


Introduction to 
Particle Physics 





Introduction to 
Particle Physics 

By 

Dezső Horváth and Zoltán Trócsányi 
 
 



Introduction to Particle Physics 

By Dezső Horváth and Zoltán Trócsányi 

This book first published 2019  

Cambridge Scholars Publishing 

Lady Stephenson Library, Newcastle upon Tyne, NE6 2PA, UK 

British Library Cataloguing in Publication Data 
A catalogue record for this book is available from the British Library 

Copyright © 2019 by Dezső Horváth and Zoltán Trócsányi 

All rights for this book reserved. No part of this book may be reproduced, 
stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording or otherwise, without 
the prior permission of the copyright owner. 

ISBN (10): 1-5275-2808-1 
ISBN (13): 978-1-5275-2808-6 



Contents

Foreword xii

I Particle phenomenology 1

1 Particles and symmetries 3
1.1 Symmetries in particle physics . . . . . . . . . . . . . . . . 3

1.2 Symmetry groups and spin . . . . . . . . . . . . . . . . . . 4

1.3 Fermions and bosons . . . . . . . . . . . . . . . . . . . . . 6

1.4 Mirror reflection: parity . . . . . . . . . . . . . . . . . . . 8

1.5 Charge conjugation . . . . . . . . . . . . . . . . . . . . . . 10

1.6 CPT symmetry . . . . . . . . . . . . . . . . . . . . . . . . 10

1.7 Isospin and strangeness . . . . . . . . . . . . . . . . . . . . 11

2 What is measured in experiment? 15
2.1 Cross section . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.2 Resonance . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3 Quark model 19
3.1 Coloured quarks . . . . . . . . . . . . . . . . . . . . . . . . 19

3.2 Colour interaction, QCD . . . . . . . . . . . . . . . . . . . 21

3.3 Reminder: summing up spins . . . . . . . . . . . . . . . . . 21

3.4 Lightest mesons . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5 Meson nonet (flavour SU(3)) . . . . . . . . . . . . . . . . . 22

3.6 Ground-state baryons . . . . . . . . . . . . . . . . . . . . . 25

3.7 Baryon multiplets . . . . . . . . . . . . . . . . . . . . . . . 26

3.8 Three families of fermions . . . . . . . . . . . . . . . . . . 26

v



vi Table of Contents

4 Dirac equation 31
4.1 Covariant formalism . . . . . . . . . . . . . . . . . . . . . 31

4.2 Gamma matrices . . . . . . . . . . . . . . . . . . . . . . . 32

4.3 Bilinear products of spinors . . . . . . . . . . . . . . . . . . 33

4.4 Free fermions . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.5 Lagrangians and equations of motion . . . . . . . . . . . . . 34

4.6 Conservation of fermion current . . . . . . . . . . . . . . . 35

4.7 Isospin algebra and conservation . . . . . . . . . . . . . . . 35

4.8 Nucleon as quark atom . . . . . . . . . . . . . . . . . . . . 37

5 Interactions 39
5.1 Three interactions of particle physics . . . . . . . . . . . . . 39

5.2 Electromagnetic interaction . . . . . . . . . . . . . . . . . . 40

5.2.1 Local U(1) invariance . . . . . . . . . . . . . . . . 40

5.2.2 Quantum electrodynamics (QED) . . . . . . . . . . 42

5.2.3 Current-current interaction . . . . . . . . . . . . . . 42

5.2.4 Photon . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Mandelstam variables . . . . . . . . . . . . . . . . . . . . . 44

5.4 Strong interaction . . . . . . . . . . . . . . . . . . . . . . . 45

5.4.1 Colour charges . . . . . . . . . . . . . . . . . . . . 45

5.4.2 Nuclear forces . . . . . . . . . . . . . . . . . . . . 47

5.4.3 Local SU(3) invariance . . . . . . . . . . . . . . . . 48

5.4.4 Running coupling . . . . . . . . . . . . . . . . . . . 48

5.4.5 Gluons . . . . . . . . . . . . . . . . . . . . . . . . 50

5.5 Electroweak interaction . . . . . . . . . . . . . . . . . . . . 50

5.5.1 Spontaneous symmetry breaking . . . . . . . . . . . 51

5.5.2 BEH mechanism . . . . . . . . . . . . . . . . . . . 52

5.6 Basic bosons . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.7 Electroweak Lagrangian with interactions . . . . . . . . . . 54

II Experimental methodology 57

6 Accelerators 59
6.1 Magnets: bending and focusing . . . . . . . . . . . . . . . . 60

6.2 Acceleration . . . . . . . . . . . . . . . . . . . . . . . . . . 61

6.3 Colliders . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.4 Flux and luminosity . . . . . . . . . . . . . . . . . . . . . . 62

6.5 Beam cooling . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.6 CERN’s accelerator complex in the LEP era . . . . . . . . . 63



Introduction to Particle Physics vii

6.6.1 Electrons and positrons . . . . . . . . . . . . . . . . 64

6.6.2 Protons . . . . . . . . . . . . . . . . . . . . . . . . 65

6.6.3 Heavy ions . . . . . . . . . . . . . . . . . . . . . . 66

6.6.4 Antiprotons . . . . . . . . . . . . . . . . . . . . . . 66

6.7 Other accelerators . . . . . . . . . . . . . . . . . . . . . . . 66

6.7.1 Tevatron at Fermilab . . . . . . . . . . . . . . . . . 66

6.7.2 HERA at DESY . . . . . . . . . . . . . . . . . . . 67

6.7.3 RHIC at Brookhaven NL . . . . . . . . . . . . . . . 67

6.8 CERN’s facilities in the LHC era . . . . . . . . . . . . . . . 67

6.8.1 LHC, the Large Hadron Collider . . . . . . . . . . . 67

6.8.2 Neutrinos . . . . . . . . . . . . . . . . . . . . . . . 70

6.8.3 Antiprotons . . . . . . . . . . . . . . . . . . . . . . 70

7 Detectors, calorimetry 73
7.1 Event registration . . . . . . . . . . . . . . . . . . . . . . . 73

7.2 Energy loss in matter . . . . . . . . . . . . . . . . . . . . . 74

7.3 Particle identification . . . . . . . . . . . . . . . . . . . . . 77

7.4 Detector types . . . . . . . . . . . . . . . . . . . . . . . . . 78

7.4.1 Multiwire chambers . . . . . . . . . . . . . . . . . 79

7.4.2 Scintillation counters . . . . . . . . . . . . . . . . . 79

7.4.3 Shower detectors . . . . . . . . . . . . . . . . . . . 80

7.4.4 Cherenkov detectors . . . . . . . . . . . . . . . . . 80

7.4.5 Transition radiation detectors . . . . . . . . . . . . . 81

7.5 The CMS detector . . . . . . . . . . . . . . . . . . . . . . . 82

8 Event registration 85
8.1 LEP events . . . . . . . . . . . . . . . . . . . . . . . . . . 86

8.2 Transverse momentum, pseudorapidity . . . . . . . . . . . . 87

8.3 Observation of the top quark . . . . . . . . . . . . . . . . . 89

8.4 Mysterious events . . . . . . . . . . . . . . . . . . . . . . . 89

9 Data analysis 91
9.1 Statistical concepts of particle physicists . . . . . . . . . . . 92

9.2 Basic concepts of statistical analysis . . . . . . . . . . . . . 93

9.3 Fitting parameters . . . . . . . . . . . . . . . . . . . . . . . 95

9.3.1 Goodness of fit . . . . . . . . . . . . . . . . . . . . 95

9.3.2 Confidence level . . . . . . . . . . . . . . . . . . . 95

9.4 Estimating (fitting) parameters . . . . . . . . . . . . . . . . 96

9.4.1 Arithmetic mean and standard deviation . . . . . . . 96

9.4.2 Linear fitting . . . . . . . . . . . . . . . . . . . . . 97



viii Table of Contents

9.4.3 Non-linear fitting . . . . . . . . . . . . . . . . . . . 99

9.5 Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . 100

9.6 Lower and upper limits . . . . . . . . . . . . . . . . . . . . 101

9.7 Monte Carlo simulation . . . . . . . . . . . . . . . . . . . . 103

9.8 Event selection . . . . . . . . . . . . . . . . . . . . . . . . 103

III Basic experiments 107

10 Experimental tests of the quark model 109
10.1 Three fermion families . . . . . . . . . . . . . . . . . . . . 109

10.1.1 Z width . . . . . . . . . . . . . . . . . . . . . . . . 109

10.1.2 Invisible width and the families . . . . . . . . . . . 110

10.2 Hadron jets . . . . . . . . . . . . . . . . . . . . . . . . . . 111

10.3 Fractional charges . . . . . . . . . . . . . . . . . . . . . . . 112

10.3.1 Neutral vector mesons . . . . . . . . . . . . . . . . 112

10.3.2 Pion scattering . . . . . . . . . . . . . . . . . . . . 112

10.4 Colours . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

11 Parity violation, pions and muons 117
11.1 Parity violation . . . . . . . . . . . . . . . . . . . . . . . . 117

11.1.1 τ − θ paradox . . . . . . . . . . . . . . . . . . . . . 117

11.1.2 Wu’s experiment . . . . . . . . . . . . . . . . . . . 118

11.1.3 Parity violation in pion decay . . . . . . . . . . . . 118

11.1.4 Muon spin rotation (μSR) . . . . . . . . . . . . . . 119

11.2 Anomalous magnetic moment of the muon . . . . . . . . . . 120

11.2.1 (g − 2)μ: non-relativistic measurement . . . . . . . 121

11.2.2 (g − 2)μ with relativistic muons . . . . . . . . . . . 122

11.2.3 (g − 2)μ with magic momentum . . . . . . . . . . . 122

12 Kaons and CP violation 125
12.1 Kaons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125

12.2 Neutral kaons . . . . . . . . . . . . . . . . . . . . . . . . . 126

12.3 Kaon oscillation . . . . . . . . . . . . . . . . . . . . . . . . 127

12.4 CP violation . . . . . . . . . . . . . . . . . . . . . . . . . . 129

13 Neutrinos 133
13.1 Weak currents . . . . . . . . . . . . . . . . . . . . . . . . . 133

13.2 Neutrino mass . . . . . . . . . . . . . . . . . . . . . . . . . 135

13.3 Early neutrino mysteries . . . . . . . . . . . . . . . . . . . 135

13.4 Neutrino oscillation . . . . . . . . . . . . . . . . . . . . . . 137



Introduction to Particle Physics ix

13.4.1 Phenomenology . . . . . . . . . . . . . . . . . . . 137

13.4.2 Super-Kamiokande experiment . . . . . . . . . . . . 138

13.4.3 SNO experiment (1999-2003) . . . . . . . . . . . . 139

13.4.4 Neutrino mixing and masses . . . . . . . . . . . . . 140

13.4.5 Neutrino experiments at nuclear reactors . . . . . . 141

13.4.6 Long distance neutrino experiments . . . . . . . . . 142

13.4.7 Sterile neutrinos? . . . . . . . . . . . . . . . . . . . 142

13.5 Present neutrino mysteries . . . . . . . . . . . . . . . . . . 144

14 Higgs boson 147
14.1 Search for the Higgs boson . . . . . . . . . . . . . . . . . . 148

14.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . 148

14.2 Exclusion at LEP . . . . . . . . . . . . . . . . . . . . . . . 150

14.3 Search and observation at LHC . . . . . . . . . . . . . . . . 151

14.3.1 Reactions of the media . . . . . . . . . . . . . . . . 153

14.3.2 Observations . . . . . . . . . . . . . . . . . . . . . 153

14.3.3 Is it really the Higgs boson? . . . . . . . . . . . . . 154

14.4 Vacuum stability . . . . . . . . . . . . . . . . . . . . . . . 155

14.5 BEH field and inflation . . . . . . . . . . . . . . . . . . . . 156

15 Heavy ion physics 159
15.1 Quark gluon plasma . . . . . . . . . . . . . . . . . . . . . . 159

15.2 Hydrodynamics . . . . . . . . . . . . . . . . . . . . . . . . 161

15.3 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 163

15.4 Jet quenching . . . . . . . . . . . . . . . . . . . . . . . . . 164

15.5 Heavy ions at LHC . . . . . . . . . . . . . . . . . . . . . . 165

15.6 Big questions . . . . . . . . . . . . . . . . . . . . . . . . . 165

16 Practical applications 167
16.1 Informatics . . . . . . . . . . . . . . . . . . . . . . . . . . 167

16.1.1 World Wide Web . . . . . . . . . . . . . . . . . . . 168

16.1.2 Grid computing . . . . . . . . . . . . . . . . . . . . 168

16.1.3 Computer simulation . . . . . . . . . . . . . . . . . 169

16.2 Radiation . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

16.3 Accelerators . . . . . . . . . . . . . . . . . . . . . . . . . . 169

16.4 Medical diagnostics . . . . . . . . . . . . . . . . . . . . . . 170

16.5 Medical therapy with radiation . . . . . . . . . . . . . . . . 171

16.5.1 Teletherapy . . . . . . . . . . . . . . . . . . . . . . 171

16.5.2 Hadron therapy . . . . . . . . . . . . . . . . . . . . 172

16.5.3 Neutron therapy . . . . . . . . . . . . . . . . . . . . 172



x Table of Contents

16.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 172

17 Coloured figures 175

Intermezzo 209

IV Standard model of elementary particles 213

18 Gauge theories in the standard model 215
18.1 Underlying gauge group . . . . . . . . . . . . . . . . . . . . 215

18.2 Basics of quantum electrodynamics . . . . . . . . . . . . . 216

18.3 Cross sections . . . . . . . . . . . . . . . . . . . . . . . . . 221

18.4 Quantum chromodynamics . . . . . . . . . . . . . . . . . . 224

18.5 Basics of colour algebra . . . . . . . . . . . . . . . . . . . . 229

18.6 Are we done? . . . . . . . . . . . . . . . . . . . . . . . . . 232

18.7 Symmetries of the classical Lagrangian . . . . . . . . . . . 234

18.8 SU(N)-amplitudes at tree level . . . . . . . . . . . . . . . . 238

18.9 Spinor helicity formalism . . . . . . . . . . . . . . . . . . . 239

18.9.1 Helicity Feynman rules for colour sub-amplitudes

(with massless fermions) . . . . . . . . . . . . . . . 241

18.9.2 A simple application of the helicity formalism . . . . 242

19 Electron-positron annihilation into hadrons 247
19.1 Electron-positron annihilation into hadrons . . . . . . . . . 247

19.2 Ultraviolet renormalization of QCD . . . . . . . . . . . . . 248

19.3 Running coupling . . . . . . . . . . . . . . . . . . . . . . . 255

19.4 Quark masses and massless QCD . . . . . . . . . . . . . . . 260

19.5 Consequences of renormalization and renormalization group

equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 262

19.6 Re+e− at NLO . . . . . . . . . . . . . . . . . . . . . . . . . 264

19.6.1 Real corrections in d = 4 dimensions . . . . . . . . 271

19.6.2 Real corrections in arbitrary d dimensions . . . . . . 273

19.7 Origin of the singular behaviour . . . . . . . . . . . . . . . 281

19.7.1 Event shapes . . . . . . . . . . . . . . . . . . . . . 282

19.7.2 Jet algorithms . . . . . . . . . . . . . . . . . . . . . 283

19.8 Factorization of |Mn |2 in the soft limit . . . . . . . . . . . . 288

19.9 Factorization in the collinear limit . . . . . . . . . . . . . . 290

19.9.1 Regularization of real corrections by subtraction . . 293



Introduction to Particle Physics xi

20 Deeply inelastic lepton-proton scattering 297
20.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 297

20.2 Parametrization of the target structure . . . . . . . . . . . . 298

20.3 DIS in the parton model . . . . . . . . . . . . . . . . . . . . 299

20.4 Measuring the proton structure . . . . . . . . . . . . . . . . 302

20.5 Improved parton model: perturbative QCD . . . . . . . . . 303

20.6 Factorization in DIS . . . . . . . . . . . . . . . . . . . . . . 306

20.7 DGLAP equations . . . . . . . . . . . . . . . . . . . . . . . 308

21 Hadron collisions 313
21.1 Factorization theorem . . . . . . . . . . . . . . . . . . . . . 313

21.2 Are we happy? . . . . . . . . . . . . . . . . . . . . . . . . 315

21.3 Modelling events . . . . . . . . . . . . . . . . . . . . . . . 315

21.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 317

22 Electroweak sector of the standard model 319
22.1 Weinberg mixing . . . . . . . . . . . . . . . . . . . . . . . 319

22.2 U(1) Brout-Englert-Higgs mechanism . . . . . . . . . . . . 324

22.3 Brout-Englert-Higgs mechanism in the standard model . . . 326

22.4 GIM (Glashow, Iliopoulos, Maiani) mechanism . . . . . . . 331

22.5 Fermion masses . . . . . . . . . . . . . . . . . . . . . . . . 332

22.6 Flavour mixing . . . . . . . . . . . . . . . . . . . . . . . . 334

22.7 Parameters and Feynman rules of the

standard model . . . . . . . . . . . . . . . . . . . . . . . . 337

22.8 Neutrino mixing and oscillation . . . . . . . . . . . . . . . 340

22.9 Anomaly cancellation . . . . . . . . . . . . . . . . . . . . . 346

23 Outlook 351

Bibliography 355

Index 36



xii Foreword

Foreword
One of the methods of studying Nature is to penetrate deeper and deeper in

the structure of matter ever increasing the spatial resolution, i.e., studying

smaller and smaller objects. In the history of natural sciences new and new

particles appeared which were thought to be elementary: the four atoms

(a-tom = not divisible) of Anaximenes and Democritus, the elements/atoms

of Dalton and Mendeleev, the atomic nucleus of Rutherford and the so-called

elementary particles of which the proton, the neutron, the electron and the

neutrino are the most well-known. Between 1930 and 1960 hundreds of such

particles were discovered, thus a new level of elementariness was needed

and the quark model appeared. We will see that, in fact, the proton and the

neutron are also composite particles although the electron stays elementary.

This development was crowned by the standard model (SM) in the late

sixties and it is still the uncontested global theory of matter, supported by all

available theoretical and experimental evidence.

In this textbook we summarize the present knowledge of particle physics

at an introductory level. Particle physics is a very broad subject including

many different sub-fields. While we mention many of these, a detailed

account on all is impossible. Our clear focus is on high energy collider

physics that is among the most widely pursued subfields where the threshold

of current research is high. With the Large Hadron Collider in operation new

results appear regularly. Our goal here is to keep the level introductory, yet

help students reach this high threshold making them acquainted with both

the experimental and theoretical minimum needed to comprehend current

research at colliders. Our treatise is detailed on established results of collider

physics while mostly marginal on current developments with the exception

of the discovery of the Higgs particle due to its utmost importance.

The first part (written by D. Horváth) is planned to be accessible for

advanced BSc or freshmen MSc students, while the second part (written

by Z. Trócsányi) on the theory is intended for advanced MSc or freshmen

PhD students in particle physics, with some attempt to go into the rather

complex mathematical formalism of the field. Our aim is to provide concise

but hopefully comprehensive account on the subject and also try to help

students in their decision whether to orient themselves towards experiment

or theory. We assume that the book can be covered during a full academic

year with about 10 hours of serious effort per week. Although the reader

may be confused on several occasions when not all details are given, the

theory is very precisely elaborated and its predictions beautifully agree with

the experimental observations. All present day experimental evidence is
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summarized in the biennial Particle Physics Review of the Particle Data

Group [Beringer et al., 2012]; for a theoretical introduction we recommend

the textbooks of Halzen and Martin [Halzen and Martin, 1984], Collins,

Martin and Squires [Collins et al., 1989], and Perkins [Perkins, 1982]. The

theory provides a nice glance at the key experiments as well.

Experimental particle physics is also called high-energy physics, because

of its basic method of study. Energy is measured in units of electroplate,

eV, the energy gained by a particle of unit charge (e.g. an electron or

proton) when crossing a gap of 1 V voltage. One of the earliest means of

structural studies was the optical microscope. Its resolution is limited by the

wavelength of visible light (corresponding to an energy of ∼ 1 eV) to the size

of bacteria, 10−5 m. The smaller a detail, the shorter wavelength is needed

to see it. For the atoms (10−10 m) we need X-rays or electron beams of

keV (1 keV = 1000 eV) energies, for the atomic nucleus of 10−14 m electrons

or protons between MeV (106 eV) and GeV (109 eV) energies, and for the

quarks (below 10−18 m) up in the TeV (1012 eV) region. Higher energy means

smaller distances and so studying finer details of the structure of matter. As

far as we know at present, the basic particles of the standard model are really

elementary: point-like and structureless.

Throughout this book we use the natural units of particle physics where

the speed of light c and Planck’s reduced constant � = h/(2π) are both equal

to unity and thus both distance and time can be expressed in inverse energy

units, i.e. in GeV−1 (see Table 1).

We shall quote only selected, but not all original publications as this is

intended to be an introductory textbook, not a monograph and we do not

want to overwhelm students. Yet we encourage the reader to consult some

trustworthy sites on the Web (like Wikipedia http://en.wikipedia.org/, Hy-

perphysics http://hyperphysics.phy-astr.gsu.edu/hbase/hph.html and Google

Scholar http://scholar.google.com/) for simple explanations and the inSpire

(http://inspirehep.net/) publication data base for reviews and original pub-

lications. Typing in the author’s name and the date will produce all kind

of information at any depth for the reader. We consider especially use-

ful the web version of Particle Physics Review by the Particle Data Group

(http://pdg.web.cern.ch/pdg/) which provides reliable and comprehensive re-

views. Reliability is important in high energy physics as it is in the very front

of knowledge and as such it is full of speculations, untested ideas and uncon-

firmed experimental findings. At some points we shall only mention some

examples of those: Earth-absorbing black holes produced in high-energy

particle collisions, faster-than-light neutrinos and pentaquarks.

The authors acknowledge the support of the Hungarian Scientific Re-
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Quantity MKS particle physics natural unit � = c = 1

Energy 1 J 6.24 · 109 GeV GeV GeV

Momentum 1 kg m/s 5.61 · 1026 GeV/c GeV/c GeV

Mass 1 kg 5.61 · 1026 GeV GeV/c2 GeV

Distance 1 m 5.07 · 1015 GeV−1
�c/GeV 1/GeV

Time 1 s 1.52 · 1024 GeV−1
�/GeV 1/GeV

Electric

charge (e) 0.16 aC
√

4πε0α�c
√

4πε0�cα
√

4πε0α

Table 1: Natural units of particle physics. α = 1/137 is the fine structure

constant, ε0 = 8.8 · 10−12 F/m is the electric permittivity of vacuum. In the

last column only energy units appear, which permits the use of the power of

GeV to characterize the unit as “mass dimension”, e.g., the unit of length,

GeV−1 is referred to as mass dimension minus one. In this book we use the
units of the last column, except for two cases. One is momentum, which

has natural units GeV/c, to become GeV if c = 1. However, in order not to

confuse it with energy, we keep the natural unit for momentum. The other

exception is the electric charge, for which we use the conventional notation√
4πα, i.e., we use ε0 = 1, which should not cause any confusion.
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Chapter 1

Particles and symmetries

MOTTO:

Central to that theory is the concept of sponta-

neously broken gauge symmetry. According

to this concept, the fundamental equations of

physics have more symmetry than the actual

physical world does.

(Frank Wilczek)

1.1 Symmetries in particle physics
Symmetries in particle physics are even more important than in chemistry or

solid state physics. Just like in any theory of matter, the inner structures of

the composite particles are described by symmetries, but in particle physics

everything is deduced from the symmetries (or invariance properties) of

the physical phenomena, or from their violation: the conservation laws, the

interactions and even the masses of the particles. Symmetries that are not

connected to space and time are called internal symmetries. Continuous

symmetries can be global, i.e. independent of the space-time coordinates, or

local. The latter means that we can choose the orientation of the (external or

internal) coordinate axes freely at any space-time point. These symmetries

are also called gauge symmetries or gauge invariance laws.

3
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In field theory, according to the theorem of Emmy Noether any con-

tinuous global symmetry leads to a conservation law. Thus the freedom

to choose the origin and orientation of our coordinate system leads to the

conservation of momentum and angular momentum, that of the origin of

time measurement to the conservation of energy. The conserved quantities

due to continuous global internal symmetries are called conserved charges.

An example is the free choice of the phase of the electron wave function

as it is not measurable experimentally. This global phase invariance is also

a continuous symmetry and the emerging conservation law is the conser-

vation of the fermion charge in general. The global gauge invariance of

electrodynamics leads to the conservation of the electric charge.

Gauge symmetries have far reaching consequences as they lead to in-

teractions between particles. In the theory part (Part IV) of this book we

formulate gauge symmetries in a precise mathematical sense to discover the

three fundamental interactions of particles (the strong, weak and electro-

magnetic forces). Local symmetry always implies the existence of a related

global symmetry as well, but a global symmetry may not necessarily imply

a local symmetry, hence an interaction.

1.2 Symmetry groups and spin
The characteristic features of particles are described in terms of symmetry
groups. The language of physics is mathematics: the mathematical formu-

lation makes the difference between theory and speculation in physics as

that allows for making quantitative predictions, which then can be checked

experimentally. A new physical theory is accepted if the predictions agree

with all available experimental information.

As symmetries usually appear at transformations of our coordinate sys-

tems the mathematical apparatus is chosen accordingly. A trivial example

is the rotation of a 2-dimensional coordinate system around its origin by

an angle Θ. As shown by Fig. 1.1 the new (x ′, y′) coordinates of point P
are obtained in the rotated system from the old (x, y) coordinates by the

transformation

x ′ = a + b = x cosΘ + y sinΘ ,

y′ = y′′ − c = y cosΘ − x sinΘ .

The point P, just as any two-dimensional vector, undergoes the following
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Figure 1.1: Rotation of a coordinate system in two dimensions: coordinate

system [X ′,Y ′] is obtained by rotating system [X,Y ] by an angle Θ.

coordinate transformation:(
x ′

y′

)
=

(
cosΘ · x + sinΘ · y

− sinΘ · x + cosΘ · y
)
=

(
cosΘ sinΘ

− sinΘ cosΘ

)
·
(

x
y

)
.

This means that the vector

(
x′
y′
)

is obtained by multiplying the vector

(
x
y

)
with the matrix in front of it. An important property of these rotation

transformations is that they do not change the length of the vector pointing

to P (its absolute value) as

x ′2 + y′2 = (x2 + y2) ·
(
cos2 Θ + sin2 Θ

)
= x2 + y2.

The condition that the length of the vector remains unchanged demands

that the complex transformation matrix be unitary:

U†U =
(

U∗
11

U∗
21

U∗
12

U∗
22

)
·
(

U11 U12

U21 U22

)
=(

U2
11
+U2

21
U∗

11
U12 +U∗

21
U22

U∗
12

U11 +U∗
22

U21 U2
12
+U2

22

)
=

(
1 0

0 1

)
Rotations of this type have the following mathematical properties:

• they are additive: rotation by Θ1 and then by Θ2 is equivalent to a

rotation by Θ = Θ1 + Θ2;

• their addition is associative: (Θ1 + Θ2) + Θ3 = Θ1 + (Θ2 + Θ3);
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• they have a unit element: rotation by Θ = 0 which does not do

anything;

• the rotations can be inverted (Θ − Θ = 0 and the inverse elements are

also members of the set.

Sets with operation among its elements obeying these properties are

called groups. Spin is a three-dimensional quantity with the properties of

the rotation group and its mathematical description (representation) is called

the SU(2) group of special (determinant = 1) unitary complex 2×2 matrices.

SU(2) can be applied not only for spin, but for any physical quantity with

similar symmetry properties, like for example the isospin to be introduced

later.

When we increase the degrees of freedom we get higher symmetry groups

of similar properties. The next step, SU(3), which is also used in particle

physics, is the symmetry group of special unitary complex 3 × 3 matrices.

It has three possible eigenstates which can be interpreted as three corners

of a triangle with an SU(2) symmetry between any two of its corners (see

Chapter 3).

In case of complex quantities we can also decrease the degrees of freedom

of rotations, then we get the U(1) group of 1 × 1 unitary matrices, i.e. eiφ

complex phases. That is the symmetry group of the gauge transformations
of the electromagnetic interaction. The simplest manifestation of the gauge

symmetry of electromagnetism is that we can freely choose the zero point

of the electrostatic potential as demonstrated by the birds sitting on high-

voltage wires. The global U(1) symmetry of Maxwell’s equations leads

to the conservation of the electric charge. In the more general case, the

U(1) symmetry of the Dirac equation [Dirac, 1931], the general equation

describing the motion of a fermion, causes the conservation of the number

of fermions or fermion charge [Halzen and Martin, 1984].

1.3 Fermions and bosons
Particles are categorized according to various properties. The most important

one is spin, the intrinsic angular momentum. Spin cannot be interpreted as

related to actual rotation, but it is added to the orbital momentum. Its natural

unit is the reduced Planck constant � = h/(2π). Spin is strange: the spin of

the electron is added to its orbital momentum, but it has two eigenstates only:

it is either left or right polarized as compared to its momentum (or points

either up or down in a vertical magnetic field) in any coordinate system. Thus
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spin is characterized by two independent quantities in three dimensions: by

its length and one of its vector components.

The particles with half-integer spin (S = 1
2
, 3

2
, 5

2
...) follow the Fermi–

Dirac statistics and they are called fermions, whereas those with integer

spin (S = 0, 1, 2 ...) follow the Bose–Einstein statistics and called bosons.
They have very different symmetry and other properties. The wave function

describing a system of fermions changes sign when two fermions switch

quantum states whereas in the case of bosons there is no change; all other

differences can be deduced from this property. Fermion number is conserved

whereas one can create and absorb bosons: a lamp can irradiate any number

of photons (S = 1) and an antenna can absorb them, assuming that the energy

and momentum are conserved. At the same time the electrons (S = 1
2
) in

order to illuminate a lamp or a cathode tube of an old-fashioned TV set

have to be brought there and then conducted away. Another very important

difference is that any number of bosons can be put in any particular quantum

state, but only one fermion: this is Pauli’s exclusion principle. That is why

the electrons of the atom fill discrete energy levels and this is the force which

prevents the atoms of matter and the nucleons in the nucleus from penetrating

each other; it provides macroscopic forms for our material objects.

Actually, the mathematics behind Pauli’s exclusion principle is extremely

simple. The state function for a two-fermion system changes sign when you

exchange its particle states, ψF (1, 2) = −ψF (2, 1), while that of a bosonic

system does not, ψB(1, 2) = +ψB(2, 1). Thus if the two fermions would have

exactly the same quantum numbers, their state function should be zero as

that is the only function which does not change at changing its sign.

Some basic properties of fermions and bosons are compared in Table 1.1.

The elementary fermions of the standard model are the six leptons and

six quarks, the elementary bosons are the mediators of the three particle

interactions and the Higgs boson.

The standard model assumes that our world is constructed of three

fermion families, each consisting of a pair of quarks and a pair of lep-

tons, and their interactions, deduced on the basis of symmetry principles,

are mediated by vector bosons of spin 1. All fermions have antiparticles
with opposite charges and otherwise the same properties. The interaction

of a particle with its antiparticle leads to their annihilation. When an elec-

tron and its antiparticle, the positron annihilate they produce two or three

photons, whereas the annihilation of a proton with an antiproton releases so

much energy, almost 2 GeV, that half a dozen particles (mostly pions, the

lightest mesons) could be emitted.

The lack of antimatter in the Universe [Cohen et al., 1998] implies a
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Property fermion boson

Spin half-integer ( 1
2
, 3

2
. . .) integer (0, 1, 2, . . .)

ψ(1, 2) = ±ψ(2, 1) − +

Pauli exclusion yes no

Particle number

conserved yes no

Condensation no yes

Statistics Fermi-Dirac Bose-Einstein

Table 1.1: Comparison of the properties of fermions and bosons

possible asymmetry between particle and its antiparticle, and that is one of

the great mysteries of physics. Were there antimatter galaxies, they would

emit antiparticles and they would be encircled by a halo of annihilation when

meeting the particles emitted by neighbouring galaxies of ordinary matter,

but the astronomers do not see such phenomena anywhere.

1.4 Mirror reflection: parity
Changing signs of all three coordinates, i.e. changing the directions of all

three axes of a rectangular (Cartesian) coordinate system is equivalent to

changing just one sign: we call it going from the usual right-handed coor-

dinates to left-handed ones as in the usual coordinate system rotating the

x-axis to y defines the direction of z according to a right-handed screw. This

is explained in Fig. 1.2.

Parity is a general property of the mathematical functions of physics.

Any function f (x) can be written as a sum of two functions of odd and even

parities, e.g. by separating even and odd terms in its Taylor or trigonometric

expansion or simply by writing f (x) = 1
2
[ f (x) + f (−x)] + 1

2
[ f (x) − f (−x)].

The parity operator is of course unitary,

Pψ(r, t) = ψ(−r, t); P2 = 1 .

Any interaction with a spherically symmetric potential, e.g. the Coulomb
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Figure 1.2: Mirror reflection and parity change (after D. Kirkby, APS, 2003)

from right-handed to left-handed coordinates.

potential of a point-like electric charge, conserves parity:

V(r) = V(−r)⇒ H(r) = H(−r)⇒ [P,H] ≡ PH − HP = 0 .

As a result, parity is a good quantum number1 of particles. For instance,

the wave function of the hydrogen atom is a parity eigenstate:

PY�m(Θ, φ) = Ylm(π − Θ, π + φ) = (−1)�Y�m(Θ, φ)
with an eigenvalue of Pem = (−1)� where 	 is the orbital momentum. As the

minimal electromagnetic transition, E1 means a change of orbital momentum

Δ	 = ±1, the photon emitted in electromagnetic reactions should have at least

Pγ = −1, the photon has a negative intrinsic parity (it can have an orbital

momentum as well, of course). Anti-fermions have the opposite parities

as fermions, whereas particles and antiparticles of composite bosons2 have

the same parity determined by the parity and angular momentum of its

constituents.

Parity quantum numbers are multiplicative, e.g. for a system of three

particles: P(123) = P1 · P2 · P3. As mesons are bound states of quarks and

1Quantum number: such a physical quantity which can change in definite quanta

only, like charge or angular momentum, and a set of which can uniquely characterize

a physical state.
2Fundamental bosons do not have antiparticles as the existence of antiparticles is

related to the Dirac equation of the fermions.
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anti quarks, their ground state (	 = 0) parity is P(qq) = P(q) · P(q) = −1.

By definition for the nucleons Pp = Pn = +1, thus the parities of quarks are

+1, and of anti-quarks –1. For the particles spin J and parity P are denoted

as JP , e.g. for charged pions π± : 0−.

We shall see later that parity is not conserved by the weak interaction, it

is a broken symmetry. Stephen Weinberg calls such symmetries accidental
symmetries.

1.5 Charge conjugation
Charge conjugation converts a particle into its antiparticle, C |p〉 = ±|p〉. It

is also a unitary operator, C2 = 1. It changes the signs of all kinds of charges:

electric, baryon, lepton charges, but not the spin. Only neutral particles could

be C-eigenstates, the eigenvalue is the C-parity. Strong and electromagnetic

interactions conserve it. For instance, in the electromagnetic decay of the

neutral pion 2 photons are emitted, π0→γγ and C |π0〉 = C |γγ〉 = |γγ〉 =
|π0〉, thus Cπ0 = +1. As C |γ〉 = −1, the π0 cannot decay to three photons,

π0
� γγγ.

1.6 CPT symmetry
Antiparticles can mathematically be treated as particles of the same proper-

ties going backward in space and time. This is a very important symmetry

of Nature: the physical laws do not change when charge (C), space (P) and

time (T) are simultaneously inverted:

• charge conjugation (i.e. changing particles into antiparticles),

Cψ(r, t) = ψ(r, t);

• parity change (i.e. mirror reflection), Pψ(r, t) = ψ(−r, t), and

• time reversal, Tψ(r, t) = ψ(r,−t)K where K denotes complex conju-

gation.

This is called CPT invariance. As time reversal is an anti-unitary opera-

tion, CPT is also anti-unitary, it conjugates the phase of the system, but does

not change any measurable properties. The electron-positron annihilation

can be mathematically described as if an electron arrived, irradiated two or

three photons and left backward in space and time. Using an analogy with
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the electric current we call this particle current; in the above example the

incoming electron and positron constitute a lepton current.

In the simplest case of particle collision two such particle currents ex-

change a boson. This is made possible by the uncertainty principle of

Heisenberg, as it allows a violation of energy and momentum conservation

for very small time and space intervals: ΔE · Δt ≥ �/2 and ΔpΔx ≥ �/2,

whereΔ indicates a very small change in the quantity behind it and E, p, t, x
the energy, momentum, time and space position. The very small value of the

reduced Planck constant (� � 1.055 ·10−34 J·s) ensures that the conservation

laws are fulfilled in the macro-world. The boson mediating the interaction

can be real or virtual depending on whether or not it satisfies the on-shell

condition E2 = m2c4 + �p2c2. Effects of virtual particles can be detected

experimentally: in the inelastic scattering of high energy electrons on each

other quark pairs could be produced when a virtual photon emitted by one

of the electrons is absorbed by a quark of a virtual quark-antiquark pair

produced momentarily by another photon emitted by the other electron.

CPT invariance is supported by ample experimental evidence. Its role

is so important in quantum field theory that according to some theorists it

is impossible to test experimentally: in the case of observing a small de-

viation one should rather suspect the violation of a conservation law than

CPT violation. In spite of this, there are considerable efforts to test it exper-

imentally. The most precise of those tests is the very small possible relative

mass difference between neutral kaon and anti-kaon which is less than 10−18.

The European Particle Physics Laboratory, CERN has built the Antiproton
Decelerator facility in 1999 with the aim to test CPT invariance using pre-

cision spectroscopy of antihydrogen, the bound state of an antiproton and a

positron and also that of anti-protonic atoms where an electron is replaced

by an antiproton. The latter measures the mass and charge of the antiproton

(antimatter physics).
If CPT invariance is indeed a fundamental symmetry of nature, then

the violation of time reversal is equivalent to the violation of the combined

CP symmetry. We shall see later the weak interaction breaks not only P
(maximally), but also CP (a little). As a result, time invariance is also

violated by the weak interaction, in contrast to classical mechanics.

1.7 Isospin and strangeness
One of the earliest observations implying an inner structure of particles

thought to be elementary is the similarity of the proton and the neutron:
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these have almost the same mass and apart from a charge effect the strong

interaction within the atomic nucleus affects them identically. Heisenberg
introduced the concept of the nucleon which has two eigenstates, the proton

and the neutron. This needed a new quantum number characterizing it; as

its symmetry properties are identical to those of the spin he called it the

isospin I from isotopic spin (isobaric would be more precise as isotopes

have different numbers of nucleons whereas isobaric nuclei have the same

numbers of nucleons). The nucleon has an isospin I = 1
2
, the proton is the

nucleon state with I3 = +
1
2

and the neutron3 is that of I3 = − 1
2
.

With the development of experimental methods many strongly interacting

particles, hadrons were observed and all had characteristic isospins, i.e. all

could be arranged in groups of particles of similar properties but different

charges according to their isospins. The nucleon has an isospin I = 1
2

and

two similar states, with I3 = ± 1
2
. The lightest hadron, the π-meson or pion

has I = 1 with three eigenstates (I3 = -1, 0 and +1) and three charge states

π+, π0 and π−. The Δ hyperon has I = 3
2
:

Δ−(I3 = −3

2
) , Δ0(I3 = −1

2
) , Δ+(I3 = +

1

2
) , Δ++(I3 = +

3

2
) .

A unit change of I3 involves a corresponding unit change in charge.

Then a third quantum number, strangeness S was discovered. Pairs of

particles were produced in collisions of energetic protons with probabilities

characteristic of the strong interaction and lived long enough that they must

have decayed via weak interactions. They were called V-particles as their

tracks curved in the magnetic field of the detectors in opposite directions.

To explain this Murray Gell-Mann, Abraham Pais and Kazuhiko Nishijima
introduced strangeness S as a new additive quantum number which is con-

served in strong interactions but not in weak reactions. For instance, the Σ−

hyperon (S = −1, I = 1) created in π−p→ K+Σ− decays via Σ− → nπ− with

a lifetime of τ ∼ 10−10 s whereas the Δ+ hyperon (S = 0) decays in Δ+ →
nπ+ with a lifetime of τ ∼ 10−23 s. It was postulated that only the weak

interaction can change the new quantum number.

Strangeness and isospin made together an SU(3) group which made it

possible to construct a unique frame for all known particles. In order to

explain this, Murray Gell-Mann and George Zweig suggested the quark
model of hadrons. Using three new elementary fermions, three quarks

(Table 1.2), all observed hadrons could be described. Isospin became the

3In nuclear physics often a converse convention is used and I3 = + 1
2 is associated

with the neutron.



Particles and symmetries 13

quantum number of the two lightest quarks and because of the analogy to the

spin the I3 = +
1
2

state was named up quark with the sign u and the I3 = − 1
2

state down quark, d. The third quark’s quantum number is the strangeness,

so that is the strange (s) quark. The isospin and strangeness, characterizing

the various kinds of quarks are called flavour quantum numbers.

The quark model postulates that quarks can bind together only in two

ways: in quark-antiquark pairs, those are called mesons, and three-quark

states, those are the baryons. As the quarks have spin 1
2
, naively we expect

that mesons are bosons and baryons are fermions. Quarks have baryon

number 1
3

and fractional electric charges: in units of elementary charge e
the u quark has charge + 2

3
while the d and s quarks − 1

3
. This of course gives

the proper charges to the proton p = [uud] and the neutron n = [udd] or the

pions: π+ = [ud], π0 = 1√
2
[uu + dd], π− = [ud]. Thus the third component

of the isospin is directly connected to the charge, as its unit increase means

replacing a d by a u quark, i.e. increasing the total charge by + 2
3
− (− 1

3
) = 1.

quark J eq B I3 S Y = B + S

u 1
2
+ 2

3
1
3

1
2

0 + 1
3

d 1
2

− 1
3

1
3

− 1
2

0 + 1
3

s 1
2

− 1
3

1
3

0 −1 − 2
3

Table 1.2: The first three quarks (up, down and

strange): their spin J, electric charge eq, baryon num-

ber B, isospin third component I3, strangeness S and

hypercharge Y = B + S.

Strangeness and isospin constitute together an SU(3) group which made

it possible to construct a unique frame for all known particles. Gell-Mann

and Zweig proposed in 1964 the quark model with the first three quarks

(Table 1.2). The quark model postulated that quarks cannot exist free, only

in bound states of two combinations: the three-quark bound states make

baryons and the quark+antiquark states mesons. As the quarks are fermions

(J = 1
2
), the baryons are also fermions with baryon number B = 1 while the

mesons are bosons with B = 0. The proton is a [uud], the neutron a [udd]

ground state (i.e. J = 1
2

with zero orbital momentum) whereas the pions are

the lightest [qq′] (q, q’ = u, d) combinations.
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Exercise 1.1
What invariance principles are violated by the weak, electromagnetic and
colour interactions?

Exercise 1.2
What are the analogies and differences between spin and isospin?

Exercise 1.3
How can the three-dimensional spin be characterised by two independent
quantities?

Exercise 1.4
What gauge symmetry facilitates the conservation of electric charge and
fermion number?
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What is measured in
experiment?

MOTTO:

I was brought up to look at the atom as a nice

hard fellow, red or grey in colour, according

to taste.

(Ernest Rutherford)

Physics is experimental science, in particle physics every single statement

has to be based on experimental observations. In high energy physics the two

most important experimentally measurable quantities are the cross section

and the resonance with its invariant mass and width.

2.1 Cross section
The probability of an interaction in accelerator experiments of nuclear and

particle physics is usually characterized by the ratio of the measured tran-

sition probability of the reaction in unit time, and the intensity of the bom-

barding beam, the flux:

σ = W/Φ ,
15
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measured in units of cross section (see Fig. 2.1).

Figure 2.1: Cross section characteriz-

ing interaction in particle scattering

The flux of a beam, Φ = nb · vb
is the number density times velocity

of the particles in a beam, number

of particles divided by cross sec-

tion and time. The σ cross section

of a reaction is measured in units

of barn (1 barn = 10−28 m2). That

unit comes from atomic physics and

it is very large in particle physics

(that is how it got its name), so large

that in high energy physics we most often express our measured cross sections

in pico-barn (1 pb = 10−12 barn) or femto-barn (1 fb = 10−15 barn).

When the interaction is perturbative, i.e. the Hamilton operator can be

written in the form H = H0 + H ′ with eigenvalues E ′ 
 E0, the transition

probability between an initial and a final state can be written as

W(i→ f ) = 2π

�
|Mi f |2ρ f

where ρ f =
dn

dECM
is the density of final states in unit centre-of-mass energy

and Mi f ≈
∫
ψ∗f H ′ψidτ is the transition matrix element, the overlap between

the two approximate wave functions. As the strong and electromagnetic

interactions are invariant under CP (charge and parity) reflection, CPT
invariance, which is supposed to be valid in field theory, demands that they

should also be invariant against time reflection T , and so |Mi f |2 = |Mf i |2
(the principle of detailed balance).

In a centre-of-mass system a non-relativistic a + b → c + d particle

scattering reaction will have the cross section

σ =
W

navi
=

1

π�4
|Mi f |2 (2Sc + 1)(2Sd + 1)

viv f
p2
f

where p f = | �pc | = | �pd | is the final state momentum, na = 1 is the number

of scattered particles, vi = |�va − �vb | and v f = |�vc − �vd | are the relative

velocities. The density of available final states will be

dp f

dE0
=

EcEd

p f E0
≈ 1

v f
.
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2.2 Resonance
A simple, structureless, unstable system will have an exponential decay law

|ψ(t)|2 = |ψ(0)|2e−Γt (2.1)

with a lifetime τ = Γ−1 where Γ is the decay rate. The state function of the

system will have a time evolution ψ(t) ∼ ψ(0)e−iMte−Γt/2. Here we use the

natural units of particle physics . In SI units τ = �/Γ � 6.582 · 10−22/Γ s

where the Γ energy is measured in MeV. The time development of the system

(assuming a plain wave initial state) isψ(t) = ψ(0)e−iMte−Γt/2, and its energy

amplitude will be the Fourier transform of the time amplitude:

χ(E) =
∫ ∞

0

ψ(t)eiEtdt =
∫ ∞

0

ei(E−M)te−Γt/2dt =
1

i(E − M) − Γ/2
The result of the Fourier transformation is a probability distribution,

which appears in the measurement as a Lorentz curve:

|χ(E)|2 = 1

(E − M)2 + Γ2/4 (2.2)

This is the Breit-Wigner resonance (Fig. 17.2, left): an energy distribution

with a maximum at the M mass of the decaying particle and a Γ width

corresponding to its decay probability. New particles can be discovered by

observing the Breit-Wigner resonances of their decays, those of course have

to be at the same (so-called invariant) mass in the different decay channels.

One of the most important resonances in high energy physics is the Z peak

in electron-positron collisions (Fig. 17.2). Two colliding beam accelerators,

LEP at CERN and SLC at Stanford were especially built to study it, and they

provided an incredible wealth of information for testing and confirming the

standard model, the theory of particle physics.

We have shown above how the lifetime of a decaying particle is connected

to its energy spectrum. In low-energy physics exponential decay curves of

the type (2.1) can be directly measured by measuring the time difference

between the birth and decay of a system. In high energy physics the reactions

are usually much too fast for that, so the lifetimes have to be estimated by

measuring the width of the mass resonance of the decaying particle.

Exercise 2.1
Why can we use cross sections to characterize interactions in particle scat-
tering?
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Exercise 2.2
How can we discover a new particle by measuring energy in particle scat-
tering?

Exercise 2.3
How can one estimate the lifetime of a decaying particle by measuring the
energy of its decay products?
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Quark model

MOTTO:

Just because things get a little dingy at the

subatomic level doesn’t mean all bets are off.

(Murray Gell-Mann)

3.1 Coloured quarks
The quark model, although very successful in explaining particle properties,

had serious inconsistencies. Nobody understood, for instance, why only

those postulated two kinds of bound states (3-quark and quark + antiquark

combinations) exist, why there are no free quarks in Nature and why there

could be several quarks in a particle in exactly the same quantum state in

spite of the Pauli principle. An excellent example for the latter is the Δ++

particle: it has double charge and spin 3
2

and so it consists of three u quarks

in the same spin state.

In the course of the history of particle physics, whenever some new

unexplained behaviour was observed, often new quantum numbers were

introduced. Good examples for those are isospin and strangeness. In order

to explain the magic combination of three identical quarks, a new quantum

number was suggested: colour charge, in analogy with the three basic colours

seen by our eye, with three possible values, red (R), green (G) and blue (B).

19
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Figure 3.1:

Colour-SU(3) with its three eigenstates and SU(2)-type stepping operators

The quarks have colour charges whereas anti-quarks have anti-colour ones.

Colour solved all those problems: the new quantum number made each

quark state in the observed particles specific and so the Pauli principle was

fulfilled. Moreover, colour is considered to play the same role for the strong

quark–quark interaction as the electric charge in electrodynamics: it is the

strong charge. The existence of all observed particles is consistent with the

condition that only colourless (white) states are allowed in Nature. This

condition accounts for the non-existence of free quarks (quark confinement),
as only the combinations of colour+anti-colour (those bound states are the

mesons) or that of all three colours (baryons) can exist. This is an algebraic

explanation for quark confinement. The dynamical understanding is far more

complex.

Thus there is a good analogy between the strong colour charge of quarks

and colour vision in humans. The three eigenstates of the quark charges

correspond to the three basic colours and strong anti-charge is the analogy

of the complementary colour. The equilibrium mixture of the three charges

or the mixture of charge + anti-charge will be neutral, colourless in colour

vision.

In order to get free particles we have to construct colourless states.

According to the experimental observations colour makes the state functions

of the composite bosons, the mesons symmetric and of the baryons, as

required for fermions, antisymmetric. For the mesons it is of the form
1√
3
(RR + GG + BB) and for the baryons 1√

6
(RGB − RBG + BRG − BGR +

GBR−GRB). Anti-baryons have the colour arrangement 1√
6
(RGB−RBG+
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BRG − BGR + GBR − GRB). Thus when building the state function of a

mesonic or baryonic system, we just have to construct a symmetric (space

⊗ spin ⊗ flavour) function and let the colour part make it symmetric or

asymmetric as needed.

The quark model was very successful: it explained all observed hadrons

and correctly predicted the existence of new hadronic states. There are no

exceptions, like e.g., states with charges Q > 2 or isospin I > 3/2.

3.2 Colour interaction, QCD
The strong interaction is interpreted as an interaction of colour charges. As

this means an exchange of colour between quarks, its mediators should have

the form colour+anti-colour. There are 9 such combinations, but one of

them does not exchange colour, drop out as colourless, so there are eight

independent ones, called gluons. The existence of 8 gluons corresponds

to the 8 generators (denoted as λ1 . . . λ8 in Fig. 3.1) of the related SU(3)
group. Comparison of the colour interaction with electromagnetism shows

similarities and differences as well. The gluons and the photon are similar as

they carry neither electric charge nor isospin, have zero mass and their spin-

parity is JP = 1−. However, while the photon does not carry the charge of

its mediated electromagnetic interaction, the gluon carries the strong charge,

colour. As a result, there is a strong gluon-gluon interaction. Photons can

freely propagate whereas gluons cannot: they must convert into colourless

free hadrons. When we try to separate two coloured objects, quarks or

gluons, more and more energy is consumed and more and more gluons are

produced until the energy is sufficient to break up and unite all coloured

particles into hadrons. This fragmentation or hadronization goes on until no

free colour remains. An electric charge when watched from a large distance

is partially screened due to vacuum polarization as different charges attract

and identical ones repulse each other, whereas the colour grows with distance

as all colours attract each other the same way. Colour interaction strengthens

with increasing distance while the electromagnetic one weakens.

3.3 Reminder: summing up spins
When constructing a meson we add up 1

2
spins: S1 = S2 =

1
2
; S = S1+S2 = 0

or 1: 2 ⊗ 2 = 3 ⊕ 1, thus the result is 4 states, a triplet and a singlet. The

eigenstates of the angular momentum operator �J = (J1, J2, J3) are of the form

|S,M > where S is the spin and M is its projection.



22 Chapter 3

Triplet states:

|S = 1,M = +1 >= ↑↑
|S = 1,M = 0 >= 1√

2
(↑↓ + ↓↑)

|S = 1,M = −1 >= ↓↓

⎫⎪⎪⎬⎪⎪⎭ (3.1)

Singlet state:

|S = 0,M = 0 >=
1√
2
(↑↓ − ↓↑) (3.2)

The conserved quantities and eigenvalues of angular momentum are:

J2 |S,M >= S(S + 1)|S,M > and J3 |S,M >= M |S,M >.

The projections are increased and decreased with the stepping operators:

J± = J1 ± iJ2 such that J±| j,m >=
√

j( j + 1) − m(m ± 1)| j,m ± 1 >.

3.4 Lightest mesons
From the two light quarks, u and d one can construct 4 JP = 0− pseudo-
scalar (zero spin, negative parity) mesons (2 ⊗ 2 ⇒ 3 ⊕ 1): I = I1 + I2 =
1
2
+ 1

2
= (0, 1) (Table 3.1).

I I3 meson state charge mass (MeV

1 +1 ud = π+ +1 139.6

1 -1 −ud = π− −1 139.6

1 0

√
1
2
(uu − dd) = π0 0 135.0

0 0

√
1
2
(uu + dd) = η0 0 547.9

Table 3.1: The lightest mesons: the three pions, and the η0.

3.5 Meson nonet (flavour SU(3))
Figure 3.2 shows how the three lightest quarks can combine into the pseudo-

scalar mesons. uu, dd and ss can be combined in three different ways to get

symmetric bound states as shown in Table 3.2. This scheme also shows that

the Y hypercharge is a real charge as it changes sign when going from K0 to

K0, i.e. between a neutral particle and its antiparticle.
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Figure 3.2: Construction of the meson nonet of the three light quarks (3⊗3 =

8 ⊕ 1). A, B and C are the three possible symmetric combinations of uu, dd

and ss.

(I = 0, I3 = 0) C = 1√
3
(uu + dd + ss) (singlet: η1)

(I = 1, I3 = 0) A = 1√
2
(uu − dd) (triplet: π0)

(B ⊥ A, B ⊥ C) B = 1√
6
(uu + dd − 2ss) (rest: η8)

Table 3.2: Symmetric combinations of uu, dd and ss.

The quark flavour states of the meson nonet have to be combined with

spin states. If the spins of the quarks are anti-parallel they will make JP = 0−

pseudo-scalar mesons, parallel spins make JP = 1− vector mesons. Orbital

momentum L between the quarks will change the state parity P = −(−1)L .

The lightest, ground-state, neutral pseudo-scalar mesons are listed in

Table 3.2. States B and C have the same quantum numbers (I = 0), they will

mix and create two mass eigenstates: η1, η8 ⇒ η, η′ and the latter can be

observed in experiment:

η = η8 cosΘp − η1 sinΘp

η′ = η8 sinΘp + η1 cosΘp

}
where Θp ≈ 10◦ is the mixing angle. In particle physics all states that may

mix happen to mix with mixing angles to be determined experimentally. We

shall see more such cases later.

As the SU(3) group corresponds to 3 SU(2) subgroups, in the scheme

drawn in Fig. 3.2 in addition to the usual SU(2) isospin connected to the u↔d

exchange one can define similar symmetries for u↔s and d↔s; historically,

the u↔d SU(2) was called I−spin, the d↔s SU(2) U−spin and the u↔s

SU(2) V−spin, but these obsolete quantities are not used any more.
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Figure 3.3: Construction of the lightest hadrons using the first four quarks. Left:

pseudo-scalar (a) and vector (b) mesons ; right: baryons of octet (a) and decuplet (b)

structure [Beringer et al., 2012]). Note the nucleons at the back of the baryon octet.

Adding the fourth quark, charm to the set we get an SU(4) scheme.

In the left panel of Fig. 3.3 each horizontal plane corresponds to the Y
vs. I3 SU(3) plane of Fig. 3.2, the vertical axis shows the charm quark

content. In addition to the quark compositions also the historic names1 of

the mesons are noted. The u+d SU(2) is quite good symmetry as those

quarks have very little mass, of the order of 5 MeV. Flavour SU(3) for u+d+s

is already broken as the s quark is much heavier, around 100 MeV. The c

quark is even heavier, Mc � 1275 MeV, so flavour-SU(4) cannot really be

used for quantitative predictions. We have to point out here that the mass

of our macroscopic world is predominantly due to the energy content of the

nucleons, the masses of the u and d quarks contribute very little.

There are quite a few meson nonets observed (Table 3.3). Generally,

when we speak of a particle, we always write down its mass to make the

situation unambiguous. For instance, the ground-state vector mesons (JP =

1−) are ρ(770), K∗(892), ω(782) and φ(1020) (in Table 3.3 average mass

values are listed).

1Enrico Fermi: Young man, if I could remember the names of these particles I
would have been a botanist.
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L Spin JPC Nonet <mass>

(qq) (qq) I = 1 I = 1
2

I = 0 MeV

0 0 0−+ π K η, η′ 500

1 1−− ρ K∗ ω, φ 900

1 0 1+− b1 K1B h1, h′
1

1250

1 0++ a0 K∗
0

f0, f′
0

1150

1 1++ a1 K1A f1, f′
1

1300

1 2++ a2 K∗
2

f2, f′
2

1400

2 .. .. .. .. .. ..

.. .. .. .. .. ..

Table 3.3: Some of the observed meson nonets. ω ≈ 1√
2
(uu−dd) and φ ≈ ss

flavour−SU(3) ⊗ spin−SU(2)
(qqq) 1

2
+ 1

2
+ 1

2
(L = 0)

3 ⊗ 3 ⊗ 3 2 ⊗ 2 ⊗ 2

(10 ⊕ 8 ⊕ 8 ⊕ 1) ⊗ (4 ⊕ 2 ⊕ 2)
TS MS MA TA TS MS MA

Table 3.4: Three-quark combinations to create ground-state baryons.

3.6 Ground-state baryons
The construction of baryons is similar to that of the mesons, but using three

quarks. They can be composed of symmetric flavour-SU(3) ⊗ spin−SU(2)
combinations (see Table 3.4).

When we switch the positions of the first two quarks in the bound states

of three, we shall have the following symmetry situations:

Total symmetry (TS) (123) = (213) = (132)
Mixed symmetry (MS) (123) = (213) = −(132)
Mixed antisymmetry (MA) (123) = −(213) = (132)
Total antisymmetry (TA) (123) = −(213) = −(132)

As colour makes the baryon states antisymmetric, we have to choose

symmetric flavour ⊗ spin states:
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TS⊗TS = (10 ⊗ 4): 4 decuplets, J = 3
2

1√
2
(MS⊗MS + MA⊗MA) = (8 ⊗ 2): 2 octets, J = 1

2

3.7 Baryon multiplets
Figure 3.3 (right) shows the construction of the lightest baryons of the first

four quarks [Patrignani et al., 2016] for the cases of an octet and a decuplet.

Generally, as a rule, we denote mesons with lower-case, baryons with upper-

case Greek letters (except the first observed ones). The masses of baryons

increase by about 200 MeV when adding an s quark, and that is an indication

of the mass of the s quark. Changing the spin of a baryon from 1
2
to 3

2
i.e. making the quark spins all parallel adds Δm ∼ +300 MeV to the mass.

Baryons, of course, can be excited. Spin states up to J = L + S = 9
2

were

observed.

3.8 Three families of fermions
A big step from the simple quark model to the standard model of particle

physics was made by Sheldon Glashow, Jon Iliopoulos and Luciano Maiani
in 1970 [Glashow et al., 1970] by introducing what became known as the

GIM mechanism. On the basis of various experimental observations they

postulated that the weak interaction arranges the quarks and leptons in pairs,

weak isospin doublets and they predicted the existence of a fourth quark,

the charm (c) quark (Table 3.5), with a charge of + 2
3
. In 1974 two groups,

[Augustin et al., 1974] and [Aubert et al., 1974], succeeded at the same time

in discovering the (cc) bound state (they named it differently so it is now

called J/ψ meson) and for that Burton Richter and Samuel Ting received the

Nobel Prize in 1976.

According to the GIM mechanism there should be as many lepton pairs as

quark pairs (these groups are called families), because in order to prevent the

theory from having anomalies2 the sum of electric charges of all particles has

to be zero. This is fulfilled for each family (see Table 3.5) as the charge sum

from the top down is 0− 1+ 3 · ( 2
3
− 1

3
) = 0, where the factor 3 stands for the

number of quark colours. Of course, as soon as Martin Perl’s group observed

a third lepton, the τ (discovery in 1976, Nobel Prize in 1995) another pair of

quarks were immediately predicted and much later discovered. Thus we have

the menagerie of basic fermions listed in Table 3.5. The place of a fermion

2Their definition is given in Section 22.9.
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Family 1 Family 2 Family 3 charge T3

Leptons
���
νe

e

���L ���
νμ

μ

���L ���
ντ

τ

���L
0

−1

+ 1
2

− 1
2

Quarks
���

u

d′
���L ���

c

s′
���L ���

t

b′
���L

+ 2
3

− 1
3

+ 1
2

− 1
2

Table 3.5: Leptons and quarks, the three families of basic fermions. T3 is

the third component of the weak isospin, the rest of the notation is explained

in the text step by step.

in the table is determined by its weak isospin (T) introduced in analogy of

the isospin: for the upper particles its third component has an eigenvalue

of T3 = +
1
2
, for the lower ones it is T3 = − 1

2
. Thus the pairs are weak

isospin doublets. Note that the weak isospin is quite different from isospin:

the latter is a property of the two lightest quarks only, whereas all fermions

have a weak isospin. Moreover, isospin is a quantum number of the strong

interaction whereas weak isospin is related to the weak interaction.

At this point one could ask how many more such families are hidden by

Nature at higher energies. The answer was given by experiments performed

on LEP of CERN: none, there are three families only. The proof is that

the Z-boson produced in those high-energy collisions can decay in various

ways and the standard model quantitatively describes all of them; detecting

all products the only unknown is the number of different neutrinos which

cannot be seen there. By comparing the total decay width with those of the

detected modes one can deduce the contribution of the invisible ones and

it turned out that we have just three types of light neutrinos (with masses

lower than half of the mass of the Z-boson) and so three families only (a

possible, unobservable heavy neutrino would not carry a charged lepton and

quarks, because those should have been observed already from their low–

energy effects). The number of light neutrino flavours is limited to three by

cosmology as well.

Only the fermions of the first family are stable and therefore those build

our observable world; the heavier leptons and quarks of the second and third
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families decay quickly to lighter ones. For the quarks the eigenstates of

weak and strong interactions are different. The bound states of quarks, the

hadrons are produced in strong interaction. These particles are identified by

their masses, so if we speak of a given quark, we mean their mass eigen-

states. However, the weak isospin doublets should contain weak eigenstates,

mixtures of mass eigenstates, symbolized by the prime behind their symbols

in Table 3.5. It was shown by Makoto Kobayashi and Toshihide Maskawa
(discovery in 1973, Nobel Prize in 2008) that in order to explain CP-violation

(see Section 12.4) there have to be at least 3 families of quarks. It is sufficient

to mix one row of quarks, the lower ones are chosen.

According to our present knowledge Table 3.5 contains all of the basic

fermions of the standard model. The reader should not be frightened by the

extraordinary caution of the above statement. Theoretically, the standard

model was extended in many-many ways and all those extensions predicted

numerous hypothetical new basic particles [Collins et al., 1989]. Although

till now no real evidence was found against the standard model, there are

many possible extensions that do not contradict to the present experimental

data, and so one cannot a priori exclude their validity.

Exercise 3.1
How many different quarks are in the standard model? Explain in what
sense 3, 6, 12, 18 and 36 could be all correct answers.

Exercise 3.2
How could electromagnetic interaction explain the fractional charges of the
quarks?

Exercise 3.3
How can the bound state of 3 spin- 1

2
quarks have a spin 9

2
?

Exercise 3.4
Is there any direct evidence for the 3 quark colours?

Exercise 3.5
Quark confinement is explained by gluon exchange. How could the 983 MeV
proton mass created by three quarks of 5–15 MeV masses?

Exercise 3.6
The existence of gluons is shown by detecting 3-jet events in lepton collisions.
Why must the 3 jets be in the same plane?
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Exercise 3.7
Compare and explain the signs of the terms in Eqs. (3.1, 3.2) and Table 3.1.
Hint: consider symmetries.

Exercise 3.8
How can the quark model explain the non-zero magnetic moment of the
neutron?
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Dirac equation

MOTTO:

When I was a young man, Dirac was my hero.

He made a breakthrough, a new method of

doing physics. He had the courage to simply

guess at the form of an equation, the equation

we now call the Dirac equation, and to try to

interpret it afterwards.

(Richard P. Feynman)

4.1 Covariant formalism
Paul Dirac composed his famous equation for fermions when he tried to

find a linear equation of motion for the electron. The Dirac equation is

based on the covariant formalism: it works with covariant and contravariant

4-vectors where component 0 is related to time and energy and the other

three components make the usual three-dimensional vectors of space and

momentum. The covariant 4-vectors have their indices as subscripts Aμ =

(A0,− �A), whereas the contravariant ones as superscripts: Aμ = (A0,+ �A).
The symbol of derivation has the opposite rule: ∂μ = ( ∂∂t ,+�∇) and ∂μ =

( ∂∂t ,−�∇) where �∇ = (∂1, ∂2, ∂3) is the vector operator of spatial derivation in

31
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three space dimensions.

The same Greek index repeated as super- and subscript means a scalar

product of two 4-vectors (with an implied sum
∑3

μ=0) and it can be written in

different ways: A·B = A0B0− �A· �B = AμBμ = AμBμ = gμν AμBν = gμν AμBν

where

gμν = gμν =
�����

1 0 0 0

0 −1 0 0

0 0 −1 0

0 0 0 −1

����� (4.1)

is the metric tensor that converts contravariant and covariant vectors into

each other and defines the length of a vector in Minkowski space-time.

The eigenfunctions of the Dirac equation are four-component spinors
ψ. The components are in the sequence: particle with spin up, particle

with spin down, antiparticle with spin up, antiparticle with spin down1.

Antiparticles have negative rest energies (masses). As the concept of spinors

was originally connected to the SU(2) eigenvectors of spin, the Dirac spinors

are often called bispinors.

�����
1

0

0

0

�����
�����

0

1

0

0

�����
�����

0

0

1

0

�����
�����

0

0

0

1

�����
↑
↓
↑
↓

m
m

−m
−m

4.2 Gamma matrices
The Dirac–Pauli formalism builds the Dirac equation using the 4 × 4 γ-

matrices. They are defined as γμ = (β, β�α) where β =

(
I 0

0 −I

)
and

�α =
(

0 �σ
�σ 0

)
. Here I =

(
1 0

0 1

)
is the 2 × 2 unit matrix and σi are

Pauli’s spin matrices:

σ1 =

(
0 1

1 0

)
σ2 =

(
0 −i
i 0

)
σ3 =

(
1 0

0 −1

)
.

