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Preface

Digital signal processing (DSP) techniques, like Radon transformation, Projection
techniques, Fourier transformation in polar form, Hankel transformation, etc., are
used in Medical imaging techniques like Computed Tomography (CT) and
Magnetic Resonance Imaging (MRI) during the process of imaging. These are not
usually covered in the regular DSP and Image processing books. This book is
written with the intention to focus the DSP aspects used during the process of
imaging in CT and MRI. Also, DSP aspects used in the post imaging techniques
such as Image enhancement, Image compression and pattern recognition are also
discussed in this book. The Matlab illustrations are given for better understanding.
This book is suitable for beginners who are doing research in Medical imaging
processing.
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Chapter 1
Radon Transformation

1.1 Introduction to Computed Tomography (CT)

The physical setup to obtain the CT of the particular slice of the test body involves
passing the X-ray to that particular slice and detecting the attenuated signal at the
other side. This value is conceptually proportional to the integral value of sliced image
along the X-ray paths. The ray-path directions with respect to sliced image describes
the type of projection used in that CT. There are two major types of projection
techniques namely Parallel beam projection and Fan-beam projection used in CT.
The process of reconstructing the image from the projected data involves digital
signal processing, which are described below.

1.2 Parallel Beam Projection

Let us consider an example image (refer Fig. 1.1) as the sliced image of the test
body. The parallel beam projection involves transmitting X-ray signals one after and
another, parallel to each other and the corresponding attenuated signals are captured
using the detector kept exactly on the other sides of the ray (refer Fig. 1.2). This is
equivalent to obtaining the line integration of the image in the direction of the parallel
beam. This is the radon transformation with an angle 0◦. Now the image is rotated
in the clock-wise direction with an angle θ◦ and the line integration is computed
as mentioned above. This is the radon transformation with angle θ◦. (In practice,
this is obtained by shifting the positions of the source and the detector such that
the imaginary line joining the source and the detector is rotated in the anticlockwise
direction by an angle θ◦). This is repeated for the angle θ◦ ranging from 0 to 360◦.
This completes the forward radon transformation. The process of estimating the
original image from the forward radon transformation data is called as inverse radon
transformation, which is described below.

E. S. Gopi, Digital Signal Processing for Medical Imaging Using Matlab, 1
DOI: 10.1007/978-1-4614-3140-4_1, © Springer Science+Business Media New York 2013



2 1 Radon Transformation

Fig. 1.1 Original image (A) of size 511 × 511 subjected to parallel and fan-beam radon
transformation

Fig. 1.2 Parallel beam projection geometry

Let f (x, y) be the image in the rectangular co-ordinate system, where x, y ranges
from −∞ to ∞. Let the centre of the image be at the position (0, 0). Let the set
of parallel lines titled with an angle θ anticlockwise direction is represented as
x cos θ + y sin θ = l. Note that for different values of l, we get different lines that are
parallel to each other. so radon transformation with an angle θ can be represented as
follows.
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R(l, θ) =
∞∫

−∞

∞∫

−∞
f (x, y)δ(x cos θ + y sin θ − l)dxdy (1.1)

For the fixed θ, R(l, θ) = R(l). Taking fourier transformation of R(l), we get
the following.

G(U ) =
∞∫

−∞
R(l) exp− j2πUldl (1.2)

⇒ G(U ) =
∞∫

−∞

∞∫

−∞

∞∫

−∞
f (x, y)δ(x cos θ + y sin θ − l)dxdy exp− j2πUl dl (1.3)

⇒ G(U ) =
∞∫

−∞

∞∫

−∞
f (x, y) exp− j2π(x cos θ+y sin θ)U dxdy (1.4)

Let the 2D-Fourier transformation of the image matrix f (x, y) be represented as
F(U ′, V ′). It is noted from the (1.4) that G(U ) = F(U ′, V ′), when U ′ = U cos θ

and V ′ = U sin θ . If the values are collected from the 2D-Fourier transformation
F(U ′, V ′) of f(x,y), along the line U ′ cos(θ) + V ′ sin(θ) = U ((i.e) for various U ),
we get G(U ). This is called projection-slice theorem.

f (x, y) is obtained from the F(U ′, V ′) using inverse 2D-Fourier transformation
as mentioned below.

f (x, y) =
∞∫

−∞

∞∫

−∞
F(U ′, V ′) exp j2π(xU ′+yV ′) dU ′dV ′ (1.5)

Substituting U ′ = U cos θ and V ′ = U sin θ in (1.5), we get the following.
F(U cos θ, V sin θ) = G(U, θ), which is the Fourier transformation of g(l, θ) for the
constant θ (refer (1.2)). Changing the variables from (x, y) to (U, θ), (1.5) becomes

f (x, y) =
π∫

−π

∞∫

0

G(U, θ) exp j2π(x cos θ+y sin θ)U |J |dUdθ (1.6)

where |J |, is the jacobian of the transformation U = √
U ′2 + V ′2, θ = tan−1 V ′

U ′ .

(i.e) J =
[

∂U
∂U ′ ∂U

∂V ′
∂θ
∂U ′ ∂θ

∂V ′

]
⇒ |J | = |U |



4 1 Radon Transformation

Hence,(1.6) is rewritten as

f (x, y) =
π∫

−π

∞∫

0

G(U, θ) exp j2π(x cos θ+y sin θ)U |U |dUdθ (1.7)

From (1.1), we get R(l, θ) = R(−l, θ + π). This implies

G(−U, θ) = G(U, θ + π) (1.8)

Splitting (1.7) into two terms,
I-term:

0∫

−π

∞∫

−∞
G(U, θ) exp j2π(x cos θ+y sin θ)U |U |dUdθ (1.9)

II-term:
π∫

0

∞∫

0

G(U, θ) exp j2π(x cos θ+y sin θ)U |U |dUdθ (1.10)

Change the variable φ = θ + π and U1 = −U in the first term (1.9), we get

π∫

0

∞∫

0

G(−U1, φ − π) exp j2π(x cos φ+y sin φ)U1 |U1|dU1dφ (1.11)

Using (1.7)–(1.11), we get

f (x, y) = 2

π∫

0

∞∫

0

G(U1, φ − π + π) exp j2π(x cos φ+y sin φ)U1 |U1|dU1dφ.

(1.12)
Replacing the dummy variables U1 and φ with U and θ respectively in (1.12)

and writing the second limit ranging from −∞ to ∞, we get the following.

f (x, y) = 2(1/2)

π∫

0

∞∫

−∞
G(U, θ) exp j2π(x cos θ+y sin θ)U |U |dUdθ (1.13)

Let l = x cos θ + y sin θ . Thus rewriting (1.12) as follows.

f (x, y) =
π∫

0

∞∫

−∞
G(U, θ) exp j2πlU |U |dUdθ (1.14)
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Note that
∫ ∞
−∞ G(U, θ) exp j2πlU |U |dU is the inverse fourier transformation of

the function G(U, θ)|U | for constant θ . This can be achieved as the convolution of
inverse fourier transform (IFT) of G(U, θ) and IFT of |U |. Note that IFT of G(U, θ)

is R(l, θ) for constant θ (refer (1.2)). Final reconstruction formula from parallel beam
radon transformation R(l, θ) is represented as follows.

f (x, y) =
π∫

0

R(l, θ) ∗ I FT (|U |)dθ (1.15)

1.2.1 Discrete Realization of (1.15)

Let Z(θ, x, y) be the value obtained by the convolution R(l, θ) ∗ I FT (|U |) at l =
x cos θ+y sin θ for the particular θ, x and y. Integrating Z(θ, x, y) over the complete
range of θ (0 to π ) with constant x and y gives the value of f at (x, y). Let the discrete
version of the continuous image f be represented as fd . Note that fd is the image
matrix that are having finite range for x and y with origin in the middle of the image.
It is noted that the set of co-ordinates (x, y) whose l is constant for the particular θ

is the straight line x cos(θ) + y sin(θ) = l. Thus to obtain fd , the following steps
are followed.

1. Create the zero matrix r whose size is exactly same as that of fd .
2. Let z(l,θ ) be the value obtained by the convolution R(l, θ) ∗ I FT (|U |) at l for

the particular θ .
3. Fill the matrix r with z(l, θ) in all the co-ordinates (x, y) that satisfies x cos(θ)+

y sin(θ) = l, which is the straight line tilted with an angle θ in the anticlockwise
direction.

4. Repeat step 2 for all l ranging from −lmax to lmax with fixed θ . Let the obtained
matrix be represented as rθ . Note that the lines corresponding to different l for
the particular θ are parallel to each other.

5. Compute rθ for all values of θ with some resolution for θ .
6. Thus fd (discrete version of f ) is obtained as

∑θ=π
θ=0 rθ .

Instead of filling the matrix with the particular value in the co-ordinates corre-
sponding to the particular line tilted with an angle θ anticlockwise, fill the matrix
in the particular column and tilt the matrix by an angle θ anticlockwise. Thus the
matrix fd can also be obtained as follows.

1. Create the zero matrix r .
2. Fill the first row of the matrix r with the vector R(l, θ) ∗ I FT (|U |).
3. All other rows of the matrix r are also filled up with the same vectors.
4. Rotate the matrix r by an angle θ anticlockwise to obtain rθ .
5. Compute rθ for all values of θ with some resolution for θ .
6. Thus f (x, y) is obtained as

∑θ=π
θ=0 rθ .
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Fig. 1.3 Parallel beam radon transformation of the image ‘A’ (refer Fig. 1.1) with theta
resolution = 0.5014◦

1.2.2 List of Figs. 1.1 to 1.11 in Terms of the Notations Used

• Figure 1.1: Original image subjected to parallel beam projection.
• Figure 1.2: Parallel beam projection geometry
• Figure 1.3: R(l, θ) (Sinogram) corresponding to the original image with the reso-

lution of θ = 24.5682.
• Figure 1.4: Impulse response and the transfer function of the filter |U |
• Figure 1.5: R(l, θ) for θ = 24.5682 degree and R(l, θ) ∗ |U |
• Figure 1.6: rθ for various θ with R(l, θ) ∗ I FT (|U |) = R(l, θ) ((i.e.) without

filtering)
• Figure 1.7: rθ for various θ (with filtering)
• Figure 1.8:

∑θ=�
θ=0 rθ for various � with R(l, θ) ∗ I FT (|U |) = R(l, θ) ((i.e.)

without filtering)
• Figure 1.9:

∑θ=�
θ=0 rθ for various � ((i.e.)without filtering)

• Figure 1.10: Final reconstructed image fd obtained with R(l, θ) ∗ I FT (|U |) =
R(l, θ) ((i.e) without filtering)

• Figure 1.11: Final reconstructed image fd (with filtering)
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Fig. 1.4 Impulse response of the ramp filter and the corresponding spectrum

Fig. 1.5 Original and the corresponding filtered parallel beam projection for θ = 24.5682◦

1.2.2.1 Parallelbeamprojection.m

RECONSTRUCTEDIMAGE=0;
load VASIGIMAGE
C=C(1:1:255,1:1:255);
C=[zeros(128,511);zeros(255,128) C zeros(255,128);zeros

(128,511)];
B=double(C)/255;
T=1;
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Fig. 1.6 Illustration of original (without filtering) parallel beam backprojected images obtained
for θ = 0, 20.0557, 40.1114, 60.1617, 80.2228, 100.2786, 120.3343, 140.3900, 160.4457◦ (Note
that parallel-beam reconstructed images are computed for all θ ranging from 0 to 180◦ with the
resolution of 0.5014◦)

angleresolution=360;
for theta=0:(180/(angleresolution-1)):180
%disp( theta)
RADONTRANSFORMATION{T}=sum(imrotate(B,theta,’nearest’,’crop’));
T=T+1;
end
%Back projection technique to get back the data
S=1;
Z=[1:10:359];
Z=[Z 0];
z=1;
k=0;
for theta=0:(180/(angleresolution-1)):180
k=k+1;
disp( theta)
%Filtering with ramp spectrum
temp=conv(RADONTRANSFORMATION{S},fir2(102,(0:1/101:1),
(0:1/101:1),rectwin(103)));

temp=repmat(temp,size(temp,2),1)’;
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Fig. 1.7 Illustration of filtered parallel beam backprojected images obtained for θ = 0, 20.0557,

40.1114, 60.1617, 80.2228, 100.2786, 120.3343, 140.3900, 160.4457◦ (Note that parallel-beam
reconstructed images are computed for all θ ranging from 0 to 180◦ with the resolution of 0.5014◦)

temp=imrotate(temp,90);
D=imrotate(temp,-theta,’nearest’,’crop’);
RECONSTRUCTEDIMAGE=RECONSTRUCTEDIMAGE+D;
if(Z(z)==k)
SNAPSHOT_RECONSTRUCTED{z}=RECONSTRUCTEDIMAGE;
SNAPSHOP_DATA{z}=D;
z=z+1;
end
S=S+1;
end
figure
colormap(gray(256))
imagesc(RECONSTRUCTEDIMAGE)
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Fig. 1.8 Illustration of reconstruction of the image obtained by cumulative summation of original
parallel beam backprojected images

1.3 Fanbeam Projection

The parallel beam projection technique based CT Scan takes more scanning time.
Hence Fanbeam projection technique based CT Scan is used. The Geometry for the
Fan beam projection is as mentioned in the Fig. 1.12. The single X-ray source (S) kept
in the y-axis at the distance D from the origin is subjected to the slice of the test body
and the multiple detectors (D1–D5 ) kept at the circumference of the sector (obtained
with S as the centre) are used to capture the attenuated signal along the ray of paths.
Mathematically this is proportional to the line integrals taken along the ray of paths.
This arrangement helps in reducing the scanning time. This corresponds to the angle
β = 0. Further the source is tilted by an angle β = B in the anticlockwise direction
and the corresponding attenuated signals are captured. This is repeated for β ranging
from 0 to 2π radians. Positions of the detectors are described by the angle measured
from reference line segment SD to the line segment joining the source(S) and the
detector in the anticlockwise direction. This angle is represented as δ. Detector 1
(refer Fig. 1.12), is kept at an angle −δmax and the detector 5 is kept at an angle
+δmax.
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Fig. 1.9 Illustration of reconstruction of the image obtained by cumulative summation of filtered
parallel beam backprojected images

1.3.1 Relationship Between Parallel Beam
and Fanbeam Projection

Conceptually (refer Sect. 1.2 and Fig. 1.13), the θ used in parallel beam projection is
the angle (measured in the anticlockwise direction) between the Y-axis and lineseg-
ment joining the source and the detector (SD). Also l is the perpendicular distance
with sign measured from the origin to the line segment SD. The line integration
obtained from the line segment SD1 in Fig. 1.14 corresponds to β = 0 and δ = −δ1
while using Fan beam projection. The same line integration, if it is computed using
the parallel beam projection, corresponds to −θ = δ1 and l = C sin δ1. Note that the
relationship holds for β = 0. If the reference line segment is rotated by an non-zero
angle β in the anticlockwise direction (refer Fig. 1.14), we get l = C sin(−δ1) and
θ = B − δ1. In general, line integration obtained from the fanbeam projection with
the particular δ and β equals to the line integration obtained from the parallel beam
projection with θ = β + δ and l = C sin(δ). Thus the reconstruction formula used
for parallel beam projection technique can be used for formulating the reconstruction
formula for Fan beam projection technique as described below.
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Fig. 1.10 Final reconstructed image obtained from parallel beam without filtering

Fig. 1.11 Final reconstructed image obtained from filtered parallel beam

Rewriting (1.15) with θ ranging from 0 to 2π , we get the following.

f (x, y) = 1

2

2π∫

0

R(l, θ) ∗ I FT (|U |)dθ (1.16)
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Fig. 1.12 Fan-beam projec-
tion geometry

Let IFT(|U |) be represented as u(l).

f (x, y) = 1

2

2π∫

0

∞∫

−∞
R(τ, θ)u(l − τ)dτdθ (1.17)

Put l = x cos(θ) + y sin(θ),

f (x, y) = 1

2

2π∫

0

∞∫

−∞
R(τ, θ)u(x cos(θ) + y sin(θ) − τ)dτdθ (1.18)

Replacing the dummy variable τ with l,

f (x, y) = 1

2

2π∫

0

∞∫

−∞
R(l, θ)u(x cos(θ) + y sin(θ) − l)dldθ (1.19)

Let the co-ordinates be represented in the polar form (i.e) x = r cos(φ) and
y = r sin(φ). Hence (1.19) becomes

f (r, φ) = 1

2

2π∫

0

∞∫

−∞
R(l, θ)u(r cos(φ) cos(θ) + r sin(φ) sin(θ) − l)dldθ (1.20)

⇒ f (r, φ) = 1

2

2π∫

0

∞∫

−∞
R(l, θ)u(r cos(φ − θ) − l)dldθ (1.21)
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Fig. 1.13 Relationship between parallel beam and the fan-beam projection geometry-1

(1.21) is rewritten using the new set of variables θ = β + δ and l = C sin(δ).

f (r, φ)

=
δmax∫

−δmin

2π+δ∫

0+δ

R(C sin(δ), β − δ)u(r cos(φ − β − δ) − C sin(δ))|J |dβdδ,

(1.22)

where |J |, is the jacobian of the transformation θ = β + δ and l = C sin(δ) (i.e)

J =

⎡
⎢⎢⎣

∂β

∂θ

∂β
∂δ

∂l

∂θ
∂θ
∂δ

⎤
⎥⎥⎦ ⇒ |J | = |C cos(δ)|

Hence, (1.22) is rewritten as

f (r, φ)

=
δmax∫

−δmax

−δ+2π∫

−δ+0

R(C sin(δ), β + δ)u(r cos(φ − β − δ) − C sin(δ))|C cos(δ)|dβdδ (1.23)

With constant δ, R(C sin(δ), β + δ) and u(r cos(φ − β − δ) − C sin(δ)) are the
periodic functions of the variable β with period 2π . Thus the final reconstruction



1.3 Fanbeam Projection 15

Fig. 1.14 Relationship between parallel beam and the fan-beam projection geometry-2

formula for Fanbeam projection is given below.

f (r, φ) =
δmax∫

−δmax

2π∫

0

R(C sin(δ), β + δ)u(r cos(φ − β − δ) − C sin(δ))|C cos(δ)|dβdδ

(1.24)

interchanging the order of the limits, we get

f (r, φ) =
2π∫

0

δmax∫

−δmax

R(C sin(δ), β + δ)u(r cos(φ − β − δ) − C sin(δ))|C cos(δ)|dδdβ

(1.25)

1.3.2 Discrete Realization of (1.25)

Consider the fan-beam ray path joining the source point S and the arbitrary point P
with polar co-ordinates (r, φ). Let the distance between the S and P be C2 (refer
Fig. 1.15). Note that the ray path corresponds to the angle β = B and δ = δ2. From
the geometry structure (refer Fig. 1.15), it is found that C = C2 cos(δ2)+r cos(φ−B)
and r cos(φ − B) = C2 sin(δ2). This is true for all values of β. So for some arbitrary
β, C = C2 cos(δ2)+ r cos(φ −β) and r cos(φ −β) = C2 sin(δ2). Substituting back
in (1.25), we get the simplified version of r cos(φ − β − δ) − C sin(δ) (part of 1.26)
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Fig. 1.15 Relationship
between parallel beam and
the fan-beam projection
geometry-3

as follows. Expanding r cos(φ − β − δ) − C sin(δ), we get

r cos(φ − β) cos(δ)+r sin(φ−β) sin(δ)−C2 cos(δ2) sin(δ)−r cos(φ−B) sin(δ)

= r cos(φ − β) cos(δ) − C2 cos(δ2) sin(δ)

= C2 sin(δ2) cos(δ) − C2 cos(δ2) sin(δ)

= C2 sin(δ2 − δ)

Thus Eq. (1.25) is rewritten as

f (r, φ) =
2π∫

0

δmax∫

−δmax

R(C sin(δ), β + δ)u(C2 sin(δ2 − δ))|C cos(δ)|dδdβ (1.26)

Also let R(C sin(δ), β + δ) be represented as W (δ, β)

⇒ f (r, φ) =
2π∫

0

δmax∫

−δmax

W (δ, β)u(C2 sin(δ2 − δ))|C cos(δ)|dδdβ (1.27)

Note that
∫ δmax
−δmax

W (δ, β)u(C2 sin(δ2 − δ))|C cos(δ)|dδ is the convolution of
u(C2 sin(δ2)) with W (δ2, β)|C cos(δ2)|. It is also noted that u is the inverse fourier
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transformation of ramp function |U |. From inverse fourier transformation we can
represent

u(C2 sin(δ2)) =
∞∫

−∞
|U |e j2πUC2 sin(δ2)dU (1.28)

Let U1δ2 = C2 sin(δ2)U substituting back in the Eq. (1.28), we get the following.

∞∫

−∞

∣∣∣∣ U1δ2

C2 sin(δ2)

∣∣∣∣ e j2πU1δ2
δ2

C2 sin(δ2)
dU1 (1.29)

⇒ u(C2 sin(δ2)) =
(

δ2

C2 sin(δ2)

)2 ∞∫

−∞
|U1|e j2πU1δ2 dU1 (1.30)

⇒ u(C2 sin(δ2)) =
(

δ2

C2 sin(δ2)

)2

u(δ2) (1.31)

Also note that C2 is constant for the particular value of r and φ. Rewriting (1.27)
using (1.31), we get the following.

f (r, φ) =
2π∫

0

δmax∫

−δmax

W (δ, β)

(
δ2 − δ2

C2 sin(δ2 − δ2)

)2

u(δ2)|C cos(δ)|dδdβ (1.32)

⇒ f (r, φ) =
2π∫

0

δmax∫

−δmax

1

(C2)2 W (δ, β)

(
(δ2 − δ)

sin(δ2 − δ)

)2

u(δ2 − δ)|C cos(δ)|dδdβ

(1.33)

Thus discrete form of (1.33) is realized as follows.

