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Preface

This book is intended as a supplementary textbook for a radiation physics course in
academic medical physics and biomedical engineering graduate programs as well as
a reference book for candidates preparing for certification examinations in medical
physics subspecialties. The book may also be of interest to graduate students in
physics, chemistry, and various branches of engineering wishing to improve their
knowledge and understanding of modern physics and its intimate relationship with
radiation physics applied to medicine.

The book contains 129 specific sections grouped into 14 chapters. Each section
contains one or more long questions that consist of several shorter questions related
to the subject material of the specific section. The chapters and sections of this text-
book follow the layout of the textbook: “Radiation Physics for Medical Physicists”
published by Springer in 2010 and the 300 solved problems presented in this book
are intended to provide supplementary information to the radiation physics textbook
through examples relevant to the topics discussed in individual sections of the text-
book. Of course, this book can also stand on its own as a radiation physics textbook
serving as a tool for learning radiation physics through perusing a series of solved
radiation physics problems.

Many of the problems in this textbook are based on notes and written as well as
oral examinations that I used over the past 35 years of teaching radiation physics
to M.Sc. and Ph.D. students in medical physics at McGill University in Montreal.
I am indebted to the many students who contributed to radiation physics classes
with probing questions and who, through their performance on examinations, high-
lighted difficulties with certain concepts in radiation physics either because I did not
explain them well enough in class or because they are truly difficult to grasp. A set
of solved problems in these areas is bound to be of interest and benefit to medical
physics students, to candidates in medical physics certification examinations as well
as to professionals who wish to review and improve their understanding of radiation
physics.

The material covered in this textbook does not deal with intricacies of medical
physics subspecialties: radiation oncology physics, diagnostic radiology physics,
and nuclear medicine physics. Many well-established textbooks are already avail-
able for this purpose. Rather, this textbook highlights the basic knowledge of mod-
ern radiation physics that a medical physicist must possess to be able to function as
a professional on a multidisciplinary medical team that uses ionizing radiation for
imaging and treatment of human disease.

vii



viii Preface

Special thanks are due to my colleague Dr. Wamied Abdel-Rahman from King
Fahad Specialist Hospital in Dammam, Saudi Arabia for his skillful drawing of
figures presented in the textbook, for contributing several problems to the set, and
for many helpful discussions and advice on individual questions.

Finally, I gratefully acknowledge that completion of this textbook could not have
been accomplished without the support, encouragement, and patience of my spouse
Mariana.

Ervin B. PodgoršakMontréal, Canada



General Notes About The Book

(1) This book contains 300 problems on modern physics with emphasis on the ra-
diation physics component of medical physics. The problems are grouped into
129 sections spread over 14 chapters and typically consist of several questions
identified with (a), (b), (c), etc.

(2) The chapters and sections of this textbook follow the layout of the textbook
Radiation Physics for Medical Physicists published by Springer in 2010.

(3) The text of problems is printed on grey background and each problem is iden-
tified with two labels; the right hand label gives the problem serial number
(between 1 and 300) and the left hand label identifies the Section of the text-
book and the problem number for the given section.

(4) Detailed solutions to questions on individual problems allow the reader to fol-
low the path from the formulation of the question to final numerical solution or
to a descriptive answer. Where applicable, the numerical solution for a given
physical quantity is displayed on a graph to show how the solution fits with
the general behavior of the physical quantity under study.

(5) Equations that appear in this book are referenced by stating the equation num-
ber and chapter number of their location. Thus, for example, (8.112) stands
for a reference to equation 112 in Chap. 8 of this book.

(6) Equations that appear in the textbook: “Radiation Physics for Medical Physi-
cists” (2nd edition, Springer 2010) are referenced in this book by stating their
equation number and chapter number in the textbook preceded by T for text-
book. Thus, for example, notation (T12.89) in this book refers to equation 89
in Chap. 12 of the radiation physics textbook.

(7) Many graphs displaying important physical quantities are plotted with curves
representing the functional relationship between the dependent and indepen-
dent physical variable and, in addition, also show some easy to remember
anchor points superimposed onto the curves. This is done to remind students
of the importance of knowing the general functional trends governing the be-
havior of important physical quantities studied in this book.
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1Introduction to Modern Physics

Chapter 1 consists of 59 problems that are spread over 31 sections provid-
ing an introduction to modern physics by addressing the basic elements of
atomic, nuclear, relativistic, and quantum physics as well as electromagnetic
theory. Medical physics has its origin in Wilhelm Röntgen’s discovery of x
rays in 1895, Antoine-Henri Becquerel’s discovery of natural radioactivity in
1896 and discovery of radium by Marie Skłodowska-Curie and Pierre Curie
in 1898. Just as knowledge of basic physics was important to physicists work-
ing with physicians on the early uses of ionizing radiation in medicine, so is
knowledge of basic physics and modern physics of great importance to con-
temporary medical physicists.

After introducing the basic physical constants and the derived physical
constants of importance in modern physics and medical physics, this chap-
ter deals with rules that govern physical quantities and units and the clas-
sification of natural forces, fundamental particles, and ionizing radiation. It
also addresses the basic definitions for atomic and nuclear structure, concepts
of physics of small dimensions (quantum physics) and concepts of physics of
large velocities (relativistic physics). Problems at the end of Chap. 1 deal with
wave–particle duality, basic wave mechanics, Maxwell equations, and normal
probability distribution.

Medical physics is a perfect and long-standing example of translational re-
search where basic experimental and theoretical discoveries are rapidly imple-
mented into benefiting humanity through improved diagnostic and therapeutic
procedures based on ionizing radiation. This chapter provides the background
knowledge that is required for a study of radiation physics as well as for work-
ing as medical physicist on a medical team dealing with patients in diagnostic
radiology, nuclear medicine, and radiotherapy.

E.B. Podgoršak, Compendium to Radiation Physics for Medical Physicists,
DOI 10.1007/978-3-642-20186-8_1,
© Springer-Verlag Berlin Heidelberg 2014
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2 1 Introduction to Modern Physics

1.1 Fundamental Physical Constants

1.1.Q1 (1)

(a) The use of prefixes (decimal based multipliers) in conjunction with units
of physical quantities is a common method for avoiding very large and
very small numbers when describing the magnitude of physical quan-
tities. The prefix precedes a fundamental unit of measure to indicate
a decimal multiple or decimal fraction of the physical unit. Give the
names and symbols for the following two groups of prefixes:

(1) Factors> 1: 101, 102, 103, 106, 109, 1012, 1015, 1018, 1021, 1024.
(2) Factors< 1: 10−1, 10−2, 10−3, 10−6, 10−9, 10−12, 10−15, 10−18,

10−21, 10−24.

(b) Complete Table 1.1A on fundamental physical constants. The entries
should be rounded off to four significant figures and based on the 2006
CODATA set of values available from the website supported by the Na-
tional Institute of Science and Technology (NIST) in Washington, D.C.,
USA (http://physics.nist.gov/cuu/Constants/).

Table 1.1A Selected physical constants of importance to modern physics and radiation physics

Physical constant Value

1 Speed of light in vacuum c=

2 Avogadro constant NA =

3 Electron charge e=

4 Electron rest mass me =

5 Proton rest mass mp =

6 Neutron rest mass mn =

7 Electric constant ε0 =

8 Magnetic constant μ0 =

9 Ratio proton to electron rest mass mp/me =

http://physics.nist.gov/cuu/Constants/


1.1 Fundamental Physical Constants 3

SOLUTION:

(a) Standard prefixes for physical quantities are used to form decimal multiples
of fundamental and derived units with special names. Currently 20 agreed upon
prefixes are in use; 10 for multipliers larger than 1 and 10 for multipliers smaller
than 1. Most of the prefixes are based on Greek and Latin language; however, a few
can also be traced to Dutch, Norwegian and Italian languages.

(1) For multipliers exceeding 1 the 10 agreed upon prefixes are as follows:
102 deca (da); 102 hecto (h); 103 kilo (k); 106 mega (M); 109 giga (G);
1012 tera (T); 1015 peta (P); 1018 exa (E); 1021 zetta (Z); and 1024 yotta (Y).

(2) For multipliers smaller than 1 the 10 agreed upon prefixes are as follows:
10−1 deci (d); 10−2 centi (c); 10−3 milli (m); 10−6 micro (μ); 10−9 nano
(n); 10−12 pico (p); 10−15 femto (f); 10−18 atto (a); 10−21 zepto (z); 10−24

yocto (y).

(b) Values of selected physical constants of importance to modern physics and
medical physics are given in Table 1.1B.

Table 1.1B Selected physical constants of importance to modern physics and radiation physics

Physical constant Value

1 Speed of light in vacuum c= 2.998×108 m/s ≈ 3×108 m/s (1.1)

2 Avogadro constant NA = 6.022×1023 mol−1 (1.2)

3 Electron charge e= 1.602×10−19 C (1.3)

4 Electron rest mass me = 0.5110 MeV (1.4)

5 Proton rest mass mp = 938.3 MeV (1.5)

6 Neutron rest mass mn = 939.6 MeV (1.6)

7 Electric constant ε0 = 8.854×10−12 C/(V · m) (1.7)

8 Magnetic constant μ0 = 4π×10−7 (V · s)/(A · m) (1.8)

9 Ratio of proton to electron rest mass mp/me = 1836 (1.9)



4 1 Introduction to Modern Physics

1.2 Derived Physical Constants and Relationships

1.2.Q1 (2)

Complete Table 1.2A of important derived physical constants and provide the
value of the derived constants to four significant figures as well as appropriate
units.

Table 1.2A Selected derived physical constants

(a) Speed of light in vacuum

c=

(b) Reduced Planck constant × speed of light in vacuum

�c=

(c) Bohr radius constant

a0 =

(d) Fine structure constant

α =

(e) Rydberg energy

ER =

(f) Rydberg constant

R∞ =

(g) Classical electron radius

re =

(h) Compton wavelength of the electron

λC =

(i) Thomson classical cross section

σTh =
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SOLUTION:

Table 1.2B Selected derived physical constants

(a) Speed of light in vacuum

c= 1√
ε0μ0

= 2.998×108 m/s ≈ 3×108 m/s (1.10)

(b) Reduced Planck constant × speed of light in vacuum

�c= h

2π
c= 197.3 MeV · fm = 197.3 eV · nm ≈ 200 MeV · fm (1.11)

(c) Bohr radius constant

a0 = 4πε0

e2

(�c)2

mec2
= 0.5292 Å (1.12)

(d) Fine structure constant

α = e2

4πε0

1

�c
= �c

a0mec2
= 7.297×10−3 ≈ 1

137
(1.13)

(e) Rydberg energy

ER = 1

2
mec

2α2 = 1

2

[
e2

4πε2

]
mec

2

(�c)2
= 13.61 eV (1.14)

(f) Rydberg constant

R∞ = ER

2π�c
= mec

2α2

4π�c
= 1

4π

[
e2

4πε2

]
mec

2

(�c)2
= 109 737 cm−1 (1.15)

(g) Classical electron radius

re = e2

4πε0

1

mec2
= 2.818 fm (1.16)

(h) Compton wavelength of the electron

λC = h

mec
= 2π�c

mec2
= 0.02426 Å (1.17)

(i) Thomson classical cross section

σTh = 8π

3
r2

e = 0.6653 b = 0.6653×10−24 cm2 (1.18)
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1.3 Milestones in Modern Physics and Medical Physics

1.3.Q1 (3)

Complete Table 1.3A related to major discoveries in modern physics and med-
ical physics. Provide the name of the discoverer and the year of discovery.

Table 1.3A Major discoveries of importance to modern physics and medical physics

Discovery Discoverer Year

1 X rays

2 Natural radioactivity

3 Electron

4 Radium-226

5 Special theory of relativity

6 Photoelectric effect

7 Thermionic emission

8 Model of hydrogen atom

9 Coolidge x-ray tube

10 Proton

11 Incoherent (Compton) scattering

12 Cyclotron

13 Neutron

14 Positron

15 Artificial radioactivity

16 Uranium fission

17 Cobalt-60 teletherapy machine

18 GammaKnife

19 CT scanner

20 Magnetic resonance scanner

21 Positron emission tomography
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SOLUTION:

Table 1.3B Major discoveries of importance to modern physics and radiation physics

Discovery Discoverer Year

1 X rays Wilhelm Konrad Röntgen 1895

2 Natural radioactivity Antoine-Henri Becquerel 1896

3 Electron Joseph John Thomson 1897

4 Radium-226 Pierre Curie, Marie Curie-Skłodowska 1898

5 Special theory of relativity Albert Einstein 1905

6 Photoelectric effect Albert Einstein 1905

7 Thermionic emission Owen W. Richardson 1911

8 Model of hydrogen atom Niels Bohr 1913

9 Coolidge x-ray tube William D. Coolidge 1914

10 Proton Ernest Rutherford 1919

11 Incoherent (Compton) scattering Arthur H. Compton 1922

12 Cyclotron Ernest O. Lawrence 1931

13 Neutron James Chadwick 1932

14 Positron Carl D. Anderson 1932

15 Artificial radioactivity Irène Joliot-Curie, Frédéric Joliot 1934

16 Uranium fission Lise Meitner, Otto Frisch, Otto Hahn,
Friedrich Strassmann

1939

17 Cobalt-60 teletherapy machine Harold E. Johns 1951

18 GammaKnife Lars Leksell 1968

19 CT scanner Godfrey Hounsfield, Alan Cormack 1971

20 Magnetic resonance scanner Paul C. Lauterbur, Peter Mansfield 1973

21 Positron emission tomography Michael Phelps 1973

1.4 Physical Quantities and Units

1.4.Q1 (4)

The text presented below with five bullets appears like a standard scientific
text but contains several errors in style commonly found in scientific texts
and scientific presentations. Correct the text following the common rules used
in scientific publishing. The corrected text is presented on next page, with
footnotes identifying the mistakes and providing an explanation for each error.
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• Exposure X is related to the ability of photons to ionize air. Its unit Rönt-
gen (R) is defined as charge of 2.58 ·10−4C produced per kilogram of air.

• Kerma K is defined for indirectly ionizing radiations (photons and neu-
trons) as the energy transferred to charged particles per unit mass of the
absorber. Its SI unit gray (Gy) is defined as 1 J of energy absorbed per
kilogram of medium, i.e., 1 Gy = 1 Jkg−1.

• Dose, D, is defined as the energy absorbed per unit mass of medium.
Its SI unit gray (Gy) is defined as 1 J of energy absorbed per kilo-
gram of medium, i.e., 1 Gy = 1 J/kg. The old unit of dose is rad where
1 Gy = 100 cGy = 100 rad = 100,000 mrad.

• Equivalent dose H is defined as the dose multiplied by a radiation-
weighting factor wR . The SI unit of equivalent dose is sievert (Sv), the
old unit is rem where 1 Sv = 100 rem.

• Activity A of a radioactive substance is defined as the number of nuclear
decays per unit time. Its SI unit is becquerel (Bq) corresponding to one
decay per second or 1Bq = 1s−1.

SOLUTION:

The correct text should read as follows:

• Exposure X is related to the ability of photons to ionize air. Its unit röntgen (R)
is defined as charge of 2.58×10−4 C produced per kilogram of air.

• Kerma K is defined for indirectly ionizing radiations (photons and neutrons) as
the energy transferred to charged particles per unit mass of the absorber. Its SI
unit gray (Gy) is defined as 1 J of energy absorbed per kilogram of medium,
i.e., 1 Gy = 1 J · kg−1.

• Dose D is defined as the energy absorbed per unit mass of medium. Its SI unit
gray (Gy) is defined as 1 J of energy absorbed per kilogram of medium, i.e.,
1 Gy = 1 J/kg. The old unit of dose is rad where 1 Gy = 100 cGy = 100 rad =
100000 mrad.

• Equivalent dose H is defined as the dose multiplied by a radiation-weighting
factor wR. The SI unit of equivalent dose is sievert (Sv), the old unit is rem
where 1 Sv = 100 rem.

• Activity A of a radioactive substance is defined as the number of nuclear de-
cays per unit time. Its SI unit is becquerel (Bq) corresponding to one decay per
second or 1 Bq = 1 s−1.

The errors are highlighted as follows and explained with footnotes (a) through (i)
below:

• Exposure X(a) is related to the ability of photons to ionize air. Its unit

Roentgen(b) (R) is defined as charge of 2.58 ·(c) 10−4 C produced per kilo-
gram of air.



1.4 Physical Quantities and Units 9

• Kerma K is defined for indirectly ionizing radiations (photons and neutrons) as
the energy transferred to charged particles per unit mass of the absorber. Its SI
unit gray (Gy) is defined as 1 J of energy absorbed per kilogram of medium,

i.e., 1 Gy = 1 Jkg-1 (d) .

• Dose, D,(e) is defined as the energy absorbed per unit mass of medium.

Its SI unit gray (Gy) is defined as 1J (f) of energy absorbed per kilo-

gram of medium, i.e., 1 Gy = 1 J/kg(f). The old unit of dose is rad where

1 Gy = 100,(g) 000 mrad = 100 rad = 100 cGy.
• Equivalent dose H is defined as the dose multiplied by a radiation-weighting

factor wR(h) . The SI unit of equivalent dose is sievert (Sv), the old unit is rem
where 1 Sv = 100 rem.

• Activity A of a radioactive substance is defined as the number of nuclear decays
per time. Its SI unit is becquerel (Bq) corresponding to one decay per second or

1(i)Bq = 1(i)s-1 .

Footnotes

(a) Exposure is a physical quantity and its symbol should be written in italic font.
Therefore, “X” should read: “X”.

(b) Full names of physical units, even when they originate from a surname of a
person, are customarily spelled out with initial letter in low case. Thus, “Rönt-
gen” designating the unit of exposure should read: “röntgen”. However, ab-
breviations for physical units linked to surnames are commonly spelled out
with initial capital letter. Thus, the symbol for the unit “röntgen” is “R”, for
“volt” it is “V”, for “gray” it is “Gy”, and so on.

(c) Multiplication of numbers with powers of 10 is usually indicated with the
multiplication sign “×” rather than with a period “.” or a half-high dot “·”.
Thus the corrected version of “2.58 · 10−4” should read: “2.58×10−4”.

(d) Multiplication of physical units, on the other hand, is usually designated with
blank space between the units or, preferably, with a half-high dot “·” separat-
ing the units. Thus, “Jkg−1” should read: “J kg−1” or, preferably, “J · kg−1”.
Another example: “1 N = 1 kg · m · s−2” and NOT “1 N = 1 kgms−2”.

Note: “ms” stands for millisecond and NOT “meter × second”.
(e) In many texts symbols for physical units are placed between commas. This

unnecessary use of commas is generally not used in current scientific texts.
Thus, we say: “Dose D is defined. . . ” rather than: “Dose, D, is defined. . . ”

(f) While physical quantities are designated with italic symbols, units of physical
quantities are designated with roman type font. Thus, we have “1 J” and NOT
“1J ”, and “1 Gy = 1 J/kg” is corrected to “1 Gy = 1 J/kg”.

(g) While banks and economic texts often use commas to identify thousands in
large numbers, this practice is not acceptable in science. In many countries
comma is actually used to designate the decimal point; thus to avoid confu-
sion between the “decimal” comma and a comma designating groups of thou-
sands, the latter is not allowed in scientific literature. Thus, “100,000 mrad”
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in the text has been corrected to read: “100000 mrad”. If thousands must be
grouped together, the use of blank space is allowed in scientific literature.
Thus, “100000 mrad” can also be written as: “100 000 mrad” for better clarity.

(h) Subscripts and superscripts used with physical quantities are in italic type if
they represent variables, physical quantities, or running numbers; they are in
roman type if they are descriptive. Thus, “wR” is corrected to read: “wR”,
since “R” is descriptive representing radiation. However, the exposure cali-
bration coefficient is written as “NX” with italic “X” and NOT “NX” with
roman “X”, since X represents the quantity exposure.

(i) Physical quantities have a numerical value and physical unit. The two MUST
be separated with one blank space. We thus have: “E = 6 MeV” and NOT
“E = 6MeV”. The text reading: “1Bq = 1s−1 “ has therefore been corrected
to read: “1 Bq = 1 s−1”.

1.4.Q2 (5)

In Table 1.4A list the seven basic physical quantities and their units in the
international system (SI) of units. Also list a few non-SI units for the basic
physical quantities that are used in radiation physics and medical physics.

Table 1.4A The seven basic physical quantities and their units in the SI system of units

Basic physical quantity SI unit Other units

1

2

3

4

5

6

7

SOLUTION:

Table 1.4B The seven basic physical quantities and their units in the SI system of units

Basic physical quantity SI unit Other units

1 Length � meter (m) nm, Å, fm

2 Mass m kilogram (kg) g, mg, µg, eV/c2, keV/c2, MeV/c2

3 Time t second (s) a, h, ms, µs, ns, ps (“a” stands for “year”)

4 Electric current I ampere (A) mA, µA, nA, pA

5 Temperature T kelvin (K) °C

6 Amount of substance mole (mol) mmol, µmol

7 Luminous intensity candela (cd)
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1.5 Classification of Forces in Nature

1.5.Q1 (6)

In Table 1.5A list the four distinct forces acting between various particles in
decreasing order of magnitude. For each force also list its source, transmitted
particle, and relative strength.

Table 1.5A The four fundamental forces in nature, their source, their transmitted particle, and
their relative strength normalized to 1 for the strong force

Natural force Source of force Transmitted particle Relative strength

1

2

3

4

SOLUTION:

Four distinct forces, listed in Table 1.5B are observed in the interaction between
various types of particles. These forces, in decreasing order of strength, are the
strong force, electromagnetic (EM) force, weak force, and gravitational force, with
relative strengths of 1, 1/137, 10−6, and 10−39, respectively. As far as the range of
the four fundamental forces is concerned, the forces are divided into two groups:
two are infinite range force (electromagnetic force and gravitational force) and two
are very short-range force (strong force and weak force).

Each force results from a particular intrinsic property of the particles, such as
strong charge for the strong force, electric charge for the EM force, weak charge for
the weak force, and energy for the gravitational force:

Table 1.5B The four fundamental forces in nature, their source, their transmitted particle, and
their relative strength normalized to 1 for the strong force

Natural force Source of force Transmitted particle Relative strength

1 Strong Strong charge Gluon 1

2 Electromagnetic Electric charge Photon 1/137

3 Weak Weak charge W+,W−,Z0 10−6

4 Gravitational Energy Graviton 10−39
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1.5.Q2 (7)

For proton-electron system determine:

(a) Gravitational force constant Gmpme, where G is the gravitational con-
stant G= 6.67×10−11 m3 · kg−1 · s−2.

(b) Electromagnetic (EM) force constant e2/(4πε0).
(c) Ratio between the gravitational force constant of (a) and the EM force

constant of (b).

SOLUTION:

(a) Gravitational force constant for proton-electron system:
Mass of proton:

mp = 938.3×106 eV/c2 = 938.3×106 eV

(3×108 m/s)2
×(1.602×10−19 J/eV)

= 1.67×10−27 kg. (1.19)

Mass of electron:

me = 0.511×106 eV/c2 = 0.511×106 eV

(3×108 m/s)2
×(1.602×10−19 J/eV)

= 9.11×10−31 kg. (1.20)

Charge of proton and electron: e= 1.602×10−19 C

Gmpme = (6.67×10−11 m3 · kg−1 · s−2)× 938.3×106 eV

(3×108 m · s−1)2

0.511×106 eV

(3×108 m · s−1)2

×(1.602×10−19 J/eV)2

= 1.01×10−67 J · m = 6.32×10−39 eV · Å. (1.21)

(b) Electromagnetic force constant for proton-electron system:
Electric constant of vacuum: ε0 = 8.85×10−12 C/(V · m)
Charge of proton and electron: e= 1.602×10−19 C

e2

4πε0
= (1.6×10−19 C)2

4π×[8.85×10−12 C/(V · m)] = 2.3×10−28 J · m = 14.4 eV · Å. (1.22)

(c) Ratio of gravitational force constant Gmpme for proton-electron system to
electromagnetic force constant e2/(4πε0) for proton-electron system
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Gmpme

e2/(4πε0)
= 1.01×10−67 J · m

2.3×10−28 J · m
= 6.32×10−39 eV · Å

14.4 eV · Å
= 4.39×10−40. (1.23)

1.6 Classification of Fundamental Particles

1.6.Q1 (8)

Complete the block diagram of Fig. 1.1A dealing with the basic classification
of fundamental particles.

Fig. 1.1A Classification of fundamental particles
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SOLUTION:

Fig. 1.1B Classification of fundamental particles

1.7 Classification of Radiation

1.7.Q1 (9)

Radiation is classified into two main categories: non-ionizing and ionizing,
depending on its ability to ionize matter. The ionization potential of atoms,
i.e., the minimum energy required for ionizing an atom, ranges from a few
electron volts for alkali elements to 24.6 eV for helium (noble gas). Ionization
potentials of all other atoms are between these two extremes.

Complete the block diagram of Fig. 1.2A dealing with classification of
radiation.



1.7 Classification of Radiation 15

Fig. 1.2A Classification of radiation

SOLUTION:

Fig. 1.2B Classification of radiation
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1.8 Classification of Ionizing Radiation

1.8.Q1 (10)

Complete Table 1.6A listing areas of modern life in which ionizing radiation
is used.

Table 1.6A Use of ionizing radiation in science and industry

Use of ionizing radiation Brief description of the particular use

1

2

3

4

5

6

7

8

9

10

SOLUTION:

Table 1.6B Use of ionizing radiation in science and industry

Use of ionizing radiation Brief description of the particular use

1 Medicine Diagnostic radiology. Nuclear medicine. Radiotherapy.

2 Nuclear reactor Basic research. Production of radionuclides. Electric power.

3 Industrial radiography Nondestructive inspection of welds in airplanes and pipelines.

4 Well logging Inspection of geologic and recoverable hydrocarbon zones.

5 Insect pest control For pest sterilization in insect pest eradication.

6 Security services Screening of cargo and luggage. Sanitation of mail (antrax).

7 Food production Killing of bacteria and viruses in food. Slowing ripening process.

8 Waste management Killing of pathogenic microorganisms and harmful bacteria.

9 Chemical industry Production of polymers and vulcanized tires.

10 Production of weapons Military production of weapons of mass destruction.
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1.9 Classification of Directly Ionizing Radiation

1.9.Q1 (11)

Directly ionizing radiation consists of charged particles and for use in med-
ical physics falls into two categories: light charged particles (electrons and
positrons) and heavy charged particles such as protons, etc. In the table below
list the most common sources of electrons as well as the specific names of the
electrons that the sources emit.

Table 1.7A Common sources of electrons and nomenclature for electrons produced

Source of electrons Name of electron that the source produces

1

2

3

4

5

6

7

8

9

10

11

SOLUTION:

Table 1.7B Common sources of electrons and nomenclature for electrons produced

Source of electrons Name of electron that the source produces

1 Photoelectric effect Photoelectron

2 Compton effect Compton recoil electron

3 Nuclear pair production Pair production electron

4 Triplet production Pair production electron

5 Beta minus nuclear decay Beta particle (electron)

6 Internal conversion Internal conversion electron

7 Linac, betatron, microtron Megavoltage electron

8 Auger effect Auger electron, Coster-Kronig electron

9 Charged particle collision Delta ray electron

10 Thermionic emission Thermion

11 Exoelectron emission Exoelectron
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1.9.Q2 (12)

In Table 1.8A list the first five lowest-mass heavy charged particles. List their
designation, such as “hydrogen-1”, their symbol, as well as the name for the
nucleus and the associated atom.

Table 1.8A Basic properties of common heavy charged particles used in nuclear physics and
medicine

Designation Symbol Name of nucleus Protons Neutrons Nuclear
stability

Name of atom

1

2

3

4

5

SOLUTION:

According to the mode of ionization, ionizing radiation is classified into two distinct
categories: directly ionizing radiation and indirectly ionizing radiation. Directly
ionizing radiation comprises charged particles that deposit energy in the absorber
through a direct one-step process involving Coulomb interactions between the di-
rectly ionizing charged particle and orbital electrons of the atoms of the absorber.

For use in radiotherapy heavy charged particles are defined as particles such a
proton and heavier ions with mass exceeding that of the electron. The first five
lowest-mass heavy charged particles of importance in nuclear physics and also po-
tentially useful in medicine for treatment of disease are listed in Table 1.8B.

Table 1.8B Basic properties of common heavy charged particles used in nuclear physics and
medicine

Designation Symbol Name of nucleus Protons Neutrons Nuclear
stability

Name of atom

1 Hydrogen-1 1
1H Proton 1 0 Stable Protium

2 Hydrogen-2 2
1H Deuteron 1 1 Stable Deuterium

3 Hydrogen-3 3
1H Triton 1 2 Radioactive Tritium

4 Helium-3 3
2He Helion 2 1 Stable Helium-3

5 Helium-4 4
2He Alpha particle 2 2 Stable Helium-4
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1.10 Classification of Indirectly Ionizing Photon Radiation

1.10.Q1 (13)

In addition to ultraviolet radiation there are five other types of indirectly ion-
izing photon radiation. In Table 1.9A provide a list of the five types of in-
directly ionizing photon radiation used in medical imaging and radiotherapy.
Also provide the source of each radiation type.

Table 1.9A Classification of indirectly ionizing photon radiation

Indirectly ionizing photon radiation Origin of radiation

1

2

3

4

5

SOLUTION:

Indirectly ionizing radiation comprises neutral particles (photons and neutrons) that
deposit energy in the absorber through a two-step process with the first step releas-
ing charged particles (photons release either electrons or electron/positron pairs;
neutrons release protons or heavier ions) and the second step the released charged
particles deposit a portion of their energy in the absorber through direct Coulomb
interactions with orbital electrons of the atoms of the absorber.

Indirectly ionizing photon radiation consists of three categories of photon: ultra-
violet (uv), x ray, and gamma ray. While ultraviolet photons are of some limited use
in medicine, imaging and treatment of disease with radiation are carried out with
photons of higher energy than that of uv photons. With regard to their origin, these
higher energy photons fall into five categories as listed in Table 1.9B:



20 1 Introduction to Modern Physics

Table 1.9B Classification of indirectly ionizing photon radiation

Indirectly ionizing photon radiation Origin of radiation

1 Gamma rays Result from nuclear transitions in excited
radionuclides referred to as gamma decay.

2 Annihilation quanta Result from positron-electron annihilation, be it with
stationary positron or an energetic positron.

3 Characteristic (fluorescence) x rays Result from electron transitions between atomic shells
in an excited atom.

4 Bremsstrahlung x rays Result from interactions between an energetic electron
and a nucleus of absorber.

5 Synchrotron radiation Results from electrons moving in circular orbits in a
magnetic field (storage ring).

1.11 Radiation Quantities and Units

1.11.Q1 (14)

Several quantities and units are used for quantifying radiation. In Table 1.10A
list at least five of these quantities, their definition, their unit in the SI system,
their traditional old unit, and the relationship between their SI unit and the old
unit.

Table 1.10A Basic physical quantities and their units used in radiation measurement

Quantity Definition SI unit Old unit Conversion

1

2

3

4

5
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SOLUTION:

Table 1.10B Basic physical quantities and their units used in radiation measurement

Quantity Definition SI unit Old unit Conversion

1 Exposure X X = �Q
�mair

2.58× 10−4C
kg air 1 R = 1 esu

cm3 airSTP
1 R = 2.58× 10−4C

kg air

2 Kerma K K = �Etr
�m

1 Gy = 1 J
kg – –

3 Dose D D = �Eab
�m

1 Gy = 1 J
kg 1 rad = 100 erg

g 1 Gy = 100 rad

4 Equivalent dose H H =DwR 1 Sv 1 rem 1 Sv = 100 rem

5 Activity A A = λN 1 Bq = 1 s−1 1 Ci = 3.7×1010 s−1 1 Bq = 1 Ci
3.7×1010

1.12 Dose Distribution in Water for Various Radiation Beams

1.12.Q1 (15)

Dose deposition in water is one of the most important characteristics of the
interaction of radiation beams with matter. This is true in general radiation
physics and even more so in medical physics, where the dose deposition prop-
erties in tissue govern both the diagnosis of disease with radiation (imaging
physics) as well as treatment of disease with radiation (radiotherapy physics).

Imaging with ionizing radiation is limited to the use of x-ray beams in
diagnostic radiology and gamma ray beams in nuclear medicine, while in ra-
diotherapy the use of radiation is broader and covers essentially all ionizing
radiation types ranging from x rays and gamma rays through electrons to neu-
trons, protons and heavier charged particles. For a given radiation beam, its
dose deposition in water is usually depicted in the form of percentage depth
dose (PDD) curve that plots the radiation dose (normalized to 100 % at the
depth of dose maximum) against depth z in water.

Diagrams in Fig. 1.3 depict percentage depth doses (PDD) against depth in
water z for various directly and indirectly ionizing radiation beams used in
radiotherapy. For PDD curves in (A), (B), (C), and (D) identify:

(a) Mode of radiation (directly or indirectly ionizing).
(b) Type of radiation (photon, electron, etc.).
(c) Beam energy (80 kVp, 18 MV, 10 MeV, etc.)



22 1 Introduction to Modern Physics

Fig. 1.3 Percentage depth dose (PDD) against depth z in water for radiation beams of various
modes, types and energies

SOLUTION:

Figure 1.4 depicts percentage depth doses (PDD) against depth z in water for radia-
tion beams of various modes, types and energies.
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Fig. 1.4 Percentage depth dose (PDD) against depth z in water for radiation beams of various
modes, types and energies. (A) and (B) are for indirectly ionizing radiation (photons and neutrons,
respectively); (C) and (D) are for directly ionizing radiation (electrons and heavy charged particles,
respectively). C.P. = charged particle, d = deuteron, t = triton, C = carbon ion, p = proton
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Of the four beam categories of Fig. 1.4, photon beams in the indirectly ionizing
radiation category and electron beams in the directly ionizing radiation category are
considered conventional beams, well understood, and readily available for radiother-
apy in all major medical institutions around the world. On the other hand, neutron
beams in the indirectly ionizing radiation category and heavy ions including protons
in the directly ionizing radiation category remain in the category of special beams,
available in only a limited number of institutions around the world, despite having
been in use for the past 5 decades. These beams offer some advantages in treatment
of certain malignant diseases; however, in comparison with conventional beams,
they are significantly more complicated to use as well as to maintain and their in-
frastructure and operating costs are also significantly higher, currently precluding a
widespread clinical use.

Special beams (neutrons and protons) provide certain advantages when used in
treatment of selected tumor types; however, their choice and prescribed dose must
account not only for the physical beam characteristics but also for the biological
effects associated with radiation beams: the relative biological effectiveness (RBE)
and the oxygen enhancement ratio (OER). The RBE is defined by the ratio between
dose of test radiation to dose of standard radiation (250 kVp x rays) to produce
the same biological effect. The OER is defined by the ratio of doses without and
with molecular oxygen (hypoxic versus well oxygenated cells) to produce the same
biological effect.

1.13 Basic Definitions for Atomic Structure

1.13.Q1 (16)

Complete Table 1.11A dealing with basic constituents of nuclides of impor-
tance to medical physics.

Table 1.11A Basic characteristics of selected nuclides of importance to medical physics

Physical quantity Symbol 1
1H 12

6C 60
27Co 137

55Cs 192
77Ir 207

82Pb 226
88Ra 235

92U

1 Atomic number

2 Number of protons

3 Number of electrons

4 Atomic mass number

5 Number of nucleons

6 Number of neutrons
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SOLUTION:

Table 1.11B Basic characteristics of selected nuclides of importance to medical physics

Physical quantity Symbol 1
1H 12

6C 60
27Co 137

55Cs 192
77Ir 207

82Pb 226
88Ra 235

92U

1 Atomic number Z 1 6 27 55 77 82 88 235

2 Number of protons Z 1 6 27 55 77 82 88 235

3 Number of electrons Z 1 6 27 55 77 82 88 235

4 Atomic mass number A 1 12 60 137 192 207 226 92

5 Number of nucleons A 1 12 60 137 192 207 226 92

6 Number of neutrons A–Z 0 6 33 82 115 125 138 143

1.13.Q2 (17)

Lithium borate with chemical formula Li2B4O7 is used as ingredient in pro-
duction of glass and ceramics. It is also used as a sensitive phosphor in ther-
moluminescence dosimetry (TLD). Determine the mean molecular mass of
lithium borate, having the following atomic constituents: lithium Li, boron
B, and oxygen O. Also determine the mean rest energy of a lithium borate
molecule.

SOLUTION:

From the NIST (http://physics.nist.gov/PhysRefData/Compositions/index.html) we
obtain the isotopic composition and atomic masses for the stable isotopes of the
constituent nuclides: Li, B, and O. The relevant data are shown in the table below:

Table 1.12 Basic atomic data for constituents of lithium borate (Li2B4O7) according to the NIST

Nuclide Atomic number Stable isotopes Abundance (%) Isotopic atomic mass

Li 3 Li-6 7.59 6.0151223

Li-7 92.41 7.0160041

B 5 B-10 20 10.012937

B-11 80 11.009306

O 8 O-16 99.76 15.994915

O-17 0.04 16.999132

O-18 0.20 17.999161

http://physics.nist.gov/PhysRefData/Compositions/index.html
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Using the data given in Table 1.12 we now calculate the mean atomic masses for
the three atoms comprising lithium borate as follows:

M̄ (Li) = 0.0759×6.0151223 u + 0.9241×7.0160041 u = 6.941 u, (1.24)

M̄ (B) = 0.20×10.012937 u + 0.80×11.0093055 u = 10.811 u, (1.25)

M̄ (O) = 0.9976×15.994915 u + 0.0004×16.9991315 u

+ 0.0020×17.999161 u

= 15.9994 u. (1.26)

Mean molecular mass of Li2B4O7 is determined by adding the weighted mean
atomic masses of the individual constituents to get

M̄ (Li2B4O7)= 2M̄ (Li)+ 4M̄ (B)+ 7M̄ (O)

= 2×6.941 u + 4×10.811 u + 7×15.9994 u = 169.12 u. (1.27)

Finally, the mean rest energy of a lithium borate molecule is

M̄ (Li2B4O7)c
2 = M̄ (Li2B4O7,u)×931.494028 MeV/u

= (169.12 u)×931.494028 MeV/u = 157 534.27 MeV. (1.28)

1.13.Q3 (18)

Cells in human body use sugar (glucose: C6H12O6) as their major source of
energy. Blood circulating in the body delivers glucose to cells and the blood
sugar concentration (also referred to as blood glucose level) is controlled
through various negative feedback mechanisms and kept within a relatively
narrow range.

The blood sugar concentration is specified either in mmol/� representing
molar concentration of sugar per liter of blood or in mg/d� representing mass
concentration of sugar per deciliter of blood.

Determine the relationship between mmol/� and mg/d� in measurement
of blood glucose.

SOLUTION:

To find the relationship between mmol/� and mg/d� we first determine the mean
molecular mass (standard molecular weight) M of glucose C6H12O6 using the
following standard molecular weight of carbon C, hydrogen H, and oxygen O
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(see T1.22 and T1.23)

M (C) = 12.0107 u,

M (H) = 1.00794 u,

M (O) = 15.9994 u

to get the following result for the mean molecular mass (standard molecular weight)
of glucose

M (C6H12O6)= 6×12.0107 u+12×1.00794 u+6×15.9994u = 180.12 u. (1.29)

Thus,
1 mole of glucose corresponds to 180.12 g of glucose,
1 mmol/� corresponds to 180.12 mg/� or 18.012 mg/d�, usually approximated

to 18 mg/d�.
The normal fasting glucose level in human blood is about 4.5 mmol/� to

5.6 mmol/� or 80 mg/d� to 100 mg/�.

1.14 Basic Definitions for Nuclear Structure

1.14.Q1 (19)

For all stable nuclides listed in Table A.1 of Appendix A prepare a Cartesian
diagram plotting their atomic number Z on the ordinate (y) axis and atomic
mass number A on the abscissa (x) axis. On the same diagram also plot the
function

Z(A)= A

2 + 0.0155A2/3
, (1.30)

which has been proposed empirically as a reasonable approximation linking
Z and A for all stable nuclides.

SOLUTION:

A plot of atomic number Z against atomic mass number A for the stable isotopes
listed in Table A.1 is given in Fig. 1.5.
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Fig. 1.5 Plot of (1.30) shown with solid line and data from Table A.1 of Appendix A for all stable
nuclides shown with data points. Atomic mass number A is plotted on the abscissa (x) axis and
atomic number Z on the ordinate (y) axis. The agreement between the data points and (1.30) is
excellent

1.15 Nuclear Binding Energies

1.15.Q1 (20)

The sum of masses of the individual components of a nucleus that contains Z
protons and (A–Z) neutrons is larger than the actual mass of the nucleus. This
difference in mass is called the mass defect (mass deficit) �m and its energy
equivalent �mc2 is called the total binding energy EB of the nucleus. The
binding energy per nucleon (EB/A) in a nucleus (i.e., the total binding energy
of a nucleus divided by the number of nucleons) varies with the number of
nucleons A and is of the order of ∼8 MeV/nucleon.

(a) Determine the binding energy per nucleon EB/A = �mc2/A, where
A is the atomic mass number, for the following nuclei: (1) deuteron
(2
1H), (2) alpha particle (4

2He), (3) boron (10
5B), (4) oxygen-16 (16

8O),
(5) cobalt-60 (60

27Co), (6) cesium-137 (137
55Cs), (7) lead-208 (208

82Pb), and
(8) uranium-235 (235

92U).
(b) Plot EB/A against A for nuclides listed in (a).
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(c) The peculiar shape of the EB/A curve against A suggests two methods
for converting mass into energy: fusion of nuclei at low A and fission
of nuclei at large A. Briefly discuss the principles of: (1) Fusion and
(2) Fission.

SOLUTION:

(a) Binding energy per nucleon EB/A is given as follows

EB

A
= �mc2

A
= Zmpc

2 + (A−Z)mnc
2 −Mc2

A
, (1.31)

where

Z and A are the nuclide atomic number and atomic mass number, respectively.
mpc

2 is the proton rest energy (938.272013 MeV).
mnc

2 is the neutron rest energy (939.565346 MeV).
Mc2 is the nuclear rest energy that may be obtained directly from nuclear

data tables or from atomic mass M (u) available from the NIST with the
following expression

Mc2 = M (u)c2 −Zmec
2

= M (u)×931.494 028 MeV/u −Z×0.510 999 MeV, (1.32)

with mec
2 the electron rest mass (0.510999 MeV).

By way of example, we calculate EB/A for the 4
2He nucleus using the following

steps:

(1) According to the NIST (http://physics.nist.gov/PhysRefData/Compositions/
index.html) the atomic mass of 4

2He is 4.002603 u.
(2) According to (1.32) the nuclear rest energy of 4

2He is

Mc2 = (4.002603 u)×(931.494028 MeV/u)− 2×0.510999 MeV

= 3728.4009 MeV − 1.0220 MeV = 3727.3791 MeV. (1.33)

(3) Using (1.31) we now calculate EB/A for 4
2He and get

EB

A
= 2×(938.272013 MeV)+ 2×(939.565346 MeV)− (3727.3791 MeV)

4

= 7.0739 MeV. (1.34)

Binding energies per nucleon for the other nuclei of part (a) were calculated with
the same technique as the one used for the helium-4 nucleus and the final results are
tabulated in Table 1.13 and plotted in Fig. 1.6.

http://physics.nist.gov/PhysRefData/Compositions/index.html
http://physics.nist.gov/PhysRefData/Compositions/index.html
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Table 1.13 Atomic mass M (u), nuclear rest energyMc2, nuclear binding energyEB, and binding
energy per nucleon EB/A for selected nuclides. Data are available in Table A.1 of Appendix A

Nucleus Atomic mass
M (u)

Nuclear rest energy
Mc2 (MeV)

Binding energy
EB (MeV)

Binding energy per
nucleon EB/A (MeV)

1 1
2H 2.014102 1875.6128 2.22458 1.1123

2 2
4He 4.002603 3727.3791 28.29569 7.0739

3 10
5B 10.012937 9324.4362 64.75071 6.4751

4 16
8O 15.994915 14895.0796 127.61927 7.9762

5 60
27Co 59.933822 55814.2014 524.80028 8.7467

6 137
55Cs 136.907084 127500.0283 1149.29287 8.3890

7 208
82Pb 207.976636 193687.0956 1636.44573 7.8675

8 235
92U 235.043923 218895.0023 1783.87084 7.5909

Fig. 1.6 Binding energy per nucleon EB/A in MeV/nucleon against atomic mass number A for
all known nuclides shown with solid curve and for the nuclides of Table 1.13 shown with data
points

(b) Plot of EB/A data of Table 1.13 against the atomic mass number A is shown
in Fig. 1.6.

(c) Nuclear fusion and fission are practical examples of converting mass into en-
ergy. Nuclear energy is contained within the atomic nucleus that consists of protons
and neutrons held together by a strong force. The larger the binding energy per nu-
cleon of an atom, the more stable is the atom. As shown in Fig. 1.6, atoms with
atomic mass number A ≈ 60 are the most stable in nature. Therefore, fusing light
nuclei into a heavier nucleus or splitting a heavy nucleus into lighter fragments both
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result in nuclei with stronger binding energy per nucleon and, consequently, conver-
sion of a fraction of nuclear mass into energy.

(1) Fusion of two nuclei of very small mass, e.g., 2
1H + 3

1H → 4
2He + n, creates a

more massive nucleus and releases a certain amount of energy. Experiments using
controlled nuclear fusion for production of energy have so far not been successful;
however, steady progress in fusion research is being made in various laboratories
around the world, so it is reasonable to expect that in the future controlled fusion
will become possible and will result in a relatively clean and abundant means for
sustainable power generation.

(2) Fission of elements of large mass, e.g., 235
92U+n, creates two smaller mass and

more stable nuclei with release of energy in the form of heat and radiation. Nuclear
fission was observed first in 1934 by Enrico Fermi and described correctly by Otto
Hahn, Friedrich Strassmann, Lise Meitner, and Otto Frisch in 1939. In 1942 at the
University of Chicago Enrico Fermi and colleagues carried out the first controlled
chain reaction based on nuclear fission.

1.16 Nuclear Models

1.16.Q1 (21)

Use the Weizsäcker binding energy formula to determine the binding energy
of the following three nuclei: (a) Boron-10 (B-10); (b) Cobalt-60 (Co-60);
and (c) Uranium-235 (U-235).

SOLUTION:

The liquid drop nuclear model assumes that nuclei resemble a very dense in-
compressible spherical liquid drop. The Weizsäcker empirical binding energy for-
mula

EB
(A

Z X
)≈ C1A−C2A

2/3 −C3
Z2

A1/3
−C4

(A− 2Z)2

A
, (1.35)

where Z and A are the atomic number and atomic mass number, respectively, of
nucleus X, accounts for the nuclear volume effect (C1), nuclear surface effect (C2),
Coulomb repulsion of protons (C3), and excess of neutrons over protons in the nu-
cleus (C4). Constants C1, C2, C3, and C4 were determined empirically and equal to
15.75 MeV, 17.8 MeV, 0.711 MeV, and 23.7 MeV, respectively.

Using Weiszäcker equation we get the following results for the binding energies
of 10

5B, 60
27Co, and 235

92U:



32 1 Introduction to Modern Physics

(a)

EB
(10

5B
)= 15.75×10 MeV − 17.8×102/3 MeV

− 0.711× 52

101/3
MeV − 23.7× (10 − 2×5)2

10
MeV

= 66.6 MeV, (1.36)

deviating from the actual value of 64.8 MeV determined in Prob. 20 by 2.8 %.

(b)

EB
(60

27Co
) = 15.75×60 MeV − 17.8×602/3 MeV

− 0.711× 272

601/3
MeV − 23.7× (60 − 2×27)2

60
MeV

= 525 MeV, (1.37)

deviating from the actual value of 524.8 MeV determined in Prob. 20 by 0.04 %.

(c)

EB
(235

92U
) = 15.75×235 MeV − 17.8×2352/3 MeV

− 0.711× 922

2351/3
MeV − 23.7× (235 − 2×92)2

235
MeV

= 1782.9 MeV, (1.38)

deviating from the actual value of 1783.9 MeV determined in Prob. 20 by −0.06 %.

1.17 Physics of Small Dimensions and Large Velocities

1.17.Q1 (22)

At the end of the 19-th century physics was considered a completed disci-
pline within which most of the natural physical phenomena were satisfactorily
explained. However, as physicists broadened their interests and refined their
experimental techniques, it became apparent that classical physics suffered
severe limitations in two areas: (i) dealing with dimensions comparable to
small atomic dimensions and (ii) dealing with velocities comparable to speed
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of light. Modern physics handles these limitations in two distinct, yet related,
subspecialties: quantum physics and relativistic physics, respectively.

State or calculate typical dimensions of:

(a) Rutherford-Bohr atomic model (radii of nucleus and atom) for hydrogen-
1 (H-1 protium) atom and for uranium-235 atom.

(b) Copernican heliocentric planetary celestial model (radii of Sun and
Earth’s orbit) for the Earth and Sun planetary system.

(c) Normalize both models to the same scale and determine which model
exhibits larger radius and by what factor?

SOLUTION:

(a) Rutherford-Bohr atomic model: Electrons are in planetary motion about the
stationary nucleus. Most of the atomic mass is concentrated in the nucleus that is
some five orders of magnitude smaller than the atomic radius.

Nuclear radius R is estimated with the following expression

R =R0
3
√
A, (1.39)

where R0 is the nuclear radius constant (1.25 fm) and A is the atomic mass number
of a given nuclide.

Using (1.39) we get the following nuclear radii for the hydrogen-1 (protium)
atom and for the uranium-235 atom, respectively

R
(1

1H
)=R0 ≈ 1.25 fm and R

(235
92U

)= (1.25 fm)× 3
√

235 ≈ 7.7 fm. (1.40)

Atomic radius of the Rutherford-Bohr atomic model is defined well for one-electron
structures such as the hydrogen atom for which one can determine the atomic Bohr
radius a0 from first principles as

a0 = aH = 4πε0

e2

(�c)2

mec2
≈ 0.53 Å. (1.41)

Contrary to the impression that a high atomic number Z atom is much larger than
the hydrogen atom, measurements have shown that the outer shell radius of a high
Z atom such as uranium (Z = 92) exceeds the hydrogen atomic radius by only a
factor of ∼ 2. We thus estimate the radius of the uranium atom to be about 1 Å.

(b) Heliocentric Copernican planetary system: Planets revolve about the sta-
tionary Sun in or close to the ecliptic plane.

Solar radius rS is used as unit of length suitable for expressing the size of stars
and is estimated to be 1 rS = 6.955×108 m ≈ 7×108 m.
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Mean distance between the Earth and the Sun (mean radius of Earth’s orbit
around the Sun) is used as unit of length suitable for expressing the distance between
a planet and the Sun in the Solar system. The unit is called the astronomical unit (au)
and has the following magnitude 1 au = 149.6×1011 m = 215 rS ≈ 150×106 km.

(c) Ratios:

Earth’s orbit

Solar radius
≈ 150×109 m

7×108 m
= 215 (1.42)

Hydrogen radius

Proton radius
≈ 0.53×10−10 m

1.25×10−15 m
= 42400 (1.43)

Uranium radius

Radius of U-235 nucleus
≈ 1.5×10−10 m

7.7×10−15 m
= 19500 (1.44)

Thus, when the Sun and the atomic nucleus are normalized to the same size, the
Rutherford-Bohr atom has a radius at least two orders of magnitude larger (range:
factor of ∼90 for the uranium-235 atom to ∼200 for the hydrogen-1 atom) than
the Sun-Earth planetary system. The amount of empty space in an atom is truly
staggering and can be explained only by the enormous mass density of the nucleus
which amounts to ∼1.5×1015 g/cm3.

1.18 Planck Energy Quantization

1.18.Q1 (23)

Quantum physics was born in 1900 when Max Planck presented his revolu-
tionary idea of energy quantization of physical systems that undergo simple
harmonic oscillations. Planck energy ε quantization is expressed as ε = nhν,
where n is the quantum number (n= 0,1,2,3, . . . ), h is a universal constant
referred to as the Planck constant, and ν is the frequency of oscillation.

(a) Define the process of quantization.
(b) Give at least five examples of quantization in daily life.
(c) Provide at least five examples of quantization in modern physics.
(d) Describe Planck postulate and briefly discuss Planck’s pioneering use

of the quantization idea in 1900.

SOLUTION:

(a) Quantization is a process of constraining a quantity from a set of continuous
values to a set of discrete values. The process is applied in various domains resulting
in audio quantization, video and image quantization, and color quantization. It is
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also applied in mathematics and modern physics where it is used to develop quantum
field theory from the classical field theory.

(b) Examples of quantization in daily life are:
Height quantization using steps in stairwells or rungs on ladders.
Quantization of currency and prices of goods and services.
Quantization of time.
Quantization of person’s age.

(c) Examples of quantization in modern physics are:
Planck’s quantization of oscillators in emission of blackbody radiation in 1900.
Einstein’s quantization of light quanta in photoelectric effect in 1905.
Einstein’s quantization of atomic vibrations in theory of specific heat in 1907.
Millikan’s elementary charge quantization in 1910.
Bohr’s quantization of angular momentum and energy in 1913.
Hydrogen emission spectrum and derivation of Rydberg constant in 1913.

(d) Classical physics predicts that the relationship between dρ(T )/dν, the spectral
energy density (energy per volume per frequency), and frequency ν of the emitted
radiation is given by the Rayleigh-Jeans law as follows

dρ(T )

dν
= 8πkT

c3
ν2, (1.45)

with

T absolute temperature of the blackbody.
k Boltzmann constant.
c speed of light in vacuum.

Rayleigh-Jeans law predicts that energy density ρν(T ) increases as the square of
frequency ν, approaching ∞ as ν → ∞, as shown with dashed curves in Fig. 1.7.
This phenomenon, termed the ultraviolet catastrophe, is not borne out by exper-
iments which show that blackbody emitters have clear maxima in their emission
spectra with ρν(T )→ 0 as ν→ ∞, as shown schematically with the solid curves in
Fig. 1.7.

To solve the discrepancy between the classical theory and experiment Planck
modeled a blackbody as a collection of oscillators that can only take on discrete,
quantized energies described as

εn = nhν, (1.46)

where n is an integer (0,1,2, . . . ); ν is the frequency of emitted radiation; and h is
a constant, now referred to as the Planck constant.

Based on oscillator energy quantization, Planck’s alternative to Rayleigh-Jeans
classical law for spectral energy density ρν(T ) is called the Planck law of blackbody
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Fig. 1.7 Spectral energy density dρ(T )/dν against photon frequency ν in black body radiation
for three temperatures: 1000 K, 2000 K, and 3000 K. Dashed lines are for Rayleigh-Jeans theory,
solid lines for Planck theory. Note the shift of the peak in dρ(T )/dν toward higher frequencies
with an increase in temperature T (see Prob. 24)

radiation and reads as follows

dρ(T )

dν
= 8πhv3

c3(e
hv
kT − 1)

. (1.47)

The Planck law accurately predicts experimental data and, as shown in Fig. 1.7,
exhibits a maximum; approaches 0 at low and high frequencies v and, furthermore,
at low frequencies transforms into Rayleigh-Jeans law, making the energy spectrum
of each oscillator effectively continuous. However, at high frequencies the use of
energy quantization is required in order to reach agreement between theory and
experiment avoiding the ultraviolet catastrophe.

