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Preface

This book is not a basic digital signal processing textbook. Even though the
first chapter contains a brief summary of basic digital signal processing
theory, it is assumed you have good knowledge of sampling, difference
equations, z-transforms, FIR and IIR filters, FFT etc. The main idea of this
book is to combine the topics of signal processing theory and implementing
DSP algorithms in practice. The goal is also to give a broad overview of
different digital signal processing applications, as a kind of appetizer for
further studies.

Since it is my sincere belief that bringing intuitive understanding of
concepts and systems is by far the most important part of teaching, the text
is somewhat simplified at the expense of mathematical rigour. At the end of
this book, references for deeper studies of the different topics covered can
be found. Some details might be difficult for you to grasp at once, especially
if you have very basic knowledge of DSP and its techniques. However, there
is no cause for alarm. The most important first step of studying any subject
is to grasp the overall picture and to understand the basics before delving
into the details.

This book was originally written to be used in undergraduate courses at
Orebro University in Sweden, but it has also been used for company on-site
training. Besides the material covered in the following chapters, practical
hands-on projects are an integral part of these courses. The projects consist
of the design and implementation of signal processing algorithms on a digital
signal processing system. Most of the programming work is done at assembly
language level for gaining maximum understanding of both hardware and
software problems.

Finally, I want to express my gratitude to Amy Loutfi for proof-reading
the manuscript, checking the equations and figures and contributing many
good ideas to this book.

Dag Stranneby



1 Introduction

1.1 Historic background Since the Second World War, if not earlier, technicians have speculated on
the applicability of digital techniques to perform signal processing tasks. For
example, at the end of the 1940s, Shannon, Bode and other researchers at
the Bell Telephone Laboratories discussed the possibility of using digital
circuit elements to implement filter functions. At this time, there was unfor-
tunately no appropriate hardware available. Hence, cost, size and reliability
strongly favoured conventional, analog implementations.

During the middle of the 1950s, Professor Linville at MIT discussed digital
filtering at graduate seminars. By then, control theory, based partly on works
by Hurewicz had become established as a discipline, and sampling and its
spectral effects were well understood. A number of mathematical tools such
as the z-transform, which had existed since Laplace’s time, were now used
in the electronics engineering community. Technology at that point, however,
was only able to deal with low-frequency control problems or low-frequency
seismic signal processing problems. While seismic scientists made notable
use of digital filter concepts to solve problems, it was not until the middle
of the 1960s that a more formal theory of digital signal processing began to
emerge. During this period, the advent of the silicon integrated circuit tech-
nology made complete digital systems possible, but still quite expensive.

The first major contribution in the area of digital filter synthesis was made
by Kaiser at Bell Laboratories. His work showed how to design useful filters
using the bilinear transform. Further, in about 1965 the famous paper by
Cooley and Turkey was published. In this paper, FFT (fast Fourier trans-
form), an efficient and fast way of performing the DFT (discrete Fourier
transform), was demonstrated.

At this time, hardware better suited for implementing digital filters was
developed and affordable circuits started to be commercially available. Long
FIR (finite impulse response) filters could now be implemented efficiently,
thereby becoming a serious competitor to the IIR (infinite impulse response)
filters, having better passband properties for a given number of delays. At
the same time, new opportunities emerged. It was now possible to achieve
time-varying, adaptive and non-linear filters that cannot be built using con-
ventional analog techniques. One such filter is the Kalman filter named after
R. E. Kalman. The Kalman filter is a model-based filter that filters the signal
according to its statistical rather than its spectral properties.

In the area of adaptive filters, B. Widrow is an important name, especially
when talking about the least mean square (LMS) algorithm. Widrow has also
made significant contributions in the area of neural networks as early as in
the 1960s and 1970s.

Today, there are many commercial products around, utilizing the advan-
tages of digital signal processing, namely:
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e an essentially perfect reproducibility
e a guaranteed accuracy (no individual tuning and pruning necessary)
e well suited for large volume production.

To conclude this section, we will give some everyday examples where digital
signal processing is encountered in one way or another. Applications can be
divided into two classes. The first class consists of applications that could
be implemented using ordinary analog techniques, but where the use of digital
signal processing increases the performance considerably. The second class
of applications are these that require the use of digital signal processing
and cannot be built using entirely ‘analog’ methods.

1.1.1 Measurements and analysis

Digital signal processing traditionally has been very useful in the areas of
measurement and analysis in two different ways. One way is in precondi-
tioning the measured signal by rejecting the disturbing noise and interference.
The other way is in interpreting the properties of collected data by, for
instance, correlation and spectral transforms. In the area of medical elec-
tronic equipment, more or less sophisticated digital filters can be found in
electrocardiograph (ECG) and electroencephalogram (EEG) equipment to
record the weak signals in the presence of heavy background noise and inter-
ference.

As pointed out earlier, digital signal processing has historically been used
in systems dealing with seismic signals due to the limited bandwidth of these
signals. Digital signal processing has also proven to be very well suited for
air and space measuring applications, e.g. analysis of noise received from
outer space by radio telescopes or analysis of satellite data. Using digital
signal processing techniques for analysis of radar and sonar echoes are also
of great importance in both civilian as well as military contexts.

Another application is in navigational systems. In most GPS (global posi-
tioning system) receivers today, advanced digital signal processing techniques
are employed to enhance resolution and reliability.

1.1.2 Telecommunications

Digital signal processing is heavily used in many telecommunications
systems today. For instance, they are used in telephone systems for DTMF
(dual-tone multi-frequency) signalling, echo cancelling of telephone lines and
equalizers used in high-speed telephone modems. Further, error-correcting
codes are used to protect digital signals from bit errors during transmission
(or storing) and different data compression algorithms are utilized to reduce
the number of data bits needed to represent a given amount of information.

Digital signal processing is also used in many contexts in cellular tele-
phone systems, for instance speech coding in GSM (groupe speciale mobile
or global system for mobile communication) telephones, modulators and de-
modulators, voice scrambling and other cryptographic devices. An application
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dealing with high frequency is the directive antenna having an electronically
controlled beam. By using directive antennas at the base stations in a cellular
system, the base station can ‘point’ at the mobile at all times, thereby reducing
the transmitter power needed. This in turn increases the capacity of a fixed
bandwidth system in terms of the number of simultaneous users per square
kilometre, i.e. it increases the service level and the revenue for the system
operator.

1.1.3 Audio and television

In most audio equipment today, such as CD (compact disc) players, DAT
(digital audio tape) and DCC (digital compact cassette) recorders, digital
signal processing is mandatory. This is also true for most modern studio
equipment as well as more or less advanced synthesizers used in today’s
music production. Digital signal processing has also made a lot of new noise
suppression and companding systems (e.g. Dolby™) attractive.

Digital methods are not only used for producing and storing audio informa-
tion, but also for distribution. This could be between studios and transmitters,
or even directly to the end-user such as in the DAB (digital audio broad-
casting) system. Digital transmission is also used for broadcasting of TV
signals. The HDTV (high definition television) systems are utilizing lot
of digital image processing techniques. Digital image processing can
be regarded as a special branch of digital processing having many things
in common with digital signal processing, but dealing mainly with two-
dimensional image signals. Digital image processing can be used for many
tasks, e.g. restoring distorted or blurred images, morphing, data compression
by image coding, identification and analysis of pictures and photos.

1.1.4 Automotive

In the automotive business, digital signal processing is often used for control
purposes. Some examples are ignition and injection control systems, ‘intel-
ligent’ suspension systems, ‘anti-skid’ brakes, climate control systems,
‘intelligent’ cruise controllers and airbag controllers.

There are also systems for speech recognition and speech synthesis being
tested in automobiles. Just tell the car ‘Switch on the headlights’ and it will,
and maybe it will give the answer: ‘The right rear parking light is not
working’. Experiments have also been performed with background noise
cancellation in cars using adaptive digital filters, and radar assisted, more or
less ‘smart’ cruise controllers.

To summarize: digital signal processing is here to stay . ..
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1.2 Digital signal
processing basics

o~ 1l

g ? > g(t)
p)

Figure 1.1 Sampling viewed as
a multiplication process

This book is not intended to be a tutorial in basic digital signal processing.
There are already numerous good references available on the subject
(Oppenheimer and Schafer, 1975; Rabiner and Gold, 1975; Mitra and Kaiser,
1993; Marven and Ewers, 1993; Denbigh, 1998; Lynn and Fuerst, 1994).
The following section is only a brief summary of underlying important theo-
ries and ideas with which the reader should already be familiar.

1.2.1 Continuous and discrete signals

In this book we will mainly study systems dealing with signals that vary
over time (temporal signals). In ‘reality’ a signal can take on an infinite
amount of values and time can be divided into infinitely small increments.
A signal of this type is continuous in amplitude and continuous in time.
In everyday language such a signal is called an ‘analog’ signal.

Now, if we only present the signal at given instants of time, but still allow
the amplitude to take on any value, we have a signal type that is contin-
uous in amplitude, but discrete in time.

The third signal type is a signal that is defined at all times, but only
allowed to take on values from a given set. Such a signal is described as
discrete in amplitude and continuous in time.

The fourth type of signal is one that is defined at given instants of time,
and only allowed to take on values from a given set. This signal is said to
be discrete in amplitude and discrete in time. This type of signal is called
a ‘digital’ signal, and is the type of signal we will mainly deal with in this
book.

1.2.2 Sampling and reconstruction

The process of going from a signal being continuous in time to a signal
being discrete in time is called sampling. Sampling can be regarded as
multiplying the time-continuous signal g(f) with a train of unit pulses p(?)
(see Figure 1.1).

+ oo
g0 = gopt) = D, gnT)8(t — nT) (1.1)
where g#(¢) is the sampled signal. Since the unit pulses are either one or
zero, the multiplication can be regarded as a pure switching operation.

The time period 7 between the unit pulses in the pulse train is called the
sampling period. In most cases this period is constant, resulting in ‘equidis-
tant sampling’. There is however no theoretical demand for the sampling
period to be constant. In some systems, many different sampling periods are
used (‘multi-rate sampling’) (Astrom and Wittenmark, 1984). Yet, in other
applications, the sampling period may be a stochastic variable. This results
in ‘random sampling’ (Papoulis, 1985) which complicates the analysis consid-
erably. In most systems today, it is common to use one or more constant
sampling periods. The sampling period T is related to the sampling rate or
sampling frequency f; such that
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o, 1

/s 2@ T (1.2)
The process of sampling implies reduction of knowledge. For the time-
continuous signal we know the value of the signal at every instant of time,
but for the sampled version (the time-discrete signal) we only know the
value at specific points in time. If we want to reconstruct the original time-
continuous signal from the time-discrete sampled version, we therefore have
to make more or less qualified interpolations of the values in between the
sampling points. If our interpolated values differ from the true signal, we
have introduced distortion in our reconstructed signal.

Now to get an idea of our chances of making a faithful reconstruction of
the original signal, let us study the effect of the sampling process in the
frequency domain. First, referring to equation (1.1), the pulse train p(f) can
be expanded in a Fourier series

~+ oo

p(oy= Y, c, e (1.3)

n=-—oo
where the Fourier coefficients ¢, are

+ 172

1 f 4 1
¢, =—| pOCTNdr=—_ (1.4)
T —T7/2 T

Hence, the sampling equation (1.1) can now be rewritten as

1 &

g0 = pig) = (T > d‘"@”/“’) g (15)
The Laplace transform of the sampled signal g(¢) is (using the multiplica-
tion-shift property)

1 & 2
G's) = anG <s +jn ;) (1.6)
To get an idea of what is happening in the frequency domain, we investi-
gate equation (1.6) following the s = jo axis

o0
G*Gw) =7 D, 6w + o)) (1.7
From this, we see that the effect of sampling creates an infinite number of
copies of the spectrum of the original signal g(¢) Every copy is shifted by
multiples of the sampling frequency w,. Figure 1.2 shows a part of the total
spectrum.

The spectrum bandwidth of the original signal g(¢) is determined by the
highest frequency component f,,, of the signal. Now, two situations can
occur. If £, .. < f./2 then the copies of the spectrum will not overlap (Figure
1.2(a)). Given only one spectrum copy, we have a limited, but correct know-
ledge of the original signal g(#) and can reconstruct it using an inverse Fourier
transform. The sampling process constitutes an unambiguous mapping. If,
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on the other hand f . = f./2, the spectra will overlap (Figure 1.2(b))
and the too-high frequency components will be aliased (or ‘folded’) into the
lower part of the next spectrum. We can no longer reconstruct the original
signal, since aliasing distortion has occurred. Hence, it is imperative that
the bandwidth of the original time-continuous signal being sampled is
smaller than half the sampling frequency (also called the ‘Nyquist’
frequency).

To avoid aliasing distortion in practical cases, the sampling device is
always preceded by some kind of low-pass (‘anti-aliasing’) filter to reduce
the bandwidth of the incoming signal. This signal is often quite complicated
and contains a large number of frequency components. Since it is impos-
sible to build perfect filters, there exists a risk of too-high frequency
components leaking into the sampler, causing aliasing distortion. We also
have to be aware that high-frequency interference may somehow enter the
signal path after the low-pass filter, and we may experience aliasing distor-
tion even though the filter is adequate.

In some literature the concept of ‘relative frequency’ (or ‘fhosq’) is used
to make calculations simpler. The relative frequency is defined as

|G/
(a)
NGRS S0
—® — & ms o
s 3 7 s
/GHjo)/
(b)
e o
—0 - & & O8
2 2

Figure 1.2 Part of spectrum of sampled signal. In (a) the bandwidth of
the signal is less than the Nyquist frequency w,/2 and no aliasing takes
place. In (b) the bandwidth is greater than w,/2 and aliasing takes place,
hence the original signal cannot be reconstructed
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(1.8)

Hence, to avoid aliasing distortion: |g,,,,| < 0.5

If the Nyquist criteria is met and hence no aliasing distortion is present,
we can reconstruct the original bandwidth-limited time-continuous signal g(¢)
in an unambiguous way. This is achieved using a low-pass reconstruction
filter to extract only one copy of the spectrum from the sampled signal. It
can be shown as a consequence of ‘Shannon’s sampling theorem’ or the
‘cardinal reconstruction formula’ (Mitra and Kaiser, 1993) that the ideal low-
pass filter to use for reconstruction has the impulse response of a sinc function

h(t) = B 4 sinc <1) (1.9)

T —

This is a non-causal filter (the present output signal depends on future
input signals) having an infinite impulse response and an ideally sharp cutoff
at the frequency 7/7T = w /2 radians per second, i.e. the Nyquist frequency.
While of theoretical interest, this filter does not provide a practical way to
reconstruct the sampled signal. A more realistic way to obtain a time-contin-
uous signal from a set of samples is to hold the sample values of the signal
constant between the sampling instants. This corresponds to a filter with an
impulse response

UT if0s¢<T

1.10
0 otherwise ( )

h(t) = {
Such a reconstruction scheme is called a zero-order hold (ZOH) or boxcar
hold, and it creates a ‘staircase’ approximation of the signal. The zero-order
hold can be thought of as an approximation of the ideal reconstruction filter.

A more sophisticated approximation of the ideal reconstruction filter is
the linear point connector or first-order hold (FOH), which connects
sequential sample values with straight-line segments. The impulse response
of this filter is

(T+0)/T* if —T
0

h(t) = 1.11
@ {(T—t)/TZ if (111
This filter provides a closer approximation to the ideal filter than the zero-

order hold (Astrdm and Wittenmark, 1984).

1.2.3 Quantization

The sampling process described above is the process of converting a contin-
uous time signal into a discrete time signal, while quantization is the
conversion of a signal which is continuous in amplitude into a signal which
is discrete in amplitude.
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Quantization can be thought of as classifying the level of the continuous
valued signal into certain bands. In most cases, these bands are equally
spaced over a given range and undesired non-linear band spacing may cause
harmonic distortion. Some applications (companding systems), use a non-
linear band spacing which is often logarithmic.

Every band is assigned a code or numerical value. Once we have decided
to which band the present signal level belongs, the corresponding code can
be used to represent the signal level.

Most systems today use the binary code, i.e. the number of quantization
intervals N is

N =2 (1.12)

where 7 is the word length of the binary code. For example with n = 8 bits
we get a resolution of N = 256 bands, n = 12 yields N = 4096 and n = 16
yields N = 65536. Obviously the more bands we have, i.e. the longer the
word length, the better resolution we obtain. This in turn renders a more
accurate representation of the signal.

Another way of looking at resolution of a quantization process is to define
the dynamic range as the ratio between the strongest and the weakest signal
level that can be represented. The dynamic range is often expressed in deci-
bels. Since every new bit of word length being added increases the number
of bands by a factor of 2, the corresponding increase in dynamic range is 6
dB. Hence an 8 bit system has a dynamic range of 48 dB, a 12 bit system
72 dB etc. (this of course only applies to linear band spacing).

Now, assume we have N bands in our quantizer, this implies that the
normalized width of every band is O = 1/N. Further, this means that a specific
binary code will be presented for all continuous signal levels in the range
of £0/2 around the ideal level for the code. Hence, we have a random error
in the discrete representation of the signal level of & = £0/2 . This random
error, being a stochastic variable, is independent of the signal and has a
uniformly distributed probability density function (‘rectangular’ density func-
tion)

1/Q for —QR2<e<Q/2
else

p(e) = { (1.13)
This stochastic error signal will be added to the ‘true’ discrete represen-
tation of our signal and appear as quantization noise. The RMS amplitude

of the quantization noise can be expressed as (Pohlmann, 1989)

2 n
\/fQ/zsp(s) de = \]t \/7 (1.14)

The ratio between the magnitude of the quantization noise and the maximum
signal magnitude allowed is denoted the signal-to-error ratio. A longer
word length gives a smaller quantization noise and hence a better signal-to-
error ratio.
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x(m) —

fx(n))

—

Figure 1.3 A discrete time

y(n)

linear digital signal processing
operation, input x(n), output

y(n) and transfer function

fxm)

1.2.4 Processing models for discrete time series

Assume that by proper sampling (at a constant sampling period 7) and quan-
tization we have now obtained a ‘digital’ signal x(n). Our intention is to
apply some kind of linear signal processing operation, for instance a filtering
operation, to the signal x(n) thereby obtaining a digital output signal y(n)
(see Figure 1.3).

The processing model is said to be linear if the transfer function, i.e.
¥ = f(x), the function defining the relationship between the output and input
signals, satisfies the principle of superposition, such that

S +x) = flx) + f(xy) (1.15)

For clarity, let us illustrate this using a few simple examples. If & is a
constant, the function (a perfect amplifier or attenuator)

f(x) = kx (1.16)
is obviously linear since

SOy +x) =k(x; +x,) = kx, + kx, = f(x)) + f(x,) (1.17)
Now, if we add another constant m (bias) what about the function

J(x) = kx +m (1.18)
It looks linear, doesn’t it? Well, let’s see

SO, +x) =k(x, +x,) +m=kx; + kx, + m (1.19a)
but

Sfx) +f(xy) =kxy + m+ kxy, + m = kx;+ kx, + 2m (1.19b)

Obviously, the latter function is not linear. Now we can formulate one require-
ment on a linear function: it has to pass through the origin, i.e. f(0) = 0.

If we consider a multiplier ‘circuit’ having two inputs y, and y,, this can
be expressed as a function having two variables

SOLy) =y (1.20)

Let us now connect two composite signals y, = x, + x, and y, = x; + x, to
each of the inputs. We now try to see whether the function satisfies the prin-
ciple of superposition (equation 1.15) i.e. whether it is linear or not

JOo x5, x3Fxy) = (X F2,)(x3+x,) = xx5 + X%, + X505 + xx, (1.21a)

while

J(xp, x3) + (x5, x,) = Xx1X5 + XX, (1.21b)
Hence, a multiplication of two variables (composite signals) is a non-linear

operation. For the special case we connect the same signal to both inputs,
ie. y, =y, we get
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SO = y%

which is obviously a non-linear function. If, on the other hand, we multiply
a signal y, = x, + x, by a constant y, = k, we get

SO+, k) = (x; + x)k
and
S, k) + f(xy, k) = x,k + xk

as in equations (1.16) and (1.17); then the operation is linear. A two-input
function that is linear in each input if the other is held constant is called a
bilinear function. Usually we call it a product.

The next observation we can make is that the first derivative f’(x) of the
function f'(x) is required to be a constant for the function to be linear. This
also implies that higher order derivatives do not exist.

An arbitrary function f(x), can be approximated using a Taylor or
MacLaurin series

2 3
FG)=1(0) +3f°0) + 2 17(0) + 5, /7(0) ... (1.22)

By inspection of the first two terms we can find out whether the function is
linear or not. To be linear we demand (see above)

f(0)=0

and
fx) =k

It might be interesting to note that many common signal processing opera-
tions are indeed non-linear: rectifying, quantization, power estimation,
modulation, demodulation, mixing signals (frequency translation), correlating
etc. Filtering a signal using a filter with fixed coefficients is linear, while
using an adaptive filter, having variable coefficients, may be regarded as a
non-linear operation.

If the parameters of the transfer function are constant over time, the signal
processing operation is said to be time invariant. Sometimes such an oper-
ation is referred to as an LTI (linear time invariant) processor (Lynn and
Fuerst, 1994; Chen, 1999). Quite often such processors are also assumed to
be causal, i.e. the present output signal only depends on present and past
input signals.

The operation of a time-discrete processor can be expressed using a number
of different mathematical models, for example, a difference equation model,
a state—space model, a convolution model or a z-transform model.

The difference equation, describing the behaviour of a time-discrete
system, can be regarded as the cousin of the differential equation describing
a continuous-time (‘analog’) system. An example difference equation of the
order of 2 is
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y(mn) — 0.8y(n—1) + 0.2y(n—2) = 0.1x(n—1) (1.23)

To obtain a first output y(0), the initial conditions y(—1) and y(—2) have
to be known. The difference equation can of course be solved stepwise, by
inserting the proper values of the input signal x(n). In some cases this type
of direct solution may be appropriate. It is however far more useful to obtain
a closed form expression for the solution. Techniques for obtaining such
closed forms are well described in the literature on difference equations
(Mitra and Kaiser, 1993; Spiegel, 1971). The general form of the difference
equation model is

N M
Eal—y(n —1i) = E b;x(n — ) (1.24)
=0 j=0

where x(n) is given and y(n) is to be found. The order of the difference
equation equals &, which is also the number of initial conditions needed to
obtain an unambiguous solution.

The state—space model can be seen as an alternative form of the differ-
ence equation, making use of matrix and vector representation. If, for
example, we introduce the variables

ﬁl(n) =y {xl(n) = x(n) (125)
K(n) = y(n+1) xy(n) = x(n+1)
our example difference equation (1.23) can be rewritten as

yo(n—1) = 0.8y,(n—2)—0.2y,(n—2) + 0.1x,(n—2) (1.26)

or in matrix equation form

nr=h|_| 0 1 ||{y(n-2) 0 0 [x,(n—2)
Lz(n—l)} - {—0.2 0.8] Lz(n—z)} * L) 0.1} ch(n—z)] (1.27)

If we introduce the vectors

_|{»() _ [xi(m)
Y(n) = Lz (n)} and X(n) = [xz (n)]

and the matrices

0 1 00
A= [ } and B = [ ]
—-0.2 0.8 0 0.1

The difference equation can now be rewritten in the compact matrix equa-
tion form

Y(n+1) = AY(n) + BX(n) (1.28)

This is a very useful way of expressing the system. Having knowledge of
the system state Y(n) and the input signal vector X(n) at time instant n, the
new state of the system Y(n+1) at instant n+1 can be calculated. The system
is completely specified by the transition matrix A and the input matrix B.
The state—space model is common when dealing with control system appli-
cations (Astrom and Wittenmark, 1984; Chen, 1999).
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The convolution model expresses the relationship between the input and
output signals as a convolution sum

+o0
Wy = D h(k)x(n—k) (1.29)
k= —oo
If we choose the input signal x(n) as the unit pulse 6(n), the output from
the system will be

+oo
y(n) = E h(k)d(n—k) = h(n) (1.30)
ke
Hence, A(n) is the impulse response of the system. If (n) of the system is
known (or obtained by applying a unit pulse), the output y(n) can be calcu-
lated for a given input signal x(n).

Under some circumstances, the properties of the system in the frequency
domain is of primary interest. These properties can be found by studying
the system for a special class of input signals which are functionally equiv-
alent to a sampled sinusoid of frequency w

x(n) = &“" = cos(wn) + j sin(wn) for —eo<n < +oo (1.31)

Applying equation (1.31) to equation (1.29) we obtain

+ o0 +oo
yn) = D h(k) 00 = efor N pky ek = x(mH(E?)  (1.32)
k=—o0 k=—oo
Thus, for this special class of inputs, we see from equation (1.32) that the
output is identical to the input to within a complex frequency dependent gain
factor H(e/®), which is defined from the impulse response of the system as

y(n) - N ok
2 — ey = Jo 1.
=~ HE = 2 e (1.33)
This gain factor is often referred to as the frequency response of the system.
Taking the magnitude and argument of the frequency response, Bode-type
plots showing gain and phase angle can be obtained. Note that the frequency
response H(e’”) is essentially the DFT (discrete fourier transform) of the
impulse response A(n). A well-known fact can be seen; that a convolution
in the time domain corresponds to a multiplication in the frequency
domain and vice versa.

Another way of representing the signal processing system is to use the z-
transform model. If we assume that we are dealing with a causal system

h(n)=0 and x(n)=0 forn<O0

or in other words, the input signal is zero for ‘negative time’ sampling
instants, the summation interval of equation (1.29) can be reduced to

y(n) = D h(k)x(n—Fk) (1.34)
k=0
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Taking the z-transform (Oppenheimer and Schafer, 1975; Rabiner and Gold,
1975; Denbigh, 1998), i.e. multiplying by z™” and summing over 0 < n <
oo both sides of the equation (1.34) we obtain

< < 3 +oo too
EY(H)Z—" = E Eh(k)x(n—k)z—" = Eh(k)z_k Ex(n—k)z_(”_k)
n=0 n=0k=0 =0 —
(1.35a)
1e) = H2)Xe) (1.35b)
where the z-transform of the impulse response is

+oo
H(z) = D h(k)z™ (136)

=

Hence, the causal system can be fully characterized by the transfer func-
tion H(z) which in the general case is an infinite series in the polynomial
z % For many series it is possible to find a closed-form summation expres-
sion.

Note for a system to be stable and hence useful in practice, the series
must converge to a finite sum as k — oo,

When working in the z-plane, a multiplication by z ¥ is equivalent to a
delay of k& steps in the time domain. This property makes, for instance, z-
transformation of a difference equation, easy. Consider our example of the
difference equation (1.23). If we assume that the system is causal and that
the z-transforms X(z) and Y(z) of x(n) and y(n) respectively exist, it is straight-
forward to transform (1.23) as

Y(z) — 0.8Y(2)z '+ 02Y(2)z * = O.lX(z)z_1 (1.37)
Rearranging equation (1.37) we obtain

Y(z) 0.1z B 0.1z
Xz 1—-082'+02z2 22—-082+02

H(z) = (1.38)

The zeros are the roots of the numerator, while the poles are the roots of
the denominator. Hence, in equation (1.38) above, the zero is

0.1z=0

having the root z, = 0

and the poles are
2 —-082+02=0

having the complex roots z; = 0.4 + j0.2 and z, = 0.4 — ;0.2

The study of the locations of the poles and zeros in the complex z-plane
are sometimes referred to as the root locus. For the system described by
equation (1.38) to be stable, it is required that the poles of the system lie
within the unit circle in the complex z-plane, hence
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x(n)

|zp\ <1 forallp
For our example system above,
|z)| = |z,] = V(0.4 + 0.2%) = 0.45

i.e. the system is stable.

In this section, we have demonstrated a number of ways to mathemati-
cally represent a signal processing operation (Figure 1.3). It is convenient
to work with these models ‘off line’ in a powerful PC, workstation or mini-
computer, using floating point arithmetic. It is often a challenge to migrate
the system into a single-chip, fixed point, digital signal processor required
to perform in real time. ‘Smart’ algorithms and ‘tricks’ are often needed to
keep up processing speed and to avoid numerical truncation and overflow
problems.

1.2.5 The non-recursive filter

This filter (Figure 1.4) is sometimes called a tapped delay line filter, a
transversal filter or a FIR filter since it has a finite impulse response.
Using the convolution model, the response can be expressed as

y(m) = D h(j)x(n—j) (1.39)
Jj=0

where M is the length of the filter. If we apply a unit pulse to the input of
the system, i.e. x(n) = d(n), it is straightforward to realize that the impulse
response /(j) of the system is directly obtained from the weight (gain) of
the taps of the filter

h(j) = b, (1.40)

If we prefer a z-plane representation of equation (1.39), one of the nice
features of the FIR filter is apparent

H(z) = by + bz~ ' + byz™? ... byz ™ (1.41)

x(n-1) x(n-2) x(n-M)

z > I — z

y(n)

Figure 1.4 Non-recursive (FIR) filter having length M with weights b;



Introduction 15

y(m)
-1 - -
x(u@ By yi-l) i yin-2) R y(n-N)
al ag aN
(-

Figure 1.6 The IIR filter seen
as an FIR filter in a feedback
loop

Figure 1.5 Recursive (IIR) filter having length N with weights a;

Since the FIR filter does not have any poles, it is always guaranteed to be
stable. Another advantage is that if the weights are chosen to be symmet-
rical (Lynn and Fuerst, 1994), the filter has a linear phase response, i.e. all
frequency components experience the same time delay through the filter.
There is no risk of distortion of compound signals due to phase shift prob-
lems. Further, knowing the amplitude of the input signal x(n), it is easy to
calculate the maximum amplitude of the signals in different parts of the
system. Hence numerical overflow and truncation problems can easily be
eliminated at design time.

The drawback with the FIR filter is that if sharp cutoff filters are needed
so is a high-order FIR structure which results in long delay lines. FIR filters
having hundreds of taps are however not uncommon today, thanks to low
cost integrated circuit technology and high-speed digital signal processors.

1.2.6 The recursive filter

Recursive filters, sometimes called IIR filters use a feedback structure
(Figure 1.5), and have an infinite impulse response. Borrowing some ideas
from control theory, an IIR filter can be regarded as an FIR filter inserted
in a feedback loop (Figure 1.6). Assume that the FIR filter has the transfer
function G(z); the transfer function of the total feedback structure, i.e. the
IIR filter is then

x(w y(n

—

|\ G(z)

A
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1 1

H = =
@ 1+ G l+az'+az?+ . ayz "

(1.42)

The IIR filter only has poles, hence it is of great importance to choose
the weights g, in such a way that the poles stay inside the unit circle, to
make sure the filter is stable. Since the impulse response is infinite, incoming
samples will be ‘remembered’ by the filter. For this reason, it is not easy to
calculate the amplitude of the signals inside the filter in advance, even if the
amplitude of the input signal is known. Numerical overflow problems may
occur in practise. The advantage of the IIR filter is that it is quite easy to
build filters with sharp cutoff properties, using only a few delay elements.

Pure IIR filters are commonly used for ac coupling and smoothing (aver-
aging) but it is more common to see combinations of FIR and IIR filter
structures. Such a structure is the second-order combination shown in Figure
1.7, having the transfer function

by + bz ' + bz ?

l+az'+az?

H(z) = (1.43)
Of course, higher order structures than two can be built if required by the
passband specifications. It is however more common to combine a number
of structures of the order two in cascade or parallel to achieve advanced
filters. In this way, it is easier to obtain numerical stability and to spot poten-
tial numerical problems.

Note! If a filter has zeros cancelling the poles (i.e. having the same posi-
tion in the complex plane), the total transfer function may have only zeros.
In such a case the filter will have a finite impulse response (FIR), despite

A R
> P
y(n)
b, b, b,
x(n)
_.@ R i R o1
a, a,

-,l,_

Figure 1.7 Combined second order FIR and IIR filter structure. Note:
only two delay elements are needed
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the fact that the structure may be of the recursive type and an infinite impulse
response (IIR) is expected. Hence, a non-recursive (FIR) filter always has a
finite impulse response, while a recursive filter commonly has an infinite
impulse response, but may in some cases have a finite impulse response.

If, for instance, a non-recursive filter is transformed into a recursive struc-
ture, the recursive filter will have the same impulse response as the original
non-recursive filter, i.e. a FIR. Consider for example a straightforward non-
recursive averaging filter having equal weights

1 N—1 .
y(n) = I 2 x(n — i) (1.44)
i=0
The filter has the transfer function
Yz) 1%
D= "N (1.45)

Obviously, this filter has a finite impulse response. To transform this FIR
filter into a recursive form, we try to find out how much of the previous
output signal y(r—1) can be reused to produce the present output signal y(n)

N—1

1 1 N—1
o) = yn=1) = 1 > xn=i) = > xn=i=1)
i=0

i=0

= %x(n) - %x(n—N) (1.46)

The corresponding recursive filter structure can hence be written

Y = $(n=1) 4 x(m) = xn )

=ymn—1) + %(x(n) — x(n—N)) (1.47)

having the transfer function

o YO 1 1
A A

(1.48)

This is indeed a recursive filter having the same impulse response as the
first filter and hence a FIR. Another interesting observation concerns the
implementation of the filter. In the first case, one multiplication and N—1
additions are needed, while in the second case only one multiplication, one
subtraction and one addition is required to perform the same task. Since
digital filters are commonly implemented as computer programs, less compu-
tational burden implies faster execution and shorter processing time. In this
example, the recursive algorithm seems advantageous, but this is not gener-
ally true.
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X(z)

%)

Figure 1.8 An example all-zero lattice filter consisting of two lattice
elements

1.2.7 The lattice filter

Beside the standard filter structures discussed above, there are many special-
ized ones for specific purposes. One example of such a structure is the lattice
filter (Orfandis, 1985; Widrow and Stearns, 1985) which is commonly used
in adaptive processing and particularly in linear prediction. An example lattice
filter consisting of two lattice elements is shown in Figure 1.8. There are
many variations of lattice structures. This example is an all-zero version, i.e.
a structure having a transfer function containing only zeros (no poles), so it
may be regarded as a lattice version of a non-recursive filter (FIR). The filter
has one input and two outputs. The upper output signal is often denoted the
forward prediction error, while the lower output signal is called the back-
ward prediction error. The reason for this will be explained below.

The transfer function, with respect to the forward prediction error, has the
general form

Y, &,
w@=§g=2@w (1.49)
i=0

where b, = 1 and L is the number of lattice elements in the filter. In our
example L = 2, hence

Y,(2) = X(2) + X@z)b,z7' + X(2) byz ? (1.50)

The corresponding difference equation is

Yp(n) = x(n) + bix(n—1) + byx(n—2) = x(n) — %(n) (1.51)

Now, if we assume that we can find filter coefficients b, in such a way that
Y(n) is small or preferably equal to zero for all n, we can interpret X(n) as
the prediction of the input signal x(n) based on x(n—1) and x(n—2) in this
example. Hence, we are able to predict the input signal one step forward
in time. Further, under these assumptions it is easy to see that y.(n) =
x(n) — X(n) is the forward prediction error.
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In a similar way, it can be shown that the transfer function with respect
to the backward prediction error (the lower output signal) has the general
form

Y,(2) < —i
H@z=-—-">-=)>0b_,z"' 1.52
KD = Y = 2 bt (1.52)
where b, = 1 and L is the number of lattice elements in the filter. In our
example L = 2, hence

Y,(2) = X(2)b, + X(z)b,z" " + X(z)z2 (1.53)
The corresponding difference equation is
yp(n) = x(n=2) + x(n)b, + byx(n—1) = x(n—2) — X(n) (1.54)

In this case X(n) is the prediction of the input signal x(n—2) based on x(rn—1)
and x(n). Hence, we are able to predict the input signal one step backward
in time and y,(n) = x(n—2) — x(n) is the backward prediction error.

The procedure of determining the lattice filter coefficients (Orfandis, 1985;
Widrow and Stearns, 1985) x; is not entirely easy and will not be covered
in this book. There are of course other types of filters which are able to
predict signal sample values more than only one step ahead. There are also
more advanced types, e.g. non-linear predictors. An important application
using predictors is data compression. The idea is to use the dependency
between present samples and future samples, thereby reducing the amount
of information.



2.1 System
considerations

2 The analog—digital
interface

2.1.1 General

In most systems, whether electronic, financial or social, most problems arise
in the interface between different sub-parts. This is of course also true for
digital signal processing systems. Most signals in real life are continuous in
amplitude and time, i.e. ‘analog’, but our digital system is working with
amplitude- and time-discrete signals, so-called ‘digital’ signals. Hence, the
input signals entering our system need to be converted from analog to digital
form before the actual signal processing may take place.

For the same reason, the output signals from our digital signal processing
device need to be reconverted back from digital to analog form, to be used,
for instance, in hydraulic valves or loudspeakers or other analog actuators.
These conversion processes, between the analog and digital world add some
problems to our system. These matters will be addressed in this chapter,
together with a brief presentation of some common techniques used to perform
the actual conversion processes.

2.1.2 Encoding and modulation

Assuming we have now converted our analog signals to numbers in the
digital world, there are many ways to encode the digital information into
the shape of electrical signals. This process is called modulation (some-
times ‘line modulation’). The most common method is probably pulse code
modulation (PCM). There are two common ways of transmitting PCM, and
these are parallel and serial mode. In an example of the parallel case, the
information is encoded as voltage levels on a number of wires, called a
parallel bus. We are using binary signals, which means that only two voltage
levels are used, +5 V corresponding to a binary ‘1’ (or ‘true’) and 0 V
meaning a binary ‘0’ (or ‘false’). Hence, every wire carrying 0 V or +5 V
contributes a binary digit (‘bit’). A parallel bus consisting of 8 wires will
hence carry 8 bits, a byte consisting of bits DO, D1 to D7 (Figure 2.1).
Parallel buses are able to transfer high information data rates, since an entire
data word, i.e. a sampled value, is being transferred at a time. This trans-
mission can take place between for instance an analog-to-digital converter
and a digital signal processor. One drawback with parallel buses is that they
require a number of wires, i.e. board space, on a printed circuit board. Another
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Figure 2.1 Example, a byte (96H) encoded (weights in parenthesis) using
PCM in parallel mode (parallel bus, 8 bits, 8 wires) and in serial mode
as an 8 bit pulse train (over one wire)

problem is that we may experience skew problems, i.e. different time delays
on different wires, meaning that all bits will not arrive at the same time in
the receiver end of the bus and data words will be messed up. Since this is
especially true for long, high-speed parallel buses, this kind of bus is only
suited for comparatively short transmission distances. Protecting long parallel
buses from picking up wireless interference or to radiate interference may
also be a formidable problem.

The alternative way of dealing with PCM signals is to use the serial
transfer mode. In this case, the bits are not transferred on different wires in
parallel, but in sequence on a single wire (see Figure 2.1). First, bit DO is
transmitted, then D1 etc. This of course means that the transmission of, for
instance, a byte, requires a longer time than in the parallel case. On the other
hand, only one wire is needed. Board space and skew problems will be elim-
inated and interference problems can be easier to solve.

There are many possible modulation schemes such as pulse amplitude
modulation (PAM), pulse position modulation (PPM), pulse number modu-
lation (PNM), pulse width modulation (PWM) and pulse density modulation
(PDM). All these modulation types are used in serial transfer mode (see
Figure 2.2).

Pulse amplitude modulation (PAM)

The actual amplitude of the pulse represents the number being transmitted.
Hence, PAM is continuous in amplitude but discrete in time. The output of
a sampling circuit with a zero-order hold is one example of a PAM signal.

Pulse position modulation (PPM)

A pulse of fixed width and amplitude is used to transmit the information.
The actual number is represented by the position in time where the pulse
appears in a given time slot.
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Wlon, L1
L, 0o,
0L

Figure 2.2 Different modulation schemes for serial mode data communica-
tion, Pulse Amplitude Modulation, Pulse Position Modulation, Pulse
Number Modulation, Pulse Width Modulation and Pulse Density
Modulation

Pulse number modulation (PNM)

Related to PPM in the sense that we are using pulses with fixed amplitude
and width. In this modulation scheme however, many pulses are transmitted
in every time slot, and the number of pulses present in the slot represents
the number being transmitted.

Pulse width modulation (PWM)

Quite common modulation scheme, especially in power control and power
amplifier contexts. In this case, the width (duration) 7, of a pulse in a given
time slot 7 represents the number being transmitted. If the pulse has the
amplitude 4,, the transmitted number is represented by

T,

A4 @1

In most applications, the amplitude 4, of the pulse is fixed and uninteresting.
Only the time ratio is used in the transmission process. If however, the ampli-
tude of the pulse is also used to represent a second signal, we are using a
combination of PAM and PWM. In some applications, this is a simple way
of achieving a multiplication of two signals.

Pulse density modulation (PDM)
May be viewed as a type of degenerated PWM, in the sense that not only
the width of the pulses changes, but also the periodicity (frequency). The
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number being transmitted is represented by the density or ‘average’ of the
pulses.

A class of variations of PDM called stochastic representation of variables
was tried in the 1960s and 1970s. The idea was to make a ‘stochastic com-
puter’, replacing the analog computer consisting of operational amplifiers
and integrators, working directly with the analog signals. The stochastic
representation has two nice features. Firstly, the resolution can be traded for
time, which implies resolution can be improved by transmitting more pulses
(longer time needed). Secondly, the calculations can be performed easily
using only standard combinatorial circuits. The idea of stochastic represen-
tation experienced a renaissance in the 1980s in some forms of neural network
applications.

So far we have talked about ‘transmission’ of digital information using
different types of modulation. This discussion is of course also relevant for
storing digital information. When it comes to optical (CD) or magnetic
media, there are a number of special modulation methods (Pohlmann, 1989;
Miller, 1998) used, which will not be treated here.

As will be seen later in this chapter, some signal converting and processing
chips and sub-systems may use different modulation methods to communi-
cate. This may be due to standardization or due to the way the actual circuit
works. One example is the so-called CODEC (coder-decoder). For instance,
this is a chip used in telephone systems, containing both an analog-to-digital
converter and a digital-to-analog converter and other necessary functions to
implement a full two-way analog/digital interface for voice signals. Many
such chips use a serial PCM modulation interface. Switching devices and
digital signal processors commonly have built-in interfaces to handle this
type of signal.

2.1.3 Number representation and companding systems

When the analog signal is quantized, it is commonly represented by binary
numbers in the following processing steps. There are many possible repre-
sentations of quantized amplitude values. One way is to use fixed-point
formats like 2’s complement, offset binary or sign and magnitude (Pires,
1989). Another way is to use some kind of floating-point format. The differ-
ence between the fixed point formats can be seen in Table 2.1.

The most common fixed-point representation is 2’s complement. In the
digital signal processing community, we often interpret the numbers as frac-
tions, rather than integers. This will be discussed in subsequent chapters.
Other codes (Pires, 1989) are Gray code and BCD (binary coded decimal).

There are a number of floating-point formats around. They all rely on the
principle of representing a number in three parts: a sign bit, an exponent
and a mantissa. One such common format is the IEEE Standard 754.1985
single precision 32 bit format, where the floating point number is represented
by one sign bit, an 8 bit exponent and a 23 bit mantissa. Using this method,
numbers between +3.37-10% and +8.4:1077 can be represented using only
32 bits. Note however that the use of floating-point representation only
expands the dynamic range at the expense of the resolution and system
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Table 2.1 Some fixed point binary number formats

Integer 2’s Complement  Offset binary  Sign and magnitude
7 0111 1111 0111
6 0110 1110 0110
5 0101 1101 0101
4 0100 1100 0100
3 0011 1011 0011
2 0010 1010 0010
1 0001 1001 0001
0 0000 1000 0000

-1 1111 0111 1000
-2 1110 0110 1001
-3 1101 0101 1010
—4 1100 0100 1011
=5 1011 0011 1100
-6 1010 0010 1101
=7 1001 0001 1110
-8 1000 0000 1111

complexity. For instance, a 32 bit fixed-point system may have better reso-
lution than a 32 bit floating-point system, since in the floating-point case,
the resolution is determined by the word length of the mantissa being only
23 bits. Another problem encountered when using the floating-point systems
is the signal-to-noise-ratio (SNR). Since the size of the quantization steps
will change as the exponent changes, so will the quantization noise. Hence,
there will be discontinuous changes in SNR at specific signal levels. In an
audio system, audible distortion (Pohlmann, 1989) may result from the modu-
lation and quantization noise created by barely audible low-frequency signals
causing numerous exponent switches.

From the above, we realize that fixed point (linear) systems yields uniform
quantization of the signal. Meanwhile floating-point systems, due to the range
changing, provide a non-uniform quantization. Non-uniform quantization is
often used in systems where a compromise between word length, dynamic
range and distortion at low signal levels has to be found. By using larger
quantization steps for larger signal levels and smaller steps for weak signals,
a good dynamic range can be obtained without causing serious distortion at
low signal levels or requiring unreasonable word lengths (number of quan-
tization steps). A digital telephone system may serve as an example where
small signal levels are the most probable ones, thus causing the need for
good resolution at low levels to keep distortion low. On the other hand,
sometimes stronger signals will be present, and distortion due to saturation
is not desirable. Due to the large number of connections in a digital tele-
phone switch, the word length must be kept low, commonly not more than
8 bits.

Another way of accomplishing non-uniform quantization is compand-
ing (Pohlmann, 1989), a method which is not being ‘perfect’, but easy to
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input output

compressor digital system expander
uniform quantization

Figure 2.3 A companding system consisting of a compressor, a common
digital system using uniform quantization intervals and an expander.
NOTE! The signal processing algorithms used must take compression and
expansion into account

implement. The underlying idea is to use a system utilizing common uniform
quantization and reconstruction. At the input of the system a compressor is
connected and at the output of the system an expander (hence, compressor/
expander: ‘compander’) is added (see Figure 2.3).

The compressor is mainly a non-linear amplifier, often logarithmic, having
a lower gain for stronger signals than for weaker ones. In this way, the
dynamic range of the input signal is compressed. The expander is another
non-linear amplifier having a function being the inverse of the compressor.
Hence, the expander ‘restores’ the dynamic range of the signal at the output
of the system. The total system will now act as a system using non-uniform
quantization. Note: the signal processing algorithms in the system must take
the non-linearity of the compressor and expander into account.

For speech applications, typically telephone systems, there are two common
non-linearities (Pohlmann, 1989) used: the p-law and the A-law. The p-law
is usually used in the USA and the logarithmic compression characteristic
has the form

_ log (1 + ux)
log (1 + w)

where y is the magnitude of the output, x the magnitude of the input and p
a positive parameter defined to yield the desired compression characteristic.
A parameter value of 0 corresponds to linear amplification, i.e. no compres-
sion and uniform quantization. A value of ©=255 is often used to encode
speech signals (see Figure 2.4). In such a system, an 8 bit implementation
can achieve a good SNR and a dynamic range equivalent to that of a 12 bit
system using uniform quantization. The inverse function is used for expan-
sion.

The A-law is primarily used in Europe. Its compression characteristic has
the form

forx=0 (2.2)

Ax 1
7 f0r0$x<*
1 + log (4) A
y=
1 + log (4 1
Itlogd) -1 _

1 + log (4) A
(2.3)
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Figure 2.4 The u-law (left) and A-law (right) transfer functions for
different parameter values

where y is the magnitude of the output, x the magnitude of the input and 4
is a positive parameter defined to yield the desired compression character-
istic.

Figure 2.4 shows p-law and A-law transfer functions for some values of
p and 4. Companding techniques are also used in miscellaneous noise reduc-
tion systems.

From now on we will only discuss systems using uniform quantization
intervals. The task of the digital to analog converter (DAC) is to convert a
numerical, commonly binary, so-called ‘digital’ value, into an ‘analog’ output
signal. The DAC is subject to many requirements such as offset, gain,
linearity, monotonicity and settling time.

Offset is the analog output when the digital input calls for a zero output.
This should of course ideally be zero. The offset error affects all output
signals with the same additive amount and in most cases it can be suffi-
ciently compensated for by external circuits or by trimming the DAC.

Gain or scale factor, is the slope of the transfer curve from digital numbers
to analog levels. Hence, the gain error is the error in the slope of the transfer
curve. This error affects all output signals by the same percentage amount,
and can normally be (almost) eliminated by trimming the DAC or by means
of external circuitry.

Linearity can be sub-divided into integral linearity (relative accuracy) and
differential linearity. Integral linearity error is the deviation of the transfer
curve from a straight line. This error is not possible to adjust or compensate
for easily.
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Differential linearity measures the difference between any two adjacent
output levels. If the output level for one step differs from the previous step
by exactly the value corresponding to one LSB (least significant bit) of the
digital value, the differential non-linearity is zero. Differential linearity errors
cannot be eliminated easily.

Monotonicity implies that the analog output must increase as the digital
input increases and decrease as the input decreases for all values over the
specified signal range. Non-monotonicity is a result of excess differential
non-linearity (= 1 LSB). This implies that a DAC which has a differential
non-linearity specification of a maximum of +0.5 LSB is more tightly spec-
ified than one for which only monotonicity is guaranteed. Monotonicity is
essential in many control applications to maintain precision and to avoid
instabilities in feedback loops.

Absolute accuracy error is the difference between the measured analog
output from a DAC compared to the expected output for a given digital
input. The absolute accuracy is the compound effect of the offset error, gain
error and linearity errors described above.

Settling time of a DAC is the time required for the output to approach a
final value within the limits of an allowed error band for a step change in
the digital input. Measuring the settling time may be difficult in practice,
since some DACs produce glitches when switching from one level to another.
These glitches, being considerably larger than the fraction of the 1 LSB step
of interest, may saturate, for instance, an oscilloscope input amplifier, thereby
causing significant measuring errors. DAC settling time is a parameter of
importance mainly in high sampling rate applications.

One important thing to remember is that the parameters above may be affected
by supply voltage and temperature. In DAC data sheets, the parameters are
only specified for certain temperatures and supply voltages, e.g. normal room
temperature (+25° C) and nominal supply voltage. Considerable deviations
from the specified figures may occur in a practical system.

2.2.1 Multiplying D/A converters

This is the most common form of DAC. The output is the product of an
input current or reference voltage and an input digital code. The digital infor-
mation is assumed to be in PCM parallel format. There are also DACs with
a built-in shift register circuit, converting serial PCM to parallel. Hence,
there are multiplying DACs for both parallel and serial transfer mode PCM
available. Multiplying DACs have the advantage of being fast. In Figure 2.5
a generic current source multiplying DAC is shown. The bits in the input
digital code are used to turn on a selection of current sources, which are
then summed to obtain the output current. The output current can easily be
converted into an output voltage using an operational amplifier.

Another way of achieving the different current sources in Figure 2.5 would
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MSB LSB

Figure 2.5 A4 generic multiplying DAC using current sources controlled by
the bits in the digital input code

be to use a constant input reference voltage U, and a set of resistors. In
this way, the currents for the different branches would simply be obtained
by

Ure Ure
R, VIR

1

where R, is the resistance of the resistor in the i-th branch being controlled
by the i-th bit: b, being 1 or 0. The word length of the digital code is NV and
i = 0 is LSB. The total output current can then be expressed as the sum of
the currents from the branches

N—1 U ; N—1 b
Ly =2 1= 2 o 25)
i=0

N—1 i=0

Building such a DAC in practice would however cause some problems.
This is especially true as the word length increases. Assume for instance
that we are to design a 14 bit DAC. If we choose the smallest resistor, i.e.
the resistor R; corresponding to i = N — 1 = 13 to be 100 ohms, the resistor
R, will then need to be R, = 2'3-100 = 819200 ohms. Now, comparing the
currents flowing in branch 0 and 13 respectively we find: /, = U,,,/819200
A and ;5 = U,,/100 A. To obtain good differential linearity, the error of
current /,; (corresponding to the MSB (most significant bit)) must be smaller
than the smallest current /; (corresponding to the LSB). Hence the resistance
of R; is required to be correct within £122 ppm (parts per million). Another
problem is that different materials and processes may be required when
making resistors having high or low resistance. This will result in resistors
in the DAC having different ageing and temperature stability properties, thus
making it harder to maintain specifications under all working conditions.

It is possible to achieve the required precision by laser trimming, but there
is a smarter and less expensive way to build a good DAC using an R-2R
ladder structure. In an R—2R ladder, there are considerably more than N
resistors, but they all have the same resistance R and are hence easier to
manufacture and integrate on a single silicon chip. The R—2R ladder struc-
ture uses current division. A simple 3 bit R—2R ladder DAC is shown in
Figure 2.6. All resistors R1 to R11 have the same resistance R. As can be



The analog—digital interface 29

U, »p, R9 , R0 p R7

RSH RS

Py
SN
LI

bZ b] b0
> R —
0 1 j_ 0 R11
) R
MSB LSB *
out

Figure 2.6 An example 3 bit, R-2R ladder multiplying DAC, with voltage
output, all resistors have the same resistance, R. Input digital code: 010

seen from the figure, it is quite common that two resistors are connected in
series, e.g. R1-R2, R3-R4, R5-R6 and R7-R8. Each of these pairs can of
course be replaced by a single resistor having the resistance 2R. That is why
this structure is called R—2R ladder, it can be built simply by using two
resistance values: R and 2R.

