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PREFACE

The mathematical techniques known as “transform methods” have long been a basic
tool in several branches of engineering and science, and no wonder. Fourier’s simple
idea, radical in its time, that a function can be expressed as a sum of sine waves,
is ubiquitous. It underlies fields as diverse as communications, signal and image
processing, control theory, electromagnetics, and acoustics. Electrical engineers typ-
ically encounter the rudiments of Fourier transforms in undergraduate systems and
circuits courses, for modeling the spectral content of signals and designing frequency
selective circuits (filters). The Laplace transform, a close cousin of the Fourier trans-
form, enables the efficient analytical solution of ordinary differential equations and
leads to the popular “S plane” and “root locus” methods for analyzing linear systems
and designing feedback controllers. Discrete-time versions of the Fourier and Laplace
transforms model spectra and frequency responses for digital signal processing and
communications. Physics and engineering students meet the Fourier series when
learning about harmonic motion or solving partial differential equations, for exam-
ple, for waves and diffusion. The Fourier transform also models wave propagation
from acoustics to radio frequencies to optics to X-ray diffraction. The widespread
dissemination of the fast Fourier transform algorithm following its publication in
1965 added a computational dimension to all of these applications, from everyday
consumer electronics to sophisticated medical imaging devices.

My purpose in writing this textbook is to pull these threads together and present
a unified development of Fourier and related transforms for seniors and graduate
students in engineering and physics—one that will deepen their grasp of how and
why the methods work, enable greater understanding of the application areas, and
perhaps motivate further pursuit of the mathematics in its own right. Drafts of the book
have been used by myself and others for a 10-week course in Fourier transforms and
complex variable theory at the Thayer School of Engineering, Dartmouth College.
The prerequisites are an introductory course in lumped parameter systems (including
the Laplace transform) or differential equations. Our course is itself prerequisite
to courses in signal and image processing and a more advanced course in applied
analysis taken by engineering and physics graduate students.

Philosophy and Distinctives

The book is more mathematically detailed and general in scope than a sophomore
or junior level signals and systems text, more focused than a survey of mathematical
methods, and less rigorous than would be appropriate for students of advanced
mathematics. In brief, here is the approach I have taken.

xi



xii PREFACE

1. The four types of Fourier transform on discrete and continuous domains—
discrete Fourier transform (DFT), Fourier series, discrete-time Fourier trans-
form (DTFT), and Fourier transform—are developed as orthogonal expansions
within a vector space framework. They are introduced sequentially, starting
with the DFT and working up to the continuous-time Fourier transform. The
same important properties and theorems are revisited for each transform in
turn, reinforcing the basic ideas as each new transform is introduced. This is in
contrast with an approach that either begins with the continuous-time transform
and works down to the others as special cases, or develops all four in parallel.

2. The early presentation of the DFT makes it immediately available as a tool for
computing numerical approximations to the Fourier series and Fourier trans-
form. Several homework problems give the student practice using numerical
tools. Matlab® is used throughout the book to demonstrate numerical meth-
ods and to visualize important ideas, but whether to use Matlab or some other
computational tool in the course is up to the instructor.

3. The fundamentals of complex analysis and integration are included as a bridge
to a more thorough understanding of the Laplace and Z transforms, and as an
additional way to calculate Fourier transforms.

4. Physical interpretations and applications are emphasized in the examples and
homework problems. My hope is that the student will cultivate intuition for
how the mathematics work as well as gain proficiency with calculation and
application.

5. Starred sections, which may be skipped on a first reading, give brief introduc-
tions to more advanced topics and references for further reading.

6. Each chapter has a table of key results, which should be particularly helpful for
reference after the course is completed.

Any author of an applied mathematics book must decide the extent to which the
development of the material will be supported by proofs. The level of rigor required
by a mathematician generally exceeds what is needed to justify the trustworthiness
of a result to an engineer. Moreover, to prove all the key theorems of Fourier analysis
requires a facility with real analysis and even functional analysis that exceeds the
usual mathematical background of an undergraduate engineer. The approach taken
here, for the most part, is to include proofs when they build intuition about how the
mathematics work or contribute to the student’s ability to make calculations and apply
the transforms. Otherwise, I will usually substitute informal plausibility arguments,
derivations of weaker results either in the text or in the end-of-chapter problems, or
computational illustrations of the principles involved. Footnotes refer the interested
reader to detailed treatments in more advanced texts.

Flow of the Book

The book has 10 chapters, which are described briefly here to show how the book’s
main ideas are developed. Chapter 1 is a review of the topics from geometry,
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trigonometry, matrix algebra, and calculus that are needed for this course. Chapter 2
then develops some fundamentals of vector spaces, particularly the generalizations
of the geometric ideas of norm, inner product, orthogonality and orthogonal expan-
sion from vectors to functions. This provides the unifying framework for the Fourier
family and acquaints the student with concepts of broad importance in engineering
mathematics.

Chapters 3–5 introduce, in sequence, the DFT, the Fourier series, the DTFT,
and the (continuous-time) Fourier transform. The DFT has the easiest vector space
interpretation of the four transforms, since it expands finite-dimensional vectors in
terms of orthogonal finite-dimensional vectors. Some basic Fourier theorems (lin-
earity, shift, energy conservation, convolution) are first presented here, then reappear
later for the other transforms. Chapter 3 includes a derivation of the fast Fourier
transform (FFT) algorithm and the discrete cosine transform (DCT), a close relative
of the DFT that is the mathematical foundation of JPEG image compression.

The Fourier series, Chapter 4, is a representation of a periodic function as an
infinite series of orthogonal sines and cosines. The appearance of the infinite series
raises the question of convergence and leads to the important connections among
convergence of the series, asymptotic behavior of the spectrum, and smoothness of
the original function. The chapter includes applications to the diffusion and wave
equations and to antenna arrays, and shows how to use the DFT to compute Fourier
coefficients and partial sums of Fourier series. Swapping the time and frequency
domains, the Fourier series becomes the DTFT, the basic tool for discrete-time
system analysis and signal processing.

The Fourier transform, Chapter 5, expands an aperiodic function as a contin-
uum of orthogonal sines and cosines rather than a set of discrete oscillatory modes.
Despite the additional mathematical complication, it has many of the same properties
as the DFT and the Fourier series and intuition developed earlier for these transforms
will carry over to the Fourier transform. The chapter emphasizes using Fourier theo-
rems for modeling systems (impulse response and transfer function) and performing
calculations. It also shows how to use the DFT to compute transforms and convo-
lutions. A brief introduction to time-frequency transforms and wavelet transforms
concludes the chapter.

Chapter 6 begins by placing the impulse (delta) function on a more secure
footing than the informal notion of “infinite height, zero width, unit area” that students
sometimes bring with them from earlier classes. This is followed by development of a
common, generalized framework for understanding ordinary functions together with
impulses and other singular functions. Sampling theory, introduced informally in
Chapter 3, is studied here in depth. It is also used to unify the four Fourier transforms,
via the observation that sampling in the time domain produces periodicity in the
frequency domain, and vice versa.

Chapters 7 and 8 are devoted to the theory of complex functions and methods of
complex integration, with a focus on ultimately applying the theory to understanding
and calculating transforms. Numerical calculations of the basic complex integral

∫↺ zn dz on different closed contours are used to help students visualize why the
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integral evaluates either to 2𝜋i or to zero, before formally introducing the fundamental
results, the Cauchy integral theorem and integral formula. The traditional subjects
of conformal mapping and potential theory are omitted, but the complex variable
introduction here is, I believe, sufficient preparation for subsequent courses, for
example, in electromagnetism or fluid mechanics, where complex potentials may be
useful.

Chapter 9 moves beyond the Fourier transform to the Laplace, Z, and Hilbert
transforms. The Laplace transform is motivated by the need to handle functions,
in particular ones that grow exponentially, that are beyond the reach of the Fourier
transform. The familiar Laplace theorems, used to solve initial value problems, are
derived and compared with their Fourier counterparts. The well-known partial fraction
expansion method for Laplace inversion is connected with complex integration and
extended beyond the rational functions encountered in linear system theory. The Z
transform appears via the Laplace transform of a sampled function, and analogies
between the transforms are emphasized. The Hilbert transform, which describes a
special property of the Fourier transform of a one-sided function, is developed and
applied to various problems in signal theory.

Chapter 10 concludes the book by revisiting the Fourier transform in two and
three dimensions, with applications to wave propagation and imaging. The closely
related Hankel and Radon transforms are introduced. Multidimensional transforms
of arrays of impulses are developed and applied to sampling theory and X-ray crys-
tallography.

Suggested Use

Most of Chapters 2–5, 7 and 8, and selected parts of Chapters 6 and 9, are covered
in my 10-week (30-hour) course. In a full semester course, additional material from
Chapters 6, 9, and 10 could be added. If students have already had a course in complex
analysis, or if time does not permit, Chapters 7 and 8 may be skipped, with the caveat
that portions of Chapter 9 are inaccessible without complex integration. However,
this would permit a thorough coverage of Chapters 2–6 and 10 with selected topics
from Chapter 9. While I naturally prefer the sequence of Chapters 2–4, they may be
approached in a different order, with the Fourier series before the DFT, and with the
vector space material presented “just in time” as the Fourier methods are introduced.
End-of-chapter problems cover basic and more complex calculations, drawn from the
theory itself and from many physical applications. I hope that instructors will find
sufficient variety to suit their particular approaches to the material.
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CHAPTER 1
REVIEW OF PREREQUISITE
MATHEMATICS

This chapter reviews, mostly without proof, a number of mathematical topics that
you should have encountered before—including sets, vectors and matrices, complex
numbers, sinusoidal and other functions, and some results from calculus. The material
may be read rapidly, and referred to later as you have need. For a comprehensive
treatment of any of these items, consult your previous texts.

1.1 COMMON NOTATION

The following symbols denote mathematical objects and operations you have prob-
ably seen in your prior coursework. Additional new notation will be introduced
throughout the book as new concepts are introduced.

Common operations and relations

+,− Addition and subtraction
⋅, × Multiplication (numbers) or dot and cross product, respectively (vectors)
÷, ∕ Division|x| Absolute value of number x‖x‖ Norm, or length, of vector x
=, ≠, ≈ Equal, not equal, approximately equal
>, ≥, <, ≤ Greater than, greater than or equal, less than, less than or equal
≫, ≪ Much greater than, much less than∑N

k=M xk The sum xM + xM+1 +⋯ + xN

Defining sets

ℝ The real numbers
ℂ The complex numbers
ℤ The integers
ℕ The natural numbers (positive integers)
ℚ The rational numbers
∅ The empty set, {}

Fourier Transforms: Principles and Applications, First Edition. Eric W. Hansen.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2 CHAPTER 1 REVIEW OF PREREQUISITE MATHEMATICS

x ∈ A x is an element of the set A, for example, 0 ∈ {−1, 0, 1}
x ∉ A x is not an element of the set A, for example, 2 ∉ {−1, 0, 1}
(a, b) Open interval on the real line: x ∈ (a, b) means a < x < b. (a, b) also denotes

an ordered pair of numbers, for example, (1, 2) is the point in the xy plane
with coordinates x = 1 and y = 2. Which usage applies will be clear from
context.

[a, b] Closed interval on the real line: x ∈ [a, b] means a ≤ x ≤ b.
(a, b], [a, b) Half-open intervals on the real line
{x ∣ condition} Set-builder notation, for example, {x ∈ ℝ ∣ x > a} denotes the set of all real

x such that x is greater than a (i.e., the open interval (a,∞)).{
f ∣ ∫ |f (x)|dx < ∞

}
denotes the set of functions f which are absolutely

integrable.

Relationships between sets

A = B The sets A and B are equal, that is, they have the same elements.
A ⊂ B The set A is a subset of the set B: every element of A is also an element of B, for

example, ℕ ⊂ ℤ. A ⊂ B includes the possibility that A = B. Sets A and B are equal if
A ⊂ B and B ⊂ A.

Operations on sets

A ∩ B The intersection of sets A and B, A ∩ B = {x ∣ x ∈ A and x ∈ B}, for example,
{0, 1} ∩ {1, 2} = {1}. Sets A and B are disjoint if A ∩ B = ∅.

A ∪ B The union of sets A and B, A ∪ B = {x ∣ x ∈ A or x ∈ B}, for example,
{0, 1} ∪ {1, 2} = {0, 1, 2}.

A × B The cartesian product of sets A and B, the set of ordered pairs (a, b) with a drawn from
set A and b drawn from set B, for example, {0, 1} × {2, 3} = {(0, 2), (0, 3), (1, 2),
(1, 3)}; ℝ ×ℝ, also known as ℝ2, is the real plane; [a, b] × [c, d] is a rectangular region
in the plane, a subset of ℝ2.

Functions

f : A → B A mapping f , which assigns each element of A to one or more elements
of B, that is, for each x ∈ A, there is f (x) ∈ B.

f , f (x) f is the function itself, f (x) is the value of the function for a particular
input x

limx→a f (x) The limiting value of f as its input x approaches a
Δx A small change in x
dx An infinitesimal change in x
f ′, df∕dx The first derivative of f (differentiate f (x) once)
f ′′, d2f∕dx2 The second derivative of f (differentiate f (x) twice)
f (n), dnf∕dxn The function formed by differentiating f n times with respect to x
𝜕f∕𝜕x, 𝜕f∕𝜕y Partial derivatives of a function of two variables f (x, y) with respect to x,

or with respect to y
𝜕

2f∕𝜕x𝜕y, 𝜕2f∕𝜕x2 Partial derivatives of f (x, y) formed with respect to y, then x, or twice with
respect to x

F(x) = ∫ f (x) dx F is the indefinite integral, or antiderivative, of f , the function such that
f = F′
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∫
b

a
f (x) dx The definite integral, or integral, of f over the interval (a, b). If F is the

antiderivative of f , then ∫ b
a f (x) dx = F(b) − F(a) (fundamental theorem of calculus)[

a b c

d e f

]
An array, or matrix, of the numbers a, b,… f

1.2 VECTORS IN SPACE

In everyday life, we can measure the distance between two points in space. This
distance is nonnegative, and zero only if the two points are identical. For two points
a and b, it makes sense that the distance d from a to b is the same as the distance
from b to a: d(a, b) = d(b, a). Three points in space, a, b, c, constitute the vertices of
a triangle. The distances between pairs of points, d(a, b), d(b, c), and d(a, c), are the
lengths of the sides of the triangle. It is always true that one side of a triangle is no
longer than the sum of the lengths of the other two sides, for example,

d(a, c) ≤ d(a, b) + d(b, c) (1.1)

(with equality if the three points are collinear). This relationship is called the triangle
inequality (Figure 1.1).

Distance enables us to partially orient ourselves in space relative to other
objects. We can say if an object is near or far, and specify sets of objects that are
within a particular distance (radius) of us. But distance does not tell direction; we
can only say “how far,” not “which way.”

Vectors specify “which way” as well as “how far.” Each point in space is
uniquely positioned at the tip of a vector whose tail is fixed at a common reference
point, or origin. The vector represents the displacement of the point from the origin.
The length of a vector v is a nonnegative real number called the norm, denoted ‖v‖.
The norm of a vector is equal to zero only if v is the zero vector. A unit vector is a
vector whose norm is one. A vector is normalized, made into a unit vector, by dividing
it by its norm: v∕‖v‖. Multiplying a vector by an ordinary real number, or scalar,
c changes (scales) its length: ‖cv‖ = |c| ‖v‖. If c > 0, the direction of the vector is
unchanged, but if c < 0, the direction is reversed: v and −v = −1v have the same
length, but point in opposite directions. Any vector v can be represented as the product
of a nonnegative scalar equal to v’s norm, and a unit vector pointing in v’s direction.

a

b

c

d(b,c)

d(a,c)

d(a,b)

FIGURE 1.1 The triangle inequality: d(a, c) ≤ d(a, b) + d(b, c).



4 CHAPTER 1 REVIEW OF PREREQUISITE MATHEMATICS

v

w

y = v + w

r = w – v 

FIGURE 1.2 Addition and subtraction of vectors. The vector y is the sum of v and w. The
vector r is the difference of v and w. The vector w is the sum of v and r. The lengths of v, w,
and r obey the triangle inequality.

Two vectors v and w are added by translating w parallel to itself so that its tail
is located at the tip of v, then constructing a new vector from the tail of v to the tip
of w (Figure 1.2). This new vector (call it y) is the sum, or resultant, of v and w:
y = v + w. You can easily show that the same resultant is obtained if v is translated
parallel to itself so that its tail is located at the tip of w—that is, vector addition is
commutative, v + w = w + v. In fact, vector addition has all the algebraic properties
of ordinary addition. For vectors u, v, and w, and scalar c,

v + w = w + v (commutative) (1.2a)

(u + v) + w = u + (v + w) (associative) (1.2b)

c(u + v) = cu + cv (distributive) (1.2c)

v + 0 = v (identity element) (1.2d)

The identity element 0 is called the zero vector, and its norm is zero: ‖0‖ = 0.
If I am located in space at the tip of vector v and you are located at the

tip of vector w, our respective distances from the origin are ‖v‖ and ‖w‖. We
may define a third vector r that runs from the tip of v to the tip of w and directs
me to you. Adding r to my position puts me at your position: w = v + r, and so
r = w − v. The path from you to me is the opposite vector v − w = −r. The norm‖r‖ = ‖ − r‖ = ‖w − v‖ is the distance between us. The vectors v, w, and w − v form
a triangle, and their lengths, which are distances between points, obey the triangle
inequality: ‖w − v‖ ≤ ‖v‖ + ‖w‖ (Figure 1.2).

The dot product of two vectors is a scalar quantity defined

v ⋅ w = ‖v‖ ‖w‖ cos 𝜃 (1.3)

where 𝜃 is the angle between v and w. The dot product of two nonzero vectors is zero
if the angle 𝜃 is 𝜋

2
; the vectors are then said to be orthogonal. Orthogonal unit vectors

are said to be orthonormal. The dot product of a vector with itself is the square of its
norm,

v ⋅ v = ‖v‖ ‖v‖ cos(0) = ‖v‖2
. (1.4)
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Algebraically, the dot product behaves like multiplication. For vectors u, v, and w,
and scalar c,

v ⋅ w = w ⋅ v (commutative) (1.5a)

c(v ⋅ w) = (cv) ⋅ w = v ⋅ (cw) (associative) (1.5b)

u ⋅ (v + w) = u ⋅ v + u ⋅ w (distributive) (1.5c)

A vector v in a plane may be expressed as the sum of two orthogonal vectors,
which are called components of v. This is also called an orthogonal decomposition of
the vector. These orthogonal vectors could be aligned with the coordinate directions
(i.e., x and y) of a Cartesian system. Define unit vectors ex and ey pointing in the x
and y directions. Then, v = 𝑣xex + 𝑣yey, where 𝑣x and 𝑣y are scalar coefficients. To
calculate them, take the dot product of this expression with ex and ey, respectively.

v ⋅ ex = 𝑣x(ex ⋅ ex) + 𝑣y(ey ⋅ ex)

v ⋅ ey = 𝑣x(ex ⋅ ey) + 𝑣y(ey ⋅ ey).

Because the unit vectors are orthonormal, ex ⋅ ex = 1, ey ⋅ ey = 1, and ex ⋅ ey = ey ⋅
ex = 0. Hence,

𝑣x = v ⋅ ex, 𝑣y = v ⋅ ey. (1.6)

The coefficients 𝑣x and 𝑣y are called orthogonal projections of v along ex and ey,
respectively. Using the projection formulas (Equation 1.6), any vector v in the plane
can be written as some linear combination 𝑣xex + 𝑣yey of the same two orthonormal
vectors ex and ey. These unit vectors are said to span the plane, and are called an
orthonormal basis for the plane.

Physically, orthogonal vectors represent noninteracting actions or motions. For
example, in the parabolic motion of a projectile, gravity acts to decelerate/accelerate

the vertical component of motion, so
d𝑣y

dt
= −g, but has no effect on the x component

of velocity (Figure 1.3).
Expressing vectors in terms of their components relative to a common basis

greatly simplifies vector calculations. Let v and w be two vectors in the plane,

v

  Fg

  vx

  vy

FIGURE 1.3 Horizontal and vertical components of velocity are orthogonal and indepen-
dent. The gravitational force Fg acts only upon the vertical component of the motion, vy.
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expressed in terms of their orthogonal components, v = 𝑣xex + 𝑣yey and w = 𝑤xex +
𝑤yey, and let c be a scalar. Then,

cv = c(𝑣xex + 𝑣yey) = (c𝑣x)ex + (c𝑣y)ey (1.7a)

v + w = 𝑣xex + 𝑣yey +𝑤xex +𝑤yey

= (𝑣x +𝑤x)ex + (𝑣y +𝑤y)ey (1.7b)

v ⋅ w = (𝑣xex + 𝑣yey) ⋅ (𝑤xex +𝑤yey)

= 𝑣x𝑤x(ex ⋅ ex) + 𝑣x𝑤y(ex ⋅ ey) + 𝑣y𝑤x(ey ⋅ ex) + 𝑣y𝑤y(ey ⋅ ey)

= 𝑣x𝑤x + 𝑣y𝑤y (1.7c)

v ⋅ v = 𝑣
2
x + 𝑣

2
y = ‖v‖2

. (1.7d)

Basis vectors are not unique. Instead of ex and ey, we could use orthonormal
vectors ex′ and ey′ , which are rotated by 45◦ from ex and ey (Figure 1.4). The
coefficients 𝑣x′ and 𝑣y′ will be different from 𝑣x and 𝑣y, because ex′ and ey′ point in
different directions than ex and ey (Figure 1.4).

However, the resultant vector v is the same with either basis, and vector cal-
culations (sum, difference, dot product, norm) carried out with components relative
to either basis will yield the same results, for example, 𝑣2

x + 𝑣
2
y = 𝑣

2
x′
+ 𝑣

2
y′
= ‖v‖2.

For modelling a physical quantity, one basis may be preferred over others. A good
example is the case of a body moving in a circular path under the influence of a
central force, for example, a satellite orbiting a planet (Figure 1.5). The “polar” form,
based on er and e

𝜃
, is more natural than the Cartesian form, and the equations of

motion are simpler than in Cartesian coordinates.
Vectors in the plane are generalized to vectors in three-dimensional (3D) space

by adding a third basis vector orthogonal to the plane and a third component along
that basis vector.

v = 𝑣xex + 𝑣yey + 𝑣zez

(Figure 1.6).

v v

ex vx ex

ey

vy ey

ex′e y′

vx′ ex′

vy′ ey′

FIGURE 1.4 The decomposition of a vector depends on the choice of basis vectors.
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  ex

  vx

  e y

  vy
v

  er

  eθ

v = vθ

θ θ

vx = – v cos θ
vy = v sin θ

vr = 0
vθ = v 

FIGURE 1.5 Circular motion is best described in polar coordinates.

The length of the vector is

‖v‖ =
√

𝑣2
x + 𝑣2

y + 𝑣2
z ,

generalizing the Pythagorean formula.
We shall see that, in Fourier analysis, an arbitrary function (signal or wave-

form) is expressed as a sum of simple (sine and cosine) functions, which behave,
in a generalized sense, like orthogonal basis vectors. The next chapter will lay the
foundation for this important concept.

  ex
  e y

  ez

x
y

z

 v x  v y

 v z

v

   vx ex + vy ey

FIGURE 1.6 A vector in 3D space.
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1.3 COMPLEX NUMBERS

Complex numbers arose initially in the study of roots of certain algebraic equations.
You know that the solutions of the quadratic equation x2 − 1 = 0 are the two square
roots of 1, +1 and −1. The equation x2 + 1 = 0, or x2 = −1, on the other hand, has
no real-valued solution because it requires us to take the square root of a negative

number. The “imaginary number” i is defined to be
√
−1. It has the properties i2 = −1

and −i ⋅ −i = (−1)(−1)i2 = −1. With this invention, the equation x2 + 1 = 0 has two
roots, x = +i and −i, which are the two square roots of −1.

In mathematics and physics, the symbol i is used for the square root of −1. In
engineering, j is frequently used instead of i. This is because electrical engineers in
particular are accustomed to using i to denote electric current. Physicists, on the other

hand, use j to stand for current density, and i for
√
−1. We shall use i in this book.

The product of i with a real number y is an imaginary number iy. The combi-
nation of a real number x and an imaginary number iy is called a complex number,
and is written as a sum, z = x + iy. The quantities x and y are called the real and
imaginary parts of z, respectively, denoted x = Re z and y = Im z. (Be careful here.
The imaginary part of a complex number is a real number. It is a common error to
include the i in the imaginary part, writing Im z = iy.)

A complex number z = x + iy defines a point (x, y) in a plane. It is convenient
to think of this point as the tip of a vector extending from the origin (Figure 1.7). The
length of this vector,

√
x2 + y2, is called the modulus, or magnitude, of the complex

number, and is denoted |z|. If z is purely real, then |z| is simply an absolute value.
The angle from the real (x) axis to the vector is called the argument of the complex
number, written arg z. A complex number may be specified either by its real and
imaginary parts, z = x + iy, or by its modulus and argument, z = r∠𝜃, where r = |z|
and 𝜃 = arg z. These are known, respectively, as the rectangular (or cartesian) and
polar forms.

By elementary trigonometry, we see tan arg z = y∕x, or arg z = arctan(y∕x).
We must be careful, however, to locate the angle in the proper quadrant of the
complex plane. For the complex number 1 + i, the ratio y∕x is 1, and the angle is,
by inspection, 𝜋∕4. However, the number −1 − i, which lives in the third quadrant
and has angle −3𝜋∕4, also has y∕x = (−1)∕(−1) = 1. (Figure 1.8). When asked to

z 

x

y

r =
 |z|

θ  = arg z

FIGURE 1.7 A complex number may be visualized as a vector in a plane.
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1 + i  

/4

–3  /4

–1 – i

FIGURE 1.8 Although arg z = arctan(Im z∕Re z), one must be careful to locate the arctan-
gent in the proper quadrant. The numbers 1 + i and −1 − i both yield Im z∕Re z = 1, yet their
arguments are different.

calculate an arctangent, a pocket calculator produces a result between−𝜋∕2 and 𝜋∕2,
the so-called principal value of the arctangent. To properly calculate the argument,
however, requires an arctangent function that respects the signs of the real and
imaginary parts. Many calculators and computer languages have such a function; in
Matlab,1 for example, it is called atan2. Matlab also has a function called angle,
which takes a complex number directly, so you don’t have to separate the imaginary
and real parts. The Matlab functions are illustrated below.

z = [1+i, -1-i];

>atan(imag(z)./real(z)) % basic arctan, principal value

ans =
0.7854 0.7854

>atan2(imag(z), real(z)) % two argument arctan, preserves quadrant

ans =
0.7854 -2.3562

>angle(z) % angle of a complex number, uses atan2

ans =
0.7854 -2.3562

A complex number in polar form, z = r∠𝜃, is converted to Cartesian form by
the equations (see Figure 1.7):

x = r cos 𝜃

y = r sin 𝜃. (1.8)

1Matlab is a registered trademark of The Mathworks, Inc. (http://www.mathworks.com). Matlab is a
computing and graphics system popular among engineers and segments of the scientific community. It is
available for all popular operating systems, including Macintosh, Linux, and Windows. Occasionally in
this text, numerical calculations will be expressed in Matlab syntax. All numerical calculations resulting
in graphs were performed with Matlab. It is not necessary, however, for the reader to be familiar with
Matlab.

http://www.mathworks.com
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The rectangular form is more convenient for adding and subtracting complex
numbers,

z1 + z2 = (x1 + x2) + i(y1 + y2) (1.9)

while the polar form is better for multiplication and division,

z1 z2 = r1r2∠(𝜃1 + 𝜃2). (1.10)

(The proof of this is easy using complex exponentials—see Section 1.7.) Both forms
have physical interpretations in engineering and science.

The argument is multivalued (see Section 1.5). If z = r∠𝜃, then it is also true
that z = r∠(𝜃 + 2𝜋k), where k is any integer. We define the principal value of the
argument, Arg z (with a capital “A”), to be the one between −𝜋 and 𝜋. All other
values of arg z (with a lower case “a”) are obtained by adding integer multiples of
2𝜋 to the principal value.

Arg z ∈ (−𝜋, 𝜋]

arg z = Arg z + 2𝜋k, k = 0, ±1, ±2,… . (1.11)

The complex number z∗ = x − iy, obtained by changing i to −i, is called
the complex conjugate of z. The product zz∗ = (x + iy)(x − iy) = x2 + y2 is |z|2, the
squared modulus. Because of the change of sign in z∗, arg z∗ = arctan[(−y)∕x] =
− arg z. The sum z + z∗ = x + iy + x − iy = 2x, and the difference z − z∗ = 2iy. This
leads to the relationships:

x = Re z = z + z∗

2
and y = Im z = z − z∗

2i
. (1.12)

These are particularly useful in calculating the real and imaginary parts of complex-
valued functions.

It is almost always advisable to simplify a complex fraction by “rationalizing
the denominator” with the complex conjugate:

z1

z2
=

z1z∗2
z2z∗2

=
z1z∗2||z2
||2 . (1.13)

It follows that

arg(1∕z) = arg
(
z∗∕|z|2) = arg z∗ = − arg z. (1.14)

As an example, consider the complex numbers z1 = 1 +
√

3i and z2 = 1 − i. In
polar form, they are

z1 =
√

1 + 3∠ arctan

√
3

1
= 2∠𝜋

3

z2 =
√

1 + 1∠ arctan
−1
1

=
√

2∠
(
−𝜋

4

)
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and their sum, product, and quotient are

z1 + z2 = 2 + (
√

3 − 1)i

z1z2 = (1 +
√

3i)(1 − i) = 1 +
√

3i(−i) +
√

3i − i = (
√

3 + 1) + i(
√

3 − 1)

= 2∠𝜋

3
⋅
√

2∠
(
−𝜋

4

)
= 2

√
2∠ 𝜋

12

z1

z2
=

z1z∗2||z2
||2

=
(1 +

√
3i)(1 + i)

2
=

(1 −
√

3) + i(1 +
√

3)

2

= 2√
2
∠
(
𝜋

3
+ 𝜋

4

)
=
√

2∠7𝜋
12

1
z1

= 1
2∠𝜋

3

= 1
2
∠
(
−𝜋

3

)
= 1

2

(
1 −

√
3i

2

)
= 1

4
−
√

3

4
i.

1.4 MATRIX ALGEBRA

A matrix is an array of numbers, which may be real or complex.

X =

⎡⎢⎢⎢⎢⎣
x11 x12 ⋯ x1c

x21 x22 ⋯ x2c

⋮ ⋮ ⋱ ⋮

xr1 xr2 ⋯ xrc

⎤⎥⎥⎥⎥⎦
The dimensions of the matrix are expressed “r × c” (read “r by c”), where r is the the
number of rows and c is the number of columns. Particularly important special cases
are

� 1 × n, called a row vector [
x1 x2 ⋯ xn

]
� n × 1, called a column vector

⎡⎢⎢⎢⎢⎣
x1

x2

⋮

xn

⎤⎥⎥⎥⎥⎦
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� n × n, a square matrix

⎡⎢⎢⎢⎢⎣
x11 x12 ⋯ x1n

x21 x22 ⋯ x2n

⋮ ⋮ ⋱ ⋮

xn1 xn2 ⋯ xnn

⎤⎥⎥⎥⎥⎦
� A diagonal matrix is a square matrix in which the elements xij, i ≠ j, are zero:

⎡⎢⎢⎢⎢⎣
x11 0

x22

⋱

0 xnn

⎤⎥⎥⎥⎥⎦
� I, the identity matrix, is a diagonal matrix whose diagonal elements, xii, are all

equal to one.

⎡⎢⎢⎢⎢⎣
1 0

1

⋱

0 1

⎤⎥⎥⎥⎥⎦
The familiar 3D vectors from physics (Section 1.2), expressed in terms of

orthogonal components relative to a basis, are compactly written as arrays. The
following are equivalent representations:

v = 𝑣1e1 + 𝑣2e2 + 𝑣3e3

v =
[
𝑣1 𝑣2 𝑣3

]
v =

⎡⎢⎢⎢⎣
𝑣1

𝑣2

𝑣3

⎤⎥⎥⎥⎦ .
The presence of an underlying basis is implicit when a vector is written as an array.

The transpose of an array, denoted XT , is obtained by exchanging the rows and
columns:

[
a b c

d e f

]T

=
⎡⎢⎢⎢⎣

a d

b e

c f

⎤⎥⎥⎥⎦ .
The transpose of a row vector is a column vector, and vice versa. The complex
conjugate of a matrix is made by taking the complex conjugate of each element
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in the array. The adjoint of an array, denoted X†, is the complex conjugate of the
transpose,

X† =
(
XT)∗ =

(
X∗)T

[
1 2i

1 − 3i 4

]†
=
[

1 1 + 3i

−2i 4

]
.

If X is real, then X† = XT .2

Arrays may be added and subtracted if they are of the same dimension:[
1

2

]
+
[

2

3

]
=
[

3

5

]
is a valid operation, but [

1

2

]
+
[

2 3
]

is undefined.
A matrix may be multiplied by a scalar,

cx = c

⎡⎢⎢⎢⎢⎣
x1

x2

⋮

xn

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
cx1

cx2

⋮

cxn

⎤⎥⎥⎥⎥⎦
, cA = c

[
a11 a12

a21 a22

]
=
[

ca11 ca12

ca21 ca22

]
.

Two arrays may be multiplied if they have compatible dimensions. Let X’s
dimensions be rx × cx and Y’s be ry × cy. If cx = ry, then the product XY may be
calculated. The dimensions cx and ry are called the inner dimensions of XY, and the
resulting matrix has the outer dimensions, rx and cy. Here is a way to remember this:

XY =
[

rx × cx

] [
ry

⏟⏞⏟⏞⏟

inner

× cy

]
=
[

rx × cy
⏟⏟⏟

outer

]
.

In the special case of a row vector (1 × n) times a column vector (n × 1), the
result is a 1 × 1 matrix that we take to be a scalar, by analogy with the idea of the dot
product. For two column vectors x and y, the inner product is the scalar defined by

x†y = x∗1y1 + x∗2y2 +⋯ + x∗nyn. (1.15)

The norm of a vector is given by its inner product with itself,

‖x‖ =
√

x†x =
√|x1|2 + |x2|2 +⋯ + |xn|2.

2Some mathematical software, like Matlab, separate the conjugate and transpose operations. In Matlab,
for example, the command 𝚡′ computes the adjoint of x. If you just want a transpose without complex
conjugation, use 𝚡.′ instead. If x is real, then 𝚡′ and 𝚡.′ give the same result.
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Notice how these definitions generalize the dot product and norm for real-valued
vectors in 2D and 3D space.

The product of a matrix and a vector is calculated by repeated row–column
products. The rth element of the result is the product of the rth row or column of the
matrix and the vector: ⎡⎢⎢⎢⎣

⋅ ⋅ ⋅

∗ ∗ ∗
⋅ ⋅ ⋅

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣
∗
∗
∗

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣
⋅

∗
⋅

⎤⎥⎥⎥⎦
or

[
∗ ∗ ∗

] ⎡⎢⎢⎢⎣
⋅ ∗ ⋅

⋅ ∗ ⋅

⋅ ∗ ⋅

⎤⎥⎥⎥⎦ =
[
⋅ ∗ ⋅

]
.

The product of two matrices is just more of the same. The product of the rth row and
cth column is the (r, c) element of the result:

⎡⎢⎢⎢⎣
⋅ ⋅ ⋅ ⋅

∗ ∗ ∗ ∗
⋅ ⋅ ⋅ ⋅

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣
⋅ ⋅ ∗
⋅ ⋅ ∗
⋅ ⋅ ∗
⋅ ⋅ ∗

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎣
⋅ ⋅ ⋅

⋅ ⋅ ∗
⋅ ⋅ ⋅

⎤⎥⎥⎥⎦ .

Consider the matrices A =
[

0 2 4

1 3 5

]
and B =

[
0 1

2 3

]
. The product AB is not

defined, because the inner dimensions (3 and 2, respectively) do not agree. On the
other hand, BA is defined, and is

BA =
[

0 1

2 3

] [
0 2 4

1 3 5

]
=
[

1 3 5

3 13 23

]
.

In general, matrix multiplication does not commute, even for square matrices: AB ≠
BA. For example,

[
0 1

1 2

] [
1 0

2 3

]
=
[

2 3

5 6

]
but

[
1 0

2 3

] [
0 1

1 2

]
=
[

0 1

3 8

]
.

The identity matrix generalizes the scalar multiplicative identity element, 1. For
any matrix A and identity matrices of appropriate dimension, IA = A and AI = A.

An m × n matrix A transforms an n-dimensional vector x into an m-dimensional
vector y through the product y = Ax. When A is square, x and y have the same
dimensions. If, in addition, y = Ax = 𝜆x, where 𝜆 is a complex scalar, x is called
an eigenvector of A, and 𝜆 is the eigenvalue associated with x. Eigenvalues and
eigenvectors have numerous applications in engineering and physics, and there are
good numerical methods for computing them.

The combination x†Ax, where A is a square matrix, is called a quadratic form.
If A is a diagonal matrix, then

x†Ax = a11|x1|2 + a22|x2|2 +⋯ + ann|xn|2,
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which appears to be an n-dimensional generalization of the simple quadratic a|x|2.
The most general quadratic form has nondiagonal A and includes cross-terms such
as a12x∗1x2. If a is positive in the scalar case, a|x|2 is also positive, for all nonzero x.
In the matrix case, if x†Ax > 0 for all nonzero x, then A is said to be positive definite.

Matrix division is defined in a very restricted sense. If A is square, and Ax =
y, then we may be able to solve for x. In the scalar algebraic equation ax = y, we can
calculate x = y∕a if a is nonzero. Otherwise, the division is undefined. In the matrix
situation, the determinant, denoted det A or |A|, must be nonzero. The determinant
will be nonzero if the rows of A are linearly independent (no row can be expressed
as a nontrivial linear combination of the other rows). If this is the case, then Ax =
y represents n simultaneous equations in n unknowns that have a unique solution.
So, if det A ≠ 0, the matrix inverse A−1 may be calculated, and the unique solution
to the equation Ax = y is x = A−1y. Practical computational algorithms for solving
Ax = y are readily available. A matrix for which det A = 0 (or, as a practical matter,
numerically very close to zero) cannot be inverted and is called singular.

If A is nonsingular, then A−1 exists and the products A−1A and AA−1 exist and
are both equal to I, the identity matrix (analogous to the scalar case a × 1∕a = 1).
If, in addition to being linearly independent, the rows of a square matrix are also
orthogonal, then it is called an orthogonal matrix. The product of an orthogonal
matrix and its adjoint, AA†, is a diagonal matrix. If, further, the rows of the matrix
are orthonormal, then AA† = I, and A is called a unitary matrix. For a unitary matrix,
A† = A−1.

1.5 MAPPINGS AND FUNCTIONS

A mapping is a rule that assigns to every point x in a set X a point y in a set Y . The set
X is called the domain of the mapping. Frequently, we write f : X → Y to say “f is a
mapping from X to Y”. We can write f : ℝ → ℝ as shorthand for “f is a real-valued
mapping of a real variable,” and f : ℝ → ℂ to say “f is a complex-valued mapping
of a real variable.” For each point x ∈ X, the corresponding point y ∈ Y is called the
image of x, and is denoted y = f (x). If each point x in the domain has only one image
point, then the mapping f is called a function. That is, a function is a single-valued
mapping. In this text, when a function’s domain is a subset of the integers, X ⊂ ℤ,
we will denote the image of n by f [n] rather than f (n). A function whose domain is a
set of successive integers, for example, X = {1, 2,… , N}, is also called a sequence.

The set of all image points, f (X) = {y ∈ Y ∣ y = f (x), x ∈ X}, is called the
range of f . The range of f is a subset of Y; there may be points in Y that are not
“f of something in X.” If a point y ∈ Y is the image of a point x ∈ X, we call x the
preimage of y. An inverse f−1 can be defined using preimages. For a point y ∈ Y ,
f−1(y) = {preimages of y in X} = {x ∈ X ∣ f (x) = y}. The inverse may or may not be
a function, in that y may have more than one preimage.

If every y in the range of f has a unique preimage, we say f is one-to-one or
injective. If the range of f is identically Y , that is, if every y ∈ Y has a preimage in
X, we say that f is onto or surjective. A function that is both one-to-one and onto is
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X
Y

f(X) ⊂ Y

f(X) = YX

X

X

Y

Y Y

f(X) = Y

FIGURE 1.9 Mappings f from points in a set X to points in a set Y . Clockwise, from top
left: One-to-one, but not onto; onto, but not one-to-one; multivalued; one-to-one and onto.

also called bijective. It creates a one-to-one correspondence between the points in X
and the points in Y . Then, the inverse f−1 : Y → X is a function, with the property
f−1 (f (x)) = x and f

(
f−1(y)

)
= y (Figure 1.9).

Here are some examples.

� The function f : ℝ → ℝ defined by y = 2x + 3 is both one-to-one and onto.

The inverse is x =
y − 3

2
.

� The function f : ℝ → ℝ defined by y = x2 is not one-to-one, because each
positive real y has two preimages, +

√
y and −

√
y, the positive and negative

square roots of y. Neither is the function onto, because there is no x ∈ ℝ for
which f (x) is negative.

� The logarithm function,3 y = log x, is undefined for x = 0, and real-valued
only for x > 0. We restrict the domain to the positive reals ℝ+, and write
f : ℝ+ → ℝ to indicate that the function maps positive reals into the reals.
With this restriction of the domain, the range is all of ℝ, and f is one-to-one
and onto. The inverse is x = exp y.

� The function f : ℝ → ℝ defined by f (x) = cos x is not onto because its range is
just the interval [−1, 1] rather than all of ℝ. It is not one-to-one because there
are many x values that map to the same y, for example, cos 2𝜋k = 1, k ∈ ℤ. If
the domain is restricted to the interval [0,𝜋], then cosine is one-to-one, but still
not onto. If we further restrict the sets and define f : [0, 𝜋] → [−1, 1], cosine is
both one-to-one and onto, and the inverse, arccos, is a well-defined function.

The inverse of y = x2 is not a function because it assigns two values, ±
√

y. By
restricting the range of the square root to either the nonnegative or nonpositive real

3In this text, we use log rather than ln to denote natural logarithm. When necessary, the base-10 logarithm
is denoted log10.
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numbers, we can make it single-valued; these restrictions are called the positive and
negative branches of the square root. Engineers and scientists, including this author,
usually call the square root a multivalued function rather than a mapping, although
the former term is, strictly speaking, an oxymoron. We shall have much more to say
about multivalued functions in a later chapter.

An even function is one whose graph is symmetric across the origin, f (−x) =
f (x). An odd function’s graph is antisymmetric across the origin, f (−x) = −f (x).
A function can always be expressed as the sum of an even part and an odd part,
f (x) = fe(x) + fo(x), where

fe(x) =
f (x) + f (−x)

2

fo(x) =
f (x) − f (−x)

2
. (1.16)

If f is an odd function, its integral on a symmetric interval (−a, a) is zero:

∫
a

−a
f (x)dx = 0. (1.17)

and if f is an even function,

∫
a

−a
f (x)dx = 2∫

a

0
f (x)dx. (1.18)

A complex-valued function, f : ℝ → ℂ, is Hermitian if f (−x) = f ∗(x). The real part
of a Hermitian function is even, and its imaginary part is odd. To see this, write

f (−x) = fr(−x) + ifi(−x) = f ∗(x) = fr(x) − ifi(x),

and equate the real and imaginary parts,

fr(−x) = fr(x), fi(−x) = −fi(x).

A function f is bounded above if there is a finite real number M such that
f (x) ≤ M for all x in f ’s domain. A function is bounded below if there is a finite
real number m such that f (x) ≥ m for all x in f ’s domain. If a function is bounded
above, then there is a particular value of M that is the smallest possible upper bound.
This value is called the supremum of f , denoted sup f . Likewise, if a function is
bounded below, then there is greatest lower bound, which is called the infimum of f ,
denoted inf f .

Sometimes the supremum and infimum are just the largest and smallest values
that f takes on in its domain. For example, sup cos = 1 and inf cos = −1 on the inter-
val (−𝜋, 𝜋]. Other functions never attain their bounds. The “saturating exponential”
f (x) = 1 − exp(−x) approaches one as x → ∞, so sup f = 1. A sequence of numbers
can also have a supremum and an infimum. The sequence x = { 1

2
, 1

4
,… , 1

2n ,…} has
sup x = 1∕2 and inf x = 0. The sequence attains its supremum, but not its infimum.

If a function f : ℝ → ℂ (because ℝ ⊂ ℂ, this includes both real- and complex-
valued functions) is finite at x = x0, and if

lim
x→x+0

f (x) = lim
x→x−0

f (x) = f (x0),
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where x → x+0 and x → x−0 mean that x approaches x0 from above (x > x0) and below
(x < x0), respectively, we say that f is continuous at x0. (Informally, you can draw
the graph of a continuous function without lifting your pen.) If f is continuous for all
x0 ∈ (a, b), then we say that f is continuous on (a, b). The parabolic function f (x) = x2

is continuous for all finite x. The slightly different function

g(x) =

{
1, x = 0

x2, x ≠ 0

is not continuous at x = 0. Even though lim
x→0

g(x) = 0 from both sides, the limit is not

equal to g(0).
A function f : (a, b) → ℂ, with a and b finite, is said to be piecewise continuous

if it is continuous everywhere in the interval (a, b) except perhaps on a finite set of
points {xk}N

k=1 ⊂ (a, b), and at these points f (x−k ) and f (x+k ) are finite. That is, f is
piecewise continuous if it has at most a finite number of finite jump discontinuities
on the interval (a, b). The unit step function U(x), defined

U(x) =
⎧⎪⎨⎪⎩

1, x > 0
1
2

, x = 0

0, x < 0

.

is piecewise continuous (Figure 1.10).
If f is finite and continuous at x, and the limit

lim
Δx→0

f (x + Δx) − f (x)
Δx

(1.19)

–1 0 1

0

0.5

1

x

U
(x

)

FIGURE 1.10 The unit step function is piecewise continuous. It has a finite jump at the
origin.
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exists, we say that f is differentiable at x. The limit is the derivative, f ′(x). For the
parabolic function f (x) = x2, which is continuous everywhere,

f (x + Δx) − f (x)
Δx

= x2 + 2xΔx + (Δx)2 − x2

Δx
= 2x + Δx.

As Δx → 0 from above or below, the limit is 2x, which we recognize as the derivative
of x2.

On the other hand, the step function U(x) is discontinuous at the origin. The
limits as the origin is approached from below and above are 0 and 1, respectively.
They are not equal to each other, nor are they equal to U(0), which we have defined to
be 1

2
. If we attempt to evaluate the limit (Equation 1.19) we obtain, on the one hand,

lim
Δx→0−

0 − 1
2

Δx
= lim

Δx→0−
−1
2Δx

and, on the other hand,

lim
Δx→0+

1 − 1
2

Δx
= lim

Δx→0+

1
2Δx

,

neither of which exist.
A function f : (a, b) → ℂ is piecewise smooth if it is piecewise continuous and

its derivative f ′ is also piecewise continuous. The absolute value function, f (x) = |x|,
is one example. It is everywhere continuous, even at the origin, where it has a “corner”
(Figure 1.11). For x < 0, the derivative is −1, and for x > 0, the derivative is +1. The
derivative at x = 0 does not exist according to the definition given in Equation 1.19.
But this is a single point, and because f ′(0−) = −1 and f ′(0+) = 1 are finite, the
function is piecewise smooth.

–2 –1 0 1 2
–2

–1

0

1

2

x

|x
|

, s
gn

(x
)

FIGURE 1.11 The absolute value function, f (x) = |x|, is piecewise linear and piecewise
smooth. The derivative does not exist in the ordinary sense at x = 0. If f ′(0) is defined to be
zero, then f ′(x) = sgn x.
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Even though the derivative of f (x) = |x| is undefined at the origin according to
Equation 1.19 we could assign it some reasonable value, say f ′(0) = 0 (the average
of −1 and 1). If you imagine that f is infinitesimally rounded at x = 0 rather than a
sharp corner, this definition even makes intuitive sense. In a later chapter, we will see
how to make it precise, so that f ′(x) is defined everywhere by the signum function,

sgn(x) =
⎧⎪⎨⎪⎩

1, x > 0

0, x = 0

−1, x < 0

.

1.6 SINUSOIDAL FUNCTIONS

The basic sinusoid, or sine wave function of time is

f (t) = sin𝜔t = sin 2𝜋𝜈t.

The parameter 𝜔 is the angular frequency of the wave, expressed in radians per
second, or rads/sec. Equivalently, we may use the frequency 𝜈, expressed in cycles
per second, or hertz (Hz). The two forms of frequency are related by 𝜔 = 2𝜋𝜈.

The period T of the wave is the amount of time it takes for the wave to go
through one complete cycle, that is, from 𝜔t = 0 to 𝜔t = 2𝜋. Let 𝜔T = 2𝜋, and the
period is seen to be related to the frequency by T = 2𝜋∕𝜔 = 1∕𝜈.

Among the many trigonometric identities, two of the most useful are the sum
formulae,

sin(A + B) = sin A cos B + cos A sin B

cos(A + B) = cos A cos B − sin A sin B. (1.20)

For example, using Equation 1.20,

sin(2𝜋𝜈t + 𝜋∕2) = sin 2𝜋𝜈t cos𝜋∕2 + cos 2𝜋𝜈t sin𝜋∕2 = cos 2𝜋𝜈t,

and, similarly,

cos(2𝜋𝜈t + 𝜋∕2) = − sin 2𝜋𝜈t.

With this, we see that sine and cosine are related by a phase shift of 90◦, or 𝜋∕2
radians (Figure 1.12).

A sinusoid of arbitrary amplitude and phase, say f (t) = C cos(2𝜋𝜈t + 𝜑), can
always be written as the sum of a pure sine and cosine of the same frequency, but
different amplitudes,

C cos(2𝜋𝜈t + 𝜑) = A cos 2𝜋𝜈t + B sin 2𝜋𝜈t. (1.21)

Using the formula for the cosine of the sum of two angles (Equation 1.20),

C cos(2𝜋𝜈t + 𝜑) = C(cos𝜑 cos 2𝜋𝜈t − sin𝜑 sin 2𝜋𝜈t)

= (C cos𝜑) cos 2𝜋𝜈t + (−C sin𝜑) sin 2𝜋𝜈t,
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 A sin 2 t
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FIGURE 1.12 The sine and cosine functions.

from which it follows that

A = C cos𝜑, B = −C sin𝜑

C =
√

A2 + B2, tan𝜑 = −B∕A. (1.22)

This is illustrated in Figure 1.13.

1 2

–1

0

1

t

1 2

–1

0

1

t

FIGURE 1.13 A cosine of arbitrary amplitude and phase may be formed from the sum of

a pure sine and cosine. Top: The functions 1

2
cos 2𝜋t and −

√
3

2
sin 2𝜋t. Bottom: Their sum,

cos(2𝜋t + 𝜋∕3).
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1.7 COMPLEX EXPONENTIALS

The complex exponential ei𝜃 combines sine and cosine in a single function:

ei𝜃 = cos 𝜃 + i sin 𝜃. (1.23)

The complex conjugate is e−i𝜃 = cos 𝜃 − i sin 𝜃. Combining these two expressions
leads to the Euler equations,

cos 𝜃 = ei𝜃 + e−i𝜃

2
and sin 𝜃 = ei𝜃 − e−i𝜃

2i
. (1.24)

It is often advantageous to reduce the sum and difference of two complex
exponentials, ei𝜃1 ± ei𝜃2 , by creating a symmetric form through factorization:

ei𝜃1 + ei𝜃2 = 2 ei(𝜃1+𝜃2)∕2 cos

(
𝜃1 − 𝜃2

2

)
ei𝜃1 − ei𝜃2 = 2i ei(𝜃1+𝜃2)∕2 sin

(
𝜃1 − 𝜃2

2

)
. (1.25)

In particular,

1 − e−i𝜃 = 2ie−i𝜃∕2 sin(𝜃∕2), (1.26)

a result that will repeatedly come in handy.
Because the real part of a complex number z = r∠𝜃 is r cos 𝜃 and the imaginary

part is r sin 𝜃, the complex exponential provides another way to write a complex
number in polar form:

z = x + iy = r cos 𝜃 + ir sin 𝜃 = rei𝜃
.

It also leads to a useful interpretation of sine and cosine waves. Consider

ei𝜔t = cos𝜔t + i sin𝜔t.

Recalling that the real and imaginary parts of a complex number define a vector in the
complex plane, we may interpret ei𝜔t as a rotating unit vector (|ei𝜔t|2 = ei𝜔te−i𝜔t = 1).
The projection of this vector onto the real axis gives a cosine function, and the
projection onto the imaginary axis gives a sine function (Figure 1.14).

And using the Euler equations (Equation 1.24),

cos𝜔t = ei𝜔t + e−i𝜔t

2
, sin𝜔t = ei𝜔t − e−i𝜔t

2i
.

This way, the sine and cosine functions are interpreted as the sum and difference of
vectors of length 1

2
rotating in opposite directions with angular velocities +𝜔 and −𝜔

(you are invited to make a sketch like Figure 1.14 to illustrate this).
The complex exponential simplifies the solution of certain ordinary differential

equations (ODEs). For example, consider the following linear ODE with constant
coefficients:

dy

dt
+ cy = cos𝜔t.
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FIGURE 1.14 The complex exponential ei𝜔t is a unit vector rotating counterclockwise with
angular velocity 𝜔. The projections of this vector along the real and imaginary axes trace out
cos𝜔t and sin𝜔t, respectively.

The steady-state solution (output of the system) in response to a sinusoidal driving
function is a sinusoid having the same frequency, but with a different amplitude and
phase, y(t) = A cos(𝜔t + 𝜑). Following the usual approach, we substitute this into the
equation (using the alternative form, a cos𝜔t + b sin𝜔t), obtaining:

dy

dt
+ cy = d

dt
(a cos𝜔t + b sin𝜔t) + c(a cos𝜔t + b sin𝜔t)

= −𝜔a sin𝜔t + 𝜔b cos𝜔t + ca cos𝜔t + cb sin𝜔t

= (−𝜔a + cb) sin𝜔t + (𝜔b + ca) cos𝜔t

= cos𝜔t.

From here we solve the simultaneous equations

−𝜔a + cb = 0, 𝜔b + ca = 1,

which yield

a = c
𝜔2 + c2

, b = 𝜔

𝜔2 + c2
,

from which we obtain the more useful form (see Equation 1.22),

A = 1√
𝜔2 + c2

, tan𝜑 = −𝜔∕c.

We will now present a simpler approach using the complex exponential. Were
we to drive the equation instead with sin𝜔t instead of cos𝜔t, the solution would
be A sin(𝜔t + 𝜑). And if we drive the differential equation with the complex sum,
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cos𝜔t + i sin𝜔t = ei𝜔t, then by the linearity property of the differential equation, the
solution is y = A cos(𝜔t + 𝜑) + iA sin(𝜔t + 𝜑) = A exp (i(𝜔t + 𝜑)).

Now, ei𝜔t has the convenient property4 d
dt

ei𝜔t = i𝜔ei𝜔t. This transforms the

differential equation into a simple algebraic equation:

dy

dt
+ cy = d

dt
A exp (i(𝜔t + 𝜑)) + cA exp (i(𝜔t + 𝜑))

= i𝜔Aei𝜑ei𝜔t + cAei𝜑ei𝜔t

= ei𝜔t
.

Collecting terms,

(i𝜔Aei𝜑 + cAei𝜑 − 1)ei𝜔t = 0,

and because |ei𝜔t| = 1, the only way this can be true for all values of time is if

i𝜔Aei𝜑 + cAei𝜑 − 1 = 0.

The solution of this algebraic equation is

Aei𝜑 = 1
c + i𝜔

.

(You may recognize this as the transfer function of first-order dynamic system like a
resistor–capacitor or a mass-damper.)

The amplitude A and phase 𝜑 of the actual solution, y(t) = A cos(𝜔t + 𝜑), are

given by calculating the modulus and argument of the complex function
1

c + i𝜔
.

A =
|||| 1
c + i𝜔

|||| =
(

1
(c + i𝜔)(c − i𝜔)

)1∕2

= 1√
𝜔2 + c2

tan𝜑 = −𝜔∕c.

The solution may also be written:

y(t) = Re
{

Aei𝜑ei𝜔t} = Re
{ 1

c + i𝜔
ei𝜔t

}
.

1.8 GEOMETRIC SERIES

A series of the form
∑N−1

n=0 xn is called a geometric series. The sum of this series is
an important result, easily derived, which should be committed to memory:

N−1∑
n=0

xn = 1 − xN

1 − x
. (1.27)

4Using the language of linear algebra, we say that ei𝜔t is an eigenfunction of the differential operator
d
dt

,

with eigenvalue i𝜔. We will have more say about this in later chapters.
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If |x| < 1, the sequence of partial sums SN =
∑N−1

n=0 xn has a limit as N → ∞—the
series converges to

∞∑
n=0

xn = lim
N→∞

1 − xN

1 − x
= 1

1 − x
, |x| < 1. (1.28)

This resembles the result of the integral,

∫
T

0
eatdt = eaT − 1

a
,

where, if a < 0, the limit as T → ∞ exists and is equal to

∫
∞

0
eatdt = lim

T→∞
eaT − 1

a
= −1

a
, a < 0.

1.9 RESULTS FROM CALCULUS

Here are some more items from elementary calculus, which we shall need frequently.

Asymptotic behavior
Often we are interested in the asymptotic behavior of a function f as its argument x
becomes very large (x → ∞) or very small (x → 0). For large values of x, the function

f (x) = 1
1 + x

is just slightly smaller than
1
x

. We say that f is “of the order of x−1,”

abbreviated O(x−1) (read: “big-oh of x−1”). Formally, a function f is O(g) as x → ∞
if there are numbers x0 and M such that|f (x)| < M|g(x)|, x > x0.

For small x (x → 0), just change the x > x0 to x < x0. We generally are not interested
in the actual values x0 or M, just the dominating function g. The polynomial p(x) =
1 + x + 2x2 is less than 4x2 for x > 1, but it is also less than 11

4
x2 for x > 2. For most

purposes it is sufficient to know that the asymptotic behavior is quadratic: p is O(x2).
The function f (x) = x

1 + x2
is O(x−1) for large x, and O(x) for small x.

The big-oh notation is also used to describe the error incurred in a series
approximation to a function. For example, the series for ex,

ex = 1 + x + x2

2!
+ x3

3!
+⋯

can be abbreviated

ex = 1 + x + O(x2)

to indicate that when ex is approximated by 1 + x for small x, deleted terms are of
order x2 and higher. When x is small, the x2 term is the most consequential of the
deleted terms, and will dominate the error.
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Taylor series
In the vicinity of a point x = a, a function f (x) may be approximated by a polynomial,
by keeping the first few terms of the function’s Taylor series:

f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)

2!
(x − a)2 +

f ′′′(a)
3!

(x − a)3 + O{(x − a)4},

provided, of course, that the necessary derivatives exist at x = a. For example, the
Taylor series for sin x about x = 0 is x − x3∕3! + x5∕5! −⋯. Keeping the first term,
the well-known “small angle approximation” approximates the function by a line,
and keeping the next term approximates the sine by a cubic polynomial. Both approx-
imations are tangent to the graph of the sine at the origin (Figure 1.15).

L’Hospital’s (L’Hôpital’s) rule

When evaluating lim
x→a

f (x)
g(x)

, you may find that lim
x→a

f (x) and lim
x→a

g(x) are both zero or

both infinite. It is still possible that the limit of the quotient will exist, however, if
both numerator and denominator are decreasing or increasing at the same rate. If| lim

x→a
f ′(x)| < ∞ and 0 < | lim

x→a
g′(x)| < ∞, then L’Hospital’s rule says

lim
x→a

f (x)
g(x)

=
lim
x→a

f ′(x)

lim
x→a

g′(x)
.

L’Hospital’s rule is helpful for resolving the value of functions where, at first

glance, they are undefined. For example, the function f (x) = sin(𝜋x)
𝜋x

appears to be
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FIGURE 1.15 Low - order polynomial approximations to sin x created by truncating the
Taylor series. Left: x (solid line) and x − x3∕6 (dashed line). Right: Approximation error over
the range 𝜋∕2 > x > −𝜋∕2. sin(x) − x (solid line) and sin(x) − (x − x3∕6) (dashed line).
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singular (infinite) at the origin because the denominator is zero there. But sin𝜋x is
also zero at the origin, so we are not so sure. Applying L’Hospital’s rule,

lim
x→0

sin(𝜋x)
𝜋x

=
lim
x→0

𝜋 cos(𝜋x)

lim
x→0

𝜋
= 1. (1.29)

We therefore define f (0) = 1, which removes the singularity at the origin.
L’Hospital’s rule does not always work, at least not the first time. If you find

that both limits are still zero or infinite, keep differentiating until one of them is finite.
For example,

lim
x→0

sin2 x
1 − cos x

=
lim
x→0

sin2 x

lim
x→0

(1 − cos x)
= 0

0
.

Differentiate the numerator and denominator again,

lim
x→0

2 sin x cos x

lim
x→0

sin x
= 0

0
,

and again,

lim
x→0

(2 cos2 x − 2 sin2 x)

lim
x→0

cos x
= 2

1
= 2.

Of course, some situations are hopeless. Consider f (x) = sin𝜋x
(𝜋x)2

. Applying

L’Hospital’s rule,

lim
x→0

sin(𝜋x)

(𝜋x)2
=

lim
x→0

𝜋 cos(𝜋x)

lim
x→0

2𝜋2x
= 1

0
.

The limit does not exist.
The Taylor series gives insight into what is going on with these limits. In the

first example, dividing the expansion for sin(𝜋x) by 𝜋x gives

sin(𝜋x)
𝜋x

=
𝜋x − (𝜋x)3

6
+ (𝜋x)5

120
−⋯

𝜋x
= 1 − (𝜋x)2

6
+ (𝜋x)4

120
⋯ .

This series tends to 1 as x → 0, in agreement with L’Hospital’s rule. On the other
hand, dividing by (𝜋x)2 results in

𝜋x − (𝜋x)3

6
+ (𝜋x)5

120
−⋯

(𝜋x)2
= 1

𝜋x
− 𝜋x

6
+ (𝜋x)3

120
⋯ .
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The leading term blows up as x → 0. The denominator is going to zero faster than
the numerator, as x2 vs. x; the numerator fails to neutralize the denominator and the
function blows up.

Chain rule
The chain rule tells how to differentiate a function of a function:

d
dx

f (u(x)) = f ′(u(x))
du
dx

=
df

du
du
dx

.

Integrability
It is useful to know whether the integral of a function exists before attempting to
calculate the integral. A few basic cases are all that is needed.

� First, it is clear that if a positive function f is bounded, f < M < ∞, on a

bounded interval (a, b) (i.e., −∞ < a < b < ∞), then the integral ∫
b

a
f (x) dx

has a finite value, which is bounded by M(b − a).
� A positive function that grows without bound on a bounded interval (a, b) may

nonetheless have a finite integral if it blows up sufficiently slowly. For example,
the function 1∕x blows up as x → 0, and the integral

∫
1

a

dx
x

= − log a → ∞ as a → 0,

so 1∕x is not integrable on (0, 1). On the other hand, the function 1∕x1−r, r > 0,
grows more slowly than 1∕x as x approaches 0, and the integral

∫
1

a

dx
x1−r

= 1
r

(1 − ar) →
1
r

as a → 0,

so 1∕x1−r is integrable on (0, 1).
� A positive function on an unbounded interval, for example, (1,∞), must decay

sufficiently rapidly as x → ∞ in order to be integrable. Again, consider 1∕x.

∫
∞

1

dx
x

= lim
A→∞∫

A

1

dx
x

= lim
A→∞

log A

and this limit does not exist because log A grows without bound. On the other
hand, 1∕x1+r, r > 0, decays faster than 1∕x, and its integral on (1,∞) is

lim
A→∞∫

A

1

dx
x1+r

= lim
A→∞

1
r

[
1 − 1

Ar

]
= 1

r
.

� If a function takes on both positive and negative values, the integral of the
negative portions will partially cancel the integral of the positive portions. The
integral will be smaller in magnitude than the integral of |f |,|||||∫

b

a
f (x) dx

||||| ≤ ∫
b

a
|f (x)| dx.
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A function f is said to be absolutely integrable if the integral of its absolute
value exists. Because the integral of f is bounded above by the integral of|f |, a sufficient, though not necessary, condition for the integrability of f is
the absolute integrability of f . For example, the function sin(𝜋x)∕(𝜋x) is not
absolutely integrable on (−∞,∞)—it decays only as fast as 1∕x for large x.
However, we will see in a later chapter that it is integrable and its integral is 1.

In sum: in order to be integrable, a function must decay faster than 1∕x for large
x and grow more slowly than 1∕x for small x (or more slowly than 1∕(x − c) as
x → c). If a function is absolutely integrable, then it is integrable, but there are
important cases where a function may be integrable even though it is not absolutely
integrable.

Improper integrals and the Cauchy principal value
The integral ∫ b

a f (x) dx has a finite value when a and b are finite and f (x) is bounded
on the interval [a, b]. When one of the limits of integration is infinite, the integral is
called improper and is defined

∫
b

−∞
f (x) dx = lim

a→−∞∫
b

a
f (x) dx or ∫

∞

a
f (x) dx = lim

b→∞∫
b

a
f (x) dx

when the limit exists. If both limits of integration are infinite, the improper integral
is defined by

∫
∞

−∞
f (x) dx = lim

a→∞∫
c

−a
f (x) dx + lim

b→∞∫
b

c
f (x) dx

(typically, c = 0) when both the indicated limits exist. An alternative definition that
is frequently useful is the Cauchy principal value, defined

P∫
∞

−∞
f (x) dx = lim

a→∞∫
a

−a
f (x) dx, (1.30)

when the limit exists. The Cauchy principal value often exists where the integral
defined in the ordinary way fails.

Example 1.1 (sgn x has zero area). The signum function, defined

sgn(x) =
⎧⎪⎨⎪⎩
−1, x < 0

0, x = 0

1, x > 0
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has odd symmetry, and consequently should have zero area,

∫
∞

−∞
sgn(x) dx = 0.

According to the standard rules of calculus, however,

∫
∞

−∞
sgn(x) dx = − lim

a→∞∫
0

−a
dx + lim

b→∞∫
b

0
dx

= lim
a→∞

−a + lim
b→∞

b.

As a and b increase, the integrals separately grow without bound, and their “sum,”
−∞+∞, is undefined. The idea of the Cauchy principal value is to let the areas
under the positive and negative portions of the integrand accumulate symmetrically,
in such a way that the integral remains finite in the limit. In this example,

P∫
∞

−∞
sgn(x) dx = lim

A→∞∫
A

−A
sgn(x) dx

= lim
A→∞

|x||||A−A
= lim

A→∞
(A − A) = 0.

If f is unbounded at a point c within an interval, c ∈ (a, b), then by the conven-
tional definition

∫
b

a
f (x) dx = lim

𝜖→0+ ∫
c−𝜖

a
f (x) dx + lim

𝜖→0+ ∫
b

c+𝜖
f (x) dx

where both limits must independently exist. There is also a Cauchy principal value,

P∫
b

a
f (x) dx = lim

𝜖→0+

[
∫

c−𝜖

a
f (x) dx + ∫

b

c+𝜖
f (x) dx

]
when the limit exists.

Example 1.2 (x−1 has zero area). Like signum, the function x−1 has odd symmetry
and its area should be zero:

∫
∞

−∞

dx
x

= 0.

The integrand is singular at the origin. Under the ordinary rules of integration, the
singularity is approached by a limiting process, as are the infinite limits of the integral
itself.

∫
∞

−∞

dx
x

= lim
A→∞

lim
a→0∫

−a

−A

dx
x

+ lim
B→∞

lim
b→0∫

B

b

dx
x

= lim
A→∞

lim
a→0

log |x||||−a

−A
+ lim

B→∞
lim
b→0

log |x||||Bb
= lim

A→∞
lim
a→0

log
( a

A

)
+ lim

B→∞
lim
b→0

log
(B

b

)
= log(0) + log(∞).
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Neither limit is finite. Using the Cauchy principal value instead, the singularity is
approached symmetrically, with the expectation that positive and negative areas will
combine and give a finite result in the limit.

P∫
∞

−∞

dx
x

dx = lim
A→∞

lim
a→0

[
∫

−a

−A

dx
x

+ ∫
A

a

dx
x

]
= lim

A→∞
lim
a→0

[
log |x||||−a

−A
+ log |x||||Aa]

= lim
A→∞

lim
a→0

[
log

( a
A

)
+ log

(A
a

)]
= lim

A→∞
lim
a→0

log(1) = 0.

If an integral exists in the ordinary sense, then it also has a Cauchy principal
value and, as there are no singularities for the Cauchy principal value to avoid, the
ordinary value and principal value are the same. For example, the Cauchy principal

value of the integral ∫ ∞
−∞

(
1 + x2

)−1
dx is

P∫
∞

−∞

dx
1 + x2

= lim
A→∞∫

A

−A

dx
1 + x2

= lim
A→∞

[
arctan(A) − arctan(−A)

]
= lim

A→∞
2 arctan(A) = 𝜋.

The integral taken in the ordinary sense is

∫
∞

−∞

dx
1 + x2

= lim
A→∞∫

0

−A

dx
1 + x2

+ lim
B→∞∫

B

0

dx
1 + x2

= lim
A→∞

[
arctan(0) − arctan(−A)

]
+ lim

B→∞

[
arctan(B) − arctan(0)

]
= 0 −

(
−𝜋

2

)
+ 𝜋

2
− 0 = 𝜋.

Because of this agreement, one commonly sees improper integrals on (−∞,∞)
performed as Cauchy principal values even when an ordinary integral would suffice.

Integration by parts
Integration by parts is the inverse of the product rule for differentiation, d(u𝑣) =
ud𝑣 + 𝑣du.

∫ u d𝑣 = u𝑣 − ∫ 𝑣 du.

As an example, consider the integral ∫ x sin x dx. Let u = x and d𝑣 = sin x dx, then
du = dx and 𝑣 = − cos x. Plugging these into the formula,

∫ x sin x dx = −x cos x − ∫ − cos x dx = −x cos x + sin x.
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It is important when integrating by parts to choose u and 𝑣 in such a way that
the remaining integral is simpler than the one you started with. Were you to choose
instead u = sin x and d𝑣 = xdx, then du = cos x dx and 𝑣 = 1

2
x2. Then

∫ x sin x dx = 1
2

x2 sin x − ∫
1
2

x2 cos x dx,

which is not an improvement.

Differentiating under the integral sign

If f (x, y) is continuous on the region [a, b] × [c, d], and
𝜕f

𝜕y
exists and is continuous

on this region, then the integral

∫
b

a
f (x, y)dx

is differentiable for all y ∈ (c, d), and

d
dy ∫

b

a
f (x, y)dx = ∫

b

a

𝜕f

𝜕y
dx.

Double integrals
If the function f (x, y) is integrable on the region [a, b] × [c, d], the function f (x0, y) is
integrable on [c, d] for all x0 ∈ (a, b), and the function f (x, y0) is integrable on [a, b]
for all y0 ∈ (c, d), then the double integral may be written in terms of iterated single
integrals (Fubini’s theorem):

∫
d

c ∫
b

a
f (x, y) dxdy = ∫

d

c

[
∫

b

a
f (x, y)dx

]
dy = ∫

b

a

[
∫

d

c
f (x, y)dy

]
dx.

Unfortunately, the converse is not true, that the existence of either of the iterated
integrals guarantees the existence of the double integral. A separate condition takes

care of this (Tonelli’s theorem):5 If ∫ d
c

[∫ b
a |f (x, y)|dx

]
dy or ∫ b

a

[∫ d
c |f (x, y)|dy

]
dx

exists, then the double integral ∫ d
c ∫ b

a f (x, y)dxdy exists and Fubini’s theorem applies.
A particularly important form of this, which we shall use later, is

∫
d

c ∫
b

a
f (x) g(y) h(x, y) dxdy = ∫

d

c
g(y)

[
∫

b

a
f (x) h(x, y) dx

]
dy (1.31a)

= ∫
b

a
f (x)

[
∫

d

c
g(y) h(x, y) dy

]
dx (1.31b)

5The Fubini and Tonelli theorems are discussed in Champeney (1987, pp. 18–19), Gasquet and Witomski
(1999, p. 124), and Kolmogorov and Fomin (1975, pp. 359–362).
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1.10 TOP 10 WAYS TO AVOID ERRORS IN
CALCULATIONS

These should be reviewed frequently and applied as you solve the problems in this
book and make calculations in your professional work.

1. Plan a strategy for solving the problem rather than diving right in and expecting
the right answer to appear at the end. Make sketches to gain insight.

2. Identify your variables—time/space, frequency—and distinguish them from
parameters and constants. When you integrate f (x)dx between a and b, x should
not appear in your answer.

3. Substitute letters for numerical parameters, for example, change 110 sin(2𝜋60t)
to Vo sin(2𝜋𝜈ot); at the end of the calculation, substitute the numerical values
back in.

4. Divide calculations into small pieces.

5. Narrate the steps of your solution, explaining them to yourself and/or to your
reader.

6. Use previously established results (e.g., theorems) to minimize calculations,
but make sure you use them correctly—check their conditions and make sure
they are applicable to the problem at hand.

7. Copy accurately. Double check plus and minus signs, especially as you go from
line to line in a calculation. Write comfortably large and leave space between
lines.

8. Watch dimensions.
� Arguments of functions (like cos, sin, exp, log) must be dimensionless. If

you have cos t (where t is understood to be time), there must be an implicit
𝜔 = 1. If you have cos 2𝜋t∕T , you’re OK. If you have cos Tt, you made a
mistake.

� Terms in a sum must have the same dimensions: 𝜈 + 1∕T is OK (both are
frequencies in Hz), 𝜈 + T is not.

� Integrals have dimensions too. dt, dx, d𝜈 carry units of time, space, frequency
(cycles/unit time or cycles/unit length), respectively.

9. Interpret your results. Look for symmetry and simplicity. Rewrite your solutions
into algebraic forms that convey insight about the physical problem (mathe-
matical software is not proficient at this). Make sketches to illustrate behavior.

10. Demand that your results make physical sense. Check limiting cases for extreme
values of variables or parameters.

PROBLEMS

1.1. An alternative derivation of the dot product in terms of the components of the vectors
(Equation 1.2) follows from the Law of Cosines. In the plane defined by vectors v and
w, consider a triangle made from v, w, and their difference, v − w. (Figure 1.16). By the
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v

w

v – w

θ

FIGURE 1.16 Illustrating Problem 1.1.

Law of Cosines,

‖v‖2 + ‖w‖2 − 2‖v‖ ‖w‖ cos 𝜃 = ‖v − w‖2
.

Note that the last term on the left-hand side contains the dot product. Express the squared
norms in terms of the components of v and w, and complete the calculation.

1.2. Let a vector v be expressed in terms of the orthonormal basis {e1, e2}: v = 𝑣1e1 + 𝑣2e2.
Consider a different orthonormal basis {e′1, e′2} and the expression of v in terms of this
basis, v = 𝑣

′
1e′1 + 𝑣

′
2e′2.

(a) Show that the coefficients 𝑣
′
1 and 𝑣

′
2 are related to the coefficients 𝑣1 and 𝑣2 by a

linear transformation [
𝑣
′
1

𝑣
′
2

]
=

[
a11 a12

a21 a22

][
𝑣1

𝑣2

]
and derive expressions for the coefficients aij in terms of the basis vectors.

(b) Show that the dot product is invariant to change of basis, that is, for two vectors v
and w expressed in terms of the two bases, that

v ⋅ w = 𝑣1𝑤1 + 𝑣2𝑤2 = 𝑣
′
1𝑤

′
1 + 𝑣

′
2𝑤

′
2.

By setting v = w, this also shows that the norm is invariant to change of basis.

(c) For the same vectors and bases as in the previous part, show that the vector sum is
invariant to change of basis.

(d) Consider a scalar c and calculate its value c′ in the new basis.

In advanced treatments of vectors in physics, vectors and scalars are defined by their
transformation properties under change of coordinates, which is the same as change of
basis.6

1.3. Derive the formulas for even and odd functions, Equations 1.16, 1.17, and 1.18.

1.4. Calculate the even and odd parts of the following functions:

(a) f (x) = U(x − 1)

(b) f (x) = e−xU(x)

(c) f (x) = x [U(x) − U(x − 1)].

6See, for example, Arfken (1985, Section 1.2).
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1.5. Show that the derivative of an odd function is even and the derivative of an even function
is odd.

1.6. Beginning with the sum formulae (Equation 1.20), derive the usual trigonometric iden-
tities for

(a) sin 2A and cos 2A

(b) sin(A − B) and cos(A − B)

(c) sin2 A and cos2 A.

1.7. Derive a formula similar to Equation 1.22 for C sin(2𝜋𝜈t + 𝜑).

1.8. One way to appreciate the identity exp(i𝜃) = cos 𝜃 + i sin 𝜃 is via the Taylor series.
Derive the Taylor series for exp(i𝜃), separate the real and imaginary parts, and show that
these are equal to the Taylor series for cos 𝜃 and sin 𝜃, respectively.

1.9. Show that | exp(i𝜃)| = 1 using the Euler equations.

1.10. Establish the geometric series identity (Equation 1.27). To prove by induction, show that
the identity is correct for N = 1 and N = 2. Then, assuming it is correct for N = K − 1
(the inductive hypothesis), prove that it is correct for N = K.

1.11. Using L’Hospital’s rule, evaluate the following limits:

(a)
1 − e2x

x
, as x → 0

(b)
1 − cos 𝜋x

𝜋x
, as x → 0.

1.12. Calculate the following integrals, by parts:

(a) ∫ xeax dx

(b) ∫ x2 cos bx dx.

1.13. Calculate the following improper integrals:

(a) ∫
1

0

dx
x1∕2

(b) ∫
∞

−∞

dx
1 + x2

.

1.14. Calculate the Cauchy principal values of the following integrals:

(a) ∫
1

−1

dx
x2

(b) ∫
1

−1

dx
x3

(c) ∫
2

−1

dx
x3

.



CHAPTER 2
VECTOR SPACES

Quantities in the physical world are modeled mathematically by functions of one
or more independent variables. These functions are often called signals, particularly
when they result from measurements or are purposely designed to convey information.
An audio signal is a function of one independent variable, time. A photographic image
is a function of two spatial variables. A video image is a function of one temporal and
two spatial variables. The sound wave emanating from a loudspeaker is a function of
time and three spatial variables.

For mathematical analysis, it is convenient to group signals into classes with
common properties, such as: “all speech signals,” “all 256 × 256 pixel images,” “all
signals with amplitude less than one volt,” “all continuous functions”. This chapter
introduces several important signal classes and the mathematical structures that model
them. With the right set of rules, these signals, be they finite-dimensional vectors,
infinite sequences, or functions, can be collected into families that display behavior
strikingly similar to physical vectors. These special families are called linear spaces,
or vector spaces.

The properties of physical vectors are helpfully understood in geometric terms.
The magnitude of a vector is expressed by its norm. Two vectors representing, say,
force or velocity can be added to produce a new vector that combines the effects
of the individual vectors. The dot product of two vectors expresses their degree of
interaction or dependence. Vectors whose dot product is zero are orthogonal; they are
noninteracting or represent independent actions. The dot product of a vector with a
unit coordinate vector is the projection of the vector along that coordinate direction.
A vector is decomposed into the sum of noninteracting components by projecting it
along mutually orthogonal unit vectors.

Within the general framework introduced in this chapter, signals of various
kinds are seen to act like vectors. They can be added and subtracted. Norms are
defined, so that the closeness of one signal to another, or the degree to which one
signal approximates another, can be quantified. The dot product is generalized, and
with it some functions are seen to be orthogonal; an arbitrary function can be decom-
posed into a sum of simple orthogonal functions. Consequently, your geometric
intuition about physical vectors will carry over to studying signals and, in particular,
understanding and using Fourier analysis.

Fourier Transforms: Principles and Applications, First Edition. Eric W. Hansen.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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2.1 SIGNALS AND VECTOR SPACES

Signals may be classified in several ways, some of which are more powerful math-
ematically than others. One important classification is based on the independent
variable, which for our purposes here will be taken to be time, but could be space
or something else. If the domain of a signal is the set of real numbers ℝ or a real
interval (a, b) ∈ ℝ, it is called a continuous-time signal. If the domain is a discrete
set of values {t1, t2,…}, then f is a discrete-time signal. When the time values are
integers, for example, tk = k, the discrete-time signal f is also called a sequence. The
term signal will be used interchangeably with sequence and function as the context
permits. In this book, the continuous-time signal f evaluated at time t ∈ ℝ is denoted
f (t), as usual. The nth element of the discrete-time signal f will be denoted f [n] or fn,
and the entire sequence will be written f = (f [1], f [2],…) = (f [n])∞n=1, or (fn)∞n=1. We
will also use sequences whose index sets are the nonnegative integers, n = 0, 1, 2,… ,
and all integers, n = … ,−2,−1, 0, 1, 2,…. Continuous- and discrete-time signals are
drawn in the manner shown in Figure 2.1.

The most useful classifications of signals are those that possess certain algebraic
properties, for example, that if signals u and 𝑣 belong to a set of signals V, then their
sum u + 𝑣, defined appropriately, also belongs to V. The idea of a vector space (or
linear space) generalizes the vector ideas familiar from geometry and physics to
objects that behave algebraically like physical vectors. Although we will call the
elements of a vector space points or vectors, they may, in fact, not be vectors in the
physical sense but any mathematical objects, such as functions, for which the addition
and multiplication operations can be defined. In this book, the vectors will be real
or complex valued, the scalars will correspondingly be real or complex numbers,
and the space itself will be called a real vector space or complex vector space,
respectively.

0 1
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2.5
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f(
t)

0 1 2 3 4 5 6 7 8
0

0.5

1

1.5

2

2.5

n

f[
n]

FIGURE 2.1 A continuous-time signal (left), and a discrete-time signal, or sequence
(right).
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The following definition is suitable to our purposes.

Definition 2.1. A vector space V is a nonempty set with two operations, called
vector addition and scalar multiplication. For elements u, 𝑣,𝑤 ∈ V and scalars1 a, b,
vector addition (u + 𝑣) and scalar multiplication (au) have the properties:

(a) Closure: u + 𝑣 ∈ V, au ∈ V

(b) Commutative: u + 𝑣 = 𝑣 + u

(c) Associative: (u + 𝑣) +𝑤 = u + (𝑣 +𝑤), (ab)u = a(bu) (Note that ab is the
product of two scalars, while bu is the product of a scalar and a vector.)

(d) Distributive: a(u + 𝑣) = au + a𝑣, (a + b)u = au + bu (Note that a + b is the
sum of two scalars, while u + 𝑣 is the sum of two vectors.)

(e) Additive identity element: There exists an element 0 ∈ V such that 0 + u = u
for every u ∈ V .

(f) Additive inverse elements: For each u ∈ V there exists an element 𝑤 ∈ V such
that u +𝑤 = 0. (It may conveniently be written 𝑤 = −u.)

(g) Multiplicative identity: There is a scalar 1 with the property 1u = u.

Example 2.1 (Examples of real and complex vector spaces).

(a) The real numbers ℝ and the complex numbers ℂ. (Here, the vectors and scalars
are one and the same.)

(b) The set of all n-tuples2 {(x1, x2,… , xn) ∣ xk ∈ ℝ}, known as ℝn, with addition
and multiplication defined in the usual way: for x, y ∈ ℝn,

x + y = (x1 + y1, x2 + y2,… , xn + yn)

ax = (ax1, ax2,… , axn), a ∈ ℝ.

These n-tuples, or n-dimensional vectors, arise in numerous practical applica-
tions. N observations of an experimental quantity or, equivalently, N values of a
discrete-time signal, constitute a vector in an N-dimensional space. An image,
which is an N × N array of picture elements, or pixels, may be regarded as a
single vector in an N2-dimensional space by stringing the rows of the image
together.

(c) The set of all infinite sequences (xn)∞n=1 whose sums converge absolutely:

∞∑
n=1

|xn| < ∞.

This vector space has the name 𝓁1 (read ell one).

1In this book, the elements of a vector space are either real or complex valued, and the scalars are either
real or complex numbers, respectively.
2We will usually dispense with boldfaced notation for vectors, in keeping with the more general definition
above. Whether xk refers to the kth component of a vector x or the kth element of a set will be clear from
context.
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(d) The set of continuous functions f : [0, 1] → ℝ, denoted C[0, 1], with addition
and scalar multiplication defined,

(f + g)(x) = f (x) + g(x)

(af )(x) = af (x).

Because the sum of two continuous functions is continuous, the closure prop-
erty (c) is satisfied. That the other properties hold is not hard to show.

2.2 FINITE-DIMENSIONAL VECTOR SPACES

A vector space is finite dimensional if the vectors are n-tuples (𝑣1, 𝑣2,… , 𝑣n), n < ∞.
A vector space is infinite dimensional if it is not finite dimensional. The vector space
ℝn is finite dimensional, while 𝓁1 and C[0, 1] are infinite dimensional. In this section
several important vector space principles are developed for finite-dimensional spaces.
These will be familiar from geometry in two and three dimensions; what is new is
just the extension to complex numbers and higher dimensions. Following this, in Sec-
tion 2.3 we will see how the same geometric intuition extends naturally and powerfully
to infinite-dimensional spaces. Finite-dimensional vector spaces are the foundation
for Chapter 3, and Chapters 4 and 5 are based on infinite-dimensional spaces.

2.2.1 Norms and Metrics

The minimum requirements for a vector space are laid out in Definition 2.1. In
addition to these, it will be useful to have a definition of length for the elements
of a vector space. The usual definition of length for a vector 𝑣 = (𝑣1, 𝑣2) in a plane

is ‖𝑣‖ =
√

𝑣
2
1 + 𝑣

2
2. It has four properties: (a) it is a nonnegative real number; (b)

it is zero only for the zero vector 𝑣 = (0, 0); (c) multiplying a vector by a scalar c
multiplies the length by |c|; and (d) for two vectors u and 𝑣, ‖u + 𝑣‖ ≤ ‖u‖ + ‖𝑣‖ (the
triangle inequality). Properties (a) through (c) are obvious. The triangle inequality
makes intuitive sense (draw a picture, or see Figure 1.1); to verify it mathematically
requires some algebra:

‖u + 𝑣‖ =
√

(u1 + 𝑣1)2 + (u2 + 𝑣2)2
?≤ ‖u‖ + ‖𝑣‖ =

√
u2

1 + u2
2 +

√
𝑣

2
1 + 𝑣

2
2

Square both sides and collect terms,

u2
1 + 2u1𝑣1 + 𝑣

2
1 + u2

2 + 2u2𝑣2 + 𝑣
2
2

?≤ u2
1 + u2

2 + 𝑣
2
1 + 𝑣

2
2 + 2

√(
u2

1 + u2
2

) (
𝑣

2
1 + 𝑣

2
2

)
u1𝑣1 + u2𝑣2

?≤
√(

u2
1 + u2

2

) (
𝑣

2
1 + 𝑣

2
2

)
.

Square both sides again and collect terms,

u2
1𝑣

2
1 + u2

2𝑣
2
2 + 2u1u2𝑣1𝑣2

?≤ u2
1𝑣

2
1 + u2

2𝑣
2
2 + u2

1𝑣
2
2 + u2

2𝑣
2
1

2u1u2𝑣1𝑣2

?≤ u2
1𝑣

2
2 + u2

2𝑣
2
1.
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Collect terms on the right hand side,

(u1𝑣2)2 − 2(u1𝑣2)(u2𝑣1) + (u2𝑣1)2
?≥ 0,

then factor,

(u1𝑣2 − u2𝑣1)2 ≥ 0.

This is certainly true for all u and 𝑣.

The formula ‖𝑣‖ =
√

𝑣
2
1 + 𝑣

2
2 is not the only way to define the length of a

vector, nor is the idea of length confined to real-valued vectors. As we encounter
vectors of more general type—real or complex, finite- or infinite-dimensional, or
even functions of one or more variables—we will want to have an idea of length. It
turns out that the way to do this is simply to invoke the same four properties listed
above. We will introduce it here in the context of finite-dimensional spaces, then
revisit it when we get to infinite-dimensional spaces.

Definition 2.2. A norm ‖⋅‖ on a vector space V is a mapping ‖⋅‖ : V → ℝ, which
satisfies the following conditions for vectors 𝑣,𝑤 ∈ V and scalars c:

(a) Nonnegativity: ‖𝑣‖ ≥ 0

(b) Nondegeneracy: ‖𝑣‖ = 0 if and only if 𝑣 = 0

(c) Scaling: ‖c𝑣‖ = |c| ‖𝑣‖
(d) Triangle inequality: ‖𝑣 +𝑤‖ ≤ ‖𝑣‖ + ‖𝑤‖

A vector space on which a norm is defined is called a normed vector space, or just
normed space.

Example 2.2. Here are some norms for finite-dimensional vector spaces.

(a) On the real line, the vectors are the real numbers and the norm is identical with
the absolute value, ‖x‖ = |x|.

(b) In the complex plane, the vectors are the complex numbers and the norm is
identical with the complex magnitude, ‖z‖ = |z| = √

zz∗.

(c) For a vector 𝑣 = (𝑣1, 𝑣2,… , 𝑣n) ∈ ℝn, the familiar euclidean norm is

‖𝑣‖2 =

(
n∑

k=1

𝑣
2
k

)1∕2

, (2.1)

and ℝn with this norm is called euclidean space. We can also define the
following noneuclidean norms:

‖𝑣‖1 =
n∑

k=1

|𝑣k| (2.2)

‖𝑣‖∞ = max
k=1,2,…,n

|𝑣k|. (2.3)

(For simplicity, we will henceforth write maxk instead of maxk=1,2,…,n when
the range of the index is understood.) Properties (a)–(c) are straightforward to
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verify for each of these. Verification of the triangle inequality is more difficult.
We shall prove it here for the euclidean norm, and leave the other two to the
problems.

The straightforward algebraic approach used to verify the triangle
inequality in two dimensions is obviously too complicated to generalize to
arbitrary n. Instead, we use the Schwarz inequality, which shall be explained
later in a more general form. For two points in ℝn, u = (u1, u2,… , un) and
𝑣 = (𝑣1, 𝑣2,… , 𝑣n), the Schwarz inequality says

n∑
i=1

|ui𝑣i| ≤ (
n∑

i=1

u2
i

)1∕2 ( n∑
i=1

𝑣
2
i

)1∕2

= ‖u‖2‖𝑣‖2.

So consider u, 𝑣 ∈ ℝn, and write

‖u + 𝑣‖2 =
n∑

k=1

(uk + 𝑣k)2 =
n∑

k=1

u2
k + 2uk𝑣k + 𝑣

2
k

=
n∑

k=1

u2
k + 2

n∑
k=1

uk𝑣k +
n∑

k=1

𝑣
2
k

= ‖u‖2 + 2
n∑

k=1

uk𝑣k + ‖𝑣‖2
.

Taking absolute values of both sides, and using the fact that the triangle inequal-
ity holds for real numbers,3

‖u + 𝑣‖2 =
|||||‖u‖2 + 2

n∑
k=1

uk𝑣k + ‖𝑣‖2
||||| ≤ ‖u‖2 + 2

|||||
n∑

k=1

uk𝑣k

||||| + ‖𝑣‖2

≤ ‖u‖2 + 2
n∑

k=1

|uk𝑣k| + ‖𝑣‖2
.

By the Schwarz inequality, the middle term is bounded by 2 ||u|| ||𝑣||, so‖u + 𝑣‖2 ≤ ‖u‖2 + 2‖u‖‖𝑣‖ + ‖𝑣‖2 = (‖u‖ + ‖𝑣‖)2
.

Taking the square root of both sides completes the proof.

Later we will consider norms for infinite-dimensional vector spaces, such as
the generalization of the absolute value norm for infinite sequences,

‖𝑣‖ =
∞∑

k=1

||𝑣k
|| ,

and for functions, for example, defined on the interval (0, 1),

‖f‖ = ∫
1

0
|f (x)| dx.

3That is, |x + y| ≤ |x| + |y| for real x and y; see Rosenlicht (1968, p. 34).
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When a vector in three dimensions represents the displacement of a point in
space from the origin, the norm of the vector gives the distance of the point from
the origin. If two points in space are displaced from the origin by vectors u and
𝑣, the norm of the difference of the displacement vectors, ‖u − 𝑣‖, is the distance
d(u, 𝑣) between the two points. We say that the norm induces a metric (provides
a measure of distance) on the space. The metric d has properties very similar to
the norm.

Definition 2.3. A metric on a space V is a function d : V × V → ℝ having the
following properties for u, 𝑣,𝑤 ∈ V:

(a) Nonnegativity: d(u, 𝑣) ≥ 0

(b) Nondegeneracy: d(u, 𝑣) = 0 if and only if u = 𝑣

(c) Symmetry: d(u, 𝑣) = d(𝑣, u)

(d) Triangle inequality: d(u,𝑤) ≤ d(u, 𝑣) + d(𝑣,𝑤).

If a space V has a metric, then it is called a metric space.

The formula d(u, 𝑣) = ‖u − 𝑣‖ is a valid metric, no matter how the norm is
defined. Properties (a)–(c) are obvious. To show that it satisfies the triangle inequality,
write u −𝑤 = (u − 𝑣) + (𝑣 −𝑤). This is the sum of two vectors, u − 𝑣 and 𝑣 −𝑤,
and because norms obey the triangle inequality, we have

‖u −𝑤‖ ≤ ‖u − 𝑣‖ + ‖𝑣 −𝑤‖,

that is,

d(u,𝑤) ≤ d(u, 𝑣) + d(𝑣,𝑤).

Although we have presented normed spaces first, a metric space is actually
more general (less restricted) than a normed space. A metric space is specified solely
by a distance measure. It need not have the algebraic properties of a vector space
(addition of points, multiplication of points by scalars). That is, all normed spaces
are metric spaces, but not vice-versa. All of the vector spaces we will routinely
use in this book have norms; hence, they are also metric spaces with d(u, 𝑣) =‖u − 𝑣‖.

Example 2.3 (Some metrics). Here are some metrics for finite-dimensional spaces.
Corresponding metrics for infinite-dimensional spaces will be defined later.

(a) Absolute value metric. On the real line, the customary distance measure is the
absolute value, d(x, y) = |x − y|. The first three metric properties are easy to
verify. For the triangle inequality, write x − z = (x − y) + (y − z), then

d(x, z) = |x − z| = |(x − y) + (y − z)|
≤ |x − y| + |y − z| = d(x, y) + d(y, z).



2.2 FINITE-DIMENSIONAL VECTOR SPACES 43

(b) Euclidean metric. The euclidean norm induces a metric on ℝn or ℂn,

d2(u, 𝑣) =

[
n∑

k=1

|uk − 𝑣k|2]1∕2

= ‖u − 𝑣‖2. (2.4)

Again, this is just the generalization of the Pythagorean theorem to n dimen-
sions. In our familiar ℝ3 world, it is the distance “as the crow flies” between
points u and 𝑣.

(c) Taxicab metric. The absolute value metric on ℝ formally extends to ℝn and ℂn

like this:

d1(u, 𝑣) =
n∑

k=1

|uk − 𝑣k| = ‖u − 𝑣‖1. (2.5)

This is sometimes called the taxicab metric or the Manhattan metric. Suppose
you are in a city with a rectangular grid of streets and you want to travel from
point u to point 𝑣. If you can fly directly from u to 𝑣, the distance you travel
is given by the euclidean metric. However, if you travel on the streets, you use
the taxicab metric to compute the distance.

(d) Maximum metric. For two points u, 𝑣 ∈ ℝn or ℂn, the maximum metric is

d∞(u, 𝑣) = max
k
|uk − 𝑣k| = ‖u − 𝑣‖∞. (2.6)

The maximum metric is a worst-case measure. Suppose you are traveling
between two cities u and 𝑣 with coordinates (u1, u2) and (𝑣1, 𝑣2) on opposite
corners of a rectangle. Your highway goes along one edge of the rectangle
from u = (u1, u2) to the intermediate point 𝑤 = (𝑣1, u2), then turns 90◦ and
continues to 𝑣 = (𝑣1, 𝑣2). Further suppose that your gas tank does not hold
enough fuel to cover the entire distance from u to 𝑤 and then 𝑤 to 𝑣. However,
there is a filling station at 𝑤. If your tank can hold enough fuel for the longer of
the two distances you can refill at 𝑤 and complete the trip. The critical distance
is the maximum metric, max{|u1 − 𝑣1|, |u2 − 𝑣2|}.

A more general norm is defined

‖u‖p =

(
n∑

k=1

|uk|p)1∕p

, p ≥ 1 (2.7)

with an associated metric

dp(u, 𝑣) = ‖u − 𝑣‖p =

(
n∑

k=1

|uk − 𝑣k|p)1∕p

, p ≥ 1. (2.8)

The taxicab and euclidean metrics are particular cases (p = 1 and 2, respectively).
It can be shown that these general definitions have the necessary properties. The
maximum metric can also be shown to be a limiting case of this general metric,

d∞(u, 𝑣) = lim
p→∞

dp(u, 𝑣). (2.9)
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Example 2.4 (Different metrics give different distances). Let x = (0, 1) and
y = (1,−2). Then we have

d1(x, y) = |0 − 1| + |1 + 2| = 4

d2(x, y) =
√|0 − 1|2 + |1 + 2|2 =

√
10

d∞(x, y) = max{|0 − 1|, |1 + 2|} = 3

Observe that d∞ < d2 < d1. This ordering holds in general for ℝn (see the
problems).

Having a metric permits you to identify regions in a space whose points are
close to one another. On the real line a neighborhood of a point x is defined to be
an open interval (x − r, x + r) for some r > 0. A point y is within this neighborhood
if d(x, y) < r. With the euclidean metric, a neighborhood of x on the plane is an
open disk of radius r, the set {y ∣ ‖x − y‖2 < r}. In ℝ3 with the euclidean metric,
a neighborhood of a point is an open sphere. Depending on the choice of metric,
neighborhoods can have different shapes.

Finally, suppose V is a metric space and U is a subset of V . We say that U is
bounded if d(x, y) < ∞ for every x, y ∈ U. The greatest distance between two points
in U, supx,y∈U d(x, y) is called the diameter of U.

2.2.2 Inner Products

Two vectors in the plane, u = (u1, u2) and 𝑣 = (𝑣1, 𝑣2), have a dot product defined by

u ⋅ 𝑣 = u1𝑣1 + u2𝑣2 = ‖u‖‖𝑣‖ cos 𝜃,

where 𝜃 is the angle between u and 𝑣. The dot product has algebraic properties that
are analogous to those of multiplication: (a) commutative, u ⋅ 𝑣 = 𝑣 ⋅ u; (b) asso-
ciative with a scalar, (cu) ⋅ 𝑣 = c(u ⋅ 𝑣); (c) distributive with addition, (u + 𝑣) ⋅𝑤 =
u ⋅𝑤 + 𝑣 ⋅𝑤; and (d) “squaring,” u ⋅ u = ‖u‖2

> 0, unless u = 0. The dot product has
physical significance, for example, the calculation of work, and is also the vehicle
for decomposing vectors into orthogonal components (see Section 1.2).

If the elements of u and 𝑣 are complex-valued, we still want u ⋅ u = ‖u‖2; to
achieve this we redefine the dot product as

u ⋅ 𝑣 = u1𝑣
∗
1 + u2𝑣

∗
2 .

The commutativity property changes to u ⋅ 𝑣 = (𝑣 ⋅ u)∗, but the other properties stay
the same.4 The complex definition includes real vectors as a special case.

Just as the familiar geometric distance between two points (metric) and length
of a vector (norm) may be extended to more general vector spaces, we may extend
the dot product. Once again, the approach is simply to use the properties of the dot
product as the definition for the more general operation, which is called the inner
product.

4In quantum mechanics, the definition is u ⋅ 𝑣 = u∗1𝑣1 + u∗2𝑣2, which is the complex conjugate of the
definition used in this text. Matlab also follows the quantum mechanics convention in its dot() function.
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Definition 2.4. An inner product ⟨⋅, ⋅⟩ on a vector space V is a mapping ⟨⋅, ⋅⟩ :
V × V → ℂ such that, for u, 𝑣,𝑤 ∈ V and c a constant,

(a) ⟨𝑣,𝑤⟩ = ⟨𝑤, 𝑣⟩∗
(b) ⟨c𝑣,𝑤⟩ = c⟨𝑣,𝑤⟩
(c) ⟨u + 𝑣,𝑤⟩ = ⟨u,𝑤⟩ + ⟨𝑣,𝑤⟩
(d) ⟨𝑣, 𝑣⟩ > 0, when 𝑣 ≠ 0.

A vector space with an inner product is called an inner product space.

Some straightforward consequences of this definition are

⟨𝑣, c𝑤⟩ = c∗ ⟨𝑣,𝑤⟩ (2.10)⟨u, 𝑣 +𝑤⟩ = ⟨u, 𝑣⟩ + ⟨u,𝑤⟩ (2.11)⟨𝑣, 0⟩ = ⟨0, 𝑣⟩ = 0 (2.12)

If ⟨u, 𝑣⟩ = ⟨u,𝑤⟩ for all u ∈ V , then 𝑣 = 𝑤. (2.13)

Moreover, the quantity
√⟨u, u⟩ can be shown to have all the properties of a norm.

Thus, an inner product space is a normed space, and the norm of the space is defined‖u‖ =
√⟨u, u⟩. The proofs of these are left as problems.

Example 2.5 (Inner products inℝn andℂn). For vectors in our familiar euclidean
space ℝ3, the dot product is an inner product,

⟨u, 𝑣⟩ = u1𝑣1 + u2𝑣2 + u3𝑣3,

which readily generalizes to ℝn,

⟨u, 𝑣⟩ = n∑
k=1

uk𝑣k. (2.14)

For complex vectors u, 𝑣 ∈ ℂn,

⟨u, 𝑣⟩ = n∑
k=1

uk𝑣
∗
k (2.15)

is an inner product; when u and 𝑣 are real, this is the same as Equation 2.14. We will
examine each of the four properties in turn. Let u, 𝑣,𝑤 ∈ ℂn and c ∈ ℂ. Then,

(a) ⟨u, 𝑣⟩ = n∑
k=1

uk𝑣
∗
k =

[
n∑

k=1

u∗k𝑣k

]∗

=

[
n∑

k=1

𝑣ku∗k

]∗

= ⟨𝑣, u⟩∗
(b) ⟨cu, 𝑣⟩ = n∑

k=1

cuk𝑣
∗
k = c

n∑
k=1

uk𝑣
∗
k = c ⟨u, 𝑣⟩
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u

v

u – v

u + v

FIGURE 2.2 Illustrating the parallelogram law for vectors in the plane. The diagonals of
the parallelogram are the vectors u − 𝑣 and u + 𝑣. The parallelogram law says that the sum
of the squared lengths of the diagonals is the sum of the squared lengths of the four sides,‖u + 𝑣‖2 + ‖u − 𝑣‖2 = 2‖u‖2 + 2‖𝑣‖2.

(c) ⟨u + 𝑣,𝑤⟩ = n∑
k=1

(uk + 𝑣k)𝑤∗
k =

n∑
k=1

uk𝑤
∗
k + 𝑣k𝑤

∗
k

=
n∑

k=1

uk𝑤
∗
k +

n∑
k=1

𝑣k𝑤
∗
k = ⟨u,𝑤⟩ + ⟨𝑣,𝑤⟩ .

(d) We have

⟨u, u⟩ = n∑
k=1

uku∗i =
n∑

k=1

|uk|2 = ‖u‖2
2

and by the definition of the norm, ⟨u, u⟩ = ‖u‖2 ≥ 0, with ⟨u, u⟩ = 0 only if
u = 0.

There is a cluster of interesting results connecting the inner product and the
norm. These include the parallelogram law (Figure 2.2):‖u + 𝑣‖2 + ‖u − 𝑣‖2 = 2‖u‖2 + 2‖𝑣‖2, (2.16)

and the polarization identity:

4 ⟨u, 𝑣⟩ = ‖u + 𝑣‖2 − ‖u − 𝑣‖2 + i‖u + i𝑣‖2 − i‖u − i𝑣‖2
. (2.17)

These are considered in more detail in the problems. The most important rela-
tionship is the Cauchy–Schwarz inequality. For vectors in a plane, the dot product
u ⋅ 𝑣 = ‖u‖‖𝑣‖ cos 𝜃 is bounded in magnitude by ‖u‖‖𝑣‖, because | cos 𝜃| ≤ 1. The
Cauchy–Schwarz inequality generalizes this bound to any inner product space.

Theorem 2.1 (Cauchy–Schwarz inequality). Let V be an inner product space,
and u, 𝑣 ∈ V . Then, | ⟨u, 𝑣⟩ | ≤ ‖u‖‖𝑣‖ (2.18)

with equality only if u = c𝑣, c constant.
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Proof: If u = c𝑣, then we have directly| ⟨u, 𝑣⟩ | = | ⟨c𝑣, 𝑣⟩ | = |c|‖𝑣‖2 = ‖c𝑣‖‖𝑣‖
= ‖u‖‖𝑣‖.

On the other hand, if u ≠ c𝑣, then ⟨u − c𝑣, u − c𝑣⟩ = ‖u − c𝑣‖2
> 0, and⟨u − c𝑣, u − c𝑣⟩ = ⟨u, u⟩ − ⟨u, c𝑣⟩ − ⟨c𝑣, u⟩ + ⟨c𝑣, c𝑣⟩

= ‖u‖2 − c∗ ⟨u, 𝑣⟩ − c ⟨u, 𝑣⟩∗ + |c|2‖𝑣‖2

= ‖u‖2 − 2Re
(
c∗ ⟨u, 𝑣⟩) + |c|2‖𝑣‖2

> 0.

This relationship, ‖u‖2 − 2Re
(
c∗ ⟨u, 𝑣⟩) + |c|2‖𝑣‖2

> 0, holds for all c. In particu-
lar, it holds for

c = t
⟨u, 𝑣⟩∗| ⟨u, 𝑣⟩ | , t ≥ 0

(note |c| = t), which gives‖u‖2 − 2t| ⟨u, 𝑣⟩ | + t2‖𝑣‖2
> 0.

The left-hand side is a quadratic expression in t, of the form 𝛼t2 − 2𝛽t + 𝛾 , with
𝛼, 𝛾 > 0. Its graph is a convex-upward parabola, whose minimum value is 𝛾 − 𝛽

2∕𝛼 =‖u‖2 − |⟨u, 𝑣⟩|2∕‖𝑣‖2. If this minimum is positive, then the left hand side is positive
and the inequality is true; hence, make

‖u‖2
>
| ⟨u, 𝑣⟩ |2‖𝑣‖2

⇒ | ⟨u, 𝑣⟩ | < ‖u‖‖𝑣‖.
This proof made use only of the general properties of inner product and norm. It

will also hold for infinite-dimensional vectors and functions, as long as we can define
meaningful inner products and norms. Specialized to vectors in euclidean space ℝn,
the Cauchy–Schwarz inequality is the same as the Schwarz inequality we used earlier
to show that the euclidean metric (Equation 2.1) satisfies the triangle inequality. That
proof, in turn, can be generalized (see the problems) to show that in any inner product
space, not just ℝn or ℂn, the norm ‖u‖ = ⟨u, u⟩1∕2 satisfies the triangle inequality:‖u + 𝑣‖ ≤ ‖u‖ + ‖𝑣‖. (2.19)

These results anticipate the move to more general vector spaces in the next section.

Example 2.6 (Correlation receivers). Practical applications of inner products
abound. Here is one. In radar, a target object is located by transmitting bursts of
electromagnetic radiation from an antenna, and detecting the waves that are reflected
from the target back to the antenna. The range to the target is computed from the time
delay between transmission and reception, divided by the speed of wave propagation
(approximately the speed of light). The reflected wave is much weaker than the
transmitted wave; its signal strength decreases with the fourth power of the distance
to the target.



48 CHAPTER 2 VECTOR SPACES

Inner
product

(rk) 
m + N – 1

k = m

(tk) 
N – 1

k = 0

(ym)

Pulse sequence

Received signal

Receiver output

FIGURE 2.3 Correlation receiver. As the received signal sequence (rk) flows through, an
N-length subsequence is isolated and the inner product with the pulse sequence (tk) is computed.
A peak in the output sequence (ym) indicates that an instance of the input sequence has been
detected in the received signal.

The energy in a radar pulse 𝑣 is proportional to ‖𝑣‖2
2, while the peak power

is proportional to ‖𝑣‖2
∞. In early radars, the transmitted pulse was a single intense

impulse, and the effective range of the system was limited by the peak power the
transmitter could produce. Modern radars use pulse sequences rather than single
impulses. A sequence of smaller pulses (𝑣n) can have high total energy

∑
n |𝑣n|2 at

a lower peak value maxn |𝑣n|. The following is a much-simplified description of the
signal processing that takes place in such a system.5

Detection of instances of the pulse sequence in the received signal sequence is
based on an operation called cross-correlation, defined

ym =
N−1∑
k=0

tkrk+m,

where (tk)N−1
k=0 is the basic pulse sequence and (rk) is the received signal sequence con-

sisting of pulse echoes from the target, weakened by propagation over distance and
obscured by noise. As the received signal sequence flows through the receiver in time,
successive N-length subsequences (rk)m+N−1

k=m = (rk+m)N−1
k=0 are pulled out and the inner

product with the original sequence (tk)N−1
k=0 is computed (Figure 2.3). This inner prod-

uct is the cross-correlation of (tk) and (rk). The system is called a correlation receiver
or matched filter (because the receiver is matched to a particular pulse sequence).

5In a real pulse-coded radar system, the pulse sequence modifies, or modulates, the frequency or phase of
a sinusoidal wave. Moreover, because the target is frequently moving, the effect of Doppler shift on this
wave must be taken into account. For a detailed discussion, see Levanon and Mozeson (2004).
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FIGURE 2.4 Inputs and outputs of the correlation receiver. (a) A transmitted signal consist-
ing of two pulse sequences at n = 10 and n = 50. (b) Received signal. The pulse echoes from
the target are obscured by noise. (c) Cross-correlation of pulse sequence with received signal.
The peaks at m = 10 and m = 50 indicate pulse sequence detection.

According to the Schwarz inequality, the inner product is maximized when the
two vectors are proportional to each other. Thus, we expect to see a peak in the output
of the receiver at times m when the subsequence (rk)m+N−1

k=m is proportional to the

pulse sequence (tk)N−1
k=0 . Because of noise, exact proportionality is not possible, but

with proper pulse sequence design, a high degree of discrimination can be achieved
(Figure 2.4).

Finally, we extend the geometric idea of orthogonality. Perpendicular vectors
are easily visualized, at least in the real spaces ℝ2 and ℝ3. Mathematically, they are
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orthogonal if and only if their dot product is zero. The generalization to arbitrary
inner product spaces is straightforward, even if we cannot so easily picture it.

Definition 2.5 (Orthogonality). Let V be an inner product space, and u, 𝑣 ∈ V .
The vectors u and 𝑣 are orthogonal if and only if their inner product ⟨u, 𝑣⟩ is zero.

Theorem 2.2 (Pythagorean theorem). Let V be an inner product space and
u, 𝑣 ∈ V . If the vectors u and 𝑣 are orthogonal, then‖u + 𝑣‖2 = ‖u‖2 + ‖𝑣‖2

. (2.20)

If u and 𝑣 are real and ‖u + 𝑣‖2 = ‖u‖2 + ‖𝑣‖2, then they are orthogonal.

Proof is left to the problems.

2.2.3 Orthogonal Expansion and Approximation

From prior experience with vectors in physics, you know that it is often useful to
express an arbitrary vector, say in a plane or in three dimensions, as a sum of two
or three orthogonal components (e.g., Figure 1.3). We will now generalize this idea
to vectors in spaces of arbitrary (but finite) dimension, and consider the important
problem of approximating a vector by one with fewer components.

Basis vectors
We begin with some definitions, which may be familiar to you from linear algebra.

Definition 2.6. Let V be a vector space, {𝑣k}n
k=1 ⊂ V be a set of vectors in V, and

{ck}n
k=1 be scalars. Then

(a) The vectors {𝑣k} are linearly independent if the only coefficients {ck} that
result in c1𝑣1 + c2𝑣2 +⋯ + cn𝑣n = 0 are c1 = c2 = ⋯ = cn = 0. Otherwise,
the vectors are linearly dependent, and one of the 𝑣k can be written in terms of
the others, for example,

𝑣1 = −
c2

c1
𝑣2 −⋯ −

cn

c1
𝑣n.

(Figure 2.5).

(b) The set of all linear combinations c1𝑣1 + c2𝑣2 +⋯ + cn𝑣n is called the linear
span of the set {𝑣k}.

(c) If the linear span of {𝑣k} is identical to V, then the vectors {𝑣k} are called a
basis for V . Any vector in V is expressible as a linear combination of basis
vectors. The {𝑣k} are said to span V . The number of basis vectors, n, is the
dimension of V .

(d) A set of n mutually orthogonal unit vectors is called an orthonormal set of
vectors, which we will denote {ek}n

k=1. If this orthonormal set spans V, it is an
orthonormal basis for V .
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FIGURE 2.5 Vectors𝑣1 and𝑣2 are not linearly independent. The vector𝑣 cannot be expressed
as a linear combination of 𝑣1 and 𝑣2. However, 𝑣3 is independent of 𝑣1 and 𝑣2, and 𝑣 can be
written as a linear combination of 𝑣1 and 𝑣3 or 𝑣2 and 𝑣3.

Any vector 𝑣 ∈ ℝn can be written as a linear combination of n orthonormal
basis vectors:

𝑣 =
n∑

k=1

ckek.

To calculate the coefficients, take the inner product of both sides with each basis
vector in turn:

⟨𝑣, ek⟩ = ⟨
n∑

j=1

cjej, ek

⟩
=

n∑
j=1

cj

⟨
ej, ek

⟩
⏟⏟⏟

=1,j=k

= ck.

Therefore, the expansion of 𝑣 in the basis is

𝑣 =
n∑

k=1

⟨𝑣, ek⟩ ek. (2.21)

The coefficients ck = ⟨𝑣, ek⟩ represent projections of 𝑣 along each of the basis vectors.

A vector 𝜙 is normalized by dividing it by its norm, that is, ek = 𝜙k‖𝜙k‖ . If a set

of vectors {𝜙k} is orthogonal but not normalized, then an expansion in terms of the
{𝜙k} may be shown to be

𝑣 =
n∑

k=1

⟨𝑣,𝜙k⟩‖𝜙k‖2
𝜙k. (2.22)

Example 2.7. Here are some orthogonal bases for finite-dimensional spaces.

(a) The standard basis in ℝn consists of vectors ek with 1 in the kth position and 0
in the other positions:

e1 = (1, 0, 0,… , 0)

e2 = (0, 1, 0,… , 0)

⋮
en = (0, 0, 0,… , 1).
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(b) The so-called Haar basis in ℝ4 is

𝜙1 = (1, 1, 1, 1)

𝜙2 = (1, 1,−1,−1)

𝜙3 = (1,−1, 0, 0)

𝜙4 = (0, 0, 1,−1).

These vectors are orthogonal but not normalized.

(c) The complex exponential basis in ℂN is the set {𝜙k}N−1
k=0 , where

𝜙k =
(

exp
( i2𝜋kn

N

))N−1

n=0
=
(
1, ei2𝜋k∕N , ei4𝜋k∕N ,… , ei2(N−1)𝜋k∕N)

.

By convention, the indexing for this basis is from 0 to N − 1 rather than from
1 to N. These vectors are orthogonal, but not normalized. The orthogonal
projection of a vector f = (f [0], f [1],… , f [N − 1]) ∈ ℂn onto this basis,

F[k] = ⟨f ,𝜙k⟩ = N−1∑
n=0

f [n] exp
(
− i2𝜋kn

N

)
, k = 0, 1,… , N − 1, (2.23)

is called the discrete Fourier transform (DFT) of f . The DFT is the subject of
Chapter 3.

Orthogonal approximation
Deleting one or more terms from the orthogonal expansion (Equation 2.21) results
in a lower-dimensional approximation, which turns out to be optimal in a certain
sense. Many problems in data analysis and signal processing may be expressed as
approximations of a vector by another vector of lower dimension. Here are some
examples:

� To display a three-dimensional (3D) structure on a computer screen, the 3D
data must be mapped to a 2D array of pixels—assigning each point in ℝ3 to a
point in ℝ2.

� In linear regression, data points {(x1, y1), (x2, y2),… , (xn, yn)} are approxi-
mated by a straight line,

yk ≈ axk + b, k = 1, 2,… , n.

The slope a and intercept b parameterize the line. We go from n pairs of values
to two coefficients, or from ℝ2n to ℝ2.

� In the original form of JPEG image compression, an N × N pixel picture
is divided into 8 × 8 pixel subimages. Each subimage, considered to be a
vector in ℝ64, is expanded into a linear combination of predetermined basis
images, g =

∑63
k=0 ck𝑣k (Example 2.12, below). Only the P most important of

the coefficients ck are kept, effectively reducing a 64-dimensional vector to P
dimensions.
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� In image restoration, a noisy N × N pixel picture is represented as a vector in
N2-dimensional space. It is decomposed into a sum of orthogonal basis vectors
with the goal of identifying and removing the components that contain most of
the noise. The denoised image is reconstituted from the remaining components.
This process is also called filtering.

We begin by defining a subspace of a vector space.

Definition 2.7 (Subspace). Let V be a vector space. A subset U ⊂ V is a subspace
of V if U is also a vector space under the same definition of addition and multiplication
as V .

Example 2.8 (Subspaces). Consider the 3D real space ℝ3.

(a) The set U = {(x, y, 0) ∣ x, y ∈ ℝ} (the xy plane) is a 2D subspace of ℝ3. It is
easy to check, in particular, that the sum of two vectors in the plane is also in
the plane.

(b) The set U = {(x, y, 1) ∣ x, y ∈ ℝ} (a plane passing through z = 1) is a subset
of ℝ3 but not a subspace of ℝ3. For a counterexample, let u = (0, 1, 1) and
𝑣 = (1, 0, 1); the sum u + 𝑣 = (1, 1, 2) is not in U. Moreover, a subspace, being
a vector space in its own right, must always have an additive identity element;
in this case that element is (0, 0, 0), which is not in U.

(c) The set U = {(x, ax, 0) ∣ a, x ∈ ℝ} (a line in the xy plane, passing through the
origin with slope a) is a 1D subspace of ℝ3.

(d) The set U = {0} is a trivial (zero-dimensional) subspace of ℝ3.

Subspaces of an inner product space may readily be constructed. Let V be an
n-dimensional inner product space with an orthonormal basis {ek}n

k=1. Select m of
these basis vectors—without loss of generality, e1 … em. The linear span of these
vectors is an m-dimensional subspace U. The linear span of the remaining basis
vectors, em+1 … en, is also a subspace, which we will call U⟂. Every vector in U⟂ is
orthogonal to every vector in U, because every basis vector of U⟂ is orthogonal to
every basis vector of U. U⟂ is called the orthogonal complement of U. We say that
V is the direct sum of U and U⟂, written V = U ⊕ U⟂.6 Every vector in V can be
written as the sum of a vector in U and an orthogonal vector in U⟂,

𝑣 =
n∑

k=1

akek =
m∑

k=1

akek

⏟⏟⏟

∈U

+
n∑

k=m+1

akek

⏟⏞⏞⏟⏞⏞⏟

∈U⟂

.

Note that the vectors in U have n elements, but the subspace is m-dimensional; each
vector in U is built from only m of the n-element basis vectors.

6For more about sums and direct sums of subspaces, see Axler (1997, pp. 14–18) and Young (1988,
pp. 39–42).
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Example 2.9. Returning to the subspaces of ℝ3 from the previous example,

(a) U = {(x, y, 0) ∣ x, y ∈ ℝ} (the xy plane) is a 2D subspace of ℝ3. The orthogonal
complement is U⟂ = {(0, 0, z) ∣ z ∈ ℝ} (the z-axis).

(b) U = {(x, ax, 0) ∣ a, x ∈ ℝ} (a line in the xy plane, passing through the origin
with slope a) is a 1D subspace of ℝ3. The orthogonal complement is U⟂ =
{(−ay, y, z) ∣ y, z ∈ ℝ}, a plane perpendicular to U.

(c) U = {0} is a zero-dimensional subspace of ℝ3. The orthogonal complement is
U⟂ = ℝ3.

Now we consider how to approximate a vector in an inner product space V by
a vector in a lower-dimensional subspace U. To begin, let 𝑣 be a vector in the real
plane (Figure 2.6). We seek an approximate vector �̂� constrained to the x-direction:
�̂� = aex. The difference between 𝑣 and �̂� is an error vector, �̃� = 𝑣 − �̂�. We seek �̂�

to minimize the norm of the error, ‖�̃�‖, that is, to make the error vector as “short”
as possible.

From the figure, it appears that the error vector �̃� will be shortest when it is
perpendicular to the approximation �̂�, making the approximation �̂� the orthogonal
projection of 𝑣 onto the x-axis. For this simple example, the approximating sub-
space U is the x-axis, and its orthogonal complement U⟂ is the y-axis; �̂� ∈ U and
�̃� ∈ U⟂.

To formally calculate the best approximation, define E2 to be the square of the
euclidean norm of the error:

E2 = ‖𝑣 − �̂�‖2
2 = ⟨𝑣 − �̂�, 𝑣 − �̂�⟩

= ‖𝑣‖2 + ‖�̂�‖2 − 2 ⟨𝑣, �̂�⟩ .
Substitute �̂� = aex,

E2 = ‖𝑣‖2 + a2 − 2a ⟨𝑣, ex⟩
and find a, which minimizes E2:

𝜕E2

𝜕a
= 2a − 2 ⟨𝑣, ex⟩ = 0 ⇒ a = ⟨𝑣, ex⟩ ,

v

vmin
~

~v = v − v̂

v̂

FIGURE 2.6 Approximating a 2D vector 𝑣 by a 1D vector �̂�. We seek the �̂� that is “closest”
to 𝑣, in the sense that the norm of the error vector �̃� is minimized. Under the euclidean norm,
this occurs when the error �̃� is perpendicular to the approximation �̂�.
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then

�̂� = ⟨𝑣, ex⟩ ex and E2
min = ‖𝑣‖2 − ⟨𝑣, ex⟩2

.

The approximation that minimizes the 2-norm of the error is indeed the orthogonal
projection of 𝑣 onto the basis vector ex, represented by the inner product ⟨𝑣, ex⟩. The
minimized error is given by the Pythagorean formula, which makes sense since 𝑣 is
the hypotenuse of a right triangle and �̂� and �̃�min are the other two sides.

Let us now make a modest extension to three dimensions. If 𝑣 ∈ ℝ3, the
minimum 2-norm approximation of 𝑣 on the x-axis is still �̂� = ⟨𝑣, ex⟩ex, with squared
error E2

min = ‖𝑣‖2 − ⟨𝑣, ex⟩2. Now add a dimension, approximating 𝑣 by a vector in
the xy plane, which we have seen is a 2D subspace of ℝ3. Again we use

E2 = ‖𝑣‖2 + ‖�̂�‖2 − 2 ⟨𝑣, �̂�⟩ ,

this time with �̂� = aex + bey. We have

E2 = a2 + b2 − 2(a⟨𝑣, ex⟩ + b⟨𝑣, ey⟩)
𝜕E2

𝜕a
= 2a − 2⟨𝑣, ex⟩ = 0 ⇒ a = ⟨𝑣, ex⟩

𝜕E2

𝜕b
= 2b − 2⟨𝑣, ey⟩ = 0 ⇒ b = ⟨𝑣, ey⟩

so

�̂� = ⟨𝑣, ex⟩ex + ⟨𝑣, ey⟩ey

and E2
min = ‖𝑣‖2 − (⟨𝑣, ex⟩2 + ⟨𝑣, ey⟩2).

In going from a 1D approximation to a 2D approximation, the coefficient for ex is
unchanged. The best 2D approximation simply adds a component to the best 1D
approximation. You can think of the projection onto the plane as happening in two
steps. First, the vector is projected onto the x-axis, leaving behind a residual vector
𝑣 − ⟨𝑣, ex⟩ex, which is perpendicular to the x-axis. This residual is then projected
onto the y-axis, yielding⟨𝑣 − ⟨𝑣, ex⟩ex, ey⟩ = ⟨𝑣, ey⟩ − ⟨⟨𝑣, ex⟩ex, ey⟩ = ⟨𝑣, ey⟩ − ⟨𝑣, ex⟩ ⟨ex, ey⟩

⏟⏟⏟

=0

= ⟨𝑣, ey⟩.
It is easy to see how to generalize this to an m-dimensional approximation

of an n-dimensional vector. Each successive projection onto one of the subspace’s
m orthonormal basis vectors extracts new information about 𝑣 without changing
the coefficients that have already been calculated. The approximation may, more
generally, be constructed from any set of independent vectors spanning the subspace,
but only when these vectors are orthonormal are the coefficients given by simple inner
products ⟨𝑣, ek⟩. For this reason, we generally prefer to work with orthonormal bases.7

7It is also possible to formulate the approximation problem in terms of the 1-norm and ∞-norm, but the
euclidean norm is much easier to work with.



56 CHAPTER 2 VECTOR SPACES

In general, because the approximation �̂� is constructed from the basis vectors
for the subspace U, the error vector �̃� = 𝑣 − �̂� is perpendicular to U, that is, for a
basis vector ej ∈ U,

⟨�̃�, ej⟩ = ⟨𝑣 − m∑
k=1

⟨𝑣, ek⟩ek, ej⟩ = ⟨𝑣, ej⟩ − m∑
k=1

⟨𝑣, ek⟩ ⟨ek, ej⟩
⏟⏟⏟

=1,j=k

= ⟨𝑣, ej⟩ − ⟨𝑣, ej⟩ = 0.

Thus, �̃� ∈ U⟂, and �̂� is the best (euclidean) approximation to 𝑣.
These results are collected in the following important theorem.

Theorem 2.3 (Orthogonality principle). Let V be an n-dimensional inner product
space and U an m-dimensional subspace of V. If 𝑣 ∈ V , then

(a) the approximation �̂� ∈ U that minimizes ‖𝑣 − �̂�‖2 is the orthogonal projection
of 𝑣 onto U:

�̂� =
m∑

k=1

⟨𝑣, ek⟩ ek,

where {ek}m
k=1 is an orthonormal set in U.

(b) the residual vector �̃� = 𝑣 − �̂� is orthogonal to U, and hence to the approxima-
tion: ⟨�̃�, �̂�⟩ = 0 and �̃� ∈ U⟂.

(c) the minimized approximation error is

E2
min = ‖𝑣 − �̂�‖2 = ‖𝑣‖2 −

m∑
k=1

| ⟨𝑣, ek⟩ |2.
In the event that the subspace U is identical to V , then �̂� = 𝑣 and E2

min = 0, that
is, ‖𝑣‖2 =

∑m
k=1 |⟨𝑣, ek⟩|2, which is just the Pythagorean theorem: the squared norm

of a vector is the sum of squares of its orthogonal components. This is, in fact, a
special case of the following more general relationship for orthogonal expansions.

Theorem 2.4 (Parseval’s formula). Let V be an n-dimensional inner product
space and {ek}n

k=1 be an orthonormal basis for V. For u, 𝑣 ∈ V ,

⟨u, 𝑣⟩ = n∑
k=1

⟨u, ek⟩ ⟨𝑣, ek⟩∗ . (2.24)

and if u = 𝑣,

‖𝑣‖2 =
n∑

k=1

| ⟨𝑣, ek⟩ |2. (2.25)
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Proof: Express u in terms of the basis, then

⟨u, 𝑣⟩ = ⟨
n∑

k=1

⟨u, ek⟩ ek, 𝑣

⟩
=

n∑
k=1

⟨u, ek⟩ ⟨ek, 𝑣⟩ = n∑
k=1

⟨u, ek⟩ ⟨𝑣, ek⟩∗ .
If we think of the coefficient sequences {⟨u, ek⟩}n

k=1 and {⟨𝑣, ek⟩}n
k=1 as

n-vectors, then Equation 2.24 says that the inner product of the coefficient sequences
is equal to the inner product of the original vectors. Orthogonal expansion preserves
inner products. Moreover, interpreting the squared norm as energy, Equation 2.25
shows that the coefficients ⟨𝑣, ek⟩ “capture” all of 𝑣’s energy. Orthogonal expansion
conserves energy.

Equations 2.24 and 2.25 extend to infinite-dimensional inner product spaces.
In the literature the equations are variously called Parseval’s formula (or theorem),
Plancherel’s formula, Rayleigh’s formula, and the power formula. Historically, dif-
ferent versions of these relationships were derived in different contexts: by Parseval
for the Fourier series, by Plancherel and Rayleigh for the Fourier transform. How-
ever, they all say the same thing—orthogonal expansions preserve inner products and
conserve energy—so little seems to be gained by making distinctions. With apologies
to history, I will call them all “Parseval’s formula” in this book.

Example 2.10. We will expand the vector 𝑣 = (1, 2, 3, 4) in the Haar basis (Exam-
ple 2.7). First, we normalize the basis vectors to make them into an orthonormal
set:

e1 =
𝜙1‖𝜙1‖2

= (1, 1, 1, 1)√
4

= 1
2

(1, 1, 1, 1)

e2 =
𝜙2‖𝜙2‖2

= 1
2

(1, 1,−1,−1)

e3 =
𝜙3‖𝜙3‖2

= 1√
2

(1,−1, 0, 0)

e4 =
𝜙4‖𝜙4‖2

= 1√
2

(0, 0, 1,−1).

Then do the projections,

c1 = ⟨𝑣, e1⟩ = ⟨
(1, 2, 3, 4),

1
2

(1, 1, 1, 1)

⟩
= 1

2
(1 + 2 + 3 + 4) = 5

c2 = ⟨𝑣, e2⟩ = ⟨
(1, 2, 3, 4),

1
2

(1, 1,−1,−1)

⟩
= 1

2
(1 + 2 − 3 − 4) = −2

c3 = ⟨𝑣, e3⟩ = ⟨
(1, 2, 3, 4),

1√
2

(1,−1, 0, 0)

⟩
= 1√

2
(1 − 2 + 0 + 0) = − 1√

2

c4 = ⟨𝑣, e4⟩ = ⟨
(1, 2, 3, 4),

1√
2

(0, 0, 1,−1)

⟩
= 1√

2
(0 + 0 + 3 − 4) = − 1√

2
.
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Check Parseval’s formula:

‖𝑣‖2 = 12 + 22 + 32 + 42 = 30
4∑

k=1

||ck
||2 = 52 + (−2)2 +

(
− 1√

2

)2

+

(
− 1√

2

)2

= 30.

Now suppose we want to construct the best 2D approximation to 𝑣 in this basis. We
select c1 and c2, the two coefficients with the greatest absolute value. The subspace
U is the linear span of {e1, e2} and its orthogonal complement U⟂ is the linear span
of {e3, e4}. The best approximation is

�̂� = 5e1 − 2e2 = 5 ⋅
1
2

(1, 1, 1, 1) − 2 ⋅
1
2

(1, 1,−1,−1)

=
(3

2
,

3
2

,
7
2

,
7
2

)
.

The error vector is

�̃� = 𝑣 − �̂� = (1, 2, 3, 4) −
(3

2
,

3
2

,
7
2

,
7
2

)
=
(
−1

2
,

1
2

,−1
2

,
1
2

)
= −1

2
e3 −

1
2

e4.

Check that �̃� is orthogonal to the approximation:

⟨�̂�, �̃�⟩ = ⟨(3
2

,
3
2

,
7
2

,
7
2

)
,
(
−1

2
,

1
2

,−1
2

,
1
2

)⟩
= 1

4
(−3 + 3 − 7 + 7) = 0.

The squared norm of the error is, by direct calculation,

‖�̃�‖2 =
(
−1

2

)2
+
(1

2

)2
+
(
−1

2

)2
+
(1

2

)2
= 1.

Using the Pythagorean formula instead, the squared norm of the error is the sum of
the squares of the coefficients that were dropped:

‖�̃�‖2 = ||c3
||2 + ||c4

||2 =

(
− 1√

2

)2

+

(
− 1√

2

)2

= 1.

Example 2.11. Repeat the previous example using Matlab. It is efficient to collect
all the normalized basis vectors into a matrix,

% Normalized Haar basis vectors in a matrix

H = [ [1 1 1 1]/2;

[1 1 -1 -1]/2;

[1 -1 0 0]/sqrt(2);

[0 0 1 -1]/sqrt(2) ]
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H =
0.5 0.5 0.5 0.5

0.5 0.5 -0.5 -0.5

0.70711 -0.70711 0 0

0 0 0.70711 -0.70711

The inner products of the vector 𝑣 = (1, 2, 3, 4) with the basis vectors are computed
by multiplying the row vector on the right by the transpose of the basis vector
matrix:

% The vector to be decomposed

v = [1 2 3 4];

% Decomposition

c = v * H'

c =
5 -2 -0.70711 -0.70711

To demonstrate the “conservation of energy” ‖𝑣‖2 =
∑

k |ck|2, calculate the dot
products of v and c with themselves.

% Verifying "conservation of energy"

v * v'

ans =
30

c * c'

ans =
30

The reconstruction of 𝑣 from its coefficients, 𝑣 =
∑

k ckek, is computed by multiplying
the coefficient vector on the right by the basis vector matrix (not its transpose).

% Reconstructing v

c * H

ans =
1 2 3 4

To approximate 𝑣 in a lower-dimensional subspace, perform the same calculation
with the unwanted coefficients set to zero.

% Two-dimensional approximation – keep only the two largest

% coefficients

vhat = [c(1:2) 0 0] * H

vhat =
1.5 1.5 3.5 3.5
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Calculate the dot product of the approximation and the error to show that they are
orthogonal.

% The error is orthogonal to the approximation

vhat * (v-vhat)'

ans =
0

The size of the approximation error is computed in two ways, as before.

% Approximation error, calculated two ways

(v-vhat)*(v-vhat)'

ans =
1

c(3:4)*c(3:4)'

ans =
1

Again, be careful not to confuse the dimensionality of the basis vectors with the
dimensionality of the subspace and the approximation. In these examples, the basis
vectors span 4D real space, ℝ4. The approximating subspace is 2D, a plane spanned
by the two 4D basis vectors e1 and e2. The approximation �̂� is 2D, requiring only two
coordinates c1 and c2 to locate it in the plane.

Example 2.12 (Expansion in the JPEG basis). The set of basis images used in
JPEG image compression is shown in Figure 2.7.

We will use it to decompose and reconstruct the 8 × 8 pixel block shown in
Figure 2.8. There are 64 pixels, so we may think of the image as a vector in 64D real
space, ℝ64. The inner product of the original image, 𝑣, and the nth basis image en, is
the double sum

cn =
8∑

i=1

8∑
j=1

𝑣[i, j]en[i, j], n = 0, 1,… , 63,

where i and j are row and column indices, respectively.
Figure 2.9 shows the partial reconstructions of the image from a subset of the

basis images,

�̂�N =
N−1∑
n=0

cnen.

The Nth approximation �̂�N is a projection of the image into an N-dimensional subspace
of ℝ64. Instead of the 64 original pixel values, the image is represented by N of the
expansion coefficients.

The figure shows the progressive refinement of the reconstruction as more basis
images are added. For this particular image, the improvement of the reconstruction
is not steady but occurs in jumps. There are big changes at N = 4, 11, 13,…. Why
this happens may be understood by looking at the values of the coefficients cn



2.2 FINITE-DIMENSIONAL VECTOR SPACES 61

FIGURE 2.7 The 64 basis images used in JPEG image compression. Black is −1, white
is 1.

(Figure 2.10(a)). The first four coefficients, c0 through c3, are zero or very nearly
zero. The original image is effectively orthogonal to basis images e0 through e3
(the reader is invited to compare the original image with the basis images to see
that this makes sense). The fourth basis image has the same gross symmetry as
the original; the projection is strong and the coefficient is large. There is a big
drop in the approximation error norm ‖𝑣 − �̂�N‖ at this point (Figure 2.10(b)). The

FIGURE 2.8 An 8 × 8 pixel image. Black is −1, white is 1.
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FIGURE 2.9 The image of Figure 2.8, progressively reconstructed from its projections in
the JPEG basis. The images are arranged in an 8 × 8 array, numbered in a zigzag fashion as
shown. Image 0 uses only the 0th basis image, image 1 uses basis images 0 and 1, etc., until
all 64 basis images are included in image 63.
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FIGURE 2.10 (a) The expansion coefficients for the image in Figure 2.8. Only a few of the
64 components are significant. (b) The approximation error as basis images are successively
included in the reconstruction of Figure 2.9.
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24 26 36 38

40 42 49 51

53 63

FIGURE 2.11 Approximating the image of Figure 2.8, using only the strongest components.
Left to right, from top: Using only the fourth basis image; using the fourth and eleventh; using
basis images 4, 11, and 13; etc.

subsequent jumps in the quality of the reconstructed image all occur at points where
the coefficients are large.

With so many small components, it is reasonable to think that the image could
be accurately represented by fewer than 64 numbers, by projecting it onto the basis
images and keeping only the strongest components. This is shown in Figure 2.11.

Real JPEG compression algorithms break the image up into 8 × 8 blocks and
project each block onto the basis images. Components are then kept or discarded
according to their strength, relative to the known sensitivity of the human visual
system to each basis image; that is, a component is discarded if its absence would
not be noticed by a human observer. The selected coefficients can be stored with
less memory than the original image, or transmitted in less time. The image is
reconstructed for the end user from the coefficients and the basis images.8

8For more about JPEG, see Mallat (1999, pp. 561–566) and Pennebaker and Mitchell (1993). The mathe-
matical form of the JPEG basis images will be derived in Chapter 3.
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2.3 INFINITE-DIMENSIONAL VECTOR SPACES

In principle, the extension of the norm, inner product, and orthogonal approximation
from finite-dimensional vectors to infinite-dimensional vectors (infinite sequences)
is natural: One simply makes the vectors (much) longer, and changes the sums to
infinite series. Let 𝑣 and 𝑤 be infinite sequences,

𝑣 = (𝑣n)∞n=1 and 𝑤 = (𝑤n)∞n=1,

then the inner product and norm would be

⟨𝑣,𝑤⟩ = ∞∑
n=1

𝑣n𝑤
∗
n and ‖𝑣‖2 =

∞∑
n=1

||𝑣n
||2 .

Now consider two functions f and g, x ∈ (0, 1) (or, more generally, (a, b), where a
and b may both be infinite). Imagine them to be vectors too, with x as the index and
f (x), g(x) as the respective components. By analogy with the finite-dimensional case,
we replace sums by integrals and have

⟨f , g⟩ = ∫
1

0
f (x) g∗(x) dx and ‖f‖2 = ∫

1

0
|f (x)|2 dx.

These generalizations will be justified and explained in this section, and applied in
subsequent chapters.

In order to be useful, the infinite series defining our more general norm and
inner product must converge. Recall that an infinite series

∑∞
n=1 xn is convergent if

the sequence of partial sums, SN =
∑N

n=1 xn, converges as N → ∞. We begin our
discussion, then, with a review of convergent sequences.

2.3.1 Convergent Sequences

A sequence is an ordered set of points drawn from some space, denoted
{x1, x2,… , xN}, {xn}N

k=1, or (xn)N
k=1. In some applications sequences are indexed

with nonnegative integers, (xn)N−1
n=0 , or even with negative integers, (xn)N

n=−N . The
number of terms in the sequence can be finite or infinite. The points themselves
may be numbers, for example, {0, 1, 2, 3,…}, geometric points in a plane, for exam-
ple, {(1, 1), (1, 1

2
), ( 1

2
, 1

2
), ( 1

2
, 1

4
),…}, or N-dimensional vectors in ℝN . Significantly,

for what comes later, they may also be functions, for example, {1, e−x, e−2x,…} =
(e−nx)∞n=0.

If the points xn of an infinite sequence belong to a metric space, do they draw
successively closer to one particular point as n increases?

Definition 2.8 (Convergent sequence). An infinite sequence, (xn)∞n=1, of elements
in a metric space V converges in the space if, for some x ∈ V and any 𝜖 > 0, there is
an N such that d(xn, x) < 𝜖 for n > N. We say that limn→∞ xn = x, and x is called the
limit point of the sequence.
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)(
10 ε−ε

d(xn,0) = 1
n

1
2

1
4

FIGURE 2.12 The convergent sequence ( 1

n
)∞n=1. The points accumulate in a neighborhood

of 0, the limit of the sequence.

In other words, if you put a neighborhood of arbitrarily small radius 𝜖 around
x, you can find an N such that xN and all the terms following it are inside the
neighborhood. No matter how small the neighborhood becomes, there will always be
more points inside the neighborhood than outside it.

Example 2.13 (Convergent sequences on the real line).

(a) The sequence {1, 1
2

, 1
3
,… , 1

n
,…} converges to zero (Figure 2.12). Consider the

neighborhood (−𝜖, 𝜖) around x = 0 and take N >
1
𝜖
. Then, for any n > N,

d(xn, 0) = 1
n
<

1
N

< 𝜖.

(b) The sequence {0, 1
2
, 3

4
, 7

8
,… , 1 − 2−n,…} converges to one. Consider the

neighborhood (1 − 𝜖, 1 + 𝜖). We want the points 1 − 2−n to be in the neighbor-
hood for n sufficiently large. So we look for N such that 1 − 𝜖 < 1 − 2−N

<

1 + 𝜖. This works out to 2−N
< 𝜖. Take N > − log2 𝜖. Then, for any n > N,

d(xn, 1) = ||(1 − 2−n) − 1|| = 2−n
< 2−N

< 𝜖.

This definition of convergence is useful if we already have an idea of what the
limit of the sequence is. In the two cases above, it was easy to guess the limit, because
1
n
→ 0 and 1 − 2−n → 1 as n → ∞. When the limit is not obvious, the following

definition is helpful in assessing convergence. Instead of considering the distance
between each point and a hypothetical limit, it looks at the distance between points
within the sequence.

Definition 2.9 (Cauchy sequence). A sequence (xk)∞k=1 in a metric space V is
a Cauchy sequence if, for any 𝜖 > 0, there is an N such that d(xn, xm) < 𝜖 for
n, m > N.

Example 2.14. The two sequences we considered above are Cauchy sequences.

(a) With xn = 1
n
, we have

d(xn, xm) =
||||1n − 1

m

|||| ≤ ||||1n |||| + |||| 1
m

|||| (Triangle inequality).
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d(xn, xm) = 1
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FIGURE 2.13 The sequence ( 1

n
)∞n=1 is a Cauchy sequence. Pairs of points ( 1

n
, 1

m
) get closer

as m, n increase.

We seek an N such that, for n, m > N, | 1
n
| + | 1

m
| < 𝜖. Choosing N > 2∕𝜖 will

do the trick. Then 1
m

, 1
n

are each less than 𝜖

2
and so

d(xn, xm) <
𝜖

2
+ 𝜖

2
< 𝜖.

(b) With xn = 1 − 2−n, we have

d(xn, xm) = ||(1 − 2−n) − (1 − 2−m)||
= ||2−n − 2−m|| ≤ 2−n + 2−m (Triangle inequality).

Take N > − log2( 𝜖
2
), then for n, m > N,

d(xn, xm) ≤ 2−n + 2−m
< 2 ⋅ 2−N

< 2 ⋅
𝜖

2
= 𝜖.

The successive points in a convergent sequence become arbitrarily close to
a limit point. Successive points in a Cauchy sequence, on the other hand, become
arbitrarily close to each other (Figure 2.13).

It is evident that convergent sequences are Cauchy; if the points are approaching
a limit, they must also be crowding together. The converse also seems reasonable,
that a Cauchy sequence should be convergent, but it is not always true because the
limit may not exist in the same space as the sequence. For example, the decimal
approximations to 𝜋, {3, 3.1, 3.14, 3.142, 3.1416, …} are a Cauchy sequence in the
space of rational numbers. However, the limit, 𝜋, is irrational, so the sequence of
rational approximations to 𝜋 does not converge in the space of rational numbers. If
we consider the larger space of real numbers, which contains 𝜋 as well as all rational
numbers, then the sequence is convergent.

Suppose a vector 𝑣 is the limit of a Cauchy sequence (𝑣n). The Nth term of this
sequence is an approximation to 𝑣 at some level of accuracy that may be satisfactory in
practice and easier to compute than the actual vector 𝑣. Examples include polynomial
approximations to functions, and, as we shall see in a later chapter, Fourier series. To
say that the approximating sequences always converge, it is important that both the
vectors and their approximations be in the same space. Thus, in addition to requiring
that a vector space have a norm (and hence a metric), we impose the following
restriction:

Definition 2.10 (Complete metric space). A metric space is complete if every
Cauchy sequence in the space converges (has a limit) in the space.
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The rational numbers are not complete (the above sequence of decimal approx-
imations to 𝜋 is a counterexample), but the space of real numbers is complete,9 as is
its n-dimensional generalization, ℝn. A Cauchy sequence in ℝn is guaranteed to be
convergent.

2.3.2 Infinite Sequences and the 𝓁p Spaces

Now let us consider in more detail the generalization of vectors in ℝn to vectors with
countably infinite members, x = (x1, x2,…), that is, infinite sequences or discrete-
time signals. The set of all such real-valued sequences is called ℝ∞. The analogous
space of complex sequences is called ℂ∞. It is clear that ℝ∞ and ℂ∞ are vector
spaces, with addition and scalar multiplication defined in the usual way,

x + y = (x1, x2,…) + (y1, y2,…) = (x1 + y1, x2 + y2,…)

cx = c(x1, x2,…) = (cx1, cx2,…).

It is natural to define norms for infinite sequences using infinite sums,

‖x‖1 =
∞∑

n=1

|xn|
‖x‖2 =

( ∞∑
n=1

|xn|2)1∕2

and generalize the maximum norm by the supremum,

‖x‖∞ = sup
n

||xn
|| .

These definitions meet the requirements for norms that were spelled out earlier
(Definition 2.2), provided that the series converge. There are vectors for which the
infinite sums diverge, for example, constant vectors x, y = (1, 1,…). In order to have
useful norms, we must restrict attention to subsets of ℝ∞ or ℂ∞ containing vectors
for which the sums converge.

Definition 2.11. Let x ∈ ℝ∞ or ℂ∞. Then, x is absolutely summable if
∑∞

n=1 |xn| <
∞; x is square summable if

∑∞
n=1 |xn|2 < ∞; and x is bounded if supn |xn| < ∞.

With these definitions, the following can be shown:

1. The set of all absolutely summable sequences is a vector space (which we call
𝓁1, read “ell one”) with norm ‖x‖1 =

∑∞
n=1 |xn|.

2. The set of all square summable sequences is a vector space, 𝓁2 (“ell two”),

with norm ‖x‖2 =
(∑∞

n=1 |xn|2)1∕2
.

9See, for example, Rosenlicht (1968, p. 52) and Folland (2002, p. 28).
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3. The set of all bounded sequences is a vector space, 𝓁∞ (“ell infinity”), with
norm ‖x‖∞ = supn |xn|.
If x, y ∈ 𝓁2, then by an application of the Cauchy–Schwarz inequality, the infi-

nite sum
∑∞

n=1 xny∗n can be shown to be convergent. It also satisfies the requirements
for an inner product. Thus 𝓁2 is an inner product space with

⟨x, y⟩ = ∞∑
n=1

xny∗n, (2.26)

and just as with a finite-dimensional euclidean space, ‖x‖2 =
√⟨x, x⟩. Orthogonal-

ity, the parallelogram law, and the polarization identity also carry over from finite-
dimensional spaces to 𝓁2, since they depend only on the defining properties of norm
and inner product, and not on the dimensionality of the space.

In general, for 1 ≤ p ≤ ∞, 𝓁p is the space of sequences x with finite p-norm,
defined

‖x‖p =

( ∞∑
n=1

|xn|p)1∕p

. (2.27)

The following may be shown:

� The 𝓁∞ norm is the limit, as p → ∞, of the p-norm.
� Of all the 𝓁p spaces, only 𝓁2 is an inner product space.
� The 𝓁p spaces are nested: if 1 ≤ p < q ≤ ∞, then 𝓁p

⊂ 𝓁q. In particular, 𝓁1
⊂

𝓁2
⊂ 𝓁∞. If a sequence is absolutely summable, then it is also square summable

and bounded. On the other hand, if a sequence is unbounded, then it is not
summable in any sense.

Example 2.15. Here are some illustrative examples of infinite-dimensional
vectors.

(a) The sequence x = (1 − 1
n

)∞n=1 = (0, 1
2
, 2

3
, 3

4
,…) has supremum norm ‖x‖∞ = 1,

and belongs to 𝓁∞. It does not, however, belong to 𝓁1 or 𝓁2.

(b) The sequence x = ( 1
n
)∞n=1 = (1, 1

2
, 1

3
,…) belongs to 𝓁∞ and 𝓁2, but not 𝓁1.

(c) The sequence x = ( 1
2n−1 )∞n=1 = (1, 1

2
, 1

4
,…) belongs to 𝓁1, 𝓁2, and 𝓁∞.

(d) The sequence x = (2n−1)∞n=1 = (1, 2, 4,…) does not belong to any 𝓁p

space.

For completeness, one may also define the set 𝓁0 of sequences, which are zero
except for a finite number of finite values. Vectors in𝓁0 behave like finite-dimensional
vectors, and each of the 𝓁p spaces contains the set 𝓁0. For any vector 𝑣 ∈ 𝓁p, p ≥ 1,
there is a vector u ∈ 𝓁0 arbitrarily close to 𝑣, in the sense that ‖𝑣 − u‖p < 𝜖—simply
take u to be the truncation of 𝑣, u = (𝑣1, 𝑣2,… , 𝑣N , 0,…), with N as large as needed
to achieve the desired error 𝜖.
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2.3.3 Functions and the Lp Spaces

Vector spaces may also be composed of real- or complex-valued functions of a
real variable, for example, continuous-time signals. They are then called function
spaces. Norms and inner products in these spaces are defined by integrals rather than
sums. Requiring the integrals to be convergent restricts the functions that occupy
these spaces.

Definition 2.12. Let Q = [a, b] ∈ ℝ (Q can also be (−∞, b], [a,∞), or (−∞,∞))
and f : Q → ℂ be a function. Then, f is absolutely integrable on Q if ∫Q |f (x)|dx < ∞;

f is square integrable on Q if ∫Q |f (x)|2dx < ∞; and f is bounded on Q if supQ |f | < ∞.

With these definitions, it can be shown that:

1. The set of all absolutely integrable functions on Q is a vector space, denoted
L1(Q) (“ell one”) or simply L1, if the domain is understood, with norm

‖f‖1 = ∫Q
|f (x)|dx. (2.28)

2. The set of all square-integrable functions on Q is a vector space, denoted L2(Q)
(“ell two”), with norm

‖f‖2 =
(
∫Q

|f (x)|2dx

)1∕2

. (2.29)

3. The set of all bounded functions on Q is a vector space with norm‖f‖u = sup
Q
|f |. (2.30)

The subscript u denotes “uniform.” The supremum norm is also called the
uniform norm.10 With a slight modification, to be discussed later, the vector
space of bounded functions is denoted L∞.

In general, the space Lp(Q), where 1 ≤ p < ∞, is the space of functions f on Q having
finite p-norm, defined

‖f‖p =
(
∫Q

|f (x)|pdx

)1∕p

. (2.31)

Examples of functions in L1, L2, and L∞

The choice of norm places restrictions on the functions that populate a space, as the
next few examples show.

Example 2.16. The “sinc” function:

sinc x = sin𝜋x
𝜋x

,

10See Folland (1999, p. 121). If a sequence of functions (fn)∞
n=1 converges to a function f in such a way

that ‖fn − f‖u → 0 as n → ∞, we say that the sequence converges uniformly to f . Uniform convergence is
an important concept in the theory of Fourier series, Chapter 4.
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FIGURE 2.14 The function | sinc | is bounded below by triangles. The sum of the areas of
these triangles diverges.

which will figure prominently in later chapters, is bounded (| sinc x| ≤ sinc 0 = 1 by
L’Hospital’s rule), so it belongs to L∞. Its 1-norm,

∫
∞

−∞
| sinc x| dx = 2 ∫

∞

0

|||| sin𝜋x
𝜋x

|||| dx,

however, is unbounded. To show this, we devise another function that is everywhere
less than or equal to sinc, but which has an unbounded 1-norm (Figure 2.14). Between
x = 0 and x = 1, | sinc | is bounded below by a triangle with area 1

2
. On the kth interval

(k, k + 1), it is bounded below by a triangle of unit base and height | sin 𝜋(k+1∕2)|
𝜋(k+1∕2)

=
1

𝜋(k+1∕2)
, whose area is Ik = 1∕𝜋(2k + 1).

The norm is bounded below by the sum of these triangular areas,

‖sinc‖1 > 2

(
1
2
+

∞∑
k=1

Ik

)
= 1 + 2

𝜋

∞∑
k=1

1
2k + 1

,

which is a divergent series.

Example 2.17. Sinc does not belong to L1(ℝ) because it does not decay fast enough
as x → ∞. We will show that the 2-norm ‖sinc‖2 is finite, so sinc belongs to L2(ℝ).
Using a table of integrals, we can calculate ∫ ∞

−∞ | sinc x|2dx = 1. We can also carry out
another bounding argument. This time, we seek to bound sinc2above by a function
whose integral is finite (Figure 2.15). On the interval [0,1], sinc2x ≤ 1, and for
x > 1, sinc2x < 1∕(𝜋x)2. The integral is bounded by 2 + 2 ∫ ∞

1
dx

(𝜋x)2 = 2 + 2∕𝜋2
< ∞;

therefore ‖ sinc ‖2 < ∞. The dominating function 1∕x2 dies fast enough that sinc x
belongs to the space of functions with bounded 2-norm. In fact, this argument can be
extended to show that sinc ∈ Lp(ℝ) for all p > 1.
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FIGURE 2.15 The function sinc2 is bounded above by 1∕(𝜋x)2 for x > 1.

Example 2.18. Whereas sinc is in L2(ℝ) but not in L1(ℝ), the function f :
[0,∞) → ℝ defined by f (x) = 1√

x(1+x2)
is in L1[0,∞) but not in L2[0,∞) or L∞[0,∞)

(Figure 2.16). Clearly, |f | → ∞ as x → 0, so f ∉ L∞[0,∞]. It can be shown
that

∫
∞

0
|f (x)|dx = ∫

∞

0

dx√
x(1 + x2)

= 𝜋√
2
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FIGURE 2.16 The function 1√
x(1+x2)

is in L1[0,∞) but not in L2[0,∞) or L∞[0,∞). Left:

Linear plot. Right: Log–log plot. A graph of x−1 (dotted line) is superimposed on the log–log
plot to show the asymptotic properties of the functions. Both |f | and |f |2 decay faster than x−1

for large x, which is fast enough for integrability. As x decreases toward zero, |f | grows more
slowly than x−1 so it is integrable, but |f |2 grows like x−1 and is unintegrable. Both functions
are unbounded as x → 0.
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so f ∈ L1[0,∞]. However,

∫
∞

𝜖

|f (x)|2dx = ∫
∞

𝜖

dx
x(1 + x2)2

= ∫
∞

𝜖

(
1
x
− x

1 + x2
− x

(1 + x2)2

)
dx

is unbounded as 𝜖 → 0+ (note ∫ dx
x
= log x), so f ∉ L2[0,∞].

Example 2.19. The sine function, f (x) = sin x, belongs to L1[−𝜋,𝜋], L2[−𝜋, 𝜋],
and L∞[−𝜋,𝜋]:

∫
𝜋

−𝜋
| sin x| dx = 2∫

𝜋

0
sin x dx = 2

∫
𝜋

−𝜋
| sin x|2 dx = 2∫

𝜋

0
sin2 x dx = ∫

𝜋

0
(1 − cos 2x) dx = 𝜋

| sin x| ≤ 1, x ∈ [−𝜋,𝜋].

However, while sin x is in L∞(ℝ), it is not in L1(ℝ) or L2(ℝ). This will be important
in Chapters 5 and 6, when we study Fourier transforms.

Physical signals and function spaces
The L2 norm has a physical interpretation in terms of the energy or power in a signal.
In an electrical system, for example, the instantaneous power dissipated in a resistor
of resistance R with a current I(t) flowing through it is P(t) = I2(t)R. By analogy, we
may regard the squared magnitude of any function f as a generalized instantaneous
power. The integral of power is energy, so the integral of |f |2—the square of the L2

norm—is the total energy of the function:

E = ∫
∞

−∞
|f (t)|2dt = ‖f‖2

2.

Saying a function has finite energy is another way of saying that it is in L2(ℝ). We
expect actual physical signals to have finite energy as well as bounded amplitude,
although certain convenient idealizations, like the unit step function, do not.

Averaging instantaneous power |f |2 over a finite time interval, say (− T
2

, T
2

),
gives the mean-square value, or average power, over the interval. Of particular interest
in applications is the long-time average as T → ∞.

Pavg = lim
T→∞

1
T ∫

T∕2

−T∕2
|f (t)|2dt. (2.32)

The square root of this integral is called the root mean square, or rms, value of f :

frms =

(
lim

T→∞
1
T ∫

T∕2

−T∕2
|f (t)|2dt

)1∕2

. (2.33)
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Example 2.20. In electrical engineering, one distinguishes between signals with
finite energy and those with finite average power.

(a) We have already seen that sinc t is square integrable, so it has finite energy.

(b) The sine function f (t) = A sin𝜔t does not have finite energy, because the
integral

∫
∞

−∞
|A sin𝜔t|2dt

is not finite. However, we can calculate the average power over (−T
2

, T
2

),

1
T ∫

T∕2

−T∕2
|A sin𝜔t|2dt = A2

2

(
1 − sin𝜔T

𝜔T

)
.

Taking the limit as T → ∞, we find Pavg = A2

2
, which is finite. The rms value

is frms =
A√

2
.

The well-known formula for DC power, P = V2∕R, also holds for AC circuits by
considering average power and rms voltage, Pavg = V2

rms∕R.

⋆ A subtle point about function spaces
Everything that has been said so far about function spaces is true for functions that
are at least piecewise continuous, which are the ones encountered in most, if not all,
practical situations. The full picture requires some adjustments, which are described
briefly in the following paragraphs and may be skipped on a first reading.

One of the requirements for a norm is that ‖f‖ = 0 if and only if f = 0. Taking
the L1 norm as an example, ∫Q |f (x)|dx is certainly zero if f = 0 for all x ∈ Q. But let
x0 ∈ Q and define a function f0 by

f0(x) =
{

1, x = x0
0, otherwise

.

The integral of this function is also zero (the single point contributes zero area to
the integral). This violates the requirement that ‖f‖ = 0 only if f = 0. Worse, there is
an infinite number of such f with any countable number of isolated points different
from zero, whose integrals are also zero. The difference between any two of these
functions, f − g, has a countable number of isolated points different from zero, and
the norm of the difference, ‖f − g‖, is zero even though f ≠ g. We would like for‖f − g‖ = 0 to mean that f = g for all x ∈ Q, but we cannot have it if the norm is
blind to point differences. Only the uniform norm (Equation 2.30) will reliably give‖f − g‖ ≠ 0 for all f ≠ g.

The issue calls for a more refined idea of equality. If a function f is zero at all
but a countable number of points {x1, x2,…}, we say that f is zero almost everywhere
(a.e.). The set of points where f (x) ≠ 0 is called a null set. It is also called a set of
measure zero. The measure of a set X is a function m : X → [0,∞] that generalizes the
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x x x

f(x) g(x) h(x)

FIGURE 2.17 The functions f and g are equal almost everywhere, differing only a set of
measure zero. The functions f and h, on the other hand differ on an interval, and are not equal.

idea of the length of an interval. If X = [a, b] is an interval, then its measure is m(X) =
b − a. If X is the countable union of non-overlapping intervals, then m(X) is the sum of
the lengths of the intervals, for example, m([ 1

2
, 1] ∪ [ 1

8
, 1

4
] ∪… ) = 1

2
+ 1

8
+⋯ = 2

3
.

A single point has measure zero, as does a finite set of isolated points, {a1, a2,… , an}.
In fact, a countable set of points, like the rational numbers, can be shown to have
measure zero, and there are exotic sets constructed from intervals rather than points
that can also be shown to have measure zero.11

Definition 2.13. Let Q ⊂ ℝ and f : Q → ℂ be a function. Any property of f is said
to hold almost everywhere (a.e.) in Q if the set

{x ∈ Q ∣ the property does not hold for f (x)}

has measure zero.

The integral of a bounded function on a set of measure zero is zero (this is
obvious for a finite set of isolated points, and can be shown for more general sets).
If f and g are equal almost everywhere then f − g is zero except on a set of measure
zero, so they are also equal in norm, ‖f − g‖ = 0. On the other hand, if f and g differ
on an interval (a, b), then f ≠ g pointwise and ‖f − g‖ ≠ 0. (Figure 2.17).

Unless we say otherwise, in a function space all properties will be assumed to
hold in the almost everywhere sense.

The uniform norm ‖⋅‖u is not compatible with the idea of equality almost
everywhere. It only gives ‖f‖u = 0 when f = 0 everywhere. We will keep this
norm around, because it is useful in certain applications, but we also need to find
a supremum norm that will give ‖f‖ = 0 when f = 0 (a.e.). Following the above
definition, we will say that a function is bounded almost everywhere by M > 0 if
the set

{x ∣ |f (x)| > M}

has measure zero. We then define another norm,

‖f‖∞ = inf{M > 0 ∣ |f | ≤ M a.e.}. (2.34)

11Measure is a fundamental topic in advanced real analysis texts. An introduction that is not too technical
may be found in Wilcox and Myers (1978, Chapters 2 and 3).
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x

(a)

(b)

(c)

f(x)

( )
FIGURE 2.18 Supremum and essential supremum norm. The dashed lines represent can-
didate values for the upper bound. f is less than or equal to bound (a) everywhere; this is the
supremum (uniform) norm, ‖f‖u. The value (b) is exceeded by f only on a set of measure zero
(two isolated points). This is the essential supremum norm, ‖f‖∞. The value (c) excludes all
the isolated points, but f exceeds this value on an interval.

This norm is the smallest M such that |f | > M only on a set of measure zero. It is
called the essential supremum norm, and is illustrated in Figure 2.18. It is also the
limit, as p → ∞, of the general p-norm (Equation 2.31). It is this norm that is properly
the defining property of the space L∞.

Example 2.21. Let f : (−2, 2) → ℝ be defined by f (x) = x. The p-norm is

‖f‖p =
(
∫

2

−2
|x|pdx

)1∕p

=
(

2∫
2

0
xpdx

)1∕p

=

(
2

xp+1

p + 1

||||
2

0

)1∕p

=
(

2p+2

p + 1

)1∕p

Letting p = 1,

‖f‖1 = 23

2
= 4.

Letting p = 2,

‖f‖2 =
(

24

3

)1∕2

= 4√
3

The ∞-norm is, by inspection, ‖f‖∞ = 2. To check that the integral gives the same
result, use the fact that xa = exp(a log x):

‖f‖∞ = lim
p→∞

exp

(
1
p

log

(
2p+2

p + 1

))
= lim

p→∞
exp

(
(p + 2) log 2

p
−

log(p + 1)

p

)
.

The limit of the first term in the exponent is log 2, and the limit of the second term is
0, because p grows faster than log(p + 1). Both limits are finite, so‖f‖∞ = exp (log 2 − 0) = 2.

as expected.
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Inner products and orthogonal functions
We may define an inner product for functions f , g : Q → ℂ by analogy with the
finite-dimensional case:

⟨f , g⟩ = ∫Q
f (x) g∗(x) dx (2.35)

is an inner product when the integral exists. This is a common definition, but not the
only possible one (see the problems for another). It satisfies the four requirements
for an inner product (Definition 2.4):

(a) ⟨f , g⟩ = ∫Q f (x) g∗(x) dx =
(∫Q g(x) f ∗(x) dx

)∗
= ⟨g, f ⟩∗

(b) ⟨cf , g⟩ = ∫Q cf (x) g∗(x) dx = c ∫Q f (x) g∗(x) dx = c⟨f , g⟩
(c) ⟨f + g, h⟩ = ∫Q(f (x) + g(x)) h∗(x) dx = ∫Q f (x) h∗(x) dx + ∫Q g(x) h∗(x) dx =⟨f , h⟩ + ⟨g, h⟩
(d) ⟨f , f ⟩ = ∫Q f (x) f ∗(x) dx = ∫Q |f (x)|2dx > 0 unless f = 0 a.e.

Given an inner product, we can talk about orthogonal functions. Following the
earlier definition of orthogonality (2.5), we will say that two functions f and g are
orthogonal on an interval Q if their inner product integral is zero,

∫Q
f (x)g∗(x)dx = 0.

It is important to note that orthogonality depends on the choice of interval. Two
functions which are orthogonal on one interval may fail to be orthogonal on a different
interval. We will illustrate the ideas with a few examples.

Example 2.22 (Orthogonal polynomials). The inner product of the polyno-
mial functions f (x) = x and g(x) = 1 − 2x2 is the integral ∫Q x(1 − 2x2)dx. They are
orthogonal on an interval Q where this integral is zero. By inspection of the graph
(Figure 2.19(a)), the integrand x(1 − 2x2) is an odd function and will integrate to zero

x

(a) (b) (c)

–1/√2

x
1 – 2x2

x
π/2 3π/2 2ππ

sin x
cos x

xπ/2 3π/2
2ππ

cos x cos 2x

  1/√2

FIGURE 2.19 Pairs of orthogonal functions. The heavier lines denote their products. (a) x
and 1 − 2x2 are orthogonal on (−1, 0), (0, 1), and any even interval, such as (− 1√

2
, 1√

2
). (b)

cos x and sin x are orthogonal on (0,𝜋) but not on (0, 𝜋

2
). (c) cos x and cos 2x are orthogonal on

(0,𝜋) but not on ( 𝜋
2

, 3𝜋

2
).
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on any even interval Q = (−a, a). More generally, the integral will be zero on any
interval where the integrand has as much area below the x axis as above, such as (0, b)
or (−b, 0) for an appropriate value of b:

∫
b

0
x(1 − 2x2)dx =

[1
2

x2 − 1
2

x4
]b

0
= b2 − b4

4
,

which is zero for b = 1.

Example 2.23 (Orthogonal trigonometric functions). Orthogonal sets of trigono-
metric functions are the cornerstone of Fourier analysis.

(a) Consider the trigonometric functions sin x and cos x. By inspection of the
graph (Figure 2.19(b)), their product, sin x cos x = 1

2
sin 2x, has period 𝜋 and

will integrate to zero on any interval of length 𝜋, such as (0, 𝜋) or (−𝜋

2
, 𝜋

2
). The

integral is also zero for intervals of length n𝜋. The functions are not orthogonal
on any other interval, for example, the interval (0, 𝜋

2
):

∫
𝜋∕2

0
sin x cos x dx = 1

2
.

Graphically, we see that on this interval the positive and negative areas under
the curve are not equal, so the integral is not zero.

(b) An even and an odd function, like sin x and cos x, will always be orthogonal for
some interval, because the product of an even and an odd function is odd. For an
example with two even functions, consider cos x and cos 2x (Figure 2.19(c)).
Their product, cos x cos 2x, is periodic and oscillatory, and by inspection of
the graph has odd symmetry about the point x = 𝜋

2
. We expect, therefore,

that these functions will be orthogonal on the interval (0, 𝜋). Carrying out the
calculation,

∫
𝜋

0
cos x cos 2x dx =

[1
6

sin 3x + 1
2

sin x
]𝜋

0
= 0.

Unlike the previous example, however, they are not orthogonal on arbitrary
intervals of length 𝜋, for consider (𝜋

2
, 3𝜋

2
):

∫
3𝜋∕2

𝜋∕2
cos x cos 2x dx =

[1
6

sin 3x + 1
2

sin x
]3𝜋∕2

𝜋∕2
= 2

3
.

The question of orthogonality on more general intervals is considered in the
problems.

Complete function spaces
Our ultimate goal is to approximate functions by sequences of other functions—
in particular, by sums of sines and cosines, which are continuous functions. We
will seek to construct Cauchy sequences of continuous functions, (gn), such that‖f − gn‖→ 0 for some target function f . Now, it is easy to see that if two continuous
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functions agree everywhere on an interval, that is, f − g = 0, x ∈ (a, b), then the
norm of their difference is zero, ∫ b

a |f (x) − g(x)|2 dx = 0; conversely, if f and g are
continuous on (a, b) and ‖f − g‖ = 0, then f = g everywhere on (a, b). So it would
seem that continuous functions can only approximate other continuous functions. As
the following example shows, however, there are Cauchy sequences of continuous
functions whose limits are not continuous.

Example 2.24. The functions fk, defined

fk(x) =
⎧⎪⎨⎪⎩

0, 1 − 2−k
> x > 0

2k(x − 1) + 1, 1 > x ≥ 1 − 2−k

1, 2 > x ≥ 1

belong to the space C(0, 2) of functions that are continuous on (0, 2). By inspection
of the graphs (Figure 2.20), we expect the sequence to be convergent.

Without loss of generality, assume n > m. The norm ‖fn − fm‖2 can be shown
to be

‖fn − fm‖2 = 2−m∕2√
3

(
1 − 2−(n−m)) ,

which approaches zero as n, m → ∞. Thus, (fk) is a Cauchy sequence.
Again with reference to the graph, it appears that the sequence is converging

to the step function denoted f∞, and indeed, it can be shown that ‖f∞ − fk‖ → 0 as
k → ∞.

Recall that a complete space contains the limits of all its Cauchy sequences.
This example showed a sequence of continuous functions with discontinuous limit,

1

f1
f0

x
… …

1/2 1 – 2–n 1

f(x)

f∞fn

2

FIGURE 2.20 A sequence of continuous functions converging to a discontinuous function.
The vector space C(0, 2) with euclidean norm is not complete.
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and demonstrates that C(0, 2) (with this choice of norm) is not a complete space.12 The
larger space containing piecewise continuous as well as continuous functions is also
not complete. It can be shown that there are Cauchy sequences of Riemann integrable
piecewise continuous functions whose limits are discontinuous everywhere and not
Riemann integrable.13 However, such functions are arguably pathological and will
be encountered rarely, if at all, in practical applications.

The spaces L1 and L2, indeed, all Lp for ∞ > p ≥ 1, can be shown to be
complete. They contain continuous and piecewise continuous functions, functions
that deviate from piecewise continuity at isolated points, and functions that defy
conventional Riemann integration.14 Significantly, however, it can be shown that a
function f in Lp (including any of the wildly discontinuous ones) can be approximated
arbitrarily well by a continuous function g in Lp, and there exists a Cauchy sequence
of continuous functions (gn) that converges to f in norm, ‖f − gn‖ → 0. We say that
the continuous functions are dense in Lp.15 This opens the door to using sequences
of continuous functions, like the partial sums of Fourier series, to approximate
arbitrary functions in Lp.

The spaces 𝓁2 and L2 of square-summable sequences and square-integrable
functions can be shown to be complete inner product spaces. A complete inner product
space is called a Hilbert space. Hilbert spaces generalize familiar finite-dimensional
euclidean spaces like ℝn and ℂn to infinite dimensions. (Some authors consider ℝn

and ℂn to be Hilbert spaces; others confine the term to infinite-dimensional spaces.)
Many problems of practical interest in engineering and physics, including Fourier
analysis, are elegantly solved through the use of Hilbert space theory.16

The other 𝓁p and Lp spaces (p ≠ 2) may be shown to be complete normed
spaces—also known as Banach spaces—but they are not inner product spaces.17 The
lack of an inner product makes Banach space theory more difficult and less useful for
our purposes than Hilbert space theory. Although they do not have an inner product,
they do possess a generalization of the Cauchy–Schwarz inequality, called Hölder’s
inequality.18 For sequences x ∈ 𝓁p and y ∈ 𝓁q, with 1∕p + 1∕q = 1,|||||

∞∑
n=1

xny∗n

||||| ≤ ‖x‖p ‖y‖q (2.36)

12Whether a function space is complete or incomplete can depend critically on the choice of norm. The
space C(0, 2), shown in Example 2.24 to be incomplete under the L2 norm, is also incomplete under the
L1 norm but complete under the supremum norm. See Oden and Demkowicz (1996, pp. 346–348).
13Folland (1992, p. 75).
14The full theory of Lp spaces depends on the so-called Lebesgue integral, a standard topic in advanced
real analysis. For an introduction that is not too technical, see Gasquet and Witomski (1999, pp. 95–130).
Fortunately, if a function is Riemann integrable, then it is also Lebesgue integrable, and the two integrals
agree. Thus, in all of our practical calculations we may employ results of the more general theory while
continuing to use our familiar Riemann integral.
15For more about the functions in Lp, see Gasquet and Witomski (1999, pp. 137–139) and also Stade
(2005, pp. 163–179), Dym and McKean (1972, p. 22), and Folland (1992, pp. 72–75).
16See Young (1988) for a survey of the theory and some of its principal applications. Axler (1997) is an
excellent exposition of the theory for finite-dimensional spaces.
17For completeness proofs for 𝓁p and Lp, see Oden and Demkowicz (1996, pp. 346–350).
18For proofs, see Oden and Demkowicz (1996, pp. 282, 335).
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and for functions f ∈ Lp(Q) and g ∈ Lq(Q), with 1∕p + 1∕q = 1,

|||||∫Q
f (x)g∗(x)dx

||||| ≤ ‖f‖p ‖g‖q. (2.37)

In particular, if f ∈ L1, then the integral ∫Q f (x)g∗(x)dx is guaranteed to be finite

only if g ∈ L∞ ( 1
1
+ 1

∞ = 1). Hölder’s inequality also says that in this case, fg∗ ∈ L1.
When p = 2, Hölder’s inequality is identical to the Cauchy–Schwarz inequality.

Relationships among the various spaces discussed in this chapter are dia-
grammed in Figure 2.21.

Vector Spaces

Normed Spaces

Inner Product Spaces

HILBERT SPACES

Banach Spaces
(complete normed spaces)

Metric Spaces

Lp,   p

Rn, Cn, L2,   2

FIGURE 2.21 Taxonomy of the spaces discussed in this chapter. A Hilbert space is a
complete inner product space. The finite-dimensional spaces ℝn and ℂn, with euclidean norm,
are Hilbert spaces, as are the infinite-dimensional spaces 𝓁2 and L2. The spaces 𝓁1, L1,𝓁∞,
and L∞ are Banach spaces.
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2.3.4 Orthogonal Expansions in 𝓁2 and L2

Now that we have seen that inner products and orthogonality can be defined for
infinite sequences and functions, it is natural to extend the idea of orthogonal decom-
position beyond finite-dimensional vectors. In particular, the subjects of the next three
chapters are the four basic types of Fourier expansion, each of which is an orthogonal
decomposition in some vector space.

1. The discrete Fourier transform, for finite sequences:

f [n] = 1
N

N−1∑
k=0

F[k]ei2𝜋kn∕N , n = 0, 1,… , N − 1.

2. The discrete-time Fourier transform, for infinite sequences:

f [n] = 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜃)ein𝜃d𝜃, n = … ,−2,−1, 0, 1, 2,… .

3. The Fourier series, for functions on bounded intervals. On the interval
[−𝜋,𝜋],

f (x) =
∞∑

k=−∞
ckeikx, x ∈ [−𝜋, 𝜋].

4. The Fourier transform, for functions on the real line:

f (x) = ∫
∞

−∞
F(𝜈)ei2𝜋𝜈xd𝜈, x ∈ ℝ.

All four expansions are built on complex exponentials, ei2𝜋kn∕N , ein𝜃 , eikx, or ei2𝜋𝜈x,
which will be shown to constitute four orthogonal sets. The coefficients in the linear
combinations are F[k], Fd(𝜃), ck, or F(𝜈), respectively.

So far, we have seen that the finite-dimensional vector spaces ℝn and ℂn

possess orthonormal basis sets {ek}n
k=1. Any vector 𝑣 in a finite-dimensional space

V can be written as a linear combination of basis vectors by taking inner prod-
ucts, 𝑣 =

∑n
k=1⟨𝑣, ek⟩ek. Parseval’s formula says that all the “energy” in 𝑣 is cap-

tured by the expansion coefficients, ‖𝑣‖2 =
∑n

k=1 |⟨𝑣, ek⟩|2. The truncated series
�̂� =

∑m
k=1⟨𝑣, ek⟩ek is an approximation to 𝑣 in the m-dimensional subspace U spanned

by {ek}m
k=1. The remaining basis vectors {ek}n

k=m+1 span the orthogonal complement

U⟂, and the residual vector �̃� = 𝑣 − �̂� is perpendicular to �̂� and belongs to U⟂.
We next consider the expansion of a vector 𝑣 in an infinite-dimensional inner

product space V on an infinite orthonormal set contained in V,

�̂� =
∞∑

k=1

ckek, ck = ⟨𝑣, ek⟩ . (2.38)



82 CHAPTER 2 VECTOR SPACES

Example 2.25. The following are infinite orthonormal sets.

(a) The standard basis in ℝ∞,

e1 = ( 1, 0, 0, … )

e2 = ( 0, 1, 0, … )

⋮

Projecting a vector 𝑣 = (𝑣1, 𝑣2,…) ∈ 𝓁2 onto this basis returns the elements
of 𝑣: ⟨𝑣, ek⟩ = 𝑣k.

(b) The Legendre polynomials on [−1, 1], the first three of which are

p0(x) = 1√
2

p1(x) =
√

3
2

x

p2(x) = 1
2

√
5
2

(3x2 − 1).

(c) Complex exponentials on [−𝜋, 𝜋],

ek(x) = 1√
2𝜋

eikx, k = 0,±1,±2,… . (2.39)

To verify the orthonormality of this set, calculate

⟨en, em⟩ = ∫
𝜋

−𝜋
en(x)e∗m(x)dx = 1

2𝜋 ∫
𝜋

−𝜋
ei(n−m)xdx

= 1
2𝜋

ei(n−m)𝜋 − e−i(n−m)𝜋

i(n − m)
= sin(n − m)𝜋

(n − m)𝜋

=
{

1, n = m (Equation 1.29)

0, otherwise.

Expanding a function f ∈ L2[−𝜋, 𝜋] on this set leads to the complex Fourier
series, which is the subject of Chapter 4.

f (x) =
∞∑

k=−∞

⟨
f ,

1√
2𝜋

eikx

⟩
1√
2𝜋

eikx =
∞∑

k=−∞

1
2𝜋

⟨
f , eikx⟩ eikx

=
∞∑

k=−∞
ck eikx, (2.40a)

where ck = 1
2𝜋

⟨
f , eikx⟩ = 1

2𝜋 ∫
𝜋

−𝜋
f (𝜉)e−ik𝜉d𝜉. (2.40b)
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The question that concerns us now is whether, and under what conditions, the
infinite series

∑∞
k=1 ckek with ck = ⟨𝑣, ek⟩ (Equation 2.38) is actually equivalent to

the vector 𝑣. There are three questions to answer:

1. Does the series converge at all?

2. If it does converge, does it converge to a vector in V (is V a complete space)?

3. If the limit is in the same space as 𝑣, is it, in fact, equal to 𝑣?

Our first concern is whether the infinite series converges. The nth partial sum
of the series is �̂�n =

∑n
k=1 ckek. It is contained in V because it is a finite linear

combination of the {ek}, which are in V. The sequence of partial sums will converge
if it is a Cauchy sequence, so check to see if the sequence is Cauchy. The distance
between two partial sums is

‖�̂�n − �̂�m‖2 =
‖‖‖‖‖

n∑
k=m+1

ckek

‖‖‖‖‖
2

=
n∑

k=m+1

|ck|2,

by the orthonormality of the {ek}. If the whole infinite series
∑∞

k=1 |ck|2 converges,
then we know that the coefficients |ck| must decay to 0 as k → ∞. Consequently,
a sufficient condition for the finite sum

∑n
k=m+1 |ck|2 to go to zero as m, n → ∞ is

that the entire series
∑∞

k=1 |ck|2 =
∑∞

k=1 |⟨𝑣, ek⟩|2 converges. Assurance of this is
supplied by the following theorem.

Theorem 2.5 (Bessel’s inequality). Let {ek}∞k=1 be an orthonormal set in an inner
product space V. Then, for a vector 𝑣 ∈ V,

∞∑
k=1

| ⟨𝑣, ek⟩ |2 ≤ ‖𝑣‖2
. (2.41)

Proof: Make a finite-dimensional approximation, �̂� =
∑n

k=1⟨𝑣, ek⟩ek. There is an
error vector �̃� = 𝑣 − �̂�, which is orthogonal to �̂�. The Pythagorean theorem gives‖𝑣‖2 = ‖�̂�‖2 + ‖�̃�‖2. Hence,

‖�̂�‖2 =
‖‖‖‖‖

n∑
k=1

⟨𝑣, ek⟩ ek

‖‖‖‖‖
2

=
n∑

k=1

| ⟨𝑣, ek⟩ |2 = ‖𝑣‖2 − ‖�̃�‖2 ≤ ‖𝑣‖2,

which holds for all n. Taking the limit as n → ∞ yields Equation 2.41.

In a finite-dimensional space, the approximation and the error, �̂� and �̃�, are two sides
of a right triangle, with 𝑣 the hypotenuse. So �̂� can be no longer than 𝑣. Bessel’s
inequality says that the relationship continues to hold in an infinite-dimensional
space.
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This answers the first question: the sequence of approximations (�̂�n) is a Cauchy
sequence, and has a limit. As for the second question, if V is a complete inner product
space—a Hilbert space—the sum converges to a vector that is also in V:

lim
n→∞

n∑
k=1

⟨𝑣, ek⟩ ek ∈ V .

In particular, the spaces 𝓁2 and L2 are Hilbert spaces. This leaves the third question: is
the limit limn→∞

∑n
k=1⟨𝑣, ek⟩ek equal to the vector 𝑣? In an n-dimensional space, we

know that 𝑣 is identically
∑n

k=1⟨𝑣, ek⟩ek, the error �̃� is 0, and ‖𝑣‖2 =
∑n

k=1 |⟨𝑣, ek⟩|2
(Parseval’s formula). The best we have been able to say so far about the infinite-
dimensional case is Bessel’s inequality,

∞∑
k=1

| ⟨𝑣, ek⟩ |2 ≤ ‖𝑣‖2,

which leaves open the possibility that the approximation error, �̃� = 𝑣 −
∑∞

k=1⟨𝑣, ek⟩ek,
could be nonzero. After projecting 𝑣 onto all the ek, there could still be some-
thing left over, indicating that the orthonormal set {ek}, though infinite, is not big
enough.

Suppose, in an infinite-dimensional inner product space, we have an orthonor-
mal set {ek} that is big enough. Then it will not be possible to find any more vectors
in that space that are orthogonal to the {ek} (for if such a vector could be found, we
would have to add it to the set). Such a set is said to be complete.19

Definition 2.14 (Complete orthonormal set). An orthonormal set {ek} in an inner
product space V is complete if the only vector in V orthogonal to each of the ek is the
zero vector.

Now consider the projection of a vector 𝑣 onto a complete orthonormal set
{ek}. The approximation error using N of the vectors is �̃� = 𝑣 −

∑N
k=1⟨𝑣, ek⟩ek. Its

projections onto the {ek} are

⟨�̃�, ek⟩ = ⟨
𝑣 −

N∑
k=1

⟨𝑣, ek⟩ ek, en

⟩
= ⟨𝑣, en⟩ − N∑

k=1

⟨𝑣, ek⟩ ⟨ek, en⟩
⏟⏟⏟

=1,k=n

=
{⟨𝑣, en⟩ n > N

0 n ≤ N
.

In the limit as N → ∞, ⟨�̃�, ek⟩ = 0 for all k. The error �̃� is orthogonal to each of the
en, and by the definition, �̃� = 0. It follows that 𝑣 =

∑∞
k=1⟨𝑣, ek⟩ek. This answers the

third question: the expansion of a vector 𝑣 on a complete orthonormal set is equal to
𝑣 in the 2-norm. The complete orthonormal set spans the space V and is a basis for
the space. We can think of the vectors {ek} as establishing a coordinate system in V ,
for which the inner products ⟨𝑣, ek⟩ are the coordinates.

19This is a different use of “complete” than when we speak of a complete vector space.
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Parseval’s formula, the statement that orthogonal expansion preserves norms
(conserves energy), extends to infinite-dimensional space. To derive the relationship,
express the error norm in terms of the inner product, obtaining‖‖‖‖‖‖𝑣 −

N∑
k=1

⟨𝑣, ek⟩ ek

‖‖‖‖‖‖
2

= ⟨𝑣, 𝑣⟩ −⟨𝑣,
N∑

m=1

⟨𝑣, em⟩ em

⟩
−

⟨
N∑

k=1

⟨𝑣, ek⟩ ek, 𝑣

⟩

+

⟨
N∑

k=1

⟨𝑣, ek⟩ ek,
N∑

m=1

⟨𝑣, em⟩ em

⟩

= ‖𝑣‖2 −
N∑

m=1

⟨𝑣, em⟩∗ ⟨𝑣, em⟩ − N∑
k=1

⟨𝑣, ek⟩ ⟨𝑣, ek⟩∗
+

N∑
k=1

⟨𝑣, ek⟩ N∑
m=1

⟨𝑣, em⟩∗ ⟨ek, em⟩
⏟⏟⏟

=1, k=m

= ‖𝑣‖2 −
N∑

k=1

||⟨𝑣, ek⟩||2 .
Then, as N → ∞,

‖�̃�‖2 = lim
N→∞

‖‖‖‖‖‖𝑣 −
N∑

k=1

⟨𝑣, ek⟩ ek

‖‖‖‖‖‖
2

= ‖𝑣‖2 −
∞∑

k=1

||⟨𝑣, ek⟩||2 = 0

because, as we have seen, �̃� → 0. Thus,

‖𝑣‖2 =
∞∑

k=1

| ⟨𝑣, ek⟩ |2. (2.42)

It can also be shown that just as in the finite-dimensional case, orthogonal expansion
preserves inner products as well as norms (Parseval),

⟨u, 𝑣⟩ = ∞∑
k=1

⟨u, ek⟩ ⟨𝑣, ek⟩∗ . (2.43)

These results are summarized in the following theorem.

Theorem 2.6. Let {ek} be a complete orthonormal set in a Hilbert space V . Then,
for vectors u, 𝑣 ∈ V:

(a) 𝑣 =
∑∞

k=1⟨𝑣, ek⟩ek in norm.

(b) ‖𝑣‖2 =
∑∞

k=1 |⟨𝑣, ek⟩|2, preserving norms.

(c) ⟨u, 𝑣⟩ = ∑∞
k=1⟨u, ek⟩⟨𝑣, ek⟩∗, preserving inner products.

Proving that a particular orthonormal set is complete is often quite technical,
and we will simply take the completeness of some key sets for granted. In particular,
the complex exponential set, {eikx}∞k=−∞, which we know is orthogonal on [−𝜋,𝜋],
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is complete.20 It is a basis for the Hilbert space L2[−𝜋, 𝜋], and the foundation for our
study of Fourier series in Chapter 4.

⋆ 2.4 OPERATORS

An operator, also called a transformation, is a mapping between two vector spaces
(the spaces are always assumed to have the same set of scalars, i.e., real or complex
numbers). We write T : V → W to indicate that an operator T maps vectors in V to
vectors in W, and write 𝑤 = T(𝑣) or just 𝑤 = T𝑣 to say that 𝑤 is the result of T
operating on 𝑣. The branch of mathematics known as functional analysis is the study
of operators on linear spaces. It has deep connections to Fourier analysis, system
theory, and physics, especially quantum mechanics.21 In this section we will set out
a few elementary ideas about operators. It may be skipped on a first reading.

Linearity
The most useful operators for our purposes are linear. An operator T : V → W is
linear if, for all vectors f , g ∈ V and scalars c,

T(f + g) = T(f ) + T(g) (2.44a)

T(cf ) = cT(f ). (2.44b)

The idea of linearity extends easily to a finite linear combination of vectors,

T
(

n∑
k=1

ckfk

)
=

n∑
k=1

ckT(fk).

This is the same definition of linearity you may be familiar with from system theory,
that is, a system is linear if its response to a composite input ax(t) + by(t) is the sum
of a times the response to x(t) plus b times the response to y(t).

If we have two linear operators, S,T : V → W, their sum may be defined in a
natural way,

(S + T ) 𝑣 = S𝑣 + T𝑣.
The sum of two linear operators is also linear. (In fact, it can be shown that the set
of all linear operators mapping V to W is a vector space.) Operators may also be
composed: if S : V → W and T : U → V are operators, then ST : U → W is defined

STu = S (T(u)) .

First, T maps u ∈ U to a vector T(u) ∈ V . Then, S maps T(u) to the vector
S(T(u)) ∈ W. Composition does not, in general, commute : ST ≠ TS (e.g., matrix
multiplication). The composition of two linear operators is also linear. Using addi-
tion and composition, other linear operators may be constructed from simpler ones.
For example, the derivative operator d

dx
is linear. The composition with itself is the

20For proofs of the completeness of the complex exponential functions eikx, see Folland (1992, pp. 78–79),
Young (1988, pp. 45–52), and Dym and McKean (1972, pp. 30–36).
21An introduction to functional analysis at the level of this text is Oden and Demkowicz (1996).
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second derivative operator, d2

dx2 , and the linear differential equation d2f
dx2 + p(x)f = u

is an operator equation, Lf =
( d2

dx2 + p(x)
)
f = u. Linear operators are ubiquitous in

mathematics, science, and engineering.

One-to-one and onto operators; null space
Many properties of mappings and functions inℝ (Section 1.5) carry over to operators.
For an operator T : V → W, the vector space V is the domain of T, and the set
T(V) = {T𝑣 ∣ 𝑣 ∈ V} ⊆ W is the range of T. If T(V) = W, we say that T is onto W
(or surjective)—every point in W is the image under T of some point in V. We say
that T is one-to-one (or injective) if T(𝑣1) = T(𝑣2) only if 𝑣1 = 𝑣2, that is, each point
in V maps to a unique point in W. An operator that is both one-to-one and onto is
also called bijective. A bijection establishes a one-to-one correspondence between
the points in V and the points in W (recall Figure 1.9).

An operator T : V → W is not one-to-one if there is more than one point in V
mapping to some point in W . Of particular interest are those points in V that map to
the zero vector in W (remember, every vector space has a zero vector, to serve as the
additive identity). They comprise the null space of T, N(T ) = {𝑣 ∈ V ∣ T𝑣 = 0}. The
null space is a subspace of the domain V , representing information that is lost (or
obliterated) by T. In signal processing, for example, an ideal filter is a linear operator,
and its stopband (those frequencies that are blocked by the filter) is the operator’s
null space.

Example 2.26 (Operators on finite-dimensional spaces). The most familiar
examples of linear operators on vector spaces are matrices. All linear operators on
finite-dimensional vector spaces have matrix representations. Here are some exam-
ples of matrix operators.

Consider the mapping A : ℝ3 → ℝ2 represented by the matrix A =[
1 0 0
0 1 0

]
. It operates on a vector

⎡⎢⎢⎣
a
b
c

⎤⎥⎥⎦ to produce the vector

[
1 0 0
0 1 0

] ⎡⎢⎢⎣
a
b
c

⎤⎥⎥⎦ =[
a
b

]
. This operator is onto but not one-to-one, because every vector in ℝ2 is the

image of an infinite number of vectors in ℝ3 (just drop the third component). The

null space of A consists of all vectors of the form
⎡⎢⎢⎣

0
0
c

⎤⎥⎥⎦.
On the other hand, consider the mapping B : ℝ2 → ℝ3 defined by the matrix

B =
⎡⎢⎢⎣

1 0
0 1
0 0

⎤⎥⎥⎦. It operates on a vector

[
a
b

]
to produce the vector

⎡⎢⎢⎣
1 0
0 1
0 0

⎤⎥⎥⎦
[

a
b

]
=
⎡⎢⎢⎣

a
b
0

⎤⎥⎥⎦.
This operator is one-to-one but not onto. There is no vector inℝ2 that maps to a vector
in ℝ3 having a nonzero third element. The null space is trivial, consisting solely of

the zero vector

[
0
0

]
.
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Finally, the operator C : ℝ2 → ℝ2 with square matrix C =
[

1 0
0 2

]
maps a

vector

[
a
b

]
∈ ℝ2 to another vector in ℝ2, namely

[
a

2b

]
. This operator is both one-to-

one and onto. Again, the null space consists solely of the zero vector. Not every square

matrix represents a bijection, however: consider D =
[

1 0
2 0

]
and E =

[
1 2
0 0

]
. Are

these one-to-one? Onto? What are their null spaces?

Example 2.27 (Operators on infinite-dimensional spaces). Here are a few oper-
ators that work on infinite-dimensional spaces.

1. Differentiation: The operator d
dx

: C(1)[0, 1] → C[0, 1] maps functions f (x) that
are continuously differentiable on [0, 1] to their derivatives f ′(x). It is a linear
operator. It is not one-to-one, because all functions of the form g(x) = f (x) + c
have the same derivative, namely, f ′(x); its null space is the set of all con-
stant functions. It is, however, onto, because every continuous function is the
derivative of some continuously differentiable function.