At low frequencies ν we can expand the exponential function of (1.47) as follows

{
e
hν
kT − 1

}≈ 1 + hν

kT
+ · · · − 1 (1.48)

and (1.47) transforms into Rayleigh-Jeans equation given in (1.45).
Planck’s use of the simple oscillator energy quantization εn = nhν in theory of

blackbody radiation ushered in the quantum physics which subsequently made use
of several other quantization processes, listed in (c). For example, in 1905 Einstein
took the quantization idea a step further and explained the surface photoelectric ef-
fect by introducing the “photon quantum hypothesis” whereby an electron is ejected
from metallic surface by the impact of a particle of light (photon). The relationship
between the photon frequency v and the kinetic energy of the emitted electron EK
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is given as

hν =EK + eφ, (1.49)

where eφ is the work function, characteristic of the particular metal.

1.18.Q2 (24)

In Prob. 23 the Planck law of blackbody radiation expressing the spectral
density of a blackbody emitter was written in the frequency ν domain as

dρ(T )

dν
= 8πhν3

c3(e
hν
kT − 1)

. (1.50)

The spectral energy density can also be written in the wavelength λ domain
and is usually designated as dρ(T )/dλ. A plot of dρ(T )/dλ against λ, simi-
larly to a plot of dρ(T )/dν against ν (see Fig. 1.7), exhibits a peak λmax which
is proportional to temperature T ; however, its position shifts toward shorter
λ as the temperature increases, in contrast to the behavior of the dρ(T )/dν
against ν graphs where νmax shifts toward higher frequencies ν as the temper-
ature increases.

(a) Derive an expression for dρ(T )/dλ from dρ(T )/dν given in (1.50).
(b) Show that the maximum in dρ(T )/dν which occurs at frequency νmax

is proportional to temperature T (Wien displacement law in frequency
domain).

(c) Show that the maximum in dρ(T )/dλ which occurs at wavelength λmax
is inversely proportional to temperature T (Wien displacement law in
wavelength domain).

SOLUTION:

(a) The spectral energy density in the wavelength domain dρ(T )/dλ is given as

dρ(T )

dλ
= dρ(T )

dν

∣∣∣∣dν

dλ

∣∣∣∣= 8πhν3

c3(e
hν
kT − 1)

c

λ2
= 8πhc

λ5(e
hν
kT − 1)

. (1.51)

Equation (1.51) is plotted in Fig. 1.8 for three temperatures (2000 K, 2500 K, and
3000 K), while Fig. 1.9 displays (1.50) for the same three temperatures. The shifts
in νmax and λmax with temperature T are clearly noticeable with νmax proportional
to T and λmax inversely proportional to T .

(b) The Wien displacement law in the frequency domain states that νmax is propor-
tional to temperature T of the blackbody emitter, i.e., Vmax = CνT (see Fig. 1.9).
The constant Cν is obtained from the Planck law by setting the second derivative
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Fig. 1.8 Spectral energy density in the wavelength domain, dρ(T )/dλ, against wavelength λ. Note
the shift of λmax to lower wavelengths with increasing temperature T of the blackbody emitter

Fig. 1.9 Spectral energy density in the frequency domain, dρ(T )/dν, against frequency ν. Note
the shift of νmax to higher frequencies with increasing temperature T of the blackbody emitter

d2ρ(T )/dν2|ν=νmax equal to zero to find the relationship between νmax and T as
follows

d2ρ(T )

dν2

∣∣∣∣
ν=νmax

= 24πhν2c3(e
hνmax
kT − 1)− 8πhν3c3 h

kT
e
hνmax
kT

c6(e
hνmax
kT − 1)2

= 0 (1.52)
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Fig. 1.10 Functions e−x , 1 − 1
3x, and 1 − 1

5x plotted against variable x and used in graphical
solution of transcendental equations (1.54) and (1.58)

or

3
(
e
hνmax
kT − 1

)− hν

kT
e
hνmax
kT = 0. (1.53)

Introducing a new variable xmax = hνmax/(kT ) into (1.53) we get a transcendental
equation

3
(
exmax − 1

)− xmaxe
xmax = 0 or 1 − xmax

3
= e−xmax (1.54)

that cannot be solved in a closed form; however, we can solve it numerically or
graphically by plotting its two functions: e−x and 1 − 1

3x and finding solutions to
(1.54) through determining the intercepts between the two functions occurring at
x = xmax. As shown in Fig. 1.10, the two functions have two intercepts that provide
two solutions: a trivial solution at xmax = 0 and a physical solution at xmax = 2.8214.
The frequency νmax where dρ(T )/dν attains its maximum value at a given T is now
determined as follows

νmax = xmax
k

h
T = 2.8214×1.38×10−23 J · K−1

6.626×10−34 J · s
T = CνT

= (
5.880×1010 s−1/K

)×T . (1.55)

The Wien displacement constant in the frequency domain is given as Cν =
5.880×1010 s−1/K.

(c) The Wien displacement law in the wavelength domain states that λmax is in-
versely proportional to the temperature T of the blackbody emitter, i.e., λmax =
Cλ/T (see Fig. 1.8). The constant Cλ is obtained by setting the second derivative
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d2ρλ(T )/dλ
2|λ=λmax equal to zero to find the relationship between λmax and T as

follows

d2ρλ(T )

dλ2

∣∣∣∣
λ=λmax

=
−8πhc[5λ4(e

hc
kT λmax − 1)− λ5

max
hc

kT λ2
max
e

hc
kT λmax ]

λ10(e
hc

kT λmax − 1)2
= 0 (1.56)

or

5
(
e

hc
kT λmax − 1

)− hc

kT λmax
e

hc
kT λmax = 0. (1.57)

Introducing a new variable xmax = hc/(kT λmax) into (1.57) we get a transcendental
equation

5
(
exmax − 1

)− xmaxe
xmax = 0 or 1 − x

5
= e−xmax (1.58)

that like (1.54) cannot be solved in a closed form; however, we can solve it numer-
ically or graphically by plotting its two functions: e−x and (1 − 1

5x) and finding
solutions to (1.58) through determining the intercepts between the two functions
occurring at x = xmax. As shown in Fig. 1.10, the two functions have two intercepts
that provide two solutions: a trivial solution at xmax = 0 and a physical solution at
xmax = 4.9651. The wavelength λmax where dρ(T )/dλ attains its maximum value
at a given T is now determined as follows

λmax = hc

xmaxkT
= (6.626×10−34 J · s)×(3×108 m · s−1)

4.9651×1.381×10−23 J · K−1

1

T

= Cλ

T
= 2.90×10−3 m · K

T
. (1.59)

The Wien displacement constant in the wavelength domain is given as Cλ =
2.90×10−3 m · K.

1.19 Quantization of Electromagnetic Radiation

1.19.Q1 (25)

(a) Show that photon energy Eν is related to photon wavelength λ through
the following relationship

Eν = 12.4×103 eV · Å

λ
= 1.24×10−6 eV · m

λ
. (1.60)
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(b) Show that photon momentum pν is related to photon wavelength λ
through the following relationship

pν = 0.6613×10−33 kg · m2 · s−1

λ
. (1.61)

(c) In Table 1.14A list the major components of the electromagnetic spec-
trum and for each component indicate the range in wavelength λ, fre-
quency ν, and energy Eν .

Table 1.14A Main characteristics of the electromagnetic (EM) spectrum

Component of
EM spectrum

Wavelength λ
(m)

Frequency ν (Hz)
ν =

Energy Eν (eV)
Eν =

1

To From From

⇑ ⇓ ⇓
From To To

2

To From From

⇑ ⇓ ⇓
From To To

3

To From From

⇑ ⇓ ⇓
From To To

4 Visible

To From From

⇑ ⇓ ⇓
From To To

5

To From From

⇑ ⇓ ⇓
From To To

6

To From From

⇑ ⇓ ⇓
From To To

SOLUTION:

The oscillator energy quantization that Max Planck proposed for solving the black-
body emission spectrum problem introduced the notion that energy of electromag-
netic radiation can only be released in packets of energy called quanta. These quanta
have subsequently been named photons. Photon is characterized with its wave-
length λ, frequency ν, energy Eν , and momentum pν . Furthermore, the photon has
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no mass, possesses no charge, does not decay in empty space, and moves in vacuum
with speed c= 3×108 m/s that is a universal constant independent of the motion of
the source. The following basic relationships apply for photons:

(a)
c= λν (1.62)

Eν = hν = h c
λ

= 2π�c

λ
= 2π×197.3 MeV · fm

λ
= 1.24×10−6 eV · m

λ
(1.63)

(b)
pν = Eν

c
= h

λ
= 1.24×10−6 eV · m

(3×108 m · s−1)×λ
= (1.24×10−6 eV · m)×(1.6×10−19 N · m)

(3×108 m · s−1)×λ
= 0.6613×10−33 kg · m2 · s−1

λ
(1.64)

(c) Major components of the electromagnetic spectrum are listed in Table 1.14B.

Table 1.14B Main characteristics of the electromagnetic (EM) spectrum

Component of
EM spectrum

Wavelength λ (m) Frequency ν (Hz)
ν = c/λ

Energy Eν (eV)
Eν = 1.24×10−6 eV · m

1 Radio waves

To 103 From 3×105 From 1.24×10−9

⇑ ⇓ ⇓
From 10−1 To 3×109 To 1.24×10−5

2 Microwaves

To 10−1 From 3×109 From 1.24×10−5

⇑ ⇓ ⇓
From 10−3 To 3×1011 To 1.24×10−3

3 Infrared radiation

To 10−3 From 3×1011 From 1.24×10−3

⇑ ⇓ ⇓
From 7×10−7 To 0.43×1015 To 1.77

4 Visible light

To 7×10−7 From 0.43×1015 From 1.77

⇑ ⇓ ⇓
From 4×10−7 To 0.75×1015 To 3.10

5 Ultraviolet radiation

To 4×10−7 From 0.75×1015 From 3.10

⇑ ⇓ ⇓
From 10−8 To 3×1016 To 124

6 X rays and γ rays

To 10−8 From 3×1016 From 124

⇑ ⇓ ⇓
From 10−15 To 3×1023 To 1.24×109
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1.20 Special Theory of Relativity

1.20.Q1 (26)

Lorentzian transformations relate the spatial and temporal coordinates x, y,
z, and t in a stationary frame F to spatial and temporal coordinates x′, y′, z′,
and t ′ in a reference frame F ′ moving with uniform velocity υ in the direction
of the abscissa (x) axis. The two frames are parallel to one another, i.e., the x′
axis is parallel to the x axis, the y′ axis is parallel to the y axis, and the z′ axis
is parallel to the z axis. Equations for the forward Lorentzian transformation
are as follows: x′ = γ (x−υt); y′ = y; z′ = z; and t ′ = γ [t−υx/(c2)], where
γ is the standard Lorentz factor γ = (1 − υ2/c2)−1/2.

Determine the relationships that govern the inverse Lorentzian transforma-
tion.

SOLUTION:

Expressions for y′ = y and z′ = z remain the same in the inverse transformation;
expressions for x and t we determine by solving expressions for x′ and t ′ in the
forward transformation. We first derive the expression for x using expressions for
x′ and t ′ as follows

x′ = γ (x − υt) or x = 1

γ
x′ + υt, (1.65)

t ′ = γ
(
t − υ

c2
x

)
or t = 1

γ
t ′ + υ

c2
x. (1.66)

Inserting (1.66) into (1.65) we get

x = 1

γ
x′ + υ

γ
t ′ + υ2

c2
x or x

(
1 − υ2

c2

)
= 1

γ

(
x′ + υt ′). (1.67)

Since (1 − υ2/c2)= 1/γ 2, we get the following expression for x

x = γ (x′ + υt ′). (1.68)

We now derive the expression for t using expressions for x′ and t ′ as follows
Inserting (1.65) into (1.66) we get

t = 1

γ
t ′ + 1

γ

υ

c2
x′ + υ2

c2
t or t

(
1 − υ2

c2

)
= 1

γ

(
t ′ + υ

c2
x′
)
. (1.69)

Since (1 − υ2/c2)= 1/γ 2, we get the following expression for t

t = γ
(
t ′ + υ

c2
x′
)
. (1.70)
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Equations for the inverse Lorentzian transformation

x = γ (x′ + υt ′); y = y′; z= z′; and t = γ [t ′ + υx′/
(
c2)] (1.71)

are equivalent to equations governing the forward Lorentzian transformation, except
that the velocity of the moving frame is −υ in the inverse transformation as opposed
to +υ in the forward transformation.

1.20.Q2 (27)

(a) Show that the wave equation

∂φ

∂x2
+ ∂φ

∂y2
+ ∂φ

∂z2
= 1

c2

∂φ

∂t2
(1.72)

is invariant under Lorentzian transformation.
(b) What is the effect of this invariance on Maxwell equations?

SOLUTION:

(a) The Lorentzian transformation for two inertial frames, F and F ′, with parallel
corresponding axes, with x and x′ axes being common, and with frame F ′ moving
along the x axis with velocity υ relative to frame F , is expressed as follows

x′ = γ (x − υt); y′ = y; z′ = z; and t ′ = γ
(
t − υ

c2
c

)
(1.73)

where γ is the standard Lorentz factor γ = (1 − υ2/c2)−1/2 and the following
derivatives should be noted

∂x′

∂x
= γ, ∂x′

∂t
= −γ υ, ∂t ′

∂t
= γ, and

∂t ′

∂x
= −γ υ

c2
. (1.74)

The space derivatives are expressed as follows

∂φ

∂x
= ∂φ

∂x′
∂x′

∂x
+ ∂φ

∂t ′
∂t ′

∂x
= ∂φ

∂x′ γ − ∂φ

∂t ′
γ
υ

c2
, (1.75)

∂2φ

∂x2
= ∂

∂x′

[
∂φ

∂x′

]
∂x′

∂x
γ + ∂

∂t ′

[
∂φ

∂x′

]
∂t ′

∂x
γ − ∂

∂x′

[
∂φ

∂t ′

]
∂x′

∂x
γ
υ

c2

− ∂

∂t ′

[
∂φ

∂t ′

]
∂t ′

∂x
γ
υ

c2

= γ 2 ∂
2φ

∂x′2 − γ 2 υ

c2

∂2φ

∂x′∂t ′
− γ 2 υ

c2

∂2φ

∂x′∂t ′
+ γ 2 υ

2

c4

∂2φ

∂t ′2

= γ 2 ∂
2φ

∂x′2 + γ 2 υ
2

c4

∂2φ

∂t ′2
− 2γ 2 υ

c2

∂2φ

∂x′∂t ′
, (1.76)
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∂2φ

∂y2
= ∂2φ

∂y′2 , (1.77)

∂2φ

∂z2
= ∂2φ

∂z′2
. (1.78)

The time derivatives are

∂φ

∂t
= ∂φ

∂t ′
∂t ′

∂t
+ ∂φ

∂x′
∂x′

∂t
= ∂φ

∂t ′
γ − ∂φ

∂x′ γ υ, (1.79)

∂2φ

∂t2
= ∂

∂t ′

[
∂φ

∂t ′

]
∂t ′

∂t
γ + ∂

∂x′

[
∂φ

∂t ′

]
∂x′

∂t
γ − ∂

∂t ′

[
∂φ

∂x′

]
∂t ′

∂t
γ υ − ∂

∂x′

[
∂φ

∂x′

]
∂x′

∂t
γ υ

= γ 2 ∂
2φ

∂t ′2
− γ 2υ

∂2φ

∂x′∂t ′
− γ 2υ

∂2φ

∂x′∂t ′
− γ 2υ2 ∂

2φ

∂x′2

= γ 2 ∂
2φ

∂t ′2
+ γ 2υ2 ∂

2φ

∂x′2 − 2γ 2υ
∂2φ

∂x′∂t ′
. (1.80)

The components of the wave equation can now be expressed as follows

∂2φ

∂x2
+ ∂

2φ

∂y2
+ ∂

2φ

∂z2
= γ 2 ∂

2φ

∂x′2 + γ 2 υ
2

c4

∂2φ

∂t ′2
− 2γ 2 υ

c2

∂2φ

∂x′∂t ′
+ ∂2φ

∂y′2 + ∂
2φ

∂z′2
(1.81)

and

1

c2

∂2φ

∂t2
= γ 2

c2

∂2φ

∂t ′2
+ γ 2 υ

2

c2

∂2φ

∂x′2 − 2γ 2 υ

c2

∂2φ

∂x′∂t ′
, (1.82)

resulting in the following expression for the wave equation

γ 2
(

1 − υ2

c2

)
∂2φ

∂x′2 + ∂2φ

∂y′2 + ∂2φ

∂z′2
= γ 2 1

c2

(
1 − υ2

c2

)
∂2φ

∂t ′2
. (1.83)

Recognizing that γ 2(1 − υ2/c2) = γ 2(1 − β2) = 1 we finally get the following
expression for the wave equation in the inertial frame F ′

∂2φ

∂x′2 + ∂2φ

∂y′2 + ∂2φ

∂z′2
= 1

c2

∂2φ

∂t ′2
, (1.84)

showing that equation ∂2φ/∂x2 +∂2φ/∂y2 +∂2φ/∂z2 = (1/c2)∂2φ/∂t2 is invariant
under Lorentzian transformation.

(b) The form of the wave equation in a frame F ′ moving with uniform velocity
υ is identical to the form of the wave equation in fixed inertial frame F . A result
of this invariance is the invariance of Maxwell equations governing the electric and
magnetic fields produced by a charge moving with uniform velocity υ .
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1.20.Q3 (28)

Theory of relativity has several consequences, some of them quite dramatic,
counter-intuitive, and irreconcilable with classical physics. Three important
phenomena in this category are: (i) length contraction, (ii) time dilation, and
(iii) mass increase with velocity, all three phenomena governed by the Lorentz
factor γ = [1 − β2]−1/2 = [1 − (υ/c)2]−1/2 which becomes significant when
the speed υ of an object or particle is an appreciable fraction of the speed of
light c in vacuum.

Use the Lorentzian transformation between two inertial frames, one sta-
tionary and the other moving with velocity υ with respect to the stationary
frame, to show that

(a) Length contraction is inversely proportional to γ , i.e., L= L0
γ

.
(b) Time dilation is proportional to γ as �t = γ�t0. In equations for L

and �t , L0 and �t0 are the proper length and the proper time interval,
respectively, measured by an observer moving with the object, while L
and �t are the length and time interval, respectively, measured by an
observer in the stationary frame.

(c) The increase in relativistic mass m(υ) of a particle as a function of its
velocity υ makes the speed of light c in vacuum the upper limit of speed
in the universe. Calculate the velocity relative to speed of light c of a
particle at which the relativistic mass of the particle exceeds its rest
mass m0 by 2 %, 10 %, 50 %, a factor of 10, and a factor of 100.

SOLUTION:

(a) Length contraction. The measured length of an object depends on the relative
velocity of the object and observer. The largest length of an object is measured in a
frame in which the object is at rest. This length is referred to as the proper or rest
length L0.

Assume that we have a rod placed along the x′ axis in the moving frame F ′.
The length L0 measured by an observer at rest with respect to the moving frame F ′
is given as L0 = x′

2 − x′
1. The length of the rod L measured in the fixed reference

frame F is L= x2 − x1 with the coordinates x1 and x2 related to coordinates x′
1 and

x′
2, respectively, through the Lorentzian transformation. We can thus express L0 as

follows

L0 = x′
2 − x′

1 = γ (x2 − υt2)− γ (x1 − υt1). (1.85)

Since the two measurements made in the fixed frame F were made simultaneously,
we have t1 = t2 and (1.85) is simplified to read

L0 = γ (x2 − x1)= γL and L= 1

γ
L0. (1.86)
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Length L of an object that is moving with velocity υ relative to the observer is
inversely proportional to Lorentz factor γ and is smaller than or equal to the proper
length L0, since γ ≥ 1 This phenomenon is referred to as the length contraction.

(b) Time dilation. The shortest time interval is measured in a frame in which the
clock is at rest. The time interval so measured is referred to as the proper or rest
time interval �t0. We now assume that we are measuring a time interval �t0 in the
moving frame F ′ where �t0 = t ′2 − t ′1. The time interval �t measured for the same
event in the fixed frame F is given as

�t = t2 − t1 = γ
(
t ′2 + υ

c2
x′

2

)
− γ

(
t ′1 + υ

c2
x′

1

)
. (1.87)

Since the two measurements made in F ′ are made at the same location, we have
x′

1 = x′
2 and (1.87) simplifies to read �t = γ (t ′2 − t ′1)= γ�t0. This phenomenon is

referred to as time dilation.

(c) Relativistic mass. Particle mass m depends on particle velocity υ through the
following relationship

m(υ)= γm0 = m0√
1 − β2

= m0√
1 − υ2

c2

or

m(υ)

m0
= γ = 1√

1 − β2
= 1√

1 − υ2

c2

(1.88)

where m0 is the particle mass at rest at υ = 0 referred to as the particle rest mass
or invariant mass and γ is the Lorentz factor. The relativistic mass of a particle
becomes infinite as the velocity of the particle approaches the speed of light c.

Solving (1.88) for β = υ/c against γ = m(υ)/m0 results in the following rela-
tionship

β = υ

c
=

√
γ 2 − 1

γ
=
√

1 − 1

γ 2
. (1.89)

Results for β with various values of γ =m(υ)/m0 are shown in Table 1.15.

Table 1.15 Speed υ of particle normalized to speed of light c against Lorentz factor γ =
m(υ)/m0

γ =m(υ)/m0 1.01 1.02 1.10 1.50 10 100

β = υ/c 0.140 0.197 0.417 0.745 0.995 0.99995
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1.20.Q4 (29)

Pions π also called π mesons belong to a group of short-lived subatomic
particles called mesons. They are either neutral (π0) or come with positive
(π+) or negative (π−) electron charge and their rest mass is about 273me
where me = 0.511 MeV is the rest mass of the electron. Pions do not exist
in free state in nature; they reside inside the nuclei of atoms and, based on
their mass, were identified as the quanta of the strong interaction. They can
be ejected from the nucleus in nuclear reactions by bombarding target nuclei
with energetic electrons or protons. Mean lifetime of a free negative pion (π−)
and positive pion π+ in its own reference frame (proper or rest mean lifetime)
is 2.6×10−8 s and they decay through weak interaction.

Of the three pion types negative pions have been used for radiotherapy,
since by virtue of their negative charge, they produce the so-called “pion
stars” in irradiated nuclei. They showed great promise for use in radiother-
apy; however, during recent years pions, because of their complexity and cost,
were largely abandoned in favor of heavy charged particles such as protons
and heavier ions.

If the pion travels with velocity of 0.99c where c is the speed of light in
vacuum, determine:

(a) Mean lifetime of the pion when measured by a stationary observer on
earth.

(b) Mean distance the pion travels before it decays, as measured by a sta-
tionary observer on earth.

SOLUTION:

First we determine the Lorentz factor γ for β = 0.99c

γ = 1√
1 − β2

= 1√
1 − 0.992

= 7.09. (1.90)

(a) Mean lifetime τ̄ of the pion as measured on earth is longer than the proper
(rest) mean lifetime τ̄0 because of the relativistic time dilation effect. The
following relationship between τ̄ and τ̄0 applies (see Prob. 28)

τ̄ = γ τ̄0 = 7.09×2.6×10−8 s = 18.4×10−8 s = 0.184 ms. (1.91)

(b) Mean distance �̄ that the pion with velocity of 0.99c travels is calculated by
multiplying the pion’s mean lifetime τ̄ with its velocity to get

�̄= τ̄ υ = (
0.184×10−6 s

)×(
0.99×3×108 m/s

)= 54.6 m. (1.92)
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1.20.Q5 (30)

(a) A meter stick moving in the direction parallel to its long dimension
appears to be only 80 cm long to a stationary observer. Calculate the
speed of the stick.

(b) Estimate the length L of an acceleration waveguide of a linear acceler-
ator (linac) as seen by an accelerated electron, if the length L0 of the
accelerator waveguide is 1.5 m, the accelerator gun voltage is 100 kV,
and the linac nominal energy is 25 MV.

SOLUTION:

(a) The proper (rest) length of the stick is L0 = 100 cm. Since, as a result of the
relativistic length contraction, the stick appears shorter (L = 80 cm), it must be
moving with significant speed that can be determined from the length contraction
expression, given in Prob. 28 as

L= L0

γ
= L0

√
1 − β2 = L0

√
1 − υ2

c2
, (1.93)

where γ is the Lorentz factor.
Solving (1.93) for the normalized velocity β = υ/c we get

β =
√

1 − 1

γ 2
=
√

1 − L2

L2
0

= 0.6 or υ = 0.6c= 1.8×108 m/s. (1.94)

(b) The proper (rest) length of a linac waveguide measured in the reference frame
of the linac is L0 and the length of the waveguide as it appears to an observer
traveling with the accelerated electron is L. The two lengths L and L0 are related
through relativistic length contraction (see Prob. 28) as follows

L= L0

γ
= L0

√
1 − β2 or dz′ = dz

γ
= dz

√
1 − β2, (1.95)

where dz is an element of accelerated electron’s path in the linac reference frame
and dz′ is an element of path in the rest frame.

Since the total energy E of the electron is related to the rest energy E0 of the
electron through the Lorentz factor γ as E = γE0 we note that γ = E/E0 and
(1.95) becomes

dz′ = dz

γ
= dz

√
1 − β2 = E0

E
dz= E0

Ei + eEzzdz= E0

E0 + (EK)i + eEzzdz, (1.96)

where the total energy E as a function of z along the waveguide axis is given as
the sum of the total energy Ei of the electrons injected from the electron gun into
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the accelerator waveguide and energy eEzz gained by the electron in the electric
field Ez used for electron acceleration in the waveguide. The total energy Ei of the
injected electron is the sum of electron rest energy E0 and its kinetic energy (EK)i
at the time of injection into the waveguide. We thus have

E =Ei + eEzz=E0 + (EK)i. (1.97)

Next, we integrate (1.96) over z from 0 to L0 and over z′ from 0 to L to get

ˆ L

0
dz′ =

ˆ L0

0

E0

E0 + (EK)i + eEzz dz= E0

eEz

ˆ L0

0

d(E0 + (EK)i + eEzz)
E0 + (EK)i + eEzz (1.98)

leading to

L= E0

eEz

{
ln
[
E0 + (EK)i + eEzz

]}L0
0 = E0

eEz
ln

Ef

E0 + (EK)i
, (1.99)

where we recognize that E0 + (EK)i + eEzL0 is the final total energy Ef of the
electron as it exits the acceleration waveguide.

Equation (1.99) is the general equation for estimating the waveguide contraction
of an acceleration waveguide and we now use this equation to solve our specific
problem given with the following parameters: L0 = 1.5 m, E0 = 0.511 MeV, Ef =
25 MeV, and (EK)i = 100 keV. The electric field Ez is estimated from the capture
condition for a linac waveguide (T13.110) to be ∼8 MV/m for electron gun voltage
of 100 kV.

The apparent length L of the waveguide is from (1.99) given as follows

L= E0

eEz
ln

Ef

E0 + (EK)i
= 0.511 MeV

e×(8 MV/m)
ln

25 MeV

(0.511 + 0.100)MeV
= 0.24 m

(1.100)
compared to a waveguide length of 1.5 m in the linear accelerator frame.

1.21 Important Relativistic Relations

1.21.Q1 (31)

Determine the speed of a particle (as fraction of the speed of light in vacuum
c) at which the particle mass m(υ) becomes:

(a) Twice its rest mass m0,
(b) Three times its rest mass m0,
(c) Four times its rest mass m0.
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SOLUTION:

(a) Using the basic Einstein expression that states that the ratio between particle’s
relativistic mass m(υ) and rest mass m0 equals to particle’s Lorentz factor γ , i.e.,
m(υ)/m0 = γ we set

m(υ)

m0
= 2 = γ = 1√

1 − β2
= 1√

1 − υ2

c2

(1.101)

and solve for υ/c to get

υ

c
=
√

1 − 1

[m(υ)
m0

]2
=
√

3

4
= 0.866 (1.102)

corresponding to υ = 0.866c= 2.60×108 m/s.

(b) For m(υ)= 3m0 we get

υ

c
=
√

1 − 1

[m(υ)
m0

]2
=
√

8

9
= 0.943 (1.103)

corresponding to υ = 0.943c= 2.83×108 m/s.

(c) For m(υ)= 4m0 we get

υ

c
=
√

1 − 1

[m(υ)
m0

]2
=
√

15

16
= 0.968 (1.104)

corresponding to υ = 0.968c= 2.90×108 m/s. Figure 1.11 is a plot of γ against β
for a particle of rest mass m0, where

β is the particle velocity υ normalized to speed of light c in vacuum, i.e., β = υ/c.
γ is the so called Lorentz factor defined as:

(i) γ = 1/
√

1 − υ2/c2.
(ii) γ =m(υ)/m0 with m(υ) particle mass m at velocity υ and m0 particle

rest mass.
(iii) γ =E/E0 = (EK +E0)/E0 = 1 +EK/E0 with E particle total energy,

EK particle kinetic energy, and E0 particle rest energy.
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Fig. 1.11 Particle normalized mass m(υ)/m0 against its normalized velocity β = υ/c. Data
points represent results of (a), (b), and (c)

1.21.Q2 (32)

The standard expression of special relativity

E2 = p2c2 +E2
0 (1.105)

linking particle’s total energy E with its momentum p and rest energy E0 is
universally valid for all particles (m0 �= 0) as well as for photons (m0 = 0).

(a) Derive (1.105) from the basic Einstein expression for relativistic mass
m as a function of velocity υ , i.e., from m(υ) = γm0 where m is the
particle’s relativistic mass depending on particle’s velocity υ and m0 is
the particle’s rest mass.

(b) Show that the expression E2 = p2c2 +E2
0 can also be derived directly

from the two basic relativistic expressions: E = γE0 and p =mυ with
γ the Lorentz factor given as γ = [1 − υ2/c2]−1/2 and β = υ/c the
velocity υ normalized to speed of light c.

(c) Show that a massless particle (m0 = 0) always travels at the speed of
light c.

(d) Show that a particle that travels with speed of light c possesses no rest
energy (E0 = 0) and no rest mass (m0 = 0).

SOLUTION:

(a) The derivation of (1.105) from the basic Einstein relationship for relativistic
mass proceeds as
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(1) Start with the basic equation

m= m0√
1 − υ2

c2

. (1.106)

(2) Square (1.106), multiply the result by c4, and rearrange the terms to obtain

m2c4 −m2c2υ2 =m2
0c

4. (1.107)

(3) Equation (1.107) can be written as

E2 − p2c2 =E2
0 or E =

√
E2

0 + p2c2, (1.108)

incorporating into (1.107) the common relativistic relationships for total en-
ergy E =mc2, rest energy E0 =m0c

2, and momentum p =mυ .

(b) Particle momentum p = mυ may be expressed as p = mυ = γE0β/c using
the standard relationships for γ and E0. Multiplying the expression for p with c,
squaring the result, and recognizing that β2 = 1 − γ−2 gives

p2c2 = γ 2E2
0β

2 =E2
[

1 − 1

γ 2

]
=E2 − E2

γ 2
=E2 −E2

0 (1.109)

or

E2 = p2c2 +E2
0 . (1.110)

(c) From (1.110) we get

E2 =E2
0 + p2c2 = 0 + p2c2 or E = pc. (1.111)

Equation (1.111) gives the following relationship for particle speed υ , total energy
E, and momentum p

υ

c
= β = pc

E
or E = pc

β
. (1.112)

Equations (1.109) and (1.110) can hold simultaneously only for β = 1, i.e., υ = c.

(d) From (1.111) we have υ/c = pc/E = 1 or E = pc. From (1.110) we get the
following expression for the rest energy E0

E2 =E2
0 + p2c2 or E0 =

√
E2 − p2c2 = 0. (1.113)

Thus, when the total energyE equals pc, the rest energyE0 is zero and the particle’s
rest mass m0 is zero.
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1.21.Q3 (33)

An electron is accelerated in a 10 MV linear accelerator (linac) and strikes an
x-ray target. For the electron determine:

(a) Kinetic energy EK.
(b) Total energy E.
(c) Lorentz factor γ .
(d) Velocity υ .
(e) Mass m.

SOLUTION:

(a) By definition a 10 MV linac produces a 10 MV x-ray beam whereby electrons
of kinetic energy of 10 MeV strike the x-ray target and produce a 10 MV spectral
distribution. Kinetic energy of the electron when it strikes the target is thus EK =
10 MeV. It is customary to describe an electron with its kinetic energy, so that a
label “10 MeV electron” implies that kinetic energy of the electron is 10 MeV.

(b) Total energy E of an electron with kinetic energy EK = 10 MeV is given as
the sum of electron’s kinetic energy EK and its rest energy E0 = 0.511 MeV.

E =EK +E0 = 10 MeV + 0.511 MeV = 10.511 MeV. (1.114)

(c) Lorentz factor γ is given as γ = (1 − υ2/c2)−1/2 and depends, in addition to
velocity υ , also indirectly on electron kinetic energy EK

EK = (γ − 1)E0. (1.115)

Solving (1.115) for γ results in the following expression

γ = 1 + EK

E0
= 1 + 10 MeV

0.511 MeV
= 20.57. (1.116)

The Lorentz factor γ can also be calculated from the basic definitions that im-
plicitly state the following relationships

E =mc2 = γE0 = γm0c
2 or γ = E

E0
= 10.511 MeV

0.511 MeV
= 20.57. (1.117)

A plot of the Lorentz factor γ against velocity υ normalized to speed of light c
in vacuum of Fig. 1.12 shows that an electron with γ = 20.57 is highly relativistic
and travels with a velocity close to speed of light c in vacuum.

(d) Now that we have the Lorentz factor γ for a 10 MeV electron, we can calculate
the normalized electron velocity υ/c. Solving γ = (1 − υ2/c2)−1/2 for υ/c results
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Fig. 1.12 Lorentz factor γ against normalized velocity β for electron. The solid dot on the curve
indicates the Lorentz factor γ of 20.57 for a 10 MeV electron (EK = 10 MeV) with normalized
velocity β = 0.999

in the following expression

υ

c
=
√

1 − 1

γ 2
=
√

1 − 1

20.572
= 0.999. (1.118)

We can also get υ/c of a 10 MeV electron using the general expression for kinetic
energy EK given in (T1.58) as

EK = (γ − 1)E0 =
(

1√
1 − υ2

c2

− 1

)
E0. (1.119)

Solving (1.119) for υ/c we get the following result of the normalized electron
velocity

υ

c
=
√

1 − 1

(1 + EK
E0
)2

=
√

1 − 1

(1 + 10 MeV
0.511 MeV )

2
= 0.999. (1.120)

(e) Mass m of the electron is calculated from the basic Einstein relationship as
follows

m= γm0 = 20.57×0.511 MeV/c2 = 10.511 MeV/c2. (1.121)
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1.21.Q4 (34)

(a) Present at least three methods for calculation of momentum p of a rel-
ativistic particle.

(b) Show that for particle velocity υ much less than speed of light c all ex-
pressions presented in (a) transform into classical relationship for mo-
mentum given as p =m0υ .

(c) Use methods presented in (a) to determine momentum p of a 10 MeV
electron. Express momentum in units of MeV/c2.

(d) Use methods presented in (a) to determine momentum p of a 10 MeV
proton. Express momentum in units of MeV/c2.

(e) Express the common unit of momentum MeV/c2 in SI units.

SOLUTION:

(a) Several expressions are available for calculation of momentum p in relativistic
physics. The methods are, of course, all related and the choice of which one to use at
a given time depends on the available input data. Four related methods are presented
below:

(1) The most general relationship for momentum p is the product of relativistic
mass m and particle velocity υ

p =mυ =mcυ
c

= mc2

c
β = Eβ

c
=mcβ = γm0υ = m0υ√

1 − β2
= E0β

c
√

1 − β2

(1.122)
where m is the particle’s relativistic mass, E is its total energy, m0 is its rest
mass, E0 is its rest energy, υ is its velocity, and γ is the Lorentz factor given
as

√
1 − β2 with β = υ/c.

(2) Momentum can also be determined from the basic expression for relativistic
total energy E of a particle

E2 = p2c2 +E2
0 . (1.123)

Solving (1.123) for p we get the general expression for relativistic momen-
tum p

p = 1

c

√
E2 −E2

0 = 1

c

√
(EK +E0)2 −E2

0 = 1

c

√
E2

K + 2EKE0

= E2
K

c

√
1 + 2E0

EK
, (1.124)

where EK is its kinetic energy of the particle.
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(3) From the basic expression (1.122) for momentum p we get the following ex-
pression

p =mυ = γm0υ = γm0c
2 υ

c2
= Eβ

c
. (1.125)

(4) Momentum p can also be calculated expanding (1.125) to read

p =mυ = γm0υ = γm0c
2 β

c
= E0γβ

c
= E0

c

√
γ 2 − 1, (1.126)

since, as can easily be shown, the product γβ is given as γβ = β/√1 − β2 =√
γ 2 − 1.

(b) All four relativistic expressions for momentum p introduced in (a) transform
into classical expression for momentum that reads p = m0υ for υ/c = β → 0 as
follows:

(1) From (1.122) given as p =m0υ/
√

1 − β2 we get the following classical limit

lim
β→0

p = lim
β→0

m0υ√
1 − β2

= lim
β→0

m0cβ
(
1 − β2)−1/2 ≈ lim

β→0
m0cβ

(
1 + 1

2
β2
)

≈m0cβ =m0υ.

(1.127)
(2) From (1.124) given as p = (E2

K/c)
√

1 + 2E0/EK we get the following clas-
sical limit for EK �E0

lim
β→0

p = lim
β→0

E2
K

c

√
1 + 2E0

EK
≈ lim
EK�E0

E2
K

c

√
2E0

EK
= 1

c

√
2EKm0c2

=
√

2
m0υ2

2
m0 =m0υ. (1.128)

(3) From (1.125) given as p = Eβ/c we get the following classical limit for
EK �E0

lim
β→0

p = lim
β→0

Eβ

c
= lim
EK�E0

(EK +E0)β

c
≈ E0β

c
= m0c

2υ

c2
=m0υ.

(1.129)
(4) From (1.126) given as p = (E0/c)

√
γ 2 − 1 we get the following classical

limit as EK �E0

lim
β→0

p = lim
β→0

E0

c

√
γ 2 − 1 = lim

β→0

E0

c
β
(
1 − β2)− 1

2 ≈ lim
β→0

m0cβ

(
1 + 1

2
β2
)

≈ m0cβ =m0υ. (1.130)
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(c) By way of example, the expressions for relativistic momentum p that were
presented in (a) will be used to calculate momentum p of a 10 MeV electron. By
definition a label “10 MeV electron” designates an electron with kinetic energy of 10
MeV. Characteristics of a 10 MeV electron are: EK = 10 MeV; E0 = 0.511 MeV;
and E =EK +E0 = 10 MeV + 0.511 MeV = 10.511 MeV.

Lorentz factor γ of a 10 MeV electron is determined as

γ = E

E0
= E0 +EK

E0
= 1 + EK

E0
= 1 + 10

0.511
= 20.569. (1.131)

Normalized velocity β = υ/c of a 10 MeV electron is calculated either from kinetic
energy EK as

EK =E −E0 = (γ − 1)E0 =
(

1√
1 − β2

− 1

)
E0 (1.132)

leading to

β =
√

1 − 1

(1 + EK
E0
)2

=
√

1 − 1

(1 + 10
0.511 )

2
=
√

1 − 1

20.5692
= 0.9988 (1.133)

or from the Lorentz factor γ of 20.569 given in (1.131)

γ = 1√
1 − β2

→ β =
√
γ 2 − 1

γ
=

√
20.5692 − 1

20.569
= 0.9988. (1.134)

Based on the information above we now determine the momentum of a 10 MeV
electron:

(1)

p = E0β

c
√

1 − β2
= (0.511 MeV)×0.9988

c
√

1 − 0.99882
= 10.42 MeV/c2. (1.135)

(2)

p = EK

c

√
1 + 2E0

EK
= (10 MeV)

c

√
1 + 2×0.511

10
= 10.5 MeV/c. (1.136)

(3)

p = Eβ

c
= EK +E0

c
β = 10 MeV + 0.511 MeV

c
×0.999 = 10.50 MeV/c.

(1.137)
(4)

p = E0

c

√
γ 2 − 1 = 0.511 MeV

c

√
20.5692 − 1 = 10.5 MeV/c. (1.138)
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As shown by (1.135) through (1.138), all methods of momentum calculation for a
10 MeV electron give essentially identical results with some minor discrepancies
arising from rounding errors.

(d) Momentum of a 10 MeV proton. By definition a label “10 MeV proton”
designates a proton with kinetic energy of 10 MeV. Characteristics of a 10 MeV
proton are as follows: EK = 10 MeV; E0 = 938.3 MeV; and E = EK + E0 =
10 MeV + 938.3 MeV = 948.3 MeV.

Lorentz factor γ of a 10 MeV proton is determined as follows

γ = E

E0
= E0 +EK

E0
= 1 + EK

E0
= 1 + 10

938.3
= 1.0107, (1.139)

making the proton almost classical but not quite.
Normalized velocity β = υ/c of a 10 MeV proton is calculated (i) either from

kinetic energy EK as

EK =E −E0 = (γ − 1)E0 =
(

1√
1 − β2

− 1

)
E0 (1.140)

leading to

β =
√

1 − 1

(1 + EK
E0
)2

=
√

1 − 1

(1 + 10
938.3 )

2
=
√

1 − 1

1.01072
= 0.145 (1.141)

or (ii) from the Lorentz factor γ of 1.10107 given in (1.139)

γ = 1√
1 − β2

→ β =
√
γ 2 − 1

γ
=

√
1.01072 − 1

1.0107
= 0.145. (1.142)

Based on the information above we now determine the momentum of a 10 MeV
proton:

(1)

p = E0β

c
√

1 − β2
= (938.3 MeV)×0.145

c
√

1 − 0.1452
= 137.5 MeV/c2. (1.143)

(2)

p = EK

c

√
1 + 2E0

EK
= (10 MeV)

c

√
1 + 2×938.3

10
= 137.4 MeV/c. (1.144)

(3)

p = Eβ

c
= EK +E0

c
β = 10 MeV + 938.3 MeV

c
×0.145 = 137.5 MeV/c.

(1.145)
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(4)

p = E0

c

√
γ 2 − 1 = 938.3 MeV

c

√
1.01072 − 1 = 137.6 MeV/c. (1.146)

As shown by (1.142) through (1.146), all methods of momentum calculation for
a 10 MeV proton give essentially identical results with some minor discrepancies
arising from rounding errors.

(e) The units of momentum in (1.135) through (1.138) for 10 MeV electron and
from (1.143) through (1.146) for 10 MeV proton are given in MeV/c. This is a
common and convenient unit of momentum used in nuclear, medical, and relativis-
tic physics, especially since momentum, despite being a very important physical
quantity, does not have an assigned special unit in contrast to other physical quanti-
ties, such as force with newton N, energy with joule J, and power with watt W, etc.,
that do.

The SI derived unit of momentum is kg · m · s−1 or N · s and the relationship
between 1 MeV/c and kg · m · s−1 is given as follows

1 MeV

c
= (106 eV)×(1.602×10−19 J/eV)

3×108 m · s−1
= 5.34×10−22 N · s

= 5.34×10−22 kg · m · s−1 (1.147)

or for 1 eV/c

1 eV

c
= (1 eV)×(1.602×10−19 J/eV)

3×108 m · s−1
= 5.34×10−16 N · s

= 5.34×10−16 kg · m · s−1. (1.148)

Momentum of a 10 MeV electron, expressed as 10.5 MeV/c in (c), is in the SI
system of units given as

p = 10.5 MeV/c= 10.5×(
5.34×10−22 kg · m · s−1)= 5.61×10−21 kg · m · s−1.

(1.149)
Momentum of a 10 MeV proton, expressed as 137.5 MeV/c in (c), is in the SI
system of units given as

p = 137.5 MeV/c= 137.5×(
5.34×10−22 kg ·m · s−1)= 7.343×10−20 kg ·m · s−1.

(1.150)
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1.21.Q5 (35)

The standard Newton second law F =ma stating that force F is proportional
to acceleration a with mass m the proportionality constant does not hold in
relativistic mechanics where mass m of an object moving with velocity υ is
not constant and depends on velocity υ .

(a) Express the Newton second law in relativistic form accounting for the
variation in mass m with velocity υ .

(b) Show that for υ → 0 the relativistic form of Newton second law derived
in (a) transforms into the standard classical Newton second law.

(c) A particle with charge q moves along a straight path in a uniform elec-
tric field EEE with velocity υ . The two vectors EEE and υ are parallel. Cal-
culate the relativistic acceleration a of the charged particle and show
that for relativistic particles the acceleration depends on velocity υ .

(d) If particle in (c) starts its motion at rest at position x = 0 and time t = 0,
calculate its speed υ(t) and its position x(t) at time t . Also, calculate
the classical limits of υ(t) and x(t).

(e) Lorentz force FL on a charged particle q of rest mass m0 moving with
velocity υ in magnetic field BBB is given as FL = qυ×BBB . Use Newton
second law in relativistic form derived in (a) to show that the angular
“cyclotron frequency” ωcyc of the relativistic particle is given as ωcyc =
qB/(γm0).

SOLUTION:

(a) Relativistic force F with mass m a function of particle velocity |υ| = υ is in
general given as follows

F = dp
dt

= dmυ

dt
=mdυ

dt
+ υ

dm

dt
= γm0

dυ

dt
+m0υ

dγ

dt
(1.151)

with p the particle momentum, m0 the particle rest mass, and γ the Lorentz factor
of the particle: γ = (1 − υ2/c2)−1/2. Force F as expressed in (1.151) depends on
dγ /dt that can be expanded to read as follows

dγ

dt
= dγ

dυ

dυ

dt
= d

dυ

1√
1 − υ2

c2

· dυ

dt
=
[

1 − υ2

c2

]− 3
2 υ

c2
· dυ

dt
= γ 3 υ

c2
· dυ

dt
. (1.152)

After inserting (1.152) into (1.151) we get the following expression for F

F = γm0
dυ

dt
+m0υ

dγ

dt
= γm0

dυ

dt
+ γ 3m0

[
υ

c

(
υ

c
· dυ

dt

)]
. (1.153)
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A scalar product of F and υ will be of help in expanding (1.153) further

F · υ = γm0υ · dυ

dt
+ γ 3β2m0υ · dυ

dt
= γ 3m0υ · dυ

dt
, (1.154)

recalling that υ
c

· υ
c

= β2 and β2γ 2 = γ 2 − 1.
Force (1.153) incorporating (1.154) is now expressed as follows

F = γm0
dυ

dt
+ (F · β)β, (1.155)

and leads directly to a relativistic expression relating force F and acceleration
a = dυ/dt , allowing us to express acceleration a as

a = dυ

dt
= 1

γm0

[
F − (F · β)β]. (1.156)

(b) As shown in (1.156), acceleration a is not parallel to force F at large ve-
locities because a particle velocity cannot exceed the speed of light c in vacuum.
However, for velocities υ � c, where β → 0 and γ → 1, the relativistic expres-
sion for acceleration a given in (1.156) transforms into Newton’s classical result
a = dυ/dt = F/m0, with a parallel to F.

(c) Since force F is given as F = qEEE and EEE is parallel to υ , we can express (1.156)
in scalar form to get

a = dυ

dt
= F − Fβ2

γm0
= F

γm0

(
1 − β2)= qE

m0

(
1 − β2) 3

2 = qE
m0

1

γ 3
. (1.157)

The relativistic expression for acceleration a shows that a depends on velocity υ
through the Lorentz factor γ . The following conditions apply in the limits: (1) as
υ→ c and (2) as υ→ 0.

(1) As υ increases into the highly relativistic region (υ ≈ c), acceleration a de-
creases reaching 0 as the velocity approaches c, irrespective of the magnitude
of force F .

(2) For υ� c that results in β→ 0 and γ → 1 the relativistic expression (1.157)
transforms into the classical relationship a = qE/m0 that is independent of
velocity of the particle υ .

(d) The speed υ(t) of a particle with charge q and rest mass m0 moving in a
uniform electric field parallel to the particle’s velocity can be obtained using (1.157).
We rearrange (1.157) to read

γ 3 dυ = dυ

(1 − υ2

c2 )
3
2

= qE
m0

dt. (1.158)
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For a particle at rest at time t = 0, the speed of the particle υ at time t is obtained
by integration of (1.158) in velocity υ from 0 to υ(t) and in time t from 0 to t

ˆ υ(t)

0

dυ

(1 − υ2

c2 )
3/2

= qE
m0

ˆ t

0
dt = qE

m0
t = aEt, (1.159)

where aE = qE/m0 is the classical acceleration limit under the influence of electric
field.

We solve the first integral of (1.159) with the help of the substitution υ = c sinu
and dυ = c cosudu to get

ˆ υ(t)

0

dυ

(1 − υ2

c2 )
3/2

= c
ˆ

cosudu

(1 − sin2 u)
3
2

= c
ˆ

du

cos2 u
= c tanu

= c sinu√
1 − sin2 u

=
[

υ√
1 − υ2

c2

]υ(t)
0

. (1.160)

Merging (1.159) and (1.160) we get a simple expression relating velocity υ and
acceleration aE as follows

υ√
1 − υ2

c2

= γ υ = aEt. (1.161)

Finally, solving (1.161) for υ(t) yields the relativistic relationship between velocity
υ(t) and acceleration aE

υ(t)= aEt√
1 + (c−1aEt)2

. (1.162)

The classical limit of velocity υ(t) from the general expression given in (1.162)
is obtained for small time t such that aEt � c or aEt � 1. For such conditions,
velocity υ is expressed as

υ(t)≈ aEt, (1.163)

the well-known non-relativistic (classical) velocity of a particle undergoing constant
acceleration.

If the initial position of the particle is x(t = 0) = 0, the position x(t) of the
particle at time t is

x(t)=
ˆ t

0
υ(t)dt =

ˆ t

0

aEt√
1 + (aEt/c)2

dt

= c2

2aE

ˆ t

0

[
1 + (aEt/c)

2]− 1
2 d

[
1 + (aEt/c)

2]

= c2

aE

[√
1 + (aEt/c)2

]t
0
= [√1 + (aEt/c)2 − 1]c2

aE
. (1.164)
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To calculate the classical limit of (1.164), we express (1.164) using Taylor’s expan-
sion to get

x(t)= c2

aE

[√
1 + a2

Et
2

c2
− 1

]
≈ c2

aE

[
1 + 1

2

a2
Et

2

c2
+ · · · − 1

]
. (1.165)

For aEt � c or aEt/c� 1, (1.165) becomes

x(t)≈ 1

2
aEt

2 (1.166)

that is the non-relativistic position of a particle undergoing a constant acceleration.

(e) Equation (1.156) gives the general expression for relativistic acceleration a.
In our case of charged particle q motion in magnetic field BBB under the influence
of the Lorentz force FL, the particle velocity υ is perpendicular to magnetic field
BBB as well as to Lorentz force FL, so we write the Lorentz force FL = qυB and
acceleration from (1.156) as a = F/(γm0) using |υ×BBB| = υB and F · β = 0. Since
a = υ2/r = ω2

cycr we get the following expression for the two forces that are in
equilibrium

F = γm0a = γm0ω
2
cycr = qυB = qωcycrB. (1.167)

From (1.167) the cyclotron angular frequency is expressed as follows

ωcyc = qB
γm0

= qB
m0

√
1 − β2 = qB

m0

√
1 − υ2

c2
. (1.168)

For υ � c that results in β → 0 and γ → 1 the relativistic expression (1.168)
for the angular cyclotron frequency transforms into the classical cyclotron angular
frequency given as

ωcyc = qB
m0
. (1.169)

1.21.Q6 (36)

An electron has velocity υe of 0.95c. Calculate velocity of a proton that has:

(a) Same kinetic energy (EK)p as the electron; i.e., (EK)p = (EK)e.
(b) Same momentum pp as the electron; i.e., pp = pe.

SOLUTION:

We first calculate the kinetic energy (EK)e and momentum pe of an electron with
velocity υe = 0.95c corresponding to βe = 0.95 and γe = [1 − β2

e ]−1/2 = 3.2. Elec-
tron kinetic energy (EK)e is calculated using (1.115) as follows
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(EK)e = (γe − 1)(E0)e =
[

1√
1 − β2

e

− 1

]
(E0)e

= (3.2 − 1)×0.511 MeV = 1.124 MeV. (1.170)

Electron momentum pe is calculated using (T1.67) as follows

pe = (E0)e

c

√
γ 2

e − 1 = 0.511 (MeV/c)×
√

3.22 − 1 = 1.55 MeV/c. (1.171)

Now we can address the two questions dealing with protons, first question (a) with
protons of kinetic energy (EK)p = 1.124 MeV and then question (b) with protons
of momentum pp = 1.55 MeV/c.

(a) Kinetic energy of the proton (EK)p equals kinetic energy of the electron (EK)e;
i.e., (EK)p = (EK)e = 1.124 MeV.

We again use (1.115) and express (EK)p as follows

(EK)p = (γp − 1)(E0)p = 1.124 MeV, (1.172)

then solve this relationship for γp to get

γp = 1 + (EK)p

(E0)p
= 1 + 1.124 MeV

938.3 MeV
= 1.0012. (1.173)

Next we calculate βp using the standard definition of Lorentz factor γp =
[1 − β2

p ]−1/2 to get

βp =
√

1 − 1

γ 2
p

=
√

1 − 1

1.00122
= 0.049 (1.174)

or

υP = βPc= 0.049×(
3×108 m/s

)= 1.47×107 m/s. (1.175)

Thus, a proton with kinetic energy (EK)p of 1.124 MeV has a velocity υp equal
to about 5 % of the speed of light in vacuum c, while an electron with same kinetic
energy (EK)e = 1.124 MeV travels at 95 % of c. A proton with kinetic energy of
the order of 1 MeV can be treated as a classical particle, an electron of same kinetic
energy is highly relativistic as result of the significant difference in the rest masses
of the two particles with mp/me = 1836.

(b) Proton momentum pp equals electron momentum pe, i.e., pp = pe =
1.55 MeV/c. We now again use (1.171), write the proton momentum pp as fol-
lows

pp = (E0)p

c

√
γ 2

p − 1 = 1.55 MeV/c, (1.176)
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and then solve this expression for γ 2
p to get

γ 2
p = 1 + p2

p

(E0)2p/c
2

= 1

1 − β2
p

= 1.00000273. (1.177)

Next, we solve (1.177) for βp and get

βp =
√

1 − 1

γ 2
p

=
√

1 − 1

1.000002732
= 2.34×10−3 (1.178)

or

υP = βPc= 7.02×105 m/s. (1.179)

Thus, a proton with momentum pp of 1.55 MeV/c has a velocity of about 0.23 %
of the speed of light in vacuum c, while an electron of this momentum has a velocity
of 95 % of c. Proton of momentum pp = 1.55 MeV/c is a classical particle, while
an electron of same momentum is clearly a relativistic particle.