1. Compute the product of fan-beam radon transformation W (δ, β) for the particular
β with C cos(δ). Note that C is the constant. Treat the result as the function of δ2
(say f anradon(δ2)).

2. Compute the convolution of fanradon(δ2)with
(

δ2
sin(δ2)

)2
u(δ2) to obtain faniradon

(δ2). Note that the sample of f anradon(δ2) corresponds to the δ2 ranging from

−deltamax to deltamax. Also the samples of
(

δ2
sin(δ2)

)2
u(δ2) corresponds to the δ2

ranging from −deltamax to deltamax. Hence the index of the convoluted sequence
f aniradon(δ2) ranges from −2 ∗ deltamax to 2 ∗ deltamax.

3. Create the zero matrix (M) (same size as that of the original matrix) with origin in
the middle. The set of all polar co-ordinates (r, φ) for the constant δ2 are chosen
and are filled up with f aniradon(δ2) computed for the particular δ2. This is
repeated for all values of δ2.

4. Compute L = 1/C2
2 matrix for the complete range of r and φ as described in

step 5.
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Fig. 1.16 Fan-beam radon transformation of the Image A (refer Fig. 1.1) with C = 300, β resolu-
tion = 1.0028◦ and δ resolution = 0.005 radians

5. Create the matrix L exactly same as that of the size M with origin in the middle.
Arbitrary (x, y) position of the matrix L is filled up with 1

x2+(y−C)2 .
6. Compute M1(x, y) = M(x, y)L(x, y).
7. Rotate the obtained matrix M1 in the clock wise direction by an angle β, say it

as M1β .
8. Compute M1β for β ranging from 0 to 2π with some resolution for β.
9. Thus the reconstructed image f (r, φ) is computed as

∑θ=β
θ=0 M1β .

1.3.3 List of Figs. 1.12 to 1.25 in Terms of the Notations Used

1. Figure 1.12: Fan-beam projection geometry.
2. Figure 1.13–1.15: Relationship between the parallel beam and fan-beam projec-

tion geometry.
3. Figure 1.16: W (δ, β) computed with β and δ resolutions are respectively 0.0175

radians and 0.005 radians and C = 300.

4. Figure 1.17:
(

δ2
sin(δ2)

)2
u(δ2) in time and frequency domain.

5. Figure 1.18: Normalized L matrix.
6. Figure 1.19: Illustration of obtaining convolution of f anradon(δ2) with(

δ2
sin(δ2)

)2
u(δ2) using DFT-IDFT (as described below).

Linear convolution of two sequences x(.) and h(.) with K and L elements re-
spectively is obtained as follows.

• Pad the zeros in the sequence x(.) and h(.) at the end so that the length of both
the sequences equal to K + L − 1.

• Compute the dft of the padded sequences of x(.) and h(.) to obtain X (.) and
H(.) respectively.
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Fig. 1.17 Impulse response of the weighted ramp filter (x-axis interpreted as δ2 ranges from −δmax
to δmax) used in fan-beam projection and the corresponding spectrum

Fig. 1.18 Normalized L matrix

• Compute idft of X.H to obtain the linear convolution.

7. Figure 1.20: M1β for various β with fanradon(δ2)∗
(

δ2
sin(δ2)

)2
u(δ2) = fanradon

(δ2) (i.e.without filtering).
8. Figure 1.21: M1β for various β (with filtering).

9. Figure 1.22:
∑β=B

β=0 M1β with fanradon(δ2)∗
(

δ2

sin(δ2)

)2

u(δ2) = fanradon(δ2)

(i.e.without filtering) for various B.
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Fig. 1.19 Illustration of obtaining the filtered fan-beam projection data from the original fan-beam
projection data for the angle β = 0.07 radian

Fig. 1.20 Illustration of original fan-beam backprojected images obtained from the OFBPD for
β = 0.0175, 0.7156, 1.4137, 2.1118, 2.8100, 3.5081, 4.2062, 4.9044, 5.6025 radians. (Note that
fan-beam reconstructed images are computed for all β ranging from 0 to 6.2657 with the resolution
of 0.0175 radians)
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Fig. 1.21 Illustration of filtered fan-beam backprojected images obtained from the FFBPD for
β = 0.0175, 0.7156, 1.4137, 2.1118, 2.8100, 3.5081, 4.2062, 4.9044, 5.6025 radians. (Note that
fan-beam reconstructed images are computed for all β ranging from 0 to 6.2657 with the resolution
of 0.0175 radians)

Fig. 1.22 Illustration of reconstruction of the image obtained by cumulative summation of original
fan-beam backprojected images
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Fig. 1.23 Illustration of reconstruction of the image obtained by cumulative summation of filtered
fan-beam backprojected images

Fig. 1.24 Final reconstructed image obtained from original fanbeam projection with C = 300
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Fig. 1.25 Final reconstructed
image obtained from filtered
fanbeam projection with
C = 300

10. Figure 1.23:
∑β=B

β=0 M1β for various B (with filtering).
11. Figure 1.24: Final fan-beam reconstructed image f (r, φ) without filtering.
12. Figure 1.25: Final fan-beam reconstructed image f (r, φ) with filtering.

1.3.3.1 Fanbeamprojection.m

%load the original image
load VASIGIMAGE
C=C(1:1:255,1:1:255);
C=[zeros(128,511);zeros(255,128) C zeros(255,128);

zeros(128,511)];
C=double(C)/255;
figure
D=300;
maxiangle=atan(256/((D-255)+1));
B=zeros(511,511);
j=1;
range1=0:0.005:round(maxiangle/0.005)*0.005;
range2=sort(-1*range1);
ang=0:(2*pi)/359:2*pi;
angdeg=(ang/pi)*180;
for ang=angdeg(1:1:length(angdeg)-1)
t=0;
i=1;
A1=imrotate(C,ang,’crop’);
%Computation of Beta
beta(j)=ang;
%Computation of delta
delta=[range2 range1(2:1:length(range1))];
for range=[range2 range1(2:1:length(range1))];
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s=0;
%X and Y positions
X=-255:1:255;
Y=round((D-X)*tan(range));
Y1=-1*(Y+256)+512;
X1=-1*(X+256)+512;
COL{i}=[X1;Y1];
for u=1:1:511
if(X1(u)<=511&Y1(u)<=511&Y1(u)>0)
B(X1(u),Y1(u))=255;
s=s+A1(X1(u),Y1(u));
end
end
t(i)=s;
i=i+1;
end
fanbeam{j}=t;
t=0;
j=j+1;
end
figure
colormap(gray)
imagesc(B)
fanbeamprojection=fanbeam;
%Fan beam reconstruction
%4.Multiply with the modified ramp filter
%5.Weighted back projection
DATA=zeros(511,511);
RECONSTRUCTEDMATRIX=zeros(511,511);
%Computation of weight matrix Lˆ(-2)
for i=1:1:511

for j=1:1:511
k=-i+512-256;
l=-j+512-256;

L_MATRIX(j,i)=sqrt(kˆ2+(D-l)ˆ2);
end

end
L_MATRIX=L_MATRIX.ˆ(-2)/max(max(L_MATRIX.ˆ(-2)));
DATA=0;
figure
colormap(gray)
%Design of the weighted ramp filter
deltaterm=((delta.ˆ2)./(sin(delta).ˆ2));
deltaterm(280)=1;
MODIMPULSERESPONSE=(1/2)*fir2(558,[0:1/558:1],[0.1:0.9/558:1],

hann(559)).*deltaterm;
%Fourier tansformation of the weighted ramp filter

after zero padding.
MODFILTER=fft(MODIMPULSERESPONSE,1117);
for k=1:1:359
RECONSTRUCTEDMATRIX=zeros(511,511);
%Compuation of the Modified fanbeam projection
fanbeamprojection_modified1{k}=(D*cos(delta)).
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*fanbeamprojection{k};
%Fourier transformation of the modified fan beam projection
after zero padding

fanbeamprojection_modified2{k}=fft(fanbeamprojection_
modified1{k},1117);

%Multiplication with the fourier tansformation
of the weighted ramp

%filter after zero padding
%Computation of inverese fourier transformation
fanbeamprojection_modified3{k}=ifft(fanbeamprojection_

modified2{k}.*MODFILTER);
%Backprojection in the fanbeam structure
l=1;
for range=(-2*maxiangle):(4*maxiangle)/1116:(2*maxiangle)
X=-255:1:255;
Y=round((D-X)*tan(range));
Y1=-1*(Y+256)+512;
X1=-1*(X+256)+512;
for u=1:1:511
if((X1(u)<=511)&(Y1(u)<=511)&(Y1(u)>0))
RECONSTRUCTEDMATRIX(X1(u),Y1(u))=fanbeamprojection_

modified3{k}(l);
end
end
l=l+1;
end
%Multiplication with the weight matrix
RECONSTRUCTEDMATRIX=RECONSTRUCTEDMATRIX.*L_MATRIX;
%Obtaining the reconstructed matrix for beta(k)
RECONSTRUCTEDMATRIX=imrotate(RECONSTRUCTEDMATRIX,

-beta(k),’crop’);
imagesc(RECONSTRUCTEDMATRIX)
pause(0.5)
DATA=DATA+RECONSTRUCTEDMATRIX;
end
figure
colormap(gray(256))
imagesc(DATA)



Chapter 2
Magnetic Resonance Imaging

2.1 Bloch Equation

The concept of MRI physics is described by the bloch equations. Consider the weak

magnetic field
→

M(t) kept at an angle α (in the anticlockwise direction) with the

strong magnetic field
→

B(t) (which is kept in the z-direction as shown in the Fig. 2.1).
The interaction between these magnetic fields end up with the torque (The rate of

change of angular momentum
→

J(t) is the torque) on the weaker magnetic field
→

B(t)
as mentioned in the Eq. (2.1).

→
J(t)

dt
= →

M(t) × →
B(t) (2.1)

Note that the magnetic moment is proportional to the angular momentum (i.e)
→

M(t) =
γ

→
J(t)⇒ d

→
M(t)
dt = γ

→
M(t) × →

B(t), where γ is gyromagnetic ratio of the magnetic

moment
→

M(t).

Let
→

M(t)= Mx(t)̂i + My(t)̂j + Mz(t)̂k and
→

B(t)= Bx(t)̂i + By(t)̂j + Bz(t)̂k with
Bx(0) = 0, By(0) = 0 and Bz(0) = B0

⇒ →
M(t) × →

B(t)=
⎡
⎣ i j k

Mx(t) My(t) Mz(t)
0 0 B0

⎤
⎦

This further implies,

dMx(t)

dt
= γ My(t)B0 (2.2)
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Fig. 2.1 Co-ordinate system
illustrating Bloch equation

dMy(t)

dt
= −γ Mx(t)B0 (2.3)

dMz(t)

dt
= 0 (2.4)

Let the projection of the intial magnetic moment
→

M(0) with magnitude M0 kept

at an angle α with the magnetic moment
→

B(t)= Bz(t)̂k = B0̂k on the XY -plane is
the vector with magnitude Mxy(0) = M0 sin(α) and it makes an angle φ (in the
anti-clock wise direction) with the x-axis.

Note that the intial values of the magnetic moment
→

M(t) (with initial magnitude
M0) projected on the three co-ordinates are mentioned as follows.

Mx(0) = Mxy(0) cos(φ) = M0 sin(α) cos(φ) (2.5)

My(0) = Mxy(0) sin(φ) = M0 sin(α) sin(φ) (2.6)

Mz(0) = M0 cos(α) (2.7)

To solve the Eq. (2.1), we assign Mxy(t) = Mx +Myj, where j = √−1. Rewriting
jointly the Eqs. (2.2) and (2.3), we get

dMx(t)

dt
+ j

dMy(t)

dt
= γ My(t)Bz(t) − jγ Mx(t)Bz(t)

⇒ dMxy(t)

dt
= −jγ Bz(t)Mxy(t)

Note that Bz(t) is constant and is represented as B0.

⇒ Mxy(t) = Ke−jγ B0t

Applying the initial conditions (refer (2.5)–(2.7)) Mxy(0) = M0 sin(α) cos(φ) +
jM0 sin(α) sin(φ), we get



2.1 Bloch Equation 29

⇒ Mxy(t) = (M0 sin(α) cos(φ) + jM0 sin(α) sin(φ))e−jγ B0t

⇒ Mxy(t) = M0 sin(α)ejφe−jγ B0t

⇒ Mx(t) = M0 sin(α) cos(φ − γ B0t) = M0 sin(α) cos(−γ B0t + φ) (2.8)

My(t) = M0 sin(α) sin(φ − γ B0t) = M0 sin(α) sin(−γ B0t + φ) (2.9)

Mz(t) = M0 cos(α) (2.10)

2.2 Comment on the Equations 2.8–2.10

When the weak initial magnetic moment
→

M(0) with magnitude M0 is kept at an

angle α with the strong constant magnetic moment
→

B(t)= Bz(t)̂k = B0̂k, due to
bloch equation, magnetic moment in the z-direction remains unchanged. But the
magnetic moment in the x-direction and the y-direction oscillates with the angular
frequency of γ B0 radians or γ B0

2π
Hz with maximum amplitude M0 sin(α). Thus at

any particular time instant, the magnitude of the resultant magnetic moment on the
X–Yplane is constant and is equal to M0 sin(α). Also note that at any particular time
instant t, the resultant magnetic moment on the XY -plane is making an angle with
magnitude (−γ B0t + φ) with the x-axis measured in the anti-clock wise direction.
As time goes, the magnitude of the angle is increasing. This implies the resultant
vector on the XY -plane rotates in the anti-clock wise direction (when viewed in the z
direction) with the frequency γ B0. This frequecy is called larmor frequeny in radians
and it is computed as γ B0

2π
in Hz. For the constant strong magnetic moment B0, the

larmor frequency purey depends on the gyromagnetic ratio of the magnetic moment
→

B(t). Note that the magnitude of the resultant magnetic moment in the XY -plane
(transverse plane) is directly proportional to the angle α. Note:Clock wise direction
is identified with respect to the view point in the direction of − z axis (refer Fig. 2.1).

2.3 The Larmor Frequency and the Tip Angle α

In general, resultant magnetic moment (without externel strong magnetic moment)
obtained in the macroscopic level in the human body is zero. When the human body
is kept under the constant strong magnetic moment of B0 in the z-direction. The
resultant magnetic moment in the macroscopic level is aligned to the direction of
the external strong magnetic moment (i.e) z-direction. When it is disturbed to bring
the resultant magnetic moment to make an angle α (measured anti-clock-wise direc-
tion) with the z-axis, there exists the resultant anti-clock-wise rotating magnetic
moment in the transverse plane (due to bloch equations), that rotates with the fre-
quency 42.58 Mhz, when B0 is 1 Tesla.
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2.3.1 Disturbance to obtain Non-Zero α Value

The external field (apart from the strong constant magnetic moment B0) is applied for

the short duration (τ ) in such a way that the resultant magnetic moment
→

E(t) is rotating

exactly with the larmor frequency of the magnetic moment
→

M(t) to be disturbed. It

is noted that the macro magnetic moment
→

M(t) obtained using the hydrogen atoms
that are aligned in the z-direction due to the availibility of strong magnetic moment

B0 in the z-direction. The interaction between the magnetic moment
→

M(t) aligned

in the z-direction with magnitude M0 and the rotating magnetic moment
→

E(t) on
the transverse plane is described by the bloch equations as described below. The

strength of the magnetic moment
→

E(t) is strong compared with the natural magnetic

moment
→

M(t) available in the human body that are aligned initially in the z-direction.

Rewriting the bloch equation using
→

M(t) and
→

E(t), we get the following.

→
dJ(t)

dt
= →

M(t) × →
E(t) (2.11)

⇒ →
M(t) × →

E(t) =
⎡
⎣ i j k

0 0 Mz(t)
Ex(t) Ey(t) 0

⎤
⎦ ⇒

dMx(t)

dt
= γ Ey(t)M0 = γ E0 cos(−γ B0t + θ)M0 (2.12)

dMy(t)

dt
= γ Ex(t)M0 = γ E0 sin(−γ B0t + θ)M0 (2.13)

dMz(t)

dt
= 0 (2.14)

Solving the Eqs. (2.12)–(2.14) as described in the Sect. 2.1, we still get the resultant

magnetic moment
→

M(t) lies only in the z-direction. It is noted from the equations
that the transverse magnetic moment is zero due to the initial conditions Mx(0) =
0, My(0) = 0.

But in practice, due to the external field, there is the disturbance in the resultant
magnetic moment and there exist very low magnitude Mx and My component that
rotates in the larmor frequency due to the existance of strong field B0 as described in

the Sect. 2.1. Now consider the interaction between the magnetic fields
→

E(t) (which

has Ex(t) and Ey(t) components) and
→

B(t) (which has Bz(t) = B0 component) on the

magnetic moment
→

M(t) which have all the three components.

→
dM(t)

dt
= γ

→
M(t) ×(

→
E(t) + →

B(t)) (2.15)
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The resultant magnetic moment
→

M(t) depends upon the first term and the second

term of the RHS of the (2.16) independently. The resultant
→

M(t) due to the second
term ends up with Mx(t), My(t) and Mz(t) components as described in the Eqs. (2.9)–
(2.11). Note that the z-component of the resultant vector is constant due to the second

term. Now the magnetic moment
→

M(t) due to the first term is obtained as follows.
Rewriting (2.15) with only first term of the RHS as

→
dM(t)

dt
= γ

→
M(t) ×(

→
E(t)) (2.16)

⇒ →
M(t) × →

E(t) =
⎡
⎣ i j k

Mx(t) My(t) Mz(t)
Ex(t) Ey(t) 0

⎤
⎦ ⇒

dMx(t)

dt
= −γ Ey(t)Mz(t) = −γ E0 sin(−γ B0t + θ)M0 cos(α) (2.17)

dMy(t)

dt
= γ Ex(t)Mz(t) = γ E0 cos(−γ B0t + θ)M0 cos(α) (2.18)

dMz(t)

dt
= γ (Mx(t)Ey(t) − My(t)Ex(t)) (2.19)

Solving the Eqs. (2.17)–(2.19) as described in Sect. 2.1, we get the following.

dMx(t)

dt
+ j

dMy(t)

dt
= γ E0M0 cos(α)(− sin(−γ B0t + θ)

+ jcos(−γ B0t + θ)) (2.20)

⇒ dMxy(t)

dt
= jγ E0M0 cos(α)ej(−γ B0t+θ) (2.21)

⇒ Mxy(t) = −E0M0 cos(α)

B0
ej(−γ B0t+θ)K,

where K is the constant.
As Mxy(0) = M0 sin(α) cos(φ) + jM0 sin(α) sin(φ) = M0 sin(α)e(jφ) we get K

as follows.

Mxy(0) = −E0M0 cos(α)

B0
e(jθ)K

⇒ −E0M0 cos(α)

B0
cos(θ)K = M0 sin(α) cos(φ)

Also,
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−E0M0 cos(α)

B0
sin(θ)K = M0 sin(α) sin(φ)

⇒ K = −B0

E0
tan(α)ej(φ−θ)

⇒ Mxy(t) = −E0M0 cos(α)

B0
ej(−γ B0t+θ) −B0

E0
tan(α)ej(φ−θ)

⇒ Mxy(t) = M0 sin(α)ej(−γ B0t+φ)

Note that, the transverse component is not changed due to the external field
→

E(t).
What we achieved is that the transverse magnetic moment Mxy(t) due to the external

field
→

E(t) is in phase as that of the transvere component obtained using the static

magnetic field B0. The resultant transverse magnetic moment due to B0 and
→

E(t) is
given as

Mxy(t) = 2M0 sin(α)ej(−γ B0t+φ) (2.22)

The effect of the external magnetic moment
→

E(t) on the z-component of the magnetic

moment
→

M(t) is obtained by solving (2.19) as shown below.

dMz(t)

dt
= γ (Mx(t)Ey(t) − My(t)Ex(t))

= γ M0E0 sin(α)(sin(−γ B0t + θ) cos(−γ B0t + φ)

− cos(−γ B0t + θ) sin(−γ B0t + φ))

= γ M0 sin(α)E0 sin(−γ B0t + θ − (−γ B0t + φ)

Thus

dMz(t)

dt
= γ M0 sin(α)E0 sin(θ − φ) (2.23)

⇒ Mz(t) = γ M0 sin(α)E0 sin(θ − φ)t + Mz(0) (2.24)

Applying the initial condition Mz(0) = M0 cos(α) in (2.24), we get Mz(t) =
γ M0 sin(α)E0 sin(θ − φ)t + M0 cos(θ). Recall that the z-component due to B0 is
M0 cos(α) and hence resultant z-component is obtained as follows

Mz(t) = γ M0 sin(α)E0 sin(θ − φ)t + 2M0 cos(α) (2.25)

It is also noted that the resultant z-component with external field B1 (instead of
B0) is given as

Mz(t) = γ M0 sin(α)E0 sin(−γ (B1 − B0) + θ − φ)t + 2M0 cos(α) (2.26)
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Fig. 2.2 a Trace of the transverse component of the resultantant magnetic moment for the duration
of t π

200
(refer Sect. 2.3.2) b Illustrating how the z-component of the magnetic moment is decreasing

as time increases

2.3.2 Observation on (2.22) and (2.25)

1. Magnitude of the transverse component increases with α value (refer 2.22).
2. z-component decreases with incremental change in the time t (refer 2.25). This

is equivalently viewed as the effective increase in α value.
3. This helps in further increasing the magnitude of the transverse component.
4. Note that the resultant magnetic moment is rotating with the larmor frequency.
5. Thus we can imagine that the rotating magnetic moment is moving towards the

XY -plane. This is equivalently viewed as the spiral trajectory traced by the trans-

verse component of the
→

M(t) on the XY -plane, while z-component of the
→

M(t) is
decreasing along the z-direction (refer Fig. 2.2).

6. This in further looks like the helical movement of the resultant magnetic moment
as shown in the Fig. 2.3.

Thus the external magnetic moment
→

E(t) which is applied for the duration Tπ/2

helps in bringing the magnetic moment
→

M(t) to the XY -plane. Note that the Tπ/2 is
also the time duration to make the resultant α value π

2 . It is computed as described
below.