γμ(μ = 0 . . . 3) is treated as a space-time 4-vector. There is an additional

gamma matrix which plays a key role in this formalism: γ5 ≡ iγ0γ1γ2γ3 =(
0 I
I 0

)
. γ4 is not used here; it replaces γ0 in other notation systems.

1The four components of the spinor have absolutely no relation to the four-vector

of space-time.
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4.3 Bilinear products of spinors
In the physical quantities the following bilinear products of spinors can take

place (Table 4.1):

Type form components effect of P reflection

Scalar ψψ 1 sign +

Vector ψγμψ 4 spatial comp. −
Tensor ψσμνψ 6

Axial vector ψγμγ5ψ 4 spatial comp. +

Pseudo-scalar ψγ5ψ 1 sign −

Table 4.1: Bilinear products of spinors, component numbers and the effect

of coordinate reflection.

In Table 4.1 ψ = ψ†γ0 is Dirac’s adjoint spinor and in the definition of the

tensor σμν = i
2
(γμγν − γνγμ).

The theory of weak interactions is called V-A (vector minus axial-vector)

theory as the weak charged current has the form ψγμ(1 − γ5)ψ.

4.4 Free fermions
The standard model uses the Lagrange-Hamilton formalism of field theory.

The Lagrangian is L = T − V where T and V are the kinetic and poten-

tial energy densities of the particle. The classical Lagrangian depends on

the general coordinates of the particle, L(q, �q, t) whereas in field theory it

becomes a Lagrangian energy density L(Φ, ∂Φ
∂xμ
, xμ) with the Φ(xμ) field

depending on space-time four-vector xμ and on ∂μΦ ≡ ∂Φ
∂xμ .

The Lagrangian is completely equivalent to the equation of motion, but

it shows the symmetry properties of the system better. The Dirac Lagrangian

of the free fermion is

L = iψγμ∂μψ − mψψ (4.2)

where ψ ≡ ψ†γ0 is the Dirac-adjoint spinor. Applying the Euler-Lagrange

equation,

δL = ∂μ

[
∂L
∂(∂μψ)

]
− ∂L
∂ψ
= 0 , (4.3)
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to Lagrangian (4.2) one immediately obtains the Dirac equation for the

adjoint spinor:

i∂μψγ
μ + mψ = 0 .

Hermitian conjugation transforms it into the Dirac equation in its usual,

covariant form:

[i∂μψγμ + mψ]† = −iγμ†γ0†∂μψ + mγ0†ψ = −iγ0γμ∂μψ + mγ0ψ

= −γ0(iγμ∂μψ − mψ) = 0 .
(4.4)

Thus the Dirac equation of the free fermion in its final form is

(iγμ∂μ − m)ψ ≡ (i/∂ − m)ψ = 0 (4.5)

where we introduced the popular notation /∂ ≡ γμ∂μ.

4.5 Lagrangians and equations of motion
In particle physics all equations of motion can be written in terms of the

Lagrange formalism.

• A spinless, massive (J = 0, m > 0) real scalar particle has the

Lagrangian L = 1
2
(∂μφ)(∂μφ)− 1

2
m2φ2 which gives the Klein-Gordon

equation: ∂μ∂
μφ + m2φ = 0.

• The Lagrangian of quantum electrodynamics for a jμ current in in-

teraction with a zero-mass Aμ vector field (mA = 0, JA = 1 spin)

is

L = Efield − current × field = −1

4
FμνFμν − jμAμ

which yields Maxwell’s equation in its covariant form: ∂μFμν = jν
where Fμν = ∂μAν − ∂ν Aμ is the field strength tensor of the vector

field.

• The Lagrangian of a vector field Aμ of non-zero mass mA > 0 and

spin J = 1 would be L = − 1
4

FμνFμν − jμAμ − 1
2
m2 AμAμ, but such a

field was never observed.
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4.6 Conservation of fermion current
Let us add Dirac’s equation multiplied from left by ψ and its adjoint equation

multiplied from right by ψ:

ψ[iγμ∂μψ − mψ] + [i∂μψγμ + mψ]ψ = 0 .

Using the rules of derivation we find ∂μ(ψγμψ) = 0 which states that the

total derivative of the four-vector jμ = ψγμψ is zero, i.e. it is a conserved

quantity. In 3-vector notation it has the form
∂j0
∂t −

∑
i
∂ji
∂xi
=

∂ρ
∂t − div j = 0.

Thus it is a continuity equation. We saw earlier that ψγμψ is the only

vector constructed from the ψ spinor of the Dirac fermion, so that must be

the fermion current that is conserved. The matter density of the fermion

is j0 = ψγ0ψ = ψ†γ02
ψ = ψ†Iψ =

∑4
i=1 |ψi |2 and continuity means the

change in matter density balances the current.

It can be shown that the same law can be deduced from the fact that the

Dirac Lagrangian of the free fermion has a global U(1) gauge invariance.

U(1) is the group of unitary (U†U = 1) 1 × 1 matrices i.e. of U = eiα

scalars. Indeed, the Dirac Lagrangian is invariant to the transformation

ψ→eiαψ where α is a real number. This is, of course, in accordance with

Noether’s theorem that any invariance of a Lagrangian with respect to a

global continuous transformation leads to a conserved current. Thus the

fermion charge is conserved. For instance, a lamp can emit any number of

bosons (photons), but for that one has to bring fermions (electrons) there and

carry them away. Neutron decay is a good example as well: n → p + e− + νe,
where both the baryon and the lepton currents are separately conserved.

4.7 Isospin algebra and conservation
Isospin helps to perform two-nucleon calculations. As we saw before, the

SU(2) symmetry of isospin makes a triplet and a singlet isospin states of two

nucleons, (I = 1
2
) + (I = 1

2
); 2 ⊗ 2 = 3 ⊕ 1 (Table 4.2).

Figure 4.1 illustrates how isospin helps to calculate two-nucleon corre-

lations. When corrected for the Coulomb-interaction differences between

proton and neutron, the 4He + 2N systems have very similar masses. How-

ever, the whole isospin is also a good quantum number. Let us compare the

production rates of deuterons and pions in the inelastic scattering of protons

and neutrons on protons:

R =
σ(pp→π+d)
σ(np→π0d) =?
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|I = 1, I3 = +1 >= pp

|I = 1, I3 = 0 >= 1√
2
(pn + np)

|I = 1, I3 = −1 >= nn

⎫⎪⎪⎬⎪⎪⎭ triplet states

|I = 0, I3 = 0 >= 1√
2
(pn − np)

}
singlet state

Table 4.2: Isospin eigenstates in two-nucleon systems

Figure 4.1: Nuclear masses of 4He + NN isotopes as a function of isospin. The

values are corrected for the proton-neutron differences.

where the σ cross sections2 of the reactions are similar:

σ ∝
∑
I

| < I ′, I ′3 |A|I, I3 > |2 .

Here I, I3 and I ′, I ′
3

are the whole isospin and its 3rd component in the

initial and final states. Conservation laws dictate that I ′ = I; I ′
3
= I3. We

know the measured values Iπ = 1 and Id = 0. The first reaction:

pp→ π+d : |I = 1, I3 = 1 >→|I = 1, I3 = 1 >

and the second one (see Table 4.2):

np→ π0d :
1√
2
(|I = 1, I3 = 0 > − |I = 0, I3 = 0 >)→|I = 1, I3 = 0 >

and thus R = 12/(1/√2)2 = 2 in agreement with the experimental data.

Similar considerations can explain that the deuteron, the bound state of

a neutron and a proton exists whereas that of two neutrons does not.

2In high-energy physics the probability of a reaction is characterized by the

effective cross section of the involved collision process, see in detail in Ch. 2



Dirac equation 37

4.8 Nucleon as quark atom
How could the neutral neutron have a non-zero magnetic moment? Let us

calculate the magnetic moments of the nucleons assuming that they consist

of three quarks only and nothing else (we shall see later that this is a very

rough approximation). We have to construct a symmetric spatial distribution

function as colour will make it antisymmetric and that has no role in the

magnetic moments. To make the state function symmetric we have to couple

wave functions with symmetric flavour (pS) to symmetric spin parts (MS),

or those with antisymmetric flavour (pA) to antisymmetric spin ones (MA).

Here symmetry and antisymmetry are related to the exchange of the first two

quarks:

|p >= 1√
2
[pS · χ(MS) + pA · χ(MA)] .

Flavour (I − SU(2)):
{

pS = 1√
6
[(ud + du)u − 2uud]

pA =
1√
2
(ud − du)u

}
Spin (J − SU(2)):

{
χ(MS) = 1√

6
[(↑↓ + ↓↑)↑ − 2↑↑↓]

χ(MA) = 1√
2
(↑↓ − ↓↑)↑

}
where the arrows stand for spin-up and spin-down states.

After some cancellations we get for the state function of the proton three

permutations:

|p↑ >= − 1√
18
(u↑u↓d↑ + u↓u↑d↑ − 2u↑u↑d↓+

d↑u↑u↓ + d↑u↓u↑ − 2d↓u↑u↑+
u↓d↑u↑ + u↑d↑u↓ − 2u↑d↓u↑) .

Let us try to estimate the magnetic moments of the nucleons considering

the three valence quarks only. The magnetic moment of a quark is μq =
eq

2mq

where eq and mq are the charge and mass of quark q. Assuming that the two

valence quarks have approximately the same mass,

μu

μd
≈ eu

ed
=

2/3
−1/3 = −2 .

The magnetic moment of the proton is roughly

μp =
∑
μq =

3∑
i=1

< p↑|μiσ3 |p↑ >
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where σ3 =

(
1 0

0 −1

)
, u =

(
1

0

)
, d =

(
0

1

)
.

μp =
1

18
[(μu− μu+ μd)+ (−μu+ μu+ μd)+4(2μu− μd)]×3 =

1

3
(4μu− μd) .

By switching u and d in the formula we get the magnetic moment of the

neutron, neutron = proton (u ↔d): μn =
1
3
(4μd − μu) . Their ratio is

μn

μp
=

4 − μu/μd

4μu/μd − 1
� −2

3
.

The experimental observation
μn

μp
= −0.68497934(16) (with the exper-

imental uncertainty of the last digits in parentheses) [Mohr et al., 2016]

agrees very well with this rough estimation in spite of the fact that the

mass of the nucleon is mostly energy (in the form of gluons and virtual

quark-antiquark pairs), the valence quarks contribute very little to its mass.

This agreement is a supporting argument for the validity of the quark model.

Exercise 4.1
Considering the Dirac equation in what sense can we speak of anti-bosons?

Exercise 4.2
What property of the Dirac equation leads to the conservation of the lepton
and baryon numbers?

Exercise 4.3
Prove Eq. (4.4) using γ02

= I, γ0† = γ0 and γμ† = γ0γμγ0).

Exercise 4.4
Explain the signs of the terms when summing up the isospins in Table 4.2.
Hint: consider symmetries.

Exercise 4.5
Why is it a rough approximation to consider the three quarks only for calcu-
lating the magnetic moment of the nucleon?
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Interactions

MOTTO:

When you’ve exhausted all possibilities, re-

member that you haven’t.

(Robert H. Schuller)

5.1 Three interactions of particle physics
As mentioned before, ignoring gravity (which is many orders of magnitude

weaker than the others), there are three fundamental interactions in nature.

Their basic properties are summarized in Table 5.1.

According to the standard model the interactions are deducible from

local gauge symmetries, their source is some charge and they are mediated

by bosons characteristic for the given interaction. These bosons are real

particles in the sense that they exist not only as virtual particles mediating

interactions, but they can also be emitted and observed experimentally. A

fermion enters into an interaction if it possesses the corresponding charge;

the weak interaction operates on all fermions, the electromagnetic one on

those having electric charges or magnetic moments and the strong interaction

on the coloured fermions, i.e., on the quarks.

The photon (γ) mediates the electromagnetic interaction, and the three

weak bosons (W+, W− and Z0) the weak interaction. In the strong interaction

39
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Interaction relative potential lifetime med. mass

strength boson GeV

Strong 1 ∝ r
10−23 s

(Δ→pπ)
8 gluons 0

Electro-

magnetic

10−2 ∝ 1
r

10−20 − 10−16 s

(π0→γγ)
photon 0

Weak 10−7 ∝ 1
r e−

r
R

R ∼ �

MW c

> 10−12 s

(π−→μ−ν)
W±

Z0

80

91

Table 5.1: Three fundamental interactions: strength, potential, lifetime,

mediating boson and its mass. In column 3 r is the distance from the source

and R is the range of interaction. In column 4 under the typical lifetime a

characteristic reaction is presented in parentheses

two quarks exchange colour so the mediating boson, the gluon (from glue)

should carry a colour and an anti-colour. This means 8 different gluons: the

3 × 3 = 9 combinations have one less degree of freedom as the combination

RR + GG + BB changes white to white and so does not carry any colour.

Pion decay provides an excellent example to compare the strengths of

the electromagnetic and weak interactions. The decay of the neutral pion to

two photons, π0→γγ, is a typical electromagnetic reaction with a lifetime

of 8 · 10−17 s. The charged pion can decay via weak interaction only to a

muon and its neutrino: π−→μ− + νμ and its lifetime is 26 ns = 2.6 · 10−8 s, 8

orders of magnitude longer than that of its neutral brother. Please note that

in the above reaction a boson disappeared and a lepton was created together

with an anti-lepton: the fermion number is conserved, whereas the boson

number is not.

5.2 Electromagnetic interaction
5.2.1 Local U(1) invariance
The properties of the electromagnetic interaction have been well known for a

long time: its source is the electric charge, its mediator is the photon and it is
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described by Maxwell’s equations. The Lagrangian of the latter in covariant

form is L = Efield + current×field = − 1
4

FμνFμν − jμAμ. The Maxwell

equations themselves are of the form ∂μFμν = jν , where Fμν = ∂μAν−∂ν Aμ.

The standard model derives electromagnetism from the local version

of the U(1) invariance of the Dirac equation. The requirement of local

symmetry (also called gauge invariance) means that the equation of motion

has to be invariant under a gauge transformation with space-time variation,

i.e. choosing the phase of the electron-field freely at any point in space and

time. For a free ψ(x) particle field the global U(1) symmetry that provides

the conversation of fermion charge is trivial: L(eiαψ) = L(ψ) for any real

constant α as L contains both ψ and its adjoint spinor, ψ ≡ ψ†γ0 with the

complex conjugate. On the other hand, the gauge transformation will be

ψ ′(x) = eiα(x)ψ(x), where α(x) is an arbitrary space-time function.

In the case of the classical Maxwell equation the electromagnetic vector

potential A can be included in the general momentum: p→p+Q f A, where p
is the momentum and Q f is the particle charge. In transition from classical

to quantum treatment the momentum is replaced by derivation, thus electro-

magnetism should involve a general derivative i∂μ→iDμ = i∂μ +Q f Aμ.

Let us define a covariant derivation for the local U(1) gauge symmetry

where the A vector field transforms according to theα(x) function: Aμ→Aμ+
1
e ∂μα, with the e electric charge unit (we assume to have a charged lepton).

The new Lagrangian,

L′ = i ψ γ μDμψ − mψψ

can be brought to the following form:

ψ(i γ μ∂μ − m)ψ + eψ γ μψAμ = L − jμAμ .

We saw previously that the vector jμ = Q f ψ γ
μψ is a conserved current

density of particle f and that should be multiplied by the new A field of the

interaction. We have to account for the energy density of the field itself and

with that we complete the Lagrangian of electromagnetism:

L′′ = ψ(i γ μ∂μ − m)ψ + eψ γ μψAμ − 1

4
FμνFμν

Thus we have an interaction of a massive fermion with a field of zero-mass

field. Local U(1) gauge symmetry does not allow for a massive gauge field

, adding a mass term of 1
2
m2
γAμAμ should violate the symmetry. In order

to create the massive vector fields of the weak interaction the related SU(2)
gauge symmetry has to be violated (see below in Section 5.5.1 and in the

Theory part).
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5.2.2 Quantum electrodynamics (QED)
The free phase gives rise to the electromagnetic field with zero mass of the

mediating boson after some mathematical manipulations. As the photon

has zero rest mass, the electromagnetic interaction has an infinite range

and its Coulomb potential is inversely proportional to the distance. Freely

propagating photons are detected by our eyes (visible light) or by our TV

sets (radio waves) and so their real existence is evident.

Let us consider the interaction of spinless point charges. The Klein-
Gordon equation describes them as free particles: (∂μ∂μ + m2)φ = 0.

Introducing the U(1) covariant derivation one gets

DμDμφ = (∂μ − ieAμ)(∂μ − ieAμ)φ =

∂μ∂
μφ − ie(∂μAμ + Aμ∂

μ)φ − e2 AμAμφ = ∂μ∂
μφ + Vφ

where V = −ie(∂μAμ + Aμ∂
μ) − e2 AμAμ is the scalar potential of the inter-

action derived from the Aμ vector potential.

The transition probability from an i initial to an f final state is propor-

tional to the overlap of their state functions in space-time, the matrix element,
when embracing the V potential: M f i = −i

∫
φ∗fVφid

4x. As the coupling

α ≡ e2

4π � 1
137

is small, the e2 AμAμ term can be neglected in first approxima-

tion (first order perturbation calculation), and then V ≈ −ie(∂μAμ + Aμ∂
μ).

Assuming that the potential disappears at infinity, i.e. in the initial and final

states, ∫
∂μ(φ∗f Aμφi)d4x = [φ∗f Aμφi]+∞(0,−∞) = 0,

after an integration by parts, the matrix element becomes

M f i = −i

∫
(−ie)[φ∗f (∂μφi) − (∂μφ∗f )φi]Aμd4x = −i

∫
ji fμ Aμd4x.

5.2.3 Current-current interaction
Before and after the interaction we have free particles with plain wave state

functions of the form φ(x) = Ne−ip ·x where N is a normalization factor. The

current is j f iμ = −eNiNf (pi + p f )μ exp{i(p f − pi) · x}.
We see that in the QED Lagrangian a term of current×field strength

accounts for the interaction of the fermion with the field. In the following we

shall show in a simple example that interaction between two charged particles

will be similar: the field raised by the current of one particle interacts with



Interactions 43

p
A

p
B

p
C p

D

t
q1 2

Figure 5.1: Scattering of point charges, A + B → C + D (A�B)

the charge of the other one. Thus, it can be treated as a current-current

interaction. The probability amplitude for the transition is proportional to

M f i = −i

∫
φ∗f (x)V(x)φi(x)d4x = −i

∫
j f iμ Aμd4x

where j f iμ = −ie[φ∗f (∂μφi)−(∂μφ∗f )φi] is the electromagnetic current density.

5.2.4 Photon
The scattering of point charges A + B→C + D (A�B) involves a momentum

exchange q ≡ pD − pB = pA − pC and the matrix element determining

the reaction probability will have the form M(1)
f i
= −i

∫
j(1)μ Aμ

(2) d4x. The

potential is the solution of D’Alembert’s equation: �2 Aμ

(2) = j μ(2) with jμ(2) =
−eNBND(pD + pB)μe−iqx , giving Aμ

(2) = − 1
q2 jμ(2). Thus we have for the

transition matrix element

M f i = −i

∫
j(1)μ (− 1

q2
) j μ(2) d4x

and in the given case −iM = [ie(pA + pC)μ](−i
gμν
q2 )[ie(pB + pD)ν] where

gμν is the metric tensor (4.1).

Thus the interaction is described in a symmetric current× current form.

It is mediated by the photon which is obviously virtual as it transfers energy

and momentum and so it has a finite mass, q2 > 0. That, however, is allowed

by Heisenberg’s uncertainty principle. The photon appears between the two

currents as 1/q2: that corresponds to the photon propagator. It has finite

mass and lifetime and is denoted by a wavy line in the Feynman diagrams

(Fig. 5.1).
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5.3 Mandelstam variables
Particle physics widely uses the Lorentz-invariant variables introduced by

Stanley Mandelstam in 1958:

s = (pA + pB)2 ,
t = (pA − pC)2 ,
u = (pA − pD)2 .

The use of these variables makes the handling of the Feynman diagrams

extremely simple as it facilitates the interrelation of different reactions via

diagram rotations, i.e. space-time reflections, called crossing. The scattering

reaction of Fig. 5.1 the original AB→CD reaction is called s channel, a

(s↔− t) rotation gives the DB→CA t channel, and (s↔−u) the u channel.
There are many sum rules for the Mandelstam variables, some of them are

tested in the Exercises.

As the simplest possible case, let us consider electron-positron collisions.

The momentum is p = (E, �k) and its square is p2 ≡ m2 = E2 − �k2 where

m is the electron mass. In the centre-of-mass system (like at the LEP

collider, CERN, 1989-2000) pA = (E, �ki), pB = (E,−�ki), pC = (E, �k f ), and

pD = (E,−�k f ). Then s = E2
CM

(ECM = 2E is the total collision energy),

t = −2�k2(1− cos θ) and u = −2�k2(1+ cos θ), where θ is the scattering angle

between the incoming and outgoing particles.

Without going into details, let us list a few examples for diagram rotation,

or crossing. The square of invariant amplitudes averaged for initial and

summed over final state spins for the e−e−→e−e− Møller scattering is

|M|2 = e4

2

(
s2 + u2

t2
+

s2 + t2

u2
+

2s2

tu

)
where the terms describe the forward and the backward scattering, and

their interference. This interference term has a negative sign from direct

computation, but there is a subtle point in computing the square of the

amplitude: as there are identical fermions in the final state and under particle

interchange fermionic systems are odd, we have to square the difference of

the two contributions shown in the left panel of Fig. 5.2, which turns the sign

of the interference term positive. If we want to obtain the squared amplitude

for the e+e−→ e+e− Bhabha scattering via an s↔ − u crossing, we should

use the sum of the two diagrams, i.e. the Møller formula with minus sign for

the interference term as this time the fermions are different in the final state.
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Thus, we find

|M|2 = e4

2

(
s2 + u2

t2
+

u2 + t2

s2
+

2u2

ts

)
.

Another example is the connection between the γe→ γe Compton scat-

tering and positron annihilation. From the invariant amplitude of the former,

|M|2 = e4

2

(
−u

s
− s

u

)
(there is no interference term in this case), one obtains that of annihilation

(shown in Fig. 5.3):

|M|2 = e4

2

(u
t
+

t
u

)
by an s↔− t crossing.

Another interesting case is electron scattering on muon, described with

a photon exchange (shown in Fig. 5.4 left). Its invariant amplitude is

|M|2 = e4

2

(
s2 + u2

t2

)
,

which gives after an s↔− t crossing the amplitude for the creation of a muon

pair in an electron-positron annihilation. At high energies the lepton masses

can be neglected as compared to their energies and we obtain

|M|2 = e4

2

(
u2 + t2

s2

)
=

e4

2

8k4(1 + cos2 θ)
(4k2)2 =

e4

4
(1 + cos2 θ)

for the invariant squared amplitude of the process e−e+→μ−μ+. Its differ-

ential cross section in the centre-of-mass system is dσ
dΩ

��
CM
= α2

4s (1 + cos2 θ)
where α is the fine structure constant. Integrating over the polar and azimuth

angles, we find its total cross section σ(e+e−→μ+μ−) = 4πα2

3s in very good

agreement with the experimental result.

In experimental papers very frequently
√

s is used to denote the centre-

of-mass energy of particle collisions.

5.4 Strong interaction
5.4.1 Colour charges
The source of the strong interaction is the colour charge. It is mediated

by the 8 gluons and according to the three colours, its origin is the local
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Figure 5.2: From Møller scattering on the left we get via s↔− u crossing

(diagram rotation) Bhabha scattering
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Figure 5.3: From Compton scattering (left) s↔− t crossing we get electron-

positron annihilation (diagram rotation)
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−
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−
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+
μ

Figure 5.4: From electron-muon scattering (left) one gets by s↔− t cross-

ing the production of muon pairs in electron-positron scattering (diagram

rotation)
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SU(3) symmetry. The usual representation of SU(3) transformations is

U = exp(i�α · �T) ≡ exp(i∑8
a=1 αaTa) where αa are real constants for a

global SU(3) symmetry and real space-time functions for the local one.

The eight generators have the commutation rule [Ta,Tb] = i
∑8

c=1 fabcTc .

The structure constants are the following: f123 = 1; f458 = f678 =
√

3
2

;

f147 = f165 = f246 = f257 = f345 = f376 =
1
2

with the permutations fabc =
− facb = − fbac = − fcba. The rest with the possible indices are zero. The

generators can be realized as Ta ≡ λa/2 with the λa 3×3 Gell-Mann matrices

built via extending the 2 × 2 Pauli matrices of SU(2) with zeroes:

λi =

(
σi

0

)
(i = 1, 2, 3).

λ4 =
���

0 0 1

0 0 0

1 0 0

��� λ5 =
���

0 0 −i

0 0 0

i 0 0

��� λ6 =
���

0 0 0

0 0 1

0 1 0

���
λ7 =

���
0 0 0

0 0 −i

0 i 0

��� λ8 =
1√
3

���
1 0 0

0 1 0

0 0 −2

���.
Note that λ3 and λ8 are diagonal. As mentioned before in some sense

SU(3) ∼ 3× SU(2), see Fig. 3.1 and the stepping operator between any two,

k and 	 of the three SU(3) states are 1
2
(λk ± iλ�).

5.4.2 Nuclear forces
Before the colour charge was invented and quantum chromodynamics (QCD)

developed, Hideki Yukawa interpreted the short range of nuclear forces as

a sign of a massive mediator and introduced the Yukawa potential in the

form of V(r) = −g2e−Mr/r (in energy units).1 In V(r) g is the coupling, r
is the distance to the source, and M is the mass of the mediating particle.

Assuming that the proton radius (0.8 fm) should be close to the range of

the interaction, in 1935 Yukawa predicted the existence of the meson with

a mass of M ∼ 100 − 300 MeV. In cosmic rays C. D. Anderson found the

muon of the mass in the right range (first called μ-meson) in 1936, but that

turned out to be a lepton, the heavy brother of the electron. However, in

1947 C. Powell observed the π-meson at M � 140 MeV and it seemed to

be already correct for mediating the strong interaction. Pion exchange is a

good approximation for the nuclear forces at low energies even today. All

three received Nobel Prizes in physics: Anderson in 1936 (for the positron),

1In atomic and sub-atomic physics, the term ‘potential’ is often used sloppily

instead of the correct term ‘potential energy’.
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Yukawa in 1949 and Powell in 1950.

5.4.3 Local SU(3) invariance
A free quark (please note that it cannot exist) should move according to

the Dirac equation L0 =
∑3

j=1 q j(iγμ∂μ − m)qj where the summation is

performed over the colour degrees of freedom, which is usually not shown,

but meant implicitly (over repeating indices).

Global SU(3) gauge invariance of the Dirac Lagrangian is trivial. Local

SU(3) requires invariance under the transformation

q(x)→Uq(x) = eiαa (x)Ta q(x)

(this time the summation over the repeating indices is over the 8 generators).

Here, similarly to the QED case, αa(x) are real space-time functions. The

SU(3) gauge field is introduced via the covariant derivation

Dμ = ∂μ + igsTaGa
μ

with the transformation rule

Ga
μ → Ga

μ −
1

g
∂μαa − fabcαbGc

μ .

The field strength will be

Ga
μν = ∂μGa

ν − ∂νGa
μ − gs fabcGb

μGc
ν

with a coupling gs . Note that the first two terms are exact analogies of the

QED field. Similarly to QED the QCD Lagrangian is

LQCD = q j(iγμ∂μ − m)qj − gs(q jγ
μTaqj)Ga

μ −
1

4
Ga

μνGμν
a .

The QCD Lagrangian in its expanded form (Fig. 17.1), in addition to a linear

term similar to that in the QED case, has terms of higher order interactions.

5.4.4 Running coupling
The colour interaction is mediated by eight gluons. As local gauge invariance

cannot include masses for the mediating bosons, the mass of the gluons is

also zero and so the range of the colour interaction is also infinite; its potential

at short distances is of the Coulomb form, but at long distances it is roughly
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QED QCD

Elementary fermions leptons quarks

Charge electric colour

Gauge boson photon (γ) 8 gluons (g)

no charge have colours

Coupling α(Q2 = 0) = 1
137

αs(Q2 = m2
Z ) = 0.12

Q2 dependence weak strong

Free particles leptons hadrons

Calculation precision < 10−8 5 − 20%

Table 5.2: Comparison of the basic properties of quantum electrodynamics

(QED) and quantum chromodynamics (QCD)

proportional to the distance of the coloured objects. This the consequence

of the fact that–as opposed to the photons–the gluons themselves also carry

colour, the charge of the interaction, and so they interact with each other.

When we try to separate two quarks, the energy of the field will grow with

the distance as the gluons will produce more gluons and quark–antiquark

pairs, and the quarks will combine into hadrons so that we see colourless

objects only: that is quark confinement. Presently it is not known how this

hadronization can be deduced from first principles and it is one of the main

sources of uncertainty of simulations in particle physics.

The strengths of interactions as reflected by their coupling depend on

the distance of the charges involved. This dependence is weak for electro-

magnetism: the fine structure constant at low energies is α(E = 0) � 1/137,

whereas at the energy corresponding to the mass of the Z boson it is

α(E = 91 GeV) � 1/128. The strong coupling is close to unity at low

energies (as manifested by quark confinement) and converges to zero at ex-

treme high energies (asymptotic freedom). Table 5.2 compares the basic

properties of the two interactions.

Because of quark confinement the characteristic particles of strong in-

teraction do not appear free in Nature, but can be studied via their particular

decay properties. The most convincing proof for the existence of quarks

is the detection of events with two hadron showers, jets, in high-energy

electron-positron collisions . In electromagnetic or weak processes the pro-

duction of an additional particle in scattering or decay reactions involves

one more coupling, decreasing the reaction probability by at least an order

of magnitude. In the electron+positron atomic bound state, the positronium
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the two particles can have parallel or opposite spins; the former state, with

spin S = 1 called ortho-positronium decays by emitting three photons be-

cause of parity conservation and has a lifetime of 140 ns, whereas the other

one, the S = 0 para-positronium, decays to two photons with a lifetime of

125 ps. A high-energy hadron jet contains dozens of particles and so cannot

be produced by other interactions, just hadronization.

5.4.5 Gluons
Gluons are produced most frequently in hadron-hadron collisions. In the

proton-proton collisions of the Large Hadron Collider that is the most fre-

quent phenomenon. Higgs bosons are produced most frequently in gluon-

gluon collisions (gluon fusion). Gluon production is manifested best in 3-jet

events (Fig. 17.25); at the production of quark pairs in electron-positron

collisions, the quarks can interact with each other emitting a gluon and we

see an event of three jets in a common plane. The third jet must be from a

boson because of the conservation of fermion charge and that boson must be

coloured to be able to form a third jet.

The properties of gluons were established via studying such 3-jet events

in electron-positron collisions where two of the jets were identified as b

quarks (due to its longer lifetime and increased lepton emission), so that the

third jet had to be a gluon. The unit spin and zero mass of the gluons were

this way confirmed experimentally.

5.5 Electroweak interaction
The weak interaction is weak not because of a small coupling, but because

of its very heavy mediating bosons. When the neutron decays,

n→p +W−→p + e− + νe ,

the 1.3 MeV mass difference have to be transferred by the MW = 80 GeV

gauge boson, which is possible due to the uncertainty relation allowing for a

low decay probability and a relatively long lifetime for the neutron.

The birth of the standard model is usually dated to the early seventies, the

time when the theory of the electroweak interaction was developed, for which

Sheldon Lee Glashow, Abdus Salam and Steven Weinberg was awarded the

Nobel Prize in physics in 1979. The theory had to solve two problems:
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• One had to introduce the masses of elementary particles, those for the

weak bosons and the elementary fermion, the quarks and leptons. As

gauge invariance prohibited that, it had to be somehow violated.

• The equations of electromagnetic and weak scattering had infinite

terms. In order to help to eliminate them a scalar boson (having zero

quantum numbers) was needed.

5.5.1 Spontaneous symmetry breaking
As we could see, the electromagnetic and strong interactions are successfully

described by local gauge symmetries with massless mediating bosons. For

the weak interaction local SU(2) symmetry seems to be adequate except for

the masses: we have to introduce a violation to get finite masses for the

gauge bosons. How can one violate local SU(2) without violating the other

two invariances, to keep zero masses for the gluons and the photon?

The Brout–Englert–Higgs (BEH) mechanism solves this problem the

following way. It unites the electromagnetic U(1) and weak-like SU(2)
gauge symmetries in a vacuum filled with the four-component, scalar SU(2)
BEH field:

φ =

(
φα
φβ

)
=

√
1
2

(
φ1 + iφ2

φ3 + iφ4

)
with the corresponding Lagrangian

L = (∂νφ)†(∂νφ) − μ2φ†φ − λ(φ†φ)2

where (λ > 0) is a real constant. If μ2 > 0 this is a scalar field with a finite

mass; however, if μ2 < 0 its stable vacuum state is not at φ = 0, but at a

different vacuum expectation value.

The Mexican hat illustrates the BEH potential in two dimensions: it has

a perfect axial symmetry (Fig. 5.5) and that is not violated by putting a ball

on the top of the potential at point (0,0). However, the symmetry will be

spontaneously violated when the ball will roll down. In the valley it can

move without spending energy, so we can put one axis of our coordinate

system on the position of the ball. The new system will be characterized

by one parameter, the distance of the minimum from zero, the vacuum

expectation value (generally abbreviated as vev). Then we parametrize the

BEH field around the displaced minimum and write it in the form φ(x) =√
1
2

(
0

v + h(x)
)
.
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Figure 5.5: Spontaneous symmetry breaking. The perfect axial symmetry

of the BEH potential is violated when we place the ball on top, because its

stable state is somewhere in the valley; as it is indifferent where, we can

adjust our coordinate system accordingly.

5.5.2 BEH mechanism
The U(1)Y local gauge invariance, related to the Y hypercharge generates

a B field and the SU(2)L (the L index means that it acts on left-handed

fermion currents only) a 3-component �W = (W1, W2, W3) field. Together

they correspond to a U(1) ⊗ SU(2) 4-component local gauge invariance field

which is then violated by the 4-component (complex doublet) BEH field

. We know that the photon is massless, so we have to restore the U(1)
local gauge invariance, i.e. to separate an electromagnetic vector potential

A from a mixture of the B field with the neutral component of �W , W3. The

charged currents will be W± = 1√
2
(W1 ±W2) and the rest of the neutral part

of U(1) ⊗ SU(2) will give the neutral current with the Z0 boson of mass

mZ � 91 GeV as mediator.

To calculate the electromagnetic current we use the definition of the

hypercharge as Y = 2(Q − T3) where Q is the electric charge and T3 is

the third component of the weak isospin related to the SU(2) doublets.

The current of the hypercharge is connected to U(1)Y as jYμ = ψγμYψ and

the electromagnetic current will be jemμ = J3
μ +

1
2

jYμ (in units of the electric

charge unit). Identifying the coupling of the electromagnetic current with the

charge one immediately gets the coupling for electromagnetism as the mixing

of U(1) with the neutral part of SU(2) and it is characterized–as usual in

particle physics–with the weak or Weinberg mixing angle θW � 28.20. In the

measurable quantities it generally appears as sin2 θW with a slightly energy-

dependent value: 0.221 at low energies and 0.231 at E = mZc2 � 91.2 GeV.
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The BEH field introduces four new degrees of freedom in the system,

three of them will give masses to the weak bosons and the fourth one the

Higgs boson, a heavy particle with all quantum numbers zero. From the

known couplings one can calculate the masses of the weak bosons and the

vacuum expectation value of the BEH field, v � 246 GeV.

The BEH mechanism was independently published in 1964 by Peter
Higgs and two research groups, but at that time it was received by a great

deal of scepticism. It actually introduces an artificial new field, a force field

with no source, which fills vacuum and creates a new scalar particle with all

zero quantum numbers except its mass which is not predicted by the theory.

It is very hard to detect such a particle. It was clarified in the early seventies

only that the BEH mechanism, in addition to the production of masses for

the weak bosons, solves a whole bunch of other problems: facilitates to

introduce the fermion masses and creates the badly needed scalar boson to

eliminate some mathematical difficulties. As the theory and experiment of

particle physics developed, the belief of physicists increased that the BEH

mechanism should be correct: the predicted neutral currents were observed,

the properties of the weak bosons determined, and all experimental data

seemed to agree with the calculations of the standard model. Finally, 48

years after its prediction, the Higgs boson was observed at the LHC in 2012.

5.6 Basic bosons
Thus the interactions are derived from local gauge symmetries: exact SU(3)
symmetry in the case of QCD and a spontaneously broken U(1)Y ⊗ SU(2)L
symmetry in the case of the electroweak interaction. The strong and the

electromagnetic interactions are mediated by zero-mass gauge bosons, the

8 gluons and the photon. The gauge bosons of the weak interaction are

heavy: MW = (80.385 ± 0.015)GeV and MZ = (91.1876 ± 0.0021)GeV

[Patrignani et al., 2016]. The Higgs boson was the last particle of the

standard model discovered, it was observed in 2012 only by the ATLAS

and CMS experiments at the Large Hadron Collider of CERN at the mass

MH = (125.09 ± 0.24) GeV [Patrignani et al., 2016] where the uncertainty

includes both statistical and systematic ones.

With the observation of the Higgs boson the standard model became

complete: all of its predicted particles were found experimentally, all mea-

surements agree with its predictions and no exception or deviation was

observed. Of course, since its foundation in the early seventies, many exper-

iments gave results seemingly contradicting the standard model, but those
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Figure 5.6: CERN coffee mug with the electroweak Lagrangian

were either refuted later or stayed unconfirmed by independent new data.

Thus at the moment we have to accept the standard model as the theory of

matter, of particle physics.

5.7 Electroweak Lagrangian with interactions
The rather complicated electroweak Lagrangian of the standard model in-

cluding the interactions and the BEH mechanism (derived and explained in

detail in Section 22.2 of this book) can be written in an extremely concise

form which is widely distributed on T-shirts and coffee mugs (Fig. 5.6) at

CERN:

L = −1

4
FμνFμν + iψ /Dψ + ψiyi jψjφ + h.c. + (Dμφ)2 − V(φ)

The first two terms are similar to those of QED: the first one is the field

energy density, the second term stands for the interaction of the fermion,
/D = γμDμ where D denotes the covariant derivation. The third term is

a possible gauge-invariant coupling between the fermions and the φ BEH

field that leads to fermion masses, the term (Dμφ)2 generates the masses

of the gauge bosons and the last term is the self-interacting BEH-potential.

The fermion interaction terms need to be complemented by their Hermitian

conjugates. This equation is nicely explained in a generally comprehensible

way in [Woithe et al., 2017].
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Exercise 5.1
What is common in the three interactions described by the Standard Model?
Why is gravity different from them?

Exercise 5.2
To what extent does the magic number 3 connect the 3 fermion families with
the 3 quark colours and 1/3 quark charges?

Exercise 5.3
Conservation of the electric charge and colour charge is connected to which
Noether theorem? What are the two physical quantities whose conservation
is violated by the weak interaction?

Exercise 5.4
Why do quark states mix in ground state? Why is the number of families
limited to 3 in the standard model?

Exercise 5.5
Why does the number of quarks equal that of the leptons?

Exercise 5.6
Explain in what sense it is correct to consider for the numbers of different
quarks 3, 6, 9, 12, 18 and 36.

Exercise 5.7
Explain in what sense it is correct to consider in the standard model for
the numbers of different elementary particles (i.e. of the basic fermions and
bosons) 17, 21, 44, 52, 61 and 109.

Exercise 5.8
How did we determine the number of fermion families? Why cannot quarks
heavier than the top quark exist within the standard model?

Exercise 5.9
Why are the masses of the charged and neutral weak bosons different?
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Chapter 6

Accelerators

MOTTO:

I sometimes think about the tower at Pisa as the

first particle accelerator, a (nearly) vertical linear

accelerator that Galileo used in his studies.

Leon Lederman in “The God Particle: If the
Universe is the Answer, What is the Question”

(by Leon Lederman and Dick Teresi)

One needs higher and higher energies to get deeper and deeper in the

structure of matter. Cosmic rays can have very high energies, but at extremely

low intensity and with no choice of parameters. At the times of Columbus

the front line of discovery in Europe was the shore of the Atlantic Ocean:

he used ships to reach India and found America. Nowadays on the front line

of physics we see the Higgs boson and the quark-gluon plasma, the state of

matter right after the Big Bang. We use particle accelerators, now the Large

Hadron Collider (LHC) of CERN to study them, and in the 21st century after

many decades of hard work we see them both. Of course, the devil is in the

details, one needs more and more precise measurements as that is the only

way to find deviations from the predictions of the standard model, i.e. new

physics.

The word accelerator is a bit confusing in contemporary particle physics

as all machines produce particles with velocities extremely close to c, the

59
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Figure 6.1: Left: forces in a quadrupolar magnetic field. Right: focusing

charged particles in a quadrupole triplet: each magnet focuses in its focusing

plane to the centre of the defocusing plane of the next magnet.

speed of light in vacuum. We increase rather energies than velocities. For

instance, in 2012 the protons in the LHC ring moved at velocities v �
0.99998c.

The electromagnetic field in an accelerator has to serve both to increase

the energy of the particles and to keep them together on the required orbit.

As a general rule, an electric field accelerates and a magnetic fields bends

the trajectories of charged particles. Using potentials one can write for

the magnetic field strength �B = �∇ × �A and for that of the electric field
�E = −�∇Φ − ∂ �A/∂t. Here �∇ = (∂x, ∂y, ∂z) is the 3-dimensional derivation

vector, �A is the vector potential and Φ is the scalar potential.

6.1 Magnets: bending and focusing
The bending strength of a magnetic field B on a particle of charge e and

velocity �v is �F = e�v × �B; | �F | = mv2/r where r is the bending radius. The

magnetic rigidity is Br = p/e ≈ 3.34p for a particle with momentum �p
orthogonal to �B in units of [p]= GeV/c, [B]= T and [r]= m. In length L
the bending angle (Fig. 17.3) is sin Θ

2
= L

2r =
LB

2(Br) . At high energies the

bending angle is small, so sinΘ � Θ and Θ � LB
(Br) .

As shown in Fig. 6.1 a quadrupole magnet focuses in one plane and

defocuses in the other one, while it does not affect the particles in its centre.

They are set in doublets and triplets and tuned so that the first magnet focuses

the particles to the centre of the defocusing plane of the second one, which

ensures an overall focusing effect.

The high-energy accelerators use superconducting technologies. Fig-
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Figure 6.2: Left: The original drawing of Lawrence’s cyclotron patent.

Right: Lawrence with his first cyclotron in hand

ure 17.4 shows the cross section of a dipole magnet of the Large Hadron

Collider. The LHC keeps two proton beams in orbit in opposite directions,

and so it has two storage rings with two sets of dipole magnets.

6.2 Acceleration
At low energies sufficient particle acceleration was achieved using electro-

static fields. The largest electrostatic accelerators are the Van de Graaff

generators which can provide about 35 MeV energies. The contemporary

accelerators use resonance acceleration in microwave cavities rather than

electrostatic fields: �E = −∂ �A/∂t. The modern accelerator cavities can pro-

vide as high as 45 MeV/m acceleration. Figure 17.4 shows such a resonator

cavity built for the TESLA project at DESY, Hamburg.

The first cyclotron was built by E. Lawrence in Berkeley in 1929. He

spent 20 $ on it and was awarded the Nobel Prize for it in 1939. It is

a circular machine (Fig. 6.2) consisting of two half-cylinders (D’s): the

particles circulate in orbits of increasing radii as gaining energy in the gaps

between the D’s where the direction of the field changes in phase with the

circulation of the particles. In the synchrotron the radius of the particles is

fixed and the magnetic fields are tuned to keep the particles in the same orbit.

At CERN all circular machines are synchrotrons.

The linear accelerator (nicknamed linac) developed parallel with the

circular ones. It was first built by Rolf Widerøe in 1928; now usually the

first stage of any accelerator system is a linear one. The accelerator cavity is

in principle similar in the circular and linear accelerators, but in the circular



62 Chapter 6

ones the same cavities are used again and again in every turn of the beam,

whereas in the linear accelerators they are passed only once.

6.3 Colliders
In an ordinary accelerator the beam hits a fixed target. For the collision of

identical particles the centre-of-mass energy is E2
CM
= s ≡ (p1 + p2)2 =

2MXEb + 2M2
X , i.e. ECM ∼ √

Eb . With increasing beam energy ECM, the

useful energy of the collision that can produce new particles grows with the

square root of the beam energy. If both particles are accelerated, the energy

released in the collision is the sum of the beam energies in the CM system.

Another advantage of the colliders with identical particles is the centre-

of-mass system in the laboratory. This means not only an easier interpretation

of the data, but also the possibility to encircle the interaction point by a com-

pletely symmetric detector system with which one can detect all produced

particles.

6.4 Flux and luminosity
Flux is defined as the number density of particles hitting a unit surface of

the target in unit time. It is naturally connected to the cross section, and so

physicists like to give it in units of 1/(barn s).

Luminosity is the rate of collecting data for colliders, similar to the flux

of fixed-target experiments. It is defined as L = f n N1N2

A where f is the

circulation frequency of the colliding beams; n is the number of particle

bunches in the ring; N1, N2 are the numbers of particles in the two kinds of

bunches; A is the spatial overlap of the colliding bunches. The total number

of collisions is characterized by the integrated luminosity:
∫ t2

t1
Ldt which is

usually measured in units of inverse cross section, at LHC in [pb−1, fb−1].
The expected detection rate of a reaction with cross section σ at ε detection

efficiency is R = εσL.

6.5 Beam cooling
In order to store particles in storage ring, they have to be focused, both

in space and in momentum. The trajectories of particles are focused with

magnets, and in momentum space by stochastic and electron cooling. It is
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called cooling in analogy to gases where higher temperature means larger

momentum spread among the molecules.

Stochastic cooling was invented together with many other things in ac-

celerator physics by Simon van der Meer (Nobel Prize, 1984). It is used to

reduce the transverse momentum spread within a bunch of charged particles

in a storage ring by detecting fluctuations in the momentum of the bunches

and applying corrections to reduce them. While acceleration (or in some

cases, deceleration) is done to particles in small, dense bunches, cooling is

most efficient when they are stretched out, debunched. This is technically

done via bridges of microwave conductors (Fig. 17.6) across the storage

ring to time the correction kick to reach the same particle whose wayward

momentum was detected.

Electron cooling, invented by G. I. Budker can be used to low-energy or

slow particles (Fig. 17.6) to reduce their relative momenta. A dense beam of

electrons having the same velocity as the average one of the beam to be cooled

is mixed to the stored particles. The stored heavier particles loose their

momentum spread via Coulomb scattering on the highly monochromatic

electrons.

6.6 CERN’s accelerator complex in the LEP era
For more than 10 years, from 1989 to 2000, two storage rings, the Large

Electron Positron (LEP) collider at CERN and the Tevatron proton-antiproton

collider at the American Fermilab dominated high energy physics. Tevatron

observed the top quark first. Right at the beginning of its work LEP has shown

that there are only three kinds of light neutrinos, and consequently, there are

three fermion families only. After this an incredible amount of precise

LEP measurements tested and confirmed the predictions of the standard

model of particle interactions. At the same time two other large colliders

worked as well: the Stanford linear electron-positron collider at the American

SLAC laboratory and the Hadron-Electron Ring Accelerator (HERA) at the

DESY laboratory in Hamburg. The former–similarly to LEP–studied the

production and decay of the Z boson, while HERA delivered extremely

important information on the quark structure of the proton. At present there

is just one large collider, the LHC.

The scheme of the accelerator complex of CERN in the LEP era is shown

in Fig. 17.5. It was based on the old (but apparently forever living) Proton

Synchrotron (PS) which in every repetition cycle of 14.5 s duration went

through the following phases: proton acceleration for antiproton production,
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Year E(e+e−), GeV
∫

Ldt/4, pb−1 main study

1989–94 � 91 140 properties of Z

1995 130–136 5

1996 161–172 20 properties of W±

1997 184 60 W+W−, ZZ production

1998 189 190 W+W−, ZZ production

1999 192–202 220 search for the Higgs boson

2000 204–209 220 search for the Higgs boson

Table 6.1: The Large Electron-Positron (LEP) collider: energies, integral

luminosities for each experiment and main goal of study.

proton and heavy ion acceleration for the Super Proton Synchrotron (SPS),

electron and positron acceleration for LEP and antiproton deceleration for

LEAR, the Low Energy Antiproton Ring. Let us study these phases.

6.6.1 Electrons and positrons
Electrons of 180 MeV energy from a linac were injected into a tungsten target

to produce positrons via pair production. Both the electrons and positrons

were accelerated in another linac to 500 MeV and then stored in EPA, the

Electron-Positron Accumulator. When the luminosity of LEP was already

low, they were accelerated by the PS to 3.5 GeV and transferred to the SPS

for further acceleration and finally fed into the LEP ring. The electrons

and positrons collided at four interaction points of LEP equipped with huge

experimental detector systems called ALEPH, DELPHI, L3 and OPAL. The

collision energies and luminosities of LEP are summarized in Table 6.1. In

its last two years of study, while searching for the Higgs boson, LEP provided

more data than in the previous 10 years together, in spite of the fact that its

collision energy was well over the enormous yield of the Z peak (Fig. 17.2).

LEP was a very precise machine, its 27 km ring was sensitive to all kinds

of macroscopic and regional factors such as the position of the Moon or

seasonal changes of the rainfall in the area (tide effect of underground water).

In 1995 a strange noise was registered in its magnets and champagne was

promised to the person who finds its source. Somebody found a correlation

with the schedule of the fast train between Geneva and Paris. A parasitic

flow of electricity, originating from the trains, travelled along underground

rivers to the grounding cable and the vacuum chamber of LEP, disturbing

the current of the bending magnets.
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LEP energy was severely limited by synchrotron radiation. A relativistic

particle of charge ep in a circular machine of radius r loses its energy due to

synchrotron radiation. The energy loss is

ΔE = −4π

3

e2
pβ

2γ4

r
(6.1)

per turn where β = v/c is its relative velocity and γ = 1/
√

1 − β2 is the

relativistic factor. This means that the energy loss from synchrotron radiation

sensitively depends on the mass of the charged particle, roughly proportional

to the negative fourth power of its mass. It prevented LEP’s further energy

increase, while for the much heavier proton it is negligible at LHC energies.

In the last two years of LEP running workers started to dig the huge caves

for ATLAS and CMS, the two LHC experiments too large to fit in the place of

a former LEP detector. Simulations predicted that the LEP tunnel will relax,

elevate by several millimetres during this work because of the removal of the

thousands of tons of earth, possibly ruin the extremely precise alignment of

the LEP magnets. The accelerator experts at CERN solved this problem by

continuously correcting the LEP magnets so that the work of LEP was not

disturbed by the underground work.

6.6.2 Protons
The protons started from a duo-plasmotron ion source where the electrons

were shaken off from hydrogen molecules, then accelerated in a proton linac

up to 50 MeV. They were injected into the PS Booster where they got to

1 GeV and injected into the PS. The PS provided:

• proton beams up to 25 GeV/c momentum to the PS experiments in a

continuous extraction mode;

• injected bunches of protons into the Super Proton Synchrotron (SPS)

for further acceleration to 450 GeV/c;

• shot bunches of protons onto an antiproton production target for the

Antiproton Accumulator / Collector storage ring.

The PS Booster also provided 1 GeV protons for the ISOLDE radioactive

beam facility of CERN to prepare radioactive atomic beams.



66 Chapter 6

6.6.3 Heavy ions
The SPS accelerated also ions with atomic mass up to that of lead for heavy

ion physics. Lead ions, Pb53+ are accelerated in a dedicated linac, in the PS

Booster, in the PS and injected into SPS where they are completely stripped
to Pb82+ and after further acceleration ejected for the SPS experiments. The

SPS remains in operation in the regime even in the LHC era.

6.6.4 Antiprotons
25 GeV protons from PS were injected into an iridium target to produce

proton-antiproton pairs; antiprotons of momentum 3.75 GeV/c were col-

lected in the AA-AC (antiproton accumulator - antiproton collector) double

ring to be cooled and stored until the SPS in its SppS collider regime or later

LEAR, the Low Energy Antiproton Ring received them. The PS decelerated

the antiprotons to 600 MeV/c before ejecting them into LEAR that further

accelerated or decelerated them for the LEAR experiments.

6.7 Other accelerators
In addition to CERN there are several particle-physics oriented accelerator

laboratories on Earth, most of them are in the USA, Germany, Japan and Rus-

sia. Here we shall mention only a few of them. Particle and nuclear physics

uses about a hundred accelerators whereas medicine and solid-state technol-

ogy uses a hundred times more, of course, at much lower energies. Later we

shall mostly concentrate on CERN experiments, but here we mention some

of others.

6.7.1 Tevatron at Fermilab
Before LHC Tevatron at Fermilab, the Fermi National Accelerator Labo-

ratory (Batavia near Chicago, USA) was the highest energy accelerator on

Earth. It collided accelerated protons and antiprotons at almost 2 TeV en-

ergy. It had two major experiments, CDF and D0. The last quark with the

highest mass, the t quark was discovered at the Tevatron, although its mass

was estimated much earlier from radiative corrections. The Tevatron was

stopped when LHC started to collect p-p collision data at 7 TeV, later in 2012

at 8 TeV, at orders of magnitude higher luminosities.
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6.7.2 HERA at DESY
The DESY (Deutsches Elektronen-Synchrotron) laboratory is located in

Hamburg, Germany. It operated several accelerators, including HERA,

the first accelerator using superconducting magnets. HERA was the only

accelerator in the world that was able to collide protons with either electrons

or positrons. It operated between 1990 and 2007. HERA’s tunnels run 10

to 25 meters below ground level and contained two accelerator rings. Its

two major experiments, ZEUS and H1 watched the collisions of 27.5 GeV

electrons or positrons with protons of 920 GeV, they increased the available

information on the structure of the proton by an order of magnitude.

6.7.3 RHIC at Brookhaven NL
The accelerator physicists at Brookhaven National Laboratory played a pi-

oneering role by designing and building AGS, the Alternating Gradient

Synchrotron. The Proton Synchrotron at CERN was built along the line

laid by the AGS. BNL is a general research laboratory, not only for particle

physics, but also for solid state physics, chemistry and material sciences.

Among other facilities BNL built another ground-breaking machine, the

Relativistic Heavy Ion Collider (RHIC) where ions are collided inside the

detectors of several experiments, the largest ones being STAR and PHENIX.

The types of colliding particles are p + p, d + Au, Cu + Cu, Cu + Au, Au

+ Au and U + U. The typical Au+Au collision energy is 200 GeV/nucleon

pair (that is the usual energy unit of heavy ion collisions) at a luminosity of

3 × 1027cm−2s−1.

6.8 CERN’s facilities in the LHC era
CERN’s accelerator complex after 2008 is shown in Fig. 17.7. The com-

plexity of the system decreased by eliminating EPA, the electron-positron

ring, but made more complicated by several additions, the greatest ones are

the proton injectors from two sides and the neutrino beam.

6.8.1 LHC, the Large Hadron Collider
We shall devote special emphasis on the description of the LHC, today’s

flagship of high energy physics .

Using protons means two advantages against electrons in a collider. In

addition to the much less energy loss due to synchrotron radiation, a proton
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machine has much larger discovery potential. As the proton is a composite

particle with quarks and gluons inside, a high-energy p-p collision means

many different possible collisions among quarks and gluons. We shall see

later that the 125 GeV Higgs boson was discovered at LHC in 8 TeV p-p

collisions where the predominant production mechanism was gluon fusion.

When LEP was stopped, the electron-positron system was also dis-

mounted. The LEP tunnel was filled with 9300 superconducting magnets,

the most important ones being the 1232 double dipoles (Fig. 17.8, left) keep-

ing the two circulating beams in orbit opposite to each other. Figure 17.8

(right) shows the radio-frequency cavities accelerating the particles in the

LHC ring.

Protons in LHC

The Large Hadron Collider operates two counter-propagating proton beams,

so it contains two accelerator systems and two storage rings. The fact

that it collides protons instead of protons with antiprotons like the Tevatron

increased its luminosity by many orders of magnitude. As gluon fusion is the

dominant process of new particle production (like that of the Higgs boson),

this did not reduce the discovery potential.

The work of LHC is well illustrated by the official beam diagnostics

page of CERN (Fig. 17.9) taken by one of authors on 12 June 2016 at 18:28

hours while supervising data collection by the CMS detector. The previous

evening at 18:00 the LHC beam was dumped, as the proton intensities in

the two beams (red and blue curves) went already down to 6 × 1013 protons.

The magnet currents were brought to zero at 19:00 hours for a short time (as

shown by the black curve corresponding to the right axis) and shortly later

brought back to 450 GeV SPS energy. Around 22:30 the two LHC beam

pipes were refilled by protons in an hour (in 24 steps by 96 bunches in each)

by 2.4 × 1014 protons in each direction. After cooling and focusing, while

the magnet currents were increased step-by-step, in about a quarter hour

the two beams were accelerated up to 6500 GeV. After further cooling and

squeezing the beams and adjusting them to collide in the geometric centres

of the detectors, stable collisions were reached at about midnight and the

detectors could be turned on fully. At the moment of taking the snapshot the

LHC data were collected already since 18 hours in stable collision regime,

but the beam intensities were down at 70% of the initial values. All five

experiments, the huge ATLAS and CMS, the somewhat smaller ALICE and

LHCb and the much smaller TOTEM were working in their stable PHYSICS
mode.
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The LHC detectors are quite different from each other. ATLAS and

CMS can handle 15 times higher luminosities than LHCb, and 1500 times

higher than ALICE. Depending on the circumstances the LHC could deliver

stable collisions for several days with one fill, although they were frequently

interrupted by glitches in the electric network. The accelerator has many

information pages, for instance we could learn that at the time of taking

Fig. 17.9 the two proton beams met at the collision points at an angle of

170 μrad different from the head-on 180 degrees, their overlap was 25 mm

along the beam direction and 20 × 16 μm in the x − y plane orthogonal to

the beam. The proton bunches followed each other by 25 ns and each ring

contained 2220 proton bunches. In ATLAS and CMS there were 2208 bunch

crossings, in LHCb 2036, and in ALICE 1940.

LHC was started with protons in 2009 and went through an incredible

development. During 2010, its first full data taking year, the luminosity

went through a gradual increase of 8 orders of magnitude in 8 months, it

delivered 46 pb−1 integrated luminosity of proton-proton collisions at 7 TeV

energy. In 2011 it worked at 7 TeV and provided 4.5 fb−1. In 2012 the

integrated luminosity was 23 fb−1 at 8 TeV. That was the time of observation

of the Higgs boson. After a long shutdown in 2015, the LHC restarted

with 6.5 + 6.5 GeV p-p collisions: it provided 4 fb−1 in 2015, 40 fb−1 in

2016 and 51 fb−1 integrated luminosity in 2017. Of course, there are always

inefficiencies, things sometimes break down and the inner detector part of the

detector is always delayed a bit behind the announcement of “Stable beams”.

Nevertheless, the experiments did very well, with beam usage efficiencies

well above 90%.

Heavy ions in LHC

Lead ions are prepared and stored in LEIR, the Low Energy Ion Ring that

was built using the elements of LEAR (Fig. 17.6). The lead ions are then

injected to PSB, PS, SPS and LHC for acceleration. At the end of 2010 and

2011 LHC worked a few weeks with Pb-Pb collisions, and after its 2012

proton run, it collided Pb ions with protons. The beam energy of the LHC in

its heavy ion regime was 2.76 TeV / nucleon, so for reference LHC was also

running for a short while colliding protons at 2.76 TeV. For the same reason,

after the 13 TeV proton runs similarly reduced collision energies were also

studied: 5.02 and 8.16 TeV/nucleon p-Pb collisions in 2016, and 5.02 TeV

p-p collisions in 2017. Heavy ion physics will be treated in Chapter 15.
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6.8.2 Neutrinos
SPS has a special facility that provides a neutrino beam to study neutrino

oscillations: CERN Neutrinos to Gran Sasso (CNGS). The Italian Laboratori
Nazionali del Gran Sasso (LNGS) is the largest underground laboratory on

Earth devoted to particle and nuclear physics. It is located at 120 km from

Rome near a highway tunnel through the Gran Sasso mountains, under 1.4 km

of rock. It hosts 15 experiments of 900 scientists from 29 countries. We shall

describe the neutrino beam in Chapter 13 devoted to neutrino experiments.

6.8.3 Antiprotons
CPT invariance, the equivalence of matter and antimatter is deeply embedded

in particle physics. However, there are no antimatter galaxies in the Universe,

although during the Big Bang particles and antiparticles should have been

produced in identical quantities. There are also CPT violating extensions of

the standard model. All this demands the precise check of CPT invariance.

LEAR, the Low Energy Antiproton Ring was built mostly for meson spec-

troscopy and it was stopped when the major LEAR experiments finished data

taking. LEAR was converted into LEIR, but the CPT experiments asked

for a low-energy antiproton source. Thus CERN built the Antiproton Decel-

erator facility using the space and elements of the dismounted Antiproton

Accumulator / Collector rings (Fig. 17.10).

The Antiproton Decelerator (AD) works the following way. An extracted

beam from the Proton Synchrotron of 1.5 × 1013 protons at p = 26 GeV/c
momentum is produced in 5 pulses with a total duration of 500 ns. These

protons hit an iridium target where they produce proton-antiproton pairs.

Antiprotons of 3.57 GeV/c momentum are collected and focused using the

magnetic horn technique developed by Simon van der Meer (Nobel Prize,

1984). The antiprotons are injected into the AD ring where they are decel-

erated to 100 MeV/c in four steps, in the first two steps with stochastic and

then electron cooling (Fig. 6.3).

The AD delivers 3× 107 antiprotons at 100 MeV/c momentum to several

(seven in 2017) experiments, which trap them in electromagnetic fields and

using slow positrons make antihydrogen (pe+) atoms. ALPHA and ATRAP

prepares spectroscopy on trapped antihydrogen, ASACUSA and BASE com-

pares the properties (mass, charge and magnetic moment) of protons and

antiprotons at high precision, AEGIS and GBAR tries to measure the gravi-

tational mass of antihydrogen, and ACE studies the effects of antiprotons on

living tissue.
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Figure 6.3: Deceleration and cooling of antiprotons in the Antiproton De-

celerator.

Viewing the success of the AD experiments CERN decided to increase

their efficiency by building a small storage ring ELENA (Extreme Low

Energy Antiprotons) which will supply an order of magnitude higher number

of slow antiprotons for trapping.

Exercise 6.1
What is the energy loss per turn of 100 GeV electrons and 7 TeV protons in
the LEP/LHC tunnel of 27 km circumference due to synchrotron radiation?

Exercise 6.2
What is the energy limit one can reach with protons in a ring with a circum-
ference of 27 km filled with 8 T magnets?

Exercise 6.3
Why is it impossible to keep the LHC detectors ready to take data during
beam acceleration and adjustment?

Exercise 6.4
LHC was designed for 7 + 7TeV collisions, but so far that was impossible
to reach. According to Fig. 17.9 the 6.5 TeV beam energy could be reached
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very fast. What could be the reason why 7 TeV beams were not delivered in
2016-17?

Exercise 6.5
How do you get the 2.76 TeV / nucleon energy for the Pb + Pb run of LHC?
Hint: To what collision energy does it correpond for protons and lead ions?
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Detectors, calorimetry

MOTTO:

Experimenter: A physicist who does experi-

ments. Theorist: A physicist who does not do

experiments.

(Leon M. Lederman)

7.1 Event registration
In high energy physics one tries to detect and identify as many of the par-

ticles produced in the beam collisions as possible. The main method is

event registration (see Ch. 8). It means that after a suitable trigger signal
we record all relevant information. The trigger may be physics or apparatus

related. Physics triggers can be many things: observation of a muon or an

isolated electron, large missing momentum (from a high-energy particle that

escaped detection) or many particles in jets. In the high-energy experiments

the various physics analysis groups define the triggers related to their in-

terest, sometimes hundreds of different conditions. Other triggers could be

apparatus-related, for instance laser pulses lighting up various parts of the

detector for testing, or reading environmental measurements like the temper-

atures of the various parts of the equipment or the magnetic field strength.

Of course, only those parts of the detector are read out that fired and are
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related to the given trigger.

It is very important to collect and record all (but at least as much as

possible) energy produced in the collisions. In analogy with thermal mea-

surements that is called calorimetry and the detector elements involved are

calorimeters. The high energy experiments generally have electromagnetic

and hadron calorimeters, the former to catch electrons and photons, the latter

for the hadrons.

In 2012 the LHC provided 20 million collision events per second, of

which about 400 could be stored by CMS and ATLAS. With the development

of the techniques in 2016-17 already 1000 were stored of the 40 million

events per second of the LHC. Thus a very careful selection was made by

the experiments to choose which events to store. That was done in two steps

(two trigger levels) by CMS and three by ATLAS. For CMS the first level

reduced the event rate to 100 kHz, while the second one to 1000 Hz. Of

course, signals belonging to the same event are automatically in coincidence

with each other. Every collision event contains many p-p collisions (called

pileup, see Fig. 17.11). In 2016-17 that was already above 50 at average.

This overwhelming amount of signals increases the discovery potential, but

also the difficulties of data analysis. The detected signals in an event are

automatically in coincidence, which is therefore unnecessary to prescribe

in the analysis, but the particle tracks and calorimeter hits must originate

from the same interaction point, called vertex, to belong to the same physical

phenomenon. In low-rate experiments of nuclear studies one prescribed time

coincidence for the events. In present-day high-energy experiments we have

to demand precise space-time coincidence for the origins of particle tracks

in the events.

7.2 Energy loss in matter

Fast particles lose their energy in collisions with the atoms of the medium.

At lower energies, around 1 MeV Coulomb scattering dominates. Let us

consider a particle of mass M and charge z × e moving at velocity v = cβ
along the x axis in a medium of atomic number Z and atomic weight A. The

forces along its trajectory compensate each other, there will be no exchange

of momentum along x, px =
∫

Fx(t)dt ≈ 0. It applies a force Fy =
ze2

x2+b2 on

an atomic electron (assumed to be at rest) located at longitudinal coordinate

x in a cylinder at a radius b (Fig. 7.1) and thickness db. The momentum loss
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Figure 7.1: Derivation of the Bethe equation: a particle of mass M and charge

ze moving at velocity v interacts with the atomic electrons in a cylinder of

radius b of a medium

of the particle along an infinitesimal distance dx will be

py =
∫

Fy(t)dt =∫
ze2

x2 + b2

b√
x2 + b2

dx
v
=

ze2b
v

∫
dx

(x2 + b2)3/2 =
2ze2

vb

The energy transfer from the incoming particle to a single electron is

p2
e

2me
=

2z2e4

mev2b2
.