1.21.Q7 (37)

Determine the energy required to accelerate an electron:

(a) From a velocity of 0.25c to velocity of 0.75c.
(b) From a velocity of 0.95c to velocity of 0.99c.

SOLUTION:

We determine the rise in kinetic energy EK of the electron using the following stan-
dard relationship for kinetic energy

�EK = c2
ˆ m(υ2)

m(υ1)

dm=m(υ2)−m(υ1)

=mec
2
[

1√
1 − υ2

2
c2

− 1√
1 − υ2

1
c2

]
=E0

[
1√

1 − β2
2

− 1√
1 − β2

1

]

=E0(γ2 − γ1), (1.180)

where γ is the Lorentz factor of an electron with velocity υ: γ = (1 − β2)− 1
2 =

(1 − υ2/c2)− 1
2 .

(a) We now calculate �EK for a velocity increase from υ1 = 0.25c to υ2 = 0.75c
corresponding to an increase in γ from γ1 = 1.033 to γ2 = 1.512 as follows

�EK = (γ2 − γ1)E0 = (1.512 − 1.033)×0.511 MeV = 0.245 MeV. (1.181)
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It takes energy of 0.245 MeV to accelerate an electron from velocity of 0.25c to
velocity of 0.75c.

(b) Energy�EK for velocity increase from υ1 = 0.95c to υ1 = 0.99c correspond-
ing to an increase in γ from γ1 = 3.203 to γ2 = 31.623 is calculated as follows

�EK = (γ2 − γ1)E0 = (31.623 − 3.203)×0.511 MeV = 14.52 MeV. (1.182)

It takes energy of 14.52 MeV to accelerate an electron from velocity of 0.95c to
velocity of 0.99c.

A conclusion can be made from (a) and (b) that in the vicinity of the speed of
light c much more energy is required to increase the velocity of a particle than at
relatively low particle velocities.

1.21.Q8 (38)

The relativistic red and blue Doppler shifts play an important role in astro-
physics, as they allow the determination of the motion of distant galaxies
relative to Earth. A blue shift suggests that the source is moving toward the
observer, a red shift that the source is moving away from the observer.

(a) Derive the basic expression for the relativistic Doppler shift using
Lorentz transformations on energy and momentum.

(b) Plot the ratio λobserved/λsource for the red and blue shift against β , the
normalized velocity υ of the photon source.

SOLUTION:

The simplest and fastest method for deriving the relativistic Doppler equation is
through the use of Lorentz transformations relating total energy E and momentum
p of a particle in two inertial reference frames F and F ′. Assume that frame F ′
moves with uniform velocity υ along the abscissa (x) axis of frame F and that a
particle of interest moves in frame F ′ also along the abscissa axis.

The general Lorentz transformations for E and p of the particle are given as
follows

E′ = γ (E − βcp) and p′ = γ
(
p− υ

c2
E

)
, (1.183)

where γ is the Lorentz factor γ = (1 − β2)−1/2 and β is the relative velocity υ
normalized to speed of light c in vacuum. Note that energy E transform takes the
form of the x coordinate Lorentz transformation and momentum p transform takes
the form of the transformation for time t coordinate, as given in Prob. 26.

For a particle with zero rest mass, such as photon, energy E = hν is directly
proportional to momentum p =E/c= hν/c= h/λ and the Lorentz transformation
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of (1.183) for a photon source moving away from the observer simplifies to read

E′ = hν′ = γ (E − βE)= γE(1 − β)= γ hν(1 − β). (1.184)

We can obtain the same result using the momentum transformation

hν′

c
= γ

(
hν

c
− υ

c2
hν

)
= γ hν

c
(1 − β). (1.185)

The ratio of photon energies hν′/hν coincides with the ratio of photon frequencies
ν′/ν found in the relativistic Doppler shift usually expressed as

ν′

ν
= νobserved

νsource
= γ (1 − β)=

√
1 − β√

1 − β√
1 − β2

=
√

1 − β
1 + β . (1.186)

This result for νobserved/νsource translates into the following expression for the ratio
of wavelengths λobserved/λsource

λ′

λ
= λobserved

λsource
=
√

1 + β
1 − β > 1. (1.187)

For the case of photon source moving away from the observer, λobserved/λsource > 1
and the increase in wavelength of the observed photon emission is referred to as the
red shift.

If the photon wavelength is measured in a frame that moves toward the photon
source, the velocity υ is negative and the measured energy E′ is expressed as

E′ = hν′ = γ (E + βE)= γE(1 + β)= γ hν(1 + β). (1.188)

The ratio of photon energies E′/E corresponds to the ratio of photon frequencies

E′

E
= ν′

ν
= νobserved

νsource
=

√
1 + β√

1 + β√
1 − β2

=
√

1 + β
1 − β (1.189)

and translates into the following wavelength ratio

λ′

λ
= λobserved

λsource
=
√

1 − β
1 + β < 1. (1.190)

Since λobserved/λsource < 1, the decrease in wavelength λ with the source approach-
ing the observer is referred to as the blue shift.

The speed of light c is the same in all reference frames; however, photon energy
hν, frequency ν, and wavelength λ all depend on the relative velocity υ between the
source and observer. The following conclusions apply:
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(1) With the source moving away from the observer, the frequency ratio and pho-
ton energy ratio decrease, the ratio of wavelengths increases, the velocity υ in
the Lorentz transformation is positive, and the effect is referred to as the red
Doppler shift.

(2) With the source moving toward the observer, the frequency ratio and photon
energy ratio increase, the ratio of wavelengths decreases, the velocity υ in the
Lorentz transformation is negative, and the effect is referred to as the blue
Doppler shift.

(b) A plot of λobserved/λsource is shown in Fig. 1.13.

Fig. 1.13 Red and blue Doppler shifts (λ/λ′ = λobserved/λsource) against normalized velocity
β = υ/c. For the red shift the source is approaching the observed and λ/λ′ > 1, while for the
blue shift the source is moving away from the observer and λ/λ′ < 1

1.22 Particle-Wave Duality

1.22.Q1 (39)

Calculate the de Broglie wavelength λ of the following:

(a) Electron with velocity of 0.01c.
(b) Electron with kinetic energy of 100 eV.
(c) Electron with kinetic energy of 200 MeV.
(d) Proton with kinetic energy of 10 MeV.
(e) Marble of mass 100 g moving with velocity of 50 m/s.



70 1 Introduction to Modern Physics

Fig. 1.14 De Broglie wavelength λ against normalized velocity β for electrons in the range of β
from 10−3 to 1

Figure 1.14 plots the de Broglie wavelength λ against normalized velocity β
(T1.79) of electrons in the range 10−3 ≤ β ≤ 10, while Fig. 1.15 plots the de
Broglie wavelength λ against kinetic energy EK for both electrons as well as
protons in the kinetic energy range 10−5 MeV ≤EK ≤ 103 MeV.

(f) Verify your data calculated in (a), (b), and (c) for electrons by superim-
posing them as data points on Fig. 1.14 and Fig. 1.15.

(g) Verify the de Broglie wavelength calculated in (d) for protons by super-
imposing the point on the diagram of Fig. 1.15.

(h) Energetic electrons and protons can serve as excellent probes in studies
of atomic and nuclear structure. Can the particles of (a) through (d) be
of any use in atomic and nuclear physics?

SOLUTION:

De Broglie wavelength λ of an object or particle is defined as λ= h/p, where h is
the Planck constant and p is the momentum of the object or particle. As shown in
Prob. 34, momentum is in general expressed as

p =mυ = γm0βc≡ m0c
2

c

β√
1 − β2

≡ E0

c

β√
1 − β2

= EK

c

√
1 + 2E0

EK
, (1.191)

where γ is the Lorentz factor, m0 is the rest mass of the object or particle, and
E0 is the rest energy of the object or particle. It is easy to show that for υ � c
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Fig. 1.15 De Broglie wavelength λ against kinetic energy EK for electrons and protons in kinetic
energy range from 10 eV to 1000 MeV

where EK �E0 the general relationship for the momentum reduces to the classical
expression p =m0υ = √

2m0EK, while in the extreme relativistic region with υ ≈ c
where EK � E0 the general relationship for the momentum p simplifies to read
p ≈EK/c.

(a) Electron travelling with velocity υ = 0.01c equivalent to β = 0.01.
According to (1.115) an electron with β of 0.01 possesses kinetic energy EK of

25.6 eV. Since β � 1, the classical expression EK = 1
2m0υ

2 = 1
2m0c

2β2 gives the
same result (25.6 eV). The de Broglie wavelength λ is calculated as follows

λ= h

p
= h

γm0υ
= 2π�c

√
1 − β2

βm0c2
= 2π(197.3 MeV · fm)×√

1 − 0.012

0.01×0.511 MeV
=2.42 Å.

(1.192)
(b) Electron with kinetic energy EK = 100 eV, i.e., 100 eV electron.

According to classical and relativistic expressions an electron with kinetic energy
EK of 100 eV travels with velocity of 0.02c. Since β � 1, the classical expression
υ = √

2EK/me gives the same result as the relativistic one. The de Broglie wave-
length λ is calculated as follows

λ = h

p
= 2π�c

EK

√
1 + 2E0

EK

≈ 2π�c√
2mec2EK

= 2π×(197.3×106 eV · fm)√
2×(0.511×106 eV)×(102 eV)

= 1.2×105 fm = 1.2 Å, (1.193)

where we used (1.128) to calculate momentum p of the 100 eV electron in (1.193).

(c) Electron with kinetic energy EK = 200 MeV, i.e., 200 MeV electron.
According to (1.115) an electron with kinetic energy EK of 200 MeV travels

with velocity of 0.99999675c and is thus highly relativistic. In the case of β for
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highly relativistic particles we have no choice but to use the value of β with many
significant figures, since we are in a region of extremely rapid change of EK with β .
The de Broglie wavelength λ is calculated with the standard de Broglie expression
λ = h/p expressing p with (1.124) or (1.126) (both expressions should give the
same result)

λ= h

p
= 2π�c

EK

√
1 + 2E0

EK

= 2π×(197.3 MeV · fm)

(200 MeV)×
√

1 + 2×0.511 MeV
200 MeV

= 6.17 fm = 6.17×10−15 m (1.194)

or

λ = h

p
= 2π�c

E0

√
1 − β2

β
= 2π×(197.3 MeV · fm)

0.511 MeV
×

√
1 − 0.999996752

0.99999675

= 6.17 fm = 6.17×10−15 m. (1.195)

(d) Proton with kinetic energy EK = 10 MeV, i.e., 10 MeV proton. A proton
with kinetic energy EK of 10 MeV travels with classical velocity of 0.146c. Since
β � 1, the classical expression υ = √

2EK/mP can be used in calculation of υP.
The de Broglie wavelength λ is calculated as follows

λ= h

p
= 2π�c

EK

√
1 + 2E0

EK

= 2π×(197.3 MeV · fm)

(10 MeV)×
√

1 + 2×(938.3 MeV)
10 MeV

= 9.02 fm = 9.02×10−15 m. (1.196)

(e) Marble of mass m = 100 g travelling with velocity υ = 50 m/s. The de
Broglie wavelength λ is calculated as follows

λ = h

p
= h

m0υ
= 2π�c

m0υc

= 2π×(197.3×106 eV · fm)×(1.6×10−19 J/eV)×(10−15 m/fm)

(10−1 kg)×(3×108 m/s)×(50m/s)

= 1.32×10−34 m = 1.32×10 −19 fm. (1.197)

(f) Figure 1.16 plots the de Broglie wavelength λ for electrons against the normal-
ized velocity β . Data points calculated in (a), (b), and (c) for electrons are shown
superposed onto the de Broglie wavelength λ curve.

(g) Figure 1.17 plots the de Broglie wavelength λ for electrons and protons against
kinetic energy EK. Data points calculated in (a), (b), and (c) for electrons and in (d)
for protons are shown superposed onto appropriate de Broglie wavelength λ curves.
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Fig. 1.16 De Broglie wavelength λ against normalized velocity β = υ/c for electron. The data
points (a), (b), and (c) correspond to results calculated in (a), (b), and (c), respectively

Fig. 1.17 De Broglie wavelength λ against kinetic energy EK for electron and proton. Data points
(a), (b), (c), and (d) correspond to results calculated in (a), (b), (c), and (d), respectively

(h) To be useful as a probe in scattering experiments a particle must have the de
Broglie wavelength λ of the order of the dimension of the investigated target: few
angstroms for atoms and few fermis (femtometers) for nuclei.

Electrons in (a) and (b) with kinetic energy of 25.6 eV and 100 eV, respectively,
and de Broglie wavelengths λ of 2.4 Å and 1.2 Å, respectively, would be suitable
for scattering experiments on atoms, while electrons of (c) with kinetic energy of
200 MeV corresponding to λ of 6.2 fm and protons of (d) with kinetic energy of
10 MeV corresponding to a wavelength λ of 9 fm would be suitable as nuclear
probes.
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1.22.Q2 (40)

In 1927 Clinton J. Davisson and Lester H. Germer confirmed experimentally
the wave nature of electrons by bombarding a nickel target with electrons and
measuring the intensity of electrons scattered from the target. The target was
in the form of a regular crystalline alloy that was formed through a special
annealing process. The beam of electrons was produced by thermionic emis-
sion from a heated tungsten filament. The electrons were accelerated through
a relatively low variable potential difference U that enabled the selection of
the electron kinetic energy EK incident onto the nickel crystal. Electrons scat-
tered from the crystal were collected with a Faraday cup and their intensity
was measured with a galvanometer.

In a Davisson-Germer experiment electrons (rest energy me = 0.511 MeV
and charge e = 1.602×10−19 C) are accelerated through a potential differ-
ence U of the order of 100 V and scattered on nickel crystals with crystalline
plane separation of the order of 2 Å. Show that the non-relativistic de Broglie
wavelength λclas of electrons in Davisson-Germer experiment has the follow-
ing characteristics:

(a) Is inversely proportional to
√
U .

(b) Can be expressed as λ= (12.26 Å/
√
U) when U is given in volts.

(c) Is equal to 1.73 Å for U = 50 V .
(d) Requires a correction factor C = 1√

1+eU/(2mec2)
for relativistic elec-

trons.

SOLUTION:

(a) Momentum p for non-relativistic electron.
Recalling that kinetic energy EK of charge q accelerated through potential dif-

ference U is given as a product qU , we can use the classical relationship EK =
1
2p

2/m0 to express momentum p as p = √
2meEK = √

2meeU and get the follow-
ing classical expression for de Broglie wavelength λ

λclass = h

p
= 2π�c√

2mec2EK

= 2π�c√
2mec2eU

∝ 1√
U
. (1.198)

(b) Equation (1.198) shows that the non-relativistic relationship for the de Broglie
wavelength λ is inversely proportional to

√
U and the proportionality constant when

U is given in volts is

λclass = h

p
= 2π�c√

2mec2eU
= 2π 1973 eV · Å√

2×0.511×106 e2V2 U(in V)
= 12.26 Å√

U(in V)
.

(1.199)
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(c) We use (1.199) to determine λclas for U = 50 V and get

λclas = h

p
= 12.26 Å√

50
= 1.73 Å. (1.200)

(d) Momentum p for relativistic electron is calculated from the basic expression

for the relativistic total energy E =
√
p2c2 +E2

0 where E0 is the particle rest mass

p = 1

c

√
E2 −E2

0 = 1

c

√
E2

K − 2E0EK = 1

c

√
(eU)2 + 2m0c2eU

=
√

2meeU

(
1 + eU

2mec2

)
. (1.201)

Equation (1.201) gives the following de Broglie wavelength λrel for a relativistic
electron

λrel = h

p
= 2π�c√

2mec2eU
√

1 + eU

2mec2

= λclas√
1 + eU

2mec2

= Cλclas, (1.202)

where λclas is the classical de Broglie wavelength of (1.198) and the constant C is
given as

C = 1√
1 + eU

2mec2

. (1.203)

1.22.Q3 (41)

Neutron diffraction is a powerful tool for studying the structure of crystals,
especially organic hydrogen-rich crystals. In a Davisson-Germer type diffrac-
tion experiment with monochromatic neutrons on an organic sample with
plane separation d = 1.85 Å, the resulting diffraction pattern exhibited a max-
imum at an angle ϕ = 50◦. Calculate the kinetic energy EK of the monochro-
matic neutrons that were used in the experiment.

SOLUTION:

The diffraction pattern with its specific intensity maximum results from the wave
nature of neutrons. Similarly to the behavior of light and sound, we assume that
neutrons also exhibit wavelike behavior that is governed by: (1) the Bragg diffrac-
tion law expressed as

mλ= 2d sinϕ, (1.204)



76 1 Introduction to Modern Physics

with m an integer, ϕ the Bragg angle measured between the incident beam direction
and the crystal surface, and d atomic lattice spacing as well as (2) the de Broglie
particle-wave duality hypothesis expressed with the de Broglie wavelength λ as

λ= h

mnυ
, (1.205)

where υ is the velocity of the neutron and mn is the neutron rest mass.
We first calculate the neutron de Broglie wavelength λ from Bragg law form= 1

and get

λ= 2d sinϕ = 2×(1.85 Å)× sin 50◦ = 2.8 Å (1.206)

and next we calculate the kinetic energy EK of neutrons with de Broglie wavelength
λ of 2.8 Å from the following basic de Broglie expression

λ= h

mnυ
= h√

2mnEK
(1.207)

to get

EK = h2

2mnλ2
= (2π)2(�c)2

2mnc2λ2
= (2π)2×(1973 eV · Å)2

2×(939.5×106 eV)×(2.8 Å)2
= 0.01 eV.

(1.208)
Neutrons with kinetic energy EK of 0.01 eV fall into the upper level of so-called
cold neutrons but they can also be classified as thermal neutrons that are defined as
having energy of about 0.025 eV.

1.22.Q4 (42)

A beam of thermal neutrons with kinetic energy EK of 0.04 eV is used in a
scattering experiment on a crystal of sodium chloride with a lattice separation
d = 2.8 Å. Calculate:

(a) The Bragg angle ϕ at which the first order (m = 1) Bragg reflection
occurs.

(b) Energy hν of monoenergetic x rays that would undergo first order Bragg
reflection on sodium chloride crystal at the same Bragg angle ϕ.

SOLUTION:

(a) Equation mλ= 2d sinϕ illustrates the Bragg condition for constructive inter-
ference between waves scattered from two planes with separation d , with m the
order of the Bragg reflection, λ the wavelength of the incident radiation or matter
wave, and φ the angle of incidence.
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Thermal neutrons with EK = 0.04 eV are characterized with the following
de Broglie wavelength λ, as given by (1.193) or its classical approximation for
EK �E0

λ = h

p
= 2π�c

EK

√
1 + 2E0

EK

≈ 2π�c√
2E0EK

= 2π×(197.3 MeV · fm)×(10−5 Å/fm)√
2×(939.6 MeV)×(4×10−8 MeV)

= 1.43 Å, (1.209)

where h is the Planck constant; � is the reduced Planck constant (� = h/(2π); p is
momentum of the neutron; c is speed of light in vacuum; and E0 is rest energy of
the neutron (939.6 MeV).

According to (1.209) the de Broglie wavelength λ of a 0.04 MeV thermal neutron
is 1.43 Å resulting in the following angle of incidence ϕ for the first order Bragg
reflection

sinϕ = λ

2d
= 1.43 Å

2×2.8 Å
= 0.255 corresponding to ϕ = 14.8◦. (1.210)

(b) A mono-energetic x-ray photon that would experience first order reflection at
the same angle of incidence (ϕ = 14.8◦) as the thermal neutron beam, would have
a wavelength λ equal to the de Broglie wavelength λ of the thermal neutron beam.
The energy of the mono-energetic x-ray photons is calculated using the Planck law

hν = h c
λ

= 2π�c

λ
= 2π×(1973 eV · Å)

1.43 Å
= 8.67 eV. (1.211)

1.22.Q5 (43)

Based on experimental nuclear data:

(a) Evaluate the feasibility of a nuclear model in which atomic electrons
are confined within the atomic nucleus.

(b) Compare the results with those for the model in which protons are con-
fined within the atomic nucleus.

SOLUTION:

(a) Nuclear radius is given as R(A)=R0
3
√
A where R0 is the nuclear radius con-

stant (1.25 fm) and A is the atomic mass number or number of nucleons in the
nucleus. This defines the range of nuclear diameters between 2 fm for low-A nuclei
and 20 fm for high-A nuclei, and stipulates that an electron residing in the nucleus
would have a de Broglie wavelength λ below ∼20 fm.
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Equation (1.193) gives the following relationship between de Broglie wavelength
λ and kinetic energy EK of a particle

λ= h

p
= 2π�c

EK

√
1 + 2E0

EK

= 2π�c√
E2

K + 2E0EK

, (1.212)

where E0 is the rest energy of the particle.
Squaring (1.212) results in a quadratic equation for EK with the following gen-

eral solution

EK =
−2E0 ±

√
4E2

0 + 4 (2π�c)
2

λ2

2
=E0

[√
1 +

(
2π�c

λE0

)2

− 1

]
, (1.213)

with the + sign in the ± option providing a physically relevant solution.
In the non-relativistic (classical) region where 2π�c� λE0 we simplify (1.213)

to read

EK =E0

[
1 + 1

2

(
2π�c

λE0

)2

+ · · · − 1

]
≈ 2π2

E0

(
�c

λ

)2

(1.214)

and in the extreme relativistic region where 2π�c� λE0 we simplify (1.213) to

EK ≈ 2π�c

λ
. (1.215)

Inserting λ = 20 fm and E0 = 0.511 MeV into (1.213) or just λ = 20 fm into
(1.215) we obtain kinetic energy EK = 62 MeV for the electron and establish that λ
of less than 20 fm corresponds to electron kinetic energy EK of more than 62 MeV.

Even if we take the reduced de Broglie wavelength λ̄ that is defined as λ/(2π)
and compare it to a nuclear diameter of 20 fm, we note that λ̄ of 20 fm corresponds
to electron kinetic energy EK of ∼ 9.8 MeV. Since kinetic energies of 10 MeV have
never been observed experimentally for electrons emitted from the nucleus in any of
the nuclear processes such as beta decay, we conclude that a nuclear model housing
electrons in addition to protons is not feasible.

Actually, electrons emitted from nuclei have maximum kinetic energies at least
an order of magnitude smaller than 10 MeV and amount to only about 1 MeV cor-
responding to de Broglie wavelengths λ of about 900 fm or reduced de Broglie
wavelengths λ̄ of ∼ 150 fm, significantly larger than the nuclear diameter that is of
the order of 10 fm.

(b) A similar look at protons confined to the nucleus shows that this model of
proton confinement in the nucleus is feasible because of the much larger mass of
the proton mp compared to that of the electron me (mp/me = 1836). Inserting λ=
20 fm and E0 = 938.3 MeV into (1.213) we get the following result for the proton
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Fig. 1.18 De Broglie wavelength λ for electron and proton against kinetic energy EK in the range
from 10−5 MeV to 103 MeV. Points (a) and (b) correspond to kinetic energy of electron of 62 MeV
and of proton of 2 MeV for de Broglie wavelength λ of 20 fm, determined in (a) and (b), respec-
tively, and estimated as the upper limit on the size of the nucleus for high atomic mass elements

kinetic energy EK

EK = (938.3 MeV)×
[√

1 +
(

2π×(197.3 MeV · fm)

(20 fm)×(938.3 MeV)

)2

− 1

]
≈ 2 MeV. (1.216)

The estimated proton kinetic energy EK of 2 MeV is well within the bind-
ing energy per nucleon EB/A that is of the order of 8 MeV/nucleon and ranges
from 1.2 MeV/nucleon for deuterium to the highest value at slightly less than
9 MeV/nucleon. The estimated proton kinetic energy is also of the same order of
magnitude as the energy of protons emitted from the nuclei in proton emission de-
cay.

Figure 1.18 plots the de Broglie wavelengths of proton and electron against ki-
netic energy EK. In (a) we established 20 fm as the upper limit on the size of the
nucleus for high atomic mass elements and this provides us with an order of mag-
nitude for de Broglie wavelength λ of electron and proton residing in the nucleus.
From the two curves in Fig. 1.18 we note that for λ = 20 fm kinetic energy of the
electron would exceed 62 MeV, while it exceeds 2 MeV for a proton. Since elec-
trons emitted from nuclei have kinetic energies of the order of 1 MeV, it is clear
that a nuclear model incorporating electrons in the atomic nucleus would not be
practical.

We thus conclude that, based upon the de Broglie hypothesis of matter waves,
electrons cannot reside within the nucleus while the protons can.
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1.23 Matter Waves

1.23.Q1 (44)

Write the one-dimensional time-dependent Schrödinger wave equation for a
free electron and show that a plane wave function is a solution to the wave
equation.

SOLUTION:

The 1-dimensional time-dependent Schrödinger wave equation is written as follows

− �
2

2m0

∂2Ψ (z, t)

∂z2
+ V (z, t)Ψ (z, t)= i�∂

2Ψ (z, t)

∂t2
, (1.217)

where

Ψ (z, t) is the wave function containing the information about the given particle.
V (z, t) is the potential energy operator governing the motion of the particle.
m0 is the particle rest mass.
� is the reduced Planck constant.

A free electron is an electron subject to no force (V (z, t)= 0) and the Schrödinger
equation (1.217) for a free electron in one dimension simplifies to

− �
2

2m0

∂2Ψ (z, t)

∂z2
= i�∂Ψ (z, t)

∂t
, (1.218)

with Ψ (z, t) a simple plane wave of the form

Ψ (z, t)= Ceiϕ = Cei(kz−ωt) = Ceikze−iωt , (1.219)

where

ϕ = kz−ωt is the phase of the plane wave and
k is the wave number (k = 2π/λ).
ω is the angular frequency (ω= 2πν, with ν the frequency).
C is the normalization constant and here it is also the amplitude of the

oscillation.

Using the Planck-Einstein quantum hypothesis E = hν = �ω and the de Broglie
particle-wave hypothesis λ = h/p = 2π/k in conjunction with the classical re-
lationship EK = p2

e/(2me), we note that ω = E/� and Ψ (z, t) is a solution to
the time-dependent Schrödinger equation (1.218) separable as a product of two
functions: ψ(z) = Ceikz that is a function of the spatial coordinate z only and
T (t)= e−iωt that is a function of the temporal coordinate t only.
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The equation for the space function ψ(z) is the so-called time-independent
Schrödinger equation, given for a free particle as follows

− �
2

2m0

d2ψ(z)

dz2
=Eψ(z), (1.220)

with solution ψ(z) = Ceikz and energy E = p2/(2m0) = �
2k2/(2m0). Thus, the

total energy E equals the kinetic energy.
The general solution to the Schrödinger equation for a free electron (1.218) is

thus given as

Ψ (z, t)= Ceikze−i E� t . (1.221)

For a free particle the energy is not quantized; the wave number k can take any value
and the same holds for energy E. Thus, the states of k and E form a continuum.

To verify that (1.221) is indeed a viable solution to (1.218) we evaluate the deriva-
tives ∂2Ψ/∂z2 and ∂Ψ/∂t

∂Ψ (z, t)

∂z
= ikCeikze−iωt = ikΨ (z, t), (1.222)

∂2Ψ (z, t)

∂z2
= −k2Ceikze−iωt = −k2Ψ (z, t), (1.223)

∂Ψ (z, t)

∂t
= −iωCeikze−iωt = −iωΨ (z, t). (1.224)

Insert the appropriate derivatives into (1.218) and get

− �
2

2m0

∂2Ψ (z, t)

∂z2
= − �

2

2m0
k2Ψ (z, t) (1.225)

and

i�
∂Ψ (z, t)

∂t
= �ωΨ (z, t). (1.226)

Wave function Ψ (z, t) = C exp[i(kz − ωt)] (in quantum physics referred to as
an eigenfunction) satisfies (1.218) provided that �2k2/(2m0) from (1.223) equals to
�ω from (1.226). This condition holds since the following three conditions apply:

(i) �ω=E according to the Planck-Einstein quantum hypothesis.
(ii) k = p/� according to the de Broglie particle–wave hypothesis.

(iii) EK = p2/(2m0) according to the classical kinetic energy–momentum rela-
tionship.

Energy E is the total energy of the particle; energy EK is its kinetic energy. For a
free particle, the potential energy V (z, t) is zero, so that the total energy E equals
the kinetic energy EK.
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1.23.Q2 (45)

As shown in Prob. 32, in special relativity the relationship between total en-
ergy E and momentum p of a free particle of rest mass m0 is given by

E2 = p2c2 +m2
0c

4. (1.227)

(a) Use the quantum operators for total energy E → i�∂/∂t and momen-
tum p→ −i�∇ to derive the relativistic Klein-Gordon equation for a
free particle.

(b) Show that the Klein-Gordon equation for a free particle transforms into
the common wave equation when the free particle is a photon. (Note:
photon has zero rest mass).

(c) Show that inserting operators for E and p of (a) into the classical
expression E = p2/2m0 results in the 3-dimensional time-dependent
Schödinger equation for a free particle.

SOLUTION:

(a) Insert E→ i� ∂
∂t

and p→ −i�∇ into E2 = p2c2 +m2
0c

4 and get

−�
2 ∂

2Ψ

∂t2
= −�

2c2∇2Ψ +m2
0c

2Ψ or

(
∇2 − 1

c2

∂2

∂t2

)
Ψ = m2

0c
4

�2
Ψ. (1.228)

Equation (1.228) is known as the Klein-Gordon wave equation and it correctly de-
scribes the propagation of relativistic particles of rest mass m0.

(b) Insert m0 = 0 into the Klein-Gordon equation (1.228) and the result will be
the standard wave equation governing EM waves expressed as

∇2Ψ = 1

c2

∂2Ψ

∂t2
. (1.229)

(c) Insert E → i� ∂
∂t

and p → −i�∇ into the classical relationship for kinetic
energy E = p2/2m0 to get

i�
∂Ψ

∂t
= − �

2

2m0
∇2Ψ or − �

2

2m0
∇2Ψ = i�∂Ψ

∂t
. (1.230)

Equation (1.230) is the non-relativistic 3-dimensional time-dependent Schrödinger
equation for a free particle.
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1.23.Q3 (46)

For a free electron with a spatial wave function ψ(z)= Cei(7.5 Å
−1
)z.

(a) Write the spatial component of the Schrödinger equation.
(b) Determine the wave number k of the electron.
(c) Calculate the de Broglie wavelength λ of the electron
(d) Calculate the momentum pe of the electron
(e) Calculate the kinetic energy Ee

K of the electron.
(f) Calculate the velocity υe of the electron.

SOLUTION:

(a) The general wave equation for the free electron is given as

− �
2

2me
∇2ψ(z)=Eψ(z), (1.231)

where E is the total energy of the free electron and ψ(z) is the time-independent
wave function.

(b) Wave number of the free electron with a spatial wave function ψ(z) =
Cei(7.5 Å)z is obtained directly from the wave function as k = 7.5 Å

−1 = 7.5×
10−10 m−1.

(c) De Broglie wavelength λ of the free electron with a spatial wave function
ψ(z)= Cei(7.5 Å)z is calculated from the definition for the wave number expressed
as k = 2π/λ

λ= 2π

k
= 2π

7.5
Å = 0.84 Å = 0.84×10−10 m. (1.232)

(d) Momentum p of free electron with a spatial wave function ψ(z)= Cei(7.5 Å)z

is calculated as

p = �k = (�c)k
c

= (1973 eV · Å)×7.5 Å
−1

c
= 1.48×104 eV/c= 14.8 keV/c

= (1.48×104 eV)×(1.602×10−19 kg · m2 · s−1/eV)

3×108 m · s−1

= 7.9×10−24 kg · m · s−1. (1.233)

(e) Kinetic energy EK of the free electron with a spatial wave function ψ(z) =
Cei(7.5 Å)z is calculated from: (1) classical relationship, (2) de Broglie wavelength λ,
and (3) general relativistic expression. The three calculations are expected to give
same results.
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(1) From classical expression for kinetic energy EK

EK = 1

2
meυ

2 = p2

2me
= (pc)2

2mec2
= (1.48×104 eV)2

2×0.511×106 eV
= 214.3 eV. (1.234)

(2) From de Broglie wavelength λ of 0.84 Å corresponding to wave number k of
7.5 Å

EK = �
2k2

2me
= (�c)2k2

2mec2
= (1973 eV · Å)2×(7.5 Å

−1
)2

2×0.511×106 eV
= 214.3 eV. (1.235)

(3) From the basic relativistic relationship for total energy E = √
p2c2 +E2

e =
EK +Ee

EK =E −Ee =
√
E2

e + p2c2 −Ee =Ee

(√
1 + p2c2

E2
e

− 1

)

≈Ee

(
1 + 1

2

p2c2

E2
e

+ · · · − 1

)

≈ p2c2

2Ee
= (1.48×104 eV)2

1.022×106 eV
= 214.3 eV. (1.236)

(f) Velocity υe of the electron can be calculated: (1) from momentum pe of the
electron in (d) or (2) from kinetic energy Ee

K of the electron in (e). We use here
the relativistic expressions for momentum and kinetic energy to highlight the gen-
eral relativistic case even though the electron in this problem can also be treated
classically

(1) Using momentum pe = 14.8 keV/c and the relativistic expression for mo-
mentum we get

pe = γmeυe = γβmec= β√
1 − β2

mec (1.237)

where γ is the Lorentz factor and me is the rest mass of the electron.
Solving (1.237) for β we obtain the following result for the electron veloc-

ity υe

β = υe

c
=

pe
mec√

1 + [ pe
mec

]2
=

14.8 keV/c
0.511×103 keV/c√

1 + [ 14.8 keV/c
0.511×103 keV/c

]2
= 0.029. (1.238)

(2) As expected, using the standard relationship (see T2.7) between particle ve-
locity υ and its kinetic energy EK, we get the same result as in (1.238) for the
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electron velocity υe

β = υe

c
=
√√√√1 − 1

(1 + Ee
K

mec2 )
2

=
√

1 − 1

(1 + 214.3
0.511×106 )

2
= 0.029. (1.239)

1.23.Q4 (47)

A particle has the following one-dimensional, time independent wave func-

tion ψ(z)= Ce− 1
2α

2z2
Calculate:

(a) Normalization constant C of the particle wave function ψ(z).
(b) Average or expectation value z̄ of particle position z.
(c) Average or expectation value z2 of z2 of the particle.
(d) Quantum uncertainty �z in particle position z.

SOLUTION:

(a) The normalization condition for wave function ψ(z) is given as
ˆ ∞

−∞
∣∣ψ(z)∣∣2 dz=

ˆ ∞

−∞
ψ∗(z)ψ(z)dz= C2

ˆ ∞

−∞
e−α2z2

dz= 1, (1.240)

resulting in the following expression for the normalization constant C

C =
{ˆ ∞

−∞
e−α2z2

dz

}− 1
2

. (1.241)

In standard Tables of Integrals we find the following definite integral

ˆ ∞

−∞
e−az2

dz=
√
π

a
. (1.242)

Inserting a = α2 into (1.242) we obtain the following value for the constant C

C = 1√´∞
−∞ e−α

2z2 dz
=

√
α

4
√
π
. (1.243)

The wave function of our particle is thus given as

ψ(z)=
√
α

4
√
π
e−

1
2α

2z2
, (1.244)

and, when inserted into the normalization condition (1.240), the result is 1, as ex-
pected.
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(b) The mean (average) or expectation value z̄ of particle position z is calculated
as follows

z̄=
ˆ ∞

−∞
z
∣∣ψ(z)∣∣2 dz= C2

ˆ ∞

−∞
ze−α2z2

dz= α√
π

ˆ ∞

−∞
ze−α2z2

dz. (1.245)

In standard Tables of Integrals we find the following definite integral

ˆ ∞

−∞
ze−a(z−b)2 dz= b

√
π

a
. (1.246)

Since in our example the constant b equals zero, the value of the definite integral
(1.246) is zero, which is to be expected, since the wave function is essentially Gaus-
sian as well as even and centered at z = 0. We thus conclude that the mean or
expectation value of position z is equal to zero, i.e., z̄= 0.

(c) The (mean) average or expectation value z2 is calculated as follows

z2 =
ˆ ∞

−∞
z2
∣∣ψ(z)∣∣2 dz= C2

ˆ ∞

−∞
z2e−α2z2

dz= α√
π

ˆ ∞

−∞
z2e−α2z2

dz. (1.247)

In standard Tables of Integrals we find the following definite integral

ˆ ∞

−∞
z2e−az2

dz= 1

2

√
π

a3
. (1.248)

Inserting (1.248) with a = α2 into (1.247) we get the following result for z2

z2 = 1

2α2
. (1.249)

(d) �z, the quantum uncertainty in position z, is given as

�z=
√
z2 − (z̄)2. (1.250)

Inserting z̄= 0 from (1.246) and z2 = 1/(2α2) from (1.249) into (1.250) we obtain
the following result for the quantum uncertainty �z

�z=
√

1

2α2
− 0 = 1

α
√

2
= 0.707

α
. (1.251)
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1.24 Uncertainty Principle

1.24.Q1 (48)

Take the radius a and momentum p of the electron occupying the innermost
orbit (shell) of the hydrogen atom and show that the two quantities satisfy
the Heisenberg uncertainty principle �z�p ≥ 1

2�. Assume that maximum
uncertainties in position z and momentump are equal to a and p, respectively,
of the n= 1 hydrogen orbit.

SOLUTION:

The innermost electronic shell in a hydrogen atom is characterized with n= 1 and
Z = 1, where n is the principal quantum number and Z is the atomic number of
hydrogen.

The innermost electron orbit in hydrogen atom has the following radius: r1 =
a0 = 0.53 Å = 0.53×10−5 fm, where a0 is a constant called the Bohr radius con-
stant. The maximum uncertainty in position is then �z≈ a0 = 0.53×10−5 fm.

The velocity of the electron in the first orbit of the hydrogen atom is given as:
υ1 = αc = (1/137)c, where α is the fine structure constant and c is the speed of
light in vacuum. Since υ1 � c, we can use the classical expression for the electron
momentum p as follows

p =meυ1 = mec
2

c

υ1

c
= mec

2

c
α = 0.511

MeV

c
× 1

137
= 3.73×10−3 MeV

c
,

(1.252)
resulting in maximum uncertainty in momentum p of �p ≈ 3.73×10−3 MeV/c.

Next we determine the product �z�p and get

�z�p ≈ a0meυ1 = (
0.53×10−5 fm

)×3.73×10−3 MeV

c
= 197.7

MeV · fm

c
(1.253)

and evaluate 1
2� to get

1

2
�= �c

2c
= 197.3

2c
MeV · fm = 98.7

MeV · fm

c
. (1.254)

A comparison of (1.253) to (1.254) shows that the Heisenberg uncertainty principle
stating that �z�p ≥ 1

2� is satisfied for the electron in the innermost shell of the
hydrogen atom, since

�z�p = 197.7
MeV · fm

c
≥ 1

2
� = 98.7

MeV · fm

c
. (1.255)
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1.25 Complementarity Principle

1.25.Q1 (49)

(a) Define the “Principle of Complementarity” in quantum physics.
(b) List a few examples for which the principle of complementarity applies.

SOLUTION:

(a) Introduced in 1927 by Niels Bohr, the principle of complementarity in quan-
tum physics, also known as wave–particle duality, stipulates that the complete de-
scription of a phenomenon in physics of nano-dimensions relies on two contradic-
tory, yet complementary, models. One or the other model alone cannot fully explain
a particular phenomenon; complete understanding of a given phenomenon is only
obtained if both models are combined in a complementary fashion.

In a narrower sense the principle of complementarity states that a quantum me-
chanical phenomenon behaves either as particle (corpuscle) or as wave but not as
particle and wave simultaneously. A stronger emphasis on the wave nature dimin-
ishes the particle nature and vice-versa. This links the Bohr principle of comple-
mentarity, which stipulates that the particle and wave models complement rather
than contradict one another, with the Heisenberg principle of uncertainty which sets
a limit to the precision with which two conjugate physical quantities, such as par-
ticle’s position and momentum or its energy and duration of energy measurement,
can be determined.

(b) There are several phenomena in quantum physics where the particle-wave du-
ality is apparent. In the broadest sense we can say that both radiation as well as
matter exhibit the particle–wave duality to which the Bohr principle of complemen-
tarity applies. Results of a particular experiment with radiation or matter will be
explained with only one of the two models and never with both; however, for a
complete understanding of radiation and matter both models must be invoked. For
example:

(1) Aspects of radiation explained by corpuscular nature: (i) photoelectric effect
and (ii) Compton effect.

(2) Aspects of radiation explained by wave nature: (i) diffraction of x rays (Bragg
law); (ii) diffraction of visible light (single slit, double slit (Young experi-
ment), diffraction grating, circular aperture, (iii) wave equations for electric
and magnetic fields for EM radiation (Maxwell equations).

(3) Aspects of matter explained by corpuscular nature: (i) electron ionization
track in ionization chamber and bubble chamber, (ii) neutron track in neutron
bubble detector, (iii) electron in Rutherford-Bohr atom (particle model).
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(4) Aspects of matter explained by wave nature: (i) Bragg diffraction of electrons
and neutrons on crystals with de Broglie wavelength λ much shorter than the
separation d of crystallographic planes, (ii) electron in Rutherford-Bohr atom
(electron wave functions).

1.26 Emission of Electrons from Material Surface: Work
Function

1.26.Q1 (50)

In a surface photoelectric experiment the surface of sodium metal is exposed
to incident monochromatic light of various wavelengths λ. The measured re-
tarding potentials U ret

0 required to stop completely the emitted photoelectron
current at a given λ are listed in Table 1.16.

Table 1.16 Retarding potential U ret
0 required for stopping photoelectron current against λ

Photon wavelength λ(Å) 5051 4475 4100 3591 3193 2723

Retarding potential U ret
0 (V) 0.15 0.37 0.71 1.23 1.61 2.17

From a graphical presentation of appropriate data determine:

(a) Ratio h/e where h is the Planck constant and e the electron charge.
(b) Planck constant assuming that we know the electron charge (e =

1.602×10−19 C).
(c) Work function eφ for sodium metal.

SOLUTION:

The surface photoelectric experiment consists of measuring the number of photo-
electrons emitted and their kinetic energies as functions of intensity I and wave-
length λ of monochromatic incident visible or ultraviolet light. Experimental ap-
paratus allows application of retarding U ret < 0 or accelerating U accel > 0 electric
field to the emitted photoelectrons. For U accel > 0, all emitted electrons strike the
collecting electrode and the current is essentially independent of the applied voltage.
For U ret < 0, the retarding potential prevents lower energy electrons from reaching
the collecting electrode, so the current decreases with increasing negative potential



90 1 Introduction to Modern Physics

until at U ret
0 no photoelectrons can overcome the retarding potential and the current

drops to 0. For a given material of the emitting electrode, U ret
0 is constant and inde-

pendent of light intensity I , a finding that cannot be explained with classical theory.
This peculiar result caused significant difficulties for physicists at the beginning of
the 20-th century and it was Albert Einstein who in 1905 explained the experimental
data by introducing the idea of the photon quantum and the corpuscular nature of
the photon.

According to Einstein, the kinetic energy EK of the emitted photoelectron is
given by

EK = hν − eφ, (1.256)

where hν is the energy of the incident photon quantum and eφ is the work function
representing the minimum energy the photon must possess to be able to eject an
electron from the surface of the electrode material.

The retarding potential U ret decreases the measured electron current I at a given
photon energy hν = hc/λ and at U ret

0 completely stops the photoelectron current
such that the kinetic energyEK of the photoelectron equals to eU ret

0 . We now modify
(1.256) to accommodate the measured data as follows

EK =U ret
0 = h

e
ν − eφ

e
, (1.257)

calculate frequencies ν from wavelengths λ using ν = c/λ, and plot U ret
0 against the

calculated frequencies ν based on the following frequency ν and U ret
0 data:

Table 1.17 Photon frequency for wavelength λ data of Table 1.16

(1) (2) (3) (4) (5) (6)

Photon wavelength
λ(Å)

5051 4475 4100 3591 3193 2723

Photon frequency
ν(s−1)= c/λ

5.94×1014 6.70×1014 7.32×1014 8.35×1014 10.6×1014 11.0×1014

Retarding potential
U ret

0 (V)
0.15 0.37 0.71 1.23 1.61 2.17

(a) As shown in Fig. 1.19, the (ν,U ret
0 ) plot is linear and allows us to determine

the h/e ratio of (1.257) from the slope of the straight line obtained through the
least squares fit to measured data. The slope is 4.12×10−15 V · s which means that
h/e= 4.12×10−15 V · s.

(b) We can now determine the Planck constant h from the h/e ratio of (a) using
the known value of the electron charge e= 1.602×10−19 C as follows

h= h

e
e= (

4.12×10−15 V · s
)×e= 4.12×10−15 V · s

= (
4.12×10−15 eV · s

)×(
1.602×10−19 J/eV

)= 6.60×10−34 J · s, (1.258)
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Fig. 1.19 Measured retarding potential U ret
0 against photon frequency ν. The slope of the linear

plot obtained with the least squares fit to measured data is equal to h/e with h the Planck constant
and e the electron charge. Data points (1) through (6) represent data presented in Table 1.17

that compares reasonably well with the currently accepted value of the Planck con-
stant quoted as h= 6.626×10−34 J · s.

(c) The work function eφ of sodium will be determined from the intercept of
the linear (ν,U ret

0 ) plot with the abscissa (ν) axis (U ret
0 = 0) which yields ν0 =

5.75×1014 s−1. We then get the following value for the work function eφ of sodium

eφ = hν0 = (6.60×10−34 J · s)×(5.75×1014 s−1)

1.602×10−19 J/eV
= 2.37 eV, (1.259)

in good agreement with currently used value of 2.36 eV for the photoelectric work
function eφ of sodium.

1.26.Q2 (51)

In a surface photoelectric experiment photons with a wavelength λ are inci-
dent on the photo-cathode and eject photoelectrons with kinetic energy EK(λ)

of 2.5 eV. When photons with a wavelength 1
2λ are incident on the photocath-

ode, they eject photoelectrons with kinetic energy EK(
1
2λ) of 9.25 eV. The

threshold frequency ν0 of the photocathode is 1.03×1015 s−1. Calculate:

(a) Photoelectric work function eφ.
(b) Wavelength λ of the incident photons.
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SOLUTION:

(a) The photoelectric work function eφ is calculated from the threshold fre-
quency ν0

eφ = hν0 = 2π�c

c
ν0 = 2π×(1973 eV · Å)×(1.03×1015 s−1)

3×1018 Å · s−1
= 4.25 eV.

(1.260)
(b) We now express mathematically the two sets of experimental data for photo-
electron kinetic energies: EK(λ) and EK(

1
2λ) using the Einstein photoelectric equa-

tion linking the photoelectron kinetic energy EK with photon energy hν and the
photocathode photoelectric work function eφ

EK = hν − eφ = 2π�c

λ
− eφ. (1.261)

For the two wavelengths λ and 1
2λ we get the following expressions

EK(λ)= 2π�c

λ
− eφ (1.262)

and

EK

(
1

2
λ

)
= 4π�c

λ
− eφ. (1.263)

Subtracting (1.262) from (1.263) one obtains

EK

(
1

2
λ

)
−EK(λ)= 4π�c

λ
− 2π�c

λ
= 2π�c

λ
= 9.25 eV − 2.25 eV = 6.75 eV

(1.264)
or

λ= 2π×(1973 eV · Å)

6.75 eV
= 1836 Å. (1.265)

Photoelectric work function eφ is 4.25 eV and wavelength λ of the incident photons
is 1836 Å.

1.27 Thermionic Emission

1.27.Q1 (52)

The thermionic technique was used for measurement of the work function eφ
of tungsten and the data listed in Table 1.18 were measured:
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Table 1.18 Data for measurement of work function eφ with the thermionic technique

T (K) 1250 1500 1750 2000 2250 2500

j (A/m2) 6.62×10−7 1.03×10−3 0.345 14.9 220 3.05×103

Plot the data in an Arrhenius-type graph using the Richardson-Dushman equa-
tion (T1.132) and from the graph determine:

(a) Richardson constant AR for tungsten.
(b) Thermionic work function eφ for tungsten.

SOLUTION:

The Richardson-Dushman equation expresses the thermionic current density j in
A/m2 as a function of the temperature T in degree K of a heated metallic emitter as
follows

j =ART
2e−

eφ
kT , (1.266)

where k is the Boltzmann constant (8.617×10−5 eV ·K−1) andAR is the Richardson
constant for a given emitter material. Equation (1.266) can be written in the form of
Arrhenius-type equation as follows

ln
j

T 2
= −eφ

k

1

T
+ lnAR, (1.267)

to get a linear relationship of the form y =Kx + b which, if borne out by experi-
mental data, enables the determination of the work function eφ and constant AR for
a given thermionic emitter.

Thermionic data of Table 1.18 for tungsten were expanded to make them useful
for Arrhenius diagram and are plotted in Fig. 1.20 with ln(j/kT ) on the ordinate
(y) axis against 104/T on the abscissa (x) axis.

The Arrhenius diagram of Fig. 1.20 for tungsten results in a straight line which:

(a) When extrapolated to T → ∞, i.e., 1/T → 0, results in ln(j/kT )= lnAR =
13.4 or AR = 0.6×106 A/(m2 · K2).

Table 1.19 Expanded Table 1.18 to make data measured with the thermionic technique suitable
for determination of Richardson constant AR and work function eφ of tungsten

(1) (2) (3) (4) (5) (6)

T (K) 1250 1500 1750 2000 2250 2500

104/T (K−1) 8 6.67 5.71 5.00 4.44 4.00

j (A/m2) 6.62×10−7 1.03×10−3 0.345 14.9 220 3.05×103

ln(j/T 2) −28.49 −21.51 −16.00 −12.50 −10.04 −7.63
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Fig. 1.20 Experimental data of Table 1.19 for tungsten plotted in the form ln(j/T 2) against
(104/T ) to find solution to the Richardson-Dushman equation (1.266)

(b) Exhibits a slope of eφ/k = −5.22×104 K−1 yielding a work function for
tungsten eφ = 4.5 eV.

Thus, the Richardson constant for tungsten is AR = 0.6×106 A/(m2 · K2) and its
work function is eφ = 4.5 eV. Note: the photoelectric work function and thermionic
work function are assumed to be the same for the same emitter material.

1.27.Q2 (53)

Thermionic emission is a phenomenon in which an electronic current with
density j evaporates from a metallic surface heated to temperature T in the
absence of an external electric field. The current density j is given by the
Richardson-Dushman equation

j =ART
2e−

eφ
kT , (1.268)

where eφ is the work function of the metal, AR is the theoretical Richardson
constant [AR ≈ 0.6×106 A/(m2 · K2)] and k is the Boltzmann constant (k =
8.617×10−5 eV · K−1).

When the surface of a heated metallic cathode is immersed in an electric
field, the field enhances the thermionic emission of the cathode by lowering
the cathode’s work function eφ by e�φ and this results in a correction to the
Richardson-Dushman equation.
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The effect and the corrected equation are called the Schottky effect and
the Schottky equation, respectively, in honor of German physicist Walter H.
Schottky who discovered and explained the effect classically in 1914.

Based on the Richardson-Dushman equation (1.268), the current density j
for the Schottky effect is written as

j =ART
2e−[ eφ

kT
− e�φ
kT

] =ART
2e−

e
kT

[φ−�φ], (1.269)

where e�φ represents the work function reduction because of the influence
of the external electric field E on the work function eφ.

(a) Sketch the work function eφ of a typical metal showing the potential
energy EP of an electron as a function of electron’s distance x from the
surface of the metal. On the same graph sketch the Schottky barrier that
arises when external electric field E is applied to the metal. Indicate all
parameters of interest in studies of the Schottky barrier.

(b) Show that e�φ, the decrease in work function eφ in Schottky effect
is proportional to α

√
E , where E is the external electric field and α =

−√
e3/(4πε0) is the proportionality constant.

(c) Determine the magnitude of the external electric field E required to
reduce the work function of tungsten by 1 %. The work function eφ of
tungsten is 4.52 eV.

(d) Determine the relative change in the thermionic emission current den-
sity j for a tungsten filament at temperature T = 2300 K, if the temper-
ature T increases by 1 % and the work function eφ decreases by 1 %.

SOLUTION:

(a) Figure 1.21 shows a sketch of potential energy EP of an electron against its
distance x from the surface of a metal. The dotted curve is for metal with no external
electric field E applied, the dashed curve shows the potential −eEx of the applied
external electric field E , and the solid curve shows the combined potential energy
forming the Schottky potential barrier as a result of the applied external electric field
E . Also indicated are xS, the location of the maximum potential energy EP of the
Schottky barrier and the reduction of the work function eφ as a result of the applied
external electric field E .

Using the electrostatic method of images, the Coulomb force exerted on an elec-
tron with charge −e at a distance x from a metallic emitter (cathode) is the same
as the Coulomb force of attraction between the electron and its image with posi-
tive charge +e separated by a distance 2x. Coulomb force on the electron is thus
expressed as

FCoul = − e2

4πε0(2x)2
= − e2

16πε0x2
, (1.270)
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Fig. 1.21 Schematic representation of the Schottky barrier in thermionic emission enhanced by
external electric field E showing the potential energy EP of an electron as a function of its distance
x from the surface of a metal. The dotted curve is for metal with no external electric field E applied,
the dashed curve shows the potential −eEx of the applied external electric field E , and the solid
curve shows the combined potential energy forming the Schottky potential barrier as a result of the
applied external electric field E

resulting in potential energy EP(x,E = 0)

EP(x,E = 0)=
ˆ ∞

x

FCoul dx = − e2

16πε0

ˆ ∞

x

dx

x2
= e2

16πε0

[
1

x

]∞

x

= − e2

16πε0x
(1.271)

associated with the Coulomb force FCoul given in (1.270).

(b) If an external electric field E is applied, there is an additional contribution
−eEx to the potential energyEP(x,E = 0) of the electron resulting in total potential
energy EP(x,E) expressed as

EP(x,E)= − e2

16πε0x
− eEx. (1.272)

The extra potential energy term generated by the external electric field E causes a
lowering of the work function eφ by a small amount e�φ and an effective work
function (eφ)eff = eφ − e�φ (Schottky effect). Because of the presence of electric
field E , potential energy EP exhibits not only a maximum but also has the shape of
a potential barrier that is referred to as the Schottky barrier. As shown in Fig. 1.21,
for a given electric field E the work function reduction e�φ occurs at position xS
where EP exhibits a maximum, in contrast to the behavior of EP for E = 0 where
maximum of EP occurs at x = ∞.
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We find xS by setting dEP/dx|x=xS = 0 and get

dEP(x = xS,E)
dx

= d

dx

[
− e2

16πε0x
− eEx

]∣∣∣∣
x=xS

= e2

16πε0x
2
S

− eE = 0. (1.273)

Solving (1.273) for xS, we get the following expression for the position of the
maximum xS of the Schottky barrier

xS =
√

e

16πε0E
= 1

2

√
e

4πε0E
. (1.274)

Since by definition EP(x = xS,E)= e�φ, we insert xS of (1.274) into (1.273) and
get the following expression for the reduction in the Schottky work function e�φ

e�φ = − e2

16πε0xS
− eExS = − e2

16πε0

√
16πε0E
e

− eE
√

e

16πε0E

= −e
√

e

4πε0

√
E = −e

√
1.602×10−19 A · s

4π×8.85×10−12 A · s/(V · m)

√
E

= −(
e
√

0.144×10−8 V · m
)√

E = α√E . (1.275)

According to (1.275) the magnitude of the Schottky work function reduction e�φ
is proportional to

√
E , the square root of the external electric field E , and the pro-

portionality constant α is equal to −e√0.144×10−8 V · m.