2. Forward and backward shift: For sequences 𝑣 = (𝑣0, 𝑣1, 𝑣2,…) ∈ 𝓁2, define
forward shift Tf and backward shift Tb by Tf 𝑣 = (0, 𝑣0, 𝑣1,…) and Tb𝑣 =
(𝑣1, 𝑣2,…). Both operators are linear. The forward shift operator is one-to-one,
but not onto. The backward shift operator is onto, but not one-to-one (what is
its null space)?

3. Inner product: Let V be a complex inner product space. The inner prod-
uct operator ⟨⋅, ⋅⟩ : V × V → ℂ is linear in the first operand: ⟨af1 + bf2, g⟩ =
a⟨f1, g⟩ + b⟨f2, g⟩. If V is a real inner product space, ⟨⋅, ⋅⟩ is also linear in the
second operand, but not if V is a complex inner product space.

4. Norm: Let V be a normed space. The norm operator, ‖⋅‖ : V → ℝ, is not
linear.

Operator norm and bounded operators
In general, an operatorT : V → W will change the norm of a vector, making it “longer”
or “shorter.” Let the spaces V and W have norms ‖⋅‖V and ‖⋅‖W , respectively. They
need not be the same norm, for example, we could have V = L1 and W = L∞. If
a linear operator always maps a vector 𝑣 ∈ V with finite norm ‖𝑣‖V into a vector
T𝑣 ∈ W with finite norm ‖T𝑣‖W , we say that the operator is bounded. The amount

of “stretch” for a particular vector 𝑣 is ‖T𝑣‖W‖𝑣‖V
; the supremum of this ratio over all

(nonzero) vectors 𝑣 is the maximum stretch that the operator can produce. It can be
shown that this supremum has all the properties of a norm, and so it is called the
operator norm,

‖T‖ = sup

{‖T𝑣‖W‖𝑣‖V

||||| 𝑣 ≠ 0

}
. (2.45a)

An equivalent definition is‖T‖ = sup
{‖T𝑣‖W

||| ‖𝑣‖V ≤ 1
}
. (2.45b)
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FIGURE 2.22 Inverse operators. Top: Left inverse. If T is one-to-one, there is only one point
𝑣 in V that maps to the point 𝑤 in W, and there is an inverse S such that ST𝑣 = 𝑣 for every
𝑣 ∈ V . If T is not one-to-one, there is no left inverse. More than one point in V maps to 𝑤 (e.g.,
the dashed line), and it is not possible to “look back” through T to know whether S𝑤 should
be 𝑣 or 𝑣′. Bottom: Right inverse. If T is not one-to-one, then there is more than one possible
right inverse: TS𝑤 = TS′

𝑤 = 𝑤. But if T is one-to-one, there is only one path from V to 𝑤,
and only one right inverse. Moreover, if T is one-to-one, the right and left inverse are the same
operator.

Clearly, a bounded operator has finite norm. It can be shown that a bounded linear
operator is also continuous: vectors that are close to each other in V are mapped by
a bounded T to vectors that are close to each other in W.22

Inverse operators
If an operator is one-to-one, so that every point in the range T(V) comes from a unique
point in the domain V , we may define an inverse operator that maps every point in
the range back to where it came from in the domain. That is, the composition of T
with its inverse is the identity operator that maps a vector to itself. However, because
composition does not commute, the inverse may in principle be applied before or after
T, that is, there are two inverses. Let S : W → V and T : V → W. In the composition
ST, a vector 𝑣 ∈ V is mapped to T𝑣 ∈ W, then mapped back to ST𝑣 ∈ V. If ST𝑣 = 𝑣,
we say that S is a left inverse of T. In the other composition, TS, a vector 𝑤 ∈ T(V)
is first mapped to 𝑣 = S𝑤 ∈ V , then back to TS𝑤 ∈ T(V). If TS𝑤 = 𝑤, we say that
S is a right inverse of T (Figure 2.22).

Consider the existence (or not) of a left inverse. If T is not one-to-one, then
there are (at least) two points, call them 𝑣 and 𝑣

′, that are mapped by T to the same
image point 𝑤. The left inverse S can be defined so that S𝑤 is either 𝑣 or 𝑣′, but not

22For a precise statement of the continuity and boundedness of linear operators, see Oden and Demkowicz
(1996, pp. 405–407).
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both. To have ST𝑣 = 𝑣, there can be only one preimage in V for each input to S. This
includes the null space: if T(𝑣) = 0 for some 𝑣 ≠ 0, then T is not one-to-one, because
there are two points, 0 and 𝑣, that map to 0. Therefore, T will have one (and only one)
left inverse only if it is one-to-one.

For the right inverse, if T is not one-to-one, then for some 𝑤 ∈ T(V) there is
more than one identity path from 𝑤 through V back to 𝑤. The right inverse must
be defined so that only one of the paths is followed. Either one is satisfactory—an
operator may have more than one right inverse.

So, if T is one-to-one, then there is one left inverse and one right inverse, and
Figure 2.22 suggests that these inverses are the same S. If T is onto as well as one-to-
one, then the domain of S is the whole space W, and we have an appealing symmetry:
T : V → W and S : W → V. Finally, if the (left or right) inverse S is bounded, we say
that T is invertible and define T−1 = S. The inverse T−1 is also a linear operator.

Example 2.28 (Inverse operators on finite-dimensional spaces). Consider
again the finite-dimensional operators discussed in Example 2.26. The matrix

A =
[

1 0 0
0 1 0

]
performs the mapping

⎡⎢⎢⎣
a
b
c

⎤⎥⎥⎦↦
[

a
b

]
. It is not one-to-one. It has

no left inverse, because there is no way to recover the third element c once it is lost.

On the other hand, it has an infinite number of right inverses, mapping

[
a
b

]
↦
⎡⎢⎢⎣

a
b
c

⎤⎥⎥⎦
with c arbitrary. A matrix form of the right inverse is

⎡⎢⎢⎣
1 0
0 1
r s

⎤⎥⎥⎦, and the product with

A gives

[
1 0 0
0 1 0

] ⎡⎢⎢⎣
1 0
0 1
r s

⎤⎥⎥⎦ =
[

1 0
0 1

]
,

the identity for ℝ2. But this is not a left inverse, because

⎡⎢⎢⎣
1 0
0 1
r s

⎤⎥⎥⎦
[

1 0 0
0 1 0

]
=
⎡⎢⎢⎣

1 0 0
0 1 0
r s 0

⎤⎥⎥⎦ ,

which is not an identity for ℝ3.

The matrix B =
⎡⎢⎢⎣

1 0
0 1
0 0

⎤⎥⎥⎦ performs the mapping

[
a
b

]
↦
⎡⎢⎢⎣

a
b
0

⎤⎥⎥⎦. It is one-to-one

but not onto. It has a left inverse that maps
⎡⎢⎢⎣

a
b
0

⎤⎥⎥⎦↦
[

a
b

]
. One of the matrix forms of
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the left inverse is

[
1 0 0
0 1 0

]
. Multiplying this with B,

[
1 0 0
0 1 0

] ⎡⎢⎢⎣
1 0
0 1
0 0

⎤⎥⎥⎦ =
[

1 0
0 1

]
,

the identity for ℝ2. It is also a right inverse, for

⎡⎢⎢⎣
1 0
0 1
0 0

⎤⎥⎥⎦
[

1 0 0
0 1 0

]
=
⎡⎢⎢⎣

1 0 0
0 1 0
0 0 0

⎤⎥⎥⎦ .
This is not an identity for ℝ3, but it is an identity for the range of B, the set of all

vectors
⎡⎢⎢⎣

a
b
0

⎤⎥⎥⎦, which is all it has to be. (The composition TS maps T(V) → T(V); only

if T is bijective does TS map W → W .)

Finally, the matrix C =
[

1 0
0 2

]
represents the operation

[
a
b

]
↦

[
a

2b

]
. It is

one-to-one and onto, and has a left inverse represented by the matrix

[
1 0
0 1

2

]
. This

is also a right inverse, mapping any vector

[
c
d

]
∈ ℝ2 to the vector

[
c

d∕2

]
, which is

then mapped by C back to

[
c
d

]
.

Inverses for the forward and backward shift operators on 𝓁2 are considered in the
problems.

In the application to signal processing, an operator T often represents some loss
of information, and inverting T amounts to trying to recover the lost information. For
example, consider the representation of a signal vector 𝑣 as an orthogonal expansion,

𝑣 =
∑

k

ckek, ck = ⟨𝑣, ek⟩ .
After passing 𝑣 through a system characterized by a linear operator T, the resulting
vector is

𝑤 =
∑

k

ck Tek.

Now, if for some k, ‖Tek‖ is small, or worse, if Tek = 0 (ek is in the null space of
T), the basis vector ek will be absent, or nearly so, from 𝑤. This attenuation could
be by design, for example, T is a lowpass filter, or it could represent some sort of
degradation, like the blurring of an image. Recovering ek’s original contribution to 𝑣,
if desired, requires amplification of the attenuated component, and if ‖Tek‖ is very
small or zero, ‖T−1‖ could be very large or even unbounded. In practice, perfect
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signal recovery is usually not possible, and one constructs approximate inverses
(called pseudoinverses) that are computationally tractable.23

Isometric and unitary operators; isomorphic spaces
Parseval’s formula says that orthogonal projection preserves inner products and
norms. If f and g are vectors in a Hilbert space and F = (Fn) and G = (Gn) are
their orthogonal projections onto a basis for the space, then ⟨f , g⟩ = ⟨F, G⟩ and‖f‖ = ‖F‖. We will see now that Parseval’s formula is just one instance of a general
property of certain linear operators.

Let V and W be normed spaces, and T : V → W be an operator. If the norm
of the operator’s output is always the same as the norm of its input, ‖T𝑣‖W = ‖𝑣‖V ,
we say that T is an isometry or a norm-preserving linear operator. This is a stronger
statement than ‖T‖ = 1. The latter says only that ‖T𝑣‖ ≤ ‖𝑣‖, and in fact, since the
operator norm is a supremum, there might not be any 𝑣 ∈ V such that ‖T𝑣‖ is exactly
equal to ‖𝑣‖. On the other hand, if T is an isometry, ‖T𝑣‖ is identically ‖𝑣‖ for all
𝑣 ∈ V .

Going further, suppose V and W are Hilbert spaces. If T : V → W is invertible
and preserves inner products, ⟨f , g⟩ = ⟨Tf ,Tg⟩, it is called a unitary operator. Setting
f = g, we have ⟨f , f ⟩ = ⟨Tf ,Tf ⟩, showing that a unitary operator is also isometric.

We may gain some insight into the significance of unitary operators by returning
to vectors in a plane. Recall that the dot product of two vectors has the property
u ⋅ 𝑣 = ‖u‖ ‖𝑣‖ cos 𝜃, where 𝜃 is the angle between the vectors. So, the angle 𝜃 may
be calculated from

𝜃 = cos−1 u ⋅ 𝑣‖u‖ ‖𝑣‖ .
Any linear transformation of the vectors u and 𝑣 that preserves their inner product,
that is, a unitary operator, preserves the angle between them. For example, consider
a rotation in the plane, represented by the matrix

T =
[

cos𝜑 − sin𝜑
sin𝜑 cos𝜑

]
.

Suppose u =
[

1
0

]
and 𝑣 =

[
1
1

]
. By inspection, their dot product is 1 and their norms

are 1 and
√

2, respectively. The angle between them is cos−1 1√
2
= 𝜋

4
. After rotation,

the vectors become Tu =
[

cos𝜑
sin𝜑

]
and T𝑣 =

[
cos𝜑 − sin𝜑
sin𝜑 + cos𝜑

]
. Their norms are still

1 and
√

2, and their dot product is still 1. Thus, the angle between them is unchanged.
The operator simply rotates all vectors by the same amount, preserving their norms
and the angles between. Another operation is reflection through the y axis,

T =
[
−1 0
0 1

]
.

23For the application of linear operators to image recovery from noisy, blurred data, see Andrews and Hunt
(1977) and Barrett and Myers (2004).
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With the same u and 𝑣, we have Tu =
[
−1
0

]
and T𝑣 =

[
−1
1

]
. Their norms are still

1 and
√

2, and their dot product is, again, 1. Their angle is preserved.
An operator that maps a finite-dimensional vector space to itself, T : V → V , is

represented by a square matrix T. The inner product ⟨Tu, T𝑣⟩ is⟨Tu, T𝑣⟩ = (T𝑣)†Tu = 𝑣
†T†Tu,

where † denotes the adjoint, or complex conjugate transpose, T† = (T′)∗. If T is
unitary, then

𝑣
†T†Tu = 𝑣

†u ⇒ T†T = I.

That is, T† = T−1. A matrix T having this property is called, appropriately, a unitary
matrix. The product T†T consists of dot products between the rows of T. Thus, the
rows of a unitary matrix are mutually orthogonal. We verify this for the preceding
examples. The product T†T for the rotation operator is[

cos𝜑 sin𝜑
− sin𝜑 cos𝜑

] [
cos𝜑 − sin𝜑
sin𝜑 cos𝜑

]
=
[

cos2
𝜑 + sin2

𝜑 − cos𝜑 sin𝜑 + cos𝜑 sin𝜑
cos𝜑 sin𝜑 − cos𝜑 sin𝜑 sin2

𝜑 + cos2
𝜑

]
=
[

1 0
0 1

]
,

and for the reflection operator,[
−1 0
0 1

] [
−1 0
0 1

]
=
[

1 0
0 1

]
.

We may now, with an exercise of imagination, think of the angle between two
vectors f and g in a Hilbert space, and define it in a similar way,

𝜃 = cos−1 ⟨f , g⟩‖f‖ ‖g‖ .
We operate on f and g with a unitary operator T. By virtue of being unitary, T is also
isometric. The angle between Tf and Tg is

cos−1 ⟨Tf , Tg⟩‖Tf‖ ‖Tg‖ = cos−1 ⟨f , g⟩‖f‖ ‖g‖ ,

the same as the angle between f and g. In this sense, the two spaces V and W that are
connected by T have the same “shape.” We say that they are isomorphic.

The Hilbert space analogy to coordinate rotation is multiplication by a complex
number aei𝜑 (a > 0). This operator maps a complex Hilbert space V to itself. We have‖Tf‖ = ‖aei𝜑f‖ = a‖f‖ and similarly for g. By taking a = 1 we make T an isometry.
Then, the inner product is ⟨Tf ,Tg⟩ = ⟨ei𝜑f , ei𝜑g⟩ = ei𝜑e−i𝜑⟨f , g⟩ = ⟨f , g⟩. The inner
product between f and g, and hence the angle between them, is preserved under T.
The mapping is invertible, with T−1 = e−i𝜑; thus it is unitary.

It can be shown that all separable Hilbert spaces (those that have a count-
able basis) are isomorphic either to ℂn (if finite dimensional) or to 𝓁2 (if infinite
dimensional). The operator that accomplishes this bit of magic is the orthogonal
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expansion developed in the previous section. For example, let f be a vector in a
Hilbert space V with an orthonormal basis {en}∞n=1 and calculate the orthogonal
projections Fn = ⟨f , en⟩. We then can show the following:

� Projection onto the basis is an operator P that maps the vector f to the infinite
sequence F = (Fn)∞n=1. It is a linear operator by the linearity of the inner
product.

� F ∈ 𝓁2 because, by Parseval’s formula, ‖F‖2 =
∑∞

n=1 |Fn|2 = ‖f‖2
< ∞.

Thus, P is a linear operator from V to 𝓁2.
� P is one-to-one. If it were not, then there would be vectors f ≠ g such that Pf =
Pg. But, by linearity, we would have Pf − Pg = P(f − g) = 0 with f − g ≠ 0.
This means that f − g must be orthogonal to every basis vector, ⟨f − g, ek⟩ = 0
for all k, which cannot be, since the basis is a complete set.

� P preserves inner products: ⟨f , g⟩ = ⟨F, G⟩ = ⟨Pf ,Pg⟩ (Parseval’s formula).
Consequently, P is isometric, hence bounded, and continuous.

� P is invertible, as we saw in the previous section:P−1F =
∑∞

n=1 Fnen = f (a.e.).
Thus P is unitary.

⋆ 2.5 CREATING ORTHONORMAL BASES—THE
GRAM–SCHMIDT PROCESS

A basis for a Hilbert space can be any complete set of independent vectors, and there
are realistic situations where the natural basis is not orthonormal. On the other hand,
orthonormal bases are considerably easier to work with. Given a nonorthogonal basis,
it is possible to construct an orthonormal basis that spans the same space. The method
used to do this is called the Gram–Schmidt process.

First consider vectors 𝑣1 and 𝑣2 in the plane (ℝ2) (Figure 2.23). Arbitrarily
select e1 = 𝑣1∕‖𝑣1‖ to be the first basis vector. Then, express 𝑣2 in terms of e1 and a
(yet unknown) residual vector 𝑣′2, which is orthogonal to e1:

𝑣2 = 𝑣
′
2 + ⟨𝑣2, e1⟩ e1.

v1

v2

v1

v2

e 1

e 2

v2´ = v2 – 〈v2, e1〉 e1

FIGURE 2.23 The Gram–Schmidt process for constructing orthonormal basis vectors. The
first vector, 𝑣1, defines the direction of the first basis vector, e1. The second basis vector is
constructed from the residual after 𝑣2 is projected onto e1.
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Solving for 𝑣′2,

𝑣
′
2 = 𝑣2 − ⟨𝑣2, e1⟩ e1.

Normalized, 𝑣′2 becomes the other basis vector,

e2 =
𝑣
′
2‖𝑣′2‖ .

This can be taken to three dimensions by projecting a third independent vector 𝑣3
onto e1 and e2:

𝑣
′
3 = 𝑣3 −

(⟨𝑣3, e2⟩ e2 + ⟨𝑣3, e1⟩ e1
)

e3 =
𝑣
′
3‖𝑣′3‖ .

Generalizing to n dimensions, if {𝑣1, 𝑣2,… 𝑣n} are linearly independent vectors in
ℝn, then an orthonormal basis {e1, e2,… en} for ℝn is constructed recursively as
follows:

ek =
𝑣
′
k‖𝑣′k‖ , k = 1, 2,… n

𝑣
′
k = 𝑣k −

k−1∑
i=1

⟨𝑣k, ei⟩ ei. (2.46)

Example 2.29. We will create an orthonormal basis from the vectors

𝑣1 = ( 1, 2, 2 )

𝑣2 = ( 1, 0, 1 )

𝑣3 = ( 1, −1, 2 ).

Take the first unit vector to be

e1 =
𝑣1‖𝑣1‖ = 1

3
( 1, 2, 2 ).

The second vector is

𝑣
′
2 = 𝑣2 − ⟨𝑣2, e1⟩ e1 = ( 1, 0, 1 ) −

⟨
( 1, 0, 1 ),

1
3

( 1, 2, 2 )
⟩
⋅

1
3

( 1, 2, 2 )

= 1
3

( 2, −2, 1 )

e2 =
𝑣
′
2‖𝑣′2‖ = 1

3
( 2, −2, 1 ).

The third vector is

𝑣
′
3 = 𝑣3 − ⟨𝑣3, e2⟩ e2 − ⟨𝑣3, e1⟩ e1 = 1

3
(−2, −1, 2 )

e3 =
𝑣
′
3‖𝑣′3‖ = 1

3
(−2, −1, 2 ).

These vectors are shown in Figure 2.24.
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x

y

z

v
1

v
2

v3

e1

e2
e3

FIGURE 2.24 Result of Gram–Schmidt construction (Example 2.29).

Example 2.30 (Dependent vectors). Let us see what happens if the vectors to be
orthogonalized are not linearly independent. In the previous example, change 𝑣3 to
( 0, 2, 1 ). The resulting 𝑣

′
3 turns out to be

𝑣
′
3 = 𝑣3 − ⟨𝑣3, e2⟩ e2 − ⟨𝑣3, e1⟩ e1

= ( 0, 2, 1 ) +
(

2
3
, − 2

3
, 1

3

)
−
(

2
3
, 4

3
, 4

3

)
= 0.

As one might expect, with only two independent vectors Gram–Schmidt gives back
only two orthogonal vectors. A general verification of this is left to the problems.

Example 2.31 (Orthogonal polynomials). The monomials {1, x, x2 …} are not
orthogonal. We will use the Gram–Schmidt process to construct from them a set of
polynomials orthonormal on [−1, 1]. These are called the Legendre polynomials. The
first three members of the family are

p0(x) = 1‖1‖ = 1√
2

p1(x) =

x −

(
∫

1

−1

x√
2

dx

)
1√
2‖⋯‖ =

√
3
2

x

p2(x) =

x2 −

(
∫

1

−1

√
3
2

x3dx

)√
3
2

x −

(
∫

1

−1

x2√
2

dx

)
1√
2‖⋯‖ = 1

2

√
5
2

(3x2 − 1).

They are illustrated in Figure 2.25.

Finally, here is an extended example that brings together many of the ideas of this
chapter.
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–1 –0.5 0.5 1

–1.5

–1

–0.5

0.5

1

1.5

x

y

p1(x)

p2(x)

p0(x)

FIGURE 2.25 The first three Legendre polynomials, obtained by orthogonalizing the mono-
mials {1, x, x2} on the interval [−1, 1].

Example 2.32 (Linear regression). In an experiment, observations of a dependent
variable y have been made at n values of the independent variable x, yielding n pairs
(x1,y1), (x2, y2),… , (xn, yn). We wish to model the relationship between x and y by a
straight line,

y = ax + b − ỹ,

where ỹ is the residual, or fitting error. For each pair (xi, yi), i = 1, 2,… n,

ŷi = axi + b (model)

ỹi = ŷi − yi (residual)

Gathering all the points into n-vectors, we have

ŷ = ax + bu

where ŷ = ( ŷ1 ŷ2 … ŷn )

x = ( x1 x2 … xn )

u = ( 1 1 … 1 )

that is, we are approximating y by a linear combination of two vectors, x and u.
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y

 y

u

x

FIGURE 2.26 Illustrating linear regression as a projection onto the plane.

We wish to minimize ‖ỹ‖2 = ‖y − ŷ‖2. By the orthogonality principle, ‖ỹ‖2

will be minimized by projecting y onto the subspace (in this case, a plane) spanned
by x and u (Figure 2.26).

We cannot project y onto the plane simply by projecting onto x and u, however.
They are not (in general) orthonormal, though they will be guaranteed to be linearly
independent by choosing at least two of the x values to be different (Why?). In order
to carry out the projection, we will construct an orthogonal basis by Gram–Schmidt.
We take the first basis vector to be

e1 = u‖u‖ = u√
n

and construct e2:

x′ = x − ⟨x, e1⟩ e1 = x −
⟨x, u⟩

n
u

e2 = x′‖x′‖ .
But ⟨x, u⟩ = ∑n

i=1 xi, so ⟨x, u⟩∕n is the average of all the x-values, which we shall
denote x. Hence,

x′ = x − xu‖x′‖2 = ⟨x, x⟩ − 2x ⟨x, u⟩ + x2 ⟨u, u⟩
=

n∑
i=1

x2
i − 2nx2 + nx2

.

The sum
∑n

i=1 x2
i is n times the average of the squares of the x-values, which we will

write nx2. (Be careful not to confuse x2 with x2!). So,

‖x′‖2 = nx2 − nx2 = nsxx,
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where sxx = x2 − x2 is known in statistics as the sample variance. With these simpli-
fications, we have an orthonormal basis,

e1 = u√
n

e2 = x − xu√
nsxx

.

The projections of the data onto the basis are

⟨y, e1⟩ = ⟨y, u⟩√
n

=
√

ny

⟨y, e2⟩ = ⟨y, x⟩ − x ⟨y, u⟩√
nsxx

=
∑n

i=1 yixi − nx y√
nsxx

=
n(xy − x y)√

n
√

sxx

=
√

n
sxy√
sxx

where sxy = xy − x y is called the sample covariance.
Putting all this together, the approximation is

ŷ = ⟨y, e1⟩ e1 + ⟨y, e2⟩ e2

= yu +
sxy

sxx
(x − xu),

or, in terms of individual points,

ŷi = axi + b,

where a =
sxy

sxx
, b = y −

sxy

sxx
x,

which is the classic result from statistics.
The approximation to y came out in terms of (orthogonal, non-unit) vectors u

and x − xu, constructed by Gram–Schmidt from the nonorthogonal vectors u and x.
Physically, the vector yu is the part of y that can be modelled as a constant, that is,
the mean value. The other basis vector, x − xu, picks up that part of y which differs
from the mean. Finally, the vector ỹ = ŷ − y is the part of y that cannot be accounted
for by a linear model—due either to noise or some additional nonlinear relationship
between x and y.

2.6 SUMMARY

This is a quick reference for the main results of this chapter, which will be used in
subsequent chapters.

An inner product space is also a normed space and a normed space is also a
metric space. In a complete metric space, all Cauchy sequences (fk)∞k=1 converge to
limits f in the space.
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A Hilbert space (e.g., ℝn,ℂn,𝓁2, L2) is a complete inner product space. All
the familiar geometric properties of vectors in finite-dimensional euclidean space
are preserved in Hilbert space. For f , g in a Hilbert space, and {ek} a complete
orthonormal set (basis),

⟨f , g⟩ = ∑
k

fkg∗k or ∫Q
f (x)g∗(x)dx

‖f‖ = ⟨f , f ⟩1∕2 =

(∑
k

|fk|2)1∕2

or

(
∫Q

|f (x)|2dx

)1∕2

| ⟨f , g⟩ | ≤ ‖f‖‖g‖ (Cauchy–Schwarz)

f =
∑

k

⟨f , ek⟩ ek (Orthogonal expansion)

⟨f , g⟩ = ∑
k

⟨f , ek⟩ ⟨g, ek⟩∗ (Parseval)

‖f‖2 =
∑

k

| ⟨f , ek⟩ |2.
A truncated orthogonal expansion

∑m
k=1⟨f , ek⟩ek gives an m-dimensional approxima-

tion to f that minimizes the euclidean norm‖‖‖‖‖f −
m∑

k=1

⟨f , ek⟩ ek

‖‖‖‖‖2

.

A Banach space (e.g., 𝓁p, Lp) is a complete normed space. A general Banach
space lacks an inner product and the nice properties that come with it. If a Banach
space does have an inner product, it is a Hilbert space. For particular Banach spaces
𝓁1, 𝓁∞, L1, L∞,

‖f‖1 =
∑

k

|fk| or ∫Q
|f (x)|dx

‖f‖∞ = lim
p→∞

‖f‖p

= sup
k

(|fk|) or ess sup
x∈Q

|f (x)|.
For f ∈ 𝓁1 (or L1) and g ∈ 𝓁∞ (or L∞), Hölder’s inequality gives∑

k fkg∗k∫Q f (x)g∗(x)dx

}
≤ ‖f‖1‖g‖∞.

In all the Lp spaces, two functions f , g are equal almost everywhere if they differ
only on a set of measure zero. If f = g (a.e.), then ‖f − g‖ = 0. Pointwise equality is
a special case of equality almost everywhere.

An operator T is a mapping between two vector spaces. For a linear operator,
T(af + bg) = aTf + bTg. An operator is bounded if ‖Tf‖ is finite for all f with finite
norm. An operator S is the inverse of an operator T if S is bounded, if ST𝑣 =
𝑣, and if TS𝑤 = 𝑤. An isometric operator preserves norms, ‖T𝑣‖ = ‖𝑣‖, and a
unitary operator preserves inner products, ⟨Tu,T𝑣⟩ = ⟨u, 𝑣⟩. A unitary operator on a
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finite-dimensional vector space is represented by an orthogonal matrix, TT† = I.
Projection onto an orthogonal basis is a unitary operator.

PROBLEMS

2.1. Signal models and vector spaces
Which of the following signal sets comprise a vector space? Explain why or why not.
Unless otherwise specified, addition and scalar multiplication are defined in the natural
way, with c ∈ ℝ.

(a) All nonnegative signals (𝑣(t) ≥ 0).

(b) All 60 Hz sine waves.

(c) All 512 × 512 pixel images. Pixels may take on integer values between 0 and 255.
Scalars c likewise may take on integer values between 0 and 255.

(d) Same as (c), but addition and multiplication are defined modulo-256.

(e) All signals that are one-sided (f (t) = 0 when t < 0).

(f) All signals that are one-sided (f (t) = 0 when t < 0) and decay exponentially in time
(e.g., damped harmonic oscillation).

(g) All piecewise-constant functions (e.g., the voltage output of a digital-to-analog
converter).

(h) All waves on a 1 m string with fixed ends (i.e., solutions of the classic vibrating
string wave equation).

(i) All signals with zero average value, 1

T
∫ T

0 f (t)dt = 0.

(j) All functions with unit area, ∫ ∞
−∞ f (t)dt = 1.

2.2. Vector spaces
Determine which of the following sets are vector spaces. For those which are not, give
a counterexample. For each vector space, determine a basis and the dimension of the
space.

(a) {(x1, x2, x3) ∈ ℝ3 ∣ x1 + x2 + x3 = 0}

(b) {(x1, x2, x3) ∈ ℝ3 ∣ x1 + x2 + x3 = 1}

(c) {Real m × n matrices A}

(d) {Real n × n matrices A with det A = 0}

(e) {Real n × n matrices A with A = A′}

(f) {Real polynomials p(x) of degree n}

(g) {Real polynomials p(x) of degree ≤ n with p(0) = 1}

(h) {Real polynomials p(x) of degree ≤ n with p(1) = 0}.

2.3. Vector spaces
Complete the proof, begun in Example 2.1, that C[0, 1] is a vector space.

2.4. Norms
For a complex vector 𝑣 ∈ ℂ2, (𝑣 = (𝑣1, 𝑣2), 𝑣1, 𝑣2 ∈ ℂ), it is reasonable to define the
norm

‖𝑣‖ =
√||𝑣1

||2 + ||𝑣2
||2 =

√
𝑣1𝑣

∗
1 + 𝑣2𝑣

∗
2.
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Following the derivation in Section 2.2.1, show that this definition satisfies the four
criteria for a norm (in particular, that the triangle inequality holds).

2.5. Norms
Consider the complex vector x = (1, 2i), and calculate the norms ‖x‖1, ‖x‖2, and ‖x‖∞.

2.6. Norms
One of the criteria for a norm is that it satisfies the triangle inequality, ‖x + y‖ ≤‖x‖ + ‖y‖. Show that this inequality is also true:

‖x − y‖ ≥ |||‖x‖ − ‖y‖|||.
2.7. Show that the metrics d1(x, y) ≥ d2(x, y) ≥ d∞(x, y) for all x, y ∈ ℝn.

2.8. In the real plane, a neighborhood is a disk and the boundary of a closed neighborhood
is a circle. Draw the “unit circles” {x ∣ dp(0, x) = 1} for p = 1, 2, and ∞. Relate your
drawing to the solution of Problem 2.7.

2.9. Prove the following inner product relationships. These are supposed to hold for any
inner product. Therefore, you cannot base a proof on a particular form like ⟨u, 𝑣⟩ =
u1𝑣1 + u2𝑣2. Instead, use the general properties in Definition 2.4.

(a) ⟨𝑣, c𝑤⟩ = c∗⟨𝑣,𝑤⟩
(b) ⟨u, 𝑣 +𝑤⟩ = ⟨u, 𝑣⟩ + ⟨u,𝑤⟩
(c) ⟨𝑣, 0⟩ = ⟨0, 𝑣⟩ = 0

(d) If ⟨u, 𝑣⟩ = ⟨u,𝑤⟩ for all u ∈ V , then 𝑣 = 𝑤.

2.10. Prove the parallelogram law geometrically for vectors in the plane. Hint: Use the law of
cosines.

2.11. Parallelogram law

(a) Prove the parallelogram law for arbitrary vectors. Begin by expressing ‖u + 𝑣‖2 and‖u − 𝑣‖2 in terms of inner products.

(b) Then prove this corollary,

‖u + 𝑣‖2 ≤ 2‖u‖2 + 2‖𝑣‖2
. (2.47)

2.12. Polarization identity

(a) Derive the polarization identity (Equation 2.17).

(b) Then prove the corollaries,

| ⟨u, 𝑣⟩ | ≤ ‖u‖2 + ‖𝑣‖2 complex u, 𝑣 (2.48)

and

| ⟨u, 𝑣⟩ | ≤ ‖u‖2 + ‖𝑣‖2

2
real u, 𝑣. (2.49)

2.13. In an inner product space, the norm is calculated from the inner product. The polarization
identity says that, in an inner product space, the inner product can also be calculated from
the (2-)norm. Show that this relationship does not hold for the absolute value (1-)norm in
ℝn, ‖u‖1 =

∑n
k=1 |uk|. Hence, the absolute value norm cannot be calculated as an inner

product. Hint: Consider the particular vectors u = (a, 0, 0,… , 0) and 𝑣 = (0, b, 0,… , 0).
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2.14. Let u and 𝑣 be orthogonal, and let a and b be scalars.

(a) Show that au and b𝑣 are orthogonal.

(b) Show that u + 𝑣 and u − 𝑣 are orthogonal if ‖u‖ = ‖𝑣‖.

2.15. Let u = (2, 1 + i, i, 1 − i) and 𝑣 = (1, i,−1, i). Calculate the following:

(a) ‖u‖1, ‖u‖2, and ‖u‖∞
(b) ‖𝑣‖1, ‖𝑣‖2, and ‖𝑣‖∞
(c) ⟨u, 𝑣⟩
(d) ⟨𝑣, u⟩.

2.16. Prove the Pythagorean theorem (Theorem 2.2) for general inner product spaces.

2.17. Let vectors e1 and e2 be orthonormal. Calculate the euclidean distance between them,‖e1 − e2‖2.

2.18. For the orthonormal functions {ek}∞
k=−∞, ek(x) = 1√

2𝜋
eikx, calculate the distance between

them in L2[−𝜋,𝜋], that is, ‖em − en‖ = ⟨em − en, em − en⟩1∕2. Compare this to the dis-
tance between ex and ey, the Cartesian basis vectors for ℝ2. You should get the same
answer for both calculations, reinforcing the idea that orthonormal functions in an
infinite-dimensional space are, in a very important sense, just like orthonormal vectors
in a finite-dimensional space.

2.19. Suppose you have a set of six vectors, each of which belongs to the space ℝ4.

(a) How many vectors do you need to make a basis for the space?

(b) If you select this many vectors from the set, will you have a basis?

2.20. Derive the following alternative form for the Cauchy–Schwarz inequality:|⟨f , g⟩ + ⟨g, f ⟩| ≤ 2‖f‖2‖g‖2. (2.50)

2.21. Prove that the norm in an inner product space, ‖x‖ = ⟨x, x⟩1∕2, satisfies the triangle
inequality.

2.22. Show that 𝓁1 and 𝓁∞ are normed vector spaces. (As usual, the hard part is verifying the
triangle inequality.)

2.23. Show that 𝓁2 is an inner product space.

(a) Show that the infinite series Equation 2.26 converges. Hint: Because ℂ is an inner
product space with ⟨x, y⟩ = xy∗ (Example 2.5), the inequality (Equation 2.48) holds
for complex numbers: |xy∗| ≤ |x|2 + |y|2.

(b) Having shown that the series converges, verify that it satisfies the specifications for
an inner product.

2.24. Nested spaces.
Show that 𝓁1

⊂ 𝓁2
⊂ 𝓁∞.

2.25. Calculate the 1-, 2-, and ∞-norms of the geometric sequence, x = (an−1)∞n=1. For what
values of a are the norms finite?

2.26. Nested spaces.
For a function f defined on a bounded interval [a, b],

(a) Show that if f is bounded a.e., then it is absolutely integrable and square integrable.

(b) Show that if f is square integrable, then it is also absolutely integrable.

(c) Hence, show that L∞[a, b] ⊂ L2[a, b] ⊂ L1[a, b].



104 CHAPTER 2 VECTOR SPACES

2.27. Show that if f ∈ L1 and f ∈ L∞, then f ∈ L2.

2.28. Give an example of a function f that is not square integrable on the interval [0, L], and
hence cannot be well approximated by an orthogonal function expansion.

2.29. Show that the L1-norm satisfies the conditions required of a norm, including the triangle
inequality.

2.30. Show that the L2-norm satisfies the conditions required of a norm, including the triangle
inequality.

2.31. Show that the L∞-norm satisfies the conditions required of a norm, including the triangle
inequality. Additionally show that L∞ is complete (a Banach space).

2.32. Let f , g ∈ Lp, 1 ≤ p < ∞. Prove Minkowski’s inequality,‖f + g‖p ≤ ‖f‖p + ‖g‖p. (2.51)

Hint: Use Hölder’s inequality. Minkowski’s inequality shows that the norms in Lp satisfy
the triangle inequality, and hence that Lp are normed spaces. The same inequality holds
for infinite sequences, f , g ∈ 𝓁p, and their respective norms.

2.33. Let a sequence of functions (fn)n=0,1,… be defined by

fn = 1
nx + 1

, x ∈ [0, 1].

(a) What is the limiting function f of this sequence as n → ∞?

(b) Does fn converge pointwise or uniformly to f ?

2.34. What is ‖f − g‖1 when f (x) = sin x and g(x) = cos x?

2.35. In the design of feedback control systems, a classic problem is to create a system whose
response to a step input follows that input as closely as possible. The design problem
is posed in terms of minimizing the error between the ideal and actual responses. Let
f (t) be the error, and J a single number that measures the total error. Four different error
measures are typically considered:

Integrated Absolute Error (IAE) J = ∫
∞

0
|f (t)| dt

Integrated Square Error (ISE) J = ∫
∞

0
|f (t)|2 dt

Integrated Time-Absolute Error (ITAE) J = ∫
∞

0
|f (t)| t dt

Integrated Time-Square Error (ITSE) J = ∫
∞

0
|f (t)|2 t dt.

IAE and ISE are recognizable as a 1-norm and squared 2-norm, respectively. Are ITAE
and the square root of ITSE also valid norms? Give proofs.

2.36. The root mean square (rms) value of a function is defined (Equation 2.33)

frms =
(

lim
T→∞

1
T ∫

T∕2

−T∕2
|f (t)|2dt

)1∕2

(a) Is the set of functions with finite rms value a vector space?

(b) Is the rms value a norm? Why or why not?
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2.37. Consider the following functions, whose common domain is the interval (0, 1):

f1(x) = 1

f2(x) = x + a.

Find the constant a such that the two functions are orthogonal.

2.38. Let u, 𝑣 : [0, 1] → ℝ be given by u(x) = 1, 𝑣(x) = x. Calculate the projections of u on 𝑣

and 𝑣 on u.

2.39. Using Parseval’s formula (Equation 2.42), show that the only vector orthogonal to every
vector in the complete orthonormal set {ek} is the zero vector. This enables Theorem 2.6a
or 2.6b to be used to verify the completeness of an orthonormal set.

2.40. Show that orthogonal expansion in an infinite-dimensional space preserves inner prod-
ucts, (Equation 2.43).

2.41. Find a relationship between a and b such that the functions cos x and cos 2x are orthogonal
on the interval (a, b). Use graphs to make a conjecture, then prove it.

2.42. Derive the general expansion

𝑣 =
n∑

k=1

⟨𝑣,𝜙k⟩‖𝜙k‖2
𝜙k,

where {𝜙k}n
k=1 is a set of mutually orthogonal vectors.

2.43. Which of the operators in Example 2.27 are bounded? Are any of them isometries?

2.44. Matrix representations
Consider a linear operator T : V → W, where V and W are finite-dimensional spaces.
Let (dj)

n
j=1 and (ek)m

k=1 be orthonormal bases for V and W, respectively. Thus, any vector

𝑣 ∈ V may be written 𝑣 =
∑n

j=1 𝑣jdj, and similarly for 𝑤 ∈ W, 𝑤 =
∑m

k=1 𝑤kek. Show
that the operation 𝑤 = T𝑣 may be written in matrix form,

⎡⎢⎢⎢⎣
𝑤1

𝑤2

⋮
𝑤m

⎤⎥⎥⎥⎦ = T

⎡⎢⎢⎢⎣
𝑣1

𝑣2

⋮
𝑣n

⎤⎥⎥⎥⎦
and give explicit expressions for the elements Tkj of the matrix T.

2.45. Show that the following operators are linear:

(a) Tu = u.

(b) Tu = 0.

2.46. Consider the forward and backward shift operators on 𝓁2, Tf (𝑣0, 𝑣1, 𝑣2,…) =
(0, 𝑣0, 𝑣1,…) and Tb(𝑣0, 𝑣1, 𝑣2,…) = (𝑣1, 𝑣2,…), respectively.

(a) Are they bounded?

(b) Is either one an isometry?

(c) Are they one-to-one and/or onto?

(d) Discuss the invertibility of Tf and Tb.

2.47. The convolution integral,

g(t) = ∫
∞

−∞
f (𝜏)h(t − 𝜏) d𝜏,



106 CHAPTER 2 VECTOR SPACES

describes many continuous-time signal processing systems. The function h is often called
the convolution kernel.

(a) Show that convolution is a linear operator, g = Tf .

(b) If f ∈ L1, what properties must h have in order for T to be a bounded linear operator,
that is, |g(t)| < ∞ for all t?

(c) Normally, operators do not commute. But consider two convolution operators T1

and T2 with kernels h1 and h2, respectively. Show that T2T1 = T1T2.

2.48. The sum

y[n] =
N−1∑
k=0

akx[n − k],

where a is a complex constant, describes the input–output properties of a class of
discrete-time signal processing systems.

(a) Show that it is a linear operator, y = Tx.

(b) If x ∈ 𝓁∞, what properties must a have in order for T to be a bounded linear operator,
that is, |y[n]| < ∞ for all n?

(c) How do your answers to (a) and (b) change if N → ∞ so that the sum is an infinite
series?

2.49. Consider a system represented by the operator g(t) = Tf (t) = [1 + mf (t)] cos𝜔t, where|f (t)| ≤ 1 and m ∈ (0, 1] is a constant.

(a) Is T a linear operator?

(b) Is T bounded?

2.50. Let V , W be vector spaces and consider the setL(V , W) of all linear operators T : V → W.
Define operator addition in the natural way, (T1 + T2)𝑣 = T1𝑣 + T2𝑣. Show that L(V , W)
is a vector space.

2.51. Let S : V → W and T : U → V be linear operators with operator norms ‖S‖ and ‖T‖.
Show that ‖ST‖ ≤ ‖S‖ ‖T‖.

2.52. The following vectors are 4D Walsh functions. Walsh functions of higher dimension
have applications in signal processing, information coding, cryptography, and statistics.

𝜙0 = (1 1 1 1)
𝜙1 = (1 1 −1 −1)
𝜙2 = (1 −1 −1 1)
𝜙3 = (1 −1 1 −1).

(a) Verify that they are an orthogonal basis for ℝ4.

(b) Calculate their norms.

(c) Express the vector 𝑣 = (1, 2, 3, 4) as a linear combination of the Walsh functions, that
is, calculate the coefficients ck in 𝑣 =

∑3
k=0 ck𝜙k. Check your answer by summing

the series and obtaining 𝑣.

(d) Find the best 3D approximation to 𝑣. This is the linear combination �̂� of three Walsh
functions that minimizes the 2-norm ‖�̂� − 𝑣‖2.

2.53. Write a Matlab program to do Gram–Schmidt orthogonalization of a set of independent
vectors.
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2.54. Consider two vectors in the plane, x1 = (3, 2) and x2 = (0, 5).

(a) Are they linearly independent? Show why or why not.

(b) Do they span ℝ2?

(c) If they are a basis, use Gram–Schmidt to obtain an orthonormal basis.

2.55. Given the following nonorthogonal vectors,

x1 = (8, 2, 7), x2 = (−7,−6, 4), x3 = (−7,−8,−5),

(a) use the Gram–Schmidt process to create an orthonormal set of basis vectors,
{e1, e2, e3}. Verify that your basis vectors are indeed orthonormal.

(b) expand the vector y = (−3,−2, 4) in terms of {e1, e2, e3}. Verify that your expansion
is correct.

(c) what is the minimum 2-norm approximation of y in terms of e1 and e2? What is the
norm of the approximation error?

Hint: Use Matlab for these calculations.

2.56. Three functions, 𝜙1, 𝜙2a, and 𝜙2b, are shown in Figure 2.27.

(a) Which function, 𝜙2a, or 𝜙2b, is orthogonal to 𝜙1?

(b) Construct an orthonormal set {e1, e2} from 𝜙1 and the function you selected in (a).

(c) Make an orthogonal expansion of the function f in the functions e1, e2. Make an
accurate sketch of your approximation.

(d) Is the orthonormal set {e1, e2} a basis for L2[−1, 1]? Why or why not?

–1 0 1
–1

0

1

x
–1 0 1

–1

0

1

x
–1 0 1

–1

0

1

x

ϕ2b(x)

–1 0 1
–1

0

1

x

f(x)

ϕ2a(x)ϕ1(x)

FIGURE 2.27 For Problem 2.56.



108 CHAPTER 2 VECTOR SPACES

2.57. Show that the integral

2𝜋 ∫
1

0
|f (r)|2 r dr

is a valid norm. Then show that

2𝜋 ∫
1

0
f (r) g∗(r) r dr

is a valid inner product. The additional factor of r in the integrand is called a weight
function.

2.58. The Zernike polynomials, an orthogonal family important in optics, are obtained by
orthogonalizing the monomials {1, r2, r4,…} on the unit disk, that is, using the inner
product defined in the previous problem. Derive the first three Zernike polynomials.



CHAPTER 3
THE DISCRETE FOURIER
TRANSFORM

In the last chapter, it was shown how an arbitrary vector in an N-dimensional space
can be represented as a linear combination of N mutually orthogonal basis vectors
in that space. In this chapter we consider ℂN , the space of N-dimensional complex
vectors, and a basis {𝜙0,𝜙1,…𝜙N−1} of complex exponential vectors:

𝜙m =
(

exp
( i2𝜋mn

N

))N−1

n=0
.

The expansion in this basis of a vector f = (f [0], f [1],… f [N − 1]) ∈ ℂN is

f = 1
N

N−1∑
m=0

F[m]𝜙m,

where F[m] = ⟨f ,𝜙m⟩ = N−1∑
n=0

f [n] exp
(
− i2𝜋mn

N

)
,

and is called the discrete Fourier transform (DFT) of f .
The DFT is the principal computational tool of Fourier analysis and a logical

place to begin our study. Being a mapping between finite-dimensional spaces, its
mathematics are uncomplicated by questions about convergence of series or integrals.
We will derive the basic properties of the DFT, including several theorems that
facilitate its application, and develop the fast Fourier transform (FFT) algorithm for
computing the DFT. The chapter concludes by introducing a close relative of the DFT,
the discrete cosine transform (DCT), which is widely applied in signal compression
algorithms such as JPEG.

3.1 SINUSOIDAL SEQUENCES

Recall that a sequence is an ordered set of points belonging to a space. Sequences
are commonly indexed by positive integers, x = (x[n])N

n=1, or nonnegative integers,

x = (x[n])N−1
n=0 . The sequence length N may be finite or infinite. In a later chap-

ter we shall also see infinite sequences indexed by positive and negative integers,

Fourier Transforms: Principles and Applications, First Edition. Eric W. Hansen.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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x = (x[n])n∈ℤ. A finite sequence of real or complex numbers is equivalent to a vec-
tor in N-dimensional space. In many applications, a sequence models the result of
observing, or sampling, a function of a continuous variable at regular intervals. If, for
example, 𝑣(t) is a time-varying voltage, then the sequence of values (samples) pro-
duced by an analog-to-digital converter is modeled by the sequence 𝑣[n] = 𝑣(nΔt),
where Δt is the time interval between observations.

We are interested here in the properties of sinusoidal sequences: the com-
plex exponential sequence (exp(i𝜃n)), and its real and imaginary parts, (cos 𝜃n) and
(sin 𝜃n). The parameter 𝜃 is the frequency or, as it is sometimes called in the signal
processing literature, discrete frequency or digital frequency. The “units” of digital
frequency are radians/sample.1

Indistinguishable sequences and aliasing
A sinusoidal function f (t) = cos 2𝜋𝜈t can have a frequency 𝜈 that is any nonnegative
real number, but something different happens with sinusoidal sequences. Two com-
plex exponential sequences (exp(i𝜃n)) and (exp(i𝜃′n)) are indistinguishable if their
frequencies differ by an integer multiple of 2𝜋, 𝜃′ = 𝜃 + 2𝜋k:

exp [i (𝜃 + 2𝜋k) n] = exp (i𝜃n) exp (i2𝜋kn) = exp (i𝜃n) .

The set of unique complex exponential sequences is thus restricted to a 2𝜋 frequency
range: by convention, 𝜃 ∈ [−𝜋,𝜋). All other frequencies produce sequences identical
to the ones in this set. This is a fundamental issue in signal processing, as the following
example shows.

Example 3.1 (A glimpse of sampling theory). Let f (t) = cos 2𝜋𝜈t be a sinusoidal
signal with frequency 𝜈 (Hz). A sequence f [n] is generated by sampling f (t) at regular
intervals, t = nΔt. Then,

f [n] = f (nΔt) = cos 2𝜋𝜈(nΔt)

= cos 𝜃n

where 𝜃 = 2𝜋𝜈Δt. The reciprocal of the sampling interval is called the sampling
frequency or sampling rate, 𝜈s = 1∕Δt. In terms of the sampling rate, 𝜃 = 2𝜋𝜈∕𝜈s.
Digital frequency expresses the analog frequency relative to the sampling rate: the
sequence resulting from sampling a 10 Hz sinusoid at a 100 Hz rate has the same
digital frequency, 𝜃 = 𝜋

5
rads/sample, as the sequence produced by sampling a 20 Hz

sinusoid at a 200 Hz rate.
Now, consider another signal g(t) = cos 2𝜋𝜈′t, whose samples are g[n] =

cos 𝜃′n, where 𝜃
′ = 2𝜋𝜈′Δt. The samples g[n] and f [n] will be identical if 𝜃

′ =
𝜃 + 2𝜋k, or

𝜈
′ = 𝜈 + k

Δt
= 𝜈 + k𝜈s.

1In digital signal processing, continuous-time angular frequency (rads/sec) and discrete-time (digital)
frequency (rads/sample) are typically represented by the variables Ω and 𝜔, respectively. In this text we
use 𝜔 and 𝜃 for these quantities.



3.1 SINUSOIDAL SEQUENCES 111

0 1 2 3 4 5 6

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

t (ms)

FIGURE 3.1 Aliasing. Sampling a high frequency signal with a sampling interval that is
too large produces samples indistinguishable from those of a lower frequency signal. Here, the
high frequency signal is 1200 Hz, the sampling rate is 1000 Hz, and the aliased frequency is
200 Hz.

To be specific, let 𝜈s = 1000 Hz and 𝜈
′ = 1200 Hz. With k = 1, the above equation

is satisfied by 𝜈 = 200 Hz. At a 1 kHz sampling rate, the samples of a 1200 Hz
sinusoid are the same as those of a 200 Hz sinusoid. This phenomenon, in which a
high frequency signal’s samples are indistinguishable from those of a lower frequency
signal, is called aliasing. It occurs when the sampling rate 𝜈s is too small (the sampling
interval Δt is too large) to capture the high frequency signal’s variations (Figure 3.1).

To avoid aliasing, the sampling rate must always be chosen so that the digital
frequency of the sample sequence, 𝜃 = 2𝜋𝜈∕𝜈s, is less than 𝜋, or

𝜈s > 2𝜈. (3.1)

The sampling rate must be at least twice the frequency of the signal, or “two samples
per cycle.” For a complex signal containing sinusoids of many frequencies, for
example, a music recording, the sampling rate must be twice the highest frequency
present in the signal. This minimum allowable sampling rate is called the Nyquist
rate.2 At the time of this writing, compact disc and MP3 recording technology use
a sampling rate of 44.1 kHz, just over twice the 22 kHz limit of human hearing.
Other digital audio recording and editing formats use sampling rates from 48 kHz to
192 kHz.

2Nyquist (1928, reprinted 2002); Hartley (1928).
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Periodic, even, and odd sequences
A function f of a continuous variable is periodic with period T > 0 if f (t + T) = f (t)
for all values of t. Otherwise, it is aperiodic. A periodic function is completely
described by its values over one period, for example, t ∈ [0, T). Similarly, a sequence
(x[n]) is periodic with period N ∈ ℕ if x[n + N] = x[n] for all n. If a sequence (x[n])
has period N, it is completely described by a vector of its samples over one period,
(x[n])N−1

n=0 .
A function f is even if f (t) = f (−t), odd if f (t) = −f (−t), and Hermitian if

f (t) = f ∗(−t). If f is periodic as well as even, then symmetry is observed within a
single period: f (t) = f (T − t). Likewise, f (t) = −f (T − t) if f is odd and periodic,
and f (t) = f ∗(T − t) if f is Hermitian and periodic. The same definitions hold for
sequences. We will say that an infinite sequence (x[n]) with period N is

even
odd

Hermitian

⎫⎪⎬⎪⎭ if x[n] =
⎧⎪⎨⎪⎩

x[N − n]
−x[N − n]
x∗[N − n]

⎫⎪⎬⎪⎭ , n = 0, 1, 2,… , N − 1. (3.2)

Sinusoidal functions of a real variable are always periodic: cos 2𝜋𝜈t =
cos 2𝜋𝜈(t + T), where the period T is the reciprocal of the frequency (in Hz),
T = 1∕𝜈. This is not the case for sinusoidal sequences. Apply the periodicity condition
x[n] = x[n + N] to the complex exponential sequence:

exp (i𝜃n) = exp (i𝜃(n + N)) = exp (i𝜃n) exp (i𝜃N) .

It is periodic if and only if exp(i𝜃N) = 1. This occurs only when the frequency 𝜃 is
of the form

𝜃 = 2𝜋
m
N

, (3.3)

a rational multiple of 2𝜋. When you consider how few rational numbers there are
(compared with the real numbers), you can anticipate that a sinusoidal sequence
obtained, for example, by sampling a physical signal f (t) = cos 2𝜋𝜈t, will rarely be
periodic.

Orthogonal sinusoidal sequences
Now consider the vector 𝜙m = (𝜙m[n])N−1

n=0 defined by

𝜙m[n] = exp
( i2𝜋mn

N

)
, n = 0, 1,… , N − 1,

which is one period of a complex exponential sequence with frequency 𝜃 = 2𝜋m∕N.
The set {𝜙m} of all such vectors has five important properties.

1. The complex exponential exp(i2𝜋mn∕N) is periodic in m as well as n:

𝜙m = 𝜙m+N . (3.4)

Thus, there are only N unique vectors in the set: 𝜙0,𝜙1,… ,𝜙N−1.
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FIGURE 3.2 Normalized complex exponential basis vectors {em} =
{
𝜙m∕ ‖‖𝜙m

‖‖} for N =
8. Real part is indicated by solid lines and circular markers, imaginary part by dashed lines
and diamond markers. Note the Hermitian symmetry in m and n, for example, 𝜙1 = 𝜙

∗
7,

𝜙1[n] = 𝜙
∗
1[8 − n].

2. The complex exponential exp(i2𝜋mn∕N) is Hermitian in m and n:

𝜙m[N − n] = exp

(
i2𝜋m(N − n)

N

)
= exp

(−i2𝜋mn
N

)
=

[
exp

( i2𝜋mn
N

)]∗
= 𝜙

∗
m[n] (3.5)

𝜙N−m[n] = exp

(
i2𝜋(N − m)n

N

)
= exp

(−i2𝜋mn
N

)
=

[
exp

( i2𝜋mn
N

)]∗
= 𝜙

∗
m[n] (3.6)

3. The vectors𝜙m and𝜙N−m have the same digital frequency, 𝜃 = 2𝜋m∕N, because
𝜙N−m = 𝜙

∗
m. If N is even, there are only N

2
+ 1 unique digital frequencies ( N+1

2

if N is odd), and each is an integer multiple, or harmonic, of 2𝜋
N

. Excepting
𝜃0 = 0 (and 𝜃N∕2 = 𝜋 if N is even), each digital frequency is represented by a
complex conjugate pair of vectors, 𝜙m and 𝜙N−m (Figure 3.2).

4. The N vectors {𝜙m}N−1
m=0 are orthogonal, hence they span ℂN . Verify orthogo-

nality by calculating the inner product

⟨𝜙k,𝜙m⟩ = N−1∑
n=0

exp
( i2𝜋kn

N

)
exp

(−i2𝜋mn
N

)
=

N−1∑
n=0

[
exp

(
i2𝜋(k − m)

N

)]n

=
1 − exp (i2𝜋(k − m))

1 − exp (i2𝜋(k − m)∕N)
(using Equation (1.27)).
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The fraction 1−exp(i2𝜋k)
1−exp(i2𝜋k∕N)

is zero except when exp(i2𝜋k) and exp(i2𝜋k∕N)

are both one, which happens when k is an integer multiple of N. Applying
L’Hospital’s rule gives

1 − exp(i2𝜋k)

1 − exp(i2𝜋k∕N)
=

{
N, k = rN, r ∈ ℤ
0, otherwise

.

This result reappears sufficiently often that it is worth introducing a more
compact notation. Define the unit-sample sequence 𝛿,

𝛿[n] =
{

1, n = 0
0, otherwise

. (3.7)

Also define the comb sequence with period N,

IIIN[k] =
∞∑

r=−∞
𝛿[k − rN] =

{
1, k = rN, r ∈ ℤ
0, otherwise

. (3.8)

We then have
1 − exp(i2𝜋k)

1 − exp(i2𝜋k∕N)
= N IIIN[k]

and

⟨𝜙k,𝜙m⟩ = 1 − exp (i2𝜋(k − m))

1 − exp (i2𝜋(k − m)∕N)
= N IIIN[k − m].

The indices k and m both range from 0 to N − 1. Their difference, k − m, ranges
from −(N − 1) to N − 1. The comb sequence IIIN has only one nonzero sample
in this range, at k − m = 0. Thus, we may express the orthogonality of the
vectors {𝜙m} simply by ⟨𝜙k,𝜙m⟩ = N𝛿[k − m]. (3.9)

The unit sample 𝛿[k − m] is also written 𝛿km, and called the Kronecker delta.

5. The norm ‖𝜙m‖ =
√⟨𝜙m,𝜙m⟩ = √

N. The orthogonal 𝜙m are made into an
orthonormal set by dividing each one by its norm,

em =
𝜙m√

N
=

(
1√
N

exp
( i2𝜋mn

N

))N−1

n=0

. (3.10)

3.2 THE DISCRETE FOURIER TRANSFORM

The vectors
{

em

}
are an orthonormal basis for ℂN (Figure 3.2). A vector (i.e., a

finite-length sequence) f ∈ ℂN may be represented by an orthogonal expansion in
these basis vectors,

f =
N−1∑
m=0

⟨f , em⟩ em =
N−1∑
m=0

⟨
f ,

𝜙m√
N

⟩
𝜙m√

N
.
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(Of course, all the elements of f must have finite magnitude.) By convention, the two
factors of 1∕

√
N are combined and brought to the front,

f = 1
N

N−1∑
m=0

⟨f ,𝜙m⟩ 𝜙m,

that is,

f [n] = 1
N

N−1∑
m=0

[
N−1∑
k=0

f [k] exp
(
− i2𝜋mk

N

)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F[m]

exp
( i2𝜋mn

N

)
, n = 0, 1,…N − 1.

The inner sum is called the discrete Fourier transform (DFT) of f , denoted F. This
establishes the following result.

Theorem 3.1 (Discrete Fourier transform). Let f ∈ ℂN be a vector. Then

f [n] = 1
N

N−1∑
m=0

F[m] exp
( i2𝜋mn

N

)
, n = 0, 1,… , N − 1, (3.11a)

where F ∈ ℂN is the discrete Fourier transform of f ,

F[m] =
N−1∑
n=0

f [n] exp
(
− i2𝜋mn

N

)
, m = 0, 1,… , N − 1. (3.11b)

The vectors f and F are a DFT pair. Equation 3.11b is called the forward (or analysis)
transform, and Equation 3.11a is called the inverse (or synthesis) transform.

We may write F = DFT{f }, f
DFT
←←←←←←←←←←←←←←←←←←→ F, or f ⟼ F as shorthand for the forward

transform, and f = DFT−1{F} or F
DFT−1

←←←←←←←←←←←←←←←←←←←←←←←←←←→ f for the inverse transform. Likewise, we
write f ⟷ F to indicate that f and F are a DFT pair.

The DFT expresses the vector f as a combination of harmonically related
sinusoids with digital frequencies 𝜃 = 2𝜋m∕N. The forward transform F tells how
much of each sinusoidal component is contained in f . It gives the “recipe” for
constructing f from these sinusoidal components, according to the inverse DFT
formula.

The DFT is principally a computational tool, and for computational reasons
(explained in Section 3.5), N is usually taken to be a power of two, N = 2p. We
shall assume this here for convenience, but you should note that the mathematical
properties of the DFT are virtually unaffected by the choice of N. Sometimes we will
make reference to F[N∕2] or f [N∕2]. If N is odd, these terms do not exist and any
statement that uses them is not true. Other than that, the evenness or oddness of N
makes no difference in the theory.
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⋆ Matrix form of the DFT
Occasionally it is useful to represent the DFT as a matrix-vector multiplication. For
convenience, define

WN = exp
( i2𝜋

N

)
, (3.12)

so that the mth DFT basis vector is

𝜙m =
(

W0
N , Wm

N , W2m
N ,… W(N−1)m

N

)
.

Collect the complex conjugates of the basis vectors as the rows of a matrix,

D =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜙
∗
0

𝜙
∗
1

𝜙
∗
2

⋮

𝜙
∗
N−1

⎤⎥⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎢⎣

W0
N W0

N W0
N ⋯ W0

N

W0
N W−1

N W−2
N ⋯ W−(N−1)

N

W0
N W−2

N W−4
N ⋯ W−2(N−1)

N

⋮ ⋮ ⋮ ⋱ ⋮

W0
N W−(N−1)

N W−2(N−1)
N ⋯ W−(N−1)(N−1)

N

⎤⎥⎥⎥⎥⎥⎥⎦
, (3.13)

that is, Dmn = W−mn
N . The matrix D is seen to be symmetric, so D† = (D∗)′ = D∗.

Moreover,

D†D = D∗D′ =

⎡⎢⎢⎢⎢⎣
𝜙0
𝜙1
𝜙2
⋮

𝜙N−1

⎤⎥⎥⎥⎥⎦
[
𝜙
†
0 𝜙

†
1 𝜙

†
2 ⋯ 𝜙

†
N−1

]

=

⎡⎢⎢⎢⎢⎣
⟨𝜙0,𝜙0⟩ ⟨𝜙0,𝜙1⟩ ⟨𝜙0,𝜙2⟩ ⋯ ⟨𝜙0,𝜙N−1⟩⟨𝜙1,𝜙0⟩ ⟨𝜙1,𝜙1⟩ ⟨𝜙1,𝜙2⟩ ⋯ ⟨𝜙1,𝜙N−1⟩⟨𝜙2,𝜙0⟩ ⟨𝜙2,𝜙1⟩ ⟨𝜙2,𝜙2⟩ ⋯ ⟨𝜙2,𝜙N−1⟩

⋮ ⋮ ⋮ ⋱ ⋮⟨𝜙N−1,𝜙0⟩ ⟨𝜙N−1,𝜙1⟩ ⟨𝜙N−1,𝜙2⟩ ⋯ ⟨𝜙N−1,𝜙N−1⟩
⎤⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎣
N 0 0 ⋯ 0
0 N 0 ⋯ 0
0 0 N ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ N

⎤⎥⎥⎥⎥⎦
= NI.

Thus D is invertible, and D−1 = 1
N

D†.
Now define the column vectors

f =
[
f [0] f [1] f [2] … f [N − 1]

]′
f̃ =

[
F[0] F[1] F[2] … F[N − 1]

]′
(we denote the DFT by f̃ rather than F to maintain the convention that vectors are
named by lowercase letters and matrices by uppercase letters). Then, the DFT is
compactly written

f̃ = Df (3.14)
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and the inverse DFT is

f = 1
N

D† f̃ = 1
N

D∗f̃. (3.15)

The invertibility of D guarantees that the DFT is one-to-one and onto—every vector
f ∈ ℂN has one and only one DFT vector F ∈ ℂN , and this F is the DFT of no other
vector in ℂN .

The matrix 1√
N

D is unitary,
( 1√

N
D
)†( 1√

N
D
)
= I. Sometimes, although it

departs from the standard definition (Equation 3.11), one sees the DFT written using
the unitary matrices,

f̃ = 1√
N

Df

f = 1√
N

D† f̃ = 1√
N

D∗f̃. (3.16)

Example 3.2. For N = 4, the DFT matrices are

D =

⎡⎢⎢⎢⎢⎢⎣

W0
4 W0

4 W0
4 W0

4

W0
4 W−1

4 W−2
4 W−3

4

W0
4 W−2

4 W−4
4 W−6

4

W0
4 W−3

4 W−6
4 W−9

4

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎣
1 1 1 1
1 −i −1 i
1 −1 1 −1
1 i −1 −i

⎤⎥⎥⎥⎦
D† =

⎡⎢⎢⎢⎣
1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

⎤⎥⎥⎥⎦ .
You can work out the algebra (or use Matlab) and verify that D†D = 4 I.

3.3 INTERPRETING THE DFT

A common use of the DFT is computational spectrum analysis: given a portion of a
sampled signal, f [n] = f (nΔt), n = 0, 1,…N − 1, model f as a sum of sinusoids and
identify the prominent frequencies. Spectrum analysis is a sophisticated branch of
signal processing beyond the scope of this text.3 What we shall do here is calculate a
few DFTs of simple signals “by hand” in order to develop some basic intuition, see
how to interpret the DFT, and expose some common pitfalls in its application.

3Good introductions to DFT-based spectrum analysis include Porat (1997, Chapters 6 and 13), Oppenheim
and Schafer (2010, Chapter 10), Kay (1988, Chapter 4), and Percival and Walden (1993, Chapter 6).
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We begin with the simple complex exponential sequence f =
(
exp i𝜃0n

)N−1
n=0 ,

where the digital frequency 𝜃0 can take any value between −𝜋 and 𝜋. Its DFT is

F[m] =
N−1∑
n=0

exp
(
i𝜃0n

)
exp

(
− i2𝜋mn

N

)
=

N−1∑
n=0

[exp(− i(mΔ𝜃 − 𝜃0))]n

=
1 − exp(−iN(mΔ𝜃 − 𝜃0))

1 − exp(−i(mΔ𝜃 − 𝜃0))
, (geometric series)

whereΔ𝜃 = 2𝜋∕N.Then, using Equation 1.26,

F[m] = exp

[
−

i(N − 1)(mΔ𝜃 − 𝜃0)

2

] sin

(
N(mΔ𝜃 − 𝜃0)

2

)
sin

(
mΔ𝜃 − 𝜃0

2

) . (3.17)

In-bin sinusoid
We first consider a special case, when the digital frequency 𝜃0 is an integer multiple
of Δ𝜃. These N special digital frequencies, kΔ𝜃 = 0, Δ𝜃, 2Δ𝜃,… , (N − 1)Δ𝜃, are
often called DFT bins. A signal at one of these frequencies is said to be “in a bin.”

Substituting 𝜃0 = kΔ𝜃 = 2𝜋k∕N (k = 0, 1,… , N − 1) into Equation 3.17,

F[m] = exp
[
−i𝜋

(N − 1
N

)
(m − k)

] sin(𝜋(m − k))

sin

(
𝜋 (m − k)

N

) =
{

N, m = k
0, otherwise

= N𝛿[m − k], m = 0, 1,…N − 1. (3.18)

This can also be seen by noting that with 𝜃0 = 2𝜋k∕N, the vector f is
(
exp (i2𝜋kn∕N)

)
,

which is 𝜙k, the kth DFT basis vector. Then, by orthogonality (Equation 3.9),

F[m] = ⟨𝜙k,𝜙m⟩ = N𝛿[m − k], m = 0, 1,… , N − 1.

An in-bin cosine sequence c =
(

cos 2𝜋kn
N

)N−1

n=0
is the sum of two in-bin complex

exponentials:

c =
(

cos
2𝜋kn

N

)N−1

n=0
= 1

2

(
ei2𝜋kn∕N)N−1

n=0 + 1
2

(
e−i2𝜋kn∕N)N−1

n=0

= 1
2
𝜙k +

1
2
𝜙N−k,

where we have used the fact that 𝜙−k = 𝜙N−k (Equation 3.4). The DFT is

C[m] =
⟨1

2
𝜙k +

1
2
𝜙N−k,𝜙m

⟩
= 1

2
⟨𝜙k,𝜙m⟩ + 1

2
⟨𝜙N−k,𝜙m⟩ (linearity of the inner product)

= N
2
𝛿[m − k] + N

2
𝛿[m − (N − k)], m = 0, 1,… , N − 1. (3.19)
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FIGURE 3.3 In-bin trigonometric sequences and their DFTs. (a) Complex exponential
f [n] = ei2𝜋n∕8 (left) and DFT F[m] = 8𝛿[m − 1] (right). Solid stems and circular markers denote
real part, dashed stems and diamond markers denote imaginary part. (b) Complex exponential
f [n] = ei2𝜋 7n∕8 = e−i2𝜋n∕8 and DFT F[m] = 8𝛿[m − 7]. (c) Cosine f [n] = cos(2𝜋n∕8) and DFT
F[m] = 4𝛿[m − 1] + 4𝛿[m − 7]. (d) Sine f [n] = sin(2𝜋n∕8) and DFT F[m] = −i4𝛿[m − 1] +
4i𝛿[m − 7].

The DFT of an in-bin sine sequence s =
(

sin 2𝜋kn
N

)N−1
n=0 is calculated in the same

manner:

s =
(

sin
2𝜋kn

N

)N−1

n=0
= 1

2i

(
ei2𝜋kn∕N)N−1

n=0 − 1
2i

(
e−i2𝜋kn∕N)N−1

n=0

= − i
2
𝜙k[n] + i

2
𝜙N−k[n]

S[m] = − iN
2
𝛿[m − k] + iN

2
𝛿[m − (N − k)], m = 0, 1,… , N − 1. (3.20)

The complex exponential, sine, and cosine sequences and their DFTs are compared
in Figure 3.3.

The special frequencies 𝜃0 = 2𝜋k∕N, k = 0, 1,… , N − 1 produce periodic sinu-
soidal sequences. They project onto only one (if a complex exponential) or two (if a
sine or cosine) DFT basis vectors, and the DFT F[m] is zero except for one or two
values of m.

Out-of-bin sinusoids—spectral leakage
In contrast to these N special frequencies, all other values of 𝜃0 between −𝜋 and
𝜋 generate sinusoidal sequences that are not periodic and that project onto all DFT
basis vectors. They are said to be out-of-bin or between bins.

Consider, for example, the 32-point sequences f =
(

cos 2𝜋4n
32

)
and g =(

cos 2𝜋4.5n
32

)
, shown with their DFTs in Figure 3.4.
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FIGURE 3.4 DFT magnitudes |F| and |G| of an in-bin sinusoid (left) and an out-of-bin
sinusoid (right).

The DFT of f consists of two nonzero values, at m = 4 and m = 32 − 4 = 28.
On the other hand, g’s DFT, while it peaks near m = 4 and m = 28, is spread across all
the DFT bins. In the signal processing literature, this phenomenon is called spectral
leakage. The signal’s energy “leaks” into bins adjacent to the peaks because there is
no bin located exactly at the signal’s frequency. Signals encountered in practice are
invariably between bins, and consequently spectral leakage is common.

To explore this phenomenon further, return to Equation 3.17. The DFT of the
complex exponential f [n] = ei𝜃0n is

F[m] = exp

[
−

i(N − 1)(mΔ𝜃 − 𝜃0)

2

] sin

(
N(mΔ𝜃 − 𝜃0)

2

)
sin

(
mΔ𝜃 − 𝜃0

2

) ,

with Δ𝜃 = 2𝜋∕N, the DFT bin spacing. The ratio of sines in this expression is a
version of a function called the Dirichlet kernel, which is also important in the theory
of the Fourier series (Chapter 4). The Dirichlet kernel is defined4

DN (x) = sin𝜋Nx
sin𝜋x

. (3.21)

Graphs of DN , showing its salient features, are shown in Figure 3.5.

4In the theory of Fourier series, the Dirichlet kernel is traditionally defined DN (x) =
∑N

n=−N ei2𝜋nx =
sin(2N + 1)𝜋x

sin𝜋x
. The definition used in this book is common in signal processing. In terms of this alternative

definition of DN , the traditional Dirichlet kernel is D2N+1(x).
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FIGURE 3.5 The Dirichlet kernel, DN(x) = sin 𝜋Nx
sin 𝜋x

. DN(integer) = ±N. There are N − 1

zero crossings between each peak, evenly spaced at 1

N
. Top: N = 12. When N is even, the peaks

alternate sign, and DN(± 1

2
) = 0. Bottom: N = 13. When N is odd, the peaks are the same sign,

and DN

(
± 1

2

)
= (−1)(N−1)∕2 ≠ 0.

In terms of the Dirichlet kernel, Equation 3.17 is

F[m] = exp

[
−

i(N − 1)(mΔ𝜃 − 𝜃0)

2

]
DN

(
mΔ𝜃 − 𝜃0

2𝜋

)
= exp

[
−

i(N − 1)(𝜃 − 𝜃0)

2

]
DN

(
𝜃 − 𝜃0

2𝜋

)|||||𝜃=mΔ𝜃
.

Except for the leading phase factors, the DFT is proportional to a Dirichlet kernel,
centered at the digital frequency 𝜃 = 𝜃0, and sampled at the bin frequencies. If 𝜃0 is
a bin frequency, then all the samples except m = 𝜃∕Δ𝜃 are at zero crossings. This
is the in-bin case. In the out-of-bin case, 𝜃0 is not an integer multiple of Δ𝜃. None
of the samples occur at zero crossings, and the characteristic spread associated with
spectral leakage is observed (Figure 3.6).

The amelioration of leakage effects, an important issue in signal processing, is
explored in the problems.
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FIGURE 3.6 Spectral leakage explained by sampling the Dirichlet kernel. Top: The solid line
is the absolute value of the Dirichlet kernel centered at 𝜃 = 2𝜋 ⋅ 8∕32. The DFT magnitude |F|
of the in-bin function cos 2𝜋n∕32 is identical to samples of the Dirichlet kernel at frequencies
𝜃 = 2𝜋m∕32 (circles), which happen to be zero crossings, except for m = 8. Bottom: The
solid line is the absolute value of the Dirichlet kernel, centered at 𝜃 = 2𝜋 ⋅ 8.5∕32. The DFT
magnitude |G| of the out-of-bin function cos 2𝜋8.5n∕32 is identical to samples of the Dirichlet
kernel at frequencies 𝜃 = 2𝜋m∕32 (circles); none of the samples are zero.

Rectangle sequence
Another simple but important sequence is the rectangle,

f [n] =
{

1, n = 0, 1,…P − 1
0, otherwise

.

The DFT is

F[m] =
P−1∑
n=0

exp
(
− i2𝜋mn

N

)
= 1 − e−i2𝜋mP∕N

1 − e−i2𝜋∕N
= e−i𝜋m(P−1)∕NDP

(m
N

)
, (3.22)

another instance of the Dirichlet kernel. The rectangle sequence and the magnitude
of its DFT are plotted in Figure 3.7.

There are two important features to note from the figure. First, the height of
the DFT is P, the same as the width (number of unit samples) of the rectangle.
Second, the width of the DFT, measured by the distance from the origin to the first
zero crossing of the underlying Dirichlet kernel, is N∕P, inversely proportional to
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FIGURE 3.7 A P-sample rectangle sequence (top) and the magnitude of its DFT (bottom).
The width of the DFT, as measured by the distance to the first zero crossing of the underlying
Dirichlet kernel, is N∕P, inversely proportional to the width of the rectangle. The height of the
DFT is F[0] = P, proportional to the rectangle’s width.

the rectangle’s width. Thus, making the rectangle wider causes its DFT to become
higher and narrower, and vice versa. This reciprocal relationship between widths in
the time and frequency domains is a property of all Fourier transforms.

Two limiting cases of the rectangle sequence are of interest. First, let P = 1,
which shrinks the sequence back to just a unit sample at the origin, that is, 𝛿[n].
Second, let P = N, which stretches the sequence out to a constant, 1 for all n. The
DFTs of these two special cases are

𝛿[n] ⟼ D1 (m∕N) =
sin (𝜋m∕N)

sin (𝜋m∕N)
= 1 (3.23)

and

1 ⟼ e−i𝜋m(N−1)∕NDN (m∕N) = e−i𝜋m(N−1)∕N sin (𝜋m)
sin (𝜋m∕N)
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

=N𝛿[m]

= N𝛿[m]. (3.24)

Physical frequencies, digital frequencies, and bins
To apply the DFT to real-world signals, we must map physical (“analog”) frequency
to digital frequency. Suppose we take N samples of a signal at sampling interval
Δt. To avoid aliasing, the signal’s frequency cannot exceed 𝜈 = 1∕2Δt = 𝜈s∕2; the
corresponding digital frequency is 𝜃 = 𝜋 (or −𝜋). A signal of this frequency appears
in the N∕2 bin of the DFT. A constant signal (also called DC, by analogy with
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a direct current electrical signal) appears in bin 0. The other bin frequencies are
evenly distributed between these extremes, with frequency interval Δ𝜈 = 1∕NΔt =
𝜈s∕N. Bins 1 through N∕2 − 1 have frequencies 𝜈m = mΔ𝜈 = m𝜈s∕N and cover the
frequency range from 0 to half the sampling rate, 𝜈s∕2. The remaining bins, numbered
N∕2 + 1 through N − 1, cover negative digital frequencies between −𝜋 and 0. Their
corresponding analog frequencies are also negative, ranging between −𝜈s∕2 and 0
with the analog frequency interval Δ𝜈 = 𝜈s∕N.

Negative frequencies are interpreted by remembering that basis vectors 𝜙m and
𝜙N−m are complex conjugates of one another,

𝜙m[n] = ei2𝜋mn∕N

𝜙N−m[n] = ei2𝜋(N−m)n∕N = e−i2𝜋mn∕N ,

and actually have the same frequency (2𝜋m∕N radians/sample). The apparent negative
frequency of the vector 𝜙N−m only means that it is the complex conjugate of another
vector (namely, 𝜙m) with a positive sign in the exponent. Likewise, a negative analog
frequency simply corresponds to a complex exponential e−i2𝜋𝜈t, which is the complex
conjugate of a complex exponential ei2𝜋𝜈t having a positive sign in its exponent. A
real sine or cosine signal is the combination of a positive and a negative frequency
component, a basis vector and its complex conjugate.

The correspondences among bin number, digital frequency, and analog fre-
quency are shown in Figure 3.8 in two ways, on a linear scale and wrapped around a
unit circle. The unit circle is particularly helpful for visualizing aliasing. If the analog
frequency exceeds the Nyquist limit (1∕2Δt), the digital frequency exceeds 𝜋. The
angle 𝜃 on the unit circle flips to a negative value between 0 and −𝜋, and this new
value is the aliased frequency.

Example 3.3. A 1 kHz sinusoid is sampled at 8 kHz, and 512 samples are taken.
The peaks corresponding to this signal will appear at bin m = 1 kHz / Δ𝜈 = 1 kHz ÷
(8 kHz/512) = 64, and also at bin 512 − 64 = 448.

θ = −2 π /N
ν = −1 /N Δt

θ = 0
ν = 0

θ = π
ν = 1/2Δt

θ = 2 π ν Δt

m = 0
1

N/2 

N − 1

θ = π/2
ν  = 1/4Δt

θ = −π/2
ν = −1/4Δt

θ = 2 π /N
ν  = 1 /N Δt

N/2 N − 1 0 1 N/2

0−π 2π/N−2π/N π
0 1/2Δt1/NΔt−1/2Δt −1/NΔt

m

θ
ν

…

…
…

…
…

…
  N 1 2 N/2 + 1 MATLAB……N/2 + 1

FIGURE 3.8 The relationship among analog frequency 𝜈 (in Hz), digital frequency 𝜃 =
2𝜋𝜈Δt (in radians/sample), and DFT bin m diagrammed using the unit circle (left) and a
conventional frequency axis (right). The conventional axis also shows the conversion between
“0-based” array indexing used in mathematics and by some computer languages (e.g., C) and
the “1-based” array indexing used by Matlab and other computer languages.
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Example 3.4. A 5 kHz sinusoid is sampled at 8 kHz. The signal frequency exceeds
4 kHz, so there will be aliasing. We shall calculate the lower, alias frequency. The dig-
ital frequencies of the signal’s spectral peaks are 𝜃 = ±2𝜋 ⋅ 5 kHz ∕8 kHz = ±1.25𝜋,
which exceed ±𝜋, as expected. The point at 1.25𝜋 on the unit circle is the same as
the point at −0.75𝜋, and −1.25𝜋 is the same as +0.75𝜋. The analog frequency cor-
responding to 𝜃 = ±0.75𝜋 is 𝜈 = 0.75𝜋

2𝜋
⋅ 8 kHz = 3 kHz . After sampling, the 5 kHz

signal is indistinguishable from a 3 kHz signal.

Example 3.5. To analyze, with the DFT, signals of bandwidth up to 10 kHz, with a
25 Hz bin spacing (or less), one needs at least 2 × 10, 000∕25 = 800 bins. Rounding
800 up to a power of 2 gives N = 1024. The resulting bin spacing is 20,000/1024 ≈
19.5 Hz.

The interpretation of a DFT spectrum is frequently aided by displaying the
frequency components on a conventional axis, with negative frequencies to the left
of the origin and positive frequencies to the right. Matlab provides a function,
fftshift, which performs this task by swapping the first and second halves of the
DFT vector:

before fftshift:
(

F[0], F[1],… , F
[N

2
− 1

]
, F

[N
2

]
,… , F[N − 1]

)
after fftshift:

(
F
[N

2

]
,… , F[N − 1], F[0], F[1],… , F

[N
2
− 1

])
.

Another common way to display a DFT, when one wants to know how much energy
or power is present at each frequency, is the power spectrum. Because the DFT is an
orthogonal expansion, there is a version of Parseval’s formula (Theorem 2.4). In the
next section we will derive Parseval’s formula for the DFT,

N−1∑
n=0

|f [n]|2 = 1
N

N−1∑
m=0

|F[m]|2.
It can be rewritten

N−1∑
n=0

|f [n]|2 = 1
N
|F[0]|2 + 1

N

N∕2−1∑
m=1

(|F[m]|2 + |F[N − m]|2) + 1
N
|||F [

N
2

]|||2.
In this form, positive and negative frequency components are grouped together. We
then define the power spectrum, for m = 0, 1,… , N∕2, by

Pf [m] =

⎧⎪⎪⎨⎪⎪⎩

1
N
|F[0]|2, m = 0

1
N

(|F[m]|2 + |F[N − m]|2) , m = 1, 2,… , N
2
− 1

1
N
|||F [

N
2

]|||2, m = N
2

. (3.25)

These three ways of displaying DFT data—normal, shifted, and power spectrum—are
shown in Figure 3.9.

Further applications to signal processing are taken up in the problems.
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FIGURE 3.9 The DFT of an out-of-bin sinusoid, displayed in different forms. (a) The
absolute value of the DFT, |F|, vs. frequency index m. (b) The DFT has been arranged (e.g.,
by fftshift) so that the positive and negative frequency components are symmetrically
displayed about the origin. The horizontal axis is digital frequency, 𝜃 = mΔ𝜃. (c) The DFT
power spectrum Pf . The values of the spectrum are displayed in decibels, 10 log10 Pf . The
horizontal axis is digital frequency.

3.4 DFT PROPERTIES AND THEOREMS

Calculations with the DFT are made easier by certain theorems. Some of these are
direct applications of general results for orthogonal expansions. Others are unique
to the choice of a trigonometric basis, and appear, in various forms, throughout the
Fourier family.

Linearity of the DFT
The DFT is an inner product, F[m] = ⟨f ,𝜙m⟩, and the inner product is linear,⟨af + bg,𝜙m⟩ = a ⟨f ,𝜙m⟩ + b ⟨g,𝜙m⟩. Consequently, the DFT is linear.

Theorem 3.2 (Linearity). Let f , F ∈ ℂN and g, G ∈ ℂN be DFT pairs, and let
a, b ∈ ℂ be constants. Then

af + bg ⟼ aF + bG. (3.26)

It is a simple exercise to show that the inverse DFT is also linear.

Example 3.6 (Raised cosine sequence). Tapered sequences such as f [n] = 1
2
+

1
2

cos(2𝜋n∕N) are important in signal processing. To derive the DFT of this sequence,
use the linearity theorem. From previous calculations (Equations 3.18 and 3.19),

1 = exp (i2𝜋0 ⋅ n) ⟼ N𝛿[m]

cos(2𝜋n∕N) ⟼ N
2
𝛿[m − 1] + N

2
𝛿[m − (N − 1)].

Combining these, we obtain

F[m] = N
2
𝛿[m] + N

4
𝛿[m − 1] + N

4
𝛿[m − (N − 1)].

There is a peak at m = 0 for the constant component, and peaks at m = ±1 for the
cosine.



3.4 DFT PROPERTIES AND THEOREMS 127

Parseval’s formula
Parseval’s formula says that the DFT preserves inner products and norms.

Theorem 3.3 (Parseval’s formula). Let f , F ∈ ℂN and g, G ∈ ℂN be DFT pairs.
Then ⟨f , g⟩ = 1

N
⟨F, G⟩ and ‖f‖2 = 1

N
‖F‖2,

that is,
N−1∑
n=0

f [n]g∗[n] = 1
N

N−1∑
m=0

F[m]G∗[m] (3.27a)

and
N−1∑
n=0

|f [n]|2 = 1
N

N−1∑
m=0

|F[m]|2 . (3.27b)

Proof: Begin with the general form (Equation 2.24), specialized to N dimensions,

⟨f , g⟩ = N−1∑
m=0

⟨f , em⟩ ⟨g, em⟩∗
and substitute em = 𝜙m∕

√
N, where 𝜙m[n] = ei2𝜋mn∕N (Equation 3.10). Then,

⟨f , g⟩ = N−1∑
m=0

1√
N

⟨f ,𝜙m⟩ 1√
N

⟨g,𝜙m⟩∗ = 1
N

N−1∑
m=0

F[m]G∗[m] = 1
N

⟨F, G⟩ .
Set f = g and F = G to obtain the corresponding formula for the norm.

Example 3.7. The four-element vectors f = (1, 1, 1, 1) and g = (1, 1,−1,−1) are
orthogonal. Their respective DFTs are

F[m] =
3∑

n=0

f [n]e−i2𝜋mn∕4 =
3∑

n=0

e−i2𝜋mn∕4 = 1 − e−i2𝜋m

1 − e−i2𝜋m∕4
, m = 0, 1, 2, 3

⇒ F = (4, 0, 0, 0)

G[m] =
3∑

n=0

g[n]e−i2𝜋mn∕4 = 1 + e−i𝜋m∕2 − e−i𝜋m − e−i3𝜋m∕2, m = 0, 1, 2, 3

⇒ G = (0, 2(1 − i), 0, 2(1 + i)).

By inspection, the vectors F and G are also orthogonal. As for the norms,‖f‖2 = 4, ‖F‖2 = 16‖g‖2 = 4, ‖G‖2 = |2(1 − i)|2 + |2(1 + i)|2 = 16

and, with N = 4, we have

‖f‖2 = 1
4
‖F‖2 and ‖g‖2 = 1

4
‖G‖2

as expected, by Parseval’s theorem.
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Sum of samples
The values f [0] and F[0] have a special relationship to the sequences F and f , deriving
from the fact that 𝜙0[n] = 1 and 𝜙m[0] = 1 for all m, n.

Theorem 3.4 (Area theorem). Let f , F ∈ ℂN be a DFT pair. Then,

F[0] =
N−1∑
n=0

f [n] (3.28a)

f [0] = 1
N

N−1∑
m=0

F[m]. (3.28b)

It is called the area theorem because, if the values f [n] are regarded as samples of
a continuous function f (t) (f [n] = f (nΔt)), then

∑N−1
n=0 f [n]Δt = F[0]Δt approximates

the area ∫ NΔt
0 f (t)dt.

Example 3.8. The DFT of the unit sample sequence 𝛿[n] = (1, 0,… , 0) was found
to be (Equation 3.23)

N−1∑
n=0

𝛿[n]e−i2𝜋mn∕N = 1, m = 0, 1,… , N − 1

= (1, 1,… , 1).

With this pair f = (1, 0,… , 0) and F = (1, 1,… , 1), we observe

f [0] + f [1] +⋯ + f [N − 1] = 1 = F[0]

and

1
N

(F[0] + F[1] +⋯ + F[N − 1]) = 1 = f [0],

as predicted by the area theorem.

Example 3.9. The DFT of the P-sample rectangle sequence was found to be
(Equation 3.22)

F[m] = e−i𝜋m(P−1)∕NDP

(m
N

)
,

where DP is the Dirichlet kernel. The sum of the rectangle’s samples is P, as is F[0],
in agreement with the area theorem. The sum of the DFT’s samples are computed
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directly from the expression for the DFT,

1
N

N−1∑
m=0

F[m] =
N−1∑
m=0

[
1
N

P−1∑
n=0

exp
(
−j

2𝜋mn
N

)]
=

P−1∑
n=0

1
N

N−1∑
m=0

exp
(
−j

2𝜋mn
N

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

=𝛿[n]

=
P−1∑
n=0

𝛿[n] = 1

and this is the value of the rectangle sequence at n = 0.

Periodicity of the DFT
The DFT inherits an important periodicity property from the periodicity of its basis
vectors.

Theorem 3.5 (Periodicity). Let f , F ∈ ℂN be a DFT pair. Then f and F are each
one period of an infinite sequence with period N.

Proof: Define the doubly infinite sequence F̃ : ℤ → ℂ by the formula

F̃[m] =
N−1∑
n=0

f [n]e−i2𝜋mn∕N , m = …− 2,−1, 0, 1, 2,… .

F̃ has period N,

F̃[m + N] =
N−1∑
n=0

f [n]e−i2𝜋(m+N)n∕N =
N−1∑
n=0

f [n]e−i2𝜋mn∕N

= F̃[m],

and F is identically the subsequence (F̃[0], F̃[1],… , F̃[N − 1]). The proof for f is
identical.

DFT symmetries
Because f and F are, implicitly, single periods of underlying periodic sequences,
we may apply the earlier definitions of even, odd, and Hermitian symmetry: A
vector f ∈ ℂN is even if f [N − n] = f [n], odd if f [N − n] = −f [n], and Hermitian if
f [N − n] = f ∗[n]. An arbitrary vector may be written as the sum of an even part and
an odd part, f = fe + fo, where

fe[n] =
f [n] + f [N − n]

2

fo[n] =
f [n] − f [N − n]

2
, n = 0, 1,… , N − 1. (3.29)

Symmetries in f are mirrored in F (Figure 3.10).
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FIGURE 3.10 Symmetry properties of the discrete Fourier transform.

Theorem 3.6 (DFT symmetries). Let f , F ∈ ℂN be a DFT pair. These statements
and their converses are true:

(a) If f is real, then F is Hermitian: F[N − m] = F∗[m].

(b) If f is even (odd), then F is even (odd).

(c) If f is real and even (real and odd), then F is real and even (imaginary and odd).

Proof:

(a) The DFT basis functions have Hermitian symmetry in the frequency index m,
𝜙N−m = 𝜙

∗
m (Equation 3.6). Hence,

F[N − m] = ⟨f ,𝜙N−m⟩ = ⟨
f ,𝜙∗

m

⟩
.

You can show that
⟨

f ,𝜙∗
m

⟩
= ⟨f ∗,𝜙m⟩∗. But, because f is real, f ∗ = f , and so

F[N − m] = ⟨f ,𝜙m⟩∗ = F∗[m].

Now suppose F is Hermitian. We will show that f is real by showing that the
imaginary part of f is zero. The imaginary part of f is

Im f =
f − f ∗

2i
.

The DFT of f ∗ is

f ∗ ⟼ ⟨f ∗,𝜙m⟩ = ⟨
f ,𝜙∗

m

⟩∗ = ⟨f ,𝜙N−m⟩∗ = F∗[N − m]

because the basis vectors are Hermitian. But because F is Hermitian, F∗[N −
m] = F[m], that is, f and f ∗ have the same DFT, hence they are equal, and
f − f ∗ = 0.

(b) By definition,

F[m] =
N−1∑
n=0

f [n]𝜙m[n] ;

but also,

F[N − m] =
N−1∑
n=0

f [n]𝜙N−m[n] =
N−1∑
n=0

f [n]𝜙∗
m[n] (using Equation 3.6)

=
N−1∑
n=0

f [N − n]𝜙∗
m[N − n] =

N−1∑
n=0

f [N − n]𝜙m[n] (using Equation 3.5).
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Now, the even part of F is (Equation 3.29)

Fe[m] = 1
2

(F[m] + F[N − m]) = 1
2

N−1∑
n=0

(f [n] + f [N − n])𝜙m[n]

=
N−1∑
n=0

fe[n]𝜙m[n]

and the odd part is, similarly,

Fo[m] =
N−1∑
n=0

fo[n]𝜙m[n].

If f is even, then fo = 0; consequently, Fo = 0 and F is even. Likewise, if f is
odd, then fe = 0 and Fe = 0, so F is odd. The converse follows by a symmetric
derivation.

(c) If f is real, then F is Hermitian (part (a)). If additionally f is even, we know that
F is even (part (b)), and this even part is real because F is Hermitian. Likewise,
if f is odd as well as real, then F is odd, and it is also imaginary because F is
Hermitian. The converse follows by a symmetric derivation.

Example 3.10. The DFTs of in-bin cosine and sine sequences were previously
calculated. Now we consider their symmetry properties.

(a) The cosine sequence c =
(

cos 2𝜋kn
N

)N−1

n=0
, k = 0, 1,… , N − 1, is even:

cos
2𝜋k(N − n)

N
= cos

2𝜋kN
N

⏟⏞⏞⏟⏞⏞⏟

=1

cos
2𝜋kn

N
+ sin

2𝜋kN
N

⏟⏞⏞⏟⏞⏞⏟

=0

sin
2𝜋kn

N

= cos
2𝜋kn

N
.

Its DFT is (Equation 3.19):

C[m] = N
2
𝛿[m − k] + N

2
𝛿[m − (N − k)], m = 0, 1,… , N − 1.

This sequence is also even, in keeping with the DFT symmetry theorem. The
cosine sequence and its DFT are shown, for N = 8, in Figure 3.11.

(b) The sine sequence s =
(

sin 2𝜋kn
N

)N−1

n=0
, k = 0, 1,… , N − 1, is odd:

sin
2𝜋k(N − n)

N
= sin

2𝜋kN
N

cos
2𝜋kn

N
− cos

2𝜋kN
N

sin
2𝜋kn

N

= − sin
2𝜋kn

N
.

The DFT is (Equation 3.20):

S[m] = − iN
2
𝛿[m − k] + iN

2
𝛿[m − (N − k)], m = 0, 1,… , N − 1.

It is odd and imaginary, as predicted by the symmetry theorem. The sine
function and its DFT are shown, for N = 8, in Figure 3.12.
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FIGURE 3.11 Cosine sequences ck[n] = cos(2𝜋kn∕8) (left) and their DFTs Ck[m] = 4𝛿[m −
k] + 4𝛿[m − (8 − k)] (right). Both c and C are real valued and have even symmetry. As the
frequency index k increases (top to bottom), 𝛿[m − k] moves to a higher bin (higher positive
frequency) and 𝛿[m − (8 − k)] moves to a lower bin (higher negative frequency). The samples
of ck and c8−k are indistinguishable, and their DFTs are identical.

Knowing the symmetry properties of the DFT is valuable in computation.
Suppose you need to compute the product, FG, of two Hermitian DFTs. By symmetry,
the values of FG in the negative frequency bins can be computed as the complex
conjugates of the values in the positive frequency bins; thus, only N∕2 actual complex
products need be calculated. The symmetries are also useful for error checking. If
you find that the inverse DFT of a purportedly Hermitian sequence has a non-
negligible imaginary part, this is a clue that the sequence is actually not Hermitian
(or, alternatively, that your DFT algorithm is incorrect).
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FIGURE 3.12 Sine sequences sk[n] = sin(2𝜋kn∕8) (left) and their DFTs Sk[m] = −4i𝛿[m −
k] + 4i𝛿[m − (8 − k)] (right). s is real valued and has odd symmetry; S is imaginary valued
and has odd symmetry. As the frequency index k increases (top to bottom), 𝛿[m − k] moves
to a higher bin (higher positive frequency), and 𝛿[m − (8 − k)] moves to a lower bin (higher
negative frequency). At k = 4 they overlap and cancel: sin(𝜋n) = 0. The samples of sk and
s8−k are indistinguishable except for a sign flip; their DFTs are likewise identical except for a
sign flip.

Example 3.11 (Rectangle sequence). Previously we calculated the DFT of a
rectangle sequence (Equation 3.22):

F[m] = e−i𝜋m(P−1)∕NDP

(m
N

)
.

The rectangle sequence is real but not symmetric; thus, we expect the DFT to be
Hermitian. Check this:

F∗[N − m] = e+i𝜋(N−m)(P−1)∕NDP

(N − m
N

)
.
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The Dirichlet kernel is even or odd depending on whether P is odd or even, that is,
DP( N−m

N
) = (−1)P−1DP( m

N
) (Figure 3.5). As for the complex exponential,

e+i𝜋(N−m)(P−1)∕N = e+i𝜋(P−1) e−i𝜋m(P−1)∕N = (−1)P−1 e−i𝜋m(P−1)∕N
.

Putting these together,

F∗[N − m] = (−1)P−1 e−i𝜋m(P−1)∕N ⋅ (−1)P−1DP

(m
N

)
= e−i𝜋m(P−1)∕NDP

(m
N

)
= F[m],

as expected.

Shifting
The DFT’s periodicity is also important when we consider shifts, or translations,
of a sequence f . A shift is expressed by writing f [n − r], where r can be positive
or negative. Because f has N elements, we must be clear about the meaning of
f [n − r] when n − r is less than 0 or greater than N − 1. Taking r = 2, for exam-
ple, a two-sample shift of the sequence (f [0], f [1], f [2],… , f [7]) would result in
(f [−2], f [−1], f [0],… , f [5]). What meaning do we attach to f [−2] and f [−1]?

Since f is one period of a periodic function f̃ , f̃ [−2] is the same as f̃ [6], and f̃ [−1]
is the same as f̃ [7]. Thus, the two-sample shift of f is (f [6], f [7], f [0], f [1],… , f [5]).
That is, the shifted index n − r is interpreted modulo-N, and the notation f [n − r]
denotes the (n − r) mod N element of the vector f : f [−2 mod 8] = f [6], and
f [−1 mod 8] = f [7].

Imagine that the values f [0]… f [N − 1] are equispaced around a circle. A
positive shift (r > 0) corresponds to a counterclockwise rotation, and a negative shift
to a clockwise rotation of the values around the circle. For this reason, the shift is
said to be circular or cyclic (Figure 3.13). When working with finite sequences and
the DFT, all shifts are cyclic.

The DFT of a shifted sequence has a particularly simple form.

Theorem 3.7 (Shift theorem). Let f , F ∈ ℂN be a DFT pair. Then,(
f [n − r]

)N−1
n=0 ⟷

(
e−i2𝜋rm∕NF[m]

)N−1
m=0 . (3.30)

Proof: Simply calculate the inverse transform,

1
N

N−1∑
m=0

e−i2𝜋rm∕NF[m]ei2𝜋mn∕N = 1
N

N−1∑
m=0

F[m]ei2𝜋m(n−r)∕N

= f [n − r], n = 0, 1,… , N − 1.
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f [5]f [3]

FIGURE 3.13 Shifting functions in the DFT. Left: A periodic sequence (top) and the cyclic
representation of one period (bottom). Right: A shift of the periodic sequence (top) is equivalent
to a cyclic shift of a single period (bottom).

Example 3.12. Consider the shifted cosine sequence

f [n − 2] = cos
2𝜋(n − 2)

8
= sin

2𝜋n
8

, n = 0, 1, 2,… 7.

Using the shift theorem, the DFT of cos 2𝜋(n − 2)∕8 is

DFT

{
cos

2𝜋(n − 2)
8

}
= e−i2𝜋(2)m∕8DFT

{
cos

2𝜋n
8

}
= e−i𝜋m∕2

(N
2
𝛿 [m − 1] + N

2
𝛿 [m − 7]

)
= e−i𝜋∕2 N

2
𝛿 [m − 1] + e−i7𝜋∕2 N

2
𝛿 [m − 7]

= − iN
2
𝛿 [m − 1] + iN

2
𝛿 [m − 7] ,

which is the DFT of sin
2𝜋n

8
(Figure 3.14).

It is important to note that shifting does not affect the magnitude of the DFT:

|e−i2𝜋mr∕N F[m]| = |F[m]|,
because |e−i2𝜋mr∕N | = 1. Thus, both the sine and cosine in this example have the
same DFT magnitude, namely N

2
𝛿 [m − 1] + N

2
𝛿 [m − 7].
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FIGURE 3.14 The sine sequence sin(2𝜋n∕8) is a two-sample shift of the cosine sequence:
cos (2𝜋(n − 2)∕8) = sin (2𝜋n∕8) (left). Their DFTs have the same frequency components,
𝛿[m − 1] and 𝛿[m − 7], but different phases (right), according to the shift theorem.

Example 3.13 (Shifted rectangle sequence). In some applications, we want an
even rectangle sequence,

f [n] =
{

1, n = 0, 1,…P and N − P…N − 1
0, otherwise

.

This is a left cyclic shift by P samples of a 2P + 1-sample rectangle sequence like
the one analyzed earlier. Using the shift theorem with Equation 3.22, the DFT is

f [n] ⟼ e−i2𝜋m(−P)∕N ⋅ e−i𝜋m((2P+1)−1)∕ND2P+1

(m
N

)
= D2P+1

(m
N

)
.

We note also that the DFT is real and even, corresponding to the symmetry of the
rectangle sequence. In fact, we see that the phase factor in Equation 3.22 is due to
the rectangle’s lack of even symmetry.

Convolution
The linearity of the DFT enables the DFT of a sum f + h to be easily calculated as
the sum F + H. We will now see how the shift theorem enables us to express the DFT
of the product of two sequences. The result is important in applications of the DFT,
particularly to linear system theory and signal processing.

Theorem 3.8 (Convolution theorem). Let f , h ∈ ℂN have DFTs F, H ∈ ℂN , and
define the product fh ∈ ℂN by fh[n] = f [n]h[n]. Then, the DFT of fh is

fh ⟼ 1
N

F ⊛ H (3.31a)

where

(F ⊛ H)[m] =
N−1∑
k=0

F[k]H[m − k] (3.31b)
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is called the cyclic convolution of F and H (the shift m − k is understood to be cyclic,
or modulo-N). Similarly,

f ⊛ h ⟼ FH. (3.31c)

Proof: The DFT of fh can be written as an inner product,

DFT {fh} =
N−1∑
n=0

f [n]h[n]e−i2𝜋mn∕N =
N−1∑
n=0

f [n]
(
h∗[n]ei2𝜋mn∕N)∗

.

Parseval’s theorem then says that this inner product can be written in terms of DFTs,

N−1∑
n=0

f [n]
(
h∗[n]ei2𝜋mn∕N)∗ = 1

N

N−1∑
k=0

F[k]

[
N−1∑
n=0

(
h∗[n]ei2𝜋mn∕N) e−i2𝜋kn∕N

]∗

= 1
N

N−1∑
k=0

F[k]

[
N−1∑
n=0

h[n]e−i2𝜋(m−k)n∕N

]

= 1
N

N−1∑
k=0

F[k]H[m − k].

For the second part, write the DFT of the convolution as a double sum,

DFT {f ⊛ h} [m] =
N−1∑
n=0

[
N−1∑
k=0

f [k]h[n − k]

]
e−i2𝜋mn∕N

=
N−1∑
k=0

f [k]

[
N−1∑
n=0

h[n − k]e−i2𝜋mn∕N

]

=
N−1∑
k=0

f [k]
[
e−i2𝜋km∕NH[m]

]
(shift theorem)

=

[
N−1∑
k=0

f [k]e−i2𝜋km∕N

]
H[m] = F[m]H[m].

Cyclic convolution can be visualized with the aid of Figure 3.15. Imagine that
the values of f and h are arranged around the circumferences of two concentric circles.
The outer circle, carrying h (reversed), is rotated around the inner circle, carrying f .
The value of the convolution for a particular step (n) in the rotation is the sum of
products of the terms that are aligned opposite each other on the two circles.

Example 3.14. Let f = 𝛿[n − a] and g = 𝛿[n − b], where a, b, n ∈ {0, 1,…N − 1}.
We will calculate f ⊛ g using both direct summation and the convolution theorem.
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FIGURE 3.15 Cyclic convolution for two functions with N = 8. The values h[−k] are
rotated past the values f [k], and the sum of products is computed. Left: Alignment for n =
0. (f ⊛ h)[0] = f [0]h[0] + f [1]h[7] +⋯ + f [7]h[1]. Right: Alignment for n = 2. (f ⊛ h)[2] =
f [2]h[0] + f [3]h[7] +⋯ + f [1]h[1].

Direct

𝛿[n − a] ⊛ 𝛿[n − b] =
N−1∑
k=0

𝛿[k − a]𝛿[(n − k) − b].

The first 𝛿 is zero except for k = a, so the product of the two 𝛿s is zero
except for k = a. This gives

𝛿[n − a] ⊛ 𝛿[n − b] = 𝛿[(n − a) − b] = 𝛿[n − (a + b)]. (3.32)

Convolution Theorem The DFT of 𝛿[n − a] is

F[m] =
N−1∑
n=0

𝛿[n − a]e−i2𝜋mn∕N = e−i2𝜋am∕N (3.33)

and, likewise, the DFT of 𝛿[n − b] is G[m] = e−i2𝜋bm∕N . Their product is
FG[m] = e−i2𝜋(a+b)m∕N . The inverse DFT of FG is

(f ⊛ g)[n] = 1
N

N−1∑
m=0

e−i2𝜋(a+b)m∕Nei2𝜋mn∕N = 1
N
⟨𝜙n,𝜙a+b⟩,

where we have recognized that this inverse DFT is just an inner product of
DFT basis functions. Then, because the basis functions are orthogonal, the
result is

(f ⊛ g)[n] = 𝛿[n − (a + b)],

just as we calculated by the direct method.
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Example 3.15. More generally, let f ∈ ℂN be any vector, and calculate its convo-
lution with 𝛿[n − a]. We have

f ⊛ 𝛿[n − a] =
N−1∑
k=0

f [k]𝛿[(n − k) − a].

The 𝛿 is one when n − k − a = 0, or k = n − a, and zero otherwise. It sifts out the
k = n − a term of the sum, giving

f ⊛ 𝛿[n − a] = f [n − a]. (3.34)

Convolution with 𝛿[n − a] shifts f to n = a, where the unit sample is located. Using
the convolution theorem instead, the DFT of 𝛿[n − a] is e−i2𝜋am∕N , so the convolution
is the inverse DFT of F[m]e−i2𝜋am∕N . But by the shift theorem, F[m]e−i2𝜋am∕N is the
DFT of f [n − a].

Example 3.16. Let f = (0, 1, 0, 2, 0, 0, 0, 0) and h = (1, 1, 0, 0, 0, 0, 0, 1) and calcu-
late f ⊛ h. Only f [1] and f [3] are nonzero. The explicit sums for g = f ⊛ h simplify
to g[n] = f [1]h[n − 1] + f [3]h[n − 3] = h[n − 1] + 2h[n − 3]. So we have

g[0] = h[7] + 2h[5] = 1

g[1] = h[0] + 2h[6] = 1

g[2] = h[1] + 2h[7] = 3

g[3] = h[2] + 2h[0] = 2

g[4] = h[3] + 2h[1] = 2

g[5] = h[4] + 2h[2] = 0

g[6] = h[5] + 2h[3] = 0

g[7] = h[6] + 2h[4] = 0.

Instead, using what we know about the unit sample sequence, we may
write f [n] = 𝛿[n − 1] + 2𝛿[n − 3]. Then, g[n] = 𝛿[n − 1] ⊛ h + 2𝛿[n − 3] ⊛ h =
h[n − 1] + 2h[n − 3] (Equation 3.34). Now, taking cyclic shifts,

h[n − 1] = (1, 1, 1, 0, 0, 0, 0, 0)

2h[n − 3] = (0, 0, 2, 2, 2, 0, 0, 0),

and adding,

g = (1, 1, 3, 2, 2, 0, 0, 0).

We may also express h[n] = 𝛿[n] + 𝛿[n − 1] + 𝛿[n − 7], and use (Equation 3.32),

g[n] =
(
𝛿[n − 1] + 2𝛿[n − 3]

)
⊛

(
𝛿[n] + 𝛿[n − 1] + 𝛿[n − 7]

)
= 𝛿[n − 1] + 2𝛿[n − 3] + 𝛿[n − 2] + 2𝛿[n − 4] + 𝛿[n − 8] + 2𝛿[n − 10].
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Using (n − 8) mod 8 = 0 and (n − 10) mod 8 = n − 2,

g[n] = 𝛿[n − 1] + 2𝛿[n − 3] + 𝛿[n − 2] + 2𝛿[n − 4] + 𝛿[n] + 2𝛿[n − 2]

= 𝛿[n] + 𝛿[n − 1] + 3𝛿[n − 2] + 2𝛿[n − 3] + 2𝛿[n − 4].

Example 3.17 (Truncated sinusoid). A rectangle sequence is useful for modeling
the truncation of another sequence. For example, an in-bin cosine truncated to P
samples is

f [n] = RP[n] cos (2𝜋kn∕N)

where RP[n] =
{

1, n = 0, 1,…P − 1
0, otherwise

.

The (N-point) DFTs of the individual sequences are, from previous calculations,

RP[n] ⟼ ei𝜋(P−1)∕N DP (m∕N)

cos (2𝜋kn∕N) ⟼ N
2
𝛿[m − k] + N

2
𝛿[m − (N − k)].

Then using the convolution theorem (Equations 3.31 and 3.34),

F[m] = 1
N

⋅ ei𝜋(P−1)m∕N DP (m∕N) ⊛
(N

2
𝛿[m − k] + N

2
𝛿[m − (N − k)]

)
= 1

2
ei𝜋(P−1)(m−k)∕N DP

(m − k
N

)
+ 1

2
ei𝜋(P−1)(m−(N−k))∕N DP

(
m − (N − k)

N

)
.

Ignoring the exponential phase factors, the DFT is seen to be two Dirichlet kernels
of height P

2
and centered at the bins corresponding to the sinusoid’s frequency. The

“sharpness” of the spectrum, measured by the narrowness of the two peaks, improves
with larger values of P (Figure 3.16). When P → N (no truncation), the Dirichlet
kernels reduce to delta sequences, and we recover the DFT of the cosine alone,

F[m] →
1
2

ei𝜋(N−1)(m−k)∕N N𝛿[m − k] + 1
2

ei𝜋(N−1)(m−(N−k))∕N N𝛿[m − (N − k)]

= N
2
𝛿[m − k] + N

2
𝛿[m − (N − k)].

⋆ Matrix form of convolution
The cyclic convolution g = h ⊛ f may be written as a matrix-vector product,

g =

⎡⎢⎢⎢⎢⎣
g[0]
g[1]
g[2]
⋮

g[N − 1]

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
h[0] h[N − 1] ⋯ h[2] h[1]
h[1] h[0] ⋯ h[3] h[2]
h[2] h[1] ⋯ h[4] h[3]
⋮ ⋮ ⋱ ⋮ ⋮

h[N − 1] h[N − 2] ⋯ h[1] h[0]

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

f [0]
f [1]
f [2]
⋮

f [N − 1]

⎤⎥⎥⎥⎥⎦
= Hf. (3.35)

Each row of the matrix H is a cyclic shift of the row above it, and the first row is a
cyclic shift of the last row. A matrix with this structure is called circulant. Circulant
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matrices have a particular relationship to the DFT matrix (Equation 3.13). Writing
the convolution theorem (Equation 3.31) in matrix-vector form,

g̃ =

⎡⎢⎢⎢⎢⎣
G[0]
G[1]
G[2]
⋮

G[N − 1]

⎤⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎣
H[0] 0

H[1]
H[2]

⋱
0 H[N − 1]

⎤⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎣

F[0]
F[1]
F[2]
⋮

F[N − 1]

⎤⎥⎥⎥⎥⎦
= H̃f̃. (3.36)

Note that H̃ is a diagonal matrix. Now express g̃ and f̃ in terms of the unitary matrix
form of the DFT (Equation 3.16),

g̃ =
√

N

(
1√
N

D

)
g

f̃ =
√

N

(
1√
N

D

)
f,

and substitute these into Equation 3.36:

√
N

(
1√
N

D

)
g = H̃

√
N

(
1√
N

D

)
f.

The factors of
√

N on both sides of this equation can be dropped. Then, because
( 1√

N
D)†( 1√

N
D) = I, we can solve for g by multiplying both sides, on the left, by

( 1√
N

D)†:

g =

(
1√
N

D

)†

H̃

(
1√
N

D

)
f.

Comparing this with Equation 3.35, observe that

H =

(
1√
N

D†

)
H̃

(
1√
N

D

)
,

which leads to the final result,

H̃ =

(
1√
N

D

)
H

(
1√
N

D

)†

. (3.37)

The circulant matrix H is diagonalized—transformed into the diagonal matrix H̃—
by the unitary DFT matrix. This is the matrix-vector form of the DFT relationship
h ⟼ H.
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Zero padding
The next DFT theorem is motivated by the problem of estimating the frequency of
a sinusoidal signal from the DFT of its samples. The DFT of a complex exponential
signal with amplitude A > 0 and phase 𝜑, A exp

(
i
(
𝜃0n − 𝜑

))
, is a sampled Dirichlet

kernel,

F[m] = Ae−i𝜑 exp

[
−

i(N − 1)
(
𝜃 − 𝜃0

)
2

]
DN

(
𝜃 − 𝜃0

2𝜋

)|||||𝜃=mΔ𝜃
,

and its magnitude is

|F[m]| = A
|||||DN

(
mΔ𝜃 − 𝜃0

2𝜋

)||||| .
From inspection of the graph of the DFT magnitude, it seems reasonable to pick
the bin m̂ where |F[m]| is largest, and make the frequency estimate �̂�0 = m̂Δ𝜃. The
worst case estimation error is Δ𝜃

2
, occurring when 𝜃0 is exactly between two bin

frequencies.
The frequency estimate will be improved if Δ𝜃, the bin spacing, can be made

smaller. If we can obtain more samples of the signal, so that N is larger, then
Δ𝜃 = 2𝜋∕N will be smaller and the frequency estimate will be better. However,
while it is always better to have more data, it is possible to decrease Δ𝜃 even if we
cannot increase the number of samples. Begin with the formula for the DFT,

F[m] =
N−1∑
n=0

f [n]e−i2𝜋mn∕N =
N−1∑
n=0

f [n]e−imnΔ𝜃
.

Nothing formally prevents us from using a different value for Δ𝜃, as long as we can
still calculate the sum. Assume this is possible and replace Δ𝜃 with Δ𝜃′ = 2𝜋∕N′,
where N′ ≥ N. The DFT with N′ bins, denoted F[m; N′], is

F[m; N′] =
N−1∑
n=0

f [n]e−i2𝜋mn∕N′
, m = 0, 1, 2,… , N′ − 1. (3.38)

(Note F[m; N] = F[m].) If we let f [n] = ei𝜃0n and carry the calculation through,

F[m; N′] =
N−1∑
n=0

ei𝜃0n e−i2𝜋mn∕N′ =
N−1∑
n=0

exp[−i(𝜃 − 𝜃0)n]
|||||𝜃=2𝜋m∕N′

= exp

[
−

i(N − 1)(𝜃 − 𝜃0)

2

]
DN

(
𝜃 − 𝜃0

2𝜋

)|||||𝜃=2𝜋m∕N′
. (3.39)

This is a more finely sampled Dirichlet kernel. An example is shown in Figure 3.17,
below.

The computational implementation of Equation 3.38 requires some additional
work. It is an operation that takes a vector of length N and returns a vector of
length N′. As we will soon see in Section 3.5, efficient algorithms for computing
the DFT require that the input and output vectors have the same length. To express
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FIGURE 3.17 Improving frequency estimation by finer sampling of the Dirichlet kernel
(Equation 3.39). The signal has 𝜃0 = 0.5125𝜋. Top: With N′ = N = 32, the original DFT
values are shown by circles. The maximum magnitude is in bin 8, �̂�0 = 0.5𝜋. Middle: The
new samples are shown by dots. With N′ = 2N = 64, Δ𝜃 = 𝜋∕32, the maximum magnitude
is in bin 16, and again, �̂�0 = 0.5𝜋. Bottom: With N′ = 4N = 128, Δ𝜃 = 𝜋∕64, and now the
maximum magnitude is found in bin 33, which happens to be very close to the peak of the
underlying Dirichlet kernel. The frequency estimate improves to �̂�0 = 33 × 𝜋∕64 = 0.5156𝜋.

Equation 3.38 as a “true” DFT, we can simply lengthen the sum with dummy input
values:

F[m; N′] =
N−1∑
n=0

f [n] exp(−i2𝜋mn∕N′) +
N′−1∑
n=N

0 ⋅ exp(−i2𝜋mn∕N′).

That is, F[m; N′] is the DFT of a new vector formed by appending N′ − N zeros to
the original vector f . This operation is called zero padding.
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Zero padding provides more bins, and thus a better chance of finding a bin
close to the true frequency of a sinusoidal signal. But because we have not actually
increased the amount of data, the N′ − N additional DFT values must be, in some
way, dependent on the original N DFT values. Return to Equation 3.38 and express
f as the inverse DFT of F:

F[m; N′] =
N−1∑
n=0

[
1
N

N−1∑
k=0

F[k] exp (+i2𝜋kn∕N)

]
exp(−i2𝜋mn∕N′).

Exchange the order of summation,

F[m; N′] =
N−1∑
k=0

F[k]

[
1
N

N−1∑
n=0

exp (+i2𝜋kn∕N) exp(−i2𝜋mn∕N′)

]

=
N−1∑
k=0

F[k]

[
1
N

N−1∑
n=0

exp[i2𝜋(k − mN∕N′)n∕N]

]
and defining r = N′/N,

=
N−1∑
k=0

F[k]
1 − exp[i2𝜋 (k − m∕r)]

N(1 − exp[i2𝜋 (k − m∕r) ∕N])
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

KN (k−m∕r))

, m = 0, 1, 2,… , N′ − 1.

In general, the values of F[m; N′] are linear combinations of the original DFT
values, with coefficients supplied by a kernel function, KN (k − m∕r), closely related
to the Dirichlet kernel:

KN(x) =
1 − exp[i2𝜋x]

N(1 − exp[i2𝜋x∕N])
= 1

N
exp

(
i𝜋(N − 1)x

N

)
DN

( x
N

)
.

The effect of zero padding is to interpolate between the original values of the DFT.
In the special case where the padding factor r is an integer, at those values m that
are integer multiples of r (i.e., m = rp, p = 0, 1,… , N − 1), the interpolating kernel
simplifies to

KN (k − p) =
1 − exp[i2𝜋 (k − p)]

N(1 − exp[i2𝜋 (k − p) ∕N])
= 𝛿[k − p],

and we have F[rp; rN] = F[p]. Figure 3.17 illustrates this, that every second value of
F[m; 2N] and every fourth value of F[m; 4N] is one of the original values of F[m].

We will see in Section 3.5 that the highest computational efficiency for the
DFT is obtained when the number of points is a power of 2. In certain practical
applications, if one has a vector of length N not a power of 2, zero padding can
be used to extend the vector to a length N′, which is a power of 2. Frequently, the
computation of the DFT will be faster for the padded vector, even though more DFT
values are being computed.

Just as zero padding in the time domain results in interpolation in the frequency
domain, we expect zero padding in the frequency domain to result in interpolation in
the time domain. But we cannot just append zeros to F[m]. When we zero padded f ,
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we added null time samples and preserved the relationships among the original values
of f . When we pad F we will be adding null frequency samples, but must add them
in such a way that relationships among the original values of F are also preserved.
The DFT values F[m] and F[N − m] are paired, associated with basis vectors 𝜙m and
𝜙N−m that have the same digital frequency. After zero padding, they must stay paired
so that they continue to be associated with basis vectors of the same frequency. Thus,
zero padding in the frequency domain looks like this: when N is even,(

F[0], F[1],… , F
[

N
2
− 1

]
, 1

2
F
[

N
2

]
, 0, … 0
⏟⏟⏟

N′−N−1

, 1
2
F
[

N
2

]
, F

[
N
2
+ 1

]
,… , F[N − 1]

)
,

and when N is odd,(
F[0], F[1],… , F

[
N−1

2

]
, 0,… , 0
⏟⏟⏟

N′−N

, F
[

N+1
2

]
,… , F[N − 1]

)
.

(The reason for splitting F[N∕2] between two bins is explored in the problems.)
Frequency domain zero padding is illustrated in Figure 3.18 for a single cosine.

As expected, new values are interpolated between the points of the original sequence.
Near the ends, the interpolation does not appear to smoothly follow the expected
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FIGURE 3.18 Effect of zero padding in the frequency domain. Clockwise, from top left:
The original sequence f [n] = cos (0.44545𝜋n + 1.9186𝜋). The DFT magnitude, |F[m]|. The
magnitude of the DFT, after inserting zeros in bins 9 through 39. The inverse DFT of the
padded DFT interpolates two samples between each of the original samples (heavy dots) and
scales by 1∕3.
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sinusoidal shape. We also observe that the magnitude of the interpolated sequence
appears to be 1∕3 the size of the original sequence for N′ = 3N. Both of these
phenomena are explained by calculating the inverse DFT of the padded DFT.

Writing out the terms of the inverse DFT explicitly,

f [n; N′] = 1
N′

[
F[0]ei2𝜋0n∕N′ + F[1]ei2𝜋1n∕N′ +⋯ + F

[
N
2
− 1

]
ei2𝜋(N∕2−1)n∕N′

+ 1
2

F
[

N
2

]
ei2𝜋(N∕2)n∕N′ + 0 +⋯ + 0 + 1

2
F
[

N
2

]
ei2𝜋(N′−N∕2)n∕N′

+ F
[
N −

(
N
2
− 1

)]
ei2𝜋(N′−(N∕2−1))n∕N′ +⋯ + F[N − 1]ei2𝜋(N′−1)n∕N′

]
.

We will simplify this sum by exploiting the periodicity of the DFT. In the second and
third lines, note that ei2𝜋(N′−m)n∕N′ = e−i2𝜋mn∕N′

. In the same terms, replace F[N − k]
by F[−k]. We then have

f [n; N′] = 1
N′

[
F[0]ei2𝜋0n∕N′ + F[1]ei2𝜋1n∕N′ +⋯ + F

[
N
2
− 1

]
ei2𝜋(N∕2−1)n∕N′

+ 1
2

F
[

N
2

]
ei2𝜋(N∕2)n∕N′ + 0 +⋯ + 0 + 1

2
F
[
−N

2

]
e−i2𝜋(N∕2)n∕N′

+F
[
−
(

N
2
− 1

)]
e−i2𝜋(N∕2−1)n∕N′ +⋯ + F[−1]e−i2𝜋n∕N′

]
,

which is compactly written

f [n; N′] = 1
N′

N∕2∑
m=−N∕2

F[m] RN [m] exp
( i2𝜋mn

N′

)
, n = 0, 1, 2,…N′ − 1,

where

RN [m] =
⎧⎪⎨⎪⎩

1, |m| < N∕2
1
2
, |m| = N∕2

0, N∕2 < |m| ≤ N′∕2

.

Now, express F[m] as the DFT of f ,

f [n; N′] = 1
N′

N∕2∑
m=−N∕2

[
N−1∑
k=0

f [k] exp
(
− i2𝜋mk

N

)]
RN[m] exp

( i2𝜋mn
N′

)
= 1

N′

N−1∑
k=0

f [k]
N∕2∑

m=−N∕2

RN[m] exp
(
− i2𝜋mk

N

)
exp

( i2𝜋mn
N′

)
= 1

r

N−1∑
k=0

f [k]
1
N

N∕2∑
m=−N∕2

RN[m] exp

(
−

i2𝜋m(k − n∕r)

N

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

KN (k−n∕r)

.



148 CHAPTER 3 THE DISCRETE FOURIER TRANSFORM

Using the usual geometric series manipulations and some trigonometric identities,
the inner sum works out to

KN (k − n∕r) = 1
N

N∕2∑
m=−N∕2

RN[m] exp

(
−

i2𝜋m(k − n∕r)

N

)
= 1

N
cos

(
𝜋(k − n∕r)

N

)
DN

(
k − n∕r

N

)
,

where DN is the Dirichlet kernel. When N is odd, the cosine factor is absent (see the
problems).

This analysis shows that the values of f [n; N′] are interpolated from the original
values of f , and the result is scaled down by r, the padding factor:

f [n; rN] = 1
r

N−1∑
k=0

f [k] KN (k − n∕r).

Because of the periodicity of both f and the interpolation kernel, the values near one
end of the vector contribute to the interpolated values near the other end of the vector.
Large differences between f [0] and f [N − 1] show up in the interpolated values near
the ends, as observed in Figure 3.18.

These results are collected in the following theorem.

Theorem 3.9 (Zero padding). Let f , F ∈ ℂN be a DFT pair, and let r = N′∕N,
where N′ ≥ N.

1. In the time domain, define fr ∈ ℂN′
by zero padding,

fr =
(

f [0]⋯ f [N − 1], 0⋯ 0
⏟⏟⏟

N′−N

)
.

The DFT of fr, written F[m; N′], consists of values interpolated from F,

F[m; N′] =
N−1∑
k=0

F[k] KN(k − m∕r), m = 0, 1, 2,…N′ − 1, (3.40)

where

KN(x) = 1
N

1 − ei2𝜋x

1 − ei2𝜋x∕N
= 1

N
exp

[
i2𝜋

(N − 1
N

)
x
]

DN

( x
N

)
and DN is the Dirichlet kernel.

2. In the frequency domain, define Fr ∈ ℂN′
by zero padding,

Fr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

(
F[0]⋯F

[
N
2
− 1

]
, 1

2
F
[

N
2

]
, 0⋯ 0
⏟⏟⏟

N′−N−1

, 1
2
F
[

N
2

]
, F

[
N
2
+ 1

]
⋯F[N − 1]

)
N even

(
F[0]⋯F

[
N−1

2

]
, 0⋯ 0
⏟⏟⏟

N′−N

, F
[

N+1
2

]
⋯F[N − 1]

)
N odd

.
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The inverse DFT of Fr, written f [n; N′], consists of values interpolated
from f ,

f [n; N′] = 1
r

N−1∑
k=0

f [k] KN (k − n∕r), n = 0, 1, 2,…N′ − 1, (3.41)

where

KN (x) =

⎧⎪⎪⎨⎪⎪⎩
1
N

cos
(
𝜋x
N

)
DN

( x
N

)
, N even

1
N

DN

( x
N

)
, N odd

.

⋆ Redundant basis vectors
We digress briefly to take another look at Equation 3.38, which will lead to a different
interpretation of the interpolated frequency bins. Recall

F[m; N′] =
N−1∑
n=0

f [n]e−i2𝜋mn∕N′
, m = 0, 1, 2,… , N′ − 1.

The original signal f is N-dimensional, but the DFT F is N′-dimensional. If we
calculate the inverse DFT in the usual way, we have

1
N′

N′−1∑
m=0

F[m; N′] e+i2𝜋mn∕N′ = 1
N′

N′−1∑
m=0

[
N−1∑
k=0

f [k]e−i2𝜋mk∕N′

]
e+i2𝜋mn∕N′

=
N−1∑
k=0

f [k]
⎡⎢⎢⎣ 1

N′

N′−1∑
m=0

e+i2𝜋m(n−k)∕N′
⎤⎥⎥⎦ .

The bracketed quantity is unity when k = n, n ± N′,…, and zero otherwise. For n = 0,
it sifts out the k = 0 term of the sum, which is f [0]. For n − 1, it sifts out f [1], and so
forth, to n = N − 1. For n = N and higher, up to n = N′ − 1, there is no corresponding
term in the sum and the result is zero. Thus, we have

1
N′

N′−1∑
m=0

F[m; N′] e+i2𝜋mn∕N′ = f [n], n = 0, 1,…N − 1.

This expression is an expansion of the N-vector f in terms of N′ basis vec-
tors. But ℂN is spanned by only N orthogonal basis vectors. The set of DFT vectors{

ei2𝜋mn∕N′}N−1
n=0 , m = 0…N′ − 1, comprise a nonorthogonal set with N′ − N redun-

dant members. The expansion on this redundant set is the interpolated DFT we
obtained by zero padding.
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Redundant basis sets are called frames and have several important applications
in signal processing.5

Zero packing
The previous theorem gives the DFT of a sequence that has been extended by append-
ing zeros. We may also consider what happens when a sequence is extended by repli-
cation; instead of appending zeros, p − 1 copies of the sequence itself are appended.
We define the sequence gp by

gp[n] = f [n mod N] , n = 0, 1, 2,… pN − 1.

The DFT of gp is
pN−1∑
n=0

f [n mod N] exp

(
− i2𝜋mn

pN

)
, m = 0, 1,… , pN − 1. Now,

write n = 𝜈 + kN, where k = ⌊n∕N⌋ and 𝜈 = n mod N, and make a double sum over
𝜈 = 0, 1,…N − 1 and k = 0, 1,… p − 1:

Gp[m] =
p−1∑
k=0

N−1∑
𝜈=0

f [𝜈] exp

(
− i2𝜋m(𝜈 + kN)

pN

)
=

p−1∑
k=0

exp

(
− i2𝜋mk

p

) N−1∑
𝜈=0

f [𝜈] exp

(
−

i2𝜋(m∕p)𝜈

N

)
m = 0, 1, 2,… pN − 1.

The first sum is

p−1∑
k=0

exp

(
− i2𝜋mk

p

)
= 1 − ei2𝜋m

1 − ei2𝜋m∕p
=

{
p, m = 0, p, 2p,…
0, otherwise

and the second sum is a DFT, F[m∕p]. Thus, we have

Gp[m] =
⎧⎪⎨⎪⎩

pF

[
m
p

]
, m = 0, p, 2p,… (N − 1)p

0, otherwise
.

The DFT of a p-fold periodic replication of a sequence is the DFT of the original
sequence, with p − 1 zeros inserted after each of the values of the original DFT. Also,
the p-fold replication causes the DFT values to be scaled up by a factor of p. This
periodic insertion of zeros is called zero packing. For convenience, we will define
a sequence F[m∕p] to be zero when m is not an integer multiple of p, that is, it is
obtained by taking a sequence F[m] and packing p − 1 zeros after each sample. Then
the above relationship may be compactly written(

f [n mod N]
)pN−1

n=0 ⟷
(
pF[m∕p]

)pN−1
m=0

or just f [n mod N] ⟷ pF[m∕p], where we understand that the indices n and m run
from 0 to pN − 1.

5See Kovačević and Chebira (2007a, 2007b) for an introduction to frames. Also see Mallat (1999, pp.
125–138).



3.4 DFT PROPERTIES AND THEOREMS 151

The converse of this result says that if a sequence is packed with zeros, then its
DFT is the periodic replication of the original DFT. Let f [n∕p] denote the sequence
f [n] with p − 1 zeros packed after each sample. Then the DFT of f [n∕p] is

pN−1∑
n=0

f

[
n
p

]
exp

(
− i2𝜋mn

pN

)
=

(N−1)p∑
n=0,p,2p…

f

[
n
p

]
exp

(
−

i2𝜋m(n∕p)

N

)

=
N−1∑
k=0

f [k] exp
(
− i2𝜋mk

N

)
, m = 0, 1, 2,… pN − 1.

This is the DFT of f , which is periodic with period N. As the index m runs from 0 to
pN − 1, we get p periods of F. We may write:

(
f [n∕p]

)pN−1
n=0 ⟷ (F[m mod N])pN−1

m=0

or just f [n∕p] ⟷ F[m mod N], where the ranges of the indices n and m are implicit.
Zero packing is illustrated in Figure 3.19.

These results are summarized in the following theorem.

Theorem 3.10 (Zero packing). Let f , F ∈ ℂN be a DFT pair. Define the zero-

packed sequence
(
f [n∕p]

)pN−1
n=0 by inserting p − 1 zeros after each sample of f ,

(
f [n∕p]

)
=

(
f [0], 0… 0

⏟⏟⏟

p−1 zeros

, f [1], 0… 0, … f [N − 1], 0… 0
)
.

Then

f [n∕p] ⟷ F[m mod N] (3.42a)

f [n mod N] ⟷ pF[m∕p], (3.42b)

where m, n = 0, 1, 2,… pN − 1.

With both padding and packing, appending values to a vector in one domain
causes values to be inserted between a vector’s points in the other domain. One
either appends zeros (zero padding) or replicas of the vector (zero packing). The
inserted values are either zeros (zero packing) or interpolated from the values of the
vector (zero padding). The apparent asymmetry, with a factor of p before the DFT
in Equation 3.42b but not in Equation 3.42a, is considered in the problems. Packing
and padding are frequently used together in signal processing.
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FIGURE 3.19 The effect of zero packing on the DFT of a sequence (Equation 3.42a).
Top: A 16-point cosine sequence f [n] = cos (0.19022𝜋n + 1.1356𝜋) and the magnitude of its
DFT, |F[m]|. Middle: The 48-point sequence f [n∕3] is created by inserting two zeros after
every sample of the original sequence. Its DFT is F[m mod 3], a threefold replication of the
original DFT. Bottom: The 48-point sequence f [n mod 3] is created by replicating the original
sequence three times. Its DFT is 3F[m∕3], with two zero bins packed between each of the
original DFT values.

3.5 FAST FOURIER TRANSFORM

The DFT is an important practical tool because there are efficient algorithms for
computing it. This section introduces the most popular method, the Cooley–Tukey
fast Fourier transform.6

6See Cooley and Tukey (1965). The basic idea was known to Gauss, and was rediscovered several times
before the widespread availability of digital computers provided the right soil for it to take root. See the
historical notes in Cooley (1987).
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Direct computation of the DFT using the summation

F[m] =
N−1∑
n=0

f [n]e−i2𝜋mn∕N , m = 0, 1,…N − 1

requires, in general, N multiplications and N − 1 additions for each of the N ele-
ments of F. If f is complex-valued, then each multiplication itself requires four
real multiplies and two real adds: (a + ib)(c + id) = (ac − bd) + i(bc + ad). Each of
the N − 1 complex adds requires two real addition operations: (a + ib) + (c + id) =
(a + c) + i(b + d). The total operation count is 4N2 (real) multiplies and 4N2 − 2N
(real) adds. In some digital processing hardware, a multiply-add is one operation, and
it is unnecessary to keep separate track of multiplies and adds. What we have, then,
is 4N2 real operations. This number can be lowered somewhat. If f is real, then only
2N2 operations are needed, but in this case, F is also Hermitian, so only the values for
m = 0 through N∕2 need to be calculated, reducing the total by roughly half again.
If f is even or odd, then further symmetries can be exploited. But the fact remains
that direct calculation of the DFT is proportional to N2. We say that it is O(N2), or
“quadratic time.”

On the other hand, the FFT algorithm is O(N log2 N) when N is a power of 2.
Even for a small transform, for example, N = 32, the savings are substantial: 170 vs.
1024. For N = 512, a size commonly encountered in signal analysis, the difference is
huge: approximately 4600 vs. 256000! The FFT accomplishes this feat by exploiting
the symmetries inherent in the DFT basis vectors.

The Cooley–Tukey algorithm
We will illustrate the approach by deriving an FFT for N = 8. An eight-point FFT
should require N log2 N = 8 × 3 = 24 operations. For a fixed value of m, the DFT
sum is

F[m] =
7∑

n=0

f [n]W−mn
8 = f [0]W0

8 + f [1]W−m
8 + f [2]W−2m

8 + f [3]W−3m
8

+ f [4]W−4m
8 + f [5]W−5m

8 + f [6]W−6m
8 + f [7]W−7m

8 ,

where Wn
N = ei2𝜋n∕N . In the folklore of the FFT, the Wn

N are called twiddle factors.
The first step is to recognize that W−m

8 = W−m
8 W0

8 , W−3m
8 = W−m

8 W−2m
8 , etc.

Separating the odd- and even-indexed terms in the series, we obtain

F[m] =
(

f [0]W0
8 + f [2]W−2m

8 + f [4]W−4m
8 + f [6]W−6m

8

)
+W−m

8

(
f [1]W0

8 + f [3]W−2m
8 + f [5]W−4m

8 + f [7]W−6m
8

)
.
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Observing that W2
8 = W4,

F[m] =
(

f [0]W0
4 + f [2]W−m

4 + f [4]W−2m
4 + f [6]W−3m

4

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F0246[m]

+W−m
8

(
f [1]W0

4 + f [3]W−m
4 + f [5]W−2m

4 + f [7]W−3m
4

)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F1357[m]

= F0246[m] + W−m
8 F1357[m],

where F0246 and F1357 are four-point DFTs, of the sequences (f [0], f [2], f [4], f [6])
and (f [1], f [3], f [5], f [7]), respectively. They are combined by the twiddle factor W−m

8 .
Let us take stock of the operation count for this division of the calculation. The

two four-point DFTs each require four multiply-adds for each of the eight values
of F[m]. Combining them with the twiddle factor contributes another multiply-add.
The total is nine operations, which looks like a step backward when compared with
eight operations for the direct calculation. But the four-point DFTs are periodic with
period 4, that is,

F0246[m + 4] = f [0]W0
4 + f [2]W−(m+4)

4 + f [4]W−2(m+4)
4 + f [6]W−3(m+4)

4

= f [0]W0
4 + f [2]W−m

4 + f [4]W−2m
4 + f [6]W−3m

4
= F0246[m]

F1357[m + 4] = F1357[m],

because W4k
4 = 1. This simplifies the eight values of F to

F[0] = F0246[0] + W0
8 F1357[0] = F0246[0] + F1357[0]

F[4] = F0246[0] + W−4
8 F1357[0] = F0246[0] − F1357[0]

F[1] = F0246[1] + W−1
8 F1357[1]

F[5] = F0246[1] + W−5
8 F1357[1] = F0246[1] − W−1

8 F1357[1]

F[2] = F0246[2] + W−2
8 F1357[2]

F[6] = F0246[2] + W−6
8 F1357[2] = F0246[2] − W−2

8 F1357[2]

F[3] = F0246[3] + W−3
8 F1357[3]

F[7] = F0246[3] + W−7
8 F1357[3] = F0246[3] − W−3

8 F1357[3],

where we have used W−4
8 = e−i2𝜋4∕8 = e−i𝜋 = −1. Now let us do the operation count.

16 operations
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

four-point DFT

× 2
⏟⏟⏟

two DFTs

+ 4
⏟⏟⏟

× twiddle factors

= 36.

This is just over half of the 64 operations required by the direct calculation.
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The process can be repeated, expressing each of the four-point DFTs in terms
of two-point DFTs:

F0246[m] = f [0]W0
4 + f [2]W−m

4 + f [4]W−2m
4 + f [6]W−3m

4

=
(

f [0] + f [4]W−m
2

)
+ W−m

4

(
f [2] + f [6]W−m

2

)
= F04[m] + W−m

4 F26[m]

and, similarly,

F1357[m] = F15[m] + W−m
4 F37[m].

F04 is the DFT of (f [0], f [4]), F26 is the DFT of (f [2], f [6]), etc. These two-point
DFTs are periodic with period 2, so F04[m + 2] = F04[m], etc. Hence,

F0246[0] = F04[0] + F26[0]

F0246[2] = F04[0] − F26[0]

F0246[1] = F04[1] + W−1
4 F26[1]

F0246[3] = F04[1] − W−1
4 F26[1]

and similarly for F1357. Now a two-point DFT is very simple, for example:

F26[0] = f [2]W0
2 + f [6]W0

2 = f [2] + f [6]

F26[1] = f [2]W0
2 + f [6]W−1

2 = f [2] − f [6].

It requires only two operations (an add and a subtract). The operation count for a
four-point DFT computed this way, then, is

2 operations
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

two-point DFT

× 4
⏟⏟⏟

four DFTs

+ 2
⏟⏟⏟

× twiddle factors

= 10

instead of 16 by direct calculation. The final operation count for the eight-point DFT
is

10 operations
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

four-point DFT

× 2
⏟⏟⏟

two DFTs

+ 4
⏟⏟⏟

× twiddle factors

= 24,

as expected.
The order of computations in the FFT is often presented as a signal-flow

diagram (Figure 3.20). The shape of the signal-flow for the basic two-point DFT
suggests its common name—butterfly. We see from the diagram that the entire FFT
is just a chain of butterfly operations. The diagram also reveals where the N log2 N
performance comes from. Moving from right to left, the eight-point DFT is expressed
as two four-point DFTs, combined with four butterflies (eight operations). Each of
the four-point DFTs is, in turn, broken down into four two-point DFTs, which are
combined with eight operations. Finally, the four two-point DFTs require a total of
eight operations. The number of levels is log2 8 = 3, and each level requires eight
operations, two per butterfly. For a general N, which is a power of two, there will
be log2 N levels, and each level will require N twiddle-factor operations to do its
butterflies: N log2 N.
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FIGURE 3.20 Signal-flow diagram for an eight-point fast Fourier transform. The basic
butterfly calculation is shown in heavier lines at the upper left. Arrows correspond to multi-
plication operations, and dots are addition operations, for example, F04[0] = f [0] + f [4] and
F04[1] = f [0] − f [4]. There are log2 8 = 3 levels, with eight multiply-add operations per level.
The first level (left) computes four two-point DFTs. The second level (center) combines these
into two four-point DFTs. The third level (right) combines the four-point DFTs into the
eight-point DFT.

Further aspects of using the FFT are explored in the problems. More compre-
hensive discussions of the FFT can be found in most signal processing texts.7

⋆ 3.6 DISCRETE COSINE TRANSFORM

To conclude the chapter, we introduce a transform closely related to the DFT, which
is particularly useful in signal and image compression. The basic idea in image

7See, for example, Porat (1997, Chapter 4), Brigham (1988, Chapter 8), and Oppenheim and Schafer
(2010, Chapter 9).
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compression is to store an image using less memory or to transmit an image in less
time. If the decompressed image is exactly the same as the original uncompressed
image, we say that the compression is lossless. Frequently, some loss of accuracy can
be tolerated in order to achieve higher compression. Then the compression is called
lossy, and the objective is to achieve the highest compression possible consistent with
the image fidelity required by the end user.

One of the most popular lossy compression methods at the present time is JPEG
(for Joint Photographic Experts Group, the organization that published the standard).
In JPEG compression, an image is divided into non-overlapping 8 × 8 pixel blocks.
Each block is treated as a point in ℝ64 and projected onto 64 orthogonal basis images
(Example 2.12). The expansion coefficients are then processed to determine which
components are perceptually important—roughly, which ones would be conspicuous
by their absence in the final image; the rest are set to zero. A subsequent lossless coding
step efficiently packs the coefficients for each block into a bit stream for storage or
transmission. Decompression consists of unpacking the coefficients, resynthesizing
the blocks, and fitting them back together into an image.

We will consider here only the basic problem of computing a Fourier expansion
for a real-valued eight-point vector: one row of an 8 × 8 block. Statistical analysis of
images has shown that a properly chosen Fourier basis is nearly optimal in the sense
of packing the most signal energy into the fewest coefficients.8

In preparation for the mathematical derivation we present an example.

Example 3.18. Consider a ramp sequence, f = (0, 1, 2, 3, 4, 5, 6, 7), which is repre-
sentative of how an image might change over a relatively smooth eight-pixel run. The
ramp and its DFT are shown in Figure 3.21. All the DFT coefficients are strong. The
ramp sequence is not symmetric and does not bear any resemblance to one period of
a sine or cosine. Consequently, it does not project well onto any particular DFT basis
vector. Attempting to set the weakest DFT values to zero results in considerable error
in the reconstruction.

Appending the mirror image of f as shown in Figure 3.22 converts the asym-
metric ramp into a symmetric triangular sequence.

fs[n] =
{

f [n], n = 0, 1,… 7
f [15 − n], n = 8, 9,… 15

. (3.43)

This new sequence fs is not strictly even, since fs[n] ≠ fs[16 − n]. However, it is
almost an even periodic sequence, and so we would expect it to project more strongly
onto low frequency basis vectors than did the original ramp. This is what we observe
in Figure 3.22. In fact, most of the values of the DFT Fs can be set to zero with
negligible effect on the reconstruction.

In this example, both f and fs are real, so their DFTs are Hermitian. This means
that five (complex) values of F (eight real numbers, because F[0] and F[4] are real)
must be stored to accurately reconstruct f . On the other hand, only three values of Fs
(five real numbers) are needed get a virtually error-free reconstructon of fs, the first

8Ahmed et al. (1974); Unser (1984).
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FIGURE 3.21 The DFT is not a good choice for compression. (a) A ramp sequence (left)
and the magnitude of its DFT (right). There are significant contributions in all bins. (b) and (c)
Attempting compression by setting the smallest DFT values to zero (light circles). (b) Setting
F[4] = 0. (c) Setting F[3], F[4], F[5] to zero. Significant error results.

half of which is the reconstructed f . If fs actually had even symmetry, then Fs would
be real-valued and three real numbers would suffice for reconstructing f —a savings
of about 60% over the uncompressed version!

What makes even and odd sequences special for the DFT is the fact that the
basis vectors 𝜙m are Hermitian. The real and imaginary parts of 𝜙m are even and
odd, respectively. The inner product of an even sequence with an odd sequence can
be shown to be zero, so when we calculate the DFT of a real, even sequence, the
odd part of the DFT, which is also the imaginary part, is zero. Likewise, when we
calculate the DFT of a real, odd sequence, the even part of the DFT, the real part,
is zero. The trouble with using the DFT with fs as we have constructed it is that its
symmetries do not match the symmetries of the DFT basis functions. So let us see if
we can construct an alternative basis that will match up correctly with fs.

Figure 3.23 shows the symmetrized ramp sequence again, periodically extended
over all n. It has a period of 16, and it is symmetric about two points, n = −0.5 and
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FIGURE 3.22 Making a sequence symmetric by mirror reflection. Top: The 16-point DFT of
the symmetric sequence fs is more concentrated in lower bins than the DFT of the original ramp.
Bottom: All but five values of Fs are set to zero, with negligible effect on the reconstruction.

n = 7.5. (There are other ways to symmetrize f so that fs is even (see the problems for
examples) but the resulting sequences have lengths 14 or 15, which are not optimal for

using the FFT.) In contrast, the DFT basis vector 𝜙m =
(
ei2𝜋mn∕16

)15
n=0 is symmetric

about n = 0 and n = 8. The figure shows that if we shift the complex exponential left

by a half sample, a new vector
(
ei2𝜋m(n+ 1

2
)∕16)15

n=0 results that has the same symmetry
as fs.

The inner products of the symmetrized ramp fs with the DFT basis vector 𝜙1

and the shifted vector
(
ei2𝜋(n+ 1

2
)∕16)15

n=0 are, respectively,

⟨fs,𝜙1⟩ = −50.5483 + i10.0547⟨
fs,

(
exp

i2𝜋(n + 1
2
)

16

)⟩
=

⟨
fs,

(
cos

i2𝜋(n + 1
2
)

16

)⟩
+ i

⟨
fs,

(
sin

i2𝜋(n + 1
2
)

16

)⟩
= −51.5386 − i0.0000.

The imaginary part is zero in the second case because the symmetry of(
ei2𝜋(n+ 1

2
)∕16)15

n=0 matches that of the signal fs. We have, in effect, designed the
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FIGURE 3.23 Designing a basis. (a) The vector fs has even symmetry with respect to the
points n = −0.5, 7.5, 15.5. (b) The DFT basis vectors do not share this symmetry. The real part

of𝜙1, (cos 2𝜋n∕16), is shown for example. (c) The vector
(

cos
2𝜋(n+ 1

2
)

16

)
has the same symmetry

as fs. This suggests that a basis constructed from the vectors
{(

cos
2𝜋m(n+ 1

2
)

16

)15

n=0

}15

m=0
is better

suited to representing fs.

vectors
(

sin
2𝜋m(n+ 1

2
)

16

)15
n=0 to be orthogonal to fs. This allows us to replace the shifted

complex exponential vectors with the shifted cosine vectors
(

cos
2𝜋m(n+ 1

2
)

16

)
.

Another observation from the figure is that, in the inner product⟨
fs,

(
cos

2𝜋(n + 1
2
)

16

)⟩
=

15∑
n=0

fs[n] cos
2𝜋(n + 1

2
)

16
,

the sum of terms 0 through 7 is identical to the sum of terms 8 through 15, because
of the symmetry about n = 7.5. So,⟨

fs,

(
cos

2𝜋(n + 1
2

)

16

)⟩
= 2

7∑
n=0

f [n] cos
2𝜋(n + 1

2
)

16
.
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FIGURE 3.24 The vectors 𝜙′
m[n] = cos

𝜋m(n+ 1
2

)

N
, N = 8.

These symmetries should hold for the more general vectors𝜙′
m =

(
cos

2𝜋m(n+ 1
2

)

16

)7
n=0,

which we suspect will span ℝ8. But, also, 𝜙′
16−m = 𝜙

′
m and 𝜙

′
8 = 0, so only the inner

products for m = 0, 1,… 7 need to be calculated. If a formal derivation confirms our
intuition, we will have a real transform for f (not fs) based on the set of vectors{(

cos
𝜋m(n+ 1

2
)

8

)7
n=0

}7
m=0.

Derivation of the discrete cosine transform
It is not any harder to develop the transform for a sequence of arbitrary length N.

Define the vectors
{
𝜙
′
m

}N−1
m=0, where

𝜙
′
m[n] = cos

𝜋m(n + 1
2
)

N
, n = 0, 1,…N − 1

(Figure 3.24).
These vectors are orthogonal,⟨

𝜙
′
m,𝜙′

k

⟩
= N

2𝜎m
𝛿[m − k], (3.44)

where

𝜎m =
{ 1

2
, m = 0

1, otherwise
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so they span ℝN . Normalizing, we have an orthonormal basis {em}N−1
m=0, where

em[n] =
√
𝜎m

√
2
N

cos
𝜋m(n + 1

2
)

N
. (3.45)

Using this basis, we can represent f by orthogonal projection,

f [n] =
N−1∑
m=0

Fc[m]em[n]

Fc[m] = ⟨f , em⟩ = N−1∑
n=0

f [n]em[n].

This proves the following theorem.

Theorem 3.11 (Discrete cosine transform). Let f ∈ ℝN . Then

f [n] =
√

2
N

N−1∑
m=0

Fc[m]
√
𝜎m cos

𝜋m(n + 1
2

)

N
, n = 0, 1,…N − 1 (3.46a)

Fc[m] =
√

2
N

N−1∑
n=0

f [n]
√
𝜎m cos

𝜋m(n + 1
2
)

N
, m = 0, 1,…N − 1 (3.46b)

𝜎m =
{ 1

2
, m = 0

1, otherwise
. (3.46c)

The vector Fc ∈ ℝN is called the DCT of f .

In the particular case N = 8,

f [n] = 1
2

7∑
m=0

Fc[m]
√
𝜎m cos

𝜋m(n + 1
2
)

8
, n = 0, 1,… 7

Fc[m] = 1
2

7∑
n=0

f [n]
√
𝜎m cos

𝜋m(n + 1
2
)

8
, m = 0, 1,… 7.

The DCT of the ramp sequence is shown in Figure 3.25. The DCT concentrates
most of the ramp’s energy in the first two bins, unlike the DFT (compare Figure 3.21).
The sequence that is reconstructed using only the low frequency coefficients is very
close to the original.

In JPEG image compression, the original image is divided into 8 × 8 pixel
blocks. Each block, represented as an array (x[i, j])7

i,j=0, is projected onto and
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FIGURE 3.25 (a) A ramp sequence (left) and the magnitude of its discrete cosine transform
(right). Unlike the DFT (compare Figure 3.21), most of the energy is concentrated in the low
frequency bins. (b) and (c) Attempting compression by setting the smallest DCT values to zero
(light circles). (b) Setting Fc[4] through Fc[7] = 0. (c) Setting Fc[2] through Fc[7] = 0. Even
with only two coefficients, the reconstruction is very good.

reconstructed from basis images {ekl}
7
k,l=0 constructed from the DCT basis vectors

(Equation 3.45).

x[i, j] =
7∑

k=0

7∑
l=0

Xc[k, l]ekl[i, j] (3.47a)

Xc[k, l] =
7∑

i=0

7∑
j=0

x[i, j]ekl[i, j] (3.47b)

ekl[i, j] = 1
4

√
𝜎k𝜎l cos

𝜋k(i + 1
2
)

8
cos

𝜋l(j + 1
2
)

8
. (3.47c)

These basis images (Equation 3.47c) are the ones displayed in Figure 2.7 and used
in Example 2.12 of Chapter 2.
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3.7 SUMMARY

Discrete Fourier transform

f [n] = 1
N

N−1∑
m=0

F[m] exp
( i2𝜋mn

N

)
, n = 0, 1,… , N − 1 (3.11a)

F[m] =
N−1∑
n=0

f [n] exp
(
− i2𝜋mn

N

)
, m = 0, 1,… , N − 1. (3.11b)

Interpretation
A function f (x) is sampled at intervals Δx, creating the sequence (f [n])N−1

n=0 ,

f [n] = f (nΔx). In the DFT sequence (F[m])N−1
m=0, bins m = 0, 1,… , N

2
− 1 correspond

to frequencies 𝜈 = 0,Δ𝜈,… ,
(

N
2
− 1

)
Δ𝜈, and bins m = N

2
, N

2
+ 1,… , N − 1 corre-

spond to “negative” frequencies 𝜈 = −N
2
Δ𝜈,

(
−N

2
+ 1

)
Δ𝜈,… ,−Δ𝜈. The bin spac-

ing is Δ𝜈 = 1
NΔt

.

An “in-bin” signal projects onto only one DFT bin frequency. An “out-of-bin”
signal projects onto all DFT bin frequencies (spectral leakage).

Fast Fourier transform
Direct computation of the DFT sum requires O(N2) operations. The FFT algorithm
requires O(N log2 N) operations for N a power of 2.

Discrete cosine transform

f [n] =
√

2
N

N−1∑
m=0

Fc[m]
√
𝜎m cos

𝜋m(n + 1
2

)

N
, n = 0, 1,…N − 1 (3.46a)

Fc[m] =
√

2
N

N−1∑
n=0

f [n]
√
𝜎m cos

𝜋m(n + 1
2
)

N
, m = 0, 1,…N − 1 (3.46b)

𝜎m =
{ 1

2
, m = 0

1, otherwise
.

Basic DFT pairs derived in this chapter

𝛿[n] ⟷ (1… 1) (3.23)

(1… 1) ⟷ N𝛿[m] (3.24)

( 1… 1
⏟⏟⏟

P

0… 0 ) ⟷ ei𝜋(P−1)m∕NDP (m∕N) (3.22)

ei2𝜋kn∕N ⟷ N𝛿[m − k] (3.18)

cos (2𝜋kn∕N) ⟷ N
2
𝛿[m − k] + N

2
𝛿[m − (N − k)] (3.19)

sin (2𝜋kn∕N) ⟷ − iN
2
𝛿[m − k] + iN

2
𝛿[m − (N − k)]. (3.20)
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DFT Properties and Theorems

Periodicity f and F are each one period of a sequence with period N,

always interpreted as f [n mod N] and F[m mod N].

Symmetry See Figure 3.10

Linearity af + bg ⟼ aF + bG (3.26)

Parseval
N−1∑
n=0

f [n]g∗[n] = 1
N

N−1∑
m=0

F[m]G∗[m] (inner products

preserved)

(3.27a)

N−1∑
n=0

|f [n]|2 = 1
N

N−1∑
m=0

|F[m]|2 (norms preserved) (3.27b)

Area F[0] =
N−1∑
n=0

f [n], f [0] = 1
N

N−1∑
m=0

F[m] (3.28)

Cyclic shift
(

f [n − r]
)N−1

n=0
⟼

(
e−i2𝜋rm∕N F[m]

)N−1

m=0
(3.30)

Convolution f ⊛ h[n] =
N−1∑
k=0

f [k]h[n − k]

f ⊛ h ⟼ FH fh ⟼ 1
N

F ⊛ H (3.31)

Zero
padding

Zero padding in one domain interpolates in the other
domain.

(3.40) and (3.41)

Zero
packing

Zero packing in one domain periodically replicates in
the other domain.

(3.42)

PROBLEMS

3.1. Show that the inner product of an even sequence and an odd sequence is always zero.
Then, show that the inner product of a real, even sequence with a DFT basis vector is
real, and the inner product of a real, odd sequence with a DFT basis vector is imaginary.

3.2. Twiddle factor algebra
Verify the following twiddle-factor identities. Recall WN = ei2𝜋∕N .

(a) WN
N = 1, that is, WN is the so-called N th root of unity

(b)
(
Wm

N

)∗ = W−m
N

(c) WN∕2 = W2
N

(d) 1 − Wn
N = −2iWn

2N sin
(

𝜋n

N

)
.

3.3. Discrete sinusoid calculations
Using identities for trigonometric functions and geometric series,

(a) show that

N−1∑
n=0

cos2
𝜃n = N

2
+ 1

2
cos [(N − 1)𝜃]

sin N𝜃

sin 𝜃
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and, in particular, verify

N−1∑
n=0

cos2 2𝜋kn
N

=

{
N, k = 0, N

2
N

2
, otherwise

.

(b) derive the corresponding results for the sequence sin2
𝜃n.

3.4. Simple DFT exercises
This problem is designed to help you develop a more intuitive feel for how the DFT
operates.

(a) Calculate 16 samples of one period of a cosine. Make sure the frequency is such
that it is in the first DFT bin (lowest nonzero frequency). Is this sample sequence
even or odd? Calculate the DFT analytically, by evaluating the DFT sum. Compare
this with the DFT computed by Matlab. Do the symmetries of the DFT agree with
theory?

(b) Increase the frequency of the cosine in (a), always keeping it in a bin (for simplicity),
watching both the sample set and the DFT, until you observe aliasing.

(c) Repeat part (a) with a sine function having the same period.

3.5. Between-bin behavior
Examine carefully what happens to the DFT of a sinusoidal signal as the digital frequency
is changed from one bin to the next higher bin. Let 𝜃1 = 2𝜋(16)

128
and 𝜃2 = 2𝜋(17)

128
. Using

Matlab, calculate 128 samples of f [n] = cos 𝜃n. Vary 𝜃 in small increments from 𝜃1 to
𝜃2, and observe the effect on the DFT magnitude |F|.

3.6. Consider a sinusoidal signal with 𝜈 = 20 Hz, sampled at a rate 𝜈s = 1∕Δt = 100 Hz.
Take N = 256 samples of this signal, compute and plot the magnitude of the DFT.

(a) At what bins do the spectral peaks appear? Verify that this agrees with theory.

(b) Repeat the experiment with 𝜈s = 200 Hz and N = 256.

(c) Repeat the experiment with 𝜈s = 100 Hz and N = 128.

(d) Repeat the experiment with 𝜈 = 10 Hz, 𝜈s = 100 Hz and N = 128.

(e) Perform additional experiments, as needed, until you understand completely and can
explain concisely the relationship among 𝜈, 𝜈s, N, and the locations of the spectral
peaks.

3.7. A function f (t) is sampled at rate 𝜈s = 1000 Hz, and N = 512 samples are taken. The
sampled function f [n] and the magnitude of its DFT, F[m], are plotted in Figure 3.26.

(a) What is the spacing, Δ𝜈 (Hz), of the DFT bins?

(b) It is evident that f [n] contains a number of sinusoidal components, as well as some
noise. Estimate the frequencies of the sinusoids in Hz.

(c) Suppose the same function is sampled at a 500 Hz rate, again taking 512 samples.
Describe the effect on the spectrum.

3.8. A signal x(t) = sin 2𝜋𝜈0t with frequency 𝜈0 = 300 Hz is sampled with Δt = 0.001 s.
N = 64 samples are taken.

(a) What is the digital frequency 𝜃 of the sampled signal x[n]?

(b) The DFT X[m] is computed. At approximately what bin(s) will there be peaks in the
spectrum?
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FIGURE 3.26 For Problem 3.7. A sampled waveform and its DFT spectrum, in decibels
(20 log10 |F[m]|).

(c) Given the data vector x[n], n = 0, 1,… 63, it is desired to estimate the frequency
of x(t) to the nearest 1 Hz. How should the data be processed to achieve this
accuracy?

3.9. For the same function x(t) as the previous problem,

(a) how large can Δt be without producing aliasing?

(b) what is x[n] if you sample x(t) with this Δt? Discuss the practical importance of
your result.

3.10. A signal f (t) was sampled at an 8 kHz rate for 512 samples, and the DFT F[m] was
computed. The power spectrum |F[m]|2 is shown in Figure 3.27.

(a) From the spectrum, determine the frequency of f (t).

(b) It is suspected that the sampling rate might not be high enough, and that the peaks
shown are actually aliases of the correct spectrum. Describe an experiment you can
perform to confirm or refute this hypothesis. You have access to the data acquisition
system and are able to resample f (t) at 4 kHz and at 16 kHz. You may assume that
the true frequency of f (t) is not “too high” for this test to succeed.

3.11. Aliasing
Devise a general method for determining the aliased frequency that results when a
sinusoidal signal of frequency 𝜈 is sampled with 𝜈s < 2𝜈.

3.12. Linearity
Show that the inverse DFT is linear. Begin by showing f [n] = 1

N

⟨
F,𝜙∗

n

⟩
. n =

0, 1,… , N − 1.
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FIGURE 3.27 For Problem 3.10.

3.13. Symmetry
If an N-dimensional vector f is real-valued, its DFT is Hermitian, F[N − m] = F∗[m];
the real and imaginary parts of F are even and odd, respectively.

(a) Let F be the DFT of a real-valued vector, with N even. Show that F[N∕2] is real.

(b) Suppose an N-dimensional vector g is imaginary-valued. Discuss the symmetries in
its DFT.

3.14. Create a vector x of N = 16 random numbers and compute the DFT, X (e.g., using the
Matlab commands x=rand(1,N) and X = fft(x)).

(a) Plot separately the real and imaginary parts of the DFT X and describe their sym-
metries.

(b) Compute the sums of the values of x and of X, and verify that the area theorem
holds.

(c) Compute the 2-norms of x and X and verify that Parseval’s formula holds.

3.15. Repeat the previous problem for a vector x = (cos 𝜃n)15
n=0, where 𝜃 ∈ [−𝜋, 𝜋). Do it both

for in-bin and between-bin values of 𝜃.

3.16. The shift theorem
For the shifted sinusoidal sequence f [n] = cos

[
2𝜋k(n − p)∕N

]
, where k and p are inte-

gers, calculate the DFT F[m]. Then, for N = 16 and k = 2, use Matlab to compute and
plot both f and F for p = 0, 1,…N − 1. Plot the real part of F with solid stems and the
imaginary part with dashed stems. Calculate the magnitude |F[m]| and phase arg F[m]
for each p, and compare with your analytic result.

3.17. The convolution theorem
Compute the convolution in Example 3.16 in Matlab, using the DFT.

3.18. The rectangle function
Consider the sequence

f [n] =
⎧⎪⎨⎪⎩

1, n = 0, 1,…P
0, n = P + 1,…N − P − 1
1, n = N − P,…N − 1

.
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FIGURE 3.28 For Problem 3.19.

(a) Show that f has even symmetry.

(b) Calculate an expression for the DFT, F[m], in terms of the Dirichlet kernel. Hint:
Exploit the periodicity of the DFT basis vectors to write the DFT of the rectangle as
a sum from −P to P. Then make a change of variable so the sum runs from 0 to 2P.

(c) With reference to the properties of the Dirichlet kernel displayed in Figure 3.5, make
an accurate sketch of F, showing the effects of N and P. What do you observe about
the symmetry properties of F and the effect of P on f and F?

(d) Compute the DFT using Matlab, for N = 32 and P = 1, 2, 4, 8. Plot both f and F.
What do you observe about the symmetry properties of F, and the effect of P on f
and F?

(e) Alter f slightly by setting f [P + 1] = 1, and compute F for N = 32 and P = 4.
Compare the DFT to the P = 4 result for part (d). Explain the difference, qualitatively
and quantitatively.

3.19. A periodic function f (t) was sampled with Δt = 0.1 s for N = 32 samples. The DFT was
computed and is plotted in Figure 3.28.

Answer the following questions. Justify your answers.

(a) Is the original function f even, odd, or neither? Or is there insufficient information
to make a decision?

(b) Is the original function f real, imaginary, or neither? Or is there insufficient infor-
mation to make a decision?
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(c) What is the fundamental frequency of f (in Hz)?

(d) How much power is at the fundamental frequency?

(e) Calculate the approximate average value of f , which is
1
T

N−1∑
n=0

f (nΔt) Δt.

(f) Does f appear to have been sampled fast enough to avoid aliasing?

3.20. Zero padding
Let f , F ∈ ℂN be a DFT pair. It was stated in the text that when N is even, the correct
way to zero pad in the frequency domain is(

F[0]⋯F
[

N

2
− 1

]
, 1

2
F
[

N

2

]
, 0⋯ 0, 1

2
F
[

N

2

]
, F

[
N

2
+ 1

]
⋯F[N − 1]

)
.

Why must we split F[N∕2] into two values in the padded DFT, as opposed to writing(
F[0]⋯F

[
N

2
− 1

]
, F

[
N

2

]
, 0⋯ 0, 0, F

[
N

2
+ 1

]
⋯F[N − 1]

)
or (

F[0]⋯F
[

N

2
− 1

]
, 0, 0⋯ 0, F

[
N

2

]
, F

[
N

2
+ 1

]
⋯F[N − 1]

)
?

Consider the contribution of F[N∕2] to the N′-point inverse DFT in each of these three
cases.

3.21. Zero padding

(a) Fill in the steps in the derivation of the interpolation kernel in Equation 3.41 for
even N.

(b) Fill in the steps in the derivation of the interpolation kernel in Equation 3.41 for odd
N.

(c) Show that, in either case, when the padding factor r = N′∕N is an integer, then
every rth value of the inverse DFT is proportional to one of the original values of f ,

f [rp; rN] = 1
r

f [p].

3.22. Zero padding and redundant basis vectors

(a) Show that the DFT expansion, with zero padding, of an N-vector f can be written
in the matrix form

F =

⎡⎢⎢⎢⎢⎢⎢⎣

𝜙
†
0

𝜙
†
1

⋮

𝜙
†
N′−1

⎤⎥⎥⎥⎥⎥⎥⎦
⏟⏞⏟⏞⏟

N′×N

f

where F is N′ × 1, f is N × 1, † denotes conjugate transpose, and the basis vectors
𝜙m are

𝜙
†
m =

[
1 e−i2𝜋⋅m∕N′

e−i2𝜋⋅2m∕N′
⋯ e−i2𝜋(N−1)m∕N′ ]

.
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(b) For an illustrative example, let N = 4 and N′ = 5. Show that the N ′ basis vectors are
not an orthogonal set by calculating the matrix product with Matlab,

⎡⎢⎢⎢⎢⎢⎢⎣

𝜙
†
0

𝜙
†
1

⋮

𝜙
†
N′−1

⎤⎥⎥⎥⎥⎥⎥⎦
[
𝜙0 𝜙1 ⋯ 𝜙N′−1

]
.

(c) The vector f is reconstructed from the DFT expansion by multiplying the elements
of F by their corresponding basis vectors and summing. Show that this is written, in
matrix form, as

1
N ′

[
𝜙0 𝜙1 ⋯ 𝜙N′−1

]
F = 1

N′

[
𝜙0 𝜙1 ⋯ 𝜙N′−1

] ⎡⎢⎢⎢⎢⎢⎣

𝜙
†
0

𝜙
†
1

⋮

𝜙
†
N′−1

⎤⎥⎥⎥⎥⎥⎦
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

N×N

f,

then carry out the matrix multiplication with Matlab and show that an N × N
identity matrix results. Try this with other values of N and N′ (always with N′

> N,
of course).

3.23. Zero packing
The forward DFTs in Equations 3.42 were derived in the text. Carry out the calculations
to derive the inverse DFTs.

3.24. Zero packing
Using the symmetry and orthogonality properties of the DFT basis vectors, explain why
the DFT of a periodically replicated sequence, f [n mod N], n = 0, 1, 2,… pN − 1, is
zero except for those bins that are integer multiples of p.

3.25. Zero packing
Show that the zero packing DFT equations (Equation 3.42) obey the area theorem.

3.26. Zero packing
This is an example of a practical application of zero packing in signal processing.

(a) Exploration with Matlab
Begin with a 32-sample ramp function, x[n] = an, n = 0, 1,… 31. Create a y

vector by packing 3 zeros between each x value (this is also called “4× oversam-
pling”). Compute X and Y , the DFTs of x and y. Check that the DFTs agree with
Theorem 3.10.

Now, filter Y by setting certain values to zero. The transfer function of the
filter is defined as follows:

H[m] =

⎧⎪⎪⎨⎪⎪⎩

4, m = 0, 1,… , 15
2, m = 16
0, m = 17, 18,… , 111
2, m = 112
4, m = 113, 114,… , 127

.
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In Matlab, multiply Y times H to get a new vector G, and compute the
inverse DFT of G. If you do this right, the imaginary part of the inverse DFT should
be negligible. Here is an M-file you can use.

function g = oversample(x, rate)

% OVERSAMPLE – intersperse zeros and filter.

% E.W. Hansen

nx=length(x);
n=0:nx-1;
y=zeros(1, rate*nx);

y(rate*n+1) = x(n+1); % Intersperse the zeros

fy = fft(y); % Go into the DFT domain

% Build the filter (crude rectangle)

fh = [ones(1,nx/2), 0.5, zeros(1,(rate-1)*nx-1), 0.5,

ones(1,nx/2-1)];

fg = rate*fy.*fh; % Apply the filter and

% inverse DFT

g = real(ifft(fg));

end;

Plot (the real part of) g and compare it with y. What is the observed effect of the
filtering? Pay particular attention to the central region of the plot, away from the
ends. Also compare g and y numerically.

You can examine the effect of the filter on Y by calculating the DFT of g
(or putting a plot statement in the M-file after fg is calculated. Notice that this is
approximately the same as zero padding the DFT of x. But since filtering can be done
in the time domain (according to the convolution theorem), this approach enables
us to effectively zero pad in the frequency domain by packing and filtering in the
time domain.

(b) Calculation
Using the convolution theorem, it is easy to figure out what is going on here. When
you multiply Y times H and take the inverse DFT, you are computing the (circular)
convolution of y and h, which you will recall is defined (for 4N sample points):

g[n] =
4N−1∑
k=0

y[k]h[n − k].

So, the crux of this problem is figuring out what h is. You know H, so you can just
use the definition:

h[n] = 1
4N

4N−1∑
m=0

H[m] exp
(+i2𝜋mn

4N

)
, n = 0, 1, 2,… , 4N − 1

and carry out the calculation, which should eventually yield the result

hn =
1

4N
cos

(
𝜋n
4N

) sin
(

𝜋n

4

)
sin

(
𝜋n

4N

) , n = 1, 2,… , 4N − 1,
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which you will note is purely real, an outcome guaranteed by the even symmetry of
H.

(c) Discussion
Plot h and note in particular where its zero crossings fall. How does the convolution
explain the result you observed in (a)?

What does the oversampling procedure accomplish? Assuming you could
design a filter that did not introduce so much ripple, what could oversampling be
used for?

3.27. Several of the DFT theorems connect operations performed on a vector with effects
on its DFT. Consider cyclic shift, convolution (with fixed h), zero padding, and zero
packing as operators on vectors in ℂN . Which ones are

(a) Linear?

(b) One-to-one and/or onto?

(c) Isometric?

(d) Invertible?

(e) Unitary?

(f) Commutative, either with themselves or with the other operators?

3.28. DFT of truncated signals
When the DFT is used for spectrum analysis, the finite amount of data leads to the spectral
leakage artifact. The truncation can be modeled by multiplying a (theoretically infinite)
data set by a rectangular window. The Dirichlet kernel is the DFT of this rectangular
window.

But, other N-point data windows are possible, including

Bartlett(triangular window)

BN [n] =

{
2n

N
, n = 0, 1,… , N∕2

2 − 2n

N
, n = 1 + N∕2,… , N − 1

.

Hanning(raised cosine window)

HN[n] = 1
2

[
1 − cos

(2𝜋n
N

)]
, n = 0, 1,… , N − 1.

Calculate the magnitudes of the DFTs of these three functions (with Matlab).
Choose a moderate value of N, say 128 or 256. If you wish, you can also zero-pad the
window sequence before calculating the DFT. Plot them on the same scale, and compare
them according to two criteria: width (estimated full width at half maximum, FWHM)
of the mainlobe (the big bump) and maximum height of the sidelobes (the little bumps).
You should use a logarithmic vertical axis to bring out the sidelobes more clearly.

3.29. Spectral leakage
This problem is designed to give you experience with the spectral leakage phenomenon,
its practical consequences, and a way of ameliorating its effects.
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Define the power spectrum of a signal f [n] to be

Pf [m] =

{ 1

N
|F [m]|2 , m = 0

1

N

(|F [m]|2 + |F [N − m]|2) , m = 1, 2,…N∕2

where F[m] is the DFT of f [n]. It is conventionally plotted in decibels, 10 log10 Pf [m],
vs. frequency, 𝜈m = mΔ𝜈.

(a) Consider sampling a 2.0 kHz cosine at a 22.050 kHz sampling rate (𝜈s). Calculate
and plot the power spectrum of this signal for N = 64, 128, 256, 512. Describe your
observations.

(b) Now create a sum of cosines, based on sampling the following function:

f (t) = cos
(
2𝜋𝜈1t + 𝜑1

)
+ a cos

(
2𝜋𝜈2t + 𝜑2

)
where 𝜈1 = 2 kHz, 𝜈2 = 2.5 kHz, 𝜈s = 22.050 kHz, and 𝜑1 and 𝜑2 are random
phases created by the Matlab command 2*pi*rand(1). Plot the power spectrum
of this function for N = 512, adjusting a until the second peak is just below the
level of visibility. This weaker signal is invisible because of spectral leakage from
the stronger signal. Vary N. Does this affect the visibility of the weak signal?

(c) Spectral leakage can be ameliorated somewhat by smoothly tapering the data vector
to zero at the edges. This is accomplished by multiplying the data, f [n], by a
window function 𝑤[n]. One simple window function is the Hamming window,
which is computed by the Matlab function hamming(N), where N is the length of
the window. Using the f [n] you created in part (b), with the weak signal’s spectral
peak just below the threshold of visibility, multiply f [n] by a Hamming window
and recompute the power spectrum. Plot it and compare the result with what you
observed in part (b).

(d) Use Matlab to calculate, plot, and compare the magnitudes of the DFTs of the
rectangular window and the Hamming window. For convenience, use 16 samples
of each window padded with zeros to a total of 128 samples. Use your plots with
Figure 3.6 to explain how the Hamming window helps against spectral leakage.

3.30. There are 88 keys on a piano, producing musical notes ranging in frequency from 27.5 Hz
to 4186 Hz. The frequency spacing between notes is nonuniform. Each note is higher
than the preceding one by a factor of 21∕12. For example, the frequency of the next-to-
lowest note is 21∕12 × 27.5 = 29.14 Hz, and the frequency of the next-to-highest note is
4186
21∕12

= 3951 Hz.

It is desired to design a spectrum analyzer, based on the DFT, for piano music.
The frequency resolution must be such that adjacent notes are always seen as distinct
peaks.

(a) Specify a minimum sampling rate, in Hz.

(b) Specify a maximum bin spacing, in Hz.

(c) Because music is spectrally complex, it is advantageous to break a recording into
shorter segments and observe how the spectral content changes in time. Using the
lowest number of bins, which is compatible with your sampling rate and bin spacing
as well as being computationally attractive for the FFT algorithm, how long (in
seconds) will one of these short segments be?
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3.31. Fast Fourier transform
Derive a Cooley–Tukey type algorithm for N = 9 and draw the signal-flow diagram.
Begin by dividing the vector f into three vectors, (f [0], f [3], f [6]), (f [1], f [4], f [7]), and
(f [2], f [5], f [8]). Now show how to construct F from the three-point DFTs of these three
vectors.

3.32. Fast Fourier transform
In deriving the FFT algorithm, a four-point DFT was expressed in terms of two-point
DFTs. The purpose of this exercise is to derive a fast four-point DFT that does not use
two-point DFTs.

(a) Show that the four-point DFT can be written

F[m] = f [0] + (−i)mf [1] + (−1)mf [2] + imf [3], m = 0, 1, 2, 3

and note that each of the powers of i is either 1, i, −1, or −i.

(b) Show how to multiply a complex number a + ib by a power of i without doing
any multiplication. Hence, show how to implement the four-point DFT without
multiplication and draw its signal-flow diagram—a four-point butterfly.

(c) Suppose you want to compute a 16-point FFT. Show how to do this using all four-
point butterflies. This is called a radix-4 FFT. Carefully count the operations required
for the radix-4 implementation and compare with the operation count for the radix-2
FFT developed in the text.

3.33. Fast Fourier transform
Here is another trick used in good FFT programs to shave a factor of two off the operation
count. Suppose the input f [n] is real. Then we know that the DFT F is Hermitian, and we
only need to compute about half the values; the rest are complex conjugates of the ones
we compute. Furthermore, at the first stage, half the multiply-adds—those that operate
on the imaginary part of f —are wasted, because Im f = 0.

Construct a new vector g, according to the following rule:

g[n] = f [2n] + if [2n + 1], n = 0, 1,…N∕2 − 1,

that is, the real part of g contains the even-indexed values of f , f [0], f [2],… , f [N − 2],
and the imaginary part of g contains the odd-indexed values, f [1], f [3],… f [N − 1]. (This
looks like the first step in deriving an FFT.) Now, show how to construct the desired DFT,
(F[0], F[1],…F[N − 1]), from the N∕2-point DFT of g, (G[0], G[1],…G[N∕2 − 1]).
Estimate the operation count.

3.34. Discrete cosine transform

Show that cos

(
𝜋(2N−m)(n+ 1

2
)

N

)
= − cos

(
𝜋m(n+ 1

2
)

N

)
, m = 0, 1,… 2N − 1, and also that

cos

(
𝜋N(n+ 1

2
)

N

)
= 0.

3.35. Orthogonality of the DCT basis
Prove Equation 3.44.

3.36. Discrete cosine transform
Is the DCT a unitary transform?
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3.37. Discrete cosine transform
The DCT is based on a DFT whose basis vectors are naturally compatible with sequences
having a certain reflection symmetry, for example, the sequence f = (0, 1,… 7) is sym-
metrized to fs = (0, 1,… 7, 7, 6,… 0). There are other DCTs that are derived from dif-
ferent symmetrizations.

(a) It is possible to symmetrize f into an even sequence by not repeating f [0] or f [7] in
the reflection, that is,

fs = (0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1).

This sequence is even, but its length is 14.

(b) Another even symmetrization repeats f [7] but not f [0]:

fs = (0, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1).

Its length is 15.

(c) The fourth way to symmetrize f is to repeat f [0] but not f [7]:

fs = (0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0).

It is not even, and its length is 15.

Derive discrete cosine transforms for f based on these symmetrizations.

3.38. Computing the DCT
Develop an expression for the DCT (Equation 3.46) in terms of the DFT, and hence
show how to compute the DCT using the FFT.

3.39. Discrete Hartley transform
Yet another discrete Fourier-type transform is defined by using the set of basis vectors
{𝜂m}N−1

m=0, where

𝜂m[n] = cas
(2𝜋mn

N

)
, n = 0, 1,…N = 1

cas x = cos x + sin x.

The transform so defined,

Fh[m] = ⟨f , 𝜂m⟩ ,

is called the discrete Hartley transform (DHT).9

(a) Show that the vectors {𝜂m}N−1
m=0 are an orthogonal basis for ℂN .

(b) Derive summation expressions for the forward and inverse transforms.

(c) Express the DHT in terms of the DFT, and vice-versa. Express the DFT magnitude
spectrum |F[m]| in terms of Fh[m].

9See Bracewell (1986).



CHAPTER 4
THE FOURIER SERIES

Oscillatory phenomena are ubiquitous in physical systems. Here are some examples.
When a guitar string is plucked, it vibrates. The vibration of the string sets up an
acoustic wave in the air which, when it reaches your eardrum, causes it to vibrate.
This vibration is mechanically transmitted to a fluid in the cochlea. The oscillating
fluid stimulates sensory cells, which transmit to the brain electrical signals that are,
in turn, interpreted as the sound of the guitar. The light emitted by a laser comes from
an electromagnetic standing wave oscillating in the laser’s resonant cavity. The wave
itself is fed by atomic processes described, in the language of quantum mechanics,
by waves. Numerous optical devices rely on the interactions of optical waves with
periodic structures. The electromagnetic fields radiated by highly directive antenna
arrays and the acoustic fields used in medical ultrasound imaging are combinations
of waves. The shaking of the ground during an earthquake and the resulting motions
of buildings are also periodic vibrations. Moreover, even systems that display no
oscillatory behavior, like the evolution of the temperature distribution in a bar of metal
as it is heated, can be described mathematically as portions of periodic functions.

The mathematical models for these diverse physical systems are based on
a simple idea, proposed by Fourier in 1807, that any function defined on a finite
interval [0, L], including certain discontinuous functions, can be decomposed as the
sum of harmonically related sinusoids. It seemed outlandish to some of Fourier’s
contemporaries—how could sines and cosines combine to make arbitrary smooth
functions, much less unsmooth ones? Yet, over the course of the next century, investi-
gations by numerous mathematicians proved Fourier correct and expanded the reach
of his ideas.

The subject of this chapter is the Fourier series, which in its most concise
form is

f (x) =
∞∑

n=−∞
cneinx

.

Like the discrete Fourier transform (DFT), it is a linear combination of orthogonal
sinusoidal basis functions. Unlike the DFT, it is an infinite series. We shall consider
what kinds of function f have a Fourier series representation, and how well the series
actually represents f . We will also develop several theorems relating the function
and its Fourier coefficients, analogous to the DFT theorems of the preceding chapter,
and demonstrate the theory in a few physical applications. The final section of the

Fourier Transforms: Principles and Applications, First Edition. Eric W. Hansen.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

177



178 CHAPTER 4 THE FOURIER SERIES

chapter introduces the discrete-time Fourier transform, a variation on the Fourier
series important in digital signal processing.

4.1 SINUSOIDS AND PHYSICAL SYSTEMS

The Fourier series is an orthogonal expansion on a basis of complex exponentials eikx,
or trigonometric functions, sin kx and cos kx. Mathematically, the complex exponen-
tials are eigenfunctions of the differential operator d

dx
, and the sinusoidal functions

are eigenfunctions of the differential operator d2

dx2 . That is, when you apply d
dx

to the
complex exponential, the result is also a complex exponential:

d
dx

eikx = ikeikx
.

When you apply d2

dx2 to sine and cosine, the results are sine and cosine, respectively:

d2

dx2
sin kx = −k2 sin kx

d2

dx2
cos kx = −k2 cos kx.

These facts make trigonometric functions the natural choice for constructing solutions
to certain differential equations that describe physical phenomena, like the the damped
driven harmonic oscillator,

d2y

dt2
+ 2𝜁𝜔n

dy

dt
+ 𝜔

2
ny = cos𝜔0t,

the heat equation,

𝜕
2F(x, t)

𝜕x2
= 1

k
𝜕F(x, t)

𝜕t
,

Laplace’s equation,

𝜕
2F(x, t)

𝜕x2
= 0,

and the wave equation,

𝜕
2F(x, t)

𝜕x2
= 1

c2

𝜕
2F(x, t)

𝜕t2
.

4.2 DEFINITIONS AND INTERPRETATION

The complex exponentials on [−𝜋, 𝜋],

en(x) = 1√
2𝜋

einx n = 0,±1,±2,…
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are a complete orthonormal set. Formally, following Equation 2.38, we can write an
expansion of a function f : [−𝜋, 𝜋] → C,

f (x) =
∞∑

n=−∞
⟨f , en⟩ en(x) =

∞∑
n=−∞

[
∫

𝜋

−𝜋
f (x)

1√
2𝜋

e−inx dx

]
1√
2𝜋

einx
.

By convention, the factors of 1√
2𝜋

are collected with the integral, so we have

f (x) =
∞∑

n=−∞
cneinx, (4.1a)

where

cn = 1
2𝜋 ∫

𝜋

−𝜋
f (x)e−inx dx, n = 0,±1,±2,… . (4.1b)

This is called the Fourier series for f .
In order for this to be useful, we need to know if the integral exists and if

the infinite series converges. A rule for the existence of Fourier coefficients is easily
established. The integral is bounded above,

||cn
|| = |||| 1

2𝜋 ∫
𝜋

−𝜋
f (x)e−inx dx

|||| ≤ 1
2𝜋 ∫

𝜋

−𝜋
||f (x)e−inx|| dx (triangle inequality)

= 1
2𝜋 ∫

𝜋

−𝜋
|f (x)| dx.

Consequently, the Fourier coefficients cn exist if f is absolutely integrable (f ∈
L1[−𝜋,𝜋]). The question of convergence is harder. While Fourier coefficients exist
for any absolutely integrable function, it has been known since the early 1900s that
there are pathological L1 functions whose Fourier series diverge at all points.

A better result is available if we restrict attention to the Hilbert space L2[−𝜋,𝜋],
where the geometric ideas of basis and orthogonal expansions can be used. L2[−𝜋,𝜋]
is a subspace of L1[−𝜋, 𝜋] that contains nearly all functions of physical interest.
On a bounded interval such as [−𝜋, 𝜋], integrability depends only on how rapidly a
function grows at any singular points in the interval. If a function grows sufficiently
slowly to still be integrable, its square root will grow even slower. Thus, if a function
is square integrable it must also be absolutely integrable. Moreover, if a function is
bounded then it will be integrable when raised to any finite power. So, L∞[−𝜋,𝜋] ⊂
L2[−𝜋,𝜋] ⊂ L1[−𝜋, 𝜋]. With f ∈ L2[−𝜋, 𝜋], the results of Section 2.3.4 may be
applied; the complex exponentials are a basis for L2[−𝜋, 𝜋] and the sequence of
partial sums, SN =

∑|n|≤N cneinx, converges to f in the L2 norm,1

lim
N→∞

‖‖f − SN
‖‖2 = 0.

1For proofs of the norm convergence, see Folland (1992, pp. 76–79), Oden and Demkowicz (1996,
pp. 545–548), Young (1988, pp. 45–52), or Dym and McKean (1972, pp. 30–36). Carleson (1966) showed,
by a difficult proof, that the partial sums also converge to f almost everywhere. Convergence in norm
for the broader class of L1 functions is discussed in Dym and McKean (1972, pp. 37–43). For a brief
discussion of L1 functions whose Fourier series diverge pointwise, see Champeney (1987, pp. 36–38).
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This very general result encompasses just about any function one would
encounter in engineering or physics, but it is still not as useful as we would like.
If we want to evaluate the Fourier series at a point, we can only sum a finite number
of terms, and the mere fact of norm convergence does not say how many terms we
need in order to obtain a desired accuracy or give any indication about the rate of
convergence as the number of terms, N, increases. We will address these questions
in a later section.

With the change of variable x → 2𝜋x
L

, the functions

en(x) = 1√
L

exp
( i2𝜋nx

L

)
, n ∈ Z (4.2)

are an orthonormal basis for L2[0, L]. The Fourier series with these basis functions,
which we shall use from now on, is

f (x) =
∞∑

n=−∞
cn exp

( i2𝜋nx
L

)
(4.3a)

cn = 1
L ∫

L

0
f (x) exp

(
− i2𝜋nx

L

)
dx, n ∈ Z. (4.3b)

With appropriate changes to the limits of integration, any interval of length L will do,

for example,
[
−L

2
, L

2

]
.

The function f defined on [0, L] with f (0) = f (L) may be viewed as a function
that exists on that interval only, or as one period of a function that extends to
infinity. In the former case, the Fourier series is useful for describing systems like
vibrating strings and laser resonators where the physical extent of the system is finite.
In the latter, the Fourier series decomposes a periodic waveform into sinusoidal
components with frequencies 𝜈n = n∕L. The lowest frequency, 𝜈1 = 1∕L, is called
the fundamental, and the higher frequencies are called harmonics. The frequency
𝜈2 = 2∕L is the second harmonic, 𝜈3 = 3∕L is the third harmonic, etc. If L = 2𝜋 and
x is an angle 𝜑, the Fourier series can be used to decompose the angular dependence
of a function defined in polar coordinates, f (r,𝜑); examples occur in optics and in
the analysis of vibrating circular membranes.

The Fourier series (Equation 4.3) resembles the DFT (Equation 3.11),

f [n] = 1
N

N−1∑
m=0

F[m] exp
( i2𝜋mn

N

)
, n = 0, 1,… , N − 1

F[m] =
N−1∑
n=0

f [n] exp
(
− i2𝜋mn

N

)
, m = 0, 1,… , N − 1,

in two ways.

� The function f (x) has period L, the sequence f [n] has implicit period N.
� The frequencies of the Fourier components in the Fourier series are harmonics

of the fundamental 𝜈1 = 1∕L; the digital frequencies of the Fourier components
in the DFT are harmonics of Δ𝜃 = 2𝜋∕N.
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There are also two important differences.
� The Fourier series has a countable infinity of distinct frequencies, rather than

the N discrete frequencies of the DFT bins.
� While the DFT sequence (F[m]) is implicitly periodic, F[m] = F[m + N], the

Fourier coefficient sequence (cn)n∈Z is not.

The “classical” Fourier series
The real plane R

2, spanned by the coordinate vectors {ex, ey}, is also spanned by the

same vectors rotated by 45◦,

{
1√
2
(ex + ey), 1√

2
(ex − ey)

}
. These are linear combina-

tions of ex and ey. In the same way, we may construct an alternative basis for L2[0, L]
from appropriate linear combinations of the complex exponential basis functions{

exp
(

i2𝜋nx
L

)}∞

n=−∞
. In particular, consider the sine and cosine functions,

sin
(2𝜋nx

L

)
=

exp
(

i2𝜋nx
L

)
− exp

(
− i2𝜋nx

L

)
2i

cos
(2𝜋nx

L

)
=

exp
(

i2𝜋nx
L

)
+ exp

(
− i2𝜋nx

L

)
2

.

We only need to consider n ≥ 0, because cos
(
− 2𝜋nx

L

)
= cos

(
2𝜋nx

L

)
and

sin
(
− 2𝜋nx

L

)
= − sin

(
2𝜋nx

L

)
. To check orthogonality on the interval [0, L], we calcu-

late inner products. For the cosines,⟨
cos

(2𝜋nx
L

)
, cos

(2𝜋mx
L

)⟩
= ∫

L

0
cos

(2𝜋nx
L

)
cos

(2𝜋mx
L

)
dx

= 1
2 ∫

L

0
cos

(
2𝜋(n − m)x

L

)
dx

+1
2 ∫

L

0
cos

(
2𝜋(n + m)x

L

)
dx.

The first integral is zero unless n = m, and the second integral is zero unless
n = −m, which can occur only when n = m = 0, because n, m ≥ 0. In these cases we
have ∫ L

0 cos(0) dx = L. Therefore, the inner product is

⟨
cos

(2𝜋nx
L

)
, cos

(2𝜋mx
L

)⟩
=

⎧⎪⎪⎨⎪⎪⎩
L, n = m = 0

L
2

, n = m = 1, 2,…

0, n ≠ m

.

Similarly,

⟨
sin

(2𝜋nx
L

)
, sin

(2𝜋mx
L

)⟩
=

⎧⎪⎨⎪⎩
L
2

, n = m = 1, 2,…

0, n ≠ m
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and ⟨
cos

(2𝜋nx
L

)
, sin

(2𝜋mx
L

)⟩
= 0, all n, m.

After normalizing, we have a new orthonormal set derived from the complex expo-
nentials, which also spans L2[0, L]:{

1√
L

,

√
2
L

cos
(2𝜋nx

L

)
,

√
2
L

sin
(2𝜋nx

L

)}∞

n=1

. (4.4)

We will call an orthogonal expansion in the sine–cosine basis the classical
Fourier series,

f (x) =
a0

2
+

∞∑
n=1

an cos
(2𝜋nx

L

)
+

∞∑
n=1

bn sin
(2𝜋nx

L

)
(4.5a)

an = 2
L ∫

L

0
f (x) cos

(2𝜋nx
L

)
dx, n = 0, 1, 2,… (4.5b)

bn = 2
L ∫

L

0
f (x) sin

(2𝜋nx
L

)
dx, n = 1, 2,… . (4.5c)

You can show that the complex coefficients are related to the classical coefficients by

an = cn + c−n, bn = i
(
cn − c−n

)
cn =

an − ibn

2
, c−n =

an + ibn

2
, n ≥ 0. (4.6)

The case n = 0 is special. We have a0 = 2c0, which double counts the constant

term, and b0 = 0, which is trivial, because sin
(

2𝜋(0)x
L

)
= 0. Consequently, in

Equation 4.5a a0 is divided by two and b0 is deleted.
In the classical series, one frequency component (at 𝜈n = n∕L) is represented

by a pair of terms,

an cos 2𝜋𝜈nx + bn sin 2𝜋𝜈nx,

the combination of a sine and cosine. The same component in the complex series also
consists of two terms,

cnei2𝜋𝜈nx + c−ne−i2𝜋𝜈nx,

a complex exponential and its complex conjugate. The conjugate term c−ne−i2𝜋𝜈nx is
often said to have “negative frequency,” because the complex exponential appears to
have frequency 𝜈 = −𝜈n.