The switches b,, b,, b, are controlled by bits 2, 1 and 0 in the digital
code. If a bit is set to one, the corresponding switch is in its right position,
i.e. switched to the negative input of the operational amplifier. If the bit is
set to zero, the switch is in its left position, connecting the circuit to ground.
The negative input of the operational amplifier is a current summation point,
and due to the feedback amplifier having its positive input connected to
ground, the negative input will be held at practically zero potential, i.e.
ground (‘virtual ground’). Hence, the resistor ladder circuit will be loaded
in the same way, the position of the switches does not matter.

Now, let us examine the resistor ladder structure a bit more closely. Starting
in junction point p, we conclude that the current flowing through resistor
R10 will be divided into the two branches R5—-R6 and R7-R8 respectively.
As seen above, both branches have the same resistance namely 2R. This
means that the current will be divided equally in the two branches, i.e. half
of the current passing through R10 will pass through the switch b,. Further,
if we calculate the total resistance of the circuit R5—R6 in parallel with
R7-R8, we will find it to be R. If we now move to point p, we will have
a similar situation as in p, The total resistance of RS5, R6, R7 and
R8 is R. This combination is connected in series with R10 having resistance
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R ohms, hence the total resistance in the circuit passing through R10 to
ground will be 2R. Since the total resistance through R3-R4 is also 2R, the
current flowing through resistor R9 will be divided equally in the two branches
as in the earlier case. One half of the current will pass through switch b,
and one half will continue down the ladder via R10. For every step in the
ladder, the same process is repeated. The current created by the reference
voltage U, will be divided by two for every step in the ladder, and working
with binary numbers, this is exactly what we want.

Assuming the operational amplifier to be an ideal one (zero offset voltage,
zero bias current and infinite gain) the output voltage from the DAC can
then be written

144< b, bﬂ lﬁdfi b;
out 2 2 2 4 2 ~ 2N—1—1 ( )

Another way of building a DAC is by utilizing charge redistribution. This
technique is quite common in CMOS (complementary metal oxide semi-
conductor) single-chip computers and the DAC can be implemented on a
silicon chip in the same way as, for instance, switched capacitor filters. This
type of DAC makes use of the fact that if a fixed voltage U, is applied to
a (variable) capacitor C, the charge in the capacitor will be

After charging the capacitor C, it is disconnected from the voltage source
and connected to another (discharged) capacitor C,. The electric charge Q
is then redistributed between the two capacitors and the voltage over the
capacitors will be

0 C

U= =U,,
c+c, C+C

(2.8)

An example of a generic charge redistribution DAC is shown in Figure 2.7.
The DAC works in two phases. In phase 1, the reset phase, all switches that
are connected to ground close, discharging all capacitors. In phase 2, switch
S'is opened and the remaining switches are controlled by the incoming digital
word. If a bit b, is one, the corresponding capacitor C, = C/2*!- is connected
to U, else it is connected to ground.

It is quite straightforward to see how the DAC works. In phase 2, when
the capacitors are charged and the total capacitance C,, as seen from the
voltage source U, is

c
CO}'IE (Czero + 21\7—1)
Cio = (2.9)

C
Cone + (CZ(H‘O + 2]\/_1)

where C_  is the total capacitance of the capacitors corresponding to the bits

one

that are 1 in the digital word (these capacitors will appear to be connected
in parallel) and C,,,, is the total capacitance of the capacitors corresponding

ero
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Figure 2.7 A generic charge redistribution DAC

to the bits that are 0. Hence the total charge of the circuit will be

Ot = Ciot Uy (2.10)
Now, the output voltage U, is the voltage over the capacitors connected to
ground

0. Ure CO
U, = Qoo = A 2.11)

out C C
<Czer0 + 2N—1> (Czem + 2N—1>

Inserting equation (2.9) into equation (2.11) and expressing the capacitances
as sums, we finally obtain the output voltage of the DAC as a function of
the bits b, in the digital code

C
e (c - )

one zero 2N—1
U(Jut = C C
<Czero + 2N—1> (Cone + <Czero + 2N—1)>
Ure Cone
= A (2.12)
Cane + Czero + 2N—1
N—1
bi
UrefC E 2N—1—i N b
— i=0 _ i
- N—1 1 C - Ur@fz) 2N—1—[
C IZ() 2N—1—i + 2N—1 .

There are many alternative charge based circuits around. It is for instance
possible to design a type of C-2C ladder circuit.
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2.2.2 Integrating D/A converters

This class of DACs are also called counting DACs. These DACs are often
slow compared to the previous type of converters. On the other hand, they
may offer high resolution using quite simple circuit elements. No high preci-
sion resistors etc. are needed.

The basic building blocks are: an ‘analog accumulator’ usually called an
integrator, a voltage (or current) reference source, an analog selector, a digital
counter and a digital comparator. Figure 2.8 shows an example of an inte-
grating DAC. The incoming N bits of PCM data (parallel transfer mode) are
fed to one input of the digital comparator. The other input of the comparator
is connected to the binary counter having N bits, counting pulses from a
clock oscillator running at frequency f,

=2V (2.13)

where f; is the sampling frequency of the system and N is the word length.
Now, assume that the counter starts counting from 0. The output of the
comparator will be zero and there will be a momentary logic one output
from the comparator when the counter digital value equals the digital input
PCM code. This pulse will set the bistable flip-flop circuit. The flip-flop will
then be reset when the counter wraps around from 2¥—1 to 0 and a carry
signal is generated.

C
analog selector H
_(]r(.{f' R
— o
O 1 | -
+(Jref + out
PWM L integrator
flip-flop
carry
1

binary counter [&«———

i

digital comparator

T

digital input code PCM

equality pulse PPM

Figure 2.8 An example integrating (counting) DAC (in a real world
implementation, additional control and synchronization circuits are

needed)
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The output from the flip-flop controls the analog selector in such a way
that when the flip-flop is reset, —U,,, is connected to the input of the inte-
grator, and when the flip-flop is set, +U,,, is selected. Note, that the output
of the comparator is basically a PPM version of the PCM input data, and
the output of the flip-flop is a PWM version of the same quantity. Hence,
if we happen to have the digital code available in PWM or PPM format
instead of parallel PCM, the circuit can be simplified accordingly.

The integrator simply averages the PWM signal presented to the input,
thus producing the output voltage U,,,. The precision of this DAC depends
on the stability of the reference voltages, the performance of the integrator
and the timing precision of the digital parts, including the analog selector.

There are many variants of this basic circuit. In some types, the incoming
PCM data is divided into a ‘high’ and ‘low’ half, controlling two separate
voltage or current reference selectors. The reference voltage controlled by
the ‘high’ data bits is higher than the one controlled by the ‘low’ data bits.

This type of converter is often denoted a dual slope converter.

2.2.3 Bitstream D/A converters

This type of DAC relies on the oversampling principle, i.e. using a consid-
erably higher sampling rate than required by the Nyquist criteria. Using this
method, sampling rate can be traded for accuracy of the analog hardware
and the requirements of the analog reconstruction filter on the output can be
relaxed. Oversampling reduces the problem of accurate N bit data conver-
sion to a rapid succession of, for instance, 1 bit D/A conversions. Since the
latter operation involves only an analog switch and a reference voltage source,
it can be performed with high accuracy and linearity.

The concept of oversampling is to increase a fairly low sampling frequency
to a higher one by a factor called the OSR (oversampling ratio). Increasing
the sampling rate implies that more samples are needed than are available
in the original data stream. Hence, ‘new’ sample points in between the orig-
inal ones have to be created. This is done by means of an interpolator, also
called an oversampling filter (Pohlmann, 1989). The simplest form of inter-
polator creates new samples by making a linear interpolation between two
‘real’ samples. In many systems, more elaborate interpolation functions are
often used, implemented as a cascade of digital filters. As an example, an
oversampling filter in a CD player may have 16 bit input samples at 44.1
kHz sampling frequency and an output of 28 bit samples at 176.4 kHz, i.c.
an OSR of 4.

The interpolator is followed by the truncator or M bit quantizer (Figure
2.9). The task of the truncator is to reduce the number of N bits in the
incoming data stream to M bits in the outgoing data stream (N > M). The
truncation process is simply performed by taking the M most significant bits
of the incoming N bits. This process however creates a strong quantization
noise in the passband of interest. This is counteracted by means of the noise
shaping feedback loop, consisting of a delay element and an adder. The
M—N least significant bits are fed back through the delay element and
subtracted from the incoming data stream. Hence, the signal transfer func-
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Figure 2.9 A4 truncator with noise shaping feedback, input N bits, trun-
cated to output M bits

tion of the truncator equals 1 for the signal, but constitutes a high-pass filter
having the transfer function

H(z) =

4o (2.14)
for the quantization noise. The noise level in the interesting passband is
attenuated, while at higher frequencies, the noise increases. The higher
frequency noise components will however be attenuated by the analog recon-
struction filter following the DAC. To conclude our example above, the CD
player may then have a truncator with N = 28 bits and M = 16 bits. The
sampling rate of both the input and output data streams are 176.4 kHz. In
this example we still have to deal with 16 bits data in the DAC, but we
have simplified the analog reconstruction filter on the output.

Oversampling could be used to derive yet one more advantage. Over-
sampling permits the noise shaper to transfer information in the 17th and
18th bits of the signal into a 16 bit output with duty cycle modulation of
the 16th bit. In this way a 16 bit DAC can be used to convert an 18 bit
digital signal. The 18 bit capability is retained because the information in
the two ‘surplus’ bits is transferred in the four times oversampled signal
(OSR = 4). Or, in other words, the averaged (filtered) value of the quarter-
length 16 bit samples is as accurate as that of 18 bit samples at the original
sampling rate.

Now, if the truncator is made in such a way that the output data stream
is 1 bit, i.e. M = 1, this bitstream is a PDM version of the original N bit
wide data stream. Hence, a one bit DAC can be used to convert the digital
signal to its analog counterpart (see Figure 2.10).

To improve the resolution, a dither signal is added to the LSB. This is
a pseudo random sequence, a kind of noise signal. Assume that the digital
oversampled value lies somewhere in between two quantization levels. To
obtain an increased accuracy, smaller quantization steps, i.e. an increased
word length (more bits) is needed. Another way of achieving improved reso-
lution is to add random noise to the signal. If the signal lies half way between
two quantization levels, the signal plus noise will be equally probable to
take on the high and low quantized value respectively. The actual level of
the signal will hence be represented in a stochastic way. Due to the aver-
aging process in the analog reconstruction low-pass filter, a better estimate
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Figure 2.10 A PDM bitstream 1 bit DAC, with (dither) pseudo noise
added

of the actual signal level will be obtained than without dither. If the signal
lies closer to one quantization level than the other, the former quantized
value will be more probable and hence, the average will approach this quan-
tized level accordingly.

Dither signals are also used in control systems, including actuators like
electrohydraulic valves. In this case, the dither signal may be a single sinus
tone, superimposed on the actuator control signal. The goal is to prohibit
the mechanics of the valve to ‘hang up’ or stick.

2.2.4 Sample-and-hold and reconstruction filters

The output from a DAC can be regarded as a PAM representation of the
digital signal at the sampling rate. An ideal sample represents the value of
the corresponding analog signal in a single point in time. Hence, in an ideal
case, the output of a DAC is a train of impulses, each having an infinites-
imal width, thus eliminating the aperture error. The aperture error is caused
by the fact that a sample in a practical case does occupy a certain interval
of time. The narrower the pulse width of the sample, the less the error. Of
course, ideal DACs cannot be built in practice.

Another problem with real world DACs is that during the transition from
one sample value to another, glitches, ringing and other types of interfer-
ence may occur. To counteract this, a sample-and-hold device (S&H or
S/H) is used. The most common type is the zero-order hold (ZOH) presented
in Chapter 1. This device keeps the output constant until the DAC has settled
on the next sample value. Hence, the output of the S/H is a staircase wave-
form approximation of the sampled analog signal. In many cases, the S/H
is built into the DAC itself. Now, the S/H having a sample pulse impulse
response, has a corresponding transfer function of the form

_sin(7fT)
a wfT

where T is the sampling rate, i.e. the holding time of the S/H. The function
(2.15) represents a low-pass filter with quite mediocre passband properties.
In Chapter 1 we concluded that the function required ideally to reconstruct
the analog signal would be an ideal low-pass filter, having a completely flat
passband and an extremely sharp cutoff at the Nyquist frequency. Obviously,
the transfer function of the S/H is far from ideal. In many cases an analog
reconstruction filter or smoothing filter (or anti-image filter) is needed in

H(f) = sinc (fT) (2.15)
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2.3 Analog to digital
conversion

the signal path after the S/H, to achieve a good enough reconstruction of
the analog signal. Since the filter must be implemented using analog compo-
nents, it tends to be bulky and expensive and it is preferably kept simple,
of the order of 3 or lower. A good way of relaxing the requirements of the
filter is to use oversampling as described above. There are also additional
requirements on the reconstruction filter depending on the application. In a
high quality audio system, there may be requirements regarding linear phase
shift and transient response, while in a feedback control system time delay
parameters may be crucial.

In most cases a reconstruction filter is necessary. Even if a poorly filtered
output signal has an acceptable quality, the presence of imaged high frequency
signal components may cause problems further down the signal path. For
example, assume that an audio system has the sampling frequency 44.1 kHz
and the sampled analog sinusoidal signal has a frequency of f;, = 12 kHz,
i.e. well below the Nyquist frequency. Further, the system has a poor recon-
struction filter at the output and the first high frequency image signal
component f, = 44.1 — f, = 44.1 — 12 = 32.1 kHz leaks through. Now, the
32.1 kHz signal is not audible and does not primarily cause any problems.
If however, there is a non-linearity in the signal path, for instance an analog
amplifier approaching saturation, the signal components will be mixed. New
signal components at lower frequencies may be created, thus causing audible
distortion. For instance, a third-order non-linearity, quite common in bipolar
semi-conductor devices, will create the following ‘new’ signal components
due to intermodulation (mixing):

f,=81kHz  f,=360kHz f,=522kHz
Jo=56.1kHz f,=762kHz  f; =963 kHz

Note that the first frequency, 8.1 kHz, is certainly audible and will cause
distortion. The high-frequency components can of course also interfere with
e.g. bias oscillators in analog tape recorders and miscellaneous radio fre-
quency equipment, causing additional problems.

Finally, again we find an advantage using oversampling techniques. If the
sampling frequency is considerably higher than twice the Nyquist frequency,
the distance to the first mirrored signal spectrum will be comparatively large
(see Chapter 1). The analog filter now needs to cut off at a higher frequency,
hence the gain can drop off more slowly with frequency and a simpler filter
will be satisfactory.

The task of the analog to digital converter (ADC) is the ‘inverse’ of the
DAC, i.e. to convert an ‘analog’ input signal into a numerical, commonly
binary so called ‘digital’ value. The specifications for an ADC are similar
to those for a DAC, i.e. offset, gain, linearity, missing codes, conversion
time and so on.

Offset error is the difference between the analog input level which causes
a first bit transition to occur and the level corresponding to 1/2 LSB. This
should of course ideally be zero, i.e. the first bit transition should take place
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at a level representing exactly 1/2 LSB. The offset error affects all output
codes with the same additive amount and can in most cases be sufficiently
compensated for by adding an analog DC level to the input signal and/or
by adding a fixed constant to the digital output.

Gain, or scale factor, is the slope of the transfer curve from analog levels
to digital numbers. Hence, the gain error is the error in the slope of the
transfer curve. It affects all output codes by the same percentage amount,
and can normally be counteracted by amplification or attenuation of the
analog input signal. Compensation can also be performed, by multiplying
the digital number with a fixed-gain calibration constant.

As pointed out above, offset and gain errors can, to a large extent, be
compensated for by preconditioning the analog input signal or by processing
the digital output code. The first method requires extra analog hardware, but
has the advantage of utilizing the ADC at its best. The digital compensation
is often easier to implement in software, but cannot fully eliminate the occur-
rence of unused quantization levels and/or overloading of the ADC.

Linearity can be sub-divided into integral linearity (relative accuracy) and
differential linearity.

Integral linearity error is the deviation of code midpoints of the transfer
curve from a straight line. This error is not possible to adjust or compen-
sate for easily.

Differential linearity measures the difference between input levels corre-
sponding to any two adjacent digital codes. If the input level for one step
differs from the previous step by exactly the value corresponding to one
LSB, the differential non-linearity is zero. Differential linearity errors cannot
be eliminated easily.

Monotonicity implies that increasing the analog input level never results in
a decrease of the digital output code. Non-monotonicity may cause stability
problems in feedback control systems.

Missing codes in an ADC mean that some digital codes can never be gener-
ated. This problem indicates that differential non-linearity is larger than 1
LSB. Missing codes are generally caused by a non-monotonic behaviour of
the internal DAC. As will be shown in later sections, some types of ADCs
use a built-in DAC.

Absolute accuracy error is the difference between the actual analog input
to an ADC compared to the expected input level for a given digital output.
The absolute accuracy is the compound effect of the offset error, gain error
and linearity errors described above.

Conversion time of an ADC is the time required by the ADC to perform
a complete conversion process. The conversion is commonly started by a
‘strobe’, or synchronization signal, controlling the sampling rate.
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As for DACs, it is important to remember that the parameters above may
be affected by supply voltage and temperature. Data sheets only specify the
parameters for certain temperatures and supply voltages. Significant devia-
tions from the specified figures may hence occur in a practical system.

2.3.1 Anti-aliasing filters and sample-and-hold devices

As pointed out in Chapter 1, the process of sampling the analog time-contin-
uous signal requires an efficient anti-aliasing filter to obtain an unambiguous
digital, time-discrete representation of the signal. Ideally, a low-pass filter
having a flat passband and extremely sharp cutoff at the Nyquist frequency
is required. Of course, building such a filter in practice is impossible and
approximations and compromises thus have to be made. The problem is quite
similar to building the ‘perfect’ reconstruction filter.

The first signal processing block of a digital signal processing system is
likely to be an analog low-pass anti-aliasing filter. Depending on the appli-
cation, different requirements on the filter may be stated. In audio systems,
linear phase response may for instance be an important parameter, while in
a digital DC-voltmeter instrument, a low offset voltage may be imperative.
Designing proper anti-aliasing filters is, in the general case, not a trivial task,
especially if practical limitations such as circuit board space and cost also
have to be taken into account.

Anti-aliasing filters are commonly implemented as active filters using feed-
back operational amplifiers or as switched capacitor (SC) filters. One way
to relax the requirements of the analog anti-aliasing filter is to use over-
sampling techniques (see also reconstruction filters for DAC above). In this
case, the signal is sampled with a considerably higher rate than required to
fulfill the Nyquist criteria. Hence, the distance to the first mirrored signal
spectrum on the frequency axis will be much longer than if sampling were
performed at only twice the Nyquist frequency. Figure 2.11 shows an example
of an oversampled system. This could for instance be an audio system, where
the highest audio frequency of interest would be about 20 kHz. The sampling
rate for such a system could be f, = 48 kHz. Without oversampling, the
analog anti-aliasing filter should hence have a gain of about 1 at 20 kHz,
and an attenuation of say 30 dB at 24 kHz. This corresponds to a slope of
roughly 150 dB/octave, quite an impressive filter and very hard to imple-
ment using analog components.

analog o
input digital
output
analog anti- R .| digital anti- . .
aliasing filter | ADC | aliasing filter > decimator
sampling rate Df; sampling rate f;

Figure 2.11 D times oversampling ADC relaxing demands on the analog
anti-aliasing filter
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Now, assume that we sample the analog input signal using Df, = 16 x 48
= 768 kHz, i.e. using an OSR of D = 16. To avoid aliasing distortion in this
case, the analog anti-aliasing filter has quite relaxed requirements: gain of 1
at 20 kHz (as before) and attenuation of 30 dB at 384 kHz, which corre-
sponds to a slope of 1.6 dB/octave. Such a filter is very easy to realize using
a simple passive RC network.

Following the ADC, there is another anti-aliasing filter having the same
tough requirements as stated previously. On the other hand, this filter is a
digital one, being implemented using digital hardware or as software in a
digital signal processor (DSP). Designing a digital filter having the required
passband characteristics is not very hard. Preferably, a FIR filter structure
may be used, having a linear phase response.

At last, following the digital anti-aliasing filter is a decimator or down-
sampler. To perform the downsampling (Pohlmann, 1989), the device only
passes every D-th sample from input to output and ignores the others, hence

y(n) = x(Dn) (2.16)

In our example the decimator only takes every 16th sample and passes it
on, i.e. the sampling rate is now brought back to f, = 48 kHz.

Another detail that needs to be taken care of when performing analog-to-
digital conversion is the actual sampling of the analog signal. An ideal
sampling implies measuring the analog signal level during an infinitely short
period of time (the ‘aperture’). Further, the ADC requires a certain time to
perform the conversion and during this process the analog level must not
change or conversion errors may occur. This problem is solved by feeding
the analog signal to a sample-and-hold device (S/H) before it reaches the
ADC. The S/H will take a quick snapshot sample and hold it constant during
the conversion process. Many ADCs have a built-in S/H device.

2.3.2 Flash A/D converters

Flash-type (or parallel) ADCs are the fastest, because of the short conver-
sion time and can hence be used for high sampling rates. Hundreds of
megahertz is common today. On the other hand, these converters are quite
complex, they have limited word length and hence resolution (10 bits or
less), they are quite expensive and often suffer from considerable power
dissipation.

The block diagram of a simple 2 bit flash ADC is shown in Figure 2.12.
The analog input is passed to a number of analog level comparators in parallel
(i.e. a bank of fast operational amplifiers with high gain and low offset). If
the analog input level U,, on the positive input of a comparator is greater
than the level of the negative input, the output will be a digital ‘one’. Else,
the comparator outputs a digital ‘zero’. Now, a reference voltage U, is fed
to the voltage divider chain, thus obtaining a number of reference levels

k
U= 5 Urer 2.17)
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Figure 2.12 An example 2 bit flash ADC

where k is the quantization threshold number and N is the word length of
the ADC. The analog input voltage will hence be compared to all possible
quantization levels at the same time, rendering a ‘thermometer’ output of
digital ones and zeros from the comparators. These ones and zeros are then
used by a digital decoder circuit to generate digital parallel PCM data on
the output of the ADC .

As pointed out above, this type of ADC is fast, but is hard to build for
large word lengths. The resistors in the voltage divider chain have to be
manufactured with high precision and the number of comparators and the
complexity of the decoder circuit grow fast as the number of bits is increased.

2.3.3 Successive approximation A/D converters

These ADCs, also called SAR (successive approximation register) converters
are the most common ones today. They are quite fast, but not as fast as flash
converters. On the other hand they are easy to build and inexpensive, even
for larger word lengths. The main parts of the ADC are: an analog comparator,
a digital register, a DAC and some digital control logic (see Figure 2.13).
Using the analog comparator, the unknown input voltage U,, is compared to
a voltage U, created by a DAC, being a part of the ADC. If the input
voltage is greater than the voltage coming from the DAC, the output of the
comparator is a logic ‘one’, else a logic ‘zero’. The DAC is fed an input
digital code from the register, which is in turn controlled by the control
logic. Now, the principle of successive approximation works as follows.



The analog—digital interface 41

Assume that the register contains all zeros to start with, hence, the output
of the DAC is U, = 0. Now, the control logic will start to toggle the MSB
to a one, and the analog voltage coming from the DAC will be half of the
maximum possible output voltage. The control logic circuitry samples the
signal coming from the comparator. If this is a one, the control logic knows
that the input voltage is still larger than the voltage coming from the DAC
and the ‘one’ in the MSB will be left as is. If, on the other hand, the output
of the comparator has turned zero, the output from the DAC is larger than
the input voltage. Obviously, toggling the MSB to a one was just too much,
and the bit is toggled back to zero. Now, the process is repeated for the
second most significant bit and so on until all bits in the register have been
toggled and set to a one or zero.

Hence, the SAR ADC always has a constant conversion time. It requires
N approximation cycles, where N is the word length, i.e. the number of bits
in the digital code. SAR-type converters of today may be used for sampling
rates up to one megahertz.

An alternative way of looking at the converter is to see it as a DAC +
register put in a control feedback loop. We try to ‘tune’ the register to match
the analog input signal by observing the error signal from the comparator.
Note that the DAC can of course be built in a variety of ways (see previous
sections). Today, charge redistribution-based devices are quite common, since
they are straightforward to implement using CMOS technology.

2.3.4 Counting A/D converters

An alternative, somewhat simpler ADC type is the counting ADC. The
converter is mainly built in the same way as the SAR converter (Figure 2.13)
but the control logic and register is simply a binary counter. The counter is
reset to all zeros at the start of a conversion cycle, and is then incremented
step by step. Hence, the output of the DAC is a staircase ramp function.
The counting maintains until the comparator output switches to a zero and
the counting is stopped.

The conversion time of this type of ADC depends on the input voltage,
the higher the level, the longer the conversion time (counting is assumed to
take place at a constant rate). The interesting thing about this converter is
that the output signal of the comparator is a PWM representation of the
analog input signal. Further, connecting an edge triggered monostable flip-
flop to the comparator output, a PPM representation can also be obtained.

This type of converter is not very common. Using only a DAC and a
comparator, the digital part can easily be implemented as software using a
microcontroller. SAR type converters can of course also be implemented in
the same way as well as ‘tracking’ type converters.

Tracking type converters can be seen as a special case of the generic
counting converter. The tracking converter assumes that the change in the
input signal level between consecutive samples is small. The counter is not
restarted from zero at every conversion cycle, but starts from the previous
state. If the output from the comparator is one, the counter is incremented
until the comparator output toggles. If the output is zero when conversion
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Figure 2.13 An example Successive Approximation (SAR) ADC (simplified
block diagram)

is initiated, the counter is decremented until the output of the comparator
toggles.

2.3.5 Integrating A/D converters

Integrating ADCs (sometimes also called counting converters) are often
quite slow, but inexpensive and accurate. A common application is digital
multimeters and similar equipment, where precision and cost are more impor-
tant than speed.

There are many different variations of the integrating ADC, but the main
idea is that the unknown analog voltage (or current) is fed to the input of
an analog integrator with a well-known integration time constant 7 = RC.
The slope of the ramp on the output of the integrator is measured by taking
the time between the output level passing two or more fixed reference
threshold levels. The time needed for the ramp to go from one threshold to
the other is measured by starting and stopping a binary counter running at
a constant speed. The output of the counter is hence a measure of the slope
of the integrator output, which in turn is proportional to the analog input
signal level. Since this type of ADC commonly has a quite long conversion
time, i.e. integration time, the input signal is required to be stable or only
slowly varying. On the other hand, the integration process will act as a low-
pass filter, averaging the input signal and hence suppressing interference
superimposed on the analog input signal to a certain extent.

Figure 2.14 shows a diagram of a simplified integrating ADC. The basic
function (ramp method) works as follows. Initially, the input switch is
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Figure 2.14 A simplified integrating ADC

connected to ground to reset the analog integrator. The switch then connects
the unknown analog input voltage —U,, to the input of the integrator. The
output level of the integrator will then start to change as

r—t r—t
Ui = U, + U, 04 g—0

" RC RC (2.18)

where U, is the initial output signal from the integrator at time #, and ¢ is
an error term representing the effect of offset voltage, leak currents and other
shortcomings of a practical integrator. In practice, this term causes the output
level of the integrator to slowly drift away from the starting level, even if
the input voltage is held at zero.

Now, when the input signal is applied, the output level of the integrator
starts to increase, and at time ¢, it is larger than the fixed threshold level U,
and a ‘start’ signal will be generated. The binary counter (that has been reset
to zero) starts counting at a fixed rate, determined by the stable clock pulse
frequency. The output level of the integrator continues to increase until, at
time ¢,, it is larger than the upper threshold U,, and a ‘stop’ signal results.
The binary counter stops and the binary PCM counter value now represents
the time difference ¢, — ¢, and hence the analog input voltage

U(t)) = U, startsignal attime t, U(t,) = U, stopsignal at time ¢,

t, — 1,
Up =U) =Up+ U, "+ e 2

L=

= U, + (U, +
0 (tn 8) RC

(2.19)
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which can be rewritten as

RC

t—t,=U,— U 2.20

= U U (220
and in a similar way, we obtain

t—t—(U—U)& (2.21)

2 " 1o B YU te .

Now, expressing the time difference measured by the counter we get

RC

L—t =t —ty—t; +t,=(Uz — U 2.22
T h =Lt~ 1 =(Up 1) U, +s (2.22)
Rearranging equation (2.22) yields
RC K
U, +e=(Uy— Uy - (2.23)

L= §L—4

As can be seen from equation (2.23) the unknown analog input voltage can
easily be determined from the time difference recorded by the binary counter.
Unfortunately, the error term will also be present. To obtain good precision
in the ADC, we therefore need to design the circuitry carefully to reduce
leak current etc. to a minimum. This is a problem associated with this type
of ADC and is one of the reasons this basic conversion method is seldom
used.

One way to eliminate the error term is to use a dual slope method. The
term ‘dual slope’ refers to various methods in the literature, here only one
method will be presented. Using this method, the timing measurement is
performed in two phases. Phase 1 works as the simple ramp method described
above. As soon as the output level of the integrator reaches the upper
threshold, i.e. U(t,) = Uy, phase 2 is initiated. During this phase, the polarity
of the input signal is reversed and + U,, is fed to the input of the integrator.
The output level of the integrator will now start to decrease and at time #;,
the lower threshold is reached again, i.e. U(¢;) = U,, which completes the
conversion process. We now have two time differences: ¢, — ¢, and #; — ¢,
which can be used to express the analog input voltage with the error term
eliminated. At time #; we have

Uy = U = U - U, e
Uy = (U, = &) (2.24)
RC
Rewriting equation (2.24) we get
U, +e=—(Uz—U) t3R_Ct2 = - : I_<t2 (2.25)
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Subtracting term (2.25) from term (2.23) and dividing by two we obtain an
expression for the analog input voltage without the error term

Uy,te- (U, +t ¢

U. =
m 2
1 RC RC
- |w,-u +(Uy—U
v 5 v w- v )
K 1 1 K t,— t
== + )= SR (2.26)
2\ -t b 2(t, — 1)t — 1)

An extension of the circuit in Figure 2.14 can be made in such a way the
system is astable and continuously generates a square wave output having
the period #,—¢,. During #,—t, the square wave is low and during #,—¢, it is
high. A quite simple microcontroller can be used to calculate the value of
the analog input voltage according to equation (2.26) above. An impressive
resolution can be obtained using low-cost analog components.

2.3.6 Dither

Earlier, we discussed the use of dither techniques and oversampling to
improve resolution of a DAC. Dither can be used in a similar way to improve
the resolution of an ADC and hence reduce the effect of quantization distor-
tion.

In the case of an ADC, analog noise with amplitude of typically 1/3 LSB
is added to the input signal before quantization takes place. If the analog
input signal level is between two quantization thresholds, the added noise
will make the compound input signal cross the closest quantization level
now and then. The closer to the threshold the original signal level, the more
frequent the threshold will be crossed. Hence, there will be a stochastic
modulation of the binary PCM code from the ADC containing additional
information about the input signal. Averaging the PCM samples, resolution
below the LSB can be achieved.

Dither is common in high quality digital audio systems (Pohlmann, 1989)
nowadays, but has been used in video applications since 1950 and before
that, to counteract gear backlash problems in early radar servo mechanisms.

2.3.7 Sigma—delta A/D converters

The sigma—delta ADC, sometimes also called bitstream ADC, utilizes the
technique of oversampling, discussed earlier. The sigma—delta modulator was
first introduced in 1962, but until recent developments in digital VLSI (very
large scale integration) technology it was difficult to manufacture with high
resolution and good noise characteristics at competitive prices.

One of the major advantages of the sigma—delta ADC using oversampling
is that it is able to use digital filtering and relaxes the demands on the analog
anti-aliasing filter. This also implies that about 90% of the die area is purely



46 Digital Signal Processing

analog digital
input output
(a) ’@ €t | one-bit .
X * \/_ quantizer )
()

digital analog
input output
(b) | low pass
~ | filter
y(n) x(t) x(t)

Figure 2.15 A simplified delta modulator (a) and demodulator (b)

digital, cutting production costs. Another advantage of using oversampling
is that the quantization noise power is spread evenly over a larger frequency
spectrum than the frequency band of interest. Hence, the quantization noise
power in the signal band is lower than in traditional sampling based on the
Nyquist criteria.

Now, let us take a look at a simple 1 bit sigma—delta ADC. The converter
uses a method that was derived from the delta modulation technique. This
is based on quantizing the difference between successive samples, rather
than quantizing the absolute value of the samples themselves Figure 2.15
shows a delta modulator and demodulator. The modulator works as follows.
From the analog input signal x(z) a locally generated estimate X(f) is
subtracted. The difference &(f) between the two is fed to a 1 bit quantizer.
In this simplified case, the quantizer may simply be the sign function, i.e.
when e(f) = 0, y(n) = 1, else y(n) = 0. The quantizer is working at the
oversampling frequency, i.e. considerably faster than required by the signal
bandwidth. Hence, the 1 bit digital output y(r) can be interpreted as a kind
of digital error signal:

y(n) = 1: estimated input signal level too small, increase level
y(n) = 0: estimated input signal level too large, decrease level

Now, the analog integrator situated in the feedback loop of the delta modu-
lator is designed to function in exactly this way. Hence, if the analog input
signal x(7) is held at a constant level, the digital output y(n) will (after conver-
gence) be a symmetrical square wave (0 1 0 1 ...), i.e. decrease, increase,
decrease, increase ... a kind of stable limit oscillation.

The delta demodulator is shown in the lower portion of Figure 2.15. The
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Figure 2.16 A simplified, oversampled bitstream sigma—delta ADC

function is straightforward. Using the digital 1 bit ‘increase/decrease’ signal,
the estimated input level X(¢) can be created using an analog integrator of
the same type as in the modulator. The output low-pass filter will suppress
the ripple caused by the increase/decrease process.

Since integration is a linear process, the integrator in the demodulator can
be moved to the input of the modulator. Hence, the demodulator will now
only consist of the low-pass filter. We now have similar integrators on both
inputs of the summation point in the modulator. For linearity reasons, these
two integrators can be replaced by one integrator having &(¢) connected to
its input and the output connected to the input of the 1 bit quantizer. The
delta modulator has now become a sigma—delta modulator. The name is
derived from the summation point (sigma) followed by the delta modulator.

If we now combine the oversampled 1 bit sigma—delta modulator with a
digital decimation filter (rate reduction filter) we obtain a basic sigma—delta
ADC (see Figure 2.16). The task of the decimation filter is three-fold: to
reduce the sampling frequency, to increase the word length from 1 bit to N
bits and to reduce any noise pushed back into the frequency range of interest
by the crude 1 bit modulator. A simple illustration of a decimation filter,
decimating by a factor 5, would be an averaging process as shown in Table
2.2.

The decimation filter is commonly built using a decimator and a comb
filter (Marven and Ewers, 1993; Lynn and Fuerst, 1994). The comb filter
belongs to the class of frequency sampling filters and has the advantage of
being easy to implement in silicon or in a DSP, using only additions and
subtractions.

Table 2.2 Decimation filter example

Input: 00110 01110 11101 10101 00011
Averaging process 3x0; 2x1 2x0; 3x1 1x0; 4x1 2x0; 3x1 3x0; 2x1
Output 0 1 1 1 0




3.1 Introduction

3 Adaptive digital systems

An adaptive signal processing system is a system which has the ability to
change its processing behaviour in a way to maximize a given performance
measure. An adaptive system is self-adjusting and is, by its nature, a time-
varying and non-linear system. Hence, when using classical mathematical
models and tools assuming linearity for the analysis of adaptive systems,
care must be exercised.

A simple example of an adaptive system is the automatic gain control
(AGC) in a radio receiver. When the input antenna signal is strong, the AGC
circuitry reduces the amplification in the receiver to avoid distortion caused
by saturation of the amplifying circuits. At weak input signals, the amplifi-
cation is increased to make the signal readable.

Adaptive systems should, however, not be confused with pure feedback
control systems. An electric heater controlled by a thermostat is, for instance,
a feedback control system and not an adaptive system, since the control func-
tion is not changed (e.g. the thermostat always switches off the heater at
22°C).

The idea of self-adjusting systems (partly ‘self-designing’ systems) is not
new. Building such systems using ‘analog’ signals and components is, how-
ever, very hard, except in some simple cases. The advent of VLSI digital
signal processing and computing devices has made digital adaptive systems
possible in practice.

In this chapter, we will discuss a class of adaptive digital systems based
on closed-loop (feedback) adaptation. Some common systems and algorithms
will be addressed. There are however, many variations possible (Widrow
and Stearns, 1985). The theory of adaptive systems is on the borderline to
optimization theory and neural network technology (addressed in Chapter 4).

3.1.1 System structure

Figure 3.1 shows a generic adaptive signal processing system. The system
consists of three parts: the processor, the performance function and the adap-
tation algorithm.

The processor is the part of the system that is responsible for the actual
processing of the input signal x, thus generating the output signal y. The
processor can, for instance, be a digital FIR filter.

The performance function takes the signals x and y as inputs as well as
‘other data’ d, that may affect the performance of the entire system from x
to y. The performance function is a quality measure of the adaptive system.
In optimization theory, this function corresponds to the ‘objective function’



Adaptive digital systems 49

/

nput output
¥ processor >
¥ y
adaptation
algorithm
€
| performance | other data

"| function — d

Figure 3.1 A generic closed loop adaptive system

and in control theory it corresponds to the ‘cost function’. The output & from
the performance function is a ‘quality signal’ illustrating the processor at its
present state and indicating whether it is performing well, taking into account
the input signals, output signals and other relevant parameters.

The quality signal ¢ is finally fed to the adaptation algorithm. The task
of the adaptation algorithm is to change the parameters of the processor in
such a way that performance is maximized. In the example FIR filter, this
would imply changing the tap weights.

Closed-loop adaptation has the advantage of being usable in many situations
where no analytic synthesis procedure either exists or is known and/or when
the characteristics of the input signal varies considerably. Further, in cases
where physical system component values are variable or inaccurately known,
closed-loop adaptation will find the best choice of parameters. In the event of
partial system failure, the adaptation mechanism may even be able to readjust
the processor in a way that the system will still achieve an acceptable perform-
ance. System reliability can often be improved using performance feedback.

There are, however, some inherent problems as well. The processor model
and the way the adjustable parameters of the processor model is chosen
affects the possibilities of building a good adaptive system. We must be sure
that the desired response of the processor can really be achieved by adjusting
the parameters within the allowed ranges. Using too complicated a processor
model would on the other hand make analytic analysis of the system cumber-
some or even impossible.

The performance function also has to be chosen carefully. If the perfor-
mance function does not have a unique extremum, the behaviour of the
adaptation process may be uncertain. Further, in many cases it is desirable
(but not necessary) that the performance function is differentiable. Choosing
‘other data’ carefully may also affect the usefulness of the performance func-
tion of the system.
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3.2 The processor and
the performance
function

Finally, the adaptation algorithm must be able to adjust the parameters of
the processor in a way to improve the performance as fast as possible and
to eventually converge to the optimum solution (in the sense of the perfor-
mance function). Too ‘fast’ an adaptation algorithm may, however, result in
instability or undesired oscillatory behaviour. These problems are well known
from optimization and control theory.

In this section, a common processor model, the adaptive linear combiner,
and a common performance function, the mean square error will be
presented. Throughout this text, vector notation will be used, where all vectors
are assumed to be column vectors and are usually indicated as a transpose
of a row vector, unless stated otherwise.

3.2.1 The adaptive linear combiner

One of the most common processor models is the so-called adaptive linear
combiner (Widrow and Stearns, 1985), shown in Figure 3.2. In the most
general form, the combiner is assumed to have L+1 inputs denoted

X = [x0k Xie ka]T (3.1

where the subscript k£ is used as the time index. Similarly, the gains or
weights of the different branches are denoted

W, = [WOk Wik =7 WLk]T (3.2)

Since we are now dealing with an adaptive system, the weights will also
vary in time and hence have a time subscript k. The output y of the adap-
tive multiple input linear combiner can be expressed as

L
Vo= 2 Wiy (3.3)
=0

As can be seen from equation (3.3) this is nothing but a dot product between
the input vector and the weight vector, hence

e =X W, = WlX, (3.4)
The adaptive linear combiner can also take another form working in the
temporal domain, with only a single input (see Figure 3.3). This is the general

form of the adaptive linear combiner shown in Figure 3.2, extended with a
delay line. In this case the output is given by the convolution sum

L
Vi = 2 Wi Xi—1 (3.5
=0

which is the expression for the well-known FIR filter or transversal filter.
Now, if the input vector is defined as
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Figure 3.2 The general form of an adaptive linear combiner with multiple
inputs

X, = [xk X—1 777 xk—L]T (3.6)

equation (3.4) still holds. It is possible to use other types of structure, e.g.
IR filters or lattice filters as processors in an adaptive system. The adap-
tive linear combiner is, however, by far the most common, since it is quite
straightforward to analyse and design. It is much harder to find good adap-
tation algorithms for IIR filters, since the weights are not permitted to vary
arbitrarily because instability and oscillations may occur.

X1 Xi2 XL

b

Figure 3.3 A4 temporal version of an adaptive linear combiner with a
single input — an adaptive transversal filter (FIR filter or tapped delay
line filter)
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3.2.2 The performance function

The performance function can be designed in a variety of ways. In this text,
we will concentrate on the quite common mean square error (MSE)
measure. To be able to derive the following expressions, we will assume
that ‘other data’ d, will be the desired output from our system, sometimes
called the ‘training signal’ or ‘desired response’ (see Figure 3.4). One
could argue: why employ an adaptive system at all if the desired response
is known in advance? However, presently we shall assume the availability
of such a signal. Later, we will discuss its derivation in more detail.
Considerable ingenuity is however needed in most cases to find suitable
‘training signals’.

Xok () desired
response

Wik

Figure 3.4 Adaptive linear combiner with desired response (‘other data’)
and error signals

In this case, the performance function will be based on the error signal ¢,

e,=d, —y,=d,— XW=d, — WX, (3.7)

In this discussion, we assume that the adaptation process is slow compared
to the variations in time of the input signal. Hence, the time subscript on
the weight vector has been dropped. From equation (3.7) we will now derive
the performance function as the MSE. We then have to minimize the MSE
(the power of the error signal) to maximize the performance of the corre-
sponding adaptive system. Now, take the square of equation (3.7)

gf =(d,— W'X)(d, — X/ W)=d} + WX X]W—2d,X[W (3.8)

Assume that g, d, and X, are statistically stationary (Papoulis, 1985), and
take the expected value of equation (3.8) over & to obtain the MSE
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¢ = E[e’] = E[dl] + WTE[X, X[ 1W — 2 B[d, X[ W (3.9)

= E[d] + W'RW — 2P"W

where the matrix R is the square input correlation matrix (Papoulis, 1985).
The main diagonal terms are the mean squares of the input components, i.e.
the variance and the power of the signals. The matrix is symmetric. If the
single input form of the linear combiner is used this matrix constitutes the
auto-correlation matrix (Papoulis, 1985) of the input signal. In the latter
case, all elements on the diagonal will be equal.

The matrix R appears as

2
Xor Yok -+ XorXLk

2
XYie¥or Xk oo XLk

R=E[X,X1=E (3.10)

2
Xrior X1k Xk

The vector P is the cross-correlation (Papoulis, 1985) between the desired
response and the input components

pP= E[deOk dpxy - dkak]T (3.11)

Since the signals d, and x;, are generally not statistically independent, the
expected value of the product d, X/ cannot be rewritten as a product of
expected values. If d, and all x,, are indeed statistically independent, they
will also be uncorrelated and P = 0. It can easily be seen from equation
(3.9) that in this case, minimum MSE would occur when setting W = 0, i.e.
when setting all weights equal to zero, or in other words switching the
processor off completely. It does not matter what the adaptive system tries
to do using the input signals, MSE cannot be reduced using any input signal
or combination thereof. In this case, we have probably made a poor choice
of d, or X, or the processor model is not relevant.

From equation (3.9) we can see that the MSE is a quadratic function of
the components of the weight vector. This implies that the surface of the
performance function will be bowl shaped and form a hyperparaboloid in
the general case, which only has one global minimum. Figure 3.5 shows
an example two-dimensional (paraboloid) quadratic performance surface. The
minimum MSE point, i.e. the optimum combination of weights, can be found
at the bottom of the bowl. This set of weights is sometimes called the Wiener
weight vector W*. The optimum solution, i.e. the Wiener weight vector can
be found by finding the point where the gradient of the performance func-
tion is zero. Differentiating equation (3.9) we obtain the gradient

of _| 06 ¢ 9§

T
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mse

Figure 3.5 Two-dimensional paraboloid performance surface. The MSE as
a function of two weight components w, and w,. Minimum error, i.e.
optimum, is found at the bottom of the bowl, i.e. at W*, the Wiener
weight vector

The optimum weight vector is found where the gradient is zero, hence
V(¢ =0 =2RW* —2P (3.13)

Assuming that R is non-singular, the Wiener—Hopf equation in matrix form
is

Wwx=R'P (3.14)

From this we realize that adaptation (optimization), i.e. finding the optimum
weight vector, is an iterative method of finding the inverse (or pseudoin-
verse) of the input correlation matrix.

The minimum mean square error (at optimum) is now obtained by substi-
tuting W* from equation (3.14) for W in equation (3.9) and using the
symmetry of the input correlation matrix, i.e. R” = R and (R"")” = R!

énn = E[dZ]+ W*TRW* — 2P"W*

E[d!]+ (R'P)'RR™'P - 2P'R™'P

E[d}] - P'R™'P = E[d]] — P"W* (3.15)

Finally, a useful and important statistical condition exists between the error
signal ¢, and the components of the input signal vector X, when W = W*.
Multiplying equation (3.7) by X, from the left, we obtain
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3.3 Adaptation
algorithms

g X =d. X, — X, =d, X, — X, X[W (3.16)
Taking the expected value of equation (3.16) yields

Ele.X,|=E[dX,] — E[X,X[|W=P — RW (3.17)
Inserting equation (3.14) into equation (3.17) gives

E[g,X,] . =P—RR'P=P-P=0 (3.18)
This result corresponds to the result of the Wiener filter theory. When the
impulse response (weights) of a filter is optimized, the error signal is uncor-
related (orthogonal to) the input signals.

From the above we have realized that the mean square error performance
surface for the linear combiner is a quadratic function of the weights (input
signal and desired response statistically stationary). The task of the adapta-
tion algorithm is to locate the optimum setting W* of the weights, hence
obtaining the best performance from the adaptive system. Since the para-
meters of the performance surface may be unknown and analytical
descriptions are not available, the adaptation process is an iterative process,
searching for the optimum point.

Many different adaptation schemes have been proposed. In this text a few
common generic types will be discussed. The ideal adaptation algorithm
converges quickly but without oscillatory behaviour, to the optimum solu-
tion. Once settled at the optimum, the ideal algorithm should track the solution
if the shape of the performance surface changes over time. The adaptation
algorithm should preferably also be easy to implement, and not be exces-
sively demanding with regard to the computations.

The shape of the learning curve, i.e. a plot of the MSE ¢ as a function
of the iteration number i, is in many cases a good source of information
about the properties of an adaptation algorithm. Note! For every iteration
period i there is commonly a large number of sample instants k, since ¢ is
the average over k (time).

3.3.1 The method of steepest descent

The idea of the steepest descent method is as follows: starting in an arbi-
trary point W, of the performance surface, estimate the gradient and change
the weights in the negative direction of the gradient V. In this way, the
weight vector point will proceed ‘downhill’, until reaching the bottom of the
performance surface ‘bowl’ and the optimum point. The steepest descent
algorithm can be expressed as

Wi =W+ u(=V,) (3.19)

where u is the step size at each iteration. The larger the step size, the faster
the convergence. An excessively large step size would, on the other hand,
cause instability and oscillatory problems in the solution. This problem is
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common to all closed-loop control systems. Finding a good compromise on
n may therefore be a problem.

Another problem is obtaining the gradient V,. Since the gradient is not
known in advance in the general case, it has to be estimated by perturbing
the weights one by one by a small increment +6 and measuring the MSE &,
Hence, the gradient is expressed as

_ag_[ag 9 %}T
YO w ™ low aw, o, (3:20)
where the respective derivatives can be estimated by

06 _Ew, + 8) = £w, — 9) 321)

ow 268

n

One has to remember that the performance surface is a ‘noisy’ surface in
the general case. To obtain a MSE with a small variance, many samples are
required. There will be two perturbation points for each dimension of the
weight vector; 2L averaged measurements, each consisting of a number of
samples are needed. There is of course a tradeoff. The larger the number of
averaged points, in other words the longer the estimation time, the less noise
there will be in the gradient estimate. A noisy gradient estimate will result
in an erratic adaptation process.

Disregarding the noise, it should also be noted that the steepest descent
‘path’ is not necessarily the straight route to the optimum point in the general
case. An example is shown in Figure 3.6a. Looking down into the bowl-
shaped performance function of Figure 3.5, the movement of the weight
vector during the iterations is shown. Starting in a random point, the change
of the weight vector is always in the direction of the negative gradient
(steepest descent).

3.3.2 Newton’s method

Newton’s method may be seen as an improved version of the steepest descent
method discussed above. In this method, the steepest descent route is not
used, but the weight vector moves ‘directly’ towards the optimum point.
This is achieved by adding information about the shape of the surface to the
iterative adaptation algorithm

W\ =W+ uR™'(=V,) (3.22)

The extra information is introduced into equation (3.22) by including R,
the inverse of the input correlation matrix. When the gradient is multiplied
by this matrix, the resulting move of the weight vector will not be in the
negative direction of the gradient, but rather in the direction towards the
optimum point.

Due to the additional matrix multiplication, Newton’s method requires
more computational power than the method of steepest descent. In addition,
knowledge of the inverse of the input correlation matrix is required, which
in turn requires averaging of a number of samples.
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The advantage of this method is that it often finds the optimum point in
very few iterations. It is easy to show that if we have a perfect knowledge
of the gradient and the inverse of the input correlation matrix Newton’s
method will find the optimum solution in only one iteration. Setting u = 0.5
in equation (3.22) and inserting equation (3.13) we obtain

W= W,—05R7Y,

W, — 0.5R 'QRW, — 2P)

R 'P=w* (3.23)

where the last equality is given by equation (3.14). Hence, it does not matter
where we start on the performance surface, if the gradient and input signal
inverse correlation matrix are known, the optimum point will be reached in

Yot (b)

w;

Figure 3.6 Looking down into the performance ‘bowl’ (see Figure 3.5),
iteration of the weight vector towards optimum at W*. (a) steepest
descent. (b) Newton’s method. (c) LMS
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only one iteration (see Figure 3.6b). In practice, this is not possible in the
general case, since the gradient estimate and the elements of the input corre-
lation matrix will be noisy.

3.3.3 The LMS algorithm

The methods presented above, i.e. the method of steepest descent and
Newton’s method, both require an estimation of the gradient at each itera-
tion. In this section, the least mean square (LMS) algorithm will be
discussed. The LMS algorithm uses a special estimate of the gradient that
is valid for the adaptive linear combiner. Thus, the LMS algorithm is more
restricted in its use than the other methods.

On the other hand, the LMS algorithm is important because of its ease of
computation and because it does not require the repetitive gradient estima-
tion. The LMS algorithm is quite often the best choice for many different
adaptive signal processing applications. Starting from equation (3.7) we recall
that

In the previous methods, we would estimate the gradient using ¢ = E[e?],
but the LMS algorithm uses &7 itself as an estimate of & This is the main
point of the LMS algorithm. At each iteration in the adaptation process, we
have a gradient estimate of the form

de2/ow, de, /ow,

- dg,*/0 de, /0

Vo= | N = 2g | T [ = 20x, (3.25)
de2low, dg, /0w,

where the derivatives of &, follow from equation (3.24). Using this simpli-
fied gradient estimate, we can now formulate a steepest descent type
algorithm:

W =W, — uN,= W, + 2ue X, (3.26)

This is the LMS algorithm. The gain constant p governs the speed and sta-
bility of the adaptation process. The weight changes at each iteration are based
on imperfect, noisy gradient estimates, which implies that the adaptation
process does not follow the true line of steepest descent on the performance
surface (see Figure 3.6¢). The noise in the gradient estimate is however atten-
uated with time by the adaptation process, which acts as a low-pass filter.

The LMS algorithm is elegant in its simplicity and efficiency. It can be
implemented without squaring, averaging or differentiation. Each component
of the gradient estimate is obtained from a single data sample input, no
perturbations are needed.

