) to write
R"=FRF '=RFF '=R,
B "=FBF '=DFF ' =D,
D"=FDF '=BFF ' =8B.

These operator transforms correspond to the reflection rule, the conjugation rule,
and the hermitian conjugation rule. n
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Example Let a be a nonzero real parameter. Find the Fourier transform of the

dilation operator

(8af)(x) := f(ax) (56)
that is applied to suitably regular functions on R.
Solution We know that

f(az) has the FT if/\ (2),

lal
ie.,
1
8,f hasthe FT Wsl/afA,
a
S0
8, = la|™'81/a- (57)

Example The multiplication and convolution operators

Myfi=g-f, Cof:=gxf (58)

are defined when both g and f are suitably regular functions on R, T,, Z, or Py.
Show that
C,=BF "M F. (59)

This factorization corresponds to the indirect scheme for finding convolution prod-
ucts as given in (2.20) and (2.21).

Solution The convolution rule
(g )" =pBg"f"
from (2.16)—(2.19) corresponds to the operator identity
FCy =My T,

which we can rearrange to produce (59). n

Example Let the repeat and zero packing operators

1 00 100
01 0 0 0 0
0 0 1 01 0
Ra=17 0 ol %225 |0 0 o0
01 0 0 0 1
0 0 1 0 0 0
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be applied to 3-component column vectors (i.e., functions on P3), and let the deci-
mation and summation operators

=, =
o 1= R

0
0
1

o = O

0 1 0
0 23 =10 0
1 0 1

o O =
o O O
O = O
o O O
o O O
S = O
O O =

be applied to 6-component column vectors (i.e., functions on Pg). Show that Rs,
Z9 have the Fourier transforms

Ry = 2o, ZTh=LRo

that correspond to the rules (4.56), (4.55) when N = 6, and that 2y, 33 have the
Fourier transforms
=) - %, 328,
which correspond to the rules (4.58), (4.57) when N = 3.
Solution TLet w := e~ 2™/6. We use the fact that w® = —1, w = 1 to verify that

r1 1 1 1 1 1 1 0 O
1 w w? Wt WP 0 1 0
111 w?2 ot Wb wd Wit 0 0 1
FR2= 611 w? Wb WY w2 Wit 1 0 0
1wt w® w2 Wl W20 0 1 0
11 Wb Wl w15 20 25 0 0 1
r1 1 1 1 0 0
0O 0 O 0 0 O
1 1 1
1 1 (.AJQ w4 1 O 1 O 2 4
300 0 0] 3|0 0 0 } 5 ZS = %27,
1 w* Wt 0 0 1
LO 0 O 0 0 O

and thereby show that
Ry = FRF ' =2,

We use the transpose of this matrix identity and the symmetry of F to write
BN =FE,F ' =F2F = (F 2, =R, =35
Finally, we use the complex conjugates of these two identities to write

s =Ry =TF 2T = (6F)2,(3F) " = 22)
— *—1 —
Ey=E,=F X:3F=(3F);6F) "' =1ix). -

=
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Algebraic properties

By using (53) (and the linearity of F) we see that the process of taking the Fourier
transform of an operator is linear, i.e.,
(041./4,1 + OéQ.AQ)A = 3?(0[1./4,1 + 062.)4,2)3:_1
a (FATF ) + aa(FATF )
= Cllfl{\ + CMQAQ,

and multiplicative, i.e.,

(AL A" = F(ALA)F !
= (FAF H(FATF
= AL AL,

More generally, if aq, s, ..., a,, are scalars and Ay, Ao, ..., A,, are operators, we
have

(1 As 4 ag Ay + -+ @A) = gAY + a0 A + -+ AN (60)
(A Ay - AN =ALAY - A, (61)

provided that these sums and products are all well defined.

Example Show that

P)=P, P)=P, P,=P, P)=P,. (62)

K] a
Solution We use (45), (46), and (55) to write

P :=11+B)"=11"+B")=11+D) =Py,
P, =iI1+D)"=i1"+D")=3i1+B)=P,.

A similar argument is used for the other two identities. ™

We can use (60)—(61) to move from the rule-based calculus of Chapters 3, 4
to an operator-based calculus. We again construct a table of functions fi, fa, ...
with known Fourier transforms f{*, f5', ... (Appendix 2), but instead of listing var-
ious rules (Appendix 3) we construct an equivalent table of elementary operators
A, Ay, ... with known Fourier transforms A/, A%, ... (Appendix 4). It is then
possible to find the Fourier transform of any function g that can be generated by
applying some operator in the algebra generated by Ai, As, ... to some function
in the linear space spanned by fi, f2, .... For example, it is possible to find the
Fourier transform of

g:=A1(2A2 — 3A3)(f1 + 3f2)
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by writing
N=2A0 AL - BALALY + 6ALALfY — 9ALAL L.

The rules force us to focus on detailed point-by-point manipulations; the corre-
sponding operator notation helps us develop a global view of the corresponding
mappings.

Duality

There is often a close connection between the Fourier transform rule
Af hasthe FT A"f"

and the dual rule
A"f has the FT A" .

(Notice that the same operator A" appears on the right side of the rule and on the
left side of the dual rule.)

The simplest situation occurs when the operator A commutes with F (as is the
case when A = R,P,,P,,F, ... .) We can then use (53) to see that A" = A and
thereby conclude that the rule and its dual are identical. In particular, the reflection
rule and the inversion rule are each self dual.

There is a fundamental relation that links the operators A" and A. We use
(53) with (5) and (6) to write

= (FHAFH!
= (6, 'R)A(B;'R) !
= (B4/5r)RAR (63)

where (4, 0, are the 1,p,p, N factors we associate with functions that lie in the
domain, range of A, respectively. This is one situation where our notation must
account for differences in the domain and range of A. Figure 5.2 shows an alter-
native derivation of this factorization that is based on the identities (10) and (6).

Example For real values of the parameter a and for suitably regular functions on
R, we define the translation and modulation operators

(Taf)(2) = flz+a), (Eaf)(z):= e f(x). (64)
Use (63) to show that

(T /)" =E.f" hasthe dual (E€.f)" =T_,f".
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AN AN
?’ 3:’ gfl 3_-/71
A A
AN AN
Q’l ‘ F
F F
ﬁdR l ‘ ﬁrR
A R A  g-IR

Figure 5.2. Pictorial derivation of the factorization (63) from
the commuting diagram of Fig. 5.1.

Solution From the translation rule (3.11) and from the modulation rule (3.12) we

already know that
JTh=8&, E=9, (65)

a

so that
TM=T_,.

We can also use (63) (with 85 = 3, = 1) to derive this result by writing
(T2 F)(@) = RIR{f(2)} = RT{f(~2)} = R{f(~ (2 +a))}
=[x —a) = (T-af)(2)

whenever f is a suitably regular function on R. We must use opposite signs with

the two parameters in the modulation rule (3.12) because RT,R = J_,! ™
Example Form = 1,2, ... and for functions f on IPy; we use the repeat and zero
packing operators
n
f [—} if m|n
(R f)[n] == fln], (Zmf)ln] = m _ (66)
0 otherwise

to construct functions on Pys.,,,. Use (63) to show that

(R f) =Zmf" hasthedual (Z,,f)" =m 'R f" (67)
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Solution From the repeat rule (4.54) and the zero packing rule (4.53) we already
know that

so that
RV =m IR,

It is easy to derive this result from (63). We have 3y = M, 8, = mM and
RR,,=R.R

(with the left R reflecting mM-vectors and the right R reflecting M-vectors). Thus

M
R = <> RR,R=m'R,,R*=m"'R,,.
mM
The nuisance factor m™1! is just the 34/, ratio! n

Example Forp > 0 and for suitably regular function f on R we use the summation
and sampling operators

(Bp)@) = > f+mp), (@)l = f(mw)
to construct functions on T, and Z. Derive the dual (1.31) of Poisson’s relation
(Epf)/\ = pilal/pf/\

from Eq. (29) in Chapter 1.

Solution We will use (63) with 84 = 1, 8, = p, and the commutation relation
RY, =3,R.

(The left R is applied to functions on T, and the right R is applied to functions
on R.) We write

1
DIANES (p) RE,R=p 'Z,R*=p '%,,

and in this way we obtain the desired dual rule
E1ypf) = pf" m

After you have assimilated the concept of an operator transform (and taken a
fresh look at Fig. 3.4) you may find it helpful to spend a few minutes studying the
A, A" pairs that are tabulated in Appendix 4. There is no better way to develop
an overview of the various rules from the Fourier transform calculus!
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5.5 Rules for Hartley transforms

The Hartley transform of a function on R, T,, Z, and Py is defined by (27). We
have already shown that you can convert a Fourier transform to the corresponding
Hartley transform by using (34), i.e.,

f~=pYHP. +iP,} "
_qi2 )1 Loen _
= S P+ St - )

2
= BV Ny V) (68)
where
14 1
= N = 5

In this section we will show how you can use operator notation to derive a set of
rules for working with Hartley transforms.
We define the Hartley transform of an operator A by writing

A :=H,AH'=H,AH,, (69)
[analogous to (53)]. We can then use the corresponding Hartley transform rule

g:=Af has the Hartley transform ¢~ =A™ f"~

ie.,

(Af)~ =A"[7, (70)

[analogous to (55)]. The dual rule takes the form
g:=A~f has the Hartley transform ¢~ =Af"~

since we always have
A~ =HIAHY = A.

Using the defining relation (69), it is easy to see that
A=A when H; A =AH,. (71)
We noted earlier that A commutes with H; when
A=B,DP,P,P, P, P, P, H,, ... (72)

so the corresponding self-dual Hartley transform rules are particularly simple.
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In all other cases, we will use the operator identities

H, =3P, +iP,)F = /2(y I+ 7 R)F
H, = ﬂilpg’_l(Pe —iP,) = ﬂ71/235—1(771 +7R)

for the left, right Hy in (69) to obtain the fundamental relation
A = (B:/B2)* (I + 7 R)A" (" T+9R). (73)

We must again use notation that allows us to distinguish between the § associated
with the domain and the 3 associated with the range of the operator A. Since the
list (72) includes all of the inhomogeneous operators that we commonly encounter,
we will further simplify (73) by using the identities vy = i/2, vy~ = v~y = 1/2,
YTy~ = —i/2 to see that

A~ =1(8./8)Y*{A" + RA"R+iA"R —iRA"} when Ai=1iA. (74)

The identity (74) shows how to produce A~ from A", i.e., how to find a Hartley
transform rule from the corresponding Fourier transform rule.

When the operator A preserves even and odd symmetry the four-term sum from
(74) collapses, and we find

A~ = (3,/B4)"/2A" when AR =RA and Ai=iA. (75)

In this way we see that the various dilation, grouping, decimation, repeat, sum-
mation, and sampling rules for finding Hartley transforms are (apart from a scale
factor) identical to the corresponding rules for finding Fourier transforms.

When A exchanges even and odd symmetry the sum (74) again collapses, but
this time we find

A~ = —i(3./B4)*RA" when AR = —RA and Ai=iA. (76)

We can use this identity to obtain the derivative and power scaling rules for Hartley
transforms.

Example Let f be a suitably regular function on R. Use (74) to derive the
derivative and power scaling rules

f(x) has the Hartley transform —27s- f~(—s), (77)
x- f(x) has the Hartley transform (27)~'- f~'(—s). (78)

Solution From the derivative rule (3.19) we know that the derivative and power
scaling operators

(D) (@) = f(x), (Pf)(x) = 2miz- f(z) (79)
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are related in such a manner that
D" =P.
Now
DR{f(x)} = D{f(-2)} = —f'(-z) = -R{f'(2)} = -RD{f(2)},
so we can use (76) to write
D~ = —iRD" = —iR®P.
In this way we see that f’(x) has the Hartley transform
—iRP{f~(s)} = —i R{2mwis - f~(s)} = —27s - f~(—s).
We use the reflection rule with the dual
—27x - f(—x) has the Hartley transform  f~/(s)

to obtain the power scaling rule. For iterates of D, P, see Ex. 5.37. ™

The full four-term sum from (74) must be used to derive the translation, modu-
lation, convolution, and multiplication rules for Hartley transforms, so these rules
are a bit more complicated than the corresponding rules for Fourier transforms.

Example Find the translation rule for Hartley transforms of functions on R.
Solution We use (74) with (64)—(65) to write
1
T = 5{79 +RI'R+iT/)R—iRT)}
1
= 5{Sa +RER+IER—-IRE,}
_lere - Liea—e R
- 2 a —a 22 a —a
and thereby show that

g(z) = f(x + a) has the Hartley transform

g9~ (s) = cos(2mas) f~(s) — sin(2mwas) f~(—s). (80:
Example Derive the convolution rule
1/2
(f*g)~[k] = N2 (/™ Klg™ K+~ [Klg™ [=k]+ [ [=klg™ [k = f~[=k]g™ [k} (81)

for Hartley transforms of functions on Py .
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Solution We use (74) with (58)—(59), the condensed notation

the identity,

and (32)—(33) to write
~_Loon A A ‘REA
€, = 3{€, +RE,;R+iC R —iRE,}

- g{@A) +R{g" R +i(g")R —iR(g")}

- %{@A) + (") +i{g" R —i(g"")R}

= N{<Peg/\> + (iP,g" )R}
= N1/2{<P69N> + <P09N>R}'
This identity is equivalent to (81). n
You will find additional Hartley transform rules in Exs. 5.37-5.39. Similar argu-

ments can be used to develop rules for working with the transforms associated with
S and C, see Ex. 5.40.

5.6 Hilbert transforms

Defining relations

We define the odd signum function on R, T,, Z, Pn by writing

1 ifx>0
sgn(z) :=<0 ifx=0
-1 ifz <0,

(82a)
1 ifo<z<p/2
sgn(z) :=<0 ifx=0, p/2
-1 ifp/2 <z <p,
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itn=1,2, ...
sgn[n] :==<0 ifn=0
1 ifn=—1,-2 ...,

(82b)
1 ifn=1,2,...,|(N-1)/2]
sgnn] :=< 0 if n=20or N/2 (when N is even)
-1 ifn=N-1,N-2,...,N—|(N-1)/2],
respectively. We then form the Hilbert transform operator
H .= —i?_IMsgIIS:, (83)

which acts by applying the factor —i-sgn in the Fourier transform domain. We use
the tag, #, as a superscript to show that I has been applied, i.e.,

f# =K.

Thus when f is a suitably regular function on R, T,, Z, Py we have

f#(x) = —1 /OO sgn(s) f(s)e?™5 ds,

fE@)=—i > sgulk]f [k]e*m ke,
k‘:p—oo
f#n) = —i/ sgn(s)f(s)e2™sm/P s,
s=0

N-—1
Pl = =i 3 sgnlk] £~ [kle2mikn/ N,
k=0

respectively.

Operator identities

We will now develop operator identities that give the basic rules for working with
Hilbert transforms.

As a first step we use (83) to write
H? = —-F  "Mggn=7F,
and thereby see that

H?f=—f when f" =sgn?- f. (84)
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In particular, —J serves as an inverse for H when we work with suitably regular
functions on R, with absolutely summable functions on Z, with piecewise smooth
functions on T, that have

/Opf(w)dx=0,

or with functions on Py that have
N-1 N-1
Z fln] =0 and Z(—l)”f[n] =0 (when N is even).
n=0 n=0

The symmetry-preserving properties of H follow from the identities:

HR=-RK, (85)
HB=BH, (86)
HD=-DWK, (87)

e.g., (85) shows that even functions have odd Hilbert transforms and vice versa,
(86) shows that real functions have real Hilbert transforms, and (87) shows that
hermitian functions have antihermitian Hilbert transforms and vice versa.

Example Show that H commutes with B.
Solution We use (83), (44), and the odd parity of sgn to write
HB=—iF "MgenF B

=—iF "MggnDF

=iF "DMsnF

=i BF "MsanF

=BH. u

We use the factorization (59) with the factorization (83) to verify that

HE, =C,H. (88)

This operator identity then leads to the convolution rule

(fxg)* =fFxg=[fxg”" (89)
for Hilbert transforms.

When we work with suitably regular functions on R, the translation, derivative,
and dilation rules correspond to factorizations

T, =F T,
D= Hrfqu?, q(s) := 2mis,
8a=F 'a|'81,,F, a<0ora>0
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that are analogous to those of (59) and (83). We use these in conjunction with (83)
to obtain commutation relations

HT,=T,H, -—-oco<a<oo (90)

HD =DKH (91)
S, a>0

HS, = 92

{—Sai}f, a <0, (92)

which give translation, derivative, and dilation rules for Hilbert transforms of func-
tions on R.

The Kramers—Kronig relations

Let F' be a suitably regular function on R that vanishes on the half line s < 0,
and let

fx) ::/ F(s)e*™% (s,
0
Since sgn - F' = F', we can write
Hf = —i&"_lMsgnﬂ’f = fif}'_l(sgn-F) = —iFlF= —if

or equivalently,

H{fr+ifry=—i{fr+ifr}

when fg, f; are the real and imaginary parts of f. Since H commutes with B,
Hfr, Hfr are real, so we can equate the real and imaginary parts of this identity
to obtain the Kramers—Kronig relations

Hfr=fr, Hfr=—fr when F(s) =0 for s <0. (93)
With analogous arguments, we also find
HFr=—-F;, HF;=Fgr when f(x) =0 for z <0. (94)

You can use (93) or (94) and your knowledge of Fourier analysis to generate a num-
ber of Hilbert transform pairs. You can then obtain additional Hilbert transform
pairs by using the rules that correspond to (84)—(88) and (90)—(92).

Example Derive the following Hilbert transforms:

(@) 1 z —2x 1
x):
g 1+22 1+22 (1+22)2 1+ (z—1)2
T -1 1—a? r—1
g* (@): 2 2 2)2 2
1+22 1422 (1+22)2 1+4+(x—-1)
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Solution  We know from (3.22) that

1 1 2mix
= = has the FT  F(s) = h(s)e*
/(@) 1—2miz 1+ (27x)? 1 + (2mx)? as the () (s)e™,
so we can use (93) to see that

1 2rx

fr(x) = 1 has the Hilbert transform f;(z) := T @)

+ (27x)?
We now use (92), (84), (91), (90) to fill in the above table with

g1 :=81)2:/rR 92:=Hg1 g3:=Dg1 gs:=T_1g1
gt =81pxf1 9 =gl gf =Dgi gf =T 19} C

The analytic function
Let f be a suitably regular function on T, with the Fourier representation
flz) = Z ake27rik$/p. (95)
k=—o00

We combine f with the Hilbert transform (or conjugate function)

#(z) = Z —isgn[k]apeXmike/p (96)
k=—oc0
to form
flz)+ zf#(x) = Z ap{l + Sgn[k]}GQWikz/p
k=—o00
= ag + 2 Z ake27rikac/p
k=1
— A(e%'rix/p)
where
A(z) == ao + 2a1z + 2a92% + 2a32° + -+ (97)

is said to be the analytic function for the f of (95).
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Since a_1,a_3, ... do not appear in (97), we cannot recover f from 4. On the
other hand, we can generate a Hilbert transform pair

glo) 1= S LAWE™7) + Ae2miein)),

gH(@) = o LAWTP) — AT}

from any power series A that converges on the unit circle.

Example Find the Hilbert transforms and the analytic functions that corre-
spond to

fr(z) :=cos(2mkx), gr(x):=sin(2rkx), k=1,2,....
Solution The function f; on T; has the Fourier representation
fk(x) —_ %67271"“613 + %62771'10:5’
so we use (96) and (84) to write

F (@) = (=i) {—fe2mibe 4 Je2mike} — sin(2rka),
BN N
g7 (x) = £ (x) = — cos(2mkx).

Knowing f, f#, g, g” we use Euler’s relations to see that
Julw) +i ff (@) = 7 gi(e) +igh (x) = —iePmh
and thereby obtain the corresponding analytic functions

Ap(z) =28, Ay(z) = —i 2~ n

Further reading

Bracewell, R.N. The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill,
New York, 2000.

Operator notation is used from time to time in this well-known text.

Bracewell, R.N. The Hartley Transform, Oxford University Press, New York, 1986.
Chapter 3 develops the rules for Hartley transforms.
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Hildebrand, F.B. Introduction to Numerical Analysis, McGraw-Hill, New York,
1956.

Chapter 5 of this classic applied mathematics text contains an informal ele-
mentary introduction to the use of operators in numerical analysis.

Kaplan, W. Operational Methods for Linear Systems, Addison-Wesley, Reading,
MA, 1962.
Chapter 2 of this text introduces scientists and engineers to the operators of
systems analysis.

Mirsky, L. An Introduction to Linear Algebra, Clarendon Press, Oxford, 1955;
reprinted by Dover Publications, New York, 1982.

Most linear algebra books include some discussion of linear operators and the
algebra of matrices. Mirsky gives a detailed elementary exposition of these
topics in Chapters 3, 4.

Exercises

» EXERCISE 5.1 Let A; := Q1(F), Az := Q2(F) where Q1, Q2 are polynomials.
Carefully explain why A1 A = A2A;.

» EXERCISE 5.2 Let a >0 and let f(z) := e ““h(z).
(a) Sketch P.f and P, f.
(b) Explain why F commutes with P, and P,.

(c) Use the identities F(Pef) = Pe(Ff) and F(Pof) = Po(Ff) to find the Fourier
transforms of Pe f, Pof.

= EXERCISE 5.3 Show that the reflection operator R and the normalized cosine
transform and sine transform operators C, S satisfy the commutation relations (22).

#m EXERCISE 5.4 Let F be the Fourier transform operator that is applied to suitably
regular functions on R.

(a) Use the Maclaurin series for cosz, sinz to show that
cos(F) = apl — asR, sin(F) = (a11 — asR)F

where ag, a1, as, asz are certain constants.

(b) Express the cosine transform operator C and the sine transform operator S in terms
of I, R, F, RF.
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» EXERCISE 5.5 Let a,v be scalars. Find a simple expression for the inverse of
each of the following operators.

(a) al+9R, o®—7*#0 (b) aPe+7Po, ay#0
(¢) aBy +~vBE_, o2 —~2#£0 (d) aC+~9S, ay#0
(e) aHy +~vH_, a2 —~424£0

» EXERCISE 5.6 A suitably regular p-periodic function f can be expressed in the

alternative forms
= ork ok
@+ E {ak cos( Ul :c) + by sin( T x)}
2 p p
k=1
- ok = ok
. mkx rkx
= g cy cis = g dyj, cas ,
( p > < p )

k=—o00 k=—o0

f(z)

where cis 6 := cos0+1i sin 0, cas 6 := cos 0+sin §. We use the coefficients to define functions
a,b,c,d on Z:

Ee o by ifk>0
1
ak] =4 UEET kg ={o k=0, clkl:=cp, dk]:=dp.
a_j, ifk <0, b i h o
—V—k 1 )

(a) Show how to obtain a, b, c,d from Cf and Sf.

Hint. Begin with ¢ =Ff = (1/\/p){Cf —iSf}.
(b) Express ay, by, ¢, di in terms of suitable definite integrals involving f.
(c) Express a, b in terms of ¢ and in terms of d.

Hint. Use (a) and the operators P¢, Py, R, e.g., write a = 2P.c = ¢+ Re.
(d) Express c in terms of d and in terms of a, b.

(e) Express d in terms of a, b and in terms of c.

—~
—
=

What can you infer about a, b, ¢, d if you know that f is real valued? pure imaginary
valued?

(g) What can you infer about a, b, ¢, d if you know that f is even? odd?
(h) What can you infer about a, b, ¢, d if you know that f is hermitian? antihermitian?

Note. You may wish to compare the present operator-based analysis to the component-
based analysis you used for Ex. 1.11.
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o0
» EXERCISE 5.7 Let f(z):= Y, g(z—mp) wherep > 0and where g is a suitably

m=—00
regular function on R with the Hartley transform

g7 (s) := / g(z)cas(2wsz) dx.

— o0

(a) Find a Poisson formula that enables you to express the coefficients of the Hartley

series
oo
2wkx
T) = dj. cas
f(z) E k ( » )

k=—o00

in terms of g™ .
Hint. Use a direct argument ... or manipulate the identity d = \/p(Pe +iPo)Ff.
(b) Using (a), find the Hartley series for

{1 if0<z<p/d

0 ifp/d<zx<p.

f(z) =

® EXERCISE 5.8 Let f be the function on Py with components f[n] := n,
n=01,...,N—1.

(a) Find the components (Cf)[k], (Sf)[k], Kk =0,1,..., N — 1, of the normalized cosine
transform, sine transform of f.

Hint. Use (32), (33) with the Fourier transform of f that is given in Ex. 4.26.

(b) Show that the normalized Hartley transform (27) of f has the components

Ik
M= —1—anc%) k=12 N-1

» EXERCISE 5.9 Let N =2,3, ..., let f be the N-periodic discrete function with
1 ifn=0,1
fmy:{o ifn=23 .. N—1,
andlet fi:=f, fo:=f*xf, fs=fxfxf, ....
(a) Show that fiy[k] = N~1(1 + e~ 2mik/Nym
(b) Show that fy;[k] = M N—1/2 cos™(wk/N)cas(mmk/N).
Hint. Use (a) with (34).
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» EXERCISE 5.10 Let the complex-valued function f have the representations

f=f+fi=fr+ifr

where fr := fr and f; are real valued, and where f; := ifs is pure imaginary. (Thus f;
is the imaginary part of f with the ¢ and f; is the imaginary part of f without the i.) Let
the operators Py, P;, P; be defined by writing

P.f:=fr, Pif:=Ffi, Prf:=fr.

(a) Express Pr, P;, and P; in terms of the complex conjugation operator B.
(b) Find simple expressions for the products PP, P;P;, PP, P;P,.
Note. If you compare your answers from (b) with (12), (47), (48) you will understand

why we have chosen to work with P, P; in this text.

» EXERCISE 5.11 A group of Fourier analysis students are learning to use a com-
puter subroutine, DFT. After initializing the integer variable N = 1,2, ... and the
N-component real arrays fg, fr, you can use the command

DFT(NafRaffaFRvFI)

to tell the computer to load the N-component real arrays Fr, F7 with the real and imag-
inary parts of the discrete Fourier transform

F|k] = Fr[k] +iF7lk], k=0,1,...,N—1
of the complex vector

f[n]:fR[n]+ZfI[n]7 ’I’LZO,l,...,Nfl.

(a) “I think we can use DF'T to compute an inverse Fourier transform,” says one student,
who suggests the pseudocode

DFT(NafRafI)FR7FI)

fr=FRr

fr:=1Fr

DFT(N, fg, f1, Fr, Fr)
Ir:=FRr

Jr:=Fr

DFT(N, fg, f1, Fr, Fr)
Fp:=N?.Fp

F;:= N?. Fy.
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“That’s terribly inefficient,” says a second student. “The pseudocode

DFT(N, fr, f1, Fr, Fr)
For k=1,2,...,[N/2|
Swap Fg[k] and FR[N — k|
L Swap Frlk] and F7[N — k]
Fr:=N-Fp
Fy:=N-Fy
will do the job with only one DFT computation!”

“I don’t like componentwise operations,” says a third student, who recommends
the pseudocode

Jr=—f1
DFT(N, fr; f1, Fr, F)
Fj:=—N-F;

Fr:= N - Fg.

Write down the operator identities that underlie these three approaches to com-
puting an inverse Fourier transform. Which one do you think is the best? Why?

(b) “I need to compute the Fourier transforms of two real N-vectors, f,g,” said one
student. “I guess I’ll use the pseudocode

DFT(NafvovFRaFI)
DFT(N79707GR7GI)

to do the job.”

“I think you could get by with just one call to DF'T,” says a second student. “You
can write
DFT(N, f,9,Tr,T1)

and then suitably process Tr, 1T to find Fg, Fr,Gr,G1.”

“That will never work,” says a third student, “because the Fourier transform scram-
bles the real and imaginary parts; you cannot get both F' and G without using DF'T
twice.”

Give operator identities which show that the second student is right! Supply corre-
sponding pseudocode [analogous to that in (a)] for computing Fgr, Fr, Gg, Gy from
Tr, T7.

#» EXERCISE 5.12 Verify the following identities.
(a) fA=fY"Y = = fIAe (b) fN =fYN =" =i
(C) f/\— — f\//\T —_ f—/\\/ _ f'i'/\ (d) f/\T — f\//\— —_ f—/\ _ f’i‘/\\/
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» EXERCISE 5.13 The identity, reflection, bar, and dagger operators are used to
construct the projection operators Pe, Py, Py, P;, Py, Pq, see (11), (45), and (46).

(a) Show that there are exactly 10 distinct nonzero products that can be formed from a
string of one or more of these projection operators.

Hint. In addition to the above six you will find Pre := PrPe, Pro := PPy,
P, .= P;Pc, P;, := P,;P,.

(b) Let P be one of the operators Pre, Pro, Pje, P, and let Q := I — P. Verify that
P2 =P, Q?>=Q, PQ = QP = 0, analogous to (12), (47), (48).

(c) We associate hermitian symmetry with Py, since f is hermitian if and only if Py, f = f.
Likewise we associate real symmetry with P}/: = P,. Make a table showing P,
the symmetry associated with P, and the symmetry associated with P” for the 10
projection operators P of (a).

» EXERCISE 5.14 Let A be a linear operator applied to the functions on Py . Such

an operator can be represented by an N x N matrix {amn}%_nlzo, i.e.,
N-1
(AD[m] = > amnfln], m=0,1,...,N-1.
n=0

(a) Show that A commutes with R, B, D if and only if amn = a—m,—n, aGmn = aGmn,
Gmn = G—m,—n, respectively. Here matrix indices are taken modulo N, i.e.,
—m,—n = GN—m,N—n When m,n =1,2,... N.

(b) What must be true of amn if A preserves the symmetry of being even? real? hermi-

tian?

= EXERCISE 5.15 In this exercise you will develop properties of the four fundamen-

tal projections
3 1 3
D OMEL = Y () ED
=0 £=0

when these operators are applied to a suitably regular function f defined on R or Py . (In
these two cases the domain of E4,E_ is the same as the range!)

Q=

| =

(a) Use the definition to show that

Qi when k=/

+ + + =1, =

Qo+Q1+Q2+Qs3 QL Qs {0 when & # (.

(b) Verify that Qo = 3(Pe + C), Q1 = 3(Po +8), Q2 = 3(Pe — C), Q3 = 5(Po — S),
and thereby show that each of the projections Qq, Q1, Q2, Q3 is real with Qp, Q2
preserving even symmetry and with Q1, Qs preserving odd symmetry.

(c) Show that B4 Qy = (+i)°Qy, E_Qy = (—1)"Qg, k=0,1,2,3.
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(d) Use (a) and (c) to show that f has the decomposition f = fo + f1 + f2 + f3 where

Eifr= ) e Bofi = (=) fu, Fhi=(=0)872f, k=0,1,2,3,

i.e., fo, f1, fo, f3 are eigenfunctions of the operators E4, E_, F (or they are zero
functions). Here 8 = 1, N when f is defined on R, Py, respectively.

Hint. fi, :== Qpf.
(e) Show that if we know f and f”, we can find the projections of (d) using
fe(@) = 1{f @)+ [ (@) + (=) f(—2) + (=) * 1" (—2)}
when f, f" are defined on R and
filn] = ${fI0) + VNE ]+ (D f[=n] + VN (=) fA[=n]}

when f, f are defined on Py .

» EXERCISE 5.16 In this exercise you will show how the fundamental projections
Qo, Q1, Q2, Q3 (from Ex. 5.15) can be used to represent an arbitrary polynomial in the
Fourier transform operator F in cases where F is applied to functions defined on R or
on Py . Since F* is a scalar multiple of the identity operator, I, we can assume that the
polynomial has the form P(z) := cg + c1z + 02x2 + 031'3 where cq, c1, c2, c3 are complex
numbers.

(a) Show that P(E4)Qx = P((+1)*)Qk, P(E_)Q) = P((—)*)Qy, k=10,1,2,3.
Hint. Use Ex. 5.15(c).
(b) Show that

P(EL) =P1)Qo +P»1)Q1 +P(-1)Q2 + P(—i)Q3
PE-)=P(1)Qo +P(—i)Q1 + P(—1)Q2 + P(i)Qs.

Hint. Apply P(E+) to the identity I = Qg + Q1 + Q2 + Q3 from Ex. 5.15(a).
(c) Express I, Pe, Po, R, C, S, Hy, E4, E_ in terms of Qgp, Q1, Q2, Qs.

Hint. You can show that R = Qo — Q1 + Q2 — Q3 by setting P(z) := z? in (b) or
by suitably manipulating the identities of Ex. 5.15(b).

(d) A polynomial in F can be written as a linear combination of I, E, E?,_ =R, and
E3 = E_. Show that

Aol + A1EL + AsE3 + A3ES = apQo + a1Q1 + a2Q2 + a3Qs
if and only if the coefficients Ay, ar are related in such a manner that

(Ao, A1, A2, A3) = (ag, a1, az2,a3)”.
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()

(8)

Let
A=A+ A Ey + AET + A3ES = a9Qo + a1Q1 + a2Qz + a3Qs3,
B =Byl + BiE; + BsE} + B3EL = boQo + b1Q1 + b2Qa + b3Qs.
Show that

AB = BA = apbgQo + a1b1Q1 + a202Q2 + a3b3Q3 = CoIl + CLE + CQE% + CgEi
where
(Co, C1,C2,C3) = (Ag, A1, Az, A3) * (Bo, B1, B2, B3).
Show that A := agQq + a1 Q1 + a2Q2 + a3Q3 is an involution (i.e., A? = I) if and
only if A is one of the 16 operators
t(Pe+Py), £(PcxS), £(CxP,), L(Cx£S).

Note. The Hartley transform operators, +H4 , are the only such involutions that actu-
ally transform both the even and the odd parts of functions to which they are applied!

Let Ag, A1, A2, A3 be complex numbers and let A := Agl+ A1 E4 + AgEﬁ_ + A3E§_.
Devise a procedure for finding the corresponding coefficients Bg, By, B2, B3 for the
inverse operator B = Bol + B1E4 + BgEi + BgEi when such an inverse exists.

® EXERCISE 5.17 In this exercise you will determine the multiplicities ng, n1, no,
ng of the eigenvalues A = 1/v/N, —i/v/N, —1/v/N, i/v/N of the N x N discrete Fourier
transform matrix F, or equivalently, of the eigenvalues A = 1, —i, —1,4 of the normalized
operator E_. [The argument is taken from L. Auslander and R. Tolimieri, Bull. Amer.
Math. Soc. 1 (1979), 847-897.]

(a)
(b)
()
(d)

()

Show that E_ f = (—i)kf if and only if Qi f = f, k=0,1,2,3, see Ex. 5.15.

Show that ny is the multiplicity of the eigenvalue A =1 of Qg, k =0,1,2,3.

Use (b) and Ex. 5.15(a) to show that ng + nj + ng +ng = N.

Use (b) and Ex. 5.15(b) to show that ng + no = |N/2] + 1.

Hint. Since Qg + Q2 = Pe¢, ng + n2 is the dimension of the space of even functions
on Py.

Show that ng —iny —ng +ing = 1,0,—i,1 — ¢ when N =1,2,3,4 (mod 4).

Hint. Recall from linear algebra that the trace Y  ann of a matrix A = {amn}%’_nlzo
gives the sum of its eigenvalues, and use the expression (4.72) for the Gauss sum.

Using (c)—(d), show that ng,n1,no,n3 are given by the following table:
N ‘ no ni n9 n3
4m m+1 m m m—1
dm+1|\m+1 m m m
dm+2\m+1 m m+1 m

Im+3|m+1 m+1 m+1 m
Note. Qo =0if N=1,Q; =0if N=1,2,and Q3 =0if N =1,2,3,4.
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» EXERCISE 5.18 The following operators are applied to functions on Pp. Find
each eigenvalue and determine its multiplicity.
(a) C (b) S (c) R (d) Hy

Hint. When E_ f = \f, you can write E; f = E2 f = A3f and E f = Af. Use this with
the results of Ex. 5.17.

» EXERCISE 5.19 Let the translation, exponential modulation operators Jg, Eq
from (64) be applied to functions on R, and let R, B, D be the reflection, bar, and
dagger operators. (Here —oo < a < 00.) Show that these operators satisfy the following
relations:

(a) RTa=T_.R (b) BT, =T,B (c) DT =T_,D

(d) RE,=E_.R (e) BEL,=E_,B (f) DEL=ED

Note. Appendix 4 shows how to define translation and exponential modulation operators
for functions on Ty, Z, Py, and you can use the above identities within such settings.