Another useful Fourier representation calculates the magnitude and phase of
each frequency component. If you measure a (real) sinusoidal signal in the lab, you
will usually obtain its magnitude and phase shift relative to some time origin. The
Fourier component at frequency 𝜈 = 𝜈n is modeled by An cos

(
2𝜋𝜈nx + 𝜑n

)
, where

An ≥ 0 and 𝜑n ∈ [−𝜋,𝜋). The relationships between magnitude and phase and
the coefficients of the complex series and the classical series are considered in the
problems.
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The Fourier spectrum
The Riemann–Lebesgue lemma says that the Fourier coefficients tend to zero at high
frequencies.2

Theorem 4.1 (Riemann–Lebesgue lemma). Let f ∈ L1[0, L] with f (0) = f (L),
and let its Fourier coefficients be (cn)n∈Z (Equation 4.3). Then,

lim|n|→∞
|cn| = 0.

Moreover, when f ∈ L2, we inherit Parseval’s formula from Hilbert space the-
ory. It will be shown later that, for the Fourier series, Parseval’s formula is

1
L ∫

L

0
|f (x)|2 dx =

∞∑
n=−∞

||cn
||2 .

If f ∈ L2, then (cn) ∈ 𝓁2. If P = 1
L
∫ L

0 |f (x)|2 dx is viewed as the average power
in f , then Parseval’s formula is a statement of conservation of energy. Whether
you calculate average power in the “time domain,” from the actual signal, or in the
“frequency domain,” by summing the squared magnitudes of the Fourier coefficients,
you get the same result. No energy is misplaced in going to the Fourier representation.3

The average power can be rewritten

P = 1
L ∫

L

0
|f (x)|2 dx = |c0|2 + ∞∑

n=1

(||cn
||2 + ||c−n

||2) ,

grouping positive and negative frequency components together. We then define the
power spectrum by

Pf [n] =

{|c0|2, n = 0||cn
||2 + ||c−n

||2 , n ≥ 1
. (4.7)

The terms in the power spectrum Pf [n] give the portions of f ’s average power at
zero frequency (n = 0) and at the fundamental and harmonic frequencies, 𝜈n = n∕L,
n ≥ 1. A plot of Pf vs. 𝜈n is also called a line spectrum (Figures 4.1 and 4.2). The
Riemann–Lebesgue lemma and Parseval’s formula both express the fact that the
power spectra of real-world (finite average power) signals eventually “roll off” at
high frequencies.

We can begin to interpret the Fourier series with the help of some examples.

Example 4.1. Consider a sinusoidal signal “riding” on a constant voltage
(DC bias),

V(t) = A + B cos 2𝜋𝜈0t,

2For functions in L2, the Riemann–Lebesgue lemma is a simple corollary of Bessel’s inequality, Theorem
2.5. For the most general (L1) case, see Dym and McKean (1972, p. 39).
3In the operator language of Section 2.4, allowing for the factor of 1∕L, the Fourier series expansion is a
unitary (invertible, norm-preserving) operator between two Hilbert spaces, L2 and 𝓁2.
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and calculate the Fourier series of one period of this periodic function. The period
is T = 1∕𝜈0. The Fourier coefficients are given by the integral,

cn = 1
T ∫

T

0

[
A + B cos 2𝜋𝜈0t

]
e−i2𝜋nt∕T dt.

Convert the cosine to exponential form and divide the integral into three parts.

cn = A
T ∫

T

0
e−i2𝜋nt∕Tdt

+ B
2T ∫

T

0
e+i2𝜋t∕Te−i2𝜋nt∕T dt + B

2T ∫
T

0
e−i2𝜋t∕Te−i2𝜋nt∕Tdt

=
A
[
e−i2𝜋n − 1

]
−i2𝜋n

+
B
[
e−i2𝜋(n−1) − 1

]
−i4𝜋(n − 1)

+
B
[
e−i2𝜋(n+1) − 1

]
−i4𝜋(n + 1)

.

Now, because e−i2𝜋n = 1 for integer n, the numerator of each term is zero. But for
certain values of n—0, 1, and −1, respectively—each of the denominators is also
zero. We use L’Hospital’s rule to determine the coefficients in these particular cases,
and arrive at the final result,

cn =
⎧⎪⎨⎪⎩

A, n = 0

B∕2, n = ±1

0, otherwise

. (4.8)

The Fourier series is

f (t) = B
2

e−i2𝜋t∕T + A + B
2

e+i2𝜋t∕T ,

which is nothing more than the original function written in complex exponential
form. This is not surprising, since the original signal was exactly one period of a
sinusoid.

We verify by a direct calculation that Parseval’s formula holds. First, in the
time domain,

‖V‖2 = ∫
T

0
V2dt = ∫

T

0

[
A2 + B2 cos2 2𝜋𝜈0t + 2AB cos 2𝜋𝜈0t

]
dt

= ∫
T

0

[
A2 + B2

2
+ B2

2
cos 4𝜋𝜈0t + 2AB cos 2𝜋𝜈0t

]
dt

=
(

A2 + B2

2

)
T

and

Pavg = 1
T
‖V‖2 = A2 + B2

2
.

Doing the calculation in the frequency domain with the Fourier coefficients,
∞∑

n=−∞

||cn
||2 =

(B
2

)2
+ A2 +

(B
2

)2
= A2 + B2

2
.

The function and its spectrum are shown in Figure 4.1.
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FIGURE 4.1 The function A + B cos 2𝜋𝜈0t with A = 0.5 and B = 0.4, its Fourier coefficients
(center), and its power spectrum (right). The time axis and the frequency axis in the power
spectrum are normalized the by the period T . The vertical axis on the right is normalized by
the average power in the function, so the graph represents the fraction of the power at each
frequency.

This example was simple because f was periodic with period T , just like an
“in-bin” signal with the DFT. Something like the spectral leakage effect in the DFT
also occurs with Fourier series, as the next example shows.

Example 4.2. Consider a raised cosine, as in the previous example, but with
𝜈0 = 5∕4T . Take the segment on [0, T], assign f (0) = f (T), and periodically replicate
it. The Fourier coefficients are

c0 = 1
T ∫

T

0

[
A + B cos

(
5𝜋t
2T

)]
dt = A + 2

5𝜋
B (4.9a)

cn = 1
T ∫

T

0

[
A + B cos

(
5𝜋t
2T

)]
e−i2𝜋nt∕Tdt

= 2
𝜋

5 + i4n
25 − 16n2

B, n ≠ 0. (4.9b)
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FIGURE 4.2 A discontinuous sinusoidal function (left), its Fourier coefficients (center), and
its power spectrum (right). The real parts of the Fourier coefficients are shown with solid stems
and filled circles. The imaginary parts are shown with dashed stems and open circles. Compare
the DFT of an out-of-bin sinusoid (Figure 3.4).
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Because of the discontinuity, energy is now distributed across all Fourier com-
ponents (Figure 4.2).

The next example is a square wave, useful for its ability to model on–off signals.

Example 4.3. Let f be the square wave shown in Figure 4.3. It has period T and a
50% duty cycle (the positive portion is 50% of the period). The function is specified
piecewise:

f (x) =

{
1, T

2
> x ≥ 0

−1, T > x ≥ T
2

.

The complex Fourier coefficients are given by the sum of integrals over the two
segments of the function.

c0 = 1
T ∫

T∕2

0
dt + 1

T ∫
T

T∕2
(−1)dt = 0 (4.10a)

cn = 1
T ∫

T∕2

0
e−i2𝜋nt∕Tdt + 1

T ∫
T

T∕2
(−1)e−i2𝜋nt∕T dt

= −e−i𝜋n − 1
i2𝜋n

+ 1 − e−i𝜋n

i2𝜋n

= 1 − (−1)n

i𝜋n
=

⎧⎪⎨⎪⎩
2

i𝜋n
, n = ±1,±3,…

0, otherwise (n even)
(4.10b)

where we have used the identities e−i2𝜋n = 1 and e−i𝜋n = (−1)n. The even-indexed
coefficients are all zero; the Fourier expansion consists only of odd harmonics of the
fundamental frequency 1∕T (Figure 4.3). Every Fourier component is of the form

2
i𝜋n

ei2𝜋nt∕T − 2
i𝜋n

e−i2𝜋nt∕T = 4
𝜋n

sin
2𝜋nt

T
, n = 1, 3,… .

We can see why this is so with the aid of Figure 4.4. The cosine basis functions are
orthogonal to the square wave for both even and odd n (hence no cosines), and the
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FIGURE 4.3 A square wave function (left), its Fourier coefficients (center), and its power
spectrum (right).
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FIGURE 4.4 The square wave shown with sin 2𝜋nt

T
for n = 1, 2 (left) and cos 2𝜋nt

T
for n = 1, 2

(right). The square wave is orthogonal to sin 2𝜋nt

T
for even n, and orthogonal to cos 2𝜋nt

T
for

both even and odd n. Consequently, the Fourier series for the square wave consists only of
odd-indexed sine wave components.

sine basis functions are orthogonal to the square wave for even n but not for odd n
(hence no sines of even harmonics).

4.3 CONVERGENCE OF THE FOURIER SERIES

The sequence of partial sums of a square-integrable function f ’s Fourier series con-
verges to f in the L2 norm. Real-world signals and the functions used to model physical
systems normally have some degree of continuity and smoothness (differentiability)
in addition to being square integrable, and these additional attributes improve the con-
vergence of the Fourier series. This section describes several of these relationships.
We begin with some definitions, which should be familiar from calculus.

Definition 4.1 (Continuity and smoothness). Consider a function f : [a, b] → C,
with finite a and b. By f (c−) and f (c+) we mean the limits of f as x = c is approached
from below (through values less than c) and from above (through values greater
than c), respectively.

(a) f is continuous on [a, b] if, for x0 ∈ (a, b), f (x−0 ) and f (x+0 ) are finite and are
both equal to f (x0), f (a+) is finite and equal to f (a), and f (b−) is finite and
equal to f (b). The class of functions continuous on [a, b] is denoted C[a, b], or
C(0)[a, b].

(b) f is piecewise continuous if it is continuous everywhere in [a, b] except perhaps
on a finite set of points {xk}N

k=1, and at these points f (x−k ) and f (x+k ) are finite.
That is, f has at most a finite number of finite jump discontinuities. The class
of piecewise continuous functions on [a, b] is denoted PC[a, b].

(c) f is piecewise smooth if it is piecewise continuous and its derivative f ′ is also
piecewise continuous. The derivative is permitted to be undefined at points
where f has a jump discontinuity. The class of piecewise smooth functions on
[a, b] is denoted PS[a, b].
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L∞[a,b]

L1[a,b]

L2[a,b]

C(0)[a,b]

PC[a,b]

PS[a,b]

C(1)[a,b]

C(∞)[a,b]

…

FIGURE 4.5 Inclusions of classes of functions on a bounded interval [a, b]. Functions
possessing only boundedness or integrability (Lp) are shown with rectangles. Functions that
are at least piecewise continuous or piecewise smooth are shown with ellipses. Functions
having continuity or continuous differentiability are shown with circles.

(d) f is continuously differentiable if f and its derivative f ′ are continuous. A func-
tion may be continuously differentiable more than once. The class of functions
that are p-times continuously differentiable on [a, b] is denoted C(p)[a, b]. The
class of infinitely continuously differentiable functions is denoted C(∞)[a, b].

These classes of functions overlap (Figure 4.5).

� A continuous function is also piecewise continuous (with a single “piece”):
C[a, b] ⊂ PC[a, b].

� A piecewise smooth function is also piecewise continuous: PS[a, b] ⊂ PC[a, b].
� A continuously differentiable function is also piecewise smooth: C(1)[a, b] ⊂

PS[a, b]
� A piecewise continuous function on a bounded interval [a, b] is also bounded,

square integrable, and absolutely integrable: PC[a, b] ⊂ L∞[a, b] ⊂ L2[a, b] ⊂
L1[a, b].

� A p-times continuously differentiable function is also p − 1 times continuously
differentiable: C(∞) … ⊂ C(2)

⊂ C(1)
⊂ C(0).

Here are some examples.
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FIGURE 4.6 Three examples of functions with differing degrees of continuity and smooth-
ness. Left: The triangle function is continuous and piecewise smooth on [−1, 1]. Center: The
square root

√|x| is continuous on R, but not piecewise smooth, because the derivative has an

infinite jump at the origin. Right: The square root f (x) =
√|x| sgn(x) is continuous on R, but

not continuously differentiable, because the derivative blows up at the origin.

Example 4.4 (Continuity and smoothness).

(a) The raised cosine f (t) = A + B cos 2𝜋𝜈0t in Example 4.1 is continuous and
infinitely differentiable (hence smooth) everywhere on the real line: f ∈
C(∞)(R). It is absolutely integrable and square integrable on any bounded
interval [a, b], but not on an unbounded interval like [0,∞) or (−∞,∞).

(b) The cosine f (t) = A + B cos
(

5𝜋t
2T

)
(Example 4.2) is piecewise continuous on

[0, T] (jumps at t = 0, T) and smooth on (0, T): f ∈ PS[0, T].

(c) The square wave (Example 4.3) is piecewise continuous on [0, T] (jumps at
t = 0, T∕2, T), and smooth on (0, T∕2) ∪ (T∕2, T): f ∈ PS[0, T].

(d) The triangle function, f (x) = 1 − |x|, is piecewise smooth and continuous on
[−1, 1]: f ∈ PS ∩ C[−1, 1] (Figure 4.6).

(e) The square root function f (x) =
√|x| is continuous on R, but not piecewise

smooth, because f ′(0−) = −∞ and f ′(0+) = ∞: f ∈ C(R) (Figure 4.6).

(f) The function f (x) =
√|x| sgn(x) is continuous on R, but not continuously

differentiable, because f ′(0) is infinite: f ∈ C(R) (Figure 4.6).

Just as there are different degrees of continuity and smoothness, there are
different degrees of convergence.



190 CHAPTER 4 THE FOURIER SERIES

Definition 4.2 (Convergence of series). Let f : [a, b] → C be a function, (fn)∞n=1,

where fn : [a, b] → C, be a sequence of functions, and SN =
∑N

n=1 fn denote the Nth

partial sum of the infinite series
∑∞

n=1 fn.

(a) The series converges absolutely if
∑∞

n=1 |fn(x)| < ∞ for all x ∈ [a, b].

(b) The series converges pointwise to f if lim
N→∞

SN (x) = f (x) for all x ∈ [a, b]. That

is, you can make the error |f (x) − SN (x)| as small as you like, at any point x,
by taking N sufficiently large.

(c) The series converges to f in norm if the norm of the error between the partial
sums and f goes to zero,

‖‖f − SN
‖‖ → 0 as N → ∞.

When the norm is the L1 or L2 norm, the convergence is also called convergence
in mean or convergence in mean square, respectively.

(d) The series converges uniformly to f if the supremum (uniform norm) of the
error between the partial sums and f goes to zero,

‖‖f − SN
‖‖u = sup

x∈[a,b]
|f (x) − SN(x)| → 0 as N → ∞.

We shall present some important connections between regularity (continuity
and smoothness) and convergence in a series of theorems, without proof.4 They
impose progressively greater regularity on f , from piecewise smooth, to continuous
and piecewise smooth, to continuously differentiable (smaller and smaller sets in Fig-
ure 4.5), and correspondingly reap the benefits of progressively better convergence.
The theorems are followed by several examples.

Theorem 4.2. Let f : R → C be periodic with period L, and piecewise smooth. Let
SN be the Nth partial sum of f ’s Fourier series. Then cn = O(|n|−1) and, for all x,

lim
N→∞

SN (x) = 1
2

[f (x−) + f (x+)].

At points x where f is continuous, f (x−) = f (x+) = f (x) and the theorem says
that the partial sums of the Fourier series converge exactly to f (x). At points xk where
f is not continuous it can only have finite jump discontinuities, because it is piecewise
continuous (by virtue of being piecewise smooth). The theorem then says that the
Fourier series converges to the average of the left and right limits, f (x−) and f (x+).
The addition of piecewise smoothness improves convergence from pointwise almost
everywhere (with possible divergence at some points) to pointwise everywhere except
at jumps, but with well-defined values at the jumps.

4For proofs of the convergence theorems, see Folland (1992, pp. 35–37 and 41–42) and Dym and McKean
(1972, pp. 31–34).



4.3 CONVERGENCE OF THE FOURIER SERIES 191

Theorem 4.3. Let f : R → C be periodic with period L, continuous, and piecewise
smooth. Let SN be the Nth partial sum of f ’s Fourier series. Then, for all x, SN(x)
converges to f (x) absolutely and uniformly as N → ∞.

The important thing that continuity adds is absolute and uniform convergence
of the Fourier series. For the Fourier series, absolute convergence means that

∞∑
n=−∞

|cnei2𝜋nx∕L| = ∞∑
n=−∞

|cn| < ∞,

that is, (cn)n∈Z ∈ 𝓁1, which means that the Fourier coefficients decay faster than |n|−1

as |n| → ∞. Not only do we have pointwise convergence everywhere, by virtue of
f ’s continuity, we also have a sense of how rapidly the series converges, because we
know what the asymptotic behavior of the Fourier coefficients is. It can also be shown
that the converse is true: if the Fourier series converges absolutely and uniformly,
then the function it converges to is continuous.

Theorem 4.4. Let f : R → C be periodic with period L, and ∞ > p ≥ 1.

(a) If f ∈ C(p−1)[0, L] and f (p−1) is piecewise smooth, then |npcn| → 0 as |n| → ∞.
That is, the Fourier coefficients decay faster than |n|−p.

(b) If f ∈ C(∞)[0, L], then the Fourier coefficients decay faster than |n|−p for all
p ≥ 1.

(c) If f ∈ C(p)[0, L], then the approximation error is bounded, ‖‖f − SN
‖‖u <

KN−p+1∕2 , where K > 0 is a constant (uniform convergence).

(d) If a set of coefficients (cn) is bounded such that, except for c0, they decay faster
than |n|−p (i.e., |cn| < K|n|−p−𝛼 , where K > 0 and 𝛼 > 1), then the Fourier
series converges absolutely and uniformly to a function f ∈ C(p)[0, L].

For p = 1, f is continuous and piecewise smooth, and part (a) of the theorem
is the same as Theorem 4.3. The smoother a function is, as measured by the degree
of continuous differentiability p, the faster the Fourier series converges, as measured
by both the asymptotic behavior of the Fourier coefficients (part (a)), and the decay
of the approximation error (part (c)). When a function is infinitely continuously
differentiable, the ultimate in smoothness, part (b) of the theorem says that the
Fourier coefficients (cn) decay faster than |n|−p for all p ≥ 1. Such sequences are said
to be rapidly decreasing. An example is a decaying exponential, (a|n|)n∈Z, |a| < 1.
The most extreme example of continuous differentiability is a pure cosine, cos 2𝜋kx.
Its coefficients are (trivially) rapidly decreasing (identically zero for |n| > k). Finally,
part (d) gives the converse of part (a): the faster the Fourier coefficients decay, the
smoother the resulting function is. All the results of this chapter on smoothness and
convergence are tabulated in Table 4.1.5

5Additional results on smoothness and convergence of the Fourier series are given in Champeney (1987,
pp. 156–162) and Gasquet and Witomski (1999, p. 46).
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TABLE 4.1 Relationships between smoothness and Fourier series convergence, summarizing
Theorems 4.1, 4.2, 4.3, and 4.4. As f becomes more regular, p ≥ 1, the Fourier coefficients decay
more rapidly and the convergence of the Fourier series improves.

If f is then the coefficients and convergence SN → f is

L1 cn → 0 uncertain
L2 (cn) ∈ 𝓁2 in L2 norm
PS ncn ≤ K pointwise, SN (x) → 1

2

[
f (x+) + f (x−)

]
C(p−1), f (p−1) ∈ PS npcn → 0 absolute, uniform

C(p) ‖SN − f‖u ≤ KN−p+ 1
2

C(∞) (cn) rapidly decreasing ‖SN − f‖u rapidly decreasing

In the examples that follow, we will consider the square wave, which is piece-
wise smooth, the triangle wave, which is piecewise smooth and continuous, and a
parabolic wave, which can be continuously differentiated once and has a piecewise
smooth derivative.

Example 4.5 (Square wave). The Nth partial sum of the Fourier series for the
square wave is (Equation 4.10)

SN (t) =
N∑

n=−N

1 − (−1)n

i𝜋n
ei2𝜋n∕T =

N∑
n=1,3,5…

4
𝜋n

sin
2𝜋nt

T
. (4.11)

A few of these partial sums are shown in Figure 4.7.
As more terms are added, the error norm ‖f − SN‖2 decays, indicating that

partial sums are converging to f in the L2 norm. Moreover, the partial sums look more
like the original square wave, evidence of pointwise convergence. Right at the points
of discontinuity, t = 0, T∕2, T ,…, where the square wave jumps between +1 and
−1, the partial sums take on the average value, zero, as predicted by Theorem 4.2.
That this should be so is apparent from Equation 4.11, where each sine wave is zero
at t = 0,±T

2
,±T ,….

What is also noticeable is the overshoot in the partial sum near the jumps. As
N increases and the partial sums get “squarer,” the peaks narrow and crowd closer to
the jumps, but their amplitudes do not seem to decrease. We will analyze this in detail
later, and find that there is a finite asymptotic value for the peak of the overshoot.
The Fourier series of the square wave converges in norm and pointwise, but not uni-
formly (the maximum error does not decrease). Neither is convergence absolute, for
the sum

∞∑
n=−∞

|cn| = 4
𝜋

(
1 + 1

3
+ 1

5
+…

)
diverges.
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FIGURE 4.7 Top: Partial sums of the Fourier series of a square wave. The value of the
sum at the discontinuity is the average of the extremes. Bottom, left to right: Logarithmic
plots of the coefficient decay, |cn| vs. n, the error norm ‖f − SN‖2 (as a fraction of ‖f‖2), and
the peak overshoot (as a fraction of max |f |). The Fourier series exhibits pointwise and norm
convergence, but not uniform convergence.

Example 4.6 (Triangle wave). One period of a triangular waveform is described
by the function

f (t) =

{
t, T

2
> t ≥ 0

T − t, T ≥ t ≥ T
2

. (4.12)

The Fourier coefficients are

c0 = 1
T ∫

T∕2

0
t dt + 1

T ∫
T

T∕2
(T − t) dt = T

4
(4.13a)

cn = 1
T ∫

T∕2

0
t e−i2𝜋nt∕T dt + 1

T ∫
T

T∕2
(T − t) e−i2𝜋nt∕T dt

= (−1)n T
4

1 − (−1)n + i𝜋n

𝜋2n2
+ (−1)n T

4
1 − (−1)n − i𝜋n

𝜋2n2

= −T
2

1 − (−1)n

𝜋2n2
=

{
− T

𝜋2n2 , n = ±1,±3,…

0, n = ±2,±4,…
. (4.13b)

As with the square wave, the even-indexed coefficients are zero. You are invited to
calculate the coefficients of the classical series and compare them with those of the
square wave. Several partial sums are shown in Figure 4.8.
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and the norm max |f − SN | (as a fraction of max |f |). The Fourier series converges pointwise,
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In keeping with Theorem 4.3, the maximum error between the partial sums and
the original function continues to decrease as more terms are included, indicating
that the series converges uniformly. Also, |cn| is O(|n|−2), so

∞∑
n=−∞

|cn| = T
4
+ 2T

𝜋2

(
1 + 1

4
+ 1

9
+…

)
converges, and the Fourier series converges absolutely as well as uniformly.

Example 4.7 (Parabolic wave). A parabolic waveform (Figure 4.9) is described
by the function

f (t) =
⎧⎪⎨⎪⎩

1
2

(
x − T

4

)2
− T2

32
, T

2
> x ≥ 0

− 1
2

(
x 3T

4

)2
+ T2

32
, T > x ≥ T

2

(4.14a)

and its Fourier coefficients are

c0 = 0 (4.14b)

cn = T2

4
i (1 − (−1)n)

𝜋3n3
=

{
iT2

2𝜋3n3 , n = ±1,±3,…

0, n = ±2,±4,…
. (4.14c)
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FIGURE 4.9 Top: Partial sums of the Fourier series of a parabolic wave. Bottom, left to
right: Logarithmic plots of the coefficient decay, |cn| vs. n, the norm ‖f − SN‖2 (as a fraction
of ‖f‖2), and the norm max |f − SN | (as a fraction of max |f |). The Fourier series converges
pointwise, in norm, and uniformly.

This function is continuously differentiable (C(1)) and its derivative is piecewise
smooth (see the problems). The Fourier series converges rapidly, as can be seen in
Figure 4.9, where even the third partial sum is barely distinguishable from the original
function.

Figure 4.10 displays the convergence of these three series on common axes and
demonstrates the connection between smoothness and convergence. From their alge-
braic expressions, we see that the coefficients for the square, triangle, and parabolic
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FIGURE 4.10 Comparing rates of decay of the coefficients |cn|, the error norm ‖f − SN‖2,
(as a fraction of ‖f‖2), and the norm max |f − SN| (as a fraction of max |f |), for the Fourier
series of the square (squares), triangle (triangles), and parabolic (circles) waves. For the square
wave, peak overshoot is shown for maximum error. The smoother the function, the more
rapidly the series converges.
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waves decay increasingly rapidly, as |n|−1, |n|−2, and |n|−3, respectively. A numeri-
cal calculation of the slopes of the asymptotes showed that the decay of the L2 norm
followed a similar pattern, O(N−1∕2) for the square wave, O(N−3∕2) for the triangle
wave, and O(N−5∕2) for the parabolic wave. Theorem 4.4. does not apply to the square
wave, because it is not even piecewise smooth. For the triangle wave, the uniform
convergence is predicted to be at least as fast as N−1∕2. In fact, our numerical calcu-
lation gave ‖‖f − SN

‖‖∞ = O(N−1). For the parabolic wave, the uniform convergence
is predicted to be O(N−3∕2), and we observed N−2 in our calculation.

A closer look at jump discontinuities
We observed, in the case of the square wave, a lack of uniform convergence. The
peak overshoot of the partial sum SN near the jump appears to approach a constant
value with increasing N. However, the frequency of the ripple increases and the peak
squeezes toward the jump, t = T∕2, leading one to think that as N → ∞ the peak
might become so narrow that it simply “evaporates” in the limit. The verification that
this does, in fact, occur is the substance of the proof of Theorem 4.2. To explore the
idea, consider the following form of the partial sum for an arbitary Fourier series,

SN (x) =
N∑

n=−N

⟨f , en⟩ en =
N∑

n=−N

[
∫

L

0
f (𝜉)e∗n(𝜉)d𝜉

]
en(x).

Exchanging the order of summation and integration (which we can always do when
the integral and sum have finite limits),

SN (x) = ∫
L

0
f (𝜉)

[
N∑

n=−N

e∗n(𝜉)en(x)

]
d𝜉 = 1

L ∫
L

0
f (𝜉)

[
N∑

n=−N

ei2𝜋n(x−𝜉)∕L

]
d𝜉.

The sum is a form of geometric series (Equation 1.27), which works out to

N∑
n=−N

e−i2𝜋n(x−𝜉)∕L = ei2𝜋N(x−𝜉)∕L
2N∑
n=0

e−i2𝜋n(x−𝜉)∕L

= ei2𝜋N(x−𝜉)∕L 1 − e−i2𝜋(2N+1)(x−𝜉)∕L

1 − e−i2𝜋(x−𝜉)∕L

= ei2𝜋N(x−𝜉)∕L e−i𝜋(2N+1)(x−𝜉)∕L

e−i𝜋(x−𝜉)∕L

sin 𝜋(2N+1)(x−𝜉)
L

sin 𝜋(x−𝜉)
L

=
sin 𝜋(2N+1)(x−𝜉)

L

sin 𝜋(x−𝜉)
L

= D2N+1

(
x − 𝜉

L

)
, (4.15)

a Dirichlet kernel. The Dirichlet kernel D2N+1(x) is plotted, for several values of N,
in Figure 4.11.

It is a periodic function, of course, since it is the sum of a Fourier series. Zero
crossings occur at integer multiples of 1

2N+1
, except when x is an integer, in which
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FIGURE 4.11 The Dirichlet kernel, D2N+1(x) = sin(2N+1)𝜋x

sin 𝜋x
, for various values of N.

case L’Hospital’s rule gives the value 2N + 1. Moreover, integrating the defining
series term-by-term over one period gives

∫
1∕2

−1∕2
D2N+1(x)dx = ∫

1∕2

−1∕2

N∑
n=−N

e−i2𝜋nxdx =
N∑

n=−N
∫

1∕2

−1∕2
e−i2𝜋nxdx,

and all the terms except n = 0 integrate to zero, leaving

∫
1∕2

−1∕2
D2N+1(x)dx = 1. (4.16)

So, while the Dirichlet kernel becomes narrower and higher as N increases, it always
has unit area.

Using the Dirichlet kernel, the partial sum is compactly written as a
convolution,6

SN (x) = 1
L ∫

L

0
f (𝜉)D2N+1

(
x − 𝜉

L

)
d𝜉. (4.17)

The integral is not hard to visualize when f is a unit-period square wave.

6We will see in the next chapter that convolution integrals model the input–output behavior of linear,
time-invariant systems, such as electronic filters. Truncating the Fourier series to make the partial sum
removes higher frequency Fourier components. Convolution with the Dirichlet kernel is a lowpass filter.
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FIGURE 4.12 Graphical interpretation of the convolution of a square wave (period L = 1)
with the Dirichlet kernel. Top row: The reversed and shifted kernel, D2N+1(x − 𝜉), is overlaid
on the square wave. Bottom row: The product of the square wave and the kernel. The area
under this function is the value of the convolution f ∗ D2N+1 for the given shift, x. Left to

right: x = − 1

2N+1
, negative overshoot; x = 0, the integral is 1

2
, the average f (0−)+ f (0+)

2
; x = 1

2N+1
,

the integral overshoots 1; x = 2

2N+1
, the integral undershoots 1. The amount of overshoot is

approximately 9% of the height of the jump.

The kernel is flipped end for end, making D2N+1(−𝜉∕L), then shifted to 𝜉 = x

to make D2N+1

(
x−𝜉

L

)
. It is then multiplied by f (𝜉) and the area under the product is

calculated. With reference to Figure 4.12, the shifted kernel and the square wave are
shown superimposed in the top row of graphs. In the bottom row are displayed the
products of the square wave and kernel. As we go from left to right, the center of the
kernel is to the left of the jump, over the jump, and to the right of the jump.

� When the kernel is centered on the jump discontinuity (x = 0), the product is
just half the kernel and the integral is half the area under the kernel, 1

2
. This

is another view of the Fourier series converging to the average f (0−)+f (0+)
2

at
x = 0.

� When x = 1
2N+1

, the main lobe of the kernel is completely on the high side of the
jump, causing the graph of the product to be unbalanced. The area (calculated
using Matlab) is 1.09—we have overshoot.

� Shifting the kernel farther, to x = 2
2N+1

, brings a negative lobe to the high side
of the jump, which will subtract area from the product—so much, in fact, that
now we have undershoot, as the area drops to 0.95.
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FIGURE 4.13 Setup for calculating maximum overshoot at a jump discontinuity. The Dirich-
let kernel is convolved with a unit step function. The peak overshoot occurs approximately
where the first zero crossing of the kernel coincides with the jump. The zero crossings for
D2N+1 are spaced at intervals of 1

2N+1
.

Continuing in this way, the value of the convolution, and hence the partial sum, will
oscillate between overshoot and undershoot. The lobes of the kernel become smaller
as the shift increases, and the magnitude of the overshoots and undershoots will
decrease as we move away from the jump, as we observed in Figure 4.7.

It remains to calculate the maximum value of the overshoot. From looking at
the graph, we expect this to occur at a point 𝜉 = xp ≈ 1

2N+1
, which places the main

lobe just to the right of the jump, under the high side of the square wave (Figure 4.13).
Integrating over one period of the square wave, the peak overshoot PO is

PO = ∫
1
2

− 1
2

U(𝜉)D2N+1(xp − 𝜉) d𝜉 − 1 = ∫
1
2

0
D2N+1(xp − 𝜉) d𝜉 − 1,

where U(x) is the unit step function. The overshoot is extremized by setting the
derivative of PO to zero.

d
dxp

PO = ∫
1
2

0

d
dxp

D2N+1(xp − 𝜉) d𝜉

= ∫
1
2

0
D′

2N+1(xp − 𝜉) d𝜉 = D2N+1(xp) − D2N+1(xp − 1∕2) = 0.

A correct value of xp may be determined numerically, then used to numerically
evaluate the peak overshoot integral. Figure 4.14 shows the result for various values
of N. The peak overshoot very quickly settles down to around 9%. This is the well-
known Gibbs phenomenon.

4.4 FOURIER SERIES PROPERTIES AND THEOREMS

The Fourier series has several properties that facilitate calculations and interpretation.
We have already met similar ones in studying the DFT, and throughout this section
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FIGURE 4.14 Gibbs phenomenon. The maximum overshoot at a jump discontinuity is
approximately 9% of the height of the jump, regardless of how many terms in the series are
summed.

you are invited to compare the Fourier series theorems with their DFT counterparts.
We assume that a function f is periodic with period L and absolutely integrable
(unless otherwise noted) over one period. We will use the notation f ⟼ (fn) to
denote the mapping from a function f to its Fourier coefficients. If the Fourier series
with coefficients (fn) converges (in any sense) to f , we write f ⟷ (fn) and say that
the function f and its coefficient sequence (fn) are a Fourier series pair.

Linearity
The Fourier coefficients are inner products, fn = ⟨f ,𝜙n⟩, where 𝜙n(x) =
1
L

exp
(

i2𝜋nx
L

)
, and the inner product is linear, ⟨af + bg,𝜙n⟩ = a ⟨f ,𝜙n⟩ + b ⟨g,𝜙n⟩.

The Fourier series,
∑

n∈Z
fn𝜙n, also has the form of an inner product, and is linear.

Consequently, the Fourier expansion is a linear mapping between a function and its
Fourier coefficients.

Theorem 4.5 (Linearity). Let f ⟷ (fn), g ⟷ (gn) be Fourier series pairs, and
let a, b ∈ C be constants. Then

af + bg ⟷ a(fn) + b(gn) = (afn + bgn). (4.18)

In Example 4.1 we calculated the Fourier coefficients of f (t) = A + B cos 2𝜋t∕T . The
function is the sum of a constant A and a scaled cosine B cos 2𝜋t∕T . The constant
has only a single Fourier coefficient, c0 = A. A cosine at frequency 𝜈 = 1∕T has two
coefficients, c−1 = c1 = 1

2
. The Fourier coefficients of the scaled cosine B cos 2𝜋t∕T

are, by linearity, B ⋅ 1
2

. And, by linearity, the coefficients of A + B cos 2𝜋t∕T are the
sum of the coefficients of the two terms,

A + B cos 2𝜋t∕T ⟷ (cn) =
⎧⎪⎨⎪⎩

A, n = 0

B∕2, n = ±1
0, otherwise

.
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LL–L –L

FIGURE 4.15 Evenness and oddness for a periodic function. An odd function (left) has
f (L − x) = −f (x), and an even function (right) has f (L − x) = f (x).

Symmetries
A function f with period L is even if f (x) = f (L − x) and odd if f (x) = −f (L − x).
(Figure 4.15). Likewise, a complex sequence (cn)n∈Z is even if cn = c−n, odd if
cn = −c−n, and Hermitian if cn = c∗−n.

Theorem 4.6 (Fourier series symmetries). Let f be a function and (cn) be its
Fourier coefficients. These statements and their converses are true:

(a) If f is real, the Fourier coefficients are Hermitian: cn = c∗−n.

(b) If f is even (odd), then (cn) is even (odd).

(c) If f is real and even (real and odd), then (cn) is real and even (imaginary and
odd).

Proof: The proofs are very similar to those for the DFT.

(a) Directly calculate c∗−n,

c∗−n =
[

1
L ∫

L

0
f (x) exp

(
− i2𝜋(−n)x

L

)
dx

]∗
= 1

L ∫
L

0
f ∗(x) exp

(
− i2𝜋nx

L

)
dx

but because f is real, f = f ∗, so

c∗−n = 1
L ∫

L

0
f (x) exp

(
− i2𝜋nx

L

)
dx = cn.

Now suppose cn = c∗−n. Then

∞∑
n=−∞

cnej2𝜋nx∕L = c0 +
∞∑

n=1

cnej2𝜋nx∕L + c−ne−j2𝜋nx∕L

= c0 +
∞∑

n=1

cnej2𝜋nx∕L +
(
cnej2𝜋nx∕L)∗

= c0 +
∞∑

n=1

2Re
{

cnej2𝜋nx∕L} ,

which is real.
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(b) If f is even, then the odd part of f is zero. Calculate the odd part of f in terms
of the Fourier coefficients:

fo = 1
2

[f (x) − f (−x)]

= 1
2

[ ∞∑
n=−∞

cn exp
( i2𝜋nx

L

)
−

∞∑
n=−∞

cn exp

(
i2𝜋n(−x)

L

)]

= 1
2

∞∑
n=−∞

(cn − c−n) exp
( i2𝜋nx

L

)
= 0

for all x, which requires that cn = c−n, that is, the coefficient sequence is even.
Now suppose that cn = c−n, then

c0 +
∞∑

n=1

cnej2𝜋nx∕L + c−ne−j2𝜋nx∕L = c0 +
∞∑

n=1

2cn cos(2𝜋nx∕L),

which is even. The proofs for odd f and an odd coefficient sequence are the
same.

(c) If f is real, then (cn) is Hermitian (part (a)). If, additionally, f is even, we know
that (cn) is even (part (b)) and therefore real because (cn) is also Hermitian.
Likewise, if f is odd as well as real, then (cn) is odd, and it is also imaginary
because (cn) is Hermitian. The proof of the converse is the same.

You are invited to consider for yourself the less common case of f being imag-
inary and even, or imaginary and odd. All four cases are summarized in Figure 4.16.
These symmetries also hold for f on an interval [−L∕2, L∕2], with the usual definitions
of evenness (f (x) = f (−x)) and oddness (f (x) = −f (−x)).

Example 4.8. The square and parabolic waves (Examples 4.3 and 4.7) are real

and odd functions, and their respective Fourier coefficients, cn = 2
in

and cn = iL2

2𝜋3n3 ,
n = ±1,±3,…, are imaginary and odd. The triangle wave (Example 4.6) is real and
even, and its Fourier coefficients cn = − T

𝜋2n2 , n = ±1,±3,…, are real and even.

The symmetry relationships can save computation time. If you know at the
outset that the coefficients are going to be even, or odd, or Hermitian, then you only
need to compute, say, the positive-n coefficients and can obtain the rest by symmetry.
The symmetries are also beneficial for error checking. If you calculate a set of Fourier

f(x)

cn

Real, even

Real, even

Real, odd

Real, odd

Imaginary, even

Imaginary, even

Imaginary, odd

Imaginary, odd

FIGURE 4.16 Even/odd symmetries of the Fourier coefficients.
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coefficients and find that they violate symmetries that you know must hold, then you
have caught an error and can correct it.

There are also nice symmetry relationships for the classical series: an even
function has a cosine series, and an odd function has a sine series. Proof is left to the
problems.

Example 4.9. We have seen that the square wave’s Fourier components are of the
form 4

𝜋n
sin 2𝜋nt

T
(Example 4.3), and its Fourier series can therefore be expressed

f (t) =
∑

n=1,3,…

4
𝜋n

sin
2𝜋nt

T
.

It can similarly be shown that the Fourier components for the triangle wave are

− T
𝜋2n2

ei2𝜋nt∕T − T
𝜋2n2

ei2𝜋nt∕T = − 2T
𝜋2n2

cos
2𝜋nt

T
, n = 1, 3,… ,

so its Fourier series is

f (t) = T
4
−

∑
n=1,3,…

2T
𝜋2n2

cos
2𝜋nt

T
.

The special forms of the Fourier series for even and odd functions can be used
to derive Fourier expansions for functions on [0, L], which themselves lack even or
odd symmetry.

Example 4.10. The ramp function f (x) = x∕L, L > x ≥ 0 extends periodically to
the sawtooth wave shown in Figure 4.17. The Fourier coefficients for this function,

cn = 1
L ∫

L

0

x
L

e−i2𝜋nx∕Ldx = i
2𝜋n

,

decay slowly, O(|n|−1), owing to the jump discontinuities at x = 0,±L,±2L,…. We
know that the Fourier series will not converge uniformly; there will be overshoot in
the partial sums near the jumps. A representation with better convergence properties is
obtained by symmetrically reflecting the ramp about x = L, as shown in Figure 4.17.
This new function,

fe(x) =
⎧⎪⎨⎪⎩

x
L

, L > x ≥ 0

2 − x
L

, 2L > x ≥ L
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FIGURE 4.17 Deriving the Fourier series for a function on an interval. Left: A piecewise
continuous function and its periodic extension. Because of the jump discontinuity, the partial
sums (S5 shown) display overshoot. Right: The function is reflected and periodically extended
to a piecewise smooth function with even symmetry, equal to the original function on [0, L].
The resulting Fourier expansion has better convergence properties.

periodically extends to a triangle wave, which is piecewise smooth and has even
symmetry. The Fourier cosine series coefficients are

an = 2
2L ∫

2L

0
fe(x) cos

2𝜋nx
2L

dx = 1
L
⋅ 2∫

L

0

x
L

cos
𝜋nx

L
dx

=

⎧⎪⎪⎨⎪⎪⎩
1, n = 0

0, n even

− 4
𝜋2n2

, n odd

.

With this Fourier series,

fe(x) = 1
2
−

∑
n=1,3,…

4
𝜋2n2

cos
n𝜋x

L

we just restrict x to [0, L] to obtain a series for f (x). The coefficients (an)n>0 decay
O(n−2), giving absolute and uniform convergence. The superiority of this repre-
sentation is illustrated by the partial sums in Figure 4.17. You are also invited
to compare this even symmetrization technique with the discrete cosine transform
(Section 3.6).
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Parseval’s formula
For functions in L2[0, L], the Fourier series preserves inner products. Energy conser-
vation follows as a special case.

Theorem 4.7 (Parseval). If f , g ∈ L2[0, L] have complex Fourier coefficients (fn)
and (gn), respectively, then

1
L ∫

L

0
f (x)g∗(x) dx =

∞∑
n=−∞

fng∗n (4.19a)

and taking f = g,

1
L ∫

L

0
|f (x)|2 dx =

∞∑
n=−∞

||fn||2 . (4.19b)

Proof: This is just a particular case of Equation 2.43,

⟨f , g⟩ = ∞∑
n=−∞

⟨f , en⟩ ⟨g, en⟩∗ .
For the orthonormal basis {en}, use en = 1√

L
exp

(
i2𝜋nx

L

)
. The inner products are

⟨f , en⟩ = √
Lfn and similarly for g. Then,

⟨f , g⟩ = ∫
L

0
f (x)g∗(x) dx = L

∞∑
n=−∞

fng∗n.

Substituting f = g and fn = gn yields the energy conservation formula.

Example 4.11. Parseval’s formula implies that if f and g are orthogonal functions,
their respective Fourier coefficient sequences (fn) and (gn) will also be orthogonal. We
know, for example, that cos 2𝜋x and sin 2𝜋x are orthogonal on [0, 1]. Their Fourier
coefficients cn and sn, calculated over the same interval, are

cn =
⎧⎪⎨⎪⎩

1
2
, n = −1

1
2
, n = 1

0, otherwise

sn =
⎧⎪⎨⎪⎩

i
2
, n = −1

− i
2
, n = 1

0, otherwise

and their inner product is
∞∑

n=−∞
cns∗n = 1

2
⋅

i
2
+ 1

2
⋅ − i

2
= 0.
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Area theorem
The average value of a function is proportional to the area under one period of its
graph. If the function models a voltage or current waveform, then the average has a
convenient physical interpretation as the constant baseline or “DC” value.

Theorem 4.8 (Area theorem). Let f be a function and (cn) be its Fourier coeffi-
cients. Then,

c0 = 1
L ∫

L

0
f (x) dx (4.20a)

f (0) =
∞∑

n=−∞
cn. (4.20b)

Proof is left to the problems.

Example 4.12. The area under one period of the triangle wave in Example 4.6 is
A = 1

2
⋅ T ⋅ 1

2
= T

4
, the same as c0 of its Fourier series.

Shifting
For a function f defined on the real line, a shift f (x − r) is a translation along the x axis.
When f is defined on an interval [0, L], a shift is interpreted modulo-L, similar to the
interpretation for the DFT. Equivalently, it is a translation of the periodic extension
of f .

Theorem 4.9 (Shift theorem). Let f ⟷ (cn) be a Fourier series pair. Then, for
the shifted function f (x − r),

f (x − r) ⟷
(
e−i2𝜋rn∕Lcn

)
. (4.21)

Proof is left to the problems.

Example 4.13. A particularly simple demonstration of the shift theorem uses
the sine and cosine functions. The Fourier coefficients for cos 2𝜋x are c1 =
c−1 = 1

2
, and for sin 2𝜋x, s1 = −s−1 = − i

2
. Now, because sin 2𝜋x = cos(2𝜋x − 𝜋

2
) =

cos 2𝜋(x − 1
4
), the shift theorem predicts

sn = exp
(
−2𝜋n

1
4

)
cn = e−i𝜋n∕2cn.

In particular,

s1 = e−i𝜋∕2c1 = −i
1
2

s−1 = e−i𝜋(−1)∕2c−1 = +i
1
2
.

It is important to note that shifting does not affect the magnitude of the Fourier
coefficients: |||e−i2𝜋rn∕Lcn

||| = ||cn
|| ,
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since |||e−i2𝜋rn∕L||| = 1. In the Fourier series,

∞∑
n=−∞

e−i2𝜋rn∕L cn ej2𝜋nx∕L =
∞∑

n=−∞
cn ej2𝜋n(x−r)∕L

.

The mixture of basis functions—magnitudes and relative phases—specified by the
coefficients (cn) is unmodified by the shift. Rather, the phase shift e−i2𝜋rn∕L is mani-
fested in a translation of the basis functions, and combining them with the cn results
in a translation of f .

Differentiation
A series

∑∞
n=1 rn(x) so rn(x) that converges absolutely and uniformly to a function f

can be differentiated term by term, and the derived series converges to the derivative
of f ,7

∞∑
n=1

r′n(x) = f ′(x).

If a function is continuous and piecewise smooth, its Fourier series is absolutely and
uniformly convergent. It may be differentiated term by term to yield the Fourier series
of the function’s derivative.8

Theorem 4.10 (Derivative theorem). Let f be continuous and piecewise smooth
and let its derivative f ′ be piecewise smooth. Let (cn) be the Fourier coefficients of f .
Then, the Fourier coefficients (c′n) of f ′ are given by

c′n = i2𝜋n
L

cn (4.22)

and the Fourier series
∑∞

n=−∞ c′ne−2𝜋nx∕L converges pointwise (Theorem 4.2) to f ′.

Proof is left to the problems.

Integration
The integral F(x) = ∫ x

0 f (𝜉) d𝜉 of an absolutely integrable function f , x ∈ [0, L], is
also absolutely integrable:

∫
L

0

||||∫ x

0
f (𝜉)d𝜉

|||| dx < L max
x∈[0,L]

||||∫ x

0
f (𝜉)d𝜉

|||| = L ∫
L

0
|f (𝜉)| d𝜉dx < ∞.

7Differentiability of series is a standard topic in real analysis. See, for example, Rosenlicht (1968,
pp. 140–150).
8As long as f ′ is absolutely integrable, it has Fourier coefficients given by (Equation 4.22). See Champeney
(1987, pp. 164–165) for this and other alternative statements of the derivative theorem. The conditions
imposed on f in our version of the theorem guarantee pointwise convergence of the derived series to f ′.



208 CHAPTER 4 THE FOURIER SERIES

Thus, F also has a Fourier series. To find out what the Fourier coefficients of F are,
formally integrate the Fourier series for f term by term:

F(x) = ∫
x

0

∞∑
n=−∞

cnei2𝜋n𝜉∕L d𝜉 = ∫
x

0
c0dx +

∑
n≠0

cn ∫
x

0
ei2𝜋n𝜉∕L d𝜉

= c0x +
∑
n≠0

L
i2𝜋n

cn

[
ei2𝜋nx∕L − 1

]
= c0x −

∑
n≠0

L
i2𝜋n

cn +
∑
n≠0

L
i2𝜋n

cnei2𝜋nx∕L, x ∈ [0, L].

The restriction of x to the bounded interval [0, L] is important, so that the ramp
term c0x does not grow without bound. We may conveniently subtract c0x from F,
leaving

F(x) − c0x = −
∑
n≠0

L
i2𝜋n

cn +
∑
n≠0

L
i2𝜋n

cnei2𝜋nx∕L
.

The first term, −
∑

n≠0
L

i2𝜋n
cn, converges. By the Riemann–Lebesgue lemma,

the coefficients cn → 0 as |n| → ∞. Thus ||cn∕n|| → 0 faster than O
(|n|−1

)
, guar-

anteeing convergence. The sum is independent of x; it must be the constant part of
F − c0x.

The second term,
∑

n≠0
L

i2𝜋n
cnei2𝜋n𝜉∕L, is a Fourier series. Its coefficients also

decay faster than O(|n|−1), enabling it to converge pointwise to something at least
piecewise smooth. The series lacks a constant term, so it must represent the noncon-
stant part of F − c0.

We have essentially proved the following theorem.

Theorem 4.11 (Integral theorem). Let f ⟼ (cn), and define the function F by

F(x) = ∫
x

0
f (𝜉) d𝜉, x ∈ [0, L].

Then F has a series representation given by

F(x) = c0x +
∞∑

n=−∞
Cnej2𝜋nx∕L, x ∈ [0, L], (4.23a)

where

C0 = 1
L ∫

L

0

(
F(x) − c0x

)
dx = −

∑
n≠0

L
i2𝜋n

cn = −
∑
n≠0

Cn (4.23b)

Cn = L
i2𝜋n

cn, n = ±1,±2,… . (4.23c)

The Fourier series
∞∑

n=−∞
Cnei2𝜋nx∕L converges pointwise to F(x) − c0x.



4.4 FOURIER SERIES PROPERTIES AND THEOREMS 209

The theorem is stated in its most general form, for a function f that is merely
absolutely integrable. If additionally f is piecewise smooth, then F is continuous and
the coefficients of the integrated series decay at least O(|n|−2), guaranteeing absolute
and uniform convergence.

The relation of differentiation and integration to the smoothness of a function
and the behavior of its Fourier coefficients is of fundamental importance. We have
seen already that the smoothness of a function, measured by how many times it can
be continuously differentiated, is directly related to the rate of the decay of its Fourier
coefficients (Theorem 4.4). Here is how the derivative and integral theorems fit into
this picture:

� Differentiation makes a function less smooth (think: corners become jumps).
The derivative of a p times differentiable function is p − 1 times differentiable.
In the Fourier domain, differentiation multiplies the Fourier coefficients by n,
decreasing their rate of decay and boosting the high frequency components.

� On the other hand, integration makes a function smoother (jumps become
corners and corners become rounded). The integral of a p times differentiable
function is p + 1 times differentiable. In the Fourier domain, integration divides
the Fourier coefficients by n, increasing their rate of decay and attenuating the
high frequency components.

Unless a function is infinitely continuously differentiable, repeated differentiation
will eventually render it discontinuous. With each differentiation, the Fourier coeffi-
cients decay more slowly (by a factor of n), until eventually the Fourier series loses
uniform convergence. With one additional differentiation, the derivatives at the jump
discontinuities blow up, the Fourier coefficients are now constant or growing with n,
and the Fourier series fails to converge to any function in the ordinary sense (but see
Chapter 6 for a resolution of this apparent problem).

Example 4.14. The triangle wave in Example 4.6 is the integral of the square wave
in Example 4.3, as can be seen by inspection of their graphs, and the square wave is
the derivative of the triangle wave. Comparing their Fourier coefficients,

cn =

{ 2
in

, n = ±1,±3,…

0, otherwise
square wave

Cn =
⎧⎪⎨⎪⎩

T
4

, n = 0

− T
𝜋2n2 , n = ±1,±3,…

0, otherwise

triangle wave

note that

2
in

= i2𝜋n
T

⋅ − T
𝜋2n2
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in accordance with the derivative and integral theorems. Moreover, for the triangle
wave,

−
∑
n≠0

Cn =
∑

n=±1,±3,…

T
𝜋2n2

= 2T
𝜋2

∑
n=1,3,…

1
n2

= 2T
𝜋2

𝜋
2

8
= T

4
= C0,

as expected by the integral theorem.

Convolution
Let f , h have period L; the convolution f ⊛ h is defined by

f ⊛ h(x) = ∫
L

0
f (𝜉)h(x − 𝜉) d𝜉 = ∫

L

0
f (x − 𝜉)h(𝜉) d𝜉 (4.24)

when the integral exists. Because f and h are periodic, the integral can be taken over
any interval of length L without changing the result. Like the DFT, convolution is
cyclic, with the shift interpreted modulo-L. The convolution is itself periodic with
period L,

f ⊛ h(x + L) = ∫
L

0
f (𝜉)h(x + L − 𝜉) d𝜉 = ∫

L

0
f (𝜉)h(x − 𝜉) d𝜉 = f ⊛ h(x). (4.25)

Example 4.15 (Convolution of square waves). Consider the square wave
function,

f (x) =

{
1, L

2
> x ≥ 0

0, L > x ≥ L
2

.

The convolution, g = f ⊛ f , is illustrated in Figure 4.18. The function f (x − 𝜉) is
a reversed version of f , and slides across f (𝜉) as x is varied. Since f is defined
piecewise, it is convenient to perform the integral in steps, based on the value of x.
When L

2
> x ≥ 0, the two functions are both nonzero between 𝜉 = 0 and 𝜉 = x. The

integral in this case is

∫
x

0
1 ⋅ 1 d𝜉 = 𝜉

|||x0 = x.

When L > x ≥ L
2

, the functions are both nonzero between 𝜉 = x − L
2

and 𝜉 = L
2

. The
integral is

∫
L∕2

x−L∕2
1 ⋅ 1 d𝜉 = 𝜉

|||L∕2

x−L∕2
= x − L.

The result, combining both pieces, is

g(x) =

{
x, L

2
> x ≥ 0

x − L, L > x ≥ L
2

,

which has the shape of a triangle.
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ξL x x – L/2 

f(ξ) f(x – ξ)

ξL x x + L/2 

f(ξ)f(x – ξ)

x

g(x) L/2 

L 

FIGURE 4.18 Convolution of two square waves, g(x) = ∫ L

0 f (𝜉)f (x − 𝜉) d𝜉. Top: Overlap
of f (𝜉) (solid) and f (x − 𝜉) (dashed) when L

2
> x ≥ 0. Integration takes place over the shaded

overlap between 0 and x. Center: When L > x ≥ L

2
, the integration takes place over the shaded

overlap between x − L∕2 and L∕2. Bottom: The result of the convolution is a triangle wave.

Provided that f ⊛ h is at least absolutely integrable (f ⊛ h ∈ L1), it has a Fourier
series. Let f and h have Fourier coefficients (fn) and (hn), respectively. The Fourier
coefficients for the convolution are formally derived by inserting the convolution
integral into Equation 4.3,

f ⊛ h ⟼ 1
L ∫

L

0

[
∫

L

0
f (𝜉)h(x − 𝜉) d𝜉

]
e−i2𝜋nx∕L dx,

then reversing the order of integration (Fubini’s theorem),

= ∫
L

0
f (𝜉)

[
1
L ∫

L

0
h(x − 𝜉)e−i2𝜋nx∕L dx

]
d𝜉

=
[
∫

L

0
f (𝜉)e−i2𝜋n𝜉∕L d𝜉

]
hn (shift theorem)

= Lfnhn.

Likewise, the product fh is periodic and, if it is at least absolutely integrable on [0, L],
it has a Fourier series. To calculate its Fourier coefficients, express f in terms of its
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TABLE 4.2 Details about convolutions and products of functions. The norm of the
convolution is bounded, ‖ f ⊛ h‖ ≤ ‖ f‖ ‖h‖, where the norms are calculated in the
appropriate spaces. When h is bounded (h ∈ L∞), the product fh inherits the norm properties
of f , that is, if f ∈ L2 then fh ∈ L2.

If f is and h is then f ⊛ h is and fh is

L1 L1 L1

L1 L2 L2

L1 L∞ L∞ and continuous L1

L2 L2 L∞ and continuous L1

Fourier series and substitute it into Equation 4.3,

f h ⟼ 1
L ∫

L

0
f (x)h(x)e−i2𝜋nx∕L dx

= 1
L ∫

L

0
h(x)

[ ∞∑
k=−∞

fkei2𝜋kx∕L

]
e−i2𝜋nx∕L dx,

then reverse the order of summation and integration,

=
∞∑

k=−∞
fk

[
1
L ∫

L

0
h(x)e−i2𝜋(n−k)x∕L dx

]
=

∞∑
k=−∞

fkhn−k.

This sum is the (noncyclic) convolution of the Fourier coefficient sequences (fn)
and (hn), denoted (fn) ∗ (hn). If the inverse relationships hold as well—that is, if the
Fourier series for f ⊛ h and fh are convergent—we have

f ⊛ h ⟷ (Lfnhn) (4.26a)

f h ⟷ (fn) ∗ (hn). (4.26b)

In order for the forward relationships f ⊛ h ⟼ (Lfnhn) and fh ⟼ (fn) ∗ (hn)
to be true, the convolution f ⊛ h and product fh must be at least absolutely integrable.
The table in Table 4.2 summarizes the principal cases of interest.9 It says that the
convolution of two functions is at least as well behaved as the component functions; if
they have Fourier series, then so does their convolution. This is due to the smoothing
effect of integration. (Consider, for example, that the convolution of two square
waves, which are discontinuous, is a triangle wave, which is continuous.) On the
other hand, the product is no better than its factors, and the existence of a Fourier
series for the product is subject to more stringent conditions.

In the reverse direction, convergence of the Fourier series
∑

n Lfnhn exp
(

i2𝜋nx
L

)
to f ⊛ h and

∑
n

[
(fn) ∗ (hn)

]
exp

(
i2𝜋nx

L

)
to fh is guaranteed if the coefficient

9The convolution and product relationships in Table 4.2 are similar to those in Section 5.5. References to
proofs are provided there.
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sequences (fnhn) and (fn) ∗ (hn) are at least square summable.10 Now, the prod-
uct (fnhn) ∈ 𝓁2 if one of the coefficient sequences is in 𝓁2 while the other is at least
bounded (see Table 4.3 later). This happens if, for example, f ∈ L1 and h ∈ L2. The
convolution (fn) ∗ (hn) ∈ 𝓁2 if one of the coefficient sequences is in𝓁2 while the other
is in 𝓁1. This requires either f or h to be at least piecewise smooth while the other
is at least in L2.

We can assemble all these conditions into a theorem.

Theorem 4.12 (Convolution theorem for Fourier series). Let f , h have period L
and Fourier coefficients (fn), (gn).

(a) If f and h are in L1[0, L], the convolution g = f ⊛ h is in L1[0, L] and its Fourier
coefficients are

gn = Lfnhn.

If f or h is additionally in L2[0, L], then the Fourier series
∞∑

n=−∞
gnei2𝜋nx∕L

converges in L2 to f ⊛ h.

(b) If f and h are in L2[0, L], then the product g = fh is in L1[0, L] and its Fourier
coefficients are given by the convolution sum,

gn =
∞∑

k=−∞
fkhn−k =

∞∑
k=−∞

fn−khk.

If f or h is additionally piecewise smooth, then the Fourier series
∞∑

n=−∞
gnei2𝜋nx∕L converges in L2 to fh.

In most practical applications, the functions f and h will be bounded and at
least piecewise smooth (square waves or better). Their product fh will be bounded
and at least piecewise smooth, and their convolution f ⊛ h will be bounded and at
least continuous. Both will have Fourier series expansions that converge pointwise
or better, according to Theorem 4.2.

Example 4.16 (More about the convolution of square waves). In Example 4.15
we saw that the convolution of two square waves is a triangle wave. Here we will
show that this result agrees with the convolution theorem. The Fourier coefficients of
the square and triangle waves were calculated in Examples 4.3 and 4.6. The square
wave in the earlier example had values between −1 and 1 rather than 0 and 1. The
latter wave is related to the former through a scaling by 1

2
followed by adding 1

2
.

Using the linearity theorem with Equation 4.10, we calculate the coefficients of the

10Requiring square summability of (fnhn) and (fn) ∗ (hn) for convergence of their respective Fourier series
is less restrictive than requiring absolute summability, because 𝓁1

⊂ 𝓁2
⊂ 𝓁∞.
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0-to-1 square wave:

f0 = 1
2

fn = 1
2
⋅

2
i𝜋n

= 1
i𝜋n

, (n odd, otherwise 0).

Then, according to the convolution theorem, the Fourier coefficients of the triangle
wave should be gn = Lfn ⋅ fn = Lf 2

n :

g0 = L
4

gn = L
( 1

i𝜋n

)2
= − L

𝜋2n2
.

These agree with Equation 4.13.

Example 4.17 (Harmonic distortion). The ideal electronic amplifier produces an
output that is simply a scaled version of its input, y(t) = Ax(t). In real amplifiers,
even ones of high quality, there are nonlinearities so that the output is more closely
modeled by y(t) = A1x(t) + A2x2(t). If x is a pure sinusoid, x(t) = cos 2𝜋𝜈0t, then the
output is

y(t) = A1 cos 2𝜋𝜈0t + A2 cos2 2𝜋𝜈0t =
A2

2
+ A1 cos 2𝜋𝜈0t +

A2

2
cos 4𝜋𝜈0t.

The cosines have frequencies 𝜈0 and 2𝜈0, so they share the common period T = 1∕𝜈0
and the Fourier series of y can be calculated. The Fourier coefficients are

cn =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

A2
2

, n = 0

A1
2

, n = ±1

A2
4

, n = ±2

0, otherwise

.

To illustrate the operation of the convolution theorem, we will recalculate the Fourier
coefficients of the nonlinear term A2 cos2 2𝜋𝜈0t. The Fourier coefficients of cos 2𝜋𝜈0t
are the sequence (cn) = 1

2
𝛿[n − 1] + 1

2
𝛿[n + 1]. Then, calculating the convolution

(cn) ∗ (cn), we have

(cn) ∗ (cn) =
∞∑

k=−∞

(1
2
𝛿[k − 1] + 1

2
𝛿[k + 1]

) (1
2
𝛿[n − k − 1] + 1

2
𝛿[n − k + 1]

)
= 1

4

∑
k

𝛿[k − 1]𝛿[n − k − 1] + 1
4

∑
k

𝛿[k + 1]𝛿[n − k − 1]

+1
4

∑
k

𝛿[k − 1]𝛿[n − k + 1] + 1
4

∑
k

𝛿[k + 1]𝛿[n − k + 1]

= 1
4
𝛿[n − 2] + 1

4
𝛿[n] + 1

4
𝛿[n] + 1

4
𝛿[n + 2] = 1

4
𝛿[n − 2] + 1

2
𝛿[n] + 1

4
𝛿[n + 2].
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Hence, the Fourier coefficients of A2 cos2 2𝜋𝜈0t are A2
2

, n = 0, and A2
4

, n = ±2, as
before.

To be specific, let A1 = 10, A2 = 0.1, and 𝜈0 = 100 Hz. There will be a spurious
DC component in the output, which is routinely blocked by a capacitor, and also
a spurious second harmonic at 200 Hz. This is called second-harmonic distortion,
and is quantified by the ratio of second harmonic power to the total (AC) power. In
this case,

harmonic distortion =
|c−2|2 + |c2|2|c−1|2 + |c1|2 + |c−2|2 + |c2|2 = 0.0025

25.0025
≈ 0.01%.

4.5 THE HEAT EQUATION

The first application of the Fourier series, described by Fourier in his seminal Théorie
Analytique de la Chaleur (1822), was the description of heat conduction in a thin
metal bar. Here, the bar is assumed to be sufficiently thin compared with its length
that the temperature is uniform across its width. It is also assumed that the bar is
insulated so that no heat escapes along its length, and its ends are maintained at
zero temperature (Figure 4.19). The temperature, denoted u(x, t), obeys a partial
differential equation,

𝜕
2u(x, t)

𝜕x2
= 1

D
𝜕u(x, t)

𝜕t
(4.27)

u(0, t) = u(L, t) = 0 boundary conditions

u(x, 0) = f (x) initial condition

x = 0 x = L

x

t

0 Lu(x,0) =  f(x)

u = 0 u = 0

FIGURE 4.19 Solving the heat equation in a thin bar. Top: The sides are insulated, so no
heat flows through them. The temperature profile is assumed to be uniform in the transverse
direction. Bottom: Time–space plot showing the boundary conditions u(0, t) = u(L, t) = 0 and
the initial condition u(x, 0) = f (x).
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where D is called the thermal diffusivity (units m2/s). The equation describes the
evolution of temperature in the bar in space and time, beginning with an initial
distribution u(x, 0), and subject to specifications on the temperature and heat flux
(proportional the gradient 𝜕u∕𝜕x) at the ends, x = 0 and x = L. The same equation
describes one-dimensional (1D) diffusion processes, where u is interpreted as a
concentration of material and the gradient 𝜕u∕𝜕x is the flux of material.

Separation of variables
Many partial differential equations, including the present one, can be solved using a
method called separation of variables. The solution is assumed to be separable as the
product of a function of position alone and a function of time alone:

u(x, t) = X(x)T(t).

Making this substitution into the heat equation gives

X′′T = 1
D

XT ′

and dividing through by XT separates the variables:

X′′

X
= 1

D
T′

T
.

The left-hand side of this equation depends on x alone while the right-hand side
depends on t alone. Yet they are equal to each other, for all values of x and t. The only
way this can happen is for both sides to be equal to a constant, which we denote −𝜆:

X′′

X
= 1

D
T′

T
= −𝜆.

This procedure converts the partial differential equation into two ordinary differential
equations,

X′′ + 𝜆X = 0

T′ + 𝜆DT = 0.

The parameter 𝜆 is called an eigenvalue. The corresponding solutions of the X
equation are called eigenfunctions, denoted 𝜙(x). There may be more than one
eigenvalue–eigenfunction pair that satisfies the differential equation. By linearity,
the eventual solution may be a combination of eigenfunctions.

From the theory of ordinary differential equations, we identify three possible
forms for the eigenfunctions, depending on the sign of the eigenvalue:

𝜙(x) =
⎧⎪⎨⎪⎩

sinh
√
−𝜆x, cosh

√
−𝜆x, 𝜆 < 0

c1x + c2, 𝜆 = 0

sin
√
𝜆x, cos

√
𝜆x, 𝜆 > 0

.

All of these satisfy the X equation, but the physically correct solutions are the ones that
also satisfy the boundary conditions, u(0, t) = u(L, t) = 0. The boundary conditions
must hold for all t, so they are equivalent to requiring 𝜙(0) = 𝜙(L) = 0. The first
boundary condition, 𝜙(0) = 0, disqualifies cos and cosh, because they are nonzero
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at the origin. The linear solution, c1x + c2, satisfies both boundary conditions only if
c1 = c2 = 0, which is trivial. The sinh function is zero at the origin but nowhere else,

so it fails to satisfy the boundary condition at x = L. Only sin
√
𝜆x can satisfy both

boundary conditions. It is zero at x = 0, and will also be zero at x = L if
√
𝜆 = n𝜋

L
,

where n is any positive integer (negative integers are redundant). There is an infinite
number of eigenvalues and eigenfunctions,

𝜆n = n2
𝜋

2

L2
, n = 1, 2,…

𝜙n(x) = sin
√
𝜆x = sin

n𝜋x
L

.

Next we take up the T equation,

T′ + 𝜆DT = 0.

This is a first-order differential equation. We know that 𝜆 > 0 from the previous dis-
cussion, so the correct solution of this equation has the form of a decaying exponential,
𝜓n(t) = exp(−𝜆nDt). Combining this with the x-dependence, for each n there is a solu-
tion of the partial differential equation of the form 𝜓n(t)𝜙n(x) = exp(−𝜆nkt) sin n𝜋x

L
.

These are called the modes of the system. The general solution of the partial differ-
ential equation is a linear superposition of modes,

u(x, t) =
∞∑

n=1

bn𝜓n(t)𝜙n(x)

=
∞∑

n=1

bn exp

(
−n2

𝜋
2D

L2
t

)
sin

n𝜋x
L

.

It remains to apply the initial condition, u(x, 0) = f (x). Substituting t = 0 into the
general solution yields

u(x, 0) = f (x) =
∞∑

n=1

bn sin
n𝜋x

L
,

a Fourier sine series! The {bn} are Fourier coefficients for the initial temperature
profile f (x).

The eigenfunctions 𝜙n(x) = sin n𝜋x
L

are orthogonal on [0, L]:

⟨𝜙n,𝜙m⟩ = ∫
L

0
sin

n𝜋x
L

sin
m𝜋x

L
dx =

{
0, m ≠ n
L
2

, m = n
.

Thus, the set

{√
2
L

sin n𝜋x
L

}∞

n=1
is orthonormal, and it can also be shown to be

complete. The form of an orthogonal expansion with this basis is

f =
∞∑

n=1

⟨
f ,

√
2
L

sin
n𝜋x
L

⟩√
2
L

sin
n𝜋x
L

=
∞∑

n=1

2
L

⟨
f , sin

n𝜋x
L

⟩
⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

bn

sin
n𝜋x

L
.
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Finally, we have the complete solution to the heat equation,

u(x, t) =
∞∑

n=1

bn exp

(
−n2

𝜋
2D

L2
t

)
sin

n𝜋x
L

(4.28)

bn = 2
L ∫

L

0
f (x) sin

n𝜋x
L

dx.

Example 4.18. For a particular case, let the initial temperature profile be rectangular
with width 𝑤,

f (x) =
⎧⎪⎨⎪⎩

0, L
2
− 𝑤

2
≥ x ≥ 0

A
𝑤

, L
2
+ 𝑤

2
> x >

L
2
− 𝑤

2

0, L ≥ x ≥ L
2
+ 𝑤

2

.

The Fourier coefficients are

bn = 2
L ∫

L
2
+𝑤

2

L
2
−𝑤

2

A
𝑤

sin
n𝜋x
L

dx =

{
0, n even

(−1)
n−1

2
2A
L

sinc n𝑤
2L

, n odd

(where sinc x = sin𝜋x
𝜋x

). The temperature profile u(x, t) is plotted in Figure 4.20 for
various values of t. For computational reasons, the series is truncated at n = 41,
and for t = 0 the poor convergence of the Fourier series is obvious. Within a very
short time, however, the solution smooths out, and the temperature profile spreads
as t increases. The ends remain at zero temperature, as specified by the boundary
conditions. Heat flows out the ends and, as it is lost, the temperature of the bar
decreases toward zero everywhere.

The rapid smoothing of the truncated Fourier series is due to the exponential
factor. By themselves, the coefficients bn decay O(n−1), and the consequent bad
convergence is observed at t = 0. For t > 0, the bn are multiplied by a decaying

exponential factor, so that the Fourier coefficients are effectively bn exp
(
− n2

𝜋
2D

L2 t
)

.

Convergence for even small values of t is extremely rapid, and as t increases, the
Fourier series comes to be dominated by a few low frequency terms (Figure 4.21)
that are spatially spread out.

Bar with insulated ends
Different boundary conditions lead to different solutions. For a second example,
let the ends of the bar be insulated rather than held at a constant temperature. The
boundary conditions are zero heat flow at x = 0 and x = L. Heat flow is proportional

to the temperature gradient, so the boundary conditions are expressed by
𝜕u
𝜕x

= 0 at

x = 0 and x = L (Figure 4.22).
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FIGURE 4.20 Temperature profile in a thin bar, computed from Equation 4.28 with L = 1,

A = 1, 𝑤 = 0.2, and D = 1. The constant 𝜏 = L2

𝜋2D
is the time constant of the exponential factor

when n = 1. The Fourier series is truncated at n = 41. Overshoot is observed for t = 0, but for
t ≥ 0.005𝜏, the solution is monotonically decreasing away from the center of the bar. Because
the ends of the bar are held at zero temperature, heat flows from the center through the ends,
and the temperature of the bar approaches zero everywhere.

The solution by separation of variables proceeds as before, until we get to the
possible solutions of the X equation.

𝜙(x) =
⎧⎪⎨⎪⎩

sinh
√
−𝜆x, cosh

√
−𝜆x, 𝜆 < 0

c1x + c2, 𝜆 = 0

sin
√
𝜆x, cos

√
𝜆x, 𝜆 > 0

.

The boundary conditions are imposed on the derivative, 𝜕u
𝜕x
|||(0,t)

= 𝜕u
𝜕x
|||(L,t)

= 0, which

must be true for all t. The equivalent boundary conditions on𝜙 are 𝜙′(0) = 𝜙
′(L) = 0.

Differentiating the possible solutions,

𝜙
′(x) =

⎧⎪⎨⎪⎩
√
−𝜆 cosh

√
−𝜆x,

√
−𝜆 sinh

√
−𝜆x, 𝜆 < 0

c1, 𝜆 = 0√
𝜆 cos

√
𝜆x, −

√
𝜆 sin

√
𝜆x, 𝜆 > 0

.

The sinh and cosh functions are disqualified, as before. The boundary conditions
are satisfied for 𝜆 = 0 if c1 = 0 (c2 is unrestricted by the boundary conditions). For
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FIGURE 4.21 Decay of the Fourier coefficients bn exp
(
− n2

𝜋
2D

L2 t
)

in Equation 4.28. Same

parameter values as Figure 4.20. The increasingly rapid rolloff of the Fourier coefficients is
the reason for the smoothing and spreading of the initial temperature profile.

x = 0 x = L

x

t

0 Lu(x,0) =  f(x)

∂u
∂x

= 0 ∂u
∂x

= 0

FIGURE 4.22 Solving the heat equation in a thin bar. Top: The sides and ends are insulated so
no heat flows through them. The temperature profile is assumed to be uniform in the transverse

direction. Bottom: Time–space plot showing the boundary conditions 𝜕u

𝜕x

|||(0,t)
= 𝜕u

𝜕x

|||(L,t)
= 0 and

the initial condition u(x, 0) = f (x).
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𝜆 > 0, the cosine function will work. The derivative 𝜙
′(x) = −𝜆 sin

√
𝜆x is zero for

x = 0 and also for x = L if
√
𝜆 = n𝜋

L
, n = 1, 2,…. From here, the solution proceeds

as before, until we arrive at the general solution:

u(x, t) =
a0

2
+

∞∑
n=1

an exp

(
−n2

𝜋
2D

L2
t

)
cos

n𝜋x
L

.

In renaming the constant term from c2 to a0
2

, we recognize this as a Fourier cosine
series. Imposing the initial condition,

u(x, 0) = f (x) =
a0

2
+

∞∑
n=1

an cos
n𝜋x
L

.

The (an)∞n=0 are the Fourier cosine coefficients of the initial profile f (x). They are
calculated in like manner as the sine coefficients in the previous case, and the final
solution of the heat equation is obtained:

u(x, t) =
a0

2
+

∞∑
n=1

an exp

(
−n2

𝜋
2D

L2
t

)
cos

n𝜋x
L

an = 2
L ∫

L

0
f (x) cos

n𝜋x
L

dx. (4.29)

Example 4.19. Using the same initial profile as in Example 4.18, we calculate the
Fourier cosine coefficients,

an = 2
L ∫

L
2
+𝑤

2

L
2
−𝑤

2

A
𝑤

cos
n𝜋x
L

dx =
⎧⎪⎨⎪⎩

2A
L

, n = 0

0, n odd
(−1)n∕2 2A

L
sinc n𝑤

2L
, n even

.

The temperature profile u(x, t) is plotted in Figure 4.23 for various values of t. For
computational reasons, the series is truncated at n = 40. The solution has the same
convergence behavior as the previous example.

The interesting feature of this solution is the result of insulating the ends of
the rod. Because no heat can escape, the temperatures of the ends of the rod rise as
the initial profile spreads out. As t → ∞, all the terms in the solution decay to zero
except the constant term. The steady-state temperature of the rod is given by this
term, A

L
.

General validity of the solutions
In both examples above, the solution of the heat equation takes the form of an infinite
series,

u(x, t) = a0∕2 +
∞∑

n=1

an

bn

exp

(
−n2

𝜋
2D

L2
t

) cos

sin

n𝜋x
L

.

The individual terms of the series are shown to satisfy the heat equation and the
boundary conditions, and at t = 0 the coefficients can be calculated to satisfy the
initial condition. There remains the question whether the infinite series converges,
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FIGURE 4.23 Temperature profile in a thin bar with insulated ends, computed from Equa-

tion 4.29 with L = 1, A = 1, 𝑤 = 0.2, and D = 1. The constant 𝜏 = L2

𝜋2D
is the time constant

of the exponential factor when n = 1. The Fourier series is truncated at n = 40. Overshoot is
observed for t = 0, but even for relatively small t, the solution is smooth. Because the ends of
the bar are insulated, as heat flows from the center to the ends it causes the temperature of the
ends to rise. For large t, the temperature of the bar approaches A

L
= 1 everywhere.

and does so in such a way that it satisfies the partial differential equation. Fortunately,

the answer is affirmative. The key is the exponential factor, exp
(
− n2

𝜋
2D

L2 t
)

, which

is rapidly decreasing in n for t > 0. For any initial profile f that has a Fourier
expansion (which includes all functions of physical interest), the Fourier coefficients
(an) or (bn) will exist, and by the Riemann–Lebesgue lemma, they will decay with
increasing n. Multiplying them by the rapidly decreasing exponential factor renders
the infinite series absolutely and uniformly convergent for t > 0. Consequently, it can
be differentiated term by term with respect to x or t, and the derived series will also
converge, to the respective partial derivatives of u, for example,

𝜕u
𝜕x

=
∞∑

n=1

n𝜋bn

L
exp

(
−n2

𝜋
2D

L2
t

)
cos

n𝜋x
L

𝜕u
𝜕t

=
∞∑

n=1

−
n2
𝜋

2Dbn

L2
exp

(
−n2

𝜋
2D

L2
t

)
sin

n𝜋x
L

.

Differentiation has multiplied the Fourier coefficients by n and by n2, but the rapidly
decreasing exponential factor counteracts this growth and continues to render the
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FIGURE 4.24 Initial profile of a plucked string.

series absolutely and uniformly convergent, and differentiable term by term. The
series can be differentiated any number of times and the result will always converge,
absolutely and uniformly, to the corresponding partial derivative of u. That is, the
infinite series and its derivatives are infinitely continuously differentiable functions
of x and t, for t > 0. This is more than is required to validate the infinite series as a
solution of the heat equation.

4.6 THE VIBRATING STRING

Standing wave systems, for example, the classical equation of the vibrating string, are
well-suited to Fourier series analysis. A string is stretched tight between two points
separated by a distance L, and displaced away from its rest position, as shown in
Figure 4.24.

You may imagine that x = 0 corresponds to the bridge of a guitar (on the body
of the instrument), and x = L corresponds to the nut (at the top of the neck, just below
the tuning pegs). The string is about to be plucked at a distance rL from the bridge,
where 1 > r > 0. It is assumed to be released with zero initial velocity. The vertical
displacement of the the string obeys a type of wave equation,

𝜕
2y(x, t)

𝜕x2
= 𝜇

F

𝜕
2y(x, t)

𝜕t2
, (4.30)

y(0, t) = y(L, t) = 0 boundary conditions

y(x, 0) = f (x), y′(x, 0) = 0 initial conditions

where 𝜇 is the mass per unit length of the string and F is the tension in the string.11

Like the heat equation, the wave equation for the vibrating string may be
solved by separation of variables. Assume that the solution y(x, t) is the product of
two functions of x and t alone:

y(x, t) = X(x)T(t).

Substituting this into Equation 4.30 gives

X′′T = 1
𝑣2

XT′′

11For derivations of the equation of the vibrating string, see Churchill and Brown (1987, pp. 4–7) and
Elmore and Heald (1969, pp. 1–5, 42–44).
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where 𝑣
2 = F∕𝜇, for convenience. Dividing through by XT separates the variables:

X′′

X
= T′′

𝑣2T
.

The left-hand side of this equation depends on x alone while the right-hand side
depends on t alone. Yet they are equal to each other, for all values of x and t. The only
way this can happen is for both sides to be equal to a constant, which we denote −𝜆:

X′′

X
= T′′

𝑣2T
= −𝜆.

We now have two ordinary differential equations,

X′′ + 𝜆X = 0

T′′ + 𝜆𝑣
2T = 0,

with boundary and initial conditions

X(0) = X(L) = 0

T′(0) = 0.

We address the X equation first. There are three possible forms for the eigen-
functions 𝜙(x):

𝜙(x) =
⎧⎪⎨⎪⎩

sinh
√
−𝜆x, cosh

√
−𝜆x, 𝜆 < 0

c1x + c2, 𝜆 = 0

sin
√
𝜆x, cos

√
𝜆x, 𝜆 > 0

.

The cos and cosh functions are nonzero at x = 0, and fail to satisfy the boundary
condition. The sinh function is zero at x = 0 but nowhere else, so it cannot satisfy
the boundary condition at x = L. The linear solution, c1x + c2, satisfies the boundary

conditions only if c1 = c2 = 0, which is trivial. Finally, sin
√
𝜆x is zero at x = 0 and

will also be zero at x = L if
√
𝜆L = n𝜋, n = 1, 2,…. This fixes the eigenvalues and

eigenfunctions of the X equation,

𝜆n = n2
𝜋

2

L2
, n = 1, 2,…

𝜙n(x) = sin
√
𝜆nx = sin

n𝜋x
L

.

The solution for T proceeds in the same way. This time we know that the
eigenvalues are positive, so we immediately have eigenfunctions

𝜓n(t) = sin
√
𝜆n𝑣t, cos

√
𝜆n𝑣t.

Only the cosine satisfies the initial condition T′(0) = 0.
The spatial and temporal eigenfunctions, taken together, define the modes of

vibration of the string,

𝜙n(x)𝜓n(t) = sin
n𝜋x
L

cos
n𝜋𝑣t

L
.
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The general solution of the wave equation y(x, t) is a linear superposition of the
modes,

y(x, t) =
∞∑

n=1

bn𝜙n(x)𝜓n(t) =
∞∑

n=1

bn sin
n𝜋x
L

cos
n𝜋𝑣t

L
.

The precise mixture of modes is specified by the coefficients {bn}, and these are
chosen to satisfy the remaining initial condition, y(x, 0) = f (x):

y(x, 0) = f (x) =
∞∑

n=1

bn sin
n𝜋x

L
.

This is a Fourier sine series. As shown in the previous section, the expansion coeffi-
cients are given by the integral

bn = 2
L ∫

L

0
f (x) sin

n𝜋x
L

dx.

Substituting 𝑣
2 = F∕𝜇, the final solution of the partial differential equation is

y(x, t) =
∞∑

n=1

bn sin
(
𝜋nx

L

)
cos

(√
F
𝜇

𝜋nt
L

)
(4.31)

bn = 2
L ∫

L

0
f (x) sin

n𝜋x
L

dx.

The solution of the wave equation is sinusoidal in space and in time. The
spatial profile of each mode is sinusoidal, with period (wavelength) equal to 2L∕n
(Figure 4.25). The amplitude of each mode varies sinusoidally in time with frequency

𝜈n = n
√

F∕𝜇
2L

. We associate the fundamental frequency, 𝜈1 =
√

F∕𝜇
2L

, with the pitch of
the sound made by the string. Making the string shorter increases the pitch (the high
strings on a piano are shorter than the low strings). Tightening the string (increasing
F) also increases the pitch and provides a convenient way to tune the string to a
particular pitch. Length and tension are insufficient to cover the range of frequencies
required of a piano, and the strings of a guitar must all be the same length. The lower
strings on a guitar or piano are wound with wire to make them heavier (increase 𝜇)
and thereby lower their pitch.

The Fourier coefficients bn give the relative strengths of the modes. The basic
pitch is unaffected by this distribution (as long as b1 ≠ 0), but the quality of the sound,
called its timbre, is very much dependent on the distribution of harmonic overtones.

Example 4.20 (Plucked string). Let the initial string profile f (x) be described by
two linear segments (Figure 4.24),

f (x) =
⎧⎪⎨⎪⎩

x
rL

, rL > x ≥ 0

1 − x∕L

1 − r
, L ≥ x ≥ rL

.
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FIGURE 4.25 Low order modes of the vibrating string.

We can use the Fourier series to explore the harmonic structure, observing the effect
of the parameter r on the Fourier coefficients.

The Fourier coefficients are given by the sum of two integrals,

bn = 2
L ∫

rL

0

x
rL

sin
(
𝜋nx

L

)
dx + 2

L ∫
L

rL

1 − x∕L

1 − r
sin

(
𝜋nx
L

)
dx,

which simplifies to

bn = 2 sin r𝜋n
𝜋2n2r(1 − r)

, n > 0. (4.32)

Combining Equation 4.32 with Equation 4.31 yields the final result,

y(x, t) =
∞∑

n=1

2 sin𝜋nr
𝜋2n2r(1 − r)

cos

(√
F
𝜇

𝜋nt
L

)
sin

(
𝜋nx

L

)
. (4.33)

The spectrum of Fourier coefficients for different values of r is shown in
Figure 4.26. The harmonics are weakest and the sound thinnest when the string is
plucked in the middle, r = 1∕2. As the string is plucked closer to the bridge, r = 1∕10,
the harmonics strengthen and the sound becomes richer.

General validity of the solution
As with the heat equation, we must be concerned with the convergence properties
of the solution (Equation 4.31). The modes 𝜙n(x)𝜓n(t) individually satisfy the wave
equation and the boundary conditions, and by linearity, any finite series of modes
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FIGURE 4.26 Fourier coefficients for the vibrating string. Left: Plucked at the center,
r = 1∕2. Right: Plucked near the bridge, r = 1∕10.

is also a solution. Convergence of the infinite series depends on the decay rate of
the coefficients, which in turn depends on the smoothness of the function being
expanded—in this case, the initial profile of the string. Physically, the initial profile
must be at least continuous (a jump discontinuity would break the string). The Fourier
coefficients (bn) will decay O(n−2) or better, guaranteeing absolute and uniform
convergence of the series. But the series must be differentiable twice with respect to x
and with respect to t, and this imposes a more stringent constraint on the coefficients.
Differentiating twice multiplies the coefficients by n2. In order for the derived series
to possess absolute and uniform convergence, the Fourier coefficients must decay
O(n−4) or better. According to Theorem 4.4, the initial profile f must belong to the
class C(3)—three times continuously differentiable.

The initial profile in the above example does not possess the required degree
of smoothness, so technically, the infinite series derived there is not a solution of the
wave equation. Yet, our experience tells us that a plucked string does vibrate in a
sensible way. The problem is not with the physics, but with the mathematical model,
which is overidealized. A real plucked string will not have a sharp corner, but will be
rounded with a small radius. Mathematically, this will make f smooth enough that its
Fourier coefficients have the necessary decay rate. Realistic coefficients may be more
difficult to calculate, but if the radius is small there may not be a great difference
numerically between the true coefficients and the ideal ones, so that the coefficients
for the sharp profile can serve as a useful approximation to the true coefficients. We
may also consider the behavior of such a solution as the radius of the bend approaches
zero, the idealized case. Such limiting procedures are the subject of a later chapter.

4.7 ANTENNA ARRAYS

Fourier series are also applicable to the theory of antenna arrays. Many antennas,
from the Very Large Array for radio astronomy to the ultrasonic transducers used
for medical imaging, are constructed from multiple smaller emitters and detectors.
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Initially, we will assume that the array is a 1D (line) array of point elements. The
results obtained will be accurate enough to elucidate the distinctive behavior of arrays.
In later chapters we will relax these assumptions to eventually model 2D arrays with
finite-sized elements.

Spherical waves
The general form of the wave equation is

∇2u = 1
𝑣2

𝜕
2u
𝜕t2

, (4.34)

where u is a function of spatial coordinates and of time, and 𝑣 has units of velocity.
We are interested here in 3D waves that depend spatially only on the radius from the
origin. The Laplacian in spherical coordinates without angular variation is

∇2u = 1
r
𝜕

2

𝜕r2
(ru),

so the wave equation takes the form

1
r
𝜕

2

𝜕r2
(ru) = 1

𝑣2

𝜕
2u
𝜕t2

,

which may also be written

𝜕
2

𝜕r2
(ru) = 1

𝑣2

𝜕
2

𝜕t2
(ru). (4.35)

This looks just like the 1D (vibrating string) equation, with y = ru. We may follow
the same separation of variables method used to solve the equation of the vibrating
string. We take ru(r, t) = R(r)T(t) and begin with the separated equation,

R′′

R
= 1

𝑣2

T′′

T
= −k2,

leading to ordinary differential equations

R′′ + k2R = 0

T′′ + k2
𝑣

2T = 0.

Addressing the R equation, we again identify three cases depending on the sign
of the eigenvalue k2. Unlike the vibrating string, the spatial domain is unbounded,
and a physically reasonable solution should not blow up as r → ∞. Moreover, the
total energy in the solution, proportional to the integral of the squared amplitude over
the surface of a sphere, should not blow up:

E ∝ ∫sphere

||||R(r)
r

||||2 dA = 4𝜋r2 ||||R(r)
r

||||2 = 4𝜋 |R(r)|2 < ∞.

In fact, since there are no damping mechanisms in the model, |R| should be constant.

k2
< 0: The solutions are of the form exp(±|k|r). Dividing by r gives
r−1 exp(±|k|r). One of these clearly blows up as r → ∞, and the other
decays. We can reject immediately the growing exponential. The total energy
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of the decaying exponential solution is 4𝜋 exp(−2|k|r), which decays as
r → ∞. Because energy is not conserved, we reject this solution as well.

k2 = 0: The solution is of the form c1r + c0, and dividing by r, c1 + c0r−1. This
solution is finite as r → ∞, and the total energy is

4𝜋r2
(

c1 +
c0

r

)2
= 4𝜋

(
c2

1r2 + 2c1c0r + c2
0

)
.

Taking c1 = 0 yields a finite result.

k2
> 0: The solutions are complex exponentials, exp(±ikr). Dividing by r gives
r−1 exp(±ikr). Neither of these solutions blows up as r → ∞, and both have
total energy 4𝜋.

The k2
> 0 and k2 = 0 cases can be combined into one expression for the radial

dependence:

R(r)
r

=
exp(±ikr)

r
, k ≥ 0, r > 0.

The constant k is a spatial angular frequency (radians/distance). The spatial period,
or wavelength, is 𝜆 = 2𝜋∕k.

Knowing k ≥ 0 yields a complex exponential time variation, exp(ik𝑣t). We
identify k𝑣 = 𝜔, the customary angular frequency (radians/sec), which is also 2𝜋𝜈,
where 𝜈 is the frequency in Hertz. The spatial and temporal domains are linked by
the wave velocity, 𝑣 = 𝜆𝜈 = 𝜔∕k.

The radial and temporal solutions combine to give waves of the form

u(r, t) = A
r

exp (±i(kr − 𝜔t)) ,
A
r

exp (±i(kr + 𝜔t)) ,

where A is a constant. This is the basic spherical wave. It is called spherical because
the wavefronts, loci of points of constant phase kr ± 𝜔t = const, are spherical shells
with radius r = ∓𝜔t∕k + const = ∓𝑣t + const. Choosing the + or − sign selects a
wave that propagates away from or toward the origin with velocity 𝑣:

u(r, t) =
⎧⎪⎨⎪⎩

A
r

exp (±i(kr − 𝜔t)) outward

A
r

exp (±i(kr + 𝜔t)) inward
(4.36)

or, in terms of trigonometric functions,

u(r, t) =
⎧⎪⎨⎪⎩

A
r

cos (kr − 𝜔t + 𝜑) outward

A
r

cos (kr + 𝜔t + 𝜑) inward
, (4.37)

where 𝜑 is an arbitrary constant phase (Equation 1.21).
The wave amplitude u(r, t) and the energy density |u(r, t)|2 are singular at the

origin, indicating a concentration of all the wave’s energy into a point. The wave either
emanates from this point or is focused into this point. In the case of the outwardly
propagating wave, we escape the singularity by noting that actual sources have finite



230 CHAPTER 4 THE FOURIER SERIES

R

r1

r2
d

d

θ

θ

θ  '

π –   '

P

FIGURE 4.27 Geometry for calculating field due to two point sources.

size and the source energy is distributed over a finite volume. The point source is a
useful model, though, particularly when we are working at distances r much greater
than the actual size of the source. As for the other case, inwardly propagating spherical
waves are always spatially limited in practice. One may focus a portion of a spherical
wave toward a point, but never a complete sphere. The spatial limitation causes the
wave to spread at the point of focus.

Two element antenna
Consider two point sources, separated by a distance 2d, emitting spherical waves of
equal amplitude A (Figure 4.27).

The total field due to the superposition of the two waves is measured at a point
P, assumed to be coplanar with the source locations. The quantities r1, r2, and R are
the distances from the two sources and the origin, respectively, to P. The outward
propagating spherical waves are represented by complex exponentials,

ũ(r, t) = A
r

ei(kr−𝜔t)
.

The complex field amplitude measured at P is the sum of the two waves,

ũP(R, 𝜃, t) = ũ1(r1, t) + ũ2(r2, t) = A
r1

ei(kr1−𝜔t) + A
r2

ei(kr2−𝜔t)
.

The actual field is obtained by taking the real part of the complex field.
The first step in deriving an expression for the total field is to express the

distances r1 and r2 in terms of R, 𝜃, and d. By the Law of Cosines,

r1 =
(
d2 + R2 − 2dR cos 𝜃′

)1∕2 =
(
d2 + R2 − 2dR sin 𝜃

)1∕2

= R

√
1 − 2d sin 𝜃

R
+ d2

R2

r2 =
(
d2 + R2 − 2dR cos(𝜋 − 𝜃

′)
)1∕2 =

(
d2 + R2 + 2dR sin 𝜃

)1∕2

= R

√
1 + 2d sin 𝜃

R
+ d2

R2
.
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Next, we assume that the observation point is very far from the sources, so that R ≫ d.
This is called the far-field approximation, widely used in practice. Under the radicals,
there are two terms in d∕R, which are much less than 1. This enables us to use the

first-order approximation
√

1 + 𝜖 ≈ 1 + 𝜖∕2 (for 𝜖 ≪ 1), yielding

r1 ≈ R

(
1 − d

R
sin 𝜃 + d2

2R2

)
≈ R − d sin 𝜃

r2 ≈ R

(
1 + d

R
sin 𝜃 + d2

2R2

)
≈ R + d sin 𝜃,

where we have kept terms to first order in d∕R. Now we have

ũP(R, 𝜃, t) = A
r1

ei(kR−kd sin 𝜃−𝜔t) + A
r2

ei(kR+kd sin 𝜃−𝜔t)
.

The distances r1 and r2 also appear in the magnitudes. Using the first order
approximation

1
1 ± 𝜖

≈ 1 ∓ 𝜖,

we may write

1
r1

≈ 1

R
(

1 − d
R

sin 𝜃
) ≈

1 + d
R

sin 𝜃

R

1
r2

≈ 1

R
(

1 + d
R

sin 𝜃
) ≈

1 − d
R

sin 𝜃

R

and, because d∕R ≪ 1, we may further approximate

1
r1

≈ 1
r2

≈ 1
R

,

and obtain

ũP(R, 𝜃, t) ≈ A
R

ei(kR−𝜔t) (e−ikd sin 𝜃 + e+ikd sin 𝜃)
= 2A

R
ei(kR−𝜔t) cos (kd sin 𝜃) . (4.38)

Finally, take the real part of ũP to arrive at the actual field,

u(R, 𝜃, t) ≈ 2A
R

cos (kR − 𝜔t) cos (kd sin 𝜃) . (4.39)

Mathematically, Equation 4.38 says that in the far field, the wave amplitude is
proportional to the sum of two complex exponentials, e−ikd sin 𝜃 and e+ikd sin 𝜃 , like a
Fourier series with two terms. We are about to see how all this connects, but first we
should think about what the result, particularly Equation 4.39, says about the nature
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FIGURE 4.28 Angular variation of field due to two point sources. Left: d∕𝜆 = 1, Right:
d∕𝜆 = 4. Top: The magnitude, |uP(𝜃)|, in a polar representation. Bottom: The field amplitude,
uP(𝜃), plotted vs. sin 𝜃.

of the wave. First, consider the limiting case d → 0, in which both sources coalesce
into one source of strength 2A. The result is what we would expect:

uP = 2A
R

cos (kR − 𝜔t) ,

a single diverging spherical wave. Then, when d is nonzero the amplitude of the

diverging wave is modulated by the factor cos (kd sin 𝜃) = cos
(

2𝜋
d
𝜆

sin 𝜃
)

. This

function is plotted in Figure 4.28 for two values of the ratio d∕𝜆, source position
expressed in multiples of the wavelength.

The upper plots show the field strength that would be measured as you move in
a semicircle around the sources. At intervals, the two waves interfere constructively
and destructively, producing a characteristically lobed pattern. The lower plots show
that the angular variation is sinusoidal, when plotted vs. the so-called direction sine,
sin 𝜃.

Multiple elements
The above analysis shows that a point source at a lateral distance d from the origin
contributes a complex exponential e+ikd sin 𝜃 to the far-field antenna pattern. This can
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(Right)

be generalized to multiple emitters, located at regular distances nd. The resulting
field pattern for 2N + 1 sources is

uP(R, 𝜃, t) = A
R

cos(kR − 𝜔t)
N∑

n=−N

einkd sin 𝜃 = A
R

cos(kR − 𝜔t) D2N+1

(d
𝜆

sin 𝜃
)

,

(4.40)

where, again, D2N+1 is the Dirichlet kernel. Radiation patterns are shown in Fig-
ure 4.29, for d∕𝜆 = 1∕2 and two values of N. With larger N, the lobe of the array
pattern is narrower—a transmitting antenna is better able to direct its energy, and a
receiving antenna is better able to discriminate among sources at different angles.

The number and spacing of the elements are not all that one can do to control
the antenna pattern. Later we will see how the amplitude and phase of the individual
elements can be adjusted to modify the antenna’s performance and how these appear
in a Fourier model.

4.8 COMPUTING THE FOURIER SERIES

The Fourier series is a theoretical tool, useful for modeling natural phenomena and
systems. It says that a periodic function can be broken into a sum of harmonically
related sinusoidal functions, and it specifies what the proper mix of sinusoids is. It
does not, however, enable you to perform a Fourier analysis of a function (signal),
based on experimental data points. The DFT is the link between the theory of Fourier
series and the practice of Fourier analysis. In this section we will see how to use the
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DFT for Fourier analysis (computing coefficients) and Fourier synthesis (computing
partial sums).

Analysis: computing Fourier coefficients
Consider an experiment in which you take N uniformly-spaced values (samples) of a
function on an interval [0, T),

f [n] = f (nΔt), n = 0, 1,… , N − 1

where Δt = T∕N is the sampling interval. Implicitly, the observed portion of f is
one period of a periodic function with period T . Expressing this period in terms of a
Fourier series, the samples can be written

f [n] =
∞∑

k=−∞
ckei2𝜋k(nΔt)∕T =

∞∑
k=−∞

ckei2𝜋kn∕N ,

where the (ck) are, as usual, the Fourier coefficients of f . Next, calculate the DFT
of f [n],

F[m] =
N−1∑
n=0

f [n]e−i2𝜋mn∕N =
N−1∑
n=0

[ ∞∑
k=−∞

ckei2𝜋kn∕N

]
e−i2𝜋mn∕N

=
∞∑

k=−∞
ck

[
N−1∑
n=0

ei2𝜋(k−m)n∕N

]
.

The inner sum is just the orthogonality equation for the DFT basis,

N−1∑
n=0

ei2𝜋(k−m)n∕N = 1 − ei2𝜋(k−m)

1 − ei2𝜋(k−m)∕N
,

which gives zero except for k − m = rN, where m runs from 0 to N − 1 and k and
r range over all the integers. It is equivalent to a sum of unit samples (compare the
comb sequence IIIN , Equation 3.8),

N−1∑
n=0

ei2𝜋(k−m)n∕N =
∞∑

r=−∞
N𝛿[k − (m + rN)].

We have, finally,

F[m] =
∞∑

k=−∞
ck

∞∑
r=−∞

N𝛿[k − (m + rN)]

= N
∞∑

r=−∞

∞∑
k=−∞

ck𝛿[k − (m + rN)]

= N
∞∑

r=−∞
cm+rN , m = 0, 1,… , N − 1. (4.41)
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Equation 4.41 connects the DFT with the Fourier coefficients.

F[0] = N(⋯ + c−2N + c−N + c0 + cN + c2N +⋯)

F[1] = N(⋯ + c−2N+1 + c−N+1 + c1 + cN+1 + c2N+1 +⋯)

⋮
F[N∕2] = N(⋯ + c−3N∕2 + c−N∕2 + cN∕2 + c3N∕2 +⋯)

⋮
F[N − 2] = N(⋯ + c−2N−2 + c−N−2 + c−2 + cN−2 + c2N−2 +⋯)

F[N − 1] = N(⋯ + c−2N−1 + c−N−1 + c−1 + cN−1 + c2N−1 +⋯).

Each value of the DFT is a sum of Fourier coefficients. The reason for this is the
peculiar effect that sampling has on sinusoids, as we saw in Example 3.1. Take F[1] as
an example. The Fourier coefficient c1 corresponds to the Fourier series basis function
ei2𝜋(1)t∕T . Sampling it at t = nΔt, we obtain ei2𝜋nΔt∕T = ei2𝜋n∕N . The next term, cN+1,
belongs to the basis function ei2𝜋(N+1)t∕T , whose samples are also ei2𝜋n∕N . All Fourier
series components of the form ei2𝜋(1+rN)t∕T reduce, after sampling, to ei2𝜋n∕N , the first
DFT basis vector. Consequently, F[1] contains contributions from all the frequencies
𝜈1+rN = (1 + rN)∕T , each of which aliases down to 𝜈1 = 1∕T:

F[1] =
⟨[
⋯ + c−N+1ei2𝜋(−N+1)t∕T + c1ei2𝜋t∕T + cN+1ei2𝜋(N+1)t∕T +⋯

]
t=nT , ei2𝜋n∕N⟩

=
⟨(

⋯ + c−N+1ei2𝜋n∕N + c1ei2𝜋n∕N + cN+1ei2𝜋n∕N +⋯
)

, ei2𝜋n∕N⟩
=

(
⋯ + c−N+1 + c1 + cN+1 +⋯

)
⋅
⟨

ei2𝜋n∕N , ei2𝜋n∕N⟩
= N

(
⋯ + c−N+1 + c1 + cN+1 +⋯

)
.

Because of aliasing the DFT will generally be a hopeless jumble of Fourier coef-
ficients. But, suppose that f contains only the frequencies {0, 1∕T , 2∕T ,… , N∕2T}.
Then, its Fourier series will consist only of the coefficients

{
c0, c±1, c±2,… , c±N∕2

}
,

and the DFT values will be exactly

F[0] = Nc0

F[1] = Nc1

⋮
F[N∕2] = N

(
cN∕2 + c−N∕2

)
⋮

F[N − 2] = Nc−2

F[N − 1] = Nc−1.

In this case, the DFT provides exact information about the line spectrum of f . A
function f that contains only frequency components below some upper limit B is
said to be bandlimited to B. To avoid aliasing, a function must be bandlimited to
B = N∕2T , or since T = NΔt,

Δt ≤ 1
2B

. (4.42)

The reciprocal 1∕Δt is the Nyquist rate, which we have seen before (compare Equa-
tion 3.1). In practice, a perfectly bandlimited signal is impossible to achieve, but
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FIGURE 4.30 A square wave function and its Fourier coefficients.

aliasing can usually be reduced to tolerable levels by sampling with a small Δt, and
applying a lowpass filter to the signal prior to sampling.

Figures 4.30 and 4.31 demonstrate the aliasing effect. The Fourier coefficients
of a square wave were previously calculated in Equation 4.10. They are plotted in
Figure 4.30. In Figure 4.31, the Fourier coefficients are estimated by computing the

0 0.5 1
–1

0

1

–20 –10 0 10 20
0

0.2

0.4

0.6

0 0.5 1
–1

0

1

–20 –10 0 10 20
0

0.2

0.4

0.6

0 0.5 1
–1

0

1

t/T

f(
t)

, f
 [n

]

–20 –10 0 10 20
0

0.2

0.4

0.6

m

|
F[

m
]|

/
N

FIGURE 4.31 Using the DFT to estimate the Fourier coefficients of a square wave. The dots
display the magnitudes of the true Fourier series coefficients. Aliasing causes the DFT values
to be different than the true coefficients (top, middle), but smaller sampling intervals reduce
this effect (bottom) .
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DFT of samples of the square wave, for different sampling intervals. Aliasing causes
the DFT coefficients to be considerably different than the corresponding Fourier
series coefficients, particularly in the first two spectra. In the third spectrum, the
sampling interval is small enough that the DFT is a reasonable approximation to the
true line spectrum, at least for low frequencies. Because its Fourier series coefficients
only decay O(|n|−1), the square wave’s effective bandwidth is very high, and the
sampling interval must be quite small in order to achieve accurate results.

Synthesis: computing partial sums
To evaluate a function described by a Fourier series, one computes values of a partial
sum,

SN (t) =
N∑

n=−N

cnei2𝜋nt∕T
.

Assume that SN is to be evaluated at points evenly spaced over one period, [0, T).
To satisfy the Nyquist criterion, the sampling interval Δt can be at most half the
period of the highest Fourier component (two samples per cycle). That frequency is
N∕T , so Δt ≤ T

2N
. Choosing a Δt that is much smaller than T∕2N will generate more

closely spaced values and graphs with a smoother appearance. Sampling the partial
sum with t = mΔt gives

SN(mΔt) =
N∑

n=−N

cnei2𝜋nmΔt∕T =
N∑

n=−N

cnei2𝜋nm∕M , m = 0, 1,… , M − 1.

We could compute this sum directly, using (2N + 1)M multiply-adds and an
equivalent number of evaluations of the complex exponential. However, except for
the limits on the sum it looks like an inverse DFT, so it makes sense to try to
express the sum as a DFT to exploit the M log2 M efficiency of the FFT algorithm.
To this end, embed the Fourier coefficients (cn)N

n=−N in a vector F of length M
as follows:

F = (c0, c1,… , cN , 0,… , 0
⏟⏟⏟

M−(2N+1)

, c−N ,… , c−1).

This vector has the form of a DFT with the Fourier coefficients cn in the appropriate
bins. There are M − (2N + 1) zeros inserted between cN and c−N so that F has the
same number of points as SN , as required for the DFT. The zeros represent the Fourier
components with |n| > N that are not included in the partial sum. With this, we have

SN(mΔt) =
M−1∑
k=0

F[k]ei2𝜋km∕M

= M DFT−1{F} , m = 0, 1,… , M − 1 (4.43a)

where F = (c0, c1,… , cN , 0,… , 0
⏟⏟⏟

M−(2N+1)

, c−N ,… , c−2, c−1). (4.43b)
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FIGURE 4.32 Using the DFT to compute a partial sum of a Fourier series, N = 7 and
M = 64. Top, left: The magnitudes |cn| of the Fourier coefficients for |n| ≤ N. Top, right: The
magnitude of the vector F. Bottom: The partial sum S7. DFT synthesis is about an order of
magnitude faster than direct calculation of the partial sum.

In Figure 4.32 we show the result of a DFT synthesis of S7 for a square wave of period
T = 2. Using Matlab, the DFT synthesis used about 2900 floating-point operations
(flops) for M = 64 as opposed to 21,000 flops for direct synthesis.

4.9 DISCRETE TIME FOURIER TRANSFORM

The Fourier series equations (Equation 4.1) connect a function on a continuous time
domain to another function defined on a discrete frequency domain. If we exchange
the time and frequency domains, so that the time domain is discrete and the frequency
domain is continuous, the discrete-time Fourier transform (DTFT) is obtained. It is
defined12

Fd(𝜃) =
∞∑

n=−∞
f [n]e−in𝜃 (4.44a)

f [n] = 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜃)ein𝜃 d𝜃. (4.44b)

12In the signal processing literature, the discrete-time Fourier transform is usually written F
(
ej𝜔

)
, where

𝜔 is the digital frequency.
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We may also indicate that Fd is the Fourier transform of f by the notation f ⟼ Fd,
or a transform pair by the notation f ⟷ Fd. The frequency variable 𝜃 is the digital
frequency introduced in Chapter 3, and is measured in radians/sample, or just radians.
The Fourier transform is periodic, Fd(𝜃) = Fd(𝜃 + 2𝜋).

Here are three examples of Fourier transform calculations.

Example 4.21. Let f be a unit sample,

f [n] = 𝛿[n − k] =

{
1, n = k

0, otherwise
.

The Fourier transform is

Fd(𝜃) =
∞∑

n=−∞
𝛿[n − k]e−in𝜃 = e−ik𝜃

. (4.45)

Example 4.22. Let f be a rectangle function,

f [n] =

{
1, |n| ≤ N

0, otherwise
.

The Fourier transform is

Fd(𝜃) =
∞∑

n=−∞
f [n]e−in𝜃 =

N∑
n=−N

e−in𝜃 = D2N+1

(
𝜃

2𝜋

)
, (4.46)

a Dirichlet kernel.

Example 4.23. Let f be a decaying exponential,

f [n] = anU[n] =

{
(1, a, a2,…), n ≥ 0 |a| < 1

0, n < 0
.

The Fourier transform is

Fd(𝜃) =
∞∑

n=0

ane−in𝜃

= lim
N→∞

N−1∑
n=0

(ae−i𝜃)n = lim
N→∞

1 − aNe−iN𝜃

1 − ae−i𝜃

= 1
1 − ae−i𝜃

. (4.47)

The function is plotted in Figure 4.33.
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FIGURE 4.33 Discrete-time Fourier transform of the sequence f [n] = anU[n]. Clockwise
from top left: The function f , for 1 > a > 0; the Fourier transform Fd (real part solid, imaginary
part dashed); the phase of the transform, arg Fd; the magnitude of the transform, |Fd|.
4.9.1 Convergence Properties

The Fourier transform of a bounded, finite-duration sequence, f ∈ 𝓁0, is a finite sum
and will always exist. If f ∈ 𝓁1, it is easy to see that the Fourier transform sum is
bounded, Fd ∈ L∞[−𝜋,𝜋]:|||||

∞∑
n=−∞

f [n]e−in𝜃
||||| ≤

∞∑
n=−∞

|f [n]e−in𝜃| = ∞∑
n=−∞

|f [n]| < ∞.

If f ∈ 𝓁2, the sequence of partial sums,

SN =
∑
|n|≤N

f [n]e−in𝜃 ,

converges to Fd in the L2 norm,

lim|N|→∞
‖‖Fd − SN

‖‖2 = 0.

All the results for Fourier series in L2[−𝜋,𝜋] carry over to the DTFT. If f ∈ 𝓁2, then
Fd ∈ L2[−𝜋,𝜋]. Beyond this, Theorem 4.4d connects the rate of decay of a sequence
and the smoothness of its Fourier transform.
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� If f decays faster than |n|−p (p ≥ 1), then Fd is p-times continuously differen-
tiable, Fd ∈ C(p)[−𝜋,𝜋].

� An exponential sequence f [n] = anU[n], if |a| < 1, is rapidly decreasing and
its Fourier transform Fd(𝜃) = 1

1−ae−i𝜃 is infinitely continuously differentiable

(C(∞)[−𝜋,𝜋]). If |a| ≥ 1, the exponential sequence is not in 𝓁1 and cannot be
Fourier transformed.

� The transform of a finite sequence is a finite sum of complex exponentials,
which is also in C(∞)[−𝜋, 𝜋].

The convergence of the inverse transform is covered by Theorem 4.4a–4.4c. Most
practical applications of the DTFT involve finite sequences or combinations of decay-
ing exponential sequences, whose transforms always exist and are infinitely contin-
uously differentiable. On the other hand, there are some important sequences, like
f [n] = cos 𝜃0n, which are not 𝓁1 and whose transforms do not converge in any usual
sense. This problem will be addressed in a later chapter.

4.9.2 Theorems

Many of the theorems for the Fourier series carry over to the discrete-time transform
in the expected way. We list them here, mostly without proof.

Linearity (cf. Theorem 4.5)

af + bg ⟷ aFd + bGd (4.48)

Parseval (cf. Theorem 4.7)

If f ∈ 𝓁2, then

∞∑
n=−∞

f [n]g∗[n] = 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜃)G∗

d(𝜃) d𝜃 (4.49a)

∞∑
n=−∞

|f [n]|2 = 1
2𝜋 ∫

𝜋

−𝜋
|Fd(𝜃)|2 d𝜃. (4.49b)

There is no Riemann–Lebesgue lemma for the DTFT, because the frequency domain
is bounded.

Area (cf. Theorem 4.8)

Fd(0) =
∞∑

n=−∞
f [n] (4.50a)

f [0] = 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜃) d𝜃 (4.50b)

for functions f and Fd for which the indicated sum and integral exist.

Symmetries (cf. Theorem 4.6)

Refer to Figure 4.16, replacing cn with f [n] and f (𝜃) with Fd(𝜃).
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Shift
For infinite discrete sequences, a time shift n − r is noncyclic, as contrasted with the
finite sequences used with the DFT. On the other hand, a frequency 𝜃 − 𝛽 is cyclic,
because the DTFT is periodic in 𝜃.

Theorem 4.13 (Shift). Let f ⟷ Fd be a DTFT pair. Then

f [n − r] ⟷ e−ir𝜃Fd(𝜃) (4.51)

ein𝛽 f [n] ⟷ Fd(𝜃 − 𝛽). (4.52)

Finite-difference (derivative)
This is the discrete version of the derivative theorem for Fourier series.

Theorem 4.14 (Difference). Let Δ1 f be the first difference of f , defined by

Δ1f [n] = f [n] − f [n − 1].

The Fourier transform of the first difference is

Δ1f ⟼ (1 − e−i𝜃)Fd(𝜃). (4.53)

Proof: Use the shift theorem.

Cumulative sum (integral)
By analogy with the integral theorem for Fourier series, define the cumulative sum
Σf of a sequence f ,

Σf [n] =
n∑

k=−∞
f [k].

This operation is the inverse of the finite difference, as you can see by taking the
cumulative sum of Δ1f :

ΣΔ1f [n] =
n∑

k=−∞
Δ1f [k] =

n∑
k=−∞

(f [k] − f [k − 1])

=
n∑

k=−∞
f [k] −

n∑
k=−∞

f [k − 1] =
n∑

k=−∞
f [k] −

n−1∑
k=−∞

f [k]

= f [n].

We can write the cumulative sum as a recursion,

Σf [n] =
n−1∑

k=−∞
f [k] + f [n] = Σf [n − 1] + f [n].

Now let Σ̃f be the Fourier transform of Σf , and take the Fourier transform of both
sides of the recursion (use the shift theorem):(

1 − e−i𝜃) Σ̃f (𝜃) = Fd(𝜃).
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Solving for Σ̃f

Σ̃f (𝜃) =
Fd(𝜃)

1 − e−i𝜃
.

Note that Σ̃f blows up at 𝜃 = 0 unless Fd(0) = 0 (the integral of a constant grows
without bound). With this qualification, we have

Theorem 4.15 (Integration). Let f ∈ 𝓁1 and Fd be its Fourier transform, and let
Σf [n] =

∑n
k=−∞ f [k] be the cumulative sum of f . If Fd(0) = 0, the Fourier transform

Σ̃f of the cumulative sum is

Σ̃f (𝜃) =
Fd(𝜃)

1 − e−i𝜃
. (4.54)

Compare Equations 4.53 and 4.54 and observe the inverse relationship. In one
you multiply by 1 − e−i𝜃 and in the other you divide by 1 − e−i𝜃 . Compare also the
derivative and integral theorems for the Fourier series, (Equations 4.22 and 4.23): In
the former you multiply by i2𝜋n∕L and in the latter, you divide by i2𝜋n∕L.

Convolution
The convolution for sequences f and h is defined

f ∗ h[n] =
∞∑

k=−∞
f [k]h[n − k] =

∞∑
k=−∞

f [n − k]h[k], (4.55)

when the sum converges. In applications of discrete convolution, for example, signal
processing, it frequently happens that f and h are either of finite duration or are
one sided. If h has finite duration, h = (… , 0, h[0], h[1],… h[N − 1], 0,…), then the
convolution is a finite sum,

f ∗ h[n] =
N−1∑
k=0

f [n − k]h[k]

and is clearly bounded for all n if f and h are bounded. If f and h are one sided,
f [n], h[n] = 0, n < 0, then the convolution is also a finite sum,

f ∗ h[n] =
n∑

k=0

f [k]h[n − k] =
n∑

k=0

f [n − k]h[k],

but it is not guaranteed to be bounded as n → ∞ without additional conditions on
f or h.

We may formally derive convolution and product relationships like those for the
Fourier series. For the convolution, substitute the convolution sum into the definition
for the Fourier transform (Equation 4.44),

f ∗ h ⟼
∞∑

n=−∞

( ∞∑
k=−∞

f [k]h[n − k]

)
e−in𝜃 ,
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and reverse the order of summation,

=
∞∑

k=−∞
f [k]

( ∞∑
n=−∞

h[n − k]e−in𝜃

)

=
∞∑

k=−∞
f [k]e−ik𝜃Hd(𝜃) (shift theorem)

= Fd(𝜃)Hd(𝜃).

For the product, express f as an inverse Fourier transform, f [n] =
1

2𝜋 ∫
𝜋

−𝜋
Fd(𝜑)ein𝜑 d𝜑, and insert it into the forward transform,

fh ⟼
∞∑

n=−∞
f [n]h[n]ein𝜃

=
∞∑

n=−∞

(
1

2𝜋 ∫
𝜋

−𝜋
Fd(𝜑)ein𝜑 d𝜑

)
h[n] e−in𝜃 ,

then reverse the order of summation and integration,

= 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜑)

( ∞∑
n=−∞

h[n]e−in(𝜃−𝜑)

)
d𝜑

= 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜑)Hd(𝜃 − 𝜑)d𝜑

= Fd ⊛ Hd. (recall Equation 4.24)

Assuming the inverse relationships also hold, we have two transform pairs,

f ∗ h ⟷ FdHd (4.56a)

fh ⟷ Fd ⊛ Hd. (4.56b)

Of course, we must determine the conditions on f and h under which the
convolution sum converges and the transform results are valid. These are summarized
in Table 4.3, below.13

The 𝓁p spaces are nested, 𝓁1
⊂ 𝓁2

⊂ 𝓁∞ (opposite the nesting for the Lp[0, L]
spaces). The table says that the product of two sequences is at least as well behaved as
its factors. The square summability of f and h is sufficient to guarantee that they and
their product have Fourier transforms. Moreover, Fd, Hd ∈ L2[−𝜋, 𝜋] and Fd ⊛ Hd
is bounded and continuous (Table 4.2). Thus, the inverse transform exists as well.

On the other hand, the convolution f ∗ h is no better than f or h, and may be
worse. It is not good enough for f and h to be square summable, for this gives a
convolution that is merely bounded and not guaranteed to decay rapidly enough to
have a Fourier transform. If h is no better than square summable, then f must be
absolutely summable in order for f , h, and f ∗ h to be transformable. Under these

13The convolution and product relationships in Table 4.3 are the discrete versions of results in Section 5.5.
Also see Gasquet and Witomski (1999, pp. 367–372).
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TABLE 4.3 Details about convolutions and products of sequences. The norm of the
convolution is bounded, ‖f ∗ h‖ ≤ ‖f‖ ‖h‖, where the norms are calculated in the appropriate
spaces. When h is bounded (h ∈ 𝓁∞), the product fh inherits the norm properties of f , that is,
if f ∈ 𝓁2 then fh ∈ 𝓁2. The last two rows describe common practical cases: finite length (𝓁0)
and rapidly decreasing (r.d.) sequences.

If f is and h is then f ∗ h is and fh is

𝓁1 𝓁1 𝓁1 𝓁1

𝓁1 𝓁2 𝓁2 𝓁1

𝓁1 𝓁∞ 𝓁∞ 𝓁1

𝓁2 𝓁2 𝓁∞ 𝓁1

𝓁∞ 𝓁0 ∩ 𝓁∞ 𝓁∞ 𝓁0 ∩ 𝓁∞

r.d. r.d. r.d. r.d.

conditions, the product FdHd will be at least absolutely integrable (Table 4.2), and
the inverse transform will also exist.

These results are summarized in the following theorem.

Theorem 4.16 (Convolution). Let f ⟷ Fd and h ⟷ Hd be DTFT pairs.

(a) If f ∈ 𝓁2 and h ∈ 𝓁1, then f ∗ h ∈ 𝓁2, FdHd ∈ L1[−𝜋,𝜋], and

f ∗ h ⟷ FdHd.

(b) If f , h ∈ 𝓁2, then fh ∈ 𝓁1, Fd ⊛ Hd ∈ L∞ ∩ C0, and

fh ⟷ Fd ⊛ Hd.

Rapidly decreasing sequences are absolutely summable, and covered by this
theorem. Additionally, when f and h are rapidly decreasing, their Fourier transforms
Fd and Hd are infinitely continuously differentiable. So is their product, FdHd, and as
a result the inverse transform f ∗ h exists and is rapidly decreasing. Conversely, the
convolution Fd ∗ Hd is infinitely continuously differentiable and its inverse transform,
fh, is rapidly decreasing.

Example 4.24. Let f [n] = anU[n] and g[n] = bnU[n], where |a|, |b| < 1. Both are
rapidly decreasing. We demonstrate the convolution theorem by calculating f ∗ g in
two ways.

Evaluating the convolution sum directly (Figure 4.34),

f ∗ g[n] =
∞∑

k=−∞
akU[k] ⋅ bn−kU[n − k] =

n∑
k=0

akbn−k, n ≥ 0

= bn 1 − (ab−1)n+1

1 − ab−1
U[n] = bn+1 − an+1

b − a
U[n].
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bn – kU[n – k]

FIGURE 4.34 Illustrating the overlap of the two one-sided exponential sequences in the
convolution f ∗ g =

∑∞
k=−∞ akU[k] ⋅ bn−kU[n − k]. (Top) The sequence (akU[k]). (Bottom) The

reversed and shifted sequence, (bn−kU[n − k]). When n < 0, the sequences do not overlap and
the value of the convolution is zero. When n ≥ 0, the convolution is a finite sum from 0 to n.

Using the convolution theorem with Equation 4.47,

FdGd(𝜃) = 1
1 − ae−i𝜃

1
1 − be−i𝜃

= − a
b − a

1
1 − ae−i𝜃

+ b
b − a

1
1 − be−i𝜃

.

Therefore,

f ∗ g[n] = − a
b − a

anU[n] + b
b − a

bnU[n] = bn+1 − an+1

b − a
U[n].

Dilation: upsampling and downsampling
The linearity and shift theorems tell what happens to the Fourier transform when a
sequence is scaled in amplitude and when it is translated along the time axis. It is also
of practical interest to know what happens to the Fourier transform when a function
is stretched or squeezed by scaling the time axis. This is called dilation.

The dilation of a function of a continuous variable, f (x), is written f (ax), where
a is a constant. When |a| < 1, the function is stretched, and when |a| > 1, it is
squeezed. For a discrete-time signal (sequence), the expression f [an] only makes
sense when an is an integer. For |a| > 1 (squeezing), this means that a must also be
an integer, which we will henceforth call P. Consider then the sequence f [nP]. The
n = 0 value is f [0], the n = 1 value is f [P], the n = 2 value is f [2P], etc. That is, the
sequence is squeezed by selecting every Pth sample from f , for example, for P = 3,

(… 1 2 3 4 5 6 7 8 9 …) ⟼ (… 1 4 7 …).

This is also called downsampling. A downsampled sequence is denoted f↓P:

f↓P[n] = f [nP]. (4.57)
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In the opposite case, |a| < 1 (stretching), we can have integer an only if a is a rational
number, and then only for some n. Let a = 1∕P. We will have integer n∕P for values
of n that are integer multiples of P. The n = 0 value of the sequence f [n∕P] is f [0],
the n = P value is f [1], the n = 2P value is f [2], etc. All other values, for example,
n = 1, 2,… , P − 1, cannot be obtained from the original sequence f , and are set to
zero. Stretching f is done by inserting P − 1 zeros between each of the original
samples, for example, for P = 3,

(… 1 2 3 4 …) ⟼ (… 0 0 1 0 0 2 0 0 3 0 0 4 0 0 …).

This is also called upsampling. An upsampled sequence is denoted f↑P:

f↑P[n] =

{
f [n∕P], n = rP, r ∈ Z

0, otherwise
. (4.58)

Another interpretation of upsampling and downsampling is frequently
employed in signal processing. Suppose the original sequence f is obtained by sam-
pling a continuous-time signal at sampling interval T , that is, f [n] = f (nT). If zeros
are to be inserted into f in real time, we have to maintain the time spacing of the
original values. The sampling interval of the upsampled sequence f↑P must decrease

to T
P

; the sampling rate increases from 1
T

to P
T

. If samples are to be removed from f
in real time, we also have to maintain the original time spacing between the samples.
The spacing of the remaining samples is PT; the sampling rate decreases from 1

T
to

1
PT

.
The Fourier transform of an upsampled sequence f↑P is

F↑P(𝜃) =
∞∑

n=−∞
f↑P[n]e−in𝜃 =

∞∑
r=−∞

f [r]e−irP𝜃

= Fd(P𝜃). (4.59)

Stretching in the time domain causes a squeezing in the frequency domain. Fd(P𝜃)
is a squeezing of P periods of Fd into the interval [−𝜋,𝜋] (Figure 4.35).

The Fourier transform of a downsampled sequence f↓P is

F↓P(𝜃) =
∞∑

n=−∞
f↓P[n] e−in𝜃 =

∞∑
n=−∞

f [nP] e−inP (𝜃∕P)
.

Introduce the comb sequence (Equation 3.8),

IIIP[n] =
∞∑

r=−∞
𝛿[n − rP] =

{
1, n = rP, r ∈ Z

0, otherwise
.

Then (this is subtle—expand a few terms to convince yourself),

F↓P(𝜃) =
∞∑

n=−∞
f [n] IIIP[n] e−in𝜃∕P

.
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FIGURE 4.35 Left: A sampled function and its Fourier transform. Center: The function,
upsampled by 2, and its Fourier transform. Upsampling causes the Fourier transform to be
compressed. Right: The function, downsampled by 2, and its Fourier transform. Downsampling
stretches the Fourier transform. Aliasing occurs unless f [n] is bandlimited to |𝜃| < 𝜋∕2.

The discrete-time comb function has a Fourier representation (see the problems for a
derivation),

IIIP[n] = 1
P

P−1∑
m=0

ei2𝜋mn∕P
.

Using this,

F↓P(𝜃) =
∞∑

n=−∞
f [n]

[
1
P

P−1∑
m=0

ei2𝜋mn∕P

]
e−in𝜃∕P

.

The order of summation can be reversed because f ∈ 𝓁1:

F↓P(𝜃) = 1
P

P−1∑
m=0

[ ∞∑
n=−∞

f [n]e−in(𝜃−2𝜋m)∕P

]

= 1
P

P−1∑
m=0

Fd

(
𝜃 − 2𝜋m

P

)
. (4.60)
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Downsampling by a factor of P causes a stretching in the Fourier domain by a
factor of P, in such a way that the Fourier transform remains periodic with period 2𝜋
(Figure 4.35). This can lead to aliasing unless f is bandlimited to |𝜃| < 𝜋

P
. This makes

sense, because downsampling by P throws away samples and effectively lengthens the
sampling interval from T to PT . Correspondingly, the Nyquist frequency decreases
from 1∕2T to 1∕2PT .

The preceding derivations are summarized in the following theorem.

Theorem 4.17 (Dilation). Let f ⟷ Fd be a DTFT pair. Let P ≥ 1 be an integer.
Then

f↑P ⟷ Fd(P𝜃) (4.61a)

f↓P ⟷ 1
P

P−1∑
m=0

Fd

(
𝜃 − 2𝜋m

P

)
(4.61b)

4.9.3 Discrete-time Systems

The most common application of the DTFT is the analysis of discrete-time linear,
time-invariant (LTI) systems. These are modeled by linear difference equations with
constant coefficients,

g[n] − a1g[n − 1] −⋯ − aNg[n − N] = b0f [n] + b1f [n − 1] +⋯ + bMf [n − M].

(4.62)

The sequence f is the input, or driving function, and the sequence g is the
output, or response. There may be initial conditions specifying the values
g[−1], g[−2],… g[−N]. We shall be interested only in the case where initial con-
ditions are zero.

Mathematically, there is nothing to prevent the difference equation from also
having terms of the form b−kf [n + k] with k > 0, but a physical system obeying
such an equation would have the ability to anticipate its input and produce a response
before receiving any stimulus. Such a system is said to be noncausal. We shall restrict
our attention to causal systems, described by difference equations of the form given
in Equation 4.62.

Discrete-time LTI systems are classified by their responses when the the input
is a unit sample 𝛿[n] and initial conditions are zero. This is called the unit-sample
response or impulse response, and is usually denoted h.

Definition 4.3 (FIR and IIR systems). Let h be the impulse response of a causal,
discrete-time LTI system; that is, h is the solution of the equation

h[n] − a1h[n − 1] −⋯ − aNh[n − N] = b0𝛿[n] + b1𝛿[n − 1] +⋯ + bM𝛿[n − M], n ≥ 0
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with

h[−1] = h[−2] = ⋯ = h[−N] = 0.

(a) If all the coefficients {a1, a2,… an} are zero, then h = (b0, b1,… bM , 0,…).
The system is said to be finite-impulse response (FIR) or nonrecursive.

(b) If any of the coefficients {a1, a2,… an} is nonzero, then the system is said to
be infinite-impulse response (IIR) or recursive.

Example 4.25 (FIR and IIR systems).

(a) The FIR sequence h = (1, 2, 1, 0, 0,…) satisfies the nonrecursive difference
equation

h[n] = x[n] + 2x[n − 1] + x[n − 2], n ≥ 0

with x[n] = 𝛿[n].

(b) The IIR sequence h = (1, 1
2

, 1
4

,… , 1
2n ,…) satisfies the recursive difference

equation

h[n] − 1
2

h[n − 1] = x[n], n ≥ 0, h[−1] = 0

with x[n] = 𝛿[n].

An arbitrary input f may be expressed

f [n] =
∑

k

f [k]𝛿[n − k].

The response of an LTI system to a shifted unit sample 𝛿[n − k] is a shifted impulse
response h[n − k], and by linearity, the system response g is a superposition of shifted
impulse responses,

g[n] =
∑

k

f [k]h[n − k] = f ∗ h[n], (4.63)

a convolution.

Example 4.26 (Simple impulse responses).

(a) A system with impulse response h = 𝛿[n − 1] is called a unit delay. The output
of a unit delay is a replica of the input, delayed by one sample:

f ∗ h = f ∗ 𝛿[n − 1] =
∞∑

k=−∞
f [k]𝛿[n − k − 1] = f [n − 1].

(b) A system with impulse response h = 1
M

(𝛿[n] + 𝛿[n − 1] +⋯ + 𝛿[n−
(M − 1)]) is an M-sample moving average or boxcar filter. The output at
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time n is the average of the current sample and the preceding M − 1 samples:

f ∗ h =
∞∑

k=−∞
f [n − k] ⋅

1
M

(𝛿[k] + 𝛿[k − 1] +⋯ + 𝛿[k − (M − 1)])

= 1
M

(f [n] + f [n − 1] +⋯ + f [n − (M − 1)]) .

Frequency response
Consider specifically a complex exponential input f [n] = ei𝜃n. The output is

g[n] =
∞∑

k=−∞
h[n − k]ei𝜃k

.

Make a change of variable m = n − k, and

g[n] =
∞∑

m=−∞
h[m]ei𝜃(n−m) =

[ ∞∑
m=−∞

h[m]e−i𝜃m

]
ei𝜃n = Hd(𝜃)ei𝜃n

.

The output of the system is equal to the input multiplied by a complex weighting
factor, Hd(𝜃). This quantity is the Fourier transform of the impulse response. It is
called the transfer function of the system. Expressing the transfer function in polar
form, Hd(𝜃) = |Hd(𝜃)|ei𝜑(𝜃), the output is

g[n] = |Hd(𝜃)|ei[𝜃n+𝜑(𝜃)]
.

If the impulse response is real (the usual case), the transfer function is Hermitian, and
if the input is a cosine rather than a complex exponential, the output is, by linearity,

g[n] = 1
2
|Hd(𝜃)|ei𝜑(𝜃)ei𝜃n + 1

2
|Hd(𝜃)|e−i𝜑(𝜃)e−i𝜃n = |Hd(𝜃)| cos [𝜃n + 𝜑(𝜃)] .

The frequency of the output is the same as the frequency of the input, but the
amplitude and phase are modified by the system’s transfer function. A frequency
selective discrete-time LTI system is commonly called a digital filter. The absolute
value |Hd| is called the magnitude response of the filter, and the argument 𝜑 is called
the phase response of the filter.

Example 4.27 (Frequency responses of simple FIR systems). Returning to the
two simple systems in Example 4.26, we calculate their frequency responses.

(a) The unit delay, h = 𝛿[n − 1]. The transfer function is

Hd(𝜃) =
∑

n

𝛿[n − 1]e−j𝜃n = e−j𝜃
.

The magnitude response is unity, and the phase response is −𝜃, linear in
frequency (compare with the shift theorem).
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FIGURE 4.36 Magnitude response of M-point moving average filter, M = 5 (left) and
M = 10 (right). The response is zero for frequencies that are integer multiples of 2𝜋∕M.

(b) The moving average system, h = 1
M

(
𝛿[n] + 𝛿[n − 1] +⋯ + 𝛿[n − (M − 1)]

)
.

The transfer function is

Hd(𝜃) = 1
M

M−1∑
n=0

1 ⋅ e−j𝜃n = 1 − e−jM𝜃

1 − e−j𝜃
= e−j(M−1)𝜃∕2 sin(M𝜃∕2)

M sin(𝜃∕2)
.

The magnitude response of the system is

||Hd(𝜃)|| = |||| sin(M𝜃∕2)

M sin(𝜃∕2)

|||| = 1
M

||DM (𝜃∕2𝜋)|| ,

yet another Dirichlet kernel. Because the impulse response is normalized to a
unit sum, the DC value of the magnitude response is unity (area theorem). The
response goes to zero at frequencies 𝜃 = 2𝜋m∕M (Figure 4.36). For example,
for M = 5, the null frequencies are 2𝜋∕5 and 2 ⋅ 2𝜋∕5. The nature of these
null frequencies is illustrated in Figure 4.37. The filter output is zero when the
average of the samples in the moving window is zero. At the zero frequencies,
for example, 2𝜋∕5 as shown in the figure, the period is exactly the length of
the window, so that the average is zero for all positions of the window. The
same result is obtained if the window covers an integer number of periods, for
example, two periods for 𝜃 = 4𝜋∕5.

Example 4.28 (An IIR filter). Suppose the impulse response of a digital filter is
the sequence h[n] = 0.6nU[n]. The transfer function is, applying Equation 4.47,

Hd(𝜃) = 1
1 − 0.6e−i𝜃

.

This function is plotted in Figure 4.38. The magnitude response decreases with
increasing frequency. A system with this characteristic is called a lowpass filter,
because it preferentially weights low frequency Fourier components over high fre-
quency components.
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FIGURE 4.37 Time response of M-point moving average filter, M = 5, for sinusoids of
frequency 2𝜋∕5 (left) and 2𝜋∕8 (right). The five samples of the averaging window (impulse
response) are shown with hollow circles. The output, y[n] = 1

5

∑4
k=0 x[n − k], is zero when the

averaging window covers a complete period of the input for all times n.

Example 4.29 (Upsampling with filtering). An important application of upsam-
pling and downsampling is sample rate conversion. Given a sequence obtained by
sampling a signal at one sample rate, calculate a new sequence that approximates the
original signal at a different sampling rate. Suppose, for example, that samples taken
at a 10 kHz rate are to be made compatible with a system that operates at a 20 kHz
rate.14 The first step is to upsample the sequence by 2, for example,

(… 1 2 1 0 3 2 …)
↑2
⟼ (… 1 0 2 0 1 0 0 0 3 0 2…)
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FIGURE 4.38 Transfer function of a digital filter with impulse response h[n] = 0.6nU[n].
Left: The magnitude respose, |Hd|. Right: The phase response, arg Hd.

14Good introductions to so-called multi-rate signal processing may be found in Porat (1997, pp. 461ff)
and Oppenheim and Schafer (2010, pp. 179ff).
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The inserted zeros are then replaced with appropriate values based on the original
samples. A simple linear interpolator replaces each inserted zero with the average of
the adjacent values,

(… 1 0 2 0 1 0 0 0 3 0 2 …) ⟼
(
… 1 3

2
2 3

2
1 1

2
0 3

2
3 5

2
2 …

)
That is,

g[n] =

{
f↑2[n], n even (an original sample)
1
2
f↑2[n − 1] + 1

2
f↑2[n + 1], n odd (an inserted zero)

.

It turns out that a digital filter with impulse response h[n] = 1
2
𝛿[n − 1] + 𝛿[n] +

1
2
𝛿[n + 1] will accomplish the task. (You may have noticed that this system is non-

causal. A causal system that does the same calculations with a one-sample delay has
impulse response h[n] = 1

2
𝛿[n − 2] + 𝛿[n − 1] + 1

2
𝛿[n].)

The frequency response of the interpolating filter is

Hd(𝜃) =
∞∑

n=−∞
h[n]e−in𝜃 =

∞∑
n=−∞

(
1
2
𝛿[n − 1] + 𝛿[n] + 1

2
𝛿[n + 1]

)
e−in𝜃

= 1
2

e−i𝜃 + 1 + 1
2
ei𝜃

= 1 + cos 𝜃.

The Fourier transform of the interpolator’s output is Gd(𝜃) = Hd(𝜃)F↑2(𝜃). The effect
of filtering in the frequency domain is shown in Figure 4.39. The original signal
spectrum Fd is squeezed by upsampling. Ideally, if the original signal were sampled
at 20 kHz, the spectrum would consist solely of the spectral bump centered at 𝜃 = 0.
Upsampling the 10 kHz sampled signal creates spurious replicas of the desired spec-
trum around ±𝜋. The function of the interpolation filter is to remove these undesired
components. The figure shows that the simple linear interpolator partially achieves
this objective. An ideal interpolating filter that completely removes the undesired
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FIGURE 4.39 Sample rate conversion by upsampling and filtering, in the Fourier domain.
The principal frequency domain [−𝜋,𝜋) is highlighted with heavier lines. Left: The original
signal spectrum, Fd. Center: The upsampled spectrum, F↑2 (solid), squeezes two periods of
Fd into the range [−𝜋,𝜋). The spectral replicas centered on ±𝜋 are spurious, and are to be
removed by the interpolating filter, Hd (dashed). Right: The upsampled spectrum after filtering.
The spurious spectral replicas are significantly attenuated by the interpolating filter.
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spectral replicas would have a rectangular, or “brick wall” frequency response,
passing all frequencies less than 𝜋

4
and removing all higher frequencies. The design

of practical filters that approximate the ideal response is an important topic in signal
processing.

4.9.4 Computing the DTFT

We can use the DFT to compute approximations to the DTFT.

Analysis: computing the Fourier transform
Beginning with the forward transform,

Fd(𝜃) =
∞∑

n=−∞
f [n]e−i𝜃n,

we sample the digital frequency at intervals Δ𝜃 = 2𝜋∕N, giving

Fd(mΔ𝜃) =
∞∑

n=−∞
f [n]e−imnΔ𝜃 =

∞∑
n=−∞

f [n]e−i2𝜋mn∕N , m = 0, 1,… , N − 1.

The sum looks like a DFT, except for the limits. As a practical matter, we cannot sum
over infinite limits but must truncate f to a vector (f [0], f [1],… , f [N − 1]), which we
shall denote fN . With this, the approximation to the Fourier transform, denoted F̂d, is

F̂d(mΔ𝜃) =
N−1∑
n=0

f [n]e−i2𝜋mn∕N = DFT
{

fN
}

, m = 0, 1,… , N − 1. (4.64)

Compare this result with Equation 4.43 for computing partial sums of a Fourier series.

Example 4.30. Consider again the decaying exponential anU[n], |a| < 1, whose
Fourier transform is Fd(𝜃) = 1

1−ae−i𝜃 (Equation 4.47). In Figure 4.40 we show the
result of applying Equation 4.64 with two different truncations.

Synthesis: inverting the Fourier transform
To invert the Fourier transform, we must compute the integral

f [n] = 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜃)ei𝜃n d𝜃.

Comparing this with the Fourier series, the values f [n] may be interpreted as the
Fourier coefficients of the periodic function Fd. Following the same steps leading to
Equation 4.41, we obtain

1
N

N−1∑
m=0

Fd

(2𝜋m
N

)
ei2𝜋mn∕N =

∞∑
r=−∞

f [n + rN], n = 0, 1,…N − 1. (4.65)

The result of sampling Fd and calculating the inverse DFT is a replication of f with
period N. To avoid errors caused by this replication, N must be chosen large enough
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FIGURE 4.40 Discrete-time Fourier transform of the sequence f [n] = 0.8nU[n], estimated
using the DFT. Top: f is truncated to 8 samples (filled circles, left) and the DFT does not
agree well with the actual transform (open circles and dots, right). Bottom: f is truncated to 16
samples (left); the DFT is in much better agreement with the actual transform (right).

so that f [n] for n ≥ N is very small compared with f [n] for N > n ≥ 0. Then, the
estimate f̂ computed from

f̂ = DFT−1
{(

Fd

(2𝜋m
N

) )N−1

m=0

}
(4.66)

will be a good approximation to f [n] for n = 0, 1,… , N − 1. In practice, choice of an
appropriate N may require some trial and error.

Example 4.31. The calculation is illustrated in Figure 4.41 for the function Fd(𝜃) =
1

1−ae−i𝜃 , whose inverse we know is anU[n]. Observe that as N increases, the errors
due to the periodicity of the DFT are reduced.

4.10 SUMMARY

A periodic function f that is at least absolutely integrable over one period may be
expanded in a Fourier series (Equation 4.3):

f (x) =
∞∑

n=−∞
cn exp

( i2𝜋nx
L

)
cn = 1

L ∫
L

0
f (x) exp

(
− i2𝜋nx

L

)
dx, n ∈ Z.
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FIGURE 4.41 Inverse discrete-time Fourier transform of the function Fd(𝜃) = 1

1−0.8e−i𝜃 ,
estimated using the DFT. Left to right: The function Fd and its samples (circles), the inverse
transform f [n] = 0.8nU[n] and the estimated values (circles), the error f̂ − f . Top to bottom:
N = 8, N = 16, N = 32. N must be chosen large enough to avoid errors due to the periodicity
of the DFT.

Classical form of the Fourier series (Equation 4.5):

f (x) =
a0

2
+

∞∑
n=1

an cos
(2𝜋nx

L

)
+

∞∑
n=1

bn sin
(2𝜋nx

L

)
an = 2

L ∫
L

0
f (x) cos

(2𝜋nx
L

)
dx, n = 0, 1, 2,…

bn = 2
L ∫

L

0
f (x) sin

(2𝜋nx
L

)
dx, n = 1, 2,…

Convergence of the Fourier series improves with increasing regularity of f
(Table 4.1). In particular, if f is piecewise smooth, the Fourier series converges
pointwise to 1

2

[
f (x+) + f (x−)

]
—to f (x) at points of continuity, and to the average

of the right and left limits at jump discontinuities. There will be overshoot near a
jump. If f is continuous and at least piecewise smooth, the Fourier series converges
absolutely and uniformly.

The Fourier series expansion conserves energy (preserves norm) for square-
integrable functions. The Fourier line spectrum is Pn = ||cn

||2 + ||c−n
||2, n > 0 (P0 =||c0

||2), and is proportional to the energy in f at the frequency 𝜈n = n∕L. The
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Riemann–Lebesgue lemma (Theorem 4.1) says that the Fourier spectrum rolls off to
zero at high frequencies.

The DTFT (Section 4.9) is a reinterpretation of the Fourier series, exchanging
time and frequency domains (Equation 4.44):

Fd(𝜃) =
∞∑

n=−∞
f [n]e−in𝜃

f [n] = 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜃)ein𝜃 d𝜃.

The DTFT is chiefly used in the analysis of discrete time LTI systems (e.g., digital fil-
ters). The output of such a system is the convolution of the input with the unit-sample,
or impulse, response: g = f ∗ h. The frequency response of the system is contained
in the transfer function Hd, which is the Fourier transform of the impulse response.

The DFT may be used to compute approximations to the Fourier series (Sec-
tion 4.8) and the DTFT (Section 4.9.4).

Fourier series theorems

Theorem Formula Equation

Linearity af + bg ⟷ (afn) + (bgn) 4.18

Symmetry See Figure 4.16

f even ⟶ bn = 0 (cosine series)

f odd ⟶ an = 0 (sine series)

Riemann–Lebesgue ||cn
|| → 0 as |n| → ∞

Parseval
1
L ∫

L

0
f (x)g∗(x) dx =

∞∑
n=−∞

fng∗n 4.19a

1
L ∫

L

0
|f (x)|2 dx =

∞∑
n=−∞

||cn
||2 4.19b

Area c0 = 1
L ∫

L

0
f (x) dx 4.20

f (0) =
∞∑

n=−∞
cn

Shift f (x − r) ⟷
(
e−i2𝜋rn∕Lcn

)
4.21

Derivative f ′(x) ⟼
( i2𝜋n

L
cn

)
4.22

High frequencies boosted

Integral ∫
x

0
f (𝜉) d𝜉 ⟼ (Cn) =

⎧⎪⎨⎪⎩
C0 = ∫

L

0
f (𝜉) d𝜉

Cn = L
i2𝜋n

cn, n ≠ 0
4.23

(c0 = 0) High frequencies attenuated

Convolution f ⊛ h = ∫
L

0
f (𝜉)h(x − 𝜉) d𝜉 ⟷ (Lfnhn) 4.26

fh ⟷ (fn) ∗ (hn) =
∑∞

k=−∞ fkhn−k
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Discrete-time Fourier transform theorems

Theorem Formula Equation

Linearity af + bg ⟷ aFd + bGd 4.48

Symmetry See Figure 4.16

Parseval
∞∑

n=−∞
f [n]g∗[n] = 1

2𝜋 ∫
𝜋

−𝜋
Fd(𝜃)G∗

d(𝜃) d𝜃 4.49a

∞∑
n=−∞

|f [n]|2 = 1
2𝜋 ∫

𝜋

−𝜋
|Fd(𝜃)|2 d𝜃 4.49b

Area Fd(0) =
∞∑

n=−∞
f [n] 4.50

f [0] = 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜃) d𝜃

Shift f [n − r] ⟷ e−ir𝜃Fd(𝜃) 4.51

ein𝛽 f [n] ⟷ Fd(𝜃 − 𝛽) 4.52

Difference Δ1f [n] = f [n] − f [n − 1] ⟼
(
1 − e−i𝜃

)
Fd(𝜃) 4.53

Cumulative sum
n∑

k=−∞
f [k] ⟼ 1

1 − e−i𝜃
Fd(𝜃), Fd(0) = 0 4.54

Convolution f ∗ h[n] =
∞∑

k=−∞
f [k]h[n − k] ⟷ FdHd 4.56

fh ⟷ Fd ⊛ Hd = 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜑)Hd(𝜃 − 𝜑) d𝜑

Dilation f↑P ⟼ Fd(P𝜃) 4.61

f↓P ⟼ 1
P

P−1∑
m=0

Fd

(
𝜃 − 2𝜋m

P

)

PROBLEMS

4.1. Let f ∈ L2[a, b]. Show that f ∈ L1[a, b] as well. Hence, one can calculate Fourier coef-
ficients for f .

4.2. Let f be bounded in the interval [a, b]. Show that f ∈ L1[a, b]. Thus, one can calculate
Fourier coefficients for f .

4.3. Let f ∈ L2[0, L]. Beginning with Bessel’s inequality, show that |cn| → 0 as |n| → ∞.
(This is a restricted version of the Riemann–Lebesgue lemma.)

4.4. Beginning with the complex Fourier series,

f (t) =
∞∑

n=−∞
cn exp

(
i
2𝜋n
T

t
)

, cn = 1
T ∫

T

0
f (t) exp

(
−i

2𝜋n
T

t
)

dt,
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derive the traditional Fourier series formulae:

f (t) =
a0

2
+

∞∑
n=1

[
an cos

(2𝜋n
T

t
)
+ bn sin

(2𝜋n
T

t
)]

an = 2
T ∫

T

0
f (t) cos

(2𝜋n
T

t
)

dt, bn = 2
T ∫

T

0
f (t) sin

(2𝜋n
T

t
)

dt

and derive Equation 4.6.

4.5. For a real-valued function f , relate the parameters of the magnitude and phase represen-
tation, Vn and 𝜑n, to the classical Fourier coefficients an and bn, and the complex Fourier
coefficients cn and c−n.

4.6. Show that if f is real, then the coefficient c0 is real, also.

4.7. The complex Fourier basis functions {ei2𝜋nx∕L} are orthogonal on any interval of length
L, for example, [0, L] or [−L∕2, L∕2]. Are the Fourier coefficients obtained by expanding
a periodic function f on [0, L] the same as those obtained by expanding on [−L∕2, L∕2]?
Explain and describe the difference, if any. Hint: Try f = cos 2𝜋x

L
first, to gain some

insight into the problem, then formulate and prove a general statement.

4.8. Beginning with the sine–cosine basis (Equation 4.4), use orthogonal projections to
complete the derivation of the classical Fourier series (Equation 4.5).

4.9. The Fourier coefficients for the unit amplitude square wave with period T (Equa-
tion 4.10),

cn =
⎧⎪⎨⎪⎩

2
i𝜋n

, n = ±1,±3,…

0, otherwise

are independent of T . Discuss the significance of this.

4.10. Calculate the Fourier coefficients for a square wave with arbitrary duty cycle,

f (x) =

{
1, A > x ≥ 0

−1, T > x ≥ A
.

Check that your results reduce to Equation 4.10 when A = T

2
.

4.11. Smoothness and asymptotic behavior
Let f : R → C be periodic with period L, and ∞ > p ≥ 2. Show that if f ∈ C(p), then|cn| < K|n|−p.

4.12. Let f : R → C be periodic, continuous, and piecewise smooth. Suppose also that f ′ is
piecewise smooth. Discuss the convergence of the Fourier series for f ′.

4.13. Let f have rapidly decreasing Fourier coefficients given by cn = a|n|, |a| < 1.

(a) Sum the Fourier series and show

f (x) = 1 − a2

1 + a2 − 2a cos 2𝜋x

L

.

(b) Graph f for x ∈ [−L, L] and a = −0.9,−0.5, 0, 0.5, 0.9.

(c) Calculate f ′ and graph it for x ∈ [−L, L] and a = −0.9,−0.5, 0, 0.5, 0.9. Is it believ-
able that f is infinitely continuously differentiable?
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(d) Devise a way to show that f ∈ C(∞) without appealing to Fourier theory or calculating
an infinite number of derivatives.

4.14. For f : [−𝜋,𝜋) → R given by f (x) = |x|,
(a) derive the complex Fourier series.

(b) at which values of x, if any, does the series fail to converge to f (x)?

(c) to what values does it converge at these points?

4.15. Let f : [−𝜋, 𝜋) → R be defined,

f (x) =

{
0, −𝜋 ≤ x < 0

x, 0 ≤ x < 𝜋

.

(a) Derive the Fourier series for f .

(b) What is the sum of the Fourier series at x = 0 and at x = 𝜋?

(c) What is the average (DC) value of the Fourier series?

4.16. Consider the Fourier coefficients for the truncated sine wave in Example 4.2 (Equations
4.9a and 4.9b).

(a) What is the asymptotic behavior of cn as |n| → ∞? How is this consistent with the
nature of the original function f ?

(b) Compute and graph several partial sums of the Fourier series. What do you observe
about the convergence of the series? Is this consistent with your answer to part (a)?

4.17. Derive the symmetry properties of the complex Fourier series (Theorem 4.6) when f is
defined on the interval [−L∕2, L∕2] rather than [0, L].

4.18. Prove the following theorems for the complex Fourier series.

(a) Area theorem (Equation 4.20).

(b) Shift theorem (Equation 4.21).

(c) Derivative theorem (Equation 4.22).

4.19. Let f be periodic with period L and absolutely integrable over one period. Further,
assume ∫ L

0 f (x)dx = 0. Show that F(x) = ∫ x

0 f (u)du is periodic with period L, that is,
F(x) = F(x + L).

4.20. Prove the symmetry relationships for the classical Fourier series (corollary to Theo-
rem 4.6).

4.21. Derive a version of Parseval’s formula for the classical Fourier series. Give an expression
for the power in a signal at the nth harmonic of the fundamental frequency in terms of
the Fourier coefficients.

4.22. Derive versions of the following theorems for the classical Fourier series.

(a) Area theorem

(b) Shift theorem

(c) Convolution theorem

(d) Derivative theorem

(e) Integral theorem; include conditions for its validity.
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4.23. For the square wave and its Fourier series (Example 4.3), verify by direct calculation
that Parseval’s formula (Equation 4.19b) holds. Hint:

∞∑
m=0

1
(2m + 1)2

= 𝜋
2

8
.

4.24. Calculate the complex Fourier coefficients for the following two functions.

(a) Shifted rectangle function

g(t) = rect
[
2
(

t − 1
4

)]
, t ∈ (0, 1).

(b) Shifted triangle function

f (t) =
(

1 − 2
||||t − 1

2

||||
)

rect
(

t − 1
2

)
=

⎧⎪⎨⎪⎩
2t, 1

2
≥ t ≥ 0

2(1 − t), 1 ≥ t ≥ 1

2

0, otherwise

,

where rect(t), the “rectangle function,” is one for |t| < 1∕2 and 0 otherwise. Use
the limits (0, 1) for both integrals. Try to express your results in terms of the sinc
function,

sinc(x) = sin 𝜋x
𝜋x

.

4.25. Using the shift theorem and the results in Example 4.3, derive both the complex and
classical Fourier series for an even square wave,

f (x) =
⎧⎪⎨⎪⎩
−1, − T

4
≥ x > − T

2

1, T

4
≥ x > − T

4

−1, T

2
≥ x >

T

4

.

4.26. A square wave signal 𝑣(t) with 50% duty cycle, period T, minimum value 0, and
maximum value V0 is passed through a first-order lowpass filter described by the transfer
function

H(𝜔) = a
a + i𝜔

.

The steady-state output of the filter is also periodic, and using Laplace transform methods
(Chapter 9), one period of the output y, from t = kT to t = (k + 1)T , is given by

y(t) =

⎧⎪⎪⎨⎪⎪⎩
V0

[
1 − e−a(t−kT)

1 + e−aT∕2

]
, (k + 1

2
)T > t ≥ kT

V0

[
1 − e−aT∕2

1 + e−aT∕2

]
e−a(t−(k+ 1

2
)T), (k + 1)T > t ≥ (k + 1

2
)T

.

(a) Calculate the complex Fourier coefficients for this periodic function. Note that,
without loss of generality, you can take k = 0 and compute the Fourier coefficients
over the interval [0, T].

(b) Calculate the complex Fourier coefficients (𝑣n) for the square wave input 𝑣. Accord-
ing to linear system theory, the Fourier coefficients of the filter’s output are

yn = H(n∕2𝜋T)𝑣n.

Does this agree with your result from part (a)?
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4.27. Consider the periodic function g(x) = exp(−ikt(x)), where k is a constant and the function
t(x) is graphed below in Figure 4.42. This is a model of an optical device called a phase
grating. The grating is made by etching a fine pattern of grooves into a piece of glass or
other material. The function t(x) represents the thickness of the groove profile.

L

x

t(x)

a

FIGURE 4.42 For Problem 4.27. Thickness function of a phase grating.

(a) What is the average power of g?

(b) Calculate the Fourier series for g.

(c) What fraction of g’s average power is contained in the n = −1 term of the Fourier
series? In the n = +1 term? Why are they different?

4.28. Yet another trigonometric basis
The complex exponential ei𝜃 = cos 𝜃 + i sin 𝜃 is sometimes abbreviated “cis 𝜃” (cosine
i sine). The complex Fourier basis, in this notation, is {cis 2𝜋nx, n = 0,±1,±2,…}.
As an alternative to the complex-valued “cis” function, a real-valued “cas” (cosine and
sine) function is proposed, defined15

cas 𝜃 = cos 𝜃 + sin 𝜃.

(a) Show that {cas 2𝜋nx} is an orthogonal set of functions on the unit interval [0, 1].
Are positive and negative indices necessary to span the space, as in the complex
Fourier series, or will positive indices only suffice, as in the classical Fourier series?

(b) Derive an orthogonal expansion similar to the Fourier series using the cas basis, and
give expressions for the expansion coefficients.

(c) Also determine a Parseval formula for the cas expansion. Compare your results with
both the classical and complex Fourier series.

(d) What is the relationship between the “cas line spectrum” and the true Fourier line
spectrum?

4.29. Show that, if two functions f and g are piecewise smooth and have the same Fourier
coefficients, then f = g.

4.30. Full-wave rectification
The process of converting alternating current (AC) to direct current (DC) frequently
employs full-wave rectification—taking the absolute value of the AC voltage. A “110 V,

60 Hz” AC waveform is represented by the expression 𝑣(t) = 110
√

2 sin(2𝜋 ⋅ 60t),
where t is in seconds and 𝑣 is in volts. A portion of the rectified waveform is shown in
Figure 4.43.

(a) In the Fourier series for this waveform, what will the fundamental frequency be?

(b) Derive an expression for the Fourier coefficients (cn) of this waveform.

15Bracewell (1986)
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FIGURE 4.43 For Problem 4.30. Full-wave rectified 60 Hz line voltage.

(c) In a second processing step, the rectified waveform is passed through a lowpass filter,
which (ideally) removes all the oscillatory components, leaving pure DC. Assuming
the filter performs perfectly, what DC voltage will result?

4.31. Half-wave rectification
An alternative to full-wave rectification (Problem 30) is half-wave rectification, which
sets the negative values of the AC voltage to zero, as shown in Figure 4.44.
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0

50

100

150

200

t, seconds

v(
t)

, v
ol

ts

FIGURE 4.44 For Problem 4.31. Half-wave rectified 60 Hz line voltage.

(a) Calculate the Fourier coefficients (cn) for the half-wave rectified sine wave. Compare
the symmetry properties of the Fourier coefficients for the half- and full-wave
rectified functions, and relate them to the properties of the functions themselves.

(b) Plot the line spectra of both the half- and full-wave rectified signals and compare
them.

(c) Direct current is obtained from the rectified wave by a filtering process that removes
all the oscillatory components. Based on the line spectra, which rectified signal will
be easier to filter? Assuming perfect filtering, compare the DC values.

4.32. Half-wave and full-wave rectification
Using the shift and linearity theorems, derive the Fourier series for a full-wave rectified
sine wave from the Fourier series for a half-wave rectified sine wave (see the preceding
two problems).
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4.33. Consider the waveform shown below in Figure 4.45, which models the output of a
switching device for converting direct current to alternating current. It is a type of square
wave, which you know has a Fourier spectrum consisting of a fundamental frequency
and odd harmonics of the fundamental frequency. Determine the value of 𝑤 that causes
the amplitude of the third harmonic to be exactly zero.

w

T/4

T
t

T/2

3T/4

FIGURE 4.45 For Problem 4.33.

4.34. Calculate the Fourier series coefficients for the periodic function shown below in Fig-
ure 4.46. Each “pulse” is a single cycle of a sine wave of period T , and the pulses occur
with period NT , where N is an integer.

T NT

–1

1

t

f(
t)

FIGURE 4.46 For Problem 4.34.

Note that when N = 1, this is a continuous sine wave; you can use this special case as a
check on your general result.

4.35. Harmonic distortion
Electronic amplifiers are limited in the output voltages they can produce. When a signal
exceeds this limit, it is sometimes said to “hit the rails” or “clip.” Mathematically, a
clipped signal may be described:

g(t) =
⎧⎪⎨⎪⎩
−A, f < −A

f (t), |f | ≤ A

A, f > A

.

Clipping is a type of nonlinearity, and like all nonlinear systems, it causes spurious
Fourier components in the output signal. One way of quantifying the severity of the
nonlinearity is to measure the strength of these spurious components through Fourier
analysis. With a pure sinusoidal input, the ratio of power in the spurious components
to the total output power is called total harmonic distortion, or THD. It is usually
expressed as a percentage: THD = 0% means all the output power is at the fundamental
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input frequency, and anything other than zero means that power is being diverted from
the fundamental frequency into the harmonics.

Consider a sinusoidal input, f (t) = V cos 2𝜋𝜈0t, applied to a clipping amplifier
with limit A. Calculate the THD of the amplifier as a function of V and A. Graph
your result in a meaningful way. Hint: You do not need to calculate the entire Fourier
spectrum.

4.36. Heat equation
Solve the heat equation in a thin bar of length L, insulated sides, with boundary conditions
u(0, t) = u(L, t) = 0 (ends held at zero temperature) and initial condition u(x, 0) = u0

(constant).

4.37. Heat equation

(a) Solve the heat equation in a thin bar of length L, insulated sides, with boundary
conditions u(0, t) = 0 (end held at zero temperature) and 𝜕u∕𝜕x|(L,t) = 0 (other end
insulated), and initial condition u(x, 0) = u0 (constant).

(b) Compute and plot the solutions (e.g., using Matlab) with u0 = 100 and L = 1.
Interpret the solution physically.

4.38. Heat equation
A thin bar of length L with insulated sides is held at zero temperature at one end (x = 0)
and temperature u0 at the other end (x = L).

(a) Calculate the steady-state temperature (t → ∞) in the bar.

(b) Calculate a general solution for the temperature in the bar, assuming an initial
distribution u(x, t) = f (x).

4.39. Vibrating string
Consider the solution of the wave equation for the vibrating string (Equation 4.31),

y(x, t) =
∞∑

n=1

bn sin
(
𝜋nx
L

)
cos

(
𝜋n𝑣t

L

)
bn = 2

L ∫
L

0
f (x) sin

n𝜋x
L

dx.

(a) Use the trigonometric identity sin A cos B = 1

2
sin(A + B) + 1

2
sin(A − B) to show

that the solution may also be written

y(x, t) = 1
2

F(x − 𝑣t) + 1
2

F(x + 𝑣t),

where F is the odd periodic extension of f ,

F(x) =
⎧⎪⎨⎪⎩

f (x), L ≥ x ≥ 0

−f (−x), 0 > x ≥ −L

F(x + 2L), all x ∈ R

.

That is, the standing wave solution is the sum of two traveling waves, one moving
to the left and one moving to the right.

(b) Substitute this alternate form of y into the wave equation 𝜕
2y

𝜕x2 = 1

𝑣2

𝜕
2y

𝜕x2 and verify that
it satisfies the equation. What are the continuity requirements for f ?
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(c) Assuming that f (0) = f (L) = 0, show that the alternate form of y also satisfies the
boundary conditions y(0, t) = y(L, t) = 0 and initial conditions y(x, 0) = f (x) and
y′(x, 0) = 0.

(d) Compute the series solution developed in Example 4.20 with r = 0.5, using
enough terms that ripples are imperceptible. Plot the solution vs. x for
t = 0, T∕4, T∕2, 3T∕4, T , where T is the fundamental period of the wave. Also
make a sketch of the alternative traveling wave solution for these same times, and
compare.

The traveling wave form of the solution was first studied by D’Alembert.

4.40. Vibrating string
In the text we considered the case of a plucked string, for which the initial displacement
was specified and the initial velocity was zero. Now consider the case of a struck string

(e.g., a piano), for which the appropriate initial conditions are y(x, 0) = 0,
𝜕y

𝜕t

||||(x,0)
= g(x).

If the string is struck at position x = a along its length, the initial velocity may be
modeled by a narrow rectangular pulse centered at x = a,

𝜕y

𝜕t

||||(x,0)
= g(x) =

{
𝜇, a + 𝜖

2
> x > a − 𝜖

2

0, otherwise
,

where 𝜖 ≪ L.

(a) Determine the appropriate form of the temporal part of the solution, 𝜓n(t), so that it
can satisfy the initial conditions.

(b) The complete solution of the differential equation is

y(x, t) =
∞∑

n=1

bn𝜙n(t)𝜓n(t).

Calculate the Fourier coefficients {bn}.

(c) What property does the solution have if the string is struck at its center, a = L

2
?

4.41. Consider a system modeled as a string of length L on the interval
(
− L

2
, L

2

)
, vibrating in

its fundamental mode (n = 1) with amplitude a1 = A. At a time t = 0, when the string’s
velocity is zero, the length of the string is suddenly doubled by adding a length L

2
of new

string at each end (new length L′ = 2L). Thus, the shape of the longer string at t = 0 is

y′(x, 0) =
⎧⎪⎨⎪⎩

y(x, 0), x ∈
(
− L

2
, L

2

)
0, otherwise

.

For time t > 0, the longer string continues to vibrate. Calculate the amplitude a′
1 of the

fundamental mode in this new configuration.

4.42. Antennas
Refer to Equation 4.40 for the field of a 2N + 1 element antenna array. In this array, each
emitter has the same strength. In many practical arrays, the strengths of the emitters are
weighted, so that Equation 4.40 becomes

Up(R, 𝜃, t) = A
R

cos(kR − 𝜔t)
N∑

n=−N

cn exp(inkd sin 𝜃),
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where the {cn} are the weighting factors. For example, consider the weighting function

cn =
1
2

[
1 + cos

(
𝜋n
N

)]
,

which is one at n = 0 and smoothly tapers to zero at n = ±N. Sum the Fourier series
with these coefficients and plot the resulting radiation pattern with d∕𝜆 = 1

2
and N = 3.

Compare this with the unweighted result. In particular, how are the angular width of the
main radiation lobe and the amplitudes of the sidelobes affected by the weighting?

4.43. Fourier series convergence
We saw in this chapter that the Fourier coefficients cn of a square wave decay slowly,
O(1∕n), and consequently the sequence of partial sums, SN(x), converges nonuniformly.
The chief symptom of this nonuniform convergence is the Gibbs overshoot at the
jumps in the square wave. It can be shown that the sequence of so-called Césaro sums,
defined

KN(x) = 1
N

N−1∑
k=0

Sk(x),

does converge uniformly as N → ∞.

(a) Show that the Césaro sum simplifies to the form

KN(x) =
N−1∑

n=−(N−1)

(
1 − |n|

N

)
cn ei2𝜋nx∕L

.

That is, the Fourier coefficients are multiplied by a convergence factor that causes
them to decay faster than O(1∕n).

(b) Sketch the convergence factor as a function of n for a few values of N (note that it
is zero for n ≥ N). What shape does it approach in the limit as N → ∞?

(c) Compute numerically the Césaro sum KN(x) for the square wave’s Fourier series
for a few values of N, for example, N = 1, 7, 15, 31, 63. Compare with the plain
sequence of partial sums SN(x).

(d) We have seen that the partial sum SN(x) may be expressed as the convolution of
the original function f (x) with the Dirichlet kernel D2N+1(x) = sin(2N+1)𝜋x

sin(𝜋x)
. Show that

the corresponding expression for the Césaro sum is the convolution of f (x) with the
so-called Fejér kernel,

FN (x) = 1
N

N−1∑
k=0

D2k+1(x).

Then show that the Fejér kernel has the simpler form,

FN(x) = 1
N

sin2(N𝜋x)
sin2(𝜋x)

.

Plot the Dirichlet kernel D2N+1 and Fejér kernel FN on the same axis and compare
their mainlobes and sidelobes. Discuss the appearance of the two partial sums in
light of these kernels.
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4.44. Fourier series and the DFT

(a) Calculate the DFT of the sampled square wave sequence (Figure 4.31),

f [n] =

⎧⎪⎪⎨⎪⎪⎩

0, n = 0

1, n = 1, 2,…N∕2 − 1

0, n = N∕2

−1, n = N∕2 + 1, N∕2 + 2,…N − 1

and show that

1
N

F[m] =
⎧⎪⎨⎪⎩

2
iN

cot
𝜋m
N

, m = 1, 3,…N∕2 − 1, N∕2 + 1,…N − 1

0, m even
.

(b) Consider the limiting behavior as N becomes large. For m odd and |m| ≪ N∕2,
show that

cm = 2
i𝜋m

≈
⎧⎪⎨⎪⎩

1
N

F[m], N∕2 ≫ m > 0, m odd

1
N

F[m − N], 0 > m ≫ −N∕2, m odd

and hence that the DFT values approach the true Fourier series coefficients (Equa-
tion 4.10) as the sampling becomes progressively finer.

4.45. Fourier series and the DFT
Repeat Problem 4.24 using the discrete Fourier transform.

(a) Use Matlab to compute 128 samples equally spaced in t. The sampling inter-
val is Δt = T∕N, where T is the period of the function. The samples are at
t = 0, T∕N, 2T∕N,… , (N − 1)T∕N. Note that t = T is not used, because this point is
considered to begin the periodic extension of f , that is, f (T) = f (0). So, the sampling
period is 1∕128. Plot the sample sets {f (nΔt)} and {g(nΔt)} using Matlab to make
sure you have them right.

(b) Use the FFT function in Matlab to compute estimates of the Fourier coefficients.
Recall if F[m] is the DFT of f [n], then the Fourier series coefficients cm are approxi-
mately F[m]∕N, where N is the number of samples (128 in this case). Also compute
numerical values for the exact coefficients you obtained in Problem 4.24, and com-
pare with the DFT-derived values. Plot Re{cm} and Re{F[m]∕N} on the same
graph, using different point styles (like circles and squares), and do the same for the
imaginary parts on another graph. How well do the exact Fourier coefficients agree
with the DFT coefficients?

(c) Repeat the calculation and comparison with coarser sampling, say N = 8.

4.46. Fourier series and the DFT
Consider the half-wave rectified cosine wave, two periods of which are drawn below in
Figure 4.47.

(a) Derive the complex Fourier coefficients for 𝑣(t). You may adapt your solution to
Problem 4.31. Check that your coefficients have the proper symmetries.

(b) Plot the line spectrum of 𝑣(t). What fraction (in percent) of the function’s average
power is in the second and higher harmonics? Determine an effective bandlimit B
for this function.
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FIGURE 4.47 For Problem 4.46.

(c) Sample one period of 𝑣(t) to create a discrete function 𝑣[n]. Note that you can get
T to cancel out by writing T = NΔt. Then, you can vary the effective sampling
interval by changing N. Since 𝑣(t) is an even function, your sample sequence 𝑣[n]
must have even symmetry. Calculate (with Matlab) the DFT V[m]. Verify that your
DFT values have the proper symmetries.

(d) For various sampling intervals Δt = T∕N, calculate and plot the DFT line spectrum.
For what sampling interval does the DFT line spectrum agree “well enough” with
the line spectrum you calculated in part (b)? How does this agree with the bandlimit
you determined in part (b)?

4.47. Harmonic distortion
Consider again the problem of harmonic distortion (Problem 4.35). This time we will
use the DFT to compute the amount of distortion due to clipping. Consider a sinusoidal
input, y(t) = V cos 2𝜋𝜈0t, applied to a clipping amplifier with limit A. The clipped signal
may be described:

g(t) =
⎧⎪⎨⎪⎩
−A, f < −A

f (t), |f | ≤ A

A, f > A

.

Provided that you sample fast enough, the DFT of the clipped signal will accurately
represent its Fourier coefficients.

(a) The first order of business is to tell Matlab how to create the clipped cosine wave.
Here is a good way:

n = 0:N-1; % Make a time vector, n = [0, 1, 2,

...,N-1]

y = V*cos(2*pi*n/N); % Samples of one period of a cosine

c = find(abs(y)>A); % Find the points to be clipped

y(c) = sign(y(c))*A; % Replace those points by +/- A

Read the online help for find() and sign() to find out what they do. For simplicity,
you could use A = 1; then, V ≤ 1 causes no clipping, and V > 1 does clip. This
models the situation in an amplifier with fixed “rails.”

(b) You need to determine how many samples to take. An empirical way to do this
is to set V for severe clipping and calculate the DFT of y for various values of N
(remember, N must be a power of two), plotting the absolute value of Y[m] on a log
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scale so you really see how small the terms are getting. Watch the high harmonics
(values of the DFT near N∕2). When these are negligibly small, you have a high
enough value of N. Why?

(c) Define the power spectrum by the formula:

Sy[m] = 1
N

(|Y[m]|2 + |Y[N − m]|2) , m = 0, 1,… ,
N
2
− 1,

where Y is the DFT of y. It is conventionally plotted in decibels, 10 log10 Sy. Plot
power spectra of y for various degrees of clipping and observe how the harmonic
structure of the signal changes. Suppose that the fundamental frequency is 500 Hz,
and create a realistic frequency axis for your plots. From the power spectrum you
can compute THD as a function of V and A. Graph your result in a meaningful way.

4.48. Fourier series for discrete periodic sequences
Consider a sequence f : Z → C that is periodic with period N, f [n] = f [n + N]. Because
f is periodic, we expect it to have some kind of Fourier series expansion.

(a) Show that the appropriate basis sequences are 𝜙k =
(

exp
(

i2𝜋kn

N

))
n∈Z

. Normalize

them to create an orthonormal basis {ek}. How many basis sequences are there?

(b) Construct the Fourier expansion, using the general formula f =
∑

k ⟨f , ek⟩ ek, where
the inner products are calculated over one period.

(c) Show that the Fourier series is actually a DFT.

4.49. Fourier series for discrete periodic sequences
Show that the comb sequence IIIN [n] has a discrete Fourier representation,

IIIN[n] = 1
N

N−1∑
m=0

ei2𝜋mn∕N
.

4.50. Discrete-time Fourier Transform
Consider the discrete-time signal f [n] = an cos bn U[n], 1 > a > 0, where U[n] is the
unit step sequence (1 for n ≥ 0, 0 otherwise).

(a) Derive an expression for the DTFT Fd(𝜃) for this signal.

(b) Plot f and Fd for a = 0.2 and 0.9, and for b = 𝜋∕10 and 𝜋∕2 (four sets in all).
Describe the effects of a and b on f and on Fd.

4.51. Discrete-time Fourier transform
Consider the two-sided discrete-time signal f [n] = a|n|, |a| < 1.

(a) Calculate the Fourier transform Fd by direct summation.

(b) Show that f may also be obtained as the even part of the one-sided exponential
sequence g[n] = anU[n].

(c) Using the facts that a real, even sequence has a real, even transform, and a real
sequence with no symmetry has a Hermitian transform (see Figure 4.16), obtain the
Fourier transform Fd from the Fourier transform Gd.

4.52. Discrete-time systems
Show that the first difference of a convolution sum obeys the relation

Δ1[f ∗ h] = f ∗ [Δ1h] = [Δ1f ] ∗ h.

This can be done both in the time domain, by manipulating the convolution sum, and in
the frequency domain, with the difference and convolution theorems.
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4.53. Discrete-time systems
The step response of a discrete-time system is the output when the input is a step
sequence, f [n] = U[n].

(a) Show that the impulse response is the first difference of the step response.

(b) Show that the step response is the cumulative sum of the impulse response.

4.54. Discrete-time systems
Calculate, by direct summation of the convolution, the step response of a system with
impulse response h[n] = anU[n], 1 > a > 0. The step response is the output when the
input is a step sequence, f [n] = U[n].

4.55. Discrete-time systems
Determine if each of the following equations is true in general. Provide proofs of those
you think are true and counterexamples for those that you think are false.

(a) x[n] ∗ (h[n]g[n]) = (x[n] ∗ h[n]) g[n].

(b) 𝛼
nx[n] ∗ 𝛼

nh[n] = 𝛼
n (x[n] ∗ h[n]).

4.56. Upsampling with filtering
Consider Example 4.29. A filter is proposed that simply replaces each inserted zero with
the value of the preceding sample, that is,

g[n] =

{
f↑2[n], n even (an original value)

f↑2[n − 1], n odd (an inserted zero)

(a) Show that the impulse response of this filter is h[n] = 𝛿[n] + 𝛿[n − 1].

(b) Calculate the frequency response, Hd(𝜃).

(c) Plot ||Hd
|| and |1 + cos 𝜃| (the magnitude responses of the new filter and the filter in

the example) on the same axes and compare them. Which one is more effective at
removing undesired spectral components?

4.57. Upsampling with filtering
Consider Example 4.29 again, with the following interpolating filter:

h[n] =
K∑

k=−K

sinc
( k

2

)
𝛿[n − k]

where, recall,

sinc x = sin 𝜋x
𝜋x

.

Calculate and plot h and the frequency response Hd(𝜃) for various values of K. Comment
on the ability of the filter to remove the spurious spectral components in the vicinity
of ±𝜋 as K increases.



CHAPTER 5
THE FOURIER TRANSFORM

So far, we have studied Fourier representations for finite sequences (the discrete
Fourier transform), infinite sequences (the discrete-time Fourier transform), and func-
tions on a finite real interval (the Fourier series).

Transform Time domain Frequency domain

Discrete Fourier transform Discrete, bounded Discrete, bounded
n ∈ {0, 1,… , N − 1} m ∈ {0, 1,… , N − 1}

Fourier series Continuous, bounded Discrete, unbounded
x ∈ [0, L] n ∈ ℤ

Discrete-time Fourier transform Discrete, unbounded Continuous, bounded
n ∈ ℤ 𝜃 ∈ [−𝜋,𝜋)

Fourier transform Continuous, unbounded Continuous, unbounded
x ∈ ℝ 𝜈 ∈ ℝ

Matching these up, there is a pattern: if one domain is bounded, the other domain is
discrete, and if one domain is unbounded, the other domain is continuous. The one
transform we have yet to explore should map a continuous, unbounded time domain
to a continuous, unbounded frequency domain. That fourth member of the Fourier
family is the (continuous-time) Fourier transform:

f (x) = ∫
∞

−∞
F(𝜈)ei2𝜋𝜈xd𝜈,

F(𝜈) = ∫
∞

−∞
f (x)e−i2𝜋𝜈xdx.

This chapter begins with a heuristic development of the Fourier transform as
a limiting case of the Fourier series and of the discrete-time Fourier transform. The
nature of the Fourier transform—an integral over the entire real line—raises questions
of what kinds of functions have Fourier transforms, what these transforms are like,
and whether they can be inverted to return to the original functions. Initially many of
these questions will be skipped in favor of building skill with doing calculations for
well-behaved functions and cultivating intuition for the meaning of the transforms.
We will develop the by-now familiar set of theorems relating a function and its

Fourier Transforms: Principles and Applications, First Edition. Eric W. Hansen.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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transform, many of which will be seen to have interpretations in terms of familiar
physical phenomena or engineering systems. After this, we will return to questions of
the existence and invertibility of the Fourier transform for broad classes of functions.

5.1 FROM FOURIER SERIES TO FOURIER TRANSFORM

Consider a Fourier series expansion of a function on the interval [−L∕2, L∕2],

f (x) =
∞∑

n=−∞
cnei2𝜋nx∕L

cn = 1
L ∫

L∕2

−L∕2
f (x)e−i2𝜋nx∕Ldx.

The nth harmonic frequency is 𝜈n = n∕L, and the spacing of the Fourier components
is Δ𝜈 = 1∕L. Substituting these into the above expressions, we have

f (x) =
∞∑

n=−∞

[
∫

L∕2

−L∕2
f (𝜉)e−i2𝜋𝜈n𝜉d𝜉

]
ei2𝜋𝜈nxΔ𝜈.

We are interested in the behavior of the Fourier series as the period of f increases to
the limiting case, L → ∞, where f is aperiodic (not periodic) or, if you will, consists
of only one “period” extending from −∞ to ∞. The discrete spectral lines of the
Fourier series crowd closer together as L increases (Figure 5.1). The line spacing Δ𝜈
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FIGURE 5.1 Visualizing the Fourier transform as the limit of a Fourier series, as L → ∞.
The line spectrum goes over to a continuum.



5.1 FROM FOURIER SERIES TO FOURIER TRANSFORM 275

becomes an infinitesimal d𝜈, the spectral line frequency 𝜈n becomes a continuous
frequency variable 𝜈, and the summation becomes a Riemann integral:

f (x) = ∫
∞

−∞

[
∫

∞

−∞
f (𝜉)e−i2𝜋𝜈𝜉d𝜉

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F(𝜈)

ei2𝜋𝜈xd𝜈.

The sequence of Fourier coefficients (cn) has become a function F(𝜈). The inner
integral, taking f to F, is called the forward Fourier transform, and the outer integral,
taking F to f , is the inverse Fourier transform.

f (x) = ∫
∞

−∞
F(𝜈)ei2𝜋𝜈xd𝜈, (5.1a)

F(𝜈) = ∫
∞

−∞
f (x)e−i2𝜋𝜈xdx. (5.1b)

As with the other three members of the Fourier family, the forward transform carries a
minus sign in the complex exponential, while the inverse transform carries a plus sign.

We can compactly express the forward transform by f ⟼ F, f
F

⟼ F, or F = F{f },

and the inverse transform by f = F−1{F} or F
F−1

⟼ f . The notation f ⟷ F means
that f and F are a Fourier transform pair: F is the forward transform of f , and f is the
inverse transform of F.

We can get to the Fourier transform from the discrete-time Fourier transform
by a similar heuristic procedure. This will hint at a connection between the two that
will be made rigorous in the next chapter. Beginning with

f [n] = 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜃)ein𝜃 d𝜃,

Fd(𝜃) =
∞∑

n=−∞
f [n]e−in𝜃 ,

let f [n] = f (nΔt) and 𝜃 = 2𝜋𝜈Δt (recall the discussion in Example 3.1). As Δt
becomes smaller (the sampling becomes finer), the digital frequency range [−𝜋,𝜋)
maps to an ever-increasing range of analog frequency, [−1∕2Δt, 1∕2Δt), tending to
(−∞,∞) in the limit asΔt becomes infinitesimal. A single period of the Fourier trans-
form Fd becomes a spectrum over the entire real line. In the inverse transform, Δt
goes over to an infinitesimal dt, the time points nΔt crowd together into a continuous
t, and the samples fuse together into a function f (t):

f (nΔt) = ∫
1∕2Δt

−1∕2Δt

[ ∞∑
n=−∞

f (nΔt)e−i2𝜋(nΔt)𝜈Δt

]
ei2𝜋𝜈(nΔt) d𝜈,

→ f (t) = ∫
∞

−∞

[
∫

∞

−∞
f (t)e−i2𝜋𝜈t dt

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

F(𝜈)

ei2𝜋𝜈t d𝜈.
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Again we are at the Fourier transform pair. (You are invited to make sketches analo-
gous to Figure 5.1 to illustrate this informal explanation.)

The Fourier transform is also found in the literature in two other forms:

f (t) = 1
2𝜋 ∫

∞

−∞
F(𝜔)ei𝜔td𝜔, (5.2a)

F(𝜔) = ∫
∞

−∞
f (t)e−i𝜔tdt, (5.2b)

and

f (t) = 1√
2𝜋 ∫

∞

−∞
F(𝜔)ei𝜔td𝜔, (5.3a)

F(𝜔) = 1√
2𝜋 ∫

∞

−∞
f (t)e−i𝜔tdt. (5.3b)

In these, the frequency variable 𝜔 (angular frequency, radians per second) is used
rather than 𝜈 whose units are cycles per second (hertz). The two are related by
𝜔 = 2𝜋𝜈. When x is a spatial variable, the frequency 𝜈 has units of cycles per unit
distance, for example, cycles/mm. One also may see the Fourier kernel written eikx,
where k = 2𝜋

𝜆
and 𝜆, the period of the Fourier component, is called the wavelength.

The difference between Equations 5.2 and 5.3 is in the disposition of the factor 1∕2𝜋,
which corresponds to the normalizations that appear in the DFT (1∕N), Fourier series
(1∕L), and discrete-time Fourier transform (1∕2𝜋).

5.2 BASIC PROPERTIES AND SOME EXAMPLES

The heuristic arguments by which we arrived at Equations 5.1 must be qualified
with mathematical conditions for existence of the integrals. The various proofs are
quite technical and do not contribute to a working knowledge of the transforms. The
conclusion of the matter is that the Fourier transform is well defined for all functions
in L1 and L2, though there is some subtlety in the interpretation of the integrals.
For now we will consider only the simplest cases, then revisit the details later in
the chapter.

Right off, we observe that the forward and inverse transforms are symmetric,
differing only in the sign of the complex exponent. Thus, the forward and inverse
transforms have the same properties of existence, continuity, and so on. The Fourier
theorems will each have nearly identical versions for the forward and inverse trans-
form.

The Fourier transform integral exists for all 𝜈 ∈ ℝ if f is absolutely integrable:

|F(𝜈)| = ||||∫ ∞

−∞
f (x)e−i2𝜋𝜈xdx

|||| ≤ ∫
∞

−∞

|||f (x)e−i2𝜋𝜈x||| dx = ∫
∞

−∞
|f (x)| dx.

If f ∈ L1, its Fourier transform is bounded and that bound is the L1 norm of f —‖F‖∞ ≤ ‖f‖1. It can be shown that the Fourier transform is a continuous function of
the frequency, 𝜈. If f is at least piecewise continuous as well as absolutely integrable,
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F inherits the continuity of the complex exponential.1 Moreover, it can be shown that
F → 0 as |𝜈| → ∞ (Riemann–Lebesgue lemma).2

The fact that the Fourier transform is bounded and continuous, and even rolls
off to zero at high frequencies, is not enough to guarantee that F is also absolutely
integrable. Here is a classic example.

Example 5.1 (The rectangle function). The rectangle function is defined:

rect x =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

1, |x| < 1
2

1
2

, |x| = 1
2

0, |x| > 1
2

. (5.4)

The reason for the definition rect( 1
2

) = rect(− 1
2

) = 1
2

will be explained later.
The rectangle function is useful for modeling truncation effects. In practical

data analysis, for example, one never has knowledge of a signal for all time from
−∞ to ∞. The rectangle function models the effective acquisition window used to
extract a portion of the signal for analysis. A rectangle of width X, rect(x∕X), is made
by dilating or scaling x. A rectangle which turns on at t = 0 and off at t = T is made
by dilating the unit rectangle by a factor T and then shifting its center to t = T∕2:

rect
(

t−T∕2
T

)
. The rectangle function (and its two-dimensional counterpart, the circle

function) are also useful for modeling the spatial apertures of antennas and optical
instruments. The two-dimensional rectangle, rect x rect y, is used to model pixels in
a digital image sensor or an image display.

The rectangle function is absolutely integrable and (trivially) piecewise con-
tinuous. The Fourier transform of the rectangle function is a simple integral:

F {rect x} = ∫
∞

−∞
rect x e−i2𝜋𝜈xdx = ∫

1∕2

−1∕2
e−i2𝜋𝜈xdx

= e−i2𝜋𝜈x

−i2𝜋𝜈

||||
1∕2

−1∕2
= e−i𝜋𝜈 − e+i𝜋𝜈

−i2𝜋𝜈
= sin𝜋𝜈

𝜋𝜈
.

The function
sin𝜋𝜈
𝜋𝜈

appears often and is given the name sinc:

sinc 𝜈 = sin𝜋𝜈
𝜋𝜈

. (5.5)

1See Howell (2001, pp. 284–286) for a classic epsilon-delta proof of continuity for f ∈ L1. A quicker path
to the same conclusion is shown in Stade (2005, p. 300).
2Proofs of the Riemann–Lebesgue lemma for the Fourier transform may be found in Folland (1992, p. 217)
and Stade (2005, pp. 328–329). When F ∈ L1 as well as continuous it follows naturally, for then ∫ |F|d𝜈
cannot be finite unless F rolls off at high frequencies.



278 CHAPTER 5 THE FOURIER TRANSFORM

–3 –2 –1 0 1 2 3

–0.25

0

0.25

0.5

0.75

1

ν
–3 –2 –1 0 1 2 3

–0.25

0

0.25

0.5

0.75

1

x

FIGURE 5.2 The rectangle function (left), and its Fourier transform, the sinc function (right).

It is the aperiodic analog of the Dirichlet kernel and arises from the same cause—
truncation.3

The sinc function (Figure 5.2) is real and even, like the rectangle, and has
zero crossings at integer values of 𝜈. At 𝜈 = 0, L’Hospital’s rule yields the result
sinc(0) = 1. It is bounded and continuous, as expected since the rectangle is absolutely
integrable. The amplitude of the sinc function’s oscillations decays with increasing
frequency, as predicted by the Riemann–Lebesgue lemma. However, the rate of decay,
O(|𝜈|−1|), is too slow for sinc to be absolutely integrable (recall Examples 2.16 and
2.17). Consequently, the inverse Fourier transform taking sinc back to rectangle does
not exist as an ordinary integral, though it will be shown later that the inverse may
nevertheless be calculated, establishing the Fourier pair:

rect x ⟷ sinc 𝜈. (5.6)

The rectangle function is a prototype for all functions with jump discontinuities—no
discontinuous function can have an absolutely integrable transform.

Here is another common function with a jump discontinuity.

Example 5.2 (One-sided exponential function). The one-sided exponential func-
tion is

f (x) = e−xU(x) =

⎧⎪⎪⎨⎪⎪⎩
e−x, x > 0

1
2

, x = 0

0, x < 0

, (5.7)

3In fact, the Dirichlet kernel is the periodic replication of the sinc function.
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where U(x) is the unit step, or Heaviside function:

U(x) =
⎧⎪⎨⎪⎩

1, x > 0
1
2

, x = 0

0, x < 0

. (5.8)

The step function is useful for modeling any kind of one-sided truncation or a
sudden input to a dynamic system. The one-sided exponential appears as a damping
function in the solutions of linear ordinary differential equations with constant
coefficients. It is absolutely integrable and piecewise continuous. Calculating the
Fourier transform:

F(𝜈) = F {e−xU(x)} = ∫
∞

0
e−x e−i2𝜋𝜈x dx = − 1

1 + i2𝜋𝜈
e−(1+i2𝜋𝜈)x|||∞0

= 1
1 + i2𝜋𝜈

= 1
1 + (2𝜋𝜈)2

− i2𝜋𝜈
1 + (2𝜋𝜈)2

.

The Fourier magnitude |F(𝜈)| = 1√
1+(2𝜋𝜈)2

is bounded, |F(𝜈)| ≤ |F(0)| = 1—note

that the L1 norm of f is

∫
∞

0
e−x dx = −e−x|||∞0 = 1,

agreeing with the bound |F| ≤ ‖f‖1. The Fourier transform is also a continuous
function of 𝜈. Indeed, it is infinitely continuously differentiable; we will see why
later, but you are invited to compare Theorem 4.4b for the Fourier series. Finally, |F|
decays O(|𝜈|−1) as |𝜈| → ∞, not fast enough for absolute integrability, because f has
a jump discontinuity. Like sinc, it will be possible, eventually, to establish the inverse
transform, giving the Fourier pair (Figure 5.3),

e−xU(x) ⟷ 1
1 + i2𝜋𝜈

. (5.9)

The next two examples show functions whose transforms are absolutely inte-
grable.
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FIGURE 5.3 The one-sided exponential function (left), and its Fourier transform (right).
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FIGURE 5.4 The triangle function (left), and its Fourier transform, the sinc2 function (right).

Example 5.3 (Triangle function). The triangle function, Λ(x), is defined

Λ(x) =

{
1 − |x|, |x| < 1

0, otherwise.
(5.10)

It is absolutely integrable and piecewise smooth. The Fourier transform of the triangle
function is

F {Λ(x)} = ∫
0

−1
(1 + x)e−i2𝜋𝜈xdx + ∫

1

0
(1 − x)e−i2𝜋𝜈xdx

=
[

1 + 1 − ei2𝜋𝜈

(2𝜋𝜈)2

]
+

[
−1 + 1 − e−i2𝜋𝜈

(2𝜋𝜈)2

]
= 2(1 − cos 2𝜋𝜈)

(2𝜋𝜈)2
= sin2

𝜋𝜈

(𝜋𝜈)2

= sinc2
𝜈.

The sinc2 function is bounded and continuous (Figure 5.4), like sinc. Unlike sinc, it
is absolutely integrable (Example 2.17), because it decays O(|𝜈|−2) as |𝜈| → ∞. The
inverse transform exists as an ordinary integral (although it is not clear at this point
how to actually do the calculation) and yields the transform pair:

Λ(x) ⟷ sinc2
𝜈. (5.11)

Example 5.4 (Two-sided exponential). The two-sided exponential function is

f (x) = e−|x|. (5.12)
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It is absolutely integrable, ‖f‖1 = 2, and piecewise smooth. We will not calculate the
Fourier transform integral here. The transform will be obtained by a different method
in Example 5.5. The result is

F(𝜈) = 2
1 + (2𝜋𝜈)2

.