The LMS algorithm takes advantage of prior information regarding the
quadratic shape of the performance surface. This gives the LMS algorithm
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3.4 Applications

considerable advantage over the previous adaptation algorithms when it comes
to adaptation time. The LMS algorithm converges to a solution much faster
than the steepest descent method, particularly when the number of weights
is large.

In this section some example applications of adaptive systems will be briefly
presented. The presentation is somewhat simplified and some practical details
have been omitted, thus simplifying the understanding of the system’s main
feature.

3.4.1 Adaptive interference cancelling

Adaptive interference cancelling devices can be used in many situations
where a desired signal is disturbed by additive background noise. This could
be, for instance, the signal from the headset microphone used by the pilot
in an aircraft. In this case, the speech signal is disturbed by the background
noise created by motors, propellers and air flow. It could also be the weak
signal coming from electrocardiographic electrodes, being disturbed by 50
or 60 Hz interference caused by nearby power lines and appliances.

The idea behind the interference cancelling technique is quite simple.
Assume that our desired signal s is disturbed by additive background noise
n,. The available signal is

x=s+n, 3.27)

If we could only obtain the noise signal n,, it could easily be subtracted
from the available signal and the noise would be cancelled completely. In
most cases, the noise signal n, is not available, but if a correlated noise
signal n, can be obtained, n, may be created by filtering »,. Since the filter
function needed is not known in most cases, this is a perfect job for an adap-
tive filter. An adaptive noise cancelling circuit is shown in Figure 3.7. As
can be seen from the figure, the output signal is fed back as an error signal

signal S+n0 + m OUtpLIt
source | T >OI| ‘\j‘/ >

X

, _ ek
noise R R qL' adaptive Vi
source filter

Figure 3.7 An adaptive noise-cancelling circuit, using an adaptive filter
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¢ to the adaptation algorithm of the adaptive filter. Assume that s, n,, n,
and y are statistically stationary and have zero means. Further, assume that
s is uncorrelated with n; and »n,, and that n, is correlated with n,, then

e=s+tn,—y (3.28)
Squaring equation (3.28) gives
g=5"+ (ny— ¥y + 2s(ny — ) (3.29)

Taking expectations of both sides and making use of the fact that s is uncor-
related with n, and y, we get

E[e’] = E[s*] + E[(n, — »)°] + 2E[s(n, — y)]
_ E[sz] + E[(nO — y)z] (3.30)

From this equation it can seen that adapting the filter by minimizing the
mean square error E[g?] i.e. the output signal power, is done by minimizing
the term E[(n, — »)?], since the input signal power E[s*] cannot be affected
by the filter. Minimizing the term E[(n, — y)?] implies that the output y of
the filter is a best least-squares estimate of unknown noise term #,, which
is needed to cancel the noise in the input signal. Hence, from equation (3.28)
we realize that minimizing E[(n, — y)?] implies that E[(g, — s)?] and the
noise power of the output signal are also minimized.

Let us pursue the previous example of cancelling the background noise
n, picked up by the pilot’s headset microphone. In a practical situation, we
would set up a second microphone on the flight deck in such a way that it
only picks up the background noise n,. Using a device like that in Figure
3.7, the background noise 7, disturbing the speech signal s could be sup-
pressed. Recently, the same technique has been adopted for cellular telephones
as well.

Other areas where adaptive interference cancelling systems are used are
echo cancellation (Widrow and Stearns, 1985) in telephone lines where echo
may occur as a result of unbalanced hybrids and interference suppression in
radio systems.

The performance of the adaptive noise cancelling system depends on three
factors. First, there must be a fair correlation between the noise n, picked
up by the ‘reference microphone’ and the disturbing background noise n,,.
If they are completely uncorrelated, the adaptive filter will set all its weights
to zero (i.e. ‘switch off’) and will have no effect (no benefit or damage).
Second, the filter must be able to adapt to such a filter function so that n,
can be well created from n,. This implies that the processor model used in
the filter is relevant and that the adaptation algorithm is satisfactory. Note
that we have not assumed that the adaptive filter necessarily converges to a
linear filter. Third, it is preferable that there be no correlation between the
signal n, picked up by the reference microphone and the desired signal s. If
there is a correlation, the system will also try to cancel the desired signal,
that is, reduce E[s?]. Hence, we have to choose the reference noise signal
carefully.
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3.4.2 Equalizers

Equalizers or adaptive inverse filters are frequently used in many telecom-
munication applications where a transmitted signal is being distorted by some
filtering function inherent in the transmission process. One example is the
limited bandwidth of a telephone line (filter effect) that will tend to distort
high-speed data transmissions. Now, if the transfer function H(w) from trans-
mitter to receiver of the telephone line is known, we can build a filter having
the inverse transfer function G(w) = H™! a so-called inverse filter or zero-
forcing filter. If the received signal is fed to the inverse filter, the filtering
effect of the telephone line can be neutralized, such that

H(w) G(w) = H(w) H Y(w) =1 (3.31)

The transfer function of a communication channel (e.g. telephone line) can
be modelled as a channel filter H(w) . Usually, the transfer function is not
known in advance and/or varies over time. This implies that a good fixed
inverse filter cannot be designed, but an adaptive inverse filter would be
usable. This is what an equalizer is, an adaptive inverse filter that tries to
neutralize the effect of the channel filter at all times in some optimum way.
Today’s high-speed telephone modems would not be possible without the
use of equalizers.

Figure 3.8 shows a block diagram of a transmission system with a channel
filter having transfer function H(z) and an equalizer made up of an adaptive
filter used as inverse filter having transfer function G(z). The signal s, entering
the transmission channel is distorted by the transfer function of the channel
filter, but on top of this additive noise », is disturbing the transmission, hence
the received signal is

re = s, *h(k) + n, (3.32)

In the channel model above, * denotes convolution and h(k) is the impulse
response corresponding to the channel filter transfer function H(z). Now, to
make the adaptive filter converge resulting in a good inverse transfer func-
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Figure 3.8 A transmission situation with channel filter, additive noise and
an equalizer implemented by means of an adaptive filter
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tion, a desired signal d, is needed. If the transmitted signal s, is used as a
desired signal, the adaptive filter will converge in a way to minimize the
mean square error

E[e’]=E[(s; — »] (3.33)

implying that the output y, will resemble the input s, as closely as possible
in the least-square sense, and that the adaptive filter has converged to a good
inverse G(z) of the channel filter transfer function H(z). The inverse filter
will eventually also track variations in the channel filter.

Finding a desired signal d, is not always entirely easy. In the present
example, we have used the transmitted signal s, , which is not in the general
case known at the receiving site. A common method is to transmit known
‘training signals’ now and then, to be used for adaptation of the inverse
filter. There are also other ways of defining the error signal. For instance,
in a digital transmission system (where s, is ‘digital’), the error signal can
be defined as

&= S — Wi (3.34)

where s is the digital estimate of the transmitted (digital) signal s, and
is the output of the non-linear detector using the analog signal y, as input.
In this case, the detector simply consists of an analog comparator. Hence,
the estimate of the transmitted signal is used as the desired signal instead
of the transmitted signal itself (see Figure 3.9). As the equalizer converges,
the analog signal y, will be forced stronger and stronger when §, = 1 and
weaker and weaker when §, = 0.

There are two problems associated with equalizers. First, since the zeros
in the channel filter transfer function will be reflected as poles in the inverse
filter, we may not be able to find a stable inverse filter for all channel filters.
Second, assume that there is a deep notch in the channel filter function at a
specific frequency. This notch will be counteracted by a sharp peak, having
a high gain at the same frequency in the transfer function of the inverse
filter. The additive noise, possibly being stronger than the desired signal at

”k
H(z) G(2) N
S, T i $
channel adaptive Vi »| detector L,
— ’ filter filter
input output
&

Figure 3.9 An equalizer using the estimated transmitted signal as the
desired signal
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this specific frequency, will then be heavily amplified. This may cause a
very poor signal-to-noise ratio, rendering the equalized output signal unread-
able.

Equalizers are sometimes also used in high performance audio systems to
counteract the transfer function caused by room acoustics. In this situation
however, the transmitted signal is ‘precompensated’ before being sent to the
loudspeakers. Hence, the order of the inverse filter and the channel filter is
reversed compared to Figure 3.8.

For equalizing telephone lines and room acoustics, equalizers using a
simple adaptive linear inverse filter will often do well. When it comes to
equalizers for data transmission over radio links, more complex equalizers
are often required to achieve acceptable performance. Different types of deci-
sion-feedback equalizers are common in digital radio transmission systems
(Proakis, 1989; Ahlin and Zander, 1998).

In a radio link (Ahlin and Zander, 1998) the signal travelling from the trans-
mitter to the receiver antenna will be propagated over many different paths
simultaneously, all the paths having different length. The multitude of received
signal components compounded in the receiver antenna will hence be delayed
different amounts of time, which will give the components different phase
shift. This in turn results in a filtering effect of the transmitted signal (the chan-
nel filter). The phenomenon is denoted multi-path propagation (Ahlin and
Zander, 1998), causing frequency selective fading (Ahlin and Zander, 1998).
Due to the transfer function of the channel filter, the short data bits will be
‘smeared’ out, causing interference in the following data bit time slots. This
is called intersymbol interference ISI (Ahlin and Zander, 1998), and can be
counteracted by including an equalizer in the receiver.

Figure 3.10 shows an example decision-feedback equalizer. This is mainly
the same equalizer as in Figure 3.9, but extended with a feedback loop
consisting of another adaptive filter. The latter filter ‘remembers’ the past
detected digital symbols and counteracts the residuals of the intersymbol
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Figure 3.10 A decision-feedback equalizer (channel filter and additive
noise not shown)
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interference. Both filters are adapted synchronously using a common adap-
tation algorithm.

This type of non-linear equalizer works well for combating intersymbol
interference present in highly time-dispersive radio channels. If we assume
that both filters are adaptive FIR filters, the output of the equalizer will be

L J
Y™ 2 Wyl t ‘j‘k*ej—k (3.35)
=0 =0

J

where wy, are the weights of the first filter and v;, the weight of the feed-
back filter at time instant k.

3.4.3 Adaptive beamforming

So far we have only discussed the use of adaptive systems in the time and
frequency domains, in the single input processor model, according to equa-
tions (3.5) and (3.6). In this section applications using the more general
multiple-input linear combiner model and signal conditioning in the spatial
domain will be addressed.

The underlying signal processing problem is common to the reception of
many different types of signals, such as electromagnetic, acoustic or seismic.
In this signal processing-oriented discussion, the difference between these
situations is simply the choice of sensors: radio antennas, microphones,
hydrophones, seismometers, geophones etc. Without sacrificing generality,
we will use the reception of electromagnetic signals by radio antennas as an
example in the following discussion.

Assume the we are interested in receiving a fairly weak signal in the pres-
ence of a strong interfering signal. The desired signal and the interfering
signal originate from different locations and at the receiving site, the signals
have different angles of arrival. A good way of dealing with this problem
is to design a directive antenna, an antenna having a maximum sensitivity
in one direction (the ‘beam’ or ‘lobe’) and a minimum sensitivity in other
directions. The antenna is directed in such a way that the maximum sensi-
tivity direction coincides with the direction of the location of the desired
signal, and minimum sensitivity (‘notch’) angles in the direction of the inter-
ferer (see Figure 3.11).

There are however some problems. The physical size of a directive antenna
depends on the wavelength of the signal. Hence, for low frequency signals,
the wavelength may be so long that the resulting directive antenna would
be huge and not possible to build in practice. Another problem occurs if the
desired signal source or the interferer or both are mobile, i.e. (fast) moving.
In such a case, the directive antenna may need to be redirected continuously
(for instance radar antennas). If the directive antenna structure needed to be
moved (quickly) this may create challenging mechanical problems.

An alternative way of building a directive antenna is to use a number of
omnidirectional, fixed antennas mounted in an antenna array. The output
of the antennas are fed to a signal processing device, and the resulting direc-
tivity pattern of all the antennas in unison is created ‘electronically’ by the
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Figure 3.11 Enhancing the desired signal and attenuating the interference
using a directive antenna (the directivity plot is a polar diagram showing
the relative sensitivity of the antenna as a function of the angle)

signal processing device. Hence, the shape and direction of the lobes and
notches can be changed quickly, without having to move any part of the
physical antenna system. The antenna system may however still be large for
low frequencies, but for many cases easier to build in practice than in the
previous case.

The drawback of the ‘electronic’ directive antenna is the cost and
complexity. The advent of fast and inexpensive digital signal processing
components has however made this approach known as beamforming
(Widrow and Stearns, 1985) more attractive during the past years. The steady
increase in processing speed of digital signal processing devices has also
made it possible to use this technology for high-frequency signal applica-
tions a task impossible a few of years back.

The following simplified example (see Figure 3.12) illustrates the use of
a multiple-input, adaptive linear combiner in a beamforming ‘electronic’
directive antenna system. Assume that we are using two omnidirectional
antennas A4, and 4,. The distance between the two antennas is /. We are
trying to receive a weak desired narrowband signal s cos(wf), but unfortu-
nately we are disturbed by a strong narrowband, jamming signal of the same
frequency u cos(w?). The desired signal is coming from a direction perpen-
dicular to the normal of the antenna array plane, which implies that the phase
front of the signal is parallel to the antenna array plane. This means that the
received desired signal in the two antennas will have the same phase.

The undesired jamming signal is coming from another direction, with the
angle « relative to the normal of the antenna array plane. In this case, the
jamming signal will reach the antennas at different times, and there will be
a phase shift between the jamming signal received by antenna 4, compared
to the signal received by 4,. Assuming / is much smaller than the distance
to the signal source, it is easily shown that the difference in phase between
the two will be
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c

where c is the propagation speed of the signal, in this case equal to the speed
of light, and w is the angular frequency. Hence, the compound signals received
by antennas 4, and A4, respectively can be expressed as

x, = s cos(wt) + u cos(wt) (3.37)

x, = s cos(wt) + u cos(wt — ¢) (3.38)

The signal processing system consists of a four-input adaptive linear
combiner, having the weights w, to w,. The signal coming from each antenna
is branched and passed directly to the combiner in one branch and via a
quadrature filter (a Hilbert transform) in the other. The quadrature filter is
an all-pass filter, introducing a — /2 radian phase shift of the signal, but
not changing the amplitude. The quadrature filter will be further discussed
in Chapter 5. The output of the combiner can now be written as
y= wl(s cos(wt) + u cos(wt))

T T
+w, (s cos(a)t - ) +u cos(wt - ))
2 2

+ w;y (s cos(w?) + u cos(wt — )

+ w, (s cos(wt - 727) +u cos(wt —¢— ;))

(3.39)
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Using the fact that cos(8 — w/2) = sin(B) and rearranging the terms we
obtain

y=s ((w, + wy) cos(wt) + (w, + w,)) sin(wr)) + u(w, cos(wr)

+ w; cos(wt — @) + w, sin(wt) + w, sin(wt — })) (3.40)

Now, the objective is to cancel the jamming signal u, i.e. to create a notch
in the directivity pattern of the antenna array in the direction of the jammer.
Hence, we want the jamming signal term of equation (3.40) to be zero, i.e.

u(w1 cos(wt) + wy cos(wt — ¢) + w, sin(wt) + w, sin(wt — d))) =0

(3.41)

Using the well-known trigonometric relations: cos(8—7y) = cos(f) cos(y) +

sin(B)sin(-y) and sin(B—7) = sin(B) cos(y) — cos(fB) sin (y) equation (3.41)
can be rewritten as

u(wl + wscos(¢) — w4sin(qb)) cos(wt)

+ u(w, + w, sin(¢) + w, cos(¢h)) sin(wt) =0 (3.42)

In this case, solutions, i.e. the optimum weights W*, can be found by inspec-
tion. There are many possible solutions

w, = —wscos(¢) + w,sin(¢) (3.43a)
w, = —w,sin(¢) — w,cos(¢p) (3.43b)

We choose a solution that is simple from a practical point of view, by setting
wif=1 and w¥=0

Hence, two weights and one quadrature filter can be omitted from the struc-
ture shown in Figure 3.12. Antenna A4, is simply connected directly to the
summing point and the hardware (software) that constitutes the weights w,
and w, and the upper quadrature filter can be removed.

Using equations (3.43a) and (3.43b) the components of one optimum
weight vector W* can be calculated

wiE=1

wi=0

wi = — cos(g)
W = sin(g)

Inserting W* in equation (3.40) the output will be

y = s((1 = cos(¢))cos(wt) + sin(p)sin(wt))
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= s(cos(wt) — cos(wt + §)) (3.44)

The result is not surprising. The jamming signal is cancelled and the output
is the sum of two components, the original signal received by antenna 4,
and a phase-shifted version of the signal received at antenna 4,. As expected,
the phase shift is exactly the shift needed to cancel the jamming signal.

Now, in this case it was quite easy to find a solution analytically. In a
more complex system, having for instance 30 or even more antennas and a
number of interfering, jamming signals coming from different directions,
there is no guarantee that an analytical solution can be found. In such a case,
an adaptive system can iteratively find an optimum solution in the mean-
square sense, using for instance some kind of LMS-based adaptation
algorithm. Further, if the signal sources are moving, an adaptation system
would be required.

Working with wide band signals, the input circuits of the linear combiner
may consist not only of quadrature filters, but also more elaborate filters,
e.g. adaptive FIR filters.

In this chapter only a few applications of adaptive digital processing
systems have been discussed. There are numerous areas (Widrow and Stearns,
1985), for instance in process identification, modelling and control theory,
where adaptive processing is successfully utilized.



4.1 General

4.2 The median filter

4 Non-linear applications

There is an almost infinite number of non-linear signal processing applica-
tions. In this chapter, a few examples like the median filter, artificial neural
networks (ANN) and fuzzy logic will be discussed. Some of these exam-
ples are devices or algorithms that are quite easy to implement using digital
signal processing techniques, but would be very hard or almost impossible
to build in practice using classical ‘analog’ methods.

4.2.1 Basics

A median filter is a non-linear filter used for signal smoothing. It is partic-
ularly good for removing impulsive type noise from a signal. There are a
number of variations of this filter, and a two-dimensional variant is often
used in digital image processing systems to remove noise and speckles from
images. The non-linear function of the median filter can be expressed as

y(n) =med [x(n—k), x(n—k=+1), - - - x(n), - - - x(n+k—1), x(n+k)] (4.1)

where y(n) is the output and x(n) the input signal. The filter ‘collects’ a
window containing N = 2k+1 samples of the input signal and then performs
the median operator on this set of samples. Taking the median means to
sort the samples by magnitude and then select the mid-value sample (the
median). For this reason, N is commonly an odd number. If for some reason
an even number of samples must be used in the window, the median is
defined as shown below. Assuming the samples are sorted in such a way
that x, is the smallest and x,,,, the largest value

for N=2k+1
med [x}, x, * *  xy] —{xkﬂ o

4.2
J(x+x,,) for N=2k 4.2)

Different methods have been proposed to analyse and characterize median
filters. The technique of root signal analysis (Mitra and Kaiser, 1993) deals
with signals that are invariant to median filtering and defines the ‘passband’
for median filters. A root signal of a median filter of length N = 2k+1 is a
signal that passes through the filter unaltered. This signal satisfies the
following equation

x(n) = med [x(n—k), x(n—k+1), - x(n), - x(ntk—1), x(n+k)] (4.3)

The median filter itself is simple and in the standard form there is only
one design parameter, namely the filter length N = 2k+1. There are some
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terms used which pertain to root signals (Gallagher Jr and Wise, 1981). A
constant neighbourhood is a region of at least £+ 1 consecutive, identically
valued points. An edge is a monotonically rising or falling set of points
surrounded on both sides by constant neighbourhoods. An impulse is a set
of at least one, but less than k+1, points whose values are different from
the surrounding regions and whose surrounding regions are identically valued
constant neighbourhoods. So, in essence, a root signal is a signal consisting
of only constant neighbourhoods and edges. This definition implies that a
signal which is a root signal to a median filter of length N is also a root
signal of any median filter whose length is less than N. It is also interesting
to note that a median filter preserves edges, both positive and negative,
provided they are separated by a constant neighbourhood. The longer the
filter length, the farther apart the edges have to be, but the actual magnitude
of the slopes is irrelevant. This means that a median filter filters out impulses
and oscillations, but preserves edges. This will be demonstrated below.

4.2.2 Threshold decomposition

Analysing combinations of linear filters by using the principle of superpo-
sition is in many cases easier than analysing combinations of non-linear
devices like the median filter. However, by using a method called threshold
decomposition we divide the analysis problem of the median filter into
smaller parts.

Threshold decomposition of an integer M-valued signal x(n), where 0 <
x(n) < M, means decomposing it into M—1 binary signals x!(n), x*(n), - - -
xM—l(n)

1 ifx(n) =m

4.4
0 else “4)

x"(n) = {
Note! The upper index is only an index, and does not imply ‘raised to’. Our
original M-valued signal can easily be reconstructed from the binary signal
by adding them together

M1
x(n) = E— x"(n) (4.5)

Now, a very interesting property of a median filter (Fitch ef al., 1984) is
that instead of filtering the original M-valued signal, we can decompose it
into M—1 ‘channels’ (4.4) each containing a binary median filter. Then we
can add the outputs of all the filters (4.5) to obtain an M-valued output signal
(see Figure 4.1).

The threshold decomposition method is not only good for analysis, it is
also of great interest for implementing median filters. A binary median filter
is easy to implement, since the median operation can be replaced by a simple
vote of majority. If there are more ‘ones’ than ‘zeros’, the filter output should
be ‘one’. This can be implemented in many different ways. A binary median
filter of length N = 3, can for example be implemented using simple Boolean
functions
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Figure 4.1 Median filtering of a three-valued signal by threshold
decomposition, M=3

y(n)=x(mn—1)nx(n)ux(n—1)rx(@+1)ux(n) x(r+1) (4.6)

where x(n) and y(n) are binary variables and the Boolean operation M is
AND and v is OR. For large filter lengths, this method may result in complex
Boolean calculations, and a simple counter can be used as an alternative.
The pseudo code below shows one implementation example.

binmed: counter:=0
for i:=1 to N do
if x[i] then counter++
else counter--
if counter>0 then y[n]:=1
else y[n]:=0

Now, one may argue, if there is a large number of thresholds M, there is
going to be a large number of binary filters as well. This is of course true,
but if the filter is implemented as software for a digital signal processor, the
same piece of computer code can be reused in all binary filters (as a func-
tion or sub-routine). Hence, the problem deals with the processing speed.
Depending both on the kind of signals being filtered and the features of the
output signal of primary interest, we may not need to process all thresholds
and non-equidistant thresholds may be used.

The technique of threshold decomposition and using binary, Boolean filters
has led to a new class of filters, so-called stacked filters.
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4.2.3 Performance

If a median filter is compared to a conventional linear mean filter, imple-
mented as an FIR filter having constant tap weights (moving average), the
virtues of the median filter (running median) become apparent. Consider the
following example, where we compare the output of a moving average filter
of length N = 9 and a median filter of the same length. The mean filter with
constant weights (a linear smoothing filter) can be expressed as

1
n(m =2 g x(nti=5) (4.72)

i=

9
1
and the median filter (a non-linear smoothing filter) as

yo(n) =med [x(n—4), - - x(n), - - x(n+4)] (4.7b)

Assume that the input signal is a square wave signal that is to be to used
for synchronization purposes, i.e. the edges of the signal are of primary
interest, rather than the absolute level. Unfortunately, the signal is distorted

Input signal x(n) square wave with
additive noise and impulsive noise

N MMM M g transients.

b N LA o a v w s oo
RN NN

Output signal y,(») from linear mean
filter, transients and edges are

L/ [~ T "smeared" out,

b N A o anv w s oo
RN A

Output signal y,(rn) from nonlinear

[\, [, \__ medianfilter

O N A o a v w s oo
RN N

Figure 4.2 Input signal (top) filtered by linear running average filter
(middle) and non-linear running median filter (bottom). Filter length
N =9 in both cases
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4.3 Artificial neural
networks

by additive Gaussian noise and impulsive type noise transients, typically
generated by arcs and other abrupt discharge phenomena (see Figure 4.2).

As can be seen from Figure 4.2, when comparing the outputs of the two
filters, the median filter performs quite well preserving the edges of the signal
but suppressing the noise transients. The standard linear mean filter however
suffers two basic problems. First, when a quite large transient occurs in the
filtering window, it will affect the output as long as it is in the averaging
window. This means that a narrow but strong peak, will be ‘smeared’ out
and will basically create a new pulse that can be mistaken for a valid square
wave signal. Due to the long time constant of the linear FIR filter, the edges
of the desired signal will also be degraded. This may be a significant problem
if timing is crucial, e.g. when the signal is used for synchronization purposes.
Using a hard limiter-type device to ‘sharpen up’ the edges again is of course
possible. However, the slope of the edges does not only depend on the
response time of the mean filter, but also on the actual (varying) amplitude
of the input signal. This will again result in uncertainty of the true timing.

The uncertainty of the edges in the median filter case is mainly due to
the additive noise, which will be suppressed by the filter. The signal form
is quite similar to the input signal with the addition of noise. For a square
wave without noise, the median filter will present a ‘perfect’ edge.

4.2.4 Applications

If the median filter is implemented as software on a digital computer, any
standard sorting algorithm like ‘bubblesort’, ‘quicksort’ etc. (Wirth, 1976)
can be used to sort the values (if a stacked filter approach is not taken).
When calculating the expected sorting time, it should be noted that we do
not need to sort all the values in the filter window of the median filter. We
only need to continue sorting until we have found the mid-value sample.

The use of median filters was first suggested for smoothing statistical data.
This filter type has however, found most of its applications in the area of
digital image processing. An edge preserving-filter like the median filter can
remove noise and speckles without blurring the picture. Removing artifacts
from imperfect data acquisition, for instance horizontal stripes sometimes
produced by optical scanners, is done successfully using median filters.
Median filters are also used in radiographic systems, in many commercial
tomographic scan systems and for processing EEG signals and blood pres-
sure recordings. This type of filter is also likely to be found in commercial
digital TV sets in the future, because of the very good cost-to-performance
ratio.

4.3.1 Background

‘Neural networks’ is a somewhat ambiguous term for a large class of
massively parallel computing models. The terminology in this area is pretty
confused; scientific well-defined terms are sometimes mixed with trademarks
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and sales bull. A few examples are: ‘connectionist’s net’, ‘artificial neural
systems (ANS)’, ‘parallel distributed systems (PDS)’, ‘dynamical functional
systems’, ‘neuromorphic systems’, ‘adaptive associative networks’, ‘neuron
computers’ etc.

4.3.2 The models

In general, the models consists of a large number of typically non-linear
computing nodes, interconnected with each other via an even larger number
of adaptive links (weights). Using more or less crude models, the under-
lying idea is to mimic the function of neurons and nerves in a biological
brain.

Studying neural networks may have two major purposes: either we are
interested in modelling the behaviour of biological nerve systems, or we
want to find smart algorithms to build computing devices for technical use.
There are many interesting texts dealing with neural networks from the angle
of perception, cognition and psychology (Rumelhart and McClelland, 1987;
McLelland and Rumelhart, 1986; Grossberg, 1987a, b; Hinton and Anderson,
1981). In this book however, only the ‘technical’ use of neural network
models will be treated, hence the term ‘artificial neural networks’ will be
used from here on.

‘Computers’ that are built using artificial neural network models, have
many nice features:

e the ‘programming’ can set the weights to appropriate values. This can be
done adaptively by ‘training’ (in a similar way to teaching humans). No
procedural programming language is needed. The system will learn by
examples

e the system will be able to generalize. If an earlier unknown condition
occurs, the system will respond in the most sensible way based on earlier
knowledge. A ‘conventional’ computer would simply ‘hang’ or exhibit
some irrelevant action in the same situation

@ The system can handle incomplete input data and ‘soft’ data. A conven-
tional computer is mainly a number cruncher, requiring well-defined input
figures

e The system is massively parallel and can easily be implemented on parallel
hardware, thus obtaining high processing capacity

o The system will contain a certain amount of redundancy. If parts of the
system are damaged, the system may still work, but with degraded perfor-
mance (‘graceful descent’). A 1 bit error in a conventional computer will
in many cases cause the computer to ‘crash’.

Systems of the type outlined above have been built for many different
purposes and in many different sizes during the past 50 years. Some exam-
ples are systems for classification, pattern recognition, content addressable
memories (CAM), adaptive control, forecasting, optimization and signal
processing. Since appropriate hardware is still not available, most of the
systems have been implemented in software on conventional sequential
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computers. This unfortunately implies that the true potential of the inher-
ently parallel artificial neural network algorithms has not been very well
exploited. The systems built so far have been pretty slow and small, typi-
cally of the size of 10*-10° nodes having 10'-10? links each. Taking into
account that the human brain has some 10'-10"" nodes with 10°-10° links
each, it is easy to realize that the artificial systems of today are indeed small.
In terms of complexity, they are comparable to the brain of a fly.

4.3.3 Some historical notes

The history of artificial neural networks can be traced back to early in the twen-
tieth century. The first formal model was published by W.S. McCulloch and W.
Pitts in 1943. A simple node type was used and the network structures were
very small. It was however possible to show that the network could actually
perform meaningful computations. The problem was finding a good way of
‘training’ (i.e. ‘adapting’ or ‘programming’) the network. In 1949, D. Hebb
published The Organization of Behavior, where he presented an early version
of a correlation-based algorithm to train networks. This algorithm later came to
be known as Hebb’s rule. In the original paper, the algorithm was not well
analysed or proved, so it came to be regarded as an unproved hypothesis until
1951. In the same year, M. Minsky and D. Edmonds built a ‘learning machine’,
consisting of 300 electron tubes and miscellaneous surplus equipment from old
bombers which illustrated a practical example.

It is worth noting that the artificial neural network ideas are as old as the
digital computer (e.g. ENIAC (electronical numerical integrator and com-
puter) in 1944). The digital computer was however developed faster, mainly
because it was easier to implement and analyse.

In the late 1950s and early 1960s, B. Widrow and M.E. Hoff introduced a
new training algorithm called the Delta rule or the Widrow—Hoff algorithm.
This algorithm is related to the LMS algorithm used in adaptive digital filters.
Widrow also contributed a new network node type called the ADALINE
(adaptive linear neuron) (Widrow and Lehr, 1990). At about the same time,
F. Rosenblatt worked extensively with a family of artificial neural networks
called perceptrons. Rosenblatt was one of the first researchers to simulate
artificial neural networks on conventional digital computers instead of build-
ing them using analog hardware. He formulated ‘the perceptron convergence
theorem’ and published his Principles of Neurodynamics in 1962.

M. Minsky and S.A. Papert also investigated the perceptron, but they were
not as enthusiastic as Rosenblatt. In 1969 they published the book Percep-
trons (Minsky and Papert, 1969), which was a pessimistic and maybe
somewhat unfair presentation, focusing on the shortcoming of the percep-
trons. Unfortunately, this book had a depressing impact on the entire artificial
neural network research society. Funding dried up, and for the next decade
only a few researchers continued working in this area. One of them was S.
Grossberg, working with ‘competitive learning’. In general however, not very
much happened in the area of artificial neural networks during the 1970s.
Conventional digital von Neumann-based computers and symbol-oriented
artificial intelligence (Al) research dominated.
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At the beginning of the 1980s, a renaissance took place. The artificial
neural network was ‘reinvented’ and a number of new and old research
groups started working on the problems again, this time armed with powerful
digital computers. In 1980 ‘feature maps’ were presented by T. Kohonen
(Finland) and in 1982 J. Hopfield published a couple of papers on his Hopfield
net. Perhaps too well marketed, this network was able to find solutions to
some famous non-polynominal-complete optimization problems. In 1983, S.
Kirkpatrick et al. introduced ‘simulated annealing’, a way of increasing the
chances to find a global optimum when using artificial neural networks in
optimization applications.

In 1984, P. Smolensky presented ‘harmony theory’, a network using prob-
abilistic node functions. In the same year, K. Fukushima demonstrated his
‘neocognitron’, a network which was able to identify complex handwritten
characters, for example Chinese symbols.

The network training method ‘back-propagation’ had been around in
different versions since the late 1960s, but was further pursued by D.
Rumelhart et al. in 1985. This year, the ‘Boltzmann machine’ a proba-
bilistic type network was also presented by G.E. Hinton and T.J. Sejnowski.

In the following years, many new variants of artificial neural network
systems and new areas of application occurred. Today the area of artificial
neural networks, an extremely interdisciplinary technology, is used for
instance in (Lippmann, 1987; Chichocki and Unbehauen, 1993) signal pro-
cessing, optimization, identification, estimation, prediction, control, robotics,
data bases, medical diagnostics, biological classification (e.g. blood and
genes), chemistry and economy. There are however not very many ‘new’
ideas presented today, rather extensions and enhancements of old theories.
Unfortunately, we still lack the ideal hardware. Extensive work in the area
of ASIC (application specific integrated circuit) is in progress, but there are
some basic problems which are hard to overcome when trying to build
larger networks. Many of these problems have to do with the large number
of weights (links). For example, how should all the weights be stored and
loaded into a chip? How can the settings be found, in other words, how
can the training be performed? How should these examples be chosen since
a large number of weights will require an even larger number of training
examples?

4.3.4 Feedforward networks

The class of feedforward networks is characterized by having separate inputs
and outputs and no internal feedback signal paths. Hence, there are no stability
problems. The nodes of the network are often arranged in one or more
discrete layers and are commonly easy to implement. If the nodes do not
possess any dynamics like integration or differentiation, the entire network
mainly performs a non-linear mapping from one vector space to another.
After the training of the net is completed, meaning that the weights are deter-
mined, no iteration process is needed. A given input vector results in an
output vector in a one-step process.
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4.3.4.1 Nodes

The node j in a feedforward artificial neural network has a basic node func-
tion of the type

X=g (f(i wyx; + ¢>j>> (4.8)
i=1

where x; is the output of node j and ¢, is the bias of node j. The N inputs
to node j are denoted x; where i = 1, 2 ... N and the weights (links) are w;;
from input 7 to node j. For pure feedforward networks w,; = 0. The function
f() is the activation function sometimes also called the ‘squashing func-
tion’. This function can be chosen in a variety of ways, often depending on
the ease of implementation. The function should however be monotonically
non-decreasing to avoid unambiguous behaviour. Some training methods
will also require the activation function to be differentiable. The activation
function is commonly a non-linear function, since a linear function will result
in a trivial network. Some examples of common activation functions are

Hard limiter

a x=0
f(x) = 4.9
(x) {b £ <0 (4.9)
where a and b are constants. If ¢ = 1 and b = — 1 (4.9) turns into the sign
function.
Soft limiter
a x=a
fx)=9x b=x<a (4.10)
b x<b

The function is linear in the range a...b, where a and b are constants. The
function saturates upwards at a and downwards at b.

Sigmoid (‘logistic function”’)

f(x) = @.11)

1 +e 7

In this expression, the parameter 7 is referred to as the ‘computational temper-
ature’. For small temperatures, the function ‘freezes’ and the shape of equation
(4.11) approaches the shape of a hard limiter equation (4.9). Sometimes the
function f(x) = tanh (x/T") or similar is also used.

Finally, the output function g( ) may be an integration or summation or
alike if the node is supposed to have some kind of memory. In most feed-
forward networks however, the nodes are without memory, hence a common
output function is

gx)=x (4.12)
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Figure 4.3 A simple three-layer feedforward network

4.3.4.2 Network topology

When dealing with networks consisting of a number of nodes V, matrix alge-
bra seems to be handy in general. All weights w;; in a network can for instance
be collected into a weight matrix W (N X N), and all signals into a vector X
(Nx 1). The j-th column vector W, of matrix W hence represents the weights
of node j. Now, it is straightforward to see that a node basically performs a
non-linear scalar product between the corresponding weight vector and the sig-
nal vector (assuming the output function is as in equation (4.12))

x,— fXTW, + ¢) 4.13)

Using a weight matrix in this way allows arbitrary couplings between all
nodes in the network. Unfortunately, the size of the matrix grows quickly
as the number of elements increases as N2. When dealing with feedforward
type networks, this problem is counteracted by building the network in layers
thereby reducing the number of allowed couplings. A layered network is
commonly divided into three (or more) layers denoted as the input layer, the
hidden layer(s) and the output layer. Figure 4.3 shows a simple three-layer
feedforward network. In this structure, the input signals (input vector) enters
the network at the input layer. The signals are then only allowed to proceed
in one direction to the hidden layer and then finally to the output layer,
where the signals (output vector) exit the network. In this way, the weight
matrix can be divided into three considerably smaller ones, since the nodes
in each layer only need to have access to a limited number of the signal
components in the total signal vector X. Questions arise with regard to the
number of layers and the number of nodes in each of these layers that should
be used. While the number of nodes per layer is hard to determine, the
number of layers can be calculated by the following method.
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Table 4.1 Truth table for

XOR function
X X X3
0 0 0
0 1 1
1 0 1
1 1 0

Using a layered structure, impose some restrictions on the possible
mappings from the input vector space to the output vector space. Consider
the following example. Assume that we have a two-dimensional input vector
and require a scalar output. We use two signal levels ‘1’ and ‘0’. The output
should be ‘1’ if one of the two input vector components is ‘1°. The output
should be ‘0’ otherwise. This is a basic exclusive-or function (XOR) or
modulo-2 addition or ‘parity’ function. The task of the artificial neural
network is to divide the two-dimensional input vector space into two deci-
sion regions. Depending in which decision region the input vector is located,
a ‘1’ or a ‘0’ should be presented at the output.

Starting out with the simplest possible one-layer network, consisting of
one node with a hard limiter-type activation function, we can express the
input—output function

x=f<iw.x.+q§>={lw13x1+w23x2+¢3>0 (4.14)
’ i=1 P ’ 0 wisx; + wysx, + 3 < 0 ‘

Assume the hard limiter has the function

1 x=0

4.15
0 x <0 ( )

fx) = {
The desired response is shown in the truth table shown in Table 4.1.

Now, the task is to find the weights and the bias needed to implement the
desired function. It is possible to implement an AND or OR function, but
an XOR function cannot be achieved. The reason is that a node of this type
is only able to divide the input vector space with a (hyper)plane. In our
example (from equation (4.14)) the borderline is

e & Wi 4.16
2 1 (

In other words, we cannot achieve the required shape of the decision
regions, since the XOR function requires two disjunct areas like A and A
(see Figure 4.4). Since many more complex decision tasks can be traced
back to the XOR function, this function has a fundamental importance in
computation. The basic perceptron presented by Rosenblatt was mainly a
one-layer network of the type presented in the example above. The main
criticism presented in the book Perceptrons by Minsky and Papert (Minsky
and Papert, 1969), concerned the inability of the perceptron to solve the
basic XOR problem. This was a bit unfair, since the perceptron can easily
be modified to handle the XOR problem. This can be done by adding a
second layer of nodes to our system. With respect to the example above that
means adding another two nodes, and obtaining a two-layer artificial neural
network. The network contains two nodes in the input layer, no hidden layers
and one node in the output layer. The nodes are of the same simple type as
in the example above. Now, each of the two nodes in the input layer can
divide the input vector space with hyperplanes. In our two-dimensional
example, this is two straight lines as in equation (4.16). If one node has its
decision line to the left of the two desired areas A (see Figure 4.4), the
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Figure 4.4 Possible decision region shapes for different numbers of layers

output of the node will be ‘1’ when an input vector corresponding to A is
present. The other node has its line to the right, of the desired decision region
and gives a ‘1’ output signal for A. The desired response can now be obtained
by ‘ANDing’ the output of the two nodes. AND and OR functions can easily
be achieved using a single node, so the node in the output layer of our
example network will do the ‘ANDing’ of the outputs from the nodes in the
input layer. Hence, the XOR problem is solved.

Figure 4.5 shows a proposed solution to the XOR problem. Since the input
signals have the indices 1 and 2 respectively, the nodes are numbered as 3
and 4 in the input layer and 5 in the output layer. The weights and biases
of the nodes may be chosen as

node3: w;;=1  w,;=1 ¢;=—-05
node4: w,=—-1 w,,=—-1 ¢,=15
node5: wy;=1  wys=1  ¢Pps=—15

Note! There are many possible solutions, try it yourself.
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Figure 4.5 Example of a two-layer feedforward artificial neural network
of perceptron type, capable of solving the XOR problem

Going back to Figure 4.4, we can now draw some general conclusions about
the possible shapes of decision regions as a function of the number of layers.
A one-layered network can only split the input vector space with hyper-
planes. Using a second layer, having the outputs of the first layer as inputs,
a number of hyperplanes can be ‘ANDed’ together and convex decision
regions can now be formed. The number of nodes in each layer determines
the number and complexity of the regions. Finally, incorporating a third
layer, a number of convex regions, created by the preceding second layer,
can now be ‘ORed’ together and arbitrary complex decision regions can be
obtained. So, from a theoretical point of view, there is no need for more
than three layers in a layered feedforward artificial neural network. When
implementing these nets however, more layers may sometimes be used. This
may facilitate reuse of some intermediate computing results and reduce the
total number of nodes in the network and/or simplify the training, that is,
the process of determining the weights and biases in the nodes.

Returning to the XOR example, there is another way of solving the problem
using only ome perceptron-type node. The underlying principle is the way
in which the input signals or ‘features’ are chosen. This is a very important,
often forgotten topic in many cases. Choosing ‘bad’ input signals may make
it impossible even for an advanced artificial neural network to perform a
simple task, while choosing ‘smart’ input signals complex problems makes
it possible to solve using fairly simple networks. If we put a non-linear
‘preprocessor’ in front of the inputs of our original single layer network,
creating for instance the two input signals

n=x tx,

4.17
Y= + x2)2 ( )

the XOR problem can now be solved using the original single perceptron
node (index 3) with the weights and bias

node3: w;;=2 w,;=—1 ¢;=—-05

Note that y, represents a circular area, i.e. a convex region.
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The importance of a wise selection of input signals or features for a given
problem and network cannot be overemphasized.

4.3.4.3 Training and adaptation

Training or adaptation is to determine the weights and biases of an artificial
neural network, i.e. to determine the function of the network. By means of
a number of algorithms this can be done in a number of ways. Before going
into a more detailed discussion, some general problems should be addressed.

Training by examples is of course a nice way of ‘programming’ the
network. However, the more weights and biases that need to be determined,
the more input data examples will be needed (and the more training time
will be required). Adaptive systems like this ‘eat’ input data. Once used as
an example, the data is normally not good for any further training.

Secondly, finding a significant sub-set of all possible input data suited for
training is not easy in the general case. Using a ‘bad’ training set, the network
may ‘learn’ the wrong mappings and poor performance may result (like
teenagers?). Normally, training is performed using a training set of input
data, while performance testing uses another set of input data. If the same
input data set is used for both testing and training, we can only be sure that
the network has learnt how to handle the known data set properly. If this
is the primary task of the system, it would probably be better to use a lookup
table algorithm (LUT) than an artificial neural network.

One of the main advantages of an artificial neural network is that it is
able to generalize, i.e. if earlier unknown input data is presented, the network
can still give a ‘reasonable’ answer. A ‘conventional’ computing system
would, in many cases, present a useless error message in the same situation.
The network can in this respect be viewed as a huge lookup table, where
only a fraction of all the possible entries have been initialized (by the training
data set). The network itself will then ‘interpolate’ all the non-initialized
table entries. Hence, a proper choice of training data is crucial to achieve
the desired function.

Training methods can be divided into two groups, unsupervised and super-
vised. In both cases, the network being trained is presented with training
data. In the unsupervised (Rumelhart and McClelland, 1987) case, the network
itself is allowed to determine a proper output. The rule for this is built into
the network. In many cases, this makes the network behaviour hard to predict.
This type of network is known as a ‘clustering’ device. The problem with
unsupervised learning is that the result of the training is somewhat uncer-
tain. Sometimes the network may come up with training results that are
almost incomprehensible. Another problem is that the order in which the
training data is presented may affect the final training result.

In the case of supervised training, not only is the training data presented
to the network, but also the corresponding desired output. There are many
different supervised training algorithms around, but most of them stem from
a few classical ones, which will be presented below. The bias term ¢ of a
node can be treated as a weight connected to an input signal with a constant
value of 1.
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The oldest training algorithm is probably Hebb’s rule. This training algo-
rithm can be used for single nodes. There are many extensions to this rule
of how to update the weights, but in its basic form it can be expressed as
the following

w,(n+1) = w,(n) + px,(n)x;(n) (4.18)

where u is the ‘learning rate’, x; is the output of node i, which is also one
of the inputs to node j and x; is the output of node j. The underlying idea
of Hebb’s rule is that if both node i and node j are ‘active’ (positive output)
or ‘inactive’ (negative output) the weight in between them, w,;, should be
increased, else it should be decreased. In a one-layer network, x; is a compo-
nent in the supervised training input data vector and x; corresponds to the
desired output.

This simple rule has two advantages. It is local, that is it only needs local
information x; and x;, and it does not require the non-linearity f() of the
node to be differentiable. A drawback is that to obtain good training results,
the input vectors in the training set need to be orthogonal. This is because
all the training input vectors are added to the weight vectors of the active
nodes, hence two or more nodes may obtain almost the same weight vectors
if they become ‘active’ often. Further, the magnitude of the weight vectors
may grow very large. This will result in ‘cross talk’ and erroneous outputs.
If on the other hand the input data vectors are orthogonal, it is very unlikely
that two nodes will be active about equally often and hence obtain similar
weight vectors.

The Widrow—Hoff rule or delta rule is closely related to the LMS algo-
rithm discussed in Chapter 3. This training algorithm can be used for single
nodes in single-layer networks.

In this algorithm, an error signal &; is calculated as (for node ;)

g=d,—w=d; = X w,x,— ¢, (4.19)

Note that u, is what comes out of the summation stage in the node and goes
into the activation function f( ). The term d; is the desired output signal when
the training data vector consisting of x,, x,, ... x, is applied. The weights
are then updated using

w(nt1)=w;(n) + px;(n)e;(n) (4.20)

In this case the input vectors in the training set do not need to be orthog-
onal. The difference between the actual output and the desired output, that
is the error signal &, is used to control the addition of the input data vector
to the weight vector. This rule is also local and it does not require the non-
linearity f( ) of the node to be differentiable.

The perceptron learning rule is a variation of the delta rule described
above. This training algorithm can, in its standard form, only be used for
single-layer networks. The idea is to adjust the weights in the network in
such a way as to minimize the total sum of square errors. The total error
for the network is
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E= = ~x) =D, (d, ~ f(E WX, — (bj))z (4.21)

J J

A simple steepest descent approach is now to take the derivative of the error
with respect to the weight w;;. From this we can tell in what direction to
change this particular weight to reduce the total square error for the network.
This procedure is repeated for all weights, hence we calculate the gradient
of the weight vector on the quadratic error hypersurface. For w;; we obtain

OB =)y %50
ow,; 2=, ow;; 2 du; dw;

= —2¢, f'(u) ¥, (4.22)

As can be seen, this algorithm requires the activation function f( ) of the
node to be differentiable. This is the delta rule, but we have now also included
the activation function. The weights are now updated as

wy(nt1)=w,(n) + ux;(n)e;(n) f'(uj(n)) 4.23)

where (as before)
0= wyx, + & (4.24)

So far, we have discussed training algorithms for single-layer feedforward
artificial neural networks. Supervised training of multi-layer networks is
harder, since in normal cases we lack desired output signals for all nodes
that are not in the output layer.

For training multi-layer feedforward networks, there is an algorithm called
the generalized perceptron learning rule, sometimes denoted the back-
propagation algorithm. This algorithm is a generalization of the perceptron
learning rule discussed above.

The idea is to start training the output layer. Since we do have access to
desired output values d,, this can be done by using the standard perceptron
learning rule as outlined above. Now, we go backwards in the layer and start
training the first layer preceding the output layer. Here we have to calculate
the errors on the outputs of the hidden nodes, by propagating the errors on
the output, through the output layer. This is where ‘back-propagation’
becomes useful.

Assume that there are M nodes in the output layer, and that we are to
adjust the weights of node j in the layer just below the output layer. Firstly,
the error on the output of node j will contribute to the errors of all output
nodes. Let us calculate this coupling first, by taking the derivative of the
total output squared error £ with respect to the output of node j

ox; {5y ou, Ox; =, du,, dx

JE o OE duy _22(dk_xk)8xk8uk

—2 D (d, — x) Flu) wy (4.25)

ke M
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When this link between the error on the output and the error on the output
of node j is known, we can find the derivative of the total error with respect
to the weights we are to update in node j (see also equation (4.22) above)

O O IEdk du_IE

ﬁij - GTCJ ow,, 0x; du; dw,; O,

= —2f(u)x, D, & f'(u)wy, (4.26)
ke M
The weights can now be updated using the standard form (see also equation
(4.23) above)

Wy (1) = w, (1) + (T (n) X, e,0n) £t (m)w,, (427)
ke M

This procedure is repeated for the next layer and so on, until the weights of
the nodes in the input layer have been updated.

4.3.4.4 Applications

Feedforward artificial neural networks are typically used in applications like
pattern recognition, pattern restoration and classification. The ‘patterns’
are the input vectors, where the components are ‘features’ relevant in the
application. If we are, for instance, dealing with a speech recognition system,
the features can for example represent signal power in different frequency
bands of a speech signal. The features can also be pixel values in an arti-
ficial neural network-based image processing system for OCR. Other areas
are processing of radar and sonar echo signals, matching fingerprints,
correcting transmission errors in digital communication systems, classifying
blood samples, genes and ECG signals in biological and medical applica-
tions, troubleshooting of electronic systems etc. In most cases, the applications
belong to some basic system types as detailed below.

Pattern associator. In this system type, the network mainly performs a
mapping from the input vector space to the output vector space. The mech-
anism here is to map (or ‘translate’) an input vector to an output vector in
a way that the network has been trained. If the desired mapping is simple
and can be expressed algebraically, no artificial neural network is normally
needed. If on the other hand the mapping cannot be easily formulated and/or
only samples of input and output vectors are available, training an artificial
neural network is possible.

Networks of this type have for instance been tried for weather forecasting
(Hu, 1963). Since the coupling between temperature, humidity, air pressure,
wind speed and direction in different places affects the weather in a very
complicated way, it is easier to train a network than to formulate mathe-
matical relations.

Auto-associator or content addressable memory (CAM). This system
type can be viewed as a special case of the pattern associator above, in the
sense that the input vector is mapped back on itself. The system acts as a
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content addressable memory, where the previously trained patterns are stored
in the weights. If an incomplete or distorted version of an earlier known
pattern is presented to the network, it will respond with a restored, error-
free pattern.

The human memory works as a content addressable memory. Once we
get some ‘clues’, or parts of the requested set of information, the rest of this
information will be recalled by associations. Networks of this type have been
tried for database searches and for error correction of distorted digital signals
in telecommunication systems.

Classifier, identifiers. This system type can also be regarded as a special
case of the pattern associator above. In this situation, our aim is to categorize
the input pattern and to tell to what class of patterns it belongs. This type of
network typically has few outputs and in some cases also a special type of out-
put layer having ‘lateral feedback’ (treated below), that assures that only one
output (class) at a time can be active.

Examples of this type of network are systems for classifying ECG signals
(Specht, 1964), and sonar and radar echo signals. The outputs may be
‘healthy/unhealthy’, ‘submarine/no submarine’ and so on.

Regularity detectors. This system type can be viewed as a variant of the
classifier above, but in this case there is no a priori set of categories into
which the input patterns are to be classified. The network is trained using
unsupervised training, that is, the system must develop its own featured repre-
sentation of the input patterns. In this way, the system is used to explore
statistically salient features of the population of input patterns. ‘Competitive
learning” (Rumelhart and McClelland, 1987) is an algorithm well suited for
regularity detectors. Examples of applications in this area are finding signif-
icant parameters in a large set of data or finding good data compression and
error-correcting coding schemes.

4.3.5 Feedback networks

Feedback networks, also known as recurrent networks, have all outputs
internally fed back to the inputs in the general case. Hence, a network of
this type commonly does not have dedicated inputs and outputs. Besides the
non-linear activation function, nodes in such a network also have some kind
of dynamics built in, for instance an integrator or accumulator.

The main idea of this class of networks is iteration. The input vector to
this system is applied as initial states of the node outputs and/or as bias
values. After these initial conditions are set, the network is iterated until
convergence, when the components of the output vector can be found on the
node outputs. To achieve convergence and to avoid stability problems, the
weights, that is the feedback parameters, have to be chosen carefully. It is
very common that the weights are constant set a priori in feedback networks,
hence this type of network is not ‘trained’ in the same way as feedforward
type networks.