= EXERCISE 5.20 Let the dilation, translation, exponential modulation, derivative,
and power scaling operators 8y, Tg, €4, D, P from (56), (64), and (79) be applied to
suitably regular functions on R. (Here —oco < a < oo and —oco < b < oo with b # 0.)
Show that these operators satisfy the following relations:

(a) fTaSb = Sb7a~b (b) SGSb = Sbga/b (C) DSb = bSbD (d) :])Sb = b_lsb:])

= EXERCISE 5.21 Find the 4 X 4 matrix that corresponds to each of the following
operators (when these operators are applied to functions on Py):

(a) E4, E_ [use (14)] (b) R, Pe, Py, [use (3) and (11)]
(¢) C, S [use (18)] (d) Hy, H_ [use (23)]

(e) Qo, Q1, Q2, Qs, [use Ex. 5.15(b)] (f) My, Cy, [use (58)]

(8) TJo,J1,T2, T3 (h) &o, &1, &2, &3

Note. If you wish, you can verify that these matrices satisfy identities such as C?+82 =1,
RE; =E_ H: =L TJ2=T5,....

» EXERCISE 5.22 Let F be the discrete Fourier transform matrix (1). The inversion
rule corresponds to the relation F 2 — N"!R where R is the matrix (2). What property
of F corresponds to:

(a) the reflection rule? (b) the translation rule? (c) Parseval’s identity?

Hint. Use the identity F = BF B = RTF for (c).

» EXERCISE 5.23 A Fourier transform rule and its dual are often quite dissimilar.
Explain why we do not get substantially new rules from the dual of the dual and from the
dual of the dual of the dual.

Hint. Observe that (RAR)" = RA"R.
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» EXERCISE 5.24 Let X be the operator that exchanges the real and imaginary
parts of a complex-valued function, i.e.,

Xf:=[fr+ifr when f=fr+ifr

(with fgr, fr being real-valued).

(a) Show that X =B [where B is the bar operator (36)].

(b) Show that X? = I by using the definition of X.

(¢) Show that X2 =1 by using the identity of (a).

(d) Find a simple expression for the operator X”.

(e) Let f = fr+ifr, f = Fr +iF; where fg, f1, Fr, Fy are real valued. Express the

Fourier transform rule associated with X in terms of fgr, fr, Fr, FT.

» EXERCISE 5.25 Find the Fourier transform of each of the following operators that
are applied to suitably regular functions on R.

(a) The averaging operator

1

x+h
AHw) =g [ sdu b >0

Hint. Use (53) and (59).
(b) The low-pass filter operator

(Lo f)(z) :== / i fN(s)e* ™5 gg = / i { / io Flu)e—2mise du}ezmsx s,

which removes from the Fourier representation of f all sinusoids having frequencies
outside the band —o < s < 0.

(c) The high-pass filter operator

(Haf)(fﬂ) = / fA (S)eQmsx ds = / {/OO f(u)e%risu}e%m'sx ds,
ls|>o [s|>0 \Ju=—oc0

which removes from the Fourier representation of f all sinusoids having frequencies
within the band —o < s < 0.

®» EXERCISE 5.26 Let h > 0, a > 0, and let the operators D, J},, 8« be defined by
(35), (64), and (56). Let cp,c1,...,cn be complex scalars and let
P(z) :i=co+crz+ -+ cpx”.
Find the Fourier transform of:
(a) The differential operator {P(D)f}(z) := cof(x) + c1 f' (x) + -+ + enf™ (2);
(b) The difference operator {P(J,)fHz) := cof(z) + c1f(z+h) + -+ + cnf(z + nh);
(c) The dilation operator {8aP(T}) f}(z) := cof(azx) +c1 flax+h)+---+cnflaz+nh).
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» EXERCISE 5.27 Let p >0, ¢ > 0, and let the operator
() (@) := f(pz/q)
map the function f on Tj to the function Jf on Tjy.

(a) Find the Fourier transform J” of the operator J and draw a commuting diagram to
illustrate the corresponding mappings.

(b) Find J™" by taking the Fourier transform of J*F where F := f” is a function on Z.

Hint. Assume that the Fourier transforms of F, JMF are functions on Tp, Ty,
respectively.

(¢) Find J™ by simplifying the operator identity J*" = (34/6-)RJIR.
#» EXERCISE 5.28 A linear operator A is said to be translation invariant (LTI),

modulation invariant (LMI) provided that A commutes with every translation operator
J},, every exponential modulation operator €}, respectively.

(a) Show that A is LTI if and only if A" is LML

(b) Show that the multiplication operator My is LML

(c) Using (a)—(b), show that the convolution operator €4 is LTI.

(d) Let A be an invertible LMI operator. Show that A™! is also LMI.
(e) Let A be an invertible LTI operator. Show that A~ is also LTI.

#» EXERCISE 5.29 Let A be an operator that is applied to the functions on Py .

(a) Show that A is LMI (see Ex. 5.28) if and only if A = Mauy, ie., Af := (Au) - f,
where u is the function on Py with u[n] =1,n=0,1,...,N — 1.

Hint. Use matrix representations for A and &,,.

(b) Show that A is LTI (see Ex. 5.28) if and only if A = Cpy, i.e., Af := (AJ) * f, where
§ is the function on Py with §[0] =1 and §[n]=0for n =0,1, ..., N — 1.

Hint. Use Ex. 5.28(a) with the representation of (a).

(c) Let eg[n] := e2™kn/N “Qhow that A is LTI if and only if eq, e1,...,en_1 are eigen-
functions of A.

(d) Let A be an LTI operator with impulse response r and frequency response A, i.e.,
r[n] :== (Ad)[n],n=0,1,...,N —1asin (b) and Aey = A\[k]-ex, k=0,1,...,N—1
as in (c¢). How are the functions r and X related?

#» EXERCISE 5.30 The following operators are applied to functions on Py. Find
their eigenvalues and corresponding eigenfunctions.

(a) The translation operator Jp,.
(b) The negative discrete Laplacian A with (A f)[n] := —f[n — 1] + 2f[n] — f[n + 1].
Hint. \j, = 4sin?(kx/N).
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» EXERCISE 5.31 Let f be a function on Py with f"[k] # 0 for k =0,1,...,N—1
and let J := J7 be the unit translation operator. Show how to find coefficients
cp,C1,--.,CN SO that

{col+aT+eT? + ey TV =y

when the function g on Py is specified. (Thus f, T, T2, TNflf form a basis for
the N-dimensional linear space of complex functions defined on Py .)

Hint. {g"/f"}"
Note. N. Weiner proved the following generalization of this result: Let f be an absolutely
integrable function on R with f(s) # 0, —oo < s < co. Let g be an absolutely integrable

function on R, and let ¢ > 0 be given. Then there exist real numbers a1 < as < --- < ay
and complex scalars c1,ca,...,cn such that

/.

= EXERCISE 5.32 When we work with functions on R and use the dilation operator
(56) with a > 1:

N
9@) =" en(Ta, f)(@)|dz < e.

n=1

(i) (Saf)(z) := f(az) is a “compressed” version of f;
(i) (81/0f)(x) := f(x/a) is a “stretched” version of f;
(iii) 8a8;/, = and
(iv) S(/L\Sf/a = I" simplifies to 81/48a =L

Write down the operator definitions that correspond to (i)—(ii) and the operator identities
that correspond to (iii)—(iv) when we work with functions on:

(a) Tp; (b) Z; (c) Pn.

Hint. Use m = 2,3, ... in place of a > 1. Give two answers for (c), one using the dilation
operator Sy, [with ged(m, N) = 1] and one using the decimation operator &y, (with m|N).
All of the required operators are defined in Appendix 4.

®= EXERCISE 5.33 Sketch graphs for the functions at the four corners of the follow-
ing commuting diagrams. All of the required operators are defined in Appendix 4.

e (m— 12@) (on T1s)

f=—00
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1 ifn=0,1,11
{ (01’1 Plg)

0 ifn=2,3,...,10

= EXERCISE 5.34 When a > 0 the sample-sum operator

(Xaf)ln] == Z f< n—mN])

m=—oo
[from (4.64)] maps a suitably regular function f on R to a function X4 f on Py.
(a) Show that
Xo=32NE, Wi
where =, is the p-sampling operator for functions on R and X is the N-summation
operator for functions on Z, as defined in Appendix 4.

(b) Use (a) and the multiplicative property (61) of the operator Fourier transform to
verify that

Xo = a \/“ g /av'N NS /a
where now X is the g-summation operator for functions on R and E, /N Is the
q/N-sampling operator for functions on Ty, ¢ := \/N/a, as defined in Appendix 4.
(c) Using (b), show that
X, = xl Ja-

(d) Verify that X/, = N~1X, by using the identity from (c).
() Verify that X" = N™1X, by using the identity (63).

= EXERCISE 5.35 Let m=1,2,.... The end padding operator

fln] ifn=0,1,...,N—1

(j)mf)[n]::{o fn=N,N+1,...,mN -1

maps a function f on Py to a function f on P, n.

(a) Show that F = m B, F Py, when By, is the m-decimation operator for functions on
P,.N-
Hint. You must show that (m3F P, f)[mn] = Ff[n].

(b) Write the operator identity of (a) in terms of matrices in the case where m = 2 and
N =3.
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(c) Show that ZF 'P,,F =1
Hint. Use (a) and the identity E,,R = REp,.
(d) Using (c) explain why g := F ~'P,,FF is said to interpolate f, see Ex. 4.47(b).

Note. Form strings of zeros with N or 2N or 3N ... zeros in each string and with a
total of (m — 1) N zeros in all of the strings. Insert these zero strings before, between,
or after the components f[0], f[1],..., /[N — 1] of an f on Py to produce a function
P'.f on P, n. The operator identities of (a), (c) will hold with P, in place of Py,.
Exercise 4.47(c) gives one such example.

» EXERCISE 5.36 Show that A distributes over the convolution product, i.e.,
A(fxg)=(Af)*x(Ag) forall f,g
if and only if
AN g™ = (Br/Ba) (A" ") - (ARg") forall f7, "

Use this result to verify that the following operators distribute over the convolution prod-
uct. All of the required operators are defined in Appendix 4.

(a) R, B, D for functions on R, Ty, Z, Py (b) Ea, |a|Sa, Xp for functions on R
(¢) €Em, 8m, G for functions on T, (d) €m, Zm, Xp for functions on Z
(e) €m, 8m (when m, N are relatively prime), X/, (when m|N), Zm, m IR, for
functions on Py
» EXERCISE 5.37 Let R, D, P, be the reflection, derivative, and power scaling
operators for functions on R, as given in (4) and (79).

(a) Use the identities D™ = i PR, PR = —RP to show that
(Dn)m _ (_1)71(7'171)/2@ :P)an7 n=012, ...

(b) Use (a) to show that g(z) := f(") (z) has the Hartley transform

= (s) ifn=0,4,8, ...
—f~(=s) ifn=1,59, ...
—f~(s)  ifn=2,610,...
= (-s) ifn=23711, ...

g~ (5) = (=)™ D2 (2mg)m 1Y ((—1)"s) = (2ms)"

when f is a suitably regular function on R.
(c) Rearrange the identity of (a) and thereby show that g(z) := 2" f(x) has the Hartley

transform

()M (s)  ifn=0,4,8, ...

(F)M(=s)  ifn=1,509,...

—(f)"™M(s)  ifn=26,10, ...
()™ (—s) ifn=3,7,11,....

g~ (s)= (=12 2m) T (1) M ((~1)"s) = (2m) "

Hint. The identity D™™ = D may be useful.
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» EXERCISE 5.38 In this exercise you will derive expressions for the Hartley trans-
forms of various operators using a compact tag notation. For this purpose we define

AN =FAF ' =E_AE,,

AY :=RAR,

A~ :=H, AH,,

A% = (P +iPo)A(P. —iP,) = H{(1 +)I+ (1 - )R}A{(1 —)I+ (1 +i)R},

A° = J{A+RAR + AR - RA}.

(a) Explain why the transformations associated with the tags ANV o~ H e

e, AN = AN AN = AT, L AT = AT
(b) You know that A = AY, AYY = A, A~ = A. Show that A" = AY,
A% = A

(¢) Derive the identities A~ = A", A" = A~V that show how the " transformation
can be used to change the Fourier transform of an operator to the Hartley transform,
and vice versa.

, all commute,

(d) Show that if A is a linear operator and A commutes with R, then A" = A, and
A~ = A", Give examples of operators A for which this is the case.

(e) Use (c) and the identities T, = &,, €, = T_, from Appendix 4 to show that
T =&, & =T,

(f) Show that M = B~ 1/2M;-.

Hint: Tt is sufficient to show that MgD/\f = ﬁ_l/QM;Nf when f is even and when f
is odd.

(g) Use (c),(f), the identity C;\ = My, and (b) in turn to show that

e, ="My, My =p1 e

= EXERCISE 5.39 In this exercise you will develop properties of the products
f®gi=5{frg+fxg"+ [ xg—f'xg"}, fog=5{f-9+f-9"+f - 9-1" ¢}

(These products are commutative and associative, and both of them distribute over addi-
tion.)

(a) Show that

frg=s{f®g+f@®g "+ ®g—f'®g"}, [fg=35{fOg+f0g"+f Og—f"og"}.
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(b)

Verify the following eight product rules for working with Fourier and Hartley trans-
forms:

(fx9) = B 9", (fxg)~ =8 04"
(f9) = fxg", (f-9~ =81 ®g™

(f®g) = B og", (f@g)~ = a2 g~

(fog"=reg, (fog~ =" xg"

Note. The operators Kyf := g ® f, Ngf := g © f have the transforms ng\ = BNgn,
Ng =Ky, Ky = 82 Mg~, Ny = 571/2C.

» EXERCISE 5.40 In this exercise you will use operator methods to deduce rules for
working with (normalized) cosine transforms and sine transforms. These transforms will
be denoted by using the superscripts ¢, ° as tags, i.e.,

(a)

fo=Cf, f:=8Sf
Show that when f” is known, we can write
fC:,Gl/QPefA, fs =iﬂl/2PofA.

Show that we can find the cosine and sine transforms of A f when we know the cosine
and sine transforms of f by using the relations

(‘Af)c :‘ACCfC+ACSf87 (‘Af)s :-Ascfc+-AssfS,
where

HAee =CAC, Acis:=CAS, Asc:=SAC, As;s:=SAS.

Show that if A commutes with S, C (as is the case when A = R, B, D, P, P,,
P,, P;,, P;, Py, ... ), then

(AN =AF), (A=A

Show that when A is linear we can write

HAee = PeA Pe, Aes = —iPcA Py, Age =iPo A Pe, Ags = PoLA'P,.

Use (b) and (d) to show that if A is a linear operator that commutes with R, then
(Af)°=A"fe, (Af)°=A"f

In particular, the various dilation, grouping, decimation, zero packing, repeat, sum-
mation, and sampling rules are identical to those for taking Fourier transforms.
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(f) Use (b) and (d) to obtain the translation rules

(Taf)® = S (EatEa)f o (Ea—E-a)fs (Taf)’ = —5-(Ea—E-a) 4 (EatEoa)

(g) Use (b) and (d) to obtain the modulation rules
(gaf)c = (Pey—a)fc - i(PeT—a)fSa (gaf)s = Z'(POT—a)Jw + (POT—a)fS~

(h) Use (b) and (d) to obtain the convolution rules
(Fx9)°=p"g" £ =" [}, (F29)"=8"*{g" [+ [},
(i) Use (b) and (d) to obtain the multiplication rules

(f-9)=B"2g = g"x Y, (F-9)* =B {g" « fC+g"* f°).

#» EXERCISE 5.41 In this exercise you will derive rules for taking Hilbert transforms
of suitably regular functions on R. For example, we can use (84) to deduce the operator
identity H? = 1 that corresponds to the inversion rule

g(z) := f#(x) has the Hilbert transform ¢ (z) = — f(x).

Use operator identities from the text to formulate an analogously stated version of the
Hilbert transform

(a) reflection rule, (b) conjugation rule, (c) translation rule,

(d) derivative rule, (e) dilation rule, (f) convolution rule.

® EXERCISE 5.42 Let fo(z) := ¢"*"sincx be a function on R. Make a table with
the columns

Formula for f Graph of f Graph of f#/\ Formula for f#
and then supply the entries for each of the following:
(@) f=/fo (b) f=Bfo (c) f=Pefo
(d) f=Pifo (e) f=81/2Pcfo (£) f=foxPefo)

Hint. Use the Hilbert transform rules from Ex. 5.41.

= EXERCISE 5.43 Let f, g be suitably regular functions on R. Use the Parseval and
Plancherel relations to derive the corresponding identities

o0

/ F@g(e) de = / (FCF) (2)(Hg) () di, / (@) de = / () (@) 2 d

— 00 — 00

that link f, g to their Hilbert transforms.
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» EXERCISE 5.44 Let f, g be suitably regular functions on R. Verify that
frg=—f"xg"

a) by using the convolution rule for Fourier transforms [with (83)];

(
(b) by using the convolution rule (89) for Hilbert transforms [with (84)].

= EXERCISE 5.45 For a suitably regular function f on R we define

0
P1f)z / f 2misT de, (P_f)(x) ::/ f/\(s)627risg: ds.

(a) Use the Kramers—Kronig relations (93) to find operator identities linking Py, P,
P;, H.

(b) Find corresponding operator identities linking P_, P,., P;, J.

» EXERCISE 5.46 Let F be a piecewise smooth function on [—o, o], let

flx) = /0 F(s)e%isx ds,

let 8 > o, and let
g(x) := cos(2mBx) f(z).

(a) Find a simple expression for the Hilbert transform, g#, of g.

(b) Sketch the curve g +ig# [ie., (z,g(z), g% (z)), —00 < < o0], in the particular case
where f(z) := A(x) and 8 = 5.

» EXERCISE 5.47 Let the Hilbert transform operator JH be applied to a suitably

regular function f on T) with
kx . [ 2mkx
+ by, sin » .

o0
2
f(x) =ag + Z {ak cos( T
(a) Express Hf in terms of the coefficients ay, by.

k=1

(b) Set certain coefficients to zero in the series for f and JHf and thereby obtain series

for HPcf and HP,f.
(c) Find the Hilbert transform rules

g :=Pef has the Hilbert transform g# =,
g :=Pof has the Hilbert transform g# =

(d) Use the rules (c) to find H P f and HP,f.
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» EXERCISE 5.48 Let HH be the Hilbert transform operator (83) for suitably regular
functions on Z, and let the function sgn(z) on Ty be defined by (82).

(a) Show that isgn” [k] = {:k ifh=£1,£3,25 ...
0 otherwise.
(b) Show that H g = isgn/\ * g when g is a suitably regular function on Z.
Note. See Ex. 7
(c¢) Use (a) and (b) to show that

(H g)[H] 2 o221,

(d) Let f be a real piecewise smooth function on T, that vanishes on the half circle
—p/2 <z <0, and let

(e [ ()

be the coefficients for the cosine series and for the sin series for f on the interval
0 < z < p/2. Show that

Ha=b Hb= —aqa,

and express these Kramers—Kronig relations by using the representation of JH that is
given in (c).

» EXERCISE 5.49 Let H be the Hilbert transform operator (83) for functions on

P and let the function sgn[n] on Py be given by (82).
(a) Show that & and isgn” have the same Fourier transforms and thereby prove that

5 =isgn”.

Note. The components of sgn” are given in Ex. 4.27.
(b) Show that Hf = isgn” « f.

Note. Analogous results are given in Exs. 5.4 and 7.55.
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The fast Fourier transform

6.1 Pre-FFT computation of the DFT

Introduction

In this chapter we will study the problem of computing the components

N-1
_7 1 —2mikn/N _
F[k].—ﬁngzoe fln], k=0,1,...,N—1
of the discrete Fourier transform of given complex numbers f[0], f[1],..., f[N —1].

We write these relations in the compact form

F — FF,
where 10 Fo
| | | F
FIN = 1] FIN - 1]

are complex N-component column vectors and where the N x N DFT matrix

1 1 1 1
) 1 w w? e w1
2 2N -2
F.- |1 w w w
N .
1 WwN-1 2N—2 . (N-1)(N-1)
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is expressed in terms of powers of
w = e 2™/N = cos(2n/N) — i sin(27/N).

We will use indices 0,1,..., N — 1 (rather than 1,2,..., N) for the rows of vectors
and for the rows and columns of matrices. When it is necessary, we will use a
subscript to specify the size of a matrix, e.g., Is, F16 will denote the 8 x 8 identity
matrix and the 16 x 16 DFT matrix, respectively.

Given an N x N matrix
A= {akn}llxr:io
and an N-vector
b= {b,} N}

n=0"

we can evaluate the components of

N-1 N-1
c:=Ab := { Z agmbn}

n=0 k=0
by using the algorithm
For k=0,1,...,N — 1 do:
S:=0
Forn=0,1,...,N —1 do:
L S:=85+ap, - by
Ci = S.

The cost of this computation is approximately N? operations when we define an
operation to be the work we do as we execute the statement

S:=85+ap, b,

from the inner loop. [More specifically, we fetch agy, by, and the “old” value of S
from storage; we form the product agy, - b, and the sum S + (agy, - b, ); and we store
this result as the “new” value of S.] Of course, complex arithmetic requires more
effort than real arithmetic, and by using the real-imaginary decomposition

SR+iSI:SR+iS[+(aR+ia1)(bR+ib[)
= {(SR +ag-br)—ay- b[} +i{(51 +agr-br)+ar- bR}
we verify that
1 complex operation = 4 real operations.

In this way we see that the naive matrix-vector computation of an N-point DFT
requires approximately N? complex operations or 4N? real operations.
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Horner’s algorithm for computing the DFT

In practice we always exploit the structure of F when we compute a DFT. (It makes
no sense to generate and store the N? elements of F since each element is one of
the N complex numbers N=!, N=lw, ..., N"1w™¥~1.) For example,

N F[k] = f[0] + f[Jo" + f21(@")% + -+ FIN = 1] (")

is a polynomial with coefficients f[0], f[1],..., f[N — 1] and argument z := w*. This
being the case, we can use Horner’s algorithm to evaluate N F[k|, e.g., when N =4
we write

AF[k] = f10] + (W) {11 + (@) {f12 + () F131}}

and evaluate F[k] by computing in turn

5 o 2mik/4
Sy == /3]

Sy = f[2] +2- S
Ss = f[1] + z - So
S4 :f[]+Z'S3
Flk] := Sa/4.

Algorithm 6.1 is a natural generalization. This Horner algorithm is easy to use, easy
to code, and numerically stable. It requires approximately N? complex operations
to produce an N-point DFT (just like the above matrix-vector algorithm).

z:=1

w = e~ 2m/N

For k=0,1,...,N — 1 do:
S = f[N —1]

For ¢ =2,3,...,N do:
LS::J"[N—EH—Z-S
F[k] .= S/N

—Z =2 W

Algorithm 6.1. Computation of the DFT with Horner’s scheme.
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Other pre-FFT methods for computing the DFT

The numerical task of evaluating a real trigonometric polynomial lies at the heart
of applied Fourier analysis, see Ex. 6.2, and many schemes for carrying out such
computations were devised in the century and a half that links Fourier to the devel-
opment of digital computers. Kelvin, Michelson and Stratton, and others invented
special-purpose mechanical analog computers for this purpose near the close of the
19th century, see Ex. 1.45. The most influential numerical analysis text from the
first half of the 20th century included well-designed flow charts for 12-point and
for 24-point harmonic analysis, see Ex. 6.4 and Appendix 5. Physicists confronted
with the task of analyzing X-ray diffraction data devised a clever paper strip pro-
cedure for finding Fourier coefficients by adding parallel columns of integers, see
Ex. 6.5. Such methods proved to be satisfactory in cases where there was a small
fixed N and where only 2- to 3-digit accuracy was required. For more exacting
calculations, a real version of the Horner algorithm was developed, see Ex. 6.1,
and this was the accepted standard prior to the development of the Cooley—Tukey
algorithm.

How big is 4N2?

You cannot appreciate the scientific revolution that was initiated by the FFT until
you understand what it means to pay 4N? real operations to purchase an N-point
DFT at Horner’s market. You should have no difficulty doing the arithmetic for
one 3-digit real operation S := S + a - b in 10? sec. (This allows plenty of time for
you to check your work.) If you could sustain this rate of computation, you could
generate a 12-point DFT in about

102 sec  1min 1hr

operation 60 sec 60 min

4 - 12% operations - = 16 hr.

What would motivate you to carry out such a task? (You have seen the problem
that motivated Gauss in Ex. 1.19!)
Digital computers changed the unit cost, but the curse of 4N? remained. In the

1950s a digital computer that was capable of performing 10® operations/sec could
do a 100-point DFT in about

1
4 -100? operations - See = 40 sec,

103 operations

but a 1000-point DFT took 4000 sec = 1.1 hr. In 2000 a PC that was capable of
107 operations/sec could do a 1000-point DFT in about

1
410002 operations - * = 4 sec.
107 operations
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This seems fast, but if we use Horner’s algorithm to compute one such DFT for
each frame of a 1000-frame movie (see Section 9.5) we must wait 400 sec = 6.7 min
to see the result.

The announcement of a fast algorithm for the DFT

In 1965, James W. Cooley and John W. Tukey published a new and substantially
faster algorithm for computing the DFT of an N-vector on a digital computer. They
showed that when N is a composite integer with the factorization

N=PP,---P,

(where Py, Ps,. .., Py, are chosen from the integers 2,3,4,...), then it is possible to
reduce the cost for computing the DFT of an N-vector from

N2=N-{P,P,-- Py} to N-{(PL—1)+(Po—1)+---+ (P, —1)}

complex operations. The cost reduction is most dramatic in cases where P, =
P, = ... = P,, =2 when we pass from

N?=2" to 2™.m = Nlogy N
complex operations. For example, when N = 1024 = 219 we reduce the cost from
N? =1,048,576 to Nlog, N = 10,240

complex operations. The new algorithm cut the price of a 1024-point DFT calcu-
lation by a factor of 100! Such dramatic reductions in computational cost made it
practical to do Fourier analysis on a digital computer, and this helps to explain why

J.W. Cooley and J.W. Tukey, An algorithm for the machine computation of
complex Fourier series, Math. Comp. 19(1965), 297-301

is the most frequently cited mathematics paper that has ever been written.

In the next section we will give an elementary derivation of the FFT using the
rules from the DFT calculus. Later on we will show how to derive the FFT by fac-
toring the matrix F. Alternative derivations are developed in Exs. 6.24 and 6.25.
Perhaps the most natural is that of Gauss. It is now clear that the most impor-
tant algorithm of the 20th century was created by Gauss in 1805, published in his
collected works in 1866, and completely forgotten until a decade after the appear-
ance of the Cooley—Tukey algorithm, when Herman Goldstine, who was writing a
history of numerical analysis, discovered Gauss’s terse (neo-Latin!) description of a
fast way to compute a DFT see M.T. Heideman, D.H. Johnson, and C.S. Burrus,
Gauss and history of the fast Fourier transform, Arch. Hist. Exact Sci. 34(1985),
265-277.
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6.2 Derivation of the FFT via DF'T rules

Decimation-in-time
From your study of the DFT calculus you will recall that when
(a,b,c,d) has the DFT (A,B,C,D)
we can use the translation rule (4.50) to see that
(d,a,b,c) has the DFT (A ,wB,w?C,w’D), w:=e 2m/4,
and we can use the zero packing rule (4.55) to see that

(a,0,b,0,¢,0,d,0) hasthe DFT 3(A,B,C,D,A,B,C,D).

1
2
The same relations are expressed by the commuting diagrams of Fig. 6.1. We use
a 4-component initial vector to illustrate the action of the translation, exponential
modulation, zero packing, and repeat operators J_1, E_1, Z2, Ry. The modu-
lation parameter must be changed to w := e 27/N when £_; is applied to an
N-component vector.

F
(a,b,c,d) _— (A,B,C,D)
T_4 E_,
F .
(d,a,b,c) _— (A,wB,w?C,w*D), w:= e 2m/4
F
(a,b,c,d) _ (A,B,C,D)
Z 9 R
F

(a,0,b,0,c,0,d,0) — > 1(A,B,C,D,A,B,C,D)

Figure 6.1. Commuting diagrams for the translation and zero
packing rules.
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(fo,f1,f2,f3,fa,f5,f6,f7)

P

(f0,0,f2,0,f4,0,f6,0) (0,f1,0,f3,0,f5,0,f7)
[,
2 (f1,0,f3,0,f5,0,f7,0)
[ %,
(fo,f2,f4,f6) (f1,f3.f5,f7)
/ add \ / add \
(Jo0,7,0) (0.£2,0.f6) (F1,0,5,0) (0.£2,0,f7)
o, [,
%, (J2:0,56.0) %, (J3,0,5+.0)
(fouss) (fa.o) (F1.5%) (Fsui?)
/ add \ / add \ / add \ / add \
(f0,0) (0,f4) (f2,0) (0,fs) (f1,0) (0,f5) (f3,0) (0,f7)
[, o, [, .,
%2 (10) %2 (fo0) %o (J0) Ze ()
(fo) (f2) (f2) (fo) (1) (fs) (73) (=)

Figure 6.2. Assembly of (fo, f1,.-., f7) from (fo),..., (f7)-

Figure 6.2 shows how we can assemble an 8-component vector (fo, f1,..., f7)
from the eight 1-component vectors

(fo)y  (fa), (f2), (fe)s (f1), (fs5), (f3), (f7)

by using the mappings Z 5, J_1 together with vector addition. We will now replace
every vector and every operator in Fig. 6.2 with its Fourier transform to obtain
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(Fo,F1,F2,F3,Fy,F5,Fg,Fr)

/ add \

(3, ok ok 3k %) (% % 3k 3k 3k k%)
e
1R, (o o )
[ 1.
(%%, 5% ) (3, %%, %)
/add\ /add\
() Gk, 5) (e, 5, %) (G )
e, le.
1R, (k) 1R, (e )
IR, [ 1%,
(%,%) (,%) (,%) (%)
/ add\ / add\ / add\ / add
(%,%) (*,%) (,%) (,%) (*,%) (%,%) (,%) (,%)
Te., le. e le.
LR, (x%) LR, (x%) IR, (+%) LR, (%)
1z, [ 1. [ 3. [ s,
(fo) (f4) (f2) (fe) (f1) (fs) (f3) (f7)

Figure 6.3. Generation of (Fy, F1,..., Fy) from (fo),...,(f7)-

Fig. 6.3. The resulting diagram shows how to generate the DFT
(F07F17"'7F7) = (anfla"'7f7)/\

from

(fo) = (fo), (f)" = (fa), v (HB) =(f3), (f1)" =(f7)
by using the operators Ro and €_; together with vector addition. (We use an ast-
erisk, *, to denote vector components from the intermediate stages of this process.)
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It is easy to analyze the work required to compute a discrete Fourier transform
in this manner. We must perform N — 1 complex multiplications when we apply
E_1 to an N-vector, so the 7 appearances of €_; in Fig. 6.3 correspond to

B—1)+2-(4—1)+4-(2-1)=8-3-7

complex multiplications. We can perform a single real scaling by 1/8 at the begin-
ning or end of the process instead of repeatedly applying the factors of 1/2, and
this takes 16 real multiplications. The 7 vector additions correspond to

8+2-444-2=8-3

complex additions. Since the effort required to apply R» is negligible, the DFT can
be computed by expending approximately 8 - 3 complex operations.

The natural generalization of this analysis shows that it is possible to compute
the DFT of an N-vector with no more than N log, N complex operations when
N =2m m = 1,2,.... The new scheme is N?/(N log, N) times faster than the
naive algorithms from the preceding section, and this explains why we say that
Fig. 6.3 gives a fast Fourier transform or FFT.

Decimation-in-frequency

In practice the components of the data vector are often samples of some time-
varying signal, so the index n used with f measures time and the index k used with
f measures frequency, see Ex. 1.17. For this reason the FFT of Fig. 6.3 is said to

be based on a decimation-in-time, as shown in Fig. 6.2. We will now develop an
alternative scheme that is based on a decimation-in-frequency.

You will recall that when
(a,b,c,d,e, f,g,h) has the DFT (A, B,C,D,E,F,G,H)
we can use the modulation rule (4.51) to see that

(a,wb, w?c,w3d,w'e,w® f,wbg,w"h) has the DFT (B,C,D,E,F,G,H,A),

W= 67271'1/87

and we can use the summation rule (4.57) to see that
%(a—i— e, b+ f,c+g,d+h) hasthe DFT (A4,C E,G),

see Fig. 6.4. We use an 8-component initial vector to illustrate the action of the mod-
ulation, translation, summation, and decimation operators €_1, J1, X4, and Es.
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F
(avbacad7€7fag7h) — (A7BachaE7F7G7H)
6_1 T,
F
(a,wb, w?c,wdd,wre,w® f,wbqg,w'h), ———> (B,C,D,E,F,G,H,A)
W = e—2mi/8
F
(a,b,c,d,e,f,g,h) I (A7B>O7D7E7F7G7H)
334 Eo
F
fa+eb+ fic+g,d+h) —— (A,C,E,Q)

Figure 6.4. Commuting diagrams for the modulation and sum-
mation rules.

Figure 6.5 shows how we can disassemble an 8-component vector
(Fy, Fy, ..., Fg) := f" into the eight 1-component vectors

(Fo), (Fu), (Fe), (Fa), (F1), (F5), (F3), (F%)

by using the mappings Z; and J;. We will now replace every vector and every
operator in Fig. 6.5 with its inverse Fourier transform. The resulting diagram of
Fig. 6.6 shows how to generate

(Fo) = (Fo)™, (Fu) = (F)", ..., (F3) = (F3)",(Fy) = (F7)"

from the data vector

(f07f17"'7f7)

by using the operators X4, 3o, X1, E_;. (We again use an asterisk, x, to denote
vector components from the intermediate stages of this process.)

You should have no difficulty showing that we expend no more than 8-3 complex
operations as we compute an 8-point DFT by using the mappings of Fig. 6.6 (pro-
vided that we perform a single scaling by 1/8 to account for all of the 1/2’s). The
natural generalization of this analysis allows us to compute the DFT of an N-vector
with no more than N log, N complex operations when N = 2" m =1,2,.... We
now have two fast ways to produce a DFT!
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(Fo,F1,F2,F3,Fy,F5,Fs,Fr)

(Fo,F2,F4,Fg)

&

(F2,Fy,Fs,Fo)

|

[1]

2

(F2,Fg)
(F4,Fo) (Fo,F2)
B ANE
(Fo) (F4) (F2) (Fs)

Figure 6.5. Disassembly of (Fy, F1,...

Recursive algorithms

T

(F1,F2,F3,Fy,Fs5,Fg,Fq7,Fp)

(F3,Fs,F7,Fy)

l

[1]

2

(FI,F5) (F37F7)
(Fs,F1) (F7,F3)
S
(F1) (Fs) (Fs) (F7)

7F‘7) into (Fl), ey (F7)

The computational trees of Figs. 6.3 and 6.6 are formed by suitably connecting a
number of identical mapping structures as shown in Fig. 6.7. This being the case,
you can write code for one of these building blocks and then use this code recursively
to calculate a DFT. Exercises 6.6 and 6.7 will help you sort out the details.

Such schemes lead to stable algorithms. If we work on a computer having unit
roundoff €, our computed approximation Fj! to F}, satisfies a bound of the form

a __ < . . 2 = — 1.
B = Fi < (2 logy N +3) - max [fu] -e+O0(e), k=0,1,....N~1

In contrast, when we use the Horner algorithm we find

|Ff — Fy| < {(3/2)N—|—2}-0£naXN\fn|~6+O(62), k=0,1,...,N—1
<n<
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(fo,f1,f2,f3,fa,f5,f6,f7)

&,
e
(o, % ok ok ok k)
-
(%, %, %) (%, %, %)
&, [
e 3=,
(*7*7*7*) (*7*7*7*)
l%ﬁfz l%ﬁa
(%,%) (*,%) (%,%) (*,%)
-1 -1 -1 -1
%21 %21 %21 %21
(*,%) (*,%) (*,%) (*,%)
J%& l%ﬁl lz lz
(Fo) (Fa) (F2) (Fs) (F1) (Fs) (F3) (F7)

Figure 6.6. Generation of (Fy), ..., (Fr) from (fo, f1,.--, f7)-

PN AN

8_1 8—1
IR, . IS .
iR, 15

Figure 6.7. The mapping structures that give the trees of
Figs. 6.3 and 6.6.
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(see P. Henrici, Applied and Computational Complex Analysis, Vol. 3, John Wiley &
Sons, New York, 1986, pp. 9-14). This analysis suggests (and experience confirms)
that the FFT gives more accurate results than the slow algorithms described earlier.

If you work in a computing environment that does not permit recursion or if you
want to write a somewhat more efficient nonrecursive code, you must create data
structures to keep track of the vectors that appear in the large trees that generalize
those of Figs. 6.3 and 6.6. We will presently introduce matrix factorizations to
simplify this process.