(c) To calculate to magnitude of the external field required to reduce the work
function of tungsten by 1 % we use (1.275) with e�φ = −0.01×(4.52 eV) =
−0.0452 eV. Rearranging (1.275) we get

E = (e�φ)2

e2(0.144×10−8 V · m)
= (−0.0452 eV)2

e2(0.144×10−8 V · m)
= 3.14×107 V/m.

(1.276)
Thus, it takes a very strong external electric field E to reduce the work function of
tungsten by a relatively small amount of 1 %.

(d) The current density j , temperature T , and work function eφ in thermionic
emission are related to one another by the Richardson-Dushman equation stated
in (1.268). The change in the current density �j can be expressed in terms of the
change in temperature �T and the change in work function �(eφ) as

�j = ∂j

∂T
�T + ∂j

∂(eφ)
�(eφ) or

�j

j
= 1

j

[
∂j

∂T
�T + ∂j

∂(eφ)
�(eφ)

]
, (1.277)

where �j/j represents the relative change in the current density, i.e., the relative
change in the number of electrons emitted from the surface of the metal.
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Using the Richardson-Dushman equation (1.268) we evaluate the partial deriva-
tives ∂j/∂T and ∂j/∂(eφ), respectively, as

∂j

∂T
= 2ART e

− eφ
kT +ART

2
(
eφ

kT 2

)
e−

eφ
kT = 2kT + eφ

kT 2
j (1.278)

and

∂j

∂(eφ)
= −ART

2
(

1

kT

)
e−

eφ
kT = − 1

kT
j. (1.279)

Inserting (1.278) and (1.279) into (1.277) we get the following expression for the
relative change �j/j

�j

j
= 2kT + eφ

kT

(
DT

T

)
− eφ

kT

(
eDφ

eφ

)
. (1.280)

For tungsten filament (eφ = 4.52 eV) at temperature T = 2300 K the product
kT amounts to kT = (0.8617×10−4 eV · K−1)×(2300 K) = 0.1982 eV ≈ 0.2 eV
and the relative change in thermionic current density �j/j for a relative change
in temperature of �T/T = 0.01 and a relative change in the work function of
�(eφ)/eφ = −0.01 is from (1.280) calculated as

�j

j
= 2×(0.2 eV)+ (4.52 eV)

0.2 eV
×0.01 + (4.52 eV)

0.2 eV
×0.01

= 0.246 + 0.226 = 0.472. (1.281)

The result of (1.281) shows that at T = 2300 K a 1 % increase in temperature T
has roughly the same effect as a 1 % decrease in tungsten work function eφ (as a
result of Schottky effect), both effects working together to increase the number of
electrons emitted from the surface of the tungsten metal.

1.28 Tunneling

1.28.Q1 (54)

A general model for alpha decay tunneling and alpha barrier penetration is
shown schematically in Fig. 1.22 for nucleus with atomic number Z and
atomic mass number A.

For the α decay of radium-226 into radon-222 with a half-life t1/2 of 1602
years and α-particle kinetic energy EK of 4.78 MeV, define, calculate or esti-
mate the following pertinent parameters of α decay:

(a) Rsep; (b) UC(r); (c) U(Rsep); (d) Dα–N; (e) w; (f) υα ; (g) t0, and (h) ν
(i) Summarize your calculated answers in a figure similar to Fig. 1.22.
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Fig. 1.22 Schematic representation of parameters in alpha decay tunneling

SOLUTION:

The parameters of α decay are defined as follows:

Rsep is the separation distance between the centers of the daughter nucleus D
with radius RA−4 and the α particle with radius Rα when they are just
touching one another.

U(r) is the Coulomb repulsion potential between the daughter nucleus D and
the α particle as a function of distance r for r ≥Rsep.

U(Rsep) is the Coulomb repulsion potential between daughter nucleus D and
α particle at distance r =Rsep.

Dα–N is the distance r at which the Coulomb potential U(r) equals the kinetic
energy of the emitted α-particle, i.e., U(r0)=EK(α).

w is the width of the barrier at the level U(r0).
υα is the velocity of the α-particle with kinetic energy EK.
t̄α is the mean time for traversal of a nucleus by α particle.
να is the frequency of the α particle hitting the barrier wall inside the nu-

cleus.

(a) Separation distance Rsep between 222
86Rn nucleus and α particle, is determined

with the standard relationship between the nuclear radius R and atomic mass
number A given as R(A) = R0

3
√
A, where R0 is the nuclear radius constant

(1.25 fm)

Rsep = RD +Rα =R0
( 3
√
A− 4 + 3

√
Aα

)= (1.25 fm)×( 3
√

222 + 3
√

4
)

= 7.57 fm + 1.98 fm = 9.55 fm. (1.282)
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(b) Coulomb potential energy UC(r) between the daughter nucleus D and the α
particle is

UC(r)= 2(Z − 2)e2

4πε0r
. (1.283)

(c) Height UC(Rsep) of the Coulomb barrier UC(r) at r =Rsep is given as

UC(Rsep) = 2(Z − 2)e2

4πε0Rsep

= 2×86e×(1.602×10−19 A · s)

4π×(8.85×10−12 A · s · V−1 · m−1)×(9.6×10−15 m)

= 25.81 MeV. (1.284)

(d) Distance Dα–N is the distance at which the Coulomb potential UC(r) equals
the kinetic energy EK attained by the α particle at very large distance from
the nucleus. In α-particle scattering this distance is known as the distance of
closest approach in a head-on collision between the α particle and the nucleus.
For a nucleus with atomic numberZ−2 distanceDα–N is expressed as follows

Dα–N = 2(Z − 2)e2

4πε0EK

= 2×86e×(1.602×10−19 A · s)

4π×(8.85×10−12 A · s · V−1 · m−1)×(4.78×106 eV)

= 5.2×10−14 m = 52 fm. (1.285)

(e) Width w of the potential barrier at UC(r0)=EK is

w =Dα–N −Rsep = 52 fm − 9.6 fm = 42.4 fm. (1.286)

(f) Velocity υα of the α particle is calculated using the relativistic expression
(T1.58) and (T2.7) to get

υα = c
√√√√1 − 1

(1 + EK
mαc2 )

2
= c

√
1 − 1

(1 + 4.78 MeV
3727 MeV )

2
= 0.05c

= 1.52×107 m/s, (1.287)

where mαc2 is the rest energy of the α particle (3727.3 MeV).

(g) Average time t̄α for the α particle to traverse the nucleus

t̄α = 2Rsep

υα
= 2×(9.55×10−15 m)

1.52×107 m
= 1.26×10 −21 s. (1.288)
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Fig. 1.23 Summary of results for tunneling of alpha particles in alpha decay of radi-
um-226 into radon-222 (a) Separation distance: Rsep = 9.6 fm; (b) Coulomb potential en-
ergy: UC(r) = 2(Z − 2)e2/(4πε0r); (c) Height of Coulomb barrier at separation distance:
UC(Rsep)= 25.8 MeV; (d) Distance Dα–N at which Coulomb potential equals kinetic energy of α
particle:Dα–N = 52 fm; (e) Width w of the potential barrier at the level of tunneling: w = 42.4 fm;
(f) Velocity υα of the α particle: υα = 0.05c; (g) Mean time t̄α for the α particle to traverse
the nucleus: t̄α = 1.3×10−21 s; and (h) Frequency να of α particle hitting the potential barrier:
να = 8×1020 s−1

(h) Frequency να of hitting the potential barrier wall inside the nucleus

να = 1

t0
= υ

2Rsep
= 1.52×107 m · s−1

2×9.55×10−15 m
= 7.96×1020 s−1. (1.289)

(i) Summary of results (a) through (h) is given in Fig. 1.23.

1.28.Q2 (55)

In classical physics, a particle striking a potential barrier will only be repelled
by the barrier; in quantum physics, however, the particle striking a potential
barrier may be repelled by the barrier or transmitted through the barrier in a
peculiar phenomenon referred to as quantum tunneling.

The tunneling transmission factor T is used to describe the probability of
a particle tunneling through a potential barrier. It is given as the ratio of the
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transmitted probability current density jtrans to the incident probability current
density jinc and approximated as

T = jtrans

jinc
≈ exp

{
−2

√
2m

�

ˆ b

a

√
U(z)−E dz

}
, (1.290)

where E, m, and U(z) are the particle energy, particle mass, and barrier po-
tential, respectively, and the integration limits a and b represent the classical
limits of the potential barrier. Inside the barrier the following condition ap-
plies: E <U(z).

The barrier transmission coefficient Tα for α decay is given by the Gamow
expression

lnTα = −4π(Z − 2)

√
EG

EK
+ 8

√
(Z − 2)Rsep

aG
, (1.291)

where

aG = 4πε0

e2

�
2c2

mαc2
= 7.256 fm

and

EG = 1

2

(
e2

4πε0

)2
mαc

2

�2c2
= 0.09927 MeV.

(a) List and sketch at least three examples of a quantum potential barrier,
provide expressions for U(z) for each barrier, and state the classical
limit a and b for each barrier.

(b) Use the general approximation for potential barrier transmission coeffi-
cient T given as

T = exp

{
−2

√
2mα
�

ˆ √
U(z)−E dz

}
(1.292)

to derive the general expression for the Gamow potential barrier trans-
mission coefficient Tα in α decay. General parameters of α decay of
importance to calculation of the barrier transmission factor are given in
Fig. 1.22.

(c) Use (1.291) to calculate potential barrier transmission coefficient Tα
for radium-226 (Ra-226) α decay into radon-222 (Rn-222). Relevant
parameters for Ra-226 α decay were determined in Prob. 54.

(d) Use Tα determined in (b) to calculate the decay constant λ and half-life
t1/2 for α decay of Ra-226.
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Table 1.20 Various tunneling phenomena in physics with their associated charged particle, func-
tional shape of potential energy, and classical limits

Tunneling
potential

Tunneling
particle

Potential
diagram

Potential U(z) Classical limits
a and b

Square
potential

Arbitrary
charge q

U(z)= qV
constant

(1.293) 0 and L

Field
emission

Electron
charge e

U(z)= eEz
linear

(1.294) 0 and w

Alpha
decay

Alpha
particle
charge 2e

U(z)= 2(Z−2)e2

4πε0z
(1.295) Rsep and r0

[see Prob. 54(b)]

SOLUTION:

(a) Examples of quantum potential barrier are provided in Table 1.20 that provides
for each example the tunneling particle, sketch of the potential barrier, mathematical
expression for the potential barrier, and classical limits for each barrier function.

(b) The transmission coefficient Tα for α-particle tunneling through the nuclear
potential barrier is approximated with the so-called Gamow formula as follows (see
Prob. 54)

lnTα ≈ −2
√

2mαc2

�c

ˆ Dα–N

Rsep

√(
2(Z − 2)e2

4πε0r
−EK

)
dr

= −2
√

2mαc2EK

�c

ˆ Dα–N

Rsep

√(
Dα–N

r
− 1

)
dr, (1.296)

where Z is the atomic number of the parent nucleus and mαc2 is the rest energy of
the α particle (3727.3 MeV).

As indicated in Fig. 1.23, the two classical distances which set the upper and
lower limit in the barrier transmission integral are: Dα–N, the distance of clos-
est approach in head-on collision α-particle scattering on daughter nucleus with
atomic number (Z − 2) and Rsep, the separation between the daughter nucleus and
the α-particle when the two nuclei are just touching each other. Dα–N is given as:
Dα–N = 2(Z − 2)e2/(4πε0EK) with EK the kinetic energy of the α particle.
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To simplify the integral in (1.296) we now introduce a new variable: u= r/Dα–N,
recognize that dr =Dα–N du and get

lnTα = −2
√

2mαc2EK

�c
Dα–N

ˆ 1

Rsep/Dα–N

√(
1

u
− 1

)
du. (1.297)

To solve the integral in (1.297) we introduce the following new variable u= sin2 θ ,
recognize that du= 2 sin θ cos θ dθ , and obtain the following solution

ˆ 1

Rsep/Dα–N

√(
1

u
− 1

)
du= 2

ˆ π/2

√
Rsep/Dα–N

cos2 θ dθ = [sin θ cos θ + θ ]π/2√
Rsep/Dα–N

,

(1.298)
with the upper integration limit equal to 1

2π and the lower integration limit approx-
imated to read

√
Rsep/Dα–N based on an assumption that Rsep/Dα–N is very small,

allowing the use of the approximation sin θ ≈ θ .
Inserting the upper and lower integration limits into (1.298) we get the following

solution

ˆ 1

Rsep/Dα–N

√(
1

u
− 1

)
du= {sin θ cos θ + θ}π/2√

Rsep/Dα–N
= π

2
− 2

√
Rsep

Dα–N
. (1.299)

Inserting (1.299) into (1.297) results in the following general expression for trans-
mission of the nuclear potential barrier in α decay

lnTα = −2
√

2mαc2EK

�c
Dα–N

(
π

2
− 2

√
Rsep

Dα–N

)

= −4π(Z − 2)

√
1

2

(
e2

4πε0

)2
mαc2

EK
+ 8

√
mαc2

�2c2

e2

4πε0
(Z − 2)Rsep

= −4π(Z − 2)

√
EG

EK
+ 8

√
(Z − 2)Rsep

aG
, (1.300)

where we introduced two constants: aG and EG relevant to α decay. The two con-
stants are modeled after the well-known atomic constants: the Bohr radius constant
a0 = 0.5292 Å and the Rydberg energy ER = 13.61 eV, except that the electron
mass me in the Bohr radius constant and in the Rydberg energy is replaced by the
mass of the α particle mα . The two nuclear constants are thus expressed as follows

aG = 4πε0

e2

�
2c2

mαc2
= a0

mec
2

mαc2
= (0.5292 Å)×0.511

3727
= 7.256 fm (1.301)
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and

EG = 1

2

(
e2

4πε0

)2
mαc

2

�2c2
=ER

mαc
2

mec2
= (13.61 eV)×3727.3

0.511
= 0.09927 MeV.

(1.302)
(c) From Prob. 54 we get the following relevant parameters for the radium-226
decay: Z = 88, EK = 4.78 MeV and Rsep = 9.55 fm. Inserting these parameters
into the general expression for Tα results in the following barrier transmission factor
Tα for Ra-226 α decay

Tα = exp

{
−4π×86

√
0.09927 MeV

4.78 MeV
+ 8

√
86

9.55 fm

7.256 fm

}

= exp{−155.74 + 85.1} = 2.1×10−31. (1.303)

(d) The barrier transmission coefficient Tα is the probability for the α particle to
tunnel through the potential barrier upon striking the barrier. In Prob. 54 we calcu-
lated the frequency (repetition rate) να of the α particle striking the potential barrier
and obtained να = 7.96×1020 s−1 for the α decay of Ra-226. The α decay constant
λα of Ra-226 can be expressed as the product of the barrier transmission coefficient
Tα as well as the repetition rate να and the half-life t1/2 is then given as

t1/2 = ln 2

λα
= ln 2

Tανα
= ln 2

(2.1×10−31)×(7.96×1020 s−1)
= 4.15×109 s = 131.5 a.

(1.304)
This result is more than an order of magnitude smaller than the measured half-

life of 1602 years for radium-226. However, the estimate is satisfactory, considering
the series of approximations that were involved in the derivation of the tunneling
transmission coefficient Tα . Moreover, Tα depends heavily on kinetic energy EK of
the α particle as well as on the initial separation Rsep between the α particle and the
daughter nucleus and a minute change in one or both of these parameters results in
a large change in Tα , since both parameters appear in the exponential.

1.28.Q3 (56)

Thermionic emission (TE) and field emission (FE) are physical phenomena
of importance not only in theoretical physics but also in practical production
of x rays.

(a) In point form compare thermionic emission (TE) from a metal with field
emission (FE) from a metal.

(b) Provide schematic diagrams for potential energy of electron against its
distance from metal surface for thermionic emission and field emission.
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SOLUTION:

(a) In both the thermionic emission (TE) and field emission (FE) electrons are
emitted from the surface of a metal. On a microscopic scale, however, the two effects
are different:

(1) In TE electrons surmount the potential barrier, while in FE electrons tunnel
through the potential barrier.

(2) In TE the temperature T of the metal increases the energy of electrons to allow
them to surmount the potential barrier; in FE a strong external electric field
E narrows the potential barrier to make the tunneling of electrons through the
barrier possible.

(3) In TE the work function remains constant with temperature but the kinetic
energy of electrons rises with metal temperature, allowing electrons to escape
from the metal. In FE the barrier thickness diminishes with an increasing ap-
plied electric field, making it easier for electrons to tunnel through the barrier.

(4) The higher the temperature T of the metal, the stronger is the emission of
electrons in TE; the stronger is the external electric field E , the stronger is the
emission of electrons in FE.

(5) TE is of importance in the fields of electronics and communications in gen-
eral. In medical physics TE plays an important role in hot cathode x-ray tubes
(Coolidge tubes) and electron guns in linear accelerators. FE shows promise
in the development of cold cathode x-ray tubes.

(6) The form of the functional dependence of electron current density j on T in
TE is the same as that on E in FE.

(7) In TE the electron current density j (T ) is expressed by the Richardson-
Dushman equation as follows

jRD(T )=ART
2e−

eφ
kT , (1.305)

where AR is the Richardson constant of the electron-emitting metal; k is the
Boltzmann constant; and eφ is the work function of the metal (of the order of
2 eV to 5 eV). The Richardson-Dushman plot of Arrhenius diagram requires
plotting ln(j/T 2) against 1/T and results in a straight line with slope eφ/k
allowing determination of the work function eφ and ordinate intercept lnA
allowing determination of the Richardson constant A.

(8) In FE the electron current density j (E) is expressed by the Fowler-Nordheim
equation as follows

jFN(E)= αE2e−
β
E , (1.306)

where α and β are constants specific to the metallic electron emitter. The
Fowler-Nordheim plot of Arrhenius diagram requires plotting ln(j/E2)

against 1/E and results in a straight line with slope β and ordinate intercept
lnα allowing determination of α.

(9) FE is in principle similar to the Schottky effect; however, it is generally ac-
cepted that Schottky effect influences electron emission from metallic surfaces
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Fig. 1.24 Schematic diagram for thermionic emission (TE) on the left and field emission (TE)
tunneling of electrons through the surface potential barrier on the right

at relatively low electric fields and field emission deals with extremely high
electric fields.

(b) Schematic diagrams for potential energy EP of electron against its distance
from surface of the metal emitter for thermionic emission (left side) and field emis-
sion (right side) are depicted in Fig. 1.24.

1.29 Maxwell Equations

1.29.Q1 (57)

All electromagnetic phenomena are governed by Maxwell equations which
form a set of four partial differential equations that are invariant with respect
to Lorentz transformation (see Prob. 26) and relate the electric field EEE as well
as the magnetic field BBB to their source: the charge density ρ and current den-
sity j, respectively.

(a) State the four Maxwell equations for vacuum in the differential form
and in the integral form. Define the physical quantities pertaining to
each of the four Maxwell equations and state their units in the SI system.
For each of the four equations, in addition to Maxwell, give the name
of the physicist who is associated with the given equation.

(b) State the two theorems that link the Maxwell equations in the differen-
tial form with Maxwell equations in the integral form and indicate how
the two theorems are used to modify the Maxwell equations from the
differential into integral form.

(c) Modify the general Maxwell equations in (a) for use in evacuated
waveguides.
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SOLUTION:

(a) The four general Maxwell equations are as follows:

Table 1.21 The four general Maxwell equations in differential and integral form

Equation Differential form Integral form

1 Maxwell
Gauss law for electricity

∇ · EEE = ρ
ε0

‚
S

EEE · dS = q
ε0

(1.307)

2 Maxwell
Gauss law for magnetism

∇ · BBB = 0
‚
S

BBB · dS = 0 (1.308)

3 Maxwell
Faraday law of induction

∇×EEE = − ∂BBB
∂t

¸
EEE · d� = − ∂

∂t

˜
BBB · dS (1.309)

4 Maxwell Ampère law
extended by Maxwell

∇×BBB = μ0j + 1
c2
∂EEE
∂t

¸
BBB · d� = μ0I + 1

c2
∂
∂t

˜
EEE · dS (1.310)

where

E is electric field in V/m.
B is magnetic field in tesla (1 T = 1 V · s/m2).
ρ is total charge density in C/m3.
q is total charge in volume V given in C.
j is current density in A/m2.
I is current in A.
dS is differential vector element of surface area S with direction normal to the

surface.
d� is differential vector element of path length tangential to the path.
ε0 is the electric constant (8.85×10−12 A · s · V−1 · m−1).
μ0 is the magnetic constant (4π×10−7 V · s · A−1 · m−1).

(b) The two theorems are the Stokes-Kelvin curl theorem and the Gauss-
Ostrogradski divergence theorem:

Stokes-Kelvin curl theorem:
¨
S

(∇×A) · dS =
¨
S

curl A · dS =
˛
�

A · d� (1.311)

relates the surface integral of the curl (∇×) of a vector field A over surface S to
the closed loop line integral of the vector field A over the boundary of the surface S
given by closed loop �.

Gauss-Ostrogradski divergence theorem:
˚

V
∇ · A dV =

˚
V

div A dV =
‹
S

A · dS (1.312)
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relates the volume integral of the divergence (∇·) of a vector field A over volume V
to the closed surface integral of the vector field A over the boundary of the volume
V given by closed surface S.

Maxwell equation #1 (∇ · EEE = ρ/ε0) is also known as the Gauss law of electro-
statics and can be expressed in integral form through application of the Gauss di-
vergence theorem as follows

˚
V

∇ · EEE dV =
‹
S

EEE · dS = 1

ε0

˚
V
ρ dV = q

ε0
. (1.313)

The Gauss law states that the electric flux
‚
S

EEE · dS through any closed surface S is
proportional to the total charge q enclosed in volume V by the closed surface S.

Maxwell equation #2 (∇ · BBB = 0) is also known as the Gauss law of magnetism
and can be expressed in integral form through application of the Gauss divergence
theorem ˚

V
∇ · BBB dV =

‹
S

BBB · dS = 0. (1.314)

The Gauss law states that the magnetic flux
‚
S

BBB · dS through any closed surface S
is equal to zero implying that there are no magnetic monopoles.

Maxwell equation #3 (∇×EEE = −∂BBB/∂t) is also known as the Faraday law of in-
duction. It can be expressed in integral form through application of the Stokes curl
theorem¨

S

(∇×EEE) · dS =
˛
�

EEE · d� = − ∂

∂t

¨
S

BBB · dS = −∂φB

∂t
=Uind, (1.315)

where φB =˜
S

BBB dS is the magnetic flux and Uind is the induced voltage.
The Faraday law of induction states that the line integral of the electric field E

over a closed loop � is equal to the negative of the rate of change of the magnetic
flux φB through the area enclosed by the closed loop �.

Maxwell equation #4 (∇×BBB = μ0j + c−2∂EEE/∂t) is also known as the Ampère law
extended by Maxwell. It can be expressed in integral form through application of
the Stokes curl theorem¨

S

(∇×BBB) · dS =
˛
�

BBB · d� = μ0

¨
S

j · dS + 1

c2

∂

∂t

¨
S

EEE · dS = μ0I + 1

c2

∂φE

∂t
,

(1.316)
where φE =˜

S
EEE · dS is the electric flux and I is the current.

The Ampère law states that the line integral of the magnetic field B over a closed
loop � is equal to sum of the net free current I = ˜

S
j · dS passing through the

surface enclosed by the closed loop � and the rate of change of the electric flux φE
through the same surface.

(c) Based on Maxwell equations in (a) above and assuming that there are no elec-
tric currents or charges present in vacuum, Maxwell equations are simplified to read,
as shown in Table 1.17.
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Table 1.22 The four Maxwell equations for free space in differential and integral form

Equation Differential form Integral form

1 Maxwell
Gauss law for electricity

∇ · EEE = 0
‚
S

EEE · dS = 0 (1.317)

2 Maxwell
Gauss law for magnetism

∇ · BBB = 0
‚
S

BBB · dS = 0 (1.318)

3 Maxwell
Faraday law of induction

∇×EEE = − ∂BBB
∂t

¸
�

EEE · d� = − ∂
∂t

˜
S

BBB · dS = − ∂φM
∂t

(1.319)

4 Maxwell Ampère law
extended by Maxwell

∇×BBB = 1
c2
∂EEE
∂t

¸
�

BBB · d� = 1
c2
∂
∂t

˜
S

EEE · dS = 1
c2
∂φE
∂t

(1.320)

1.30 Poynting Theorem and Poynting Vector

1.30.Q1 (58)

In 1884 English physicist John Henry Poynting used the Lorentz equation
for a moving charge in an electromagnetic (EM) field and Maxwell equations
for electromagnetism to derive a theorem that expresses the conservation of
energy for EM fields. The theorem relates the rate of change of the energy
u stored in the EM field and energy flow expressed by the Poynting vector
S. The Poynting vector S points in the direction of motion of the EM wave,
coincides with the direction of energy flow, and is generally expressed as

S = EEE×BBB
μ0

= ε0c
2EEE×BBB (1.321)

where c, the speed of light in vacuum, is given by the standard expression
c= 1/

√
ε0μ0

(a) Express the Poynting vector S of (1.321) for electromagnetic radiation.
(b) Determine the intensity I of electromagnetic radiation.
(c) Pressure prad that EM radiation exerts on an absorbing target.

Note: Both I and prad are related to the mean Poynting vector |S| = S̄ of the
EM radiation.

SOLUTION:

(a) The magnitude of the Poynting vector |S| = S equals to the power per unit area
crossing a surface normal to the direction of S. Electric field EEE and magnetic field
BBB are perpendicular to one another as well as to the direction of wave propagation
and expressed generically as

EEE = EEE0f (k · r −ωt) and BBB = BBB0f (k · r −ωt), (1.322)
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where

k is the wave vector in direction of wave propagation.
ω is the angular frequency of the plane wave.
E0 is the constant amplitude vector for the electric field E .
B0 is the constant amplitude vector for the magnetic field B .

In (1.322) function f satisfies the wave equation ∇2f = c−2∂2f/∂t2 that is derived
from the four Maxwell equations for free space (see Prob. 58). For electric field EEE
and magnetic field BBB function f is usually given as

EEE = EEE0e
i(k·r−ωt) and BBB = BBB0e

i(k·r−ωt) (1.323)

or

EEE = EEE0 cos(k · r −ωt) and BBB = BBB0 cos(k · r −ωt). (1.324)

The Poynting vector (1.321) can thus be expressed as follows

S = EEE×BBB
μ0

= ε0c
2EEE×BBB = ε0c

2EEE0×BBB0 cos2(k · r −ωt). (1.325)

(b) In practice S varies at exceedingly large frequencies, making it more practical
to use the mean value of S averaged over one period of oscillation or over a multiple
integer number of periods. The mean value of S over one period is thus the mean
power per unit area in the wave and is expressed as

S̄ = |S| = ε0c
2|EEE0×BBB0|cos2(k · r −ωt). (1.326)

The mean value of cos2(kr −ωt) is evaluated as follows

cos2 x = 1

2π

ˆ 2π

0
cos2 x dx = 1

4π

ˆ 2π

0
cos 2x dx + 1

4π

ˆ 2π

0
dx

= 1

8π
[sin 2x + 2x]2π

0 = 1

2
, (1.327)

providing the following expression for the mean Poynting vector S̄ that is also re-
ferred to as the EM intensity or irradiance I

S̄ = I = 1

2
ε0c

2E0B0 = 1

2
ε0cE2

0 = 1

2

c

μ0
B2

0 , (1.328)

where we used the following equality: E0 = cB0. A plot of cos2 x against x is given
in Fig. 1.25 which also shows that cos2 x equals to 0.5 for one period or integer
number of periods.

(c) Electromagnetic radiation pressure prad results from the momentum carried
by radiation and is defined as the force per unit area exerted by an EM wave upon
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Fig. 1.25 Trigonometric functions cosx (dotted curve) and cos2 x (solid curve) against angle x.
For one period or for an integer number of periods cosx = 0 and cos2 x = 0.5

the surface of a target exposed to EM radiation or energy per unit volume (energy
density) carried by radiation. It acts in the direction of the Poynting vector S.

Since the mean Poynting vector S̄ is the mean power per unit area A in the
wave, we can say that the power P in the wave is P = S̄A and the force F of the
wave when it hits a target is power P over velocity c of the wave, i.e., F = S̄A/c.
Therefore, the radiation pressure prad is given as

prad = F

A
= S̄

c
(1.329)

when the target fully absorbs the incident radiation and prad = 2S̄/c when the target
fully reflects the incident radiation. Radiation pressure is thus proportional to the
EM intensity I (mean Poynting vector S̄) and inversely proportional to the speed of
light c in vacuum

prad = I

c
= 1

2
ε0E2

0 = 1

2μ0
B2

0 . (1.330)

1.31 Normal Probability Distribution

1.31.Q1 (59)

Random variation in natural processes most commonly follows the proba-
bility distribution generally known in mathematics as the normal probability
distribution but also referred to as Gaussian distribution in physics and “bell
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curve” in social science. The function describing the normal distribution has
a long tradition in mathematics and physics. De Moivre used it in 18th cen-
tury as an approximation to the binomial distribution, Laplace used it to study
measurement errors, and Gauss used it in his analysis of astronomical data.

For the probability density function

P(x)= 1

σ
√

2π
e
− x2

2σ2 , (1.331)

with the mean value x̄ = 0 (also referred to as the expectation value x̄ = 0)
and for the following values of standard deviation σ = 0.5; 1; 2; 3; 5; and 10:

(a) Plot P(x) for the following values of σ : 0.5; 1; 2; 3; 5; and 10.
(b) Show that

´∞
−∞P(x)dx = 1 for all σ .

(c) Determine P(0) as a function of σ .
(d) Determine P(σ) as a function of σ .
(e) Determine the general expression for the full-width-at-half-maximum

(FWHM) as a function of σ .
(f) Summarize your results of (a) through (e) in Table 1.23A.

Table 1.23A Summary of results (a) through (e)

1 σ 0.5 1.0 2.0 3.0 5.0 10.0

2 P (0)=
3 P (σ)=
4 FWHM =

SOLUTION:

(a) A plot of the probability density function P(x) against x for various values of
the standard deviation σ is given in Fig. 1.26; a plot of σP (x) against x/σ is shown
in Fig. 1.27.

(b)

ˆ ∞

−∞
P(x)dx = 1

σ
√

2π

ˆ ∞

−∞
e
− x2

2σ2 dx = 2σ
√

2

σ
√

2π

ˆ ∞

0
e
− x2

2σ2
dx

σ
√

2

= 2√
π

ˆ ∞

0
e−u2

du= erf(∞)= 1. (1.332)
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Fig. 1.26 Probability density function P (x) against coordinate x for various values of the standard
deviation σ in the range from σ = 0.5 to σ = 10

Fig. 1.27 Plot of σP (x), the probability density function P (x) multiplied by standard deviation
P (x) against x/σ , the coordinate x divided by σ
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Values for the error function erf(x)= 2√
π

´ x
0 e

−u2
du are available in standard math-

ematical tables and for x = ∞ we get erf(∞)= 1. Thus, integral
´∞
−∞P(x)dx = 1

for all σ .

(c)

P(0)= 1

σ
√

2π
e
− x2

2σ2

∣∣∣∣
x=0

= 1

σ
√

2π
= 0.399

σ
. (1.333)

(d)

P(σ)= 1

σ
√

2π
e
− x2

2σ2

∣∣∣∣
x=σ

= 1

σ
√

2π
e−

1
2 = 1

σ
√

2πe
= 0.242

σ

= P(0)√
e

= 0.6065P(0). (1.334)

(e) The maximum in P(x) occurs at x = 0 and the value of P(0) is given in (c)
above. The full-width-at-half-maximum (FWHM) occurs at x = ±x1/2 where

P(x1/2)= 1

2
P(0)= 1

2σ
√

2π
= 1

σ
√

2π
e
− x2

1/2
2σ2 (1.335)

or

ln
1

2
= −x

2
1/2

2σ 2
and x1/2 = σ√

2 ln 2 = 1.177σ. (1.336)

Since by definition the full-width-at-half-maximum (FWHM) equals to 2x1/2, we
get

FWHM = 2x1/2 = 2σ
√

2 ln 2 = 2.355σ. (1.337)

(f) Results of (a) through (e) are summarized in Table 1.23B.

Table 1.23B Summary table for Prob. 59

1 σ 0.5 1.0 2.0 3.0 5.0 10.0

2 P (0)= 0.399
σ

0.800 0.400 0.200 0.133 0.080 0.040

3 P (σ)= 0.242
σ

0.484 0.242 0.121 0.081 0.048 0.024

4 FWHM = 2.355σ 1.178 2.355 4.710 7.064 11.77 23.55



2Coulomb Scattering

Chapter 2 consists of 23 problems that cover 7 sections dealing with vari-
ous types of elastic scattering interactions that heavy and light charged par-
ticles can have with atoms of an absorber. The problems address the general
category of Coulomb elastic scattering covering the practical and theoretical
aspects of Coulomb scattering ranging from the seminal Geiger and Marsden
experiment and Rutherford theory of alpha particle scattering on metallic foils
through Mott scattering of electrons on nuclei of absorber to practical aspects
of Molière multiple scattering.

The concepts addressed in this chapter are of great importance to mod-
ern physics because much of the current knowledge in atomic, nuclear, and
particle physics has been derived from various Coulomb scattering experi-
ments. Based on the unexpected angular distribution of scattered alpha parti-
cles, measured by Geiger and Marsden, Rutherford in 1912 proposed the cur-
rent atomic model in which the atomic mass and the positive atomic charge
are concentrated in the atomic nucleus that is at least four orders of magnitude
smaller than the size of the atom.

Section 2.1 covers the basic characteristics of Coulomb scattering and the
problem in Sect. 2.2 deals with the Geiger–Marsden experiment and intro-
duces a comparison between the Thomson and Rutherford model of the atom.
Problems of Sect. 2.3 deal with various aspects of Rutherford scattering, while
Sect. 2.4 addresses the differential and total cross sections for Rutherford
scattering. The problems of Sect. 2.5 concentrate on Mott scattering of elec-
trons on nuclei of absorber and the problems of Sect. 2.6 cover the general
aspects of Coulomb elastic scattering including characteristic scattering dis-
tance, minimum and maximum scattering angle, mean square scattering an-
gle for single scattering. The last two problems of this chapter concentrate on
mass scattering power (Sect. 2.6) and root mean square scattering angle for
multiple scattering (Sect. 2.7).

E.B. Podgoršak, Compendium to Radiation Physics for Medical Physicists,
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2.1 General Aspects of Coulomb Scattering

2.1.Q1 (60)

Coulomb scattering is a general term used to describe elastic Coulomb inter-
action between two charged particles: an energetic projectile and a stationary
target.

(a) In Table 2.1A provide a list of at least 5 elastic Coulomb scattering
interactions and for each interaction give the projectile and the target.

(b) Define Molière scattering.

Table 2.1A Five most common elastic Coulomb scattering interactions

Coulomb scattering
interaction

Projectile Target

1

2

3

4

5

SOLUTION:

(a) Five most common elastic Coulomb scattering interactions are presented in
Table 2.1B.

Table 2.1B Five most common elastic Coulomb scattering interactions

Coulomb scattering
interaction

Projectile Target

1 Rutherford scattering Alpha particle Nucleus

2 Ramsauer scattering Electron (non-relativistic) Atom or molecule

3 Mott scattering Electron (relativistic) Atomic nucleus

4 Møller scattering Electron Atomic orbital electron

5 Bhabha scattering Positron Atomic orbital electron

(b) Molière scattering is defined as multiple scattering involving any one of the
scattering interactions listed in Table 2.1B.
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2.1.Q2 (61)

Much of the information on the structure and charge distribution of nuclei has
been gathered through elastic Coulomb scattering experiments.

Discuss the two most important characteristics that a particle must possess
when used as nuclear probe in elastic scattering experiments.

SOLUTION:

The two most important characteristics that a particle must possess when used as
nuclear probe in elastic scattering experiments are: (1) de Broglie wavelength λ of
the particle and (2) charge q of the particle.

(1) The particle serving as nuclear probe must have a de Broglie wavelength λ of
the order of the size of the nucleus or smaller. The radius R of the nucleus (i.e.,
size of the nucleus) is estimated from R = R0

3
√
A, where R0 is the nuclear radius

constant (1.25 fm) and A is the atomic mass number of the nucleus.
The de Broglie wavelength of the nuclear probe projectile is calculated from the

standard de Broglie expression λ= h/p, where p is the particle momentum derived
in Prob. 34 as

p = E0

c
βγ = E0

c

β√
1 − β2

or p = 1

c

√
E2 −E2

0 = E0

c

√
1 + 2E0

EK
(2.1)

with

E total energy of the particle.
EK kinetic energy of the particle (EK =E −E0).
E0 rest energy of the particle.
γ Lorentz factor of the particle.
β velocity of the particle normalized to the speed of light c in vacuum.

The de Broglie wavelength of the particle is thus given as

λ= h

p
= 2π�c

E0

√
1 − β2

β
= 2π�c

EK

√
1 + 2E0

EK

. (2.2)

(2) The particle serving as nuclear probe must possess charge to enable an elastic
Coulomb interaction between the nuclear probe (projectile) and the nucleus (target).
Charge is also important in accelerating the particle to sufficiently high kinetic en-
ergy for the de Broglie wavelength λ to become of the order of, or smaller than, the
size of the nucleus.
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2.1.Q3 (62)

The distance of closest approach Dα−N in a head-on collision between an α
particle of kinetic energy EK and an atomic nucleus is calculated from con-
servation of energy considerations whereby we equate the α particle kinetic
energyEK at large (∞) distance from the nucleus with repulsive Coulomb po-
tential energy EP when the α particle is at a distance Dα−N from the nucleus.
Dα−N is then given as follows

Dα−N = zZe2

4πε0EK
= Cα−N

Z

EK
. (2.3)

(a) Determine the constant Cα−N for alpha (α) particle scattering and use it
to calculate Dα−N for scattering of 5.5 MeV α particles (z= 2) on gold
nucleus (Z = 79, A= 197).

(b) Plot Dα−N against EK for α particle scattering on gold nuclei in the
kinetic energy EK range from 1 MeV to 40 MeV.

(c) Compare Dα−N of (a) with the radius RAu of the gold nucleus and de-
termine at what kinetic energy EK would the α particle just penetrate
the gold nucleus.

SOLUTION:

(a) Constant Cα−N for α particle scattering is calculated from (2.3) as follows

Cα−N = ze2

4πε0
= 2e×(1.602×10−19 A · s)

4π×(8.85×10−12 A · s · V−1 · m−1)
= 2.88×10−9 eV · m

= 2.88 MeV · fm (2.4)

and Dα−N in terms of Cα−N for scattering of 5.5 MeV α particle on gold nucleus is
given as

Dα−N = Cα−N
Z

EK
= (2.88 MeV · fm)×79

5.5 MeV
= 41.4 fm. (2.5)

To see whether or not the α particle of initial kinetic energy (EK)i = 5.5 MeV can
penetrate the gold nucleus we estimate the radius RAu of the gold nucleus with the
following relationship

R(A)=RAu =R0
3
√
A= (1.25 fm)× 3

√
197 = 7.3 fm, (2.6)

where R0 is the nuclear radius constant (T1.26). Since RAu of (2.6) is significantly
smaller than Dα−N of (2.5), we conclude that (EK)i = 5.5 MeV α particle does not
penetrate the gold nucleus.
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Fig. 2.1 Distance of closest approach Dα−N against kinetic energy EK of the α particle in a
direct-hit (θ = π ) collision between α particle and gold nucleus (Z = 79). Point 1 on the curve
represents Dα−N of 41.4 fm for (EK)i of 5.5 MeV; point 2 represents (EK)i of 24.5 MeV for
Dα−N of 9.3 fm

(b) Figure 2.1 shows a plot of the distance of closest approachDα−N in a direct-hit
collision of an α particle with a gold nucleus in the initial kinetic energy (EK)i range
from 1 MeV to 40 MeV. As shown in (2.5),Dα−N in general is linearly proportional
to the atomic number Z of the absorber and inversely proportional to the kinetic
energy (EK)i of the α particle, and constant Cα−N is equal to 2.88 MeV · fm, as
determined in (2.4) for all absorbers Z.

(c) In (a) we showed that the distance of closest approach Dα−N for a 5.5 MeV
α particle in a head-on collision with gold nucleus is 41.4 fm, while the radius RAu

of gold nucleus is 7.3 fm. We assume that at point of initial penetration of the gold
nucleus the distance Dα−N between the center of the gold nucleus and the center
of the α particle is simply the sum of their radii, i.e., Dα−N = Rα + RAu = 9.3 fm
where we used Rα =R0

3
√
A= (1.25 fm)× 3

√
4 ≈ 2 fm for radius of α particle.

We now rearrange (2.5) to calculate the initial kinetic energy (EK)i that an α
particle must possess to attain a distance of closest approach Dα−N of 9.3 fm in a
head-on collision

EK = Cα−NZ

Dα−N
= Cα−NZ

Rα +RAu
= (2.88 MeV · fm)×79

9.3 fm
= 24.5 MeV. (2.7)

Points 1 and 2 in Fig. 2.1 represent two direct-hit collisions of α particle with
gold nucleus. In Point 1, (EK)i = 5.5 MeV resulting in Dα−N = 41.4 fm, as deter-
mined in (2.5) and in point 2, Dα−N = 9.3 fm resulting in (EK)i = 24.5 MeV, as
determined in (2.7).
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2.2 Geiger-Marsden Experiment

2.2.Q1 (63)

(a) Write short notes on: (1) Thomson “plum pudding” model of the atom
and (2) Rutherford nuclear model of the atom and for each model
present a sketch.

(b) Discuss the expected angular distribution of α particles in Geiger-
Marsden scattering experiment assuming the validity of Thomson
“plum-pudding” model of the atom.

(c) Discuss the expected angular distribution of α particles in Geiger-
Marsden scattering experiment assuming the validity of Rutherford nu-
clear model of the atom.

(d) A collimated beam of α particles emitted from a Po-210 source (EK =
5.4 MeV) strikes a 2.5 µm gold foil (Z = 79, A= 197 g/mol, and ρ =
19.3 g/cm3). Calculate the probability of an α particle to be scattered
at angles between Θ1 = 10◦ and Θ2 = 12◦ according to: (1) Thomson
“plum pudding” model of the atom and (2) Rutherford nuclear model
of the atom.

SOLUTION:

(a) In 1898 Joseph J. Thomson, who is also credited with the discovery of the elec-
tron in 1897, proposed an atomic model in which the mass of the atom is distributed
uniformly over the volume of the atom that has a radius of the order of 1 Å and
negatively charged electrons are dispersed uniformly within a continuous spherical
distribution of positive charge. Thus, positive charges and the negative (electron)
charges of an atom are distributed uniformly over the atomic volume (“plum pud-
ding” model) to make the atom neutral on the outside [see Fig. 2.2(A)].

Based on α scattering results that Geiger and Marsden carried out with gold foils,
Ernest Rutherford in 1911 proposed a completely new atomic model that was much
better suited than Thomson model to explain the peculiar α scattering experimental
results obtained by Geiger and Marsden. In the Rutherford nuclear model, essen-
tially all atomic mass is concentrated in a small nucleus with the size of the order of
few femtometers and the negatively charged electrons revolve about the nucleus in
a cloud, the radius of which is of the order of 1 Å [see Fig. 2.2(B)].

(b) Thomson model
The Thomson “plum pudding” model of the atom results in a Gaussian distribution
of α particles about the incident pencil beam direction expressed as follows
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Fig. 2.2 Schematic diagram of two atomic models: (A) Thomson model and (B) Rutherford model

N(Θ)dΘ

N0
= 2Θ

Θ2
e
−Θ2

Θ2 dΘ = e−
Θ2

Θ2 d

(
Θ2

Θ2

)
, (2.8)

where

N0 is the incident number of α particles, i.e., the number of α particles
striking the gold foil.

Θ is the scattering angle of the α particle after it passes through the gold
foil.

N(Θ)dΘ is the number of α particles scattered within the angular range of Θ
and Θ + dΘ , i.e., scattered between angles Θ and Θ + dΘ .

Θ2 is the mean square net deflection experimentally determined to be of

the order of 3×10−4 rad2 giving
√
Θ2 ≈ 1◦.

(c) Rutherford model
The distribution of scattered α particles assuming the validity of the Rutherford
nuclear model is given as follows

N(Θ)dΘ

N0
= π

8
ρ
NA

A
tD2
α−N

sinΘ dΘ

sin4( 1
2Θ)

= π

2
ρ
NA

A
tD2
α−N

d sin( 1
2Θ)

sin3( 1
2Θ)

. (2.9)

The distribution in (2.9) can be derived as follows. In general, the number N of
scattering events is proportional to the incident particle beam intensity N0 as well
as to the number n of atoms (nuclei) per unit area. The proportionality constant is
defined as the cross section σ for the scattering event and N is then expressed as

N = σN0n. (2.10)
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In (2.10) the absorber (scattering foil) is assumed to be thin enough to ensure
that the incident particles have only one or no scattering events as they traverse the
absorber. The probability of scattering into scattering angles from θ to θ + dθ is
given by

dN =N(θ)dθ = dσRuthN0n= dσRuth

dΩ
N0ndΩ, (2.11)

where θ is the scattering angle in a single scattering event in contrast to Θ which is
the combined scattering angle for α particle traversal of the gold foil, Ω is the solid
angle, and dσRuth/dΩ is the Rutherford differential cross section given as (T2.38)

dσRuth

dΩ
= D2

α−N

16

1

sin4( 1
2θ)
, (2.12)

withDα−N the distance of closest approach in a direct hit (head-on) collision where
θ = π .

The number of atoms N a per area S of the absorber (scattering foil) is given as
follows

n= N a

S
= N a

V
t = ρN a

m
t = ρNA

A
t, (2.13)

where t , V , m, and ρ are the thickness, volume, mass, and density, respectively,
of the absorber foil; NA is the Avogadro number, and A is the atomic mass of the
scattering foil.

The number of α particles scattered into an angular range of θ to θ + dθ normal-
ized to the number of incident α particles N0 is determined from (2.11) as follows

N(θ)dθ

N0
= ndσRuth

dΩ
dΩ = ρNA

A
t
dσRuth

dΩ
dΩ = ρNA

A
t
D2
α−N

16

1

sin4( 1
2θ)

2π sin θ dθ

= π

8
ρ
NA

A
tD2
α−N

sin θ dθ

sin4( 1
2θ)

= π

2
ρ
NA

A
tD2
α−N

d sin( 1
2θ)

sin3( 1
2θ)

. (2.14)

Since the vast majority of α particles experience only one Rutherford interaction
while traversing the foil, the probability for multiple Rutherford interactions is very
low and one can replace the single scattering angle θ in (2.14) with angle Θ to get
the following distribution for α particles traversing the foil

N(Θ)dΘ

N0
= π

8
ρ
NA

A
tD2
α−N

sinΘ dΘ

sin4( 1
2Θ)

= π

2
ρ
NA

A
tD2
α−N

d sin( 1
2Θ)

sin3( 1
2Θ)

. (2.15)

N(θ)dθ/N0 can be considered the probability that incident particles will be scat-
tered into the angular range from θ to θ + dθ corresponding to impact parameter
range from b to b− db.
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(d) In the early 20th century physicists had two competing models of the atom:
(1) Thomson “plum pudding” model and (2) Rutherford nuclear model, each model
predicting significantly different α-particle scattering probabilities from the other
model. The Rutherford model eventually prevailed based on unequivocal support
from experimental results and today the Rutherford model is considered the univer-
sally accepted model of the atom.

(1) According to the Thompson model of the atom the probability of an α particle
to be scattered between angleΘ andΘ+dΘ is given by (2.8). To get the probability
of an α particle to be scattered between anglesΘ1 andΘ2 we integrate (2.8) and get

PTh(Θ2 ≥Θ ≥Θ1)= 1

N0

∫ Θ2

Θ1

N(Θ)dΘ =
∫ Θ2

Θ1

e
−Θ2

Θ2 d

(
Θ2

Θ2

)
= e−

Θ2
2
Θ2 − e−

Θ2
1
Θ2 .

(2.16)
Inserting Θ2 ≈ 1◦, Θ1 = 10◦, and Θ2 = 12◦ into (2.16), we get

PTh
(
10◦ ≥Θ ≥ 12◦)= e−102 − e−122 ≈ 10−100× log10 e = 10−43. (2.17)

(2) The probability of an α particle to be scattered between angle Θ and Θ +
dΘ according to the Rutherford nuclear model of the atom is given by (2.9). The
probability of an α particle to be scattered between angle Θ1 and Θ2 according to
Rutherford nuclear model of the atom is obtained by integrating (2.9) fromΘ1 toΘ2

to get

PRuth(Θ2 ≥Θ ≥Θ1) = 1

N0

∫ Θ2

Θ1

N(Θ)dΘ = π

2
ρ
NA

A
tD2
α−N

∫ Θ2

Θ1

d sin( 1
2Θ)

sin3( 1
2Θ)

= π

4
ρ
NA

A
tD2
α−N

[
1

sin2( 1
2Θ)

]Θ1

Θ2

= π

4
ρ
NA

A
tD2
α−N

[
sin2( 1

2Θ2)− sin2( 1
2Θ1)

sin2( 1
2Θ1) sin2( 1

2Θ2)

]
. (2.18)

We now use (2.18) to determine the probability of an α particle to be scattered
with scattering angle Θ between Θ1 = 10◦ and Θ2 = 12◦ but, before embarking
on the calculation, we must determine the distance of closest approach Dα−N for a
head-on collision between a 5.4 MeV α particle and a gold nucleus (T2.12)

Dα−N = zZe2

4πε0

1

EK
= zZ�cα

EK
= 2×79×(197.3 MeV · fm)

137×(5.4 MeV)
= 42.1 fm. (2.19)

For a 2.5 µm thick gold foil, the probability of an α particle to be scattered between
angles Θ1 = 10◦ and Θ2 = 12◦ is based on (2.19) given as follows
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PRuth
(
10◦ ≥Θ ≥ 12◦)

= π×(19.3×106 g · m−3)×(6.022×1023 mol−1)×(2.5×10−6 m)×(42.1×10−15 m)2

4×(197 g · mol−1)

×
[

sin2(10◦)− sin2(12◦)
sin2(10◦)× sin2(12◦)

]

= 8.2×10−3. (2.20)

Comparing (2.17) and (2.20), the probability of an α particle to be scattered
between angle Θ1 = 10◦ and Θ2 = 12◦ according to the Rutherford nuclear model
of the atom is substantially greater than that predicted by the Thomson model of
the atom. Extensive experimental work has confirmed the validity of the Rutherford
nuclear model of the atom in comparison with the Thomson model of the atom.

2.2.Q2 (64)

Using the general results of Prob. 63 for Rutherford scattering on the Thom-
son and Rutherford models of the atom, determine, for the Geiger-Marsden
experiment with α particles of kinetic energy EK striking a gold foil of thick-
ness t , the fractional number of α particles scattered with angle Θ0 or larger
assuming the validity of:

(a) Thomson “plum pudding” model.
(b) Thomson “plum pudding” model and t = 1 µm and Θ0 = 1

2π .
(c) Rutherford nuclear model.
(d) Rutherford nuclear model and t = 1 µm,Θ0 = 1

2π , and EK = 5.5 MeV.

SOLUTION:

(a) In conjunction with the Thomson model the number of α particles scattered
by a foil of thickness t with an angle equal to or larger than Θ0 is from (2.8) given
as

N(Θ ≥Θ0)

N0
= 1

N0

∫ π

Θ0

N(Θ)dΘ =
∫ π

Θ0

e
−Θ2

Θ2 d

(
Θ2

Θ2

)

= −e−
Θ2

Θ2
∣∣π
Θ0

= e−
Θ2

0
Θ2 − e−

π2

Θ2 . (2.21)

(b) For the Thomson model the number of α particles scattered by a foil of thick-
ness t of 1 µm with an angle equal to or larger than Θ0 = 1

2π = 90◦ is from (2.21)
given as
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N(Θ ≥Θ0)

N0
= 1

N0

∫ π

π
2

N(Θ)dΘ =
∫ π

π
2

e
−Θ2

Θ2 d

(
Θ2

Θ2

)

= −e−
Θ2

Θ2
∣∣π
π
2

= e−( 90◦
1◦ )2 − e−( 180◦

1◦ )2 ≈ e−( 90◦
1◦ )2 ≈ 10−3500,

(2.22)

where we used the experimentally determined value of ∼1◦ for the root mean square

angle
√
Θ2.

(c) In conjunction with the Rutherford model of the atom the number of α par-
ticles scattered by a foil of thickness t with an angle equal to or larger than Θ0 is
from (2.15) given as

N(Θ ≥Θ0)

N0
= 1
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∫ π
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− 1

]

= π
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NA
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(
1

2
Θ0
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= C(A, t) cot2

(
1

2
Θ0

)
, (2.23)

where C(A, t) is a constant depending on the atomic mass A and thickness t of the
target. For a given target material and thickness the fractional number of α particles
scattered with a scattering angle exceeding Θ0 increases rapidly with decreasing
Θ0, as shown in Fig. 2.3.

(d) For the Rutherford atomic model, the fractional number of α particles scat-
tered by a gold scattering foil of thickness t = 1 µm with a scattering angle
Θ equal to Θ0 = 1

2π or larger is calculated from (2.23) after inserting appro-
priate values for the pertinent parameters: ρAu = 19.3 g/cm−3; A = 197 g/mol;
NA = 6.022×1023 mol−1; and Dα−N = 41 fm. The value of 41.4 fm for Dα−N
is obtained from Prob. 62 which plots Dα−N, the distance of closest approach in
a head-on α particle collision with a gold nucleus, against kinetic energy EK of α
particles. With these values the fraction N(Θ ≥Θ0 = 1

2π)/N0 is given as

N(Θ ≥Θ0 = 1
2π)

N0
= C(A, t) cot2

π

4
= π

4
×(

19.3 g · cm−3)×(
10−4 cm

)

× (6.022×1023 mol−1)

(197 g · mol−1)

×(
41.4×1013 cm

)2× cot2
π

4

= 7.8×10−5 cot2
π

4
≈ 10−4. (2.24)
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Fig. 2.3 Fractional number of scattered α particles against the minimum scattering angle θ0 for α
particles scattered on gold nucleus

This result, stating a probability of about 10−4 for scattering of α particles with an
angle larger than 90◦ on 1 µm thick gold foil, confirms the validity of the Ruther-
ford model of the atom. Moreover, it agrees very well with experimental results
that Geiger and Marsden obtained in their historic experiment which showed that
roughly one in 104 α particles was scattered with scattering angles larger than 90◦.
While relatively small, this probability is nonetheless enormous compared to the
probability 10−3500 calculated with the Thomson model in (b).