Common networks of this type are the Hopfield net, the Boltzmann
machine and Kohonen’s feature maps.
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4.3.5.1 Nodes

The node functions in a feedback network have many similarities to the node
functions used in feedforward networks. An important difference however
is that in the feedback network case, the node functions include dynamics
or memory, for example an integrator. This is necessary as the network will
be iterated to obtain the final output. (In the feedforward case, obtaining the
output is a one-step process.) A common node model, used by for example
Hopfield has the differential equation

du;
- 2 W+ b= = 2 w, fu) + &, — u, (4.28)
where f( ) is the activation function. As can be seen, we have taken the node
function (4.8) and inserted an integrator with negative feedback in between
the summation point and the non-linear activation function. Hence, the feed-
back network is but a system of N non-linear differential equations, which
can be expressed in a compact matrix form

dUu

E:WTX+ O-U=W'FU+6-U (4.29)
where

U:[u1 U, *-* uN]T

F(U)= [f(ul) fuy) - f(uN)]T:X
9=[d)1 ¢ d)N]T

Now, it is straightforward to realize that when iterating the network it will
converge to a stable state when equation (4.29) is equal to the zero vector

av _

=0 4.30
it (4.30)

If we assume that the weight matrix W is symmetric, that is, w;; = w;, and
that we integrate equation (4.29) we can define the computational ‘energy’
function for the network

l N X;
HOO=— XWX - XT0+ Y, J £1x) dx (4.30)
=1 Jo

Now, if the activation function is a sigmoid (4.11), the inverse function will
be

u=f1(x)=—T1n()lc— 1) (4.31)

If we, like Hopfield, use the hard limiter activation function, this corresponds
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to a sigmoid with a low computational temperature 7, implying that the third
term of equation (4.30) will be small. Hence, it can be neglected and equa-
tion (4.30) can be simplified to

H(X) = — %XTWTX - Xx70 (4.32)

Hence, when the network settles to a stable state (4.30) all derivatives, that
is the gradient of the energy function (4.32), are zero. This means that the
stable states of the network and the output patterns correspond to a local
minimum of the energy function. To ‘program’ the network means formu-
lating the problem to be solved by the network in terms of an energy function
of the form function (4.32). When this energy function has been defined, it
is straightforward to identify the weights and biases of the nodes in the feed-
back artificial neural network.

A more general way to design a feedback network is of course to start
out defining an energy function and to obtain the node functions by taking
the derivatives of the energy function. This method is in the general case
much harder, since node functions may turn out to be complicated and conver-
gence problems may occur. The energy function must be a Lyapunov (Astrém
and Wittenmark, 1984) type function, that is it should be monotonically
decreasing in time. Further, Hopfield has shown that the weight matrix W
must be symmetric, in other words w;; = w;; and have vanishing diagonal
elements w;, =0 to guarantee stability.
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Figure 4.6 Example of a small, general feedback artificial neural network
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4.3.5.2 Network topology

In the general case, all nodes are connected with all other nodes in a feed-
back network (see Figure 4.6). There are however some special cases; one
such case is lateral feedback (Lippmann, 1987; Stranneby, 1990). This type
of feedback is commonly used within a layer of a feedforward network. An
example is the MAXNET (maximum likelihood Hamming net). This lateral
feedback type network assures that one and only one output of a layer is
active and that the active node is the one having the largest magnitude of
the input signal of all nodes in the layer. The MAXNET is hence a device
to find the maximum value within all elements in a vector. Quite often a
structure like this is used on the output of a classifying feedforward type
artificial neural network, to guarantee that only one class is selected.

4.3.5.3 Local and global minimum

As was seen in the previous section, when the feedback artificial neural
network is iterated, it will finally settle in one of the minimum points of the
energy function of the type such as function (4.32); which minimum point
depends on the initial state of the network, that is the input vector. The
network will simply ‘fall down’ in the ‘closest’ minimum after iteration is
started. In some applications this is a desired property, in others it is not.

If we would like the network to find the global minimum, in other words
the ‘best’ solution in some sense, we need to include some extra mechanism
to assure that the iteration is not trapped in the closest local minimum. One
network having such a mechanism is the Boltzmann machine.

In this type of feedback artificial neural network, stochastic node func-
tions are used. Every node is fed additive zero-mean independent
(uncorrelated) noise. This noise has the effect of making the node outputs
noisy, thus ‘boiling’ the hypersurface of the energy function. In this way, if
the state of the network happens to ‘fall down’ in a local minimum, there
is a certain probability that it will ‘jump up’ again and fall down in another
minimum. The trick is then gradually to decrease the effect of the noise, to
make the network finally end in the ‘deepest’ minimum, that is the global
one. This can be performed by slowly decreasing the ‘temperature’ T in the
sigmoid activation function in the network nodes.

The trick of decreasing the ‘temperature’ or cooling the network until it
‘freezes’ to a solution is called simulated annealing. The challenge here is
to find the smartest annealing scheme that will bring the network to the
global minimum with a high probability in as short a time as possible. Quite
often networks using simulated annealing converge very slowly.

The term ‘annealing’ is borrowed from crystallography. At high temper-
atures, the atoms of a metal lose the solid-state phase and the particles
position themselves randomly according to statistical mechanics. The parti-
cles of the molten metal tend towards the minimum energy state, but the
high thermal energy prevents this. The minimum energy state means a highly
ordered state such as a defect-free crystal lattice. To achieve defect-free crys-
tals, the metal is annealed, that is, it is first heated to a temperature above
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4.4 Fuzzy logic

the melting point and then slowly cooled. The slow cooling is necessary to
prevent dislocations and other crystal lattice disruptions.

4.3.5.4 Applications

Artificial neural networks have traditionally been implemented in two ways,
either by using analog electronic circuits or as software on traditional digital
computers. In the latter case, which is relevant for DSP applications, we of
course have to use the discrete time equivalents of the continuous time
expressions present in this chapter. In the case of feedforward artificial neural
networks, the conversion to discrete time is trivial. For feedback networks
having node dynamics, standard numerical methods like Runge—Kutta may
be used.

Feedback artificial neural networks are used in content addressable memo-
ries (CAM) and for solving miscellancous optimization problems.

In content addressable memories, each minimum in the energy function
corresponds to a memorized pattern. Hence, in this case, ‘falling’ in the
closest local minimum is a desirable property. Given an incomplete version
of a known pattern, the network can accomplish pattern completion.
Unfortunately, the packing density of patterns in a given network is not very
impressive. Research is in progress, in an attempt to find better energy func-
tions that are able to harbour more and ‘narrow’ minimums but still result
in stable networks.

Solving optimization problems is probably the main application of feed-
back artificial neural networks. In this case, the energy function is derived
from the objective function of the underlying optimization problem. The
global minimum is of primary interest, hence simulated annealing and similar
procedures are often used. For some hard optimization problems and/or prob-
lems with real-time requirements (e.g. in control systems) a local minimum,
i.e. sub-optimum solution, found in a reasonable time may be satisfactory.

Many classical NP-complete optimization problems, e.g. ‘the travelling
salesman’ (Hopfield and Tanks, 1986) and ‘the 8-queens problem’ (Holmes,
1989) have been solved using feedback artificial neural networks.

It is also possible to solve optimization problems using a feedforward arti-
ficial neural network with an external feedback path. This method has been
proposed for transmitter power and frequency assignment in radio networks
(Stranneby, 1996).

4.4.1 General

A fuzzy logic or fuzzy control (Passino and Yurkovich, 1998; Palm et al.,
1996) system performs a static, non-linear mapping between input and output
signals. It can in some respects be viewed as a special class of feedforward
artificial neural network. The idea was originally proposed in 1965 by
Professor Lofti Zadeh at the University of California, but has not been used
very much until the past decade. In ordinary logic, only false or true is
considered, but in a fuzzy system we can also deal with intermediate levels,
for example, one statement can be 43% true and another one 89% false.
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Figure 4.7 Example of a simple fuzzy logic system

Another interesting property is that the behaviour of a fuzzy system is not
described using algorithms and formulas, but rather as a set of rules, that
may be expressed in natural language. Hence, this kind of system is well
suited in situations where no mathematical models can be formulated or
when only heuristics are available. Using this approach, practical experience
can be converted into a systematic, mathematical form, in for instance a
control system.

A simple fuzzy logic system is shown in Figure 4.7. The fuzzifier uses
membership functions to convert the input signals to a form that the infer-
ence engine can handle. The inference engine works as an ‘expert’,
interpreting the input data and making decisions based on the rules stored
in the rule data base. The rule data base can be viewed as a set of ‘if—then’
rules. These rules can be linguistic descriptions, formulated in a way similar
to the knowledge of a human expert. Finally, the defuzzifier converts the
conclusions made by the inference engine into output signals.

As an example, assume we are to build a smart radar-assisted cruise control
for a car. The input signals to our simplified system are the speed of our
car and the distance to the next car in front of us (the distance is measured
using radar equipment mounted on the front bumper). The continuous output
control signals are accelerate and brake. The task of the fuzzy controller is
to keep the car at a constant speed, but to avoid crashing into the next car
in a traffic jam. Further, to get a smooth ride, the accelerator and brake
should be operated gently.

4.4.2 Membership functions

The outputs of the fuzzifier are called linguistic variables. In the above
example we could introduce two such variables, SPEED and DISTANCE.
The linguistic value of such a variable is described using adjectives like
slow, fast, very fast etc. The task of a membership function is to interpret
the value of the continuous input signal to degree of membership with
respect to a given linguistic value. The degree of membership can be any
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Figure 4.8 Input signal membership functions used in the example

number between zero and one and it can be regarded as a measure of to
what extent the input signal has the property represented by the linguistic
value. It is common to use 3, 5 or 7 linguistic values for every linguistic
variable, hence the same number of membership functions are required.
Figure 4.8 shows the membership functions for our example given above.
Here we have used three linguistic values for SPEED, slow, medium and
fast and three values for DISTANCE, close, ok and far.

From the figure it can be seen that the set of membership functions converts
the value of the continuous input signal to degree of membership for every
linguistic value. In this example, the membership functions overlap, so the
SPEED can for instance be both medium and fast but with a different degree
of membership. Further, we have chosen to ‘saturate’ the outermost member-
ship functions. For instance, if the distance goes to plus or minus infinity it
is regarded as far and close respectively. There are many possible shapes
for a membership function; the simplest and most common one is a symmetric
triangle, which we have used in our example. Other common shapes are
trapezoid, Gaussian or similar ‘bell-shaped’ functions, peak shapes and
skewed triangles. If a purely rectangular shape is used, the degree of member-
ship can only be one or zero and nothing in between. In such a case, we
are said to have a crisp set representation rather than a fuzzy set represen-
tation.

4.4.3 Fuzzy rules and inference

The input to the inference engine is the linguistic variables produced by the
membership functions in the fuzzifier (the fuzzy set). The output linguistic
variables of the inference engine are called the conclusions (the implied
fuzzy set). The mapping between the input and output variables is specified
in natural language by rules having the form
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If premise then consequent (4.33)

The rules can be formulated in many forms. Of these forms, two are
commonly standard: multi-input single-output (MISO) and multi-input multi-
output (MIMO). In this text, we will deal with MISO rules only (a MIMO
rule is equivalent to a number of MISO rules). The premise of a rule is in
the multi-input case a ‘logic’ combination of conditions. Two common ‘logic’
operators are AND and OR. Two simple examples of rules containing three
conditions are

If condition, AND condition, AND condition, then consequent (4.34a)
If condition, OR condition, OR condition; then consequent (4.34b)

Now, if we had been using Boolean variables (one or zero) the definition
of the operators AND and OR would be obvious. In this case however, the
conditions are represented by degree of membership, that is any real number
between zero and one. Hence, we need an extended definition of the oper-
ators. There are different ways to define AND and OR in fuzzy logic systems.
The most common way to define the AND operation between two member-
ship values w;; and w,, is using the minimum

My AND = min {/“Lija o (4.35)

where u,;; means the membership value of function j of the linguistic vari-
able i. For example, 0.5 AND 0.7 = 0.5. The most common way to define
the OR operation is using the maximum

mi; OR gy =max {p;;, py,} (4.36)

For example, 0.5 OR 0.7 = 0.7. An alternative way of defining the opera-
tors is to use algebraic methods

My AND g, = g gy (4.37)
Mg OR =y + gy = pyy b (4.38)

An interesting question is how many rules are needed in the rule database?
Assuming we have n linguistic variables (inputs to the inference engine) and
that the number of membership functions for variable i is &, , then the total
number of rules will be

Ne=]]N:=N,"N,-..."N, (4.39)
i=1

This assumes we need to consider all possible combinations of input signals.
Further, if MISO rules are used, N, rules may be needed for every output
linguistic variable in the worst case. From equation (4.39) it is easy to see
that the rule database and the computational burden grow quickly if too many
variables and membership functions are used. Hence, the selection of good
input signals and the appropriate number of linguistic values is crucial to
system performance.
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To pursue our example, we need to define output linguistic variables,
values and membership functions for the conclusions produced by the infer-
ence engine. Let us introduce two output variables. Firstly, ACCELERATE
having three values, release, maintain and press (for the accelerator pedal).
Secondly, BRAKE with the values release, press and press hard (for the
brake pedal). We are assuming automatic transmission and are ignoring ‘kick-
down’ features and so on. The associated membership functions used are
triangular (see Figure 4.9). In this case, ‘saturating’ functions cannot be used
since infinite motor power and accelerating brakes are not physically possible.
From Figure 4.9 we can also see that the centre of a membership function
corresponds to a given value of thrust or braking force.

ACCELERATE: release — 25% thrust (braking using motor)
maintain + 25% thrust (to counteract air drag)
press + 75% thrust (to accelerate)

BRAKE: release 0% braking force
press 25% braking force  (gentle stopping)

press hard 75% braking force (panic!)

The next step is to formulate the rules. According to equation (4.39) we
will need 3-3 = 9 rules for every output (using MISO rules) if all combi-
nations are considered. The following rules are suggested.

If SPEED is slow AND DISTANCE is close then ACCELERATE is release (4.40a)
If SPEED is slow AND DISTANCE is ok then ACCELERATE is press (4.40b)
If SPEED is slow AND DISTANCE is far then ACCELERATE is press (4.40¢)

If SPEED is medium AND DISTANCE is close then ACCELERATE is release
(4.40d)
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Figure 4.9 Output signals and associated membership functions used in
the example
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If SPEED is medium AND DISTANCE is ok then ACCELERATE is maintain
(4.40¢e)

If SPEED is medium AND DISTANCE is far then ACCELERATE is maintain
(4.401)

If SPEED is fast AND DISTANCE is close then ACCELERATE is release (4.40g)
If SPEED is fast AND DISTANCE is ok then ACCELERATE is release (4.40h)

If SPEED is fast AND DISTANCE is far then ACCELERATE is release (4.401)

If SPEED is slow AND DISTANCE is close then BRAKE is press (4.41a)
If SPEED is slow AND DISTANCE is ok then BRAKE is release (4.41b)
If SPEED is slow AND DISTANCE is far then BRAKE is release (4.41¢)
If SPEED is medium AND DISTANCE is close then BRAKE is press (4.414)
If SPEED is medium AND DISTANCE is ok then BRAKE is release (4.41e)
If SPEED is medium AND DISTANCE is far then BRAKE is release (4.411)
If SPEED is fast AND DISTANCE is close then BRAKE is press hard (4.41g)
If SPEED is fast AND DISTANCE is ok then BRAKE is press (4.41h)
If SPEED is fast AND DISTANCE is far then BRAKE is release (4.411)

Having defined all rules needed, we may now be able to find simplifica-
tions to reduce the number of rules. For instance, it is possible to reduce the
rules (4.40g)—(4.401) to just one rule, since the value of DISTANCE does
not matter, in all cases ACCELERATE should be release if SPEED is fast.
The reduced rule is

If SPEED is fast then ACCELERATE is release (4.42a)

Reasoning in the same way, rules (4.40a) and (4.40d) can be reduced to

If DISTANCE is close then ACCELERATE is release (4.42b)

Combining rules (4.42a) and (4.42b) we obtain

If SPEED is fast OR DISTANCE is close then ACCELERATE is release
(4.42¢)
Keeping rules (4.40b), (4.40c), (4.40¢e) and (4.40f) as is, we are now left
with five rules for ACCELERATE. Trying some reduction for the rules
generating BRAKE, one solution is to join rules (4.41c), (4.41f) and (4.411)
to obtain

If DISTANCE is far then BRAKE is release (4.43a)

Leaving the other rules for BRAKE as is, we now have seven rules, so the
total database will contain 12 rules (MISO). Further reductions are possible
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for both ACCELERATE and BRAKE, but they will result in complex rules
and will probably not reduce the computational demands. Finally, the rules
are rewritten in ‘mathematical’ form and stored in the rule database. If we

adopt the following notations
wy; membership value for SPEED, slow
w, membership value for SPEED, medium
n;  membership value for SPEED, fast
W, membership value for DISTANCE, close
W, membership value for DISTANCE, ok
W,; membership value for DISTANCE, far
for conclusion (implied fuzzy set) about thrust
7;; implied membership value for ACCELERATE, by rule i

b;; position of peak of recommended membership function in
ACCELERATE, by rule i

for conclusion (implied fuzzy set) about braking force
m,;  implied membership value for BRAKE, by rule j

b,; position of peak of recommended membership function in
BRAKE, by rule j

we can now formulate our reduced set of rules above in a mathematical

form. For ACCELERATE we get

(4.42c): 75, =max {3, Uyt for by =—0.25
(4.40b):  my, =min {u,, Ky} for by, =0.75
(4.40c):  my; =min {u;, s} for by;=0.75
(4.40e): M3, =min {u,, Uy} for b,,=0.25
(4.40):  mys=min {u,,, my3}  for by =0.25

and for BRAKE we get
(4.43a): My = Uy for b, =0
(4.41a): m, =min {u,, uyt for b, =025
(4.41b):  my3 =min {p), puy}  for by =0

(4.41d):  my, =min {p, gy}  for by, =025

(4.44a)
(4.44b)
(4.44¢)
(4.444)

(4.44¢)

(4.452)
(4.45b)
(4.45¢)

(4.45d)
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(4.41e): myus=min {Ww,, Uy} for b,;=0 (4.45e)
(4.41g): my=min {u;5, uy}  for by =0.75 (4.459)
(4.41h):  m,; = min {5, Uy} for b,,=0.25 (4.45g)

4.4.4 Defuzzification

The output conclusions from the inference engine must now be combined
in a proper way to obtain a useful, continuous output signal. This is what
takes place in the defuzzification interface (going from a fuzzy set to a crisp
set). There are different ways of combining the outputs from the different
rules. The implied membership value 7,; could be interpreted as the degree
of certainty that the output should be b,; as stated in the rule database.

The most common method is the centre of maximum (CoM). This method
mainly takes the weighted mean of the output membership function peak
position with respect to the implied membership value produced by M rules,
that is

M
2 bijnij
i=1
M
2 771']‘
Jj=1

where y; is the output signal, a continuous signal that can take any value
between the smallest and largest output membership function peak positions.
Another defuzzification method is centre of area (CoA) also known as the
centre of gravity (CoG). In this case, the respective output membership
function is ‘chopped off” at the level equal to the implied membership value
m;- In this case, the area of the ‘chopped off” (Figure 4.10) membership
function 4, is used as a weighting coefficient

y= (4.46)

= (4.47)

Yet another method of defuzzification is mean of maximum (MoM). In
this method, the output is chosen to be the one corresponding to the highest
membership value, i.e. the b;; corresponding to the largest 7,;. MoM is often
used in managerial decision-making systems and not very often in signal
processing and control systems. CoG requires more computational power
than CoM, hence CoG is rarely used, while CoM is common.

Let us use CoM to complete our example. There are two continuous output
signals from our cruise control, accelerate and brake. Assume accelerate is
denoted as y; and brake as y,. Using equation (4.46) it is straightforward to
derive the defuzzification process
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Figure 4.10 Defuzzification using CoG

5
2 b3j773j
i=1

Y3 = 5
E M35
=
. —0.25m;, + 0.75m5, + 0.757m35 + 0.2571;, + 0.257;5
My T N3t M3z T N3y + M35
_ 0.75(n3; + M33) + 0.25(34 + M35 — M3) (4.48)
MN3r T M3+ M3z T N3+ M35
7
2 bajmy
Yo = =

.
2 Naj
=1

_ Omy, +0.257m,, + Omy3 + 0.257,, + Onys + 0.757,5 + 0.257,,
Mar T Nap + Mgz T Mg + Nys+ My + My

_ 0'757746 + 0.25(7742 + m + 7747) (4 49)

Nyt Map t Muz + Mg + Mys + Ny + Mgy

In Figure 4.11, plots of y; and y, are shown. It should be remembered
however, that this example is simplified and that there are many alternative
ways of designing fuzzy systems.
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Figure 4.11 Output signals accelerate and brake as functions of input
signals speed and distance

4.4.5 Applications

Fuzzy logic is used in some signal and image processing systems and in
image identification and classifying systems. Most fuzzy systems today are
however control systems. Fuzzy regulators are suitable for applications where
mathematical models are hard or impossible to formulate. The process subject
to control may be time varying or strongly non-linear, requiring elaborate
theoretical work to be understood. Another suitable situation arises when
there exists an abundent amount of practical knowledge from manual control
such that experience can be formulated in natural language rather than math-
ematical algorithms. It is common that people having limited knowledge in
control theory find fuzzy control systems easier to understand than tradi-
tional control systems.

One drawback that exists is that there are no mathematical models avail-
able and no computer simulations can be done. Numerous tests have to be
performed in practice to prove the performance and stability of a fuzzy
control system under all conditions. A second drawback is that the rule data-
base has a tendency to grow large, requiring fast processing hardware to be
able to perform in real time.

Fuzzy controllers can be found not only in space ships but also in air
conditioners, refrigerators, microwave ovens, automatic gearboxes, cameras
(auto-focus), washing machines, copying machines, distilling equipment,
industrial baking processes and many other everyday applications.



5.1 DFT and FFT

S Spectral analysis and
modulation

The DFT discrete Fourier transform (Burrus and Parks, 1985) from the
time domain to the frequency domain representation, is derived from the
time-discrete Fourier transform

+ oo
X(w)= Y, x(m) e 2mewn (5.1)
oo
The spectrum produced using this transform is periodic with the sampling
frequency w, and for real input signals x(#), the spectrum always has ‘even’
symmetry along the real axis and ‘odd’ symmetry on the imaginary axis. In
practice, we cannot calculate this sum, since it contains an infinite number
of samples. This problem is only solved by taking a section of N samples
of the sequence x(n). To achieve this, x(n) is multiplied by a windowing
sequence s(n) obtaining the windowed input signal x,(n). Since multipli-
cation in the time domain corresponds to convolution in the frequency domain,
the time discrete Fourier transform of the windowed sequence will be

Xy(w) = X(w)* V(o) (52)

where W(w) is the spectrum of the windowing sequence /(n) and * denotes
convolution. The ideal windowing sequence would have a rectangular spec-
trum, distorting the desired spectrum as little as possible and avoiding spectral
‘leakage’. Unfortunately, a rectangular frequency response is practically
impossible to build, therefore we must settle for some compromise. Com-
monly used windowing sequences are, for example, Rectangular, Bartlett,
Hanning, Hamming and Kaiser—Bessel windows (Oppenheimer and Schafer,
1975).

Now, let us assume we have chosen an appropriate windowing sequence.
Next we must determine how many frequency points should be used for
calculation of the transform in order to maintain a reasonable accuracy. There
is no simple answer, but in most cases good results are obtained using as
many equally spaced frequency points as the number of samples in the
windowed input signal, that is N. Hence the spacing between the frequency
points will be w,/N. Now, inserting this into equation (5.1), the DFT in its
most common form can be derived

w N1 _ N1
Xy (k N) = () e P2TEN =N () W (5.3)
n=0 n=0

where the twiddle factor is
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W, = e /T (54)

Unfortunately, the number of complex computations needed to perform the
DFT is proportional to N?. The acronym FFT (Fast Fourier Transform)
refers to a group of algorithms, all very similar, which uses fewer compu-
tational steps to efficiently compute the DFT. The number of steps are
typically proportional to NIb(), where 1b(x) = log,(x) is the logarithm base
2. Reducing the number of computational steps is of course important if the
transform has to be computed in a real time system. Fewer steps implies
faster processing time, hence higher sampling rates are possible. Now, there
are essentially two tricks employed to obtain this ‘sped up version’ of DFT.

(1) When calculating the sum (5.3) for £ = 0, 1, 2 ... N, many complex
multiplications are repeated. By doing the calculations in a ‘smarter’
order, many calculated complex products can be stored and reused.

(2) Further, the twiddle factor (5.4) is periodic and only N factors need to
be computed. This can of course be done in advance and the values can
be stored in a table.

Let us illustrate the ideas behind the FFT algorithm by using a simple
example having N = 4. If we use the original DFT transform as is equation
(5.3), the following computations are needed

k=0: X,(0) = x,(0)y + x,(DWy + x,Q)Wy + x,3)Wy

=12 X,(1) = x, ()W) + x,(WWy + x, QW + x, )W}
k=2: X,2) =2, O + x, (DWW + x, QW + xS (5-5)
=31 X,(3) = x,(OW5 + x,(DW3 + x,Q)W 5 + x,3)W,

As can be seen from computations (5.5), 16 complex multiplications and 12
complex additions are needed. Now, let us see how these numbers may be
reduced. Firstly, if we put the odd and even numbered terms in two groups
and divide the odd terms by W} computations (5.5) can be rewritten as

X,(0) = (e, ()Y + x, Q) + W2 (x,(1) + x,(3))

Xy(1) = (x@)W§ + x,QW3) + Wi (i) + x,()W3)

) +
7
0 (5.6)
X,2) = (x (W5 + x,QW5) + W3 (x,(1) + x,3)W)
3)

X,(3) = (e (O)W§ + 2, §) + W (x,(1) + x,HWS)
Secondly, we use the periodicity of the twiddle factor (5.4)
Wi=w, WS=w,;

Further, we know that W = 1. Inserting this into computations (5.6), we
obtain
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X,(0) = (1,0) + x42)) + (ey(D) + x,3)) =4 + C

Xy(1) = (x400) + x,QW3) + Wy (x,(1) + x,3)W3) = B + W,D
) ) (5.7)
X,2) = (x(0) + x,2)) + W (ey(1) + x,3)) =4 + W5C
Xy(3) = (x4(0) + x,W3) + W3 (e, (1) + x,3)W3) =B + W3D

From computations (5.7) we can now see that our computations can be
executed in two steps. In step one we calculate the terms 4, B, C and D and
in step two we calculate the transform values X,(k). Hence step 1 is

A4 = x,00) + x,2)
B = x,00) + x,)W; = x,(0) — x,(2)
C = x,(1) +x,03) (5-8)

D = x,(1) + x,3)W; = x,(1) — x,(3)

This step requires two complex additions and two complex subtractions. If all
input signals are real, we only need real additions and subtractions. Step 2 is

X,0)=4+C

X,(1)=B + WiD
X,2)=A+ Wi;C=4—C (5-9)
X,(3)=B+ WiD=B— W,D

Two complex multiplications, two complex additions and two subtractions
are needed. In total, we now have two complex multiplications and eight
complex additions (subtractions). This is a considerable saving compared to
the 16 multiplications and 12 additions required to compute the DFT in its
original form.

The steps of the FFT (in our example steps (5.8) and (5.9)) are often
described in signal flow chart form, denoted ‘FFT butterflies’ (see Figure
5.1). For the general case, the FFT strategy can be expressed as

ws N—1 ,
Xy (kN) = xy (" =
n=0

N/2—1 L kN/2—1 i
D xyQmIA + W D xy(@n+ 1) Wil (5.10)
n=0 n=0

and

wat=wE N where j=1,2, ... (5.11)
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5.2 Spectral analysis

x(0) >< A > X(0)
x(2) B > X(1)
x(1) C . X(Q2)
W =-1
x(3) ——— D ()
Wi =-1 =

Figure 5.1 FFT butterfly signal flow diagram, showing the example
having N=4

Spectral analysis, by estimation of the power spectrum or spectral power
density of a deterministic or random signal, involves performing a squaring
function. Obtaining a good estimate of the spectrum, that is the signal power
contents as a function of the frequency, is not entirely easy in practice. The
main problem is that in most cases we only have access to a limited set of
samples of the signal; or in another situation, we are forced to limit the
number of samples to be able to perform the calculations in a reasonable
time. These limitations introduce errors into the estimate. If the signal is a
random type signal, we may also obtain large fluctuations in power estimates
based on samples from different populations. Hence, in the general case there
is no way to obtain the true power spectrum of a signal unless we are
allowed to observe it infinitely. This is why the term estimation is frequently
used in this context.

5.2.1 DFT and FFT approaches

Spectral analysis using the Fourier transform, a non-parametric method, was
originally proposed in 1807 by the French mathematician and Baron
J.B.J. Fourier. The discrete version of this transform, commonly used today
in digital signal processing applications, is called Discrete Fourier
Transform (DFT). A smart algorithm for calculating the DFT, causing less
computational load for a digital computer, is the Fast Fourier Transform
(FFT). From a purely mathematical point of view, DFT and FFT do the
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same job as shown above. Consider a sampled signal x(n) for —co < n < e
further and assume that the signal has finite energy, that is

i x*(n) < oo (5.12)

n=—oo

The DFT of the signal can then be expressed as

=)

X(w)= Y, x(n) e s2moiwnm (5.13)

n=—oo

where o, is the sampling frequency. By Parseval’s relation, the energy of
the signal can then be expressed as

> |x(n)|2=—f_ |X(w)|2dw=;1_£ S () dw (5.14)

27

n=—oco

where S (w) is referred to as the spectral density of the signal x(n). The
spectral density is hence the squared magnitude of the Fourier transform of
the signal. As mentioned above, in most cases the signal is not defined for
—oo < p < oo, Or we may not be able to handle an infinite length sequence
in a practical application. In such a case, the signal is assumed to be non-
zero only for n = 0, 1, ... N—1 and assumed to be zero otherwise. The
spectral density is then written as

N—1 2
Se@) = [X(@)>= | D) x(n) e 2o (5.15)

n=0

The power of the signal as a function of the frequency is called a periodo-
gram, A. Schuster defined it in 1898 as

P0) = S,(@) (5.16)

In the case where the signal x(n) exists over the entire interval (—eoo,o0)
and its energy is infinite (e.g. sinusoidal or other periodic signal) it is con-
venient to define the spectral density as (Mitra and Kaiser, 1993)

N. 2

1 —j2m(w/w)n
P, (@)= lim n:E_Nx(n) e (5.17)

Now, in many practical cases, to use an FFT algorithm, N is chosen to
be a power of 2 (e.g. 64, 128, 256 .. .). This means that the spectral density
can only be calculated at N discrete points, which in many cases turns out
to be too sparse. Quite often, we need a finer frequency spacing, i.e. we
need to know the spectrum at L points where L > N. This can be accom-
plished by zero-padding, so that the data sequence consisting of N samples,
is extended by adding L — N zero value samples to the end of the sequence.
The ‘new’ L-point sequence is then transformed using DFT or FFT. The
effective frequency spacing is now



Spectral analysis and modulation 105

27 2@
7<7

5.18
Lo, No, (5.18)

It is important to remember that zero-padding does not increase the reso-
lution in frequency, it merely interpolates the spectrum at more points. For
some applications this is however sufficient. So far, we have assumed that
the signal x(n) has been identical to zero outside the interval » = 0, 1, ...
N—1. This is equivalent to multiplying the sequence x(n) with a rectangular
window sequence

s(n) = x(n) w(n) (5.19)
where the rectangular window can be expressed as

1 forOs<n<N
0 else

w(n) = { (5.20)
We recall from basic signal theory that a multiplication in the time domain,
like equation (5.19) corresponds to a convolution in the frequency domain.
Therefore, the result of the windowing process has the ‘true’ spectrum of
the signal convoluted with the Fourier transform of the window sequence.
What we obtain is not the spectrum of the signal, but rather the spectrum
of the signal x(n) distorted by the transform of the window sequence. This
distortion results in ‘smearing’ of the spectrum, which implies that narrow
spectral peaks cannot be detected nor distinguished from each other (Mitra
and Kaiser, 1993; Lynn and Fuerst, 1994). This ‘leakage’ is an inherent limi-
tation when using conventional Fourier techniques for spectral analysis. The
only way to reduce this effect is to observe the signal for a longer duration,
i.e. gather more samples. The quality of the spectral estimate can however
be somewhat improved by using a ‘smoother’ window sequence than the
quite ‘crude’ rectangular window. Some examples of windows with different
distortion properties (Oppenheimer and Schafer, 1975; Mitra and Kaiser,
1993) are given below.
The Bartlett window (triangular window)

20/(N—1) 0<n<(N-1)2
= 521
W) {2 —20/(N—1) (N-1)2<n<N (5-21)
The Hann window
1 2
wim) = (1 — cos (N"_”» 0<n<N (5.22)

The Hamming window

2nir
w(n) =0.54 — 0.46 cos ( ) 0sn<N (5.23)

N—1
The Blackman window

2na

dnar
w(n)=0.42 — 0.5 cos ( ) + 0.08 cos ( ) 0sn<N (5.24)
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5.2.2 Using the auto-correlation function

In the previous section, we concluded that a spectral power estimate could
be obtained by taking the square of the magnitude of the Fourier transform
(5.15) of the signal x(n). There is an alternative way of achieving the same
result by using the auto-correlation function of the signal x(n). Let us start
this section by a brief discussion on correlation functions (Papoulis, 1985;
Denbigh, 1998; Schwartz and Shaw, 1975) of time-discrete signals. Assume
that the means of the two complex signal sequences x(#) and y(n) are zero

E[x(n)]=n,=0 and E[y(n)]= n,=0

The cross-correlation between these signals is then defined as

R, (n, m) = E[x(n)y*(m)] (5.25)

where * denotes a complex conjugate and E[ ] is the expected mean oper-
ator (ensemble average). If the mean of the signals is not zero, the
cross-covariance is

Cyn, m)=R,(n,m) — m(n)n }(m) (5.26)

Note! if the mean is zero, the cross-correlation and cross-covariance are
equal. If the signal is correlated by itself, auto-correlation results

R.(n, m)=E[x(n)x*(m)] (5.27)
As a consequence of the above, the auto-covariance is defined as

Cxx(n’ m) = Rxx(n’ m) - nx(n)nx*(m) (528)

If the signal x(n) has zero mean and the auto-correlation only depends on
the difference &k = m—n and not on the actual values of n or m themselves,
the signal x(n) is said to be wide-sense stationary from a statistical point
of view. This basically means that regardless of which point in the sequence
the statistical properties of the signal is studied, they all turn out to be similar.
For a stationary signal (which is a common assumption on signals) the auto-
correlation function is then defined as

R (k) = E[x(n)x*(n+k)] (5.29)

Note in particular that R_(0) = ¢? is the variance of the signal and repre-
sents the power of the signal. Now, starting from equation (5.17), we study
the square magnitude of the Fourier-transformed signal sequence x(n) as
N—oo

o

2 X(I’l) e—j27r(w/a)s)n

n=—oco

2 oo ) %
— < 2 X(I’l) e—jZa‘r(w/an) ( 2 x(n) e—j27'r(¢u/ws)n>

n=—oco n=—oco

2 2 x(n)x*(m) e 2™ @ m=m

n=—oco m=—oco
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o

E E x(n)x*(n+k) e /2m@wk

n=—oo k=—oo

D R, (k) e 2wk (5.30)

n=—oco

Hence, we now realize that the spectral density can be obtained in an alter-
native way, namely by taking the DFT of the auto-correlation function

D (0) = DO R (k) e 2ok (5.31)

n=—oco

This relationship is known as the Wiener—Khintchine theorem.

5.2.3 Periodogram averaging

When trying to obtain spectral power estimates of stochastic signals using
a limited number of samples, quite poor estimates often result. This is espe-
cially true near the ends of the sample window, where the calculations are
based on few samples of the signal x(n). These poor estimates cause wild
fluctuations in the periodogram. This trend had already been observed by A.
Schuster in 1898. To get smoother power spectral density estimates, many
independent periodograms have to be averaged. This was first studied by
M.S. Bartlett and later by P.D. Welch.

Assume that x(#n) is a stochastic signal being observed in L points, i.e. for
n=0,1,... L—1. This is the same as multiplying the signal x(n) by a rectan-
gular window w(n), being non-zero for n = 0, 1, ... L—1 (see expression
(5.20)). Using the DFT (5.13) in this product we obtain

L1

S(w) = E x(n)w(n) e /2m@eIn (5.32)
n=0

We now consider an estimate of the power spectral density (Mitra and Kaiser,
1993) given by

~ 1 5
L@ =10 [S(w)| (5.33)

where U is a normalizing factor to remove any bias caused by the window

w(n)
L—1
U:i;‘s [w(n)|? (5.34)

The entity /_(w) is denoted as a periodogram if the window used is the
rectangular window, else it is called a modified periodogram. Now, Welch’s
method computes periodograms of overlapping segments of data and aver-
ages them (Mitra and Kaiser, 1993). Assume that we have access to O con-
tiguous samples of x(n) and that Q > L. We divide the data set into P segments
of L samples each. Let S be the shift between successive segments, then
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O=(P-DS+L (5.35)

Hence, the ‘windowed’ segment p is then expressed as

sP(n) = w(n)x(n + pS) (5.36)

for 0 =<n <L and 0 < p < P. Inserting equation (5.35) into equation (5.32)
we obtain the DFT of segment p

L1
SO w) = D) sP)(m) e 20w (5.37)
n=0
Using equation (5.33), the periodogram of segment p can be calculated
. 1
[P(0)=— |SP(w)|? 5.38
D)= 1S @) (5.38)
Finally, the Welch estimate is the average of all the periodograms over all

segments p as above

P

. 1.
Mw)=7 2, 1) (539)
0

RS
Il

For the Welch estimate, the bias and variance asymptotically approach
zero as Q increases. For a given O, we should choose L as large as possible
to obtain the best resolution, but on the other hand, to obtain a smooth esti-
mate, P should be large, implying L to be small (equation (5.35)). Hence,
there is a tradeoff between high resolution in frequency (large L) and smooth
spectral density estimate (small L). Increasing Q is of course always good,
but requires longer data acquisition time and more computational power.

The Bartlett periodogram is a special case of Welch’s method as
described above. In Bartlett’s method, the segments are non-overlapping,
that is, S = L in equation (5.35). The same tradeoff described above for
Welch’s method also applies to Bartlett’s method. In terms of variance in
the estimate, Welch’s method often performs better than Bartlett’s method.
Implementing Bartlett’s method may however in some cases be somewhat
easier in practice.

5.2.4 Parametric spectrum analysis

Non-parametric spectral density estimation methods like Fourier analysis as
described above are well studied and established. Unfortunately, this class
of methods has some drawbacks. When the available set of N samples is
small, resolution in frequency is severely limited. Also auto-correlation
outside the sample set is considered to be zero, i.e. R (k) = 0 for k£ > N,
which may be an unrealistic assumption in many cases.

Fourier-based methods assume that data outside the observed window are
either periodic or zero. The estimate is not only an estimate of the observed
N data samples, but also an estimate of the ‘unknown’ data samples outside
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the window, under the assumptions above. Alternative estimation methods
can be found in the class of model-based, parametric spectrum analysis
methods (Mitra and Kaiser, 1993). Some of the most common methods will
be presented briefly below.

The underlying idea of assuming the signal to be analysed can be gener-
ated using a model filter. The filter has the causal transfer function H(z)
and a white noise input signal e(n), with mean value zero and variance o2
In this case, the output signal x(r) from the filter is a wide-sense stationary
signal with power density

P, (0) = P (w)| H(w)|* = 07| H(w)|? (5.40)

Hence, the power density can be obtained if the model filter transfer func-
tion H(z) is known, i.e. if the model type and its associated filter parameters
are known. The parametric spectrum analysis can be divided into three steps:

o selecting an appropriate model and selecting the order of H(z). There
are often many different possibilities

e estimating the filter coefficients, i.e. the parameters from the N data
samples x(n) where n =0, 1, ... N—1

e cvaluating the power density, as in equation (5.40) above.

Selecting a model is often easier if some prior knowledge of the signal
is available. Different models may give more or less accurate results, but
may also be more or less computationally demanding. A common model
type is the ARMA (auto-regressive moving average) model

PO
ig S - 20 h(n)z™" (5.41)
1+ ko

where /h(n) is the impulse response of the filter and the denominator poly-
nomial A(z) has all its roots inside the unit circle for the filter to be stable.
The ARMA model may be simplified. If ¢ = 0, then B(z) = 1 and an all-
pole filter results, yielding the AR (auto-regressive) model

H(z)=

1
P

1+ 2 az "
=1

or, if p = 0, then A(z) = 1 and a filter having only zeros results, a so-called
MA (moving average) model

H(z) = (5.42)

H@z)= Y, bz (5.43)
=0

Note that these models are mainly IIR and FIR filters (see also Chapter 1).
Once a reasonable model is chosen, the next measure is estimating the filter
parameters based on the available data samples. This can be done in a number
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of ways. One way is using the auto-correlation properties of the data sequence
x(n). Assuming an ARMA model as in equation (5.41), the corresponding
difference equation (see Chapter 1) can be written

x(n) = — ; ax(n—k) + ; b, e(n—Fk) (5.44)

where e(n) is the white noise input sequence. Multiplying equation (5.44)
by x*(n + m) and taking the expected value we obtain

Ro(m) = = aRu(m—) + S, bR, (m—h) (5.43)
=] =
where the auto-correlation of x(n) is
R, (m)= E[x(n)x*(n +m)] (5.46)
and the cross-correlation between x(n) and e(n) is
R, (m)= E[e (n)x*(n+m)] (5.47)

Since x(n) is the convolution of i(n) by e(n), x*(n + m) can be expressed
as

x*(n+m)= i h*(k) e(ntm—k) (5.48)
=0

Inserting into equation (5.47), the cross-correlation can hence be rewritten
as

R, (m)= E[e(n) i h*(k) e(n+m—k)]
=0

= i h*(k) E[e(n)e(n+m—k)] = a?h*(—m) (5.49)
k=0

where we have used the facts that e(n) is a white noise signal and A(n) is
causal, i.e. zero for n < 0. We can now express the auto-correlation values
for the signal originating from the ARMA model, in terms of the model
parameters

-
P
— 2 aR_(m—k) form=g¢q
=1
R -3 1 A 5.50
XX(m) - 2 akax(m_k) + 0-62 2 h*(k)bk+m fOI' 0 sm< q ( )
=1 =0
L R:{;x(_m) form <0

The auto-correlation values R (m) for [m| = g are extrapolated by the
filter parameters and the values of R _(m) for m = 0, 1, ... g. Now, for the
sake of simplicity, assume that we are using an AR model, i.e. ¢ = 0. Then
equation (5.50) simplifies to
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P
- E aR . (m—k) form =0
=i
Rm)y =9 < 5.51
(M) - E a,R_(m—k) + o} for0=m SED
=
L R%(—m) form <0

Thus, if the auto-correlation values R (0), R (1), ... R (p) are known, the
filter parameters can be found by solving p linear equations corresponding
tom =0, 1, ... p. Note that we only need to know p+1 correlation values
to be able to determine all the parameters. From equation (5.51) and setting
m = 0 we can also obtain the variance

a2 =R (0) + D R (—k) (5.52)
k=1

Combining equations (5.51) and (5.52) we thus have to solve the following
equations to obtain the parameters. These equations are known as the
Yule-Walker equations.

R, (0) + aR (=) + ...a,R . (—p)= 0

R.(1) +aR(0)+ ...a,R (—p+1)=0 (5.53)

Rxx(p) + alex(p_ 1) + .. aprx(O) = 0

For the ARMA model, the modified Yule—Walker equations can be used
to determine the filter parameters. The Yule—Walker equations can be solved
using standard techniques, for instance Gauss elimination, which requires a
number of operations proportional to p*. There are however recursive, smarter
algorithms that make use of the regular structure of the Yule—Walker equa-
tions and hence require fewer operations. One such algorithm is the
Levinson—Durbin algorithm (Mitra and Kaiser, 1993) requiring a number
of operations proportional to p?> only. There are also other ways to obtain
the parameters. One such way is adaptive modelling using adaptive filters
(Widrow and Stearns, 1985) (see Chapter 3).

Finally, when the filter parameters are estimated, the last step is to eval-
uate the spectral density. This may be achieved by inserting

2= 2w, (5.54)

into the transfer function H(z) of the model (for example equation (5.41))
and then, using the relation (5.40), evaluating the spectral density. It should
however be pointed out that the calculations needed may be tiring and that
considerable error between the estimated and the true spectral density may
occur. One has to remember that the spectral density is an approximation,
based on the model used. Choosing an improper model for a specific signal
may hence result in a poor spectral estimate.
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The parametric analysis methods have other interesting features. In some
applications, the parameters themselves are sufficient information about the
signal. In speech-coding equipment for instance, the parameters are trans-
mitted to the receiver instead of the speech signal itself. Using a model filter
and a noise source at the receiving site, the speech signal can be recreated.
This technique is a type of data compression algorithm (see also Chapter 7),
since transmitting the filter parameters requires less capacity then transmit-
ting the signal itself.

5.2.5 Wavelet analysis

Wavelet analysis, also called wavelet theory or just wavelets (Lee and
Yamamoto, 1994; Bergh et al., (1999) has attracted much attention recently.
It has been used in transient analysis, image analysis and communication
systems and has shown to be very useful for processing non-stationary
signals.

Wavelet analysis deals with expansion of functions in terms of a set of
basis functions, like Fourier analysis. Instead of trigonometric functions
being used, as in Fourier analysis, wavelets are used. The objective of wavelet
analysis is to define these wavelet basis functions. It can be shown that every
application using the FFT can be reformulated using wavelets. In the latter
case, more localized temporal and frequency information can be provided.
Thus, instead of a conventional frequency spectrum, a ‘wavelet spectrum’
may be obtained.

Wavelets are created by translations and dilations of a fixed function
called the mother wavelet. Assume that {(¢) is a complex function. If this
function satisfies the following two conditions, it may be used as a mother
wavelet

Condition one

f |4 (0)|? dt < oo (5.55)
This expression implies finite energy of the function.

Condition two
oo .lP 2
%=2wf ol ,, <. (5.56)
e w

where W(w) is the Fourier transform of (¢). This condition implies that if
VY(w) is smooth, then ¥(0) = 0. One example of a mother wavelet is the
Haar wavelet, which is the historically original and simplest wavelet

1 forO0<tr=<1/2
Y= —1 forl2<r=<1 (5.57)
0 else



Spectral analysis and modulation 113

Re Im

Figure 5.2 Real and imaginary part of a Morlet wavelet

Other examples of smooth wavelets having better frequency localization prop-
erties are the Meyer wavelet, the Morlet wavelet and the Daubechies wavelet
(Lee and Yamamoto, 1994; Bergh et al., 1999). Figure 5.2 shows an example
of a Morlet wavelet. The wavelets are obtained by translations and dilations
of the mother wavelet

s =y (5.59)

which means rescaling the mother wavelet by a and shifting in time by b,
where a > 0 and —co < b < oo,
The wavelet transform of the real signal x(7) is the scalar product

X(b, a)= J ) W (1) x(0) dt (5.59)

where * denotes the complex conjugate. There is also an inverse transform

1 >~ = da db
()= j j X(b, ayp, () (5.60)
—o0 Y0

Cy a’
where ¢, is obtained from equation (5.56). For the discrete wavelet trans-

form, equations (5.58), (5.59) and (5.60) are replaced by equations (5.61),
(5.62) and (5.63) respectively

YD) =ay " ¢ (t_a,fbo) (5.61)

0

where m and n are integers and a, and b, are constants. Quite often g, is
chosen as

—nlh
a,=2

where v is an integer and v pieces of i, (¢) are processed as one group
called a voice

X[ woxa (5.62)
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Figure 5.3 Magnitude of a wavelet transform (Morlet) of a sinusoid with
linearly increasing frequency

Figure 5.4 A signal comprising two sinusoids with different frequencies,
where one frequency component is switched on with a time delay
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5.3 Complex
modulation

X0 =ky DD Xy Yl (5.63)

Graphical representation of the complex functions obtained from equa-
tions (5.59) and (5.62) is not always entirely easy. Commonly, 3D graphics
or grey-scale graphics showing the magnitude and phase as a function of a
and b, are used. One example is Figure 5.3, showing the magnitude of a
wavelet transform (Morlet) of a sinusoid with linearly increasing frequency.
Figure 5.4 shows a signal comprising two sinusoids with different frequen-
cies, where one frequency component is switched on with a time delay.

In many communication systems, especially in radio systems, the informa-
tion (‘digital’ or ‘analog’) to be transmitted is modulated, i.e. ‘encoded’
onto a carrier signal. The carrier is chosen depending on the type of media
available for the transmission, for instance, a frequency band in the radio
spectrum or an appropriate frequency for transmission over cables or fibres.
If we assume that the carrier signal is purely a cosine signal, there are three
parameters of the carrier that can be modulated that are being used for infor-
mation transfer. These parameters are the amplitude a(?), the frequency 7.(¢)
and the phase ¢(¢). The modulated carrier is then

s(t) = a(f)cos(2af. (Ot + H(2)) (5.64)

The corresponding modulation types are denoted amplitude modulation
(AM), frequency modulation (FM) and phase modulation (PM). Note that
FM and PM are related in that the frequency is the phase changing speed,
in other words, the derivative of the phase function is the frequency. Hence,
FM can be achieved by changing the phase in a proper way.

In a digital radio communication system it is common to modulate either
by changing f(¥) between a number of discrete frequencies, FSK (frequency
shift keying) or by changing ¢(¢) between a number of discrete phases, PSK
(phase shift keying). In some systems, the amplitude is also changed between
discrete levels ASK (amplitude shift keying). So if we are to design a mod-
ulation scheme being able to transmit M different discrete symbols (for binary
signals, M = 2), we hence have to define M unique combinations of ampli-
tude, frequency and/or phase values of the carrier signal. The trick is to define
these signal points (triplets of a(?), f.(f) and ¢(¢)) in a way that communica-
tion speed can be high, influence of interference low, spectral occupancy low
and modulation and demodulation equipment made fairly simple.

A good approach when working with modulation is to utilize the concept
of complex modulation, a general method being able to achieve all the
modulation types mentioned above.

5.3.1 Complex representation of narrowband signals

Assume that the bandwidth of the baseband signal, the information modu-
lated onto the carrier, is small relative to the frequency of the carrier signal.
This implies that the modulated carrier, the signal being transmitted over the
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communications media, can be regarded a narrowband passband signal,
or simply a bandpass signal (Proakis, 1989; Ahlin and Zander, 1998)

s(t) = a(t) cos 2af.t + ¢(f))
a(t) cos (¢p(?)) cos 2arf.t) — a(?) sin (¢(?)) sin 27f.1)

= x(f) cos 2mf.t) — ¥(f) sin 2mf.f) (5.65)

where x(f) and y(¢) are the quadrature components of the signal s(¢), defined
as

x(t) = a(f) cos (¢(f)) the in phase or / component (5.66a)
and  y(f) = a(?) sin (¢(¢)) the quadrature phase or Q component(5.66b)

The two components above can be assembled into one handy entity by
defining the complex envelope

2(t) = x(2) + jy() = a(?) cos (¢(1) + ja(?) sin (§()) = a(t) ¥ (5.67)

Hence, the modulated carrier can now be written (see also equation (5.65))
as

s(f) = Re [z(1) e/*™'] (5.68)

The modulation process is performed by simply making a complex multi-
plication of the carrier and the complex envelope. This can be shown on
component level

s(f) = x(f) cos 2mf.t) — y(b) sin Qmf.t) (5.69)

Figure 5.5 shows a simple, digital quadrature modulator implementing expres-
sion (5.69) above. The M-ary symbol sequence to be transmitted enters the

| channel O
'KX

Y

cos(2mft)

carrier
generator

Am) [ o : s(1)
ymbol C)
mapper I -!-

phase

shifter

sin(2mf1)

x(1)

(1)

Q channel \>.</

Figure 5.5 Simple M-ary quadrature modulator
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Table 5.1 Example: I and Q components and phase angle as a function of
input bits

A(n) A(n—1) $() x(f) (1)
0 0 45° 112 112
0 1 135° —1A2 112
1 0 —45° 1A2 ~1A2
1 1 —135° —1A2 —1A2

symbol mapper. This device determines the quadrature components x(¢) and
y(f) according to the modulation scheme in use.

Let us for example assume that the incoming data stream A4(n) consists of
binary digits, that is, ones and zeros. We have decided to use a four-phase
PSK (QPSK), in other words we are using M = 4 symbols represented by
four equally spaced phase shifts of the carrier signal. So, two binary digits
A(n) and A(n—1) are transmitted simultaneously. If we assume that a(f) = 1
(constant amplitude), the mapper hence implements a table like Table 5.1
(many schemes exist).