6.3 The bit reversal permutation

Introduction
We encounter the permutation
(fo, f1s fos f3, [, [5, fe 1) — (fo, fa, f2, fe, f1s fo S0 /)
when we use the assembly of Fig. 6.2 or the disassembly of Fig. 6.5. If we express

the subscripts in base 2 notation, we see why this mapping is known as the bit
reversal permutation.
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It is easy to see how this mapping originates. At the first stage of the process
we map

(f07f17f27f37f47f57f67f7) to (f07f27f47f67f17f37f57f7)-

In so doing we right cyclically permute the three base 2 index bits, placing the
low-order bit (0 for an even index, 1 for an odd index) in the high-order position
(0 for the first half, 1 for the second half), i.e., f[(b3bab1)2] is placed in position
(b1b3ba)2. At the second stage we map

(f07f27f47f67f17f3)f57f7) to (f07f45f27f67f17f5af37f7>'
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The net effect this time is to right cyclically permute (i.e., interchange) the two
low-order index bits. Thus we move the component f[(b3b2b;)2] that we previously
placed in position (b1b3bs)a to position (bybabs)sa.

Analogously, when N = 16, we successively move the component f[(bsb3babi)2]
from its original position (bgbsbeby)2 to positions (b1bsbsbe)a, (b1b2bsbs)2, and

(b1babsby)2. The process generalizes, and when N = 2", m = 1,2,..., the overall
effect is to move f[(bymbm—1 - - - bab1)2] to position (b1bs - - - by—1by, )2 for every choice
of by,ba,...,b;m = 0,1. Of course, when r = (bibs - - - by,)2 is the bit-reversed form

of n = (bybm—1 - - b1)2, then n is also the bit-reversed form of r, so the permutation
can be carried out simply by swapping the values of f[r] and f[n]. The positions of
fI0] = fI(00 --- 0)2] and f[N —1] = f[(1 1 --- 1)2] are never changed by this
process.

We will now develop several algorithms for performing the bit-reversal permu-
tation. This discussion will help you understand the corresponding section of an
FFT code (e.g., the lines between statements 8 and 20 in the FFT code given in
Appendix 6). If you have no interest in such details, you can skip the remainder of
this section.

A naive algorithm

Let N = 2™ for some m = 1,2,.... Elementary algorithms for applying the bit
reversal permutation to an N-vector f often have the following structure.
Forn=1,2,...,N — 2 do:
Find the integer r = (b1by - - - by—1by )2 that
corresponds to 7 = (bybym—1 - - - baby )2
If r > n, then swap f[r] and f[n]

When we are given an index
1= (bybm_1...bab1)a = by +by-2+b3-22 4+ by, - 2™}

we can generate in turn the bits b1, bo, b3, ... and compute the corresponding Horner
sequence by, 2b; + by, 2(2b1 + ba) + b3, ... for

7= (biba. . . bpm_1bm)2 = by + b1 -2+ by - 2% - by -2 L

For example, when m = 5 and n = 11 = (01011)9, this leads to the following
calculation of r = (11010)2 = 26.
11 + 2 = 5 with remainder b; :=1, ry:=1
5+ 2 =2 with remainder by :=1, 1r9:=2r; +by =3
2 + 2 =1 with remainder b3 :=0, r3:=2r9+b3 =26
1+ 2 =0 with remainder b4 :=1, r4:=2r3+bs=13
0 + 2 = 0 with remainder b5 := 0, 7r5:=2rs4 + b5 = 26
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In this way we see that Algorithm 6.2 performs the bit reversal permutation. The
cost is approximately 3NN log, N integer operations.

Forn=1,2,...,N — 2 do:

b:=d—2q
r:=2r+>b
d:=q

L If » > n, then swap f[r] and f[n]

Algorithm 6.2. A naive scheme for applying the bit reversal
permutation to f[0], f[1],..., f[N — 1] when N = 2™.

The reverse carry algorithm

When we execute Algorithm 6.2, each computation of the bit-reversed index r = r[n]
from the index n is done ab initio. Since we compute r[1],r[2],...,r[N —2] in turn,
there is some advantage to be gained from a recursive scheme that uses a known
value of r[n] to facilitate the computation of r[n + 1]. If n is even, this can be done

with a simple addition as illustrated in the following calculation of r[23] = 29 from
r[22] = 13 when N = 2°.

Mirror
n = (10110)y (01101)5 = r[n|
+1=(00001)y +(10000)y = N/2
n+1=(10111); (11101)g = rfn + 1]

Indeed, when r[n] < N/2 we always have
rln+ 1] = r[n] + N/2.

If n is odd, (i.e. r[n] > N/2), it is still possible to generate r[n + 1] from r[n],
but we must now mirror the carrying process associated with addition in base 2
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arithmetic as illustrated in the following calculation of r[12] = 6 from r[11] = 26

when N = 2°.
Mirror
n=(01011)y

+1 = (00001),

carry )
Mirror
n—1=(01010),

+2 = (00010),

carry )

Mirror

n—1-—2=(01000),

+4 = (00100),

n+1=(01100),

(11010)2 = r[n]

+(10000); = N/2

) reverse carry

(01010)g = r[n] — N/2

+(01000), = N/4

) reverse carry

(00010)y = r[n] — N/2 — N/4

+(00100), = N/8

(00110)3 = r[n + 1]

Algorithm 6.3 uses this reverse carry process to perform the bit reversal permuta-
tion. It costs approximately 4N integer additions (including those used for compar-
isons), N divisions by 2, and slightly less than N/2 swaps to execute this algorithm.

r:=0

Forn=1,2,...,N —

k:=N/2

r:=r+k

While r > k do:

L ri=r—=%k
k:=k/2

2 do:

L If > n, then swap f[r] and f[n]

Algorithm 6.3. The reverse carry scheme for applying the bit

reversal permutation to f[0], f[1],...

, f[N — 1] when N = 2™.
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The Bracewell-Buneman algorithm

The reverse carry algorithm for generating a complete set of n,r pairs for a given
N = 2™ is based on the idea of generating r[n + 1] from r[n]. We will now show
that it is possible to produce a more efficient algorithm by using storage to gain
speed.

Let m = 1,2, ... . For each n = 0,1,2,...,2™ — 1 we form r,,[n] by reversing
the bits of n so that

’I“m[(bmbm_l. .. bgbl)g] = (blbg. .. bm_lbm)g,
e.g., r2[3] = (11)2 = 3, r3[3] = (110)2 = 6, 74[3] = (1100) = 12, ... . Now since

7"m+1[(bm+1bm. .. bgbl)g] = (blbg. .. bmbm+1)2
=2 (b1b2. .. bm)2 + b1
= 2T‘m[(bmbm_1. .. bgbl)m] + bm+1,

we can write

. 2 [n] ifn=0,1,...,2"—1
’," =
ml Wm[n — 27+ 1 ifn=2m2m 41, .. 2mF 1.

This identity shows that we can get the left half of row m + 1 from the table:

nn 01 2 3 4 5 6 78910 11 12 13 14 15
ri[n]: 0 1
ren]: 0 2 1 3
rgn): 0 4 2 6 1 5 3 7
rgn): 0 8 412 210 6 14 1 9 5 13 3 11 7 15

by doubling row m, and we can then get the right half of row m + 1 by adding 1
to each component of the left half. This idea underlies the following algorithm for

generating the bit-reversed indices 74, [0], 7 [1], - . ., 7 [N — 1] when N = 2™,
r[0] :=0
M:=1

While M < N do:
For k=0,1,...,M — 1 do:
T .= 2r[k]
rlk] =T
rlk+M]:=T+1
— M :=2M




308 The fast Fourier transform

After initializing the array r, we can perform the bit reversal permutation using

Forn=1,2,...,N — 2 do:
L1t r[n] > n, then swap f[n] and f[r[n]].

There is really no reason why we should fetch the bit-reversed index for each
n=1,2,..., N —2since we only perform a swap when r,,[n] > n. This observation
led R. Bracewell and O. Buneman to devise a more efficient scheme that generates
only those bit-reversed pairs n,r for which 7 > n. The algorithm gains additional
speed by using a small integer storage array with at most v/2N components.

The Bracewell-Buneman algorithm uses a certain left-right decomposition of the
base 2 representations of n,r. We illustrate the idea with N = 26. A 6-bit index n
has the representation

n .= (b6b5b4b3b2b1)2 = 8]9 + q

where
p = (bebsba)2, q:= (bsbabi)s.

It follows that
re[n] = (b1babsbabsbe)a = 8r3(q| + 73[p].

We want to find the 6-bit reversed pairs n,r with » > n. In view of this decompo-
sition, all such pairs can be obtained from 3-bit integers p, ¢ with

8rslq] + r3[p] > 8p+q

or equivalently, with
r3lg] > p.

(In the case where r3[q] = p, we also have r3[p] = ¢ so that rg[n] = n.) It follows
that every bit-reversed pair n,r with » > n occurs precisely once in the list

n=8p+q, r=28rslgl+rsp: ¢g=12,...,7Tand p=0,1,...,r3[q] — 1.

More generally, when N = 2™ and m = 2u is even, we obtain every bit-reversed
pair n,r with r > n precisely once in the list

n=2"p+q, r=2"r,lq+r.pl: ¢=1,2,....,2" =T and p=0,1,...,7,[q] — 1.

This left-right representation of n,r must be modified slightly when there is an
odd number of index bits. For example, when N = 27 we write

n = (brbsbsbabzbabi)2 = 8p + ¢
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where

p = (brbebsbs)2, q := (b3baby)2, = (0b3bab1)a,

and observe that
r7[n] = (b1babsbabsbsbr )2 = 1673]q] + ra[p] = 8rafq] + r4[p].
Thus every bit-reversed pair n,r with » > n occurs precisely once in the list
n=8p+q, r=8rslql+rip]: ¢=1,2,...,7, p=0,1,...,r4[q] — 1.

More generally, when N = 2™ and m = 2u + 1 is odd, we obtain every bit-reversed
pair n,r with r > n precisely once in the list

n=2"p+q, r=2"r gl +rpsalplig=1,2,...,2° =1, p=0,1,...,7u41[q] — 1.

These even m and odd m representations for n,r are used to derive the following
algorithm for the bit reversal permutation when N = 2™ with m = 2u 4+ X for some
w=1,2, ... and some A =0, 1.

Forg=1,2,...,2* —1 do:
For p=0,1,...,7,4:[¢] — 1 do:
n' :=2p+q
=270 g] + rgap]
Swap f[n'] and f[r'

To avoid the repeated computation of 7,41 [0], r,4a[1], ..., 742 [2# —1], we can gen-
erate these indices with the efficient double-add one algorithm and store them in an
auxiliary integer array (with 2#1* < v/2N components) as part of the initialization
process. We can also improve efficiency by doing part of the computation of n’,r’
outside the inner loop. In this way we obtain the exceptionally fast Bracewell-
Buneman Algorithm 6.4 for the bit reversal permutation. After sorting out the
details of this algorithm you should have no difficulty reading the corresponding
lines of the FFT code from Appendix 6.
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pg o= [(m+1)/2] (80 pg :=p 4+ A)
M:=1
r[0] :==0

Forv=1,2,...,us do:
For k=0,1,...,M — 1 do:
T :=2r[k]
rlk] =T
rlk+M]:=T+1
M =M+M

If m is odd, then M := M/2 (so M :=2H+)

Forg=1,2,...,M —1 do:
ni=q—M

For p=0,1,...,7r[q] — 1 do:
n =n"+M (son’:=Mp+q)

=1+ r[p] (so r':= Mrlq] + r[p])

L Swap f[n'] and f[r']

Algorithm 6.4. The exceptionally efficient Bracewell-Buneman
scheme for applying the bit reversal permutation to
flol,f11],..., fIN — 1] when N = 2™.

6.4 Sparse matrix factorization of ¥ when N = 2™

Introduction

In this section we will produce a factorization

F=M, M,_1---M;B
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of the matrix F when N = 2™. Each of the matrices B,M,...,M,, will have a
very small number of nonzero elements in each row. (Such matrices are said to be
sparse.) With minimal effort we can then compute

fo = Bf, f1 = leo, fg = Mgfl, ey fm = Mmfm—la

and thereby obtain
£, =M, M,,—1---M;Bf =Ff.

There is no reason to save the string of vectors that we generate during this process,
so we carry out the calculation with an in-place algorithm

f .= Bf
For p=1,2,...,m do:
Lf=v,t
that successively overwrites the original f with fy,fy,...,f,,. The matrices

B, M,...,M,, have simple structures that facilitate the writing of readable code.

The zipper identity

For clarity we will take N = 8 and set w := e~27%/3 as we derive the critical relation
that gives the complete sparse factorization. Since the kth column of a matrix
product A;A, can be found by applying A; to the kth column of As, we easily
verify that

11 1 1 11 1 1 (10000000 ]
1w? wh ws | ww v w | 00100000
1wt w® w2l w?wt wo 00001000
5 111 wb w2 w®|wd w® w® w2l 00000010
8*§ 1 w® w6 w24 | wt w2 w20 28 01000000
1 w10 w20 30 | Wb Wb w2d w3 00010000
1 wl2? w2t w36 | Wb w8 w30 w12 00000100
_1w14w28w42 w7w21w35w49_ _00000001_

Next, we use the identities



312 The fast Fourier transform

to express each of the 4 x 4 blocks from the left matrix factor in terms of Fy, i.e.,

r1 1 1 1 1 1 1 1 1
11 w? wt | g, Ll|w w WS oW w T
211 ot 8 w2 T g WS W0 | T w2 4
|1 6 12 I8 W w? Wl 2 WP
1 W8 Wl 2 W W12 20 28 1
11 wl® w20 | 5 1 Sowh w® WP | w 5
111 w2 w2 W38 TIE g6 W18 30 a2 | T W2 4
(1 L4 28 2 W W2l W 49 P

with the missing matrix elements all being 0. In this way we produce the factoriza-
tion

1 1 (10000000 ]
1 w 00100000
1 w? 00001000
g._ 1 1 w? {$104] 00000010
5 01000000
1 —w 00010000
1 —w? 00000100

1 —w? 00000001 |

The same argument gives the zipper identity

1 F 0
?M4—2QM4[mf E%r}sML M=12, ... (1)
where
1 1
1 w
1 w?
M-—1 .
Qo = : ! - “ with w := e~ 27/M)  (9)
1 —w
1 —w?
1 —M-t

and where we obtain the shuffle permutation

SQM = [607 6M7 6176M+17625 6M+25 s 761\/[—17 62M—1] (3)
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by performing a perfect 2-shuffle of the 2M columns dg, 41, . .. daps—1 of the identity

Ion = [60,01,602,...,001 | O, Onig1s- -5 0201 (4)

Exponent notation

Given an M x M matrix A and the M x M zero matrix 0 we define
A=A, A® = {‘3 g], AB) = 13 g g . (5)
0 0 A
thereby producing M x M, 2M x 2M, 3M x 3M, ... block diagonal matrices with
1,2,3,... copies of A along the diagonal. We easily verify the power rule
[AP)@D = APy g=12 . (6)
and the product rule
[AB]P = A®B®  p=12 .. (7)
for this new exponent. In addition, we have
[@A]P) = AP p=1,2 ... (8)
when « is any complex scalar,
AT]®) = AT p=1,2,... 9)
(where the tag, T, denotes the matrix transpose) and
[A~Y®) = [AP]71 0 p=12 ... (10)
when A is nonsingular.
Sparse matrix factorization of F

Using the exponent (5) we write the zipper identity (1) in the compact form

Forr = 2QunF P Son, M=1,2,.... (11)
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This identity makes it possible for us to factor Fny when N = 2. For example, we
unzip F1e by using (11) and (6)—(8) to write
Fi6 = QueF" S16

=3Qus [%QS:}’zl(mSS} (2) S16

= 1Qu1sQ F{Vs{s 16

= 1Qi6QY [%Q43"2(2)S4] Y S8

= 1Q1QY Q" F,V8(VsVs 6

~ 1QiQ?Q)" [1@uFPs,] " s(s s,

QLT SSS s,

= 15 Q1 Q" QY By,
where

By = S¥s{VsPs4

and we use the fact that
?1(16) — [1}(16) —_ 116-

Analogously,

1 m—1
Fom = %QQWQ&LQ;‘}Q,Z QY By, m=1,2,... (12)

where

B2m = ngmil)sz(lzmiz) et 82327182771. (13)

The action of Bom

The shuffle permutation Sg maps f := (fo,..., fr)T to

ng - [50754761755752756763757]f
= fodo + f104+ f201 + f305 + fad2 + f506 + f6 03 + f7 07
= (f07f27f47f67f17f37f57f7)T7
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and the shuffle permutation S, maps the half vectors (fo,f2, fa.f6)",

(fi, f3: f5, f2)T from Ssf to (fo, fa, fo. fo) T, (f1. fs. f3, f2)T, respectively. Since
S, = I, we have

Bsf := S$VSYSsf = (fo, f4, fo, for 1, f5 f3o f2) T

i.e., Bg is the bit reversal permutation for 8-component vectors.

We can also follow the permutation process by keeping track of the index of the
cell that contains the component of f that is originally found in cell n. For example,
when N = 16 we find

2 4
St sy S5

Fl(babsbaby)a] ~~ % cell (bibabsby)s « ™ cell (bibabsbg)s « % cell (bibabsby)a,

SO
Bis = S5VS{VS{s 6

is the bit reversal permutation for the 16-component vectors. Analogously, we
see that (13) is the bit reversal permutation for vectors with 2™ components,
m=12....

An FFT algorithm

The factorization (12) corresponds to a fast algorithm for computing the DFT of
any vector of length NV = 2™. The in-place computation of

5 | 1
2 f2

. SR N P
f.l = Qan f.l : : “ -
: v
) a1
a2

f2M—1 f2M—1

- - —f2M—1—

—2mi/(2M))

(with w:=e can be done with the one-loop algorithm

For A\=0,1,...,M — 1 do:

L |:J;?)\+M] = E _51} [J}AMM } (14)
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More generally, the in-place computation of
K
f.=Qh)f

when N = K -2M, i.e., the computation of

fl{-2M fH'QM
fr2M+1 Jrami1

) = Qan ) for each K = 0,1, ...
Jr2myanm—1 JraMmianm—1

can be done with the two-loop algorithm

For A\=0,1,...,M — 1 do:
For k =0,1,..., K — 1 do:

L fr2nra _ [ WM [ feanrea

Jr2Mta+m 1 = | | feomiarm
We fetch or generate w? only once when we order the loops in this way. We must
do such a computation for each Q-factor of Fom. In addition, we must carry out
the initial bit reversal permutation and the final scaling by 1/2". In this way we

see that the matrix factorization (12) gives us the in-place FFT of Algorithm 6.5.
This algorithm corresponds to the decimation-in-time FFT of Fig. 6.3, but it takes

a bit of effort to verify that this is in fact the case, see Ex. 6.16(a).

Perform the bit reversal permutation on f[0], f[1],..., f[2™ —1].
For p=1,2,...,m do:

W = e—2mi/2*

U:=1

For A=0,1,...,2*"1 — 1 do:
For k =0,1,...,2m # —1 do:
fle- 28+ X+ 2071 1 -U
L U:=wU
For k=0,1,...,2™ — 1 do:
L flK] = flk)/2™

I UB B R e OO

Algorithm 6.5. Naive decimation-in-time FFT based on (12)

when N = 2™,
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An alternative FFT algorithm

Since the DFT matrix Fom is symmetric we can use (12) and (9) to write
:Tgm = g:’;n

1 T
2 27n71
= [Qm ng an),,ﬂ Qg ) Bzm}

] 1] T 5 17 T
Bgm[ ¢ ﬂ [Q;,,?,l} [sz]

~om
1 T (2771.71) T (2) T
= ﬁ B2m |:Q2 :| e QQ'mfl |:Q2m:| . (15)
In the last step we use the fact that
Bl. =B —1.2
om = Dom, M =1,4,.... (16)

[Two applications of Bam return a vector to its original state, so
Baym Bom =1Iom,

and the columns of Bom, i.e., the permuted columns of Ism, are orthonormal, so
Bl Bom = Ipm.

The symmetry (16) follows from these two relations.]

We can easily move from the matrix factorization (15) to an in-place FFT. At
the heart of the computation is the vector replacement

r A7 Joo
1 1 1 1 I
f2

fi ; 1 ; 1 fra

h

1:Q2TM 1 1
Im

frsa

Iyt

fQMfl f2]\/171

M-—1 M—1 :
- N -fQMfl—




318 The fast Fourier transform

(with w := e~27/(M)) which can be done with the one-loop algorithm

For A\=0,1,...,M — 1 do:
L Al_[t 1][h
et et |

f)\+M

analogous to (14). By combining this inner loop with suitable outer loops, we
obtain the FFT of Algorithm 6.6. This algorithm corresponds to the decimation-

in-frequency FFT of Fig. 6.6, see Ex. 6.16(b).

For y=m,m—1,...,1 do:

w = e—2mi/2"
U:=1
For A=0,1,...,2*"1 —1 do:
For k=0,1,...,2m# —1 do:
L flk 20 4+ Al |1 1 flr 20 4+ A
fle-20r+x+2071 | 7 |U U]\ | fle-2"+X+2r71]
L U:=wU
S 2™ —1).

Perform the bit reversal permutation on f[0], f[1],..

For k=0,1,...,2™ — 1 do:
L rl] = flr]/2m

Algorithm 6.6. Naive decimation-in-frequency FFT based on
(15) when N = 2™,

Precomputation of sj := sin(2wk/N)

Algorithms 6.5 and 6.6 make use of the complex numbers

. 27k 27k
o= 2mik/N _ COS(;) - ism(;) . k=0,1,...,N—1,

in the innermost loop. We can use storage to gain speed by precomputing the real

numbers

27k . [ 27k
c = COS(N) , Sk = sm<N> , k=0,1,...,N —1,
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and retrieving them as needed. In practice, we find it preferable to generate and

store only sg, s1, ..., 8N4 since we can use the symmetries
Sk:SN/Q,k:*SN/QJrk:*SN_k, k‘IO,l,...,N/Zl
Ck = —CNj2—k = —CN/2+k = CN—k = SNja—k, k=0,1,...,N/4

to obtain all of the other values of s, ¢ when N = 2™. This enables us to reduce
the required storage by a factor of 8.

The usual numerical procedures for evaluating sinf, 0 < 6 < 7/2, require approx-
imately 5, 8 real operations for 8, 16 decimal places of accuracy. We will describe
a clever scheme of Buneman that makes it possible to compute so, s1,...,5n5/4 by
using only slightly more than N/4 real operations. (Some alternative procedures
are described in Ex. 6.19.) We begin with

s0 :=sin(0) = 0, snyg = sin(m/4) = 1/V/2, sny4 = sin(m/2) =1,
and then use the trigonometric identity
sin(ar) = 3 sec(B){sin(o — B) + sin(a + B)}

to pass from this coarse grid to finer ones. Indeed, since
(T 1 T /T L/mw
sin(5) = g sec(5) {sin(5 — §) +sm(5+ §)}
sin 31 = 1sec(ﬁ) sin 31 T + sin 3—7T + T
8) 2 8 8 8 g8 8

we can use the known values of s;y/s, k =0, 1,2, to generate

1 T
SN/16 = b SeC(g) (s0 + SN/S)a
1 T
S3N/16 = 5 SeC(g) (sn/s + S2n/8)-

We can then use the known values of s;n/16, K = 0,1,2,3,4, to generate

1 T

SN/32 = 5 SeC(Tﬁ) (50 + 5n/16)s
1

S3N/32 = 5 sec(l—ﬁ) (sn/16 + S2n/16),
1 T

S5N/32 = 5 SGC(E) (s2n/16 + 83N/16)5
1 T

STN/32 = 5 sec(1—6) (83N5/16 + 84n/16);
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etc. Buneman even devised a clever recursion
hS = 1/\/57 h,u-i—l = {2+1/hu}71/27 M:3747"~7 (17)

for computing the half secants

1 2
hy, ::sec<ﬂ>, w=3,4,..., (18)

that are used in this process, see Ex. 6.18. These ideas are used in Algorithm 6.7
and in the FFT code from Appendix 6.
s[0] :=0
s[N/8] :=1/V2
s[N/4]:=1
h:= 1/\/5
k:=N/8
While k£ > 1 do:
hi={2+1/h} 1/
0:=k/2
For j =00+ k, 0+ 2k,... N/4—/{ do:
slil="h-(slj =4 +s[j +1])
— k:=Fk/2

Algorithm 6.7. Buneman’s clever scheme for generating
slk] :==sin(2rk/N), k =0,1,...,N/4, when N = 2™.

Application of Qg

We will now use (12) to develop an algorithm that minimizes the time spent in
retrieving the precomputed si’s. We observe that the application of the matrix

Q2= H _” (19)

can be accomplished by simply adding and subtracting vector components, and to

exploit this possibility we will apply QéN/ 2) outside the inner loop of our FFT. The
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- (N/4M) . Lo .
remaining factors Q,,/ ,4M = 4,8,16, ... can be applied in a unified manner.
The pattern is well illustrated by using 4M = 16 with
- ) -
1 (3177;81
1 Cco—1S2
1 c3—183
1 —1
1 —c3—1S3
1 7627%'82
1 76177;81
= 2
Q16 1 _1 (20)
1 761%’1’81
1 —co+is2
1 —C3+i$3
1 i
1 03+i83
1 c2tisa
L 1 C1+’i81 |
and \ \
2T . (27
cy = COS<16) , Sy = 51n(16> , A=1,23.

Each ¢y, s) pair appears exactly four times in the matrix (20), and after examining
the structure it is easy to see that we can compute

f::Q4Mf7 M:1,2,
by using the algorithm
fo 10 1 0 fo
fM 0 1 0 —1 fM
fam 10 =1 0| /fom
fam 01 0 il lfsm
For A\=1,2,...,M — 1 do:
s :=sin(2w\/4M) (21)
¢ :=cos(2mA/4M)
1Y 1 0 c—1is 0 15y
f2M7)\ _ 0 ]. 0 —C—iS f2M7>\
JPIVEDY 1 0 —c+is 0 fonrin
= Lfam—x 0 1 0 c+isd L fanr—a
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Now that you understand the structure of the innermost loop, you should be able
to see how the factors of Fom from (12) are applied as we execute Algorithm 6.8.

Perform the bit reversal permutation on f[0], f[1],..., f[IV — 1]
by using Algorithm 6.4 (apply Bn)

Precompute s[x] := sin(2rx/N), k = 0,1,..., N/4 using Algorithm 6.7

For k=0,1,...,2™ ' — 1 do: (apply Q72
[f[%] } — [1 1} [f[%] }
L | f2e+1]| 7 |1 —=1||f26+1]
For p=2,3,...,m do: (apply Q(QIX/T‘))
M := 212

For k =0,1,...,2™# — 1 do:

Flr-4M] 10 1 0 flr-4M]

flr-4M+M] 01 0 —i Fle-4MA+M]

fleaM42m] | |1 0 -1 o | fleamtenm
= L fls-aM+3M) o1 o0 i Flr-AM+3M)

For A\=1,2,...,M — 1 do:
Fetch s := sin(2wrA/4M) from s[\ - 2™ 7H]
Fetch ¢ :=sin(2m (M — X\)/4M) from s[(M — X) - 2" 7H]

For k=0,1,...,2m# — 1 do:

flr-AM+X] 1 0 c—1is 0 fle-4M+X]
flr-dAM+2M—)] |10 1 0 —c—1is flr-4M+2M—N]
fleaM+2M4A] |~ |1 0 —ctis 0 flr-AMA+2M+A]
- = FlR-AM+4M -] 0 1 0 ctis FlR-4M+4M =]
For k=0,1,...,2™ — 1 do: (apply 1/N)

L f) = 1)/

Algorithm 6.8. A decimation-in-time FFT that is based on (12)
and (21) when N = 2™,
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A corresponding FORTRAN code is given in Appendix 6. The code uses sepa-
rate real arrays to hold the real and imaginary parts of fo, f1,..., fx—1 with the
three vector replacement statements being unpacked and written in terms of real
arithmetic in the natural manner. The two essential complex products

(c—is)f[k-AM +2M + )], (c+1is)f[k-4M +4M — ]

and the four essential complex sums from the inner loop require 8 real multiplica-
tions and 12 real additions. Since this loop is executed a total of

N 1
(m—1)-(M—1) > 4Nlog2N
times, the cost of executing the algorithm is approximately 2NV log, N real multipli-
cations and 3N log, N real additions. (This is a bit more precise than an operation
count.) Improvements in the running time can be made by using a different radix,

as described in Ex. 6.22.

At this point you have a basic understanding of the FFT when N = 2. In the
following sections we will introduce important generalizations that make a good
algorithm even better!

6.5 Sparse matrix factorization of H when N = 2™

The zipper identity and factorization

We will use ideas from the preceding section to develop Bracewell’s fast algorithm
for applying the discrete Hartley transform matrix

2wkn N-1
Hy = N—1/2 {cas( N )}kn:o

when N = 2™ for some m = 1,2,..., see (5.27). In this case the zipper identity
takes the form )

Hoy = —Ton HPSon,, M=1,2,..., 22
oM ) oM Hp Sonr (22)
where T,/ is a sparse real matrix having the 2 x 2 block structure
— I Xm _
Tops = {IM _XM}’ M=12,... (23)
with
1100 ...0 00 ...00
C1 0 S1
Xy o= | 0] +10 52 (24)
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and

2k 2k
Ck :—005(2]\;>, Sk :—sin(ﬂ\;T), k=1,....M —1,
see Ex. 6.17. By using (22) and (13), we immediately obtain the sparse real factor-
ization

Hyw = 27"/ Ty T5) T3, - T By (25)

oam—1

that leads to a fast Hartley transform or FHT.

Application of T4y, using precomputed s;’s

We will use (25) to develop an FHT that is analogous to the FFT of Algorithm 6.8.

The matrix
1 1
Te:= [ 1 -1 }

is identical to the matrix (19) for the FFT. The structure of Typr, M =1,2,... is
well illustrated by the matrix

1 1
1 C1 S1
1 Co So
1 C3 S3
1 1
1 S3 —C3
1 S92 —C9
T16 = 1 1 1 51 2l (26)
1 —C1 —S81
1 —C2 —S89
—C3 —S83
1 -1
1 —S83 C3
1 —S9 Co
L 1 —S1 C1 |

with

2T (27
Cy = cos(lﬁ) y  Sa = s1n<16> ;o A=1,23

Each cy, sy pair appears exactly four times in the matrix (26), and after examining
the structure it is easy to see that we can compute

fZ:T4Mf, M:1,2,
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by using the algorithm

fo 1 0 1 0 fo
v 10 1 0 1 v
fomr 10 =1 0f | fom
fanm 01 0 —11 Lfsm
For A=1,2,...,M — 1 do:
s :=sin(27\/4M) (27)
¢ :=cos(2mA/4M)
I 10 sT T fa
fov—x | _ |0 1 s —c| | fam-nr
Jonraa | 1 0 —c —s| | fomer
fanr—x 0 1 —s ¢l Lfap—x

After examining the parallel structures of (12) and (25), it is easy to see that we
can convert the FFT of Algorithm 6.8 into the FHT of Algorithm 6.9 by using (27)
instead of (21) for the inner loop and replacing 2™ by 2/? for the final scaling.

Although the FFT and FHT algorithms are quite similar, the FHT has two
important advantages in cases where we work with real data. Since the 4 x 4
matrices that appear in the FHT algorithm have real elements, it is possible to
use a single real array of length N to hold the components of f. Each of the
4-vector replacements in the inner loop of the FHT requires computation of the 4
real products

cfleAMA2MA+N], s flkdMA2M~+N], c fle-dAM+4AM—=N], s-flr-AM+4M—)],

and 6 real additions. Since this loop is executed approximately (N/4)log, N times,
the total cost of the computation is approximately N log, N real multiplications
and 1.5N log, N real additions. When we use the FFT we must provide storage
for both the real and imaginary parts of f and the total cost is approximately
2N logy N real multiplications and 3NN log, NN real additions. In this way we see
that Bracewell’s FHT uses half as much storage and half as many operations as the
FFT when we work with real data. [Perhaps this will help you understand why
the minor differences between Algorithm 6.8 and Algorithm 6.9 are protected by
the first U.S. patent ever issued for a mathematical algorithm, see E.N. Zalta, Are
algorithms patentable? Notices AMS 35(1988), 796-799.]

The FHT can be used to cut the cost of other kinds of computations that are
often done with the FFT. For example, if we wish to generate the DFT " of a
given real N-vector f, we can use the FHT to compute £~ and then use the identity

1
£ = (P Py,
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Perform the bit reversal permutation on f[0], f[1],..., f[IV — 1]
by using Algorithm 6.4 (apply By)

Precompute s[x| :=sin(2rx/N), k = 0,1, ..., N/4 using Algorithm 6.7

For k =0,1,...,2™" ' — 1 do: (apply TS/
[f[%] } _ [1 1} [f[%] }
L fR2e4+1] |1 =1 | f26+1]
For p=2,3,...,m do: (apply T2(iV/2"'))
M = 2+72

For k=0,1,...,2m# —1 do:

Flr-4M)] 1 0 1 0 Flr-aM]
feam+m] | o 1 0 1| | fle4M+M]
fleaM+2Mm] | 7 |1 0 -1 0 Flr-AM+2M]
Flr-4M—+3M) 01 0 -1 Fl-dM—+3M)

For A\=1,2,...,M — 1 do:

Fetch s := sin(2rA/4M) from s[A - 2™ 7#]
Fetch ¢ :=sin(2m (M — X\)/4M) from s[(M — X) - 2" 7H]

For k=0,1,...,2m# — 1 do:

flr-AM+)] 1 0 c s flr-AM+]
flaM+2M=A | [0 1 s —c| | flkdM+2M=)]
fleaM+2M+X] | 7 |1 0 —e —s Flr-4MA+2M 42
- - flr-AM+4M—)] 0 1 -—s c flk-AM+4M—)]
For k=0,1,...,2™ — 1 do: (apply 1/V/N)

L s = g2

Algorithm 6.9. A decimation-in-time FHT that is based on (25)
and (27) when N = 2™.
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see (5.31). The cost of computing f* in this way is about half of that required
by the direct application of the FFT. (An equally efficient alternative is given in
Ex. 6.8.) Analogously, the computation of the discrete convolution product f * g
of given real N-vectors f, g can be done by using the FHT in conjunction with the
identity from (5.81).

6.6 Sparse matrix factorization of F
when N = PP, - - P,

Introduction

Let N = PP, --- P, wherem = 2,3, ...and P, =2,3,... foreach p =1,2,...,m.
In this section we will use a generalization of the zipper identity (11) to factor Fy.
The factorization will facilitate the development of an algorithm that allows us to
compute an N-point DFT with approximately

N{P,—1)+(Po—1)+ -+ (P, —1)}
complex operations. In cases where N is highly composite, this gives us a fast

Fourier transform.

The zipper identity for Fy,p

The structure of the generalized zipper identity is well illustrated using N = 12
with the factors M =4, P = 3. We form the 12 x 12 permutation matrix

S4,3 = [507 647 587 517 557 697 527 667 6107 637 677 611]

by performing a perfect 3-shuffle of the columns dg, 1, ..., 811 of the 12x 12 identity
matrix, I;5, and observe that

1 1 1 1 1 1 1 1 1 1 1 7
1wd Wb w? lw w? W7 w0 w2 W5 W Wit
1wl w12 W18 |02 W8 W4 W20 |4 10 16 22
1w? w8 W27 w3 Wi2 W2l W30 |6 W15 24 33
1 w2 w24 )36 |4 16 28 40 |8 (20 32 44
F, — 101 w15 W30 W45 | )5 20 35 50 |10 25 40 55 S
12 |1 w18 w36 W54 |6 W24 42 (60 |12 (30 48 66 4,3
1 w2l W42 63 |7 (28 W49 LTO |14 35 ()56 T
1 w24 48 72 |8 W32 W6 B0 |16 40 64 88
1 w27 W84 W81 |9 W36 O3 LI0 |18 45 72 99
1 w30 60 ,90 | ,10 40 ,70 100 ,20 50 ,80 110
|1 w33 W66 (99 |11 44 )77 (110 |22 ;55 88 121 |
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1 1 1 7
1 w w?
1 w? wt
1 w3 wb
1 wt w8
1 5 10
1 w’ wh
1 W8 w16
1 w? w8
1 wlO w20
1 Wil w22

with w := e~27/12_ This factorization process generalizes in a natural manner, and
in this way we obtain the zipper identity

1
Fup = FQM,pffA(f)sM,P, M,P=1,2,.... (28)
The M P x M P matrix
Wy Wo.1 - Wop_g
Wio Wi o Wip_g
QM,P = . (29)
Wp_10 Wp_11 -+ Wp_1p
is formed from the M x M diagonal blocks
1
Y
Wk)g = wklM w% ) (30)
WM —1)t
using powers of w := e 2"/MP and the permutation matrix
SM,P = [607 5M7 52M7 sy 6(P71)M7 517 51+M7 51+2M7 ey 61+(P71)M7
(31)
.. '751\/[—11621\/[—1763]\4—17 e 76PM—1]
is obtained by performing a perfect P-shuffle of the columns dqy,d1,...,0pp_1 Of

the identity matrix Iy p.