2.3 Rutherford Scattering

2.3.Q1 (65)

Many approaches have been developed for the derivation of the Rutherford
α-particle scattering formula. The fastest and most elegant approach is based
on the derivation of the momentum transfer �p from the α particle to the
nucleus.

(a) Plot a schematic diagram of the α particle scattering on a gold nucleus
and clearly label all parameters that play a role in the scattering process.

(b) Derive the relationship between the impact parameter b and the scatter-
ing angle θ using the momentum transfer �p approach.
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(c) Show that the impact parameter b that is usually expressed as

b= 1

2
Dα−N cot

θ

2
(2.25)

can also be expressed as

b= 1

2
Dα−N

√
1 + cos θ

1 − cos θ
. (2.26)

SOLUTION:

(a) The schematic diagram of the scattering process is presented in Fig. 2.4. The
nucleus of mass M and atomic number Z is in the outer focus of the hyperbola
because of the repulsive interaction between the α particle and the nucleus and the
assumption is made that M � mα with mα the mass of the α particle. The other
parameters of Fig. 2.4 are defined as follows:

r is the distance between the α particle and the nucleus (outer focus).
r ′ is the distance between the α particle and the inner focus.
a is the distance between the vertex V and the center C of the hyperbola.
b is the impact parameter.
ε is the eccentricity of the hyperbola.
θ is the scattering angle.
FCoul is the Coulomb force between the α particle and the nucleus.
F�p is the projection of FCoul onto the axis of symmetry of the hyperbola.

Fig. 2.4 Schematic diagram of α particle scattering
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(b) The relationship between the impact parameter b and the scattering angle θ is
derived as follows:

The momentum transfer �p from the α particle to the nucleus can be treated as
an impulse that is equal to the change in momentum of the α particle and defined as
the integral of force F with respect to time t . As shown in Fig. 2.3, the momentum
transfer is along a line that bisects the angle π − θ . The magnitude of the Coulomb
force acting on the α particle is given by

FCoul = zeZe

4πε0

1

r2
, (2.27)

where

r is the distance between the α particle and the nucleus of mass M , atomic num-
ber Z, and atomic mass number A.

z is the atomic number of the α particle.

The component of the Coulomb force FCoul in the direction of the momentum trans-
fer is F�p = FCoul cosφ so that the momentum transfer (impulse)�p can be written
as the time integral of the force component F�p

�p =
∫ ∞

−∞
F�p dt =

∫ ∞

−∞
FCoul cosφ dt = zZe2

4πε0

∫ π−θ
2

− π−θ
2

cosφ

r2

dt

dφ
dφ

= zZe2

4πε0

∫ π−θ
2

− π−θ
2

cosφ

r2ω
dφ, (2.28)

where

φ is the angle between the radius vector r and the bisector.
dt/dφ is the inverse of the angular frequency ω.

We now use the conservation of angular momentum L for the α-scattering process
to obtain a relationship between the angular frequency ω and impact parameter b.
For the α particle at a very large distance (r = ∞) from the nucleus, L is given
as L = mαυib with mα and υi the mass and initial velocity of the α particle. For
the α particle in the vertex of the hyperbolic trajectory, on the other hand, we get
L=mαωr2. Thus

L= |L| = |r×p| = |r×mαυ| =mαυib=mαωr2 and
1

ω
= r2

υib
. (2.29)

Inserting (2.29) into (2.28) the momentum transfer is now expressed as

�p = zZe2

4πε0

1

υib

∫ π−θ
2

π−θ
2

cosπ dφ = 2
zZe2

4πε0

1

υib
cos
θ

2
. (2.30)
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The momentum vector diagram of Fig. 2.4 shows that �p can also be expressed
as follows

�p = 2mαυi sin
θ

2
(2.31)

and this expression combined with (2.30) results in the following relationship be-
tween the impact parameter b and scattering angle θ

b= zZe2

4πε0mαυ
2
i

cot
θ

2
= 1

2
Dα−N cot

θ

2
= 1

2
Dα−N

√
1 + cos θ

1 − cos θ
, (2.32)

where Dα−N is the distance of closest approach in a direct-hit collision between an
α particle and the nucleus (T2.12).

(c) We show that

b= 1

2
Dα−N cot

θ

2
= 1

2
Dα−N

√
1 + cos θ

1 − cos θ
(2.33)

by recalling the well known trigonometric expression cos θ = cos2 1
2θ − sin2 1

2θ in
conjunction with the following trigonometric identity sin2 1

2θ + cos2 1
2θ = 1 to get

cot
θ

2
= cos 1

2θ

sin 1
2θ

=
√√√√cos2 1

2θ

sin2 1
2θ

=
√

1 + cos θ

1 − cos θ
. (2.34)

2.3.Q2 (66)

A lithium ion Li+++ (Z = 3, A = 6 g/mol) with incident kinetic energy
(EK)i = 7.5 MeV is scattered on a gold nucleus (Z = 79, A = 197 g/mol)
through an angle θ of 10◦. Assume that the mass of the alpha particle is much
smaller than the mass of the lithium ion and calculate:

(a) Impact parameter b.
(b) Distance of closest approach Rα−N.
(c) Eccentricity of the hyperbolic trajectory of the Li+++ ion.
(d) Distance a between the vertex V and the center C of the hyperbolic

trajectory.

SOLUTION:

Before calculating the individual parameters of the specific scattering interaction,
we calculate the distance of closest approach in a head-on elastic collision between
the Li+++ ion and gold nucleus using (T2.12)
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Dα−N = zZe2

4πε0(EK)i

= 3×79×e×(1.6×10−19 A · s)

4π×(8.85×10−12 A · s · V−1 · m−1)×(7.5×106 eV)

= 4.55×10−14 m = 45.5 fm. (2.35)

(a) Impact parameter b is calculated from (T2.23) as

b= 1

2
Dα−N cot

θ

2
= 1

2
×(45.5 fm)= 260 fm. (2.36)

(b) Distance of closest approach is calculated from (T2.31) as follows

Rα−N = 1

2
Dα−N

(
1 + 1

sin θ2

)
= (45.5 fm)

2
×
(

1 + 1

sin 5◦

)
= 283.8 fm.

(2.37)
(c) Eccentricity ε of the trajectory is calculated from (T2.28) as follows

ε = 1

sin θ2
= 1

sin 5◦ = 11.5. (2.38)

(d) Distance a between the vertex V and the center C of the hyperbolic trajectory
is calculated using (T2.30)

a = 1

2
Dα−N = 22.8 fm. (2.39)

2.3.Q3 (67)

An α particle interacts with a silver nucleus (atomic number Z = 47, atomic
massA= 108, and rest massMc2 = 100455 MeV) and undergoes Rutherford
scattering with scattering angle θ of 45◦ resulting in a distance of closest
approach Rα−N of 32.2 fm. For this Rutherford scattering event:

(a) Calculate impact parameter b.
(b) Calculate kinetic energy EK of the incident α particle.
(c) Calculate momentum pα of the incident α particle.
(d) Calculate recoil momentum �p of the nucleus.
(e) Calculate recoil energy �EK of the nucleus.
(f) Calculate eccentricity ε of the hyperbolic trajectory of the α particle.
(g) Draw a schematic diagram of the scattering event and clearly show all

given and calculated parameters.
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SOLUTION:

(a) The impact parameter b is calculated using (T2.31) to get

b=Rα−N
1 − sin θ2

cos θ2
= (32.2 fm)×1 − sin 22.5◦

cos 22.5◦ = 21.5 fm. (2.40)

(b) Kinetic energy EK of the incident α particle is calculated using (T2.12) which
contains Dα−N, the distance of closest approach in a head-on collision (θ = π ,
b= 0), calculated using (T2.23) as follows

Dα−N = 2b tan
θ

2
= 2×(21.5 fm)× tan 22.5◦ = 17.8 fm. (2.41)

According to (T2.12) EK is given as follows

EK = 2zZe2

4πε0

1

Dα−N
= 2×47×(1.602×10−19 A · s)×e

4π×[8.85×10−12 A · s/(V · m)]×(17.8×10−15 m)

= 7.6 MeV. (2.42)

(c) Momentum of the incident α particle is calculated using the standard p vs EK
relativistic expression given in (T1.64) as follows

pα = EK

c

√
1 + 2mαc2

EK
=
(

7.6
MeV

c

)
×
√

1 + 2×(3727.3 MeV)

7.6 MeV

= 238.1 MeV/c. (2.43)

(d) Recoil momentum �p of the nucleus is calculated using (T2.22) to get

�p = 2pα sin
θ

2
= 2×(238.1 MeV/c)× sin 22.5◦ = 182.2 MeV/c. (2.44)

(e) Recoil energy �EK of the nucleus is determined from the standard relativistic
equation for kinetic energy as follows

�EK =
√
(�pAg)2c2 + (

MAgc2
)2 −MAgc

2

=
√
(182.2 MeV)2 + (100455 MeV)2 − (100455 MeV)= 0.165 MeV.

(2.45)

(f) Eccentricity ε of the α particle trajectory is determined from (T2.28) to get

ε = 1

sin θ2
= 1

sin 22.5◦ = 2.61. (2.46)

(g) Schematic diagram of the scattering process is shown in Fig. 2.5.
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Fig. 2.5 Schematic diagram of the Rutherford scattering process with scattering angle θ = 45◦
and the distance of closest approach Rα−N = 32.2 fm defined as the distance between the outer
focus and vertex of the hyperbolic trajectory

2.3.Q4 (68)

An α particle with initial kinetic energy (EK)i of 5.5 MeV and initial velocity
υi undergoes a direct-hit Rutherford scattering (head-on collision) on a gold
nucleus.

(a) Derive and plot the general relationship for υx/υi against x/Dα−N for
the α particle with x the α particle distance from the center of the nu-
cleus, υx the velocity of the α particle at x, and Dα−N the distance of
closest approach in a direct-hit collision of the α particle with the nu-
cleus.

(b) Calculate the initial velocity of the 5.5 MeV α particle.
(c) Determine υx/υi of the α particle when the particle is a distance

x = 2Dα−N from the nucleus. For a 5.5 MeV α particle Dα−N was
determined as 41.3 fm in Prob. 62.

(d) Calculate the distance x at which the α particle velocity υx is at 50 %
of its initial velocity υi.

(e) Calculate the distance x at which the α particle velocity υx is at 90 %
of its initial velocity υi.
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SOLUTION:

(a) In a direct-hit elastic collision between an α particle and a nucleus (scattering
angle θ = π and impact parameter b= 0) the following expression holds in general
for the conservation of energy of the α particle.

(EK)i = mαυ
2
i

2
= mαυ

2
x

2
+ zZe2

4πε0

1

x
= 0 + zZe2

4πε0

1

Dα−N
, (2.47)

where

x is the distance between the α particle and the nucleus in a direct-hit colli-
sion

υi is the initial velocity of the α particle (at x = ∞).
(EK)i is the initial kinetic energy of the α particle (at x = ∞).
EK(x) is the kinetic energy at x.
EP(x) is the potential energy at x.
Dα−N is the distance of closest approach in a direct-hit collision (θ = π) between

the α particle and the nucleus.
υx is the velocity of the α particle at a distance x from the nucleus for

Dα−N ≤ x ≤ ∞.

Equation (2.47) states that at any point x of the α particle trajectory the total α
particle energy which is the sum of kinetic energy EK(x) = 1

2mαυ
2
x and potential

energy EP(x) = zZe2/(4πε0x) is equal to initial kinetic energy (EK)i of the α
particle. We thus have

EK(x = ∞)= (EK)i and EK(x =Dα−N)= 0 (2.48)

as well as

EP(x = ∞)= 0 and EP(x =Dα−N)= zZe2

4πε0Dα−N
= (EK)i. (2.49)

To derive a general expression for normalized velocity υx/υi as a function of nor-
malized distance x/Dα−N we insert (2.49) into (2.47) and get

mαυ
2
i

2
= mαυ

2
x

2
+ (EK)i

(x/Dα−N)
= mαv

2
x

2
+ mαυ

2
i

2(x/Dα−N)
(2.50)

Solving (2.50) for υx/υi gives the following result

υx

υi
=
√

1 − 1

(x/Dα−N)
. (2.51)

A plot of normalized velocity υx/υi against the normalized distance x/Dα−N is
given in Fig. 2.6. The plot is valid for all classical α particles irrespective of the ki-
netic energy of the α particle. Points (c), (d), and (e) on the graph represent solutions
for problem sections (c), (d), and (e) below.
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Fig. 2.6 Normalized velocity υx/υi against normalized distance x/Dα−N for classical direct-hit
α particle Rutherford scattering. Points labeled (c), (d), and (e) correspond to results obtained in
sections (c), (d), and (e)

(b) Velocity of 5.5 MeV α particle is calculated in (T2.5) classically and in (T2.7)
relativistically as follows

υi

c
=
√

2EK

mαc2
=
√√√√1 − 1

(1 + (EK)i
mαc2 )

2
= 0.0543. (2.52)

The first square-root in (2.52) follows from the classical expression for kinetic en-
ergy while the second comes from relativistic considerations. Both give the same
result, since the initial kinetic energy of the α particle is much smaller than its rest
energy, allowing us to use the classical expression for EK(x) in (2.47).

(c) Our specific problem calls for determination of the ratio υx/υi for x = 2Dα−N.
Inserting x/Dα−N = 2 into (2.51) we obtain the following result

υ2
x

υ2
i

= 1

2
or

υx

υi
= 1√

2
= 0.707. (2.53)

(d) To calculate the distance at which the α particle velocity υx is 50 % of its
initial velocity υi we use (2.51) and solve for x/Dα−N to get

x

Dα−N
= 1

1 − υ2
x

υ2
i

= 1

1 − 0.25
= 1.33. (2.54)
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(e) To calculate the distance at which the α particle velocity υx is 90 % of its
initial velocity υi we use (2.54) and get

x

Dα−N
= 1

1 − υ2
x

υ2
i

= 1

1 − 0.81
= 5.26. (2.55)

2.3.Q5 (69)

A hyperbola consists of two disconnected open curves called the arms or
branches of the hyperbola. The distance of closest approach between the two
branches defines the vertices of the hyperbola, one vertex V for each branch.
A straight line through the two vertices defines the transverse axis of the hy-
perbola, and the midpoint between the two vertices on the transverse axis is
the center C of the hyperbola.

Show that the two expressions [(T2.27) and (T2.32), respectively]

r(φ)= a(ε2 − 1)

ε cosφ − 1
(2.56)

and
1

r(ψ)
= 1

b
sinψ + a

b2
(cosψ − 1) (2.57)

given in polar coordinates for the trajectory of an α particle undergoing
Rutherford elastic scattering on a high atomic number nucleus are equiva-
lent. The trajectory is a hyperbola and the polar coordinate system is centered
at the outer focus FO of the hyperbola. The angles θ , φ, and ψ are defined in
Fig. 2.7 and

ε is the eccentricity of the hyperbola.
a is the distance between the vertex V and the center C of the hyperbola.
b is the impact parameter of Rutherford elastic scattering.

SOLUTION:

From Fig. 2.7 we recognize the following relationship among angles θ , φ, and ψ

ψ + φ = π − θ
2

or φ = π

2
− θ

2
−ψ. (2.58)

The cosine of angle φ is then expressed as follows

cosφ = cos

[(
π

2
− θ

2

)
−ψ

]
= cos

(
π

2
− θ

2

)
cosψ + sin

(
π

2
− θ

2

)
sinψ
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Fig. 2.7 Hyperbola representing the trajectory of an α particle scattered on a high atomic mass
nucleus. The polar coordinate system is centered on the outer focus of the hyperbola

= sin
θ

2
cosψ + cos

θ

2
sinψ. (2.59)

Inserting (2.59) into (2.56) we now express (2.56) as follows

1

r
= ε cosφ − 1

a(ε2 − 1)
= ε sin θ2 cosψ + ε cos θ2 sinψ − 1

a(ε2 − 1)
. (2.60)

Recognizing, as derived in (T2.28), that

ε = 1

sin θ2
or ε sin

θ

2
= 1, (2.61)

ε cos
θ

2
= cos θ2

sin θ2
= cot

θ

2
, (2.62)

and

ε2 − 1 = 1

sin2 θ
2

− 1 = 1 − sin2 θ
2

sin2 θ
2

= cot2
θ

2
, (2.63)
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we change (2.60) to read

1

r
= cosψ + cot θ2 sinψ − 1

a cot2 θ2
. (2.64)

Furthermore, as shown in (T2.23) and (T2.30), b = a cot( 1
2θ) resulting in the fol-

lowing expression for (2.64)

1

r
= cosψ + b

a
sinψ − 1

a b
2

a2

= 1

b
sinψ + a

b2
(cosψ − 1) (2.65)

and showing that in polar coordinates 1/r can be expressed in two ways

1

r
= 1

b
sinψ + a

b2
(cosψ − 1) and r(φ)= a(ε2 − 1)

ε cosφ − 1
. (2.66)

To test the validity of (2.56) and (2.57) we measure the appropriate parameters for
point P in Fig. 2.7 and insert the measured values into the two equations. The mea-
sured parameters are as follows:

r = 146 fm, ψ = 22◦, (2.67)

r ′ = 105 fm, ψ = 46◦, (2.68)

a = 1

2

(
r − r ′)= 1

2
Dα−N = 20.5 fm,

θ

2
= 22◦ = π

2
− (ψ + φ), (2.69)

b = 50 fm, ε = 1

sin θ2
= 2.67. (2.70)

Insertion of these parameters into (2.56) and (2.57) gives the following results

r(φ)= a(ε2 − 1)

ε cosφ − 1
= (20.5 fm)×6.13

0.855
= 147 fm (2.71)

and

1

r(ψ)
= sinψ

b
+ a

b2
(cosψ − 1)= 0.375

50 fm
+ 20.5

2500 fm
(−0.0728)= 0.0069 (2.72)

or

r(ψ)= 145 fm.

Equations (2.71) and (2.72) do not agree perfectly with the measured radius r of
146 fm because of rounding errors and measurement inaccuracy; however, they
serve as reasonable proof that (2.56) and (2.57) provide identical results in polar
coordinates.
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2.3.Q6 (70)

Figure 2.8 shows a trajectory of an α particle scattered on a platinum (Z = 78)
nucleus. The interaction between the α particle and the nucleus is assumed to
be Coulomb scattering of the Rutherford type where the nuclear mass is much
larger than the α particle mass. The nucleus is located at the outer focus of the
hyperbolic trajectory coinciding with the origin (0,0) of the Cartesian coordi-
nate system and the α particle trajectory is symmetrical about the ordinate (y)
axis. The distances on the coordinate system are given in femtometers (fm).
Based on data in Fig. 2.8 determine:

(a) Distance of closest approach Rα−N, defined as the distance between the
platinum nucleus and the vertex V of the hyperbolic trajectory.

(b) Eccentricity ε of the hyperbolic trajectory and the distance a between
the vertex V and center C of the hyperbola.

(c) Coordinates of the center C(xC, yC) of the hyperbolic trajectory.
(d) Scattering angle θ and distance of closest approach Dα−N in direct-hit

scattering.
(e) Impact parameter b.
(f) Initial kinetic energy (EK)i of the α particle.

Fig. 2.8 Trajectory of an α particle having a Coulomb interaction of Rutherford type on a platinum
nucleus. The nucleus is located in the outer focus of the hyperbolic trajectory. Distances on the
Cartesian coordinate system are in femtometers. (1 fm = 10−5 Å). Point P is an arbitrary point on
the hyperbola

SOLUTION:

(a) Distance of closest approach Rα−N between the α particle and platinum nu-
cleus can be read directly from the graph in Fig. 2.8 and amounts to Rα−N = 100 fm.
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(b) We determine ε and a as follows: The equation for the hyperbola is in polar
coordinates (r,φ) given as [see (T2.27)]

r(φ)= a(ε2 − 1)

ε cosφ − 1
, (2.73)

where

r(φ) is the magnitude of the radius vector r directed from point OF(0,0) to any
arbitrary point P on the hyperbola.

φ is the angle between the ordinate (y) axis and the radius vector r.
a is the distance between the vertex V and center C of the hyperbola.
ε is the eccentricity of the hyperbola.

Next, we choose an arbitrary point P on the hyperbola, for example at xP = 75 fm
and yP = 125 fm (see Fig. 2.8), and determine the polar coordinates rP and φP for
point P as

rP = √
xP + yP =

√
(75 fm)2 + (125 fm)2 = 145.8 fm (2.74)

and

cosφP = yP

rP
= 125.0

145.8
= 0.857 or φP = cos−1 yP

rP
= cos−1 0.857 = 31◦. (2.75)

We now express (2.73) for two points on the hyperbola: [point V(r = yP =
Rα−N, φ = 0) and arbitrary point P(rP = 145.8 fm, φP = 31◦)] and get two equa-
tions for two unknowns (a and ε) reading as follows

r(φ = 0)=Rα−N = a(ε2 − 1)

ε− 1
= a(ε+ 1) (2.76)

and

r(φ = φP)= rP = a(ε2 − 1)

ε cosφP − 1
. (2.77)

Inserting a = Rα−N/(ε + 1) from (2.76) into (2.77) results in the following values
for the eccentricity ε and distance a between vertex V and center C of the hyperbolic
trajectory

ε = rP −Rα−N

rP cosφP −Rα−N
= 145.8 − 100.0

145.8×0.857 − 100.0
= 1.835 (2.78)

and

a = Rα−N

ε+ 1
= 100 fm

1.835 + 1
= 35.3 fm. (2.79)

(c) The distance between the outer focus OF and the center C of the hyperbola
is equal to aε. The coordinates xC and yC for center point C of the hyperbolic
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trajectory are thus given as

xC = 0 and yC = aε = (35.3 fm)×1.835 = 64.7 fm. (2.80)

(d) Since, as shown in (T2.28), ε = 1/ sin( 1
2θ), we calculate the scattering angle

θ as

θ = 2 sin−1 1

ε
= 66.2◦, (2.81)

while, as shown in (T2.30), the distance of closest approach Dα−N for a direct-hit
collision equals 2a in general and thus is 70.6 fm in the example studied here.

(e) The impact parameter b is calculated from the standard Rutherford scattering
expression linking b and θ [see (T2.23)]

b= Dα−N

2
cot
θ

2
= 70.6 fm

2
cot 33.1◦ = 54.2 fm. (2.82)

(f) Finally, the relationship between Dα−N and initial kinetic energy EK is shown
in (T2.12) as

Dα−N = zZe2

4πε0(EK)i
, (2.83)

giving the following expression for EK

EK = zZe2

4πε0Dα−N

= 2×78×(1.6×10−19 A · s)e

4π×[8.85×10−12 A · s/(V · m)]×(70.6×10−15 m)

= 3.18 MeV. (2.84)

Solutions (a) through (f) are illustrated graphically in Fig. 2.9 and summarized as
follows:

(a) Distance of closest approach for the α particle Rα−N = 100 fm.
(b) Eccentricity ε = 1.835 and distance vertex-center a = 35.3 fm.
(c) Coordinates of hyperbola center C(xC, yC): xC = 0; yC = 64.7 fm.
(d) Scattering angle θ = 66.2◦ and direct-hit distance of closest approach

Dα−N = 70.6 fm.
(e) Impact parameter b= 54.2 fm.
(f) Initial kinetic energy of the α particle (EK)i = 3.18 MeV.
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Fig. 2.9 Graphical representation of results calculated in (a) through (f). C designates the center C
of the hyperbola, V designates the vertex of the hyperbola. P is an arbitrary point on the hyperbola
with coordinates x = 75 and y = 125

2.3.Q7 (71)

For Rutherford scattering, derive an expression for the distance of closest ap-
proach Rα−N as a function of the initial kinetic energy (EK)i and impact
parameter b of the α particle.

SOLUTION:

In Rutherford scattering the total energy E(r) of the α particle is conserved and
equal to the initial kinetic energy EK(r) of the α particle at r = ∞. For r <∞, total
energy E(r) is the sum of the kinetic energy EK(r) and potential energy EP(r)

E(r)= (EK)i =EK(r)+EP(r)= mαυ
2
α

2
+ zZe2

4πε0

1

r
, (2.85)

where

z is the atomic number of the projectile (α particle: z= 2).
Z is the atomic number of the absorber.
mα is the mass of the α particle.
υα is the velocity of the α particle.
υi is the initial velocity of the α particle.
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The α particle attains Rα−N, its distance of closest approach to the nucleus, when it
reaches the vertex V of the hyperbolic trajectory. Conservation of angular momen-
tum L at point V can be expressed as

| �L| = L=mαυib=mαυαRα−N or υα = υib

Rα−N
, (2.86)

where b is the impact parameter. Inserting the expression for υα of (2.86) into (2.85)
and rearranging the terms results in the following quadratic equation for Rα−N

R2
α−N − zZe2

4πε0(EK)i
Rα−N − b2 =R2

α−N −Dα−NRα−N − b2 = 0, (2.87)

where Dα−N is the distance of closest approach in a direct-hit (b = 0) interaction
between the α particle and the nucleus.

The quadratic equation (2.87) has the following simple and physically relevant
solution

Rα−N =
Dα−N +

√
D2
α−N + 4b2

2
= Dα−N

2

{
1 +

√
1 +

[
2b

Dα−N

]2}
. (2.88)

In a direct-hit collision b = 0 and the distance of closest approach Rα−N given
in (2.88) transforms into the well-known relationship which follows directly from
the conservation of energy in a Rutherford scattering interaction

Rα−N(b= 0)=Dα−N = zZe2

4πε0(EK)i
. (2.89)

Using the well-known Rutherford expression that relates the impact parameter b
with the scattering angle θ given in (T2.23) as

b= 1

2
Dα−N cot

θ

2
or 1 +

[
2b

Dα−N

]2

= 1 + cot2
θ

2
= 1

sin2 θ
2

, (2.90)

we can write (2.88) for Rα−N as

Rα−N = Dα−N

2

{
1 + 1

sin θ2

}
(2.91)

in agreement with the derivation of (T2.31).
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Fig. 2.10 Schematic diagram of the scattering experiment

2.4 Cross Sections for Rutherford Scattering

2.4.Q1 (72)

A beam of α particles with kinetic energy EK of 6.5 MeV and intensity I0
of 3.5×106 s−1 is incident normally onto a gold foil (ρ = 19.3 g · cm−3,
A= 197 g · mol−1) of thickness t = 2.5×10−5 cm.

An α particle counter in the shape of an annular ring is placed downstream,
concentrically with the beam direction and with its center at a distance R of
5 cm from the center of the gold foil. The inner radius ri of the ring detector
is 7.5 mm; the outer radius ro is 10 mm. The ring width thus is 2.5 mm.

(a) Draw a schematic diagram of the scattering experiment.
(b) Determine the intensity of α particles striking the detector.

SOLUTION:

(a) A schematic diagram of the scattering experiment is shown in Fig. 2.10 and
contains the following main components:

(1) Source of α particles.
(2) Gold foil of thickness t = 2.5×10−5 cm.
(3) Annular (ring) detector.

(b) The experiment described above is a typical example of Rutherford scattering
experiment involving α particle scattering on atomic nuclei. The differential cross
section for Rutherford scattering is given as (T2.38)

dσRuth

dΩ
=
(
Dα−N

4

)2 1

sin4 θ
2

, (2.92)
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where θ is the scattering angle and Dα−N is the distance of closest approach in a
head-on collision given as (T2.12)

Dα−N = zZe2

4πε0EK

= 2×79e×(1.6×10−19 C)

4π×(8.85×10−12 C · V−1 · m−1)×(6.5×106 eV)

= 35 fm, (2.93)

with z and Z the atomic number of the α particle (z= 2) and gold atom (Z = 79),
respectively.

To define the sensitive scattering area of the annular (ring) detector we now in-
troduce two scattering angles θ : θi and θo, the inner scattering angle and the outer
scattering angle, respectively. With the help of the schematic diagram of the experi-
ment, given in (a), we find the following values for θi and θo

tan θi = ri

R
= 7.5

50
= 0.15 or θi = 0.149 = 8.5◦ (2.94)

and

tan θo = ro

R
= 10

50
= 0.2 or θo = 0.197 = 11.3◦. (2.95)

To determine the probability σ |θoθi for α particle scattering with scattering angle θ
between θi and θo (i.e., θi ≤ θ ≤ θo) we integrate (2.92) between the two angular
limits assuming azimuthal symmetry with dΩ = 2π sin θ dθ

σ |θoθi =
∫ θo

θi

dσRuth

dΩ
dΩ = 2π

(
Dα−N

4

)2 ∫ θo

θi

sin θ

sin4 θ
2

dθ = πD2
α−N

2

∫ θo

θi

d sin θ2
sin3 θ

2

= −π
4

D2
α−N

sin2 θ
2

∣∣∣∣
θo

θi

= −π
4

×(
35×10−13 cm

)2
[

1

sin2 0.0985
− 1

sin2 0.0745

]

= 7.42×10−22 cm2. (2.96)

To complete the calculation we must still determine the number of gold targets
per unit area Na/S and multiply this number by the incident beam intensity I0 and
the probability σ |θoθi for scattering into the annual detector.

Number of atoms Na per volume V of gold is given as

Na

V
= ρNa

m
= ρNA

A
= (19.3 g · cm−3)×(6.022×1023 mol−1)

(197 g · mol−1)
= 5.9×1022 cm−3.

(2.97)
Number of atoms (targets) per area S of gold is

Na

S
= Na

V
t = (

5.9×1022 cm−3)×(
2×10−5 cm

)= 1.18×1018 cm−2. (2.98)
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The rate (intensity) I of α particles reaching the annular detector is now given as

I = Na

S
I0σ |θoθi = (

1.18×1018 cm−2)×(
3.5×106 s−1)×(

7.42×10−22 cm2)

= 3.06×103 s−1. (2.99)

2.4.Q2 (73)

A beam of α particles with kinetic energy EK of 5.5 MeV and intensity I0
of 2×104 s−1 is incident normally on a gold foil (ρ = 19.3 g · cm−3; A =
197 g/mol) of thickness t = 1.5×10−5 cm. An α particle counter of area Sdet
of 1 cm2 is placed at a distance R of 12 cm from the center of the foil.

Determine the number of counts per hour measured by the detector placed
with its center at a scattering angle Θ of (a) 15◦ and (b) 45◦.

SOLUTION:

In Prob. 63 (2.15) we calculated the following expression for the probability
P(Θ)dΘ of α particle scattering into an angular range from Θ to Θ + dΘ

P(Θ)dΘ = π

8
ρ
NA

A
tD2
α−N

sinΘ dΘ

sin4( 1
2Θ)

. (2.100)

Since the detector is placed at a distance R = 12 cm from the center of the foil,
we apply a correction factor fcorr to account for the difference between the scat-
tering area Sscat and the detector sensitive area Sdet where Sdet < Sscat, as shown in
Fig. 2.11. The scattering area Sscat encompassed between scattering angles Θ and
Θ + dΘ is expressed as

Sscat = (2πR sinΘ)×(R dΘ)= 2πR2 sinΘ dΘ, (2.101)

and the correction factor fcorr is thus given as

fcorr = Sdet

Sscat
= Sdet

2πR2 sinΘ dΘ
. (2.102)

The signal intensity (number of particles per hour) dN/dt |det measured by the
detector is estimated as follows accounting for:

(1) Scattering probability P(Θ)dΘ into angular range between Θ and Θ + dΘ
covered by the detector.

(2) Fraction of all α particles scattered into angular range betweenΘ andΘ+dΘ
that the detector of area Sdet actually detects

dN/dt |det = I0×{P(Θ)dΘ}×fcorr
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Fig. 2.11 Schematic diagram of the scattering experiment. The detector sensitive area is smaller
than the scattering area

= Sdet

2πR2 sinΘ dΘ
I0
π

8
ρ
NA

A
tD2
α−N

sinΘ dΘ

sin4( 1
2Θ)

= ρNA

A
tD2
α−NI0

Sdet

16R2 sin4( 1
2Θ)

= C1
I0

sin4( 1
2Θ)

, (2.103)

where C is a constant dependent on physical properties of the scattering foil (ρ, A,
t and Dα−N) as well as the geometry of the scattering experiment (R and Sdet) but
independent of the scattering angle Θ and the intensity I0 of the incident α particle
beam.

For our gold foil experiment we calculate the following (unit-less) C1

C1 = ρNA

A
tD2
α−N

Sdet

16R2
=
[

19.3
g

cm3

]
×
[

6.022×1023 mol−1

197 g

]

×[
1.5×10−5 cm

]×[
41.4×10−13 cm

]2× [1 cm2]
16×[12 cm]2

= 6.58×10−9,

(2.104)

with Dα−N calculated in (2.5) for EK = 5.5 MeV α particle scattering on gold
nucleus as

Dα−N = Cα−NZ

EK
= zZe2

4πε0EK
= 41.4 fm. (2.105)

(a) Scattering angle Θ = 15◦
Equation (2.103) gives the general result for particle intensity measured by the de-
tector for a given incident intensity I0 and a given scattering angle Θ . Inserting
I0 = 2×104 s−1 and Θ = 15◦ into (2.103) we get the following result for particle
intensity measured by the detector

dN

dt

∣∣∣∣
det

= C1
I0

sin4( 1
2θ)

= 6.58×10−9×2×104 s−1

sin4 7.5◦ = 1632 h−1. (2.106)
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(b) Scattering angle Θ = 45◦
Inserting I0 = 2×104 s−1 and Θ = 45◦ into (2.103) results in

dN

dt

∣∣∣∣
det

= C1
I0

sin4( 1
2θ)

= 6.58×10−9×2×104 s−1

sin4 22.5◦ = 6.14×10−3 s−1 = 22.1 h−1.

(2.107)

2.4.Q3 (74)

Several special angles have been defined in conjunction with experiments and

theory of elastic particle scattering, such as θ , Θ , θmin, θmax,
√
θ2, and

√
Θ2,

where

θ is the scattering angle for single scattering.
Θ is the scattering angle for multiple scattering.
θmin is a cut-off angle used to account for nuclear Coulomb shielding by

atomic orbital electrons.
θmax is a cut-off angle used to account for the finite size of the nucleus.√
θ2 is the root-mean-square (RMS) angle for single scattering.√
Θ2 is the root-mean-square (RMS) scattering angle for multiple scatter-

ing.

For Rutherford scattering of particles with kinetic energy EK = 5.5 MeV on
a silver foil of thickness t = 10−5 cm calculate:

(a) Cut-off angles θmin and θmax as well as ratio θmax/θmin. Verify the calcu-
lated θmin and θmax on a graph showing the two angles for silver against
kinetic energy EK of the α particle.

(b) Total Rutherford cross-section σRuth.
(c) Mean square scattering angle θ2 and the root-mean-square scattering

angle
√
θ2 for single scattering.

(d) Mean square scattering angleΘ2 and root-mean-square scattering angle√
Θ2 for multiple Rutherford scattering.

The following data for silver may be useful: mass density ρ = 10.5 g/cm3;
atomic number Z = 47; atomic weight A= 107.87 g/mol.

SOLUTION:

All relationships used for solving this problem are derived in Sect. T2.4 and sum-
marized in Table T2.3. Before delving into the individual sections of the problem
we calculate Dα−N, the distance of closest approach in a head-on collision between
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α particle and silver nucleus (T2.12)

Dα−N = zZe2

4πε0EK
= 2×47×e×(1.6×10−19 A · s)

4π×(8.85×10−12 A · s · V−1 · m−1)×5.5×106 eV

= 24.6 fm. (2.108)

(a) Cut-off angles θmin and θmax are given as [(T2.57) and (T2.69), respectively]

θmin = �

paTF
= �c

3
√
Z

a0
√
EK(EK + 2Eα)

= (197.3 MeV · fm)× 3
√

47

(0.529×105 fm)×√
(5.5 MeV)×(5.5 MeV + 3727 MeV)

= 6.64×10−5 rad (2.109)

and

θmax = �

pR
= �c

R0
3
√
A

√
EK(EK + 2Eα)

= (197.3 MeV · fm)

(1.25 fm)× 3
√

107.87
√
(5.5 MeV)×(5.5 MeV + 3727 MeV)

= 0.164 rad.

(2.110)

Angles calculated in (2.109) and (2.110) are superimposed onto the graph in
Fig. 2.12 plotting cutoff angles θmin and θmax against kinetic energyEK for electrons
and α particles scattered on various materials. The calculated data for 5.5 MeV α
particles fit nicely onto the curve for silver.

Ratio θmax/θmin is thus given as

θmax

θmin
= a0

R0
3
√

AZ
= 0.529×105 fm

1.25 fm)× 3
√

107.87×47
= 0.164

6.64×10−5
= 2470. (2.111)

(b) Total Rutherford cross section is given in (T2.79) as

σRuth = πD2
α−N

θ2
min

= π×(24.6 fm)

(6.64×105 rad)2
= 4.31×109 b. (2.112)

(c) Mean square scattering angle θ2 and root-mean-square scattering angle
√
θ2

for single scattering are given as [see (T2.84) and (T2.86)]:

θ2 ≈ 2θ2
min ln

θmax

θmin
= 2×(

6.64×10−5 rad
)2× ln 2470 = 6.89×10−8(rad)2 (2.113)

and √
θ2 =

√
6.89×10−8 rad = 2.6×10−4 rad = 0.015◦. (2.114)
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Fig. 2.12 Minimum scattering angle θmin in (A) and maximum scattering angle θmax in (B) against
kinetic energy EK for electrons and α particles scattered on carbon, aluminum, copper, silver, gold,
and lead. The data points calculated in (a) for α particles of EK = 5.5 MeV scattered on silver are
indicated with heavy arrows

(d) Cumulative mean square scattering angle Θ2 and root-mean-square scattering

angle
√
Θ2 for multiple scattering are given as [see (T2.91) and (T2.92)]

Θ2 = 2πρ
NA

A
tD2
α−N ln

θmax

θmin
= nθ2, (2.115)

where n is the number of scattering events expressed as (T2.88)

n = ρNA

A
σRutht
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= (
10.5 g/cm3)×6.022×1023 mol−1

107.87 g · mol−1
×(

4.31×10−15 cm2)

×(
10−5 cm

)= 2526. (2.116)

After inserting (2.116) into (2.115) we get Θ2 = 1.74×10−4 (rad)2 and
√
Θ2 =

0.13 rad = 0.7◦.

2.5 Mott Scattering

2.5.Q1 (75)

An electron with kinetic energy EK is scattered elastically off a nucleus of
rest massMc2. In addition to the scattering angle θ , the following parameters
govern the interaction: rest energymec

2, momentum p, and kinetic energyE′
K

of the incident electron; rest energy mec
2, momentum p′, and kinetic energy

E′
K of the scattered electron; rest energy Mc2, recoil momentum �p, and

recoil kinetic energy �EK of the nucleus.

(a) Plot a vector diagram of the scattering process and derive a general ex-
pression for momentum transfer �p (recoil momentum of the nucleus)
as a function of θ , EK, and E′

K.
(b) Derive a relativistic expression for energy transfer �EK from the inci-

dent electron to the nucleus (recoil energy of the nucleus) as a function
of θ , EK, E′

K, andMc2.
(c) Derive a relativistic expression for kinetic energy E′

K of scattered elec-
tron as a function of θ , EK, andMc2.

(d) Equation, derived in (c) for kinetic energy of the scattered electron, is
well known and of great importance in another area of radiation physics.
Name that area and briefly explain how the equation is used there.

(e) Based on result of (c) show that, as EK → ∞, maximum kinetic energy
E′

K of an electron scattered with an angle θ = 1
2π is E′

K =Mc2.
(f) Based on result of (c) show that, as EK → ∞, maximum kinetic en-

ergy E′
K of an electron scattered with a scattering angle θ = π is

E′
K = 1

2Mc
2.

SOLUTION:

(a) A schematic diagram of the scattering process is shown in Fig. 2.13. An in-
cident electron of momentum p and kinetic energy EK is scattered elastically by
nucleus of rest energy Mc2 through a scattering angle θ to end with momentum p′
and kinetic energy E′

K.
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Fig. 2.13 Schematic representation of electron–nucleus scattering (Mott scattering)

Momentum transfer to nucleus (nuclear recoil momentum) �p
Conservation of momentum for the elastic scattering process is expressed as follows

p = p′ +�p, (2.117)

where p and p′ are momenta of the incident and scattered electron, respectively,
and �p is the momentum transferred from the incident electron to the nucleus (also
called recoil momentum of the nucleus). We use the law of cosines on the momen-
tum triangle of Fig. 2.13 to get

|�p|2 = (�p)2 = |p|2 + ∣∣p′∣∣2 − 2|p|∣∣p′∣∣ cos θ = p2 + p′2 − 2pp′ cos θ

= E2
K

c2

(
1 + 2mec

2

EK

)
+ E′2

K

c2

(
1 + 2mec

2

E′
K

)

− 2
EKE

′
K

c2

√(
1 + 2mec2

EK

)(
1 + 2mec2

E′
K

)
cos θ, (2.118)

where we used the well known expression for electron momenta p and p′ as a
function of kinetic energy EK from (T1.64)

p = EK

c

√(
1 + 2mec2

EK

)
and p′ = E′

K

c

√(
1 + 2mec2

E′
K

)
. (2.119)

(b) Energy transfer to nucleus (nuclear recoil energy) �EK
Conservation of energy for the scattering process is expressed as follows

EK +mec
2 +Mc2 =E′

K +mec
2 +�EK +Mc2 or EK =E′

K +�EK, (2.120)

where �EK is the energy transfer from the incident electron of rest energy mec
2

to the nucleus of rest energy Mc2 (i.e., recoil energy of the nucleus) expressed in
relativistic form as

�EK = EK −E′
K =

√
(�p)2c2 + (

Mc2
)2 −Mc2

=
√
E2

K +E′2
K − 2EKE

′
K cos θ + (

Mc2
)2 −Mc2. (2.121)
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(c) Kinetic energy of the scattered electron E′
K

From (2.121) we can obtain another expression for (�p)2, the square of the momen-
tum transfer from incident electron to the nucleus, as a function of kinetic energies
EK and E′

K and nuclear rest energyMc2. We first rearrange (2.121) to get

�EK +Mc2 ≡EK −E′
K +Mc2 =

√
(�p)2c2 + (Mc2)2 (2.122)

and then we square (2.122) to get the following expression for (�p)2

(�p)2 = 1

c2

(
EK −E′

K

)2 + 2
(
EK −E′

K

)
Mc2. (2.123)

Now we have two expressions for (�p)2 given in (2.118) and (2.123). Equating the
two expressions we obtain the following expression linking θ , EK, E′

K, andMc2

E2
K + 2EKmec

2 +E′2
K + 2E′

Kmec
2 − 2EKE

′
K

√(
1 + 2mec2

EK

)(
1 + 2mec2

E′

)
cos θ

=E2
K − 2EKE

′
K +E′2

K + 2EKMc
2 − 2E′

KMc
2. (2.124)

The quadratic terms in (2.124) cancel out and since E′
K ≈ EK we can simplify the

square root expression in (2.124) to read

√(
1 + 2mec2

EK

)(
1 + 2mec2

E′

)
≈
(

1 + 2mec
2

EK

)
(2.125)

resulting in the following solution for the kinetic energy of the scattered electron
E′

K

E′
K = EK

1

1 + mec2

Mc2 + EK
Mc2 (1 + 2mec2

EK
)(1 − cos θ)

= EK
1

1 + mec2

Mc2 + EK
Mc2 (1 − cos θ)+ 2mec2

Mc2 (1 − cos θ)
. (2.126)

A closer look at (2.126) shows that the expression for E′
K can be simplified by

recognizing that mec
2 � Mc2 even for the lightest nuclei such as the proton or

deuteron to obtain a much simpler expression for E′
K now expressed as follows

E′
K =EK

1

1 + EK
Mc2 (1 − cos θ)

. (2.127)
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Energy transfer from incident electron to the nucleus �EK can then, using (2.121)
in conjunction with (2.127), be expressed as follows

�EK =EK −E′
K =EK

(
1 − 1

1 + EK
Mc2 (1 − cos θ)

)
=EK

EK
Mc2 (1 − cos θ)

1 + EK
Mc2 (1 − cos θ)

.

(2.128)
(d) Equation (2.128) is of exactly the same form as the equation for scattered
photon energy hν′ as a function of incident photon energy hν and scattering angle
θ in Compton effect. A comparison between the two effects is given in Table 2.2.

Table 2.2 Comparison between relationship for electron–nucleus Mott scattering and relationship
for photon–free electron Compton scattering

Incident electron kinetic energy EK Incident photon energy hν

Nuclear rest energyMc2 Electron rest energy mec
2

Scattered electron kinetic energy E′
K Scattered photon energy hν′

E′
K =EK

1

1 + EK
Mc2 (1 − cos θ)

(2.129) hν′ = hν 1

1 + hν

mec2 (1 − cos θ)
(2.130)

Recoil nucleus kinetic energy �EK Recoil (Compton) electron kinetic energy EK

�EK =EK

EK
Mc2 (1 − cos θ)

1 + EK
Mc2 (1 − cos θ)

(2.131) EK = hν
hν
mec2 (1 − cos θ)

1 + hν

mec2 (1 − cos θ)
(2.132)

(e) To determine the upper limit in E′
K as EK → ∞ and θ = 1

2π , we rear-
range (2.127) to get

lim
EK→∞
θ= 1

2π

E′
K = lim

EK→∞
θ= 1

2π

EK

1 + EK
Mc2 (1 − cos θ)

= lim
EK→∞
θ= 1

2π

1
1
EK

+ 1
Mc2 (1 − cos 1

2π)

=Mc2. (2.133)

Thus, no matter how high is the incident electron kinetic energy EK, the side scat-
tered (θ = 1

2π ) electron kinetic energy E′
K cannot exceed Mc2 where Mc2 is the

rest energy of the scattering nucleus.
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(f) To determine the upper limit in E′
K as EK → ∞ and θ = π , we rear-

range (2.127) to get

lim
EK→∞
θ=π

E′
K = lim

EK→∞
θ=π

EK

1 + EK
Mc2 (1 − cos θ)

= lim
EK→∞
θ=π

1
1
EK

+ 1
Mc2 (1 − cosπ)

= 1

2
Mc2. (2.134)

Thus, no matter how high is the incident electron kinetic energy EK, the backscat-
tered (θ = π ) electron kinetic energy E′

K cannot exceed 1
2Mc

2 where Mc2 is the
rest energy of the scattering nucleus.

2.5.Q2 (76)

An electron with kinetic energy EK of 20 MeV is scattered elastically by gold
nucleus (Z = 79Mc2 = 183433 MeV). The scattering angle is 60◦. For the
scattering process calculate:

(a) Momentum p of the incident electron.
(b) Kinetic energy E′

K of the scattered electron.
(c) Recoil energy �EK of the gold nucleus.
(d) Recoil momentum �p of the nucleus.
(e) Momentum p′ of the scattered electron.
(f) Assume that incident electron kinetic energy is EK = 2 GeV, that the

scattering nucleus is a proton (Mpc
2 = 938.3 MeV) and that scattering

angle θ = 1
2π . Determine E′

K and verify the result with Fig. 2.14.

SOLUTION:

(a) Momentum p of the incident electron is calculated using the standard rela-
tionship (T1.64) to get

p = EK

c

√
1 + 2mec2

EK
= (20 MeV)

c

√
1 + 2×0.5110

20
= 20.5046 MeV/c. (2.135)

(b) Kinetic energy E′
K of the scattered electron is calculated using (2.127) as

follows (see Point B in Fig. 2.14)

E′
K =EK

1

1 + EK
Mc2 (1 − cos θ)

= 20 MeV

1 + 20
183433 (1 − cos 60◦)

= 19.99891 MeV.

(2.136)
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Fig. 2.14 Scattered electron kinetic energy E′
K against the incident electron kinetic energy for

Mott scattering on hydrogen and gold nuclei for four scattering angles θ (0, 1
4π , 1

2π , and π ).
Points B and F represent solutions reached in (b) and (f)

(c) Recoil energy �EK of the gold nucleus is calculated from (2.128) as follows

�EK = EK

EK
Mc2 (1 − cos θ)

1 + EK
Mc2 (1 − cos θ)

= (20 MeV)×
20

183433 (1 − cos 60◦)
1 + 20

183433 (1 − cos 60◦)

= 1.0903×10−3 MeV. (2.137)

(d) Recoil momentum �p of the nucleus is determined using (2.118) as follows

�p = 1

c

{
E2

K + 2EKmec
2 +E′2

K + 2E′
Kmec

2

− 2EKE
′
K

√(
1 + 2mec2

EK

)(
1 + 2mec2

EK

)
cos θ

} 1
2

=
{

202 + 2×20×0.511 + 19.998912 + 2×19.99891×0.511 − 2×20

×19.99891×
√(

1 + 2×0.511

20

)
×
(

1 + 2×0.511

19.99891

)
cos 60◦

} 1
2

MeV/c

= 20.5041 MeV/c. (2.138)
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(e) Momentum p′ of the scattered electron is calculated using the standard re-
lationship given in (2.136) and (T1.64) to get

p′ = E′
K

c

√
1 + 2mec2

EK
= (19.99891 MeV)

c

√
1 + 2×0.5110

19.99891
= 20.5035 MeV/c.

(2.139)
(f) Kinetic energy E′

K of the scattered electron is calculated using (2.127) as
follows (see Point F in Fig. 2.14)

E′
K =EK

1

1 + EK
Mc2 (1 − cos θ)

= 2×103 MeV

1 + 2×103

938.3 (1 − cos 90◦)
= 638.7 MeV. (2.140)

Table 2.3A Determination of the nuclear recoil correction factor frecoil

Element Hydrogen Silver Gold

Z 1 47 79

A 1 107 197

Mc2 (MeV) 938.3 100455 183433

EK θ θ = 1
4π = 45◦ θ = 1

2π = 90◦ θ = π = 180◦

≤10 MeV x ≤ x ≤ x ≤
frecoil = frecoil = frecoil =

100 MeV x = x = x =
frecoil = frecoil = frecoil =

1 GeV x = x = x =
frecoil = frecoil = frecoil =

10 GeV x = x = x =
frecoil = frecoil = frecoil =

100 GeV x = x = x =
frecoil = frecoil = frecoil =

1000 GeV x = x = x =
frecoil = frecoil = frecoil =

2.5.Q3 (77)

Nuclear recoil correction factor frecoil is one of several factors used to correct
the Rutherford scattering cross section for relativistic and quantum effects in
studies of electron scattering on nuclei. The frecoil correction factor is defined
as the ratio of the scattered electron kinetic energy E′

K to incident electron
kinetic energy EK and, as derived in Prob. 76, can be expressed as follows
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frecoil = E′
K

EK
= 1

1 + EK
Mc2 (1 − cos θ)

, (2.141)

whereMc2 is the rest energy of the target nucleus and θ is the scattering angle
of the electron.

(a) Discuss the dynamic range of frecoil with respect to EK,Mc2, and θ .
(b) Plot frecoil against variable x for scattering angles θ = 0, 1

4π , 1
2π , 3

4π ,
and π , where x is defined as x =EK/(Mc

2).
(c) With the help of the graph prepared in (b) determine frecoil for hydro-

gen, silver, and gold at various electron kinetic energies EK and scatter-
ing angles θ , as indicated in Table 2.3A.

SOLUTION:

(a) As evident from (2.141), the nuclear recoil correction factor frecoil depends
upon three parameters: EK, Mc2, and θ . The major trends in frecoil behavior are as
follows:

(1) The dynamic range of frecoil is from 0 to 1, i.e., 0 ≤ frecoil ≤ 1.
(2) For θ = 0, frecoil = 1 irrespective of EK.
(3) For constant EK andMc2, frecoil decreases with increasing θ .
(4) For constantMc2 and θ > 0, frecoil decreases with increasing EK.
(5) For constant EK and θ , frecoil increases with increasingMc2.

(b) Energy dependence of frecoil can be compressed into one graph by plotting
frecoil against variable x =EK/(Mc

2), as shown in Fig. 2.15.

(c) Determination of the nuclear recoil correction factor frecoil of (2.141) for
electron scattering on nuclei of hydrogen (θ = 45◦), silver (θ = 90◦), and gold
(θ = 180◦) for electron kinetic energies EK of 10 MeV, 100 MeV, 1 GeV, 10 GeV,
100 GeV, and 1000 GeV. For each scattering material we first determine parameter
x = EK/(Mc

2) and then use the graph (frecoil, x) of Fig. 2.15 to determine frecoil
for a given x.

By way of example, we now determine frecoil for scattering of 100 GeV elec-
trons on silver nucleus: Parameter x = (105 MeV)/(100455 MeV) = 0.995 and
from Fig. 2.15 we read frecoil(x = 0.995)≈ 0.5. This result and results for all other
required combinations of electron kinetic energy EK, scattering angle θ , and scat-
tering material were entered into Table 2.3B.

From Table 2.3B it is obvious that the nuclear recoil correction factor frecoil is
only of theoretical interest to medical physics, since for electron energies below
100 MeV it is equal to 1. However, at electron kinetic energies above 100 MeV
the recoil correction becomes progressively more important in the theory of Mott
scattering.
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Fig. 2.15 Nuclear recoil correction factor frecoil against normalized kinetic energy
x = EK/(Mc

2) with Mc2 the rest energy of the target nucleus for scattering angles θ
between 0◦, 45◦, 90◦, 135◦, and 180◦

Table 2.3B Nuclear recoil correction factor frecoil determined with the graph of (frecoil, x) where
x is the normalized kinetic energy EK of the electron [x =EK/(Mc

2)]. The graph was determined
with (2.141) and is provided in Fig. 2.15

Element Hydrogen Silver Gold

Z 1 47 79

A 1 107 197

Mc2 (MeV) 938.3 100455 183433

EK θ θ = 1
4π θ = 1

2π θ = π
≤ 10 MeV x ≤ 0.0107 x ≤ 0.0001 x ≤ 0.000055

frecoil ≈ 1 frecoil = 1 frecoil = 1

100 MeV x = 0.107 x = 0.001 x = 0.00055

frecoil = 0.97 frecoil ≈ 1 frecoil ≈ 1

1 GeV x = 1.07 x = 0.01 x = 0.0055

frecoil = 0.76 frecoil = 0.99 frecoil = 0.99

10 GeV x = 10.7 x = 0.1 x = 0.055

frecoil = 0.24 frecoil = 0.91 frecoil = 0.90

100 GeV x = 107 x = 1 x = 0.55

frecoil = 0.03 frecoil = 0.5 frecoil = 0.48

1000 GeV x = 1070 x = 10 x = 5.5

frecoil ≈ 0 frecoil = 0.09 frecoil = 0.08



2.5 Mott Scattering 161

Fig. 2.16 Scattered electron kinetic energy E′
K = frecoilEK against incident electron kinetic en-

ergy EK for Mott elastic scattering of electrons on hydrogen and gold nuclei for four scattering
angles θ

2.5.Q4 (78)

For Mott elastic scattering of electrons with kinetic energy EK of 10 GeV on
protons at rest determine:

(a) Kinetic energy E′
K of electron scattered at scattering angles θ = 0, 1

12π ,
1
4π , 1

2π , 3
4π , and π .

(b) Recoil energy �EK of proton for scattering angles θ = 0, 1
12π , 1

4π ,
1
2π , 3

4π , and π .
(c) Nuclear recoil correction factor frecoil for scattering angles θ = 0, 1

12π ,
1
4π , 1

2π , 3
4π , and π .