The quadrature components coming from the mapper, having half the data
rate of the binary symbols, are then multiplied by the carrier and a —90°
phase-shifted version (the quadrature channel) of the carrier, since
cos (a — 90) = sin («). The / and Q channels are finally added and the modu-
lated carrier s(f) is obtained.

Demodulation of the signal at the receiving site can easily be done in a
similar way, by performing a complex multiplication

2(f) = s(f) e /2D (5.70)

and removing high-frequency components using a low-pass filter. From the
received estimate Z(f) the quadrature components can be obtained and from
these the information symbols. In practice, the situation is more complicated,
because the received signal is not s(¢), but rather a distorted version, with
noise and interference added.

5.3.2 The Hilbert transformer

A special kind of ‘ideal’ filter is the quadrature filter. Since this filter is
non-causal, only approximations (Mitra and Kaiser, 1993) of the filter can
be implemented in practice. This filter model is often used when dealing
with single sideband (SSB) signals. The ideal frequency response is

—j w>0
Hw)=70 =0 (5.71)
i w<0
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This can be interpreted as an all-pass filter, providing a phase shift of /2
radians at all frequencies. Hence, if the input signal is cos (w?), the output
will be cos (wt — 90) = sin (w?).

The corresponding impulse response is

1
h(ty=— fort+0 (5.72)
Tt

The response of the quadrature filter to a real input signal is denoted the
Hilbert Transform and can be expressed as the convolution of the input
signal x(¢) and the impulse response of the filter

v =i = [ = ar 5.73)

T

where * denotes convolution. Now, the complex analytic signal z(¢) asso-
ciated with x(¢) can be formed

z(f) = x(¢) + jy(t) = x(t) + jx(t)*h(f) (5.74)
It is clear that z(#) above is the response of the system
G(w)=1 + jH(w) (5.75)

The frequency response above implies attenuation of ‘negative’ frequency
components while passing ‘positive’ frequency components. In a SSB situ-
ation, this relates to the lower and upper sideband (Proakis, 1989) respectively

1+ j(—j)=2 forw>0

5.76
1+j(j)=0 forw<0 (576)

G(w) = {
Hence, if we want to transmit the analog signal x(f) using SSB modulation
equation (5.74) replaces equation (5.67). Further, the symbol mapper in Figure
5.5 is replaced by a direct connection of x(¢) to the / channel and a connec-
tion via a quadrature filter (Hilbert transformer) to the QO channel (the phase
shifter connected to the carrier generator in Figure 5.5 can of course also
be implemented as a Hilbert transformer.)

When dealing with discrete time systems, the impulse response (5.72) is
replaced by

1/7n  for odd n

5.77
0 for even n ( )

h(n) = {
This function can be approximated by for instance a FIR filter. There are

different ways of approximating the time-discrete Hilbert transformer (Mitra
and Kaiser, 1993).



6.1 An intuitive
approach

6 Introduction to Kalman
filters

Filters were originally viewed as systems or algorithms with frequency selec-
tive properties. They could discriminate between unwanted and desired
signals found in different frequency bands. Hence, by using a filter, these
unwanted signals could be rejected.

In the 1940s, theoretical work was performed by N. Wiener and N.A.
Kolomogorov on statistical approaches to filtering. In these cases signals
could be filtered according to their statistical properties, rather than their
frequency contents. At this time the Wiener and Kolomogorov theory required
the signals to be stationary, which means that the statistical properties of
the signals were not allowed to change with time.

In late 1950s and early 1960s a new theory was developed capable of
coping with non-stationary signals as well. This theory came to be known
as the Kalman filter theory, named after R.E. Kalman.

The Kalman filter is a discrete time, linear filter and it is also an optimal
filter under conditions that shall be described later in the text. The underlying
theory is quite advanced and is based on statistical results and estimation
theory. This presentation of the Kalman filter (Astrom and Wittenmark, 1984;
Anderson and Moore, 1979) will begin with a brief discussion of estimation.

6.1.1 Recursive least-square estimation

Let us start with a simple example to illustrate the idea of the recursive
least-square (RLS) estimation. Assume that we would like to measure a
constant signal level (DC level) x. Unfortunately, our measurements z(n) are
disturbed by noise v(n). Hence, based on the observations

z(n)=x + v(n) (6.1)

Our task is to filter out the noise and make the best possible estimation of
x. This estimate is called X. Our quality criterion is finding the estimate X
that minimizes the least-square criteria

N

J@) =Y, (z(m) = #)° (6.2)

n=1

The minimum of equation (6.2) can be found by setting the first derivative
to zero
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(6.3)

Solving for ¥(V), that is, the estimate X used during N observations of z(n)
we obtain

N N
i= z(n) (6.4)
n=1 n=1
where
N N
i=Ni(N)= . 2(n) (6.5)

Hence, the best way to filter our observations in the sense of minimizing
our criteria (6.2) is

N

1
V)= 2 2(0)

n=1

(6.6)

that is, taking the average of N observations. Now, we do not want to wait
for N observations before obtaining an estimate. We want to have an esti-
mate almost at once, when starting to measure. Of course, this estimate will
be quite poor, but we expect it to grow better and better, as more observa-
tions are gathered. In other words, we require a recursive estimation (filtering)
method. This can be achieved in the following way:

From equation (6.5) we can express the estimate after N+1 observations

N+1 N+1

(N+DEN+1D) =D % =,
n=1

n=1

z(n) (6.7)
Now, we want to know how the estimate changes from N to N + 1 obser-
vations, in order to find a recursive algorithm. Taking equation (6.7) minus
equation (6.5) gives

N
(N+1)F(N+1) — NiN =

+

1 N

2(n) = D, z(n) =z (N+1)

n=1

(6.8)

Il
—_

n

Rearranging in a way that X(N+1) (the ‘new’ estimate) is expressed in terms
of X(N) (the ‘old’ estimate), from equation (6.8) we get

F(N+1) (z(N+1) + NE(V))

N+1

1
= Vil (z(N+1) + (N+DEWN) — £(N))

1
N+1

= X(N) + (z(N+1) — %(N)) (6.9)
where we assume the initial condition ¥(0) = 0. The filter can be drawn as

in Figure 6.1. Note that the filter now contains a model (the delay z™! or
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s X(N+1)

A

z(N+1) f/_i_\ . 1 () , 9 x(N)
N+1

Figure 6.1 An example of a recursive least-square estimator

‘memory’) of the signal x. Presently, the model now holds the best estimate
X(N) which is compared to the new measured value z(N+1). The difference
z(N+1) — X(N), sometimes called the innovation, is amplified by the gain
factor 1/(N+1) before it is used to update our estimate, that is our model,
to X(N+1).

Two facts need to be noted. Firstly, if our estimate X(N) is close to the
measured quantity z(N+1) our model is not adjusted significantly and the
output is quite good as is. Secondly, the gain factor 1/(N+1) will grow smaller
and smaller as time goes by. The filter will hence pay less and less atten-
tion to the measured noisy values, making the output level stabilize to a
fixed value of X.

In the discussion above, we have assumed that the impact of the noise
has been constant. The ‘quality’ of the observed variable z(n) has been the
same for all n. If, on the other hand we know that the noise is very strong
at certain times, or even experience a disruption in the measuring process,
then we should of course pay less attention to the input signal z(n). One
way to solve this is to implement a kind of quality weight g(n). For instance,
this weight could be related to the magnitude of the noise as

1

V()

q(n) o (6.10)

Inserting this into equation (6.2) we obtain a weighted least-square criteria

JE) =, q(n) (=(n) — £ (6.11)

n=1

Using equation (6.11) and going through the same calculations as before
(equations (6.3) to (6.9)) we obtain the expression for the gain factor in this
case (compare to equation (6.9))

sty = 50 + 29D vy — 5w

2 4

n=1

V) + ON+1) (z(N+1) — 2(N)) (6.12)
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It can be shown that the gain factor Q(V+1) can also be calculated recur-

sively

g(N+1) qg(N+1)

ON+1) = vy N

> a2 qn) + g(N+1)
n=1

n=1

_ gD QgD 613

AN |y 4N = O+

o)

where the starting conditions are: ¢(0) = 0 and Q(0) = 1. We can now draw
some interesting conclusions about the behaviour of the filter. If the input
signal quality is extremely low (or if no input signal is available) g(n) — 0
implies that Q(n+1) — 0 and the output from the filter equation (6.12) is

FN+1) = 2(V) (6.14)

In other words, we are running ‘dead reckoning’ using the model in the filter
only. If on the other hand, the input signal quality is excellent (no noise
present), g(n) — oo and Q(n+1) — 1, then

FN+1)=z(N+1) (6.15)

In this case, the input signal is fed directly to the output and the model in
the filter is updated.

For intermediate quality levels of the input signal, a mix of measured
signal and modelled signal is presented at the output of the filter. This mix
thus represents the best estimate of x, according to the weighted least-square
criteria.

So far, we have assumed x to be a constant. If x(n) is allowed to change
over time, but is considerably slower than the noise, we must introduce a
‘forgetting factor’ into equation (6.2) or else all ‘old’ values of x(n) will
counteract changes of xX(N). The forgetting factor w(n) should have the
following property

w(n)>wn—1)>---w(l) (6.16)

In other words, the ‘oldest’ values should be forgotten the most. One example
is

w(n) = o " (6.17)

where 0 < a < 1. Inserting equation (6.17) into equation (6.2) and going
through the calculations (6.3)—(6.9) again, we obtain

. 1 .
EN) + g (V+1) = 2(V))

aN+l—n

n=1

F(N) + PN+ 1) (z(N+1) — £(N)) (6.18)

FN+1)
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The gain factor P(n) can be calculated recursively by

P(N)

P(N+1):m

(6.19)

Note, the gain factors can be calculated off line, in advance.

6.1.2 The Pseudoinverse

If we now generalize the scalar measurement problem outlined above and
go into a multi-dimensional problem, we can reformulate equation (6.1) using
vector notation

z2(n)=H'(n)x + v(n) (6.20)
where the dimensions of the entities are

zZ(n): (KX1) H@n): (L XK)
X: (LX1) v(n): (K X1)

In a simple case, where there is no noise present, that is v(n) = 0 (or when
the noise is known), solving x from equation (6.20) could be done by simply
inverting the matrix H(n)

x=(H'(m) ™ (z(n) — v(n) (6.21)

This corresponds to solving a system of L equations. Inverting the matrix
H(n) may not be possible in all cases for two reasons, either the inverse
does not exist or we do not have access to a sufficient amount of informa-
tion. The latter is the case after each observation of z(n) when noise v(n) is
present or if K < L, that is we have too few observations. Hence, a straight-
forward matrix inversion is not possible. In such a case, where the inverse
of the matrix cannot be found, a pseudoinverse (Astrom and Wittenmark,
1984; Anderson and Moore, 1979) also called the Moore—Penrose-inverse,
may be used instead. Using the pseudoinverse equation (6.21) can be solved
‘approximately’.

For a true inverse, (HT)"'H" = I, where I is the identity matrix. In a
similar way, using the pseudoinverse H* we try to make the matrix product
(HT)"H'T as close to the identity matrix as possible in a least-squares sense.
Note, this is similar to fitting a straight line to a number of measured and
plotted points in a diagram using the least-square method.

The pseudoinverse of H(n) can be expressed as

H*= (H'H)'H" (6.22)

Now, finding the pseudoinverse corresponds to minimizing the criteria
(compare to equation (6.2))

N
J® =D llz(n) — H(m)%|)? (6.23)
n=1
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6.2 The Kalman filter

where the Euclidean matrix norm is used, that is
l4l?=>, >
i

Minimizing the above is finding the vector estimate X that results in the least-
square error. Taking the derivative of equation (6.23) for all components,
we obtain the gradient. Similar to equations (6.3)—(6.5), we solve for £ as
the gradient is set equal to zero, thus obtaining the following (compare to
equation (6.6))

N -1 N
R(N) = (2 H(n)HT(n)> > H(n)z(n) (6.24)
n=1 n=1

Note that the sums above constitute the pseudoinverse. In the same way
as before, we like to find a recursive expression for the best estimate. This
can be achieved by going through calculations similar to equations (6.7) and
(6.8), but using vector and matrix algebra. These calculations will yield the
result (compare to equation (6.9))

N+1

-1
R(N+1) = RN) + (2 H(n)HT(n)> H(N+1)(z(N+1) — H(N+1)®(N))
n=1

R(N) + PN+ 1) H(N+1)(z(N+1) — HI(N+1)Z(N)) (6.25)

where P(n) is the gain factor as before. Reasoning in a similar way to the
calculations of equation (6.13), we find that this gain factor can also be
calculated recursively

P(N+1)= P(N) — P(N)H(N+1)
(I + H(N+1)P(N)H(N+1)) " 'H(N+1)P(N) (6.26)

The equations (6.25) and (6.26) comprise a recursive method of obtaining
the pseudoinverse H* using a filter model as in Figure 6.1. The ideas presented
above constitute the underlying ideas of Kalman filters.

6.2.1 The signal model

The signal model, sometimes also called the process model or the plant,
is a model of the ‘reality’ which we would like to measure. This ‘reality’
also generates the signals we are observing. In this context, dynamic systems
are commonly described using a state—space model (see Chapter 1). A simple
example may be the following.

Assume that our friend Bill is cruising down Main Street in his brand new
Corvette. Main Street can be approximated by a straight line and since Bill
has engaged the cruise control, we can assume that he is travelling at a
constant speed (no traffic lights). Using a simple radar device, we try to
measure Bill’s position along Main Street (starting from ‘Burger King’) at
every second.
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Now, let us formulate a discrete time, state—space model. Let Bill’s posi-
tion at time » be represented by the discrete time variable x,() and his speed
by x,(n). Expressing this in terms of a recursive scheme we can write

X (1) =x,(n) + x,(n)

xo(n+1) = xy(n) (6:27)

The second equation simply tells us that the speed is constant. The equa-
tions above can also be written using vector notation by defining a state
vector x(n) and a transition matrix F(n), as

x,(n) {1
xz(n)} and F(n)—[O J (6.28)

The equations (6.27) representing the system can now be nicely formulated
as a simple state—space model

x(n+1)=F(n)x(n) (6.29)

x(n) = [

This is of course quite a trivial situation and an ideal model, but Bill is
certainly not. Now and then, he brakes a little, when there is something inter-
esting at the sidewalk. This repeated braking and putting the cruise control
back into gear changes the speed of the car. If we assume that the braking
positions are randomly distributed along Main Street, we can hence take this
into account by adding a white Gaussian noise signal w(n) to the speed vari-
able in our model

x(n+1)=Fn)x(n) + G(n)w(n) (6.30)
where
oo

The noise, sometimes called ‘process noise’ is supposed to be scalar in this
example, having the variance: Q = ¢ and a mean equal to zero. Note, x(n)
is now a stochastic vector.

So far, we have not considered the errors of the measuring equipment.
What entities in the process (Bill and Corvette) can we observe using our
simple radar equipment? To start with, since the equipment is old and not
of Doppler type, it will only give a number representing the distance. Speed
is not measured. Hence, we can only get information about the state vari-
able x,(n). This is represented by the observation matrix H(n). Further, there
are of course random errors present in the distance measurements obtained.
On some occasions, no sensible readings are obtained, when cars are crossing
the street. This uncertainty can be modelled by adding another white Gaussian
noise signal v(n). This so-called ‘measurement noise’ is scalar in this example,
and is assumed to have zero mean and a variance R = o2. Hence, the
measured signal z(n) can be expressed as

z(n) = H(n)x(n) + v(n) (6.31)
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Figure 6.2 Basic signal model as expressed by equations (6.30) and
(6.31)

Equations (6.30) and (6.31) now constitute our basic signal model, which
can be drawn as in Figure 6.2.

6.2.2 The filter

The task of the filter, given the observed signal z(r) (a vector in the general
case), is to find the best possible estimate of the state vector x(n) in the
sense of the criteria given below. We should however remember that, x(n)
is now a stochastic signal rather than a constant, as in the previous section.

For our convenience, we will introduce the following notation: the esti-
mate of x(n) at time #n, based on the n—1 observations z(0), z(1), ... z(n—1),
will be denoted ®(n|n—1) and the set of observations z(0), z(1), ... z(n—1)
itself will be denoted Z(n—1).

Our quality criterion is finding the estimate that minimizes the conditional
error covariance matrix (Anderson and Moore, 1979)

C(n|n—1)=E[(x(n) — &(n|n—1)x(n) — Kn|n—1))7|Z(n—1)] (6.32)

This is a minimum variance criterion and can be regarded as a kind of
‘stochastic version’ of the least-square criteria used in the previous section.
Finding the minimum is a bit more complicated in this case than in the
previous section. The best estimate, according to our criteria, is found using
the conditional mean (Anderson and Moore, 1979), that is

K(n|n)=E[x(n)| Z(n)] (6.33)

The underlying idea is as follows: x(n) and z(n) are both random vector vari-
ables of which x(n) can be viewed as being a ‘part’ of z(n) (see equation
(6.31)). The statistical properties of x(n) will be ‘buried’ in the statistical
properties of z(n). For instance, if we now want to have a better estimate
of the mean of x(n), uncertainty can be reduced by considering the actual
values of the measurements Z(n). This is called conditioning. Hence equa-
tion (6.33), the conditional mean of x(n), is the most probable mean of
x(n), given the measured values Z(n).
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We will show how this conditional mean (6.33) can be calculated recur-
sively, which is exactly what the Kalman filter does (later we return to the
example of Bill and his Corvette).

Since we are going for a recursive procedure, let us start at time n = 0,
when there are no measurements made. We have (equation (6.32))

C(0|—1) = E[x(0)x"(0)| Z(~ 1)] = P(0) (6.34)

It can be shown (Anderson and Moore, 1979) that the conditional mean of
x(0) can be obtained from the cross-covariance of x(0) and z(0), the auto-
covariance and the mean of z(0) and the measured value z(0) itself

#(010) =E[x(0)] + C.(0)CZ'(0)(z(0) — E[z(0)]) (6.35)

The covariance matrix at time #, based on n observations is denoted C(n|n).
It can be obtained (for » = 0) from

C(0]0) = C,(0) = C(0)C'(0)C_(0) (6.36)

Next, we need to find the mean vectors and covariance matrices to plug into
equations (6.35) and (6.36). Both the process noise and the measurement
noise are Gaussian, and we assume that they are uncorrelated.

The mean of x(0) is denoted E[x(0)]. Using equation (6.31), the mean of
z(0) is

E[z(0)]=E[H(0)x(0) + v(0)] = H"(0)E[x(0)] (6.37)

where we have used the fact that the mean of the measurement noise v(0)
is zero.
The auto-covariance of x(0) is

C..(0) = E[x(0)x"(0)] = P(0) (6.38)
Using equation (6.31), the auto-covariance of z(0) can be expressed as
C..(0) _ E[z(0z'(0)]

E[(H(0)x(0) + v(0)) (H'(0)x(0) + »(0))"]

E[H(0)x(0)x"(0) H(0) + H(0)x(0)»"(0)

+v(0)x7(0)H(0) + v(0)v'(0)]

= H'(0)E[x(0)x"(0)]H(0) + E[v(0)v'(0)]

H(0)P(0)H(0) + R(0) (6.39)

where the cross-covariance between x(0) and v(0) is zero, since the measure-
ment noise was assumed to be uncorrelated to the process noise. R(0) is the
auto-correlation matrix of the measurement noise »(0). In a similar way, the
cross-covariance between x(0) and z(0) can be expressed as
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C.(0) _ E[z(0)x(0)]
_ E[(H"(0)x(0) + v(0))x"(0)]

E[H"(0)x(0)x7(0) +v(0)x"(0)]

_ HY(0) E[x(O)xT (0)] = H'(0)P(0) (6.40)
and
C..(0) _ E[x(0)z'(0)] = P(0)H(0) (6.41)

Inserting these results into equations (6.35) and (6.36) respectively, we obtain
the conditioned mean and the covariance

£(0]0) _ E[x(0)] + P(0)H(0) (H"(0)P(0)H(0) + R(0)) "

(z(0) — HT(0)E [x(0)] ) (6.42)

C(0]0) = P(0) — P(0)H(0)(H(0)P(0)H(0) + R(0)) 'H(0)P(0) (6.43)

Let us now take a step forward in time, that is for n = 1, before we have
taken the measurement z(1) into account, from equation (6.30) and various
independence assumptions (Anderson and Moore, 1979) we have the mean

X(1]0)=F(0)2(0|0) (6.44)
and the covariance
C(1]0) = F(0)C(0]|0)FT(0) + G(0)2(0)G'(0) (6.45)

where Q(0) is the auto-correlation matrix of the process noise w(0). We are
now back in the situation where we started for » = 0, but now with n = 1.
The calculations starting with equation (6.35) can be repeated to take the
measurement z(1) into account, that is to do the conditioning. For conve-
nience, only the last two equations in the sequel will be shown (compare to
equations (6.42) and (6.43)).

®(1]1)=2(110) + C(1|0)H(1)(H"(1)C(1]0)H(1) + R(1)) !
(z(1) = H'(1)£(1]0)) (6.46)

C(1]11)=C(110) = C(1|0)H(1)(H'(1)C(1[0)H(1) + R(1))™
H'(1)C(1]0) (6.47)

Repeating the steps as outlined above, we can now formulate a general,
recursive algorithm that constitutes the Kalman filter equations in their
basic form. These equations are commonly divided into two groups, the
measurement-update equations and the time-update equations.
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Measurement-update equations
R(n|n) =%n|n—1) + C(n|n—1)Hn)(H (n)C(n|n—1)H(n) + R(n))~"

(z(n) — H'(n)%(n|n—1)) (6.48)

C(n|n)= C(n|n—1) — C(n|n—1)H(n)
(H"(n)C(n|n—1)H(n) + R(n)) "H'(n) C(n|n—1) (6.49)
Time-update equations
£(n+1|n) = F(n)£(n|n) (6.50)
C(n+1|n)=F(n)C(n|n)F'(n) + G(n)Q(n)G"(n) (6.51)

The equations above are straightforward to implement in software. An alter-
native way of writing them, making it easier to draw the filter in diagram
form is

R(n+1|n)=Fn)X(n|n—1) + Kn)(z(n) — H' (n)®(n|n—1)) (6.52)
where K(n) is the Kalman gain matrix
K(n) = F(n)C(n|n—1)H(n)(H"(n) C(n|n—1)H(n) + R(n)) " (6.53)

and the conditional error covariance matrix is given recursively by a discrete
time Riccati equation

C(n+1|n)=F(n)(C(n|n—1) — C(n|n—1)H(n)
(H(n)C(n|n—1)H(n) + R(n))""H"(n) C(n|n—1))F"(n)
+ G(n)Q(n)G'(n) (6.54)

The structure of the corresponding Kalman Filter is shown in Figure 6.3.
The filter can be regarded as a copy of the signal model (see Figure 6.2)
put in a feedback loop. The input to the model is the difference between the
actual measured signal z(n) and our estimate of the measured signal
HT(n)£(n|n—1) multiplied by the Kalman gain K(n). This is largely the same
approach as the recursive least-square estimator in Figure 6.1. The difference

Z(n)=z(n) — H(n) X(n|n—1) (6.55)

is sometimes referred to as the innovation.

Now, to conclude this somewhat simplified presentation of the Kalman
filter, let us go back to Bill and the Corvette. As an example, we will design
a Kalman filter to estimate Bill’s speed and position from the not-too-good
measurements available from the radar equipment.

We have earlier defined the signal model, that is, we know x(n), F and
G. We are now writing the matrices without indices, since they are constants.
Further, we recall that the process noise is a Gaussian random variable w(n),
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Figure 6.3 A4 basic Kalman filter. Note the copy of the signal model in the
dotted area

which in this example is a scalar resulting in the auto-correlation matrix Q
turning into a scalar as well. This is simply the variance Q = o2 which is
assumed to be constant over time.

Regarding the measurement procedure, since we can only measure posi-
tion and not speed, the observation matrix H (constant) will be (see also
equation (6.31))

H= [ ! ] (6.56)
0
Since the measured signal z(n) is a scalar in this example, the measurement
noise v(n) will also be a scalar, and the auto-correlation matrix R will simply
consist of the constant variance R = o. Now, all the details regarding the
signal model are determined, but we also need some vectors and matrices
to implement the Kalman filter.
First, we need vectors for the estimates of x(n)

fl(”l”_l):|

Xy(nn—1)

X(n|n—1)= [

Then, we will need matrices for the error covariance

C(n|n—1) C12(n|n_1)]

Clln=1)= [C21(n|”_1) Cyy(n|n—1)

If we insert all the known facts above into equations (6.48)—(6.51), the
Kalman filter for this example is defined. From equation (6.48), the measure-
ment-update yields

(6.57)

2(nlm) = £(nln—1) + [Cn("ln‘l)} (z(n) = 2,(n|n=1))

Cy(n|n—1)]1 (Cy,(n|n—1) + R)
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which can be expressed in component form

Cyy(nln—=1)(z(n) — £,(n|n—1))
(Cyy(n|n—1) + R)

X,(n|n)=%,(n|n—1) + (6.58a)

Cyy(n|n—=1)(z(n) — £,(n|n—1))
(Cyy(n|n—=1) + R)

Xy(n|n) =Xy(n|n—1) + (6.58b)

Using equation (6.49) the covariance can be updated
C(n|n)=C(n|n—1)

_ {Cu(”|”_1)cu(”|n_1) Cll(”|n_1)C12(”|”_1)}
Cy(n|[n=1)Cy (n|n—=1) Cy(n|n=1)C y(n|n—1)

1

(6.59)
(Cyy(n|n—1) + R)
or expressed in component form
(Cn(n|n—l))2
Cy,(n|n)=C,,(n|n—1) — (6.60a)
! ! (Cn(n|n—1) + R)
C,(n|ln—1)C,,(n|n—1)
C,(n|n)=C(n|n—1) — — (6.60b)
= = (Cy(n|n=1) + R)
Gy (nln—1)C,,(n|n—1)
C,,(n|n) = Cy(n|n—1) — —2 (6.60c)
* 2 (Cpy(nln—=1) + R)
C, (n|ln—1)C ,(n|n—1)
C,,(n|n) = Cp(n|n—1) — =2 (6.60d)
2 2 (Cyy(n|n—1) + R)
Then, the time-update equations, starting with equation (6.50)
. b3
fn+1|n)= [xl("l'f) xZ(”'”)] (6.61)
X,(n|n)

This can be compared to the basic state—space signal model (6.27). If equa-
tion (6.61) is expressed in component form, we get

X,(nt1|n)=x,(n|n) + x,(n|n) (6.62a)

Xy(n+1|n) =2y(n|n) (6.62b)
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Finally, equation (6.51) gives
Cn+1|n) =

{Cn(n|n) + Cy(n|n) + Cpy(n|n) + Cy(nln)  Cy(n|n) + sz(”|”)]

Cyy(n]n) + Cy(n|n) Coy(n|n)
+ [8 ;] (6.63)
and in component form
Cy\(n+1|n)=C,\(n|n) + Cyy(n|n) + Cpy(n|n) + Cyl(n|n) (6.64a)
Cpy(n+1|n)=Cyy(n|n) + Cyp(n|n) (6.64b)
Cyy(n+1|n) = Cyy(n|n) + Cyy(n|n) (6.64¢)
Cyy(n+1]n) = Cyy(n|n) + O (6.64d)

Hence, the Kalman filter for estimating Bill’s position and speed is readily
implemented by calculating repetitively the 12 equations and (6.58a), (6.58b),
(6.60a)—(6.60d), (6.62a) and (6.62b) and (6.64a)—(6.64d) above.

For this example, Figure 6.4 shows the true velocity and position of the
car and the noisy, measured position, that is the input to the Kalman filter.
Figure 6.5 shows the output from the filter, the estimated velocity and posi-
tion. An overshot can be seen in the beginning of the filtering process, before
the filter is tracking. Figure 6.6 shows the two components of the decreasing
Kalman gain as a function of time.

6.2.3 Kalman filter properties

At first it should be stressed that the brief presentation of the Kalman filter
in the previous section is simplified. For instance, the assumption about
Gaussian noise is not necessary in the general case (Anderson and Moore,
1979). Nor is the assumption that the process and measurement noise is
uncorrelated. There are also a number of extensions (Anderson and Moore,
1979) of the Kalman filter which have not been described here. Below, we
will however discuss some interesting properties of the general Kalman filter.

The Kalman filter is linear. This is obvious from the preceding calcula-
tions. The filter is also a discrete-time system and has finite dimensionality.

The Kalman filter is an optimal filter in the sense of achieving minimum
variance estimates. It can be shown that in Gaussian noise situations, the
Kalman filter is the best possible filter, and in non-Gaussian cases, the best
linear (Anderson and Moore, 1979) filter. The optimal filter in the latter case
is non-linear and may therefore be very hard to find and analyse in the
general case.
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Figure 6.6 Kalman gain as a function of time

The gain matrix K(n) can be calculated off line, in advance, before
the Kalman filter is actually run. The output X(n|n—1) of the filter obvi-
ously depends on the input z(n), but the covariance matrix C(n|n—1) and
hence the Kalman gain K(n) does not. K(n) can be regarded as the smartest
way of taking the measurements into account given the signal model and
statistical properties.

From above we can also conclude that since C(n|n—1) is independent of
the measurements z(n), no one set of measurements helps more than any
other to eliminate the uncertainty about x(n).

Another conclusion that can be drawn from above is that the filter is only
optimal given the signal model and statistical assumptions made at design
time. If there is a poor match between the real world signals and the assumed
signals of the model, the filter will of course not perform optimally in reality.
This problem is however common to all filters.

Further, even if the signal model is time invariant and the noise processes
are stationary, that is F(n), G(n), H(n) Q(n) and R(n) are constant, in general
C(n|n—1) and hence K(n) will not be constant. This implies that in the
general case, the Kalman filter will be time varying.

The Kalman filter contains a model, which tracks the true system we are
observing. So, from the model, we can obtain estimates of state variables
that we are only measuring in an indirect way. We could for instance, get
an estimate of the speed of Bill’s Corvette in our example above, despite
only measuring the position of the car.

Another useful property of the built-in model is that in the case of missing
measurements during a limited period of time, the filter can ‘interpolate’
the state variables. In some applications, when the filter model has ‘stabil-
ized’, it can be ‘sped up’ and even be used for prediction.
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6.2.4 Applications

The Kalman filter is a very useful device that has found many applications
in diverse areas. Since the filter is a discrete-time system, the advent of
powerful and not-too-costly DSP circuits has been crucial to the possibili-
ties of using Kalman filters in commercial applications.

The Kalman filter is used for filtering and smoothing of measured signals,
not only in electronic applications, but also in processing of data in the areas
of economy, medicine, chemistry and sociology, for example. Kalman filters
are also, to some extent, used in digital image processing, when enhancing
the quality of digitized pictures. Further detection of signals in radar and
sonar systems and in telecommunication systems often require filters for
equalization. The Kalman filter, belonging to the class of adaptive filters
performs well in such contexts (see Chapter 3).

Other areas where Kalman filters are used are process identification,
modelling and control. Much of the early developments of the Kalman filter
theory came from applications in the aerospace industry. One control system
example is keeping satellites or missiles on a desired trajectory. This task is
often solved using some optimal control algorithm, taking estimated state
variables as inputs. The estimation is of course done by a Kalman filter. The
estimated state vector may be of dimension 12 (or more) consisting of posi-
tion (x, y, z), yaw, roll, pitch and the first derivatives of these, i.e. speed (x,
v, z) and speed of yaw, roll and pitch movements. Designing such a system
requires a considerable amount of computer simulations.

An example of process modelling using Kalman filters is to analyse the
behaviour of the stock market, and/or to find parameters for a model of the
underlying economic processes. Modelling of meteorological and hydrolog-
ical processes as well as chemical reactions in the manufacturing industry
are other examples.

Kalman filters can also be used for forecasting, for instance prediction of
air pollution levels, air traffic congestion etc.



7.1 An information
theory primer

7 Data compression

7.1.1 Historic notes

The concept of information theory (Cover and Thomas, 1991) in a strict
mathematical sense was born in 1948, when C.E. Shannon published his
celebrated work 4 Mathematical Theory of Communication, later published
using the title The Mathematical Theory of Communication. Obviously,
Shannon was ahead of his time and many of his contemporary communica-
tion specialists did not understand his results. Gradually however it became
apparent that Shannon had indeed created a new scientific discipline.

Besides finding a way of quantizing information in a mathematical sense,
Shannon formulated three important, fundamental theorems: the source cod-
ing theorem, the channel coding theorem and the rate distortion theorem.
In this chapter, we will concentrate on the source coding theorem, while impli-
cations of the channel coding theorem will be discussed in Chapter 8.

The work of Shannon is an important foundation of modern information
theory. It has proven useful not only in circuit design computer design, and
communications technology, but is also being applied to biology and
psychology, to phonetics and even to semantics and literature.

7.1.2 Information and entropy

There are many different definitions of the term ‘information’, however in
this case we will define it as receiving information implies a reduction of
uncertainty about a certain condition. Now, if we assume that this condi-
tion or variable can take a finite number of values or states, these states can
be represented using a finite set of symbols, an ‘alphabet’.

Consider the following example: in a group of ten persons, we need to
know in which country in Scandinavia each person is born. There are three
possibilities, Denmark, Norway or Sweden. We decide to use a subset of
the digits 0, 1, 2, ... 9 as our symbol alphabet as follows: 1 = Denmark,
2 = Norway, 3 = Sweden. The complete message will be a 10 digit long
string of symbols, where each digit represents the birthplace of a person.
Assume that the probability of being born in any of the three countries is
equal, p, = 1/3 (born in Denmark), p, = 1/3 (born in Norway) and p, = 1/3
(born in Sweden), the total uncertainty about the group (in this respect)
before the message is received is one out of 3'° = 59049 (the number of
possible combinations). For every symbol of the message we receive, the
uncertainty is reduced by a factor of 3, and when the entire message is
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received, there is only one possible combination left. Our uncertainty has
hence been reduced and information has been received.

Extending our example above, we now need to know in what country in
Europe the people are born. We realize that our symbol alphabet must be
modified, since there are 34 countries in Europe today (changes rather quickly
these days). We extend our alphabet in the following way. First we use 0,
1, 2, ... 9 as before, and after that we continue using the normal letters,
A, B, C, ... Z. This will give us an alphabet consisting of 10 + 26 = 36
different symbols. If all the countries are equally probable birthplaces, the
uncertainty before we get the message is one out of 34! = 2.06 - 10'° possible
combinations. Every symbol reduces the information by a factor of 34 and
when the entire 10 symbol string is received, no uncertainty exists.

From the above example, we draw the conclusion that in the latter case,
the message contained a larger amount of information than in the first case.
This is because of the fact that in the latter case there were more countries
to choose from than in the former. The uncertainty ‘which country in Europe?’
is of course larger than the uncertainty ‘which country in Scandinavia?’. If
we know in advance that there are only people born in Scandinavia in the
group, this represents a certain amount of information that we already have
and that need not be included in the message. From this discussion, we are
now aware of the fact that when dealing with information measures, a very
relevant question is ‘information about what?’.

In the latter case above, when extending the alphabet, we could have
chosen another approach. Instead of using one character per symbol, we
could have used two characters, for example 01, 02, 03, ... 33, 34. In this
way, only the digits 0 ... 9 would have been used as in the earlier case,
but on the other hand, the message would have been twice as long, that is
20 characters. Actually, we could have used any set of characters to define
our alphabet. There is however a tradeoff, the smaller the set of characters,
the longer the message. The number of characters per symbol L needed can
be expressed as

_ | log (Ny) _
L= Log (Nc)-‘ [ogy, (Ny)| (7.1)

where N is the number of symbols needed, in other words the number of
discrete states, N,. is the number of different characters used and [ | is the
‘ceiling’ operator (the first integer greater or equal to the argument). If we
use for instance the popular binary digits (BITs for short) 0 and 1, this
implies that N. = 2. Using binary digits in our examples above implies

‘Scandinavia’: N¢=3 L= |_log2 (3)1=l1b (3)1=[1.581=2 char/symbol
‘Europe’: Ny=34 L=[1b(34)1=15.091= 6 char/symbol

From above, it can be seen that 1b( ) means logarithm base 2, that is log,( ).
A binary message for the ‘Scandinavia’ example would be 20 bits long,
while for the ‘Europe’ example, 60 bits. It is important to realize that the
‘shorter’ version (using many different characters) of the respective strings
contains the same amount of information as the ‘longer’, binary version.
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Now in an information theory context, we can see that the choice of charac-
ters or the preferred entries used to represent a certain amount of information
does not matter. Using a smaller set of characters would however result in
longer messages for a given amount of information. Quite often, the choice of
character set is made upon the way a system is implemented. When analysing
communication systems, binary characters (bits) are often assumed for conve-
nience, even if another representation is used in the actual implementation.

Let us look into another situation; assume that we also want to know the
gender of the people in the group. We choose to use symbols consisting of
normal letters. The two symbols will be the abbreviations ‘fe’ for female
and ‘ma’ for male. Hence, information about the entire group with respect
to sex will be a 20 character long string, for example

fefemafemamamafefema.

Taking a closer look at this string of information, we realize that if every
second letter is removed, we can still obtain all the information we need

ffimfmmmffm or eeacaaaeea

would be OK. In this case, the longer string obviously contains ‘unneces-
sary information’, so-called redundant information, that is information that
could be deducted from other parts of the message and thus not reduce our
uncertainty (no ‘news’). If the redundant information is removed, we can
still reduce the uncertainty to a desired level and obtain the required
information. In this simple example, the redundancy in the longer string is
due to dependency between the characters. If we receive for instance the
character ‘f°, we can be 100% sure that the next character will be ‘e’, so
there is no uncertainty. The shorter versions of the string cannot be made
any shorter, because there is no dependency between the characters. The sex
of a person is independent of the sex of another person. The appearance of
the characters ‘f” and ‘m’ seems to be completely random. In this case, no
redundancy is present. The example above is of course a very simple and
obvious one. Redundancy is in many cases ‘hidden’ in more sophisticated
ways.

Removing redundancy is mainly what data compression is all about. A
very interesting question in this context is how much information is left in a
message when all redundancy is removed? What maximum data compression
factor is possible? This question is answered by the source coding theorem of
Shannon. Unfortunately, the theorem does not tell us the smartest way of find-
ing this maximum data compression method, it only tells us that there is a min-
imum message that contains exactly all the information we need.

Now, let us be a bit more formal about the above. To start with, we define
the concept of mutual information. Assume that we want to gain informa-
tion about an event 4 by observing the event B. Then the mutual information
is defined as
P1B) lB)) (7.2)

1(4, B) =log, ( P()
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where we have assumed that the probability of the event 4 is non-zero, that
is P(4) # 0 and that P(B) # 0. P(4|B) is the conditional probability, that
is, the probability of 4 given that B is observed. The unit will be ‘bits’ if
logarithm base 2 (Ib ()) is used (b = 2) and ‘nats’ if the natural logarithm
(In()) is used (b = e).

Using Bayes’ theorem (Papoulis, 1985) it is straightforward to show that
1(4, B) is symmetric with respect to 4 and B

_ . (PUIB) _ P(AB)
4.8 = l°g< P(A)) lo (P(A)P(B))
(PB4
= log (P(B) ) (B, 4) (1.3)

Hence, it does not matter if B is observed to gain information about 4, or
vice versa. The same amount of information is obtained. This is why (4, B)
is called the mutual information between the events 4 and B.

If we now assume that the events 4 and B are completely independent,
there is no ‘coupling’ in between them whatsoever. In this case, P(4|B) =
P(A) and the knowledge of A4 is not increased by the fact that B is observed.
The mutual information in this case is

P(A))

I(A4,B)=1log|{——-]=1log(1)=0 7.4
(4, B) og<P(A) og (1) (7.4)
On the other hand, if there is a complete dependence between 4 and B or
in other words if observing B we are 100% sure that 4 has happened, then
P(A|B) =1 and

1
I(4, B)y=log|———|= —log (P(4 7.5
(4, B) Og(P(A)) og (P(4)) (7.5)
The 100% dependence assumed above is equivalent to observing A itself
instead of B, hence

1(4, A) = — log (P(4)) (7.6)

which represents the maximum information we can obtain about the event
A or in other words, the maximum amount of information inherent in A4.

So far we have discussed single events. If we now turn to the case of
having a discrete random variable X that can take one of the values x,, x,,
... Xx, we can define the K events as 4, when X = x;. Using equation (7.6)
above and taking the average of the information for all events, the entropy
of the stochastic, discrete variable X can be calculated

HX) = E[I(4,, 4)] = = D, fr @) log (£ (x,)) (7.7)
i=1

where f,(x;) is the probability that X = x;, that is, that event 4, has happened.
The entropy can be regarded as the information inherent in the variable
X. As stated in the source coding theorem, this is the minimum amount of
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7.2 Source coding

information we must keep to be able to reconstruct the behaviour of X without
errors. In other words, this is the redundancy free amount of information
that should preferably be produced by an ideal data compression algorithm.

An interesting thing about the entropy is that the maximum information
(entropy) is obtained when all the outcomes, i.e. all the possible values x;,
are equally probable. In other words the signal X is completely random. This
seems intuitively right, since when all the alternatives are equally probable
the uncertainty is the greatest.

Going back to our examples in the beginning of this section, let us calcu-
late the entropy. For the case of ‘birthplace in Scandinavia’ the entropy is
(assuming equal probabilities)

3 1< 1 )

HX) = Zl £ b (Filxy) = 3 Zl Ib (3) = 1.58 bits/person
Hence, the minimum amount of information for 10 independent people is
15.8 bits (we used 20 bits in our message). Data compression is therefore
possible. We only have to find the ‘smartest’ way.

For the ‘birthplace in Europe’ example, the entropy can be calculated in
a similar way

34 3
HX)=— EfX(xi) b (fX(‘xi)) =— L Ib (314) =5.09 bits/person
i=1

344
The minimum amount of information for 10 independent people is 50.9 bits;
we used 60 bits in our message. Data compression is possible in this case too.

Some concluding remarks about the concept of entropy

The term entropy is commonly used in thermodynamics, where it refers to
disorder of molecules. In a gas, molecules move around in random patterns,
while in a crystal lattice (solid state) they are lined up in a very ordered
way, in other words, there is a certain degree of dependency. The gas is said
to have a higher entropy than the crystal state. Now, this has a direct coupling
to the information concept. If we had to describe the position of a number
of molecules, it would require more information for the gas than for the
crystal. For the molecules in the gas we would have to give three coordi-
nates (x, y, z) in space for every molecule. For the crystal, the positions
could be represented by giving the coordinates for the reference corner of
the lattice and the spacing of the lattice in x, y and z directions.

If you take for instance water and turn it into ice (crystal with lower entropy)
you have to put the water in the freezer and add energy. Hence, reduction of
entropy requires energy. This is also why you get exhausted by cleaning your
room (reduction of entropy), while the ‘messing up’ process seems to be quite
relaxing. In the information theory context, freezing or cleaning translates to
getting rid of information, in other words ‘forgetting’ requires energy.

In the previous section we concluded that getting rid of redundancy was the
task of data compression. This process is also called source coding. The
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underlying idea is based on the fact that we have an information source
generating information (discrete or continuous) at a rate of H bits/s (the
entropy). If we need to store this information, we want to use as small storage
as possible per time unit. If we are required to transmit the information, it
is desirable to use as low data rate R as possible. From the source coding
theorem, we know however that R = H to avoid loss of information.

There are numerous examples of information sources, a keyboard (+ human)
generating text, a microphone generating a speech signal, a TV camera, an
image scanner, transducers in a measurement logging system etc.

The output information flow (signals) from these sources is commonly the
subject of source coding (data compression) performed using general purpose
digital computers or DSPs. There are two classes of data compression
methods. In the first class, we find general data compression algorithms,
that is methods that work fairly well for any type of input data (text, images,
speech signals etc.). These methods are commonly able to ‘decompress’, in
other words restore the original information data sequence without any errors
(‘lossless’). File compression programs for computers (for example ‘double
space’, ‘pkzip’ and ‘arc’) are typical examples. This class of data compres-
sion methods hence adheres to the source coding theorem.

In the other class of data compression methods we find specialized algo-
rithms, for instance speech coding algorithms in cellular mobile telephone sys-
tems. This kind of data compression algorithm makes use of prior information
about the data sequences and may for instance contain a model of the informa-
tion source. For a special type of information, these specialized methods are
more efficient than the general type of algorithms. On the other hand, since they
are specialized, they may exhibit poor performance if used with other types of
input data. A speech-coding device designed for Nordic language speech sig-
nals may for instance be unusable for Arabian users. Another common prop-
erty of the algorithms in this class is the inability to restore exactly the original
information (‘lossy’). They can only restore it ‘sufficiently’ well. Examples are
speech coding systems (your mother almost sounds like your girlfriend) or
image compression algorithms, producing more or less crude pictures with
poor resolution and a very limited number of colour shades.

7.2.1 Huffman’s algorithm

In the following discussion, we will mainly use binary digits, that is 0 and
1. Other character sets can of course be used. The basic idea of the Huffman
source coding algorithm is to use variable length and prefix-free symbols
and to minimize the average length of the symbols (in terms of number of
characters), taking the statistics of the symbols into account. This algorithm
belongs to the class of general data compression algorithms.

Variable length means that a certain symbol can be one, two, three and
so on characters long, for example 0, 10, 1111 etc. To be able to decode a
string of variable length symbols, no symbol is however allowed to be a
prefix of a longer symbol. We must be able to identify the symbol as soon
as the last character of the symbol is received. The code must be prefix
free. A simple example of a prefix-free code is a code consisting of the
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symbols 0, 10, 11 while the code using the symbols 1, 11, 101 is not prefix
free. If we for instance receive ‘111011 we cannot tell if it is “1°, “1°, ‘101°,
‘1’ or 11°, ‘101°, ‘1" or .. .?

The average length of a symbol can be expressed as

E[L] =, Lf,(u) (7.8)
i=1

where /; is the number of characters (the length) of symbol u, and f,,(u,) is
the probability of symbol u,. The way to minimize the average symbol length
(7.8) is obviously to assign the most probable symbols the shortest codes
and the least probable symbols the longest codes. This idea is not new. It
is for instance used in telegraphy in the form of Morse code (Carron, 1991).
The most probable letters like ‘e’ and ‘t’ have the shortest Morse codes,
only one dot or one dash respectively, while uncommon characters like the
question mark are coded as long sequences of dots and dashes.

Designing a code having the desired properties can be done using Huffman’s
algorithm, a tree algorithm. It will be demonstrated for binary codes, which result
in binary trees, that is trees that branch into two branches, 0 and 1. Huffman's
algorithm can be expressed using ‘pseudo code’ in the following way:

huffman: assign every symbol a node
assign every node the probability of the symbol
make all the nodes active

while (active nodes left) do

{

take the two least probable active nodes
join these nodes into a binary tree
deactivate the nodes

add the probabilities of the nodes
assign the root node this probability
activate the root node

}

The following example will be used to illustrate the way the algorithm works.
Assume that we have five symbols from our information source with the
following probabilities

u, f,(u,)=0.40
uy f(,)=0.20
uy f/(u3)=0.18
uy fi(ug)=0.17

us fy(us)=0.05
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Figure 7.1 A tree diagram used to find the optimum binary Huffman code
of the example

The resulting Huffman tree is shown in Figure 7.1 (there are many possi-
bilities). Probabilities are shown in parentheses.

Building the tree is as follows. Firstly, we take the symbols having the
smallest probability, that is u5 and u,. These two symbols now constitute the
first little sub-tree down to the right. The sum of the probabilities is
0.05 + 0.17 = 0.22. This probability is assigned to the root node of this first
little sub-tree. The nodes u and u, are now deactivated, that is dismissed
from the further process, but the root node is activated.

Looking in our table of active symbols, we now realize that the two
smallest active nodes (symbols) are u, and u;. We form another binary sub-
tree above the first one in a similar way. The total probability of this sub-tree
is 0.20 + 0.18 = 0.38, which is assigned to the root node.

During the next iteration of our algorithm, we find that the two active root
nodes of the sub-trees are those possessing the smallest probabilities, 0.22
and 0.38 respectively. These root nodes are hence combined into a new sub-
tree, having the total probability of 0.22 + 0.38 = 0.60.

Finally, there are only two active nodes left, the root node of the sub-tree
just formed and the symbol node u,. These two nodes are joined by a last
binary sub-tree and the tree diagram for the optimum Huffman code is
completed. Using the definition that ‘up going’ (from left to right) branches
are represented by a binary ‘1’ and ‘down going’ branches by a ‘0’ (this
can of course be done in other ways as well), we can now write down the
binary, variable length, prefix-free codes for the respective symbols:

u, 1

u, 011
u; 010
u, 001

us 000
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Using equation (7.8) the average symbol length can be calculated, E[L] =
2.2 bits/symbol. The entropy can be found to be H = 2.09 bits/symbol using
equation (7.7). As can be seen, we are quite close to the maximum data
compression possible. Using fixed length binary coding would have resulted
in E[L] =3 bits/symbol.

Using this algorithm in the ‘born in Scandinavia’ example an average
symbol length of E[L] = 1.67 bits/symbol can be achieved. The entropy is
H = 1.58 bits/symbol. For the ‘born in Europe’ example the corresponding
figures are E[L] = 5.11 bits/symbol and H = 5.09 bits/symbol.

The coding efficiency can be defined as

H(X)
=—— 7.9
TR (7.9)
and the redundancy can be calculated using
HX)
1 —mp=1-— 7.10
r n E[L] (7.10)

If the efficiency is equal to one, the redundancy is zero and we have found
the most compact, ‘lossless’ way of coding the information. For our exam-
ples above, we can calculate the efficiency and the redundancy

1.58

‘Born in Scandinavia’: 7= IV 0.946 =>r=1 — 0.946 = 0.054
. 5.09

‘Born in Europe’: n= S11 0.996 = r=1— 0.996 = 0.004

In principle, the Huffman algorithm assumes that the information source is
‘without memory’, which means that there is no dependency between succes-
sive source symbols. The algorithm can however be used even for information
sources with ‘memory’, but better algorithms can often be found for these
cases. One such case is coding of facsimile signals, described at the end of
this chapter.

7.2.2 Delta modulation (DM), ADM and CVSD

Delta modulation (DM) was briefly discussed in Chapter 2 in conjunction
with sigma—delta A/D converters. The delta modulation technique can also
be viewed as a data compression method. In this case, redundancy caused
by dependency between successive samples in for instance a PCM data stream
can be removed. The idea behind delta modulation is to use the difference
between two successive data samples, rather than the samples themselves.
Hopefully, the difference will be small and can be represented by fewer bits
than the value of the samples themselves. In the simplest form of delta modu-
lation, the difference is fixed to only £1 PCM step and can hence be
represented by 1 bit. Assuming the PCM word has a word length of N bits,
and that it is transmitted using a bit rate of R bits/s, the transmission rate
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x(n) +C+ d(n) quantizer s(n) s(n) + y(n);

A

)

predictor

xA(n)

predictor

Figure 7.2 A generic delta modulator and demodulator

of a DM signal would be only R/N bits/s. Figure 7.2 shows a block diagram
of a simple delta modulator (data compressing algorithm) and delta demod-
ulator (‘decompressing’ algorithm). Starting with the modulator, the incoming
data sequence x(n) is compared to a predicted value X(n), based on earlier
samples. The difference d(n) = x(n) — x(n) (‘prediction error’) is fed to a
1 bit quantizer, in this case basically a sign detector. The output from this
detector is s(n)

+6 ifdn)=0

—8 ifdn)< 0 (7.11)

s(n) = {

where 0 is referred to as the step size, in this generic system 6 = 1. Further,
in this basic type delta modulation system, the predictor is a first-order
predictor, basically an accumulator, in other words a one-sample delay
(memory), hence

2m)=%(n—1) +s(—1) (7.12)

The signal x(n) is reconstructed in the demodulator using a predictor similar
to the one used in the modulator. The demodulator is fed the delta modu-
lated signal s(n), which is a sequence of +£6 values, and the reconstructed
output signal is denoted y(n) in Figure 7.2

y(m)=yn) + s(n)=y(n—1) + s(n) (7.13)

A simple DM system like the above, using a fixed step size 0 is called a
linear delta modulation system (LDM). There are two problems associated
with this type of system, slope overload and granularity. The system is
only capable of tracking a signal with a derivative (slope) smaller than +6/7
where 7 is the time between two consecutive samples, that is the sampling
period. If the slope of the signal is too steep, slope overload will occur. This
can of course be cured by increasing the sampling rate (for instance over-
sampling which is used in the sigma—delta A/D converter, see Chapter 2) or
by increasing the step size. By increasing the sampling rate, the perceived
advantage using delta modulation may be lost. If the step size is increased,
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the LDM system may exhibit poor SNR performance when a weak input
signal is present, due to the ripple caused by the relatively large step size.
This is referred to as the granularity error.