We have nZ(2πbdbdx) electrons in unit length of the cylinder, so in order

to calculate the average energy loss per unit path length we have to integrate

over all impact parameters b between its minimal and maximal values:

−dT
dx
=

∫ bmax

bmin

nZ 2πb db
2

me

(
ze2

vb

)2
=

4π(ze2)2nZ
mev2

ln

(
bmax

bmin

)
The minimum distance cannot be shorter than the de Broglie wavelength,

bmin ≈ h
mev

, whereas the maximal distance is limited by the ionization

potential of the medium, ie. the minimal transferable energy: bmax ≈ γhcβ
I .
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Here γ = 1/
√

1 − v2/c2 and I is the average ionization potential of the

medium, which can be roughly estimated by I ≈ 10Z eV. Thus bmax

bmin
≈ mev

2

I
and the total energy loss with relativistic and atomic shell corrections is

−dE
dx
= Kz2 Z

A
1

β2

[
1

2
ln

2mec2β2γ2Tmax

I2
− β2 − δ

2
− C

Z

]
(7.1)

This is called the Bethe–Bloch equation. Here x is the thickness of the

medium in units of g/cm2, K = 0, 307 MeV · cm2/g a constant, and Tmax is

the maximal transferable energy to an electron. The Bethe–Bloch equation

can be written in a simplified form using the approximation

Tmax =
2mec2β2γ2

1 + 2γme/M + (me/M)2 ≈ 2mec2β2γ2 (2γme/M 
 1)
as

−dE
dx
= K

z2

β2

Z
A

[
ln

2mec2β2

I(1 − β2) − β
2

]
.

Note that here the energy loss does not depend on the mass m of the

particle, only on its velocity. Figure 7.2 shows the energy loss of a muon in

copper as a function of the muon momentum. There is a wide minimum-

ionization region between 0.1 and 100 GeV/c momentum which practically

encompasses the energy range of the muon in high-energy experiments and

that is why the energetic muons cannot be contained in the detector volumes.

Nuclear losses are negligible for muons, but they dominate for the strongly

interacting particles. That is why pions and muons have so vastly different

penetration depths in matter although they have quite similar masses.

For high-energy electrons radiation is the most important means of en-

ergy loss. The total loss is dE
dx =

(
dE
dx

)
ion
+
(

dE
dx

)
rad

. Critical energy is

the energy at which the radiation energy loss becomes equal to the ioniza-

tion one for an electron,
(

dE
dx

)
ion
=
(

dE
dx

)
rad

. In rough approximation it is

Ec ≈ 800MeV
Z+1.2 . Radiation length X0 is defined as the thickness of matter at

which
dE(e−)

dx

���
rad
= − E

X0
.

For composite materials (element j is present at weight fraction wj) we

can use Bragg’s rule (
dE
dx

)
=
∑
j

wj
dE
dx

����
j

and (
Z
A

)
=
∑
j

wj

Z j

Aj
=

∑
j njZ j∑
j nj Aj

.



Detectors, calorimetry 77

Figure 7.2: Energy loss of a positive muon in copper. Up to 500 GeV the

Bethe-Bloch mechanism works well for muons. Below the minimal ioniza-

tion region, 100 MeV/c, for different energy regions different approximative

calculation methods are used. Above the Bethe-Bloch region radiative losses

dominate for muons

Bragg’s rule can be used for calculating the radiation length as well, but it

overestimates the average ionization potential for molecules as the electrons

have tighter bonds there than in the atoms.

Electrons lose energy via radiation and photons via bremsstrahlung1 and

pair creation. As a result, both produce electron-photon showers, and thus

electrons and photons behave very similarly at high energies [Leo, 1987].

7.3 Particle identification
Practically all detectors of high-energy physics have strong magnetic fields

inside. It is usually a solenoid, but ATLAS combines a solenoid encircled

by a huge toroidal field (Fig. 17.12).

There are several methods to identify the particles in an event. From

1In English the original German word is used for the radiation emitted in the

deceleration of charged particles in matter; other languages use the simple mirror

translation of the German word: braking radiation
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Det. type space res., rms (μm) time res. dead time

Photo-emulsion 1

Bubble chamber 10 − 150 1 ms 50 ms

Streamer chamber 300 2 μs 100 ms

Prop. chamber 50 − 300 (d/√12) 2 ns 200 ns

Drift chamber 50 − 300 2 ns 100 ns

Scintillator 100 ps/n 10 ns

LAr drift chamber � 170 − 450 � 200 ns � 2 μs

Microstrip ch. 30 − 40 < 10 ns

Resistive plate ch. ≤ 10 1 − 2 ns

Silicon strip d/(3 − 7) readout readout

Silicon pixel 2 readout readout

Table 7.1: Detector types used in high-energy physics. The time resolution

of the various scintillators depends on the material and size of the detectors.

For the silicon detectors the read-out speed defines the timing

the trajectory of a charged particle in a magnetic field one can determine its

charge and momentum. A mixed beam of different particles with a given

momentum can be separated by their time of flight between two detectors.

Different particles lose their energy in collisions with the atoms of a medium

at different rates approximately at dE/dx ∼ z2/β2 where x is the thickness

of matter, z is the charge of the particle in units of the electron charge and

β = v/c is its relative velocity. Cherenkov radiation is also characteristic of

a particle velocity: when a particle flies in a medium faster than the light, it

emits Cherenkov light at an angle θc = arccos 1
nβ where n is the refraction

index of the medium.

7.4 Detector types

Some properties of the detector elements used in high-energy physics are

summarized in Table 7.1
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7.4.1 Multiwire chambers
The invention of multiwire chambers by Georges Charpak in the sixties

revolutionized experimental particle physics. It made the visualization of the

events electronic, the experiments fully automated and orders of magnitude

faster than the previous method of bubble chambers with photographing

events and later processing by hand. He published the method in 1968 and

was awarded the Nobel Prize in 1992.

In a multiwire chamber the particles ionize a gas, the electrons are

collected by anodes of very thin wires (typically gold-coated tungsten of 10-

20 μm thickness) with cathodes of metal plates, semiconductor pads or thick

steel wires. The gas should have an electron-collector quencher admixture

in order to prevent a self-supporting long discharge. Typical such mixture is

argon + isobutane with some freon added.

In the classical chambers there are many layers of wires placed in or-

thogonal directions with both ends read out: the position of the particle

trajectory is determined by the position of the wire and the charge ratio at

the two ends. This was changed as the detector volumes increased. The drift

chambers gather one of the coordinates by the drift time of the electrons to

the wire. The time projection chambers (TPC) combine the drift times with

silicon pads on the bottom, which detect the mirror charges of the trajec-

tories (Fig. 17.13). Drift chambers and TPC’s sacrifice detection speed for

spatial resolution: because of its TPC tracker, ALICE is better at particle

identification, but it can take much less events than ATLAS or CMS that

have semiconductor trackers. In the case of heavy ion collisions this is not a

problem as they happen much less frequently than p-p collisions.

7.4.2 Scintillation counters
The scintillation detectors (called counters although they rarely count) are

the most widely used detectors in nuclear and particle physics: they are fast

and have an excellent energy resolution. Table 7.2 summarizes the most

important types of scintillators. NaI(Tl) has the highest light yield, but

it is highly hygroscopic, so hard to handle. Polystyrene is the fastest and

PbWO4 has the highest specific weight while almost as fast as polystyrene.

That is why ALICE and CMS use PbWO4 single crystal scintillators in their

electromagnetic calorimeters (Fig. 17.15).

The light from scintillators is converted to electric pulses using photo-

multipliers or avalanche photo-diodes (APD). Photo-multipliers give higher

gains than APD-s, but occupy more space and are sensitive to magnetic

fields.
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Scintillator photon- τ λmax ρ dE
dx X0

yield ns nm g/cm3 MeV/cm cm

NaI(Tl) 1 250 410 3.7 4.8 2.59

polystyrene 0.12 3–5 360–480 0.9 � 12

CsI(Tl) 0.4 1000 565 4.5 5.6 1.85

BGO 0.15 300 410 7.1 9.0 1.12

PbWO4 0.01 5–15 420–440 8.3 10.2 0.9

Table 7.2: Basic properties of various scintillators: name, light yield relative

to NaI(Tl), decay time of the signal, maximum of wavelength distribution,

density, stopping power and radiation length.

7.4.3 Shower detectors
If the particles to be detected deposit little energy in unit volume they are

forced to penetrate dense materials (some heavy metal) interleaved with

scintillators or other active detector elements to detect secondary particles

from the interaction of the primary particles with the dense medium. Very

frequently the return yoke of the main magnet of the detector serves as the

dense matter. The muon chambers of CMS are such shower detectors in

between thick layers of steel.

In high energy calorimetry a special requirement is the complete coverage

of the interaction point which leaves very little space for photon detectors.

The solution is the scintillation tile: wavelength-shifting (green) fibres are

embedded in the (blue) scintillators, which collect the light and transport it to

the photon detectors (Fig. 17.16). This technique makes it possible to build

walls of flat scintillators with no gap between them. The hadron calorimeter

of CMS is a shower detector system, consisting of 4 mm thick scintillator

tiles between 50 mm thick brass plates. For the latter over a million brass

shell casements were melted, left behind by the Russian navy after World

War II. (It was not enough, the USA added 1 million dollars worth of copper

to finish them.)

7.4.4 Cherenkov detectors
Cherenkov detectors are widely used at LHC. Both ATLAS and CMS uses

them to detect the forward scattered particles, which provides important

information to measure the instantaneous luminosity of the experiment. Fig-

ure 17.17 shows the structure of the forward hadron calorimeter of CMS,
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consisting of quartz fibres in steel to collect Cherenkov light from secondary

electrons. Here the Cherenkov radiator is quartz, very resistant to radiation.

The electromagnetic calorimeter of the OPAL detector at LEP consisted of

large blocks of lead glass read by photo-multiplier tubes. The ATLAS for-

ward detector is filled with freon gas (C4F10) as Cherenkov radiator just like

the ring-imaging Cherenkov counters of LHCb (CF4 and C4F10).

7.4.5 Transition radiation detectors
In a medium containing ne quasi-free electrons in unit volume an electro-

magnetic radiation with ω frequency will have a phase velocity of

v f =
c
n
=

c√
1 − nee2

ε0meω2

(7.2)

where n is the refraction index. It can propagate if v f > 0, i.e.

ω > ωp =

√
nee2

ε0me
(7.3)

where ωp is the plasma frequency of the medium. Of course, in condensed

matter the plasma frequency can deviate from Eq. 7.3 as there the electrons

are not free.

Transition radiation is emitted when a fast charged particle passes the

boundary of two media with different dielectric constants. It is caused by

the continuous change of the electric displacement, �D = εε0 �E through a

boundary while �E jumps. When a charged particle approaches a boundary,

with its mirror charge on the boundary they make a dipole which changes

in time, that is why the radiation is emitted. This is significant for extreme

relativistic particles only with γ = 1/
√

1 − β2 � 1.

When such a particle passes a thin absorber (foil) with plasma frequency

ωp1 and enters a medium withωp2, it radiates photons of frequencyω � ωp1

with a double differential energy distribution [Leo, 1987]

dEtr

dωdΩ
=

d1ω

2c

(
γ−1 + θ2c +

ω2
p1

ω2

)−1

(7.4)

where d1 is the thickness of the foil andΩ is the solid angle. This is a radiation

in the X–ray region, which is strongly forward peaked with a cone angle of

θc ≈ 1/γ. The total energy radiated for ωp1 � ωp2 is Etr = αz2γ�ωp1/3.
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A transition radiation detector (TRD) usually consists of hundreds of

thin foils and a chamber to detect X-rays. ATLAS has a transition radiation

tracker system made of straw tubes, small, thin multilayered tubes with

proportional counter wires inside.

7.5 The CMS detector
All detector systems of high-energy collider experiments have similar struc-

tures. They consist of a barrel and two endcaps, both kinds are built of

layers of different tasks. For the sake of presentation we consider the CMS

(Compact Muon Solenoid) detector as a typical example (Fig. 17.14). The

innermost layer, closest to the interaction point, right against the beam pipe is

a 3-layer silicon pixel detector of high modularity, to make possible to iden-

tify the interaction point from which the given particle track originates. It is

surrounded by many layers of silicon strip detectors, the tracker to trace the

trajectories of charged particles curving in the magnetic field. The tracker is

surrounded by the electromagnetic calorimeter, consisting of 75,848 PbWO4

single crystal scintillators (Fig. 17.15), which absorbs all photons and elec-

trons measuring their energies. The next layer is the hadron calorimeter for

absorbing all energies carried by hadrons: pions, kaons, protons, neutrons,

with its brass plates and scintillator tiles (Fig. 17.16).

All CMS calorimeters of the barrel are inside the largest superconducting

solenoid on Earth: in its volume of 6 m inner diameter and 13 m length

(Fig. 17.18) it can maintain a magnetic field of B = 4 Tesla, although it was

up to now used at 3.8 T only to ensure its longevity. The outermost layer of

the CMS detector around the magnet is the muon system: steel rings (return

yoke) of the magnet interleaved with chambers to detect the muons emitted

in high-energy collisions. The endcaps have a somewhat similar structure

with elements close to the beam pipe to detect forward-scattered particles.

Exercise 7.1
What are the advantages and disadvantages of drift chambers against ordi-
nary multiwire chambers and scintillation counters?

Exercise 7.2
Arrange the following particles according to their penetration depths in
matter: muons, pions, protons, electrons, photons, neutrinos.
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Exercise 7.3
Why does the muon has so much longer free flight path in matter than the
pion that has almost the same mass?

Exercise 7.4
Arrange the following detectors in order of detection speed: scintillator,
bubble chamber, emulsion, multiwire chamber, Cherenkov detector, drift
chamber.

Exercise 7.5
Arrange the following detectors in order of energy resolution: scintillator,
bubble chamber, multiwire chamber, Cherenkov detector, drift chamber.
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Event registration

MOTTO:

For those who want some proof that physicists

are human, the proof is in the idiocy of all the

different units which they use for measuring

energy.

(Richard P. Feynman)

As mentioned in the previous chapter, the basic experimental method of

high energy physics is event registration: particle collisions are received and

studied one-by-one, and whenever a pre-defined trigger condition is fulfilled,

the relevant parts of the detector (i.e. those which fired and/or related to the

given trigger) are read out and the data are stored. There are physics and

detector related events. In a physics event we have particle tracks in the

tracking system and energy deposits in the calorimeters, and from all that

one can reconstruct what happened in the detector.

Events are detected and simulated. The analysis of events is usually made

by comparing the detected events with the results of simulations using the

known processes. Events are simulated via creating particles with the Monte

Carlo method and then letting them go through the detector simulation. This

way we make sure that the simulated events are as close to detected ones as

possible. New phenomena are searched for (and possibly observed) above

the background of known processes when all possible reactions are taken
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into account weighted by their cross sections. Of course one has to check

first how well the simulation reproduces the known processes. At the end

that has to be accounted for in the final uncertainty of the result.

Let us view a few typical event pictures recorded at LEP, Tevatron and

LHC.

8.1 LEP events
OPAL (Omni-Purpose Apparatus for LEP, Fig. 17.19) was a typical high-

energy calorimeter at LEP (the authors were its participants). Its main layers

were from inside out: a vertex detector to identify the interaction point, a

tracker made of multiwire drift chambers, the magnet, the electromagnetic

calorimeter made of lead glass Cherenkov counters, the return yoke of the

magnet instrumented with drift chambers serving as the hadron calorimeter,

and the outermost layer, the muon chambers.

In the first years of LEP’s operations (LEP1) the main goal was to study

electron-photon processes at high-energy collisions (Fig. 17.20) and the

properties of the Z-boson. It can decay to leptons (Fig. 17.21) and to quarks

(Fig. 17.22).

Figures 17.20 and 17.21 show how electrons and photons are detected

in the tracking system and in the electromagnetic calorimeter. The energy

deposited in the calorimeter is characterized by the size of the yellow hit

cluster. High energy electrons barely bend in the magnetic field and photons

do not leave any trace in the tracker elements. They are both absorbed in the

electromagnetic calorimeter, depositing all their energy there. Figure 17.20

shows electron-positron annihilation to two photons and a decay of a Z boson

to two neutrinos accompanied by emission of a photon in the initial state by

one of the charged particles. Neutrinos are not detected at all in accelerator

calorimeters. Their creation and escape is observed by missing momentum

only. In Fig. 17.21, middle and right the electron-positron collisions form Z

bosons that subsequently decay to muon pairs or tau pairs. The tau lepton

is very interesting as it can decay quite various ways: to its neutrino and

electron + neutrino or muon + neutrino pairs and also to its neutrino and

hadrons.

In electron-positron collisions at high energy quark production is very

frequent and it is easy to identify by the presence of jets, sets of collimated

particles (like a disperse beam). Fig. 17.22 shows events with two, three and

four jets. The 2-jet events confirmed the existence of quarks, as without the

requirement of fragmentation (colour neutrality of all detected particles), it
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Figure 8.1: Dependence of pseudorapidity η = − ln tan θ
2

on the polar angle

is impossible to explain the emission of dozens of charged particles. The

existence of gluons was proven by the 3-jet events: fermions can be produced

in pairs only and the third jet must belong to a boson with colour chargeThe

4-jet event demonstrates the pair production of W-bosons.

8.2 Transverse momentum, pseudorapidity
Hadron collisions are complicated because we collide composite systems

with many constituent particles. In a proton-proton collision most of the

constituents will scatter in the forward direction; as the decay fragments of

new particles will be emitted in all directions, whatever is orthogonal to

the beam direction is interesting. There are several quantities characteriz-

ing this feature, the most important ones being transverse momentum and

pseudorapidity.

The transverse momentum is defined as the projection of the particle

momentum on the plane orthogonal to the beam direction. As in accelerator

experiments the beam is usually considered to be along the z axis, the

transverse momentum is pT = px + py .

As the initial state is cylindrically symmetric with respect to the beam

axis, therefore the two direction coordinates are conveniently chosen as the
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φ azimuthal and θ polar angles. Note that at beam crossing, where the

collisions occur, the beams actually intersect each other at a very small angle

different from zero (so the beams indeed cross each other), the transverse

momentum corresponding to this can be neglected. While the transverse

momentum and azimuthal angle are invariant under Lorentz boost along the

z axis, the polar angle is not so. Thus instead of the polar angle we can use

rapidity that is invariant under Lorentz-boost:

y = 1
2

ln

(
E + pL

E − pL

)
(8.1)

where E and pL are the energy and longitudinal momentum of the particle.

In high-energy collisions the mass of the detected particles (mostly leptons,

pions and kaons) is negligibly small as compared to their energy and their

rapidity is simplified to pseudorapidity, η = − ln tan θ
2

(Fig. 8.1), which is

much easier to calculate as for that one does not need to determine the energy

of the particle. Furthermore, the kinematics of the events are such that most

of the secondary particles fly out at small angles and pseudorapidity gives a

more uniform scattering distribution than the polar angle.

Figure 8.1 shows the dependence of pseudorapidity on the polar angle.

In the CMS experiment pseudorapidities |η | < 2.1 − 2.5 (the exact value

depends on the subdetector) belong to the barrel region, outside that is the

forward region.

At hadron colliders the number of events is frequently plotted on an η−φ
picture which corresponds to the plane that you get if you cut the cylindrical

part of the detector at a given radius along the z axis and fold it out. The

angular distance of two tracks is expressed at hadron colliders in the rather

peculiar angle-like quantity

ΔR =
√
Δφ2 + Δη2 =

√
(φ1 − φ2)2 + (η1 − η2)2.

Another very important quantity is the missing (transverse) momentum,

which means an imbalance in the momentum distribution of the event due

to a neutrino or other undetected particle. In the case when leptons collide

the total centre-of-mass energy is known, and adding up the momenta of

the detected particles we get what is called visible momentum (energy).
The missing momentum (sometimes called missing energy) is the difference

between the collisional and visible momenta (if particles of the same mass

and energy collide, the collisional momentum is, of course, zero). Depending

on how it is calculated, even at hadron colliders we use the quantities of

missing energy or even missing mass, calculated from the missing transverse

momentum.
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8.3 Observation of the top quark
The t–often called top–quark is the heaviest among the quarks and after

formation immediately decays to a b quark: t→bW+. The b quark is easy to

identify as it has a long lifetime, therefore if a reaction produces a b quark,

the event may have a secondary vertex from such a “long-lived” particle.

Another characteristic feature of the b quark is that it decays predominantly

through two or three virtual W bosons and so together with jets several

leptons could also be produced. Identifying the b quark is called b-tagging
and it is quite important in high energy physics.

At the Tevatron the t quark was produced in the pp→tt reaction and the

t quarks decayed to b quarks. The event reconstructed in Fig. 17.23 (left)

is a tt created in pp collision: we required two identified b quarks from the

t quark decays, 2 jets from one W-boson and muon + missing momentum

from the other.

8.4 Mysterious events
There are several events which apparently contradict the standard model, but

there are too few of them to draw conclusions. The most famous among

them is the CDF event where a proton+antiproton collision produced an

electron, a positron, two photons and some missing energy (Fig. 17.23,

right). Thus all the coloured content–quarks and gluons–of the colliding

hadrons simply disappeared. When this event was published by the CDF

collaboration an avalanche of theoretical papers tried to interpret it in terms

of various extensions of the standard model. Later the Tevatron experiments

tried to find similar typhoon events for several years, in vain.

As we shall describe it in detail in Chapter 9 of data analysis, in particle

physics we accept a new discovery, if (1) its signal is statistically significantly

above background, (2) it is reliably and convincingly presented, and (3)

confirmed by another, independent experiment. These conditions were all

fulfilled when the observation of the Higgs boson was announced in 2012 at

the LHC. ATLAS and CMS reported the observation of a new boson of the

same mass, about 125 GeV, at more than five times the total experimental

uncertainty above the background. That it had indeed been the Higgs boson

as predicted by the standard model was confirmed only later, on the basis of

a 4 times larger data set. The observation of this pp→e+e−γγ + Emiss event

clearly does not fulfil the conditions of discovery.
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Exercise 8.1
What is the expected number of events of a signal with the cross section of
2.5 pb at a detection efficiency of 20% if the collected luminosity is 10 fb−1?

Exercise 8.2
Group the following data whether they must or may be written as part of
the registered events: amplitude and timing of detector hits, temperatures
of detector elements, temperatures of parts of the electronics, temperature
of the counting room, atmospheric pressure, field strengths of the detector
magnet, mains voltage, comments of the physicists on shift.

Exercise 8.3
How do multi-jet events like those in Fig. 17.22 prove the existence of quarks
and gluons?

Exercise 8.4
Why do transverse momentum and pseudorapidity play more important roles
at hadron collisions than at leptonic ones?

Exercise 8.5
In what conditions is pseudorapidity invariant under Lorentz boost?

Exercise 8.6
Why do we expect the t quark to decay predominantly to a b quark?
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Data analysis

MOTTO:

If you are receptive and humble, mathematics

will lead you by the hand.

(Paul A. M. Dirac)

In high energy physics data analysis is very critical for several reasons.

• The experiments are extremely expensive in many senses: the acceler-

ators and detectors are designed and built for decades, their operation

needs the continuous works of thousands of physicists, engineers and

technicians, and the accelerator time itself is extremely expensive.

Thus one does not want to spare the effort to extract the maximum

possible information from the data.

• The discovery potential of these experiments is very high and that

makes it important to minimize the possibility of biased analysis, of

hasty or even false discoveries.

• The huge collaborations (CMS and ATLAS each have more than 3000

participating researchers) can afford to let several groups analyse the

same data, and that makes a strong competition for the best analysis

that can make it to the paper at the end. The competing groups are the

best testers for each others’ work quality.

91
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9.1 Statistical concepts of particle physicists
Those are as different from the official mathematical statistics as mechanical

engineering from the Lagrangian or Hamiltonian formulation of theoretical

mechanics. At the same time statistics is extremely important for data

analysis in particle physics: every few years international workshops are

organized by particle physicists working at the Large Hadron Collider to

exchange ideas on the newest developments of the statistical methods, the last

one in 2011 and its proceedings was published in [Prosper and Lyons, 2011].

In the Appendix of that thick volume Eilam Gross defines the aim of his paper

entitled LHC Statistics for Pedestrians in a rather witty way: ”A pedestrian’s
guide . . . to help the confused physicist to understand the jargon and methods
used by HEP phystatisticians. . . . A phystatistician is a physicist who knows
his way in statistics and knows how Kendall’s advanced theory of statistics
book looks like.”

Every high-energy collaboration has phystatistician experts and they all

have quite different ideas how to analyse data. In order to avoid confusion, the

large LHC collaborations have Statistics Committees which maintain home

pages of recommendations how to do things. The Statistics Committees of

both CMS and ATLAS have several members who published text books of

the type Statistics for Physicists and the two collaborations have a joint such

committee as well.

In high energy physics the experimental data are events with many dif-

ferent variables as characteristics: tracking properties, energies deposited

in various subdetectors, places and timing of detector hits. The results of

event selection are counts collected in spectra, often equidistant intervals of

a variable, called bins and the probability that we have ni events collected in

bin i follows the Poisson distribution

P(ni |μi) =
μnii e−μi

ni!
,

with μi being the average value (or mean value) of ni . There are many differ-

ent ways of treating these spectra, we can build e.g., a likelihood function to

be optimized in order to get the desired physics result, an optimal estimation

of the physical parameters to be determined. On the basis of the Poisson

distribution one can build a Poisson likelihood: L = ΠiP(ni |μi) where the

expected number of events is μ̃i =
∑

j Lσjεji , L is the integral luminosity

collected, σj is the cross section of source j and εji is the efficiency (usu-

ally determined by Monte Carlo simulation) of detecting the contribution of

source j in bin i. Note that μ̃i is an estimation of μi .
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According to the general convention in accelerator experiments a given

new phenomenon is excluded if we can show it not appearing at a confidence

level above 95 % and observed if it exceeds 5σ above background where

now, for a change, σ is the experimental uncertainty of the excess according

to the best honest guess of the experimentalist. These two conditions will be

duly explained and refined later in this chapter.

Another important feature of high-energy data analysis is the blind anal-
ysis. According to [Klein and Roodman, 2005]: “A blind analysis is a mea-

surement which is performed without looking at the answer. Blind analyses

are the optimal way to reduce or eliminate experimenter’s bias, the unin-

tended biasing of a result in a particular direction.” It came from med-

ical research and in high-energy physics it means to optimize, prove and

publish your analysis technique using simulations and earlier data only be-

fore touching new data in the critical region. For instance, in spring and

early summer 2012, the new CMS data were blinded in the mass region

110 < mH < 140 GeV (where mH is the simulated Higgs mass) because

of the 3σ excess observed in 2011. The same procedure was used again in

autumn 2012, after the announcement of the 5σ observation. The analysing

methods had to be fixed, described in voluminous analysis notes and de-

fended before the whole collaboration before the simultaneous unblinding
for all analysis channels. These analysis notes, sometimes hundreds of pages

long, are rarely read by other people, but frequently checked for certain plots

and results.

9.2 Basic concepts of statistical analysis
Given a set of n data points yi (e.g. event counts) as a function of a variable

xi , a spectrum is {xi; yi±σi}ni=1
whereσi is the uncertainty of determination

of yi (sometimes misleadingly called experimental error). If yi follow the

Poisson distribution, i.e. P(y) = e−a ay

y!
with a mean value of y = a, then the

uncertainties can be estimated as σ2
i = yi ≈ yi .

A model function is a theoretical description of the data:

y = f (x; p1, p2, ...pm) = f (x; �p)

with the parameter vector �p. The aim of the analysis is to determine whether

or not the model function describes the data well and to estimate its parameter

values. When the values of �p are determined on the basis of the data (via

fitting the parameters of the model function to the data) we can also determine
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the covariance matrix of the estimations for parameters �p as

Qik = 〈ΔpiΔpk〉 = 〈(pi − pi)(pk − pk)〉

where x and 〈x〉 both denote the estimations of the expectation values of

x. The diagonal elements are the variances (the squares of the statistical

uncertainties) and the off-diagonal ones the covariances:

Q = ���
σ2
p1

〈Δp1Δp2〉 · · ·
〈Δp2Δp1〉 σ2

p2
· · ·

· · · · · · · · ·
���

Figure 9.1: Uncor-

related and correlated

coordinates for the

same point.

The correlation matrix is obtained by the nor-

malization of the covariance matrix,

Cik ≡ C(p̃i, p̃k) = Qik√
σ2
piσ

2
pk

,

−1 ≤ C(p̃i, p̃k) ≤ +1

so that its values fall in the range [−1,+1].
The correlation between two parameters is +1

if they are proportional, and –1 if they are inversely

proportional to each other. High correlation means

that the model function is poor, or we have chosen

the wrong parametrization. For instance in Fig. 9.1

the same point P can be described in the uncorrelated (x, y) and the highly

correlated (x ′, y′) coordinate systems. If P changes in the x direction, its y

coordinate can remain the same, but if P changes in the x ′ direction, its y′

coordinate must also change.

If a secondary variable z = z( �p) is calculated as a function of �p, its

uncertainty according to the law of error propagation (here the misleading

name error has stayed on) is

σ2
z =

m∑
i,k=1

∂z
∂pi

∂z
∂pk
Δpi Δpk . (9.1)

If the parameters are independent of each other (which never happens in

practice except when orthogonal functions are fitted), then Qik = σ
2
pi
δik and

σ2
z =
∑m

i=1

(
∂z
∂pi

)2
σ2
pi

.
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9.3 Fitting parameters

9.3.1 Goodness of fit
We have a model function f (x; �p) and a set of data {xi; yi±σi}ni=1

. Once we

have an estimation of the parameters, the question is how well the function

fits the data. There are several ways to check that, the most common being

the χ−square test. The χ−square function is defined as χ2
k
=
∑k

i=1 X2
i where

Xi are independent variables following a Gaussian distribution

P(X) = 1√
2π

exp(−X2

2
)

with a mean value Xi = 0 and varianceσ2
xi
= 1. χ2

k
follows the Γ distribution,

thus it has a mean value of χ2
k
= k and variance σ2(χ2

k
) = 2k where k is its

degree of freedom.

When fitting a spectrum by, e.g., the least-squares fitting method to a

set of n independent data and m parameters, the χ2
k

will have a degree of

freedom k = n − m − 1:

χ2
n−m−1 =

n∑
i=1

1

σ2
i

[yi − f (xi; p1 · · · pm)]2 .

The relative or reduced χ2
k

is defined as χ2
r =

χ2
n−m−1

n−m−1
with a mean χ2

r = 1.

χ2
r 
 1 means a too good fit, that is too little information in the data for the

given model, whereas χ2
r � 1 means a bad fit: a model function of poorly

fitting parameters.

9.3.2 Confidence level
Let us assume that variable x follows a Gaussian distribution:

P(x) = 1√
2πσ2

exp(−(x − μ)
2

2σ2
)

and the estimation of the mean μ = x is x̃ ± σ. The confidence level of x
being in between a and b is W(a ≤ x ≤ b) =

∫ b

a
P(x)dx. For instance, the

confidence that x>0 is
∫ ∞
0

P(x)dx.
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Figure 9.2: Gaussian distribution with

mean x=0 and widthσ=1. The confidence

level of having x̃ within the unshaded re-

gion is 1 − α.

The full width at half max-

imum (FWHM) T is defined as

P(x̃ ± T/2) = P(x̃)/2. For a

Gaussian distribution (Fig. 9.2)

it is T = 2
√

2 ln 2σ ≈ 2.355σ.

In practice we use the standard

library functions erf and erfc to

calculate these values: erf(x) =
2√
π

∫ x

0
e−t

2
dt, erfc = 1 − erf.

Sometimes the value of erf is

so close to unity that you bet-

ter calculate erfc that omits the

first term 1 from the expansion

of erf.

9.4 Estimating (fit-
ting) parameters
We have a set of measured data

and some model function with

adjustable parameters. The final result will be the best estimation of some

of the parameters. How can we get it?

9.4.1 Arithmetic mean and standard deviation
We shall now treat the various ways to estimate parameters in analysing

data. For the examples we use the method of least squares, which for just

one parameter means solving the following equation:

S(a) =
n∑
i=1

wi(yi − ỹ)2 = min , (9.2)

with the weights wi =
1
σ2
i

providing the minimal uncertainty σy for the

arithmetic average ỹ of the n measured values {yi ± σi}ni=1
. Then the

weighted average is

ỹ =

∑
i

1
σ2
i

yi∑
i

1
σ2
i

±
√√

1∑
i

1
σ2
i

. (9.3)
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In some sense the real estimated uncertainty is the standard deviation
(Fig 9.3):

σSD =
S√

n − 1
with S2 =

1

n

n∑
i=1

(yi − ỹ)2

where ỹ is the estimated average. For large n this simplifies to σSD ≈
1
n

√∑n
i=1(yi − ỹ)2.

Figure 9.3: Gaussian (normal) distri-

bution with its standard deviation re-

gions around the centroid μ.

Of course, in all data analyses

the most important factor is the rea-

sonable mind of the experimental-

ist. There is a nice old tale about

a committee which wanted to solve

the problem of estimating the height

of the Chinese Emperor by asking a

million people (as measuring him

was out of question). They rea-

soned that everybody can guess the

height of people by the uncertainty of ±10 cm and thus the result will be as

precise as σstat = ± 10cm√
106
= ±0.1 mm ≈ σSD. Of course, nobody asked had

ever seen the Emperor standing!

Let us estimate the average of the measurements y1 = 4 ± 1; y2 = 2 ±
1; y3 = 9±1. The average is 5. Its statistical uncertainty σstat =

√
1
3
= 0.58

is obviously too small, but correcting it with the reduced χ2
r is an overkill:

σstat ·
√
χ2
r = 0.58 · √26 = 3.0. The standard deviation, however, gives a

more reasonable error: σSD ≈
√

26
6
= 2.1. If we are not sure about the

statistical nature of the measurements, we should use the standard deviation

for the estimation of the uncertainty.

9.4.2 Linear fitting

We call the model function f (x; �p) linear in parameters �p = (p1, p2, . . . pm)
if it can be written like

f (x; �p) =
m∑
k=1

pk
∂ f (x; �p)
∂pk

=

m∑
k=1

pkΦk(x),
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where Φk(x) is independent of the parameters. Fitting parameters �p using

the least-squares method means solving the following minimization:

S( �p) =
n∑
i=1

1

σ2
i

(yi − f (xi; �p))2 = min ,

i.e. the system of equations
∂S( �p)
∂pk

= 0; (k = 1, ...m). Using the notation

fi ≡ f (xi; �p) we get

m∑
l=1

pl
n∑
i=1

1

σ2
i

∂ fi
∂pk

∂ fi
∂pl
=

n∑
i=1

1

σ2
i

yi
∂ fi
∂pk
,

equivalent to
∑m

l=1 plMkl = bk . We can solve this if the matrix Mkl is

symmetric and positive definite:

M�p = �b ⇒ �p =M−1�b ≡ Q�b.

It can be easily shown that the covariance matrix of �p will be just the inverse

of the Mkl matrix.

For fitting a straight line f (x; �p) = p1x + p2 to points {xi; yi ± σi}ni=1
:

M =

⎡⎢⎢⎢⎢⎣
∑ x2

i

σ2
i

∑ xi
σ2
i∑ xi

σ2
i

∑ 1
σ2
i

⎤⎥⎥⎥⎥⎦ ; �b =
[ ∑ xiyi

σ2
i∑ yi

σ2
i

]
.

The solution is

[
p̃1

p̃2

]
=M−1�b with the covariance matrix Q =M−1.
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9.4.3 Non-linear fitting

Figure 9.4: Lorentzian functions

If
∂ f
∂ �p depends on �p,

then our model function

y = f (x; p1, . . . pm) is

non-linear in the parame-

ters �p. Trivial example

is y = p1p2x which must

be linearized to y = ax,

with a = p1p2. One

could also linearize, say

y = p1 exp(−p2x) as ln y =

ln p1 − p2x = a − bx, but it

is not worth it. Lineariza-

tion in most of the practi-

cal cases cannot be done and

even it can be, it gives a biased estimation with distorted uncertainties.

The most frequent non-linear functions (with their usual parameter hand-

ling) are the Gaussian function (or normal distribution): p1 exp[−p2(x−p3)2]
(Fig. 9.2) and the Lorentzian (Cauchy or Breit-Wigner) function p1[p2

2
+ (x−

p3)2]−1 (Fig. 9.4). Non-linear functions can be fitted using least-squares,

maximum likelihood or other methods. In the case of least-squares fitting as

an example one looks for a local minimum of the function

S( �P) =
n∑
i=1

1

σ2
i

[yi − f (xi; �p)]2

but in all other methods one has to find a local minimum or maximum.

In particle experiments the MINUIT program [James and Roos, 1975] has

been the most popular for fitting for almost half a century.

The Monte Carlo method can be used if we have just a vague idea of

the location of the minimum: one makes random probes in the given region

and tries to find a minimal value of the function. It is extremely slow and

inefficient.

The simplex method is very popular. The value of the function S( �p) to

be minimized is calculated in m+1 points in the m-dimensional space of the

parameters �p making a simplex of m + 1 edges R1 . . . Rm+1. Take the worst

point (where e.g. S( �p) is maximal in the case of minimization) and send it to

a point in the m-dimensional space on opposite side of centroid calculated

from remaining m points (Fig. 9.5). The speed of convergence will depend

on the distance you send the point away from the centroid: the usual value is
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once or twice the original distance. This method is somewhat slow, but does

not require calculating derivatives.

Figure 9.5: Simplex

minimization for two

parameters.

In particle physics the most popular minimiza-

tion methods are the gradient ones. The gradient
of S( �p) in the point of �p = �p0 is

�g = ∂S
∂ �p =

(
∂S( �p)
∂p1
, . . .
∂S( �p)
∂pm

)T
�p= �p0

The gradient methods search for a minimum along

the derivatives of the function, so its convergence

is much faster than that of the simplex method.

One can calculate the derivatives analytically or

numerically, but the numerical derivatives are gen-

erally more reliable, stable and fast. Sometimes it

is worth to start the minimization with the simplex

method and when the minimum is close, change to the gradient methods.

9.5 Uncertainties

Figure 9.6: Estimating MINOS uncer-

tainties by changing the parameter in

question while optimizing the rest so

that the χ2 of the fit would increase by

unity [James and Roos, 1975].

The uncertainty of the estimated pa-

rameter value is usually obtained by

changing the χ2 of the fit by unity

at the two sides of the minimum.

This way one can get asymmetric

uncertainty values. A quite popu-

lar method to gain error estimation

of a single parameter is the MINOS

method (Fig. 9.6). It changes the

value of the given parameter and op-

timizes the rest of the parameters of

the fitting so that χ2
new = χ

2
min + 1.

This will account for part of the cor-

relations as well.

All uncertainties of the estima-

tion which do not come from the

number of detected events are con-

sidered to be systematic. They come from various sources, like Monte Carlo

statistics and inputs, experimental calibration factors, detection efficiencies

etc, with the common name nuisance parameters. They can be estimated



Data analysis 101

by changing the input information of the analysis by reasonable amounts.

Most of the time this is just the experimental or theoretical uncertainty of

the input parameters, but it could also be a different Monte Carlo algorithm

or fit range. There are systematic uncertainties which can be corrected later

on, like results of earlier measurements or theoretical calculations or some

global calibration of the detector or accelerator beam. However, one can-

not correct later the results of the simulations or uncertainties related to

elements of the measuring apparatus, like the calibration of a subdetector.

What amount of change is reasonable largely depends on the problem and

has to be decided by the physicist. For instance, one can check the effect

on the result of shifting a simulated spectrum by the amount of its deviation

from data. Estimating the systematic uncertainties frequently takes much

more effort than the pure data analysis itself.

One cannot just add statistical and systematic uncertainties to get a total
uncertainty as one has to include the possible correlations, which is usually

quite difficult. What is done at LHC is to eliminate the nuisance parameters
Θ from the estimation of parameters P by marginalizing them (integrating

out) [Cousins and Highland, 1992] from the analysis using the related W
distributions:

L(P; x) =W(x |P) =
∫
W(x |P,Θ)W(Θ|P)dΘ .

One cannot be careful enough considering systematic uncertainties. The

Particle Physics Review [Patrignani et al., 2016] analyses the time depen-

dence of certain experimental data and the result is quite shocking: some

data do not change for many years, different groups get similar results until

somebody invents a more precise measuring method and the value undergoes

a big change, sometimes much larger than the estimated total uncertainty of

the previous measurements. A very difficult part of performing a measure-

ment is to provide a correct estimation of the systematic uncertainties which

should be neither too large nor underestimated.

9.6 Lower and upper limits
When searching for new physics one wants either to observe certain phe-

nomena, or to exclude them in given parameter regions. According to the

convention in accelerator particle physics an observation (discovery) has to

have a significance of at least 5σ. Thus one can declare the observation of a

new particle if one detects a mass peak at 5 times its uncertainty above the

background. Still, it is not acknowledged by the community before another
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.

n0 0 1 2 3

nmax(90%) 2.30 3.89 5.32 6.68

nmax(95%) 3.00 4.74 6.30 7.75

Table 9.1: Numbers of excluded events at 90 % and 95 % confidence levels

if we detected 0, 1, 2 or 3 events assuming a Poisson distribution

experiment reproduces the result. This convention is based on the experience

that we do not know any such > 5σ observation yet, that was later refuted

by other experiments.

Exclusion needs a 95 % confidence level in accelerator particle physics.

However, at certain areas where much less rates are detected, like in neutrino

physics or astrophysics, 90 % exclusion is the accepted limit. For a Gaussian

distribution, as shown in Fig. 9.2, the confidence limit that the real value of

the estimated parameter is within the ±δ region of the estimated μ value is

1 − α =
∫ μ+δ

μ−δ
f (x; μ, σ)dx .

whereas the confidence that it is below or above that region is α/2.

In the case of Poisson distribution if we detect n0 events and we do

not know the mean μ, what maximal event number can be excluded at a

confidence of CL? In other words, at what μ will the probability of having

more that n0 events less than CL: P(n > n0)>CL=1−α=∑∞n=n0+1 f (n; μ)?
Table 9.1 shows what one can say of possible exclusion for various confidence

levels and detected numbers of events. For instance, if we did not detect any

event for a given phenomenon then at a 95% confidence level we can say

that we have less than 3.0 events.

In some cases we get non-physical measured data. In order to be able to

state a limit in such cases one has to renormalize the obtained distribution to

the physically meaningful region (Bayes-limit):∫
phys. area

f (x)dx = 1

For instance, there was a case when a fitted mass-square was negative:

π+→μ+νμ ⇒ m(νμ)2 = (−0.016 ± 0.023)MeV2,

which is of course non-physical. The distribution was renormalized and the

limit m(νμ) < 0.17 MeV (90%CL) accepted.
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9.7 Monte Carlo simulation
Any data analysis of high energy physics starts with simulations: that of the

expected background and signal. It is done these days using the GEANT4

[Agostinelli et al., 2003] simulation package developed mostly at CERN.

The basic idea is to produce simulated events which can be directly compared

to the detected ones: the observed event features should not be manipulated.

For that one simulates all possible physics processes which means using

various algorithms for the various processes with cross checks and drives

them all through the simulation of the whole detector system. The compo-

nents of the background are summed up according to their cross sections

and then the event selection is optimized to maximize the NS signal at a

minimal NB background. The optimization means to maximize a figure of
merit like in the simplest case NS/

√
NB = max or NS/

√
NB + NS = max

although these days we prefer the condition 2 · (√NB + NS −
√

NB) = max

[Bityukov and Krasnikov, 2000] or using the approximate formula of Ref.

[Cowan et al., 2011].

9.8 Event selection
Both background and signal have to be checked against the previous mea-

surements and the theoretical calculations for correctness. The steps of

the event selection can be simple cuts, such as conditions on variables like

pT > 20 GeV/c or complicated multi-variate procedures: likelihood or arti-

ficial neural network optimization.

A concrete example for event selection is the search for charged Higgs

bosons in the four-jet decay channel (e+e−→H+H−→cs cs) from the practice

of the authors in the OPAL experiment. Before likelihood optimization we

applied a preselection with the following cuts (Fig 17.24):

(a) Eliminate those events where a Z-boson was emitted together with a

photon (radiative return to Z). If an isolated photon is found, remove

it from the total centre-of-mass energy
√

s and apply a cut on the

remaining energy
√

s′ > 170 GeV.

(b) Cut on the total visible energy of the event by Evis/
√

s > 0.7.

(c) Choose 4-jet events by cutting on the variable y34 of the Durham jet-

determining algorithm, which is the threshold track distance where

the event becomes 4-jet-like from 3-jet-like.
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(d) Select those events where all jets have at least two charged tracks.

One can see that the simulation describes the data very well. We tried to

apply cuts with maximum efficiency, i.e. eliminate much of the background

and little of the signal. Of course the total number of events went down as

we applied the cuts consecutively from (a) to (d).

The next step was a likelihood optimization with the basic aim to reduce

the main background of our searched signal e+e−→H+H−→cs cs. The only

difference between W± and H± of the same mass is spin as the W is a

J = 1 vector boson whereas the charged Higgs bosons are scalar with J = 0.

That means we should try to find variables to select between them like

angular distributions and jet structure. Using the simulations we created

reference histograms for several such variables for signal and background

and determined the probability of signal likeness for each event. The analysis

was mass-dependent, i.e. for each assumed mass of the hypothetical charged

Higgs boson a different optimization was made with different signal but the

same background. As Fig. 17.24 shows the signal was obviously rejected

for M(H±) = 60 GeV, but that cannot be told of a signal at 75 GeV. Actually,

after collecting all information we obtained M(H±) > 75.5 GeV at a 95%

confidence level. We got close to the mass of W±, but could not get over it.

Exercise 9.1
What are the main sources of the statistical and systematic uncertainties?

Exercise 9.2
What is the use of the covariance matrix in the interpretation of the ana-
lyzed data? How can it be used to estimate the statistical and systematic
uncertainties of derived physical parameters?

Exercise 9.3
What is the meaning of χ2? What shall we do if it is too high or too low?

Exercise 9.4
Deduce Eq. 9.3 for the weighted average from Eq. 9.2 using the error prop-
agation law, Eq. 9.1.

Exercise 9.5
How can one include former results in the analysis of new data?
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Exercise 9.6
How can one optimize the event selection for data analysis?
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Chapter 10

Experimental tests of the
quark model

MOTTO:

If I could remember the names of all these

particles, I’d be a botanist.

(Enrico Fermi)

10.1 Three fermion families
10.1.1 Z width
The Z boson can decay into particle-antiparticle pairs of leptons and quarks

(it cannot decay into photons). In experiment the quark pair will appear

as hadron showers, jets, and only the charged leptons will be detected, the

neutrino pairs will escape the detector. Thus the total Z decay width will be

ΓZ = Γe+e− + Γμ+μ− + Γτ+τ− + Γhad + Γinv . (10.1)

According to the standard model the production of Z bosons in electron-

positron collisions and its decay to fermion pairs should have the cross

109
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section (the * superscript of Z means that it can be virtual as well):

σ(e+e−→Z(∗)→X) = 12πM2
Z

E2
CM

Γ(Z→e+e−)Γ(Z→X)
(E2

CM
− M2

Z
)2 + M2

Z
Γ2

Z

. (10.2)

The parameters of Eq. (10.2) were determined by fitting the peak shape of

Fig. 17.2. The three charged leptons have the same cross section (lepton
universality principle) with the average

Γ�+�−/ΓZ = 3.3658(23)%
and that of the hadronic decays:

Γhadr/ΓZ = 69.91(6)%
where the numbers in parentheses mean uncertainties in the last digits of the

results.

Thus the Z decay to quark pairs is 21 times more probable than that to a

lepton pair. This much higher probability is not surprising as there are 3× 5

pairs of quarks available for Z decay, three colours and 5 flavours.

10.1.2 Invisible width and the families
According to the standard model each fermion carries a loop correction,

proportional to the charge of the fermion, and they appear as annoying

anomalies (cf. Section 22.9) in the equations with no trace of them in

experiment. However, they are cancelled if the sum of the electric charges of

all fermions in a family is zero. That means that the number of quark pairs

should be the same as that of leptons as the fractional charge of the quarks

is evened out by the three colours.

The invisible decay of the Z boson is related to neutrinos and it constitutes

Γinv/ΓZ = 1 − Γhadr/ΓZ − 3 × Γ�+�−/ΓZ = 20.0(6)%
of the total. According to the standard model the contribution of neutrino

decay to the total Z width is

Γνν =
2Γ�+�−

[1 + (1 − 4 sin2 ΘW )2]
= 1.979Γ�+�−

where ΘW is the weak mixing angle, the mixing angle of U(1)Y and SU(2)L
in the weak neutral current, sin2 ΘW = 0.23120(15). Thus the number of

light neutrinos (neutrinos with masses less than half the Z mass)

Nν = Γinv/Γνν = 2.9840(82),
meaning there are three fermion families (Fig. 10.1).
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10.2 Hadron jets

Figure 10.1: Z-width and three fermion fam-

ilies. Hadronic decay cross section against

centre-of-mass energy of electron-positron

collisions.

The quark model, at its

birth, was met by gen-

eral doubts: the frac-

tional charges and baryon

number and the postu-

lated non-existence of free

quarks made the validity of

the model very improba-

ble. Even when some of the

predictions calculated with

the quark model were ex-

perimentally confirmed, the

quarks could have thought

to be mathematical tricks

to explain things. The ob-

servation of jets however,

started to make them real.

Fig. 17.25 shows an event

where an e+e− collision pro-

duces 75 charged particles

in 4 jets due to the produc-

tion of a W+W− pair. As any additional particle production decreases the

cross section of the reaction by several orders of magnitude, such an event

can be explained by quark hadronization only.

Quarks are fermions, they can be produced in particle-antiparticle pairs

only. Thus the 3-jet events copiously produced in high-energy electron-

positron collisions have to contain at least one boson: in order to explain the

jets all three have to be produced by coloured partons (coloured particles,

quarks or gluons), and at least one of them has to be a gluon. Fig. 17.25

shows such an event. According to quantum chromodynamics, the theory

of the strong interaction, the quarks interact with each other also via gluon

exchange. As quarks exchange colours, gluons must carry colour and anti-

colour and so they strongly interact with each other as well. As a gluon has

a larger colour charge than a quark, they must have higher jet multiplicity.

This was shown experimentally at LEP by studying 3-jet events where two

jets were identified as belonging to b quarks due to their longer lifetimes,

secondary vertices. Similarly, studying 3-jet events at LEP helped to identify

the gluon’s spin as 1.
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ρ(770) = 1√
2
(uu − dd)

ω(782) = 1√
2
(uu + dd)

Table 10.1: Quark composition of the lightest neutral vector mesons

10.3 Fractional charges
As the electric charge is quantized, and the charges of the electron and proton

compensate each other to the level of 10−22 judging from the neutrality of

matter, it is hard to accept the fractional charges of the quarks. There are,

however, many experimental proofs for the quark charges.

10.3.1 Neutral vector mesons
The neutral vector mesons1 in ground state, V0 = (qq) JPC = 1−− can

decay via electromagnetic interaction into lepton + anti-lepton pairs. The

decay width will depend on the electric charges involved:

Γ(V0→	+	−) ∝ e2
q |ψ(0)|2/M2

V .

Two vector mesons, ρ(770) and ω(782) have very similar masses, but

due to their different quark charges ρ(770) should decay to electrons with 9

times higher probability than ω(782) (Table 10.1): Γe(ρ) : Γe(ω) � 9 : 1.

In spite of the very rough approximation when we neglected their different

masses and state functions, the experimental observation is quite close to it,

[Γe(ρ) : Γe(ω)]exp =
7.02(11)
0.60(2) � 12. Of course, if the u and d quarks had

different charges, the ratio would be quite different.

10.3.2 Pion scattering
The carbon-12 nucleus has 6 protons and 6 neutrons, that is 18 u and 18

d quarks. Let us study muon production in the scattering of positive and

negative pions on 12C. A negative pion has a d quark and a u anti-quark,

π− = (ud), its quark will scatter off the quarks of the nucleons, while the u

can annihilate with one of the u quarks of the nucleons producing a μ+μ−

pair. The positive pion, π+ = (du), will do the same with the other kinds of

1Particles of unit spin are called vector bosons because of their 3 spin sub-states

J3 = −1, 0, +1
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Figure 10.2: Pion scattering on nucleon.

quarks of the nucleons (Fig. 10.2). The reaction rates will be proportional

to the charges of the annihilating quarks:

π− = (ud) ⇒ σ ∝ 18Q2
u = 18 · 4

9

π+ = (ud) ⇒ σ ∝ 18Q2
d
= 18 · 1

9

The cross section ratio of the two reactions is

σ(π−C→μ+μ− . . .)
σ(π+C→μ+μ− . . .) � 4 ,

confirmed by experiment.

10.4 Colours
The quark model postulates that quarks come with three colour charges and

colour makes the state function of baryon systems antisymmetric against

baryon exchange. Of course, the three colours make possible the existence

of such particles like the Δ++ = (u↑u↑u↑): J = 3/2; I3 = 3/2 hyperon.

Also, the J = 3/2 ground state needs at least three quarks, and no impossible

baryon state (like one having I > 3/2 isospin) was discovered. The simplest

solution is a new SU(3) quantum number, the three colours.

The standard model assumes that only 3-quark and quark + anti-quark

states exist. The requirement of colourlessness of the free hadrons could also

be fulfilled by e.g. bound states of 2 quarks + 2 anti-quarks (tetra-quark),

of 4 quarks + 1 antiquark (penta-quark), or 3 + 3 quarks and/or anti-quarks

(hexa-quark or dibaryon). Previously, all sightings of such states were

subsequently refuted, but recently the LHCb Collaboration reported the

observation of such states.

The existence of three colours were proven, e.g. by measuring the total

cross section of hadron production as compared to that of muon pair emission.
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Figure 10.3: Hadron production cross section in electron-positron scattering

divided by the cross section of muon emission. The high-energy results are

well reproduced by assuming 3 quark colours and fractional charges

Again, those are electromagnetic reactions and their ratio is:

R =
σ(e+e−→hadrons)
σ(e+e−→μ+μ−) =

∑
i σ(e+e−→qiqi)
σ(e+e−→μ+μ−) ∝

∑
i

Q2
qi

If there is no colour, the ratio will be R0 =
∑

q Q2
q, the sum of charge-squared

of the kinematically available quarks. In the case of three colours it will be

R3 = 3R0. Depending on ECM (e+e−):

{u, d, s}: R0 = (2/3)2 + 2 · (1/3)2 = 2/3; R3 = 2

{u, d, s, c}: R0 = 2 · (2/3)2 + 2 · (1/3)2 = 10/9; R3 = 10/3
{u, d, s, c, b}: R0 = 2 · (2/3)2 + 3 · (1/3)2 = 11/9; R3 = 11/3

As Fig. 10.3 shows the experimental results confirm the existence of

three colours. The sharp peaks are meson resonances, the base lines show

the hadron production rates related to the numbers of available quarks. This

measurement also demonstrates the validity of fractional quark charges.

Exercise 10.1
How can we discover a new particle by measuring energy in particle scat-
tering?
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Exercise 10.2
What is the significance of having 3 kinds of light neutrinos for the rest of
fermions? How is the number of lepton families connected to those of the
quarks?

Exercise 10.3
How could the total Z-width be determined by studying the resonances of
individual decay channels in electron-positron scattering?

Exercise 10.4
Why does the observation of hadron jets prove the existence of coloured
particles? Why can 3 jets originate from gluons only?

Exercise 10.5
How was the idea of fractional charges of the quarks proven experimentally?
And that of the three colours?

Exercise 10.6
Using the quark compositions of the lightest vector mesons, deduce the cross
section ratio of electromagnetic decay widths Γe(ρ) : Γe(ω) � 9 : 1 (Hint:
sum up the charges in Table 10.1).
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Parity violation, pions and
muons

MOTTO:

I cannot believe God is a weak left-hander.

(Wolfgang Pauli)

11.1 Parity violation
11.1.1 τ − θ paradox
There was a mystery: two mesons were observed having the same mass

and properties except parity: θ+ decayed to two pions, θ+→2π, whereas the

other one to three: τ+→3π. The pion is a pseudo-scalar state, JP = 0−, so

τ+ and θ+ had to have opposite parities unless the weak interaction violates

the conservation of parity.

Tsung-Dao Lee and Chen-Ning Yang at the University of Columbia stud-

ied the question and concluded in 1956 that all proofs of parity conservation

were made in electromagnetism. They assumed that τ+ and θ+ are the same

particle (indeed, today it is called the K+ meson) and the weak interaction

does not conserve parity. They also proposed several experiments to check

it. Their theory was experimentally confirmed, and they were awarded the

117
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60Co → 60Ni∗ +e− +νe
J = 5 J = 4 + 1

2
+ 1

2
−→ −→ → →

Figure 11.1: The Wu experiment: decay of magnetically oriented cobalt nuclei

Nobel Prize in physics in 1957.

11.1.2 Wu’s experiment
Chien-Shiung Wu also at Columbia together with a group at Washington

made a thorough test of this idea. They oriented the spins of 60Co nuclei in a

magnetic field at very low temperatures (T < 0.1 K) to minimize precession

and detected the electrons from beta decay. 60Co has a nuclear spin J = 5,

so when it decays to 60Ni∗ whose spin is J = 4 the emitted electron and anti-

neutrino must have spins oriented to that of 60Co, i.e. along the magnetic

field (Fig. 11.1).

The angular distribution of emitted electrons was found to be completely

antisymmetric:

I(θ) = 1 + α
v

c
cos θ

with the direction coefficient α = −1. Later, when similar β+ reactions were

studied, α = +1 was found for the e+ emission.

Thus the weak interaction maximally violates parity conservation as

it prefers left-polarized particles and right-polarized antiparticles. When

Wolfgang Pauli, the father of neutrinos, the exclusion principle and spin

matrices learned about the Wu experiment, he exclaimed: “I cannot believe
God is a weak left-hander!”

11.1.3 Parity violation in pion decay
In the weak decay of pions to muons: π+→μ+νμ there are only two possible

emission directions, A and B in Fig. 11.2, but only B is realized in Nature:

this means a maximal possible parity violation. As muons also decay in weak
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Figure 11.2: Parity violation in pion decay to muon and neutrino: only

process B is realized in Nature

Figure 11.3: Positive pion decay produces right-polarized positive muons and those

emit positrons in the direction of polarization

interaction parity violation is manifested in that as well, in the μ+→e+νeνμ
reaction. The zero-spin pions decay to polarized muons, and those will emit

the electrons in the direction of their polarization.

R.L. Garwin, L.M. Lederman and M. Weinrich (also at Columbia Uni-

versity) used the reaction of pion decay to test parity conservation in weak

decays: they stopped positive pions in a carbon target placed in a mag-

netic field and measured the number of positrons from muon decay in a

given direction as a function of the field strength (in the given experiment

as a function of the magnet current). The number of detected positrons has

shown the precession of the muons in the magnetic field, the violation of mir-

ror symmetry i.e. parity violation. This experiment was much simpler than

Madame Wu’s, but the results were published simultaneously: Lederman’s

group had waited for the Wu group to finish their work before submitting

their result for publication and acknowledged the precedence of Wu’s result.

11.1.4 Muon spin rotation (μSR)
When positive pions are stopped in matter they decay to muons, π+→μ+νμ
with a lifetime of τπ = 26 ns. As the pion has zero spin and the neutrino is
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Figure 11.4: Corrections to the magnetic moment of the muon: electromagnetic,

weak, hadronic terms and possibly new physical phenomena beyond the standard

model.

forced to be left polarized, the emitted positive muons are also left polarized,

and they can be used to study local magnetic fields in solid, liquid or gaseous

matter just by detecting the direction of the positrons emitted at muon decay.

The muons first slow down via Coulomb scattering (not losing their polar-

ization) and then get trapped somewhere in the sample. In a magnetic field

the slow muons decay with a lifetime of τμ = 2.2μs while precessing with a

frequency ω proportional to the magnetic field strength B (Fig. 11.3):

ω = gμ
qB
mc

S ≈ qB
mc

where q = ±e is the charge and m is the mass of the muon. For several

decades μSR was used to study the behaviour and measure the field strength

of local magnetic fields in solid state physics and chemistry, even meson

factories were built to facilitate this method. Today it is much less cultivated.

11.2 Anomalous magnetic moment of the muon
The magnetic moment of the muon,

�μμ = g
q

2m
�S (11.1)

is a very important physical quantity as it can detect the effects of heavier

particles, i.e. possible new physical phenomena. In Eq. (11.1) g, e and m
are the giro-magnetic factor, charge and mass of the muon and �S is its spin

vector. The Dirac equation assumes a g factor of exactly 2, but other heavy

particles via Feynman loops may add sizeable contributions to it. As shown

in Fig. 11.4, the charged muon can emit and absorb virtual photons before

and after the interaction with the external field, the virtual photons, in their

turn, can be converted into fermion-anti-fermion pairs (all that as long as the

uncertainty principle allows it).
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The anomalous part of the magnetic moment, a = g−2
2

is due to all kinds

of corrections. The standard model predicts it to be

aμ(SM) = aμ(QED) + aμ(weak) + aμ(hadr).

However, if there is physics beyond the standard model with new particles,

they could also contribute to the corrections, that is why the anomalous

magnetic moment of the muon is one of those important quantities which

could make it possible to discover new physics even at low energies. Thus

it is continuously probed at higher and higher precision. If we find a devi-

ation from the standard model prediction, it can be due to new physics or

incomplete calculation, and thus useful in any case. Let us add that precise

measurements are always useful in physics, many discoveries were made just

by trying to make a measurement more precise. Two bright examples are

cosmic background radiation and CP violation: both discoveries changed

our view of Nature and earned Nobel Prizes for the researchers.

11.2.1 (g − 2)μ: non-relativistic measurement
Recall that the magnetic moment of the muon is1 �μ = g

q�
2mc

�S where the Dirac

equation predicts g = 2. In a non-relativistic case the Larmor precession of

the muon in a magnetic field of strength B will have the frequency

ωS =
g

�

(
q�

2mc

)
B =

qB
mc

· g
2
=

qB
mc

(
1 +

g − 2

2

)
=

qB
mc

(1 + a).

A particle with spin S = 1
2

will precess around its momentum in field

�B at a frequency which is the difference between its spin and cyclotron

frequencies:

ωa = ωS − ωc = ωS − qB
mc
= a

qB
mc

if it is polarized along its momentum (which is natural for the muon emitted

in pion decay). The stored muons decay to positrons, μ+→e+νeνμ with

velocity into the direction of the muon spin, at a rate of the time dependence

N(t) = N0e−
t
τ [1 − A cos(ωat + φ)] where τ = 2.2μs is the muon lifetime

and φ is the angle of measurement.

Such an experiment was made first at CERN in a muon storage ring in

1965 (with the leadership of Georges Charpak, who was awarded the Nobel

Prize in physics 30 years later for constructing the multiwire proportional

1We use SI units in this section.
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chamber ). The experiment was made with muons of pμ = 90 MeV/c
momentum, in a field of B=1.6 T and it gave the result aμ = 1162(5) × 10−6,

i.e. a large anomaly.

11.2.2 (g − 2)μ with relativistic muons
One of the obvious ways to make the (g − 2)μ measurement more precise is

to extend the lifetime of the muons by making them relativistic. The spin

precession frequency of relativistic muons will have a contribution from

Thomas precession:

ωs = g
eB

2mc
+ (1 − γ) eB

mcγ
,

their cyclotron frequency is ωc =
eB
mcγ where γ = 1√

1−v2/c2
is the usual

Lorentz factor. Thus the measurable difference will be the same as in the

non-relativistic case:

ωa = ωs − ωc = a
eB
mc

(11.2)

This experiment was performed also at CERN in 1972 by J. Bailey et

al. They used muons at pμ = 1.9 GeV/c which meant a relativistic factor

of γ = 12 and the muon lifetime extended by an order of magnitude to

γτμ = 26μs. The B = 1.7 T inhomogeneous magnetic field helped to

focus the muons and keep them on orbit, but it also smeared the result.

Nevertheless it was still more precise than before: aμ = 116616(31) × 10−8.

11.2.3 (g − 2)μ with magic momentum
The inhomogeneous magnetic field focuses the stored muons, but it also

causes a serious systematic smearing by broadening of the muon momentum

distribution, thereby reducing the experimental precision. The solution is to

separate focusing from the magnetic field of storage: electrostatic focusing.

In an electric field �E for a muon of velocity �v the frequency connected to the

anomalous magnetic moment will be

�ωa =
e

mc

[
a �B −

(
a − 1

γ2 − 1

) �v × �E
|�v |

]
(11.3)

One can see from Eq. (11.3) that for muons having a magic momentum
(hence speed) for which a − 1

γ2−1
= 0 the electric field effect is completely



Parity violation, pions and muons 123

Figure 11.5: The storage ring of the muon g-2 experiment at Brookhaven

National Laboratory, 1999-2006

eliminated from the measured frequency. This experiment was first made

at CERN in 1979 by J. Bailey et al. in a homogeneous magnetic field

of strength B = 1.5 T with the following parameters: pμ = 3.094 GeV/c

magic momentum; γμ = 29.37; γτμ = 64.4μs. Using the method of magic

momentum increased the precision of the measurement by another factor of

3 to aμ = 1165924(85) × 10−9.

The last such experiment was made at the AGS accelerator of Brookhaven

National Laboratory using the same magic momentum method. The stor-

age ring (Fig. 11.5) with 24 detectors collecting the electrons from μ−

and the positrons from μ+ decay was operated in 1999–2002, and mea-

sured separately the anomalous magnetic moments for μ+ and μ−. The

results agreed with each other and their average [Patrignani et al., 2016] was

(116592089 ± 54stat ± 33syst) × 10−11, two orders of magnitude better than

the CERN result. There is a 3.5σ (σ is the experimental uncertainty) differ-

ence between theory and experiment. This could mean some new physics,

but may also be due to the incomplete calculation of hadronic contributions,

so the muon (g−2) value is worth further improvement. The experiment will

continue at Fermilab and for that the storage ring was transported from New

York to Chicago. As it was much too large for trains, airplanes or trucks,

it was shipped via the Atlantic Ocean, the Mexican Bay and the Mississippi

river, see the home page at http://muon-g-2.fnal.gov/bigmove/. The ring is
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in operation already, we can expect the first results in the near future.

Exercise 11.1
Why is the polarization of the muon definite when the muon is emitted in
pion decay?

Exercise 11.2
Derive Eq. (11.2).

Exercise 11.3
Show how themuon storage ring facilitates direct measurement of the anoma-
lous magnetic moment of the muon.

Exercise 11.4
How could new physics phenomena beyond the standardmodel be discovered
via measuring (g − 2) of the muon?

Exercise 11.5
How do we measure the polarization of the muon?