Comparing this with the transform of the one-sided exponential, we see that it is,
of course, bounded and continuous, but also that it decays O(|𝜈|−2) as |𝜈| → ∞,
rapidly enough to guarantee absolute integrability. The inverse transform exists as an
ordinary integral, yielding the Fourier pair (Figure 5.6):

e−|x| ⟷ 2
1 + (2𝜋𝜈)2

. (5.15)

The triangle is “one step smoother” than the rectangle: piecewise smooth vs.
piecewise continuous, corners at ±1 and 0 rather than jumps at ±1∕2. Likewise, the
two-sided exponential is one step smoother than the one-sided exponential: piecewise
smooth vs. piecewise continuous, a corner at the origin rather than a jump. In the
frequency domain, the transforms of the rectangle and one-sided exponential are
O(|𝜈|−1), while the transforms of the triangle and two-sided exponential are O(|𝜈|−2).
Like Fourier series coefficients, the smoother a function is, the more rapidly its Fourier
transform rolls off at high frequencies.

What we have observed so far about the Fourier transform and its inverse is
summed up in the following theorem.

Theorem 5.1 (Fourier transform in L1). Let f ∈ L1(ℝ). Then its Fourier trans-
form,

F(𝜈) = ∫
∞

−∞
f (x)e−i2𝜋𝜈xdx,

exists as an ordinary integral, is bounded and continuous for all 𝜈 ∈ ℝ, and |F(𝜈)| → 0
as |𝜈| → ∞. If, additionally, F ∈ L1(ℝ), then the inverse transform is an ordinary
integral:

f (x) = ∫
∞

−∞
F(𝜈)ei2𝜋𝜈x dx,

and it is bounded and continuous for all x ∈ ℝ.

5.3 FOURIER TRANSFORM THEOREMS

We will now state and prove a number of Fourier transform theorems. Versions
of many of them appeared earlier in connection with the DFT, Fourier series, and
discrete-time Fourier transform. When you know the Fourier transform theorems
and can visualize their physical meanings, you will be able to use them to simplify
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FIGURE 5.5 Symmetry properties of the Fourier transform.

calculations and to model physical systems. Very often, by creative application of the
theorems, an otherwise messy calculation can easily be performed in just a few lines.

These theorems are stated for Fourier pairs, assuming that inverse transforms
exist. Points where caution is advised will be noted.

Linearity
The Fourier transform is an integral, and integrals are linear operations: ∫ af = a ∫ f
and ∫ (f + g) = ∫ f + ∫ g. Thus, we have

Theorem 5.2 (Linearity). Let f ⟷ F and g ⟷ G, and let a, b ∈ ℂ be constants.
Then

af + bg ⟷ aF + bG. (5.13)

Symmetry
The Fourier transform obeys the same symmetries as the other transforms (Figure 5.5).

Theorem 5.3 (Symmetry). Let f ⟷ F. Then,

� If f is real, then F is Hermitian: F(𝜈) = F∗(−𝜈).
� If f is even (odd), then F is even (odd).
� If f is real and even (real and odd), then F is real and even (imaginary and odd).

The converses hold, as well; for example, if F is Hermitian then f is real.

Example 5.5. The one-sided exponential (Equation 5.7) can be decomposed into
the sum of an even, continuous function, and an odd, discontinuous function:

e−xU(x) = 1
2

e−|x| + 1
2

e−|x| sgn x,

where sgn is the signum function:

sgn x =

⎧⎪⎪⎨⎪⎪⎩
1, x > 0

1
2

, x = 0

−1, x < 0

. (5.14)
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Recall that the Fourier transform of f (x) = e−xU(x) is F(𝜈) = 1
1+i2𝜋𝜈

(Equation 5.9).
Then, separating the even and odd parts of f and the real and imaginary parts of F,

e−xU(x) ⟼ 1
1 + i2𝜋𝜈

1
2

e−|x| + 1
2

e−|x| sgn x ⟼ 1
1 + (2𝜋𝜈)2

− i2𝜋𝜈
1 + (2𝜋𝜈)2

.

The real part of the transform is even and the imaginary part is odd. By the Fourier
transform symmetries, we associate the even part of f with the real, even part of F,
and the odd part of f with the imaginary, odd part of F. This yields two additional
transform pairs (Figure 5.6):

e−|x| ⟷ 2
1 + (2𝜋𝜈)2

, (5.15)

e−|x| sgn x ⟷ −i4𝜋𝜈
1 + (2𝜋𝜈)2

. (5.16)

The one-sided exponential had a jump discontinuity and its Fourier transform was
O(|𝜈|−1) as |𝜈| → ∞. The two-sided exponential (Equation 5.15) is free of the jump
discontinuity, and this results in a more rapid decay for its Fourier transform, O(|𝜈|−2).
On the other hand, e−|x| sgn x has a jump and its Fourier transform is O(|𝜈|−1).
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FIGURE 5.6 Two-sided exponential functions (top) and their Fourier transforms (bottom).
Left: e−|x|. Right: e−|x| sgn x. Dashed line denotes an imaginary valued function.
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Other symmetry relationships concern the transforms of the reversal of a func-
tion, f (−x), and the complex conjugate, f ∗(x).

Theorem 5.4 (Reversal). Let f (x) ⟷ F(𝜈). Then,

f (−x) ⟷ F(−𝜈), (5.17a)

f ∗(x) ⟷ F∗(−𝜈), (5.17b)

f ∗(−x) ⟷ F∗(𝜈). (5.17c)

Proof: Deriving the first relationship will suffice to show the flavor. By making the
change of variable 𝜉 = −x,

∫
∞

−∞
f (−x)e−i2𝜋𝜈xdx = ∫

∞

−∞
f (𝜉)e+i2𝜋𝜈𝜉d𝜉

= ∫
∞

−∞
f (𝜉)e−i2𝜋(−𝜈)𝜉d𝜉 = F(−𝜈).

Theorem 5.5 (Repeated transform). Let f (x) ⟷ F(𝜈). Then F(x) → f (−𝜈), or
equivalently, F{F{f (x)}} = f (−x).

Proof: Write the forward transform with F(x):

∫
∞

−∞
F(x) e−j2𝜋𝜈x dx = ∫

∞

−∞
F(x) ej2𝜋(−𝜈)x dx,

and this has the form of an inverse transform, with x and 𝜈 exchanged, and also with
a minus sign on 𝜈, that is, f (−𝜈).

The repeated transform theorem doubles the number of Fourier transforms in
our repertoire. Because rect x ⟼ sinc 𝜈, we also know sinc x ⟼ rect(−𝜈) = rect 𝜈.

Parseval’s Formula
We know if f ∈ L1, then F is bounded. If, in addition, F ∈ L1, then F ∈ L2 as well.
That is, a function that is bounded and absolutely integrable is also square integrable,
for then

‖F‖2 =∫
∞

−∞
|F|2 d𝜈 =∫

∞

−∞
|F| ⋅ |F| d𝜈 ≤ sup |F|∫ ∞

−∞
|F| d𝜈 = ‖F‖∞ ‖F‖1 < ∞.

Symmetrically, if F ∈ L1, the inverse transform is an ordinary integral and f is
bounded as well as absolutely integrable, hence f ∈ L2. We are now operating in an
inner product space, and Parseval’s theorem says that the Fourier transform preserves
inner products and norms.
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Theorem 5.6 (Parseval’s formula). Let f , g, F, G ∈ L1, where f ⟷ F and g ⟷
G. Then

∫
∞

−∞
f (x)g∗(x)dx = ∫

∞

−∞
F(𝜈)G∗(𝜈)d𝜈, (5.18a)

∫
∞

−∞
|f (x)|2 dx = ∫

∞

−∞
|F(𝜈)|2 d𝜈. (5.18b)

Proof: If f , g, F, G ∈ L1, then they are also in L2 and we have inner products ⟨f , g⟩
and ⟨F, G⟩. Now

⟨F, G⟩ = ∫
∞

−∞
F(𝜈) G∗(𝜈) d𝜈 = ∫

∞

−∞
F(𝜈)

(
∫

∞

−∞
g∗(x)e+j2𝜋𝜈x dx

)
d𝜈,

and by Fubini’s theorem,

= ∫
∞

−∞

(
∫

∞

−∞
F(𝜈)e+j2𝜋𝜈x d𝜈

)
g∗(x) dx = ∫

∞

−∞
f (x) g∗(x) dx = ⟨f , g⟩ .

Then letting g = f , we also have ‖f‖2
2 = ‖F‖2

2.

This derivation is limited to functions that are simultaneously absolutely- and
square integrable, but as one would expect, Parseval’s formula applies to the broader
class of functions and transforms that are square integrable only (Section 5.6.2).

Shift Theorem
For functions f : ℝ → ℂ, a shift f (x − a) is a translation along the x-axis.

Theorem 5.7 (Shift). Let f ⟷ F. Let f (x − a) denote a translation of f along the
x-axis, and F(𝜈 − b) a translation along the 𝜈-axis. Then

f (x − a) ⟷ e−i2𝜋a𝜈F(𝜈), (5.19)

ei2𝜋btf (t) ⟷ F(𝜈 − b). (5.20)

Proof: We will just derive Equation 5.19. Write down the forward transform integral:

F{f (x − a)} = ∫
∞

−∞
f (x − a)e−i2𝜋𝜈xdx

and make the change of variable 𝜉 = x − a. Then,

∫
∞

−∞
f (x − a)e−i2𝜋𝜈xdx = ∫

∞

−∞
f (𝜉)e−i2𝜋𝜈(𝜉+a)d𝜉

= e−i2𝜋a𝜈 ∫
∞

−∞
f (𝜉)e−i2𝜋𝜈𝜉d𝜉 = e−i2𝜋a𝜈F(𝜈).

Shifting does not affect the magnitude of the Fourier transform:|||e−i2𝜋a𝜈F(𝜈)||| = |F(𝜈)| .
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For example, consider the rectangle rect x and a shifted rectangle rect(x − a). Their
respective transforms are sinc 𝜈 and e−i2𝜋𝜈a sinc 𝜈; their Fourier magnitudes are
the same, | sinc 𝜈|. Whether the rectangle is centered at the origin or at some other
position a, its spectral content is unchanged.

Example 5.6. The physical importance of the shift theorem can be illustrated with
an example from audio engineering. The frequency response of an ideal audio ampli-
fier is described by a complex-valued function H(𝜈) = |H(𝜈)|ei𝜑(𝜈). The magnitude|H| is called the magnitude response and the argument 𝜑 is called the phase response.
These quantities express how the amplifier modifies the amplitude and phase of the
Fourier components of the input signal on their way to the output, that is, for a pure
tone input, cos 2𝜋𝜈0t, the output is||H(𝜈0)|| cos

(
2𝜋𝜈0t + 𝜑(𝜈0)

)
.

Now consider the special case of an amplifier with linear phase, by which we mean
the phase response is linearly proportional to frequency:

𝜑(𝜈) = −2𝜋a𝜈.

With this, a cosine input cos 2𝜋𝜈0t will be passed to the output as||H(𝜈0)|| cos
(
2𝜋𝜈0(t − a)

)
.

The cosine is amplified according to the magnitude response in a frequency-dependent
way and is delayed by a time a, which is independent of frequency. This means that
all frequencies in the input signal will be delayed by the same amount of time in
passing through the amplifier, and the phase relationships which existed among the
Fourier components in the input will be preserved in the output. For this reason, linear
phase is highly prized for high-fidelity sound reproduction.

The frequency-domain version of the shift theorem (Equation 5.20) is often
expressed

f (t) cos(2𝜋𝜈0t) ⟷ 1
2

F(𝜈 − 𝜈0) + 1
2

F(𝜈 + 𝜈0). (5.21)

This is called the modulation theorem.

Example 5.7 (Double sideband modulation). Audio signals are communicated
over radio or optical frequency media by attaching them to a carrier signal through
a process called modulation. One such process, called double sideband, or DSB,
is a direct application of the modulation theorem. The method is diagrammed in
Figure 5.7. The message signal is denoted f and, for illustrative purposes, has the
triangular Fourier transform F, as shown. The carrier signal is a sinusoid of frequency
𝜈c. An electronic device called a mixer multiplies the carrier and the message, produc-
ing the time-domain signal f (t) cos 2𝜋𝜈ct. In the frequency domain, the modulation
theorem says that the spectrum of the modulated carrier is 1

2
F(𝜈 + 𝜈c) + 1

2
F(𝜈 − 𝜈c).

The message spectrum has been shifted to a band of frequencies centered at 𝜈c.
The scale of the drawing is exaggerated; in practice the carrier frequency is much
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FIGURE 5.7 Double sideband modulation. (Top) A message signal is modulated onto a
carrier signal. (Bottom) The message is recovered from the modulated carrier.

larger than the message bandwidth. Audio signals have bandwidth no higher than 22
kHz; radio frequency carriers are measured in MHz or GHz, and optical frequencies
are orders of magnitude higher still. The message is recovered, or demodulated, by
a nearly identical process. The modulated carrier is mixed again with a cosine of
the same frequency as the carrier. (In practice, special circuitry synchronizes the
receiver’s local oscillator so that it has the same frequency and phase as the carrier.)
In the time domain, the result is

f (t) cos2 2𝜋𝜈ct = 1
2

f (t) + 1
2

f (t) cos 4𝜋𝜈ct.

The result contains the original message and a modulated component at twice the
carrier frequency. In the frequency domain, a second application of the modulation
theorem operates as follows:

1
2

F(𝜈 + 𝜈c) ⟶ 1
4

F(𝜈 + 𝜈c + 𝜈c) + 1
4

F(𝜈 + 𝜈c − 𝜈c) = 1
4

F(𝜈 + 2𝜈c) + 1
4

F(𝜈),

1
2

F(𝜈 − 𝜈c) ⟶ 1
4

F(𝜈 − 𝜈c + 𝜈c) + 1
4

F(𝜈 − 𝜈c − 𝜈c) = 1
4

F(𝜈) + 1
4

F(𝜈 − 2𝜈c).
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Adding the two terms gives an output spectrum:

1
4

F(𝜈 + 2𝜈c) + 1
2

F(𝜈) + 1
4

F(𝜈 − 2𝜈c),

which contains the original message plus modulated components at twice the carrier
frequency. These are removed by a frequency selective circuit called a lowpass filter,
and a final amplification by a factor of two recovers the original message.

Dilation theorem
Scaling the independent variable in a function, that is, f (ax) or f (x∕a), stretches or
squeezes the function along the axis. This is called dilation.

Theorem 5.8 (Dilation). If f (x) ⟷ F(𝜈) and a is a nonzero constant, then

f (ax) ⟷ 1|a|F
(
𝜈

a

)
. (5.22)

Proof: Write down the integral, and make the change of variable 𝜉 = ax. Then,

∫
∞

−∞
f (ax)e−i2𝜋𝜈xdx = ∫

∞

−∞
f (𝜉)e−i2𝜋𝜈𝜉∕a d𝜉|a| = 1|a|F

(
𝜈

a

)
.

In words, the dilation theorem says that if you squeeze a function in the time domain,
you stretch its transform in the frequency domain, and vice versa. The spirit of the
dilation theorem is the same for the discrete-time Fourier transform (Theorem 4.17),
but the present form is much simpler because we are working with functions of a real
variable instead of discrete sequences.

Example 5.8 (Time constant and bandwidth). Consider the function h(t) =
e−t∕𝜏U(t) = e−t∕𝜏U(t∕𝜏). By the dilation theorem, H(𝜈) = 𝜏

1+i2𝜋𝜏𝜈
. The squared mag-

nitude is |H|2 = 𝜏
2

1+(2𝜋𝜏𝜈)2 . As 𝜏, the “time constant,” increases, h decays more slowly.
In the frequency domain, the squared magnitude narrows. The half-power bandwidth,
the value of 𝜈 by which |H| has fallen to 1∕2 of its maximum value at 𝜈 = 0, is 1∕2𝜋𝜏,
inversely proportional to 𝜏. These effects are illustrated in Figure 5.8.

You may have experience with the ideas of risetime and bandwidth of an
electronic circuit. The risetime expresses the speed with which a system can respond
to a step input. The bandwidth is the highest frequency that is effectively passed
by the system and is a measure of the spread of the circuit’s frequency response
along the frequency axis. It is well known that risetime and bandwidth are inversely
proportional. In order to have a small (fast) risetime, the circuit must pass high-
frequency Fourier components of the step input to the output, and this requires a high
bandwidth.

In a communication system, digital information is transmitted by sequences of
narrow pulses. The rate at which bits can be sent is inversely proportional to the pulse
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FIGURE 5.8 Dilation, illustrated by the one-sided exponential function h(t) = e−t∕𝜏U(t) and
its Fourier transform, H(𝜈) = 𝜏

1+i2𝜋𝜏𝜈
, for 𝜏 = 0.5 (left) and 𝜏 = 2 (right). The bottom graph

shows the magnitude of the Fourier transforms, in decibels, 20 log10 |H(𝜈)|. There is a factor
of four, or 12 decibel, difference in the magnitudes, and a factor of four difference in the
half-power frequencies (circles).

width. By the dilation theorem, as a pulse is made narrower its Fourier spectrum
becomes wider, and to receive it without distortion requires a higher bandwidth
communication channel.

The dilation theorem is also behind the requirement that a telescope have a wide
aperture (i.e., large primary mirror) in order to resolve closely spaced objects. The
image of a distant point-like object, called the point spread function, is proportional
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to the (two-dimensional) spatial Fourier transform of the telescope’s aperture (see
Example 10.17 in a later chapter). Increasing the diameter of a telescope’s primary
mirror not only permits it to gather more light, but it also makes the area of the point
spread function smaller so the images of distant objects become sharper.

Shift and dilation often occur together. The Fourier transform of f ( x−b
a

) is

∫
∞

−∞
f
(x − b

a

)
e−i2𝜋𝜈x dx = ∫

∞

−∞
f (u)e−i2𝜋𝜈(au+b) |a| du

(
let u = x − b

a

)
= |a|e−i2𝜋𝜈b ∫

∞

−∞
f (u)e−i2𝜋(a𝜈)u du

= |a|e−i2𝜋𝜈bF(a𝜈).

Compactly,

f
(x − b

a

)
⟷ |a|e−i2𝜋𝜈bF(a𝜈). (5.23)

One could arrive at the same result by applying the shift and dilation theorems in
succession:

f
(x − b

a

)
⟼ e−i2𝜋𝜈bF

{
f
( x

a

)}
= e−i2𝜋𝜈b|a|F(a𝜈).

This combination of theorems correctly interprets f ( x−b
a

) as the dilation of f (x) to
f (x∕a), which is then shifted along x by b. So, to transform the function, apply the
theorems in the reverse order—shift first, then dilation. If you were to apply the
dilation theorem first, you could get

f
(x − b

a

)
⟼ |a|F {f (x − b)} = |a|e−i2𝜋𝜈bF(𝜈),

or

f
(x − b

a

)
⟼ |a|F {f (x − b)}|||(a𝜈)

= |a|e−i2𝜋a𝜈bF(a𝜈),

neither of which is correct.

Example 5.9. To calculate the Fourier transform of f (t) = rect( t−T∕2
T

), a shifted
rectangle, apply Equation 5.23 with a = T and b = T∕2, yielding

F(𝜈) = e−i𝜋𝜈TT sinc(T𝜈).

Differentiation and Integration
If a function is differentiable or integrable, there are convenient expressions for the
transform of the derivative or integral.

Theorem 5.9 (Derivative). If f , f ′ are integrable (e.g., L1 or L2) and f ⟼ F, then

f ′(x) ⟼ i2𝜋𝜈F(𝜈). (5.24)
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Proof: Write f ′(x) ⟼ ∫ ∞
−∞ f ′(x)e−i2𝜋𝜈x dx and integrate once, by parts,

f ′(x) ⟼ f (x)e−i2𝜋𝜈x|||∞−∞ − ∫
∞

−∞
f (x) ⋅ (−i2𝜋𝜈)e−i2𝜋𝜈x dx.

Because f is integrable, |f (x)e−i2𝜋𝜈x| → 0 as |x| → ∞, and we are left with

f ′(x) ⟼ i2𝜋𝜈 ∫
∞

−∞
f (x)e−i2𝜋𝜈x dx = i2𝜋𝜈F(𝜈).

Example 5.10. Consider the Fourier pairΛ ⟷ sinc2. We will calculate the Fourier
transform of the derivative of the triangle in three different ways to illustrate the
application of different Fourier theorems.

1. The derivative of the triangle function is

f ′(x) = d
dx

Λ(x) =
⎧⎪⎨⎪⎩

1, 0 > x ≥ −1

−1, 1 ≥ x > 0

0, otherwise (|x| > 1, x = 0)

.

From here, we can calculate the Fourier transform by direct integration:

f ′ ⟼ ∫
0

−1
e−i2𝜋𝜈x dx + ∫

1

0
(−1)e−i2𝜋𝜈x dx

= 1 − ei2𝜋𝜈

−i2𝜋𝜈
− e−i2𝜋𝜈 − 1

−i2𝜋𝜈
= 2(1 − cos 2𝜋𝜈)

−i2𝜋𝜈

= 2i sin2
𝜋𝜈

𝜋𝜈
.

2. Instead of calculating the Fourier integral, we can represent the derivative of
the triangle as the sum of two shifted rectangles:

f ′ = rect
(

x + 1
2

)
− rect

(
x − 1

2

)
.

Then using the shift and linearity theorems,

f ′ ⟼ exp
[
−i2𝜋𝜈

(
−1

2

)]
sinc 𝜈 − exp

[
−i2𝜋𝜈

(1
2

)]
sinc 𝜈

= 2i sin𝜋𝜈 sinc 𝜈 = 2i sin2
𝜋𝜈

𝜋𝜈
.

3. Finally, using the derivative theorem, we obtain the solution quickly:

f ′ ⟼ i2𝜋𝜈 sinc2
𝜈 = 2i𝜋𝜈 sin2

𝜋𝜈

(𝜋𝜈)2
= 2i sin2

𝜋𝜈

𝜋𝜈
.

The functions and transforms are illustrated in Figure 5.9.
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FIGURE 5.9 Illustrating the derivative theorem with the Λ ⟷ sinc2 pair. Top: The triangle
function and its Fourier transform. Bottom: The derivative of the triangle and its Fourier
transform, i2𝜋𝜈 sinc2

𝜈. The derivative of the triangle, a real and even function, is a real and
odd function. The Fourier transform of the triangle is real and even; the transform of the
derivative is imaginary and odd.

If a function is n-times differentiable and all the derivatives are integrable, the
derivative theorem may be applied n times, so that

f (n)(x) ⟼ (i2𝜋𝜈)nF(𝜈). (5.25)

A variation on the same theme, if xnf is integrable, is

xnf (x) ⟼
F(n)(𝜈)
(−i2𝜋)n

. (5.26)

The derivation is left to the problems.
The derivative theorem underlies the application of the Fourier transform to

solving differential equations. It converts derivatives in one domain into algebraic
relationships in the other domain.

Example 5.11. A second-order differential equation driven by an input f (t),

y′′ + a1y′ + a2y = f ,
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transforms to

(i2𝜋𝜈)2Y(𝜈) + a1(i2𝜋𝜈)Y(𝜈) + a2Y(𝜈) = F(𝜈).

Collecting terms,

[(a2 − (2𝜋𝜈)2) + i2𝜋a1𝜈]Y(𝜈) = F(𝜈).

Solving for Y ,

Y(𝜈) = F(𝜈)

(a2 − (2𝜋𝜈)2) + i2𝜋a1𝜈
.

The solution to the differential equation is the inverse transform of Y . In linear systems
analysis, the rational function

H(𝜈) = Y(𝜈)
F(𝜈)

= 1
(a2 − (2𝜋𝜈)2) + i2𝜋a1𝜈

is called the transfer function. It often gives sufficient information about the system
behavior that the actual solution y(t) need not be calculated.

Example 5.12 (Gaussian function). The Gaussian function, f (x) = e−𝜋x2
, has

multiple applications. It is the classic “bell curve” in probability and statistics, where
it is known as the normal distribution. In optics, it describes the transverse intensity
profile of many laser beams. The Gaussian is also the solution of the heat equation
(4.27) on an unbounded domain.

Calculating ‖f‖1 = ∫ ∞
−∞ e−𝜋x2

dx is not straightforward, because the Gaussian
does not have an antiderivative. Instead, the norm is calculated by first calculating‖f‖2

1:

‖f‖2
1 =

[
∫

∞

−∞
e−𝜋x2

dx

]2

=
[
∫

∞

−∞
e−𝜋x2

dx

] [
∫

∞

−∞
e−𝜋y2

dy

]
= ∫

∞

−∞ ∫
∞

−∞
e−𝜋(x2+y2) dxdy.

Converting to polar coordinates, r2 = x2 + y2, dx dy = r dr d𝜃,

‖f‖2
1 = ∫

2𝜋

0 ∫
∞

0
e−𝜋r2

r dr d𝜃 = 2𝜋 ∫
∞

0
e−𝜋r2

r dr.

Now, let u = 𝜋r2, du = 2𝜋r dr; then

‖f‖2
1 = ∫

∞

0
e−u du = 1 ⟹ ‖f‖1 = 1.

To calculate the Fourier transform of the Gaussian, note that

f ′(x) = −2𝜋x e−𝜋x2 = −2𝜋x f (x),

that is, f obeys a differential equation:

f ′ + 2𝜋x f = 0.
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FIGURE 5.10 The Gaussian function is its own Fourier transform.

Because f and f ′ are absolutely integrable, we may Fourier transform the differential
equation, using Equations 5.24 and 5.26:

i2𝜋𝜈 F + 2𝜋
F′

−i2𝜋
= 0

⟹ F′ + 2𝜋𝜈F = 0.

This is the same differential equation, with 𝜈 and F instead of x and f . The solution
is a Gaussian:

F(𝜈) = Ce−𝜋𝜈
2
.

To evaluate the constant C, set 𝜈 = 0:

C = F(0) = ∫
∞

−∞
e−𝜋x2

dx = 1.

We have, at last, the Fourier transform pair:

e−𝜋x2
⟷ e−𝜋𝜈

2
. (5.27)

The Gaussian has the rare distinction of being an elementary function that is its own
Fourier transform (Figure 5.10).

Example 5.13 (Linear chirp function). The function f (x) = e−𝜋cx2
, with complex

c, can be shown to have the same properties as the real Gaussian:

∫
∞

−∞
e−𝜋cx2

dx = 1√
c

, Re c > 0, (5.28)

F
{

e−𝜋cx2
}

= 1√
c

e−𝜋𝜈
2∕c

. (5.29)

The special case c = −ib, f (x) = e+i𝜋bx2
, is called a complex linear chirp function.

For any function f (x) = exp(i𝜑(x)), the derivative of the phase, 𝜑′(x)∕2𝜋, is called the
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instantaneous frequency. The instantaneous frequency of the linear chirp function is
bx; it increases with time, resembling the chirping sound of a bird. The linear chirp
Fourier transform pair is

e+i𝜋bx2
⟷ 1√

−ib
e−i𝜋𝜈2∕b

. (5.30)

Derivations of Equations 5.28, 5.29, and 5.30 are similar to those for the real Gaussian
and are deferred to the problems.

We have seen f ′ ⟼ i2𝜋𝜈F and−i2𝜋xf ⟼ F′—differentiating in one domain
multiplies by x or 𝜈 in the other domain. It seems that, just as we had with the Fourier
series, integrating in one domain should divide by x or 𝜈 in the other domain,
something like

∫
x

−∞
f (𝜉)d𝜉 ⟼ F(𝜈)

i2𝜋𝜈
.

In order for this (hypothesized) transform not to blow up at the origin, F must be zero
at 𝜈 = 0. Now, as we shall soon see, if f ⟼ F, then (Equation 5.35)

F(0) = ∫
∞

−∞
f (x)e−i2𝜋0x dx = ∫

∞

−∞
f (x) dx.

So in order to have F(0) = 0, we must require

∫
∞

−∞
f (x) dx = 0;

f must have “zero area” or “zero DC.” Now, by Leibniz’ rule,

d
dx ∫

x

−∞
f (𝜉) d𝜉 = f (x)

and then, by the derivative theorem,

d
dx ∫

x

−∞
f (𝜉) d𝜉 ⟼ i2𝜋𝜈 F

{
∫

x

−∞
f (𝜉) d𝜉

}
= F(𝜈)

⟹ ∫
x

−∞
f (𝜉) d𝜉 ⟼

F(𝜈)
i2𝜋𝜈

,

as desired. We have the following result.

Theorem 5.10 (Integral). Let f be integrable with ∫ ∞
−∞ f (x) dx = 0, and f ⟼ F.

Then

∫
x

−∞
f (𝜉) d𝜉 ⟼ F(𝜈)

i2𝜋𝜈
. (5.31)

If F(𝜈)∕i2𝜋𝜈 is integrable, then the inverse relationship also holds.

Example 5.14 (Biquad filter). An electronic circuit having a frequency response
H(𝜈) = 1

i2𝜋𝜈
is called an integrator and is a basic building block in designing filters
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+ ∫ ∫

–a2

–a1

f(t) y(t)

+

–a2

–a1

F(ν) Y(ν)1
i2πν

1
i2πν

i2πν Y(i2πν)2 Y

FIGURE 5.11 Biquad filter (Example 5.14). Top: integrators with feedback. Bottom: because
of linearity, the integrators and signals can be replaced by their frequency-domain equivalents.

and control systems. The system shown in Figure 5.11 is made from two integrators,
with feedback from the integrator outputs to a summing junction at the input.

Let the Fourier transform of the system output be Y . It is the integral of the input
to the second integrator. Therefore, the input to that integrator is i2𝜋𝜈Y . That signal in
turn is the output of the first integrator, so the input to the first integrator is (i2𝜋𝜈)2Y .
But the input to the first integrator is also the output of the summing junction, which is
a weighted sum of the input and the two integrator outputs. Equating the two, we have

(i2𝜋𝜈)2 Y(𝜈) = F(𝜈) − a1 (i2𝜋𝜈) Y(𝜈) − a2Y(𝜈).

Solving for Y ,

Y(𝜈) = F(𝜈)(
a2 − (2𝜋𝜈)2

)
+ i2𝜋a1𝜈

.

The system is a filter with transfer function

H(𝜈) = Y(𝜈)
F(𝜈)

= 1(
a2 − (2𝜋𝜈)2

)
+ i2𝜋a1𝜈

.

The derivative and integral theorems connect the smoothness of a function with
the asymptotic behavior of its Fourier transform. As we saw with the Fourier series,
differentiation makes a function less smooth and boosts the high frequencies of the
Fourier transform. Integration makes a function more smooth and attenuates the high
frequencies of the Fourier transform. The statement f (n)(x) ⟼ (i2𝜋𝜈)nF(𝜈) for an
n-times differentiable function can be turned around. The function f (n) is assumed to
be L1 so that it has a Fourier transform, which of course is bounded. Thus,

|F(𝜈)| ≤ M
1 + |2𝜋𝜈|n .
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The Fourier transform of f is no larger than M and decays O(|𝜈|−n) or better. The
smoother a function is, as measured by its differentiability, the faster its Fourier
transform decays as |𝜈| → ∞. With n = 2, for example, we have a sufficient condition
for the absolute integrability of F, namely that f be twice differentiable.

Moment Theorems
The n-th moment of a function f (x), denoted 𝜇

(n)
f , is defined

𝜇
(n)
f = ∫

∞

−∞
xnf (x) dx, (5.32)

provided that the integral exists (f must decay faster than |x|−n−1 as |x| → ∞). Two
moments commonly encountered in applications are the area under a function, which
is 𝜇(0)

f , and the centroid, or center-of-mass,

Centroid =
𝜇

(1)
f

𝜇
(0)
f

. (5.33)

The variance,𝜎2
f , measures the width, or spread, of a function. It is based on the second

moment of a function about its centroid, also called the second central moment:

𝜎
2
f = 1

𝜇
(0)
f

∫
∞

−∞

⎛⎜⎜⎝x −
𝜇

(1)
f

𝜇
(0)
f

⎞⎟⎟⎠
2

f (x) dx =
𝜇

(2)
f

𝜇
(0)
f

−
⎛⎜⎜⎝
𝜇

(1)
f

𝜇
(0)
f

⎞⎟⎟⎠
2

. (5.34)

The moments of a function may be calculated from derivatives of its Fourier
transform. The basic approach is demonstrated by the following theorem, which
mirrors earlier results, Theorems 3.4 and 4.8.

Theorem 5.11 (Area). If f , F are continuous at the origin and f ⟷ F, then

∫
∞

−∞
f (x)dx = F(0), (5.35a)

f (0) = ∫
∞

−∞
F(𝜈)d𝜈 (5.35b)

provided that the integrals exist.

Proof: By the definition of the Fourier transform,

∫
∞

−∞
f (x)e−i2𝜋𝜈xdx = F(𝜈).

Simply set 𝜈 = 0 on both sides. The same derivation works for f (0). Continuity is
required so that there is no uncertainty about the meaning of f (0) and F(0).
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Combining the area theorem with the derivative theorem, we can establish a
more general pair of results. Their proofs are left to the problems.

Theorem 5.12 (Moments). If f ⟷ F, then

𝜇
(n)
f = ∫

∞

−∞
xnf (x)dx = 1

(−i2𝜋)n
F(n)(0), (5.36a)

𝜇
(n)
F = ∫

∞

−∞
𝜈

nF(𝜈)d𝜈 = 1
(i2𝜋)n

f (n)(0), (5.36b)

when the indicated integrals exist and the derivatives are continuous at the origin.

Example 5.15 (Doing integrals with the moment theorems). If you know the
Fourier transform of a function, you can calculate an integral by working with the
transform.

1. ∫
∞

−∞
sinc (x) dx = rect (0) = 1.

2. ∫
∞

0
e−x dx = 1

1 + i2𝜋𝜈

|||||𝜈=0

= 1.

3. ∫
∞

0
xe−ax dx = 1

−i2𝜋

[
d

d𝜈

1∕a

1 + i2𝜋𝜈∕a

]
𝜈=0

= 1
−i2𝜋

−i2𝜋∕a

(1 + i2𝜋𝜈∕a)2

|||||𝜈=0

= 1
a

.

To illustrate the connection between moments and derivatives, consider the
Gaussian function, f (x) = e−𝜋x2∕a2

(a > 0), which, according to the dilation theorem,
has Fourier transform F(𝜈) = ae−𝜋a2

𝜈
2
. These functions are illustrated in Figure 5.12.

–1 0 1

0

0.5

1

1.5

2

ν
–1 0 1

0

0.5

1

1.5

2

x

f(
x)

F(
ν)

FIGURE 5.12 The Gaussian function e−𝜋x2∕a2
(left), and its Fourier transform, ae−𝜋a2

𝜈
2

(right). The solid line corresponds to a = 1, and the dashed line to a = 2. The moments of f
are related to the derivatives of F at the origin.
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Calculating the moments of f with the moment theorem,

𝜇
(0)
f = F(0) = a,

𝜇
(1)
f = F′(0)

−i2𝜋
= 1

−i2𝜋

[
−2𝜋a3

𝜈 e−𝜋a2
𝜈

2
]
𝜈=0

= 0,

𝜇
(2)
f = F′′(0)

−(2𝜋)2
= 1

−i2𝜋

[
−2𝜋a3(1 − 2a2

𝜋𝜈) e−𝜋a2
𝜈

2
]
𝜈=0

= a3

2𝜋
,

𝜎
2
f =

𝜇
(2)
f

𝜇
(0)
f

−
⎛⎜⎜⎝
𝜇

(1)
f

𝜇
(0)
f

⎞⎟⎟⎠
2

= a2

2𝜋
.

The first moment, 𝜇(1)
f , depends on the behavior of the first derivative, F′, at the origin.

F has zero slope at the origin, so f ’s first moment is zero. The second moment, 𝜇(2)
f ,

depends on the second derivative, F′′, which is a measure of curvature. Referring
to Figure 5.12, the curvature of F is higher, and consequently the function is more
sharply peaked, for a = 2 than it is for a = 1. Correspondingly, f is more spread out
for a = 2 (higher variance) than it is for a = 1. Reversing the roles, we note that
F’s variance is lower for a = 2 than it is for a = 1, and f ’s curvature at the origin is
correspondingly lower for a = 2 than it is for a = 1.

5.4 INTERPRETING THE FOURIER TRANSFORM

If, for some function f , we are able to calculate the Fourier transform F, we can
informally interpret the transform as the Fourier coefficients for a set of basis functions
{ei2𝜋𝜈x} indexed not by integers but by a real variable 𝜈. This interpretation does
not quite work, however. The orthogonality relationship for this “continuum basis”
evidently would be expressed by the inner product integral⟨

ei2𝜋𝜈x, ei2𝜋𝜇x⟩ = ∫
∞

−∞
ei2𝜋(𝜈−𝜇)xdx,

but the complex exponential is not absolutely integrable over the infinite limits. In
particular, when 𝜈 = 𝜇 the integral blows up. Moreover, in the DFT and the Fourier
series, where we had a line spectrum, it was easy to relate each coefficient to the
power in the signal at the corresponding frequency. This interpretation fails for the
Fourier transform. If it were correct, we would be able to say, for example, that
F(𝜈0) and F(−𝜈0) were the coefficients for a sinusoid at frequency 𝜈0, one of many
making up the original function f (x). This would imply, for instance, that the Fourier
transform of cos 2𝜋𝜈0x is

F(𝜈) =
⎧⎪⎨⎪⎩

1
2

, 𝜈 = ±𝜈0

0, otherwise
.
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But then, in the inverse Fourier transform, the integrand would be

F(𝜈)ei2𝜋𝜈x =
⎧⎪⎨⎪⎩

1
2

e±i2𝜋𝜈0x, 𝜈 = ±𝜈0

0, otherwise

and the integral is the area under two isolated points, which is zero—not what we
want. If we try to calculate the Fourier transform integral with f (x) = cos 2𝜋𝜈0x, we
do not do any better, because cosine is not absolutely integrable or square integrable
on (−∞,∞). Ironically, sinusoids are one type of function which cannot be Fourier
transformed without special handling. This is the subject of the next chapter.

So what does the Fourier transform say? The most physical approach is to
think of it as a density function, analogous to a classical mass density, a statistical
probability density function, or a quantum probability amplitude. If you have a
density function 𝜌(x) for the mass along a thin rod, you cannot say what the mass
is at a particular point x0, because a single point is massless. But you can calculate
the mass of the entire rod by integrating the density function over the length of the
rod, and you can calculate the mass of a portion of the rod by integrating the density
function over that portion.

So too with the Fourier transform. We will see later that if f ∈ L2, then F ∈ L2

as well, and Parseval’s formula (Equation 5.18b) says that the total power in f is the
integral of the spectrum |F|2 over all frequencies:

∫
∞

−∞
|f (x)|2 dx = ∫

∞

−∞
|F(𝜈)|2 d𝜈.

If we interpret the squared-norm ‖f‖2 as power, then the squared magnitude of
the Fourier transform, |F|2, carries units of power/frequency or “power per unit
bandwidth.” The power in a band of frequencies 𝜈2 > |𝜈| > 𝜈1 is the integral of a
portion of the spectrum:

∫
−𝜈1

−𝜈2

|F(𝜈)|2 d𝜈 + ∫
𝜈2

𝜈1

|F(𝜈)|2 d𝜈.

The area under a point (let 𝜈1 → 𝜈2) is zero, so we have to conclude that the fraction
of power at a single frequency is zero. This poses no practical problem, because
instruments for spectrum analysis have finite observation bandwidths Δ𝜈 = 𝜈2 − 𝜈1.

5.5 CONVOLUTION

5.5.1 Definition and basic properties

The convolution of two functions f and h, denoted f ∗ h, is defined:

f ∗ h(x) = ∫
∞

−∞
f (𝜉)h(x − 𝜉) d𝜉 = ∫

∞

−∞
f (x − 𝜉)h(𝜉) d𝜉, (5.37)

when the integrals exist. The equivalence of the two integrals is easily verified by
making a change of variable, showing that convolution is commutative, f ∗ h = h ∗ f .
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In the special case that f = 0 for all x outside a bounded interval [a, b] (the
function is then said to have bounded support), the convolution is a finite integral:

f ∗ h(x) = ∫
b

a
f (𝜉)h(x − 𝜉) d𝜉,

and is bounded for all x if f and h are bounded:|f ∗ h| ≤ (b − a) ‖f‖∞ ‖h‖∞ .

If f and h are one sided, equal to zero for x < 0, then the convolution is a finite
integral:

f ∗ h(x) = ∫
x

0
f (𝜉)h(x − 𝜉) d𝜉

but is not guaranteed to be bounded as x → ∞ without additional constraints on f
or h.

Let us begin, as we did with the Fourier transform, by considering what is
required to have a bounded convolution:||||∫ ∞

−∞
f (𝜉) h(x − 𝜉) d𝜉

|||| ≤ ∫
∞

−∞
|f (𝜉) h(x − 𝜉)| d𝜉. (triangle inequality)

The product fh is absolutely integrable if one of them is bounded, and the other is
absolutely integrable:

∫
∞

−∞
|f (𝜉) h(x − 𝜉)| d𝜉 ≤ sup |h| ∫ ∞

−∞
|f (𝜉)| d𝜉.

So we have one result: |f ∗ h| ≤ ‖f‖1 ‖h‖∞ . (5.38)

It can also be shown that under these same conditions, f ∈ L1 and h ∈ L∞, the
convolution is a continuous function of x, even if one or both of the functions being
convolved is discontinuous.4

Example 5.16 (The convolution of two rectangle functions).

rect(t) ∗ rect(t) = ∫
∞

−∞
rect(t − 𝜏) rect(𝜏) d𝜏 = ∫

1∕2

−1∕2
rect(t − 𝜏) d𝜏.

The rectangle rect(t − 𝜏), as a function of 𝜏, is time reversed and shifted to be
centered at 𝜏 = t. We distinguish four cases of the integral as t varies and slides the
one rectangle across the other:

1. For t < −1, the rectangles do not overlap and the integral is zero.

2. For 0 > t ≥ −1, the integral is ∫ t+1∕2
−1∕2 d𝜏 = 1 + t.

4For a proof of the continuity of the convolution, see Gasquet and Witomski (1999, pp. 181–182).
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Λ(–2/3)

Λ(1/3)
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FIGURE 5.13 The convolution Λ(t) = rect(t) ∗ rect(t). As the time-reversed rectangle,
rect(t − 𝜏), slides across the rectangle rect(𝜏) (top), the convolution is the area under their
product, indicated by the shaded area (bottom). The convolution is wider than the rectangles.

3. For 1 > t ≥ 0, the integral is ∫ 1∕2
t−1∕2 d𝜏 = 1 − t.

4. For t ≥ 1, the integral is zero.

Putting the pieces together, we have that rect(t) ∗ rect(t) = Λ(t), the triangle function
(Figure 5.13). The rectangle is bounded and absolutely integrable, and the convolution
is bounded and continuous.

Example 5.17 (The convolution of a one-sided rectangle and a one-sided
exponential).

g(t) = rect(t − 1∕2) ∗ e−tU(t) =∫
∞

−∞
rect(t − 𝜏 − 1∕2) e−𝜏U(𝜏) d𝜏 =∫

t

t−1
e−𝜏U(𝜏) d𝜏.

The one-sided rectangle rect(t − 𝜏 − 1∕2), as a function of 𝜏, is time reversed and
shifted to the interval 𝜏 ∈ (t − 1, t). We distinguish three cases of the integral as t
varies and slides the rectangle across the one-sided exponential:

1. For t < 0, the rectangle does not overlap the exponential, and the integral is
zero.
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g(–1.5)

g(0.25)
g(2.5)

rect(τ + 2) rect(τ + 0.25) rect(τ – 2)

e–τ U(τ)

FIGURE 5.14 The convolution g(t) = rect(t − 1∕2) ∗ e−tU(t). As the time-reversed rect-
angle, rect(t − 𝜏 − 1∕2), slides across the one-sided exponential function e−𝜏 U(𝜏) (top), the
convolution is the (shaded) area under their product (bottom). The convolution is wider than
the rectangle.

2. For 1 > t ≥ 0, the rectangle partially overlaps the exponential, and the integral
is ∫ t

0 e−𝜏 d𝜏 = 1 − e−t.

3. For t ≥ 1, the rectangle completely overlaps the exponential, and the integral
is ∫ t

t−1 e−𝜏 d𝜏 = (1 − e−1) e−(t−1).

This is the same as the charge–discharge curve for a resistor–capacitor circuit
(Figure 5.14). Both functions are bounded and absolutely integrable, and the convo-
lution is bounded and continuous.

Example 5.18 (Convolution of a step and a one-sided exponential). The
step function U(t) ∈ L∞, and the one-sided exponential e−tU(t) ∈ L1. Their
convolution is

g(t) = U(t) ∗ e−tU(t) = ∫
∞

0
e−(t−𝜏)U(t − 𝜏) d𝜏 =

(
1 − e−t)U(t).

This function is bounded and continuous, but not absolutely integrable, because
g → 1 as t → ∞.
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Example 5.19 (Convolution of two step functions). The convolution of two step
functions is

g(t) = ∫
t

0
U(𝜏) U(t − 𝜏) d𝜏 = t U(t).

The convolution is unbounded, because the step functions are not integrable.

Convolution has a broadening effect on a function. In Examples 5.16 and
5.17, the result of the convolution was wider than the rectangle. If two functions
f and g are supported on finite intervals [a, b] and [c, d], respectively, then their
convolution f ∗ g is supported on the interval [a + c, b + d]. The width of this interval
is (b − a) + (d − c), the sum of the widths of the supports for f and g, respectively.
For functions with either bounded or unbounded support, it is also true that centroids
and variances add under convolution, that is,

𝜇
(1)
f∗g

𝜇
(0)
f∗g

=
𝜇

(1)
f

𝜇
(0)
f

+
𝜇

(1)
g

𝜇
(0)
g

, (5.39a)

𝜎
2
f∗g = 𝜎

2
f + 𝜎

2
g , (5.39b)

when the moments exist. Proofs of these width relationships are left to the problems,
but here is an example.

Example 5.20 (Convolution of two rectangles, again). The rectangle rect(t) has
unit area and zero centroid, by inspection. Its variance, then, is

𝜎
2
rect = ∫

1∕2

−1∕2
t2 dt = 1

12
.

The triangle Λ(x) has unit area and zero centroid. Its variance is

𝜎
2
Λ = ∫

1

−1
t2 (1 − |t|) dt = 2∫

1

0
t2(1 − t) dt = 1

6
.

As expected, 𝜎2
Λ = 𝜎

2
rect + 𝜎

2
rect.

In Example 5.18, although the convolution broadened the square edge of the step
function into a gradual rise, these measures of width do not apply, because the step
function has unbounded support and does not have a finite centroid or variance.

The Fourier transform of the convolution is of central importance in system
theory. For that we need the convolution to be absolutely integrable. The L1 norm of
f ∗ h is

‖f ∗ h‖1 = ∫
∞

−∞

||||∫ ∞

−∞
f (𝜉)h(x − 𝜉) d𝜉

|||| dx

≤ ∫
∞

−∞ ∫
∞

∞
|f (𝜉)| |h(x − 𝜉)| d𝜉 dx = ∫

∞

−∞
|f (𝜉)| (∫

∞

∞
|h(x − 𝜉)| dx

)
d𝜉

= ‖f‖1 ‖h‖1 .
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So if f , h ∈ L1, then f ∗ h ∈ L1. Applying the Fourier transform to the convolution
integral, we obtain the convolution theorem:

F{f ∗ h} = ∫
∞

−∞

(
∫

∞

−∞
f (𝜉) h(x − 𝜉) d𝜉

)
e−i2𝜋𝜈x dx

= ∫
∞

−∞
f (𝜉)

(
∫

∞

−∞
h(x − 𝜉)e−i2𝜋𝜈x dx

)
d𝜉 (Fubini’s theorem)

= ∫
∞

−∞
f (𝜉)

(
e−i2𝜋𝜈𝜉H(𝜈)

)
d𝜉 (shift theorem)

=
(
∫

∞

−∞
f (𝜉)e−i2𝜋𝜈𝜉 d𝜉

)
H(𝜈) = F(𝜈)H(𝜈).

In short, if f , h ∈ L1,

f ∗ h ⟼ FH.

Previously we calculated rect ⟼ sinc, Λ ⟼ sinc2, and rect ∗ rect = Λ.
Using the above result,

Λ(x) = rect(x) ∗ rect(x) ⟼ sinc(𝜈) ⋅ sinc(𝜈) = sinc2(𝜈).

To have the inverse relationship, FH ⟼ f ∗ h, we need for FH to be absolutely
integrable. Since f , h ∈ L1, we know that F and H are bounded, and in order to have
FH ∈ L1, we need for F or H to be integrable, for example,

‖FH‖1 = ∫
∞

−∞
|FH|d𝜈 = ∫

∞

−∞
|F(𝜈)| |H(𝜈)| d𝜈

≤ ∫
∞

−∞
|F(𝜈)| sup |H| d𝜈 = ‖F‖1 ‖H‖∞ < ∞.

If both F and H are integrable, then we also have F ∗ H ∈ L1 and a symmetric
convolution theorem:

f ∗ h ⟷ FH, (5.40)

fh ⟷ F ∗ H. (5.41)

A broad statement of the convolution theorem for functions in L1 and L2 will come
later (Theorem 5.16).

It is not hard to show, using the convolution theorem, that in addition to being
commutative, convolution is associative, (f ∗ g) ∗ h = f ∗ (g ∗ h), and distributive,
(f + g) ∗ h = f ∗ h + g ∗ h. Also, the convolution of two even functions or two odd
functions is even, and the convolution of an odd function and an even function is odd.
And, if f is differentiable, then so is f ∗ h, and (f ∗ h)′ = f ′ ∗ h. Proofs of all these
are left to the problems.
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5.5.2 Convolution and Linear Systems

A system may abstractly be regarded as an operator S that maps a space of input
functions to a space of output functions. For an input f and output g, we write
g = S{f }.

Definition 5.1 (Linear, time-invariant, causal systems).

1. A system is linear if S{af1 + bf2} = ag1 + bg2, where g1 = S{f1} and g2 =
S{f2}, and a and b are constants.

2. A system is time invariant (or shift invariant) if S{f (t − 𝜏)} = g(t − 𝜏). That is,
translating the input by an amount 𝜏 only causes the output to be translated by
the same amount.

3. A system is causal if, for all inputs f which are zero for t < t0, the outputs
g = S{f } are also zero for t < t0.

In this section we explore the relationship between linear, time-invariant (LTI)
systems and convolution. First consider a first-order LTI system (an RC circuit, say)
described by the differential equation

y′ + 1
r

y = 1
r

x(t),

where r is called the time constant of the system. This system is LTI (any system
described by a linear, ordinary differential equation with constant coefficients is LTI).
Let the driving function x be a rectangular pulse of height n and width 1∕n, x(t) =
n rect(nt), and let the initial value y(− 1

2n
) = 0. When the input “switches on” at t =

−1∕2n, the capacitor charges according to the well-known “saturating exponential”
curve:

y(t) = n(1 − e−(t+1∕2n)∕r), |t| < 1
2n

,

and by t = 1∕2n has reached the value y( 1
2n

) = n(1 − e−1∕nr). At this point the input
switches off and the capacitor begins to discharge, following the decaying exponential
e−(t−1∕2n)∕r. The complete output is described by the function

y(t) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩

0, t < − 1
2n

n(1 − e−(t+1∕2n)∕r),
1

2n
> t ≥ − 1

2n

n(1 − e−1∕nr)e−(t−1∕2n)∕r, t ≥ 1
2n

. (5.42)

This function is graphed in Figure 5.15. As n increases, the amplitude of the driving
pulse increases but the amount of time that the capacitor is charging decreases. As n
becomes very large, the pulse duration 1∕n is very short compared with the system
time constant r; the charging appears to be nearly instantaneous and the response
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FIGURE 5.15 Response of a first-order LTI system (r = 1) to excitation by a unit area
rectangular pulse of height n. As n increases, the pulse becomes higher and narrower. The
shape of the response for large n is dominated by the decay and approaches the exponential
function 1

r
e−t∕rU(t).

appears to be all discharge. The precise width of the pulse, 1∕n, becomes negligible
and we may use an idealized model created by letting n → ∞, obtaining

y(t) = n(1 − e−1∕nr)e−(t−1∕2n)∕]r →
1
r

e−t∕r, t > 0. (5.43)

A short, intense excitation of this sort is said to be impulsive. The output of a linear
system in response to an impulsive input is called the impulse response and is typically
denoted h(t).

Now consider the response of an LTI system to an arbitrary input, f (t). Assum-
ing that the input is at least piecewise continuous,5 it can be approximated arbitrarily
closely by a series of rectangular pulses:

f (t) ≈
∑

n

f (nΔ𝜏)Δ𝜏 rect
( t − nΔ𝜏

Δ𝜏

)
.

The factor Δ𝜏 is included so that, in the limit as Δ𝜏 → 0, f and the approximation
have the same area. The system’s response g is, by linearity, approximated by a

5In fact, it is sufficient that the input be bounded and integrable (L1 ∩ L∞), but real signals are always
piecewise continuous or better, and this assumption simplifies the mathematics.
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superposition of its responses to the rectangular pulses, which we denote hΔ𝜏 . The
pulse response hΔ𝜏 is invariant to translation. The output of the system is

g(t) ≈
∑

n

f (nΔ𝜏)hΔ𝜏 (t − nΔ𝜏)Δ𝜏.

Define 𝜏 = nΔ𝜏. In the limit, as Δ𝜏 → 0, this is a classic Riemann sum which goes
over to the integral:

g(t) = ∫ f (𝜏)h(t − 𝜏) d𝜏. (5.44)

The system output is the convolution of the input f with the impulse response h.
The convolution model applies to systems in space as well as time. The image

of a point source of light is the spatial impulse response, or point spread function of
the imaging system. The image of an arbitrary (“extended”) object is a superposition
of point spread functions, one for each point in the ideal geometric image. The result
is the convolution of the point spread function with the ideal image; a blurry image
is the consequence of a broad point spread function. In like manner, the temperature
distribution in a material in response to a point application of heat is also a spatial
impulse response, as is the deflection of a structure in response to a point load.

A system can be linear but not time- (or space-) invariant. If an impulse is
applied at time 𝜏, the response measured at time t may depend, in general, both on 𝜏

and t − 𝜏, the time elapsed between the impulse and the measurement. A time-varying
impulse response is often denoted h(t; 𝜏) or h(t − 𝜏; 𝜏). An example of a space-variant
system is an camera that focuses more sharply at the center of the image field than at
the edges. On the other hand, the response of a time-invariant system to an impulse
at time 𝜏 depends only on the elapsed time, t − 𝜏 (Figure 5.16).

In temporal systems, causality restricts the impulse response to be one sided,
h(t) = 0, t < 0. However, spatial systems, where the independent variable is x, are
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FIGURE 5.16 The responses of two systems driven by two successive impulsive inputs. The
impulse response of a time-invariant system (left) depends only on the time elapsed since the
input is applied, while the impulse response of a time-varying system (right) depends both on
elapsed time and the absolute time when the input is applied.
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f(t) h(t) g(t) = h(t) * f(t)

F(ν) H(ν) G(ν) = H(ν) F(ν)

–1

FIGURE 5.17 Two views of the input–output behavior of a linear time-invariant system. In
the time domain, the output is the convolution of the input and the system’s impulse response.
In the frequency domain, the Fourier transform of the output is the product of the Fourier
transform of the input with the system’s transfer function. The transfer function is the Fourier
transform of the impulse response.

not restricted by causality. The point spread function of an optical system is ideally
distributed symmetrically about the geometric image point.

The response of an LTI system to a complex exponential of frequency 𝜈,
f (t) = ei2𝜋𝜈t, is calculated with the convolution integral:

g(t) = h ∗ f = ∫
∞

−∞
h(𝜏)ei2𝜋𝜈(t−𝜏)d𝜏 = ei2𝜋𝜈t ∫

∞

−∞
h(𝜏)e−i2𝜋𝜈𝜏d𝜏

= H(𝜈)ei2𝜋𝜈t
.

The output is a complex exponential of the same frequency, multiplied by a complex
factor H(𝜈), the transfer function. In operator notation, this can be expressed:

S{ei2𝜋𝜈t} = H(𝜈)ei2𝜋𝜈t
.

The result of the system operating on a complex exponential is simply a scaling by a
complex number, H(𝜈). Complex exponentials of frequency 𝜈 are the eigenfunctions
of linear, time-invariant systems, and the values of the transfer function, H(𝜈), are the
corresponding eigenvalues.

For arbitrary inputs the convolution theorem, Equation 5.40, provides the link
between the time and frequency domains for LTI systems. The output of an LTI
system is the convolution of the input with the system’s impulse response, g = h ∗ f ;
the Fourier transform of the output is G = HF. The transfer function (frequency
response) of the system, H(𝜈), is the Fourier transform of the impulse response. We
can interpret the operation of the LTI system in the frequency domain as (1) a Fourier
decomposition of the input into complex exponentials, which are the eigenfunctions
of the system, (2) a weighting of the Fourier components by the transfer function,
and (3) a Fourier synthesis to reconstruct the output (Figure 5.17).

5.5.3 Correlation

A close relative of convolution is correlation, defined:

Γfg(𝜏) = f ⋆ g = ∫
∞

−∞
f ∗(t − 𝜏)g(t)dt = ∫

∞

−∞
f ∗(t)g(t + 𝜏)dt. (5.45)
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This is sometimes also called the cross-correlation to distinguish it from the special
case known as autocorrelation, f ⋆ f .6 The variable 𝜏 is called the correlation lag.
When 𝜏 = 0, the correlation has the form of an inner product of f and g, so if f , g ∈ L2,
Γfg(0) = ⟨f , g⟩∗.

The correlation can be written as a convolution:

f ⋆ g = ∫
∞

−∞
f ∗(t − 𝜏)g(t)dt = ∫

∞

−∞
f ∗(−(𝜏 − t))g(t)dt

= f ∗(−) ∗ g,

(5.46)

where f (−) denotes the time reversal of f . This leads to a Fourier representation:

Theorem 5.13 (Correlation). Let f ⟷ F and g ⟷ G. Then,

(a) Cross-correlation

f ⋆ g ⟷ F∗G (5.47)

(b) Autocorrelation

f ⋆ f ⟷ F∗F = |F|2 (5.48)

for functions f and g such that the correlations exist.

Proof: Begin with f ⋆ g = f ∗(−) ∗ g and use the convolution theorem with the
reversal theorem (Equation 5.17), f ∗(−) ⟼ F∗. Then

f ⋆ g = f ∗(−) ∗ g ⟼ F∗G.

The autocorrelation theorem follows by setting g = f and G = F.

Properties and applications of the correlation are explored in the problems.

5.6 MORE ABOUT THE FOURIER TRANSFORM

In this section we take up further aspects of the mathematical theory of the Fourier
transform:

1. Defining an inverse Fourier transform for absolutely integrable functions, and
understanding its properties. The issues will be reminiscent of the convergence
properties of the Fourier series.

2. Defining a Fourier transform (and inverse) for square integrable functions,
which describe many physical signals.

3. Extending the definition of convolution and the convolution theorem to include
square-integrable functions.

6The pentagram notation, f ⋆ g, is not consistently applied in the literature. For example, Bracewell (2000)
explicitly includes the complex conjugate, writing Γfg = f ∗ ⋆ g, while Gray and Goodman (1995) write
f ⋆ g. The latter notation is used in this book.



5.6 MORE ABOUT THE FOURIER TRANSFORM 311

5.6.1 Fourier inversion in L1

When a function is absolutely integrable, it has a Fourier transform defined by
an ordinary integral. That transform is bounded and continuous, and approaches
zero asymptotically at high frequencies. If the function is sufficiently smooth, then
its Fourier transform rolls off rapidly enough to be absolutely integrable, and the
inverse Fourier transform exists as an ordinary, absolutely convergent, integral. In
the previous chapter we found that certain Fourier series, for example, for the square
wave, whose coefficients decayed too slowly for absolute convergence, could still
have a convergent sequence of partial sums. Thus we expect for the Fourier transform
that even if F(𝜈) = F{f (x)} is not absolutely integrable (e.g., rect ⟼ sinc), there
should still be an inverse, although it may have poor convergence properties. Ideally,
we should find that F−1{F{f }} = f in some sense.

Let us assume that all we know about F is that it is the Fourier transform of an
absolutely integrable function f . In the worst case, the integral ∫ ∞

−∞ F(𝜈) e+j2𝜋𝜈x d𝜈
cannot be calculated as an ordinary integral (i.e., even if we can find an antiderivative
for the integrand, the integral will diverge at the infinite limits). We can make the
integral converge by multiplying F by another function, called a convergence factor,
creating a sequence of functions (Fn):

Fn(𝜈) = K(𝜈∕n) F(𝜈).

The convergence factor is designed to fall off sufficiently rapidly with 𝜈 that it tames
the bad asymptotic behavior of F, but approaches one as n → ∞ so that (Fn) → F.
Each of the Fn is integrable and is inverse transformed to a function fn. As n increases
and (Fn) → F, the sequence of inverses (fn) should also approach a limit, which we
will define to be the inverse Fourier transform of F. This procedure is sometimes
called transform in the limit.

Two common convergence factors are the Gaussian,7

K(𝜈∕n) = e−𝜋(𝜈∕n)2
,

and the rectangle,

K(𝜈∕n) = rect(x∕2n).

Each of these functions is in L1 and approaches one as n → ∞. With the Gaussian
and the rectangular convergence factors, the following results can be established.

Theorem 5.14 (Transform in the limit in L1). Let f ∈ L1 and F be its Fourier
transform.

(a) The integral

fn(x) = ∫
∞

−∞
F(𝜈) e−𝜋(𝜈∕n)2

ei2𝜋𝜈x d𝜈

7General characteristics of convergence factors are discussed in Folland (1992, pp. 208–211). Other
functions, for example, the triangle and the two-sided exponential, can also be employed. The Gaussian
is particularly nice, though, because it is rapidly decreasing, infinitely differentiable, and its own Fourier
transform.
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converges, as n → ∞, to f in the L1 norm:

lim
n→∞

‖‖fn − f‖‖1 = 0.

(b) If f is also piecewise continuous, then the integral

fn(x) = ∫
∞

−∞
F(𝜈) e−𝜋(𝜈∕n)2

ei2𝜋𝜈x d𝜈

converges to 1
2
[f (x−) + f (x+)], as n → ∞, for every x. If f is continuous, then

the convergence to f is uniform.

(c) If f is also piecewise smooth, then the integral

fn(x) = ∫
n

−n
F(𝜈) ei2𝜋𝜈x d𝜈

converges to 1
2
[f (x−) + f (x+)], as n → ∞, for every x. If f is continuous, then

the convergence to f is uniform.

Here is the gist of the argument.8 Including the convergence factor in the inverse
Fourier transform calculation, we have

fn(x) = ∫
∞

−∞
F(𝜈) K(𝜈∕n) ei2𝜋𝜈x d𝜈 = ∫

∞

−∞

(
∫

∞

−∞
f (𝜉) e−j2𝜋𝜈𝜉 d𝜉

)
K(𝜈∕n) ej2𝜋𝜈x d𝜈.

Using Fubini’s theorem,

fn(x) = ∫
∞

−∞
f (𝜉)

(
∫

∞

−∞
K(𝜈∕n)ej2𝜋𝜈(x−𝜉)d𝜈

)
d𝜉

then the shift and dilation theorems,

= ∫
∞

−∞
f (𝜉) nk (n(x − 𝜉)) d𝜉 = f (x) ∗ nk(nx),

where k is the inverse Fourier transform of K. First consider the Gaussian convergence
factor, so

fn(x) = ∫
∞

−∞
f (x) ne−𝜋n2(x−𝜉)2

d𝜉.

The Gaussian ne−𝜋n2(x−𝜉)2
maintains unit area (apply the area theorem to the conver-

gence factor) while becoming higher (∝ n) and narrower (∝ n−1) as n increases. The
convolution is a local smoothing, or averaging, of f , which gives greater weight to
values of f around the peak at 𝜉 = x. The averaging takes in progressively narrower
portions of f as n increases, so that the fn “track” f more and more closely and the
norm ‖‖f − fn‖‖1 converges to zero.

If f is additionally (at least) piecewise continuous, then the fn converge point-
wise to f , except at jump discontinuities in f . There, the kernel nk(nx) straddles the

8Detailed proofs for Theorem 5.14 are found in Folland (1992, pp. 217–221), Dym and McKean (1972,
pp. 101–104), and Gasquet and Witomski (1999, pp. 163–168).
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FIGURE 5.18 Fourier inversion with a Gaussian convergence factor, for the one-sided
exponential, e−tU(t) ⟷ 1

1+i2𝜋𝜈
. Top row: the Fourier transform multiplied by the convergence

factor, F(𝜈)e−𝜋(𝜈∕n)2), n = 1, 2, 5 (left to right). Middle row: the one-sided exponential and
the Gaussian convolution kernel, divided by n for display purposes, e−𝜋(nx)2

. Bottom row: the
inverse transform sequence fn(x). As n increases, fn approaches the one-sided exponential, with
fn(0) → 1∕2, the average of the jump discontinuity.

jump; half its area is weighted by f (x−) and half by f (x+). As a result, the fn converge
at the jump to the average of f (x−) and f (x+) (we defined the rectangle function and
the one-sided exponential to be 1∕2 at the jumps, to be consistent with this inversion
result). Even better, if f is continuous, then the fn converge pointwise and uniformly
to f . An example of the convergence of an inverse transform with the Gaussian factor
is shown in Figure 5.18.

The simple truncation in part (c) is analogous to the partial sum of a Fourier
series (cf. Theorem 4.2) and gives

fn(x) = f (x) ∗ 2n sinc(2nx).

This convolution kernel, 2n sinc(2nx), also becomes higher and narrower while main-
taining unit area, as n increases. Because the rectangle is discontinuous, its transform
does not decay as rapidly as the Gaussian for large x. The conditions for convergence
of the fn are more stringent, and the oscillatory nature of the sinc will lead to overshoot
around jump discontinuities in f . The transform in the limit procedure is illustrated
in Figure 5.19.
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FIGURE 5.19 Fourier inversion with a rectangular convergence factor, for the one-sided
exponential, e−tU(t) ⟷ 1

1+i2𝜋𝜈
. Top row: the Fourier transform multiplied by the convergence

factor, F(𝜈) rect(𝜈∕2n), n = 1, 2, 5 (left to right). Middle row: the one-sided exponential and
the sinc convolution kernel, divided by n for display purposes, 2 sinc(2nx). Bottom row: the
inverse transform sequence fn(x). As n increases, fn approaches the one-sided exponential, with
fn(0) → 1∕2, the average of the jump discontinuity. Because of the oscillations of the sinc
kernel, there is overshoot around the jump which does not appear to decrease in amplitude
(compare nonuniform convergence of the Fourier series of a square wave, Figure 4.7).

5.6.2 Fourier Transform in L2

We would also like for the Fourier transform to be well defined for functions that are
square integrable, since realistic physical functions have finite energy. When we were
working with the Fourier series, and our functions were confined to bounded intervals
like [−𝜋,𝜋] or [0, L], the function spaces were nested, L∞[0, L] ⊂ L2[0, L] ⊂ L1[0, L].
A square-integrable function was also absolutely integrable and guaranteed to have
Fourier coefficients.

When we go to unbounded intervals, we have seen that a function that
is bounded and absolutely integrable is also square integrable (L1(ℝ) ∩ L∞(ℝ) ⊂
L2(ℝ)). It can also be shown that a function that is continuous and absolutely inte-
grable must also be bounded (L1(ℝ) ∩ C(ℝ) ⊂ L∞(ℝ)), so a function that is abso-
lutely integrable and continuous is also square integrable (L1(ℝ) ∩ C(ℝ) ⊂ L2(ℝ)).
In general, however, the spaces do not simply nest. For example,

� e−|x| belongs to L1(ℝ), L2(ℝ), and L∞(ℝ).
� |x|−1∕2(1 + x2)−1 belongs to L1(ℝ) but not to L2(ℝ) or L∞(ℝ).
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� sinc x and 1
1+i2𝜋𝜈

belong to L2(ℝ) and L∞(ℝ) but not to L1(ℝ).
� The step function U(x) and constant function 1 belong to L∞(ℝ) but not to

L1(ℝ) or L2(ℝ).

Square-integrable functions generally decay more slowly than absolutely integrable
functions as |x| → ∞ (compare sinc, which is in L2, with sinc2, which is in L1). So,
if f is square integrable but not also absolutely integrable, its Fourier transform is not
defined as an ordinary integral.

The details of extending the Fourier transform from L1 to L2 can be found
in several places.9 The principal difference between the theorem below and the one
shown previously for L1 (Theorem 5.14) is that in L2, both the forward and inverse
transforms are defined as limits of sequences.

Theorem 5.15 (Fourier transform in L2). Let f ∈ L2(ℝ).

(a) The sequence of functions

Fn(𝜈) = ∫
∞

−∞
f (x) e−𝜋(x∕n)2

e−i2𝜋𝜈x dx

converges, as n → ∞, in the L2 norm and pointwise almost everywhere, to
a function F ∈ L2(ℝ) which we define to be the Fourier transform of f . The
inverse transform is similarly defined by a sequence of functions:

fn(x) = ∫
∞

−∞
F(𝜈) e−𝜋(𝜈∕n)2

ei2𝜋𝜈x d𝜈.

(b) If f is also piecewise continuous, then the inverse Fourier transform converges
pointwise to 1

2
[f (x−) + f (x+)], as n → ∞, for every x ∈ ℝ. If f is continuous,

then the convergence to f is uniform.

(c) The sequence of functions

Fn(𝜈) = ∫
n

−n
f (x) e−i2𝜋𝜈x dx

converges, as n → ∞, in the L2 norm (and pointwise almost everywhere), to
a function F ∈ L2(ℝ) which we define to be the Fourier transform of f . The
inverse transform is similarly defined by the sequence

fn(x) = ∫
n

−n
F(𝜈) ei2𝜋𝜈x d𝜈.

The other Fourier transform theorems developed earlier continue to hold for
the L2 definition. For example, for the shift theorem,

F {f (x − a)} = lim
n→∞

F
{

fn(x − a)
}
= lim

n→∞
e−j2𝜋a𝜈Fn(𝜈) = e−j2𝜋a𝜈F(𝜈).

9Proofs of parts (a) and (b) of Theorem 5.15 may be found in Stade (2005, pp. 321–326), Gasquet
and Witomski (1999, pp. 193–196), and Dym and McKean (1972, pp. 91–101). The almost-everywhere
convergence in part (c) is analogous to Carleson’s theorem for the Fourier series; its lengthy and highly
technical proof may be found in Grafakos (2004, pp. 796–827).
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TABLE 5.1 Convolutions and products of functions. The norm of the convolution is bounded,‖f ∗ h‖ ≤ ‖f‖ ‖h‖, where the norms are calculated in the appropriate spaces, e.g., for f ∈ L1 and
h ∈ L2, ‖f ∗ h‖2 ≤ ‖f‖1‖h‖2. Continuity of f and h improves the convolution (see text).

If f is and h is then f ∗ h is and fh isa

L1 L1 L1 L1

L1 L2 L2 L1

L1 L∞ L∞ ∩ C L1

L2 L2 L∞ ∩ C L1

aThe product relationships hold only when the functions are continuous and/or bounded. When h is bounded, the
product fh inherits the norm properties of f , e.g., for f ∈ L1, ‖fh‖1 ≤ ‖f‖1‖h‖∞ .

And, of course, we have Parseval’s formula, which shows that the Fourier transform
is a norm-preserving map from L2 to L2.10

Both theorems (5.14 and 5.15) provide consistent, convergent definitions of the
Fourier transform but not foolproof recipes for evaluating them. In practice, it may
or may not be possible to evaluate a particular transform using a convergence factor.
However, if the method fails, it will be for lack of an antiderivative, not because the
integrand is fundamentally nonintegrable. Some other limiting procedure, like those
introduced later, in Chapter 8, may do the trick.

⋆ 5.6.3 More about convolution

Having a Fourier transform for both L1 and L2, we can expand our initial statements
of the convolution and product theorems (Equations 5.40 and 5.41).11

Theorem 5.16 (Convolution theorem for L1 and L2). Let f ⟷ F and h ⟷ H.

(a) If f, h ∈ L1, then f ∗ h ⟼ FH. If, additionally, F,H ∈ L1, then f ∗ h ⟷ FH.

(b) If f, h ∈ L2, then f ∗ h ⟷ FH.

(c) If f ∈ L1, h ∈ L2, then f ∗ h ⟷ FH in L2.

A more complete set of properties for convolutions and products of functions
in L1, L2, and L∞ are listed, without proof, in Table 5.1.12 Proofs of the bounds are
left to the problems. The bounds on convolution and products hold for functions on
bounded and unbounded intervals, and also for sequences (replace the integrals by
sums). The results of the previous chapter (Tables 4.2 and 4.3) are special cases.

10It is this version of Parseval’s formula that is often called Plancherel’s theorem. It was Plancherel who
showed how to extend the Fourier transform from L1 to L2.
11Gasquet and Witomski (1999, pp. 203–204).
12The convolution properties are particular cases of a general result for functions in Lp spaces. See Folland
(1999, pp. 240–241). For discussion and proofs of the convolution and product properties, see Gasquet
and Witomski (1999, pp. 179–184, 201–206).



5.6 MORE ABOUT THE FOURIER TRANSFORM 317

In practice we typically have functions that are at least piecewise continuous
in addition to whatever integrability properties they possess, and this improves the
properties of the convolution. For example, a function that is absolutely integrable and
continuous is also bounded and square integrable. The convolution of this function
with another absolutely integrable function is also bounded and continuous as well
as absolutely integrable. Here are some examples.

Example 5.21. The functions f (x) = 1
x2+1

and g(x) = x
x2+1

belong to L2 and L1,
respectively. They also belong to L∞ ∩ C. Using Fourier theorems and transform
pairs we have already calculated, their Fourier transforms are

F(𝜈) = 𝜋 e−|2𝜋𝜈|,
G(𝜈) = −i𝜋 e−|2𝜋𝜈| sgn 𝜈.

Then, using the convolution theorem,

f ∗ f (x) = F−1
{

F2
}
= 2𝜋

x2 + 4
,

f ∗ g(x) = F−1 {FG} = 𝜋x
x2 + 4

,

g ∗ g(x) = F−1
{

G2
}
= −2𝜋

x2 + 4
.

The details are left to the problems. Observe that f ∗ f is bounded and continuous and
rolls off as x−2, thus it is absolutely integrable, while f ∗ g is bounded and continuous
and rolls off as x−1, so it is square integrable, in agreement with Table 5.1. g ∗ g is
bounded and continuous, and it also happens to be absolutely integrable, although
that property is not guaranteed for all convolutions of L2 functions.

Example 5.22. Again consider f and g as defined in the previous example. The
step function U(x) is bounded and (piecewise) continuous, but not integrable. The
convolutions f ∗ U and g ∗ U are calculated:

f ∗ U = ∫
x

−∞

d𝜉

𝜉2 + 1
= arctan(x)

||||x−∞ = 𝜋

2
+ arctan(x)

g ∗ U = ∫
x

−∞

𝜉 d𝜉

𝜉2 + 1
= 1

2
log(x2 + 1)

||||x−∞
In the first case, f ∗ U is bounded and continuous but not integrable, in agreement
with Table 5.1. In the second case, the integral for g ∗ U does not converge; in general,
we may not expect to be able to convolve a square-integrable function with a function
that is merely bounded. The one-sided exponential, e−xU(x), is square integrable, but
because of its exponential decay it exceeds the minimum requirements for square
integrability. Its convolution with the step function is the saturating exponential
(1 − e−x)U(x).
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Example 5.23. The functions f and g in the previous two examples are bounded
and continuous. Their product fg(x) = x

(x2+1)2 is bounded and continuous. It rolls off

O(x3) for large x, so it is absolutely integrable, in agreement with Table 5.1. Using a
table of integrals, the L1 norm is

‖fg‖1 = ∫
∞

−∞

||||||
x(

x2 + 1
)2

|||||| dx = 2 ∫
∞

0

x dx
(x2 + 1)2

= 1 ≤ ‖f‖1 ‖g‖∞ = 𝜋 ⋅
1
2
= 𝜋

2
.

Example 5.24. The function f (x) = 1√
x (x+1)

U(x) is unbounded and discontinuous.

Yet, it rolls off O(x3∕2) for large x and grows slower than 1∕x as x approaches the
origin, so it is absolutely integrable, with ‖f‖1 = 𝜋. Its convolution with itself is

f ∗ f (x) = ∫
x

0

1√
𝜉 (𝜉 + 1)

1√
x − 𝜉 (x − 𝜉 + 1)

d𝜉 = 2𝜋√
x + 1 (x + 2)

U(x)

using a table of integrals. It is discontinuous at the origin but bounded and absolutely
integrable, with ‖f ∗ f‖ = 𝜋

2. The product f 2(x) = 1
x (x+1)2 U(x) is unbounded and

not integrable. Although it rolls off O(x3) for large x, it grows O(x−1) as x approaches
the origin.

5.7 TIME–BANDWIDTH RELATIONSHIPS

The dilation theorem tells us that as a function is squeezed, its Fourier transform is
stretched, and vice versa. We can quantify this relationship by defining measures of
width for functions and observing their behavior in the time and frequency domains.

Equivalent Width
The equivalent width of a function f is simply defined to be the width of a rectangle
having the same height and the same area as f :

Wf =
area

height
=

𝜇
(0)
f

f (0)
. (5.49)

The idea is illustrated in Figure 5.20. The definition requires that the maximum value
of f be at the origin. If this is not the case, then the function may be shifted so that its
maximum is at the origin. The equivalent width is not meaningful if the function has
multiple peaks.

The equivalent width of the Fourier transform, F, may be calculated in similar
fashion:

WF =
𝜇

(0)
F

F(0)
.
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–1 0 1

0

1

x

FIGURE 5.20 The equivalent width of a function f is the width of a rectangle having the
same height and same area as f .

By the area theorem, 𝜇(0)
F = f (0) and 𝜇

(0)
f = F(0), so we have

Wf WF = 1, (5.50)

a result which is independent of the particular form of f .

Example 5.25 (Noise equivalent bandwidth). The equivalent width is frequently
used in electronics to simplify signal-to-noise calculations. Assuming that the noise
at the input to a system is “white,” meaning that its power per unit bandwidth N0 is
constant across all frequencies of interest, the noise power at the output of a filter
having transfer function H(𝜈) is

PN = ∫
∞

−∞
N0 |H(𝜈)|2 d𝜈,

that is, it is N0 times the area under |H(𝜈)|2. Writing this area in terms of equivalent
width,

PN = N0 |H(0)|2 W|H|2 ,

that is, N0 times the square of the DC gain times the equivalent width. A filter
(or amplifier) may have a complicated frequency response, but the output power
with a white noise input is completely characterized by the DC gain and equivalent
width. These are frequently included on data sheets for electronic subsystems. The
equivalent width in this case is usually called the noise equivalent bandwidth.

Mean-Square Width and the Uncertainty Principle
A second measure of width is based on variance rather than area. The mean-square
width of a function f is defined as the variance of its squared magnitude, 𝜎2|f |2 .

The mean-square width of the Fourier transform is similarly defined as 𝜎
2|F|2 . This

measure gives a meaningful result for functions that do not have sensible equivalent
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widths, including oscillatory wave packets. The mean-square widths of f and F have
an inverse relationship, as expected, but it is more complex than the case of the
equivalent width. The result is stated as a theorem. Its proof is a tour de force of
Fourier theorems and norm calculations.13

Theorem 5.17 (Uncertainty Principle). Let f , F ∈ L2, f ⟷ F, then the mean-
square widths 𝜎2|f |2 and 𝜎

2|F|2 obey the inequality√
𝜎

2|f |2 𝜎2|F|2 ≥ 1
4𝜋

. (5.51)

Proof: Without loss of generality, take f and F to be centered on their centroids, so
that their mean-square widths depend only on the second and zeroth moments. Then,

𝜎
2|f |2 𝜎2|F|2 =

∫
∞

−∞
x2|f (x)|2dx

∫
∞

−∞
|f (x)|2dx

∫
∞

−∞
𝜈

2|F(𝜈)|2d𝜈

∫
∞

−∞
|F(𝜈)|2d𝜈

=
‖xf‖2 ‖𝜈F‖2

‖f‖2 ‖F‖2
.

Now, using the derivative theorem together with Parseval’s formula,‖𝜈F‖2 = ‖f ′‖2∕4𝜋2,

we have

𝜎
2|f |2 𝜎2|F|2 =

‖xf‖2 ‖‖f ′‖‖2

4𝜋2 ‖f‖4
.

Next, using the Cauchy–Schwarz inequality (Equation 2.50),|⟨f , g⟩ + ⟨g, f ⟩|2 ≤ 4 ‖f‖2 ‖g‖2 ,

we can replace the norms in the numerator, obtaining

𝜎
2|f |2 𝜎2|F|2 ≥ ||⟨xf , f ′⟩ + ⟨f ′, xf ⟩||2

16𝜋2 ‖f‖4
.

Writing out the inner products in the numerator,

⟨xf , f ′⟩ + ⟨f ′, xf ⟩ = ∫
∞

−∞
x
(

f
d
dx

f ∗ + f ∗
d
dx

f
)

dx

= ∫
∞

−∞
x

d
dx

(
ff ∗

)
dx = ∫

∞

−∞
x

d
dx

|f |2 dx,

13The proof of the uncertainty principle follows Bracewell (2000, pp. 177–178).
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and integrating by parts,

∫
∞

−∞
x

d
dx

|f |2 dx = x|f |2|||∞−∞ − ∫
∞

−∞
|f |2dx = − ‖f‖2

.

The first term goes to zero because |f |2 → 0 faster than 1∕x as |x| → ∞. Finally,
collecting everything together, we have

𝜎
2|f |2 𝜎2|F|2 ≥ ‖f‖4

16𝜋2 ‖f‖4
= 1

16𝜋2
.

Taking square roots of both sides completes the derivation.

Example 5.26 (Gaussian has minimum uncertainty). The Gaussian function is
the only function known to achieve equality in the uncertainty relationship. Consider,
for example, the transform pair

f (x) = exp(−𝜋ax2) ⟷ F(𝜈) = 1√
a

exp(−𝜋𝜈2∕a)

and calculate the mean-square widths:

𝜎
2|f |2 =

∫
∞

−∞
x2 exp(−𝜋ax2) dx

∫
∞

−∞
exp(−𝜋ax2) dx

=

1

4
√

2𝜋a3∕2

1√
2a

= 1
4𝜋a

,

𝜎
2|F|2 =

∫
∞

−∞
𝜈

2 exp(−𝜋𝜈2∕a) d𝜈

∫
∞

−∞
exp(−𝜋𝜈2∕a) d𝜈

=

√
a

4
√

2𝜋
1√
2a

= a
4𝜋

.

Their product is

𝜎
2|f |2𝜎2|F|2 = 1

4𝜋a
a

4𝜋
= 1

16𝜋2
.

Example 5.27. At the other end of the scale, the rect–sinc transform pair exhibits
maximum uncertainty. Consider, for example,

f (x) = rect
( x

a

)
⟷ F(𝜈) = a sinc (a𝜈).

Their mean-square widths are

𝜎
2|f |2 = a2

12
, 𝜎

2|F|2 = ∞.

The calculations are left to the problems.
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5.8 COMPUTING THE FOURIER TRANSFORM

Numerical computation of the Fourier transform is appropriate when the integral
cannot be done analytically or looked up in a table of transform pairs. General
methods for computational integration are described in numerical analysis texts.
Many algorithms are available in mathematical software packages (e.g., the quad8
function in Matlab). While the details vary, all numerical integration methods are
based on approximating an integral ∫ b

a f (x)dx by a finite sum. Figure 5.21 shows an
integral approximated by the sum of N rectangular areas.

The height of the nth rectangle is f (xn), and its width is xn+1 − xn. The approx-
imate value of the integral is

∫
b

a
f (x)dx ≈

N−1∑
n=0

f (xn)(xn+1 − xn).

The approximation improves as the rectangles are made narrower and the number of
rectangles is increased. More sophisticated integration methods using, for example,
trapezoids rather than rectangles, and adaptive adjustment of the sample grid, achieve
higher accuracy at the expense of more computation.

x0 = a xN = bx1 x2 xN – 1x3 .  .  .

.  .  .

x4

f(x)

x

FIGURE 5.21 The integral ∫ b

a f (x)dx is approximated by a sum of N rectangular areas. The
height of the nth rectangle is f (xn), and the width is xn+1 − xn.
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A rectangular approximation to the Fourier transform is

F(𝜈) = ∫
∞

−∞
f (x)e−i2𝜋𝜈xdx

≈ ∫
X∕2

−X∕2
f (x)e−i2𝜋𝜈xdx ≈

N−1∑
n=0

f (xn)e−i2𝜋𝜈xn Δx,

where the interval (−X
2

, X
2

) is chosen such that f is acceptably close to zero for|x| > X
2

, and Δx = X
N

is the sampling interval. Each value of 𝜈 requires O(N) function
evaluations and multiply-adds; to compute F at M values of 𝜈 with sampling interval
Δ𝜈 requires O(MN) operations. Casting the sum into the form of a discrete Fourier
transform allows it to be computed in O(N log N) operations instead, using the FFT
algorithm. The focus of this section is how to do this.

Forward Transform
We begin with a rectangular approximation to the forward Fourier transform, using
a uniform sampling grid, x = nΔx:

F(𝜈) = ∫
∞

−∞
f (x) e−i2𝜋𝜈x dx ≈

∞∑
n=−∞

f (nΔx) e−i2𝜋𝜈nΔxΔx.

The sampling interval Δx is chosen sufficiently small to avoid aliasing, that is, so
that F is effectively bandlimited to |𝜈| < 1

2Δx
. The complex exponential e−i2𝜋𝜈nΔx

is periodic in 𝜈 with period W = 1∕Δx. Consequently, the approximating sum is
also periodic with period W and it is sufficient to evaluate it over a single period,
𝜈 ∈ [−W

2
, W

2
). (The computed Fourier spectrum will give no new information about

f for frequencies higher than W∕2.)
A uniform sampling grid with M sample points is imposed on the frequency

range:

𝜈 = mΔ𝜈, m = −M
2

,… , 0,… ,
M
2

− 1,

where Δ𝜈 =

1
2Δx

−
(
− 1

2Δx

)
M

= 1
MΔx

= W
M

.

The resolution in the frequency domain is Δ𝜈. It should be made small enough
(by choosing M sufficiently large) to reveal the fine features of F. Making these
substitutions, the appoximate sum is

F(mΔ𝜈) ≈
∞∑

n=−∞
f (nΔx)e−i2𝜋mnΔ𝜈ΔxΔx

=
∞∑

n=−∞
f (nΔx)e−i2𝜋mn∕MΔx, m = −M

2
,… ,

M
2

− 1.
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Next, the sum is truncated to a finite number of terms. We shall consider two
cases:

� f is one sided, for example, f (x) = e−xU(x).
� f is two sided, for example, f (x) = sinc x.

Case 1: f is one sided
Choose a maximum X sufficiently large that f (x) ≈ 0 for x > X. Having already
chosen Δx to avoid aliasing, this fixes the number of samples to be N = X∕Δx. The
truncated sum is denoted F̂:

F(mΔ𝜈) ≈ F̂(mΔ𝜈) =
N−1∑
n=0

f (nΔx)e−i2𝜋mn∕MΔx, m = −M
2

,… ,
M
2

− 1.

The key step in making the sum into a DFT is setting M = N, so the vectors (f (nΔx))
and (F̂(mΔ𝜈)) have the same number of samples:

F̂(mΔ𝜈) =
N−1∑
n=0

f (nΔx)
⏟⏟⏟

f [n]

e−i2𝜋mn∕N

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

DFT, F[m]

Δx, m = −N
2

,… ,
N
2
− 1.

For the positive frequency components, F̂(0) through F̂(( N
2
− 1)Δ𝜈), F̂(mΔ𝜈) ≈

F[m]Δx. The negative frequency components, F̂(−NΔ𝜈
2

) through F̂(−Δ𝜈), are
obtained from the implicit periodicity of the DFT, F[m] = F[m + N].

F̂(mΔ𝜈) =
⎧⎪⎨⎪⎩

F[m + N]Δx, m = −N
2

,… ,−1

F[m]Δx, m = 0,… ,
N
2
− 1

, (5.52a)

where F[m] =
N−1∑
n=0

f (nΔx)e−i2𝜋mn∕N = DFT
{

(f (nΔx))
}
. (5.52b)

That is, having computed the DFT, the positive frequency components of F̂ are found
in the first half of the DFT vector and the negative frequency components are found
in the second half. A cyclic shift of the DFT by N∕2 samples (Figure 3.9) will
place the values in the proper order. In Matlab, the cyclic shift is performed by
the fftshift function (but see the problems for an alternate approach). The entire
Fourier transform calculation is implemented by the code

Fv = fftshift( fft(fn) ) * dx,

where fn is the vector of samples (f (nΔx))N−1
n=0 , dx is the sampling interval Δx, and

Fv is the approximate vector (F̂(mΔ𝜈))N∕2−1
m=−N∕2

.



5.8 COMPUTING THE FOURIER TRANSFORM 325

Case 2: f is two sided
Choose a maximum X sufficiently large that f (x) ≈ 0 for |x| > X

2
. The limits of the

approximate sum range from −N
2

to N
2
− 1 rather than 0 to N − 1:

F(mΔ𝜈) ≈ F̂(mΔ𝜈)

N
2
−1∑

n=− N
2

f (nΔx)e−i2𝜋mn∕MΔx, m = −M
2

,… ,
M
2

− 1.

Again we take M = N to make the sum look like a DFT. The sum is split into two
smaller sums, over the negative and nonnegative indices:

F̂(mΔ𝜈) =

N
2
−1∑

n=−N
2

f (nΔx)e−i2𝜋mn∕N =
−1∑

n=−N
2

f (nΔx)e−i2𝜋mn∕N +

N
2
−1∑

n=0

f (nΔx)e−i2𝜋mn∕N
.

In the first sum, make the change of index n′ = n + N:

−1∑
n=− N

2

f (nΔx)e−i2𝜋mn∕N =
N−1∑

n′=N
2

f ((n′ − N)Δx)e−i2𝜋m(n′−N)∕N

=
N−1∑

n′=N
2

f ((n′ − N)Δx)e−i2𝜋mn′∕N
.

Then, we have

F̂(mΔ𝜈) =

N
2
−1∑

n=0

f (nΔx)e−i2𝜋mn∕N +
N−1∑

n′=N
2

f ((n′ − N)Δx)e−i2𝜋mn′∕N
.

This is the DFT of the vector(
f (0), f (Δx),… , f

((N
2
− 1

)
Δx

)
, f

(
−N

2
Δx

)
,… , f (−Δx)

)
,

which is a cyclic shift of the vector(
f
(
−N

2
Δx

)
,… , f (−Δx), f (0), f (Δx),… , f

((N
2
− 1

)
Δx

))
.

The cyclic shift is necessary to place f (0) in the first position of the DFT input vector.
In Matlab, the shift is performed by the ifftshift function (but see the problems
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for an alternate approach). Once the DFT is calculated, the negative frequency indices
are handled in the same way as for the one-sided case. The result is

F̂(mΔ𝜈) =
⎧⎪⎨⎪⎩

F[m + N]Δx, −N
2

≤ m ≤ −1

F[m]Δx, 0 ≤ m ≤ N
2
− 1

, (5.53a)

where F[m] =
N−1∑
n=0

fc[n]e−i2𝜋mn∕N = DFT
{

fc
}

(5.53b)

and fc[n] =
⎧⎪⎨⎪⎩

f (nΔx), n = 0,… ,
N
2
− 1

f ((n − N)Δx), n = N
2

,… , N − 1
. (5.53c)

The Matlab code for this calculation is

Fv = fftshift( fft( ifftshift(fn) ) ) * dx,

where fn is the vector of samples (f (nΔx))N∕2−1
n=−N∕2

, dx is the sampling interval Δx,

and Fv is the approximate vector (F̂(mΔ𝜈))N∕2−1
m=−N∕2

. The procedure is illustrated in
Figure 5.22 for the known transform pair rect x ⟷ sinc 𝜈. In this particular example,
the approximation for |𝜈| > 3 is poor. The cause of this error is aliasing, brought on
by an insufficiently small sampling interval, Δx.

Good results are obtained by proper choices of the sampling parameters Δx,
Δ𝜈, X, W, and N. They are not chosen independently, but are coupled:

X = NΔx = 1
Δ𝜈

, (5.54a)

W = NΔ𝜈 = 1
Δx

, (5.54b)

or, N = XW = 1
ΔxΔ𝜈

. (5.54c)

The quantity XW is called the time–bandwidth product when f is a function of
time, or space–bandwidth product when f is a function of a spatial variable. These
relationships are illustrated by Figure 5.23.

In practice, N should be a power of two to take maximum advantage of the FFT.
The width X is chosen to avoid truncation errors. The correct sampling intervalΔx can
be found iteratively. If the approximate transform F̂ is close to zero for high frequen-
cies, then Δx is probably small enough. If there is doubt about this, divide Δx in half
and repeat the calculation. Any appreciable differences in F̂ are due to aliasing error
and indicate that the smaller value ofΔx is better. This process of halvingΔx should be
repeated until F̂ is no longer changing. The frequency resolution may then be checked.
If the features of the spectrum (e.g., peaks) appear to be adequately resolved, then Δ𝜈
is probably small enough. If there is doubt, decrease Δ𝜈 by doubling N and repeat the
calculation. Appreciable differences in F̂ are due to truncation error and indicate that
the smaller value of Δ𝜈 (correspondingly, a larger value of X) is better. The process
of doubling N should be repeated until the appearance of F̂ is satisfactory.
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FIGURE 5.22 Using the DFT to compute the Fourier transform. Following the arrows, the
process is to (1) calculate samples f (nΔx) of the function f ; (2) perform a cyclic shift of the
samples so that the first element of the shifted vector fc corresponds to x = 0 (fc[0] = f (0)); (3)
compute the FFT of fc, and multiply by Δx; (4) cyclically shift the DFT vector FcΔx so that
the negative frequency samples appear to the left of 𝜈 = 0. The poor approximation for |𝜈| > 3
is caused by aliasing error. The remedy is to decrease the sampling interval Δx.

Inverse Transform
The derivation of a DFT approximation for the inverse Fourier transform follows the
same steps, leading up to

f (nΔx) ≈

N
2
−1∑

m=− N
2

F(mΔ𝜈)e+i2𝜋mn∕NΔ𝜈.

We assume that the Fourier transform F is two sided, and cyclically shift the vector
(F(mΔ𝜈))N∕2−1

m=−N∕2
into the vector (Fc[m])N−1

m=0:

Fc[m] =
⎧⎪⎨⎪⎩

F((m + N)Δ𝜈), m = −N
2

,… ,−1

F(mΔ𝜈), m = 0,… ,
N
2
− 1

.

In many cases F is Hermitian, implying that f is real. To guarantee, therefore,
that the inverse DFT fc is real, Fc must be Hermitian. It can be shown that this requires
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FIGURE 5.23 Time–bandwidth relationships in computing the Fourier transform. Dividing
Δx by 2 to reduce aliasing error doubles the width W of the frequency interval over which
samples of F are computed. Computing values of F over a wider interval requires finer
sampling. Improving frequency resolution (decreasing Δ𝜈) requires sampling f over a wider
interval.

Fc[N∕2] to be real. In general, however, F(−NΔ𝜈∕2) will be complex, so when F is
Hermitian the value of Fc[N∕2] should be set to the real part of F(−NΔ𝜈∕2). This
operation may also be interpreted as averaging F(−NΔ𝜈∕2) and F(NΔ𝜈∕2), which
causes the imaginary parts to cancel.

With the conversion of F into Fc, the sum has the form of a DFT:

N
2
−1∑

m=− N
2

F(mΔ𝜈)e+i2𝜋mn∕NΔ𝜈 =
N−1∑
m=0

Fc[m]e+i2𝜋mn∕NΔ𝜈

= 1
N

N−1∑
m=0

Fc[m]e+i2𝜋mn∕N NΔ𝜈
⏟⏟⏟

1∕Δx

= 1
Δx

fc[n].
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If f is known to be one sided, then f (nΔx) ≈ fc[n]∕Δx. Otherwise, if f is two sided, a
final cyclic shift is performed. The final results are

f (nΔx) ≈ f̂ (nΔx),

where, if f is one sided,

f̂ (nΔx) = 1
Δx

fc[n], n = 0, 1,… , N − 1, (5.55a)

otherwise, if f is two-sided,

f̂ (nΔx) =
⎧⎪⎨⎪⎩

1
Δx

fc[n − N], n = −N
2

,… ,−1

1
Δx

fc[n], n = 0,… ,
N
2
− 1

, (5.55b)

and where

fc[n] = 1
N

N−1∑
m=0

Fc[m]e+i2𝜋mn∕N , (5.55c)

Fc[m] =
⎧⎪⎨⎪⎩

F(mΔ𝜈), m = 0,… ,
N
2
− 1

F((m − N)Δ𝜈), m = N
2

,… , N − 1
, (5.55d)

Im Fc

[
N
2

]
= 0 if F is Hermitian.

In terms of Matlab functions,

fx = ifft( ifftshift(Fm) ) / dx, f one sided

fx = fftshift( ifft( ifftshift(Fm) ) ) / dx, f two sided

where Fm contains the samples (F(mΔ𝜈))N∕2−1
m=−N∕2

, dx is the sampling interval Δx, and

fx is the vector of approximate inverse transform values (f̂ (nΔx)).
The process is illustrated in Figure 5.24 for another known transform pair,

interpreted here as an impulse response and transfer function:

h(t) = 2
√

2𝜋Be−
√

2𝜋Bt sin
√

2𝜋Bt U(t),

H(𝜈) = 1

1 − (𝜈∕B)2 + i
√

2(𝜈∕B)
.

(5.56)

The bandwidth parameter B = 10. The frequency sampling intervalΔ𝜈 = 2 makes the
temporal width T = 1∕Δ𝜈 = 0.5 large enough to capture the entire impulse response
without truncation. The temporal sampling interval is Δt = 1

256
≈ 0.004, chosen so

N is a power of two (128) and W is sufficiently large (256) that H has essentially
reached zero by 𝜈 = ±W

2
. A slight error due to truncating H is still visible just before

t = 0 in the approximated impulse response.
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FIGURE 5.24 Using the DFT to compute the inverse Fourier transform of the transfer
function H(𝜈) in Equation 5.56. The parameter B = 10. The complex values of the transfer
function are shown in both polar (magnitude–phase) and cartesian (real–imaginary) forms.
Sampling intervals are Δx ≈ 0.004 and Δ𝜈 = 2, and N = 128 points. The Hermitian transfer
function has a real impulse response.

Convolution
Using the convolution theorem, f ∗ g ⟷ FG, the convolution of two functions can
be calculated in the frequency domain. Computationally, the procedure is to calculate
the transforms F and G, multiply them together, and then calculate the inverse
transform. It must not be forgotten that the DFT is being used to approximate the
Fourier transform, and that the convolution theorem for the DFT is f ⊛ g ⟷ FG—
the inverse DFT of FG is the cyclic convolution of the vectors f and g. To demonstrate
the crucial difference between cyclic and noncyclic (linear) convolution, consider
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FIGURE 5.25 The linear convolution, f ∗ h (bottom), of two sequences f and h (top).

the two one-sided sequences of length N = 32 shown in Figure 5.25. Their linear
convolution is computed by the relationship

f ∗ h[n] =
n∑

k=0

f [k]h[n − k], n = 0, 1,… , 2N − 1.

The key feature to note is that the length of f ∗ h is 2N − 1 = 63 points (compare the
result for functions on ℝ that the widths of the supports sum under convolution).

The cyclic convolution f ⊛ h of the same two sequences is shown in Figure 5.26:

f ⊛ h[n] =
N−1∑
k=0

f [k]h[n − k], n = 0, 1,… , N − 1,

where the shift n − k is interpreted modulo-N. The cyclic convolution is only N = 32
points long, and it is easily shown that it is the sum of periodic replicas of the linear
convolution, that is,

f ⊛ h[n] = f ∗ h[n + N] + f ∗ h[n] + f ∗ h[n − N].

The discrepancy observed between the two convolutions in Figures 5.25 and 5.26 is
caused by the overlapping replicas of f ∗ h.
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FIGURE 5.26 The cyclic convolution, f ⊛ h, of the two sequences f and h in Figure 5.25.

Simply sampling two functions f and h, multiplying their DFTs, and computing
the inverse DFT of the product will not produce the desired linear convolution f ∗ h.
The linear convolution is too long to fit in the space available to a cyclic convolution.
The solution to the problem is to make room for the linear convolution’s extra
samples by appending N zeros each to the vectors f and h, that is, zero padding. The
zero-padded vector fp is defined:

fp[n] =
{

f [n], n = 0, 1,… , N − 1

0, n = N, N + 1,… , 2N − 1

and similarly for hp. The cyclic convolution fp ⊛ hp is shown in Figure 5.27. The
overlap error has been eliminated, and the linear convolution is obtained from
the cyclic convolution. This makes it possible to compute linear convolutions using
the DFT, taking advantage of the FFT algorithm.

The procedure is illustrated in Figure 5.28, in which a rectangular pulse is
filtered by the transfer function shown in Equation 5.56.

The sampling parameters Δt and Δ𝜈 and number of samples, N, are chosen
to satisfy a number of criteria. The width of the pulse is 0.125, and the previous
computation of the impulse response showed that its width is about 0.2. The width
of the convolution will be on the order of 0.325. The input and the impulse response
should be padded at least to this length, which gives the first requirement:

NΔt ≥ 0.325.

But Δ𝜈 = 1∕NΔt (Equation 5.8), thus

Δ𝜈 ≤ 1
0.325

≈ 3.

The transfer function’s magnitude is less than 0.01 for 𝜈 ≥ 100, so a reasonable
constraint on the frequency-domain width W = NΔ𝜈 is

NΔ𝜈 ≥ 200.
This places a constraint on the time-domain sampling interval Δt, since Δt =
1∕NΔ𝜈:

Δt ≤ 0.005.
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FIGURE 5.27 The cyclic convolution, fp ⊛ hp (bottom), of the zero padded sequences fp and
hp (top). The zero padding permits the linear convolution f ∗ h to be computed using cyclic
convolution.

The choice of Δt also determines how well the features in the output are resolved.
For Δt = 0.005, there will be approximately 0.325∕0.005 ≈ 65 sample points across
the output pulse profile. Finally, we have a constraint on the number of points, N,
which should be a power of two for computational efficiency. Using Δt = 0.005 and
Δ𝜈 = 3 gives N = 1∕0.015 ≈ 67. Rounding down to N = 64 will result in NΔt = 64 ×
0.005 = 0.32, which is less than the anticipated width of 0.325 and could consequently
lead to overlap errors.

Figure 5.28 illustrates the sequence of computational steps for Δt = 0.0125,
Δ𝜈 = 1, and N = 128, values chosen to make visually informative graphs. Figure 5.29
compares the results for successively smaller Δt and larger N. Using the relatively
large Δt = 0.02 truncates the transfer function and pulse spectra at 𝜈 = 25 and causes
considerable oscillatory artifact in the convolution. Decreasing Δt to the recom-
mended value of 0.005 eliminates these errors, but N = 64 both truncates the output
and, as expected, causes an artifact at the negative tail from insufficient zero padding.
Increasing N to 128 removes the artifact and enables the positive tail of the pulse to
be clearly observed. Continuing to decrease Δt and increase N does not resolve any
additional features of the pulse but gives a smoother appearing graph.

The practical decision whether to compute a convolution in the time domain
or in the frequency domain depends on the relative computational costs. To convolve
two real-valued vectors of length N by direct summation requires N2 multiply–add
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FIGURE 5.28 Using the DFT to compute a convolution by frequency-domain filtering. The
transfer function (Equation 5.56) is used, with B = 10. The width of the rectangular pulse
is 0.125. The sampling intervals are Δt = 0.0125 and Δ𝜈 = 1, and N = 128. Following the
arrows, (1) the pulse is sampled and cyclically shifted—all of the necessary zero padding is
applied here; (2) the DFT of the pulse is calculated and multiplied by Δt to approximate the
Fourier transform F(𝜈); (3) the transfer function is sampled and cyclically shifted—by shifting
the transfer function instead of the DFT Fc, one additional shifting operation is avoided; (4)
the two Fourier transforms are multiplied; (5) the inverse DFT is computed and divided by Δt
to approximate the convolution h ∗ f ; and (6) a final cyclic shift is performed.

operations. To perform the same operation using the FFT requires that the vectors be
zero padded to 2N. Then, the DFT of each vector requires 2N log2 2N complex oper-
ations. Multiplying the DFTs requires 2N complex multiplications, and performing
the inverse DFT adds another 2N log2 2N operations, for a total of 2N + 6N log2 2N
complex operations. A complex multiply operation uses four real multiplies, which
multiplies the total by four. On the other hand, some reductions are possible if the
functions being convolved are real valued. If one impulse response is to be applied
to a multitude of inputs, the transfer function can be precomputed and stored, saving
a DFT step. Using 2N + 6N log2 2N = 8N + 6N log2 N as a reasonable estimate of
the operation count for frequency-domain convolution, the Fourier approach is more
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FIGURE 5.29 Using the DFT to compute a convolution by frequency-domain filtering.
The input and transfer function are the same as in Figure 5.28. The plots show the results
as the sampling interval Δt and number of points N are varied. With the largest sampling
interval,Δt = 0.02, the output pulse shape is poorly described, and there are oscillatory artifacts
characteristic of frequency-domain truncation. Decreasing Δt to 0.005 without increasing the
number of points gives adequate definition of the pulse shape and eliminates the spurious
oscillations, but the output is truncated and there is an artifact near t = −0.15 due to inadequate
zero padding (NΔt too small). Doubling the number of points to N = 128 displays the entire
pulse with adequate resolution. Additional refinement of the sampling grid does not appear to
provide additional information about the pulse.

efficient than direct summation when 8N + 6N log2 N < N2, that is, when N is a
power of two and N ≥ 64.

In many practical applications of convolution, the input f is a stream of samples
being taken in real time, and the impulse response h is of fixed length. The present
Fourier method cannot be applied here, but there are adaptations of frequency-domain
convolution which permit f to be processed in segments.14 Special purpose digital
hardware can also rapidly compute convolutions by direct summation. Which method
to use depends on the capabilities of the available hardware and a careful analysis of
operation count for the particular problem.

14For methods to use the FFT to accelerate convolution when one of the sequences is much longer than
the other, see Oppenheim and Schafer (2010, pp. 667–672).
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FIGURE 5.30 A sinusoidal signal, f (t) = U(t) exp(i2𝜋bt), b = 2, that turns on at t = 0 (top)
and its Fourier magnitude (bottom). The magnitude peaks at the frequency of the sinusoid but
does not reveal the time of onset.

⋆ 5.9 TIME–FREQUENCY TRANSFORMS

The Fourier transform may be understood as the projection of a function f on a set
of complex exponential basis functions {ei2𝜋𝜈x} that extend over the whole real axis,
from x = −∞ to +∞. The infinite extent of the Fourier basis functions has a disad-
vantage, in that the Fourier transform provides no information about any changes in
the frequency content of a function with time. Put another way, the Fourier trans-
form has no ability to localize in time the frequency content of a signal. Transforms
capable of time–frequency localization are important in signal processing15 and an
ongoing subject of research. In this brief section we will introduce the problem and
two popular solutions: the short-time Fourier transform and the wavelet transform.

Short-Time Fourier Transform
Consider the signal f (t) = U(t)ei2𝜋bt, a sinusoid that turns on at t = 0. The Fourier
transform of this signal is easily calculated using the modulation theorem and a result
from the next chapter (Equation 6.38):

F(𝜈) = 1
i2𝜋(𝜈 − b)

. (5.57)

The magnitude, plotted in Figure 5.30, correctly gives a peak (actually, a singularity)
at 𝜈 = b but conveys no information about the time of onset. The most we can obtain,
for an arbitrary onset at t = t0, is a phase term e−i2𝜋𝜈t0 , which disappears in the
magnitude.

15We have already seen one such application, to image compression, in Example 2.12.
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We can obtain some time localization by using a window to isolate a portion of
the signal before calculating the Fourier transform. Here, we will use a rectangular
window of width a and height 1∕a (for unit area), centered at t = u. The transform is
now a function of the window position as well as frequency:

F(𝜈; u) = ∫
∞

−∞

1
a

rect
( t − u

a

)
U(t) exp (i2𝜋bt) exp (−i2𝜋𝜈t) dt.

We identify three regimes for performing the calculation: u < −a∕2, where the win-
dow is to the left of the step and the result is zero;−a∕2 < u < a∕2, where the window
straddles the jump at t = 0, and u > a∕2, where the rectangle is to the right of the
jump. The integrations are straightforward. For −a∕2 < u < a∕2,

F(𝜈; u) = 1
a ∫

u+a∕2

0
e−i2𝜋(𝜈−b)t dt =

u + a∕2

a
e−i𝜋(𝜈−b)(u+a∕2) sinc[(u + a∕2)(𝜈 − b)]

(5.58a)

and for u > a/2,

F(𝜈; u) = 1
a ∫

u+a∕2

u−a∕2
e−i2𝜋(𝜈−b)t dt = e−i2𝜋(𝜈−b)u sinc[a(𝜈 − b)]. (5.58b)

Taking the squared magnitudes, we have

F(𝜈; u) =

⎧⎪⎪⎨⎪⎪⎩

0, u ≤ −a∕2(
u + a∕2

a

)2

sinc2
[
(u + a∕2)(𝜈 − b)

]
, −a∕2 < u < a∕2

sinc2 [a(𝜈 − b)] , u ≥ a∕2

. (5.59)

A useful way to display this windowed Fourier transform is to show the value
of the power spectrum as a brightness (or darkness) vs. frequency, 𝜈, on one axis and
the location of the window, u, on the other. This is commonly known as a spectrogram
(Figure 5.31).

Unlike the Fourier transform (5.57), the spectrogram reveals the temporal onset
of the sinusoid. Before u = −a∕2 the transform is identically zero, and after u = a∕2
it is a sinc of width 2∕a centered at 𝜈 = b. The transition from full off to full on
has width a. Within the transition zone, the overlap of the rectangular window with
the step, over which we integrate to calculate the Fourier transform, increases from
zero to a; correspondingly, the width of the sinc spectrum decreases from infinite
(at u = −a∕2) to 2∕a (at u = a∕2).

The window determines both the width of the spectral peak and our ability to
localize the onset of the signal. By the dilation theorem and the uncertainty princi-
ple, these characteristic widths are inversely related. Making the window narrower
improves the localization of onset but broadens the spectrum, which complicates the
problem of resolving closely spaced frequency components. Widening the window
wider sharpens the spectral peak, improving frequency resolution, but broadens the
transition from off to on, making it more difficult to identify when the signal begins
or to distinguish two signals with nearly simultaneous onsets.
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FIGURE 5.31 Spectrogram of a sinusoidal signal, f (t) = U(t) exp(i2𝜋bt), that turns on at
t = 0. The square root of the Fourier magnitude is plotted (darker is larger) to emphasize the
side lobes of the sinc function that is the Fourier transform of the rectangular window. Overlaid
traces show profiles of the Fourier magnitude at different window locations, from no overlap
(u < −a∕2), through a transition region surrounding the onset of the signal (−a∕2 < u < a∕2),
to a steady state (u > a∕2). The width of the transition from off to on is a, the width of the
window. The frequency spread is inversely related to a.

We shall explore these ideas further with another example, the complex linear
chirp signal that was introduced in Example 5.9:

f (x) = e−i𝜋bx2
.

The chirp has instantaneous frequency b|x| and can be thought of as a sinusoid with
linearly increasing frequency. Ideally, we would like for a Fourier transform to reveal
this variation, for example, by a peak centered at 𝜈 = bx. But the Fourier transform
provides no such localization; indeed, the Fourier transform of the chirp was earlier
seen to be (Equation 5.30)

F(𝜈) = 1√
ib

e+i𝜋𝜈2∕b
.

The chirp and its transform are plotted in Figure 5.32.
As we did with the step-sinusoid, an intuitive way to obtain localized fre-

quency information about the chirp is to view the function through an observation
window 𝑤 centered at x = u. Here, a Gaussian window16 is analytically convenient,

16Signal modeling with Gaussian-windowed sinusoids was proposed by D. Gabor in a seminal paper
(1946). It is still well-worth reading, for this and for his development of the uncertainty principle for the
Fourier transform and its interpretation for communication theory.
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FIGURE 5.32 Real (solid) and imaginary (dashed) parts of the complex linear chirp function,

f (x) = e+i𝜋bx2
(top) and its Fourier transform, F(𝜈) = 1∕

√
−ib e−i𝜋𝜈2∕b (bottom).

𝑤(x − u) =
√

ae−𝜋a(x−u)2
. The window has width (between 1∕e points) 2∕

√
𝜋a and

is normalized to have unit area. The short-time Fourier transform is

F(𝜈; u) = F{e+i𝜋bx2 √
a e−𝜋a(x−u)2

}

=
√

a e−i𝜋bu2 F{e+i𝜋b(x−u)2
e−𝜋a(x−u)2

ei2𝜋bux}

=
√

a e−i𝜋bu2 F{e+i𝜋b(x−u)2
e−𝜋a(x−u)2

}|||𝜈→𝜈−bu
(shift theorem)

=
√

a e−i𝜋bu2
[e−i2𝜋𝜈u F{e−𝜋(a−ib)x2

}]|||𝜈→𝜈−bu
(shift theorem)

=
√

a
a−ib

e−i𝜋bu2
e−i2𝜋(𝜈−bu)u e−𝜋(𝜈−bu)2∕(a−ib) (using Equation 5.30)

=
√

a
a−ib

e−i2𝜋𝜈u e+i𝜋bu2
e−𝜋(𝜈−bu)2∕(a−ib)

.

(5.60)

(You can check for yourself that Equation 5.30 is recovered if a is set to zero.) As
before, in order to interpret this result we will remove the phase factors by calculating
the squared magnitude (power spectrum):

|F(𝜈; u)|2 = a√
a2 + b2

exp
[
−𝜋(𝜈 − bu)2

( 1
a − ib

+ 1
a + ib

)]
= a√

a2 + b2
exp

[
− 2𝜋a

a2 + b2
(𝜈 − bu)2

]
.

(5.61)

This is a Gaussian, centered at 𝜈 = bu, the instantaneous frequency of the chirp at
x = u (Figure 5.33).
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FIGURE 5.33 Short-time Fourier transform of a linear chirp, with a Gaussian window
(Equation 5.60). The chirp has instantaneous frequency factor b = 2. The window has width
parameter a = 1. The real parts (oscillatory) and magnitudes of 𝑤(x − u)f (x) and F(𝜈; u) are
shown here. Left: with the window centered at u = 1, the Fourier magnitude is a Gaussian
centered at 𝜈 = 2. Right: with the window centered at u = 2, the Fourier magnitude is a
Gaussian centered at 𝜈 = 4.

The spectrogram, |F(𝜈; u)|2, is plotted in Figure 5.34. The spectral width (mea-
sured between 1∕e points of the Gaussian profile) is Δ𝜈 =

√
2a∕𝜋

√
1 + (b∕a)2.

Again, this is inversely related to the temporal width of the window. The spectrum
is broadened by two effects: the rate of frequency variation b and the window width,
proportional to 1∕a. If the window is broad (small a), so b∕a ≫ 1, then the frequency
range of the chirp across the window is large, and the spectrum is broad. On the
other hand, a narrow window (large a) includes a smaller range of frequencies but
the window itself has a wider Fourier transform, again leading to a broader spectrum.
Spreading is minimized when b = a, whence the width of the peak in 𝜈 is 2

√
a∕𝜋 and

the width in u is 2∕
√
𝜋a, and the reciprocal relationship between the two domains

is obvious.
With these examples in hand, we now consider the short-time Fourier transform

in more general terms. For a function f and window 𝑤, the transform is defined:

F(𝜈; u) = ∫
∞

−∞
f (t)𝑤(t − u) e−i2𝜋𝜈t dt, (5.62)

where we shall require, in keeping with our experience with the rectangle and Gaus-
sian windows, that 𝑤 have even symmetry, be absolutely and square integrable, and
possess unit norm, ‖𝑤‖2 = 1.

The short-time Fourier transform F(𝜈; u) is based on a succession of partial
views of the input signal f as the window is translated through locations u. It has the
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FIGURE 5.34 Spectrogram of a linear chirp, with a Gaussian window. The chirp has instanta-
neous frequency factor b = 2. The window has width parameter a = 1. The white line indicates
the peak of the spectrogram; its slope is 1∕b, the reciprocal of the instantaneous frequency
factor.

form of an inner product, though the functions 𝑤(t − u) e−i2𝜋𝜈t are not expected to
constitute an orthogonal basis. Still, it seems that we ought to have enough information
from these partial views to reconstruct f , that is, invert the transform. Moreover, we
may ask if the transform conserves energy (i.e., if there is a Parseval formula).

If we assume that F(𝜈; u) ∈ L1, then its inverse Fourier transform with respect
to 𝜈 is simply

∫
∞

−∞
F(𝜈; u) e+i2𝜋𝜈t d𝜈 = f (t)𝑤(t − u).

Then, to get rid of the window, multiply both sides by 𝑤(t − u) and integrate with
respect to u:

∬
∞

−∞
F(𝜈; u)𝑤(t − u) e+i2𝜋𝜈t d𝜈 du = ∫

∞

−∞
f (t) |𝑤(t − u)|2 du

= f (t) ∫
∞

−∞
|𝑤(t − u)|2 du = f (t),

because ‖𝑤‖2 = 1. To check energy conservation, write

|F(𝜈; u)|2 = F(𝜈; u)

[
∫

∞

−∞
f (t)𝑤(t − u) e−i2𝜋𝜈t dt

]∗
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and integrate, assuming we may rearrange the order of the integrals:

∬
∞

−∞
|F(𝜈; u)|2 d𝜈 du = ∫

∞

−∞
f ∗(t)

[
∬

∞

−∞
F(𝜈; u)𝑤(t − u) e+i2𝜋𝜈t d𝜈 du

]
dt

= ∫
∞

−∞
f ∗(t) f (t) dt = ∫

∞

−∞
|f (t)|2 dt.

These calculations are not satisfactory proofs for f ∈ L2. More complete proofs for
the following theorem are outlined in the problems.17

Theorem 5.18 (Short-time Fourier transform). Let f ∈ L2. Let 𝑤 ∈ L1 ∩ L2

and real valued, with unit norm, ‖𝑤‖2 = 1, and even symmetry, 𝑤(t) = 𝑤(−t). The
short-time Fourier transform,

F(𝜈; u) = ∫
∞

−∞
f (t)𝑤(t − u) e−i2𝜋𝜈t dt,

is invertible:

f (t) = ∬
∞

−∞
F(𝜈; u)𝑤(t − u) e+i2𝜋𝜈t du dt (5.63)

and norm-preserving:

∬
∞

−∞
|F(𝜈; u)|2 d𝜈 du = ∫

∞

−∞
|f (t)|2 dt. (5.64)

Short-time DFT
For practical signal analysis, the short-time Fourier transform takes the form of a
windowed DFT. Instead of a Gaussian window, a finite length tapered window like
the Hamming window, 𝑤[n] = 0.54 − 0.46 cos(2𝜋n∕L), n = 0, 1,… , L, is used. The
DFT is computed over the windowed segment from n = m to n = m + L:

F[k; m] =
m+L∑
n=m

f [n]𝑤[n − m] e−i2𝜋kn∕N , k = 0, 1,… , N − 1. (5.65a)

With change of variable r = n−m, we have a form that looks more like a standard
DFT:

F[k; m] = e−i2𝜋km∕N
L∑

r=0

f [r + m]𝑤[r] e−i2𝜋kr∕N , k = 0, 1,… , N − 1. (5.65b)

(The notation used here, F[k; m], resembles that used for the DFT of a zero-padded
sequence in Chapter 3, F[m; N′]; there is no standard notation for either of these in the
literature, and context should make it clear which transform is meant.) The leading
phase factor in the second form drops out when the magnitude is computed and
displayed. The number of frequency bins, N, is at least equal to the window length,

17Gasquet and Witomski (1999, pp. 388–392); Mallat (1999, p. 73).
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FIGURE 5.35 Spectrogram of a pair of sinusoids computed via the discrete Fourier trans-
form. The plots on top show the DFT of the full 512-point signal vector, indicating spectral
components at discrete frequencies 𝜃 = 0.3𝜋 and 𝜃 = 0.45𝜋. For the spectrogram on the left,
a 32-point Hamming window was used, and the DFT was computed with zero padding to 256
points. The spectrogram on the right was made with a 96-point Hamming window, again with
zero padding to 256 points. Traces show the spectra when the window is centered at m = 350.
With the 32-point window, the onsets at m = 100 and m = 150 are clearly resolved, but the
spectra are so broadened that they interfere. The 96-point window clearly resolves the two
signals in frequency, but the temporal onsets are not as clearly determined.

L + 1. The windowed data segment may be zero padded to a length N greater than
L + 1 if it is desired to interpolate the spectrum and increase the number of frequency
bins. As usual, the discrete-time frequency is 𝜃 = 2𝜋k∕N, and time is t = nΔt or mΔt,
where Δt is the sampling interval.

The application of the short-time DFT to a pair of sinusoids with different fre-
quencies and different temporal onsets is illustrated in Figure 5.35. In Equations 5.65,
the window coordinate m locates the beginning of the window, in keeping with stan-
dard nomenclature for Hamming and other windows. In the figure, this coordinate
has been shifted so that m is the center of the window. Comparing windows of length
32 and 96, the narrower window more clearly resolves the onset of each signal,
but results in a wider spectrum that makes it difficult to resolve closely spaced fre-
quency components. The wider window gives good frequency resolution, but obscures
the onset.
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Like the continuous short-time Fourier transform, the short-time DFT is invert-
ible and conserves energy. For energy conservation, consider the sum of the squared
magnitude over all frequency bins:

N−1∑
k=0

|F[k; m]|2 =
L∑

r=0

L∑
p=0

f [r + m] f ∗[p + m]𝑤[r]𝑤∗[p]

[
N−1∑
k=0

e−i2𝜋k(r−p)∕N

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

N𝛿[r−p]

= N
L∑

r=0

|f [r + m]|2 |𝑤[r]|2 .
Then, summing over m,

1
N

M−1∑
m=0

N−1∑
k=0

|F[k; m]|2 =
L−1∑
r=0

[
M−1∑
m=0

|f [r + m]|2] |𝑤[r]|2 .
Because we are working with finite data records and using the DFT, all shifts are
cyclic and the inner sum is the squared norm of the data vector f . Then, if the window
has unit 2-norm, we recover a formula that looks like the continuous time result:

1
N

M−1∑
m=0

N−1∑
k=0

|F[k; m]|2 =
M−1∑
n=0

|f [n]|2 . (5.66)

For inversion, a simple inverse DFT of Equation 5.65 gives

1
N

N−1∑
k=0

F[k; m] e+i2𝜋kn∕N = f [n]𝑤[n − m].

As a function of m and n, this is a sequence, or stack, of windowed data segments,
each of which begins at n = m, ends at n = m + L, and is zero for all other n. Summing
over m, we have

1
N

M−1∑
m=0

N−1∑
k=0

F[k; m] e+i2𝜋kn∕N =
M−1∑
m=0

f [n]𝑤[n − m] = f [n]
M−1∑
m=0

𝑤[n − m].

Each value of f , except for those within L of the ends of f (near 0 or M − 1), is
multiplied by the sum of all the window values. If we require the window to be
normalized so that this sum is unity, ‖𝑤‖1 = 1, then we have an inversion result:

1
N

M−1∑
m=0

N−1∑
k=0

F[k; m] e+i2𝜋kn∕N = f [n], n = L, L + 1,… , M − L − 1. (5.67)
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The values at the ends are scaled by partial sums of 𝑤 and can be recovered by
adjusting the normalizations appropriately.18

Wavelet Transforms
The short-time Fourier transform analyzes a signal in terms of windowed sinusoids,
for example, the Gaussian window, for which we have

𝑤(t − u)ei2𝜋𝜈x =
√

ae−𝜋a(x−u)2
ei2𝜋𝜈x

.

The width of the window, proportional to 1∕a, is fixed, even as the frequency 𝜈

varies. Allowing the width of the window to vary with frequency, so that the window
always encompasses the same number of periods, would enable the time localization
to be sharper for more rapidly varying signals. This leads to the idea of a family of
analyzing waveforms based on dilations and translations of a prototype waveform,
for example,

𝜓a,u(x) = 1√
a
𝜓

( t − u
a

)
, (5.68)

where 𝜓 is the prototype. These analyzing waveforms, for appropriately selected
𝜓 , are known as wavelets, and the expansion of a function f in terms of these, for
example,

F(a, u) = ∫
∞

−∞
f (x)𝜓a,u(x) dx (5.69)

is called the wavelet transform of f . It can be shown to possess the expected properties
of an orthogonal expansion, including invertibility and energy conservation. It is not a
Fourier transform, in that explicit references to frequency have disappeared from view.
Rather, the wavelet transform is a function of scale, a, and location, u, providing a
different “look” at a signal’s characteristics. Moreover, wavelets may be constructed
with particular properties suitable to particular problems; one is not restricted to
sinusoidal basis functions.

Wavelets are a rich field of study, with numerous applications, beyond the scope
of this text.19 We will limit our coverage to one illustrative example. The simplest

18For a properly chosen window, f can also be recovered from F[k; m] for m = 0, R, 2R,…, that is, for
more widely spaced window locations. See Oppenheim and Schafer (2010, pp. 819–829). The first step in
JPEG image compression, Example 2.12, is to divide an image into 8 × 8 pixel blocks (non-overlapping
rectangular windows) and decompose each block with the discrete cosine transform. The redundant basis
sets that appear in the short-time Fourier transform are also examples of frames, briefly introduced in
Chapter 3 (Kovačević and Chebira, 2007b).
19For further reading, see example, Gasquet and Witomski (1999, pp. 395–430), Mallat (1999), Boggess
and Narcowich (2001), and Percival and Walden (2000).
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wavelet family is based on the Haar function:

𝜓(x) =

⎧⎪⎪⎨⎪⎪⎩
1,

1
2
> x ≥ 0

−1, 1 >
1
2
≥ 1

2
0, otherwise

.

The scales a and translations u are chosen to be dyadic, that is, based on powers of
two, leading to the family of Haar wavelets (Figure 5.36):

𝜓j,k(x) = 1√
2−j

𝜓

(
x − 2−jk

2−j

)
= 2j∕2

𝜓(2jx − k), j = 0, 1, 2,… , k = 0,±1,±2,…

(5.70)

With this choice, the wavelets are orthonormal within one scale, ⟨𝜓j,k,𝜓j,k′⟩ = 𝛿[k −
k′], and also across scales, ⟨𝜓j,k,𝜓j′ ,k⟩ = 𝛿[j − j′]. The expansion of a function f begins
with an approximation of f by rectangles of unit width, 𝜙0,k = rect(x − (k + 1∕2)).20

This approximation is denoted 𝑣0:

𝑣0(x) =
∞∑

k=−∞

⟨
f ,𝜙0,k

⟩
𝜙0,k(x).

Next, projecting f onto the Haar wavelets at scale j = 0 yields a function 𝑤0:

𝑤0(x) =
∞∑

k=−∞

⟨
f ,𝜓0,k

⟩
𝜓0,k(x).

The {𝜓0,k} are orthogonal to the {𝜙0,k}, so 𝑤0 is orthogonal to 𝑣0, and the sum
𝑣0 +𝑤0 approximates f at scale j = 1. This approximation is denoted 𝑣1. Projecting
f onto the wavelets at scale j = 1 gives a function 𝑤1 that is orthogonal to both 𝑣0
and 𝑤0, and hence 𝑣1, because of the orthogonality of the wavelets. Combining 𝑤1
with 𝑣1 gives a finer approximation to f , 𝑣2 = 𝑣0 +𝑤0 +𝑤1. Continuing at higher
scales gives increasingly fine approximations:

𝑣J(x) = 𝑣0(x) +
J∑

j=0

𝑤j(x),

20In the language of wavelet theory, the 𝜙0,k are called scaling functions. Every wavelet family has a
companion set of scaling functions which may also be dilated and translated. Quaintly, the prototypes 𝜙
and 𝜓 are also called the father wavelet and mother wavelet, respectively.
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FIGURE 5.36 Representative Haar wavelets 𝜓j,k(x) = 2j∕2
𝜓(2jx − k). They are orthonormal

both within and across scales, ⟨𝜓j,k,𝜓j,k′⟩ = 𝛿[k − k′] and ⟨𝜓j,k,𝜓j′ ,k⟩ = 𝛿[j − j′].

where
𝑣0(x) =

∑
k

⟨
f ,𝜙0,k

⟩
𝜙0,k(x),

𝑤j(x) =
∑

k

⟨
f ,𝜓j,k

⟩
𝜓j,k(x).

(5.71)

The 𝑣0 and𝑤j are mutually orthogonal views of f at the various scales. The 𝑤j may be
thought of as the details of f at scale j; the function 𝑣0 is the remainder after all the scale
information has been extracted by the wavelets. It can be shown that ‖‖f − 𝑣J

‖‖2 → 0
as J → ∞, that is, the set {𝜙0,k,𝜓0,k,𝜓1,k,…} constitutes a basis for L2.

The set of all functions 𝑤j constructed from the {𝜓j,k} comprises a subspace
of L2, which we denote Wj. The {𝜓j,k} are an orthonormal basis for Wj. Likewise,
the set of all 𝑣0 constructed from the 𝜙0,k is a subspace of L2, denoted V0, having an
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orthonormal basis {𝜙0,k}. These subspaces, V0, W1, W2,… are mutually orthogonal.
The wavelet expansion thus produces a partitioning of L2 into the direct sum of
mutually orthogonal subspaces:

L2 = V0 ⊕ W1 ⊕ W2 ⊕⋯

That is, any function in L2 may be written as a sum of functions at each of the scales,
with successive functions providing more and more detail.

The wavelet expansion is illustrated in Figure 5.37. The function f consists
of 128 samples of a sinusoid whose frequency changes abruptly, upon which has
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FIGURE 5.37 Expansion of a function in Haar wavelets. At each scale, the approximation
𝑣j = 𝑣j−1 +𝑤j−1. The pulse near x = 0.2, the jump at x = 0.5, and the higher frequency portion
of the function, x > 0.5, project strongly onto the finer scales and appear mostly in the detail
functions 𝑤4 through 𝑤6. The lower frequency sine for x < 0.5 projects strongly onto the
coarser scales and appears mostly in the detail functions 𝑤1 through 𝑤3.



5.10 SUMMARY 349

been superimposed a narrow sinc-shaped pulse. The approximations 𝑣j and detail
functions 𝑤j are shown for scales j = 0 through j = 7.

There are two abrupt features in f , the pulse near x = 0.2 and the jump at
x = 0.5. Both of these project strongly onto the narrower, finer scale, wavelets
𝜙4,k, … ,𝜙6,k and appear in the corresponding detail functions 𝑣4,… , 𝑣6 and approxi-
mations𝑤4,… ,𝑤6. At coarser scales, these features disappear. The higher frequency
portion of the sinusoid, for x > 0.5, also projects strongly onto the finer scale wavelets
and appears in the finer scale details and approximations. At coarser scales, this sinu-
soid is nearly invisible. On the other hand, the lower frequency portion, for x < 0.5,
projects strongly onto the coarser wavelets and appears in the coarser details and
approximations.

The detail functions are analogous to the terms of a Fourier series, and the
approximations are like the partial sums. There is a correspondence between finer
scales and higher frequencies. But because the wavelet basis functions are localized,
unlike the Fourier basis functions which extend over the entire real line, the wavelet
expansion more easily captures and localizes temporal changes in a function. For these
reasons, wavelets have found wide application in a variety of fields. The interested
reader is referred to the aforementioned references for further study.

5.10 SUMMARY

The Fourier Transform

F(𝜈) = ∫
∞

−∞
f (x)e−i2𝜋𝜈x dx,

f (x) = ∫
∞

−∞
F(𝜈)ei2𝜋𝜈x d𝜈,

(5.1)

where the integrals are interpreted appropriately for L1 or L2 (Theorems 5.14, 5.15).

Fourier Transform Pairs Derived in this Chapter

rect x ⟷ sinc 𝜈 (5.6)

Λ(x) ⟷ sinc2
𝜈 (5.11)

e−xU(x) ⟷ 1
1 + i2𝜋𝜈

(5.9)

e−|x| ⟷ 2
1 + (2𝜋𝜈)2

(5.15)

e−|x| sgn x ⟷ −i4𝜋𝜈
1 + (2𝜋𝜈)2

(5.16)

e−𝜋x2
⟷ e−𝜋𝜈

2
(5.27)

e+i𝜋bx2
⟷ 1√

−ib
e−i𝜋𝜈2∕b

. (5.30)
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Fourier Transform Theorems

Theorem Formula Equation

∫
∞

−∞
|f (x)|2 dx = ∫

∞

−∞
|F(𝜈)|2 d𝜈 5.18b

Parseval

∫
∞

−∞
f (x)g∗(x)dx = ∫

∞

−∞
F(𝜈)G∗(𝜈)d𝜈 5.18a

Area ∫
∞

−∞
f (x)dx = F(0) 5.35

Moment 𝜇
(n)
f = ∫

∞

−∞
xnf (x)dx = F(n)(0)

(−i2𝜋)n
5.36

Equivalent width Wf =
𝜇

(0)
f

f (0)
, Wf WF = 1 5.49, 5.50

Mean-square width 𝜎
2|f |2 = ∫

∞

−∞
x2|f (x)|2dx

∫
∞

−∞
|f (x)|2dx

5.34

Uncertainty principle 𝜎
2|f |2 𝜎2|F|2 ≥ 1

4𝜋
5.51

Linearity af + bg ⟷ aF + bG 5.13

Symmetry See Figure 5.5
f (−x) ⟷ F(−𝜈), etc. 5.17

Shift f (x − a) ⟷ e−i2𝜋a𝜈F(𝜈) 5.23

ei2𝜋bxf (x) ⟷ F(𝜈 − b) 5.20

Modulation f (x) cos 2𝜋𝜈0x ⟷ 1
2

F(𝜈 − 𝜈0) + 1
2

F(𝜈 + 𝜈0) 5.21

Dilation f (ax) ⟷ 1|a|F
(
𝜈

a

)
5.22

Shift-Dilate f
( x − b

a

)
⟷ |a|e−i2𝜋𝜈bF(a𝜈) 5.23

Derivative f ′(x) ⟷ i2𝜋𝜈F(𝜈) 5.24

f (n)(x) ⟷ (i2𝜋𝜈)nF(𝜈) 5.25

xnf (x) ⟷
F(n)(𝜈)
(−i2𝜋)n

5.26

Integral ∫
x

−∞
f (𝜉) d𝜉 ⟷ (i2𝜋𝜈)−1F(𝜈) 5.31

Convolution f ∗ g ⟷ FG 5.40

Product fg ⟷ F ∗ G 5.41

Correlation f ⋆ g ⟷ F∗G 5.47

f ⋆ f ⟷ F∗F = |F|2 5.48
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PROBLEMS

5.1. Using the Fourier theorems, prove the following transform pairs. Sketch (or plot with
Matlab) the functions. Use solid lines for real parts, dashed lines for imaginary parts.

(a) rect(x − 1

2
) ⟼ exp(−i𝜋𝜈) sinc(𝜈).

(b) exp(−2x2) ⟼
√

𝜋

2
exp t(− 𝜋

2
𝜈

2

2
).

(c) Λ(x − 1) − Λ(x + 1) ⟼ −2i sin 2𝜋𝜈 sinc2
𝜈.

(d) rect( x−2

4
) ⟼ 4 exp(−i4𝜋𝜈) sinc(4𝜈).

5.2. Using Fourier theorems, prove the following transforms:

(a) x exp(−𝜋x2) ⟼ −i𝜈 exp(−𝜋𝜈2).

(b) x rect x ⟼ i

2𝜋2𝜈2 (𝜋𝜈 cos𝜋𝜈 − sin 𝜋𝜈).

5.3. Calculate and sketch accurately the Fourier transforms of the following functions:

(a) The Gabor function, f (x) = exp(−𝜋a2x2) cos 2𝜋bx.

(b) f (t) = te−tU(t).

5.4. The Gaussian, or normal, distribution, used in statistics, has the functional form:

f (x) = 1√
2𝜋𝜎

exp

[
− (x − 𝜇)2

2𝜎2

]
.

Use the Fourier theorems to calculate the Fourier transform of f . In statistics, this is
called the characteristic function or moment generating function. Then, use the moment
theorem to show that the first and second moments of the Gaussian are

𝜇
(1) = 𝜇,

𝜇
(2) = 𝜎

2 + 𝜇
2
.

5.5. Using Fourier theorems, calculate the transforms of the following functions:

(a) f (x) = rect( x

3
+ 1).

(b) f (x) = rect(x − 1)ei𝜋x.

(c) f (x) = exp(−x2).

(d) f (x) = exp(−2𝜋(x + 1)2).

5.6. Suppose we have two functions, f and g, and their respective Fourier transforms, F and
G. If F = G, show that f = g (a.e.). Thus, the Fourier transform of a function is unique.

5.7. Repeated transforms

(a) Show that applying the forward Fourier transform twice in succession to f (x) gives
f (−x), that is,F{F{f (x)}} = f (−x). This result is important because wave diffraction
obeys a forward Fourier transform, and in solving wave propagation problems, you
can only use forward transforms.

(b) Using this result, show that if f (x) ⟼ F(𝜈), then F(x) ⟼ f (−𝜈). This is simply a
matter of keeping your x’s and 𝜈’s straight!

5.8. Devise and prove versions of the reversal symmetries (Theorem 5.4) for the DFT, Fourier
series, and discrete-time Fourier transform.
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5.9. Consider a signal composed of cosines, truncated by a rectangular window:

f (t) =
[
cos 2𝜋𝜈1t + cos 2𝜋𝜈2t

]
rect

( t
T

)
.

The frequencies of the cosines, 𝜈1 and 𝜈2, are closely spaced. Calculate the Fourier
transform of this signal, which you know will consist of two pairs of sinc functions. If
the frequencies are too close, the sinc functions will partially overlap and sum, and it will
be difficult to identify separate peaks in the Fourier transform. Explore the relationship
between the resolvable frequency separation,Δ𝜈 = |𝜈1 − 𝜈2| and the width of the window
function, T . Derive an approximate expression connecting Δ𝜈 and T.

5.10. The transfer function of a first-order lowpass filter is H(𝜈) = 1

1+i2𝜋𝜈𝜏
, where 𝜏 is the time

constant.

(a) The cutoff frequency 𝜈c is defined by the relationship ||H(𝜈c)||2 = 1

2
|H(0)|2. The

cutoff frequency is sometimes called the half-power frequency, because the input
power is reduced by a factor of two at this frequency. Calculate the cutoff frequency
of this filter.

(b) Calculate the noise equivalent bandwidth of this filter. Compare with the cutoff
frequency.

5.11. The ideal bandpass filter (Figure 5.38) is defined by the transfer function

H(𝜈) = rect

(
𝜈 + 𝜈0

B

)
+ rect

(
𝜈 − 𝜈0

B

)
.

Using Fourier transform theorems, find the impulse response h(t) of this filter (i.e., the
inverse Fourier transform of the transfer function). Pick 𝜈0 = 100 and B = 10, and plot
h(t) with Matlab (it is easier than sketching!).

B

1

ν

H(ν)
B

ν0−ν0

FIGURE 5.38 For Problem 5.11 Frequency response of the ideal bandpass filter.

5.12. Calculate the Fourier transform of the Haar wavelet function (Equation 5.70,
Figure 5.36).

5.13. Beginning with the transform pairs

e−|x| ⟼ 2
1 + (2𝜋𝜈)2

e−|x| sgn x ⟼ −i4𝜋𝜈
1 + (2𝜋𝜈)2

,

use Fourier theorems to show

1
1 + x2

⟼ 𝜋 e−|2𝜋𝜈|
x

1 + x2
⟼ −i𝜋 e−|2𝜋𝜈| sgn 𝜈.
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5.14. The Hermite–Gaussian wavefunctions are important in optics and atomic physics. They
are defined:

𝜓n(x) = Hn(
√

2𝜋x) exp(−𝜋x2), n = 0, 1, 2,… ,

where the {Hn} are Hermite polynomials defined in turn via the Rodrigues formula:21

Hn(x) = (−1)n exp(+x2)
[ dn

dxn
exp(−x2)

]
.

(a) Show that H0(x) = 1, H1(x) = 2x, and H2(x) = 4x2 − 2. Plot the wavefunctions𝜓0(x),
𝜓1(x), and 𝜓2(x).

(b) Calculate the Fourier transforms Ψ0(𝜈), Ψ1(𝜈), and Ψ2(𝜈). What can you conjecture
about the Fourier transform of the general wavefunction 𝜓n(x)?

(c) Prove the conjecture you made in (b), that is, derive a general expression for the
Fourier transform Ψn(𝜈).

5.15. Chirp functions

(a) Following the area calculation in Example 5.12, derive Equation 5.28. Why is it
necessary that Re c > 0?

(b) Following the Fourier transform calculation in 5.12, derive Equation 5.29.

(c) Finally, let c = a − ib and show that, as a → 0, the linear chirp Fourier transform
pair in Equation 5.30 is obtained.

5.16. The derivative of a function f is defined:

f ′(t) = lim
Δt→0

f (t + Δt) − f (t)
Δt

,

which suggests the finite-difference approximation:

f ′(t) ≈ g(t) =
f (t) − f (t − Δt)

Δt
,

where Δt is now a finite time delay. A linear, time-invariant system which might be used
to implement this operation is shown in Figure 5.39.

(a) Calculate the transfer function of this system, H(𝜈) = G(𝜈)

F(𝜈)
.

(b) According to the derivative theorem, an ideal differentiation filter has transfer func-
tion H(𝜈) = i2𝜋𝜈. How well does the transfer function you calculated above agree
with the ideal? What can be done to improve the approximation?

+

1/Δt

–

+
f(t)

Δt delay
f(t – Δt)

+ × g(t) ≈ f'(t)

FIGURE 5.39 For Problem 5.16. Finite difference approximation to the derivative.

21Abramowitz and Stegun (1972, 22.11).
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5.17. Generalize the proof of the area theorem (Equation 5.35) to prove the moment theorem
(Equation 5.36).

5.18. Derive an expression for the variance of a function 5.34, in terms its Fourier transforms
and their derivatives, evaluated at the origin.

5.19. Expanding the Fourier theorems
All the Fourier theorems so far have been stated as forward transforms, for example, f ∗ g
transforms to FG, and f (x − a) transforms to e−i2𝜋a𝜈F(𝜈). There are “inverse” versions
of the theorems, too. Find the inverse Fourier transforms of the following, and compare
the results with their “forward” counterparts.

(a) F(𝜈) ∗ G(𝜈).

(b) F(𝜈 − a).

(c) d

d𝜈
F(𝜈).

5.20. The following integral, which has the form of an inner product, looks difficult.

∫
∞

−∞
sinc

[
2B

(
t − n

2B

)]
sinc

[
2B

(
t − m

2B

)]
dt.

However, by applying Fourier transform theorems (such as dilation, shift, and Parseval),
the problem can be moved into the frequency domain, where it is much easier.

(a) Carefully apply the dilation and shift theorems to find the Fourier transform of
sinc[2B(t − n

2B
)].

(b) Use Parseval’s theorem to change the integral into an easier form, and carry out the
calculation for all integers m, n. Hint: Make a sketch of the integrand. What does
the result say about the signals sinc[2B(t − n

2B
)] for integer n? What happens if the

signals have the more general form sinc[2B(t − nT)], where T is not necessarily
equal to 1∕2B?

5.21. Let f , g ∈ L1, and let F, G be their Fourier transforms. Show that

∫
∞

−∞
F(𝜈) g(𝜈) d𝜈 = ∫

∞

−∞
f (x) G(x) dx.

5.22. Using Fourier theorems, evaluate the integral ∫ ∞
−∞ sinc2(2x) dx.

5.23. The function shown in Figure 5.40 could be the response of an underdamped
second-order system to a sudden excitation. It is described by the equation f (t) =
exp(−t∕3) cos 4𝜋t U(t).

0 1 2 3 4 5 6 7 8 9
–1

–0.5

0

0.5

1

t

f(
t)

FIGURE 5.40 For Problem 5.23.
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(a) Calculate and sketch the Fourier transform F(𝜈), labeling important features of your
graph.

(b) Describe what happens to the graph of F if the exponential is changed from exp(−t∕3)
to exp(−2t).

5.24. A popular filter in image processing has impulse response h(x) = d2

dx2 a exp(−𝜋a2x2),
a > 0, which is the second derivative of a Gaussian. Calculate and sketch the transfer
function of this filter, H(𝜈), labeling your graph to show the effect of the parameter a on
its width and height.

5.25. Frequency-division multiplexing
Through the use of modulation, large numbers of voice messages can be packed, or
multiplexed, together for efficient transmission on long distance radio or optical fre-
quency communication links. A simple example of this is diagrammed in Figure 5.41.

(a) Using B = 4 kHz, 𝜈1 = 72 kHz, and 𝜈2 = 80 kHz, sketch the output spectrum G(𝜈).

(b) Design a method for recovering the original messages from the multiplexed signal.

×

×

f1(t)

cos 2πν1t
F1(ν)

cos 2πν2t +

f2(t)

F2(ν)

B–B

B–B

g(t)

FIGURE 5.41 For Problem 5.25: System for frequency-division multiplexing.

5.26. A modulation and filtering system is shown in Figure 5.42. The input x(t) is multiplied by
a unit-amplitude 20 kHz cosine wave and applied to a system (called a highpass filter)
which allows frequencies above 20 kHz to pass unattenuated but rejects frequencies
below 20 kHz. The output of the highpass filter is multiplied by unit-amplitude 25 kHz

ν ν

ν ν
Highpass Lowpass

FIGURE 5.42 For Problem 5.26. A modulation and filtering system.
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cosine wave and applied to a system (a lowpass filter) which allows frequencies below
20 kHz to pass unattenuated but rejects frequencies above 20 kHz.

Assume the input x(t) has the Fourier spectrum shown, which is limited to fre-
quencies below 5 kHz.

(a) Sketch accurately the signal spectrum at each of the numbered points in the system.
Compare the output spectrum Y(𝜈) with the input spectrum X(𝜈).

(b) Draw a block diagram for a system which will take y(t) as its input and recover x(t)
at its output.

5.27. Narrowband filters
The frequency response of a narrowband filter can be described by the transfer function

H(𝜔) = Q

1 − iQ
1 − 𝜔

2

𝜔

,

where 𝜔 = 2𝜋𝜈 is angular frequency (rads/s as opposed to Hz). The parameter Q deter-
mines the narrowness of the frequency response. The center frequency 𝜔0 is that positive
frequency which maximizes |H(𝜔)|2. The bandwidth of the filter is defined by the two
positive half-power frequencies 𝜔1 and 𝜔2, for which ||H(𝜔1,2)||2 = 1

2
||H(𝜔0)||2. The

bandwidth, B, is the difference of the half-power frequencies, B = ||𝜔2 − 𝜔1
||.

(a) Derive the following expressions for the center frequency, half-power frequencies,
and bandwidth, assuming that Q is large:

𝜔0 = 1,

𝜔1,2 = 1 ± 1
2Q

,

B = 1
Q
.

(b) Show that a narrowband filter with arbitrary center frequency 𝜔0 is obtained by
substituting 𝜔∕𝜔0 for 𝜔 in the expression for H(𝜔). What is the bandwidth of this
filter?

5.28. Spectrum analysis
The basic idea behind analog spectrum analyzers is narrowband filtering of the signal
spectrum. With the filter centered at 𝜈 = 𝜈0 denoted by the transfer function H(𝜈; 𝜈0),
the estimated spectral density at 𝜈0 is proportional to the energy passed by the filter:

||F(𝜈0)||2 = ∫
∞

−∞

||H(𝜈; 𝜈0)||2 |F(𝜈)|2 d𝜈. (5.72)

The resolution of a spectrum analyzer is defined in terms of adjacent channel
separation. If a signal consists of two frequency components at 𝜈1 and 𝜈2, and the
analyzer filter is centered on 𝜈0 = 𝜈1, then any energy from the component at 𝜈2 which
“leaks” into the passband of the filter contributes error to the spectral estimate. To
minimize this error, a very narrow filter is needed. The half-power bandwidth (see the
previous problem) is a standard measure of resolution.

(a) Figure 5.43 is a time-domain block diagram of a spectrum analyzer using a nar-
rowband filter with a variable center frequency. Verify that this system produces the
operation described by Equation 5.72, above. Hint: Consider T ≫

1

𝜈0
. What is the

resolution of this system?
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f(t)

Variable
filter

h(t; ν0)

Integrate

T

T 0
dt F ν0∫ 2 21

FIGURE 5.43 For Problem 5.28. Analog spectrum analyzer using a variable narrowband
filter.

(b) Consider now the system shown in Figure 5.44, which uses a modulator followed
by a filter with fixed center frequency 𝜈

′
0. Assume 𝜈′0 ≫ 𝜈0. Verify that the output of

this system is also the spectrum defined by Equation 5.72. What is the resolution
of this system? Compare with your result from Part (a). What advantage does the
second approach have?

×

ν0 + ν0′

f(t)

Fixed
filter

h(t; ν0′)

IntegrateModulate

T

T 0
dt∫ 21 F ν0

2

FIGURE 5.44 For Problem 5.28. Analog spectrum analyzer using a fixed narrowband filter
with modulation.

5.29. Antenna beamwidth.
The electric field amplitude in the far-field of an antenna is given by the Fourier transform
relationship:

P (sin 𝜃) ∝ ∫
∞

−∞
E
( x
𝜆

)
exp

(
−i2𝜋

x
𝜆

sin 𝜃
)

d
( x
𝜆

)
, (5.73)

where E(x∕𝜆) is the electric field in the antenna aperture (distance measured in units of
wavelength), and 𝜃 is the azimuth angle from the center of the aperture to the far-field
observation point. A rectangular aperture of width A has a field pattern that goes like
sinc(A sin 𝜃). This pattern is plotted as shown in Figure 5.45.

A measure of the quality of an antenna is how directionally selective it is. This
can be measured by the full width at half-maximum (FWHM) of the radiation pattern|P(𝜃)|2.

(a) Calculate and plot the FWHM (in degrees) of the pattern |P(𝜃)|2 ∝ sinc2 (A sin 𝜃),
as a function of the aperture width A (measured in wavelengths).

(b) Suppose it is desired to have an antenna pattern whose FWHM corresponds to an
area 18 miles wide at a distance of 100 miles. At an operating frequency of 430 MHz,
how large is this antenna? If the operating frequency of this antenna is changed to
10 GHz, what is the beamwidth of the antenna?
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FIGURE 5.45 For Problems 5.29 and 5.30. Left: array pattern of unapodized antenna. Right:
antenna apodized with triangular taper (Bartlett window).

5.30. Antenna sidelobe suppression.
Consider further the far-field radiation pattern of an antenna, Equation 5.73 and
Figure 5.45. The radiation pattern consists of a strong central lobe called the main-
lobe and weaker, off-center lobes called sidelobes. The mainlobe of the antenna pattern
is directed toward 𝜃 = 0◦, as expected, but the sidelobes point toward ±45◦. If this were
a radar receiver, then an airplane at a 45◦ bearing could be mistaken for one coming in
at 0◦. Sidelobe suppression is one of the principal practical issues in antenna design.

Apodization (“removing the feet”) is a method for lowering the sidelobe levels in
an antenna pattern by tapering the aperture field distribution to zero at the edges. For
example, if the field amplitude tapers linearly from the center to the edges (a triangular
apodization), then the other pattern shown in Figure 5.45 results. The sidelobes are
indeed reduced, but the mainlobe is considerably wider (FWHM is about 50◦ vs. 35◦ for
the unapodized antenna). This is a classic tradeoff.

Your task in this problem is to compare the effects of various apodizations. This
will help develop your skill with Fourier transform manipulations and also give you
insight into a useful Fourier application area. A side benefit, if you are interested in
signal processing, is that the antenna apodization problem is analogous to a method for
designing digital filters.

Here are the apodizations you will consider. All of them are based on a maximum
aperture width of A.

Rectangular (unapodized): rect(x∕A𝜆)

Bartlett (triangular): Λ(2x∕A𝜆)

Hanning (raised cosine): 0.5[1 + cos(2𝜋x∕A𝜆)] rect(x∕A𝜆)

Hamming (another kind of raised cosine): [0.54 + 0.46 cos(2𝜋x∕A𝜆)] rect(x∕A𝜆).

Calculate the far-field pattern P(sin 𝜃) for each of these aperture distributions,
and plot them together on a decibel scale, that is, 20 log10 |P(sin 𝜃)| vs. sin 𝜃 over the
range (−1, 1), which corresponds to the angular range (−𝜋∕2,𝜋∕2). (Use a standard
Cartesian format, not a polar plot.) Use a sufficiently small value of A that you get three
or four sidelobes to either side of the mainlobe—this will take some experimentation. If



PROBLEMS 359

necessary, normalize the patterns so that the values at 𝜃 = 0 are all unity (0 dB) and be
careful of zeros causing the logarithm to blow up.

Measure from your graph the mainlobe widths and maximum sidelobe levels of
the four patterns. What do you observe? Which apodization do you think is best?

5.31. Convolution

(a) Calculate, by direct integration, the convolution rect( x

a
) ∗ rect( x

b
), where b > a, and

sketch accurately the result.

(b) From the sketch, express the result in terms of the triangle function, and calculate
its Fourier transform.

(c) Calculate the Fourier transform of rect( x

a
) ∗ rect( x

b
) using the convolution theorem,

and compare with your result from part (b). Show that they are equal.

5.32. Convolution
Using the convolution theorem (and other theorems, as needed), calculate the following
and sketch the results:

(a) sinc 2x ∗ sinc(x − 1).

(b) sinc(x + 1) ∗ sinc 3x.

5.33. Convolution
Let the functions f and g be supported on the intervals [a, b] and [c, d], respectively.
Show that their convolution f ∗ g is supported on the interval [a + c, b + d], and the
widths of the supports sum under convolution.

5.34. Convolution
Using the convolution and moment theorems,

(a) Show that centroid of the convolution f ∗ g is the sum of the centroids of f and g.

(b) Show that the variance of the convolution f ∗ g is the sum of the variances of
f and g.

You will need to calculate the moments 𝜇(0)
f∗g, 𝜇(1)

f∗g, and 𝜇
(2)
f∗g in terms of the moments for

f and g alone, then combine them with Equations 5.33 and 5.34.

5.35. Convolution
Use the convolution theorem (and other theorems, as appropriate) to perform the fol-
lowing calculations:

(a) Calculate the convolution sinc ax ∗ sinc bx.

(b) Show that

exp(−ax2) ∗ exp(−bx2) =
√

𝜋

a + b
exp

[
− ab

a + b
x2
]
.

Verify that the convolution is wider (more spread out) than either of the two original
functions.

5.36. Convolution
Let f ∈ L1(ℝ) and h ∈ L2(ℝ), and show that the 2-norm of the convolution is bounded,‖f ∗ h‖2 ≤ ‖f‖1 ‖h‖2 (Table 5.1). Hint: Begin by bounding the convolution with the
triangle inequality:

|f ∗ h| ≤ ∫
∞

−∞
|f (𝜉)h(x − 𝜉)| d𝜉.
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Then rewrite the integrand:

|f (𝜉)h(x − 𝜉)| = |f (𝜉)|1∕2 (|f (𝜉)|1∕2 |h(x − 𝜉)|)
and apply the Cauchy–Schwarz inequality to obtain a bound on |f ∗ h|2.

5.37. Convolution
Let f ∈ L1(ℝ) and h ∈ L∞(ℝ). Show that the convolution is bounded, ‖f ∗ h‖∞ ≤‖f‖1 ‖h‖∞ (Table 5.1). Hint: Begin by bounding the convolution with the triangle
inequality:

|f ∗ h| ≤ ∫
∞

−∞
|f (𝜉)h(x − 𝜉)| d𝜉.

5.38. Convolution
Let f , h ∈ L2(ℝ). Show that the convolution is bounded, ‖f ∗ h‖∞ ≤ ‖f‖2 ‖h‖2

(Table 5.1). Hint: Use the Cauchy–Schwarz inequality.

5.39. Convolution
Using the convolution theorem (and other theorems, as appropriate), complete the cal-
culations in Example 5.21:

1
x2 + 1

∗ 1
x2 + 1

= 2𝜋
x2 + 4

.

1
x2 + 1

∗ x
x2 + 1

= 𝜋x
x2 + 4

.

x
x2 + 1

∗ x
x2 + 1

= −2𝜋
x2 + 4

.

5.40. Convolution
For the functions in the previous problem, calculate norms and verify the bounds in
Table 5.1.

5.41. Convolution
Using the convolution theorem (and other theorems, as appropriate) prove the following
results:

(a) d

dx
(f ∗ g) = f ′ ∗ g = f ∗ g′, where it is assumed that f and g are differentiable.

(b) The convolution of two odd functions is even. (The same approach will work to
show that the convolution of two even functions is even, and the convolution of an
even function and an odd function is odd.)

(c) Convolution is associative: f ∗ (g ∗ h) = (f ∗ g) ∗ h.

(d) Convolution is distributive over addition: f ∗ (g + h) = f ∗ g + f ∗ h.

(e) |f ∗ g| ≤ ∫ ∞
−∞ |FG| d𝜈. (This is a useful bound on the output of a filter.)
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5.42. Convolution
Determine if each of the following statements is true in general. Provide proofs of those
you think are true and counterexamples for those that you think are false:

(a) If g(x) = f (x) ∗ h(x), then g(2x) = 2f (2x) ∗ h(2x).

(b) If g(x) = f (x) ∗ h(x), then Even{g(x)} = f (x) ∗ Even{h(x)} + Even{f (x)} ∗ h(x).

5.43. Heat and diffusion
The one-dimensional heat equation, or diffusion equation, is

𝜕
2u
𝜕x2

= 1
k
𝜕u
𝜕t

.

Given an initial spatial distribution u(x, 0), this equation describes how that distribution
spreads spatially (diffuses) in time. In Section 4.5, the Fourier series was used to solve
the heat equation on a finite interval. In this problem the Fourier transform is used to
solve the same equation on the entire real line.

(a) Let the spatial Fourier transform of u be U(𝜈, t). Fourier transform both sides of
the equation to get a first- order ordinary differential equation (in the time variable).
The solution of this ODE is straightforward. Derive the result:

U(𝜈, t) = U(𝜈, 0) exp
[
−(2𝜋𝜈)2kt

]
,

which, viewed as a function of 𝜈, is a Gaussian. Compare with the Fourier series
solution of the heat equation on a bounded domain (Section 4.5).

(b) To get back to u(x, t) inverse transform the expression for U(𝜈, t) with respect to 𝜈.
Show that this results in a convolution in the space domain:

u(x, t) = u(x, 0) ∗ h(x, t)

h(x, t) = 1

2
√
𝜋kt

exp

(
− x2

4kt

)
.

(c) The kernel of the convolution, h(x, t), is a Gaussian in the space domain whose vari-
ance (spread) is proportional to kt. Accurately sketch (or plot, using the computer)
the kernel for the following values of t : 0, 1∕k, 1∕4k, and 1∕16k. What is the area
∫ h(x, t)dx? Interpret your results physically—using diffusion or heat.

5.44. Use the correlation theorem (and other theorems, as appropriate). For a real-valued
function f :

(a) Show that the autocorrelation of f is always even.

(b) Show that the autocorrelation function has its maximum value at zero lag, that is,|Γ(𝜏)| ≤ |Γ(0)|.
5.45. Show that the autocorrelation of a complex-valued function f is always Hermitian.

5.46. Convolution and correlation

(a) Sometimes autocorrelation (f ⋆ f ) and autoconvolution (f ∗ f ) give the same result,
but usually they do not. What condition(s) must f satisfy in order for the two results
to be the same? Give an example of a function that does, and one that does not,
satisfy your conditions, and calculate the autocorrelation and autoconvolution for
each, to illustrate your point. You can do the calculations numerically with Matlab.

(b) Using the convolution theorem, f ∗ g ⟼ FG, show that convolution commutes,
that is, f ∗ g = g ∗ f , but correlation does not. Express Γgf in terms of Γfg.
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5.47. In several important applications of cross-correlation, f is an unknown signal and g is a
known, fixed template. The cross-correlation measures the resemblance of the unknown
signal to the template. Show that the cross-correlation can be obtained as the output of
a linear filter, that is, Γfg = f ∗ h, and determine what the impulse response, h, must be.

5.48. Two functions f and g, which are assumed to be real, positive, and identical except
for a translation (g(x) = f (x − a)), can be registered (aligned) by finding the lag 𝜏 that
maximizes their correlation function Γfg(𝜏). An alternative is to find the value of 𝜏 which
minimizes the integral of the squared difference f (x − 𝜏) − g(x), that is, the squared norm‖f

𝜏
− g‖2, where f

𝜏
(x) = f (x − 𝜏). Show that this is equivalent to maximizing Γfg, that is,

that ‖f
𝜏
− g‖2 is minimized when Γfg is maximized, and vice versa.

5.49. Uncertainty
Carry out the mean-square width calculations for the transform pair rect( x

a
) ⟷

a sinc a𝜈 (Example 5.27).

5.50. Quantum mechanics
In quantum mechanics, the position and momentum of a particle are described by wave-
functions𝜓(x) and𝜙(p), respectively, also called probability amplitudes. The probability
of finding a particle in the interval (x, x + dx) is |𝜓(x)|2dx. The probability that the particle
is in the interval (a, b) is

P = ∫
b

a
|𝜓(x)|2dx,

and because the particle must be somewhere, ∫ ∞
−∞ |𝜓(x)|2dx = 1. Likewise, the prob-

ability that the particle’s momentum is in the range (p, p + dp) is |𝜙(p)|2dp, and like
the position, ∫ ∞

−∞ |𝜙(p)|2dp = 1. (Note that the wavefunctions are square integrable; the
theory of the Hilbert space L2 plays an important role in quantum theory.)

The expected (average) values of the particle’s position and momentum are given
by the first moment integrals:

⟨x⟩ = ∫
∞

−∞
x|𝜓(x)|2dx = ∫

∞

−∞
𝜓

∗(x)x𝜓(x)dx,

⟨p⟩ = ∫
∞

−∞
p|𝜙(p)|2dp = ∫

∞

−∞
𝜙
∗(p)p𝜙(p)dp.

The average momentum may also be calculated from the position wavefunction, like
this:

⟨p⟩ = ∫
∞

−∞
𝜓

∗(x)
−ih
2𝜋

d
dx

𝜓(x)dx,

where h is Planck’s constant. In the language of quantum mechanics, −ih

2𝜋

d

dx
is called the

“momentum operator in position space.”
It is an interesting fact that the two wavefunctions are connected by a Fourier

transform:

𝜙(p) = 1√
h ∫

∞

−∞
𝜓(x)e−i2𝜋px∕hdx,

𝜓(x) = 1√
h ∫

∞

−∞
𝜙(p)e+i2𝜋px∕hdp.
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That is, if Ψ is the Fourier transform of 𝜓 , then 𝜙(p) = 1√
h
Ψ(p∕h). For these two

functions, the Fourier uncertainty relationship ΔxΔ𝜈 ≥ 1∕4𝜋 becomes ΔxΔp ≥ h∕4𝜋.
This is the celebrated Heisenberg uncertainty principle.

Your task in this problem is to use the Fourier transform to show that the two
expressions for average momentum are equivalent:

⟨p⟩ = ∫
∞

−∞
𝜙
∗(p)p𝜙(p)dp = ∫

∞

−∞
𝜓

∗(x)
−ih
2𝜋

d
dx

𝜓(x)dx.

After all that introduction, this is really just a Fourier transform problem. Some of the
theorems you may need are the derivative and Parseval.

5.51. Infrared spectroscopy
Infrared (IR) spectroscopy is an important tool in organic chemistry. Molecules have
modes of vibration (as though the atoms were masses connected by springs) with
frequencies in the range of infrared light. Probing a substance with infrared light and
observing the resonant frequencies gives insight into the chemical composition and
molecular structure. IR spectroscopy is done in two ways. The older method is to use
a variable-wavelength source to illuminate the specimen, noting the strengths of the
resonant responses as the input wavelength is adjusted. This is analogous to using a
signal generator and an oscilloscope to measure the frequency response of an electronic
circuit. The more modern technique uses a setup like the one in Figure 5.46.

The light from the source, a wave oscillating with frequency 𝜔, is modeled by a
complex exponential ei𝜔t. It is divided by a beam splitter, reflected off a pair of mirrors,
and recombined by the beam splitter. One mirror is stationary, and the other is movable,
so that the light wave following one path is delayed by an adjustable time Δt = 2x∕c
relative to the light wave following the other path. The light reaching the specimen is
proportional to the sum

ei𝜔t + ei𝜔(t+2x∕c) = eikct(1 + ei2kx),

where 𝜔 = kc and k = 2𝜋∕𝜆, 𝜆 being the wavelength of the light.
The specimen’s absorption response to the incident radiation is G(k). In chemistry

labs, spectra are not plotted as functions of frequency (𝜈 or 𝜔) or wavelength 𝜆, but of

Source

Mirror

Mirror

Beam 
splitter

Specimen Detector

L

L + x

FIGURE 5.46 For Problem 5.52. Optical layout of an infrared spectrometer.
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inverse wavelength 1/𝜆, which is called wavenumber and measured in units of “reciprocal
centimeters,” cm−1. The usual range of wavenumber is 400 to 4000 cm−1. After passing
through the specimen, the complex amplitude of the light reaching the detector is

G(k)(1 + ei2kx)eikct
.

The detector responds to the intensity of the light and integrates out the rapid temporal
fluctuations, leaving |G(k)(1 + ei2kx)|2. This is the result for a single wavelength; the
total detector response is the integral of this over k. The final result is a signal at the
output of the detector that depends on the mirror displacement, x:

f (x) = ∫
∞

−∞

||G(k)(1 + ei2kx)||2 dk.

(a) Derive an expression for the spectrum |G(k)|2 in terms of the measured function
f (x). (You will then see why this technique is called Fourier Transform Infrared
Spectroscopy, or FTIR.)

(b) Simple FTIR instruments used in instructional chemistry labs have a range of mirror
travel (x) of about 0.5 cm. In a research-grade instrument, this range can be 1 m
or more. Based on your understanding of Fourier theory, how does this make the
research instrument superior to the instructional version?

5.52. Radar
In radar, pulses of radio frequency energy are transmitted at a target, which reflects
a portion of the energy back to the receiver. The reflected pulse is detected and used
to obtain information about the target, such as range (distance from the antenna) and
range rate (speed along a line between antenna and target). The radar signal is a pulsed
waveform:

g(t) = a(t) cos 2𝜋𝜈0t,

where 𝜈0 is the carrier frequency and a(t) describes the pulse shape (or, envelope). If the
target is a range R from the transmitter, the pulse undergoes a round-trip delay tR = 2R∕c,
where c is the speed of light. Further, if the target is moving at a range rate s, then the
pulse will experience a Doppler frequency shift given by 𝜈D = 2𝜈0s∕c. The Doppler shift
is very small compared to the carrier frequency, 𝜈D ≪ 𝜈0, and the pulse duration T is
many cycles of the carrier, T ≫ 1∕𝜈0. Hence, to a very good approximation, the Doppler
effects on the pulse shape a(t) are negligible. The resulting Doppler- and time-shifted
radar return is

gR(t) = a(t − tR) cos[2𝜋(𝜈0 + 𝜈D)(t − tR)].

(a) Assuming a rectangular envelope a(t) = rect( t

T
), T ≫ 1∕𝜈0, calculate and sketch the

Fourier transforms of the transmitted pulse g(t) and the received pulse gR(t).

When the return pulse reaches the receiver, it must be detected, usually in the
presence of noise. The goal is to locate the return pulse in time, which gives the range
of the target. It can be shown that the optimum linear time-invariant filter for pulse
detection (in the absence of Doppler effects) has impulse response

h(t) = g(−t),

that is, it is a time-reversed version of the signal. This system is called a matched filter.
The output of the matched filter is passed through an envelope detector, which removes
the carrier and takes the absolute value of what is left (Figure 5.47).
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gR(t)

Matched 
filter

h(t) = g(–t)

Envelope
detector

y(t)

FIGURE 5.47 For Problem 5.53. Matched filter for radar pulse detection.

(b) Assuming that the target’s range rate is zero (no Doppler), calculate and sketch the
output y(t) of the system. How may the range information be extracted from y?

(c) Reasoning in the frequency domain, explain what happens to this system when the
received signal has Doppler shift as well as time delay.

Finally, consider the system shown in Figure 5.48.

×

νa

gR(t)

Modulate
Matched 

filter

h(t) = g(–t)

Envelope
detector

y(t)

FIGURE 5.48 For Problem 5.53. Matched filter system for radar pulse detection with
Doppler.

The return signal is assumed to be both time- and Doppler shifted. The matched filter is
augmented by a modulator whose frequency 𝜈a can be adjusted.

(d) Describe the output y(t, 𝜈a) of this system as 𝜈a is varied. Show how both range and
Doppler information are obtainable.

5.53. Computing the Fourier transform

(a) When using the DFT to approximate the Fourier transform of a function f (x), x > 0,
we calculate samples f [n] = f (nΔx) and then compute the DFT:

F[m] =
N−1∑
n=0

f [n]e−i2𝜋mn∕N
.

The DFT vector (F[m])N−1
m=0 contains the positive frequency components followed by

the negative frequency components:

FΔx =
(

F̂(0),… , F̂
((

N

2
− 1

)
Δ𝜈

)
, F̂

(
−N

2
Δ𝜈

)
,… , F̂(−Δ𝜈)

)
.

Applying the Matlab command fftshift to the DFT vector rotates it so that
the negative frequency components come first, followed by the positive frequency
components. Show that the same result is obtained without using fftshift by
calculating the DFT of (−1)nf [n]. (Use the shift theorem.)

(b) When using the DFT to approximate the Fourier transform of a two-sided function
f (x), we calculate samples f (nΔx), n = − N

2
,… , 0, 1,… , N

2
− 1. The Matlab ifft-

shift command is applied to rotate this vector so that the first element of the vector
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(f [n])N−1
n=0 is f (0). Show that the same effect is obtained, without using ifftshift,

by calculating the DFT of f and then multiplying the DFT by (−1)m. (Use the shift
theorem.)

5.54. Discrete-time Fourier transform, again
Make an appropriate definition of equivalent width for a discrete-time signal (f [n])n∈ℤ
and derive a result analogous to Equation 5.50.

5.55. Discrete-time Fourier transform, again
Derive a version of the moment theorem for the discrete-time Fourier transform.

5.56. Short-time Fourier transform
Show that the short-time Fourier transform conserves energy (Theorem 5.18).

(a) First, note that the short-time Fourier transform is an inner product, and use Parseval’s
formula to show

F(𝜈; u) = ∫
∞

−∞
F(𝜉 + 𝜈) W(𝜉) e+i2𝜋𝜉u d𝜉,

that is, the Fourier transform of F(𝜈; u) with respect to u is F(𝜉 + 𝜈) W(𝜉).

(b) Next, apply Parseval’s formula again to show

∬
∞

−∞
|F(𝜈; u)|2 d𝜈 du = ∬

∞

−∞
|F(𝜉 + 𝜈) W(𝜉)|2 d𝜈 d𝜉

= ‖f‖2 ‖𝑤‖2 = ‖f‖2
.

5.57. Short-time Fourier transform
Derive the inverse formula for the short-time Fourier transform (Theorem 5.18).

(a) From the previous problem, we know that F(𝜈; u) = F−1{F(𝜉 + 𝜈) W(𝜉)}. Use this
with Parseval’s formula to show

∬
∞

−∞
F(𝜈; u)𝑤(t − u) e+i2𝜋𝜈t du dt = ∬

∞

−∞
F(𝜈 + 𝜉) |W(𝜉)|2 ei2𝜋(𝜈+𝜉)t d𝜈 d𝜉.

(b) Use Fubini’s theorem to write

∬
∞

−∞
F(𝜈 + 𝜉) |W(𝜉)|2 ei2𝜋(𝜈+𝜉)t d𝜈 d𝜉 = ∫

∞

−∞
|W(𝜉)|2

[
∫

∞

−∞
F(𝜈 + 𝜉) ei2𝜋(𝜈+𝜉)t d𝜈

]
d𝜉.

and then show that the right-hand side is f (t).



CHAPTER 6
GENERALIZED FUNCTIONS

The Fourier transform developed in the previous chapter applies to functions which
are absolutely or square integrable on the real line (members of L1(ℝ) or L2(ℝ)).
These classes are large and encompass many functions of importance in engineering
and physics, but there are some surprising omissions—sine, cosine, the step and
signum functions, and powers of x, to name a few. These are brought into the picture
by the introduction of generalized functions, the subject of this chapter.

The best-known generalized function is the delta function 𝛿(x), which models
impulsive phenomena like sudden shocks and point charge or mass distributions. The
chapter begins with some physical situations that naturally lead to the introduction
of the delta function. Some operational rules for manipulating delta functions and
using them for practical calculations are then developed. This leads into a broader
discussion of generalized function theory. It is shown that all the ordinary functions
we have worked with so far, and more, are in fact generalized functions, as well as
objects like the delta function with behaviors that defy the traditional definition of
“function.” All generalized functions possess derivatives of all orders—continuity is
no longer a restriction. All generalized functions possess Fourier transforms which are
themselves generalized functions—integrability is no longer the barrier it was. The
chapter concludes by revisiting sampling and the Fourier series in light of generalized
functions. This will unify the Fourier analysis of periodic and aperiodic functions,
finite and infinite sequences—everything we have done so far.

6.1 IMPULSIVE SIGNALS AND SPECTRA

We begin by returning to the subject of linear, time-invariant systems. In Section 5.5.2,
we saw that the response of the first-order differential equation

y′ + 1
𝜏

y = 1
𝜏

x

to a rectangular pulse, n rect (nt), was

y(t) =
⎧⎪⎨⎪⎩

0, t < −1∕2n
n(1 − e−(t+1∕2n)𝜏 ), 1∕2n > t ≥ −1∕2n.
n(1 − e−1∕n𝜏 )e−(t−1∕2n)∕𝜏 , t ≥ 1∕2n

Fourier Transforms: Principles and Applications, First Edition. Eric W. Hansen.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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FIGURE 6.1 Response of a first-order system (𝜏 = 1) to excitation by a unit area pulse
(height n) with rectangular (left) and triangular (right) profile. As n increases so that the
pulsewidth is much smaller than the time constant (1∕n ≪ 𝜏), the pulse shape has a negligible
effect on the overall response. Both responses converge to y(t) = 1

𝜏
e−t∕𝜏 .

As n became very large, so that the pulse duration 1∕n was very short compared with
the system time constant 𝜏, the response was seen to approach the limit:

y(t) = 1
𝜏

e−t∕𝜏 , t > 0. (6.1)

Interpreted as an RC circuit, this corresponds to an instantaneous charging of the
capacitor followed by an exponential discharge.

Now, let us do the problem again, but this time using a triangular input pulse,
x(t) = nΛ(nt). The solution of the differential equation is

y(t) =
⎧⎪⎨⎪⎩

0, t < −1∕n
n2(t + 1∕n) − n2

𝜏(1 − e−(t+1∕n)∕𝜏 ), 0 > t ≥ −1∕n
−n2(t − 1∕n) + n2

𝜏(1 − e−t∕𝜏 ) − n2
𝜏(1 − e−1∕n𝜏 )e−t∕𝜏 , 1∕n > t ≥ 0

n2
𝜏(1 − e−1∕n𝜏 )2e−(t−1∕n)∕𝜏 , t ≥ 1∕n

.

and it is plotted in Figure 6.1. When the triangular pulse width is comparable to the
time constant of the system, the risetime of the response is comparable to the decay
time and the shape of the pulse has a noticeable effect on the response. However,
as n increases to where 1∕n ≪ 𝜏, the risetime becomes negligible compared with
the decay time. As n → ∞, the limit of the response to the triangular pulse input is
e−t∕𝜏∕𝜏, just as with the rectangular pulse. Evidently, the precise shape of the pulse
does not matter once it has become sufficiently narrow.

Informally for now, we will call a pulse with infinitesimal width and unit area
a unit impulse, and write 𝛿(t) to indicate a unit impulse applied at t = 0. The physical
effect of the impulse is to instantaneously change the state of the system (the capacitor
voltage, say). The area of the impulse determines how high the response rises before
beginning to decay. Just prior to t = 0, the output is y(0−) = 0. The impulse is applied
at t = 0, and the output just after this is y(0+) = 1∕𝜏. There is a jump discontinuity
in the output in response to the impulse.
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FIGURE 6.2 Modeling the step function, U(t). Instead of a jump at t = 0, the step is modeled
by a steep ramp (top). Its derivative, U′, is a rectangular pulse n rect nt (bottom).

A similar situation occurs when an inductive circuit is driven with a step input.
The voltage across the inductor in a series RL circuit obeys the differential equation

𝑣
′ + R

L
𝑣 = 𝑣

′
in.

Let 𝑣in = U(t) and write 𝜏 = L∕R, so

𝑣
′ + 1

𝜏
𝑣 = U′(t).

The step function is not differentiable at t = 0. We get around this by approximating
the step by a sequence of ramps (Figure 6.2). The derivative of one such ramp,
approximating the derivative U′ of the step function, is n rect nt. The differential
equation is now, approximately,

𝑣
′ + 1

𝜏
𝑣 = n rect nt.

Within a factor of 𝜏, this is the differential equation solved earlier. The solution, as
n → ∞, will be

𝑣(t) = e−t∕𝜏 , t > 0.

The driving function U′(t) instantaneously changes the inductor voltage 𝑣(t). We
expect this on physical grounds; the inductor voltage changes instantaneously to
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FIGURE 6.3 The sequence of Fourier transforms of fn(x) = exp(−𝜋(x∕n)2) cos(2𝜋ax), a
cosine function multiplied by a Gaussian convergence factor.

oppose an instantaneous change in its current. Mathematically, it appears that the
derivative of the step function has the same effect as an impulse, and instead of
regarding the step as undifferentiable, we might say U′(t) = 𝛿(t).1

For a third example, we consider the Fourier transform of f (x) = cos 2𝜋ax. This
function is not integrable on ℝ, but with a Gaussian convergence factor the functions

fn(x) = e−𝜋(x∕n)2
cos 2𝜋ax, n > 0

are integrable, and as n → ∞ the sequence converges to f . Using the modulation and
dilation theorems, we can easily calculate a sequence of transforms:

Fn(𝜈) = n
2

exp(−𝜋n2(𝜈 − a)2) + n
2

exp(−𝜋n2(𝜈 + a)2).

This sequence is plotted in Figure 6.3. There are two Gaussian pulses, centered at
𝜈 = ±a, each with height n∕2, width proportional to 1∕n, and area 1∕2.

According to the definition of the Fourier transform in L2, the limit of this
sequence is expected to be the Fourier transform F. However, while each of the

1A problem similar to this, driving a transmission line with rectangular telegraph pulses, motivated
Heaviside’s development, in the 1890s, of “operational methods,” which we know today as the Laplace
transform. Heaviside noted that the derivative of a step is usefully treated as impulsive. See Heaviside
(1950, p. 133).
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individual functions fn is square integrable, the limit f (x) = cos 2𝜋ax is not. Corre-
spondingly, although the functions Fn are each in L2(ℝ) (by Parseval’s formula), they
blow up as n → ∞ and fail to converge to an ordinary function.

On the other hand, the Fourier transforms Fn are concentrated around 𝜈 = ±a.
If we took an integer number of periods of cos 2𝜋ax and calculated the Fourier series,
the result would be a pair of spectral lines at 𝜈 = ±a. The tendency of the Gaussian
pulses to become very high and thin, resembling a line spectrum as the sequence
fn approaches the “pure” cosine, seems to be correct. Taking a cue from the two
previous examples, we might say that the Gaussian pulses become a pair of impulses
as n → ∞ and (provisionally) write

cos 2𝜋ax ⟷ 1
2
𝛿(𝜈 − a) + 1

2
𝛿(𝜈 + a)

to denote the cosine spectrum.
To show that this is not just wishful thinking, we will calculate the inverse

Fourier transform, using the rectangular sequence n rect n𝜈 to represent the impulses
(you would rightfully be suspicious of using the Gaussians again). Then the Fourier
transform of the cosine is, approximately,

Fn(𝜈) = 1
2

n rect(n(𝜈 − a)) + 1
2

n rect(n(𝜈 + a)).

The inverse transform, using the shift and dilation theorems, is

fn(x) = 1
2

ei2𝜋ax sinc
( x

n

)
+ 1

2
e−i2𝜋ax sinc

( x
n

)
= cos(2𝜋ax) sinc

( x
n

)
.

In the limit as n → ∞, the sinc gets wider and approaches sinc(0) = 1 everywhere,
leaving just cos(2𝜋ax), as desired.

In the real world, infinitely high and narrow pulses do not exist. But there
are numerous physical examples of highly localized quantities for which impulses
provide useful idealizations, such as sudden shocks, voltage spikes, spectral lines,
point masses, point charges, dipole moments, and point radiators. Using a sequence of
pulses representation, the next section develops an operational definition for impulses
and a set of rules for mathematically manipulating them.

6.2 THE DELTA FUNCTION IN A NUTSHELL

The preceding examples showed three different pulse sequences that exhibit
impulsive behavior: rectangle, (n rect(nx))∞n=1, triangle, (nΛ(nx))∞n=1, and Gaussian,

(ne−𝜋n2x2
)∞n=1. The pulses all have height n, width proportional to 1∕n, and unit area.

By themselves, they grow without bound and cannot be regarded as converging to
any reasonable function in the limit. But in the examples of the RC and RL circuits,
physical damping effects smeared (integrated) the pulses and produced final results
that were both physically and mathematically reasonable. In the Fourier transform
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–1 0 1

0

x
1/2n–1/2n

n max f(x)

min f(x)

FIGURE 6.4 Integrating a continuous function against a rectangular pulse sequence,
(n rect nx)∞n=1. The dashed lines indicate the maximum and minimum of f on the interval

(− 1

2n
, 1

2n
). As n → ∞, the maximum and minimum values both approach f (0).

example, the pulse sequences modeling the impulsive spectra likewise were “tamed”
by passing through the inverse transform integral.

Definition by Pulse Sequences
Let us, then, consider the simplest calculation involving an impulsive pulse sequence,
a rectangular pulse n rect(nx), integrated against a continuous function f (x) (Fig-
ure 6.4):

∫
∞

−∞
n rect(nx) f (x) dx = ∫

1∕2n

−1∕2n
n f (x) dx.

The integrand nf (x) is bounded above and below by its maximum and minimum values
on the interval

(
− 1

2n
, 1

2n

)
. The integral is likewise trapped between two values,

∫
1∕2n

−1∕2n
n max f dx = max f and ∫

1∕2n

−1∕2n
n min f dx = min f ,

and because f is continuous, as n → ∞ and the interval
(
− 1

2n
, 1

2n

)
shrinks to (0−, 0+),

the maximum and minimum values both approach f (0). Therefore,

lim
n→∞∫

∞

−∞
f (x) n rect(nx) dx = f (0).

As a shorthand for this limit of the sequence of integrals, we write

∫ 𝛿(x) f (x) dx = lim
n→∞∫

∞

−∞
n rect(nx) f (x) dx = f (0). (6.2)

The symbol 𝛿(x) is called the unit impulse or delta function. We understand that 𝛿(x) is
not to be interpreted as the pointwise limit of the pulse sequence, for we have already
seen that the sequence grows without bound. Rather, the integral ∫ 𝛿(x) f (x) dx is just
a symbol, a convenient notational device, for the limiting value of the sequence of
integrals in Equation 6.2.
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FIGURE 6.5 Several pulse sequences that can be used to model an impulse. In each graph,
the cases n = 1 and n = 5 are shown.

Equation 6.2 is not the only possible definition for the impulse. The derivation
would be essentially the same if we used triangular pulses, nΛ(nx). And by a different
argument2 it is shown that Gaussian pulses have the same property:

lim
n→∞∫

∞

−∞
ne−𝜋n2x2

f (x) dx = f (0).

In fact, any “peaky” unit area function can be made into an impulse sequence
(Figure 6.5).3

You may have heard the delta function defined this way: it has infinite height,
zero width, and unit area. This is problematic, because height × width = area but
the statement “∞× 0 = 1” makes no sense. It is closer to the truth to say that 𝛿(x) is
the limit of some unit area pulse sequence n𝜓(nx) as n → ∞, but we have to qualify
this: the sequence of pulses does not have a limit function, but the sequence of
integrals ∫ ∞

−∞ n𝜓(nx) f (x) dx does have a limiting value, and in the sense of this limit
of integrals one can say that that n𝜓(nx) → 𝛿(x). This is not the normal behavior one
expects from a function. The delta function is, in fact, not a function in the ordinary

2For proofs that the Gaussian pulse sequence defines a delta function, see Howell (2001, pp. 427–429)
and Lighthill (1958, p. 17).
3Such functions are called “identity sequences” or “approximate identities.” See Howell (2001,
pp. 415–430).
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sense of the term, but the name is entrenched in physics and engineering and we shall
continue to use it here.

In most applications we may bypass the pulse sequence and simply define the
impulse in terms of its fundamental sifting property:

∫ 𝛿(x) f (x) dx = f (0). (6.3)

The impulse extracts, or “sifts out,” the value of f at the impulse location x = 0.
Letting f = 1 reveals that 𝛿 has unit area:

∫
∞

−∞
𝛿(x) dx = 1. (6.4)

Scaling
Setting f = a, a constant function, the impulse extracts f (0) = a:

∫
∞

−∞
a 𝛿(x) dx = a. (6.5)

Scaling a unit impulse by a constant a changes its area to a.

Shifting
Performing the basic integral with a shifted pulse sequence leads to the definition for
a shifted impulse:

∫
∞

−∞
𝛿(x − b) f (x) dx = lim

n→∞∫
∞

−∞
n rect(n(x − b))f (x) dx

= lim
n→∞∫

∞

−∞
n rect(n𝜉) f (𝜉 + b) d𝜉

= ∫
∞

−∞
𝛿(𝜉) f (𝜉 + b) d𝜉 = f (b). (6.6)

(Evidently we would have been justified in pretending that 𝛿 is a function and
performing the change of variable directly on the integral ∫ 𝛿(x − b) f (x) dx rather
than going through the pulse sequence—more about this later.) The shifted impulse
sifts out the value of f at the impulse location x = b. When f = 1, we have ∫ ∞

−∞ 𝛿(x − b)
dx = 1; the shifted unit impulse also has unit area.

The unit impulse 𝛿(x) is portrayed graphically by an arrow of unit height, as
shown in Figure 6.6. The scaled impulse a𝛿(x) with area a is drawn as an arrow of
height a. A shifted unit impulse 𝛿(x − b) is drawn as an unit height arrow at x = b.

Dilation
We may define a dilated impulse 𝛿(ax) by a dilated pulse sequence, say n rect(nax).
The pulses are still centered at x = 0 and will still behave impulsively as n → ∞, but
their areas are 1|a| rather than unity. They no longer represent a unit impulse but rather
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FIGURE 6.6 Impulse functions. Left to right: the unit impulse 𝛿(x); the scaled impulse 1

2
𝛿(x)

has area 1

2
; the shifted unit impulse 𝛿(x − 1).

a scaled impulse 1|a|𝛿(x). Formally,

∫
∞

−∞
𝛿(ax) f (x) dx = lim

n→∞∫
∞

−∞
n rect(nax) f (x) dx

= lim
n→∞∫

∞

−∞
n rect(n𝜉) f

(
𝜉

a

)
d𝜉|a|

= ∫
∞

−∞
𝛿(𝜉)

1|a| f
(
𝜉

a

)
d𝜉 = 1|a| f (0)

∴ 𝛿(ax) = 1|a|𝛿(x). (6.7)

Example 6.1 (Simple operations with delta functions).

1. ∫
∞

−∞
𝛿(x − 1) cos 𝜋x dx = cos 𝜋 = −1

2. ∫
∞

−∞
𝛿(2x) rect x dx = ∫

∞

−∞

1
2
𝛿(x) rect x dx = 1

2

3. ∫
∞

−∞
𝛿(x + 1) e−xU(x) dx = e−(−1)U(−1) = 0

4. ∫
∞

−∞
𝛿(3x − 2)x2 dx = ∫

∞

−∞
𝛿

(
3
(

x − 2
3

))
x2 dx = ∫

∞

−∞

1
3
𝛿

(
x − 2

3

)
x2 dx = 4

27

5. ∫
∞

0
𝛿(x − 1) x2 dx = ∫

∞

−∞
𝛿(x − 1) x2U(x) dx = (1)2U(1) = 1

Nonlinear Dilation
Let h(x) be a continuous function with a zero crossing at a point x = c: h(c) = 0,
h′(c) ≠ 0. We may consider a more general dilation of the delta function, 𝛿(h(x)),
of which 𝛿(ax + b) is a special case. We know that the delta function is localized to
the point where its argument is zero; in this case, at x = c. In the vicinity of x = c,
h is approximated to first order by h(x) = h(c) + h′(c)(x − c) = h′(c)(x − c). Then
𝛿(h(x)) = 𝛿(h′(c)(x − c)), and using Equation 6.7,

𝛿(h(x)) = 1|h′(c)| 𝛿(x − c).
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If h has multiple zero crossings ck, then 𝛿(h(x)) produces an impulse at each root.

𝛿(h(x)) =
∑

k

1|h′(ck)| 𝛿(x − ck), (6.8)

where h(ck) = 0, h′(ck) ≠ 0

Example 6.2. In the delta function 𝛿(x2 − 1), h(x) = x2 − 1 has roots at x = ±1.
The slope is h′(x) = 2x. Thus,

𝛿(x2 − 1) = 1
2
𝛿(x + 1) + 1

2
𝛿(x − 1).

We may obtain some additional insight by representing the delta function as a
sequence of rectangles:

𝛿n(x2 − 1) = n rect(n(x2 − 1)) =
⎧⎪⎨⎪⎩

n, |x2 − 1| < 1∕2n
n∕2, |x2 − 1| = 1∕2n
0, otherwise

.

One of the rectangles extends from x =
√

1 − 1∕2n to
√

1 + 1∕2n, and the other from

−
√

1 + 1∕2n to−
√

1 − 1∕2n. Each has height n and width
√

1 + 1∕2n −
√

1 − 1∕2n.
As n becomes large, the area is

n ⋅ [(1 + 1∕4n) − (1 − 1∕4n) + O(1∕n2)] = 1∕2 + O(1∕n) → 1∕2.

That is, as each rectangle approaches a delta function, it does so with an area
approaching 1∕2.

Example 6.3. Another interesting example is 𝛿(sin(2𝜋x)). There are zeros leading
to delta functions at x = k. The areas are

1|2𝜋 cos(2𝜋k)| = 1
2𝜋

.

Thus,

𝛿(sin(2𝜋x)) =
∞∑

k=−∞

1
2𝜋

𝛿(x − k),

an infinite train of impulses of area 1∕2𝜋, located at the integers. This is known as a
comb function and will be studied in detail later.

The Impulse and the Step
What about the statement that U′(x) = 𝛿(x)? Integrating both sides would imply

U(x) = ∫
x

−∞
𝛿(𝜉) d𝜉. (6.9)

If, for simplicity, the impulse is modeled by a rectangular pulse sequence (n rect nx),
it is easy to develop a sense of what Equation 6.9 is saying. Integrating, we obtain
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(look at Figure 6.2 again)

∫
x

−∞
n rect n𝜉 d𝜉 =

⎧⎪⎨⎪⎩
0, x < − 1

2n
1
2
+ nx, 1

2n
≥ x ≥ − 1

2n

1, x >
1

2n

.

As n → ∞ and the rectangles become narrower and higher, the ramp between x = − 1
2n

and x = 1
2n

becomes steeper (slope n) and narrower (width 1∕n). The integral for

x >
1
2n

is always unity, because the pulses have unit area. In the limit, the result is
a step function. When we integrate across a delta function, there is no contribution
until x = 0−. As the delta function is crossed we collect all of its area at once, and
there is no further contribution for x > 0+.

The relationship between the step and the impulse enables us to define the
derivative of a function that has jump discontinuities.

Example 6.4 (Derivative of the rectangle function). A rectangle can be written
as the difference of two steps:

d
dx

rect x = d
dx

[
U
(

x + 1
2

)
− U

(
x − 1

2

)]
= 𝛿

(
x + 1

2

)
− 𝛿

(
x − 1

2

)
.

The derivative of the positive jump at x = − 1
2

is a positive-going impulse, and the

derivative of the negative jump at x = 1
2

is a negative-going impulse (Figure 6.7).

Example 6.5. Let f (x) = cos 2𝜋x sgn x (Figure 6.8). For x < 0, f = − cos 2𝜋x and
f ′ = 2𝜋 sin 2𝜋x. For x > 0, f = cos 2𝜋x and f ′ = −2𝜋 sin 2𝜋x. Right at x = 0, there is
a jump of height 2, from −1 to 1. Ordinarily, the function would be undifferentiable
here, but we have just seen that the derivative of a unit step is a unit impulse. By
linearity, the derivative of a jump of height 2 is an impulse with area 2. Hence, we
have

f ′(x) =
⎧⎪⎨⎪⎩

2𝜋 sin 2𝜋x, x < 0
2𝛿(x), x = 0
−2𝜋 sin 2𝜋x, x > 0

= −2𝜋 sin 2𝜋x sgn x + 2𝛿(x)

In general, any piecewise continuous function can be expressed as the sum of a
piecewise smooth function and a piecewise constant function consisting solely of
jumps. The derivative of this function will be the sum of the ordinary deriva-
tives of the continuous parts and a set of impulses representing the derivatives of
the jumps.