(d) Enter the results calculated in (a) onto appropriate curves in Fig. 2.16
that plotsE′

K against incident electron energyEK for hydrogen and gold
nuclei for various scattering angles θ .

(e) Sketch kinetic energy E′
K of scattered electron and recoil energy �EK

of the nucleus against scattering angle θ .
(f) Sketch the nuclear recoil correction factor frecoil against scattering an-

gle θ .

SOLUTION:

To solve this problem we use expressions derived in Prob. 76 for E′
K, �EK, and

frecoil in Mott elastic scattering of electrons on atomic nuclei and show below a
sample calculation for scattering angle θ = 1

4π .
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Table 2.4 Kinetic energy E′
K of scattered electron, proton recoil energy �EK, and recoil correc-

tion factor frecoil for various scattering angles θ in Mott elastic scattering of electrons on protons
at rest. Kinetic energy EK of incident electrons is 10 GeV

(1) Scattering
angle θ

0 π
12 = 15◦ π

4 = 45◦ π
2 = 90◦ 3π

4 = 135◦ π = 180◦

(2) cos θ 1 0.966 0.707 0 −0.707 −1

(3) E′
K (GeV) 10 7.34 2.43 0.86 0.52 0.45

(4) �EK (GeV) 0 2.66 7.57 9.14 9.48 9.55

(5) frecoil 1 0.734 0.243 0.086 0.052 0.045

(a) Kinetic energy E′
K of the scattered electron is in (2.127) given as function

of scattering angle θ and incident electron kinetic energy EK (see point A in
Fig. 2.18)

E′
K = EK

1 + EK
Mpc2 (1 − cos θ)

= 10 GeV

1 + 10
0.9383 (1 − cos 45◦)

= 2.43 GeV. (2.142)

(b) Recoil kinetic energy�EK of the nucleus is in (2.128) also given as function
of scattering angle θ and incident electron kinetic energy EK and expressed
as follows (see point B in Fig. 2.18)

�EK = EK

EK
Mpc2 (1 − cos θ)

1 + EK
Mpc2 (1 − cos θ)

= (10 GeV)
10

0.9383 (1 − cos 45◦)
1 + 10

0.9383 (1 − cos 45◦)
= 7.57 GeV. (2.143)

(c) Recoil correction factor frecoil is in (2.141) given as (see point C in Fig. 2.19)

frecoil = E′
K

EK
= 2.43

10
= 0.243 ≡ EK −�EK

EK
= 1 − �EK

EK

= 1 − 7.57

10
= 0.243. (2.144)

Results of calculations in (a), (b), and (c) as well as of corresponding calculations
for several other scattering angles θ are presented in Table 2.4 and in Figs. 2.18
and 2.19.

(d) Kinetic energy E′
K of the scattered electron calculated with (2.142) and

listed in row (3) of Table 2.4 is entered with solid circle data points in Fig. 2.17
superimposed on curves plotting E′

K against incident electron kinetic energy EK for
θ = 0, 1

4π , 1
2π , and π in the EK range from 1 MeV to 106 MeV.
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Fig. 2.17 Scattered electron kinetic energy E′
K = frecoilEK against incident electron kinetic en-

ergy EK for Mott elastic scattering of electrons on hydrogen and gold nuclei for four scattering
angles θ . Results of calculations in (a) for 10 GeV electrons are entered on E′

K vs. EK curves by
solid circle data points

Fig. 2.18 Nuclear recoil energy�EK and kinetic energy of the scattered electron E′
K against scat-

tering angle θ for 0 ≤ θ ≤ π for electrons of kinetic energy EK of 10 GeV scattered on protons at
rest. Points A and B represent results of sample calculations for θ = 45◦ in (a) and (b), respectively

Several interesting points can be made based on Fig. 2.17:

(1) E′
K =EK at relatively low EK, irrespective of nuclear mass M and scattering

angle θ .
(2) At high EK, on the other hand, E′

K saturates at (E′
K)max that is proportional to

M and inversely proportional to θ .
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Fig. 2.19 Nuclear recoil correction factor frecoil against electron scattering angle θ for 0 ≤ θ ≤ π
for electrons of kinetic energy EK of 10 GeV scattered on protons at rest. Point C represents the
result of the sample calculation of frecoil at θ = 45◦ in (c)

(3) For a givenM and θ the maximum E′
K is determined from (2.142) as follows

(
E′

K

)
max = lim

EK→∞
EK

1 + EK
Mc2 (1 − cos θ)

= lim
EK→∞

1
1
EK

+ 1
Mc2 (1 − cos θ)

= Mc2

1 − cos θ
. (2.145)

(4) Equation (2.145) gives (E′
K)max in general and provides the following results

for special angles: forward scattering at θ = 0, side scattering at θ = 1
2π , and

backscattering at θ = π , respectively

(
E′

K

)
max =EK, (2.146)

(
E′

K

)
max =Mc2, (2.147)

(
E′

K

)
max = 1

2
Mc2, (2.148)

where M stands for the mass of the particle upon which electrons are scat-
tered.



2.6 General Aspects of Elastic Scattering of Charged Particles 165

(5) Equations (2.142) through (2.148) for Mott scattering on nuclei have exactly
the same structure as equations used for describing Compton scattering of
photon on free electron, if we replace EK of (2.142) with incident photon
energy hν, Mpc

2 of (2.142) with rest energy mec
2 of electron, and �EK

of (2.142) with recoil energy EK of electron (see (7.41)).

(e) Kinetic energy E′
K of the scattered electron and recoil energy �EK of the nu-

cleus for Mott elastic scattering of electrons of incident kinetic energy EK on pro-
tons at rest are calculated with (2.142) and (2.143), respectively, for scattering an-
gles θ = 0, 1

4π , 1
2π , 3

4π , and π , listed in rows (3) and (4), respectively, of Table 2.4,
and plotted with solid circle data points and open circle data points, respectively,
in Fig. 2.18. Points A and B in Fig. 2.18 represent results of the calculations of
scattered electron kinetic energy E′

K and nuclear recoil energy �EK in (a) and (b),
respectively, for 10 GeV electrons scattered at θ = 45◦.

(f) Nuclear recoil correction factor frecoil is calculated for scattering angles θ = 0,
1
4π , 1

2π , 3
4π , and π with (2.144), listed in row (5) of Table 2.4, and plotted with

solid circle data points in Fig. 2.19. Point C on the plot represents the result of
frecoil calculation in (c) for 10 GeV electrons scattered at θ = 45◦.

2.6 General Aspects of Elastic Scattering of Charged Particles

2.6.Q1 (79)

Each elastic scattering event between two particles (projectile and target) can
be characterized by a scattering parameter referred to as the characteristic
scattering distance D. This distance depends on the nature of the specific
scattering event as well as on various physical properties of the projectile and
the target.

(a) Determine the general expression for the characteristic scattering dis-
tance D as a function of incident particle’s normalized kinetic energy τ
where τ =EK/m0c

2 with EK the particle’s incident kinetic energy and
m0c

2 its rest energy.

Determine expressions for characteristic scattering distance D for four stan-
dard examples of Coulomb elastic scattering and summarize the results in a
table:

(b) Rutherford scattering: α particle–nucleus (α–N).
(c) Mott scattering: electron–nucleus (e–N).
(d) Møller scattering: electron–orbital electron (e–e).
(e) Electron–atom (e–a) scattering.
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SOLUTION:

(a) The following expression defines the characteristic scattering distance D for
any type of Coulomb scattering

D = zZe2

4πε0
mυ2

2

, (2.149)

where z, m, and υ are the atomic number, relativistic mass, and relativistic velocity,
respectively, of the incident charged particle and Z is the atomic number of the
target. The relativistic mass m of the projectile is given as m=m0/

√
1 − β2 with β

the velocity υ of the particle normalized to speed of light c in vacuum (β = υ/c).
Inserting expressions for m and β into (2.149) we now get the following general
expression for D

D = 2zZe2

4πε0m0c2

√
1 − β2

β2
. (2.150)

We now relate
√

1 − β2/β2 with particle’s normalized kinetic energy τ =
EK/(m0c

2). Following the standard definition of relativistic kinetic energy EK we
have

τ = EK

mec2
= 1√

1 − β2
− 1 or τ + 1 = 1√

1 − β2
, (2.151)

which gives

√
1 − β2 = 1

τ + 1
and

1

β2
= (τ + 1)2

(τ + 1)2 − 1
= (τ + 1)2

τ(τ + 2)
. (2.152)

From (2.152) we now get

√
1 − β2

β2
= τ + 1

τ(τ + 2)
, (2.153)

and finally express (2.149) as a function of τ

D = zZe2

4πε0
mυ2

2

= 2zZe2

4πε0m0c2

√
1 − β2

β2
= 2zZe2

4πε0m0c2

τ + 1

τ(τ + 2)
= 2zZe2

4πε0EK

τ + 1

(τ + 2)
.

(2.154)
Note: For very large kinetic energies where the kinetic energy is much larger than
the rest energy of the scattered particle (EK � m0c

2) we can make the following
approximation √

1 − β2

β2
= τ + 1

τ(τ + 2)
≈ 1

τ
, (2.155)
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Table 2.5 Characteristic scattering distances D for four elastic Coulomb scattering types

Type of
scattering

Projectile vs.
Target

Atomic number Effective
charge

Characteristic scattering
distance D

Projectile Target

Rutherford
scattering

α particle vs.
nucleus

2 Z 2Ze2 2Ze2

4πε0(EK)α

Mott
scattering

Electron vs.
nucleus

1 Z Ze2 2Zre

√
1−β2

β2

Moller
scattering

Electron vs.
orbital
electron

1 1 e2 2re

√
1−β2

β2

Electron-atom
scattering

Electron vs.
whole atom

– –
√
Z(Z + 1)e2 2re

√
Z(Z + 1)

√
1−β2

β2

suggesting that for EK � m0c
2, the characteristic scattering distance becomes in-

versely proportional to kinetic energy EK of the incident charged particle.
Equation (2.154) provides a general expression of the characteristic scattering

distance D as a function of various physical properties of the projectile (charged
particle) and absorber (target). We now use the general relationship (2.154) to ex-
press the characteristic scattering distance D for the four most common scattering
types, each characterized by specific atomic number of projectile and target, as sum-
marized in Table 2.5.

(b) Characteristic scattering distance Dα−N for Rutherford α particle–nucleus
scattering:

Dα−N = 2zZe2

4πε0mαc2

τ + 1

τ(τ + 2)
= 4Ze2

4πε0(EK)α

τ + 1

(τ + 2)
= 2Ze2

4πε0(EK)α
, (2.156)

since

mαc
2τ = (EK)α and

τ + 1

τ + 2
=

(EK)α
mαc2 + 1

(EK)α
mαc2 + 2

=
(EK)α

3727.3 MeV + 1
(EK)α

3727.3 MeV + 2
≈ 1

2
. (2.157)

(c) Characteristic scattering distance De−N for Mott electron–nucleus scattering:

De−N = 2zZe2

4πε0mec2

τ + 1

τ(τ + 2)
= 2Zre

√
1 − β2

β2
= 2Zre

τ + 1

τ(τ + 2)
, (2.158)

after recognizing that re = e2

4πε0mec2 = 2.818 fm.

(d) Characteristic scattering distance De−N for Moller electron–orbital electron
scattering:

De−N = 2zZe2

4πε0mec2

τ + 1

τ(τ + 2)
= 2re

√
1 − β2

β2
= 2re

τ + 1

τ(τ + 2)
. (2.159)
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(e) Characteristic scattering distance De−a for electron–atom scattering:

De−a =
√
D2

e−N +ZD2
e−e = 2re

√
Z(Z + 1)

√
1 − β2

β2
= 2re

√
Z(Z + 1)

τ + 1

τ(τ + 2)
.

(2.160)

2.6.Q2 (80)

Minimum and maximum scattering angles (θmin and θmax, respectively) were
introduced into particle scattering theories to account for deviations of the
effective nuclear potential from the simple Coulomb point-source potential
that forms the basis of scattering theories.

(a) Briefly discuss definitions of minimum scattering angle θmin and max-
imum scattering angle θmax. Express the two characteristic angles as
a function of physical characteristics of the absorber and the scattered
particle; and describe how these characteristics affect θmin and θmax.

(b) θmin and θmax can be determined for any charged particle used as pro-
jectile and for any absorbing material used as target. Calculate θmin
and θmax for 6 MeV and 100 MeV α particles and for 6 MeV and
100 MeV electrons. Despite the two particles having the same kinetic
energy, their characteristic angles differ significantly. Explain.

SOLUTION:

(a) Scattering theories are generally based on the Coulomb point-source poten-
tial and predict cross sections that contain the Rutherford component as the sole
component (in Rutherford α particle–nucleus scattering) or major component (in
Mott electron–nucleus and Moller electron–electron scattering). While the Ruther-
ford derivation predicts result for the differential cross-sections for α particle scat-
tering on nuclei in reasonable agreement with measured data, problems arise as
scattering angle θ approaches 0 (singularity at θ = 0) as well as for large scattering
angles θ .

At small scattering angles θ (i.e., at large impact parameters b) atomic orbital
electrons screen the nuclear potential, effectively causing the nuclear potential to
falloff faster than the 1/r Coulomb point-source potential. This effect becomes pro-
nounced for scattering angles θ smaller than a characteristic angle referred to as
the minimum cutoff angle θmin or the Born screening angle. With the use of Fermi
second golden rule, in conjunction with Born approximation, Thomas-Fermi atomic
model, and Heisenberg uncertainty principle, one obtains the following expression
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for θmin (see (T2.57))

θmin = �

paTF
= �c

3
√
Z

a0EK

√
1 + 2E0

EK

≈ (197.3 MeV · fm)× 3
√
Z

(0.5292×105 fm)

≈ (3.723×10−3 MeV)× 3
√
Z

EK

√
1 + 2E0

EK

. (2.161)

where

p is the incident momentum of the incident particle.
EK is the kinetic energy of the incident particle.
E0 is the rest energy of the incident particle.
a0 is the Bohr radius (0.53 Å).
aTF is the Thomas-Fermi atomic radius given as: aTF = a0/

3
√
Z with a0 the Bohr

radius.
Z is the atomic number of the absorber atom.

At large scattering angles θ (i.e., small impact parameters b) the finite size of the
nucleus affects the measured scattering cross sections. A characteristic angle θ , re-
ferred to as the maximum cutoff angle θmax, is defined beyond which the devia-
tion between point-source calculation and measurement becomes significant. θmax
is usually expressed as follows (T2.69)

θmax = �

pR
= �c

R0
3
√
AEK

√
1 + 2E0

EK

≈ (197.3 MeV · fm)

(1.25 fm)× 3
√
AEK

√
1 + 2E0

EK

≈ 157.8 MeV
3
√
AEK

√
1 + 2E0

EK

, (2.162)

where

R is the nuclear radius given as R = R0
3
√
A with R0 the nuclear radius constant

(1.25 fm).
A is the atomic mass number of the absorber atom.

The minimum and maximum scattering angles θmin and θmax, respectively, have the
following properties, as shown in Fig. 2.20:

(1) In general, θmin and θmax depend on kinetic energy EK and rest energy E0
of the scattered projectile as well as the atomic number Z and atomic mass
number A of the target. However, the ratio θmax/θmin is independent of the
incident particle physical properties and depends only on the atomic number
Z and atomic mass number A of the target as follows

θmax

θmin
= aTF

R
= a0

R0
3
√
ZA

= 0.5292×105 fm

(1.25 fm)× 3
√
ZA

= 0.423×105

3
√
ZA

. (2.163)
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Fig. 2.20 Maximum scattering angle θmax in (A) and minimum scattering angle θmin in (B) against
kinetic energy EK for electrons and α particles scattered on carbon, aluminum, copper, silver, gold
and lead. The data points indicate calculations for scattering of electrons and α particles on gold
of part (b) of this problem, as summarized in Table 2.6

Thus, θmax/θmin ∝ (ZA)−1/3 where (ZA)−1/3 ranges from 1 for hydrogen to
∼0.035 for very high atomic number elements.

(2) For a given EK and E0 the maximum scattering angle θmax is inversely pro-
portional to Z−1/3 since θmax ∝A−1/3 and A≈ 2Z. The minimum scattering
angle θmin is proportional to Z1/3.

(3) For kinetic energies EK of the projectile much smaller that its rest energy
E0 both θmin and θmax for a given target are proportional to 1/

√
EK, while

for kinetic energies EK of the projectile much larger that its rest energy E0
both θmin and θmax for a given target are proportional to 1/EK, as shown in
Fig. 2.20.
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Table 2.6 Minimum and maximum cutoff angles θmin and θmax, respectively, for electrons and
α particles with kinetic energies EK of 6 MeV and 100 MeV scattered by gold nucleus. θmin is
calculated with (2.161), θmax with (2.162)

Kinetic energy EK 6 MeV 100 MeV

Scattering angle (rad) θmin θmax θmin θmax

Electron
E0 = 0.511 MeV

2.46×10−3 0.644 1.59×10−4 0.270

α particle
E0 = 3727.3 MeV

7.55×10−5 0.128 1.84×10−5 0.0312

(b) For calculation of θmin and θmax we use (2.161) and (2.162), respectively, and
summarize the results in Table 2.6. The target is gold with Z = 79 and A = 197.
The projectiles are either α particles with rest energy E0 = 3727.3 MeV or electrons
with rest energy E0 = 0.511 MeV. Kinetic energy EK of particles is either 6 MeV
or 100 MeV. The calculated results are also shown with data points in Fig. 2.20
displaying excellent agreement between data calculated for Table 2.6 and published
data plotted in Fig. 2.20 in kinetic energy range from 0.001 MeV to 1000 MeV.

Since θmin and θmax depend not only on kinetic energy EK of the scattered
charged particle but also on its rest energy E0, we note that charged particles with
the same kinetic energies but different rest masses E0 may have significantly dif-
ferent θmin and θmax; the larger is E0, the smaller are θmin and θmax, because, as
evident from (2.161) and (2.162), the cutoff angles are inversely proportional to√

1 + 2E0/EK.

2.7 Molière Multiple Elastic Scattering

2.7.Q1 (81)

Multiple or compound Coulomb scattering, also known as Molière scattering,
results from a large number of single scattering events that a charged particle
experiences as it moves through an absorber. Mean square scattering angle
Θ2, radiation length X0, and mass scattering power T/ρ are physical param-
eters that govern multiple scattering.

(a) Define radiation length X0.
(b) Determine radiation length X0 for electrons in water.
(c) Determine radiation length X0 for electrons in air.
(d) For bremsstrahlung loss of a high-energy electron beam determine the

mean energy of electrons after penetrating into an absorber to depths of
0.5X0, X0, and 2X0.
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SOLUTION:

(a) Radiation length X0 in g/cm2 is a physical quantity used to measure the thick-
ness of absorber traversed by beams of high-energy charged particles or high-energy
photons. Specifically,X0 depends on the mass of the charged particle and the atomic
number Z of the absorber and is defined as follows:

(1) For charged particles as the mean distance a relativistic charged particle travels
in an absorber while its energy, as a result of bremsstrahlung losses, decreases
to 1/e (∼36.8 %) of its initial value.

(2) For photons as 7/9 fraction (78 %) of the mean free path for pair production
by a high-energy photon traversing the absorber.

As stated in (T2.137), X0 is given by the following expression

X0 =
[

4α
NA

A
Z(Z + 1)r2

e ln
(
183Z−1/3)]−1

= (
716.2 g/cm2)× A

Z(Z + 1) ln(183Z−1/3)
(2.164)

where

α is the fine structure constant (α = 1/137).
NA is the Avogadro constant (NA = 6.022×1023 mol−1).
A is the atomic mass of the absorber.
Z is the atomic number of the absorber.
re is the classical radius of the electron [re = e2/(4πε0mec

2)= 2.818 fm].

(b) Radiation length for electrons in water X0 (H2O) will be determined by using
the Bragg additivity rule for chemical compounds. We therefore first determine X0

for hydrogen H and oxygen O using (2.164) and get

X0(H)= 716.2×1.008

1×2× ln(183×1)
= 69.3 g/cm2 (2.165)

and

X0(O)= 716.2×15.994

8×9× ln(183×8−1/3)
= 35.2 g/cm2. (2.166)

Radiation length for water X0 (H2O) will now be determined using the Bragg
additivity rule for chemical compounds as follows

1

X0(H2O)
= 2

18
× 1

X0(H)
+ 16

18
× 1

X0(O)

= 2 cm2/g

18×69.3
+ 16 cm2/g

18×35.2
= 0.0253 cm2/g (2.167)
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Table 2.7 Radiation lengths X0 for constituents of water and air

Element Atomic number Z Atomic mass A
(g/mol)

Radiation length
X0 (g/cm2)

Hydrogen H 1 1.008 69.3

Nitrogen N 7 14.007 39.3

Oxygen O 8 15.994 35.2

Argon Ar 18 39.948 19.7

or

X0(H2O)= 39.6 g/cm2 = 39.6 cm. (2.168)

(c) Radiation length for electrons in air X0(air) will be determined by using the
Bragg additivity rule for gas mixtures such as air: nitrogen N 75.5 %; oxygen O
23.2 % and argon Ar 1.3 %. We therefore first determine X0 for nitrogen, oxygen
[already calculated in (b)], and argon using (2.164) and get

X0(H)= 716.2×14.007

7×8× ln(183×7−1/3)
= 39.3 g/cm2 (2.169)

and

X0(Ar)= 716.2×39.948

18×19× ln(183×18−1/3)
= 19.7 g/cm2. (2.170)

Radiation length for air X0 (air) will now be determined using the Bragg additivity
rule for gas mixtures as follows

1

X0(air)
= 0.755

X0(N)
+ 0.232

X0(O)
+ 0.013

X0(Ar)

= 0.755 cm2/g

39.3
+ 0.232 cm2/g

35.2
+ 0.013 cm2/g

19.7

= 0.0265 cm2/g (2.171)

or

X0(air)= 37.8 g/cm2 = 29234 cm@STP. (2.172)

Radiation lengths for components of water and air are summarized in Table 2.7.

(d) Mean rate of energy loss per cm of path length due to bremsstrahlung is di-
rectly proportional to particle energy

dE

ρ dx
= − E

X0
or

dE

E
= ρ dx

X0
(2.173)
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and ∫ E

E0

dE

E
= − ρ

X0

∫ x

0
dx or E(x)=E0e

− ρ
x0
x
. (2.174)

Therefore, E(x)/E0 for ρx = 0.5X0, ρx = X0, and ρx = 2X0 equals to 0.607,
0.368, and 0.135, respectively.

2.7.Q2 (82)

For scattering of electrons with kinetic energy EK of 25 MeV on a silver foil
of thickness t = 10−4 cm calculate:

(a) Maximum scattering angle θmax for single scattering.
(b) Minimum scattering angle (Born screening angle) θmin.
(c) Radiation length X0.
(d) Mean square scattering angleΘ2 and root-mean-square scattering angle√

Θ2 for multiple scattering.
(e) Mass scattering power T/ρ.

The following data for silver may prove useful in the calculation: density
ρ = 10.5 g/cm3; atomic number Z = 47; atomic mass A= 107.87 g/mol.

SOLUTION:

(a) The maximum scattering angle θmax for electron scattering on silver nucleus
is calculated from (T2.147) as follows

θmax = �

peR
= �cA−1/3

R0

√
EK(EK + 2mec2)

= �cA−1/3

R0mec2
√
τ(τ + 2)

≈ 309A−1/3

√
τ(τ + 2)

= 309
3
√

107.87
√

48.92(48.92 + 2)

= 1.3 rad = 74.6◦, (2.175)

where

R0 is the nuclear radius constant (R0 = 1.25 fm).
A is the atomic mass of the silver absorber.
mec

2 is the rest energy of the electron (mec
2 = 0.511 MeV).

τ is the kinetic energy of the electron normalized to its rest energy

τ = EK

mec2
= 25 MeV

0.5211 MeV
= 48.92. (2.176)
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Note: Since the calculated θmax exceeds one radian (1 rad), it is customary to use
1 rad for the maximum scattering angle θmax.

(b) The minimum scattering angle (Born screening angle) θmin for electron scat-
tering on silver nucleus is calculated from (T2.148) as follows

θmin = �

peaTF
= �c

3
√
Z

a0

√
EK(EK + 2mec2)

= �c
3
√
Z

a0mec2
√
τ(τ + 2)

= α
3
√
Z√

τ(τ + 2)

≈
3
√
Z

137
√
τ(τ + 2)

=
3
√

47

137
√

48.92(48.92 + 2)
= 5.3×10−4 rad = 0.03◦.

(2.177)

Note: In contrast to individual θmax and θmin the ratio θmax/θmin is independent of
electron energy and depends only on the atomic number Z and atomic mass A as
follows

θmax

θmin
= 309×137

3
√
AZ

= 0.423×105

3
√

107.87×47
= 1.3

2.58×10−4
= 2462, (2.178)

however, since we use 1 rad for θmax we get for θmax/θmin ratio a value of ∼1900.

(c) Radiation lengthX0 for 25 MeV electrons in silver is calculated from (T2.137)
as

X0 =
[

4α
NA

A
Z(Z + 1)r2

e ln
(
183Z−1/3)]−1

= (
716.2 g/cm2)× A

Z(Z + 1) ln(183Z−1/3)

= (716.2 g/cm2)×107.87

47×48× ln(183×47−1/3)
= 8.72 g/cm2 = 0.83 cm. (2.179)

(d) Mean square scattering angle Θ2 for 25 MeV electrons in silver is calculated
from (T2.135) as follows

Θ2 = 16πρ
NAr

2
eZ(Z + 1)

Aγ 2β4

{
ln
[
183Z−1/3]}t = 4πρt

αX0γ 2β4
= 4πρt

αX0

[
τ + 1

τ(τ + 2)

]2

= 4π×137×(10.5 g/cm3)×(10−4 cm)

(8.72 g/cm2)

[
48.92 + 1

48.92(48.92 + 2)

]2

= 8.32×10−5 rad2 (2.180)

yielding the following result for the root-mean-square scattering angle
√
Θ2

√
Θ2 =

√
8.32×10−5 rad = 9.1×10−3 rad = 0.52◦. (2.181)
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Fig. 2.21 Mass scattering power T/ρ against electron kinetic energy EK for various materials of
interest in medical physics. Point A represents the result of T/ρ calculation (2.82) for 25 MeV
electrons in silver

(e) Mass scattering power T/ρ is calculated using (T2.145) to get

T

ρ
= Θ2

ρt
= 4π

αX0

[
τ + 1

τ(τ + 2)

]2

= 8.32×10−5

(10.5 g/cm3)×(10−4 cm)

= 0.079 rad2 · cm2/g. (2.182)

The calculated scattering power T/ρ = 0.079 rad2 · cm2/g for 25 MeV electrons
in silver fits nicely on the graph as point A in Fig. 2.21 showing T/ρ against electron
kinetic energyEK for various materials ranging in atomic numberZ from 6 (carbon)
to 82 (lead).



3Rutherford–Bohr Atomic Model

Chapter 3 consists of 21 problems that cover 4 sections devoted to the
Rutherford-Bohr model of the atom that Bohr introduced in 1913. Bohr com-
bined Rutherford’s concept of the nuclear atom with Planck’s idea of quan-
tized nature of the radiation process and developed from first principles an
atomic model that successfully deals with one-electron structures, such as the
hydrogen atom. The model is based on four postulates that combine classical
mechanics with the concept of angular momentum quantization.

The problems of this chapter concentrate on concepts that Bohr enunci-
ated 100 years ago for one-electron structures to predict accurately the radius
of electron orbits, velocity of electron in allowed orbit, binding energy of
electron while in allowed orbit, as well as photon spectra emitted by excited
one-electron atoms. At the end of the chapter, problems also address issues
related to multi-electron atoms and experimental confirmation of the Bohr
atomic theory.

The set of problems in Sect. 3.1 covers one-electron structures in detail
and deals not only with hydrogen but also with other one-electron structures,
such as one-electron ions and more exotic Bohr-like atomic structures such as
positronium, muonium, antihydrogen, etc. Problems in this group also address
the corrections to Bohr theory resulting from the finite mass of the nucleus.
Problems of Sect. 3.2 deal with multi-electron atoms and issues related to
periodic properties of elements, spectra of characteristic radiation emitted by
multi-electron atoms, and the Hartree approximation.

Problems of Sect. 3.3 cover the three experiments that serve as experimen-
tal confirmation of Bohr theory: (1) atomic emission and absorption spec-
tra, (2) Moseley experiment on characteristic lines from metallic x-ray tar-
gets, and (3) Franck–Hertz experiment. The last question of this chapter deals
with the atomic radius calculated using the Schrödinger equation for hydro-
gen atom (Sect. 3.4).
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3.1 Bohr Model of Hydrogen Atom

3.1.Q1 (83)

Larmor classical electromagnetic (EM) theory states that when a charged par-
ticle is accelerated or decelerated part of its kinetic energy is emitted in the
form of EM radiation (photons). Using classical physics (Larmor law) esti-
mate the time of collapse of the Bohr orbit for hydrogen atom in the ground
state.

SOLUTION:

At first glance the Rutherford-Bohr atomic model is analogous to the Kepler-
Newton planetary model except that in the latter the Newton gravitational attrac-
tion between the sun and the planet plays the role of the centripetal force, while
in the former the centripetal force is provided by the Coulomb electrostatic attrac-
tion between the positively charged nucleus and the negative electron. However, the
difficulty with the Rutherford-Bohr model is that the electron is charged and, by
revolving about the nucleus, it is also constantly accelerated. Therefore, by virtue
of its charge, the electron should be losing part of its energy in the form of photons
and, according to classical physics, spiral into the nucleus.

In Rutherford-Bohr theory of the hydrogen atom the Coulomb force FCoul pro-
vides the centripetal force Fcent and is expressed as follows

Fcent = FCoul = 1

4πε0

e2

r2
. (3.1)

The magnitude of the electron centripetal (radial) acceleration ar and kinetic energy
EK, respectively, of the electron are classically given as

ar = υ2

r
= FCoul

me
= e2

4πε0mer2
and EK = meυ

2

2
= 1

2

e2

4πε0

1

r
, (3.2)

with e,υ , and me the charge, velocity, and mass of the electron, respectively, ε0 the
electric constant, and r the distance between the electron and the nucleus (proton).

Total energy E of the electron in the ground state of hydrogen is given as (T3.7)

E =EK +EP = 1

2

e2

4πε0

1

r
+
ˆ r

∞
e2

4πε0

dr

r2
= −1

2

e2

4πε0

1

r
. (3.3)

Inserting 1/r from (3.3) into (3.2) yields the following expression for acceleration a

a = υ2

r
= e2

4πε0me

1

r2
= e2

4πε0me

(
−8πε0

e2

)2

E2 = −16πε0

mee2
E2. (3.4)
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According to the classical Larmor expression (T4.18) the power emitted by an
accelerated particle of charge e is given as

P = −dE

dt
= e2a2

6πε0c3
, (3.5)

which, after inserting (3.4), reads

−dE

dt
= 128πε0

3m2
ec

3e2
E4 = bE4, (3.6)

where b is a constant given as

b= 128πε0c

3(mec2)2e2
= 128π×[8.85×10−12 A · s/(V · m)]×(3×108 m/s)

3×(0.511×106 eV)2×e×(1.6×10−19 A · s)

= 8.51×106 (eV)−3 · s−1. (3.7)

The differential equation (3.6) will now be rearranged to read

ˆ E

E1

dE

E4
= −b

ˆ t

0
dt, (3.8)

resulting in the following general solution

− 3

E3
+ 3

E3
1

= −bt. (3.9)

To determine the time of orbit collapse we carry out the integration in (3.8) in
energy E from E1 = −13.61 eV (ground state of hydrogen atom) to −∞ (energy
level for r → 0) and in time t from the initial time (t = 0) to the time of orbit
collapse at t = tcoll. The time of orbit collapse is thus given as

tcoll = − 3

bE3
i

= − 3

(8.51×106 eV−3 · s−1)×(−13.61 eV)3
= 1.4×10−10 s. (3.10)

3.1.Q2 (84)

A hypothetical excited one-electron atom (NOT hydrogen) releases a visible
photon of wavelength λ= 5500 Å. Assume that

(1) Atom follows the Bohr atomic model.
(2) Nuclear mass is infinitely large in comparison with the mass of the or-

bital electron.
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(3) Photon originated from an n = 3 → n = 2 (also known as M–L) elec-
tronic transition.

Determine:

(a) Ionization potential (IP) of this hypothetical atom.
(b) Energy level diagram (first 5 energy levels) of this hypothetical atom.
(c) Minimum excitation potential of the hypothetical one-electron atom.

SOLUTION:

Five energy levels in addition to the n = ∞ level are plotted in the energy level
diagram for the hypothetical excited one-electron atom shown in Fig. 3.1. The ion-
ization potential of the atom is designated by x and the M–L transition is also indi-
cated.

(a) We first determine the energy hν of the photon emitted with a wavelength
λ= 5500 Å and get

hν = hc

λ
= 2π�c

λ
= 2π×(197.3 MeV · fm)

5500 Å

= 2π×(197.3×106 eV · fm)

5500×105 fm
= 2.25 eV. (3.11)

Next, we calculate the ionization potential x by setting the emitted photon energy
hν = 2.25 eV equal to the difference between energy level M (n= 3; energy level
= −x/32) and energy level L (n= 2; energy level = −x/22) as follows

(
− x

32

)
−
(
x

22

)
= x

(
1

4
− 1

9

)
= hν = 2.25 eV, (3.12)

resulting in

x =EM −EL = 2.25 eV
1
4 − 1

9

= 16.2 eV. (3.13)

Thus, the ionization potential of our hypothetical one-electron atom is +16.2 eV
and the ground state energy level (n= 1) is at E(n= 1)=E1 = −16.2 eV.

(b) The energy levels for the ground state (n = 1) and first four excited states
(n > 1) of our one-electron hypothetical atom are plotted schematically in Fig. 3.1
and given as follows

E1 = −16.2 eV; E2 = −4.05 eV; E3 = −1.80 eV;
E4 = −1.01 eV; E5 = −0.64 eV.
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Fig. 3.1 Atomic energy level diagram for the hypothetical one-electron atom of Prob. 84

(c) The minimum excitation potential of the hypothetical one-electron atom is the
energy required to transfer the orbital electron from the ground state (n = 1) to
the first excited state (n = 2). This energy is equal to |EK − EL| = |−16.2 eV −
4.05 eV| = 12.15 eV.

3.1.Q3 (85)

A single-electron ion emits a photon of wavelength λ= 1170 Å when its elec-
tron makes a transition from the n= 4 to the n= 3 atomic energy level. As-
sume that the nuclear mass is infinite in comparison with the electron mass.

(a) Determine momentum pν and energy Eν of the emitted photon.
(b) Determine the atomic number Z of the nucleus.
(c) Determine the binding energy EB(K) of the electron when it is in the K

shell.
(d) Draw an atomic energy level diagram of the ion for n = 1 to n = 5

energy levels and indicate the electronic transition from n= 4 to n= 3.
(e) Determine the wavelength λ of the photon emitted by the ion when its

electron undergoes a transition from the n = 5 energy level to ground
state. Indicate the electronic transition on diagram plotted in (d).
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SOLUTION:

(a) Photon momentum pν is calculated from the general relativistic expression for
total energy E of any particle (including a photon) with rest energy E0

E =
√
E2

0 + p2c2 or p = 1

c

√
E2 −E2

0 . (3.14)

For a photon rest energy E0 =Eν = 0 and from (3.14) we get the following expres-
sion for the photon momentum

pν = Eν

c
= hν

c
= h

λ
= 2π�

λ
= 2π�c

λc
= 2π×(1973 eV · Å)

(1170 Å)×c = 10.6 eV/c. (3.15)

A photon with wavelength λ = 1170 Å possesses energy Eν according to Planck
law

Eν = hν = hc

λ
= 2π�c

λ
= 2π×(1973 eV · Å)

1170
= 10.6 eV. (3.16)

We can obtain the result of (3.16) faster by using the photon momentum pν of (3.15),
since

Eν = pνc= (10.6 eV/c)×c= 10.6 eV. (3.17)

(b) Atomic number Z of the ion will be determined through the following steps:

(1) We know that �E4−3, the energy difference between n= 4 and n= 3 atomic
energy levels is equal to the emitted photon energy Eν = 10.6 eV, as deter-
mined in (a).

(2) The n= 4 and n= 3 atomic energy levels are, respectively, given as

E4 = −ER
Z2

42
and E3 = −ER

Z2

32
. (3.18)

(3) We thus have

�E4−3 =Eν =E4 −E3 = −ERZ
2
(

1

42
− 1

32

)
= 0.04861ERZ

2 (3.19)

or

Z =
√

Eν

0.04861ER
=
√

10.6 eV

0.04861×(13.61 eV)
≈ √

16 = 4. (3.20)

Looking at the periodic table of elements we find that the element with Z = 4 is
beryllium. The one-electron ion that we are dealing with in this problem is therefore
a triply-ionized beryllium atom Be+++.



3.1 Bohr Model of Hydrogen Atom 183

Fig. 3.2 Atomic energy level diagram for one-electron structure Be+++ ion

(c) To determine the binding energy EB(K) of the electron in the K shell (also
known as the n= 1 shell) of Be+++ we now find the energy E1 of the ground state.
Since, in general, the energy levels En are given by

En = −ER
Z2

n2
, (3.21)

and the ground state energy E1 is thus given as

E1 = −ERZ
2 = −16ER = −16×(13.61 eV)= −217.76 eV. (3.22)

The binding energy EB(K) of the K shell electron in Be+++ ion is thus +217.76 eV.
Note: By convention, in contrast to the positive binding energy EB(K), the K shell
energy level of Be+++ is negative at E1 = −217.76 eV.

(d) Energy levels for the first five values of n are calculated from (3.22) and plotted
in Fig. 3.2

E1 = −ERZ
2

n2
= −217.76 eV

1
= −217.76 eV, (3.23)

E2 = −ERZ
2

n2
= −217.76 eV

4
= −54.44 eV, (3.24)

E3 = −ERZ
2

n2
= −217.76 eV

9
= −24.20 eV, (3.25)

E4 = −ERZ
2

n2
= −217.76 eV

16
= −13.61 eV, (3.26)
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E5 = −ERZ
2

n2
= −217.76 eV

25
= −8.71 eV. (3.27)

Atomic energy levels for a Be+++ ion from n= 1 to n= 5 are plotted in Fig. 3.2.
Also plotted are electronic transitions (1) from n = 4 to n = 3 resulting in photon
1 with energy of 10.6 eV and (2) from n = 5 to n = 1 resulting in photon 2 with
energy of 209.05 eV.

(e) Energy released in the form of a photon following the n= 5 to n= 1 electronic
transition is

Eν =E5 −E1 = (−8.71 eV)− (−217.76 eV)= 209.05 eV, (3.28)

(see Fig. 3.2) corresponding to the following wavelength λ

λ= hc

Eν
= 2π�c

Eν
= 2π×(1973 eV · Å)

209.05 eV
= 59.3 Å. (3.29)

3.1.Q4 (86)

Accounting for the finite size of the nucleus, derive from basic principles the
following equations for the Bohr theory of one-electron atoms:

(a) Angular momentum Ln of electron while in orbit with principal quan-
tum number n.

(b) Kinetic energy EK of the electron–nucleus system.
(c) Force Fe on electron while in orbit n.
(d) Using results from (a), (b), and (c) determine expressions for radius rn

of Bohr orbit n, velocity νn of electron while in orbit n, and total energy
En of electron while in orbit n.

SOLUTION:

Bohr initially derived his theory of one-electron atoms assuming that nuclear mass
M is infinite and that the electron revolves about a point at the center of the nucleus.
Experimental studies of hydrogen spectrum have shown a minute discrepancy of
the order of one part in 2000 between measured data and theoretical calculations
and the discrepancy was attributed to the finite size of the nucleus making both the
electron as well as the nucleus to revolve about their common center-of-mass, as
shown schematically in Fig. 3.3. In deriving the kinematics of the Bohr atom we
thus consider the electron–nucleus system and derive equations of motion for the
whole system rather than just for the orbital electron.

The following relationships will be useful in our calculations

r = re + rM, ν = υe + υM, mere =MrM and ω= υe

re
= υM

rM
, (3.30)
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Fig. 3.3 Schematic diagram of the Rutherford–Bohr atomic model with one orbital electron of
mass me and a finite nucleus of mass M . Both the orbital electron and the nucleus revolve about
their common center-of-mass

where

me andM are the mass of electron and nucleus, respectively.
re and rM are the radius of electron and nucleus orbit, respectively.
υe and υM are the velocity of electron and nucleus, respectively, while in orbit.
ω is the angular frequency of the electron and nucleus revolving about

their common center-of-mass (see Fig. 3.3).

We now express re and rM as follows

re = r − rM = r − me

M
re or re = r

1 + me
M

(3.31)

and

rM = r − re = r − M

me
rM or rM = r

1 + M
me

. (3.32)

In a similar fashion we express υe and υM as

υe = υ − υM = υ − rM

re
υe = υ − me

M
υe or υe = υ

1 + me
M

(3.33)

and

υM = υ − υe = υ − re

rM
υM = υ − M

me
υM or υM = υ

1 + M
me

. (3.34)

(a) Angular momentum L for our electron-nucleus system is in general given as

L= Iω=
∑
i

mir
2
i ω=mer

2
eω+Mr2

Mω, (3.35)

where I is the rotational inertia of the electron–nucleus system given as I =∑
i mir

2
i ω.
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Using expressions for re and rM given in (3.31) and (3.32), respectively, we now
express (3.35) as

L= mer
2ω

(1 + me
M
)2

+ Mr2ω

(1 + M
me
)2

= r2ω

[
meM

2

(me +M) + m2
eM

(me +M)
]

= meM

me +M r
2ω= μMr

2ω, (3.36)

where μM is defined as the reduced mass of the electron–nucleus system

μM = meM

me +M . (3.37)

Using the result of (3.36) we now express the angular momentum L as a function of
υ and r as

L= μMr
2ω= μMr

2 υe

re
= μMr

2 υ

(1 + M
me
)

(1 + M
me
)

r
= μMυr. (3.38)

(b) Kinetic energy EK of the electron–nucleus system is given as

EK = 1

2

∑
i

miυ
2
i = 1

2
meυ

2
e + 1

2
Mυ2

M. (3.39)

Using expressions for υe and υM given in (3.33) and (3.34), respectively, we now
express (3.39) as follows

EK = 1

2

meυ
2

(1 + me
M
)2

+ 1

2

Mυ2

(1 + M
me
)2

= υ2

2

[
meM

2

(me +M) + m2
eM

(me +M)
]

= 1

2

meMυ
2

me +M = 1

2
μMυ

2. (3.40)

(c) Force Fe exerted on the orbital electron is in general given as

Fe = Ze2

4πε0

1

r2
= meυ

2
e

re
=meω

2re. (3.41)

After inserting (3.31) and (3.33) into (3.41) we get the following expression for
force Fe

Fe =me
υ2

(1 + me
M
)2

(1 + me
M
)

r
= meM

me +M
υ2

r
= μMυ

2

r
. (3.42)

(d) In (a), (b), and (c) we stated all equations that are required in the derivation of
Rutherford–Bohr atom kinematics, accounting for the finite mass of the nucleus.
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Combining (3.38) with the third Bohr postulate on quantization of angular mo-
mentum (L= n�), we get the following expression for the angular momentum L

Ln = n�= μMυnrn, (3.43)

and combining (3.41) with (3.43) we get the following result for the radius of orbit n

rn = 4πε0

e2

(�c)2

μMc2

n2

Z
= a0

me

μM

n2

Z
= a0

(
1 + me

M

)
n2

Z
, (3.44)

where a0 is defined as the Bohr radius constant (a0 = 0.5292 Å).
Combining (3.43) with (3.44) results in the following expression for υn/c

υn

c
= e2

4πε0�c

Z

n
= αZ

n
, (3.45)

where α is the fine structure constant (α = 1/137).
The total energy level of the electron in orbit n is calculated by adding the kinetic

energy EK and potential energy EP to get

En =EK +EP = 1

2
μMυ

2
n − Ze2

4πε0

1

rn
= −1

2

(
e2

4πε0

)2
(μMc

2)

(�c)2

(
Z

n

)2

= −ER
μM

me

(
Z

n

)2

= −ER
1

1 + me
M

(
Z

n

)2

, (3.46)

where ER is the Rydberg energy constant (ER = 13.61 eV).
Equations for rn (3.44), normalized velocity υn/c (3.45), and electron energy

level En (3.46) were determined by accounting for the finite nuclear mass, but are
similar to those obtained for infinite nuclear mass (T3.3), (T3.5), and (T3.7) except
for a correction factor (1 +me/M)=me/μM for the radius, no correction factor for
velocity, and a correction factor (1 +me/M)

−1 = μM/me for energy level.

3.1.Q5 (87)

For hydrogen atom:

(a) Compare expressions for orbital radii rn, electron orbital velocities υn,
and atomic energy levels En calculated assuming an infinite mass of the
nucleus (M → ∞) to those calculated for a finite nuclear massM .

(b) For the three parameters rn, υn and En determine the correction factor
f to be applied to expressions for infinite nuclear mass (M → ∞) to
obtain expressions valid for finite nuclear mass.
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(c) Plot general correction factors of (b) for rn, υn, and En in the range
0 ≤m/M ≤ 1, where m is the mass of the orbiting particle andM is the
mass of the heavier particle.

(d) Determine and plot on graph (c) correction factors fr, fυ , and fE
for (1) muonic hydrogen and (2) positronium. Muonic hydrogen atom
consists of a proton p (mpc

2 = 1836mec
2) and negative muon μ−

(mμ−c
2 = 207mec

2) and positronium consists of a positron and elec-
tron.

SOLUTION:

Table 3.1 Summary of Bohr atom expressions for orbital radius rn, electron orbital velocity υn,
and atomic energy level En for infinite nuclear mass in column (2), finite nuclear mass in column
(3), appropriate constants in column (4), and correction factor in column (5). μM is the reduced
mass of the electron–nucleus system

(1) (2) (3) (4) (5)

Infinite
nuclear
massM

Finite
nuclear
massM

Bohr theory constants Correction factor

Radius rn a0
n2

Z
a0
me
μM

n2

Z
a0 = 4πε0

e2
�

2

me
= 0.5292 Å fr = me

μM
= 1 + me

M

Velocity υn ac Z
n

ac Z
n

a = e2

4πε0�c
= 1

137 fυ = 1

Energy level En −ER
Z2

n2 −ER
μM
me

Z2

n2 ER = ( e2

4πε0
)2 me

�2 = 13.61 eV fE = μM
me

= (1 + me
M
)−1

(a) Expressions for orbital radii rn, electron orbital velocities υn, and atomic en-
ergy levels En are derived in (T3.3), (T3.5), and (T3.7), respectively, assuming an
infinite nuclear mass and in Prob. 86 accounting for the finite mass of the nucleus.
The results are summarized in Table 3.1, columns (1) through (4).

(b) Correction factors to be applied to expressions for infinite nuclear mass (M →
∞ column 2 in Table 3.1) to obtain expressions valid for finite nuclear mass (col-
umn 3) for the three parameters rn, υn, and En are as follows:

Correction factor fr for orbital radius rn of one-electron Bohr atom is given as

fr = me

μM
= 1 + me

M
= 1 + 0.511

938.3
= 1.0005. (3.47)

Correction factor fυ for the velocity υn of orbital electron is equal to 1, i.e., there is
no correction for velocity when going from infinite to finite mass considerations.
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Correction factor fE for energy levels En of one-electron Bohr atom is

fE = μM

me
=
(

1 + me

M

)−1

=
(

1 + 0.511

938.3

)−1

≈ 1 − 0.511

938.3
= 0.9995. (3.48)

Answers to this section are summarized in Table 3.1, column (5).

(c) The Bohr theory for hydrogen atom that initially assumed an infinite nuclear
mass worked well because the nucleus (proton or deuteron or triton, etc.) exceeds
the electron mass by at least a factor of 1836 = mpc

2/(mec
2). For other types of

one-electron structures, such as the positronium Ps, muonium Mu, and muonic hy-
drogen Hμ where the two masses are close to one another, one must account for both
masses and use the appropriate value for the orbiting particle mass as well as for the
reduced mass μM of the system, as given in column (3) of Table 3.1. The correction
factor, presented in column (5) of Table 3.1 can be generalized to all hydrogen-type
structures in which one particle with a given charge and mass m revolves around
another particle of opposite charge and massM .

The general correction factor for mass m orbiting around larger mass M thus
follows the following rules:

(1) For radius rn correction factor fr can be generalized to read fr = m
μM

= 1+ m
M

.
(2) For velocity υn correction factor fυ remains equal to 1 irrespective of the

ratio m/M .
(3) For energy levels En corrections factor fE is fE = μM

m
= (1 + m

M
)−1.

Correction factors fr, fυ , and fE are plotted in Fig. 3.4 in the mass ratio m/M
range between 0 and 1.

Fig. 3.4 Small mass m and large mass M revolve about a common center-of-mass. General cor-
rection factors fr, fυ , and fE to be applied to expressions for radius r , velocity υ , and energy E
valid for infinite large mass (M → ∞) to obtain expressions valid for finite large mass M
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(d) Finite mass correction factors for (1) muonic hydrogen and (2) positronium.

(1) Muonic hydrogen consists of negative muon (mμ−c
2 = 207mec

2) and proton
revolving about their common center-of-mass in a Bohr atom type configura-
tion (mμ−/mp = 0.113).

fr = 1 + mμ−

mp
= 1 + 207

1836
= 1.113, fυ = 1,

fE =
(

1 + mμ−

mp

)−1

=
(

1 + 207

1836

)−1

= 0.90.

(3.49)

(2) Positronium consists of positron and electron revolving about their common
center-of-mass in a Bohr atom type configuration (me−/me+ = 1).

fr = 1 + me−

me+
= 1 + 1 = 2, fυ = 1,

fE =
(

1 + me−

me+

)−1

= (1 + 1)−1 = 0.5.

(3.50)

Results of (3.49) and (3.50) are plotted in Fig. 3.4.

3.1.Q6 (88)

Reduced mass μM represents an effective mass of a two-body system, con-
sisting of two masses: m andM . Defined as

μM = mM

m+M or
1

μM
= 1

m
+ 1

M
, (3.51)

reduced mass μM of a two-body system has units of mass and is used to sim-
plify a two-body problem into an equivalent one-body problem with effective
mass equal to the reduced mass. The reduced mass has many applications in
physics and is used in Bohr theory of one-electron atoms to account for the
finite mass of the nucleus.

Calculate the reduced mass μM for the following Bohr-like atomic structures:
protium (hydrogen-1), deuterium, tritium, positronium, muonium, antihydro-
gen, and muonic hydrogen. For each of the seven structures also state its
atomic constituents and their mass.

SOLUTION:

Answers to this problem are summarized in Table 3.2.
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Table 3.2 Constituents and their reduced mass for the following Bohr-like atomic structures:
protium, deuterium, tritium, positronium, muonium, antihydrogen, and muonic hydrogen

Bohr-like
structure

Constituents
M and m

Mass of constituents Ratio m
M

Reduced
mass μM

Protium H-1 M: proton p M = 1836me 5.45×10−4 0.9995me

m: electron e− m=me

Antihydrogen H̄ M: antiproton p̄ M = 1836me 5.45×10−4 0.9995me

m: positron e+ m=me

Deuterium H-2 M : p + 2 neutrons M = 3670.5me 2.72×10−4 0.9997me

m: electron e− m=me

Tritium H-3 M : p + 3 neutrons M = 5497me 1.82×10−4 0.9998me

m: electron e− m=me

Positronium Ps M: positron e+ m=me 1.0 0.5me

m: electron e− m=me

Muonium Mu M: muon μ+ M = 207me 4.83×10−3 0.995me

m: electron e− m=me

Muonic
hydrogen

M: proton p M = 1836me = 8.87mμ 0.113 186me = 0.90mμ
m: muon μ− m= 207me =mμ

3.1.Q7 (89)

Deuterium (H-2) atom also known as heavy hydrogen is one of the two stable
isotopes of hydrogen with a natural abundance of 0.016 %. The more common
isotope of hydrogen is protium (H-1) with natural abundance of ∼99.98 %.
The nucleus of deuterium is called deuteron and contains one proton and one
neutron; the nucleus of protium consists of one proton only. American physi-
cist Harold Urey discovered deuterium in 1934. Heavy water is water consist-
ing of highly enriched deuterium with respect to protium.

For deuterium atom (Z = 1) in the first excited state (n= 2) determine:

(a) Distance r between electron and deuteron (nucleus of deuterium atom).
(b) Radius re of the electron orbit.
(c) Radius rd of the deuteron orbit.
(d) Speed υe of electron in orbit.
(e) Speed υd of deuteron in orbit.
(f) Energy hν of the emitted photon upon the atom reverting to ground

state.
(g) Recoil momentum p and recoil kinetic energy EK upon the atom re-

verting to ground state.
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Fig. 3.5 Schematic diagram of deuterium atom consisting of deuteron nucleus with one proton
and one neutron

SOLUTION:

To solve this problem we must account for the effect of the finite mass of the nu-
cleus (deuteron: md = 1875.6128 MeV/c2) on the kinematics of the Rutherford–
Bohr atom. When the finite mass of the nucleus is taken into consideration, both
the orbital electron as well as nucleus revolve about their common center-of-mass,
as shown in Fig. 3.5 where re stands for the radius of the electron orbit, rd for the
radius of the deuteron orbit, and r = re + rd the distance between the electron and
deuteron.

General expressions for radius rn, velocity υn/c, and energy levels En of
one-electron structures were derived in Prob. 86 accounting for the finite nuclear
massM . The results were as follows

rn = a0

(
1 + me

M

)
n2

Z
,

υn

c
= αZ

n
, and En = −ER

1

1 + me
M

(
Z

n

)2

. (3.52)

(a) Distance r between electron and deuteron for n = 2 orbit is calculated from
(3.44) as

rn=2 = a0

(
1 + me

md

)
×4

1
= 4a0

(
1 + 0.511

1875.6

)
= 4.0011a0 = 2.1174 Å. (3.53)

(b) Radius re of the n= 2 electron orbit is calculated from (3.31) as

re = r

1 + me
md

= 4a0 = 2.1168 Å. (3.54)

(c) Radius rd of the n= 2 deuteron orbit is calculated from (3.32) as

rd = r

1 + md
me

= 4.0011

1 + 1875.6128
0.511

= 1.09×10−3a0 = 6×10−4 Å. (3.55)
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(d) Total speed υ of electron and deuteron in orbit is determined from (3.45) as

υ = αZ
n
c= αc

2
= c

2×137
= 3.65×10−3c= 1.0949×106 m/s. (3.56)

Electron speed υe is calculated from (3.33) as

υe = υ

1 + me
md

= 3.65×10−3c

1 + 0.511
1875.6

= 3.649×10−3c= 1.0947×106 m/s. (3.57)

Deuteron speed υd is calculated from (3.34) as

υd = υ

1 + md
me

= 3.65×10−3c

1 + 12875.6
0.511

= 9.94×10−7c≈ 300 m/s. (3.58)

(e) To determine energy hν of the photon emitted through n= 2 to n= 1 transition
we must first determine energy levels for the ground state n = 1 and first excited
state n= 2 of the deuterium atom from (3.46)

En=1 = −ER
1

1 + me
md

(
Z

n

)2

= −(13.61 eV)× 1

1 + 0.511
1875.6

(
1

1

)2

= −13.61 eV

(3.59)
and

En=2 = −ER
1

1 + me
md

(
Z

n

)2

= −(13.61 eV)× 1

1 + 0.511
1875.6

(
1

2

)2

= −3.40 eV.