Exercise 11.6
Why does the muon have deeper penetration in matter than both the much
lighter electron or the much heavier proton and neutron?



Chapter 12

Kaons and CP violation

MOTTO:

Alice laughed. “There’s no use trying,” she

said: “one can’t believe impossible things.”

“I daresay you haven’t had much practice,”

said the Queen. “When I was your age, I al-

ways did it for half-an-hour a day. Why, some-

times I’ve believed as many as six impossible

things before breakfast.”

(Lewis Carroll: Through the Looking Glass)

12.1 Kaons
As discussed in Chapter 1, CPT invariance is one of the most fundamen-

tal symmetries in physics. As for elementary particle interactions the time

reversal invariance is also quite basic and generally established by experi-

mental evidence, it was generally assumed that CP invariance also has to be

valid for all microscopic processes, even when parity symmetry has proved

to be completely violated by the weak interaction. Fig. 12.1 shows the four

possible CP-variations for pion decay: only two of them will be allowed,

both C and P have to be reflected in order to get from the case where the

neutrino is left-polarized to the right-polarized anti-neutrino.

125
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Figure 12.1: Pion decay: out of the four possible CP-variations only two

will be allowed, both C and P have to be reflected.

Strangeness I3 = +
1
2 I3 = − 1

2

S = +1 K+ = us K0 = ds

S = −1 K
0
= ds K− = us

Figure 12.2: The lightest K-mesons. Left: kaon formation in pion-nucleon colli-

sions. Right: the strong eigenstates of kaons.

Kaons are the second lightest mesons after the pions (Fig. 12.2). They

contain s quarks which carry the strangeness S flavour quantum number.

Pseudo-scalar mesons, their spin-parity quantum number is JP = 0−. We

met them already in Chapter 11: Lee and Yang discovered parity violation

when noted that K+, the positive kaon appeared as two different particles

in the experiment. Among the kaons, in addition to K± we have another

particle-antiparticle pair: K0 and K0.

12.2 Neutral kaons
Neutral kaons are among the so-called V-particles: their decay appeared in

bubble chamber experiments as two tracks out of nothing (as neutral particles

do not leave tracks in chambers) curving into opposite directions in the

magnetic field. They were copiously produced and slowly decayed, so they

are created in strong and decay in weak processes. There is a slight difference

in masses between charged and neutral kaons: mK± = 493.7 MeV/c2 and

mK0 = m
K

0 = 497.6 MeV/c2.

Kaons are formed when pions collide with nucleons at high enough

energies (Fig. 12.2): a light quark-antiquark pair annihilates into a gluon and
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makes an ss pair which then separate in two particles carrying strangeness.

In pion scattering on protons at certain pion energies (around a few GeV)

well regulated beams can be produced of given kinds of kaons. One can

produce neutral kaons at accelerators at 1 < T(π−) < 6 GeV where T denotes

kinetic energy: π−p → ΛK0 with the subsequent decay of the Λ hyperon

(with the lifetime of τΛ = 0.26 ns) via:

Λ→
{

pπ− (64%)
nπ0 (36%)

that helps to tag the production of the kaon.

Neutral anti-kaons can be made with positive pion scattering,

π+ p→ K+ K0 p (T(π+) > 1.5 GeV),
or in

π− p→ Λ K0 n n (T(π−) > 6 GeV).

The kaons are created via colour interaction in flavour eigenstates and decay

via weak interaction in weak eigenstates. Assuming that the weak interaction

conserves CP parity, one can look for weak decays in the forms of CP
eigenstates. K0 and K

0
, however, are not those: CP |K0 >= |K0 > and

CP |K0>= |K0>. We can construct CP eigenstates:

K0
1

K0
2

}
=

1√
2
(K0 ± K0) = 1√

2
(ds ± ds)

As the pion is pseudo-scalar meson, its CP eigenvalue is κ(CP) = −1.

CP conservation demands that K0
1

with κ(CP) = +1 decays to two pions,

but the K0
2

with κ(CP) = −1 to three pions only, which increases its lifetime

by 3 orders of magnitude as zero orbital momentum dominates between the

emitted particles: K0
1
→ππ (τ1 ∼ 89 ps) whereas K0

2
→πππ (τ2 ∼ 52 ns).

Because of the slightly different virtual loop corrections, even their masses

are different, although the difference is extremely small.

12.3 Kaon oscillation
Thus a free K0 meson will decay via weak interaction in two different modes

with two different lifetimes. After a long enough flight only the longer-lived

component will survive. The amplitude of the free meson when it forms
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at t = 0 is K0 = 1√
2
(K1 + K2), a mixture of two states with different time-

dependencies: a1(t) = 1√
2

exp{− Γ1t
2
+im1t} and a2(t) = 1√

2
exp{− Γ2t

2
+im2t}.

The time dependence of the total squared wave function is

IK0 (t) = 1
2
(a1 + a2) · (a∗1 + a∗2) =

1

4
(e−Γ1t + e−Γ2t + Re(a1a∗2))

where

Re(a1a∗2) = exp

(
− Γ1t

2
−im1t− Γ2t

2
+im2t

)
+exp

(
− Γ1t

2
+im1t− Γ2t

2
−im2t

)
= exp

(
− Γ1 + Γ2

2
t
)
[ei(m2−m1)t + e−i(m2−m1)t ] .

Using eix = cos(x) + i sin(x), the expression in the brackets can be written

as cos(Δmt),

IK0 (t) = 1

4

[
e−Γ1t + e−Γ2t + 2 exp

(
− Γ1 + Γ2

2
t
)

cosΔmt
]
,

where Δm = |m1 − m2 |. This means a periodic changing mixture of the two

states with the frequency ω = Δm. If a particle is produced in the state K0,

the probability to detect it in the same state at time t is proportional to IK0 (t).
Thus we see a kaon oscillation between the two flavour states with a

frequency depending on the mass difference, Δm = 3.5 · 10−6 eV, implying

a relative difference Δm/m = 0.7 · 10−14. Assuming also the exchange of

quarks, the measured mass difference allowed to make predictions for the

mass of a fourth quark, the c quark. The study of kaon oscillation with the

small mass difference between the weak eigenstates facilitated to achieve the

most precise experimental test of CPT invariance:

|m(K0) − m(K0)|
m(mean) < 10−18

Another interesting feature of kaon physics is the regeneration process

(Fig. 12.4). After a long flight the neutral kaon beam consists mostly of

long-lived K0
2
= 1√

2
(ds − ds). As shown by Pais and Piccioni in 1955, if it

is injected into matter, the d quark is just scattered on nucleons, whereas its

antiparticle component can annihilate and so K0 is partially reconfigured.
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Figure 12.3: Kaon oscillation between two CP eigenstates. Left: exchange

of weak bosons, right: origin of the mass difference.

Figure 12.4: Kaon oscillation. Left: A kaon starting as K0 becomes in time

a mixture of K0 and K0. Right: K0 regeneration: anti-quarks annihilate and

K0 is reconfigured from the long-lived mixture

12.4 CP violation
Around 1960 everybody believed in the conserved CP symmetry, but af-

ter the discovery of parity violation, CP invariance called for experimen-

tal testing as well. J.H. Christenson, James W. Cronin, Val L. Fitch and
R. Turlay published the observation of the CP-violating decay K0

2
→ππ in

1964, (Cronin and Fitch were awarded the Nobel Prize in 1980). Their

method was based on the different kinematics of 2- and 3-pion decay modes

of the neutral kaon: a 3-pion decay produces pions more-or-less uncorrelated

in angle, but for the 2-pion decay the kinematic conditions are determined.

The experiment fixed the angle and energy of the detected pions and gave

45 ± 9 π+π− pairs above background (note the 5σ excess!). This means
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Figure 12.5: Penguin diagram describing direct CP-violation. Its name is

the result of a bet: the loser, John R. Ellis, had to introduce the word penguin
in his next paper.

that the long-lived neutral kaon is not a clean CP-odd eigenstate, it has a

CP-even component as well. This mixing can be written as KS = K1 + εK2

and KL = K2 + εK1 where KS is the short-lived and KL is the long-lived

neutral kaon. Here |ε | = (2.28 ± 0.02) · 10−3 so — as opposed to parity

violation — CP invariance is just a little bit violated.

CP invariance would mean |e+νeπ−> = |e−νeπ+>, but CP violation

should violate that as well. We expect that in the decay of the long-lived

neutral kaon,

KL→
{

e+νeπ
−

e−νeπ+

}
a charge asymmetry can be present. This direct CP-violation (Fig. 12.5)

was observed at CERN by the NA48 experiment. With a very sophisticated

setup they simultaneously observed kaon decay in four channels with very

similar geometric conditions and detection efficiencies. They deduced the

following ratio:

R =
N(KL→π0π0)
N(KS→π0π0)

N(KS→π+π−)
N(KL→π+π−) .

This helped to eliminate quite a few systematic effects: calibration and

geometry.

Experiment NA48 at the SPS of CERN did not go without problems:

once the chambers around the beam line imploded and the whole setup had
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to be rebuilt. Finally, the result was the following:

N(KL→π0π0)
N(KS→π0π0)

N(KS→π+π−)
N(KL→π+π−) = 0.99098 ± 0.00101 ± 0.00126

with the first uncertainty being statistical, the second one systematic. Clearly,

the experiment has demonstrated the direct CP-violation.

Exercise 12.1
In what sense can we speak of anti-kaons? How are antiparticles introduced
in particle physics?

Exercise 12.2
Show that K0

1
and K0

2
are CP eigenstates and that is why they can only decay

to 2 and 3 pions.

Exercise 12.3
How can energy and momentum conservation simultaneously fulfilled when
the kaon changes its mass in flight?

Exercise 12.4
What is the mechanism of kaon regeneration? How does the short-lived kaon
become long-lived again?

Exercise 12.5
What is the most precise test of CPT invariance and why?
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Neutrinos

MOTTO:

I have done a terrible thing, I have postulated

a particle that cannot be detected.

(Wolfgang Pauli)

13.1 Weak currents
The weak interaction has two kinds of currents, a charged current when

the interaction is mediated by W± bosons and a neutral one with the Z

boson. When an unstable particle decays to leptons it produces particle-

antiparticle pairs or a lepton with a neutrino. Typical weak decays are

shown in Fig. 13.1. We have determined the number of fermion families via

studying the decay of the Z boson to neutrino pairs by measuring its invisible
width (see Section 10.1.1) and obtained 3. Thus there are 3 kinds of light

neutrinos with charged leptons associated.

As neutrinos are produced overwhelmingly in the nuclear reactions in

stars (most of the energy of a supernova is carried away by neutrinos) space

is full of them, 60 billion neutrinos fly through our fingertips every second,

most of them from the Sun. Let us list the main neutrino sources, noting

the kind of neutrinos and their distance between production and eventual

detection on the surface of Earth.

133
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Figure 13.1: Weak interaction processes. From left to right: neutron beta-

decay at nucleon level, depicted in a crossing symmetric diagram, and at

quark level (charged currents); antineutrino scattering on an electron (neutral

current). The arrows follow the CPT convention

• Cosmic neutrinos: all kinds from cosmic distances.

• Sun neutrinos: nuclear fusion, 4 H → He + 2 e+ + 2 νe. They are

electron neutrinos coming from a distance of L � 108 km.

• Atmospheric neutrinos: secondary particles of cosmic rays.

π±→μ±νμ; μ±→e±νμνe; L � 30 km, νe, 2 νμ, ν representing both

neutrinos and antineutrinos.

• Neutrino beam from an accelerator: Analogous to the atmospheric

case, L �1–700 km.

• Geo-neutrinos: Geological antineutrinos from natural radioactivity:

β-decay of uranium and thorium: n→p + e + νe.

• Reactor neutrinos: In nuclear reactors the energy is produced by nu-

clear fission resulting in neutron-rich daughter nuclei that subsequently

undergo β− decay releasing low-energy electron-antineutrinos.

Neutrinos were first observed by Clyde L. Cowan and Frederick Reines
in 1952-56 with antineutrinos from a nuclear reactor. They used the reaction

of neutrino scattering on the proton, νep→e+n with double identification:

the two prompt photons from positron annihilation and the delayed photons

from the capture of the neutron in cadmium. F. Reines received the Nobel

Prize almost 40 years later, in 1995. Since then neutrinos have been in the

front line of particle research: at the moment there are dozens of working

neutrino experiments (some of them are noted in Fig. 17.26). Most of them
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are large, built under water, in deep mines, or tunnels under earth, and one

is sunk in the ice of the Antarctica.

It was quite a breakthrough when in 1987 the neutrinos from supernova

SN1987A were detected by the existing large neutrino experiments, the

Irvine–Michigan–Brookhaven (IMB) detector in the USA, Kamiokande in

Japan and Baksan in Russia, although the whole neutrino burst lasted 13

seconds only.

13.2 Neutrino mass
In the original formulation of the standard model neutrinos were postu-

lated to have zero mass. Many experiments were done in the last almost

hundred years to measure their mass. Most of them rely on tritium decay

t→3He + e− + νe and study the high-energy end of the electron spectrum for

deviations, as the end point should be sensitive to neutrino mass. One of

the largest and newest such experiment is KATRIN, the KArlsruhe TRItium

Neutrino experiment (Fig. 17.27). It is so large that when built in Germany

it could not be transported on the highway. Similarly to the Brookhaven

muon storage ring, it was shipped down the Danube, along the Black Sea,

the Mediterranean, the Atlantic Ocean, and up the Rhine River, altogether a

travel of 8600 km instead of the 400 km as the crow flies. KATRIN hopes

to measure the mass of the electron neutrino with the precision of ∼ 1 eV

(Fig. 13.2). Cosmological observations suggest that the sum of the masses

of the three neutrino types is below 1 eV.

13.3 Early neutrino mysteries
The first mystery was connected to neutrinos from the Sun. The nuclear

fusion of the Sun makes helium from hydrogen in several steps resulting in

41H→4He + 2e+ + 2νe,

i.e. producing 2 νe with energies up to 18 MeV. Those neutrinos were first

observed by the Homestake Experiment of Raymond Davis and his group

in 1964-69 (he was awarded the Nobel Prize in 2002). The enormous

difficulty of detecting neutrinos is well demonstrated by Solar Neutrino Unit
of detection:

1 SNU =
10−36 ν-interactions

atom · sec
,
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Figure 13.2: The expected sensitivity of the KATRIN spectrometer for

determining the mass of the electron neutrino.

which practically means one detected neutrino interaction a day per 1030

atoms, i.e. per 10–100 tons of material. The Homestake experiment of

Davis collected and analysed radioactive 37Ar atoms from the reaction

νe +
37 Cl→37Ar + e−.

The expected rate from the standard solar model was 8.2±1.8 SNU, but they

found only 2.56 ± 0.23 SNU. As all subsequent measurements confirmed

both this result and the validity of the model, this huge discrepancy remained

mysterious for a long time.

A second mystery is connected to the disappearance of the atmospheric

muon neutrinos. As cosmic particles (mostly protons and helium nuclei) hit

the atmosphere they produce pions which decay to muons and the muons to

electrons :

π+ −→ μ+νμ
|−→ e+νμνe

and
π− −→ μ−νμ

|−→ e−νeνμ
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Figure 13.3: Neutrino-less double beta decay with a Majorana neutrino in

nuclear decays and on parton level.

These processes should yield twice as many muon neutrinos than electron

ones, but the measurements gave much less than the expected factor of two.

As the neutrinos are neutral point-like fermions, they could be Majorana
particles which are their own antiparticles with the opposite polarization:

νL = νR. In that case, however, the neutrino-less double beta-decay should

be possible as shown in Fig. 13.3. Many experiments were and are looking

for such a process, and so far upper limits were estimated only for its half-life,

typically about 1021 years (on a 90 % confidence level).

13.4 Neutrino oscillation
13.4.1 Phenomenology
Bruno Pontecorvo (Joint Institute for Nuclear Research, Dubna, Russia)

developed in 1963 the theory of neutrino oscillations to explain the lack of

detected atmospheric and Sun neutrinos, but he passed away before they were

experimentally observed. Let us assume two kinds of neutrinos, with flavour

eigenstates νe and νμ. Weak interaction will mix them into mass eigenstates

ν1 and ν2 and they can oscillate between the two states: νe⇔νμ (similarly

to the K0⇔K
0

case, see Chapter 12). Obviously, energy and momentum

cannot be conserved at the same time.

If the momentum is conserved, then the energy difference is (c = 1)

E2 − E1 =

√
p2 + m2

2
−
√

p2 + m2
1
≈ p

[
1 +

m2
2

2p2
−
(
1 +

m2
1

2p2

)]

=
m2

2
− m2

1

2p
≡ Δm2

2p
.
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In the case of energy conservation the momentum difference is

p2 − p1 =

√
E2 − m2

2
−
√

E2 − m2
1
=

m2
2
− m2

1

2E
≡ Δm2

2E
.

As the neutrino mass is very small, it is quite relativistic and Eν ≈ pν , so the

two approaches yield similar results.

A free neutrino can be treated as a propagating field of plane wave: e−ip ·x

where a difference in mass leads to a change in phase. This phase change

for a neutrino of energy E in time t and on a distance of L ≈ ct is

Δ(p · x) = Δ(Et − px) ≈ Δm2t
2E

≈ Δm2L
2E
.

Of course, for this to be valid one needs small enough violation of the

conservation laws to fit in the uncertainty relation of Heisenberg, or an

interaction with some outside field or medium. The Sun neutrinos do have

a thick dense medium to interact with, but in the case of the atmosphere

we need the uncertainty relation. There the momentum change is δpν ≈
10−12 eV, much lower than the pion or muon natural widths: Γπ ≈ 10−8 eV,

Γμ ≈ 10−10 eV.

13.4.2 Super-Kamiokande experiment
Super-Kamiokande (SKK) is a huge detector in the Kamioka mine in Japan

under 1 km of earth. It was originally built to detect proton decays (Kamio-

kande stands for KAMIOKA Nucleon Decay Experiment). Its heart is

a Cherenkov detector with 50000 tons of extra clean water watched by

11146 photo-multiplier tubes of 50 cm diameter (Fig. 17.28). It has 100%

efficiency of detecting muons (and thus converted muon neutrinos) with

pμ >100 MeV/c. It committed “suicide” after the discovery of the oscillation

of the atmospheric neutrinos: in 2001 one of its phototubes imploded during

water refilling and the shock wave destroyed more than half of its phototubes.

By 2006 it was completely reconstructed.

SKK was looking for muon and electron events originating inside the

detector as the incoming neutrinos leave no other trace. It could identify

from the Cherenkov cones the type of particles (muon or electron) and their

energies. Even the direction of the detected neutrinos could be reconstructed

by measuring the shape and timing of the Cherenkov ellipse (Figs. 17.28 and

17.29).

SKK confirmed the lack of Sun neutrinos with a very high precision:

SKK data

SSM MC
= 0.406 ± 0.004

{
+0.014

−0.013
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where the first uncertainty is statistical, the second one systematic. Thus it

was confirmed that only 40% of the electron neutrinos of the Sun predicted by

the standard solar model arrive to Earth. The Sun neutrinos were identified

by type and energy only and their origin reconstructed by the Cherenkov

cones nicely showed the shape of the Sun (Fig. 17.29).

Part of the atmospheric muon neutrinos also disappeared, SKK measured

the following yield:

(Nμ/Ne)data

(Nμ/Ne)MC
= 0.688 ± 0.016 ± 0.050

where, as usual, the first uncertainty is statistical, the second one systematic.

However, SKK could also separate muons and electrons, and sort them by

energy and direction, which allowed to make an amazing discovery: the

electron neutrinos of cosmic origin (i.e. of higher energies than those from

the Sun) are in order, whereas the higher energy muon neutrinos from the

atmosphere at the opposite side of Earth partially disappear (Fig. 17.30).

The ratio (flux up)/(flux down)

N(−1.0 < cos θ < −0.2)
N(0.2 < cos θ < 1.0) = 0.54 ± 0.04

The conclusion from the SKK results was that (1) low-energy electron

neutrinos oscillate into other types on the Sun-Earth distance and (2) high-

energy muon neutrinos at the distance of Earth’s diameter oscillate into

τ neutrinos as they do not appear in the electron neutrino spectra. The

measured flux ratio was consistent with 1.3 × 10−3 eV2 ≤ ΔM2
atm ≤ 3.0 ×

10−3 eV2. Note that these measurements cannot determine the neutrino

masses, just the differences in their mass squares.

13.4.3 SNO experiment (1999-2003)
The Sudbury Neutrino Observatory (SNOlab) is located in the Creighton

nickel mine of Sudbury, Canada at 2 km underground. The SNO detector

worked in 1999-2003, it contained 1000 t of 99.92% pure D2O inside an

acrylic ball (Fig. 17.31) floating in 7500 t of H2O. For the experiment SNOlab

borrowed the heavy water from the Canadian Atomic Energy Agency. SNO

used three different reactions to detect neutrinos:

• νe + d→p + p + e−: charged current, sensitive to electron neutrinos

only;

• νx + d→p + n + νx: neutral current , sensitive to all neutrinos;
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• νx + e−→νx + e−: electron scattering, sensitive to all neutrinos.

Thus SNO could measure the fluxes of electron neutrinos separately and

of all neutrinos simultaneously. Between 2001 and 2003 the heavy water had

2 tons of Na35Cl dissolved to catch the neutrons released from deuterons in

the interaction with neutrinos. As neutron capture in 35Cl produces several

gamma photons, adding Na35Cl helped to distinguish between the neutral

current and electron scattering reactions.

The result of SNO has consolidated the proof of the oscillation of the

Sun neutrinos. It has shown that although some of the electron neutrinos

disappear, the total flux of Sun neutrinos agrees very well with the expecta-

tions of the standard solar model, so the missing electron neutrinos transit

into the other two kinds on the Sun-Earth distance.

For the observation of cosmic neutrinos with the Super-Kamiokande ex-

periment Masatoshi Koshiba received the Nobel Prize in 2002. For the dis-

covery of neutrino oscillations the 2015 Nobel Prize in physics was awarded

to Takaaki Kajita (SKK) and Arthur B. McDonald (SNOlab).

13.4.4 Neutrino mixing and masses
Thus at least two of the three neutrinos have masses (most likely all three) and

the mass eigenstates are different from the weak eigenstates, so they mix.

The mixing can be described by the Pontecorvo-Maki-Nakagawa-Sakata
mixing matrix Uf i , see Section 22.8.

We have found two mass differences among the three neutrinos: the

atmospheric neutrinos oscillate with a mass-square-difference of

(ΔM2)atm ≈ 2.4 × 10−3eV2

and the Sun neutrinos with

(ΔM2)Sun ≈ 7.6 × 10−5eV2.

This does not allow to determine the neutrino mass hierarchy, the order-

ing of neutrinos by mass eigenvalues. For simplicity let us assume m1 < m2

for the two masses closer to each other (from the oscillation of the Sun

neutrinos), then m3 will be more different from the first two and either

m1 < m2 < m3 or m3 < m1 < m2.

Recent data by many experiments confirmed [Patrignani et al., 2016] that

the mixing angle Θ12 is associated mainly with the solar νe, and Θ23 with

the atmospheric νμ oscillations. That is why in the literature the 12 index is

often substituted by � and 23 by atm or A, like Θ12→Θ� and Θ23→Θatm. It

is also agreed upon that sinΘ13 must be quite small.
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13.4.5 Neutrino experiments at nuclear reactors
As mentioned above, the first detection of neutrinos was made near a nuclear

power plant. The experimental proof of flavour oscillations of neutrinos

along distances from the Sun and through the diameter of Earth raised the

interest to study neutrino oscillations on various distances. We shall briefly

describe three examples of such experiments: the Daya Bay experiment made

at a few kilometres from a nuclear power plant, two long-distance neutrino

beam accelerator experiments and two short-distance ones at accelerators.

Reactor anti-neutrinos are commonly detected by the reaction

νe + p→e+ + n

with energies between 1.8 and 8 MeV. Energy conservation prohibits the

reactions involving muons or tau-leptons, and the oscillation is detected by

the disappearance of the electron anti-neutrinos.

For three families the survival probability of νe is [An et al., 2017]

Psur ≈ 1 − cos4Θ13 sin2(2Θ12) sin2 Δ21 − sin2(2Θ13) sin2 Δee ,

where Θi j is the mixing angle between two mass states, and

Δi j ≈ 1.267 Δm2
i j[eV2] L[m]

Eν[MeV]
with the mass-squared difference measured in eV, the flight distance in meters

and the neutrino energy in MeV. The effective neutrino disappearance phase
Δee (not to be mixed with Δi j) is an empirical quantity independent of the

neutrino mass hierarchy. The reactor experiments help to determine the

two quantities Θ13 and Δee. From the latter an empirical mass-squared

difference Δm2
ee can be deduced, characterizing the disappearance of reactor

anti-neutrinos.

The Daya Bay experiment (Fig. 17.32) is built near Hong Kong in China.

It consists of eight ν detectors in three groups in the vicinity of six nuclear

reactors. Each detector contains 20 tons of liquid scintillator. It is aimed

at determining the mixing of neutrinos of the first and third families. The

results published in 2017 [An et al., 2017] were the following:

• For the ν1↔ν3 mixing they measured a mixing angle of

sin2(2Θ13) = (8.41 ± 0.27 stat ± 0.19 syst) × 10−2,

a very well established experimental result.
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• For the empirical ν neutrino mass-squared difference they got

|Δm2
ee | = 2.50 ± 0.06 stat ± 0.06 syst) × 10−3 eV2.

• They have excluded the existence of an additional ν4 sterile neutrino
(that does not belong to a charged lepton) in the mass range of 10−3 <
Δm2

14
< 0.1 eV2.

13.4.6 Long distance neutrino experiments
As neutrino oscillations were confirmed both at the Sun–Earth distance and

at the distance of Earth’s diameter, several experiments were set up to check

shorter distances. We shall consider later LSND at 30 m and MiniBooNE at

500 m. The CNGS (CERN Neutrinos to Gran Sasso) experiment creates a

neutrino beam with the 450 GeV proton beam of CERN’s Super Proton Syn-

chrotron and shoots neutrinos toward the Gran Sasso National Laboratory,

built in a tunnel 1 km underground south from Rome at a distance of 732 km

from CERN. The relativistic pions decay in vacuum, they produce muons

and muon neutrinos. The charged muons will slow down and decay or get

absorbed by nuclei, but the muon neutrinos follow the forward direction of

the pions and form a beam: at Gran Sasso the beam diameter is about 2.8 km.

A similar setup operates at Fermilab: there is a 736 km distance between the

injector synchrotron of the Tevatron and the Soudan mine where the MINOS

neutrino detector is located.

Gran Sasso has several neutrino experiments. The OPERA experiment,

e.g. managed to observe the oscillation of νμ into ντ on the CNGS beam.

They measured the neutrino flight time between CERN and Gran Sasso as

well. When — as a result of a faulty cable connection — they announced

that they saw neutrinos travelling faster than the speed of light in vacuum,

another experiment in their neighbourhood, ICARUS, immediately checked

it and found ordinary subluminal neutrinos only.

13.4.7 Sterile neutrinos?
One of the numerous mysteries of neutrino physics is connected to the Liquid

Scintillator Neutrino Detector (LSND) experiment. LSND collected data

from 1993 to 1998 at Los Alamos: the 800 MeV proton beam from LAMPF,

the Los Alamos Meson Physics Facility was injected in a thick water target

where hadrons, mostly positive and negative pions were produced. The

pions were stopped in a copper target that absorbed the negative pions and
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Figure 13.4: The beam line of the MiniBooNE experiment at Fermilab.

The booster protons are injected into the target, produce pions of which

the negative ones get absorbed in nuclei and the positive pions decay into

muons and neutrinos. The result is 3 kinds of neutrinos, νμ, νμ and νe. The

appearance of νe is interpreted as νμ→νe oscillation.

muons (they get captured in atomic orbits and then absorbed by the nuclei),

whereas the positive particles decay: π+→μ+ + νμ, μ+→e+ + νμ + νe. These

reactions produce three kinds of neutrinos, but not electron antineutrinos; if

they appear, it is a sign of νμ→νe oscillation.

LSND saw a 4σ excess of νe above expected background using the

νep→e+n reaction. Considering that we do not see this oscillation with

the atmospheric neutrinos, the difference has to be connected to the different

energy of neutrinos (in Los Alamos it was up to 52.8 MeV) and their different

flight distances (30 m between target and detector). The conclusion of the

collaboration was that Mν > 0.4 eV.

The LSND result contradicts the other experiments. If it is valid then

a fourth, sterile neutrino must exist. As usual, no new observation is ac-

cepted in particle physics before another experiment confirms it (although the

LSND result did not reach the required 5σ level). A new collaboration was

formed and it built the MiniBooNE (Booster Neutrino Experiment) detector

at Fermilab (Fig. 13.4) in 2005 to confirm or refute the LSND result.

Fig. 13.4 presents the beam line of the MiniBooNE experiment at Fer-

milab. It reproduces the conditions of LSND at an order of magnitude

higher energy and distance. LSND was located at L1 = 30 m from the

target and received E1 = 30 MeV neutrinos on average. The MiniBooNE

detector is located at L2 = 500 m from the production target which pro-

vides E2 = 500 MeV neutrinos. Thus the ratios determining the oscillation

frequency were the same, E1/L1 = E2/L2.

In 2007 the MiniBooNE Collaboration stated that they did not see the

antineutrinos of LSND. In 2009 they announced that they started seeing

something and in 2012 they published a 3.8σ excess, almost exactly the
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same as LSND. Again, this excess is not considered to be significant enough

to accept as the signal of new physics.

13.5 Present neutrino mysteries
One would think that the neutrino mysteries are solved, we found the missing

neutrinos: the atmospheric νμ transforms into ντ on the way through Earth,

and the Sun’s νe metamorphoses into νμ and ντ while travelling from the

Sun to Earth. The oscillations are well described by three neutrino flavours

and the PMNS mixing matrix.

Unfortunately (or fortunately!) the observation of neutrino oscillations

added more to the mysteries that were already known for the neutrinos.

Although we may add neutrino masses to the Lagrangian of the standard

model like we do with the charged leptons, we would not be able to explain

any phenomenology with such an addition. The standard model has to be

extended in order to accommodate non-zero neutrino masses.

• If the neutrinos have masses, there could exist right-polarized neutri-

nos, νR, and left-polarized antineutrinos, νL , with zero hypercharge

Y = 0, i.e. with no charged lepton attached (sterile neutrinos), with no

interaction within the standard model. While this would be a natural

extension of the standard model, such particles were not observed in

experiment, except by the LSND experiment which was not confirmed.

• Maybe the neutrinos are Majorana particles, ν = ν: the neutrinoless

double-beta-decay experiments so far did not observe such phenom-

ena.

• Maybe there is an extended Higgs-sector with more symmetry-break-

ing potentials to create those masses? The LHC experiments found

just one Higgs-boson and its properties are close to those predicted by

the standard model.

• Why do neutrinos oscillate? They feel only the weak interaction, no

reason for them to have different eigenstates. Maybe there is another,

so far unobserved interaction mixing those states?

• Why the neutrino masses are so unreasonably small? The see-saw
mechanism is proposed to solve this problem. It assumes that the

neutrinos exist in pairs: light Dirac and heavy sterile neutrinos, but

such heavy ones were not observed yet.
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• What is really the mass of the neutrinos? The oscillation gives the

difference of mass-squares only.

We can conclude that neutrinos present a real enigma: they are bright

signal posts showing the holes and deficiencies in our standard model in

spite of all its success in describing the experimental data, and also a way to

extend our knowledge.

Exercise 13.1
Why does the existence of neutrino oscillations point toward the existence
of new physics beyond the standard model whereas that of kaon oscillation
does not?

Exercise 13.2
How can energy and momentum conservation simultaneously fulfilled while
the neutrino changes its mass during flight?

Exercise 13.3
What is the difference between mass and flavour eigenstates for neutrinos?

Exercise 13.4
How was the number of light neutrinos measured?

Exercise 13.5
How does the existence of neutrino oscillations prove the non-zero mass of
neutrinos?

Exercise 13.6
What is the difference between left and right polarised neutrinos and an-
tineutrinos?
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Higgs boson

MOTTO:

It was in 1972 . . . that my life as a boson really

began.

(Peter Ware Higgs)

The standard model seems to describe all experimental data so well that

any observed deviation from it is looked upon with deep suspicion. For

almost 40 years, more and more precise new data have been acquired at the

particle accelerators and all seem to agree very well with the predictions of

the standard model. Hundreds of experiments are summarized in Fig. 17.33

according to the LEP Electroweak Working Group [Schael et al., 2013]. It

shows the 2012 situation of the analysis of electroweak data: all experimen-

tal data and theoretical estimates agree within the experimental uncertain-

ties. The only parameter which deviates at more than 2σ uncertainty is the

forward-backward asymmetry of the decay of the Z boson to two b quarks.

Since the observation of the top quark in 1995 the Higgs boson was

the only missing elementary particle of the standard model. Its observa-

tion in 2012 put the dot on i, proving the mechanism of mass creation via

spontaneous symmetry breaking.

147
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14.1 Search for the Higgs boson
The search for the Higgs boson is the best example to show how systematic

data handling and analysis are organized in high-energy physics. For 40

years larger and larger experiments tried to find it or exclude its existence,

until finally, in 2012 the ATLAS and CMS experiments at the Large Hadron

Collider managed to observe it.

14.1.1 Methodology
When searching for a new particle, what we usually try to observe is a

resonance. As described in Chapter 2, for a particle with lifetime τ = Γ−1

and decay rate Γ the event rate against the energy corresponding to the

invariant mass of the decay products is

|χ(E)|2 = 1

(E − M)2 + Γ2/4 ,

i.e. a Lorentz curve. It shows a peak at the invariant mass M of the decaying

system with a full width Γ at half maximum. We claim the discovery of a

new particle if we see a resonance with a confidence level at least 5σ at the

same invariant mass of the particle in all expected decay channels, by all

related experiments.

The search involves several consecutive steps as outlined already in

Chapter 9.

• Compose a complete standard model background using Monte Carlo

simulation taking into account all types of possible events normalized

to their cross sections.

• Compose Higgs-boson signals, simulations of all possible production

and decay processes at all possible Higgs-boson masses.

• Put all these through the detector simulation to get events analogous

to the expected measured ones.

• Optimize the event selection via reducing the B background and en-

hancing the S signal via maximizing some figure of merit.

• Check the background, i.e. the description of data by the simulation for

the given luminosity: the simulation should reproduce the observed

background distributions in all details. For instance, you can check

the background of the decay of a neutral particle to charged leptons

by selecting lepton pairs of identical charges.
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• Check the signal: does it agree with the expectation by the theoretical

model?

Once we are happy with the simulations and the event selection, we

must choose a test statistic. That could be any kind of probability variable

characteristic of the given phenomenon: probabilities for having background

only, signal or combinations. One of the favourite is the Q likelihood ratio of

signal + background over background: Q = Ls+b/Lb . What most frequently

plotted is

−2 ln Q(mH ) = 2

Nch∑
k=1

⎡⎢⎢⎢⎢⎣sk(mH ) −
nk∑
j=1

ln

(
1 +

sk(mH )Sk(xjk ; mH )
bkBk(xjk)

)⎤⎥⎥⎥⎥⎦
where the variables are the following:

• nk : events observed in channel k, k = 1 . . . Nch.

• sk(mH ) and bk : signal and background events in channel k for Higgs-

boson mass mH .

• Sk(xjk ; mH ) and Bk(xjk): signal and background probability distribu-

tions for events for Higgs-boson mass mH at test point xjk .

• xjk : position of event j of channel k on the plane of its reconstructed

Higgs-boson mass and cumulative testing variable, the latter con-

structed of various special features of the event like b-tagging, signal

likelihood, neural network output etc.

Several other testing variables can be constructed on the same basis,

rather frequently used ones are probabilities of not having the expected

signal on the basis of the expected background and the collected data:

• CLb , the signal confidence level assuming background only, i.e. the

complete absence of the signal, or

• The so-called p-value: the probability of obtaining a test statistic at

least as extreme as the one that was actually observed, assuming that

the null hypothesis is true. Translated to our language that means

the probability that a random fluctuation of the measured background

could give the observed excess.
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14.2 Exclusion at LEP
Although the four large experiments at the Large Electron Positron (LEP)

collider saw no new physics, no deviation from the standard model, LEP

provided an incredible amount of very precise measurements, some of which

are presented in Fig. 17.33. In its last two years of working, LEP was mostly

devoted to the search for the Higgs boson, collecting more luminosity at

higher energies than in the previous 10 years together.

At LEP the dominant formation process is Higgs-strahlung e−e+→ZH

(the name comes from the funny English word Bremsstrahlung1), the asso-

ciated production of Higgs and Z bosons. The dominant Higgs boson decay

at these low masses is to a bb̄-quark pair (Fig. 17.34). The various channels

are different only due to the various decay processes of the accompanying Z

boson.

Statistics, the master of bad jokes at particle physics experiments (see

the Foreword of [Patrignani et al., 2016]), have shown up at LEP as well:

one of the experiments, ALEPH, saw in one of the possible Higgs decay

channels a quite strong signal corresponding to a Higgs boson of a mass of

115 GeV, while the rest of LEP have not seen anything [Barate et al., 2003]

(Fig. 17.36). ALEPH saw the excess in 4-jet events only, in those events

where the Higgs boson decays to a pair of b quarks and the accompanying Z

boson also decays to a quark pair (Fig. 17.35). The b quark is identified by

its long lifetime leading to a secondary decay vertex in the event. Another

strange thing was that the Higgs signal seen by ALEPH by far exceeded the

expectations of the standard model. Also, the observed Higgs mass was

critical as it coincided with the average kinematic limit of LEP: in 2000

the average collision energy of LEP was about 206 GeV and the observed

resonance was found at 115 GeV, the difference was very close to the mass

of the Z boson, 91 GeV.

A quite interesting feature of data analysis was the plotting of spaghetti
diagrams. Those are signal weight distributions of each selected event

as a function of the assumed Higgs mass. Fig. 17.37 shows the weight

distributions of 17 selected Higgs-like candidate events observed by the four

LEP experiments [Barate et al., 2003]. The ALEPH events crowd around

115 GeV whereas for the other three experiments there are less of them with

a rather random mass distribution. This caused quite an excitement at LEP:

many physicists signed the petition to the Director General of CERN to

extend the life of LEP by another year, but that was refused: the simulated

1Other languages use the simple mirror translation of the German word: braking
radiation
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projections were not very promising for a discovery of the SM Higgs boson

(the effect seen by ALEPH only was far too large, much higher than the

prediction of the standard model), and the contractors for building the LHC

were already prepared to start.

14.3 Search and observation at LHC
Figure 17.38 shows the cross sections of various production processes of

the SM Higgs boson in p-p collisions at the LHC. The dominant reaction is

gluon fusion, but vector boson fusion is also significant.

Just like LEP had, the Large Hadron Collider has also four interaction

points (Fig. 17.7) with a major experiment (and sometimes a smaller one as

well) in each. The two largest ones, ATLAS and CMS were designed with

the main aim of discovering the Higgs boson, ALICE is specialized on heavy

ion collisions and LHCb on studying rare processes involving b quarks. The

authors belong to CMS, so most of the results we mention are from CMS,

but all will be compared to those of ATLAS pointing out the similarities and

the (very few and not significant) differences.

The ATLAS and CMS collaborations are really huge. According to

the official statistics at the time of the Higgs discovery CMS had 3275

physicists (including 1535 students) and 790 engineers and technicians from

179 institutions of 41 countries (ATLAS was even somewhat larger). The

largest participant of CMS is the USA, then Italy, Germany and Russia.

It is quite remarkable how similar and different are ATLAS and CMS.

ATLAS uses a lot of new detector techniques while CMS consists of mostly

traditional parts. CMS is based on the largest superconducting solenoid on

Earth whereas ATLAS has a smaller solenoid encircled by 8 huge magnets

making a toroidal field. CMS is full of steel, it weighs 14000 tons, twice

the weight of ATLAS in an order of magnitude smaller volume. The event

triggering was also different, CMS developed a quite innovative, two-level

trigger scheme, while the ATLAS trigger had three levels. And in spite of

all these differences, the two collaborations got (and still get) very similar

results, and that makes all their observations most reliable.

The design of the LHC and its experiments started well before the actual

start of LEP, which means that the construction of the LHC detectors took

two decades of hard work before the actual data acquisition started. The

LHC devoted its first two years of operation to development rather than data

taking, which really started in 2011 only.

Even before the LHC started, the parameter fitting of the standard model
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had pointed toward a light Higgs boson with a mass around 100 GeV. As

LEP excluded the Higgs boson below 114 GeV the LHC experiments had

to be prepared for detecting the Higgs boson in the most complicated mass

region, around 120 GeV, with several competing decay channels (Fig. 17.34).

It is well seen that below 110 GeV the bb̄ decay, above 160 GeV the WW

dominates, that is why those mass regions could be excluded earlier. The-

oretical calculations have shown that the best channels to observe a light

Higgs boson at the LHC should be the two-photon, H→γγ and four-lepton,

H→ZZ∗→	+	−	+	− channels. The hadronic decay channels are hampered

by the very high hadron background. However, these signal channels have

very low branching ratios, for H→γγ it is BR = 2.27 × 10−3 and the sig-

nal/background ratio is small, S/B 
 1, and for H → ZZ∗ → 	+	−	+	− (as

usual, 	 = e, μ, i.e. in the experiment only the electron and the muon are

considered leptons, because the taus can decay to hadrons as well) it is even

lower, BR = 1.24 × 10−4, but with a much cleaner signal, S/B > 1. In 2012

the LHC luminosity was already so high that every bunch crossing (event in

every 50 ns) contained 10–20 p-p collisions leading to copious hadron pro-

duction. Both large experiments, CMS and ATLAS designed their tracking

systems and electromagnetic calorimeters with these two processes in mind.

The electromagnetic calorimeter of CMS consists of 75,848 PbWO4 single

crystal scintillators, whereas that of ATLAS is a sampling calorimeter based

on liquid argon shower detectors.

By the beginning of 2012, when all 2011 data were analysed, the possible

mass of the SM Higgs boson was already confined to the region of 114 <
MH < 127 GeV by CMS with very similar results from ATLAS. In that

region 2– 3 σ excesses were found at �125 GeV in the two main decay

channels, H →γγ and H → ZZ. It seemed more and more probable that the

Higgs boson would be observed at the LHC in 2012. It was even decided

by the CERN administration to extend the data taking scheduled for 2012

before the long shutdown for accelerator development (for increasing its p-p

collision energy from 8 to 13 TeV and the event rate from 20 to 40 MHz) if

necessary for the discovery.

On July 4th, at the beginning of the large annual high-energy physics

congress in Melbourne, the spokespersons of ATLAS and CMS gave talks

from CERN (in internet connection to the whole word, including, of course,

the main auditorium of the Australian conference) on Higgs search. They

announced that at the LHC collision energies 7 and 8 TeV, in the two most

significant decay channels H → γγ and H → ZZ → 	+	−	+	−, at an in-

variant mass of m � 125 GeV a new boson is seen by both experiments at

a convincing statistical significance of 5σ confidence level, with properties
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corresponding to those of the standard model Higgs boson. The fact that

the new particle could decay to two photons or Z bosons confined its spin

to an even integer, i.e. a boson of S = 0 or S = 2. Of course, as the data

analysis was optimized to find the SM Higgs, it was very unlikely to find

something very different. Nevertheless, the two experiments emphasized

that it has to be studied, whether or not its spin is really zero with a +

parity (the pseudo-scalar mesons have spin 0 with negative parity), and that

its decay probabilities to various final states follow the predictions of the

standard model. After reanalysing their data the Tevatron experiments, CDF

and D0 also found an excess at this mass (after the LHC started the Tevatron

accelerator of Fermilab was stopped).

14.3.1 Reactions of the media
The saying that three people can keep something secret only if two of them are
dead is attributed to Benjamin Franklin. As any result of a collaboration has

to be approved by all members before it is made public, the more than 6000

participants of ATLAS and CMS knew well in advance the developing result.

Thus two days before the 4th July announcement Nature Online already re-

ported the discovery. Of course, the fact that the CERN management invited

to the seminar all leading scientists of the field, including the theoreticians

who developed spontaneous symmetry breaking for the standard model, also

helped people to guess that something dramatic would be announced.

CERN produced some figures concerning the media echo of the day:

55 media organizations were represented at the talks of 4 July. The talks

were broadcasted via close to half a million internet connections (many

of them being conference rooms in partner institutions, 1034 TV stations

devoted 5016 news broadcasts to the event for more than a billion (109)

people. Many-many news articles and even more blogs and talks discussed

the conditions and importance of the discovery.

14.3.2 Observations
On 31 July the two experiments submitted papers of the discovery to Physics

Letters B, they were published 14 August. Both papers, [Aad et al., 2012]

and [Chatrchyan et al., 2012b], were 15 pages long followed by 16 pages

long lists of close to 3000 authors, and both were dedicated to the memory

of those participants who could not live to see the result of the more than

two decades of construction work. Their measured mass distributions, after

analysing about a quarter of the data to be collected in 2012, are shown in
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Figs. 17.41 and 17.42. The mass distributions of the di-photon and 4-lepton

decay channels were quite similar for the two experiments. They showed a

significant peak at the same invariant mass of about 125 GeV. In all cases the

signal strengths agreed within uncertainties to the predictions of the standard

model.

What was really convincing of the observation was the distribution of

the p-values of the events selected in the various decay channels of the

hypothetical Higgs boson. It was a joke of statistics that in July 2012 adding

together two decay channels, H → γγ and H → 4	 gave the same 5σ
significance for both ATLAS and CMS, whereas adding to it the results for

other channels increased the significance to 6σ for ATLAS and left it at 5σ
for CMS (Fig. 17.42).

14.3.3 Is it really the Higgs boson?
Analysing most of the data collected in 2012 confirmed the existence of the

new boson and led to the conclusion that all observed properties of the newly

discovered particle were close to those predicted for the Higgs boson of the

standard model within statistics. All these results were further confirmed by

the LHC data collected in 2016-17 at higher energy (13 TeV p-p collisions)

and much higher luminosity. The corresponding 4-lepton and 2-photon

spectra are presented in Figs. 17.43 and 17.44.

The fact that the new boson decays to two photons points to its having

spin 0 or 2. The charged lepton spectra bore the features of its having S = 0+

as ascertained by both experiments. The measured signal strengths of the

new particle were fully compatible with that expected for the standard model

Higgs boson: for CMS it was ∼ 20% less while for ATLAS ∼ 40% more

than the SM prediction, but both deviations were within the experimental

uncertainties. As a theoretician remarked, whenever ATLAS had an excess

CMS came up for everybody’s annoyance with a deficit, bringing the average

close to the SM prediction.

The final analysis of the 2012 data resulted in a joint mass value by

ATLAS and CMS as [Aad et al., 2015]

mH = 125.09 ± 0.21(stat) ± 0.11(syst) GeV .

The LHC experiments studied the cross sections of the processes con-

nected to the new particle. Fig. 17.45 shows the signal strengths of production

and decay in various possible channels of the Higgs-like boson measured by

CMS [Chatrchyan et al., 2013] as compared to those predicted by the stan-

dard model for the Higgs boson with a mass of 125 GeV. The amplitudes of
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all observed signals are in agreement with the expectations of the standard

model. ATLAS got similar results, of course.

Thus what we found is most likely the standard model Higgs boson. On

one hand this is a great success of particle physics. On the other hand this

is somewhat of a disappointment as the SM has theoretical shortcomings

which need new physics to resolve. Just to list a few of them: it cannot unite

the interactions at large energies, cannot include gravitation, cannot account

for the dark matter of the Universe or for the dominance of matter against

antimatter, and cannot explain neutrino masses and oscillations. There are

many extensions of the theory, that can resolve some of those problems, most

popular among them is supersymmetry, which among other things predicts 5

kinds of Higgs bosons, but none of its predicted phenomena could be found

yet experimentally. The observables of the Higgs boson should be sensitive

to some of the features of new physics and these studies will be the main job

of the LHC experiments in the future.

Right after the confirmation of the discovery, in 2013 François Englert
and Peter Higgs were awarded the Nobel Prize in physics.

It is very interesting that the 125 GeV mass of the Higgs boson seems to

be exciting for theoreticians. There was even a special workshop in Madrid

organized to discuss this mass in 2013. The reason is that mH = 125 GeV is

at the border line of the stability of electroweak vacuum on the plane of top

mass against Higgs mass.

14.4 Vacuum stability
Let us recall that in the standard model the potential of the symmetry-

breaking BEH field is V(φ) = μ2 |φ|2 + λ |φ|4 where the second term with

|φ|4 is the self-interaction of the field with a strength depending on λ.

The observation of the Higgs boson at mass 125 GeV proved that the

vacuum of our world has a non-zero minimum potential value. The strengths

of all interactions depend on the energy of interaction, at LHC energies and at

mH � 125 GeV λ � 0.13. Well before the introduction of the BEH potential

it was stated that the coupling of a self-interacting scalar field (λ in this case)

can change sign at high energies, which is called vacuum instability. The

question is, of course, at what energy we can expect this sign change. This

energy dependence is affected by the interaction of the field with all particles.

As the t quark has the largest mass, hence highest interaction potential with

the BEH field, it has the largest effect on λ.

In certain conditions several BEH minima could exist [Lee and Wick, 1974].
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If the BEH vacuum has one minimum only, our vacuum is stable, if it has

more, then it can be metastable. If our vacuum is metastable and we are

not in the deepest minimum, then the universe exist in a false vacuum, and

the world can shift into the deeper one by a quantum mechanical tunnelling

effect. In some sense it could be the end of our world as we know it. At the

new BEH minimum all the particles would have different masses and also

the strength of the weak interaction would change. Of course, this assumes

that the standard model is valid up to extreme high energies. As Turner and

Wilczek stated in 1982 [Turner and Wilczek, 1982], even if our vacuum is

metastable, its expected lifetime could be much longer than the age of the

Universe, hence appear stable to us.

These estimations were refined in time and as the mass of the Higgs

boson became definite, it became clear that our world is located somewhere

at the edge of stability. Fig. 17.46 shows such an estimation, presently most

precise in the standard model. The location point of the measured masses of

the Higgs boson and of the t quark fall in a narrow metastable region.

14.5 BEH field and inflation
According to the generally accepted model of cosmology our world was

born in a Big Bang. The theory has many shortcomings and for their

solution Alan Guth proposed the model of inflation, according to which

the space of the Universe in the first 10−32 second expanded by 1020–

1040 times. This needed a force field called inflaton which had to dis-

appear after the inflation. There are many speculations about its nature,

here we quote one connected to the Higgs boson. Bezrukov and Sha-
poshnikov [Bezrukov and Shaposhnikov, 2008] have shown that the BEH

field is a suitable candidate for that assuming that its ξ coupling to grav-

ity is strong enough. Then the Lagrangian of the standard model should

be completed by − 1
2

M2R − ξH†HR, where R is the gravitational space

curvature and H is the strength of the BEH field. M is a mass-like pa-

rameter, less than the Planck mass related to the gravitational constant,

0 < M < MP = 1/
√

8π/G � 2.4 · 1018 GeV. M = MP should result in

too high initial density fluctuations, and M = 0 in too large Higgs boson

masses. Subsequent estimation showed that the Higgs boson should be light,

mH < 135 GeV/c2 for the model to function. From the demand that the in-

stability of the BEH field coupled to gravity, started at the Planck scale only,

Shaposhnikov and Wetterich [Shaposhnikov and Wetterich, 2010] predicted
mH = 126 GeV/c2. Of course, this assumes that the standard model is valid
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up to the Planck scale. If below that energy some new physics starts, the

picture is invalid.

Thus we do not have to be afraid that our Universe shifts into another

vacuum. At the same time we see another excellent feature of the BEH

mechanism: it could explain the cosmic inflation without assuming another

force field. Apparently we get more and more proof for Lederman’s joke

that the Higgs boson and the BEH mechanism remind him of the deus-ex-
machina in the Greek-Roman dramas, that puts everything in order.

Exercise 14.1
Why do we need symmetry breaking in order to create masses? Why does
the existence of the Higgs boson prove the validity of the symmetry breaking
mechanism?

Exercise 14.2
Why do we need such overly sophisticated statistical methods like −2 ln Q or
the p-value in order to exclude or discover new physics?

Exercise 14.3
Why do hadron colliders have higher chance to discover new physics in spite
of the more difficult data analysis requirements than the electron-positron
colliders with their much cleaner events?

Exercise 14.4
What reactions helped to discover the Higgs boson at the LHC? Why those
decay channels were used which have the lowest yields?

Exercise 14.5
How can we tell that the Higgs-like signal observed at the LHC belongs to
the Higgs boson predicted by the standard model?
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Heavy ion physics

MOTTO:

“It seems very pretty, ... but it’s RATHER

hard to understand! ... Somehow it seems to

fill my head with ideas — only I don’t exactly

know what they are!”

(Lewis Carroll: Through the Looking Glass)

15.1 Quark gluon plasma
The basic idea of heavy ion physics is to reproduce and study the properties

of matter right after the Big Bang. That extremely hot matter is assumed to

have been a soup of de-confined quarks and gluons, the quark gluon plasma.

Figure 17.47 shows a simulated collision of heavy ions. As they are

accelerated to high energies, they are relativistic. In the direction of the

beam the ions are Lorentz-contracted, which also increases the density and

temperature of the plasma. The fire ball will expand and cool down, and the

quarks hadronize, form colourless hadrons that can be detected experimen-

tally. Most of the components and also the hadrons formed in the collision

will fly forward. If a new particle forms and decays in the soup, it will decay

in more-or-less its own centre-of-mass system and emit its decay products

in all directions. Thus what is really interesting should fly to some extent
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perpendicularly to the colliding beams. Let us recall the definitions of trans-
verse momentum, pT =

√
p2
x + p2

y and pseudorapidity, η = − ln tg θ
2
. The

latter is used instead of polar angle at hadron colliders. These variables have

important use in heavy ion physics.

Note that in heavy ion physics the reaction yields are determined by

the energy of the individual nucleon-nucleon collisions and not by the total

energy of the projectiles, so it expresses the collision energies in units of

GeV/nucleon pair (GeV/NN) or at LHC energies TeV/NN. Thus, when pro-

tons are accelerated to 3.5 TeV on each side, the total energy of p-p collisions

will be 7 TeV, whereas in the case of Pb-Pb collisions its characteristic energy

will be 2.76 TeV/NN.

Generally speaking, heavy ion physics is very much related to quan-

tum chromodynamics as it treats quasi-free, interacting quarks and gluons.

Citing the recent review [Busza et al., 2018]: “Heavy ion collisions are a

laboratory that is rich with unique ways to probe fundamental aspects of

QCD empirically, with some control over varying conditions.” According to

the theory of heavy ion collisions, the appearance of the quark-gluon plasma,

as a phase transition, should be characterized by the following experimental

signatures:

• High pressure in the medium, increasing pT of the released particles.

• Jet quenching: As the medium becomes coloured, the stopping power

for coloured particles increases, quarks and gluons have difficulties

getting out of the system, so the number of detected jets should be

reduced.

• Low-viscosity liquid: The quarks and gluons move quasi-free reflect-

ing to some extent the original nucleon-like lumpiness of the system,

which at higher viscosity should even out.

• Direct photons: With the appearance of quasi-free quarks the medium

contains fast decelerating charged particles that should radiate high-

energy direct photons, similarly to ordinary bremsstrahlung.

• Effective hadron masses: In the high-temperature plasma the chiral

symmetry is partially restored, heavier quarks become lighter, so the

identified heavy mesons should have lighter masses .

• Debye screening: When the colour content of the medium becomes

generally large because of release of quarks and gluons, that will

decrease the binding energy of individual hadrons. This will lead
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Figure 15.1: Lead-lead collision event at LHC energy of 5.02 TeV per

nucleon pair recorded by the time projection chamber of the ALICE detector

in November 2015. In this collision 1582 positively-charged (darker tracks)

and 1579 negatively-charged (lighter tracks) particles are produced; about

80 % of them are pions

to such effects as the break-up of heavy hadrons, like the reduced

detection of J/ψ = (cc) mesons.

15.2 Hydrodynamics
As mentioned above, due to the low internal viscosity of the quark gluon

plasma its partons move almost free. If their interaction were stronger,

the system could not possibly remember its structure before the collisions,

but it does: hydrodynamics converts spatial anisotropies into momentum

anisotropy. Another characteristic feature is the elliptic flow. The central-

ity (related to the overlap) of the nuclei in nucleus–nucleus collisions (see

Fig. 15.2) is rarely perfect. If the newly formed quark matter were gas-like
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Figure 15.2: Centrality regions and charged particle multiplicities in

Pb-Pb collisions at 2.76 TeV/nucleon-pair energy measured by ALICE

[Aamodt et al., 2010]. Note that 0 % corresponds to the highest centrality.

Regions 60–70 % and 70–80 % are not labelled

then it should expand in all directions with the same momentum. How-

ever, it seems to behave as an almost perfect liquid and expands elliptically

(Fig. 17.47). This azimuthal anisotropy in particle production can be quanti-

tatively characterized by the elliptic flow, the coefficient v2 of the second term

in the Fourier transform of the angular distribution of measured (charged)

particles:

dN
dφ
=

N
2π

(
1 + 2

∞∑
n=1

vn cos (n(φ − ψn))
)
. (15.1)

The observables are the following: φ is the angle in the transverse plane,

ψn are the event plane angles (where the nth harmonic component has its

maximal track multiplicity) and N is the average number of particles per

event. They can be measured for different particle species as functions of

rapidity, centrality and transverse momentum. v2 is the elliptic flow reflect-

ing two-parton correlations in the quark gluon plasma. Higher correlation

coefficients can also be measured and calculated. Useful quantities are also

the event-by-event values of these data, not only the averages.

Elliptic flow is one of the most important measured quantities in heavy
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ion physics as it can be predicted theoretically using various hydrodynamic

models.

15.3 Experiments
For heavy ion experiments the main problem is to follow and identify the

thousands of emitted particles (Fig. 15.1). The detectors of heavy ion physics

look very similar to those in high-energy particle physics: a large magnet, a

vertex detector closest to the beam pipe, an inner tracker, usually a chamber

encircled by electromagnetic and hadronic calorimeters, and muon detectors

outside. The experiment specialized on heavy ion physics at LHC, ALICE

(A Large Ion Collider Experiment) sacrificed data acquisition speed for

precision: it has the largest existing time projection chamber (TPC, see

Chapter 7) around its beam pipe, which helps to follow and identify thousands

of particles, but cannot handle the amount of luminosity ATLAS and CMS

accept with their semiconductor tracker systems. ALICE was placed in

and around the huge magnet of the former LEP experiment L3. Fig. 15.2

shows the correlation between centrality and particle multiplicity measured

by ALICE at 2.76 TeV/NN [Aamodt et al., 2010].

The measuring apparatus of the fixed-target NA49 experiment, now con-

tinued as NA61 (NA stands for North Area of SPS and the number is a

sequence number of accepted experimental proposals) also based on TPC’s.

It mapped the transition from ordinary nuclear matter to quark-gluon plasma

by comparing the following reactions from the point of view of particle

yields:

• Pb+Pb collisions at 158, 80, 40, 30, 20 GeV/NN;

• C+C, Si+Si collisions at 158 and 40 GeV/NN;

• p+Pb, p+C, p+p and n+p at 158 GeV/NN;

• π+p and π+Pb also at 158 GeV/NN.

They had a beam of 105 Pb-ion/sec in about 1 mm diameter at 158 GeV/NN

and typical event multiplicities of more than 1500 charged hadrons in every

collision.

Another place of heavy ion experiments is RHIC, the Relativistic Heavy

Ion Collider at Brookhaven National Laboratory, USA. RHIC accelerates

two beams of copper and gold ions and collides them at several interaction

points. Its two largest experiments are PHENIX and STAR. The RHIC



164 Chapter 15

experiments were the first to demonstrate the transition from nuclear matter

to quark matter by detecting jet quenching in central Au+Au collisions as

compared to proton-proton, proton-Au, deuteron-Au events and peripheral

Au+Au collisions. In the case of peripheral collisions most of the nucleons

will avoid collisions and just shoot along the beam pipe. In the case of

central collisions there is a large activity in the transverse directions, which

is easily measured by the cylindrically built detector systems. Every heavy

ion experiment has a zero degree calorimeter, a detector close to the beam

pipe, in order to check the centrality of the collisions by detecting the forward-

scattered particles and also for measuring the total number of collisions, the

luminosity.

15.4 Jet quenching

The observation of jet quenching was a real break-through in heavy ion

physics as it proved that at high enough energies the quarks are released

from the nucleons and the matter becomes all coloured in a volume much

larger than the size of the nucleon.

In Fig. 17.48 RHIC results are shown. The π0 yield observed by the

PHENIX experiment (Fig. 17.48, upper) from central Au+Au collisions is

suppressed as compared to the d+Au collisions of minimum bias, i.e. at

minimal selection criteria [Adler et al., 2003]. In other spectra PHENIX has

shown how the suppression depends on the energy and collision centrality.

The suppression of neutral pions proves that this is not a Coulomb effect, but

the result of the coloured medium.

The STAR experiment made a very similar discovery (Fig. 17.48, lower).

They measured the azimuthal angles of tracks in the events taking φ = 0 at

the track with the largest pT for 2-jet events in d+Au and Au+Au collisions

[Adams et al., 2003] for minimum-bias events. In central Au+Au collisions

the track with the highest pT will more probably come from 2 → 2 collisions

near the surface of the fireball. Then the other particle produced in the

collision flies in the opposite direction. As it has to traverse thicker coloured

medium, it is more likely stopped inside the fireball. There is no such effect

in d+Au collisions. This was observed at the very beginning of RHIC and

published in 2003. All RHIC experiments saw similar effects both with

neutral and with charged hadrons, and have shown the formation of coloured

matter in high-energy heavy-ion collisions.
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15.5 Heavy ions at LHC
At the end of every p+p run (usually lasting 6–8 months) the LHC collides

heavy ions for a few weeks. There were Pb+Pb runs at the maximal LHC-

energies, but there were also p+Pb collisions and p-p runs at lower energies

(corresponding to the per-nucleon-pair energies of heavy ions) to establish

reference measurements for the interpretation of the Pb+Pb data. There was

also a Xe–Xe run at the end of 2017.

At the low-luminosity start-up of LHC, ALICE could handle the p+p

collisions very well and produced the first paper with LHC results, a test of

QCD at high energy. It made many measurements with heavy ions later.

We saw that the RHIC experiments had observed the one-sided suppres-

sion of the tracks of two-jet events from central collisions of heavy ions

as compared to those from collisions with protons or deuterons. This was

interpreted as quenching of partons going through the bulk of the coloured

quark matter. At the LHC ATLAS reproduced this result (Fig. 17.49) with

the observation of direct event-by-event jet quenching [Aad et al., 2010].

The natural reference for determining the effect of the coloured medium

on the observables is the nuclear modification factor,

RAA(pT) = dNAA/dpT

< Ncoll > dNpp/dpT

where < Ncoll > is the average number of colliding nucleons, NAA and Npp

are the numbers of events selected for AA and pp collisions and pT is the

transverse momentum. The effect of the nuclear medium is demonstrated in

comparison of peripheral and central p-p and Pb-Pb collisions by the CMS

experiment [Chatrchyan et al., 2012a] (Fig. 17.50). CMS also observed

an interesting new effect on particle correlations: apparently the degree of

two-particle correlations increases with the event multiplicity, the number

of tracks in the event.

15.6 Big questions
In spite of the great wealth of data collected at SPS, RHIC and LHC there

are several open questions [Busza et al., 2018] in heavy ion physics. How

does a strongly coupled liquid emerge from an asymptotically free gauge

theory? How can the quark-gluon-plasma behave as a freely flowing liquid

with strong coupling among its constituents? How could such a liquid form

within 1 fm/c? What are the limits of the applicability of hydrodynamics in

heavy ion collisions?
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Exercise 15.1
Why pions dominate the hadron jets?

Exercise 15.2
What is the importance of the transverse momentum of jets and collision
centrality in heavy ion collisions?

Exercise 15.3
What are the characteristic features of the transition of nuclear matter into
quark-gluon plasma?

Exercise 15.4
What are the advantages and disadvantages of using time projection cham-
bers for studying heavy ion collisions?

Exercise 15.5
Deduce how one gets 2.76GeV/NN collision energy at colliding 3.5 TeV Pb
beams. At what beam energies one gets 2.76GeV/NN for Pb-Pb collisions
in the case of a fixed Pb target?
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Practical applications

MOTTO:

Prediction is very difficult, especially about

the future.

(Niels Bohr)

Particle physics is, of course, basic research, driven by the curiosity of

the researchers. However, as shown in this chapter, its spin-off has proven to

be extremely useful for the general society. In general one can state that any

kind of basic research can bring applications in the long run, even if we do

not know exactly how and when.

16.1 Informatics

The experiments at high-energy accelerators generate large amount of data.

At the LHC more than 10 PB data are recorded every year. Special techniques

were and are developed to handle them. Some of these techniques have found

already their ways into society.
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16.1.1 World Wide Web

The first and probably most important example is the World Wide Web. It

was invented and first developed by Tim Berners-Lee and his group at CERN

in 1989-90. As presented in the CERN museum, his boss in 1989 wrote on

the original proposal Vague but exciting. Tim Berners-Lee wrote in 1991:

“The WWW project was started to allow high energy physicists to share data,
news, and documentation. We are very interested in spreading the web to
other areas, and having gateway servers for other data.” First, of course, it

was used at HEP laboratories like Stanford, Fermilab and at the associated

universities, but in 1992 CERN announced that anybody can use the Web

free of royalty and the platform-independent Mosaic browser was opened

for the public: that began such an information explosion in the world that

seems to surpass even Gutenberg’s printing. Since Mosaic many browsers

have been developed and a lot of features added. Of course, with time the

Web became commercial as more and more companies use it for trading, but

it retains its completely free access established by CERN. Thus the free use

of the internet browsers is due to particle physics research. We mean free in

the monetary sense. Internet providers recognized quickly that information

is a new source of wealth and they collect information from their users

16.1.2 Grid computing

At the start of designing the LHC it was clear that it would become impossible

quickly to store and analyse all its data at CERN, so CERN established its

Worldwide LHC Computing Grid, WLCG. The experimental data at LHC

are analysed in several steps, in a distributed manner. The WLCG consists

of tiers. The centre, called Tier-0, is located at CERN and in the Wigner

data centre in Budapest. It receives the primary data from the LHC. After

a preliminary event reconstruction the data are distributed to the Tier-1

data storage centres, for instance these stations of CMS are located in Lyon,

Barcelona, Oxford, Bologna, Karlsruhe, Fermilab (near Chicago) and Taipei.