The magnitude of the magnetic moment making an angle α with the z-axis be
M0. The z-component of the magnetic moment is given as M0 cos(α). The rate at
which z-component of the magnetic moment is decreasing is proportional to the rate
at which the angle α is changing (refer 2.25). This implies
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Fig. 2.3 Trace of the resultant magnetic moment in 3D for the duration of t π
200

(refer Sect. 2.3.2)

− M0 sin(α)
dα

dt
= γ M0 sin(α)E0 sin(θ − φ) (2.27)

⇒ dα

dt
= −γ E0 sin(θ − φ) (2.28)

⇒ α(t) = −
t∫

0

γ E0 sin(θ − φ)dt (2.29)

If the external field is B1, then α(t) is computed as follows (refer 2.26).

α(t) = −
t∫

0

γ E0 sin(−γ (B1 − B0) + θ − φ)dt (2.30)

2.3.2.1 resmagneticmoment.m

gamma=2*pi*42.58*10ˆ6;
E0=0.0001;
M0=1;
B0=1;
phi=0.1;
theta=0.2;
x=[];
y=[];
z=[];
duration=5.8713*10ˆ(-5);
for t=0:(duration/100000):(duration/100)
alpha1= E0*gamma*t;
x=[x 2*M0*sin(alpha1)*cos(-gamma*B0*t+phi)];



2.3 The Larmor Frequency and the Tip Angle α 35

y=[y 2*M0*sin(alpha1)*sin(-gamma*B0*t+phi)];
z=[z gamma*M0*sin(alpha1)*E0*sin(theta-phi)*t+2*M0*cos(alpha1)];
end
figure
plot3(x,y,z)
figure
subplot(1,2,1)
plot(x,y)
subplot(1,2,2)
plot(z)

2.4 Trick on MRI

The external magnetic moment
→

E(t) is applied for the duration Tπ/2 to bring the
resultant magnetic moment to the transverse plane as described in the Sect. 2.3. After

that, when
→

E(t) is removed, the resultant magnetic moment has to rotate with constant
magnitude in the XY -plane with the larmor frequency. But in nature, transverse
component decreases and reaches zero after some time. This is called spin relaxation.
This is due to the spin–spin interactions between the micro-level magnetic moments
available in the human body. The time required to obtain (1/e) times the initial value
of the transverse component after the removal of the external magnetic moment
(represented as T2) depends on the characteristics of the tissues of human body.
The resultant transverse magnetic moment during relaxation (free induction decay
(FID)) is recorded using the receiver antenna. This is used to obtain T2 MRI and
proton-density MRI images.

In the same fashion, longituidanal component gradually increases and attains the
maximum value. This is due to spin-lattice interactions in the micro level magnetic
moments of the human body. The rate at which lognituidanal component reaches the
maximum value is described by the time constant T1 (depends on the characteristics
of the tissues of the human body). Usually T1 � T2. After sufficient time (to nullify
the influence of existing transverse component), longitudanal component is flipped
to the transverse component and the corresponding FID is measured. This is used to
obtain the T1 MRI image. Note that in all the cases (T1, T2 and proton-density) MRI
images, the receiver records only the transverse components of the magnetic field
during relaxation. The complete description is given in Sect. 2.8.

2.5 Selecting the Human Slice and the Corresponding
External RF Pulse

When the external RF frequency is same as that of the larmour frequency, we are
able to get the transverse component of the magnetic field. When the complete
human body is kept under the identical strong magnetic moment B0, the recorded
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FID signal corresponds to the complete human body. But we need to get the image
of the particular slice. This is obtained using the concept of Gradient. Let us assume
that we need to image the particular slice of the human body along the z-axis. We
apply the gradient magnetic moment such that the z-component of the static magnetic
field Bz(z) is the function of z. The resultant z-component of the magnetic moment
is given as Bz(z) = Gzz + K , where Gz is the z-gradient and K is the constant. The
constant is chosen such that at the required point z, the magnitude of the magnetic
moment is B0. (i.e)

Bz(z) = Gz(z − z̄) + B0 (2.31)

Recollect that the external field used to disturb the orignal magnetic moment M(t)
(to obtain non-zero alpha) which are kept under the strong magnetic field B0 in the
z-axis is given as Ex(t) = −γ E0 sin(−γ B0t+θ) and Ey(t) = −γ E0 cos(−γ B0t+θ)

(refer 2.12 and 2.13). We can still use the same external field for disturbance. But
it controls the slice corresponding to the frequency γ B0. In practice it is difficult
to generate such signals. so the alternate technique is to choose the slice with pre-
determined thickness. Let us assume, we need to image the slice corresponds to the
magnetic field ranging between Bz1 and Bz2 , where z̄ = (z1+z2)

2 . In this case, the
external magnetic field is chosen such tha Tα for all the magnetic moments of the
chosen slice is identical. It is given as follows.

Ex(t) = −AΔvγ sinc(Δvt) sin(−γ B0t + θ) (2.32)

Ey(t) = −AΔvγ sinc(Δvt) cos(−γ B0t + θ) (2.33)

It is noted that the external field is having only transverse comonents. Also note

that the Δv is the bandwidth in Hz, which is computed as
γ (Bz1−Bz2 )

2π
. Using (2.31)

we obtain, Δv = γ Gz(z1−z2)
2π

. It is noted Δv � B0γ
2π

. Using this condition, bloch
equations with external fields (refer Sect. 2.3.2 and appendix 1) is solved to obtain
the following equation for α(t).

α(t, z) = −
t∫

0

AΔvγ sinc(Δvt) sin(−γ (Bz(z) − B0) + θ − φ)dt (2.34)

Note that the time instant at which t = 0 is the starting time at which the external
field is applied. In (2.28), the amplitude (envelope) of the external field is constant. But
in this case, the starting time is properly chosen as the envelope is the AΔvsinc(Δvt)
function. The sinc function is given as sinc(Δvt) = sin πΔvt

πΔvt and is maximum at
t = 0.

Suppose let us assume the case we are applying the AΔvsinc(Δvt) pulse for the
duration from −∞ to ∞ (which is not practical). The obtained α values as the
function of z (refer Sect. 2.3.2) is obtained as follows.
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α(z) = −
∞∫

−∞
AΔvγ sinc(Δvt) sin(−γ Gz(z − z̄)t + θ − φ)dt (2.35)

⇒ α(z) = Im

⎛
⎝−

∞∫

−∞
AΔvγ sinc(Δvt)ej(−γ Gz(z−z̄)t+θ−φ)dt

⎞
⎠ (2.36)

Consider the following equation as the fourier transformation of the AΔvγ sin c
(Δvt)ej(θ−φ) with frequency γ Gz(z − z̄) (in radians)

−
∞∫

−∞
AΔvγ sinc(Δvt)ej(−γ Gz(z−z̄)t+θ−φ)dt (2.37)

Solving we get the following.

α(z) = −Aγ sin(θ − φ)rect

(
γ Gz(z − z̄)

2πΔv

)
(2.38)

⇒ α(z) = −Aγ sin(θ − φ)rect

(
(z − z̄)

Δz

)
(2.39)

where Δz = 2πΔv
γ Gz

Thus the obtained α for the entire slice is constant. But in practice the sinc envelope
is not applied for the infinite duration. It is applied during the duration −τp/2 to
τp/2. This makes the α(z) profile not perfectly flat. From signal processing, we
understand that FT(rect( t

τp
)AΔvγ sinc(Δvt)) computed with frequency γ Gz(z−z̄) is

same as that of the convolution of FT(rect( t
τp

) (computed with frequency γ Gz(z− z̄))
and FT(AΔvγ sinc(Δvt)) (computed with frequency γ Gz(z − z̄)). This implies the
following expression for α(z).

α(z) = −Aγ sin(θ − φ)rect(
(z − z̄)

Δz
) ∗ τpsinc(τpγ Gz(z − z̄)) (2.40)

Thus using the external field (2.32) and (2.33), we obtain almost the identical α over
the region of interest (slice region). Thus the particular slice of the human body along
the z-axis is selected. Note that external field is applied over the duration −τp/2 to
τp/2.

At the end of time instant τp/2 (after acquiring required α value), Mxy(t, z) is
obtained as follows (refer (2.22)).

Mxy(τp/2) = 2M0 sin(ατp/2)e
j(−γ Bz(z)τp/2+φ) (2.41)

⇒ Mxy(τp/2) = 2M0 sin(ατp/2)e
j(−γ (Gz(z−z̄)+B0)τp/2+φ) (2.42)
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Note that the phase component of (2.42) varies with z as ej(−γ (Gz(z−z̄)τp/2)). To nullify
this, negative z-gradient −Gz (along with the existent strong magnetic field B0) is
applied. This is known as Refocussing gradient. Note that the external field (2.32)
and (2.33) are removed. When the resultant magnetic moment is having non-zero α

and are kept with the strong magnetic field −(Gz(z − z̄) + B0) for the time duration
τp/2, rotating transverse component (after τp/2) is obtained and is given as follows.

2M0 sin(ατp/2)e
j(−γ (Gz(z−z̄)+B0)τp/2+φ)ej(−γ (−Gz(z−z̄)+B0)τp/2) (2.43)

⇒ 2M0 sin(ατp/2)e
j(−γ (B0)τp+φ) (2.44)

Thus the resultant phase component is constant throughout the slice (not the function
of z). But note that there is still strong magnetic field B0 available in the z-axis. Hence
transverse magnetic moments along the slice are having the same phase, having
non-zero α value and are under the constant magnetic field B0. Hence transverse
components of the magnetic field along the slice follows the equation as mentioned
below.

2M0 sin(ατp/2)e
j(−γ (B0)τp+φ)ej(−γ (B0)t) (2.45)

In (2.45), t = 0 corresponds to τp in the time scale t′, where t′ = 0 corresponds
to the middle of the sinc pulse applied. As described in the Sect. 2.4, the resultant
transverse component (refer 2.46) gradually decreases due to spin–spin interations.
This interactions start at the moment when there is non-zero α value. so at time
t = 0 (middle of the RF pulse) itself, the transverse components decreses with time
constant T2. If there is no refocussing gradient and other externally disturbing fields,
the disturbance in the transverse component is only due to spin–spin interaction,
which is completely described by the time constant T2. For instance, after applying
refocussing gradient, the transverse component of the magnetic moment (including
the effect of spin–spin relaxation) is given as follows.

2M0 sin(ατp/2)e
j(−γ (B0)τp+φ)ej(−γ (B0)t)e

−t
T2(x,y) e

−τp
T2(x,y) (2.46)

Note that T2 is the function of (x, y) due to different physical characteristics of the
tissues. The transverse component of the signal is sampled at some time instant TR

(read-out time instant) depends on the factor T2(x, y) and helps for T2-MRI imaging
technique.

2.5.1 Summary of the Section 2.5

1. Apply positive z-gradient Gz to select the slice of the human body along the z-axis.
2. RF pulse AΔvγ sinc(Δvt)rect( t

τp
) is applied (Note that the duration is between

−τp/2 and τp/2) to obtain the identical α throughout the slice.
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3. Negative z-gradient −Gz (refocussing gradient) (for the duration τp/2 to τp) is
applied to achieve the identical strong magnetic field throughout the slice, by
nullifying the phase introduced during RF exitation.

4. Step 3 helps in obtaining the transverse magnetic components within the selected
slice (in all (x, y) co-ordinates) to rotate with the larmour frequency with zero
phase difference for a moment.

5. But the transverse component gradually decreases with time due to spin–spin
interaction. This is known as relaxation. The rate at which the transverse compo-
nents decreases depend on the location (with differnet tissue property at (x, y))
described by the time constant T2.

6. Transverse components are assumed to start decaying from the time instant t = 0,
which is the middle of the applied RF pulse.

7. We need to measure the transverse component during relaxation which acts as
the first step to obtain MRI image as described in the Sect. 2.6

2.6 Measurement of the Transverse Component Using
the Receiver Antenna

In general, the transverse magnetic moment and the longituidanal magnetic moment
during the readout phase are given as follows.

Mxy(x, y, t) = Mxy(x, y, 0+)ej(−γ (B0)t+φ)e
−t

T2(x,y)

Mxy(x, y, 0+) = Mz(x, y, 0−) sin(α(x, y))

Mz(x, y, t) = Mz(x, y, 0+)e−t/T1 + (1 − e−t/T1)B0

Mz(x, y, 0+) = Mz(x, y, 0−) cos(α(x, y))

To obtain the image that describes the Tx,y property of the sliced XY plane
(selected slice plane), readout time should be chosen such that the α(x, y) value must
be constant throughout the plane. Rewriting the equations with constant α(x, y) is as
follows.

Mxy(x, y, t) = Mxy(x, y, 0+)ej(−γ (B0)t+φ)e
−t

T2(x,y) (2.47)

Mxy(x, y, 0+) = Mz(x, y, 0−) sin(α) (2.48)

Mz(x, y, t) = Mz(x, y, 0+)e−t/T1 + (1 − e−t/T1)B0 (2.49)

Mz(x, y, 0+) = Mz(x, y, 0−) cos(α) (2.50)



40 2 Magnetic Resonance Imaging

2.6.1 Observation on (2.47)–(2.50)

1. The time instant t = 0 in (2.47) is the starting time at which the receiver starts
receiving the signal. This is otherwise called as the starting time instance of the
readout phase.

2. Note that the transverse component is rotating with identical larmour frequency
at all (x,y) positions. This is achieved with the identical strong magnetic field (in
the z-axis) throughout the slice.

3. The amplitude Mxy(x, y, 0+) is the function of (x, y) as it involves the hidden

term e
−t

T2(x,y) from the time instance of the middle of the RF pulse.
4. Hence if the receiver is designed to receive the transverse component as the

function of (x, y), the image completely describes the T2(x, y) characteristics of
the sliced tissue.

2.6.2 Receiver to Receive the Transverse Component

The transverse component M(x, y, t) is represented as the vector [Mx,t My,t]. Usually
Mx,t component is sensed as the voltage induced in the the receiver coil as described
below. When the receiver coil is excited with the external source to generate the
transverse magnetic moment represented as the vector [1 0] and are kept in the
transverse magnetic moment (to be sensed) represented as the vector [Mx,t My,t], the
voltage is induced in the coil as follows.

v(t) = − d

dt

∫

x

∫

y

[Mx,t My,t] · [1 0]dxdy (2.51)

The generalized expression for the transverse component of the magnetic moment
is given as

M(x, y, t) = (Mr + jMi)e
−j(γ B0t−φ) (2.52)

⇒ v(t) = − d

dt

∫

x

∫

y

[(Mr cos(γ B0t − φ) + Mi sin(γ B0t − φ))

(−Mr sin(γ B0t − φ) + Mi cos(γ B0t − φ))] · [1 0]dxdy (2.53)

⇒ v(t) = γ B0

∫

x

∫

y

(Mr sin(γ B0t − φ) − Mi cos(γ B0t − φ))dxdy (2.54)

It is possible to obtain Mr and Mi as follows.
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1. Multiply v(t) with sin(γ B0t − φ) and pass it through the low pass filter to obtain
Kγ B0

∫
x

∫
y Mrdxdy component, where K is the constant. Note that phase lock is

also required.
2. Similarly, multiply v(t) with − cos(γ B0t − φ) and pass it through the low pass

filter to obtain Kγ B0
∫

x

∫
y Midxdy component.

3. Thus the complex numbr C
∫

x

∫
y(Mr + jMi)dxdy can be stored in the computer

as the complex number, where C is real constant.
4. In MRI imaging, Mr, vMi are usually the function of time which are represented

as Mr(t), Mi(t). The frequency content of the signals Mr(t) and Mi(t) are com-
paritively very less when compared with the frequency γ B0. Hence the same
procedure (as described in 1 and 2) can be used to obtain the complex number
C1

∫
x

∫
y(Mr(t) + jMi(t))dxdy as the function of time, where C1 is some arbitrary

real constant.
5. Sampling the signal at any time instant gives the constant complex number, which

can be stored in the computer.

2.7 Sampling the MRI Image in the Frequency Domain

We understand that the the receiver is capable of receiving the real and imaginary
component of the signal s(t) (funtion of t) mentioned in (2.55). Recall that the
Mxy(x, y, 0+) is the complex quantity.

s(t) =
∞∫

−∞

∞∫

−∞
Mxy(x, y, 0+)ej(φ)e

−t
T2(x,y) dxdy (2.55)

Suppose that the external strong magnetic field (in the z-axis) is made as the function
of x and y (i.e) Bz(x, y) = B0 + xgx + ygy (Note that gx and gy are constants),
we get

s(t) =
∞∫

−∞

∞∫

−∞
Mxy(x, y, 0+)ej(−γ (Bz(x,y))t+φ)e

−t
T2(x,y) dxdy (2.56)

⇒ s(t) =
∞∫

−∞

∞∫

−∞
Mxy(x, y, 0+)ej(−γ (B0+xgx+ygy)t+φ)e

−t
T2(x,y) dxdy (2.57)

By varying the constants gx gy described by the variables Gx, Gy respectively, the
same receiver is now capable of obtaining the real and imaginary component of the
signal s(Gx, Gy, t).
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s(Gx, Gy, t) =
∞∫

−∞

∞∫

−∞
Mxy(x, y, 0+)ej(−γ (xGx+yGy)t+φ)e

−t
T2(x,y) dxdy (2.58)

Sample the obtained complex signal at the middle of the readout time duration
(Treadout/2), which is the function of Gx and Gy). By vaying different values of Gx

and Gy we obtain the real matrix R(Gx, Gy) and the imaginary matrix I(Gx, Gy).
Note that Gx and Gy ranges from the −Gmax/2 to Gmax/2 with the step increment
of Gmax/L, where L is the level number. Let us assume that the complete slice has
to pictured with 101 × 101 pixel resolution, then the Gx and Gy must have L = 101.
This is equivalent to sampling the image in frequency domain.

C(Gx, Gy) = R(Gx, Gy) + jI(Gx, Gy) (2.59)

=
∞∫

−∞

∞∫

−∞
Mxy(x, y, 0+)ej(−γ (xGx+yGy)(Treadout/2)+φ)e

−(Treadout/2)

T2(x,y) dxdy

(2.60)

Apply the linear map of the variable Gx to U and Gx to V as Gx = (Gmax/(L −
1))U(Gmax/2) and Gy = (Gmax/(L − 1))V − (Gmax/2) and rewrting the matrix
C(Gx, Gy) as C1(U, V), where U ranges from 0 to L − 1 and V = 0 to L − 1, we get
Discrete image in frequency domain. Thus applying the 2D-DFT, we get the discrete
version of the following matrix.

MRIIMAGE(x, y) = Mxy(x, y, 0+)e
−(Treadout/2)

T2(x,y) ejφ (2.61)

MRIDISCRETEIMAGE(r, c) =
L−1∑

0

L−1∑
0

C1(U, V)e
j2πrU

L e
j2πcV

L (2.62)

Note that the r = 0 and c = 0 indicate that top-left corner position of the discrete
image. Also note that r and c ranges from 0 to L−1. Hence MRIDISCRETEIMAGE
is obtained.

2.8 Practical Difficulties and Remedies in MRI

The Eqs. (2.47)–(2.50) completely describe the transverse components of the mag-
netic moment during the read-out duration. The equation is valid provided the slice
under consideration must satisfy the following conditions.

• The α value and the strong magnetic field B0 in the z-direction is constant along
the z-axis. This is achived using RF exitation followed by refocussing gradient (as
described in Sect. 2.5)

• There is no other sources that affect the magnetic field B0
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But in practice, due to perturbation of the magnetic field B0 and other external
magnetic field, the transverse components decreases at the faster rate with time
constance T∗

2 instead of T2, with T∗
2 � T2. Hence the obtained discrete image

described in the Sect. 2.7 is not completely due to T2 characteristics ( i.e spin–spin
relaxation). If the signal s(Gx, Gy, t) is sampled at time instant t = 0 (instead of
Treadout/2), the obtained image is proton-density MRI image.

2.8.1 Proton-Density MRI Image using Gradient Echo

In practice, sampling the signal s(Gx, Gy, t) at almost near to t = 0 gives proton-
density image and is achieved as follows.

1. The z-gradient and the RF pulse are applied simultaneously for the duration τp/2
to obtain the required α value throughout the selected slice in the z-direction.
(refer Sect. 2.5). The value of the α is usually chosen as π

2 .
2. Refocussing z-gradient is applied to obtain the identical magnetic field B0 in the

z-axis, throughout the slice.
3. The transverse component at this moment is given as Mxy(x, y, t) = 2M0

sin(ατp/2)ej(−γ (B0)τp+φ)ej(−γ (B0)t)e
−t

T2(x,y)

4. Apply the Gy gradient for the duration of τy, so that the transverse component
becomes Mxy(x, y, t) = 2M0 sin(ατp/2)ej(−γ (B0)τp+φ)ej(−γ (B0+Gyy)τy)ej(−γ (B0t))

× e
−(t+τy)

T2(x,y) .
5. Apply the −Gx gradient for the duration of τx , so that the transverse component

becomes Mxy(x, y, t) = 2M0 sin(ατp/2)ej(−γ (B0)τp+φ)ej(−γ (B0+Gyy)τy)

× ej(−γ (B0−Gxx)τx)ej(−γ (B0t))e
−(t+τy+τx )

T2(x,y) (It is assumed that there is no significant
change in α value.)

6. The read-out phase starts at this moment. Postive gradient Gx is applied during
the read-out phase for the duration of 2τx . The resultant magnetic moment during
the read-out phase is given as mentioned in (2.63).