You will observe that Qas 2 and Sy are identical to the matrices Qaps and Saps
from (2)—(3). A single subscript (specifying the size of the matrix) was all that we
needed for the derivation of (12). Within the present context we must specify both
of the factors M, P, and we do this by using them as subscripts (with the order
being important!) The product of these subscripts now gives the size of the matrix.
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Factorization of ?plpz...pm

We use the zipper identity (28) with P = P,,, P = Py,_1,...,P = P; in turn
[together with (6)—(8)] to write

P
FripyPr = 5 QPrPra.P, T SPiPu
m
1 (Pm. (Pm lP )
= BBy P QR b by TR
PIYL
S( ) Pry—2,Pm—1 ’ SPl'”Pm_17Pm'
1 (Pm
- PP---P, Qpypry P Qp Pp—2,Pm 1
P Py---Py,
Q5313P2 Q:(I.,Iil ) ’ SP11P27~--7Pm (32)
where the final factor
(P (Pa-+Pr) )
SP17P27-~-7P - SP13P2 SP14132,P3 ...Spl'upm,g,Pm,lSPl"'Pm—lvpm (33>
is a permutation matrix. This factorization depends on our choice of Py, Ps, ..., Py,

(e.g., when N =12 wecanuse P, =2, P, =2, P3=3; P, =2, P, =3, P; = 2;
P1=3,P2:2,P3=2; P1:2,P2:6; P1=6, PQZQ;P1=3,P2=4;OI‘P1:4,
P, =3).

From (29)—(30) we see that each row of Qs p has exactly P nonzero entries with
the first of these being a 1. This being the case, it will take no more than P — 1
complex operations per component to apply Qas,p to a compatible vector, and the

same is true of Qs\fﬂg, K =1,2,.... Thus we expend approximately
NP =)+ NP = 1)+ -+ N(Pp — 1)

complex operations as we apply the factors of (32). Of course, this reduces to
Nlogy, N when P\ =Py =--- =P, = 2.

An FFT

We will use (32) to develop a fast algorithm for computing the DFT. At the heart
of an in-place computation we must carry out the vector replacement

f:= QM’pf.



330 The fast Fourier transform

We will place the nonzero elements of Qas,p that lie in rows A\, A\ 4+ M, A4 2M, ..
A+ (P —1)M in the matrix

)

1wt w2 ce P=DA
1 MM Ww2(A+M) c WPEDOEM)
Q)\ MP = 1 w>\+2M w2()\+2M) L w(P—l)(X+2M) 7
1 WME-DM 2N HP-)M] L (P)H(P-1)M]
w = e 2™/MP "and thereby see that the replacement can be done by writing

For A\=0,1,...,M — 1 do:

I 15

Inem Irem
Iatram = Quarp | Prem
Inp-nym 1M

You should now be able to see how the FFT of Algorithm 6.10 successively applies

the factors (N/P1) N/ ) oW/ ) (N/ )
N/ P: N/ P, P N/P; PP N/P;---P,,
Q17P1 ' ’QPthl ’ ’ Q131P271P32 ’ 1t QP1'~‘F§,,L717P7,L

from (32).

A direct application of the P x P matrix Q) as p in the inner loop would require
P(P — 1) complex multiplications and the same number of complex additions. In
practice, there are clever tricks that we can use to reduce this effort, and most of
these exploit the fact that the matrix has the factorization

1

Q/\,M,P = P:}’P w W = 6727ri/MP. (34)

w(P—DA

For example, when P = 2 we can generate

[ =[] =11 ][ o ][2

by computing in turn

ti=wr-f1, foi=fot+t, fli=fo—t.
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Permute f[0], f[1],..., f[N — 1] using Sp, p,.... P,

M:=1

P:=1

K:=N

For p=1,2,...,m do:
M:=M-P
P:=P,
K:=K/P
W = e~ 2mi/MP

For A=0,1,...,M — 1 do:

For k =0,1,..., K — 1 do:

FIA +rMP] Fx +rMP]
A+ M+rMP] FIA+ M+rMP)
. =y m,p .
- FIM(P—1)M41MP] FINH(P—1)M+1MP]
For k=0,1,...,N — 1 do:
L 0 = /N

Algorithm 6.10. Naive decimation-in-time FFT based on (32)
when N = PPy --- Py,.

This eliminates one complex multiplication and reduces the per component cost
from 4 real multiplications and 4 real additions to 2 real multiplications and 3 real
additions. Analogously, when P = 4 we can generate

4 1 1 1 1771 fo
{0 O I R A B w? fi
1 -1 1 -1 w2 fo
! 1 i -1 —i W L fs

by computing in turn

tii=wh fi, tr=w? e fo, tzi=wtf,
51:= fo+ta, soi=ty+t3, di:=fo—ta, dp:=1t1 13,
fo:=s1+s2, fl:=di—idy, [fy:=51—52, [f3:=di+ids.
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If we neglect the multiplications by 4 [since we can compute
(a+ib) +i(c+id) = (a—d)+i(b+c)

by performing two real additions that are equivalent to one complex addition] we
see that this eliminates 9 complex multiplications and 4 complex additions. The
per component cost for applying €2 as 4 is thus reduced from 12 real multiplications
and 12 real additions to 3 real multiplications and 11/2 real additions. When N is
a power of 4, this leads to an FFT that uses approximately

Nlog, N - {1.5 real multiplications + 2.75 real additions}.
In contrast, Algorithm 6.8 uses
Nlog, N - {2 real multiplications + 3 real additions}.
Exercise 6.22 shows how to reduce the cost to
Nlog, N - {1.33 real multiplications + 2.75 real additions}

when N is a power of 8.

The permutation Sg p

If we lay down the components of f = (fo, f1,..., fi1)" in 4 rows
fo i fa
fs fa  fs
fe fr [s
fo fio fu

and then pick them up by columns we produce the perfect 4-shuffie

(fo’f37f67f95fl?f4>f77f107f27f57f8af11)T

of f. The analogous perfect P-shuffle of the columns dg,d1,...,dpg—1 of the
PQ x PQ identity matrix gives the shuffie permutation

Sq.p := 100,900,020, --,0(P-1)Q,01,014+Q,0142Q> - - -, 014 (P-1)Q>

(35)
ey 0Q-1,020-1,03Q-1, -, 0QP-1]-
Using this definition it is easy to verify that
0q+pq appears in column p + ¢P of Sq p,
SQ.POp+qP = Og4Q; (36)

So.p puts fpiqp into position ¢ + p@Q, (37)
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(for all p=0,1,...,P—1,¢=0,1,...,Q — 1), and to see that

Sq.pf = (fo, fp, for, -+ flo—vyps 1, firp, fivepr, fiv@-1)Ps (38)
L) fP—la f2P—17 f3P—17 s 7fQP—1)T

is a perfect @-shuffle of f. You will note that the subscripts on the right-hand side
of (35) mostly jump by @ (when P > 2) while those on the right-hand side of (38)
mostly jump by P (when Q > 2).
Using (36) we see that
SrqSq,r =1Irq,

and thereby infer that
So.p = Sra- (39)

Since Sp g is a permutation matrix, this implies that
S6.p =Spro. (40)
see Ex. 6.13. In particular,
T T T T
£7Sq.p = (Sq.pf)” = (Sref)

= (foanvaQ,- . -7f(P71)Q7f17f1+Q7f1+2Q,.. '7f1+(P71)Q;
. an—lanQ—l,f?,Q_l,. . "fPQ—l)a

[and this is precisely the action that we required during the derivation of the zipper
identity (28)1].

The permutation Sp, p,, ....p,
Using (37) (with f,, replaced by f[n]) we see that

Sq,p maps f[p + ¢P] to position g + pQ when
p=0,1,...,P—-1, ¢q=0,1,...,Q — 1 and N = PQ. (41)

More generally,

SS?BD maps f[p+ ¢P + rPQ)] to position ¢ + pQ + rPQ when
p=01,....P—1,¢q=01,....Q—1, r=0,1,...,R—1
and N = PQR. (42)

We will use (41)—(42) to determine the action of the permutation (33) that is needed
for Algorithm 6.10.
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The pattern is well illustrated by the case where m =4 and N = PP, PsP,. We
choose an index n =0,1,..., N — 1, write this index in the form

n =p4 +p3Py +paP3Py + p1 P2 P3Py

for suitably chosen

p1=0,1,...,P1—1, pQZO,].,...,PQ—].,
p3:Oa1"‘~7P3_17 p4:0715"'7P4_17

and then follow f[n]| as we apply in turn the factors Sp, p,p,,p,, Sg‘gz Py Sg:‘g;)

of Sp, p, p,.p,- Using (41) we see that the initial application of Sp, p,p, p, moves
f[n] from position
n=ps+ (p3 +paPs +p1PaP3)Py

to position
n' = (p3 + p2Ps + p1PoP3) + pa(PsPoPy).

Using (42) we see that the subsequent application of S%QQ p, moves f[n] from

position
n' = ps+ (p2 + p1P2)Ps + pa (P3P Py)

to position
n'" = (p2 + p1P2) + p3(PaPr) + pa(P3 P Py).

Again using (42) we see that the final application of SEDPSII;;‘) moves f[n] from position

n' = ps+p1 P+ (p3 + paPs)(PoPy)

to position
r=p1 +poP1 +p3PoP + ps P3P Py

This argument can be used for any m = 2,3,4,..., so if
n=pm + Pm-1Pm + Pm—2Pm-1Pn + -+ p1 2P - Py (43)
for some choice of
p=01,....,P,—1, po=0,1,....,Ph—1, ..., pm=0,1,...,Pn—1,
then Sp, p, .. .p, maps f[n] to position
r=p1+p2P1 + 3PP+ -+ ppPr_1Pp_2- - Py (44)

(The choice P, = P, = -+ = P, = 2 gives the bit reversal permutation Bom.)
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A suitable generalization of Algorithm 6.2 for bit reversal can be used to find the
r that corresponds to n. For example, when P, =3, P, =5, P3 =7, P, = 11 and
we are given the index

n=1153=9+6-(11)+4-(7-11)+2-(5-7-11)
we can produce the corresponding index
r=2+4-3)+6-(5-3)+9-(7-5-3)=1049

with the following calculation.

1153 =+ 11 = 104 with remainder py :=9, r1:=9
104 +~ 7 =14 with remainder p3 :=6, 79:=7r;1 +6 =069
14+~ 5=2 with remainder py :=4, 1r3:=5ry+4 =349
2+ 3=0 with remainder p; :=2, 1rq4:=3r3+2=1049

Algorithm 6.11 uses these ideas to generate the index r when Py, Ps, ..., P, andn =
0,1,...,N — 1 are given. By reversing the order of Py, Ps,..., P, Algorithm 6.12
allows us to generate the index n that corresponds to a given r = 0,1,..., N — 1.
The identity

—1 .
SPl,PZ,...,P - SPm,Pm—l,---,Pu (45)

m

which expresses the relationship between these two algorithms, generalizes (39).

r:=0

d:=n

For y=m,m—1,...,1 do:
q:=d/P,]
p=d—F,-q
r=p+P,-r
d:=q

Algorithm 6.11. Computation of the r from (44) when the n
from (43) is given.
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n:=0

d:=r

For p=1,2,...,m do:
q:=|d/Py,]
p=d—PFP,-q
n:=p+PFP,-n
d:=q

Algorithm 6.12. Computation of the n from (43) when the r
from (44) is given.

If we can choose the factors Py, Ps, ..., P, so that
Py =Py, Po=Pyn1, Ps=PFPu_o,....,P, =", (46)

then (45) shows that Sp, p, . p,, is self reciprocal, i.e., the symmetry (46) makes it
possible to carry out the permutation by simply swapping f[n] and f[r] whenever
r > n. For example, when N = 12 and we take P; =2, P, = 3, P3 = 2 we find

4 5678910 11

4101739 5 11

and we can apply Sz 32 by swapping f[1] and f[6], f[3] and f[8], f[5] and f[10].
In the absence of the symmetry (46) this is never the case. For example, when

N =12 and we take P = 2, P, =2, P; = 3 we find

n: 0
r[n]: 0

[0l \)

1 34 5678910 11
4 26101593 7 11
so the application of S35 3 requires us to cyclically permute

FI, f14], and f[6);  f[2], f[8], f[9), and f[3];  f[5], f[10], and f[7].
If we reverse the order of the factors and take P, = 3, P, =2, P3 = 2 we find
nn 0123456 78910 11
rln: 06391741028 5 11
so the application of S35 2 requires us to cyclically permute

f1, fl6], and f[4); f[2], B3], f[9), and f[8];  f[5], f[7], and f[10].

The cycles are the same as those for Sz 23 = S5 %)2, but the direction is reversed!
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Algorithm 6.13 provides a simple scheme for applying the permutation
Sp,.p,,..,P,. This algorithm uses an auxiliary array. If you wish to do the per-
mutation without using two data arrays, you can precompute the indices for the
various cycles. For example, if you wish to apply Sz 23 you can precompute

(—1,6,4,-2,3,9,8,—5,7,10)

(with negative indices marking the start of each cycle) and then perform the per-
mutation by writing

T:= f[1], fQ]:=fl6], f[6]:=f[4,  fl4]:=T,
T:=f[2], fl2]:=f@], fB81:=/f9,  fl9:=f[8, fI8:=T,
T:= f[5], f[5]:= f[7], f[7]:= f[10], f[10]:=T.
In cases where Pi, P,,..., P, have the symmetry (46), you can develop a very

efficient generalization of the Bracewell-Buneman algorithm that does the permu-
tation in place by performing the necessary swaps. This is particularly effective
when P =P, =--- = P,,.

Forn=20,1,...,N — 1 do:

r:=0
d:=n
For y=m,m—1,...,1do:
q:=d/P,]
p=d—P,-q
r=p+P,-r
d:=q
= g[r] := fIn]
Forn=0,1,...,N -1
- fln) = gln]

Algorithm 6.13. A naive scheme for applying the permutation
Spl,pz’m P when f[O], f[l], ey f[N — 1] and
N =P PP, are given.
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Closely related factorizations of F, H

Since F is symmetric, we can transpose (32) to produce the factorization

1
Fpp.p =———Sp p p. - [QT (P2 Pm)
1172 m PlPQPm moydm—1,... 01 [Ql,Pl]

T Py, T ' T
Qe p ) QR e )T Qb p

(47)

which gives the Gentleman-Sande version of the FFT, see (15) and Ex. 6.16(b).
There are factorizations of the Hartley transform matrix Hp, p,...p,, that corre-

m

spond to (32) and (47). These can be derived with the zipper identity of Ex. 6.23.

6.7 Kronecker product factorization of F

Introduction

In the years following the publication of the Cooley—Tukey algorithm, dozens of
other FFTs were discovered by Gentleman and Sande, Pease, Stockham, Singleton,
Burrus, de Boor, Winograd, Temperton, and many others. These variations facili-
tated the development of more elegant codes, more efficient access of data, somewhat
smaller operation counts, etc. Most of these FFTs can be derived from the Cooley—
Tukey factorization (32) by using a mathematical construct known as the Kronecker
product (or direct product or tensor product). We will develop some of the basic
properties of the Kronecker product and show how they are used to produce useful
sparse factorizations of the matrix F. You should consult Van Loan’s book and the
references cited therein for a comprehensive treatment of this topic.

The Kronecker product

Let A,B be K x L, M x N matrices with elements

Ak, k=0,1,..., K1, ¢=0,1,....[ 1,
Bim,n], m=0,1,....M -1, n=0,1,...,N — 1.

We define the Kronecker product A ® B to be the KM x LN matrix

Al0,
1

B A,
All, 1

B - A0, |B
|B AlL, 1

0 L—-1
0 B - All,L -1]B
A®B: = .

AK-1,0B  AK-1,1B --- AK-1L-1B
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with the elements
(A® B)[m + kM,n + (N] := Alk, {]Bm,n]. (49)

Each block of A ® B is a scalar multiple of B, and the elements of A serve as the
scale factors, e.g.,

1 1 1 35
ot o] = (o] s[a]] =[5 4]
10 2 0 3 07
L2 3] [t o]_fo10203
45 6 1] =405 06 0’
L0040 5 0 6]
1230 0 0
1 0] 1 23] _|456000
01 456/ [000 1 2 3
Lo 00 4 5 6]

You will immediately recognize the special Kronecker product
AP = Ip 0 A (50)

from (5) and recall how the corresponding algebraic identities

Iob2(Ip®A)=Ipg® A (51)
Ir®(AB) = (Ip® A)(Ip ® B) when AB is defined (52)
Ir®(aA) =a(lp®A) (53)
Ip2A)T =IpAT (54)

from (6)—(9) were used to derive the sparse factorizations (12), (15), (32), and
(47). Indeed, the exponent notation (5) provides a gentle introduction to the use of
identities such as (51)—(54).

It is a fairly simple matter to verify that (48) has the algebraic properties
ABrC)=(A®B)®C, (55)
(A+B)® C=(A®C)+ (B®C) when A + B is defined, (56)
CR(A+B)=(C®A)+ (C®B) when A + B is defined, (57)
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that we would demand from any binary operation that carries the name product,
but there are situations (as illustrated above) where

ARB£B®A.

Example Verify (55) when A, B, C are 2 X 2 matrices.

Solution We use (48) four times as we write

o _CbllB & C a12B &® C
A®<B®C) o _a21B®C a22B®C]

_a b1nC  b12C a b1nC  b12C

T [ 521C beC bo1C  beyC

B a b1nC  b12C a b1nC  b12C
|7 [ 021C b22C b21C  b32C

_ -allB a12B

- |a21B G2QB] ©C

=(A®B)®C.

You can use a similar argument to prove (55) or you can use Ex. 6.26(a). n

The Kronecker product (48) also has the special properties

(0A) ® B =a(A®B) = A® (aB), (58)
(A®B)(C®D)=(AC) ® (BD) when AC and BD are defined,  (59)
(A@BF AT @ BT, (60)
(AB) '=A"'®B ! when A~ and B™! are defined, (61)
Ip@Io=1Ipgwhen P=1,2,..., Q=1,2,.... (62)

Example Verify the multiplication rule (59) when A, B, C,D are 2 x 2 matrices.

Solution Using (48) and the definition of the matrix product we write

(A®BWwMM:[“B %ﬁﬂPmD mD]

CLng CLQQB 021D CQQD

_ (a11¢11 + ai2¢21)BD  (ai1c12 + aj2c22) BD
(a21¢11 + ag2c21)BD  (az1¢12 + agzc22)BD

— (AC) ® (BD).

You can use a similar argument to prove (59) or you can use Ex. 6.26(b). n
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Rearrangement of Kronecker products

Let x, y be column vectors with 2, 3 components. When we use (38) to perform a
perfect 2-shuffle of the components of x ® y we find

- -
T1Y2
L1Y3 yix
x x
So3(x®y)=S23 [ 1y] =So3 | — | = 192 = |1px| =y®x
T2y Z2Y2
L2Y1 Ys3x
x
ngﬁ T1Ys3
) ) L z2y3
More generally, when x,y have P,Q components for some P, = 1,2,... an anal-
ogous argument shows that
Spo(x®y)=y®x (63)

Using (63) we can easily derive the commutation relation

Spro(A®B)=(B®A)Spg, (64)

which holds when A is P x P and B is ) x ). Indeed, if we are given any P, Q
component column vectors x,y we can use (59) and (63) to write

{Sro(A®B)}(x®Yy) = Spe{(Ax® By)}
= (By) ® (Ax)
=(B®A)(y®x)
={B®A)Spo}x®Yy).

Since the set of all such vectors x ® y spans the linear space of P() component
column vectors (see Ex. 6.29), this establishes (64).

Routine manipulations of Kronecker product factorizations make use of (55), (59)
and (63) or (64). We will give two examples to illustrate how this is done.
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Example Verify the shuffle permutation identity
Sr.or = SPRr,QSPQ,R- (65)

Solution Let p,q,r be any P, @, R component column vectors. Using (63) and the
associativity (55) of the Kronecker product, we see that

Spor(P®(q®T1))=(q®1)®P
=q® (r®p)
=Spro((r®p)®q)
=Srre(r® (Peaq))
=SpPreSro.r((P®q) ®r)
=SrrqSro.r(P® (q®T)).

Since the set of all such vectors p® (q®r) spans the linear space of PQ R component
column vectors, this establishes (65). n

Example Show that Big = (8272 ® 14)(82’4 ® 12)8278.

Solution Let a, b, ¢, d be any 2-component column vectors. Using (13) and (50)
together with (63) (and the associativity of the Kronecker product) we write

Bis(a®b®c®d)
=Ly ®S22)(I2 ®842)(Ss2)(a®@b®c®d)
= (I4 ®8S22)(Io®842)(d®a®b®c)
=L ®8Ss2)(d®c®a®b)
=d®c®b®a.

Analogously,

(S22 ®14)(S24®1I2)(S28)(a®@b®c®d)
=(S22®14)(S24®I)(b®c®d®a)
=(S2201)(c®d®b®a)
=d®c®b®a,

and this establishes the above identity for B1g. The same argument show that

BQWL = (8272 ® 12m72)(sz74 ® 127n73) A (82’2m72 ® 12)82)211171 . (66)
|
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Parallel and vector operations

Let A, B be P x P, (Q x Q matrices and let the PQ) component column vector x be

partitioned into @@ component column blocks xg,X1,...,xp_1. When we evaluate
B Xo
B X1
(Ip @ B)x = ) .
B Xp-1
we can process Xg, X1, ...,Xp_1 separately to produce Bxg,Bx;, ...,Bxp_;. On

the other hand, when we evaluate

AJ0,0]Ig A0, 1[I --- A0, P —1]Ig Xq
All1,0]Ig AL1Ig .- All, P —-1]Ig X1
(A® IQ)X = . . .
AP -1,0Ip AP-1,1Ip --- A[P-1,P-1]g Xp-1
we must scale and sum the vectors xg,x1,...,Xp_1 as we compute

Alk,0)xo + Alk,1]xy + -+ + Alk, P — 1]xp_1, k=0,1,...,P—1.

For this reason we refer to the computation of (Ip ® B)x as a parallel operation
and to the computation of (A ® I)x as a vector operation. As you might surmise,
computers have been designed to do such computations with great efficiency.

If we want to evaluate (A ® B)x on a computer that excels at parallel operations,
we use (59), (64), and (39) to produce a factorization

A®B=(A®Iy)(Ip@B)=Sqr(y®A)Spo(lp@B),

which allows us to apply A ® B to x with parallel operations and sorts. If we use
a computer that excels at vector operations we might prefer the factorization

A®B=(A®I1y)Sq.r(B®Ip)Spo,

which uses vector operations and sorts. In this way we can modify the elementary
factorizations (12) and (32) to produce algorithms that run efficiently on a particular
computer.
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Stockham’s autosort FFT

We use the commutation relation (64) to write (11) in the alternative form

1
Fom = §Q2MSM,2(37M ®1Is).

We then use this new zipper identity with (59) and (62) to factor F14 by writing

1
Fi6 = §Q16SS,2(9:8 ®1y)

1

= 1Q1688,2((QBS4,2(9:4 ®1I)) ®Is)

1
= 1Q1658,2(Q8 ®@1I2)(S42 @ 1) (Fa @ 1Ly)

= %(Qlﬁ ®11)(Ss2 @11)(Qs ®I3)(Ss2 @ I)
(Qa@14)(S22 ®14)(Qe ® Ig)(S1,2 ® Ig). (67)

This shows the pattern for Stockham’s autosort factorization of Fy with vector
operations when N = 2™. We must provide an additional array of storage to
carry out the rearrangement of the data that takes place just before we apply Qs ®
In/2, Qs @Iy, ..., but this eliminates the need for the bit reversal permutation.

An alternative Stockham factorization uses only parallel operations. We begin
with the Cooley-Tukey factorization

Fi6 = %Qw(:[z ®Qs)(Is ® Qu)(Is ® Q2)(S2,2 ® 14)(S2,4 ® I2)S2 g

with the expression (66) for B1g. When A, B are P x P, Q x Q we can use (59)
to obtain the commutation rule

Ipr®B)(ARIg) =AB=(Acly)Ir®B), (68)
which allows us to rearrange the above factors of F14 and write

1

3:’16:16

(It ® Q16)(S2,1 ®Ig)(Io ® Qg)(S2,2 ® L)
(It ® Qua)(S2,4 ®I1)(Is ® Q2)(S28s ®I).

This shows the pattern for the factorization of Fy when N = 2™,

(69)

There are analogous Stockham factorizations of Fy when N = PPy --- P,,, and
we can use these (or the corresponding transposed factorizations) as frameworks for
developing FFT codes, see Ex. 6.34. You now have all of the concepts that you will
need to sort out the details!
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Further reading

Bracewell, R. The Hartley Transform, Oxford University Press, New York, 1986.
The FHT as seen by its creator.

Brigham, E.O. The Fast Fourier Transform and Its Applications, Prentice Hall,
Englewood Cliffs, NJ, 1988.
A pictorial, intuitive approach to FFT algorithms with selected applications in
science and engineering.

Cooley, J.W. and Tukey, J.W. An algorithm for the machine computation of complex
Fourier series, Math. Comp. 19(1965), 297-301.
This initial presentation of the FFT is the most frequently cited mathematics
paper ever written ... and you can actually read it!

Tolimieri, R., An, M., and Lu C., Algorithms for Discrete Fourier Transform and
Convolution, Springer-Verlag, New York, 1989.
A mature (but exceptionally readable) exposition of fast algorithms for Fourier
analysis.

Van Loan, C. Computational Frameworks for the Fast Fourier Transform, SIAM,
Philadelphia, 1992.
The definitive mathematical exposition of the FFT (using MATLAB).

Walker, J.S. Fast Fourier Transforms, 2nd ed., CRC Press, Boca Raton, FL, 1996.

An elementary introduction to the FFT with selected applications to PDEs,
optics, etc., illustrated with PC software created by the author.

Exercises

» EXERCISE 6.1 Many computational tasks of Fourier analysis require us to find
the value of some polynomial

2 N-1
P(cg,c1y...,cN—1;2) i=co+cr1z+caz 4+ +eny_12

0

when the complex coefficients cg,c1,...,cy—_1 and a point z = €'’ on the unit circle of

the complex plane are given. The naive Horner algorithm
P:=cn_1
Forn=N-2N-3,...,0do:
L P:=ch+2z-P

P(co,c1,...yen—1;2) == P
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uses complex arithmetic. In this exercise you will study alternative algorithms that use
real arithmetic. For this purpose we define

Clag,a1,...,am;0) := ag + aj cosd + ag cos 20 + - - - + am cosmb
S(ag,a1,...,am;0) == arsinf + azsin20 + - - - + aum sinmb
where m = 0,1,2,... and where the coefficients g, a1, ..., am are real.

(a) Let cn = an + ibn where ap, by are real, n =0,1,..., N — 1. Show that

P(co,c1,-- - en—1;€) ={C(ag, a1, .., an_1;0) — S(bo,b1,---,by_1;0)}
+i{c(b07b1)"'ab]\771;9) +S(a05a17“'7a]\/71;0)}'

(b) Set P = R+iX with R, X real in the above Horner algorithm and thereby show that

Clag,a1,...,any—_1;0), S(ag,1,...,any_1;6) can be computed as follows:
c:=cosf
s:=sinf
R = N _1
X:=0

Forn=N-2,N-3,...,1,0 do:
T=an+c-R—5s-X
X:=s-R+c- X
R:=T
Clag,a1,...,any_1;0) :=R
S(ag,a1,...,any_1;0) := X.
(¢) How many real additions and multiplications must be done when we compute a C, S
pair by using the algorithm of (b)? How many must be done when we evaluate the

real and imaginary parts of P(cq,c1,...,CN_1; eze) by using the decomposition of (a)
together with the algorithm of (b)?

(d) Show that
Clag,a1, - am—1,4,B;0) = Clag, a1, ..., m—2,m—1 — B, A+ 2B cos6;0),
S(ag,a1,...,am—1,4,B;0) = S(ag,a1,...,m—2,m—1 — B, A+ 2B cosb;0).
Hint. Use the trigonometric identities

cos{(m + 1)0} = 2 cosf cos(mb) — cos{(m — 1)6},
sin{(m + 1)0} = 2 cos 6 sin(m@) — sin{(m — 1)0}.
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(e) Use (d) to verify that C(«ag, a1, ...,any_1;0) and S(ag, a1, ..., an_1;0) can be found
by using the following real algorithm of Goertzel.
A:=0
B:=0

u:= 2 cosf

Forn=N-1,N—-2,...,0do:

T:=A
A=an—B
B=T+u-B

Clag,a1,...,any_1;0) := A+ B-cosf
S(ag,a1,...,any_1;0):= B-sinf

(f) How does the cost of Goertzel’s algorithm compare with that of (b)?

#» EXERCISE 6.2 Suppose that you have created efficient macros cpoly, spoly for

computing

m m
cpoly(ag, a1, ..., am;0) = Z ay cos(kB), spoly(ag,a1,...,am;0) = Z ay, sin(k0)
k=0 k=1

when the real numbers ag, a1, ...,am, 0 are given, e.g., as described in Ex. 6.1(e). Show

how to use cpoly, spoly to do the following computational tasks.

(a) Let the complex N-vector f have the discrete Fourier transform F, and let

fln] = frln] +ifr[nl,  F[k] = Fr[k] + iF1[k]

where fr, fr, Fr, Fr are real valued. Compute Fgrlk], F;[k] when fgr[n], fr[n],

n=0,1,...,N — 1 are given.
Hint. Fr[k] = N™' - epoly(fg[0], ..., frIN — 1];27k/N) + - - - .
(b) Let y be the trigonometric polynomial

M
2 +Z {akcos <27rkx> + b sin <27rkx>} it N=2M+1
2 = p P

= M-1
y(x): ag 2mkx . [ 27kx apyg
— + a, cos + b sin + —— cos
2 — p P 2

if N =2M.

Compute values for ay, by, that will make y(np/N) = yn, n=0,1,..., N —1 when N

and the real numbers yo,y1,...,ynN_1 are given.
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» EXERCISE 6.3 Suppose that you have created efficient macros flip, bar, chopm, ft
for computing

flip(zo, x1,22,...,2N-1) = (T0,TN-1,TN-2,---,T1),
bar(zg,x1,T2,...,2N_1) = (T0,T1,Z2,---,TN_1),
chopm(xo,z1,%2,...,2N_1) = (z0,21,2Z2,...,Tm—1), m=1,2,..., N, and
ft(zo,x1,22,...,2n_1) = (Xo0,X1,X2,..., XN_1)

Here Ty, is the complex conjugate of x;, and
1 N-1
Xk:7v§:xmf%mWM k=0,1,...,N—1.

n=0

Show how to use flip, bar, chopm, ft (and the binary vector operations of componentwise
addition, subtraction, multiplication) to carry out the following computational tasks.

(a) Compute the vector f when the complex N-vector F := " is given.
(b) Compute the convolution product f * g when the complex N-vectors f, g are given.
¢) Compute the autocorrelation f x f when the complex N-vector f is given.
g

(d) Let N =2M and let ag,bg,a1,b1,...,apr, by be given with by = byy = 0. Compute

the vector y = (yo,y1,...,yn—1) of samples
= 21k 21k 2 M
_ a0 Tkn . wkn anr TMn
Yn 1= 5 —|—k51 {akcos(iN )—i—bksm( N )}4——2 cos( N ),

n=0,1,...,N —1.
(e) Lety = (yo,y1,---,yn—_1) be given with N = 2M. Compute a = (ag,a1,...,apn),
b = (bg, b1,...,bps) so that ag, by and yp are related as in (d).
Hint. Use the result of Ex. 1.16.

» EXERCISE 6.4 Let f := (fo, f1,...,f11) be a complex vector with the discrete
Fourier transform F = (Fy, Fy,...,F11), and let a := %(1 +/3 1), = %(\/§+ ). Use
the summation rule from (4.57) to derive the following expressions for Fy, F1,..., Fi1.

(a) 12Fy = (fo+ fo + fa+ fo + fa + fro) + (f1 + f3 + f5s + fr + fo + f11)
12Fs = (fo+ fo+ fa+ fo+ fs+ fio) = (i + f3 + fs + fr + fo + f11)

(b)  12Fy = (fo+ fa+ fo + fo) —a(fi + fa+ fr+ fro) —a(fo + f5 + fs + f11)
12Fg = (fo+ f3+ fo + fo) —a(fr + fa+ fr+ fr0) —a(fo+ f5 + fs + f11)

()  12F3 = (fo+ fa+ fg) —i(f1 + f5+ fo) — (fo + fo + fr0) +i (f3 + fr + f11)
12Fy = (fo+ fa+ fa) +i(fr + f5 + fo) = (fo + fo + f10) — i (f3 + fr + f11)
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(d)  12Fy ={(fo+ fo) — (f3 + fo)} +@{(f1 + f7) — (fa + f10)}
—af{(fe+ fs) = (fs + fu1)}

12Fi0 = {(fo + fo) — (fs + fo)} + a{(f1 + f7) — (fa + fi0)}
—a{(fe+fs) = (fs + f1)}

(e) 12F1=(fo—fe)+ B
—
12F11 = (fo — fe) + 8

(fr— fo) +a(fe— fs) —i(fs — fo)

(fa = fr0) = B(fs — f11)

(fi— fo) +alfe—fs) +i(fs — fo)
a(fs— fr0) = B(fs — f11)

12F5 = (fo— fe) — B(f1 — fr) + a(fe — f3) —i(f3s — fo)

(fa = fr0) + B(fs — f11)

(fi = fr) +@(fa — fs) +i(f3 — fo)

(

@
12F7 = (fo— fs) — B
a(fs — fr0) + B (fs — f11)

Note. A real version of this analysis was used to produce the Whittaker—Robinson flow

chart for 12-point harmonic analysis, see Appendix 5

» EXERCISE 6.5 In this (historical) exercise you will learn about the paper strip
method for doing Fourier analysis. Suppose that we wish to compute 3-digit approxima-

tions for
M 2wkn 2wkn
yn::a0+kgl{ak-cos( N )—l—bk-sin( N )}

when the real coefficients ag,a1,b1,...,an,bpr are given, see Ex. 6.1 and Ex. 6.2. We
create paper strips labeled

100-Cy, 200-Cf, ..., 900-Cy, 100-Sg, 200-Sg, ..., 900-Sg,
10-Cy, 20-Ck, ..., 90-C, 10-S, 20-Sg, ..., 90-Sg,
1-Cy,, 2-Cr, ..., 9-C}, 1-S, 2-Sk, .., 9-5%,

with £ = 0,1,..., M for the C’s and k = 1,2,..., M for the S’s. Each strip has N
identically sized cells indexed with n =0,1,..., N — 1. In the nth cell of the strip labeled
a - Cy, a- Sy is the integer closest to « - cos(2wkn/N), « - sin(2wkn/N), respectively. For
example, when N = 12 we produce the strip

100-Cy 100 87 50 0 —-50 | —87 | =100 | —87 | =50 0 50 87

and print the negative

—100-C4|| —100| —87 | —50 0 50 87 100 87 50 0 —-50 | —87
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on the reverse side. To evaluate
™

Yyn = .352 — .826 - COS(Q—) +.074 - 005(4

N
we align the strips labeled

T . (2™
) +.169 - sm(T)

300-Cy, —800-Cq, 100-57,
50-CY, —20-Cq, 70-Co, 60-51,
2-Cy, —6-C1, 4-Cs, 9-51,

add the (signed) integers in the N columns, apply the scale factor 1072 to these sums,

and thereby obtain yg, y1, - -

(a)

(b)
(c)

(e)

HYN-1-
Let {a) denote the rounded value of the real number «, i.e.,
(@) {M if[a] —a <3
o) =
la| iffa] —a > %

How big is the error

10-3 . {826 : COS(%> - <800 : coS(%)> - <20 ' COS(%» - <6 ' COS(?QT»}

associated with the C7 terms of the above sum when n = 17
Hint. Use a calculator!

How many C' strips and how many S strips must we create if we wish to compute
3-digit discrete Fourier transforms for arbitrary N = 12 component vectors?