The actual data analysis is done at about a hundred Tier-2 computer centres

which get their data from the Tier-1 storage stations. This system was

developed by CERN for the LHC, but it helps other applications as well. For

a few years CERN helped to establish MammoGrid, a virtual organization

for diagnosing breast cancer.
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16.1.3 Computer simulation
For the detection and interpretation of new physics at high-energy particle

collisions need elaborate Monte Carlo techniques. The experience in pro-

gramming in general and in simulation methods in particular, that young

scientists learn by the time they obtain their degrees can be used in other

fields as well. Several researchers with PhD-s in high-energy physics went

to work in the insurance or banking sectors to make financial and indus-

trial forecasts using simulations. CERN has developed the GEANT general

simulation program package [Agostinelli et al., 2003] which is now widely

used, far outside high energy physics.

16.2 Radiation
Some of the discoveries in particle physics were immediately used in practice,

mostly in medicine. Wilhelm Röntgen discovered the X-rays in 1895 and

used it right away to photograph the bones in his wife’s hand. He refused to

patent the X-rays as he realized its enormous significance for the society. In

1901 Röntgen was awarded the very first Nobel Prize in Physics, which he

donated to his university.

Henri Becquerel discovered natural radioactivity in 1896, which was

followed the separation of radium by Pierre and Marie Curie in 1898, the

three of them were awarded the 1903 Nobel Prize in Physics. As early as in

1902 radioactive irradiation was already used in Stockholm for local tumour

therapy.

16.3 Accelerators
There are nearly 40 000 particle accelerators in operation worldwide, about

half of them employed for biomedical uses and the other half in industry

(for surface treatment and to produce microchips). These days less than 200

accelerators are used for particle and nuclear research.

The first cyclotron was created in Berkeley by Ernest Lawrence in 1930,

it was as small as his palm. This was followed by larger and larger machines

(Fig. 17.51) and Lawrence was awarded a Nobel Prize in physics in 1939.

His brother, John Lawrence, a physician, also worked at Berkeley and in

1936 together they produced phosphorus-32 and used it as the first artificial

radioactive isotope for treating leukaemia. This is an excellent example of

how an interdisciplinary environment helps both science and applications.
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The neutron was discovered by James Chadwick in 1932 (Nobel Prize,

1935) and since then it is used to form artificial radioactive isotopes. In 1934

an Italian group led by Enrico Fermi (Nobel Prize, 1938) created 50 new

radioactive isotopes (including those of iodine, very popular in medicine)

using slow neutrons.

The linear accelerator was invented by Wideroe in 1927, and the first

modern linac was built by Alvarez in 1946. Electron linacs are used in

hospitals worldwide, see Fig. 17.51.

16.4 Medical diagnostics
The particle detectors are more than eyes for particle physicists, they be-

came irreplaceable in medical diagnosis as well. The multiwire proportional

chamber invented by Georges Charpak in 1968 (Nobel Prize, 1992) not only

made a revolution in experimental physics, it also started very serious ap-

plications in everyday life. Its faster image registration means also lower

radiation doses for the studied tissues. When they are combined with to-

mography (Fig. 17.52, right) they can produce a 3-dimensional picture of

the inner organs.

Here we just list some of these methods in medicine.

• Magnetic resonance imaging (MRI) is based on the nuclear magnetic

resonance method and gives morphological information by measuring

the density of water (actually, of hydrogen in various molecules) in the

tissues. More than simple morphology it can give information even

on the operation of organs.

• Technetium-99m (“m” stands for metastable, its lifetime is τ = 6 h)

can be produced by irradiating molybdenum by slow neutrons:

98Mo + n =99 Mo + γ

99Mo(τ = 66h) =99m Tc(τ = 6h) + e− + νe
and the 99Tc isotope emits a 0.14 MeV photon. 85% of the nuclear

medical diagnoses use this isotope.

• Positron emission tomography (PET) uses proton-bombarded glucose

to produce Fluoro-Deoxy-D-Glucose (FDG): proton absorption makes
18F of 18O. 18F emits positrons and their annihilation tells us the

location of the glucose. The glucose metabolism of the tumours is

much faster than that of healthy tissue, so the tumours will appear as

hot spots of the tomography picture (Fig. 17.52).
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16.5 Medical therapy with radiation
There are three kinds of radiotherapy used to cure various kinds of cancer:

• Teletherapy or external beam radiotherapy is the most common form

of radiotherapy. The patient sits or lies on a couch and an external

source of radiation is pointed at a particular part of the body. Most

frequently, X-rays of keV energies are used for treating skin cancer

and superficial structures and MeV X-rays are used to treat deep-

seated tumours. Electron beams are also used, but nowadays hadron

therapy (with protons or carbon ions) is spreading more.

• Brachytherapy is internal radiotherapy or sealed source radiotherapy.

It is the type of radiotherapy when radioactive sources are put straight

into the tumour to be destroyed. Fig. 17.53 shows the treatment of

prostate cancer with Brachytherapy. About 100 radioactive seeds, pins

with radioactive isotopes are placed into the tumour. The positions of

the seeds are continuously checked with an ultrasound probe.

• In radio-immunotherapy the radioactive isotope is carried by a molecule

aimed at the organ to be cured. In cancer therapy, an antibody spe-

cific for a tumour-associated antigen is used to deliver a lethal dose of

radiation to the tumour cells. For instance, α particles from Bismuth-

213 are used for leukaemia, while electrons from the beta decay of

Yttrium-90 for glioblastoma (a kind of brain tumour).

16.5.1 Teletherapy
The main problem of teletherapy is that the irradiation is not selective, it

destroys tissue not only in the tumour, but also that around it. In the case of

X-rays several beams are used from different directions with collators (In-

tensity Modulation Radiation Therapy, IMRT): using computer simulations

the crossing beams are shaped to minimize the dose in the healthy organs at

risk. Fig. 17.54 shows a simulation of a 3-dimensional conformal radiation

therapy, in which the profile of each radiation beam is shaped to fit the profile

of the target using a multi-leaf collimator and a variable number of beam

shots. Note that the radiation dose is most commonly measured in absorbed

radiation energy per unit mass: 1 Gy = 1 J/kg.

Another modern way of applying conformal radiation therapy is to-
motherapy: the accelerator rotates around the patient with changing colli-

mators. The gamma knife uses hundreds of 60Co sources for local operation
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of brain tumours or arteries. The cyber knife is similar, but uses X-rays from

an electron linac (Fig. 17.54).

There is a way to prevent loosing cancerous tissue during operations,

which can cause metastasis, achieved by electron irradiation of the tumour

area during operation. Usually electrons of 3–9 MeV energy are applied for

a couple of minutes delivering a dose of about 10 Gy.

16.5.2 Hadron therapy
All these teletherapies hurt the tissue around the tumour, especially at en-

tering the body. This can be minimized using hadron therapy. Charged

particles lose most of their energy at the end of their flight path (see the

Bragg curve, see Fig. 17.55). This makes it advantageous to use protons and

carbon ions to irradiate tumours. With careful planning one hardly hurts the

healthy tissue and destroys the tumour.

As shown in Fig. 17.55 the apparatus for proton therapy is rather so-

phisticated and expensive. More than that, it needs a proton or heavy ion

synchrotron to provide the ion beam. Nevertheless, many developed coun-

tries have such facilities in hospitals. There are dozens in the USA, Europe

and Asia. Hadron therapy can be made much more cost-efficient with com-

pact proton synchrotrons, one for each gantry without sophisticated beam

lines. There exist designs for such tabletop accelerators.

16.5.3 Neutron therapy
Slow neutrons can easily be captured by nuclei and cause very high local

dose deposits. The depth can be modulated by irradiation with neutrons of

varying energy. As early as in 1936 (just four years after the discovery of

the neutron) G. L. Locher suggested to use neutrons for cancer treatment by

putting such nuclei in the cancer cells which undergo nuclear fission after

neutron absorption and release a lot of local energy. For that the 10B boron

isotope seems to be ideal as it absorbs neutrons, its fragments are not tissue

unfriendly and its chemistry is well know. The problem is that it is hard to

bring it selectively into the tumour.

16.6 Conclusion
We see that particle physics offers useful methods to many other fields of

science, especially to informatics and medicine. For the latter physicists,

engineers and medical doctors should closely work together. Thus particle
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physics brings not only new knowledge about Nature, but also useful new

techniques and technologies.

Exercise 16.1
Why was the World Wide Web developed for particle physics?

Exercise 16.2
What is the advantage of hadrons to photons (X- or γ-rays) for cancer
therapy?

Exercise 16.3
Why should we prefer to use protons and carbon ions for hadron therapy to
other nuclei?
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Coloured figures

MOTTO:

Colour in certain places has the great value
of making the outlines and structural planes
seem more energetic.

(Antoni Gaudí)
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Figure 17.1:
Graphic picture of the Lagrangian of quantum chromodynamics (QCD)

Figure 17.2: Resonance curves. Left: Breit-Wigner resonance curve: normalized
cross section against centre-of-mass energy. Right: TheZ-resonance: hadronic decay
cross section against centre-of-mass energy as measured in high-energy electron-
positron collisions

Figure 17.3: Left: Bending of charged particles in a dipolar magnetic field. Right:
a dipole magnet, with two (blue) quadrupoles in the back
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Figure 17.4: Left: Cross section of a dipole magnet of the Large Hadron Collider.
Right: Microwave resonator to accelerate electrons for the TESLA project at DESY,
Hamburg

Figure 17.5: The accelerator complex of CERN in the LEP era. LEAR: Low
Energy Antiproton Ring, EPA: Electron-Positron Accumulator, PS: Proton
Synchrotron, PSB: Proton Synchrotron Booster, AAC: Antiproton Accu-
mulator Collector, SPS: Super Proton Synchrotron, LEP: Large Electron-
Positron collider
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Figure 17.6: The Low Energy Ion Ring (LEIR) at CERN. The Pb ions are collected
and stored in the ring while continuously cooled. The pipes of the stochastic cooling
are above the ring. The electron cooling is set up on left: the two guns are for
introducing and removing the electron cloud. The bending magnets are painted
orange, the quadrupole doublets and triplets blue. LEIR uses the elements of the
former Low Energy Antiproton Ring (LEAR) functioning in 1982–1996

Figure 17.7: The accelerator complex of CERN in the LHC era, after 2008
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Figure 17.8: Left: LHC dipoles waiting for installation. They are 15 m long,
weigh 35 tons, maintain up to B = 8 T magnetic field at T = 1.9K. Right: The
radio-frequency cavities accelerating the particles in the LHC ring

Figure 17.9: Normal LHC operation at 13 TeV p-p collision energy . The upper
plot shows the energy (black line corresponding to the right scale) and the intensities
of the two beams (red and blue lines). On the bottom the background radiations of
the two lines around the four experiments. ATLAS and CMS needed the maximal
possible luminosities, whereas ALICE and LHCb much less
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Figure 17.10: The Antiproton Decelerator of CERN: its building and main
experimental area

Figure 17.11: 78 identified proton-proton collisions in the same CMS event.
Note that the vertices (collision points) are practically lined up. This event
was recorded, because it contains two energetic muons

Figure 17.12: The toroidal magnet of the ATLAS detector before the detection
elements and the solenoid magnet were installed in it
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Figure 17.13: Left: Working principle of a time projection chamber. Right: The
time projection chamber of the ALICE detector at the LHC
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Figure 17.14: Structure and main parts of the CMS detector at the LHC
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Figure 17.15: Preparation of the PbWO4 single crystal scintillators for CMS.
The electromagnetic calorimeter of CMS consists of 75,848 such crystals
read by avalanche photo-diodes

Figure 17.16: Scintillation tiles of CMS: the wavelength-shifting fibres collect and
carry the light to hybrid photo-diodes to be converted to electronic signals
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Figure 17.17: The forward part of the hadron calorimeter of CMS: quartz
fibres in steel to collect Cherenkov light from secondary electrons

Figure 17.18: Inserting the central ring with the superconducting solenoid into the
CMS detector in the experimental cave of LHC underground
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Figure 17.19: The detection system of the OPAL experiment at LEP

Figure 17.20: Electron-photon events recorded by the OPAL experiment. The
yellow blocks show the energy deposits in the electromagnetic calorimeter. Left:
Bhabha scattering e+e−→e+e−; middle: Bhabha scattering with photon emission
e+e−→e+e−γ; right: electron-positron annihilation e+e−→γγ
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Figure 17.21: Leptonic decays of Z bosons recorded by the OPAL experi-
ment. The yellow blocks show the energy deposits in the electromagnetic
calorimeter, the purple ones those in the hadron calorimeter. Left: Z decay
to neutrinos with photon emission from the initial state (i.e. by the electron or
the positron), e+e−→Zγ→ννγ; middle: Z decay to muons, e+e−→Z→µµ;
right: Z decay to a tau pair with their subsequent decay to electron, muon
and neutrinos: e+e−→Z→τ+τ−→µe + 4ν

Figure 17.22: Hadron jets recorded by the OPAL experiment. The yellow
blocks show the energy deposits in the electromagnetic calorimeter, the purple ones
those in the hadron calorimeter. Left: two-jet event, Z decay to a quark pair,
e+e−→Z→qq; middle: three-jet event, Z decay to a quark pair when one of them
emits a gluon: e+e−→Z→qqg; right: WW production and decay to quark pairs,
e+e−→W+W−→qqqq where the quarks have different flavours to conserve charge
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Figure 17.23: Events recorded in pp collisions at the Tevatron. Left: Observation
of the t quark in the reaction pp→ tt→ bW+bW− → `νjjjj. Right: Energy deposit
on the plane of pseudorapidity vs. azimuthal angle of the mysterious CDF event
pp→e+e−γγ + Emiss

Figure 17.24: Search for charged Higgs-bosons at LEP. Left: Preselection cuts of
the OPAL search in the 4-jet channel [Horvath, 2003]. Right: Likelihood analysis in
the 4-jet channel for two assumed H± masses [Abbiendi et al., 2012]. Note how well
the data (black dots) are described by the background simulation. The signal curves
are filled yellow (left) and blue (right). The cut values are denoted by arrows
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Figure 17.25: Multi-hadronic events detected by the OPAL experiment at LEP.
Left: e+e−→W+W−→ qqqq→ 75 charged particles in 4 hadron jets. Right: a 3-jet
event characteristic for gluon production.

Figure 17.26: Some of the major neutrino experiments. At the end of 2017 there
were 37 such detector systems under earth, water, ice, and near nuclear power plants
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Figure 17.27: KATRIN, the KArlsruhe TRItium Neutrino experiment. The spec-
trometer lets one electron of the 1010 tritium decays per second through into the
detector

Figure 17.28: Detecting neutrinos in water. Left: Cherenkov light detection in
water from neutrino reactions. Right: Filling the Super-Kamiokande detector with
water, three technicians in a boat check the phototubes
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Figure 17.29: Left and middle: Neutrino events detected by Super-Kamiokande.
Right: The shape of the Sun depicted by the identified electron neutrinos of the Sun

Figure 17.30: The discovery of neutrino oscillations by Super-Kamiokande: neu-
trino yields vs. zenith angle for electron-like and muon-like events of sub-GeV and
multi-GeV energies. The dashed red line is simulation without, the thick green line
is with oscillation, the measurement is in black
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Figure 17.31: The SNOdetector in the SudburyNeutrinoObservatory (1999-2003).
Left: a 3-dimensional drawing of the apparatus, right: the acrylic ball

p

Figure 17.32: The Daya Bay experiment near Hong Kong: eight ν detectors in
three halls in the vicinity of six nuclear reactors
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Figure 17.33: Parameters of the standard model [Schael et al., 2013] as determined
by the experiment (2nd column) with uncertainties (3rd column), its prediction or fit
by the standard model (4th column) and a bar plot showing the difference between
theory and experiment divided by the experimental uncertainty. The agreement is
purely statistical as the difference is in only one case more than 2 uncertainties
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Figure 17.34: The various decay channels of the Higgs boson according to the
standard model. At lower masses bb, at higher ones W+W dominates. Note how
small is the contribution of the important γγ channel

Figure 17.35: Higgs-like event detected by the ALEPH experiment at LEP: an
e+e− collision produced four hadron jets containing b quarks recognized by their
secondary vertices due to longer lifetimes



Coloured figures 193

Figure 17.36: Exclusion of the Higgs boson at LEP [Barate et al., 2003]. The
test statistic, −2 ln Q shows a significant signal (well above the standard model
expectation) forALEPHand nothing for the other threeLEP experiments at equivalent
statistical and experimental conditions

Figure 17.37: Exclusion of the Higgs boson at LEP [Barate et al., 2003]. Spaghetti
diagrams of 17 Higgs-like events detected by the four LEP experiments: signal
weights against the simulated Higgs mass. The ALEPH events crowd around
115GeV, whereas for the other three experiments there are less of them with a
rather random mass distribution
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gluon fusion

vector boson
fusion

Figure 17.38: Production of the SM Higgs boson in p-p collisions at LHC. Gluon
fusion (upper right) has the highest cross section, vector boson fusion (lower right)
comes next

Figure 17.39: Higgs-boson-like event detected by the CMS experiment at LHC: a
boson is formed in a p-p collision and decays to two energetic gamma photons. The
block sizes at the end of the invisible photon trajectories correspond to the photon
energies deposited in the electromagnetic calorimeter
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Figure 17.40: Higgs-boson-like event detected by the ATLAS experiment at LHC:
a p-p collision produces 4 electrons, one pair is from Z-decay as identified by the
invariant mass. The 4-electron mass corresponds to a decaying mass of 125GeV.
Upper right: x− y view, lower right: lego plot of energy deposits in the calorimeters.
Middle right shows that there were 9 other identified vertices of p-p collisions in
the neighbourhood of the candidate Higgs decay belonging to the same LHC bunch
crossing.
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Figure 17.41: First observation of the Higgs-like boson in invariant mass distribu-
tions at around 125GeV by ATLAS [Aad et al., 2012]. Left: H→γγ, the raw events
and also the sum of event weights according to their signal-likelihood. Top right:
H→`+`−`+`−. Bottom right: the local p-values averaged for all channels. The total
p values have shown more excess events than the prediction of the standard model
(dotted line in the lower right plot)

Figure 17.42: First observation of the Higgs-like boson in invariant mass distri-
butions at around 125GeV by CMS [Chatrchyan et al., 2012b]. Left: H→γγ, the
raw events and also the sum of event weights according to their signal-likelihood.
Middle: H→`+`−`+`−. Right: the local p-values for the individual channels and
their averages. CMS saw somewhat less events than the prediction of the standard
model (dotted line in the right plot)
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Figure 17.43: Invariant mass spectra obtained by ATLAS [Aaboud et al., 2017]
and CMS [Sirunyan et al., 2017] with 13 TeV p-p collisions for the H→`+`−`+`−
reaction

Figure 17.44: Invariant mass spectra obtained byATLAS [ATLAS, 2017] and CMS
[Sirunyan et al., 2017] with 13 TeV p-p collisions for the H→ γγ reaction
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Figure 17.45: Relative signal strengths in the most significant decay channels
normalized to the predictions of the standard model as measured by ATLAS and
CMS [Aad et al., 2016] for MH = 125GeV. Left: for various production channels
against the invariant mass of the new boson. Middle: for the various decay channels.
Right: 68% contours for various decay channels when produced in weak vs. strong
processes. All results agree within statistics with each other and with the expectations
of the standard model

Figure 17.46: Stable, unstable and metastable regions of the BEH vacuum on the
plane of themasses of theHiggs boson and the t quark according to the standardmodel
[Branchina et al., 2014]. The experimental point of the two masses at mH ' 125
and mt ' 173GeV are encircled by 1σ, 2σ and 3σ contours

Figure 17.47: Simulated collision of heavy ions. In the central part the
temperature is high enough to de-confine coloured quarks and gluons
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Figure 17.48: Jet quenching observed at RHIC. Left: The π0 yield observed by
PHENIX from central Au+Au collisions is suppressed as compared to the d+Au
collisions of minimum bias. Right: The 2-jet events in STAR are suppressed on the
side opposite to the highest energy track for central Au+Au collisions, whereas they
are free to come out in d+Au collisions

Figure 17.49: Jet quenching in lead-lead collisions at the LHC observed by
the ATLAS experiment [Aad et al., 2010] at √sNN = 2.76 TeV per nucleon
pair
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Figure 17.50: Jet–jet asymmetry in peripheral (left) and central (right) p-p and Pb-
Pb collisions at the LHC observed by the CMS experiment [Chatrchyan et al., 2012a]
at√sNN = 2.76 TeV per nucleon pair. The simulation shows the expected asymmetry
with no nuclear medium

Figure 17.51: Left: Cyclotron used in medicine to produce radioactive isotopes.
Right: Linear accelerator used in a hospital

Figure 17.52: Left: computer tomography at work. Right: PET pictures of healthy
and cocaine-addict brains
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Figure 17.53: Brachytherapy on prostate cancer: about 100 radioactive pins are
placed in the tumour, while checking the placement with an ultrasound probe

Figure 17.54: Left: conform dose distribution with IMRT: the tumour gets 70 Gy,
the metaphase region 50 Gy and the spinal cord less than 25 Gy dose. Right: Cyber
knife, electron linac on a robot arm with very precise, multiple orientations and depth
penetration
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Figure 17.55: Left: a charged particle when penetrating matter loses most of its
energy at the end of its flight path (Bragg curve). Right: Gantry for proton therapy
at a hospital

Figure 17.56: Experimental measurements of the R-ratio as a function of
the total centre-of mass energy (taken from Ref. [Beringer et al., 2012]).
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Figure 17.57: Distribution of thrust as measured at LEP compared to per-
turbative QCD predictions obtained assuming vector and scalar gluon
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Figure 17.58: Comparison of perturbative QCD predictions to data for three-
and four-jet rates R3 and R4 at LEP [Nagy and Trocsanyi, 1999]. The data
points include corrections from hadrons to partons based on Monte Carlo
simulations. The lower panels show the differences between theoretical pre-
dictions and experimental data, normalized by the latter. xµ = µ/

√
s, while

K refers to some well-defined terms (called cusp anomalous dimension) of
the NNLL corrections
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Figure 17.59: Jets in a proton-proton scattering event obtained with the kT
(left), anti-kT (right) clustering algorithms

Figure 17.60: QCD predictions for the thrust distribution (τ = 1 − T)
in electron-positron annihilation. Left: Predictions obtained by us-
ing the CoLoRFulNNLO method compared to data measured by the
ALEPH collaboration. The lower panels show the comparison to the
predictions of Ref. [Weinzierl, 2009] (denoted by SW) and to those of
Ref. [Gehrmann-De Ridder et al., 2007] (denoted by GGGH). Right: Same
as the left one supplemented with the prediction obtained by matching the
NNLO prediction to resummed NNNLL one
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e−(k) θ

e−(k′)

p(P )
X

q

Figure 17.61: Deeply inelastic electron-proton scattering in the H1 detector
(left) and parton model interpretation of such an event (right). X denotes the
unobserved final state (hadrons)

Figure 17.62: Left: Combination of F2 structure functions on proton
and deuteron targets measured by the NMC collaboration and fitted with
CTEQ6D parton distribution functions. Right: CTEQ6D valence and sea
quark distributions
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Figure 17.63: Evolution of valence quark, sea quark and gluon distributions



Coloured figures 207

Figure 17.64: Artistic view of a proton-proton scattering event at high energy
(courtesy of F. Krauss)
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Intermezzo

MOTTO:

What is it that breathes fire into the equations

and makes a universe for them to describe?

. . . Why does the universe go to all the bother

of existing?

(Stephen Hawking)

The first three parts of this book discussed the most important results

of experimental particle physics during the past fifty (or in some cases

more) years. As a consequence we know with certainty that the physical

manifestations of the three fundamental particle interactions–the weak, the

electromagnetic, and the strong forces–below the TeV energy scale can be

described by a model based on local quantum field theory that we call the

standard model of particle interactions. There are three almost identical

copies of particle families, containing two quarks and two leptons each (see

Table 3.5), the only difference being the mass of the particles. In the standard

model the neutral leptons are massless, but we already have experimental

evidence (the observation of neutrino oscillations) that they have masses even



210 Intermezzo

if we have not been able to measure them directly. While the experimental

evidence for the existence of only three families is strong, it remains a mystery

why there are exactly three families and how neutrinos get masses.

The mathematical model that describes the interaction is a gauge field

theory based on the SU(3)c ⊗ SU(2)L ⊗ U(1)Y symmetry where “c” refers

to colour degrees of freedom, Y stands for hypercharge and “L” abbreviates

left-handed. The gauge fields that emerge due to the gauge symmetries me-

diate the forces. These are the massless mediators of the electromagnetic and

strong forces, the photon and the gluon, furthermore the massive mediators

of the weak force, the W and Z bosons. In addition there is also a scalar

boson, the elementary excitation of the BEH field, called Higgs particle that

emerge in the spontaneous symmetry breaking of the BEH field together with

the longitudinal components of the W and Z bosons. There is continuously

increasing evidence that the scalar particle observed at the LHC has the exact

properties as predicted in the standard model. The interaction of the BEH

field with the fermions explains the masses of the fermions, although the

reason for the large hierarchy of the fermion masses is unknown. Accord-

ing to the standard model the interactions between the Higgs particle and

the fermions are proportional to the masses of the fermions, but complete

experimental verification will require new accelerators. The same is true for

the precise experimental exploration of the Higgs potential. We also lack

the reason for the particular choice for the gauge interactions by Nature and

we do not know if there is only one scalar particle.

We mentioned that apart of the continuous symmetries of gauge interac-

tions and space-time, there are the discrete symmetries of charge conjugation,

parity and time reversal, too. We discussed at length the experimental proof

for the chiral characteristics of the electroweak interactions, which means

that weak force violate the parity symmetry maximally. We also argued that

the combined symmetry of CPT is expected to be a fundamental symmetry

of Nature and mentioned the strong constraints on the experimental searches

for CPT violation. As a result, the naive expectation that particle interac-

tions respect time reversal symmetry would imply combined CP symmetry,

which is however weakly violated. While this violation can be explained

in the standard model, there is also another symmetry violation — called

baryon-anti-baryon asymmetry — that the standard model cannot explain.

There are two more big mysteries at the fundamental level in Nature.

The energy density in the Universe comes from several main sources. Some

of these are well known, like electromagnetic radiation (which turns out to

provide a small fraction, not reaching 1 % of the total energy density) and

baryonic matter that has also a quite small contribution of about 5 %. The
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rest of the energy density is in unknown forms, called dark matter and dark

energy. While these results emerge in cosmological observations, it might

be that the explanations will come from particle physics, but clearly beyond

the standard model, therefore these subjects are omitted from this book.

We devote the last part of our book to the introduction to the quantum

field theoretical basis of the standard model of elementary particle interac-

tions, needed to understand high energy collision events. We explore what

we can learn from studying the theory of the standard model, to what extent

the experimental observations mentioned above can be understood theoreti-

cally, and what calls for a new theory beyond the standard model. In order to

facilitate the comprehension of the mathematical details, most of the compu-

tations are performed step by step, or in some cases left to the exercises. As

prerequisite familiarity with quantum electrodynamics is assumed, although

its basics are summarized.

Our primary goal is to describe collisions at the LHC, i.e. proton-proton

scatterings at high momentum transfer. As the initial state contains parti-

cles composed of coloured constituents of the proton–quarks and gluons–,

quantum chromodynamics (QCD) is the key to the mathematical descrip-

tion. QCD is a predictive theory due to its two main features: (i) asymptotic

freedom that allows for a perturbative description and (ii) the factorization

theorem that separates the short and long-distance physics in a universal

(process independent) way. Thus we put significant emphasis to develop

these two concepts in detail and exhibit the theoretical uncertainties that
are inherent in this theoretical framework, which is crucial to estimate the
theoretical systematics of experimental results correctly. In closing the book

we discuss the basics of the theory of electroweak interactions.
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Chapter 18

Gauge theories in the
standard model

MOTTO:

We need something new. We can’t predict

what that will be or when we will find it be-

cause if we knew that, we would have found it

already!

(Stephen Hawking)

18.1 Underlying gauge group
The standard model (SM) of elementary particle interactions in based upon

the principle of local gauge invariance, which means that the Lagrangian

remains invariant if the fields are transformed by an arbitrary element of a

continuous group. The underlying gauge group is

G = SU(3)c ⊗ SU(2)L ⊗ U(1)Y ,

where c stands for “colour”, L for “left-handed” and Y for “hypercharge”.

The meaning of these terms will be explained later. U(1) is an abelian

group, which means that its elements, eiϕ ∈ U(1) commute (ϕ ∈ R is a real

215
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number). Quantum electrodynamics (QED) is the prototype gauge theory

with a local U(1) symmetry. SU(N) are non abelian groups: their elements

eiH ∈ SU(N) do not commute. H is not a number any more, but an Hermitian

matrix H† = H with Tr H = 0. There are N2 − 1 generators Ta of SU(N)
that satisfy the SU(N) algebra:[

Ta, Tb
]
= i f abc Tc , with normalization

∑
i, j

(Ta)i j (Tb)ji = TRδ
ab

(18.1.1)

where TR ∈ R is the normalization factor. A general matrix H can be written

as a linear combination of the generators,

H =
N2−1∑
a=1

εa Ta , εa ∈ R.

The constants f abc are the structure constants of the Lie algebra. The

structure constants are completely antisymmetric. For SU(2) the generators

satisfy the well-known angular momentum algebra[
Ja, Jb

]
= iεabc Jc .

In this case the structure constants f abc = εabc are the Levi-Civita symbols

(if any two of its indices are equal, the symbol is zero, otherwise εabc =
(−1)pε123, with ε123 = 1 where p is the number of interchanges of indices

necessary to unscramble a, b and c into the order 1, 2, 3). In the SM the

SU(3)c symmetry is unbroken, this means that SU(3) is a symmetry of the

Lagrangian and also of the vacuum, whereas the SU(2)L ⊗ U(1)Y symmetry

is spontaneously broken to U(1). First we shall discuss the unbroken part

and turn to the broken part in the last chapter.

The gauge theory based on local SU(3)c invariance is called quantum

chromodynamics (QCD). There are many similarities and some important

differences between QED and QCD. In order to see these clearly, we recall

the basics of QED.

18.2 Basics of quantum electrodynamics
First of all a remark about the notation and the units: we use the notation

i =
√−1, e for the unit charge, natural units � = c = 1 and the convention

gμν = diag (1,−1,−1,−1)
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for the metric tensor (see (Eq. (4.1)).

The classical Dirac Lagrangian (see chapter 4) for n types of non-

interacting fermion fields is

L f =

n∑
j=1

f̄j
(
i/∂ − mj

)
fj

(in QED n = 1, the electron) where

• fj is the spinor valued wave function describing a plane wave of

momentum pj ,

• f̄j = f †j γ
0 is the Dirac adjoint of fj ,

• /a = γμaμ where the γμ matrices (see chapter 4) satisfy the Clifford

algebra,

{γμ, γν} = 2gμν ,
{
γμ, γ5

}
= 0 . (18.2.2)

Let us perform a global (i.e., independent of the space-time coordinate)

phase transformation of the field, fj → f ′j = exp
[
i ej θ

]
fj where θ ∈ R

and ej expresses the charge of the fermion j in units of e (e.g. for the

electron ej = −1). The Lagrangian is invariant under such a global phase

shift, L( fj) = L( f ′j ), which implies the existence of a conserved charge, the

electric charge, according to Noether’s theorem.

One may wonder whether we can modify L f such that it is also invariant

under local changes of gauge,

fj(x) → f ′j (x) = exp[i ej θ(x)] fj(x) ≡ Uj(x) fj(x) .

The physical meaning of this question is the following: can we choose the

phase of the fermion field at any xμ at will, without changing observable

quantities? The answer is yes! To make the Lagrangian invariant under

local phase transformations, called gauge transformations, we have to take

the following steps:

1. Introduce a vector-valued field Aμ(x) with transformation property

Aμ (x) → A′μ (x) = Aμ (x) + i

e
[∂μU (x)]U−1 (x) ,

U(x) = exp [i θ (x)] .
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2. Replace the partial derivative ∂μ with Dμ [A] ≡ ∂μ + ie Q̂Aμ,

L f =

n∑
j=1

f̄j
(
i /D(A) − mj

)
fj

where Q̂ fj = ej fj is the electric charge operator. If

fj(x) → f ′j (x) = Uj(x) fj(x),

then

Dμ[A] fj(x) → Dμ[A′] f ′j (x) = Uj(x)Dμ[A] fj(x) ,
so Dμ[A] fj(x) transforms the same way as the fermion field fj(x),
hence Dμ[A] is called covariant derivative.

3. The new field requires a gauge-invariant kinetic term:

LA = −1

4
Fμν [A] Fμν [A] Fμν [A] = ∂μAν − ∂ν Aμ .

LA is a Lorentz scalar and therefore Lorentz-invariant. Since Fμν [A]
is gauge invariant (the proof is left as exercise), LA is also gauge

invariant: LA = LA′ .

The Feynman rules can be read off the action

S = i

∫
d4x(L f + LA) ≡ S0 + SI ,

where

S0 = i

∫
d4xL0 SI = i

∫
d4xLI .

L0 contains all terms that are bilinear in the fields,LI contains the rest (called

interactions). The photon propagator Δγμν is the inverse of the bilinear term

in Aμ [Ryder, 1996]. In momentum space we have the condition

Δγμν (p) · i
[
p2gνρ − pνpρ

]
= δ

ρ
μ ,

i.e. equal to the unit matrix in Lorentz space. However,[
p2gνρ − pνpρ

]
pρ = 0 ,

which means that the inverse does not exist, the matrix
[
p2gνρ − pνpρ

]
is

not invertible. We can exploit gauge invariance to rewrite L in a physically
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equivalent form (action remains the same) such that Δγμν exists, which

is called gauge fixing. For example, the covariant gauges are defined by

requiring ∂μAμ (x) = 0 for any space-time point xμ. Adding

LGF = − 1

2λ

(
∂μAμ )2 , λ ∈ R,

to L, the action S remains the same. The term LGF can be seen as a

constraint, taken into account in the Lagrangian by a term with Lagrange

multiplier (like in classical mechanics). The bilinear term becomes in this

case

i

(
p2gνρ −

(
1 − 1

λ

)
pνpρ

)
,

with inverse

Δγμν (p) = −
i

p2

[
gμν − (1 − λ)

pμpν
p2

]
.

Of course, physical results must be independent of λ. It is customary

to choose λ = 1 (called Feynman gauge). In covariant gauges unphysical

degrees of freedom (longitudinal and time-like polarizations) also propagate,

which can be avoided by choosing axial (physical) gauges, defined with an

arbitrary, but fixed vector nμ (different from pμ):

LGF = − 1

2λ

(
nμAμ

)2
,

which leads to

Δγμν (p, n) = −
i

p2

(
gμν −

pμnν + nμpν
p · n

+

(
n2 + λ p2

)
pμpν

(p · n)2

)
.

Since p2 = m2 = 0, we have:

Δγμν (p, n) pμ = 0 , Δγμν (p, n) nμ = 0 .

Thus, only 2 degrees of freedom propagate (transverse ones in the nμ + pμ

rest frame). A usual choice is n2 = 0, λ = 0 (light cone gauge). The price we

pay by choosing this gauge instead of a covariant one is that the propagator

looks more complicated and the integral over pμ diverges when pμ becomes

parallel to nμ. In this gauge

Δγμν (p, n) =
i

p2
dμν(p, n)
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with

dμν (p, n) = −gμν +
pμnν + nμpν

p · n
=
∑
λ=1,2

ε
(λ)
μ (p)ε (λ)ν (p)∗ , (18.2.3)

where ε
(λ)
μ (p) is the polarization vector of the photon.

Feynman rules
In the Feynman gauge we have the following Feynman rules:

photon propagator: μ ν

p

= Δγμν (p) = −i
gμν
p2

electron propagator:
p

= Δj(p) = i
/p+m j

p2−m2
j

vertex:

μ

= Γ
μ

γ fj f̄j
= −iej eγμ

• outgoing fermion: ū (p) • outgoing antifermion: v (p)
• incoming fermion: u (p) • incoming antifermion: v̄ (p)
• outgoing photon: ε

(λ)
μ (p)∗ • incoming photon: ε

(λ)
μ (p) .

Exercise 18.1
Show that in QED the covariant derivative transforms the same way as the
field itself, namely if f (x) → U(x) f (x), then Dμ f (x) → U(x)Dμ f (x) where
Dμ = ∂μ + i e Aμ.

Exercise 18.2
Show that in QED [

Dμ,Dν

]
= i e Fμν

where Dμ = ∂μ + i e Aμ.

Exercise 18.3
Show that the generators of a special unitary group are traceless and her-
mitian.
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Exercise 18.4
The generators of the SU(2) group in the fundamental representation are the
Pauli matrices divided by two:

taf =
σa

2
, σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
The adjoint representation of a group is defined as

(tbA)ac = i f abc

• Compute the generators in the adjoint representation of SU(2)

We define the constant TR for a representation R by the condition

Tr[taRtbR] = δabTR

• compute this constant from the explicit form of the fundamental (TF)
and the adjoint (TA) representation.

The quadratic Casimir factor C2(R) of a representation R is defined by

C2(R)� =
∑
a

taRtaR

• compute the quadratic Casimir factor in the fundamental (CF) and
the adjoint (CA) representation of SU(2) using the explicit form of the
representation matrices

18.3 Cross sections
The cross section of a given elementary scattering process is given by

σ =
1

2E2
CM

∫
dφn (p1, . . . , pn; Q) 1

S

∑
spin

|Mn |2 , (18.3.4)

where ECM is the total incoming energy, Qμ is the total incoming four-

momentum (in the centre-of-mass system ECM =
√

Q2), and

dφn = (2π)dδd ��Qμ −
n∑
j=1

pμj
�� n∏

j=1

ddpj

(2π)d−1
δ+

(
p2
j − m2

j

)
(18.3.5)
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is the phase space for n final state particles in d = 4 − 2ε dimensions (in

reality ε → 0 such that d = 4, but we allow ε � 0 for later purposes).

The index + of the δ-function means that we consider only positive-energy

solutions E = +
√

m2 + �p 2, in other words

δ+

(
p2
j − m2

j

)
= δ
(
p2
j − m2

j

)
Θ (E) ,

where Θ (E) is the Heaviside step-function (equals one if E is positive and

zero otherwise). The amplitude Mn is obtained from all possible Feynman

diagrams G. The factor S−1 stands for the symmetry factor of identical

particles in the final state and factors needed for averaging over incoming

quantum (e.g. spin) states. One can obtain the integral of
∑ |Mn |2 over

the phase space directly from the so called “cut” diagrams following the

Cutkosky rules. Computing the amplitude for n final state partons from

Feynman diagrams,

G

1

n

iMn =
∑
G

,

the cross section for the scattering of two incoming particles pa and pb into

n final-state particles obtained as the sum over all possible squared diagrams

and over all possible cuts of these diagrams:

1

n

G ˜Gσ(papb → p1, . . . , pn) = 1

2s
1

S

∑
G,cuts

.

The Feynman rules for the cut diagrams are the usual ones with the following

additional rules:

1. The sign of explicit factors of i =
√−1 and directions of fermion

arrows and those of all momenta are reversed in G̃ as compared to G.

2. We do not integrate over the loop momentum of initial-state momenta,

3. A cut line j in the initial state means a factor of

• /pj
+ mj if j is a fermion,

• /pj
− mj if j is a anti-fermion,

• dμν(pj) if j is a (massless) gauge boson.

In the final state the corresponding factors are
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•
(
/p ± mj

)
2πδ+

(
p2
j − m2

j

)
if j is a fermion/anti-fermion,

• dμν(pj) 2π δ+
(
p2
j

)
if j is a (massless) gauge boson.

The δ+ distributions express the on mass-shell conditions. These convert an

integral over a loop momentum into the element of a one-particle phase-space

measure.

Example: e+e− → μ+μ−

We consider the reaction e+e− → μ+μ− as a very simple application of the

Cutkosky rules. At leading-order (LO) accuracy there is only one Feynman

diagram, shown in Fig. 18.1, that contributes to the amplitude at lowest order

to this reaction.

e−

e+ μ+

μ−

γ∗

q
pμ+

pμ−pe−

pe+

Figure 18.1: Feynman dia-

gram for e+e− → μ+μ− at LO

In order to describe the kinematics of the

reaction we use the Mandelstam variables
(see Section 5.3)

s = (pe− + pe+ )2 =
(
pμ− + pμ+

)2
,

t =
(
pe− − pμ−

)2
=
(
pe+ − pμ+

)2
,

u =
(
pe− − pμ+

)2
=
(
pe+ − pμ−

)2
.

(18.3.6)

Furthermore we express the coupling as

e2 = 4π α. The cross section is then given

by

pe+

pe−

pμ−

pμ+

σ(e+e− → μ+μ−) = 1

2s
1

S
.

Using the Feynman rules we obtain the squared matrix element from this

diagram as∑
spin

|M2 |2 = (4πα)
2

s2
Tr
[(
/pe+

− me

)
γα
(
/pe− + me

)
γβ
]

×Tr
[(
/pμ− + mμ

)
γα

(
/pμ+ − mμ

)
γβ

]
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Evaluating the traces1 we obtain for the squared matrix element, summed

over spins∑
spin

|M2 |2 = 8 (4πα)2
[
(u − m2

e − m2
μ)2 + (t − m2

e − m2
μ)2

s2
+ 2

m2
μ + m2

e

s

]
.

(18.3.7)

We leave the integration over the phase space as an exercise. As mμ � 200me,

we usually neglect the mass of the electron.

Exercise 18.5
Derive the result in Eqn. (18.3.7) and integrate it over the two-particle phase
space dφ2.

Exercise 18.6
Use Mathematica and the Package Tracer.m (or FORM) to compute the
following traces:

Tr
(
/p2
γν(/p1

− /k1)γμ/p1
γμ(/p1

− /k1)γν
)

Tr
(
γμ1γμ2γμ3γμ4γμ5γμ6γμ7γμ8γμ9γμ10

× γμ1
γμ2
γμ3
γμ4
γμ5
γμ6
γμ7γμ8

γμ9
γμ10

)
18.4 Quantum chromodynamics
In quantum chromodynamics the matter fields are again fermions with an

additional (inner) degree of freedom: the colour, which can take Nc values.

(We shall see in the next chapter that in QCD Nc = 3, but it is useful to keep

it arbitrary and specify only when making comparison with experiment.)

These fields are called quark fields: qk
f

(with f = 1, . . . , n f , where n f is the

number of different flavours, and k = 1, . . . , Nc). The precise matter content

is shown in Table 18.1. Thus, the Lagrangian becomes

Lq =

n f∑
f=1

Nc∑
k,l=1

q̄k
f

(
i/∂ − m f

)
δkl ql

f .

1The Mathematica package Tracer.m is useful for computing the traces. (see

http://library.wolfram.com/infocenter/MathSource/2987/)
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f 1 2 3 4 5 6

qf u d s c b t

m f 2.12 MeV 4.69 MeV 92.5 MeV 1.27 GeV 4.2 GeV 172.6 GeV

Table 18.1: The six quark flavours. Their baryon number is B = 1/3.

For light flavours the masses correspond to running MS quark masses (see

definition in section 19.4) at 2 GeV, for heavy flavours c and b the mass

values of Ref. [Bazavov et al., 2018] and for t quark it is the pole mass.

If we apply a transformation qk → qk′ = Uklql , with

Ukl = exp

⎧⎪⎪⎨⎪⎪⎩i

N2
c −1∑
a=1

ta θa
⎫⎪⎪⎬⎪⎪⎭kl ≡ exp {it · θ}kl

where θa ∈ R, then the Lagrangian again remains invariant under the global

SU(Nc) transformation: Lq (q) = Lq (q′), therefore the colour charges are

conserved. The (ta)kl are Nc×Nc matrices, which constitute the fundamental

representation of the generators Ta (called colour-charge operators). Both

satisfy Eq. (18.1.1). For SU(3) the matrices ta are the Gell-Mann matrices.

Can we make Lq (q) invariant under local SU(Nc) transformations? The

answer is again yes, we can and the steps are similar as in the case of QED:

1. Introduce an Aa
μ coloured vector field with the following transforma-

tion property under SU(Nc) transformations:

t · Aμ → t · A′μ = U (x) t · AμU−1 (x) + i

gs
(∂μU (x))U−1 (x) ,

where U (x) = exp {it · θ(x)}.

2. Replace ∂μδkl with Dμ [A]kl = ∂μδkl + igs

(
t · Aμ

)
kl , where gs is the

strong coupling. Dμ [A]kl ql (x) transforms covariantly, i.e. the same

way as the quark field qk (x).

3. Introduce a kinetic term

LA = −1

4
Fa
μν [A] Faμν [A] ,
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with the non-abelian field strength Fa
μν given by

Fa
μν [A] = ∂μAa

ν − ∂ν Aa
μ − gs f abc Ab

μAc
ν︸�������︷︷�������︸

≡
(
Aμ×Aν

) a ,
so the Lagrangian contains cubic and quartic self-interactions.

Thus we find that the gauge boson field is now self-interacting. In fact, these

self-interactions are the sources of the main difference between QED and

QCD. We shall see that as a result QCD is a ‘perfect theory’ in the sense

that it is asymptotically free.2 Furthermore, among quantum field theories
in d = 4 dimensions only non-abelian gauge theories are asymptotically
free. It is also plausible that the self-interactions are the sources of colour

confinement, i.e. the colour neutrality of hadrons, but we do not have a proof

based on first principles of QCD dynamics.

Similarly to QED, the quantization requires a gauge fixing. For example,

the covariant gauge fixing is achieved by adding the term

LGF = − 1

2λ

(
∂μAμ

)2
to the Lagrangian (the boldface means vector in colour space and λ is a

Lagrange multiplicator). As opposed to QED, in this case the covariant

gauge requires the introduction of ghost fields (coloured complex scalars

with Fermi statistics!–hence the name) η, with the following kinetic term:

LG =
∑
a,b

∂μηa †Dμ [A]ab ηb .

The necessity and form of the ghost-field Lagrangian can most easily be

derived from the path integral formalism. For a physical motivation we refer

to [Ellis, 1988].

In summary, the complete Lagrangian of QCD is

LQCD = Lcl + LGF + LG ,

where ‘cl’ stand for the gauge invariant classical Lagrangian

Lcl =

6∑
f=1

Lq(qf , m f ) + Lg(A) . (18.4.8)

2To be defined precisely later.
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In Eq. (18.4.8)

Lq(qf , m f ) =
Nc∑

k,l=1

q̄k
f (iγμDμ[A] − m f )kl ql

f ,

with

(Dμ)[A]ab = ���∂μ + igs

N2
c −1∑
c=1

Ac
μTc���ab

and the kinetic term for the gluon field, the gauge field of QCD:

Lg(A) = −1

4

N2
c −1∑
a=1

Fa
μν[A]Fa μν[A] .

The ghost fields are absent if we use physical gauges, which will be our

choice (defined precisely later).

It is clear that there is an unprecedented large number of degrees of

freedom we have to sum over:

1. spin and space-time as in any field theory, not exhibited above,

2. flavour and colour, specific to QCD.

As a result, computations in QCD are rather cumbersome. During the last

25 years a lot of effort was invested to find simpler ways of computing QCD

cross sections and to automate the computations.

Feynman rules of QCD
Propagators (Feynman’s ‘+iε’-prescription is assumed, but not shown):

a, μ b, ν

p

gluon propagator: = Δa b
g, μν (p) = δa b Δγ, μν (p)

i j
p

quark propagator: = Δ
i j
q (p) = δi j Δq (p)

a b
p

ghost propagator: = Δa b (p) = δa b i
p2 (not needed

in physical gauges)

Vertices:

j i

a , μ

quark-gluon: = Γ
μ, a
gqq̄ = −igs (ta)i jγμ
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b, β c, γ

a, α

q

p

rthree-gluon: ≡ Γa, b, cα, β, γ (p, q, r) =
= −igs (Fa)bc Vα, β, γ (p, q, r) , p + q + r = 0

with Vα, β, γ (p, q, r) = (p − q)γ gαβ + (q − r)α gβγ + (r − p)β gαγ
a, α

c, γ

b, β

d, δ
four-gluon: ≡ Γa,b,c,dα, β, γ, δ

j i

a , μ

ghost-gluon: ≡ Γμ, agηη̄ = −igs (Fa)ab pμ (not needed in

physical gauges)

The matrices Fa constitute the representation of the generators of the colour

algebra in the adjoint representation and are defined below.

The four-gluon vertex, given by

Γabcdαβγδ = −ig2
s

[
+ f xac f xbd (gαβgγδ − gαδgβγ)
+ f xad f xbc (gαβgγδ − gαγgβδ)
+ f xab f xcd (gαγgβδ − gαδgβγ)

]
,

differs from the rest of the Feynman rules in the sense that it is not in a

factorized form of a colour factor and a tensor factor. This is an inconvenient

feature because it prevents the separate summation over colour and Lorentz

indices and complicates automation. We can circumvent this problem by

introducing a fake field with propagator

a b
γ δ

α β
= i

2
δab(gαβgγδ − gαδgβγ)

that couples only to the gluon with vertex

a, α

c, γ

x
ξ

ζ
= i
√

2gs f xacgαξgγζ .

We can check that a single four-gluon vertex can be written as a sum of three

diagrams (see exercise). This way the summation over colour and Lorentz

indices factorize completely, which helps automation and makes possible

for us to concentrate on the colour algebra independently of the rest of the

Feynman rules.
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Exercise 18.7
Show that in SU(N) gauge theories[

Dμ,Dν

]
= igFa

μνTa where Fa
μν = ∂μAa

ν − ∂ν Aa
μ − g f abc Ab

μAc
ν .

Exercise 18.8
Show that Fa

μν transforms according to the adjoint representation of SU(N):

Fa
μν → Fa

μν − f abcθbFc
μν .

Exercise 18.9
Show that the four-gluon vertex can be written as a sum of three graphs with
the help of the fake field such that in each graph the colour and Lorentz
indices are factorized.

18.5 Basics of colour algebra
Examining the Feynman rules, we find that there are two essential changes

as compared to QED. One is that there is an additional degree of freedom:

colour. Another is that there are new kind of couplings: the self couplings of

the gauge field. We now explore the effect of the first, and leave the second

to the next chapter.

In order to see how to treat the colour degrees of freedom, we set to

unity all but the colour part of the Feynman rules and try first to develop

an efficient technique to compute the coefficients involving the colour struc-

ture. This is possible because the colour degrees of freedom factorize from

the other degrees of freedom completely. We use the following graphical

representation for the colour charges in the fundamental representation:

j i

a

= (ta)i j . The normalization of these matrices is given by

TRa ab bTr
(
tatb
) ≡ = TR δ

ab . The usual choice is

TR =
1
2
, but TR = 1 is also often used. We shall use both.
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In the adjoint representation the colour charge Ta is represented by the

matrix (Fa)bc that is related to the structure constants by

b c

a

(Fa)bc =
(
Fb
)
ca = (Fc)ab = −i fabc =

where Fa with a = 1, . . . , (N2
c − 1) are

(
N2

c − 1
) × (N2

c − 1
)

matrices that

again satisfy the commutation relation (18.1.1). The graphical notation in

the adjoint representation is not unique. For the matrix (Fa)bc we assume

an arrow pointing from index c to b, opposite to which we read the indices of

(Fa). On the structure constants the indices are not distinguished, therefore

arrows do not appear. However, these are completely antisymmetric in their

indices, so the ordering matters. By convention, in the graphical represen-

tation the ordering of the indices is counterclockwise. The representation

matrices are invariant under SU(N) transformations.

The sums
∑

a taij t
a
jk

and Tr
(
FaFb

)
have two free indices in the fun-

damental and adjoint representations. These are invariant under SU(N)
transformations, so must be proportional to the unit matrix,∑

j,a

taij t
a
jk = CF δik , Tr

(
FaFb

)
= CA δ

ab . (18.5.9)

Eq. (18.5.9) is depicted graphically as

CFijjk ik CAb baa .

Here CF and CA are the eigenvalues of the quadratic Casimir operator in

the fundamental and adjoint representations. In the familiar case of angular

momentum operator algebra (SU(2)), the quadratic Casimir operator is the

square of the angular momentum with eigenvalues j( j+1). The fundamental

representation is two dimensional, realized by the ( 1
2

times the) Pauli matrices

acting on two-component spinors, when j = 1/2 and CF = 1/2(1/2 + 1) =
3/4. In the adjoint representation j = 1 and CA = 2. Below we derive the

corresponding values for general SU(N).
The commutation relation (18.1.1) can be represented graphically by

a b ab a b

.
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Let us first multiply this commutator with another colour charge operator.

Next, sum over the fermion index and then multiply with δik . As a result, we

obtain the resolution of the three-gluon vertex as products of colour charges:

TR ⇒ Tr(tatbtc)−Tr(tctbta) = iTR f abc .

The expression
∑

a taij t
a
kl

is invariant under SU(N) transformations, thus

has to be expressible as a linear combination of δilδk j and δi jδkl (the third

combination of Kronecker δ’s is not possible, the direction of arrows do not

match). The two coefficients can be obtained by making contractions with

δilδjk and δi jδkl . Thus we obtain the Fierz identity,∑
a

taij t
a
kl = TR

(
δilδk j − 1

Nc
δi jδkl

)
,

or graphically

TR
1
Nc

.

We now show some examples of how one can compute the colour algebra

structure of a QCD amplitude, in particular we will also find explicit values

for CF and CA in the exercises. Taking the trace of the identity in the

fundamental and in the adjoint representation we obtain

= Nc , = N2
c − 1 .

Then, using the expressions for the fermion and gluon propagator corrections,

we immediately find

= CF Nc , = CA

(
N2

c − 1
)
.

The generators are traceless,
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= Tr (ta) = 0 , = Tr (Fa) = 0 .

These graphical rules make the evaluation of colour algebra easy. Never-

theless, nowadays computer algebra codes make computation of colour sums

an automated procedure. For instance, you can typeIn[1]:= Import["http:
//www.feyncalc.org/install.m"] in a Mathematica session to explore

some code for that purpose.

Exercise 18.10
Consider the process qq̄ → ggg. Compute the colour structures that appear
in the squared matrix element.

Exercise 18.11
Insert a quark loop on a single gluon loop and try to find the value of CF.
Compute CA in a similar way. Hint: use the resolution of the three-gluon
vertex.

Exercise 18.12
Determine the colour factors A,B,C in

A

,

B ,

C .

18.6 Are we done?
We now have the Feynman rules with colour and the rest (momentum and

couplings) factorized and we gained some insight how to perform the colour

algebra. Thus it seems that we are in the position to compute the cross

section of any process up to the desired accuracy in perturbation theory, just
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as we can do in QED. So it may appear that conceptually we are done. Well,

we are going to see big surprises!

The first conceptual challenge is due to a phenomenological observation.

In QED perturbation theory is applicable because the elementary excitations

of the quantum fields, the electrons and photons can be observed as stable,

free particles. Thus asymptotic states are parts of the physical reality. On

the contrary, free quarks and gluons (usually called simply partons) have

never been observed in nature. This experimental fact can be reformulated

saying that the probability of observing a final state with any fixed number
of on-shell partons is zero. This negative result has been turned into the

principle of ‘quark confinement’. Thus it is questionable whether a quantum

field theory (QFT) of quark and gluon fields can describe the observed world

of particles where in addition to leptons only hadrons have been found. In

fact, a main research project at the Large Electron Positron collider (LEP)

was to find an answer to this question in a well controlled and quantitative

manner. It turned out that the answer is positive if we make an assumption

that we cannot prove from first principles:

The result of a low-order perturbative computation in QCD is an

approximation to sufficiently inclusive hadronic cross section if (i)

the total centre-of-mass energy Q of partons is much larger than the

mass of quarks, Q � mq , and (ii) Q is far from hadronic resonances

and thresholds.

We shall define precisely what ‘sufficiently inclusive’ means later. Pre-

dictions made on the basis of this assumption agree with measurements

(e.g. made at LEP) within the expected accuracy of the prediction, which we

are to define also later.

Based on this assumption, it makes sense to make predictions with quark

and gluon asymptotic states. However, in QCD the complexity of the Feyn-

man rules will make higher order computations prohibitive. Indeed, the

largest effort in QCD computations during the past 25 years went into de-

vising ever more efficient methods to decrease the algebraic complexity of

the computations. This research is driven by the observation that the QCD

Lagrangian is highly symmetric, which has to be reflected in the final results.

Thus the complications somehow appear mainly because with our rules we

artificially introduce complications at intermediate steps of the computations,

which cancels to large extent in the final formulae. In the next subsection we

shall see an example of simplifications. But learning about the symmetries

of QCD is interesting and useful not only for technical purposes, so let us

make an inventory of those.
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Figure 18.2: Illustration of the approximation of hadronic final states by

partonic events in electron-positron annihilation.

18.7 Symmetries of the classical Lagrangian
The symmetries can be grouped into two large categories: exact symmetries

and approximate ones. Space-time symmetries are exact. These consist

of invariance against continuous transformations: translations and Lorentz-

transformations (rotations and boosts). In addition QCD is invariant under

scale transformation:

xμ → λxμ Aμ(x) → λ−1 Aμ(λx) q(x) → λ−3/2q(λx) (18.7.10)

and conformal transformations. The Lagrangian is also invariant under

parity (P) transformation, as well as simultaneous charge conjugation (C),

space and time reversal (PT)–recall Chapter 1–, in agreement with observed
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properties of strong interactions (C, P and T violating strong decays are not

observed).

We have already discussed exact symmetry in colour space: gauge in-

variance. In addition to the classical Lagrangian of Eq. (18.4.8), there exists

an additional gauge invariant dimension-four operator, the Θ-term:

LΘ = Θgs

32π2

∑
a

Fa
μν F̃a,μν , with F̃a,μν =

1

2
εμναβFa

αβ ,

that violates P and T. As experimentally Θ < 10−9, we set Θ = 0 in pertur-

bative QCD.

Another interesting feature of Lcl is that it is almost supersymmetric.3

For one massless flavour

Lcl = −1

4

∑
a

Fa
μνFa,μν + q̄i /Dq ,

which is very similar to the Lagrangian of N = 1 supersymmetric gauge

theory,

LSUSY
cl = −1

4

∑
a

Fa
μνFa,μν + λ̄i /Dλ .

The only difference is that the quark q transforms under the fundamental,

while the gluino λ under the adjoint representation of the gauge group.

An important approximate symmetry of the classical Lagrangian is re-

lated to the quark mass-matrix. Let us introduce the quark flavour triplet

ψ =
���

u
d
s

��� = ���
q1

q2

q3

��� ,
with each component being a four-component Dirac spinor , and the combi-

nations

P± =
1

2

(
� ± γ5

)
, γ5 = iγ0γ1γ2γ3 . (18.7.11)

The latter are projections:

P+ P− = P− P+ = 0 , P2
± = P± , P+ + P− = � .

3We note this interesting feature without detailed explanation of supersymmetry,

which can be found in [Martin, 1997].
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It follows from Clifford algebra that γμP± = P∓γμ. We define ψ± = P±ψ.

Using γ2
5
= �, we find that ψ± are eigenvectors of γ5 with ±1 eigenvalues:

γ5ψ± = ±ψ± .
From the definition of the Dirac adjoint, ψ = ψ†γ0, we obtain ψ± = ψP∓.

Thus the quark sector of the Lagrangian can be rewritten in terms of the

chiral fields ψ±:

Lcl = ψ i γμDμ ψ = ψ(P+ + P−) i γμDμ (P+ + P−)ψ =
= ψP+ i γμDμ P−ψ + ψP− i γμDμ P+ψ =

= ψ− i γμDμ ψ− + ψ+ i γμDμ ψ+ =

= L− + L+ ≡ LL + LR .

This decomposition would not work if the gluon field in the covariant deriva-

tive were not a Lorentz-vector. In this chiral form the left- and right-handed

fields decouple, so the Lagrangian is invariant under separate U(Nf) trans-

formations for the left- and right-handed fields, i.e. under UL(Nf) ×UR(Nf),
hence it is called chiral symmetry. Indeed, if (gL, gR) ∈ UL(Nf) × UR(Nf),
then under the transformation

ψL → gLψL , ψL → ψLg
†
L
, gR = 1

LL remains invariant. This symmetry is exact if the quarks are massless. The

group elements can be parametrized using 2N2
f

real numbers {α, αa, β, βb}
(a, b = 1 , . . . N2

f
− 1),

(gL, gR) =
(
exp(iα) exp(iβ) exp

(
i
∑
a

αaTa

)
exp

(
i
∑
b

βbTb

)
,

exp(iα) exp(−iβ) exp

(
i
∑
a

αaTa

)
exp

(
−i
∑
b

βbTb

))
∈ UV(1) ⊗ SUL(Nf) ⊗ UA(1) ⊗ SUR(Nf)

where the matrices Ta represent the generators of the group (Nf × Nf

matrices). The transformations (exp (i∑a αaTa) , exp (i∑a αaTa)), acting

as ψ → exp (i∑a αaTa
�)ψ, form a vector subgroup SUV(Nf). How-

ever, the transformations (exp
(
i
∑

b βbTb
)
, exp

(−i
∑

b βbTb
)), acting as

ψ → exp
(
i
∑

b βbTbγ5

)
ψ, do not form an axial-vector subgroup because

the algebra is not closed,

[Taγ5,Tbγ5] = i
∑
c

f abcTc
� (γ2

5 = � � γ5).
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This chiral symmetry is not observed in the hadron spectrum. Therefore,

we assume that vacuum has a non-zero vacuum expectation value (VEV) of

the light-quark operator,

〈0|q̄q |0〉 = 〈0|ūu + d̄d|0〉 � (250 MeV)3 ,
a chiral condensate that connects left- and right-handed fields,

〈0|q̄q |0〉 = 〈0|q̄LqR + q̄RqL |0〉 .
The condensate breaks chiral symmetry spontaneously to SUV(Nf) ⊗UV(1).
This remaining symmetry explains the existence of good quantum numbers

of isospin and baryon number, as well as the appearance of N2
f
− 1 = 8

massless mesons, the Goldstone bosons. As non-zero quark masses violate

the chiral symmetry, which is broken spontaneously, the Goldstone bosons

are not exactly massless. Thus we have natural candidates for the Goldstone

bosons: we can identify those with the pseudo scalar meson octet. In

practice, we assume exact chiral symmetry and treat the quark masses as

perturbation. This procedure leads us to chiral perturbation theory (χPT),

which is capable to predict the (ratios of) masses of light quarks, scattering

properties of pions and many more. Although, χPT is a non-renormalizable

QFT4, it can be made predictive order by order in perturbation theory if

the measured values of sufficiently many observables are used to fix the

couplings of interaction terms at the given order.

The QCD Lagrangian was written 45 years ago. Since then many at-

tempts were tried to solve it and mature fields emerged that aim at solving

the theory in a limited range of physical phenomena. For instance, χPT is a

perturbation theory that uses low-energy information (in the MeV range) to

explain the world of hadrons and the masses of light quarks. In the same en-

ergy range non-perturbative approaches, notably lattice QCD and sum rules,

have been developed for the same purpose. By now it is possible to explain

the spectrum of the light hadrons from first principles using lattice QCD

[Durr et al., 2008]. The main goal at colliders, our focus in this book, is dif-

ferent. We shall prove that perturbation theory can give reliable predictions

for scattering processes at high energies, that is the topic of jet physics.

We have seen that the classical QCD Lagrangian shows many interesting

symmetry properties that can be utilized for (i) easing computations, (ii)

checking results, (iii) hinting on solving QCD. We shall see that some of these

symmetries are violated by quantum corrections, which leads to important

physical consequences. In QCD an important example is scaling violations.

4We discuss renormalization in section 19.2.
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Another example is the axial anomaly that provides strong constraints on

possible QFT’s.

Exercise 18.13
Show that the classical action of QCD in Eq. (18.4.8) is invariant under scale
transformations (18.7.10). Is the classical Lagrangian also scale invariant?

Exercise 18.14
Show that the classical Lagrangian of QCD in Eq. (18.4.8) is invariant under
the charge conjugation defined by C(ψ) = −iγ2ψ

∗.

18.8 SU(N)-amplitudes at tree level
Let us see an explicit example how we can exploit symmetry properties to

make QCD computations more efficient. The number of algebraic terms that

contribute to QCD amplitudes as obtained from the Feynman rules increase

dramatically with increasing number of multiplicity (number of partons in the

final state). For instance, the number of diagrams for the reaction gg → ng
at tree level is (nd denotes the number of diagrams):

n 2 3 4 5 6 7 8 9

nd 4 25 220 2485 34300 559405 10525900 224449225

Furthermore, these diagrams contain complicated non-abelian vertices. The

number of terms belonging to a given amplitude increases factorially. We can

organize the calculation of |Mn |2 better if we divide the full amplitude into

sums of gauge invariant contributions. These can be found by expanding the

amplitude in colour space using an orthogonal basis. Then each coefficient

of a basis vector has to be gauge invariant.

A purely gluonic tree5 amplitude can be written as

Mn
a1... an
ε1... εn

(p1, . . . , pn) =
∑

{1,2,...,n}′
Tr (ta1 . . . tan ) m (p1, ε1; . . . ; pn, εn)

where the sum runs over (n − 1)! non-cyclic permutations of the indices,

denoted by the prime on {. . . }. The usual normalization used in this repre-

sentation is TR = 1. The different traces are orthogonal only at leading order

5Similar, but more complex decomposition can be given also for loop amplitudes.
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in Nc:

N2
c −1∑

ai=1

Tr (ta1 . . . tan ) Tr
(
tb1 . . . tbn

)∗
= Nn−2

c

(
N2

c − 1
) [
δ{a}{b} + O

(
1

N2
c

)]
where {b} is a permutation of {a} ≡ (a1, . . . , an). However, gauge invari-

ance must hold order-by-order in the 1/Nc-expansion. So we find that the

colour sub-amplitudes m (1, 2, . . . , n) ≡ m (p1, ε1; . . . ; pnεn) have the follow-

ing properties:

1. they are gauge invariant,

2. they are invariant under cyclic permutations of indices,

3. they obey the relation m (n, n − 1, . . . , 1) = (−1)n m (1, 2, . . . , n),
4. they obey the relation

m (1, 2, 3, . . . , n) + m (2, 1, 3, . . . , n) + m (2, 3, 1, . . . , n) + . . .
+m (2, 3, . . . , 1, n) = 0,

5. they factorize on multi-gluon poles (this feature will be discussed

later),

6. they sum independently in the squared matrix element to leading order

in Nc:∑
colour

|Mn |2 = Nn−2
c

(
N2

c − 1
) [∑

|m (1, . . . , n)|2 + O
(
N−2

c

)]
18.9 Spinor helicity formalism
We compute amplitudes of fixed helicities of the external legs, which has the

following advantages:

• Helicity is conserved along massless fermion lines (vector interaction

conserves helicity).

• We can exploit gauge invariance and select an explicit representation

for the polarization vectors.