Mxy(x, y, t) = 2M0 sin(ατp/2)e
j(−γ (B0)τp+φ)ej(−γ (B0+Gyy)τy)ej(−γ (B0−Gxx)τx)

× ej(−γ (B0+Gxx)t)e
−(t+τy+τx )

T2(x,y) . (2.63)

7. The phase component introduced due to Gx cancels in the middle of the read-out
phase. This is known as Gradient echo. This helps to synchronize the hardware to
sample the real and imaginary part of the signal at the end of the read-out phase
(2τx) to obtain the sample value of the magnitude of the signal s(t) corresponding
to the particular location in the K-space ((i.e) Gx, Gy).

8. Wait for the complete relaxation ((i.e) equillibrium) until all the longituidal
components reaches B0. This can also be done using spoiler gradient in modern
techniques.
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9. The steps 1–7 are repeated for the complete range of Gx and Gy (refer Sect. 2.7)
and hence discrete MRI image in the frequency domain is obtained.

10. Apply the inverse 2D-DFT to obtain MRI image. The image thus obtained cor-
responds to proton-density image. This gives the proton-density (refer Sect. 3.1
for illustration) of every pixel of the image slice.

2.8.2 T2 MRI Image Using Spin–Echo and Carteisian Scanning

T2 MRI principles are explained with the micro-level behaviour of the randomly ori-
ented individual magnetic moments (with various rate at which the phase is changing)
at every point (x,y) across the slice. Due to the slice selection (along the z-axis) by
applying the z-gradient, followed by RF exitation and refocussing gradient we are
able to obtain the in-phase resultant magnetic moment making an angle α with the
z-axis (measured anti-clockwise when viewed along the z-axis). The corresponding
transverse component is making an angle φ with the x-axis (measured anti-clockwise
when viewed along the z-axis).

The individual magnetic moments at the particular position (x, y) after the release
of RF exitation, starts to experience different phase (even though it was made inphase
due to external RF exitation). This is the natural phenomenon due to spin–spin
interaction. The phase achived by the individul magnetic moment over the time helps
in decreasing the resultant transverse component. The rate at whcich the the phase
of the individual magnetic moment is changing purely depends on the tissue. The
rate at which the resultant transverse magnetic moment is decreasing is described
by the factor T2(x, y) and hence T2(x, y) plays the important role in knowing the
characteristics of the tissue and hence image is obtained. But in practice the rate at
which the resultant transverse component is characterized by the factor T∗

2 . Even
after the transverse component becomes zero due to the factor T∗

2 , the dephasing
operation still continuos. This leads to the technique called spin echo (described
below) to obtain the non-zero transverse component, (even after reaching zero due
to T∗

2 ). This in further helps to obtain the frequency sample of the MRI image
highlighting the T2 values as described below.

1. Steps 1–4 are performed similar to the technique mentioned in the Sect. 2.8.1.
2. Thus the currently obtained transverse component is given by

Mxy(x, y, t) = 2M0 sin(ατp/2)ej(−γ (B0)τp+φ)ej(−γ (B0+Gyy)τy)ej(−γ (B0t))e
−(t+τy)

T2(x,y) .
3. Apply the Gx gradient for the duration of τx , so that the transverse component

becomes (2.65). Mxy(x, y, t) = 2M0 sin(ατp/2)ej(−γ (B0)τp+φ)ej(−γ (B0+Gyy)τy) . . .

ej(−γ (B0+Gxx)τx)ej(−γ (B0t))e
−(t+τy+τx )

T2(x,y) (2.64)

It is assumed that there is no significant change in α value.

http://dx.doi.org/10.1007/978-1-4614-3140-4 _3
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4. The exponentially decreasing term e
−t

T2(x,y) in (2.64) describes the micro-level
behaviour of the individual magnetic moments (spin–spin interactions) at (x, y).
Thus the equation can also be written with micro-level behaviour of the individual
magnetic moments as follows.

∑
n

Mxy(x, y, t, n) =
∑

n

2M0 sin(ατp/2)e
j(−γ (B0)τp+φn(t,x,y))ej(−γ (B0+Gyy)τy)

× ej(−γ (B0+Gxx)τx)ej(−γ (B0t)).

where, Mxy(x, y, t, n) is the nth micro-level magnetic moment which is the func-
tion of x, y and t.

5. Now apply the 180◦ RF pulse. This is not same as that of the RF pulse. This helps
in changing the phase component of the transverse component from arbitrary
ρ to −ρ. Note that the selection gradient(Gz) is applied while applying 180◦
pulse.

6. After applying 180◦ pulse, the resultant transverse magnetic moment is
given as

∑
n

Mxy(x, y, t, n) =
∑

n

2M0 sin(ατp/2)e
j(+γ (B0)τp−φn(t,x,y))ej(+γ (B0+Gyy)τy)

× ej(+γ (B0+Gxx)τx)ej(−γ (B0t)).

7. The magnitude of the signal Mxy(x, y, t) at every pixel corresponding to the
transverse component in step 5 is decreasing gradully with time (due to dephas-
ing). Hence the magnitude of Mxy(x, y, t) corresponding to the transverse com-
ponent in step 6 increases with time (refer Sect. 3.2.2 for illustration) and
reaches maximum after some time duration. This is known as spin–echo.
Spin–echo guarantees the existence of required amplitude of MRI signal for
sampling.

8. Read-out phase starts immediate after some time (required time for rephas-
ing) after applying 180◦ pulse along with the positive x-gradient Gx for the
duration of τx . The resultant transverse component during read-out phase is
given as

∑
n

Mxy(x, y, t, n) =
∑

n

2M0 sin(ατp/2)e
j(+γ (B0)τp−φn(x,y,t))ej(+γ (B0+Gyy)τy)

× ej(+γ (B0+Gxx)τx)ej(−γ ((B0+Gxx)t)).

9. After time duration of τx , there is the cancellation of the phase introduced due
to Gx gradient (upto step 8). This is known as Gradient echo. This helps to
synchronize the hardware and sample the magnitude of s(t) at the end of the
reading phase 2τx corresponding to the particular location in the K-space. This
step is same as that of the one used in proton-density imaging using phase

http://dx.doi.org/10.1007/978-1-4614-3140-4 _3
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gradient. But what we achived is the sampled value gives the information about
T2(x, y). (refer Sect. 3.2) for illustration.

10. Note that the sampled value corresponds to (Gx,−Gy), not (Gx, Gy).

2.8.3 T2 MRI Image Using Spin–Echo and Polar Scanning

1. Steps 1–3 are performed similar to the technique mentioned in the Sect. 2.8.1.
2. Thus the currently obtained transverse component is given by

Mxy(x, y, t) = 2M0 sin(ατp/2)e
j(−γ (B0)τp+φ)ej(−γ (B0)t)e

−t
T2(x,y) .

3. Apply both Gx and Gy gradient simulataneously for the time duration τxy, so that
the transverse components become the following.

Mxy(x, y, t) = 2M0 sin(ατp/2)e
j(−γ (B0)τp+φ)ej(−γ (B0+Gyy+Gxx)τxy)

× ej(−γ (B0t))e
−(t+τxy)

T2(x,y)

4. The technique used in the steps 4–7 of the Sect. 2.8.2 are adopted.
5. Read-out phase starts immediate after some time (required time for rephasing)

after applying 180◦ pulse along with the positive x-gradient Gx and positive y-
gradient Gy for the duration of τxy. The resultant transverse component during
read-out phase is given as

∑
n

Mxy(x, y, t, n) =
∑

n

2M0 sin(ατp/2)e
j(+γ (B0)τp−φn(x,y,t))

× ej(+γ (B0+Gxx+Gyy)τxy)ej(−γ ((B0+Gxx+Gyy)t)).

6. After time duration of τxy, there is the cancellation of the phase introduced due to
Gx and Gy gradient (upto step 4). This is gradient echo. This helps to synchronize
the hardware to sample the magnitude of s(t) at the end of the reading phase
2τx corresponding to the particular location in the K-space. This step is same as
that of the one used in phase gradient. But what we achived is the sampled value
gives the information about T2(x, y). (refer Sect. 3.3) for illustrations.

7. Note that the sample value corresponds to the point (−Gx,−Gy).
8. This is the polar version of the technique used in Sect. 2.8.2. The main difference

is that the gradients are applied simultaneously. Also the value of Gx and Gy are
changed in such a way that the samples of the k-space (frequency domian) are

uniformly scanned over the variables r and θ , where r =
√

(G2
x + G2

y) and

θ = tan−1
(

Gy
Gx

)
.

http://dx.doi.org/10.1007/978-1-4614-3140-4 _3
http://dx.doi.org/10.1007/978-1-4614-3140-4 _3
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2.8.4 T1 MRI Image

We understand that there is the natural relaxation in the transverse component of
the resultant magnetic moment due to spin–spin interaction. This is known as T2
relaxation. We exploit the different relaxation time and different proton-density
(refer Sects. 2.8.1–2.8.3) for the different tissues to obtain MRI image (T2 and proton-
density respectively). In the same way, due to spin–lattice interaction, the longintu-
idanal components gradually increases. This is the another natural relaxation known
as T1 relaxation (which is independent of T2 relaxation). Different tissues have dif-
ferent T1 relaxation time. This helps to obtain the another type of MRI image known
as T1 MRI image. Usually T1 is very larger when compared with the corresponding
T2. Exploiting this property, the following trick is used to obtain the T1 MRI image.

1. Steps 1–3 in Sect. 2.8.1 is performed.
2. Wait for the time to get almost zero transverse-component. But by this time,

longituidal component gradually increases (not reached maximum).
3. At this moment, flip the longituidanal component by an angle α (usually 90◦) to

obtain the transverse component. Sample the transverse component immediate
after obtaining the transverse component (i.e at t = 0 during read-out phase) to
obtain the K-space of the T1 image for the particular Gx and Gy. The operation
is repeated for the required range of Gx and Gy values. Apply 2D-IDFT to obtain
the T1 image. Instead of sampling the transverse component at time instant t = 0,
gradient echo can also be used to measure the transverse component as described
in the Sect. 2.8.1.

4. Note that T1 image is obtained by measuring the transverse component. But the
measured transverse component is mainly due to longituidanal relaxation obtained
from spin–lattice interaction. The trick is to flip the longituidal component, which
are in relaxation state to obtain the transverse component. The magnitude of the
transverse component describes the T1 characteristics of the tissue. Thus the image
obtained is known as T1 image (refer Sect. 3.4 for illustration).

http://dx.doi.org/10.1007/978-1-4614-3140-4_3


Chapter 3
Illustrations on MRI Techniques
Using Matlab

3.1 Illustration on the Steps Involved in Obtaining
Proton-Density MRI Image

Let the image slice in the z-direction is selected and 90◦ RF pulse is applied.
Refocussing gradient is also applied to compensate the phase introduced during
the slice selection. Let the size of the image slice be 11 × 11 in spatial domain.
Under this condition, every pixel of the image slice (x, y) are assumed to have the
finite number of identical individual transverse magnetic moments n(x, y). Also the
individual magnetic moment at every position is undergoing linear phase delay with
different rate k(x, y, i) i.e. φ(t) = 2πk(x, y, i)t. Thus every pixel of the image slice
is characterized by the following factors.

• n(x, y): Number of individual magnetic moments corresponding to proton density.
• k(x, y, i): Phase constant associated with ith magnetic moment of the (x, y) posi-

tion of the image slice.

When the individual magnetic moments of the particular position (x, y) are under-
going random phase change, resultant magnitude of the magnetic moment at (x, y)
gradually decreases at every pixel. This is known as dephasing. The rate at which the
magnitude is decreasing gives the characteristics of the image slice at (x, y). In case
of proton-density image, we try to record n(x, y) and in the case of T2 image, we try
to measure the magnitude of the resultant magnetic moment of every pixel (x, y) at
the particular instant to sense the rate at which the magnitude is decreasing i.e. T2
imaging. The time instants mentioned in this chapter are arbitrarily chosen and are
represented in seconds.

E. S. Gopi, Digital Signal Processing for Medical Imaging Using Matlab, 49
DOI: 10.1007/978-1-4614-3140-4_3, © Springer Science+Business Media New York 2013
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3.1.1 Proton-Density MRI Imaging

Let the image slice be represented as the matrix with the values filled up with proton-
density is as follows.

n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 9 7 9 5 8 6 9 9 4
5 5 9 10 9 5 5 1 7 9 10
6 9 6 1 2 9 9 2 6 9 6
5 6 2 2 7 8 2 2 2 9 2
9 8 1 10 9 5 8 7 10 1 5
6 1 2 4 7 3 7 8 1 3 9
9 9 7 6 5 4 7 9 10 3 4
5 3 2 9 8 9 4 6 5 10 7
4 1 3 8 2 9 5 10 9 4 6
5 9 6 4 4 2 1 7 8 9 7
4 8 5 7 8 3 1 4 9 8 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

These are the magnitude of the resultant magnetic moment at t = 0 (refer Fig. 3.4).
The following steps are followed to obtain the K-space corresponding to the proton-
density image. The identical transverse components are assumed to be available at
every pixel of the image slice, i.e. they are in-phase and are rotating in the Larmor
frequency.

1. Apply Gy gradient for the duration of 0.0000000009.
2. Apply −Gx gradient for the duration of 0.0000000009.
3. Apply Gx gradient for the duration of 0.0000000018. During this phase, after the

time duration of 0.0000000009, there is the cancellation of phase introduced due
to Gx . This is known as Gradient echo. This helps to synchronize the hardware
to sample at the particular instant during real time to choose the proper position
in the K-space.

4. Sample the real and imaginary component of the signal s(t) to obtain the sample
of the K-space at (Gx, Gy).

5. Proper scaling factor is used so that the final basis (to perform IFFT2) look like

the standard form e
−j2πxGx

11 e
−j2πyGy

11 . This is the process of discretization.
6. The above steps are repeated for the complete scan in the K-space. For every

time, we have to wait for the longitudinal component to reach maximum before
applying 90◦ RF pulse. (This is illustrated by repeating the steps 1–5 by varying
the values of Gx and Gy ranging from −5 to 5 with the interval of 1.)

The resultant KSPACE is obtained as follows.



3.1 Illustration on the Steps Involved in Obtaining Proton-Density MRI Image 51

Fig. 3.1 Original and reconstructed K-space for getting MRI image

Re(KSPACE) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4.71 −12.82 −2.89 57.96 −5.48 11.31 3.35 −39.67 −24.11 −0.34 19.19
26.47 −9.98 −24.29 −4.29 −28.18 −23.23 0.67 10.63 3.04 1.45 12.73
7.42 31.81 59.29 −15.34 −33.04 15.16 −46.07 −16.54 −22.91 −2.44 −11.88

−4.69 6.59 12.34 −0.29 −1.74 30.58 −8.22 −30.34 4.82 −12.82 18.14
23.15 −18.67 −49.30 −24.40 2.44 11.05 34.95 −37.86 −37.53 12.97 −11.28
−9.51 7.10 18.70 −30.82 −6.02 693.89 2.54 −20.17 10.91 1.68 −10.68
−18.21 12.50 −23.29 −56.08 36.61 13.42 −0.81 −33.28 −51.17 −20.94 26.57

3.23 −17.01 9.72 −29.82 −0.19 20.29 −4.93 −4.56 35.67 0.20 5.92
−3.89 −2.59 −28.57 −26.29 −37.39 10.46 −33.10 −5.57 55.70 28.03 10.00
13.84 −3.24 −3.26 24.46 −12.80 −31.76 −31.32 −3.83 −26.37 −4.38 25.49
7.97 13.58 −16.73 −32.80 −5.08 25.05 −3.15 50.89 2.87 −3.73 −10.30

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Im(KSPACE) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

15.49 −20.75 −14.20 6.40 −4.86 −37.58 20.98 −9.61 −14.07 −35.68 24.91
−2.84 −12.35 10.26 −0.30 13.79 26.61 34.46 −37.66 15.55 11.75 −5.44
−8.14 3.26 −2.80 −21.96 6.83 8.99 −12.94 28.40 19.17 0.87 −18.12
−26.31 15.07 −62.43 11.02 8.55 20.22 −18.95 4.80 −13.54 13.36 34.59
−13.48 9.60 14.80 27.75 7.85 −8.34 −11.35 54.47 −28.97 −1.42 20.08

4.94 12.48 16.21 −21.11 −20.77 −140.66 21.48 31.45 −22.21 −14.26 −0.85
−14.09 −3.74 41.30 −35.42 −3.16 3.38 −8.18 −16.06 5.57 −1.57 3.40
−38.92 −7.31 10.60 7.40 20.65 −30.53 −7.20 −10.03 52.69 −16.45 26.06
21.31 0.15 −8.73 −19.72 29.85 −14.18 6.57 26.20 −20.51 −15.39 4.61
0.06 −11.38 −15.50 30.55 −32.00 −15.46 −1.73 1.94 0.01 15.27 −7.68

−30.42 33.00 22.35 24.30 −20.63 30.20 6.61 −28.47 14.20 24.10 −12.44

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1, 1) position of the matrix Re(KSPACE) corresponds to the frequency (−Gx,

−Gy). Similarly (11, 11) corresponds to (Gx,−Gy). Hence K-space is rearranged
properly (refer Fig. 3.1) before applying IFFT2.

IFFT2 is applied to the reconstructed K-space (refer Fig. 3.1) and the absolute
value is computed to obtain the image matrix as shown below.

FINALPROTONDENSITYIMAGE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 3 9 7 9 5 8 6 9 9 4
5 5 9 10 9 5 5 1 7 9 10
6 9 6 1 2 9 9 2 6 9 6
5 6 2 2 7 8 2 2 2 9 2
9 8 1 10 9 5 8 7 10 1 5
6 1 2 4 7 3 7 8 1 3 9
9 9 7 6 5 4 7 9 10 3 4
5 3 2 9 8 9 4 6 5 10 7
4 1 3 8 2 9 5 10 9 4 6
5 9 6 4 4 2 1 7 8 9 7
4 8 5 7 8 3 1 4 9 8 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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In this procedure, it is noted that at the time of sampling the K-space, there is no
significant dephasing experienced by the individual magnetic moments at every pixel.
Hence the reconstructed image mainly contributes the proton-density at every pixel. It
is observed from the matrix FINALPROTONDENSITYIMAGE that the pixel values
are exactly the number of individual magnetic moments (n) at every pixel (x, y). This
type of MRI imaging technique is known as proton-density MRI imaging.

3.1.1.1 protondensity.m

siz=11;
K=0.2; %Initial phase
Mxyit=[];
gamma=2*pi*42.58*(10ˆ6);
d1=((10ˆ3)/(11*42.58*(10ˆ6)*0.0000000009));
d2=((10ˆ3)/(11*42.58*(10ˆ6)*0.0000000009));
B0=1;
n=round(rand(siz,siz)*9+1);
for x=1:1:siz

for y=1:1:siz
for i=1:1:n(x,y)

k(x,y,i)=rand*2-1;
end

end
end
KSPACE=zeros(11,11);
for Gx=-5:1:5;
for Gy=-5:1:5;
Gy1=Gy/(10ˆ3);%This is to indicate that B0 is high compared with y-gradient
Gx1=Gx/(10ˆ3);%This is to indicate that B0 is high compared with x-gradient
for x=0:1:siz-1
for y=0:1:siz-1
for i=1:1:n(x+1,y+1)
phi1=k(x+1,y+1,i)*0.0000000009*2*pi;
%The magnetic moments after applying y-gradient for the duration of
%0.0000000009
temp1(x+1,y+1,i)=exp(-j*((B0*gamma+gamma*y*d2*Gy1)*0.0000000009-phi1+K));
%The magnetic moments after applying x-gradient for the duration of
%0.0000000009 after applying the y-gradient for the duration of
%0.0000000009
phi2=k(x+1,y+1,i)*0.0000000009*2*pi;
temp2(x+1,y+1,i)=exp(-j*((B0*gamma+d2*gamma*y*Gy1)*0.0000000009-phi1+K))...
*exp(-j*((B0*gamma-gamma*d1*x*Gx1)*0.0000000009-phi2));
%The magnetic moments after applying x-gradient for the duration of
%0.0000000018 after applying the y-gradient for the duration of
%0.0000000009 and negative x-gradient for the duration of 0.0000000009
phi3=k(x+1,y+1,i)*0.0000000018*2*pi;
temp3(x+1,y+1,i)=exp(-j*((B0*gamma+gamma*d2*y*Gy1)*0.0000000009-phi1+K))...
*exp(-j*((B0*gamma-gamma*d1*x*Gx1)*0.0000000009-phi2))*...
exp(-j*((B0*gamma+gamma*d1*x*Gx1)*0.0000000018-phi3));
end
end
end

for x=0:1:siz-1
for y=0:1:siz-1

for i=1:1:n(x+1,y+1)
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KSPACE(Gx+6,Gy+6)=KSPACE(Gx+6,Gy+6)+temp3(x+1,y+1,i);
end
end

end
end
end

KSPACEREARRANGED=KSPACE(6:1:11,6:1:11);
KSPACEREARRANGED=[KSPACEREARRANGED KSPACE(6:1:11,1:1:5)];
KSPACEREARRANGED=[KSPACEREARRANGED; KSPACE(1:1:5,6:1:11) KSPACE(1:1:5,1:1:5) ];
RECONSTRUCTED=ifft2(KSPACEREARRANGED)
%Hence the measured image is the proton density image.

3.2 Illustrtion on the Steps Involved in Obtaining the T2 MRI
Image Using Cartesian Scanning

Let the image slice be represented as the matrix with the values filled up with proton-
density (number of individual magnetic moments available at every pixel) is as
follows.

n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 5 9 3 7 4 7 2 10 3 3
8 5 5 3 9 1 6 2 9 4 9
8 3 9 4 2 3 6 5 3 6 6
3 8 4 9 7 6 4 7 6 8 9
7 8 7 6 2 6 8 7 8 5 7
2 9 6 8 7 3 4 7 6 6 3
7 6 2 4 7 7 7 1 7 2 2
4 3 5 5 1 2 9 2 6 3 6
7 6 9 10 8 9 4 8 8 4 5
4 3 1 2 10 2 8 9 2 5 7
7 5 4 2 5 4 8 8 5 3 8

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Every magnetic moments at every pixel are assumed to be identical (magnitude and
phase) at t = 0. Initial phase of every individual magnetic moments are assumed
to be identically equal to K = 0.2. Individual magnetic moments of every pixel
undergoes phase change, which varies linearly as 2πk(x, y, i)t, where k(x, y, i) is
the linear phase constant associated with ith magnetic moment at the position (x, y).
Phase constants of the individual magnetic moments at every pixel are illustrated in
the Fig. 3.2. Every subplot of the Fig. 3.2 belongs to the individual pixel. For instant
(1, 1) subplot corresponds to (1, 1) pixel. The phase constants associated with the
three (note that n(1, 1) = 3) individual magnetic moments at the position (1, 1) is
shown as the three stems in the subplot (1, 1). The following steps are followed to
obtain T2 image.