378 CHAPTER 6 GENERALIZED FUNCTIONS

–2 –1 0 1 2

–1

0

1

x

f(
x)

–2 –1 0 1 2

–1

0

1

x

f'
(x

)

FIGURE 6.7 The rectangle function f (x) = rect x (top) and its derivative f ′(x) = 𝛿(x + 1

2
) −

𝛿(x − 1

2
) (bottom). The positive and negative impulses at x = ∓ 1

2
correspond to the positive

and negative jumps in the rectangle.

Example 6.6. The derivative of the one-sided exponential function f (x) =
1
2
e−3xU(x) is

f ′(x) =
⎧⎪⎨⎪⎩

0, x < 0
(f (0+) − f (0−)) 𝛿(x), x = 0 (the jump)
− 3

2
e−3x, x > 0 (the continuous part)

= 1
2
𝛿(x) − 3

2
e−3xU(x).

Derivative of the Delta Function
Suppose we represent the delta function by a rectangle sequence, n rect(nx). The
derivative of this rectangular pulse is n𝛿(x + 1∕2n) − n𝛿(x − 1∕2n)—a positive
impulse at the leading edge of the rectangle and a negative impulse at the trail-
ing edge. Does this sequence have a meaningful limit? To find out, we integrate it
against a continuous function:

∫
∞

−∞
[n𝛿(x + 1∕2n) − n𝛿(x − 1∕2n)] f (x) dx = nf (−1∕2n) − nf (1∕2n)

= −
f (1∕2n) − f (−1∕2n)

1∕n
.
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FIGURE 6.8 The function f (x) = cos(2𝜋x) sgn x (top) and its derivative f ′(x) =
−2𝜋 sin(2𝜋x) sgn x + 2𝛿(x) (bottom).

As n → ∞, it becomes a derivative:

−
f (1∕2n) − f (−1∕2n)

1∕n
→ −f ′(0).

We define the derivative of the delta function, 𝛿′(x), by the derivative of the pulse
sequence for 𝛿(x) and assign the operational rule

∫
∞

−∞
𝛿
′(x) f (x) dx = −f ′(0). (6.10)

Fourier Transforms
Let us apply the sifting property (6.3) to the inverse Fourier transform. The Fourier
kernel e+i2𝜋𝜈x is continuous, so we may insert an impulse into the inverse Fourier
transform, obtaining

F−1{𝛿(𝜈)} = ∫
∞

−∞
𝛿(𝜈) e+i2𝜋𝜈x d𝜈 = e+i2𝜋0x = 1.

We cannot perform the forward transform as an ordinary integral because f (x) = 1
is not absolutely integrable. Instead, model f as the limit of a sequence of functions,
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fn(x) = e−𝜋(x∕n)2
; as n → ∞, fn → 1. The Fourier transform of fn is, using the dilation

theorem,

Fn(𝜈) = ne−𝜋n2
𝜈

2
,

a sequence that defines the impulse (Figure 6.5).
By an identical calculation, the inverse Fourier transform of the shifted impulse

𝛿(𝜈 − a) is ei2𝜋ax. By the linearity of the Fourier transform,

F−1
{1

2
𝛿(𝜈 − a) + 1

2
𝛿(𝜈 + a)

}
= 1

2
e+i2𝜋ax + 1

2
e−i2𝜋ax = cos 2𝜋ax,

and also,

F−1
{ 1

2i
𝛿(𝜈 − a) − 1

2i
𝛿(𝜈 + a)

}
= 1

2i
e+i2𝜋ax − 1

2i
e−i2𝜋ax = sin 2𝜋ax.

These transforms are graphed in Figure 6.9.
We can even calculate the Fourier transform of 𝛿′:

F{𝛿′(x)} = ∫
∞

−∞
𝛿
′(x) e−i2𝜋𝜈x dx = − d

dx
e−i2𝜋𝜈x||||x=0

= i2𝜋𝜈 e−i2𝜋𝜈0 = i2𝜋𝜈.

In light of the derivative theorem for the Fourier transform, this result should not
be surprising. The repeated transform theorem, Equation 5.5, then gives the result
x ⟼ − 1

i2𝜋
𝛿
′(𝜈). How interesting—x is not integrable, but it has a Fourier transform!
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Collecting our results, we have several new transform pairs:

1 ⟷ 𝛿(𝜈) (6.11)

ei2𝜋x ⟷ 𝛿(𝜈 − 1) (6.12)

cos 2𝜋x ⟷ 1
2
𝛿(𝜈 − 1) + 1

2
𝛿(𝜈 + 1) (6.13)

sin 2𝜋x ⟷ 1
2i
𝛿(𝜈 − 1) − 1

2i
𝛿(𝜈 + 1) (6.14)

x ⟷ − 1
i2𝜋

𝛿
′(𝜈) (6.15)

Example 6.7 (Mixed transforms). Sums of impulses and ordinary functions may
appear in the same Fourier transform. For example, using the linearity of the Fourier
transform,

1 + Λ(x) ⟼ 𝛿(𝜈) + sinc2(𝜈).

2 sin(𝜋x) + e−2𝜋x2
⟼ −i𝛿(𝜈 − 1∕2) + i𝛿(𝜈 + 1∕2) + 1√

2
e−𝜋𝜈

2∕2
.

By linearity, we expect the Fourier transform of a function f defined by a
Fourier series (i.e., a periodic function) to be

F(𝜈) = F
{ ∞∑

n=−∞
cnei2𝜋nx∕L

}
=

∞∑
n=−∞

cnF{ei2𝜋nx∕L}.

For the moment, we will assume that the infinite series can actually be Fourier-
transformed term-by-term. To calculate the Fourier transform of the complex expo-
nential, we use the dilation theorem together with Equations 6.12 and 6.7:

F{ei2𝜋nx∕L} = F{ei2𝜋(n∕L)x} = 1|n∕L| 𝛿
(

𝜈

n∕L
− 1

)
= L|n| 𝛿 [L

n

(
𝜈 − n

L

)]
= 𝛿

(
𝜈 − n

L

)
.

Finally, we have

F(𝜈) =
∞∑

n=−∞
cn 𝛿

(
𝜈 − n

L

)
.

The Fourier spectrum is a set of discrete spectral lines, represented by impulses
located at the frequencies of the harmonics.

Convolution
A convolution result also follows from the sifting property. Consider

f (x) ∗ 𝛿(x − a) = ∫
∞

−∞
f (𝜉) 𝛿[(x − 𝜉) − a] d𝜉 = ∫

∞

−∞
f (𝜉)

1| − 1|𝛿[𝜉 − (x − a)] d𝜉

= f (x − a), (6.16)
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if f is everywhere continuous (later we will see that the continuity requirement can
be removed). The effect of convolution with the delta function is to shift f by a along
the x axis. One way to remember the distinction between product and convolution,
f 𝛿 and f ∗ 𝛿, is

“Multiplication sifts, convolution shifts.”

Assuming that the convolution theorem applies when a delta function is
involved (it does), we can see in the frequency domain

F{f (x) ∗ 𝛿(x − a)} = F(𝜈)e−i2𝜋𝜈a = F{f (x − a)},

in agreement with the shift theorem.

Example 6.8 (Modulation as convolution). The modulation theorem (Equa-
tion 5.21)

f (t) cos(2𝜋𝜈0t) ⟼ 1
2

F(𝜈 − 𝜈0) + 1
2

F(𝜈 + 𝜈0)

may be usefully interpreted as a convolution in the frequency domain:

f (t) cos(2𝜋𝜈0t) ⟼ F(𝜈) ∗ F{cos(2𝜋𝜈0t)}

= F(𝜈) ∗
[1

2
𝛿(𝜈 − 𝜈0) + 1

2
𝛿(𝜈 + 𝜈0)

]
= 1

2
F(𝜈 − 𝜈0) + 1

2
F(𝜈 + 𝜈0).

Convolution provides an efficient route to the Fourier transform of the Gaussian-
tapered cosine in Figure 6.3:

e−𝜋(x∕b)2
cos 2𝜋ax ⟼ be−𝜋(b𝜈)2 ∗

[1
2
𝛿(𝜈 − a) + 1

2
𝛿(𝜈 + a)

]
= b

2
e−𝜋n2(𝜈−a)2 + b

2
e−𝜋n2(𝜈+a)2

.

Convolution with the Gaussian causes the delta functions to “melt”. As b increases
the impulses sharpen.

This completes the basic set of operational rules for manipulating the delta
function. They are summarized in Table 6.1 and again at the end of the chapter.

6.3 GENERALIZED FUNCTIONS

The delta function and related mathematical objects have been intuitively understood
and used in physics and engineering since the nineteenth century. Kirchoff employed
a sequence of Gaussian pulses to model the singularity at the origin of a diverging
spherical wave. Heaviside used the step function and its derivative in his analyses
of telegraph cables. Dirac, in his development of quantum mechanics, used the
delta function to express the orthogonality of families of functions with continuous,
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TABLE 6.1 Basic operational rules for the delta function.

Rule Formula

Unit area ∫ ∞
−∞ 𝛿(x)dx = 1

Sifting ∫ ∞
−∞ f (x)𝛿(x − a)dx = f (a)

with 𝛿
′ ∫ ∞

−∞ f (x)𝛿′(x − a)dx = −f ′(a)

Convolution f (x) ∗ 𝛿(x − a) = f (x − a)

vs. sifting f (x)𝛿(x − a) = f (a)𝛿(x − a)

Step function U(x) = ∫ x
−∞ 𝛿(𝜉) d𝜉, U′(x) = 𝛿(x)

Dilation 𝛿(ax) = 1|a| 𝛿(x)

nonlinear 𝛿(h(x)) = 1|h′(c)| 𝛿(x − c), h(c) = 0

Fourier transforms 1 ⟷ 𝛿(𝜈)

ei2𝜋x ⟷ 𝛿(𝜈 − 1)

cos(2𝜋x) ⟷ 1
2
𝛿(𝜈 − 1) + 1

2
𝛿(𝜈 + 1)

sin(2𝜋x) ⟷ 1
2i
𝛿(𝜈 − 1) − 1

2i
𝛿(𝜈 + 1)

x ⟷ − 1
i2𝜋

𝛿
′(𝜈)

rather than discrete, indices. Recall, for the Fourier series we wrote ⟨ei2𝜋nx, ei2𝜋mx⟩ =
𝛿[n − m], the unit sample or Kronecker delta. The equivalent statement for the Fourier
transform, as we shall see, is ⟨ei2𝜋𝜈x, ei2𝜋𝜇x⟩ = 𝛿(𝜈 − 𝜇), using the “Dirac delta.”

These early applications were based largely on physical intuition. The calcu-
lations were justified by the physical correctness of the results. In the mid-twentieth
century Schwartz developed a rigorous mathematical structure for what he called dis-
tributions. Lighthill followed a decade later with his theory of generalized functions,
based on a careful development of the physically appealing sequence of functions
approach we followed in the preceding section.4

Our earlier observation that U′ = 𝛿 suggests that ordinary functions like the
step and impulsive objects like the delta function are not really that far apart. Our
objective in this section is to present a common framework for the two via the
theory of generalized functions. The delta function is the best known example of a
generalized function, and the sequence-of-pulses approach of the preceding section
is sufficient to obtain its most important properties, including its Fourier transform.
We will see that ordinary functions, including nonintegrable functions like the step
and signum as well as all the functions in L2, are also generalized functions.

4See Schwartz (1951). For an accessible introduction to Schwartz’ approach, in English, see Strichartz
(1994), especially the first four chapters. Also, see Folland (1992, Chapter 9). The sequence of functions
approach to generalized functions is beautifully and succinctly presented in Lighthill (1958). For a more
comprehensive treatment see Jones (1982).
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6.3.1 Functions and Generalized Functions

We know that a function f is a mapping from one set of numbers, for example, ℝ
or [a, b], to another set of numbers, for example, ℝ or ℂ. In elementary calculus,
two functions f and g are equal if they agree pointwise, f (x) = g(x), for all x in their
common domain. Equivalently, f = g if their difference is zero, (f − g)(x) = 0 for
all x. When we began to look at normed spaces, we augmented this strict pointwise
equality with the idea of equivalence in norm: two functions in a normed space may
differ at some points (comprising a set of measure zero) but be considered equivalent
if ‖f − g‖ = 0.

When we met the delta function in the previous section, we lost these touch-
points. The sequence of functions 𝛿n(x) = n rect(nx), by which we defined the delta
function, is not Cauchy (try it), and while it converges to zero for x ≠ 0, it diverges
at x = 0. There is no well-defined function that is the limit of 𝛿n(x) either point-
wise or in norm. Yet we did find that the sequence of numbers produced by the
integrals ∫ 𝛿n(x) f (x) dx was convergent, and that is how we defined the limit of the
sequence (𝛿n) to be 𝛿. We also saw that more than one pulse sequence could be
used for 𝛿n (e.g., n rect(nx), nΛ(nx)) with the same results, so in that sense they
were equivalent, even though individual members of the sequences were certainly
not equal: n rect(nx) ≠ nΛ(nx), either pointwise or in norm, by our familiar criteria
(e.g., calculate ‖n rect(nx) − nΛ(nx)‖1).

Yet another way to think about equivalent functions is expressed by the follow-
ing theorem for inner product spaces.

Theorem 6.1. Let V be an inner product space. Two vectors f , g ∈ V are equivalent
if and only if ⟨f ,𝜑⟩ = ⟨g,𝜑⟩ for all vectors 𝜑 ∈ V.

Proof: Suppose f = g. Then ‖f − g‖ = 0. Consider the inner product ⟨f − g,𝜑⟩. By
Cauchy–Schwarz,

|⟨f − g,𝜑⟩| ≤ ‖f − g‖ ‖𝜑‖ = 0.

Since the magnitude of the inner product is bounded above by zero, it is zero, and by
the linearity of the inner product, ⟨f − g,𝜑⟩ = ⟨f ,𝜑⟩ − ⟨g,𝜑⟩ = 0, so ⟨f ,𝜑⟩ = ⟨g,𝜑⟩.

Now suppose that ⟨f ,𝜑⟩ = ⟨g,𝜑⟩ for all 𝜑 ∈ V. Then

⟨f ,𝜑⟩ − ⟨g,𝜑⟩ = ⟨f − g,𝜑⟩ = 0,

that is, the function f − g is orthogonal to every vector 𝜑 in the space. The only
element of V that has this distinction is the zero vector (and, for functions, those that
are equal to zero almost everywhere). So f − g = 0, therefore f = g.

The theorem implies that a function f may be characterized not by its values
(a table of x vs. f (x)), but by its inner products with all the functions in some space
(a table of 𝜑 vs. ⟨f ,𝜑⟩). We can think of f as specifying a mapping not from ℝ to
ℂ, but from V to ℂ. The functions 𝜑 ∈ V “test” f and produce a characteristic set of
numbers according to the inner product ⟨f ,𝜑⟩. If another function g makes the same
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Vin VinVout Vout

FIGURE 6.10 On the basis of sinusoidal test inputs these two circuits are indistinguishable.
The frequency response of the RC circuit (left) is Vout(𝜈)∕Vin(𝜈) = 1∕(1 + i2𝜋𝜈RC), and the
frequency response of the RL circuit (right) is Vout(𝜈)∕Vin(𝜈) = 1∕(1 + i2𝜋𝜈R∕L).

inner products as f when it is applied to the same set of “testing functions” 𝜑, then g
is considered to be equivalent to f .

This notion of equivalence has an analogy in system theory. If you have a
“black box” containing an unknown assembly of components, you can characterize
it by applying test inputs, for example, with a sine wave generator and measuring the
magnitude and phase of the outputs. On the basis of your measurements, you might
hypothesize that the box contains an RC circuit with a one-second time constant
RC = 1. But it could also be an RL circuit with time constant L∕R = 1 (Figure 6.10).
There are other ways to tell the circuits apart, but if they respond identically to the
set of sinusoidal test inputs, they must be considered equivalent with respect to those
test inputs.

This new approach—characterizing a mapping by its action on a set of testing
functions—provides common ground for ordinary functions and the delta function.
We can diagram the relationship as follows:

Ordinary functions Delta function

Convergent sequence, fn → f Divergent sequence, 𝛿n

Convergent sequence, ∫ ∞
−∞ fn(x)𝜑(x) dx Convergent sequence, ∫ ∞

−∞ 𝛿n(x)𝜑(x) dx

Limit is ordinary integral, ∫ ∞
−∞ f (x)𝜑(x) dx Limit is symbolic, ∫ 𝛿(x)𝜑(x) dx

When we write, for an ordinary function,

∫
∞

−∞
f (x)𝜑(x) dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

ordinary integral

= lim
n→∞∫

∞

−∞
fn(x)𝜑(x) dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

ordinary integral

we have actual integrals of ordinary functions on both sides of the expression.5 When
we write ∫ 𝛿(x)𝜑(x) dx (with or without limits of integration), it is not an actual

5Actually, one must prove that one can take the limit under the integral sign. More about this later.
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integral, but a convenient symbol for the limit of a sequence of integrals:

∫ 𝛿(x)𝜑(x) dx

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

symbol

= lim
n→∞∫

∞

−∞
𝛿n(x)𝜑(x) dx

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

ordinary integral

= 𝜑(0).

In both cases—ordinary function and delta function—the underlying model is a
sequence of ordinary functions that produce a convergent sequence of integrals, a
mapping not from numbers to numbers, but from testing functions to numbers.

A mapping from functions to numbers, a “function of a function,” is called a
functional.6 We may write T[𝜑] to denote the number obtained by operating on an
input function 𝜑 with a functional T . What we call the delta function is actually the
delta functional, defined T

𝛿
[𝜑] = 𝜑(0). An important category of functionals consists

of those that are generated by inner products:

T[𝜑] = ∫
∞

−∞
f (x)𝜑(x) dx.

Such functionals are linear, in that T[a𝜑1 + b𝜑2] = aT[𝜑1] + bT[𝜑2], for input func-
tions 𝜑1,𝜑2 and constants a, b. They are also bounded (by Hölder’s inequality) and
continuous, meaning that if (𝜑k) is a sequence of functions converging to zero, then
the sequence (T[𝜑k]) also converges to zero.7 One way to define a generalized func-
tion is as a linear continuous functional on a space of testing functions. This is a
little abstract for our purposes, so we shall follow a different path similar to our
development of the delta function in the preceding section.

6.3.2 Generalized Functions as Sequences of Functions

Specifying a set of testing functions is the first step in building a theory of generalized
functions. One function space in particular is best suited for developing generalized
functions for Fourier analysis. They are called Schwartz functions or (quaintly) good
functions. These and three other important function classes are defined next. Table 6.2
gives some common examples of these classes.

Definition 6.1 (Rapid descent, slow growth, fairly good, and good functions).
Let f : ℝ → ℂ be a function.

(a) f has rapid descent, or is rapidly decreasing, if it and all its derivatives decay
faster than (1 + x2)−N as |x|→ ∞, for all N.

(b) f is of slow growth or slowly increasing if it can be made integrable (L1) by
dividing it by a polynomial, for example,

∫
∞

−∞

|f (x)|dx

(1 + x2)N
< ∞, N > 0.

6Champeney, 1987, pp. 119–122; Folland, 1992, pp. 304–308.
7Properly, the Riesz representation theorem states that any linear continuous functional has the form of an
inner product, not the other way around as we have stated here. Boundedness and continuity can be shown
to go together; a linear functional that is bounded is also continuous, and vice versa.
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TABLE 6.2 Examples of slow growth, fairly good, and good functions. The classes are nested:
good ⊂ fairly good ⊂ continuous and slow growth ⊂ slow growth. x−1 has polynomial decay but a
nonintegrable singularity at the origin. It may be treated as a generalized function. The last entries,
ex, sinh x, and cosh x, exhibit rapid growth.

K C ∩K S
Function Slow growth Continuous, SG Fairly good Good

e−𝜋x2 ∙ ∙ ∙ ∙
e−1∕(1−x2)rect(x∕2) ∙ ∙ ∙ ∙
polynomials P(x) ∙ ∙ ∙
P(x)
Q(x)

, Q has no real roots ∙ ∙ ∙
eix, sin x, cos x ∙ ∙ ∙
xneix ∙ ∙ ∙
sinc x ∙ ∙ ∙
Bandlimited functions ∙ ∙ ∙
ei𝜋x2 ∙ ∙ ∙
e−|x| ∙ ∙
Λ(x) ∙ ∙
x log |x| ∙ ∙
log |x| ∙|x|−1∕2 ∙
U(x), sgn x, rect x ∙
x−1

ex, sinh x, cosh x

(c) f is a fairly good function if it is infinitely continuously differentiable, and if it
and all its derivatives are slowly growing.

(d) f is a good function if it is infinitely continuously differentiable and rapidly
decreasing. Good functions are also called Schwartz functions.

Various properties of these function classes are readily established. The point
of these relationships is that routine operations performed on good functions do not
affect their “goodness,” and that “less good” functions are improved by operating on
them with good functions. Proofs are left to the problems.

� The set of all slow growth functions is a vector space (denoted K).
� The set of all good functions is a vector space (denoted S).
� The derivative of a good function is good.
� The sum, product, or convolution of two good functions is good.
� The product of a fairly good function and a good function is good.
� The product of a slow growth function and a good function is bounded, abso-

lutely integrable, and goes to zero as |x| → ∞.
� The convolution of a rapidly decreasing function and a good function is good.
� The convolution of a slow growth function and a good function is infinitely

continuously differentiable.
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It should also be apparent that good functions belong to L1 and L2 (in fact, S ⊂ Lp

for all p ≥ 1), and that L1
⊂ K.

We shall choose the good functions S for our testing functions.8 They are
so smooth and decay so rapidly that we can shift, dilate, differentiate, so on, with
impunity. Moreover, the Fourier transform of a good function is good. To see why,
recall the intimate connection between a function’s smoothness and the asymptotic
behavior of its Fourier transform. If a function is r-times differentiable, its Fourier
transform decays O(|𝜈|−(r+1)). (Think: rect ⟼ sinc, Λ ⟼ sinc2, and Gaussian ⟼
Gaussian.) If a function is infinitely continuously differentiable (C(∞)), its transform
will decay faster than any polynomial, that is, be rapidly decreasing. Conversely, the
Fourier transform of a rapidly decreasing function is C(∞). A good function possesses
both of these complementary attributes, and so does its Fourier transform.

Generalized functions are defined using good functions, starting with the
following.

Definition 6.2 (Generalized function). A sequence (gn)∞n=0 of good functions is
regular if the sequence of numbers (bn), where

bn = ∫
∞

−∞
gn(x)𝜑(x) dx,

converges for all good testing functions 𝜑. A generalized function g is a regular
sequence of good functions (gn). The symbol ∫ g(x)𝜑(x) dx is defined to be the limit
of the sequence of integrals:

∫ g(x)𝜑(x) dx = lim
n→∞∫

∞

−∞
gn(x)𝜑(x) dx.

The integrals ∫ ∞
−∞ gn(x)𝜑(x) dx will exist because the gn are good, so the product

gn𝜑 is good and therefore integrable. The question of regularity concerns the conver-
gence of the sequence of values that come out of the integrals. Not every such sequence
is convergent. For example, the sequence of Gaussian pulses (n exp(−𝜋n2x2)) have
unit area, and the sequence of integrals with testing functions converges to 𝜑(0). It is
a regular sequence and defines the generalized function 𝛿(x). On the other hand, the
functions in the sequence (n2 exp(−𝜋n2x2)) have areas proportional to n. Although
they are also good functions, their integrals with testing functions, equal to n𝜑(0),
grow without bound as n → ∞. The sequence does not define a generalized function.

The sequence (gn) may also converge to an ordinary function, pointwise or in
norm. If it does, we say it defines a regular generalized function. If it does not (e.g.,
the delta function), we say the generalized function is singular. It can be shown
that all ordinary functions f ∈ Lp, ∞ > p ≥ 1, and all slowly growing functions are

8Generalized functions based on good testing functions are also called tempered distributions, temperate
distributions, or distributions of slow growth. The set of all tempered distributions is called S′ and can
be shown to be a vector space. In this text when we say “generalized function” we mean only “tempered
distribution.” Other classes of generalized function using different testing functions are described in several
places, including Zemanian (1987), Folland (1992), Gasquet and Witomski (1999), and Champeney (1987).
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regular generalized functions.9 Thus, generalized functions encompass the ordinary
functions we worked with in earlier chapters, particularly those in L1 and L2, together
with slowly growing functions and the impulses.

The notion of convergence in Definition 6.2 can be applied to more than
sequences of good functions.

Definition 6.3 (Weak convergence10). A sequence of generalized functions (fn) is
said to be weakly convergent if the sequence of numbers (bn), where

bn = ∫ fn(x)𝜑(x) dx,

is convergent for all 𝜑 ∈ S. The sequence (fn) is said to converge weakly to a gener-
alized function f if

∫ f (x)𝜑(x) dx = lim
n→∞∫ fn(x)𝜑(x) dx.

For example, both 𝛿 and 𝛿
′ can be represented by good (Gaussian-based)

sequences, but we have also seen that a delta function can be represented by a
weakly convergent sequence of rectangles, and the derivative of a delta function
can be represented by a weakly convergent sequence of delta functions, 𝛿′n(x) =
n𝛿(x + 1∕2n) − n𝛿(x − 1∕2n).

6.3.3 Calculus of Generalized Functions

The expansion from ordinary functions to generalized functions necessitates a rethink-
ing of how to do calculus. This section shows how the familiar ways of manipulating
functions are redefined for generalized functions.

Equivalence
Because a generalized function is defined by its action on testing functions, two
generalized functions that act the same way for all testing functions are considered
to be equivalent.

Definition 6.4 (Equivalence of generalized functions). Let f and g be generalized
functions. If

∫ f (x)𝜑(x) dx = ∫ g(x)𝜑(x) dx,

for all testing functions 𝜑 ∈ S, they are equivalent, and we write f = g.

9See Lighthill (1958, pp. 22–23) and Strichartz (1994, pp. 92–95) for a way to construct an approximating
sequence for an ordinary function. The basic idea is to smear out the function by convolution with a unit
area good function n𝜌(nx), then multiply the result by a second good function 𝜓(x∕n), where 𝜓(0) = 1.
The convolution gives infinite continuous differentiability, and the product gives rapid descent. As n → ∞,
n𝜌(nx) becomes sharper, 𝜓(x∕n) flattens out, and the sequence converges to the original function.
10What we are calling weak convergence is more properly called temperate convergence, because our
generalized functions are tempered distributions. The idea of weak convergence is applicable to generalized
functions defined over other spaces of testing functions besides S. See Folland (1992, pp. 314, 334).
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Example 6.9. Let f and g be generalized functions defined by the sequences
fn(x) = n exp(−𝜋n2x2) and gn(x) = n

2
sech2(nx). Both sequences have delta function

behavior:

∫
∞

−∞
n exp

(
−𝜋n2x2)

𝜑(x) dx → 𝜑(0)

∫
∞

−∞

n
2

sech2(nx)𝜑(x) dx → 𝜑(0)

so we say f = g = 𝛿.

For ordinary functions f and g, in addition to equivalence we have scaling
(af ), addition (f + g), multiplication (fg), shifting (f (x − b)), dilation (f (ax)), even
and odd symmetry, real and imaginary parts, and differentiation (f ′). What we need
to do now is see how these ideas extend to generalized functions. An operation on a
generalized function is always consistent with the operation on an ordinary function,
via the generalized definition of equivalence.

Scaling, Adding, Shifting, Dilating
Generalized functions can be scaled, added, shifted, and dilated. First, consider
scaling. If f is an ordinary function, then af is defined by (af )(x) = a ⋅ f (x)—just
take the values of f (x) and multiply them by a. We cannot do this for a generalized
function, because it may not have nice values (think: 𝛿(0) = ?). Instead, we develop
a consistent definition by replacing the generalized function by a sequence of good
functions, working with the sequence of ordinary integrals, and then taking a limit to
get back to a generalized function:

∫ af (x)𝜑(x) dx = lim
n→∞∫

∞

−∞
afn(x) 𝜑(x) dx.

Because fn is an ordinary function, we can transfer the scaling factor from fn to 𝜑:

∫
∞

−∞
fn(x) a𝜑(x) dx.

The scaled testing function a𝜑 is still a good function, so we know the sequence of
integrals will converge to

∫ f (x) a𝜑(x) dx.

Thus we have the definition of a scaled generalized function:

∫ af (x) 𝜑(x) dx = ∫ f (x) a𝜑(x) dx, (6.17)

that is, af is the generalized function which operates on a testing function𝜑 to produce
the same result as would be obtained by operating on a scaled testing function a𝜑
with the generalized function f .
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The method used may be diagrammed like this:

Generalized ∫ af (x)𝜑(x) dx = ∫ f (x) a𝜑(x) dx
⏐⏐⏐⏐⏐⏐
↓

sequence
↑⏐⏐⏐⏐⏐⏐

n→∞

Ordinary ∫
∞

−∞
afn(x)𝜑(x) dx = ∫

∞

−∞
fn(x) a𝜑(x) dx

The result for generalized functions is obtained by passing through the realm of
ordinary functions. Applying the same method to addition, shifting, and dilation
yields

∫ (f + g)(x) 𝜑(x) dx = ∫ f (x) 𝜑(x) dx + ∫ g(x) 𝜑(x) dx, (6.18)

∫ f (x − b) 𝜑(x) dx = ∫ f (x) 𝜑(x + b) dx, (6.19)

∫ f (ax) 𝜑(x) dx = ∫ f (x)
1|a|𝜑( x

a

)
dx. (6.20)

Each of these seems intuitive—what works for generalized functions must also work
for ordinary functions, and conversely, a good clue to what works for generalized
functions is to consider what works for ordinary functions. In many cases, we may
manipulate generalized functions as though they were ordinary functions, without
explicitly invoking an underlying sequence of ordinary functions. When in doubt,
though, one may always resort to a sequence to be sure.

Example 6.10. Suppose that we want to know what a scaled delta function does.
We cannot talk about values of a𝛿(x), because 𝛿 does not have values in the ordinary
sense. So we use the definition (Equation 6.17):

∫ a𝛿(x)𝜑(x) dx = ∫ 𝛿(x) a𝜑(x) dx.

The definition pushes the factor a off the 𝛿 and onto the testing function𝜑, an ordinary
function that we know how to scale. The result is

∫ a𝛿(x)𝜑(x) dx = ∫ 𝛿(x) a𝜑(x) dx = a𝜑(0).

That is, a𝛿 is the generalized function that maps the testing function 𝜑 to a𝜑(0).

Example 6.11. Show that 2𝛿(x) + 𝛿(x) = 3𝛿(x).

∫ (2𝛿(x) + 𝛿(x))𝜑(x) dx = ∫ 2𝛿(x)𝜑(x) dx + ∫ 𝛿(x)𝜑(x) dx

= 2𝜑(0) + 𝜑(0) = 3𝜑(0).

This is the same result as ∫ 3𝛿(x)𝜑(x) dx, so by the definition of equivalence, 2𝛿(x) +
𝛿(x) = 3𝛿(x).
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Example 6.12 (Shifted delta function).

∫ 𝛿(x − 1)𝜑(x) dx = ∫ 𝛿(x)𝜑(x + 1) dx = 𝜑(1).

𝛿(x − 1) is the generalized function that maps 𝜑 to 𝜑(1).

Example 6.13 (Dilated delta function). Earlier we argued that 𝛿(ax) = 1|a|𝛿(x)

(Equation 6.7). Now we will get it from the definition (6.20):

∫ 𝛿(ax) 𝜑(x) dx = ∫ 𝛿(x)
1|a|𝜑( x

a

)
dx = 1|a|𝜑(0).

This is the same result as ∫ 1|a|𝛿(x) 𝜑(x) dx, so we conclude 𝛿(ax) = 1|a|𝛿(x).

Even and Odd Generalized Functions
Like ordinary functions, a generalized function is even if f (x) = f (−x) and odd if
f (x) = −f (−x). To understand what f (−x) means for a generalized function, use the
definition of dilation with a = −1:

∫ f (−x)𝜑(x) dx = ∫ f (x)𝜑(−x) dx.

This leads to generalized definitions for even and odd in terms of actions on testing
functions:

Even ∫ f (x)𝜑(x) dx = ∫ f (x)𝜑(−x) dx (6.21a)

Odd ∫ f (x)𝜑(x) dx = −∫ f (x)𝜑(−x) dx. (6.21b)

That is, f is even if it acts identically on a testing function and a reversed version of
the testing function. It is odd if acts identically except for a sign flip.

Example 6.14. The Fourier transforms for sin 2𝜋x and cos 2𝜋x are

sin 2𝜋x ⟼ 1
2i

[𝛿(𝜈 − 1) − 𝛿(𝜈 + 1)],

cos 2𝜋x ⟼ 1
2

[𝛿(𝜈 − 1) + 𝛿(𝜈 + 1)].

The transform of the cosine is even, because

∫
1
2

[𝛿(𝜈 − 1) + 𝛿(𝜈 + 1)]𝜑(𝜈) d𝜈 = 1
2

[𝜑(1) + 𝜑(−1)]

∫
1
2

[𝛿(𝜈 − 1) + 𝛿(𝜈 + 1)]𝜑(−𝜈) d𝜈 = 1
2

[𝜑(−1) + 𝜑(1)].

Verification that the transform of the sine is odd is left to the reader. The symmetry
can also be seen in the graphs in Figure 6.9.
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Real and Imaginary Generalized Functions
Generalized functions can also be real, imaginary, or complex. A simple example of
an imaginary generalized function is 1

2i
𝛿(𝜈 + 1) − 1

2i
𝛿(𝜈 − 1), the Fourier transform

of sin 2𝜋x. In terms of action on a testing function, a generalized function f is real if

∫ f (x)𝜑(x) dx =
[
∫ f (x)𝜑∗(x) dx

]∗
, (6.22a)

and imaginary if

∫ f (x)𝜑(x) dx = −
[
∫ f (x)𝜑∗(x) dx

]∗
. (6.22b)

The derivation is left to the problems.

Example 6.15. Using the definition, show that 1
2i
𝛿(𝜈 + 1) − 1

2i
𝛿(𝜈 − 1) is imaginary

(this is obvious by inspection, but it will do for demonstrating how the definition
works).

∫
[ 1

2i
𝛿(𝜈 + 1) − 1

2i
𝛿(𝜈 − 1)

]
𝜑(x) dx = 1

2i
(𝜑(−1) − 𝜑(1))

−
[
∫
( 1

2i
𝛿(𝜈 + 1) − 1

2i
𝛿(𝜈 − 1)

)
𝜑
∗(x) dx

]∗
= −

[ 1
2i

(𝜑∗(−1) − 𝜑
∗(1))

]∗
= 1

2i
(𝜑(−1) − 𝜑(1))

Differentiation
Let f be a generalized function defined by a regular sequence of good functions (fn).
The derivatives f ′n are also good, and we will define the generalized derivative by
means of this sequence. Integrate f ′n against a testing function:

∫
∞

−∞
f ′n(x) 𝜑(x) dx.

This is an ordinary integral and may be integrated by parts:

∫
∞

−∞
f ′n(x) 𝜑(x) dx = fn 𝜑

|||∞−∞ − ∫
∞

−∞
fn(x) 𝜑′(x) dx.

Since fn and 𝜑 are both good, so is fn𝜑, therefore (rapidly decreasing) fn𝜑 → 0 as|x| → ∞, leaving just the second term on the right. The derivative 𝜑
′, being a good

function, is just another testing function. The sequence of integrals on the right is,
therefore, convergent, showing that the sequence of integrals on the left is convergent.
Taking limits on both sides, we have a definition for the generalized derivative f ′:

∫ f ′(x)𝜑(x) dx = −∫ f (x)𝜑′(x) dx . (6.23)
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Equation 6.23 indicates that the derivative of a generalized function is another
generalized function, which can always be differentiated again to yield another gen-
eralized function, for example,

∫ f ′′(x)𝜑(x) dx = −∫ f ′(x)𝜑′(x) dx = ∫ f (x)𝜑′′(x) dx.

Any number of derivatives of f are simply pushed off to derivatives of the testing
function. But the testing function, being a good function, is infinitely continuously
differentiable, so the integral will always be well defined. This shows that all gen-
eralized functions possess well-defined generalized derivatives of all orders. We are
no longer blocked by discontinuities. Moreover, it can be shown that every general-
ized function, regular or singular, is a finite sum of derivatives of continuous, slowly
growing, functions, and vice versa.11

Example 6.16 (Step and impulse). The function xU(x), a one-sided ramp, is con-
tinuous and slowly growing, hence it is a regular generalized function. Its derivative
is the unit step U(x), an ordinary function and regular generalized function defined
by the integral

∫ U(x)𝜑(x) dx = ∫
∞

0
𝜑(x) dx.

Then, using Equation 6.23,

∫ U′(x)𝜑(x) dx = −∫ U(x)𝜑′(x) dx

= −∫
∞

0
𝜑
′(x) dx = −𝜑(x)|||∞0 = 𝜑(0).

Because U′ has the same action as a delta function, ∫ 𝛿(x)𝜑(x) dx = 𝜑(0), we con-

clude (again) that 𝛿(x) = U′(x) and see, as well, that 𝛿(x) = d2

dx2 xU(x).

Example 6.17 (Derivatives of the delta function). Earlier we calculated the
derivative of the delta function by differentiating a rectangular pulse sequence. There
is now a more direct way, using Equation 6.23:

∫ 𝛿
′(x) 𝜑(x) dx = −∫ 𝛿(x) 𝜑′(x) dx = −𝜑′(0). (6.24)

While 𝛿 sifts out the value of 𝜑 at the origin, 𝛿′ sifts out the value of the derivative
𝜑
′ at the origin. The definition of generalized derivative can be applied any number

of times, that is,

∫ 𝛿
(r)(x)𝜑(x) dx = −∫ 𝛿

(r−1)(x)𝜑′(x) dx

⋮

= (−1)r ∫ 𝛿(x)𝜑(r)(x) dx

= (−1)r
𝜑

(r)(0), (6.25)

and we see that 𝛿(r) sifts out the value of the rth derivative of 𝜑 at the origin.

11Strichartz (1994, pp. 77–80.



6.3 GENERALIZED FUNCTIONS 395

Example 6.18 (Derivative of |x|). Because |x| has a corner at x = 0, its derivative
at x = 0 is undefined by ordinary calculus. Treating |x| as a generalized function
removes this restriction:

∫ |x|′ 𝜑(x) dx = −∫
∞

−∞
|x|𝜑′(x) dx

= −∫
0

−∞
(−x)𝜑′(x) dx − ∫

∞

0
x𝜑′(x) dx.

Now integrate by parts:

= x𝜑(x)
||||0−∞ − ∫

0

−∞
𝜑(x) dx − x𝜑(x)

||||∞0 + ∫
∞

0
𝜑(x),

and because x𝜑(x) is rapidly decreasing,

= −∫
0

−∞
𝜑(x) dx + ∫

∞

0
𝜑(x) = ∫

∞

−∞
sgn x𝜑(x) dx.

Thus |x|′ = sgn, and because sgn(0) = 0, we may reasonably define the derivative of|x| to be zero at the origin.

Example 6.19 (x−1 as a generalized function). The function f (x) = 1∕x is singular
at the origin and not integrable in the ordinary sense, except over bounded intervals
[a, b] not including the origin. It is the derivative of log |x|, and log |x| can be shown
to be an ordinary function of slow growth (see the problems), which is itself the
derivative of the continuous, slowly growing function x log |x| − x. Let us therefore
try to define 1∕x as the generalized derivative of log |x|. Apply the definition of
generalized derivative (Equation 6.23):

∫
( d

dx
log |x|)𝜑(x) dx = −∫ log |x|𝜑′(x) dx

= − lim
𝜖→0

[
∫

−𝜖

−∞
log |x|𝜑′(x) dx + ∫

∞

𝜖

log |x|𝜑′(x) dx

]
,

since log |x| is an ordinary function of slow growth. Integrate the first term by parts,

∫
−𝜖

−∞
log |x|𝜑′(x) = log |x|𝜑(x)

||||−𝜖−∞ − ∫
−𝜖

−∞

𝜑(x)
x

dx

= log(𝜖)𝜑(−𝜖) − ∫
−𝜖

−∞

𝜑(x)
x

dx.

Performing the same manipulation of the second term and combining,

∫ log |x|𝜑′(x) dx = lim
𝜖→0

[
(𝜑(−𝜖) − 𝜑(𝜖)) log(𝜖) − ∫

−𝜖

−∞

𝜑(x)
x

dx − ∫
∞

𝜖

𝜑(x)
x

dx

]
.

The testing function possesses continuous derivatives of all orders, and for small 𝜖
can be approximated𝜑(𝜖) = 𝜑(0) + 𝜑

′(0)𝜖 + O(𝜖2). Thus𝜑(𝜖) − 𝜑(−𝜖) = 2𝜑′(0)𝜖 +
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O(𝜖2), which dies faster than log(𝜖) grows as 𝜖 → 0, so (𝜑(−𝜖) − 𝜑(𝜖)) log(𝜖) → 0.
We are left with

∫
( d

dx
log |x|)𝜑(x) dx = lim

𝜖→0

[
∫

−𝜖

−∞

𝜑(x)
x

dx + ∫
∞

𝜖

𝜑(x)
x

dx

]
= P∫

∞

−∞

𝜑(x)
x

dx.

This Cauchy principal value integral is always defined; write

∫
−𝜖

−∞

𝜑(x)
x

dx + ∫
∞

𝜖

𝜑(x)
x

dx = ∫
∞

𝜖

𝜑(x) − 𝜑(−x)
x

dx.

For large x, the integrand decays rapidly and for small x, the integrand approaches
2𝜑′(0).

We will therefore define the generalized function P(1∕x) = (log |x|)′ via the
Cauchy principal value integral:

∫ P(1∕x)𝜑(x) dx = P∫
∞

−∞

𝜑(x)
x

dx. (6.26)

Powers of x−1 may also be defined by repeated differentiation of log |x|.12

The preceding calculations were conveniently done without considering any
underlying sequences of functions. However, using a particular sequence can be
helpful in cultivating intuition about the action of a generalized function.

Example 6.20. We can visualize 𝛿
′ using the sequence of derivatives of the Gaus-

sian sequence, 𝛿n(x) = ne−𝜋n2x2
:

𝛿
′
n(x) = d

dx
ne−𝜋n2x2 = −2𝜋n3x e−𝜋n2x2

.

The sequence of functions is shown in Figure 6.11. The peaks are located at x =
± 1√

2𝜋n
, their heights are∓n2

√
2𝜋e−1∕2, and their areas are∓n, respectively. For large

n you can imagine that the narrow peak at x = − 1√
2𝜋n

will pick off n𝜑
(
− 1√

2𝜋n

)
, and

the peak at x = 1√
2𝜋n

will pick off n𝜑
( 1√

2𝜋n

)
. Then,

∫
∞

−∞
𝛿
′
n(x)𝜑(x) dx ≈ n𝜑

(
− 1√

2𝜋n

)
− n𝜑

(
1√
2𝜋n

)
= −

𝜑

( 1√
2𝜋n

)
− 𝜑

(
− 1√

2𝜋n

)
1∕n

,

and this tends to −𝜑′(0) as n → ∞.

Products of Generalized Functions
Multiplication by a delta function, f (t)𝛿(t − t0), is used later in the chapter to model
sampling the value of a function f at a time t0. The key to properly handling these and
other problems is to know what kinds of functions may be multiplied by generalized
functions.

12See Lighthill (1958, pp. 35–40), and Gasquet and Witomski (1999, pp. 258–261) for a discussion of
generalized functions based on powers x−p.
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FIGURE 6.11 A sequence of pulses, derivatives of the Gaussian pulse, which serve to define
the generalized derivative 𝛿

′(x).

Let f and g be generalized functions, form the product fg, and write the usual
integral

∫ fg(x) 𝜑(x) dx.

If the product g𝜑 is a good function, we may push the g from fg to g𝜑 and have a
valid integral of f against the testing function g𝜑:

∫ f (x) g𝜑(x) dx.

(It may be easier to see this if you represent f by a sequence (fn).) It can be shown
that, for arbitrary f , this will work if the function g is fairly good (so that the product
fg is good).13

Theorem 6.2 (Products of ordinary and generalized functions). Let f ∈ S′ be
a generalized function, g be a fairly good function, and 𝜑 ∈ S be a testing function.
The product fg is a generalized function defined by

∫ f (x)g(x) 𝜑(x) dx = ∫ f (x) g(x)𝜑(x) dx. (6.27)

13Jones, 1982, pp. 164–166.
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Example 6.21. Show that

x𝛿′(x) = −𝛿(x). (6.28)

Integrate the left side against a testing function and push the factor of x from 𝛿
′ to 𝜑:

∫ x𝛿′(x) 𝜑(x) dx = ∫ 𝛿
′(x) x𝜑(x) dx.

We are justified in making this step because x is a fairly good function, so x𝜑(x)
is a good function. Now, apply the result for the derivative of the delta function
(Equation 6.24):

∫ 𝛿
′(x) x𝜑(x) dx = −∫ 𝛿(x)

d
dx

(x𝜑(x))dx

= −∫ 𝛿(x) (𝜑(x) + x𝜑′(x))dx

= −𝜑(0) − 0 ⋅ 𝜑′(0) = −𝜑(0).

This is the same result as ∫ −𝛿(x)𝜑(x) dx, proving x𝛿′ = −𝛿.

We can also use the Gaussian-derived sequence (x𝛿′n) = (−2𝜋n3x2 e−𝜋n2x2
) to

define x𝛿′(x). This sequence is plotted in Figure 6.12. The peaks are located at
x = ± 1√

𝜋n
, have height −2ne−1, and area − 1

2
. In the integral ∫ x𝛿′n(x)𝜑(x) dx for

–1 –0.5 0 0.5 1
–5

–4

–3

–2

–1

0

1

x

x 
δ'

n(x
)

FIGURE 6.12 A sequence of pulses that serves to define the generalized function x𝛿′(x),
which is equivalent to −𝛿(x).
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large n, the narrow peaks will pick off 𝜑

(
± 1√

𝜋n

)
times their areas

(
− 1

2

)
, giving,

approximately,

∫
∞

−∞
x𝛿′n(x)𝜑(x) dx ≈ −1

2
𝜑

(
− 1√

𝜋n

)
− 1

2
𝜑

(
1√
𝜋n

)
.

In the limit as n → ∞, 𝜑(− 1√
𝜋n

) = 𝜑( 1√
𝜋n

) = 𝜑(0), and we have the result

lim
n→∞∫

∞

−∞
x𝛿′n(x)𝜑(x) dx = −𝜑(0),

the same as ∫ −𝛿(x)𝜑(x) dx. So we see, graphically, how x𝛿′(x) = −𝛿(x). The graph-
ical result seems counterintuitive—a sequence of functions that are all zero at
the origin is equivalent to a generalized function that is zero everywhere except
the origin.

Some functions are close to fairly good, for example, step and signum are slowly
growing but discontinuous. We may still be able to form well-defined products with
these functions by resorting to sequences.14 A slowly growing function with a jump
discontinuity can be made infinitely continuously differentiable by convolving it with
a unit area good function n𝜌(nx); as n → ∞, gn(x) = g(x) ∗ n𝜌(nx) → g(x). Or, we
can happen to know a continuous approximation, for example, tanh(nx) is fairly good
and limn→∞ tanh(nx) = sgn(x). Then the product gn𝜑 is good and the product fg is
defined:

∫ f (x)g(x) 𝜑(x) dx = lim
n→∞∫ f (x) gn(x)𝜑(x) dx,

when the limit exists.

Example 6.22. If f is continuous at x = a, then

f (x)𝛿(x − a) = f (a)𝛿(x − a). (6.29)

This is the sifting property, without an integral to smooth out the impulse. To prove
it, set up the integral

∫ f (x)𝛿(x − a) 𝜑(x) dx,

and push f over to 𝜑:

∫ f (x)𝛿(x − a) 𝜑(x) dx = ∫ 𝛿(x − a) f (x)𝜑(x) dx.

If f is everywhere continuous and slowly growing, then f𝜑 is good and we have
immediately

∫ 𝛿(x − a) f (x)𝜑(x) dx = f (a)𝜑(a).

14Champeney, 1987, p. 142.
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This is the same result obtained from ∫ f (a)𝛿(x − a)𝜑(x) dx. If f is continuous at x = a
but has jumps elsewhere, a sequence of fairly good functions could be constructed,
fn(x) = f (x) ∗ n𝜌(nx). Then

∫ 𝛿(x − a) fn(x)𝜑(x) dx = fn(a)𝜑(a) → f (a)𝜑(a),

but this really is more than needed, because the delta function acts only at the one
point x = a and ignores what the function is doing away from x = a.

Sample calculations using this rule are x𝛿(x) = 0 and sin(𝜋x) 𝛿
(
x − 1

4

)
=

sin
(
𝜋

4

)
𝛿

(
x − 1

4

)
= 1√

2
𝛿

(
x − 1

4

)
.

Equation 6.29 can be extended. If f is continuously differentiable at x = a, then

f (x) 𝛿′(x − a) = f (a)𝛿′(x − a) − f ′(a)𝛿(x − a). (6.30)

Proof (and further generalization) is left to the problems.

Example 6.23. Show that xP(1∕x) is a generalized function equivalent to 1.
Write down the integral, and perform the usual maneuver of pushing x over

to 𝜑:

∫ xP(1∕x) 𝜑(x) dx = ∫ P(1∕x) x𝜑(x) dx.

Now apply the definition of P(1∕x) (Equation 6.26):

∫ P(1∕x) x𝜑(x) dx = P∫
∞

−∞

x𝜑(x)
x

dx.

We can cancel the xs top and bottom because the principal value integration excludes
the origin until the final limit is taken. Thus,

P∫
∞

−∞

x𝜑(x)
x

dx = P∫
∞

−∞
𝜑(x) dx = ∫

∞

−∞
𝜑(x) dx.

This is the same result as ∫ 1 ⋅ 𝜑(x) dx, so we conclude that xP(1∕x) = 1.

Not every product can be defined, even with sequences. Here is a notable failure.

Example 6.24 (𝛿2 is undefined). If we attempt to define 𝛿2 = 𝛿 ⋅ 𝛿 and apply it to
a testing function, we obtain

∫ (𝛿(x) ⋅ 𝛿(x))𝜑(x) dx = ∫ 𝛿(x) (𝛿(x)𝜑(x)) dx.

But 𝛿(x)𝜑(x) = 𝜑(0)𝛿(x) is not a good function, so the attempt fails. The first impulse
wants to sift out the value of the second impulse at the origin, but this makes no sense.
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To see this in a different way, let the delta function be defined by the sequence
of functions 𝛿n(x) = ne−𝜋n2x2

. The functions 𝛿2
n(x) = n2e−2𝜋n2x2

have area n√
2
, which

grows without bound. The sequence of integrals

∫
∞

−∞
𝛿

2
n(x)𝜑(x) dx

does not converge.

Convolution of Generalized Functions
Convolution is important, of course, because of the need to model the passage of
signals, including sines and cosines, through linear time-invariant systems. To arrive
at a consistent definition for the convolution of two generalized functions, consider
the integral with a testing function:

∫ f ∗ g(x)𝜑(x) dx = ∫
[
∫ f (𝜉) g(x − 𝜉) d𝜉

]
𝜑(x) dx,

and formally change the order of integration:

= ∫ f (𝜉)

[
∫ g(x − 𝜉)𝜑(x) dx

]
d𝜉.

This is a meaningful expression if the inner integral works out to a good function in
𝜉. The integral is the convolution g(−) ∗ 𝜑 of a reversed version of g with 𝜑. So, g
must be a generalized function which, when convolved with a good function, results
in a good function.15

Theorem 6.3 (Convolution of generalized functions). Let f , g be generalized
functions. If, for one of these (say g), g ∗ 𝜑 ∈ S, then the convolution f ∗ g is defined
as a generalized function such that

∫ f ∗ g(x)𝜑(x) dx = ∫ f (x)

[
∫ g(𝜉 − x)𝜑(𝜉) d𝜉

]
dx

= ∫ f (x)

[
∫ g(𝜉)𝜑(𝜉 + x) d𝜉

]
dx. (6.31)

It is readily shown that convolution commutes, f ∗ g = g ∗ f . It can also be
shown that convolution obeys associativity, (f ∗ g) ∗ h = f ∗ (g ∗ h), under certain
conditions.16 The existence of f ∗ g as a generalized function guarantees the existence
of a generalized derivative that follows the usual formula, (f ∗ g)′ = f ′ ∗ g = f ∗ g′,
and may be repeated to calculate derivatives of all orders. Moreover, it can be shown
that the convolution of a generalized function with a good function is infinitely
continuously differentiable (see the problems). So again, we see that convolution is

15If g ∗ 𝜑 is good, then so is g(−) ∗ 𝜑. Regarding convolution of generalized functions, see Champeney
(1987, pp. 139–144) and Gasquet and Witomski (1999, pp. 297ff).
16See Champeney (1987, p. 143) and Gasquet and Witomski (1999, pp. 306–307). Also, see the problems
for some examples.



402 CHAPTER 6 GENERALIZED FUNCTIONS

a smoothing operation, and good functions are capable of a remarkable degree of
repair work on ill-behaved functions.

Example 6.25 (Convolution with a delta function). Consider Equation 6.31 with
f = 𝛿(x − a). The inner integral is

∫ f (𝜉)𝜑(𝜉 + x) d𝜉 = ∫ 𝛿(𝜉 − a)𝜑(𝜉 + x) d𝜉 = 𝜑(x + a),

which is a good function. The outer integral then gives

∫ g(x) 𝜑(x + a) dx = ∫ g(x − a) 𝜑(x) dx.

This shows that, for any generalized function g, regular or singular, 𝛿(x − a) ∗ g(x) =
g(x − a). We are not restricted to continuous functions, as in the earlier derivation
(Equation 6.16).

Example 6.26 (Some more generalized convolutions). Verification of most of
these relationships is left to the problems.

1. Two delta functions can be convolved:

∫ (𝛿(x − a) ∗ 𝛿(x − b))𝜑(x) dx = ∫ 𝛿(x − a) (𝛿(−x − b) ∗ 𝜑(x)) dx

= ∫ 𝛿(x − a) (𝛿(x + b) ∗ 𝜑(x)) dx

= ∫ 𝛿(x − a)𝜑(x + b) dx = 𝜑(a + b).

This result would also be obtained from ∫ 𝛿(x − (a + b))𝜑(x) dx, therefore

𝛿(x − a) ∗ 𝛿(x − b) = 𝛿(x − (a + b)). (6.32)

Convolution with a delta function shifts. In the convolution 𝛿(x − a) ∗ 𝛿(x − b),
the first delta function shifts the second one by a, from x = b to x = a + b.

2. Convolution with the derivative of a delta function:

𝛿
′ ∗ f = 𝛿 ∗ f ′ = f ′, (6.33a)

𝛿
(r) ∗ f = f (r)

. (6.33b)

3. A function of slow growth can be convolved with a rapidly decreasing function,
for example, cos 2𝜋x ∗ e−xU(x) (this is the model of a sine wave passing through
a first-order LTI system).

4. A function of slow growth can be convolved with a bounded function of
bounded support, for example, cos 2𝜋x ∗ rect x, x2 ∗ Λ(x).

5. Two polynomials (including constant functions) cannot be convolved, two sinu-
soids cannot be convolved, a polynomial cannot be convolved with a sinusoid,
so on.
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One-sided ordinary functions are important because of their connection with
causal linear systems. For example, consider the convolution of two step functions,
U(x) ∗ U(x). A straightforward calculation yields

U ∗ U = ∫
∞

−∞
U(𝜉) U(x − 𝜉) d𝜉 =

⎧⎪⎨⎪⎩
0, x < 0

∫
x

0
d𝜉 = x, x ≥ 0

,

= xU(x),

and by inspection this is slowly growing, hence it is a generalized function. However,
this example falls outside the view of Theorem 6.3, for

U ∗ 𝜑 = ∫
x

−∞
𝜑(𝜉) d𝜉

is not guaranteed to be a good function of x (while it has sufficient differentiability, it
may not be rapidly decreasing as x → ∞). We can get around this problem by writing
U as the limit of a rapidly decreasing sequence of functions, for example, e−x∕nU(x).
The convolution e−x∕nU(x) ∗ 𝜑(x) is good, and Theorem 6.3 says that the convolution

U(x) ∗ e−x∕nU(x) = n(1 − e−x∕n)U(x)

is a generalized function. The sequence converges weakly to xU(x), as desired.17

lim
n→∞∫

∞

−∞
n
(
1 − e−x∕n)U(x)𝜑(x) dx = ∫

∞

−∞
lim

n→∞
n
(
1 − e−x∕n)U(x)𝜑(x) dx

= ∫
∞

−∞
xU(x)𝜑(x) dx.

In the more general case of two one-sided slowly growing functions, let them
both be approximated by sequences fn and gn of rapidly decreasing one-sided func-
tions, for example, by

gn(x) = g(x)e−x∕nU(x).

Then their convolution fn ∗ gn will be a generalized function, according to Theo-
rem 6.3. The weak limit of the sequence, if it exists, is a generalized function and
defined to be the convolution18

f ∗ g = lim
n→∞

fn ∗ gn.

17One must justify taking the limit under the integral sign. If a sequence of ordinary functions (fn) converges
pointwise to an ordinary function f and |fn(x)| ≤ |g(x)|, where g is a function of slow growth (we say that
fn is dominated by g), then

lim
n→∞∫

∞

−∞
fn(x)𝜑(x) dx = ∫

∞

−∞
lim

n→∞
fn(x)𝜑(x) dx = ∫

∞

−∞
f (x)𝜑(x) dx.

In this case n(1 − e−x∕n)U(x) converges pointwise to xU(x) and is dominated by x. This is an application
of the dominated convergence theorem of real analysis. For elementary discussions, see Folland (1992,
p. 83) and Champeney (1987, pp. 25–26).
18Jones, 1982, pp. 200–201.
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By this maneuver, two one-sided polynomials, one-sided sinusoids, so on, may be
convolved, if they are both right sided or both left sided, for example, U(x) ∗ xU(x)
or U(x − 1) ∗ cos 2𝜋x U(x), but not U(x) ∗ U(−x).

6.4 GENERALIZED FOURIER TRANSFORM

6.4.1 Definition

The Fourier transform is defined, for ordinary functions, as an integral:

F(𝜈) = ∫
∞

−∞
f (x) e−i2𝜋𝜈x dx ,

with appropriate interpretations depending on the function spaces involved. We have
seen that it also gives a sensible result if f is a delta function or the derivative of a delta
function. We seek a definition of the Fourier transform that works for generalized
functions in general. Consider the generalized function’s underlying regular sequence
of good functions, (fn). The Fourier transform of a good function is a good function
(this is why we picked the good functions to build our generalized functions), so we
Fourier transform each of the fn to obtain a sequence (Fn). By Parseval’s theorem
(because good functions are square integrable),

∫
∞

−∞
Fn(𝜈)𝜑(𝜈) d𝜈 = ∫

∞

−∞
fn(x)Φ(x) dx, (6.34)

where 𝜑 and Φ = F−1{𝜑} are both testing functions. The sequence of integrals on
the right is convergent because (fn) is regular, therefore the sequence of integrals on
the left is also convergent and (Fn) defines a generalized function F which we define
to be the Fourier transform of f . Moreover, in the limit, Equation 6.34 becomes

∫ F(𝜈)𝜑(𝜈) d𝜈 = ∫ f (x)Φ(x) dx.

This leads to the definition of the Fourier transform for generalized functions.

Theorem 6.4 (Generalized Fourier transform). Let f and F be generalized
functions defined by regular sequences of good functions (fn) and (Fn), respectively.
Then the following statements are equivalent:

(a) F is the Fourier transform of f if fn ⟷ Fn.

(b) F is the Fourier transform of f if and only if

∫ F(𝜈)𝜑(𝜈) d𝜈 = ∫ f (x)Φ(x) dx (6.35)

for all Fourier pairs 𝜑,Φ ∈ S.

Let us see how this plays out for some of the generalized Fourier transforms
we have already calculated.
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Example 6.27.

1. Previously, we calculated 𝛿(x) ⟷ 1 by the sifting property of the delta function
and also using sequences. Using Equation 6.35 instead,

∫ F{𝛿(x)}𝜑(𝜈) d𝜈 = ∫ 𝛿(x)Φ(x) dx = Φ(0).

But by the area theorem,

Φ(0) = ∫
∞

−∞
𝜑(𝜈) d𝜈 = ∫

∞

−∞
1 ⋅ 𝜑(𝜈) d𝜈.

Therefore we identify F{𝛿(x)} = 1.

2. Previously, we calculated sin 2𝜋x ⟷ 1
2i
𝛿(𝜈 − 1) − 1

2i
𝛿(𝜈 + 1) using

sequences. Using Equation 6.35 instead,

∫ F{sin 2𝜋x} 𝜑(𝜈) d𝜈 = ∫
∞

−∞
sin 2𝜋x Φ(x) dx

= ∫
∞

−∞
Φ(x)

1
2i

ei2𝜋x dx − ∫
∞

−∞
Φ(x)

1
2i

e−i2𝜋x dx

= 1
2i
𝜑(1) − 1

2i
𝜑(−1).

We recognize that 𝛿 is the generalized function that sifts out isolated values of
a testing function, in particular:

1
2i
𝜑(1) − 1

2i
𝜑(−1) = ∫

( 1
2i
𝛿(𝜈 − 1) − 1

2i
𝛿(𝜈 + 1)

)
𝜑(𝜈) d𝜈.

Therefore we identify

F{sin 2𝜋x} = 1
2i
𝛿(𝜈 − 1) − 1

2i
𝛿(𝜈 + 1).

Transform calculations are often facilitated by representing generalized func-
tions as sequences. Weakly convergent sequences of generalized functions have the
following very useful property. The proof is deferred to the problems.

Theorem 6.5 (Generalized transform in the limit). Let (fn) be a sequence of
generalized functions, converging weakly to a generalized function f . Let Fn be the
generalized Fourier transform of fn. Then the sequence of transforms (Fn) converges
weakly to a generalized function F, the Fourier transform of f .

Example 6.28 (Fourier transforms of sgn x and x−1). The signum function

sgn x =
⎧⎪⎨⎪⎩

1, x > 0
0, x = 0
−1, x < 0
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FIGURE 6.13 The sequence fn(x) = e−|x|∕nsgn x, converging to sgn x (left), and its Fourier
transform (right). Heavy lines indicate the Fourier transform pair sgn x ⟷ 1∕i𝜋𝜈.

is discontinuous and not integrable. We multiply it by the convergence factor e−|x|∕n,
creating a sequence of rapidly-decreasing functions:

fn(x) = e−|x|∕nsgn x.

Now, the Fourier transform of fn(x) is

Fn(𝜈) = ∫
∞

−∞
e−|x|∕nsgn (x)e−i2𝜋𝜈xdx

= −∫
0

−∞
ex∕ne−i2𝜋𝜈xdx + ∫

∞

0
e−x∕ne−i2𝜋𝜈xdx

= 1
−1∕n + i2𝜋𝜈

+ 1
1∕n + i2𝜋𝜈

= −i4𝜋𝜈
(1∕n)2 + (2𝜋𝜈)2

.

The Fn are dominated by 1|𝜋𝜈| away from the origin and converge pointwise to 1
i𝜋𝜈

as

n → ∞ (Figure 6.13). The sequence of integrals

∫
∞

−∞

−i4𝜋𝜈
(1∕n)2 + (2𝜋𝜈)2

𝜑(𝜈) d𝜈

converges weakly to the integral

∫
∞

−∞

1
i𝜋𝜈

𝜑(𝜈) d𝜈,

which we interpret as a Cauchy principal value integral. We define the Fourier
transform sgn x ⟼ 1∕i𝜋𝜈.

The Fourier transform of f (x) = x−1 can be calculated by carrying out the above
steps in reverse, leading to two generalized Fourier transforms:

sgn x ⟷ 1
i𝜋𝜈

, (6.36a)

1
x
⟷ −i𝜋 sgn 𝜈, (6.36b)
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where x−1 and (i𝜋𝜈)−1 are interpreted using the Cauchy principal value. (Note, by
the way, that these generalized functions obey the “real and odd ⟷ imaginary and
odd” symmetry rule.)

Example 6.29. The convolution of two ordinary functions is wider than either of
the original functions—the rect-triangle example being typical. But the generalized
Fourier pair x−1 ⟷ −i𝜋sgn 𝜈 violates this. The convolution of 1

i𝜋x
with itself, taken

to the frequency domain, is

1
i𝜋x

∗ 1
i𝜋x

⟼ (−sgn(𝜈))2 = 1,

from which we conclude that

1
i𝜋x

∗ 1
i𝜋x

= 𝛿(x). (6.37)

6.4.2 Fourier Theorems

Many of the Fourier theorems for ordinary functions work for the Fourier transforms
of generalized functions. Theorems that require a function to be evaluated at a par-
ticular point, such as the area and moment theorems, do not carry over to generalized
functions (∫ 1 dx = 𝛿(0)?). Neither does Parseval’s theorem, which holds only for
functions in L2. In these derivations, the second definition of the Fourier transform
(Equation 6.35) provides simpler paths to the results than the first using sequences.

Linearity
The rules for scaling and adding generalized functions immediately show that the
generalized Fourier transform is linear:

af + bg ⟷ aF + bG.

Example 6.30 (Fourier transform of the step function). The step function, U(x),
can be expressed in terms of the signum function,

U(x) = 1
2

(1 + sgn(x)).

By the linearity of the Fourier transform,

U(x) ⟼ 1
2
F{1} + 1

2
F{sgn(x)}

= 1
2
𝛿(𝜈) + 1

i2𝜋𝜈
.

Therefore (Figure 6.14),

U(x) ⟷ 1
2
𝛿(𝜈) + 1

i2𝜋𝜈
. (6.38)
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FIGURE 6.14 The step function U(x) (left) and its Fourier transform, 1
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Shift Theorem
Begin by writing down the integral ∫ f (x − a)Φ(x) dx and make a change of variable
to push the shift onto the testing function (Equation 6.19):

∫ f (x − a)Φ(x) dx = ∫ f (x)Φ(x + a) dx.

Now invoke Theorem 6.4:

∫ f (x)Φ(x + a) dx = ∫ F(𝜈)F−1{Φ(x + a)} d𝜈

= ∫ F(𝜈) [e−i2𝜋𝜈a
𝜑(𝜈)] d𝜈,

then using Theorem 6.2,

= ∫ [e−i2𝜋𝜈aF(𝜈)]𝜑(𝜈) d𝜈.

Thus, f (x − a) ⟷ e−i2𝜋𝜈aF(𝜈). An identical calculation proves the converse,
ei2𝜋xbf (x) ⟷ F(𝜈 − b).

Dilation Theorem
Using the same method, it can be shown that f (ax) ⟷ 1|a|F( 𝜈a). The verification is

left to the problems.

Symmetries
We shall show that if f is a real and even generalized function, then F is also real and
even. Proof of the rest of the symmetry relationships follows the same logic. Because
f is real and even, we know (Equations 6.21 and 6.22)

∫ f (x)Φ(x) dx =
[
∫ f (x)Φ∗(x) dx

]∗
= ∫ f (x)Φ(−x) dx,
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and we want to show that F is real and even:

∫ F(𝜈)𝜑(𝜈) d𝜈 =
[
∫ F(𝜈)𝜑∗(𝜈) d𝜈

]∗
= ∫ F(𝜈)𝜑(−𝜈) d𝜈.

This is just a matter of applying the definitions and being careful about the Fourier
transforms of the testing functions. First, show that F is even:

∫ F(𝜈)𝜑(𝜈) d𝜈 = ∫ f (x)Φ(x) dx

= ∫ f (x)Φ(−x) dx (f is even)

= ∫ F(𝜈)F−1 {Φ(−x)} d𝜈 = ∫ F(𝜈)𝜑(−𝜈) d𝜈. (Equation 5.17)

Then show that F is real:

∫ F(𝜈)𝜑(𝜈) d𝜈 = ∫ f (x)Φ(x) dx

=
[
∫ f (x)Φ∗(x) dx

]∗
(f is real)

=
[
∫ F(𝜈)F−1{Φ∗(x)} d𝜈

]∗
=
[
∫ F(𝜈)𝜑∗(−𝜈) d𝜈

]∗
(Equation 5.17)

=
[
∫ F(𝜈)𝜑∗(𝜈) d𝜈

]∗
. (F is even)

Derivative
To justify the derivative theorem, f ′(x) ⟼ i2𝜋𝜈F(𝜈), for generalized Fourier trans-
forms,

∫ f ′(x)Φ(x) dx = −∫ f (x)Φ′(x) dx (Generalized derivative)

= −∫ F(𝜈)F−1{Φ′(x)} d𝜈.

Now use the ordinary derivative theorem on Φ′:

= −∫ F(𝜈) [−i2𝜋𝜈 𝜑(𝜈)] d𝜈.

This integral is well defined because 𝜈𝜑(𝜈) is good. Finally, push the factor of i2𝜋𝜈
over to F (Theorem 6.2):

= ∫ i2𝜋𝜈 F(𝜈)𝜑(𝜈) d𝜈.

A particularly nice application of the derivative theorem is given by the follow-
ing example.
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Example 6.31 (Fourier transform of a polynomial). Polynomials, because they
grow without bound as |x| → ∞, are not absolutely- or square integrable and are
not Fourier transformable as ordinary functions. But they grow slowly and are well
defined as generalized functions. We will derive a generalized Fourier transform for
the polynomial

∑N
n=0 anxn. Apply the derivative theorem repeatedly:

xnf (x) ⟷
F(n)(𝜈)
(−i2𝜋)n

,

with f = 1 and F = 𝛿, obtaining

xn ⟷
𝛿

(n)(𝜈)
(−i2𝜋)n

, (6.39)

and insert this into the polynomial:

N∑
n=0

anxn ⟷
N∑

n=0

an

(−i2𝜋)n
𝛿

(n)(𝜈). (6.40)

The Fourier transform of a polynomial comes out in terms of derivatives of the delta
function.

Example 6.32 (Signum function, again). Here is another way to calculate the
Fourier transform of the signum. Signum has a jump of+2 at the origin and is constant
everywhere else, so its derivative is sgn′ = 2𝛿. Apply the derivative theorem:

F{sgn′ x} = F{2𝛿(x)} = 2

= i2𝜋𝜈F{sgn x}

⇒ F{sgn x} = 2
i2𝜋𝜈

= 1
i𝜋𝜈

.

A similar approach yields a simple calculation of the Fourier transforms of x−1 and
log |x| (see the problems).

Example 6.33 (Fourier transform of |x|). Here is a harder problem:

∫ F{|x|} 𝜑(𝜈) d𝜈 = ∫ |x| Φ(x) dx = ∫ x sgn x Φ(x) dx

= ∫ sgn x (xΦ(x)) dx.

Use sgn x ⟼ 1∕i𝜋𝜈 and apply the derivative theorem to xΦ(x):

= ∫
1

i𝜋𝜈
𝜑
′(𝜈)

i2𝜋
d𝜈.

Then use the definition of generalized derivative (Equation 6.23):

= −∫
(

−1
2(i𝜋)2

1
𝜈

)
𝜑
′(𝜈) d𝜈 = ∫

1
2(i𝜋)2

1
𝜈2

𝜑(𝜈) d𝜈

⇒ |x| ⟼ 2
(i2𝜋𝜈)2

.
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TABLE 6.3 The relationship of smoothness and asymptotic behavior of the Fourier transform
continues to hold for generalized functions. Each function f in the table is the derivative of the
function above it. Differentiation makes a function less smooth and causes its transform F to decay
more slowly. If a function has jumps, its derivatives are singular and the Fourier transforms are
slowly growing rather than decreasing.

Smoothness f (x) F(𝜈) Asymptotic

C(∞) exp(−𝜋x2) exp(−𝜋𝜈2) Rapidly decreasing
⋮ ⋮

C(1) 1
2
x2sgn x − 1

i4𝜋3𝜈3
Decreasing

C(0) |x| − 1
2𝜋2𝜈2

Decreasing

PC sgn x
1

i𝜋𝜈
Decreasing

Singular 2𝛿(x) 2 Slowly growing

Singular 2𝛿′(x) i4𝜋𝜈 Slowly growing
⋮ ⋮

By linearity, we can also calculate the Fourier transform of xU(x):

xU(x) = 1
2

(|x| + x) ⟼ 1
(i2𝜋𝜈)2

− 1
i4𝜋

𝛿
′(𝜈) = − 1

(2𝜋𝜈)2
+ i

4𝜋
𝛿
′(𝜈).

Beginning with the Fourier series and continuing through our study of Fourier
transforms in the Chapter 5, we have observed a relationship between the smooth-
ness of a function and the asymptotic behavior of its Fourier transform as 𝜈 → ∞.
The smoother a function is, the more rapidly its transform decays at high frequen-
cies. Infinitely continuously differentiable functions have the most rapidly decaying
transforms, epitomized by Gaussian⟷Gaussian. At the other extreme are piecewise
smooth and piecewise continuous functions like the triangle and rectangle, whose
transforms decay O(𝜈−2) and O(𝜈−1), respectively. The story ended with functions
having jumps, because they were undifferentiable.

The apparatus of generalized functions removes this barrier. We can keep dif-
ferentiating, and keep Fourier transforming, and watch what happens (Table 6.3). The
signum function’s Fourier transform is O(𝜈−1), as expected, because it has a jump.
Differentiating signum produces an impulse, whose Fourier transform is constant.
Differentiating the impulse produces 𝛿′, whose Fourier transform is actually increas-
ing with frequency, O(𝜈). As smoothness runs from C(∞) to piecewise continuous
to singular, the behavior of the Fourier transform runs, without interruption, from
rapidly decreasing to slowly decaying to slowly growing.

The same trends hold for the relationship of a function’s asymptotic behavior
and the smoothness of its Fourier transform. A rapidly decreasing function has an
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infinitely smooth transform. The slowly decaying functions sinc x and x−1 have
piecewise constant transforms, rect x and i𝜋 sgn 𝜈, respectively. If we push past the
slow decay to a constant function, the transform is impulsive, and going further to
polynomials, which are slowly growing, we find transforms that contain derivatives
of impulses.

Products and Convolutions
Earlier, we determined sufficient conditions for the existence of the product and
convolution of two generalized functions:

� The product fg exists as a generalized function if the product of one of the
functions with a good function is a good function.

� The convolution f ∗ g exists as a generalized function if the convolution of one
of the functions with a good function is a good function.

We now seek conditions under which we have a convolution theorem, f ∗ g ⟷ FG.
The derivation of a generalized convolution theorem is a straightforward exercise in
applying the definitions, watching along the way for the conditions such that the steps
are valid.

Apply the definition of the generalized Fourier transform to the convolution:

∫ F{f ∗ g}𝜑(𝜈) d𝜈 = ∫ f ∗ g(x)Φ(x) dx,

and then apply the definition for generalized convolution (Equation 6.31):

= ∫ f (x) (g(−x) ∗ Φ(x)) dx.

If g ∗ Φ is good, we may apply the Fourier transform definition again:

= ∫ F(𝜈) F−1{g(−x) ∗ Φ(x)} d𝜈

= ∫ F(𝜈)G(𝜈)𝜑(𝜈) d𝜈

∴ F{f ∗ g} = FG.

The key condition is that the convolution g ∗ Φ must be a good function (this is just
the condition for f ∗ g to exist in the first place). Because g and G are a Fourier pair,
a condition imposed on one is reflected in the other. If g is sufficiently well behaved
that g ∗ Φ(x) is good, then G will likewise be such that G𝜑(𝜈) is good.

We have the following version of the convolution theorem.19

Theorem 6.6 (Generalized convolution theorem). Let f and g be generalized
functions with Fourier transforms F and G, and let𝜑,Φ ∈ S be a Fourier pair. If g ∗ Φ
is a good function (equivalently, G𝜑 is a good function), then f ∗ g and FG are gen-
eralized functions and f ∗ g ⟷ FG, that is, ∫ f ∗ g(x) Φ(x) dx = ∫ FG(𝜈) 𝜑(𝜈) d𝜈.

To illustrate, we will revisit the earlier examples (Example 6.26).

19See Strichartz (1994, pp. 52–53). More statements about generalized convolutions and the Fourier
transform may be found in Champeney (1987, pp. 139–144).
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Example 6.34 (Generalized convolutions in the frequency domain).

1. Two delta functions, 𝛿(x − a) ∗ 𝛿(x − b) = 𝛿(x − (a + b)).
�
𝛿(−x − b) ∗ Φ(x) = 𝛿(x + b) ∗ Φ(x) = Φ(x + b), and Φ(x + b) ∈ S.

� F{𝛿(x − b)} = e−i2𝜋b𝜈 , and e−i2𝜋b𝜈
𝜑(𝜈) ∈ S.

� F{𝛿(x− a) ∗ 𝛿(x− b)} = e−i2𝜋a𝜈e−i2𝜋b𝜈 = e−i2𝜋(a+b)𝜈 = F{𝛿(x− (a+ b))}.

2. Convolution with the derivative of a delta function, 𝛿′ ∗ f = f ′.
�
𝛿
′(−x) ∗ Φ(x) = −𝛿′(x) ∗ Φ(x) = −Φ′(x), and Φ′ ∈ S.

� F{𝛿′(x)} = i2𝜋𝜈 is slowly growing, and i2𝜋𝜈𝜑(𝜈) ∈ S.
� F{𝛿′ ∗ f } = i2𝜋𝜈F(𝜈) = F{f ′(x)}.

3. A function of slow growth can be convolved with a rapidly decreasing function.
Consider x ∗ e−xU(x):
� e−xU(x) ∗ 𝜑 ∈ S.

� e−xU(x) ⟼ 1
1 + i2𝜋𝜈

is fairly good, and
𝜑(𝜈)

1 + i2𝜋𝜈
∈ S.

� By the convolution theorem,

x ∗ e−xU(x) = F−1
{ 1
−i2𝜋

𝛿
′(𝜈) ⋅

1
1 + i2𝜋𝜈

}
= ∫

∞

−∞
− 1

i2𝜋
𝛿
′(𝜈) ⋅

1
1 + i2𝜋𝜈

ei2𝜋𝜈x d𝜈

= − 1
i2𝜋

⋅
[
− d

d𝜈
ei2𝜋𝜈x

1 + i2𝜋𝜈

]
𝜈=0

= 1
i2𝜋

i2𝜋x(1 + i2𝜋𝜈) − i2𝜋ei2𝜋𝜈x

(1 + i2𝜋𝜈)2

|||||𝜈=0
= x − 1.

Surprised? Work it out in the time domain (see the problems).

4. A function of slow growth can be convolved with a bounded function
of bounded support, for example, cos 2𝜋x ∗ rect 2x (this models a cosine
smoothed by a filter with a rectangular impulse response).
� rect ∗ Φ ∈ S.
� rect 2x ⟼ 1

2
sinc( 𝜈

2
) is fairly good, and sinc( 𝜈

2
)𝜑(𝜈) ∈ S.

� Using the convolution theorem,

cos 2𝜋x ∗ rect 2x = F−1
{[1

2
𝛿(𝜈 + 1) + 1

2
𝛿(𝜈 − 1)

]
⋅

1
2

sinc
(
𝜈

2

)}
= F−1

{1
4

[
sinc

(
−1

2

)
𝛿(𝜈 + 1) + sinc

(1
2

)
𝛿(𝜈 − 1)

]}
= F−1

{ 1
2𝜋

𝛿(𝜈 + 1) + 1
2𝜋

𝛿(𝜈 − 1)
}

= 1
𝜋

cos 2𝜋x.

This convolution can also be checked in the time domain (see the problems).
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5. Two polynomials cannot be convolved. If they could, then in the frequency
domain we would have, for example, F{x ∗ x2} = 1

−i2𝜋
𝛿
′(𝜈) ⋅ 1

(−i2𝜋)2 𝛿
′′(𝜈), but

𝛿
′ ⋅ 𝛿′′ is undefined.

The convolution theorem may work for sequences if it does not for the functions
themselves. Earlier we saw that two one-sided functions of slow growth may be
convolved, for example, U(x) ∗ U(x) = xU(x). The Fourier transform of xU(x) may
be calculated by the derivative theorem in the frequency domain:

xU(x) ⟼ 1
−i2𝜋

d
d𝜈

[1
2
𝛿(𝜈) + 1

i2𝜋𝜈

]
= − 1

(2𝜋𝜈)2
+ i

4𝜋
𝛿
′(𝜈).

(Note, by the way, that the Fourier transform is Hermitian.) However, these functions
are problematic for the convolution theorem:

� U ∗ Φ is not a good function.
�

( 1
2
𝛿(𝜈) + 1

i𝜋𝜈

)
𝜑(𝜈) is not a good function.

�

( 1
2
𝛿(𝜈) + 1

i𝜋𝜈

)
cannot be squared.

However, as we did with the definition of generalized convolution, we can try to use
sequences and take limits. The method is diagrammed below:

f ∗ g FG
⏐⏐⏐⏐⏐⏐
↓

sequence
↑⏐⏐⏐⏐⏐⏐

n→∞

fn ∗ gn ⟷ FnGn

Represent the step functions by the rapidly decreasing sequence e−x∕nU(x), which
has Fourier transform Fn(𝜈) = n

1+i2𝜋n𝜈
. Now e−x∕nU(x) ∗ Φ(x) is good, because of

the rapid decrease of the exponential, and n
1+i2𝜋n𝜈

𝜑(𝜈) is also good, because n
1+i2𝜋n𝜈

is infinitely continuously differentiable. Thus the generalized convolution theorem
yields

fn ∗ gn(x) = xe−x∕nU(x)

FnGn(𝜈) =
( n

1 + i2𝜋n𝜈

)2

and both fn ∗ gn and FnGn are generalized functions. Verification that these sequences
converge to xU(x) and its Fourier transform is left to the problems.

6.5 SAMPLING THEORY AND FOURIER SERIES

Sampled functions were introduced in Chapter 3. A sequence (f [n]) is created by
measuring the values of a continuous function f at regular intervals, f [n] = f (nΔx),
where Δx is the sampling interval. Because f (x)𝛿(x − a) = f (a)𝛿(x − a), a sampled
function may be modeled as a train of weighted impulses, the product of f (x) with a
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train of unit impulses. Denoting the impulse-sampled function by fs(x),

fs(x) = f (x)
∞∑

n=−∞
𝛿(x − nΔx) =

∞∑
n=−∞

f (nΔx)𝛿(x − nΔx)

=
∞∑

n=−∞
f [n]𝛿(x − nΔx).

A periodic function f (x) is the replication of a function f0(x) at regular intervals
x = nL. A single replica of f0 at x = a is just a shift, which can be modeled by
convolution with an impulse, f0(x − a) = f0(x) ∗ 𝛿(x − a). Infinite replication of f0
into a periodic function can then be modeled by the convolution of f0 with a train of
impulses spaced by the period L:

f (x) = f0(x) ∗
∞∑

n=−∞
𝛿(x − nL) =

∞∑
n=−∞

f0(x) ∗ 𝛿(x − nL)

=
∞∑

n=−∞
f0(x − nL).

The infinite impulse train, which we shall call a comb function, is central to both
sampling and replication and connects them both through the Fourier transform. The
key result of this section is that the Fourier transform of a train of weighted impulses
(a sampled function) is periodic, and conversely, the Fourier transform of a periodic
function is a train of impulses weighted by Fourier series coefficients. This leads to
a more complete picture of Fourier series, sampling, bandlimited functions, aliasing,
and the Nyquist sampling rate. It also permits a “grand unification” of the various
Fourier representations—DFT, Fourier series, discrete-time Fourier transform, and
(continuous-time) Fourier transform.

We begin with a connection between the Fourier transform and the Fourier
series for ordinary functions.

6.5.1 Fourier Series, Again

In Chapter 4 it was shown that a periodic function f that is integrable on a finite
interval [0, L] may possess a Fourier series representation:

f (x) =
∞∑

n=−∞
cnei2𝜋nx∕L,

where L is the period and the Fourier coefficients are

cn = 1
L ∫

L

0
f (x)e−i2𝜋nx∕L dx.

The integral for the Fourier coefficients can be made to look like a Fourier transform
if a unit period of f is defined:

f0(x) =
{

f (x), 0 ≤ x < L
0, otherwise.
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In terms of f0 and its Fourier transform F0, the Fourier coefficients are

cn = 1
L ∫

∞

−∞
f0(x)e−i2𝜋nx∕L dx = 1

L
F0

( n
L

)
.

The following theorem expresses this idea in a more general form.

Theorem 6.7. Let f be a continuous and bounded function that decays faster than
O(|x|−1) as |x| → ∞. Let F = F{f }, and assume that it is bounded and decays faster
than O(|𝜈|−1) as |𝜈| → ∞. Form a periodic function f̃ by replicating f with period L:

f̃ =
∞∑

k=−∞
f (x + kL).

Then f̃ has a Fourier series:

f̃ (x) =
∞∑

k=−∞
f (x + kL) =

∞∑
n=−∞

1
L

F
(n

L

)
ei2𝜋nx∕L

. (6.41)

These series converge absolutely and uniformly.

Proof: Proof that f̃ is integrable on [0, L], and periodic, f̃ (x) = f̃ (x + L), is taken up
in the problems. The Fourier coefficients are calculated from

cn = 1
L ∫

L

0

[ ∞∑
k=−∞

f (x + kL)

]
e−i2𝜋nx∕L dx.

Begin with a finite sum, then exchange summation and integration and change vari-
ables 𝜉 = x + kL:

1
L ∫

L

0

[
N∑

k=−N

f (x + kL)

]
e−i2𝜋nx∕L dx =

N∑
k=−N

1
L ∫

(k+1)L

kL
f (𝜉)e−i2𝜋n(𝜉−kL)∕L d𝜉

=
N∑

k=−N

1
L ∫

(k+1)L

kL
f (𝜉)e−i2𝜋n𝜉∕L d𝜉 = 1

L ∫
(N+1)L

−NL
f (𝜉)e−i2𝜋n𝜉∕L d𝜉.

Now, as N → ∞, this becomes a Fourier transform integral, and so

cn = 1
L ∫

∞

−∞
f (𝜉)e−i2𝜋𝜉(n∕L) d𝜉 = 1

L
F
(n

L

)
.

The Fourier coefficients will exist merely if f ∈ L1(ℝ), but by specifying the rates
of decay for f and F, we obtain absolute and uniform convergence for the periodic
replication of f and for the Fourier series.

Example 6.35 (Square wave). The replication of a rectangle function rect
( x

A

)
with period L > 2A results in a square wave with duty cycle A

L
. The Fourier transform
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of the rectangle is A sinc A𝜈, and using Equation 6.41, the Fourier coefficients for the
square wave are obtained by sampling the Fourier transform:

cn = A
L

sinc
(nA

L

)
.

When A = L∕2, we recover a familiar result (compare Example 4.3):

cn = 1
2

sinc
(n

2

)
=
⎧⎪⎨⎪⎩

1
2
, n = 0

0, n even
(−1)(n−1)∕2

𝜋n
, n odd

The lack of continuity of the rectangle and the consequent slow decay of the sinc
function prevent the Fourier series from converging uniformly.

A remarkable corollary of Theorem 6.7 is the Poisson sum formula, obtained
by setting x = 0 in Equation 6.41:

∞∑
k=−∞

f (kL) =
∞∑

n=−∞

1
L

F
( n

L

)
. (6.42)

Example 6.36. The Poisson sum formula can provide a way to sum infinite series.
One such series that appears in a later chapter is

∑∞
n=−∞

1
n2+b2 . If there is a function

related by Fourier transformation to the terms being summed, the Poisson sum formula
can be applied. Here, the transform pair e−|x| ⟷ 2

1+(2𝜋𝜈)2 is the key. By the dilation

theorem, 1
𝜈2+b2 ⟷ 𝜋

b
e−2𝜋b|x| (b > 0). The Poisson sum formula then says

∞∑
n=−∞

1
n2 + b2

=
∞∑

k=−∞

𝜋

b
e−2𝜋b|k|

.

The sum on the right is a pair of geometric series:

∞∑
k=−∞

𝜋

b
e−2𝜋b|k| = −𝜋

b
+

0∑
k=−∞

𝜋

b
(e+2𝜋b)k +

∞∑
k=0

(e−2𝜋b)k

= −𝜋

b
+ 2𝜋

b

∞∑
k=0

(e−2𝜋b)k = −𝜋

b
+ 2𝜋

b
1

1 − e−2𝜋b

= 𝜋

b
1 + e−2𝜋b

1 − e−2𝜋b
= 𝜋

b
coth 𝜋b.

Thus, we have the sum of the infinite series:
∞∑

n=−∞

1
n2 + b2

= 𝜋

b
coth 𝜋b.

Even if a closed form sum is not possible, the Poisson sum formula may lead
to a better numerical approximation. In the present example, 1

n2+b2 decays O(n−2),

but e−2𝜋b|k| is rapidly decreasing. With b = 1, the exponential series converges to an
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answer within 10−14 (Matlab “long” precision) of the true value of 𝜋 coth 𝜋 in 11
terms. The other is only within 10−2 after 401 terms!

6.5.2 Periodic Generalized Functions

A function is periodic if f (x + L) = f (x). A generalized function is periodic if

∫ f (x)𝜑(x) dx = ∫ f (x)𝜑(x − L) dx. (6.43)

One important example of a periodic generalized function is the comb function:

III(x) =
∞∑

n=−∞
𝛿(x − n). (6.44)

It is a shorthand notation for an infinite impulse train. Other periodic generalized
functions can be obtained by differentiating periodic functions; for example, think
about what happens if you differentiate a square wave, or take the second derivative
of a triangle wave.

The Fourier series of a periodic generalized function has the same form as an
ordinary Fourier series:

∞∑
n=−∞

cnei2𝜋nx∕L
.

Consider the partial sum SN(x) =
∑N

n=−N cnei2𝜋nx∕L, which is a regular generalized
function. The sequence of partial sums converges weakly to a generalized function f
if the sequence of integrals

∫
∞

−∞

[
N∑

n=−N

cnei2𝜋nx∕L

]
Φ(x) dx

converges as N → ∞. As we did in the derivation of Equation 6.41, for fixed N, we
may take the integral inside the summation, and obtain

N∑
n=−N

cn ∫
∞

−∞
ei2𝜋nx∕L Φ(x) dx =

N∑
n=−N

cn𝜑

(n
L

)
,

where 𝜑 = F−1{Φ}. Because 𝜑 is a good function, the doubly infinite sequence of
values (𝜑(n∕L)) is rapidly decreasing as |n| → ∞. The sequence of Fourier coeffi-
cients (cn) can be slowly growing as |n| → ∞ and the sum

∑N
n=−N cn𝜑(n∕L) will still

converge absolutely as N → ∞.
Suppose we have an ordinary periodic function f whose Fourier series is abso-

lutely and uniformly convergent (i.e., f is continuous and piecewise smooth on [0, L]).
As a regular generalized function it can be repeatedly differentiated term-by-term,
each time multiplying the Fourier coefficients by i2𝜋n∕L. After k derivatives, the
coefficient sequence is ((i2𝜋n∕L)kcn) and is never worse than slowly growing in n.
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FIGURE 6.15 (a) A sawtooth function. (b) The derivative of the sawtooth has impulses at the
jumps, f ′(x) = −1 + III(x). The Fourier series representation of f ′, obtained by differentiating
the Fourier series of the sawtooth, is −1 +

∑∞
n=−∞ 1 ⋅ ei2𝜋nx. It is weakly convergent to a

generalized function. (c) The fifth partial sum of the Fourier series, −1 +
∑5

n=−5 ei2𝜋nx = −1 +
D11(x). (d) The 15th partial sum, −1 + D31(x). The sequence of partial sums converges weakly
to a comb function, III(x).

Any such derived series will therefore be weakly convergent. We conclude that all
periodic generalized functions have weakly convergent Fourier series.20

A periodic generalized function, written as a weakly convergent Fourier series,
can also be Fourier transformed term-by-term. The result is

F̃(𝜈) =
∞∑

n=−∞
cn F{ei2𝜋nx∕L} =

∞∑
n=−∞

cn 𝛿

(
𝜈 − n

L

)
. (6.45)

Example 6.37 (Sawtooth wave and its derivative). Consider the sawtooth wave
shown in Figure 6.15. By inspection, c0 = 0. The rest of the Fourier coefficients are

cn = ∫
1

0

(1
2
− x

)
e−i2𝜋nx dx = 1

i2𝜋n
.

20For detailed discussions of periodic generalized functions and their Fourier series expansions, see Gas-
quet and Witomski (1999, pp. 335–342), Folland (1992, pp. 320–323), Champeney (1987, pp. 170–176),
and Lighthill (1958, pp. 58–75).
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The coefficients are decaying, but only O(|n|−1), because of the jumps in the sawtooth.
Though it converges nonuniformly as an ordinary Fourier series (we expect overshoot
at the jumps), it converges weakly and that is all we need to treat f as a generalized
function. Differentiating the Fourier series term-by-term, the Fourier coefficients
become i2𝜋n cn = 1, n ≠ 0. We can look at the derived series in two ways.

First, we know the series will converge weakly to the (generalized) derivative
of f . The derivative of each linear part is −1, and the derivative of each jump is a
delta function. Therefore,

f ′(x) = −1 +
∞∑

k=−∞
𝛿(x − k),

a constant plus an infinite train of impulses (a comb function). The comb function∑∞
n=−∞ 𝛿(x − n) is weakly convergent:

∫
[

N∑
n=−N

𝛿(x − n)

]
𝜑(x) dx =

N∑
n=−N

∫ 𝛿(x − n)𝜑(x) dx =
N∑

n=−N

𝜑(n),

and this sum converges as N → ∞ because 𝜑 is good. So f ′ is a well-defined gener-
alized function.

Second, look at the sequence of partial sums of the Fourier series:

SN =
∑

N≥|n|>0

1 ⋅ ei2𝜋nx = −1 +
N∑

n=−N

ei2𝜋nx = −1 + D2N+1(x),

a constant plus a Dirichlet kernel. Some of these partial sums are shown in Fig-
ure 6.15. Over one period, say x ∈ [− 1

2
, 1

2
], D2N+1 has height 2N + 1, zero crossings

spaced by 1
2N+1

, and unit area. It is plain that the peaks of the Dirichlet kernel are
converging toward delta functions. We may consider the sequence of Dirichlet kernels
(D2n+1(x))∞n=1 to be a representation for the comb function.

The Comb Function
We saw in the previous example that the Fourier series for the comb function is

III(x) =
∞∑

n=−∞
1 ⋅ ei2𝜋nx

.

The series is weakly convergent and may be Fourier transformed term-by-term to
give a very nice result

III(x) ⟷ III(𝜈). (6.46)

This can also be derived without passing through the Fourier series (see the problems).
A dilated comb function, III(x∕Δx), is

III
( x
Δx

)
=

∞∑
n=−∞

𝛿

( x
Δx

− n
)
=

∞∑
n=−∞

Δx 𝛿(x − nΔx).
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FIGURE 6.16 The comb function, III(x), is an infinite train of unit impulses (left). The
dilated comb, III

( x

Δx

)
, is a train of impulses with spacing Δx and height Δx (right).

As the impulses spread out (increasing Δx), their heights (areas) increase (Fig-
ure 6.16). A train of unit impulses with period Δx is

∞∑
n=−∞

𝛿(x − nΔx) = 1
Δx

III
( x
Δx

)
. (6.47)

By the dilation theorem, the Fourier transform of this impulse train is

F
{ ∞∑

n=−∞
𝛿(x − nΔx)

}
= F

{ 1
Δx

III
( x
Δx

)}
= III(Δx 𝜈)

=
∞∑

n=−∞
𝛿(Δx 𝜈 − n) =

∞∑
n=−∞

Δx 𝛿
(
𝜈 − n

Δx

)
. (6.48)

The comb function transform pair obeys the same reciprocal spreading principle as
other Fourier transforms: the spacing of the impulses in the frequency domain is the
inverse of the spacing in the time domain.

6.5.3 The Sampling Theorem

Sampling and Replication
A sampled function fs(x) is represented by the product of f (x) with the dilated comb
function (Figure 6.17):

fs(x) = f (x) ⋅
1
Δx

III
( x
Δx

)
. (6.49)

Convolving a function with a comb produces a periodic replication (Figure 6.18):

f (x) ∗ 1
Δx

III
( x
Δx

)
=

∞∑
n=−∞

f (x − nΔx). (6.50)
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FIGURE 6.18 Convolving a function f with a comb produces a periodic replication of f .
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The Fourier transform of the impulse-sampled function is

fs(x) ⟼ F
{

f (x) ⋅
1
Δx

III
( x
Δx

)}
= F(𝜈) ∗ III (Δx 𝜈) (6.51a)

and the Fourier transform of a periodic replication is
∞∑

n=−∞
f (x − nΔx) ⟼ F

{
f (x) ∗ 1

Δx
III
( x
Δx

)}
= F(𝜈) III (Δx 𝜈) . (6.51b)

The Fourier transform of a sampled function is a periodic replication of the transform
of the unsampled function. The Fourier transform of a periodically replicated function
is an impulse sampling of the transform of the base function. Sampling and replication
are a transform pair. We have seen one of these relationships applied to the Fourier
series (Theorem 6.7). We will now use the other to derive a classic result.

Bandlimited Functions
A function f (x) is bandlimited if its Fourier transform F(𝜈) is zero for frequencies
𝜈 higher than a finite value B. If f is bandlimited and in L2, then F ∈ L2(−B, B),
which means it is also in L1(−B, B) (recall L2(a, b) ⊂ L1(a, b) for bounded intervals
(a, b), Figure 4.5). Then, because F ∈ L1(−B, B), f is also bounded and continuous (in
fact, we shall see in Chapter 8 that bandlimited functions are infinitely continuously
differentiable, e.g., sinc, whose Fourier transform is rect).21

Sampling Theorem
Because square-integrable bandlimited functions are bounded and continuous, their
samples are well defined. As the following theorem shows, under appropriate condi-
tions a bandlimited function can be reconstructed from its samples.22

Theorem 6.8 (Sampling theorem). Let f be a bandlimited function (F(𝜈) = 0
for |𝜈| > B > 0) and have finite energy, f ∈ L2(ℝ). If Δx < 1∕2B, then f may be
reconstructed from samples f (nΔx), according to the formula

f (x) =
∞∑

n=−∞
f (nΔx) sinc

(x − nΔx
Δx

)
. (6.52)

Proof: Because f is bandlimited and has finite energy, it is continuous and bounded;
the samples f (nΔx) are well defined. The Fourier transform of the impulse-sampled
function is (Equation 6.51)

Fs(𝜈) = F(𝜈) ∗ III(Δx 𝜈) =
∞∑

n=−∞

1
Δx

F
(
𝜈 − n

Δx

)
.

The Fourier transform is a periodic replication of F, the Fourier transform of f . If
Δx < 1∕2B, then the replicas, or “spectral islands”, will not overlap; otherwise they
will overlap, causing aliasing (Figure 6.19).

21Papoulis (1977, pp. 184–191) discusses several additional properties of bandlimited functions.
22Brief historical notes on the development of the sampling theorem can be found in Marks (1991, pp. 1–4).
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FIGURE 6.19 A function with bandlimit B is sampled at rate 𝜈s =
1

Δx
. The spectrum is

replicated by sampling. Top: The case of oversampling, 𝜈s > 2B. The spectral replicas are well
separated. Middle: The case of critical sampling, 𝜈s = 2B. Bottom: The case of undersampling,
𝜈s < 2B. The spectral islands overlap (aliasing).

Assuming the spectral islands are well separated, the central (n = 0) island,
which is the Fourier transform of f , can be isolated from the others by an ideal
lowpass filter, Δx rect(Δx 𝜈). Applying the lowpass filter gives

F(𝜈) = Fs(𝜈)Δx rect(Δx𝜈),

and inverting the Fourier transform yields the desired result,

f (x) = fs(x) ∗ sinc
( x
Δx

)
=

∞∑
n=−∞

f (nΔx) 𝛿(x − nΔx) ∗ sinc
( x
Δx

)
=

∞∑
n=−∞

f (nΔx) sinc
(x − nΔx

Δx

)
.

The sampling and reconstruction process is illustrated in Figure 6.20. The sinc func-
tions interpolate between the sample values to supply the rest of the original function.
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FIGURE 6.20 The sampling theorem. (a) A bandlimited function f is sampled atΔx > 1∕2B.
(b) The spectrum of the sampled function is the Fourier transform F, replicated at 𝜈 = n∕Δx.
(c) Because f is bandlimited, the spectral replicas do not overlap, and the central (n = 0) term
can be isolated by an ideal lowpass filter. (d) The function f is recovered by interpolating its
sample values with sinc functions (dashed lines).

⋆ A Vector Space Interpretation
The sampling theorem may be interpreted as an orthogonal expansion in L2.23 Let
𝜓n(x) = sinc(x − n) be a shifted sinc function. The dilated and shifted sinc functions,

𝜓n

( x
Δx

)
= sinc

( x
Δx

− n
)
= sinc

(x − nΔx
Δx

)
,

are orthogonal:⟨
𝜓n

( x
Δx

)
,𝜓m

( x
Δx

)⟩
=
⟨

sinc
(x − nΔx

Δx

)
, sinc

(x − mΔx
Δx

)⟩
=
⟨

e−i2𝜋nΔx 𝜈 Δx rect(Δx 𝜈), e−i2𝜋mΔx 𝜈 Δx rect(Δx 𝜈)
⟩

(Parseval)

= (Δx)2 ∫
1∕2Δx

−1∕2Δx
e−i2𝜋(n−m)Δx 𝜈 d𝜈 = Δx 𝛿[n − m].

23The orthogonal expansion interpretation of the sampling theorem is outlined in Gasquet and Witomski
(1999, pp. 357–359) and in the comprehensive paper by Unser (2000).
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Let VB denote the set of square-integrable functions with bandlimit B. It can be
shown that it is a subspace of L2. The 𝜓n(x∕Δx) are individually bandlimited to B and
are in L2. A linear combination of them is also bandlimited; indeed, by the sampling
theorem, any bandlimited L2 function can be expressed as a linear combination of

the 𝜓n. Therefore, the set {𝜓n(x∕Δx)∕
√
Δx}n∈ℤ is an orthonormal basis for the

subspace VB.

For any function f ∈ L2, the inner product ⟨f ,𝜓n(x∕Δx)∕
√
Δx⟩ is the projection

of f onto the nth basis vector of VB, and the orthogonal projection of f onto VB, which
is the best bandlimited approximation to f , is the sum:

f̂ (x) =
∑

n

⟨
f ,

1√
Δx

𝜓n

( x
Δx

)⟩ 1√
Δx

𝜓n

( x
Δx

)
=
∑

n

⟨
f ,

1
Δx

𝜓n

( x
Δx

)⟩
𝜓n

( x
Δx

)
.

The inner products are, using Parseval’s theorem,⟨
f ,

1
Δx

𝜓n

( x
Δx

)⟩
=
⟨

F, e−i2𝜋nΔx 𝜈rect(Δx 𝜈)
⟩

= ∫
∞

−∞
[F(𝜈) rect(Δx 𝜈)]ei2𝜋nΔx 𝜈 d𝜈

= F−1{F(𝜈) rect(Δx 𝜈)}|x=nΔx.

The product F(𝜈) rect(Δx 𝜈) represents the application of an ideal lowpass filter
to f , resulting in a function which is bandlimited to |𝜈| < 1∕2Δx. The expansion

coefficients ⟨f ,𝜓n(x∕Δx)∕
√
Δx⟩ are samples of the filter’s output at x = nΔx. If

f is already bandlimited (f ∈ VB), the coefficients are precisely the samples of f ,
f [n] = f (nΔx). Otherwise, f is bandlimited before sampling to prevent aliasing. The
necessary antialiasing filter is implicit in the orthogonal projections onto VB.

Sampled Sinusoidal Functions
The Fourier transform of a sinusoidal function cos 2𝜋𝜈0x is a pair of impulses at ±𝜈0.
This function may also be considered bandlimited to any B > 𝜈0, but it is not square
integrable. The requirement for square integrability in the sampling theorem does
two things: it guarantees that the function is bounded and continuous and (see the
problems) provides a Parseval relationship between the energy in the signal and the
squares of the samples. A sinusoid, even a finite sum of sinusoids, is also bounded
and continuous and will have well-defined samples. It can be shown that the sinc-
function interpolation can recover a sinusoidal function from its samples.24 One must
be careful, however, not to sample a sinusoid right at the Nyquist rate, Δx = 1∕2𝜈0,
because this is precisely the spacing of zero crossings, and there is a chance that the
samples could fall at or near the zero crossings!

6.5.4 Discrete-time Fourier Transform

The duality of the discrete-time Fourier transform with the Fourier series enables the
properties of a generalized discrete-time Fourier transform to be obtained easily. If a

24See Gasquet and Witomski (1999, p. 356) for a proof.
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sequence (f [n])n∈ℤ is in 𝓁1, it possesses a Fourier transform Fd(𝜃) that is bounded,
continuous, and periodic with period 2𝜋. The extension to generalized functions is
simple: the Fourier transform of a slowly growing sequence (|f [n]| < C(1 + |n|)N for
some finite C and N) is a periodic generalized function. Here are some examples.

Example 6.38 (Fourier transforms of slowly growing sequences).

1. Constant function. The Fourier transform of a constant is obtained using a
convergence factor. A rectangle is simple:

1 ⟼ lim
N→∞

N∑
n=−N

e−in𝜃 = lim
N→∞

DN

(
𝜃

2𝜋

)
=

∞∑
k=−∞

2𝜋𝛿 (𝜃 − 2𝜋k) = III
(
𝜃

2𝜋

)
.

On the principal interval [−𝜋, 𝜋), 1 ⟼ 2𝜋𝛿(𝜃). We will usually just write it
this way, and interpret the digital frequencies modulo-2𝜋.

2. Sine and cosine. Using the shift theorem,

ei𝛼n ⟼ 2𝜋𝛿 (𝜃 − 𝛼) .

Then, by linearity,

cos 𝛼n ⟼ 𝜋𝛿(𝜃 − 𝛼) + 𝜋𝛿(𝜃 + 𝛼),

sin 𝛼n ⟼ −i𝜋𝛿(𝜃 − 𝛼) + i𝜋𝛿(𝜃 + 𝛼).

3. Signum function. The discrete signum function is

sgn[n] =
⎧⎪⎨⎪⎩

1, n > 0
0, n = 0
−1, n < 0

.

The Fourier transform is obtained via a convergence factor, a|n|, 1 > a > 0:

a|n|sgn[n] ⟼
−1∑

n=−∞
(−1) ⋅ a−n e−in𝜃 +

∞∑
n=1

1 ⋅ an e−in𝜃

= −
∞∑

n=0

an ein𝜃 + 1 +
∞∑

n=0

an e−in𝜃 − 1

= − 1
1 − aei𝜃

+ 1
1 − ae−i𝜃

= − i2a sin 𝜃
(1 + a2) − 2a cos 𝜃

,

and letting a → 1,

sgn[n] ⟼ − i sin 𝜃
1 − cos 𝜃

= 1
2i

cot
(
𝜃

2

)
. (6.53)

4. Step function. The discrete step function is usually defined

U[n] =
{

1, n ≥ 0
0, n < 0

.
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In continuous time, the step function is defined to be equal to 1
2

at x = 0, and

U(x) = 1
2
(1 + sgn x), If this is carried through to discrete time, then the step

function is U[n] = 1
2
𝛿[n] + 1

2
(1 + sgn[n]). In continuous time, the value at a

single point makes no difference to the Fourier transform, but not in discrete
time. By linearity, the Fourier transform of 1

2
(1 + sgn[n]) is

1
2

(1 + sgn[n]) ⟼ 𝜋𝛿(𝜃) + 1
2i

cot
(
𝜃

2

)
and then, applying linearity again,

U[n] ⟼ 1
2
+ 𝜋𝛿(𝜃) + 1

2i
cot

(
𝜃

2

)
. (6.54)

A straightforward derivation using a convergence factor leads to the result

U[n] ⟼
∞∑

n=0

anein𝜃 = 1
1 − ae−i𝜃

.

So how does this become Equation 6.54? First, separate the real and imaginary
parts by rationalizing the denominator:

1
1 − ae−i𝜃

= 1 − a cos 𝜃
(1 + a2) − 2a cos 𝜃

− ia sin 𝜃
(1 + a2) − 2a cos 𝜃

.

The second term becomes 1
2i

cot
(
𝜃

2

)
as a → 1. The first term is an “improper”

fraction in cos 𝜃 and is reduced by division to

1 − a cos 𝜃
(1 + a2) − 2a cos 𝜃

= 1
2
+ 1

2
1 − a2

(1 + a2) − 2a cos 𝜃
.

It remains to verify that the second term of this expression becomes 𝜋𝛿(𝜃) as
a → 1. It can be shown that this term has constant area 𝜋, it goes to zero as
a → 1 except at 𝜃 = 0, and has height 1+a

2(1−a)
at 𝜃 = 0. This means that the term

is a sequence of functions converging to a delta function 𝜋𝛿(𝜃).

If a periodic function f (x) has Fourier coefficients (cn), then the Fourier coeffi-
cients of its derivative f ′(x) are i2𝜋n

L
cn. The converse, interpreted for the discrete-time

Fourier transform (L = 2𝜋), is that if a sequence f [n] has Fourier transform Fd(𝜃),
then the Fourier transform of nf [n] is the (generalized) derivative, iF′

d(𝜃).

Example 6.39 (Ramp sequences).

1. The Fourier transform of f [n] = n is obtained from the derivative of the trans-
form of the unit sequence:

1 ⟼ 2𝜋𝛿(𝜃)

n ⟼ i2𝜋𝛿′(𝜃). (6.55)
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2. The Fourier transform of a one-sided ramp, f [n] = nU[n], is obtained from the
derivative of the transform of the step function,

U[n] ⟼ 1
2
+ 𝜋𝛿(𝜃) + 1

2i
cot

(
𝜃

2

)
,

nU[n] ⟼ i𝜋𝛿′(𝜃) − 1
2

csc2
(
𝜃

2

)
. (6.56)

For a final example, we consider the Fourier transform of the discrete comb sequence,

IIIN[n] =
∞∑

k=−∞
𝛿[n − kN].

Example 6.40 (Discrete comb sequence). The transform of the discrete comb is

IIIN [n] ⟼
∞∑

n=−∞

( ∞∑
k=−∞

𝛿[n − kN]

)
e−in𝜃 =

∞∑
k=−∞

e−ikN𝜃
.

The partial sum
∑K

k=−K e−ikN𝜃 is a Dirichlet kernel, D2K+1
(N𝜃

2𝜋

)
. There are zero

crossings at 𝜃 = 2𝜋
N(2K+1)

and peaks of height 2K + 1 at 𝜃 = 2𝜋
N

. Each period has
constant area 2𝜋. Each peak becomes a delta function as K → ∞, and the transform
of IIIN[n] is another comb:

IIIN [n] ⟼ III
(N𝜃

2𝜋

)
. (6.57)

The period of the discrete comb is N, and the period of its transform is 2𝜋∕N. The
limiting cases N → 1 and N → ∞ are considered in the problems.

6.6 UNIFYING THE FOURIER FAMILY

6.6.1 Basis Functions and Orthogonality Relationships

The DFT and Fourier series were developed conceptually as orthogonal expansions
on trigonometric basis functions. The basis vectors for the DFT are {𝜙m}N−1

m=0, where

𝜙m = (ei2𝜋mn∕N)N−1
n=0 .

The orthogonality relationship is

⟨𝜙k,𝜙m⟩ = N−1∑
n=0

𝜙k[n]𝜙∗
m[n] = N𝛿[k − m].

The Fourier series basis functions are {𝜙n}∞n=−∞, where

𝜙n(x) = ei2𝜋nx∕L,
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and the orthogonality relationship is

⟨𝜙k,𝜙m⟩ = ∫
L

0
𝜙k(x)𝜙m(x) dx = L𝛿[k − m].

Using the delta function, we can now interpret the Fourier transform and the discrete-
time Fourier transforms as expansions on orthogonal bases. Evidently the basis
functions for the Fourier transform are the complex exponentials ei2𝜋𝜈x, where 𝜈 is
continuous rather than a discrete index. The orthogonality condition expressed as the
integral

∫
∞

−∞
ei2𝜋𝜈xe−i2𝜋𝜇xdx

does not exist in the ordinary sense. But, applying the transform pair 1 ⟷ 𝛿(𝜈)
(Equation 6.12), we have a generalized orthogonality relationship for the Fourier
transform basis set {ei2𝜋𝜈x}

𝜈∈ℝ:

∫
∞

−∞
ei2𝜋𝜈xe−i2𝜋𝜇xdx = 𝛿(𝜈 − 𝜇).

For the discrete-time Fourier transform, the basis functions are {ein𝜃}
𝜃∈[−𝜋,𝜋). Their

orthogonality relationship is

∞∑
n=−∞

ein𝜃e−in𝜙 = lim
N→∞

D2N+1

(
𝜃 − 𝜙

2𝜋

)
= 2𝜋𝛿(𝜃 − 𝜙).

6.6.2 Sampling and Replication

The fact that the comb function is its own transform, with the result that f ⋅ III ⟷
F ∗ III, shows that sampling in one domain always results in periodicity in the other
domain. Let f be a continuous aperiodic function, and let F be its Fourier transform.
This is the only Fourier transform where both domains are continuous. The Fourier
series is discrete in the frequency domain and periodic in the time domain. The
discrete-time Fourier transform is discrete in the time domain and periodic in the
frequency domain. The DFT is discrete and periodic in both domains. These three
transforms are obtained from the continuous time Fourier pair f ⟷ F by sampling
and replication.

1. Sampled ⟼ replicated. The Fourier transform of a sampled function, fs(x) =
f (x) ⋅ 1

Δx
III
( x
Δx

)
, is a periodic replication of F:

f (x) ⋅
1
Δx

III
( x
Δx

)
⟼ F(𝜈) ∗ III (Δx 𝜈) .

The impulse sampled function is also written

f (x) ⋅
1
Δx

III
( x
Δx

)
=

∞∑
n=−∞

f [n] 𝛿(x − nΔx),
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where f [n] = f (nΔx). The Fourier transform, by a direct calculation, is∑∞
n=−∞ f [n] e−i2𝜋nΔx𝜈 . Compare this expression with the discrete-time Fourier

transform of (f [n]),

Fd(𝜃) =
∞∑

n=−∞
f [n]e−in𝜃

.

If we set 𝜃 = 2𝜋𝜈Δx, the usual mapping from analog frequency to digital
frequency, then we see that Fd is the same as F ∗ III, that is, Fd is the periodic
replication of F:

F(𝜈) ∗ III(Δx 𝜈) =
∑

k

1
Δx

F
(
𝜈 + k

Δx

)
=
∑

k

1
Δx

F
(
𝜃 + 2𝜋k
2𝜋Δx

)
= Fd(𝜃)

||||𝜃=2𝜋𝜈Δx
.

This may be diagrammed as follows:

f (x)
F

⟶ F(𝜈)

⋅III

⏐⏐⏐⏐⏐⏐
↓

∗III

⏐⏐⏐⏐⏐⏐
↓

f [n]
F

⟶ Fd(𝜃)

If f is bandlimited, then Fd|𝜃∈[−𝜋,𝜋) is identically F∕Δx, and f (x) may be
recovered from its samples according to the sampling theorem.

2. Replicated ⟼ sampled. The Fourier transform of the periodically replicated
function, f̃ (x) = f (x) ∗ 1

L
III
( x

L

)
, is

f (x) ∗ 1
L

III
( x

L

)
⟼ F(𝜈) ⋅ III(L𝜈)

=
∞∑

n=−∞

1
L

F
( n

L

)
𝛿

(
𝜈 − n

L

)
.

A periodic function has a line spectrum. The samples of F are the Fourier
coefficients of f̃ , cn = 1

L
F
( n

L

)
.

f (x)
F

⟶ F(𝜈)

∗III

⏐⏐⏐⏐⏐⏐
↓

⋅III

⏐⏐⏐⏐⏐⏐
↓

f̃ (x)
F

⟶ cn

If f has bounded support smaller than L, then one period of f̃ is identically
f , and F may be recovered from the Fourier coefficients by an interpolation
analogous to the sampling theorem.

3. Replicated, sampled ⟼ Sampled, replicated. We restrict attention to the case
L = NΔx, so that the sequence (f̃ [n]) = (f̃ (nΔx)) will also be periodic. We know
f̃ ⟼

∑
m cm𝛿(𝜈 − m∕L). Sampling f̃ then replicates the transform, with period

1∕Δx = N∕L; that is, the sequence of Fourier coefficients (cm) is replicated with
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period N. At the mth frequency 𝜈 = m∕L = m∕NΔx, the Fourier coefficient is
a superposition of coefficients:

c̃m = ⋯ cm−N + cm + cm+N +⋯ .

This new sequence is periodic, as expected. Only N coefficients are unique, say
c̃0 through c̃N−1. We previously derived (Equation 4.41)

F̃[m] = N
∞∑

r=−∞
cm+rN , m = 0, 1,… , N − 1,

where F̃[m] is the discrete Fourier transform of the single period, (f̃ [n])N−1
n=0 .

Thus,

c̃m = 1
N

F̃[m].

The Fourier transform of a sampled, replicated function is the DFT:

f̃ (x)
F

⟶ cm

⋅III

⏐⏐⏐⏐⏐⏐
↓

∗III

⏐⏐⏐⏐⏐⏐
↓

f̃ [n]
F

⟶ F̃[m]

If f is bandlimited, then the values of the DFT are identically the Fourier coef-
ficients and f̃ may be recovered from f̃ [n] by the sampling theorem. However,
it is impossible for f simultaneously to be bandlimited and of bounded support,
so the unreplicated f (x) cannot be recovered from the replicated samples f̃ [n].

4. Sampled, replicated ⟼ replicated, sampled. We know that (f [n]) ⟼ Fd(𝜃).
Replicating the sample sequence with period L = NΔx then results in sam-
pling the Fourier transform with sampling interval Δ𝜈 = 1∕NΔx. Using the
continuous-to-discrete frequency mapping, this is equivalent to sampling Fd(𝜃)
with Δ𝜃 = 2𝜋Δ𝜈Δx = 2𝜋∕N:

Fd(𝜃) ⟶
∑
m

Fd(2𝜋m∕N) 𝛿(𝜃 − 2𝜋m∕N).

The sample sequence (Fd(2𝜋m∕N)) is periodic, as expected, Fd(2𝜋(m +
N)∕N) = Fd(2𝜋m∕N). Only N samples are required to describe the function
completely, say Fd(0) through Fd(2𝜋(N − 1)∕N). These values are identically
the DFT of (f̃ [n]):

Fd(2𝜋m∕N) =
∞∑

k=−∞
f [k] e−i(2𝜋m∕N)k

.



6.7 SUMMARY 433

The complex exponential is periodic in k with period N, so we may write
k = n + rN and rewrite the sum:

Fd(2𝜋m∕N) =
∞∑

r=−∞

N−1∑
n=0

f [n + rN] e−i(2𝜋m∕N)(n+rN)

=
N−1∑
n=0

( ∞∑
r=−∞

f [n + rN]

)
e−i2𝜋mn∕N

=
N−1∑
n=0

f̃ [n] e−i2𝜋mn∕N = F̃[m].

The Fourier transform of a replicated, sampled function is also the DFT:

f [n]
F

⟶ Fd

∗III

⏐⏐⏐⏐⏐⏐
↓

⋅III

⏐⏐⏐⏐⏐⏐
↓

f̃ [n]
F

⟶ F̃[m]

These suggest that the sampling and replication may be done in either order, that is,(
f (x) ∗ 1

NΔx
III
( x

NΔx

))
⋅

1
Δx

III
( x
Δx

)
=
(

f (x) ⋅
1
Δx

III
( x
Δx

))
∗ 1

NΔx
III
( x

NΔx

)
Direct proof of this is left to the problems.

The connections among the four Fourier transforms may be combined into a
single diagram (Figure 6.21).25

6.7 SUMMARY

Operational Rules for Generalized Functions

Definition ∫ f𝜑 = lim
n→∞∫

∞

−∞
fn(x)𝜑(x) dx for all 𝜑 ∈ S Definition 6.2

Equivalence f = g if ∫ f𝜑 = ∫ g𝜑 for all 𝜑 ∈ S Definition 6.4

Derivative ∫ f ′𝜑 = −∫ f𝜑′ Equation 6.23

Fourier transform If fn → f and fn ⟷ Fn, then Fn → F

∫ fΦ = ∫ F𝜑, where 𝜑 ⟷ Φ Equation 6.35

25Also see Kammler (2000, pp. 31–37) for a similar diagram and development.
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f(x) F(ν)

f (x)

f [n]

f [n]

cm

Fd(  )θ

F[m]

DTFT

SR

S

~~

~

R

S

S

R

R

FT

FS

DFT

FIGURE 6.21 The Fourier family of transforms related by sampling (S) and periodic repli-
cation (R). Bidirectional arrows indicate invertible Fourier transforms. The sampling and
replication operations are unidirectional, except: a function can be reconstructed from its sam-
ple sequence by interpolation if its Fourier transform has bounded support and the sampling
interval is sufficiently small (sampling theorem). Consult the text for mathematical details of
each mapping.

Operational Rules for the Delta Function

Unit area ∫
∞

−∞
𝛿(x)dx = 1 Equation (6.4)

Sifting ∫
∞

−∞
f (x)𝛿(x − a)dx = f (a)

f (x)𝛿(x − a) = f (a)𝛿(x − a) Equation (6.3)

Convolution f (x) ∗ 𝛿(x − a) = f (x − a) Equation (6.16)

Step function U(x) = ∫
x

−∞
𝛿(𝜉) d𝜉, U′(x) = 𝛿(x) Equation (6.9)

Dilation 𝛿(ax) = 1|a| 𝛿(x) Equation (6.7)

Derivative ∫
∞

−∞
f (x)𝛿′(x − a)dx = −f ′(a) Equation (6.10)

f (x) ∗ 𝛿
′(x − a) = f ′(x − a)
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Fourier Transform Pairs Derived in this Chapter

1 ⟷ 𝛿(𝜈) (6.11)

ei2𝜋x ⟷ 𝛿(𝜈 − 1) (6.12)

cos(2𝜋x) ⟷ 1
2
𝛿(𝜈 − 1) + 1

2
𝛿(𝜈 + 1) (6.13)

sin(2𝜋x) ⟷ 1
2i
𝛿(𝜈 − 1) − 1

2i
𝛿(𝜈 + 1) (6.14)

sgn x ⟷ 1
i𝜋𝜈

(6.36a)

1
x
⟷ −i𝜋 sgn 𝜈 (6.36b)

U(x) ⟷ 1
2
𝛿(𝜈) + 1

i2𝜋𝜈
(6.38)

xn ⟷
𝛿

(n)(𝜈)
(−i2𝜋)n

(6.39)

𝛿
(n)(x) ⟷ (i2𝜋x)n

III(x) ⟷ III(𝜈) (6.46)

Discrete-Time Fourier Transform Pairs Derived in this Chapter

1 ⟷ 2𝜋𝛿(𝜃) (Example 6.38)

ei𝛼n ⟷ 2𝜋𝛿(𝜃 − 𝛼)

cos(𝛼n) ⟷ 𝜋𝛿(𝜃 − 𝛼) + 𝜋𝛿(𝜃 + 𝛼)

sin(𝛼n) ⟷ −i𝜋𝛿(𝜃 − 𝛼) + i𝜋𝛿(𝜃 − 𝛼)

sgn[n] ⟷ 1
2i

cot
(
𝜃

2

)
U[n] ⟷ 1

2
+ 𝜋𝛿(𝜃) + 1

2i
cot

(
𝜃

2

)
n ⟷ i2𝜋𝛿′(𝜃) (Equation 6.55)

nU[n] ⟷ i𝜋𝛿′(𝜃) − 1
2

csc2
(
𝜃

2

)
(6.56)

IIIN[n] ⟷ III
(N𝜃

2𝜋

)
(6.57)

Mappings Between Transforms (Section 6.6.2)
Periodization (Fourier series)

f̃ (x) =
∑

k

f (x + kL), x ∈ [0, L)

cn = 1
L

F
(n

L

)
, n ∈ ℤ.

Sampling (Discrete-time Fourier transform)

f [n] = f (nΔx), n ∈ ℤ

Fd(𝜃) =
∑

k

1
Δx

F(𝜈 + k∕Δx)|||𝜈=𝜃∕2𝜋Δx
=
∑

k

1
Δx

F
(
𝜃 + 2𝜋k
2𝜋Δx

)
, 𝜃 ∈ [−𝜋, 𝜋)
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Sampled and periodic (Discrete Fourier transform)

L = NΔx

f̃ [n] = f̃ (nΔx)

=
∑

k

f ((n + kN)Δx) =
∑

k

f [n + kN], n = 0, 1,…N − 1

F̃[m] = N
∑

k

cm+kN = Fd

(2𝜋m
N

)
, m = 0, 1,… , N − 1

PROBLEMS

6.1. Tempered distributions

(a) Verify that the set S of good functions is a vector space and, in fact, is a subspace
of L2.

(b) Show that the dual space S′ of tempered distributions is itself a vector space.

6.2. Derive the dilation formula (Equation 6.20):

∫ f (ax)𝜑(x) dx = ∫ f (x)
1|a|𝜑( x

a

)
dx.

6.3. In Example 6.2 it was shown that 𝛿(x2 − 1) = 1

2
𝛿(x + 1) + 1

2
𝛿(x − 1). Follow the

sequence of pulses method in that example to show that 𝛿
(
x2
)

is undefined.

6.4. Perform the following calculations:

(a) ∫
∞

−∞
𝛿(x − 1) cos𝜋xdx.

(b) ∫
∞

0
𝛿(x + 2) sin(4x)dx.

(c) ∫
∞

−∞
𝛿(2x − 1)e−xdx.

6.5. A certain generalized function f has the property that when integrated against a testing
function 𝜑, the following result is obtained:

∫
∞

−∞
f (x)𝜑(x)dx = 1

2
𝜑(1) − 1

2
𝜑(−1).

Give an expression for f .

6.6. Derive the symmetry relationships for generalized functions (Equations 6.21).

6.7. Verify the definitions for real and imaginary generalized functions (Equations 6.22).
Hint: Begin by deriving a definition for the complex conjugate f ∗ of a generalized
function. Then recall that the imaginary part of a real function is zero, and the real part
of an imaginary function is zero.

6.8. Derive a definition for a Hermitian generalized function that is analogous to the defini-
tions for real–imaginary and even–odd generalized functions.

6.9. Use the definition of generalized derivative to show that sgn′ = 2𝛿.
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6.10. In the text, 1∕x as a generalized function is defined as the generalized derivative of
log |x|. Show that log |x| is slowly growing, that is, that

∫
∞

−∞

|log |x|| dx

1 + x2
< ∞.

6.11. In the text the identity x𝛿′ = −𝛿 was derived. This problem extends the definition.

(a) Express x2
𝛿
′ in terms of linear combinations of 𝛿 and its derivatives. Generalize to

xn
𝛿
′, n ≥ 1.

(b) Express x𝛿′′ and x2
𝛿
′′ in terms of linear combinations of 𝛿 and its derivatives.

(c) Derive the general formula

xn
𝛿

(m)(x) =

{
0, m < n
(−1)n m!

(m−n)!
𝛿

(m−n)(x), m ≥ n . (6.58)

6.12. Let f and g be generalized functions and assume that their convolution f ∗ g is defined.

(a) Show that convolution commutes, f ∗ g = g ∗ f .

(b) Show that the convolution has a generalized derivative, and that (f ∗ g)′ = f ′ ∗ g =
f ∗ g′.

6.13. Derive the generalized convolution relationships for 𝛿(r) (Equation 6.33).

6.14. Under what circumstances is multiplication associative, (fg)h = f (gh)? Try this
example:

(a) (xx−1)𝛿(x).

(b) x−1(x𝛿).

(c) x(x−1
𝛿(x)).

6.15. Associativity of convolution

(a) Assume that f ∗ g is well defined as a generalized function. Under what conditions
is (f ∗ g) ∗ h well defined as a generalized function?

(b) With the conditions you assumed in (a), show that (f ∗ g) ∗ h = f ∗ (g ∗ h).

6.16. In Chapter 5, we saw that for square integrable f and g, the product of their Fourier
transforms is square integrable and so F−1{FG} = f ∗ g ∈ L2. But the convolution of
two square-integrable functions is only guaranteed to be bounded and continuous, so
the forward transform f ∗ g ⟼ FG could not be justified. Using the fact that a square-
integrable function is also a regular generalized function, can you now resolve this
paradox?

6.17. Derivative of the delta function

(a) What is the “area” under 𝛿′? Is it an even function or an odd function?

(b) Derive Equation 6.30:

f (x)𝛿′(x) = f (0)𝛿′(x) − f ′(0)𝛿(x).

(c) Generalize part (b) to an expression for f (x)𝛿(r)(x).

6.18. Calculate, by carrying out the convolution integral, x ∗ e−xU(x). Compare with the result
in Example 6.34(c).
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6.19. Calculate, by carrying out the convolution integral, cos 2𝜋x ∗ rect(2x). Compare with
the result in Example 6.34(d).

6.20. Cauchy principal value
Show that the generalized Fourier transform of P(1∕x) may be calculated by the integral

∫
∞

−∞
(−i2𝜋𝜈) sinc(2𝜈x) dx

and from here, show that P(1∕x) ⟼ −i𝜋sgn 𝜈.

6.21. Verify the dilation theorem for the generalized Fourier transform. (Follow the plan of
the proof of the shift theorem.)

6.22. Calculate the Fourier transform of |x| = x sgn x by convolution.

6.23. The following two sequences, derived in the text, are claimed to converge to the transform
pair U(x) ∗ U(x) = xU(x) ⟷ − 1

(2𝜋𝜈)2 + i

4𝜋
𝛿
′(𝜈):

fn ∗ gn(x) = xe−x∕nU(x),

FnGn(𝜈) =
( n

1 + i2𝜋n𝜈

)2
.

(a) Show that xe−x∕nU(x) → xU(x) as n → ∞ (this is the easy part).

(b) Separate the sequence for FnGn into real and imaginary parts, and show that the real
part becomes − 1

(2𝜋𝜈)2 as n → ∞.

(c) The members of the sequence n

1+(𝜋n𝜈)2 are unit area peaks, equivalent to a delta
function, 𝛿(𝜈). Use this fact to show that the imaginary part of FnGn becomes

1

4𝜋
𝛿
′(𝜈) as n → ∞.

6.24. Weak convergence
Let (fn) be a sequence of generalized functions, weakly convergent to a generalized
function f . Show that the sequence of derivatives (f ′n ) converges weakly to f ′.

6.25. Weak convergence
Prove Theorem 6.5.

6.26. Derivative theorem
In Example 6.32, the derivative theorem was used to calculate the Fourier transform of
sgn x.

(a) Use a similar approach to calculate the Fourier transform of x−1.

(b) Calculate the Fourier transform of log |x|.
6.27. Derivative theorem

By applying the derivative theorem to the transform pair Λ(x) ⟷ sinc2
𝜈, calculate the

second derivative of Λ(x). Also explain in the space domain.

6.28. Use the generalized Fourier theorems to calculate the transforms of the following
functions:

(a) rect(x) sgn(x).

(b) e−tU(t) cos 2𝜋at.

(c) sin 2𝜋bt U(t).

(d) eix
.
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FIGURE 6.22 For Problem 6.30.

6.29. Calculate and sketch accurately the Fourier transform of the following functions:

(a) 1

2
cos(2𝜋x) + 3 sin(3𝜋x).

(b) 2 − sin (𝜋x∕2) .

(c) 1 + cos2 (2𝜋x) .

6.30. Calculate the Fourier transform of the function shown in Figure 6.22.

6.31. Use the convolution theorem to prove the following transform pairs:

(a) rect(x) cos(𝜋x) ⟷ 1

2
sinc

(
𝜈 + 1

2

)
+ 1

2
sinc

(
𝜈 − 1

2

)
.

(b) x rect(x) ⟷ i

2𝜋

d

d𝜈
sinc𝜈.

(c) Λ(x) ∗ sgn(x) ⟷ −i sinc2
𝜈

𝜋𝜈
.

6.32. The ideal bandpass filter (Figure 6.23) is defined by the transfer function

H(𝜈) = rect

(
𝜈 + 𝜈0

B

)
+ rect

(
𝜈 − 𝜈0

B

)
.

B

1

ν

H(ν)
B

ν0−ν0

FIGURE 6.23 For Problem 6.32. Frequency response of the ideal bandpass filter.
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x
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–1/d3

d–d

FIGURE 6.24 For Problem 6.33.

Express H as a convolution and use the convolution theorem to calculate the Fourier
transform.

6.33. Consider the function h shown in Figure 6.24.

(a) Express this function as a convolution of a single rectangle with three delta functions.

(b) Calculate the Fourier transform H of this function.

(c) Consider the convolution g = h ∗ 𝜑 of h with a good function𝜑. Discuss the behavior
of g as d → 0. What operation does “h ∗” approximate?

6.34. Signals with finite average power
Pure sinusoidal functions are not square integrable and Parseval’s formula is not applica-
ble. For such signals, we may work instead with the long-time averaged power, defined:

Pavg = lim
T→∞

1
2T ∫

T

−T
|f (t)|2 dt.

(a) Using Fourier theorems, show that

Pavg = lim
T→∞∫

∞

−∞
F ⋆ F(𝜉) sinc(2T𝜉) d𝜉,

where F is the Fourier transform of f and ⋆ denotes correlation.

(b) Now let f (t) = A cos(2𝜋𝜈0t), and show that the expression you derived in (a) gives
Pavg = A2∕2, which we know is the correct average power for f .

6.35. Image deblurring
A certain camera records an image while in constant linear motion in the x direction,
as shown in Figure 6.25. We shall assume the imaging is ideal in the y direction and
concentrate on the x direction. The recorded image (blurred) is related to the ideal image
by a filtering operation.

(a) Let T be the exposure time and 𝑣 the velocity of the camera. For simplicity, assume
the camera shutter is open from t = −T∕2 to t = T∕2 (rather than from 0 to T).
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FIGURE 6.25 For Problem 6.35. Recording an image with a moving camera.

Show that the blurred image g(x) may be expressed in terms of the ideal image f (x)
using the convolution relationship:

g(x) = Tf (x) ∗ 1
𝑣T

rect
( x
𝑣T

)
.

(b) What is the transfer function H(𝜈) of this imaging system (𝜈 is spatial frequency)?

(c) It is proposed to attempt deblurring of g(x) by filtering with a transfer function
K(𝜈) = 1

H(𝜈)
, called the inverse filter. The idea is expressed by

F̂(𝜈) = K(𝜈)G(𝜈) = 1
H(𝜈)

H(𝜈)F(𝜈) = F(𝜈).

Can we recover F(𝜈) perfectly? Hint: Consider the effect of noise, due to recording,
which is added to g(x) after the blurring. If perfect recovery is not possible, how
well could we do?

(d) It is claimed that, in the absence of noise, the ideal image f (x) can be recovered from
the recorded image g(x) by differentiation. Analyze this proposal. If the ideal image
has a finite width X, what relationship must hold between X, 𝑣, and T if deblurring
is to be possible in this way? What would the effects of noise be on this system?

6.36. Modulation
Modulation is the process of impressing information (speech, video, data, etc.) on a
“carrier” signal for the purpose of transmitting that information over a communication
channel (radio waves in air, electric current in a telephone wire, lightwave in a fiberoptic
cable, etc.). The simplest form of carrier modulation is amplitude modulation, or AM.

The general equation describing AM is

y(t) = [1 + mx(t)] cos(2𝜋𝜈ct),

where x(t) is the information, or message, 𝜈c is the frequency of the carrier signal, and m
is a system parameter called the modulation depth (normally, m ≤ 1). Simple electronic
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circuits are capable of performing this operation. Assume that x(t) is a pure tone (not
very interesting, but easy to analyze), x(t) = cos(2𝜋𝜈mt), where 𝜈m ≪ 𝜈c. (In AM radio,
𝜈c is on the order of 1000 kHz, while 𝜈m is less than 5 kHz.)

(a) Sketch the modulated signal y(t), labeling accurately the salient features of the graph.
Because of the large difference between 𝜈c and 𝜈m, you will have to be creative in
designing your sketch.

(b) Calculate and plot the Fourier spectrum Y(𝜈), labeling accurately the salient features
of the graph.

(c) How do these plots change as the message frequency and modulation depth are
varied?

6.37. Let g = f ∗ h, for example, g is the output of an LTI system with impulse response h.
Prove the following relationships:

(a) Autocorrelation g ⋆ g = (f ⋆ f ) ∗ (h ⋆ h).

(b) Cross-correlation f ⋆ g = (f ⋆ f ) ∗ h.

(c) A pseudo-random binary sequence is a deterministic (non-random) sequence f with
the property that f ⋆ f ≈ 𝛿. Suppose h is unknown and f is a pseudo-random binary
sequence. Use the above results to design a method for “identifying” the impulse
response from a suitably designed experiment.

6.38. Periodic replication
Let f ∈ L1(ℝ).

(a) Show that the replication,

f̃ =
∞∑

k=−∞
f (x + kL),

is absolutely integrable on [0, L]. Begin with a partial sum,
∑N

k=−N f (x + kL), and
show

∫
L

0

||||||
N∑

k=−N

f (x + kL)
|||||| dx ≤ ‖f‖1

for all N.

(b) Then show that f̃ (x) = f̃ (x + L).

6.39. Fourier transform of the comb function
The Fourier transform of the comb function can be calculated without passing through
the Fourier series. Fourier transform the comb function term-by-term:

F {III(x)} =
∑

n

F {𝛿(x − n)} =
∑

n

e−i2𝜋𝜈n
.

Now integrate this result against a testing function and show that

∫ F {III}𝜑(𝜈) d𝜈 =
∞∑

n=−∞
Φ(n) =

∞∑
n=−∞

𝜑(n).

From here, show that F {III(x)} and III(𝜈) are equivalent generalized functions.

6.40. (a) Sketch the function f (x) = Λ(x∕4) III(2x), then calculate the Fourier transform F(𝜈).

(b) We know 𝛿(x) ∗ 𝛿(x) = 𝛿(x). What is 𝛿(x) ∗ III(x)? What about III(x) ∗ III(x)?
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FIGURE 6.26 For Problem 6.42. A half-wave rectified sinusoid.

6.41. (a) Using comb and other functions, as needed, give a concise expression for the rectified
cosine function, f (x) = | cos 2𝜋ax|.

(b) Using the Fourier transform, calculate the Fourier series coefficients of f (x).

6.42. For the half-wave rectified sinusoid (Figure 6.26),

(a) Develop a mathematical model in the form of a convolution of a comb with the
product of a cosine and rect.

(b) Calculate the Fourier transform of the unit period and from this derive the Fourier
coefficients.

6.43. Consider the periodic waveforms that are produced by periodically replicating a half-
cosine, cos(2𝜋t∕T) rect(2t∕T). Replicating with period T produces a half-wave rectified
sinusoid , and replicating with period T∕2 produces a full-wave rectified sinusoid (see
the previous problems). Here, consider replication of the half-cosine with an arbitrary
period T∕N, N = 1, 2,…. Derive concise expressions for the periodic waveform and its
Fourier transform, make graphs for a few values of N, and compare them.

6.44. Show that the Dirichlet kernel is the periodic replication of the sinc function. Begin with
the definition

D2N+1(x) =
N∑

n=−N

ei2𝜋nx

and show that its Fourier transform is

F{D2N+1(x)} = rect
(

𝜈

2N + 1

)
⋅ III(𝜈),

then calculate the inverse transform. Plot a few replicas of the sinc to see how this works.

6.45. Amplitude-modulated radio signals (Problem 6.36) are usually demodulated by envelope
detection. An envelope detector consists of a half-wave rectifier followed by a lowpass
filter. The half-wave rectifier blocks the negative half cycles of the modulated carrier, as
shown in Figure 6.27.

(a) Derive a mathematical model for the rectified AM signal, and calculate its Fourier
transform, assuming that the message spectrum is bandlimited to 5 kHz and the
carrier frequency is 1000 kHz.

(b) A lowpass filter follows the half-wave rectifier to complete the envelope detector.
Use your model to explain the function of this filter.

6.46. Bandlimited functions
Let f ∈ L2 be bandlimited, F(𝜈) = 0 for |𝜈| > B > 0. Show that the set VB of all such
functions is a linear subspace of L2.
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FIGURE 6.27 For Problem 6.45. Half-wave rectification of an amplitude-modulated
waveform.

6.47. Sampling theorem
The sampling theorem is derived in the text for bandlimited, finite energy functions.
Another case of interest is bandlimited periodic functions. A function of the form

f (x) =
N∑

n=−N

cn ei2𝜋nx∕L

is bandlimited, but does not have finite energy. Nevertheless, show that it can be recon-
structed from uniformly spaced samples f (kΔx) according to Equation 6.52.

6.48. Sampling theorem, alternate derivation
Let f be bandlimited and have finite energy. The Fourier transform F has bounded
support and can be written as a Fourier series:

F(𝜈) =
∞∑

n=−∞
cne−i2𝜋n𝜈∕2B, |𝜈| < B.

(a) Show that the Fourier coefficients are cn = 1

2B
f
(

n

2B

)
.

(b) Perform an inverse Fourier transform of F and show that

f (x) =
∞∑

n=−∞
f
( n

2B

)
sinc

[
2B
(

x − n
2B

)]
.

6.49. The system shown in Figure 6.28 models a device called a chopper, used in laser
experiments. A function f is multiplied by a unit-amplitude square wave of period T and
50% duty cycle (time on = time off), producing a “chopped” output g.

×f(t) g(t)

……

T
t

FIGURE 6.28 For Problem 6.49. Square-wave modulation system.
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FIGURE 6.29 For Problem 6.50. Acousto-optic spectrum analyzer. Heavy lines indicate an
optical beam. Lighter lines indicate an electrical signal path.

(a) Derive an expression for the Fourier transform G(𝜈) of the output.

(b) Assuming that f is bandlimited with bandwidth less than 1

2T
, make an accurate sketch

of G(𝜈). You may assume that F(𝜈) has a convenient shape (e.g., a triangle).

6.50. Spectrum analysis
Devices called acousto-optic modulators enable very high frequency modulation of a
laser beam. A block diagram for a spectrum analyzer using an acousto-optic modulator
is shown in Figure 6.29.

Assume that the laser and the radio frequency (RF) source are sinusoids, with
frequencies 𝜈o = 5 × 1014 Hz and 𝜈m = 150 MHz, respectively. The acousto-optic mod-
ulator behaves much like a diffraction grating (or, if you will, an AM modulator),
producing an undiffracted beam and two diffracted orders, one to either side of the
undiffracted beam. The diffraction angle increases with the modulating frequency 𝜈m.
The “sideband filter” is a barrier which completely blocks the undiffracted light and the
lower-frequency diffracted order. The remaining diffracted order is recombined with the
laser beam, and the sum is incident on a photodetector, modeled as a square-law device.
The output of the detector is an electrical signal. This signal is finally passed through a
lowpass filter which blocks all frequencies above 400 MHz.

(a) Find and plot the spectra at the indicated points in the diagram.

(b) Suppose the laser actually oscillates in two frequencies, separated by Δ𝜈 = 414
MHz. Describe the effect this has on the operation of the spectrum analyzer. In
particular, what is the practical range of input frequency 𝜈m which may reliably be
used in this system?

6.51. Reverberation
Here is a simple model of reverberation in a room (or, intentional reverb in an audio
system). Consider a device (called a delay line) which introduces a pure time delay from
input to output: Out(t) = In(t − T). The output of the delay line is fed back and added to
the input, with an intermediate gain factor, a (Figure 6.30).

(a) Show that the input–output behavior of this system is described by the difference
equation

g(t) − ag(t − T) = f (t).
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a 

FIGURE 6.30 For Problem 6.51. Model of a reverberant environment.

In an auditorium, the time T would be the round-trip delay time between the stage
and the back wall of the room. Then it hits the wall at the front of the auditorium and
goes round again. The factor a models whether the room is “lively” or “dead.” This
factor will be between zero and one, unless there is a PA system—then, a fraction
of the sound could be picked up by the microphone, amplified, and sent back out
again.

(b) Find the impulse response of this system by injecting an impulse, f (t) = 𝛿(t), and
tracing its fate through the equation.

(c) Apply the Fourier transform to the difference equation and determine the transfer
function of the system. Note that if a > 1, you cannot get a transform (why?). Sketch
the magnitude of the transfer function, labeling salient features (like the effects of a
and T).

6.52. Analog to digital converters
Many A/D converters include a “sample and hold” circuit at the input, which consists of
an analog switch and a capacitor. The analog switch closes for a short time, sometimes
called the “aperture time,” enabling the input voltage to charge the capacitor. The
capacitor voltage is then converted to digital form by the rest of the electronics. Charging
a capacitor is basically an integration operation, which means that the A/D does not
convert the instantaneous input voltage, but an integral of the input voltage. Let 𝑣sh(t) be
the capacitor voltage, and 𝑣in(t) be the input voltage. The two are approximately related
by the integral

𝑣sh(t) = 1
Ta ∫

t

t−Ta

𝑣in(𝜏) d𝜏,

where Ta is the aperture time, and t is the time when a sample is to be taken.

(a) Let 𝑣s(t) be the signal obtained by impulse sampling 𝑣sh(t) at a sampling interval
Δt > Ta. Derive an equation for 𝑣s in terms 𝑣in, comb, and rect.

(b) Calculate the Fourier transform of 𝑣s. What is the effect of the finite aperture time
on the spectrum?

6.53. Digital-to-analog converters
According to the sampling theorem, an ideal lowpass filter can (theoretically) reconstruct
a bandlimited signal perfectly from its samples. In the time domain, the impulse response
of the filter, which is a sinc function, interpolates between the samples. The usual digital-
to-analog converter (D/A) does not work this way. Instead, it connects the samples by
an operation called a zero-order hold (ZOH) — that is, the output of the converter is a
constant equal to the sample value until the next sample comes along. This results in the
characteristic “stairstep” appearance of D/A outputs (Figure 6.31).

(a) Model a general sampled signal by a train of weighted impulses (multiplication
by comb). Use this to derive a concise model for the ZOH and D/A output. This
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FIGURE 6.31 For Problem 6.53. The stairstep output characteristic of a digital-to-analog
converter.

same model will work for images composed of square pixels, for example, computer
displays and digital television.

(b) Using the model you developed in (a), find the Fourier transform of the D/A output
and compare it with the transform of the unreconstructed sampled signal (make a
sketch). What does the Fourier transform tell you about the quality of the recon-
struction?

(c) Why is it advisable to follow a D/A converter with a lowpass filter? Why is it that
your eye does not see the individual pixels on a computer screen (provided, of
course, that the dot pitch of the monitor is fine enough)?

(d) A “first-order hold” (if such a thing could be built) would link the samples by
line segments, so the reconstructed signal is piecewise linear instead of piecewise
constant. This, too, can be modeled as a filter having a particular impulse response.
What is the impulse response, and how does the transform of the reconstructed
signal compare to the ZOH result? Which is better?

6.54. Digital cameras
In a digital camera, the film is replaced by a two-dimensional array of tiny photosensors.
For example, a camera might have 16 megapixels (4096 × 4096), each of which is 2 μm
square. Assume, for purposes of this problem, that the sensors are packed closely (with
no gaps). Also consider only one row of the chip—a 4096-element array—to avoid the
complications of doing two-dimensional transforms (the subject of a later chapter).

(a) Model a single photosensor as a rectangle function, R, of appropriate width. The
output of a single photosensor is the integral of the incident intensity distribution,
f (x), over the area of the sensor. Let g be the output of the sensor array. Derive a
model for g of the general form g = (f ∗ R) III R, where the inner rectangle models
a single sensor, and the (wider) outer rectangle models the finite width of the entire
array.

(b) Calculate and sketch the Fourier transform of g. Interpret your model in the frequency
domain.

6.55. Imaging systems
Image manipulation applications typically enable the user to specify the scale of an
image, for example, in “pixels per inch.” For example, a 128 × 128 image printed at
10 pixels per inch will be 12.8 inches on a side. You can imagine that with each pixel
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FIGURE 6.32 For Problem 6.55. Spatial frequency response of the human visual system.
From Pratt (2007, p. 42, used by permission).

being 0.1 inch square, the image will appear “blocky.” Printing the image at a much
smaller scale, say 100 pixels per inch, will result in a smoother visual appearance, but
the image will be much smaller, only 1.28 inch square. So it is interesting to ask, what
is the largest scale at which the individual pixels appear to blend together satisfactorily,
giving a smooth, non-blocky appearance?

You could approach this by trial and error, printing the image several times at
different scales and picking the best one, but a good solution is possible using the Fourier
transform. And, as it turns out, the theoretical prediction works well in practice.

The solution requires two things—a model of the “pixellated” image and a model
of the human visual system.

(a) The digital image is obtained by sampling a continuous image f (x) at an interval
Δx (working in one dimension for convenience). Each sample is represented in the
printed output by a pixel of width 𝑤, which can be modeled as a rectangle function.
The scale of the image is 1∕𝑤 pixels/inch. Derive a mathematical model for the
pixellated image, using the functions f , comb, and rect.

The spatial frequency response of the human visual system is shown in Fig-
ure 6.32. The frequency variable is “cycles per degree,” which permits the viewing
distance to be taken into account. For example, consider a sinusoidal test image of
period L = 1 cm. At the “standard reading distance” of 18 in ≈ 46 cm, one period of the
sinusoid subtends an angle of 1/46 radian. The spatial frequency is 46 cycles/radian≈ 0.8
cycles/degree. At a distance of 1 m, the test image appears to be smaller, and the spatial
frequency higher. The angular subtense of one period is now 1/100 = 0.01 radians, for
a spatial frequency of 100 cycles/radian ≈ 1.75 cycles/degree. In general, the spatial
frequency in cycles/degree for a spatial sinusoid of period L viewed at a distance D is

𝜈 = 𝜋

180
× D

L
.

The eye uses two photoreceptors—the rod cells are achromatic (responding to
shades of gray) and are responsible for vision in reduced light. The cone cells (there are
three types for three different spectral bands) take care of color vision, but do not have
the low light sensitivity of the rods. The cone cells are better at lower spatial frequencies
than the rod cells, but the rod cells have a higher spatial bandwidth than the cones.

The response is partly optical (depending on the diameter of the pupil of the eye
and the condition of the cornea and lens) and partly neural (signal processing occurring
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FIGURE 6.33 For Problem 6.56. Directional pattern of a single rectangular aperture.

at the retina). The relative response curve is measured with sinusoidal test targets at
a particular input intensity level. A relative response of 0.5 at some frequency means
that a sinusoidal target at that frequency requires twice the input contrast in order to be
visible than a target at a frequency which has a response of 1.0. At normal light levels,
where both rods and cones are engaged, the response to 0.8 cycles/degree is 1.0. At
1.75 cycles/degree this decreases to about 0.8.

You can regard this relative response curve as the transfer function of a lowpass
filter, applied to the spatial frequency spectrum of the pixellated image. The key to
removing pixellation effects is to decrease the pixel size to a point where the eye
response filters out the spurious harmonic frequency components created by pixellation.

(b) Based on the Fourier transform of your model developed in part (a), and the eye
response function, determine an image scale in pixels/inch where you believe the
image will stop looking blocky and start looking “natural.” Your answer should be
somewhere between 30 and 100 pixels/inch.

6.56. Antenna arrays
The far-field radiation pattern of an antenna is given by the Fourier transform relationship:

P(sin 𝜃) ∝ ∫
∞

−∞
E
( x
𝜆

)
exp

(
−i2𝜋

x
𝜆

sin 𝜃
)

d
( x
𝜆

)
,

where E (x∕𝜆) is the electric field in the antenna aperture (distance measured in units of
wavelength) and 𝜃 is the azimuth angle from the center of the aperture to the far-field
observation point. A rectangular aperture of width A has a radiation pattern that goes
like sinc(A sin 𝜃) (Figure 6.33).

There is an inverse relationship between the aperture size and the beamwidth
(dilation theorem); it is desirable to have a wide antenna. This can be achieved either
by making a wide antenna (such as the dish at the radio observatory at Arecibo, Puerto
Rico) or by making an array of smaller antennas (such as the Very Large Array in New
Mexico). The array approach has several advantages, as we shall see below.

(a) Assume first that the basic radiator has a very small aperture, such that it can
be regarded as a point source (delta function). The array shall consist of N such
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FIGURE 6.34 For Problem 6.56. An array consisting of N point radiators.

radiators arranged in a line, with spacing d, and Nd = A (Figure 6.34; N is odd in
this figure.)

You can model this array as the product of a comb function and a rect function
of appropriate width. Calculate the radiation pattern of this antenna array. You should
obtain

A(s) =
∞∑

n=−∞

1
d

sinc
[Nd
𝜆

(
s − n𝜆

d

)]
,

where s = sin 𝜃. Even though this appears to be different from the result of the earlier
Fourier series analysis

A(s) =
sin

(
N𝜋d

𝜆
s
)

sin
(

𝜋d

𝜆
s
)

they are the same.
Sketch the magnitude of the pattern for 𝜃 between −𝜋∕2 and 𝜋∕2. Com-

pare this with the pattern from the plain rectangular aperture of width A. Note the
similarities and differences. If you wish, you can explore the result with Matlab,
choosing a = 1, and a range of values for N. The neat polar plots are obtained with
the polar() command.

(b) Something we could not do conveniently with the Fourier series analysis was account
for finite-sized array elements. That is, each element of the array, rather than being
a point source (modeled as a delta function), is, say, a rectangular source of width
D < d. (For example, an ultrasound imaging array is composed of square piezo-
electric elements.) Modify the point array model (part (a)) to include finite sources
and calculate the radiation pattern. What is the effect of the finite sources (make a
sketch)?

6.57. Reflection seismology
In reflection seismology, the layers of the earth are mapped by bouncing acoustic waves
off the interfaces between the layers. A simple two-layer earth model is shown in
Figure 6.35.

An acoustic wavelet 𝑤(t) is sent downward into the earth. At each interface,
part of the downward propagating wavelet is reflected back toward the surface, and the
rest is transmitted into the next layer. The reflection coefficients are R1 and R2, and
the corresponding transmission coefficients are T1 and T2. (In reality, the transmission
coefficients depend on whether you are going up or down through the interface, but that
need not concern us here.) In principle, there may be multiple (secondary) reflections
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FIGURE 6.35 For Problem 6.57. Two-layer model of the earth for reflection seismology.

between layers, but in practice the reflections are often weak enough (R1, R2 ≪ 1) that a
“primaries only” model is valid. The acoustic velocities in the layers are 𝑣1 and 𝑣2, and
the depths of the interfaces are d1 and d2. The signal y(t) received back at the geophone
is a linear superposition of reflected wavelets.

(a) Calculate an expression for y(t), the received signal, in terms of 𝑤(t) and the various
parameters of the model.

(b) Show that y is equivalent mathematically to the output of a system with impulse
response 𝑤 which is excited by a string of impulse functions, where each impulse
corresponds to one reflection. Thus, the seismic deconvolution problem consists of
computing an input reflectivity sequence (Rk) from knowledge of the received signal
y and the wavelet 𝑤.

6.58. Discrete-time Fourier transform

(a) Calculate the (continuous-time) Fourier transform, F(𝜈), of the damped cosine func-
tion, f (t) = e−at cos 2𝜋bt.

(b) Sample this function to obtain a discrete-time function f [n] = Δtf (nΔt) and calculate
the discrete-time Fourier transform, Fd(𝜃).

(c) Truncate f [n] to N samples (n = 0, 1,… , N − 1) and compute the DFT, F[m]. Plot
all three transforms on an appropriate common scale, for a = 1 and b = 2. What are
acceptable values of Δt and N(= 2p) in order to have good agreement among F(𝜈),
Fd(𝜃), and F[m]?

6.59. Sampling theory
Let the energy in a signal f (x) be defined

E = ∫
∞

−∞
|f (x)|2dx.

(Naturally, we assume f ∈ L2.) Show that if f is bandlimited with maximum frequency
W, then

E = 1
2W

∞∑
n=−∞

||||f ( n
2W

)||||2 .
6.60. Sampling theory

A square-law device is a nonlinear system whose output g is the square of its input f ,
g = f 2. Suppose it is known that f is bandlimited to W Hz. The output g is to be sampled
and later reconstructed from its samples. At what rate must g be sampled?
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FIGURE 6.36 For Problem 6.61. Interlaced sampling.

6.61. Sampling theory
Two signals, f (t) and g(t), each bandlimited to W Hz, are multiplexed and sampled as
shown in Figure 6.36.

At times t = nT , the switch flips from one input to the other, and the ideal sampler
following the switch produces impulse samples. Thus the sample values alternate, f (nT),
g((n + 1)T), f ((n + 2)T), g((n + 3)T),….

(a) Calculate the Fourier transform Zs(𝜈) in terms of the signal spectra F(𝜈) and G(𝜈).

(b) What must the sampling rate be (in terms of W) to avoid aliasing?

6.62. Digital filtering
We know that convolution models the input–output behavior of an LTI system: g = h ∗ f ,
where f is the input, g is the output, and h is the impulse response.

(a) Show that, if f and h are bandlimited to |𝜈| < B, then g is also bandlimited to |𝜈| < B.

(b) Because f and h are bandlimited, they can be written using sinc function interpola-
tion, for example,

f (t) =
∞∑

m=−∞
f [m] sinc

( t − mΔt
Δt

)
, f [m] = f (mΔt).

Hence, the convolution of f (t) and h(t) is

g(t) =

[ ∞∑
m=−∞

f [m]sinc
( t − mΔt

Δt

)]
∗

[ ∞∑
k=−∞

h[k] sinc
( t − kΔt

Δt

)]
.

Derive the result

g(t) =
∞∑

m=−∞

∞∑
k=−∞

f [m]h[k]sinc

(
t − (m + k)Δt

Δt

)
Δt

and then, by applying the sampling theorem, obtain

g(t) =
∞∑

n=−∞
g[n]sinc

( t − nΔt
Δt

)
,

g[n] = g(nΔt) =
∞∑

k=−∞
f [k]h[n − k]Δt.

That is, as long as f and h are bandlimited, g(t) can be reconstructed from the
discrete-time convolution of the samples of f and h. (Note the presence of the factor
Δt.) This inspires the use of digital computing to implement filtering operations on
analog signals: sample the input f (with an A/D converter), perform the discrete-time
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convolution with the sampled impulse response, and reconstruct the output (with a D/A
converter). This is called digital filtering.

6.63. Discrete comb sequence
The Fourier transform of the discrete comb sequence IIIN [n] is another comb function,
III
( N𝜃

2𝜋

)
.

(a) Show that, as N → 1, the transform pair becomes 1 → 2𝜋𝛿(𝜃).

(b) Show that, as N → ∞, the transform pair becomes 𝛿[n] ⟷ 1. Hint: The key is to
show that III

(N𝜃

2𝜋

)
→ 1 as N → ∞. Consider the integral of one period of the comb

with a testing function,

∫
𝜋

−𝜋
III
(N𝜃

2𝜋

)
Φ(𝜃) d𝜃,

and show that this is a sum which, becomes, as N → ∞, the Riemann integral
∫ 𝜋

−𝜋 Φ(𝜃) d𝜃.

6.64. Discrete-time Fourier transform
The Fourier transform of the signum function is sgn x ⟼ 1

i𝜋𝜈
. The discrete-time Fourier

transform of the signum sequence is sgn[n] ⟼ 1

2i
cot

(
𝜃

2

)
. By the principle of sampling

and replication, we would expect the transform of the signum sequence to be the periodic
replication of the transform of the signum function. Plot both functions on comparable
axes, that is, using the mapping 𝜃 = 2𝜋𝜈Δx, and see if this assertion makes sense.

6.65. Simultaneous sampling and replication
Let f be bounded and continuous. Show that both sides of the expression below are
well-defined generalized functions, and that they are, in fact, equivalent:(

f (x) ∗ 1
NΔx

III
( x

NΔx

))
⋅

1
Δx

III
( x
Δx

)
=
(

f (x) ⋅
1
Δx

III
( x
Δx

))
∗ 1

NΔx
III
( x

NΔx

)
.



CHAPTER 7
COMPLEX FUNCTION THEORY

Up to this point we have worked exclusively with real- or complex-valued functions
of real or integer variables, for example,

� f (t) = e−tU(t), a real-valued function of the real variable t;

� F(𝜈) = 1
1 + i2𝜋𝜈

, a complex-valued function of the real variable 𝜈; and

� f [n] = ei𝜃n, a complex-valued function of the integer variable n.

A complex-valued function may be separated into its real and imaginary parts, F(𝜈) =
Fr(𝜈) + iFi(𝜈). Once this is done, it can be manipulated according to the methods
of ordinary real calculus, applied individually to the real and imaginary parts, for
example,

dF
d𝜈

=
dFr

d𝜈
+ i

dFi

d𝜈

∫ F(𝜈)d𝜈 = ∫ Fr(𝜈)d𝜈 + i∫ Fi(𝜈)d𝜈.

The subject of the next two chapters is functions of a complex variable. The
motivation for this study is twofold. First, there are insights and methods from
complex analysis applicable to solving Fourier transform problems. Second, there
are other useful transforms, related to the Fourier transform, whose use requires some
facility with complex variable theory. These are the Laplace transform,

FL(s) = ∫
∞

0
f (t)e−stdt,

and its discrete-time counterpart, the Z transform,

FZ(z) =
∞∑

n=0

f [n]z−n
.

The transform variables s and z are complex, s = 𝜎 + i𝜔 and z = rei𝜃 .
This chapter explains the basic properties of complex functions, including

continuity, differentiability, and the all-important idea of an analytic function. The

Fourier Transforms: Principles and Applications, First Edition. Eric W. Hansen.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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following two chapters are devoted to complex integration and applications to
transforms.

7.1 COMPLEX FUNCTIONS AND
THEIR VISUALIZATION

A complex function is a mapping from complex numbers to complex numbers. A
complex function f (z) has a real and imaginary part, each of which is a function of
the real and imaginary parts of z:

𝑤 = f (z) = f (x + iy) = u(x, y) + i𝑣(x, y),

or of the modulus and argument of z:

𝑤 = f (z) = f (rei𝜃) = u(r, 𝜃) + i𝑣(r, 𝜃).

As in real analysis, a graphical representation of a complex function can provide
useful information about the function’s behavior. It is easy to represent a scalar
function of a single real variable, say y = f (x), by a graph showing the mapping from
x to y. Graphing a complex function, 𝑤 = f (z), is more difficult, because there are
four dimensions (x, y, u, 𝑣) rather than two (x, y). One way is to plot u(x, y) and 𝑣(x, y)
as surfaces above the complex Z-plane. Another is to show how points, curves, and
regions in the complex Z-plane map to corresponding points, curves, and regions in
the complex W-plane.

Example 7.1. The following curves occur frequently in the study of complex
functions (Figure 7.1).

Horizontal line:

z = x + iy0.

x = Re z

y = Im z

c
R

θ0

y0

x0

FIGURE 7.1 Four basic curves in the complex plane: horizontal line z = x + iy0, vertical
line z = x0 + iy, ray z = rei𝜃0 , and circle, z = c + Rei𝜃 .
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Vertical line:

z = x0 + iy.

Ray at angle 𝜃0:

z = rei𝜃0 , r ≥ 0.

Circle of radius R, centered at z = c:|z − c| = R

z = c + Rei𝜃 , 𝜋 ≥ 𝜃 > −𝜋.

Here are three simple examples of complex mappings.

Example 7.2 ( f (z) = a + bz). When b = 1, the mapping is a simple translation,
𝑤 = z + a. A circle centered at the origin in the Z-plane, z = Rei𝜃 , maps to 𝑤 =
z + a = a + Rei𝜃 . It becomes a circle centered at 𝑤 = a in the W-plane.

When a = 0 and b is real, the mapping is a dilation, for example, the unit circle
z = ei𝜃 maps to 𝑤 = bz = bei𝜃 , a circle of radius |b| in the W-plane.

When b is complex, write b = 𝛽ei𝜑. With z also expressed in polar form,
z = rei𝜃 , we have 𝑤 = bz = 𝛽r ei(𝜃+𝜑). A curve in the Z-plane is dilated by 𝛽 and
rotated by 𝜑 in the W-plane.

Example 7.3 ( f (z) = z2). With z = rei𝜃 , the result in the W-plane is 𝑤 = r2ei2𝜃 .
The magnitude of z is squared and the argument is doubled. When z = x, on the real
axis, the result is familiar, 𝑤 = x2; the two points z = ±a both map to 𝑤 = a2. On the
complex plane, we understand this via the doubling of the argument. A negative real
number has arg z = 𝜋, for example, −2 = 2ei𝜋 . The result of squaring this number is
𝑤 = 22 ei2𝜋 = 4. The negative real axis in Z is mapped to the positive real axis in W .
In the more general case, consider what happens to the unit disk, |z| ≤ 1. Owing to the
doubling of the argument, the upper half of the disk, 𝜋 ≥ 𝜃 > 0, maps to 2𝜋 ≥ 𝜙 > 0,
the entire unit disk in the W-plane. The lower half of the disk, 0 ≥ 𝜃 > −𝜋, maps to
0 ≥ 𝜙 > −2𝜋, which is also the entire unit disk. Two distinct points in Z map to the
same point in W (Figure 7.2).

Example 7.4 ( f (z) = z−1). Surface plots are shown in Figure 7.3. As the origin
z = 0 is approached, the real and imaginary parts, and the modulus, grow rapidly. By
analogy with the real function x−1, we expect f (z) to “blow up,” grow without bound,
as z → 0. The implications of this singular behavior will be discussed in greater detail
later.

Some region maps for the function are shown in Figure 7.4. We see that the real
and imaginary axes in the Z-plane map to the real and imaginary axes in the W-plane.
However, lines that are displaced from the axes, either horizontally or vertically,
appear to map to circles in the W-plane. We also observe that circular curves centered
at the origin of the Z-plane appear to map to circular curves centered at the origin of
the W-plane. But note two things about the image circles. The curve in the Z-plane
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w = z2

x

x

y

y

u

v

FIGURE 7.2 The mapping 𝑤 = z2 maps both the upper and lower halves of the of the unit
disk to the full unit disk. The real axis is mapped to the positive real axis.

with the largest radius maps to the curve in the W-plane having the smallest radius,
and conversely. Also, while all the curves begin on the positive real axis and end in
the fourth quadrant, their images in the W-plane terminate in the first quadrant. The
directions of the curves are reversed between the two planes, from counterclockwise
to clockwise. The surface plot does a better job of displaying singularities than
the region plot; on the other hand, the region plot better displays the geometry of the
mapping.

Our graphical observations about the mapping f = z−1 can be studied in more
detail using algebra and analytic geometry. To begin, let z = x + iy. Then,

𝑤 = 1
x + iy

=
x − iy

x2 + y2

= x
x2 + y2

+ i
−y

x2 + y2
= u(x, y) + i𝑣(x, y).

Or, in polar coordinates,

𝑤 = f (z) = 1
z
= 1

rei𝜃
= 1

r
e−i𝜃 = 1

r
cos 𝜃 − i

1
r

sin 𝜃.
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FIGURE 7.3 Surface plots of 𝑤 = z−1. (a,b) Real and imaginary parts. Notice the change of
sign on opposite sides of the singular point z = 0. (c,d) Modulus and argument. The modulus
blows up at z = 0. The argument is discontinuous (also see Figure 7.7).

Both the rectangular and polar forms of the mapping show that the function does
indeed blow up as x, y → 0 or r → 0. On opposite sides of the singular point, the
angle 𝜃 changes by 𝜋, causing a sign change in both the cosine and the sine, and
hence in Re z and Im z, as observed in Figure 7.3.

We next consider the mappings of particular curves. The x and y axes are simple:
substituting z = x and z = iy, respectively, we obtain 𝑤 = x−1 and 𝑤 = −iy−1. The
image of the real axis is purely real, but the origin is mapped to infinity and the
point at infinity is mapped to the origin. Likewise, the imaginary z-axis maps to
the imaginary 𝑤-axis, with the origin mapping to infinity and the point at infinity
mapping to the origin.1 Furthermore, going from negative to positive along the y-axis
produces 𝑣 values that run from positive to negative. The displaced lines in Figure 7.4

1The origin is a single point that may be approached from any direction in the plane, for example, from
above and below on the imaginary axis, and from left and right on the real axis. Its image under the
mapping f (z) = z−1, which is approached by moving away from the origin in any direction, for example,
along the real and imaginary axes, is also regarded as a single point “at infinity.”
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FIGURE 7.4 Curves in the Z-plane mapped to curves in the W-plane by the function𝑤 = z−1.
(Top) x and y axes map to the u and 𝑣 axes, respectively, but the point at infinty maps to the
origin, and vice versa. Lines displaced from the axes appear to map to circular curves. (Bottom)
Circular curves map to circular curves, but the radii and sense of direction are inverted.

are z = x + i and z = 1 + iy. We will just consider the first one, leaving the second to
the problems:

1
x + i

= x
x2 + 1

+ i
−1

x2 + 1
= u + i𝑣.

According to Figure 7.4, this function should describe a circle, centered at a point
below the origin (dashed curve). To verify this, we derive one equation relating u and
𝑣. Solving for x in terms of u and 𝑣,

u
𝑣
=

x∕(x2 + 1)

−1∕(x2 + 1)
= −x,

we can eliminate it, obtaining

𝑣 = −1(
u
𝑣

)2
+ 1

,

which simplifies to

u2 + 𝑣
2 + 𝑣 = 0.
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Finally, completing the square in 𝑣,

u2 +
(
𝑣 + 1

2

)2
= 1

4
,

which is indeed the equation of a circle of radius 1
2
, centered at (u, 𝑣) = (0,− 1

2
), or

𝑤 = 0 − i 1
2
.

The function z = rei𝜃 , where r = constant and 𝜃 ranges from 0 to 2𝜋, describes
a circle of radius r, traversed in a counterclockwise (positive) direction. Applying the
mapping 𝑤 = z−1 to the circle yields

𝑤 = 1
r

e−i𝜃 ,

which is also a circle, of radius
1
r

. A circle of radius 1
2
, for example, maps to a

circle of radius 2. Furthermore, arg𝑤 runs from 0 to −2𝜋 in the clockwise (negative)
direction. Finally, any point inside the original circle, because it has a radius smaller

than r, will map to a point with radius greater than
1
r

, which is outside the image

circle in the W-plane. The interior and exterior of the circles are swapped. If you
imagine yourself walking around the circle in the Z-plane in the positive direction,
the interior of the circle is on your left. The image of this interior region is also on
your left as you walk in the negative direction around the circle in the W-plane.

7.2 DIFFERENTIATION

For a function of a real variable f , at those points x on the real line where the function
f (x) is finite, single valued, and continuous, the derivative is defined

f ′(x) = lim
Δx→0

f (x + Δx) − f (x)
Δx

, (7.1)

provided the limit exists and is the same whether 0 is approached from the right (Δx →
0+) or from the left (Δx → 0−). The importance of these conditions is illustrated by
the following examples.

Example 7.5.

� f (x) = x−1 has an infinite discontinuity at x = 0, and hence f ′(0) does not exist.
� The square root, f (x) = x1∕2, is double valued except at x = 0 (Figure 7.5); it

can be differentiated if we first specify whether we are considering the positive
(+

√
x) or negative (−

√
x) portion, or branch, of the mapping. On the positive

branch, f ′(x) = 1

2
√

x
, while on the negative branch, f ′(x) = − 1

2
√

x
.

� The step function, U(x), is discontinuous at x = 0, and barring recourse to
generalized functions, is not differentiable there. Likewise, piecewise smooth
functions like |x| and Λ(x) are not ordinarily differentiable at their “corners”
because the limits (Equation 7.1) from the left and from the right are different.



7.2 DIFFERENTIATION 461

1 2 3 4

–2

–1

1

2

x    

   

Positive branch

Negative branch

y = f(x)

f’(1) = ½

f’(1) = –½

FIGURE 7.5 The square root mapping, f (x) = x1∕2, has two branches corresponding to the
positive and negative roots. On the positive branch, the derivative is positive, f ′(x) = 1

2
√

x
, and

on the negative branch, the derivative is negative, f ′(x) = − 1

2
√

x
.

The ideas of existence, continuity, and differentiability carry over in a natural
way from real to complex analysis. A function f (z) is defined at z = z0 if and only if
f (z0) is a single, finite number. f (z) = z−1 is undefined at the origin, because |f (0)|
is not finite. Even if z−1 is redefined to be zero at the origin, it still has an infinite
discontinuity there. The square root mapping, f (z) = z1∕2, will be seen to be double
valued, like its real variable counterpart; it must be restricted in some way in order
to be a function.

A function f (z) is continuous at z = z0 if and only if lim
z→z0

f (z) = f (z0), indepen-

dent of the direction of approach to z0. For functions defined on the real line, the limit
can be approached only from the left or from the right, but on the complex plane the
point z0 can be approached along a path from any direction, and the limit must be
the same regardless of which path is taken. To illustrate, consider first f (z) = z + 1,
and take the limit as z → 1, approaching from above (z = 1 + i𝛿) and from the left
(z = 1 − 𝛿), as shown in Figure 7.6.

If we approach this point from above,

lim
z→1

z + 1 = lim
𝛿→0+

2 + i𝛿 = 2 = f (1).

Approaching from the left,

lim
z→1

z + 1 = lim
𝛿→1−

2 − 𝛿 = 2 = f (1).
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1 + iδ

1 – δ 1

Re z

Im z

FIGURE 7.6 The point z = 1 is approached from above and from the left.

In general, for an approach from any direction,

|z − z0| = |z − 1| = |𝛿|
|f (z) − f (z0)| = |z + 1 − 2| = |z − 1| = |𝛿|, also,

and as 𝛿 → 0 from any direction, bringing z and z0 together, the distance |𝛿| between
f (z) and f (z0) also goes to zero. So, f is continuous at z = 1. The classic example of
a discontinuous function is Arg z, the principal value of the argument, which jumps
from −𝜋 to 𝜋 in passing from the third quadrant to the second quadrant across the
negative real axis (Figure 7.7).
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FIGURE 7.7 The argument function, Arg z, is discontinuous. (a) Surface plot. (b) Two paths
in the complex Z-plane. The solid path goes from the third to second quadrant, crossing the
negative real axis. The dashed path goes from the fourth to first quadrant, crossing the positive
real axis. (c) Arg z as the paths in (b) are traversed. The argument is discontinuous between the
second and third quadrants (solid line) and continuous between the first and fourth quadrants
(dashed line).
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The derivative for a function of a complex variable is defined like the real
derivative.

Definition 7.1. Let f : ℂ → ℂ be a function. If the limit

lim
Δz→0

f (z0 + Δz) − f (z0)

Δz
(7.2)

exists and is independent of the path taken by Δz in approaching zero, then it is
defined to be f ′(z0), the derivative of f at z0.

Example 7.6 ( f (z) = z2). Suppose we are interested in the derivative of this func-
tion at z = 1. We can approach this point from above, along the path z = 1 + i𝛿. In
this case, Δz = i𝛿.

f (z + Δz) − f (z)
Δz

= (1 + i𝛿)2 − 12

i𝛿
= 1 + 2i𝛿 − 𝛿

2 − 1
i𝛿

= 2 + i𝛿

and this goes to 2 as 𝛿 → 0. We can also approach it from the left, along the path
z = 1 − 𝛿: Δz = −𝛿:

f (z + Δz) − f (z)
Δz

= (1 − 𝛿)2 − 12

−𝛿
= 1 − 2𝛿 + 𝛿

2 − 1
−𝛿

= 2 − 𝛿.

This also goes to 2 as 𝛿 → 0. Of course, these are only two of the infinitely many
paths which Δz could take. In general,

f (z + Δz) − f (z)
Δz

= (z + Δz)2 − z2

Δz
= 2z + Δz.

As Δz → 0 along any path, the result is 2z, the same as in real analysis, and at z = 1,
f ′(1) = 2.

Example 7.7 (The squared modulus, g(z) = |z|2). We begin again with the par-
ticular case, attempting to calculate g′(1) from above and from the left. From above,

g(z + Δz) − g(z)
Δz

= |1 + i𝛿|2 − 12

i𝛿
= 1 + 𝛿

2 − 1
i𝛿

= −i𝛿,

which goes to zero as 𝛿 → 0. From the left, we have

g(z + Δz) − g(z)
Δz

= |1 − 𝛿|2 − 12

−𝛿
= 1 − 2𝛿 + 𝛿

2 − 1
−𝛿

= 2 − 𝛿,

and this goes to 2 as 𝛿 → 0. Something is wrong here—the two limits are different,
indicating that the derivative does not exist at z = 1. In general,

g(z + Δz) − g(z)
Δz

= |z + Δz|2 − |z|2
Δz

= z∗Δz + zΔz∗ + ΔzΔz∗

Δz
= z∗ + z

Δz∗

Δz
+ Δz∗.

Now, taking the limit from above, Δz = i𝛿,

g(z + Δz) − g(z)
Δz

= z∗ − z − i𝛿 = −2i Im z − i𝛿,
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which goes to −2iIm z as 𝛿 → 0. From the left, Δz = −𝛿, and

g(z + Δz) − g(z)
Δz

= z∗ + z − 𝛿 = 2Re z − 𝛿.

This goes to 2Re z as 𝛿 → 0. The only place where these two limits are the same is
the origin, where Re z = −Im z. Here, we find

g(0 + Δz) − g(0)
Δz

= |Δz|2 − 0
Δz

= Δz∗,

which goes to zero as Δz → 0 from any direction. We conclude that |z|2 is differen-
tiable only at the origin, and there, the derivative is zero.

The Cauchy–Riemann Equations
We will now develop a general test for differentiability of a function of a complex
variable. Let f (z) = u(x, y) + i𝑣(x, y), where z = x + iy. Also define Δz = Δx + iΔy.
Evaluate Equation 7.2 again, taking limits horizontally and vertically (denoted f ′x and
f ′y , respectively):

f ′x (z) = lim
Δx→0

u(x + Δx, y) − u(x, y)
Δx

+ lim
Δx→0

i
𝑣(x + Δx, y) − 𝑣(x, y)

Δx
,

f ′y (z) = lim
Δy→0

u(x, y + Δy) − u(x, y)

iΔy
+ lim

Δy→0
i
𝑣(x, y + Δy) − 𝑣(x, y)

iΔy
.

Each of the limits becomes a partial derivative, for example,

lim
Δx→0

u(x + Δx, y) − u(x, y)
Δx

= 𝜕u
𝜕x

.

Hence,

f ′x (z) = 𝜕u
𝜕x

+ i
𝜕𝑣

𝜕x
,

f ′y (z) = −i
𝜕u
𝜕y

+ 𝜕𝑣

𝜕y
,

and since the derivative must be independent of direction, f ′ = f ′x = f ′y , and

f ′ = 𝜕u
𝜕x

+ i
𝜕𝑣

𝜕x
= −i

𝜕u
𝜕y

+ 𝜕𝑣

𝜕y
.

Separating the real and imaginary parts, we obtain a pair of equations,

𝜕u
𝜕x

= 𝜕𝑣

𝜕y
and

𝜕𝑣

𝜕x
= −𝜕u

𝜕y
. (7.3)

These are known as the Cauchy–Riemann equations.
If a function f is differentiable at a point z = z0, it will satisfy the

Cauchy–Riemann equations there, making them a necessary condition for differen-
tiability. It is possible, however, to find functions which satisfy the Cauchy–Riemann
equations at some point but are not differentiable there. With an added continuity
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requirement, the Cauchy–Riemann equations can be shown to be necessary and suf-
ficient for the existence of the derivative. The resulting theorem is proved in many
complex variable books:2

Theorem 7.1 (Differentiability of complex functions). Let f : ℂ → ℂ be a func-
tion, mapping z = x + iy to f (z) = u(x, y) + i𝑣(x, y). f is differentiable at z = z0 if and
only if the partial derivatives 𝜕u

𝜕x
, 𝜕u
𝜕y

, 𝜕𝑣

𝜕x
, and 𝜕𝑣

𝜕y
are all continuous and satisfy the

Cauchy–Riemann equations at z0.

Example 7.8. Consider again the functions f (z) = z2 and g(z) = |z|2. Express them
in terms of their real and imaginary parts:

z2 = (x + iy)2 = (x2 − y2) + i2xy,|z|2 = |x + iy|2 = x2 + y2 + i0.

For z2, u = x2 − y2 and 𝑣 = 2xy. Computing the partial derivatives,

𝜕u
𝜕x

= 2x
𝜕u
𝜕y

= −2y

𝜕𝑣

𝜕x
= 2y

𝜕𝑣

𝜕y
= 2x.

It is apparent that the partial derivatives are continuous and the Cauchy–Riemann
equations are satisfied, for all x and y; hence, z2 is differentiable everywhere. The
derivative f ′(z) can be computed either as f ′x (z) = 𝜕u

𝜕x
+ i 𝜕𝑣

𝜕x
= 2x + i2y = 2z or f ′y (z) =

−i 𝜕u
𝜕y

+ 𝜕𝑣

𝜕y
= i2y + 2x = 2z, although the difference quotient (7.2) is quicker.

It is a different story with |z|2, for which u = x2 + y2 and 𝑣 = 0:

𝜕u
𝜕x

= 2x
𝜕u
𝜕y

= 2y

𝜕𝑣

𝜕x
= 0

𝜕𝑣

𝜕y
= 0.

The partial derivatives are continuous, but the Cauchy–Riemann equations are satis-
fied only when 2x = 0 and 2y = 0—the origin, z = 0. The derivative there is zero.

Example 7.9 ( f (z) = z−1). To apply the Cauchy–Riemann conditions, let z =
x + iy and express f in terms of its real and imaginary parts:

f (z) = 1
x + iy

= x
x2 + y2

+ i
−y

x2 + y2
= u(x, y) + i𝑣(x, y).

Then, calculating the partial derivatives,

𝜕u
𝜕x

= −
x2 − y2(
x2 + y2

)2

𝜕u
𝜕y

= −
2xy(

x2 + y2
)2

𝜕𝑣

𝜕x
=

2xy(
x2 + y2

)2

𝜕𝑣

𝜕y
= −

x2 − y2(
x2 + y2

)2
.

2See, for example, Flanagan (1983), pp. 117–118.
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The partial derivatives exist and are continuous everywhere except z = 0, and except-
ing this point, the Cauchy–Riemann equations are satisfied. The derivative is

f ′(z) = f ′x (z) = 𝜕u
𝜕x

+ i
𝜕𝑣

𝜕x
= −

x2 − y2 − 2ixy(
x2 + y2

)2

= − (z∗)2|z|4 = − (z∗)2

(zz∗)2
= − 1

z2
, (7.4)

which is algebraically the same as the result from real analysis for f (x) = x−1. The
difference quotient (7.2) gives the same result:

d
dz

1
z
= lim

Δz→0

1
z+Δz

− 1
z

Δz
= lim

Δz→0

z−(z+Δz)
z(z+Δz)

Δz
= lim

Δz→0
− 1

z2 + zΔz
= − 1

z2
.

The Cauchy–Riemann equations can also be written in polar form. A function
f (z) = u(r, 𝜃) + i𝑣(r, 𝜃) is differentiable if and only if the partial derivatives of u and
𝑣 with respect to r and 𝜃 are continuous, and

𝜕u
𝜕r

= 1
r
𝜕𝑣

𝜕𝜃
,

𝜕𝑣

𝜕r
= −1

r
𝜕u
𝜕𝜃

. (7.5a)

In terms of these partial derivatives, the derivative of f = z−1 = e−i𝜃∕r is

f ′ = e−i𝜃
(
𝜕u
𝜕r

+ i
𝜕𝑣

𝜕r

)
= e−i𝜃

r

(
𝜕𝑣

𝜕𝜃
− i

𝜕u
𝜕𝜃

)
. (7.5b)

The derivation of these equations is left to the problems.

7.3 ANALYTIC FUNCTIONS

Virtually everything important in complex analysis hinges on the idea of an analytic
function. As a preliminary step, some terms are defined—open set, connected set, and
domain—which enable precise description of regions in the complex plane. Some of
these are illustrated in Figure 7.8.

Definition 7.2 (Sets in the complex plane). A neighborhood of a point z = z0 is
a set of points {z : |z − z0| < 𝛿}, 𝛿 > 0. A deleted neighborhood of a point z = z0
is just the neighborhood with z0 removed, that is, the set {z : 0 < |z − z0| < 𝛿}. An
open set is a set of points in which every point can be surrounded by a neighborhood
which also belongs to that set. A closed set is one which is not open. Every point
in a connected set can be joined to every other point in the set by a polygonal path
made of points in the set. A domain in the complex plane is an open, connected set.

The interior of the unit circle, {z : |z| < 1}, is an open set. The unit circle
together with its interior, {z : |z| ≤ 1}, is not open, because any neighborhood of a
point on the circle itself will include points which are outside the circle, and hence
outside the set. An open or closed set can be connected or not—they are independent
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z1

z2

z1

z2

FIGURE 7.8 Top, left: An open set does not include a boundary. For any point in the set,
a neighborhood can be set up which is contained in the set. Top, right: A closed set includes
a boundary. If a point is on the boundary of a closed set, any neighborhood, no matter how
small, will include points outside the set. Bottom, left: A disconnected set. A line connecting
the points z1 and z2 contains points not in the set. Bottom, right: A connected set. The points
z1 and z2 are connected by a polygonal path in the set. An open, connected set is a domain.

properties. The interior of the unit circle is a connected set. On the other hand, the
union of sets {z : |z| < 1} ∪ {z : |z − 4| < 1}, which consists of the interiors of two
disjoint circles, is not connected. A line joining a point in the first set with a point
in the second set will include points not in either set. A set with a “hole” in it, like
the unit disk with the origin removed, {z : 0 < |z| < 1}, is still connected, because
you can connect two points on opposite sides of the origin with a polygonal path
(for example, a pair of line segments). The interior of the unit circle is open and
connected, so it is a domain.

Definition 7.3 (Analytic function). A function f : ℂ → ℂ is analytic at a point
z = z0 if the derivative f ′ exists at z0 and in a neighborhood of z0. A function is
analytic in a domain if it is analytic at every point in the domain. The largest domain
where a function f is analytic is called its domain of analyticity. If a function’s domain
of analyticity is the entire complex plane, that is, if f is analytic everywhere, it is
called an entire function.

The important thing about being analytic is that the derivative cannot exist just
at z0; it must also exist in an open disk of some radius 𝛿 > 0 centered at z0.

Originally, f ′ was required to be continuous in the neighborhood as well, but it
was later shown by Goursat that a complex derivative is always continuous, making
the mere existence of the derivative necessary and sufficient for analyticity. If the
partial derivatives are continuous and the Cauchy–Riemann equations are satisfied
everywhere in a neighborhood of z0 (including z0), then f is analytic at z0.

Points where a function fails to be analytic are also important.
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Definition 7.4 (Isolated singularities). If a function f is not analytic at some point
z = z0, but is analytic everywhere else in a neighborhood of z0 (i.e., in a deleted
neighborhood of z0), the point z0 is called an isolated singularity of f . If, for some
integer ∞ > n > 0, the limit lim

z→z0
(z − z0)nf (z) is finite and nonzero, then the isolated

singularity is called a pole of order n. When n = 1, the pole is called simple; a double
pole has n = 2, so on. If the limit fails to exist for all finite n, then z0 is called an
essential singularity.

Example 7.10. Let us revisit the functions we studied in the preceding section.
f (z) = z2 was found to be differentiable everywhere. It is an entire function,

because its domain of analyticity is the entire complex plane.
f (z) = z−1 is differentiable everywhere except at the isolated singularity z = 0,

which is a simple pole. For any z ≠ 0, no matter how close to the origin, f ′(z) will
exist, and you can establish a neighborhood around z that excludes the origin. The
domain of analyticity for f is the complex plane with z = 0 excluded, sometimes
called the punctured complex plane.

f (z) = |z|2 is differentiable nowhere except z = 0. Although the derivative exists
right at the origin, you cannot establish a neighborhood of the origin, however small, in
which f is differentiable. Hence, f is not analytic anywhere. Its domain of analyticity
is the empty set.

f (z) = Arg z is discontinuous along the negative real axis, but continuous every-
where else. It cannot be analytic along the negative real axis because of the disconti-
nuity. (It can also be shown that, despite continuity everywhere else in the complex
plane, Arg z fails to satisfy the Cauchy–Riemann conditions anywhere, a far more
serious deficiency.)

Certain combinations of analytic functions are also analytic.

Theorem 7.2. Let f and g be functions which are analytic on some common
domain. On this domain,

f + g and f − g are analytic, (7.6a)

fg is analytic, (7.6b)

f∕g is analytic except where g = 0, (7.6c)

f◦g = f (g) is analytic. (7.6d)

Proof: These combination rules are proven using the Cauchy–Riemann equations.
For illustration, we prove the sum rule (Equation 7.6a). Let f (z) = uf (x, y) + i𝑣f (x, y)
and g(z) = ug(x, y) + i𝑣g(x, y). Then,

f + g = (uf + i𝑣f ) + (ug + i𝑣g) = (uf + ug) + i(𝑣f + 𝑣g).

The partial derivatives are 𝜕

𝜕x
(uf + ug) = 𝜕uf

𝜕x
+ 𝜕ug

𝜕x
, so on. And because f and

g are analytic, their associated partial derivatives are continuous and satisfy the
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Cauchy–Riemann equations. We may therefore substitute
𝜕uf

𝜕x
= 𝜕𝑣f

𝜕y
, so on, yielding

𝜕

𝜕x
(𝑣f + 𝑣g) = −

𝜕uf

𝜕y
−

𝜕ug

𝜕y
= − 𝜕

𝜕y
(uf + ug),

𝜕

𝜕y
(𝑣f + 𝑣g) =

𝜕uf

𝜕x
+

𝜕ug

𝜕x
= 𝜕

𝜕x
(uf + ug),

and this is what was to be proved.

The sum, product, quotient, and chain rules from real analysis also extend to
the complex plane:

(f ± g)′ = f ′ ± g′, (7.7a)

(fg)′ = f ′g + fg′, (7.7b)

(f∕g)′ =
f ′g − fg′

g2
, (7.7c)

(f◦g)′ =
(
f ′◦g

)
g′. (7.7d)

It is easy to show that f (z) = z is an entire function. It then follows from
the product rule (Equation 7.6b) that z2 = z ⋅ z is entire, and (by induction) that all
positive integer powers of z are entire. Furthermore, by the sum rule (Equation 7.6a)
all polynomials are entire functions. The ratio of two polynomials, f (z) = b(z)

a(z)
, is

called a rational function. If the numerator and denominator polynomials b(z) and
a(z) are coprime (have no common roots), then it follows from the quotient rule
(Equation 7.6c) that the rational function f is analytic everywhere except at the roots
of a(z). These roots are the poles of f . The case of common roots is discussed in the
problems. If you are familiar with transfer functions from linear system theory, you
know that they are rational functions of the complex Laplace transform variable s,
H(s) = b(s)

a(s)
. Now you also know that they are analytic everywhere in the complex

plane except at their poles.
What about the complex conjugate function, f (z) = z∗? It is continuous

and single valued. By definition, z∗ = x − iy, so u = x and 𝑣 = −y. Applying the
Cauchy–Riemann equations,

𝜕u
𝜕x

= 1
𝜕u
𝜕y

= 0,

𝜕𝑣

𝜕x
= 0

𝜕𝑣

𝜕y
= −1.

Because 𝜕u
𝜕x

≠ 𝜕𝑣

𝜕y
, for all x and y, we conclude that z∗ is not analytic anywhere in

the complex plane. It follows that combinations involving z∗, such as Re z = z+z∗

2
,

Im z = z−z∗

2i
, and |z|2 = zz∗, are not analytic.

Next we explore what happens to other common functions when they are applied
to complex numbers. These divide into two classes: those based on the exponential
function, which are relatively easy to deal with, and their inverses, which are based
on the logarithm and are more difficult.
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7.4 exp z AND FUNCTIONS DERIVED FROM IT

The exponential function, exp z, is an entire function of z. To see this, write

exp z = exp(x + iy) = exeiy = ex cos y + iex sin y

and apply the Cauchy–Riemann equations, with u = ex cos y and 𝑣 = ex sin y:

𝜕u
𝜕x

= ex cos y
𝜕u
𝜕y

= −ex sin y

𝜕𝑣

𝜕x
= ex sin y

𝜕𝑣

𝜕y
= ex cos y.

The partial derivatives are clearly continuous and the Cauchy–Riemann equations are
satisfied everywhere.

Surface plots reveal something of this function’s character. Referring to Fig-
ure 7.9, observe that the real and imaginary parts are exponential in the direction of
the real axis, and oscillatory in the imaginary direction. The fact that the real part
oscillates like cos y and the imaginary part like sin y is also evident. The modulus and
argument are |𝑤| = exp x and y, respectively. The plot shows the principal value of
the argument, which varies between −𝜋 and 𝜋.