• Different helicity configurations do not interfere. Thus, in computing∑
helicity |Mn |2, we sum the helicity amplitudes incoherently.
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We introduce the following formalism from Ref. [Mangano and Parke, 1991]:

• ψ (p) is a massless Dirac spinor that satisfies the Dirac equation,

/pψ (p) = 0, and the on-shell condition, p2 = 0 .

• We define two chiral projections

ψ± (p) ≡ P±ψ (p) = 1

2
(� ± γ5)ψ (p) = ψ∓ (p)c ,

P+ + P− = � , P2
± = P± ,

where ψ (p)c = Cψ (p)∗ and Cγμ∗C−1 = γμ is the charge conjuga-

tion.

• Furthermore, we use the following notation:

|p±〉 ≡ ψ± (p) , 〈 p±| ≡ ψ± (p)

where 〈 p±| is an outgoing fermion, while |p±〉 is an outgoing anti-

fermion of momentum p and helicity ± and

〈pq〉 ≡ 〈 p − | q+〉 = ψ− (p) ψ+ (q)
[pq] ≡ 〈 p + | q−〉 = ψ+ (p) ψ− (q)

with normalization
〈
p ± |γμ |p±

〉
= 2pμ. In this formalism, the fol-

lowing properties hold:

〈pq〉 = − 〈qp〉 , [pq] = − [qp] (hence 〈pp〉 = [pp] = 0)

〈pq〉∗ = sign (p · q) [qp] , |〈pq〉|2 = |2 p · q | ≡
��spq ��

which imply spq = 〈pq〉 [qp]. Furthermore,

2 |p±〉 〈q±| = 1

2
(� ± γ5) γμ 〈q±| γμ |p±〉

⇒ |p±〉 〈p±| = 1

2
(� ± γ5) /p and /p = |p+〉 〈p+| + |p−〉 〈p−| .

Furthermore,

〈p±| γμ1
. . . γμ2n+1

|q±〉 = 〈q∓| γμ2n+1
. . . γμ1

|p∓〉 ,
〈p±| γμ1

. . . γμ2n |q∓〉 = − 〈q±| γμ2n . . . γμ1
|p∓〉 ,

〈AB〉 〈CD〉 = 〈AD〉 〈CB〉+〈AC〉 〈BD〉 (the same holds with [ . . . ]) ,
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〈A+| γμ |B+〉 〈C−| γμ |D−〉 = 2 [AD] 〈CB〉 .
For the polarization vectors we make the choice

ε±μ (p, k) = ±
〈p±| γμ |k±〉√

2 〈k ∓ |p±〉
(18.9.12)

where kμ is the reference momentum needed to define the transverse

directions in addition to pμ. Thus

ε±μ (p, k) γμ = ±
√

2

〈k ∓ |p±〉 (|p∓〉 〈k∓| + |k±〉 〈p±|) .

Moreover,

ε±μ (p, k) =
(
ε∓μ (p, k)

)∗
, (18.9.13)

ε±μ (p, k) pμ = ε±μ (p, k) kμ = 0 , (18.9.14)

ε+μ (p, k) ε−ν (p, k) + ε−μ (p, k) ε+ν (p, k) = dμν (p, k) , (18.9.15)

εh (pi, k) · εh
(
pj, k
)
= 0 , with h = +,− , (18.9.16)

εh (pi, k) · ε−h
(
pj, pi

)
= 0 , with h = +,− , (18.9.17)

/εh (pi, pj

) ���phj 〉 = 0 , with h = +,− , (18.9.18)〈
phj
��� /ε−h (pi, pj

)
= 0 , with h = +,− . (18.9.19)

18.9.1 Helicity Feynman rules for colour sub-amplitudes
(with massless fermions)

We introduce the following notation:

• external outgoing fermion of momentum p, helicity ±: 〈p±|,

• external outgoing antifermion of momentum p, helicity ±: |p∓〉,

• external outgoing vector of momentum p, reference k, helicity ±:

ε±μ (p, k) = ± 〈p±|γμ |k±〉√
2〈k∓|p±〉 .
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The fermion propagator of momentum pμ in the direction of the fermion

arrow is i
/p
p2 . The vector propagator of momentum pμ is: − i

p2 gμν .

Γ
μ
gqq̄ = i

gs√
2
γμ the factor of

√
2 is due to TR = 1,

Γαβγ (p, q, r) = i
gs√
2

Vαβγ (p, q, r) all momenta incoming,

Γαβγδ = i
g2

s

2

(
2gαγgβδ − gαδgβγ − gαβgγδ

)
.

(18.9.20)

18.9.2 A simple application of the helicity formalism
We now compute the leading order contribution to the process e+e− → μ+μ−

using the helicity formalism. Although it is not a physical choice, we consider

the following crossing invariant kinematic configuration, which is useful for

obtaining the squared matrix element in either the annihilation or in the

scattering channels in a single computation:

0μ → pμ
1
+ pμ

2
+ pμ

4
+ pμ

5
.

As for the labelling convention, we anticipate further use of the result, with

an additional particle that will be labelled by ‘3’, which is omitted here.

There is only one Feynman diagram:

e−

e+ μ+

μ−

γ∗

q
p2

p1p5

p4

A general amplitude is given by

A4

(
1h1, 2h2, 4h4, 5h5

)
= e2 a4

(
1h1, 2h2, 4h4, 5h5

)
where the numbers are just a short-hand notation for the momenta, j ≡ pj ,

which is a standard in the helicity formalism. Choosing a specific helicity

configuration and applying the Feynman rules, we find

a4

(
1+, 2−, 4+, 5−

) ≡ a4 (+,−,+,−) = 〈1+| iγμ |2+〉 (−igμν)
s12

〈5−| iγν |4−〉

= i
2 [14] 〈52〉
〈12〉 [21]

〈45〉
〈45〉 = −i

2 [12] 〈25〉 〈52〉
[21] 〈12〉 〈45〉

= −i
2 〈25〉2
〈12〉 〈45〉 , (18.9.21)
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where si j =
(
pi + pj

)2
and in the third line we used momentum conservation

(/4 = −/1 − /2 − /5) to rewrite [14] 〈45〉 as

[14] 〈45〉 = 〈1 + ��/4�� 5+〉 = 〈1 + ��−/1 − /2 − /5�� 5+〉 = 〈1 + ��−/2�� 5+〉
= − [12] 〈25〉 . (18.9.22)

The other helicity amplitudes can be found from Eq. (18.9.21), using discrete

symmetry transformations of parity and charge conjugation. Parity transfor-

mation reverses all helicities of the helicity amplitude. It is implemented by

the complex conjugation operation which substitutes 〈i j〉 ↔ [ ji]. Charge

conjugation changes anti-fermions into fermions and vice versa, which in

the present case amounts to interchanging indices 4 with 5 and/or 1 with 2.

Thus,

a4 (+,−,−,+) = a4 (+,−,+,−)|4↔5 (from charge conjugation)

= −i
2 〈24〉2
〈12〉 〈54〉 (18.9.23)

a4 (−,+,−,+) = a4 (+,−,+,−)| 〈i j 〉↔[ji] (from parity transformation)

= −i
2 [25]2
[12] [45] (18.9.24)

a4 (−,+,+,−) = −i
2 [24]2
[12] [54] . (18.9.25)

Computing the square of the amplitude, summed over helicities, we obtain

∑
helicity

|A|2 = e4 2
4
(
s2
25
+ s2

24

)
s12s45

= 8 (4πα)2 t2 + u2

s2
,

where we adopted the usual notation of the Mandelstam variables, s, t and

u:

s12 = s45 = s , s24 = t , s25 = u .

The advantage of considering a kinematic configuration 0 → pμ
1
+pμ

2
+pμ

4
+

pμ
5

is that it is easy to compute the matrix element for analogous reactions that

can be obtained by crossing symmetry. Depending on the crossed momenta

we speak of s- or t-channel. Integrating the squared matrix element over the

phase space of the two final state particles, averaging over the initial spin

states and dividing with the flux factor, the cross section is

σ =
1

4

1

2s

∫ 0

−s

dt
8πs

8 (4πα)2 t2 + u2

s2
=

4πα2

3s
. (18.9.26)
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Exercise 18.15
Consider highly relativistic fermions in QED. Show that the electromagnetic
interaction conserves helicity. Is helicity conserved also for axial currents?

Exercise 18.16
Show that for colour ordered amplitudes m(1, . . . , n) ≡ m(p1, ε1; . . . ; pn, εn)
the following statements hold:

• they are invariant under cyclic permutations and that

• m(n, n − 1, . . . , 1) = (−1)n m(1, 2, . . . , n).

Exercise 18.17
Show the following properties of spinor products:

• 〈 i j〉 [ j i ] = 2ki · k j

• 〈 i | γμ | j] = [ j | γμ | i〉

• Fierz identity: [ i | γμ | j〉 〈 k | γμ | l] = 2 [ i l ] 〈 k j〉

• Schouten identity: 〈 i j〉〈 k l〉 = 〈 i k〉〈 j l〉 + 〈 i l〉〈 k j〉

The notation introduced here is

| i〉 ≡ | i+〉 〈 i | ≡ 〈 i−|
| i] ≡ | i−〉 [ i | ≡ 〈 i+ |

Exercise 18.18
Consider the matrix element ε∗μ(k1)ε∗ν (k2)Mμν (e+e− → γ(k1)γ(k2)) for the
QED process e+e− → γ(k1)γ(k2) in leading order of perturbation theory.
Verify the Ward identity

kμ
1
Mμν = 0 .

Exercise 18.19
What changes inQCD?Weconsider thematrix elementM (qq̄ → g(k1)g(k2)).

• Which diagrams contribute?
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• Verify that

εμ(k1)kν2Mμν (qq̄ → g(k1)g(k2)) = 0 ,

in case of a transversely polarized gluon g(k2), namely if kμ
2
εμ(k2) = 0.

The requirement that the external vector bosons must be transversely
polarized was not needed in QED (see the previous exercise).

Exercise 18.20
Nevertheless, in QCD the Ward-identity holds thanks to additional (unphys-
ical) fields called ghosts. Square the above amplitude both in covariant and
in physical gauge. Do the results match? Why?

Exercise 18.21
Compute the cross section for e+e− → qq̄ in leading order in perturbation
theory.

Exercise 18.22
Consider the matrix element M (qq̄ → g(k1)g(k2)) for the QCD process
q1q̄2 → g(k1)g(k2) in leading order in perturbation theory.

• Determine graphically the colour structures and the corresponding
colour subamplitudes m(q1, q2, g1, g2).

• Decompose the latter into contributions of fixed helicities.

Now determine which helicity amplitudes have to be calculated explicitly:

• Make use of helicity conservation (see also exercise 18.15).

• Use invariance under charge conjugation.

• Carefully choose two reference momenta q1 and q2 of the polarization
vector of the gluons. Note for example ε+(ki, k j) · ε−(k j, q) = 0,
ε+(ki, q) · ε−(k j, q) = 0 etc. (see also Eqs. (18.9.14)–(18.9.19)).

Exercise 18.23
Compute the remaining colour-ordered subamplitudes from the previous
exercise. Use the spinor helicity formalism.
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Electron-positron
annihilation into hadrons

19.1 Electron-positron annihilation into hadrons

MOTTO:

“Well, in OUR country,” said Alice, still pant-

ing a little, “you’d generally get to somewhere

else — if you ran very fast for a long time, as

we’ve been doing.”

“A slow sort of country!” said the Queen.

“Now, HERE, you see, it takes all the running

YOU can do, to keep in the same place. If you

want to get somewhere else, you must run at

least twice as fast as that!”

(Lewis Carroll: Through the Looking Glass)

We now use the assumption that a low-order perturbative computation

in QCD is an approximation to sufficiently inclusive hadronic cross section,

and make predictions for the cross section of electron-positron annihilation

into hadrons.

The leading-order (LO) perturbative contribution to the cross section

247
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σ (e+e− → hadrons) is e+e− → qq̄. The calculation is like in the case of

e+e− → μ+μ−, supplemented with colour and fractional electric charge of

qj where the subscript is index of flavour. The colour graph is a loop in

the fundamental representation that corresponds to a factor Nc as we have

seen in the previous chapter. While the annihilation into μ+μ− contains only

one flavour in the final state, quarks can have three, four or five flavours

depending on the centre-of-mass (CM) energy.1 We have to sum over all

possible flavours that can appear. The ratio of the two cross sections is thus

given by

R ≡ σ (e+e− → qq̄)
σ (e+e− → μ+μ−) =

(∑
q

e2
q

)
Nc, (19.1.1)

where eu = ec =
2
3

and ed = es = eb = − 1
3
. If we consider only the u, d, s

and c quarks (the CM energy is above the threshold of producing a c-quark

pair, but below the threshold of a b-quark pair)
∑

q e2
q = 24

9
+ 21

9
= 10

9
.

Considering also the contribution of the b quark above the b-quark pair

threshold,
∑

q e2
q =

11
9

. This step-wise increasing behaviour of the R-ratio

was observed (see figure 17.56), providing an experimental confirmation of

the existence of three families of quarks with fractional charges and of the

SU(Nc) gauge symmetry of QCD with Nc = 3.

19.2 Ultraviolet renormalization of QCD
The strong coupling is rather large as compared to the other couplings in the

SM and as a result, the QCD radiative corrections are also large. Therefore,

it is always important to compute at least the next-to-leading order (NLO),

but if possible, even higher order corrections.2

The computation of QCD radiative corrections is technically quite in-

volved and a good organization of the calculations is very important. Thus,

first we introduce some notation. The tensor product of the ket vectors

|c1, . . . , cm〉 ⊗ |s1, . . . , sm〉 denotes a basis vector in colour and helicity

space, |Am (p1, . . . , pm)〉 is a state vector of n = m − 2 final-state parti-

cles in colour and helicity space. (The remaining two indices stand for the

incoming leptons.) The amplitude for producing n final-state particles of

1The sixth flavour, the t quark is so heavy that it cannot contribute at CM energies

attained in e+e− experiments so far.
2There is even a more serious reason that we shall point out at the end of this

chapter.
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colour (c1, . . . , cn), spin (s1, . . . , sn), momentum (p1, . . . , pn) is

Ac1... cm,s1... sm
m (p1 . . . pm) = 〈c1 . . . cm | ⊗ 〈s1 . . . sm |Am (p1, . . . , pm)〉

(m = n + 2 and appears in subscript as opposed to m denoting mass of the

particles, that never appears in subscript) so∑
colour

∑
helicity

���A{ci }, {si }
m (p1, . . . , pm)

���2= 〈Am (p1, . . . , pm) |Am (p1, . . . , pm)〉 .

The loop expansion in terms of the bare coupling g
(0)
s ≡

√
4πα

(0)
s , which is

the coupling that appears in the classical Lagrangian, is as follows:

|Am〉 =
(
α
(0)
s

4π

) q
2
[���A(0)

m

〉
+

(
α
(0)
s

4π

) ���A(1)
m

〉
+ O

(
(α(0)s )2

)]
, (19.2.2)

where q is a non-negative integer. When we compute loop corrections, we

shall find divergent integrals in d = 4 dimensions that can be regularized

using dimensional regularization. In order to keep αs dimensionless in

d = 4 − 2ε dimensions we have to introduce a mass scale μ, called the

dimensional regularization scale. Each factor of αs acquires a factor of μ2ε

that we include in the
���A(i)

m

〉
amplitudes, not shown explicitly in Eq. (19.2.2).

The exponent
q
2

in the prefactor takes account of the power of αs at leading-

order (LO) accuracy. For instance, q = 0 for e+e− → qq̄, while q = 1 for

e+e− → qq̄g. The one-loop correction to A(0)
4
(1, 2, 4, 5) is computed from

three diagrams:

and .

We first look at the fermion propagator correction Σμ in covariant Feynman

gauge,

≡ i/Σ (p,m) =

= CF

∫
dd	

(2π)d
4παsμ

2ε[(p − 	)2 − m2
]
	2

[
γμ
(
/p − /	 + m�

)
γν (−gμν)

]
= CFδkl 4παs μ

2ε

∫
dd	

(2π)d
(d − 2) (/p − /	) − d m�[(p − 	)2 − m2

]
l2
,
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where � is the 4 × 4 unit matrix, and we used −γμ/aγμ = (d − 2) /a, valid for

any four-momentum aμ in arbitrary dimensions d. The momentum of the

external fermion of mass m is denoted by pμ. /Σ is diagonal in the colour

indices of the external quarks, therefore we have suppressed these indices.

The necessary integrals are

I2 =

∫
dd	

(2π)d
1[(	 − p)2 − m2

]
	2

=
i

(4π)2−ε
Γ (ε)

(
p2
)−ε ∫ 1

0

dx
(
x

m2

p2
− x (1 − x) − iε

)−ε
(19.2.3)

Iμ
2
=

∫
dd	

(2π)d
	μ[(	 − p)2 − m2

]
	2

=
i

(4π)2−ε
Γ (ε)

(
p2
)−ε

pμ
∫ 1

0

dx
(
x

m2

p2
− x (1 − x) − iε

)−ε
x (19.2.4)

where the gamma (or factorial) function Γ (ε) has the property

Γ (ε) = ε Γ (ε)
ε
=

1

ε
Γ (1 + ε) .

It is important to distinguish the deviation from four dimensions, represented

by ε , from the Feynman prescription in the propagator, represented by ε.
Finally we obtain

i/Σ (p,m) ≡ i
[
m Σ1

(
p2,m

)
+
(
/p − m

)
Σ2

(
p2,m

)]
where

Σ1

(
p2,m

)
=
αs

4π

1

ε
Γ (1 + ε)

(
4πμ2

p2

)ε
(−3CF) + O

(
ε0
)
,

Σ2

(
p2,m

)
=
αs

4π

1

ε
Γ (1 + ε)

(
4πμ2

p2

)ε
(+CF) + O

(
ε0
)
.

This result becomes meaningless if ε = 0 (that is d = 4), which is cured by

ultraviolet renormalization. The philosophy behind ultraviolet renormaliza-

tion is the following. The (bare) parameters in the (classical) Lagrangian are

not physically observable. Ultraviolet renormalization is a reformulation of

the Lagrangian using physical quantities, which means that instead of the

bare quantities, one should write the Lagrangian using renormalized ones



Electron-positron annihilation into hadrons 251

that are related to the bare ones by simple multiplication, hence the name

renormalization (R):

q(0) =
√

Zq q(R) , A(0) =
√

ZA A(R) , η(0) =
√

Zη η
(R) ,

m(0) = Zmm(R) , μεg(0)s = μ
ε
R

Zgg
(R)
s , λ(0) = Zλλ

(R) .

Any physical observable can be calculated as a function of the renormalized

parameters (in perturbation theory) and their values can be extracted from

measured values of the physical observables. In perturbation theory each Z
has a perturbative expansion of the form

Z =
∞∑
n=0

( αs

4π

)n n∑
j=0

Z (n, j)

ε j
= 1+

( αs

4π

) [
Z (1,0) +

Z (1,1)

ε

]
+O
(
α2

s

)
, (19.2.5)

where we simplified slightly the notation, denoting α
(R)
s with αs. The Z (n, j)

coefficients ( j > 0) can be determined order by order in perturbation theory

from the requirement that the renormalized Lagrangian,

L(R)
(
q(R), A(R), η(R),m(R), g(R), λ(R)

)
=

= L
(
q(0), A(0), η(0),m(0), g(0), λ(0)

)
− LCT

(
q(R), A(R), η(R),m(R), g(R), λ(R)

)
generates finite Green functions. Thus L = L(R) + LCT where CT stands

for counter terms. LCT must have the same functional dependence as L on

its arguments. Renormalizability means that such Z constants exist (in any

order of perturbation theory). The counter-term Lagrangian can be written

as

LCT =
(
Zq − 1

)
q̄i/∂q − (ZqZm − 1

)
mq̄q − 1

4
(ZA − 1) (∂[μAν]

)2
+
(
Zη − 1

) (
∂μη
)† (∂μη) − (ZgZq

√
ZA − 1

)
μεR

√
4παs q̄

(
T · /A) q

+
1

2

(
ZgZ

3
2

A
− 1

)
μεR

√
4παs ∂[μAν]Aμ × Aν

+
(
Z2
gZ2

A − 1
)
μ2ε

R 4παs

(
Aμ × Aν

) (Aμ × Aν)

+
(
ZgZη

√
ZA − 1

)
μεR

√
4παs ∂

μη†
(
iT · Aμ

)
η

(19.2.6)
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(the counter-term for gauge fixing is not included). In principle, the renor-

malization factors of the various terms in the Lagrangian have to be computed

independently for each term. However, one can derive relations among those,

called Slavnov-Taylor identities, which reflect the symmetry of the original

Lagrangian. These relations have been already taken into account, when we

expressed the vertex renormalization factors as combinations of field renor-

malization factors and Zg. We have also omitted the superscript (R) for the

sake of brevity. The constants Z (n,0) are not determined by the requirement

of ultraviolet renormalizability. The simplest choice is Z (n,0) = 0, which de-

fines the minimal subtraction (MS) scheme. In QCD the modified minimal
subtraction (MS) scheme is used, which is defined by

Z (n,0) = Z (n,1) (ln 4π − γE ) (19.2.7)

at one loop, with γE being the Euler constant, emerging in the expansion

Γ (1 + ε) = 1 + ε γE − O
(
ε2
)
.

Eq. (19.2.7) holds at one-loop accuracy. To go beyond, one has to be a little

more careful. However for the purpose of this book the given definition is

enough. In this scheme

Zm = 1 + Σ1

(
p2,m

)
|p2=m2 = 1 − cε 3CF + O

(
α2

s

)
Z−1
q = 1 + 2m2 ∂

∂p2
Σ1

(
p2,m

)
|p2=m2 + Σ2

(
p2,m

)
|p2=m2

= 1 + cε CF + O
(
α2

s

)
,

where

cε =
αs

4π

1

ε
Γ (1 + ε) (4π)ε

thus

Z (1,1)q = −CFλR , Z (1,1)m = −3CF ,

Z (1,1)
A

=

[
CA

(
13

6
− λR

2

)
− 4

3
TRnf

]
, Z (1,1)η = CA

3 − λR

4
,

Z (1,1)g = − β0
2
, Z (2,1)g = − β1

4
, (19.2.8)

where

β0 =
11

3
CA − 4

3
TR n f > 0 , β1 =

34

3
C2

A −
20

3
CATR nf − 4CFTR nf .
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The results in Eq. (19.2.8) are valid for any value of the gauge parameter λR.

When computing scattering amplitudes in massless QCD at one-loop

accuracy, the renormalization amounts to the simple substitution

α
(0)
s μ

2ε SMS
ε → αs

(
μ2

R

)
μ2ε

R

[
1 − αs

(
μ2

R

)
4π

β0
ε
+ O

(
α2

s

)]
(19.2.9)

where SMS
ε = (4π)ε exp(−εγE ). The renormalized coupling αs depends on

μR. In applying the substitution (19.2.9) μ disappears and μR appears in the

amplitude. The meanings of scales μ and μR are different:

• μ is the dimensional regularization scale to keep α
(0)
s dimensionless,

• μR is the renormalization scale: when we extract αs from measure-

ments, we have to define μR. We will come back to this and clarify it

later.

Why does (19.2.9) work correctly? Each Feynman diagram consists of

vertices with propagators connecting those and external lines. Moreover,

• each vertex receives a factor Zg (or Z2
g for quartic vertex) and factors

of
√

Zi, i = q, A for each field connected to the vertex,

• each propagator of field i receives a factor of Z−1
i ,

• each external leg of field i receives a factor of Z
− 1

2

i .

Thus the renormalization field factors cancel from each diagram and only

the charge renormalization (Zg) is needed in practice! This can be seen

as a consequence of the fact that in massless QCD the only free parameter

besides the gauge-fixing parameter λ is αs. The scattering amplitudes are

physical, and any physical quantity has to be independent of λ, so the only

remaining parameter, which the amplitudes may depend on, is the coupling.

The renormalization factor Zg is most easily computed in background-field

gauge [Abbott, 1981], defined by

LGF = − 1

2λ

∑
a

(
∂μAa

μ − g f abc Ab
μ Aμ c

)2
,

where Ab
μ is a background field and Ac

μ describes the quantum fluctuations

on this background. It can be shown that in this gauge

Z
− 1

2

A = Zg,
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and ZA can be computed from loop insertions into the propagator.

Exercise 19.1
Compute the contribution to the beta function from the fermion loop:

1. Write down carefully the amplitude and compute the trace assuming
n f number of massless quarks..

2. The following types of integrals occur:

Iμ
2
=

∫
dd	

(2π)d
	μ

	2 (	 − p)2
, Iμν

2
=

∫
dd	

(2π)d
	μ	ν

	2 (	 − p)2
(19.2.10)

Express these as linear combination of

I2(p) =
∫

dd	

(2π)d
1

	2 (	 − p)2
. (19.2.11)

3. Obtain I2 from

I2(p,m) =
∫

ddl

(2π)d
1[(l − p)2 − m2

]
l2

=
i

(4π)2−ε
Γ (ε)

(
p2
)−ε ∫ 1

0

dx
(
x

m2

p2
− x (1 − x) − iε

)−ε
(19.2.12)

and find the divergent pieces.

The contribution to β0 is the coefficient of the 1/ε pole without the coupling
factor.
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19.3 Running coupling
We consider a dimensionless quantity that depends on a single dimensionful

parameter, R = R
(
Q2
)
. This could, for example, be the ratio of cross

sections of the production of hadrons and a μ+μ− pair in e+e− collisions,

that we already discussed before:

R =
σ (e+e− → hadrons)
σ (e+e− → μ+μ−) ,

and Q =
√

s = Ee+ + Ee− (the second equality is valid in the centre-of-mass

frame). If R depends on other dimensionful parameters such as masses,

we assume that Q is much bigger than all those, which can be set to zero.

Classically, dim R = 0 and, since Q is dimensionful, it follows that dR
dQ = 0.

So limQ2→∞ R =constant. In renormalized QFT, R depends also on μR, thus

it need not be a constant,

R = R

(
Q2

μ2
R

, αs

(
μ2

R

))
� constant.

This is called scaling violation. Note that the first term in parenthesis is

only a dimensionless combination of Q and μR. However, μR is arbitrary.

If R depended on μR, then its value could not be predicted. From now on

we drop the subscript “R” from μR and write μ, meaning μR. As R cannot

depend on μ, we can write:

0 = μ2 d
dμ2

R
(
Q2

μ2
, αs

(
μ2
))
=

(
μ2 ∂

∂μ2
+ μ2 ∂αs

∂μ2

∂

∂αs

)
R . (19.3.13)

Eq. (19.3.13) is called the renormalization group equation (RGE). Keeping

α
(0)
s fixed, setting t = ln

Q2

μ2 and defining

β (αs) = μ2 ∂αs

∂μ2

����
α
(0)
s fixed

= −∂αs(μ2)
∂ t

,

we obtain the partial differential equation(
− ∂
∂ t
+ β (αs) ∂

∂αs

)
R
(
et, αs

)
= 0. (19.3.14)

We can solve this equation by defining αs

(
Q2
)
, the running coupling as

t =
∫ αs(Q2)
αs(μ2)

dx
β (x) . (19.3.15)
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This gives αs

(
Q2
)

implicitly for a known, arbitrarily fixed number αs ≡
αs

(
μ2
)
. The derivative with respect to the variable t of (19.3.15) gives

1 =
1

β
(
αs

(
Q2
) ) ∂αs

(
Q2
)

∂ t
,

which implies

β
(
αs

(
Q2
))
=
∂αs

(
Q2
)

∂ t
.

The derivative of (19.3.15) with respect to αs gives

0 =
1

β
(
αs

(
Q2
) ) ∂αs

(
Q2
)

∂αs
− 1

β(αs)
∂αs

∂αs
,

from which it follows that

∂αs

(
Q2
)

∂αs
=
β
(
αs

(
Q2
) )

β(αs) .

It is now easy to prove that R
(
1, αs

(
Q2
) )

solves (Eq. (19.3.14)):

− ∂
∂ t

R
(
1, αs

(
Q2
))
= − ∂ R
∂αs

(
Q2
) ∂αs

(
Q2
)

∂ t
= −β

(
αs

(
Q2
)) ∂ R
∂αs

(
Q2
)

and

β(αs) ∂
∂αs

R
(
1, αs

(
Q2
))
= β(αs)

∂αs

(
Q2
)

∂αs

∂ R
∂αs

(
Q2
)

= β
(
αs

(
Q2
)) ∂ R
∂ αs

(
Q2
) .

Thus if we know αs

(
Q2
)
, we automatically know the Q2-dependence of

R. To get αs

(
Q2
)
, we need the β

(
αs

(
Q2
) )

function:

Q2 ∂αs

∂Q2

����
α
(0)
s fixed

= β(αs) . (19.3.16)

Our discussion so far is valid generally, with the single condition that R
depends on Q2 only and our computations were non-perturbative.

We can obtain the β function in perturbation theory. In the MS scheme

μ2εα
(0)
s = μ

2ε
R Z2

gαs. Taking the derivative μ2
R

d
dμ2

R

on both sides we obtain

0 =

[
ε αs + αsμ

2
R

d

dμ2
R

+ β (αs, ε)
]

Z2
g
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and thus

β (αs, ε) = −εαs − αs

μ2
R

Z2
g

d Z2
g

dμ2
R

.

Let us define f (αs) = μ2
R

Z2
g

d Z2
g

dμ2
R

. By definition, in the MS scheme Zg depends

on μR only through αs

(
μ2

R

)
, so

Z2
g f (αs) = β (αs, ε)

∂ Z2
g

∂αs
= −εαs

∂ Z2
g

∂αs
− αs f (αs)

∂ Z2
g

∂αs
.

Since ε is arbitrary, the equality must hold at each power of ε . The terms

independent of ε are

1 · f (αs) = −ε αs

∞∑
n=1

n
( αs

4π

)n−1 2 Z (n,1)g

4πε

(‘1’ refers to the first term in the expansion of Z2
g). Thus,

β(αs) = β (αs, ε = 0) = −αs f (αs) = α2
s

∞∑
n=1

n
( αs

4π

)n−1 2 Z (n,1)g

4π

= −αs

∞∑
n=0

βn

( αs

4π

)n+1

, (19.3.17)

where we used the convention of setting Z (n,1)g = − βn−1

2n . Another often used

convention is

β(αs) = −b0α
2
s

[
1 +

∞∑
n=1

bn αns

]
, (19.3.18)

where b0 =
β0

4π and b0b1 =
β1

(4π)2 , thus b1 =
β1

4πβ0
. The first two coefficients

in the expansion of the β function are independent of the renormalization

scheme.

If αs

(
Q2
)

is small we can truncate the series. The solution at leading

order (LO) is

Q2 ∂αs

∂Q2
=
∂αs

∂ t
= −b0α

2
s ,

⇒ −
[

1

αs

(
Q2
) − 1

αs

(
μ2
) ] = −b0t ,

⇒ αs

(
Q2
)
=

αs

(
μ2
)

1 + b0t αs

(
μ2
) , (19.3.19)
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which gives αs

(
Q2
)

as a function of αs

(
μ2
)

if both are small. The coupling

αs

(
μ2
)

is a number to be extracted from data. We observe that the running

coupling tends to zero at asymptotically large energies,

αs

(
Q2
)
Q2→∞−→ 1

b0t
→ 0 . (19.3.20)

This behaviour is called asymptotic freedom. The sign of b0 plays a crucial

role in establishing whether or not a theory is asymptotically free. If it is

positive, so the β function is negative, then the use of perturbation theory

is justified: the higher Q2, the smaller the coupling. The coefficient b0

is easiest to compute in background-field gauge where only two diagrams

contribute:

.

The contribution of the quark loop is negative − 4
3
TRnf , while that of the

gluon loop is positive 11
3

CA. The net result is that the β function is negative

up to nf < 16 in QCD. In 2004 David J. Gross, Hugh D. Politzer and Frank

Wilczek received the Nobel prize for their discovery of asymptotic freedom

in QCD.

Clearly, it is the gluon self-interaction that makes QCD perfect in pertur-

bation theory. In QED b0 < 0, hence the coupling increases with energy, but

remains perturbative up to the Planck scale where we expect that any known

physics breaks down.

The analysis is also simple at next-to-leading order (NLO):[
α2

s (1 + b1αs)
]−1 ∂αs

∂ t
= −b0 .

αs

(
Q2
)

is then given implicitly by the equation

1

αs

(
Q2
) − 1

αs

(
μ2
) + b1 ln

αs

(
Q2
)

αs

(
μ2
) − b1 ln

1 + b1αs

(
Q2
)

1 + b1αs

(
μ2
) = bt ,

which can be solved numerically.

Measuring αs(μ2)
We know αs

(
Q2
)

if αs

(
μ2
)

is known. Therefore, we have to measure αs

at some scale μ. The perturbative solution of the renormalization group



Electron-positron annihilation into hadrons 259

equation (RGE, Eq. (19.3.13)) is never unique. The difference between two

solutions at O (αns ) is suppressed by αs, i.e. at O (αn+1
s

)
. Nevertheless,

this difference can lead to a significant numerical difference in αs

(
Q2
)

if μ2

and Q2 are far from each other, which is important in present day precision

measurements. Therefore, the scale μ is chosen to be μ = MZ because

MZ � 91.2 GeV is not far from the scales where αs(Q2) is used in current

experimental analyses.

Another approach to solving the RGE is to introduce a reference scale Λ

by

ln
Q2

Λ2
=

∫ ∞

αs

(
Q2
) dx
β(x) .

The scale Λ indicates where the coupling becomes strong. The following

exercise is to explore the characteristics of this choice.

Exercise 19.2
The running of the strong coupling is given by Eq. (19.3.16). The pertur-
bative expansion of the QCD beta function is given by Eq. (19.3.18) with
b0, b1 ≥ 0. Determine (i) the expression for the coupling in leading order
(b0 � 0, b1 = 0) and the corresponding scale Λ0 (see below) (ii) the ex-
pression for the coupling in next-to-leading order (b0 � 0, b1 � 0) and the
corresponding scale Λ1 (see below).

Suggested steps:

1. Solve the differential equation for αs(μ); you’ll get an integration
constant.

2. Express your result in the form

αs(μ) = 1

K ln( μ2

Λ2
0

)

where K is a constant.

3. Solve the differential equation using b1 � 0∫
dαs

1

−b0α
2
s − b1α

3
s

=
b0 + b1αs log(αs) − b1αs log(b0 + b1αs)

b2
0
αs

+ K
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4. This time the solution cannot be solved for αs analytically. One can
nevertheless find an approximate solution by expanding αs in log

μ2

Λ2
1

.
The constant K is not equal to the one in the first part of this exercise.

5. Cast your equation for αs into the form

αs =
1

K ln
μ2

Λ2
1

1

1 + c1
ln(c2+b0αs)

ln
μ2

Λ2
1

with a suitable choice of Λ1.

6. Expand the right hand side of your equation in t = 1

ln
μ2

Λ2
1

and keep only

the first order term. Use the expansion

1

1 + C1 t ln(C3
1
t + C2)

= 1 − t C1 ln

(
1

t

)
+O(t) .

19.4 Quark masses and massless QCD
Quark masses mq are parameters of LQCD like the gauge coupling, which

need to be renormalized. In QED the electron mass is measured in the

laboratories at μ2
R
= 0 (classical limit). We cannot similarly isolate a quark

at μ2
R
= 0 (at low scale quarks are confined). Instead, we can perform a

similar RGE analysis as with αs. For simplicity we assume one quark flavour

with mass m, which is yet another dimensionful parameter, so the RGE

becomes:[
μ2 ∂

∂μ2
+ β(αs) ∂

∂αs
− γm(αs)m ∂

∂ m

]
R
(
Q2

μ2
, αs,

m
Q

)
= 0 , (19.4.21)

where γm is called the mass anomalous dimension and the minus sign before

γm is a convention. In perturbation theory we can write the mass anomalous

dimension as

γm(αs) = c0αs

(
1 + c1αs + O

(
α2

s

))
, (19.4.22)
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with known coefficients up to c3. At NLO accuracy we need only c0 =
1
π and

c1 =
303−10 n f

72π . As R is dimensionless, the dependence on the dimensionful

parameters has to cancel(
Q2 ∂

∂Q2
+ μ2 ∂

∂μ2
+ m2 ∂

∂ m2

)
R
(
Q2

μ2
, αs,

m
Q

)
= 0 . (19.4.23)

The difference of Eqs. (19.4.21) and (19.4.23) gives the dependence of R on

Q: [
Q2 ∂

∂Q2
− β (αs) ∂

∂αs
+

(
1

2
+ γ (αs)

)
m
∂

∂ m

]
R
(
Q2

μ2
, αs,

m
Q

)
= 0 .

(19.4.24)

This equation is solved by introducing the running mass (in addition to the

running coupling) m
(
Q2
)

obeying

Q2 ∂ m
∂Q2

= −γm (αs)m
(
Q2
)
, (19.4.25)

from which

ln
m
(
Q2
)

m
(
μ2
) = −∫ Q2

μ2

dq2

q2
γm

(
αs

(
q2
))
.

Exponentiating and using the definition of the β function, we obtain

m
(
Q2
)
= m

(
μ2
)

exp

[
−
∫ αs(Q2)
αs(μ2)

dαs
γm (αs)
β (αs)

]
Q2→∞−→ 0, (19.4.26)

which means that asymptotically free QCD is a massless theory at asymptot-

ically high energies. Thus we can use the massless approximation of QCD

for scattering processes at large energies. At LO in perturbation theory the

solution of (19.4.26) is given by

−γm (αs)
β (αs) =

c0

b0αs
⇒ m

(
Q2
)
= m

[
αs

(
Q2
)] c0

b0 ,

where we introduced the abbreviation m = m
(
μ2
) [
αs

(
μ2
) ]− c0

b0 . At NLO

the solution becomes

m
(
Q2
)
= m

[
αs

(
Q2
)] c0

b0

(
1 +

c0

b0
(c1 − b1)

(
αs

(
Q2
)
− αs

(
μ2
))
+ O

(
α2

s

))
.
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In terms of the running coupling and mass R
(
1, αs(Q2), m(Q2)

Q

)
is a solu-

tion of Eq. (19.4.24), proven similarly as R
(
1, αs(Q2)) being the solution of

Eq. (19.3.13). Expanding around m(Q2) = 0, we obtain

R
(
1, αs(Q2), m(Q

2)
Q

)
= R
(
Q2

μ2
, αs, 0

)
+

∞∑
n=1

1

n!

(
m(Q2)

Q

)n
R(n)
(
Q2

μ2
, αs, 0

)
.

(19.4.27)

We see from Eq. (19.4.27) that derivative terms are suppressed by factors of

1/Qn at large Q2. From the dependence of R on
m(Q2)

Q we can conclude

that the effect of mass is suppressed at high Q2 by its physical dimension

and also by its anomalous dimension, which justifies the assumption about

negligible quark masses for Q2 � m2, i.e. for the first three, four or five

flavours depending on the characteristic energy scale of the collision. The

condition Q2 � m2
t is not generally fulfilled for the t quark in colliders at

present.

Exercise 19.3
Find the definition of γm (αS) in (19.4.21). How does one determine γm
using Zm (μ)? Compute the value of c0 in the perturbative expansion of the
mass anomalous dimension (in Eq. (19.4.22)).

19.5 Consequences of renormalization and renor-
malization group equation

We now summarize several important consequences we could read off the

analysis carried out in the previous sections.

1. QCD is an asymptotically free theory, the gauge coupling and quark

masses decrease with increasing Q2.

2. If we want to avoid large logarithms of
m(Q2)

Q , we should consider

physical observables (that is physically measurable quantities) that
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have a finite zero-mass limit (called infrared-safe observable quantity):

R

(
Q2

μ2
, αs

(
Q2
)
,

m
(
Q2
)

Q

)
= R
(
Q2

μ2
, αs

(
Q2
)
, 0

)
︸������������������︷︷������������������︸
infrared-safe observable

+O
((

m
Q

)p)
,

(p > 0). As a result, light quarks (u, s, d, always, c usually, and

often b too) are considered massless. For massless quarks helicity

is conserved in the interaction with a vector boson, which can be

exploited to simplify computations significantly (see the spinor helicity

method).

3. For scattering amplitudes, renormalization is achieved by the substi-

tution

α
(0)
s μ

2ε SMS
ε → αs

(
μ2

R

)
μ2ε

R

[
1 − αs

(
μ2

R

)
4π

β0
ε
+ . . .

]
, (19.5.28)

with

SMS
ε = (4π)ε exp(−γEε) ,

which amounts to a simple shift in the amplitude:���M(0)
m

〉
= C(μR, μ, q; ε)

���A(0)
m

〉
q ∈ N (19.5.29)���M(1)

m

〉
= C(μR, μ, q; ε)

× αs

(
μ2

R

)
4π

[(
μ2

R

μ2

)ε (
SMS
ε

)−1 ���A(1)
m

〉
− q

2

β0
ε

���A(0)
m

〉]
(19.5.30)

where C(μR, μ, q; ε) =
(
4παs

(
μ2

R

) ) q2 ( μ2
R

μ2

) q
2 ε
(
SMS
ε

)− q
2
. The ampli-

tudesA(i)
m are the terms in the expansion of the unrenormalized ampli-

tude, whereas the formal perturbative expansion of the renormalized

amplitude is |Mm〉 =
���M(0)

m

〉
+

���M(1)
m

〉
+ . . .. The factors μ2

R
/μ2 re-

move the dependence on the dimensional regularization scale μ and

introduce the dependence on the renormalization scale μR.

4. The renormalized theory is ultraviolet finite. We shall see that
���M(1)

m

〉
is divergent also in the infrared. We can use dimensional regularization
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to regulate the amplitudes in the infrared by continuing into d > 4

(ε < 0). The integrals that are scaleless in d = 4 have
(
q2
)−ε

mass

dimension in d = 4− 2ε . Therefore, in the massless limit all integrals

can depend only on momentum invariants raised to a positive fractional

power (ε < 0!). We conclude that when all external invariants vanish,

the continued integral must also vanish (“scaleless integrals vanish in

dimensional regularization”).

5. For infrared-safe observables the radiative corrections are finite in

d = 4, we can thus take the limit ε → 0, or for the sake of simpler book-

keeping, we can set C(μR, μ, q; ε) → (4παs)
q
2 from the beginning of

the computations.

19.6 Re+e− at NLO
We have seen that the loop insertion on a fermion propagator

∝ (p2
)−ε

where pμ is the four-momentum leaving the

loop and for the UV-renormalized theory ε < 0 to regulate the IR diver-

gences. On a massless external leg, which is on-shell, p2 = 0, so

= 0. Therefore, only the vertex correction gives a

contribution, given by the graph

≡ A(1)
4

(
1h1, 2h2, 4h4, 5h5

)
.

Applying the helicity Feynman rules, we find

αs

4π
A(1)

4

(
1h1, 2h2, 4h4, 5h5

)
= CF e2 eq

4παsμ
2ε

2∫
dd	

(2π)d
〈
1h1
�� γμ/	γα (/	 − /p1

− /p2

)
γν
��2−h2

〉
×

(−gμν ) (−gαβ )
	2 (	 − p1)2 (	 − p1 − p2)2 s12

〈
5h5
�� γβ ��4−h4

〉
= CF e2 eq

4παsμ
2ε

2s12
Iρσ (p1, p2)

× 〈1h1
�� γμγργαγσγμ ��2−h2

〉 〈
5h5
�� γα ��4−h4

〉
,

(19.6.31)
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where

Iρσ (p1, p2) = Iρσ
3

(p1, p2) − (p1 + p2)σ Iρ
3
(p1, p2)

Iρσ
3

(p1, p2) =
∫

dd	

(2π)d
	ρ 	σ

	2 (	 − p1)2 (	 − p1 − p2)2
=

a0 g
ρσ s12 + a11 pρ

1
pσ1 + a22 pρ

2
pσ2 + a12

(
pρ

1
pσ2 + pσ1 pρ

2

)
Iρ
3
(p1, p2) =

∫
dd	

(2π)d
	ρ

	2 (	 − p1)2 (	 − p1 − p2)2
= a1 pρ

1
+ a2 pρ

2
.

(19.6.32)

We now use algebraic relations to express these tensor integrals as a linear

combination of two scalar integrals (procedure called reduction to master
integrals),

I2 (p) =
∫

dd	

(2π)d
1

	2 (	 − p)2

=
i

(4π)2−ε
(
−p2
)−ε
Γ (ε) B (1 − ε, 1 − ε)

=
i

(4π)2−ε
1

ε

Γ2 (1 − ε) Γ (1 + ε)
Γ (2 − 2ε)

(
−p2
)−ε
,

(19.6.33)

I3 (p1, p2) =
∫

dd	

(2π)d
1

	2 (	 − p1)2 (	 − p1 − p2)2

= − i

(4π)2−ε
1

ε2
Γ2 (1 − ε) Γ (1 + ε)
Γ (1 − 2ε) (−s12)−1−ε

=
1

s12

1 − 2ε

ε
I2 (p1 + p2) ,

(19.6.34)

which we can obtain using Feynman parametrization. The algebraic relations

can be derived by contracting the integrals with the external momenta and
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the metric tensor.

2 pμ
1

I(3)μ (p1, p2) = a2s12 , (19.6.35)

2 pμ
2

I(3)μ (p1, p2) = a1s12 , (19.6.36)

gμν I(3)μν (p1, p2) = (d a0 + a12) s12 , (19.6.37)

4 pμ
1

pν2 I(3)μν (p1, p2) = s2
12 (2a0 + a12) , (19.6.38)

4 pμ
1

pν1 I(3)μν (p1, p2) = s2
12a22 , (19.6.39)

4 pμ
2

pν2 I(3)μν (p1, p2) = s2
12a11 . (19.6.40)

We can substitute the numerators in the integrands on the left hand sides

of Eqs. (19.6.35)–(19.6.40) with denominator factors using the algebraic

relations

2	 ·p1 = 	
2 − (	 − p1)2

(
p2

1 = 0
)
,

2	 ·p2 = (	 − p1)2 − (	 − p1 − p2)2 + s12

(
p2

1 = p2
2 = 0

)
.

We do not need all coefficients in our calculation. We now perform the

spinor algebra.

γμγργαγσγμ = (4 − d) γργαγσ − 2γσγαγρ .

The gamma matrices γρ and γσ will be contracted with either

(a) gρσ , giving γμγργαγργμ = (d − 2)2 γα, or

(b) p1 and p2.

• Case (a):〈
1h1
�� γμγργαγργμ ��2−h2

〉 〈
5h5
�� γα ��4−h4

〉
=

= (d − 2)2 〈1h1
�� γα ��2−h2

〉 〈
5h5
�� γα ��4−h4

〉︸���������������������������������︷︷���������������������������������︸
−i s12 a4(h1,h2,h4,h5)

where a4 (h1, h2, h4, h5) was computed in Eqs. (18.9.21)–(18.9.25).

• Case (b): the only non-zero contributions are〈
1h1
�� γργαγσ ��2−h2

〉
p1σ p2ρ =

〈
1h1
�� /2γα/1 ��2−h2

〉
=
〈
1h1
�� 2−h1

〉 〈
2−h1
�� γα ��1h2

〉 〈
1h2
�� 2−h2

〉
(19.6.41)
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〈
1h1
�� γσγαγρ ��2−h2

〉
p1ρ p2σ =

〈
1h1
�� 2−h1

〉 〈
2−h1
�� γα ��1h2

〉 〈
1h2
�� 2−h2

〉
= −s12

〈
1h1
�� γα ��2−h2

〉
(19.6.42)

where we used h1 = −h2. Therefore, we need to compute a0, a1, a2 and a12

only. From Eqs. (19.6.35) and (19.6.36) we find

a1 =
1

s12

∫
dd	

(2π)d
(	 − p1)2 − (	 − p1 − p2)2 + s12

	2 (	 − p1)2 (	 − p1 − p2)2

=
1

s12

⎡⎢⎢⎢⎢⎢⎣I2 (p1 + p2) − I2 (p1)︸�︷︷�︸
= 0

+s12I3 (p1, p2)
⎤⎥⎥⎥⎥⎥⎦

=
1

s12

(
1

ε
− 1

)
I2 (p1 + p2) , (19.6.43)

a2 =
1

s12

∫
dd	

(2π)d
	2 − (	 − p1)2

	2 (	 − p1)2 (	 − p1 − p2)2

=
1

s12

⎡⎢⎢⎢⎢⎢⎣I2 (p2)︸�︷︷�︸
= 0

−I2 (p1 + p2)
⎤⎥⎥⎥⎥⎥⎦

= − 1

s12
I2 (p1 + p2) . (19.6.44)

From Eqs. (19.6.37) and (19.6.38) we find

(d a0 + a12) s12 = I2 (p2) = 0

(2a0 + a12) s2
12 =

∫
dd	

(2π)d

×
(
	2 (	 − p1)2 − 	2 (	 − p1 − p2)2 + 	2s12 −

[(	 − p1)2
]2

	2 (	 − p1)2 (	 − p1 − p2)2

+
(	 − p1)2 (	 − p1 − p2)2 − (	 − p1)2 s12

	2 (	 − p1)2 (	 − p1 − p2)2

)
= s12 I2 (p2) + 2p1μ Iμ

2
(p1 + p2) − s12 I2 (p1 + p2)

= − s12

2
I2 (p1 + p2) .
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In the last step we used

Iμ
2
(p) =

∫
dd	

(2π)d
	μ

	2 (	 − p)2
= a (p) pμ ,

where contraction with pμ yields an equation for the unknown coefficient

a(p),
a (p) p2 =

1

2

∫
ddl

(2π)d
l2 − (l − p)2 + p2

l2(l − p)2
=

p2

2
I(2) (p) .

Therefore,

a0 =
1

2 (d − 2) s−1
12 I2 (p1 + p2)

and

a12 = − d
2 (d − 2) s−1

12 I2 (p1 + p2) .
From Eqs. (19.6.39) and (19.6.40) we can also compute the coefficients that

are not needed in our calculation:

a11 = − d
2 (d − 4) s−1

12 I2 (p1 + p2) , (19.6.45)

a22 = −1

2
s−1
12 I2 (p1 + p2) . (19.6.46)

We can now simply collect all contributions to the vertex correction. We

obtain

αs

4π
A(1)

4

(
1h1, 2h2, 4h4, 5h5

)
= CF e2eq

4παsμ
2ε

2s12

[
−is12 a4

(
1h1, 2h2, 4h4, 5h5

)]
×
{
a0 s12 (d − 2)2 + a12 [(4 − d) (−s12) − 2 (−s12)]

− [(4 − d) a2 (−s12) − 2a1 (−s12)]
}

= CF e2 eq
αs

4π

(
−4πμ2

s12

)ε
1

ε

Γ2 (1 − ε) Γ (1 + ε)
Γ (1 − 2ε)

× a4

(
1h1, 2h2, 4h4, 5h5

) [
−1

ε
− 3

2
− 4ε + O

(
ε2
)]
.

Remember that in the helicity formalism TR = 1 and CF =
N2

c −1

Nc
. To get the

result for TR =
1
2

one can multiply the expression in [ . . . ] with 2 and use

CF =
N2

c −1

2Nc
, which of course, does not change the amplitude itself.
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The above method of computing the vertex correction is general, but it

becomes rather involved for more legs. At one loop the problem is considered

being solved although the algebraic complexity grows so fast that the general

method to compute the one-loop amplitudes is numerical, which becomes

computationally expensive and may become unstable for many external legs.

For the second term
���M(1)

n

〉
in the loop-expansion of the renormalized

amplitude a general form is known (with TR =
1
2

normalization):���M(1)
n

〉
= In

(
ε, μ2, {pi}

) α(R)s

4π

���M(0)
n ({pi})

〉
+

���M(1)fin
n

(
μ2, {pi}

)〉
+ O (ε)

where���M(1)
n

〉
= In

(
ε, μ2, {pi}

) ���M(0)
n ({pi})

〉
+

���M(1)fin
n

(
μ2, {pi}

)〉
+ O (ε)

and the upper index “fin” indicates a term in the amplitude that remains finite

as ε → 0. The factor In
(
ε, μ2; {pi}

)
in massless QCD is given by3

In

(
ε, μ2; {pi}

)
=

(4π)ε
Γ (1 − ε)

{
n∑
i

n∑
k� i

T i · T k

(
μ2

−sik

)ε
1

ε2
− 1

ε

n∑
i

γi

}
,

where the sums run over all coloured external legs. Note that(
μ2

−sik

)ε
1

ε2
=

(
μ2

|sik |
)ε

1

ε2
+

(
1

ε
iπ − π

2

2

)
Θ (sik) + O(ε)

where the second term on the right hand side is related to the+iε prescription

in the Feynman propagator. The flavour constant γi are γq =
3
2
CF and

γg =
1
2
β0. T i denotes the colour charge associated with the emission of a

gluon from parton i,

T i = Tc
i |c〉 ⇒

〈 c1, . . . , ci, . . . cn, c |T i | b1, . . . , bi, . . . , bn〉 = δc1b1
. . . Tc

cibi
. . . δcnbn

where Ta
cb
= Fa

cb
and Ta

kl
= ta

kl
are the representation matrices in the adjoint

and fundamental representations. The colour algebra is as follows:

T i · T k = T k · T i if i � k and T 2
i = Ci (CA or CF) .

3The In operator is known also with finite quark masses and also for the two-loop

amplitude.
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The amplitude |Mm〉 is gauge invariant, i.e., it is a singlet in colour

space,

〈c1, . . . , cm |Mm〉 =
〈
c1, . . . , cm

����∏
j

(
e

i εaT
a
j

) ����Mm

〉
= 〈c1, . . . , cm |Mm〉 + i εa

〈
c1, . . . , cm

���∑
j

Ta
j

���Mm

〉
+ O(ε2

a) .

The infinitesimal parameters εa are arbitrary, so we find〈
c1, . . . , cm

���∑
j

Ta
j

���Mm

〉
= 0

for any a and consequently
∑n

i=1 T i |Mn〉 = 0.We denote the general colour

connected squared matrix element as

〈Mn |T i · T k |Mn〉 ≡
��Mn (i,k)

��2 .
In our example q = 0 , n = 2 , s12 = s > 0 , Γ2(1−ε )Γ(1+ε )

Γ(1−2ε ) = 1
Γ(1−ε ) +

O (ε3) so

I
(
ε, μ2; p1, p2

)
=

(4π)ε
Γ (1 − ε)

[
−2CF

(
μ2

−s12

)ε
1

ε2
− 3

ε
CF

]
. (19.6.47)

The comparison to our explicit computations gives���M(1)fin
4

(
μ2; p1, p2

)〉
= CFe2eq (−8)

���M(0)
4

〉 (
remember: CF =

N2
c − 1

2Nc

)
.

(19.6.48)

The cross section σ is computed from

〈Mm |Mm〉 =
〈
M(0)

m

���M(0)
m

〉
+ 2Re

〈
M(0)

m

���M(1)
m

〉
+ . . . . (19.6.49)

In our case the virtual corrections are

Re
〈M(0)

4

��M(1)
4

〉
= Re

〈 ���� 〉
=
〈
M(0)

4

���I2(ε)
���M(0)

4

〉
− 8CF

〈
M(0)

4

���M(0)
4

〉
.
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19.6.1 Real corrections in d = 4 dimensions
Another contribution to the cross section at the same order is given by the

real corrections

|Mm+1 |2 =
(
α
(0)
s μ

2ε

4π

)q
4πα

(0)
s μ

2ε
[〈
A(0)

m+1

���A(0)
m+1

〉
+ O

(
α
(0)
s

)]
.

Two diagrams contribute to
���M(0)

5

〉
:
〈M(0)

5

��M(0)
5

〉
=

���� ����2 .

We compute them first using the helicity formalism and considering the

crossing symmetric channel 0 → pμ
1
+ pμ

2
+ pμ

3
+ pμ

4
+ pμ

5
(the new label ‘3’

refers to the gluon). Both diagrams contribute to the only colour structure

tc3

i1i2
and thus a single helicity amplitude has the form

A5

(
1h1, 2h2, 3h3, 4h4, 5h5

)
= e2 eq tc3

i1i2
a5 (h1, h2, h3, h4, h5) ,

where the colour amplitude’s are given by

a5 ({hi}) = − i√
2

1

s45

[
1

s13

〈
1h1
�� γμ (/p1

+ /p3

)
γν
��2−h2

〉
+

1

s23

〈
1h1
�� γν (−/p2

− /p3

)
γμ
��2−h2

〉]
× 〈5h5

�� γν ��4−h4
〉
εh3
μ (p3, k3)

= −i
h3

2

〈
3h3

���γμ ���kh3

3

〉
s45

〈
k−h3

3

���3h3

〉 〈5h5
�� γν ��4−h4

〉
×
[

1

s13

(〈
1h1
�� γμ ��1h1

〉 〈
1h1
�� γν ��2−h2

〉
+
〈
1h1
�� γμ ��3h1

〉 〈
3h1
�� γν ��2−h2

〉)
− 1

s23

(〈
1h1
�� γν ��2h1

〉 〈
2h1
�� γμ ��2−h2

〉
+
〈
1h1
�� γν ��3h1

〉 〈
3h1
�� γμ ��2−h2

〉)]
.

For helicity configuration h3 = h1 = −h2 we choose reference momentum

for the gluon polarization (see Eq. (18.9.12)) k3 = p2, whereas for h3 = h2 =
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−h1 we choose k3 = p1. The only terms which do not vanish are〈
3h3
�� γμ ��2h3

〉 〈
1h1
�� γμ ��1h1

〉
= 2
〈
3h3
��1−h3

〉 〈
1−h3

��2h3
〉
,〈

3h3
�� γμ ��2h3

〉 〈
1h1
�� γμ ��3h1

〉
= δh1h3

2
〈
3h3
��1−h3

〉 〈
3−h3

��2h3
〉
,〈

3h3
�� γμ ��1h3

〉 〈
2h1
�� γμ ��2−h2

〉
= 2
〈
3h3
��2−h3

〉 〈
2−h3

��1h3
〉
,〈

3h3
�� γμ ��1h3

〉 〈
3h1
�� γμ ��2−h2

〉
= δh2h3

2
〈
3h3
��2−h3

〉 〈
3−h3

��1h3
〉
.

(19.6.50)

In the case h3 = h1 = −h2 the amplitudes are

a5 (+,−,+,−,+) = − i

s45 〈23〉
2

s13

(
[31] 〈12〉 [15] 〈42〉 + [31] 〈32〉 [35] 〈42〉

)
= i

〈24〉
〈23〉 〈31〉 〈45〉

2

[45]
(
〈12〉 [15] + 〈32〉 [35]

)
︸�������������������������︷︷�������������������������︸

〈24〉[45]

= 2i
〈24〉2

〈23〉 〈31〉 〈45〉
(19.6.51)

and from charge conjugation on the lepton line

a5 (+,−,+,+,−) = −2i
〈25〉2

〈23〉 〈31〉 〈45〉 .

In the case h3 = h2 = −h1 the amplitudes are

a5 (+,−,−,+,−) = − i

s45 [13]
(
− 2

s23

)
×
(
〈32〉 [21] [14] 〈52〉 + 〈32〉 [31] [14] 〈53〉

)
= i

[14]
[23] [31] [45]

2

〈54〉
(
[21] 〈52〉 + [31] 〈53〉

)
︸�������������������������︷︷�������������������������︸

[14]〈54〉

= −2i
[14]2

[23] [31] [45]

(19.6.52)

and

a5 (+,−,−,−,+) = 2i
[15]2

[23] [31] [45] . (19.6.53)
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The amplitudes in the other four cases (for h1 = − and h2 = +) are obtained

from parity inversion

a5 (h1, h2, h3, h4, h5) = a5 (−h1,−h2,−h3,−h4,−h5) |〈i j 〉↔[ji]

and give a factor of 2 in the squared matrix element, which is then given by∑
hel.& col.

���A(0)
5

���2 = e4 e2
q Nc CF 8

s2
14
+ s2

24
+ s2

15
+ s2

25

s23s13s45
.

There is a mismatch between these calculations of real and virtual correc-

tions:

• in the loop calculation the gluon was treated in d = 4− 2ε dimensions

(had d − 2 polarization states),

• in the real correction the gluon had 2 polarization states.

In order to be consistent, we have to perform the calculation of real correc-

tions in d = 4 − 2ε , for which the helicity formalism is inconvenient. (At

the end of this chapter we shall discuss, how we can yet use the d = 4 result,

obtained using the helicity formalism.)

19.6.2 Real corrections in arbitrary d dimensions
If we are not interested in the angular correlations between initial and final

states, we can simplify the calculation (the full calculation in d = 4 − 2ε is

rather lengthy). We can parametrize the total cross section as

σtot

(
e+e− −→ hadrons

)
= Lμν (k1, k2) 1

s2
Hμν (Q) ,

where s = Q2 and Qμ = (k1 + k2)μ (formerly (p4 + p5)). Hμν (Q) describes

the hadronic (or partonic) final state that depends only on the photon mo-

mentum (after summing over all final states and integrating over the phase

space). It also includes the flux factor 1/(2s) of the cross section. The only

possible Lorentz structure it can be decomposed into is

Hμν = −H1 (s) gμν + H2 (s) QμQν

s
.

Lμν describes the leptonic part and is equal to (we take into account the

negative sign due to the fermion loop on the left hand side)
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−Lμν =
1

4
μ ν =

e2

4
Tr (γμ/k1γ

ν/k2)
= e2

(
kμ

1
kν2 + kν1 kμ

2
− k1 · k2 g

μν ) .
The lepton tensor is gauge invariant

qμLμν = e2
[
k1 · k2kν2 + k1 · k2kν1 − k1 · k2 (k1 + k2)ν

]
= 0 .

As a result, contracting Hμν with Lμν , only H1 (s) contributes to σtot. From

gμν Lμν = e2 (d − 2) k1 · k2 = e2 (1 − ε) s = 4πα s (1 − ε) ,

it follows by dimensional analysis that

dimσtot = dim
1

s
= dim

1

s2
Lμν ,

so that dim H1(s) = 0 and thus H1(s) must be a constant. Hμν is also U(1)
(of QED) gauge invariant and so

H1(s) = H2(s) ≡ H(s) = −g
μνHμν

d − 1
.

There is one cut diagram that contributes to the hadron tensor Hμν(s) at LO

in perturbative QCD. It is formally the same as for the lepton tensor, only

the fermion lines refer to quarks of momenta p1 and p2. Thus,

−Hμν =
1

2s

∑
q

∫
dφ2 (p1, p2; Q) e2 eq Nc 4

(
pμ

1
pν2 + pν1pμ

2
− p1 · p2g

μν ) ,
(19.6.54)

where dφ2 is the two-particle phase-space measure (see Eq. (18.3.5) for

n = 2) and summation extends over quark flavours whose masses are much

smaller than
√

s. From Eq. (19.6.54) we find

−H(0) (s) = −
e2
(∑

q e2
q

)
Nc

2 (d − 1) s
2s (2 − d)

∫
dφ2

= Nc e2

(∑
q

e2
q

)
d − 2

d − 1

∫
dφ2

=
α

3
Nc

(∑
q

e2
q

)
(1 + O (ε)) .

(19.6.55)
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Then

σtot = lim
ε→0

[
Lμν 1

s2

(
− gμνH(0)(s)

)]
=

4πα2

3s
Nc

∑
q

e2
q ,

which we knew already, cf. with Eq. (19.1.1).

At NLO accuracy we apply all possible cuts on the three possible dia-

grams:

The virtual correction emerges from cuts that lead to the loop×tree diagrams:

We already know that only the vertex correction is non-zero, which gives

(cf. Eqs. (19.6.47) and (19.6.48))

HV (s) = CFαs

2π

1

Γ (1 − ε)
(
4πμ2

s

)ε (
− 2

ε2
− 3

ε
− 8 + π2 + O (ε)

)
H(0) (s) .

The real correction comes from cuts that lead to the tree×tree diagrams:

We write the real correction symbolically as:

−HR (s) = 1

d − 1
gμν
∫

dφ3

[
d1 (1, 2, 3) + d2 (1, 2, 3)

+ d1 (2, 1, 3) + d2 (2, 1, 3)
]
μν
,

where

gμν
∫

dφ3 d1 (1, 2, 3)μν =
∫

dφ3 μ μ

= − 4παsμ
2ε e2

(∑
q

e2
q

)
1

2s
Nc CF

∫
dφ3 (p1, p2, p3; q)

× 1

s2
13

Tr
[
γμ

(
−/p2

)
γμ
(
/p1
+ /p3

)
γα/p1

γα
(
/p1
+ /p3

)]
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(the negative sign is due to the fermion loop). We can evaluate the trace

using

γμ

(
−/p2

)
γμ = (d − 2) /p2

, γα/p1
γα = − (d − 2) /p1

,

which leads to

Tr [. . .] = − (d − 2)2 (p1 + p3)α (p1 + p3)β Tr
[
/p2
γα/p1

γβ
]

= − (d − 2)2 (p1 + p3)α (p1 + p3)β 4
(
p1α p2β + p1β p2α − p1 ·p2 gαβ

)
= − (d − 2)2 [2s13 (s12 + s23) − 2s13 s12] = −8 (1 − ε)2 s13 s23

and thus∫
dφ3 g

μνd1 (1, 2, 3)μν = 4παsμ
2ε e2

(∑
q

e2
q

)
1

2s
Nc CF︸���������������������������������︷︷���������������������������������︸

the other diagrams have the same prefactor

×
∫

dφ3 (p1, p2, p3; q) 8 (1 − ε)2 s23

s13
.