1. Apply Gy gradient for the duration of 0.1.
2. Apply Gx gradient for the duration of 0.1.
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Fig. 3.2 Illustration of the phase constants of the individual magnetic moments at every pixel of
the image slice of size 11 × 11 (refer Sect. 3.2)

3. Apply 180◦ pulse and allow the magnetic moment to dephase for 0.3. During this
phase, after the time duration of 0.2, there exists the momentary peak occur in the
resultant magnitude of the magnetic moment of every pixel. This is called spin
echo (refer Sect. 3.2.2). Usually the transverse components reduces drastically
due to factors other than the spin–spin relaxation. The transverse component
becomes almost zero before the hardware perform the procedure to capture the
MRI signal. But spin echo guarantees the availability of the signal, so that the
hardware can capture the required signal.

4. Apply Gx gradient for the duration of 0.2. During this period, there is the cancel-
lation of phase introduced due to the Gx component. This is known as Gradient
echo. This helps to synchronize the hardware to sample at the particular sample
time to choose the proper position in the K-space. This is similar to the one used
in proton-density MRI image.

5. Sample the real and imaginary component of the signal s(t) to obtain the sample
of the K-space at (Gx,−Gy).

6. Proper scaling factor is used so that the final basis (to perform IFFT2) look like

the standard form e
−j2πxGx

11 e
−j2πyGy

11 . This is the process of discretization.
7. The above steps are repeated for the complete scan in the K-space. For every

time, we have to wait for the longitudinal component to reach maximum before
applying 90◦ RF pulse. (This is illustrated by repeating the steps 1–5 by varying
the values of Gx and Gy ranging from −5 to 5 with the interval of 1).

The obtained K-space is viewed as the function of Gx and G′
y = −Gy. The K-

space is rearranged and are subjected to IFFT2 to obtain the MRI image f (x,−y)
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Fig. 3.3 Original and reconstructed K-space for getting MRI T2 image f (x,−y)

(refer Fig. 3.3). The image in the spatial domain f (x,−y) is further properly arranged
to obtain f (x, y).

Thus the reconstructed T2 image matrix is as follows.

RECONSTRUCTEDIMAGE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.55 2.00 6.99 1.73 3.92 3.04 3.76 1.62 6.54 1.55 1.02
5.26 4.70 1.08 1.47 5.04 1.00 2.22 0.42 4.63 2.53 5.02
3.89 1.17 5.57 1.60 0.88 1.01 4.02 3.85 2.48 0.74 4.39
2.44 5.30 2.00 6.65 5.32 3.64 2.41 4.64 5.49 2.30 4.54
4.00 2.67 2.91 5.19 0.88 1.97 3.18 3.78 2.74 3.65 2.18
2.00 5.19 3.01 6.21 3.47 1.61 2.52 4.92 4.08 3.92 2.43
1.49 4.83 2.00 3.33 3.30 3.66 3.13 1.00 4.52 1.59 1.96
2.40 2.85 2.01 2.00 1.00 1.96 5.30 1.91 2.90 2.67 2.66
3.87 4.12 7.80 4.25 6.18 4.52 3.84 4.84 3.05 2.89 1.13
1.60 2.71 1.00 1.93 5.29 2.00 5.75 7.01 1.91 2.13 4.02
2.96 2.41 2.73 0.42 3.23 2.07 4.69 4.96 3.90 2.22 4.76

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

The resultant magnitude of the magnetic moments at every pixel during dephasing
(refer Figs. 3.4, 3.5). Note that at t = 0, the value is the corresponding proton-density.
As time goes, the resultant magnitude gradually decreases. At t = 0.3, (note that
we allowed the magnetic moment to dephase for 0.3) the resultant magnitude (refer
Fig. 3.4) is measured as follows.

RESULTANTMAGNITUDEat t=0.3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.55 2.00 6.99 1.73 3.92 3.04 3.76 1.62 6.54 1.55 1.02
5.26 4.70 1.08 1.47 5.04 1.00 2.22 0.42 4.63 2.53 5.02
3.89 1.17 5.57 1.60 0.88 1.01 4.02 3.85 2.48 0.74 4.39
2.44 5.30 2.00 6.65 5.32 3.64 2.41 4.64 5.49 2.30 4.54
4.00 2.67 2.91 5.19 0.88 1.97 3.18 3.78 2.74 3.65 2.18
2.00 5.19 3.01 6.21 3.47 1.61 2.52 4.92 4.08 3.92 2.43
1.49 4.83 2.00 3.33 3.30 3.66 3.13 1.00 4.52 1.59 1.96
2.40 2.85 2.01 2.00 1.00 1.96 5.30 1.91 2.90 2.67 2.66
3.87 4.12 7.80 4.25 6.18 4.52 3.84 4.84 3.05 2.89 1.13
1.60 2.71 1.00 1.93 5.29 2.00 5.75 7.01 1.91 2.13 4.02
2.96 2.41 2.73 0.42 3.23 2.07 4.69 4.96 3.90 2.22 4.76

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(which is same as that of RECONSTRUCTEDIMAGE).
Thus T2 image gives the resultant magnitude of the magnetic moment at every

pixel after dephasing for some finite time duration (0.3 in our illustration). We also
know that the initial values of the magnetic moments (t = 0) at every pixel is
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Fig. 3.4 Illustration of the decrease in the magnitude of the resultant magnetic moment at every
pixel (of the 11 × 11 image slice) due to natural transverse relaxation (spin–spin interaction based)

Fig. 3.5 a Illustration of the dephasing of the individual magnetic moments at one particular
pixel position (x, y); b corresponding illustration of the decrease in the magnitude of the resultant
magnetic moment
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measured using proton-density image. Let the resultant magnitude of the magnetic
moment of the pixel (x, y) at t = 0 and at t = 0.3 be represented as K(x, y)0 and

K(x, y)0.3 respectively. They are related as K(x, y)0.3 = K(x, y)0e
−0.3

T2(x,y) . Hence

T2(x, y) = 0.3 ∗ loge

(
K(x, y)0.3

K(x, y)0

)
(3.1)

Thus T2 image is obtained as follows.

FINALT2IMAGE =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.16 0.92 0.2527 0.5505 0.5798 0.2744 0.6215 0.2107 0.4246 0.6604 1.0788
0.42 0.06 1.5325 0.7133 0.5798 0 0.9943 1.5606 0.6647 0.4581 0.5838
0.72 0.94 0.4798 0.9163 0.8210 1.0887 0.4005 0.2614 0.1904 2.0929 0.3124
0.21 0.41 0.6931 0.3026 0.2744 0.4998 0.5067 0.4112 0.0888 1.2465 0.6843
0.56 1.0974 0.8778 0.1450 0.8210 1.1137 0.9226 0.6162 1.0715 0.3147 1.1666

0 0.5505 0.6898 0.2533 0.7018 0.6224 0.4620 0.3526 0.3857 0.4257 0.2107
1.55 0.2169 0 0.1833 0.7520 0.6484 0.8049 0 0.4374 0.2294 0.0202
0.51 0.0513 0.9113 0.9163 0 0.0202 0.5295 0.0460 0.7270 0.1165 0.8134
0.59 0.3759 0.1431 0.8557 0.2581 0.6887 0.0408 0.5025 0.9643 0.3250 1.4872
0.92 0.1017 0 0.0356 0.6368 0 0.3302 0.2499 0.0460 0.8533 0.5546
0.86 0.7298 0.3820 1.5606 0.4370 0.6587 0.5340 0.4780 0.2485 0.3011 0.5192

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

3.2.1 Note to the Fig. 3.4

1. The initial magnitude of the resultant magnetic moment gives the proton-density
of the particular pixel. This leads to proton-density image.

2. The rate at which the resultant magnetic moment is decreasing gives the time
constant T2, which leads to T2 image.

3.2.1.1 t2.m

siz=11;
K=0.2; %Initial phase
Mxyit=[];
gamma=2*pi*42.58*(10ˆ6);
d1=((10ˆ3)/(11*42.58*10ˆ6*0.1));
d2=((10ˆ3)/(11*42.58*10ˆ6*0.1));
B0=1;
n=round(rand(siz,siz)*9+1);
%n=ones(siz,siz)*10;
for x=1:1:siz

for y=1:1:siz
for i=1:1:n(x,y)

k(x,y,i)=rand*2-1;
end

end
end
KSPACE=zeros(11,11);
for Gx=-5:1:5;
for Gy=-5:1:5;
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Gx1=Gx/(10ˆ3);
Gy1=Gy/(10ˆ3);
for x=0:1:siz-1
for y=0:1:siz-1
for i=1:1:n(x+1,y+1)
phi1=k(x+1,y+1,i)*0.1*2*pi;
%The magnetic moments after applying positive y-gradient for the duration of
%0.1
temp1(x+1,y+1,i)=exp(-j*((B0*gamma+gamma*y*d2*Gy1)*0.1-phi1+K));
%The magnetic moments after applying negative x-gradient for the duration of
%0.1 after applying the y-gradient for the duration of 0.1

phi2=k(x+1,y+1,i)*0.1*2*pi;
temp2(x+1,y+1,i)=exp(-j*((B0*gamma+d2*gamma*y*Gy1)*0.1-phi1+K))...
*exp(-j*((B0*gamma+gamma*d1*x*Gx1)*0.1-phi2));
%Apply 180 degree phase shift and allow it to dephase for 0.3 duration
phi3=k(x+1,y+1,i)*0.3*2*pi;
temp3(x+1,y+1,i)=exp(j*((B0*gamma+gamma*d2*y*Gy1)*0.1-phi1+K))...
*exp(j*((B0*gamma+gamma*d1*x*Gx1)*0.1-phi2))*...
exp(-j*((B0*gamma)*0.3-phi3));

%apply positive x-gradient for readout for the duration of 0.2

phi4=k(x+1,y+1,i)*0.2*2*pi;
temp3(x+1,y+1,i)=exp(j*((B0*gamma+gamma*d2*y*Gy1)*0.1-phi1+K))...
*exp(j*((B0*gamma+gamma*d1*x*Gx1)*0.1-phi2))*...
exp(-j*((B0*gamma)*0.3-phi3))*exp(-j*((B0*gamma+gamma*d1*x*Gx1)*0.2-phi4));

end
end
end

for x=0:1:siz-1
for y=0:1:siz-1

for i=1:1:n(x+1,y+1)
KSPACE(Gx+6,Gy+6)=KSPACE(Gx+6,Gy+6)+temp3(x+1,y+1,i);
end

end
end
end
end
KSPACEREARRANGED=KSPACE(6:1:11,6:1:11);
KSPACEREARRANGED=[KSPACEREARRANGED KSPACE(6:1:11,1:1:5)];
KSPACEREARRANGED=[KSPACEREARRANGED; KSPACE(1:1:5,6:1:11) KSPACE(1:1:5,1:1:5) ];
RECONSTRUCTED=abs(ifft2(KSPACEREARRANGED));
%But note that what we reconstructed is f(x,-y) and not f(x,y).
save T2DATA n k
FINALRECONSIMAGE=zeros(11,11);
FINALRECONSIMAGE(:,1)=RECONSTRUCTED(:,1);
for p=1:1:11

for q=2:1:11
FINALRECONSIMAGE(p,q)=RECONSTRUCTED(p,13-q);

end
end
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3.2.1.2 Relaxation.m

load T2DATA
vector=0
for x=1:1:11

for y=1:1:11
MAG{x,y}=[];
for t=0:0.01:0.3

vector=0;
for i=1:1:n(x,y)

phi=k(x,y,i)*t*2*pi;
vector=vector+exp(-j*phi);

end
MAG{x,y}=[MAG{x,y} abs(vector)];

end
end

end
figure
sub=1;
for x=1:1:11

for y=1:1:11
subplot(11,11,sub)
%plot(MAG{x,y}/max(MAG{x,y}))
plot(MAG{x,y})
sub=sub+1;
COLLECTION(x,y)=MAG{x,y}(length(MAG{x,y}));

end
end

3.2.1.3 Dephasing.m

%Concept of dephasing
MAG=[];
t=0:0.01:1;
vectorsum=0;
k=rand(1,100)*2-1;
snap=1;
for t=0:0.01:0.04
vectorsum=0;
for i=1:1:100
phi=k(i)*t*2*pi;
subplot(1,6,snap)
hold on
plot([0 cos(phi)],[0 -sin(phi)],’k’)
title(strcat(’Time instant’,num2str(t)))
vectorsum=vectorsum+exp(-j*phi);
end
MAG=[MAG vectorsum];
snap=snap+1;
end
subplot(1,6,snap)
plot(abs(MAG),’k’)
title(’Resultant magnitude versus time’)
xlabel(’Time’)



60 3 Illustrations on MRI Techniques Using Matlab

3.2.2 Momentary Peak Due to Spin Echo

The following experiment demonstrate the momentary peak of the resultant mag-
nitude at every pixel achieved after applying 180◦ pulse. This is due to rephasing.
This is called spin echo. Spin echo helps to obtain the significant signal for a while
so that the hardware can capture the required signal during dephasing. The experi-
ment involves obtaining the spatial domain image at three different time instances
as described below.
Time instant: 0.2

1. Initialize k and n.
2. Apply Gy gradient for the duration of 0.1.
3. Apply the read-out Gx gradient for the duration of 0.1.
4. Sample the value at the end of read-out duration.
5. Sample value corresponds to Gx, Gy.
6. Note that the resultant magnitude at every pixel (at time instant t = 0.2) corre-

sponds to the values obtained after dephasing for the duration of 0.2.

Time instant: 0.4

1. Initialize k and n (same as that of the one used in the case of time instant t = 0.2).
2. Apply Gy gradient for the duration of 0.1.
3. Apply Gx gradient for the duration of 0.1.
4. Apply 180◦ RF pulse.
5. Apply read-out Gx gradient for the duration of 0.2.
6. Sample the value at the end of read-out duration.
7. Sample value corresponds to Gx,−Gy.
8. Note that the resultant magnitude at every pixel (at time instant t = 0.4) corre-

sponds to the values obtained after rephasing for the duration of 0.2 (obtained
during read-out phase), after the time instant t = 0.2.

9. This is the spin–echo instant at which momentary peak has occurred.

Time instant: 0.5

1. Initialize k and n (same as that of the one used in the case of time instant t = 0.2).
2. Apply Gy gradient for the duration of 0.1.
3. Apply Gx gradient for the duration of 0.1.
4. Apply 180◦ RF pulse.
5. Allow relaxation explicitly for the duration of 0.1. This helps to cancel out partially

the phase introduced in steps 1 and 2. This step acts as the rephasing stage.
6. Apply read-out Gx gradient for the duration of 0.2. During this phase, the first

0.1 s acts as the rephasing stage to obtain the echo at 0.4. The next 0.1 s acts as
the dephasing stage.

7. Sample the value at the end of read-out duration.
8. Sample value corresponds to Gx,−Gy.
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9. Thus the resultant magnitude at every pixel (at time instant t = 0.5) corresponds
to the values obtained after dephasing of the resultant magnetic moment for the
duration of 0.1. This is obviously lesser than the value at time instant t = 0.4

The spatial matrix at three different time instances (described in the Sect. 3.2.2)
are given below.

S0.2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.00 5.84 6.11 2.96 2.79 2.54 7.93 6.99 7.59 1.42 3.42
1.00 5.95 3.56 2.05 7.00 5.67 3.33 1.34 9.14 1.00 6.02
2.29 4.33 5.73 4.04 6.44 4.00 1.65 5.33 6.53 1.87 4.68
3.74 3.86 1.89 7.07 6.67 4.16 3.63 2.86 6.67 5.09 3.75
6.69 3.26 2.86 3.18 3.72 6.90 5.76 6.66 4.41 1.81 1.45
6.06 2.00 3.53 4.44 3.94 2.97 3.45 4.92 1.00 7.98 4.58
6.16 4.48 1.97 3.96 3.87 6.15 5.39 7.60 6.42 3.03 4.04
5.40 4.84 3.27 3.95 5.90 6.34 5.56 5.78 3.33 2.50 5.27
8.72 6.32 1.00 5.23 3.13 4.72 1.00 1.84 5.00 3.89 6.11
2.18 2.98 2.55 3.61 2.00 2.57 1.86 2.00 7.09 1.94 1.00
4.24 2.31 2.45 5.02 8.00 6.04 4.45 2.00 2.09 2.41 1.55

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S0.4 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

2.00 6.00 7.00 4.00 3.00 3.00 9.00 9.00 10.00 2.00 4.00
1.00 7.00 4.00 3.00 9.00 8.00 4.00 2.00 10.00 1.00 7.00
3.00 6.00 7.00 5.00 8.00 5.00 2.00 7.00 9.00 3.00 6.00
4.00 4.00 2.00 10.00 9.00 5.00 5.00 4.00 8.00 8.00 4.00
8.00 4.00 5.00 4.00 5.00 9.00 8.00 8.00 6.00 2.00 2.00
9.00 2.00 4.00 5.00 6.00 4.00 4.00 6.00 1.00 9.00 6.00
8.00 6.00 2.00 4.00 5.00 8.00 8.00 10.00 8.00 4.00 6.00
6.00 6.00 4.00 4.00 8.00 8.00 7.00 7.00 5.00 3.00 8.00

10.00 8.00 1.00 6.00 4.00 6.00 1.00 3.00 5.00 4.00 9.00
3.00 3.00 4.00 5.00 2.00 4.00 2.00 2.00 9.00 2.00 1.00
6.00 3.00 3.00 6.00 9.00 8.00 6.00 2.00 3.00 3.00 2.00

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

S0.5 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1.73 5.96 6.77 3.72 2.95 2.88 8.72 8.44 9.37 1.85 3.85
1.00 6.71 3.89 2.74 8.47 7.37 3.83 1.88 9.78 1.00 6.75
2.81 5.56 6.66 4.75 7.59 4.74 1.91 6.55 8.34 2.69 5.65
3.94 3.96 1.97 9.23 8.36 4.78 4.63 3.68 7.65 7.22 3.94

7.650 3.80 4.42 3.78 4.67 8.45 7.40 7.65 5.58 1.95 1.86
8.21 2.00 3.88 4.85 5.46 3.73 3.86 5.72 1.00 8.74 5.60
7.51 5.60 2.00 3.99 4.71 7.52 7.30 9.35 7.58 3.75 5.48
5.85 5.70 3.80 3.99 7.45 7.55 6.63 6.67 4.56 2.87 7.27
9.66 7.55 1.00 5.80 3.77 5.66 1.00 2.68 5.00 3.97 8.22
2.78 3.00 3.58 4.64 2.00 3.61 1.96 2.00 8.46 1.98 1.00
5.53 2.82 2.86 5.73 8.72 7.47 5.59 2.00 2.76 2.85 1.88

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Note that the elements of the matrix S0.4 corresponds to the local maxima occurred
due to rephasing (spin echo).
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3.2.2.1 Spinechodemonstration.m

siz=11;
K=0.2; %Initial phase
Mxyit=[];
gamma=2*pi*42.58*(10ˆ6);
d1=((10ˆ3)/(11*42.58*10ˆ6*0.1));
d2=((10ˆ3)/(11*42.58*10ˆ6*0.1));
B0=1;
n=round(rand(siz,siz)*9+1);
for x=1:1:siz

for y=1:1:siz
for i=1:1:n(x,y)

k(x,y,i)=rand*2-1;
end

end
end

KSPACE=zeros(11,11);
for i=1:1:3
KKSPACE{i}=zeros(11,11);
end
for Gx=-5:1:5;
for Gy=-5:1:5;
Gx1=Gx/(10ˆ3);
Gy1=Gy/(10ˆ3);
for x=0:1:siz-1
for y=0:1:siz-1
for i=1:1:n(x+1,y+1)
phi1=k(x+1,y+1,i)*0.1*2*pi;
%The magnetic moments after applying positive y-gradient for the duration of
%0.1
temp1(x+1,y+1,i)=exp(-j*((B0*gamma+gamma*y*d2*Gy1)*0.1-phi1+K));
%Case 1:
%At time instant=0.2 (refer section 3.2.2)
phi2=k(x+1,y+1,i)*0.1*2*pi;
temp2(x+1,y+1,i)=exp(-j*((B0*gamma+d2*gamma*y*Gy1)*0.1-phi1+K))...
*exp(-j*((B0*gamma+gamma*d1*x*Gx1)*0.1-phi2));

%Case 2:
%At time instant=0.4 (refer section 3.2.2)

phi3=k(x+1,y+1,i)*0.2*2*pi;
temp3(x+1,y+1,i)=exp(j*((B0*gamma+gamma*d2*y*Gy1)*0.1-phi1+K))...
*exp(j*((B0*gamma+gamma*d1*x*Gx1)*0.1-phi2))*...
exp(-j*((B0*gamma+gamma*d1*x*Gx1)*0.2-phi3));

%Case 3:
%At time instant=0.8 (refer section 3.2.2)
phi4=k(x+1,y+1,i)*0.1*2*pi;
phi5=k(x+1,y+1,i)*0.2*2*pi;
temp4(x+1,y+1,i)=exp(j*((B0*gamma+gamma*d2*y*Gy1)*0.1-phi1+K))...
*exp(j*((B0*gamma+gamma*d1*x*Gx1)*0.1-phi2))*...
exp(-j*((B0*gamma)*0.1-phi4))*exp(-j*((B0*gamma+gamma*d1*x*Gx1)*0.2-phi5));
end
end
end

for x=0:1:siz-1
for y=0:1:siz-1
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for i=1:1:n(x+1,y+1)
KKSPACE{1}(Gx+6,Gy+6)=KKSPACE{1}(Gx+6,Gy+6)+temp2(x+1,y+1,i);
KKSPACE{2}(Gx+6,Gy+6)=KKSPACE{2}(Gx+6,Gy+6)+temp3(x+1,y+1,i);
KKSPACE{3}(Gx+6,Gy+6)=KKSPACE{3}(Gx+6,Gy+6)+temp4(x+1,y+1,i);

end
end

end
end
end

KSPACE=KKSPACE{1};
KSPACEREARRANGED=KSPACE(6:1:11,6:1:11);
KSPACEREARRANGED=[KSPACEREARRANGED KSPACE(6:1:11,1:1:5)];
KSPACEREARRANGED=[KSPACEREARRANGED; KSPACE(1:1:5,6:1:11) KSPACE(1:1:5,1:1:5) ];
SPINECHO{1}=abs(ifft2(KSPACEREARRANGED));
%Note that what we have reconstructed f(x,y)

for i=2:1:3
KSPACE=KKSPACE{i};
KSPACEREARRANGED=KSPACE(6:1:11,6:1:11);
KSPACEREARRANGED=[KSPACEREARRANGED KSPACE(6:1:11,1:1:5)];
KSPACEREARRANGED=[KSPACEREARRANGED; KSPACE(1:1:5,6:1:11) KSPACE(1:1:5,1:1:5) ];
RECONSTRUCTED=abs(ifft2(KSPACEREARRANGED));
%But note that what we reconstructed is f(x,-y) and not f(x,y).
%f(x,y) is reconstructed as follows.
FINALRECONSIMAGE=zeros(11,11);
FINALRECONSIMAGE(:,1)=RECONSTRUCTED(:,1);
for p=1:1:11

for q=2:1:11
FINALRECONSIMAGE(p,q)=RECONSTRUCTED(p,13-q);

end
end
SPINECHO{i}=FINALRECONSIMAGE;
end

3.3 Illustration on the Steps Involved in Obtaining the T2 MRI
Image Using Polar Scanning

1. Initialize n and k.
2. Apply Gx and Gy gradient simultaneously for the duration of 0.1 corresponding

to the controlling parameter r and θ i.e. Gx = rcos(θ) and Gy = rsin(θ).