Region plots (Figure 7.10) display several additional features.
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FIGURE 7.9 Surface plots of the exponential function, 𝑤 = exp z. (a,b) The real and imag-
inary parts behave exponentially in the direction of the real axis and oscillate in the direction
of the imaginary axis. (c) The modulus, |𝑤| = exp x. (d) Principal value of arg𝑤.
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FIGURE 7.10 The exponential function 𝑤 = exp z maps horizontal lines z = i𝛽 to rays at
an angle 𝛽 (dashed). The vertical line segment z = 𝛼 + iy, y ∈ (𝛽2, 𝛽1) is mapped to an arc of
radius e𝛼, with arg𝑤 ∈ (𝛽2, 𝛽1) (solid). When 𝛽1 − 𝛽2 = 2k𝜋, the arc is a circle. The region
Re z < 𝛼 maps to the interior of the circle, and Re z > 𝛼 maps to the exterior of the circle.
When 𝛼 = 0, the circle becomes the unit circle.

Horizontal lines in the Z-plane, z = x + i𝛽, map to rays extending from the
origin in the W-plane at angle 𝛽,𝑤 = exei𝛽 . The negative extreme of the line, x → −∞,
maps to 𝑤 = 0. Vertical lines in the Z-plane, z = 𝛼 + iy, map to circles in the W-plane
of radius e𝛼 , 𝑤 = e𝛼eiy. As shown in the figure, a vertical line segment maps to an
arc. The imaginary axis, z = iy, maps to the unit circle, since e𝛼 = e0 = 1. Points
in the left-half Z-plane (x < 0) map inside the unit circle (ex

< 1), and points in the
right-half Z-plane map outside the unit circle. (What is the image in the W-plane of
a rectangular area in the Z-plane?)

The circular and hyperbolic functions are defined in terms of the exponential
in the usual way:

sin z = eiz − e−iz

2i
, (7.8a)

cos z = eiz + e−iz

2
, (7.8b)

tan z = sin z
cos z

, (7.8c)

sinh z = ez − e−z

2
, (7.8d)

cosh z = ez + e−z

2
, (7.8e)

tanh z = sinh z
cosh z

. (7.8f)

Algebraically, the complex definitions are identical to those for real variables. This
means that all the trigonometric identities apply to the complex case, for example,

cos(z1 + z2) = cos z1 cos z2 − sin z1 sin z2.

The trigonometric functions are sums and ratios of entire functions, so they are also
analytic everywhere, except for tan z and tanh z, which fail to be analytic where
cos z = 0 and cosh z = 0, respectively. Their derivatives are identical in form to their

real counterparts:
d sin z

dz
= cos z, so on.
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Expanding sin z and cos z into their real and imaginary parts,

sin z = ei(x+iy) − e−i(x+iy)

2i
= e−y(cos x + i sin x) − ey(cos x − i sin x)

2i

=
(ey + e−y

2

)
sin x + i

(ey − e−y

2

)
cos x

= sin x cosh y + i cos x sinh y (7.9a)

and

cos z = cos x cosh y − i sin x sinh y. (7.9b)

In the complex plane, sin z and cos z behave as combinations of circular and hyperbolic
functions. If z is purely real, we get the circular functions; if z is purely imaginary,
their behavior is hyperbolic. Replacing z by iz produces general relationships between
circular and hyperbolic functions on the complex plane:

sin iz = e−z − e+z

2i
= i sinh z, (7.10a)

cos iz = e−z + e+z

2
= cosh z, (7.10b)

tan iz = i sinh z
cosh z

= i tanh z, (7.10c)

sinh iz = eiz − e−iz

2
= i sin z, (7.10d)

cosh iz = eiz + e−iz

2
= cos z, (7.10e)

tanh iz = i sin z
cos z

= i tan z. (7.10f)

These relationships say, for example, that the cosine function can take on values out-
side the real interval [−1, 1]: cos 2i = cosh 2 = 3.7622, and cos(𝜋 + i2) = − cosh 2 =
−3.7622.

Complex versions of other functions exist, too: the gamma function Γ(z) and
the Bessel functions Jn(z), to name two. Their properties are beyond the scope of this
text, but helpful summaries can be found in mathematical handbooks.3

7.5 LOG z AND FUNCTIONS DERIVED FROM IT

All the transcendental functions of the previous section, and the polynomial functions
(of degree greater than 1) as well, are many-to-one mappings, for example, z3 = 1

for z = 1, −1+i
√

3
2

, −1−i
√

3
2

, and sin z = 0 for z = 0, ±𝜋, ±2𝜋,…. This means that if
we need to solve an equation like zn = 4 or cos z = 3i for z, we will be inverting a
many-to-one mapping and should expect the solutions, z = 41∕n and z = cos−1(3i), to
be multivalued. We need a way to ensure that we obtain all the possible solutions and

3See, for example, Abramowitz and Stegun, 1972; Jahnke et al., 1960.
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face an additional problem if we want to differentiate these multivalued mappings,
because a function must be single valued in order to be differentiated.

The logarithm is the foundation for these inverse functions. Using the logarithm,
we can define the nth root z1∕n of a complex number, rational powers zm∕n, arbitrary
irrational, even complex, powers, zc, and inverse trigonometric functions.

7.5.1 The Logarithm Function

The logarithm is defined via the exponential. For a complex z, log z (recall that we
use “log” rather than “ln” to denote the natural logarithm) is any complex number
for which z = exp(log z). The unit circle provides some convenient examples.

Example 7.11 (Some complex logarithms). We know from real analysis that
log 1 = 0: e0 = 1. In the complex plane, ei2𝜋 is also equal to 1, so i2𝜋 is a complex
logarithm of 1. In fact, ei2𝜋k = 1 for all integer k, so 1 has an infinite number of
complex logarithms, log 1 = i2𝜋k. On the other side of the unit circle, ei𝜋 = −1;
moreover, ei𝜋+i2𝜋k = −1, so −1 has an infinite number of logarithms, log(−1) =
i𝜋 + i2𝜋k. Also, ei𝜋∕2+i2𝜋k = i, and log i = i𝜋

2
+ i2𝜋k.

To calculate the logarithm of an arbitrary z, write log z = u + i𝑣 and z = rei𝜃 .
Then,

z = rei𝜃 = exp(u + i𝑣) = euei𝑣,

and we identify u = log r = log |z| and 𝑣 = 𝜃 = arg z. Hence, we have the basic
definition of the logarithm:

log z = log r + i𝜃 = log |z| + i arg z. (7.11)

We want to know if the logarithm is an analytic function. We will examine the
usual things:

� Is log z finite and single valued?
� Is log z continuous?
� Does log z satisfy the Cauchy–Riemann conditions?

The real logarithm, log x, blows up at x = 0. For the complex logarithm,| log z| = √
(log r)2 + 𝜃2; this blows up when r = 0. The complex logarithm, there-

fore, has a singularity at z = 0, and any domain of analyticity for log z will necessarily
exclude the origin.

What about being single valued? The argument is multivalued (Figure 7.11),
so the logarithm is, as well. The principal value of the logarithm, denoted Log z, is
defined using the principal value of the argument, 𝜋 ≥ Arg z > −𝜋 (Equation 1.11).
All other values are obtained by adding integer multiples of 2𝜋i:

Log z = Log |z| + iArg z,

log z = Log z + i2𝜋k = Log |z| + iArg z + i2𝜋k, k = 0, ±1,… (7.12)
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FIGURE 7.11 The argument arg z is multivalued. The same point in the Z-plane is repeatedly
addressed by taking laps around the origin. Each lap changes the argument by 2𝜋.

Choosing a value of k identifies a particular 2𝜋 range of argument over which the
logarithm is single valued. There may be a practical reason to select a particular
value of k in the same way that physical considerations often dictate the choice of a
positive or negative square root. Lacking any such constraints at this point, we will
leave the choice of k to be arbitrary.

Another way of visualizing the multivalued nature of the logarithm is via a
region plot (Figure 7.12). The complex Z-plane which is addressed by arguments
between −𝜋 and 𝜋 is mapped by the logarithm to a horizontal strip in the W-plane,
with Im 𝑤 ∈ (−𝜋, 𝜋]. Other ranges of argument map to different strips. Consider a
point z in the Z-plane whose argument is defined to be between −𝜋 and 𝜋, as shown
in the figure. Its image under the logarithm mapping will appear in the strip with
Im 𝑤 ∈ (−𝜋,𝜋]. Now travel once around the origin of the Z-plane in the positive
direction, returning to z. You are at the same point in the Z-plane, as defined by the
real and imaginary parts, but the argument has increased by 2𝜋, and because the
argument is different, the logarithm is different. This point maps to the next higher
strip in the W-plane. Had you moved in the negative direction around the origin,
you would have decreased the argument of z by 2𝜋, and the corresponding logarithm
would have been in a lower strip in the W-plane. Making repeated trips around z = 0
moves you to successive strips in the W-plane. This is how the multiple values of the
logarithm are generated. You can, of course, verify that all the points so generated
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FIGURE 7.12 The logarithm is multivalued. The same point in the Z-plane is mapped to an
infinite number of points in the W-plane, separated by i2𝜋. The Z-plane is mapped into strips
of width 2𝜋 in the W-plane. Each 2𝜋 range of argument maps to a different strip.

are valid logarithms of z by applying the exponential function to them and observe
that because exp(i2𝜋) = 1, they all map to the same value.

As it stands, the logarithm is not analytic, because it is multivalued. This
deficiency is remedied by restricting the range of the logarithm to one of the strips
in Figure 7.12. This, in turn, restricts the argument of z to one of the 2𝜋 intervals
(−𝜋 + i2𝜋k, 𝜋 + i2𝜋k]. Choosing a particular k, we now have a domain {z : |z| >
0, arg z ∈ (−𝜋 + 2𝜋k,𝜋 + 2𝜋k]} where the logarithm is finite and single valued.

Next we take up continuity. For all points z0 in the eventual domain of analytic-
ity, we require lim

z→z0
log z = log z0 for all z in a neighborhood of z0, independent of the

path z takes to get to z0. As we have defined it, the argument is discontinuous on the
negative real axis. Any neighborhood of a point on the negative real axis, no matter
how small, will contain points above and below the axis. However, any point above
or below the axis, no matter how close to the axis it is, possesses a neighborhood
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arg z = π
arg z = –π

arg z = π
arg z = –π

FIGURE 7.13 Discontinuity of the argument illustrated for the principal value. Left: A
neighborhood of a point on the negative real axis will always contain points whose arguments
are close to 𝜋 and others whose arguments are close to −𝜋. Right: On the other hand, for a
point above or below the axis, a neighborhood can always be found in which the argument is
continuous.

of points in which the argument is continuous, because the axis can be excluded by
making the neighborhood small enough (Figure 7.13).

Discontinuity in the argument makes the logarithm discontinuous as well. The
discontinuity is avoided by further restricting the domain to exclude the negative real
axis. On this new domain, {z : |z| > 0, arg z ∈ (−𝜋 + 2𝜋k,𝜋 + 2𝜋k)}, the logarithm
is finite, single valued, and continuous. (Values of the logarithm can still be calculated
on the negative real axis using arg z = 𝜋, but it cannot be differentiated there because
it is discontinuous.)

Finally, we consider whether the logarithm function satisfies the Cauchy–
Riemann conditions on this domain. Applying the Cauchy–Riemann equations in
polar form (Equation 7.5), with u(r, 𝜃) = log r and 𝑣(r, 𝜃) = 𝜃, the partial derivatives
are continuous and

𝜕u
𝜕r

= 1
r
𝜕𝑣

𝜕𝜃
= 1

r
𝜕𝑣

𝜕r
= −1

r
𝜕u
𝜕𝜃

= 0

everywhere in the domain.

Definition 7.5 (Branch). Let f : ℂ → ℂ be a mapping. The restriction of f to a
domain D ⊆ ℂ on which f is single valued and continuous is called a branch of f .

The result of these successive restrictions of the domain is this: a branch of
log z is analytic in the domain created by selecting a 2𝜋 range of argument (fixing
k) and cutting the nonpositive real axis out of the complex plane. The set of points
{z : arg z = 𝜋} which were excluded from the domain to define the branch is called,
appropriately enough, a branch cut.

The branch cut is a boundary between the domains that specify different
branches of the logarithm. Let z1 be a point in the second quadrant of the Z-plane,
and z2 be a point in the third quadrant, and consider a path connecting z1 to z2 (Fig-
ure 7.14). You have two options: a path like A that detours around the branch cut
through the first and fourth quadrants on its way to the third, or a path like B that
crosses the branch cut in going directly from the second quadrant to the third. The
image of z2, its logarithm, depends on the path taken. Along path A, the argument of
a point on the path always stays between −𝜋 and 𝜋; its image under the logarithm
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FIGURE 7.14 Crossing a branch cut moves you to a different branch of the logarithm.

function is always on the strip with Im 𝑤 ∈ (−𝜋,𝜋). The image points 𝑤1 and 𝑤2A
are on the same strip, or the same branch of the logarithm. However, moving contin-
uously from z1 to z2 along path B, as though the branch cut were not there, causes
the argument of z to pass beyond 𝜋 to a value greater than 𝜋. The image of this path
crosses from one strip in the W-plane to the next one above. The image points 𝑤1
and 𝑤2B are on different strips or different branches of the logarithm. If you want to
differentiate or integrate a branch of any multivalued f along a path in the complex
plane, you must stay in that branch’s domain and not choose a path that crosses the
branch cut to a different domain.

But what if the path you are interested in must cross a branch cut? With
reference again to Figure 7.14, suppose you really need for the logarithm to be
continuous between the second and third quadrants. There is a way out. Suppose we
were to define arg z to live between 0 and 2𝜋 rather than between −𝜋 and 𝜋. This
constitutes a valid domain, and results in a valid branch of the logarithm, one which is
analytic in the cut plane with the nonnegative real axis excluded. Figure 7.15 revisits
the situation depicted in Figure 7.14, with this new positioning of the branch cut.

Now it is path A that crosses the branch cut, placing 𝑤1 and 𝑤2A on different
branches of the logarithm. Path B, on the other hand, stays within a single domain,
and the image points 𝑤1 and 𝑤2B are on the same branch of the logarithm.
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FIGURE 7.15 Moving the branch cut from the nonpositive real axis to the nonnegative real
axis creates a domain of analyticity which includes the negative numbers but excludes the
positive numbers.
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The choice of branch cut is not limited to the real axis. If you need to, you can
place the branch cut at an arbitrary angle in the complex plane. For example, if you
want log z to be analytic on the whole real axis (excepting z = 0, of course), you can
place the branch cut along the negative imaginary axis, 𝜃 = −𝜋∕2.

All the possible branch cuts for log z share one point, z = 0, in common. This
point is called a branch point of the function. The logarithm has one branch point.
Some functions have more than one and more complicated sets of branch cuts. A
multivalued mapping is not single valued in a neighborhood of a branch point. If
you make a full lap around a branch point, you will be sure to cross a branch
cut and hop between branches—the beginning and the end of the path will not
map to the same value. This provides a way to test a point to see if it is a branch
point. Define a neighborhood of the point and a closed path in that neighborhood
which encircles the point. If you completely traverse the path and the image of the
starting point is different than the image of the ending point, then you have found a
branch point.

Example 7.12 (Branch point for logarithm). To check that z0 = 0 is the branch
point of log z, go around the circle z = 𝜖ei𝜃 from 𝜃 = 0 to 𝜃 = 2𝜋 (Figure 7.16). The
image of the starting point is 𝑤 = Log 𝜖 + i0, but the image of the ending point is
𝑤 = Log 𝜖 + i2𝜋. These are different points in the W-plane, verifying that z = 0 is a
branch point.

On the other hand, consider the point z0 = 2 and the path z = 2 + 𝜖ei𝜃 which
encircles it. The magnitude of z = 2 + 𝜖ei0 is 2 + 𝜖, and its argument is zero. Its
logarithm, therefore, is 𝑤 = Log (2 + 𝜖) + i0 = Log (2 + 𝜖). At the other end of the
path, z = 2 + 𝜖ei2𝜋 , the magnitude |z| = 2 + 𝜖, and the argument is still zero. The
logarithm is also Log (2 + 𝜖) + i0 = Log (2 + 𝜖), which proves that z = 2 is not a
branch point of log z.

0 1 2 x

y

0   

π 

2π   

u

v

FIGURE 7.16 Two circular paths in the Z-plane (left) and their images under 𝑤 = log z
(right). Encircling the branch point at z = 0 (solid curve), the images of z = 𝜖ei0 and z = 𝜖ei2𝜋

are different points. When the branch point is not encircled, (dashed curve), the points
z = 2 + 𝜖ei0 and z = 2 + 𝜖ei2𝜋 map to the same point.
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A branch point is not an isolated singularity. The function z−1 is singular at the
origin, but it is analytic in a deleted neighborhood of the origin, proving that z = 0
is an isolated singularity of the function. On the other hand, although log z is also
singular at the origin, there is a branch cut extending from z = 0 so that there is no
deleted neighborhood of the origin in which log z is analytic.

7.5.2 The Square Root, Revisited

The square root function, y = x1∕2, is the solution of the quadratic equation y2 − x = 0;
a quadratic equation has two roots, hence there are two square roots for x. For real x,
these two square roots are commonly denoted ±

√
x for x > 0, and ±i

√|x| for x < 0.
Now consider the complex square root, z1∕2. With z = exp(log z),

z1∕2 = exp
(1

2
log z

)
= exp

(
Log |z|

2

)
exp

( i arg z

2

)
=
√|z| exp

( i arg z

2

)
,

where
√|z| denotes the positive square root of |z|. The argument is multivalued, so

we write

z1∕2 =
√|z| exp

(
i(Arg z + 2𝜋k)

2

)
= exp(i𝜋k)

√|z| exp

(
iArg z

2

)
, k = 0,±1,… .

Now consider the result as k takes on various values.

� k = 0 :

z1∕2 = exp(i0)
√|z| exp

(
iArg z

2

)
=
√|z| exp

(
iArg z

2

)
.

� k = 1 :

z1∕2 = exp(i𝜋)
√|z| exp

(
iArg z

2

)
= −

√|z| exp

(
iArg z

2

)
.

� k = 2 :

z1∕2 = exp(i2𝜋)
√|z| exp

(
iArg z

2

)
= +

√|z| exp

(
iArg z

2

)
,

which is the same as the z = 0 case.
� k = 3 :

z1∕2 = exp(i3𝜋)
√|z| exp

(
iArg z

2

)
= −

√|z| exp

(
iArg z

2

)
,

the same as the z = 1 case.
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FIGURE 7.17 The square root has two branches: k = 0,±2,… and k = ±1,±3,…. The
branch cut divides two domains of analyticity.

The pattern is clear: only k = 0 and k = 1 yield unique values for z1∕2, and one is the
negative of the other. This is the complex origin of the two square roots:

z1∕2 = ±
√|z| exp

(
iArg z

2

)
. (7.13)

It is easy to see how this more general function reduces to the real cases. When z is
a positive real number, Arg z = 0, and we just get z1∕2 = ±

√
x. When z is a negative

real number, Arg z = 𝜋, and z1∕2 = ±ei𝜋∕2
√|x| = ±i

√|x|.
The structure of the square root mapping is illustrated in Figure 7.17. When

arg z ∈ (−𝜋,𝜋], the argument of the square root, arg𝑤, is between −𝜋∕2 and 𝜋∕2—
the right-half W-plane. When arg z ∈ (𝜋, 3𝜋], we have arg𝑤 ∈ (𝜋∕2, 3𝜋∕2], the left-
half W-plane. All other domains, for example, arg z ∈ (3𝜋, 5𝜋], map to one of these
two branches. Just as with the logarithm function, a path that crosses the branch cut
moves you from one branch of the square root to the other. But unlike the logarithm,
crossing the branch cut a second time in the same direction (making two laps around
z = 0) puts you back on the first branch, rather than on a third, different, branch.
Multiple laps around the origin in the Z-plane just move you back and forth between
the two branches of the square root function.

Moving the branch cut from the negative real axis to the positive real axis yields
a square root function which is analytic for negative real numbers (Figure 7.18).
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FIGURE 7.18 Branches of the square root function. Top: The branch cut placed along the
negative real axis. 𝑤1 and 𝑤2A are on the same branch; 𝑤2B is on the other branch. Bottom:
The branch cut placed along the positive real axis. Now 𝑤1 and 𝑤2B are on the same branch,
while 𝑤2A is on the other branch.

The generalization to the nth root is straightforward:

z1∕n = n
√|z| exp

[
i
1
n

(Arg z + 2𝜋k)
]

= ei2𝜋k∕n n
√|z| exp

(
iArg z

n

)
, k = 0, 1,… , n − 1. (7.14)

For example, the “Nth roots of unity” are

11∕N = ei2𝜋k∕N , k = 0, 1,… , N − 1,

which, you may recall, appear in the discrete Fourier transform. These are complex

numbers, spaced uniformly around the unit circle at angles 𝜃k = 2𝜋k
N

.

The function f (z) = z1∕n is analytic in the cut plane {z : |z| > 0, arg z ∈ (−𝜋 +
2𝜋k,𝜋 + 2𝜋k)}. Each value of k = 0, 1,… , n − 1 corresponds to a different branch
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FIGURE 7.19 The cube root, z1∕3, has three branches.

of the function. The square root has two branches, the cube root has three branches,
and so on (Figure 7.19).

7.5.3 Rational powers, zm∕n

A rational power of a complex number, zm∕n, is the combination of the mth power,
which is single valued, and the nth root, which is n valued. Using the complex
logarithm,

zm∕n = exp
(m

n
log z

)
= exp

[m
n

(Log |z| + iArg z + i2𝜋k)
]

= |z|m∕n exp
(

i
m
n

Arg z
)

exp
( i2𝜋km

n

)
, k = 0, 1,… , n − 1,

where |z|m∕n = n
√|z|m =

(
n
√|z|)m

. You need to be careful that the fraction m∕n is in

simplest terms. If m and n share a common factor, then there will actually be fewer
than n unique values of zm∕n. For example, if m = 2 and n = 4, and you neglect to
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reduce m∕n to 1∕2, you will generate:

z2∕4 = exp
(

ik2𝜋
2
4

)
4
√|z|2 exp

(
i
2
4

Arg z
)

, k = 0, 1, 2, 3,

= exp(ik𝜋)
√|z| exp

(
i
Arg z

2

)
, k = 0, 1, 2, 3,

= +
√|z| exp

(
i
Arg z

2

)
, −

√|z| exp

(
i
Arg z

2

)
,

+
√|z| exp

(
i
Arg z

2

)
, −

√|z| exp

(
i
Arg z

2

)
.

Two of the values are redundant.
The function zm∕n is analytic in the cut plane, just like log z and z1∕n, but the

branch structure is more complicated than the square root and cube root. To illustrate,
take m = 2, n = 3 (Figure 7.20). The domain defined by arg z ∈ (−𝜋, 𝜋) maps to a
sector in the W-plane defined by arg𝑤 ∈ (−2𝜋∕3, 2𝜋∕3). The next domain, arg z ∈
(𝜋, 3𝜋), maps to arg𝑤 ∈ (2𝜋∕3, 2𝜋). The next, arg z ∈ (3𝜋, 5𝜋), maps to arg𝑤 ∈
(2𝜋, 4𝜋∕3). Because exp(i4𝜋∕3) = exp(−i2𝜋∕3), we see that the three sectors in the
W-plane do adjoin and cover the plane twice. Three full laps around the Z-plane result
in two full laps around the W-plane.

In general with zm∕n, n laps around the Z-plane result in m laps around the
W-plane. As with log z and z1∕n, the branch cut may extend from the branch point at
z = 0 in any direction in the Z-plane, with a corresponding definition of arg z.

7.5.4 Irrational and Complex Powers of z

The function f (z) = zc, where c is an arbitrary real or complex number, is evaluated
using the logarithm function, as follows. Again beginning with

zc = exp (c log z) ,

let c = a + ib, then

zc = exp
[
(a + ib)(Log |z| + iArg z + i2𝜋k)

]
= exp

[
a Log |z| − bArg z − 2𝜋bk

]
exp

[
i(aArg z + b Log |z| + 2𝜋ak)

]
,

k = 0,±1,… (7.15)

In general, there will be an infinite number of values for a particular choice of z and
c. It looks messy, but it is the most general possible power of z, and there is no power
you can’t calculate using it. For example, in the unlikely event that you ever need 𝜋

𝜋 ,
substitute z = 𝜋, a = 𝜋, and b = 0 into Equation 7.15:

𝜋
𝜋 = e𝜋 Log 𝜋ei2𝜋2k, k = 0,±1,… .

The principal value (k = 0) is the one your calculator gives, e𝜋 Log 𝜋 =
36.4621596072. But there is also a set of complex values for k ≠ 0.

Like all the others, zc is analytic in the cut plane we have been seeing throughout
this section. When c is real but irrational, a single 2𝜋 domain in the Z-plane maps to
a 2𝜋c sector in the W-plane. Unlike the rational (m∕n) case, though, the boundaries
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FIGURE 7.20 𝑤 = z2∕3 has three branches. Each one maps a 2𝜋 domain in the Z-plane to a
4𝜋∕3 range in the W-plane.

of these sectors will never meet up again as k runs through the integers. Like the
logarithm, you have an infinite number of branches. The branch structure when c is
complex is very complicated and will not be discussed further here.

7.5.5 The Square Root of a Polynomial

We shall require, on occasion, the square root of a polynomial such as f (z) = (z2 −
1)1∕2. It is simple enough to program this function with, say, Matlab and compute
values. It is not so simple to determine domains of analyticity and the structure of the
branches, since f is a combination of a many-to-one mapping (z2) and a one-to-many
mapping (square root).
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FIGURE 7.21 Setup for calculating f (z) = (z2 − 1)1∕2 = (z + 1)1∕2(z − 1)1∕2.

Factoring z2 − 1 = (z + 1)(z − 1), f may be written f (z) = (z + 1)1∕2(z − 1)1∕2,
the product of two simpler square roots. We know how to deal with these. Let
(Figure 7.21)

z − 1 = r1ei𝜃1 ,

z + 1 = r2ei𝜃2 .

Then,

f (z) = (r1r2)1∕2 exp

(
i
𝜃1 + 𝜃2

2

)
.

We have two arguments to define, 𝜃1 = arg(z − 1) and 𝜃2 = arg(z + 1), hence two
branch cuts to position. Let us begin with the usual principal branch of the argument,
so 𝜃1, 𝜃2 ∈ (−𝜋, 𝜋) (Figure 7.22).

We are interested in the continuity of f as the real axis is approached from
above and below. So, consider points just above and below the real axis at z = a,
z = 0, and z = −a, a > 1 (Figure 7.23).

There is no branch cut to the right of z = 1. As z = a is approached from above
and below, the angles 𝜃1 and 𝜃2 both approach 0 continuously. The argument of the
square root, (𝜃1 + 𝜃2)∕2, is also continuous, approaching 0 at z = a. We anticipate
that f will be analytic to the right of z = 1.

As z = 0 is approached from above and below, it is a different story. From
above, 𝜃1 approaches 𝜋 and 𝜃2 approaches 0. From below, 𝜃1 approaches −𝜋, and 𝜃2
still approaches 0. So from above, the argument of the square root is approaching 𝜋∕2,
while from below it approaches −𝜋∕2. Now, exp(i𝜋∕2) = i, while exp(−i𝜋∕2) = −i,
so f is discontinuous across the real axis here.

Finally, consider z = −a. As z = −a is approached from above, both 𝜃1 and
𝜃2 tend to 𝜋, while from below they both tend to −𝜋, since each angle has to stay
between −𝜋 and 𝜋 to avoid its branch cut. The argument of the square root is 𝜋

just above the axis and −𝜋 just below the axis. This looks like another discontinuity.
But exp(−i𝜋) = exp(i𝜋) = −1, so in fact, f is continuous at z = −a! The branch cuts
appear to cancel, but what actually happens is that you simultaneously cross from
one branch to the other and then back again. The resulting domain of analyticity for
f is the complex plane cut just along the real axis between z = −1 and z = 1.

Another way of visualizing the same thing is shown in Figure 7.24. Look-
ing at the argument, the discontinuities at the branch cuts are apparent. There
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FIGURE 7.22 Two of the possible choices of branch cut for calculating f (z) = (z + 1)1∕2

(z − 1)1∕2. Top: 𝜃1, 𝜃2 ∈ (−𝜋, 𝜋). Bottom: 𝜃1 ∈ (0, 2𝜋), 𝜃2 ∈ (−𝜋,𝜋).
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FIGURE 7.23 Exploring the continuity of f (z) = (z + 1)1∕2(z − 1)1∕2 at the real axis. Top:
To the right of both branch cuts. Middle: At one branch cut. Bottom: At both branch cuts.
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FIGURE 7.24 Surface plots of f (z) = (z2 − 1)1∕2. (a) real part; (b) imaginary part; (c) modu-
lus; and (d) argument. The imaginary part is discontinous across the real axis between z = −1
and z = 1, but continuous everywhere else. The real part is continuous, but not smooth, between
z = −1 and z = 1. The apparent discontinuity in the argument to the left of z = −1 is a jump
of 2𝜋, which does not affect the value of the function.

is a jump of 𝜋 between z = −1 and z = 1 due to the one branch cut, then a jump of
2𝜋 to the left of z = −1 due to the combined effects of both branch cuts. But a jump
of 2𝜋 in argument does not affect the value of the function, since exp(i2𝜋) = 1. The
jump in the imaginary part is caused by the 𝜋 jump in the argument. The imaginary
part is proportional to sin arg𝑤; above the jump, sin(arg𝑤) = sin 𝜋

2
= 1, while below

the jump, sin(arg𝑤) = sin −𝜋
2

= −1. The real part does not have a jump, because it is

proportional to cos(arg𝑤) and cos 𝜋

2
= cos −𝜋

2
= 0. Instead, the real part is zero on

the line between z = −1 and z = 1, but its slope is discontinuous across the line. The
modulus is continuous (why?).

As long as we take paths in the complex plane that go around branch cuts rather
than across them, we will be assured of staying on one branch of the function. The
consequence of ignoring the branch cut is shown in Figure 7.25. The figure shows
three paths in the Z-plane connecting two points, z = 2i and z = −2i. One path goes
to the right, avoiding both branch cuts of f . The second path goes straight from 2i
to −2i, crossing over one branch cut. The third path goes to the left, crossing both
branch cuts. The images of the three paths under f are also shown. Observe that the
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FIGURE 7.25 The difference between crossing a branch cut and going around it, for f (z) =
(z2 − 1)1∕2. Left: Paths in the Z-plane connecting z = 2i with z = −2i. The starting and ending
points are marked with downward and upward directed triangles, respectively, and the points
where the paths cross the real axis are marked with circles. One path goes around both branch
cuts of f , one crosses one of them, and the third crosses both. Right: The mappings under
f of these paths, in the W-plane. The first and third paths take different routes to the same
destination, but the second path goes somewhere else—to the other branch of the function.

images of the first and third paths, crossing zero and two branch cuts, end at the

same point, −i
√

5. The image of the second path, which crosses one branch cut, ends

at a different point, +i
√

5, which is, in fact, the value of the function on its other
branch.

If you require a branch of (z2 − 1)1∕2 to be continuous across the real axis
between −1 and 1, then you can move one of the branch cuts, defining 𝜃1 ∈ (0, 2𝜋)
(Figure 7.22). Now the domain of analyticity is the complex plane, cut along the real
axis for Re z > 1 and Re z < −1. As with the logarithm, if you want a branch whose
domain includes the whole real axis (excepting z = ±1), you can hang the branch
cuts under the axis and define the arguments 𝜃1 and 𝜃2 accordingly.

7.5.6 Inverse Trigonometric Functions

We use arccos z as an example of how the inverse trigonometric functions are calcu-
lated. We seek the solution of the equation z = cos𝑤. Begin with the definition of
the cosine in terms of the exponential:

cos𝑤 = ei𝑤 + e−i𝑤

2
,

and let 𝜉 = ei𝑤, so

z = 𝜉 + 𝜉
−1

2
.
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Collect the terms into a polynomial in 𝜉:

𝜉
2 − 2z𝜉 + 1 = 0.

Using the quadratic formula,

𝜉 = z + (z2 − 1)1∕2 = z + i(1 − z2)1∕2
.

(The two roots are implicitly indicated by writing the square root as (⋅)1∕2.) Finally,
substituting 𝜉 = ei𝑤 and solving for 𝑤 gives

𝑤 = arccos z = −i log
[
z + i(1 − z2)1∕2]

.

The function will have a “double infinity” of values, owing to the infinite number of
logarithm values and the two square roots.

Here are all the inverse trig functions, collected together:

arcsin z = −i log
[
iz + (1 − z2)1∕2] , (7.16a)

arccos z = −i log
[
z + i(1 − z2)1∕2] , (7.16b)

arctan z = i
2

log

(
i + z
i − z

)
, (7.16c)

arcsinh z = log
[
z + (z2 + 1)1∕2] , (7.16d)

arccosh z = log
[
z + (z2 − 1)1∕2] , (7.16e)

arctanh z = 1
2

log

(
1 + z
1 − z

)
. (7.16f)

The domains of analyticity of these functions are complicated and will not be dis-
cussed further here.

7.6 SUMMARY

1. A function f : ℂ → ℂ, f (z) = u(x, y) + i𝑣(x, y) is analytic at a point z0 if the par-

tial derivatives
𝜕u
𝜕x

,
𝜕u
𝜕y

,
𝜕𝑣

𝜕x
,
𝜕𝑣

𝜕y
are continuous and satisfy the Cauchy–Riemann

equations

𝜕u
𝜕x

= 𝜕𝑣

𝜕y
,

𝜕u
𝜕y

= −𝜕𝑣

𝜕x

at z0 and in a neighborhood of z0.

2. An isolated singularity is a point z0 at which a function fails to be analytic,
although the function is analytic in a deleted neighborhood of z0, for example,
𝜖 > |z − z0| > 0.

3. A domain in the complex plane is an open, connected set.

4. A function is analytic in a domain D if it is analytic for every point z ∈ D. A
function’s domain of analyticity is the largest such domain.
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5. A function is entire if it is analytic for all z ∈ ℂ. That is, its domain of analyticity
is the entire complex plane.

6. A mapping f : ℂ → ℂ may in general be multivalued (one-to-many). The
restriction of a multivalued f to a domain D in which f is single valued and
analytic is called a branch of f . A line which is excluded from ℂ to create such
a domain is called a branch cut. If a function is evaluated along a path in the
complex plane which does not cross a branch cut, all the values will come from
the same branch. A branch point is one end of a branch cut. Encircling a branch
point will always cross a branch cut.

7. Allowing for isolated singularities and branch cuts, the common algebraic
and transcendental functions have well-defined generalizations to the complex
plane.

PROBLEMS

7.1. Consider the bilinear transform 𝑤 = 1 + z
1 − z

, which is important in signal processing.

(a) Use Matlab to calculate 𝑤 for z = iy, and plot the resulting locus of points in the
complex plane (plot(real(w),imag(w))). Be sure to use axis equal so that
the proportions are correct.

(b) Once you see what the curve looks like from the graph, deduce a mathematical
formula for it. (Hint: What is |𝑤|?)

(c) Where does the left half of the Z-plane map under this transformation?

7.2. Consider the complex function z = exp(sT), where s = 𝜎 + i𝜔 may be thought of as the
traditional complex Laplace transform variable. Where do the following regions of the
s plane map in the z plane? Explain both analytically and graphically.

(a) The imaginary axis, positive and negative.

(b) The real axis, positive and negative.

(c) The left and right half-planes.

(d) The origin (s = 0) and extreme left half-plane (s = −∞).

(e) The general point s = a + ib. Discuss the effect of the parameter T on where this
point maps.

(f) A line of “constant damping,” 𝜔 = −𝜎, for 𝜎 < 0.

This mapping is very important in digital signal processing and in the design of com-
puterized feedback control systems.

7.3. Derive the polar form of the Cauchy–Riemann equations and express the derivative f ′(z)
in terms of the partial derivatives of u(r, 𝜃) and 𝑣(r, 𝜃) (Equation 7.5),

7.4. Use the polar form of the Cauchy–Riemann equations to examine the analyticity of
f (z) = 1∕z.

7.5. Use the polar form of the Cauchy–Riemann conditions to show that Arg z is not analytic.

7.6. Using surface and region plots, explore the properties of z2 and |z|2. Carefully design
your graphs to reveal important features of the functions. You should be able to observe
that one function is analytic and the other is not.
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7.7. Prove the product rule (Equation 7.6b).

7.8. Prove the quotient rule (Equation 7.6c).

7.9. Prove the composition rule (Equation 7.6d).

7.10. Consider the rational function f (z) = b(z)
a(z)

, where the numerator and denominator poly-

nomials are not coprime. Let z0 be a root of multiplicity one for both polynomials:
a(z) = (z − z0)𝛼(z) and b(z) = (z − z0)𝛽(z). Show that z0 is not a pole of f . In linear
system theory, this is called “pole-zero cancellation.”

7.11. Identify all the singular points of the function cosech z = 1
sinh z

.

7.12. Use the Matlab mesh function to plot the real and imaginary parts of cos z as surfaces
above the x − y plane. You should observe sinusoidal behavior in the x direction, and
exponential (cosh, sinh) behavior in the y direction.

7.13. Determine the singular points and domains of analyticity for the following complex
functions. It is unnecessary to use the Cauchy–Riemann equations.

(a) f (z) = z
z2 + 3z + 2

(b) f (z) = z + 1
z2 − 1

(c) f (z) = sinc z

(d) f (z) = 1
sin z

(e) f (z) = exp i𝜋z2

(f) f (z) =
log z

z − 1

(g) f (z) = sin𝜋z

e𝜋z2 − 1
7.14. Where in the complex plane are the following functions analytic? Which are entire

functions? If the derivative exists in a domain, find an expression for f ′(z) in terms of z.
The Cauchy–Riemann equations are not necessary.

(a) f (z) = 2z2 + 3

(b) f (z) = exp(z2)

(c) f (z) = z + 1∕z

(d) f (z) = z + 1
z2 + z + 2

(e) f (z) = 1
cos z

(f) f (z) = sin(i tan z)

7.15. Complex functions and field theory
There are certain relationships in complex variable theory which connect it to the theory
of two-dimensional vector fields.

(a) Show that the real and imaginary parts of an analytic function f = u + i𝑣 each satisfy
Laplace’s equation: ∇2u(x, y) = 0 and ∇2

𝑣(x, y) = 0. A function which satisfies
Laplace’s equation is called harmonic (nothing to do with harmonic in the Fourier
sense).
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(b) If a function is analytic, its real and imaginary parts satisfy the Cauchy–Riemann
conditions. Given a real harmonic function u(x, y), show how to calculate a function
𝑣(x, y) such that u + i𝑣 is analytic. This function 𝑣 is called the harmonic conjugate
of u. Demonstrate your method with u(x, y) = x2 − y2. What is the complex function
f (z)? Answer: f (z) = z2. Show that ∇2u(x, y) = 0 and ∇2

𝑣(x, y) = 0 in this particular
case.

(c) The real and imaginary parts u and 𝑣 so described have a nice interpretation as a
potential function and stream function. That is, if u(x, y) is an electrostatic or thermal
potential function, then the gradient ∇u is proportional to the electric field or heat
flow field. Show that the field vector is tangent to the stream function 𝑣(x, y), in
general and for the particular u and 𝑣 you used in Parts (a) and (b).

(d) Hence, show that the equipotential lines u(x, y) = const are orthogonal to the stream-
lines 𝑣(x, y) = const, in general and in the particular case. Plot a few equipotential
lines and streamlines to visualize this. Matlab’s contour function can be used to
make the plots.

7.16. Is the function g(z) = rect |z| analytic? Why or why not?

7.17. Locate all the singularities of the function f (z) = 1∕ cos(𝜋z2∕2).

7.18. Prove that the nth root function, f (z) = z1∕n, is analytic in the cut plane {z : |z| > 0, arg z ∈
(−𝜋 + 2𝜋k,𝜋 + 2𝜋k)}.

7.19. Show that the general form of zc, Equation 7.15, reduces to the particular forms for zn,
z1∕n, and zm∕n, when c = n, 1∕n, and m∕n, respectively.

7.20. Multivalued functions
Consider the function f (z) = z1∕2 with the branch cut placed along the negative real axis.
Calculate and plot, using Matlab, the real and imaginary parts of f (z) along four paths:

(a) Along z = x + i𝜖 and z = x − i𝜖, 𝜖 > 0 (horizontal, just above and below the real
axis). In Matlab, eps can be used to make a very small number.

(b) Along z = 1 + iy and z = −1 + iy (vertical, left and right of the imaginary axis).

In each part, graph the real parts together in one plot and the imaginary parts together in
another plot to facilitate comparisons (four plots in all). Discuss your results, especially
the effect of the branch cut.

7.21. Multivalued functions
Consider the function f (z) = (z2 − 1)1∕2. This function has two branch points and there-
fore two branch cuts to place.

(a) Place both branch cuts so that arg(z ± 1) ∈ (−𝜋,𝜋]. Calculate and plot, using
Matlab, the real and imaginary parts of f (z) along two paths:
� z = x + i𝜖, 𝜖 > 0 (just above the real axis).
� z = x − i𝜖, 𝜖 > 0 (just below the real axis).

(b) Repeat, with the branch cuts placed so that arg(z + 1) ∈ (−𝜋, 𝜋] and arg(z − 1) ∈
(0, 2𝜋].

In each part, graph the real parts together in one plot and the imaginary parts together in
another plot to facilitate comparisons (four plots in all). Discuss your results, especially
the effect of the branch cut.

7.22. Repeat the discussion of Section 7.5.5 for the function f (z) = (z3 − z)1∕2. Consider at
least two configurations of the branch cuts.
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7.23. Determine all the roots of the following equations, and identify the principal values.

(a) z3 + 2 = 0

(b) e1+iz − 2 = 0

7.24. In addition to deriving an expression for each of the following, calculate the principal
value of each solution. Compare with the value that Matlab or your pocket calculator
computes, for example, for (a), what you get by typing (1+i)∧(1/3).
(a) Find all solutions of the equation z3 = 1 + i.

(b) Find all solutions of the equation ez+1 = i𝜋.

(c) Find all values of i1∕5.

(d) Find all values of log(1 − i
√

3).

7.25. (a) Find all possible solutions to the equation sin𝑤 = 1 + i.

(b) Consider the branch of z1∕2 defined by a branch cut along the negative real axis. On
this branch, let 11∕2 = −1 (i.e., the “negative” square root). Give a general formula
for this branch of z1∕2. What is the value of i1∕2 on this branch? Do the equations
z1∕2 − 3 = 0 and z1∕2 + 3 = 0 have solutions within the domain of analyticity of the
branch? Explain why or why not, and give any solutions that you find.

(c) Devise a (simple) set of branch cuts for the function arccos z so that it is analytic
along almost the entire real axis and in the upper half-plane. On this branch, let
arccos 0 = 𝜋∕2. What are the values of arccos−2, arccos i, and arccos 2?

7.26. (a) The Matlab function angle(z) computes the argument of the complex number z.
Verify experimentally that angle(z), in fact, computes the principal value of arg z.
One way to do this is to compute angle(z) for values of z between −2𝜋 and 2𝜋.
Where is the branch cut?

(b) Write your own function which computes the correct value of arg(z) when the branch
cut is along the positive real axis (2𝜋 > arg z ≥ 0) and demonstrate that it works.
Hint: Some of the values returned by angle(z) fall into the appropriate range, and
some do not. Think about how to modify the ones that do not.



CHAPTER 8
COMPLEX INTEGRATION

In this chapter we will develop techniques and applications of integration for complex
functions. The complex integral ∫ B

A f (z) dz, with z = x + iy, is an integral in the
complex plane with respect to the two real variables x and y along a path connecting
z = A and z = B. The path need not be a straight line, but can be an arbitrary curve.
In this way complex integration is very much like the line integrals one encounters
in physics, and this is where the chapter begins. From here the unique properties of
complex integrals are developed, with some methods for their evaluation. Finally, we
shall see how real definite integrals can often be evaluated using complex integration.
The methods are applied to the Fourier transform in this chapter and to related
transforms in the next chapter.

8.1 LINE INTEGRALS IN THE PLANE

Review of Real Line Integrals
Line integration is introduced in physics via the definition of work:

W = ∫
B

A
f ⋅ ds,

where the vector f is a force field and A and B are the endpoints of the path along
which the force acts. The path of integration is specified in parametric form, as a
vector-valued function of a single variable. In two dimensions,

f = (fx, fy),

s(t) = (x(t), y(t)),

ds = (x′(t), y′(t)) dt,

and the integral becomes

∫
B

A
f ⋅ ds = ∫

tB

tA

(fx, fy) ⋅ (x′(t), y′(t)) dt

= ∫
tB

tA

fx(x(t), y(t)) x′(t) dt + ∫
tB

tA

fy(x(t), y(t)) y′(t) dt,

Fourier Transforms: Principles and Applications, First Edition. Eric W. Hansen.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.

494



8.1 LINE INTEGRALS IN THE PLANE 495

–1
–0.5

0
0.5

1 –1
–0.5

0
0.5

1

0

0.5

1

1.5

2

2.5

yx

A Bds

f(x,y)

FIGURE 8.1 The line integral of a function f along a path from A to B is the area of a curved
surface extending vertically from the path in the (x, y) plane to its intersection with the surface
z = f (x, y).

with A = (x(tA), y(tA)) and B = (x(tB), y(tB)). Scalar fields f (x, y) are integrated with
respect to arc length (ds taken along the path, Figure 8.1). The integral can be written
either as

∫
(x2,y2)

(x1,y1)
f (x, y) ds = ∫

x2

x1

f (x, y(x)) dx

or, with the path specified parametrically:

∫
(x2,y2)

(x1,y1)
f (x, y) ds = ∫

t2

t1

f (x(t), y(t)) ‖s′(t)‖ dt.

The path must be at least piecewise smooth. It can be broken into subpaths,
each with its own parametrization:

∫
B

A
f (x, y) ds = ∫

Q

A
f (x, y) ds + ∫

B

Q
f (x, y) ds,

where Q is on the path between A and B (Figure 8.2). As with ordinary integrals,
traversing a path in the reverse direction changes the sign of the integral, ∫ A

B = − ∫ B
A .

In general, the value of the integral depends on the path taken from A to B. An
important exception occurs in physics, where the work done in a conservative force
field is path independent.
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A

Q

B

FIGURE 8.2 A path of integration can be broken into subpaths. The integral from A to B is
the sum of the integral from A to Q and the integral from Q to B.

Complex Line Integrals
Complex line integrals are a straightforward adaptation of vector field integrals. A
complex function f (z) = u(x, y) + i𝑣(x, y), with its real and imaginary parts, is similar
to a two-dimensional vector field. The integral of f along a path Γ in the complex
plane is

∫Γ f (z)dz = ∫Γ (u + i𝑣) (dx + i dy)

= ∫Γ (udx − 𝑣dy) + i∫Γ (𝑣dx + udy) .

(8.1)

The most common paths of integration used in practice are combinations of
straight line segments and arcs:

Horizontal line: z = x + iy0, dz = dx
Vertical line: z = x0 + iy, dz = idy
Ray at angle 𝜃0: z = rei𝜃0 , dz = ei𝜃0 dr
Arc of radius R: z = Rei𝜃 , dz = iRei𝜃d𝜃.

For example, the integral of a complex function along the vertical line z = 1 + iy
is

∫Γ f (z) dz = i∫
∞

−∞
f (1 + iy) dy,

and the integral along a semicircular arc of radius R in the upper half-plane (UHP) is

∫Γ f (z) dz = iR∫
𝜋

0
f (Rei𝜃) ei𝜃 d𝜃.

The ML Inequality
In one-dimensional real analysis, an integral is bounded above by the area of a
rectangle whose height is the maximum absolute value of the function, and whose
length is the length of the interval of integration (Figure 8.3).

The ML inequality is the extension of this idea to complex integration. If (a)
f (z) is continuous on a path Γ, (b) |f (z)| ≤ M for all z ∈ Γ, and (c) L = the length of
Γ, then ||||∫Γ f (z)dz

|||| ≤ ∫Γ |f (z)| dz ≤ ML. (8.2)

We shall repeatedly use this bound in calculations.
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x

L

M

A B

FIGURE 8.3 The integral of a function is bounded above by the product of the maximum
absolute value, M, and the length of the interval, L.

8.2 THE BASIC COMPLEX INTEGRAL: ∫↺𝚪
zndz

When n ≥ 0, zn is an analytic function, but when n ≤ −1, zn has a pole of order n at
z = 0. We consider what happens when this function is integrated on three different
closed paths (Figure 8.4).

On a circle of radius R centered at z = 0, we have z = Rei𝜃 and dz = iRei𝜃d𝜃.
The integral becomes

∫↺Γzndz = ∫
2𝜋

0
iRn+1ei(n+1)𝜃d𝜃

=
⎧⎪⎨⎪⎩

Rn+1

n + 1
ei(n+1)𝜃

||||
2𝜋

0
= 0, n ≠ −1

i𝜃|||2𝜋0
= 2𝜋i, n = −1

.

(8.3)

Several of these integrals are illustrated in Figures 8.5, 8.6, 8.7, and 8.8.
The same result is obtained if the contour is square, although it is a bit more

work. We will go through it in detail. The integral is evaluated in four segments
(Figure 8.4):

∫↺Γzndz = ∫Γ1

+∫Γ2

+∫Γ3

+∫Γ4

.

21

R Γ1

Γ2

Γ3

Γ4

Γ Γ

FIGURE 8.4 Three contours of integration in the Z-plane. Left: a circular contour of radius
R, centered at the origin. Center: a unit square contour, centered at the origin. Right: a unit
circle contour, centered at z = 2.
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First we consider the n ≠ −1 case. On Γ1, z = 1 + iy, dz = idy. The integral is

∫Γ1

zndz = i∫
1

−1
(1 + iy)n dy

=
−(1 + iy)n+1

n + 1

|||||
1

−1

= (1 + i)n+1 − (1 − i)n+1

n + 1
.

On Γ2, z = x + i, dz = dx. Note that the path goes right to left, so we integrate from
x = 1 to x = −1:

∫Γ2

zndz = ∫
−1

1
(x + i)n dx

= (x + i)n+1

n + 1

|||||
−1

1

= −(1 + i)n+1 + (−1 + i)n+1

n + 1
.

OnΓ3, z = −1 + iy, dz = idy, and because the path is directed downward, we integrate
from y = 1 to y = −1:

∫Γ3

zndz = i∫
−1

1
(−1 + iy)n dy

=
−(−1 + iy)n+1

n + 1

|||||
−1

1

= (−1 + i)n+1 − (−1 − i)n+1

n + 1
.

On Γ4, z = x − i, dz = dx, and we integrate left to right, from x = −1 to x = 1:

∫Γ4

zndz = ∫
1

−1
(x − i)n dx

= (x − i)n+1

n + 1

|||||
1

−1

= (1 − i)n+1 + (−1 − i)n+1

n + 1
.

The sum of the four terms is seen to be zero.
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f (z) dz (bottom, right) is the integral. The integrals of both real and imaginary parts are zero.
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When n = −1, we have

∫Γ1

dz
z

= ∫
1

−1

idy

1 + iy

= ∫
1

−1

i(1 − iy)dy

1 + y2
= ∫

1

−1

idy

1 + y2
+ ∫

1

−1

ydy

1 + y2

= i arctan y |||1−1
+ 1

2
log(1 + y2)|||1−1

= i𝜋
2

+ 0 = i𝜋
2

,

∫Γ2

dz
z

= ∫
−1

1

dx
x + i

= ∫
−1

1

(x − i)dx

x2 + 1
= −∫

1

−1

xdx
x2 + 1

+ ∫
1

−1

idx
x2 + 1

= −1
2

log(x2 + 1)|||1−1
+ i arctan y |||1−1

= 0 + i𝜋
2

= i𝜋
2

,

∫Γ3

dz
z

= ∫
−1

1

idy

−1 + iy
= ∫

1

−1

i(−d𝜉)
−1 + i(−𝜉)

= ∫
1

−1

id𝜉
1 + i𝜉

= ∫Γ1

= i𝜋
2

,

∫Γ4

dz
z

= ∫
1

−1

dx
x − i

= ∫
−1

1

−d𝜉
(−𝜉) − i

= ∫
−1

1

d𝜉
𝜉 + i

= ∫Γ2

= i𝜋
2
.

Summing the pieces, we obtain ∫↺Γ

dz
z
= i2𝜋. The integration of f (z) = z−1 on a square

contour is shown in Figure 8.9.
On the other hand, if the contour does not enclose the origin, the result is

zero. Consider a circular contour of unit radius centered at z = z0, where |z0| > 1 so
that it does not enclose the singularity at the origin. On this contour, z = z0 + ei𝜃 ,
dz = iei𝜃d𝜃. Then,

∫↺Γzndz =

⎧⎪⎪⎨⎪⎪⎩
∫

2𝜋

0
i(z0 + ei𝜃)n ei𝜃 d𝜃 =

(z0 + ei𝜃)n+1

n + 1

|||||
2𝜋

0

= 0, n ≠ −1

∫
2𝜋

0

iei𝜃d𝜃
z0 + ei𝜃

= log(z0 + ei𝜃)|||2𝜋0
= 0, n = −1

.

The integration of f (z) = z−1 on a circular contour centered at z0 = 1 − i is illustrated
in Figure 8.10.
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FIGURE 8.9 Integrating f (z) = z−1 on a square contour enclosing the singularity at the origin.
Left: surface plots of Re f and Im f , with the complex plane shown underneath. The contour
of integration is shown both in the complex plane and overlaid on the surface. As the contour
is traversed, the value of f , shown as the elevation of the surface plots, rises and falls (top,
right). The area under the graph of f (z) dz (bottom, right) is the integral. The integral of the
real part is zero, by inspection, but the area under the imaginary part is nonzero. In fact, it is
2𝜋. Compare Figure 8.6.

Here are four observations about these examples:

� When the contour of integration encloses the singularity z−1, the integral is
i2𝜋, whether the contour is square or circular.

� When the contour of integration does not enclose the singularity z−1, the integral
is zero.

� The integral of a nonnegative power of z on a closed contour is zero.
� The integral of a higher-order singularity, for example, z−2, is zero, whether it

is enclosed by the contour of integration or not.

We can sort these out with the aid of two important results: Cauchy’s integral theorem
and Cauchy’s integral formula.

8.3 CAUCHY’S INTEGRAL THEOREM

The first important general result in complex integration is Cauchy’s integral theorem.
First, we need to define some terms.
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FIGURE 8.10 Integrating f (z) = z−1 on a unit circular contour centered at z0 = 1 − i, which
does not enclose the singularity at the origin. Left: surface plots of Re f and Im f , with the
complex plane shown underneath. The contour of integration is shown both in the complex
plane and overlaid on the surface. As the contour is traversed, the value of f , shown as the
elevation of the surface plots, rises and falls (top, right). The area under the graph of f (z) dz
(bottom, right) is the integral. The integrals of both the real and imaginary parts are zero, by
inspection.

Definition 8.1 (Connected domains). A domain is an open, connected set. A
domain is simply connected if any closed curve in that domain encloses only points
in the domain.

A domain is not simply connected if it has a “hole” in it (Figure 8.11). A
domain with one hole is called doubly connected. Two holes make a triply connected
domain, etc.

An annular domain like 2 > z > 1 is not simply connected. Nor is the domain
of analyticity for z−1, created by excluding the singular point z = 0 (puncturing the
complex plane).

Definition 8.2 (Simple, closed contour). A simple contour (path) does not cross
over itself. A simple closed contour divides the complex plane into two domains;
one is the interior of the contour, and the other is the exterior. The counter-clockwise
direction around a closed contour is defined to be the positive direction.
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FIGURE 8.11 Left: a simply connected domain. Right: a doubly connected domain has a
“hole” in it.

A simple closed contour cannot cross over itself (e.g., make a figure-eight),
because that would create more than two domains (Figure 8.12).

In the previous section we integrated zn around circular contours. When the
contour did not enclose a singularity, that is, the function was analytic on and inside
the contour, the integral was zero, regardless of the value of n or the radius of the
circle. Let us now ask what happens if we integrate an arbitrary analytic function

around an arbitrary simple closed contour, ∫↺Γ
f (z) dz.

We write the contour integral in the form 8.1:

∫↺Γ
f (z)dz = ∫↺Γ

(u dx − 𝑣 dy) + i∫↺Γ
(𝑣 dx + u dy) .

Simple Not simple

Simple, closed Not simple, closed

FIGURE 8.12 Types of contour.
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To simplify it, we will use Green’s theorem from multivariable calculus, which is
usually written

∫↺Γ
(Pdx + Qdy) = ∬R

(
𝜕Q
𝜕x

− 𝜕P
𝜕y

)
dxdy (8.4)

and expresses a line integral around a simple closed loop Γ as an integral over the
region R enclosed by Γ. (If P and Q are the x and y components of a force field,
then the loop integral is the work done in moving around Γ. The difference of partial

derivatives,
𝜕Q
𝜕x

− 𝜕P
𝜕y

, is the curl of the field.) The first partial derivatives must be

continuous. With this assumption, we can write

∫↺Γ
(udx − 𝑣dy) = ∬R

−
(
𝜕𝑣

𝜕x
+ 𝜕u

𝜕y

)
dxdy

∫↺Γ
(𝑣dx + udy) = ∬R

(
𝜕u
𝜕x

− 𝜕𝑣

𝜕y

)
dxdy.

Because f is analytic, the Cauchy–Riemann equations (7.3) give

𝜕𝑣

𝜕x
+ 𝜕u

𝜕y
= 0 and

𝜕u
𝜕x

− 𝜕𝑣

𝜕y
= 0,

so the integrands of both integrals are zero, and consequently ∫↺Γ
f (z) dz = 0.

A more technical derivation avoids Green’s theorem and removes the require-
ments of a simple closed contour and continuous partial derivatives.1 The result is
expressed in the following theorem.

Theorem 8.1 (Cauchy’s integral theorem). Let f be analytic in a simply connected
domain D. For any closed contour Γ inside D,

∫↺Γf (z) dz = 0. (8.5)

Cauchy’s integral theorem explains some of the results of the previous section.
When n ≥ 0, zn is analytic everywhere in the plane, hence any integral over any
closed contour will be zero (not just the example we performed). Furthermore, when
n ≤ −1, zn is singular at z = 0, but analytic everywhere else in the complex plane.
Hence, an integral over a contour which does not include the origin will be an integral
of an analytic function, and again, Cauchy’s integral theorem says the result will be
zero. What Cauchy’s integral theorem does not explain is what happens when the
contour encloses a singularity. That will come later.

Cauchy’s integral theorem has two other useful consequences.

1Marsden and Hoffman (1998, pp. 123–142). This stronger version is also known as the Cauchy–Goursat
theorem. In this approach, Corollaries 8.2 and 8.3 and Theorem 8.4 are first established by other methods
and then used in the proof of Cauchy’s integral theorem. An even stronger version relaxes the requirement
that the domain be simply connected: if f is analytic in D and the closed path Γ can be smoothly deformed
(shrunk) to a point in D, then the integral around the path is zero. Such a path will not enclose a “hole” in
the region, else it cannot be smoothly deformed to a point.
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Corollary 8.2 (Deformation of contour). Consider two simple closed contours
Γ1 and Γ2 and a function f (z) which is analytic on each contour. If one contour can
be smoothly deformed into the other without crossing any singularity of f , then

∫↺Γ1

f (z)dz = ∫↺Γ2

f (z)dz.

Proof: Consider Figure 8.13. The two contours are joined in two places by line
segments, creating two closed paths enclosing singularity-free regions: Γabcd and
Γefgh. By Cauchy’s integral theorem,

∫↺Γabcd

= ∫a
+∫b

+∫c
+∫d

= 0

∫↺Γefgh

= ∫e
+∫f

+∫g
+∫h

= 0.

Furthermore, because paths b and h are identical but oppositely directed, as are paths
d and f :

∫b
= −∫h

and ∫d
= −∫f

.

Γ1

Γ2

a

b

d

e
f

h

c

g

FIGURE 8.13 Proving the principle of deformation of contour.
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Making these substitutions,

∫↺Γabcd

+ ∫↺Γefgh

= ∫a
−∫h

+∫c
−∫f

+∫e
+∫f

+∫g
+∫h

= ∫a
+∫c

+∫e
+∫g

= 0.

But

∫↺Γ1

= ∫a
+∫e

and ∫↺Γ2

= −
(
∫c

+∫g

)
.

Therefore,

∫↺Γ1

− ∫↺Γ2

= 0

which is what we needed to prove.

The principle of deformation of contour enables an arbitrary (and inconve-
niently shaped) contour to be replaced by one made up of convenient sections (lines
and arcs) (Figure 8.14).

It explains why, in the earlier discussion of ∫↺Γ

dz
z

, the radius of the circular

contour did not matter, nor did it matter whether the contour was square or circular.
All of these contours could be smoothly deformed into each other without crossing
the singularity at z = 0.

Γ1

Γ2

FIGURE 8.14 An arbitrary contour can be deformed into a convenient contour, without
changing the value of the integral, if there are no singularities between them.
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A

B

Γ1

Γ2

FIGURE 8.15 Path independence. The integral from A to B is independent of the path taken.

Corollary 8.3 (Path independence). Let f be analytic in a domain D, and let two
points A and B belong to D. The integral ∫ B

A f (z)dz along a path in D is independent
of the path taken from A to B.

Proof: The proof follows directly from Cauchy’s integral theorem. With reference to
Figure 8.15, the integral around the closed loop is zero, because f is analytic on and
inside the loop. Going around the loop in the positive direction, path Γ1 is traversed
backward, so ∫Γ2

− ∫Γ1
= 0. Therefore, ∫Γ1

= ∫Γ2
.

Here are some examples of the application of Cauchy’s integral theorem to the
evaluation of integrals.

Example 8.1. Integrate f (z) = 2
z−1

around the contour shown in Figure 8.16a.

1

Γ

1

(a) (b)

FIGURE 8.16 Integrating around a single pole. (a) The given contour. (b) The contour is
deformed into a convenient shape.
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Γ

(a) (b)

FIGURE 8.17 Integrating around a pair of poles. (a) The given contour. (b) The final pair
of contours.

The contour may be deformed into a circle centered at z = 1 (Figure 8.16b).
On this contour, z = 1 + Rei𝜃 and dz = iRei𝜃d𝜃. Making these substitutions,

∫↺Γ
= ∫

2𝜋

0

2iRei𝜃d𝜃
(1 + Rei𝜃) − 1

= ∫
2𝜋

0
2i d𝜃 = i4𝜋.

Example 8.2. Integrate f (z) = z
z2+1

around the contour shown in Figure 8.17a. We
have a pair of poles to integrate. We begin by rewriting the integral with a partial
fraction expansion:

∫↺Γ
z dz

z2 + 1
= ∫↺Γ

(
1∕2

z + i
+

1∕2

z − i

)
dz = 1

2∫↺Γ

dz
z + i

+ 1
2∫↺Γ

dz
z − i

.

We now have two integrals, each around a single pole. We can deform the contour to
a convenient shape around each pole (Figure 8.17b) and proceed as in the previous
example. Around z = i, the contour is z = i + Rei𝜃 , dz = iRei𝜃d𝜃; around z = −i, we
have z = −i + Rei𝜃 , dz = iRei𝜃d𝜃. Hence,

∫↺Γ
z dz

z2 + 1
= 1

2 ∫
2𝜋

0

iRei𝜃 d𝜃
(i + Rei𝜃) − i

+ 1
2 ∫

2𝜋

0

iRei𝜃 d𝜃
(−i + Rei𝜃) + i

= 1
2 ∫

2𝜋

0
i d𝜃 + 1

2 ∫
2𝜋

0
i d𝜃 = i𝜋 + i𝜋 = i2𝜋.

Example 8.3. Integrate the function f (z) = 1
z2+2

around the semicircular contour
shown in Figure 8.18a.

We begin again by writing f in a partial fraction expansion:

f (z) = 1
z2 + 2

=
i∕2

√
2

z + i
√

2
+

−i∕2
√

2

z − i
√

2
,
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(a) (b)

Γ

FIGURE 8.18 When you integrate a complex function, sometimes the contour does not
include all the singularities. (a) The given contour. (b) The final contour.

which again yields two integrals:

∫↺Γ
dz

z2 + 2
= i

2
√

2∫↺Γ

dz

z + i
√

2
− i

2
√

2∫↺Γ
dz

z − i
√

2
.

In the first integral, the contour does not encircle the pole at z = −i
√

2. The integrand
is analytic on and inside the contour, and Cauchy’s integral theorem gives zero. The
second integral is attacked using deformation of contour. The semicircular contour
is deformed into a convenient circular contour (Figure 8.18b). On this contour,

z = i
√

2 + Rei𝜃 and dz = iRei𝜃d𝜃, R < 2
√

2. Hence,

∫↺Γ

dz
z2 + 2

= − i

2
√

2 ∫
2𝜋

0

iRei𝜃 d𝜃

(i
√

2 + Rei𝜃) − i
√

2

= − i

2
√

2 ∫
2𝜋

0
i d𝜃 = − i

2
√

2
× i2𝜋 = 𝜋√

2
.

The following result makes an interesting connection between complex inte-
grals and real integrals.2

Theorem 8.4 (Fundamental theorem of calculus). Let f be analytic in a simply
connected domain D. For every z, z0 ∈ D, the integral

F(z) = ∫
z

z0

f (𝜁 ) d𝜁

along any path in D from z0 to z is a function of z which is analytic in D, and whose
derivative is

F′(z) = f (z).

2LePage, 1980, pp. 100–102.
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i

–i

Γ1 Γ2

FIGURE 8.19 Two different paths from −i to i. One crosses the branch cut for log z.

Thus, every analytic function is integrable. Moreover, if an analytic function F
is the antiderivative of an analytic function f , then

∫
z2

z1

f (z) dz = F(z2) − F(z1). (8.6)

Example 8.4. Consider the integral of f (z) = z along a quarter circle Γ from z = 1
to z = i. On this path, z = ei𝜃 , 𝜋

2
≥ 𝜃 ≥ 0, and dz = iei𝜃 d𝜃. We have

∫Γ z dz = ∫
𝜋∕2

0
iei2𝜃 d𝜃 = 1

2
ei2𝜃

|||||
𝜋∕2

0

= −1.

Or, using Equation 8.6,

∫
i

1
z dz = z2

2

|||||
i

1

= −1 − 1
2

= −1.

Example 8.5. One must be careful about branch cuts. We know that the derivative
of log z is z−1, but compare the integrals ∫Γ1

dz
z

and ∫Γ2

dz
z

, where both paths run from
z = −i to z = i, but in different ways (Figure 8.19).

On Γ1, z = ei𝜃 with −𝜋

2
≥ 𝜃 ≥ − 3𝜋

2
, while on Γ2, 𝜋

2
≥ 𝜃 ≥ −𝜋

2
. The two inte-

grals are

∫Γ1

dz
z

= log z|||e−i3𝜋∕2

e−i𝜋∕2
= − i3𝜋

2
−
(
− i𝜋

2

)
= −i𝜋

∫Γ2

dz
z

= log z|||ei𝜋∕2

e−i𝜋∕2
= i𝜋

2
−
(
− i𝜋

2

)
= i𝜋.
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The value of the integral is not path independent because the antiderivative, log z, has
a branch cut crossed by Γ1.

This gives another interpretation of the result ∫↺Γ

dz
z

= i2𝜋 when Γ encircles

the origin. At the beginning of the path, arg z = 𝜃0, and at the end, arg z = 𝜃0 + 2𝜋.
The path crosses the branch cut, and consequently,

∫↺Γ

dz
z

= log z|||ei(𝜃0+2𝜋)

ei𝜃0
= i(𝜃0 + 2𝜋) − i𝜃0 = i2𝜋.

For any other integer power of z, the antiderivative is an integer power of z. There is
no branch cut, and the integral around the path evaluates to zero.

The converse of Cauchy’s integral theorem gives a sufficient condition for a
function f to be analytic.3

Theorem 8.5 (Morera’s theorem). Let f be a continuous function on a domain
D, and let Γ be a simple closed contour in D whose interior is in D. If, for all such
contours Γ,

∫↺Γ
f (z) dz = 0,

then f is analytic in D.

8.4 CAUCHY’S INTEGRAL FORMULA

This companion to the Cauchy integral theorem is the key to all complex integrals
over closed contours.

Theorem 8.6 (Cauchy’s integral formula). Let f be analytic on and inside a
simple closed contour Γ. Let z0 be a point in the interior of Γ. Then

f (z0) = 1
2𝜋i∫↺Γ

f (z)dz

z − z0
. (8.7)

Proof: By the principle of deformation of contours, we can replace the arbitrary
contour Γ by a more convenient one, namely a circle of radius r centered at z0
(Figure 8.20).

Next, rewrite the integral using the obvious fact that f (z) = f (z) − f (z0) + f (z0),
obtaining

∫↺Γ

f (z)dz

z − z0
= ∫↺|z−z0|=r

f (z0)dz

z − z0
+ ∫↺|z−z0|=r

(f (z) − f (z0)) dz

z − z0
.

3Flanagan, 1983, pp. 189–190; Hahn and Epstein, 1996, p. 127.



8.4 CAUCHY’S INTEGRAL FORMULA 513

Γ

(a) (b)

z0 z0

FIGURE 8.20 For proof of Cauchy’s integral formula. (a) An arbitrary contour around
z = z0. (b) A convenient contour centered at z = z0.

The first integral on the right is

∫↺|z−z0|=r

f (z0)dz

z − z0
= f (z0)∫↺|z−z0|=r

dz
z − z0

= 2𝜋if (z0).

It remains to show that the second integral is equal to zero. By the principle of
deformation of contour, the value of the integral is independent of the contour—in
particular, it is independent of the radius r. We can, as a result, take r to be arbitrarily
small. Now, using the ML inequality, we can place an upper bound on its value. The
absolute value of the integrand on the contour is||f (z) − f (z0)|||z − z0| =

||f (z) − f (z0)||
r

.

Furthermore, because f is analytic, it is also continuous, so we know that |f (z) −
f (z0)| < 𝜖 for z such that |z − z0| < 𝛿, with 𝜖 becoming smaller as 𝛿 decreases. (This
is the classic “epsilon-delta” definition of continuity, which was also developed by
Cauchy.) Hence, choosing r < 𝛿, we can bound the integrand above by 𝜖∕r, which is
the M part of the ML inequality. The L part is the circumference of the contour, 2𝜋r.
The product ML, therefore, is 𝜖∕r × 2𝜋r = 2𝜋𝜖, so|||||∫↺|z−z0|=r

(f (z) − f (z0))dz

z − z0

||||| ≤ 2𝜋𝜖.

We can take r as small as we want without changing the value of the integral. Hence,
𝛿 > r can be made arbitrarily small, and 𝜖 follows suit because of the continuity of
f . The upper bound, 2𝜋𝜖, becomes smaller and smaller as r approaches zero. It must
be, therefore, that the integral is actually equal to zero.

Cauchy’s integral formula says two things. As written (Equation 8.7), it says
that the value of f at any point z0 inside a closed region is determined by the values
of f on the boundary of that region. This can be used to solve certain boundary-
value problems in physics, such as finding the potential inside a conducting cylinder
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when the walls of the cylinder have a particular potential distribution.4 However, if
we turn it around, we obtain this form:

∫↺Γ

f (z)dz

z − z0
= 2𝜋i f (z0), (8.8)

which says that the integral of a function of the form g(z) = f (z)
z−z0

, where f is analytic,

is given by the value of f at the pole, z = z0. We can use this form to evaluate integrals.

Example 8.6. Integrate g(z) = 1
z−a

on any contour encircling z = a. This, of course,
is just the problem of integrating a single pole, which we have found on several
occasions to give i2𝜋 as the result. Cauchy’s integral formula yields this directly. The
function g is the ratio of two entire functions, 1 and z − a, and is therefore analytic
except where the denominator goes to zero, z = a. We apply Cauchy’s integral formula
with f (z) = 1 and z0 = a:

∫↺Γ
dz

z − a
= 2𝜋i f (a) = 2𝜋i.

Example 8.7. Integrate g(z) = cos z
z−𝜋∕4

on the unit circle centered at the origin. The

given function g is the ratio of two entire functions, cos z and z − 𝜋∕4. It is therefore
analytic except where the denominator is zero, z = 𝜋∕4. This singularity is inside the
contour of integration, because 𝜋∕4 < 1. We apply Cauchy’s integral formula with
f (z) = cos z and z0 = 𝜋∕4. The result is

∫↺|z|=1

cos z dz
z − 𝜋∕4

= 2𝜋i cos(𝜋∕4) = 2𝜋i × 1√
2
= i

√
2𝜋.

Example 8.8. Integrate g(z) = sin z
z2−1

on a contour enclosing the points z = ±1.
Factoring the denominator,

g(z) = sin z
(z + 1)(z − 1)

,

we see there are two singularities, at z = −1 and z = 1. By deformation of contour,
this integral can be decomposed into the sum of two integrals:

∫↺Γ
sin z dz
z2 − 1

= ∫↺Γ1

sin z dz
z2 − 1

+ ∫↺Γ2

sin z dz
z2 − 1

,

where Γ1 encloses just the pole at z = −1 and Γ2 encloses just the pole at z = 1 (in
a manner similar to Example 8.2). Inside Γ1, sin z

z−1
is analytic, and inside Γ2, sin z

z+1
is

analytic. We may therefore rewrite the integrals:

∫↺Γ
sin z dz
z2 − 1

= ∫↺Γ1

sin z
z−1

dz

z + 1
+ ∫↺Γ2

sin z
z+1

dz

z − 1
.

4Wunsch, 1994, pp. 200–205.
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In this form, each integral can be evaluated using Cauchy’s integral formula, yielding

∫↺Γ

sin z dz
z2 − 1

= i2𝜋
sin z
z − 1

|||||z=−1

+ i2𝜋
sin z
z + 1

|||||z=1

= i2𝜋
sin(−1)
−2

+ i2𝜋
sin(1)

2
= i2𝜋 sin(1).

Extended Cauchy Formula
A more general version of Cauchy’s integral formula can be established. Returning
to Equation 8.7,

f (𝜁 ) = 1
2𝜋i∫↺Γ

f (z)dz

z − 𝜁
.

If we differentiate both sides with respect to 𝜁 and take the derivative under the
integral sign (in the same way we would do for a real integral, see Chapter 1), we
find

f ′(𝜁) = 1
2𝜋i

d
d𝜁 ∫↺Γ

f (z)dz

z − 𝜁
= 1

2𝜋i∫↺Γ

d
d𝜁

f (z)dz

z − 𝜁

= 1
2𝜋i∫↺Γ

f (z)dz

(z − 𝜁 )2
.

The singularity z = 𝜁 is inside the closed path Γ, and f is analytic on Γ, therefore the
integrand is finite on Γ. The path has finite length, so by the ML inequality (Equation
8.2), we know the integral is finite.

This result says that the derivative of f , which we know exists because f is
analytic, can actually be calculated by integrating f ! Furthermore, f ′ is a continuous
function of 𝜁 by the continuity of (z − 𝜁)2 and in fact, it can be shown that f ′ is
analytic for all 𝜁 inside Γ. We may therefore repeat the calculation, obtaining

f ′′(𝜁) = 2 ⋅
1

2𝜋i∫↺Γ
f (z)dz

(z − 𝜁)3

f (3)(𝜁) = 6 ⋅
1

2𝜋i∫↺Γ
f (z)dz

(z − 𝜁)4

⋮

f (n)(𝜁) = n!
2𝜋i∫↺Γ

f (z)dz

(z − 𝜁)n+1
.

These results are collected in an extended version of the Cauchy formula, due to
Goursat.5

Theorem 8.7 (Extended Cauchy integral formula). If a function f is analytic
within a domain, then it possesses derivatives of all orders in that domain, which are

5For a complete proof, see Hahn and Epstein (1996, p. 122).
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themselves analytic functions in that domain. Furthermore, if f is analytic on and
inside a simple closed contour Γ and if z0 is inside Γ, then

f (n)(z0) = n!
2𝜋i∫↺Γ

f (z)

(z − z0)n+1
dz. (8.9)

Rearranging (Equation 8.9) slightly gives a formula for calculating more gen-
eral complex integrals:

∫↺Γ

f (z)

(z − z0)n+1
dz = 2𝜋i

f (n)(z0)

n!
. (8.10)

Example 8.9 (The basic integral ∫↺Γ
(z − a)kdz, revisited). Earlier (Figures 8.5,

8.6, 8.7, and 8.8), we observed that the integral ∫↺Γ
zk dz evaluates to 2𝜋i when k = −1

and 0 otherwise. Cauchy’s integral theorem explained why the integral is zero for
k ≥ 0, namely, the integrand is analytic. For k ≤ −1, the more general integrand
(z − a)k has the form f (z)

(z−z0)n+1 with z0 = a, n = −(k + 1), and f (z) = 1, a constant.

When k = −1, Cauchy’s integral formula directly gives 2𝜋if (0) = 2𝜋i. For k < −1
(double poles and higher), the extended Cauchy formula requires that we differentiate
f one or more times, but because f = 1 all the derivatives are zero and so the integrals
are zero.

The Cauchy integral formula, in its extended version, enables us to calculate
the integrals of functions g(z) which can be written as the ratio of an analytic func-
tion f (z) and a polynomial a(z). Let a(z) have roots z1, z2,… , zp, with multiplicities
n1, n2,… , np. Now consider the integral of g(z) on a simple closed contour. We can
use the principle of deformation of contour to reduce this integral to the sum of
integrals around individual singularities (roots of a(z)), as shown in Figure 8.21.

The original contour is smoothly deformed into a “shrink-wrapped” contour
that nearly encircles each singularity. The integral is the sum of contributions from
each nearly circular path around the singularities, together with the contributions

Γ

(a) (b) (c)

FIGURE 8.21 An integral on a contour encircling several isolated singularities (a) simplified
by deformation of contour (b) to a sum of integrals, each one taken around each singularity (c).
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from the line segments connecting the circular pieces. Now consider the limit as each
pair of line segments connecting two circular sections becomes infinitesimally close.
The integrals along these line segments will be equal and opposite, since they are the
same path traversed in opposite directions. They will, therefore, cancel, leaving only
the integrals around the circular contours.

The integral becomes a sum of integrals on the separate contours:

∫↺Γ
g(z)dz =

∑
zk inside Γ

∫↺|z−zk|=𝜖g(z) dz.

On the kth such circular contour, write

g(z) =
(z − zk)nk g(z)

(z − zk)nk
,

which is valid because z ≠ zk on the contour. The denominator of this expression is
a pole of order nk. The numerator is analytic on and inside the contour, because

(z − zk)nk g(z) =
(z − zk)nk f (z)

a(z)

=
(z − zk)nk f (z)

(z − z1)n1 ⋯ (z − zk)nk ⋯ (z − zp)np
,

and the pole at z = zk is cancelled by the factor (z − zk)nk in the numerator. Now
the integral on the kth contour can be written using the extended Cauchy formula
(Equation 8.10):

∫↺|z−zk|=𝜖g(z) dz = ∫↺|z−zk|=𝜖
(z − zk)nk g(z)

(z − zk)nk
dz

= 2𝜋i
(nk − 1)!

[
dnk−1

dznk−1
(z − zk)nk g(z)

]
z=zk

.

The quantity

1
(nk − 1)!

lim
z→zk

[
dnk−1

dznk−1
(z − zk)nk g(z)

]
is called the residue of g at zk, denoted Res[g, zk]. The reason for this name will be
made clear in the following section. The integral is therefore a sum of residues:

∫↺Γg(z)dz = 2𝜋i
∑

zk inside Γ
Res[g, zk]. (8.11)

Example 8.10. Integrate g(z) = sin z
(z−1)(z−i)2 on a circle |z| = 2. There is a single pole

at z = 1 and a double pole at z = i. Both are inside the contour, which has radius 2.
The contour is “shrink-wrapped” to two circles centered at 1 and i. Hence,

∫↺|z|=2

sin z dz
(z − 1)(z − i)2

= ∫↺|z−1|=𝜖
sin z dz

(z − 1)(z − i)2
+ ∫↺|z−i|=𝜖

sin z dz
(z − 1)(z − i)2

.
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The first contour includes the single pole at z = 1. The other factor in the denominator,
(z − i)2, is analytic on and inside this contour. For the purpose of applying Cauchy’s
integral formula, we group this factor with the sin z in the numerator. Likewise, the
second contour includes the double pole at z = i but not the pole at z = 1, which may
be lumped together with sin z. We then have

∫↺|z|=2

sin z dz
(z − 1)(z − i)2

= ∫↺|z−1|=𝜖
sin z

(z−i)2 dz

(z − 1)
+ ∫↺|z−i|=𝜖

sin z
z−1

dz

(z − i)2
.

The first integral is evaluated using Cauchy’s integral formula and yields

∫↺|z−1|=𝜖
sin z

(z−i)2 dz

(z − 1)
= 2𝜋i

sin z
(z − i)2

|||||z=1

= 2𝜋i sin(1)

(1 − i)2
= −𝜋 sin(1),

where we have used the fact that (1 − i)2 = −2i. The second integral involves a double
pole and must be evaluated using the extended formula:

∫↺|z−i|=𝜖
sin z
z−1

dz

(z − i)2
= 2𝜋i

1
(2 − 1)!

limz→i
d
dz

sin z
z − 1

= 2𝜋i limz→i
(z − 1) cos z − sin z

(z − 1)2
= 2𝜋i

−(1 − i) cos(i) − sin(i)

(1 − i)2

= 2𝜋i
−(1 − i) cosh(1) − i sinh(1)

(1 − i)2

= −𝜋 (−(1 − i) cosh(1) − i sinh(1)) .

Finally, combining the two integrals,

∫↺|z|=2

sin z dz
(z − 1)(z − i)2

= −𝜋 sin(1) − 𝜋 (−(1 − i) cosh(1) − i sinh(1))

= 𝜋 (cosh(1) − sin(1)) − i𝜋 (cosh(1) − sinh(1))

= 𝜋 (cosh(1) − sin(1)) − i𝜋∕e.

(Not every answer is pretty.)

More Properties of Analytic Functions
The infinite differentiability of analytic functions follows from the extended Cauchy
integral formula. Several other interesting and useful consequences of the Cauchy
integral formula are collected here.6

6Proofs may be found in Wunsch (1994, pp. 190ff), among other sources.
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Theorem 8.8 (Gauss’ mean value theorem). Let f be analytic on a simply con-
nected domain, D, and let C be a circle of radius R, centered at z0, contained in this
domain. Then f (z0) is the average of f on the circle:

f (z0) = 1
2𝜋∫↺C

f (z)
z − z0

dz with z = z0 + Rei𝜃

= 1
2𝜋 ∫

2𝜋

0
f
(
z0 + Rei𝜃) d𝜃.

Theorem 8.9 (Maximum modulus theorem). Let f be a nonconstant function
which is analytic in a bounded domain D and continuous on the boundary Γ. Then f
attains its maximum modulus (i.e., |f | is maximized) only at certain points on Γ.

Theorem 8.10 (Minimum modulus theorem). Let f be a nonzero function which
is analytic in a bounded domain D and continuous on the boundary Γ. Then f attains
its minimum modulus (|f | is minimized) only at certain points on Γ.

Theorem 8.11 (Liouville’s theorem). Let f be a bounded entire function. Then f
is constant.

Example 8.11. We can illustrate these with the function f (z) = z−1. Let C be a unit
circle centered at z = 2, and D be the interior of C. This center was chosen so that
the circle does not intersect or include the pole at the origin. The value f (2) = 1

2
. To

apply the mean value theorem, write

1
2𝜋 ∫

2𝜋

0
f (2 + ei𝜃) d𝜃 = 1

2𝜋 ∫
2𝜋

0

d𝜃
2 + ei𝜃

.

Let u = ei𝜃 , then d𝜃 = −iu−1 du, and the integral is

∫
−idu

u(2 + u)
= −i∫

[
1∕2

u
+

−1∕2

2 + u

]
du

= −i
2

log u + i
2

log(2 + u) = i
2

log
(

1 + 2
u

)
.

Changing variables back to 𝜃,

1
2𝜋 ∫

2𝜋

0

d𝜃
2 + ei𝜃

= i
4𝜋

log
(
1 + 2e−i𝜃)2𝜋

0 .

As 𝜃 → 2𝜋, 1 + 2e−i𝜃 approaches a complex number with modulus 3 and argument
−2𝜋. Its logarithm is log 3 − i2𝜋. As 𝜃 → 0, 1 + 2e−i𝜃 approaches a complex number
with modulus 3 and argument 0. Its logarithm is log 3. Thus, the integral is

1
2𝜋 ∫

2𝜋

0

d𝜃
2 + ei𝜃

= i
4𝜋

(log 3 − i2𝜋 − log 3) = 1
2

,

as expected.
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FIGURE 8.22 The modulus |f (z)| = |z−1| graphed on the unit disk centered at z = 2. The
maximum and minimum modulus values occur on the boundary of the disk.

Now we check the maximum and minimum modulus theorems. In Figure 8.22,|f | is graphed for z on and inside the unit circle centered at z = 2. The maximum
modulus is observed to occur on the circle at z = 1 and the minimum occurs on the
circle at z = 3. Evaluating the function on this circle, z = 2 + ei𝜃 ,|||| 1

2 + ei𝜃

|||| = 1√
5 + 4 cos 𝜃

,

which is maximized for 𝜃 = 𝜋 (z = 1) and minimized for 𝜃 = 0 (z = 3). If C enclosed
the pole at the origin, the maximum modulus (in this case, infinite) would occur
inside C rather than on the boundary. Thus we see why analyticity is a condition of
the maximum modulus theorem.

Liouville’s theorem does not apply to f (z) = z−1 because f is not entire. The
function f (z) = z2 is entire and is unbounded as |z| → ∞. So is the entire function
exp z. The function f (z) = sin(Re z) is bounded, but it is not analytic, because Re z
is not analytic. The constant function f (z) = 1 is both bounded and entire (all its
derivatives are zero, for all z).

8.5 LAURENT SERIES AND RESIDUES

Cauchy’s integral formula permits us to evaluate integrals of functions that can
be written as ratios of analytic functions and polynomials. We now extend this
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to functions g in which the denominator, a(z), is not a polynomial, for example,
g(z) = 1

cos z
. To begin, we introduce series expansions of complex functions.

8.5.1 Laurent series

In real analysis, a function which is n + 1 times differentiable on an open interval
(a, b) can be expanded, for x, x0 ∈ (a, b), in a Taylor series:

f (x) = f (x0) +
f ′(x0)

1!
(x − x0) +

f ′′(x0)

2!
(x − x0)2 +⋯

+
f (n)(x0)

n!
(x − x0)n + Rn(x, x0),

where c ∈ (a, b). The last term is called the remainder. If f ∈ C(∞)(a, b), then the
series is infinite (a power series) and there is no remainder. The series does not
necessarily converge for all x, x0 ∈ ℝ. At worst, it will converge only if x = x0;
better, it may converge for |x − x0| < r, where r is called the radius of convergence
of the series. The series diverges for |x − x0| > r.

In the complex plane, a function f which is analytic in a domain D possesses
derivatives of all orders in D and can be represented by a Taylor series without
remainder:

f (z) = c0 + c1(z − z0) + c2(z − z0)2 +⋯

cn =
f (n)(z0)

n!
.

The expansion is valid in a disk centered at z0, with radius r extending to the nearest
singularity; making the disk any larger encloses the singularity and violates the ana-
lyticity requirement. Again, r is the radius of convergence of the series (Figure 8.23).

z0
r

FIGURE 8.23 A function f which is analytic at a point z0 has a Taylor series expansion
about z0. The series converges in a disk centered at z0 and extending to the nearest singularity
of f .
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On this domain, integrating f results in zero (Cauchy’s integral theorem), and
consequently the series integrates term-by-term to zero.

Example 8.12. The Taylor series for f (z) = 1
z+1

about the point z = 0 is obtained
in the usual way:

f (z) = f (0) + f (1)(0)z +
f (2)(0)

2!
z2 +⋯

= 1 − (z + 1)−2|||z=0
z + 2(z + 1)−3|||z=0

z2

2!
+⋯

= 1 − z + z2 − z3 +⋯ =
∞∑

n=0

(−z)n
.

Applying the ratio test, ||||| (−z)n+1

(−z)n

||||| = |z| < 1,

we see that the series is absolutely convergent for |z| < 1, that is, inside the unit
circle. The radius of convergence is one. As expected, the region of convergence does
not extend beyond the pole at z = −1.

Example 8.13. The function f (z) = cos𝜋z
z

has a singularity at z = 0, but is analytic
away from the origin. The Taylor series expansion for this function about the point
z0 = 1 works out to

f (z) ≈ (2 − z)
∞∑

n=0

c2n(z − 1)2n,

where c0 = −1

c2n = c2(n−1) −
(−𝜋2)n

(2n)!
.

Because (2n)! grows faster than 𝜋
2n, the coefficients eventually settle down to a

constant value, and for large N the ratio test gives |z − 1|2 < 1, which says that the
series converges in a circle of radius 1 centered at z0 = 1. As expected, again, the
region of convergence does not extend beyond the pole at the origin.

Approximations based on N-term partial sums of this series are shown in Fig-
ure 8.24 for N = 5 (11th order approximation) and N = 9 (18th order approximation)
for real z. Observe that the higher order approximation comes closer to the singu-
larity at the origin, but diverges more sharply beyond x = 2. Increasing the order of
approximation only results in worse behavior outside the region of convergence.

These examples show that singular behavior cannot be captured by a Taylor
series. The remedy for isolated singularities like the poles in these examples is to
include negative powers of z in the series expansion.
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FIGURE 8.24 Two series expansions of f (z) = cos 𝜋z

z
, graphed along the real axis, z = x. Left:

the Taylor series expansion around z = 1 diverges for |z − 1| > 1. As the order of the truncated
series increases from 11 to 19, it approaches the singularity at the origin more closely, but
diverges more strongly beyond x = 2. Right: Laurent series expansion around z = 0. The series
is convergent for all x ≠ 0. Although the truncated series, being a polynomial, blows up as |x|
increases, it approximates f more closely over a larger range of x as the order increases from
9 to 17.

Example 8.14. In the vicinity of z = 0, we write, for f (z) = cos𝜋z
z

, the ratio of the
power series for cos𝜋z and z,

cos 𝜋z
z

=
1 − (𝜋z)2

2! + (𝜋z)4

4! − (𝜋z)6

6! +⋯

z
= 1

z
− 𝜋

2z
2!

+ 𝜋
4z3

4!
− 𝜋

6z5

6!
+⋯ .

Again applying the ratio test, we have
|||| 𝜋

2nz2n−1∕(2n)!
𝜋2(n−1)z2n−3∕(2(n−1))!

|||| = ||| 𝜋
2z2

2n(2n−1)
||| < 1. That is,

|z2| < 2n(2n − 1)

𝜋2
→ ∞ as n → ∞,

which says that the series converges for all z away from the origin.
Partial sums of this series for N = 5 (9th order) and N = 9 (17th order) for real

z are shown in Figure 8.24. Because of the z−1 term the series matches the singular
behavior of f at the origin, for both positive and negative x. The partial sums, which
are polynomials, must eventually blow up as |x| increases toward infinity. However,
unlike the Taylor series, as N increases the region of convergence grows and the
correspondence with f becomes steadily better.

The series expansion in this example is called a Laurent series. It can be
shown7 that any function f analytic in an annular domain r2 > |z − z0| > r1 has a

7Hahn and Epstein, 1996, pp. 139–141; Wunsch, 1994, pp. 264–268.
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Laurent expansion about z0 given by

f (z) = c−N (z − z0)−N +⋯ + c−1(z − z0)−1 + c0 + c1(z − z0) + c2(z − z0)2 +⋯

=
∞∑

n=−N

cn(z − z0)n
(8.12)

with coefficients given by

cn = 1
2𝜋i∫↺Γ0

f (z) dz

(z − z0)n+1
, (8.13)

where Γ0 is a simple closed contour in the annular domain enclosing the inner bound-
ary |z − z0| = r1. The Laurent series converges absolutely in the annular domain. The
inner and outer radii are typically marked by singularities (Figure 8.25).

If z0 is a singularity, then r1 = 0 and the annulus is a punctured disk. If f has
other singularities, then the one closest to z0 fixes the outer boundary of the region
of convergence. If the function has only the one singular point at z0, the outer radius
is infinite and the annulus becomes the punctured plane.

The coefficients of the positive powers are identical to Taylor series coefficients
(compare Equations 8.10 and 8.13), and the corresponding portion of the Laurent
series is analytic in the region of convergence. It is also known as the regular part
of the expansion. The portion consisting of the negative powers, which captures the
singular behavior, is called the principal part.

z0
r1

r2

FIGURE 8.25 A function f which is analytic in an annulus has a Laurent series expansion
about z0. The series converges in the annulus, which is bounded by singularities.
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Example 8.15 (cos(𝝅z)∕z, revisited). Earlier we calculated the Laurent series for
f (z) = cos 𝜋z

z
by dividing the power series for cos 𝜋z by z. Here we will calculate a

few terms using Equation 8.13:

c−2 = 1
2𝜋i∫↺Γ0

cos(𝜋z)∕z dz

z−2+1
= 1

2𝜋i∫↺Γ0

cos(𝜋z) dz = 0, (Cauchy theorem)

c−1 = 1
2𝜋i∫↺Γ0

cos(𝜋z) dz
z

= cos(𝜋0) = 1, (Cauchy formula)

c0 = 1
2𝜋i∫↺Γ0

cos(𝜋z) dz

z2
= −𝜋 sin(𝜋0) = 0, (Ext. Cauchy formula)

c1 = 1
2𝜋i∫↺Γ0

cos(𝜋z) dz

z3
= −𝜋

2

2
cos(𝜋0) = −𝜋

2

2
. (Ext. Cauchy formula)

The Laurent expansion can be performed about any z0, but the most interesting
case for our purposes is when z0 is itself an isolated singularity of f . The isolated
singularities of a function may be classified according to the Laurent expansion. Let
z0 be an isolated singularity of f and expand f in a Laurent series (Equation 8.12).
We identify three cases:

� If the Laurent series has no negative powers, then it is really a Taylor series,
and f is analytic. If f looks like it ought to have a singularity (e.g., sinc z =
(sin𝜋z) ∕𝜋z) but limz→z0

f (z) is finite, then z0 is a removable singularity. Writing
sinc z as a series, for example,

sinc z = sin𝜋z
𝜋z

=
𝜋z − (𝜋z)3

3! +⋯

𝜋z
= 1 − (𝜋z)2

3!
+⋯ ,

we see that the series has no principal part, indicating that sinc z is analytic. Or,
calculating c−1 directly,

c−1 = 1
2𝜋i∫↺Γ0

sin(𝜋z)∕z dz

z−1+1
= 1

2𝜋i∫↺Γ0

sin(𝜋z) dz
z

= sin(𝜋0) = 0.

� If the Laurent series has negative powers down to −N, then z0 is a pole of order
N. For example,

cos z
z2

=
1 − z2

2! +
z4

4! −⋯

z2
= 1

z2
− 1

2
+ z2

4!
−⋯ .

The principal part goes down to z−2, so there is a double pole at z = 0.
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� If the Laurent series has negative powers forever (n → −∞), then z0 is an
essential singularity (sometimes called, informally, an “infinite order pole”).
The classic example is exp(1∕z). Using the Taylor series for exp z, we write

exp(1∕z) = 1 + 1
z
+

(1∕z)2

2!
+

(1∕z)3

3!
+⋯

= ⋯ + 1
3!z3

+ 1
2z2

+ 1
z
+ 1,

and readily observe that the principal part does not terminate.

8.5.2 Residues and Integration

As we saw earlier, the integral of a function on a contour enclosing several isolated
singularities can be performed as the sum of integrals around the individual singular-
ities. We have just seen that the function can be expanded (in principle) in a Laurent
series around each of these singularities. In the region of convergence of each of these
series, the function is analytic and the series converges absolutely. Integrating it term-
by-term along a simple closed contour around z = z0 in the region of convergence,
we obtain

∫↺Γ
f (z)dz = ∫↺Γ

[
⋯ + c−2(z − z0)−2

]
dz + ∫↺Γc−1(z − z0)−1dz

+∫↺Γ

[
c0 + c1(z − z0) +⋯

]
dz

= 0 + 2𝜋ic−1 + 0 = 2𝜋ic−1.

(8.14)

Only the c−1 term contributes to the integral; all the other terms integrate to zero.
(This is also the result obtained by setting n = −1 in Equation 8.13.) The coefficient
c−1 is called the residue of f at z0, denoted Res[f , z0]. For each of the singularities,
the integral will be given by a residue. This leads again to the result (Equation 8.11):

∫↺Γ
f (z)dz = 2𝜋i

∑
zk inside Γ

Res
[
f , zk

]
,

but this time we have derived it without the restriction that f be the ratio of an analytic
function and a polynomial. We only require that it be possible to calculate the residues
of f at the singularities. What we need next is a way to do this, preferably without
having to derive the series expansions.

Residue at a Simple Pole
Consider a function with a simple (first order) pole at z0. The Laurent expansion is

f (z) = c−1(z − z0)−1 + c0 + c1(z − z0) +⋯ .

At z = z0, all the terms go to zero except one, which blows up. If we multiply f (z) by
(z − z0), we get

(z − z0)f (z) = c−1 + c0(z − z0) + c1(z − z0)2 +⋯ ,
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and in the limit as z → z0, only c−1, the residue, remains. This is very convenient.
For a function f with a simple pole at z = z0,

Res[f , z0] = lim
z→z0

(z − z0)f (z). (8.15)

When f is the ratio of two functions, b(z)∕a(z), there is an even simpler result, which
follows from L’Hospital’s rule. We assume that b(z0) ≠ 0, so that the point z = z0 is
not a removable singularity. Because a(z0) = 0, the limit

lim
z→z0

(z − z0)f (z) = lim
z→z0

(z − z0)b(z)

a(z)

is indeterminate of the form 0∕0. Applying L’Hospital’s rule,

lim
z→z0

(z − z0)b(z)

a(z)
= lim

z→z0

(z − z0)b′(z) + b(z)

a′(z)
=

b(z0)

a′(z0)
.

Therefore, when z0 is a simple pole and b(z0) ≠ 0,

Res

[
b(z)
a(z)

, z0

]
=

b(z0)

a′(z0)
. (8.16)

Example 8.16. The function tan z is singular at z = 𝜋∕2. It so happens that the
singularity is a simple pole. Using Equation 8.16 with the fact that tan z = sin z

cos z
,

Res
[
tan z,

𝜋

2

]
=

sin
(
𝜋

2

)
− sin

(
𝜋

2

) = −1.

Residue at a Multiple Pole
Suppose f has a double pole at z0. Its Laurent expansion around z0 is

f (z) = c−2(z − z0)−2 + c−1(z − z0)−1 + c0 + c1(z − z0) +⋯ .

If we take lim
z→z0

(z − z0)f (z) as before, we get

lim
z→z0

[
c−2(z − z0)−1 + c−1 + c0(z − z0) + c1(z − z0)2 +⋯

]
,

which blows up because of the term c−2(z − z0)−1. If instead we multiply by (z − z0)2,
we get

(z − z0)2f (z) = c−2 + c−1(z − z0) + c0(z − z0)2 + c1(z − z0)3 +⋯ ,

and if we take the limit as z → z0 of this, we will get c−2 rather than c−1. However,
differentiating once,

d
dz

(z − z0)2f (z) = c−1 + 2c0(z − z0) + 3c1(z − z0)2 +⋯ ,

and now the limit will give c−1, as desired. The process is repeated for higher order
poles: multiply f by (z − z0)n to clear out the singularities, differentiate n − 1 times
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to remove the terms below c−1, then take the limit to make all the terms above
c−1 disappear. A general residue formula results, which looks very much like the
extended Cauchy integral formula.

For a pole of order N at z = z0, the residue is

Res[f , z0] = 1
(N − 1)!

lim
z→z0

dN−1

dzN−1

[
(z − z0)Nf (z)

]
. (8.17)

This method breaks down for essential singularities, because N → ∞. The
only thing you can do then is calculate, by some means, a few terms of the Laurent
expansion. Sometimes, this is not too hard. For example, using the Taylor series for
exp(z),

exp(1∕z) = 1 + (1∕z) +
(1∕z)2

2!
+⋯ ,

and we see that c−1 = 1.
Even when a singularity is not essential, it can sometimes be simpler to expand

a few terms of the Laurent series rather than use the general formula (Equation 8.17)
with its several derivatives.

Example 8.17. Using the residue formula (Equation 8.17), the residue of f = z−1
sin2 z

at z = 0 is (it so happens that N = 2)

lim
z→0

d
dz

z2(z − 1)

sin2 z
= lim

z→0

(3z2 − 2z) sin2 z − 2z2(z − 1) sin z cos z

sin4 z
= 1.

The last limit requires L’Hospital’s rule. But we could also expand f in a Laurent
series by dividing z − 1 by the Taylor series for sin2 z:

z − 1
sin2 z

= z − 1
(z − z3∕3! + O(z5))2

= z − 1
z2 − z4∕3 + O(z6)

= − 1
z2

+ 1
z
− 1

3
+⋯ ,

and read off c−1 = 1. This required no calculus, just some algebra and knowledge of
the Taylor series for sin z.

Determining the Order of a Pole
The general formula (Equation 8.17) assumes that you know the order N of the pole.
Suppose you guess wrong. If you guess too low, then you will not multiply by a high
enough power of (z − z0) to clear out the singular terms, and when you take the limit,
it will blow up. On the other hand, if you guess too high, you will multiply by too
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high a power of (z − z0), and you could extract the wrong value. For example, if you
guess N = 3 when the pole is really second order, you will get

lim
z→z0

d2

dz2

[
c−2(z − z0) + c−1(z − z0)2 + c0(z − z0)3 + O((z − z0)4)

]
= lim

z→z0

[
2c−1 + 6c0(z − z0) + O((z − z0)2)

]
= 2c−1.

To derive a method for correctly determining the order of a pole, consider the
product (z − z0)Mf (z), where f is represented by its Laurent expansion and M is a
nonnegative integer. Then

(z − z0)Mf (z) = c−N(z − z0)M−N +⋯ + c−1(z − z0)M−1 + c0(z − z0)M +⋯ .

We distinguish three cases:

1. M > N—If we multiply by too high a power of (z − z0), the result will be a
polynomial in (z − z0), which will evaluate to zero for z = z0.

2. M < N—If we multiply by too low a power, there will still be negative powers
of (z − z0) present, which will blow up as z → z0.

3. M = N—If we hit it just right, we will get

c−N +⋯ + c−1(z − z0)N−1 + c0(z − z0)N + c1(z − z0)N+1 +⋯ ,

and this will be finite (= c−N ) as z → z0.

Thus, to determine the order of a pole, guess a value of M and calculate

lim
z→z0

(z − z0)Mf (z).

Then,

1. If the limit is infinite, M is too low.

2. If the limit is zero, M is too high.

3. If the limit is finite and nonzero, M is the order of the pole.

(a) If M = 1, then the limit calculated is c−1 and you have the residue.

(b) If M > 1, carry out the residue calculation for an Mth order pole.

Example 8.18. The function f (z) = 1
cos z

has singularities everywhere that cos z =
0: z = ±𝜋

2
,± 3𝜋

2
,…. We want to know what their orders are. The singular points may

be written zk = ±(2k + 1)𝜋
2

, k = 0, 1,…. Let us try a first-order pole:

lim
z→zk

z − zk

cos z
= lim

z→zk

1
− sin z

(L’Hospital’s rule)

= − 1

± sin(2k + 1)
𝜋

2

= ±1.
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The result is finite, so the poles are first order. Had we guessed M = 2, we would
have obtained

lim
z→zk

(z − zk)2

cos z
= lim

z→zk

2(z − zk)

− sin z
= 0.

Example 8.19. Returning to an earlier example, it was claimed that tan z has a
simple pole at z = 𝜋

2
. We just showed, in the previous example, that all the poles of 1

cos z
are first order. Hence, tan z = sin z

cos z
has first-order poles at z = ±(2k + 1)𝜋

2
, k = 0, 1,…,

and in particular, at z = 𝜋

2
.

Example 8.20. Determine the locations and orders of the singularities of f (z) =
z

sin2 z
. We know that sin z = 0 for z = k𝜋, k = 0,±1,…. The numerator is zero for

z = 0 and will cancel, in whole or in part, the singularity at z = 0. We must consider
this case separately from the others.

At z = 0, try a first-order pole:

lim
z→0

zf (z) = lim
z→0

z2

sin2 z
= lim

z→0

2z
2 sin z cos z

.

This limit is indeterminate (0/0), so apply L’Hospital’s rule again:

lim
z→0

zf (z) = lim
z→0

2
2 cos2 z − 2 sin2 z

= −2.

The limit is finite; the pole at z = 0 is first order.
At other values, z = k𝜋,

lim
z→k𝜋

(z − k𝜋)f (z) = lim
z→k𝜋

(z − k𝜋)z

sin2 z
= lim

z→k𝜋

2z − k𝜋
2 sin z cos z

= k𝜋
0
.

This limit is not finite, so the poles must be higher than first order. Try second
order. This is actually a reasonable guess, because if we expand the numerator and
denominator in Taylor series around z = k𝜋, we get

z
sin2 z

= k𝜋 + (z − k𝜋)

(z − k𝜋)2 + O((z − k𝜋)6)
= k𝜋

(z − k𝜋)2
+ 1

(z − k𝜋)
+⋯ .

The leading term indicates that the poles are second order. To confirm this,

lim
z→k𝜋

(z − k𝜋)2f (z) = lim
z→k𝜋

(z − k𝜋)2z

sin2 z
= lim

z→k𝜋

3z2 − 4k𝜋z + k2∕𝜋2

2 sin z cos z
.

This limit is indeterminate (0/0), so apply L’Hospital’s rule again:

lim
z→k𝜋

(z − k𝜋)2f (z) = lim
z→k𝜋

6z − 4k𝜋
2 cos2 z − 2 sin2 z

= k𝜋.

The limit is finite. All the other poles are second order.
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8.6 USING CONTOUR INTEGRATION TO CALCULATE
INTEGRALS OF REAL FUNCTIONS

Complex integration is a useful tool for integrating functions of a real variable. The
basic idea is this: certain integrals of functions of a real variable can be performed by
embedding them within complex integrals, which are then evaluated using residues
and the ML inequality.

8.6.1 Trigonometric Integrals

The first method transforms integrals of the form

I = ∫
2𝜋

0
f (cos 𝜃, sin 𝜃) d𝜃, (8.18)

where f is a rational function of cos 𝜃 and sin 𝜃, into complex contour integrals. By

the Euler formulae, cos 𝜃 = ei𝜃+e−i𝜃

2
and sin 𝜃 = ei𝜃−e−i𝜃

2i
, which are equal to z+z−1

2

and z−z−1

2i
, respectively, when z = ei𝜃 (i.e., on the unit circle). Hence, if we make the

changes of variable

cos 𝜃 = z + z−1

2
and sin 𝜃 = z − z−1

2i
, (8.19)

the function f becomes a ratio of polynomials in z. The path of integration is the
unit circle, z = ei𝜃 , and dz = iei𝜃d𝜃, or d𝜃 = −iz−1dz. The original integral (Equation
8.18) becomes

I = ∫↺|z|=1
f

(
z + z−1

2
,

z − z−1

2i

)
(−iz−1)dz. (8.20)

Example 8.21.

I = ∫
2𝜋

0

d𝜃
2 + sin 𝜃

Making the substitutions,

I = ∫
2𝜋

0

d𝜃
2 + sin 𝜃

= −i∫↺|z|=1

1

2 + z − z−1

2i

z−1dz

= ∫↺|z|=1

2
z2 + 4iz − 1

dz.

The integrand has two poles, at z = i(−2 ±
√

3) ≈ −0.27i, −3.73i. One of these is
inside the unit circle and contributes its residue to the integral (Figure 8.26).

Using Equation (8.16),

Res

[
2

z2 + 4iz − 1
, i(−2 +

√
3)

]
= 2

2z + 4i

|||||z=i(−2+
√

3)

= 1

i
√

3
,
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FIGURE 8.26 Contour for integrating ∫↺|z|=1

2

z2+4iz−1
dz.

and the integral is

I = 2𝜋i Res

[
2

z2 + 4iz − 1
, i(−2 +

√
3)

]
= 2𝜋√

3
.

Example 8.22 (Discrete-time Fourier transform). We will calculate the inverse
discrete-time Fourier transform of Fd(𝜃) = 1

1−ae−i𝜃 , given by the integral (Equation
(4.44)b):

f [n] = 1
2𝜋 ∫

𝜋

−𝜋

ein𝜃 d𝜃
1 − ae−i𝜃

.

Make the substitution z = ei𝜃 , d𝜃 = −iz−1dz, and integrate around the unit circle:

f [n] = 1
2𝜋i∫↺|z|=1

zn−1 dz
1 − az−1

= 1
2𝜋i∫↺|z|=1

zn dz
z − a

.

When n ≥ 0, there is only a simple pole at z = a, and its residue is an. The integral is
1

2𝜋i
2𝜋i an = an. When n < 0, then zn is really an |n|th order pole at z = 0. The residue

at z = a is still an. To calculate the residue at z = 0, let m = −n. Then, according to
the residue formula (Equation 8.17),

Res

[
1

zm(z − a)
, 0

]
= 1

(m − 1)!
lim
z→0

dm−1

dzm−1

1
z − a

= 1
(m − 1)!

lim
z→0

(−1)m−1(m − 1)! (z − a)−m = (−1)m−1(−a)−m

= −an
.
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The integral is 2𝜋i times the sum of the residues, which is an + (−an) = 0. Therefore,
the integral is zero for n < 0, and we have the final result:

f [n] =
{

an, n ≥ 0
0, n < 0

.

This sequence converges as n → ∞ for |a| < 1, and the result agrees with Equation
4.47. This method is generally applicable to those Fd(𝜃) which can be expressed as
rational functions of sin 𝜃 and cos 𝜃, a class of functions which includes the transfer
functions of discrete LTI systems.

8.6.2 Improper Integrals

Next we show how contour integration is used to evaluate real integrals with infinite
limits, ∫ ∞

−∞ f (x)dx and ∫ ∞
0 f (x)dx.

Integrals of the Form ∫ ∞
−∞ f (x)dx

Consider the complex integral ∫↺Γ
f (z) dz where the contour Γ is the combination

of a segment along the real axis and a semicircle in the upper half-plane (UHP)
(Figure 8.27).

On the flat part of the contour, z = x. On the semicircular arc, z = Rei𝜃 , 𝜃 ∈
[0,𝜋]. So we have

∫↺Γf (z)dz = ∫
R

−R
f (x)dx + ∫↶ΓR

f (z)dz.

In the limit as R → ∞, the first term, ∫ R
−R f (x)dx, becomes the Cauchy principal value

of a real integral with infinite limits (Equation 1.30):

lim
R→∞∫

R

−R
f (x)dx = P∫

∞

−∞
f (x)dx.

All such improper integrals will be taken as Cauchy principal values.
Here is the strategy for evaluating real integrals with infinite limits by embed-

ding them in contour integrals. If f (z) has singularities in the UHP, they will be

ΓR

R–R

FIGURE 8.27 Semicircular contour for integrals of the form ∫ ∞
−∞ f (x)dx.
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enclosed by the contour Γ for some sufficiently large R. Using residues, evaluate
the contour integral. Next, as R → ∞, the integral along the real axis becomes the
principal value of the integral we seek, ∫ ∞

−∞ f (x)dx. It remains to determine what the
integral on the semicircle, ΓR, becomes in the limit as R → ∞. For this we appeal to
the ML inequality and endeavor to show that the integral on ΓR vanishes in the limit.

Informally, here is how the ML inequality works for us. Each pole of f behaves
approximately as 1∕R when you are far away from it. If f has three poles, say, it decays
like 1∕R3 sufficiently far from the origin. So the “M” part of the ML inequality is
on the order of 1∕R3. The “L” part is the length of the contour, which is 𝜋R for
the semicircle. Hence, the integral is bounded above by ML = 1∕R3 × 𝜋R = 𝜋∕R2,
and this upper bound goes to zero as R → ∞. So even though the contour is getting
longer, the function is dying faster, and the net result is a vanishing integral on the
semicircular contour.

Example 8.23.

I = ∫
∞

−∞

dx
1 + x2

.

Consider the integral on a semicircular contour in the UHP:

∫↺Γ

dz
1 + z2

= ∫
R

−R

dx
1 + x2

+ ∫↶ΓR

dz
1 + z2

.

You can check for yourself that a semicircle in the lower half-plane (LHP) would
work too, but the advantage of the UHP contour is that we get to traverse the contour
in the positive direction.

There are two first-order poles, at z = ±i. Only one of these (z = i) is inside the
contour, and its residue is

Res[f , i] = 1
2z

|||||z=i

= 1
2i
.

(Although the other pole at z = −i is not encircled by the contour, it still influences the
integral through its presence in the residue calculation at z = i). The contour integral
is 2𝜋i ⋅ 1

2i
= 𝜋. As R → ∞, the integral along the x-axis becomes I, the integral we

seek. Finally, we attack the integral on ΓR with the ML inequality. On ΓR, z = Rei𝜃 ,
and

M = max
|||| 1
1 + R2ei2𝜃

|||| = 1
min ||1 + R2ei2𝜃|| = 1

min ||1 + R2 cos 2𝜃 + iR2 sin 2𝜃||
= 1

min
√

1 + R4 + 2R2 cos 2𝜃
.

For 𝜃 ∈ [0,𝜋], the denominator is minimized when 𝜃 = 𝜋

2
, giving

M = 1√
1 + −2R2 + R4

= 1
R2 − 1

.



8.6 USING CONTOUR INTEGRATION TO CALCULATE INTEGRALS OF REAL FUNCTIONS 535

As we would expect, with two poles and no zeroes the integrand behaves like 1∕R2

for large R. The length of the semicircle is 𝜋R, so the ML bound is|||||∫↶ΓR

dz
1 + z2

||||| ≤ 𝜋R
R2 − 1

,

which goes to 0 as R → ∞. Putting the pieces together, we get the final result, I = 𝜋.
This is, by the way, the result you would get if you looked it up in a table of integrals:
(1 + x2)−1 is the derivative of arctan x, and

∫
∞

−∞

dx
1 + x2

= arctan x|||∞−∞ = 𝜋

2
−
(
−𝜋

2

)
= 𝜋.

Integrals of the Form ∫ ∞
0 f (x)dx

Next we consider integrals of the form ∫ ∞
0 f (x)dx. If f is an even function, we simply

rewrite the integral

∫
∞

0
f (x)dx = 1

2 ∫
∞

−∞
f (x)dx

and proceed as above. On the other hand, if f is odd we have to work a bit harder.
Consider, for example, the integral

I = ∫
∞

0

x dx
x4 + 1

.

We can embed this integral in the contour integral ∫↺Γ

z dz
z4+1

, provided we can find an

appropriate contour. We know we need one piece of Γ to overlap the positive real
axis, since that is where we will get I. We also want an arc of radius R, so that we
can use the ML inequality. It appears that we must close the contour with a segment
from the end of the arc back to the origin, so that Γ is a pie-shaped sector rather than
a semicircle (Figure 8.28).

ΓR

R

θ0

FIGURE 8.28 Pie-shaped contour for integrals of the form ∫ ∞
0 f (x)dx.
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ΓR

R

FIGURE 8.29 Quarter-circle contour for ∫↺Γ

z dz

z4+1
.

This segment will be parametrized by z = rei𝜃0 and dz = ei𝜃0 dr, integrating
from r = R back to r = 0. The question is what to choose for 𝜃0. For this particular
example, the integral along the return segment is

∫
0

R

rei2𝜃0 dr

r4ei4𝜃0 + 1
.

If we choose 𝜃0 = 𝜋∕2, we will have ei2𝜃0 = ei𝜋 = −1, and the integral becomes

∫
0

R

rei2𝜃0 dr

r4ei4𝜃0 + 1
= ∫

R

0

rdr
r4 + 1

,

which is identical to I, the integral we seek, as R → ∞. We have a way to proceed.
Using a quarter-circle contour (Figure 8.29), the problem becomes

∫↺Γ
zdz

z4 + 1
= 2∫

R

0

xdx
x4 + 1

+ ∫↶ΓR

zdz
z4 + 1

.

There are four simple poles, at z = (−1)1∕4. One of these, z = ei𝜋∕4, is inside Γ, and
its residue is

Res

[
z

z4 + 1
, ei𝜋∕4

]
= z

4z3

|||||z=ei𝜋∕4

= 1
4i
.

Next, on the arc, the ML inequality gives|||||∫↶ΓR

z dz
z4 + 1

||||| ≤ 1
R3

⋅ 𝜋R
2

= 𝜋

2R2
,

and this goes to zero as R → ∞. Therefore, we have

∫↺Γ
z dz

z4 + 1
= 2𝜋i ⋅

1
4i

= 𝜋

2
= 2I,

yielding the final result, I = 𝜋∕4.



8.6 USING CONTOUR INTEGRATION TO CALCULATE INTEGRALS OF REAL FUNCTIONS 537

This method readily generalizes to integrals of the form ∫ ∞
0

xm dx
xn+1

, m < n. The
trick is choose a pie-shaped contour where the returning segment is at an angle 𝜃0
such that ein𝜃0 = 1.

8.6.3 Singular Integrals

When the integrand f (x) becomes infinite at some point x = a between the limits
of integration, the integral is singular and must be evaluated as a Cauchy principal
value:

P∫
B

A
f (x)dx = lim

𝜖→0

(
∫

a−𝜖

A
+∫

B

a+𝜖

)
f (x)dx.

When the limits are infinite,

P∫
∞

−∞
f (x)dx = lim

R→∞
lim
𝜖→0

(
∫

a−𝜖

−R
+∫

R

a+𝜖

)
f (x)dx.

The principal value calculation approaches the singularity and the infinite limits
symmetrically, in the hope that the contributions on opposite sides of the singularity
will sum to a finite value. When this happens it is because the integrand changes sign
in passing through x = a, so that the areas to the left and right of a have opposite sign
and partially cancel.

We illustrate the method with I = ∫
∞

−∞

dx
x3 + 1

. The integrand has a singularity

at x = −1. The Cauchy principal value of the integral is

P∫
∞

−∞

dx
x3 + 1

= lim
R→∞

lim
𝜖→0

(
∫

−1−𝜖

−R
+∫

R

−1+𝜖

)
dx

x3 + 1
.

We seek to embed this in a contour integral of the form ∫↺Γ

dz
z3+1

. The complex function

f (z) has three poles, at z = −1, ei𝜋∕3, e−i𝜋∕3. The contour will include a segment along
the real axis from x = −R to x = −1 − 𝜖, and another from x = −1 + 𝜖 to x = R. We
connect x = R back to x = −R with a semicircle of radius R and can anticipate that the
contour integral on this arc will go to zero as R → ∞, using the ML inequality. This
leaves the gap between x = −1 − 𝜖 and x = −1 + 𝜖. We cannot integrate through the
pole at z = −1, so we have to go around it. We will bump over it with a semicircle
of radius 𝜖 and then see what happens in the limit as 𝜖 → 0 (Figure 8.30).

This closes the contour, and we proceed, with

∫↺Γ
dz

z3 + 1
= ∫

−1−𝜖

−R
+ ∫↷Γ

𝜖

+ ∫
R

−1+𝜖
+ ∫↶ΓR

.

The pole at z = ei𝜋∕3 is inside the contour. Its residue is

Res

[
1

z3 + 1
, ei𝜋∕3

]
= 1

3z2

||||z=ei𝜋∕3
= 1

3ei2𝜋∕3
,
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ΓR

R–R

Γε

–1

FIGURE 8.30 Contour for calculating ∫ ∞
−∞

dx

x3+1
. The path along the real axis is indented

above the pole at z = −1.

giving, for the contour integral, i 2𝜋
3

e−i2𝜋∕3. The two segments along the real axis, in
the limit as R → ∞ and 𝜖 → 0, yield the integral we seek. On the large semicircle,
ΓR, the ML inequality gives|||||∫↶ΓR

dz
z3 + 1

||||| ≤ 1
R3

× 𝜋R = 𝜋

R2
→ 0 as R → ∞.

This leaves the integral on the indentation, ∫↷Γ𝜖 . There, z = −1 + 𝜖ei𝜃 , dz =

i𝜖ei𝜃d𝜃, and we integrate from 𝜃 = 𝜋 to 𝜃 = 0. Near the pole, the function has its
maximum modulus for 𝜃 = 0:|||| 1

z3 + 1

||||z∈Γ𝜖 ≤ 1
3𝜖 − 3𝜖2 + 𝜖3

.

The length of the contour is 𝜋𝜖, giving an ML upper bound on the integral:|||||∫↷Γ𝜖 dz
z3 + 1

||||| ≤ 𝜋𝜖

3𝜖 − 3𝜖2 + 𝜖3
= 𝜋

3 − 3𝜖 + 𝜖2
.

This bound is finite as 𝜖 → 0. Even though the function is blowing up O(𝜖−1), the
path is getting shorter O(𝜖). The result is a finite value for the integral, given by

lim
𝜖→0∫

𝜋

0

−id𝜃
3 − 3𝜖ei𝜃 + 𝜖2ei2𝜃

.

The bounded integrand and finite path length permit the limiting and integration
operations to be exchanged:

lim
𝜖→0∫

𝜋

0

−id𝜃
3 − 3𝜖ei𝜃 + 𝜖2ei2𝜃

= ∫
𝜋

0
lim
𝜖→0

−id𝜃
3 − 3𝜖ei𝜃 + 𝜖2ei2𝜃

= ∫
𝜋

0

−id𝜃
3

= − i𝜋
3
.
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ΓR

R–R Γε

–1

FIGURE 8.31 The contour may also be indented below the pole.

Finally, assemble the pieces:

lim
R→∞

lim
𝜖→0∫↺Γ

dz
z3 + 1

= 2𝜋ie−i2𝜋∕3

3

= I + lim
𝜖→0∫↷Γ

𝜖

+ lim
R→∞∫↶ΓR

= I − i𝜋
3

+ 0,

and solve for I:

I = 2𝜋ie−i2𝜋∕3

3
+ i𝜋

3
= 2𝜋i

3

−1 − i
√

3

2
+ i

𝜋

3

= 𝜋√
3
.

Some of the constituent terms had imaginary parts, but when everything was added up
the imaginary parts cancelled out. This should be expected, since we are evaluating
a real integral and must get a real-valued result. A complex value for a real integral
indicates that an error has been made somewhere in the calculation.

You might be wondering why we indented the contour above the pole rather than
below. This could be done (Figure 8.31), but it would be a bit more work. Consider:
With two poles inside the contour, we calculate two residues for the contour integral.
Then, we evaluate the contribution around the indentation (𝜖 → 0). When all these
terms are combined at the end, we will in fact get the same answer.

Here is a general result for indented contours. When you integrate part of the
way around a simple pole on an arc Γ

𝜖
(𝛼) of radius 𝜖 and angle 𝛼 (Figure 8.32), the

result is

lim
𝜖→0∫↶Γ

𝜖
(𝛼)

= i𝛼 Res[f , z0], (8.21)

where 𝛼 is positive if the arc is traversed in the positive direction, and negative
otherwise (|𝛼| = 2𝜋 for a full encirclement). To show this, consider the Laurent
expansion of a function with a simple pole (we may, without loss of generality, take
the pole to be at the origin):

f (z) = c−1z−1 + c0 + c1z +⋯ .
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α

ε

FIGURE 8.32 When a single pole is partially encircled, it contributes a fraction of its residue
to the integral.

On the arc, z = 𝜖ei𝜃 , dz = i𝜖ei𝜃d𝜃, and

∫↶Γ
𝛼

f (z)dz = lim
𝜖→0∫

𝜃0+𝛼

𝜃0

i𝜖ei𝜃 [c−1(𝜖ei𝜃)−1 + c0 + c1𝜖ei𝜃 +⋯
]

d𝜃

= lim
𝜖→0∫

𝜃0+𝛼

𝜃0

i
[
c−1 + c0𝜖ei𝜃 +⋯

]
d𝜃

= ∫
𝜃0+𝛼

𝜃0

ic−1d𝜃 = i𝛼c−1.

8.6.4 Integrals with Multivalued Functions

Integrals like ∫ ∞
0

√
x

x2+1
, ∫ ∞

−∞
Log |x|
x2+4

, and ∫ ∞
−∞

dx√
x2+1

involve multivalued functions.

Embedding the integral in a contour integral leads to contour integrals in planes with
a branch cut. We illustrate the issues with the integral

I = ∫
∞

0

dx√
x(x + 2)

.

Consider the complex integral ∫↺Γ
z−1∕2dz

z+2
with an appropriate contour. The

integral we seek is taken over the limits x ∈ (0,∞), so we know that one segment of
the contour must be on the positive real axis. If we try to use a pie-shaped contour
as before, with an arc of included angle 𝜃0, the return path, rei𝜃0 , must be such that
z + 2 = rei𝜃0 + 2 is identical to x + 2. This will only occur if 𝜃0 = 2𝜋, that is, the arc
portion of the contour is a full circle! However, we also have a branch cut which
cannot be crossed by the contour. The only way to satisfy all these constraints is to
place the branch cut along the positive real axis. The contour will go from 0 to R
above the branch cut, around a circle of radius R to the bottom of the branch cut, and
back in to the origin under the branch cut. A final circle of radius 𝜖 avoids the branch
point (Figure 8.33).
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ΓR

Γε
ΓU

ΓL

FIGURE 8.33 Contour for integrating ∫↺Γ

z−1∕2dz

z+2
.

We will take limits as R → ∞ and 𝜖 → 0. The integral over this contour is,
therefore,

∫↺Γ
z−1∕2dz
z + 2

= ∫→ΓU

+ ∫↶ΓR

+ ∫←ΓL

+ ∫↷Γ
𝜖

.

Inside the contour there is one first-order pole, at z = −2. The residue is eval-
uated using the positive branch of z1∕2 because in the original integral,

√
x refers to

the positive branch of x1∕2:

Res

[
z−1∕2

z + 2
,−2

]
= (−2)−1∕2 = 1

i
√

2
.

The contour integral is ∫↺Γ
= 2𝜋i ⋅ 1∕i

√
2 = 𝜋

√
2. Now consider the four path seg-

ments in turn.
Above the branch cut, we take the upper contour ΓU to be a ray z = rei𝜑 at an

infinitesimal angle 𝜑, and extending from r = 𝜖 to r = R. The argument of the square
root will be 𝜑∕2. As 𝜑 → 0, ΓU moves down toward the real axis, and we obtain

∫ΓU

→ ∫
∞

0

|x|−1∕2e−i0dx
x + 2

= ∫
∞

0

dx√
x(x + 2)

= I,

the integral we seek. Below the branch cut, we take the lower contour ΓL to be a ray
z = rei(2𝜋−𝜑), where 𝜑 is again an infinitesimal angle, and r comes in from R to 𝜖.
The argument of the square root below the branch cut will be 𝜋 − 𝜑∕2. As 𝜑 → 0,
ΓL moves up toward the real axis, and we obtain

∫ΓL

→ ∫
0

∞

|x|−1∕2e−i(𝜋−0)dx

x + 2
= −∫

∞

0

−|x|−1∕2dx

x + 2
= ∫

∞

0

dx√
x(x + 2)

= I
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as well. On the large circle, ΓR, we apply the ML inequality:

|||||∫↶ΓR

||||| ≤ 2𝜋R × max
|||||| e−i𝜃∕2√

R(Rei𝜃 + 2)

|||||| =
2𝜋

√
R

R + 2
→ 0 as R → ∞.

On the small circle around the branch point, Γ
𝜖
, we also apply the ML inequality:

|||||∫↷Γ𝜖
||||| ≤ 2𝜋𝜖 × max

||||||
e−i𝜃∕2√

𝜖(𝜖ei𝜃 + 2)

|||||| =
2𝜋

√
𝜖

𝜖 + 2
→ 0 as 𝜖 → 0.

Assembling the pieces, we have

∫↺Γ
z−1∕2dz
z + 2

= 𝜋

√
2 = ∫ΓU

+ ∫↶ΓR

+ ∫ΓL

+ ∫↷Γ𝜖 = 2I,

from which we obtain, finally, I = 𝜋∕
√

2.
More complicated integrations with branch cuts can be imagined, but the prin-

ciples remain the same:

� The contour of integration must not cross a branch cut.
� When the contour runs along a branch cut, the integrand must be evaluated

using the argument of z specified by the branch cut.
� Indent around branch points and use the ML inequality.

If a pole is on a branch cut, the contour is indented around the pole without crossing
the branch cut (Figure 8.34). The contribution of the pole is obtained in the usual
way, being careful to get the argument of z right, according to the branch cut.

FIGURE 8.34 When a pole is on a branch cut, the contour is indented on both the upper and
lower paths.
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8.7 COMPLEX INTEGRATION AND THE
FOURIER TRANSFORM

In earlier chapters it was shown how to calculate Fourier transforms by direct eval-
uation of the Fourier integral and by using Fourier transform theorems to express a
desired transform in terms of known transform pairs. Up to this point, direct integra-
tion has relied on finding the antiderivative of f (x)e−i2𝜋𝜈x or F(𝜈)ei2𝜋𝜈x for a particular
f or F. If an antiderivative could not be found, the integral could not be done. This
blockage can sometimes be removed by using complex integration.

The general approach is introduced by the following example. In an earlier
chapter we calculated the Fourier transform of f (t) = e−atU(t), which was F(𝜈) =

1
a+i2𝜋𝜈

. Let us now consider how to do the inverse transform:

I = ∫
∞

−∞

ei2𝜋𝜈t

a + i2𝜋𝜈
d𝜈.

The transform F is not absolutely integrable, so we will try to perform the inversion
as a transform in the limit with a rectangular convergence factor (Theorem 5.14),

I = lim
R→∞∫

R

−R

ei2𝜋𝜈t

a + i2𝜋𝜈
d𝜈 ,

and use complex integration. Consider

∫↺Γ
ei2𝜋ztdz
a + i2𝜋z

on the usual semicircular contour. There is a simple pole at z = ia∕2𝜋. The residue
is

Res

[
ei2𝜋zt

a + i2𝜋z
,

ia
2𝜋

]
= e−at

2𝜋i
,

and the contour integral is e−at. This looks promising.
Next we apply the ML inequality on the semicircular arc, z = Rei𝜃 .|||||∫↶ΓR

ei2𝜋ztdz
a + i2𝜋z

||||| ≤ 𝜋R × max
||||||

exp(−2𝜋Rt sin 𝜃)√
a2 + (2𝜋R)2 − 4𝜋aR sin 𝜃

|||||| ,

where 𝜃 ranges from 0 to 𝜋. As R → ∞, it appears that the denominator will cancel
the R out front. As for the exponential, exp(−2𝜋Rt sin 𝜃), because 𝜃 ∈ [0, 𝜋] we will
have sin 𝜃 ≥ 0. We know that R > 0, as well. But what about t? If t is positive, the
exponential will decay as R → ∞, except at the endpoints, 𝜃 = 0 and 𝜃 = 𝜋. As
either of the endpoints is approached, sin 𝜃 approaches 0, and | exp(−2𝜋Rt sin 𝜃)|
approaches 1 as its upper bound. The ML bound, then, would be 1

2
as R → ∞. But

0 and 𝜋 are isolated points; for all other 𝜃 the exponential decays and experience
suggest that the integral will still converge to 0 as desired. Something much worse
happens if t is negative: the exponential grows rather than decays, and the integral is
unbounded.

The following result provides the tool we need to resolve these issues.
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k > 0

k < 0

FIGURE 8.35 Jordan’s lemma holds for k > 0 in the upper half-plane, and k < 0 in the
lower half-plane. In the lower half-plane, the contour is traversed in the negative direction.

Theorem 8.12 (Jordan’s lemma). Let f be a function which is analytic (a) in the
UHP domain DU = {z = Rei𝜃 : R > R0 > 0, 𝜃 ∈ [0,𝜋]} or (b) in the LHP domain
DL = {z = Rei𝜃 : R > R0 > 0, 𝜃 ∈ [−𝜋, 0]}. That is, f is analytic in the U(L)HP
except for a finite number of isolated singularities which are within R0 of the ori-

gin. Further, assume that lim
R→∞

|||f (Rei𝜃
)||| = 0 uniformly with respect to 𝜃. Then, on

a semicircular contour ΓU (ΓL) of radius R in the U(L)HP, centered at the origin
(Figure 8.35),

lim
R→∞∫↶ΓU

f (z)eikzdz = 0 k > 0

lim
R→∞∫↶ΓL

f (z)eikzdz = 0 k < 0.

(8.22)

Proof: We will prove Jordan’s lemma for k > 0. The proof for k < 0 is identical. On
the contour, z = Rei𝜃 , 𝜃 ∈ [0,𝜋] and dz = iRei𝜃d𝜃. Making these substitutions,|||||∫↶ΓU

f (z)eikzdz
||||| = ||||∫ 𝜋

0
f (Rei𝜃)e−kR sin 𝜃eikR cos 𝜃iRei𝜃d𝜃

||||
≤ ∫

𝜋

0

|||f (Rei𝜃)||| e−kR sin 𝜃Rd𝜃.

The uniform convergence of f to zero as R → ∞ enables us to bound it above by 𝜖,
independent of 𝜃, and pull it outside the integral, giving|||||∫↶ΓU

f (z)eikzdz
||||| ≤ 𝜖R∫

𝜋

0
e−kR sin 𝜃d𝜃 = 2𝜖R∫

𝜋∕2

0
e−kR sin 𝜃d𝜃,

where in the last step we used the fact that the integrand is symmetric about 𝜃 = 𝜋∕2.
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0  π/2 π  
0

1

θ

sin θ

2 /πθ

FIGURE 8.36 On the interval (0,𝜋∕2), sin 𝜃 > 2𝜃∕𝜋. Consequently, e− sin 𝜃
< e−2𝜃∕𝜋 .

We need to show that this upper bound goes to zero. The strategy is to replace
e−R sin 𝜃 by something larger (i.e., bound it above) and show that the new integral goes
to zero. On the interval (0,𝜋∕2), sin 𝜃 > 2𝜃∕𝜋 (Figure 8.36), so e−kR sin 𝜃

< e−2kR𝜃∕𝜋 ,
and we have |||||∫↶ΓR

f (z)eikzdz
||||| ≤ 2𝜖R∫

𝜋∕2

0
e−kR sin 𝜃d𝜃

< 2𝜖R∫
𝜋∕2

0
e−2kR𝜃∕𝜋d𝜃 = 𝜋𝜖

k

(
1 − e−kR)

<
𝜋𝜖

k
.

Finally, 𝜖 → 0 as R → ∞, completing the proof.

Corollary 8.13. If a function fulfills the conditions for Jordan’s lemma in the UHP
and LHP,

∫
∞

−∞
f (x)eikxdx =

⎧⎪⎪⎨⎪⎪⎩
2𝜋i

∑
zm∈UHP

Res
[
f (z)eikz, zm

]
, k > 0

−2𝜋i
∑

zm∈LHP

Res
[
f (z)eikz, zm

]
, k < 0

. (8.23)

The minus sign in the k < 0 case occurs because the contour is traversed in the
negative direction (Figure 8.35).

When applying Jordan’s lemma to the Fourier transform, the parameter k will
correspond to a time or frequency variable, for example, k = 2𝜋t . Frequency and time
can be both positive and negative, so it will be necessary to perform two integrals, one
for k > 0 and one for k < 0, closing the contour in the UHP and LHP, respectively.

Example 8.24. We will work through the previous example completely, using
Jordan’s lemma. We seek to calculate the inverse Fourier transform of F(𝜈) = 1

a+i2𝜋𝜈
.

Take F(z) = 1
a+i2𝜋z

and k = 2𝜋t. We must first consider whether the conditions are
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t > 0

t < 0

ia/2π

FIGURE 8.37 Contours for calculating the Fourier transform ∫ ∞
−∞

ei2𝜋𝜈td𝜈

a+i2𝜋𝜈
. The contour in the

upper half-plane is for t > 0, and the one in the lower half-plane is for t < 0.

met. It is easy to see (Figure 8.37) that F is analytic in the UHP for |z| > a∕2𝜋 and
in the entire LHP. We must next check that F(z) → 0 uniformly on the semicircular
arcs as R → ∞. With z = Rei𝜃 ,|||| 1

a + i2𝜋z

|||| = |||| 1
a + i2𝜋Rei𝜃

|||| = 1√
(2𝜋R)2 − 4𝜋aR sin 𝜃 + a2

In the UHP, the denominator has a minimum at 𝜃 = 𝜋∕2 for all R, so√
(2𝜋R)2 − 4𝜋aR sin 𝜃 + a2 ≥ √

(2𝜋R − a)2 = 2𝜋R − a,

and so |||| 1
a + i2𝜋z

|||| ≤ 1
2𝜋R − a

,

for all 𝜃 in the UHP. In the LHP, the denominator has minima at 𝜃 = −𝜋 and 𝜃 = 0,
and |||| 1

a + i2𝜋z

|||| ≤ 1√
(2𝜋R)2 + a2

,

for all 𝜃 in the LHP. Both of these bounds go to zero as R → ∞, independently of 𝜃,
verifying the uniformity of the convergence. Hence, Jordan’s lemma is applicable.

Taking k = 2𝜋t, we close the contour in the UHP for t > 0 and in the LHP for
t < 0 (Figure 8.37). One pole is encircled in the UHP, and the complex integral is
e−at, as previously calculated. Now we may assert that the integral on the semicircular
arc is zero for t > 0, by Jordan’s lemma. Closing the contour in the LHP, there are
no poles within the contour, so the complex integral is zero. The integral on the
semicircular arc is also zero for t < 0, by Jordan’s lemma.
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When t = 0, the Fourier kernel drops out, and we have to calculate the integral
∫ ∞
−∞

d𝜈
a+i2𝜋𝜈

. The easiest way here is to rationalize the denominator, obtaining

∫
∞

−∞

d𝜈
a + i2𝜋𝜈

= ∫
∞

−∞

a d𝜈
a2 + (2𝜋𝜈)2

− ∫
∞

−∞

i2𝜋𝜈 d𝜈
a2 + (2𝜋𝜈)2

.

The second integrand is an odd function, so we know the integral will be zero. The
other integral has a known antiderivative (or adapt Example 8.23), leading to the
result

∫
∞

−∞

a d𝜈
a2 + (2𝜋𝜈)2

= 1
2𝜋 ∫

∞

−∞

2𝜋∕a

1 + (2𝜋𝜈∕a)2
d𝜈 = 1

2𝜋
arctan

(2𝜋𝜈
a

)||||∞−∞ = 1
2
.

Putting all the pieces together, we finally have

F−1
{ 1

1 + i2𝜋𝜈

}
= ∫

∞

−∞

ei2𝜋𝜈td𝜈
1 + i2𝜋𝜈

=
⎧⎪⎨⎪⎩

e−at, t > 0
1
2

, t = 0

0, t < 0
= e−atU(t).

The value of 1
2

at t = 0 is what we expect—at a jump discontinuity, the transform
takes on the average value of the right and left limits.

Example 8.25. Calculate the inverse Fourier transform of 1∕i𝜋𝜈 which we know
should turn out to be sgn x. We will need to take the integral as a Cauchy principal
value because of the singularity at 𝜈 = 0:

F−1
{ 1

i𝜋𝜈

}
= P∫

∞

−∞

1
i𝜋𝜈

ei2𝜋𝜈x d𝜈 = lim
R→∞

lim
𝜖→0∫

−𝜖

−R
+∫

R

𝜖

1
i𝜋𝜈

ei2𝜋𝜈x d𝜈.

We will use the complex integral

∫↺Γ

1
i𝜋z

ei2𝜋xz dz

on indented contours, avoiding the pole at the origin (Figure 8.38).
To use Jordan’s lemma, we observe that |1∕i𝜋z| = 1∕𝜋R → 0 as R → ∞, so

we are assured that the integral along ΓR+ in the UHP will go to zero as R → ∞, for
2𝜋x > 0. The integral along ΓR− in the LHP will also go to zero for 2𝜋x < 0. There

are no other poles inside either contour, so ∫↶ΓR+

= ∫↷ΓR−

= 0. However, there will be

contributions from the indentations. For x > 0,

∫↷Γ
𝜖+

= −i𝜋 Res

[
ei2𝜋xz

i𝜋z
, 0

]
= −1

(the path is traversed in the negative direction). The integrals along the real axis
become I, the integral we seek, as R → ∞ and 𝜖 → 0. Thus, we have

∫↺UHP
→ I + ∫↶ΓR+

+ ∫↷Γ𝜖+ = I + 0 − 1 = 0,
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x > 0

x < 0

ΓR+

ΓR–

Γε+

Γε–

FIGURE 8.38 Contours for calculating the Fourier transform ∫ ∞
−∞

ei2𝜋𝜈xd𝜈

i𝜋𝜈
. The contour in the

upper half-plane is for x > 0, and the one in the lower half-plane is for x < 0. Both contours
are indented around the pole at the origin.

so I = 1 for x > 0. For x < 0, the contribution from the indented contour (traversed
in the positive direction) is

∫↶Γ𝜖− = +i𝜋 Res

[
ei2𝜋xz

i𝜋z
, 0

]
= 1.

Thus,

∫↻LHP
→ I + ∫↷ΓR−

+ ∫↶Γ
𝜖−

= I + 0 + 1 = 0,

so I = −1 for x < 0. Finally, when x = 0, the integral becomes

P∫
∞

−∞

d𝜈
i𝜋𝜈

= 0,

because 1∕i𝜋𝜈 is an odd function. Putting it all together,

F−1
{ 1

i𝜋𝜈

}
= P∫

∞

−∞

ei2𝜋𝜈x

i𝜋𝜈
d𝜈 =

⎧⎪⎨⎪⎩
1, x > 0
0, x = 0
−1, x < 0

= sgn x.

Once this result is in hand, it is a simple matter to calculate the inverse Fourier
transform of sinc 𝜈 (see the problems).

Similar methods apply to integrals of the form

∫
∞

−∞
f (t) cos𝜔t dt and ∫

∞

−∞
f (t) sin𝜔t dt.
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R–R

i

–i

FIGURE 8.39 Semicircular contour for integrating ∫ ∞
−∞

cos x dx
x2 + 1

.

Because ei𝜔t = cos𝜔t + i sin𝜔t, either of these integrals can be performed (for real f )
by calculating the Fourier transform ∫ ∞

−∞ f (t)ei𝜔tdt and extracting either the real or
imaginary part. Indeed, we must do them in this way, as we shall now show.

Let us try to integrate ∫ ∞
−∞

cos x dx
x2+1

. Proceeding naively, consider the contour

integral ∫↺Γ

cos z dz
z2+1

on the usual semicircular contour (Figure 8.39).

There is one pole inside the contour, and its residue is Res
[

cos z
z2+1

, i
]
= cos i

2i
,

so the contour integral evaluates to 𝜋 cos i = 𝜋 cosh 1. The portion along the real
axis is the integral we seek. Next we apply the ML inequality to the integral on the
semicircular arc:|||||∫ΓR

cos z dz
z2 + 1

||||| ≤ 𝜋R × max
|||| cos Rei𝜃

R2ei2𝜃 + 1

||||
= 𝜋R × max

[
cos Rei𝜃 cos Re−i𝜃

(R2ei2𝜃 + 1)(R2e−i2𝜃 + 1)

]1∕2

= 𝜋R × max

[
1
2

cosh(2R sin 𝜃) + cos(2R cos 𝜃)

R4 + 2R2 cos 2𝜃 + 1

]1∕2

.

Without going any farther, we can see we are in trouble. The presence of cosh(2R sin 𝜃)
dooms this upper bound to blow up as R → ∞. The ML inequality fails, and so
consequently our attempt at calculating the integral fails.

The problem is that the cosine is unbounded on the semicircular arc. The sine
function presents the same difficulty:||sin Rei𝜃|| = [

sin Rei𝜃 sin Re−i𝜃
]1∕2

=
[1

2

(
cosh(2R sin 𝜃) − cos(2R cos 𝜃)

)]1∕2
.

However, if we combine the two into a complex exponential,

cos(Rei𝜃) + i sin(Rei𝜃) = exp
(
iRei𝜃

)
= exp (iR(cos 𝜃 + i sin 𝜃))

= e−R sin 𝜃eiR cos 𝜃 ,
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FIGURE 8.40 Left to right: Real part, imaginary part, and maximum modulus of cos kz,
sin kz, and exp(ikz). The functions cos kz (top) and sin kz (middle) grow exponentially in the
upper half-plane for k > 0, but exp(iz) (bottom) is bounded.

their bad features will cancel each other. On an arc in the UHP, 𝜃 ∈ [0, 𝜋], sin 𝜃 is
nonnegative and |||exp

(
iRei𝜃)||| = e−R sin 𝜃 ≤ 1.

If the rest of the integrand dies away as R → ∞, we win (Figure 8.40).

Example 8.26. To calculate ∫ ∞
−∞

cos x dx
x2+1

, consider the integral

∫
∞

−∞

eixdx
x2 + 1

= ∫
∞

−∞

(cos x + i sin x)dx

x2 + 1

and take the real part of the result. Proceeding with the complex integral ∫↺Γ

eiz dz
z2+1

,

we want to use Jordan’s lemma with k = 1, so we will seek to close the contour in
the UHP. Take f (z) = 1

z2+1
and observe that f has only one isolated singularity in the
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UHP, at z = i, and f is analytic for |z| > 1. Next show that f goes to zero uniformly
as |z| → ∞. In the UHP, 1

z2+1
= 1

R2ei2𝜃+1
, with 𝜃 ∈ [0,𝜋]. Now,|||| 1

R2ei2𝜃 + 1

|||| = 1√
R4 + 2R2 cos 2𝜃 + 1

.

The denominator has a minimum at 𝜃 = 𝜋∕2, so we may write√
R4 + 2R2 cos 2𝜃 + 1 ≤ √

R4 − 2R2 + 1 = R2 − 1,

and ||| 1
z2+1

||| ≤ 1
R2−1

. As R → ∞, ||| 1
z2+1

||| → 0 uniformly. Jordan’s lemma applies. Using
Equation 8.23 with k = 1,

∫
∞

−∞

eix dx
x2 + 1

= 2𝜋i Res

[
eiz

z2 + 1
, i

]
= 𝜋e−1

.

Thus,

∫
∞

−∞

cos x dx
x2 + 1

= Re 𝜋e−1 = 𝜋e−1
.

The value of the companion integral,

∫
∞

−∞

sin x dx
x2 + 1

= Im 𝜋e−1 = 0,

could have been anticipated from the odd symmetry of the integrand.

Example 8.27. Calculate the area under the sinc function, ∫ ∞
−∞

sin𝜋x
𝜋x

dx. Using
the area theorem, if you know the Fourier transform of sinc, you have the answer
easily. But let us attack it directly. Because sin𝜋x is the imaginary part of ei𝜋x, we
can calculate the integral

P∫
∞

−∞

ei𝜋x

𝜋x
dx

and take the imaginary part of the result. Consider the complex integral

∫↺Γ

ei𝜋z

𝜋z
dz

on a half-circle contour in the UHP (k = 𝜋 > 0), indented at the origin (Figure 8.38,
again). All the criteria for Jordan’s lemma are obviously met, and the integral we
seek reduces to

P∫
∞

−∞

ei𝜋x

𝜋x
dx = −∫↷Γ

𝜖

ei𝜋z dz
𝜋z

= i𝜋 Res

[
ei𝜋z

𝜋z
, 0

]
= i.

Therefore, ∫ ∞
−∞

sin𝜋x
𝜋x

dx = Im i = 1.
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Example 8.28. Calculate the area under the sinc2 function. Knowing the Fourier
transform of either sinc or sinc2, this area calculation is easy, using Parseval’s theorem
or the area theorem, respectively. But again, it is instructive to calculate the integral
directly.

In the previous example we replaced sin 𝜋x by ei𝜋x and took the imaginary part
of the integral. One might think that here, we would replace sin2

𝜋x by (ei𝜋x)2 = ei2𝜋x.
But this is wrong, because Im ei2𝜋x is sin 2𝜋x, not sin2

𝜋x. We have to go a different
way. Using a trigonometric identity, we can write sin2

𝜋x = 1
2
(1 − cos 2𝜋x), which

gives the integral

∫
∞

−∞
sinc2 x dx = ∫

∞

−∞

1 − cos 2𝜋x
2𝜋2x2

dx.

This integral cannot be broken into the sum of two integrals, because each integral
will be infinite (do you see why?). Rather, they must be considered as one unit. We
write 1 − cos 2𝜋x = Re

(
1 − ei2𝜋x

)
and proceed as above with a complex integral,

that is,

∫↺Γ

1 − ei2𝜋z

2𝜋2z2
dz.

This integrand appears to have a double pole at the origin, but one of them is
removable:

lim
z→0

z ⋅
1 − ei2𝜋z

2𝜋2z2
= lim

z→0

1 − ei2𝜋z

2𝜋2z

= lim
z→0

−i2𝜋ei2𝜋z

2𝜋2
= 1

i𝜋
,

demonstrating that the pole is actually first order.
The complex integral is taken around the usual semicircular contour, with an

indentation above the pole at z = 0 (cf. Figure 8.38). There being no singularities

within the contour, ∫↺Γ = 0. The contribution from the pole is due to the indentation:

lim
𝜖→0∫↷Γ

𝜖

= −1
2

2𝜋i Res

[
1 − ei2𝜋z

2𝜋2z2
, 0

]
= −1.

Next, we have to show that the complex integral goes to zero on the large semicircle
ΓR as R → ∞. If we break the integral into two pieces, each piece has to go to zero by
itself. The first integrand, 1

2𝜋2z2 , clearly presents no problems. The second integrand,
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ei2𝜋z

2𝜋2z2 , satisfies the conditions for Jordan’s lemma (with k = 2𝜋). Hence, ∫↶ΓR

→ 0 as

R → ∞. We therefore have

lim
R→∞

lim
𝜖→0∫↺Γ

= 0

= ∫
∞

−∞
sinc2x dx + lim

R→∞∫↶ΓR

+ lim
𝜖→0∫↷Γ𝜖

= ∫
∞

−∞
sinc2x dx − 1,

so

∫
∞

−∞
sinc2x dx = 1.

Here is yet another solution. Integrating sinc2x once by parts,

∫
∞

−∞

sin2
𝜋x

𝜋2x2
dx = − sin2

𝜋x
𝜋2x

||||
∞

−∞
+ ∫

∞

−∞

2𝜋 sin𝜋x cos𝜋x
𝜋2x

dx

= 0 + ∫
∞

−∞

sin 2𝜋x
𝜋x

dx,

and making a change of variable 𝜉 = 2x,

∫
∞

−∞
sinc2 x dx = ∫

∞

−∞

sin𝜋𝜉
𝜋𝜉

d𝜉 = 1

(using a previous result).

This example shows that there is often more than one way to solve a problem.
The more tools you have in your kit, the more problems you can solve, and with
experience, you will get better at picking the right tool for a particular job. As much
as possible, you want to avoid the situation where, figuratively, you only have a
hammer so you have to make every problem look like a nail!

Finally, here is a nice example of Fourier transformation using complex inte-
gration on a different sort of contour.

Example 8.29. Calculate the Fourier transform of the Gaussian, f (x) = e−𝜋x2
. The

approach here, calculating the Fourier integral, is more direct than the differential
equation method in Section 5.2. Working first with the Fourier integral,

∫
∞

−∞
e−𝜋x2

e−i2𝜋𝜈xdx = ∫
∞

−∞
e−𝜋(x2+i2𝜈x)dx.

Complete the square in the exponent,

x2 + i2𝜈x = x2 + i2𝜈x − 𝜈
2 + 𝜈

2 = (x + i𝜈)2 + 𝜈
2,
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(a) (b)

–R R –R R

iν iν

FIGURE 8.41 Contour for calculating the Fourier transform of the Gaussian, e−i𝜋x2
. (a) The

original path of integration. (b) An equivalent, and more convenient, path.

obtaining a similar integral,

∫
∞

−∞
e−𝜋x2

e−i2𝜋𝜈xdx = ∫
∞

−∞
e−𝜋𝜈

2
e−𝜋(x+i𝜈)2

dx.

This new integral can be written as the integral of the complex function
e−𝜋𝜈

2
e−𝜋z2

on a path z = x + i𝜈, where 𝜈 is constant and x ranges from −∞ to
∞ (Figure 8.41a):

∫
∞

−∞
e−𝜋𝜈

2
e−𝜋(x+i𝜈)2

dx = lim
R→∞∫

R+i𝜈

−R+i𝜈
e−𝜋𝜈

2
e−𝜋z2

dz.

The function e−𝜋z2
is analytic in the entire complex plane. Therefore, the

integral from −R + i𝜈 to R + i𝜈 is independent of the path taken. We can deform the
path so that it runs along the real axis (Figure 8.41b):

∫
R+i𝜈

−R+i𝜈
e−𝜋𝜈

2
e−𝜋z2

dz = ∫
−R+i0

−R+i𝜈
+ ∫

R+i0

−R+i0
+ ∫

R+i𝜈

R+i0
.

As R → ∞, the integral along the real axis is just

∫
∞

−∞
e−𝜋𝜈

2
e−𝜋x2

dx = e−𝜋𝜈
2

∫
∞

−∞
e−𝜋x2

dx = e−𝜋𝜈
2
.

Along one vertical segment of the contour, we have

∫
−R+i0

−R+i𝜈
= −∫

𝜈

0
e−𝜋𝜈

2
e−𝜋(−R+iy)2

idy

= ie−𝜋R2
e−𝜋𝜈

2

∫
𝜈

0
e+𝜋y2

ei2𝜋Rydy.
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Apply the ML inequality,||||ie−𝜋R2
e−𝜋𝜈

2

∫
𝜈

0
e+𝜋y2

ei2𝜋Rydy
|||| ≤ e−𝜋R2

e−𝜋𝜈
2

max |||e+𝜋y2
ei2𝜋Ry||| × 𝜈

= e−𝜋R2
e−𝜋𝜈

2
e+𝜋𝜈

2 × 𝜈

= 𝜈e−𝜋R2
.

This goes to zero as R → ∞, for all values of 𝜈. The same fate befalls the integral on
the other vertical segment. Putting the pieces together, we have the transform:

F
{

e−𝜋x2
}
= 0 + e−𝜋𝜈

2 + 0 = e−𝜋𝜈
2
.

⋆Special Properties of Bandlimited Functions
As a further illustration of the significant interplay between the Fourier transform and
complex analysis, we shall explore some special properties of bandlimited functions.
Recall that a function f (t) is bandlimited if its Fourier transform F(𝜈) is identically zero
for |𝜈| > B. We have already seen (Theorem 6.8) that a bandlimited function can be,
in principle, exactly reconstructed from samples taken at a spacing Δt no greater than
1∕2B. Here, as there, we will restrict attention to bandlimited functions that are also
square integrable, that is, they have finite energy E = ∫ ∞

−∞ |f (t)|2 dt = ∫ B
−B |F(𝜈)|2 d𝜈.

Because F is in L2(−B, B), it is also in L1(−B, B) (Figure 4.5; also see the
problems). Then, because F ∈ L1(−B, B), f is bounded and continuous as well as
square integrable. By the derivative theorem,

f ′(t) = ∫
B

−B
i2𝜋𝜈 F(𝜈) ei2𝜋𝜈t d𝜈.

That is, f ′ is also bandlimited. Moreover, its Fourier transform i2𝜋𝜈F is also square
integrable (see the problems), and by the same argument, is absolutely integrable, so
f ′ is also bounded, square integrable, and continuous. Repeated application of these
steps leads to the conclusion that f is infinitely continuously differentiable in addition
to being bounded and square integrable. This is an intuitively satisfying result, for
we know that the smoother a function is, the more rapidly its Fourier transform goes
to zero as |𝜈| → ∞, and vice versa. The Fourier transform of a bandlimited function
goes exactly to zero at |𝜈| = B, which is an extremely rapid decay, so the bandlimited
function ought to be extremely smooth. (Consider, for example, the sinc ⟷ rect
Fourier pair.)

Now, moving to complex analysis, let t be a complex variable. On the real line,
all of f ’s properties still hold, but what happens when we move off the real line into
the complex plane? We may well expect

f (t) = ∫
B

−B
F(𝜈) ei2𝜋𝜈t d𝜈

to be analytic everywhere, inheriting the analytic properties of ei2𝜋𝜈t because F is
rather well behaved. Indeed, this turns out to be the case.8

8Apply the Cauchy–Riemann conditions, assuming that one may differentiate under the integral sign. For
a proof that does not require this assumption see Papoulis (1977, p. 186).



556 CHAPTER 8 COMPLEX INTEGRATION

Furthermore, it can be shown that in the complex plane a bandlimited function

f can grow no faster than a simple exponential as |t| → ∞, |f (t)| ≤ √
2BE e2𝜋B|t| (see

the problems). A function bounded in this way is said to be of exponential type.9

So we have that a bandlimited function f (t), continued into the complex plane by
letting t be complex, is entire (even better than infinitely continuously differentiable)
and of exponential type (asymptotically bounded as |t| → ∞). The remarkable fact
is that the converse is also true. The complete result may be stated as follows. The
proof is formidable and not included here.10

Theorem 8.14 (Paley–Wiener). Let f ∈ L2 on the real axis. f is bandlimited if
and only if, in the complex plane, it is an entire function of exponential type.

A fundamental consequence of the Paley–Wiener theorem is the fact that a
function cannot simultaneously be bandlimited and time limited. The archetypal
transform pair is rect ⟷ sinc. Any bandlimited function f has a Fourier transform
of the form F = G ⋅ rect, and the convolution theorem then gives f = g ∗ sinc. It
certainly seems unlikely that such a convolution can be time limited. The conclusive
demonstration comes through complex analysis.

Suppose that f is bandlimited. By the Paley–Wiener theorem, it is an entire
function in the complex plane. Suppose f is also time limited. Then it is zero for |t|
greater than some T . On any interval where f is constant, all of its derivatives are
zero, and it has a Taylor series expansion with only one term, the constant (here,
zero). Now, because f is entire in the complex plane, there are no singularities and
the radius of convergence of this (trivial) series is infinite.11 So, f is zero not only for|t| > T on the real axis, but throughout the complex plane, including the whole real
axis. That is, the only function which is simultaneously bandlimited and time limited
is trivial, f = 0.12

8.8 SUMMARY

1. ML inequality (Equation 8.2):||||∫Γ f (z)dz
|||| ≤ max

z∈Γ
|f (z)|

⏟⏞⏞⏟⏞⏞⏟

“M”

×Length of Γ
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

“L”

for f continuous on Γ.

9Entire functions of exponential type are treated comprehensively in Boas (1954).
10Papoulis (1977, pp. 258–260), referring to Boas (1954). For the original development, see Paley and
Wiener (1934, pp. 1–13). For an extension to generalized functions, see Strichartz (1994, pp. 112–117).
11Extending a real Taylor series to represent a complex function is an application of the principle of
analytic continuation. This topic is covered in many complex variable texts, for example, the previously
cited works of Wunsch, LePage, and Hahn and Epstein. A particularly nice introduction is Saff and Snider
(1976, pp. 224–232).
12The reader who wishes to pursue further the deep connections between complex analysis and Fourier
transforms is referred to Dym and McKean (1972) and Paley and Wiener (1934).
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2. Cauchy’s integral theorem (Equation 8.5):

∫↺Γ
f (z)dz = 0

for f analytic on and inside a simple closed contour Γ.

3. Two important consequences of Cauchy’s integral theorem, deformation of
contour (Corollary 8.2) and path independence (Corollary 8.3), enable arbitrary
contours to be replaced by convenient ones.

4. Cauchy’s integral formula (Equations 8.8 and 8.10).

∫↺Γ

f (z)dz

z − z0
= 2𝜋i f (z0),

∫↺Γ

f (z)

(z − z0)n+1
dz = 2𝜋i

f (n)(z0)

n!
,

where f is analytic on and inside a simple closed contour Γ, and z = z0 is inside
(not on) Γ.

5. Laurent series. If f has a pole of order N at z = z0, then on a punctured disk
r > |z − z0| > 0,

f (z) = c−N(z − z0)−N +⋯ + c−1(z − z0)−1

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

principal part

+ c0 + c1(z − z0) +⋯
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

regular part

c−1 = Residue of f at z0

6. Residue formula (Equations 8.11, 8.16, and 8.17):

∫↺Γg(z)dz = 2𝜋i
∑

zk inside Γ
Res

[
g, zk

]
,

where, for a general Nth order pole,

Res[g, zk] = 1
(N − 1)!

lim
z→zk

dN−1

dzN−1

[
(z − zk)Ng(z)

]
and

Res

[
b(z)
a(z)

, zk

]
=

b(zk)

a′(zk)
,

when g(z) = b(z)∕a(z) and zk is a simple pole.

7. Several types of real integral, including the Fourier transform, can be performed
by including the real axis as part of a closed contour in the complex plane and
evaluating a complex integral.

PROBLEMS

8.1. Calculate the integral I = ∫↺Γ

dz

z
on the contour shown in Figure 8.42, by direct integration

(not using Cauchy’s theorem).
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21 3

1

–1

Γ

FIGURE 8.42 Contour of integration for Problem 8.1.

8.2. Using the Cauchy integral theorem and Cauchy integral formula, evaluate the following
integrals:

(a) ∫↺Γ

z−1

z2+3
dz, where Γ is a circle of radius 1 centered at z = i.

Answer: − 𝜋√
3
+ i𝜋

(b) ∫↺Γ

cos(z−1)

z2−z−2
dz, where Γ is a circle of radius 3 centered at the origin.

Answer: 2𝜋i

3

[
cos(1) − cos(2)

]
(c) ∫↺ exp z

(z−1)2(z+1)
dz, around the square formed by x = ±4, y = ±4.

Answer: i𝜋 cosh(1)

(d) ∫↺Γ

ez dz

z2− 5
2

z+1
, where Γ is the unit circle.

8.3. Generalize the derivation of Equation 8.17 to obtain a formula for the other coefficients
c−n in the principal part of a function’s Laurent expansion.

8.4. For each of the functions below, identify and classify all the isolated singularities, and
calculate their residues. Where indicated, also calculate an integral.

(a) f (z) = z

z2−z−2
.

(b) f (z) = z−1

z2+3z−4
; calculate ∫↺|z|=2

f (z)dz.

(c) f (z) = z

cos 𝜋z−1
; calculate ∫↺|z|= 3

2

f (z)dz.

(d) f (z) = cos 𝜋z

z3−3z−2
.

(e) f (z) = z+1

ei𝜋z+1
.

(f) f (z) = z sin
(

1

z

)
. This result may be counterintuitive.

8.5. Calculate the integral ∫ 𝜋

−𝜋
d𝜃

a+b cos 𝜃
= 2𝜋√

a2−b2
for a > b ≥ 0, a and b real.

8.6. Calculate the Fourier series coefficients, {cn}, for the function f (𝜃) = 2

2+cos 𝜃
. Hint: Show

that, because of symmetry, it is sufficient to calculate the coefficients only for n ≥ 0 or
n ≤ 0.
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8.7. Calculate, by contour integration,

(a) ∫ ∞
−∞

dx

x2+x+1
= 2𝜋√

3
.

(b) ∫ ∞
−∞

x2+1

x4+1
dx = 𝜋

√
2.

(c) ∫ ∞
−∞

x

x3+1
dx.

8.8. Using contour integration, calculate the L2 norm of the function f (x) = x∕
(
1 + x2

)
.

8.9. Show that ∫ ∞
0

xm

xn+1
dx = 𝜋

n sin
(
𝜋(m+1)

n

) , where n and m are nonnegative integers and n − m ≥
2. Hint: Use the pie-shaped contour.

8.10. Calculate the integral f [n] = 1

2𝜋i∫↺Γ
F(z)zn−1dz (which happens to be the inverse Z trans-

form, see Chapter 9) for the function F(z) = 1

1−0.5z−1 , where Γ is a closed contour
encircling all singularities. Consider the n ≥ 0 case (easy) separately from the n < 0
case (harder).

8.11. Calculate the integral g(t) = ∫ ∞
−∞

dx

(t−x)(1+x2)
, where the integral is interpreted as a Cauchy

principal value. This type of integral is called a Hilbert transform and is important in
physics and in communication theory (also see Chapter 9).

8.12. Consider the functions f (x) = 1∕(x2 + 1) and g(x) = x∕(x2 + 1). Calculate, by direct
integration (no Fourier transforms), the following convolutions, which were calculated
in Chapter 5 using the convolution theorem.

(a) f ∗ f (x) = 2𝜋

x2+4
.

(b) f ∗ g(x) = 𝜋x

x2+4
.

(c) g ∗ g(x) = −2𝜋

x2+4
.

8.13. Integrals with branch cuts

(a) Calculate the integral ∫ ∞
−∞

log |x| dx

x2+4
. (Consider the complex integral ∫↺Γ

Log z dz

z2+4
on a

closed semicircular contour in the UHP.)

(b) Calculate the integral ∫ ∞
−∞

log |x| dx

x2+1
. Use the same contour as part (a).

8.14. The noise equivalent bandwidth of an electronic filter is defined to be the equivalent
width of the squared magnitude of its frequency response:

NEB =
∫

∞

−∞
|H(𝜔)|2d𝜔

|H(0)|2 .

The NEB is a convenient single-number measure of a real filter’s noise removing ability.
If white (spectrally flat) noise with power density N0 watts/unit bandwidth is put through
the filter, the output noise power is just N0 NEB.

The family of Butterworth filters is defined by a frequency response of the form

|H(𝜔)|2 = 1
(𝜔∕a)2n + 1

,

where a is the cutoff (half-power) frequency, |H(a)|2 = 1∕2, and n is the order of the
filter (number of poles in the transfer function H(s)).
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(a) Using contour integration, calculate the integral ∫ ∞
−∞ |H(𝜔)|2d𝜔 and show that

NEB = 𝜋a

n sin
(

𝜋

2n

) .

Use a pie-shaped contour and use the fact that the integrand is even.

(b) Plot NEB vs. n. Determine an asymptotic value for large n. Interpret the graph and
the asymptote physically.

8.15. Using contour integration, show that ∫ ∞
0

x𝛽dx

x2+a2 = 𝜋a𝛽

2a cos 𝛽𝜋

2

, where a > 0, x𝛽 ≥ 0, and−1 <

𝛽 < 1. Use the contour in Figure 8.33.

8.16. Calculate, using complex integration, the areas under the sinc function and the Dirichlet
kernel:

(a) ∫ ∞
−∞ sinc x dx

(b) ∫ 𝜋

−𝜋
sin(2N+1)𝜃

sin 𝜃
d𝜃

Comments:
� If you substitute sin(2N + 1)𝜃 = ei(2N+1)𝜃−e−i(2N+1)𝜃

2i
, and then let z = ei𝜃 , as usual, you

will end up having to do two contour integrals, one of which is pretty tedious (try
this and see where it leads, but do not actually do the integrals). Instead, observe that

∫ 𝜋

−𝜋
sin(2N+1)𝜃

sin 𝜃
d𝜃 = Im ∫ 𝜋

−𝜋
ei(2N+1)𝜃

sin 𝜃
d𝜃, and you only have to do one complex integration

(then take the imaginary part of the result).
� While the original integrand, sin(2N+1)𝜃

sin 𝜃
, has removable singularities at 𝜃 = k𝜋, the new

integrand, ei(2N+1)𝜃

sin 𝜃
, actually has poles at 𝜃 = k𝜋. They happen to sit on the path of

integration, but you know what to do about that.

8.17. Calculate the inverse Fourier transform of sinc 𝜈. Begin by writing sin𝜋𝜈 = ei𝜋𝜈−e−i𝜋𝜈

2i
,

then use the calculation in the text for 1

i𝜋𝜈
.

8.18. Calculate the inverse Fourier transform of sinc2(𝜈). One way, of course, is to use the
result of the previous problem together with the convolution theorem. But it is instructive
to calculate the integral directly.

8.19. Show that, for an n-times differentiable function f ,

∫
b

a

f (x)
xn+1

dx = 1
n! ∫

b

a

f (n)(x)
x

dx −
n−1∑
k=0

(n − k − 1)!
n!

f (k)(x)
xn−k

|||||
b

a

.

This result, which is based on integration by parts, can be a useful first step in simplifying
integrals with higher order poles. Note that all integrals may be taken as Cauchy principal
values if required.

8.20. Calculate the integral ∫ ∞
−∞ sinc3(x) dx by two methods:

(a) Direct integration.

(b) Using Fourier theorems and known results for sinc and sinc2.

8.21. Use contour integration to calculate F−1
{

2

1+(2𝜋𝜈)2

}
= e−|x|.

8.22. Use complex integration to show that the Fourier transform of sech 𝜋x is sech 𝜋𝜈. Here
are some steps you should follow:

(a) First, sech 𝜋x = 1

cosh 𝜋x
. Show that sech 𝜋x has an infinite number of first-order

poles, at the locations i∕2 + ik, where k is an integer.
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FIGURE 8.43 For Problem 8.22. Contour for calculating the Fourier transform of sech 𝜋x.

(b) Using the usual semicircular contour will result in an infinite series of residues as the
radius of the semicircle, R, goes to infinity. This is clearly an inconvenient approach.
In problems of this type, a rectangular contour, like the one shown in Figure 8.43,
is often useful.

So consider the complex integral ∫↺Γ

e−i2𝜋𝜈zdz

cosh 𝜋z
. As usual, the integral along the real axis

(Γ1) is the one we seek. You should find that the integral along the upper horizontal
segment (Γ3) is closely related to the integral along Γ1.

(c) Then, use the ML inequality to show that the integrals along Γ2 and Γ4 go to zero as
R → ∞.

(d) Calculating the residue at the pole and putting all the pieces together, you should
obtain sech 𝜋𝜈.

8.23. Using the partial fraction expansion of 1

sin 𝜋x
(see Example 9.30 in the next chapter),

show that

DN (x) = sin(2N + 1)𝜋x
sin 𝜋x

= (2N + 1)
∞∑

k=−∞
sinc[(2N + 1)(x − k)].

That is, the Dirichlet kernel is the periodic replication of the sinc.

8.24. Bandlimited functions

(a) Let f ∈ L2 be bandlimited, with Fourier transform F ∈ L2(−B, B). The total energy is‖f‖2
2 = ‖F‖2

2 = E. Using the Cauchy–Schwarz inequality, show that F ∈ L1(−B, B)

as well, and ‖F‖1 ≤ √
2BE. Hint: Write F(𝜈) as a product, F(𝜈) rect(𝜈∕2B).

(b) Show that f (n) is also bandlimited, and its Fourier transform (i2𝜋𝜈)nF(𝜈) also has
finite energy:

∫
∞

−∞
|(i2𝜋𝜈)nF(𝜈)|2 d𝜈 = ∫

B

−B

|(i2𝜋𝜈)nF(𝜈)|2 d𝜈 ≤ M < ∞,

and calculate the upper bound M. Hint: Use the Cauchy–Schwarz inequality again.
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(c) Assuming that one may differentiate under the integral sign,13 apply the
Cauchy–Riemann conditions to

f (t) = ∫
B

−B

F(𝜈) ei2𝜋𝜈t d𝜈

with complex t, and show that f is an entire function in the complex plane.

(d) Verify that f is of exponential type, with |f (t)| ≤ √
2BE e2𝜋B|t|. Hint: In the Fourier

integral,

f (t) = ∫
B

−B
F(𝜈) ei2𝜋𝜈t d𝜈,

write t = |t| (cos𝜑 + i sin𝜑), where 𝜑 = Arg(t). Then show||ei2𝜋𝜈t|| = e−2𝜋𝜈|t| sin𝜑 ≤ e2𝜋B|t|
for |𝜈| ≤ B.

13F must be bounded to guaranteed the validity of this move. See Folland (2002, p. 192).



CHAPTER 9
LAPLACE, Z, AND HILBERT
TRANSFORMS

In this chapter we look at three other important transforms that are closely related to
the Fourier transform. The venerable Laplace transform,

FL(s) = ∫
∞

0
f (t) e−st dt,

is widely used in the analysis and design of dynamic systems. In addition to its
“operational” properties, we will explore some of its connections with complex
analysis and the Fourier transform. The Z transform,

FZ(z) =
∞∑

n=0

f [n]z−n,

fulfills the same role for discrete-time systems that the Laplace transform does for
continuous-time systems and has a similar relationship to the discrete-time Fourier
transform. Finally, we consider some important properties of one-sided functions,
such as the impulse responses of causal LTI systems. These relationships, which
exist for all four Fourier transforms, are collectively known as Hilbert transforms.

9.1 THE LAPLACE TRANSFORM

We have earlier seen how to define and calculate the Fourier transform for func-
tions which are absolutely integrable (L1), square integrable (L2), or slowly growing
(e.g., polynomials), and for generalized functions (e.g., 𝛿(x)). The Laplace transform
extends the capability of the Fourier transform to certain important functions of rapid
growth which are not Fourier transformable.

9.1.1 Definition, Basic Properties

The Laplace transform is typically applied in situations where the functions of inter-
est are one sided, that is, zero for t < 0. So to begin, consider a one-sided function

Fourier Transforms: Principles and Applications, First Edition. Eric W. Hansen.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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f : [0,∞) → ℂ which is not absolutely integrable. If f can be “rescued” by a conver-
gence factor—in particular, if |f (t)e−𝜎t| is integrable for some real 𝜎—then a Fourier
transform can be calculated:

F{f (t)e−𝜎t} = ∫
∞

0
f (t)e−𝜎te−i2𝜋𝜈tdt.

Earlier, this was a strategy for calculating transforms of functions like U(t). After
calculating the Fourier transform of f (t)e−𝜎t, the limit as 𝜎 → 0, if it existed, was
defined to be the Fourier transform of f . But if the limit does not exist, or if we
choose not to take the limit, we can define a Fourier-like transform that depends on
the convergence parameter 𝜎 as well as the frequency 𝜔 = 2𝜋𝜈.

Definition 9.1 (Laplace transform). Let f : [0,∞) → ℂ. If f (t)e−𝜎t ∈ L1 for some
real 𝜎, then the Laplace transform of f is defined:

FL(s) = ∫
∞

0
f (t)e−st dt, (9.1)

where s = 𝜎 + i𝜔 = 𝜎 + i2𝜋𝜈. The operator notation for the Laplace transform is
FL = L {f }.

The Laplace transform was advanced in the early 1900s as a method for solving
differential equations in electrical circuit theory1 and remains a valuable tool for
solving linear, constant-coefficient ODEs. Its popularity is due to three features.

1. Like the Fourier transform, it converts linear, constant-coefficient ODEs (i.e.,
from LTI systems) to algebraic equations, which are easily solved.

2. The Laplace transform allows initial conditions and driving functions, and
hence homogeneous and particular solutions, to be handled straightforwardly
in one step rather than separately.

3. Solutions obtained by Laplace transform can include unstable (growing) behav-
ior as well as stable (decaying) behavior. In many cases, sufficient knowledge
about the dynamic behavior of an LTI system can be inferred from the Laplace
transform without returning to a time-domain expression for the solution.

Example 9.1. Consider the following initial value problem:

y′ + 2y = U(t), y(0) = −1.

In the classical method, one first solves the homogeneous equation, y′ + 2y = 0,
obtaining yh(t) = Ae−2t. Then, by educated guesswork, one obtains the particular
solution; in this case, the simple result is yp(t) = 1. The complete solution is y(t) =
Ae−2t + 1. The initial condition (just prior to switching the input on) requires y(0) =
A + 1 = −1, so A = −2. Thus, y(t) = 1 − 2e−2t, t > 0. The difficulty of the method
increases with higher order equations and more complicated driving functions.

1See the historical notes in Carslaw and Jaeger (1941, pp. viii–xvi).
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The transform approach begins by taking the Laplace transform of both sides
of the equation, using identities which will be proven later,

L{y′} = sYL(s) − y(0) and L{U(t)} = 1
s

The differential equation is transformed into an algebraic equation:

sYL(s) + 1 + 2YL(s) = (s + 2)YL(s) + 1 = 1
s
.

Solving for YL,

YL(s) = −1
s + 2
⏟⏟⏟

from initial condition

+ 1
s(s + 2)
⏟⏟⏟

from driving function

.

Inverting the transforms (these will also be proven later),

y(t) = −e−2t

⏟⏟⏟

homogeneous

+ 1 − e−2t

⏟⏟⏟

particular

= 1 − 2e−2t, t > 0.

Extensive tables of Laplace transform pairs have been developed,2 and with one
of these and a few simple rules, many practical problems in linear system theory can
be solved. Here we will endeavor to develop a deeper understanding of the Laplace
transform beyond the simple rules, making connections with the Fourier transform,
generalized functions, and complex analysis.

Existence of the Laplace Transform—Region of Convergence
The Laplace transform integral converges absolutely for those values of s whose real
parts, 𝜎, are sufficiently large to overcome any growing tendencies in f :||||∫ ∞

0
f (t)e−st dt

|||| ≤ ∫
∞

0

|||f (t)e−(𝜎+i𝜔)t||| dt = ∫
∞

0
|f (t)| e−𝜎t dt < ∞. (9.2)

This condition may hold for all 𝜎 or some 𝜎 or may fail to hold for any 𝜎. If the
integral converges for some value 𝜎 = 𝜎0, then it may be shown to converge for all
𝜎 > 𝜎0 (i.e., more aggressive convergence factors). The smallest such 𝜎0 is called
𝜎a, the abcissa of convergence, and the half-plane Re s > 𝜎a is called the region of
convergence.

Example 9.2. Let f (t) = eatU(t). When a < 0 this is the one-sided decaying expo-
nential, whose Fourier transform is known. When a = 0 this is the step function,
whose Fourier transform exists as a generalized function. When a > 0 this is a grow-
ing exponential, which is not Fourier transformable. But for any 𝜎 > a, the product
f (t)e−𝜎t = e−(𝜎−a)U(t) decays exponentially and is therefore absolutely integrable.
The Laplace transform of f may be calculated:

FL(s) = ∫
∞

0
eate−stdt = −e−(s−a)t

s − a

|||||
∞

0

= 1
s − a

− lim
R→∞

e−(s−a)R

s − a
.

2Cannon (1967, pp. 731–755) and Abramowitz and Stegun (1972).
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Now, with s = 𝜎 + i𝜔, e−(s−a)R = e−(𝜎−a)R e−i𝜔R. The second factor oscillates with
unit amplitude. The first factor decays exponentially as R → ∞ if 𝜎 − a > 0, giving
a convergent integral. Thus, we have the result:

FL(s) = L{eatU(t)} = 1
s − a

, Re s > a (9.3)

The abcissa of convergence is a, and the region of convergence is the half-plane to
the right of 𝜎 = a.

For a decaying exponential, for example, e−2t, the Laplace transform exists for
any 𝜎 > −2 and is 1

s+2
. The Laplace transform of the unit step function (a = 0) exists

for any 𝜎 > 0 and is 1
s
. Even a growing exponential like e2t can be transformed—

here is where the Laplace transform has an edge over the Fourier transform. For
𝜎 > 2, the convergence factor e−𝜎t dies faster than e2t grows. The Laplace transform
of e2tU(t) exists and is 1

s−2
.

The Laplace transform of eatU(t) has a pole at s = −a. When a < 0 (decaying
exponential), this pole is in the left half of the S-plane, and when a > 0 (grow-
ing exponential), the pole is in the right half-plane. The more rapid the decay, the
farther to the left is the pole, and the more rapid the growth, the farther to the
right is the pole. When a = 0 (step function), the pole is at s = 0, on the imaginary
axis.

Example 9.3 (Laplace transform of a cosine). Let f (t) = cos bt U(t). The Laplace
transform integral is

L {cos bt} = ∫
∞

0

1
2

(eibt + e−ibt) e−st dt

= ∫
∞

0

1
2

e−(s−ib)t dt + ∫
∞

0

1
2

e−(s+ib)t dt

= 1
2

1
−(s − ib)

e−(s−ib)t
|||||
∞

0

+ 1
2

1
−(s + ib)

e−(s+ib)t
|||||
∞

0

.

The exponentials, e−𝜎te−i(𝜔±b), will go to zero at the upper limit for any 𝜎 > 0. This
establishes the region of convergence for this transform, Re s > 0. At the lower limit,
both exponentials are 1, and we obtain

L {cos bt} = 1
2

1
s − ib

+ 1
2

1
s + ib

= s
s2 + b2

, Re s > 0. (9.4)

The Laplace transform has two poles, at s = ±ib, and a zero at s = 0.

For some functions, the Laplace transform integral converges uniformly
as well as absolutely. Recall that an infinite series converges uniformly if
supx | f (x) − SN (x)| → 0 as N → ∞—the maximum error gets smaller as more terms



9.1 THE LAPLACE TRANSFORM 567

are included in the series (Definition 4.2). Analogously, an integral ∫ ∞
0 f (x, y) dy

converges uniformly if

sup
x

|||||∫
∞

0
f (x, y) dy − ∫

A

0
f (x, y) dy

||||| = sup
x

||||∫ ∞

A
f (x, y) dy

|||| → 0 as A → ∞.

The partial integral ∫ A
0 fulfills the same role as the partial sum SN of an infinite series.3

If an integral converges absolutely and uniformly, then limits may be taken under the
integral sign, limx→b ∫ ∞

0 f (x, y) dy = ∫ ∞
0 limx→b f (x, y) dy, and if f is differentiable in

x, d
dx
∫ ∞

0 f (x, y) dy = ∫ ∞
0

𝜕

𝜕x
f (x, y) dy.

The functions of exponential order are a large class of useful functions, for
which it is relatively easy to prove absolute and uniform convergence as well as other
properties of the Laplace transform.

Definition 9.2 (Exponential order). A function f : [0,∞) → ℂ is of exponential
order4 if there are real constants 𝛼, C > 0, and T > 0, such that f is bounded above
by an exponential:

|f (t)| < Ce𝛼t (9.5)

for t > T .

For a function of exponential order, then, |e−𝛼tf (t)| < C for for sufficiently
large t.

Example 9.4 (Some functions of exponential order and their Laplace trans-
forms).

1. e2tU(t) is of exponential order, because e2te−𝛼t will decay to zero for any 𝛼 ≥ 2.
We have already seen that FL(s) = 1

s−2
, Re s ≥ 2.

2. Any finite sum of simple exponentials,
∑N

k=1 Akebkt, is of exponential order,
with 𝛼 ≥ max{bk}. Generalizing the previous result, we have

L
{

N∑
k=1

Akebkt

}
=

∑
k

Ak

s − bk
, Re s > max{bk}. (9.6)

3. cos bt U(t) is of exponential order. |cos bt U(t)| ≤ 1 < Ce𝛼t for any 𝛼 ≥ 0 and
C > 1. And, as we saw earlier, the Laplace transform is

L {cos bt U(t)} = s
s2 + b2

, Re s > 0.

3Folland (2002, pp. 336 ff).
4Exponential order is not the same as exponential type (e.g., Theorem 8.14). Exponential type is a property
of entire functions in the complex plane. Exponential order is a property of functions on the real line.
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4. tnU(t) is of exponential order, 𝛼 > 0, for all n. (No polynomial can grow faster
than an exponential.) Integrating the Laplace integral once by parts,

∫
∞

0
tne−st dt = tne−st

−s

||||∞0 − ∫
∞

0
ntn−1 e−st

−s
dt

= n
s ∫

∞

0
tn−1e−stdt, Re s > 0.

We can repeat this step n − 1 more times, obtaining at last

L{tnU(t)} = ∫
∞

0
tne−st dt = n!

sn ∫
∞

0
e−stdt

= n!
sn+1

, Re s > 0. (9.7)

5. The functions tneateibtU(t) which comprise the solutions of linear, constant-
coefficient, ordinary differential equations are of exponential order (𝛼 > a).
Using the above result for tn and a change of variable, we have

L{tneateibtU(t)} = ∫
∞

0
tneateibte−st dt = ∫

∞

0
tne−(s−(a+ib))t dt

= n!
(s − (a + ib))n+1

, Re s > a. (9.8)

6. The square pulse rect
(

t−T∕2
T

)
is of exponential order. It is identically zero for

t > T , so the exponential can be growing or decaying (𝛼 > −∞). The Laplace
transform is

L
{

rect

(
t − T∕2

T

)}
= ∫

T

0
e−stdt = e−st

−s

||||T0
= 1 − e−sT

s
, Re s > −∞. (9.9)

There is a removable singularity at s = 0. This function is entire, and the region
of convergence is the whole complex plane, Re s > −∞. This is true in general
for time-limited functions (compare the Paley–Wiener theorem, 8.14).

7. sinc(t) U(t) is of exponential order. There is a removable singularity at t = 0.
The function decays like 1∕t, slower than an exponential, but multiplication
by any decaying exponential (𝛼 > 0) speeds up the decay satisfactorily. The
Laplace transform is

L {sinc(t) U(t)} = 1
𝜋

arctan
𝜋

s
, Re s > 0. (9.10)

The details of the calculation are deferred to the problems.

8. e+t2 is not of exponential order. Because t2 grows faster than t as t → ∞, there
is no way that e−𝛼t can overcome et2 , for any choice of 𝛼. (In contrast, e−t2

decays rapidly and is of exponential order for all choices of 𝛼, positive and
negative.)
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In addition to absolute and uniform convergence, it can be shown that the
Laplace transform of a function of exponential order goes to zero as 𝜎 → ∞ in the
region of convergence (consider the above examples). These properties are also more
generally true,5 but most functions of practical interest are of exponential order and
we shall confine attention to them.

The Laplace transform is bounded and analytic in its region of convergence. We
have boundedness as a consequence of absolute convergence. We will not attempt
a proof of analyticity, but simply observe that convergence implies an absence of
singularities, which in turn implies analyticity.6

⋆ More about the Region of Convergence—The Two-Sided Transform
In the simple example eatU(t) ⟼ 1

s−a
worked earlier, the Laplace transform integral

was convergent only for Re s > a. The complex function 1
s−a

is analytic everywhere
except at the pole, s = a, but it only represents a Laplace transform for Re s > a,
where the transform integral converges.

One might ask if 1
s−a

is the Laplace transform of some other function in the
opposite half-plane, Re s < a. Convergence of the Laplace integral for eatU(t) hinges
on the behavior of the complex exponential e−(s−a)t. IfRe s < a, the exponential blows
up as t → ∞ and decays as t → −∞. Imagine then, the function eatU(−t) which is
zero for t > 0, and consider how the Laplace transform for this function should be
defined. If we simply change the limits of integration in Equation 9.1 to accommodate
the change in domain, we have

FL(s) = ∫
0

−∞
eate−stdt = − e−(s−a)t

s − a

||||
0

−∞

= − 1
s − a

+ lim
T→−∞

e−(s−a)T

s − a
.

The limit will exist if e−(s−a)T decays for negative T; that is, Re (s − a) must be less
than zero, or Re s < a. So, we will have

L{eatU(−t)} = − 1
s − a

, Re s < a.

Comparing this with the transform of eatU(t), we see that the pole is at the same
location, but the region of convergence is flipped (Figure 9.1).

The Laplace transforms of the functions eatU(t) and eatU(−t) are superficially
the same (they are, after all, just two halves of the same function). They are distin-
guished by the region of convergence.

5See LePage (1980, pp. 289–298) for a discussion of functions not of exponential order; also Papoulis
(1977, pp. 224–225). It can be shown that the Laplace transform F(s) will go to zero as s → ∞ along any
ray in the region of convergence. And, similar to the Riemann–Lebesgue lemma for the Fourier transform,
F(𝜎 + i𝜔) → 0 as |𝜔| → ∞ for every 𝜎 in the region of convergence.
6A proof may be found in LePage (1980, pp. 297–299).
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t t

t t

a a

a a

FIGURE 9.1 Regions of convergence for the Laplace transforms of two functions. Top,
left: f (t) = eatU(t), a < 0. Bottom, left: f (t) = eatU(−t), a < 0. Top, right: f (t) = eatU(t), a < 0.
Bottom, right: f (t) = eatU(−t), a < 0.

We will say that a function f which is zero for t ≥ 0 is left sided and define the
Laplace transform of a left-sided function:

FL(s) = ∫
0

−∞
f (t)e−stdt. (9.11)

The left-sided and right-sided transforms may be combined into a general two-sided
transform:

FL(s) = ∫
∞

−∞
f (t)e−stdt. (9.12)

It can be evaluated as the sum of two integrals:

FL(s) = ∫
0

−∞
f (t)e−stdt + ∫

∞

0
f (t)e−stdt

= ∫
∞

0
f (−t)estdt + ∫

∞

0
f (t)e−stdt. (9.13)

One usually uses the Laplace transform to solve initial value problems, or to
analyze real linear systems, which must be causal. Noncausal systems occasionally
turn up in certain applications of system theory and may be approximated in practice
by digital filters.

Example 9.5. Consider the function f (t) = ea|t|, the two-sided exponential, which
decays in both directions when a < 0. The left-sided piece of the transform is

∫
0

−∞
f (t)e−stdt = ∫

0

−∞
e−ate−stdt = 1

s + a
, Re s < −a

and the right-sided piece is

∫
∞

0
f (t)e−stdt = ∫

∞

0
eate−stdt = 1

s − a
, Re s > a.
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t t

t t

?

FIGURE 9.2 Regions of convergence for the Laplace transforms of four functions. All four
transforms have poles at s = ±a. Top, left: f (t) = ea|t|, a < 0. Bottom, left: f (t) = ea|t|, a > 0.
Top, right: f (t) = 2 sinh at U(t). Bottom, right: what is f (t) with this region of convergence?

The two-sided transform will exist in their common region of convergence. If a < 0,
so f is decaying in both directions, then the pole at s = a is in the left half-plane and
the pole at s = −a is in the right half-plane. The regions of convergence, Re s < −a
for the left-sided piece, and Re s > a for the right-sided piece, overlap in a strip
between the two poles, −a > Re s > a. So we say

L{ea|t|} = 1
s + a

− 1
s − a

= 2a
s2 − a2

, −a > Re s > a.

On the other hand, if a > 0, so f grows in both directions, the two regions of con-
vergence are disjoint. The pole for the left-sided piece is in the left half-plane at
s = −a, and the region of convergence extends to the left, Re s < −a. The pole for
the right-sided piece is in the right half-plane at s = a, and the region of convergence
extends to the right, Re s > a. There being no common region of convergence, the
Laplace transform fails to exist anywhere (Figure 9.2).

Now let us consider a different function, f (t) = 2 sinh at U(t), which is one
sided. Its Laplace transform is

FL(s) = ∫
∞

0
2 sinh at e−st dt = ∫

∞

0
eate−st dt − ∫

∞

0
e−ate−st dt

= 1
s − a

− 1
s + a

= 2a
s2 − a2

, Re s > |a|.
Except for the different region of convergence, this transform is the same as the one
for ea|t| (Figure 9.2). There is yet another function whose transform is 2a

s2−a2 , but with
region of convergence Re s < −a. Can you figure out what it is?

The region of convergence is a critical part of the specification of a two-sided
transform. In the usual system analysis application of the Laplace transform, where
all functions are right sided, the region of convergence is always the half-plane to
the right of the rightmost singularity, so it is not necessary to specify it explicitly. In
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a two-sided world, however, if you want to determine the time-domain function f (t)
that corresponds to the function FL(s), you must specify the region of convergence.

You may recall from system theory that a right half-plane pole indicates that a
system is unstable, that is, the time response grows without bound as t increases. A
left half-plane pole corresponds to a stable system, one whose time response decays
as t increases. The systems under question are, of course, causal; their time responses
are right sided. If we suspend disbelief for a moment and consider an anticausal
system, one with a left-sided time response, we find the opposite. A stable response
decays as t decreases (toward −∞), and an unstable response grows without bound
as t → −∞. A pole in the right half-plane may belong to an unstable, causal system
or a stable, anticausal system, and a pole in the left half-plane may belong to a stable,
causal system or an unstable, anticausal system.

Relationship of the Laplace and Fourier Transforms
A stable, causal system has its poles in the left half-plane. The region of convergence
is the half-plane to the right of the rightmost pole and includes the imaginary axis. A
stable, anticausal system has its poles in the right half-plane. The region of conver-
gence is the half-plane to the left of the leftmost pole, including the imaginary axis.
The region of convergence of the Laplace transform for a stable, two-sided system
response is a strip that also includes the imaginary axis.

If a system response is stable, whether it is right sided, left sided, or two sided,
the regions of convergence of the Laplace transform include the imaginary axis. The
Laplace transform may then be evaluated along the imaginary axis, s = i𝜔:

FL(i𝜔) = ∫
∞

−∞
f (t)e−i𝜔tdt,

which we recognize as the Fourier transform of f (t), that is,

F(𝜈) = FL(i2𝜋𝜈). (9.14)

Example 9.6. In a previous chapter we calculated the Fourier transform pair,
e−tU(t) ⟼ 1

1+i2𝜋𝜈
(Equation 5.9). The Laplace transform of the same function is

1
s+1

(Equation 9.3), and substituting s = i2𝜋𝜈, we have 1
1+i2𝜋𝜈

.

This relationship between the Laplace and Fourier transforms is the reason,
in circuit theory, that one evaluates the transfer function HL(s), which is a Laplace
transform, along the i𝜔 axis in order to obtain the frequency response, a Fourier
transform (Figure 9.3). The figure shows the complex magnitude of the transfer
function of a classic second-order Butterworth filter, HL(s) = 1

s2+
√

2s+1
. There are

two poles, at s = −1±i√
2

. One may visualize the magnitude as a rubber sheet that is

“lifted” by the two poles. As an observer moves up the imaginary axis toward the
poles, the magnitude of the frequency response |HL(i𝜔)| increases. The response is
maximized in the near vicinity of the poles then falls off as the observation point
moves away from the poles to higher values of 𝜔.
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FIGURE 9.3 The Laplace transform, evaluated along the imaginary axis, gives the Fourier
transform. Shown here is the complex magnitude of the transfer function HL(s) = 1

s2+
√

2s+1
, a

second-order Butterworth filter with 𝜔c = 1. The magnitude response, |HL(i𝜔)|, is the section
along the imaginary axis. The pole locations are shown in the complex plane below the surface.
The poles “lift” the magnitude surface in such a way that the profile along the imaginary axis
is the characteristic Butterworth frequency response.