Similarly

gμν
∫

dφ3d2 (1, 2, 3)μν =
∫

dφ3 μ μ

∝
∫

dφ3 (p1, p2, p3; q) −1

s13s23

× Tr

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
γμ

(
−/p2

)
γν

(
−/p2

− /p3

)
γμ︸�����������������������������︷︷�����������������������������︸

(4−d)[/p2
γν(/p2

+/p3)]−2(/p2
+/p3)γν /p2

/p1
γν
(
/p1
+ /p3

)⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Using the equality γνγαγβγ
ν = 4 gαβ − (4 − d) γαγβ , we find for the trace

Tr [. . .] = (4 − d)
{
2 (s12 + s13)Tr

[
/p2

(
/p1
+ /p3

)]
− (4 − d)Tr

[
/p2

(
/p2
+ /p3

)
/p1

(
/p1
+ /p3

)] }
− 2

{
2s12Tr

[(
/p2
+ /p3

) (
/p1
+ /p3

)]
− (4 − d)Tr

[(
/p2
+ /p3

)
/p2/p1

(
/p1
+ /p3

)] }
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= 2 (4 − d)
[
(s12 + s13) 2 (s12 + s23) + s23 s13

− (s12 + s13) (s12 + s23) + (s12 + s13 + s23) s12

]
− (4 − d)2

[
s23 s13 − s12 (s12 + s13 + s23) + (s12 + s23) (s12 + s13)

]
− 4s122 (s12 + s13 + s23)
= −8s12s + 4ε [2s12s + 2s13 s23] − 4ε22s13 s23

= −8 (1 − ε) [s s12 − ε s13s23] ,
where s12 + s13 + s23 = s. Collecting the contributions from the four cut

diagrams, we finally have

−HR (s) = 1

d − 1

∫
gμν
[
d1 (1, 2, 3) + d1 (2, 1, 3)

+ d2 (1, 2, 3) + d2 (2, 1, 3)
]
μν

= 4παsμ
2ε e2
∑
q

e2
qNcCF

1

2s

∫
dφ3 (p1, p2, p3; q)

× 4
d − 2

d − 1

[
(1 − ε)

(
s23

s13
+

s13

s23

)
+ 2

s s12

s13s23
− 2ε

]
where the three-body phase space can be rewritten as

dφ3 (p1, p2, p3; q) = (2π)3−2d 2−1−d
(
q2
)d−3

dd−2Ω dd−3Ω

× (y12 y13 y23)
d−4

2 dy12 dy13 dy23

× δ (1 − y12 − y13 − y23) [dy123 δ (1 − y123)] ,
with scaled invariants yi j =

si j
s and y123 = y12 + y13 + y23 = 1. dd−1Ω is the

measure of the hyper-surface element in d dimensions∫
dd−1Ω = Ωd =

2π
d
2

Γ
(
d
2

) .
Ωd is the surface of the hyper-sphere of unit radius in d dimensions, for

instance Ω2 = 2π and Ω3 = 4π (Γ(3/2) = √
π/2). Since the integrand

depends only on yi j , we can use the two-body phase space

dφ2 (p1, p2; q) =
(
q2
) d−4

2 dd−2Ω

(2π)d−2 2d−1
dy12δ (1 − y12)
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Figure 19.1: Region of integration for the real correction

to write the three-body phase space as

dφ3 (p1, p2, p3; q) =
(
q2
)1−ε 1

(4π)2
dd−3Ω

(2π)d−3︸���︷︷���︸
(4π)ε
Γ(1−ε )

dφ2 (q) (y12 y13 y23)−ε

×δ (1 − y12 − y13 − y23) dy12 dy13 dy23. (19.6.56)

Then

HR (s) = CFαs

2π

1

Γ (1 − ε)
(
4πμ2

s

)ε
H(0) (s)

×
∫

dy12 dy13 dy23 δ (1 − y12 − y13 − y23) (y12 y13 y23)−ε

×
[
(1 − ε)

(
y23

y13
+

y13

y23

)
+ 2

(
y12

y13y23
− ε
)]
.

(19.6.57)

The region of integration is shown in Fig. 19.1. The integrand is singular

at y13 = 0 or y23 = 0. The singularities are regularized by the (y13y23)−ε
factor in the phase space measure.

The phase-space integral in HR (s) (equation (19.6.57)) can be computed

easily (see exercise) and it is equal to

2

ε2
+

3

ε
+

19

2
− π2 + O (ε) . (19.6.58)

We find that the sum of the real and virtual corrections is finite,

HR (s) + HV (s)
H(0) (s) =

CFαs

2π

3

2
+ O (ε) = αs

π
+ O (ε) . (19.6.59)
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Thus we see that σtot, a totally inclusive quantity is infrared finite (i.e.

infrared safe) at one loop.

The natural question at this point is whether there exist other (less inclu-

sive) infrared-safe quantities?

Exercise 19.4
In the lectures we have seen that the 3-point Green’s function I(3)(p1, p2)
can be expressed–up to a "fairly simple" rational polynomial–in terms of
the two-point function I(2)(p1 + p2). Why was this relation so simple?
In this exercise we will derive this relation I(3)(p1, p2) = P(d)I(2)(p1, p2)
(P(d) is a rational polynomial in d) from so called integration-by-parts
(IBP) identities. We do this without computing any integrals explicitly. In
dimensional regularization the following identities hold (generalization of
Gauss’ law): ∫

ddk

(2π)d
∂

∂kμ
kμ I (k, p,m, . . .) = 0 ,∫

ddk

(2π)d
∂

∂kμ
pμ I (k, p,m, . . .) = 0 .

By computing the derivatives and replacing the new scalar products in the
numerator by inverse propagators, such as k · p = 1/2

(
k2 + p2 − (k − p)2

)
,

we obtain a (homogeneous, linear) system of equations by means of which
more complicated integrals can be expressed in terms of simpler ones4

• Evaluate the equations∫
ddk

(2π)d
∂

∂kμ
kμ 1

k2 (k − p1)2 (k − p12)2
= 0 ,∫

ddk

(2π)d
∂

∂kμ
pμ

1

k2 (k − p1)2 (k − p12)2
= 0

(p12 = p1 + p2, p2
1
= p2

2
= 0, g

μ
μ = d) in order to reduce the three-

point function to two-point functions; the propagators of the two-point
functions might acquire higher exponents.

4This method of computing integrals has the advantage that it is easily automated.

The systems of equations can however become large.
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• Find two equations that reduce the (two) two-point functions with one
squared propagator each down to the so-called "master integral"

I(2)(p1 + p2) =
∫

ddk

(2π)d
1

k2 (k − p12)2
.

• Check the relation using the integrals evaluated explicitly in the main
text.

Exercise 19.5
Show that the d-dimensional three-particle phase space for q → p1+p2+p3

can be expressed in terms of the Lorentz-invariants si j = (pi + pj)2 as

dφ3 =
dd−1p1

2E1(2π)d−1

dd−1p2

2E2(2π)d−1

dd−1p3

2E3(2π)d−1
(2π)d δd(q − p1 − p2 − p3)

= (2π)3−2d 2−1−d (q2) 2−d
2 dd−2Ωdd−3Ω

× (s12s13s23)
d−4

2 ds12 ds13 ds23 δ
(
q2 − s12 − s13 − s23

)
.

Hints:

• The d-dimensional volume measure in spherical coordinates is given
by

dd+1p = E dE dd pE = E d E Ed−1ddΩ

ddΩ = (sin θ1)d−1dθ1dd−1Ω .

• Show that
sin2 θ1 =

1

4

s12 s13 s23

q2 E2
1

E2
2

,

where θ1 is the angle between p1 and p2.

Exercise 19.6
Let yi j =

si j
q2 . Using the previous exercise, compute the real correction to

the process e+ e− → qq̄:

HR(s) = CFαS
2π

1

Γ(1 − ε)
(
4πμ2

s

)ε
H(0)(s)

×
∫

dy12 dy13 dy23 δ (1 − y12 − y13 − y23) (y12 y13 y23)−ε

×
[
(1 − ε)

(
y23

y13
+

y13

y23

)
+ 2

(
y12

y13 y23
− ε
)]
.
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Hint: Transform the triangular integration region into the unit square
and evaluate the B (Euler β) functions.

19.7 Origin of the singular behaviour
A natural question is if we can construct the approximate cross section uni-

versally, i.e. independently of the process and observable. Our presentation

above suggests the affirmative answer. To understand how, we have to study

the origin of the singular behaviour in the squared matrix element (SME).

This singularity arises from propagator factors that diverge

∝ 1

(pi + ps)2
=

1

2 pi · ps
=

1

2EiEs(1 − cos θ) �
1

EiEsθ2
Mm

pi

ps, μ

In the collinear limit of two external momenta, characterized by θ → 0,

the matrix element behaves as Mm+1 � Mm/θ + less singular terms (a

factor of θ appears in the numerator factors). In the soft limit Es → 0 the

leading singular behaviour is Mm+1 � Mm/Es+ less singular terms. The

phase space of the radiated gluon in these limits is approximated as

d3ps
2Es

=
1

2
Es dEs dcos θ dφ � 1

4
Es dEs dθ2 dφ .

Therefore in the cross section we find logarithmic singularities both in the

soft and the collinear limits: dEs

Es
or dθ2

θ2 . These are called the infrared

singular limits. In dimensional regularization the logarithmic singularities

appear as poles: ∫
dy13 y

−1−ε
13 = −1

ε
.

Thus, the singular behaviour arises at kinematically degenerate phase space

configurations, which at the NLO accuracy means that one cannot distinguish

the following configurations: (i) a single hard parton, (ii) the single parton

splitting into two nearly collinear partons, (iii) the single parton emitting a

soft gluon (on-shell gluon with very small energy). Then an answer to the

question posed at the end of the previous section is given by the Kinoshita-

Lee-Nauenberg (KLN) theorem:

In massless, renormalized field theory in four dimensions, transition rates
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are infrared safe if summation over kinematically degenerate initial and final
states is carried out.

For the e+e− → hadrons process, the initial state is free of infrared

singularities that can emerge only off coloured particles (partons). Typical

infrared-safe quantities are (i) event shape variables and (ii) jet cross sections.

19.7.1 Event shapes
Thrust, thrust major/minor, C- and D-parameters, oblateness, sphericity,

aplanarity, jet masses, jet-broadening, energy-energy correlation, differential

jet rates are examples of event shape variables. The value of an event shape

does not change if a final-state particle further splits into two collinear

particles, or emits a soft gluon, hence it is (qualitatively) infrared safe. As

as example we consider the thrust T , which is defined by

T = max
�n

∑m
i=1 | �pi · �n|∑m
i=1 | �pi |

, (19.7.60)

where �n is a three-vector (the direction of the thrust axis) such that T is

maximal. The particle three-momenta �pi are defined in the e+e− centre-of-

mass frame. T is infrared safe because neither pi → 0, nor replacing pi
with zpi + (1 − z)pi change the value of T . At LO accuracy it is possible to

perform the phase space integrations and we find the differential distribution

in T :

1

σ

dσ

dT
= CF

αs

2π

[
2
(
3T2 − 3T + 2

)
T(1 − T) ln

(
2T − 1

1 − T

)
− 3(3T − 2)2 − T

1 − T

]
.

(19.7.61)

We see that the perturbative prediction for the thrust distribution is singu-

lar at T = 1. In addition to the linear divergence in 1−T there is logarithmic

divergence, as well. The latter is characteristic to event shape distribu-

tions. In perturbation theory at nth order logarithms of 1 − T in the form

αns lnm(1/(1−T)) , m ≤ 2n−1 appear in the differential distributions of event

shapes, like (19.7.61). These spoil the convergence of the perturbation series

and call for resummation if we want to make reliable predictions near the

edge of the phase space, for large values of T , where most of the data occur

and the best experimental statistics are available. Resummations of leading

(LL, m = 2n − 1) and next-to-leading (NLL, m = 2n − 2), next-to-next-to-

leading logarithms5 are available for many event shape variables (for some,

5The nomenclature in the literature is different as the resummation is performed

for a different formula than the differential distribution.
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like thrust even NNNLL is known), but the discussion of this technique is

beyond the scope of these lectures.

Exercise 19.7
The thrust variable T is used to characterize final states in e+e− →hadrons.
For m particles in the final state it is defined by Eq. (19.7.60). The momenta
are taken in the centre of mass system.

• Verify that T is infrared and collinear safe.

• What is the range of values that T can take if

(a) there are only two particles in the final state, or
(b) there are three particles in the final state, or
(c) m →∞ and all �pi are distributed spherically.

Exercise 19.8
Compute the thrust distribution at LO accuracy. Hints:

• Write the squared matrix elements for three partons in the final state
using scaled energy variables xi = 2Ei/

√
s = 1− yjk (i, j, k = 1, 2, 3,

with i � j � k).

• Convince yourself that the value of thrust is T = max{x1, x2, x3}.
• Find the region of integration in terms of x1 and x2.

• Find the region where T = x1, x2 and x3 and integrate the fully
differential cross section with the δ(T − T(x1, x2)) function.

19.7.2 Jet algorithms
Jets are sprays of energetic, on-shell, nearly collinear hadrons. The number

of jets does not change if a final-state particle further splits into two collinear

particles, or emits a soft gluon, hence it is again qualitatively infrared safe.

In order to quantify the jet-like structure of the final states jet algorithms

have been invented. These have a long history with rather slow convergence.

The reason is that the experimental and theoretical requirements posed to a

jet algorithm are rather different. Experimentally we need cones that include

almost all hadron tracks at cheap computational price. Theoretically the
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important requirements are infrared safety, so that perturbation theory can

be employed to make predictions and resummability, so that we can make

predictions in those region of the phase space where most of the data appear.6

For many years experimenters at hadron colliders preferred cone jet

algorithms (according to the ‘Snowmass accord’) [Berger, 1992]. These start

from a cone seed (centre of the cone) in pseudorapidity (η) and azimuthal-

angle (φ) plane: (ηc, φc). We define a distance of a hadron track i from

the seed by dic =
√
(ηi − ηc)2 + (φi − φc)2. A track belongs to the cone

if dic < R, with a predefined value for R (usually between 0.5 and 0.8).

However, it turned out that (i) this is an infrared unsafe definition and (ii)

there is a problem how to treat overlapping cones, so the cone jet definition

has been abandoned.

Theoreticians prefer iterative jet algorithms, consisting of the following

steps. (i) First we define a distance di j between two momenta (of partons or

hadron tracks) and a rule to combine two momenta, pi and pj into p(i j). (ii)

Then we select a value for resolution, dcut and consider all pairs of momenta.

If the minimum of {di j} is smaller than dcut, then we combine the momenta pi
and pj and start the algorithm again. If the minimum is larger than dcut, then

the remaining momenta (after the combinations) are considered the momenta
of the jets, and the algorithm stops. The drawback of this algorithm is that it

becomes very expensive computationally for many particles in the final state.

This is not an issue in perturbative QCD computations because according

to our basic assumption there are only few partons, but a major problem for

the final states in the detectors where hundreds of hadrons may appear in a

single event.

At the experiments of LEP theory won and the Durham (or kT)-algorithm

was used. It was invented so that resummation of large logarithmic contri-

butions could be achieved [Catani et al., 1991]. The distance measure is

di j = 2
min(E2

i ,E
2
j )

s Rir , where Ri j = 1− cos θi j and the recombination scheme

is simple addition of the four momenta, pμ(i j) = pμi + pμj . The resolution

parameter ycut = dcut/s can take values in (0, 1]. The perturbative QCD pre-

diction contains logarithmically enhanced terms of the form αns lnm(1/ycut),
at any order. Such terms have to be resummed if we want to use small value

of ycut where we find the bulk of the data (see Figure 17.58). Predictions are

available with leading (m = 2n) and next-to-leading (2n− 1) logarithms (LL

and NLL) summed up to all orders [Catani et al., 1991].

Figure 17.58 shows the fixed order LO and NLO predictions, as well as

6Recently jet identification is considered pattern recognition and deep-learning

techniques are being developed to identify jets, which is however beyond our scope.
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predictions where NLO and NLL are matched. The curve at NLO accuracy

gives a good description of the data measured by the ALEPH collaboration

[Barate et al., 1998], but only for ycut > 0.01. As αs ln2(100) = 2.5, for

smaller values of ycut resummation is indispensable. However, the resummed

prediction is not expected to give a good description at large ycut because

in the resummation formula only the collinear approximation of the matrix

element is used. Matching the two predictions gives a remarkably good

description of the data over the whole phase space.

At hadron colliders the kT-algorithm needs modifications. First, instead

of energy, the boost-invariant measure of hardness, transverse momentum

is used to define the distance between tracks, di j = min(p2
T i, p

2
T j)

R2
i j

R2 where

R2
i j = (yi − yj)2 + (φi − φ j)2 (distance in rapidity–azimuthal-angle plane),

R is a small positive real number, and we need a distance from the beam

diB = p2
T i , too. Also, the algorithm needs modification because either

di j or diB can be the smallest distance. If a di j is the smallest value,

then i and j are merged, while if the smallest is a diB, then momentum pi
becomes a jet momentum and is removed from the tracks to be clustered. We

then call jet candidates with transverse momentum larger than a predefined

value, pT i > ER resolved jets. The merging rule changes as well. In the

usual merging we add transverse momenta, pT (i j) = pT i + pT j and we add

rapidities y and azimuthal angles φweighted, y(i j) = (wiyi+wj yj)/(wi+wj)
and φ(i j) = (wiφi +wjφ j)/(wi +wj). The weight can be wi = pT i , p2

T i , ET i ,

or E2
T i . Such a merging is boost invariant along the direction of the beam.

The parameter R plays a similar role as dcut in electron-positron annihilation

or the cone radius R in the cone algorithms: the smaller R, the narrower the

jet. Popular values in the experimental analyses are R = 0.4 − 0.7.

The iterative kT-algorithm is infrared safe and resummation of large log-

arithmic contributions of the form αns ln2n and αns ln2n−1 is possible, which

is a clear advantage from the theoretical point of view. The logarithms are

those of 1/R and/or Q/ER, Q being the hard process scale. By taking ER

sufficiently large in hadron-hadron collisions, we avoid such leading con-

tributions from initial-state showering and the underlying event (collisions

not belonging to the hard parton-parton scattering), so these terms are deter-

mined by the time-like showering of final-state partons (when the virtuality

of the parent parton is always positive). Particles within angular separation

R tend to combine and particles separated by larger distance than R from all

other particles become jets. The algorithm assigns a clustering sequence to

particles within jets, so we can look at jet substructure.

Nevertheless, at the TEVATRON experiments the kT-algorithm did not
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become a standard for several reasons. The jets have irregular, often weird

shapes as seen on Fig. 17.59 (left) because soft particles tend to cluster

first (even arbitrary soft particles can form jets). As a result there is a

non-linear dependence on soft particles, energy calibration and estimating

acceptance corrections are more difficult. The underlying event correction

depends on the area of the jet (in η − φ plane). It was also very expen-

sive computationally, so experimenters had a clear preference of cone algo-

rithms. The breakthrough occurred with Refs. [Cacciari and Salam, 2006,

Cacciari et al., 2008] where variants of the kT-algorithm and an improved,

fast implementation was introduced. The distance formula was modified to

di j = min(p2n
T i
, p2n

T j
)R

2
i j

R2 (n = −1, 0, 1). Infrared safety is independent of n,

as well as NLL resummation of large logarithms. It was found that with

n = −1 (called anti-kT-algorithm) particles close in angle cluster first, which

results in regular cone-like shapes as seen on Fig. 17.59 (right) without using

stable cones. As a result it became the standard jet algorithm at the LHC

experiments. Yet, one should keep in mind that there is no ‘perfect’ jet

algorithm. For instance, the anti-kT one does not provide useful information

on jet substructure. It is important to remember that in perturbative QCD
theoretical prediction can be made only with infrared-safe jet functions, but
among those the goal of the study may help decide which algorithms to use.

Analytically, measures of “jettyness” or event shapes are represented by

“jet functions”, J ({pi}), where
{
pμi
}n
i=1

is the set of momenta of final state

particles. Thrust is an example of the jet function Jm. In perturbation theory

the requirement of infrared safety can be formulated as conditions for the jet

functions. For instance, at NLO accuracy, the jet function Jm of an m-jet

measure (m is the number of jets) must obey:

J(m)m (p1 . . . pm) → 0 if any pi · pj → 0

J(m+1)
m (p1 . . . pm+1) → 0 if pi · pj and pk · pl → 0 (i � k)

(19.7.62)

(for an m-jet measure we need m well separated momenta). Furthermore,

J(m+1)
m

(
p1, . . . , pj = λ q, . . . , pm+1

) → J(m)m (p1, . . . , pm+1) (19.7.63)

if λ→ 0 , and qμ is a fixed vector ,

J(m+1)
m

(
p1, . . . , pi, . . . , pj, . . . , pm+1

) → J(m)m (p1, . . . , p, . . . , pm+1)
(19.7.64)

if pμi → zpμ, pμj → (1 − z) pμ. In the first case in the new jet function

J(m)m (p1, . . . , pm+1) we have omitted the soft momentum pμj , while in the



Electron-positron annihilation into hadrons 287

second case the two collinear momenta pμi and pμj are replaced by a single

momentum pμ denoting the collinear direction. The cross section is the phase

space integral of the squared matrix element weighted by the jet function,

for instance

σ =
1

2s

∫
dφn |Mn |2 J(n)m (p1, . . . pn) .

In our case of electron-positron annihilation into partons, for an arbitrary jet

function J(n) we have the leading-order term

H(0)(s, J) = Nc e2

(∑
q

e2
q

)
d − 2

d − 1

∫
dφ2 (p1, p2; q) J(2) (p1, p2) ,

the virtual correction

HV (s, J) = CFαs

2π

1

Γ (1 − ε)
(
4πμ2

s

)ε (
− 2

ε2
− 3

ε
− 8 + π2 + O (ε)

)
× H(0)

(
s, J(2)

)
,

and the real correction

HR (s, J) = CFαs

2π

1

Γ (1 − ε)
(
4πμ2

s

)ε
H(0) (s)

×
∫

dy12 dy13 dy23 δ (1 − y12 − y13 − y23) (y12 y13 y23)−ε

×
[
(1 − ε)

(
y23

y13
+

y13

y23

)
+ 2

(
y12

y13 y23
− ε
)]

J(3) (p1, p2, p3) .

For the total cross section J(n) = 1 and cancellation of infrared poles takes

place as in Eq. (19.6.59). For thrust T (2) (p1, p2) = 1 (by momentum conser-

vation the two outgoing quarks are back-to-back, this direction defines the

thrust axis event-by event), and

T (3) (p1, p2, p3) ≤ 1 .

In general, we cannot integrate HR (s, J) analytically because of the presence

of the jet function J(3). Therefore, we do not know how to combine HV and

HR. To find the solution, we have to understand the structure of infrared

singularities in |Mn |2.
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Exercise 19.9
Generalize the requirements for the jet function for a computation at NLO
accuracy as given in Eqs. (19.7.62)–(19.7.64) to NNLO accuracy.

19.8 Factorization of |Mn |2 in the soft limit
The soft limit is defined by pμs = λ qμ, with λ ∈ R+ (positive real number)

and λ → 0 for qμ fixed. In this limit the emission of the soft gluon from

(internal) propagators is infrared finite. If we consider the emission of a soft

gluon off an external quark (assumed to be massless here) we find

Mm

pi

ps, μ

∝ MmT s
i gs ū(pi, si)γμ /

p
i
+ /ps
sis

ps→ 0� T s
i gs

1

sis
ū (pi, si) γμ/pi = T s

i gs

pμi
pi · ps

ū (pi, si) ,

where T s
i is the colour charge operator of the soft gluon s, gs is the strong

coupling, ū(pi, si) is the Dirac adjoint spinor for the outgoing quark labelled

with i and sis = (pi + ps)2 = 2pi · ps . In taking the limit, we used the

anti-commutation relation (18.2.2) to write γμ/pi = −/piγμ + 2pμi and the

Dirac equation of the massless bi-spinor, ū(pi)/pi = 0. The factor
p
μ
i

pi · ps
is

the “square root” of the eikonal factor Sik (s) = 2sik
sis sks

.

The emission of a soft gluon off an external gluon (in light-cone gauge)

is given by

Mm

pi

ps

μ, s

ν, a

λ, b ∝ Mmε
μ (ps, n) 1

sis
dλλ′ (pi + ps, n)

× Γasbνμλ′ (−pi,−ps, pi + ps) εν (pi, n)
where in the three-gluon vertex in the limit becomes

Vνμλ(−pi,−ps, pi + ps) =
= − (pi + 2ps)ν gμλ + (2pi + ps)μ gνλ − (pi − ps)λ gμν
= 2piμ gλν +

[− (pi + ps)λ gμν − piν gμλ
]

+
[
psμ gνλ + 2ps λ gμν − 2psν gμλ

]
ps→ 0� 2piμ gνλ −

[(pi + ps)λ gμν + piν gμλ
]
.
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We use dλλ′ (pi + ps, n) (pi + ps)λ = 0 and εν (pi, n) pi ν = 0, thus

1

sis
dλλ′ (pi + ps, n) Γasbνμλ′ (−pi,−ps, pi + ps) εν (pi, n)

ps→ 0�

T s
bgs

piμ
pi ·ps

(
dλλ′ (pi, n) gλ′νεν (pi, n)

)
= T s

bgs

piμ
pi ·ps (−ε

λ (pi, n)).

These two results can be unified and formalized by

Ŝs 〈 cs | Mm+1 (ps, . . .)〉 = gsε
μ (ps) Jμ (s) |Mm (. . .)〉

where cs is the colour index of the soft gluon s, Ŝs is an operator which takes

the soft limit and keeps the leading singular term in 1/λ, and Jμ (s) is given

by

Jμ (s) =
m∑
k=1

T s
k

pk μ
pk · ps

.

The soft gluon can be emitted from any of the external legs, therefore the sum

in the previous formula runs over all external partons. A soft quark leads

to an integrable singularity because the fermion propagator is less singular

than that of the gluon. Colour conservation implies that the current Jμ (s) is

conserved,

pμs Jμ (s) |Mm〉 =
m∑
k=1

T s
k |Mm〉 = = 0 .+ +

Then the soft limit of
〈
M(0)

m

���M(0)
m

〉
is as follows:

Ŝs |Mm+1 (ps, . . .)|2 = 4παsμ
2ε

×
m∑
i=1

m∑
k=1

εμ (s) ε∗ν (s)︸�������︷︷�������︸
dμν (ps,n)

pμi pν
k

pi · ps pk · ps
〈Mm |T i · T k |Mm〉

= −8παsμ
2ε

m∑
i,k=1

1

2
Sik (s)

���M(0)
m (i,k)

���2 + gauge terms

∝ . . . .

(19.8.65)

+ +

The gauge terms give zero contribution on on-shell matrix elements due to

gauge invariance.
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19.9 Factorization in the collinear limit
The collinear limit of momenta pi and pr is defined by the Sudakov parametriza-

tion:

pμi = zipμ + kμ
iT
− k2

iT

zi

nμ

2 p · n
, pμr = zr pμ + kμ

rT
− k2

rT

zr

nμ

2 p · n

where kμ
iT
+ kμ

rT
= 0 and zi + zr = 1. The momentum pμ is the collinear

direction and

p2 = p2
i = p2

r = n2 = 0 , kiT · p = krT · n = 0 ,

In the collinear limit kμ
iT
, kμ

rT
→ 0 and sir = − k2

rT

zizr
. We now state the

following theorem

In a physical gauge, the leading collinear singularities are due to the
collinear splitting of an external parton.

This means that we need to compute in the collinear limit.

There are three cases:

fi

M        fir M
fr

fir → fi + fr
q → q + g

g → q + q̄
g → g + g

We compute explicitly the first case and leave the second and third ones as

exercise. For the case of a quark splitting into a quark and a gluon we have

= CFg
2
s μ

2ε /pi + /pr
sir

γμ/piγν dμν (pr, n) /
p
i
+ /pr
sir

= CF 4παsμ
2ε /pi + /pr

sir

(
−γμ/piγμ +

/pr /pi/n + /n/pi/pr
pr · n

) /pi + /pr
sir

.

(19.9.66)

pi

pr

Using

−γμ/piγμ = (d − 2) /pi , /pi/pi = p2
i � , /pi/pr /pi = sir /pi − p2

i /pr = sir /pi ,
we find (

/pi + /pr
) (
−γμ/piγμ

) (
/pi + /pr

)
= (d − 2) sir /pr ,

/pr /pi/n = −/pi/pr /n + sir /n = /pi/n/pr − 2/pipr ·n + sir /n =
= −/n/pi/pr + 2pi ·n/pr − 2/pipr ·n + sir /n .



Electron-positron annihilation into hadrons 291

Then (
/pi + /pr

) (
/pr /pi/n + /n/pi/pr

) (
/pi + /pr

)
=

= 2
(
/pi + /pr

) (
pi ·n /pr − pr ·n /pi + pi ·pr /n

) (
/pi + /pr

)
= 2
[
pi ·n sir /pi − pr ·n sir /pr
+pi · pr

(
2 (pi + pr )·n

(
/pi + /pr

)
− (pi + pr )2 /n

) ]
= sir

[
4pi ·n /pi + 2pi ·n /pr + 2pr ·n /pi − sir /n

]
.

Substituting these results and then the Sudakov parametrization of the mo-

menta into Eq. (19.9.66) we obtain

pi ‖pr� 1

sir
CF 4παsμ

2ε

[
2 (1 − ε) zr + 4

z2
i

zr
+ 2zi + 2zi + O (kT)

]
/p

=
1

sir
CF 8παsμ

2ε

[
2

zi
zr
+ (1 − ε) zr

]
︸�����������������︷︷�����������������︸

1+z2
i

1−zi −ε (1−zi )

/p

Similarly to the soft case we can define an operator Ĉir which takes the

collinear limit and keeps the leading singular (O(1/k2
T
)) terms:

Ĉir

���M(0)
m+1

���2 = 8παsμ
2ε 1

sir

〈
M(0)

m (p, . . .)
��� P̂(0)qg (zi, zr, kT; ε)

���M(0)
m (p, . . .)

〉
.

(19.9.67)

The kernel P̂qg, called Altarelli-Parisi splitting kernel for the process q →
q + g. It is diagonal in the spin-state of the parent (splitting) parton:

〈 s | P̂qg |s′〉 = CF

[
2

zi
zr
+ (1 − ε) zr

]
δss′ . (19.9.68)

Similar calculations give the splitting kernels for the gluon splitting pro-

cesses, which display azimuthal correlations of the parent parton

〈μ| P̂(0)qq̄ (zi, zr, kT; ε) |ν〉 = TR

[
−gμν + 4zizr

kμ
T

kν
T

k2
T

]
, (19.9.69)

〈μ| P̂(0)gg (zi, zr, kT; ε) |ν〉 =

= 2CA

[
−gμν

(
zi
zr
+

zr
zi

)
− 2 (1 − ε) zizr

kμ
T

kν
T

k2
T

]
. (19.9.70)



292 Chapter 19

The soft and collinear limits overlap when the soft gluon is also collinear to

its parent parton:

Ĉjr Ŝr
���M(0)

m+1
(pr, . . .)

���2 = −8παsμ
2ε
∑
k�j

2zj
sjr zr

���M(0)
m(j,k) (. . .)

���2
= 8παsμ

2ε T 2
j

2

sjr

zj
zr

���M(0)
m

���2 . (19.9.71)

The notation for the splitting kernels in these lectures is different from the

usual notation in the literature. Usually, P̂(0)i j (z, kT; ε) denotes the splitting

kernel for the process fi(p) → fj(zp) + fk((1 − z)p), which does not lead

to confusion for 1 → 2 splittings because the momentum fraction of parton

j determines that of parton k as their sum has to be one, zj + zk = 1.

For splittings involving more partons, it is more appropriate to introduce

as many momentum fractions zi as the number of offspring partons, with

the constraint
∑

i zi = 1, and use the flavour indices to denote the offspring

partons in the order of the momentum fractions in the argument. For 1 → 2

splittings this means the use of P̂(0)ir (zi, zr, kT; ε) for the splitting process

fk(p) → fi(zip)+ fr (zr p). The flavour of the parent parton fk is determined

uniquely by the flavour summation rules, q + g = q, q + q̄ = g + g = g.

These flavour summation rules are unique also for 1 → 3 splittings.

Exercise 19.10
Compute the Altarelli-Parisi-splitting kernel P̂qg(z) for the process q → qg
from the collinear limit of the matrix element for the process e+e− → qq̄g:

��M3(e+e− → qq̄g)
��2 = 8παsμ

2ε
��M2(e+e− → qq̄)

��2
× 1

s

(
(1 − ε)

(
y23

y13
+

y13

y23

)
+ 2

(
y12

y13y23
− ε
))
.

Exercise 19.11
The Altarelli-Parisi splitting kernel P̂qq̄ (z) for the process g → qi q̄r is
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defined by the following collinear limit:

〈M(0)
n+1

(pi, pr, . . .)
��M(0)

n+1
(pi, pr, . . .)〉

pi ‖pr�
1

sir
8παsμ

2ε 〈M(0)
n (p, . . .)

��P̂(0)qq̄ (z, kT)
��M(0)

n (p, . . .)〉

=
1

sir
8παsμ

2ε 〈M(0)
n (p, . . .)

��μ〉〈μ ���P̂(0)qq̄ (z, kT)
��� ν〉〈ν��M(0)

n (p, . . .)〉

Compute 〈μ
���P̂(0)qq̄ (z, kT)

��� ν〉 in leading order in kT.

Exercise 19.12
Derive the flavour summation rules for 1 → 3 splittings.

Exercise 19.13
Compute the soft limit of Eq. (19.9.67) and the collinear limit of Eq. (19.8.65).

19.9.1 Regularization of real corrections by subtraction
The cross section at NLO accuracy is a sum of two terms, the LO prediction

and the corrections at one order higher in the strong coupling,

σNLO = σ
LO + σNLO ,

where σLO is the integral of the fully differential Born cross section over the

available phase space defined by the jet function, while σNLO is the sum of

the real and virtual corrections:

σLO =

∫
m

dσB Jm({p}m) ,

σNLO =

∫
m+1

dσR Jm({p}m+1) +
∫
m

dσV Jm({p}m) .

Both contributions to σNLO are divergent in four dimensions, but their sum

is finite for infrared-safe jet functions.

The factorization of the squared matrix elements in the soft and collinear

limits allows for a method independent of the processes and observables

to regularize the real corrections in their singular limits. The essence of
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the method is to devise an approximate cross section dσA that matches

the singular behaviour of the real cross section dσR in all kinematically

degenerate regions of the phase space when one parton becomes soft or two

partons become collinear. Then we subtract this approximate cross section

from the real one and the difference can be integrated in four dimensions,

similarly to ∫ 1

0

dx
(

f (x)
x1−ε −

f (0)
x1−ε

)
< ∞ (19.9.72)

for arbitrary ε (in particular when ε = 0) provided the limit limx→0 f (x) < ∞.

Next, we integrate dσA over the phase space of the unresolved parton and

we add it to dσV . In the example of Eq. (19.9.72) this step corresponds to

computing the integral ∫ 1

0

dx
f (0)
x1−ε = f (0)1

ε
.

The integrated subtraction term cancels the explicit poles in the virtual

correction and the sum can also be integrated in four dimensions.

The key for this procedure is a proper mapping of the (m+1)-parton phase

space to the m-parton one which respects the limits, thus the approximate

cross section is defined with the m-parton jet function. After such a mapping

the phase space of the (m + 1) partons in the final state can be written in the

form

φm+1(({p}m+1)) → φm({p̃}m)φ1 (19.9.73)

where φ1 is related to the phase space measure of the unresolved parton. As

a result we integrate dσA with the jet function Jm of m final state momenta.

This way we can rewrite the NLO correction as a sum of two finite terms,

σNLO =

∫
m+1

[
dσR Jm({p}m+1) − dσA Jm({p̃}m)

]
ε=0

+

∫
m

[
dσV +

∫
1

dσA

]
ε=0

Jm({p}m) .
(19.9.74)

The definition of the approximate cross section is not unique and the best

choice may depend on further requirements, which we do not discuss here.

We also skip the precise definition of the momenta p̃μ which are obtained

by mapping the (m + 1)-particle phase space onto an m-particle phase space

times a one-particle phase space. A widely used general subtraction scheme

that can be used also for processes including massive partons with smooth

massless limits is presented in Ref. [Catani et al., 2002] where these defini-

tions are given explicitly. This method uses the factorization of the squared
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matrix element in the soft and collinear limits. The challenge posed by

the overlapping singularity in the soft-collinear limit is solved by a smooth

interpolation between these singular regions.

The factorization properties of Eqs. (19.8.65) and (19.9.67) play other

very important roles in pQCD. The numerical implementation of the squared

matrix element is a process prone to errors. Testing the factorization in the

kinematically degenerate phase space regions serves a good check of the

implementation. The computation is even more difficult for the virtual

corrections. Similar factorization holds for those, which more recently has

been utilized to find the virtual corrections (“collinear bootstrap”). The

factorized form of the squared matrix element can be used in resumming

logarithmically enhanced terms at all orders, or in devising a parton shower

algorithm for modelling events (see Sect. 21.3). The splitting kernels that

appear in the collinear factorization have a role in the evolution equations of

the parton distribution functions (see Sect. 20.7).

The state of the art in making precision predictions assaults on the one

hand the full automation of computations at NLO, and on the other the realm

of next-to-next-to-leading order (NNLO) corrections. The automation of

computing jet cross sections at NLO accuracy has been accomplished and

several programs are available with the aim to facilitate automated solutions

for computing jet cross sections at NLO accuracy:

• aMC@NLO (http://amcatnlo.web.cern.ch),

• BlackHat/Sherpa (https://blackhat.hepforge.org),

• FeynArts/FormCalc/LoopTools (http://www.feynarts.de),

• GoSam (https://gosam.hepforge.org),

• HELAC-NLO (http://helac-phegas.web.cern.ch),

• MadGolem

(http://www.thphys.uni-heidelberg.de/˜ lopez/madgolem-corner.html).

There is also the MadGraph5_aMC@NLO computer program that provides

full automation of computing QCD jet cross sections at NLO accuracy

(https://launchpad.net/mg5amcnlo).

In the NNLO case the infrared singularity structure is much more in-

volved than in the case of NLO computations due to complicated overlapping

single and double unresolved configurations. Several subtraction methods

have been proposed for the regularization of the infrared divergences. There

is intense research to find a general one that can be automated. To pro-

vide an impression about the importance of NNLO corrections, we present

QCD predictions at various accuracies (LO, NLO and NNLO) for the thrust
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distribution computed with αs = 0.118 and at a centre-of-mass energy of√
s = 91.2 GeV in Fig. 17.60. For all calculations the uncertainty band re-

flects the uncertainty due to the variation of the renormalization scale around

the default scale μ =
√

s by factors of two in both directions. We find that

even the prediction at NNLO accuracy differs significantly from the (hadron-

level) data measured by the ALEPH collaboration at LEP. In Figure 17.60

(right) we show the effect of NNNLL resummation matched to the NNLO

prediction, which gives nice agreement between data and theory except for

small values of τ = 1−T . The difference is most likely due to hadronization

corrections that we do not discuss in this book.



Chapter 20

Deeply inelastic
lepton-proton scattering

MOTTO:

If you want to learn about nature, to appre-

ciate nature, it is necessary to understand the

language that she speaks in.

(Richard P. Feynman)

20.1 Kinematics
Perturbative QCD stems from the parton model that was developed to un-

derstand deeply inelastic lepton-hadron scattering (DIS). The purpose of

those experiments was to study the structure of the proton by measuring

the kinematics of the scattered lepton. In Fig. 17.61 (left) we show a real

event in the H1 experiment at the HERA collider. The value of Q2, which

is the modulus squared of the momentum transfer between the lepton and

the proton is 21475 GeV2 >> 1 GeV2, signifying that the scattering is well

in the deeply inelastic region. The parton model interpretation of the event

is shown in Fig. 17.61 (right): the lepton is scattered by an angle θ due to

the exchange of a virtual photon with one of the constituents of the proton

297
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(a parton).

The measurement is inclusive from the point of view of hadrons (X
means any number of hadrons that are not observed separately), thus the

process can be described in pQCD.

The DIS kinematics is described by the following variables (using the

notation of Fig. 17.61 (right)):

centre-of-mass energy2 = s = (P + k)2 ,
momentum transfer = qμ = kμ − k ′μ ,

|momentum transfer|2 = Q2 = −q2 = 2ME xy ,

scaling variable = x = Q2/(2P · q) ,
energy loss = ν = (P · q)/M = E − E ′ ,

relative energy loss = y = (P · q)/(P · k) = 1 − E ′/E ,

recoil mass2 = W2 = (P + q)2 = M2 +
1 − x

x
Q2 ,

As q2 < 0, it is customary to introduce Q2, the magnitude of q2. E and E ′

are the energies of the incoming and outgoing lepton.

20.2 Parametrization of the target structure
The cross section for e(k) + p(P) → e(k ′) + X reads

dσ =
∑
X

1

4ME

∫
dφ

1

4

∑
spin

|M|2 . (20.2.1)

The summation runs over all possible (unobserved) hadronic final states. We

factorize the phase space and the squared matrix element into two parts, one

for the lepton (denoted by L) and one for the hadrons (denoted H):

dφ = dφL dφH , dφL =
d3k ′

(2π)32E ′ ,
1

4

∑
spin

|M|2 = e4

Q4
LμνHμν .

Then the hadron part of the cross section is the dimensionless tensor of

Lorentz indices Wμν =
1

8π

∑
X

∫
dφHHμν (the factor of 1

8π is included here

by convention). As it depends on two momenta Pμ and qμ, the most general
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gauge invariant expression for the Lorentz tensor can be written as

Wμν(P, q) =
(
−gμν +

qμqν
q2

)
W1(x,Q2)

+

(
Pμ − qμ

P · q
q2

) (
Pν − qν

P · q
q2

)
W2(x,Q2)

P · q

where the structure functions Wi(x,Q2) are dimensionless functions of the

scaling variable and the momentum transfer.

For the lepton part we express the kinematic relations E ′ = (1 − y)E ,

cos θ = 1− xyM
(1−y)E to change variables to scaling variable and relative energy

loss:

d3k ′

(2π)32E ′ =
dϕ

2π

E ′

8π2
dE ′ d cos θ =

dϕ

2π

yME
8π2

dy dx

and compute the trace Lμν = 1
2
Tr[/kγμ/k ′γν] = kμk

′ν + kνk
′μ − gμνk · k ′ .

Then the differential cross section as a function of x and y is obtained from

Eq. (20.2.1) as

d2σ

dx dy
=

4πα2

y Q2

[
y2W1(x,Q2) +

(
1 − y

x
− xy

M2

Q2

)
W2(x,Q2)

]
,

which we rewrite in the scaling limit, defined by Q2 →∞ with x fixed, as

d2σ

dx dy
=

4πα2

y Q2

[ (
1 + (1 − y)2)F1 +

1 − y

x
(
F2 − 2xF1

) ]
. (20.2.2)

The dimensionless functions F1 and F2 were first measured by the SLAC-

MIT experiment [Miller et al., 1972]. The result of that measurement sup-

plemented by some later ones is shown in Fig. 20.1. The interesting feature

is that in the scaling limit F2 becomes independent of Q2, F2(x,Q2) → F2(x)
(in fact, the independence starts at quite low values of Q2).

20.3 DIS in the parton model
Let us now describe the same scattering process by assuming the proton

is a bunch of free flying quarks and the lepton exchanges a hard virtual

photon with one of those quarks as shown in Fig. 17.61 (right). The struck

quark carries a momentum pμ, which is a fraction of the proton momentum,
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Figure 20.1: Measured value of the F2 structure function at several different

values of Q2

pμ = ξPμ, so we consider the process 	(k) + q(p) → 	(k ′) + q(p′). The

corresponding cross section is

dσ̂ =
1

2ŝ

∫
dφ2

1

4

∑
spin

|M|2 ,

with ŝ = (p + k)2. The hat refers to partonic quantities (cross section,

c.m. energy squared) here and below. The squared matrix element is pro-

portional to the product of the lepton tensor Lμν and a similar quark tensor

Qμν =
1
2
Tr[/pγμ/p′γν] = pμp

′ν + pνp
′μ − gμνp · p′, i.e. LμνQμν = 2(ŝ2 + û2)

where û = (p− k ′)2 = −2p · k ′. As y = P ·q/P · k = 2p ·q/2p · k = (ŝ+ û)/ŝ,

momentum conservation p′μ = pμ + qμ implies for the on-shell condition of

the scattered quark 0 = p
′2 = (p + q)2 = 2p · q + q2 = ŝ + û −Q2. We have

y = Q2/ŝ and û = (y − 1)ŝ so

1

4

∑
spin

|M|2 = e2
qe4

Q4
LμνQμν = 2e2

qe4 ŝ2

Q4

(
1 + (1 − y)2) .
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Also Q2 = 2p · q = 2ξP · q, so p
′2 = Q2(ξ/x − 1). Then the two-particle

phase space is

dφ2 =
d3k ′

(2π)32Ek′

d4p′

(2π)4 2πδ+
(
p
′2) (2π)4 δ4(k + p − k ′ − p′)

=
dϕ

2π

E ′

4π
dE ′ d cos θ

x
Q2
δ(ξ − x) ,

(20.3.3)

or using E ′ =
√

ŝ
2
(1 − y) and cos θ = 1 − 2yx

ξ(1 − y) , we obtain dφ2 =

dϕ

(4π)2
y ŝ
Q2 dy dx δ(ξ − x) . The differential cross section in x and y

d2σ̂

dx dy
=

4πα2

Q2

[
1 + (1 − y)2] 1

2
e2
qδ(ξ − x) . (20.3.4)

Comparing Eqs. (20.2.2) and (20.3.4), we find the parton model predic-

tions

F1(x) ∝ e2
qδ(ξ − x) , F2 − 2xF1 = 0 , called Callan-Gross relation.

(20.3.5)

Thus F2 probes the constituent of the proton with momentum fraction ξ = x.

However, this prediction for F2 cannot be correct because F2(x) is not a δ
function as seen from Fig. 20.1, which makes us formulate the naïve parton

model in the following way:

the virtual photon scatters incoherently off the constituents (partons)
of the proton;
the probability that a quark q carries a momentum fraction of the
proton between ξ and ξ + δξ is fq(ξ)dξ.

Exercise 20.1
Compute the contribution to the DIS cross section in Eq. (20.2.2) with the
exchange of a transversely polarized photon. Hint: Use Eq. (18.2.3) for the
numerator in the propagator of the transversely polarized photon and the
Callan-Gross relation in Eq. (20.3.5). Can you identify the result with any
of the terms in Eq. (20.2.2)? What is the source of the remainder?
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20.4 Measuring the proton structure
With the assumptions of the naïve parton model the Callan-Gross relation

predicts

F2(x) = 2xF1(x) =
∑
q

∫ 1

0

dξ fq(ξ) x e2
q δ(x − ξ) = x

∑
q

e2
q fq(x) .

(20.4.6)

For example, taking into account four flavours and simplifying the notation

by using fq(x) ≡ q(x), we obtain a prediction for the structure function mea-

sured in scattering of charged-lepton off proton (neutral current interaction):

Fem
2 (x) = x

[
4

9

(
u(x) + ū(x) + c(x) + c̄(x)) + 1

9

(
d(x) + d̄(x) + s(x) + s̄(x)) ] .

Similarly, in charged current interactions the prediction is

Fν̄
2 (x) = 2x

[
u(x) + d̄(x) + c(x) + s̄(x)] (with W−) ,

Fν
2 (x) = 2x

[
d(x) + ū(x) + s(x) + c̄(x)] (with W+) .

Further information can be obtained if we use different targets. Assuming

two flavours and isospin symmetry, the proton structure (with uud valence

quarks) is

Fp

2
(x) = x

[
4

9

(
up(x) + ūp(x)

)
+

1

9

(
dp(x) + d̄p(x)

) ]
, (20.4.7)

and that of the neutron (with udd valence quarks) is

Fn
2 (x) = x

[
4

9

(
un(x) + ūn(x)

)
+

1

9

(
dn(x) + d̄n(x)

) ]
= x
[
1

9

(
up(x) + ūp(x)

)
+

4

9

(
dp(x) + d̄p(x)

) ]
.

(20.4.8)

The measurements are supplemented by sum rules. For instance, as the

proton consists of uud valence quarks, we have∫ 1

0

dx
(
up(x) − ūp(x)

)
= 2 ,

∫ 1

0

dx
(
dp(x) − d̄p(x)

)
= 1 ,∫ 1

0

dx
(
sp(x) − s̄p(x)

)
= 0 .
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The combination of the measurements and sum rules gives separate infor-

mation on the quark distributions in the proton fq(x). The result of such

measurements performed by the NMC collaboration [Arneodo et al., 1997]

is shown in Fig. 17.62 (left) together with a fit to the data by the CTEQ

collaboration [Pumplin et al., 2002]. The parton distributions deduced from

the fit are shown in Fig. 17.62 (right).

We can infer the proton momentum from the measurements. The surpris-

ing result is that quarks give only about half of the momentum of the proton,∑
q

∫ 1

0
dx x fq(x) � 0.5. By now we know that the other half is carried by

gluons, but clearly the naïve parton model is not sufficient to interpret the

gluon distribution in the proton. With our experience in perturbative QCD

we try to compute radiative corrections to the quark process to see if that

helps to find the role of the gluon distribution.

Exercise 20.2
It is not feasible to use a neutron target experimentally. Instead deuteron
is used which is the bound state of a proton and a neutron. The corre-
sponding structure function is Fd

2
(x) = 1

2
(Fp

2
(x) + Fn

2
(x)), with Fp

2
and Fn

2
given in Eqs. (20.4.7) and (20.4.8), respectively. Which combination of the
structure function on proton and deuteron targets gives the u- and d-quark
distributions?

20.5 Improved parton model: perturbative QCD

Using the relations dy = dQ2/ŝ and δ(ξ − x) = 1
ξ δ
(
1 − x

ξ

)
, we rewrite the

differential cross section (20.3.4) in a more usual notation,

d2σ

dx dQ2
=

∫ 1

0

dξ

ξ

∑
i

fi(ξ) d2σ̂

dx dQ2

(
x
ξ
,Q2

)
, (20.5.9)

which gives the cross section as a convolution of a long-distance component

(the parton distribution function, PDF) and a short-distance component (the

hard scattering cross section). This form of the cross section is the main

content of the factorization theorem, which we derived heuristically, but
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there exists a rigorous though not completely process independent proof,

based on QFT.

The factorization formula (20.5.9) raises some questions. Knowing that

the quarks do not give the total momentum of the proton, it is natural to

include the contribution of gluons in Eq. (20.5.9). However, we do not yet

know the corresponding hard scattering cross section. We also do not know

how we can apply perturbation theory. Furthermore, the scaling was exact

in the parton model. Is it so in QCD? There is a common answer to these

questions: DIS in perturbative QCD.

To develop perturbative QCD for DIS, let us revisit the infrared singu-

larities once more. Let us denote the hard scattering cross section for some

final state by σh . Then the cross section in the collinear approximation for

the same final state with an extra gluon of relative transverse momentum

kT = Eθ, carrying momentum fraction (1 − z) is

σh

zp

(1− z)p

p
θ ∝ σh+g � σh2CF

αs

π

dE
E

dθ

θ
= σhCF

αs

π

dz
1 − z

dk2
T

k2
T

.

Integrating over z up to one and over kT we find soft and collinear divergences.

In studying perturbative QCD we found that these infrared singularities in

the final state cancel against infrared divergences in the virtual correction for

infrared safe quantities:

σh
p ∝ σh+V � −σhCF

αs

π

dz
1 − z

dk2
T

k2
T

.

If there is a coloured parton in the initial state, then the splitting may

occur before the hard scattering and the momentum of the parton that enters

the hard process is reduced to zpμ, so

zp

(1− z)p

p

θ
σh ∝ σh+g(p) � σh(zp)2CF

αs

π

dE
E

dθ

θ

= σh(zp)CF
αs

π

dz
1 − z

dk2
T

k2
T

.

Integrating over z up to one and over kT we again find soft and collinear

divergences. The corresponding ε poles multiply σh(zp), while in the vir-

tual correction the poles multiply σh(p), irrespective whether the infrared

divergence is in the initial or final state:

p σh
p ∝ σh+V � −σh(p)CF

αs

π

dz
1 − z

dk2
T

k2
T

.
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The sum of the real and virtual corrections then contains an uncancelled

singularity,

σh+g + σh+V � CF
αs

π

∫ Q2

m2
g

dk2
T

k2
T︸�����︷︷�����︸

infinite if mg=0

∫ 1

0

dz
1 − z

[σh(zp) − σh(p)]︸�����������������������������︷︷�����������������������������︸
finite

,

where we used a finite gluon mass to regulate the collinear divergence

(instead of dimensional regularization) to make manifest that the collinear

singularity remains, while the soft one (at z → 1) vanishes in the sum.

This uncancelled collinear singularity in the initial state is a general

feature of perturbative QCD computations with incoming coloured partons

and its form is universal, so we can find its precise form studying the structure

function at NLO accuracy. We know that in the parton model (QCD at LO)

the prediction for hard scattering cross section F̂2 is finite:

F̂2,q(x) = d2σ̂

dx dQ2

����
F2

= e2
q x δ(1 − x) , F̂2,g(x) = d2σ̂

dx dQ2

����
F2

=
∑
q

e2
q x · 0

i.e. it is zero in the gluon channel because the virtual photon does not interact

with the gluon directly. At one order higher in αs we find (the diagrams below

show the contributions to each term: one diagram at LO, one loop diagram

and two real radiation diagrams at NLO)

F̂2,q(x) = d2σ̂

dx dQ2

����
F2

= e2
q x
[
δ(1 − x) + αs

4π

(
Pqq(x) ln Q2

m2
g

+ Cq
2
(x)
) ]
,

(20.5.10)

and (only one real radiation diagram with gluon splitting in the initial state

contributes)

F̂2,g(x) = d2σ̂

dx dQ2

����
F2

=
∑
q

e2
q x
[
0 +
αs

4π

(
Pgq(x) ln Q2

m2
q

+ Cg
2
(x)
) ]
,

(20.5.11)

where Pi j(x) is the Altarelli-Parisi splitting function for i → j + k (regular-

ized at x = 1), while C2(x) is the remaining finite term, called coefficient
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function. The space-like splitting function P ji(x) is obtained from the time-

like splitting kernel P̂jk in four dimensions through the following steps: (i)

crossing the kernel for time-like splitting into space-like splitting:

P̂(0), īk(x, kT) = −(−1)2s(i)+2s(j) x P̂(0)
jk

(
1

x
, kT; ε = 0

)
(20.5.12)

where ī is the antiparticle of parton i, s(i) denotes the spin of parton i;
(ii) averaging over the spin states of parton i to obtain 〈P̂(0), īk(x, kT)〉; (iii)

relabelling superscripts 〈P̂(0), īk(x, kT)〉 → P j̄ ī(x) and (iv) adding the con-

tribution from the one-loop diagram (see exercise). The flavours satisfy the

flavour summation rule fi = fj + fk . We see that at NLO the prediction

for F̂2 does not contain ultraviolet divergences. The final state infrared di-

vergences also cancel, but an un-cancelled singularity remains in the initial

state, regularized with a small mass (mg or mq) here.

The hard scattering function is not measurable, only the structure function

is physical:

F2,q(x,Q2) = x
∑
i

e2
qi

[
f (0)qi (x)

+
αs

2π

∫ 1

0

dξ

ξ
f (0)qi (ξ)

(
Pqq

(
x
ξ

)
ln

Q2

m2
g

+ Cq
2

(
x
ξ

)) ]
.

However, this function appears divergent if the regulator is removed, mg → 0.

While C2(x) depends on the process under investigation, the divergence does

not because it is multiplied with universal splitting functions.

Exercise 20.3
Compute the coefficient Cg

2
(x) in Eq. (20.5.11).

20.6 Factorization in DIS
If the remaining divergences are universal (and they are because do not

depend on the hard scattering), we can absorb the singularity into the parton
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distribution functions. For instance, defining

fq(x, μF) = f (0)q (x) + αs

2π

∫ 1

0

dξ

ξ

{
f (0)q (ξ)

[
Pqq

(
x
ξ

)
ln
μ2

F

m2
g

+ Kqq

(
x
ξ

)] }
,

(20.6.13)

the structure function becomes (recall that the strong coupling depends on

another scale, the renormalization scale μR)

F2,q(x,Q2) = x
∑
i

e2
qi

[
fi(x, μF)

+
αs(μR)

2π

∫ 1

0

dξ

ξ
fi(ξ, μF)

(
Pqq

(
x
ξ

)
ln

Q2

μ2
F

+
(
Cq

2
− Kqq ) ( x

ξ

)) ]
(20.6.14)

where the summation runs over the light quark flavours.1 The long distance

physics is factored into the parton distribution functions that depend on

the factorization scale μF. The short distance physics is factored into the

hard scattering cross section that depends on both the factorization and the

renormalization scales. Both scales are arbitrary, unphysical scales. The

term K i j defines the factorization scheme. It is not unique, finite terms can

be shifted between the short and long distance parts, but it is important that it

must be chosen the same in all computations (the MS scheme is the standard

where K i j = 0).

Defining the convolution in x-space,

( f ⊗ g)(x) ≡
∫ 1

0

dy

∫ 1

0

dz f (y) g(z)δ(x − yz) ,

we see that the structure function is ‘factorized’ in the form of a convolution,

F2,q(x,Q2) = x
∑
i

e2
qi

(
fi(μF) ⊗ F̂2,i(μR, t)

)
(x) , t = ln

Q2

μ2
F

.

1Depending on what we consider light quark in the colliding proton, we speak

about four (u, d, c and s quarks) or five flavour number scheme (the b quark also

considered in addition to the lighter ones).
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Exercise 20.4
The regularization of the splitting function at x = 1 is achieved by the
+-prescription defined by∫ 1

0

dx[g(x)]+ f (x) =
∫ 1

0

dxg(x)( f (x) − f (1))
for any smooth test function f (x). The contribution of the loop corrections
has the same kinematics as the LO one, so it has to be proportional to
δ(1 − x). Thus the complete regularized splitting function has the form

Pqq(x) = CF

[
1 + x2

(1 − x)+ + Kδ(1 − x)
]
.

Wecanobtain the parton distribution for a ‘quark in a quark’ fromEq. (20.6.13)
by the substitution f (0)q (x) → δ(1 − x)

fq(x, μF) = δ(1 − x) + αs

2π
Pqq(x) ln μ

2
F

m2
g

.

Integration over x gives the number of quarks in a quark that has to be
one, independently of μF . Thus we have the condition

∫ 1

0
dxPqq(x) = 0.

Compute the regularized splitting function.

20.7 DGLAP equations
We can compute the short-distance component of the factorized structure

function of Eq. (20.6.14) in QCD perturbation theory. It depends on the

renormalization scale, but recall that it has to satisfy the renormalization

group equation.

We cannot compute the parton distribution functions in perturbation

theory, so it seems that this is the end of the story: perturbative QCD appears

non-predictive for processes with hadrons in the initial state. However, the

arguments that lead to the renormalization group equation come to the rescue.

While the right hand side of Eq. (20.6.14) depends on both renormalization

and factorization scales, the measurable quantity F2 does not, which can be

expressed by the renormalization group equation. Of course, this statement

has to be understood perturbatively, namely at any order in PT, the right
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hand side of the renormalization group equation is not exactly zero, but may

contain terms that are higher order in perturbation theory. Only infinite order

is expected to give exact independence of the scales. The renormalization

group equation gives the missing piece of information needed to make the

theory predictive.

To write the renormalization group equation, we introduce Mellin trans-

forms defined by f (N) ≡
∫ 1

0
dx xN−1 f (x), which turns a convolution into a

real product:∫ 1

0

dx xN−1

∫ 1

0

dy

∫ 1

0

dz δ(x − yz) f (y) g(z) =

=

∫ 1

0

dy

∫ 1

0

dz (yz)N−1 f (y) g(z) = f (N)g(N) .

So F2,q(N,Q2) = x
∑

i e2
qi

fi(N, μF)F̂2,i(N, μR, t) is independent of μF, ex-

pressed as

μF
dF2

dμF
= 0

(
= O (αn+1

s

)
in PT at O (αns ) ) .

Let us explore the consequences of this renormalization group equa-

tion. For simplicity, we assume the existence of only one quark flavour,

F2,q(N,Q2) = x e2
qi

fq(N, μF ) F̂2,i(N, μR, t). Then the renormalization group

equation reads

F̂2,q(N, t)
d fq
dμF

(N, μF ) + fq(N, μF )
dF̂2,q

dμF
(N, t) = 0 .

Dividing with fq F̂2,q , it turns into

μF
d ln fq
dμF

(N, μF ) = −μF
d ln F̂2,q

dμF
(N, t) ≡ −γqq(N) , (20.7.15)

where γqq(N) is called the anomalous dimension because it acts as a factor

μ
−γqq (N )
F

in the dimensionless function fq(N, μF). Taking the Mellin moment

of Eq. (20.6.13) and then its derivative with respect to μF, we obtain that the

anomalous dimension is

γqq(N) = −μF
d ln fq
dμF

(N, μF ) = −αs(μR)
π

Pqq(N) + O (α2
s

)
, (20.7.16)

thus it is the Mellin transform of the splitting function, which can be com-

puted in PT. Equation (20.7.15) implies that the scale dependence of the
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parton distribution functions can be predicted in PT. This together with the

universality of parton distribution functions makes perturbative QCD pre-

dictive: we can measure the parton distribution functions in one process at
a certain scale and then use it in another process at another scale to make
predictions.

How shall we choose the renormalization and factorization scales? If we

want to avoid large logarithms that spoil the convergence of the perturbative

series, the scales should be chosen near the characteristic physical scale of

the process Q, e.g. μ2
R
= μ2

F
= Q2. Then the renormalization group equation

becomes

Q2 d ln fq
dQ2

(N,Q2) = −1

2
γqq

(
N, αs

(
Q2
) )
, (20.7.17)

which is the Mellin transform of

Q2 d fq
dQ2

(x,Q2) = αs

(
Q2
)

2π

(
(Pqq ⊗ fq

(
Q2
) )(x) . (20.7.18)

Our discussion was highly simplified by considering only one quark flavour

and neglecting the mixing of partons. If we make the full computation we

obtain the celebrated formula

Q2 d fi
dQ2

(x,Q2) = αs

(
Q2
)

2π

∑
j

(
Pi j ⊗ fj

(
Q2
) )(x) , (20.7.19)

called DGLAP equation, named after Yuri Dokshitzer [Dokshitzer, 1977],

Vladimir Gribov, Lev Lipatov [Gribov and Lipatov, 1972] and Guido Altarelli,

Giorgio Parisi [Altarelli and Parisi, 1977].

Let us now solve the (simplified) DGLAP equation in Mellin space,

Eq. (20.7.17). It is a simple first order differential equation whose solution

is

fq(N,Q2) = fq(N,Q2
0) exp

[
−
∫ t

t0

dt γqq

(
N, αs

(
Λ2et

) )]
.

Let us recall the one-loop formula in Eq. (19.3.20), αs

(
Q2
)
= 1

b0t
, t = ln

Q2

Λ2

and introduce the abbreviation dqq(N) = −γqq (N )
2πb0

≤ 0. Then

fq(N,Q2) = fq(N,Q2
0) exp

[
dqq(N)

∫ t

t0

dt
t

]
, (20.7.20)

or

fq(N,Q2) = fq(N,Q2
0)
(

t
t0

)dqq (N )
, (20.7.21)
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called scaling violation.

As γqq(1) = 0, the number of valence q-quark in the proton, given by

the integral
∫ 1

0
dx fq(x,Q2), is independent of Q2. Higher moments vanish

more rapidly, therefore the average x decreases as Q2 increases. Thus we

predict that fq(x,Q2) increases at small x and decreases at large x. This

prediction is seen to be valid from the measurements shown in Fig. 20.2.

Exercise 20.5
Compute the anomalous dimension γqq(x) using Eq. (20.7.16).
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Figure 20.2: Measurement of the F2 structure function at different Q2 as a

function of x,



Chapter 21

Hadron collisions

MOTTO:

I cannot define the real problem, therefore I

suspect there’s no real problem, but I’m not

sure there’s no real problem.

(Richard P. Feynman)

21.1 Factorization theorem
While electron-positron annihilation and DIS played very important roles

in establishing perturbative QCD for understanding high-energy scattering

experiments, presently and in the mid-term future the experiments at the

energy frontier can be found at the LHC. Thus we are most interested in the

theoretical tools needed to understand high-energy proton-proton collisions.

Fortunately, the tools we have developed so far can be generalized

straightforwardly to hadron collisions. The most general form of the factor-

ization theorem includes convolution with two parton distribution functions,

one for each colliding parton, the hard scattering cross section, and possi-

bly a convolution with a fragmentation function (FF) of a parton into an

identified hadron in the final state. Thus, the differential cross section for a

hypothetical inclusive process pp → Z + π + X , in which we identify a Z

313
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boson and a pion only, has the form

dσpp→Z+π+X (s, x, αs, μR, μF) =

=
∑
i, j,k

∫ 1

0

dx1 fi/p(x1, αs, μF)
∫ 1

0

dx2 fj/p(x2, αs, μF)

×
∫ 1

x

dz
z

dσ̂i j→Z+k+X (ŝ, z, αs(μR), μR, μF)Dπ/k

(
x
z
, ŝ
)

+ O
(
Λ

Q

)p
.

(21.1.1)

In the factorization formula Eq. (21.1.1) s denotes the total centre-of-mass

energy squared, x/z is the longitudinal momentum fraction of the pion in

the parton k, μR and μF are the renormalization and factorization scales,

fi/p(x) is the parton distribution function for parton i in the proton with

momentum fraction x, dσ̂i j→Z+k+X (ŝ) is the hard scattering cross section for

the partonic process, Dπ/k(x) is the fragmentation function for the process

parton k → π. The last term shows that power-suppressed contributions at

high Q2 are neglected (p > 1). Substituting the parton distribution functions

and fragmentation functions with δ functions (in momentum and flavour) we

obtain the cross section formulae in DIS and electron-positron annihilation.

The parton distribution functions and fragmentation functions constitute

the long-distance, non-perturbative components of the cross section that can-

not be computed in perturbative QCD, only extracted from measurements.

Thus, it is a natural question whether or not the factorization theorem is

predictive. The answer is a clear yes for the following reasons.

We can compute the hard scattering cross section in perturbation theory,

which involves (i) renormalization of ultraviolet divergences (order by order

in perturbation theory), (ii) cancellation of infrared ones for infrared safe

observables using a subtraction method, (iii) absorbing initial state collinear

divergences into renormalization of parton distribution functions (and pos-

sibly uncancelled final state ones into that of the fragmentation function).

The non-perturbative components are universal, so can be measured in one

process and used to make predictions in another one. Furthermore, the

evolution of these with Q2 can be predicted in perturbation theory by the

DGLAP equations as shown in Fig. 17.63.

In summary, we are prepared to make predictions for any high-energy

scattering process. The theoretical framework for such predictions relies

on QCD perturbation theory and the factorization theorem. In perturbation

theory we can compute the hard scattering cross section and the evolution
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of the parton distribution functions. There are universal elements, such as

the parton distribution functions and fragmentation functions, as well as the

subtraction method for computing radiative corrections. These principles are

well understood and reasonably simple, though the actual implementations

are cumbersome and their improvements are subjects of active research.

21.2 Are we happy?
At this point theorists can make precision predictions for distributions of in-

frared safe observables. The main bottleneck to make such predictions is the

algebraic complexity of computing amplitudes and the analytic complexity

of evaluating loop integrals. The state of the art considers the computation

of NLO corrections a solved problem with automated implementations for

processes up to about five partons in the final state (at tree level). The exact

number depends on the process being considered because the numerical inte-

grations become too expensive eventually. Nevertheless, all processes listed

in the ‘Les Houches wishlist (2011)’ are known by now. Furthermore, there

is also a computer code to compute seven-jet production in electron-positron

annihilation [Becker et al., 2012].

For experimenters the situation is less satisfactory. While predictions

in perturbative QCD are based on a solid theoretical ground, those lack

important features. While perturbative QCD gives predictions for final states

with few partons, the experiments detect hadrons. A tool that can simulate

real events with hadrons at correct rates would be much more handy. To

finish these lectures we look into modelling events in a qualitative way. A

more detailed description can be found for example in Ref. [Skands, 2012].