3. Apply 180◦ pulse for the duration of 0.3.
4. Allow the resultant magnetic moment to dephase for the duration of 0.3.
5. Apply the Gx and Gy gradient simultaneously for the duration of 0.2 as the read-

out phase. Sample the value at the end of the read-out phase. This corresponds
to Gx = rcos(θ) and Gy = rsin(θ).

6. Note that the steps used in this technique are exactly same as that of Cartesian
spin–echo based T2 MRI. The difference is, in this case K-space is scanned in
the polar fashion as shown in the Fig. 3.6.

7. This is repeated for specific range of r (depends upon on the resolution required
for the image slice) and θ ranges from 0 to π .

8. K-space data F(Gx, Gy) = F(rcos(θ), rsin(θ)) is rewritten as G(r, θ).



64 3 Illustrations on MRI Techniques Using Matlab

Fig. 3.6 a Illustrating the order in which the K-space is scanned; b sample polar scanned K-space

9. Apply inverse fourier transformation in polar form to obtain f (x, y) (refer
Sect. 3.3.1).

10. For checking the validity of reconstruction from polar data, k is chosen as zero
matrix (No dephasing) for illustration. This helps to obtain proton-density image
(n-matrix) as the reconstructed image.

3.3.1 Reconstructing f (x, y) from G(r, θ)

There are two major techniques to obtain f (x, y) from G(r, θ) namely back-
projection technique and the interpolation technique as described below. The
interpolation technique is used for illustration purpose.

3.3.1.1 Back-Projection Technique

The generalized formula to reconstruct f (x, y) from G(r, θ) is as shown below.

f (x, y) =
π∫

−π

∞∫

0

G(r, θ) expj2π(xcosθ+ysinθ)r |J|drdθ (3.2)

1. It it noted G(r, θ) is the fourier transformation of the radon transformation R(l, θ)

for the specific constant θ .
2. It is possible to get back f (x, y) by getting R(l, θ) using inverse fourier transfor-

mation (refer Sect. 1.2), followed by back-projection technique.

http://dx.doi.org/10.1007/978-1-4614-3140-4_1


3.3 Illustration on the Steps Involved in Obtaining the T2 MRI Image Using Polar Scanning 65

(a)

(b)

(c)

Fig. 3.7 a Fourier transformation of the radon transformation (column-wise) for the specific θ ;
b interpolated K-space with zero interpolation c Interpolated K-space with linear interpolation

3.3.1.2 Interpolation Technique

1. Interpolate to obtain the F(Gx, Gy) (with more number of sample points in
frequency domain) from polar scanned F(Gxcos(θ), Gysin(θ)).

2. Apply inverse IFFT2 of F(Gx, Gy) to obtain f (x, y).
3. The quality of the MRI image can be improved by increasing the resolution of

the variable θ .
4. Interpolation in the frequency domain increases the number of samples obtained

in 2D frequency domain between −π to π in both the directions.
5. Interpolation in the frequency domain will not increase the spatial resolution in

the spatial domain. But it is equivalent to padding zeros in the spatial domain in
both the directions.

6. Hence after obtaining IFFT2 of the interpolated K-space, collect the 25 × 25
matrix from the top-left corner to obtain the image (refer Fig. 3.7).

7. The original and the reconstructed image (n-matrix) using zero interpolation and
the liner interpolation are illustrated in the Fig. 3.8.

3.3.1.3 Spinechopolar.m

siz=25;

K=0.2; %Initial phase

Mxyit=[];

%instead of 59 ,2559

gamma=2*pi*42.58*(10ˆ6);

d1=((10ˆ3)/(25*42.58*10ˆ6*0.1));

d2=((10ˆ3)/(25*42.58*10ˆ6*0.1));

%d1=1;
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Fig. 3.8 Illustration of the original and the reconstructed spatial domain (proton-density) from the
polar scanned K-space G(r, θ)

%d2=1;

B0=1;

n=ones(3,25)*2;

for i=1:1:10

n=[n;ones(1,25)*i];

end

for i=10:-1:1

n=[n;ones(1,25)*i];

end

n=[n;ones(2,25)*1];

POS=[];

for x=1:1:siz

for y=1:1:siz

for i=1:1:n(x,y)

% k(x,y,i)=rand*2-1; %With dephasing

k(x,y,i)=0; %Just to check the validity of the program

end

end

end

KSPACE=zeros(101,180);

for r=0:(13/100):13

r1=round((r)*(100/13)+1);

for theta=-pi:(2*pi)/179:pi

theta1=round((theta+pi)*(179/(2*pi))+1);

Gx=r*cos(theta) ;

Gy=r*sin(theta);

Gx1=Gx/(10ˆ3);

Gy1=Gy/(10ˆ3);

POS=[POS;

Gx Gy];

temp=0;

for x=0:1:24

for y=0:1:24

for i=1:1:n(x+1,y+1)

phi1=k(x+1,y+1,i)*0.1*2*pi;

%x-Gradient and y-Gradient are applied simultaneously for the duration of

%0.1
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temp1(x+1,y+1,i)=exp(-j*((B0*gamma+gamma*y*d2*Gy1)*0.1-phi1+K))...

*exp(-j*((B0*gamma+gamma*x*d1*Gx1)*0.1-phi1+K));

%Apply 180 degree phase shift and allow it to dephase for 0.3 duration

phi2=k(x+1,y+1,i)*0.3*2*pi;

temp2(x+1,y+1,i)=exp(j*((B0*gamma+gamma*y*d2*Gy1)*0.1-phi1+K))*...

exp(j*((B0*gamma+gamma*x*d1*Gx1)*0.1-phi1+K))*...

exp(-j*((B0*gamma)*0.3-phi2));

%Positive x-Gradient and y-Gradient are applied simultaneously for the duration of

%0.2 as the read-out time duphase. At the end of the read-out phase,the

%k-space is sampled corresponding to (r,theta)

phi3=k(x+1,y+1,i)*0.2*2*pi;

temp3(x+1,y+1,i)=exp(j*((B0*gamma+gamma*y*d2*Gy1)*0.1-phi1+K))*...

exp(j*((B0*gamma+gamma*x*d1*Gx1)*0.1-phi1+K))*...

exp(-j*((B0*gamma)*0.3-phi2))*exp(-j*((B0*gamma+gamma*y*d2*Gy1)*...

0.2-phi3))*exp(-j*((B0*gamma+gamma*x*d1*Gx1)*0.2-phi3));

end

end

end

for x=0:1:siz-1

for y=0:1:siz-1

for i=1:1:n(x+1,y+1)

KSPACE(r1,theta1)=KSPACE(r1,theta1)+temp3(x+1,y+1,i);

end

end

end

end

end

%Reconstruction using second technique(refer section 2.11.2)

F=KSPACE;

POS=round((POS+14)*10);

%Number of samples in frequency domain is increased as 250x250 from 25x25

%and zero interpolated.

A=zeros(250,250);

r1=1;

theta1=1;

for i=1:1:length(POS)

F(r1,theta1)

A(POS(i,1),POS(i,2))=F(r1,theta1) ;

theta1=theta1+1;

if(theta1==181)

r1=r1+1;

theta1=1;

end

end

figure

A=fftshift(A);

imagesc(abs(A))

C1=abs(ifft2(A));

%Increase the number of samples in frequency domain from 25x25 to 250x250

%and apply Linear interpolation,considering 8 neighbours of every pixel.

B=A;

[p,q]=find(B==0);

C=[zeros(1,250);B;zeros(1,250)];

C=[zeros(252,1) C zeros(252,1)];

p=p+1;q=q+1;

D=C;

for i=1:1:length(p)

vector=[C(p(i)-1,q(i)-1) C(p(i)-1,q(i)+1) C(p(i)+1,q(i)-1) C(p(i)+1,q(i)+1) ...

C(p(i),q(i)-1) C(p(i),q(i)+1) C(p(i)+1,q(i)) C(p(i)+1,q(i))];

D(p(i),q(i))=mean(vector);

end

B=D(2:1:251,2:1:251);
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Fig. 3.9 Illustration of the increase in the magnitude of the resultant longitudinal magnetic moment
at every pixel (of the 11 × 11 image slice) due to natural longitudinal relaxation (spin–lattice
interaction based)

figure

imagesc(abs(B))

C2=abs(ifft2(B));

figure

colormap(gray)

subplot(3,1,1)

imagesc(n)

title(’Original’)

subplot(3,1,2)

imagesc(C1(1:1:25,1:1:25))

title(’With zero interpolation in frequency domain’)

subplot(3,1,3)

title(’With Linear interpolation in frequency domain’)

imagesc(C2(1:1:25,1:1:25))

3.4 Illustration on the Steps Involved in Obtaining the T1 MRI
Image

The following steps are followed to obtain the T1 image.

1. Select the image slice using z-gradient. Apply refocussing gradient to compen-
sate the phase introduced due to z-gradient.

2. Apply 90◦ pulse to obtain the transverse component.
3. The transverse component at different pixel starts dephasing due to spin–spin

interaction (described by the factor T2(x, y)).
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Fig. 3.10 a Actual magnitude of the transverse component immediate after applying the second
90◦ pulse; b K-space; c reconstructed image, corresponding to the time constant T1

4. After approximately 3 times T2(x, y), transverse component is almost zero. Dur-
ing this duration, the longitudinal component gradually increases (refer Fig. 3.9).
This is described by the factor T1(x, y).

5. At this moment, apply another 90◦ degree pulse. This is required to obtain the
transverse component. Now the magnitude of the magnetic moment in the indi-
vidual pixel of the image slice are different at various locations (refer Fig. 3.10a).

6. Apply Gy gradient for the duration of 0.0000000009.
7. Apply −Gx gradient for the duration of 0.0000000009.
8. Apply Gx gradient for the duration of 0.0000000018. During this phase, after the

time duration of 0.0000000009, there is the cancellation of phase introduced due
to Gx . This is known as Gradient echo. This helps to synchronize the hardware
to sample at the particular instant during real time to choose the proper position
in the K-space.

9. Sample the real and imaginary component of the signal s(t) to obtain the sample
of the K-space at (Gx, Gy).

10. Proper scaling factor is used so that the final basis (to perform IFFT2) look like

the standard form e
−j2πxGx

11 e
−j2πyGy

11 . This is the process of discretization.
11. The above steps (2–10) are repeated for the complete scan in the K-space. For

every time, we have to wait for the longitudinal component to reach maximum
before applying 90◦ RF pulse. (This is illustrated by repeating the steps 1–5 by
varying the values of Gx and Gy ranging from −5 to 5 with the interval of 1).
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12. In the earlier illustrations (T2 and proton-density imaging), we have considered
the proton-density at every pixel(number of magnetic moments). But in this case,
the illustration is done in the macro level at every pixel.

13. The actual magnitude of the transverse component immediate after applying the
second 90◦ pulse, K-space and the corresponding the reconstructed image are
shown in the Fig. 3.10.

3.4.1 t1.m

siz=11;
K=0.2; %Initial phase
gamma=2*pi*42.58*(10ˆ6);
d1=((10ˆ3)/(11*42.58*(10ˆ6)*0.0000000009));
d2=((10ˆ3)/(11*42.58*(10ˆ6)*0.0000000009));
t1=1;
B0=1
%Mz(x,y) is the longituidanal component at (x,y).
T1=rand(11,11);
for tb=0:0.01:1;

t1=t1+1;
for x=1:1:11

for y=1:1:11
Mz{x,y}(t1)=(1-exp(-tb/T1(x,y)))*B0;

end
end
end
i=1;
%snapshot
for x=1:1:11
for y=1:1:11
subplot(11,11,i)
plot(Mz{x,y})
i=i+1;
end
end
%At tb=1 (at which the original transverse component due
%to dephasing is almost zero),90 degree pulse is again applied.
%Now the transverse component at different
%pixel in the image slice have different magnitude.
for x=1:1:11

for y=1:1:11
M(x,y)=Mz{x,y}(101);

end
end
%M is the magnitude of the individual transverse component at every pixel
%immediate after applying the 90 degree pulse (at t=0).

%Sampling the k-space at Gx,Gy.
temp1=0;
temp2=0;
temp3=0;
KSPACE=zeros(11,11);
for Gx=-5:1:5;
for Gy=-5:1:5;
Gy1=Gy/(10ˆ3);%This is to indicate that B0 is high compared with y-gradient
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Gx1=Gx/(10ˆ3);%This is to indicate that B0 is high compared with x-gradient
for x=0:1:siz-1
for y=0:1:siz-1
%The magnetic moments after applying y-gradient for the duration of
%0.0000000009
temp1=temp1+M(x+1,y+1)*exp(-j*((B0*gamma+gamma*y*d2*Gy1)*0.0000000009+K));
%The magnetic moments after applying negative x-gradient for the duration of
%0.0000000009 after applying the y-gradient for the duration of
%0.0000000009
temp2=temp2+M(x+1,y+1)*exp(-j*((B0*gamma+d2*gamma*y*Gy1)*0.0000000009+K))...
*exp(-j*((B0*gamma-gamma*d1*x*Gx1)*0.0000000009));
%The magnetic moments after applying x-gradient for the duration of
%0.0000000018 after applying the y-gradient for the duration of
%0.0000000009 and negative x-gradient for the duration of 0.0000000009
temp3=temp3+M(x+1,y+1)*exp(-j*((B0*gamma+gamma*d2*y*Gy1)*0.0000000009+K))...
*exp(-j*((B0*gamma-gamma*d1*x*Gx1)*0.0000000009))*...
exp(-j*((B0*gamma+gamma*d1*x*Gx1)*0.0000000018));
end
end
KSPACE(Gx+6,Gy+6)=temp3;
temp1=0;
temp2=0;
temp3=0;
end
end
KSPACEREARRANGED=KSPACE(6:1:11,6:1:11);
KSPACEREARRANGED=[KSPACEREARRANGED KSPACE(6:1:11,1:1:5)];
KSPACEREARRANGED=[KSPACEREARRANGED; KSPACE(1:1:5,6:1:11) KSPACE(1:1:5,1:1:5) ];
RECONSTRUCTED=ifft2(KSPACEREARRANGED)
figure
subplot(1,3,1)
colormap(gray)
imagesc(M)
subplot(1,3,2)
colormap(gray)
imagesc(log(abs(KSPACEREARRANGED)))
subplot(1,3,3)
colormap(gray)
imagesc(abs(RECONSTRUCTED))



Chapter 4
Medical Image Processing

4.1 Summary on the Various Medical Imaging Techniques

1. X-ray image: X-ray is transmitted through the body and are captured on the other
side of the body. The attenuation introduced in the ray helps in obtaining the image.
There are different modalities used in X-ray imaging. Example: Angiography,
Neuroradiology.

2. Computed Tomography (CT): This is identical to X-ray. But in this case, the
sequence of images are captured by rotating the image slice for 180◦ with the
resolution of θres degree. This helps to capture the particular slice of the human
body. Refer Chap. 1 for further details.

3. Magnetic Resonance Imaging (MRI): In this case, human body is exited with the
strong external magnetic field to obtain the resultant magnetic moment at every
voxel to align in the identical direction. These magnetic moments are disturbed
with the external RF excitation and the transverse component of the magnetic
moments are captured. Based on the methodology, MRI is capable of capturing
the characteristics of the proton-density (PD image), spin–spin interaction be-
tween the magnetic moments (T2 image), spin–lattice interaction of the magnetic
moments (T1 image). Refer Chap. 2 for further details.

4. Ultrasound image: The ultrasound waves are transmitted through the human body
and the reflected wave (due to reflection and the scattering) is recorded to obtain
the image.There are different modalities used in Ultrasound imaging systems.
Example: Doppler imaging.

5. Nuclear medicine image: The appropriate radioactive substances are introduced to
the body and the emission of the gamma rays are recorded to obtain the image. The
DSP’s used in CT images are used in this imaging technique also. The difference
is, in this case gamma rays emitted due to the introduced radioactive substances
are used instead of x-rays. Example: Planar scintigraphy, Positron emission to-
mography (PET), Single photon emission computed tomography (SPECT).
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4.2 Image Enhancement

The images obtained using the medical imaging technique are not usually suitable
for direct display. There is the need to process the image so that the required portion
of the image are highlighted properly for better visibility.

4.2.1 Logirthmic Display

When the range of gray values available in the image is very large (Example: The
spectrum of the image), linear colormap will not convey the complete information
(refer Fig. 4.4a).

If the logirthmic of the image values are taken and is displayed using the linear
colormap, we get the enhanced look of the image, as shown in the Fig. 4.4b.

4.2.2 Non-Linear Filtering

The non-linear filter like median filter is used to filter the spot-noise in the image as
described below.

1. Create the zero matrix Z with the size of the input image I to be filtered.
2. For every 3 × 3 (or more) overlapping subblocks of the image I , compute the

median of all the pixel values to obtain the value P .
3. The position of the center pixel of the subblock is noted as (m, n).
4. The pixel (m, n) of matrix Z is replaced with P . The image thus obtained is

median filtered image. The image with spot noise and the corresponding filtered
image using median filter is illustrated in the Fig. 4.1.

4.2.3 Image Substraction

During the treatment of the diseases (that involves medical imaging), the progress in
the treatment can be identified by substracting the image captured before and after
treatment. This highlights the progress in the treatment. There are certain imaging
technique where indicator is used. The difference between the image captured be-
fore and after the injection of indicator helps in enhanced visibility. The difference
between the successive frame of the MRI video (26 frames) helps in highlighting the
function of the organ (refer Fig. 4.2).
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Fig. 4.1 MRI image with impulsive noise and the corresponding filtered image using median filter

Fig. 4.2 Difference image in the logirthmic scale
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Fig. 4.3 Original MRI image
subjected to linear filtering

4.2.4 Linear Filterering and the Hankel Transformation

Gradual change in the pixel value gives the low frequency content of the image.
The sudden change in the pixel values give the high frequency content of the

image. Based on the requirement, we can view the image by using linear filtering as
demonstrated below.

1. Consider the MRI image as shown in the Fig. 4.3.
2. The magnitude spectrum of the MRI image and its logirthmic view (with origin

in the middle) is shown in the Fig. 4.4.
3. The logirthmic spectrum of the image after passing through the filter and its

corresponding spatial domain images are shown in the Fig. 4.5.
4. It is observed that the Fig. 4.5b consists of low frequency content of the image

(overall information, gradual change) and Fig. 4.5d consists of high frequency
content of the image (detail information).

4.2.4.1 Hankel Transformation

The typical magnitude response (spectrum) of the ideal low pass filter is as shown in
the Fig. 4.6. It is observed that the filter is circularly symmetric (we get the identical
spectrum even after rotating the spectrum image with an angle θ ). This property is
exploited to obtain the hankel transformation and are used to design any circularly
symmetric filter as described below.

1. As the spectrum is circularly symmetric, we consider the values along the
y-axis from 0 to ∞ and are represented as F(q). The hankel transformation



4.2 Image Enhancement 77

Fig. 4.4 Original spectrum and the logirthmic spectrum of the MRI image (with origin) in the
middle

(refer Appendix) of the function F(q) is given as

f (r) = 2π

∞∫

0

q F(q)J0(2πqr) (4.1)

where,

J0(q) = 1

π

π∫

0

cos(qsin(φ)) (4.2)

2. Thus the hankel transformation is applied to the function F(q) to obtain f (r).
3. The values of F(r) are treated as the polar representation of the spatial domain

F(r, θ) for all the angle θ .
4. For the 2D-filter specification shown in the Fig. 4.6, the spatial domain of filter

obtained using the direct method (2D-IDFT) and the hankel transformation are
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Fig. 4.5 a Logirthmic low pass spectrum. b Image corresponding to low pass spectrum. c Logirth-
mic high pass spectrum. d Image corresponding to high pass spectrum

shown in the figure. It is noted that the spatial domain obtaining using the hankel
transformation requires lesser number of computation to obtain the spatial domain.