Choosing a value of the step size 6 is hence crucial to the performance
of an LDM system. This kind of data compression algorithm works best for
slowly varying signals having a moderate dynamic range. LDM is often inap-
propriate for speech signals, since in these signals there are large variations
in amplitude between silent sounds (for example ‘ph’ or ‘sh’) and loud sounds
(like ‘t’ or ‘a’).

A way to reduce the impact of the problems above is to use adaptive
delta modulation (ADM). In the ADM system, the step size is adapted as
a function of the output signal s(n). If for instance s(n) has been +6 for a
certain number of consecutive samples, the step size is increased. This simple
approach may improve the DM system quite a lot. However, a new problem
is now present. If there are errors when transmitting the data sequence s(n),
the modulator and demodulator may disagree about the present step size.
This may cause considerable errors that will be present for a large number
of succeeding samples. A way to recover from these errors is to introduce
‘leakage’ into the step size adaption algorithm. Such a system is the contin-
uously variable slope delta modulation system (CVSD).

In CVSD, the step size 6(n) depends on the two previous values of the
output s(n). If there have been consecutive runs of ones or zeros, there is a
risk for slope overload and the step size is increased to be able to ‘track’
the signal faster. If on the other hand, the previous values of s(n) have been
alternating, the signal is obviously not changing very fast, and the step size
should be reduced (by ‘leakage’) to minimize the granulation noise. The step
size in a CVSD system is adapted as

yo(n—1) + C, ifs(n)=s(n—1)=s(n—2)

8n) = {yb‘(n—l) + C, else

(7.14)

where 0 < y < I is the ‘leakage’ constant and C, = C, > 0. The constants
C, and C, are used to define the minimum and maximum step size as

C
L < 8(n) <
I —v 1 —v

(7.15)

Still the system may suffer from slope overload and granularity problems.
CVSD, being less sensitive to transmission errors than ADM for example,
was however widely popular, until the advent of ADPCM (adaptive differ-
ential pulse code modulation) algorithms (see below) standardized by the
CCITT (Comité Consultatif International Télégraphique et Téléphonique).

7.2.3 DPCM and ADPCM

The differential pulse code modulation (DPCM) scheme can be viewed
as an extension of delta modulation presented above. The same block diagram
(Figure 7.2) applies, but in the DPCM case, we have a quantizer using p
values, not a 1 bit quantizer as in the former case, but rather an Ib(p) bit
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quantizer. Further, the predictor in this case is commonly of higher order,
and can be described by its impulse response /(n), hence

N
£(n) = 2 h(k) (X(n—k) + s(n—k)) (7.16)
k=1

Note, if #(1)=1 and A(k) =0 for £ > 1, then we are back in the first order
predictor used by the delta modulation algorithm (7.12). The predictor is
commonly implemented as a FIR filter (see Chapter 1) which can be readily
implemented using a DSP. The length of the filter is often quite moderate,
N =2 up to N =6 is common.

The advantage of DPCM over straightforward PCM (see Chapter 2), is of
course the data compression achieved by utilizing the dependency between
samples in for instance an analog speech signal. If data compression is not
the primary goal, DPCM also offers the possibility of enhancing the SNR.
As DPCM is only quantizing the difference between consecutive samples
and not the sample values themselves, a DPCM system has less quantiza-
tion error and noise than a pure PCM system using the same word length.

To be able to find good parameters /i(n) for the predictor and a proper
number of quantization levels p, knowledge of the signal statistics is neces-
sary. In many cases, although the long-term statistics are known, the signal
may depart significantly from these during shorter periods of time. In such
applications, an adaptive algorithm may be advantageous.

Adaptive differential pulse code modulation (ADPCM) is a term used
for two different methods, namely adaptation of the quantizer and adapta-
tion of the predictor (Marven and Ewers, 1993). Adaptation of the quantizer
involves estimation of the step size, based on the level of the input signal.
This estimation can be done in two ways, forward estimation (DPCM-AQF)
and backward estimation (DPCM-AQB) (see Figure 7.3). In the forward
case, AQF, a number of input samples are first buffered in the modulator
and used to estimate the signal level. This level information is sent to the
demodulator, together with the normal DPCM data stream. The need to send
the level information is a drawback of AQF and for this reason, AQB is
more common. Another drawback of AQF is the delay introduced by the
buffering process. This delay may render AQF unusable in certain applica-
tions. AQF however, has the potential of performing better than AQB.

In backward level estimation (AQB), estimation is based on the outgoing
DPCM data stream. A similar estimation is made in the demodulator, using
the incoming DPCM data. This scheme bears some resemblance to CVSD,
discussed above. Adaptive quantizers commonly offer an improvement in
SNR of roughly 3—7 dB compared to fixed quantizers. The quality of the
adaptation depends to a large extent on the quality of the level estimator.
There is of course a tradeoff between the complexity and the cost of a real
world implementation.

When using the acronym ADPCM, adaptation of the predictor or adap-
tation of both the predictor and the quantizer is often assumed. The predictor
is commonly adapted using methods based on gradient descent type algo-
rithms used in adaptive filters (see Chapter 3). Adaptive predictors can
increase the SNR of the system significantly compared to fixed predictors.
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Figure 7.3 Forward estimation (DPCM-AQF) and backward estimation
(DPCM-AQB)

As an example, in the standard CCITT G.721, the input is a CCITT stan-
dard 64 kbits/s PCM coded speech signal and the output is a 32 kbits/s
ADPCM data stream. In this standard, feedback adaptation of both the quan-
tizer and predictor is used. In a typical CCITT G.721 application (Marven
and Ewers, 1993), the adaptive quantizer uses 4 bits and the predictor is
made up of a 6th-order FIR filter and a 2nd-order IIR filter. A ‘transcoder’
of this kind can be implemented as a mask-programmed DSP at a compet-
itive cost.

7.2.4 Speech coding, APC and SBC

Adaptive predictive coding (APC) is a technique used for speech coding,
that is data compression of speech signals. APC assumes that the input speech
signal is repetitive with a period significantly longer than the average
frequency content. Two predictors are used in APC. The high frequency
components (up to 4 kHz) are estimated using a ‘spectral’ or ‘formant’
predictor and the low frequency components (50-200 Hz) by a ‘pitch’ or
‘fine structure’ predictor (see Figure 7.4). The spectral estimator may be of
order 1-4 and the pitch estimator about order 10. The low-frequency compo-
nents of the speech signal are due to the movement of the tongue, chin and
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Figure 7.4 Encoder for adaptive, predictive coding of speech signals. The
decoder is mainly a mirrored version of the encoder

lips. The high-frequency components originate from the vocal chords and
the noise-like sounds (like in ‘s’) produced in the front of the mouth.

The output signal y(n) together with the predictor parameters, obtained
adaptively in the encoder, are transmitted to the decoder, where the speech
signal is reconstructed. The decoder has the same structure as the encoder
but the predictors are not adaptive and are invoked in the reverse order. The
prediction parameters are adapted for blocks of data corresponding to for
instance 20 ms time periods.

APC is used for coding speech at 9.6 and 16 kbits/s. The algorithm works
well in noisy environments, but unfortunately the quality of the processed
speech is not as good as for other methods like CELP described below.

Another coding method is sub-band coding (SBC) (see Figure 7.5) which
belongs to the class of waveform coding methods, in which the frequency
domain properties of the input signal are utilized to achieve data compres-
sion.

The basic idea is that the input speech signal is split into sub-bands using
band-pass filters. The sub-band signals are then encoded using ADPCM or
other techniques. In this way, the available data transmission capacity can
be allocated between bands according to perceptual criteria, enhancing the
speech quality as perceived by listeners. A sub-band that is more ‘impor-
tant’ from the human listening point of view can be allocated more bits in
the data stream, while less important sub-bands will use fewer bits.

A typical setup for a sub-band coder would be a bank of N (digital) band-
pass filters followed by decimators, encoders (for instance ADPCM) and a
multiplexer combining the data bits coming from the sub-band channels. The
output of the multiplexer is then transmitted to the sub-band decoder having
a demultiplexer splitting the multiplexed data stream back into N sub-band
channels. Every sub-band channel has a decoder (for instance ADPCM),
followed by an interpolator and a band-pass filter. Finally, the outputs of the
band-pass filters are summed and a reconstructed output signal results.

Sub-band coding is commonly used at bit rates between 9.6 kbits/s and
32 kbits/s and performs quite well. The complexity of the system may
however be considerable if the number of sub-bands is large. The design of
the band-pass filters is also a critical topic when working with sub-band
coding systems.
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Figure 7.5 An example of a sub-band coding system

7.2.5 Vocoders and LPC

In the methods described above (APC, SBC and ADPCM), speech signal
applications have been used as examples. By modifying the structure and
parameters of the predictors and filters, the algorithms may also be used for
other signal types. The main objective was to achieve a reproduction that
was as faithful as possible to the original signal. Data compression was
possible by removing redundancy in the time or frequency domain.

The class of vocoders (also called source coders) is a special class of data
compression devices aimed only at speech signals. The input signal is
analysed and described in terms of speech model parameters. These para-
meters are then used to synthesize a voice pattern having an acceptable level
of perceptual quality. Hence, waveform accuracy is not the main goal, as in
the previous methods discussed.
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Figure 7.6 The LPC model

The first vocoder was designed by H. Dudley in the 1930s and demon-
strated at the ‘New York Fair’ in 1939. Vocoders have become popular as
they achieve reasonably good speech quality at low data rates, from 2.4
kbits/s to 9.6 kbits/s. There are many types of vocoders (Marven and Ewers,
1993), some of the most common techniques will be briefly presented below.

Most vocoders rely on a few basic principles. Firstly, the characteristics
of the speech signal is assumed to be fairly constant over a time of approx-
imately 20 ms, hence most signal processing is performed on (overlapping)
data blocks of 20-40 ms length. Secondly, the speech model consists of a
time varying filter corresponding to the acoustic properties of the mouth and
an excitation signal. The excitation signal is either a periodic waveform, as
created by the vocal chords, or a random noise signal for production of
‘unvoiced’ sounds, for example ‘s’ and ‘f”. The filter parameters and exci-
tation parameters are assumed to be independent of each other and are
commonly coded separately.

Linear predictive coding (LPC) is a popular method, which has however
been replaced by newer approaches in many applications. LPC works exceed-
ingly well at low bit rates and the LPC parameters contain sufficient
information of the speech signal to be used in speech recognition applica-
tions. The LPC model is shown in Figure 7.6.

LPC is basically an auto-regressive model (see Chapter 5) and the vocal
tract is modelled as a time-varying all-pole filter (IIR filter) having the transfer
function H(z)

1
p

1+ E az*
=1

H(z)= (7.17)

where p is the order of the filter. The excitation signal e(n), being either
noise or a periodic waveform, is fed to the filter via a variable gain factor
G. The output signal can be expressed in the time domain as

y(n) =Ge(n) — ayy(n—1) — ayy(n=2) = ... = a,y(n—p) (7.18)

The output sample at time » is a linear combination of p previous samples
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and the excitation signal (linear predictive coding). The filter coefficients a,
are time varying.

The model above describes how to synthesize the speech given the pitch
information (if noise or periodic excitation should be used), the gain and the
filter parameters. These parameters must be determined by the encoder or
the analyser, taking the original speech signal x(n) as input.

The analyser windows the speech signal in blocks of 2040 ms, usually
with a Hamming window (see Chapter 5). These blocks or ‘frames’ are
repeated every 10-30 ms, hence there is a certain overlap in time. Every
frame is then analysed with respect to the parameters mentioned above.

Firstly, the pitch frequency is determined. This also tells whether we are
dealing with a voiced or unvoiced speech signal. This is a crucial part of
the system and many pitch detection algorithms have been proposed. If the
segment of the speech signal is voiced and has a clear periodicity or if it is
unvoiced and not periodic, things are quite easy. Segments having proper-
ties in between these two extremes are difficult to analyse. No algorithm has
been found so far that is ‘perfect’ for all listeners.

Now, the second step of the analyser is to determine the gain and the
filter parameters. This is done by estimating the speech signal using an adap-
tive predictor. The predictor has the same structure and order as the filter in
the synthesizer. Hence, the output of the predictor is

f(m)=-ax(n—1) —ayx(n-2) — ... —a,x(n—p) (7.19)

where x(n) is the predicted input speech signal and x(n) is the actual input
signal. The filter coefficients a, are determined by minimizing the square
error

D () = £(m)* = X, () (7.20)

n n

This can be done in different ways, either by calculating the auto-corre-
lation coefficients and solving the Yule—Walker equations (see Chapter 5)
or by using some recursive, adaptive filter approach (see Chapter 3).

So, for every frame, all the parameters above are determined and trans-
mitted to the synthesizer, where a synthetic copy of the speech is generated.

An improved version of LPC is residual excited linear prediction
(RELP). Let us take a closer look at the error or residual signal r(n) resulting
from the prediction in the analyser (equation (7.19)). The residual signal (we
are trying to minimize) can be expressed as

r(n) = x(n) — x(n)
= x(n) t ax(n—1) + apx(n=2) + ... + a,x(n—p) (7.21)

From this it is straightforward to find out that the corresponding expression
using the z-transforms is
X()

=29 v g (2
R(Z)_H(Z) X(2)H" (2) (7.22)
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Hence, the predictor can be regarded as an ‘inverse’ filter to the LPC model
filter. If we now pass this residual signal to the synthesizer and use it to
excite the LPC filter, that is £(z) = R(z), instead of using the noise or peri-
odic waveform sources we get

Y(z) = E(z)H(z) = R(z) H(z) = X(2) H " '(z) H(z) = X(2) (7.23)

In the ideal case, we would hence get the original speech signal back. When
minimizing the variance of the residual signal (equation (7.20)), we gath-
ered as much information about the speech signal as possible using this
model in the filter coefficients a,. The residual signal contains the remaining
information. If the model is well suited for the signal type (speech signal),
the residual signal is close to white noise, having a flat spectrum. In such a
case we can get away with coding only a small range of frequencies, for
instance 0—1 kHz of the residual signal. At the synthesizer, this baseband is
then repeated to generate higher frequencies. This signal is used to excite
the LPC filter.

Vocoders using RELP are used with transmission rates of 9.6 kbits/s. The
advantage of RELP is a better speech quality compared to LPC for the same
bit rate. However, the implementation is more computationally demanding.

Another possible extension of the original LPC approach is to use multi-
pulse excited linear predictive coding (MLPC). This extension is an attempt
to make the synthesized speech less ‘mechanical’, by using a number of
different pitches of the excitation pulses rather than only the two (periodic
and noise) used by standard LPC.

The MLPC algorithm sequentially detects & pitches in a speech signal. As
soon as one pitch is found it is subtracted from the signal and detection
starts over again, looking for the next pitch. Pitch information detection is
a hard task and the complexity of the required algorithms is often consid-
erable. MLPC however offers a better speech quality than LPC for a given
bit rate and is used in systems working with 4.8-9.6 kbits/s.

Yet another extension of LPC is the code excited linear prediction
(CELP). The main feature of the CELP compared to LPC is the way in
which the filter coefficients are handled. Assume that we have a standard
LPC system, with a filter of the order p. If every coefficient a, requires N
bits, we need to transmit N-p bits per frame for the filter parameters only.
This approach is all right if all combinations of filter coefficients are equally
probable. This is however not the case. Some combinations of coefficients
are very probable, while others may never occur. In CELP, the coefficient
combinations are represented by p dimensional vectors. Using vector quan-
tization techniques, the most probable vectors are determined. Each of these
vectors are assigned an index and stored in a codebook. Both the analyser
and synthesizer of course have identical copies of the codebook, typically
containing 256—512 vectors. Hence, instead of transmitting N p bits per frame
for the filter parameters only 8-9 bits are needed.

This method offers high-quality speech at low-bit rates but requires consid-
erable computing power to be able to store and match the incoming speech
to the ‘standard’ sounds stored in the codebook. This is of course especially
true if the codebook is large. Speech quality degrades as the codebook size
decreases.
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Most CELP systems do not perform well with respect to higher frequency
components of the speech signal at low bit rates. This is counteracted in
newer systems using a combination of CELP and MLPC.

There is also a variant of CELP called vector sum excited linear pre-
diction (VSELP). The main difference between CELP and VSELP is the
way the codebook is organized. Further, since VSELP uses fixed point arith-
metic algorithms, it is possible to implement using cheaper DSP chips than
CELP, which commonly requires floating point arithmetics.

7.2.6 Image coding, JPEG and MPEG

Digitized images consist of large amounts of picture elements (pixels), hence
transmitting or storing images often involves large amounts of data. For this
reason, data compression of image data, or image coding is a highly inter-
esting topic.

The same general fundamental idea for data compression applies in that
there is a reduction of redundancy utilizing statistical properties of the data
set such as dependencies between pixels. In the case of image compression,
many of the algorithms turn two dimensional, unless for instance compres-
sion is applied to a scanned signal. One such application is telefax (facsimile)
systems, that is systems for transmission (or storage) of black-and-white
drawings or maps etc. In the simplest case, there are only two levels to
transmit, black and white, which may be represented by binary ‘1’ and ‘0’
respectively, coming from the scanning photoelectric device.

Studying the string of binary digits (symbols) coming from the scanning
device (the information source), it is easy to see that ones and zeros often
come in long bursts, and not in a ‘random’ fashion; for instance 30 zeros,
followed by 10 ones, followed by 80 zeros and so on may be common.
There is hence a considerable dependency between successive pixels. In this
case, a run length code will be efficient. The underlying idea is to not
transmit every single bit, but rather a number telling how many consecutive
ones or zeros there are in a burst.

For facsimile applications, CCITT has standardized a number of run length
codes. A simple code is the Modified Huffman Code (MHC). Black and
white bursts of length 0-63 pixels are assigned their own code words
according to the Huffman algorithm outlined earlier in this chapter. If a burst
is 64 pixels or longer, the code word is preceded by a prefix code word,
telling how many multiples of 64 pixels there are in the burst. The fact that
long white bursts are more probable than long black bursts is also taken into
account when assigning code words. Since the letters are ‘hollow’, a typical
page of text contains approximately 10% black and 90% white areas.

During the scanning process, every scan line is assumed to start with a
white pixel, else the code word for white burst length zero is transmitted.
Every scanned line is ended by a special ‘end-of-line’ code word to reduce
the impact of possible transmission errors. Compression factors between 6
and 16 times can be observed (that is 0.06-0.17 bits/pixel), depending on
the appearance of the scanned document. A more elaborate run length code
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is the modified READ code (MRC) (Hunter and Robinson, 1980) capable
of higher compression factors.

Image compression algorithms of the type briefly described above are often
denoted lossless compression techniques, since they make a faithful repro-
duction of the image after decompression, that is no information is lost. If
we can accept a certain degradation of for instance resolution or contrast in
a picture, different schemes of predictive compression and transform compres-
sion can be used.

Predictive compression techniques work in similar ways as DPCM and
ADPCM described earlier. The predictors may however be more elaborate,
working in two dimensions and utilizing dependencies in both the x and y
direction of an image. For moving pictures, predictors may also consider
dependencies in the z axis, between consecutive picture frames. This is some-
times called three-dimensional prediction. For slowly moving objects in a
picture, the correlation between picture frames may be considerable, offering
great possibilities for data compression. One such example is the videophone.
The most common image in such a system is the more or less static face of
a human.

The basic idea of transform compression (Gonzalez and Wintz, 1987)
is to extract appropriate statistical properties, for instance Fourier coeffi-
cients, of an image and let the most significant of these properties represent
the image. The image is then reconstructed (decompressed) using an inverse
transform.

A picture can be Fourier transformed in a similar way to a temporal one-
dimensional signal, and a spectrum can be calculated. Dealing with images
however, we have two dimensions and hence two frequencies, one in the x
direction and one in the y direction. Further, we are now dealing with spatial
frequencies. For instance a coarse chess board pattern would have a lower
spatial frequency than a fine pattern. We are now talking about cycles per
length unit, not cycles per time unit.

Often it is convenient to express the transform coefficients as a matrix.
In doing this, it is commonly found that the high-frequency components have
smaller amplitude than lower frequency components. Hence, only a sub-set
of the coefficients need to be used to reproduce a recognizable image, but
fine structure details will be lost. Transform compression methods are com-
monly not lossless.

It has been found that standard two-dimensional FFT is not the best choice
for image compression. Alternative transforms, for instance Walsh,
Hadamard and Karhunen-Loéve transforms have been devised. One of the
most popular is however the two-dimensional discrete cosine transform
(DCT)

1 N—1 N—1
C0.0)= > Z £(x, ) (7.24a)

and foru,v=1,2, ... N—1

b
=z

Clu,v)=-—5 3 f(x, y)cos((2x+ ur)cos((2y+ 1)var) (7.24b)
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where C(u, v) is the two-dimensional transform coefficient (‘spectrum’),
C(0,0) is the ‘DC’ component and f(x, y) is the pixel value. The inverse
transform is

1
J@x,y) =, €0, 0)

N=1 N=1
+ %zw 2‘6 ; C (u, v)cos((2x+ Dum)cos((2y+1)vm)  (7.25)

One nice feature of DCT is that the transform is real, unlike FFT which
is a complex transform. Another advantage is that DCT is separable, implying
that it can be implemented as two successive applications of a one-dimen-
sional DCT algorithm.

A common technique is to spilt a picture into 8 x 8 pixel blocks and apply
DCT. High-amplitude, low-frequency coefficients are transmitted first. In this
way, a ‘rough’ picture is first obtained with an increasing resolution as higher
frequency coefficients arrive. Transform coding can offer a data compres-
sion ratio of approximately 10 times.

The CCITT H.261 standard covers a class of image compression algo-
rithms for transmission bit rates from 64 kbits/s to 2 Mbits/s. The lowest bit
rate can be used for videophones on narrowband ISDN lines. The H.261 is
a hybrid DPCM/DCT system with motion compensation. The luminance
(black-and-white brightness) signal is sampled at 6.75 MHz, and the chromi-
nance (colour information) signal is sampled at 3.375 MHz. The difference
between the present frame and the previous one is calculated and split into
8 x 8 pixel blocks. These blocks are transformed using DCT, and the resulting
coefficients are coded using Huffman coding.

The motion detection algorithm takes each 8 x 8 pixel block of the present
frame and searches the previous frame by moving the block +15 pixels in
the x and y directions. The best match is represented by a displacement
vector. The DCT coefficients and the displacement vector are transmitted to
the decompressor, where the reverse action takes place.

There are commercial vidoeconferencing systems available today which are
using the H.261 standard. The algorithms used are however very computa-
tionally demanding. Floating-point or multiple fixed-point DSPs are required.

The joint photographics expert group (JPEG) is a proposed standard
for compression of still pictures. The colour signals red, green and blue are
sampled and each colour component is transformed by DCT in 8 x 8 pixel
blocks. The DCT coefficients are quantized and encoded in a way that the
more important lower frequency components are represented by more bits
than the higher frequency coefficients. The coefficients are reordered by
reading the DCT coefficient matrix in a zigzag fashion (Marven and Ewers,
1993), and the data stream is Huffman coded (the ‘DC’ component is differ-
entially encoded with the previous frame, if there were any).

The JPEG compressor is simpler than in the H.261 system. There is for
instance no motion compensation, but many other elements are quite similar.
The decompressor is however more complicated in JPEG than in H.261.

The moving pictures expert group (MPEG) proposed standard (MPEG 1)
is aimed for compression of full-motion pictures on digital storage media, for
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instance CD-ROM and DVD with a bit transfer rate of about 1.5 Mbits/s. It is
to some extent similar to both H.261 and JPEG but does not have the motion
compensation found in JPEG.

A sampled frame is spilt into blocks and transformed using DCT in the
same way as for JPEG. The coefficients are then coded with either forward
or backward prediction or a combination of both. The output from the predic-
tive coding is then quantized using a matrix of quantization steps. Since
MPEG is more complicated than JPEG it requires even more computing
power.

The area of image and video compression algorithms is constantly evolving
and there are many new methods and novel, dedicated signal processing
ASICs and DSPs to come. Future image compression techniques may include
fractal and wavelet-based methods.

7.2.7 The Lempel-Ziv algorithm

There are a number of data compression algorithms based on the Lempel-Ziv
(LZ) method, named after A. Lempel and J. Ziv. The original ideas were
published in 1977 and 1978. Only the basic method will be briefly described
below.

The LZ data compression algorithm is a called a “universal’ algorithm
since it does not need any prior information about the input data statistics.
Commonly, it works on a byte basis and is best suited for compression of
e.g. ASCII (American standard code for information interchange) informa-
tion. The algorithm creates a table or ‘dictionary’ of frequently seen strings
of bytes. When a string appears in the input data set, it is substituted by the
index of a matching string in the dictionary. This dictionary type algorithm
is also referred to as a macro-replacement algorithm, because it replaces a
string with a token. Decompression will simply be a table-lookup and string
replacement operation. It is imperative however that no transmission errors
occur, since these may add errors to the dictionary and jeopardize the entire
decompression operation.

Let us illustrate the algorithm with a simple example. Assume that we are
using an 8 bit ASCII code and want to transmit the following string

the theme theorem theses

Since a space _ also represents an ASCII character, we have to transmit
24 characters, that is a total of 24 x 8 = 192 bits.

Now, let us use a simple version of the LZ method and limit the size of
the dictionary to 16 entries, so any entry in the dictionary can be pointed to
by a 4 bit index. The compression and dictionary handling rule works like
this:

lzcomp: clear dictionary
start from beginning of string
while (string not traversed)

{
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find the longest substring matching an
entry in dictionary

get the index of the entry in the
dictionary

get the next character in the string
following the substring

transmit index and next character

append the substring + next character to
the dictionary

continue after next character in string

The corresponding decompression and dictionary handling rule is:

lzdecomp: clear dictionary
clear buffer for decompressed string
while (compressed characters received)
{
get index and next character from
compressor
use index to fetch substring from
dictionary
append substring to buffer
append next character to buffer
append the substring + next character to
the dictionary

In Table 7.1 the string, dictionary and transmitted symbols are shown. The
indices are represented by the hexadecimal digits: 0, 1, ... E, F.
The uncompressed string:

the theme_theorem theses

When the algorithm is started, the dictionary is empty. The first entry will
be ‘nothing’ which will be given index 0. The first sub-string in the input
string, simply the letter ‘t’ cannot be found in the dictionary. However,
‘nothing’ can be found so we concatenate ‘nothing’ and ‘t’ (we do not include
‘nothing’ in the dictionary from now on, since it is so small . ..) and add it
to the dictionary. The index of this new entry will be 1. We also submit the
hexadecimal sub-string index 0 (‘nothing’) and the letter ‘t’ to the output.
These steps are repeated and the dictionary grows. Nothing interesting
happens until we find the sub-string ‘t’ for the second time (in ‘theme’).
Since the substring ‘t’ is already in the dictionary, it can be replaced by its
index 1. So, following the rules, we send the index 1 and the next character
‘h’, further we add the new sub-string ‘th’ to the dictionary. This process is
further repeated until the end of the uncompressed input string is reached.
The total output compressed string will be:
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Table 7.1 Example LZ, 16 entry dictionary

Index Dictionary Compressed output
0 nothing
1 t 0t
2 h Oh
3 e Oe
4 _ 0_
5 th 1h
6 em 3m
7 e_ 3_
8 the Se
9 0 0o
A r Or
B em_ 6_
C thes 8s
D es 3s
E
F

0t0hOe0 1h3m3 5e000r6_ 8s3s

where every second character is an index (4 bits) and an ASCII character
(8 bits) respectively. The total length of the compressed string will be:
13 x4 + 13 x 8 = 156 bits, implying a compression factor of 156/192 =
0.81.

The decompressor receives the compressed string above and starts building
the decompressed string and the dictionary in a similar way. To start with
‘nothing’ is assumed in position 0 of the dictionary. The first compressed
information is index 0, corresponding to ‘nothing’ in the dictionary and the
character ‘t’. Hence ‘nothing’ and ‘t’ are placed in the first position of the
decompressed string and the same information is added to the dictionary at
position 1. The process is then repeated until the end of the compressed
string. Now the decompressed string is an exact copy of the uncompressed
string and the dictionary is an exact copy of the dictionary used at compres-
sion time. It is worth noting that there are also many variations on this
popular data compression algorithm.



8.1 Channel coding

8 Error-correcting codes

In Chapter 7, the source coding theorem of Shannon was briefly presented.
In this chapter, some implications of his channel coding theorem will be
discussed. The idea of source coding or data compression is to find a
‘minimum form’ in which to represent a certain amount of information, thus
making transmission faster and/or data storing more compact. Data compres-
sion is based on removing redundancy, that is ‘excess’ information. A problem
however arises; the redundancy-free pieces of information will be extremely
vulnerable. One example of this is the data compression algorithms used to
‘compress’ data files on magnetic discs. If one single bit in the ‘wrong’ place
happens to be corrupt, the entire disc (maybe several gigabytes) may be
completely unreadable and almost all the information lost.

The same problem is even more likely to appear when transmitting data
over wires or radio links. In such applications, transmission errors are
common. Hence, to be able to transmit information error free, we must
include mechanisms capable of detecting and preferably correcting trans-
mission (or storage) errors. This requires adding redundancy. When adding
redundancy, that is making a compressed piece of data large again, we take
the properties of the transmission (or storage) process into account. If we
know what kinds of errors are the most probable, for instance in a radio
link, we can add redundant information tailored to correct these errors.
Channel coding is mainly to ‘vaccinating’ the information against expected
transmission errors. If unexpected errors occur, we will of course be in
trouble. If we however design our channel code properly, this will rarely
occur.

As mentioned above, adding this ‘error-correcting’ redundancy will
increase the amount of data involved. Hence, we are making a tradeoff
between transmission time or storage space for reliability.

8.1.1 The channel model

In the following text, we will denote both a data transmission (in space) and
a data storing (transmission in time) mechanism a ‘channel’. This is hence
an abstract entity and will not necessarily relate to any physical media, device
or system. It will only be used as a model, that is a description of how the
received (or retrieved) data is related to the transmitted (or stored) data.

In Chapter 7, the concept of mutual information /(4, B) was introduced
(equation (7.2))

1(4, B) =log < P(A)
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I-p
Figure 8.1 The binary

symmetric channel (BSC),

error probability p

where P(A4) is the probability that event 4, generated by an information
source, takes place. P(4|B) is the conditional probability of A taking place
given we have observed another event B. Now, in the channel context, event
A corresponds to the transmitted data symbol and event B to the received
symbol, in other words what we observe is probably caused by A.

Now, for a simple example, let us assume that binary digits 1 and 0 are
used to communicate over a channel and that the input symbols of the channel
are denoted X and the output symbols Y. Event 4, implies that X = x; and
event B; implies that ¥ = y,. We can rewrite (equation (8.1)) as
PX xilY y])) (8.2)

IX=x, Y_yi)_10g< P(X=x,)

We now define the average mutual information
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where H(X) is the entropy as defined in the previous chapter (equation 7.7)
or the ‘input information’. Further, we have defined the conditional entropy
H(X|Y) in a similar way, which can be viewed as the ‘uncertainty’ caused
by the channel.

In Figure 8.1 a simple but useful model called the binary symmetric chan-
nel (BSC) is shown. Symbols 1 or 0 are input from the left, and output to the
right. The BSC is ‘memoryless’, which means that there is no dependency
between successive symbols. The numbers on the branches are the corre-
sponding transition probabilities, that is the conditional probabilities P(Y |X)
which in this case can be expressed in terms of the error probability p

PY=1lX=1)=( —p)
P(Y=1|X=0)=p
P(Y=0|X=1)=p

PY=0[X=0)=(—p)

As shown in equation (7.3) the mutual information is symmetric with respect
to X and Y, hence using Bayes’ theorem equation (8.3) can be rewritten as

I(X, Y) = E[I(4,, B)] = E[I(B,, 4,)]

AN Jy X(yjlxi)>
) log (AL
Z;fxy(x,,y,) og( hon
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where the probabilities
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Assume that the inputs x;, = 0 and x, = 1 are equally probable i.e. f/,(0) =f,(1)
= 0.5. This implies an entropy (equation (7.7)) of (using logarithm base 2)

2
HX) = =D f10e) (f(x) = —%lb (;) - %113 (;) = 1 bit/symbol
i=1

Not very surprisingly, this is the maximum entropy we can get from one
binary symbol (a bit). If for instance x;, = 0 is more probable than x, =1
or vice versa, then H(X) < 1 bit.

For a ‘perfect’ channel, that is a channel that does not introduce any errors
or the error probability, p = 0. This implies that

PY=1|X=1=1
P(Y=1|X=0)=0
P(Y=0|X=1)=0
P(Y=0|X=0)=1
Inserting the conditional probabilities into equation (8.4) we obtain
I(X, Y)=H(Y) — H(Y|X)= H(Y) = 1 bit/symbol (8.5)

The conditional entropy, or in other words the uncertainty of the channel
H(Y|X)=0 and all the ‘input entropy’ (‘information’) are obtained on the
output of the channel. By observing Y we know everything about X.

If a BSC has an error probability of p = 0.1, on average 10% of the bits
are erroneous, which corresponds to 10% of the bits being inverted. The
transition probabilities can readily be calculated

P(Y=1|X=1)=0.9
P(Y=1|X=0)=0.1
P(Y=0|X=1)=0.1

P(Y=0|X=0)=0.9
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Again, using (equation (8.4)) the resulting average mutual information will be
I(X,Y)=H(Y) — HY|X)=1 — 0.469 = 0.531 bit/symbol (8.6)

In this case, we only gain 0.531 bits of information about X by receiving
the symbols Y. The uncertainty in the channel has ‘diluted’ the information
about the input symbols X. Finally, for the worst channel possible, the error
probability is p = 0.5. On the average we get errors half of the time. This
is the worst case, since if p is larger than 0.5, that is the channel inverts
more than half the number of transmitted bits, we could simply invert Y and
thus reduce the error probability. The transition probabilities are

P(Y=1|X=1)=0.5
P(Y=1|X=0)=0.5
P(Y=0|X=1)=0.5
P(Y=0|X=0)=0.5
Inserting into (equation (8.4)) we get
I(X, Y)=H(Y) — H(Y|X)=1 — 1 =0 bit/symbol (8.7)

Such a result can be interpreted as if no information about X progresses
through the channel. This is due to the great uncertainty in the channel itself.
In other words, whether we obtain our data sequence Y from a random gener-
ator or from the output of the channel does not matter. We would obtain
equal amounts of knowledge about the input data X in both cases.

The BSC is a simple channel, however, in a realistic case more compli-
cated models often have to be used. These models may be non-symmetric
and use M number of symbols rather than only 2 (0 and 1). An ‘analog’
channel (continuous in amplitude) can be regarded as having an infinite
number of symbols. Further, channel models can possess memory, intro-
ducing dependency between successive symbols.

8.1.2 The channel capacity

From the above discussion it is clear that every channel has a limited ability
to transfer information (average mutual information), and that this limit
depends on the transition probabilities, that is the error probability. The
maximum average mutual information possible for a channel is called the
channel capacity. For the discrete, memoryless channel, the channel capacity
is defined as the following

C=sup I(X, ) (8.8)
Jxx)

By changing the probability density distribution f,(x) of the symbols trans-
mitted over the channel or by finding a proper channel code, the average
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mutual information can be maximized. This maximum value, the channel
capacity, is a property of the channel and cannot be exceeded if we want to
transmit information with an arbitrarily low error rate. This is mainly what
the channel coding theorem is about.

It is important to note that regardless of the complexity of the devices and
algorithms, if we try to exceed the channel capacity by transmitting more
information per time unit (per symbol) than the channel capacity allows, we
will never be able to transmit the information error free. Hence, the channel
capacity can be regarded a universal ‘speed limit’. If we try to exceed this
information transfer limit, we will be ‘fined’ in terms of errors, and the net
amount of transmitted error-free information will never exceed the channel
capacity.

Unfortunately, the channel coding theorem does not give any hint on how
to design the optimum channel code needed to obtain the maximum infor-
mation transfer capacity, that is the channel capacity. The theorem only
implies that there exists at least one such channel code. The search for the
most effective channel codes has been pursued during the last 40 years, and
some of these results will be presented later in this chapter.

Calculating the channel capacity for channels in ‘reality’ is in many cases
very hard or even impossible. Two simple, common, standard channels should
however be mentioned, the BSC and the AWGN (additive white Gaussian
noise) channel.

Firstly, the BSC channel capacity can be represented as follows (Figure
8.1)

C=1+ plb(p) + (1 — p)lb(1 — p) bit/symbol (8.9)

Secondly, the common memoryless channel model for ‘analog’ (continuous)
signals, the AWGN channel, shown in Figure 8.2, is slightly more elabo-
rate. The analog input signal is X and the output signal is Y. N is a white
Gaussian noise signal, added to the input signal. The term ‘white’ is used
in the sense that the noise has equal spectral density at all frequencies, similar
to white light that has equal power at all wavelengths in the visible spec-
trum (contains equal amounts of all colours).

In the context of the AWGN channel, the signal-to-noise ratio (SNR) is
commonly used, simply being the ratio between the signal power and the
noise power (Ahlin and Zander, 1998)

X
SNR="= (8.10)
N

The SNR is often expressed in decibels (dB)
SNR ;=10 1g (SNR) (8.11)

where Ig () is the logarithm base 10. Thus the channel capacity of the AWGN
channel can be shown to be (Cover and Thomas, 1991)

X X
C=wi( +SNR)—W1b(1 +>—W1b<1 + )bit/s (8.12)
N WN,

0
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8.2 Error-correcting
codes

X (4 .Y

N
Figure 8.2 The additive white Gaussian noise channel (AWGN)

where W is the bandwidth and N, is the spectral density of the noise in
W/Hz. An interesting example is a common telephone subscriber loop. If
we assume a bandwidth of W =4 kHz and SNR = 45 dB, the resulting
channel capacity is (approximately) C = 60 kbit/s. Hence, the 57600 baud
dial-up modems used today are approaching the theoretical upper limit. Some
subscriber loops may of course have other bandwidth and SNR characteris-
tics, which will affect the channel capacity.

Finally, to conclude this section, assume we have an information source
with entropy H bit/s. In the previous chapter, the source coding theorem
stated that to be able to reconstruct the information without errors, we must
use an information rate R of R = H bit/s. This is hence a data compression
limit. In this chapter, the channel coding theorem implies that to be able to
transmit information error free at information rate R, C = R bit/s. This is a
communication speed limit.

There are a number of different error-correcting codes. These codes can be
divided into classes, depending on their properties. A coarse classification is
to divide the codes into two groups: block codes and convolution codes.

In this section, we will generally discuss coding and properties of codes
and follow this with a presentation of some common block and convolution
code algorithms.

8.2.1 Hamming distance and error correction

We shall begin with a brief illustration of a crude yet simple repetition
code. Assume that we need to transmit information about a binary variable
U. The probabilities of u = 0 and u = 1 are equal, which means f;,(u=0) =
Jy(w=1) = 0.5. When transmitting this sequence of ones and zeros over a
BSC with an error probability of p = 0.1, having a channel capacity
C = 0.531 bit/symbol (equation (8.6)), we will get 10% bit errors on the
average.

By adding redundancy for instance if we intend to transmit a ‘1’, we
repeat it twice. In other words, we transmit ‘111 and if we want to send a
zero, we send the channel code word ‘000°. If we get an error in one bit of
a code word, we can still correct the error by making a majority vote when
receiving the code. If there are more ones than zeros in a received code
word, the information symbol sent was probably u = 1, and if there are more
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zeros than ones, u = 0 is the most likely alternative. This is simply called
the maximum likelihood (ML) principle. The code word X is structured in
the way

X=[x; x, x;]=[u p, p)] (8.13)

Where u is the information bit, and p, and p, are denoted parity bits or
check bits. If a code word is structured in such a way that the parity bits
and information bits are in separate groups rather than a mixed order, the
code word is said to have a systematic form. The coding process in this
example will be very easy

X, =u
X, =p,=u (8.14)
X3=py= U

The decoding process will also be easy, a pure majority vote as outlined
above. The length of the code word is often denoted by »n and the number
of information bits %, hence in our example above, n = 3 and k& = 1. Now,
the code rate or code speed is obtained from

L (8.15)

This can be seen as a ‘mix’ ratio between the numbers of necessary infor-
mation bits and the total number of bits in the code word (information bits
+ parity bits). In the first case above, transmitting U directly, without using
any code, implies a rate of

1
R:T:1>C:0'531

In this case, we have violated the channel coding theorem and consequently
the length of the strings of symbols we send does not matter, as n—>co we
will still not be able to reduce the average error rate to below 10%.

In the latter case, using the repetition code we have introduced redun-
dancy and for this case

1
R:§:0.333 <C=0.531

It can be shown that for longer code words, that is as n—oo the average error
rate will tend to zero. Let us take a closer look at the underlying processes.
Table 8.1 shows the eight possible cases for code word transmission and the
associated transition probabilities expressed in terms of the error probability
p of the BSC. From Table 8.1, in case (a) we intended to transmit # = 1 which
was coded as 111. No errors occurred which has the probability of (1 — p)?
= (1 — 0.1)> = 0.729 and 111 was received. This received code word was
decoded using a majority vote and found to be #= 1. In case (b) a single bit
error occurred and hence one bit in the received code word is corrupt. This



Error-correcting codes 167

Table 8.1 Transmission of simple 3 bit repetition code

XY Probability
(a 111 — 111 (1-p)? no errors
(b) 111 — 110, 101, 011 3(1-p)p 1 bit error
(c) 111 — 001, 010, 100 3(1—p)p? 2 bit error
(d 111 — 000 P’ 3 bit error
(e) 000 — 000 (1-p)? no errors
(f) 000 — 001, 010, 100 3(1-p)p 1 bit error
(g) 000 — 110, 101, 011 3(1—p)p? 2 bit error
(h) 000 — 111 P’ 3 bit error

can happen in three ways. In case (c) two bit errors occur, which can also hit
the code word in three different ways, and so on.

The interesting question which arises deals with the amount of cases in
which this coding scheme will be able to correct the bit errors. In other
words, how many cases can decode the right symbol in spite of the corrupt
code word bits? From Table 8.1 it can clearly be concluded that correct
transmission will be achieved, that is # = u in cases (a), (b), (¢) and (f). In
all other cases, the majority vote decoder will make errors and will not be
able to correct the bit errors in the code word. Due to the majority decoding
and the fact that we only transmit the code words 111 and 000 respectively,
it is clear that errors will occur if there are more than # = 1 bit errors in the
code word, hence we can define ¢ as

t= [%J (8.16)

Where | | is the ‘floor’ operator, that is the first integer less than or equal
to the argument. The total probability of erroneous transmission can now be
expressed as

n

P, = > (’Z)p"(l —p)<"—f>=© 0.13(1 — 0.1) + @ 0.13

i=t+1

3-0.01-0.9 + 0.001 =0.028 8.17)

where

(n)_ n!
i) (n—i)i!

is the binomial coefficient, in other words the number of ways i elements
can be selected out of a set of n elements. As n—co in equation (8.17),
P,,—0, in accordance with the channel coding theorem.

Intuitively from the above discussion, the greater the ‘difference’ between
the transmitted code words, the more bit errors can be tolerated, that is before



168 Digital Signal Processing

a corrupt version of one code word seems to resemble another (erroneous)
code word. Assume for instance that the code uses the two code words 101
and 001 instead of 111 and 000. In this case, one single bit error is enough
for the decoder to make an erroneous decision.

The ‘difference’ in coding context is denoted as the Hamming distance
d. It is defined as the number of positions in which two code words differ.
For example, the code words we used, 111 and 000, differ in three posi-
tions, hence the Hamming distance is d = 3. The two code words 101 and
001 have d = 1. It can be shown that a code having a minimum Hamming
distance d between code words can correct

t= [ d; I J bit errors in a code word (8.18)

Further, the same code can detect (but not correct)
y=d — 1 bit errors in a code word (8.19)

If there are d bit errors, we end up in another error-free code word and the
error can never be detected. In some communication systems, the receiving
equipment does not only output ones and zeros to the decoder. For instance,
if a signal having poor strength is received, a third symbol, the erasure
symbol, can be used. This is a ‘don’t care’ symbol saying the signal was
too weak and cannot determine if the received signal was a 1 or a 0. In this
case, the decoding algorithm can fill in the most probable missing bits

p=d — 1 erasures in a code word (8.20)

Finally when classifying a code a triplet consisting of code word length #,
number of information bits £ and minimum Hamming distance d commonly
stated as (n, &, d) is used. The number of parity bits is of course n—k. Using
the minimum Hamming distance d and equation (8.18) we can figure out
how many bit errors ¢ (per code word) the code can handle. The example
repetition code above is hence denoted (3, 1, 3).

It is worth noting that if there are more than ¢ bit errors in a code word,
the coding will add even more errors and only make things worse. In such
a case, a better code must be used. It might even be advantageous to not
use any error-correcting code at all.

8.2.2 Linear block codes

For a general block code, we are free to select our code words arbitrarily,
which for large blocks may result in extremely complicated encoders and
decoders. If we demand the code to be linear, things become somewhat
easier. The definition of a linear code is that the sum of two code words x;
and x; must also be a code word. Addition of code words is performed
component wise

xtx =[xy x5 x|t x, ox,]
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[ratx, xptx, ... x,+x,]

= [xml me xmn]:xm (821)

Here the addition is performed according to the algebraic rules of the number
system used. For the binary case, ‘+’ means binary addition, that is addition
modulo 2 or exclusive OR (XOR). Thus,0 + 0=0,1 +0=0+1 =1 and
1 + 1 = 0. For other number systems, similar rules shall apply. This alge-
braic topic is referred to as the Galois fields (GF(p)) theory. In this chapter,
we will however remain faithful to the binary number system. If an interest in
this particular subject is not very high, then Galois is a trivial issue.

A linear code has the nice property that the vicinity of all code words in
the n-dimensional ‘code space’ look the same. Hence, when decoding, we
can apply the same algorithm for all code words and there are many stan-
dard mathematical tools available for our help. When analysing codes, it is
common to assume that the zero code word (all zeros) has been sent. The
zero code word is present in all binary linear block codes, since by adding
a code word to itself, using equation (8.21)

X, +x; = [x;+x, xptx, ox,tx,]=[0 0 ... 0]=0 (8.22)

the coding process in a linear block code can be readily expressed as a matrix
multiplication. The information word # (dim 1 X k) is multiplied by the gener-
ator matrix G (dim & X n), thus obtaining the code word x (dim 1 X n)

x=u,G=u,[I : P] (8.23)

The generator matrix G defines the coding operation and can be parti-
tioned into an identity matrix I (dim £ X k) and a matrix P (dim kX n—k).
In this way, the code will have a systematic form. The identity matrix simply
‘copies’ the information bits u, into the code word, while the P matrix
performs the calculations needed to determine the parity bits p; (compare to
equations (8.14)).

During the transmission, the code word x will be subject to interference,
causing bit errors. These bit errors are represented by the error vector e
(dim 1 x n). The received code word y (dim 1 X n) can be expressed as

y=x+e (8.24)

(remember we are still dealing with binary addition).

Finally, when decoding a linear block code, a syndrome-based decoding
algorithm is commonly used. This algorithm calculates a syndrome vector
s (dim 1 X k) by multiplying the received code word y by the parity matrix
H (dim k x n). The parity matrix can be partitioned into an identity matrix
I (dim k x k) and the matrix Q (dim n—k X k)

s=yH"=y[0Q | I]" (8.25)

For the binary case, if we set Q = PT, the syndrome vector will be equal
to the zero vector (all zero elements), that is s = 0 if there are no errors in
the received code word that this particular code is able to detect. This can
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be shown by
QT
S=yH"=(uG+e)H =uGH"=u[l : P]|...
1
- w(@QT+ P)=0 (8.26)

where of course e = 0 since there are no errors. If we have detectable errors,
s # 0 and the syndrome vector will be used as an index in a decoding table.
This decoding table shows the error vectors that are able to generate a specific
syndrome vector. Commonly it is assumed that few bit errors in a code word
is more likely than many errors. Hence, the suggested error vector é
(dim 1 X n) having the smallest number of ones (that is bit errors), is assumed
to be equal to the true error vector e. By adding the assumed error vector to
the received code word including errors, a corrected code word £ (dim 1 X n)
can be obtained

X=y+eé (8.27)

From this corrected code word X, only simple bit manipulations are needed
to extract the received information word # (dim 1 X k).

Let us conclude this discussion on linear block codes with an example.
Assume we have designed a linear block code LC(6,3,3), havingn = 6, k = 3
and d = 3. The code words are in systematic form and look like

x=[x; x, x3 x4 x5 x| =[uy uy uy py py ps) (8.28)
where the parity bits are calculated using the following expressions

pr=up tu,

Dy =u, + u, (8.29)

Py=u; T u, tou,

Using this information, it is straightforward to write down the generator
matrix for this code

G=[I : P]-

S O =
S = O
—_— O O
S = =
—_—_ O

1
1 (8.30)
1

In a similar way, the parity matrix can also be formed

110100
H=[PT 1 I]=]0 11010 (8.31)
111001

Now, assume we want to transmit the information word 010, ie. u =
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[0 1T 0]. The encoder will transmit the corresponding code word on the
channel

1
x=uG=[0 1 0]|0
0

S = O

0 101
011 1|=[010T111] (8.32)
1 011

This time we are lucky, the channel is in a good mode, and no errors occur,
that is e = 0, thus

y=x+e=x=[0 1011 1] (8.33)

In the decoder, the syndrome vector is first calculated as

1 0 1_
111
o 01 1{ B
s=yH"™=[0 1 0 1 1 1] Lo o =[0 0 0]=0 (8.34)
010
001
Since the syndrome vector is equal to the_kero vector, the decoder cannot

detect any errors and no error correction is needed, X = y. The transmitted
information is simply extracted from the received code word by

1 0 0_

010

A 0 01
a=%[1 : 0]=[0 1 0 1 1 1] =[0 1 0] (8.35)

0 00

0 00

0 00
Now, assume we try to send the same linformatian again over the channel,

this time however, we are not as lucky as before, and a bit error occurs in
uy. This is caused by the error vector

e=[0 010 0 0] (8.36)

Hence, the received code word is

y=x+e=[010111+[0 0100 0]

01111 1] (8.37)



172 Digital Signal Processing

Table 8.2 Decoding table for the code LC(6,3,3) in the example

Syndrome Possible error vectors
000 000000 100101 010111 001011 110010 011100 101110 111001
101 100000 000101 110111 101011 010010 111100 001110 011001
111 010000 110101 000111 011011 100010 001100 111110 101001
011 001000 101101 011111 000011 111010 010100 100110 110001
100 000100 100001 010011 001111 110110 011000 101010 111101
010 000010 100111 010101 001001 110000 011110 101100 111011
001 000001 100100 010110 001010 110011 011101 101111 111000
110 101000 001101 111111 100011 011010 110100 000110 010001

The syndrome calculation gives

s=yH"™=[0 1 11 1 1] =[0 1 1] (8.38)

O O = O =
S = O = = O
—_— O O = =

Using a decoding table (Table 8.2), we find that the eight proposed error
vectors on line 4 may cause the syndrome vector obtained above. Using the
maximum likelihood argument, we argue that a single bit error is more prob-
able than a multi-bit error in our system. For this reason, we assume that
the error vector in the first column to the left (containing only one bit) is
the most probable error, hence

é=[0 0100 0] (8.39)

The received code word is now successfully corrected (equation (8.27))

£=y+eé=[01 111 1]+[0 01 00 0]

01011 1]=x (8.40)

and the transmitted information can be extracted in the same way as in equa-
tion (8.35).

The example code above has a minimum Hamming distance between code
words of d = 3. Using equation (8.18) we find that the code is only able to
correct ¢ = 1, i.e. single bit errors. As pointed out earlier in this text, if there
are more bit errors in a code word than ¢, the coding scheme will not be
able to correct any errors; it may in fact aggravate the situation. This can
be illustrated by the following example. If we transmit # = [0 0 1], the code
word willbe x =[0 0 1 0 1 1]. If a double bit error situation occurs, e =
[01 010 0], we will receive y=x +e=1[011 11 1], that is, the
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same code word as in the example above. This code word will be ‘corrected’
and as above, we will obtain # = [0 1 0] # u.

8.2.3 Cyeclic codes and BCH codes

The class of cyclic codes is a sub-class of linear block codes. Besides the
linearity property, a cyclic shift (‘rotate’) of the bit pattern should result in
another code word. For example, if 111001 is a code word, then 110011
should also be a code word and so on.

Cyclic codes are often expressed using code polynomials. In these poly-
nomials, a formal parameter x is used. Note! This formal parameter x is
something completely different from the code word bits x; discussed
earlier. The formal parameter x is only a means of numbering and admin-
istrating the different bits in a cyclic code polynomial. The data bits of
interest are the coefficients of these polynomials.