What is the maximum number of strips that we must fetch when we evaluate a
particular set of y,’s (to 3 digits) when N =12 and M = 67

Use the paper strip method to compute a 3-digit approximation to the discrete Fourier
transform of f = (0, 6,12, 18, 24, 30).

Hint. Use a calculator to create the C' strips and the S strips that you need for this
particular task. You can use Ex. 4.26 to find the exact DFT

F = (15,-3,-3,-3,-3,-3) +iV3-(0,3,1,0, -1, —3).
Show that the cost for computing a d-digit approximation to a complex N-point

discrete Fourier transform is about 2N2d integer additions (if we neglect the cost of
fetching and filing the paper strips!).

» EXERCISE 6.6 In this exercise you will analyze a recursive algorithm for com-

puting the discrete Fourier transform of a complex vector f := (fo, f1,..., fnv—1) when
N = 2™ for some m = 0,1,... . We define
even(fo, f1,--., fn—1) = (fo. f2, fa, ..., fn—2)
odd(fo, f1,---, fn-1) = (f1,f3, f5,- -, fn—1)
two(fo, fu, .-, fn-1) = 5(fo, fr,- - In—1, fo, fro o Fnei)
mod(fo, fi, -+ In—1) == (forw frs ooy L fno1), wi=e 2N,
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We use these mappings to define rfft recursively by writing:

If N =1, then
rfft(f) = f;

else
rfft(f) := mod(two(rfft(odd(f)))) + two(rfft(even(f))).

(a) Write down the operator identity that underlies this computation of £"* = rfft(f).

Hint. Examine Figs. 6.1, 6.2, 6.7, and observe that the macros two, mod are based
on the repeat and exponential modulation operators.

(b) How many times will rfft be “called” in the process of computing the DF'T of a vector
with N = 2™ components?

(¢) How many simultaneously active copies of rfft must be used during the computation
of (b), i.e., how deep is the recursion?

» EXERCISE 6.7 Let f, cven, odd, mod be as in Ex. 6.6, let

sum(fo, f1,- s fn—1) == 5(fo+ iy fi + Fnjasts s Inje—1 + FN-1)s

let bit be the bit reversal permutation, and let & denote the associative operation of vector
concatenation, e.g., (1,2) & (3,4) := (1,2, 3,4).

(a) Let the operator b be defined recursively by writing:
If N =1, then
b(f) :=f;
else
b(f) := b(even(f)) & b(odd(f)).
Show that b(f) = bit(f).
(b) Let the operator pfft be defined recursively by writing:
If N =1, then
pift(f) = f;

else
pfff) = pfft(sum(f)) & pfft(sum(mod(f))).
Show that £ = bit(pfft(f)).

Hint. Examine Figs. 6.4, 6.5, 6.7, and observe that the macros sum, mod are based
on the discrete summation and exponential modulation operators.
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» EXERCISE 6.8 Let f := (fo, f1,--.,foamr—1) be a real vector with N := 2M com-
ponents, M =1,2,..., and let g := gg + ig1 where

80 ‘= (f07f27f47"'7f2M—2)7 g1 = (f17f37f5:"’7f2M—1)'

(a) Using the projection operators Pj,, P, express g(/)\, gf in terms of g”.

Hint. Use Ex. 5.11(Db).
(b) Using the operators Ra, E_1 (as in Fig. 6.7) express f" in terms of g}, g7
(c) Combine the expressions of (a), (b) and thereby express f"* in terms of g”.

(d) Using (c), show that it is possible to compute the DFT of a real vector having 2M
components with only slightly more effort than that required to compute the DFT of
a complex vector having M components.

Note. This procedure allows us to compute the DFT of a real N-vector in half the time
required to compute the DFT of a complex N-vector when N = 2™ m = 1,2,... (and
when we use an FFT to generate the DFTs.)

» EXERCISE 6.9 In this exercise you will learn one way to compute the discrete
Fourier transform of a large vector f that must be split into segments for processing. We
again use & to denote the associative operation of vector concatenation, from Ex. 6.7,
and we use various operators from Appendix 4.

(a) Let N = 2,4,6,..., let fy, fi be N-vectors, let f := fy&f; (so that f has 2N
components), and let e; be the N-vector with ej[n] := 6_27ri"/2N7 n=0,1,...,N—1.
Show that we can find the 2N component Fourier transform F := f" by computing
in turn the N-vectors

go := F{(Bafo) & (Baf1)}, g1 := Me, F{(E2T10) & (E2T111)},
Fo:= 3{go + &1}, F1:=3{g0 — &1},
and taking F = Fo & Fy.
Hint. Suitably use Z5, J_1 to obtain f from
(B2fo) & (Baf1) = (f[0], f[2], f[4],..., f[2N = 2]),
(BE2T1f0) & (B2T161) = (1], f[3], fI5], - .-, f2N — 1)),

apply the Fourier transform operator, and simplify the result.

(b) Let N = 4,8,12,..., let fy, f1, f2, f3 be N-vectors, let f := fp& 1 & & f3
(so that f has 4N-components), and let ep, e1, ez, ez be the N-vectors with
ex[n] = e_QWik”/4N, n=20,1,..., N — 1. Show that we can find the 4N-component

Fourier transform F := f" by computing in turn the N-vectors

go = F{Eufy) &(Bafy) & (Bufr) & (Bafz)},

g1 := M, F{ELT165) & (EgT11) & (EgT152) & (E4T113) 1,
g2 = Me, F{E4T2f0) & (E4T2f1) & (E4T2f2) & (ExT2f3)},
g3 := M, F{E4T3f)) & (ExT3f1) & (EgT3f2) & (E4T3f3)},
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Fo:= j{go + &1 +82+g3}, Fi:=71{go—ig1 —g2+igs},
Fy:= ;{80 — &1 + &2 — &3}, F3:= ;{go+ig1 — g2 —igs},
and taking F = Fo & F1 & Fy & F3.

Note. After writing the last 4 equations in the compact form

3
1 o
F, = i Z%e 271'zl<:n/4gn7
n—=

you should be able to figure out a corresponding algorithm for computing the
(mN)-component Fourier transform F := f" of f := fo&f; & --- & f,,_1, when
fo,f1,...,f—1 are N-vectors and m = 2,3,... is a divisor of V.

#» EXERCISE 6.10 In this exercise you will use the DFT calculus to show that there
is a fast algorithm for computing the discrete Fourier transform of an N-vector f when N
is highly composite but not necessarily a power of 2.

(a)

(b)

Let N = MP where M, P =2,3,...,let f := (fo, f1,-.., fn—1), and let

[

go :=E2pf, g1 :=EpTif,..., gp_1:=EpITp_if

where Ep is the decimation operator and T, is the translation operator. Explain
why
f=2pgo+T 1Zpg1+ - +T_pr1Zpgp_1,

and then use this identity to show that
Pfh = prg(/)\ + 8_1prgf + -+ 8_p+1prg1A3_1.

Here Z p, R p, € are the zero packing, repeat, and exponential modulation opera-
tors.

Within the context of (a), show that we can compute Pf" by computing
g()\, glA, R gf\;.f1 and then expending (P — 1)N complex multiplications and a like
number of complex additions to combine these vectors.

Let N = PPy --- Py, where P, =2,3,... foreach p=1,2,...,mand m=2,3,... .
Using (b), show that we can compute the discrete Fourier transform of an N-vector
f by expending approximately (P + P2 + - - - + Pm )N complex multiplications and a
like number of complex additions.

Let N = PPy --- Py as in (¢). Show that

Pi+Py+- -+ Py >mNY™ > (1.8841...) - logy N.

In this way you show that the algorithm of (b)—(c) requires at least 1.88N logy N
complex operations.

Hint. Minimize z1 + 2 + - - - + Tm subject to the constraints x1 > 0, x9 > 0, ...,
Tm >0, 122 - - Tm = N, and then minimize ,uNl/“/logg N, p>0.
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» EXERCISE 6.11 Let ry, be the bit reversal map for the integers 0,1,..., N — 1

when N := 2™ ie., rm[(bmbm—1---b1)2] := (b1b2-:-bm)2 where b, = 0,1 for each
w=12....m
(a) For how many indices n =0,1,...,2" —1is ryp[n] = n?

(b) How many swaps f[n] < f [r[n]] must be performed when we apply the bit reversal
permutation B to an N-vector f7

» EXERCISE 6.12 Suppose that you wish to apply the bit reversal permutation
to the complex N-vector f when N := 2™, i.e., overwrite f[0], f[1],..., f[N — 1] with
f[rm [0]] , f[rm[l]] yoen f [rm[N — 1]] Here rp, is the bit reversal map from Ex. 6.11.

(a) Show that the naive bit reversal permutation Algorithm 6.2 requires approximately:

3N logy N integer multiplies, 2N logy N integer additions, and 2N array read/writes.

(b) Show that the Bracewell-Buneman Algorithm 6.4 requires approximately:
N integer multiplies, N integer additions, and 2.5N array read/writes

after the bit reversed indices have been precomputed and stored.

» EXERCISE 6.13 Let pg,p1,...,pN—1 be some rearrangement of the indices
0,1,...,N — 1, and let the N x N permutation matrix P be defined by

P(f[0}, f[L),.... fIN = 1) := (flpol, flpr,- -, flon—1])"

(a) What are the elements of P?
(b) Show that PTP = PPT =1.
(c) What must be true of pg,p1,...,pn—1 if P2 =17

= EXERCISE 6.14 Let Fi6 have the sparse matrix factorization (12) with N = 2%,

(a) Write down each nonzero element (either a 1 or some power of w := 6_27Ti/16) of the
five matrix factors.

(b) Write down each nonzero element of the five matrix factors that result when we
simplify

Fio=F 1 =16""{Qis Q(Q)Q4 Q(S) 16}

(c) Show that when we simplify

Fio =167 F = {QisQf’ Q" QB }
we obtain the factorization of (b).

- =T
Hint. Observe that Q2J\14 = %Q2M~
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» EXERCISE 6.15 In this exercise you will learn how Mason flow diagrams are used
to represent FFT algorithms. We use the flow diagram

1‘0 [ R —— ® yo

x 1@ e

for a scalar computation of the form yg := axg 4 bx1. The values of xg, 1 are taken from
the input nodes at the feet of the arrows, scaled by the complex numbers a, b written near
the heads of the arrows, and added to produce the output yo. To avoid unnecessary clutter
we sometimes delete a factor of 1, e.g., we use the diagram

Zoe::

T1e R

for the butterfly relations yg := xg + box1, y1 := xg + b121.

(a) Convince yourself that the FFT corresponding to the factorization

10 1 0 1 1 0 0 1 0 0O
F, 110 1 0 w 1 -1 0 0 00 1 0 w = e 2mi/4
*T4|1 0 -1 of|]lo o1 1|01 o0 o0f ¥
0 1 0 —w 0 01 -1 0 0 0 1
can be represented by the following Mason flow diagram.
Apply Apply Apply Scale
2)
By Qg Q4
fl0] e i @ e e = o ['[0]
~.,\N /.,:::7‘ \ 'Z' 1 / 4
1] e ° = o [[1
us T -1 1/4 y
fl2] e \o @ = o F[2]
.. 1/4
x’\\ 4.«“// .,
f[3] e e - o . = @ = o F[3]
-1 —w 1/4

(b) Construct the Mason flow diagram associated with the factorization
-1 2 4
Fs =8 QsQE; )Qé )Bs.
(c) Construct the Mason flow diagram associated with the factorization

Fs =8 'Bg(Q]) ¥ (@) ?qf.
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» EXERCISE 6.16 Let N = 2™ for some m = 1,2,... . A tree with 1 vector of
length N, 2 of length N/2, 4 of length N/4, ... is produced when we use the Fourier
transform calculus to create a fast algorithm for computing the DFT of an N-component
vector, see Figs. 6.3 and 6.6. In this exercise you will show that these trees correspond
to factorizations of Fy that provide structures for storing the intermediate results of the

computations.

(a) Let N =2M. Use the decimation-in-time identity
f=208f +T 1Z5,T1f

i'e'a (.an.fla"'7fN—1) = (f0707f270a"'7f]\]—270) + (07f1a05f3:"'a07fN—1) to de-
rive the zipper identity (11) which leads to the factorization (12).

(b) Let N =2M. Use the decimation-in-frequency identity
f/\ = Z’QEQ{:/\ +3’,1ZQEQ':T1f/\ = ZQ {%EMf}A —Q—ir,lZ’Q {%EMgflf}/\
to derive the zipper identity
T 2)AT
Fom = %SQMH:]E/[)QQMv

which leads to the factorization (15).

» EXERCISE 6.17 In this exercise you will establish the zipper identity (22) that
gives the factorization (25) for Bracewell’s FHT.

(a) Let X be given by (24) and let
[ {27rk:(2€ +1) H M-t
RM = |CcaSs T .
k., £=0
Show that (22) follows from the identity
VM X Hyy = Ray.

(b) Prove the matrix identity of (a).
Hint. Use cas(a + ) = cos(a)cas() + sin(a)cas(—/() to establish the equality

{L’“} {2ﬂk£}+il’l{£k} 2n(M — k)¢ | 2rk(20 + 1)
COS M cas 7M S. M cas 7]\/[ — cas 72]\4

of the elements in row £k =0,1,...,M — 1 and column ¢ =0,1,..., M — 1.

» EXERCISE 6.18 Buneman’s precomputation of sin(2rk/2™), k = 0,1,...,2™m 2
makes use of the half secants hs, hyg,... from (18). Verify that h, can be generated by
means of the recursion (17).
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» EXERCISE 6.19 Suppose that you wish to compute and store

27k .. [ 27k
wk.—cos(T)—zsm(T>7 k=0,1,...,N —1

for use in an FFT code. Approximately how many real additions and multiplications are
required for each of the following?

(a) Use direct calls of sin, cos for each wy. Assume that sin and cos can be computed
to 8-place, 16-place accuracy by using 5, 8 real additions and a like number of real
multiplications.

(b) Use Buneman’s Algorithm 6.7 to generate the real and imaginary parts of the wy’s.

(c) Use direct calls of sin, cos to generate

Won = COS 2m2" i sin 2m2" =0,1 m—1
2K = N N ) p=4uU1...

and then compute

w4 1
w2 1 ws w1
w3 w1 we w2

w7 w3

(d) Use direct calls of sin, cos to generate
2 .. (27
w1 :COS(W) —ZSIH(N)

Wwo =w] W], W3=W] W2, Wi=W]" W3, -...

and then compute

Note. If we work on a computer with unit roundoff ¢, the size of the errors associated
with (a)—(d) will be of O(e), O(me), O(me), O(Ne).

= EXERCISE 6.20 Let f, g be N component vectors with N = 2™ for some
m=20,1,2,... .
(a) Show that the convolution product of f, g is given by
frg=NRyFn{(Fnf)o (Fng)}
where R, Fy is the reflection operator, F is the discrete Fourier transform oper-
ator, and the vector product o is taken componentwise.
(b) Explain why (Pf) o (Pg) = P(f o g) when P is any permutation operator.
(c) Use (a) and (b) with (12) and (15) to show that
frg=N"RyQn{(QN) o (QNe)}

where @ oW (N/2)
QN = QNQN/QQN/4 QQ .

This gives us a fast algorithm for computing f * g that does not make use of the bit

reversal permutation.
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» EXERCISE 6.21 In this exercise you will study Bluestein’s clever scheme for find-
ing the DFT of a vector f with N components, N = 2,3,4,..., by using an FFT that
works with vectors having 2™ components, m = 1,2,... .

(a) Show that the components of the DFT are given by Bluestein’s identity

N-1
Flk] = N~ Lo mik? /N Z{f[n]efﬂ'in2/]\7}eﬂ'z’(kfn)Q/N'

n=0
(b) Let M =2™, m =1,2,... be chosen so that 2N —1 < M < 4N — 2, and let

B {f[n]e_”mz/]v ifn=01,... ,N—1

u[n]
0 ifn=N,N+1,...,M—1
emin® /N ifn=01...N—-1

v[n] ;=< 0 fn=NN+1,....M —N-1

eTM=)?/N e M N4 1, M-N+2,...Y,M—1

be defined on P;. Verify that the sums from (a) can be expressed in terms of the
convolution product u * v by writing

N-—1
3" {flnle ™ Ny BTN ()R], k=01, N~ 1,
n=0

Hint. The choice M > 2N — 1 was made to avoid the wraparound effect illustrated
in Fig. 2.8. The indices k = N, N +1,..., M — 1 are not used with this identity.

(c) Using (a), (b), and the identity of Ex. 6.20(a), show that we can compute the DFT
of f by expending approximately 6N logy N complex operations when N is large.
Bluestein’s scheme gives us an FFT in cases where N is not a power of 2!

Hint. Use the operation count (M/2)logs M for applying Fp; and neglect N in
comparison to N logy N.
» EXERCISE 6.22 We must compute the two complex products
(c—is)- flk-AM +2M + }], (c+1is)- f(k-4M +4M — )]

and 4 complex additions in the innermost loop of the radix 2 FFT given in Algorithm 6.8,
so the whole algorithm uses approximately

Nlogy N - {2 real multiplications + 3 real additions}.

In this exercise you will show that this operation count can be reduced by 18% when
N = 2™ is large.

(a) Let x, y be real 8-vectors. Show how to evaluate the real and imaginary parts of the
components of the complex 8-vector 8Fg(x + iy) by using 4 real multiplications and
52 real additions.
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Hint. Define the real 8-vectors r, s, t, u, v, w by

rtis:= QWBs(x+iy), t+iu:=QP (r+is),  v+iw:=Qs(t+iu),
and note that we do not need to multiply when we compute
i(a + ib) = —b + ia, (1+4)(a+1b) = (a—0b) +i(a+b).
(b) Show that the application of the diagonal matrix of twiddle factors from (34) can be
done by using 28 real multiplications and 14 real additions (when P = 8).

(c) Show that the use of (a) and (b) within the inner loop of Algorithm 6.10 makes it
possible for us to generate the DFT of a complex vector having N = 8" components
by expending approximately

Nlogy N - {1.33 real multiplications + 2.75 real additions}.

Note. The cost factors in { } increase only slightly when P, = -+ = Pp_1 = 8§,
Py, =2 or 4, and m is “large.”

» EXERCISE 6.23 Let P, M be positive integers, let N = M P, and let Hy be the
N x N Hartley transform matrix.

(a) Derive the zipper identity Hy p = Pil/QTMypHg\I;)SM,p where

Xo,0 Xo,1 <o Xg,p-1

X1,0 X1,1 o Xy, poa
Ty,p = :

Xp-1,0 Xp-1,1 - Xpo1,p-1

is an M P x M P matrix formed from the M x M blocks

Cek M

Stk M
CekM+e SekM+0

— C
X = LM +2¢ - SekM 20

)

S
CORM (M —1)t CkM+(M—1)¢

using

2mv . ([ 27y
cy = cos(m) , Sy = sm(ﬁ) , v=0,1,...,MP,

and S,z p is the shuffle permutation (31).

(b) Use (a) with P = Py, P = Ppy—1,...,P = P; in turn to find a sparse factorization
of HP1P2-“P",,'
Hint. Examine (32) before you begin.
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» EXERCISE 6.24 In this (historical) exercise you will learn how Gauss derived the
FFT using interpolation by trigonometric polynomials.

(a) Let the complex numbers yg,y1,...,yn_1 and the corresponding uniformly spaced
real abscissas tp, :=tg+n-T/N,n=0,1,..., N — 1, be given. Here —co < ty < 00,
T >0,and N =1,2,... . Show that the T-periodic trigonometric polynomial
N-1
y(t) = Z Ch eQﬂ'Zkt/T
k=0

interpolates the data, i.e., y(tn) = yn, n =0,1,..., N — 1, when
1 N-1
= 6—27rzkto/T .Y}, with Yy, := ¥ Z e—27ml<:n/Nyn7 k=0,1,...,N —1.
n=0

Thus the interpolation problem can be solved by computing the DFT of
Y0,Y1,---,YyN—_1 and then using a suitable exponential modulation to account for
the choice of the initial abscissa ty and the period T. Approximately N? complex
operations are required to solve the problem in this way.

(b) Suppose now that N is composite with the factorization N = MP for some
M =23,... and P=2,3,... . Gauss observed that the coefficients cg,c1,...,cny_1
of (a) can be found by solving P + M smaller interpolation problems as follows.

(i) For each r = 0,1,..., P —1 find the M coefficients of the T-periodic trigonometric

polynomial
M—-1
yr(t) = Y et
pn=0

which passes through the M points

(t’l”7y?”)> (tT+PayT+P)> (tT+2P:y’r‘+2P>a ey (tr+(M—1)P7yr+(M—1)P)'

(The motivation for solving such interpolation problems with decimated data
sets is developed in Ex. 1.19.)

(ii) For each = 0,1,..., M — 1 find the p coeflicients of the T'/M-periodic trigono-
metric polynomial

P—1
Cu(t) e Z CM)\ eQWi)\Mt/T’
A=0

0) (1) (P—1)

which takes the wvalues c;’,cy’,...,cy at the corresponding points
to,t1,...,tp_1 (and, in view of the periodicity, at the corresponding points
tmP,tmpP41,- - tmpyp—1 aswell m=1,2,... M —1).
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(iii) For each 4 =0,1,...,M — 1 and each A =0,1,..., P — 1 set

Cutam = Cpy,

and with cg,c1,...,cny_1 thus defined, take
N-1
y(t) — Z Ck eQﬂ"tkt/T
k=0

as the solution to the interpolation problem of (a). Show that this procedure
produces the ¢;’s of (a). The analysis of Ex. 1.19 is something that most of us
would do in the process of solving the particular interpolation problem associated
with the orbit of Pallas; the above generalization is the work of a genius!

Hint. Use (i), (ii), (iii) in turn to show that

M-1 M—-1
Yrtmp = Z o)) 2mintremp /T — Z Cpultrpmp) 7 reme /T
pn=0 n=0
M—-1P-1 N-1
_ Z Z Cp,)\ 627ri(p,+)\M)tr+mp/T _ Z ch e?wiktr+mp/T
pn=0 A=0 k=0

for each r =0,1,..., P — 1 and for each m =0,1,..., M — 1.

(c) Le¢ N = PyPy---Pp where P, = 2,3, ... for each p = 1,2,...,m. Show
that the recursive use of the Gauss procedure allows us to solve the N-point in-
terpolation problem (and thus compute an N-point DFT) using approximately
N - (P;+ Py + -+ Pp) complex operations.

Note. With tongue in cheek, Gauss observed that “Fxperience will teach the user that
this method will greatly lessen the tedium of mechanical calculations.”

Hint: When N = P;M; the Gauss procedure reduces the cost from N 2 to
Ple + M1P12 operations. When M; = Py My each of the length M interpola-
tion problems can be solved by using the Gauss procedure, thereby reducing the cost
to My P} + Pi[MyP3 + P, M3] operations.

(d) Specialize (a)—(b) to the case where tg = 0 and N = 2M, and thereby show that
Gauss’s procedure produces the matrix factorization

Fouy = iy In | |Im 1 [Fu Sy
MTo Iy Iy Ay | Fu |2
where Sop is the shuffle permutation (3) and
1 -
w
Ay = w2 C wi= o~ 2mi/2M
wM—1 ]

is the diagonal matrix of twiddle factors. [The familiar zipper identity (11) is obtained
by multiplying the first pair of matrices from the Gauss factorization.]
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» EXERCISE 6.25 In this (historical) exercise you will learn how Cooley and Tukey
derived the FFT by using nested summation.

(a) Let N = 23 let w = 6727”'/8, and let each index n,k = 0,1,...,7 be expressed in
base 2 form, i.e.,

n = (vsvauvy )2 = V3 - 22 ¢ vy -2+, k = (k3koK1)2 i= K3 - 22 ¢ Ko 2+ K1

with each bit v;, k; taking the values 0,1. Corresponding multiindices are used to
specify the components of an N-vector f and its DFT F, i.e., we write

flvs,va,v1] := fln], Flka, k2, k1] := F[k]

when n, k have the above base 2 representations. Show that

1 1
dvz+2 4 2
F[K‘,g,l-i%fil] — Z Z f[Vg,I/27V1}w( v3+2va+v1)(4ks+2k2+k1)

0 Vo= V3:0

1 1
{ Z { Z f[y37 Vo, Vﬂwélusiil }w2uz(2n2+ﬁ1) }wu1(4n3+2n2+n1).

175) =0 V3 =0

oo | =
-

v

Il
0| =
(-

0

v

7 11 1
Hint: > = > > >
n=0 v1=0v2=0v3=0
(b) Using (a), verify that the DFT of an 8-vector can be obtained by performing the
following computations.

1
4
1[R1,V2,V1] = 3,2, V1 VK7 1,V2,k1 =Y,
filk1,v2,011] flva, v, v1|w™3"™! vi,v2,k1 =0,1
IJ3:0
1
2v2(2
falk1, k2, 1] = Z il vo, w2 Graten) vi, k1, k2 = 0,1
112:0

1
drg+2
f3[k1, K2, k3] == Z falk, kg, vt (rat2ratrn) 0 o) ks = 0,1

l/1:0

Ja[k3, k2, k1] == f3[k1, K2, k3], K1,Kk2,k3 = 0,1
—1

Flk3, ko, k1] := 8" fa[k3, k2, k1], K1,K2,k3 =0, 1.

(c) Show that approximately 8 complex operations must be expended to generate each
of the arrays f1, fa, f3 in (b).

Note. The Cooley—Tukey derivation of (a)—(c) extends at once to the case where N = 2™
m=1,2,.... When N = P{P>... Py, with P, =2,3,4,... foreach p =1,2,...,m we
write

n=v1+ Pivo+ PiPovs+ -+ (P1P2- - Pp—1)vn

kE=tm+ Pmkm—1+ PnPpn_16m—2+ -+ (PnPm—1-- P2)k1
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where v, k; =0,1,...,P; — 1, j = 1,2,...,m and use the multiindex notation
flvi,va, .. vm] = fln], Flk1,k2,...,km] = F[k]

to derive the mixed radix Cooley—Tukey algorithm.

m» EXERCISE 6.26 In this exercise you will use the definition (48) to deduce three
properties of the Kronecker product.

(a) Let A,B,Cbe K x L, M x N, P x Q matrices. Use (48) to show that
{A2B® C)}[(p +mP) + k(MP), (¢+nQ) +{(NQ)]
=Alk,{] - Blm,n] - C|p, ¢]
={(A®B)®C}[p+ (m+kM)P, g+ (n+(N)Q]

when k=0,1,..., K—-1,¢/=0,1,...,.L—1,m=0,1,..., M—1,n=0,1,...,N—1,
p=0,1,...,P—1,¢=0,1,...,Q — 1 and thereby obtain the associative rule (55).

(b) Let A,B,C,Dbe K x L, M x N, L x P, N x @ matrices (so that AC and BD are
defined). Use (48) to verify that

(A®B)[m+kM,n+LN] = Alk, (] - B[m,n]
(C®D)[n+¢N,q+pQ] = C[(,p] - D[n, q]
and thereby obtain the product rule (59).
(c) Establish the transpose rule (60).

Note. Such subscript-based arguments are convincing, but not memorable!

» EXERCISE 6.27 Let A, B be square matrices with inverses A~ B~!. Show that
the Kronecker product A ® B has the inverse (61).

Hint. Make use of the product rule (59) proved in Ex. 6.26.

= EXERCISE 6.28 Let A,B be matrices with the eigenvectors a,b and the corre-
sponding eigenvalues «, 3. Show that a® b is an eigenvector of A ® B with the eigenvalue

ap.
» EXERCISE 6.29 Let ey :=(1,0)T, e; := (0,1)7.
(a) Form the 8 Kronecker products eg, ® eg, ® eg, with 8, =0,1 for p=1,2,3.

(b) Give asimple description of ey ®eg ~ ®---®eg, when 8, =0,1forp=1,2,...,m,
and thereby prove that these Kronecker products form a basis for CN when N = 2™.

Hint. Let n:= (BmfBm—1--01)2-
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(¢c) For P =2,3, ... we create the P-vectors

epo = (1,0,0,...,0)T, epy :=(0,1,0,...,00", ..., ep p_y1 = (0,0,...,0,1) .

Let N = PiPy--- Py with P, = 2,3, ... for each p = 1,2,...,m. Show that the
Kronecker products

ep. p.O€p o Q--Q®ep p, Pp=01...,Pu—1 pu=12...,m,

form a basis for CV.

» EXERCISE 6.30 An N x N matrix P is said to be a permutation matrix if every
row and every column of P has precisely one 1 with the other N — 1 elements being 0.

(a) Show that the Kronecker product P :=P1 @ P2 ® - - - ® Py, of permutation matrices
P,Ps,..., Py, is also a permutation matrix.

(b) Find a simple expression for the inverse of the matrix P from (a).

Hint. Use Ex. 6.13(b) and (61).

» EXERCISE 6.31 Let P,Q, R be positive integers. In this exercise you will show
that

SQr,PSRP,QSPQ,R = IPQR
and then use this identity to obtain a more general relation of the same form.

(a) Use (63) [and (55)] to verify that
SQR,PSRP,QSPQR(PRQRTr) =pRQqAT

when p,q,r are column vectors with P,Q, R components, and thereby prove the
identity.

(b) Use (41) to show that when we apply Sgr, PSrP,QSPQ,r to a PQR component
column vector f, the position of the component f[r + ¢R + pRQ)] is unchanged. This
gives a second proof of the identity.

(c) Rearrange the identity and thereby show that
SN/pP,PSN/Py,, P, = SN/P Py PPy
Here N := P1 P --- Py, where Py, P, ..., Py, are positive integers and m > 2.
(d) Use (c) to show that
SN/P.,PiSN/Py,P, " SN/P,, Py = 1P Py Py

and thereby generalize the identity of (a)—(b).
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» EXERCISE 6.32 Verify that each of the following matrices have the same effect
on the vector aQ b®c®d (when a, b, ¢, d are 2-component column vectors), and thereby
obtain 4 factorizations of the bit reversal permutation Big.

(a) Is®S1,2)(Ta ®S22)(I2 ® S4,2)(I1 ® Sg2)
(b) (I1 ® S2,8)(I2 ® S2,4)(I4 ® S2,2)(Is ® S2,1)

)
()
)

) )
(S8,2 ®11)(S4,2 ®12)(S22 ®14)(S1,2 ® Ig)
) )

(d) (S2,1 ®1Ig)(S2,2®14)(S24®I2)(S28®1I1)

Hint. Use (59) and (63), freely associating the factors of the Kronecker product to
facilitate the computation.

» EXERCISE 6.33 This exercise will introduce you to the remarkable two-loop FFTs
of Pease and Glassman.

(a)

(b)

Show how to rearrange the Cooley—Tukey factorization

16F16 = Qu6(I2 ® Qs) (14 ® Q4)(Is ® Q2)Big

to obtain the factorization

16F16 ={(Q2 ®Is)(A16 ® I1)Ss 2}{(Q2 @ Is)(Ag ® I2)Sg 2}
{(Q2 ®1s)(As ®14)Ss 2 H(Q2 ® Is) (A2 ® I5)Ss 2} B1g-

The 2M x 2M matrix
Agyr = diag{l,1,...,1; 1,w,w2, . ,wMﬁl}, w = e 2T/2M
has been chosen so that
Qo = (Q2 ® Im) Ag -
This factorization can be generalized to the case where N =2 m =1,2, ... .

Let M = N/2 and let K =1,2,...,2™. When we analyze

g:=(Qe®In)(Ax ®In/K)Snmof
we find that gm and g,,4+ s depend on two components of f. Sort out the details!

Use (a) and (b) to develop a fast two-loop algorithm for evaluating the DFT of a
vector f with N = 2™ components.

Note. The same matrices Q2 ® Iz, Spr,2 appear at each stage of the computation;
only the scale factors in the second half of the diagonal matrix Ax ® I/ change
from step to step. You could design a special-purpose computer that uses hardware
instead of software to do these mappings!
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» EXERCISE 6.34 In this exercise you will develop the Stockham sparse factoriza-
tion of Fp, p,...p,, that uses parallel operations. An elegant FORTRAN code for the
resulting algorithm can be found in C. de Boor, The FFT as nested multiplication, with
a twist, STAM J. Sci. Stat. Comp. 1(1980), 173-177.

(a) Show that

SPy, Py, Py, Py = (IP3P4 ® SPlaPQ)(IP4 ® SP1P2,P3)SP1P2P37P4
has the alternative representation
Spi,py,Ps, Py = (SPy, P, © 1P p,)(Spy, PPy © 1P )SP PPy Py -
Hint. Apply both matrices to an arbitrary p; ® p2 ® p3 ® ps4 where p1, p2, P3, P4

are column vectors with Py, P>, P3, P4 components.

(b) Derive the Stockham factorization

PyPyP3Py-Fp p,p,p, =(11 ® Qp,pypy.p,)(Sp,, @ 1p, popy)

(Ip, ® Qp,p,,p;)(Sps,p, ®1p P,)

(Ipyp, ® Qpy,p,)(Sp, P, ®1p))

(Ip,pypy ® Qu,p,)(Sp Pypyp, ®11).

This factorization can be generalized to the case where N has m = 2,3, ... factors.

Hint. Begin with the Cooley-Tukey factorization (32), replace Sp, p, p,,p, With the
second representation from (a), and use the commutation identity (68).

(c) When x¢,x1,x2,x3 are 3-component column vectors, it is easy to verify that

) X0
X1 X2
(S2,2 ® I3) = )
X2 X1
X3 X3

e., So o shuffles the blocks xg,x1,x2,%x3. Describe the action of the permutation
Sp.g ®Ig that appears in the factorization of (b).
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(Generalized functions on R

7.1 The concept of a generalized function

Introduction

Let y(t) be the displacement at time ¢ of a mass m that is attached to a spring
having the force constant k as shown in Fig. 7.1. We assume that the mass is at
rest in its equilibrium position [i.e., y(t) = 0] for all £ < 0. At time ¢ = 0 we begin
to subject the mass to an impulsive driving force

ple if0<t<e
0 otherwise.

fi(0) = { 1)

When the duration € > 0 is “small,” this force simulates the tap of a hammer that
transfers the momentum
€
/ fe(t)di =p
0

to the mass and “rapidly” changes its velocity from 3'(0) = 0 to y/(e) =~ p/m.

Figure 7.1. An undamped mass—spring system with the displace-
ment function y(¢) and the forcing function f(t).

367
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You should have no trouble verifying that

0 ift<o
p

ye(t) := 5 1 — coswt if0<t<e (2)

sin(we) sin(wt) — [1 — cos(we)] cos(wt) ift > e

is a twice continuously differentiable function that satisfies the forced differential
equation

my"(t) + ky(t) = fe(t) (3)
for the motion (except at the points ¢ = 0, t = € where y” is not defined), see

Ex. 7.1. Here
w:=+k/m

so that sin(wt), cos(wt) are solutions of the unforced differential equation
my"(t) + ky(t) = 0.
Now as € — 0+, the response function (2) has the pointwise limit

D 0 ift<0
e—0+ ~ mw sin(wt) if t >0,

and it is natural to think of yy as the response of the system to an impulse

olt) = lim £.(1 5)
of strength . .
| o= jim [ foa-y (©

that acts only at time t = 0 as illustrated in Fig. 7.2. The physical intuition is
certainly valid, and such arguments have been used by physicists and engineers
(e.g., Euler, Fourier, Maxwell, Heaviside, Dirac) for more than two centuries. And
for most of this time such arguments have been suspect! After all, the limit (5)
gives us a function fo that vanishes everywhere, so how can the integral (6) have a
value p # 07

Such anomalies cannot be resolved within a context where function, integral,
and limit have the usual definitions from elementary calculus, but in what is now
regarded as one of the most stunning achievements of 20th-century mathematics,
Laurent Schwartz (building on the insights of Heaviside, Dirac, Temple, ...) de-
veloped a perfectly rigorous theory of generalized functions (or distributions) for
analyzing such phenomena. We will present an elementary introduction to the gen-
eralized functions that have Fourier transforms illustrated by the Venn diagram of
Fig. 1.33. (Such generalized functions correspond to the tempered distributions of
Schwartz.) As you master these ideas you will acquire certain computational skills
that are absolutely essential in modern science and engineering.
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Figure 7.2. Imagination of an impulsive driving function
fo=lim. o+ fe that produces the response yg = lim._ o+ ¥y
to the mass—spring system of Fig. 7.1.