Here is another example that illustrates the relationship between the Laplace
and Fourier transforms.

Example 9.7 (Fourier and Laplace transforms of the step function). The Fourier
transform of the unit step function f (t) = U(t) was calculated in Chapter 6. The
Laplace transform is obtained from the transform of eatU(t) (Equation 9.3) by setting
a = 0. Comparing the two results,

F(𝜈) = 1
2
𝛿(𝜈) + 1

i2𝜋𝜈

FL(s) = 1
s

, Re s > 0. (9.15)

The region of convergence for the Laplace transform does not include the imaginary
axis. Attempting to obtain the Fourier transform by evaluating FL(i2𝜋𝜈) gives 1

i2𝜋𝜈
and misses the delta function. However, observe what happens if we take the limit of
FL as s = 𝜎 + i2𝜋𝜈 approaches the imaginary axis through the region of convergence
(𝜎 → 0+). This is, in effect, the same thing we did in Chapter 6 when we calculated the
Fourier transform of the signum and step functions by using exponential convergence
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factors. Writing

FL(𝜎 + i2𝜋𝜈) = 1
𝜎 + i2𝜋𝜈

= 𝜎 − i2𝜋𝜈
𝜎2 + (2𝜋𝜈)2

and taking the limit,

lim
𝜎→0+

FL(𝜎 + i2𝜋𝜈) = lim
𝜎→0+

𝜎

𝜎2 + (2𝜋𝜈)2
+ i lim

𝜎→0+

−2𝜋𝜈
𝜎2 + (2𝜋𝜈)2

.

The limit of the imaginary part is easily seen to be − 1
2𝜋𝜈

. For the real part, note

𝜎

𝜎2 + (2𝜋𝜈)2
= 𝜎

−1

1 + (2𝜋𝜈∕𝜎)2
.

The function (1 + (𝜋x)2)−1 has unit area (compare Example 8.23), and the sequence
of functions

( n
1+(n𝜋x)2

)
n>0 converges, in the generalized sense, to the delta function

𝛿(x) as n → ∞. Comparing 𝜎
−1 with n, the family of functions

(
𝜎
−1

1+(2𝜋𝜈∕𝜎)2

)
𝜎≥0 is

seen to converge to 𝛿(2𝜈) = 1
2
𝛿(𝜈) as 𝜎 → 0. Thus, we may say

lim
𝜎→0+

FL(𝜎 + i2𝜋𝜈) = 1
2
𝛿(𝜈) + 1

i2𝜋𝜈
= F(𝜈).

9.1.2 Laplace Transforms of Generalized Functions

Generalized functions were introduced in Chapter 6 to accommodate important func-
tions that failed to meet the normal existence criteria for the Fourier transform—in
particular, functions of slow growth (step, signum, sine, cosine, polynomials) and
singularities (the delta function and its derivatives). The Laplace transform takes care
of one-sided functions of slow growth without any special handling, because all of
these functions are of exponential order, for example, we have seen U(t) ⟼ 1∕s,
tU(t) ⟼ 1∕s2, cos bt U(t) ⟼ s∕(s2 + b2). These transforms converge absolutely
and uniformly and are analytic in the right half-plane, and they all are observed to
go to zero as Re s → ∞, reminiscent of the Riemann–Lebesgue lemma for Fourier
transforms. In this section we will develop the Laplace transform for the delta func-
tion and its derivatives; a full treatment of the Laplace transform for generalized
functions is beyond the scope of this text.7

Recall that a generalized function g is defined by its action on a set of testing
functions 𝜑, denoted by an integral symbol ∫ g(t)𝜑(t) dt. When g happens to be
a regular function, this is an actual integral, but when it is a singular function, we
interpret the symbol as the limit of a sequence of actual integrals, for example, for
the delta function,

∫ 𝛿(t)𝜑(t) dt = lim
n→∞∫

∞

−∞
ne−𝜋n2t2

𝜑(t) dt = 𝜑(0).

7Zemanian (1987, Chapter 8); Doetsch (1974), Chapters 12–14.
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The Laplace transform is made to fit this formalism by defining it as the action of a
right-sided generalized function on a right-sided testing function e−stU(t).8

But we run into a problem when we attempt to calculate the Laplace transform
of 𝛿(t). In the expression

FL(s) = ∫
∞

0
𝛿(t)e−st dt,

it seems like we ought to be able to use the sifting property and obtain FL(s) = 1;
indeed, that is the result you may remember from an earlier course in system theory.
But representing the delta function as a sequence of pulses like ne−𝜋n2t2 , which are
symmetric about the origin, we find that the lower limit of the integral, t = 0, is in
the center of the pulse. As n → ∞, half of the pulse will always be excluded from the
integral.

The solution is to redefine (slightly) the Laplace transform integral so that the
lower limit is t = 0−, that is,

FL(s) = ∫
∞

0−
f (t)e−st dt = lim

𝜖→0∫
∞

0−𝜖
f (t)e−st dt. (9.16)

The lower limit of the integral is approached from below, through negative values of
t. Now, in the sequence of integrals

∫
∞

0−𝜖
ne−𝜋n2t2 e−st dt,

as n increases and the pulses become more and more localized around 0, the integral
includes more and more of each pulse, and in the limit we have the expected result
𝛿(t) ⟼ 1. If the lower limit is instead taken to be 0+, the integral includes less and
less of each pulse as n → ∞, and in the limit the result will be zero.

The admission of singularities forces a distinction between 0− and 0+, that
is, 0 approached from below and 0 approached from above. Integrating from 0−

to ∞ includes the actions of singularities at the origin, while integrating from 0+

to ∞ excludes them. This distinction becomes important when we use the Laplace
transform to solve differential equations with driving functions and initial conditions.
For regular functions, the same results are obtained whether the lower limit is 0− or
0+. Therefore, we shall almost always use the 0− definition of the Laplace transform
(Equation 9.16), but when it is necessary to distinguish, we shall denote them L−
and L+:

L {𝛿(t)} = L− {𝛿(t)} = 1. (9.17)

8The transform kernel e−stU(t) is not a “good function”; although it is infinitely continuously differentiable
for t > 0, it is not rapidly decreasing for all s nor is it continuously differentiable at t = 0. This technical
difficulty is resolved in various ways. See Zemanian (1987) and Doetsch (1974); also Beerends, et al.
(2003, Chapter 13).



576 CHAPTER 9 LAPLACE, Z, AND HILBERT TRANSFORMS

We can also calculate transforms for the derivatives of the delta function. We
know (Equation 6.25) that

∫ 𝛿
(n)(t)𝜑(t) dt = (−1)n

𝜑
(n)(0).

The transform kernel e−st is infinitely continuously differentiable, so this result applies
to the Laplace transform of 𝛿(n) for all n:

L{𝛿(n)(t)} = ∫
∞

0−
𝛿

(n)(t) e−st dt = (−1)n dn

dtn
e−st

|||||0
= (−1)n(−s)ne−st||||0 = sn

. (9.18)

The Laplace transforms of the delta function and its derivatives are analytic
functions. Indeed, they are entire functions, not having any singularities in the
complex plane. Unlike the Laplace transforms of regular functions, however, they
do not go to zero as Re s → ∞; rather, they are constant (when n = 0) or blow up
(when n > 0).

9.1.3 Laplace Transform Theorems

There are several important theorems for the Laplace transform. Some are nearly
identical to Fourier transform theorems, and they are stated here without proof.
Others are unique to the Laplace transform. Except as noted, they apply to generalized
functions.

Linearity

Theorem 9.1 (Linearity). If f has Laplace transform FL, Re s > 𝜎f , and g has
Laplace transform GL, Re s > 𝜎g, then

L{f + g} = FL + GL, Re s > max{𝜎f , 𝜎g}. (9.19)

The region of convergence of FL + GL is the intersection of their respective
regions of convergence.

Example 9.8 (Laplace transform of (1 − eat)U(t)). The “saturating exponential”
function (1 − eat)U(t) is the difference of two functions with known Laplace trans-
forms:

U(t) ⟼ 1
s

, Re s > 0,

eatU(t) ⟼ 1
s − a

, Re s > Re a.

Using linearity, then,

(1 − eat)U(t) ⟼ 1
s
− 1

s − a
= −a

s(s − a)
. (9.20)

The intersection of the regions of convergence is Re s > max (0,Re a).
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Example 9.9 (Laplace transform of sin bt U(t)). The sine function is the sum
of two complex exponentials, sin bt = 1

2i
eibt − 1

2i
e−ibt. Using Equation 9.3 with a =

±ib,

L {sin bt U(t)} = L
{ 1

2i
eibt

}
+ L

{
− 1

2i
e−ibt

}
= 1

2i
1

s − ib
− 1

2i
1

s + ib
= b

s2 + b2
, Re s > 0. (9.21)

Symmetries
The Laplace transform has symmetry properties similar to those of the Fourier trans-
form.

Theorem 9.2 (Symmetry). If f has Laplace transform FL(s), Re s > 𝜎f , then

f ∗(t) ⟷ F∗
L(s∗), (9.22)

and if f is real, so f = f ∗,

F∗
L(s) = FL(s∗). (9.23)

When s = i𝜔, the latter relationship becomes F∗
L(i𝜔) = FL(−i𝜔), that is, FL(i𝜔)

is Hermitian. The region of convergence of F∗
L is the same as the region of convergence

of FL.

Shift and Modulation

Theorem 9.3 (Shift theorem). If f has Laplace transform FL, Re s > 𝜎a, then the
Laplace transform of f (t − T)U(t − T), T > 0 (shifted to the right), is

L{f (t − T)U(t − T)} = e−sT FL(s), Re s > 𝜎a. (9.24)

Also, for any 𝛼, real or complex,

L{e−𝛼tf (t)} = FL(s + 𝛼), Re s > 𝜎a −Re 𝛼. (9.25)

The step function, U(t − T), is here to remind us that f is assumed right sided,
because we are using the right-sided definition of the transform. The Laplace trans-
form of a left-shifted function, T < 0, is not covered by this theorem. Because the
lower limit of the integral cannot go below t = 0, a left shift causes f to be trun-
cated, which can turn f into a different function with a very different transform. For
example, a misapplication of the theorem would give 𝛿(t + 1) ⟼ e+s, while in fact
𝛿(t + 1) ⟼ 0. (However, e+s is the two-sided Laplace transform of 𝛿(t + 1).)

To illustrate Equation 9.25, consider the earlier example, with f (t) = e−2tU(t).
The Laplace transform is FL(s) = 1

s+2
, Re s > −2. If we multiply f (t) by e−t, then

according to the theorem, the Laplace transform of e−tf (t) is FL(s + 1) = 1
(s+1)+2

=
1

s+3
, Re s > −2 − 1 = −3. We see directly that this is so, for e−tf (t) = e−3tU(t), which

has Laplace transform 1
s+3

, Re s > −3. Multiplying the function by e−t causes it to
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decay faster; the more rapid decay shows up in the S-plane by the pole of the transform
moving to the left. If we multiply f (t) by e−ibt, the transform becomes 1

s+(2+ib)
. The

pole shifts up or down in the S-plane, and the region of convergence is still Re s > −2.

Dilation

Theorem 9.4 (Dilation). If f has Laplace transform FL,Re s > 𝜎f, then the Laplace
transform of f (at), a > 0, is

L{f (at)} = 1
a

FL

( s
a

)
, Re s >

𝜎f

a
. (9.26)

For example, changing e−tU(t) to e−2tU(2t) = e−2tU(t) changes the transform
from 1

s+1
to 1

2
1

s∕2+1
= 1

s+2
. The decay rate of the exponential is doubled, and the pole

is pushed farther into the left half-plane by a factor of two.

Differentiation

Theorem 9.5 (Derivative theorem). If f and its derivative f ′ are Laplace trans-
formable and f ⟼ FL, then

f ′ ⟼ sFL (9.27)

Proof: Following the usual procedure for the derivative of a generalized function,
Equation 6.23,

∫
∞

0−
f ′(t) e−st dt = −∫

∞

0−

f (t)
d
dt

e−st dt = ∫
∞

0−
f (t) se−st dt = sFL(s).

If f is a regular function, it is sufficient that f be piecewise smooth and of
exponential order. In addition, steps and impulses in f are differentiable and Laplace
transformable as generalized functions.

Example 9.10. Derivatives of one-sided functions are often impulsive. For exam-
ple,

d
dt

e−atU(t) = −ae−atU(t) + e−at U′(t)
⏟⏟⏟

=𝛿(t)

= 𝛿(t) − ae−atU(t).

The delta function results from the jump at t = 0 and may be thought of as the
derivative between t = 0− and t = 0+. The other term,−ae−atU(t), is the conventional
derivative for t > 0+. Both terms contribute to the Laplace transform:

L
{ d

dt
e−atU(t)

}
= ∫

∞

0−

[
𝛿(t) − ae−atU(t)

]
e−st dt = 1 − a

s + a
= s

s + a
.

And according to the derivative theorem, the transform is s ⋅ L{e−atU(t)} = s
s+a

.
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Example 9.11. The Laplace transforms of sin bt U(t) and cos bt U(t) are b
s2+b2 and

s
s2+b2 , respectively. Now, d

dt
sin bt U(t) = b cos bt U(t) + sin bt 𝛿(t) = b cos bt U(t),

and

L
{ d

dt
sin bt U(t)

}
= bs

s2 + b2
,

in agreement with the derivative theorem. For the derivative of cosine, the theorem
says

L
{ d

dt
cos bt U(t)

}
= s2

s2 + b2
,

which does not look like the Laplace transform of sin bt U(t), although d
dt

cos bt =
−b sin bt. The difference is due to the right-sidedness of these functions. There is a
jump in the cosine at the origin, which produces an impulse in the derivative:

d
dt

cos bt U(t) = −b sin bt U(t) + cos bt 𝛿(t) = 𝛿(t) − b sin bt U(t)

and L
{ d

dt
cos bt U(t)

}
= L {𝛿(t) − b sin bt} = 1 − b2

s2 + b2
= s2

s2 + b2
.

When there is a jump in f at the origin, the derivative has two terms. One is an
impulse at the origin caused by differentiating the jump, and the other is the derivative
of f away from the jump (t > 0+). The size of the jump is f (0+), so we may write this
relationship

f ′(t)|||t>0−
= f (0+) 𝛿(t) + f ′(t)|||t>0+

.

Then, Laplace transforming both sides, we have

∫
∞

0−
f ′(t) e−st dt

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟

=sFL(s)

= f (0+) + ∫
∞

0+
f ′(t) e−st dt,

which leads to another common version of the derivative theorem,

L+{f ′(t)} = sL− {f } − f (0+). (9.28)

Example 9.12 (Step and impulse). The impulse is the derivative of the step
function, 𝛿(t) = U′(t). The 0− and 0+ transforms of the impulse are

L−{𝛿(t)} = 1 and L+ {𝛿(t)} = 0,

depending on whether the impulse is included in the Laplace integral or not. The
derivative theorem gives, for the transform of U′(t),

L−{U′(t)} = sL− {U(t)} = s ⋅ 1
s
= 1,

L+{U′(t)} = sL− {U(t)} − U(0+) = s ⋅
1
s
− 1 = 0,

which agrees with the results for the impulse.
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The derivative theorem can be iterated to give the Laplace transform of higher-
order derivatives, for example, for a twice-differentiable function,

L−{f ′′} = s2L−{f }

L+{f ′′} = sL−{f ′} − f ′(0+)

= s[sL−{f } − f (0+)] − f ′(0+) = s2L+ {f } − sf (0+) − f ′(0+),

and for an n-times differentiable function,

L−{f (n)} = snL−{f }

L+{f (n)} = snL+{f } −
n∑

k=1

sn−kf (k−1)(0+). (9.29)

Also, as we had with the Fourier transform, there is a relationship for derivatives
of the Laplace transform. For a function f of exponential order (or any other f such that
the Laplace integral converges uniformly), we may differentiate under the integral
sign:

d
ds ∫

∞

0
f (t) e−st dt = ∫

∞

0
f (t)

d
ds

e−st dt = ∫
∞

0
−tf (t) e−st dt.

Repeating n times, we have the following result:

Theorem 9.6 (S-domain derivative theorem). If the Laplace transform integral
of f converges uniformly, then

L{tnf (t)} = (−1)n dnFL

dsn
. (9.30)

Example 9.13 (Laplace transform of a ramp). For the ramp function tU(t), the
theorem gives

tU(t) ⟼ − d
ds

L {U(t)} = − d
ds

1
s
= s2

. (9.31)

Integration

Theorem 9.7 (Integral theorem). Let g(t) = ∫
t

0
f (𝜏) d𝜏. Then

GL(s) = L
{
∫

t

0
f (𝜏) d𝜏

}
=

FL(s)

s
(9.32)

Proof: The integral g(t) is continuous and differentiable, so g′ = f and by the
derivative theorem,

g′ ⟼ sGL(s) = FL.
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The integral g(t) is also a right-sided function, so the region of convergence of
its Laplace transform is the half-plane to the right of all singularities of FL(s)∕s.

Convolution and Product of Functions

Theorem 9.8 (Convolution theorem). Let f and g have Laplace transforms FL
and GL, with abcissae of convergence 𝜎f and 𝜎g, respectively. The Laplace transform
of the convolution of f and g,

f ∗ g = ∫
t

0
f (𝜏)g(t − 𝜏) d𝜏,

is

L{f ∗ g} = FLGL, Re s > max(𝜎f , 𝜎g). (9.33)

When we studied the Fourier transform we saw that the convolution theorem
is the link between time- and frequency-domain descriptions of linear, time-invariant
systems. The convolution theorem with the Laplace transform fulfills the same role
for causal LTI systems.

Example 9.14 (A causal LTI system). Revisiting an earlier example (Example
9.1), but with zero initial conditions,

y′ + 2y = f (t), y(0) = 0,

after Laplace transforming both sides and collecting terms,

YL(s) = 1
s + 2

FL(s) = HL(s) FL(s),

where HL(s) = 1
s+2

is the system’s transfer function. Applying the convolution theo-
rem,

y(t) = h(t) ∗ f (t).

When the input f is an impulse, y = h is the impulse response. Using the known pair
eatU(t) ⟷ 1

s−a
, we have h(t) = e−2tU(t).

With a step function input, we can calculate the output directly in the time
domain (recall Example 5.18):

y(t) = h ∗ U(t) = e−2tU(t) ∗ U(t) = 1
2

(1 − e−2t)U(t).

We can also calculate the output using the convolution theorem. The Laplace trans-
forms of e−2tU(t) and U(t) are 1∕(s + 2) and 1∕s, respectively. Then the transform of
the output is

YL(s) = 1
s + 2

1
s
=

−1∕2

s + 2
+

1∕2

s
,

and the inverse transform is, using linearity,

y(t) = −1
2

e−2tU(t) + 1
2

U(t) = 1
2

(1 − e−2t) U(t).
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When initial conditions are zero, the output of a causal LTI system is the con-
volution of the impulse response and the driving function. When the initial conditions
are not zero, the h ∗ f term is joined by additional terms representing the system’s
response to the initial conditions.

Theorem 9.9 (Product theorem). Let f and g have Laplace transforms FL and
GL, with abcissae of convergence 𝜎f and 𝜎g, respectively. The Laplace transform of
the product fg is

L {fg} = 1
2𝜋i ∫

c+i∞

c−i∞
FL(z)GL(s − z) dz = 1

2𝜋i ∫
c+i∞

c−i∞
FL(s − z)GL(z) dz,

Re s > 𝜎f + 𝜎g, (9.34)

when the integral exists. The path of integration is a vertical line in the complex Z-
plane, in the common region of convergence of FL(z) and GL(s − z), or of FL(s − z)
and GL(z).

Proof: The derivation of this result requires the inverse Laplace transform integral,
to be discussed later. The inverse transform of FL(s) is

f (t) = 1
2𝜋i ∫

c+i∞

c−i∞
FL(z) e+zt dz,

where c is a real number in the region of convergence of FL (and, as we shall see,
also in the region of convergence of GL(s − z)). Substitute this integral for f in the
Laplace integral for L {fg}:

L {fg} = ∫
∞

0

[
1

2𝜋i ∫
c+i∞

c−i∞
FL(z) e+zt dz

]
g(t) e−st dt.

Assuming that the order of the integrations may be reversed,9 we have the double
integral:

L {fg} = 1
2𝜋i ∫

c+i∞

c−i∞
FL(z)

[
∫

∞

0
g(t) e−(s−z)t dt

]
dz.

The inner integral is GL(s − z). The path of integration must be located in the common
region of convergence of FL(z) and GL(s − z) in order to guarantee convergence. The
second form in Equation 9.34 is obtained by writing g(t) as an inverse transform and
substituting it into the integral for L {fg}.

Example 9.15 (Laplace transform of t sin bt U(t).). We begin with f (t) =
tU(t) ⟼ 1

s2 ,Re s > 0, and g(t) = sin bt U(t) ⟼ b
s2+b2 ,Re s > 0. Form the integral,

1
2𝜋i ∫

c+i∞

c−i∞
FL(s − z)GL(z) dz = 1

2𝜋i ∫
c+i∞

c−i∞

1
(s − z)2

b
z2 + b2

dz.

9We may anticipate that this is allowed based on experience with the Fourier transform. See LePage (1980,
pp. 343–347) for a discussion.
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The path of integration is located in the intersection of the half-planes Re (s − z) > 0
and Re z > 0, that is, the strip Re s > Re z > 0. There are poles at z = s and at
z = ±ib. The integrand falls off as |z|−4 in both the right and left half-planes, so
the contour may be closed either to the left or to the right. Closing to the right
encompasses the double pole at z = s. The integral is

1
2𝜋i ∫

c+i∞

c−i∞

1
(s − z)2

b
z2 + b2

dz = −Res

[
1

(s − z)2

b
z2 + b2

, z = s

]
= − d

dz
b

z2 + b2

||||z=s
= 2bs

(s2 + b2)2
, Re s > 0.

Closing the contour to the left gives the same result; the calculation is left as an
exercise for the reader.

Parseval’s Formula

Theorem 9.10 (Parseval). Let f and g have Laplace transforms FL and GL,
respectively. Then,

∫
∞

0
f (t)g∗(t) dt = 1

2𝜋i ∫
c+i∞

c−i∞
FL(s)G∗

L(−s∗) ds. (9.35)

The path of integration is a vertical line in the complex S-plane, in the common region
of convergence of FL(s) and G∗

L(−s). Proof follows from the product theorem.

Initial and Final Values
The asymptotic behaviors of the Laplace transform as s → 0 and as s → ∞ are closely
related to the behavior of the time function as t → ∞ and t → 0, respectively.

Theorem 9.11 (Initial value theorem). If f is differentiable and has Laplace
transform FL, then

lim
𝜎→∞

𝜎FL(𝜎) = f (0+), (9.36)

when the limit exists. The limit is taken along the real axis, s = 𝜎 + i0 = 𝜎.

Proof: sFL(s) and f (0+) are connected by the derivative theorem (9.28), L+{f ′(t)} =
sFL − f (0+). In its region of convergence, the Laplace transform goes to zero as
𝜎 → ∞. Thus,

lim
𝜎→∞

L+{f ′(t)} = 0

= lim
𝜎→∞

𝜎FL(𝜎) − f (0+).

We may identify the following cases of interest:

� If the Laplace transform falls off asymptotically like 1∕s, then the limit will be

finite. This case results if FL is rational, FL(s) =
∏

m(s−bm)∏
n(s−an)

, and the number of
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poles is one more than the number of zeros, for example, s
s2+b2 ⟼ cos bt U(t),

which → 1 as t → 0+.
� If the Laplace transform falls off faster than 1∕s, for example, 1∕s2, then

the limit will be zero. This is the case if the number of poles is more than one
greater than the number of zeros, for example, b

s2+b2 ⟼ sin bt U(t), which→ 0
as t → 0+. When the number of poles exceeds the number of zeros, a rational
function is called strictly proper.

� If the Laplace transform is constant or grows like a polynomial, then the limit
will be infinite. When there are terms like this in the transform, the time function
contains impulses, for example, s+1

s+2
= 1 − 1

s+2
⟼ 𝛿(t) − e−2t.

What is interesting in the last case is that, having performed one step of long
division, we are left with a strictly proper rational function for which the initial value
theorem gives a finite answer, namely lim

𝜎→∞ − 𝜎

𝜎+2
= −2, which is the limit as

t → 0+ of the non-impulsive part of the time function, −e−2t. Because the impulsive
part is supported at the point t = 0, we can speak of a limit as t → 0+ that stops short
of the impulses. This suggests a more general version of the initial value theorem.10

Theorem 9.12 (Generalized initial value theorem). Let f be continuous for t > 0
but possibly with a jump and impulsive functions at the origin. Its Laplace transform
FL(s) can have the form:

FL(s) = c0 + c1s +⋯ + cpsp + Fp(s),

where Fp falls off as 1∕|s|k, k ≥ 1. (If Fp is rational, the number of poles is at least
one more than the number of zeros.) Then

lim
𝜎→∞

𝜎Fp(𝜎) = f (0+),

where the limit is taken along the real axis, s = 𝜎 + i0.

Theorem 9.13 (Final value theorem). If f is differentiable and has Laplace trans-
form FL, Re s > 0,

lim
t→∞

f (t) = lim
𝜎→0

𝜎FL(𝜎), (9.37)

when the limits exist.

Proof: The initial and final values of f are connected through the deriva-
tive, ∫ ∞

0 f ′(t) dt = f (∞) − f (0). And, by the derivative theorem, ∫ ∞
0 f ′(t) e−st

10Kailath (1980, pp. 12–13) and Zemanian (1987, pp. 243–248).
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dt = sFL(s) − f (0+). Assuming f is of exponential order, the Laplace transform inte-
gral converges uniformly and we may take limits under the integral sign:

lim
𝜎→0∫

∞

0
f ′(t) e−𝜎t dt = ∫

∞

0
lim
𝜎→0

f ′(t) e−𝜎t dt = ∫
∞

0
f ′(t) dt = f (∞) − f (0+)

= lim
𝜎→0

𝜎FL(𝜎) − f (0+)

⇒ f (∞) = lim
𝜎→0

𝜎FL(𝜎).

As with the initial value theorem, we may identify a few cases of interest. We

will restrict attention to the common case of a rational transform, FL(s) =
∏

m(s−bm)∏
n(s−an)

.

The corresponding time function f is a sum of terms of the form e−antU(t).

� The requirement that the transform converge for Re s > 0 excludes poles in
the right half-plane, which would cause the final value to be unbounded. But
there could be poles on the imaginary axis, for example, cos bt ⟼ s

s2+b2 ,
for which the final value theorem would erroneously give limt→∞ cos bt =
lim

𝜎→0
𝜎

2

𝜎2+b2 = 0. So one must be sure that a final value exists before using
the theorem.

� If none of the poles is at the origin (or on the imaginary axis), then 𝜎FL(𝜎) → 0
as 𝜎 → 0. In the time domain, each of the terms e−antU(t) goes to 0 as t → ∞.

� If one of the poles is at the origin, the factor of s in sFL(s) cancels the pole, and
the limit as 𝜎 → 0 will be nonzero. In fact, the final value is the residue at that
pole. In the time domain, one of the terms will be of the form e0tU(t) = U(t);
the time function f is a step plus a sum of decaying exponentials, and the final
value is due to the step.

� If there are two or more poles at the origin, the time function contains at least a
ramp function, which is unbounded as t → ∞. In the final value theorem, only
one of the poles is cancelled in sFL(s), and the remaining poles blow up as
𝜎 → 0.

Example 9.16. Consider the Laplace transform pairs e−2tU(t) ⟼ 1
s+2

and (1 −
e−2t)U(t) ⟼ 2

s(s+2)
. Both transforms meet the region of convergence requirement.

By inspection of the time functions, we see that the initial values are 1 and 0,
respectively, and the corresponding final values are 0 and 1. Applying the initial
value theorem,

lim
𝜎→∞

𝜎

𝜎 + 2
= 1 and lim

𝜎→∞
2𝜎

𝜎(𝜎 + 2)
= 0.

Applying the final value theorem,

lim
𝜎→0

𝜎

𝜎 + 2
= 0 and lim

𝜎→0

𝜎

𝜎(𝜎 + 2)
= 1.

For an example of a case that fails, consider the growing exponential etU(t) ⟼
1

s−1
, for which the region of convergence is Re s > 1. The initial value is 1, and the
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final value is unbounded. Applying the theorems,

lim
𝜎→∞

𝜎

𝜎 − 1
= 1 = lim

t→0+
etU(t),

lim
𝜎→0

𝜎

𝜎 − 1
= 0 ≠ lim

t→∞
etU(t).

The initial value is correct, but the final value is not. The final value theorem requires
that the Laplace transform converge for Re s > 0 so that the limit as 𝜎 → 0 may be
approached within the region of convergence. In this case Re s > 1, violating the
condition.

When there are two poles at the origin, there is a ramp function in the time
domain which, though it has no finite final value, does have a finite derivative (e.g.,
constant velocity ⟶ linearly increasing position). This “final velocity” can be
extracted from the Laplace transform by combining the derivative theorem with
the final value theorem. The derivative theorem says f ′ → sFL(s), and then the final
value theorem says

f ′(∞) = lim
𝜎→0

𝜎
2FL(s) (9.38)

when the limit exists.

Example 9.17. For XL(s) = 1
s2(s+1)

= − 1
s
+ 1

s2 + 1
s+1

, the time function is x(t) =(
−1 + t + e−2t

)
U(t). The position clearly grows without bound, as the final value

theorem predicts, lim
𝜎→0

𝜎

𝜎2(𝜎+1)
→ ∞. The velocity is x′(t) = 1 − 2e−2t, which

approaches 1 asymptotically as t → ∞. Using Equation 9.38, lim
𝜎→0

𝜎
2

𝜎2(𝜎+1)
=

lim
𝜎→0

1
𝜎+1

= 1.

More about Differential Equations
The great appeal of the Laplace transform for solving initial value problems is that
the homogeneous and particular solutions are obtained together by one method,
rather than separately. This was illustrated in an earlier example, and we give another
example below.

Example 9.18 (System with initial condition and driving function). In this
example we use the Laplace transform to solve a first-order differential equation with
a nonzero initial condition and a sinusoidal driving function and compare the result
with the sinusoidal steady state solution obtained using the Fourier transform. The
differential equation is

y′ + ay = B cos𝜔0t, y(0+) = y0.
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Apply the Laplace transform to both sides, and solve for YL(s):

sYL(s) − y0 + aYL(s) = Bs

s2 + 𝜔
2
0

,

YL(s) =
y0

s + a
+ Bs

(s + a)(s2 + 𝜔
2
0)
.

There are poles at s = −a,±i𝜔0; the right-hand side is expanded in partial fractions:

YL(s) =
y0

s + a
−

aB∕(a2 + 𝜔
2
0)

s + a
+ B

2

(a + i𝜔0)∕(a2 + 𝜔
2
0)

s + i𝜔0
+ B

2

(a − i𝜔0)∕(a2 + 𝜔
2
0)

s − i𝜔0
.

Then, using the basic transform pair e−𝛼tU(t) ⟷ 1
s+𝛼 with 𝛼 = a, i𝜔0, and −i𝜔0 in

turn, we obtain

y(t) = y0e−at − aB

a2 + 𝜔
2
0

e−at + B
2

a + i𝜔0

a2 + 𝜔
2
0

e−i𝜔0t + B
2

a − i𝜔0

a2 + 𝜔
2
0

e+i𝜔0t

= y0e−at − aB

a2 + 𝜔
2
0

e−at + aB

a2 + 𝜔
2
0

cos𝜔0t +
𝜔0B

a2 + 𝜔
2
0

sin𝜔0t, t > 0.

Or, using Equation 1.21,

y(t) = y0e−at − aB

a2 + 𝜔
2
0

e−at + B√
a2 + 𝜔

2
0

cos(𝜔0t + 𝜑), t > 0, (9.39)

where tan𝜑 = −𝜔0∕a.
From left to right, the three terms are the response of the system to the initial

condition alone, the transient response of the system to the sudden application of the
input at t = 0, and the steady-state response to the input after the transients have died
away. You can easily check that at t = 0, the negative transient and the steady-state
response cancel so that only the initial condition y0 is present (Figure 9.4).

In the extreme as a → 0, the differential equation becomes y′ = B cos𝜔0t, for
which the solution is obtained by direct integration, y(t) = y0 +

B
𝜔0

sin𝜔0t. As we take

a → 0 in Equation 9.39, the effect of the initial condition persists, y0e−at → y0, but the
transient excited by the driving function becomes weaker and disappears in the limit.

In the steady-state response, the amplitude B∕
√

a2 + 𝜔
2
0 → B∕𝜔0 and the phase

𝜑 = arctan(−𝜔0∕a) → arctan(−∞) = −𝜋∕2, giving B cos(𝜔0t − 𝜋∕2) = B
𝜔0

sin𝜔0t.

The amplitudes of the sinusoid and the negative transient vary together with a so that
y(0+) is always y0.

The steady-state solution alone may be solved for using the Fourier transform.
Assume that t ≫ 0 so that transients from the initial conditions and the one-sided
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FIGURE 9.4 Cosine-driven response of a first-order system with initial condition, Equation
9.39. Parameters are y0 = 0.5, B = 1, a = 2, 𝜔0 = 5. The transient and steady-state responses
cancel at t = 0. The transient response and the initial condition response decay with increasing
t, leaving the steady-state response.

driving function have died out. Apply the Fourier transform to both sides, then solve
for Y(𝜔):

i𝜔Y(𝜔) + aY(𝜔) = 𝜋B𝛿(𝜔 − 𝜔0) + 𝜋B𝛿(𝜔 + 𝜔0)

Y(𝜔) = 𝜋B
a + i𝜔

[𝛿(𝜔 − 𝜔0) + 𝛿(𝜔 + 𝜔0)]

=
𝜋B (a − i𝜔0)

a2 + 𝜔
2
0

𝛿(𝜔 − 𝜔0) +
𝜋B (a + i𝜔0)

a2 + 𝜔
2
0

𝛿(𝜔 + 𝜔0).

The inverse Fourier transform is

y(t) = B
2

a − i𝜔0

a2 + 𝜔
2
0

e+i𝜔0t + B
2

a + i𝜔0

a2 + 𝜔
2
0

e−i𝜔0t,

which matches the steady-state part of the Laplace transform solution. Note that
the coefficients of the delta functions, 1

a±i𝜔0
, are identical to the transfer function

1
s+a

, evaluated at s = ±i𝜔0. Again, this is because the Fourier transform frequency
response is the Laplace transform transfer function evaluated on the imaginary
axis.

Sometimes the driving function has an impulse. Consider, for example, the
series resistor–inductor circuit driven by a voltage source. The differential equation
of the voltage y across the inductor is

y′ + R
L

y = 𝑣
′
.
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When a step change in voltage is applied to the circuit, the driving function becomes
an impulse whose area equals the height of the step. According to the equation, this
causes an impulse in y′, which means there is a jump in y as a result of the jump in
𝑣—the familiar “back emf” that opposes a sudden change in the current through the
inductor. Laplace transforming both sides of the equation,

sYL(s) + R
L

YL = L− {𝛿(t)} = 1.

Now, this is the identical result one obtains from the equation

y′ + R
L

y = 0, y(0+) = 1,

that is,

sYL(s) − 1 + R
L

YL = 0.

The impulsive driving function causes a jump in y from t = 0− to t = 0+ and is
equivalent to specifying an initial condition y(0+). When there are impulses present
in the driving function, one must be careful to specify whether initial conditions are
at t = 0− (before the impulse) or at t = 0+ (after the impulse). An initial condition
specified at t = 0− will be changed to a new value at t = 0+ by the impulse. On the
other hand, an initial condition specified at t = 0+ already includes the effects of any
impulses at t = 0. It would not make physical sense in this example to have a driving
function with an impulse at t = 0 and to separately specify an initial condition at
t = 0+.

Example 9.19 (Response of an RL circuit). We will follow through with the
solution of the first-order differential equation for the series RL circuit. Let the input
be 𝑣(t) = V0 cos𝜔0t U(t), then 𝑣

′(t) = V0𝛿(t) − V0 sin𝜔0t U(t). We expect to see a
jump discontinuity in the response due to the impulse. Laplace transforming both
sides,

sYL(s) + R
L

YL = (s + R∕L)YL(s) = sV0
s

s2 + 𝜔
2
0

.

Solve for YL and invert the transform:

YL(s) =
V0s2

(s + R∕L)
(
s2 + 𝜔

2
0

)
=

V0 (R∕L)2

(R∕L)2 + 𝜔
2
0

1
s + R∕L
⏟⏞⏟⏞⏟

⟼exp[−(R∕L)t]

+
V0 𝜔

2
0

(R∕L)2 + 𝜔
2
0

s − R∕L

s2 + 𝜔
2
0

⏟⏞⏟⏞⏟

⟼sin𝜔0t,cos𝜔0t

⟼
V0 (R∕L)2

(R∕L)2 + 𝜔
2
0

e−(R∕L)t +
V0 𝜔

2
0

(R∕L)2 + 𝜔
2
0

cos𝜔0t −
V0 𝜔

2
0

(R∕L)2 + 𝜔
2
0

sin𝜔0t, t > 0.
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The first term represents the transient in y following the impulse produced by the step
in the cos𝜔0t input. The second and third terms are the sinusoidal response, which
also includes a jump from the cosine component. We observe that at t = 0+,

y(0+) =
V0 (R∕L)2

(R∕L)2 + 𝜔
2
0

+
V0 𝜔

2
0

(R∕L)2 + 𝜔
2
0

+ 0 = V0.

We may obtain the same result using the initial value theorem:

y(0+) = lim
𝜎→∞

𝜎
V0 𝜎

2

(𝜎 + R∕L)
(
𝜎2 + 𝜔

2
0

) = V0.

9.1.4 The Inverse Laplace Transform

The informal Laplace/Fourier relationship L{f (t)} = F{f (t)e−𝜎tU(t)} points the way
to a formula for the inverse Laplace transform. Beginning with

FL(s) = ∫
∞

−∞
[f (t)e−𝜎tU(t)]e−i𝜔t dt

and applying the inverse Fourier transform (Equation 5.2), we have

f (t)e−𝜎tU(t) = 1
2𝜋 ∫

∞

−∞
FL(𝜎 + i𝜔)e+i𝜔t d𝜔.

Carry the convergence factor to the other side and absorb it into the integral:

f (t)U(t) = 1
2𝜋 ∫

∞

−∞
FL(𝜎 + i𝜔)e(𝜎+i𝜔)t d𝜔.

Change variables, s = 𝜎 + i𝜔, ds = id𝜔. We now have a path integral in the complex
plane:

f (t)U(t) = 1
i2𝜋 ∫

𝜎+i∞

𝜎−i∞
FL(s)est ds.

The step function on the left-hand side is a reminder that the result is one sided. The
improper integral is interpreted as a Cauchy principal value, giving the final result,

f (t) = lim
Ω→∞

1
i2𝜋 ∫

𝜎+iΩ

𝜎−iΩ
FL(s)est ds, t > 0. (9.40)

Like the Fourier transform, if f (t) has a jump discontinuity at t0, the inverse Laplace

transform converges to the average of the right and left limits, f (t0+0+)+f (t0+0−)
2

.
This is the Bromwich inversion formula for the Laplace transform. The path of

integration is a vertical line, called the Bromwich contour, abbreviated Br. The value
of 𝜎 must be chosen to place the Bromwich contour in the region of convergence of
FL(s) (Figure 9.5). It can be shown by a path independence argument that the value
of the integral does not depend on the particular value of 𝜎 chosen for the contour, as
long as 𝜎 is within the region of convergence.
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σ

Br

FIGURE 9.5 The path of integration for the inverse Laplace transform is a vertical line in
the transform’s region of convergence.

Complex Integration
The Laplace inversion integral is approached just like the real integrals we performed
via contour integration in the last chapter—embed the Bromwich integral in an
integral around a closed contour, calculate the residues at the poles inside the contour,
show that the integral on the large semicircular arc goes to zero, so on. A variation
on Jordan’s lemma takes care of the large arc. Consider the closed contour shown in
Figure 9.6.

We require that |FL(s)| decay sufficiently rapidly, O(|s|−k), k > 0. In the com-
mon case that FL(s) is a rational function, FL(s) = b(s)

a(s)
, this requirement is met if the

order of the denominator, a(s), is greater than the order of the numerator, b(s), that is,
FL is strictly proper. Transforms which are not strictly proper may still be inverted
by resorting to generalized functions, but that will come later.

σ

Ω

−Ω

R

Γ2

Γ1

Γ3

Br
θ0

FIGURE 9.6 A closed contour for evaluating the inverse Laplace transform.



592 CHAPTER 9 LAPLACE, Z, AND HILBERT TRANSFORMS

We want to show that the integrals along the three arcs, Γ1, Γ2, and Γ3, go to
zero as R → ∞. If 𝜎 ≤ 0, the integrals on Γ1 and Γ3 do not appear. Assume, then,
that 𝜎 > 0. On Γ1, s = Rei𝜃 , 𝜃 ∈ (𝜃0,𝜋∕2), where cos 𝜃0 = 𝜎∕R:

∫↶Γ1

= ∫
𝜋∕2

𝜃0

F(Rei𝜃) exp(Rei𝜃t) iRei𝜃 d𝜃.

This integral is bounded above:|||||∫↶Γ1

||||| ≤ ∫
𝜋∕2

𝜃0

|F(Rei𝜃) exp (Rt cos 𝜃 + iRt sin 𝜃) iRei𝜃| d𝜃

≤ ∫
𝜋∕2

𝜃0

𝜇

Rk
exp(Rt cos 𝜃)Rd𝜃 = 𝜇

Rk−1 ∫
𝜋∕2

𝜃0

exp(Rt cos 𝜃)d𝜃.

On the interval of integration (𝜃0,𝜋∕2), the integrand is decreasing (because cos 𝜃
is decreasing toward 0 at 𝜃 = 𝜋∕2). We may bound it above by exp(Rt cos 𝜃0) =
exp(Rt(𝜎∕R)) = exp(𝜎t) and use the ML inequality to bound the integral:|||||∫↶Γ1

||||| ≤ 𝜇
e𝜎t

Rk−1

(
𝜋

2
− 𝜃0

)
.

Now 𝜋∕2 − 𝜃0 = 𝜋∕2 − arccos(𝜎∕R) = arcsin(𝜎∕R), and arcsin(𝜎∕R) < (𝜋∕2)𝜎∕R.
So we have |||||∫↶Γ1

||||| < 𝜇𝜋𝜎e𝜎t

2Rk
,

and this upper bound goes to zero as R → ∞, so the integral ∫↶Γ1

goes to zero. By a

similar derivation, the integral on Γ3 is also shown to go to zero.
The proof for the integral on Γ2 closely follows the earlier proof of Jordan’s

lemma. We parametrize the path by s = Rei𝜃 . If 𝜎 ≥ 0, Γ2 will be a half circle, and
𝜃 ∈ (𝜋

2
, 3𝜋

2
). If 𝜎 < 0, then the range of 𝜃 will be smaller, 𝜃 ∈ (𝜃0, 2𝜋 − 𝜃0), where

again, cos 𝜃0 = 𝜎∕R. On this path, the integral is again bounded above:|||||∫↶Γ2

||||| ≤ 𝜇

Rk−1 ∫
2𝜋−𝜃0

𝜃0

exp(Rt cos 𝜃)d𝜃 <
𝜇

Rk−1 ∫
3𝜋∕2

𝜋∕2
exp(Rt cos 𝜃)d𝜃,

because the integrand is positive. Changing variables, 𝜃′ = 𝜃 − 𝜋∕2,

∫
3𝜋∕2

𝜋∕2
exp(Rt cos 𝜃)d𝜃 = ∫

𝜋

0
exp(−Rt sin 𝜃′)d𝜃′ = 2∫

𝜋∕2

0
exp(−Rt sin 𝜃′)d𝜃′.

Now, just as in the proof of Jordan’s lemma, we note that on the interval (0, 𝜋∕2),
sin 𝜃′ > 2𝜃′∕𝜋, so

exp(−Rt sin 𝜃′) < exp(−2Rt𝜃′𝜋)

as long as t > 0. We then have

∫
3𝜋∕2

𝜋∕2
exp(Rt cos 𝜃)d𝜃 < 2∫

𝜋∕2

0
exp(−2Rt𝜃′𝜋)d𝜃′ = 𝜋

Rt
t(1 − e−Rt)
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and ||||∫↶Γ2

|||| < 𝜋𝜇(1 − e−Rt)

Rkt
, t > 0.

As R → ∞, this upper bound goes to zero, and so the integral on Γ2 goes to zero.
We made a crucial assumption that t > 0. For t < 0, the bound exp(−Rt sin 𝜃′) <

exp(−2Rt𝜃′𝜋) is not true; in fact, the integral is unbounded. On the other hand, if
the contour is closed to the right, rather than the left, the integral on the semicircular
arc goes to zero for t < 0. This is just like Jordan’s lemma—close the contour in one
direction for t > 0, and in the other direction for t < 0.

Finally, we know that the integral around the entire closed contour is equal to
2𝜋i times the sum of the residues at the poles encircled by the contour. With right-
sided functions f , the region of convergence is a half-plane Re s > 𝜎a, so there will
be no singularities to the right of the Bromwich contour. Closing the contour to the
right gives zero for t < 0, as expected. For the transform of a two-sided function, the
region of convergence is a strip rather than a half-plane, and there are singularities
on both sides of the Bromwich contour, resulting in nonzero contributions for both
t < 0 and t > 0.

This derivation is summarized in the following theorem.

Theorem 9.14 (Laplace inversion). Let FL(s) = L{f (t)}, the Laplace transform
of f (t) with region of convergence 𝜎− > Re s > 𝜎+, be analytic everywhere in the
complex plane except for a finite number of isolated singular points {sn}. Further, let
FL(s) be O(|s|−k), k > 0. Then, for any 𝜎 ∈ (𝜎+, 𝜎−), the inverse Laplace transform
of F is given by

f (t) = lim
Ω→∞

1
2𝜋i ∫

𝜎+iΩ

𝜎−iΩ
FL(s)est ds

=

⎧⎪⎪⎨⎪⎪⎩
lim

R→∞
1

2𝜋i∫↺ΓL

FL(s)est ds t > 0

lim
R→∞

− 1
2𝜋i ∫↻ΓR

FL(s)est ds t < 0

=

⎧⎪⎪⎨⎪⎪⎩

∑
sn inside ΓL

Res
[
FL(s)est, s = sn

]
, t > 0

∑
sn inside ΓR

−Res
[
FL(s)est, s = sn

]
, t < 0

, (9.41)

where ΓL is the combination of the Bromwich contour and a circular path, centered at
the origin, closing the contour to the left and enclosing all the singularities to the left
of the Bromwich contour, and ΓR is the combination of the Bromwich contour and
a circular path, centered at the origin, closing the contour to the right (and traversed
in the negative direction), enclosing all the singularities to the right of Bromwich
contour.
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Example 9.20. FL(s) = 1
s+2

, Re s > −2. The Bromwich contour must be placed
in the region of convergence. Any vertical path to the right of Re s = −2 will do,
so for convenience take 𝜎 = 0 (run the Bromwich contour up the imaginary axis).
Because F is O(|s|−1), the previous theorem applies. Closing the contour to the
right encloses no poles, so f (t) = 0, t < 0. Closing the contour to the left (t > 0)

encloses the pole at s = −2. The residue at this pole is lims→−2
est

1
= e−2t. Therefore,

f (t) = e−2t, t > 0.

Example 9.21. FL(s) = 1

s2+
√

2s+1
. The poles are at s = −1±i√

2
. Again we may place

the Bromwich contour along the imaginary axis, closing it with a semicircle to the
left. The order of the denominator (2) is greater than the order of the numerator (0),
so |FL(s)| is O(|s|−2) which guarantees that the integral on the semicircle will go to
zero. The residues at the poles are

Res

[
FL(s)est, s = −1 ± i√

2

]
= lim

s→−1±i√
2

est

2s +
√

2
=

exp −1±i√
2

t

±i
√

2
,

and their sum is the inverse transform:

f (t) =
exp −1+i√

2
t

i
√

2
−

exp −1−i√
2

t

i
√

2

=
√

2 e−t∕
√

2 sin
t√
2
.

When the transform is not strictly proper, it does not fall off as |s| increases
and so the integrals on the semicircular arcs do not go to zero as required. To deal
with this, perform long division until a strictly proper remainder is obtained, whence
FL(s) = r(s) + Fp(s), where r(s) is a polynomial. Then invert Fp by integration and
invert r(s) term-by-term using the basic result 𝛿(n)(t) ⟷ sn.

Example 9.22 (Inverse Laplace transform of s2). The function s2 is not strictly
proper and cannot be inverted by integration. However, s2 = s3 ⋅ 1

s
, and 1

s
⟼ U(t).

By the derivative theorem, s2 = s3 1
s
⟼ d3

dt3
U(t) = 𝛿

′′(t).

Example 9.23 (Inverse transform of an improper rational function). Invert the

improper rational transform FL(s) = s3+2
s2+4s+3

, Re s > −1. Divide the denominator
into the numerator until a strictly proper remainder is obtained:

s3 + 2
s2 + 4s + 3

= s − 4s2 + 3s − 2
s2 + 4s + 3

= s − 4 + 13s + 14
s2 + 4s + 3

.
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Now invert the rational function by integration, using Equations 9.41:

L−1
{

13s + 14
s2 + 4s + 3

}
= L−1

{
13s + 14

(s + 3)(s + 1)

}
= Res

[
(13s + 14)est

(s + 3)(s + 1)
, s = −3

]
+ Res

[
(13s + 14)est

(s + 3)(s + 1)
, s = −1

]
= 25

2
e−3tU(t) + 1

2
e−tU(t).

Then, adding the contributions from the polynomial, s − 4 ⟼ 𝛿
′(t) − 4𝛿(t),

f (t) = 𝛿
′(t) − 4𝛿(t) + 25

2
e−3tU(t) + 1

2
e−tU(t).

Partial Fraction Expansion
The method of partial fractions is a well-known way to invert Laplace transforms. One
learns in introductory calculus that any strictly proper rational function Y(s) = P(s)

Q(s)
can be expressed as a finite sum of simpler fractions of the form

A
(s + a)m

and
Bs + C

((s + a)2 + b2)n
.

In our case, if Y has resulted from the Laplace transform analysis of an ordinary linear
differential equation with real, constant coefficients (i.e., a real LTI system), then the
polynomials P and Q have real coefficients. The roots of Q are either real or occur in
complex conjugate pairs and the parameters a and b in the partial fractions are real,
as are the coefficients A, B, and C. The respective inverse Laplace transforms are

A
(m − 1)!

tm−1e−atU(t) and c(t)e−at cos(bt)U(t) + s(t)e−at sin(bt)U(t),

where c(t) and s(t) are (n − 1)th-order polynomials in t whose coefficients, all real,
depend on a, b, B, and C. These functions are fundamental solutions of constant-
coefficient linear ODEs. The general time response of an LTI system is a linear com-
bination of these fundamental modes. The partial fraction expansion is an expression,
in the transform domain, of a modal decomposition of the system’s response.

The hard part of the method is obtaining the partial fraction expansion. The
most basic approach, suitable for simple functions, is algebraic. You have probably
seen this before, and we will review it with a couple of examples, then go on to a
better approach based on complex analysis.

Example 9.24. FL(s) = 2
s2+3s+2

. The first thing to do is identify the roots of the
denominator. The quadratic formula, a root-finding program, or some good guessing
yields s = −1,−2. The partial fraction expansion is of the form

A
s + 1

+ B
s + 2

.
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Place the two terms over a common denominator and equate the result to the original
function:

A(s + 2) + B(s + 1)
(s + 1)(s + 2)

= (A + B)s + (2A + B)

s2 + 3s + 2
= 2

s2 + 3s + 2
.

This gives two equations in two unknowns:

A + B = 0,

2A + B = 2,

which solve to A = 2 and B = −2. Therefore, we have

FL(s) = 2
s + 1

+ −2
s + 2

.

Example 9.25. FL(s) = s−1
s3+7s2+16s+12

= s−1
(s+2)2(s+3)

. We have a single pole and a
double pole. The rules one learns in calculus dictate that a double pole contributes
two terms to the expansion, A

s+a
+ B

(s+a)2 . For this function, the partial fraction has

the form

FL(s) = A
(s + 2)2

+ B
s + 2

+ C
s + 3

.

Placing all three terms over a common denominator, the numerator works out to

(s + 3)A + (s + 2)(s + 3)B + (s + 2)2C

= (B + C)s2 + (A + 5B + 4C)s + (3A + 6B + 4C) = s − 1,

leading to three equations in three unknowns:

B + C = 0,

A + 5B + 4C = 1,

3A + 6B + 4C = −1.

The solution is A = −3, B = 4, and C = −4. The partial fraction expansion is

s − 1
(s + 2)2(s + 3)

= − 3
(s + 2)2

+ 4
s + 2

− 4
s + 3

.

For anything higher than second order, partial fraction expansion by the alge-
braic method becomes tedious. We will now develop a more direct method, building
up to the final result by steps.

In the first example, FL(s) = 2
s2+3s+2

= 2
s+1

+ −2
s+2

. Observe that the coefficients
in the partial fraction expansion are the residues of FL at the simple poles s = −1,−2.

In the next example, FL(s) = s−1
(s+2)2(s+3)

= −4
s+3

+ −3
(s+2)2 + 4

s+2
, there is a simple

pole at s = −3 and a double pole at s = −2. The coefficient of 1∕(s + 3) in the
expansion is, again, the residue at the pole:

c−1 = lim
s→−3

(s + 3) FL(s) = lim
s→−3

s − 1
(s + 2)2

= −4.
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Also, the coefficient of 1
s+2

is the residue at that pole:

c−1 = lim
s→−2

d
ds

(s + 2)2 FL(s) = lim
s→−2

d
ds

s − 1
s + 3

= lim
s→−2

4
(s + 3)2

= 4.

So it appears that the partial fraction expansion is closely related to the Laurent series.
If so, then perhaps the coefficient of 1∕(s + 2)2 is the Laurent coefficient c−2. We can
isolate this term by multiplying by (s + 2)2 and evaluating at s = −2:

c−2 = lim
s→−2

(s + 2)2 FL(s) = lim
s→−2

s − 1
s + 3

= −3.

It does indeed seem to be the case that the the partial fraction expansion is the
sum of the negative-power terms, that is, the principal parts, P(s, a), of the Laurent
expansions around each of the poles:

F(s) =
N∑

j=1

P(s, aj).

If a function is proper, but not strictly proper, for example, FL(s) = s2+2s+2
s2+3s+2

=
s2+2s+2

(s+1)(s+2)
, we can perform one step of long division, obtaining FL(s) = 1 − s

(s+1)(s+2)
,

and then calculate the principal parts of the remainder:

FL(s) = 1 + 1
s + 1

− 2
s + 2

.

But observe that if we calculate the principal parts directly, without doing the long
division first, we obtain (using the simple pole residue formula)

lim
s→−1

(s + 1)FL(s) = lim
s→−1

s2 + 2s + 2
s + 2

= 1,

lim
s→−2

(s + 2)FL(s) = lim
s→−1

s2 + 2s + 2
s + 1

= 2.

The principal parts are the same, with or without the long division. This makes sense,
since the the constant obtained by long division corresponds to the c0 term of the
Laurent series, which is separate from the terms in the principal parts. Knowing this,
we have an alternative method for obtaining the constant out front once the principal
parts are calculated. In the expansion

F(s) = C +
N∑

j=1

P(s, aj),

if F is finite at s = 0, we can calculate C = F(0) −
∑N

j=1 P(0, aj). In the current
example,

F(s) = s2 + 2s + 2
s2 + 3s + 2

= C + 1
s + 1

− 2
s + 2

,

F(0) = 1 = C + 1 − 1,

⇒ C = 1.
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Γ1

Γn

x

y

Γ2

FIGURE 9.7 Sequence of contours for applying the Mittag–Leffler expansion. The mero-
morphic function F must be uniformly bounded on each of the Γn.

We have worked our way, by examples, to the following form for the par-
tial fraction expansion, based not on matching coefficients algebraically, but on the
properties of the complex functions:

F(s) = F(0) +
N∑

j=1

[P(s, aj) − P(0, aj)].

Of course, this is only a promising hypothesis at this point, but it turns out to be
correct, and is not limited just to rational functions.

A function which is analytic except for a possibly infinite number of poles is
called meromorphic. Rational functions, proper and improper, are meromorphic. So
are ratios of analytic functions and polynomials, such as es

s2+2s+1
, and functions which

have no polynomial component, like 1
sin 𝜋s

. If a function has an essential singularity
or a branch point, it is not meromorphic. The general result for partial fraction
expansions of meromorphic functions is stated in the following theorem.11

Theorem 9.15 (Mittag–Leffler expansion). Let F : ℂ → ℂ be meromorphic, ana-
lytic at s = 0, and uniformly bounded on a set of simple closed curves Γn, as shown
in Figure 9.7. Then F can be represented by the expansion

F(s) = F(0) +
∞∑

j=1

[P(s; aj) − P(0; aj)], (9.42)

where {aj} are the poles of F and {P(s, aj)} are the respective principal parts of F.

11See LePage (1980, pp. 153–162) for a complete derivation.
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This general result for meromorphic functions has a few important particular
cases.

1. If F is a rational function, then the boundedness requirement is the same as
saying that F is proper. If it is rational and improper, a partial fraction expansion
may still be possible, in the form F(s) = r(s) + Fp(s), where r is entire and Fp
is a partial fraction expansion. The principal parts of F are calculated in the
usual way to get Fp, then r is obtained by subtracting Fp from F.

2. If F is a strictly proper rational function, then the constant term F(0) −∑N
j=1 P(0, aj) is identically zero and the partial fraction expansion simplifies to

F(s) =
N∑

j=1

P(s, aj). (9.43)

3. If F is singular at the origin, calculate the principal part there and subtract it from
F to obtain a function G which is analytic at the origin: G(s) = F(s) − P(s, 0).
Then expand G in a partial fraction expansion. Because P(s, 0) is analytic at
all the other pole locations, the principal parts of G are the same as those of F
(except for s = 0). The partial fraction expansion is

F(s) = G(0) + P(s, 0) +
∞∑

j=1

[P(s, aj) − P(0, aj)], (9.44)

where {aj} are the poles of F other than the ones at the origin.

4. If the individual series
∑∞

j=1 P(s, aj) and
∑∞

j=1 P(0, aj) are convergent, the sum
may be split and the partial fraction expansion may be written

F(s) =

[
F(0) −

∞∑
j=1

P(0, aj)

]
+

∞∑
j=1

P(s, aj). (9.45)

The problem of finding a partial fraction expansion thus boils down to calcu-
lating particular coefficients of Laurent series. For a general nth-order pole at s = a,

F(s) = c−n(s − a)−n +⋯ + c−2(s − a)−2 + c−1(s − a)−1 + c0 + c1(s − a) +⋯ ,

multiplying F(s) by (s − a)n cancels the singular terms out of the series, giving

(s − a)nF(s) = c−n + c−(n−1)(s − a) +⋯ + c−2(s − a)n−2 + c−1(s − a)n−1

+O((s − a)n).

We see immediately that c−n = lim
s→a

(s − a)nF(s). To get the next term, differentiate

once to clear out c−n:

c−(n−1) = lim
s→a

d
ds

(s − a)nF(s).
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A general formula is obtained by following the pattern. For an nth order pole at s = a,
the principal part is

P(s, a) =
n∑

k=1

c−k

(s − a)k
(9.46a)

c−k = 1
(n − k)!

lim
s→a

dn−k

dsn−k

[
(s − a)nF(s)

]
(9.46b)

For n any larger than 2 or 3, the multiple derivatives can get nasty. Fortunately, in
engineering practice one rarely encounters poles of such high order. First-order poles
are the norm, and so the particular formulas for calculating residues at first-order
poles are probably the most widely used for hand calculation. But when a multiple
pole must be dealt with, this general approach, which always works, is available.

Example 9.26 (Coverup method). F(s) = 1
s2−3s+2

. The poles are at s = 1, 2.
Because F is strictly proper, we can use Equation 9.43. The partial fraction expansion
is of the form

1
s2 − 3s + 2

= 1
(s − 1)(s − 2)

=
s − 1

+
s − 2

,

The coefficients of the partial fractions are residues at the poles.

Res[F, s = 1] = s − 1
(s − 1)(s − 2)

||||s=1
= 1

s − 2

||||s=1
= −1

Res[F, s = 2] = s − 2
(s − 1)(s − 2)

||||s=2
= 1

s − 1

||||s=2
= 1

This is the origin of the “coverup” method (attributed to Heaviside) for finding partial
fraction coefficients: one “covers up” the pole (i.e., cancels it in the residue formula)
and evaluates what is left at the pole location. The partial fraction expansion is

1
s2 − 3s + 2

= −1
s − 1

+ 1
s − 2

.

Example 9.27. F(s) = s−1
s3+7s2+16s+12

= s−1
(s+2)2(s+3)

. We have a single pole and a

double pole. The single pole can be handled by a residue calculation:

P(s,−3) = Res[F, s = −3]
s + 3

= −4
s + 3

.

For the double pole, the principal part is, using Equation 9.46,

P(s,−2) =
c−2

(s + 2)2
+

c−1

s + 2
,

where c−2 = lim
s→−2

s − 1
s + 3

= −3,

c−1 = lim
s→−2

d
ds

s − 1
s + 3

= lim
s→−2

4
(s + 3)2

= 4
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Γ1

Γ2

1/2 3/2 5/2−1/2−3/2−5/2
x

y

FIGURE 9.8 Sequence of contours for applying the Mittag–Leffler expansion to F(s) =
sec𝜋s.

Therefore,

F(s) = −4
s + 3

+ −3
(s + 2)2

+ 4
s + 2

Example 9.28. F(s) = s3+s2+1
s2−4

. This function is not proper, so we begin with long
division:

F(s) = s3 + s2 + 1
s2 − 4

= s + 1 + 4s + 5
s2 − 4

.

Now the partial fraction expansion is applied to the remainder, which has poles at
s = −2, 2. The coverup method then gives

F(s) = s + 1 +
13∕4

s − 2
+

3∕4

s + 2

Example 9.29. F(s) = sec 𝜋s = 1
cos𝜋s

. There are first-order poles at s = ±( 1
2
+ k),

k = 0, 1, 2…. To check the boundedness of F, we use the system of square contours
shown in Figure 9.8. With s = x + iy,

| cos𝜋s| = (cos2
𝜋x + sinh2

𝜋y)1∕2
.

On the sides of contour Γn, s = ±n + iy, n ≥ y ≥ −n, so

| cos𝜋s| = (1 + sinh2
𝜋y)1∕2 ≥ 1,
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and on the top and bottom, s = x ± in, n ≥ x ≥ −n, so

| cos𝜋s| = (
cos2

𝜋x + sinh2
𝜋n

)1∕2 ≥ | sinh 𝜋n| > 1, n > 0.

Thus, everywhere on each of the Γn, | cos 𝜋s| ≥ 1, so |F| ≤ 1, proving that F is
uniformly bounded.

The poles are first order, so the principal parts are obtained by calculating
residues at the poles:

Res
[ 1

cos𝜋s
, s = 1

2
+ k

]
= lim

s→ 1
2
+k

1
−𝜋 sin𝜋s

= − (−1)k

𝜋
,

Res
[ 1

cos 𝜋s
, s = −1

2
− k

]
= lim

s→− 1
2
−k

1
−𝜋 sin𝜋s

= (−1)k

𝜋
.

The expansion, therefore, is

1
cos 𝜋s

= 1 +
∞∑

k=0

(−1)k

𝜋

[(
−1

s − ( 1
2
+ k)

+ 1

s + ( 1
2
+ k)

)
−

(
1

1
2
+ k

+ 1
1
2
+ k

)]

= 1 −
∞∑

k=0

(−1)k

𝜋

[
2k + 1

s2 − (k + 1
2

)2
+ 2

k + 1
2

]
.

If the individual series
∞∑

k=0

(−1)k

𝜋

2k + 1

s2 − (k + 1
2
)2

and
∞∑

k=0

(−1)k

𝜋

2

k + 1
2

are convergent, then some simplification is possible by writing the expansion as the
sum of the individual series. The second series is known:

∞∑
k=0

(−1)k

𝜋

2

k + 1
2

= 2
𝜋

∞∑
k=0

(−1)k

k + 1
2

= 2
𝜋
⋅
𝜋

2
= 1.

The first series converges if its real and imaginary parts individually converge. Sepa-
rating them,

Re

{ ∞∑
k=0

(−1)k

𝜋

2k + 1

s2 − (k + 1
2
)2

}
=

∞∑
k=0

(−1)k

𝜋

(2k + 1)
(

(x2 − y2) + (k + 1
2

)2
)

(
(x2 − y2) + (k + 1

2
)2
)2

+ 2x2y2

,

Im

{ ∞∑
k=0

(−1)k

𝜋

2k + 1

s2 − (k + 1
2
)2

}
=

∞∑
k=0

(−1)k

𝜋

−(2k + 1)(2xy)(
(x2 − y2) + (k + 1

2
)2
)2

+ 2x2y2

.
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The imaginary part converges because the terms are O(k−3). As for the real part, the
terms are O(k−1), so convergence is not obvious. For any s we may divide the series:

∞∑
k=0

=
N∑

k=0

+
∞∑

k=N+1

,

where N > |x2 − y2|1∕2 − 1
2
. Then the first sum is finite, and the second is an alter-

nating series with decreasing terms, hence convergent. We therefore have the final
result

1
cos 𝜋s

= 1 −
∞∑

k=0

(−1)k

𝜋

2k + 1

s2 − (k + 1
2
)2

− 1 =
∞∑

k=0

(−1)k+1

𝜋

2k + 1

s2 − (k + 1
2
)2
.

Example 9.30. Consider F(s) = csc𝜋s = 1
sin 𝜋s

. There are first-order poles at s = k,
k = 0,±1,±2,…. The principal part at s = 0 is

P(s, 0) = Res
[ 1

sin𝜋s
, s = 0

]
⋅

1
s
= 1

𝜋 cos 0
⋅

1
s
= 1

𝜋s

and

g(s) = 1
sin𝜋s

− 1
𝜋s

= 𝜋s − sin𝜋s
𝜋s sin𝜋s

,

with

g(0) = lim
s→0

𝜋s − sin𝜋s
𝜋s sin𝜋s

= 0.

Following steps similar to the previous example, one arrives at the partial
fraction expansion:

1
sin𝜋s

= 1
𝜋s

+ 1
𝜋

∞∑
k=1

(−1)k 2s

s2 − k2
= 1

𝜋

∞∑
k=−∞

(−1)k

s − k
.

Finally, we note that Matlab provides tools for performing partial fraction
expansion of rational functions. Matlab’s approach is numeric—given a rational
function with numeric coefficients, the residue command provides the coefficients
of a partial fraction expansion. Complex pole pairs are kept separate.

9.1.5 Laplace Transform of Sampled Functions

Many modern feedback control systems are combinations of continuous-time and
discrete-time subsystems, connected with analog-to-digital and digital-to-analog con-
verters (Figure 9.9).12 The continuous-time portions are often modeled by rational
transfer functions derived from a Laplace transform of a differential equation. The
discrete-time portions are often modeled by the Z transform, which is introduced

12For introductions to sampled data control systems, see Franklin, et al. (1998) and Kuo (1963).
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Plant
(continuous)

Controller
(discrete)

Digital–
analog

Analog–
digital

FIGURE 9.9 A sampled-data feedback control loop. The system to be controlled (the plant)
operates in continuous time, and the controller operates in discrete time. They are connected
with analog–digital and digital–analog converters.

in the next section. The linkage between the continuous and discrete domains is
provided by the Laplace transform of a sampled function. While the application to
control theory is beyond the scope of this text, it will be beneficial to consider here
what happens when the Laplace transform is applied to a sampled function.

As in Section 6.5.3, we wish to model a sampled function using the comb
function:

fs(t) = f (t) ⋅
1
Δt

III
( t
Δt

)
,

where Δt is the sampling interval (Equation 6.49). We assume that f is one sided, with
a possible jump discontinuity at t = 0, so f (t) = 0 for t < 0 and f (0+) ≠ f (0−). We
denote the Laplace transform of a sampled function by FL∗ and seek a relationship
between FL∗ and FL. Prior experience with sampling and the Fourier transform leads
us to expect that FL∗ will, somehow, be a periodic replication of FL.

Using the product theorem (9.34), the Laplace transform of f (t) ⋅ 1
Δt

III
(

t
Δt

)
is

FL∗(s) = 1
2𝜋i ∫

c+i∞

c−i∞
FL(s − z)GL(z) dz,

where

GL(z) = L
{ 1
Δt

III
( t
Δt

)}
= ∫

∞

0−

∞∑
n=0

𝛿(t − nΔt) e−zt dt

=
∞∑

n=0

e−nzΔt = 1
1 − e−zΔt

.

Thus,

FL∗(s) = 1
2𝜋i ∫

c+i∞

c−i∞

FL(s − z)

1 − e−zΔt
dz. (9.47)

The denominator, 1 − exp(−zΔt), has first-order roots at z = i2𝜋k∕Δt. The path of
integration is positioned between these roots and the poles of FL(s − z) (Figure 9.10),
where the regions of convergence overlap.

The contour may be closed to the left or to the right. On the right, the curved
path ΓR is an arc of radius Rk = 2𝜋(k + 1∕2)∕Δt. On the left, the path ΓL consists of
two short horizontal segments and an arc of radius Rk. Initially, assume that FL(s) is
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i2π/Δt

–i2π/Δt

i4π/Δt

–i4π/Δt

×

×

×

×

×

×
×

×

×

×i6π/Δt

–i6π/Δt

c

ΓL ΓR

Rk

FIGURE 9.10 Contours for calculating the Laplace transform of a sampled function (Equa-
tion 9.47). The path of integration is located in the strip between the poles of 1

1−e−zΔt (on the
imaginary axis) and the poles of F(s − z) (in the right half-plane). The contour may be closed
to the left or right with an arc of radius Rk = 2𝜋(k + 1∕2)∕Δt.

rational, with two more poles than zeros, guaranteeing that the integrals on ΓL and
ΓR go to zero as Rk → ∞ (k → ∞). With the contour closed to the right, the Laplace
transform that results is

FL∗(s) =
∞∑

n=0

f (nΔt)e−snΔt,

and closing the contour to the left, we obtain

FL∗(s) = 1
Δt

∞∑
n=−∞

FL (s − i2𝜋n∕Δt) .

Details of these calculations are left to the problems.
In the event that FL(s) has only one more pole than zero (e.g., a step function or

a single exponential), it is more difficult to show that the integral on ΓL goes to zero,
and an additional term appears from the integral around ΓR

13 giving the final form

FL∗(s) =
∞∑

n=0

f (nΔt)e−snΔt (9.48a)

= 1
2

f (0+) + 1
Δt

lim
N→∞

N∑
n=−N

FL (s − i2𝜋n∕Δt) . (9.48b)

13Wilts (1960, pp. 197–200, 261–265) and Kuo (1963, pp. 731–737).
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iπ/Δt

–iπ/Δt

iπ/Δt

–iπ/Δt

i2π/Δt

–i2π/Δt

i2π/Δt

–i2π/Δt

–2 –2
×

×

×

×

FIGURE 9.11 Effect of sampling on the Laplace transform. Left: The function FL(s) = 1

s+2
has a pole at s = −2. Right: Sampling causes the pole to repeat at locations s = −2 + i2𝜋n∕Δt.

This added term, 1
2

f (0+), is identically zero when FL(s) has two more poles than zeros
(consider the initial value theorem). The form of the infinite series in Equation 9.48b,
analogous to a Cauchy principal value integral, is necessary to obtain convergence
when there is only one more pole than zero.

We saw in Section 6.5.3 that sampling in the time domain produces a periodic
replication at Δ𝜈 = 1∕Δt in the frequency domain (Equation 6.51). Here, in Equation
9.48b, FL (s − i2𝜋∕Δt) is a vertical shift of FL in the complex plane. A pole at
s = −2, 1

s+2
, becomes 1

s−i2𝜋∕Δt+2
= 1

s+(2−i2𝜋∕Δt)
, a pole at s = −2 + i2𝜋∕Δt. Sampling

replicates the Laplace transform FL at intervals of Δ𝜔 = 2𝜋∕Δt up and down the
complex plane. The original and sampled transforms, FL and FL∗ , have the same
region of convergence (Figure 9.11).

Example 9.31. f (t) = e−atU(t) (a ≥ 0). The Laplace transform of f is

FL(s) = 1
s + a

, Re s > −a.

The samples of f are (f (nΔt))n≥0 = (1, e−a, e−2a,…). So, Equation 9.48a gives

FL∗(s) =
∞∑

n=0

e−naΔte−snΔt =
∞∑

n=0

(e−(s+a)Δt)n

= 1
1 − e−(s+a)Δt

, Re s > −a.

The other form, Equation 9.48b, produces

FL∗(s) = 1
2
+ 1

Δt

∞∑
n=−∞

1

s +
(

a − i 2𝜋n
Δt

) .
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The equivalence of these two expressions for FL∗ is confirmed by calculating
the partial fraction expansion of 1

1−e−(s+a)Δt using Theorem 9.15. Begin by subtracting
1
2

from both sides, giving

1
1 − e−(s+a)Δt

− 1
2
= 1

2

cosh
(

(s+a)Δt
2

)
sinh

(
(s+a)Δt

2

) = 1
2

coth

(
(s + a)Δt

2

)
.

The function has simple poles at s = −a + i2𝜋n∕Δt. The residues are

1
2

cosh
(

(s+a)Δt
2

)
d
ds

sinh
(

(s+a)Δt
2

)|||||s=−a+ i2𝜋n
Δt

= 1
2

cosh
(

(s+a)Δt
2

)
Δt
2

cosh
(

(s+a)Δt
2

)|||||s=−a+ i2𝜋n
Δt

= 1
Δt

.

This gives the partial fraction expansion:

1
1 − e−(s+a)Δt

− 1
2
=

∞∑
n=−∞

1∕Δt

s + (a − i 2𝜋n
Δt

)
,

which is what we sought to show.

The sampled Laplace transform is subject to aliasing. If f is bandlimited to |𝜈| <
B, its Laplace transform FL is confined to the strip 2𝜋B ≥ Im s ≥ −2𝜋B. Sampling
replicates the strips at Δ𝜔 = 2𝜋∕Δt = 4𝜋B. If Δt < 1∕2B, when FL is replicated, the
strips will not overlap and aliasing will not occur. It can be shown, however, that
no one-sided function can be bandlimited (cf. the Paley–Wiener theorem), so some
aliasing will always occur. Figure 9.12 illustrates the point. As the sampling interval
Δt is decreased, the replicated poles move to higher positions in the complex plane,
leaving the single pole at s = −2 dominant at lower frequencies. And in the other
form of the sampled transform, 1

1−e−(s+2)Δt , we have e−(s+2)Δt ≈ 1 − (s + 2)Δt, so

1
1 − e−(s+2)Δt

→
1
Δt

1
s + 2

.

9.2 THE Z TRANSFORM

9.2.1 Definition

A different interpretation of the sampled Laplace transform leads to the Z transform,
which applies to discrete-time systems. Begin with Equation 9.48a,

FL∗(s) =
∞∑

n=0

f (nΔt)e−snΔt
.

Define the sequence f [n] = f (nΔt), make the change of variable z = esΔt, and write
the sum as a geometric series,

∑∞
n=0 f [n]z−n. The result is the Z transform.
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FIGURE 9.12 The Laplace transform e−2tU(t) ⟼ 1

s+2
, after sampling (compare Figure

9.11). The dashed line is the unsampled Fourier magnitude normalized by the sampling interval,
1

Δt

||| 1

i𝜔+2

|||. Left: with Δt = 1.0, the transform is replicated at Δ𝜔 = 2𝜋∕Δt = 2𝜋. The magnitude
along s = i𝜔 exhibits substantial aliasing. Right: with Δt = 0.2, the transform is replicated at
Δ𝜔 = 10𝜋. Aliasing is reduced as the separation between the replicated poles is increased by
a factor of five.

Definition 9.3 (Z transform). Let f be a right-sided sequence, real or complex
valued. If f [n]𝛼n ∈ 𝓁1 for some real 𝛼, then the Z transform of f is defined:

FZ(z) =
∞∑

n=0

f [n]z−n, (9.49)

where z = rei𝜃 . The operator notation for the Z transform is FZ = Z {f }.

Here we will compare the Laplace and Z transforms in order to build a bridge
from your understanding of the Laplace transform to the Z transform. Eventually,
though, you should think of the Z transform in its own right as a transform for
sequences which may or may not have resulted from sampling a continuous time
function.

The sampled Laplace transform and the Z transform are connected through the
change of variable z = esΔt:

FL∗(s) = FZ(esΔt). (9.50)

The properties of the mapping z = esΔt were considered in Problem 7.2 of Chapter 7.
They are summarized in Table 9.1.

Writing s = 𝜎 + i𝜔 = 𝜎 + i2𝜋𝜈, a point in the S-plane maps to the point z =
e𝜎Δtei2𝜋𝜈Δt = rei𝜃 . Polar coordinates are the natural choice for the Z-plane, and just as
we write est = e𝜎tei𝜔t, we shall write zn = rnei𝜃n. The S-plane coordinate 𝜎 represents
the rate of growth or decay of the complex exponential est, and the other coordinate,
𝜔, is the frequency of oscillation. On the Z-plane, the radius r = e𝜎Δt represents
the rate of growth or decay, and the angle, 𝜃 = 𝜔Δt = 2𝜋𝜈Δt, corresponds to the
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TABLE 9.1 Properties of the mapping z = es𝚫t.

S-plane Image in Z-plane

Point, s = 𝜎 + i𝜔 z = e𝜎 Δtei𝜔Δt = rei𝜃

Origin, s = 0 z = 1
s = ±i𝜋 z = −1
Infinity, s → −∞ z → 0
Imaginary axis Unit circle
Positive real axis, s ∈ (0,∞) Real axis, z ∈ (1,∞)
Negative real axis, s ∈ (−∞, 0) Real axis, z ∈ [0, 1)
Left half-plane, Re s < 0 Inside unit circle, |z| < 1
Right half-plane, Re s > 0 Outside unit circle, |z| > 1
Horizontal line (constant frequency 𝜔) Ray at angle 𝜃 = 𝜔Δt
Vertical line (constant 𝜎) Circle of radius r = e𝜎Δt

frequency of oscillation. It is the same as the digital frequency introduced in Section
3.1. The sequence (rn) is geometric. If r < 1 (z inside the unit circle), then rn decays
as n → ∞, and if r > 1 (z outside the unit circle), then rn grows.

The Laplace transform exists if e−𝜎tf (t)U(t) ∈ L1 for some real 𝜎, and we
say that f (t) is of exponential order if f (t) < Ce−𝜎t for some real C > 0 and 𝜎, and
t > T > 0. Analogously, the Z transform exists if 𝛼

nf [n]U[n] ∈ 𝓁1 for some real
𝛼, and f [n] is of exponential order if f [n] < C𝛼n for some real C > 0, 𝛼 > 0, and
n > N > 0.

Example 9.32. Let f (t) = eatU(t), for which f [n] = eanΔtU[n]. The Z transform is

FZ(z) =
∞∑

n=0

eanΔtz−n =
∞∑

n=0

(eaΔtz−1)n
.

This is a geometric series, and

∞∑
n=0

(eaΔtz−1)n = lim
N→∞

1 − (eaΔtz−1)N

1 − eaΔtz−1
.

The series will converge if |eaΔtz−1| < 1 or |z| > eaΔt. The Z transform, then, is

FZ(z) = 1
1 − eaΔtz−1

, |z| > eaΔt
.

Compare this Z transform with the Laplace transform, which we know to be
FL(s) = 1

s−a
(Figure 9.13). When a > 0, f is a growing exponential. The pole at s = a

is in the right half of the complex S-plane. When a < 0, the exponential is decaying
and the pole is in the left half-plane. The Laplace transform goes to zero as |s| → ∞
(there is a “zero at infinity”). The Z transform,

FZ(z) = 1
1 − eaΔtz−1

= z
z − eaΔt

,
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FIGURE 9.13 Comparing the Laplace transform of f (t) = eatU(t) with the Z transform of
f [n] = eanΔtU[n]. The S and Z planes are related through the mapping z = esΔt described in
Table 9.1. Top: When a > 0, the S-plane pole is in the right half-plane and the corresponding
Z-plane pole at z = eaΔt is outside the unit circle. Bottom: When a < 0, the S-plane pole is in
the left half-plane and the corresponding Z-plane pole is inside the unit circle. The Laplace
transform’s region of convergence is the half-plane Re s > a. The Z transform converges
outside a circle of radius eaΔt.

has a pole at z = eaΔt and a zero at the origin. When a > 0, the pole is outside the unit
circle and when a < 0, it is inside the unit circle. The region of convergence of the
Z transform is the region outside a circle of radius eaΔt, the image of the half-plane
Re s > a under the mapping z = esΔt. The zero at z = 0 corresponds to the zero at
infinity in the left-half S-plane.

Also compare the Z transform to the sampled Laplace transform (Figures 9.11
and 9.12):

FZ(z) = z
z − eaΔt

, FL∗(s) = 1
1 − e−(s+a)Δt

.

The vertical line s = −a + i𝜔, where the poles of FL∗ are located, is mapped to the
circle z = e−aΔt ei𝜔Δt in the Z-plane, where the single pole of FZ is found. Moving
up the line in the S-plane encounters each of the poles of FL∗ in turn, at s = −a,
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−a + 2𝜋∕Δt,−a + 4𝜋∕Δt,…. Likewise, moving around the circle in the Z-plane, the
pole at z = e−aΔt is revisited with every cycle, at 𝜃 = 0, 2𝜋, 4𝜋,…. The replicated
poles of FL∗ are all represented by the single pole in FZ.

The example showed that the exponential sequence f [n] = 𝛼
nU[n] is the

discrete-time version of the one-sided exponential function eatU(t). Its Z transform
is

𝛼
nU[n] ⟼ 1

1 − 𝛼z−1
, |z| > |𝛼| (9.51)

for real or complex 𝛼. From this basic transform pair we may construct other useful
pairs. If we let 𝛼 = 1, we obtain the Z transform of the step sequence,

U[n] ⟼ 1
1 − z−1

, |z| > 1, (9.52)

which has a pole on the unit circle at z = 1. If 𝛼 = ei𝛽 , then the pole is on the unit circle
at angle 𝛽. Combining this sequence with its complex conjugate yields Z transforms
for cosine and sine sequences:

cos 𝛽n U[n] ⟼
∞∑

n=0

1
2

(
ei𝛽n + e−i𝛽n) z−n = 1

2
1

1 − ei𝛽z−1
+ 1

2
1

1 − e−i𝛽z−1

= 1 − cos 𝛽 z−1

1 − 2 cos 𝛽 z−1 + z−2
, |z| > 1, (9.53)

sin 𝛽n U[n] ⟼
sin 𝛽 z−1

1 − 2 cos 𝛽 z−1 + z−2
, |z| > 1. (9.54)

The Z transforms for exponentially damped sinusoids are simple extensions of these
results:

𝛼
n cos 𝛽n U[n] ⟼

1 − 𝛼 cos 𝛽 z−1

1 − 2𝛼 cos 𝛽 z−1 + 𝛼2z−2
, |z| > |𝛼|, (9.55)

𝛼
n sin 𝛽n U[n] ⟼

𝛼 sin 𝛽 z−1

1 − 2𝛼 cos 𝛽 z−1 + 𝛼2z−2
, |z| > |𝛼|. (9.56)

The Z transform of the discrete impulse, or unit sample sequence, is

𝛿[n] ⟼
∞∑

n=0

𝛿[n] z−n = 1, |z| > 0. (9.57)

Example 9.33. Let f (t) = eat sin bt, for which f [n] = enaΔt sin(nbΔt). Let 𝛼 = aΔt
and 𝛽 = bΔt. The Z transform is, using Equation 9.56,

FZ(z) = 𝛼 sin 𝛽 z−1

1 − 2𝛼 cos 𝛽 z−1 + 𝛼2z−2
= 𝛼 sin 𝛽 z

z2 − 2𝛼 cos 𝛽 z + 𝛼2
.

There are two poles, at z = 𝛼ei𝛽 and z = 𝛼e−i𝛽 . The magnitude, or radius, of the poles
is 𝛼 = eaΔt. For a damped sinusoid, a < 0 and 𝛼 < 1, placing the poles inside the unit
circle. Increasing the damping moves the poles closer to the origin, and decreasing the
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FIGURE 9.14 Comparing the Laplace transform of f (t) = eat sin bt U(t) with the Z transform
of f [n] = eanΔt sin bnΔt U[n]. The Laplace transform’s region of convergence is the half-plane
Re s > a. The Z transform converges outside a circle of radius eaΔt. The Laplace transform
poles are located on a vertical line. Increasing the damping moves the line and the poles to the
left; increasing the frequency moves the poles along the line, farther from the origin. The Z
transform poles are located on a circle of radius eaΔt, at angles ±bΔt. Increasing the damping
moves the poles toward the origin, and increasing the frequency moves them to higher angles
around the circle. When bΔt = 𝜋, the Nyquist frequency has been reached and the poles meet
at the back of the circle.

damping moves them closer to the unit circle. The angles of the poles are ±𝛽 = ±bΔt.
Increasing the frequency increases 𝛽, moving the poles in opposite directions around
a circle of radius 𝛼. When 𝛽 = 𝜋, corresponding to the Nyquist frequency b = 𝜋∕Δt,
the poles meet. If the frequency is increased beyond this value, the poles cross the
negative real axis and continue around the circle. Their locations reproduce the pole
pattern corresponding to a lower frequency (aliasing) (Figure 9.14).

The possibility of aliasing is also observable in the mathematical form of the Z
transform:

FZ(z) = 𝛼 sin 𝛽 z

z2 − 2𝛼 cos 𝛽 z + 𝛼2
.

The denominator polynomial, whose roots give the pole locations, depends on cos 𝛽.
Since the cosine has period 2𝜋, the polynomial is unchanged if 𝛽 is replaced by
2𝜋 − 𝛽. The poles for a sinusoid of frequency 𝛽 are indistinguishable from the poles
for a sinusoid of frequency 2𝜋 − 𝛽, just as, according to sampling theory, the samples
of sinusoids with frequencies 𝛽 and 2𝜋 − 𝛽 are indistinguishable.

As in continuous time, we may define a Z transform for two-sided sequences:

FZ(z) =
∞∑

n=−∞
f [n]z−n, (9.58)

with special cases for right-sided and left-sided sequences. The behavior of the Z
transform for one-sided and two-sided sequences is analogous to that for the Laplace
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transform of one-sided and two-sided functions. The Z transform of a right-sided
sequence converges outside a circle of some radius, and the Z transform of a left-
sided sequence converges inside a circle. If a two-sided sequence decays to zero as|n| → ∞, the region of convergence will be an annulus that includes the unit circle.
There are no singularities in the region of convergence. A causal system has a right-
sided impulse response, and an anticausal system has a left-sided impulse response.
The poles of a stable, causal system are inside the unit circle, and the poles of a stable,
anticausal system are outside the unit circle.14

Example 9.34 (A left-sided sequence). The sequence f [n] = 2nU[−n − 1] decays
exponentially as n → −∞. Its Z transform is

FZ(z) =
−1∑

n=−∞
2n z−n =

∞∑
n=1

2−n zn = −1 +
∞∑

n=0

(z∕2)n

= −1 + 1
1 − z∕2

, |z∕2| < 1

= − 1
1 − 2z−1

, |z| < 2.

There is a pole at z = 2 and a zero at z = 0. The region of convergence is inside a
circle of radius 2. If f [n] were the impulse response of a noncausal system, the fact
that the region of convergence includes the unit circle would indicate stability.

If the region of convergence of the Z transform includes the unit circle, then
the transform may be evaluated on the unit circle (z = ei𝜃), obtaining

FZ(ei𝜃) =
∞∑

n=0

f [n]e−in𝜃 = Fd(𝜃), (9.59)

which is the discrete-time Fourier transform (Section 4.9).

Example 9.35. In an earlier chapter we calculated the discrete-time Fourier trans-
form of the decaying exponential sequence f [n] = 𝛼

nU[n], |𝛼| < 1 (Example 4.23)

and found Fd(𝜃) = 1
1 − ae−i𝜃

. The Z transform of this sequence is FZ(z) = 1
1 − 𝛼z−1

,

with region of convergence |z| > |𝛼|. The region of convergence includes the unit
circle if |𝛼| < 1. We may calculate FZ(ei𝜃) and obtain

FZ(ei𝜃) = 1
1 − ae−i𝜃

= Fd(𝜃).

These functions are plotted, for a = 0.85, in Figure 9.15.
You are invited to compare this figure with Figure 9.12, the sampled Laplace

transform. There it was observed that increasing the sampling interval, Δt, placed the
replicated poles closer together and increased the aliasing effect. In the Z transform

14See Oppenheim and Schafer (2010, Chapter 3) for an in-depth discussion of two-sided Z transforms.
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FIGURE 9.15 The Z transform, evaluated on the unit circle, gives the discrete-time Fourier
transform. Left: Magnitude of the Z transform FZ(z) = 1

1−0.85z−1 . The Z-plane, showing the pole
at z = 0.85 and zero at z = 0, is plotted below the surface. Right: Magnitude of the discrete-time
Fourier transform Fd(𝜃) = FZ(ei𝜃) = 1

1−0.85e−i𝜃 .

of a sampled function, increasing Δt moves the poles closer to the origin. How does
this correspond to the effect on the poles in the sampled Laplace transform?

9.2.2 Z transform Theorems

The theorems for the Z transform closely resemble those for the Laplace and discrete-
time Fourier transforms (see Section 4.9.2). The derivations of most are straightfor-
ward and will be omitted. Unless otherwise indicated, the theorems are restricted to
the one-sided transform, particularly as this bears on the region of convergence.

Linearity

Theorem 9.16. If f has Z transform FZ, and g has Z transform GZ, then

af + bg ⟼ aFZ + bGZ. (9.60)

The region of convergence is the intersection of the regions of convergence of f
and g.

Example 9.36 (Saturating exponential). The Z transforms of U[n] and 𝛼
nU[n]

are, respectively, 1
1−z−1 , |z| > 1, and 1

1−𝛼z−1 , |z| > |𝛼|. By linearity,

1 − 𝛼
n ⟼ 1

1 − z−1
− 1

1 − 𝛼z−1
= (1 − 𝛼)z−1

(1 − z−1)(1 − 𝛼z−1)
(9.61)

|z| > max(1, |𝛼|).
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Symmetry

Theorem 9.17. If f has Z transform FZ, then

f ∗[n] ⟷ F∗
Z(z∗), (9.62)

and if f is real, so f = f ∗,

F∗
Z(z) = FZ(z∗). (9.63)

The region of convergence for F∗ is the same as that of FZ.

When z = ei𝜃 , the latter relationship becomes F∗
Z(ei𝜃) = FZ(e−i𝜃), that is,

FZ(ei𝜃) is Hermitian.

Shift

Theorem 9.18. Let f ⟼ FZ. For the two-sided Z transform,

f [n − k] ⟼ z−kFZ(z), (9.64)

and for the one-sided transform,

f [n − k] U[n] ⟼ f [−k] + z−1f [−k + 1] +⋯ + z−k+1f [−1] + z−kFZ(z) (9.65)

and f [n + k] U[n] ⟼ −zkf [0] − zk−1f [1] −⋯ − zf [k] + zkFZ(z), (9.66)

where k > 0. The region of convergence is the same as that of FZ, excluding the
origin for the case of a right shift.

Proof: First, for the two-sided transform,

f [n − k] ⟼
∞∑

n=−∞
f [n − k] z−n =

∞∑
n′=−∞

f [n′] z−(n′+k) = z−kFZ(z).

For the one-sided transform, we must think about values that are shifted across the
origin. With a right shift,

f [n − 1]U[n] ⟼
∞∑

n=0

f [n − 1] z−n = f [−1] +
∞∑

n=1

f [n − 1] z−n

= f [−1] +
∞∑

n′=0

f [n′] z−(n′+1)

= f [−1] + z−1FZ(z).

Iterating this process leads to Equation 9.65. If f [n] = 0 for n < 0, then the extra
terms do not appear. With a left shift, the one-sided transform clips off values of f for
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n < k that must then be deducted from FZ:

f [n + 1] U[n] ⟼ z⋅Z{f [n]U[n − 1]} = z
∞∑

n=1

f [n] z−n

= −zf [0] + z
∞∑

n=0

f [n] z−n = −zf [0] + zFZ(z).

Iterating this process leads to Equation 9.66.

The physical significance of the samples f [−1], f [−2], etc., is brought out by
the next theorem.

Finite Difference
The application of the Laplace transform to linear differential equations rests on the
derivative theorem, f (t) ⟼ sFL(s) − f (0+), with f (0+) understood to be an initial
condition. A first-order accurate approximation to the first derivative, sampled at
t = nΔt, is

f ′(nΔt) =
f (nΔt) − f ((n − 1)Δt)

Δt
=

f [n] − f [n − 1]

Δt
=

Δ1f [n]

Δt
,

where f [n] = f (nΔt) and Δ1f is the the finite difference:

Δ1f [n] = f [n] − f [n − 1]. (9.67)

The shift theorem then leads directly to a result for the Z transform that resembles
the derivative theorem for the Laplace transform.

Theorem 9.19. The Z transform of Δ1f , the finite difference of f , is

Z{Δ1f } = (1 − z−1)FZ(z) (9.68)

for the two-sided transform and

Z{Δ1f } = (1 − z−1)FZ(z) − f [−1] (9.69)

for the one-sided transform. The region of convergence is same as the region of
convergence of FZ, excluding the origin.

The value f [−1] is interpreted here as an initial condition, just like f (0) in
continuous time. If f is a right-sided sequence, then f [−1] = 0.

Example 9.37. In continuous time, the derivative of the step is the delta function,
and L{𝛿(t)} = s ⋅ L−{U(t)} = s ⋅ 1

s
= 1. Here, in discrete time, Δ1U[n] = 𝛿[n], and

Z{Δ1U[n]} = (1 − z−1)
1

1 − z−1
− U[−1] = 1 − 0 = 1,

which is also the Z transform of 𝛿[n].
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Example 9.38 (Euler’s method). A simple approach to numerically solving the
initial value problem y′ + ay = 0, y(0−) = y0, known as Euler’s method, approxi-
mates the derivative by a first difference. The unknown function y(t) is represented
by its samples on a grid with spacing Δt, and the derivative is approximated by a
forward difference:

y′(nΔt) ≈
y ((n + 1)Δt) − y(nΔt)

Δt
.

Substituting this and collecting terms, we obtain

y ((n + 1)Δt) − (1 − aΔt) y (nΔt) = 0.

Writing y(nΔt) = y[n], the approximation to the differential equation is a difference
equation (Section 4.9.3):

y[n + 1] − (1 − aΔt) y[n] = 0, y[0] = y0.

All discretization schemes for differential equations result in some difference
equation, and the Z transform is useful for analyzing their stability properties. To
solve the equation, take Z transforms (using the shift theorem) and solve for YZ:

−zy0 + zYZ(z) − (1 − aΔt) YZ(z) = 0

⇒ (z − (1 − aΔt))YZ(z) = zy0

⇒ YZ(z) =
y0

1 − (1 − aΔt) z−1
.

Let us assume that a > 0, which corresponds to a differential equation having a stable
solution, y(t) = y0e−atU(t). The numerical solution, represented by the Z transform
YZ(z), should also be stable. It has a single real pole, at z = 1 − aΔt, which must be
inside the unit circle, |1 − aΔt| < 1.

Using the known Z transform pair 𝛼nU[n] ⟷ 1
1−𝛼z−1 , we can invert the trans-

form and return to the time domain:

y[n] = y0 (1 − aΔt)n U[n].

Observe that if |1 − aΔt| < 1, the solution will decay with n, as desired. We also
see that 1 − aΔt must be positive, otherwise the solution will change sign at every
time step, which is not the correct behavior for a first-order differential equation.
In the Z transform domain, this means the pole must be on the positive real axis,
between 0 and 1; a pole between −1 and 0 corresponds to the oscillatory time-domain
behavior.

We conclude that the numerical solution by Euler’s method will at least be
stable (accuracy is another issue) for 1 > aΔt > 0. Given a value of a, the sampling
interval Δt must be chosen so that Δt < 1∕a. It can be shown that as Δt becomes very
small, the discrete-time solution approaches the sampled continuous time solution,
that is, y0 (1 − aΔt)n U[n] → y0e−anΔtU[n].
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Integration

Theorem 9.20. Let f have Z transform FZ, |z| > r, and define Σf to be the cumu-
lative sum:

Σf [n] =
n∑

k=0

f [k].

Then the Z transform is

Σf ⟼
Fz(z)

1 − z−1
, |z| > max(1, r). (9.70)

Multiplication

Theorem 9.21. Let f have Z transform FZ, |z| > r. Then

𝛼
−nf [n] ⟼ FZ(𝛼z), |z| > |𝛼r|, (9.71)

nf [n] ⟼ −zF′
Z(z), |z| > r. (9.72)

The factor 𝛼
−n, when |𝛼| > 1, increases the decay of f and dilates the Z

transform—a pole at z = z0 is scaled to a pole at z0∕𝛼, closer to the origin. This is
analogous to what we observed in the Laplace transform, where increasing the decay
of a function pushed the poles of its transform deeper into the left half-plane. When
𝛼 = ei𝛽 the Z transform is rotated by angle 𝛽 around the unit circle. The second form
provides the Z transforms of polynomials in n, for example, for a ramp,

n U[n] ⟼ −z
d
dz

1
1 − z−1

= −z ⋅ − −z−2

(1 − z−1)2
= z−1

(1 − z−1)2
, |z| > 1. (9.73)

Compare the Laplace transform tU(t) ⟼ 1
s2 , which has a double pole at the origin.

Dilation
In discrete time, dilation is upsampling (inserting zeros between samples) and down-
sampling (removing samples). Earlier (Section 4.9.2) we saw that the relationships
between dilated sequences and their discrete-time Fourier transforms are

Upsampling:

f↑P[n] =
{

f [n∕P], n = rP, r ∈ ℤ
0, otherwise

(4.58)

F↑P(𝜃) = Fd(P𝜃). (4.59)

Downsampling:

f↓P[n] = f [nP], (4.57)

F↓P(𝜃) = 1
P

P−1∑
m=0

Fd

(
𝜃 − 2𝜋m

P

)
. (4.60)
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Because of the relationship between the Z transform and the discrete-time Fourier
transform, Fd(𝜃) = FZ(ei𝜃), we should expect similar forms for the Z transforms of
dilated sequences.

Theorem 9.22. Let f ⟼ FZ, with radius of convergence rf . The Z transforms of
the upsampled sequence f↑P and the downsampled sequence f↓P are:

f↑P[n] ⟼ FZ(zP), |z| > r1∕P
f (9.74)

f↓P[n] ⟼ 1
P

P−1∑
m=0

FZ(e−i2𝜋m∕P z1∕P), |z| > rP
f (9.75)

Plugging in z = ei𝜃 easily reproduces the Fourier transforms. The downsam-
pling result is difficult to interpret on the complex plane, because the z1∕P implies
branch points and branch cuts. However, for the typical case of a rational Z transform,
intuitive results are possible, as illustrated by the following example.

Example 9.39 (Dilated exponential sequence). The exponential sequence 𝛼nU[n]
with |𝛼| < 1 has Z transform 1

1−𝛼z−1 , |z| > |𝛼|. There is a pole at z = 𝛼 and a zero at
the origin.

First consider upsampling, which inserts P − 1 zeros between each sample.
This stretches the sequence out, causing it to decay more slowly and, if 𝛼 is complex,
oscillate more slowly. We expect the Z transform to have several poles, because the
sequence is no longer a pure exponential. With a longer decay, the poles should be
closer than |𝛼| to the unit circle, and with a lower frequency, we expect them to rotate
to lower angles. So now consider the Z transform according to the theorem:

(𝛼nU[n])↑P ⟼ 1
1 − 𝛼z−P

.

This function does in fact have P poles, at the Pth roots of 𝛼,

z = 𝛼
1∕P = |𝛼|1∕P exp

(
i
Arg 𝛼 + 2𝜋m

P

)
, m = 0, 1,…P − 1.

The poles are equally spaced around a circle of radius |𝛼|1∕P, and the Z transform
converges outside this circle, |z| > |𝛼|1∕P.

Downsampling removes samples, changing the sequence to (𝛼P)nU[n]. This is
still a pure exponential with parameter 𝛼P and so we expect the Z transform to have
only one pole. The sequence decays faster than |𝛼|nU[n] and oscillates at a higher
frequency, thus we expect the new pole to be closer to the origin and at a higher
angle. If P Arg 𝛼 exceeds 𝜋, we may expect the transform to show effects of aliasing.
Rather than using Equation 9.75, the Z transform may be obtained by inspection:

(𝛼nU[n])↓P = (𝛼P)nU[n] ⟼ 1
1 − 𝛼Pz−1

.

Indeed, there is one pole, at z = 𝛼
P = |𝛼|P exp (iP Arg 𝛼), and the transform con-

verges outside that pole, |z| > |𝛼|P.
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Convolution

Theorem 9.23. Let f and g have Z transforms FZ and GZ, with radii of convergence
rf and rg, respectively. The convolution of f and g is

f ∗ g =
n∑

k=0

f [k]g[n − k],

and

f ∗ g ⟷ FZGZ, |z| > max(rf , rg). (9.76)

Product Theorem

Theorem 9.24. Let f and g have Z transforms FZ and GZ, with radii of convergence
rf and rg, respectively. The Z transform of the product fg is

fg ⟼ 1
2𝜋i∫↺Γ

FZ(𝜉)GZ

(
z
𝜉

)
d𝜉
𝜉

= 1
2𝜋i∫↺Γ

FZ

(
z
𝜉

)
GZ(𝜉)

d𝜉
𝜉

, |z| ≥ rf rg, (9.77)

where the contour of integration Γ is a circle located in the common region of

convergence of FZ(𝜉) and GZ

(
z
𝜉

)
, or of FZ

(
z
𝜉

)
and GZ(𝜉).

The derivation follows the same approach used to obtain the product theorem
for the Laplace transform.15 If the path of integration is taken to be a circle of radius
r, then the integral can be written

1
2𝜋 ∫

𝜋

−𝜋
FZ(rei(𝜃−𝜑))GZ(rei𝜑) d𝜑,

revealing that the right-hand side of Equation 9.77 is a convolution of transforms.

Parseval’s Theorem

Theorem 9.25. Let f and g have Z transforms FZ and GZ, with radii of convergence
rf and rg, respectively. Then,

∞∑
n=0

f [n]g∗[n] = 1
2𝜋i∫↺Γ

FZ(z)G∗
Z

(
1
z∗

)
dz
z

= 1
2𝜋i∫↺Γ

FZ

(
1
z

)
G∗

Z

(
z∗
) dz

z
, (9.78)

where the contour of integration Γ is a circle located in the common region of
convergence of FZ(z) and GZ(z−1) or of FZ(z−1) and GZ(z). When the contour of
integration is the unit circle, z = ei𝜃 , we obtain Parseval’s theorem for the discrete-
time Fourier transform (Equation 4.49):

∞∑
n=−∞

f [n]g∗[n] = 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜃)G∗

d(𝜃) d𝜃.

15Also see Oppenheim and Schafer (2010, pp. 63–66).
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Initial and Final Values

Theorem 9.26. If f has Z transform FZ, |z| > 1, then

f [0] = lim|z|→∞
FZ(z), (9.79)

lim
n→∞

f [n] = lim
z→1

(z − 1)FZ(z). (9.80)

In the initial value theorem, because FZ(z) = f [0] + O(z−1), taking |z| → ∞
forces all the terms to zero except f [0]. The idea of the final value theorem is the
same as for the Laplace transform. In order for f to have a finite final value, it must
contain a step equal in height to the final value. This step contributes a single pole at
z = 1 to the Z transform, whose residue is the final value.

9.2.3 The Inverse Z Transform

Earlier we found that the Laplace transform may be regarded as a Fourier transform:

FL(𝜎 + i𝜔) = F{f (t)e−𝜎tU(t)}.

An analogous relationship exists between the Z transform and the discrete-time
Fourier transform, which is defined (Equation 4.44)

Fd(𝜃) =
∞∑

n=−∞
f [n]e−in𝜃 ,

f [n] = 1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜃)ein𝜃 d𝜃.

Comparing it to the Z transform with z = rei𝜃 , observe that

FZ(rei𝜃) =
∞∑

n=0

f [n](rei𝜃)−n =
∞∑

n=−∞
(f [n]r−nU[n]) e−in𝜃

= F{f [n]r−nU[n]}.

The Z transform is the Fourier transform of a one-sided sequence that has been
multiplied by a convergence factor. The smallest value of r for which the transform
exists is the radius of convergence r0, and the region of convergence is |z| > r0.

Just as with the Laplace transform, the Fourier-Z relationship inspires an inverse
transform formula. Begin with

FZ(rei𝜃) =
∞∑

n=−∞
(f [n]r−nU[n])e−in𝜃

and apply the inverse Fourier transform:

f [n]r−nU[n] = 1
2𝜋 ∫

𝜋

−𝜋
FZ(rei𝜃)ein𝜃 d𝜃.
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Move the convergence factor to the other side and absorb it into the integral:

f [n]U[n] = 1
2𝜋 ∫

𝜋

−𝜋
FZ(rei𝜃)(rei𝜃)n d𝜃.

Change variables to z = rei𝜃 , with dz = irei𝜃d𝜃. This changes the integral to a complex
integral on the circular path |z| = r, where r is in the region of convergence of FZ.

f [n] = 1
i2𝜋∫↺|z|=r

FZ(z)zn−1 dz, n ≥ 0.

We can also obtain the inverse transform by beginning with the observation
that the Z transform is a Laurent series:

FZ(z) =
∞∑

n=0

f [n]z−n = f [0] + f [1]z−1 + f [2]z−2 +⋯

In the region of convergence this series may be integrated term-by-term around a
closed contour |z| = r:

∫↺|z|=r
FZ(z)dz = ∫↺|z|=r

f [0]dz + ∫↺|z|=r
f [1]z−1dz + ∫↺|z|=r

f [2]z−2dz +⋯

All the integrals will be zero except one, ∫↺|z|=r
f [1]z−1dz = i2𝜋f [1] (Equation 8.3).

This recovers one element of the original sequence:

f [1] = 1
i2𝜋∫↺|z|=r

FZ(z)dz.

For the general form, multiply the Z transform by zn−1 and integrate:

∫↺|z|=r
FZ(z)zn−1 dz = ∫↺|z|=r

∞∑
k=0

f [k]z−kzn−1 dz =
∞∑

k=0
∫↺|z|=r

f [k]zn−k−1 dz.

Again using Equation 8.3, we observe that the integral on the right-hand side will be
zero unless n − k − 1 = −1, or k = n. That is,

∫↺|z|=r
zn−k−1 dz = i2𝜋𝛿[k − n], k ≥ 0.

Thus, we have

∫↺|z|=r
FZ(z)zn−1 dz =

∞∑
k=0

i2𝜋f [k]𝛿[k − n] = i2𝜋f [n], n ≥ 0,

which establishes the following theorem.

Theorem 9.27 (Inverse Z transform). Let f be a one-sided sequence with Z
transform FZ. Let Γ be a simple closed contour in the region of convergence of FZ.
Then

f [n] = 1
2𝜋i∫↺Γ

FZ(z)zn−1 dz, n ≥ 0. (9.81)
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Γ

1/2 1

FIGURE 9.16 Inverting the Z transform FZ(z) = 1

1− 1
2

z−1
by complex integration.

Example 9.40. FZ(z) = 1

1− 1
2

z−1
has a simple pole at z = 1

2
. Its region of convergence

is |z| > 1
2
. Taking Γ to be the unit circle (Figure 9.16) and using Equation 9.81,

f [n] = 1
2𝜋i∫↺Γ

zn−1

1 − 1
2
z−1

dz = 1
2𝜋i∫↺Γ

zn

z − 1
2

dz = 1
2𝜋i

× 2𝜋i Res

[
zn

z − 1
2

,
1
2

]
=

(1
2

)n
, n ≥ 0.

We assume that the inverse transform is zero for n < 0 because of the region of
convergence. But it is instructive to carry the calculation through for n ≤ −1. For
n > 0, the zn factor in the numerator gives zeros at the origin, but for n ≤ −1 it
becomes an nth-order pole at the origin.

f [−1] = 1
2𝜋i

× 2𝜋i

(
Res

[
1

z(z − 1∕2)
, 0

]
+ Res

[
1

z(z − 1∕2)
, 1∕2

])
= 1

−1∕2
+ 1

1∕2
= 0

f [−2] = 1
2𝜋i

× 2𝜋i

(
Res

[
1

z2(z − 1∕2)
, 0

]
+ Res

[
1

z2(z − 1∕2)
, 1∕2

])
= 1

0!

[
d
dz

1
z − 1∕2

]
z→0

+ 1
(1∕2)2

= − 1
(z − 1∕2)2

||||z=0
+ 4 = 0

⋮
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f [−n] = 1
2𝜋i

× 2𝜋i

(
Res

[
1

zn(z − 1∕2)
, 0

]
+ Res

[
1

zn(z − 1∕2)
, 1∕2

])
= 1

(n − 1)!

[
dn−1

dzn−1

1
z − 1∕2

]
z→0

+ 1
(1∕2)n

= 1
(n − 1)!

[
(−1)n−1 (n − 1)!

(z − 1∕2)n

]
z=0

+ 1
(1∕2)n

= −2n + 2n = 0.

The contour integration does take care of both the n ≥ 0 and n ≤ −1 cases, although
we do not need to do the calculation for n ≤ −1 if we already know the answer is one
sided.

Example 9.41. FZ(z) = 2z2−z

(z+ 3
4

)2
has a double pole at z = − 3

4
. Take Γ to be a circle

of radius greater than 3
4
, and apply Equation 9.81 with the formula for the residue at

a multiple pole (Equation 8.17):

f [n] = 1
2𝜋i∫↺Γ

(2z2 − z)zn−1

(z + 3
4
)2

dz = Res

[
2zn+1 − zn

(z + 3
4
)2

, z = −3
4

]
= lim

z→− 3
4

d
dz

(2zn+1 − zn) = lim
z→− 3

4

2(n + 1)zn − nzn−1

= 2(n + 1)
(
−3

4

)n
− n

(
−3

4

)n−1
= 2n

(
−3

4

)n
+ 2

(
−3

4

)n
+ 4

3
n
(
−3

4

)n

= 10
3

n
(
−3

4

)n
+ 2

(
−3

4

)n
, n ≥ 0.

⋆ Two-Sided Inverse Transform
The Laplace transform for a two-sided function is inverted by closing the contour of
integration to the left for t > 0, encircling poles in the left half-plane, and closing the
contour of integration to the right for t < 0, encircling poles in the right half-plane.
A similar procedure works for two-sided Z transforms. Poles inside the contour of
integration (e.g., the unit circle) contribute to the inverse transform for n ≥ 0, and
poles outside the contour produce the inverse transform for n < 0. If the path of
integration is understood to encircle the poles outside in the clockwise direction, then
Equation 9.81 works also for the left-sided part, with a minus sign applied to the
integral to account for the reversal of direction.

Example 9.42. Let FZ(z) = −1
1 − 2z−1

, |z| < 2, which we calculated earlier from

the sequence f [n] = 2nU[−n − 1] (Example 9.34). From the region of convergence,
we understand FZ to be the transform of a left-sided sequence. It has a simple pole at
z = 2. The inverse transform is calculated:

f [n] = − 1
2𝜋i∫ Γ (ext)

−zn−1

1 − 2z−1
dz = 1

2𝜋i
× 2𝜋i Res

[
zn

z − 2
, 2

]
= 2n, n ≤ −1.
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Alternatively, to calculate the left-sided part we may apply the change of variable 𝜉 =
1∕z to the integrand, which reflects the poles outside the unit circle to the inside, and
the poles inside to the outside. The path of integration is reflected from |z| = r to |𝜉| =
1∕r. The interior of the contour is traversed clockwise rather than counterclockwise,
so a minus sign is applied to the integral:

f [n] = − 1
2𝜋i∫↺𝜉=1∕r

FZ(1∕𝜉) (1∕𝜉)n−1 d(1∕𝜉)

= 1
2𝜋i∫↺𝜉=1∕r

FZ(1∕𝜉) 𝜉−n−1 d𝜉, n ≤ −1. (9.82)

With this approach, the calculation in the previous example is

f [n] = 1
2𝜋i∫↺|𝜉|=1∕r

−𝜉−n−1

1 − 2𝜉
d𝜉 = 1

2𝜋i∫↺|𝜉|=1∕r

1
2

𝜉
−n−1

𝜉 − 1∕2
d𝜉

= Res

[
1
2

𝜉
−n−1

𝜉 − 1∕2
, 𝜉 = 1∕2

]
= (1∕2)−n = 2n, n ≤ −1.

For n > 0, the factor 𝜉
−n−1 is an n + 1-order pole at the origin, and a calculation

like the one in Example 9.40 shows that the right-sided terms in the sequence are
zero.

Partial Fraction Expansion
The Mittag–Leffler expansion 9.42 can be used to break a Z transform into a sum of
partial fractions, which are then easily inverted using standard transform pairs. The
approach is illustrated by the following example.

Example 9.43. Consider the Z transform:

FZ(z) =
4z2 − 5

4
z

z2 − 3
4
z + 1

8

.

It is a proper rational function with two simple poles, located at z = 1
2

and z = 1
4

. The
function is therefore analytic at the origin and the conditions for the Mittag–Leffler
expansion are met. The residues at the poles are 3

2
and 1

4
, respectively. The principal

parts are

P
(

z,
1
2

)
=

3
2

z − 1
2

,

P
(

z,
1
4

)
=

1
4

z − 1
4

.
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The partial fraction expansion is

FZ(z) = FZ(0) +
[
P
(

z,
1
2

)
− P

(
0,

1
2

)]
+
[
P
(

z,
1
4

)
− P

(
0,

1
4

)]
= 0 +

( 3
2

z − 1
2

+ 3

)
+

( 1
4

z − 1
4

+ 1

)
= 3z

z − 1
2

+ z

z − 1
4

= 3

1 − 1
2

z−1
+ 1

1 − 1
4
z−1

.

The last step is performed to make the partial fractions match up with the basic
Z transform pair, anU[n] ⟷ 1

1−az−1 . Using this pair, the inverse transform is

f [n] = 3
(1

2

)n
U[n] +

(1
4

)n
U[n].

Example 9.44. Consider again the Z transform

FZ(z) = 2z2 − z(
z + 3

4

)2
.

The form of the principal part is

P(z, a) =
c−2(

z + 3
4

)2
+

c−1

z + 3
4

.

The coefficients are calculated using Equation 9.45b:

c−2 = lim
z→− 3

4

(
z + 3

4

)2 2z2 − z(
z + 3

4

)2
= lim

z→− 3
4

(2z2 − z) = 15
8

,

c−1 = lim
z→− 3

4

d
dz

(2z2 − z) = −4.

The partial fraction expansion is

FZ(z) = FZ(0) + P(z, a) − P(0, a) = 0 +
15
8(

z + 3
4

)2
+ −4

z + 3
4

−
⎛⎜⎜⎝

15
8
9

16

+ −4
3
4

⎞⎟⎟⎠
=

15
8(

z + 3
4

)2
+ −4

z + 3
4

+ 2.
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The constant term is split across the two partial fractions to get them into standard
forms:

FZ(z) =
15
8(

z + 3
4

)2
+ −4

z + 3
4

+ 2 =
15
8(

z + 3
4

)2
+

−4 + 2
(

z + 3
4

)
z + 3

4

=
15
8(

z + 3
4

)2
−

5
2

z + 3
4

+ 2z

z + 3
4

=
15
8
− 5

2

(
z + 3

4

)
(

z + 3
4

)2
+ 2z

z + 3
4

=
− 5

2
z(

z + 3
4

)2
+ 2z(

z + 3
4

) =
10
3

(
− 3

4

)
z−1(

1 + 3
4
z−1

)2
+ 2(

1 + 3
4

z−1
) .

Using the table at the end of the chapter, the inverse Z transform is

f [n] = 10
3

n
(
−3

4

)n
+ 2

(
−3

4

)n
, n ≥ 0.

The manipulation of the constant term may seem a bit tricky and ad hoc.
Certainly, one is aided by having an idea, based on experience, of what forms to look
for in the partial fractions. If we were to leave the constant term alone and proceed
with the table lookups, we would still get the right answer. Write

FZ(z) =
15
8(

z + 3
4

)2
+ −4

z + 3
4

+ 2

and use the table, together with the shift theorem:

FZ(z) = −5
2

z−1
− 3

4
z−1

(1 − 3
4
z−1)2

− 4z−1 1

1 + 3
4
z−1

+ 2,

f [n] = −5
2
⋅ (n − 1)

(
−3

4

)n−1
U[n − 1] − 4 ⋅

(
−3

4

)n−1
U[n − 1] + 2𝛿[n]

= −5
2

n
(
−3

4

)n−1
U[n − 1] − 3

2

(
−3

4

)n−1
U[n − 1] + 2𝛿[n]

= 10
3

n
(
−3

4

)n
U[n − 1] + 2

(
−3

4

)n
U[n − 1] + 2𝛿[n].

Now substitute U[n − 1] = U[n] − 𝛿[n]:

f [n] = 10
3

n
(
−3

4

)n

U[n] − 10
3

n
(
−3

4

)n

𝛿[n]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

=0

+ 2
(
−3

4

)n

U[n] − 2
(
−3

4

)n

𝛿[n]
⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟

=2𝛿[n]

+2𝛿[n]

= 10
3

n
(
−3

4

)n

U[n] + 2
(
−3

4

)n

U[n].

In this example, complex integration provides a more direct path to the inverse
transform than the partial fraction expansion.
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z–1

z–1

+ +f [n] g[n]

b1

b2

–a1

–a2

v[n]

v[n – 1]

v[n – 2]

b0

FIGURE 9.17 A second-order discrete-time LTI system. The boxes labelled “z−1” represent
unit time delays. An arrow with a coefficient symbolizes multiplication by that coefficient.

9.2.4 Discrete-time Systems

A causal linear, time-invariant discrete-time system (introduced in Section 4.9.3) is
described by a linear difference equation:

g[n] + a1g[n − 1] +⋯ + aNg[n − N] = b0f [n] + b1f [n − 1] +⋯ + bMf [n − M].

where f is the input and g is the output. The current value of the output, g[n],
is recursively computed from the past values of the output and the current and
past values of the input. There may be initial conditions specifying the values
g[−1], g[−2],… , g[−N], but in many applications the initial conditions are assumed
to be zero.

Figure 9.17 shows a representative second-order system. It is described by a
pair of difference equations:

g[n] = b0𝑣[n] + b1𝑣[n − 1] + b2𝑣[n − 2],

𝑣[n] = f [n] − a1𝑣[n − 1] − a2𝑣[n − 2].

To eliminate 𝑣 between the equations, take the Z transform of both sides:

GZ(z) = (b0 + b1z−1 + b2z−2)VZ(z),

VZ(z) = FZ(z) − a1z−1VZ(z) − a2z−2VZ(z),

⇒ VZ(z) = 1
1 + a1z−1 + a2z−2

FZ(z).

then substitute into the equation for GZ:

GZ(z) =
b0 + b1z−1 + b2z−2

1 + a1z−1 + a2z−2
FZ(z).

The Z transforms of input and output are connected by a rational function of
z, which is the transfer function, HZ(z). Assuming that the poles of HZ are inside
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the unit circle, HZ(ei𝜃) gives the frequency response Hd(𝜃), a discrete-time Fourier
transform. The inverse Z transform of HZ(z) is the impulse response h[n], and by the
convolution theorem,

g[n] = h ∗ f [n].

When the coefficients an are zero, the output depends solely on the current and
past values of the input. The impulse response of the second-order system is

h[n] = Z−1{b0 + b1z−1 + b2z−2} = b0𝛿[n] + b1𝛿[n − 1] + b2𝛿[n − 2].

The impulse response has a finite duration of three time steps. Once an impulse input
has passed through the two time delays, it has no further effect on the output. This
type of system, with no feedback and a finite-duration impulse response, is called a
finite impulse response (FIR) system or, when used as a frequency-selective filter, an
FIR filter.

When one or more of the feedback coefficients a are nonzero, an input impulse
continues to re-enter the delay elements and, consequently, its influence on the
output never completely ends. This type of system has an infinite-duration impulse
response and is called an infinite impulse response (IIR) system, or IIR filter. A
particularly simple, but illustrative, case results when a2 = 0 and b1 = b2 = 0. The
transfer function is

HZ(z) =
b0

1 + a1z−1

and the impulse response is exponential:

h[n] = b0

(
−a1

)n
U[n].

In the time domain, with every cycle around the feedback loop, the intermediate term
𝑣[n] is multiplied by another factor of −a1. If |a1| < 1, this results in an exponential
decay of the impulse response. Both FIR and IIR systems are important in discrete-
time control and signal processing.16

9.3 THE HILBERT TRANSFORM

9.3.1 The Fourier Transform of One-sided Functions

One-sided functions, which are nonzero only for t ≥ 0, represent several real phe-
nomena. A signal that turns on at t = 0, for example, f (t) = cos 2𝜋t U(t), is one sided.
The impulse response of a causal linear system (one which does not produce an output
before the input is applied) is one sided, for example, h(t) = e−tU(t). Causality is
an important constraint on the design of systems that operate in real time on streams
of data.

16For applications of discrete-time systems in feedback control, see Franklin et al. (1998) and Kuo (1963).
For applications to signal processing (digital filters), see Oppenheim and Schafer (2010), and also Porat
(1997).
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The theme of this section is that the real and imaginary parts of the Fourier
transforms of one-sided functions are not independent, but can be calculated one
from the other. To see how this works, break the one-sided function f into its even
and odd parts, fe and fo. Because f (t) = 0 for t < 0,

fe(t) =
f (t) + f (−t)

2
=

⎧⎪⎨⎪⎩
1
2

f (t), t ≥ 0

1
2

f (−t), t < 0
,

fo(t) =
f (t) − f (−t)

2
=

⎧⎪⎨⎪⎩
1
2

f (t), t ≥ 0

− 1
2

f (−t), t < 0
.

Thus, the even and odd parts are connected,

fo(t) = fe(t) sgn t.

Now take the Fourier transform of both sides of this expression. The Fourier transform
of a real and even function is real, and the transform of a real and odd function is
imaginary. So, with F = Fr + iFi, fo ⟼ iFi and fe ⟼ Fr, and Fi is related to Fr by

iFi(𝜈) = Fr(𝜈) ∗ F {sgn t} = Fr(𝜈) ∗ 1
i𝜋𝜈

or,

Fi(𝜈) = Fr(𝜈) ∗ − 1
𝜋𝜈

= 1
𝜋 ∫

∞

−∞

Fr(𝜂) d𝜂

𝜂 − 𝜈
. (9.83a)

It is also true that fe(t) = fo(t) sgn t (except at the origin, where fo(0) = 0 but fe(0)
need not be), so

Fr(𝜈) = iFi(𝜈) ∗ 1
i𝜋𝜈

= − 1
𝜋 ∫

∞

−∞

Fi(𝜂) d𝜂

𝜂 − 𝜈
. (9.83b)

The integral in both of these equations is known as the Hilbert transform.17

The Hilbert transform of a function f : ℝ → ℂ or a sequence f : ℤ → ℂ is denoted
Hi {f } or fHi. We begin with the continuous case.

Definition 9.4 (Continuous Hilbert transform). Let f : ℝ → ℂ be a function.
The Hilbert transform of f is a function fHi : ℝ → ℂ defined

fHi(x) = Hi {f } = − 1
𝜋x

∗ f (x) = 1
𝜋
P∫

∞

−∞

f (y) dy

y − x
, (9.84)

when the integral exists. The integral is taken as a Cauchy principal value because of
the singularity at y = x.

17For historical notes on the Hilbert transform, see King (2009, Vol. 1, pp. 3–8). A comprehensive table
of transforms, with many graphs of transform pairs, may be found in Vol. 2, pp. 453–546.
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With this notation, the real and imaginary parts of the Fourier transform of a
one-sided function f (t) (Equation 9.83) are compactly written

Fi = Hi{Fr} and Fr = −Hi{Fi}.

Example 9.45. The Fourier transform of the step function is 1
2
𝛿(𝜈) + 1

i2𝜋𝜈
=

1
2
𝛿(𝜈) − i 1

2𝜋𝜈
. We will show that the real and imaginary parts follow Equations (9.83),

that is,

− 1
2𝜋𝜈

= Hi
{1

2
𝛿(𝜈)

}
and

1
2
𝛿(𝜈) = −Hi

{ 1
2𝜋𝜈

}
.

The Hilbert transform of 1
2
𝛿(𝜈) is easy, because of the sifting property of the

delta function:

− 1
𝜋
P∫

∞

−∞

1
2
𝛿(𝜂) d𝜂

𝜈 − 𝜂
= − 1

2𝜋𝜈
.

For the imaginary part, use the convolution theorem:

−Hi
{ −1

2𝜋𝜈

}
= 1

𝜋𝜈
∗ − 1

2𝜋𝜈

= F
{

i sgn t ⋅ −1
2

i sgn t
}
= 1

2
F {1} = 1

2
𝛿(𝜈).

Example 9.46. The Fourier transform of the one-sided exponential, e−tU(t), is
1

1+i2𝜋𝜈
= 1

1+(2𝜋𝜈)2 + i −2𝜋𝜈
1+(2𝜋𝜈)2 . We will calculate the Hilbert transform of the real part

by direct integration. The verification for the imaginary part is similar and is left to
the problems:

Hi

{
1

1 + (2𝜋𝜈)2

}
= − 1

𝜋
P∫

∞

−∞

d𝜂

(𝜈 − 𝜂)(1 + (2𝜋𝜂)2)
.

This appears well suited to calculation with a contour integral. Consider the complex
integral

1
2𝜋3∫↺Γ

dz
(z − 𝜈)(z2 + (1∕2𝜋)2)
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ΓR

R–R

Γε

ν

i/2π

–i/2π

FIGURE 9.18 Contour for calculating the Hilbert transform of 1

1+(2𝜋𝜈)2 .

on an indented contour, as shown in Figure 9.18. There are simple poles at z = 𝜈, i
2𝜋

,

and − i
2𝜋

. The pole at z = i
2𝜋

is within the contour, and its residue is

Res

[
1

(z − 𝜈)
(
z2 + (1∕2𝜋)2

) ,
i

2𝜋

]
= −2𝜋2

1 + i2𝜋𝜈
.

So,

∫↺Γ = 2𝜋i
−2𝜋2

1 + i2𝜋𝜈
= −i4𝜋3

1 + i2𝜋𝜈
.

Using the ML inequality, the integral on ΓR is seen to go to zero as R → ∞. The
contribution of the indentation Γ

𝜖
is

∫↷Γ𝜖 = −i𝜋 Res

[
1

(z − 𝜈)
(
z2 + (1∕2𝜋)2

) , 𝜈

]
= −i4𝜋3

1 + (2𝜋𝜈)2
.

Thus,

Hi

{
1

1 + (2𝜋𝜈)2

}
= 1

2𝜋3

[
∫↺Γ

− ∫↷Γ
𝜖

]
= 1

2𝜋3

[
−i4𝜋3

1 + i2𝜋𝜈
+ i4𝜋3

1 + (2𝜋𝜈)2

]
= 2

−i(1 − i2𝜋𝜈) + i

1 + (2𝜋𝜈)2
= −2𝜋𝜈

1 + (2𝜋𝜈)2
,

which is the imaginary part of 1
1+i2𝜋𝜈

.
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One-Sided Infinite Sequences
Now consider the even and odd parts of a one-sided sequence (f [n])∞n=0:

fe[n] =
f [n] + f [−n]

2
=

⎧⎪⎪⎨⎪⎪⎩

1
2
f [n], n > 0

f [0], n = 0

1
2
f [−n], n < 0

,

fo[n] =
f [n] − f [−n]

2
=

⎧⎪⎪⎨⎪⎪⎩

1
2
f [n], n > 0

0, n = 0

− 1
2

f [−n], n < 0

.

Again the even and odd parts are connected:

fe[n] = f [0] 𝛿[n] + fo[n] sgn [n],

fo[n] = fe[n] sgn [n],

where the discrete-time signum is defined:

sgn [n] =
⎧⎪⎨⎪⎩

1, n > 0
0, n = 0
−1, n < 0

. (9.85)

The real and imaginary parts of the discrete-time Fourier transform, Fdr and Fdi, are
calculated from fe and fo, respectively, using the convolution theorem 4.16.

Fdr = f [0] + iFdi ⊛ F{sgn},

iFdi = Fdr ⊛ F{sgn}.

Now, the Fourier transform of the signum sequence is

F{sgn} =
∞∑

n=−∞
sgn [n] e−in𝜃

.

The signum is not absolutely summable. We will apply a convergence factor
a|n|, 0 < a < 1, and calculate the transform in the limit. The steps should all be
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familiar by now:

F{sgn} = lim
a→1

∞∑
n=−∞

a|n| sgn [n]e−in𝜃

= lim
a→1

[ ∞∑
n=1

(ae−i𝜃)n −
−1∑

n=−∞
(ae+i𝜃)−n

]
= lim

a→1

∞∑
n=1

[(ae−i𝜃)n − (ae+i𝜃)n]

= lim
a→1

lim
N→∞

[
1 − (ae−i𝜃)N

1 − ae−i𝜃
− 1 − (ae+i𝜃)N

1 − ae+i𝜃

]
= lim

a→1

[ 1
1 − ae−i𝜃

− 1
1 − ae+i𝜃

]
= −2i sin 𝜃

2 − 2 cos 𝜃
= −i cot

(
𝜃

2

)
. (9.86)

With this, the real and imaginary parts of Fd are connected through a Hilbert transform
relationship:

Fdr(𝜃) = f [0] + iFdi(𝜃) ⊛ −i cot
(
𝜃

2

)
= f [0] − 1

2𝜋
P∫

𝜋

−𝜋
Fdi(𝜑) cot

(
𝜑 − 𝜃

2

)
d𝜑, (9.87a)

Fdi(𝜃) = −iFdr ⊛ −i cot
(
𝜃

2

)
= 1

2𝜋
P∫

𝜋

−𝜋
Fdi(𝜑) cot

(
𝜑 − 𝜃

2

)
d𝜑. (9.87b)

The integrals are taken as Cauchy principal values because the cotangent blows up at
𝜑 = 𝜃.

The discrete-time Fourier transform is periodic with period 2𝜋. Equations 9.87
are a particular case of the following theorem.

Theorem 9.28 (Hilbert transform, periodic functions). Let f : ℝ → ℂ be peri-
odic with period L. The Hilbert transform of f is

Hi {f } = 1
𝜋
P∫

∞

−∞

f (y) dy

y − x

= 1
L
P∫

L∕2

−L∕2
f (y) cot

(
𝜋

L
(y − x)

)
dy. (9.88)

⋆ Hilbert Transform and Sampling
The Hilbert transform relationships for the discrete-time Fourier transform of a one-
sided sequence, Equations 9.87, are connected with the Hilbert transform of a contin-
uous time function, Equations 9.83, through sampling. It will be instructive to derive
them again from this point of view. A proof of Theorem 9.28 can be constructed
along these lines.

Consider the function f (x), sampled at x = nΔx. From sampling theory, we

know that fs(x) = f (x) 1
Δx

III
(

x
Δx

)
has Fourier transform Fs(𝜈) = F(𝜈) ∗ III(Δx 𝜈). If

f is one sided, then so is fs, and the real and imaginary parts of Fs, which we denote
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Fsr and Fsi, must also be connected by the Hilbert transform. Calculate18

Fsi(𝜈) = Hi{Fr(𝜈) ∗ III(Δx𝜈)}

= − 1
𝜋𝜈

∗ [Fr(𝜈) ∗ III(Δx𝜈)] = Fr(𝜈) ∗
[
− 1
𝜋𝜈

∗ III(Δx𝜈)
]

= Fr(𝜈) ∗
∞∑

k=−∞
− 1
𝜋Δx

1
𝜈 − k∕Δx

.

It can be shown (see the problems) that the periodic replication of 1∕𝜋𝜈 is the
cotangent function, cot(𝜋Δx 𝜈), a Mittag–Leffler expansion:

∞∑
k=−∞

1
𝜋Δx

1
𝜈 − k∕Δx

= cot(𝜋Δx 𝜈).

With this result, we have

Fsi(𝜈) = Fr(𝜈) ∗ − cot(𝜋Δx 𝜈)

= ∫
∞

−∞
Fr(𝜂) cot [𝜋Δx (𝜂 − 𝜈)] d𝜂, (9.89a)

and similarly,

Fsr(𝜈) = Fi(𝜈) ∗ − cot(𝜋Δx 𝜈)

= ∫
∞

−∞
Fr(𝜂) cot [𝜋Δx (𝜂 − 𝜈)] d𝜂. (9.89b)

The imaginary (real) part of the replicated F is equal to the convolution of the real
(imaginary) part of the original F with the periodic cotangent function.

Because cot(𝜋Δx 𝜈) is periodic with period 1∕Δx, it can be written as the
convolution of one period (isolated with a rectangle function) and a comb:

cot(𝜋Δx 𝜈) = [cot(𝜋Δx 𝜈) rect(Δx 𝜈)] ∗ Δx III(Δx 𝜈),

which enables Fsi to be written again as a (different) triple convolution:

Fsi(𝜈) = −Fr(𝜈) ∗ ([cot(𝜋Δx 𝜈) rect(Δx 𝜈)] ∗ Δx III(Δx 𝜈))

= −Δx (Fr(𝜈) ∗ III(Δx 𝜈))
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Fsr(𝜈)

∗ [cot(𝜋Δx 𝜈) rect(Δx 𝜈)]

= ∫
1∕2Δx

−1∕2Δx
Δx Fsr(𝜂 − 𝜈) cot (𝜋Δx 𝜂) d𝜂.

Finally, recall that the discrete-time Fourier transform Fd(𝜃) of the sequence
f [n] = f (nΔx) is related to the Fourier transform Fs(𝜈) by the analog-to-digital

18See Champeney (1987, pp. 139–144) for a discussion of the associativity of convolution for generalized
functions. Briefly, f ∗ (g ∗ h) = (f ∗ g) ∗ h if f ∗ 𝜑 is a good function and the remaining convolution,
g ∗ h, is defined. Here, Fr ∗ 𝜑 is good because f is assumed bandlimited and square integrable, and, by
direct calculation, the convolution of 1∕𝜋𝜈 and III(Δx 𝜈) exists.
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–2 –1 0 1 2

–1

0

1

νΔx

–2 –1 0 1 2

–1

0

1

νΔx

Fr(ν)

Fr(ν)

Fsr(ν)

Δx cot(πνΔx)

1
πν

1
πν

–0.5 0 0.5

–1

0

1

νΔx

Fr(ν)

Δx cot(πνΔx)

Fsr(ν)

FIGURE 9.19 Top: The Hilbert transform of the replicated function Fsr is a convolution
with 1

𝜋𝜈
. Middle: It is equivalent to the convolution of the unreplicated Fr with cot(𝜋Δx𝜈).

Bottom: Finally, it is equivalent to a convolution of Fsr with Δx cot(𝜋Δx𝜈) over the interval
(− 1

2Δx
, 1

2Δx
).

frequency mapping, 𝜃 = 2𝜋Δx 𝜈 (Section 6.6.2),

Fd(𝜃) = Fs

(
𝜃

2𝜋Δx

)
.

Make this change of variable, and also let 𝜙 = 2𝜋Δx𝜂, d𝜂 = d𝜙∕2𝜋Δx; then,

Fdi(𝜃) = 1
2𝜋

P∫
𝜋

−𝜋
Fdr(𝜙 − 𝜃) cot

(
𝜙

2

)
d𝜙 = 1

2𝜋
P∫

𝜋

−𝜋
Fdr(𝜙) cot

(
𝜙 − 𝜃

2

)
d𝜙,

which is, again, Equation 9.87. These convolutions are illustrated in Figure 9.19.
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One-Sided Finite Sequences
To derive the analogous Hilbert transform relationships for the DFT, we need to
define a finite one-sided sequence. Recall that the DFT implicitly regards a vector
as one period of an infinite periodic sequence, for which evenness and oddness are
defined (Equation 3.2):

Even: fe[n] = fe[N − n],

Odd: fo[n] = −fo[N − n].

With N even, an odd periodic sequence must have fo[0] = −fo[N] = 0 and fo[ N
2

] =
−fo[ N

2
] = 0. We define a finite signum sequence by

sgn [n] =
⎧⎪⎨⎪⎩

0, n = 0, N
2

1, n = 1, 2,… , N
2
− 1

−1, n = N
2
+ 1,… , N − 2, N − 1

. (9.90)

Then, for a one-sided sequence f = fe + fo, the odd part is connected to the even part
in this way:

fo[n] = fe[n] sgn [n],

and the even part is connected to the odd part by

fe[n] = f [0] 𝛿[n] + f
[N

2

]
𝛿

[
n − N

2

]
+ fo[n] sgn [n].

If f is considered as one period of an infinite periodic sequence, the entire sequence
cannot be one sided. Rather, a one-sided periodic sequence is zero for the latter half
of each period (f [ N

2
+ 1] through f [N − 1]). This is what we observe if we add fe and

fo:

fe[n] + fo[n] = fe[n] (1 + sgn [n]) =
⎧⎪⎨⎪⎩

fe[n], n = 0, N∕2
2fe[n], n = 1,…N∕2 − 1
0, n = N∕2 + 1…N − 1

.

With these definitions and the convolution theorem (Equation 3.31), we calcu-
late the DFTs:

iFi[m] = 1
N

Fr[m] ⊛ DFT{sgn},

Fr[m] = f [0] + f
[N

2

]
e−i𝜋m + 1

N
iFi[m] ⊛ DFT{sgn}.
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For the DFT of the signum sequence,

DFT{sgn} =
N−1∑
n=0

sgn [n]e−i2𝜋mn∕N =

N
2
−1∑

n=1

e−i2𝜋mn∕N −
N−1∑

n= N
2
+1

e−i2𝜋mn∕N

=

N
2
−1∑

n=1

e−i2𝜋mn∕N − e−i𝜋m

N
2
−1∑

n=1

e−i2𝜋mn∕N

= (1 − e−i𝜋m)

(
−1 + 1 − e−i𝜋m

1 − e−i2𝜋m∕N

)
.

The factor (1 − e−i𝜋m) is 0 for even m and 2 for odd m. The other factor simplifies to

−1 + 1 − e−i𝜋m

1 − e−i2𝜋m∕N
= e−i2𝜋m∕N − e−i𝜋m

1 − e−i2𝜋m∕N

= e−i𝜋m∕N − e−i𝜋me+i𝜋m∕N

2i sin
(
𝜋m
N

) .

The factor of e−i𝜋m in the numerator is +1 for even m and −1 for odd m. But only
odd-indexed terms will be nonzero, so we replace e−i𝜋m by −1 and the numerator

becomes 2 cos
(
𝜋m
N

)
. Putting the pieces together, we have

DFT{sgn} =

{
0, m even

−i2 cot
(
𝜋m
N

)
, m odd

. (9.91)

(You are invited to compare this result to Equation 9.86 in light of the relationship
between the DFT and the discrete-time Fourier transform.)

Therefore, the Hilbert transform relationships are

Fi[m] =
N−1∑
k=0

Fr[k]S[k − m], (9.92a)

Fr[m] = f [0] + (−1)mf
[N

2

]
−

N−1∑
k=0

Fi[k]S[k − m], (9.92b)

where

S[m] =

{
0, m even
2
N

cot
(
𝜋m
N

)
, m odd

. (9.92c)

Like Theorem 9.28, these relationships for a periodic sequence are a particular case
of a more general Hilbert transform pair for sequences.



9.3 THE HILBERT TRANSFORM 639

Definition 9.5 (Discrete Hilbert transform). Let f : ℤ → ℂ be a sequence. The
Hilbert transform of f is a sequence fHi : ℤ → ℂ defined

fHi[n] =
∞∑

k=−∞
f [k]s[k − n],

where s[n] =

{
0, n even
2
𝜋n

, n odd
, (9.93)

when the series converges. When f is periodic, the kernel S[m] in Equation 9.92 can
be shown to be the periodic replication of the kernel s[n] in Equation 9.93.

Minimum Phase Systems
A real, causal, stable LTI system has a right-sided impulse response h(t) or h[n]. The
poles of the transfer function HL(s) are in the left half-plane for a continuous time
system, and the poles of HZ(z) are inside the unit circle for a discrete-time system.
The system has a frequency response, H(𝜈) or Hd(𝜃), and the real and imaginary parts
of the transfer function are connected by the Hilbert transform, Equation 9.83 or 9.87.

While causality and stability require the poles of the transfer function to be
in the left half-plane or inside the unit circle, they leave the zeros unconstrained.
However, if the zeros as well as the poles are in the left half-plane or inside the unit
circle, so that the region of convergence of HL(s) or HZ(z) is free of zeros as well as
poles, the system has the additional property of minimum phase.

How this works may be seen with the aid of Figure 9.20. An S-plane frequency
response is the ratio of polynomials, which for simplicity we assume have factors of
multiplicity one. That is,

HL(i𝜔) = A

∏
m(i𝜔 − cm)∏
n(i𝜔 − dn)

.

where the {cm} are the zeros and {dm} are the poles. A single zero, i𝜔 − c, is
illustrated in the figure. (The same geometry pertains to the contributions of poles
in the left half-plane.) The magnitude |i𝜔 − c| is its contribution to the magnitude
response, and the indicated angle 𝜙 = arg(i𝜔 − c) is its contribution to the phase
response. There is a symmetric point in the right half-plane, c′ = −c∗, which gives
the same value of magnitude, that is, |i𝜔 − c| = |i𝜔 − c′|, for all frequencies 𝜔. The
magnitude response of the system is the same whether the zero is in the left half-
plane at s = c or in the right half-plane at s = c′. However, arg(i𝜔 − c′) is greater
than arg(i𝜔 − c) at all frequencies. The right half-plane zero contributes more phase
shift to the frequency response than the left half-plane zero. Thus, system with all its
zeros in the left half-plane will have the minimum phase shift of all systems with the
same magnitude response.

Similarly, a discrete-time frequency response is the ratio of polynomials in ei𝜃 ,
which again we assume have factors of multiplicity one:

Hd(𝜃) = HZ(ei𝜃) = A

∏
m(ei𝜃 − cm)∏
n(ei𝜃 − dn)

.
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iω

c c’
ϕ

c
c’ϕ

ϕ ’ϕ’ eiθ

FIGURE 9.20 Left: Two symmetric points c = −a + ib and c′ = −c∗ = a + ib are the same
distance from a point i𝜔. The vectors drawn from c to i𝜔 and from c′ to i𝜔 represent the
complex factors i𝜔 − c and i𝜔 − c′. The contribution of a zero at s = c to the magnitude
of frequency response HL(i𝜔) is the same as the contribution of a zero at s = c′ for all
frequencies, but the right half-plane zero always contributes more phase shift, 𝜙′

> 𝜙. Right:
Two symmetric points c = rei𝛽 and c′ = 1∕c∗ = r−1ei𝛽 . The vectors drawn from c to ei𝜃 and from
c′ to ei𝜃 represent the complex factors ei𝜃 − c and ei𝜃 − c′. The magnitude of a transfer function
Hd(𝜃) = HZ(ei𝜃) with a zero at c′ differs from the magnitude with a zero at c by the constant
factor r for all frequencies, but the zero outside the unit circle always contributes more phase
shift, 𝜙′

> 𝜙.

A single zero is illustrated in the figure. The magnitude |ei𝜃 − c| is the contribution of c
to the magnitude response, and the indicated angle 𝜙 = arg(ei𝜃 − c) is its contribution
to the phase response. There is a symmetric point outside the unit circle, at c′ = 1∕c∗.
The magnitude |ei𝜃 − c′| is not the same as |ei𝜃 − c|, but their ratio is a constant for
all frequencies. Whether a zero is inside the unit circle or outside only scales the
magnitude response. However, as the figure shows, the angle 𝜙

′ is always greater
than 𝜙, so the zero outside the unit circle contributes a larger phase shift than the zero
inside the unit circle. A discrete-time system with all its zeros inside the unit circle
will have the minimum phase shift of all systems having the same (within a constant
factor) magnitude response.

If a system is minimum phase, there will be no zeros or poles in the right
half-plane or outside the unit circle; both H and 1∕H are analytic in the right
half-plane (outside the unit circle). As a result, the logarithm of the transfer func-
tion, log HL(s) or log HZ(z), will be singularity-free in those regions—no poles,
zeros, logarithmic singularities, or branch points. Moreover, because the original
impulse response h(t) or h[n] is real valued, the frequency response HL(i𝜔) or
HZ(ei𝜃) is Hermitian. Now, as we have seen before, a Hermitian function has an
even real part and an odd imaginary part; it therefore has an even magnitude and an
odd phase. So, log HL(i𝜔) = log |HL(i𝜔)| + i arg HL(i𝜔) is Hermitian as well. This
is similarly true for log HZ(ei𝜃). Consequently, in a minimum phase system, the
(log) magnitude response and the phase response are also connected by the Hilbert
transform.
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Hilbert transform relationships for magnitude and phase are presented below
and considered further in the problems. In continuous time,19 one form is (recall
H(𝜈) = HL(i2𝜋𝜈))

𝜙(𝜈) = − 2
𝜋
P∫

∞

0

log |H(𝜂)| d𝜂

𝜈

(
1 − 𝜂2∕𝜈2

) , (9.94a)

log |H(𝜈)| − log |H(0)| = 2
𝜋
P∫

∞

0

𝜙(𝜂) d𝜂

𝜂

(
1 − 𝜂2∕𝜈2

) . (9.94b)

For discrete time,20 a straightforward application of Equations 9.92 (recalling Hd(𝜃) =
HZ(ej𝜃) gives

arg(Hd(𝜃)) = − 1
2𝜋

P∫
𝜋

−𝜋
log |Hd(𝜃)| cot

(
𝜃 − 𝜂

2

)
d𝜂, (9.95a)

log |Hd(𝜃)| − ĥ[0] = 1
2𝜋

P∫
𝜋

−𝜋
arg(Hd(𝜃)) cot

(
𝜃 − 𝜂

2

)
d𝜂, (9.95b)

where ĥ[0] = 1
2𝜋 ∫

𝜋

−𝜋
log |Hd(𝜃)| d𝜃.

In practice, numerical integration would be employed to compute an appropriate
phase given an experimentally measured magnitude.

⋆ Signal Reconstruction Problems
We have now seen a few examples of connections between constraints in one domain
and dependencies in the other domain.

� If a function is bandlimited, it cannot simultaneously be time limited, and vice
versa (Paley–Wiener).

� If a function is causal, the real and imaginary parts of its Fourier transform are
connected by the Hilbert transform. Likewise, the magnitude and phase of its
Fourier transform are connected by the Hilbert transform.

Similar problems of practical importance have been and continue to be studied.
A few of these are listed below. Space does not permit a detailed discussion, but
references are given for the interested reader.

� Suppose it is desired to construct a causal LTI system with a specified magnitude
response |H(𝜈)| ∈ L2. The desired causal impulse response h(t) can be found
if and only if

∫
∞

−∞

|log |H(𝜈)||
1 + 𝜈2

d𝜈 < ∞ (9.96)

19King (2009, Vol. 2, pp. 257–263, 437–443); Several magnitude–phase relationships are developed in
the seminal work by Bode (1945, Chapters 13 and 14). Connections between Bode’s results developed for
electrical engineering, and the Kramers–Kronig equations, familiar in physics, are explored in Bechhoefer
(2011).
20Oppenheim and Schafer (2010, Chapter 11).



642 CHAPTER 9 LAPLACE, Z, AND HILBERT TRANSFORMS

(this is called the Paley–Wiener criterion).21 A corollary of this result is the
fact that a function cannot simultaneously be causal and bandlimited (take, for
example, the Fourier pair sinc t ⟷ rect 𝜈 in Equation 9.96).

� Suppose a function f is known to be bandlimited, and only partial measure-
ments of f , for example, fT(t) = f (t) rect(t∕T), are available. The bandlimited
extrapolation problem is to reconstruct all or part of f outside (−T , T). In
principle, because a bandlimited function is entire, a Taylor series developed
from the known measurements of fT can be used to extrapolate to f . However,
noisy measurements prohibit accurate knowledge of the series coefficients, and
other methods have been studied.22 In image processing, the superresolution
problem is to computationally extrapolate the frequency spectrum of an image
beyond the natural bandlimit imposed by the physics of image formation and
acquisition.

� Suppose a function f is known to have finite support (time or space limited),
and measurements of its Fourier magnitude |F| are available, but the Fourier
phase is unknown. With the additional knowledge that f is real and nonnegative,
calculate the phase of F and so recover f . Unlike the Hilbert transform, there is
no simple integral transform solution to this problem, known as phase retrieval.
Rather, iterative solutions have been developed.23

9.3.2 Hilbert Transform Properties

We begin by listing four forms of the Hilbert transform, for different kinds of func-
tions. Three of these were derived in the previous section. The derivation of the
Hilbert transform for discrete time is left to the problems.

The Hilbert transforms fHi = Hi{f } for continuous and discrete-time functions
f are defined as follows:

Continuous time: fHi(x) = − 1
𝜋x

∗ f (x) = 1
𝜋
P∫

∞

−∞

f (y) dy

y − x
, (9.84)

Periodic function: fHi(x) = −1
L

cot
(
𝜋x
L

)
∗ f (x) rect

( x
L

)
= 1

L
P∫

L∕2

−L∕2
f (y) cot

(
𝜋

L
(y − x)

)
dy, (9.88)

Discrete time: fHi[n] =
∞∑

k=−∞
f [k]s[k − n],

s[n] =

{
0, n even
2
𝜋n

, n odd
, (9.93)

21Paley and Wiener (1934, pp. 16–19); see Papoulis (1977, pp. 227–231) for a discrete-time version.
22Papoulis (1977, pp. 243–251).
23A classic reference on phase retrieval is Fienup (1982). A recent perspective, with references to a wide
variety of applications, is Fienup (2013).
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Periodic sequence: fHi[n] =
N−1∑
k=0

f [k]s[(k − n) mod N],

s[n] =

{
0, n even
2
N

cot
(
𝜋n
N

)
, n odd

. (9.92)

The integrals (and sums) are taken as Cauchy principal values (or the analogous form
for sums) because of the singularities at y = x (k = n).

Existence of the Hilbert Transform
The Hilbert transform exists for many of the functions we have worked with before,
but not all of them, owing to the singular nature of the transform kernel, −1∕𝜋x.

� If a function (sequence) is L2 (𝓁2), its Hilbert transform exists and is also L2

(𝓁2).
� If a function (sequence) is L1 (𝓁1), its Hilbert transform exists, but is not neces-

sarily also L1 (𝓁1).24 In Example 9.46, 1∕(1 + x2) ∈ L1, its Hilbert transform,
−x∕(1 + x2), is not L1, and both functions are L2.

� The delta function and its derivatives have Hilbert transforms. The sine and
cosine functions have Hilbert transforms. However, slowly growing functions
like step, signum, and polynomials, do not have Hilbert transforms.25

Hilbert Transform as a Linear Filter
Unlike the Fourier transform, both the function f and its Hilbert transform fHi are in
the same domain, time or frequency. The convolutional form of the Hilbert transform
gives it an interpretation as a linear filter. In continuous time,

fHi(t) = h(t) ∗ f (t).

The impulse response of the filter is

h(t) = − 1
𝜋t

(9.97a)

and the transfer function is

H(𝜈) = F
{
− 1
𝜋t

}
= i sgn 𝜈. (9.97b)

Example 9.47 (Cosine and sine are a Hilbert transform pair). The Hilbert
transform of the cosine function cos 2𝜋bt (b > 0) is the integral

Hi {cos 2𝜋bt} = 1
𝜋
P∫

∞

−∞

cos 2𝜋b𝜏 d𝜏
𝜏 − t

,

24See King (2009, Vol. 1, pp. 96–99, 203–215) for proofs for Lp functions.
25The generalized functions that have Hilbert transforms belong to a narrower class than tempered distri-
butions, with different testing functions. See King (2009, Vol. 1, Chapter 10); also, Pandey (1996, Chapters
3 and 4).
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which can be evaluated by calculating

P∫
∞

−∞

e−i2𝜋b𝜏 d𝜏
𝜋(𝜏 − t)

and taking the real part of the result. This is almost an integral we have done before
(Example 8.25). Make the change of variable 𝜉 = 𝜏 − t,

P∫
∞

−∞

e−i2𝜋b𝜏 d𝜏
𝜋(𝜏 − t)

= P∫
∞

−∞

e−i2𝜋b(t+𝜉) d𝜉
𝜋𝜉

= e−i2𝜋bt P∫
∞

−∞

e−i2𝜋b𝜉 d𝜉
𝜋𝜉

.

The integral is the Fourier transform of 1
𝜋x

, with x replaced by 𝜉 and 𝜈 replaced by b.

We know that 1
x
⟼ −i𝜋 sgn 𝜈, so

e−i2𝜋bt P∫
∞

−∞

e−i2𝜋b𝜉 d𝜉
𝜋𝜉

= e−i2𝜋bt ⋅ (−i sgn b) = −ie−i2𝜋bt

(sgn b = 1 because b > 0). Taking the real part,

Hi{cos 2𝜋bt} = Re{−ie−i2𝜋bt} = − sin 2𝜋bt.

Calculating in the frequency domain instead,

cos 2𝜋bt ⟼ 1
2
𝛿(𝜈 − b) + 1

2
𝛿(𝜈 + b).

Multiply this by the Hilbert transform transfer function i sgn 𝜈:[1
2
𝛿(𝜈 − b) + 1

2
𝛿(𝜈 + b)

]
⋅ i sgn 𝜈 = 1

2
i sgn (b) 𝛿(𝜈 − b) + 1

2
i sgn (−b) 𝛿(𝜈 + b)

= − 1
2i
𝛿(𝜈 − b) + 1

2i
𝛿(𝜈 + b).

This is the Fourier transform of − sin 2𝜋bt. By similar calculations one can show
Hi {sin 2𝜋bt} = cos 2𝜋bt.

The example suggests that the Hilbert transform has the effect on a sinusoid of
shifting its phase by 𝜋

2
. This is apparent when we look at the transfer function of the

Hilbert transform filter (Equation 9.97b) in polar form:|H(𝜈)| = 1,

arg H(𝜈) =
⎧⎪⎨⎪⎩

𝜋

2
, 𝜈 > 0

0, 𝜈 = 0

−𝜋

2
, 𝜈 < 0

.

The phase response of this filter is a constant 𝜋

2
(90◦), positive for positive frequency

and negative for negative frequency. The complex exponential ei2𝜋bt is shifted to
ei(2𝜋bt+𝜋∕2) and its complex conjugate e−i2𝜋bt is shifted to e−i2𝜋bt−i𝜋∕2 = e−i(2𝜋bt+𝜋∕2).
Thus, cos 2𝜋bt is shifted to cos(2𝜋bt + 𝜋

2
) = − sin 2𝜋bt and sin 2𝜋bt is shifted to
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sin(2𝜋bt + 𝜋

2
) = cos 2𝜋bt. The Hilbert transform of an arbitrary function may be

interpreted in the same way, as the result of passing all the Fourier components of
the function through a 90◦ phase shifter. The fact that the Hilbert transform can be
interpreted as a linear filter leads to a variety of ways to compute the Hilbert transform
as the output of a discrete-time system.26

The following properties of the Hilbert transform are straightforwardly estab-
lished. Their proofs are left to the problems. Unless otherwise indicated, each theorem
applies to all four forms of the Hilbert transform.

Linearity
Because the Hilbert transform is a convolution, we easily have linearity:

Theorem 9.29. Let f and g have Hilbert transforms fHi and gHi, and a and b be
constants. Then

Hi{af + bg} = afHi + bgHi. (9.98)

Inverse Transform

Theorem 9.30. Applying the Hilbert transform twice in succession gives

Hi{Hi{f }} = −f . (9.99)

Thus, the inverse Hilbert transform is

Hi−1{fHi} = −Hi{fHi} (9.100)

Shift

Theorem 9.31. Let f have Hilbert transform fHi. Then

Hi{f (x − b)} = fHi(x − b), (9.101a)

Hi{f [n − k]} = fHi[n − k]. (9.101b)

Dilation

Theorem 9.32. Let f : ℝ → ℂ (i.e., continuous time only) have Hilbert transform
fHi. Then

Hi{f (ax)} = fHi(ax). (9.102)

26See Oppenheim and Schafer (2010, pp. 361–363), Bracewell (2000, pp. 364–367), Hahn (1996, Chap-
ter 5); also see King (2009, Vol. 1, Chapter 14) for computational methods based on numerical integration.
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Inner Product and Norm
The Hilbert transform preserves inner product and norm for square-integrable
functions.

Theorem 9.33. Let f , g ∈ L2 (𝓁2). Then their Hilbert transforms fHi, gHi are also
in L2 (𝓁2), and ‖f‖2 = ‖fHi‖2, (9.103a)⟨f , g⟩ = ⟨fHi, gHi⟩, (9.103b)⟨f , gHi⟩ = −⟨fHi, g⟩, (9.103c)

and ⟨f , fHi⟩ = 0 (9.103d)

(a function and its Hilbert transform are orthogonal).

Convolution

Theorem 9.34. Let f , fHi and g, gHi be Hilbert transform pairs. Then

Hi{f ∗ g} = fHi ∗ g = f ∗ gHi (9.104a)

and f ∗ g = −fHi ∗ gHi, (9.104b)

when the integrals (sums) exist.

Product

Theorem 9.35 (Bedrosian’s theorem27). Let f and g be functions with lowpass
and highpass spectra, respectively; that is, F is zero for |𝜈| > B (𝜋 ≥ |𝜃| > B) and G
is zero for |𝜈| < B (B > |𝜃| ≥ 0). Then,

Hi{fg} = fgHi. (9.105)

Modulation
This is a special case of the product theorem.

Theorem 9.36. Let f be bandlimited to 𝜈 (𝜃) ∈ (−B, B). Then, for all 𝜈0 > B
(𝜋 > 𝜃0 > B),

Hi{f (t) cos 2𝜋𝜈0t} = −f (t) sin 2𝜋𝜈0t, (9.106a)

Hi{f [n] cos 𝜃0n} = −f [n] sin 𝜃0n. (9.106b)

9.3.3 The Analytic Signal

It is often convenient to use the complex exponential representation of a sinusoid
instead of the real signal. The cosine function A cos(2𝜋bt + 𝜙) is the real part of the

27Bedrosian (1963).
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complex exponential Aei𝜙ei2𝜋bt, where the complex factor Aei𝜙 is called a phasor
(Figure 1.14). The Fourier transforms of the real function and its phasor form are

A cos(2𝜋bt + 𝜙) ⟼ 1
2

Aei𝜙
𝛿(𝜈 − b) + 1

2
Ae−i𝜙

𝛿(𝜈 + b),

Aei𝜙ei2𝜋bt ⟼ Aei𝜙
𝛿(𝜈 − b).

The phasor form has a one-sided transform. The generalization of a phasor is fre-
quently useful, in which an arbitrary real function f is the real part of a complex
function f̃ whose Fourier transform is one sided. The resulting complex function f̃ is
called the analytic signal associated with f .

We write f̃ = f + ig, where g is real valued, and seek to identify what g must
be in order to obtain a one-sided spectrum for f̃ . Let F̃ = F{f̃ } and write

F̃ = F {f + ig} = F + iG.

Because f and g are real, their transforms F and G are Hermitian: Fe and Ge are real,
and Fo and Go are imaginary. Hence, expressing F and G in terms of their even and
odd parts,

F̃ = (Fe + Fo) + i(Ge + Go) = (Fe + iGo)
⏟⏞⏞⏟⏞⏞⏟

Re F̃

+ (Fo + iGe)
⏟⏞⏞⏟⏞⏞⏟

i Im F̃

.

We require the real and imaginary parts of F̃ to be one sided. Neither F nor G is one
sided, nor are their respective even and odd parts. But it is possible for Fe + iGo and
Fo + iGe to be one sided, because each is the sum of an even and an odd function,
and cancellation could occur for 𝜈 < 0. This will happen if iGo = Fe sgn 𝜈 and
iGe = Fo sgn 𝜈. Adding these two equations,

i(Ge + Go) = (Fe + Fo) sgn 𝜈,

from which we obtain

G(𝜈) = −iF(𝜈) sgn 𝜈

and the simple result

F̃(𝜈) = F(𝜈) + i(−iF(𝜈) sgn 𝜈) = F(𝜈) (1 + sgn 𝜈)

= 2F(𝜈) U(𝜈). (9.107)

The analytic signal is obtained, in the Fourier domain, simply by deleting the negative
frequency components and doubling the positive frequency components. Calculating
the inverse Fourier transform of F̃ = F + sgn (𝜈) F = F − i (i sgn (𝜈) F) we obtain a
time-domain expression for the analytic signal:

f̃ (t) = f (t) − ifHi(t). (9.108)

The connection between the analytic signal and the theory of analytic functions is
taken up in the problems.

Example 9.48. Check that the phasor form Aei𝜙ei2𝜋bt is the analytic signal for
A cos(2𝜋bt + 𝜙). We will do this in two ways: in the time domain with the Hilbert
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transform, and in the frequency domain using Equation 9.107:

Hi{A cos(2𝜋bt + 𝜙)} = Hi{A cos(2𝜋bt) cos𝜙 − A sin(2𝜋bt) sin𝜙}

= A cos𝜙Hi{cos(2𝜋bt)} − A sin𝜙Hi{sin(2𝜋bt)}.

We know from Example 9.47 that Hi{cos 2𝜋bt} = − sin 2𝜋bt and Hi{sin 2𝜋bt} =
cos 2𝜋bt. Thus,

Hi{A cos(2𝜋bt + 𝜙)} = −A cos𝜙 sin(2𝜋bt) + A sin𝜙 cos(2𝜋bt)

= −A sin(2𝜋bt + 𝜙).

The analytic signal is

A cos(2𝜋bt + 𝜙) − i (−A sin(2𝜋bt + 𝜙)) = A (cos(2𝜋bt + 𝜙) + i sin(2𝜋bt + 𝜙))

= Aei(2𝜋bt+𝜙),

as expected. Following the frequency-domain approach, the Fourier transform of

A cos(2𝜋bt + 𝜙) is Ae−i𝜙

2
𝛿(𝜈 + b) + Aei𝜙

2
𝛿(𝜈 − b). We drop the component at 𝜈 = −b

and double the component at 𝜈 = b, giving for the analytic signal

F−1{Aei𝜙
𝛿(𝜈 − b)} = Aei𝜙ei2𝜋bt

.

Bandpass Signals
A bandpass signal is a function whose Fourier transform is nonzero only for|𝜈| ∈ (𝜈1, 𝜈2), where 𝜈2 > 𝜈1 > 0 (Figure 9.21). The difference 𝜈2 − 𝜈1 is the
bandwidth, B.

When B ≪ 𝜈1, the signal is also called narrowband. This is the case in a
communication system where a voice signal m(t), with B ≈ 4000 Hz, modulates a
carrier wave cos 2𝜋𝜈0t, with 𝜈0 ranging from under 1 MHz to over 1 GHz for radio,
and even higher, on the order of 105 GHz for lightwave communications. It is also the
case when a radio telescope is used to scan a portion of the electromagnetic spectrum,
searching for signals from astronomical objects.

From the point of view of a signal analyst, the portion of the spectrum outside
the bandpass range (𝜈1, 𝜈2) is unimportant. It is therefore of interest to develop a model
for the bandpass signal that isolates the information-bearing portion of the spectrum

ν1 ν2–ν1–ν2
ν

|F(ν)|

FIGURE 9.21 Fourier spectrum |F(𝜈)| of a bandpass signal.
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*

*

=

F(ν)

ν0–ν0

ν0–ν0

ν0–ν0

+

ν0–ν0

ν0
–ν0

=

=

f  (t) cos 2πνI 0t

fQ(t) sin 2πν0t

f(t)

FIGURE 9.22 Decomposing a bandpass signal into in-phase and quadrature components.
For convenience of illustration, only the real part of the bandpass spectrum F is shown.

in a convenient form. We begin with the assumption that f is real valued, as is the
case for physical signals. The Fourier transform of f is Hermitian. For convenience
of illustration, only the real part of F is shown in Figure 9.22 (the treatment of the
imaginary part is left to the problems).

Referring to the figure, the frequency 𝜈0 defines a reference point in the band
of interest, which may be chosen to be the mean frequency 𝜈1+𝜈2

2
, but need not be.

Divide F into two components by breaking the spectral islands into even and odd
parts with respect to the reference points ±𝜈0, as shown. The upper graph is further
expressed as the convolution of a lowpass, or baseband spectrum with a pair of
impulses at ±𝜈0. The lower graph may be likewise expressed, but the odd symmetry
of the spectral islands requires that one of the replicas of the lowpass spectrum be
inverted as well as translated. In this case the lowpass spectrum and the impulses
are taken to be imaginary. This makes the lowpass spectrum imaginary and odd,
which is the Fourier transform of a real and odd function. Finally, the inverse Fourier
transform of the two convolutions gives the following representation for the bandpass
signal:

f (t) = fI(t) cos 2𝜋𝜈0t + fQ(t) sin 2𝜋𝜈0t. (9.109)

The functions fI and fQ are called the in-phase and quadrature components, respec-
tively, of the bandpass signal f . (In communications terminology, two signals are
said to be in quadrature if their relative phase difference is 90◦. In this context, fI
modulates a cosine, while fQ modulates a sine. The sine is in quadrature with the
cosine.) Equation 9.109 is often called the IQ form of the bandpass signal.
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×

×

f(t)

cos 2πν0t
Lowpass

filters

W

W

fI(t)

fQ(t)

In-phase

Quadrature

ν0–ν0

F(ν)
FI(ν)

FQ(ν)

sin 2πν0t

2

2

FIGURE 9.23 Mixing and filtering scheme for transforming the bandpass signal f (t) into
lowpass signals fI(t) and fQ(t). For convenience of illustration, only the real part of F(𝜈)
is shown. Mixing places the in-phase and quadrature spectra at baseband, with images at
𝜈 = ±2𝜈0. The lowpass filters remove the images, leaving fI and fQ.

The process for deriving the in-phase and quadrature components from the
bandpass signal is shown in Figure 9.23. Mathematically, the process is easy to
understand. Consider the upper signal path, in which the bandpass signal is multiplied
by a cosine at the reference frequency 𝜈0. The result of this process, also called mixing,
is

f (t) cos 2𝜋𝜈0t = fI(t) cos2 2𝜋𝜈0t + fQ(t) sin 2𝜋𝜈0t cos 2𝜋𝜈0t

= 1
2

fI(t) +
1
2

fI(t) cos 4𝜋𝜈0t + 1
2

fQ(t) sin 4𝜋𝜈0t.

The mixing process produces the in-phase component at baseband, but also a pair of
spectral islands, or images, centered at±2𝜈0. The mixer is followed by a lowpass filter
whose cutoff frequency, W, is sufficient to just pass fI and reject the high-frequency
images. The filter also amplifies the signal to restore it to the proper amplitude.
Mixing the bandpass signal with a sine function in the lower signal path gives

f (t) sin 2𝜋𝜈0t = fI(t) sin 2𝜋𝜈0t cos 2𝜋𝜈0t + fQ(t) sin2 2𝜋𝜈0t

= 1
2

fI(t) sin 4𝜋𝜈0t + 1
2

fQ(t) + 1
2

fQ(t) cos 4𝜋𝜈0t.
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This time, it is the quadrature component appearing at baseband, and images again
appear at ±2𝜈0. The lowpass filter removes these images and amplifies the signal,
giving fQ at its output.

There is a close connection between the in-phase and quadrature components
and the analytic signal representation of the bandpass signal. Apply the modulation
theorem for the Hilbert transform (Equation 9.106) and calculate the Hilbert transform
of the bandpass signal in IQ form:

fHi(t) = Hi{fI(t) cos 2𝜋𝜈0t + fQ(t) sin 2𝜋𝜈0t} = −fI(t) sin 2𝜋𝜈0t + fQ(t) cos 2𝜋𝜈0t,

whence

f̃ (t) = f (t) − ifHi(t)

= [fI(t) cos 2𝜋𝜈0t + fQ(t) sin 2𝜋𝜈0t] − i[fQ(t) cos 2𝜋𝜈0t − fI(t) sin 2𝜋𝜈0t] (9.110)

= (fI(t) − ifQ(t)) (cos 2𝜋𝜈0t + i sin sin 2𝜋𝜈0t)

= (fI(t) − ifQ(t))ei2𝜋𝜈0t
. (9.111)

Taking the real part of Equation 9.111 recovers the original signal (Equation 9.109).
In this form, the bandpass signal is represented as a phasor with a slowly-varying
complex amplitude, f̃ (t) = Ã(t)ei2𝜋𝜈0t. The magnitude of the phasor, also called the
envelope of the analytic signal, is

A(t) = |Ã(t)| = √
f 2
I (t) + f 2

Q(t) (9.112a)

and the argument, or phase, is

𝜃(t) = arg(fI(t) − ifQ(t)) = arctan

(−fQ(t)

fI(t)

)
. (9.112b)

In terms of envelope and phase, the bandpass signal is

f (t) = Re A(t)ei𝜃(t)ei2𝜋𝜈0t = A(t) cos(2𝜋𝜈0t + 𝜃(t)). (9.113)

Further properties of bandpass signals are taken up in the problems.28

28For further reading, see Papoulis (1977, Chapters 10 and 11). With slight modification, the results of
this section apply to discrete-time signals as well. See Oppenheim and Schafer (2010, Chapter 12).
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9.4 SUMMARY

Some Laplace and Z Transform Pairs

f (t), t ≥ 0, FL(s) Equation f [n], n ≥ 0 FZ(z) Equation

𝛿(t) 1 9.17 𝛿[n] 1 9.57

𝛿
′(t) s 9.18

1
1
s

, Re s > 0 9.15 1
1

1 − z−1
, |z| > 1 9.52

t
1
s2

, Re s > 0 9.31 n
z−1

(1 − z−1)2
, |z| > 1 9.73

eat 1
s − a

, Re s > Re a 9.3 𝛼
n 1

1 − 𝛼z−1
, |z| > |𝛼| 9.51

1 − eat −a
s(s − a)

9.20 1 − 𝛼
n (1 − 𝛼)z−1

(1 − z−1)(1 − 𝛼z−1)
9.61

Re s > max(0,Re a) |z| > max(1, |𝛼|)
teat 1

(s − a)2
, Re s > Re a 9.7 n𝛼n az−1

(1 − 𝛼z−1)2
, |z| > |𝛼| 9.72

cos bt
s

s2 + b2
, Re s > 0 9.4 cos 𝛽n

1 − (cos 𝛽)z−1

1 − 2(cos 𝛽)z−1 + z−2
, |z| > 1 9.53

sin bt
b

s2 + b2
, Re s > 0 9.21 sin 𝛽n

(sin 𝛽)z−1

1 − 2(cos 𝛽)z−1 + z−2
, |z| > 1 9.54

eat cos bt
s − a

(s − a)2 + b2
, Re s > a 9.8 𝛼

n cos 𝛽n
1 − (𝛼 cos 𝛽)z−1

1 − 2(𝛼 cos 𝛽)z−1 + 𝛼2z−2
,|z| > |𝛼| 9.55

eat sin bt
b

(s − a)2 + b2
, Re s > 0 9.8 𝛼

n sin 𝛽n
(𝛼 sin 𝛽)z−1

1 − 2(𝛼 cos 𝛽)z−1 + 𝛼2z−2
,|z| > |𝛼| 9.56
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Hilbert Transform Theorems

Theorem Formula Equation

Linearity af + bg ⟷ afHi + bfHi 9.98

Double transform Hi{fHi} = −f 9.99

Inverse Hi−1{fHi} = −Hi{fHi} = f 9.100

Norm ‖f (x)‖2 = ‖‖fHi(x)‖‖2 9.103a

Inner product ⟨f , g⟩ = ⟨fHi, gHi⟩ 9.103b

Orthogonality ⟨f , fHi⟩ = 0 9.103d

Shift f (x − a) ⟷ fHi(x − a)
f [n − k] ⟷ fHi[n − k] 9.101

Dilation f (ax) ⟷ fHi (ax) 9.102

Convolution f ∗ g ⟷ fHi ∗ g = f ∗ gHi 9.104a

Product (Bedrosian) If f is lowpass and g is highpass,
fg ⟷ fgHi 9.105

Modulation If f is bandlimited to (−B, B) and 𝜈0 > B (𝜋 > 𝜃0 > B),
f (t) cos 2𝜋𝜈0t ⟷ −f (t) sin 2𝜋𝜈0t
f [n] cos 𝜃0n ⟷ −f [n] sin 𝜃0n 9.106

Analytic signal f̃ = f − ifHi 9.108

PROBLEMS

9.1. Suppose the Laplace integral ∫ ∞
0 f (t)e−st dt converges for some Re s = 𝜎0. Show that it

also converges for any 𝜎 > 𝜎0.

9.2. The M test for uniform convergence of an integral29 states: If there is a positive function
M(x) that is integrable and dominates f on [c,∞),|f (x, y)| ≤ M(x), x ∈ [c,∞), y ∈ (a, b),

∫
∞

c

M(x) dx < ∞,

then ∫ ∞
c f (x, y) dy converges absolutely and uniformly for y ∈ (a, b). Show: If f is of

exponential order, then its Laplace transform converges absolutely and uniformly.

9.3. Let f be a function of exponential order, with Laplace transform FL(s). Show that|FL(s)| → 0 as |s| → ∞ along paths in the s plane such 𝜎 → ∞ (i.e., not vertically).

9.4. Show that the inverse Laplace transform does not depend on the position of the Bromwich
contour, as long as it is in the region of convergence. To do this, consider the contour
shown in Figure 9.24. Because the Laplace transform is analytic in its region of conver-
gence, the integral around the closed contour is zero, and by path invariance, the integral
along the vertical path from 𝜎 − iΩ to 𝜎 + iΩ is equal to the integral along the other

29Folland (2002, pp. 336 ff).
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σ

Ω

−Ω

Γ+

Γ−

FIGURE 9.24 For Problem 9.4.

three sides. Assume that the Laplace transform FL(s) < 𝜇|s|−k, k > 0, for large |s|, and
show that the integrals along the short segments Γ+ and Γ− go to zero as Ω → ∞.

9.5. Consider the Laplace transform FL(s) = 2

(s+2)(s−1)
and calculate the inverse transform f (t)

for each of the following regions of convergence. Comment on the causality and stability
(boundedness) of your results.

(a) Re s > 1.

(b) 1 > Re s > −2.

(c) Re s < −2.

9.6. Extend the analysis in Example 9.7 to harmonizing the Laplace and Fourier transforms
of the one-sided cosine function, f (t) = cos(2𝜋bt)U(t). The Laplace transform is

FL(s) = 1
2

1
s − i2𝜋b

+ 1
2

1
s + i2𝜋b

, Re s > 0.

(a) By direct calculation, show that the Fourier transform is

1
4
𝛿(𝜈 + b) + 1

4
𝛿(𝜈 − b) + 1

i4𝜋
1

𝜈 + b
+ 1

i4𝜋
1

𝜈 − b
.

(b) Take the limit of the Laplace transform as the imaginary axis is approached through
the region of convergence and obtain the result you calculated in (a).

9.7. Derive the s-domain derivative theorem (Equation 9.30):

tnf ⟼ (−1)n dnFL(s)

dsn
. (9.114)

9.8. Parseval’s theorem

(a) Using the product theorem (Equation 9.34), derive Parseval’s theorem (Equation
9.35.

(b) Show that Parseval’s theorem for the Laplace transform reduces to Parseval’s theo-
rem for the Fourier transform when the path of integration is chosen to the imaginary
axis (c = 0). Under what conditions can this choice be made?

9.9. Prove that if f and g are of exponential order, so is their convolution, f ∗ g.
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9.10. More about Parseval’s theorem
Previously we interpreted the magnitude squared of the Fourier transform of a signal,|F(𝜈)|2, as a power density. Also, the autocorrelation theorem says

|F(𝜈)|2 = F∗(𝜈)F(𝜈) = F
{
∫

∞

−∞
f ∗(t) f (t + 𝜏) dt

}
= F{f ∗(−t) ∗ f (t)}.

In this problem you will generalize this result to the Laplace transform. That is, if FL(s)
is the Laplace transform of f (t), then:

(a) What is the Laplace transform of f ∗(−t) and what is its region of convergence? Note
that if f (t) is right sided, then f (−t) is left sided. If s = a + ib, a < 0, is a pole of the
transform of f (t), where is the corresponding pole in the transform of f ∗(−t)?

(b) Using your result for (a) with the convolution theorem, show that the correct gener-
alization is

[F∗
L(−s∗)FL(s)]s=i𝜔 = |F(𝜔)|2

.

(c) This result is relevant to the “spectral factorization” problem. For example, what
is the transfer function HL(s) for a causal linear filter whose squared magnitude
response is |H(𝜔)|2 = 1

1+(𝜔∕𝜔c)6 ?

(d) Use the approach taken in (a) and (b) to derive Parseval’s theorem for the Laplace
transform (Equation 9.35).

9.11. Initial value theorem
Here is a simple interpretation of the initial value theorem.30 In the integral

∫
∞

0−
f (t) 𝜎 e−𝜎t dt,

graph 𝜎 e−𝜎t U(t) for an increasing sequence of 𝜎 values and observe that it becomes
narrower and higher as 𝜎 increases. Show that the function also has unit area. That is,
𝜎 e−𝜎t U(t) behaves like a “right-sided impulse” in the limit 𝜎 → ∞, sifting out f (0+).

9.12. Final value theorem
It is not difficult to prove the final value theorem if it assumed that FL has a partial fraction
expansion. This is the case for LTI system analysis, where the theorem is particularly
useful. So, assume

FL(s) =
K∑

k=1

Ak

s − sk

with Re sk ≤ 0 for all k.

(a) Consider the behavior of sFL(s) as s → 0 for (1) poles in the left half-plane, (2) poles
on the imaginary axis, and (3) a pole at the origin. Compare with the behavior of
f (t) as t → ∞ for each of these three cases. Thus, establish the final value theorem.

(b) How do your results for Part (a) change if the poles are not simple, that is, if

FL(s) =
K∑

k=1

Nk∑
n=1

Akn

(s − sk)n
?

30Kailath (1980, p. 12).
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9.13. Final value theorem

(a) A more general proof of the final value theorem begins with a generalization of the
area theorem for the Fourier transform; namely, for a transform pair g ⟷ GL,

∫
∞

0
g(t)dt = lim

s→0
GL(s). (9.115)

Under what conditions is this true?

(b) Combine this result with the derivative theorem to derive the final value theorem.

9.14. For the Laplace transform,

FL(s) = s − 2
(s + 1)2(s2 + 4)

.

(a) What is the region of convergence (assuming f (t) is one sided)?

(b) Calculate the inverse transform using complex integration and the Laplace inversion
formula.

(c) Find a partial fraction expansion using Theorem 9.15 with Equations 9.46.

(d) If you have access to Matlab, find a partial fraction expansion using the residue

command.

(e) Calculate the inverse transform using the partial fraction expansion.

9.15. Repeat the calculations in Example 9.18 with sin𝜔0t driving function instead of cos𝜔0t.
Comment on the nature of the transient response in this case.

9.16. Calculate the inverse Laplace transforms of the following functions, using both complex
integration and partial fraction expansion. If you have access to Matlab, try using the
residue command for the partial fraction expansion, in addition to by-hand analysis.

(a) FL(s) = 1
s2 + 2s + 5

(b) FL(s) = s
(s + a)2

, a > 0

9.17. Calculate the convolution U(t) ∗ exp(−t), which represents the output of a first-order
LTI system driven by a step function:

(a) By direct integration.

(b) Using the Laplace transform and convolution theorem.

9.18. Consider a linear, time-invariant system whose input–output behavior is described by
the Laplace transform relationship:

GL(s)

FL(s)
= s − 1

s2 + 2s + 2
,

where FL and GL are the Laplace transforms of the input f and output g, respectively.
The step response is the output when the input is a unit step function, f (t) = U(t). Using
complex integration, calculate the step response of the system.
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9.19. System stability
A linear, time-invariant system is said to be “bounded-input, bounded-output” (BIBO)
stable if a bounded input (‖f‖∞ < ∞) produces a bounded output (‖h ∗ f‖∞ < ∞),
where h is the impulse response.

(a) Derive a condition on the impulse response which ensures BIBO stability. Your
answer should be in the form of some kind of norm.

(b) A common way to determine if a system is stable is to look at the poles of the
transfer function HL(s). For a causal system, if the poles are in the left half of the
complex S-plane, then the system is stable. Show that this condition is sufficient to
guarantee BIBO stability.

9.20. When a function is not rational but has a finite number of poles, we may also do a
partial fraction expansion. Consider FL(s) = cos𝜋s

(s + 1)(s + 2)
. It has two poles, at s = −1

and s = −2.

(a) Verify that F is not bounded as |s| → ∞.

(b) Show that the principal parts of F at the two poles are

P(s,−1) = −1
s + 1

,

P(s,−2) = −1
s + 2

.

(c) Subtract the principal parts from F, obtaining a residual function r(s), and show that
this function is entire. Thus, the partial fraction expansion is

FL(s) = r(s) − 1
s + 1

− 1
s + 2

.

9.21. Fill in the missing steps in Example 9.30.

9.22. Derive a general expression for the Laplace transform of a one-sided (zero for t < 0)
periodic function.

9.23. Sampled functions
Fill in the details of the calculations leading to Equation 9.48a. Assume that FL(s) is
rational with two more poles than zeros.

(a) Begin with Equation 9.47 and argue that

FL∗ (s) =
∞∑

n=0

1
2𝜋i ∫

c+i∞

c−i∞
FL(s − z) e−nzΔt dz.

Then, considering just the integral, with the contour shown in Figure 9.10, show
that the integral on ΓR goes to zero as its radius goes to infinity.

(b) Perform the usual residue calculation to complete the integration, obtaining

FL∗ (s) =
∞∑

n=0

f (nΔt)e−snΔt
.

(c) Now suppose that FL(s) has only one more pole than zero. Show that the integral on
ΓR does not go to zero, but rather has the value −f (0+)∕2. Thus,

FL∗ (s) = 1
2

f (0+) +
∞∑

n=0

f (nΔt)e−snΔt
.
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Using the initial value theorem, show that f (0+) = 0 if the number of poles in FL(s)
exceeds the number of zeros by more than one.

9.24. Sampled functions
Fill in the details of the calculations leading to Equation 9.48b. Assume that FL(s) is
rational with two more poles than zeros.

(a) Show that the integral along ΓL goes to zero as k → ∞. It will help to show first that||| 1

1−exp(−zΔt)

||| is bounded on ΓL.

(b) Perform the usual residue calculation for fixed k, then take k → ∞ to complete the
integration, obtaining

FL∗ (s) = lim
k→∞

1
Δt

k∑
n=−k

FL(s − i2𝜋n∕Δt).

9.25. Sampled functions

(a) Let f (t) = cos(2𝜋t) U(t) and Δt = 1

4
. Find and sketch accurately the pole-zero loca-

tions of the Laplace transform FL∗(s).

(b) Repeat with f (t) = cos 4𝜋tU(t) and f (t) = cos 6𝜋tU(t), Δt = 1

4
. Explain.

9.26. The Laplace transform is useful in problems not related to ordinary differential equations
with constant coefficients. In many such problems, the transform to be inverted is not a
ratio of polynomials, and partial fraction methods do not apply. Here is an example.

Show that the inverse Laplace transform of FL(s) = exp(−as1∕2)

s1∕2 is f (t) =
exp(−a2∕4t)√

𝜋t
U(t). Follow these steps.

(a) This transform does not have any poles, but there is a branch point at s = 0. Hence,
there is a branch cut which the contour of integration must avoid. The choice of
branch cut and contour shown in Figure 9.25 will keep the Bromwich path in the
clear: On Γ1 and Γ5 your task, as usual, is to show that the integrals go to zero as
R → ∞ (adapt Jordan’s lemma). Likewise, you integrate around the branch point,
taking the limit as 𝜖 → 0.

(b) On Γ2, note that arg z = 𝜋, while on Γ4, arg z = −𝜋. So even though the paths are
going opposite directions, do not expect the integrals to cancel. In fact, you should
obtain the following:

∫Γ2

+∫Γ4

= −i∫
R

0

exp
(
−ia

√
r
)

exp(−rt)dr√
r

− i∫
R

0

exp
(
+ia

√
r
)

exp(−rt)dr√
r

.

Then, make the change of variable r = x2 to get rid of the square roots:

∫Γ2

+∫Γ4

= −2i∫
R2

0
exp(−tx2) exp(−iax)dx − 2i∫

R2

0
exp(−tx2) exp(+iax)dx,

which you can manipulate (via another change of variable) into

lim
R→∞∫Γ2

+∫Γ4

= −2i∫
∞

−∞
exp(−tx2) exp(−iax)dx,

and from here it should be easy (can you recognize this integral?).
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Br

Γ1

Γ2

Γ3Γ4

Γ5

FIGURE 9.25 For Problem 9.26. Contour for calculating the inverse Laplace transform of
exp(−as1∕2)

s1∕2 .

(c) Using the inverse transform you just derived, obtain the Fourier transform of 1√
t
U(t),

and from this derive the Fourier transforms of |x|−1∕2 and |x|−1∕2 sgn x. Hint: Think
about even and odd symmetries in the Fourier transform.

9.27. Prove the following Z transform theorems:

(a) f [n + 1] ⟼ zFZ(z) − zf [0]

(b) nf [n] ⟼ −zF′
Z(z)

9.28. Parseval’s theorem

(a) Using the product theorem (Equation 9.77), derive Parseval’s theorem (Equation
9.78).

(b) Show that Parseval’s theorem for the Z transform reduces to Parseval’s theorem for
the discrete-time Fourier transform when the path of integration Γ is chosen to be
the unit circle. Under what conditions can this choice be made?

9.29. Consider two discrete-time functions (sequences) that are related through the operation
g[n] = (−1)nf [n] , that is, every other sample of f is multiplied by −1.

(a) Derive an expression for the Z transform GZ in terms of the Z transform FZ. Specify
the region of convergence.

(b) Suppose that f is the impulse response of a stable discrete-time system. Is g also
stable?

(c) Suppose that f is the impulse response of a discrete-time system having a lowpass
frequency response, that is, the discrete-time Fourier magnitude |Fd(𝜃)| is a maxi-
mum at 𝜃 = 0 and decreases monotonically with increasing frequency (up to 𝜃 = 𝜋).
Describe the frequency response of the system whose impulse response is g.

Hint: Consider the particular case f [n] = anU[n] to gain insight before attempting a
general solution.

9.30. Consider the discrete-time system shown in Figure 9.26. The input f is multiplied by
the sequence (−1)n (this amounts to flipping the sign of every other sample) and passed
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× ×f[n] g[n]h[n]

(–1)n(–1)n

FIGURE 9.26 For Problem 9.30.

through a filter with impulse response h. The output of the filter is multiplied by (−1)n,
producing the system output g.

(a) Show that the system is LTI and calculate the transfer function G(z)

F(z)
. Compare it to

the filter’s transfer function H(z).

(b) Derive the impulse response for an equivalent system h′ such that g = h′ ∗ f .

9.31. (a) Derive the Laplace transform teatU(t) ⟼ 1

(s−a)2 .

(b) Derive the Z transform nanU[n] ⟼ az−1

(1−az−1)2
.

(c) Generalize your derivation in Part (a) to calculate the Laplace transform of t2eatU(t).
Derive a similar relationship for the Z transform.

9.32. Upsampling and downsampling

(a) Suppose a discrete-time signal f [n] is upsampled, and then immediately downsam-
pled, giving g[n] = (f↑P[n])↓P. Show, using the relationships in Theorem 9.22, that
GZ(z) = FZ(z). Explain.

(b) Now suppose the operations are reversed, so g[n] = (f↓P[n])↑P. Show that GZ(z) =
1

P

∑P−1
m=1 FZ(e−i2𝜋m∕Pz). Interpret this expression (perhaps make a sketch) and explain

what happens if f is not bandlimited to 𝜋∕P > 𝜃 > −𝜋∕P.

9.33. Upsampling and downsampling
Consider a discrete-time signal f [n] and a discrete LTI system with transfer function
H(z). Derive the following identities, which are important in so-called multirate signal
processing.

(a) Downsampling: Downsampling f by a factor of P to f↓P, then filtering the result with
H(z), is equivalent to first filtering f with H(zP) and then downsampling the output
of the filter by a factor of P.

(b) Upsampling: Filtering f with H(z) and then upsampling the result by a factor of P is
equivalent to first upsampling f to f↑P and then filtering it with H(zP).

9.34. (a) Using contour integration, calculate the sample sequence {fn} corresponding to the

Z transform F(z) = z2

z2+1∕4
. Your result should be:

fn =
(1

2

)n

cos
(
𝜋n
2

)
, n ≥ 0,

that is, a damped cosine.

(b) Using Matlab, compute values for f0,… , f7 and compute the DFT of this vec-
tor. Also compute eight values of F(z) equally spaced on the unit circle (𝜃 =
0,𝜋∕8,… , 7𝜋∕8). Plot the Z transform and the DFT in such a way that you can
compare their values, and observe that the DFT is identical to the Z transform
evaluated on the unit circle.
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Delay, T

+ 
f(t) g(t) 

a 

FIGURE 9.27 For Problem 9.35. Model of a reverberant environment.

9.35. Derive the following alternative forms for the Z transforms of 𝛼n cos 𝛽n and 𝛼
n sin 𝛽n:

𝛼
n cos 𝛽n ⟼

z(z − 𝛼 cos 𝛽)
(z − 𝛼 cos 𝛽)2 + (𝛼 sin 𝛽)2

𝛼
n sin 𝛽n ⟼

𝛼z sin 𝛽
(z − 𝛼 cos 𝛽)2 + (𝛼 sin 𝛽)2

.

9.36. Reverberation
A simple model for a reverberant room was presented in Problem 6.51 of Chapter 6.
The block diagram of this system is reproduced in Figure 9.27.

The input–output behavior of this system is described by the difference equation:

g(t) − ag(t − T) = f (t),

where T is the delay time and the factor a models whether the room is “lively” or “dead.”
This factor will be between 0 and 1, unless there is a PA system—then, a fraction of the
sound could be picked up by the microphone, amplified, and sent back out again.

(a) Apply the Laplace transform to the input–output equation and obtain an expression
for the transfer function HL(s) = GL(s)

FL(s)
.

(b) Find all the poles of HL(s) and classify them (single, double, etc). For what value(s)
of a is the system stable? Give your mathematical result a physical interpretation
using the block diagram.

(c) Make the change of variable z = esT , converting HL(s) to a Z transform HZ(z).
Calculate the inverse Z transform, h[n], and use the block diagram to explain how
this discrete sequence is related to the system impulse response h(t).

9.37. Carry out a Mittag–Leffler expansion of the function cot(𝜋Δx𝜈) and show that it is the
periodic replication of 1

𝜋Δx𝜈
, that is,

∞∑
k=−∞

1
𝜋Δx

1
(𝜈 − k∕Δx)

= cot(𝜋Δx𝜈).

9.38. Derive the Hilbert transform for periodic functions, Equation 9.88.

9.39. Prove the following Hilbert transform relationships:

(a) Hi{Hi{f }} = −f

(b) Hi−1{fHi} = − 1
𝜋
P∫

∞

−∞

fHi(𝜏) d𝜏

𝜏 − t
.

9.40. In the Fourier domain, the Hilbert transform is represented as a linear filter with transfer
function i sgn 𝜈. Because signum is zero at 𝜈 = 0, it appears that the Hilbert transform
will remove any constant (DC) component from its input. This can also be seen in the
time domain, by calculating the convolution − 1

𝜋x
∗ c, where c is a constant.

(a) Show that − 1

𝜋x
∗ c = 0, and hence that the Hilbert transform of a DC signal is zero.
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(b) Problem 9.38 showed that applying the Hilbert transform twice in succession returns
the negative of the original function, that is, − 1

𝜋x
∗ − 1

𝜋x
= −𝛿(x) (see also Example

6.29). This leads to an apparent contradiction, for:

− 1
𝜋x

∗
(
− 1
𝜋x

∗ c
)
= − 1

𝜋x
∗ 0 = 0,

but (
− 1
𝜋x

∗ − 1
𝜋x

)
∗ c = −𝛿(x) ∗ c = −c.

Explain.

9.41. Derive the Hilbert transform for discrete time by calculating the inverse Fourier trans-
form:

1
2𝜋 ∫

𝜋

−𝜋
Fd(𝜃) i sgn (𝜃) e+in𝜃 d𝜃.