(3.60)
Energy difference �E between the two energy levels is emitted in the form of a
ultraviolet photon with energy hν =�E = 10.21 eV.

(g) Photon with energy hν = 10.21 eV has momentum pν = hν/c= 10.21 eV/c.
As a result of momentum conservation recoil momentum of the deuteron atom is
pA = 10.21 eV/c.

The recoil kinetic energy EK of the atom is calculated from the recoil momentum
pA using the standard expression relating momentum with kinetic energy (T1.64).
This equation can be turned into a quadratic expression for kinetic energy

E2
K + 2mdc

2EK − p2
Ac

2 = 0 (3.61)

and has the following physically relevant solution for recoil kinetic energy EK

EK = −mdc
2 +

√
(mdc2)2 + p2

Ac
2 ≈ p2

Ac
2

2mdc2

= (10.21 eV)2

2×(1875.6×106 eV)
= 3×10−8 eV. (3.62)
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3.1.Q8 (90)

Calculate the difference in wavelength �λ and quantum energy �E of the
lowest energy Balmer lines emitted by protium (hydrogen-1) and deuterium
(hydrogen-2).

SOLUTION:

Facts to note:

(1) Both protium and deuterium are one-electron structures of hydrogen but
they differ in nuclear mass. Protium nucleus consists of one proton (mpc

2 =
938.2720 MeV); deuterium of one proton and one neutron (mdc

2 =
1875.0128 MeV).

(2) The lowest energy Balmer line originates in an electronic transition from shell
ni = 3 to shell ni = 2.

(3) The difference in wavelengths and quantum energies results from the different
nuclear rest energies of protium and deuterium.

Energy levels En of one-electron atom corrected for finite nuclear mass M accord-
ing to (3.46) are expressed as follows (T3.17)

En = −ER
1

1 + me
M

Z2

n2
, (3.63)

where

ER is the Rydberg energy (ER = 13.605692 eV).
Z is the atomic number of the one-electron atom (for hydrogen Z = 1).
me is the electron rest mass (me = 0.510999 MeV/c2).

Photon energy Eν , emitted following an electronic transition from initial energy
level ni to final energy level nf, is

Eν = hν = 2π�c

λ
=ER

Z2

1 + me
M

[
1

n2
f

− 1

n2
i

]
(3.64)

resulting in the following quantum energies Eν(p) and Eν(d) of lowest Balmer lines
for protium (p) and deuterium (d), respectively

Eν(p)=ER
Z2

1 + me
mp

[
1

n2
f

− 1

n2
i

]
= 13.605692 eV

1 + 0.510999
938.2720

[
1

4
− 1

9

]
= 1.888651 eV (3.65)

and

Eν(d)=ER
Z2

1 + me
md

[
1

n2
f

− 1

n2
i

]
= 13.605692 eV

1 + 0.510999
1875.0128

[
1

4
− 1

9

]
= 1.889680 eV. (3.66)
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Quantum energies Eν(p) and Eν(d) correspond to the following wavelengths λp
and λd, respectively

λp = 2π�c

Eν(p)
= 2π×(1973.27 eV · Å)

1.888651 eV
= 6564.70 Å (3.67)

and

λd = 2π�c

Eν(d)
= 2π×(1973.27 eV · Å)

1.889680 eV
= 6561.12 Å. (3.68)

Quantum energy difference �Eν and wavelength difference �λ between lowest
Balmer line photons emitted by excited protium atoms and excited deuterium atoms
are thus as follows

�Eν =Eν(d)−Eν(p)= 1.889680 eV − 1.888651 eV = 1.03×10−3 eV (3.69)

and

�λ= |λd − λp| = |6561.12 Å − 6564.70 Å| = 3.58 Å. (3.70)

3.1.Q9 (91)

The lowest energy Balmer photon is emitted from excited hydrogen atom.

(a) Plot the atomic energy level diagram for hydrogen for n = 1 through
n= 5 and identify the Balmer line with the longest wavelength λ.

(b) Determine the energy Eν and wavelength λ of the emitted Balmer pho-
ton.

(c) Determine the momentum pν of the emitted photon.
(d) Determine the recoil speed υrecoil of the hydrogen atom.
(e) Determine the recoil kinetic energy Erecoil of the hydrogen atom.

SOLUTION:

(a) Atomic energy level diagram for hydrogen atom is shown in Fig. 3.6. Also
shown on the diagram is the electronic transition that produces the Balmer line
(nf = 2) with the longest wavelength, i.e., smallest energy (ni = 3).

The energy levels of the hydrogen atom (Z = 1) are shown in Fig. 3.6 and calcu-
lated from the basic Bohr theory (T3.7) as follows

En = −ER
1

n2
, (3.71)

resulting in E1 = −13.61 eV, E2 = −3.40 eV, E3 = −1.51 eV, E4 = −0.85 eV,
and E5 = −0.54 eV.
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Fig. 3.6 Atomic energy level diagram for hydrogen atom. Also shown are lines from the Balmer
spectral series with the longest wavelength/smallest energy line shown in bold

(b) As indicated in Fig. 3.6, the longest-wavelength Balmer line originates from
a transition from ni = 3 to nf = 2 and is characterized by an energy difference of
�E = E3 − E2 = −1.51 eV − (−3.40 eV) = 1.89 eV. Thus, the energy of the
emitted photon Eν = 1.89 eV corresponding to a wavelength λ given as

λ= hc

Eν
= 2π�c

Eν
= 2π×(1973 eV · Å)

1.89 eV
= 6555 Å. (3.72)

(c) Momentum pν of the emitted Balmer line photon is calculated from the general
relativistic expression for total energy E of any particle (including a photon) with
rest energy E0

E =
√
E2

0 + p2c2 or p = 1

c

√
E2 −E2

0 . (3.73)

For a photon the rest energy E0 = 0 and from (3.73) we get

pν = Eν

c
= hν

c
= h

λ
= 2π�

λ
= 2π�c

λc
= 2π×(1973 eV · Å)

(6555 Å)×c = 1.89 eV/c. (3.74)

(d) Recoil velocity υrecoil of the proton is calculated from the recoil momentum
precoil of the proton which is equal to the momentum of the emitted Balmer photon.
Thus, we have

precoil =mpυrecoil = pν = 1.89 eV/c (3.75)
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and

υrecoil = pν

mp
= 1.89 eV/c

938.3×106 eV/c2
= 2.01×10−9c= 0.603 m/s. (3.76)

(e) Recoil kinetic energy Erecoil of the hydrogen atom as a result of emission of
longest-wavelength Balmer line is calculated with the classical expression for ki-
netic energy

Erecoil = mHυ
2
recoil

2
= mHc

2

2

(
υrecoil

c

)2

= 938.8×106 eV

2
×(

2.01×10−9)2

= 1.9×10−9 eV. (3.77)

3.1.Q10 (92)

For doubly ionized lithium-7 atom (Li++, Z = 3, A = 7, mLi−7 =
6533.38 MeV/c2):

(a) Calculate and plot the atomic energy level diagram for the 5 lowest
energy levels. Use the correction for the finite nuclear mass in the cal-
culation.

(b) Calculate the wave numbers k and corresponding wavelengths λ and
quantum energies Eν for the three lowest k values as well as for the
series limit of the nf = 2 spectral series and indicate the corresponding
transitions in the energy level diagram plotted in (a).

SOLUTION:

(a) Energy levels En(Li++) of doubly ionized lithium-7 atom incorporating the
finite nuclear mass correction are calculated from the following expression (T3.17)

En = −ER
1

1 + me
M(Li-7)

(
Z

n

)2

= −(13.61 eV)
1

1 + 0.511
6533.83

(
3

n

)2

= −122.5 eV

n2
.

(3.78)
The ionization potential of Li++ is thus 122.5 eV and the first 5 levels of the energy
level diagram, shown in Fig. 3.7, are as follows

E1 = −122.5 eV; E2 = −30.6 eV; E3 = −13.6 eV;
E4 = −7.7 eV; E5 = −4.9 eV.

(3.79)

(b) The wave number k for transitions from initial level ni > 2 to final level
ni = 2 incorporating the correction for the finite nuclear mass is given as follows
(Table T3.7)
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Fig. 3.7 Atomic energy level diagram of doubly ionized lithium atom Li++. The three lowest
energy electronic transitions as well as the limiting transition to nf = 2 are also shown

k = 1

λ
=R∞

Z2

1 + me
MLi-7

[
1

22
− 1

n2
i

]
= (109737 cm−1)×32

1 + 0.511
6533.83

[
0.25 − 1

n2
i

]

= (
109728 cm−1)×9×

[
0.25 − 1

n2
i

]
= (

987552 cm−1)×
[

0.25 − 1

n2
i

]
, (3.80)

where R∞ = 109737 cm−1 is the Rydberg constant for infinite nuclear mass and
R∞/(1+me/MLi-7)= 109728 cm−1 is the Rydberg constant for Li-7 incorporating
the finite nuclear mass correction (see Table T3.2).

The first three lines of the nf = 2 spectral series of Li-7 are given as follows

k(ni = 3)= (
987552 cm−1)×(0.25 − 1/9)= 137160 cm−1, (3.81)

k(ni = 4)= (
987552 cm−1)×(0.25 − 1/16)= 185166 cm−1, (3.82)

k(ni = 5)= (
987552 cm−1)×(0.25 − 1/25)= 207387 cm−1, (3.83)

k(ni = ∞)= (
987552 cm−1)×(0.25 − 1/∞)= 246888 cm−1

(limit of nf = 2 series), (3.84)

corresponding to the following wavelengths λ

λ(ni = 3)= 1/k(ni = 3)= 1/
(
137160 cm−1)= 729.1 Å, (3.85)

λ(ni = 4)= 1/k(ni = 4)= 1/
(
185166 cm−1)= 540.1 Å, (3.86)

λ(ni = 5)= 1/k(ni = 5)= 1/
(
207387 cm−1)= 482.2 Å, (3.87)

λ(ni = ∞)= 1/k(ni = ∞)= 1/
(
246888 cm−1)= 405.0 Å

(limit of nf = 2 series) (3.88)
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and the following quantum energies Eν

Eν(nf = 2, ni = 3)= 30.6 eV − 13.6 eV = 17.0 eV, (3.89)

Eν(nf = 2, ni = 4)= 30.6 eV − 7.7 eV = 22.9 eV, (3.90)

Eν(nf = 2, ni = 5)= 30.6 eV − 4.9 eV = 25.7 eV, (3.91)

Eν(nf = 2, ni = ∞)= 30.6 eV − 0 eV = 30.6 eV (limit of nf = 2 series)
(3.92)

3.1.Q11 (93)

In addition to one-electron atoms and ions, several more exotic, short-lived,
and unusual “atomic” structures are known whose kinematics can be de-
scribed using the same concepts as those applied to the standard Bohr atom.
However, to achieve meaningful theoretical results, the use of appropriate re-
duced mass μM rather than electron mass me is mandatory, because μM for
these structures can be significantly different from me in contrast to the situa-
tion with the standard electron-proton Bohr atom.

Positronium consists of a positron and electron revolving about their com-
mon center-of-mass that lies, because of their equal masses, halfway between
them.

(a) If such a system were a normal atom, how would its emission spectrum
compare to that of hydrogen atom? Compare the lowest energy emission
line from the Lyman series in hydrogen to the corresponding transition
in positronium.

(b) Estimate the time of collapse of the Bohr orbit for positronium.

SOLUTION:

(a) The emission spectrum of hydrogen atom, as described by the wave number

kH =RH

(
1

n2
f

− 1

n2
i

)
= R∞

1 + me
mp

(
1

n2
f

− 1

n2
i

)
, (3.93)

where RH is the Rydberg constant for hydrogen given as (T3.19)

RH = μH

me
R∞ = 1

1 + me
mp

R∞ = 0.9995R∞ = 109677 cm−1 (3.94)

with

μH reduced mass of hydrogen (μH =memp/(me +mp)).
R∞ Rydberg constant assuming an infinite nuclear mass (R∞ = 109737 cm−1).
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In a similar manner the emission spectrum of positronium would be expressed as

kpos =Rpos

(
1

n2
f

− 1

n2
i

)
= R∞

1 + me
me

(
1

n2
f

− 1

n2
i

)
= R∞

2

(
1

n2
f

− 1

n2
i

)
, (3.95)

where Rpos is the Rydberg constant of positronium given as

Rpos = μpos

me
R∞ = 1

1 + me
me

= 1

2
R∞ = 54868.5 cm−1 (3.96)

with μpos the positronium reduced mass μpos =m2
e/(2me)= 0.5me.

As a consequence of the reduced mass, the frequencies, energy levels, and wave
numbers associated with the spectral lines of positronium are about half of those
corresponding to hydrogen atom. The actual ratio is given as 1/(1 + me/mp) =
1/1.005 = 0.9995 versus 0.5.

The lowest energy line from the Lyman spectral series of hydrogen originates
from the ni = 2 to nf = 1 electronic transition. Its energy is given as

hν =E2 −E1 = −0.9995ER

(
1

4
− 1

)
≈ 10.2 eV (3.97)

and the corresponding line in positronium has the following energy

hν = −0.5ER

(
1

4
− 1

)
= 3

4
×0.5ER = 5.1 eV. (3.98)

(b) Problem 83 deals with the time of collapse tcol of the Bohr orbit for the ground
state of hydrogen atom and produced the following result

tcol(H)= − 3

bE3
1

= 1.4×10−10 s, (3.99)

with E1 the ground state energy of the hydrogen atom (E1 = −13.6 eV) and bH the
time of collapse constant given for hydrogen as

bH = 128πε0c

3(mec2)2e2
= 8.51×106 (eV)3 · s−1. (3.100)

The time of collapse tcol(pos) of positronium will be of the same form as that of
hydrogen in (3.99) except that we replace me in (3.100) with μpos = 0.5me and E1
in (3.99) with 0.5E1 (ground state of positronium). We then get

tcol(pos)= − 3

bposE3
pos

= − 3

0.52bH0.53E3
1

= − 1

0.55
tcol(H)

= 1.4×10−10 s

3.125×10−2
= 4.5 ns (3.101)

in fair agreement with measured lifetime of positronium of the order of 10−10 s.
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3.1.Q12 (94)

Muonic atom is an atom in which an electron is replaced by a negative muon
μ− with a rest mass mμ = 207me orbiting close to or within the nucleus.
Hydrogen forms the simplest muonic atom consisting of a proton p and a
negative muon μ−.

For muonic hydrogen atom:

(a) Determine radius of the first and second Bohr orbit.
(b) Calculate and plot atomic energy level diagram for n= 1 to n= 5.
(c) Determine energy and wavelength of the most energetic photon that can

be emitted by muonic hydrogen.
(d) Determine the energy of the photon with the longest wavelength λ in

the Lyman series of muonic hydrogen.

SOLUTION:

(a) In order to determine the radii and energy levels of muonic hydrogen we first
calculate its reduced mass μμ

μμ = mμ−mp

mμ− +mp
= 207me1836me

207me + 1836me
= 186me. (3.102)

General equations for radii rn and energy levels En of Bohr atom accounting for the
finite nuclear mass are given as follows [see (T3.16) and (T3.17), respectively]

rn = 4πε0

e2

(�c)2

μμc2

n2

Z
= a0

me

μμ

n2

Z
= a0

186

n2

Z
(3.103)

and

En = −1

2

(
e

4πε0

)2
μμc

2

(�c)2

Z2

n2
= −ER

μμ

me

Z2

n2
, (3.104)

where a0 is the Bohr radius constant (T3.4) equal to a0 = 0.5292 Å and ER is the
Rydberg energy (ER = 13.61 eV).

Radii of the first (n= 1) and second (n= 2) Bohr orbit of muonic hydrogen atom
are as follows

r1 = a0

186

n2

Z
= 0.5292 Å

186
= 2.85×10−3 Å = 285 fm (3.105)

and

r2 = a0

186

n2

Z
= (0.5292 Å)

186
×22

1
= 11.4×10−3 Å = 1140 fm. (3.106)
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(b) Energy levels En for n= 1 to n= 5 are calculated for muonic hydrogen from
(3.104) as

En = −1

2

(
e

4πε0

)2
μμc

2

(�c)2

Z2

n2
= −ER

μμ

me

1

n2
= − (13.6 eV)×186

n2
= 2530 eV

n2
.

(3.107)
Thus, as shown in Fig. 3.8, atomic energy levels of muonic hydrogen are:

E1 = −2530 eV,

E2 = −2530 eV/4 = −632.5 eV,

E3 = −2530 eV/9 = −281.1 eV,

E4 = −2530 eV/16 = −158.1 eV,

E5 = −2530 eV/25 = −101.2 eV.

(c) The most energetic photon that can be emitted from muonic hydrogen is pro-
duced by a muon moving from ∞ (where it was at rest) to the n = 1 energy level
of muonic hydrogen (ground state of muonic hydrogen: E1 = −2530 eV). Energy
hν released as photon (Photon 1 in Fig. 3.8) in this muonic transition of 2530 eV
corresponds to a photon wavelength λ of

λ= hc

hν
= 2π�c

hν
= 12390 eV · Å

2530 eV
= 4.9 Å. (3.108)

(d) All lines of Lyman series end on level 1 and the highest wavelength (i.e., low-
est energy in Lyman series belongs to photon generated in n= 2 to n= 1 transition,
corresponding to energy of 1897.5 eV and shown as photon 2 in Fig. 3.8.

Fig. 3.8 Atomic energy level diagram for muonic hydrogen
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3.1.Q13 (95)

Muonium, muonic hydrogen, and antihydrogen are exotic hydrogen-like
structures whose spectral emissions can be predicted with the simple Bohr
theory of one-electron atoms, similar to the approach taken in studies of pro-
tium (hydrogen-1) and deuterium spectra.

For four hydrogen-like atoms: protium, antihydrogen, muonium, and
muonic hydrogen:

(a) List the constituents and their rest mass
(b) Calculate their reduced mass.
(c) Determine the lowest Lyman-type photon emission energy.

SOLUTION:

(a) Constituents as well as their mass for the four hydrogen-like atomic structures
are given in rows (2) and (3) of Table 3.3.

(b) Reduced mass μM for the constituents of the four hydrogen-like structures is
calculated using (3.51) and is given in row (4) of Table 3.3.

(c) Lowest Lyman-type photon emission energy for the four hydrogen-like struc-
tures is calculated as the difference between energy levels (En)i − (En)f (see
row (5) in Table 3.3) for ni = 2 and nf = 1 and is given in Table 3.3.

Table 3.3 Characteristics of four hydrogen-like atomic structures: H-1, H̄, Mu, and Hμ

(1) Structure Protium H-1 Antihydrogen H̄ Muonium Mu Muonic hydrogen Hμ

(2) Constituents M: proton p M: antiproton p̄ M: muon μ+ M: proton p

m: electron e− m: positron e+ m: electron e− m: muon μ−

(3) Mass mp = 1836me mp = 1836me mμ+ = 207me mp = 1836me

mμ− = 207me

(4) Reduced
mass μM

0.9995me 0.9995me 0.995me 186me = 0.90mμ−

(5) Energy levels
En

−0.9995ER
n2 −0.9995ER

n2 −0.995ER
n2 −186ER

n2

(6) Ground state
E1 (eV)

−13.61 −13.61 −13.54 −2531.5

(7) First excited
state E2 (eV)

−3.40 −3.40 −3.39 −632.9

(8) Lowest
Lyman-type
emission line

10.21 eV 10.21 eV 10.15 eV 1900 eV
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3.1.Q14 (96)

An α particle colliding with an electron may capture the electron and form a
singly ionized helium ion He+. The recombination energy is typically emitted
in the form of a photon with energy hν satisfying conservation of energy. The
He+ ion eventually meets another free electron and recombines with it to form
a neutral helium atom.

(a) An electron moving with velocity υ = 1.5×107 m/s recombines with
an α particle to form a singly ionized helium atom in ground state. De-
termine the wavelength λ of the monoenergetic photon that is emitted
in the recombination reaction.

(b) An electron with kinetic energy EK = 1.6 eV recombines with an α
particle. A singly ionized helium atom is formed and a photon with
wavelength λ = 2478 Å is emitted during the recombination process.
Determine the excited energy level En into which the electron was cap-
tured and describe what happens to the singly ionized helium ion after
the recombination process.

(c) Plot a schematic diagram of the processes described in (a) and (b).

SOLUTION:

(a) We first determine the kinetic energy of the electron before recombination us-
ing (T1.58)

EK =mec
2
[

1√
1 − υ2

c2

−1

]
= (

0.511×106 eV
)×

[
1√

1 − (1.5×107)2

(3×108)2

−1

]
= 640 eV.

(3.109)
The ground state (n= 1) of the singly ionized helium ion (He+; Z = 2) is calculated
from Bohr theory (T3.7) for single electron structures to get

En =E1 = −ER

(
Z

n

)2

= −(13.6 eV)×
(

2

1

)2

= −54.4 eV, (3.110)

where ER is the Rydberg energy (13.6 eV).
Total energy Eν available for emission of photon in the electron–α particle re-

combination process is the kinetic energy of the incident electron (EK = 640 eV)
PLUS the binding energy EB of the electron in the He+ ground state (EB = |E1| =
54.4 eV), i.e.,

Eν =EK +EB =EK + |E1| = 640 eV + 54.4 eV = 694.4 eV (3.111)
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corresponding to a photon with wavelength λ of

λ= hc

Eν
= 2π�c

Eν
= 2π×(1973 eV · Å)

694.4 eV
= 17.8 Å. (3.112)

(b) We first calculate the energy Eν of the emitted photon with λ= 2478 Å

Eν = hν = hc

λ
= 2π�c

λ
= 2π×(1973 eV · Å)

2478 Å
= 5 eV. (3.113)

This photon energy consists of two components: (1) kinetic energy EK = 1.6 eV of
the electron and (2) binding energy EB(n) of the He+ shell into which the electron
is captured during the recombination process. Thus,

EB =Eν −EK = 5 eV − 1.6 eV = 3.4 eV (3.114)

and the binding energy EB(n) component of the photon energy is 3.4 eV.

Fig. 3.9 Schematic diagram of processes described in (a) and (b)
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Energy levels for the first 5 shells of the singly ionized helium ion H+ are calcu-
lated from (3.109) and are as follows:

E1 = −54.4 eV; E2 = −13.6 eV; E3 = −6.04 eV;
E4 = −3.40 eV; E5 = −2.18 eV,

(3.115)

indicating that, in the recombination process with the α particle, the electron was
captured into the n= 4 shell and the two formed an excited singly ionized helium
ion He+.

The excited He+ ion will attain its ground state through one or two or three
electronic transitions starting from the initial n = 4 excited state. Each transition
is followed by emission of photon with energy equal to the difference in energy
between the initial and final shell.

(c) Schematic diagram of processes described in (a) and (b) is given in Fig. 3.9.

3.1.Q15 (97)

An incident photon of energy hν ionizes a hydrogen atom in ground state
through photoelectric effect. The liberated electron, referred to as a photo-
electron, subsequently combines with an α particle and forms a singly ionized
helium atom (He+) in second excited state, emitting a photon of wavelength
λ′ = 858 Å. Determine the incident photon energy hν.

SOLUTION:

The seven steps taken in solving this problem are listed below and shown with a
schematic diagram in Fig. 3.10.

(1) Incident photon with energy hν undergoes a photoelectric effect on a hydro-
gen atom in the ground state. In photoelectric effect the photon disappears and the
electron is ejected from the atom as photoelectron with kinetic energy EK equal
to photon energy hν MINUS the shell binding energy of the emitted photoelectron
EB(n).

(2) Thus, the photoelectron is emitted from the ground state of hydrogen with
kinetic energy EK given as

EK = hν −EB(H;n= 1)= hν − 13.6 eV. (3.116)

Note: the energy level of the ground state of hydrogen is E(H;n = 1) = E1 =
−13.6 eV; however, the binding energy of the electron in the ground state of hy-
drogen is EB(H;n= 1)= +13.6 eV.
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Fig. 3.10 Atomic energy level diagram for hydrogen atom and singly ionized helium ion with
a schematic diagram of processes in which a photon hν undergoes a photoelectric effect with a
hydrogen atom in ground state producing a photoelectron which subsequently combines with an α
particle to form a singly ionized helium ion in second excited state and emits a photon with energy
hν′. The summary of results is as follows: hν′ = 14.4 eV and hν = 22 eV. Kinetic energyEK of the
photoelectron that subsequently recombines with helium ion He++ is 22 eV − 13.6 eV = 8.4 eV

(3) The liberated photoelectron with kinetic energy EK subsequently combines
with an α particle to form a singly ionized helium atom (He+) in the second excited
state (n= 3).

(4) The (e, α) recombination process triggers emission of a photon with wave-
length λ= 858 Å corresponding to photon energy hν′ given as

hν′ = 2π�c

λ′ = 2π×(1973 eV · Å)

858 Å
= 14.4 eV. (3.117)

(5) Energy of the emitted photon hν′ is equal to kinetic energy of the photoelec-
tron EK PLUS the binding energy EB(He+;n = 3) of an electron in the second
excited state of He+ given as

EB
(
He+;n= 3

)=ER

(
Z

n

)2

= (13.6 eV)×
(

22

32

)
= 6.05 eV. (3.118)

(6) Thus, the emitted photon energy hν′ can be expressed as follows

hν′ =EK +EB
(
He+;n= 3

)= hν −EB(H;n= 1)+EB
(
He+;n= 3

)
. (3.119)
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(7) The unknown incident photon energy hν can finally from (3.119) be calculated
as follows

hν = hν′ +EB(H, n= 1)−EB
(
He+, n= 3

)
= 14.4 eV + 13.61 eV − 6.05 eV = 22 eV. (3.120)

3.2 Multi-electron Atoms

3.2.Q1 (98)

The periodic properties of elements can be predicted from the layout of the
periodic table of elements and understood from an analysis of the electron
configuration of atoms.

List and define at least 5 periodic characteristics of elements and briefly dis-
cuss their manifestation in the periodic table of elements.

SOLUTION:

The most notable periodic properties of elements are:

(a) Ionization potential of atom.
(b) Electron affinity.
(c) Electronegativity and electropositivity.
(d) Atomic radius.
(e) Atomic volume.
(f) Density of elements in condensed state.
(g) Melting and boiling point.

(a) Ionization potential (IP) of an atom is defined as the energy required for
removing the least bound orbital electron called valence electron from the outer
shell of the atom. The Hartree approximation predicts and IP of 13.6 eV for all
atoms; however, measurements show that there is a significant variation in IP as a
function of atomic number Z. As Z increases from hydrogen (Z = 1), IP exhibits
a periodic variation with Z and ranges from a maximum of 24.6 eV for helium
(Z = 4) to a low of 3.8 eV for francium (Z = 87), with noble gases (He, Ne, Ar, Kr,
Xe, Rn) exhibiting the highest value for a given period and alkali elements (Li, Na,
K, Rb, Cs, Fr) the lowest value per period.

(b) Electron affinity reflects the energy that is released when a neutral atom ac-
quires a free electron from its surroundings and transforms into a negative ion (an-
ion). Electron affinity varies periodically with Z; for example, group II A (alkali
earth) elements have low electron affinity as a result of filled l = 0 subshells. On the
other hand, group VII A elements (halogens) have a high electron affinity because
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the addition of an extra outer shell electron rounds off the electron complement of
the outer shell and group VIII elements (noble gases) have essentially zero electron
affinity because their outer shell already contains a full complement of electrons.
Elements of all other group have low electron affinity.

(c) Electronegativity reflects a molecule’s ability to attract an electron and form
a covalent bond. Thus electronegativity is a property of molecules while electron
affinity is a property of individual atoms. In the periodic table of elements, elec-
tronegativity increases with Z along a given period and decreases with Z along
a row. Hence fluorine is the most electronegative element and cesium is the least
electronegative, since it has a low IP and a great ability to shed its outer shell elec-
tron. One can also state that cesium is a highly electropositive element (a donor
of electron). The electronegative property of oxygen is very important for air filled
ionization chambers used in radiation dosimetry.

(d) Atomic radius of a chemical element is a measure of the size of its atoms,
usually assumed spherical and taken as the mean distance from the center of the
atomic nucleus to the outermost electrons of the atom. Since the atomic boundary
is not clearly outlined, several different definitions of atomic radius are in use, such
as the Bohr radius, Hartree radius, Thomas-Fermi radius, root-mean-square radius,
ionic radius, Van der Waals radius, and covalent radius. These radii refer to isolated
atoms in the ground state, to atoms in ionized and excited states, or to atoms bound
in ionic, covalent or Van der Waals bonds and can be determined either through
measurement or theoretical calculations.

Atomic radii vary in a predictable fashion across the periodic table of elements,
generally, with increasing atomic number Z:

(i) decreasing along each period (row).
(ii) increasing along each group (column).

(iii) increasing sharply between the noble gas at the end of each period and the
alkali element at the beginning of a new period.

(e) Atomic volume Va is defined as the volume occupied by one mole (Avogadro
number) of an element in condensed state. Va is thus a macroscopic quantity that
can be determined by dividing a mole of an element with the physical density of the
element.

In each group of the periodic table Va generally increases with Z because of an
increasing number of electron shells. Each period of the periodic table starts with
an alkali element, finishes with a noble gas, and has two maxima in Va (the higher
maximum for the alkali element in the lower maximum for the noble gas) and a
minimum at the center of the period.

(f) Density of elements in condensed state varies with atomic number Z through-
out the periodic table of elements. For a given period the density at the beginning
increases with Z to reach a maximum at the center of the period and then decreases
gradually toward the end of the period.
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(g) Melting and boiling points exhibit some periodicity with increasing Z in con-
junction with the behavior of the atomic volume: elements with low atomic volume
generally have high melting point and elements with high atomic volume have low
melting points. Thus in a given period, with increasing Z the melting point first
increases, reaches a maximum at the center of the period (e.g., carbon and tung-
sten) and then decreases toward a minimum for a noble gas. The boiling points
of elements show similar trends to those exhibited by melting points, however, the
periodicity is less pronounced.

3.2.Q2 (99)

When lead (Z = 82) is bombarded with energetic electrons, in addition to
bremsstrahlung photons, characteristic photons are emitted. Wave numbers k
(in cm−1) of a few most energetic x-ray lines emitted are as follows:

k(K abs. edge) = 7.10×108; k(K–L) = 5.92×108; k(K–M) = 6.85×108;
k(K–N)= 7.06×108k(L–M)= 0.94×108; and k(L–N)= 1.15×108,

where “K abs. edge” designates the highest-energy characteristic photon emit-
ted by lead and K, L, M, and N are shells with principal quantum numbers n
equal to 1, 2, 3, and 4, respectively.

NOTE: In the k data above, the fine structure splitting of atomic energy
levels is ignored and only the principal quantum number n is accounted for.
Often in modern physics the wave number k is defined as k = 2π/λ; however,
in this problem we use the traditional definition k = 1/λ.

(a) Based on information given above, construct the atomic energy level
diagram for the K, L, M, and N shells of lead.

(b) Comment on the differences between the energy level diagram for lead
and that for a one-electron atom such as hydrogen.

SOLUTION:

Before embarking on the energy level diagram, we must first determine the photon
energy hν corresponding to the wave numbers above, using the Planck law in the
following form

Eν = hν = h c
λ

= 2π�c

λ
= 2π�ck = 2π×(197.3 MeV · fm)×k

= (1239×10−10 keV · cm)×k. (3.121)

(a) Atomic energy level diagram for lead.
Photon energies calculated from (3.121) for the various wave numbers of electronic
transitions are provided in Table 3.4. These data now allow us to determine the
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Table 3.4 Photon energies corresponding to various electronic transitions to K shell in lead

Transition K–∞
K abs. edge

K–L K–M K–N L–M L–N

Wave number
k (cm−1)

7.10×108 5.92×108 6.85×108 7.06×108 0.94×108 1.15×108

Photon energy
hν (keV)

88.0 73.3 84.9 87.5 11.6 14.2

energy levels for the four innermost shells of the energy level diagram of lead. The
K absorption edge photon energy of +88 keV for lead gives us direct information
on the K shell energy level [E(K)= −88 keV] as well as on the binding energy of
the K shell electron EB(K)= +88 keV.

Using the K shell energy level of E(K)= −88 keV determined from the K ab-
sorption edge energy, we can now calculate the L, M, and N shell energy levels with
the help of photon energies listed in Table 3.4 as follows

E(L)=E(K)+ hνK−L = −88 keV + 73.3 keV = −14.7 keV, (3.122)

E(M)=E(K)+ hνK−M = −88 keV + 84.9 keV = −3.1 keV (3.123)

or

E(M)=E(L)+ hνL−M = −14.7 keV + 11.6 keV = −3.1 keV, (3.124)

E(N)=E(K)+ hνK−N = −88 keV + 87.5 keV = −0.5 keV (3.125)

or

E(N)=E(L)+ hνL−N = −14.7 keV + 14.2 keV = −0.5 keV. (3.126)

The energy level diagram for the four innermost shells (K, L, M, and N) of lead
is plotted in Fig. 3.11. Also plotted are the transitions listed in Table 3.4. The ar-
rows designating transitions point in the direction of electron transition, however,
the transitions are labeled according to the IUPAC notation that follows the tran-
sition of the vacancy rather than the transition of an electron. Thus the transition
designated with K–L designates a transition of an electron from the L to K shell
while the electron vacancy makes a transition from the K to L shell.

(b) Table 3.4 provides energy differences between various atomic energy levels of
lead, however, it does not provide the actual energy levels. For one-electron struc-
tures where energy levels are proportional to 1/n2 one can easily determine the
actual energy levels from the knowledge of the transition energy and values of n for
the two levels. On the other hand, in multi-electron atoms such as lead the situation
is much more complicated because of nuclear charge screening by the complement
of orbital electrons. Hartree proposed a simple, yet elegant, approximation to deter-
mine the atomic energy levels based on an effective charge that accounts for both
the nuclear charge as well as its electron screening.
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Fig. 3.11 The four innermost shells (K, L, M, and N) of lead atom and several examples of x-ray
transitions

In Hartree approximation the atomic energy levels En of multi-electron atoms
are expressed like in one-electron Bohr atom except that the atomic number Z of
the Bohr atom is replaced by an effective atomic number Zeff = (Z − sn), with
sn referred to as the screening constant for a given atomic shell n. The Hartree
approximation works quite well for K shell (n= 1) energy levels of multi-electron
atoms assuming a screening constant sK = sn=1 = 2; for other shells the agreement
is much poorer and the screening constants do not only depend on principal quantum
number n but also on atomic number Z.

We now estimate the K shell energy level for lead using the Hartree approxima-
tion as

E(K)=En=1 = −ERZ
2
eff = −ER(Z − sK)

= −ER(Z − 2)2 = −(13.61 eV)×802 = −87 keV (3.127)

and note that the calculated value agrees reasonably well with the value of −88 keV
obtained from the absorption edge photon and widely quoted in the literature as
the energy level of the K shell in lead. Figure 3.12 shows a plot of K shell bind-
ing energy EB(K) against atomic number Z for elements from Z = 1 to Z = 100.
Solid curve represents measured data; dashed curve represents data calculated with
Hartree approximation of (3.127) for Z > 20.
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Fig. 3.12 K shell binding energy EB(K) against atomic number Z for elements from Z = 1
to Z = 100. Solid curve represents measured data; dashed curve represents data calculated with
Hartree approximation of (3.126) for Z > 20

3.3 Experimental Confirmation of the Bohr Atomic Model

3.3.Q1 (100)

Hydrogen is the simplest atom in nature and its emission and absorption spec-
tra are well understood. The spectrum of hydrogen is particularly important
in astronomy because most of the Universe consists of hydrogen. Emission
as well as absorption spectra of hydrogen are characterized with many se-
ries of lines each series ending (emission spectrum) or beginning (absorption
spectrum) at the same atomic state.

On an atomic energy level diagram plot schematically the six known series
of the emission spectrum of hydrogen and prepare a table that for each series
lists the following parameters: final electron orbit nf; final energy Ef; lowest
photon energy; energy limit; and spectral range.

SOLUTION:

Correct prediction of line spectra emitted or absorbed by monoatomic gases, espe-
cially hydrogen, serves as an important confirmation of the Rutherford-Bohr atomic
model. The following features of emission and absorption spectra of mono-atomic
gases are notable:
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Fig. 3.13 Six known emission series spectra of hydrogen

(1) The emission spectrum is measured by first collimating the emitted radia-
tion by a slit and then passing the collimated slit-beam through an optical prism
or diffraction grating. The prism or grating breaks the beam into its wavelength
spectrum that is recorded on a photographic plate.

(2) In the measurement of absorption spectrum a continuous spectrum is made
to pass through the gas under investigation. The photographic plate shows a set of
unexposed lines that result from the absorption by the gas of distinct wavelengths
of the continuous spectrum.

The six known emission series of hydrogen are: Lyman, Balmer, Paschen, Brackett,
Pfund, and Humphreys. An atomic energy level diagram and its six emission series
spectra are shown in Fig. 3.13 and the pertinent parameters of the six series are listed
in Table 3.5. Figure 3.14 depicts the basic differences between a white spectrum,
emission spectrum, and absorption spectrum.
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Table 3.5 Basic parameters of the six spectral series of hydrogen

Name of
series

Final orbit nf Final energy
level Ef (eV)

Min. photon
energy (eV)

Limit of series
(eV)

Spectral
range

Lyman 1 −13.61 10.21 13.61 ultraviolet

Balmer 2 −3.40 1.89 3.40 visible

Paschen 3 −1.51 0.66 1.51 infrared

Brackett 4 −0.85 0.31 0.85 infrared

Pfund 5 −0.54 0.16 0.54 infrared

Humphreys 6 −0.38 0.10 0.38 infrared

Fig. 3.14 Basic differences between white spectrum, emission spectrum, and absorption spectrum

3.3.Q2 (101)

During 1913 Moseley carried out an important experiment the results of
which lent irrefutable support for the nascent Rutherford-Bohr atomic model.
Moseley studied the Kα and Lα characteristic x rays (K–L and K–M, respec-
tively, in modern IUPAC notation) emitted by many then known elements
between aluminum and gold in the Periodic Table of Elements and showed
empirically that the frequency ν of an element’s Kα and Lα radiation is pro-
portional to the square of the element’s atomic number Z, i.e.,

ν = a(Z − s)2 or
√
ν = √

a(Z − s), (3.128)

where
√
a is the slope of the linear

√
ν versus Z plot and s is a screening con-

stant. This relationship is now called the Moseley law and can be derived from
first principles of physics in conjunction with Bohr atomic theory combined
with Hartree theory of multi-electron atoms.
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Table 3.6 Energy of Kα x-ray line for various elements with atomic number 13 ≤ Z ≤ 55

(1) Element Unit Al Cr Fe Cu Mo Ag Cs

(2) Z 13 24 26 29 42 47 55

(3) hνK−L (eV) 1485.5 5409.3 6397.5 8037.8 17426.9 22076.6 30800.0

(4)
√
hνK−L (

√
eV) 38.54 73.55 79.98 89.65 132.01 148.58 175.50

Table 3.6 gives atomic number z and photon energy hνK−L of the Kα , i.e.,
(K–L), characteristic line for various elements between aluminum (Z = 13)
and cesium (Z = 55). Kα energy in row (3) of the table is the mean of energies
of Kα1 (K–L3) and Kα2 (K–L2) characteristic x-ray lines for a given element
in the table and available from the NIST.

(a) Plot the data given in row (4) of Table 3.6 against atomic number Z
given in row (2) for x-ray targets given in row (1) and establish that

√
ν

is indeed proportional to Z.
(b) From the Bohr theory of one-electron atom combined with the Hartree

approximation for multi-electron atoms derive and plot the Moseley
equation √

hνK–L = k(Z − sK), (3.129)

where k is the slope of the equation equal to k = 0.5
√

3ER with ER
the Rydberg energy and sK = 1 is the screening constant for the K shell
containing one electron and one vacancy.

(c) From the linear plot in (a) determine:

(1) Slope k and screening constant sK of (3.129).
(2) Rydberg energy ER.
(3) Product �c of reduced Planck constant � multiplied by the speed

of light in vacuum c.

SOLUTION:

(a) In Fig. 3.15(A) we plot the square root of the Kα x-ray line energy
√
hνK−L

against atomic number Z for the seven elements listed in Table 3.XY. A cursory
examination of the data points shows that they fall on or close to a straight line,
confirming the validity of Moseley law.

(b) Equation (3.128) is derived by considering the Bohr theory of one-electron
structures in conjunction with the Hartree approximation proposed for use with
multi-electron atoms. Hartree theory for multi-electron atoms provides the follow-
ing general expression for atomic energy levels En (T3.36)
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Fig. 3.15 Square root of Kα x-ray line energy against atomic number for 7 elements in Periodic
Table of Elements between aluminum and cesium. (A) Plot of data summarized in Table 3.7 and
obtained from the NIST. (B) Results of least square fit to the data set

En = −ER
Z2

eff

n2
, (3.130)

where

ER is the Rydberg energy (ER = 13.61 eV).
Zeff is the effective atomic number that may be expressed as Z− s with s defined

as a screening constant.
n is the principal quantum number.

Photon energy hν emitted following an electronic transition from initial level ni to
final level nf is expressed as

hν =ERZ
2
eff

(
1

n2
f

− 1

n2
i

)
. (3.131)

Thus, energy hν of a photon originating from a K–L (Kα in Siegbahn’s notation)
vacancy transition is given as

hνK−L =ERZ
2
eff

(
1

n2
f

− 1

n2
i

)
=ER(Z − sK)2

(
1 − 1

4

)
= 3

4
ER(Z − sK)2

or
√
hνK−L = 1

2

√
3ER(Z − sK)= k(Z − sK),

(3.132)

where sK is the K shell screening constant for one vacancy in the K shell. Hartree
approximation predicts a value of sK = 2 for the K shell screening constant of a neu-
tral atom. For the Kα transition, however, the K shell screening constant is assumed
to be sK = 1 to account for the vacancy in the K shell that the electron feels when
making the L shell to K shell transition.

(c) To determine the constants k and sK we apply the method of least squares fit to
data points of Fig. 3.15(A) and assume that we are dealing with a linear function of
the following form: y = kx+b. Transformation of (3.122) into the form y = kx+b
results in
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(1) y =√
hνK−L; (2) x = Z; and (3) b= ksK. (3.133)

The general solutions in the least squares theory for slope k and y intercept b are,
respectively,

k = n
∑n
i=1 xiyi −

∑n
i=1 xi

∑n
i=1 yi

n
∑n
i=1 x

2
i − (∑n

i=1 xi)
2

(3.134)

and

b=
∑n
i=1 x

2
i

∑n
i=1 yi −

∑n
i=1 xi

∑n
i=1 xiyi

n
∑n
i=1 x

2
i − (∑n

i=1 xi)
2

, (3.135)

where i is an index and n is the number of data points in a particular set of data.
The following table shows the individual components of our data set: xi , yi ; x2

i , and
xiyi as well as their sums:

∑n
i=1 xi,

∑n
i=1 yi,

∑n
i=1 x

2
i , and

∑n
i=1 xiyi for use in

(3.134) and (3.135).

Table 3.7 Parameters xi ,
yi;x2

i , and xiyi used in least
squares fit method to
determine the slope k and y
intercept for the linear
relationship between√
hνK−L and Z

i xi yi (
√

eV) x2
i xiyi (

√
eV)

1 13 38.56 169 501.217

2 24 73.55 576 1765.15

3 26 79.98 676 2079.59

4 29 89.65 841 2599.96

5 42 132.01 1764 5544.46

6 47 148.58 2209 6983.40

7 55 175.50 3025 9652.46

SUM 236 737.83 (
√

eV) 9260 29126.2 (
√

eV)

(1) From Table 3.7 in conjunction with (3.134) and (3.135) we get the following
results for the slope k and the y axis intercept b of (3.132)

k = 7×(29126.2
√

eV)− 236×(737.83
√

eV)

7×9260 − (236)2
= 3.26

√
eV (3.136)

and

b= 9260×(737.83
√

eV)− 236×(29126.2
√

eV)

7×9260 − (236)2
= −4.54

√
eV. (3.137)

Thus, the slope of the linear equation
√
hνK−L = k(Z− sK) is k = 3.26

√
eV and

the screening constant is sK = b/k = 4.54/3.26 = 1.39, in reasonable agreement
with the generally accepted value for the screening constant of sK = 1 in L to K
electronic transitions producing the Kα characteristic x-ray lines. In Fig. 3.15(B)
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we show the results of the least squares fit to the data set provided in Table 3.7 and
parameters calculated in (3.136) and (3.137).

(2) Equation (3.132) suggests that the slope k of the linear
√
ν versus Z relation-

ship is equal to k = 0.5×√
3ER which means that in principle we should be able

to determine the Rydberg energy ER from this relationship. Rydberg energy is thus
given as

ER = k2

0.75
= 3.262

0.75
eV = 14.2 eV (3.138)

in reasonably good agreement with the NIST value of ER = 13.61 eV.

(3) Bohr theory of one-electron atoms predicts the following expression for the
Rydberg energy (T3.8)

ER = 1

2

(
e2

4πε0

)2
mec

2

(�c)2
, (3.139)

resulting in the following expression for �c

�c= e2

4πε0

√
mec2

2ER
= (1.6×10−19A · s)×(eV · m)

4π×8.85×10−12 A · s

√
0.511×106 eV

2×(14.2 eV)

= 1.93×10−7 eV · m = 1.93×10−7×(10−6 MeV)×(1015 fm)

= 193 MeV · fm (3.140)

in reasonably good agreement with the NIST value stated as �c= 197.3 MeV · fm.

3.3.Q3 (102)

Direct confirmation that the internal energy states of an atom are quantized
came from an experiment carried out by James Franck and Gustav Hertz in
1914. The Franck-Hertz experiment provided experimental support for the
Rutherford-Bohr model of the atom and for the quantization of atomic energy
levels.

(a) Draw a schematic diagram of the Franck-Hertz experimental apparatus
and explain its main characteristics.

(b) Figure 3.16(A) shows collector plate current Icol against accelerat-
ing voltage U for the Franck-Hertz experiment on mercury vapor and
Fig. 3.16(B) shows a simple energy level diagram for outer shell elec-
trons of mercury. Based on Fig. 3.16 explain the origin of the three
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peaks in the Icol vs. U plot and provide answers to the following three
questions:

(1) Describe the ground state of mercury atom.
(2) Describe the first excited state of mercury atom.
(3) What is the ionization potential of mercury atom?

(c) Assume that the Franck-Hertz apparatus is filled with low-pressure hy-
drogen gas rather than with mercury vapor. Sketch the Icol vs. U dia-
gram for the first two peaks, explain their origin, and calculate the emit-
ted spectral lines corresponding to the first two peaks in the Icol vs. U
plot.

Fig. 3.16 (A) Typical collector plate current against accelerating voltage in mercury-filled
Franck-Hertz apparatus. (B) Atomic energy level diagram for mercury. Only the outer P
shell level of mercury in ground state is shown

SOLUTION:

(a) The Franck-Hertz apparatus is shown schematically in Fig. 3.17. An evacuated
vessel containing three electrodes (cathode, anode, and collector plate) is filled with
low-pressure mercury vapor. Electrons are emitted thermionically from the heated
cathode and accelerated toward the perforated anode by positive potential U applied
between the cathode and the anode. Some of the accelerated electrons pass through
the perforated anode and land on the collector plate, provided their kinetic energy
upon passing through the anode is sufficiently high to overcome a small retarding
potential Uret that is applied between the anode and the collector plate.

The experiment involves measuring the electron current Icol reaching the collec-
tor plate as a function of the accelerating voltage U . With an increasing potential U
the current Icol at the plate increases with U until, at a potential of 4.9 V, it abruptly
drops, indicating that some type of interaction between electrons and mercury atoms
suddenly appears when the electrons attain kinetic energy of 4.9 eV. The interaction
is interpreted as follows: an accelerated electron excites an outer shell mercury or-
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Fig. 3.17 Schematic diagram of the Franck-Hertz apparatus used in determination of excited
states of gaseous atoms. V designates voltmeter, A designates ammeter

bital electron from its ground state to its first excited state (4.9 eV) and in doing
so loses 4.9 eV of its kinetic energy as well as its ability to overcome the retarding
potential Uret between the anode and the collector plate.

(b) The three peaks shown in the Icol vs. U plot of Fig. 3.16(A) have the following
origins:

Peak 1: Accelerated electron exceeds kinetic energy EK of 4.9 eV and excites an
outer shell mercury electron from its ground state (energy level: −10.4 eV) to the
first excited state with an energy level of −5.5 eV. Thus, the ionization potential of
mercury is 10.4 eV; the first excitation potential is 4.9 eV.

Peak 2: Accelerated electron has sufficient kinetic energy (EK > 9.8 eV) to produce
excitation of two mercury atoms from the ground state to the first excited state.

Peak 3: Accelerated electron has sufficient kinetic energy (EK > 14.7 eV) to pro-
duce excitation of three mercury atoms from the ground state to the first excited
state.

Answers to the three specific questions in (b) are partially based on Fig. 3.16(B):

(1) Ground state of mercury (Hg) atom: atomic number Z of mercury is 80 and the
electronic configuration of mercury is: K shell—2 electrons; L shell—8 electrons;
M shell—18 electrons; N shell—32 electrons; O shell—18 electrons, and P (outer)
shell—2 electrons.

In its ground state the mercury atom has both of its outer shell electrons in the P
shell and the remaining 78 electrons are all in lower shells.

(2) The first excited state of Hg atom is when one of the two outer shell electrons
is lifted from the P shell into the empty Q shell above the P shell. As shown in
Fig. 3.16(B) the energy of the P shell is −10.4 eV while the energy of the Q shell
is −5.5 eV. This means that the first excitation potential of Hg atom is [−5.5 eV −
(−10.4 eV)] = 4.9 eV.
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(3) As evident from Fig. 3.16(B), the minimum energy required for ionization of
mercury atom, i.e., ionization potential of mercury atom, is 10.4 eV.

(c) Replacing mercury with hydrogen in the standard Franck-Hertz experiment is
bound to result in a different structure of the Icol vs. U plot. To speculate on the
two lowest voltage peaks in the Icol vs. U plot we present the simple energy level
diagram of hydrogen in Fig. 3.18 with the ground state at −13.61 eV, first excited
state at −3.40 eV, and second excited state at −1.5 eV. Thus, to move an electron
from ground state of hydrogen to its first excited state requires energy of 10.21 eV
and to its second excited state energy of 12.07 eV.

We would thus expect the first two peaks in a Franck-Hertz-type experiment
with low-pressure hydrogen to occur at 10.21 V and 12.07 V. As far as emission of
spectral lines as a consequence of the two peaks, we expect emission of a photon of
energy hν = 10.21 eV corresponding to wavelength (λ= 1213.6 Å) correlated with
the 10.21 V peak and emission of either one photon of energy hν = 12.1 eV (λ=
1024 Å) or two photons, one of energy hν = 1.89 eV (λ= 6555.6 Å) and the other
of energy hν = 10.21 eV (λ= 1213.6 Å) correlated with the 12.07 V peak.

Fig. 3.18 Energy level diagram for hydrogen atom

3.4 Schrödinger Equation for Hydrogen Atom

3.4.Q1 (103)

Atomic radius can be estimated from atomic charge distributions measured
with x-ray scattering experiments. When the so-measured results are com-
pared with radii calculated with the hydrogen ground state wave function,

one concludes that
√
r2, the calculated square root of the expectation value
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r2 (root-mean-square atomic radius), gives a better measure of the hydrogen
atom size than does the Bohr radius.

(a) Calculate
√
r2 for the hydrogen atom in the ground state.

(b) Compare the result of (a) with the Bohr radius a0.

SOLUTION:

(a) The expectation value of r2 for the hydrogen atom in ground state is calculated
from

r2 =
˚

r2ψ∗ψ dV =
˚

r2|R|2 dV = 4π
ˆ
r4|R|2 dr, (3.141)

where R(r) is the spherically symmetric wave function given as (T3.71)

R(r)= 1√
πa3

0

e
− r
a0 (3.142)

and the volume element in spherical coordinates is given as dV = 4πr2 dr . Inserting
(3.142) into (3.141) gives

r2 = 4

a3
0

ˆ ∞

0
r4e

− 2r
a0 dr = 4

a3
0

[
4!

(2/a0)5

]
= 4

a3
0

×4×3×2×a5
0

32
= 3a2

0 . (3.143)

(b) According to (3.143) the radius of hydrogen atom defined as
√
r2 amounts to

√
r2 =

√
3a2

0 = a0
√

3 = (0.5292 Å)
√

3 ≈ 0.91 Å, (3.144)

which is almost twice as large as the Bohr radius given as

a0 = 4πε0

e2

(�c)2

mec2
= 0.5292 Å (3.145)

in (T3.4).
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Chapter 4 consists of 13 problems that in 4 sections cover production of the
two types of x rays: characteristic radiation and bremsstrahlung radiation in
addition to two types of radiation remotely related to x rays: synchrotron ra-
diation (also called magnetic bremsstrahlung) and Čerenkov radiation. Char-
acteristic x rays and low energy bremsstrahlung produced in x-ray tubes are
used extensively in diagnostic imaging while high energy x rays produced in
linear accelerators provide the basis of modern radiotherapy.

Characteristic x rays are produced by electronic transitions in atoms trig-
gered by vacancies in inner electronic shells of the absorber atom. Inner
shell atomic vacancies are produced through one of 8 possible processes and
migrate toward the outer atomic shell (valence shell) of the absorber atom
through one or more steps. The energy released in an electronic transition
from one electronic orbit to another is either emitted in the form of a char-
acteristic photon or transferred to an orbital electron of the absorber atom by
triggering release of this electron as an Auger electron. Bremsstrahlung x rays,
on the other hand, are produced by an inelastic Coulomb interaction between
light charged particle and the nucleus of the absorber atom. The spectrum
of characteristic x-ray photons is discrete and characteristic of the absorber
material; the spectrum of bremsstrahlung is continuous and contains photons
with energy from 0 to the kinetic energy of the light charged particle that
produced the photon.

The first few problems in this chapter (Sect. 4.1) address issues related to
characteristic radiation, such as the Siegbahn and IUPAC notation for desig-
nation of electronic levels in an atom as well as rules governing production
of characteristic x-ray line spectra. Problems in Sect. 4.2 deal with theoret-
ical aspects of the production of bremsstrahlung radiation and the chapter
concludes with several questions covering practical and theoretical aspects of
and synchrotron radiation (Sect. 4.3) and Čerenkov radiation (Sect. 4.4).