Functions and functionals

In Fourier analysis we often work with ordinary functions that map R to C. Such
a function f is properly defined when we have some rule for producing the complex
number f(x) that corresponds to an arbitrary z from the domain R. Common
examples include

flx):=e™  f(z):=sincz, f(zr):=e>"2,

We will now introduce certain functionals that map S to C. Here S is a linear space
of exceptionally well behaved ordinary complex-valued functions on R. (A precise
definition will be given in the next section.) Such a functional f is properly defined
when we have some rule for producing the complex number f{¢} that corresponds
to an arbitrary function ¢ from the domain S, see Fig. 7.3. Common examples
include

Hobe= [ e odn 1o} =60, o} S ol

-0 n=-—oo

We use braces { } to remind ourselves that the argument ¢ is a function instead
of a number.
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Input Function Output
v s — @)
A real number f A complex number
Input Functional Output
¢ — — [}
A test function from f A complex number
the space S

Figure 7.3. The mappings that correspond to a function and to
a functional.

We will often find it convenient to use the same name for a function and for
a closely related functional. For example, when we are given a suitably regular
function f on R we will define the corresponding fundamental functional

fm:ﬁﬂwmx (7)

on S. The formula (7) shows us how to find the value of the functional f at the
argument ¢ by suitably processing the function f. The same formula allows us to
evaluate the function f at any argument zy (where the function f is continuous) by
suitably processing the functional f. Indeed, for each n =1, 2,... we construct a
nonnegative function ¢, from S such that

¢n(x) =0 when |z — x| > 1/n,

zo+1/n
/ On(z)de =1,

0—1/’!1

and we then use the integral mean value theorem from calculus to see that
flao) = lim [ f@)ou(a)do = lim F(6,), (®)

see Fig. 7.4 and Ex. 7.2. (A similar argument was used in the proof of the Weierstrass
theorem in Section 1.3.)

We routinely identify function with functional when we make measurements with
devices that report local averages. For example, suppose that we use a ther-
mometer to measure the temperature, f(z¢), at the coordinate xy within a certain
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On ()

=t
0 1 1 €T
n+$0 .T0+n

f(l‘) : an(x) ~ f('rO) ’ ¢n($)

0 viL‘O . T
Figure 7.4. Visualization of the analysis that leads to (8).

gas column. Since the bulb of the measuring device occupies some nonzero vol-
ume of space, the instrument cannot possibly determine the temperature at the
dimensionless “point” xg. At best, the thermometer gives some local average

[:fuwuwm

with the function ¢ being determined by the position, size, shape, composition, ... of
the bulb. Similar considerations apply when we use a photometer, magnetometer,
pressure gauge, . ...

The class of fundamental functionals (7) is a large one, but there are many func-
tionals that do not have this form. The Dirac delta functional

5{¢} := ¢(0) (9)

is the most important. It is easy to show that there is no ordinary piecewise con-
tinuous function § for which

56} = [ o) ds (10)

whenever ¢ is a function from S, see Ex. 7.3, but we will invent a generalized function
J that corresponds to the functional (9). We then use (9) to assign meaning to the
“integral” on the right side of (10), i.e.,

/méuqux:6W}:¢m»

You will often encounter a generalized function f and a deceptively familiar ex-
pression

[:f@W@Mx
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as you study the remainder of this text. In each case there is a corresponding
well-defined functional f, and you can assign meaning to the “integral” by using

/_ " f@)la) de = {0}

instead of the definition of integral that you learned in a calculus or analysis class. At
first it may seem a bit confusing to associate a new meaning with an old expression,
but you will quickly discover that the use of this integral notation will minimize the
time that it takes to learn how to do analysis with generalized functions. You will
remember an analogous situation from calculus. The Leibnitz notation dy/dx for a
derivative is not an ordinary “quotient,” but it can be manipulated like one when
you use the chain rule or when you use substitution to evaluate integrals.

Schwartz functions

A complex-valued function ¢ on R is said to be a Schwartz function provided that

o, ¢, ¢",... are all defined and continuous on R, and
lim "™ (z) =0 foreach m=0,1,2, ... and n=0,1,2,.... (11

(Here ¢ := ¢, o) := ¢/, ¢?) := ¢",....) The first condition forces ¢ and its
derivatives to be exceptionally smooth, and the second forces ¢ and its derivatives
to have exceptionally small tails at +00. Indeed, ¢(™ (x) goes to 0 faster than 1/2™
goes to 0 as x — 400 in the sense that

m)
lim L (z)

oA T =0, n=12....

We will let S denote the linear space of all such Schwartz functions.

Example Show that ¢(x) := e=*" is a Schwartz function.

Solution The function ¢ and its derivatives

2

¢/($) = 72xe_w27 ¢//(.7I) = (4$2 - 2)€—$ ’
are continuous, and by using (3.28) we write

lim z"¢(™)(z) = lim (—1)’":1:"Hm(x)tf‘”2 =0

r—+00 r—to0

for each m=0,1,2,... and n=0,1,2,.... n
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Example Let a < b be given. Construct a Schwartz function ¢ such that

px)>0ifa<z<b and ¢(xr)=0 for x <a or x>bh.

Solution We define

0 ifx <0
= - 12
v(x) {e‘l/x if x >0, (12)

and after observing that

lim v(z) = lim e %/ = lim e =0,
rz—0+ r—04+ u——00
1
lim v'(z) = lim —26_1/30 = lim u?e " =0,
z—0+ x—04+ u——00
lim v”(z) = lim 1 2 e/ = lim (u*—2ud)e ™ =0
r—0+ x—04 1‘4 1‘3 Uu—-+00 ’
we conclude that v,v’,v”, ... are well defined and continuous on R. This being the

case,
e~ (b=a)/{(z=a)(b-2)} if 4 <z < b

¢(z) :==v(x —a)v(b—x) = { (13)

0 otherwise

and its derivatives are defined and continuous on R. By construction, ¢(z) = 0
when x < a or z > b, so (11) also holds. n

Example Leta <b < ¢ < dbe given. Construct a Schwartz function ¢ such that

d(x)=0 for z<a, ¢(z)=1 for b<z<e¢, ¢(x)=0 for z>d,

14
¢ (r) >0 for a<z<b, ¢(x)<0 for c<z<d. (14)

Such a mesa function is shown in Fig. 7.5.

1 é(x)

0 a b c d m

Figure 7.5. The mesa function (15) with the properties (14).
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Solution We construct a scaled antiderivative

[ v(u—a)v(b—u)du
zT;a,b) =
4 ) f;v(u—a)v(b—u) du

for the Schwartz function from the preceding example with

g(z;a,b) =0 for x <a, g(r;a,b)=1 for x >b,
g (z;a,b) >0 for a<x<b.

The product

o(x) := g(x;a,0)g(—x; —d, —c) (15)
[analogous to the product h(z — a)h(d — x) of Heaviside functions] is a Schwartz
function that has all of the properties (14). n

When ¢ € S and m =0,1,2,... we can use (11) to see that

B, = max |¢(m)($)|a Cpm = max |~T2¢(m)(l’)|

—oo<r <0 —oco<zr <0
are well defined and finite. We bound ¢(™ by writing

B, if 22B,, < Cp,

Cm/z?  otherwise,

6™ ()] < {

and thereby show that
/ 0™ ()] dz < co.

Since the smooth function ¢ has small regular tails, we can use the analysis from
Section 1.5 to see that the Fourier transform

(5= [ o) da

is well defined, continuous, and absolutely integrable on R, and that Fourier’s rep-
resentation

o) = [ o)y

is valid at every point. Moreover, a Schwartz function satisfies all of the “extra”
hypotheses we introduced in Chapter 3 when we described the derivative rule, the
power scaling rule, etc., see Exs 3.41 and 3.44. We can freely use all of the rules
from the Fourier transform calculus when we work with Schwartz functions!
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The class S has a number of closure properties that we will use from time to time.
It is fairly easy to show that if ¢(z) is a Schwartz function, then so is

co(x), c e C;

o(x — ), —00 < xg < 00;
¢(ax), a<0ora>0;
e2mIS0T (1), —00 < 8¢ < 0C;
x"o(x), n=0,1,2,...;
d)(m)(a:), m=20,1,2,...; and
o(@).

Example Let ¢ €S,let n=1,2,..., and let ¢(x) := 2" ¢(x). Show that i) € S.
Solution  We use the Leibnitz rule (2.29) to see that

min(n,m)
ROEEDY @)(w”)"%(m’“)(x), m=012,..,
k=0

is continuous, and then use (11) to infer that

min(n,m)

@) < S (Z)n!|x"—k+p¢<m-k>(x>|

k=0
—0 as 1z — +oo

when p=0,1,2,.... -
It takes a bit more effort to show that if ¢ is a Schwartz function, then so is the
Fourier transform

0 .
" (s) :== / B(x)e ™2™ dy,
—00
see Ex. 7.5, the quotient

— o(x)/(x — o) if x# x0
¢(-T) = { ¢/($0) 1f$:$0
=) _ ¢zt (I=Hao)dt, 00 <z <oo, (16)
t=0

in those cases where ¢(zp) = 0, and the antiderivative

wie) = [ " b(w) du (17)
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in those cases where

/00 o(u)du = 0. (18)

Example Show that (17) is a Schwartz function when ¢ is a Schwartz function
satisfying (18).

Solution Since ' = ¢, " = ¢',... it is enough to show that z™p(x) — 0 as

x — +oo for each n =0,1,2,... . We define
— n+2
D= _ gl o)

and obtain the desired limits from the bounds

x xT Dn
|2 (x)] = |z /OO o(u) du| < |z™ /Oo Dpou™""?du| = Rk x <0,
o) o0 D
n — n < n Dn —n—2 — n
|2 (z)| = |z /I d(u) du| < |x /I u du CESIre z>0. m

The class S is also closed under certain binary operations. Indeed, if ¢1, ¢s € S,
then

1+ @2, &1 @2, and @1 * P2

are all Schwartz functions, see Ex. 7.6.

Functionals for generalized functions

A complex-valued function g on R is said to be slowly growing if

im 29
rz—t+oo g™
for some choice of n =0,1,2,..., e.g., the functions

p— 2 .
Bz, e™, sinz, xln|zl

are slowly growing while

are not. In this section we will use functions that are both continuous and slowly
growing (CSG) to construct functionals for generalized functions on R.

We will frequently form the product g - ¢ of a CSG function g and a Schwartz
function ¢. Such a product is always a bounded, continuous, absolutely integrable
function that vanishes at +00. The continuity of the product follows from that of g
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and ¢. Since g is CSG there is some m = 0,1,2,... and some M; > 0 (depending
on g) such that
‘ 9(z)

(1+I2>m’§M1, —o00 < x < 00,

and since ¢ is a Schwartz function there is some Ms > 0 (depending on m and ¢)
such that

|(1+22)"Mo(2)| < My, —o00 <z < o0.

The resulting bound

1 M7 M-
1+22 = 1422

(o) = | 20|+ 22 oo

shows that g - ¢ is bounded and absolutely integrable with lim,_, 4. g(x)¢(x) = 0.
In view of this discussion we will always represent a CSG function g with the
fundamental functional

oo} = | T @)ée)de, beS.

— 00

Now if g happens to have an ordinary CSG derivative ¢’, then a careful integration
by parts allows us to write

o) U
| d@ewde= tim [ g @) ds

oo L——0 J7,

U—+00
= Jin_{ste)o(z) Z— [ o)
U—vtoo

o0
| swo@d scs.
— 00
In this way we see that ¢’ can be represented by the functional

g 1ot | T g@)¢ (@) dr, peS. (19)

— 00

You will notice that the integral from (19) is well defined (since ¢’ € S when ¢ € S),
even in cases where the CSG function g is not differentiable or in cases where g is
differentiable but the integrand ¢’(z)¢(x) from the fundamental functional for ¢’ is
not (Riemann or Lebesgue) integrable. We will use the functional (19) to represent
the generalized derivative of the CSG function g.
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Analogously, when g,¢,...,¢™ are all CSG for some n = 1,2, ... we find

oo

/ " @)l da = - / @) (@) de = (1) / 9" (@)¢" () do

— o0 — o0 — 00

== [ g@e @ ves,

— 00

so we can use the functional

o0

g™ {9} = (~1)" / g(@)™ (@) dz, HeS, (20)

— 00

to represent ¢(™. The integral from (20) is well defined (since ¢(™ € S when
¢ € 8), even in cases where the CSG function g does not have ordinary derivatives
q.9",...,9" or in cases where g(™) exists but g™ (z)p(z) is not integrable. We
will use (20) to represent the generalized nth derivative of the CSG function g.

The time has come for a very important definition. We will say that f is a
generalized function if f = g™ for some choice of the CSG function ¢ and for some
nonnegative integer n. In keeping with our previous discussion, we will use the
integral notation

[oe]

/OO f(@)p(x) dx = f{¢} = g"{¢} = (1)”/ g(2)p™ () de, ¢ €S, (21)
when we work with f.

We will also routinely use function notation within this context, and this necessi-
tates a new understanding of equality. Given generalized functions f1, fo and a < b
we will say that

fi(z) = fa(z) for a <z <b provided that

22
fi{o} = fo{¢} foreach ¢ €S with ¢(x) =0 when =z <a or z >b. (22)

In the case where a = —o0o0 and b = +o00 we simply write
f1 = fo provided that fi{¢} = fa{¢} for each ¢ €S. (23)

We will also write
f=foor f(z)= fo(x) for —oco <z < o0

when the generalized function f is the fundamental functional

rob= [ " @)éa)dr, pes
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of a CSG function fy or the ordinary derivative fo = ¢’ of a CSG function g that
is continuously differentiable except for certain isolated points of R, e.g., fo(z) =

sgn(z), |z], log|z|.

7.2 Common generalized functions

Introduction

In this section you will learn to recognize a few generalized functions that will
be needed for the study of sampling, PDEs, wavelets, probability, diffraction, etc.
Later on you will master the rules for manipulating these “functions” and find that
it is really very easy to do Fourier analysis within this new context.

Functions from calculus

The ordinary power function
pn(x) :=2", n=0,1,2,..., (24)

is CSG, so we can use the fundamental functional
pufd} = / "$(z)de, $ES (25)

to obtain a corresponding generalized function. Using the definition (19), we con-
struct the functional

P {6} = — / ¢ (z)dz, $eS

— 00

for the generalized derivative, and use a careful integration by parts to show that

pp{d} = npn_1{¢}, ¢€S.

In this way we see that p, has the generalized derivative

P = NPp—1

that corresponds to the differentiation rule (") = nz"~! from calculus.
Analogously, the generalized functions

oo

s{¢} := /OO sin(x)p(z) dx, c{o} ::/ cos(x)p(x) dz, peS

— 00 — o0



380 Generalized functions on R

have the generalized derivatives

corresponding to the rules sin’(z) = cos(z), cos’(x) = —sin(z) from calculus.
The ordinary exponential function is not slowly growing, and the functional

ctohi= [ eola)ds

is not defined for every ¢ € S. Indeed,

() = e Vee=Ve for x>0
= 0, for x <0
is a Schwartz function with

efyp} = /Ooo(e””e_l/‘”e‘ﬁ) dz = +00.

There is no generalized function of the form (20) that corresponds to e® (or to
etz oo < o < 00, —00 < < 0o when a # 0).

Dirac’s delta function

The ramp function
xz forax>0

r(z) = { (26)

0 forz<0

is CSG, so we represent r by the fundamental functional
r{¢} = /00 r(z)p(x) de = /000 x ¢(x) dx, ¢ €S.
The generalized derivative 7’ is represented by
opim— [ r@d = [Teowas

0
=—x¢<x>0+/o ¢<x>dw=/0 o(x)dz, S€S,

SO we can write
r=h (27)

where h is the Heaviside step function, see Fig. 7.6.
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9t ()

0 1 z
@) =)

0 1 x

Figure 7.6. The CSG ramp r from (26) and its generalized
derivatives ' = h, r’’ = .

We define Dirac’s delta function
§ =", (28)

and determine the corresponding functional by writing

{6} = 1" o} = (_1)2/_00 r(2)¢" (z) do
T = Ooia: () — o(x)) dx
= [ ed@an= [ L@ - ol)a
=¢(0), ¢E€Ss,

as given by (9). We graphically represent § by using an arrow of unit length as
shown in Fig. 7.6. The generalized nth derivative of ¢,

s =2 —0,1,2,.. .,
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is obtained from the functional

5“”{¢}:=7*”+”{¢}:=(])”+2J/M)r@0¢“”axm)d$

— 00

oo oo d
=" [Cad D @yda = (17 [ e @)~ o @) do (20
= (-1)"¢™(0), n=0,1,2,..., p€S.
From (22) and (29) we see that

8 (z)=0 for—co<z<0, n=0,1,2,...,

(30)
dM(z)=0 for 0<z<oo, n=0,1,2,...,
but these “values” do not determine the “integral”
| @@ de =80} = (160, ses. @D
Example Evaluate
/ §'(x)ze ™ da.
Solution Using (31) we find
/ 8 (x)x e dy = / () (x e_’”Q)/ do = —e % 4 22% " =-1
—00 —00 x=0
(even though the “integrand” seems to vanish at each “point” x). n
Example We define the normalized truncated power function
"/l ifx >0
on(a) =4 /mt itz n=0,12,.... (32)
0 if z <0,
Find the generalized derivatives.
Solution The first n derivatives
ol =0n1, 0l=0p 9, ..., o V=g =r oMW=0y=n (33)
are ordinary functions, but we must use the delta function as we write
ot =5, oD = ) (34)
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The comb III

The piecewise linear antiderivative

q(z) = /OE 7(u) du (35)

of the slowly growing floor function
T(z) = |z] :==m whenm<z<m+1 and m=0,£1,42,... (36)

is continuous as shown in Fig. 7.7. This antiderivative is also slowly growing [as we
see by integrating the inequality u — 1 < 7(u) < u from u = 0 to u = z], so we can
use the fundamental functional

o= [ a@otads, oes. (37)

61 q(x)
3
1

4 -3 -2 -1 0 1 2 3 47
4y () =71()

4 -3 -2 -1—o 1 2 3 47
q"(z) = MI(x)

REERREEER

4 -3 -2 -1 o0 1 2 3 4°%

Figure 7.7. The CSG “parabola” ¢ from (35) and its generalized
derivatives ¢/ = 7, ¢ = II1.
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The ordinary derivative of ¢(z) has jump discontinuities at x = 0,+1,+2, ...
but we can use

d(x)y=m form<z<m+1and m=0,%£1,4£2,...,

lim ¢q(m)¢p(m) =0 when ¢ €S,

m—+too
oo

Z [gq(m)p(m) —g(m+1)p(m+1)] =0 when ¢ €S

m=—0oQ

with a careful integration by parts to write

oo e o] m—+1
{6} = - / 4@)¢ (@) de = 3 / (@) () dz

oo m—+1
= 3 {atmpotm) — atm + Dotm+ 0+ [ mot) s
= /_00 T(z)p(x)dz, ¢ €S. (38)

This allows us to identify the generalized derivative ¢’ with the function 7 of (36).
The second generalized derivative

11 := ¢" (39)

is known as the comb function (from the appearance of the graph in Fig. 7.7), the
shah function (from the name of the Cyrillic letter 1), or the sampling function
(from the identity

{¢} = Y  é(n), ¢€S (40)

n=—oo

that specifies its action). We derive (40) by using (38) (with ¢ replaced by ¢’) and
the fundamental theorem of calculus to write

o) o0 m—+1
MI{g} = (~1)° / (@) (@) dr= 3 —m / oL
= Y [-mo(m+1) +me(m)]
= > {s(m)+[(m - 1)g(m) — mé(m +1)]}

= > ¢(m), ¢€S.

m=—0Q
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[Since m2p(m) is bounded, the last sum converges absolutely.] Analogously,
M {¢} = (-1)" > ¢™(m), ¢€8, n=0,1,2,.... (41)
From (41) we see that
™ (2)=0 form<z<m+1, m=0,+1,+2, ..., (42)

but these “values” do not determine the “integral”

o0

/oo M) () d(x) do o= WG} = (1" 3 ¢M(m), €S (43)

m=—0oQ

The functions m_l, ac_z, ces

The ordinary function log|z| has an integrable singularity at the origin, but the
antiderivative

Ux) = / log |u| du = x log|z| — x (44)
0

is CSG, so we write

(o) = /Oo (vlog |z] — 2)(x) dz, & €S.

— 00

We use a careful integration by parts to show that
¢(6) = [ loglalo(yds, s es. (45)

and we identify ¢'(z) with the ordinary function log|z|, see Fig. 7.8.

The ordinary functions z=', 272, 273,... can be obtained from the ordinary

derivatives of ¢(z) by writing
I_l — é”(l‘), I_Z — —f’”(l‘), I_3 — E’”’(m)/2l,

We obtain corresponding generalized functions by using the generalized derivatives
of ¢ to define the inverse power functions

po1:=0" po:==0" p_3:=0")2 . ... (46)
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Uz) ==xlogl|z| —x

t'(z) = log ||

Figure 7.8. The CSG function ¢ from (44) and its generalized
derivatives ¢/, £ =p_4.

We must use some care, however, because the improper integral for the fundamental
functional -
o(x)

;L-TL

dz (47)
is not well defined unless the Schwartz function ¢ has a zero of multiplicity n at
the origin. [We did not have this problem with the functionals (25) for the power
functions (24).]

Given ¢ € S we define

o1(x) := ¢(x) — ¢(0)
$2(2) := ¢(x) — ¢(0) — = ¢'(0)
ps(x) == ¢(x) — ¢(0) — x ¢'(0) — z%¢" (0)/2! (48)
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and observe that
o (@) =M (x), n=12 ... (49)

We use Taylor’s formula (see Ex. 2.28) with the fact that

6n(0) = 0,(0) = -+ = &' 1(0) = 0
to infer that there is a continuous function 1, such that ¢,(z) = z"¢,(x),

—00 < x < 00, and thereby verify that

lim log |z|¢1(x) =0, (50)
lim T, (2) =0, n=2,3,.... (51)

We will use (48)—(51) to obtain simple expressions that describe the action of the
inverse power functions p_1,p_o2,p_3,... .

We begin by showing that

L p—
prf) = jim [ A= ar ges (52)

Indeed, using (46), (44), (45) (with ¢ replaced by ¢'), (49), and (50) in turn we
write

oo

por{d) = {6} = (—1)? / (zlog|a| — 2)¢" (x) da

— 00

_ / log |]¢ (z) d

— 00

—€ L
. . !
Lgrfmgrg+{ [ toslaléi ) de - [ logwl(:c)dx}

R Pt

lim 1 ~1
i lim { og |z|¢1(z

—log |z|¢1(x / ¢1$ }
x
= luJIrl {—log|x|¢1(aj ) » ¢1:v d:r}
= lim ¢1
L—+oc0

and in conjunction with the defining relation (48) for ¢; this gives (52).
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An alternative representation,
pafo = [ ges 53)
is obtained by using
/ o(z) — ¢(0) / o(=2) —4(0)
for the left half of the integral (52).
An analogous argument gives corresponding expressions for the functionals

P_2,p—3,... . We simply replace ¢ by the ¢2, ¢3,... from (48), i.e
p-a{o} = gglm/ =00 2200 g, pes
_ / 2 2 /1 0
p3{¢}‘LllToo/ o) =0 =0 - A0 s

By using (52) and (54) we see that

pp(x)=2"" for —co<z <0, n=1,2,...,
p_p(z)=2"" for0<z<oo, n=1,2,...,

but these “values” do not determine the “integral”

/ T o @)(a) de = p_ {6}

L
= lim e { Z:c o™ (0 /k'} z, ¢ES.
(56)

Summary

At this point you should understand how a CSG function g is used with the func-
tional (20) and an elementary notion of integration to produce a generalized function
f=¢", n=0,1,2,.... Ordinary CSG functions such as

2 —x, €™ 2?sin(x), i’ xlog |x|
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can be represented with n = 0, but we must use n > 1 when we construct the
functionals (9), (40), (52) for §, I, p_.
In cases where f is a slowly growing ordinary function that is locally integrable,

ie., b
/a (@) do

is well defined for every choice of —c0 < a < b < o0, we can construct a CSG
antiderivative

o) i= [ sl du

and use the fundamental functional for f to represent the generalized derivative ¢'.
We used such antiderivatives (26), (35), (44) for

(@) =h(x), q(x)=|z], {(z)=log|z]

to define §, 11, p_;. A thorough study of this construction of generalized functions
from slowly growing, locally integrable functions is best done within a context that
includes Lebesgue’s theory of integration. After you master the use of §, I, p_;
and a few less exotic generalized functions you may wish to explore such ideas in
more detail.

7.3 Manipulation of generalized functions

Introduction

It is one thing to define generalized functions and quite another to use them for
some worthwhile purpose! In this section you will learn to form a linear combination

crfi(w) + eafa(x), c1,c0€C

of generalized functions f1, fo and to construct the

translate f(z — x), —00 < x9 < 00,

dilate f(ax), a<0ora>0,

derivative (),

Fourier transform (),

product a(z) - f(x), (when « is suitably regular), and

convolution product (G f)(z)  (when 3 is suitably regular)

for a generalized function f. In each case there is a corresponding functional of
the form (20). The new understanding of sum, translate, dilate, ... will reduce to
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the familiar classical concept when f is a suitably regular ordinary function on R,
but the extensions will facilitate a far more powerful (and useful!) form of Fourier
analysis than that developed in Chapters 1-5.

The linear space G

Given generalized functions fi, fo and complex scalars ¢, co we define

fi=cafitef

by using the functional

o} = crfi{d} + cafolo}, €S (57)

The same relation can be expressed by using the integral notation

/ (@) + cafal(@) () da = e / T h(@)(e) da+ e / " fa(@)ole) d,

— o0

$€S. (58)

We will verify that (57) defines a generalized function.
A CSG function g always has the CSG antiderivatives

@) = [ gwydu, ¢ @)= [ ¢V (u)du,
| | »

g (x) :—/ ¢ (u)du, . . ..
0

Now if
fi= g%’“), fo= gém)

where ¢1,g92 are CSG and ni,ns are nonnegative integers, we will define n :=
max(ny,n2) and use antiderivatives to construct the CSG function

g=cgi" " + cagd? .

A routine calculation then shows that

9D {} = 19" {8} + c205" {0} = {0}, S €S

In this way we see that the set of generalized functions is a linear space that we will
call G.
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Translate, dilate, derivative, and Fourier transform

When f is a suitably regular ordinary function on R and ¢ € S we can use a change
of variable, an integration by parts, or Parseval’s identity [see Ex. 1.24(a)] to write

/_OO flz+xo)p(x) de = /_OO f(z)p(x—xo)dx, —o0 <z < 00, (60)

/_O; flax)o(z) dx = /_C: f(z)la|" o (g) dr, a<0ora>0, 1)

/ T P @)é() de = / " @) (2)] d, (62)

/ T P @)é() de = / " f(@)9" (@) d. (63)

You can use these identities when f is a generalized function and ¢ € S provided
you regard each of these “integrals” as notation for a corresponding functional!
Such manipulations are valid because we define the translate, dilate, derivative,
and Fourier transform

fil@) = fl@+mo), falz) = flaz), fs(z):=f'(z), falx):=[f"(2)

of a generalized function f by using the functionals

fi{o} == o}, falo) = floa},  falo} := flga},  falo) = f{oa}

where
61(2) = 6@ —w0), da(a) = a0 (2), dala) = ~¢/(2), dul@) = 9" (@)

are Schwartz functions when ¢ € S. [You will find these Schwartz functions on the
right hand side of (60)—(63).] Of course, (62) is perfectly consistent with (20). We
can express these definitions more succinctly by writing

(Tao O} = AT 200}, (8af){0} := fllal™'81/a0},
(D)o}t = f{-D¢}, (FfH{o}:=f{Fe}, €5,

but you will find that it is much easier to work with the equivalent integral notation
of (60)—(63). The following examples will show you how to manipulate general-
ized functions and introduce you to the art of definition chasing that is always
used within this context. (To help you sort out the details, we will provide terse
justifications for the links in the first few deductive chains.)
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Example Find the linear functional that represents d(z — xg) when
—00 < g < 00.

Solution The functional for f(x) := d(x — o) is

f{(b} = / (5($ — xo)qb(x) dx Integral notation
= / (5(1‘)@25(1‘ + l‘o) dx Change of variable using (60)
= ¢($0), ¢ €S. Action of § from (9)

The corresponding “integral”

| s = an)éw)ds = own). oS (64)
is known as the sifting relation for §. No ordinary function has this property! m

Example Find the linear functional that represents §(ax) when a < 0 or a > 0.

Solution The functional for f(z) := d(az) is

f {¢} / ax ) dz Integral notation
| ‘ / da: Change of variable using (61)
a
= lal~'(0), ¢ €Ss. Action of § from (9)

The functionals for §(ax) and |a|~*5(z) are identical, so we write

§(az) = |a|~'6(z) when a <0 or a > 0. (65)

Example Find the linear functional that represents §”(z).
Solution The functional for f(x) :=¢"(x) is

f{¢} = / (5”( )(b( ) dx Integral notation
oo
o0
= — / 5’( )gf)l( ) dxr Integrate by parts using (62)
/ (5 // Integrate by parts using (62)
= ( // 0) ¢ E€S. Action of § from (9)

Of course, this agrees with (31). n



Manipulation of generalized functions 393
Example Find the Fourier transform of §.
Solution The functional for 6”(s) is
5A{¢} = / 5A(8)¢(S) ds Integral notation
= / 5($)¢A (ZL‘) dx Parseval’s identity (63)
= d)/\ (0) Action of §
= / 1- ¢(8) ds, ¢ €S. Analysis equation for ¢
In view of this representation we write
" (s) =1 (66)
and regard 4" as an ordinary CSG function on R as shown in Fig. 7.9. n
) d(x) 1 M(s)=1
0 1 z 0 1 S
Figure 7.9. The Dirac delta function and its Fourier transform.
Example Find the Fourier transform of III.
Solution We use a special version
Y sm)= > o"(k), ¢€S (67)

n=-—oo k=—o00
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of the Poisson sum formula (1.45) as we write

1" {¢} = /_00 1" (s)¢(s) ds Integral notation
= / h I (z)¢" () dx Parseval’s identity (63)
= i @™ (n) Action of III from (10)
= i o(n) Poisson sum formula (67)

=: / IH(S)¢(S) ds, ¢€S. Action of IIT from (40)

The functionals for III and III" are identical, so we write
1" (s) = I(s),
see Fig. 7.10.

1

L L

Figure 7.10. The comb function and its Fourier transform.

Example Find the Fourier transform of the power function p;(x) := .

Solution The functional for p7(s) is

pi{o} = / pr(s)p(s) ds Integral notation

— 00

oo
= / D1 (l’)gﬁ/\ (.73) dx Parseval’s identity (63)

—0o0
oo
— A ) .
T / T (.77) dz Action of py from (25)
—0o0
1, . | ,
B %(ﬁ (0) Synthesis equation for ¢

-1
= 75/{¢}7 ¢ €S, Action of §’ from (29)
2mi

(68)
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S0 we write )

Phs) = 50(9)

The function p;(x) := x does not have an ordinary Fourier transform, but it does
have a generalized Fourier transform! [

Example Find the Fourier transform of the inverse power function p_;.

Solution The functional for p”,(s) is

oo
p/_\l{d)} = / p/_\1<5)¢(5) ds Integral notation
— 00
oo
= / D— 1(37) /\( ) dx Parseval’s identity (63)
/\
e
/ ¢ ( ) dx Action of p_; from (53)
—27'risz _ J2misx
e
= / / ( > dsdx Analysis equation for ¢
=0 —00

sm (2msz
/ ) dsdx Euler’s identity
— 00

[
i /s__oo o(s) /w__oo w dz ds
e

oo
= —mi s) sgn(s) / sinc(u) duds  Change of variable
u

=—00

= / [—ﬂ'i sgn(s)]¢(s) ds, ¢ €S. Synthesis equation for II

The exchange of the order of integration at ~ is valid when ¢ €8S, see Ex. 7.17. The
functional for p”, is identical to the fundamental functional for the slowly growing
function —misgn(s), so we write

p"1(s) = —misgn(s), (69)
see Fig. 7.11. -

1(z) i p21(s)

R ‘” 1 S
—T

Figure 7.11. The inverse power function p_; and its Fourier
transform.
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The identities (64)—(69) are of fundamental importance, and we will use them
repeatedly in the remainder of the text. You should learn them at this time!

Each of the functionals (60)—(63) can be expressed in the form (20), i.e., the
translate, dilate, derivative, and Fourier transform of a generalized function (as
defined above) are also generalized functions. We will show that this is true for the
Fourier transform and leave the other three cases for Ex. 7.21.

Let f = 4 where v is CSG and p is a nonnegative integer. Replace v by the
antiderivative v(=2) from (59), if necessary (and augment p accordingly) to ensure

that ~ is twice continuously differentiable. Choose p =0,1,2,... to ensure that
_ =)
W) = g

has small regular tails, and let I, be the corresponding bounded, continuous Fourier
transform on R. Given ¢ € S we use the derivative rule, the power scaling rule, and
Parseval’s identity to write

| st easi= [0t eas

= G [ D ) ds

— o0

= / T () (1 + 4P (D)o (s) ds

— 00

= [ @0 - DPplerioy o) do

— 00

where D is the derivative operator. In this way we see that the functional f” from
(63) is a linear combination of the functionals

/ :vel"p(:v)gb(k)(q:), £=0,1,...,u, k=0,1,...,2p,

— 00

which have the form (20). Since G is a linear space, this shows that f" € G, i.e.,
that f" = ¢ for some CSG function ¢ and some nonnegative integer n.

Reflection and conjugation

When f is a suitably regular ordinary function on R and ¢ € S we can write

/ T P @)é() de = / " (@) (@) da, (70)

/ T @)ele) de = / " f@) (o) de, (71)
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/ T P @)é() de = / " f@)9t () d, (72)

where

@)= f(-2), [ (@):=f), fl2)=f(-a). (73)

You can use each of these identities when f is a generalized function and ¢ € S
since we define f¥, f~, fT by using the functionals

FHeY =o'}, fHo}=flo ), fHe}:=f{oT}

[Of course, (70) can be obtained by setting a = —1 in (61).]
A generalized function f is said to be

even, odd, real,  pure imaginary, hermitian, antihermitian

when
fl=f f=-f f-=f [ =-f ff=f  fl=-1
respectively. Thus, § is even and real since
0V{p} = 0{¢"} = ¢"(0) = ¢(0) = 5{¢}, 4 €S, and
5 {9} == {p=} = ¢~ (0) = 4(0) = 6{¢}, ¢ €S.

Example Let f be a generalized function. Show that f’ is odd, even when f is
even, odd, respectively.

Solution The desired conclusion follows from the identity

ey =—"{¢}, oes,

that we establish by writing
| r@ewar= [ e @i = [ we @
:/_Oo Fla)d'Y (x) de =: /_Oo V(@) (z) da

_. /OO (@)d(x)dz, €S, .

Example Let f be a generalized function. Show that
fIN= Y = = (74)

and thereby extend the observations of Ex. 1.2 to the present context.
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Solution Since ¢™V = ¢V when ¢ € S we can use (63) and (70) to write

Fe} = Ho = o} =" {e}, ¢€S.

The other two identities are proved in a similar fashion. [

Multiplication and convolution

When f, «, § are suitably regular ordinary functions on R and ¢ € S, we can write

/OO [a(z) - f(2)l¢(x) dz = /OO f(@)[p(2) - a()] d (75)

— 00

and then use
/Oo_oo /OO_OO f(w)B(v —u)p(v) dudv 2 /OO_OO /OO_OO Fw)B(v — we(v) dv du

to write

/ 16 % fl(2)(z) dx = / f(2)[g % 8Y](x) da. (76)
You can use (75) when f is a generalized function and « is an ordinary function
with the property that

¢-a€S when ¢ €S (77)

because we define the product « - f by using the functional
[a- fi{o}:=f{o-a}, S€S

which corresponds to (75). Likewise, you can use (76) when f is a generalized
function and 3 is a generalized function with the property that

oxB3€S whenocS (78)
because we define the convolution product g * f by using the functional
(6 fi{¢} = flo=B"}, o€

that corresponds to (76).
We use the Leibnitz formula

6 )™ =3 (7:)0[(1@)  gm—k)

k=0
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to see that (77) holds when the functions

a,o,a”, ... are all CSQG, (79)
e.g., as is the case when
a(z) = ¢(x) where ¢ € S;
afr) =" where n =0,1,2,...;
ax) = e*miso” where —o0 < 9 < 00;
a(zr) = eimoe® where —oo < p < 0o; and
a(x) =P(x)/Q(z) where P, Q are algebraic or trigonometric

polynomials and @ has no real zeros.
Since you might reasonably expect to find
Bxo = (8" 6",
you will not be surprised to learn that (78) holds when the functions
g, BN, BN, ... are all CSG, (80)

[see (92)]. The sufficient conditions (79), (80) will serve for the subsequent appli-
cations and guarantee that the functionals (75), (76) have the form (20), see Ex.
7.21.