21.3 Modelling events
Figure 17.64 shows our view of a proton-proton scattering event at high

energy. The three parallel lines ending in discs from both sides represent the

two incoming protons. At high energies these protons consist of (almost)

free-flying partons, two of which (one from each) collide at high centre-of-

mass energy and produce the hard scattering, with perturbatively computable

cross section. This is where signatures of new physics may appear. The hard

scattering cross section is process dependent. We have discussed how it can

be computed from first principles, from Feynman diagrams and rules. The

precision of the predictions can be improved systematically in perturbation

theory by computing the effect of radiative quantum corrections.
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Before collision the colliding partons may emit other partons nearly

collinear with the beam. These collinear emissions in the initial state give

rise to divergences that can be factored into the renormalized parton dis-

tribution functions. After collision few energetic partons appear that may

emit less energetic partons and each develops showers of partons. Emissions

into almost the same direction as the original parton occur with enhanced

probability (due to the collinear divergence) as well as emissions of soft glu-

ons. This is represented in Figure 17.64 by red quark and gluon lines. Both

factorization and parton showering can be described from first principles

based upon known physics of QCD and are universal, meaning that these are

independent of the process and observable. We have seen how factorization

works, but have not discussed how parton showers are modelled with shower

Monte Carlo (SMC) programs [Sjostrand et al., 2006, Corcella et al., 2001].

We mentioned marginally how the large logarithms emerging in the final

state splittings can be resummed. Such resummations give improved pre-

diction for the cross section (as seen in Fig. 17.60), but does not simulate

events.

Parton showers still only give a description of events in terms of quarks

and gluons, whereas detectors detect only hadrons. We do not know how

to compute hadronization, the transition from quarks and gluons to hadrons,

from first principles. Yet the idea of local parton-hadron duality (see,

e.g. Ref. [Dokshitzer et al., 1991]) provides some sort of theoretical un-

derstanding. It states that

after accounting for all gluon and quark production down to scales
� ΛQCD, the transition from partons to hadrons is essentially local in
phase space, i.e. there is no rearrangement of energy and momentum.

Thus the directions and momenta of hadrons will be closely related to those

of the partons and the hadron multiplicity will reflect the parton multiplicity,

too. This is illustrated by the green lines with dots.

In addition to the energetic partons in the initial state, there are also low-

energy ones that may collide, which is energy and process dependent. This

low-energy physics is described in models of underlying event, which are

also part of modern shower Monte Carlo programs. The underlying event

produces low-energy partons. Also at the end of the shower low-energy

partons emerge. As QCD confines partons, these partons turn into hadrons

before detection, a process called hadronization. We do not have a theory

of hadronization based on first principles. Instead, shower Monte Carlo pro-

grams include models that describe hadronization in a process independent

way. These models contain parameters that are fixed experimentally.
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21.4 Conclusions
In the last three chapters we discussed the theoretical basis of interpreting

the results of high-energy collider experiments. We discussed how pertur-

bative QCD can be made predictive and also the main uncertainties in the

predictions. We used the following key ingredients in this tour:

(i) gauge invariance that allows us to write down the Lagrangian and

which predicts many important features of the theory;

(ii) renormalization that cancels ultraviolet divergences systematically

order-by-order in perturbation theory and introduces a dimension-

ful scale into even the scaleless Lagrangian of massless QCD, leading

to scaling violations of one-scale observables that would be scale

independent in the classical theory;

(iii) asymptotic freedom at high energies emerging from the quantum struc-

ture of the theory and the non-abelian nature of the gauge group;

(iv) need for infrared safety, emerging from asymptotic freedom, to en-

sure that the infrared divergences, associated with unresolved parton

emission, cancel between real and virtual contributions, allowing the

perturbative calculation of jet cross sections, without a detailed under-

standing of the mechanism by which partons become jets;

(v) factorization that makes possible to use perturbative QCD to calculate

the interactions of hadrons, since all the non-perturbative physics gets

factorized, into parton distribution functions;

(vi) evolution and universality of parton distribution functions that allows

us to extract those measuring cross sections in one process, like DIS,

and then used to predict the cross sections for any other process. Again,

this factorization introduces a scale dependence into the parton model

so that the structure functions of DIS, and other one-scale observables

become scale dependent.

These features make perturbative QCD predictive, without forcing us to

solve the theory at all possible scales: unknown or not calculated high and

low-energy effects can be renormalized, factorized and cancelled away.

In the last chapter we study the sector of the standard model with bro-

ken symmetry. The photon appears here, which is massless like the gluon.

However, the photon does not carry colour charge and does not have self in-

teraction, it only mediates the electromagnetic interaction between fermions.
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As the coupling of electromagnetism is much weaker than the strong cou-

pling, the processes with photon radiation can be approximated quite well

already at the lowest order in perturbation theory. Therefore in our introduc-

tory textbook we are satisfied with predictions at Born level, although the

precision of experiments require the inclusion of at least the first radiative

corrections.
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Electroweak sector of the
standard model

MOTTO:

And as they drifted up, their minds sang with

the ecstatic knowledge that either what they

were doing was completely and utterly and

totally impossible or that physics had a lot of

catching up to do.

(Douglas Adams: So Long, and Thanks for
All the Fish)

22.1 Weinberg mixing

The underlying gauge group of the broken part of the standard model is

G = SU(2)L ⊗ U(1)Y .

Here L stands for left (and later R for right) polarized particle currents and

Y is the hypercharge. The field content in one family (we consider the first

319
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one here) is

ψ1 =

(
u
d

)
L

ψ2 = uR , ψ3 = dR quarks

ψ1 =

(
νe
e−

)
L

ψ2 = 0 , ψ3 = e−R leptons

where for each flavour f = u, d, ν, e and

fL/R ≡ f∓ =
1

2
(1 ∓ γ5) f .

One could imagine ψ2 = νR, but such leptons have not been observed and

thus not considered members of the standard model particles. There are three

families of each field ψi . For a matrix U ∈ G the following transformation

rules hold

Uψ1 (x) = eiT ·α(x) ei y1β(x) ψ1(x) where T =
1

2
(τ1, τ2, τ3) and

Uψj (x) = ei yjβ(x)ψj(x) , j = 2, 3 .

Here τa represent the Pauli matrices, while α = (α1, α2, α3) and β are real

numbers. The number yj denotes the eigenvalue of the U(1) generator Y/2,

called weak hypercharge, for field ψj (the factor 1
2

is included to maintain

the traditional Y = B + S, baryon number + strangeness definition for the

first three quarks). The Lagrangian for one family (family replication is

implicitly understood) is

L =
3∑
j=1

iψ̄j(x) /D(j)
ψj(x), (22.1.1)

with D(j)
μ = ∂μ + δj1igT ·Wμ + ig′ yjBμ. The Lagrangian in Eq. (22.1.1) is

invariant under the gauge transformation of the ψj fields, provided the four

gauge fields introduced in the covariant derivative transform according to

the rules

Bμ
G→ B′

μ(x) = Bμ(x) − 1

g′
∂μβ(x) (22.1.2)

T ·Wμ(x) G→ T ·W ′
μ(x) = U(x)T ·Wμ(x)U†(x) + i

g

[
∂μ U(x)] U†(x)

(22.1.3)
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where U(x) = exp [iT · α (x)]. The gauge invariant kinetic term for these

vector fields is

LB,W = −1

4
BμνBμν − 1

4
Wμν ·Wμν,

with Bμν = ∂μBν − ∂νBμ ≡ ∂[μBν] and Wμν = ∂[μWν] − gWμ ×Wν . Bμν

is invariant under G transformations, while T ·Wμν transforms covariantly:

T ·Wμν
G→ U(x)T ·Wμν U†(x).

In quantum field theory the mass of a particle is the position of the pole

in the inverse two-point function in momentum space.1 Gauge symmetry

forbids such mass terms for gauge bosons. In case of the Dirac Lagrangian

the fermion propagator Δj(q) = i
/q

q2+iε
depends only on the momentum q,

i.e. does not contain mass. Thus, the mass of the fermion is zero. An extra

term proportional to iψ̄ψ would lead to a pole-position different from zero.

However, fermion masses must also be absent because

m ψ̄ψ = m ψ̄LψR + m ψ̄RψL ,

but the ψL, ψR fields transform differently under G. Thus the G-invariant

Lagrangian describes massless fields in contradiction to observation (for

instance mW � 80 GeV, me � 511 keV in natural units ). We return to the

problem of masses in the following sections.

The gauge invariant Lψ contains interactions of the fermion fields with

gauge bosons:

−g ψ̄1 T · /W ψ1 − g′
∑
j

yj ψ̄j /B ψj

where

T ·Wμ =
1

2

[
W3

μ W1
μ − iW2

μ

W1
μ + iW2

μ −W3
μ

]
.

The off-diagonal terms lead to charged-current interactions

LCC = − g

2
√

2

(
W†

μ [ūγμ (1 − γ5) d + ν̄γμ (1 − γ5) e] + h.c.
)
,

with the stepping operators

Wμ =
1√
2

(
W1

μ + iW2
μ

)
, W†

μ =
1√
2

(
W1

μ − iW2
μ

)
,

1This is the pole mass definition that differs from the renormalized mass discussed

earlier. The two definitions are related in perturbation theory.
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and the letters u, d, e, ν stand for the spinor of the relevant particle. The

diagonal terms lead to neutral-current interactions

LNC = −
∑
j

ψ̄j

(
gT3 /W3

+ g′ yj /B
)
ψj . (22.1.4)

We would like to identify the fields W3
μ and Bμ with the observed fields Zμ

and Aμ (the latter denoting the electromagnetic field), but both W3
μ and Bμ

are massless, therefore an arbitrary combination of them is possible:[
W3

μ

Bμ

]
=

[
cos θW sin θW
− sin θW cos θW

] [
Zμ

Aμ

]
.

The angle θW is called Weinberg (or weak mixing) angle. Equation (22.1.4)

becomes then

LNC = −
∑
j

ψ̄j

[
/A
(
gT3 sin θW + g

′ yj cos θW

)
+ /Z
(
gT3 cos θW − g′yj sin θW

) ]
ψj

≡ LQED + L(Z)
NC
.

The term with Aμ should give QED and for this we require

g sin θW = g′ cos θW = e and Q =
Y
2
+ T3 (22.1.5)

where Q is the electromagnetic charge operator, with

Q1 =

[
Qu/ν 0

0 Qd/e

]
Q2 = Qu/ν Q3 = Qd/e .

In order to have the correct electromagnetic charge, the hypercharge of the

different species has to be

y1 = Qu/ν − 1

2
= Qd/e +

1

2
y2 = Qu/ν y3 = Qd/e . (22.1.6)

A possible right handed neutrino νR would have both QνR = 0 and yνR = 0

and thus it would not couple to anything (sterile neutrino). The existence

of such neutrino cannot be excluded, but since it does not interact with any

other particle of the model, we have no possibility to detect it in collider



Electroweak sector of the standard model 323

experiments and for this reason we exclude it from the standard model. We

finally obtain

LQED = −e Aμ JμEM , L(Z)
NC
=

−e
sin θW cos θW

ZμJμZ ,

JμEM =
∑
j

Q j ψ̄jγ
μψj ,

JμZ =
∑
j

(
T3 − sin2 θWQ j

)
ψ̄jγ

μψj ≡ Jμ
3
− sin2 θWJμEM .

In terms of the usual fermion fields

L(Z)
NC
=

−e
sin θW cos θW

Zμ

∑
f

f̄ γμ
(
v f − a f γ5

)
f , f = u, d or ν, e,

where the axial coupling is a f = T f
3

and the vector coupling is v f = T f
3
−

2Q f sin2 θW. We leave it as an exercise to compute the cubic and quartic

self-interactions among gauge bosons.

Exercise 22.1
The part of the standard model Lagrangian that determines the interaction
between fermions and electroweak gauge bosons is given by

L =
∑
ψL

ψ̄Lγ
μ

(
i∂μ + g

1

2
�τ · �Wμ + g

′yBμ

)
ψL +

∑
ψR

ψ̄Rγ
μ (i∂μ + g′yBμ

)
ψR.

The fields �Wμ and Bμ denote the gauge fields of the weak isospin and the
hypercharges. The photon field Aμ and the Z boson field Zμ can be written
as linear combinations of these fields:

Aμ = Bμ cos θW +W3
μ sin θW

Zμ = −Bμ sin θW +W3
μ cos θW .

The relations of the various couplings are given by Eq. (22.1.5)

e = g sin θW = g′ cos θW .

Show that one obtains the QED Lagrangian by substituting the photon and
the Z boson fields for the W3 and the B fields in the Lagrangian density
above.
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22.2 U(1) Brout-Englert-Higgs mechanism
Our gauge symmetric Lagrangian is renormalizable, but the symmetry for-

bids masses, which contradicts reality. There is a way out: it is possible to

get non-symmetric result from an invariant Lagrangian. Let us consider a

Lagrangian L that

(a) is invariant under transformations of a continuous symmetry group G,

(b) has a degenerate set of states with minimal energy, which transform

under G as the members of a given multiplet.

The system arbitrarily selects one of these states as the ground state of

itself, we say in these cases that the symmetry is spontaneously broken. The

simplest example in field theory is the G = U(1)Brout-Englert-Higgs (BEH)

model. We consider the spontaneous symmetry breaking (SSB) of such a

model and move later on to the case of standard model.

Figure 22.1: The Mex-

ican hat potential

Let us assume a Lagrangian L of a complex

scalar field φwhich is symmetric under global U(1)
transformations

L = ∂μφ∗∂μφ − V (φ)

where

V (φ) = μ2φ∗φ + λ (φ∗φ)2

is the potential. L is invariant under global

φ→ φ′ = e−i eθφ

phase transformations. The potential is bounded from below if λ > 0, which

leaves two options

(1) If μ2 > 0, then V has a single minimum at |φ| = 0 (a quadratic

function, rotationally symmetric around the V axis over the φ1–φ2

plane with minimum at zero).

(2) If μ2 < 0, V is still rotationally symmetric, but has an infinite number

of degenerate states with minimum energy at |φ0 | =
√

−μ2

2λ ≡ v√
2

(often

called Mexican hat potential, see Fig. 22.1). The value of the potential

at φ0 =
v√
2
eiθ is V (φ0) = −λ

4
v4 < V(0) = 0.
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If we choose for example θ = 0 as the ground state for the spontaneously

broken theory, and we parameterize the field around it as

φ (x) = 1√
2
[v + φ1 (x) + iφ2 (x)] , with φ1, φ2 real functions,

then the potential contains the following terms:

φ∗φ =
1

2
v2 + vφ1 +

1

2
φ2

1 +
1

2
φ2

2

(φ∗φ)2 = 1

4
v4 + v3φ1 + v2φ2

1 +
1

2

(
v2 + 2vφ1

) (
φ2

1 + φ
2
2

)
+

1

4

(
φ2

1 + φ
2
2

)2
=

1

4
v4 + v3φ1 +

3

2
v2φ2

1 + vφ3
1 +

1

2
v2φ2

2 + vφ1φ
2
2 +

1

4

(
φ2

1 + φ
2
2

)2
.

Consequently

V (φ) = V (φ0) + v
(
μ2 + λ v2

)
︸��������︷︷��������︸

= 0

φ1 +
1

2

(
μ2 + 3λ v2

)
φ2

1

+
1

2

(
μ2 + λ v2

)
︸��������︷︷��������︸

= 0

φ2
2 + λ vφ1

(
φ2

1 + φ
2
2

)
+
λ

4

(
φ2

1 + φ
2
2

)2
.

From the last equation we can read off that the mass of φ2 vanishes, m2
φ2
= 0,

which is a realization of Goldstone’s general theorem:

If a Lagrangian L is invariant under a continuous symmetry group
G but the vacuum is only invariant under a subgroup H ⊂ G, then
there exist as many massless spin-0 particles (Goldstone bosons) as
broken generators.

In the U(1) case there is one broken generator. The corresponding Goldstone

boson is φ2 that describes excitations around the flat direction in the potential.

We are more interested in the case when the symmetry is local. Then the

gauge-invariant Lagrangian is

L =
(
Dμφ
)∗ (

Dμφ
)
− V(φ) − 1

4
FμνFμν,

with Dμ [A] = ∂μ − i eAμ. We parameterize φ(x) around the ground state as

φ (x) = 1√
2
[v + h(x)] ei

ξ (x)
v .
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The exponential factor is a phase that can be rotated (gauged) away by

exploiting the gauge invariance of L. In this gauge we use the transformed

fields

φ′(x) = e−i
ξ (x)

v φ (x) = 1√
2
[v + h (x)]

A′μ(x) = Aμ(x) − 1

e v
∂μξ(x).

In terms of the transformed fields (we drop the prime ′ to ease the notation)

the Lagrangian becomes

L =1

2

(
∂μh
) (∂μh) + 1

2
e2v2 A2 + e2vh (x) A2 +

1

2
e2h2 A2 − 1

4
FμνFμν

− V
(

v√
2

)
− λ v2h2 (x) − λ vh3 (x) − λ

4
h4 (x) ,

from which we conclude the following spectrum: a scalar Higgs particle h
with mass mh =

√
2λ v2, cubic and quartic self interactions, and a massive

U(1) field Aμ with mass mA = e v. The massive vector field has three

components Ai (i = 1, 2, 3) and as A2 = A2
0
−∑3

i=1 A2
i and A0 is unphysical

due to gauge fixing, the mass terms for the Ai field components have the

correct (negative) sign in the Lagrangian. The excitations of this gauge

field interact with the Higgs particle (third and fourth terms). We could

identify the U(1) symmetry with that of QED, but then the vacuum would

be electrically charged, which contradicts to our observations.

22.3 Brout-Englert-Higgs mechanism in the stan-
dard model

In the electroweak part of the standard model the covariant derivative acting

on the BEH field is given by

D(φ)
μ = ∂μ + igT ·Wμ + ig′ yφBμ .

We introduce a new SU(2)-doublet

φ =

[
φ+

φ0

]
=

1√
2

[
φ1 + iφ2

φ3 + iφ4

]
.

Choosing yφ =
1
2
, the upper component has electric charge +1 and the lower

component is electrically neutral. After SSB of SU(2)L ×U(1)Y into U(1)Q
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the field becomes

φ =
1√
2

eiT ·ξ (x)/v
[

0

v + h(x)
]
.

This ground state is electrically neutral, and so it does not couple to the

photon, which consequently remains massless as shown below. Eliminating

the unitary phase (in other words “choosing unitary gauge”), the scalar

kinetic term becomes

1

2

((
∂μh
) (∂μh) +

���� (igT ·Wμ + ig′ yφBμ

) [ 0

v + h

] ����2)
(the terms containing a single derivative of the h field cancel). Furthermore,

using yφ =
1
2
,

1

2

���� (igT ·Wμ + ig′ yφBμ

) [ 0

v

] ����2 = 1

2

��� v
2

(√
2gW†

μ, g
′ Bμ − gW3

μ

)���2
=

v2

4

{
g2 W†

μWμ

+
1

2
[g′ (A cos θW − Z sin θW ) − g (A sin θW + Z cos θW )]2︸�������������������������������������������������������������������︷︷�������������������������������������������������������������������︸

=[−Z(g′ sin θW+g cos θW )]2=ZμZμ g2

cos2 θW

}
.

We rewrite the quadratic terms in the braces as

M2
WW†

μW μ +
1

2
M2

Z ZμZμ

with

MW =
v g
2

and MZ =
v g

2 cos θW
=

MW

cos θW
. (22.3.7)

Thus we find that SSB predicts the masses of the vector bosons (note that the

Aμ field of QED is massless), with a non-trivial relation between MW and

MZ :
MW

MZ
= cos θW =

g√
g2 + g′2

.

The vector boson propagator is that of a massive vector field (with three

components propagating),
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α β
p

MV
= −i

gαβ− pα pβ

M2
V

p2−M2
V+iMV ΓV

, where V = W±, Z .

Low energy experimental facts (for example decay width of μ− →
e− ν̄eνμ, n → p e− ν̄e or p → n e+νe, Λ → p e− ν̄e, helicity suppression

of π− → e− ν̄e) can be nicely described by the four-fermion interaction term

HI =
GF√

2
JμJμ, (22.3.8)

introduced by Enrico Fermi, where GF = 1.16637 · 10−5 GeV−2 is Fermi’s

constant and

Jα = ūγα (1 − γ5) [d cos θC + s sin θC] + ν̄eγα (1 − γ5) e + ν̄μγα (1 − γ5) μ,

with sin θC � 0.22 (θC is called Cabibbo’s angle as this mixing of the quark

fields was introduced by Nicola Cabibbo).

In the low energy limit, the propagator of the massive gauge bosons

becomes

α β
p

MV |p| � MV
+i

gαβ

M2
V

,

and from the electroweak theory we can recover the V − A model of weak

interactions (recall Table 4.1) with

GF√
2
=

g2

8 M2
W

=
1

2 v2
. (22.3.9)

As a result we deduce the vacuum expectation value of the BEH field in
terms of the Fermi constant, known precisely from low-energy experiments,

v =
(√

2 GF

)− 1
2 � 246 GeV.

We can also predict the value of MW as a function of sin θW. Rearranging

Eq. (22.3.9) and substituting e = g sin θW, we obtain

MW =
1

sin θW

√
πα√
2 GF

where the fine structure α is not to be confused with the index α above. Using

the Feynman rules of the electroweak theory, from the tree-level diagrams

of Fig. 22.2,
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ν

q

Z

�

q′

ν

q

W

Figure 22.2: Neutral and charged current neutrino scattering at tree level

we can deduce the following predictions for neutral and charged current

neutrino scattering:

σ (ν q → ν q) ≡ σNC (s) ∝ 8π g4

3 M4
Z cos4 θW

s
(
a2
q + aqvq + v2

q

)
,

σ (ν q → l q′) ≡ σCC (s) ∝ 8π g4

4 M4
W

s .

(22.3.10)

(aq and vq denote the axial-vector and vector couplings of quark q). The

ratio of the two cross sections depends only on sin θW (at LO accuracy):

σNC

σCC
=

(
MW

MZ cos θW

)4
4

3

(
a2
q + aqvq + v2

q

)
︸�������������������︷︷�������������������︸

f (sin θW)

.

Fitting this prediction to the measured value of the ratio one finds sin2 θW =
0.231. Then with α(MZ ) � 1/128, obtained from the measured value

α(� 0) � 1/137 by running the coupling, we can predict the values of the

gauge boson masses (at lowest order in perturbation theory),

SM prediction at LO measured

MW c2

GeV
80.23 80.385

MZ c
2

GeV
91.49 91.188

We close this section with recording the complete Lagrangian in the
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Higgs sector:

Lh =
1

2
∂μh ∂μh − 1

2
M2

hh2 − M2
h

2 v
h3 − M2

h

8 v2
h4

+

(
M2

WW+μW−μ +
1

2
M2

Z ZμZμ

) (
1 + 2

h (x)
v
+

h2 (x)
v2

)
.

where Mh =
√
−2μ2 =

√
2λ v. The Higgs boson was observed at the

LHC by the ATLAS and CMS experiments. Its mass was measured to be

approximately 125.1 GeV/c2, so λ � 0.13. The Lagrangian also contains

cubic and quartic Higgs self interactions as well as vector boson-Higgs

interactions, proportional to M2
V . In order to prove that the standard model

Higgs boson was found the experiments have measured these couplings and

showed that these are consistent with the standard model predictions.

Exercise 22.2
In addition to explaining the mass of vector bosons, there is another puzzle
that the existence of the Higgs boson can explain. In the standard model
scattering of the electroweak vector bosons W+ and W− is possible via
exchange of a photon or a Z boson both in the s and t-channels, as well as
through four-point interaction. Compute the cross section for longitudinally
polarized vector bosons assuming these processes at LO accuracy using the
Feynman rules in Sect. 22.7. What can you observe as the total centre-of-
mass energy of the colliding vector bosons grow,

√
s →∞?

With SSB, the colliding vector bosons can also interact through an off-
shell Higgs boson. Compute the contribution of these diagrams to the cross
section. How does the cross section now behave at large s?

Exercise 22.3
Compute the decay width of muon decay, μ− → e− ν̄eνμ (i) in the four-
fermion interaction theory of Fermi, (see Eq. (22.3.8)), (ii) in the standard
model (the necessary Feynman rules can be found in Sect. 22.7).

Exercise 22.4
Compute the cross sections in Eq. (22.3.10)
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22.4 GIM (Glashow, Iliopoulos, Maiani) mecha-
nism

From the success of the low-energy interaction term in Eq. (22.3.8) we

conclude that the SU(2)L partner of the u quark should be

dc = d cos θC + s sin θC

instead of d quark only as seen in Eq. (22.1.1). However, if we use the field

dc in L(Z)
NC

instead of d, we have

L(Z)
NC

∝ cos θC sin θC Zμ

[
d̄γμ (vd − adγ5) s + s̄γμ (vd − adγ5) d

]
+ cos2 θC Zμ d̄γμ (vd − adγ5) d + · · · ,

which gives flavour-changing neutral currents (FCNC) in the first two terms

with similar strength as Zdd̄ itself (third term), in contradiction to experi-

mental facts. For instance, KL = [ds̄] decays via neutral current into μμ̄,
while K+ = [us̄] decays via charged current into νμ μ̄ according to the fol-

lowing diagrams:

d

s̄ μ+

μ−

Z0

u

s̄ μ+

νμ

W+

and

The ratio of their decay width is

Γ (KL → μ+μ−)
Γ
(
K+ → μ+νμ

) = 2.8 · 10−9,

meaning that the neutral-current process is much suppressed. The solution

of Sheldon Lee Glashow, John Iliopoulos and Luciano Maiani (GIM) to the

problem is the following: in addition to u, d, s quarks there should exist a c

quark, and two quark doublets

(
u

dc

)
and

(
c

sc

)
where[

dc
sc

]
=

[
cos θC sin θC
− sin θC cos θC

] [
d

s

]
≡ V
[

d

s

]
.

Obviously, V† V = V V† = 1 from which

d̄cdc + s̄csc = d̄d + s̄s ,
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which means that writing the Lagrangian in terms of the rotated fields is

equivalent to writing it using the original ones. In the latter case flavour

changing neutral currents do not appear, so these must be absent also when

we write the Lagrangian in terms of the rotated field. This prediction of

the charm, based on the absence of FCNC (in 1970) was confirmed by the

discovery of the particle J/ψ, a cc̄ bound state (in 1974). The problem

comes back at one loop if the c quark is too heavy, mc � 1 GeV. The two

diagrams

d

s̄
μ+

μ−

W−

W+u νμ

d

s̄
μ+

μ−

W−

W+c νμ

cancel because both are proportional to cos θC sin θC, but with different

signs. This cancellation is incomplete if the second diagram is suppressed by

mc in the propagator 1
p2−m2

c
, which happens when mc � 1 GeV, suggesting

that the mass of the c quark should be around 1 GeV.

22.5 Fermion masses
We already discussed that explicit mass terms in the fermion sector would

break SU(2)×U(1) invariance. However, we can introduce a gauge-invariant

fermion-scalar couplings

LY = cd
(
ū, d̄
)
L

(
φ(+)

φ(0)

)
︸��������������︷︷��������������︸

≡ψ̄L ·φ

dR + cu
(
ū, d̄
)
L

(
φ(0) ∗

−φ(+) ∗
)

uR

+ ce (ν̄e, ē)L
(
φ(+)

φ(0)

)
eR + h.c. ,

(22.5.11)

where the hermitian conjugate terms are abbreviated. For the leptons it

is of the form ēR

(
φ(−), φ̄(0)

) [
νe
e

]
L

and these are similar for quarks (see

exercise). The terms in LY are called Yukawa terms and the couplings

cd, cu, ce are called Yukawa couplings. An infinitesimal transformation is

given by:

δψ̄L = ψ̄L (−iT · ε − i yLε) , δφ =

(
iT · ε + i

2
ε

)
φ,
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so

δ
(
ψ̄L · φ

)
=

[
−iT · ε + iT · ε − i yLε +

i

2
ε

] (
ψ̄L · φ

)
= −i

(
yL − 1

2

)
ε
(
ψ̄L · φ

)
where yL = y1 = y3 +

1
2

(from Eq. (22.1.6)). Thus,

δ
(
ψ̄L · φ

)
= −i y3ε

(
ψ̄L · φ

)
δ dR = i y3ε dR

}
⇒ δ

[ (
ψ̄L · φ

)
dR

]
= 0.

It is left as an exercise to check the gauge invariance of the second term,

proportional to cu . In a unitary gauge

φ (x) = 1√
2

(
0

v + h (x)
)
,

from which

LY =
1√
2
(v + h(x)) [cd d̄LdR + cu ūLuR + ce ēLeR

]
+ h.c.

We see that there are mass terms with mi = − civ√
2

where i = d, u, e:

LY = −
(
1 +

h(x)
v

) [
md d̄d + mu ūu + me ēe

]
.

The standard model predicts that the coupling to the Higgs boson of the
fermions is proportional to the fermion masses. This prediction awaits

experimental confirmation. The first direct measurements of Higgs-fermion

couplings with large uncertainties are appearing at the time of writing this

book.

Exercise 22.5
Let us define a conjugate field φ̃ to the Higgs field φ by φ̃ = iτ2φ

∗, where τ2

is the second Pauli matrix, so φ̃ =
(
φ(0) ∗

−φ(+) ∗
)
. Check that the infinitesimal

transformation of φ̃ under SU(2)L × U(1)Y is δφ̃ =
(
iT · ε − i

2
ε
)
φ̃. Prove

that the second term in Eq. (22.5.11) is invariant under SU(2)L × U(1)Y ,
i.e. δ

[ (
ψ̄L · φ̃

)
uR

]
= 0.
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22.6 Flavour mixing
We have seen how the BEH mechanism, in addition to the gauge boson

masses, generates masses for the fermions if there is one family. However,

in the standard model there are three families. Let us explore if there are

additional consequences of the BEH mechanism in this case. The most

general Yukawa terms are

LY =
∑
j,k

{ (
ū′j, d̄

′
j

)
L

[
c(d)
jk

(
φ(+)

φ(0)

)
d ′kR + c(u)

jk

(
φ(0) ∗

−φ(+) ∗
)

u′kR

]
+
(
ν̄′j, l̄

′
)

L
c(l)
jk

(
φ(+)

φ(0)

)
l ′kR

}
+ h.c. (22.6.12)

where the fermion doublets are weak eigenstates and the couplings c(i)
jk

are

arbitrary elements of 3 × 3 matrices (in flavour space). After spontaneous

symmetry breaking the Lagrangian becomes

LY = −
(
1 +

h (x)
v

) {
d̄ ′LM ′

dd ′R + ū′LM ′
uu′R + l̄ ′LM ′

l l
′
R + h.c.

}
,

where d ′, u′ and l ′ are vectors in flavour space. The mass matrices are given

by (
M ′

d

)
i j
= −c(d)i j

v√
2
,

(
M ′

u

)
i j = −c(u)i j

v√
2
,

(
M ′

l

)
i j
= −c(l)i j

v√
2
.

Their diagonalization determines the mass eigenstates. If none of the fermion

masses are zero (actually they are positive), M ′ is invertible. Furthermore,

the flavour space is finite dimensional. Then M can be decomposed as

M ′ = H ·U
where U U† = �, H = H† and H is positive definite. (A general n × n
complex matrix has 2n2 independent real components, while both a unitary

and a hermitian matrix has n2 independent real components.) The hermitian

matrix H can thus be diagonalized (its diagonal form is denoted by M):

M ′ = S†M S U ,

with S S† = � and M has positive diagonal entries:

M d = diag (md,ms,mb) ,
M u = diag (mu,mc,mt ) ,
M l = diag

(
me,mμ,mτ

)
.
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The mass eigenstates are

dL = S d d ′
L
, uL = S uu′

L
, lL = S l l ′

L
,

dR = S d U d d ′
R
, uR = S u U u u′

R
, lR = S l U l l ′

R

and the Lagrangian becomes

LY = −
(
1 +

h (x)
v

) (
d̄M d d + ūM u u + l̄M l l

)
.

The matrices S and S U are unitary. Thus

ψ̄ ′L · ψ ′L = ψ̄L · ψL ψ̄ ′R · ψ ′R = ψ̄R · ψR

where ψ = d, u or l. Therefore, the absence of flavour changing neutral cur-

rents is preserved (this goes under the name of generalized GIM-mechanism).

For charged currents

ū′Ld ′L = ūLSu S†
d

dL ≡ ūLV dL ,

where V = S u S †
d

is the Cabibbo-Kobayashi-Maskawa (CKM) matrix2 that

couples u-type quarks with d-type quarks. Although, V V† = �, V is different

from the identity matrix because S u � S d . The CKM matrix appears in

LCC when written in terms of mass eigenstates instead of weak eigenstates:

LCC =
g

2
√

2
W+μ

[∑
i j

ūiγμ (1 − γ5)V i j dj +
∑
�

ν̄�γ
μ (1 − γ5) 	

]
+ h.c. .

The presence of the CKM matrix in the charged current interactions is a

non-trivial prediction of the standard model even if the values of the matrix

elements are unknown parameters.

In the standard model mν = 0, thus we can rotate away V in the lepton

sector by redefining the phases of neutrino flavours such that Sν = S� . This is

ruled out by the observed masses for neutrinos seen via neutrino oscillations,

which we discuss in the next section.

The CKM matrix is a unitary 3 × 3 matrix. A general unitary matrix

has 9 independent parameters: three real rotational angles (as for a general

orthogonal matrix) and six complex phases. We can choose the phases of

the six quarks freely, thus can absorb all but one (five) complex phases of

2Named after Nicola Cabibbo, Makoto Kobayashi, and Toshihide Maskawa.
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the CKM matrix into the definition of the quark wave functions, which is

reflected by the usual parametrization of the CKM matrix:

V = ���
Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

���
=
���

1 0 0

0 c23 s23

0 −s23 c23

��� ���
c13 0 s13eiδ

0 1 0

−s13eiδ 0 c13

��� ���
c12 s12 0

−s12 c12 0

0 0 1

���
(22.6.13)

where ci j = cos θi j , si j = sin θi j and δ � 0 is the remaining phase. At the

time of writing this book the experimental status of the CKM matrix is the

following:

|V | =

���
0.97446 ± 0.00010 0.22452 ± 0.00044 (3.65 ± 0.12) · 10−3

0.22438 ± 0.00044 0.97359+0.00010
−0.00011

(42.14 ± 0.76) · 10−3

(8.96+0.24
−0.33

) · 10−3 (41.33 ± 0.74) · 10−3 0.999105 ± 0.000032

��� .
(22.6.14)

The one remaining phase is the signal of CP-violation, thus CP-violation

is predicted in the standard model with three families. The observed CP-

violation in the decay of kaons and B-mesons is in agreement with the

prediction of the standard model, thus the inventors of the three-family

CKM matrix, Makoto Kobayashi and Toshihide Maskawa were awarded the

Nobel prize in physics in 2008. (The two-family version was invented by

Nicola Cabibbo, hence the latter ‘C’, but that matrix is real, thus does not

predict CP-violation.)

Exercise 22.6
Prove that the CKM-matrix is real if there are only two families.
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22.7 Parameters and Feynman rules of the
standard model

The predictive power of the standard model is strong because we can compute

the probability of many elementary particle processes with high precision.

However, in these computations we need the values of the input parameters of

the standard model that have to be extracted from measured data. Therefore,

it might be useful to collect the parameters of the standard model, even if

they are partially correlated.

In the gauge and scalar sector there are five parameters: the three gauge

couplings, gs, g and g′, the vacuum expectation value v of the BEH field and

the mass of the Higgs particle MH . All other parameters can be expressed

as functions of these five:

MW =
1

2
gv , MZ =

1

2

√
g2 + g′2v , λ =

M2
H

2v2
, tan θW =

g′

g
,

and g sin θW = g′ cos θW = e. In practice we had better choose parameters

that can be measured most precisely. These are Fermi’s constant GF, the

electromagnetic coupling αem and the mass of the Z0 boson, MZ . The

relations

GF =
1√
2v2
, and αem =

g2g′2

4π(g2 + g′2)
imply that

v2 =
1√
2GF

,

g2 = 2
√

2 M2
Z GF

(
1 +

√
1 − 4παem√

2M2
Z GF

)
,

g′2 = 2
√

2 M2
Z GF

(
1 −
√

1 − 4παem√
2M2

Z GF

)
in the range tan θW < 1.

In the fermion sector the input parameters are the Higgs-Yukawa cou-

plings. It is not simple to count the independent ones among them. There-

fore, assuming n fermion families, we consider the 3n fermion masses3 and

3Two quarks and one charged lepton are massive in each family – the neutrinos

are massless in the standard model.
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the (n − 1)2 independent elements of the CKM-matrix as input parameters.

Thus for n = 3 the number of input parameters is 5 + 3 · 3 + 22 = 18. We

have neglected the Θ coupling that characterizes the QCD vacuum as the

experimental upper bound is very small.

Feynman rules
We list the Feynman rules of electroweak interactions in unitary gauge, using

the notation of Sect. 18.4:4

• Cubic gauge field interactions V1,αV2,βV3,γ (with all-incoming kine-

matics, pμ + qμ + rμ = 0): Γα, β, γ (p, q, r) = ieCVα, β, γ (p, q, r)
where Vα, β, γ (p, q, r) = (p − q)γ gαβ + (q − r)α gβγ + (r − p)β gαγ is

the same function as in QCD, while C depends on the type of the

gauge boson participating in the interaction:

V1V2V3 C
γW+W− 1

ZW+W− cos θW
sin θW

• Quartic gauge field interactions V1,αV2,βV3,γV4,δ :

Γα, β, γ, δ = ie2C
[
2gαβgγδ − gαγgβδ − gαδgβγ

]
, C again depends on

the type of the gauge boson participating in the interaction:

V1V2V3V4 C

W+W+W−W− 1

(sin θW)2

W+W−Z Z −
(
cos θW
sin θW

)2
W+W−γZ −cos θW

sin θW
W+W−γγ −1

4We focus on the interaction vertices only as the propagators of the various fields

were already presented earlier, those of the photon and charged leptons in the section

on QED, those of the massless scalar and quarks among the QCD Feynman rules

and those of the massive gauge bosons in Sect. 22.2. Finally, the denominator in the

propagator of a massive scalar is the same as for the massive gauge boson, while its

numerator coincides with that for the massless scalar. Some authors use opposite

sign convention for the massive gauge bosons as we do (e.g. Ref. [Denner, 1993]).

As a result, their vertices have opposite signs if odd number of massive gauge bosons

are involved, which does not influence values of observable quantities.
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• Cubic Higgs interaction: ieC where

C = − 3M2
H

2 sin θWMW
.

• Quartic Higgs interactions: ie2C where

C = − 3M2
H

4(sin θW)2M2
W

.

• Cubic gauge field-Higgs interactions V1,αV2,βH: iegαβC where C
depends on the type of the gauge boson participating in the interaction:

V1V2H C

W+W−H
MW

sin θW

Z ZH
MW

sin θW(cos θW)2

• Quartic gauge field-Higgs interactions VαVβHH: ie2gαβC where C
depends on the type of the gauge boson participating in the interaction:

V1V2HH C

W+W+HH
1

2(sin θW)2
Z ZHH

1

2(cos θW sin θW)2

• Gauge field-fermion interactions Vα f̄i fj : −ieγα(C−P−+C+P+)where

C± depend on the type of the gauge boson participating in the interac-

tion, the flavour f of fermions and family number i and j:

V f̄i fj C+ C−

γ f̄i fj e f δi j e f δi j
Z f̄i fj g+f δi j g−f δi j

W+ūidj 0
1√

2 sin θW
Vi j

W−d̄jui 0
1√

2 sin θW
V†
i j

W+ ν̄i	j 0
1√

2 sin θW
δi j

W−	̄jνi 0
1√

2 sin θW
δi j
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where

g+f = −
sin θW
cos θW

e f , g−f =
T3
f
− sin θ2

W
e f

sin θW cos θW
.

• Higgs-fermion interaction H f̄i fj : ieC where

C = −δi j 1

2 sin θW

m f ,i

MW
.

The relations between the vector, axial-vector couplings of the Z boson and

the g±f couplings read as

v f

2 sin θW cos θW
=

1

2

(
g−f + g

+
f

)
=

T3
f
− 2(sin θW)2e f

2 sin θW cos θW
,

a f

2 sin θW cos θW
=

1

2

(
g−f − g+f

)
=

T3
f

2 sin θW cos θW
.

22.8 Neutrino mixing and oscillation
If neutrinos also have masses, mν � 0, then a mixing matrix , similar to the

CKM matrix, appears also in the charged currents of leptons. Such a matrix

is called Pontecorvo-Maki-Nakagawa-Sakata (PMNS) matrix.5 According

to the standard notation, instead of Sν used in conjunction of the BEH field,

we write

|νm〉 =
∑
f

Uf m |νf 〉 , |νf 〉 =
∑
m

U∗
f m |νm〉 (22.8.15)

where |νm〉 denotes the mass eigenstates (m = 1, 2, 3), while |νf 〉 corresponds

to the flavour eigenstates ( f = e, μ, τ). The kets are vectors in the space of

free neutrinos. For anti-neutrinos the mixing reads as

|ν̄m〉 =
∑
f

U∗
f m |ν̄f 〉 , |ν̄f 〉 =

∑
m

Uf m |ν̄m〉 . (22.8.16)

The PMNS matrix is a unitary (3 × 3) matrix. In the general case it has

nine independent parameters: three real rotations (just like in a (3 × 3)
orthogonal matrix) and six complex phases. If the neutrinos are Dirac

5Named after pioneering researchers Bruno Pontecorvo, Ziro Maki, Masami

Nakagawa and Soichi Sakata.
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fermions, then five phases can be absorbed into the state vectors of charged

leptons, as for quarks, so only one phase remains. In such cases the usual

parametrization of the PMNS matrix is the same as for the CKM matrix in

(Eq. (22.6.13)), U = V , with cf m = cos θ f m, s f m = sin θ f m and δ � 0, is

the CP-violating phase. In case of Majorana neutrinos (ν ≡ ν̄), U = VP

where P = diag
(
1, ei

α21
2 , ei

α31
2 , . . . , ei

αn−1
2

)
, (n is the number of Majorana

neutrinos that can be different from 3). We do not know the physical

origin of the PMNS matrix. According to experimental observations charged

leptons do not mix, but neutrinos may mix. If they do so, then the matrix

Sν = UPMNS is an analogue of the CKM matrix. In charged currents flavour

eigenstates participate (those are created and annihilated). In high-energy

scattering experiments of particles the masses of neutrinos are negligible.

Our measurements are by far not sufficiently precise to measure any effect

of neutrino masses.

Neutrinos are stable particles due to their small masses and weak inter-

actions with other particles. Thus, they exist in asymptotically free states.

Moreover, according to observations and depending on the question we raise,

we can use a macroscopic, point-like particle approach in describing their

motion. For instance, we can measure the speed of electrons directly using

time-of-flight measurements and thus their masses if we know their ener-

gies. Therefore, it depends on the question which description is the most

convenient: (i) classical, (ii) quantum mechanical, (iii) or quantum field

theoretical. As a matter of fact, neutrinos show classical, quantum and

relativistic features, similarly to electrons.

A characteristic quantum phenomenon is the double-slit interference

with particles. For example, even single photons or electrons produce the

characteristic interference lines if we let sufficiently many pass (one by one)

through the two slits. These “characteristic” interference lines are those

that are also produced by a plane wave of light. Such light is the classical

manifestation of an ensemble of plane wave photons.

Similar quantum mechanical phenomenon is the oscillation of neutrinos,

which is interference in flavour space. If neutrinos have different masses,

then their phases change differently as they travel the distance L between

the source and the detector. As a result flavour interference occurs, called

neutrino oscillation. We do not measure L, the time T needed to travel

the distance L, the energy E and momentum p of each individual neutrino,

but we measure their average values in a neutrino beam. Thus, we use

the plane wave approximation as for classical (beam of) light, |νm(�x, t)〉 =
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e−iφm( �x,t) |νm(0, 0)〉 where the phase is φm(�x, t) = (Emt − �pm · �x)/�.6 We

assume that the neutrinos move along the x-axis inertially and we use the

abbreviation | �pm | ≡ pm. According to the dispersion relation E2
m = p2

mc2 +

m2
mc4. If m1 � m2, then the neutrinos travelling in time T a distance L will

arrive with different phase,

�Δφ12 = (E1T − p1L) − (E2T − p2L) = ΔET − ΔpL

=
ΔE2

E1 + E2
T − Δp2

p1 + p2
L =

L
2

(
ΔE2

〈E〉
T
L
− Δp2

〈p〉
)
.

(22.8.17)

The speed of the neutrinos in the laboratory frame V is v = L/T and

p = γmv = Ev/c2 (γ(v) = (1 − v2/c2)−1/2). Thus E/T = pc2/L. This ratio

is Lorentz-invariant because in a frame V ′ moving with speed u in V ,

E ′ = γ(u)(E − up) = γ(u)E(1 − uv/c2) ,
T ′ = γ(u)(T − uL/c2) = γ(u)T(1 − uv/c2) ,

which means that E/T = E ′/T ′. As a result, in all inertial reference frames

T/L = E/(pc2).
In real experiments it is easier to measure L (instead of T) so we write

the phase difference as

Δφ12 =
L
2�

(
ΔE2

〈E〉
〈E〉
〈pc2〉 −

Δp2

〈p〉
)
=

L
2�c2

(
Δ(E2 − pc2)

〈p〉
)
=
Δm2

12
c4

2�c2〈p〉 L .

(22.8.18)

Such a phase difference can lead to a change of neutrino flavour. The

probability of the change νf → νf ′ is

P(νf → νf ′ ) = |〈νf ′ |νf (t)〉|2 =
�����∑
m,n

Uf ′mU∗
f ne−iφn 〈νm |νn〉

�����2
=

�����∑
m

Uf ′mU∗
f me−iφm

�����2 .
(22.8.19)

In order to compute the sum, let us first consider the simplified case of two

6In this section–as opposed to the rest of the book–we use SI instead of natural

units so � and c appears explicitly.
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summands (Δφ = φ1 − φ2):

(u1eiφ1 + u2eiφ2 )(u∗1e−iφ1 + u∗2e−iφ2 ) = |u1 |2 + |u2 |2 + u1u∗2eiΔφ + u∗1u2e−iΔφ

= |u1 |2 + |u2 |2 + 2Re(u1u∗2) cos(Δφ) − 2Im(u1u∗2) sin(Δφ)

= |u1 + u2 |2 − 4Re(u1u∗2) sin2

(
−Δφ

2

)
+ 2Im(u1u∗2) sin(−Δφ) .

(22.8.20)

Generalization to n ≥ 2 leads to the usual form of neutrino oscillation

probability,

P(νf → νf ′ ) = δf ′ f − 4
∑
n

∑
m>n

Re(U∗
f mUf ′mUf nU∗

f ′n) sin2

(
Δφmn

2

)
+ 2
∑
n

∑
m>n

Im(U∗
f mUf ′mUf nU∗

f ′n) sin (Δφmn) .

(22.8.21)

For Dirac neutrinos, if the complex phase in the PMNS matrix vanishes,

δ = 0 (no CP-violation in the neutrino sector), then the PMNS matrix is real

and the last term vanishes in Eq. (22.8.21). In this case the only source of

neutrino oscillation is the second term, in which the square of the sinus is

periodic in π. Therefore, it is useful to rewrite its argument as

Δφmn

2
= π

L

L(r)mn

where

L(r)mn =
2hc2〈p〉
Δm2

mnc4
=

2hc〈E〉
Δm2

mnc4

〈p〉c
〈E〉

is the characteristic length of oscillation. In oscillation experiments one can

usually measure the energy of the neutrinos and they travel with the speed

of light in vacuum. (Their energy is more than 1 MeV, while their masses

are smaller than 1 eV.) So it is more convenient to use the second form, in

which 〈p〉c/〈E〉 � 1 so it is natural to drop it.

We obtain another form if we substitute L(r)mn expressed as a function of

the neutrino energy,

Δφmn

2
=
π

2

Δm2
mnc4

hc〈E〉 L .
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Figure 22.3: Results of the KamLAND experiment compared to the theory

of neutrino oscillation (solid line).

As hc � 1.24 · 10−9 eV km, and π/2.48 � 1.27, then

Δφmn

2
=
π

2

Δm2
mnc4

hc〈E〉 L � 1.27
Δm2

mnc4

eV2

GeV

〈E〉
L

km
,

while the oscillation length is

L(r) = 2.48 km
〈E or pc〉

GeV

eV2

Δm2c4
= 2.48 m

〈E or pc〉
MeV

eV2

Δm2c4
.

Finally, using natural units, we obtain

Δφmn

2
=
Δm2

mn

4〈E or p〉 L .

Neutrinos can show interference in flavour space because they remain

coherent over long distances due to their weak interactions. Thus, the plane-

wave approximation can be applied. The experiments are performed with

neutrino beams. Oscillation experiments confirm our formula for neutrino

oscillation (see Fig. 22.3) within the uncertainty of the data. Neutrino oscil-

lation was observed in the following experiments:7

7The 2015 Nobel prize in physics was awarded to Profs. Takaaki Kajita and

Arthur B. McDonald for the discovery of neutrino oscillations.
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• the difference between the observed and expected rates of atmospheric

neutrinos in the high-statistics data of the Super-Kamiokande experi-

ment;

• reduced event numbers as compared to expectations in radio-chemical

neutrino experiments (Chlorine, Galley/GNO, SAGE) and number of

observed events depending on time and energy at Super-Kamiokande,

SNO and Borexino;

• decrease of muon neutrinos and increase of electron neutrinos in far-

detector experiments (MINOS, T2K: Tokai to Kamioka, NOνA);

• disappearance of electron anti-neutrinos in not too far and close de-

tector experiments (Daya Bay, Chooz, RENO)

• change of spectra of electron anti-neutrinos in far detector experiment

(KamLAND).

All these experimental observations prove that neutrinos have masses and the

lepton flavour number is not conserved, which calls clearly for explanation
beyond the standard model.

In the near future the most important tasks in the neutrino sector from

the experimental side is to measure the mass of the neutrinos and the pa-

rameters of the PMNS mixing matrix. At present we have (sometimes

contradictory) experimental information only for the sum of the neutrino

masses. From cosmological observations the current conservative upper

bound is
∑3

i=1 mi ≤ 0.23 eV. From oscillation experiments we know two

squared mass differences, δm2 and Δm2, with the latter being about thirty

times larger than the former. We conclude that there are two mass eigenstates

of approximately equal masses (one of which can even vanish), while the

third one has much different mass. However, we do not know if the very

different mass is much bigger than the other two, called normal hierarchy
(NH), or much smaller than the other two, called inverse hierarchy (IH).

The further parameters of neutrino oscillation are the mixing angles θi j
and the complex phase δ of the PMNS matrix. In the oscillation formula

sin2 θi j appears, therefore those are measured directly.

The PMNS matrix, obtained from a global fit of the parameters to data,

(at 99 % confidence level) [Esteban et al., 2017] is the following:

|U | = �� 0.800 − 0.844 0.515 − 0.581 0.139 − 0.155

0.229 − 0.516 0.438 − 0.699 0.614 − 0.790

0.249 − 0.528 0.462 − 0.713 0.595 − 0.776

�� .
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Compare these numbers with the precision of the parameters of the CKM

matrix in (Eq. (22.6.14)). From the experimental point of view the main

difficulty is to improve the precision of the parameters. From the theoretical

point of view the challenge is to understand the origin of the PMNS matrix

(or in popular terms “to understand the origin of neutrino masses”) and why

it is so different from the CKM matrix. We do not know the answer to these

theoretical questions, but we can state with certainty that in order to answer

them, we have to go beyond the standard model of particle interactions.

22.9 Anomaly cancellation
Our final topic is a key feature of the SM, which is generally expected

from any QFT model of particle physics beyond the standard model. We

do not present all details of the computations, but those that are needed to

understand the concept of anomaly cancellation. The rest is left for exercise.

Let us consider a theory with both vector and axial-vector interactions,

such as the standard model. Wμ is a gauge field. The current Jμ ∝ ψ̄γμψ
is a classically conserved vector current, ∂μ Jμ = 0. The amplitude for the

process
p p′

W

q

Γμ

is proportional to WμΓ
μ, where Γμ = 〈 p′ | Jμ |p〉. The matrix element of the

divergence of the current is

〈 p′ | ∂μJμ |p〉 = (p′ − p)μ 〈 p′ | Jμ |p〉 = 〈 p′ | qμJμ |p〉 = 0.

Thus qμJμ = 0, which is the form of the vector Ward identity.

J5
μ = ψ̄γμγ5ψ is a classical axial current for which

iγμ∂
μψ = mψ ⇒ −γμ∂μψ = i mψ

−i∂μψ̄γ
μ = mψ̄ ⇒ ∂μψ̄γμ = i mψ̄ .

We multiply the first equation with ψ̄γ5 from left and the second one with

γ5ψ from right and add the two equations. Using the anti-commutation

relation {γ5, γμ} = 0, we obtain

∂μJ5
μ = 2i mψ̄γ5ψ ≡ 2m J5 ,
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which vanishes if m = 0, implying conserved axial current at tree level. The

Feynman diagrams that contribute to Γμ and Γ5
μ at higher orders are

Γμ

O(e5) ,

Γ5μ

· · · + O(e7) .

The last diagram8 which contributes to Γ5
μ violates the conservation of the

axial current. We define

Tκλμ (p1, p2) = Sκλμ (p1, p2) + Sλκμ (p2, p1)

where

γκ γλ
�

�− p1 � + p2

γμγ5

p1 p2

q = p1 + p2

Sκλμ (p1, p2) =

and we expect the following Ward identities

axial: qμTκλμ = 0 ,

vector: pκ1Tκλμ = 0 ,

vector: pκ2Tκλμ = 0.

Sκλμ is given by (omitting coupling factors)

Sκλμ (p1, p2) ∝ − (−i)3

×
∫

d4	

(2π)4
Tr

(
γμγ5

i
/	 − /p1

− m
γκ

i
/	 − m

γλ
i

/	 + /p2
− m

)�����
m=0

= −
∫

d4	

(2π)4
Tr
[
γμγ5

(
/	 − /p1

)
γκ/	γλ

(
/	 + /p2

)]
(	 − p1)2 (	 + p2)2 	2

.

8This diagram represents two diagrams: itself and another with one of the fermion

arrows reversed.
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Using

qμγμγ5 =
[
/	 + /p2

−
(
/	 − /p1

)]
γ5 =

(
/	 + /p2

)
γ5 + γ5

(
/	 − /p1

)
and /p/p = p2

�, we find

qμSκλμ (p1, p2) = −
∫

d4	

(2π)4
Tr

⎡⎢⎢⎢⎢⎢⎣γ5

(
/	 − /p1

)
γκ/	γλ

(	 − p1)2 	2
+ γ5

γκ/	γλ
(
/	 + /p2

)
(	 + p2)2 	2

⎤⎥⎥⎥⎥⎥⎦ .
We now shift 	 by p1: 	 → 	 + p1 in the first term and use γλγ5 = −γ5γλ
to obtain

qμSκλμ (p1, p2) =
∫

d4	

(2π)4
Tr

⎡⎢⎢⎢⎢⎢⎣γ5

γλ/	γκ
(
/	 + /p1

)
	2 (	 + p1)2

− γ5

γκ/	γλ
(
/	 + /p2

)
	2 (	 + p2)2

⎤⎥⎥⎥⎥⎥⎦
= −qμSλκμ .

Thus

qμTκλμ (p1, p2) = 0

provided the shift is allowed. However, the integral is divergent, so the shift

may be forbidden. For instance, with a cut-off regularization the momentum

shift leads to a finite term which is different from zero. Use of dimensional

regularization looks better as then the momentum shift is allowed. Neverthe-

less, the ambiguity remains also in this case, but disguised in a different form:

in d � 4 dimensions γ5 is ambiguous (γ5 is intrinsically 4-dimensional). The

’t Hooft-Veltman prescription says for γ5 = iγ0γ1γ2γ3 in d � 4 dimensions{
γμ, γ5

}
= 0 for μ = 0, 1, 2, 3[

γμ, γ5

]
= 0 for other values of μ.

We now recompute qμSκλμ (p1, p2) with this prescription. Let 	μ = 	̃μ + 	̂μ
where 	̃μ has μ = 0, 1, 2, 3 components and 	̂μ has components in the other

d − 4 dimensions. With pμi = p̃μi (external momenta kept in d = 4) and

qμγμγ5 =
(
/	 + /p2

)
γ5+γ5

(
/	 − /p1

)
−2γ5/̂	 =

(
/	 + /p1

)
γ5+γ5

(
/	 − /p2

)
−2γ5/̂	 ,

we find

qμTκλμ (p1 + p2) ∝ 2

∫
dd	

(2π)d
Tr

[
2γ5 /̂	

/	 − /p1

(	 − p1)2
γκ

/	
	2
γλ

/	 + /p2

(	 + p2)2

]
,
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which has 5 terms. The only one that does not vanish, after integrations

gives

4 (−4i) εαβκλ pα1 pβ
2

∫
dd	

(2π)d
	̂2

	2 (	 − p1)2 (	 + p2)2
=

= −16i εαβκλ pα1 pβ
2

d − 4

d
I(2)(p1 + p2)

=
1

2π2
εαβκλ pκ1 pλ2 + O(ε).

Dimensional regularization respects the vector Ward identities, but the axial-

vector Ward identity is violated at one loop. There is no regularization
which respects both vector and axial-vector Ward identities simultaneously.
We prefer to keep the vector Ward identities, which is an expression of

insisting on gauge invariance. The axial-vector Ward identity is then violated,

which is called axial anomaly. It is supported by the observed decay rate

Γ
(
π0 → γγ) = (7.7 ± 0.6) eV. The chiral symmetry forbids π0 → γγ at tree

level, but the anomaly triangle diagrams predict

Γ
(
π0 → γγ

)
=

(
Nc

3

)2 α2m2
π

64π3 fπ
= 7.73 eV,

hence the anomaly is physical and can be measured. According to the

Adler-Bardeen theorem

axial anomaly receives only 1-loop contributions.

A gauge anomaly destroys the renormalizability of a quantum field theory.

G = SU(2)L × U(1)Y is chiral, so axial anomalies are present and danger-

ous; they should exactly cancel. In SU(2)L × U(1)Y the triangle diagrams

also contain the generators of the gauge group and the total anomaly is

proportional to the trace of

Ta1Ta2Tc + Ta2Ta1Tc = {Ta1,Ta2 }Tc

for a given fermion in the loop (Tc is the generator at the vertex with γμγ5).

The generators are Ta =
τa
2

or ya with anti-commutation relations{
τi, τj

}
= 2δi j ,

{
yi, yj

}
= 2yi yj .

Then

Tr ({Ta1,Ta2 } τc) ∝ Tr (τc) = 0
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for both Ta =
τa
2

and ya, while

Tr ({Ta1,Ta2 } yc) ∝ δa1a2 Qc,

or

Tr ({ya1, ya2 } yc) ∝ Qc (Tr (yc) = Tr (Qc) ∝ Qc)
Based on these considerations the total contribution in a family is propor-

tional to Qe +Qν + Nc (Qu +Qd) = −1 + 0 + 3
(

2
3
− 1

3

)
= 0 for left-handed

members. For right-handed members Qν = 0 is absent from the sum. Con-

sequently, the axial anomaly cancels in the standard model. Any theory

beyond the standard model should also have this cancellation if we want a

renormalizable model.
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Outlook

In the theoretical part of this book we emphasized that QCD radiative cor-

rections play an essential role in understanding the structure of the theory,

interpreting data and finding signatures of new physics that cannot be ex-

plained by the standard model. The theory of radiative corrections in the

electroweak part of the standard model is equally important though the ef-

fects are usually less pronounced. As a result, electroweak corrections have

also been computed to many processes that play important role in particle

phenomenology. These computations are technically challenging and the re-

sulting corrections are usually much smaller than those of QCD, simply due

to the large difference in the size of the couplings. Nevertheless, in certain

kinematic regions as well as for interpreting the non-hadronic final states at

the LEP experiments, taking such corrections into account is crucial.

As the LHC collides hadrons, the strong interaction has a role in every

single interaction. As a thumb rule, we can state that the effect of first

order electroweak corrections is similar to that of the second order QCD

corrections. Thus in a computation at NNLO QCD accuracy (O(α2
s ) relative

correction) the first order electroweak corrections (O(α) relative correction)

should also be taken into account. Such computations are hampered by the

mixed QCD and electroweak corrections at O(αsα) relative accuracy.

We put more emphasis on the computation of QCD corrections because

their role of quantum corrections is qualitatively different in QCD than in

the electroweak theory. In general QCD predictions at LO accuracy provide

only an order of magnitude estimate due to the strong dependence on the

unphysical scales. The NLO corrections are crucial in order to decrease the

dependence on these scales. In order to estimate the accuracy of the scale

351
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dependence one needs to know the NNLO corrections. As opposed to this,

the electroweak theory gives a fairly good description of data already at LO

accuracy (see for instance the predictions for the masses of vector bosons in

Sect. 22.2). This description is improved by usually very little if we take into

account the radiative corrections.

The relative importance of quantum corrections changes in collisions at

energies larger than that of the LHC. Asymptotic freedom makes QCD cor-

rections relatively smaller. The electroweak corrections may even increase

due to increasing logarithmic contributions log MV/s if s increases, which

has the same numerical effect as decreasing MV . In future experiments it

will be interesting to see if any sign of restoration of the electroweak symme-

try can be observed. In the symmetric phase the electroweak vector bosons

are massless, just like the gluon. Then the electroweak theory will become

similar to QCD, but with an important difference. In QCDΛQCD is a cut-off,

below which perturbation theory cannot be applied (we use hadronization

models). For the electroweak theory at large energies the perturbation theory

works both below and above the electroweak scale v, but the techniques may

change. At present there is very little known about what we should expect

at future colliders in this respect.

There are many exciting developments and several big unanswered ques-

tions in the current research of particle physics. Among the big questions

we mentioned the origin of neutrino masses. It is also an established exper-

imental fact that most of the energy density in the universe is in a form that

is different from the baryonic matter and electromagnetic radiation, whose

physics we can test in the laboratory. The research to uncover the nature of

dark matter and dark energy is flourishing at the time of writing this book.

Another big question is our very existence, namely that the standard model

predicts equal amount a matter and anti-matter, which is clearly not the case

in the universe. The mechanism of breaking this symmetry is unknown. At

present we do not even know whether the answer to these questions may come

from colliders, or some other fields like cosmology or neutrino experiments.

There are also long standing as well as recently emerging anomalies in

particle physics. The significance of these anomalies have not reached the

discovery level of “five sigma”, yet they are quite pronounced with devi-

ations from standard model predictions in the 3–4 sigma range. Among

the prominent ones we mentioned the long standing difference between the

measured and computed value of the anomalous muon magnetic moment.

Another interesting deviation concerns also the muon, which being the mas-

sive brother of the electron, can build muonic atoms if it is captured by a

proton. Due to the much larger mass the average distance of the muon to
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the proton is much smaller than that of the electron in the ordinary hydrogen

atom. Thus it is more sensitive to the electric charge distribution inside the

proton. The radius of the proton measured in muonic atoms differs from the

radius measured in ordinary hydrogen.

Between writing and publishing this book several anomalies have been

observed by the LHCb experiment at the LHC. These concern a fundamental

assumption of the standard model that is known as flavour universality in

the lepton sector. The second and third particle families assumed to be exact

copies of the first one with only one exception, namely the particle masses.

Therefore the standard model predicts that processes with identical initial

state and with only difference in the final state in the type of leptons, such

as B0 → K∗0μ+μ− and B0 → K∗0e+e−) should occur with approximately

equal probability. Quantitatively it means that the standard model predicts

RK∗0 =
B(B0 → K∗0μ+μ−)
B(B0 → K∗0e+e−) � 1 (23.0.1)

for the ratio of the branching fractions (the exact value depends on the value of

the invariant mass squared q2 of the charged lepton pair). Modern particle

detectors can identify the leptons in the final state with high accuracy so

such ratios can be measured fairly well. The results published by the LHCb

collaboration [Aaij et al., 2017]

RK∗0 =

⎧⎪⎪⎨⎪⎪⎩
0.66+0.11

−0.07
(stat) ± 0.03(syst) for 0.045 < q2 < 1.1 GeV2/c4

0.69+0.11
−0.07

(stat) ± 0.05(syst) for 1.1 < q2 < 6.0 GeV2/c4

(23.0.2)

seem to suggest violation of the principle of flavour universality. The ob-

servations currently show deviations from the standard model predictions at

about three sigma and await confirmation by other experiments. If deviations

with more than five sigma significance are confirmed, these will constitute

discoveries that will require non-trivial extension of the standard model,

similarly to the impact of the discovery of parity violation on the extension

of the Fermi theory.

In recent years particle physics has started to employ new techniques

inspired by developments in information technology. The particle detector

prepares a three-dimensional image of the final state measuring the direction,

energy and momentum of particle flow and the bend of particle tracks by

magnetic field. The purpose of data analysis is to find out the hard scattering

process from this information. This is a typical pattern recognition problem.

Engineering of pattern recognition has undergone tremendous development
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in this millennium, facilitated by the immense increase of computing power,

appearance of algorithms using neural networks and deep learning. Presently

it is a field of constant change and emerging new ideas, and thus beyond the

scope of this book.

While the items mentioned in this section are very exciting developments

in particle physics, we have deliberately not discussed those in detail, as they

are neither properly confirmed, nor fully established with scientific methods

yet. So instead of going into the details, let us close our book with several

quotes.

There is a theory which states that if ever anyone discovers exactly what the

Universe is for and why it is here, it will instantly disappear and be replaced by

something even more bizarre and inexplicable.

There is another theory which states that this has already happened.

(Douglas Adams)

Why God Particle? Two reasons. One, the publisher wouldn’t let us call it the

Goddamn Particle, though that might be a more appropriate title, given its villainous

nature and the expense it is causing. The title ended up offending two groups: (1)

those who believe in god and (2) those who do not.

(Leon Lederman)

We need something new. We can’t predict what that will be or when we will find

it because if we knew that, we would have found it already!

(Stephen Hawking)

“Would you tell me, please, which way I ought to go from here?”

“That depends a good deal on where you want to get to,” said the Cat.

“I don’t much care where–” said Alice.

“Then it doesn’t matter which way you go,” said the Cat

“–so long as I get SOMEWHERE,” Alice added as an explanation.

“Oh, you’re sure to do that,” said the Cat, “if you only walk long enough.”

(Lewis Carroll)
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therapy, 172
Noether’s theorem, 4, 35, 217

Non-abelian group, 216, 226, 238,

317

Nuclear forces, 47, 47
Nuclear mass, 24, 36

Nucleon, 12

quark composition, 37

OPAL experiment, 81, 86, 103,

184–187
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operator, 8
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