A code word ¢ = [¢, ¢ ... ¢,_;] can hence be expressed as a code poly-
nomial
cx)=cytex+ex*tex +...c, X! (8.41)

An m step cyclic shift of an n—1 bit code word is accomplished by a multi-
plication

x"c(x) mod (x" — 1) (8.42)

which is performed modulo x"—1, that is after the polynomial multiplica-
tion by x™ a polynomial division by (x"—1) should take place to keep the
order of the resulting polynomial to n—1 or below. In bit pattern words, this
operation can be explained as the multiplication performing the ‘bit shifting’,
while the division does the ‘bit rotating’ (higher order bits are rotated back
as low order bits).

Using this polynomial way of expressing vectors, a & bit information vector
can be written as a polynomial in the formal parameter x in a similar way
to equation (8.41)

u(x) =uy + ux + u + ux® + w1 (8.43)

where u,, u, ... u,_, are the bits of the corresponding information vector
(but the numbering is slightly different from the vector notation discussed
earlier). Still remaining with binary numbers, modulo 2 addition applies.
Instead of using a generator matrix to define the code, we now use a gener-
ator polynomial g(x), and the coding process consists of a multiplication of
polynomials

c(x) =u(x) g(x) (8.44)

where c(x) is the code word polynomial, corresponding to the code vector
being transmitted over the channel. Unfortunately, this straightforward
approach does not result in code words having systematic form. This can be
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accomplished by first shifting the information polynomial and then dividing
this product by the generator polynomial

) _ gy 4 1O

8.45
2) o) (8.432)

where g(x) is the quota and r(x) the remainder. Rewriting equation (8.45a)
we get
X" fu(x) = g(0)g(x) + r(x) = e(x) + r(x)
= c(x) =x""Fux) — rx) (8.45b)
The code word travels the channel as before and errors, represented by

the error polynomial e(x), may occur. The received data vector is repre-
sented by the polynomial v(x)

v(x) = c(x) + e(x) (8.46)

When decoding the received word expressed as v(x), calculation of the
syndrome polynomial s(x), used for error detection and correction, will
simply consist of division by the generator polynomial g(x) or multiplica-
tion by the parity polynomial 4(x), where

x'—1
g(x)

The syndrome polynomial is obtained as the remainder when performing
the division

v(x) s(x)
_ S(x) 8.48
g0 29" g (8:48)

h(x) = (8.47)

It is easy to show that the syndrome will depend on the error polynomial
only, and if no errors are present, the syndrome polynomial will be 0. Using
equations (8.46), (8.45) and (8.48) we obtain

v(x) = c(x) + e(x) = g(x)g(x) + e(x) = O(x)g(x) + s(x)

= e() = (0(x) — ¢(x))gx) + s(x) (8.49)

This relation shows that the syndrome s(x) is the remainder when dividing
e(x) by g(x). Hence, we can calculate the syndromes for all possible error
polynomials in advance. All unique syndromes can then successfully be used
to identify the corresponding error polynomial é(x) and error correction of
v(x) can be performed as (in the binary case)

P(x) = v(x) + é(x) (8.50)

where v(x) is the corrected message (hopefully), from which the informa-
tion #(x) can be extracted. Once again, an example will illustrate the ideas
and algorithms of binary, cyclic block codes. Assume we are using a
cyclic code CC(7,4,3), that is a code having n = 7, k = 4 and d = 3. Using
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equation (8.18) we find that this code can correct single bit errors, ¢ = 1.
Further, the code is defined by its code polynomial g(x) = 1 + x + x°. In
this example, we want to transmit the information 0010. This is expressed
as an information polynomial

u(x) = x* (8.51)

Multiplying this information polynomial by the generator polynomial, the
code polynomial is obtained

c)=u@)gx)=x*1+x+x)=x>+x+x° (8.52)

The corresponding bit sequence 0011010 is transmitted over the channel and
this first time no errors occur, that is e(x) = 0 and

V() =c(x) + e(x) = c(x) =x* + x* + 27 (8.53)
At the decoder, we start by calculating the syndrome polynomial

5 3 2
vx) X +x tx _ 24 0 _ 2 s(x)
glx) xX*+x+1 XH+x+1 PH+x+1

(8.54)

Since the remainder or the syndrome is zero, there are no errors and the
received information is #(x) = x? = u(x). Now we try this again, but this
time a single bit error occurs, having the corresponding error polynomial
e(x) = x°. Starting over from equation (8.53) we get (using binary addition)

vix)=c@x) +ex)=x*+x+x +x=x*+x (8.55)
The syndrome calculation yields

v(x) X+ ¥ B +x2+x+17 s(x)
gx) ¥ +x+1 X +x+1 ¥ +x+1

(8.56)

Hence this time the syndrome polynomial is s(x) = x*> + x + 1. Using equa-
tion (8.48) and assuming the zero code polynomial c(x) = 0 (OK, since the
code is linear, all code words have the same ‘vicinity’), we find it is easier
to make a decoding table in advance

s(x) é(x)
0

X
X
x+1
X2 +x
x2+x+1
x+1

2

w N

X, e, % — O

8o
N W

From this table, we can see that with the given syndrome s(x) = x> + x + 1,
the corresponding single bit error polynomial is é(x) = x°. Error correction
yields
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D) =v(x) + e(x)=x*+ x>+ x° (8.57)

From this, the information 7 (x) = x> can be obtained as before. In most cases,
coding and decoding is not performed in the simple way outlined above, since
there are smarter ways to implement the algorithms.

Shift registers and logic circuits have traditionally been used to implement
cyclic code algorithms. Nowadays, these functions can readily be imple-
mented as DSP software, using shift, rotate and Boolean computer instruc-
tions. Below, the basic ideas will be briefly presented. The underlying idea
is that multiplication and division of polynomes can be viewed as filtering
operations, and can be achieved using shift registers, in structures resem-
bling digital FIR and IIR filters.

If we have a generator polynomial g(x) = g, + g x + g&x* + ... g,_.x
an information polynomial as in equation (8.43) and we want to perform the
polynomial multiplication as in equation (8.44) to obtain a code vector as
in equation (8.41) we get

n—k
b

c(x) = cgtextex+ ..+, X =ux)gx)

= upgy + (U1 gy + upg)x + (8o + uygy + uogz)x2 (8.58)

From the above expression it can be seen that the coefficients c; can be
obtained by a convolution of the coefficients of the information polynomial
u(x) and the coefficients of the generator polynomial g(x)

6= E gilUi—; (8.59)
7=0

This operation is performed by a FIR filter (see Chapter 1), hence ‘filtering’
the data bit sequence u; using a binary FIR filter with tap weights g; will
perform the polynomial multiplication, otherwise known as ‘the coding oper-
ation’ (equation (8.44)).

The syndrome calculation, division by g(x) as in equation (8.48), can also
be performed in a similar way. Consider the z-transforms of the sequences
u; and g;, denoted U(z) and G(z) respectively (see Chapter 1). Since equa-
tion (8.59) is a convolution, this is equivalent to a multiplication in the
z-transform domain hence the z-transform of the code polynomial coeffi-
cients C(z) can easily be obtained

C(z) = Uz)G(z) (8.60)

If we now require the generator polynomial to have g, =1 and g,_, = 1 it
can be rewritten as

—n+k

Giz) = gy + glz_1 + g22_2 +...+tg, .z
= l+gz'+gz?+ ... +z"=14+G'(2) (8.61)

From Chapter 1 we recall that if a FIR filter having for instance, the z-trans-
form G’(z) is put in a feedback loop, we have created an TIR filter with the
transfer function
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1
1+ G2 Gl

H(z) (8.62)

This indicates that by feeding the data corresponding to v(x) into a circuit
consisting of a shift register in a feedback loop, we effectively achieve a
polynomial division. The tap weights corresponding to G’(z), are simply g(x)
but with g, = 0. Closer analysis shows that during the first » shifts, the quota
q(x) (equation (8.45a)) of the polynomial division is obtained at the output
of the shift register. After these shifts, the remainder, that is the syndrome
coefficients of s(x) can be found in the delay line of the shift register. The
syndrome can hence be read out in parallel and used as an index in a
syndrome lookup table. Using information in this table, errors can be
corrected. A special class of syndrome-based error-correcting decoders using
the method above are known as Meggit decoders.

Figure 8.3 shows an encoder and channel (upper part) and decoder (lower
part) for the cyclic code g(x) = 1 + x + x* in the previous example. The
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Figure 8.3 Encoder and channel (upper) and decoder (lower) for a cyclic
code having the generator polynomial g(x) = 1 + x + x3. Encoder and
syndrome calculating decoder built using shift register elements
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encoder and decoder consist of shift registers as outlined in the text above.
It is an instructive exercise to mentally ‘step through’ the coding and
syndrome calculating processes. The syndrome is obtained after n = 7 steps.

There are a number of standardized cyclic codes, commonly denoted cyclic
redundancy check codes (CRC); some of them are

CRC-4: gx)=1+x+x*

CRC-5: gx)=1+x2+x*+x°

CRC-6: gx)=1+x+x°

CRC-12: gx)=1+x+x>+x3+x +x12
CRC-16: g(x) =1+ x2 + x5 + x!6

CRC-CCITT:  g(x) =1+ x> +x'2 + x'¢

A special and important class of cyclic codes are the BCH codes, named
after Bose, Chaudhuri and Hocquenghem. This class consists of a number
of effective codes with moderate block length n. The parameters of these
codes are

Block length: n=2"—1
Number of information bits: k= n — mt

Minimum Hamming distance: d = 2¢ + 1

form=3,4,5, ...

Reed—Solomon (RS) codes belong to a special type of BCH codes, working
with groups of bits, in other words m-ary symbols rather than bits. The RS
codes are very efficient and have the greatest possible minimum Hamming
distance for a given number of check symbols and a given block length. The
block length must be kept small in practice. Nevertheless, it is an important
and popular type of code and is often used together with some other coding
scheme, resulting in a concatenated coding system.

BCH and Reed—Solomon codes are for instance used in cellular radio
systems, CD player systems and satellite communication systems, dating
back to the 1970s.

8.2.4 Convolution codes

In the previous sections we have discussed block codes, that is codes working
with a structure of fixed length, consisting of information and parity bits.
Convolution codes work in continuous ‘stream’ fashion and ‘insert’ parity
bits within the information bits according to certain rules. The convolution
process is mainly a filtering process and is commonly implemented as some
kind of shift register device (may be software).

A convolution encoder algorithm can be viewed as n binary FIR filters,
having m step long delay lines. The information bit sequence ¥, to be coded
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is input to the filters. Each filter j has its own binary impulse response g/’
hence the output of each filter can be expressed as a convolution sum. The
output of filter j is

m

o= gWDu . 1=1,2,...L (8.63)
i=1

where u,, u,, ... u, are the information bits and g/ the j-th generator, that

is the impulse response of filter j. Note! The superscript is only an index,

not an exponentiation operation. The code word bits ¢,/ will be arranged

in the following way when transmitted over the channel

.2 .2 1 2
eMye®, e eV e el o A L

Thus, there will be (L+m)n bits in the code word, and the rate of the code
can be calculated by

L

R= T (8.64)

Further, the constraint length of the code, in other words the number of
bits that may be affected by a given information bit is obtained from

ng=(m+ n (8.65)

The practical algorithm (or hardware) operates as follows. Since the n
delay lines will run in parallel, having the same input, only one delay line
is needed. This line is shared by all the # filters. Initially, all the m elements
in the delay line are set to zero. The first information symbol u, is fed to
the delay line, and the outputs ¢/ of all filters are calculated and sent to
the output. Then the delay line is shifted one step and the next input bit u,
enters the circuit. The filter outputs ¢,/ are calculated and transferred to the
output as before.

This scheme is repeated until the last information bit u, is reached. After
that point, only zeros are entered into the delay line for another m steps,
thus clearing the entire delay line. During this period, the tail of the code
is generated and transmitted through the channel.

Figure 8.4 shows an example of a convolution encoder for the code
(n, k, m) = (2, 1, 2), with generators g’ = (1, 0, 1) and g» = (1, 1, 1). Assum-
ing an input information bit sequence u; is (0, 1, 0, 1) will result in the code
word sequence ¢, (including tail) of (00, 11, 01, 00, 01, 11).

The example convolution code shown here is a simple one. Convolution
type codes have been used for space and satellite communications since the
early 1960s. During the Voyager missions to Mars, Jupiter and Saturn during
the 1970s, a couple of different convolution codes were used to ensure good
data communication. Two of these codes that became NASA standards are

The Jet Propulsion Lab convolution code (2, 1, 6), with generators
gP=(1,1,0,1,1,0, 1)

g?=(1,0,0,1,1,1,1)
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Figure 8.4 Encoder for a simple convolution code. Parameters: n= 2,
k=1, m =2 and generators: g = (1,0,1), g® = (1,1,1)

The Linkabit (3,1,6) convolution code, with generators
gV =(1,1,0,1,1,0, 1)
g®=(1,0,0,1,1,1, 1)

g =(1,0,1,0,1,1,1)

8.2.5 Viterbi decoding

There are many ways to decode convolution-coded data. One of the most
common methods is to use a Viterbi decoder, named after A. Viterbi. The
idea of Viterbi decoding is to decode an entire sequence of information
symbols and parity symbols at a time, rather than every single group (or
block) of information and parity bits. Let us assume that the transmitted
sequence of bits entering a channel is

— — (D) 2 1
c=(cp,Cy ...y =(cV, e, o D, L)

as above, and ¢, = (¢V, ¢, ... ¢/") is the i-th block. The received sequence,
coming out of the channel is expressed in a similar way

_ _ () 2 1
V=0,V oo Vi) = (vﬁ ), v§ ). vg”), v§ ). v(L”J)rm)

From the discussion on channels, we remember that for a communication
channel, there is a set of transition probabilities. These probabilities are
denoted P(v(|c!)) and are the conditional probabilities of receiving bit v
when transmitting ¢/ If the bit error probability is independent for all bits,
then the conditional probability of receiving block v, when block ¢; is trans-
mitted is
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Pwle)=T] PP ec) (8.662)
j=1

In a similar way, the conditional probability of receiving the entire sequence
v, given that bit sequence ¢ (including tail) is transmitted is

L+m

Ple) =[] Ple) (8.67a)
i=1

Now, the task of a maximum likelihood (ML) decoder is to maximize equa-
tion (8.67a). Taking the logarithm of equations (8.66a) and (8.67a)
respectively, we obtain

L(v;, ¢) =log (P(v;|c)) = 2 log (PGP D)) (8.66b)
j=1
L(v, ¢) =log (P(v|¢)) Linlog (P(v,|c;)) (8.67b)

Hence, given the received bit sequence v, the ML decoder should find the
bit sequence ¢ that maximizes L(v, c¢) as in equation (8.67b). If we assume
a binary symmetric channel (BSC) with error probability p, equation (8.66b)
can be written

Lv,|e,) = dyv;, ¢;) log (p) + (n — dyy(v;, ¢,)) log (1 — p)

d,,(v,, ¢,) log (1{,) + nlog (1 — p) (8.68)

where d, (v, c¢;) is the Hamming distance between the received binary
sequence v, and the transmitted sequence c;. The last term # log (1 — p) can
be neglected, since it is a constant. Further, for error probability 0 <p < 1/2,
the constant factor log (p/(1—p)) < 0. Hence, we can define

Li=—dy(v;c) (8.69)

and

L+m L+m
§= Li dH(vts 1 (870)

i=1 i=1

From this we draw the conclusion that finding the maximum likelihood
sequence in the case of BSC is equivalent to finding the minimum sum of
Hamming distances for the blocks. This fact is utilized in the Viterbi decoding
algorithm. To be able to calculate the Hamming distances at the decoder,
we of course need access to the received data v, and the transmitted data c;.
Unfortunately, ¢; is not known at the receiving site (this is why we put up
the channel in the first place). Hence, using our knowledge of the operation
of the encoder, we create a local copy of expected data ¢ for our calcula-
tions. As long as & = ¢; we are doing just fine, and the correct message is
obtained.
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(0) 11

(0) 10

Figure 8.5 State transition diagram for the convolution encoder shown in
Figure 8.4. Digits in the nodes are the state numbers, that is the contents
of the memory elements. The digits over the branches are the input
information symbol u, (in parentheses) and the output code bits ¢V

and c?.

To demonstrate the steps needed when designing a Viterbi decoder, we
will use the previous convolution code example shown in Figure 8.4. First,
we draw a state transition diagram of the encoder. The contents of the
memory elements are regarded as the states of the device. Figure 8.5 shows
the state transition diagram. The digits on the branches show in parentheses
the input symbol u; and following that, the output code block ¢, = (¢V, ¢,®).

Starting in state 00 (all memory elements cleared) and assuming an input
information bit sequence u# = (0, 1, 0, 1) it is straightforward to perform the
encoding process using the state transition diagram above.

input state output code

0 00 00

1 00 11

0 10 01

1 01 00

0 10 01 tail

0 01 11 tail
00

From the above, the resulting code word sequence (including tail) is ¢ =
(00, 11, 01, 00, 01, 11). Now, this state transition diagram can be drawn as
a code trellis, a diagram showing all possible transitions (y-axis) as a func-
tion of the step number / (x-axis) (see Figure 8.6). Since we know the initial
state 00, the diagram will start to fan out from one state to the left to all
the possible four states. We also know that after the L steps, there will be
the m steps of zeros, constituting the tail and ensuring that we end up in
state 00 again. This is why we have the fan in at the right end of the trellis.
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Figure 8.6 Viterbi decoding algorithm for the example in the text,
illustrated by a code trellis. States on y-axis, steps on x-axis, numbers in
italics are the negative accumulated Hamming distances numbers in
parentheses are the estimated information symbols, numbers on branches
are the expected code blocks

If we assume that our transmitted code sequence ¢ suffers 3 bit errors being
exposed to an error vector e = (01, 10, 00, 10, 00), we receive v = (01, 01,
01, 10, 01, 11). Using the trellis of Figure 8.6 and the expression (8.70), we
will illustrate the Viterbi decoding algorithm.

Starting from the left, we know we are in the state 00. During the first
step, the received block is v, = (0, 1), which can be seen from the line under
the trellis. Sitting in state 00 we know, from the state transition diagram in
Figure 8.5, that at coding time, the encoder had two choices depending on
the input information symbol. If #; = 1 the encoder could have moved to
state 10 and generated the output code ¢, = (1, 1), else it would have stayed
in state 00 and generated ¢, = (0, 0). We have received v, = (0, 1), so when
calculating L, using expression (8.69) we find the negative Hamming distance
to be —1 in both cases. These figures are found above the respective node
points in italics.

We move to the next step. Here we received v, = (0, 1). We calculate the
accumulated Hamming distances for all the possible transitions. For instance
if we assume state 10 and transition to 11, this implies u, = 1 and ¢, = (1, 0).
The negative Hamming distance is —2, and since we already had —1 in state
10, it ‘costs’ a total —3 to reach state 11.

Starting in the third step we realize that there are two ways to reach the
states. We simply proceed as before, but choose the ‘cheapest’ way to a
node in terms of accumulated Hamming distance. The more expensive way
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is crossed out. If both ways are equally expensive, one of them is crossed
and represents a cut branch. If for example we are looking for costs to reach
state 01, there are two possibilities, either from state 10, cost —2 or from
state 11, cost —5. We choose the former and cross out the latter.

This process is repeated until we reach the end node to the right of the
trellis. If we now backtrack through the trellis, there should be only one path
back to the start node to the left. While backtracking, we can easily obtain
the estimated information symbols # found at the bottom of Figure 8.6. In
this particular case, we managed to correct all the errors, hence 4 = u.

This was of course, a fairly simple example, but illustrated the basics of
Viterbi decoding. A similar procedure is sometimes used in equalizers to
counteract intersymbol interference (ISI) in for instance radio links (e.g.
cellular phones) caused by frequency selective fading (Proakis, 1989).

8.2.6 Interleaving

All the codes discussed above have the common property that only a limited
number ¢ of erroneous bits per block (or over the constraint length) can be
corrected. If there are more bit errors, the coding process will most certainly
make things worse, that is add even more errors.

Unfortunately, for some channels, for instance the radio channel, bit errors
appear in bursts due to the fading phenomenon, and not randomly as assumed
by the AWGN model. Hence, the probability of more than ¢ consecutive
errors to appear in a burst may be considerable. Commonly, the distance
between bursts is long and the problem may be solved using for instance
long block codes having large n, i.e. being able to correct a large number
of bit errors. Unfortunately, the delay in the system increases with » and the
complexity of most decoding algorithms increases approximately as »n°. For
these reasons, long block codes are not desirable. A trick to make block
codes of moderate length perform well even in burst error situations is to
use interleaving (Ahlin and Zander, 1998).

Interleaving is a method of spreading the bit errors in a burst over a
larger number of code blocks. In this way, the number of bit errors per
block can be brought down to a level that can be handled by the fairly short
code in use. Figure 8.7 shows the principle. We are using a block code of
moderate length n, having & information bits. The incoming information
symbols are encoded as before and the code words are stored row by
row in the interleaving matrix. The matrix has / rows, which results in an
interleaving depth /.

After storing / code words, the matrix is full. In Figure 8.7, u{/ is the
information bit i in code word ;j and in a similar way p{/) is the parity bit
m in code word j. The n/ bits are output to the channel, but this time column
by column, as u{", u®, ... u{®, ufV, uf?, ... p¥ . At the decoder site, the
reverse action takes place. The bits arriving from the channel are stored
column by column, and then read out to the decoder row by row. Decoding
and error correction is performed in a standard manner. What we have
achieved using this scheme is that a burst of N consecutive bit errors are
spread out on / code words, where every code word contains
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Figure 8.7 Interleaving matrix, the encoder stores the code words row by
row. The bits are then transmitted over the channel column by column. In

the decoder, the reverse action takes place. Figure shows the systematic
block code (n, k).

N
4= n bit errors per block (8.71)

If ¢, =< ¢ for the code in use, the errors will be corrected. If ¢ is the number
of bits per block the code can correct, we hence can correct a burst of length

N =l bits (8.72)

This can be viewed as: given a block code (n, k) we have created a code
(nl, k).

There are smarter ways of achieving interleaving, for instance by using
convolution interleaving which has a shorter delay.



9.1 System
considerations

9 Digital signal processors

The acronym DSP is used for two terms, digital signal processing and
digital signal processor. Digital signal processing is performing signal
processing using digital techniques with the aid of digital hardware and/or
some kind of computing device (signal processing can of course be analog
as well). A specially designed digital computer or processor dedicated to
signal processing applications is called a digital signal processor.

In this chapter, we will focus on hardware issues associated with digital
signal processor chips and we will compare the characteristics of a DSP to
a conventional, general-purpose microprocessor (the reader is assumed to be
familiar with the structure and operation of a standard microprocessor).
Furthermore, software issues and some common algorithms will be discussed.

9.1.1 Applications and requirements

Signal processing systems can be divided into many different classes, depend-
ing on the demands. One way of classifying systems is to divide them into
off-line or batch systems and on-line or real time systems. In an off-line sys-
tem, there is no particular demand on the data processing speed of the system,
aside from the patience of the user. An example could be a data analysis sys-
tem for long-term trends in thickness of the arctic ice cap. Data are collected
and then stored on a data disc for instance. The data are then analysed at a rel-
atively slow pace. In a real time system on the other hand, the available pro-
cessing time is highly limited and there is a demand to follow some fast
external process in time. Typical examples are digital filtering of sampled ana-
log signals, where the filtering algorithm must be completed within the sam-
pling period #,. Further, in many cases no significant delay between the input
signal and the output signal will be allowed. This is especially true in digital
control systems, where delays may cause instability of the entire control loop
(which may include heavy machinery . . .). Most applications discussed in this
book belong to the class of real time systems, hence processing speed is cru-
cial. Note: in some contexts, ‘real time system’ simply refers to a system being
able to handle more than one piece of software at a time. There may, how-
ever, not be any requirements on processing speed at all.

Another way of classifying signal processing systems is to distinguish
between stream data systems and block data systems (see Figure 9.1). In
a stream data system, a continuous flow of input data is processed, resulting
in a continuous flow of output data. The digital filtering system mentioned
above is a typical stream data system. At every sampling instance, data are
fed to the system and after the required processing time 7, < 7, has completed,
output data will be presented.
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Figure 9.1 Stream processing and block processing

Examples of block data systems are spectrum analysers based on FFT or
channel decoders. In these cases, a block of data must first be input into the sys-
tem, before any computation can take place. After the processing is completed,
a block of output data is obtained. A signal processing block data system often
requires larger data memory than a stream data system. The most demanding
applications can probably be found in the area of digital video processing. Such
systems are real memory hoggers and/or require extremely high computational
power. Quite often digital image processing systems are multiprocessor sys-
tems and consist of a number of processors, dedicated sub-systems and hard-
ware. In this book, we will not consider digital image processing systems.

Another way of classifying systems relates to the numerical resolution and
the dynamic range, for instance, systems that use fixed-point or floating-
point arithmetic. A floating point system often makes life easier for the
designer, since the need to analyse algorithms and input data in terms of
numerical truncation and overflow problems does not exist as in a fixed-
point design. Floating-point arithmetic may make things easier, but as pointed
out in Chapter 2, it is worth noting that a 32 bit fixed-point system for
instance, can have a higher resolution than a 32 bit floating-point system.
Another point is that most systems dealing with real-world signals often have
some analog and/or mechanical interfacing parts. These devices have a
dynamic range and/or resolution of only fractions of what a floating-point
signal processing system can achieve. Hence, in most practical cases, floating
point systems are ‘overkill’. Today, fixed-point digital processors are still
less expensive and execute faster than floating-point processors.

If we try to identify the most common arithmetic operation in digital signal
processing algorithms, we will find it to be the sequential calculation of a
‘scalar vector product’ or a convolution sum

b b—1
y(n)= E h(k)x(n—k) = E h(k)x(n—k) + h(b)x(n—>b) 9.1)

k=a k=a
Hence, the typical operation is a repeated ‘multiply-add-accumulate’
sequence, often denoted MAC (multiply add accumulate). This is found
in for instance FIR and IIR filter structures, where the input stream of samples
x(n) is convoluted with the impulse response coefficients 4(n) of the filter.
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The same situation can be found in a neural network node, where the coef-
ficients are the weights w; or in an FFT algorithm. In the latter case, the
coefficients are the ‘twiddle factors’ W} (see Chapter 5). In correlators,
modulators and adaptive filters, the input data sequence x(n) is convoluted
with another signal sequence instead of constant coefficients, else the struc-
ture is the same. Further, vector and matrix multiplication, common in block
coders and decoders require the same kind of calculations.

To summarize the demand, in many digital signal processing applications
we are dealing with real time systems. Hence, computational speed, that is
‘number crunching’ capacity is imperative. In particular, algorithms using
the MAC-like operations should execute fast and numerical resolution and
dynamic range need to be under control. Further, the power consumption of
the hardware should preferably be low. Early DSP chips were impossible to
use in battery operated equipment, for instance mobile telephones. Besides
draining the batteries in no time, the dissipated power called for large heat
sinks to keep the temperature within reasonable limits. On top of this, the
common ‘commercial’ system requirements apply: the hardware must be reli-
able and easy to manufacture at low cost.

9.1.2 Hardware implementation
There are four different ways of implementing the required hardware:

conventional microprocessor

DSP chip

bitslice or wordslice approach

dedicated hardware, FPGA (field programmable gate array), ASIC (appli-
cation specific integrated circuit).

Comparing different hardware solutions in terms of processing speed on
a general level is not a trivial issue. It is not only the clock speed or instruc-
tion cycle time of a processor which determines the total processing time
needed for a certain signal processing function. The bus architecture, instruc-
tion repertoire, input/output hardware, the real-time operating system and
most of all, the software algorithm used will affect the processing time to a
large extent. Hence, only considering MIPS (million instructions per
second) or MFLOPS (million floating point operations per second) can
be very misleading. When trying to compare different hardware solutions in
terms of speed, this should preferably be done using the actual application.
If this is not possible, benchmark tests may be a solution. The way these
benchmark tests are designed and selected can of course always be subjects
of discussion.

In this book, the aim is not to give exact figures of processing times, nor
to promote any particular chip manufacturer (‘exact’ figures would be obso-
lete within a few years, anyhow). The goal is simply to give some
approximate, typical figures of processing times for some implementation
models. In this kind of real time system, processing time translates to the
maximum sampling speed and hence the maximum bandwidth of the system.
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In this text, we have used a simple straightforward 10 tap FIR filter for
benchmark discussion purposes

9
y(n) =, bx(n—k) (9.2)
=0

The first alternative is a conventional microprocessor system, for instance
an IBM-PC type system or some single-chip microcontroller board. Using
such a system, development costs are minimum and numerous inexpensive
system development tools are available. On the other hand, reliability, phys-
ical size and power consumption may present problems in certain applications.
Another problem in such a system would be the operating system. General-
purpose operating systems, for instance Windows™ (Microsoft) are not, due
to their many unpredictable interrupt sources, well suited for signal processing
tasks. A specialized real-time operating system should preferably be used.
In many application, no explicit operating system at all may be a good solu-
tion.

Implementing the FIR filter (equation (9.2)) using a standard general
purpose processor as above (no operating system overhead included) would
result in a processing time of approximately 5 <7, <10 s, which translates
to a maximum sampling frequency, that is f = 1/¢, < 1/¢, of around 100-200
kHz. This in turn implies a 50-100 kHz bandwidth of the system (using the
Nyquist criterion to its limit). The 10 tap FIR filter used for benchmarking
is a very simple application. Hence, when using complicated algorithms, this
kind of hardware approach is only useful for systems having quite low
sampling frequencies. Typical applications could be low-frequency signal
processing and systems used for temperature and/or humidity control, in
other words slow control applications.

The next alternative is a DSP chip. DSP chips are microprocessors opti-
mized for signal processing algorithms. They have special instructions and
built-in hardware to perform the MAC operation and have architecture based
on multiple buses. DSPs of today are manufactured using CMOS low voltage
technology, yielding a low power consumption, well below 1 W. Some chips
also have specially designed interfaces for external A/D and D/A converters.
Using DSP chips requires moderate hardware design efforts. The availability
of development tools is quite good, even if these tools are commonly more
expensive than in the case above. Using a DSP chip, the 10 tap FIR filter
(equation (9.2)) would require a processing time of approximately: 7, =
1 ps, implying a maximum sampling frequency f, =1 MHz, or a maximum
bandwidth of 500 kHz. More elaborate signal processing applications would
probably use sampling frequencies around 50 kHz, a typical sampling speed
of many digital audio systems today. Hence, DSP chips are common in
digital audio and telecommunication applications. They are also found in
more advanced digital control systems in for instance aerospace and missile
control equipment.

The third alternative is using bitslice or wordslice chips. In this case, we
buy sub-parts of the processor, such as multipliers, sequencers, adders,
shifters, address generators etc. in chip form and design our own processor.
In this way, we have full control over internal bus and memory architecture
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and we can define our own instruction repertoire. We hence have to do all
the microcoding ourselves. Building hardware this way requires large efforts
and is costly. A typical bitslice solution would execute our benchmark 10
tap FIR filter in about 7, = 200 ns. The resulting maximum sampling frequency
is f.=5MHz and the bandwidth 2.5 MHz. The speed improvement over
DSP chips is not very exciting in this particular case, but the bitslice tech-
nique offers other advantages. We are for example free to select the bus
width of our choice and to define special instructions for special-purpose
algorithms. This type of hardware is used in systems for special-purposes,
where power consumption, size and cost are not important factors.

The fourth alternative is to build our own system from gate level on silicon,
using one or more ASICs or FPGAs. In this case, we can design our own
adders, multipliers, sequencers and so on. We are also free mainly to use
any computational structure we want. However, quite often no conventional
processor model is used. The processing algorithm is simply ‘hardwired’ into
the silicon. Hence, the resulting circuit cannot perform any other function.
Building hardware in this way may be very costly and time consuming,
depending on the development tools, skill of the designer and turnaround
time of the silicon manufacturing and prototyping processes. Commonly,
design tools are based on VHDL (very high speed integrated circuit hard-
ware description language) (Sjoholm and Lindh, 1997) or the like. This
simplifies the process of importing and reusing standard software-defined
hardware function blocks. Further, good simulation tools are available to aid
the design and verification of the chip before it is actually implemented in
silicon. This kind of software tool may cut design and verification times
considerably, but many tools are expensive.

Using the ASIC approach, the silicon chip including prototypes must be
produced by a chip manufacturer. This is a complicated process and may
take weeks or months, which increases the development time. The FPGA
on the other hand is a standard silicon chip that can be programmed in
minutes by the designer, using quite simple equipment. The drawback of the
FPGA is that it contains fewer circuit elements (gates) than an ASIC, which
limits the complexity of the signal processing algorithm. Further, FPGAs are
commonly not very well suited for large volume production, due to the
programming time required.

There are only two reasons for choosing the ASIC implementation method.
Either we need the maximum processing speed or we need the final product
to be manufactured in very large numbers. In the latter case, the develop-
ment cost per manufactured unit will be lower than if standard chips were
used. An ASIC, specially designed to run the 10 tap benchmark FIR filter
is likely to reach a processing speed (today’s technology) in the vicinity of
t,=2ns, yielding a sampling rate of /=500 MHz and a bandwidth of 250
MHz. Now we are closing up to speeds required by radar and advanced
video processing systems. Needless to say, when building such hardware in
practise, many additional problems occur since we are dealing with fairly
high frequency signals.

If yet higher processing capacity is required, it is common to connect a
number of processors working in parallel in a larger system. This can be
done in different ways, either in a SIMD (single instruction multiple data)



Digital signal processors 191

9.2 DSP versus
conventional
microprocessors

or a MIMD (multiple instruction multiple data) structure. In a SIMD struc-
ture, all the processors are executing the same instruction but on different
data streams. Such systems are sometimes also called vector processors. In
a MIMD system, the processors may be executing different instructions.
Common for all processor structures is however the demand for communi-
cation and synchronization between the processors. As the number of
processors grow, the communication demands grow even faster.

Large multiprocessor systems (‘super computers’) of this kind are of course
very expensive and rare. They are commonly used for advanced digital image
processing, for solving hard optimization problems and for running large
neural networks. One example of such a machine is the ‘Connection
Machine’ (Hillis, 1987) CM-1 (which is now replaced by CM-2). The CM-1
consists of 65536 quite simple processors, connected by a packet-switched
network. The machine is fed instructions from a conventional type host com-
puter and a specially designed computer language is used. The CM-1 has an
I/O capacity of 500 Mbits/s and is capable of executing about 1000 MIPS. The
machine is air cooled and dissipates about 12 kW (one tends to think of the
old ENIAC, using electron tubes . . .).

An interesting thing is that this machine is only good at executing an
appropriate type of algorithm, that is algorithms that can be divided into a
large number of parallel activities. Consider our simple benchmark example,
the 10 tap FIR filter. The algorithm can only be divided into 10 multiplica-
tions that can be performed simultaneously and three steps of addition (a
tree of 5 groups +2 groups +1 group) which have to be performed in a
sequence. Hence, we will need one instruction cycle for executing the 10
multiplications (using 10 processors) and three cycles to perform the addi-
tions, a total of four cycles. Now, if the machine consists of 65536 processors,
each processor only has a capacity of 10°/65536 = 0.015 MIPS, which is not
very impressive. If we disregard communication delays etc., we can conclude
that running the 10 tap FIR filter on this super computer results in 65526
processors out of 65536 idling, and that the processing time will be in the
range of 250 ps, in other words about 50 times slower than a standard PC.
Our benchmark problem is obviously too simple for this machine. This also
illustrates the importance of ‘matching’ the algorithm to the hardware archi-
tecture and that MIPS alone may not be an appropriate performance measure.

9.2.1 Conventional microprocessors

9.2.1.1 Architecture

A conventional microprocessor commonly uses a von Neumann architec-
ture, which means that there is only one common system bus used for transfer
of both instructions and data between the external memory chips and the
processor (see Figure 9.2). The system bus consists of the three sub-buses:
the data bus, the address bus and the control bus. In many cases, the same
system bus is also used for I/O operations. In signal processing applications,
this single bus is a bottleneck. Execution of the 10-tap FIR filter (equation
(9.2)) will for instance require at least 60 bus cycles for instruction fetches
and 40 bus cycles for data and coefficient transfers, a total of approximately
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Figure 9.2 von Neumann architecture, program code and data share
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100 bus cycles. Hence, even if we are using a fast processor, the speed of
the bus cycle will be a limiting factor.

One way to ease this problem is the introduction of pipe-lining tech-
niques, which means that an execution unit (EU) and a bus unit (BU) on
the processor chip work simultaneously. While one instruction is being
executed in the EU, the next instruction is fetched from memory by the BU
and put into an instruction queue, feeding the instruction decoder. In this
way, idle bus cycles are eliminated. If a jump instruction occurs in the
program, a restart of the instruction queue however has to be performed,
causing a delay.

Yet another improvement is to add a cache memory on the processor
chip. A limited block (some thousand words) of the program code is read
into the fast internal cache memory. In this way, instructions can be fetched
from the internal cache memory at the same time as data is transferred over
the external system bus. This approach may be very efficient in signal
processing applications, since in many cases the entire program may fit in
the cache and no reloading is needed.

The execution unit in a conventional microprocessor may consist of an
arithmetic logic unit (ALU), a multiplier, a shifter, a floating point unit
(FPU) and some data and flag registers. The ALU commonly handles 2’s
complement arithmetics (see Chapter 2) and the FPU uses some standard
IEEE floating-point formats. The binary fractions format, discussed later in
this chapter, is often used in signal processing applications but is not supported
by general-purpose microprocessors.

Besides program counter (PC) and stack pointer (SP), the address unit
(AU) of a conventional microprocessor may contain a number of address
and segment registers. There may also be an ALU for calculating addresses
used in more elaborate addressing modes and/or to handle virtual memory
functions.

9.2.1.2 Instruction repertoire

The instruction repertoire of many general purpose microprocessors supports
quite exotic addressing modes, seldom used in signal processing algorithms.
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On the other hand, instructions for handling such things like delay lines or
circular buffers in an efficient manner are rare. The MAC operation often
requires a number of computer instructions, and loop counters have to be
implemented in software, using general-purpose data registers.

Further, instructions aimed at operating systems and multi-task handling
may be found among ‘higher end’ processors. These instructions are often
of very limited interest in signal processing applications.

Most of the common processors today are of the CISC (complex instruc-
tion set computer) type, that is instructions may occupy more than one
memory word and hence require more than one bus cycle to fetch. Further,
these instructions often require more than one machine cycle to execute. In
many cases a RISC (reduced instruction set computer) type processor may
perform better in signal processing applications. In a RISC processor, no
instruction occupies more than one memory word, it can be fetched in one
bus cycle and executes in one machine cycle. On the other hand, many RISC
instructions may be needed to perform the same function as one CISC type
instruction, but in the RISC case you can get the required complexity only
when needed.

9.2.1.3 Interface

Getting analog signals into and out of a general purpose microprocessor often
requires a lot of external hardware. Some microcontrollers have built-in A/D
and D/A converters, but in most cases these converters only have 8 or 12
bits resolution, which is not sufficient in many applications. Sometimes these
converters are also quite slow. Even if there are good built-in converters,
there is always the need for external sample-and-hold circuits and (analog)
anti-aliasing and reconstruction filters.

Some microprocessors have built-in high-speed serial communication
circuitry, SPI (Serial peripheral interface) or >)C™(Inter IC). In such cases
we still need to have external converters, but the interface will be easier than
using the traditional approach, that is, connecting the converters in parallel
to the system bus. Parallel communication will of course be faster, but the
circuits needed will be more complicated and we will be stealing capacity
from a common single system bus.

The interrupt facilities found on many general-purpose processors are in
many cases ‘overkill” for signal processing systems. In this kind of real-time
application, timing is crucial and synchronous programming is preferred.
The number of asynchronous events, for example interrupts is kept to a
minimum. Digital signal processing systems using more than a few interrupt
sources are rare. One single interrupt source (be it timing or sample rate) or
none is common.
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9.2.2 Digital signal processors
9.2.2.1 Architecture

DSP chips often have a Harvard architecture (see Figure 9.3) or some modi-
fied version of Harvard architecture. This type of system architecture implies
that there are at least two system buses, one for instruction transfers and one
for data. Quite often, three system buses can be found on DSPs, one for
instructions, one for data (including I/0) and one for transferring coefficients
from a separate memory area or chip.

In this way, when running an FIR filter algorithm like in equation (9.2)
instructions can be fetched at the same time as data from the delay line
x(n—k) are fetched and as filter coefficients b, are fetched from coefficient
memory. Hence, using a DSP for the 10-tap FIR filter, only 12 bus cycles
will be needed, including instruction and data transfers.

Many DSP chips also have internal memory areas that can be allocated
as data memory, coefficient memory and/or instruction memory, or combi-
nations of these. Pipe-lining is used in most DSP chips.

A warning should however be issued! Some DSP chips execute instruc-
tions in the pipe-line in a parallel, ‘smart’ fashion to increase speed. The
result will in some cases be that instructions will not be executed in the
same order as written in the program code. This may of course lead to strange
behaviour and cumbersome troubleshooting. One way to avoid this is to
insert ‘dummy’ instructions (for instance NOP, no operation) in the program
code in the critical parts (consult the data sheet of the DSP chip to find out
about pipe-line latency). This will of course increase the execution time.

The execution unit consists of at least one (often two) arithmetic logic
units (ALU), a multiplier, a shifter, accumulators and data and flag registers.
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The unit is designed with a high degree of parallelism in mind, hence all
the ALUs, multipliers etc. can be run simultaneously. Further, ALUs, the
multiplier and accumulators are organized so the MAC operation can be
performed as efficiently as possible, with the use of a minimum amount of
internal data movements. Fixed-point DSPs handle 2’s complement arith-
metics and binary fractions format. Floating-point DSPs use floating-point
formats that can be IEEE standard (or some other non-standard format). In
many cases, the ALUs can also handle both wraparound and saturation
arithmetic which will be discussed later in this chapter.

Many DSPs also have ready-made lookup tables (LUT) in memory
(ROM). These tables may be A-law and/or p-law for companding systems
and/or sine/cosine tables for FFT or modulation purposes.

Unlike conventional processors having 16, 32 or 64 bit bus widths, DSPs
may have uncommon bus widths like 24, 48 or 56 bits etc. The width of
the instruction bus is chosen such that a RISC-like system can be achieved,
that is every instruction only occupies one memory word, and can hence be
fetched in one bus cycle. The data buses are given a bus width that can
handle a word of appropriate resolution at the same time as extra high bits
are present to keep overflow problems under control.

The address unit is complicated since it may be expected to run three
address buses in parallel. There is of course a program counter and stack
pointer as in a conventional processor, but we are also likely to find a number
of index and pointer registers used to generate data memory addresses. Quite
often there are also one or two ALUs for calculating addresses when accessing
delay lines (vectors in data memory) and coefficient tables. These pointer
registers can often be incremented or decremented in a modulo fashion,
which for instance simplifies building circular buffers. The address unit may
also be able to generate the specific bit reverse operations used when
addressing butterflies in FFT algorithms.

Further, in some DSPs, the stack is implemented as a separate LIFO (last in
first out) register file in silicon (‘hardware stack’). Using this approach, push-
ing and popping on the stack will be faster, and no address bus will be used.

9.2.2.2 Instruction repertoire

The special MAC (multiply add accumulate) instruction is almost manda-
tory in the instruction repertoire of a DSP. This single instruction performs
one step in the summation of equation (9.2), that is it multiplies a delayed
signal sample by the corresponding coefficient and adds the product to the
accumulator holding the sum. Special instructions for rounding numbers are
also common. On some chips even special instructions for executing the
Viterbi decoding algorithms are implemented.

There are also a number of instructions that can be executed in parallel,
to use the hardware parallelism to its full extent. Further, special prefixes or
postfixes can be added to achieve repetition of an instruction. This is accom-
plished using a special loop counter, implemented in hardware as a special
loop register. Using this register in loops, instruction fetching can be
completely unnecessary in some cases.
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9.3 Programming
DSPs

9.2.2.3 Interface

It is common to find built-in high-speed serial communication circuitry in
DSP chips. These serial ports are designed to be directly connected to codecs
and/or A/D and D/A converter chips for instance. Of course, parallel I/O
can also be achieved using one of the buses.

The interrupt facilities found on DSP chips are often quite simple, with
a fairly small number of interrupt inputs and priority levels.

9.3.1 The development process

Implementing a signal processing function as DSP software often requires
considerable design and verification efforts. If we assume that the system
specification is established and the choice of suitable hardware is made,
designing and implementing the actual DSP program remains.

As an example, the passband specifications for a filtering application may
be determined, the filter type chosen and a transfer function F(z) formulated
using the z-transform. Now, starting from the transfer function, the remaining
work can be described by the following checklist:

e® designing the actual algorithm, that is the method to calculate the differ-
ence equations corresponding to the transfer function

e simulating and verifying the algorithm, using a general-purpose
computer. This is often done on a non-real-time basis, using floating-
point numbers and a high-level programming language, for instance
C++, C or Pascal

e simulating and verifying the algorithm as above, but now using the same
number format as will be used by the target DSP, for example fixed-
point arithmetic

e ‘translating’ the algorithm computer code to the target program language
applicable for the DSP, commonly C or assembly program code

e simulating the target DSP program code, using a software simulator

e verifying the function of the target DSP program code, using the ‘high-
level’ simulations as a reference

e porting the DSP program code on the target hardware, using for example
an emulator

e verifying and debugging the target system using the final hardware
configuration, verifying real-time performance.

The steps above may have to be iterated a number of times to achieve
a system having the desired performance. If unlucky, it may even turn out
that the hardware configuration has to be changed to satisfy the system
requirements.

When initially designing the algorithm, many alternative solutions may be
evaluated to find the one that executes best using the selected hardware.
Processor architecture, arithmetic performance and addressing possibilities,
together with memory demands and 1/O options will affect the algorithm
design process.
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To accomplish the ‘high-level’ simulations using floating point and for
instance C++, C, Pascal or FORTRAN, it is also common to use some
standard computational program package like MATLAB™ (MathWorks),
Mathematica™ (Wolfram Research) or MathCad™ (MathSoft). General-
purpose spreadsheet programs like EXCEL™ (Microsoft) have also proven
to be handy in some situations. Input to the simulations may be data gener-
ated by a model or real measured and stored data.

During the ‘high-level’ simulations, using the same number format as the
target system, the aim is to pinpoint numerical, truncation and overflow
problems. As an example, when working with integer arithmetic and limited
word length, the two expressions a(b — ¢) and ab — ac being equivalent
from a strictly mathematical point of view, may give different results. Quite
often, algorithms have to be repartitioned to overcome such problems. If the
target system uses floating-point format, these simulations will in most cases
be less cumbersome than in the case of fixed-point formats. Fixed-point DSPs
are however more common (today), since they are less expensive and run
faster than floating-point chips. Further, the numerical performance is not
only a matter of number format, other arithmetic aspects like using 2’s
complement or signed integer or binary fractions etc. may also come into
play. The results from these simulations will be used later in the develop-
ment process as reference data.

‘Translating’ the algorithm into a program for the target DSP can be quite
easy if the ‘high-level’ simulations use the same language as the target sys-
tem. One such example is using the program language C, which is available
for a great number of computing platforms and for many DSP chips. It is how-
ever common that some macrolanguage or pure assembly code is needed to
program the target DSP. In the latter case, the program hence needs to be
rewritten, commonly in assembly code. Even if high level languages such as
C are becoming more common for DSPs, assembly language is the only choice
if peak performance is required.

The next step is to run the DSP program code on a host computer using
a software simulator. The purpose of this step is to verify the basic opera-
tion of the software.

After having debugged the DSP program code, it has to be verified and
the function has to be compared to the ‘high-level’ simulations made earlier.
‘Every bit’ must be the same. If there are any deviations, the reason for this
must be found.

Finally, the DSP program code is moved to the intended hardware system
using an emulator, PROM (programmable read only memory) simulator or
EPROM (erasable programmable read only memory). The software is now
executed using the dedicated hardware.

The last step is to verify the complete system including hardware and the
DSP software. In this case, the entire function is tested in real time. It should
be noted that some emulators do not execute at the same speed as a real
processor. There may also be timing differences regarding for instance inter-
rupt cycles. Hence, when verifying the system in real time, using the real
processor is often preferred to an emulator.



198 Digital Signal Processing

9.3.2 DSP programming languages

As mentioned above, even if there are a number of C cross compilers around
today, is it still common to program DSPs using assembly language. Most
human programmers are smarter than compilers. Hence, tedious assembly
language programming has the potential of resulting in more compact and
faster code. The development time will however be considerably longer
compared to using C. For some DSPs, cross compilers for C++ and JAVA
are also available. It is not easy to see that C++ or JAVA provide a better
choice for signal processing software than pure C language.

The DSP assembly instruction repertoire differs somewhat from one DSP
to another. Commonly, the assembly instruction can however be divided into
four typical groups as detailed below.

(1) Arithmetic and logical instructions

In this group, we find instructions for adding, subtracting, multiplying and
dividing numbers as well as the MAC instruction discussed earlier. There
are also instructions for rounding, shifting, rotating, comparing and obtaining
absolute values, etc. Many instructions may come in different versions,
depending on the number format used. There may be for instance multipli-
cation of signed or unsigned numbers, and multiplication of integers or
binary fractions. In this group we can also find the standard logical, bitwise
AND, OR, NOT and XOR functions.

(2) Bit manipulation instructions

This group consists of instructions for setting, resetting and testing the state
of single bits in registers, memory locations and I/O ports. These instruc-
tions are handy for manipulating flags, polling external switches and
controlling external indicators such as LEDs (light emitting diodes) etc.

(3) Data transfer instructions

Data transfer instructions are commonly MOVE, LOAD, STORE and so on
and used to copy data to and from memory locations, registers and 1/O ports.
In many cases, the source and destination may have different word lengths
hence care must be exercised to make sure that significant data are trans-
ferred and that sign bits etc. are properly set. Stack handling instructions
also belong to this group.

(4) Loop and program control instructions

Typical instructions in this group are unconditional and conditional jump,
branch and skip operations. The conditional instructions are in most cases
linked to the state of the status bits in the flag register and occur in many
different versions. Sub-routine jumps and returns also belong to this group.
Further, we can find instructions for manipulating the hardware loop counter
and for software interrupts (traps) as well as STOP, RESET and NOP (no
operation).
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9.3.3 The program structure

If the functions available in a proper real-time operating system are not
considered, the main structure of a typical DSP program is commonly a
timed loop or an idling loop and one or more interrupt service routines.
In both cases, the purpose is to get the processing synchronized to the
sampling rate. The timed loop approach can be illustrated by the following
pseudo code.

reset: initializing stuff
start timer // sampling rate
t loop: do
{
if(timer not ready)
{
background processing
}
else
{ // timed sequence
restart timer
get input
process
send result to output
}

} forever

The execution time 7, of the timed program sequence above must of course
not exceed the sampling period #,. The approach using an idling loop and
interrupt routines assumes that interrupts are generated at sampling rate,
by for instance external circuitry like A/D converters etc. This approach is
shown below.

reset: initializing stuff
idle: do
{

background processing
} forever

irqg: // timed sequence
acknowledge interrupt
get input
process
send result to output
return from interrupt

In this case, the interrupt service routine must of course be executed within
the sampling period ¢, that is between successive interrupt signals. The latter
approach is a bit more flexible and can easily be expanded using more inter-
rupt sources and more interrupt service routines. This can be the case in
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multi-rate sampled systems. One has to remember however, that the more
asynchronous events like interrupt and DMA there are in a system, the harder
it is to debug the system and to guarantee and verify real-time performance.

The most common DSP program has a constant inflow and outflow (stream
system) of data and consists of ‘simple’ sequences of operations. One of the
most common operations is the MAC operation discussed earlier. There are
typically very few data-dependent conditional jumps. Further, in most cases
only basic addressing modes and simple data structures are used to keep
up execution speed.

9.3.4 Arithmetic issues

2’s complement (see Chapter 2) is the most common fixed-point represen-
tation. In the digital signal processing community, we often interpret the
numbers as fractions (fractional) rather than integers. This means that we
introduce a binary point (not decimal point) and stay to the ‘right’ of the
point instead of to the ‘left’, as in the case of integers. Hence, the weights
of the binary bits representing fractions will be 271, 272 ...