We will show how (75)—(76) allow us to simplify certain expressions involving
k — sk _
5;0)(30) =W (z —xp), —oo<mog<oo, k=0,1,2,.... (81)
Example Let a,a’,a”, ... be CSG. Show that

a(z) - 0(x — x0) = axg)d(x — x0).

Solution We use (75) and the sifting relation (64) as we write

/_00 [a(x) - 0(x — x0)]p(x) do = /_00 d(z — zo)[o(z)a(z)] da
= @(zo)a(wo)

- / 0(z)6(z - z0))é(z), HES.  m

You can use an analogous argument to show that

k

a(z) - W (x —z0) = (’Z) (=1 =9 (20)60 (2 — o), (82)

£=0
see Ex. 7.13.
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Example Let f be a generalized function. Show that
oxf=Ff (83)

i.e., show that § serves as an identity for the convolution product (and recall
Ex. 3.40).

Solution  We first use (76) to show that
Y*xd =1 wheny €S
by writing
| wrdl@ewde = [ s@lox i@ do

= [¢*1"](0)
/ Y(x)p(x)dx, ¢ €S.

We then use (76) a second time to write

/ 5% A@)ole) do = / " @)l6* 6V](@) de

— 00

- / @)l # 0)(x) du

= /_00 f@)op(x)dz, ¢ €S. n

You can use an analogous argument to show that
k _ .k —
[w*égo)](:r)—w( Nz — 1), —oco<mzg<oo, k=0,1,... (84)
when v is a Schwartz function and
[5;’3) x fl(x) = f(k)(:v —1xp), —oco<zp<oo, k=0,1,... (85)

when f is a generalized function, see Ex. 7.13.
Example Let g be CSG and let ¢y € S. Show that

Vg™ =[xgl™ =9 xg n=0,1,2,.... (86)
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Solution We chase definitions as we write

[ wram@ew) e = [ @00 1w ds

— 00

:44w/wa@wwwmex
=«4w[%mwww*wmmm
—wAW[fw*ﬂ@WW@m

=: /_ - [¥x g™ (x)¢(z) dz, ¢ €S,

| e dr = 1" [ oo 1) s

— 00

- [ s@lo @) s
=: /oo (™ % g)(z)p(x) dz, ¢ €S. n

— 00

Let f be a generalized function and let ¢ € S. We set f = ¢() where ¢ is CSG
and n is a nonnegative integer, and use (86) to write

Yrf=9pMug (pxf) =T xg (s f) =D wg o0 (87)

Since the convolution product of the CSG function g and a Schwartz function is
always CSG (see Ex. 7.18), this shows that v * f and all of its derivatives are CSG.

Example Show that z-p_;(x) =1 when p_; is the inverse power function.

Solution We use (53) as we write

| @@= [ @i s

_ __J/;>x¢cw-—<—x>¢c—x>dx
0 x
:/ 1-¢(x)dx, ¢€S. m

You can extend this argument to establish the generalized power rule
2™ pn(x) = pman(x), m=0,1,2,..., n=0,£1,£2,..., (88)
see Ex. 7.16.
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We have chosen the decidedly asymmetric notation « - f, G * f to help you re-
member that these products are only defined when «, 3 satisfy (77), (78). We can
restore some symmetry by setting

fra=a-f, fxB:=0xf

(to make the products commute), but you will need to remember the restrictions.
Many products, e.g.,
§-0, 8-p_1, 1x1, xxaz?

are not defined, and the familiar associativity relations

- fol - fs = fo- [fo - fol,

[f1% fo] % f3 = f1 % [f2 * f3]
do not always hold within this context. The insightful little examples of Schwartz,
[0(z) - x] - p-1(x) = [0] - p-a2(2) = 0
(z) - [z - p-ar(x)] = 0(x) - [1] = 6(x)
and
[1% 6" (x)] * sgn(x) = [0] * sgn(z) =0
1% [6'(z) xsgn(z)] = 1% [26(x)] = 2,

will help you see what can go wrong. For other examples, see Ex. 2.36.

Division
Let g be a generalized function and let «,a’,a”,... be CSG. If 1/a,
(1/a)",(1/a)”, ... are also CSG, we can solve the linear equation
a-f=g
by setting
f=@1/a)-g.

We verify this by writing
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We will show that this solution is unique. Indeed, if - f; = g and « - fo = g, then
fo := f1 — f2 is a solution of the homogeneous equation « - fo = 0 with

/Zh@ “—/ fol@)[[6(2) - (1/a(2))] - a(a)] da

:/1[<>ﬁmnwwumumm
=0, ¢e€S.

Example Find the generalized solution of eime’ . flx) = e~

Solution The functions

ax) = e 1/a(z) = e

and all of their derivatives are CSG, so we can write

f(fE) —_ efi‘n'a:2 . e*ﬂ'IQ. -

You must use some care when you form such quotients. The following example
shows what can happen when 1/« is continuous but not slowly growing.

Example Show that there is no generalized solution of e~z . flz)=1.

. I . . . .
Solution Let a(z) := e~™ and assume that f is a generalized solution. Since
o’ = o = aV, we can write

/OO (ax* f)(2)p(x) do == /OO (@) [(¢ * a)(x)] dz

— 00 —00

=/wﬂ®W*®%mM

— [ @06 @) - ale) ds
—3[wmu><>wwwdr
—/_0;1-¢A(x)dx

— [ swptwdn, ses,

ie., a* fA = 4. This is impossible since the convolution product of the
Schwartz function « and the generalized function f” is CSG but § is not, see (87)
and Ex. 7.3. [ ]
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We will now consider the homogeneous equation

(x — )" - f(x) =0 (89)

where —00 < zp < oo and n = 1,2,... . In this case a(x) := (x — x9)™ and its

derivatives are CSG but 1/a(x) has a singularity at © = (. Using (82) we see that
(x—x0)" - 0¥ (z —20) =0 when k=0,1,...,n—1,
so the generalized function
f(@) = cod(x — o) + 16’ (& — o) + -+ + cn_16" 1 (2 — o) (90)

satisfies (89) for every choice of the constants cg,cy,...,c,—1. It takes a bit more
effort to show that every generalized solution has this form, see Ex. 7.23. A few
examples will show you how to use this result.

Example Find all generalized solutions of z - f(x) = 1.

Solution We have shown that x - p_1(x) = 1, see (88). We use (89)—(90) (with
xo =0, n = 1) to solve the homogeneous equation

z-[f(x) = p-1(x)] =0

by writing

f(x) = p-a(z) +cé(x)
where c¢ is an arbitrary constant. ™
Example Find all generalized solutions of 22 - f(z) = sin®(7x).

Solution We solve the homogeneous equation
22 [f(z) — m?sinc?(z)] = 0
by writing
f(z) = 72 sinc?(x) + cod(x) + 16" ()

where cg, c1 are arbitrary constants. n
Example Find all generalized solutions of (z — 1) - f(z) = 1.

Solution We formally write

1 1 1 1 1
2173 -1 zei) g Dmpalet )
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and use translates of (88) to see that
(z* —1)- 31z —1) —p_y(z+1)]
=3lz+ D = p-r(e = 1) = (z = 1)(z + 1)p_1(z + 1)]
=z+1)-1—(z—1)-1] =1
We then solve the homogeneous equation
(2 = 1)+ [f(2) ~ bps(e — 1) + Ipoa(a + 1] =0
(using Ex. 7.24) to obtain
f@)=4p_1(@—1)—3p_1(z+1)+cdlz—1)+dd(z+1)
where ¢, d are arbitrary constants. n

7.4 Derivatives and simple differential equations

Differentiation rules

The following differentiation rules can be used with generalized functions f, f1, fo.

[c1fi(@) + e fo(@)] = e fi(@) + cafs(w), c,c0€C
[f(z — o) = f'(x — x0), —00 < xg < 00
[f(az)] = a f'(ax), a<0ora>0
(@) f(@)] = (@) - f'(2) + o/ (2) - f(2), a,0',a”,... are CSG
(8% [)(@)] = (8" * f)x) = (B*f)x), pBY,6",... are CSG

You can establish such rules by using the familiar differentiation rules from calculus

and chasing definitions.
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Example Show that (a- f) =a-f' +a - f.
Solution When f is a generalized function and «, o/, a”,... are CSG

| @ s@rew - - [ f@peat)a

— 00

_ / " @) (6@al@)) — oo (@) da

— 00

_ / T (P @B@e@) + f@)b)a (@) de

— o0

_ /°° [a(z) - f'(2) + /() - f(a))é(x) dz, HES. m

— 00

Example Use the product rule to find the second derivative of the ramp r(z) :=
x - h(x) where h is the Heaviside function.

Solution We use the Leibnitz formula
() = (2)" - h(z) +2(z)" - W (z) + 2 - 1" (2)
(which follows from the above product rule) together with the identities
h/ — 5 h// — 5/

from (34) to write

r'(z) = 26(x) +x - &' ().
We use (82) (with g =0, k = 1) to reduce this to the "/ = § of (28). n

Derivatives of piecewise smooth functions with jumps

We will often have occasion to form the generalized derivative of a slowly growing
ordinary function f that has a continuous slowly growing ordinary derivative except
for certain isolated points x1, o, ..., T, where f and f’ can have jump discontinu-
ities. The simplest such function

1 ifz>x
0 ife<xz;

h(z —x1) = {
has the generalized derivative
h(z—x1) =6(x — x1)
even though h/(x — x1) = 0 for z < x; and for x > 1, see Fig. 7.6. Now if f has

the jump
Ju = flxp+) — flo,—)
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at the point = = x,, p = 1,2,...,m, the piecewise smooth function

Jo(x Z (x —2,)

will be continuous. We can then write
fl@) = fole) + > Jubla — ),
p=1

with the generalized function f) being represented by the fundamental functional
of the ordinary derivative, see Fig. 7.12. [The fact that f}(z) is not defined at the
points x1, T3, . .., Ty, is of no consequence.] We will give three examples to illustrate
this process.

Figure 7.12. A piecewise smooth function f and its generalized
derivative " = fj + f1.

Example Let f(x):=1(z). Find f/, f",... .
Solution We observe that
fz) = hz+3) = h(z - 3)
and write
fl(@) = 6d(x +3) = 8(z — 3).
The term §(z + %) comes from the jump +1 at the left edge of the box and the term

—i(z — %) comes from the jump —1 at the right edge of the box. Knowing f’, we

find
f(n+1()_5 (z+ %)_5(71)(33_%)7 n=0,1,.... [
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Example Let f(z):=e *h(x). Find f', f",... .
Solution The function f has a jump +1 at z = 0, so we have
f'(@) = —e""h(z) + d(z) = —f(z) + 6(x).

[We can verify this directly by writing
| r@owdri=— [ j@)(ds
=— /00 e "¢ (z) dx

—00)~ [ e o) da
:[%W@—ﬂﬂd@wa¢em

Knowing f' = —f 4 §, we compute in turn
(@) = f(z) —d(x) +&'(z), f"(z)=—f(z) +0(z) - &'(x) +6"(z),.... m

Example Show that the function (4) [shown in Fig. 7.2] is a solution of the
differential equation

myg(t) + kyo(t) =po(t)
when m > 0, k> 0, and w := \/k/m.

Solution We compute in turn

/ 0 ift<0
yO(t) = 2 COS(Wt) if t > O,
m

" p5 0 ift<0
Yo (t) = 0(t)+ 0 9P Gy it >0,
m

myl(t) + kyo(t) = pa(t) + % [—mw n U’j sin(wt)h(t) = pd(t). .

The equation f(”) =0
Let f be a generalized function and assume that

f(x)=0 fora<ax<b,
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ie., f'{¢} = 0 whenever ¢ is a Schwartz function that vanishes when = < a or
x > b, see (22). We will show that

flz)y=c fora<z<b

where ¢ is some constant. (This takes some effort because the familiar mean value
theorem from calculus cannot be used in the present context!)

Let v, ¢ be Schwartz functions that vanish when x < a or x > b, with

/00 v(z)dx = 1.

We set - N -
e [ fan@an A= [ s

— 00

and form the antiderivative
v(o)i= [ lotu) = ()] d
By construction, © is a Schwartz function that vanishes when 2 < @ or z > b, so
| 1@l - aq@ias= [~ o=~ [ fepwd=o
lsee (17), (18)]. In this way we find
| t@ete)do=ac= [~ cotw)an,

and thereby show that f(z) =c for a <z <b.
It is easy to extend this result to higher derivatives. For example, if

f(x)y=0 fora<z<b

we find in turn

flx)=c for a <z <b,
[f(z) —cix] =0 fora<z<b,
fl@)—ciz=¢y fora<z<b,
fl@)=co+c1xz fora<z<b.

Analogously, if
f™(@)=0 fora<z<b
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then
[(x) 200+61$+-~+cn_1x”_1 fora<ax<b

where ¢y, ¢y, ..., c,—1 are suitably chosen constants.

Example Find all generalized solutions of the differential equation

f(x)=68(x+1)+20(x—1).

Solution We can take antiderivatives and write
f(x)=hx+1)+20(z—1)+ ¢,
f(l‘) = (l‘ + 1)h<1‘ + 1) + 2h($ — 1) +co+crx.

We can also use the fact that f”(x) vanishes for —0o < z < =1, for —1 < z < 1,
and for 1 < z < oo to write

ap +bor for —oco<x < —1
flx)y=<a1 +bzx for —1<zx<1
as +boxr for 1<z < o0,

f"(x) = (a1 —ag — by +bg)d' (x + 1) + (by — bg)d(x + 1)
+(ag —ay + by —b1)8 (x — 1) + (by — by)d(x — 1).
We force f to satisfy the differential equation by choosing the parameters so that
a1 —ag—by+bg=0, by —bg=1, ax—ay3+by—by =2, by—b =0,
ie,ar=a9g+1,b1=0bg+1, a2 =a9+ 3, bo =by + 1. ™

Example Let f be a generalized function and assume that f(z) = 0 for —oo <
2 < 0 and for 0 < < co. Show that f is a finite linear combination of §,d’,46",. ...

Solution. We know that f = ¢(™ for some CSG function g and some nonnegative
integer n. Since g™ (z) = 0 for —0o < z < 0 and for 0 < x < 0o, we can write

(@) {pL(a:) for —co<z <0
xTr) =
pr(x) for 0<z< o0
where p;,pp are polynomials of degree n — 1 or less. In this way we see that

py(x) for —co<z <0

9'(z) = [pr(0) — pL(0)]6(z) + { po(z) for 0<z<oo
. ;

9" (x) = [pr(0) = pr(0)]6'(x) + [Pr(0) — 7 (0)]4()
P (z) for —co<x <0
+{p}2(m) for 0 < z < o0,
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and thereby obtain the representation

fla) = g™ (z) = i[pﬁs‘l"’) (0) — p" T (0)]6@) (). (91)
v=0

Solving differential equations

On occasion we will find it necessary to construct a generalized solution of a differ-
ential equation

F @) + e fO V(@) 4 4 e f (2) = d(x)

when the (constant) coefficients ¢1,c¢a,...,¢, and the driving function d(x) are
given. In some cases this can be done by splicing together ordinary solutions on
certain intervals (ag,bg), £k = 1,2,...,m. We will give two examples to illustrate

the procedure. Additional details can be found in Exs. 7.25 and 7.30, the next
section, and Kaplan’s text.

Example Construct a generalized solution of the differential equation
f(@) = fi(2) = 2f () = =4 ().

Solution The characteristic equation 72> — r — 2 = 0 has the roots r = —1, r =
2, so any linear combination of the ordinary functions e=%, e?* will satisfy the
homogeneous equation

y'(x) =y () - 2y(z) = 0.

Since f satisfies this homogeneous equation for —00 < x < 0 and for 0 < = < oo,
we can write

T b e®® <0
f(x):{aLe +obre or

age® +bre*® forx >0

where a;,b;,ap,bp are certain constants. We must set a; = 0, by = 0 to ensure
that f is slowly growing. We then compute

2b,e?®  for z <0
—age™® forx >0,
4b; e?* | <0
F'(a) = (= 0)00) — (am + 20)s0) + {0
ape”® forxz >0,
f'(x) = f'(x) = 2f(x) = —(2ax + b,)d(x) + (ag — bp)d (2).

The right-hand side reduces to —d(x) when ap = b, =1/3, so

F'(@) = (an - b)3(e) + {

1{623” for x <0

f@) = 3le® forgx > 0.
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Example Construct a generalized solution of the differential equation

Solution The characteristic equation r* — 1 = 0 has the roots r = —1, r = 1,

r = —i, r = 4, so any linear combination of e™%, %, e~ ' will satisfy the

homogeneous equation

The 8 parameters from

ape ® +be®+ce”+de ifx<0

ape " +bre® + cre”® +dpe’® if x>0

)= {

can be reduced to 2 by requiring f to be slowly growing (a; = 0, by = 0) and using
the constraints

FO0+)=£(0=) =0, f/(0+)—=f"(0=) = 0, f*(0+)—f"(0—) = 0, f"(0+)—f"(0-) = L.

This is a bit tedious, however, so we attempt to construct a particular solution by
taking a linear combination of the even functions e~!*!, sin|z| (deleting the even
solution cos z of the homogeneous equation). We observe that the function
—|x| : 1 _ 2 _ 3 4 .
e Pl tsin|z|=1—|z|+2*/2 — |x|°/6+2"/24 — - --
+ || — [l /6+ -
=1+ 222 —|z3/3 4+ 2 /24 + - -

and its first two derivatives are continuous at z = 0, while the third has a jump of
—4. In this way we find

f(z) = —i(e_Iml + sin \x\) +acosx +bsinx

where a, b are arbitrary constants. ™

In the next section you will learn how to show that there are no other generalized
solutions for the differential equations from these two examples.
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7.5 The Fourier transform calculus for
generalized functions

Fourier transform rules

Let f, f1, fo be generalized functions with the generalized Fourier transforms
I, f5. Now that you know how to manipulate generalized functions you can
use the following Fourier transform rules.

c1f1(z) + cafe(x) has the FT ¢y f{M(s) + caf5'(s), c1,c0 € C
f(—=x) has the FT f(—s)
[ (x) has the FT A (=s)
[z — o) has the FT e~ 27is%0 . fA(g), —00 < T < 00
e2misoT . f () has the FT (s = s0), —00 < §9 < 00
() has the FT f(=s)
f(ax) has the FT la| =t f"(s/a), a>0o0ra<0
) () has the FT (2mis)™ - f7(s), n=12...
" f(z) has the FT  (—2mi)~"[f"]™ (s), n=12,...
a(z) - f(z) has the FT (@™ x fN)(s), a, o a”; ... are CSG

(B* f)(x) has the FT BM(s) - [ (s), B~ BN, BN .. are CSG

Each rule can be established by chasing definitions and using corresponding iden-
tities for taking Fourier transforms of Schwartz function. Since you are thoroughly
familiar with such patterns from your study of Chapter 3, you will quickly learn to
use them within this new setting.

Example Establish the inversion rule for generalized Fourier transforms.

Solution Given a generalized function f we write

[ e = [ e = [ i@eeas
- /_ O:o f@)g(-z) dz =: /_ O; J(~x)g(x)dz, $€S

and thereby conclude that
@) = f(-a). L
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Example Let f be a generalized function and let a;, o/, o, ... be CSG. Establish
the product rule

(- )N =" = 7 (92)

Solution Let ¢ € S. We chase definitions to find

/ T - o] @)é(a) de = / " (@) - @) (@) de

— 00 — 00

= [ @ @i = [ a@iors ™ @) s

= [ e @M@ e = [ atl@ol) i e,

and thereby show that
[ -a]® =" xa” when 1 €S.
We use this special version of the product rule to verify that
p*xa” €S whenopcS

and thereby infer that o * f is well defined, see (76) and (78). We then derive
the general product rule by writing

/ o 1 ()6 dr = / " lale) - F(2))¢" @) da
- T f@)8 @a@) dr = / " H@)ex ™V (@) de

oo

=: /_00 A (@)[p * a™Y](z) da —:/ " % fN(2)é(x) dz, & €S. .

— o0

Basic Fourier transforms

We know from (66) that
0(xz) has the FT 1,

so we can use the derivative and translation rules to see that

6™ (z) has the FT (2mis)*, n=0,1,2,... (93)
§(x —x9) has the FT e 2™ 00 < 1 < 00, (94)
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and then use the inversion rule to see that

2" has the FT (=2mi) "6 (s), n=0,1,2,... (95)
e?™%0%  hags the FT  §(s — s9), —00< s8¢ < 00. (96)
We can use (95)—(96) to find the Fourier transform of any algebraic or trigonometric
polynomial.
Example Find the Fourier transform of the polynomial f(x) := (z — 1)3.

Solution We can write
flz) =2 32> + 32— 1

and then use (95) to obtain

§"(s)  38"(s) +35'(s)

F(s) = —0(s).
)= TzmE ~ oz T 2w 00
We can also use (95) with the translation rule to write
. 5///(8)
F _ ,—2mis | )
(5) =c (—2ri)3
You can use (82) to show that these two expressions are equivalent. n

Example Find the Fourier transforms of

fe(x) :=cos(2mz), fs(x) :=sin(2mwz).

Solution We use (96) with the Euler identities

1 1

_ T I,2mix —2mix . [p2miz _ ,—2mix
Jo() = 5[ 4 €72, (@) = 2[R - e
to write
1 1
Fu(s) = 5105 = 1)+ 8(s + 1)), F(s) = 5005 = 1) = (s + 1),
as shown in Fig. 7.13. ™

We know from (69) that the inverse power function
p—1(z) has the FT  —misgn(s).
We use (46) to write

p_n(x) = ((;lenl)!p(nll)(x), n=12,...,
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fe(x)

AN\ VAN

e
N—
—

VARAVARVEAVE e S
1 fs(z) i Fy(s)
AWA' /\ |
VY VY e B O
Figure 7.13. The functions f.(z) := cos(2mx), fs(x) := sin(27z)
and their Fourier transforms.
and then use the derivative rule to see that
—92711 n—1
p—n(z) has the FT — m,((msi)‘ sgn(s), n=1,2,.... (97)
n—1)!

In Chapter 3 you learned how to find the ordinary Fourier transform of a suitably
regular rational function by using (3.22). Now that you have (95) and (97), you can

find the generalized Fourier transform of any rational function.
Example Find the Fourier transform of f(z) := (22 +1)/(2% — 1).

Solution We form the partial fraction expansion

22+ 1 1 1
= =1 -
f(z) 2 —1 +£L'—1 z+1

=1+4+pa(z—1)—p_q(z+1)

and then Fourier transform term by term to obtain
F(s) = 8(s) 4+ e 2™ (—mi) sgn(s) — ™ (—mi) sgn(s)
= §(s) — 2w sin(27s) sgn(s)
= 0(s) — 2mwsin(27|s]).

Example Let y be a generalized solution of the homogeneous differential equation

y"(x) —y(x) = 0.

Show that ‘ ‘
y(x) =ce +de

for suitably chosen constants ¢, d.
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Solution We Fourier transform the differential equation to obtain
[(27is)* —1]-Y(s) =0

or equivalently,
[(27s)? + 1][27s + 1][27s — 1] - Y (5) = 0.

Since [(275)% + 1]7! and its derivatives are CSG, we can use Ex. 7.25 to write

where ¢, d are constants. [

You will often find that it is necessary to determine the Fourier transform of
some rational function when you analyze simple physical systems such as those in
the following two examples.

Example Find the generalized solution of the differential equation

y'(£) +wy(t) = - 6(t)

that vanishes for —co < t < 0, see Fig.7.2.

Solution We Fourier transform the differential equation to obtain
[(27is)? + w?] - Y (s) = —.
From the equivalent algebraic identity

(=) G gn) YO =gy

we can use Ex. 7.24 to see that

w w P 1 1
Y(s)=co(s——)+do —) - -
(s) =c (S 27r> + (S+ 27r> drmw <s —w/2m s+w/27r>

where ¢, d are arbitrary constants, so

iw —iw p iw —iwty (;
y(t) = ce™ +de ™" — 47rmw(e b — e (im) sgn(t)

— Cezwt + de—zwt +

i sin(wt) sgn(t).
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Since we want y to vanish for —oo < ¢t < 0, we determine ¢, d so that

cet 4 dem v = 2L sin(wt),
mw

and in this way we obtain the response function (4), i.e.,

y(t) = % sin(wt)h(t). n

Example A naive automobile suspension system is shown in Fig. 7.14. The mass,
spring, and shock absorber process the wheel elevation function z(t) (determined by
the shape of the roadbed and the speed of the car) to produce a smoother elevation
function yo + y(t) for the carriage. The constant yg is the elevation of the carriage
when z(t) = 0 for —oo <t < oo. The system is governed by the differential equation

my"(t) = —kly(t) — z(t)] — dly'(t) — 2'(1)]

where m, k, and d are positive constants. Show that y = y; * * where y; is the
response of the system to the unit impulse § [see Exs 7.51, 7.52, and 5.28].

t

Figure 7.14. An automobile suspension system that links the
elevation z(t) of the wheel and the elevation y(t) of the carriage.

Solution We Fourier transform the differential equation
my” (t) + dy' (t) + ky(t) = dz’(t) + kx(t)

to obtain
[m(27is)? 4 d(2mis) + k] - Y (s) = [d(2mis) + k] - X (s).

The characteristic polynomial

P(r) :==mr? +dr+k
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has roots
= Vd? — 4mk

2m

T+
with negative real parts, so
P(27is) = m(2mis)? + d(2mis) + k #0 for —oo < s < 00,
and 1/P(2wis), [1/P(2nis)], [1/P(2nis)]”, ... are CSG. This being the case,
Y(s) = Ys(s) - X(s)

where
d(2mis) + k
m(2mis)? + d(2mis) + k
corresponds to the impulsive input x(¢) = 6(¢t) with X (s) = 1. In this way we find
the response

Ys(s) :=

y(t) = (ys *2)(t)
to an arbitrary generalized input x.
The impulse response, y;, satisfies the homogeneous equation

my” +dy + ky =0

on (—00,0) and on (0,+00). Since ry,r_ have negative real parts, we must have
ys(t) = 0 for t < 0. We equate the singular parts of

myy (t) + dys(t) + kys(t) = d &' (t) + k(t)

to obtain
m{ys(04)0" + y5(04+)d} + d{ys(0+)d} = dd' + k4
and thereby find
d
ys(O) = y5(04) =
We can solve the homogeneous differential equation on (0,+o00) with these initial
conditions to find ys(¢) for ¢ > 0. [This is much easier than finding the inverse
Fourier transform of the rational function Yj(s).] n

km — d?
m2

3

You can use this procedure to analyze any linear system
P(D)y = (D)
where

P(D):=ap+aD+---+a,D"
(D) :=bg +b;D+---+ b, D™

are polynomials in the derivative operator D and P(z) # 0 when Re z = 0, see
Ex. 7.51.
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When we study diffraction in Chapter 9, we will often use the fact that

1 +1 —ims?

7 e (98)

from Ex. 3.35. It is easy to derive this result within the present context. Indeed,

¢ has the FT

2

fw) = e
and its ordinary derivatives are CSG, so the generalized functions f, F' := f” satisfy
f'(@) = 2miz - f(2),
2mis - F(s) = —F'(s),
[eiﬂ'sz ) F(S)]/ _ 07
eims” . F(s)=c

. . ins? . .. .
where c¢ is a constant. Since e”™®" and its derivatives are also CSG, we can write

2

F(s) =ce ™,
The value

1414 -
c= =i
V2

can be obtained from the Parseval identity

o 2 2 e 2 2
/ e’lﬂ'x . €—7T$ dx — / ce—’Lﬂ'S . 6—71'8 d87
— 00 — 00

as in Ex. 7.45, or from the analysis leading to (4.71).

Fourier transforms from derivatives

In principle we can find the Fourier transform of any suitably regular function f on
R by evaluating the integral

F(s):= / O:o f(z)e 2™ dg,

The direct evaluation of such Fourier integrals is notoriously difficult, however, and
we almost always prefer to use more efficient indirect procedures. The following ex-
amples will show you how to find many Fourier transforms by computing generalized
derivatives. Be prepared to be impressed!



The Fourier transform calculus for generalized functions 421

Example Find the Fourier transform of f(z) := A(z) from (3.25).

Solution We compute the generalized derivatives

0 ife < -1

1 if —1<z<0
-1 fo<z<1
0 if 1 <,

fiz) =

() =6(x+1) —25(x) +6(z — 1)
(see Fig. 7.15), and then use (94) with the derivative rule to write

(27is)? - F(s) =¥ .1 -2 14 2™ .1

— (eﬂis _ e—ﬂ'iS)Q’

or equivalently,

| A@)

1 1 T
1, M)

_1 1 T
,, A@

| L

Figure 7.15. The function A(x) and its generalized derivatives

N (z), A" (x).
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In view of (89)—(90) this implies that
F(s) = sinc?(s) 4 cod(s) 4+ c10'(s)

for suitably chosen constants ¢y, c;. The piecewise smooth function f(x) vanishes
when |z| > 1, so the Fourier transform F must be an ordinary function on R. This
a priori knowledge allows us to set cg = ¢; = 0 and thereby obtain

F(s) = sinc?(s)

(without ever evaluating an integrall). n

Ex. 7.39 shows that this procedure, known as Fagle’s method, can be used to find
the Fourier transform of any piecewise polynomial function that vanishes outside
some finite interval [a, b].

Example Find the Fourier series for the 2-periodic function g with g(z) := 22 for
-1 <x <1, see Fig. 4.2.

Solution We form the support-limited function
2 if —l<ax<l1
S {O otherwise,
compute the generalized derivatives
2¢ if —1l<z<1

f’($)=5($+1)—5($—1)+{

0  otherwise,

f'x)y=08@x+1) -6 (x—1)—20(x+1) —26(z — 1)

{2 if —1l<z<1
0 otherwise,
")y =6"(x+1)=8"(x—1) =28 (x+1) —2§(z —1)
+25(x+1) —25(x — 1),
and then use (93) with the derivative and translation rules to write
(27is)3 - F(s) = e*™*[(2mis)? — 2(2mis) 4+ 2] — e~ 2™*[(27is)? + 2(2mis) + 2].

We know that F' is an ordinary function on R, so the quotient

2| (2ris)? — 2(2mis) + 2] — =2 [(2mis)? + 2(2ris) + 2

F(s) = (27is)3

has a removable singularity at the origin. We use the analysis equation to find

! 2
F(O)z/ l’2d1‘=§

-1
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(since this is much easier than a calculation based on I'Hépital’s rule). Knowing F,
we use Poisson’s relation (4.18) to obtain the Fourier series

1 k ,
g(l‘) _ Z §F <2> 8271'1]431}/2. -

k=—00

You can use this procedure to find the Fourier series for any piecewise polynomial
p-periodic function on R. Details are given in Exs. 7.73 and 7.74. You may wish
to convince yourself that such a calculation is equivalent to the Bernoulli function
expansions that were developed in Section 4.1.

Example Find the Fourier transform of f(z) := e~1®l from (3.8).
Solution We write

e ifx <0
—e 7 ifx >0,
e ifx<0

e " ifx >0,

) = {em ifx <0

e ® ifx >0,
F(x) = —25(x) + {

and thereby see that
—f"(z) + f(x) = 20(x).

We Fourier transform this differential equation and write
(4n?s* + 1)F(s) = 2.
Since 1/(1 + 47%s?) and its derivatives are all CSG, we immediately obtain

2

F(s) = 1 am

(without ever evaluating an integral!). n
Example Find the Fourier transforms of the ordinary functions

1 ifxz>0

f(z):= 1sgn(m) and h(z):= { 0 if <Ol

2

Solution These functions have the generalized derivatives
f'(x)=06(x) and R'(z)=0d(x)
so their Fourier transforms must satisfy

2mis- F(s) =1 and 2mis- H(s) =1.
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Using (88) we see that

5- [F(s)—p_1<s)] —0 and s- {H(s)—p_l(s)] —0

21 211

SO
Fes) = P18 4ot and H(s) = 229 4 as(s)
271 271
where ¢, d are constants that we must determine.
The odd function f must have an odd Fourier transform, and since § is even we
must set ¢ = 0 and write

1 1 p—1(s)
== has the FT F(s) = = .
f(x) 2sgn(9:) as the (s) 5ris i
[In conjunction with the inversion rule, this gives (69)!] After observing that
1
W) = f(2) +
we see that
1 1
h(z) has the FT H(s)=—-— 4 -d(s). (99)
2mis 2
|
Example Find the Fourier transform of f(x) := |22 — 1].

Solution Let
2(1—-2?%) if-1<z<1
g(z) =

0 otherwise.

Since ¢’ has the jumps 4, 4 and g” has the jumps —4,4 at the points v = —1, z = 1,
we find
g"(x)=4"(z+1)+ 40" (x — 1) —46(x + 1) + 46(z — 1),

and thereby obtain
4e2™5 (2mis — 1) + de ™2™ (2mis + 1)
(2mis)3

G(s) =

(with the singularity at s = 0 being removable). We have chosen g to make
fl@) = 2% = 1+ g(a),
so we can use (95) to write

5//(8)

R

—0(s) + G(s).

(In this case we cannot obtain the singular part of F' from " = ¢'".) n
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Ex. 7.39 shows how such techniques can be used to find the Fourier transform of
any piecewise polynomial function with finitely many knots.

Example Find the Fourier transform of f(z):=1/(1 + z%).

Solution We use the power scaling rule as we Fourier transform

(1+a%) - flz)=1
to obtain the differential equation

FW(s)+ (2n)*F(s) = (2m)*(s).

The characteristic polynomial

P(r) =r* 4 (2n)*
has the roots

r=V2r(1+4), V2r(l—i), V2r(-1+i), V2r(—1—1i),
and since F' must be both even and slowly growing, we can write
F(s) = eVl [csin(v/2n|s|) + d cos(V2rs)]

for suitably chosen constants ¢, d. From the differential equation, we see that

F(0+) — F(0-) =0, F'(0+)— F'(0-)
F”(O‘f’) F//( ) — 07 F///(0+) F///(O )

0,
(2m)*,

and since
F(s) = d+ (c — d)|V2rs| — c|vV2rs|* + (c 4+ d)|V2rs]? /3 4 - --

we must have

c—d=0, 12(c+d)

(\/277)3 _ (27‘4’)4

so that

T
c=d=—.
V2

In this way we obtain the Fourier transform
F(s) = me~V2mlsl gin (\/§7r|s\ + %) :

You used (3.22) (and a lot more algebral!) to obtain this result in Ex. 3.13. n

You can use this procedure to find the Fourier transform of any rational function
f that is defined on all of R, see Ex. 7.42.
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Support- and bandlimited generalized functions

A generalized function (3 is said to be o-support-limited for some o > 0 if 5(z) =0
for x < —o and for x > o, e.g., II(z) is o-support-limited when o > 1/2, () is

2
—TxT

o-support-limited when o > 0, and e is not o-support-limited for any ¢ > 0.

A generalized function « is said to be o-bandlimited for some o > 0 if a”*(s) =0
for s < —o and for s > o, e.g., sinc(z) is o-bandlimited when o > 1/2, 22 is
o-bandlimited when ¢ > 0, and e~™" is not o-bandlimited for any o > 0. Of
course, « is o-bandlimited if and only if a” is o-support-limited.

As we develop sampling theory in Chapter 8, we will often have occasion to form
products « - f, B % f where « is o-bandlimited, § is o-support-limited, and f is an
arbitrary generalized function. We will now verify that such generalized functions
a, (3 satisty the sufficient conditions (79), (80) and thereby show that these products
are well defined.

Let 3 = g™ where g is CSG and m is a nonnegative integer, and assume that 3
is o-support-limited. Then ¢(") () =0 for x < —o and for x > o, so we can write

9(z) = pr(x)h(=0 — ) +7(2) + pr(z)h(z — 0) (100)

where p;,pp are polynomials of degree m — 1 or less, where h is the Heaviside
function, and where

~(x) is continuous for — o < x < ¢ with (101)
v(z) =0 for z < —o or = > o,

see Fig. 7.16. We take m generalized derivatives of (100) to obtain the representation

m—1
Bla) =" (@) + Y [eud™ (@ + 0) + du® (z — 0)] (102)
n=0
where
Cu = _p(Lm_M_l)(_U)a du = pg%m_u_l) (O'>’ m= Oa 11 , M — 1
p, (z)

—0 X —0 g x g xr

Figure 7.16. The truncated polynomials p;,pr and the function
~ for the CSG function g that gives a o-support-limited g = ¢g(™).
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Now if « satisfies (101), the Fourier transform

) = [ @i

—0

and its derivatives
g .
[V (s)]™ = / (—2miz)"y(x)e 2™ T dx, n=1,2,...
—0
are continuous and bounded with

[ ()™

S(Qﬂa)”/ |v(z)|dx, n=0,1,2,....