9.42. Prove the shift and dilation relationships for the Hilbert transform:

(a) Hi{f (t − b)} = fHi(t − b)

(b) Hi{f (at)} = fHi(at)

9.43. Prove the following Hilbert transform relationships for f ∈ L2:

(a) The Hilbert transform fHi is also in L2, and ‖f‖2 = ‖fHi‖2

(b) ⟨f , gHi⟩ = − ⟨fHi, g⟩
(c) ⟨f , g⟩ = ⟨fHi, gHi⟩
(d) ⟨f , fHi⟩ = 0

9.44. Complete Example 9.46 by showing that

−Hi

{
−2𝜋𝜈

1 + (2𝜋𝜈)2

}
= 1

1 + (2𝜋𝜈)2
.

9.45. Prove the convolution relationships for the Hilbert transform:

(a) Hi {f ∗ g} = fHi ∗ g = f ∗ gHi

(b) f ∗ g = −fHi ∗ gHi

9.46. Prove the product theorem for the Hilbert transform (Theorem 9.35). Let f and g be
functions with lowpass and highpass spectra, respectively; that is, F is zero for |𝜈| > B
and G is zero for |𝜈| < B. First, show that

Hi {fg} = ∫
∞

−∞ ∫
∞

−∞
F(u) G(𝑣) Hi

{
ei2𝜋(u+𝑣)x

}
du d𝑣

= ∫
∞

−∞ ∫
∞

−∞
F(u) G(𝑣) i sgn (u + 𝑣) ei2𝜋(u+𝑣)x du d𝑣.

Now, consider the region in the u𝑣 plane where the product F(u)G(𝑣) is nonzero (Figure
9.28), and show that

Hi {fg} = ∫
∞

−∞ ∫
∞

−∞
F(u) G(𝑣) i sgn 𝑣 ei2𝜋(u+𝑣)x du d𝑣.

From here, complete the calculation and show Hi {fg} = fgHi.



664 CHAPTER 9 LAPLACE, Z, AND HILBERT TRANSFORMS

u

v

B

v = –u

FIGURE 9.28 For Problem 9.45. The product F(u)G(𝑣) is nonzero in the shaded region.

9.47. Prove the modulation theorem for the Hilbert transform (Equations 9.106). Let f be
bandlimited to 𝜈 ∈ (−B, B). For 𝜈0 > B, show that

Hi{f (t) cos 2𝜋𝜈0t} = −f (t) sin 2𝜋𝜈0t.

Work in the Fourier domain.

9.48. Kramers–Kronig relationships
Let f be real and one sided, with Fourier transform F = Fr + iFi. Derive the following
alternative form for the Hilbert transform relationships between Fr and Fi:

Fr(𝜈) = − 2
𝜋 ∫

∞

0

𝜂 Fi(𝜂) d𝜂

𝜂2 − 𝜈2
, (9.116a)

Fi(𝜈) = 2
𝜋 ∫

∞

0

𝜈 Fr(𝜂) d𝜂

𝜂2 − 𝜈2
. (9.116b)

These are called the Kramers–Kronig relationships. In a linear optical material, the
real and imaginary parts of the refractive index have this relationship. Given spectral
measurements of the real or imaginary part, the other component can be computed using
the appropriate Kramers–Kronig relationship.

9.49. Verify the following Hilbert transform pairs:

(a) sin2 2𝜋bt ⟷ 1

2
cos 4𝜋bt

(b) cos2 2𝜋bt ⟷ − 1

2
sin 4𝜋bt

(c) rect t ⟷ 1
𝜋

log
||||||
t − 1

2

t + 1

2

||||||
(d) sinc t ⟷

(
𝜋t
2

)
sinc2(t∕2) = cos 𝜋t − 1

𝜋2t
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9.50. Calculate the Hilbert transform of tf (t).

9.51. The delta function and the Hilbert transform have an interesting relationship. Derive the
following transforms:

(a) Hi {𝛿(t)} = − 1

𝜋t

(b) Hi
{

1

𝜋t

}
= 𝛿(t)

(c) Hi {𝛿′(t)} = 1

𝜋t2

(d) Hi
{

1

𝜋t2

}
= −𝛿′(t)

9.52. Show that the Hilbert transform of the odd square wave with period L (see Figure 4.3a)
is

fHi(y) = 2
𝜋

log
||||tan

(
𝜋y

L

)|||| .
9.53. Magnitude-phase coupling in minimum phase systems

The real and imaginary parts of a causal LTI system’s transfer function are connected by
a Hilbert transform. The objective of this problem is to derive analogous relationships
for the magnitude and phase of the transfer function, H(𝜈) = |H(𝜈)|ei𝜙(𝜈):

𝜙(𝜈) = − 2
𝜋
P∫

∞

0

log |H(𝜂)| d𝜂

𝜈

(
1 − 𝜂2∕𝜈2

) ,

log |H(𝜈)| − log |H(0)| = 2
𝜋
P∫

∞

0

𝜙(𝜂) d𝜂

𝜂

(
1 − 𝜂2∕𝜈2

) .
Begin with the ratio H(𝜈)∕H(0), which is the frequency response relative to the response
at zero frequency (so-called DC gain). The logarithm of this relative response, using the
Laplace transform and writing 𝜔 = 2𝜋𝜈 for convenience, is

log

(
HL(i𝜔)

HL(0)

)
= log HL(i𝜔) − log HL(0).

Because the system is causal and stable, HL(s) is analytic in the right half-plane. More-
over, assuming the system is minimum phase, there are no zeros in the right half-plane,
either. Further, we assume that the number of poles is equal to or greater than the number
of zeros.

(a) Show that we may write

log HL(i𝜔) − log HL(0) = − 1
2𝜋i∫↺Γ

log HL(s)
( 1

s − i𝜔
− 1

s

)
ds,

where Γ is the contour shown in Figure 9.29.

(b) Calculate the contributions of the segments of the contour and show that

−P∫
∞

−∞
log HL(i𝜔′)

( 1
𝜔′ − 𝜔

− 1
𝜔′

)
d𝜔′ = i𝜋[log HL(i𝜔) − log HL(0)].

or, changing back from Laplace to Fourier,

−P∫
∞

−∞
log H(𝜂)

(
1

𝜂 − 𝜈
− 1

𝜂

)
d𝜂 = i𝜋[log H(𝜈) − log H(0)].
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ΓR

R

–R

Γω

Γ0

FIGURE 9.29 Contour of integration For Problem 9.52.

(c) Now substitute H in magnitude-phase form, separate real and imaginary parts, and
show that the desired relationships result. Note that because h is real, H is Hermitian,
so the magnitude is even and the phase is odd.

9.54. Analytic signals and analytic functions
Let f be an analytic function. By Cauchy’s integral formula,

f (z0) = 1
2𝜋i∫↺Γ

f (z)
z − z0

dz.

In particular, let the contour Γ be as shown in Figure 9.30.

ΓR

R–R
Γε

FIGURE 9.30 Contour of integration For Problem 9.53.
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F(ν)

ν0

–ν0
ν

FIGURE 9.31 For Problem 9.55. The Fourier spectrum of a bandpass signal.

Carry out the integration and show

f (x0) = 1
i𝜋

P∫
∞

−∞

f (x)dx

x − x0

.

Now separate the real and imaginary parts of f , f = u + i𝑣, and show

u(x0) = 1
𝜋
P∫

∞

−∞

𝑣(x)dx
x − x0

,

𝑣(x0) = − 1
𝜋
P∫

∞

−∞

u(x)dx
x − x0

.

That is, u and 𝑣 are a Hilbert transform pair. In other words, an analytic signal f̃ (t),
continued to complex t, is an analytic function, and an analytic function, restricted to
the real axis, is an analytic signal.

9.55. Let f̃ and g̃ be analytic signals. Show the following:

(a) Hi{f̃ } = −if̃ .

(b) (Product theorem): f̃ g̃ is an analytic signal, and Hi{f̃ g̃} = f̃Hi{g̃} = Hi{f̃ }g̃.

(c) The convolution f̃ ∗ g̃ is an analytic signal.

9.56. Consider the bandpass signal f (t) whose spectrum is shown in Figure 9.31. Derive and
sketch the spectra for the in-phase and quadrature components, and verify that fI(t) and
fQ(t) are real-valued functions.

9.57. Show that the in-phase and quadrature components of the bandpass signal conserve
energy, that is, ‖f‖2 = ‖fI‖2 + ‖fQ‖2

.

9.58. Consider the “cartesian” form for the bandpass analytic signal (Equation 9.110):

f̃ (t) = [fI(t) cos 2𝜋𝜈0t + fQ(t) sin 2𝜋𝜈0t] − i[fQ(t) cos 2𝜋𝜈0t − fI(t) sin 2𝜋𝜈0t].

(a) Show that the real and imaginary parts of f̃ are orthogonal.

(b) Show that f̃ has a one-sided spectrum.
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9.59. Consider a bandpass signal f (t), as shown in Figure 9.21.

(a) According to sampling theory, what is the minimum sampling rate for this signal?

(b) Based on the bandwidth of the interesting part of the spectrum, B = 𝜈2 − 𝜈1, it
seems that a much lower sampling rate should suffice, that is, that a lot of samples
are wasted on the frequencies below 𝜈1. Instead of sampling f , consider sampling

the I and Q components of f , with 𝜈0 =
𝜈1 + 𝜈2

2
. What is the total sampling rate if

fI and fQ are each sampled at their respective Nyquist rates?

9.60. Consider the problem of passing a bandpass signal f through a bandpass filter with
impulse response h. Derive an expression for the filter output, g = h ∗ f , in terms of

(a) The analytic signal representations for f and h.

(b) The I and Q components of f and h. Given the transfer function H, show how to
calculate HI = F{hI} and HQ = F{hQ}.

Assume the same reference frequency, 𝜈0, for both f and h.

9.61. What is the analytic signal corresponding to the AM waveform f (t) = (1 +
M cosΩt) cos𝜔t? Assume Ω ≪ 𝜔 and M < 1.

9.62. In communications, double sideband modulation (DSB) is a method described by the
equation f (t) = Am(t) cos(2𝜋𝜈ct), where m(t) is the modulating signal (message), and
𝜈c is the frequency of the carrier wave. In the simple case of a pure tone message,
m(t) = cos(2𝜋𝜈mt) (in practice, 𝜈m ≪ 𝜈c), the DSB waveform is

f (t) = A cos(2𝜋𝜈mt) cos(2𝜋𝜈ct) = A
2

cos(2𝜋(𝜈c + 𝜈m)t) + A
2

cos(2𝜋(𝜈c − 𝜈m)t),

and its spectrum consists of impulses at 𝜈 = ±(𝜈c + 𝜈m) (called the upper sideband) and
𝜈 = ±(𝜈c − 𝜈m) (the lower sideband).

A modification to the DSB scheme is described by the equation

g(t) = A
[
m(t) cos(2𝜋𝜈ct) + mHi(t) sin(2𝜋𝜈ct)

]
,

where mHi is the Hilbert transform of m.

(a) Calculate a general expression for the Fourier transform G in terms of M, the
transform of the message, and other functions.

(b) Sketch accurately the Fourier transform G, when m(t) = cos(2𝜋𝜈mt). Contrast this
result with the DSB spectrum.

(c) This modulation method is called single sideband. Based on your calculations,
explain why.



CHAPTER 10
FOURIER TRANSFORMS IN TWO
AND THREE DIMENSIONS

This chapter introduces Fourier and related transforms in two and three dimensions.
We shall see that much of the mathematics extends straightforwardly from the one-
dimensional transforms developed in Chapters 3–6. Applications include the Fourier
analysis of images, which are treated as two- and three-dimensional signals, and
more realistic models of wave propagation at radio and optical frequencies, including
the diffraction analysis of crystals. We shall encounter special cases of the Fourier
transform when the functions under consideration have radial and spherical symmetry,
and also the Radon transform, which is the mathematical basis for tomographic (cross-
sectional) X-ray imaging.

10.1 TWO-DIMENSIONAL FOURIER TRANSFORM

10.1.1 Definition and Interpretation

The Fourier transform in two dimensions is defined:

F(𝜈1, 𝜈2) = ∫
∞

−∞ ∫
∞

−∞
f (x1, x2) e−i2𝜋(𝜈1x1+𝜈2x2) dx1 dx2 (10.1a)

f (x1, x2) = ∫
∞

−∞ ∫
∞

−∞
F(𝜈1, 𝜈2) e+i2𝜋(𝜈1x1+𝜈2x2) d𝜈1 d𝜈2 (10.1b)

The transform kernel e−i2𝜋(𝜈1x1+𝜈2x2) is just the product of two one-dimensional
kernels, e−i2𝜋𝜈1x1 e−i2𝜋𝜈2x2 . The extension to three dimensions is straightforward: just
add another factor, for example, e−i2𝜋𝜈3x3 . In physical applications, the coordinates
(x1, x2) are often written (x, y), and the corresponding frequency variables are (𝜈x, 𝜈y).
The combination of x and 𝜈 coordinates in the exponent has the form of a dot product,
𝝂 ⋅ x, so the Fourier transform may be more compactly and extensibly written using

Fourier Transforms: Principles and Applications, First Edition. Eric W. Hansen.
© 2014 John Wiley & Sons, Inc. Published 2014 by John Wiley & Sons, Inc.
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the notation

F(𝝂) = ∫
∞

−∞
f (x) e−i2𝜋𝝂⋅x dx, (10.2a)

f (x) = ∫
∞

−∞
F(𝝂) e+i2𝜋𝝂⋅x d𝝂, (10.2b)

where x = (x1, x2), dx = dx1dx2, etc.,

and the one integral stands for integration over all variables. We will use this notation
for developing the familiar Fourier theorems and go back to component-wise notation
as needed for clarity in particular applications.

The definitions for the Fourier transform in L1 and L2 carry over to higher
dimensions, for example, a function f belongs to the space L2(ℝ2) if

∫
∞

−∞
|f (x)|2 dx = ∫

∞

−∞ ∫
∞

−∞
||f (x1, x2)||2 dx1 dx2 < ∞.

The forward and inverse transforms in L2 are interpreted as limits of sequences in the
L2 norm:

F(𝝂) = lim
n→∞∫

∞

−∞
f (x) e−𝜋(‖x‖∕n)2

e−i2𝜋𝝂⋅x dx,

f (x) = lim
n→∞∫

∞

−∞
F(𝝂) e−𝜋(‖𝝂‖∕n)2

ei2𝜋𝝂⋅x d𝝂,

where e−𝜋(‖x‖∕n)2
denotes a two-dimensional Gaussian (extendible to higher dimen-

sions):

e−𝜋(‖x‖∕n)2 = e−𝜋(x2
1+x2

2)∕n2
.

Moreover, the delta function extends to two dimensions, with sifting property:

∬ 𝛿(x1 − a1, x2 − a2) 𝜑(x1, x2) dx1 dx2 = 𝜑(a1, a2) (10.3a)

or, compactly, ∫ 𝛿(x − a) 𝜑(x) dx = 𝜑(a). (10.3b)

The testing functions 𝜑 are good functions of two variables, which means that
they are infinitely continuously differentiable with respect to both variables, includ-
ing mixed partial derivatives, and rapidly decreasing as ‖x‖→ ∞ in all directions.
Conveniently, in Cartesian coordinates the two-dimensional delta function is sepa-
rable into the product of two one-dimensional delta functions, 𝛿(x1 − a1, x2 − a2) =
𝛿(x1 − a1)𝛿(x2 − a2). Equivalence is demonstrated in the usual way:

∬ 𝛿(x1 − a1)𝛿(x2 − a2) 𝜑(x1, x2) dx1dx2 = ∫ 𝛿(x1 − a1) 𝜑(x1, a2) dx1 = 𝜑(a1, a2).

As with the one-dimensional delta function, the sifting property also holds for any
function that is continuous at x = a, for example,

∬ 𝛿(x − 2, y + 3) xy dx dy = (2)(−3) = −6.
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The inverse Fourier transform integral says that f (x) is a superposition of complex
exponentials e+i2𝜋𝝂⋅x according the “recipe” specified by F(𝝂). The simplest case of
a pure sinusoid follows from an impulse and the sifting property:

𝛿(𝝂 − b) ⟼ ∫ 𝛿(𝝂 − b) ei2𝜋𝝂⋅x d𝝂 = ei2𝜋b⋅x,

1
2
𝛿(𝝂 − b) + 1

2
𝛿(𝝂 + b) ⟼ 1

2
ei2𝜋b⋅x + 1

2
e−i2𝜋b⋅x = cos (2𝜋b ⋅ x) .

This cosine is drawn in Figure 10.1.
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FIGURE 10.1 A two-dimensional cosine cos (2𝜋b ⋅ x) is the inverse Fourier transform of
a pair of impulses in the (𝜈x, 𝜈y) plane. Top: 𝜈x = 1, 𝜈y = 2. The equiphase line shown is
x + 2y = 1. Bottom: 𝜈x = 1, 𝜈y = 0.5. The equiphase line shown is x + y∕2 = 1. The vectors
shown perpendicular to the equiphase lines are b∕‖b‖2; their lengths, 1∕‖b‖, are the periods
of the cosines.
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The phase 2𝜋b ⋅ x = 2𝜋(bxx + byy) varies with position in the plane. For those
(x, y) such that the phase is an integer multiple of 2𝜋, we are on an equiphase of the
cosine function, 2𝜋(bxx + byy) = 2𝜋m, or b ⋅ x = m. From the figure, the slope of the

equiphase is
−1∕by

1∕bx
= −bx∕by, and the slope of the frequency vector b is by∕bx; b

is perpendicular to the equiphase. The vector drawn perpendicular to the equiphase
can be shown to be b∕‖b‖2. It is proportional to the frequency vector, and its length,
1∕‖b‖, is the period of the cosine, 1√

b2
x+b2

y

.

For every frequency vector 𝝂 there is a complex exponential, or complex
sine–cosine pair, of some frequency and orientation in the x plane. The inverse
Fourier transform integral superposes these complex exponentials, with magnitude
and phase specified by F(𝝂), to construct the function f (x).

In several cases of practical interest, the function to be transformed is separable,
f (x, y) = fx(x)fy(y). In this case the Fourier transform also separates:

F(𝜈x, 𝜈y) = ∫
∞

−∞ ∫
∞

−∞
fx(x) fy(y) e−i2𝜋(𝜈xx+𝜈yy) dx dy

= ∫
∞

−∞
fx(x) e−i2𝜋(𝜈xx) dx ∫

∞

−∞
fy(y) e−i2𝜋𝜈yy dy = Fx(𝜈x)Fy(𝜈y). (10.4)

Example 10.1. The two-dimensional rectangle function rect(x∕X) rect(y∕Y) mod-
els truncation in two dimensions, such as an optical aperture. Its Fourier transform
is, using Equation 10.4 with the one-dimensional dilation theorem,

rect(x∕X) rect(y∕Y) ⟼ X sinc(X𝜈x) Y sinc(Y𝜈y). (10.5)

This function is shown in Figure 10.2 for the particular case X = 2, Y = 1.

Example 10.2 (Plotting two-dimensional functions in Matlab). The graphs
in Figure 10.2 were created in Matlab in the following way. A two-dimensional
function is represented by a matrix of function values:

⎡⎢⎢⎢⎣
f (x1, y1) ⋯ f (xM , y1)

⋮ ⋱ ⋮

f (x1, yN) ⋯ f (xM , yN )

⎤⎥⎥⎥⎦ .
A separable function, f (x, y) = fx(x)fy(y), can be computed as the outer product of
two vectors:

⎡⎢⎢⎢⎣
fx(x1)fy(y1) ⋯ fx(xM)fy(y1)

⋮ ⋱ ⋮

fx(x1)fy(yN) ⋯ fx(xM)fy(yN)

⎤⎥⎥⎥⎦ =
⎡⎢⎢⎢⎣

fy(y1)

⋮

fy(yN)

⎤⎥⎥⎥⎦
[

fx(x1) ⋯ fx(xM)
]
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FIGURE 10.2 A two-dimensional rectangle function, rect(x∕2) rect(y) (left) and its Fourier
transform, 2 sinc(2𝜈x) sinc(𝜈y) (right).

and similarly for the Fourier transform F(𝜈x, 𝜈y) = Fx(𝜈x)Fy(𝜈y). For example, to
compute the matrix for the Fourier transform F(𝜈x, 𝜈y) = 2 sinc(2𝜈x) sinc(𝜈y),

vx = linspace(-2.5, 2.5, M); % Coordinate vectors

vy = linspace(-2.5, 2.5, N);

Ff = 2 * sinc(2*vy’) * sinc(vx); % Fourier transform of f

The mesh function is called to make the altitude plot:

mesh(vx, vy, Ff)

To view the function as an image instead, apply the imagesc command to the
magnitude of the transform:

imagesc(vx, vy, abs(Ff))

axis xy; axis square;

The two axis commands orient the image so that its axes match a cartesian coordinate
system and have a 1:1 aspect ratio. Additional commands, not shown, label the axes
and change the orientation of the mesh plot.
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FIGURE 10.3 A one-dimensional rectangle function, rect x (left) and its Fourier transform,
sinc(𝜈x) 𝛿(𝜈y) (right).

Example 10.3. The function f (x, y) = rect x is constant in y and a rectangle in x.
The two-dimensional Fourier transform is

F(𝜈x, 𝜈y) = ∬
∞

−∞
rect x e−i2𝜋(𝜈xx+𝜈yy) dx dy

= ∫
∞

−∞
rect x e−i2𝜋𝜈xx dx × ∫

∞

−∞
1 e−i2𝜋𝜈yy dy

= sinc
(
𝜈x

)
𝛿(𝜈y).

This is a blade running along the line 𝜈y = 0, modulated by the sinc function sinc 𝜈x
(Figure 10.3).

10.1.2 Fourier Transform Theorems

Most of the one-dimensional Fourier transform theorems generalize to multiple
dimensions in straightforward ways.

Linearity

Of course, the multidimensional Fourier transform is linear, since multiple integrals
are linear:

af (x) + bg(x) ⟷ aF(𝝂) + bG(𝝂). (10.6)

Symmetry
The familiar symmetry relationships hold for multidimensional Fourier transforms,
coordinate-by-coordinate. That is, if we have a function f (x, y) that is even with
respect to x, f (−x, y) = f (x, y), but odd with respect to y, f (x,−y) = −f (x, y), the
Fourier transform will be even in 𝜈x and odd in 𝜈y.
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Parseval’s Formula
The derivation of Parseval’s formula in two dimensions and higher is the same as the
one-dimensional derivation, just with more integrals. The result is, for functions in
L2(ℝn),

∫
∞

−∞
f (x)g∗(x)dx = ∫

∞

−∞
F(𝝂)G∗(𝝂)d𝝂, (10.7a)

∫
∞

−∞
|f (x)|2 dx = ∫

∞

−∞
|F(𝝂)|2 d𝝂. (10.7a)

Shift
The difference here is that more than one coordinate can be shifted, so shifts can
occur along diagonals as well as along axes:

f (x − a) ⟷ e−i2𝜋𝝂⋅aF(𝝂), (10.8a)

ei2𝜋b⋅xf (x) ⟷ F(𝝂 − b). (10.8a)

The phase factor e−i2𝜋𝝂⋅a = e−i2𝜋𝜈1a1e−i2𝜋𝜈2a2 is the product of phases due to the shifts
in each coordinate.

Dilation
Dilation poses a few surprises. The generalization from a scalar dilation x ⟼ ax
is a linear coordinate transformation, x ⟼ Ax.1 Particular cases of interest are
(Figure 10.4)

� Coordinate scaling: A =
[

a1 0

0 a2

]
.

� (Horizontal) shear: A =
[

1 𝜎

0 1

]
.

� Rotation: A =
[

cos 𝜃 sin 𝜃

− sin 𝜃 cos 𝜃

]
.

Transformations may be combined, for example, a vertical shear can be made by a
90◦ rotation, followed by horizontal shear, followed by a −90◦ rotation. An arbitrary
transformation may be decomposed into a product of these basic operations (see the
problems).

We are interested in how a linear coordinate transformation affects the Fourier
transform:

f (Ax) ⟼ ∫
∞

−∞
f (Ax) e−i2𝜋𝝂⋅x dx.

1When we write 𝝂 ⋅ x, it is not necessary to say whether 𝝂 or x is a row or column vector. But when we
operate on a vector, for example, Ax, we follow linear algebra convention and assume that x is a column
vector. Similarly, for the dot product 𝝂 ⋅ Ax we may equivalently write 𝝂

T Ax to be explicit about how the
algebra is done.
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FIGURE 10.4 The function rect(x∕2) rect(y) (top) and its Fourier transform,
2 sinc(2𝜈x) sinc(𝜈y) (bottom), are transformed by scaling, shearing, and rotation. See Example
10.4.

This is just a change of variable in a multiple integral. Write 𝝃 = Ax. Then, assuming
that A is invertible (which it must be in order to be physically useful),

∫
∞

−∞
f (Ax) e−i2𝜋𝝂⋅x dx = ∫

∞

−∞
f (𝝃) e−i2𝜋𝝂⋅ A−1

𝝃
d𝝃| det A| .

Now, we need to rewrite the dot product in the exponent to put the transformation on
𝝂. Writing 𝝂 and x as column vectors,

𝝂 ⋅
(
A−1

𝝃
)
= 𝝂

TA−1
𝝃 =

(
𝝂

TA−1)
𝝃 =

(
(A−1)T

𝝂
)T

𝝃 =
(
A−T

𝝂
)
⋅ 𝝃.

Then the Fourier integral becomes

∫
∞

−∞
f (𝝃) e−i2𝜋(A−T𝝂)⋅𝝃 d𝝃| det A| = 1| det A| F

(
A−T

𝝂
)
.

Thus, for an invertible coordinate transformation A, we have the multidimensional
dilation theorem:

f (Ax) ⟷ 1| det A| F
(
A−T

𝝂
)
. (10.9)

In one dimension, A−T is 1∕a, | det A| is |a|, and we recover the familiar result,
f (ax) ⟷ 1|a|F(𝜈∕a).
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We will also need a formula for the dilation of a delta function (we will include
a shift), 𝛿(Ax − b). Let 𝝃 = Ax − b, then x = A−1 (𝝃 + b), and

∫ 𝛿 (Ax − b) 𝜑(x) dx = ∫ 𝛿 (𝝃) 𝜑

(
A−1 (𝝃 + b)

) 1|det A| d𝝃

= 1| det A| 𝜑 (A−1b
)

⇒ 𝛿 (Ax − b) = 1| det A| 𝛿 (x − A−1b
)
. (10.10)

Let us see how the dilation theorem operates in the three particular cases of scale,
shear, and rotation. Because all of these operations are invertible, each of the opera-
tions will result in a transform pair:

� Coordinate scaling: A =
[

a1 0
0 a2

]
. The determinant is det A = a1a2. The

transpose of the inverse is A−T =
[

1∕a1 0
0 1∕a2

]
. So, A−T

𝝂 = (𝜈1∕a1, 𝜈2∕a2)T

and we have

f (a1x1, a2x2) ⟷ 1||a1a2
|| F

(
𝜈1

a1
,
𝜈2

a2

)
.

This has the same form as the one-dimensional dilation theorem, with each
coordinate separately scaled.

� (Horizontal) shear: A =
[

1 𝜎

0 1

]
. The determinant is 1, the transpose of the

inverse is A−T =
[

1 0
−𝜎 1

]
. Thus,

f
(
x1 + 𝜎x2, x2

)
⟷ F

(
𝜈1, 𝜈2 − 𝜎𝜈1

)
.

A horizontal shear of f transforms to a vertical shear of F.

� Rotation: A =
[

cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]
. A rotation is an orthogonal matrix. The deter-

minant is det A = 1 and the inverse is A−1 = AT . Thus the transpose of the
inverse is A itself, and we have

f (Ax) ⟷ F (A𝝂) .

A rotation of f transforms to an identical rotation of F.

Example 10.4 (Transformation of rect ⟷ sinc). The three operations are illus-
trated in Figure 10.4 for a rectangle, f (x, y) = rect(x∕2) rect(y):

� Scaling,

[
3 0
0 1∕2

]
.

rect(3x∕2) rect(y∕2) ⟼ 4
3

sinc(2𝜈x∕3) sinc(2𝜈y).
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The transformed rectangle is 2
3
× 2, and the distances from the origin to the

first zero crossings (dark bands) of its Fourier transform are 3∕2 and 1∕2.

� Shearing,

[
1 1∕3
0 1

]
.

rect

(
x + y∕3

2

)
rect(y) ⟼ 2 sinc(𝜈x∕2) sinc(𝜈y − 𝜈x∕3).

The transformed rectangle is sheared horizontally into a parallelogram, but has
the same dimensions measured along the axes. Its Fourier transform is sheared
vertically, but the horizontal and vertical distances between zero crossings are
unchanged.

� Rotation,

[
cos 𝜃 sin 𝜃
− sin 𝜃 cos 𝜃

]
, 𝜃 = 20◦.

rect

(
x cos 𝜃 + y sin 𝜃

2

)
rect (−x sin 𝜃 + y cos 𝜃)

⟼ 2 sinc
(
2(𝜈x cos 𝜃 + 𝜈y sin 𝜃)

)
sinc

(
−𝜈x sin 𝜃 + 𝜈y cos 𝜃

)
.

Both the rectangle and its Fourier transform are rotated by 20◦. The dimensions
of both are unchanged.

Note that the sheared and rotated rectangles are not separable. Calculating their
Fourier transforms by integration would be difficult, but they are not hard to do
using the dilation theorem, because there is a transformation that connects them to a
separable function.

Example 10.5 (Plotting two-dimensional functions in Matlab, II). Here is
how to compute and plot, in Matlab, a nonseparable function like the sheared sinc
function in the previous example:

f (x, y) = 2 sinc(x∕2) sinc (y − x∕3) .

An input array of points is mapped into an output array of function values, for
example,

⎡⎢⎢⎢⎣
(x1, y1) ⋯ (xM , y1)

⋮ ⋱ ⋮

(x1, yN) ⋯ (xM , yN )

⎤⎥⎥⎥⎦⟼
⎡⎢⎢⎢⎣

f (x1, y1) ⋯ f (xM , y1)

⋮ ⋱ ⋮

f (x1, yN ) ⋯ f (xM , yN)

⎤⎥⎥⎥⎦ .
An array of points is actually represented by two M × N arrays of coordinates, one
for the x values and one for the y values:

X =
⎡⎢⎢⎢⎣

x1 ⋯ xM

⋮ ⋱ ⋮

x1 ⋯ xM

⎤⎥⎥⎥⎦ , Y =
⎡⎢⎢⎢⎣

y1 ⋯ y1

⋮ ⋱ ⋮

yN ⋯ yN

⎤⎥⎥⎥⎦ .
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Note that the pair (Xmn, Ymn) = (xn, ym). Matlab supplies a function meshgrid to
create the arrays, which are called xx and yy in Matlab (it is bad practice to have
different variables called x and X). For equally spaced x and y coordinates, with
x, y ∈ [−2, 2], meshgrid is called like this:

Npts = 51;

xmax = 2;

[xx, yy] = meshgrid(linspace(-xmax, xmax, Npts));

The arrays xx and yy are each 51 × 51.
The xx and yy arrays are passed to the function that computes f , for example,

f = 2 * sinc(xx/2) .* sinc(yy - xx/3);

From here, mesh or imagesc (or some other plotting function) may be called for
display.

Example 10.6 (Transformation of a cosine). The same transformations are per-
formed for a cosine, f (x, y) = cos(2𝜋𝜈0x), whose Fourier transform is F(𝜈x, 𝜈y) =
1
2
𝛿(𝜈x − 𝜈0)𝛿(𝜈y) + 1

2
𝛿(𝜈x + 𝜈0)𝛿(𝜈y). For simplicity, we separate the cosine into the

sum of complex exponentials and do the calculation for one of the exponentials.
Write the complex exponential as ei2𝜋b⋅x, with x = (x, y) and b = (𝜈0, 0), and the
delta function as 𝛿(𝜈x − 𝜈0)𝛿(𝜈y) = 𝛿(𝝂 − b), with 𝝂 = (𝜈x, 𝜈y). Then, by the dilation
theorems (Equations 10.9 and 10.10),

ei2𝜋b⋅Ax ⟼ 1|det A| 𝛿 (A−T
𝝂 − b

)
= 1|det A| |||det AT||| 𝛿 (𝝂 − AT b

)
= 𝛿

(
𝝂 − ATb

)
(because det AT = det A), and for the full cosine,

cos (2𝜋b ⋅ Ax) ⟼ 1
2
𝛿

(
𝝂 − ATb

)
+ 1

2
𝛿

(
𝝂 + AT b

)
.

We will consider only a rotation here and leave the other transformations to the
problems. For a rotation, det A = 1. The delta functions at 𝝂 = ±b are transformed
to delta functions at

𝝂 = ±ATb = ±
[

cos 𝜃 − sin 𝜃

sin 𝜃 cos 𝜃

] [
𝜈0

0

]
= ±

[
𝜈0 cos 𝜃

𝜈0 sin 𝜃

]
.

These transformations are shown in Figure 10.5 for a cosine with b = (2, 0).

Derivatives
The essence of the derivative theorem is that differentiation in one domain becomes
multiplication in the other domain (Equation 5.24):

f ′(x) ⟼ i2𝜋𝜈F(𝜈).
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FIGURE 10.5 The function cos(2𝜋 ⋅ 2x) (top) and its Fourier transform, 1

2
𝛿(𝜈x − 2)𝛿(𝜈y) +

1

2
𝛿(𝜈x + 2)𝛿(𝜈y) (bottom), are transformed by scaling (ax = 0.5), shearing (𝜎 = 0.5), and rota-

tion (30◦). See Example 10.6. Only the locations of the delta functions are shown, not their
strengths. While the sheared and rotated cosines are similar, note that the horizontal frequency
is unchanged by shearing, while it is reduced by rotation.

Now consider the extension to a first derivative in each of two dimensions (a mixed
partial):

𝜕
2

𝜕x𝜕y
f (x, y) = 𝜕

2

𝜕x𝜕y ∫
∞

−∞
F(𝜈x, 𝜈y)ei2𝜋(𝜈xx+𝜈yy) d𝜈xd𝜈y

= ∫
∞

−∞
F(𝜈x, 𝜈y)

(
𝜕

2

𝜕x𝜕y
ei2𝜋(𝜈xx+𝜈yy)

)
d𝜈xd𝜈y

= ∫
∞

−∞
(i2𝜋𝜈x)(i2𝜋𝜈y)F(𝜈x, 𝜈y)ei2𝜋(𝜈xx+𝜈yy) d𝜈xd𝜈y

⇒
𝜕

2

𝜕x𝜕y
f (x, y) ⟼ (i2𝜋𝜈x)(i2𝜋𝜈y)F(𝜈x, 𝜈y).

We see that the one-dimensional result extends straightforwardly to higher dimen-
sions. For each derivative with respect to coordinate xk, multiply F by a factor of
i2𝜋𝜈k.

To keep track of this in general, we introduce the so-called multi-index nota-
tion. A multi-index is a “vector” of nonnegative integers, 𝜶 =

(
𝛼1, 𝛼2,… , 𝛼N

)
. This

enables us to define, compactly,|𝜶| = 𝛼1 + 𝛼2 +⋯ + 𝛼N ,

x𝜶 = x
𝛼1
1 x

𝛼2
2 ⋯ x

𝛼N
N ,

and 𝜕
𝜶 = 𝜕

𝛼1

𝜕x𝛼1
1

𝜕
𝛼2

𝜕x𝛼2
2

⋯
𝜕
𝛼N

𝜕x
𝛼N
N

.
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Then using this notation, the multidimensional derivative theorem is, simply,

𝜕
𝜶 f (x) ⟷ (i2𝜋𝝂)𝜶F(𝝂), (10.11a)

(−i2𝜋x)𝜶 f (x) ⟷ 𝜕
𝜶F(𝝂). (10.11b)

Another derivative that is important in partial differential equations is the Laplacian:

∇2f (x) =
(

𝜕
2

𝜕x2
+ 𝜕

2

𝜕y2

)
f (x, y) ⟼ (i2𝜋)2

(
𝜈

2
x + 𝜈

2
y

)
F(𝜈x, 𝜈y) (10.12a)

or, in a form that covers all dimensions:

∇2f (x) ⟼ −4𝜋2 ‖𝝂‖2 F(𝝂). (10.11b)

Example 10.7 (Diffusion on an unbounded domain). Solution of the diffusion
(heat) equation on a bounded one-dimensional domain was discussed in Section 4.5.
Here we revisit the problem for an unbounded two-dimensional domain. Previously,
the heat equation was written

∇2u(r, t) = 1
k
𝜕u(r, t)

𝜕t
, (4.27)

where the function u is the temperature at a point r = (x, y) and time t, and k is a
constant. The initial temperature distribution is u(r, 0). Because u is defined on an
unbounded spatial domain, we may Fourier transform both sides, using the Laplacian
relationship (Equation 10.12b),

−4𝜋2‖𝝂‖2U(𝝂, t) = 1
k
𝜕U(𝝂, t)

𝜕t
.

This is a first-order ordinary differential equation:

𝜕U(𝝂, t)
𝜕t

+ 4𝜋2k‖𝝂‖2U(𝝂, t) = 0,

with initial condition U(𝝂, 0). For now, consider an initial point distribution, modeled
by a delta function, u(r, 0) = C𝛿(r). Then U(𝝂, 0) = C. The solution is

U(𝝂, t) = C e−4𝜋2k‖𝝂‖2t, t ≥ 0.

To calculate the inverse Fourier transform, rewrite the solution in the form

U(𝝂, t) = C e−𝜋(4𝜋kt)‖𝝂‖2
,

a Gaussian. Using the dilation theorem, we obtain the final result:

u(r, t) = C
4𝜋kt

e
−𝜋
(‖r‖∕√4𝜋kt

)2

. (10.13)

These solutions are graphed in Figure 10.6 for C = 1, k = 0.025. The peak value of

the distribution is C
4𝜋kt

and the half width when it is 1∕e of its peak value is
√

4kt. The
cross-sectional area at this point is 4𝜋kt, and not surprisingly, the product of the peak
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FIGURE 10.6 Gaussian solutions of the two-dimensional diffusion equation (Equation
10.13) with C = 1, k = 0.025, for times t = 1, 2, 4, 8. The peak value of the distribution is
C∕4𝜋kt. The area of the 1∕e circle shown is 4𝜋kt. To conserve the mass (energy) of the initial
distribution, the distribution becomes shorter and wider as t increases.

value and this area is constant, C. That is, the initial mass (energy) of the distribution
is conserved as it diffuses.

Moment Theorems
The area theorem carries over to the multidimensional transform:

∫ f (x) dx = F(0), (10.14a)

f (0) = ∫ F(𝝂) d𝝂. (10.14b)
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Moments of multidimensional functions are taken with respect to each coordinate. In
two dimensions,

𝜇
(n)
x = ∫

∞

−∞ ∫
∞

−∞
xn f (x, y) dxdy = 1

(−i2𝜋)n

𝜕
nF(𝜈x, 𝜈y)

𝜕𝜈n
x

||||𝝂=0
,

𝜇
(n)
y = ∫

∞

−∞ ∫
∞

−∞
yn f (x, y) dxdy = 1

(−i2𝜋)n

𝜕
nF(𝜈x, 𝜈y)

𝜕𝜈n
y

||||𝝂=0
. (10.15)

All the n = 0 moments are the same and are equal to the area. The centroid of a
multidimensional distribution is a vector:

x̄ = 1
𝜇(0)

(
𝜇

(1)
1 ,𝜇(1)

2 ,… ,𝜇(1)
N

)
= ∇F(𝝂)

−i2𝜋F(0)

||||𝝂=0
, (10.16)

where ∇ is the gradient operator. Mixed moments are also defined in higher dimen-
sions:

𝜇
𝜶 = ∫ x𝜶 f (x) dx = 1

(−i2𝜋)|𝜶| 𝜕𝜶F(𝝂)
||||𝝂=0

, (10.17)

where𝜶 is a multi-index. In fact, this is the most general form of the moment theorem,
for example, in three dimensions, 𝜇(2)

x = 𝜇
(2,0,0), 𝜇(1)

xy = 𝜇
(1,1,0).

Example 10.8 (Moments in statistics). In probability and statistics, the Fourier
transform F of a probability density function f is called the moment generating
function because of the connection between moments and derivatives of the Fourier
transform. For a bivariate distribution f (x, y), the expected values, or means, of the
random variables x and y are the first moments:

x̄ = 𝜇
(1)
x = ∫

∞

−∞ ∫
∞

−∞
xf (x, y) dxdy = 1

−i2𝜋
𝜕F
𝜕𝜈x

||||(0,0)
,

ȳ = 𝜇
(1)
y = ∫

∞

−∞ ∫
∞

−∞
yf (x, y) dxdy = 1

−i2𝜋
𝜕F
𝜕𝜈y

||||(0,0)
.

It is not necessary to divide by the area because all probability density functions have
unit area (total probability = 1). The variances are computed from the first and second
moments:

𝜎
2
x = ∫

∞

−∞ ∫
∞

−∞
(x − x̄)2f (x, y) dxdy = 𝜇

(2)
x −

(
𝜇

(1)
x

)2 = 1
(−i2𝜋)2

[
𝜕

2F
𝜕𝜈2

x

−
(
𝜕F
𝜕𝜈x

)2
]

(0,0)

,

𝜎
2
y = ∫

∞

−∞ ∫
∞

−∞
(y − ȳ)2f (x, y) dxdy = 𝜇

(2)
y −

(
𝜇

(1)
y

)2
= 1

(−i2𝜋)2

[
𝜕

2F
𝜕𝜈2

y

−
(
𝜕F
𝜕𝜈y

)2
]

(0,0)

.

In addition, the correlation, which measures the linear dependence between two
random variables, is a mixed moment:

𝜌xy = ∫
∞

−∞ ∫
∞

−∞
xyf (x, y) dxdy = 1

(−i2𝜋)2

𝜕
2F

𝜕𝜈x𝜕𝜈y

||||(0,0)
.

Specific examples are in the problems.
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FIGURE 10.7 Convolution in two dimensions may be performed as a series of one-
dimensional convolutions. Here, two functions with rectangular support in the first quadrant
are convolved. Fixing y = y1, sliding g(x − 𝜉, y1 − 𝜉) to the right, and integrating over the
shaded region yields f ∗ g(x, y1). Likewise, fixing y = y2, sliding g(x − 𝜉, y2 − 𝜉) to the right,
and integrating over the shaded region yields f ∗ g(x, y2). Repeating for all y produces the full
convolution, f ∗ g(x, y).

Convolution
The two-dimensional convolution and convolution theorem are exactly as one would
expect:

f ∗ g(x) = ∫ f (𝝃) g(x − 𝝃) d𝝃, (10.18a)

f ∗ g(x) ⟷ F(𝝂)G(𝝂). (10.18b)

The integration can often be done one dimension at a time, for example, in two
dimensions (Figure 10.7),

f ∗ g(x, y) = ∫
∞

−∞

[
∫

∞

−∞
f (𝜉, 𝜂) g(x − 𝜉, y − 𝜂) d𝜉

]
d𝜂.

10.2 FOURIER TRANSFORMS IN POLAR
COORDINATES

10.2.1 Circular Symmetry: Hankel Transform

When the function being Fourier transformed has radial symmetry, it is more natural to
describe it in polar coordinates and to develop a Fourier transform in polar coordinates.
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Consider, then, a function f (r), where r =
√

x2 + y2. In the two-dimensional Fourier
transform, Equation 10.1a, make the changes of variable:

x = r cos 𝜃, y = r sin 𝜃

𝜈x = 𝜌 cos𝜙, 𝜈y = 𝜌 sin𝜙,

then

F(𝜌) = ∫
2𝜋

0 ∫
∞

0
f (r) e−i2𝜋(r𝜌 cos 𝜃 cos𝜙+r𝜌 sin 𝜃 sin𝜙) r dr d𝜃

= ∫
∞

0
f (r)

[
∫

2𝜋

0
e−i2𝜋r𝜌 cos(𝜃−𝜙) d𝜙

]
r dr.

Now, the Bessel functions of the first kind, Jn, are defined by the integral2

Jn(x) = 1
2𝜋 ∫

𝜋

−𝜋
e−i(nu−x sin u) du. (10.17)

The first three Bessel functions, J0 through J2, are graphed in Figure 10.8.
Some useful Bessel function identities, which may be derived from the integral

definition, are

2nJn(x) = xJn−1(x) + xJn+1(x), (10.20a)

J′n(x) = Jn−1(x) − n
x

Jn(x), (10.20b)

J−n(x) = (−1)nJn(x). (10.20c)

In addition, the Bessel functions have unit area:

∫
∞

0
Jn(x) dx = 1, (10.21)

and an orthogonality property:

2𝜋𝜌∫
∞

0
Jn

(
2𝜋r𝜌

)
Jn

(
2𝜋r𝜌′

)
r dr = 𝛿

(
2𝜋
(
𝜌 − 𝜌

′))
. (10.22)

Using Equation 10.19 with n = 0, x = 2𝜋r𝜌, and u = 𝜋

2
+ 𝜃 − 𝜙, we have

∫
2𝜋

0
e−i2𝜋r𝜌 cos(𝜃−𝜙) d𝜙 = 2𝜋 J0(2𝜋r𝜌),

and so,

F(𝜌) = 2𝜋 ∫
∞

0
f (r) J0(2𝜋r𝜌) r dr. (10.23)

2There are other ways to define a Bessel function, but this form is convenient for our purposes. Bessel’s
own research into this function began with this integral. See Watson (1995, pp. 19ff). The following
Bessel function identities, and many more, may be found in a standard mathematics reference such as
Abramowitz and Stegun (1972, Chapter 9), or the newer NIST Digital Library of Mathematical Functions,
http://dlmf.nist.gov/, Chapter 10 (accessed February 12, 2013). Also see Churchill and Brown (1987,
Chapter 8), which includes applications to the solution of partial differential equations.

http://dlmf.nist.gov/
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FIGURE 10.8 Bessel functions of the first kind, J0, J1, J2 (Equation 10.19). The zero
crossings are not uniformly spaced, as with sine and cosine. Of all Bessel functions Jn, only
J0 is nonzero at the origin.

This transform is also known as the Hankel transform.3 The inverse Hankel transform
is identical to the forward:

f (r) = 2𝜋 ∫
∞

0
F(𝜌) J0(2𝜋r𝜌) 𝜌 d𝜌. (10.24)

The derivation of this is left as an exercise for the reader.

The Circle Function
A useful example of a radially symmetric function is the circle function, which can
be used to model a circular aperture in an optical system:

circ(r) =
⎧⎪⎨⎪⎩

1, r < 1
1
2

, r = 1

0, otherwise

. (10.25)

3More precisely, it is the zeroth-order Hankel transform. Higher order transforms are made using the nth
order Bessel functions Jn(.). See the problems for an example.
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The circle function is the polar coordinate analog of the two-dimensional rectangle
function. To calculate its Hankel transform, begin by writing down the integral,

circ(r) ⟼ 2𝜋 ∫
∞

0
circ(r) J0(2𝜋r𝜌) r dr = 2𝜋 ∫

1

0
J0(2𝜋r𝜌) r dr.

Make the change of variable 𝜉 = 2𝜋r𝜌, and the integral becomes

2𝜋 ∫
1

0
J0(2𝜋r𝜌) r dr →

1
2𝜋𝜌2 ∫

2𝜋𝜌

0
J0(𝜉) 𝜉 d𝜉.

Now, using Equation 10.20b,

𝜉J0(𝜉) = 𝜉J′1(𝜉) + J1(𝜉) = d
d𝜉

(
𝜉J1(𝜉)

)
and

∫
2𝜋𝜌

0
J0(𝜉) 𝜉 d𝜉 = 𝜉J1(𝜉)

||||2𝜋𝜌0
= 2𝜋𝜌J1(2𝜋𝜌).

Therefore, we have the result

circ(r) ⟼
J1(2𝜋𝜌)

𝜌
. (10.26)

By the two-dimensional area theorem, because the area (volume) under the unit circle
function is 𝜋, the peak value of the Fourier transform, J1(2𝜋𝜌)

𝜌
, is also 𝜋. Dividing by

𝜋 so that it has unit height, J1(2𝜋𝜌)
𝜋𝜌

, it has a form analogous to the sinc function, sin𝜋x
𝜋x

.

This normalized function is often called the “besinc,” “jinc,” or even “sombrero”
function. We prefer “jinc.” So with the definition

jinc(𝜌) =
J1(2𝜋𝜌)

𝜋𝜌
, (10.27)

the Fourier transform pair for the circle function is

circ(r) ⟷ 𝜋 jinc(𝜌). (10.28)

The jinc function is graphed in Figure 10.9. It has the general appearance of a sinc,
but notably, the zero crossings are not uniformly spaced.4

Delta Functions: Ring and Point
In one dimension, a pair of impulses transforms to a cosine:

𝛿(x − a) + 𝛿(x + a) ⟼ 2 cos 2𝜋a𝜈.

One way to extend this to two dimensions is to consider a pair of vertical impulse
segments of length 2b:[

𝛿(x − a) + 𝛿(x + a)
]

rect(y∕2b) ⟼ 4b cos
(
2𝜋a𝜈x

)
sinc(2b𝜈y).

4Zero crossings of several Bessel functions, including J0 and J1, are tabulated in Abramowitz and Stegun
(1972, Table 9.5).
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FIGURE 10.9 The jinc function, jinc r = J1(2𝜋r)

𝜋r
, as a function of r =

√
x2 + y2 (left)

and in radial profile (right). The profile shows the first three zero crossings, at r =
0.6096, 1.1166, 1.6192. Unlike sine, cosine, and sinc, the zero crossings of the Bessel functions
and jinc are not uniformly spaced.

Observe that as b → ∞, rect(y∕2b) → 1, 2b sinc(2b𝜈y) → 𝛿(𝜈y), and we recover 𝛿(x −
a) + 𝛿(x + a) ⟼ 2 cos(2𝜋a𝜈x) 𝛿(𝜈y). From two such sets of impulse segments at
right angles we can construct a thin hollow box, or rectangular ring, and its Fourier
transform (Figure 10.10):[

𝛿(x − a) + 𝛿(x + a)
]

rect(y∕2b) + rect(x∕2a)
[
𝛿(y − b) + 𝛿(y + b)

]
⟼ 4b cos(2𝜋a𝜈x) sinc(2b𝜈y) + 4a sinc(2a𝜈x) cos(2𝜋b𝜈y).

(10.29)

Now, in polar coordinates, we define the ring delta, 𝛿(r − a), which is supported
on a circle of radius a centered at the origin. It has the sifting property

∫
2𝜋

0 ∫
∞

0
𝛿(r − a) f (r, 𝜃) r dr d𝜃 = ∫

2𝜋

0
a f (a, 𝜃) d𝜃

= 2𝜋a ⋅ 1
2𝜋 ∫

2𝜋

0
f (a, 𝜃) d𝜃. (10.30)

The last expression is the circumference of a circle of radius a times the average of f
on the circle. The area of the ring delta is also its circumference, 2𝜋a:

∫
2𝜋

0 ∫
∞

0
𝛿(r − a) r dr d𝜃 = 2𝜋a.

A unit-area ring delta is 𝛿(r − a)∕2𝜋a which is also 𝛿(r − a)∕2𝜋r by the sifting
property. The Hankel transform of the normalized ring delta is

2𝜋 ∫
∞

0

𝛿(r − a)
2𝜋r

J0(2𝜋r𝜌) r dr = J0(2𝜋a𝜌).
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FIGURE 10.10 Hollow unit square (left) and unit ring (right) delta functions (top) and their
Fourier transforms (middle, bottom), according to Equations 10.29 and 10.31. The images
(middle) are of the Fourier magnitude, and the profiles (bottom) are cross-sections taken
through the center of the transform, at 𝜈y = 0 (solid) and 𝜈y = −𝜈x (dashed).

So we have another Hankel transform pair:

𝛿(r − a)
2𝜋r

⟷ J0(2𝜋a𝜌) or 𝛿(r − a) ⟷ 2𝜋a J0(2𝜋a𝜌). (10.31)

The square (a = b) and circular ring deltas, and their transforms, are compared in
Figure 10.10.

In cartesian coordinates, a delta function at the origin is 𝛿(x, y), with sifting
property

∫
∞

−∞ ∫
∞

−∞
f (x, y)𝛿(x, y) dx dy = f (0, 0).
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When we take this to polar coordinates, it is straightforward enough to define a point
delta away from the origin as the intersection of a ring delta, 𝛿(r − a)∕r, and a “ray
delta,” 𝛿(𝜃 − 𝜃0):

∫
2𝜋

0 ∫
∞

0
f (r, 𝜃)

𝛿(r − a)𝛿(𝜃 − 𝜃0)

r
r dr d𝜃 = f (a, 𝜃0).

When the point delta is at the origin, we expect to get f (0, ⋅) (the value of 𝜃 is
immaterial at the origin). We seek a generalized function g(r) such that

∫
2𝜋

0 ∫
∞

0
f (r, 𝜃) g(r) r dr d𝜃 = ∫

∞

0
f (r, ⋅) [2𝜋g(r) r] dr = f (0, ⋅).

Now recall the development of the delta function in Chapter 6 as a sequence of
pulses:

∫
∞

0
f (r, ⋅) 𝛿(r) dr = lim

n→∞∫
∞

0
f (r, ⋅) n𝜑(nr) dr.

When the integral runs only from 0 to ∞, it picks up only half of the delta pulse.
Following the same approach taken in Section 6.2, we see that5

∫
∞

0
f (r, ⋅) 𝛿(r) dr = 1

2
f (0, ⋅).

Therefore, 2𝜋g(r) r = 2𝛿(r), and we define the unit impulse at the origin to be
𝛿(r)∕𝜋r:6

∫
2𝜋

0 ∫
∞

0
f (r)

𝛿(r)
𝜋r

r dr d𝜃 = f (0, ⋅). (10.32)

Its Hankel transform is

𝛿(r)
𝜋r

⟼2𝜋 ∫
∞

0

𝛿(r)
𝜋r

J0(2𝜋r𝜌) r dr = 2∫
∞

0
𝛿(r) J0(2𝜋r𝜌) dr = 2 × 1

2
J0(0) = 1,

thus

𝛿(r)
𝜋r

⟷ 1. (10.33)

5Instead of integrating ∫ 2𝜋
0 ∫ ∞

0 ⋯ r dr d𝜃, one may consider r to be a bilateral variable and integrate
∫ 𝜋

0 ∫ ∞
−∞ ⋯ |r| dr d𝜃. Then

∫
𝜋

0 ∫
∞

−∞
f (r, 𝜃) g(r) |r| dr d𝜃 = f (0, ⋅)

implies 𝜋g(r)|r| = 𝛿(r) and (but see the next footnote) the impulse at the origin is 𝛿(r)∕𝜋|r|. This approach
is sometimes taken to avoid the “half delta” problem at the origin.
6The combination of 𝛿(r) with 1∕𝜋r is problematic, since both are singular at the origin. In practice,
𝛿(r)∕𝜋r always appears in an integral with a differential area r dr d𝜃. Formally “cancelling” the 1∕r and
r yields correct results, but is suspect. Alternatively, one may use Equation 6.28 to write g(r) = −𝛿′(r)∕𝜋
(see the problems). For a more rigorous approach to polar coordinate transformations of generalized
functions that avoids difficulties at the origin see Jones (1982, pp. 300–306).
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Hankel Transform Theorems
Theorems for the two-dimensional Fourier transform apply to the Hankel transform,
as one would expect. One must be careful with the dilation and shift theorems, since
these operations can spoil the circular symmetry. Moreover, convolution is difficult.
We will comment on these in detail here, and leave the rest to a table at the end of
the chapter.

Recall that the dilation theorem in two dimensions is

f (Ax) ⟷ 1| det A| F
(
A−T

𝝂
)

,

where A is an invertible 2 × 2 matrix. Consider a function f (r), where r =
√

x2 + y2 =‖x‖, and its Hankel transform F(𝜌), where 𝜌 =
√

𝜈2
x + 𝜈2

y = ‖𝝂‖. If A represents a

rotation, then circular symmetry is preserved:

f (‖Ax‖) = f (‖x‖) ⟷ F (‖𝝂‖) . (10.34)

If A represents an isotropic scaling, Ax = ax, then det A = a2 and circular symmetry
is preserved,

f (ar) ⟷ 1
a2

F (𝜌∕a) . (10.35)

Other transformations, for example, anisotropic scaling or shearing, break the circular
symmetry.

As for the shift theorem, translating a circularly symmetric function breaks
the symmetry, and the Fourier transform pair can no longer be written in terms of
the radial variables r and 𝜌. As above, let f (‖x‖) and F(‖𝝂‖) be a Hankel transform
pair. A translated version of f is f (‖x − b‖), and by the shift theorem, its Fourier
transform is

f (‖x − b‖) ⟼ e−i2𝜋𝝂⋅b F
{

f (‖x‖)
}
= e−i2𝜋𝝂⋅b F (‖𝝂‖) . (10.36)

Example 10.9 (A pair of circular apertures). Consider a pair of circle functions
of radius a, centered at x = ±b:

f (x) = circ

(√
(x + b)2 + y2

a

)
+ circ

(√
(x − b)2 + y2

a

)
.

First use the shift theorem:

F(𝝂) = e+i2𝜋b𝜈x F
{

circ

(√
x2 + y2

a

)}
+ e−i2𝜋b𝜈x F

{
circ

(√
x2 + y2

a

)}

= 2 cos(2𝜋b𝜈x)F
{

circ

(√
x2 + y2

a

)}
.
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FIGURE 10.11 Two circle functions of radius 0.5, centered at x = ±1 (left) and their Fourier
magnitude (right). The Fourier transform is the product of a jinc that depends on the aperture
radius and a cosine modulation whose frequency depends on the separation of the apertures.

With the shift removed, the remaining Fourier transform is of a circularly symmetric
function, and the dilation theorem may be used with the Hankel transform of the
circle to obtain

F(𝝂) = 2𝜋a2 cos(2𝜋b𝜈x) jinc (a‖𝝂‖) .

These functions are shown in Figure 10.11. In optics and antenna theory, this models
the interference of waves emanating from two uniformly illuminated circular aper-
tures. As the apertures become smaller and more pointlike, the jinc function spreads
so that the cosine becomes the dominant feature, as expected.

As for convolution, the Hankel transform is a Fourier transform, so of course
there is a convolution relationship—the Hankel transform of the product F(𝜌)G(𝜌) is
the convolution of f (r) and g(r). Derivation of the convolution integral f ∗ g(r), in
polar coordinates, is left to the problems. Here is the result:

f ∗ g(r) = ∫
2𝜋

0 ∫
∞

0
f (u) g

(√
r2 + u2 − 2ru cos 𝜃

)
u du d𝜃. (10.37)

(You may recognize the Law of Cosines in the argument for g.) Actually performing
the integration is difficult, except in some very special cases. Here is one.

Example 10.10 (Self convolution of a circle function). The setup for calculating
the convolution of circ(r∕a) with itself is shown in Figure 10.12. Because the circle
function is either 1 or 0 and is confined to a bounded area, the integration reduces
to calculating the area of the lens-shaped region of overlap, which by symmetry is
four times the area of the smaller region shown in the figure. Covering the area with
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(a2 – u2)1/2

u

FIGURE 10.12 Convolution of two circle functions of radius a. Left: Integration is with
respect to u and 𝜃 over the lens-shaped area of overlap, for r ≤ 2a. The convolution is zero for
r > 2a. Right: Detail of calculation for a quarter of the area.

strips of height
√

a2 − u2 and width du and integrating from u = r∕2 to u = a gives
(for r ≤ 2a)

circ(r∕a) ∗ circ(r∕a) = 4 ∫
a

r∕2

(
a2 − u2)1∕2

du

= 2

[
u
√

a2 − u2 + a2 arctan

(
u√

a2 − u2

)]a

r∕2

= 2

[
a2𝜋

2
− ar

2

√
1 − (r∕2a)2 − a2 arctan

(
r∕2a√

1 − (r∕2a)2

)]

= 2a2

[
arccos

( r
2a

)
− r

2a

√
1 −

( r
2a

)2
]

, r ≤ 2a.

(10.38)

The convolution is zero for r > 2a. When r = 0, the expression evaluates to 𝜋a2, the
area of the circle. As we have seen before with convolution, the support of the result
is larger than the support of the individual functions (Figure 10.13).

10.2.2 Spherical Symmetry

To calculate the three-dimensional Fourier transform of a function with spherical
symmetry, begin again with the cartesian form and make the changes of variable
from (x, y, z) to (r,𝜑, 𝜃) (Figure 10.14):

x = r sin 𝜃 cos𝜑, y = r sin 𝜃 sin𝜑, z = r cos 𝜃

𝜈x = 𝜌 sin 𝜁 cos 𝜉, 𝜈y = 𝜌 sin 𝜁 sin 𝜉, 𝜈z = 𝜌 cos 𝜁

then

𝝂 ⋅ x = r𝜌 sin 𝜃 sin 𝜁 (cos𝜑 cos 𝜉 + sin𝜑 sin 𝜉)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

cos(𝜑−𝜉)

+r𝜌 cos 𝜃 cos 𝜁
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FIGURE 10.13 Self-convolution of a circle function (Equation 10.38). The convolution is
radially symmetric and supported on a circle of radius 2. The peak value is 𝜋. For a cross-
sectional view see Figure 10.24.
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FIGURE 10.14 Spherical coordinate system.
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and

F(𝜌) = ∫
𝜋

0 ∫
2𝜋

0 ∫
∞

0
f (r) e−i2𝜋r𝜌(sin 𝜃 sin 𝜁 cos(𝜑−𝜉)+cos 𝜃 cos 𝜁 ) r2 sin 𝜃 dr d𝜑 d𝜃.

This is a formidable integral, but can be simplified greatly by the assumption of
spherical symmetry. Because the Fourier transform is independent of angle, we may
choose values of 𝜁 and 𝜉 that are convenient. In particular, with 𝜁 = 0, the integral
becomes

F(𝜌) = ∫
𝜋

0 ∫
2𝜋

0 ∫
∞

0
f (r) e−i2𝜋r𝜌 cos 𝜃 r2 sin 𝜃 dr d𝜑 d𝜃

= 2𝜋 ∫
𝜋

0 ∫
∞

0
f (r) e−i2𝜋r𝜌 cos 𝜃 r2 sin 𝜃 dr d𝜃.

Let u = cos 𝜃, du = − sin 𝜃d𝜃, and

F(𝜌) = 2𝜋 ∫
∞

0
f (r)

[
∫

1

−1
e−i2𝜋r𝜌u du

]
r2dr

= 4𝜋 ∫
∞

0
f (r) sinc(2r𝜌) r2 dr = 2

𝜌 ∫
∞

0
f (r) sin(2𝜋r𝜌) r dr. (10.39)

The inverse is identical in form to the forward transform:

f (r) = 4𝜋 ∫
∞

0
F(𝜌) sinc(2r𝜌) 𝜌2 d𝜌 = 2

r ∫
∞

0
F(𝜌) sin(2𝜋r𝜌) 𝜌 d𝜌. (10.40)

Example 10.11 (Unit ball). A unit ball is the spherical analog of the circle function.
Its Fourier transform is

F(𝜌) = 2
𝜌 ∫

1

0
sin(2𝜋r𝜌) r dr

= 2
𝜌

sin(2𝜋r𝜌) − 2𝜋r𝜌 cos(2𝜋r𝜌)

(2𝜋𝜌)2

|||||
1

0

= sin(2𝜋𝜌) − 2𝜋𝜌 cos(2𝜋𝜌)

2𝜋2𝜌3
.

Letting 𝜌 = 0 in this result should recover the volume of the ball (generalizing the
area theorem to three dimensions). Using L’Hospital’s rule,

F(0) = lim
𝜌→0

sin(2𝜋𝜌) − 2𝜋𝜌 cos(2𝜋𝜌)

2𝜋2𝜌3

= lim
𝜌→0

2𝜋 cos(2𝜋𝜌) − 2𝜋 cos(2𝜋𝜌) + 4𝜋2
𝜌 sin(2𝜋𝜌)

6𝜋2𝜌2

= lim
𝜌→0

2 sin(2𝜋𝜌)
3𝜌

= 4𝜋
3

,

which is indeed the volume of the unit ball.
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Example 10.12 (Spherical shell). A thin spherical shell is the three-dimensional
analog of the ring delta. To calculate the normalization factor, integrate 𝛿(r − a) over
all space:

∫
𝜋

0 ∫
2𝜋

0 ∫
∞

0
𝛿(r − a) r2 sin 𝜃 dr d𝜑 d𝜃 = 4𝜋a2,

which is, coincidentally, the surface area of the sphere. A spherical unit delta function
is defined 𝛿(r − a)∕4𝜋a2, or by the sifting property, 𝛿(r − a)∕4𝜋r2.

The Fourier transform of the spherical shell is

4𝜋 ∫
∞

0

𝛿(r − a)

4𝜋r2
sinc(2r𝜌) r2 dr = ∫

∞

0
𝛿(r − a) sinc(2r𝜌) dr = sinc(2a𝜌).

Thus,

𝛿(r − a)

4𝜋r2
⟷ sinc(2a𝜌) or 𝛿(r − a) ⟷ 4𝜋a2 sinc(2a𝜌). (10.41)

An impulse at the origin in spherical coordinates must provide the sifting
property. We seek a generalized function g such that

∫
𝜋

0 ∫
2𝜋

0 ∫
∞

0
f (r,𝜑, 𝜃) g(r) r2 sin 𝜃 dr d𝜑 d𝜃 = ∫

∞

0
f (r, ⋅, ⋅)

[
4𝜋 r2 g(r)

]
dr

= f (0, ⋅, ⋅).

(The values of 𝜑 and 𝜃 are immaterial at the origin.) As with the earlier calculation
in polar coordinates, the integral ∫ ∞

0 f (r) 𝛿(r) dr = 1
2
f (0), so 4𝜋r2g(r) = 2𝛿(r), and

we define the unit impulse at the origin to be7
𝛿(r)∕2𝜋r2. Its Fourier transform is

4𝜋 ∫
∞

0

𝛿(r)

2𝜋r2
sinc(2r𝜌) r2 dr = 2∫

∞

0
𝛿(r) sinc(2r𝜌) dr = 1;

thus,

𝛿(r)

2𝜋r2
⟷ 1. (10.42)

Theorems for the three-dimensional transform follow the same pattern as the Hankel
transform and are not elaborated upon here.8

10.3 WAVE PROPAGATION

10.3.1 Plane Waves

A wave whose complex amplitude is of the form ei(k⋅r−𝜔t) is called a plane wave.
It can be shown to be a solution of the three-dimensional wave equation ∇2ũ(r, t) =

7With the same caveats that applied to the polar coordinate delta function mentioned in an earlier footnote.
8See Bracewell (2000, pp. 329–343) for more examples of two- and three-dimensional radial transforms.
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FIGURE 10.15 The equiphase surfaces of the complex wave amplitude ei(k⋅r−𝜔t) are the
points P such that k ⋅ r − 𝜔t = constant. These surfaces are planar, and perpendicular to the k
vector; here, k is oriented along the z-axis. The equiphase k ⋅ r − 𝜔t = 0 is located at distance
𝜔t∕k from the origin z = 0. After a time Δt has elapsed, the equiphase has propagated a
distance Δz = 𝜔Δt∕k farther. The distance corresponding to a phase change 𝜔Δt = 2𝜋 is the
wavelength, 𝜆.

1
𝑣2

𝜕
2

𝜕t2
ũ(r, t), with 𝑣

2 = 𝜔
2∕ ‖k‖2. The wavefronts, or equiphase surfaces, of the wave

are defined by k ⋅ r − 𝜔t = constant. For a fixed t, these are planes perpendicular to
the vector k (Figure 10.15). The wavelength 𝜆 is the distance in space between
two planar equiphases differing by 2𝜋 at a fixed t, that is, k𝜆 = 2𝜋, which gives
k = ‖k‖ = 2𝜋∕𝜆.

For any particular equiphase, with k ⋅ r − 𝜔t = constant, as time increases k ⋅ r
must also increase to keep the phase constant. This means that r for a point on the
equiphase must also lengthen, that is, the wave propagates in the direction of k. In a
time interval Δt, the equiphase moves a distance 𝜔Δt∕k. The ratio 𝜔∕k = 𝜆𝜔∕2𝜋 =
𝜆𝜈 is the propagation speed, 𝑣, of the wave. For electromagnetic waves in vacuum, 𝑣
is the speed of light, c. Unlike the spherical wave (Equation 4.36), whose amplitude
falls off with distance from the point of origin, the plane wave’s amplitude ideally
remains constant as it propagates.

The direction of propagation of a plane wave is defined by the vector
k = (kx, ky, kz). A common way of specifying the orientation of the k vector is via
the angles a and b that k makes with the z-axis in the xz and yz planes, respectively
(Figure 10.16). The sines of these direction angles are called the direction sines of k,
𝛼 = sin a and 𝛽 = sin b. In terms of the direction sines, we have

k =
(
kx, ky, kz

)
= k
(
𝛼, 𝛽,

√
1 − 𝛼2 − 𝛽2

)
. (10.43)

All the components of k must be real in order for ei(k⋅r−𝜔t) to be a propagating wave.
An imaginary component causes the complex exponential to decay and the wave
does not propagate (a so-called evanescent wave). Individually, of course, 𝛼2 and
𝛽

2 are no greater than 1, being sines. Then, in order for kz to be real, we have the
additional constraint 𝛼2 + 𝛽

2 ≤ 1. A plane wave propagating in any direction may
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FIGURE 10.16 The orientation of the k vector for a plane wave may be specified by the
angles a and b that k makes with the z-axis in the xz and yz planes, respectively (left). For
a propagating wave, the pair (𝛼, 𝛽) of direction sines 𝛼 = sin a = kx∕k and 𝛽 = sin b = ky∕k
must be within the unit circle, 𝛼2 + 𝛽

2 ≤ 1 (right).

be located by a pair of direction sines (𝛼, 𝛽) within the unit circle (Figure 10.16).
For example, (0, 0) gives a wave propagating down the z-axis; (1, 0) gives a wave
propagating up the x-axis. Orientations falling outside the unit circle correspond to
evanescent (non-propagating) waves.

Mathematically, the complex exponential eik⋅r is of the same form as the mul-
tidimensional Fourier transform kernel ei2𝜋𝝂⋅x, and we will see that plane waves
have the same “basis” property for propagating waves that sinusoids have for one-
dimensional signals.

10.3.2 Fraunhofer Diffraction

One of the most important applications of the two-dimensional Fourier transform is
wave propagation—antennas, optics, acoustics, and more. The basic result connects
the complex field amplitude at a plane, denoted ũ(x0, y0), with the field amplitude at
a distant observation point—the far field amplitude is the spatial Fourier transform
of the input field amplitude. This may be arrived at in different ways. The approach
taken here will be to extend the results on antenna arrays in Section 4.7. Recall that
the complex field at an observation point P1, due to a point source at P0, is a spherical
wave (Figure 10.17):

ũP1
= Aei(kr01−𝜔t)

r01
,

where k = 2𝜋∕𝜆 = 𝜔∕c. In what follows we will drop the sinusoidal time dependence
and concern ourselves only with the spatial variations of the field. Regarding an
arbitrary source distribution ũ0(r0) as a superposition of point sources, the field at P1
can be shown to be a superposition of spherical waves:9

ũ1 = ∬source
ũ0(r0)

eikr01

i𝜆r01
dr0, (10.44)

9Goodman (1968, Chapters 3 and 4) gives an excellent historical overview and a derivation from first
principles.
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FIGURE 10.17 Geometry for wave propagation between two points. Vectors r0 and r1 are
the transverse coordinates of the source and observation points, respectively. The longitudinal
coordinate of the observation point is z. The angles a and b orient the observation point P1

with respect to the z-axis in the xz and yz planes, respectively.

under the conditions that the direction angles a and b are not too large—the so-called
paraxial approximation—and that the observation point is many wavelengths away
from the source, R ≫ 𝜆.

To make this integral practical, we need a convenient expression for the distance
r01 in terms of R, the direction angles a and b, and the coordinates (x0, y0). We begin
by adding the y0 dimension to the previous derivation:

r01 =
(
R2 +

(
x2

0 + y2
0

)
− 2R(x0 sin a + y0 sin b)

)1∕2

= R

√
1 −

2(x0 sin a + y0 sin b)

R
+

r2
0

R2
,

where r2
0 = x2

0 + y2
0. Assuming that P1 is very far from P0, so that R ≫ r0, we approx-

imate the square root by a binomial expansion:

r01 ≈ R

(
1 −

(x0 sin a + y0 sin b)

R
+

r2
0

2R2
+ higher order terms

)
,

and keep only the first-order term, resulting in the so-called Fraunhofer approxima-
tion:10

r01 ≈ R − (x0 sin a + y0 sin b).

10See Goodman (1968, pp. 58–62) for a discussion of the physical validity of this approximation.
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We may satisfactorily approximate the distance r01 in the denominator by R, simpli-
fying the spherical wave to

eikr01

r01
≈ eikR

R
e−ik(x0 sin a+y0 sin b)

.

This field is a combination of two effects: a spherical wave eikR∕R, and a modulation
of the complex amplitude of the spherical wave that depends on the coordinates of
the source point, (x0, y0), and the direction angles of the observation point, (a, b).
This much is just a two-dimensional version of the results in Chapter 4.

Inserting this approximation into the superposition, Equation 10.44, and letting
k = 2𝜋∕𝜆, gives the field at P1:

ũ1(a, b) ≈ eikR

i𝜆R ∬
∞

−∞
ũ0(x0, y0) exp

[
−i2𝜋

(
x0

(sin a
𝜆

)
+ y0

( sin b
𝜆

))]
dx0dy0

= eikR

i𝜆R
Ũ0

(sin a
𝜆

,
sin b
𝜆

)
. (10.45)

Wave propagation under the Fraunhofer approximation is commonly called Fraun-
hofer diffraction.11 The complex amplitude of the diffracted field, in the Fraunhofer
approximation, is proportional to the two-dimensional Fourier transform of the source
distribution, Ũ0(𝜈x, 𝜈y), evaluated at 𝜈x = (sin a)∕𝜆, 𝜈y = (sin b)∕𝜆. Another version
is obtained when the direction angles a and b are small, the so-called paraxial

approximation. Then, sin a ≈ tan a = x1∕z, sin b ≈ tan b = y1∕z, and R ≈ z + x2
1+y2

1
2z

.
We have

ũ1(x1, y1)

≈ eikz

i𝜆z
eik(x2

1+y2
1)∕2z ∬

∞

−∞
ũ0(x0, y0) exp

[
−i2𝜋

(
x0

(
x1

𝜆z

)
+ y0

(
y1

𝜆z

))]
dx0dy0

= eikz

i𝜆z
eik(x2

1+y2
1)∕2z Ũ0

(
x1

𝜆z
,

y1

𝜆z

)
. (10.46)

The integral is the two-dimensional Fourier transform of the source distribution,
Ũ0(𝜈x, 𝜈y), evaluated at 𝜈x = x1∕𝜆z, 𝜈y = y1∕𝜆z. For small angles, the sphere of radius
R in Equation 10.45 is approximately a plane at a distance z from the origin. The
radiation patterns of antennas, as seen in Chapter 4, are commonly plotted as functions
of the direction sines (Equation 10.45). In systems of lenses, where angles are small
enough to justify the paraxial approximation and propagation is between planes, the
second form (Equation 10.46) is used.

11Physically, diffraction is observed when a wave encounters an opaque obstacle such as a sharp edge
or aperture, or an object whose transparency or thickness varies spatially on scales comparable to a
wavelength.
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The Fourier transform Ũ0 has an interesting physical interpretation using plane
waves. The initial field ũ0 may be written as the inverse transform of Ũ0:

ũ0(x0, y0) = ∬
∞

−∞
Ũ0(𝜈x, 𝜈y)e+i2𝜋

(
𝜈xx+𝜈yy

)
d𝜈x d𝜈y

= ∬
∞

−∞
Ũ0

(
𝛼

𝜆
,
𝛽

𝜆

)
e+ik(𝛼x+𝛽y) d𝛼

𝜆

d𝛽
𝜆

,

where 𝛼 and 𝛽 are direction sines. Now recall the plane wave:

eik⋅r = exp
[
i
(
kxx + kyy + kzz

)]
,

where kx = k𝛼, ky = k𝛽, and kz = k
√

1 −
(
𝛼2 + 𝛽2

)
with 𝛼

2 + 𝛽
2
< 1. Then

eik⋅r = exp

[
ik
√

1 −
(
𝛼2 + 𝛽2

)
z

]
exp
[
ik (𝛼x + 𝛽y)

]
.

At the initial plane, z = 0 and the Fourier kernel is identical in form to a plane
wave propagating with direction sines 𝛼 and 𝛽. Thus, the field ũ0(x0, y0), whose
equiphases may have arbitrary shape, is expressed as a linear superposition of plane
waves propagating with direction sines 𝛼 and 𝛽. The Fourier transform Ũ0 (𝛼∕𝜆, 𝛽∕𝜆),
which is constrained to the circular support 𝛼2 + 𝛽

2 ≤ 𝜆
2, is interpreted as the angular

spectrum of plane waves making up the wave ũ0
(
x0, y0

)
.12

Example 10.13 (Sinusoidal amplitude grating). A diffraction grating is an
optical element with a fine periodic variation of density (magnitude) or thick-
ness (phase). Consider, for example, a glass plate upon which has been
deposited a film with a sinusoidal variation of density. Its transmittance is t(x, y) =[

1
2
+ 1

2
cos 2𝜋bx

]
rect(x∕L) rect(y∕L), where 1∕b is on the order of a wavelength of

light. If this plate is illuminated with a normally incident, unit-amplitude plane wave,
the resulting far-field complex amplitude is, dropping the leading phase factors,

ũ1(x1, y1)

= T(𝜈x, 𝜈y)
||||(x1∕𝜆z,y1∕𝜆z)

=
[1

2
𝛿(𝜈x) + 1

4
𝛿(𝜈x − b) + 1

4
𝛿(𝜈x + b)

]
𝛿(𝜈y) ∗ L2 sinc(L𝜈x) sinc(L𝜈y)

||||(x1∕𝜆z,y1∕𝜆z)

= L2

4

[
sinc

(
L(𝜈x + b)

)
+ 2 sinc

(
L𝜈x

)
+ sinc

(
L(𝜈x − b)

) ]
sinc

(
L𝜈y

)||||(x1∕𝜆z,y1∕𝜆z)
.

(10.47)

Typically, L ≫ 1∕b and the observed optical intensity, ||ũ1
||2, consists of three well-

separated sinc2-shaped peaks lined up along the x1-axis, at x1 = 0 and x1 = ±𝜆zb

12Propagation and diffraction may correspondingly be interpreted as linear filtering operations carried out
on the angular spectrum. See Goodman (1968, Chapter 3) for details.



702 CHAPTER 10 FOURIER TRANSFORMS IN TWO AND THREE DIMENSIONS

L/2

–L/2

x x1

z

λzb

−λzb

FIGURE 10.18 Diffraction pattern from a sinusoidal amplitude grating, sectioned along the
xz plane. Plane wave illumination is diffracted by the grating into an on-axis and two off-axis
spots. The width of each spot is inversely proportional to the aperture width, L, and the position
of the off-axis spots is proportional to the wavelength, 𝜆.

(Figure 10.18). The width of each spot, measured by the distance between the first
zero crossings, is 𝜆z∕L. The central peak represents light that is not diffracted by
the grating but only by the bounding aperture. The two off-axis peaks, at x1 = ±𝜆zb,
are the ±1 diffracted orders of the grating. The angle at which they diffract off
the grating, which is approximately 𝜆b, increases with both the spatial frequency of
the grating, b, and the wavelength of the light, 𝜆. Shorter wavelengths, for example,
blue light, diffract less than longer wavelengths, for example, red light. Thus, a
diffraction grating can be used to separate polychromatic light into its component
wavelengths. Gratings are important components in spectrometers and other optical
instruments.

The diffraction efficiency of a grating is the fraction of the incident power
that goes into the desired diffracted order. For this grating, the incident intensity is
proportional to the aperture area, L2, and the intensity of the +1 diffracted order is
L2∕16. Thus, the diffraction efficiency of the grating is only 1∕16. Such low efficiency
is characteristic of amplitude gratings that absorb much of the incident light and have
a large undiffracted component.

Example 10.14 (Diffraction grating with tilted input wave). Suppose the grating
in the previous example is tilted with respect to the incident light, so that the incident
beam makes an angle 𝜃 with respect to the normal to the grating, which is still taken
to be the z-axis. A tilted plane wave is described by eik⋅r with k = (k sin 𝜃, 0, k cos 𝜃),
so the optical field just behind (after) the grating is

ũ0(x, y) = eikz cos 𝜃eikx sin 𝜃t(x, y).

The diffracted field is the Fourier transform of ũ0, as in the previous example. What
is new in this calculation is the phase term ei(k sin 𝜃)x = ei2𝜋(sin 𝜃∕𝜆)x. Applying the shift
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FIGURE 10.19 Diffraction pattern from a sinusoidal amplitude grating with tilted illumina-
tion. The tilt 𝜃 in the illumination causes the diffraction pattern to shift an amount proportional
to sin 𝜃. When sin 𝜃 = 𝜆b, the −1 diffracted order is shifted to the origin of the observation
plane. A plot of the on-axis intensity as a function of sin 𝜃 can be converted to a spectrum of
the light as a function of 𝜆.

theorem with Equation 10.46 and dropping the leading phase factors,

ũ1(x1, y1) = eikz cos 𝜃F
{

ei2𝜋(sin 𝜃∕𝜆)xt(x, y)
}||||(x1∕𝜆z,y1∕𝜆z)

= eikz cos 𝜃 T
(
𝜈x −

sin 𝜃
𝜆

, 𝜈y

)||||(x1∕𝜆z,y1∕𝜆z)

= eikz cos 𝜃 T

(
x1 − z sin 𝜃

𝜆z
,

y1

𝜆z

)
. (10.48)

The complex exponential factor in front has unity magnitude and does not affect the
intensity. The diffraction pattern is the same as Equation 10.47, shifted along the
x1-axis in the observation plane by z sin 𝜃 (Figure 10.19). In this context, the shift
theorem connects translation at one plane with the direction (tilt) of a diffracted wave
at another plane.

The tilt angle 𝜃 in the diffraction pattern, Equation 10.48, enables the grating to
be used to determine the wavelength spectrum of a light source. Such an instrument
is called a spectrometer. If the light is collimated (made into a plane wave) by a
system of lenses and used to illuminate a tilted grating, the −1 diffracted order will
appear at location x1 = (𝜆b − sin 𝜃)z. By placing a photodetector on-axis, x1 = 0, and
adjusting 𝜃, different wavelengths are swept across the detector, with the relationship
𝜆 = sin 𝜃∕b. A plot of the on-axis intensity as a function of sin 𝜃 can be converted to
a spectrum of the light as a function of 𝜆.

The finite aperture limits the ability of the spectrometer to separate, or resolve,
closely-spaced spectral lines. This can be seen in Equation 10.47, where the ideal
diffraction pattern from the unobstructed grating (three delta functions) is convolved
with the sinc-function diffraction pattern of the aperture. Two closely spaced lines
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produce two closely spaced diffraction patterns, which overlap and may be indistin-
guishable. The larger the aperture, the narrower the sinc functions and the better the
resolution. Two spectral lines are said to be “just resolved” when the peak of one
overlaps the first zero crossing of the other.

Not just the aperture, but the grating itself affects the performance of the
spectrometer. The grating spreads the spectrum of the source in the vicinity of the
−1 order, and varying the tilt of the grating sweeps the spectrum across the detector.
The grating can usefully be tilted no farther than the point where undiffracted light
begins to be detected. Increasing the grating’s frequency, b, spreads the diffracted
orders farther away from the undiffracted light, creating more room for the source
spectrum and improving the spectral bandwidth of the instrument.

Example 10.15 (Sinusoidal phase grating). An amplitude grating loses light to
absorption, which decreases the diffraction efficiency. By varying the thickness of
the grating rather than its absorption, spatial phase variations may be imposed on the
incident light that also result in diffraction. With normally incident, unit-amplitude
plane wave illumination, the complex amplitude of the field immediately behind a
sinusoidal phase grating is (ignoring the finite aperture for now) ũ0(x, y) = eim sin(2𝜋bx),
where m is a scaling factor that determines the “depth” of the phase modulation. The
Fourier transform of this function is

Ũ0(𝜈x, 𝜈y) =
[
∫

∞

−∞
eim sin(2𝜋bx) e−i2𝜋𝜈xx dx

]
𝛿(𝜈y).

The complex exponential eim sin(2𝜋bx) is a periodic function in x and has a Fourier
series,

eim sin(2𝜋bx) =
∞∑

n=−∞
cnei2𝜋nbx,

where cn = 1
b ∫

1∕2b

−1∕2b
eim sin(2𝜋bx) e−i2𝜋nbx dx.

Change variables, 𝜑 = 2𝜋bx,

cn = 1
2𝜋 ∫

𝜋

−𝜋
e−i(n𝜑−m sin𝜑) d𝜑 = Jn(m),

where Jn(.) is the nth order Bessel function of the first kind (Equation 10.19). We
then have

eim sin(2𝜋bx) =
∞∑

n=−∞
Jn(m) ei2𝜋nbx ⟼

∞∑
n=−∞

Jn(m) 𝛿(𝜈x − nb)

⇒ Ũ0(𝜈x, 𝜈y) =
∞∑

n=−∞
Jn(m) 𝛿(𝜈x − nb) 𝛿(𝜈y).

Unlike the sinusoidal amplitude grating, which has only the ±1 orders plus
undiffracted light, the sinusoidal phase grating has numerous diffracted orders. But,
if the modulation factor m is chosen to be a zero of the Bessel function J0, there is no
undiffracted light. As with the amplitude grating, a finite-sized aperture around the
grating causes the impulses in the spectrum to “melt” into sincs.
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Phase gratings may also be made with nonsinusoidal profiles, such as a sawtooth
shape (see the Chapter 4 problems), with better suppression of undesired diffracted
orders.13

10.3.3 Antennas

In Section 4.7, we derived the following expression for angular dependence of the far-
field radiation pattern of an antenna composed of multiple point sources, measured
in the xz plane:

uP(𝜃) = AD2N+1

(d
𝜆

sin 𝜃
)

, (4.40)

where D2N+1 is the Dirichlet kernel. The same result, in two dimensions, is obtained
using Equation 10.45 with source distribution ũ0(x0, y0) = A𝛿(y0)

∑N
n=−N 𝛿(x0 − nd).

The Fourier transform is

Ũ(𝜈x, 𝜈y) = A
N∑

n=−N

e−i2𝜋𝜈xnd

and, substituting 𝜈x = (sin a)∕𝜆,

ũ1(sin a, sin b) ∝ A
N∑

n=−N

e−i2𝜋n(sin a)d∕𝜆 = AD2N+1

(d
𝜆

sin a
)
.

Now consider a more realistic antenna array, with finite-sized elements rather than
points. Model each element as a rectangle, rect(x0∕X) rect(y0∕Y). Then

ũ0(x0, y0) = A
N∑

n=−N

rect

(
x0 − nd

X

)
rect

(y0

Y

)
.

This is the convolution of the point array with a single rectangular element:

ũ0(x0, y0) = A𝛿(y0)
N∑

n=−N

𝛿(x0 − nd) ∗ rect
(x0

X

)
rect

(y0

Y

)
.

Using the convolution theorem, we can immediately write down the far field distri-
bution:

ũ1(sin a, sin b) ∝ AD2N+1
(
𝜈xd
)

XY sinc(X𝜈x) sinc(Y𝜈y)
||||𝜈x=

sin a
𝜆

,𝜈y=
sin b
𝜆

= AXY D2N+1

(d sin a
𝜆

)
sinc

(X sin a
𝜆

)
sinc

(Y sin b
𝜆

)
. (10.49)

The element dimensions, X and Y , are smaller than the interelement spacing, d.
Consequently, the sinc functions in the radiation pattern are wider than the Dirichlet
kernel and attenuate the response at higher angles. Problems 5.29 and 5.30 considered
this in more detail.

We observed in Equation 10.48 how a tilt of the incident wave, corresponding
to a linear phase shift across the aperture, produced a translation of the far-field

13Born and Wolf (1999, pp. 446–465).
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diffraction pattern. The same idea can be used to good effect in an antenna: by
imposing a linear phase shift across the antenna aperture, the antenna’s beam can be
steered in angle. So let the aperture distribution be modified so that the drive to the
nth element is delayed by Δt relative to the n − 1th element. This time delay imposes
a phase shift 𝜔nΔt on the wave emanating from the nth element:

ũ0(x0, y0) = A𝛿(y0)
N∑

n=−N

[
ein𝜔Δt

𝛿(x0 − nd)
]
∗ rect

(x0

X

)
rect

(y0

Y

)
.

The Fourier transform is

Ũ0(𝜈x, 𝜈y) = A
N∑

n=−N

e−in(2𝜋𝜈xd−𝜔Δt) XY sinc(X𝜈x) sinc(Y𝜈y),

and the far-field distribution is

ũ1(sin a, sin b) ∝ AXY D2N+1

(d sin a − cΔt
𝜆

)
sinc

(X sin a
𝜆

)
sinc

(Y sin b
𝜆

)
,

where c is the speed of light. The center of the Dirichlet kernel is shifted to sin a =
cΔt∕d. By varying the time delay electronically, the antenna’s pattern can be swept
through space without physically moving the antenna. Such phased array antennas
are widely used in radar, communications, and, with acoustic waves, in sonar and
medical ultrasonic imaging.

10.3.4 Lenses

You have, no doubt, experienced the focusing property of a convex lens (Figure
10.20). In physical terms, when a plane wave is propagated through a lens, the
decrease in the lens’ thickness from center to edge imposes a phase curvature on the
wave that causes it to converge toward a point behind the lens. This point is called
the back focal point of the lens. Similarly, if a plane wave is propagated backward
through the lens, it converges at a focal point in front of the lens. The distance from
the lens to either focal point is called the focal length of the lens.

It can be shown, remarkably, that a convex lens modifies an optical field in such
a way that the Fraunhofer diffraction pattern appears at the focal plane rather than at
a large distance.14 In particular, the complex amplitude ũ0(r0) at the front focal plane
of the lens is related to the complex amplitude ũ1(r1) at the back focal plane by the
Fourier transform:

ũ1(r1) = 1
i𝜆f

Ũ0

(
r1

𝜆f

)
. (10.50)

Example 10.16. Let the incident field be a tilted plane wave, ũ0(x0, y0) = eikx0 sin 𝜃 .
The Fourier transform is, using the shift theorem and the relationship 1 ⟷ 𝛿(𝜈x, 𝜈y),

Ũ0(𝜈x, 𝜈y) = 𝛿

(
𝜈x −

sin 𝜃
𝜆

, 𝜈y

)
.

14Goodman (1968, Chapter 5).
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f

θ
x1 ≈ f θ

FIGURE 10.20 Top: A positive lens causes an incident plane wave to converge toward a
focal point, located a distance f behind the lens. Bottom: A tilted plane wave is brought to an
off-axis focus.

Making the substitutions 𝜈x = x1∕𝜆f , 𝜈y = y1∕𝜆f , we have the field at the back focal
plane:

ũ
(
x1, y1

)
= 1

i𝜆f
𝛿

(
x1

𝜆f
− sin 𝜃

𝜆
,

y1

𝜆f

)
= −i𝛿

(
x1 − f sin 𝜃, y1

)
,

that is, a focused spot at
(
x1, y1

)
= (f sin 𝜃, 0) ≈ (f𝜃, 0) (Figure 10.20).

In reality, the finite size of the lens aperture limits the sharpness of the focus.
Consider, for example, a circular aperture of radius a with a normally incident plane
wave illumination. Then,

ũ1(r1) = 1
i𝜆f ∫

∞

−∞
circ

(
r0∕a

)
e−i2𝜋r0⋅(r1∕𝜆f ) dr0 = 𝜋a2

i𝜆f
jinc(ar1∕𝜆f ). (10.51)

Increasing the size of the aperture narrows the jinc function, making a sharper focus,
but physically, the aperture size cannot be increased indefinitely. An infinitely sharp
focus is never observed in practice. Of course, a tilted plane wave illuminating a
circular aperture produces a shifted jinc function at the focal plane. The details are
left to the problems.

When a partially transparent object t (which could be a diffraction grating
or a photographic slide) is placed at the front focal plane and illuminated with a
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FIGURE 10.21 An optical imaging system formed by cascading two Fourier transform
geometries. Top: A point at ro = (xo, yo) in the object plane produces a spherical wave, which
is transformed into a tilted plane wave by the first lens. The tilted plane wave is transformed
back to a converging spherical wave by the second lens, coming to a focus at the inverted image
point, ri = (−xo,−yo). Bottom: A plane wave impinging on the first lens at angle 𝜃 is brought
to an off-axis focus in the Fourier plane then diverges to the second lens and is transformed to
a tilted plane wave at angle −𝜃.

unit-amplitude normally incident plane wave, the incident field ũ0 is proportional to
t and the result at the back focal plane of the lens is

ũ1(r1) = 1
i𝜆f ∫

∞

−∞
t(r0)e−i2𝜋r0⋅(r1∕𝜆f ) dr0 = 1

i𝜆f
T

(
r1

𝜆f

)
. (10.52)

The field in the focal plane is proportional to the Fourier transform of the object. It is
common to say that the lens Fourier transforms the object, but actually it is diffraction
that does the Fourier transform, and the lens merely brings the transform plane in
from infinity to a convenient position.

Finally, consider what happens when we place two identical lenses together,
separated by 2f so that the back focal point of the first lens coincides with the front
focal point of the second lens (Figure 10.21). The Fourier transform of the object field
ũo(xo, yo) is produced at the intermediate focal plane (xf, yf). This field propagates
through the second half of the system and its Fourier transform is produced at the final
plane, (xi, yi).

15 This is not a forward transform followed by an inverse transform. It
is the cascade of two forward transforms, and by Theorem 5.5,

ũi(ri) =
1

i𝜆f
F
{

ũf(rf)
}||||𝝂=ri∕𝜆f

= 1
i𝜆f

F
{

1
i𝜆f

Ũo

(
rf

𝜆f

)}||||𝝂=ri∕𝜆f

= −ũo(−𝜆f𝝂)
||||𝝂=ri∕𝜆f

= −ũo(−ri). (10.53)

15The subscripts o and i stand for “object” and “image,” not “output” and “input.”
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The output field is a replica of the input field, with a coordinate reversal. This
combination of two lenses is an imaging system.16 The inversion is illustrated in two
ways in Figure 10.21.

The accessibility of the Fourier transform at the intermediate focal plane, also
called the Fourier plane, makes it possible to process the image by manipulating
the transform. For example, a circular aperture is a lowpass filter, and an opaque
on-axis dot blocks undiffracted light, which can enhance contrast. These so-called
spatial filters have been widely used in optical instruments, including telescopes and
microscopes.17

10.4 IMAGE FORMATION AND PROCESSING

10.4.1 Fourier Analysis of Imaging Systems

The preceding analysis is idealized in a couple of important respects. First, it assumes
that the lenses are infinite in extent, and so capture all the light diffracted from an
object. In reality, the finite aperture of the lens truncates the diffracted field (Equation
10.51). Light diffracted at high angles, corresponding to higher spatial frequencies in
the object, will “miss” the lens and not reach the image plane. The effect is to lowpass
filter the image. Second, real lenses are subject to deviations from ideal behavior,
called aberrations, that have a deleterious effect on image quality analogous to
a nonlinear phase response in an electrical filter. High-performance lenses are built
from several elements carefully designed to have countervailing aberrations, resulting
in near-perfect imaging. When a lens is perfectly corrected for aberrations and only
the finite aperture effects remain, it is said to be diffraction limited.

The aperture and aberration effects in a lens are analogous to the frequency-
domain magnitude and phase responses of an electrical filter. A larger aperture
corresponds to a higher bandwidth, and a lack of aberration corresponds to a linear
or flat phase response. The optical analog of the electrical filter’s impulse response is
called the point spread function, and in many practical situations the image may be
described by the convolution of the object with the point spread function. There is,
as you would expect, a Fourier transform relationship between the aperture function
of a lens and its point spread function. To investigate this thoroughly would take us
beyond the scope of this text,18 but we will give one illustrative example.

Example 10.17 (Telescope imaging). Consider a simple telescope consisting of a
single circular lens. It is assumed to be diffraction limited, with radius a. A distant star
is approximately a point source, and for simplicity we will assume the light it gives
off is monochromatic, with wavelength 𝜆. The star is so far away that, also ignoring

16Inversion of the image is common. For example, the image formed by a camera lens on an image sensor
and the image formed by the lens of your eye on your retina are inverted, too.
17F. Zernike was awarded the Nobel Prize in physics in 1953 for his invention of the phase contrast
microscope, which is based on a particular Fourier plane manipulation.
18See, for example, Goodman (1968, Chapter 6). Papoulis (1968, pp. 14–15) shows several analogies
between optical and electrical signal processing systems.
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FIGURE 10.22 Imaging a pair of distant point objects with a telescope. The light from each
point is spread into a diffraction pattern at the image plane. The diameter of the point image is
proportional to the ratio 𝜆f∕a.

the phase-distorting effects of the atmosphere, the wave that reaches the telescope is
planar. The setup then matches that shown in Figure 10.20: the plane wave from the
star is brought to a focus behind the lens. The focal field is the Fourier transform of
the aperture (Equation 10.52), which we know is a jinc:

ũf(r) ∝ F
{

circ
(
r𝓁∕a

)} ||||𝜌=r∕𝜆f
= a2

𝜋 jinc

( ‖r‖
𝜆f∕a

)
.

The image that we observe or measure is the squared magnitude of the complex field
amplitude, and this quantity is the point spread function (PSF):

h(x, y) = ||ũf(x, y)||2 = 𝜋
2a4jinc2

(√
x2 + y2

𝜆f∕a

)
. (10.54)

The square of a jinc function is also known as the Airy disk. The size of the Airy
disk is conventionally taken to be the radius or diameter of the first dark ring, which
is r ≈ 0.61𝜆f∕a. Observe that this dimension is inversely proportional to the radius
of the lens aperture; a large telescope not only collects more light (in proportion to
𝜋a2), but it also focuses that light to a finer image.

The image of a distant star is spread by diffraction into a PSF. If the telescope’s
field of view contains more than one star, the image is the sum of shifted PSFs,
weighted by the brightnesses of the stars.19 In particular, the image of two stars
with brightnesses I1 and I2, separated horizontally by Δ𝜃 about the optical axis, is
(Figure 10.22)

I(x, y) = I1 h(x + fΔ𝜃∕2, y) + I2 h(x − fΔ𝜃∕2, y)

= 𝜋
2a4

[
I1 jinc2

(√
(x + fΔ𝜃∕2)2 + y2

𝜆f∕a

)
+ I2 jinc2

(√
(x − fΔ𝜃∕2)2 + y2

𝜆f∕a

)]
.

19The fields from two stars are independent and combine without interference. This is the case of incoherent
light. If the two fields have a common source so that they maintain a steady phase relationship, they are
said to be coherent. For more on coherence and imaging, see Goodman (1968, Chapter 6).
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FIGURE 10.23 Images of two closely spaced point objects as would be viewed through
a telescope (top) and cross sections at y = 0 (bottom). The image plane coordinates x and
y are normalized by 𝜆f∕a. Intensity is in arbitrary units. Left: well-separated points, well
resolved. Center: Rayleigh resolution limit, points separated by the radius of the first dark
ring of the point spread function, Δ𝜃 = 0.61𝜆∕a. Right: sparrow resolution limit, points barely
unresolvable, Δ𝜃 ≈ 0.5𝜆∕a.

As the angular separationΔ𝜃 decreases, eventually the two images overlap and appear
as one object rather than two. How close can they be before they are indistinguishable?
With equal brightness stars, the intensity profile along the x-axis is

I(x, 0) = 𝜋
2a4
[

jinc2
(

x + fΔ𝜃∕2

𝜆f∕a

)
+ jinc2

(
x − fΔ𝜃∕2

𝜆f∕a

)]
.

This function is plotted in Figure 10.23 for a few values of the angular separation Δ𝜃.
According to the classical Rayleigh criterion, two points are adequately resolved by
the naked eye when the peak of one PSF coincides with the first dark ring of the other,
that is, they are separated by 0.61𝜆f∕a. This corresponds to an angular separation
of the stars, Δ𝜃, equal to 0.61𝜆∕a. Again, the resolution of the telescope depends
on the size of its aperture. The so-called Sparrow resolution limit is reached when
the two points are no longer distinguishable. For a pair of Airy disks, this occurs at
Δ𝜃 ≈ 0.5𝜆∕a.

The image of an extended object (e.g., something nearby like the Moon) is
also a superposition of point spread functions, where each PSF arises from a point
in the object. If g(x, y) is the perfect image predicted by geometric optics (an exact
replica, though scaled and inverted), then the actual image due to diffraction is the
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convolution, g ∗ h, familiar from linear system theory. Under this model, the blurring
due to a poorly corrected optical system is caused by convolution with a broad PSF.

The Fourier transform of the point spread function is called the optical transfer
function (OTF). By the autocorrelation theorem, because the PSF is the square of
the Fourier transform of the aperture function, the OTF is the autocorrelation of the
aperture function. By convention, the OTF is normalized to unity at zero frequency.
Calculating the OTF for a circular aperture function (see Example 10.10),20 yields

H(𝜌) = 2
𝜋

⎡⎢⎢⎣arccos

(
𝜌

a∕𝜆f

)
− 𝜌

a∕𝜆f

√
1 −

(
𝜌

a∕𝜆f

)2⎤⎥⎥⎦ circ

(
𝜌

a∕𝜆f

)
. (10.55)

Note that the OTF has a sharp bandlimit, unlike the transfer function of any practical
electrical filter. The maximum spatial frequency that passes the OTF is proportional to
the aperture radius a. A large aperture gives the system a higher spatial bandwidth and
a narrower point spread function. Aberrations (phase errors) change the magnitude
and phase of the OTF. The magnitude of the OTF is called the modulation transfer
function (MTF).

The MTF has an interpretation in terms of the contrast of the Fourier compo-
nents of an image. The contrast of an image is defined:

C =
maximum brightness − minimum brightness

maximum brightness + minimum brightness
. (10.56)

For example, a simple sinusoidal object with brightness between 0 and 1 is f (x) =
1
2

(1 + cos 2𝜋𝜈x). The contrast of this object is C = 1−0
1+0

= 1, or 100%. When this
object is passed through an imaging system with MTF M(𝜈), the Fourier components
are weighted by the MTF. Ignoring any shifts due to phase response, the image is
g(x) = 1

2
(1 + M(𝜈) cos 2𝜋𝜈x). The contrast is

C =

(
1
2
+ 1

2
M(𝜈)

)
−
(

1
2
− 1

2
M(𝜈)

)
(

1
2
+ 1

2
M(𝜈)

)
+
(

1
2
− 1

2
M(𝜈)

) = M(𝜈).

Loss of contrast at high frequencies (Figure 10.24) shows up as a blurring of fine
detail in an image.

The attempt to improve the sharpness of images by computer processing is an
important topic of research, complicated by the absolute loss of spatial frequencies
above the cutoff frequency 𝜌c = a∕𝜆f . Research into systems capable of superresolu-
tion, resolving below the classical limits, remains active at the time of this writing.21

20See Goodman (1968, Chapter 6) for other examples of OTF calculations.
21Park et al. (2003).
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FIGURE 10.24 The frequency response of an imaging system is described by the modu-
lation transfer function, M(𝜌) = |H(𝜌)|. This is the graph of the MTF of a diffraction-limited
system with circular pupil (Equation 10.55). Sinusoidal test images are shown for normalized
frequencies 0.1, 0.5, and 0.9. As spatial frequency increases, the contrast decreases and the
images appear to “wash out.”

10.4.2 Image Reconstruction from Projections

The integral of a function f (x, y) along the vertical line x = x′ is

∫
∞

−∞
f (x′, y) dy.

Using the delta function, this can also be written as an integral over the plane:

∫
∞

−∞ ∫
∞

−∞
f (x, y) 𝛿(x − x′) dx dy.

Likewise, an integral along the horizontal line y = y′ is

∫
∞

−∞ ∫
∞

−∞
f (x, y) 𝛿(y − y′) dx dy.

We will call these line integrals, which are functions of x′ and y′, projections. A
projection of a function f at an arbitrary angle 𝜃, denoted p

𝜃
(x′), is shown in Fig-

ure 10.25.
The path of integration is the line e

𝜃
⋅ x = x′, where e

𝜃
= (cos 𝜃, sin 𝜃) is a unit

vector at angle 𝜃 to the x-axis, and x is the vector to the point (x, y). This line may be
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x’

x

yy’

θ

pθ(x’)

eθ

xf(x,y)

δ(eθ⋅x – x’) 

FIGURE 10.25 Geometry for cross-sectional projection. p
𝜃
(x′) is the integral of f (x, y) along

the path described by the line delta 𝛿(e
𝜃
⋅ x − x′). Projections are gathered for 𝜋 > 𝜃 ≥ 0.

represented by the delta function 𝛿(e
𝜃
⋅ x − x′), and so the projection is the integral

p
𝜃
(x′) = ∫

∞

−∞
f (x) 𝛿(e

𝜃
⋅ x − x′) dx (10.57a)

= ∫
∞

−∞ ∫
∞

−∞
f (x, y) 𝛿(x cos 𝜃 + y sin 𝜃 − x′) dx dy. (10.57b)

The projection angle 𝜃 ranges from 0 to 𝜋. The other angles, from 𝜋 to 2𝜋 (or,
equivalently, from −𝜋 to 0), reproduce the projections, but flipped end-for-end, that
is, p−𝜃(x′) = p

𝜃
(−x′). By convention, the full set of projections p

𝜃
(x′) is considered

a function of modified polar coordinates with a signed radius, (x′, 𝜃) ∈ ℝ × [0,𝜋).
The mapping (Equation 10.57) that takes the function f (x, y) to its projections

p
𝜃
(x′) is called the Radon transform.22 In order for the Radon transform of a function

to exist, the function must be integrable along all lines in the plane. Classes of
functions possessing Radon transforms include the good functions S(ℝ2), absolutely
integrable functions, L1(ℝ2), and square-integrable functions with bounded support,
for example, L2(circ). The Radon transforms of functions in these classes may be
shown to also be good, absolutely integrable, and square integrable, respectively.23

Significantly for the problem of inverting the Radon transform, projections in these
classes are Fourier transformable.

22J. Radon first described this operation in a seminal 1917 paper, available in English translation (1986).
23See Natterer (1986, Chapter 2) for more about the properties of the Radon transform. The Radon
transform may be posed and inverted in spaces of dimension higher than two. In three dimensions, the
integrals are taken over planes rather than lines, and in higher dimensions the integrals are over hyperplanes.
Here we shall restrict attention to functions in the plane.
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We will write p
𝜃
= R {f } or f

R
⟼ p

𝜃
to denote the Radon transform. The

Radon transform has a few simple properties that we list here. Being a line integral,
it is clearly linear:

R {af + bg} = aR{f } + bR{g}. (10.58)

Shifting f results in a shift of the projection:

f (x − b)
R
⟼ p

𝜃

(
x′ − e

𝜃
⋅ b
)
. (10.59)

A simple dilation of f results in a corresponding dilation of the projection:

f (ax)
R
⟼ p

𝜃

(
ax′
)

, (10.60)

and a rotation of f results in a corresponding rotation of the Radon transform. With

R
𝜙
=
[

cos𝜙 sin𝜙
− sin𝜙 cos𝜙

]
,

f
(
R
𝜙

x
) R
⟼ p

𝜃−𝜙(x′). (10.61)

The Radon transform of a (two-dimensional) convolution is the (one-dimensional)
convolution of Radon transforms. Denoting the Radon transforms of f and g by f

𝜃

and g
𝜃
,

f ∗ g(x)
R
⟼ f

𝜃
∗ g

𝜃
(x′). (10.62)

Proofs are left to the problems.

Reconstruction
We shall now show that the Radon transform can be inverted, that is, a function f can
be reconstructed from its projections. This remarkable result is the basis for computed
tomography (also called CT, or CAT scanning), which, since it came into common
use in the 1970s, has revolutionized medical imaging and found application in a host
of other fields such as nondestructive testing.24

If we calculate the Fourier transform of the projection, P
𝜃
(u), we have

P
𝜃
(u) = ∫

∞

−∞ ∫
∞

−∞
f (x) 𝛿(e

𝜃
⋅ x − x′) e−i2𝜋ux′dx dx′ = ∫

∞

−∞
f (x) e−i2𝜋ue

𝜃
⋅xdx.

This is the Fourier transform of f , with 𝝂 replaced by ue
𝜃
. This establishes the key

result, the projection-slice theorem.

Theorem 10.1 (Projection-slice). Let p
𝜃
(x′) be the Radon transform of f (x), and

P
𝜃
(u) and F(𝝂) be their respective Fourier transforms. Then

P
𝜃
(u) = F(ue

𝜃
) = F(u cos 𝜃, u sin 𝜃). (10.63)

24In computed tomography, the projections are line integrals of the attenuation of an X-ray beam as it
passes through the object. The detected X-ray intensity is proportional to exp(−p

𝜃
(x′)), and taking the

logarithm of the detected signal gives the projection set to be reconstructed.
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F(u cos   , u sin   )

ν x

ν y

θ
θ

θ

θ θ

u cos
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FIGURE 10.26 The Fourier transform of a projection, P
𝜃
(u) = F(u cos 𝜃, u sin 𝜃), is a slice

through the Fourier transform F(𝜈x, 𝜈y), at angle 𝜃.

The theorem gets its name from the fact that the set of points 𝝂 = ue
𝜃
=

(u cos 𝜃, u sin 𝜃) is a line through the origin of the (𝜈x, 𝜈y) plane at angle 𝜃. Thus,
P
𝜃
(u) = F(u cos 𝜃, u sin 𝜃) is a slice of the Fourier transform F along that line (Figure

10.26).
You can imagine from the figure that if projections for all angles 𝜃 ∈ [0, 𝜋) are

collected, the slices will fill the Fourier plane, reconstructing the Fourier transform
F(𝜈x, 𝜈y). An inverse Fourier transform will then recover the original object f (x, y).
Using coordinates (u, 𝜃) ∈ ℝ × [0, 𝜋) in the Fourier plane as in the Radon transform
domain, the differential area is |u| du d𝜃, and the inverse Fourier transform is

f (x, y) = ∫
𝜋

0 ∫
∞

−∞
F(u cos 𝜃, u sin 𝜃) e+i2𝜋(xu cos 𝜃+yu sin 𝜃) |u| du d𝜃;

then recalling x cos 𝜃 + y sin 𝜃 = e
𝜃
⋅ x,

f (x, y) = ∫
𝜋

0

[
∫

∞

−∞
|u|P

𝜃
(u) e+i2𝜋u e

𝜃
⋅x du

]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

p̃
𝜃
(e
𝜃
⋅x)

d𝜃. (10.64)

The function p̃(e
𝜃
⋅ x) resulting from the inner integral is the projection p

𝜃
taken at

angle 𝜃, filtered with a frequency response |u|. Unlike the original projection p
𝜃
(x′),

it is not a function of one variable x′, but of two coordinates x = (x, y) in the xy
plane. It is constant along lines e

𝜃
⋅ x = const. We say that the function p̃

𝜃
has been

backprojected at the angle 𝜃 across the xy plane. A backprojection is like a corrugated
surface with profile equal to p̃

𝜃
(Figure 10.27).

The outer integral is the superposition of all the filtered backprojections. Thus,
the function f (x, y) is reconstructed from its projections by filtering and backpro-
jection. In practice, projections at a discrete set of angles {𝜃k} are filtered, then
interpolated onto a rectangular grid. The inverse transform is computed with a two-
dimensional DFT.
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x

FIGURE 10.27 Backprojection. The function p̃
𝜃
(e

𝜃
⋅ x) is equal, everywhere along the line

e
𝜃
⋅ x = x′, to the filtered projection p̃

𝜃
(x′).

An alternate interpretation of filtering and backprojection is obtained by apply-
ing the convolution theorem in Equation 10.64:

f (x, y) = ∫
𝜋

0

[
p
𝜃
(x′) ∗

(
∫

∞

−∞
|u| e+i2𝜋ux′ du

)]
x′=e𝜃 ⋅x

d𝜃. (10.65)

The projections p
𝜃

are convolved with the inverse Fourier transform of |u|, again
yielding p̃

𝜃
, then backprojected. This method of reconstruction is called, appropriately

enough, convolution-backprojection. The frequency response |u| is a function of slow
growth, so the impulse response for the filter is a generalized function. We did this
calculation in Example 6.33 and found

|u|⟼ − 2
(2𝜋x)2

.

This is a quite singular function, and in practice the bandwidth of the frequency
response must be restricted for computational tractability, for example, multiplying|u| by a rectangle function gives

|u| rect
( u

2B

)
= rect

( u
2B

)
− Λ

( u
B

)
⟼ 2B sinc(2Bx) − Bsinc2(Bx).

It is interesting to ask what is the purpose of the filter, that is, what would be the
result of superposing unfiltered backprojections? Consider a delta function object,
f (x, y) = 𝛿(x, y). The projections are identical for all angles, p

𝜃
(x′) = 𝛿(x′). The
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Fourier transform is P
𝜃
(u) = 1. If we backproject without filtering, the result is

∫
𝜋

0 ∫
∞

−∞
1 ei2𝜋ue

𝜃
⋅x du d𝜃 = ∫

𝜋

0
𝛿(e

𝜃
⋅ x) d𝜃.

Change variables, x = r cos𝜑, y = r sin𝜑,

= ∫
𝜋

0
𝛿 (r(cos𝜑 cos 𝜃 + sin𝜑 sin 𝜃)) d𝜃

= ∫
𝜋

0

1
r
𝛿 (cos(𝜃 − 𝜑)) d𝜃.

Using Equation 6.8,

𝛿 (cos(𝜃 − 𝜑)) =
∞∑

k=−∞
𝛿 (𝜃 − [𝜙 + (k + 1∕2)𝜋]) .

These impulses are spaced 𝜋 apart, so only one of them is located between the limits
of integration. The area is unity, and the final result is

∫
𝜋

0 ∫
∞

−∞
1 ei2𝜋ue

𝜃
⋅x du d𝜃 = 1

r
.

Without backprojection, an impulse object reconstructs to the function 1∕r, which is
singular at the origin but is not localized like the impulse; rather, it decays slowly away
from the origin. We may consider 1∕r to be the impulse response associated with
backprojection. Its Fourier transform is the frequency response of backprojection.
Because 1∕r is circularly symmetric, the Fourier transform is given by a Hankel
transform:

1
r

H
⟼ 2𝜋 ∫

∞

0

1
r

J0(2𝜋r𝜌) r dr = 2𝜋 ∫
∞

0
J0(2𝜋r𝜌) dr = 1

𝜌
. (10.66)

Ideally, the operations of projection and reconstruction should cancel, giving a unit
net frequency response. However, we see here that the frequency response is 1∕𝜌.
This necessitates a filtering of the projections before backprojection to cancel the 1∕𝜌
response. The factor |u| in the filtered backprojection formula, Equation 10.64, does
precisely this.

Circular Symmetry: The Abel Transform
A special case of the Radon transform occurs for circularly symmetric functions, f (r).
All projections are equal, and one projection suffices for reconstruction. We begin
with the Radon transform formula 10.57:

p
𝜃
(x′) = ∫

∞

−∞
f (x) 𝛿(e

𝜃
⋅ x − x′) dx.
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Because all projections will be the same, we can set 𝜃 = 0. Then e
𝜃
⋅ x = (1, 0) ⋅

(x, y) = x. Also, replace f (x) with f (r) and write x = r cos𝜙, dx = r dr d𝜙:

p(x′) = ∫
𝜋

−𝜋 ∫
∞

0
f (r) 𝛿(r cos𝜙 − x′) r dr d𝜙

= ∫
∞

0
f (r)

[
∫

𝜋

−𝜋
𝛿(cos𝜙 − x′∕r) d𝜙

]
dr

= ∫
∞

0
f (r)

[
2∫

𝜋

0
𝛿(cos𝜙 − x′∕r) d𝜙

]
dr.

The delta function is located at 𝜙 = cos−1(x′∕r), and because | cos | ≤ 1, we must
restrict r ≥ x′. Then, using Equation 6.8,

𝛿(cos𝜙 − x′∕r) =
𝛿(𝜙 − cos−1(x′∕r))|||− sin

[
cos−1(x′∕r)

]||| =
𝛿(𝜙 − cos−1(x′∕r))√

1 − (x′∕r)2
,

and so,

∫
𝜋

0
𝛿(cos𝜙 − x′∕r) d𝜙 = 1√

1 − (x′∕r)2
.

We therefore have the result, valid for positive and negative x,

p(x) = ∫
∞

|x|
2f (r) dr√
1 − (x∕r)2

= ∫
∞

|x|
2f (r) r dr√

r2 − x2
, (10.67)

where for convenience we have dropped the prime (′) from x. This mapping from f
to p is called the Abel transform.

Example 10.18 (Abel transform of the circle function). The circle function
provides a particularly simple example of the Abel transform. With f (r) = circ(r∕a),
the transform integral becomes

p(x) = 2∫
a

|x|
r dr√
r2 − x2

= 2
√

r2 − x2
||||a|x| = 2

√
a2 − x2 rect(x∕2a).

The projection is the length of a chord of the circle at a distance |x| from the center.
This is illustrated in Figure 10.28.

To invert the Abel transform, we mimic the filtered backprojection method and
calculate the Fourier transform of the projection:

P(u) = F
{

∫
∞

|x|
2f (r) dr√
1 − (x∕r)2

}
= ∫

∞

0
2f (r)F

{
U(1 − (x∕r)2)√

1 − (x∕r)2

}
dr,
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x a

circ(r/a)

2 a2 − x2 •

x a

r

FIGURE 10.28 The Abel transform of circ(r∕a) is 2
√

a2 − x2 rect(x∕2a). The Abel trans-
form at x depends only on points outside a circle of radius |x|. The projection of the circle at x
is the length of the chord located |x| from the center of the circle.

where U(⋅) is the unit step function used to pull x out of the limit of integration and
into the integrand. The Fourier transform of the Abel kernel:

F
{

U(1 − (x∕r)2)√
1 − (x∕r)2

}
= ∫

∞

−∞

U(1 − (x∕r)2) e−i2𝜋ux√
1 − (x∕r)2

dx = ∫
r

−r

e−i2𝜋ux√
1 − (x∕r)2

dx

= F
{

rect(x∕2r)√
1 − (x∕r)2

}
= 𝜋rJ0(2𝜋ru) (10.68)

(for a derivation, see the problems) and therefore, the Fourier transform of the pro-
jection is

P(u) = 2𝜋 ∫
∞

0
f (r) J0(2𝜋ru) r dr. (10.69)

The Fourier transform of the Abel transform is the Hankel transform.25 To recover
f (r), then, calculate the inverse Hankel transform of P(u):

f (r) = 2𝜋 ∫
∞

0
P(u) J0(2𝜋ru) u du.

25Bracewell (1956).
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The transform P(u) is real and even, because p and J0 are real and even. We may use
the even symmetry to write

f (r) = 2𝜋 × 1
2 ∫

∞

−∞
P(u) J0(2𝜋ru) |u| du

and then, writing |u| = u sgn u, we have

f (r) = 1
2 ∫

∞

−∞

[
2𝜋uP(u)

]
J0(2𝜋ru) sgn u du.

Now, i2𝜋uP(u) is the Fourier transform of p′(x), by the derivative theorem. Therefore,
substituting the Fourier transform integral of p(x) for P(u),

f (r) = 1
2 ∫

∞

−∞

[
−i∫

∞

−∞
p′(x) e−i2𝜋ux dx

]
J0(2𝜋ru) sgn u du

= 1
2i ∫

∞

−∞
p′(x)

[
∫

∞

−∞
J0(2𝜋ru) sgn u e−i2𝜋ux du

]
dx.

The inner integral is the Fourier transform of J0(2𝜋ru) sgn u. The derivation of this
transform is left to the problems. The result is

J0(2𝜋ru) sgn u ⟼

⎧⎪⎨⎪⎩
sgn x

i𝜋
√

x2 − r2
, |x| > r

0, otherwise

(10.70)

and inserting this into the outer integral,

f (r) = 1
2i

[
∫

−r

−∞
p′(x)

−1

i𝜋
√

x2 − r2
dx + ∫

∞

r
p′(x)

1

i𝜋
√

x2 − r2
dx

]
.

Because p(x) is even, p′(x) is odd, and the two integrals are in fact the same. We have

f (r) = 1
2i

× 2∫
∞

r

p′(x)

i𝜋
√

x2 − r2
dx = − 1

𝜋 ∫
∞

r

p′(x)√
x2 − r2

dx,

giving the final result for the Abel transform pair:

p(x) = ∫
∞

|x|
2f (r) r dr√

r2 − x2
, (10.67)

f (r) = − 1
𝜋 ∫

∞

r

p′(x)√
x2 − r2

dx. (10.71)

Example 10.19 (Abel transform of the circle function, continued). Previously,
we saw

circ(r∕a)
A
⟼ 2

√
a2 − x2 rect(x∕2a).



722 CHAPTER 10 FOURIER TRANSFORMS IN TWO AND THREE DIMENSIONS

To illustrate the Hankel–Fourier–Abel cycle, we calculate the Fourier transform:

∫
a

−a
2
√

a2 − x2 e−i2𝜋𝜈x dx = 2a2 ∫
1

−1

√
1 − 𝜉2 e−i2𝜋(a𝜈)𝜉 d𝜉.

The integral can be looked up (or for a derivation, see the problems) and is equal to
J1(2𝜋a𝜈)∕2a𝜈. So,

2
√

a2 − x2 rect(x∕2a)
F

⟼
2a2J1(2𝜋a𝜈)

2a𝜈
= 𝜋a2 jinc(a𝜈),

which we know is the Hankel transform of circ(r∕a). This completes the cycle,

circ(r∕a)
A
⟼ 2

√
a2 − x2 rect(x∕2a)

F
⟼ 𝜋a2 jinc(a𝜌)

H
⟼ circ(r∕a).

10.5 FOURIER TRANSFORM OF A LATTICE

In an earlier chapter we introduced the comb function and its Fourier transform
and used its sampling/replicating property in several applications. In this section we
generalize the comb to two and three dimensions and discuss some applications.

Recall the definition of the comb in one dimension for impulses spaced by a
distance a:

∞∑
n=−∞

𝛿(x − na) = 1|a| ∞∑
n=−∞

𝛿(x∕a − n) = 1|a| III(x∕a).

Its Fourier transform is also a comb:

1|a| III(x∕a) ⟼ III(a𝜈) =
∞∑

n=−∞
𝛿(a𝜈 − n) =

∞∑
n=−∞

1|a|𝛿(𝜈 − n∕a).

In two dimensions, III(x) is an array of blades extending to ±∞ in the y direction.
Multiplying two combs, III(x) III(y) gives a square array of impulses with unit spac-
ing. In three dimensions, III(x) III(y) is an array of lines extending to ±∞ in the z
direction, and multiplying by a third comb, III(x) III(y) III(z), produces a cubic array
of impulses (e.g., point sources) with unit spacing. By analogy with crystallography,
we will call these multidimensional impulse arrays lattices.

For a compact notation, write

III(x) III(y) III(z) =
∑
𝓁

∑
m

∑
n

𝛿(x − 𝓁, y − m, z − n) =
∑

n
𝛿(x − n) = III(x),

where n = (𝓁, m, n) is a multi-index and the sum over n denotes a triple sum over
the indices 𝓁, m, and n. It is easy to see, using separability and the one-dimensional
Fourier pair III(x) ⟷ III(𝜈), that the Fourier transform of III(x) is III(𝝂). The cubic
lattice may be made to have non-unit spacings (a, b, c) by a diagonal scaling matrix:∑

𝓁,m,n

𝛿(x − a𝓁) 𝛿(y − bm) 𝛿(z − cn) =
∑

n
𝛿(x − An),
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where

A =
⎡⎢⎢⎢⎣

a 0 0

0 b 0

0 0 c

⎤⎥⎥⎥⎦ .
In comb notation, ∑

n

𝛿(x − An) = 1|det A| III(A−1x), (10.72)

then using Equation 10.9, we calculate the Fourier transform:

1|det A| III(A−1x) ⟼ III(A𝝂) = 1|det A| ∑n 𝛿(𝝂 − A−1n). (10.73)

As we would expect from the one-dimensional case, the lattice spacings in the Fourier
domain are (1∕a, 1∕b, 1∕c).

10.5.1 Nonorthogonal Lattices and the Reciprocal Lattice

Nonorthogonal lattices are encountered in crystallography and also in certain sam-
pling schemes. Using matrices for scale, shear, and rotation, a cubic lattice may be
transformed into a nonorthogonal lattice, but here we will take a different approach.
Let a point in the lattice be represented by a delta function located at a position
x = 𝓁a + mb + nc, that is, 𝛿

(
x − (𝓁a + mb + nc)

)
, where {a, b, c} are three linearly

independent lattice vectors. The entire lattice is a sum of these impulses over all
indices. If we gather the three lattice vectors (expressed in terms of their (x, y, z)
components) into a matrix V = [ a b c ], we may write this impulse compactly:

𝛿

(
x − (𝓁a + mb + nc)

)
= 𝛿 (x − Vn) ,

and then write the lattice in terms of the comb function:∑
n

𝛿 (x − Vn) =
∑

n

1|det V| 𝛿(V−1x − n) = 1|det V| III(V−1x). (10.74)

The matrix V is guaranteed to be nonsingular because the lattice vectors are, by
definition, linearly independent.

The Fourier transform of the nonorthogonal lattice is straightforward, using
Equations 10.9 and 10.72:

1|det V| III
(
V−1x

)
⟼ III(VT

𝝂) = 1|det V| ∑n 𝛿(𝝂 − V−Tn). (10.75)

In the special case of a rectangular lattice, where {a, b, c} = {aex, bey, cez}, this
expression reduces to Equation 10.73. To interpret the general case, note that the
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FIGURE 10.29 Left: A nonorthogonal lattice generated by lattice vectors a = (2, 1, 0), b =
(−1, 1, 0), and c = (0, 0, 1). Only the z = 0 plane is shown, for simplicity. Right: The reciprocal
lattice is the Fourier transform of the lattice and is generated by reciprocal lattice vectors
ā = (1∕3, 1∕3, 0), b̄ = (−1∕3, 2∕3, 0), and c̄ = (0, 0, 1). Only the 𝜈z = 0 plane is shown, for
simplicity. Note that ā ⟂ b and b̄ ⟂ a.

columns of V−T are the lattice vectors for the Fourier transform, which we denote
{ā, b̄, c̄}. But V−1V = I, that is,

⎡⎢⎢⎢⎣
āT

b̄T

c̄T

⎤⎥⎥⎥⎦ [ a b c ] =
⎡⎢⎢⎢⎣

1 0 0

0 1 0

0 0 1

⎤⎥⎥⎥⎦ ,

and we see that ā ⋅ a = 1 and ā is orthogonal to b and c, and similarly for b̄ and c̄.
This is illustrated in Figure 10.29. Again taking a cue from crystallography, the lattice
generated by the vectors {ā, b̄, c̄} is called the reciprocal lattice and the vectors that
generate it are called reciprocal lattice vectors.26

Given the lattice vectors, the reciprocal lattice vectors may be found by forming
and inverting the matrix V. Another way follows from the orthogonality relationships
between the vector sets. Since ā is orthogonal to both b and c, it is proportional to
their cross product:

ā = k b × c.

Using the other relationship, a ⋅ ā = 1, we can determine the constant:

a ⋅ ā = k a ⋅ (b × c) = 1

⇒ k = 1
a ⋅ (b × c)

.

26For a discussion of the reciprocal lattice as it applies to crystallography, see Cullity and Stock (2001, pp.
519–614).
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Performing the same calculation for b̄ and c̄ leads to these expressions for the
reciprocal lattice vectors:

ā = b × c
a ⋅ (b × c)

b̄ = c × a
b ⋅ (c × a)

c̄ = a × b
c ⋅ (a × b)

. (10.76)

Example 10.20 (Reciprocal lattice calculation). Consider the lattice shown in
Figure 10.29, with a = (2, 1, 0), b = (−1, 1, 0), and c = (0, 0, 1). The V matrix is

V =
⎡⎢⎢⎢⎣

2 −1 0

1 1 0

0 0 1

⎤⎥⎥⎥⎦ ,

and its transpose inverse is

V−T =
⎡⎢⎢⎢⎣

1∕3 −1∕3 0

1∕3 2∕3 0

0 0 1

⎤⎥⎥⎥⎦ ,

from which we have ā = (1∕3, 1∕3, 0), b̄ = (−1∕3, 2∕3, 0), c̄ = (0, 0, 1). Using Equa-
tion 10.76 instead,

b × c = (−1, 1, 0) × (0, 0, 1) = (1, 1, 0)

a ⋅ (b × c) = (2, 1, 0) ⋅ (1, 1, 0) = 3

⇒ ā = 1
3

(1, 1, 0) = (1∕3, 1∕3, 0)

and similarly for b̄ and c̄.

In one dimension, there is a reciprocal relationship between impulse spacings
in the time and frequency domains:∑

n

𝛿(x − an) ⟷ 1|a| ∑n

𝛿(𝜈 − n∕a).

On a rectangular lattice, a similar relationship is obtained by the separability of the
lattice into the product of two comb functions:∑

m,n

𝛿(x − am, y − bn) ⟷ 1|ab| ∑m,n

𝛿(𝜈x − n∕a, 𝜈y − m∕b).

The spacings in 𝜈x and 𝜈y are the reciprocals of the spacings in x and y, respectively.
But for a general lattice, it is not true that the corresponding sample spacings in the
two domains, for example, ‖a‖ and ‖ā‖, are reciprocals. Rather, because a ⋅ ā = 1,
we have ‖ā‖ = 1‖a‖ cos(a,ā)

, where cos(a, ā) is the cosine of the angle between a and ā.

In general, ‖ā‖ ≥ 1∕‖a‖, and only if a is parallel to ā (thus, perpendicular to b and
c) do we have a reciprocal relationship.

However, there is a reciprocal relationship between the densities of lattice
points in the two domains. Consider the parallelopiped in the space domain whose
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vertices are lattice points. From analytic geometry, we know the volume of this box
is the triple scalar product a ⋅ (b × c), which is identical to the determinant of the
matrix [a|b|c] = V. The density of points in the space domain is the reciprocal of this
volume, 1∕ det V. The volume of the corresponding box in the Fourier domain (the
reciprocal lattice) is the determinant of the matrix [ā|b̄|c̄] = V−T , and the density of
points in the Fourier domain is the reciprocal of this volume. But det(V−T ) = 1∕ det V.
So, the density of points in the reciprocal lattice, det V, is the reciprocal of the density
of points in the space lattice, 1∕ det V.

Example 10.21 (Lattice densities). Consider again the lattice shown in Fig-
ure 10.29, with a = (2, 1, 0), b = (−1, 1, 0), c = (0, 0, 1), and ā = (1∕3, 1∕3, 0),

b̄ = (−1∕3, 2∕3, 0), c̄ = (0, 0, 1). The lengths of a, b, and c are
√

5,
√

2, and 1,

respectively. The respective lengths of ā, b̄, and c̄ are not reciprocals:
√

2∕3,
√

5∕3,

and 1 (as expected,
√

2∕3 > 1∕
√

5 and
√

5∕3 > 1∕
√

2). But the density of points
per unit volume in the space domain is

⎛⎜⎜⎜⎝det

⎡⎢⎢⎢⎣
2 −1 0

1 1 0

0 0 1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠
−1

= 1∕3

and the density of points in the Fourier domain is

⎛⎜⎜⎜⎝det

⎡⎢⎢⎢⎣
1∕3 −1∕3 0

1∕3 2∕3 0

0 0 1

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠
−1

= 3.

There is a reciprocal relationship between the densities of points in the two lattices.

10.5.2 Sampling Theory

The results of the preceding section are straightforwardly applied to the problem of
sampling a two- or three-dimensional function, for example, an image. We will restrict
attention to the two-dimensional case and leave the three-dimensional case to the
reader’s imagination. A two-dimensional function f (x) is sampled on an orthogonal
grid with sampling intervals Δx and Δy; for purposes of illustration, we take Δx = 1
and Δy = 2. The sampling lattice vectors are a = (Δx, 0) = (1, 0) and b = (0,Δy) =
(0, 2). The sampled function is modeled by multiplying f with the sampling lattice
(Equation 10.74):

fs(x) = f (x)
∑
m,n

𝛿 (x − ma − nb) = f (x)
1|det V| III

(
V−1x

)
, (10.77)

where

V = [a|b] =
[

1 0

0 2

]
.
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In the Fourier domain, the product becomes a convolution, and (Equation 10.75)

Fs(𝝂) = F(𝝂) ∗ III(VT
𝝂) = F(𝝂) ∗ 1|det V| ∑n

𝛿(𝝂 − V−T n)

= 1|det V| ∑n
F
(
𝝂 − V−T n

)
. (10.78)

In our example,

Fs(𝝂) =
∑
m,n

1|det V| F(𝝂 − mā − nb̄),

where ā and b̄ are the reciprocal lattice vectors:

[ā|b̄] = V−T =

[
1 0

0 1
2

]
,

that is,

Fs(𝜈x, 𝜈y) =
∑
m,n

1
2

F(𝜈x − m, 𝜈y − n∕2).

The Fourier domain is shown in Figure 10.30.
Sampling on the lattice generated by the vectors {a, b} replicates the Fourier

transform on the reciprocal lattice generated by the vectors {ā, b̄}. When the lattice
is orthogonal, the reciprocal lattice is also orthogonal. Replicating a rectangle of

−1 0 1

−1

0

1

a

b
–

–

ν y

νx

FIGURE 10.30 Two-dimensional sampling replicates the Fourier transform on the reciprocal
lattice of the sampling lattice. If the function’s Fourier transform is bandlimited to a 1

Δx
× 1

Δy
rectangle, the function is recoverable from its samples by sinc function interpolation. If the
function is bandlimited to a disk, as shown here, there are large gaps between the spectral
replicas and coarser, more efficient sampling is possible.
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FIGURE 10.31 Two-dimensional sampling replicates the Fourier transform on the reciprocal
lattice of the sampling lattice. When the sampling lattice is nonorthogonal, the Fourier domain
can be covered by different periodic tilings, with different implications for bandlimiting. Left:
Rectangular tiling. If the function’s Fourier transform is bandlimited to the unit tile, it is
recoverable from its samples by sinc function interpolation. The rectangular tiling leads to a
pessimistic estimate of the bandlimit for a circularly bandlimited function. Right: Hexagonal
tiling allows the spectrum to have a different support and shows that a higher circular bandlimit
is possible. If the function is bandlimited to the disk shown, it will not be aliased and can be
reconstructed by interpolation with jinc functions.

dimensions 1
Δx

× 1
Δy

with this reciprocal lattice covers the Fourier domain with non-

overlapping rectangular tiles. If the function f is bandlimited such that its Fourier
transform is zero outside the rectangle |𝜈x| < 1

2Δx
, |𝜈y| < 1

2Δy
, then it is not aliased

and can be recovered from its samples. The ideal lowpass filter is 2 rect(𝜈x) rect(2𝜈y)
and the corresponding interpolation function is sinc(x) sinc(y∕2). In general,

f̂ (x, y) =
∑
m,n

f (x − mΔx, y − nΔy) sinc (x∕Δx) sinc (y∕Δy) .

Sampling on an orthogonal lattice is thus a straightforward extension of one-
dimensional sampling.

A two-dimensional function is not always bandlimited to a rectangular support.
We saw earlier that an image formed by an optical instrument with a circular aperture
is bandlimited to a circular support. If such a function is sampled on a rectangular grid,
the replication in the Fourier domain will produce gaps between the circular spectral
islands. The scheme shown in Figure 10.30 with Δx ≠ Δy results in an inefficient
coverage of the Fourier domain. Sampling with Δx = Δy is preferable in this case.

If the function is sampled on a nonorthogonal lattice, then the replication of
the Fourier transform on the reciprocal lattice is also nonorthogonal. Two different
tilings of the Fourier domain are shown in Figure 10.31 (and there are many other
possible tilings besides these, with oddly shaped tiles).27 In both cases, the unit

27Dudgeon and Mersereau (1984, Chapter 1); Marks (1991, Chapter 6); Barrett and Myers (2004,
pp. 149ff).
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tile centered at the origin specifies maximum bandlimits for the function. For the
rectangular tiling, interpolation with sinc functions is possible if the support of the
Fourier transform matches or fits within the unit tile. But again, if a function is
bandlimited to some other support, for example, circular, then keeping the support
inside the rectangular tile may be an inefficient use of samples. A Fourier transform
with circular support, for example, fits better within the hexagonal tiling shown in the
figure. In fact, for a circularly bandlimited function, the optimum sampling scheme
occurs when the spectral islands are close packed. Then the central spectral island is
isolated with an ideal circular lowpass filter, and the function is recovered from its
samples by interpolating with jinc functions. This special case is considered further
in the problems.

10.5.3 X-ray Diffraction

A crystal is a periodic replication of a molecule in three dimensions. The replicated
molecule may be a single atom, like silicon, a simple diatomic structure like water
(ice) or sodium chloride, or a very complex molecule, like a protein. In all cases, the
crystal can be modeled by the convolution of the molecule with a lattice.

X-rays are scattered by the electrons in an atom; approximately, the atom
behaves like a point and scatters in an amount proportional to its number of electrons.
The x-ray wavelengths, on the order of 10−10 m (1 Å), are of the same scale as
the interatomic distances in the molecule and the molecular spacings in the lattice.
Consequently, the scattered x-rays can interfere and produce diffraction patterns.
X-ray crystallography works backward from these observed diffraction patterns to
infer the electron densities in the crystal, giving information about the structure of
the molecule and also of the lattice.

To develop the Fourier transform relationships for diffraction by a crystal,
consider the geometry shown in Figure 10.32. An incident plane wave is scattered at
point P, for example, by an atom, into a spherical wave that is approximately planar
in the far field. Relative to the origin O, the scattered wave experiences a phase shift
𝜑 = 2𝜋

𝜆
(r ⋅ e − r ⋅ e0), where e0 and e are unit vectors in the incident and scattered

O

P

θ θ

r

ee0

r•e0

r•e

Incident

Scattered

0

FIGURE 10.32 A plane wave scatters from a point P, for example, X-ray scattering from
an atom. The point scatters a spherical wave, which becomes a plane wave in the far field.
Relative to the origin O, the scattered wave has phase shift 𝜑 = 2𝜋

𝜆
(r ⋅ e − r ⋅ e0) = r ⋅ (k − k0).



730 CHAPTER 10 FOURIER TRANSFORMS IN TWO AND THREE DIMENSIONS

directions, respectively, and vector r locates P relative to O. Writing k = 2𝜋
𝜆

e and

k0 = 2𝜋
𝜆

e0, the phase shift is 𝜑 = r ⋅
(
k − k0

)
.

If there is also a scatterer at the origin, then the wave in the far field is (sup-
pressing a common plane wave factor ei(𝜔t−k⋅x))

Ũ(k) = 1 + e−i(k−k0)⋅r = 2e−i(k−k0)⋅r∕2 cos[(k − k0) ⋅ r∕2]. (10.79)

The cosine expresses the interference between the two scattered waves. For a wave
with incident direction given by the vector k0, intensity maxima occur in directions
k such that (k − k0) ⋅ r = 2𝜋n. This is, of course, just a more general formulation of
the two-point interference used earlier to describe antenna arrays. For example, if r is
taken along the horizontal direction with length d, r = dex, then the maxima appear
at

2𝜋d
𝜆

(e ⋅ ex − e0 ⋅ ex) = 2𝜋d
𝜆

(
cos 𝜃0 − cos 𝜃

)
= 2𝜋n

⇒ cos 𝜃 = cos 𝜃0 +
n𝜆
d

,

a familiar result (compare Equation 4.39).
The two-point model may easily be extended to an arbitrary number of points,

assuming that the total scattered field is the superposition of fields resulting from
scattering the incident field off each point. Contributions from multiple scatterings
are assumed to be too weak to contribute significantly to the total.28 When the points
are in a lattice, their position vectors are r = Vn where, as before, V = [a|b|c] are
the lattice vectors and n is a multi-index. Then the scattered wave is

Ũ(k) =
∑

n

exp[−i(k − k0) ⋅ Vn],

which can be written in terms of the comb function model of a lattice:

Ũ(k) =
∑

n
∫ exp

[
−i
(
k − k0

)
⋅ x
]
𝛿 (x − Vn) dx

= ∫
1|det V| III

(
V−1x

)
exp
[
−i
(
k − k0

)
⋅ x
]

dx.

Now this is the Fourier transform of a comb—the diffracted field is the Fourier
transform of the lattice. Calculating the transform, we have

Ũ(k) = F
{

1|det V| III
(
V−1x

)}||||𝝂=(k−k0)∕2𝜋
= III

(
VT (k − k0)∕2𝜋

)
=
∑

n

2𝜋|det V| 𝛿 [(k − k0) − 2𝜋V−T n
]
. (10.80)

28The assumption of single scattering is sometimes referred to as the first Born approximation—Born and
Wolf (1999, pp. 699–708); Barrett and Myers (2004, pp. 542–547).
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Recall that V−T = [ā|b̄|c̄] are the reciprocal lattice vectors. The peaks in the diffrac-
tion pattern, where the scattered waves constructively interfere, are given by the
locations of the delta functions in reciprocal space:

k − k0 = 2𝜋[ā|b̄|c̄]n, (10.81)

that is, when k − k0 is directed to a point in the reciprocal lattice. Thus the reciprocal
lattice has a physical interpretation as the directions in which the incident radiation
is scattered by the crystal. Experimentally, the reciprocal lattice may be inferred by
measuring the diffraction directions for several incident directions, and from this the
crystal structure may be determined.

A real crystal is a periodic repetition of a basic arrangement of atoms or unit
cell. Mathematically, it is modeled by the convolution of the unit cell with the lattice.
The diffraction pattern, then, is related to the product of the reciprocal lattice with the
Fourier transform of the unit cell. In some experiments, not only the lattice but also
the structure of the unit cell, for example, a protein, is determined from diffraction
measurements.29

10.6 DISCRETE MULTIDIMENSIONAL FOURIER
TRANSFORMS

The Fourier series, discrete-time Fourier transform, and discrete Fourier transform all
have useful multidimensional versions. Two-, three- and even four-dimensional (three
spatial dimensions plus time) Fourier series appear in the solutions to certain partial
differential equations.30 Multidimensional DTFTs and DFTs are applicable in signal
and image processing.31 The Z transform also extends to two dimensions, with some
interesting complications owing to the complex nature of the transform variables.

We will develop the multidimensional discrete-time Fourier transform and DFT
by beginning with a sampled continuous-time function and using the relationships
among the members of the Fourier family (Figure 6.21). A multidimensional function
f (x), sampled on a nonorthogonal lattice, results in a multidimensional sampled
function (Equation 10.77):

fs(x) = f (x)
1|det V| III

(
V−1x

)
=
∑

n
f (Vn) 𝛿 (x − Vn) ,

where, as usual, V = [a|b] in two dimensions. The Fourier transform of fs is

Fs(𝝂) =
∑

n
f (Vn) exp (−i2𝜋𝝂 ⋅ Vn) = 1|det V| ∑n

F
(
𝝂 − V−Tn

)
.

The Fourier transform is periodic in 𝝂, along the reciprocal lattice. Moving integer
numbers of reciprocal lattice periods in 𝝂 (replace 𝝂 by 𝝂 + r1ā + r2b̄ = 𝝂 + V−T r)

29For more on X-ray crystallography, see McPherson (2009), Cullity and Stock (2001), and Ramachandran
and Srinivasan (1970).
30Churchill and Brown (1987).
31Dudgeon and Mersereau (1984).
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yields

exp
[
−i2𝜋

(
𝝂 + V−Tr

)
⋅ Vn

]
= exp [−i2𝜋𝝂 ⋅ Vn] exp

[
−i2𝜋

(
V−Tr

)T
Vn
]

= exp [−i2𝜋𝝂 ⋅ Vn] exp
[
−i2𝜋rT V−1Vn

]
= exp [−i2𝜋𝝂 ⋅ Vn] exp

[
−i2𝜋rT n

]
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

=1

.

Thus,

Fs(𝝂 + V−T r) = Fs(𝝂) (10.82)

as we saw earlier in Figure 10.30.
The discrete-time Fourier transform of the multidimensional sequence f [n] =

f (Vn) is defined:

Fd(𝜽) =
∑

n

f [n] exp(−i𝜽 ⋅ n). (10.83)

This DTFT is periodic in 𝜽 with period 2𝜋 in any component, that is, Fd(𝜽 + 2𝜋k) =
Fd(𝜽). The connection with the Fourier transform Fs(𝝂) is made by comparing the
Fourier kernels, exp (−i2𝜋𝝂 ⋅ Vn) and exp (−i𝜽 ⋅ n). They are equivalent for 𝝂 =
V−T𝜽∕2𝜋, thus

Fd(𝜽) = Fs

(
V−T

𝜽∕2𝜋
)

and Fs(𝝂) = F(2𝜋VT
𝝂). (10.84)

In one dimension, the relationship between digital frequency and continuous fre-
quency is 𝜃 = 2𝜋𝜈T , where T is the sampling interval. Increasing 𝜃 by 2𝜋 cor-
responds to an increase in 𝜈 of 1∕T , the sampling frequency, and moves to the
identical value of Fs in an adjacent period. In two dimensions with orthogonal
sampling, the lattice vectors are a = Txex and b = Tyey, where Tx and Ty are the

respective sampling intervals. The matrix V is
[

Tx 0
0 Ty

]
. The mapping from 𝝂

to 𝜽 is 𝜽 = 2𝜋VT
𝝂 =

(
2𝜋𝝂xTx, 2𝜋𝝂yTy

)
, a straightforward extension of the one-

dimensional result 𝜃 = 2𝜋𝜈T . Increasing 𝜃x or 𝜃y by 2𝜋 corresponds to an increase
of 𝜈x by 1∕Tx or 𝜈y by 1∕Ty, again moving to adjacent periods of Fs. When
the sampling is on a nonorthogonal lattice, the relationship between 𝝂 and 𝜽 is
𝝂 = V−T

𝜽∕2𝜋 = (𝜃1∕2𝜋) ā + (𝜃2∕2𝜋) b̄. As 𝜃1 goes from 0 to 2𝜋, the frequency
increases by one unit of ā, which is one period of Fs in the ā direction. The elements
of 𝜽 are components of frequency in the directions specified by the reciprocal lattice
vectors ā and b̄, not the orthogonal frequency axes 𝜈x and 𝜈y (Figure 10.33).

The definition of the multidimensional DTFT in Equation 10.83 is independent
of any consideration of the sampling lattice. Consequently, the inverse DTFT in M
dimensions is also lattice independent:

f [n] = 1
(2𝜋)M ∫

𝜋

−𝜋
Fd(𝜽) exp (+i𝜽 ⋅ n) d𝜽. (10.85)

So, the sampling lattice connects f (x) with f [n], the reciprocal lattice connects Fd(𝜽)
with Fs(𝝂), and the transform from f [n] to Fd(𝜽) is independent of the lattice.
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FIGURE 10.33 Left: sampling a two-dimensional function on a hexagonal lattice, f [n] =
f (n1a + n2b). The heavy dot indicates f [1, 2] = f (a + 2b). Right: in the Fourier domain, the
discrete frequency axes 𝜃1 and 𝜃2 are aligned with the reciprocal lattice vectors ā and b̄, and
𝝂 = (𝜃1∕2𝜋)ā + (𝜃2∕2𝜋)b̄. Since the Fourier transform is periodic on the reciprocal lattice,
as 𝜃1 increases from 0 to 2𝜋, the frequency 𝝂 increases by one unit of ā, and similarly for
𝜃2. The DFT samples Fd(𝜽) along 𝜃1 and 𝜃2; here, N1 = N2 = 6. The heavy dot at k = (4, 3)

corresponds to discrete frequency 𝜽 =
(

4

6
⋅ 2𝜋, 3

6
⋅ 2𝜋

)
=
(

4

3
𝜋,𝜋

)
and continuous frequency

𝝂 = 2

3
ā + 1

2
b̄.

In one dimension, the discrete Fourier transform is obtained from the discrete-
time Fourier transform of an N-sample vector by taking N samples in 𝜃, uniformly
from 0 to 2𝜋: 𝜃 = 2𝜋k∕N, k = 0, 1,… , N − 1. Thus, the DFT is

F[k] = F(2𝜋k∕N) = Fs(k∕NT) =
N−1∑
n=0

f (nT) exp(−i2𝜋kn∕N).

When we generalize to the multidimensional case, we first truncate the multidimen-
sional sequence f [n] to finite size, N1 × N2 (again, without loss of generality, we
restrict attention to two dimensions). Then n ∈ {0, 1,…N1 − 1} × {0, 1,…N2 − 1}.
We sample Fd(𝜽) with 𝜽 =

(
2𝜋k1∕N1, 2𝜋k2∕N2

)
, or

𝜽 = 2𝜋N−1k,

where N =
[

N1 0
0 N2

]
. Substitute this into Equation 10.83,

F[k] = F
(
2𝜋N−1k

)
=
∑

n

f [n] exp
[
−i
(
2𝜋N−1k

)
⋅ n
]

=
∑

n
f [n] exp

[
−i2𝜋kT N−1n

]
. (10.86)
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To invert, multiply both sides by exp
[
+i2𝜋kTN−1n′] and sum over k:∑

k

F[k] exp
[
+i2𝜋kT N−1n′] =∑

n

f [n]
∑

k

exp[−i2𝜋kTN−1(n − n′)].

The sum over k expands into the product of two sums,
∑N1−1

k1=0 exp[−i2𝜋k1(n1 −

n′1)∕N1] and
∑N2−1

k2=0 exp[−i2𝜋k2(n2 − n′2)∕N2], which we know from Chapter 3 are

N1𝛿[n1 − n′1] and N2𝛿[n2 − n′2]. Thus,∑
k

exp
[
−i2𝜋kT N−1 (n − n′)] = N1N2𝛿[n − n′] = det N 𝛿[n − n′],

and we have the inverse DFT:

f [n] = 1
det N

∑
k

F[k] exp
[
+i2𝜋kT N−1n

]
. (10.87)

The frequency-domain sampling that generates the DFT produces a periodic repli-
cation of f [n], so that f [n + Nr] = f [n] (where r is a vector of integers). So, just as
in the one-dimensional case, the time and frequency domains are both sampled and
periodic.

The form of the DFT is independent of the sampling lattice that gave rise to the
sequence f [n]. The sampling lattice connects the original function f (x) to the sample
sequence f [n], and the reciprocal lattice connects the DFT F[k] back to the Fourier
transform Fs(𝝂).32 In two dimensions, the sample values at n = (0, 0), (1, 0),… , (N −
1, 0) are equally spaced at multiples of a: f (0), f (a), … , f ((N − 1)a). In the Fourier
domain, the DFT samples at k = (0, 0), (1, 0),… , (N − 1, 0) divide the reciprocal
lattice vector ā, representing one period of the sampled Fourier transform, into N

equal intervals, yielding values Fs(0), Fs

(
1

N1
ā
)

,…, Fs

(
N1−1

N1
ā
)

(Figure 10.33). This

is illustrated for the transform pair circ(r∕8) ⟷ 64𝜋 jinc(8𝜌) in Figure 10.34.
Between f [n] and F[k], the DFT is always the same, and one multidimensional

DFT algorithm will suffice for any sampling scheme. The simplest approach follows
from the fact that the DFT kernel exp[−i2𝜋kTN−1n] separates into the product of
one-dimensional kernels:

exp
[
−i2𝜋kTN−1n

]
= exp(−i2𝜋k1n1∕N1) exp(−i2𝜋k2n2∕N2),

and so the two-dimensional DFT may be computed by a succession of one-
dimensional DFTs:

F[k] =
N2−1∑
n2=0

[N1−1∑
n1=0

f [n] exp(−i2𝜋k1n1∕N1)

]
exp(−i2𝜋k2n2∕N2).

One simply computes the DFTs (by FFT, say) of the rows of f [n] to produce an
intermediate array. The DFT is completed by computing the DFTs of the columns

32Barrett and Myers (2004, pp. 173ff).
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FIGURE 10.34 Discrete Fourier transform of a circle function, circ(r∕8), sampled on a

hexagonal lattice defined by the vectors, a = (1, 0), b = ( 1

2
,
√

3

2
) (left). The Fourier transform

is replicated on the reciprocal lattice, ā = (1,− 1√
3
), b̄ = (0, 2√

3
) (right). Details (bottom) show

the rectilinear pixels shaped by the lattice vectors. Dots are the sample points. The first zero
crossing (dark ring) of the jinc is at 𝜌 = 0.6096∕8 = 0.0762.

of this intermediate array. So-called vector-radix FFT algorithms also exist, which
attack the multidimensional DFT directly, breaking an N × N DFT into a combination
of four N∕2 × N∕2 DFTs, working down to a base case of 2 × 2 DFTs.33

33Dudgeon and Mersereau (1984, pp. 76–86).
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10.7 SUMMARY

Multidimensional Fourier Transform Theorems

Theorem Formula Equation

∫
∞

−∞
f (x)g∗(x)dx = ∫

∞

−∞
F(𝝂)G∗(𝝂)d𝝂 10.7a

Parseval

∫
∞

−∞
|f (x)|2 dx = ∫

∞

−∞
|F(𝝂)|2 d𝝂 10.7b

Area ∫
∞

−∞
f (x) dx = F(0), f (0) = ∫

∞

−∞
F(𝝂) d𝝂 10.14

Moment 𝜇
𝜶 = ∫

∞

−∞
x𝜶 f (x) dx = 1

(−i2𝜋)|𝜶| 𝜕𝜶F(𝝂)
||||𝝂=0

10.17

𝜶 = (𝛼1, 𝛼2,… , 𝛼N )

Linearity af (x) + bg(x) ⟷ aF(𝝂) + bG(𝝂) 10.6

Shift f (x − b) ⟷ e−i2𝜋𝝂⋅bF(𝝂) 10.8
ei2𝜋b⋅xf (x) ⟷ F(𝝂 − b)

Dilation f (Ax) ⟷ 1| det A| F
(
A−T

𝝂
)

10.9

Derivative 𝜕
𝜶 f (x) ⟷ (i2𝜋𝝂)𝜶F(𝝂) 10.11

(−i2𝜋x)𝜶 f (x) ⟷ 𝜕
𝜶F(𝝂)

Laplacian ∇2f (x) ⟼ −4𝜋2 ‖𝝂‖2 F(𝝂) 10.12

Convolution f ∗ g(x) ⟷ F(𝝂)G(𝝂) 10.18

Hankel Transform Theorems

Theorem Formula Equation

∫
∞

0
f (r)g∗(r) r dr = ∫

∞

0
F(𝜌)G∗(𝜌) 𝜌 d𝜌

Parseval

∫
∞

0
|f (r)|2 r dr = ∫

∞

0
|F(𝜌)|2 𝜌 d𝜌

Area 2𝜋 ∫
∞

0
f (r) r dr = F(0), f (0) = 2𝜋 ∫

∞

0
F(𝜌) 𝜌 d𝜌

Linearity af (r) + bg(r) ⟷ aF(𝜌) + bG(𝜌)

Shift f (‖x − b‖) ⟷ e−i2𝜋𝝂⋅b F (‖𝝂‖) 10.36

Dilation f (ar) ⟷ 1
a2

F (𝜌∕a) 10.35

Laplacian ∇2f (r) ⟼ −4𝜋2
𝜌

2F(𝜌) 10.90

Convolution f ∗ g(r) ⟷ F(𝜌)G(𝜌) 10.37
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PROBLEMS

10.1. Carry through the geometric calculation to show that the vectors perpendicular to
the equiphases in Figure 10.1, whose lengths are 1∕‖b‖, have x and y components
bx∕(b2

x + b2
y) and by∕(b2

x + b2
y), respectively.

10.2. Decomposing coordinate transformations
A 2 × 2 coordinate transformation matrix A can be decomposed into a product of
elementary transformations. One of these is the QR factorization, A = QR, where Q
is unitary and R is upper triangular. The QR factorization is performed numerically by
the Matlab function qr.

(a) Because Q is unitary, its determinant is either 1 or −1. Show that if det Q = 1, then
Q is a rotation by 𝜃, and if det Q = −1, then Q is a reflection about a line at angle
𝜃. Give expressions for 𝜃 in terms of the elements of Q.

(b) Show that R is the composition of a coordinate scaling with a horizontal shear, and
derive expressions for the scale factors and shear factor in terms of the elements
of Q.

10.3. Decomposing coordinate transformations
A 2 × 2 coordinate transformation matrix A can be decomposed into a product of
elementary transformations. One of these is the Schur factorization, A = UTUT , where
U is unitary and T is upper triangular. The Schur factorization is performed numerically
by the Matlab function schur.

(a) The Schur factorization algorithm always returns a matrix U with determinant +1.
Show that this is a rotation about an angle 𝜃 and give an expression for 𝜃 in terms
of the elements of U.

(b) Show that T is the composition of a coordinate scaling with a horizontal shear, and
derive expressions for the scale factors and shear factor in terms of the elements
of T.

10.4. Carry out the calculations for scale and shear in Example 10.6, and compare with
Figure 10.5.

10.5. Anisotropic diffusion
When the diffusion constant k is anisotropic, the diffusion equation has the form(

kx
𝜕

2

𝜕x2
+ ky

𝜕
2

𝜕y2

)
u(r, t) = 𝜕u(r, t)

𝜕t
.

Derive the solution to this equation with a point initial distribution, u(x, y, 0) = C𝛿(x, y).

10.6. Bessel functions
Show that

J′
0(x) = −J1(x). (10.88)

10.7. Bessel functions
Derive and graph these Fourier transform pairs:

J0(2𝜋x) ⟷
rect(𝜈∕2)

𝜋

√
1 − 𝜈2

, (10.68)

J0(2𝜋x) sgn x ⟷
[
1 − rect(𝜈∕2)

]
sgn(𝜈)

i𝜋
√
𝜈2 − 1

. (10.70)



738 CHAPTER 10 FOURIER TRANSFORMS IN TWO AND THREE DIMENSIONS

Hint: Begin by substituting the Bessel function definition, Equation 10.19, into the
Fourier integral. Performing the integration with respect to x, obtain, for Equation
10.68,

J0(2𝜋x) ⟼ 1
𝜋 ∫

𝜋

0
𝛿(𝜈 + cos𝜙) d𝜙

and, for Equation 10.70,

J0(2𝜋x) sgn x ⟼ 1
𝜋 ∫

𝜋

0

d𝜙
i𝜋(𝜈 + cos𝜙)

.

Alternatively, for Equation 10.68, make the trigonometric substitution 𝜈 = cos𝜙 on the
right-hand side and use the Bessel function definition.

10.8. Bessel functions
Derive the Fourier transform pair for the jinc function:√

1 − x2 rect
( x

2

)
⟷

J1(2𝜋𝜈)

2𝜈
= 𝜋

2
jinc(𝜈). (10.89)

Hint: Use Equations 10.68 and 10.88.

10.9. Hankel transforms
A two-dimensional function f (r, 𝜃) may be expressed as a Fourier series in 𝜃:

f (r, 𝜃) =
∞∑

n=−∞
fn(r) ein𝜃 ,

where fn(r) = 1
2𝜋 ∫

𝜋

−𝜋
f (r, 𝜃) e−in𝜃

.

Derive the following expression for the Fourier transform, F(𝜌,𝜙):

F(𝜌,𝜙) =
∞∑

n=−∞
Fn(r) i−n ein𝜙,

where Fn(r) = 2𝜋 ∫
∞

0
fn(r) Jn(2𝜋r𝜌) r dr,

and Jn(.) is the nth-order Bessel function of the first kind. Hint: Use the Bessel function
integral identity:

Jn(x) = ∫
𝜋

−𝜋
e−i(nu−x sin u) du.

10.10. Inverse Hankel transform

(a) Show that the inverse Hankel transform (of zeroth order) is identical in form to the
forward transform.

(b) Derive an expression for the inverse Hankel transform of arbitrary order.

10.11. Ring delta
The ring delta function may be defined as a sequence of functions. The difference of
two circle functions of radius 1 + 1∕2n and 1 − 1∕2n yields a cylindrical shell with wall
thickness 1∕n. The volume of the cylindrical shell is 2𝜋∕n. Thus, we have a sequence
of functions:

fn(r) = n
2𝜋

[
circ

(
r

1 + 1∕2n

)
− circ

(
r

1 − 1∕2n

)]
.
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Calculate the sequence of Hankel transforms Fn(𝜌) and show that, as n → ∞, Fn(𝜌) →
J0(2𝜋𝜌).

10.12. Point delta in polar coordinates

Show that ∫
2𝜋

0 ∫
∞

0
− 1
𝜋
𝛿
′(r) f (r, 𝜃) r dr d𝜃 = f (0, ⋅) and show that the Hankel trans-

form of − 1

𝜋
𝛿
′(r) is unity.

10.13. Derivatives of the multidimensional delta function
In one dimension, 𝛿(n)(x) is the generalized function that maps f (x) to (−1)nf (n)(0).
This can be extended to the multidimensional delta function 𝛿(x). For example, in two
dimensions, 𝜕x𝛿(x, y) is approached in the expected way:

∬
[
𝜕x𝛿(x, y)

]
𝜑(x, y) dx dy = −∬ 𝛿(x, y)

[
𝜕x𝜑(x, y)

]
dx dy = −𝜑x(0, 0),

where 𝜑x = 𝜕x𝜑. With this in mind, show that the following are consistent definitions:

(a) ∫ (∇𝛿(x)) 𝜑(x) dx = −∇𝜑|||0
(b) ∫ (∇2

𝛿(x)
)
𝜑(x) dx = ∇2

𝜑
|||0

10.14. Ellipse function

The equation of an ellipse is x2

a2 + y2

b2 = 1. Show that an “ellipse function” analogous
to the circle function can be created by a linear transformation Ax applied to the circle
function, and use the dilation theorem to calculate its Fourier transform in terms of the
jinc function.

10.15. Hankel transform
Derive the following Hankel transform pairs:

(a) e−𝜋r2 ⟷ e−𝜋𝜌
2

(this is very easy)

(b)
1
r
⟷ 1

𝜌

(c) 2𝜋a sinc(2ar) ⟷
circ(𝜌∕a)√

a2 − 𝜌2

(d)
e−ar

r
⟷ 2𝜋√

a2 + (2𝜋𝜌)2

10.16. Hankel transform
By integrating in polar coordinates, derive the formula for the Hankel transform of the
Laplacian:

∇2f (r) = −4𝜋2
𝜌

2F(𝜌). (10.90)

The Laplacian in polar coordinates is ∇2 = 1

r

𝜕

𝜕r

(
r 𝜕

𝜕r

)
.

10.17. Hankel transform
Use the Laplacian relationship and other Fourier theorems, as necessary, to calculate
the Hankel transform of r2e−𝜋r2

.
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10.18. Convolution in polar coordinates
Derive Equation 10.37,

f ∗ g(r) = ∫
2𝜋

0 ∫
∞

0
f (u) g

(√
r2 + u2 − 2ru cos 𝜃

)
u du d𝜃.

10.19. Fourier transform in cylindrical coordinates
Show that the Fourier transform of a cylindrically symmetric function f (r, z) is

F(𝜌, 𝜈z) = ∫
∞

−∞ ∫
∞

0
f (r, z) J0(2𝜋r𝜌) e−i2𝜋z𝜈z r dr dz, (10.91a)

f (r, z) = ∫
∞

−∞ ∫
∞

0
F(𝜌, 𝜈z) J0(2𝜋r𝜌) e+i2𝜋z𝜈z 𝜌 d𝜌 d𝜈z. (10.91b)

Then, as an example, calculate the Fourier transform of a disk, circ(r) rect(z∕a). Con-
sider the special cases of a very thin disk and a very thick disk.

10.20. Circular symmetry in spherical coordinates
When a three-dimensional function is independent of the azimuthal angle 𝜑 but not the
polar angle 𝜃, it has circular symmetry. Show that the Fourier transform in this case is

F(𝜌, 𝜁 ) = 2𝜋 ∫
𝜋

0 ∫
∞

0
f (r, 𝜃) J0(2𝜋r𝜌 sin 𝜁 sin 𝜃) e−i2𝜋r𝜌 cos 𝜁 cos 𝜃 r2 sin 𝜃 dr d𝜃, (10.92)

then show that this reduces to the spherically symmetric Fourier transform under the
additional condition that f is independent of 𝜃.

10.21. Dilation under spherical symmetry
By direct integration in spherical coordinates, show that f (r∕a) ⟼ |a|3F(a𝜌).

10.22. Spectral resolution
The diffracted order from a grating with a square aperture is of the form (Equation
10.47) sinc

(
L(𝜈x + b)

)
sinc

(
L𝜈y

)
. Two closely spaced spectral lines are said to be “just

resolved” when the peak of one overlaps the first zero crossing of the other.

(a) Graph the function sinc2
(
L(𝜈x − Δ𝜈x∕2 + b)

)
+ sinc2

(
L(𝜈x + Δ𝜈x∕2 + b)

)
, vary-

ing Δ𝜈x to see what “just resolved” looks like.

(b) Derive an expression for the minimum resolvable line spacing Δ𝜆 = |𝜆1 − 𝜆2| in
terms of the grating size L, grating frequency b, and mean wavelength �̄�, which
may be taken to be the average of 𝜆1 and 𝜆2. This may also be written in terms of
N = Lb, the number of grating cycles across the aperture.

10.23. Tilted illumination
Carry out the calculation to show that a tilted plane wave illumination of a circular
aperture results in a shifted version of the jinc function pattern (Equation 10.51).

10.24. Radon transform
Show that the Radon transform of an impulse located at polar coordinates (a,𝜙) is
𝛿 (x′ − a cos(𝜃 − 𝜙)), and sketch it accurately as a function of x′ and 𝜃. What is the
effect of a and 𝜙 on the graph? The Radon transform of an impulse is called the
sinogram.34

34Barrett and Myers (2004, pp. 204ff).
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10.25. Radon transform theorems
Prove the basic theorems for the Radon transform.

(a) Shift (Equation 10.59)

(b) Dilation (Equation 10.60)

(c) Rotation (Equation 10.61)

(d) Convolution (Equation 10.62)

10.26. Radon transform

If p
𝜃

is the projection of f at angle 𝜃, show that ∫
∞

−∞
p
𝜃
(x′) dx′ = ∫

∞

−∞
f (x) dx, for all

angles 𝜃.

10.27. Abel–Fourier–Hankel cycle
Calculate the following transforms:

(a) p(x) = A {𝛿(r − a)}

(b) P(u) = F {p(x)}

(c) f (r) = H {P(u)} = 𝛿(r − a)

10.28. Line spread function
A line source in the object plane of an imaging system is modeled by 𝛿(x) (it has infinite
extent in the y direction). The system is assumed to have a radially symmetric point
spread function, h(x) = h(r). The image of the line source is the convolution of the
point spread function with the line source, h(r) ∗ 𝛿(x). It is, appropriately, called the
line spread function, 𝓁(x).

(a) Derive an expression for the line spread function in terms of the point spread
function, and show how the point spread function may be calculated from the line
spread function.

(b) The edge spread function E(x) is the image of a unit step, U(x). Relate the edge
spread function to the line spread function and show how to recover the point
spread function from the edge spread function.

10.29. Two-dimensional sampling
A two-dimensional function f (x) is bandlimited to ‖𝝂‖ < B.

(a) Find the coarsest rectangular sampling lattice that avoids aliasing. Sketch the
Fourier plane showing the replicated spectral islands. What is the sample density?

(b) It is argued that a more efficient sampling scheme uses a nonorthogonal lattice
such that the circular spectral islands are close packed in the Fourier domain. Find
the sampling lattice, and sketch the Fourier plane, showing the replicated spectral
islands. What is the sample density, and how does it compare with the rectangular
lattice in part (a)?

10.30. Two-dimensional sampling
Consider a sampling pattern analogous to sampling on the black squares of chessboard,
as an approximation to the hexagonal sampling pattern in the previous problem.

(a) What are the lattice vectors and the reciprocal lattice vectors?

(b) What is the sampling density, and how does it compare to hexagonal sampling and
rectangular sampling for a signal bandlimited to a circle of radius B?
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Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannig-

faltigkeiten. Berichte der Sächsischen Akadamie der Wissenschaft, 69:262–277, 1917. Reprinted:
Radon, J. and Parks, P.C. (trans). On the determination of functions from their integral values along
certain manifolds. IEEE Transactions on Medical Imaging, MI-5(4):170–176, December 1986.

Ramachandran, G.N. and Srinivasan, R. Fourier Methods in Crystallography. John Wiley & Sons, Inc.,
New York, 1970.

Rosenlicht, M. Introduction to Analysis. Scott, Foresman and Co, Glenview, IL, 1968.
Saff, E.B. and Snider, A.D. Fundamentals of Complex Analysis for Mathematics, Science, and Engineering.

Prentice-Hall, Englewood Cliffs, NJ, 1976.
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Abel transform, 718–722
Absolute convergence, see Convergence
Absolutely integrable, 29, 69. See also L1

Absolutely summable, 67. See also 𝓁1;
Sequence

Airy disk, 710–711. See also Jinc function
Aliasing, 110, 123, 423–424, 728

and computing Fourier series, 235, 249
and computing Fourier transform, 323
and Laplace transform, 607–608, 619

Almost everywhere, a.e., 73, 190
Amplitude, 20, 229, 251, 696, 698, 701
Amplitude modulation (AM), 441, 443
Analytic function, 467, 505, 512. See also

Complex function;
Cauchy–Riemann equations

Analytic signal, 647
Antenna array, 227–233, 357, 449, 705
Anticausal, see System, anticausal
Aperiodic function, 112, 274, 430
Application examples

antennas and arrays, 227, 267, 357–358,
449, 705

audio and acoustics, 286, 445, 662
bandpass signals, 648
communications, 286, 355, 441, 443, 668
diffraction gratings, 263, 701–705
diffusion, 681, 737
electronics, 263–265, 295, 443, 446–447,

589
field theory, 491
filters, 295, 319, 352, 356, 439, 559
harmonic distortion, 214, 265, 270
heat conduction, 215, 266, 361
JPEG, 60, 157
lasers, 444, 445
optics and imaging, 108, 353, 441,

447–449, 664, 691, 701, 706ff, 741
probability and statistics, 97, 351, 683

quantum mechanics, 362
radar, 47, 364
risetime and bandwidth, 288
sample rate conversion, 253, 272
seismology, 450
signal processing, 124–125, 250, 326,

440, 452
spectroscopy, 363, 703, 740
spectrum analysis, 173–175, 352, 356
system theory, 104, 354
tomography, 713ff
vibrating string, 223, 266–267
X-ray diffraction, 729

Area theorem
for DFT, 128
for discrete time Fourier transform, 241
for Fourier series, 206
for Fourier transform, 248

Autocorrelation, see Correlation

Backprojection, 716
Banach space, 79. See also Vector space
Bandlimited function, 235, 249, 423, 555,

607, 641, 646, 727
Bandpass signal, 648

IQ model, 649
Bandwidth, 288, 318, 648, 704, 712
Baseband signal, 649
Basis

complex exponential, 52, 112, 150,
429–430

Haar, 52, 57
JPEG, 60, 164
orthogonal, 5
orthonormal, 50, 55, 94, 426
standard, 51
trigonometric, 162, 182, 263
wavelet, 348

Bedrosian’s theorem, 646
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Bessel function, 685, 704
Bessel’s inequality, 83
Big-O notation, 25
Bijective, see Mapping
Bin, see discrete Fourier transform
Bound

essential supremum, 75
ML inequality, 496
upper and lower (supremum and

infimum), 17
Bounded function, 17, 29, 69, 74, 179
Bounded interval, 28, 188
Bounded operator, 88
Bounded sequence, 67
Bounded support, see Support
Branch, 17, 476
Branch cut 476, 511, 541
Branch point, 478
Bromwich contour, 571

Carrier wave, 286, 364, 441, 648
Cauchy principal value, 29, 396, 407, 533,

537, 631
Cauchy sequence, 65, 66
Cauchy’s integral formula, 512, 516
Cauchy’s (Cauchy–Goursat) integral

theorem, 505
Cauchy–Riemann equations, 464, 466
Cauchy–Schwarz inequality, 46
Causality, see System, causal
Centroid, 297, 683
Chirp function, 294, 338ff
Circle function, 686
Comb function, 418, 420, 722
Comb sequence, 114, 247, 429
Complete set of functions, 84
Complete vector space, 66, 79
Complex function, 455. See also Singularity

analytic, 467, 512, 525
entire, 467
exponential, 470
logarithm, 473
meromorphic, 598
multivalued, 473ff
power, 484ff
square root, 479, 484
trigonometric, 471–472, 489

Complex integral, 497ff
Complex number, 8
Complex variable, 455

Continuous function, see Function
Continuous operator, see Operator
Continuous time signal, 37
Contour of integration, 496ff

Bromwich, 590
deformed, 506
indented, 537ff

Contrast, see Image processing
Convergence, see also Region of

convergence; Sequence
absolute, 190
of discrete-time Fourier transform,

240
dominated, 403
of Fourier series, 190–196, 416
of Fourier transform, 311ff, 406, 427ff,

543, 564, 621
in norm (mean, mean square), 190
uniform, 190, 544, 567
weak, 389

Convergence factor, see Convergence, of
Fourier transform

Convolution, 105, 210, 300. See also
System, linear time-invariant

bounds on, 212, 301
computing with the DFT, 330ff
cyclic, circular, 137, 140
of generalized functions, 401
in imaging systems, 709
multidimensional, 684, 692
of periodic functions, 210
of sequences, 212, 243, 245

Convolution theorem
for DFT, 136, 142
for discrete-time Fourier transform, 245
for Fourier series, 213
for Fourier transform, 305, 316, 684
generalized, 412
for Hankel transform, 692
for Hilbert transform, 646
for Laplace transform, 581
multidimensional, 684
for Radon transform, 715
for Z transform, 620

Correlation
autocorrelation, 310, 712
crosscorrelation, 48, 309
lag, 310
receiver (matched filter), 47, 364
theorem, 310
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Cyclic convolution, see Convolution, cyclic
Cyclic shift, 134, 140, 324. See also

Convolution; Shift theorem

Delta function, 371. See also Generalized
functions

multidimensional, 670, 687, 696
operational properties, 383
sifting property, 374, 399, 670, 688,

696
Derivative theorem

for discrete time Fourier transform, 242
for Fourier series, 207
for Fourier transform, 290, 409, 681
for Laplace transform, 578
for Z transform, 616

Difference equation, 249, 628. See also
System, discrete time

Diffraction
Fraunhofer, 700
grating, 701–704
X-ray, 729ff

Diffraction limited, 709
Diffusion equation, 215, 681. See also Heat

equation
Digital filter, see Filter, digital
Digital (discrete) frequency, 110, 239, 732
Dilation, 246, 288, 374, 675. See also

Downsampling; Upsampling
Dilation theorem

for discrete time Fourier transform, 249
for Fourier transform, 288, 676
for Hankel transform, 691
for Hilbert transform, 645
for Laplace transform, 578
for Radon transform, 715
for Z transform, 619

Dimensionality, see Vector space
Direct sum, see Vector space
Direction angle, sine, 232, 697
Dirichlet kernel, 120, 196, 233
Discrete cosine transform (DCT), 162
Discrete Fourier transform (DFT), 115

and discrete time Fourier transform,
255ff

and Fourier series, 233ff
and Fourier transform, 323ff
frequency bins, 118, 124
tables, 164–165
theorems, 126ff

Discrete-time Fourier transform, 238, 427
and Hilbert transform, 634
multidimensional, 732
tables, 435
theorems, 259
and Z transform, 613

Discrete time signal, 37. See also Sequence
Distance, see Metric; Norm
Domain

of analyticity, 467
in the complex plane, 466, 503
of a mapping, 15
of an operator, 87
simply-connected, 503
time and frequency, 273

Dot product, 4, 44, 92, 669. See also Inner
product

Double sideband modulation, 286
Downsampling, 246, 619

Eigenfunction, 24, 178, 216, 309
Eigenvalue, 14, 24, 216, 309
Energy, see Norm; Parseval’s formula
Entire function, see Complex function
Envelope, 364, 443, 651
Equiphase, 671, 697
Equivalent width, 318
Essential singularity, 468
Euclidean space, 40
Euler equations, 22
Euler’s method, 617
Evanescent wave, 697
Even symmetry, 17, 112, 131, 158, 202,

282, 392, 674
Exponential function, 278, 281, 470, 565

complex, 22, 112
two-sided, 281, 570

Exponential order, 567
Exponential type, 556

Fairly good function, 386
Fast Fourier transform (FFT), 152ff
Father wavelet, see Scaling function
Filter, 53, 87, 171, 643

with backprojection, 716
bandpass, 353
Butterworth, 559, 572
digital, 251, 452
finite impulse response (FIR), 251, 629
highpass, 355
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Filter (Continued )
infinite impulse response (IIR), 253, 629
inverse, 441
lowpass, 252, 288, 424, 709
matched, see Matched filter
with sampling, 424, 728
with upsampling, 253

Final value theorem, 585, 621
Finite difference, 242, 616
Focal length, see Lens
Fourier series, 177ff

classical, 182
complex, 180
computing, with DFT, 234ff
convergence, 190ff
existence, 179
and Fourier transform, 416
and generalized functions, 415ff
line spectrum, 183
and partial differential equations, 215ff
tables, 258
theorems, 200ff

Fourier transform, 273ff, 669ff
and complex integration, 543ff
computing, with DFT, 324ff
existence and invertibility, 275–276,

311ff
generalized, 404
in the limit (convergence factor), 311ff,

405
and Laplace transform, 572
multidimensional, 670
tables, 349, 435
theorems, 350

Frame, 150, 345
Frequency response, 251, 286, 309. See also

Transfer function
Fubini’s theorem, 32
Function, 17, 188. See also Complex

function; Generalized function;
Sequence

continuous, 18, 187
continuously differentiable, 189
differentiable, 19
even and odd parts, 17
Hermitian, 17
integrable, 28, 69
piecewise continuous, 18, 187
piecewise smooth, 19, 187
real and imaginary parts, 10

Function space, 69. See also Vector space
Functional, 386
Fundamental frequency, in Fourier series,

180
Fundamental theorem of calculus (complex

functions), 510

Gaussian function, 293
complex, see Chirp function
as convergence factor, 311
delta sequence, 373
in diffusion, 681
multidimensional, 670
in short time Fourier transform, 338
uncertainty, 321

Generalized derivative, 393
Generalized function, 388. See also Comb

function; Delta function; Good
function

calculus, 389
equivalent, 389
Fourier transform, 404ff
and ordinary functions, 385
periodic, 418
products and convolutions, 396ff
regular vs. singular, 388
sequences, 388–389

Gibbs phenomenon (overshoot), 199
Good function (Schwartz function),

386–387
Gram–Schmidt process, 94. See also Basis,

orthonormal
Green’s theorem, 505

Haar wavelet, 346ff
Hamming window, 174, 342, 358
Hankel–Fourier–Abel transform cycle,

722
Hankel transform, 675

theorems, 691, 736
Harmonic frequency, in Fourier series, 180
Heat equation, 215ff. See also Diffusion

equation
Hermite–Gaussian wavefunction, 353
Hermitian function, 17, 112, 130, 201, 252,

577, 615, 640
Hilbert space, 79. See also Vector space
Hilbert transform, 642

and analytic signal, 647
and bandpass signal, 651
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and causality, 630
theorems, 654

Hölder’s inequality, 79. See also
Cauchy–Schwarz inequality

Identity operator, 89
Image point, see Mapping, image and

preimage
Image processing

compression, 60, 156ff
contrast, 712
Fourier analysis, 709
reconstruction from projections,

713ff
restoration, 53

Impulse, 307. See also Delta function
Impulse response, 249, 307, 629, 641.

See also Filter; Point spread
function; System; Transfer function

Inequality
Bessel, 83
Cauchy–Schwarz, 46
Hölder, 79
Minkowski, 104
Schwarz, 41
triangle, 40
uncertainty principle, 320

Infinite impulse response (IIR), see Filter
Initial value theorem, 583, 584, 621
Injective, see Mapping
Inner product, 45, 50, 56, 64. See also

Norm; Vector space
Instantaneous frequency, 295
Integral

complex (contour), 497ff
double, 32
Fourier, see Fourier transform
improper, 29, 533. See also Cauchy

principal value
Laplace, see Laplace transform
Lebesgue, 79
line, 494–496
multivalued function, 540
performed via complex integration,

531ff
principal value, see Cauchy principal

value
Riemann, 308
singular, see Cauchy principal value
trigonometric, 531

Integral theorem
Cauchy, see Cauchy’s integral theorem
for discrete time Fourier transform, 242
for Fourier series, 208
for Fourier transform, 295
for Laplace transform, 580
for Z transform, 618

IQ model, see Bandpass signal
Isolated singularity, 468. See also Pole
Isometry, 92
Isomorphic spaces, 92

Jinc function, 687, 692, 707, 722, 728
Jordan’s lemma, 544, 593
JPEG, 60, 157

Kronecker delta, 114

L+, L−, see Laplace transform
L1, 69, 79

Fourier series, 179, 188, 192, 212
Fourier transform, 281, 311, 316, 423
Hilbert transform, 643
Laplace transform, 564
Radon transform, 714

L2, 69, 72, 79
Fourier series, 179, 188, 192, 212
Fourier transform, 314, 316, 423
Hilbert transform, 643
Radon transform, 714

Lp, 69
L∞, 69, 188, 212
𝓁0, 68, 245
𝓁1, 67, 71

discrete time Fourier transform, 240,
245

Fourier series, 191
Hilbert transform, 643
Z transform, 608

𝓁2, 67, 79, 93
discrete time Fourier transform, 240,

245
Fourier series, 192
Hilbert transform, 643

𝓁p, 68, 79, 244
𝓁∞, 68, 245
Laplace transform, 563ff

abcissa of convergence, 565
and Fourier transform, 572
initial value problems, 564, 586
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Laplace transform (Continued )
inversion, 593ff

by complex integration, 593
by partial fractions, 598

L+, L−, 575
of generalized function, 574
region of convergence, 565, 569
of sampled function, 605
table, 652
theorems, 576ff, 653
two-sided, 569

Lattice, 722
crystal, 729
nonorthogonal, 723
reciprocal, 724

Laurent series, 523, 597, 622
Lens, 706ff

as a Fourier transformer, 708
in image formation, 708, 710

Line spectrum, see Spectrum
Linear combination, 5, 50, 81, 177, 426,

595
Linear dependence and independence, 15,

50, 723
Linear phase, 286, 705
Linear space, see Vector space
Linear system, see System, linear
Linearity theorem

for DFT, 126
for discrete time Fourier transform, 241
for Fourier series, 200
for Fourier transform, 282, 407, 674
for Hilbert transform, 645
for Laplace transform, 576
for Z transform, 614

Magnitude response, 251, 286, 573, 639,
641

Mapping, 15, 86, 386, 455
bijective (one-to-one and onto), 16, 87
image and preimage, 15, 90
injective (one-to-one), 15, 87
multivalued, 17, 473ff, 540
surjective (onto), 15, 87

Matched filter, 48, 364
Matrix, 11

adjoint, 13, 93
circulant, 140
DFT, 116
identity, 12
inverse, 15, 90

orthogonal, 15, 93
singular, 15
transpose, 12
unitary, 15, 93, 117

Mean-square width, 319
Measure of a set, 73
Meromorphic function, see Complex

function
Metric, 42ff. See also Norm
Metric space, see Vector space
Minimum phase, see System, minimum

phase
Minkowski’s inequality, 104. See also

Triangle inequality
Mittag–Leffler expansion, 598. See also

Partial fraction expansion
Mixer, 286, 650. See also Modulation

theorem
ML inequality, 496, 534, 542, 543, 549, 592
Mode, 225
Modulation theorem

for Fourier transform, 286
for Hilbert transform, 646
for Laplace transform, 577
for Z transform, 618

Modulation transfer function (MTF), 712
Moment, 297, 683

generating function, 351, 683
theorems, for Fourier transform,

297–298, 682
Morera’s theorem, 512
Mother wavelet, 346
Moving average, 250, 252
Multi-index, 680, 730
Multivalued function, see Mapping,

multivalued

Negative frequency, 124, 182, 324, 647
Neighborhood, 44, 466, 478
Noise equivalent bandwidth, 319, 559
Noncausal, see System
Norm, 3, 40

absolute value (1-norm), 41
essential supremum (L∞ norm), 75
Euclidean (2-norm), 40, 67, 69
and inner product, 45
and metric, 42
p-norm, 68, 69
of an operator, 88
supremum (uniform, 𝓁∞ norm), 67–69

Normed space, see Vector space
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Null set, see Set
Null space, 87
Nyquist rate, 111. See also Aliasing;

Sampling, Nyquist

Odd symmetry, 17, 130, 201–202, 282, 392,
630

One-sided function, 243, 301, 308, 324,
403, 574, 607. See also Hilbert
transform; System, causal

One-sided spectrum, see Analytic signal
One-to-one (injective), see Mapping
Onto (surjective), see Mapping
Operator, 86, 306. See also Mapping

bounded, 88
invertible, 90
isometric (norm-preserving), 95
linear, 86
projection, 94
unitary, 92

Operator norm, 88
Optical transfer function (OTF), 712
Orthogonal complement, 53
Orthogonal decomposition, expansion, 51,

57, 85, 178, 182, 425
Orthogonal functions, 76, 96
Orthogonal matrix, 15
Orthogonal vectors, 50. See also Basis
Orthogonality principle, 56
Orthonormal vectors, 50. See also Basis

Paley–Wiener criterion, 642
Paley–Wiener theorem, 556
Parallelogram law, 46, 68
Parametric curve, 494
Paraxial approximation, 699, 700
Parseval’s theorem (formula), 56, 85

conservation of energy, 57
for DFT, 127
for discrete time Fourier transform, 241,

620
for Fourier series, 205
for Fourier transform, 285, 675
and generalized Fourier transforms, 404
for Hilbert transform, 646
for Laplace transform, 583
for short-time Fourier transform, 341, 344
for Z transform, 620

Partial differential equations, see Diffusion
equation; Heat equation; Wave
equation

Partial fraction expansion, 595
Heaviside (coverup) method, 600
Mittag–Leffler, 598

Periodic function, 112, 180, 415, 418, 634
Periodic replication, 151, 421, 430, 606,

734
Phase, 20, 182, 229, 251, 286, 294, 639,

642, 651, 704, 706
Phase response, 251, 286, 639
Phase retrieval, 642
Phasor, 24, 647
Plancherel, see Parseval’s theorem
Plane wave, 696, 729
Point spread function, 289, 308, 709
Poisson sum formula, 417
Polarization identity, 46
Pole, 468, 525. See also Residue

determining order of, 529
of a transfer function, 573, 585, 599, 614,

640
Power spectrum, see Spectrum
Preimage, see Mapping, image and

preimage
Principal part of Laurent series, 524
Principal value

Cauchy, see Cauchy principal value
of a function, 9, 470

Product theorem
for analytic signals, 667
for Fourier transform, 316
for Hilbert transform (Bedrosian’s

theorem), 646
for Laplace transform, 582
for Z transform, 620

Projection-slice theorem, 715

Quadrature, 649, 651. See also Analytic
signal; Bandpass signal

Radius of convergence, 521, 610, 621.
See also Region of convergence

Radon transform, 714ff
Range, of a mapping, 15, 87, 475
Rapid descent (rapidly decreasing), 191,

222, 245, 386, 411
Rational function, 469

strictly proper, 584, 595
Rayleigh’s theorem, see Parseval’s

theorem
Reciprocal lattice, 724, 727, 731
Rectangle function, 168, 239, 277, 672
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Region of convergence
Laplace transform, 565, 569, 572
Laurent series, 524
Taylor series, 521
Z transform, 613

Regression, 97
Regular part of Laurent series, 524
Regular sequence, see Generalized function
Residue, 526ff
Resolution

frequency, 328
Rayleigh and Sparrow, 686
spectral, 356, 704, 740

Riemann–Lebesgue lemma, 183, 241, 277,
569

Risetime, 288, 368

Sampling, 110. See also Aliasing; Periodic
replication

and discrete time Fourier transform, 247,
255

and Fourier series, 235ff, 417
and Fourier transform, 323ff
and Hilbert transform, 634
and Laplace transform, 604
multidimensional, 726
Nyquist, 111, 235, 612
rate, 110
and replication, 423, 434
theorem, 423ff

Scaling function, 346
Schwartz function, see Good function
Schwarz inequality, 41. See also

Cauchy-Schwarz inequality
Separable function, 216, 672
Separation of variables, 216
Sequence, 15, 37

Cauchy, 65
convergence, 64
of partial sums, 64, 179
summabililty, 67

Set, 1–2
closed, 466
connected, 466–467, 503
measure of, 73
null, 73
open, 466

Shift theorem
for DFT, 134
in diffraction, 703
for discrete time Fourier transform, 242

for Fourier series, 206
for Fourier transform, 285, 408, 675
for Hilbert transform, 645
for Laplace transform, 577
for Z transform, 615

Short-time DFT, 342
Short-time Fourier transform, 336
Sifting property, see Delta function
Signal, 36–37
Signum function, 20, 405, 427, 633, 638
Sinc function, 69, 277, 423, 672
Singularity, 27, 456, 521, 571. See also

Branch point; Pole
essential, 468, 526
isolated, 468, 479
removable, 27, 525

Sinusoid, 20, 109
Slow growth (slowly growing), 386–387,

402, 411, 427, 643
Space-bandwidth product, 326
Span, 5, 50
Spectral leakage, 119, 185
Spectrogram, 337
Spectrometer, 363, 703
Spectrum

bandpass, 649
line, 183, 430
one-sided, 647
plane wave, 701
power, 125, 183, 300, 339

Square integrable, 69. See also L2

Square summable, 67. See also 𝓁2;
Sequence

Square wave, 186, 192, 196ff, 210, 416
Stability, see System
Step function, 18, 407, 428, 566, 573
Strictly proper, see Rational function
Subspace, 53, 60, 87, 179, 348, 426
Superresolution, 642, 712
Support, of a function, 301, 431, 642, 714,

728
Surjective (onto), see Mapping
Symmetry

in DFT, 130
in discrete-time Fourier transform, 202,

238
even and odd, see Even symmetry; Odd

symmetry
in Fourier series, 202
in Fourier transform, 282, 284, 408, 674,

684, 693
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Hermitian, see Hermitian function
in Laplace transform, 577
in Z transform, 615

System, 86, 306. See also Filter; Frequency
response; Impulse response;
Transfer function

anticausal, 572, 613
causal, 249, 306, 572, 582, 628, 641
discrete time, 249, 628
linear, 86, 306
linear time-invariant (LTI), 249, 306,

309, 582, 595, 628
minimum phase, 639
noncausal, 249
stability, 572, 613

Tables
convolutions and products, 212, 245, 316
delta function properties, 383
DFT, 164
discrete time Fourier transform, 259, 435
Fourier series, 192, 258
Fourier transform, 349, 350, 411, 435
Fourier transform, multidimensional,

736
generalized functions, 383, 387, 433–434
Hankel transform, 736
Hilbert transform, 654
Laplace and Z transforms, 609, 652, 653

Taylor series, 26, 521
Temperate convergence, see Convergence,

weak
Tempered distribution, 378. See also

Generalized function
Testing function, 385. See also Generalized

function
Time-bandwidth product, 326
Tomography, 715
Tonelli’s theorem, 32
Transfer function, 251, 293, 309, 572, 628,

640
Transformation, see Operator
Triangle function, 280
Triangle inequality, 3, 40, 42
Twiddle factor, 153

Uncertainty principle, 320, 363
Uniform convergence, see Convergence
Unit impulse, see Delta function

Unitary matrix, see Matrix, unitary
Unitary operator, see Operator, unitary
Upsampling, 246ff, 618

Variance, 99, 297, 683
Vector space, 38. See also L1; L2; Lp; L∞;

𝓁1; 𝓁2; 𝓁p; 𝓁∞; Subspace
Banach, 79, 80
ℂn, 43, 79, 80, 93, 109
ℂ∞, 67
C(p), 188ff, 192, 241, 387, 411, 521
complete, 66
dimensionality (finite, infinite), 32, 50
direct sum, 53, 348
Hilbert, 79, 80
inner product, 45
metric, 42
normed, 40
ℝn, 38, 79
ℝ∞, 67

Vibrating string, 223ff. See also Wave
equation

Wave
plane, 696–697
spherical, 229ff, 698ff, 729

Wave equation, 178, 223, 696
Wavefront, 229, 697
Wavelength, 225, 229, 697
Wavelet, 345ff
Weak convergence, see Convergence
White noise, 319
Width, of a function, 318, 319

X-ray diffraction, 729

Z transform, 608ff
and discrete-time Fourier transform, 613
inversion

by complex integration, 623
by partial fractions, 625

and Laplace transform, 607, 610, 612
region of convergence, 613
table, 652
theorems, 614ff, 653
two-sided, 612

Zero packing, 150. See also Upsampling
Zero padding, 143, 332
Zeros, of a transfer function, 584, 639–640
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