Table 9.1 shows a comparison between fractional and integer interpreta-
tion of some binary 2’s complement numbers. Fractional and integer
multiplication differs by a 1 bit left shift of the result. Hence, if for instance
trying fractional multiplication using a standard microprocessor or using a
DSP that does not support fractions, the result must be adjusted by one step
left shift, to obtain the correct result. This is because the standard multipli-
cation rule assumes multiplication of integers. Example, multiplying 0.5 times
0.5 using the standard binary multiplication rule yields

Table 9.1 Interpreting binary 2’s complement as integer versus fraction

2’s Complement Integer Fraction
0111 7 .875
0110 6 750
0101 5 .625
0100 4 .500
0011 3 375
0010 2 250
0001 1 125
0000 0 .000
1111 -1 —.125
1110 -2 —.250
1101 -3 —.357
1100 —4 —.500
1011 =5 —.625
1010 -6 —.750
1001 =7 —.875

1000 —8 —1.00
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Binary Fraction Integer
0100 0.500 4
x 0100 x 0.500 X 4
0000 0.250 16
0000
0100
0000
0010000 = 0.125 16

1 bit left shift yields

0100000 = 0.250

Most digital signal processors can handle fractional as well as integer
multiplication. Some DSPs have a flag to set depending on if integer or frac-
tional rules apply; other DSPs have separate instructions for the two kinds
of multiplication. Yet other DSPs have special devices and/or instructions
to perform one step shift left.

A virtue of 2’s complement is that when adding a sequence of numbers
whose sum you know is within bounds, all overflows and carries ‘on the
way’ can be ignored. You will still come up with the correct result. This is
very handy, since in most DSP algorithms coefficients can be scaled to guar-
antee that the output should be OK, thus overflows and carries can be ignored.
For example

Fraction Binary Partial sums
.625 0101 0101

+ .750 + 0110 1011

+ .375 + 0011 1110

+ .625 + 0101 (1) 0011

— .875 + 1001 1100

— .625 + 1011 (1) 0111

= .875 = .875

We assume that the adder ‘wraps around’. This will of course not work
if the processor is using saturating arithmetic, that is does not wrap around.
Many DSPs can support both standard (wraparound) arithmetic and satu-
rating arithmetic, by setting flags etc. If we have very large variations in for
instance an input signal and over or underflow conditions cannot be elimi-
nated, using saturating arithmetic we will be able to preserve the sign
information and have a fair chance of recovery. Saturating arithmetic basi-
cally works as a soft limiter (see Chapter 4) and can be very useful in neural
network algorithms.

Multiplication of two binary numbers N bits wide, yields a result being
2N bits wide. This is why accumulators in DSPs are at least 2N bits wide,
to be able to harbour results and accumulated results. At some point though,
one must truncate or round back down to N bit wide numbers again.

Assume that we have an M bit 2°s complement fractional number b,, b_,
b_,, ... b_,.,, having the weights —2°, 27! 272 . 27M*! where the left-
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most bit is the sign bit. If we truncate this word down to a width of B bits,
we simply cut away all bits to the right of bit number B—1, i.e. the trun-
cated word will be (assuming M = B): by, b_,, b_,, ... b_g,,.

In this case, the error caused by the truncation operation will be

0<eg<2 8" (9.3)
The mean error will be
m,=2""% 9.4)

The variance of the error, or in other words the ‘error noise power’ will be

9 —2B-1)

2= 9.5

The other possibility to reduce the word length is rounding. Preferably the
method of ‘convergent rounding’ also called round-to-nearest (even) number
should be used. This method works as follows:

@ ifb gz, b g ...b_4, <1,0,...0 then

truncate as before

(b) ifb 4, b 45y ... b yey > 1,0, ... 0 then

add b_p,, = 1 and truncate as before

) ifb g, b_g ... =1,0,...0and b_gz., =0 then

truncate as before

@) ifb 4, b 5, ...b o =1,0..0and b ., =1 then

add b_,,, = 1 and truncate as before

Most DSPs have some kind of rounding function, but they do not all support
‘convergent rounding’. The error caused by the rounding operation will be

2 B<eg<2 B (9.6)
The mean error in this case will be
m, =0 9.7)

The variance of the error, or in other words the ‘error noise power’ will be
the same as for pure truncation, that is as in equation (9.5). Rounding is
preferred to truncation in most cases. Truncation is easier to implement and
can be performed simply using standard bit masking techniques, if a trun-
cation program instruction is not available.
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9.3.5 Data structures and addressing modes

In most cases, quite simple data structures are used in DSP software. In a
typical case, there is a data vector and a coefficient vector, or two or more
data vectors. In some cases, matrices are used, but since most DSP chips do
not support matrix operations directly, matrices are broken down to row or
column vectors and processed as a set of vectors.

To access vector structures, most DSP chips have a number of pointer
registers. These registers are used for indirect addressing, that is the content
of the register is used as an address to point to a word in the data memory.
Further, the register can be auto-incremented, which means that the contents
of the register is incremented by one, every time the register is used to point
into the data memory. This can be done in two ways. Using preincrement
the register is first incremented and then used as a pointer; if postincrement
is used, the increment and pointing operations take place in the reverse order.
There are of course also the corresponding operations for auto-decrement,
that is decrementing the register by one.

Another addressing mode that is common is indexed addressing. In this
case, the effective address, in other words the address pointed to in the data
memory, is the sum of a base register and the offset, which may be the
contents of an offset register. In this way, the base register can be used to
point to the starting element of a vector or table, and the offset register is
used for the actual addressing. Now the same piece of software can easily
be used to process another table or vector, only the contents of the base
register has to be replaced.

The addressing modes described above can be found in most conventional
general-purpose microprocessors as well. In DSP chips, there are also some
‘specialized’ addressing modes. One such mode is auto-increment or auto-
decrement using an offset other than 1. A pointer register can for instance
be auto-incremented by 5 or some other constant stored in a register.

Quite often, one or more of the data vectors in a DSP program are also
used as a delay line in for instance FIR filters. This means that a vector in
data memory of length M data words is used to store the present value of
our sampled signal x(n) and the M—1 ‘old’ sampled values x(n—1), x(n—2),
. X(n—M=+1):

0000+ M—1 x(n—M+1)

0002 x(n—2)
0001 x(n—1)
0000 x(n)

where we have assumed that the delay line vector starts at address 0000, in
other words the base address is 0000. Now, for every time the sampling
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clock ticks, a new sampled value will arrive, and the entire delay line must
be updated. This can be done in two ways. Either we are using a straight-
forward static list method or a somewhat more complicated dynamical list
method. The static list method is based on moving the contents of all the
memory cells in the vector one step ‘upwards’, except the oldest element at
address 0000+M+1 that will be dropped. The new element will then be
stored at the bottom of the vector in address 0000. This method is easy to
implement and understand. The drawback is however, that for every new
sample, we have to make M—1 ‘extra’ data moves, thus consuming time.

A smarter approach is the dynamical list method. In this case, a circular
buffer and a start-of-list pointer are used. The logical start of the vector
is pointed to by the start-of-list pointer and can be any address in the memory
block, not only address 0000 as above. As soon as a new sample arrives,
we only need to move the start-of-list pointer ‘downwards’ one step. At this
address, the oldest sample can be found, since we are now dealing with a
circular list. The new sample is stored at this position, thus overwriting the
oldest sample. In this way, no shuffling of data is needed like in the static
list method. Only the start-of-list-pointer needs to be decremented. To handle
a circular buffer, pointers need to ‘wrap around’ when reaching the top or
bottom of the memory area allocated for the vector. This calls for modular
addressing, supported by many DSPs. General-purpose processors do not
support this type of addressing, hence extra program instructions are required
to test the pointers and ‘wrap around’ when needed. If the size of the buffer
is 2%, where k is a positive integer, modular addressing can be achieved by
simply ANDing the address pointer with an appropriate bit mask. Many DSP
chip have specialized addressing hardware, supporting almost any buffer
length, for example 17 or 38 etc.

Dealing with for instance some FFT algorithms, using ‘butterfly’ type
computing strategies, bit reverse addressing, supported by many DSPs is
handy. The DSP (as most other digital computers) performs the calculations
sequentially. Equations (5.7) and (5.8) in Chapter 5 describe a 4 point FFT.
It is very simple, but can serve as an example to demonstrate the ideas
behind bit reverse addressing. Looking at equation (5.7), describing the
computational ‘butterflies’, we find that we need to access the input elements
x(0), x(1) . .. etc. The smartest way (in terms of calculation order) to access
these elements is not in the ‘normal’ sequence 0, 1, 2, 3 but in the bit

Table 9.2 ‘Normal’ order addressing versus bit reverse order addressing

Normal order Bit reverse order
0 000 000 0
1 001 100 4
2 010 010 2
3 011 110 6
4 100 001 1
5 101 101 5
6 110 011 3
7 111 111 7
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9.4 Implementation
examples

reversed order 0, 2, 1, 3. If the transform has more than four input values,
the gain in calculation time will of course be greater. So bit reverse addressing
is a way of calculating the pointer values so that an FFT algorithm accesses
the elements of the input vector in the ‘smartest’ order. The bit reverse
addressing is obtained by ‘mirroring’ the address word, so the most signif-
icant bit becomes the least significant bit and vice versa. Table 9.2 shows a
3 bit normal and bit reverse addressing scheme.

9.4.1 FIR filter

We will use a simple third-order low-pass FIR filter (see Chapter 1) as an
example. The filter specification is 0 dB attenuation in the passband 0 < ¢
< 0.2 and an attenuation of at least 20 dB in the stop band 0.4 < g < 0.5,
where the frequencies are given in ‘fnosq’, that is relative frequency (see
Chapter 1, equation (1.8)). Using a standard filter design program packet,
the resulting filter has the transfer function.

H(z)=by+ bz " + bz 2 + bz ? (9.8)
where the filter coefficients are

b, = 1.000000

b, = 0.2763932

b, = 0.6381966

by = b, = 0.2763932

The corresponding difference equation, that is the filter algorithm can easily
be obtained from the transfer function (9.8)

y(n)=byx(n) + byx(n—1) + byx(n—2) + by(n—3) 9.9)

The first thing to investigate is the risk of overflow during some steps in the
calculation. Fortunately, this task is very simple for FIR filters. We can easily
calculate the maximum gain of the filter. Since it is a straightforward low-
pass filter, maximum gain will be found at frequency g = 0, or in other
words ‘DC’.

If we assume a constant DC input, that is x(n) = x(n—1) = x(n—2) = 1,
the gain of the filter is simply the sum of the coefficients

3
2.0
i=0

1.000000+0.2763932+0.6381966+0.2763932 =2.2 (9.10)

G(0)

If we for instance assume that the maximum word length of the input signal
is 24 bits, and the coefficients are 24 bits, this yields 48 bits out from the
multiplier. Further, if we assume that the accumulators are 56 bits wide, we
have a margin of 8 bits corresponding to a multiplication (that is gain) of
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Y address space X address space program address space

Y:FFFF | output y(n)
Y:FFFE input x(n) P:0042

P:0041

P:0040
Y:0003 b, X:0003 x(n-3)
Y:0002 b, X:0002 | x(n-2)
Y:0001 b, X:0001 x(n-1)

X:0000 x(n)

Figure 9.4 Memory usage for the static list, third-order FIR filter example

256 times. Since the maximum gain of the filter is roughly 2, we will never
use more than 49 bits out of the 56 bits in the accumulators, hence no over-
flow problem will occur. If we had suspected overflow problems, we could
have scaled all the filter coefficients by a proper scaling constant, to prevent
overflow in the accumulator.

Now, our first algorithm will use a simple straightforward static list
approach. The memory usage can be seen in Figure 9.4. There are three
address spaces, the Y data memory address space, the X data memory address
space and the P program memory address space. The corresponding letters
are put in front of the hexadecimal addresses for clarity. We are using memory
mapped /O and the ports are mapped into the Y address space, where also
the coefficient memory is located. The input port has address Y:FFFE and
the output port Y:FFFF. The filter coefficients b,, b,, b, are stored at loca-
tions Y:0001, Y:0002 and Y:0003 respectively. Since b, = 1, it has been
omitted.

The delay line is mapped in the X data memory according to Figure 9.4
and the program code is of course stored in the program memory, mapped
into P address space. The program starts at address P:0040. The algorithm
can be described by the following pseudo code.

init: reset pointers
load filter coefficients into Y memory
clear delay line in X memory
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P:0040
P:0041
P:0042

P:0043
P:0045
P:0046
P:0048
P:0049
P:004B

P:004C
P:004D
P:004E
P:004F

; initializing
; init pointers
init: MOVE
MOVE
MOVE

loop: do

get input data into delay line
restart pointers
clear accumulator A
for 3 loops
{
get x value from delay line
point to next x value
get coefficient
point to next coefficient
multiply and accumulate in A
move X element one step in delay line
}
add x(n) since this coefficient is 1
round to 24 bits
send to output
} forever

As an example, assume we make an assembly program for the Motorola DSP
56001 digital signal processor chip (‘DSP56000/56001 Digital Signal
Processor User’s Manual’, 1989). The RO register will be used as pointer to X
memory. The R1 register will point to Y memory and the offset register NO will
hold the fixed 1 step offset used when moving elements in the delay line one
step. The first part of the algorithm is only initializations and will only be run
once, after a reset. The actual filtering action takes place in the filter loop. This
loop would normally be timed in some way, to be synchronized to the sampling
rate. This detail has been omitted in this example, and we are running the loop
at maximum speed. The actual assembly code for the program is shown below.

; load filter coefficients into Y memory

MOVE
MOVE
MOVE
MOVE
MOVE
MOVE

; clear delay line vector in X memory

MOVE
MOVE
MOVE
MOVE

#$3,R0 ; pointer for X data

#$1,R1 ; pointer for Y data

#$1,N0 ; offset, X pointer
#.2763932,X1 ;7 load b,

X1,Y:(R1)+ ; to Y(1l), increment pointer
#.6381966,X1 ; load b,

X1,Y:(R1)+ ; to Y(2), increment pointer
#.2763932,X1 ; load b,

X1,Y:(R1) ; to Y(3)

#30,X1

X1,X:(RO)- ; X(n-3)=0, decrement pointer
X1,X:(RO)- ; X(n-2)=0, decrement pointer
X1,X:(RO) ; X(n-1)=0
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P:0050
P:0052

P:0053
P:0054

P:0055

P:0056
P:0058
P:0059
P:005A

P:005B
P:005C

P:005D

P:005E

P:005F
P:0060

; the actual filter loop

; get input data

floop: MOVE Y:$FFFE, X1 ; from memory mapped port
MOVE X1,X:$0000 ; to X(n)

; restart pointers
MOVE #$3,R0 ; pointer to X mem, delay line
MOVE #$3,R1 ; pointer to Y mem, coefficients

; clear accumulator
CLR A

; the convolution process

DO #$3,$005D ; hw loop 3 times, exit to $005D
MOVE X:(RO)-,X0 ; get data, decrement pointer
MOVE Y:(R1)-,Y0 ; get coeff, decrement pointer
MAC X0,Y0,A ; the MAC operation

; the data shuffling in the delay line
MOVE X:(RO),X0 ; get element
MOVE X0,X: (RO+NO) ; move one step ‘upwards’

END ; end of loop
ADD X0,A ; add x(n) since b, =1

; round result back to 24 bits and send to output
RND A ; convergent rounding
MOVE Al,Y:SFFFF ; result in Al to output
JMP $0050 ; get next sample

The first part of this software is the initialization of pointers and memory,
which requires 16 words of program memory. The # character denotes an
immediate constant and the expression MOVE X1,Y:(R1)+ means copy data
from register X1 to Y memory at the address pointed to by R1 and postin-
crement of R1. This initialization part requires 36 machine cycles to execute.
Using a 20 MHz clock, the cycle time is 100 ns, hence the initialization
takes 3.6 ps. Maybe it is possible to find a smarter way of writing this piece
of software, but it is not worth the effort since this code is only executed
once, following a reset. It is better to concentrate on making the actual filter
loop faster if possible, because the execution time of this loop is the upper
limit sampling rate of the system.

In the filter loop, input data is first retrieved from the input port and sent
to x(n) in the delay line in X memory. The pointers for X memory (delay
line) and Y memory (coefficients) are restarted to point to the oldest element
x(n-3) and the coefficient b, respectively. Since we will use accumulator A
in the summation process, the accumulator is cleared.

The inner loop performing the convolution in a sequential fashion is imple-
mented as a hardware loop, meaning that we use the internal hardware loop
counter on the chip. This loop starts with po and ends with Exp. After po
follows the number of repetitions and the exit address, where execution
continues after the loop is finished. Inside the inner loop, first an x value
from the delay line is fetched as well as the corresponding filter coefficient.
The heart of the algorithm is the MAC operation, that is multiplying the x
value (in register X0) by the filter coefficient (in register Y0) and adding
this product to the contents of accumulator A.



Digital signal processors 209

Table 9.3 The sequential calculation of the difference equation (every line is an iteration of the inner loop)

X:0000  X:0001 X:0002 X:0003 A

x(n) x(n—1) x(n—2) x(n—3) 0

x(n) x(n—1) x(n—2) x(n—2) x(n—3)b,

x(n) x(n—1) x(n—1) x(n—2) x(n—3)b; + x(n—2)b,

x(n) x(n) x(n—1) x(n—2) x(n—3)b; + x(n—2)b, + x(n—1)b,

x(n) x(n) x(n—1) x(n—2) x(n—3)b; + x(n—2)b, + x(n—1)b, + x(n)b,

After the MAC operation follows the data shuffling needed to update the
delay line. The present x value is moved ‘upwards’ in the list, thus ‘ageing’
one sample time. After the inner loop has been processed three times, the
calculation of the difference function (9.9) is almost finished. Only the term
x(n)b, is missing. Since b, = 1, we simply add x(n) to the accumulator A.
The result is then rounded back from 56 bits to 24 bits using convergent
rounding and then finally sent to the memory-mapped output parallel port.
The filter loop is now ready to fetch the next input sample. The sequential
calculation of function (9.9) is shown in Table 9.3.

The filter loop code requires 18 words of program memory and executes
in 96 machine cycles, corresponding to 9.6 ps at 20 MHz clock speed. This
means that the maximum sampling rate using this software is 104 kHz. It
is important to note that we have not used the possibilities of parallel data
moves inherent in the chip. The DSP 56001 can do better, which we will
demonstrate in the next example.

We will now show a more sophisticated way of implementing the same
filter (equation (9.9)) as above, using a dynamic list approach and a modular
programming style. The dynamic list approach implies that we do not need
to shuffle the delay line data around. Instead, we implement the delay line
as a circular buffer, using modulo addressing and with use of a start-of-list
pointer. Thus, by moving the start-of-list pointer one step, the entire delay
line ‘ages’ in a jiffy. The memory usage is shown in Figure 9.5. The main
difference compared to the previous example is that we have added the coef-
ficient b, to the Y memory vector to make the program more general. We
cannot expect b, = 1 in the general case. Further, since we are now using
a delay line in the form of a circular buffer, the position of the x values
having different delays will vary, for example there is no fixed place for
x(n—2) in the buffer. It will change continuously according to the start-of-
list pointer.

Another improvement is a more structured use of program memory. Starting
from address P:0040 there is a block of constants, followed by an area of
sub-routine code from P:0050 and at address P:0070, the main program code
can be found. Hence, this address is also the entry point of the system. The
constant area contains the filter coefficients. In this example we are not using
immediate type program instructions to load coefficients. In many cases, it
is advantageous not to ‘embed’ constants in the code. It is better to collect
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Y address space X address space program address space

Y:FFFF | output y(n)

. P:0070 | main prog
Y:FFFE input x(n)
P:0050 |subroutines
Y:0003 b, X:0003 x() P:0040 | constants
Y:0002 b, X:0002 x() § :
Y:0001 b, X:0001 x()
Y:0000 b, X:0000 x()

Figure 9.5 Memory usage for the dynamic list, third order FIR filter
example

all constants in an easily found block in program memory. This is especially
true if we need to change the constants frequently and/or if the constants
are used in many different places of the program. The algorithm can be
described by the following pseudo code

init: reset pointers
load coefficients into Y memory from program memory
clear delay line in X memory
return

filter: get input data into delay line

clear accumulator A

for 4 loops

{
get x value from delay line
point to next x value
get coefficient
point to next coefficient
multiply and accumulate in A
move X element one step in delay line

}

round to 24 bits

send to output

return
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main: init
do
{
filter
} forever

In the assembly code, register R4 will be used to point to coefficients in
Y memory and RO will point to x values in the delay line vector in X
memory. Since we will now be working with circular buffers, modulo
addressing will be needed. For this reason, the modulo registers M4 and M0
will be loaded with 4. Further, since we always go through the entire delay
line from oldest to newest x value once every sample period, we do not need
an explicit start-of-list pointer. We automatically know where the list starts.

Further, in this example we will use the parallel execution feature, which
makes the entire ‘inner’ loop only one instruction long. For this reason, we
will use the REP (repeat) function instead of the DO END hardware loop.
The assembly program is shown below.

; coefficients

P:0040 DC .9999999 7 by
P:0041 DC .2763932 ;i by
P:0042 DC .6381966 ; b,
P:0043 DC .2763932 ; b,

; initializing

; init pointers and modulo registers
P:0050 init: MOVE #$0043,R1 ; temporary pointer
P:0051 MOVE #$0003,R4 ; pointer for Y memory
P:0052 MOVE #$0000,R0 ; pointer for X memory
P:0053 MOVE #$0003,M0 ; modulo 4, circ addressing X
P:0054 MOVE MO ,M4 ; modulo 4, circ addressing Y

; load coefficients to Y and clear delay line in X
P:0055 MOVE #$0,X0 ; set X0=0
P:0056 DO #$4,3005A ; hw loop 4 times, exit to $005A
P:0058 MOVE P:(R1)-,Y0 ; get coeff from program memory
P:0059 MOVE  XO0,X:(R0O)+ YO,Y:(R4)-

; clear X, increment pointer
; store coeff, decrement pointer
END

P:005A RTS ; return from subroutine

; the filter

P:0060 filter: MOVEP Y:FFFE,X:(RO)- ; get input, store in delay line
; clear accumulator get x value to X0 and coeff to YO

P:0061 CLR A X:(R0)-,X0 Y:(R4)-,Y0

P:0062 REP #$3 ; repeat next instr 3 times

P:0063 MAC X0,Y0,A X:(R0O)-,X0 Y:(R4)-,Y0

; MAC operation
; get next x value
; get next coeff
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e}

:0046

:0047
:0048

:0070
:0071
:0072

MACR X0,Y0,A ; MAC operation and rounding
; send to output
MOVEP Al,Y:S$FFFF ; to output

RTS

; main program

main:

JSR
JSR
JMP

; return from subroutine

$0050 ; run init
$0060 ; run filter
$0071 ; forever

This software makes use of the possibilities of parallel execution; up to
three instructions can be executed simultaneously under certain circum-
stances. These instructions are written on the same line. For instance MOVE
X0,X:(RO)+ YO0,Y:(R4)- means copy contents of X0 to X memory address
pointed to by RO and postincrement R0 and copy contents of YO to Y memory
address pointed to by R4 and postdecrement R4.

Another example is CLR A X:(R0)-,X0 Y:(R4)-,Y0 which means clear
accumulator A and copy contents of X memory address pointed to by RO
to X0 and postdecrement RO and copy contents of Y memory address pointed
to by R4 to YO and postdecrement R4.

Yet another (the best one of all) mac X0,Y0,A X:(RO)-,X0 Y:(R4)-,YO
which means multiply contents of X0 (x value) by contents of YO (coeffi-
cient) and add to contents of accumulator A, store in A and copy contents
of X memory address pointed to by RO to X0 and postdecrement RO and
copy contents of Y memory address pointed to by R4 to YO and post-
decrement R4.

Making a table of the same type as Table 9.3 for this example is left as
an exercise for the reader. The program occupies a total of 25 words or
program memory of which 4 words are constants, 11 words are used by the
init routine, 7 by the filter routine and 3 by the main program. The init func-
tion executes in 62 machine cycles, that is 6.2 ps and the filter in 64 cycles,
or in other words 6.4 ps. This means that the maximum sampling rate is
156 kHz.

9.4.2 IIR filter

In this example a second-order low-pass IIR filter (see Chapter 1) will be used.
The filter specification is: 0 dB attenuation in the pass band 0 < ¢ < 0.1 and
an attenuation of at least 30 dB in the stop band 0.4 < g < 0.5, where the fre-
quencies are given in ‘fnosq’, that is relative frequency (see Chapter 1, equa-
tion (1.8)). Using a standard filter design program packet, the resulting filter
has the transfer function

by + bz '+ b,z ?
o DO TR (.11)

H(z)=

1 —az  —ayz

where the filter coefficients are
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b, = 1.000000
b, = 1.79941

b, = 1.000000
a, = —0.299624
a, = 0.195921

This is a ‘combined’ IIR and FIR filter (see Chapter 1, Figure 1.7) and the
corresponding difference equation is

y(n)=byx(n) + byx(n—1) + bx(n—2) + a,y(n—1) + a,y(n—2) (9.12)

A standard method is to divide this expression into two equations repre-
senting the FIR and IIR portions to simplify the implementation. Starting
out from equation (9.11) we can separate the IIR and FIR parts

-1 -2
HE) = = g~ FEo@= T
_ 1 -1 -2
=1z P p—— (by + biz7" + byz™?) (9.13)
The IIR part F(z) has the difference equation
e(n)=x(n) + aje(n—1) + a,e(n—2) (9.14)
and the FIR part G(z)
y(n)=bye(n) + bie(n—1) + b,e(n—2) (9.15)

Hence, we do not put x(n), x(n—1), ... in the delay line, it is smarter to put the
intermediate signal e(n) into the delay line, that is e(n), e(n—1), ..., where e(n)
is the output from the IIR part of the filter (see also Figure 1.7, Chapter 1).

Since we are now dealing with an IIR filter having poles in the transfer
function, we must make sure the filter is stable, in other words the poles are
within the unit circle in the complex z-plane. There are many standard
methods to check stability, but even if the filter is stable, it may have an
oscillatory impulse response and some resonant peak with a very high gain.
Two problems arise, firstly, the high gain may amplify weak roundoff and
truncation noise in the filter to considerable output levels (‘phantom’ output)
and secondly, overflow problems are likely to appear. In many cases it is
harder to determine good scaling factors for IIR filters than for FIR filters,
where the magnitude of the signals in the filter are easier to calculate. For
these reasons, IIR structures often have low orders typically 2 or 3. If a
higher-order IIR filter is needed, a number of cascaded second order filters
are used. The same program code can be used (sub-routine) for all the
cascaded filters, only separate delay lines and coefficient vectors are needed.
Note, if considering the roundoff noise, reordering the cascaded IIR filters
may change the noise level.
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Simulating the algorithm is probably the best way to pinpoint noise and
overflow problems in IIR type filters. Running such a simulation of equa-
tions (9.14) and (9.15) the maximum expected gain is found to be about 3.5
times. The filter is well damped, and no significant ‘ringing’ can be seen.
Hence, no problems are expected inside the filter itself. There are however
external sub-systems to consider as well. If our input signals originate from
an A/D converter and the output is connected to a D/A converter, this ‘extra’
gain may cause problems. To avoid overflow in the D/A converter, we decide
to reduce the maximum gain of the filter by a factor of 2. This is done by
scaling the filter coefficients b, b,, b, of the FIR part with a scaling factor
0.5. The scaled filter coefficients are

0.5b, = 0.500000
0.56, = 0.89970
0.5b, = 0.500000
a, = —0.299624
a, = 0.195021

In this last example, a non-standard ‘smart’ type algorithm using a circular
buffer approach for the coefficients and two registers X0 and X1 for the
delay line will be described. This algorithm is not very ‘neat’ from the
programming point of view, but it is quick and compact. The memory usage
can be seen in Figure 9.6. The two accumulators A and B are used to store
intermediate results. The assembly code for the algorithm is shown below.

Y address space registers program address space
Y:FFFF | output y(n)
Y:FFFE input x(n)
Y:0004 0.5b, P:0051 filter
Y:0003 0.5b, P:0040 init
Y:0002 0.5b,
Y:0001 a, X1 e(n-2)
Y:0000 a, X0 e(n-1)

Figure 9.6 Memory usage for the second order IIR filter example
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P:0040
P:0041

P:0042
P:0044
P:0045
P:0047
P:0048
P:004A
P:004B
P:004D
P:004E

P:004F
P:0050

P:0051
P:0052

P:0053
P:0054

P:0055

P:0056

P:0057

P:0058

P:0059

P:0060

P:0061
P:0062

; initializing
; init pointer for coefficients
init: MOVE #$0,R4 ; pointer for Y memory
MOVE #$4 ,M4 ; modulo 5 addressing in Y mem
; load coefficients into Y memory
MOVE #-.299624,X0 ; load a;
MOVE X0,Y: (R4)+
MOVE #.195021,X0 ; load a,
MOVE X0,Y: (R4)+
MOVE #.500000,X0 ; load 0.5b,
MOVE X0,Y: (R4)+
MOVE #.29970,X1 ; load 0.5b,
MOVE X1,Y: (R4)+
MOVE X0,Y: (R4)+ ; load 0.5b, = 0.5b,
; clear delay line
MOVE #$0,X0 ; e(n-1) =0
MOVE X0,X1 ; e(n-2) = 0
; the filter
filter: CLR A ; clear accumulator A
CLR B Y:(R4)+,Y0 ; clear accumulator B
; get a; to register YO0
MOVEP Y:$SFFFE,Al ; get input to accumulator A
MAC X0,Y0,A Y:(R4)+,Y0 ; x(n)+ae(n-1) to A
; get a, to register YO
MACR X1,Y0,A Y:(R4)+,Y0 ; xX(n)+a,e(n-1)+ a,e(n-2) to A
; round to 24 bits
; get 0.5b, to register YO
MOVE Al,Y1 ; e(n) to register Y1
MAC Y0,Y1,B Y:(R4)+,Y0 ; 0.5be(n) to B
; get 0.5b;, to register YO
MAC X0,Y0,B Y:(R4)+,Y0 ; 0.5b,e(n)+0.5be(n-1) to B
; get 0.5b, to register YO
MACR X1,Y0,B X0,X1 ;7 0.5be(n)+0.5be(n-1)+
; +0.5b,e(n-2)to B
; e(n-1) to X1 (time passes by)
MOVE Al,X0 ; e(n) to X0
MOVEP Bl,Y:S$FFFF ; output
JMP $0051 ; next sample

9.5 Where to?

The program occupies 29 words of program memory, of which 17 words
are for the initialization procedure and 12 for the filter. Initialization executes
in 3.6 pus and the filtering function in 6.2 ps assuming 20 MHz clock speed.
Hence 160 kHz sampling rate is maximum.

The above simplified program code segments are only intended as examples
and the DSP chip used is one out of many. It is not very risky to predict
that future DSP chips will be faster, more complex and cheaper. In some
respects, there will probably be a merging of conventional microprocessor
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chip technology, DSPs and gate-array structures. There are for instance
general-purpose microprocessor chips around today which have MAC instruc-
tions and other typical DSP features. New, improved simulators, compilers
and other development tools will also be available making life easier for the
designer.

DSP chips are used in many embedded systems today in large-volume
consumer products like cellular mobile telephones. As the processing speed
of the DSPs increases, new applications will develop continuously. One inter-
esting area is radio technology. An average cellular mobile telephone today
contains a number of DSP chips. Classical radio electronics circuitry occu-
pies only a small fraction of the total printed circuit board area. As DSP
chips get faster, more and more of the radio electronics will disappear and
typical radio functions like filtering, mixing, oscillating, modulation and
demodulation will be implemented as DSP software rather than hardware.
This is true for radios in general, not only cellular mobile telephones. For
instance radio systems based on WCDMA (wideband code division multiple
access) and UWB (ultra wideband) will depend heavily on DSP technology.
There will be an era of software defined radio (SDR).

DSPs will improve but still the programming of DSPs will be more and
more complex and demanding. Not only good programming skills are
required, but also considerable knowledge in signal theory, numerical
methods, algorithm design and mathematics.
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Glossary

A brief overview of some common abbreviations and buzz-words.

A/D Analog to digital

ADC Analog to digital converter

ADM Adaptive delta modulation

ADPCM Adaptive differential pulse code modulation

AGC Automatic gain control

A-law Signal companding standard used in Europe (see u-law)

ALU Arithmetic logic unit

AM Amplitude modulation

AND Boolean function

ANN Artificial neural network

ANS Artificial neural system

APC Adaptive predictive coding

AR Auto-regressive

ARMA Auto-regressive moving average

ASCII American standard code for information interchange

ASIC Application specific integrated circuit

ASK Amplitude shift keying

AU Address unit

AWGN Additive white Gaussian noise

BCD Binary coded decimal

BCH Bose, Chaudhuri, Hocquenghem (class of error-correcting
codes)

BIT Binary digit

BSC Binary symmetric channel

BU Bus unit

C Computer programming language (see C++)

C++ Computer programming language (extension of C)

CAM Content addressable memory

CCITT Comité Consultatif International Télégraphique et Téléphonique
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CD
CD-ROM
CELP
CISC
CM
CMOS
CODEC
CoA

CoG
CoM
Compander
CRC
CVSDh
D/A

DAB
DAC

DC

DCT
DFT

DM
DMA
DPCM
DPCM-AQB

DPCM-AQF

DSP
DSP
DTMF
DVB
DVD
ECG
EEG
ENIAC
EPROM
EU

Compact disc

Compact disc read only memory

Code excited linear predicition

Complex instruction set computer
Connection machine

Complementary metal oxide semi-conductor
Coder—decoder

Centre of area

Centre of gravity

Centre of maximum

Compressor—expander

Cyclic redundancy check

Continuously variable slope delta modulator
Digital to analog

Digital audio broadcasting

Digital to analog converter

Direct current (sometimes interpreted as a constant bias)
Discrete cosine transform

Discrete Fourier transform

Delta modulation

Direct memory access

Differential pulse code modulation

Differential pulse code modulation adaptive quantization —
backwards

Differential pulse code modulation adaptive quantization —
forward

Digital signal processing

Digital signal processor

Dual-tone multi-frequency

Digital video broadcasting

Digital video disc

Electrocardiograph

Electroencephalogram

Electronic numerical integrator and computer
Erasable programmable read only memory

Execution unit
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EXCEL™
FFT
FIFO

FIR

FM
FORTRAN
FOH
FPGA
FPU

FSK

GPS

GSM

HDTV
IEEE
IZcTM

IIR
/0
1/Q
ISDN
ISI
JAVA
JPEG
LDM
LED
LIFO
LMS
LPC
LSB
LTI
LUT
LZ
MA
MAC
MathCad™

Spreadsheet type calculation software by Microsoft
Fast Fourier transform

First in first out (a queue)

Finite impulse response

Frequency modulation

Formula translation (old computer programming language)
First order hold

Field programmable gate array

Floating point unit

Frequency shift keying

Global positioning system

Groupe speciale mobile or global system for mobile
communication

High definition television
The Institute of Electrical and Electronics Engineers

(IIC) Inter IC (simple bidirectional 2-wire bus standard
developed by Philips)

Infinite impulse response

Input/output

In phase/quadrature phase

Integrated services digital network

Intersymbol interference

Computer programming language (subset of C++)
Joint photographics expert group

Linear delta modulation

Light emitting diode

Last in first out (a stack)

Least mean square

Linear predictive coding

Least significant bit

Linear time invariant (commonly also implies causal)
Lookup table

Lempel-Ziv

Moving average

Multiply add accumulate

Calculation sofiware by MathSoft
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Mathematica™  Calculation software by Wolfram Research

MATLAB™ Calculation software by MathWorks
MFLOPS Million floating point operations per second
MHC Modified Huffman code

MIMD Multiple instruction multiple data
MIMO Multi-input multi-output

MIPS Million instructions per second
MISO Multi-input single-output

MIT Massachusetts Institute of Technology
ML Maximum likelihood

MLPC Multipulse excited linear predictive coding
MoM Mean of maximum

MPEG Moving pictures expert group

MRC Modified Read code

MSB Most significant bit

MSE Mean square error

r-law Signal companding standard used in USA (see A-law)
NOP No operation

NOT Boolean function

OCR Optical character reading

OR Boolean function

OSR Oversampling ratio

Pascal Computer programming language
PAM Pulse amplitude modulation

PC Personal computer

PC Program counter

PCM Pulse code modulation

PDM Pulse density modulation

PDS Parallel distributed system

PM Phase modulation

PNM Pulse number modulation

PPM Pulse position modulation

ppm Parts per million

PROM Programmable read only memory

PSK Phase shift keying
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PWM
QAM
QPSK
RELP
RISC
RLS
RMS
ROM
RS
SAR
SBC
SC
SDR
S&H
S/H
SIMD
SNR
SP

SPI
SSB
UWB
VHDL
VLSI
VSELP
WCDMA
XOR
ZOH

Pulse width modulation
Quadrature amplitude modulation
Quadrature phase shift keying
Residual excited linear prediction
Reduced instruction set computer
Recursive least square

Root mean square

Read only memory
Reed—Solomon (code)

Succesive approximation register
Sub-band coding

Switched capacitor

Software defined radio

Sample and Hold

Sample and Hold

Single instruction multiple data
Signal-to-noise ratio

Stack pointer

Serial peripheral interface

Single sideband

Ultra wideband

Very high speed integrated circuit hardware description language

Very large scale integration

Vector sum excited linear prediction

Wideband code division multiple access

Exclusive OR (Boolean function)

Zero-order hold






Index

Absolute accuracy error 27, 37

Activation function 77

ADALINE 75

Adaptation algorithm 49, 55-59

Adaptive associative networks 74

Adaptive beamforming 64—68

Adaptive delta modulation (ADM) 146

Adaptive differential pulse code
modulation (ADPCM) 147-148

Adaptive linear combiner 50-51

Adaptive interference cancelling 59-60

Adaptive modelling 111

Adaptive predictive coding (APC)
148-149

Additive white Gaussian noise
(AWGN) 164-165

Addressing modes 203-205

Address unit (AU) 192

A-law 25-26

Aliasing distortion 6

All-pass filter 118

Alphabet 136

Amplitude modulation (AM) 115

Amplitude shift keying (ASK) 115

Analog to digital converter (ADC)
36-47

Analytic signal 118

Antenna array 64

Anti-aliasing 6

Anti-aliasing filter 38

Aperture error 35

Application specific integrated circuit
(ASIC) 190

Arithmetic and logical instructions 198

Arithmetic logic unit (ALU) 192

Artificial neural network (ANN)
73-90

Artificial neural system (ANS) 74

Assembly language 198

Asynchronous events 193

Auto-associator 85

Auto-correlation function 106—107

Auto-correlation matrix 53

Auto-covariance 106

Auto-decrement 203

Auto-increment 203

Automatic gain control (AGC) 48

Auto regressive model (AR) 109-111,
151

Auto regressive moving average model
(ARMA) 109-110

Average mutual information 161

Back-propagation 76, 84—85

Backward prediction error 1819

Bandpass signal 116

Bartlett periodogram 108

Bartlett window 100, 105

Baseband signal 115

Base register 203

Basis functions 112

Batch system 186

Bayes’ theorem 139

Beamforming 65

Bilinear function 10

Binary coded decimal (BCD) 23

Binary digit (BIT) 137

Binary fractions 192, 200-201

Binary point 200

Binary symmetric channel (BSC)
161-163

Bit manipulation instructions 198

Bit reverse addressing 195, 204-205

Bitslice 189-190

Bitstream D/A converter 33-35

Blackman window 105

Block code 165

Block data system 186—187

Bode plot 12

Boltzmann machine 76, 86, 89

Boolean filter 71

Bose, Chaudhuri, Hocquenghem (BCH)
code 178

Boxcar hold 7

Bursts 154, 184

Bus unit (BU) 192

C 196-197

C++ 196-197

Cache memory 192

Cancelling poles 16

Cardinal reconstruction formula 7
Carrier 115

Cascaded filters 213
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C cross compiler 198

Centre of area (CoA) 97

Centre of gravity (CoG) 97

Centre of maximum (CoM) 97

Channel capacity 163-165

Channel code 163

Channel coding 160-165

Channel coding theorem 136, 160

Channel filter 61

Channel model 61, 160

Charge redistribution D/A converter
30-31

Check bits 166

Circular buffer 193, 204

Classifier 86

Coefficient memory 194

Codebook 153

CODEC 23

Code excited linear prediction (CELP)
153-154

Coding efficiency 144

Code rate 166

Code speed 166

Code trellis 182—183

Comb filter 47

Compact Disk (CD) 3, 23, 33

Compander 3, 24-25

Complex envelope 116

Complex instruction set computer
(CISC) 193

Complex modulation 115-118

Compressor 24-25

Computational temperature 77, 89

Concatenated coding 178

Conclusions (in Fuzzy logic) 92-93, 96

Conditional entropy 161-162

Conditional mean 126

Conditional probability 139

Conditioning 126

Connectionist’s net 74

Connection machine (CM) 191

Constant neighbourhood 70

Constraint length 179

Content addressable memory (CAM)
74, 85, 90

Continuous signals 4

Continuously variable slope delta
modulator (CVSD) 146

Control 135

Convergent rounding 202

Conversion time 37-38

Convolution 12

Convolution code 165, 178180

Convolution interleaving 185

Correlation matrix 53

Counting A/D converter 41-42
Cross-correlation 53, 106
Cross-covariance 106

Cyclic codes 173-178

Cyclic redundancy check (CRC) 178
Cyclic shift 173

Data compression 136-159

Data memory 194

Data transfer instructions 198

Daubechies wavelet 113

Decimator 39

Decimation filter 47

Decision-feedback equalizer 63

Decision region 79

Decoding table 170, 172

Defuzzification 97-99

Defuzzifier 91

Degree of membership 91-92

Delay line 193, 203

Delta modulator (DM) 46, 144145

Delta rule 75, 83

Dependency 138

Desired response 52

Difference equation 1011

Differential linearity 27, 37

Differential pulse code modulation
(DPCM) 146-147

Differential pulse code modulation
adaptive quantization — backwards
(DPCM-AQB) 147-148

Differential pulse code modulation
adaptive quantization — forward
(DPCM-AQF) 147-148

Digital audio broadcasting (DAB) 3

Digital audio tape (DAT) 3

Digital to analog converter (DAC)
26-35

Digital compact cassette (DCC) 3

Digital image processing 3, 135

Digital signal processing (DSP) 186

Digital signal processor (DSP) 186

Dilation 112

Direct memory access (DMA) 200

Discrete cosine transform (DCT)
155-156

Discrete Fourier transform (DFT) 1,
100-103

Discrete signals 4

Discrete wavelet transform 113-115

Dither 34-35, 45

Dolby™ 3

Downsampler 39
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DSP chip 189

Dual slope converter 33, 44

Dual Tone Multi Frequency (DTMF) 2
Dynamical functional systems 74
Dynamical list 204, 209-210

Dynamic range 8, 23

Edge 70

Effective address 203
Electroencephalogram (EEG) 2
Electrocardiogram (ECG) 2
Entropy 139-140

Equalizers 61-64

Erasure symbol 168
Error-correcting codes 165-185
Error polynomial 174

Error vector 169-171

Estimate 62

Estimation 103

Euclidean matrix norm 124
Execution unit (EU) 192
Expander 25

Fast Fourier transform (FFT) 1, 101-103

Feature maps 76, 86

Feedback networks 86—89

Feedforward networks 76-86

FFT butterfly 102-103, 195, 204

Field programmable gate array (FPGA)
190

Finite impulse response (FIR) 14

FIR filter 1, 14-15, 205-212

First order hold (FOH) 7

First order predictor 145

Fixed-point 23, 187

Flash A/D converter 39—40

Floating-point format 23, 187

Floating-point unit (FPU) 192

Fnosq 6

Forecasting 135

Forward prediction error 18

Fractions 200-201

Frequency domain 12

Frequency modulation (FM) 115

Frequency response 12

Frequency selective fading 63

Frequency shift keying (FSK) 115

Fuzzifier 91

Fuzzy control 90

Fuzzy logic 90-99

Fuzzy rules 92-93

Gain error 26, 37
Gain factor 121

Generalized perceptron learning rule
84-85

Generator (convolution code) 179-180

Generator matrix 169-171

Generator polynomial 173

Global positioning system (GPS) 2

Global system for mobile
communication (GSM) 2

Granularity 145

Gray code 23

Groupe Speciale Mobile (GSM) 2

Haar wavelet 112

Hamming distance 168
Hamming window 100, 105
Hann window 105

Hanning window 100

Hard limiter 77

Hardware stack 195

Harmony theory 76

Harvard architecture 194
Hebb’s rule 75, 83

High definition television (HDTV) 3
Hilbert transform 66, 117-118
Hopfield net 76, 8688
Huffman’s algorithm 141-143

12C™ bus (Inter IC) 193

Identifiers 86

Idling loop 199

IR filter 1, 15-17, 212-215

Image coding 154157

Implied fuzzy set 92-93, 96

Impulse response 12

Impulsive type noise 69

Indexed addressing 203

Indirect addressing 203

Inference 92-93

Inference engine 91

Infinite impulse response (IIR) 15

Information 136

Information source 141

Information theory 136-140

Innovation 121, 129-130

In phase 116

In phase/Quadrature phase modulator
I/Q) 116

Input/Output (1/0) 191-194, 196

Instruction memory 194

Integral linearity error 26, 37

Integrating A/D converter 42—45

Integrating D/A converter 32-33

Interleaving 184-185

Interleaving depth 184—185
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Interpolate 134

Interpolator 33

Intersymbol interference (ISI) 63
Interrupts 193

Interrupt service routine 199
Inverse filter 61

Jet propulsion lab convolution code 179
Joint Photographics Expert Group
(JPEG) 156

Kaiser-Bessel window 100
Kalman filter 1, 119-135
Kalman filter equations 128—129
Kalman filter theory 119

Kaman gain 129-130
Karhunen-Loéve transform 155
Kohonen’s feature maps 86

Layered networks 76, 78—82

Last in first out (LIFO) 195

Lateral feedback 89

Lattice filter 18—-19

Least mean square (LMS) 1, 58-59, 83

Learning machine 75

Lempel-Ziv algorithm (LZ) 157-159

Levinson-Durbin algorithm 111

Linear block codes 168—173

Linear delta modulation (LDM) 145-146

Linearity 9

Linearity error 26, 37

Linear point connector 7

Linear predictive coding (LPC)
151-152

Linear time invariant system (LTI) 10

Linguistic variables 91

Linguistic value 91

Linkabit convolution code 180

Look-Up table (LUT) 195

Loop and program control instructions
198

Loop counter 195

Lossless data compression 141

Lossy data compression 141

Lyapunov function 88

MacLaurin series 10
Maximum likelihood (ML) 166
Mean of maximum (MoM) 97
Mean square error 50
Measurement noise 125
Measurement-update equations
128-129
Median filter 69—73

Meggit decoders 177-178

Membership functions 91-92

Message 136

Meyer wavelet 113

Million floating point operations per
second (MFLOPS) 188

Million instructions per second (MIPS)
188

Minimum square error (MSE) 52-55

Minimum variance 126—127

w-law 25-26

Missing codes 37

Model filter 109

Modelling 135

Modified Huffman code (MHC) 154

Modified periodogram 107

Modified Read code (MRC) 155

Modular addressing 204

Modulo arithmetic 195

Modular programming 209-210

Monotonicity 27, 37

Moore-Penrose-inverse 123

Morlet wavelet 113—-115

Morse code 142

Mother wavelet 112

Moving average model (MA) 109

Moving Pictures Expert Group (MPEG)
156-157

Multi-input multi-output (MIMO) 93

Multi-input single-output (MISO) 93,
94, 95

Multi-path propagation 63

Multiple instruction multiple data
(MIMD) 191

Multiply add accumulate instruction
(MAC) 187-188, 195, 208-209

Multiplying D/A converter 27-31

Multipulse excited linear predictive
coding (MLPC) 153

Multi-rate sampled systems 200

Mutual information 138-139, 160-161

Narrowband passband signal 116
Neocognitron 76

Neural network 1, 73
Neuromorphic systems 74

Neuron computers 74

Newton’s method 56-58

Noise shaping feedback loop 33-34
Non-recursive filter 14-15
Non-uniform quantization 24
Nyquist frequency 6

Observation matrix 125
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Off-line system 186 Pulse position modulation (PPM) 21
Offset 203 Pulse width modulation (PWM) 22
Offset binary 23-24

Offset error 26, 36-37 Quadrature components 116
Offset register 203 Quadrature filter 66, 117-118
On-line system 186 Quadrature phase 116
Optimization 90 Quadrature phase shift keying (QPSK)
Overflow 197 117

Oversampling 33, 38 Quantization 7

Oversampling filter 33 Quantization noise 8
Oversampling ratio (OSR) 33 Quantizer 33

Parallel A/D converter 39—40 R-2R ladder 28-30

Parallel distributed system (PDS) 74 Radio technology 216

Parallel execution 212 Rate distortion theorem 136
Parallel mode PCM 20-21 Real time system 186

Parametric spectrum analysis 108—112 Reconstruction 4

Parity bits 166 Reconstruction filter 7, 35-36
Parity polynomial 174 Rectangular window 100, 105
Parity matrix 169-172 Recurrent network 86

Parseval’s relation 104 Recursive filter 15-17

Pattern associator 85 Recursive least square (RLS) 119-123
Pattern classification 85 Reduced instruction set computer
Pattern completion 90 (RISC) 193

Pattern recognition 85 Redundancy 138, 144

Pattern restoration 85 Redundant information 138
Perceptron 75 Reed-Solomon code (RS) 178
Perceptron learning rule 83—-84 Regularity detector 86
Performance function 48, 52-55 Relative frequency 6
Periodogram 104 Repetition code 165-168
Periodogram averaging 107—-108 Residual excited linear prediction
Phantom output 213 (RELP) 152153

Phase modulation (PM) 115 Resolution 8

Phase shift keying (PSK) 115, 117 Resonant peak 213

Pipe-lining 192, 194 Rounding 202

Plant 124 Riccatti equation 129

Poles 13 Root locus 13

Postincrement 203 Root signal 69, 70

Power spectrum 103 Rule data base 91

Prediction 134 Run length code 154

Predictive compression 155

Prefix free code 141-142 Sample and hold (S/H) 35, 38-39
Preincrement 203 Sampling 4-7

Principle of superposition 9 Sampling frequency 4

Process identification 135 Sampling period 4

Process model 124 Sampling rate 4

Process noise 125 Saturation arithmetic 195, 201
Processor 48 Serial peripheral interface (SPI) 193
Program counter (PC) 192 Serial mode PCM 20-21
Pseudoinverse 123124 Settling time 27

Pulse amplitude modulation (PAM) 21 Shannon’s sampling theorem 7
Pulse code modulation (PCM) 20-21 Sigma-delta A/D converter 4547
Pulse density modulation (PDM) 22 Sigmoid (logistic function) 77

Pulse number modulation (PNM) 22 Sign and magnitude 2324
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Signal model 124

Signal points 115

Signal to noise ratio (SNR) 24, 164

Simulated annealing 76, 89

Single instruction multiple data (SIMD)
190-191

Single sideband (SSB) 117-118

Slope overload 145

Smoothing filter 35-36, 135

Soft limiter 77

Software defined radio (SDR) 216

Source coding 140-159

Source coding theorem 136

Spectral analysis 100-114

Spectral density 104

Spectral power density 103

Squashing function 77

Stability (of filters) 16

Stacked filter 71

Stack pointer (SP) 192

Start-of-list pointer 204

State-space model 11, 125

State transition diagram 182

State vector 125

Static list 204, 206

Steepest descent 55-56

Stochastic node functions 89

Stochastic representation of variables
23

Stream data system 186187

Subband coding (SBC) 149-150

Successive approximation A/D
converter 4041

Successive approximation register
(SAR) 40

Supervised training 82

Symbols 136

Synchronous programming 193

Syndrome polynomial 174—175

Syndrome vector 169—172

Systematic form 166

Tail (convolution code) 179
Tapped delay line filter 14—-15
Threshold decomposition 70-71
Timed loop 199

Time-update equations 128129
Tracking type A/D converter 41
Training set 82

Training signal 52

Transcoder 148

Transfer function 9, 13, 205, 212-213
Transform compression 155

Transition matrix 125
Transition probability 161
Translation 112
Transversal filter 1415
Triangular window 105
Truncation 197, 202
Truncator 33-34

Twiddle factor 100-103

2’s complement 23-24, 200

Ultra Wideband (UWB) 216
Uniform quantization 24
Unsupervised training 82

Variable length code 141

Variance 106

Vector processor 191

Vector sum excited linear prediction
(VSELP) 154

Very high speed integrated circuit
hardware description language
(VHDL) 190

Viterbi decoding 180—184

Vocoder 150-151

Voice 113

von Neumann architecture 191-192

Walsh-Hadamard transform 155

Waveform coding 149

Wavelet analysis 112—-115

Wavelets 112—-113

Wavelet theory 112

Weighted least-square 121

Welch estimate 108

Welch’s method 107-108

Wideband code division multiple access
(WCDMA) 216

Wide-sense stationary 106

Widrow-Hoff algorithm 75, 83

Wiener-Hopf equation 54

Wiener-Khintchine theorem 107

Windowing sequence 100, 105

Wordslice 189-190

Wraparound arithmetic 195

Yule-Walker equations 111

Zero forcing filter 61
Zeropadding 104

Zero order hold (ZOH) 7, 35
Zeros 13

z-transform 12-13