—0
This being the case,

m—1
BM(s) = (2mis)™ ™ (s) + Z (2mis)H [c ™7 + d,e” 2% (103)
pn=0

and all of its derivatives are CSG. You have often observed that the Fourier trans-
form of a function with “small tails” must be “very smooth.” In this extreme case
where 3 has “zero tails,” the functions 8", 8", 3", ... are all CSG.

Finally, when « is o-bandlimited we apply the above argument to the o-support-
limited function 3 = oV and thereby conclude that o = 8" and all of its derivatives
are CSG. You can now add the o-bandlimited functions to the list following (79)!

7.6 Limits of generalized functions

Introduction

If you dislike the tedious 0 — € arguments from calculus or chafe a bit at restrictions
on the term-by-term differentiation of infinite series, you may not look forward to
yet another study of limits. But you cannot do analysis without limits, and you
must learn a few new concepts before you can make sense of the relations (4) or (5),
before you can work with infinite series of generalized functions, or before you can
use Fourier analysis to find generalized solutions of partial differential equations.
The theory is easy to learn and exceptionally powerful. You will more than double
your ability to use generalized functions for solving problems as you master the
ideas in this short section!
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The limit concept

Let f, f1, fa, ... be generalized functions. When we feed these functionals some
Schwartz function ¢, we produce a complex number f{¢} and a sequence of complex
numbers fi1{¢}, fo{o}, ... . If we have

Tim_fo{¢} = f{¢} whenever ¢ €,

we will write
lim f, = f.
n—oo

In some situations we will associate a generalized function f) with each (real or
complex) value of the parameter A in some neighborhood of a (finite or infinite)
point L. If we have

lim fr{o} = f{¢} whenever ¢ €5,

we will write
li Ix=171.
)\lm A

We will use the unadorned terms limit and converge in the usual fashion, e.g.,
we say that f1, fo, ... converges to f or that f is the limit of fi, fs, ... when
f =lim, .o fn. In cases where the context admits some competing notion (e.g.,
pointwise limit, uniform convergence) we will add the modifier generalized or weak
to specify that we are using this new limit concept.

Example Let f,(z) :=nll(nz), n=1,2,.... Show that lim, .o f, = 0.

Solution Let ¢ be any Schwartz function. We use the integral mean value theorem
from calculus to write

00 1/2n
fulo} = /_ nT(nz)é(z) dz = n / o(z) dz = $(£n)

—1/2n

for some choice of &, in the interval (—1/2n,1/2n). Since ¢ is continuous, we have
lim £, {0} = lm_6(¢,) = 6(0) = 5{0)}. .

You can use a similar argument to interpret the limit (5) from Fig. 7.2.

Example Let e,(z) := €?™*. Show thatlim, .4 es = 0 even though |es(z)| = 1
for all real values of s and .

Solution Let ¢ € S. Since ¢” € S we can write

. _ 3 * 2misx _ : N(_ —
Jip enloh = i [ ola)et s = i ¢(=s) =0 "
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Example Forn=0,1,... and h > 0 we define

Pon(z) = hin S (- (Z) 5(z — mh), (104)

m=0
see Fig. 7.17. Show that limj, .o P, = (—1)"5(").

Py Py, Py

| LT

DL

Monopole Dipole Quadrapole
Figure 7.17. The monopole Fy p, the dipole P 3, and the
quadrupole Ps j, from (104).

Solution Let ¢ € S. We observe that

h
P p{o} = %W(h) —¢(0)] = ;L/ » ¢ (ur) duq,

1

1 h h
Pa{o} = 75162 =200 +00)] = 3z [ [ 6w +un) s e,

and use a multivariate version of the integral mean value theorem to see that

lim P, {6} = 61" (0) = (~1)"5" {¢}. .
Example For all A < p we define

M .
Fan(@) ::/ 28T (s,
A

Show that

lim lim =9
A——00 #*H‘Oof)\u ’
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thereby giving meaning to the synthesis equation
S .
o(x) = / 1- e s,
— 00

which corresponds to (66).

Solution The CSG function fy, is represented by the fundamental functional

Fau{d}) = h { / g 2’Tisxds}¢>(x)dx

r=—00

/ / 27risw dx ds
s=A =—00

/ ¢"(—s)ds, ¢ €S,

SO
Jim T f{0) = / 6" (—s)ds = 6(0) = 6{8}, S€S
(with the order of the iterated limits being of no importance). [

Example Let f be a generalized function with the derivative f’. Show that

) — i FE W) )

h—0 h

(105)

Solution Let ¢ € S be given. We will define

Ih—/ fa:—i—h})l S da:—/ ' (x)p

=h" / f(x —h) — ¢(x) + he'(x)]dz, h<0orh>0,

and show that I, — 0 as h — 0. We choose a CSG function g and nonnegative
integer n such that f = ¢(™ and use Taylor’s formula (from Ex. 2.28) to write

I = b / T @) e — ) — o(a) + h ()] da
— (1 / @6 (@ = h) — 6 () + h 6™V ()] de

=(=1)"h / / (h — )™ (2 — u) du d.
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We choose some m = 1,2,... so that

M =
/Oo(l—l—x2

is finite, and we set

B(H):= max [1+ (|z|+ H)?*™ oD (z)] when H >0

—oo<r<oo

to ensure that

/°° (1|Jgr(il)m -(1+2*)"¢" ) (2 —u)|de < M - B(H)  when |u| < H.

We can now use this bound to write

|h| 00
] < B! / (1] - u) / 19(2)6"D (& — w)| dz du

h
gM-B(H)-% when 0 < |h| < H,

and thereby conclude that I, — 0 as h — 0. ]
Example Let f be a generalized function. Show that

lim f(a +h) = f(z). (106)

Solution Let ¢ € S. We use (105) to write

oo

lim [ [f(x+h) — f(@)]é(x) x—hmh/ f“h T o d

h—0 — oo
=0- /_ f'(z)p(x)dx = 0. n

Infinite series of generalized functions

Let f, f,, v =0,£1,£2,... be generalized functions. We will write
oo
F=>"f o f=fo+fi+fat
v=0

provided that
f=lim Y f,
v=0
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and we will write

Z fo oo f=-+fot+fa+tfo+hHh+ ot

V=—00

provided that
—1 n
= i 9 li e
f=m D St T D]

Example Show that

Z d(xz —v). (107)

V=—00

Solution Let ¢ € S be given. The series (40) converges absolutely, so we can set
0y (x) := 0(x — v) and use the sifting relation (64) to write

lim <25>{¢}_ lim _ Za{¢}_ lim _ Z¢ = II{¢}. .

n—>+oo n—>+oo v=m n—>+oo v=m

Example Let f be the 1-periodic function with

1 1 1
f(l”):wl(fﬂ)i——ifc +2x—ﬁ when 0 <z <1

where w; is the Bernoulli function (4.20) from Fig. 4.5. Show that the corresponding
Fourier series

oo 27r'ikm
fl@) = Z (2mik)?
k

[

(108)

is weakly convergent.

Solution Let ¢ € S be chosen, and let

M := max
—oo<r<oo

Z o(x 4+ n)|.

n=-—oo
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The Fourier series for the continuous piecewise smooth function f converges uni-
formly, so we can write

‘ / Z F(@)o(x) dz — / Z 227::6 6(z) dz
g/
-1 Z@:ﬁx)(Z“*")dx

M - -
= <Z RS |2wk|2>
k<m k>n

—0 as m — —o0 and n — +oo. n

You can use an analogous argument to see that any continuous, piecewise smooth,
p-periodic function on R has a weakly convergent Fourier series.

Example Let ag,a1,as, ... be complex numbers and assume that the series
f(x) = apd(z) + a6’ (z) + azd” () + - - - (109)

converges. Show that a, = 0 for all but finitely many values of v =0,1,2,... .

Solution Since every term of the series vanishes for —co < z < 0 and for
0 < x < 0o, the same is true of f, so we can use (91) to write

n—1
fla) = e, ¥ (x)
v=0
for some choice of n = 1,2, ... and some choice of the coefficients ¢y, c1,...,Cn_1.
Now let m =n,n +1,... be selected. We construct a mesa function ¢ € S that

takes the constant value 1 in some neighborhood of the origin (as in Fig. 7.5) and

then set
P(x) == (™ /m!)o(z).
By construction, v is a Schwartz function with
1 ifv=m
™) =
v0) {0 otherwise,

SO
n—1

(1), = Jim (Zij wd®) = (L ad® ) =o. .

v=0
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Transformation of limits
Let f, f1, f2, ... and g, 91, g2, ... be generalized functions. If you can show that
Jim fo(z) = f(z),  lim ga(2) = g(2)

then you can use each of the following.

lim [c¢fn(z) +dgn(z)] =cf(z)+dg(x), ¢,deC

lim f,(x—x9)= f(z— ), —00 < xg < 00,
lim f,(az) = f(ax), a<0 or a>0,
lim f{"(z) = f® (), k=1,2,...,

Tim 205 = 1),
Jim a(z) - folz) = alz) - f(z), a,o,a” ... are CSG,

lim (B fo)(z) = (B=f)(x),  B".B",6",... are CSG.

n—oo

Corresponding transformations can be used when
lim fy(z) = f(z),  limgy(z) = g().

You can establish these rules by chasing definitions.
Example Let lim,, o fn, = f. Show that lim, . f; = f’.

Solution Given any ¢ € S we write

f/{¢} = /_ f’(x)(,/)(x) dx Integral notation

= /OO f(x)[—¢’(x)] dx Definition of f

= lim fn(l') [—QIJ/(l‘)} dx  Since lim f,=f
n—oo [_
oo
=: lim Ir(z)p(z) dz Definition of f/,
n—oo [
= lim fé{gb}, Integral notation
n—oo

and this proves that lim,, ., f, = f’.



Limits of generalized functions 435

Example Let lim, o f, = f. Show that lim, o f2 = f".

Solution Given any ¢ € S we write

f/\{¢} = / f/\ (S)¢(S) ds Integral notation

= /_ f(:l?) [¢A (QS)] dx Definition of f*

= lim In (x) [¢/\ (.%‘)] dx  Since lim fn,=f
n—oo |_
o0
=: lim ffl\(s)qb(s) ds Definition of f}
n—oo J_ o
= lim f,f{qﬁ}, Integral notation
n—oo
and this proves that lim,, . f) = f". ™

The rules for transforming weak limits are exceptionally useful when we work
with infinite series. Indeed, if you can somehow show that

f@)= Y f@)

vV=—00

then you can write

flz—mzo) = Z fo(z —xzg), —o00<xp< 00,

V=—00

flaz) = i fv(lax), a<0 or a>0,

v=—00
[ee]

@ =3 fP@), k=12,

vV=—00

o= S 1)
a(z) - f(z) = i a(z) - fu(z), «a,d,a”, ... are CSG, and

oo

B @)=Y B*f)@), pBY,B",... are CSG.

V=—00

We will give a few examples to show what can be done with such transformations.
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Example Use the weakly convergent series (107) to show that 11" = III.

Solution We Fourier transform (107) term by term to obtain the unusual (but
weakly convergent!) infinite series

o0

IH/\(S) — Z 6—271'1‘1/5.
v=—00
We use this series with the special Poisson sum formula (67) to write

" {¢} = lim Z / N M p(s)ds = lim Z ¢"\(v)

m— —00

n—4oolV=m - n—toolV=m
= D ¢"= ) ov)=10{¢}, ¢S
This gives a second proof of (68)! n

Example Use the Fourier series (108) to show that ITI" = III.

Solution  We have shown that (108) converges weakly, so we can differentiate this
series term by term to obtain the weakly convergent series

0 eQﬂ'ikx e ik
/ " g
Fay= 3 S = Y e

=—00 k=—00

k#0 k#0

After examining the graphs of f, f/, f/ as shown in Fig. 7.18, we see that
IH(.’L‘) _ f”(ﬂi‘) +1= Z 627rikac.
k=—oc0
We take Fourier transforms term by term and use (107) to write
" (s) = > (s — k) = II(s).
k=—o00

This gives a third proof of (68)! n
Example Let p > 0, so that

1 T
flx) = ];Hl <p> has the FT F(s) = II(ps).

Express f and F' in terms of translates of 9.
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JANA VAN

-1

Figure 7.18. The piecewise parabolic Bernoulli function f from (108)
and its derivatives f’, f".

Solution We dilate (107) term by term and use (65) as we write

RICEED !

F(s) = Zé(ps—n Z5< )

n=—oo n*—oo

see Fig. 7.19. The spacing 1/p for the comb F is the reciprocal of the spacing p
for the comb f. [Compare this with (4.44).] It is very easy to derive (110) by

using III. ]
I (x/p) ) F(s) = Ll(ps)
“3p —2p —p P 2 3pT —1/p 0 /p 7

Figure 7.19. The dilated comb and its Fourier transform as given in (110).
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Example Let ¢y, cq,co,... be complex numbers and assume that the power series
f(x) =co+cr1x+ o + - -

converges weakly. Show that ¢, = 0 for all but finitely many values of v.

Solution Since the power series converges weakly, we can take Fourier transforms
term by term to obtain

0s) , , 0"(5)

7 (s) = cod(s) + ¢ o m

Our previous analysis of (109) shows that ¢, = 0 for all but finitely many v. n
You may be surprised by this result. The familiar Maclaurin series

1—a?/20 42 /4 —28/6! + -, o —a3/31 4 2°/5 =27 /7 - -

from calculus converge pointwise to the generalized functions cosz, sin z, but these
power series do not converge weakly. You can freely use the new notion of limit
with Fourier series but not with power series!

Partial derivatives

Let u(x,t) be a generalized function of x for each choice of the parameter ¢ in some
real interval (a,b). We will write

ug(x,t) for the generalized derivative }llinb u@ +h, t})b —ule,?)

of u(x,t) with ¢ being fixed, see (105);

u”(s,t) or U(s,t) for the generalized Fourier transform (111)
of u(x,t) with ¢ being fixed; and

t+h)— t
ut(x,t) for the generalized limit }llin%) wa,t+ })L u(@, t)

when this limit exists.

Since the process of taking generalized derivatives and Fourier transforms commutes
with that of taking generalized limits we can always write

(ut)a(2,t) = (ua)i (2, 1)
(ue)" (s, t) = (u")e(s, 1)

when u; is defined. We will routinely use such relations as we solve partial differ-
ential equations in Chapter 9.

(112)
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Example Let f be a generalized function. Show that
6727Tiha: -1
lim ———— = —2mix - .
lim (@) mix - f(x)
Solution We Fourier transform and reflect the limit
s HR) = f(s)
1 =
Lim - f7(s)
from (105) to obtain the desired result. n

Example Let u(x,t) := II(x — ct) where ¢ > 0 and where ¢ is a real parameter.

Show that u(z,t) = —c ug(z,t).

Solution We will calculate u,, u; and verify that w, = —cu;. Since the box

II(x — ct) has jumps +1,—1 at x = ct — %, x=ct+ %, we have

ug(z,t) = 6(x —ct + %) —o(x —ct — %)

Now when 0 < h < 1/¢ we find

-1 ifct—%<:v<ct—%+ch
Oz —ct—ch) —M(z—ct) =9 +1 ifct+5<az<ct+3+ch
0 otherwise
and when —1/¢ < h < 0 we find

+1 ifct—%+ch<a:<ct—%

Mz —ct—ch) -z —ct)=¢ —1 ifet+i+ch<az<ct+3
0 otherwise.

It follows that
ug(z,t) := lim A (2 — ct — ch) — T(z — ct)]

h—0
=c[-6(z—ct+1)+6(x—ct—3)
= —cug(z,t).

For a more efficient argument, we can use (105) to write

II(x — ¢t — ch) — (x — ct)

ug(x,t) := lim

h—0 h
e lim u(x — ch,t) — u(z,t)
h—0 —ch

= —cug(x,t).
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7.7 Periodic generalized functions

Fourier series

Let p > 0, let f be a generalized function, and assume that f is p-periodic, i.e.,
flz+p)=f(z) for —oo < < 0. (113)

We will show that f can be represented by a weakly convergent Fourier series

fz) = i cpe e/ (114)

k=—o00

with the corresponding weakly convergent series

fi(s) = i cx6 (S‘D’ (115)

k=—o00

giving the generalized Fourier transform. (You will soon learn how to find the
Fourier coefficient ¢, k = 0,4+1,+2,....) Fourier and his contemporaries tried to
establish such a representation for an arbitrary p-periodic continuous function, but
they were unsuccessful because they did not have a suitable limit concept.

We begin by writing
fla) = g™ (x)

where g is CSG and n is a nonnegative integer. We will replace g by an antiderivative
(59), if necessary (and augment n accordingly), to make sure that g is continuously
differentiable. Since f is p-periodic, we then have

[9(z+p) —g(@)]™ =0 for —oc0 <z < o0,

and this implies that
g(x +p) — g(z) = q(z) (116)
where ¢ is a polynomial of degree n — 1 or less.
We determine coefficients ag, a1, ..., a,_1 such that

2] +ot an_lx["—l]

q(2) = apz!® + a2 + gyl
where
[3]

20 :=1, 2=z 2P =z(zx—p), 2z :=z(x—-p)(z-2p),....

These factorial powers have the forward differences

(z+p)H -zl = fp. 21 k=12,
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so the polynomial

Ik
kp

n
qo(x) := Z Ok—1
k=1

of degree n or less has the forward difference

n SN
0l +) — a0(o) = 3 s T — a) (117)
k=1

We now set
g0(z) = g(x) — qo()
and use (116), (117) to see that

go(r +p) = g(x +p) — qo(x + p)
= [9(z) + q(2)] — [q0(x) + q()]
=go(z) for —oo <z < 0.

Since gg is a continuously differentiable p-periodic function on R, the analysis from
Section 1.5 shows that the Fourier coefficients

1 /7 .
Golk] :== p/ go(x)e T Re/P gy ke =0,+1,42,. ..
0

are absolutely summable. This guarantees that the ordinary Fourier series

o0

90(37): Z Go[k}e%rikx/p

k=—o00
converges weakly. We repeatedly differentiate this series term by term and write

2mik
p

f@) =g (@) = 6" (0) + 6" (0) = 3 (

k=—o00

) Golk]e?™ =/ 1 ¢{™(0).

(Since qq is a polynomial of degree n or less, q(()n) is a constant.) In this way we

show that f has the representation (114) with

a{(0) if k=0
crL = i \" 118
g (2””“) Golk] ifk==+1,42,... (118)
p

and

2r\" 1 [P n
lew| < ==) - = | |go(z)|da ¢ |k, k=41,42,.... (119)
p P Jo
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Example Find the Fourier transform of the 5-periodic generalized function

i II(x — 5n). (120)

n=-—oo

Solution  We use Poisson’s relation (4.18) to obtain the Fourier series
oo
L. k 2mikx /5
x) = —sinc| = | e .
fa)= Y geine( )
k=—o0

This series converges weakly (differentiate the antiderivative!), so we can take
Fourier transforms term by term to obtain

f(s) = ki:oo é sinc <§> ) (5 - §> , (121)

see Fig. 7.20. [

f() )

5

)

Figure 7.20. The 5-periodic function f from (120) and the
corresponding generalized Fourier transform f” from (121).

Example Use (107) to infer that III, III" are 1-periodic and thereby show that
" = M.

Solution We translate (107) term by term to infer that

Zéx—f—l—y 2633—1/ I (z).

v=—00 Vv=—00

Knowing that IIT is 1-periodic, we use (115) (with p = 1) to write

[ee]

1" (s) = Z cko(s — k)

k=—o00
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for suitably chosen ¢;’s. Since e~2™® and each of its derivatives is CSG, we can
apply this factor to the terms of (107) and then use (82) to see that

e—27m‘x . ]_H(x) _ Z 6—271'1'1 . 5(.’£ _ V) — Z 5(33 — y) = I_H(x)

We then use the modulation rule to show that I1I" is 1-periodic,
1" (s + 1) = II"(s),
and thereby infer that ¢, is independent of k, i.e.,
1" (s) = cII(s)

for some constant c. Finally, we use the Parseval identity as we write

i e = /00 ]_H(:/U)e_”"C2 dx

n=—oo
oo

= / HIA(s)ef“2 ds =c / IH(s)e*’TS2 ds =c Z e ™

n=—oo

and thereby show that ¢ = 1. This gives a fourth proof of (68)! n

Example Let p > 0 and assume that the zero function z(x) = 0 is given by the
weakly convergent series

Z(ﬂ?): Z dkeQﬂFikx/p.

k=—o0
Show that di = 0 for each k [and thereby prove that the representation (114) is
unique].

Solution Let k =0,£1,£2,... be selected. We construct a mesa function ¢, € S
such that

P <I;> =1 and ¢x(x) =0 when

k‘ 1
iU—*Z*;
p p

see Fig. 7.5. Since

N(s) = i ) (3 - ;)
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we can then write
. - 1%
i :mlgr_loozdv(bk (p) :ZA{%} =0. u
n—4ooV=m

If the series (114) converges weakly, then the limit function f is p-periodic and
(119) shows that the coefficients are slowly growing in the sense that

lex| < B-|k|™ when k=4+1,4£2,... (122)

for some choice of B > 0 and some nonnegative integer n. We will now establish
the converse.

Let ¢, k =0,£1,+2, ... satisfy (122) and let p > 0 be selected. Given ¢ € S we

p

and use this bound with (122) to see that

> |exd <]]z)‘ <3 |BE k2 (ﬁ) 2

k0 k0

C := max
|| >1

< BC Zk‘2 < 0.
k0

In this way we see in turn that

ch¢(];>? ¢€S

k=—o0

SR

k=—00

converges absolutely, that

converges weakly, and that
Z cke27'rikx/p
k=—o00
converges weakly to a generalized function f that is p-periodic.

Example Let p > 0. For which values of the complex parameter z does the series

9
E Z|k\6271'7,k:z/p

k=—00

converge weakly?

Solution The series converges weakly if and only if the coefficients z!*| are slowly
growing, i.e., if and only if |z] < 1. n
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The analysis equation

A p-periodic generalized function f can be synthesized by the Fourier series (114),
but the expression (118) for the ¢;’s is a bit unwieldly for routine use. We will
suitably modify the familiar formula

1 [P .
o= / f(x)e 2mke/P gy | =0,41,42, ...
pJo
to obtain an analysis equation that makes sense within the present context.
When we use a = —1, b = ¢ = 0, d = 1 for the mesa function of Fig. 7.5, we
obtain the tapered box
1
N B(u) du
b(z) = f‘l‘i (123)
fo B(u) du
where
e V/lO-2)] jfo<z <1
B(u) := . (124)
0 otherwise.

From (123) we see that b is a Schwartz function with

b(x) =b(—x) for —1<uz<1,
b(z) >0 for -1<z <1 (125)
b(z) =0 for —co<z < —-lorl<z< oo,

as shown in Fig. 7.21. We use (123) with the symmetry
Blu) =p(1—u), —oo<u<oo

to see that
b(z)+b(l—xz)=1 forO<z<1

or equivalently (since b is even),

bx)+bz—1)=1 forO<z<1. (126)

b(z)

1 0 17

Figure 7.21. The tapered box b from (123).
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By using (125)—(126) we easily compute the samples

> & n+1
B(k) ::/ b(z)e~ 2"k gy = Z / b(z)e~ 2™k dy
o0 1 ‘ B 1 |
— Z / b(x -+ n)6—27rzk95 dr = / [b(x) + b(l’ _ 1)]6—27le’$ dx
n=—oo 0 0
! i 1 ifk=0
0 0 ifk=41,42,...

of the Fourier transform. Since b and B are Schwartz functions, we can use (107),
(82), and (127) to write

B(s)-(s) = Y_ B(s)-6(s—k)= > B(k)-5(s— k) =5(s)
k=—00 k=—o00
and thereby obtain the weakly converging series
> b(w—k) = (bxI)(z) = 1. (128)

k=—oc0

Now let f be a p-periodic generalized function with the Fourier series (114). We
evaluate f at the Schwartz function e=27*/Pp(z/p) and use (127) to write

[ (G) = [ (20 oo () o

l=—00
= Z ce /OO e 2milk=0z/p <x> dx
v —ee )00 p
=p Y cB(k—10)
l=—00

= PCk, kzo,il,i2,

In this way we obtain the desired analysis equation

1 [ ;
cp = p/ f(z)e~2mika/pp <;> dr, k=0,+£1,+2 ... (129)

for the Fourier coefficients of a p-periodic generalized function f.
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Convolution of p-periodic generalized functions

When f, g are piecewise smooth ordinary functions on T,, we use the familiar inte-

gral
/ F(w)g(e — u) du

from (2.1) to define the convolution product. We will now introduce a corresponding
definition that allows us to work with generalized functions on T,. [In essence, we
will formally replace du by b(u/p)du and change the limits in the above integral to
+o0, see (129).]

Let p > 0, let

Z Ck€27rikx/p7 g(x Z dk€27rzkm/p (13())

k=—o00 k=—o00

be arbitrary p-periodic generalized functions, and let

by(z) = b <;> .

Since b, is a Schwartz function, we can form the product b, - f, and since b, - f is
p-support limited we can form the convolution product (b, - f) * g. We will define

f®g:=(bp-f)xg (131)
and show that within this context (2.18) takes the form

(f®g)(x Z pepdye®m I, (132)

k=—o00

Here * is the convolution product for generalized functions on R and ® is the new
convolution product for generalized functions on T,. Indeed, we first convolve the
p-bandlimited function b)) with

o= Ses(s- )

l=—00

to obtain the ordinary function

056 = 3 et (5= L) = 3 peBis -0,

l=—00 {=—00

and then use (127) to evaluate

k k
(by - ) <p) — (b0 % /1) <p> =pep, k=0,+1,+2,.... (133)
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We multiply
g™ (s) = Z dio (s — k)

by the bandlimited function (b, - f)”, use (82) and (133) to write

[(By- 1) -" () = D dilby- [)"(5) <8 - k)

k=—o0 p
= deb AN ( ) (s—k)— ipcdeS(S—k),
k=—o00 p k=—00 p

and thereby obtain (132).

You can use (132) to verify that ® has all of the algebraic properties that we would
demand of a convolution product on T,. Indeed, the set of p-periodic generalized
functions is closed under ®, ® is commutative and associative, ® distributes over
addition, and the dilated comb

Op(x) = ( > d(x—4Lp) = —e?mikz/p 134
@)= PILLEED o (130
is the multiplicative identity for ® with
5p®f:f®5p:f>

when f is p-periodic.
Discrete Fourier transforms

Let f be a function on Py and let F' be the corresponding discrete Fourier transform.
The N-periodic sequence f[n], n = 0,£1,42, ... is slowly growing, so we can define
the generalized function

Zf (r —n)

n=—oo

Since f is N-periodic, we can use (65) and (107) to see that

:NZ m:ioodm—n—m]\f) Zl m_zoo(S(x"—m)
_Z:Of[n]]lvm <x;[”>
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We Fourier transform this identity and use (107), (65), (82) in turn to write

N—1 N—-1 00
\(s) = S flnle 2 I(Ns) = S flnle2m S 5(Ns — k)
n=0 n=0 k=—o00
gy —2mins 1 = k
= flnle v Za<s—N>
n=0 k=—o00
oo 1 N-1 Cmikn k
:k:ZOO<NT;)f[n]e k/N>5<S—N>
- k
= k;ooF[k]a (s - N)

Example Find the Fourier transform of
g(@)= Y fln]s(x—n) (135)

when f is the 12-periodic function on Z with

fln] = A (g) when n = 0,+£1,..., 6. (136)

Solution We use the table from Appendix 2 to see that the 12-periodic DFT of f
has the components
1 sinc?(k/4)

Flkl=-—5—"+"F+
K] 4 sinc?(k/12)
We then use the above analysis to write

A= S Flk (s _ 1’2) , (138)

k=—00

when k= +1,...,£6. (137)

as shown in Fig. 7.22. n

() 9"(s)

A tﬂdl I Al

—12 Zz -1 0 1 o

Figure 7.22. The 12-periodic generalized function g from (135)—
(136) and the corresponding generalized Fourier transform g”
from (137)—(138).
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Connections

In Chapter 1 we showed how to construct the Fourier transform of a suitably regular
function on T),, Z, or P from the Fourier transform of some corresponding function
on R by using p-summation or h-sampling, see Fig. 1.22. The generalized Fourier
transform (GFT) that we have studied in this chapter allows us to accomplish the
same objective. Indeed, by using (114)—(115) and the above analysis of the DFT
we see that:

If f on T, has the FT F on Z, then

oo 1 (139)

f(z) has the GFT Z Flklo (s - );

p
k=—o00
If f on Z has the FT F oor; T,, then (140)
1
Z fin]=¢ <a: — n) has the GFT F(s);
n—=-—oo p p

If f on Py has the FT F on Py, then (141)

3" flnlé(z —n) hasthe GFT Y F[K]s (8 - ;)

n=-—oo k=—o00

In principle, you can use these identities to solve the various exercises from Chapter 4
(but in practice you will find that it is usually much easier to use more elementary
direct methods!).

7.8 Alternative definitions for generalized functions

Functionals on S

After reading this chapter and working some of the exercises, you may wish to
consult other references to enhance your understanding of generalized functions.
You will quickly discover that there are three ways to specify the corresponding
functionals on S.

(i) The functional f has the representation

fop =1 [ T @)™ (@) dr, pes

— o0
of (20) where g is CSG and n is some nonnegative integer.
(ii) The functional f is given by

foh =t [ ple)sw)ds, oes

where f1, fo, ... are Schwartz functions that have been chosen to ensure that
the limit exists (for every choice of ¢ € S).
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(iii) The functional f is linear, i.e.,

fcod} =cfl{o} when c€ C, ¢ €S
fd1+ 2} = f{d1} + f{d2} when ¢1,62 €5,

and continuous in the sense that
i figv} =0
whenever ¢1, @2, ... is a sequence from S with the property

Sy B 1P ()] =0

for every choice of n =0,1, ... and m =0,1,... .

The properties of generalized functions can be developed from (i) as done in this
text, from (ii) as done in the well-known monograph of M.J. Lighthill, or from
(iii) as done in the treatise of L. Schwartz (and almost all advanced mathematics
books that deal with this portion of functional analysis). You can use elementary
arguments to show that (i) implies (ii) [Ex. 7.81] and that (i) implies (iii) [Ex. 7.82].
More sophisticated concepts (which lie beyond the scope of this text) are needed
to show that (ii) implies (i) and that (iii) implies (i). You can find proofs for these
structure theorems in Jones, pp. 81-90, or in Richards and Youn, pp. 137-140.

Other test functions
L. Schwartz used (iii) with the test functions

E:={¢:9¢,¢, ¢", ... are continuous on R},
S = {¢EE:xn¢(m)(x) — 0 as ¢ — oo for each m,n =0,1,...} and
D:={¢ € E: ¢(x) =0 for all sufficiently large values of |z|}

to construct corresponding sets of generalized functions (or distributions) on R.
When we replace S by D, E in (iii) we get a larger, smaller class of functionals
because D C S, E D S, respectively. The test functions [E, S, D are closed under dif-
ferentiation, so we can always differentiate the corresponding generalized functions.
(The generalized functions that correspond to I contain ordinary functions of rapid
growth, e.g., e®, so they are particularly useful for solving differential equations.)
Unfortunately, the test functions E, D are not closed under Fourier transformation,
so we cannot Fourier transform the corresponding generalized functions. We must
use the test functions S when we do Fourier analysis!
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Further reading

Bracewell, R.N. The Fourier Transform and Its Applications, 3rd ed., McGraw-Hill,
New York, 2000.

Chapter 5 gives an informal introduction to the generalized functions most
commonly used in electrical engineering. The subsequent chapters show how
such generalized functions are used in practice.

Hormander, L. The Analysis of Linear Partial Differential Equations I, Springer-
Verlag, New York, 1983.
A tightly written treatise on distribution theory and Fourier analysis.

Jones, D.S. The Theory of Generalized Functions, 2nd ed., Cambridge University
Press, Cambridge, 1982.
A comprehensive intermediate-level mathematical monograph that builds on
Lighthill’s introduction.

Kaplan, W. Operational Methods for Linear Systems, Addison-Wesley, Reading,
MA, 1962.
Dirac’s 4 is introduced informally in Chapter 2 and used to solve various ordi-
nary differential equations (with constant coefficients).

Lighthill, M.J. An Introduction to Fourier Analysis and Generalized Functions,
Cambridge University Press, Cambridge, 1958.
A mathematically correct elementary introduction to generalized functions.

Liitzen, J. The Prehistory of the Theory of Distributions, Springer-Verlag, New
York, 1982.
An account of the origins of distribution theory with selected quotations from
the work of Fourier, Heaviside, Dirac, Schwartz, ... .

Richards, J.I. and Youn, H.K. Theory of Distributions, Cambridge University Press,
Cambridge, 1990.
A modern nontechnical introduction to the theory of distributions.

Schwartz, L. Mathematics for the Physical Sciences, Addison-Wesley, Reading, MA,
1966.
An introduction to distribution theory by its creator!

Strichartz, R. A Guide to Distribution Theory and Fourier Transforms, World
Scientific Publishing Company, Hackensack, NJ, 2003.

A very readable exposition of the elements of distribution theory with selected
applications.
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Exercises

®» EXERCISE 7.1 Let fe, ye be given by (1), (2).

(a) Verify that ye(0—) = ye(0+), ye(e—) = ye(e+), yc(0—) = ye(0+), yele—) = ye(e+),
and thereby show that ye, y. are continuous functions on R.

(b) Verify that ye(t) satisfies the differential equation (3) at each point ¢t # 0, €.

(¢) What feature of the model allows us to distinguish between the tap of a tack hammer
and a blow from a sledgehammer?

» EXERCISE 7.2 In this exercise you will sort out the details for the construction (8)
that allows us to recover the values of a suitably regular function from the corresponding
fundamental functional.

(a) Let f,¢ be continuous real-valued functions with ¢ being nonnegative for a < a <.
Show that there is some point £ with a < £ < b such that

/a ’ F@)ola) da = 1(6)- / ()

Hint. Begin with the inequality
m< fle)<M fora<z<b

where m, M are the minimum, maximum values taken by f, and then make suitable
use of the intermediate value theorem.

(b) Let f be continuous for a < x < b and let ¢ be any nonnegative Schwartz function
such that

1
¢(z)=0for |z| >1 and / o(x)dx = 1.
-1

[You can use the construction of (14)—(15) to produce such a function.] Use (a) to
show that

b
nli_)moo/ f(@) [nd(n(z — x9))] de = f(xg), a<xg<b.

= EXERCISE 7.3 Show that the Dirac functional (9) is not the fundamental func-
tional (7) of some piecewise smooth slowly growing function on R.

Hint. Apply (7) to the sequence of dilates ¢n(z) = ¢(nz), n = 1,2,..., of a Schwartz
function ¢ that has been constructed in such a manner that ¢(x) > 0 for —1 < z < 1 and
¢(x) = 0 otherwise.
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» EXERCISE 7.4 Use the mesa function from Fig. 7.5 to construct a Schwartz func-
tion ¢ with the following properties.

(a) Let —0o < a <b<c<d< ooand let p be a polynomial. Construct ¢ € S such that

¢(z)=0 for z<a or z>d;
¢(x) lies between p(x) and 0 for a<z<b or c<z <d; and
é(x) = p(z) for b<z<ec.

(b) Let ag,a1,...,an be constants and let ¢ > 0. Construct ¢ € S such that

$(0) = ag, ¢'(0) =ay, ..., $™(0) =an; and
o(x) =0 for |z| > e

= EXERCISE 7.5 Show that if ¢ € S, then ¢” € S.
Hint. Use the results of Ex. 3.42 and the fact that

D"{(—2miz)™ f(z)} has the FT (2mis)" (D™ f")(s)
when f is a suitably regular function on R and D is the derivative operator.

» EXERCISE 7.6 Let ¢1,¢2 € S. Show that ¢1 x ¢ € S.

Hint. You can work with ¢} - ¢4 and use Ex. 7.5, or you can use the defining integral

(2.1).
» EXERCISE 7.7 Find the value of each of the following “integrals.”
oo oo o0
(a) / 5(3z)e” ™ do (b) / Se—2)e ™ de (c) / §()e™ d
— 00 — 00

(d)/_ 5/(233)6771'9:2 dx (e)/_ 6/(1’_1)677&12 dx (f) _ 6//(m)e*ﬂ'1¢2 "
(g) /_ [COS(W{I})(;(x)]e*WzZ dx (h)/_ [Sin(ﬂ.x)(;/(x)]efﬂmQ dﬁ(l)/; (5/*5/)(:1:)677('/1:2 g

» EXERCISE 7.8 Find and simplify the functional f{¢}, ¢ € S, that is used to
represent the generalized function f when:

(a) f(z