5. Note that in case of continous hankel transformation, the 2D-filter specification
is perfectly circular symmetric and hence 2D-FFT consists of only the real com-
ponents.

6. Ideally (1) and (4) subplots of the Fig. 4.6 must be identical. The variation is due
to the imperfection in the circular symmetry while realizing in discrete form.

4.2.4.2 hankeltransformation.m

%Demonstration of Hankel transformation
A=zeros(31,31);
a=ones(1,15);
for r=0:1:9
for theta=0:(2*pi)/360:(2*pi);
x=round(r*cos(theta));
y=round(r*sin(theta));

A(x+16,y+16)=a(r+1);
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Fig. 4.6 a Circular symmetric filter with origin as the center. b Corresponding spatial domain
(magnitude) obtained using 2D-IDFT. c Spatial domain (magnitude) obtained using Hankel trans-
formation. d Magnitude of 2D-FFT of spatial domain obtained using Hankel transformation

end
end
B=ifft2(A);
B=fftshift(B);
%The above 2D-IDFT is realized using Hankel transformation
%as described
%below.
F=[];
for i=16:1:31

F=[F A(i,16)];
end
s=0;
for q=0:1:15
for r=1:1:14

s=s+2*pi*2*r*F(r+1)*Jbessel(2*pi*q*r/31);
end
s=s+F(16)*Jbessel(2*pi*q*15/31)
f(q+1)=s;
s=0;
end
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C=zeros(31,31);
for r=0:1:15

for theta=0:(2*pi)/360:2*pi;
x1=round(r*cos(theta));
y1=round(r*sin(theta));

C(x1+16,y1+16)=f(r+1);
end
end
c2=fft2(C);
c31=fftshift(c2);

figure
colormap(gray)
subplot(2,2,1)
imagesc(abs(A))
title(’(1)’)
subplot(2,2,2)
imagesc(abs(B))
title(’(2)’)
subplot(2,2,3)
imagesc(abs(C))
title(’(3)’)
subplot(2,2,4)
imagesc(abs(c31))
title(’(4)’)

4.2.5 Histogram Equalization

The histogram of the gray image is viewed as the probability mass function of the
discrete random variable X . Let the number of levels of the random variable X be
0–255. Let the probability mass function of the original image be represented
as P(Xi ). The corresponding cumulative distribution is represented as FX (n) =∑i=n

i=0 P(Xi ). Let the random variable of the image after histogram equalization be
represented as Y . Thus the histogram equalization is the process of obtaining the
transformation Y = g(X) such that the cumulative distribution of random variable
Y is FY (n) = n. The transformation is obtained as follows.

FY (n) = P(Y ≤ n) = P(g(X) ≤ n) = P(X ≤ g−1(n)) = FX

(g−1(n))(n) = n. (4.3)

⇒ FX (g−1) = 1 (4.4)

⇒ FX (α) = g(α) (4.5)

Thus the transfer function g(α) is the cumulative distribution function of the original
image itself FX (α). The original image and the corresponding histogram equalized
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Fig. 4.7 a Original image. b Histogram corresponding to a. c Histogram equalized image.
d Histogram corresponding to c

image is illustrated in the Fig. 4.7. Note that the value of the mass function for the
background color is made zero in the histogram plot.

4.2.6 Histogram Specification

It is possible to obtain the transformation Y = g(X) for the arbitrary cumulative dis-
tribution functions FY (y) (instead of uniform distribution as mentioned in histogram
equalization) as described below. This is known as histogram specification.

1. Identify the transfer function Z = g1(X) that maps the random variable X to
intermediate random variable Z , such that FZ (z) = z.

2. Identify the transfer function Z = g2(Y ) that maps the random variable Y to
intermediate random variable Z , such that FZ (z) = z.

3. Given the arbitrary value of the matrix α, identify the corresponding value for Z
using Z = g1(X).(say β).

4. Using the function Y = g−1
2 (Z), identify the value of Y corresponding to Z = β.

5. Repeat this for all values in the original image matrix described by the random
variable X to obtain the image matrix described by the random variable Y , us-
ing the intermediate random variole Z . Thus the histogram equalized image is
obtained.
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4.2.6.1 histogramequalization.m

%Histogram equalization
load mri
A=D(:,:,:,25);
A=A(1:1:127,1:1:127);
B=histeq(A)’;
figure
colormap(gray)
subplot(2,2,1)
imagesc(A)
subplot(2,2,2)
plot(imhist(A))
a=imhist(A);
a(1)=0;
plot(a)
subplot(2,2,3)
B=imrotate(B,-90);
imagesc(B)
subplot(2,2,4)
b=imhist(B)
b(187)=0;
plot(b)

4.3 Image Compression

4.3.1 Discrete Cosine Transformation (DCT)

The following steps are followed to compress the image using DCT.

1. Subtract 128 from all the pixel values to obtain the DC component 0.
2. Divide the image into subblock of size 8×8.
3. Each subblock is subjected to 2D-DCT.
4. Divide each sub-block with the quantization mask (JPEG Mask) and round it. We

get more number of zeros. The quantized data from each sublock is collected in
the zig-zag fashion and are stored using run-length and Huffmann coding.

5. Hence image is compressed using 2D-DCT. Refer Fig. 4.8 to view the original
and the corresponding compressed image obtained using 2D-DCT ( Figs. 4.9
and 4.10).
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Fig. 4.8 Illustration of the original image and the corresponding compressed image obtained using
2D-DCT

4.3.1.1 imagecompusingdct.m

load mri
D=double(D);
V=D(:,:,1,1);
V=double(V);
V1=blkproc(V,[8 8],’dctt(x)’);
V2=blkproc(V1,[8 8],’idctt(x)’);
figure
colormap(gray)
subplot(1,2,1)
imagesc(abs(V))
subplot(1,2,2)
imagesc(abs(V2))

4.3.1.2 dctt.m

function [res]=dctt(x)
%Function called by the imagecompusingdct.m file
x=x-128;
x=dct2(x);
JPEGQ=[16 11 10 16 24 40 51 61;12 12 14 19 26 58 60 55;14 13
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Fig. 4.9 a Original image. b 1:5.12 Compressed image using KL-Transformation. c 1:2.56 Com-
pressed image using KL-Transformation

16 24 40 57 69 56;...
14 17 22 29 51 87 80 62;18 22 37 56 68 109 103 77;24 35
55 64 81 104 113 92;...
49 64 78 87 103 121 120 101;72 92 95 98 112 100 103 99];

res=round(x./JPEGQ);

4.3.1.3 idctt.m

function [res]=idctt(x)
%Function called by the imagecompusingdct.m file
JPEGQ=[16 11 10 16 24 40 51 61;12 12 14 19 26 58 60 55;14 13

16 24 40 57 69 56;...
14 17 22 29 51 87 80 62;18 22 37 56 68 109 103 77;24 35 55
64 81 104 113 92;...
49 64 78 87 103 121 120 101;72 92 95 98 112 100 103 99];

x=x.*JPEGQ;
x=idct2(x);
res=x+128;
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Fig. 4.10 Original image and the first level wavelet decomposed images using db6 filter

4.3.2 Using KL-Transformation

1. Consider the group of similar medical images to be compressed. Example: MRI
images.

2. Every column of the individual medical image is treated as the vector.
3. Compute the co-variance matrix C using the collected vectors.
4. Compute the significant eigen vectors of the C corresponding to the significant

eigen values.
5. Represent each column of the image to be compressed as the linear combinations

of significant vectors. The corresponding co-efficients are stored along with the
significant eigen vectors as the compressed data.

6. Significant eigen vectors are common for all the images. The corresponding co-
efficients along with the stored significant eigen vectors are used to reconstruct
the image back.

7. Number of significant eigen vectors determines the quality of the reconstructed
image.

8. 27 MRI images each with size 128 × 128 is considered to demonstrate the KLT
based compression.

9. Every image is reconstructed back with two different compression ratio and are
displayed in the Fig. 2.3. One with 50 significant eigen vectors ( compression ratio
1:2.56) and another with 25 significant eigen vectors (compression ratio 1:5.12).

http://dx.doi.org/10.1007/978-1-4614-3140-4_2.3
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4.3.2.1 kltformedimagecomp.m

%Medical image compression using KL-Transformation
%Each column of the image is treated as the vector.

load mri
D=double(D);
%collecting the vectors
vect=[];
for i=1:1:27

vect=[vect D(:,:,1,i)];
end
vect=double(vect);
%Computing the inner-product matrix
vect=double(vect);
C=cov(double(vect’));
[E,V]=eigs(C,50);
%Compression starts here
%The co-efficients to be stored (to store all the images ) is as follows.
%Compression for the first image

a=[25 50];
p=1;
for i=1:5:27
I=double(D(:,:,i));
subplot(6,3,p)
p=p+1
colormap(gray)
imagesc(I)
for cr=1:1:2
COEF=[ ];

E1=E(:,1:1:a(cr));
for j=1:1:128
COEF=[COEF E1’*I(:,j)];
end
%Reconstruction
for k=1:1:128

R(:,k)=E1*COEF(:,k);
end
subplot(6,3 ,p)
colormap(gray)
imagesc(R)
p=p+1
end
end

4.4 Feature Extraction and Classification

To help the automated system to classify the medical images into normal and ab-
normal categories, the features are extracted from the medical image to train the
classifier. The feature vector extracted using the wavelet transformation is described
below.



4.4 Feature Extraction and Classification 87

Table 4.1 Discrete Wavelet
Transformation (DWT)

Row-wise Column-wise Type1

Low pass Low pass Approximation
Low pass High pass Horizontal
High pass Low pass Vertical
High pass High pass Diagonal

4.4.1 Using Discrete Wavelet Transformation

1. Discrete wavelet transformation (DWT) consists of four discrete 1D-filters. They
are low pass decomposition filter, high pass decomposition, corresponding low
pass reconstruction filter and high pass reconstruction filter.

2. Every row of the medical image under consideration is passed through the 1D-
filter 1.

3. Every column of the obtained image is passed through the 1D-filter 2.
4. The alternative samples are removed from the obtained image to obtain the

Wavelet decomposed image.
5. Based on the combinations of the filter-1 and filter-2 selected from the low-pass

and the high-pass decomposition filters, we obtain approximation, horizontal,
vertical and the diagonal images of first level decomposition (refer Table 4.1).

6. The approximation of the first level decomposed image is treated as the original
image and are subjected to decomposition to obtain second level decomposition
(refer Fig. 4.11) and so on.

7. The decomposed values (significant) of last level approximation image and all the
horizontal, vertical and diagonal values (upto to the last level decomposition) are
collected as the vector and are treated as feature vector for further classification.

8. Based on the type of 1D filters used, we obtain different wavelet decomposition.
The db6 1D-filters are used for illustration.

9. Corresponding recomposition filters are used for DWT based medical image com-
pression and denoising. Decomposition filters are not used for feature extraction.

4.4.1.1 feaextwavelet.m

load mri
A=D(:,:,1,14);
[C,L]=wavedec2(A,2,’db6’);
A=appcoef2(C,L,’db6’,2);
[H2,V2,D2]=detcoef2(’all’,C,L,2);
[H1,V1,D1]=detcoef2(’all’,C,L,1);

figure
colormap(gray)
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Fig. 4.11 Second level wavelet decomposed images using db6 filter

subplot(2,2,1)
imagesc(A)
subplot(2,2,2)
imagesc(H2)
subplot(2,2,3)
imagesc(V2)
subplot(2,2,4)
imagesc(D2)
figure
colormap(gray)
subplot(2,2,1)
imagesc(D(:,:,1,14))
subplot(2,2,2)
imagesc(H1)
subplot(2,2,3)
imagesc(V1)
subplot(2,2,4)
imagesc(D1)
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4.4.2 Dimensionality Reduction Using Principal
Component Analysis (PCA)

The features that highlights the discrimination between the different groups are
collected from the individual images and are collected as the feature vectors. The
dimension of such collected vectors are usually large. There is the need to map those
vectors to the lower dimensional space for further classification. This is achieved by
identifying the transformation matrix W T of size m × n that maps the vector v of
size n × 1 to the vector u of size m × 1, where m � n. One way to achieve the same
is to use the KL-Transformation (refer Sect. 4.3.2) and are known as Principal Com-
ponent Analysis (PCA). The steps involved in dimensionality reduction using PCA,
followed by the simple euclidean distance based classifier is summarized below.

1. Consider the first 24 frames of the MRI image are grouped (refer Fig. 4.12) into
four categories (based on the time it occur).

2. First three columns of the images in the Fig. 4.12 are treated as the training set.
The remaining data are treated as the testing images.

3. For simplicity the actual image is resized to the size of 12×12 and are reshaped
to 1 × 144 to obtain the feature vector. (Note that in practice, suitable feature
extraction is applied).

4. Apply KL-Transformation (refer Sect. 4.3.2) to obtain the significant eigen vec-
tors.

5. The dimension of the projected vector depends on the selection of the number
of significant eigen vectors.

6. For instance, if one eigen vector is selected, the dimension of the projected vector
is 1 × 1. If two significant vectors are selected, the dimension of the projected
vector is 2 × 1. The projection using the PCA basis maximizes the variances of
the individual elements of the projected vectors (refer Appendix B).

7. The projected 1D and 2D vectors corresponding to the training set is displayed
in the Figs. 4.13 and 4.14 respectively.

8. The mean of the projected vectors corresponding to the individual groups are
computed and are stored for further classification of unknown vectors.

9. For the arbitrary test image(I), feature vector is collected and are projected to
the lower dimensional space using the corresponding transformation matrix. The
euclidean distance of the projected vector with the mean vectors of the individual
groups of the projected vectors are computed. Identify the group that belongs to
the lowest euclidean distance (say group G) and declare that the arbitrary test
image (I) belongs to the group G.

10. The classification procedure (based on eculidean distance) is repeated for all
the test images and the corresponding declared group number is displayed in
Table 4.3 along with the corresponding original group number. The percentage
of correct classification are given as 66.67 and 50 respectively with the 1D and
2D projection.
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Fig. 4.12 First 24 Frames of the MRI image grouped based on the time it occurs

Fig. 4.13 One dimensional projection corresponding to the most significant eigen vector (PCA
basis)

11. The eculidean distance based classifier is used for illustration. But there are other
classifiers such as Support Vector Machine (SVM), Artificial Neura Network
(ANN), Bayesian classifier , etc. are used in practice to improve the classification
rate.
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Fig. 4.14 Two dimensional projection with two eigen vectors corresponding to the largest two
eigen values (PCA basis)

4.4.2.1 projection1d-2d-pca.m

%PCA based Dimensionality reduction

load mri
figure
colormap(map)
montage(D)
tr=[1 3 5 7 9 11 13 15 17 19 21 23];
COLLECT=[ ];
D=double(D);
for i=1:1:12

D1=imresize(D(:,:,1,tr(i)),[12 12]);
COLLECT=[COLLECT; reshape(D1,1,12*12)];

end
C=cov(COLLECT,1);

%1D projection for the training data
[EV1,DV1]=eigs(C,1);
ONEDPV=EV1’*COLLECT’
figure
plot(ONEDPV(1:3),zeros(1,3),’*’)
hold on
plot(ONEDPV(4:6),zeros(1,3),’d’)
hold on
plot(ONEDPV(7:9),zeros(1,3),’s’)
hold on
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plot(ONEDPV(10:12),zeros(1,3),’ˆ’)
MEANVECTOR1=[mean(ONEDPV(1:3)) mean(ONEDPV(4:6)) ...
mean(ONEDPV(7:9)) mean(ONEDPV(10:12)) ];
%2D projection of the training ) data
figure
[EV2,DV2]=eigs(C,2);
TWODPV=EV2’*COLLECT’;
MEANVECTOR2=[mean(TWODPV(:,1:3)’) ;mean(TWODPV(:,4:6)’);...

mean(TWODPV(:,7:9)’); mean(TWODPV(:,10:12)’) ];
plot(TWODPV(1,1:3),TWODPV(2,1:3),’*’)
hold on
plot(TWODPV(1,4:6),TWODPV(2,4:6),’d’)
hold on
plot(TWODPV(1,7:9),TWODPV(2,7:9),’s’)
hold on
plot(TWODPV(1,10:12),TWODPV(2,10:12),’ˆ’)

tr=[2 4 6 8 10 12 14 16 18 20 22 24];
COLLECT=[];
D=double(D);
for i=1:1:12

D1=imresize(D(:,:,1,tr(i)),[12 12]);
COLLECT=[COLLECT; reshape(D1,1,12*12)];

end
%1D projection for the testing data
ONEDPV=EV1’*COLLECT’;
DETECTEDAS1D=[];
for i=1:1:12
[P,Q]= min((repmat(ONEDPV(i),1,4)-MEANVECTOR1).ˆ2);
DETECTEDAS1D=[DETECTEDAS1D Q];
end
REF=[1 1 1 2 2 2 3 3 3 4 4 4];
POS1D=length(find((REF-DETECTEDAS1D)==0))/12;

%2D projection of the testing data
TWODPV=EV2’*COLLECT’;
DETECTEDAS2D=[];
for i=1:1:12
[P,Q]= min(sum(repmat(TWODPV(:,i),1,4)-MEANVECTOR2’).ˆ2);
DETECTEDAS2D=[DETECTEDAS2D Q];
end
POS2D=length(find((REF-DETECTEDAS2D)==0))/12;
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4.4.3 Dimensionality Reduction Using Linear Discriminant
Analysis (LDA)

The dimensionality reduction using PCA does not take care of discrimination of the
groups. In LDA, we try to get the transformation matrix such that after projection,
the vectors that belong to the identical group comes closer to each other. At that
same time, the centroid of various clusters are made apart (refer Appendix B). This
is achieved as follows.

1. The within-cluster scatter matrix (refer 4.6) and the between-cluster scatter matrix
(refer 4.7) are computed.

2. Compute the eigen vectors that correspond to the significant eigen values of the
matrix S−1

B SW .
3. Arrange the selected eigen vectors in the column form to obtain the transformation

matrix WL D A.
4. The experiment described in the Sect. 4.4.2 is repeated with the matrix WL D A.
5. The projected 1D and 2D vectors corresponding to the training set using LDA is

displayed in the Figs. 4.15 and 4.16 respectively.
6. The procedure for eculidean distance classification (refer Sect. 4.4.2) is done

for all the test images (using WL D A) and the corresponding classified group is
displayed in Table 4.3 along with the corresponding original group index. The
percentage of correct classification are given as 50 and 66.67 respectively with
the 1D and 2D projection.

SW =
r∑

i=1

ni covi (4.6)

SB =
r∑

i=1

ni (Ci − C)(Ci − C)T (4.7)

where r is the number of groups (clusters) covi is the co-variance matrix of the i th
cluster, ni is the number of vectors in the i th cluster, Ci is the centroid vector of the
i th cluster and C is the mean vector of centroids of all the clusters.

4.4.3.1 projection1d-2d-lda.m

%LDA based dimensionallity reduction
load mri
figure
colormap(map)
montage(D)
tr=[1 3 5 7 9 11 13 15 17 19 21 23];
D=double(D);
SW=0;
CENTROID=[];
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Fig. 4.15 One dimensional projection corresponding to the most significant eigen vector (LDA
basis)

Fig. 4.16 Two dimensional projection with two eigen vectors corresponding to the largest two
eigen values (LDA basis)

for j=1:1:4
COLLECT=[];
for i=1:1:3

D1=imresize(D(:,:,1,tr(3*(j-1)+i)),[12 12]);
COLLECT=[COLLECT; reshape(D1,1,12*12)];

end
CENTROID=[CENTROID;mean(COLLECT)];
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SW=SW+cov(COLLECT);
end
SB=cov(CENTROID);

COLLECT=[ ];
for i=1:1:12

D1=imresize(D(:,:,1,tr(i)),[12 12]);
COLLECT=[COLLECT; reshape(D1,1,12*12)];

end
%1D projection for the training data
[E1,V1]=eigs(pinv(SB)*SW,1);
ONEDPV=E1’*COLLECT’
figure
plot(ONEDPV(1:3),zeros(1,3),’*’)
hold on
plot(ONEDPV(4:6),zeros(1,3),’d’)
hold on
plot(ONEDPV(7:9),zeros(1,3),’s’)
hold on
plot(ONEDPV(10:12),zeros(1,3),’ˆ’)
MEANVECTOR1=[mean(ONEDPV(1:3)) mean(ONEDPV(4:6))...
mean(ONEDPV(7:9)) mean(ONEDPV(10:12)) ];

%2D projection of the training data
figure
[E2,V2]=eigs(pinv(SB)*SW,2);
TWODPV=E2’*COLLECT’;
MEANVECTOR2=[mean(TWODPV(:,1:3)’) ;mean(TWODPV(:,4:6)’);...

mean(TWODPV(:,7:9)’); mean(TWODPV(:,10:12)’) ];
plot(TWODPV(1,1:3),TWODPV(2,1:3),’*’)
hold on
plot(TWODPV(1,4:6),TWODPV(2,4:6),’d’)
hold on
plot(TWODPV(1,7:9),TWODPV(2,7:9),’s’)
hold on
plot(TWODPV(1,10:12),TWODPV(2,10:12),’ˆ’)

tr=[2 4 6 8 10 12 14 16 18 20 22 24];
COLLECT=[];
D=double(D);
for i=1:1:12

D1=imresize(D(:,:,1,tr(i)),[12 12]);
COLLECT=[COLLECT; reshape(D1,1,12*12)];

end

%1D projection for the testing data
ONEDPV=E1’*COLLECT’;
DETECTEDAS1D=[];
for i=1:1:12
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[P,Q]= min((repmat(ONEDPV(i),1,4)-MEANVECTOR1).ˆ2);
DETECTEDAS1D=[DETECTEDAS1D Q];
end
REF=[1 1 1 2 2 2 3 3 3 4 4 4];
POS1D=length(find((REF-DETECTEDAS1D)==0))/12;

%2D projection of the testing data
TWODPV=E2’*COLLECT’;
DETECTEDAS2D=[];
for i=1:1:12
[P,Q]= min(sum(repmat(TWODPV(:,i),1,4)-MEANVECTOR2’).ˆ2);
DETECTEDAS2D=[DETECTEDAS2D Q];
end
POS2D=length(find((REF-DETECTEDAS2D)==0))/12;

4.4.4 Dimensionality Reduction Using Kernel-Linear
Discriminant Analysis (K-LDA)

Although discrimination is taken care in LDA, the clusters in the projected space are
overlapping in nature. Intuitively, we understand that when the vectors are mapped to
the higher dimensional space, there is the chance to have more separation between the
clusters. The LDA formulated using the mapped vectors in the higher dimensional
space involves the inner-product of the mapped vectors rather than the mapped vector
itself. (i.e) Let the vector u and v are present in the lower dimensional space. Also let
the corresponding transformed vectors in the higher dimensional space be represented
as φ(u) and φ(v) respectively. The LDA formulated using the projected vectors
doesn’t involve φ(u) and φ(v) explicitly (refer Appendix B), instead it involves
φ(u)T φ(v) (the inner-product values of the projected vectors). Hence if we are able
to find the function k (kernel function) such that k(u, v) = φ(u)T φ(v), there is no
need of explicit mapping to the higher dimensional space. This lead to the technique
called Kernel-Linear discriminant analysis as described below.

1. Arrange all the training vectors in the column form to obtain the matrix M .
2. Compute the kernel matrix K = k(MT M),where k is the kernel function. The

list of mostly used kernel function is listed in the Table 4.2.
3. The columns of the matrix K are considered as the training vectors in the inner-

product space.
4. Compute the LDA basis (refer Sect. 4.4.3) in the inner-product space. Arrange

them in the columnwise to obtain the transformation matrix WK to map to the
lower dimensional space.

5. Any arbitrary vector v in the feature space is mapped to the kernel space us-
ing k(MT v). This is further mapped to the lower dimensional space using the
transformation matrix WK as WK k(MT v).
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Table 4.2 List of mostly used kernel functions

Name Kernel function k(x1, x2)

Innerproduct kernel (x1T x2)

Gaussian exp
−||x1−x2||2

c1

Polynomial (x1T x2 + c2)c3

Table 4.3 Classification using PCA,LDA and K-LDA projection

ORIGINAL GROUP 1 1 1 2 2 2 3 3 3 4 4 4
Classified using 1D PCA 3 1 1 1 3 3 3 3 3 4 4 4
Classified using 2D PCA 4 3 2 2 3 3 3 3 1 4 4 4
Classified using 1D LDA 3 2 2 2 1 4 3 3 3 4 4 1
Classified using 2D LDA 4 1 2 2 2 3 3 3 1 4 4 4
Classified using 1D K-LDAa 3 2 2 2 3 3 3 3 3 3 4 2
Classified using 2D K-LDAa 1 1 2 2 3 2 3 3 1 4 4 4
a Using gaussian kernel

Fig. 4.17 One dimensional
projection corresponding to
the most significant eigen
vector (K-LDA basis)

6. The experiment described in the Sect. 4.4.2 is repeated with the transformation
matrix WK and the transformation WK k(MT v).

7. The projected 1D and 2D vectors corresponding to the training set using K-LDA
is displayed in the Figs. 4.17 and 4.18 respectively.

8. The procedure for eculidean distance classification (refer Sect. 4.4.2) is done for
all the testing images (using the transformation matrix WK and the transformation
WK k(MT v)) and the corresponding classified group is displayed in Table 4.3
along with the corresponding original group index. The percentage of correct
classification are given as 41.67 and 75 respectively with the 1D and 2D projection.

4.4.4.1 projection1d-2d-klda.m

%KLDA based dimensionallity reduction
load mri
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Fig. 4.18 Two dimensional
projection with two eigen
vectors corresponding to
the largest two eigen values
(K-LDA basis)

figure
colormap(map)
montage(D)
tr=[1 3 5 7 9 11 13 15 17 19 21 23];
D=double(D);
COLLECT1=[ ];
for i=1:1:12

D1=imresize(D(:,:,1,tr(i)),[12 12]);
COLLECT1=[COLLECT1; reshape(D1,1,12*12)];

end
COLLECT1=COLLECT1’;
%Computing the kernel matrix
K=[];
for i=1:1:12

for j=1:1:12
K(j,i)=k11(COLLECT1(:,i),COLLECT1(:,j),1)

end
end

SW=0;
CENTROID=[];
for j=1:1:4
COLLECT=K(:,(3*(j-1)+1):1:(3*(j-1)+3));
CENTROID=[CENTROID;mean(COLLECT’)];
SW=SW+cov(COLLECT’);
end
SB=cov(CENTROID);

%1D projection for the training data
[E1,V1]=eigs(pinv(SB)*SW,1);
ONEDPV=E1’*K’;
figure
plot(ONEDPV(1:3),zeros(1,3),’*’)
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hold on
plot(ONEDPV(4:6),zeros(1,3),’d’)
hold on
plot(ONEDPV(7:9),zeros(1,3),’s’)
hold on
plot(ONEDPV(10:12),zeros(1,3),’ˆ’)
MEANVECTOR1=[mean(ONEDPV(1:3)) mean(ONEDPV(4:6)) ...
mean(ONEDPV(7:9)) mean(ONEDPV(10:12)) ];
%2D projection of the training data
figure
[E2,V2]=eigs(pinv(SB)*SW,2);
TWODPV=E2’*K’;
MEANVECTOR2=[mean(TWODPV(:,1:3)’) ;mean(TWODPV(:,4:6)’);...

mean(TWODPV(:,7:9)’); mean(TWODPV(:,10:12)’) ];
plot(TWODPV(1,1:3),TWODPV(2,1:3),’*’)
hold on
plot(TWODPV(1,4:6),TWODPV(2,4:6),’d’)
hold on
plot(TWODPV(1,7:9),TWODPV(2,7:9),’s’)
hold on
plot(TWODPV(1,10:12),TWODPV(2,10:12),’ˆ’)

tr=[2 4 6 8 10 12 14 16 18 20 22 24];
D=double(D);
COLLECT2=[ ];
for i=1:1:12

D1=imresize(D(:,:,1,tr(i)),[12 12]);
COLLECT2=[COLLECT2; reshape(D1,1,12*12)];

end
COLLECT2=COLLECT2’;
Ktest=[];
for i=1:1:12

for j=1:1:12
Ktest(j,i)=k11(COLLECT2(:,i),COLLECT1(:,j),1);

end
end

%1D projection for the testing data
ONEDPV=E1’*Ktest;
DETECTEDAS1D=[];
for i=1:1:12
[P,Q]= min((repmat(ONEDPV(i),1,4)-MEANVECTOR1).ˆ2);
DETECTEDAS1D=[DETECTEDAS1D Q];
end
REF=[1 1 1 2 2 2 3 3 3 4 4 4];
POS1D=length(find((REF-DETECTEDAS1D)==0))/12;

%2D projection of the testing data
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TWODPV=E2’*Ktest;
DETECTEDAS2D=[];
for i=1:1:12
[P,Q]= min(sum(repmat(TWODPV(:,i),1,4)-MEANVECTOR2’).ˆ2);
DETECTEDAS2D=[DETECTEDAS2D Q];
end
POS2D=length(find((REF-DETECTEDAS2D)==0))/12;

In general the percentage of classification depends on the following.

1. Type of the feature vector.
2. Type of the projection technique.
3. Dimension of the projected vectors.
4. Number of training data.
5. Type of the classifier.



Appendix A
Solving Bloch Equation with ADvsincðDvtÞ
Envelope

Rewriting (2.21) and (2.23) with ADvsincðDvtÞ envelope as follows with the
condition Dv\\ B0c

2p .

dMxyðtÞ
dt

¼ jcADvsincðDvtÞM0cosðaÞejð�cB0tþhÞ ðA:1Þ

dMzðtÞ
dt

¼ cADvsincðDvtÞM0sinðaÞE0sinðh� /Þ ðA:2Þ

Since sincðDvtÞ is almost one for all t with Dv\\ B0c
2p , we treat sincðDvtÞ as the

constant in both the equations and solution is obtained as follows

MxyðtÞ ¼ 2M0sinðaÞejð�cB0tþ/Þ ðA:3Þ

MzðtÞ ¼ cM0sinðaÞADvsincðDvtÞsinðh� /Þt þ 2M0cosðaÞ ðA:4Þ

E. S. Gopi, Digital Signal Processing for Medical Imaging Using Matlab,
DOI: 10.1007/978-1-4614-3140-4, � Springer Science+Business Media New York 2013

101

http://dx.doi.org/10.1007/978-1-4614-3140-4_2
http://dx.doi.org/10.1007/978-1-4614-3140-4_2


Appendix B
Projection Techniques

When the number of samples in the feature vector is large, the computational
complexity in computing the decision boundary between the different clusters
increases. Therefore, there is a requirement to map the feature vector into the
lower dimensional space; thereby reducing the computational complexity. This
mapping is achieved by using transformation matrix WT obtained as described
below.

B.1 Principal Component Analysis

The covariance matrix of the vectors in the vector space is given as
CX ¼ EððX � lXÞðX � lXÞTÞ, where X is the random vector asssociated with the
vectors in the vector space (V), lX is the mean vector of the vector space.The
diagonal elements of the matrix CX gives the variance of the individual elements of
the random variable X. Let the size of the random vector X be m� 1 and the
transformation vector W1 of size m� 1 is used to transform the random vector X to
random variable Y1 as Y1 ¼ WT

1 X. Note that the random variable Y1 is of the size
1� 1. Let us formulate the objective function to optimize the vector W1 such that
the variance of the random variable Y1 is maximized, subject to the constraint that
WT

1 W1 ¼ 1. Note the variance of the random variable Y is given as CY ¼ WT
1 CXW1.

The solution is obtained as follows. The lagrangean equation is given as

J ¼ WT
1 CXW1 þ kðWT

1 W1 � 1Þ ðB:1Þ

differentiating with respect to the W1 and equate to zero and solve for W1

(exploiting the property of the symmetry of the covariance matrix CX), we get
CXW1 ¼ �kW1. This indicate that the W1 is the eigen vector corresponding to the
eigen value �k. To maximize the function, we have to choose the eigen vector
corresponding to the largest eigen value.

Thus in general the eigen vectors of the co-variance matrix CX corresponding the
largest n significant eigen values are arranged in columnwise to obtain the
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transformation matrix W ¼ ½W1W2W3. . .Wn� to transform the random vector X to
random vector Y ¼ WT X such that that the variances of the individual elements of the
random vector Y is maximized. The column vectors of the matrix W thus obtained
forms the Principal Component Analysis (PCA) basis of the vector space (V).

B.2 Linear Discriminant Analysis

Linear Discriminant Analysis (LDA) consists of two matrices. They are within-
cluster scatter matrix (SW ) and the between-cluster scatter matrix (SB).

SW ¼
Xr

i¼1

nicovi ðB:2Þ

SB ¼
Xr

i¼1

niðCi � CÞðCi � CÞT ðB:3Þ

where r is the number of groups (clusters) covi is the co-variance matrix of the ith
cluster, ni is the number of vectors in the ith cluster, Ci is the centroid vector of the
ith cluster and C is the mean vector of centroids of all the clusters. We can assign r
random vectors namely X1, X2, X3 ...Xr associated with every cluster. Also Xij be
the random variable associated with the jth element in the ith random vector. The
diagonal elements of the matrix SW is given as

Pr
i¼1

Pni
j¼1 varðXijÞ (gives the

information how the vectors are closer to each other within the cluster).
Similarly the diagonal elements of the matrix SB gives the summation of the

squared distances of the centroid vectors Ci with the overall centroid vector C,
scaled with ni (which gives the information how the centroids are various clusters
are far away from each other). Consider the transformation Y ¼ WT X, where W is
the transformation matrix that maps the vector associated with the random vector
X (in the higher dimensional space) to the vector associated with the random
vector Y (in the lower dimensional space). Let the size of the transformation
matrix W is given as m� n. The within-scatter matrix and the between-scatter
matrix assoiated with the random vector Y are given as WT SWW and WT SBW
respectively. Thus the objective function is formulated (such that the vectors
within the cluster after transformation comes closer to each other and the centroids
of various clusters after transformation are separated well apart) as follows.

Maximize: traceðWT SBWÞ
traceðWT SW WÞ. Consider the first column of the tranformation matrix

be represented as W1. The objective function is rewritten as
WT

1 SBW1

WT
1 SW W1

. The constraint

WT
1 SW W1 ¼ 1 is introduced to solve the objective fucntion.
The lagrangean equation is written as

J ¼ WT
1 SBW1 þ kðWT

1 SW W1 � 1Þ ðB:4Þ
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differentiating the equation with respect to W1 (exploiting the property of symmetry
property of the matrices SB and SW and equate to zero gives the solution as the eigen
vector corresponding to the matrix S�1

W SB corresponding to the largest eigen value.
The other columns of the matrix W are the eigen vectors corresponding to the next
largest eigen values.Thus the eigen vectors corresponding to the significant eigen
values of the matrix S�1

W SB are arranged column wise to obtain the matrix W . The
column vectors thus obtained form the LDA basis of the vector space V associated
with random variable X.

B.3 Kernel-Linear Discriminant Analysis

To improve the performance of LDA by creating wide separation between the
clusters in the higher dimensional space, Kernel-Linear Discriminant Analysis
(K-LDA) is used. In this technique, the vectos corresponding to the feature
dimensional space is mapped to the higher dimensional space. By intuition we
understand that the map to the higher dimensional space introduces better
separation. Suppose the transformation /ðXÞ transforms the vector in the feature
dimensional space to the higher dimensional space. The between-scatter matrix and
within-scatter matrix computed using the the transformed vectors are represented as
S/B and S/W respectively. The columns of the transformation matrix (W/) to map
from this higher dimensional space to the lower dimensional space is given as the
eigen vector v/ of S/�1

W S/B (i.e) S/Bv/ ¼ kphiS/W v/. The vector v/ lies in
the vector space spanned by all the training vectors (/ðXÞ) that are used to compute
the S/W and S/B. Hence we can represent the vector v/ as following.

For some arbitray vector u.

v/ ¼ ½/ðX1Þ/ðX2Þ . . . /ðXNÞ�u ðB:5Þ

) S/B½/ðX1Þ/ðX2Þ . . . /ðXNÞ�u ¼ kphiS/W ½/ðX1Þ/ðX2Þ . . . /ðXNÞ�u ðB:6Þ

Multiplying ½/ðX1Þ/ðX2Þ . . . /ðXNÞ�T on both sides of (B.6) and representing SKB ¼
½/ðX1Þ/ðX2Þ . . . /ðXNÞ�T S/B½/ðX1Þ/ðX2Þ . . . /ðXNÞ� and SKW ¼ ½/ðX1Þ/ðX2Þ . . .

/ðXNÞ�T S/W ½/ðX1Þ/ðX2Þ . . . /ðXNÞ�, we get the following.

SKBu ¼ kphiSKWu) ðB:7Þ

It can be easily verified that SKB and SKW are the between-scatter matrix and the
within-scatter matrix respectively, computed using the corresponding columns of

the Gram-matrix /ðXÞT/ðXÞ, where /ðXÞ ¼ ½/ðX1Þ/ðX2Þ . . . /ðXNÞ�. Let the
eigen vectors of the matrix SK�1

W SKB be arranged in the column-wise to obtain the
matrix M. Then the transformation matrix that transforms the vector in the higher
dimensional space (/ð:Þ) to the lower dimensional space is given as

½/ðX1Þ/ðX2Þ . . . /ðXNÞ�T M. Let the arbitrary vector in the higher dimensional
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space be represented as /ðqÞ corresponding the feature dimensional vector q. The
corresponding transformed vector in the lower dimensional space is given as

½/ðX1Þ/ðX2Þ . . . /ðXNÞ�T MÞT/ðqÞ ) MT ½/ðX1Þ/ðX2Þ . . . /ðXNÞ�T/ðqÞ ðB:8Þ

½/ðX1Þ/ðX2Þ . . . /ðXNÞ�T/ðqÞ is the vector in the kernel space corresponding to
the vector in the feature space /ðqÞ. Hence to map the vector to the lower
dimensional space, the following steps are followed.

1. For the arbitrary vector q in the feature space, compute the corresponding

vector in the kernel space as qk ¼ ½kðX1; qÞ kðX2; qÞ . . . kðXN ; qÞ�T .
2. Thus the transformed vector to the lower dimensional space is given as MT qk.
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Appendix C
Hankel Transformation

Hankel transformation is applicable for the image that is circular symmetric.
Hence assume f ðx; yÞ is circular symmetric. The 2D-Fourier transformation in
polar form is given as follows.

FðU;VÞ ¼
Zp

�p

Z1

0

gðr; hÞe�j2prlrdrdh ðC:1Þ

where l ¼ UcosðhÞ þ VsinðhÞ Note that gðr; hÞ is the polar representation of the
original image f ðx; yÞ (It is also the inverve fourier tranformation of the radon
tranformation of FðU;VÞ), where U ¼ lcosðhÞ and V ¼ lsinðhÞ. As f ðx; yÞ is
circular symmetric, the corresponding radon transformation is identical and hence
gðr; hÞ is identical for all h. This implies that the radon transformation of FðU;VÞ
is independent of h. (i.e) FðU;VÞ is circular symmetric and hence it is enough to
compute the values for the co-ordinates on the y-axis. (i.e) U ¼ 0 and V ¼ 0 to1.
Particularly for U ¼ 0 and V ¼ q, we get l ¼ q sinðhÞ. Substituting back to the
Eq. (C.1), we get

GðqÞ ¼
Zp

�p

Z1

0

gðrÞe�j2prqsinðhÞr dr dh ðC:2Þ

) GðqÞ ¼
Z0

�p

Z1

0

gðrÞe�j2prqsinðhÞr dr dhþ
Zp

0

Z1

0

gðrÞe�j2prqsinðhÞr dr dh ðC:3Þ

) GðqÞ ¼ 2
Zp

0

Z1

0

gðrÞcosð2prqsinðhÞÞr dr dh ðC:4Þ

GðqÞ thus obtained is the hankel transformation of gðrÞ:
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Appendix D
List of m-Files

• 1.2.2.1 parallelbeamprojection.m
• 1.3.3.1 Fanbeamprojection.m
• 2.3.2.1 resmagneticmoment.m
• 3.1.1.1 protondensity.m
• 3.2.1.1 t2.m
• 3.2.1.2 relaxation.m
• 3.2.1.3 dephasing.m
• 3.2.2.1 spinechodemonstration
• 3.3.1.3 spinechopolar.m
• 3.4.0.4 t1.m
• 4.2.4.2 hankeltransformation.m
• 4.2.6.1 histogramequalization.m
• 4.3.1.1 imagecompusingdct.m
• 4.3.1.2 dctt.m
• 4.3.1.3 idctt.m
• 4.3.2.1 kltformedimagecomp.m
• 4.4.1.1 feaextwavelet.m
• 4.4.2.1 projection1d-2d-pca.m
• 4.4.2.1 projection1d-2d-lda.m
• 4.4.2.1 projection1d-2d-klda.m
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Index

T1 MRI image, 35
T2 MRI, 35
a value, 29
2D-DFT, 42
2D-Fourier transformation, 3

A
Approximation, 87

B
Back-projection, 64
Between-cluster, 93
Bloch equations, 27

C
Carteisian scanning, 44
Classification, 86
Co-variance matrix, 85
Compression ratio, 85
Computed tomography (CT), 1, 73
Cumulative distribution, 80

D
Dephasing, 49
Diagonal, 87
Dimensionality reduction, 89
Discrete cosine transformation, 82
Discrete wavelet transformation, 87
Discretization, 50, 54, 69

E
Eculidean distance, 93
Eigen vectors, 85
Envelope, 37
Euclidean distance, 89

F
Fan-beam projection, 1
Feature extraction, 86
Fourier transformation, 36
Free induction decay, 35
Frequency domain, 41

G
Gradient echo, 43, 50

H
Hankel transformation, 76
Helical movement, 33
High pass decomposition, 87
High pass reconstruction filter, 87
Histogram equalization, 80
Histogram specification, 81
Horizontal, 87

I
IFFT2, 51
Image compression, 82
Image enhancement, 74
Image substraction, 74
Interpolation, 65
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J
Jacobian, 3

K
K-space, 43
Kernel-linear discriminant analysis, 96
Kl-transformation, 89

L
Larmor frequency, 29
Linear discriminant analysis, 93
Linear filterering, 76
Linear phase delay, 49
Logirthmic display, 74
Longituidanal, 35
Low pass decomposition, 87
Low pass filter, 40
Low pass reconstruction filter, 87

M
Magnetic resonance imaging, 27, 49
Medical image processing, 73

N
Non-linear filtering, 74
Nuclear medicine image, 73

P
Parallel beam projection, 1
Phase component, 37
Pixel, 49
Polar scanned, 65
Polar scanning, 45
Principal component analysis, 89
Proton-density, 35, 43

R
Radon transformation, 1
Receiver antenna, 39

Receiver coil, 40
Refocussing, 37
Relaxation, 38
Rephasing, 61
Resolution, 65
RF, 35

S
Selection gradient, 45
Sinc, 36
Spatial domain, 49
Spatial matrix, 61
Spin echo, 45
Spin–spin, 38
Spiral trajectory, 33

T
Transformation matrix, 89
Transverse component, 32

U
Ultrasound image, 73

V
Vertical, 87

W
Within-cluster, 93

X
X-ray image, 73

Z
Z-component, 33
Z-gradient, 37
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