E.B. Podgoršak, Compendium to Radiation Physics for Medical Physicists,
DOI 10.1007/978-3-642-20186-8_4,
© Springer-Verlag Berlin Heidelberg 2014
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4.1 X-Ray Line Spectra

4.1.Q1 (104)

An atom with an electronic vacancy in its inner shell is in a highly excited state
and returns to its ground state through one or several electronic transitions. In
each of these transitions an electron from a higher atomic shell fills the shell
vacancy and the energy difference in binding energy between the initial and
final shell or sub-shell is emitted from the atom in one of two ways: either
(1) in the form of characteristic (fluorescence) radiation or (2) radiation-less
in the form of Auger electrons, Coster–Kronig electrons, or super Coster–
Kronig electrons.

(a) Define an atomic shell vacancy, list the two types of shell vacancy, and
briefly describe the ultimate fate of a shell vacancy.

(b) List at least 8 processes resulting in production of a primary atomic
shell vacancy and briefly describe each process.

(c) Define the fluorescence yield ω and sketch a plot of ω against atomic
number Z of the absorber for the K, L, and M electronic shells.

SOLUTION:

(a) A shell vacancy is defined as an electron missing from the normal complement
of electrons in a given atomic shell. Two types of vacancy are known: (1) primary
and (2) secondary.

(1) Primary shell vacancy occurs when an atomic electron is displaced from the
atomic cloud through one of 8 known processes that fall into 5 categories: incident
photon–atom interactions; nuclear effects; incident charged particle–atom Coulomb
interactions, Auger effect, and positron annihilation. Primary vacancy can occur in
any one of the electronic shells of an atom, making a positive ion (anion) out of the
neutral atom.

(2) Secondary shell vacancy occurs when an electron makes a transition from a
higher-level electronic shell to a lower-level electronic shell in an atom, meaning
that the vacancy moves in the opposite direction. The transition energy is emitted
in the form of characteristic (fluorescence) radiation or is transferred to an electron
in a higher-level shell that is ejected as Auger electron leaving behind a primary
vacancy.

Note: When a primary vacancy is created, the shell electron leaves the electronic
cloud and the atom loses an electron through creation of a vacancy and thus un-
dergoes the process of ionization. When a secondary vacancy occurs, an existing
vacancy merely moves from a lower-level shell to a higher-level shell of the same



4.1 X-Ray Line Spectra 227

atom and no new vacancy is produced in the atom; however, the transition energy is
emitted as a characteristic photon or is transferred to an Auger electron. All primary
vacancies produced in an atom migrate to the outer shell of the positive ion either di-
rectly or through creation of intermediate secondary vacancies. Free electrons from
the ion’s environment will fill the ion’s outer shell vacancies and the ion will revert
to its original neutral state.

(b) Eight processes that result in production of a primary shell vacancy are as
follows:

(1) Photoelectric effect. A photon-atom interaction whereby the photon is com-
pletely absorbed by the atom and its energy is given to an orbital shell electron. The
orbital electron is ejected from the atom as a photoelectron leaving behind a shell
vacancy.

(2) Compton scattering. A photon-orbital electron interaction whereby the pho-
ton is scattered with a lower energy by a loosely bound orbital electron and en-
ergy difference between the incident and scattered photon is absorbed by an orbital
electron. The orbital electron is consequently ejected from the atom as a Compton
(recoil) electron leaving behind a shell vacancy.

(3) Triplet production. A photon-orbital electron interaction whereby the photon
interacts with the Coulomb field of an orbital electron of the absorber atom. The
photon disappears and an electron-positron pair is created (materialization). To con-
serve momentum, the orbital electron absorbs part of the incident photon energy and
is consequently ejected from the atom leaving behind a shell vacancy.

(4) Charged particle Coulomb interaction with atom. A charged particle as it
traverses absorbing medium interacts through Coulomb force with orbital electrons
and nuclei of atoms in the absorber. The orbital electrons absorb part of the charged
particle energy and are either ejected from the atom or excited to higher energy
levels leaving behind shell vacancies in the absorber atoms.

(5) Internal conversion. A nuclear decay process whereby the energy of an ex-
cited nucleus is given to an orbital electron. As a result the orbital electron is ejected
from the absorber atom leaving behind a shell vacancy.

(6) Electron capture. A nuclear decay process whereby an excited nucleus cap-
tures an orbital electron from one of the inner shells of the atom. The captured
electron leaves behind a shell vacancy and in the nucleus a proton is converted into
a neutron.

(7) Positron annihilation. A positron traversing absorbing medium annihilates
with an orbital electron in a process that creates several (most often two) annihi-
lation quanta and an electronic vacancy in the absorber atom. Most frequently, the
annihilation occurs after the positron lost all of its kinetic energy through Coulomb
interactions with absorber atoms; however, more rarely annihilation can also occur
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Fig. 4.1 Fluorescence yields ωK, ωL, and ωM against atomic number Z. Also shown are proba-
bilities for Auger effect 1 −ωK, 1 −ωL, and 1 −ωM. Data are from Hubbell

when the positron still carries kinetic energy and the annihilation process is then
called annihilation-in-flight.

(8) Auger effect. A process by which an atom with a vacancy in one of its orbital
shells, except for the outer shell, relaxes. As an orbital electron makes a transition
from a higher-level shell to fill the vacancy, the transition energy is emitted either
in the form of characteristic (fluorescence) photon or is transferred to a higher-level
shell electron that is emitted as an Auger electron leaving behind a primary shell
vacancy.

The first three processes: photoelectric effect, Coulomb scattering, and triplet
production (electronic pair production) fall into the category of photon interaction
with absorber atom. The fourth process includes charged particle Coulomb interac-
tion with orbital electrons of absorber atoms, while Internal conversion and electron
capture fall into the category of nuclear effects.

(c) Fluorescence yield of a given shell (K, L, or M) is defined as the number of
fluorescence (characteristic) photons emitted per vacancy in the shell. It can also be
regarded as the probability, after creation of an electronic shell vacancy, of fluores-
cence photon emission as opposed to Auger electron emission.

Fluorescence yields ωK, ωL, and ωM for K, L, and M electronic shell vacancies,
respectively, are plotted in Fig. 4.1 against atomic number Z for all elements with
1 ≤ Z ≤ 100. The anchor points for ω versus Z plot are clearly indicated in Fig. 4.1.
The anchor points are:

For ωK: [Z ≤ 10,ωK = 0]; [Z = 30,ωK = 0.50]; [Z ≥ 90,ωK ≈ 0.96]
For ωL: [Z ≤ 30,ωL = 0]; [Z = 70,ωL = 0.25]; [Z = 100,ωL ≈ 0.5]
For ωM: [Z < 70,ωM = 0]; [Z = 100,ωM ≈ 0.05]
The following features of fluorescence yield ω are noteworthy:
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(1) A plot of the fluorescence yield ωK against absorber atomic number Z results
in a sigmoid shaped curve with ωK ranging from ωK = 0 for low atomic number
(Z < 10) elements through ωK = 0.5 at Z = 30 to ωK = 0.96 at very high Z.

(2) For the L-shell vacancy the fluorescence yield ωL is zero at Z < 30 and then
rises with Z to reach a value ωL = 0.5 at Z = 100.

(3) Fluorescence yield ωM is zero for all elements with Z < 60, and for Z > 60 it
rises slowly with increasingZ to attain a value ωM ≈ 0.05 for very highZ absorbers,
indicating that fluorescence emission from the M shell and higher level electronic
shells is essentially negligible for all absorbers, even those with very high atomic
number Z.

(4) For a given electronic shell a plot of 1 −ω against atomic number Z shows the
probability for Auger effect following creation of a vacancy in an electronic shell
with the exception of the outer shell of the absorber atom.

(5) For a given absorber, the higher is the shell level (i.e., the lower is the shell
binding energy), the lower is the fluorescence yield ω and, consequently, the higher
is the probability for Auger effect (1 −ω).

4.1.Q2 (105)

Atomic energy level diagram for tungsten (Z = 74) in ground state is shown
in Fig. 4.1. Energy levels are identified using the spectroscopic notation (e.g.,
1s1/2, 2s1/2, . . . etc.) as well as the IUPAC x-ray notation (e.g., K, L1, L2, . . .

etc.).

(a) For each energy level of tungsten provide in Fig. 4.2 the quantum num-
bers n, l, j , and mj of electrons occupying the energy level.

(b) For each energy level of tungsten provide in Fig. 4.2 the number of
electrons residing in the level.

(c) Complete Table 4.1 that deals with information pertinent to the shell
and subshell structure of tungsten.

(d) Based on information in Fig. 4.2 and Table 4.1 summarize the electronic
configuration of the tungsten atom in the ground state according to the
convention used in atomic physics.

(e) Transition L1–O3 (referring to transition of vacancy rather than the ac-
tual transition of an electron) is indicated on the energy level diagram
of Fig. 4.2. Is this an allowed or forbidden transition?

(f) Assume that there is an electronic vacancy in the L2 subshell. Following
the standard selection rules for dipolar transitions and using the IUPAC
notation, show on Fig. 4.2 and list separately all allowed electronic tran-
sitions to the L2 subshell.
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Fig. 4.2 Atomic energy level diagram of tungsten (Z = 74) including energy levels of the K shell
and all subshells. First column shows the designation of subshells in the IUPAC notation and the
last column shows the energy levels of the subshells in electron volts (eV)
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Table 4.1 Main characteristics of the shell and subshell structure of tungsten

Principal
quantum
number n

Electronic
shell

Shell
population

Electronic
subshell

Orbital
quantum
number

Subshell
population

K 1s

L 2s

– 2p

M 3s

– 3p

– 3d

N 4s

– 4p

– 4d

– 4f

O 5s

– 5p

– 5d

P 6s

SOLUTION:

(a) Quantum numbers n, �, j , and mj for each energy level of tungsten are pro-
vided in Fig. 4.3.

(b) Number of electrons residing in each energy level is provided in Fig. 4.3 [col-
umn (B)].

(c) Information pertinent to shell and subshell structure of tungsten is provided in
Table 4.2.

(d) Electronic configuration of tungsten in atomic ground state is given as:

1s2 2s2 2p6 3s2 3p6 3d10 4s2 4p6 4d10 5s2 5p6 4f14 5d4 6s2

(e) The transition L1–O3 involves the vacancy transition from subshell L1 to sub-
shell O3, corresponding to the actual electron transition in the opposite di-
rection from O3 to L1. The question on whether this is an allowed or for-
bidden transition will be answered by checking the applicable selection rules
�� = ±1 and �j = 0, ±1. Since in this transition �� = +1 and �j = +1,
we conclude that this is an allowed transition.

(f) All allowed transitions to the L2 subshell are shown in Fig. 4.3 [column (F)]
and listed separately in Table 4.3 that also shows �� and �j for each allowed
transition.
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Fig. 4.3 Atomic energy level diagram of tungsten including shell and subshell structure following
the IUPAC convention (first column); quantum numbers for individual subshells in column (A);
number of electrons N in each subshell in column (B); transition L1–O3 (vacancy) in column (E);
all allowed transitions (vacancy) from L2 subshell in column (F); and energy level in electron volts
for each subshell (right hand column)
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Table 4.2 Main characteristics of shell and subshell structure of tungsten

Principal
quantum
number n

Electronic
shell

Shell
population

Electronic
subshell

Orbital
quantum
number

Subshell
population

1 K 2 1s 1 2

2 L 8 2s 1 2

2p 2 6

3 M 18 3s 1 2

3p 2 6

3d 3 10

4 N 32 4s 1 2

4p 2 6

4d 3 10

4f 4 14

5 O 12 5s 1 2

5p 2 6

5d 3 4

6 P 2 6s 1 2

Table 4.3 Allowed
transitions to fill a vacancy in
the L2 subshell of tungsten
atom

N Transition �� �j

1 L2–M1 −1 0

2 L2–M4 +1 1

3 L2–N1 −1 0

4 L2–N4 +1 1

5 L2–O1 −1 0

6 L2–O4 +1 1

7 L2–O1 −1 0

4.1.Q3 (106)

Atomic energy level diagram for tungsten is shown in Fig. 4.4. Assume that
an electron from the M2 subshell fills an electronic vacancy that was created
in the K shell. As shown schematically on the graph, there are two possible
options (A and B) available to the excited atom for release of energy made
available during the M2–K electronic transition.

(a) List and briefly define at least six processes by which the K shell va-
cancy in the tungsten atom might have been produced.
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(b) Briefly describe options A and B for the release of the transition energy
E(M2–K).

(c) Discuss the branching ratio between options A and B.
(d) Explain the fate of the M2 vacancy that was produced in the initial

M2–K electronic transition.

Fig. 4.4 Atomic energy level diagram of tungsten with a vacancy in the K shell that is filled by an
electron from the M2 subshell (transition K–M2 describes the transition of the vacancy)
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SOLUTION:

(a) The electronic vacancy in the K shell of tungsten could have been produced
through an assortment of different effects that can be placed into three major cate-
gories of interactions (see Prob. 104) with the K shell orbital electron: Coulomb in-
elastic collision of light charged particle (electron or positron) or heavy charged par-
ticle (proton, deuteron, alpha, etc.); photon interactions (photoelectric effect, Comp-
ton effect, and electronic pair production) and nuclear effects (internal conversion
or K capture).

(b) As shown schematically in Fig. 4.5, there are two options (A and B) available
for dissipation of the K–M2 transition energy �E =E(M2)−E(K)= 66.95 keV.

(1) In option A the transition energy is emitted in the form of a characteristic
(fluorescence) photon that (i) is referred to as a K–M2 photon because it originated
from a vacancy transition from the K shell to the M2 subshell and (ii) is referred
to as characteristic photon because its energy of 66.95 keV is characteristic of the
tungsten atom.

(2) In option B the transition energy �E =E(M2)−E(K)= 66.95 keV is trans-
ferred to an orbital electron from L shell or higher and the electron, referred to
as an Auger electron, is ejected from the tungsten atom. In our example given
in Fig. 4.5 the transition energy is transferred to a N4 subshell orbital electron
that is ejected from the nucleus as an eKM2N4 Auger electron with kinetic energy
EK =�E −EB(N4)= E(M2)−E(K)−EB(N4)= 66.69 keV through a process
called the Auger effect.

(c) The branching between the two options (emission of a characteristic photon or
ejection of an Auger electron) is governed by the fluorescence yield ω for the given
atom and for the given atomic shell of the atom. The fluorescence yield for a given
shell is defined as the number of fluorescence photons emitted per vacancy in the
given shell. Alternatively, fluorescence yield can also be regarded as the probability,
after the creation of a shell vacancy, of fluorescence emission as opposed to emission
of Auger electron.

The fluorescence yield ω is plotted with solid curves for K, L, and M shell elec-
tron vacancies in Fig. 4.6 against atomic number for all elements. Also plotted (with
dashed lines) is the probability for Auger effect (1 − ω) against atomic number for
all elements. As shown in Fig. 4.6, the fluorescence yield for the K shell vacancy
in tungsten is ωK = 0.95, while the probability for Auger effect following a K shell
vacancy in tungsten is 1 −ωK = 0.05.
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Fig. 4.5 Atomic energy level diagram of tungsten with an electronic vacancy in the K shell that is
filled by an electron from the M2 subshell. The two options: A as emission of characteristic (also
called fluorescence) photon and B as emission of an Auger electron are described
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Fig. 4.6 Fluorescence yield (solid curves) and probability of Auger effect against atomic number
for elements between Z = 1 to Z = 100

4.1.Q4 (107)

Figure 4.7 shows the atomic energy level diagram of tungsten atom consisting
of the K shell and all subshells in addition to showing the electron population
of each subshell.

(a) Assume that there is a vacancy in the K shell and show three different
possible paths of migration of the vacancy to the outer subshell P1. Each
of the three paths should consist of at least 5 allowed transitions (steps).
Identify each step in the IUPAC notation.

(b) Assume that there is a vacancy in the N2 subshell. The vacancy will
be filled by an electron from a higher-level subshell and the transition
will be accompanied either by emission of a characteristic photon or
an Auger electron, Coster-Kronig electron or super Coster-Kronig elec-
tron. Show three possible electronic transitions to the N2 subshell: one
that could result in a standard Auger electron, one that could engender
a Coster-Kronig electron, and one that could result in a super Coster-
Kronig electron. For each of these electrons provide appropriate label
in IUPAC notation and their kinetic energy.

SOLUTION:

Figure 4.8 deals with migration of two electronic vacancies (one in the K shell and
the other in the N2 subshell) toward the outer subshell (P1) in a tungsten atom.

Figure 4.8(A) shows three examples of possible paths for the K shell vacancy mi-
gration toward the P1 subshell (also referred to as the outer shell or valence shell of
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Fig. 4.7 Energy level diagram for tungsten atom (Z = 74). Electron vacancies in the K shell and
the N2 subshell are shown with hollow circles, the electrons in the K shell and all subshells are
shown with solid circle

tungsten atom), each path progressing through 6 electronic transitions (steps). Each
step is identified in the IUPAC notation and fulfills the dipolar selection rules on
the angular momentum quantum number (��= ±1) as well as on the total angular
momentum quantum number (�j = 0, ±1). The K–L2 and K–L3 transitions were
labeled Kα1 and Kα2 , respectively, in the classical Siegbahn notation.

Figure 4.8(B) shows the start of three possible pathways of the vacancy migration
from the N2 subshell toward the P1 subshell. Each of these steps is followed by
energy transfer to an orbital electron through three different types of Auger effect:
standard Auger effect, Coster-Kronig effect, and super Coster-Kronig effect. The
distinction among the three different effects is as follows:

(i) In the standard Auger effect the primary transition occurs between two shells
and the transition energy is transferred to an orbital electron from the initial
shell or an even higher-level shell. The ejected electron is called an Auger
electron.



4.1 X-Ray Line Spectra 239

Fig. 4.8 Energy level diagram of tungsten atom. (A) shows three of many possible pathways that
a vacancy in the K shell of tungsten can take in its migration to the outer subshell P1. Each path-
way contains 6 steps and each step is identified in the IUPAC notation. (B) deals with a vacancy
in the N2 subshell and shows three possible transitions, one resulting in ejection of an Auger elec-
tron through standard Auger effect, one resulting in ejection of a Coster-Kronig electron through
Coster-Kronig effect, and one resulting in super Coster-Kronig electron through super Coster-Kro-
nig effect

(ii) In Coster-Kronig effect the transition energy originates from two subshells of
a given shell and is transferred to an electron in another (higher-level) shell.
The emitted electron is called a Coster-Kronig electron.

(iii) In super Coster-Kronig effect the transition energy that, like in (ii), originates
from two subshells of a given shell is transferred to a subshell electron within
the shell in which the primary transition occurred. The emitted electron is
called super Coster-Kronig electron.
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4.1.Q5 (108)

Figure 4.9 displays an atomic energy level diagram of tungsten. An incident
photon of energy hν = 150 keV interacts with a K shell electron. In the inter-
action the photon disappears, the K-shell electron is ejected as a photoelectron
and the vacancy, created in the K shell, migrates through many steps toward
the P1 subshell. Each step in the vacancy migration to the P1 subshell and the
subsequent return of the atom to ground state and to neutral state by attracting
an electron from environment into the P1 state is identified on the diagram
with a box containing three labels: (A) Identification of the particle (photon
or electron) produced or released or of energy transfer process; (B) Identifica-
tion of the transition in the IUPAC notation; and (C) Specification of particle
energy or transition energy in electron volts (eV).

(a) Provide answers for each step in the vacancy migration.
(b) Provide a summary for energy released in the form of photons and elec-

trons.

Fig. 4.9 Atomic energy level diagram of tungsten and an example of K-shell vacancy migration
toward the outer shell and eventual neutralization of the atom
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Fig. 4.10 Example of K-shell vacancy migration toward the outer shell of tungsten atom. The
6 transitions producing characteristic radiation and two transitions producing Auger electrons are
clearly identified and their IUPAC notation as well as energy are also given. The tungsten atom
was assumed to have been neutral before the incident photon interaction and the 3 optical photon
transitions in the diagram represent the process of the tungsten ion acquiring 3 free electrons to
become neutral again

SOLUTION:

(a) Each step in the vacancy migration to the outer shell of tungsten involves ei-
ther production of a characteristic (fluorescence) photon or an Auger electron. Fig-
ure 4.10 provides answers (A), (B), and (C) for each individual step.

(b) Summary for the example of vacancy migration from K shell to P1 subshell
is given in Table 4.4. The migration in this example consists of 4 transitions pro-
ducing a characteristic photon and 2 transitions producing an Auger electron. The
8 eV optical transitions result from neutralization of tungsten ion through attracting
stationary electrons from the environment.
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Table 4.4 Summary of an example of K-shell vacancy migration to P1 subshell in tungsten

Transition Energy (eV)

1 K–L2 Characteristic photon 57 984

2 L2–M4 Characteristic photon 9 670

3 M4–N3 Energy transfer to N5 1 447

4 N3–N5 Energy transfer to P1 182

5 N5–N6 Characteristic photon 207

6 N6–O5 Characteristic photon 27

7 O5–∞ Optical photon 8

Total energy 69 525

Total energy released: 69 525 eV equals the binding energy of the K-shell elec-
tron.

Of the 69 525 eV energy that was released, 67 896 eV was released in the form
of characteristic (fluorescence) photons and 1629 eV was transferred to other shells
for release of Auger electrons.

Of the 1629 eV that was transferred to other shells, 1379 eV was released as
kinetic energy of Auger electrons and 250 eV was released in the form of photons.

Summary of energy emission:

Photons: 67 896 eV + 250 eV = 68 146 eV
Kinetic energy of Auger electrons: 1379 eV
Total energy: 68 146 eV + 1379 eV = 69 525 eV

4.2 Emission of Radiation by Accelerated Charged Particle
(Bremsstrahlung Production)

4.2.Q1 (109)

The intrinsic electromagnetic field of a charged particle moving with velocity
υ is affected by the magnitude of υ and undergoes a Lorentz contraction in the
direction of motion and expands in directions perpendicular to the direction
of motion.
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The electric field Eυ(r, θ, υ) is given as

Eυ(r, θ, υ)= E0Cυ = q

4πε0r2
Cυ, (4.1)

where

E0 is the isotropic electric field produced by charged particle q for υ = 0
and is expressed through the Coulomb law E = q/(4πε0r

2).
r is the distance from the charged particle q to the point of interest.
Cυ is the electric field correction factor given as

Cυ = 1 − β2

(1 − β2 sin2 θ)3/2
. (4.2)

Define the field difference [Eυ(r, θ, υ)− E0] as the Lorentz field EL(r, θ, υ)

and:

(a) Determine and plot the relationship between EL(r, θ, υ) and β as well
as between EL(r, θ, υ) and kinetic energy EK/E0 for θ = 0 π (direction
of field contraction).

(b) Determine and plot the relationship between EL(r, θ, υ) and β as well
as between EL(r, θ, υ) and kinetic energy EK/E0 for θ = 1

2π (direction
of field expansion).

SOLUTION:

(a) In the forward direction for θ = 0 the electric field Eυ(r, θ = 0, υ) of (4.1)
simplifies to read

Eυ(r, θ = 0, υ)= E0Cυ |θ=0 = E0(1 − β2)

(1 − β2 sin2 θ)3/2

∣∣∣∣
θ=0

= E0
(
1 − β2), (4.3)

and the same result is obtained for the backward direction θ = π

Eυ(r, θ = π,υ)= E0Cυ |θ=π = E0(1 − β2)

(1 − β2 sin2 θ)3/2

∣∣∣∣
θ=π

= E0
(
1 − β2). (4.4)

Electric fields (4.3) and (4.4) result in the following expressions for the Lorentz
electric field EL(r, θ, υ) contraction as function of charged particle velocity v/c= β
and kinetic energy EK, respectively
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Fig. 4.11 Normalized Lorentz electric field EL/E0 against charged particle normalized velocity β
[see (4.5)] in (A) and against charged particle normalized kinetic energy EK/E0 [see (4.6)] in (B)
for θ = 0 and θ = π

EL(r, θ = 0, υ)= EL(r, θ = π,υ)= Eυ(r, θ = 0, υ)− E0 = −E0β
2 (4.5)

and

EL(r, θ = 0, υ)= EL(r, θ = π,υ)= −E0β
2 = −E0

[
1 − 1

(1 + EK
E0
)2

]
, (4.6)

after we insert into (4.5) the well known relationship between β and EK

EK =E −E0 =E0

(
1√

1 − β2
− 1

)
or β2 = 1 − 1

(1 + EK
E0
)2
. (4.7)

Note: E0 is the isotropic electric field at υ = 0, while E0 is the rest energy of the
charged particle.

Figure 4.11 shows a plot of EL/E0 for θ = 0 and θ = π against β in part (A) and
against EK/E0 in part (B).

(b) In directions perpendicular to the direction of motion of the charged particle
the electric field Ev(r, θ, v) of (4.1) simplifies to read

Eυ

(
r, θ = 1

2
π,υ

)
= E0Cυ

(
υ, θ = 1

2
π

)
= E0(1 − β2)

(1 − β2 sin θ)3/2

∣∣∣∣
θ= 1

2π

= E0
1√

1 − β2
,

(4.8)
resulting in the following expressions for the Lorentz field expansion as a function
of velocity v/c= β and kinetic energy EK of the charged particle
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Fig. 4.12 Normalized Lorentz electric field EL/E0 against charged particle normalized velocity
β [see (4.9)] in (A) and against charged particle normalized kinetic energy EK/E0 [see (4.10)] in
(B) for θ = 1

2π

EL

(
r, θ = 1

2
π,υ

)
= Eυ

(
r, θ = 1

2
π,υ

)
− E0 = E0

[
1√

1 − β2
− 1

]
= E0(γ − 1)

(4.9)
and

EL

(
r, θ = 1

2
π,υ

)
= Eυ

(
r, θ = 1

2
π,υ

)
− E0 = E0(γ − 1)= E0

EK

E0
(4.10)

after we insert into (4.9) the relationship between the Lorentz factor γ =
(1 − β2)−1/2 and kinetic energy EK = E0(γ − 1) with E0 the rest energy of the
charged particle. Figure 4.12 shows a plot of EL/E0 for θ = 1

2π against β in part (A)
and against EK/E0 in part (B).

4.2.Q2 (110)

The intensity of bremsstrahlung radiation, defined as energy flow per unit area
per unit time, is known as the Poynting vector S and its magnitude S = |S| is
given classically as (T4.17)

S = |S| = ε0cE2 = q2a2

16π2ε0c3r2
sin2 θ (4.11)

and relativistically as (T4.25)

S = |S| = ε0cE2 = q2a2

16π2ε0c3r2

sin2 θ

(1 − β cos θ)5
, (4.12)
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where

E is the far field component of the electric field associated with a particle
of charge q accelerated with acceleration a.

c is the speed of light in vacuum.
β is charged particle velocity υ normalized to c.
r is the radius vector connecting charge q with point of interest P .
θ is the angle between υ and r.
ε0 is the electric constant.

Integrating S(r, θ) over area A, calculate the power P emitted by the acceler-
ated charged particle in the form of bremsstrahlung radiation

(a) Use the classical Poynting vector to derive the classical Larmor expres-
sion.

(b) Use the relativistic Poynting vector to derive the relativistic Larmor ex-
pression.

(c) Briefly describe the significance of the Larmor relationship.
(d) Compare the classical result with the relativistic result. Does the rela-

tivistic result transform into the classical result for small velocity υ?

SOLUTION:

Power P (energy per unit time) emitted by the accelerated charged particle as
bremsstrahlung radiation is calculated by integrating the intensity (Poynting vec-
tor) S(r, θ) over area A

P = dE

dt
=
∫
S(r, θ)dA (4.13)

and recognizing that dA = r2 sin θ dθ dφ and the Poynting vector is defined as
[see (T4.16)]

S = |S| =
∣∣∣∣E×B
μ0

∣∣∣∣= EB
μ0
. (4.14)

(a) Classical Larmor expression is calculated inserting (4.11) into (4.13) as

P = dE

dt
=
∫
S(r, θ)dA=

∫ π

0
S(r, θ)r2 sin θ dθ

∫ 2π

0
dφ

= − q2a2

8πε0c3

∫ π

0

(
1 − cos2 θ

)
d(cos θ)= q2a2

6πε0c3
. (4.15)
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(b) Relativistic Larmor expression is calculated inserting (4.12) into (4.13) to
obtain

P = dE

dt
=
∫
S(r, θ)dA=

∫ π

0
S(r, θ)r2 sin θ dθ

∫ 2π

0
dφ

= − q2a2

8πε0c3

∫ π

0

(1 − cos2 θ)d(cos θ)

(1 − β cos θ)5
= q2a2

8πε0c3
J (θ), (4.16)

where the integral J (θ) is calculated by first making the substitution cos θ = x and
d(cos θ)= dx to get

J =
∫ +1

−1

1 − x2

(1 − βx)5 dx. (4.17)

Next, we integrate (4.17) by parts, introducing new variables u= 1 − x2 and dυ =
(1 − βx)−5 dx with du= −2x dx and υ = (4β)−1(1 − βx)−4, to get

J =
∫ +1

−1
udυ = [uυ]x=+1

x=−1 −
∫ +1

−1
υ du= 1

2β

∫ +1

−1

x dx

(1 − βx)4 . (4.18)

Following another simplifying change in variables: ζ = 1 − βx or x = (1 − ζ )/β
and dx = −dζ/β , one obtains the following simple integral

J = 1

2β3

∫ 1+β

1−β
1 − ζ
ζ 4

dζ = 1

2β3

[
− 1

3ζ 3
+ 1

2ζ 2

]1+β

1−β

= 1

2β3

[
− 1

3(1 + β)3 + 1

2(1 + β)2 + 1

3(1 − β)3 − 1

2(1 − β)2
]

= 4

3(1 − β2)3
= 4γ 6

3
. (4.19)

Equation (4.19), when inserted into (4.16), gives the following result for the rela-
tivistic Larmor relationship

P = dE

dt
=
∫
S(r, θ)dA= q2a2

8πε0c3
J (θ)= q2a2

6πε0c3
γ 6. (4.20)

(c) Equations (4.15) and (4.20) are the classical and relativistic Larmor rela-
tionships, respectively, both predicting that the power P emitted in the form of
bremsstrahlung radiation by an accelerated charged particle is proportional to
q2a2
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(1) q2, square of accelerated particle’s charge.

(2) a2, square of particle’s acceleration.

The Larmor relationship represents one of the basic laws of nature and is of

great importance to radiation physics. It is generally expressed as follows: “Any

time a charged particle is accelerated or decelerated it emits part of its ki-

netic energy in the form of bremsstrahlung photons.” Since it is proportional

to a2, as shown in (4.15) and (4.20), the power of bremsstrahlung production

is inversely proportional to m2, the square of the particle’s mass. Thus, proton

by virtue of its relatively large mass mp in comparison with the electron mass

me (mp/me = 1836 ≈ 2000) produces much less bremsstrahlung radiation than

does an electron, specifically about (mp/me)
2 ≈ 4×106 times less. The radiation

stopping power for electrons in comparison to that for protons is over six or-

ders of magnitude larger at the same velocity and in the same absorbing mate-

rial.

As a result of the inversem2 dependence, a heavy charged particle such as proton

traversing a medium loses energy only through ionization (collision) losses and its

radiation losses are negligible. Light charged particles undergo collision as well as

radiation loss in traversing an absorbing medium and the total stopping power for

light charged particles is the sum of collision stopping power and radiation stopping

power.

(d) The classical and relativistic Larmor expressions differ only by the factor γ 6

in the relativistic expression. At low velocities υ the normalized velocity β→ 0 and

the Lorentz factor γ → 1, resulting in identical Larmor expressions given in (4.15).

4.2.Q3 (111)

Intensity of bremsstrahlung radiation emitted by particle of charge q acceler-
ated with acceleration a is given by the Poynting vector S as

S(r, θ)= |S| = q2a2

16π2ε0c3r2

sin2 θ

(1 − β cos θ)5
= C1

sin2 θ

(1 − β cos θ)5
. (4.21)

S(r, θ) is characterized by a characteristic angle θmax at which the intensity
exhibits a maximum value for given q , a, r and β . The characteristic angle
θmax is derived by setting dS/dθ |θ=θmax = 0 and is given by the following
expression (T4.29)
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θmax = arccos

{
1

3β

(√
1 + 15β2 − 1

)}
. (4.22)

The power P emitted in the form of bremsstrahlung is given as

P = q2a2

6πε0c3
γ 6 = C2γ

6. (4.23)

Calculate: (a) bremsstrahlung intensity S(r, θ = θmax) and (b) power P of
emitted bremsstrahlung for given q , a, and r for charged particles with kinetic
energy EK of 1 keV, 100 keV, 1 MeV, and 100 MeV. Normalize your results
to values calculated for EK = 1 keV.

SOLUTION:

(a) Bremsstrahlung intensity S and (b) power P of emitted bremsstrahlung for
various kinetic energies of charged particle were calculated with (4.21) and (4.23),
respectively, and the results are provided in Table 4.5.

(1) β = υ
c

=√
1 − 1/(1 +EK/E0)2 with E0 rest energy of the charged particle.

A plot of β against kinetic energy EK is shown in Fig. 4.13.
(2) For θmax see (4.22) and (T4.29). A plot of θmax against EK is shown in

Fig. 4.14.
(3) For S(r, θ) see (4.21) and (T4.25).
(4) Lorentz factor γ = (1 − β2)−1/2.
(6) For derivation of relativistic Larmor relationship consult Prob. 110(b).

Table 4.5 Bremsstrahlung intensity S(r, θ = θmax) and power P of emitted bremsstrahlung for
various kinetic energies EK of charged particle

EK

1 keV 100 keV 1 MeV 100 MeV

(1) β 0.063 0.548 0.941 0.9999

(2) θmax (deg) 81.2 35.0 10.0 0.4

(3) S(r, θmax)/C1 1.00 6.32 1.41×104 1.6×1015

(4) γ 1.002 1.20 2.96 70.71

(5) γ 6 1.012 2.99 673 1.25×1011

(6) P/C2 1.00 2.95 665 1.235×1011
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Fig. 4.13 Velocity υ normalized to speed of light in vacuum c against kinetic energy EK of the
charged particle

Fig. 4.14 Characteristic angle θmax against kinetic energy EK of the charged particle

4.2.Q4 (112)

Maximum bremsstrahlung intensity produced by an accelerated light charged
particle (CP) is emitted in a direction defined by the bremsstrahlung charac-
teristic angle θmax expressed as follows (T4.29)

θmax = arccos

{
1

3β

[√
1 + 15β2 − 1

]}
, (4.24)
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where β is the normalized CP velocity related to CP kinetic energy EK as
follows (T2.6)

β =
[

1 −
(

1 + EK

E0

)−2]− 1
2

, (4.25)

with E0 the rest energy of the light CP (E0 =mec
2 = 0.511 MeV).

(a) Show that the expression (4.24) in conjunction with (4.25) in the highly
relativistic region where β→ 1 and γ → ∞ can be simplified to read

θmax ≈ 1

2(1 + EK
E0
)
. (4.26)

(b) Show that the expression (4.24) in conjunction with (4.25) in the clas-
sical region where β→ 0 and γ → 1 can be simplified to read

θmax ≈ 1

2

(
π − 5

√
2EK

E0

)
. (4.27)

(c) Plot θmax of (4.24) against kinetic energy EK in the EK range
10−4 MeV ≤ EK ≤ 104 MeV and show how the approximations de-
rived in (a) and (b) fit the general θmax function.

SOLUTION:

(a) Extreme relativistic region. Equation (4.24) that gives the general relation-
ship between θmax and β can be also expressed as follows

cos θmax = 1

3β

[√
1 + 15β2 − 1

]
. (4.28)

Since in the extreme relativistic region β → 1, γ → ∞, and θmax → 0, we can
simplify (4.28) using the following steps:

(1) Function cos θmax is expanded into the following series

cos θmax = 1 − θ2
max

2! + θ4
max

4! − θ6
max

6! + · · · + (−1)n
θ2n

max

(2n)! . (4.29)

(2) The Lorentz factor γ = 1/
√

1 − β2 is modified to give β as a function of γ

β2 = 1 − 1

γ 2
and

1

β
= 1√

1 − 1
γ 2

≈ 1 + 1

2γ 2
for γ → ∞. (4.30)
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(3) The term 1
3β [√1 + 15β2 − 1] is now written in terms of γ and Taylor expan-

sion is used on the square root term
√

1 − 15/(16γ 2) ≈ 1 − 15/(32γ 2) for
γ → ∞

1

3β

[√
1 + 15β2 − 1

] = 1

3

(
1 + 1

2γ 2

)[√
1 + 15

(
1 − 1

γ 2

)
− 1

]

≈ 1

3

(
1 + 1

2γ 2

)[
4

(
1 − 15

32γ 2

)
− 1

]

=
(

1 + 1

2γ 2

)(
1 − 5

8γ 2

)
≈ 1 − 1

8γ 2
. (4.31)

(4) We now take the first two terms of the cos θmax series of (4.29) and neglect all
higher order terms since θmax → 0 and merge them with (4.31) to get a simple
expression for θmax as a function of γ and β

cos θmax = 1 − θ2
max

2
= 1 − 1

8γ 2
or θmax ≈ 1

2γ
=

√
1 − β2

2
. (4.32)

From (4.25) we note that

1 − β2 = 1

(1 + EK
E0
)2

and
√

1 − β2 = 1

(1 + EK
E0
)

(4.33)

and, after inserting (4.33) into (4.32), we get the following simple expression
for the bremsstrahlung characteristic angle θmax as a function of kinetic energy
EK of the bremsstrahlung-producing light charged particle in the extreme rel-
ativistic region

θmax ≈ 1

2γ
=

√
1 − β2

2
= 1

2(1 + EK
E0
)
. (4.34)

(b) Classical region. We again start with (4.24), consider the classical region
where β→ 0, γ → 1, and θmax → 1

2π , and get the following modified expression

θmax = arccos

{
1

3β

[√
1 + 15β2 − 1

]}

≈ arccos

{
1

3β

[
1 + 15

2
β2 + · · · − 1

]}
= arccos

{
5β

2

}
, (4.35)

where we used the Taylor expansion of the square root term for small β . In classical
mechanics we have the following simple expression for EK as a function of β

EK = meυ
2

2
= 1

2
mec

2β2 = 1

2
E0β

2 or β =
√

2EK

E0
. (4.36)
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Fig. 4.15 Bremstrahlung characteristic angle θmax against kinetic energy EK of the electron pro-
ducing bremsstrahlung. Three equations are shown: (1) general expression (4.24) in conjunctions
with (4.25), (2) approximation (4.26) holding in the extreme relativistic region, and (3) approxi-
mation (4.27) holding in the classical region

We now get the following expression for θmax as a function of kinetic energy EK

θmax ≈ arccos

√
12.5EK

E0
(4.37)

which, for EK � E0, allows the following series expansion of the
arccos

√
12.5EK/E0 function

θmax ≈ arccos

√
12.5EK

E0
≈ 1

2

(
π − 5

√
2EK

E0

)
, (4.38)

obtained with the use of only the first two terms of the series expansion. The series
expansion of the function arccosx, converging for |x| < 1, is in general expressed
as follows

arccosx ≈ π

2
−
[
x + x3

2×3
+ 1×3x5

2×4×5
+ · · · + 1×3×5 · · · (2n− 1)x2n+1

2×4×6×· · · (2n)×(2n+ 1)

]
.

(4.39)

(c) The three equations for θmax: the general equation (4.24) in conjunction
with (4.25) and the two approximations, (4.26) for the extreme relativistic region
where β → 1, γ → ∞, and θmax → 0, and (4.27) for the classical region where
β→ 0, γ → 1, and θmax → 1

2π , are plotted in Fig. 4.15.



254 4 Production of X Rays

It is obvious that the two approximations represent excellent simplifications
of (4.24) in their respective areas of applicability: (4.26) in the extreme relativis-
tic region (for EK > 2 MeV) and (4.27) in the classical region (for EK < 1 keV).

4.2.Q5 (113)

In bremsstrahlung production the characteristic angle θmax is defined as the
angle θ at which the maximum intensity of the emitted bremsstrahlung occurs.
In (T4.29) θmax is expressed as follows

θmax = arccos

{
1

3β

[√
1 + 15β2 − 1

]}
, (4.40)

where β is the normalized velocity of the light charged particle producing
bremsstrahlung.

(a) Determine the characteristic angle θmax at which the electron kinetic
energy EK equals the electron rest energy E0 =mec

2 = 0.511 MeV.
(b) Derive an expression for electron kinetic energy EK as a function of the

characteristic bremsstrahlung angle θmax.
(c) Use the expression for EK(θmax) derived in (b) to determine electron ki-

netic energy EK at which maximum bremsstrahlung intensity is emitted
with a characteristic angle θmax of 1◦.

(d) Show results of (a) and (c) on a plot of θmax againstEK for 0.0001 MeV ≤
EK ≤ 100 MeV.

SOLUTION:

(a) To determine the bremsstrahlung characteristic angle θmax we will use (4.40)
but must first determine the normalized electron velocity β for kinetic energy EK =
E0 using the standard relativistic expression (T2.7) for β(EK)

β =
√

1 − 1

(1 + EK
E0
)

=
√

1 − 1

4
= 0.866. (4.41)

Next we insert β calculated in (4.41) into (4.40) and get

θmax = arccos

{
1

3β

[√
1 + 15β2 − 1

]}

= arccos

{
1

3×0.866
×[√

1 + 15×0.8662 − 1
]}

= arccos 0.9622 = 0.276 rad = 15.8◦. (4.42)
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Thus, the characteristic angle θmax for bremsstrahlung produced by a light charged
particle whose kinetic energy EK equals its rest energy E0 is 15.8◦ (0.276 rad).

(b) To derive an expression for EK(θmax) we first solve (4.40) for β and then
insert the derived expression for β(θmax) into the standard relativistic expression for
EK(β) expressed as follows

EK = (γ − 1)E0 =
(

1√
1 − β2

)
mec

2. (4.43)

To derive β(θmax) we express (4.40) in the following form

cos θmax =
{

1

3β

[√
1 + 15β2 − 1

]}
(4.44)

and solve for β to get

9β2 cos2 θmax + 6β cos θmax + 1 = 1 + 15β2 or 9β cos2 θmax + 6 cos θmax = 15β.
(4.45)

The normalized velocity β(θmax) is thus from (4.45) given as

β = 6 cos θmax

15 − 9 cos2 θmax
. (4.46)

(c) Inserting β of (4.46) into (4.43) results in the following general expression for
EK(θmax) and the following kinetic energy EK after insertion of θmax = 1◦

EK = E0

[
1√

1 − ( 6 cos θmax
15−9 cos2 θmax

)2
− 1

]

= (0.511 MeV)×
[

1√
1 − ( 6 cos(1◦)

15−9 cos2(1◦) )
2

− 1

]

= 14.13 MeV. (4.47)

The expression for EK(θmax) of (4.47) is somewhat cumbersome; however, it is
possible to simplify it by using a simple approximation for θmax valid for relativistic
kinetic energy EK and given as follows (T4.36)

θmax = arccos

{
1

3β

[√
1 + 15β2 − 1

]}≈ 1

2γ
= 1

2

√
1 − β2. (4.48)

We now express 1 − β2 in terms of θmax using (4.48) and then in terms of EK/E0
using (4.41) to get

1 − β2 = 4θ2
max = 1

(1 + EK
E0
)2
. (4.49)
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Fig. 4.16 Characteristic angle θmax against kinetic energy EK of the light charged particle pro-
ducing bremsstrahlung. Point A represents the result of calculation in (a), point C the result of
calculation in (c)

In (4.49) we have a very simple relationship linking θmax withEK and solving (4.49)
for θmax results in a very simple expression (4.50) for EK as a function of θmax.
Inserting θmax = 1◦ into (4.50) gives the same answer for EK as did (4.47) above

EK =E0

[
1

2θmax
− 1

]
= (0.511 MeV)×

[
180

2π
− 1

]
= 14.13 MeV. (4.50)

Kinetic energy EK of a light charged particle that produces bremsstrahlung with
θmax = 1◦ is 14.13 MeV.

(d) Results of (a) and (c) are shown as data points A and C, respectively, in
Fig. 4.16 which represents a plot of bremsstrahlung characteristic angle θmax against
kinetic energy EK of the light charged particle producing bremsstrahlung radiation.

4.3 Synchrotron Radiation

4.3.Q1 (114)

Radiation emitted by a charged particle in circular motion in a cyclic acceler-
ator or a storage ring is called synchrotron radiation. Since the effect occurs
under the influence of a magnetic field that keeps the particle in a circular
orbit, it is sometimes called magnetic bremsstrahlung.

(a) Using Larmor relationship determine the general expression for power
P radiated by a relativistic particle of charge q and velocity υ(t) mov-
ing in a circular orbit.
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(b) Using the result of (a) determine the general expression for energy loss
�E per revolution for electrons and protons in a cyclic accelerator.

(c) For electrons accelerated to 25 MeV in a betatron determine the energy
loss per revolution if the central orbit radius R = 0.5 m.

(d) For protons accelerated to 250 MeV in a synchrotron determine the
energy loss per revolution if the radius R of the orbit is 3 m.

SOLUTION:

(a) The general Larmor relationship gives power P of radiation emitted by particle
of charge q subjected to acceleration a

P = dE

dt
= q2a2

6πε0c3
(4.51)

and the relativistic acceleration a for a particle in circular motion is given as

a = 1

m0

dp

dt ′
= 1

m0

d(γm0υ)

dt

dt

dt ′
= γ 2 dυ

dt
= γ 2 υ

2

R
, (4.52)

where p is the relativistic particle momentum, t ′ is the time in the reference frame
of the particle, γ is the Lorentz factor [γ = dt/dt ′ = 1/

√
1 − β2], R is the radius of

the circular orbit, and dυ/dt = υ2/R is the classical particle acceleration for circular
motion.

The emitted power P of (4.51) is thus given as

P = q2a2

6πε0c3
= c

6πε0

q2γ 4β4

R2
= c

6πε0

β4

(1 − β2)2

q2

R2
= c

6πε0

q2β4

R2

[
E

E0

]4

,

(4.53)
where we have used the standard expression for total energy E of a particle E =
γE0, with E0 the rest energy of the particle.

(b) Energy loss �E per revolution is calculated by multiplying power P of (4.53)
with the time τ for one revolution, given as τ = 2πR/υ , to get

�E = Pτ = c

6πε0

q2β4

R2

[
E

E0

]4 2πR

υ
= q2β3

3ε0R2

[
E

E0

]4

, (4.54)

indicating that energy loss per revolution is inversely proportional to the radius R
of the orbit and proportional to the fourth power of E/E0. For a given particle total
energy E the energy loss �E is inversely proportional to the rest mass E0 of the
particle, therefore synchrotron radiation is much more important for electrons than
for protons and it places a practical limitation on the maximum energy achievable
in a betatron.
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Energy loss per revolution for relativistic electrons (β ≈ 1) is from (4.54) calcu-
lated as

�Eelectron = q2β3

3ε0R

[
E

E0

]4

= e×1.6×10−19 A · s

3×8.85×10−12[A · s/(V · m)]×R×(0.511 MeV)4

=
{

8.84×10−8 eV · m

(MeV)4

}
E4

R
, (4.55)

while energy loss per revolution for relativistic protons is from (4.54) calculated as

�Eproton = q2β3

3ε0R

[
E

E0

]4

= e×1.6×10−19 A · s

3×8.85×10−12[A · s/(V · m)]×R×(938.3 MeV)4

=
{

7.78×10−21 eV · m

(MeV)4

}
E4

R
. (4.56)

(c) Energy loss �E per revolution for 25 MeV electrons in a betatron with
R = 0.5 m is according to (4.55) calculated as follows

�Eelectron =
{

8.84×10−8 eV · m

(MeV)4

}
E4

R

= 8.84×10−8 eV · m

(MeV)4
(25 + 0.511)4 (MeV)4

0.5 m
= 0.075 eV. (4.57)

(d) Energy loss �E per revolution for 250 MeV protons in a synchrotron with
R = 3 m is according to (4.56) calculated as

�Eproton =
{

7.78×10−21 eV · m

(MeV)4

}
E4

R

= 7.78×10−21 eV · m

(MeV)4
(250 + 938.3)4 (MeV)4

3 m
= 5.2×10−9 eV.

(4.58)

4.4 Čerenkov Radiation

4.4.Q1 (115)

Energetic charged particles moving through an optically transparent dielectric
absorber with uniform velocity υi that exceeds the phase velocity of light cn
in the particular absorber give rise to emission of photons called Čerenkov
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radiation. The photons are emitted along the surface of a forward directed
cone centered on the charged particle direction of motion and the cone is
specified with the following relationship

cos θCer = cn

υi
+CR = c

nυi
+CR = 1

nβi
+CR ≈ 1

nβi
, (4.59)

where n is the index of refraction for the transparent absorber, βi is the veloc-
ity of the incident particle normalized to the speed of light in vacuum c, and
CR is a small correction accounting for the recoil of the charged particle as a
result of the emission of a Čerenkov photon.

(a) Use relativistic expressions for conservation of total energy and mo-
mentum to derive (4.59) corrected for the recoil of the charged particle
as a result of the emission of the Čerenkov photon.

(b) Show that the recoil correction CR is exceedingly small and therefore
can be neglected.

SOLUTION:

Figure 4.17 depicts the process of production of a Čerenkov photon. A relativistic
particle moves with velocity υi and momentum pi along the abscissa (x) axis. At
the origin of the coordinate system a Čerenkov photon of energy hν = hc/(νλ) and
momentum pν is produced and emitted at an angle θCer, called Čerenkov angle,
while the particle is deflected through an angle φ and continues with momentum pf

and velocity υf that is smaller than υi.

(a) The derivation of the Čerenkov angle equation is carried out similarly to the
derivation of the Compton wavelength shift equation (T7.44) with the use of rela-
tivistic relationships for conservation of total energy E and momentum p.

The following well-known expressions will be used in the derivation:

pi = γim0υi; pf = γfm0υf; pν = h

λ
; γi = 1√

1 − β2
i

=
[

1 − υ2
i

c2

]− 1
2 ;

γf = 1√
1 − β2

f

=
[

1 − υ2
f

c2

]− 1
2 ; Ei = γim0c

2 =
√
E2

0 + p2
i c

2;

Ef = γfm0c
2 =

√
E2

0 + p2
f c

2; Eν = hν = hc

nλ
;
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Fig. 4.17 Production of a Čerenkov photon. A relativistic particle moves in an absorber with
velocity υ i and momentum pi along the abscissa (x) axis. The particle velocity υi exceeds the
speed of light in the absorber and, as a result, Čerenkov radiation is produced and emitted in a
direction defined by the Čerenkov angle θν . The particle is deflected under recoil angle φ and
continues with momentum pf and velocity υf that is smaller than υi

wherem0 is the rest mass of the particle while Ei, Ef, and Eν are, respectively, total
incident energy of the charged particle, total final energy of the charged particle, and
energy of the Čerenkov photon.

Conservation of energy in Čerenkov effect is expressed as follows:

Ei =Ef +Eν or γim0c
2 = γfm0c

2 + hc

nλ
or

√
E2

0 + p2
i c

2 =
√
E2

0 + p2
f c

2 + hc

nλ
.

(4.60)

Conservation of momentum along the abscissa (x) axis:

pi = pf cosφ + pν cos θν. (4.61)

Conservation of momentum along the ordinate (y) axis:

0 = pf sinφ − pν sin θν. (4.62)

Using the law of cosines in conjunction with Fig. 4.17 we express p2
f as follows

p2
f = p2

i + p2
ν − 2pipν cos θν, (4.63)

and then derive another expression for p2
f , first rearranging the conservation of en-

ergy equation (4.60) as follows
√
E2

0 + p2
f c

2 =
√
E2

0 + p2
i c

2 − hc

nλ
(4.64)

and then squaring (4.64) to get

p2
f c

2 = p2
i c

2 + h2c2

n2λ2
− 2hc

nλ

√
E2

0 + p2
i c

2 ≡ p2
i c

2 + h2c2

n2λ2
− 2hc

nλ
Ei. (4.65)



4.4 Čerenkov Radiation 261

Table 4.6 Parameters of Čerenkov interaction between energetic electron or proton and water

Rest energy
m0c

2 (MeV)
λC (Å)
(1)

βthr in water
(2)

γthr at βthr
(3)

1
nβthr

Recoil term
(4)

Electron mec
2 = 0.511 2.43×10−3 0.752 1.52 1 1.14×10−6

Proton mpc
2 = 938.3 1.32×10−5 0.752 1.52 1 6.32×10−10

(1) λC = h
m0c

; (2) βthr = 1
n

; (3) γthr = 1√
1−β2

thr

; (4) λC
2βthrγthrλ

[1 − 1
n2 ]

After multiplying (4.64) with c2, we equate the result with (4.65) and obtain the
following expression for cos θCert

cos θν = 2hc

nλ

Ei

2pipνc2
+ p2

νc
2

2pipνc2
− h2c2

n2λ2

1

2pipνc2

= 2hc

nλ

(γim0c
2)λ

2(γim0υi)hc2
+ h2c2λ

2λ2(γim0υi)hc2
− h2c2

n2λ2

λ

2(γim0υi)hc2

= c

nυi
+ h

2λ(γim0υi)

[
1 − 1

n2

]
= 1

nβi
+ 1

2

λdB

λ

[
1 − 1

n2

]

= 1

nβi
+ 1

2βiγi

λC

λ

[
1 − 1

n2

]
≈ 1

nβi
, (4.66)

where λdB is the de Broglie wavelength of the charged particle (T2.1) given as

λdB = h

pi
= 2π�c

EK

√
1 + 2E0

EK

= h

γim0υi
= λC

βiγi
, (4.67)

with λC the Compton wavelength of the charged particle (T7.44) defined as

λC = h

m0c
. (4.68)

The final term of (4.66) represents the charged particle recoil term in Čerenkov
interaction.

(b) Čerenkov angle θCer of (4.66) consists of two terms, both terms dependent on
the velocity βi of the incident particle and the index of refraction n of the transparent
absorber. The second term, several orders of magnitude smaller than the first term
1/(nβi), originates from the particle recoil and is usually neglected.

To assess the magnitude of the recoil term λC(1 − 1/n2)/(2βiγiλ) we evaluate
the term for passage of electrons and protons through water at threshold velocity
βthr = 1/n= 1/1.33 = 0.752 assuming a typical Čerenkov radiation wavelength λ
of 4000 Å. The results, displayed in Table 4.6, show that the recoil term for electrons
is 6 orders of magnitude smaller than the 1/(nβi) term, while for protons the recoil
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term is even smaller (1836 times smaller than that for electrons since mp/me =
1836). It is thus reasonable in discussions of Čerenkov angle θCer to neglect the
recoil term and use a much simpler equation expressed as cosθCer = 1/(nβi).

4.4.Q2 (116)

Čerenkov radiation is emitted in a forward directed cone centered on the
charged particle direction of motion. The half-cone angle θCer, referred to
as the Čerenkov angle, depends on the index of refraction n of the transparent
absorber and on the velocity βi of the incident charged particle, and is defined
by the following expression

θCer = cos−1 1

nβi
= cos−1

{
n

√
1 − 1

[1 + (EK)i
E0

]2

}−1

, (4.69)

where (EK)i and βi are the kinetic energy and velocity normalized to speed
of light c in vacuum, respectively.

The normalized velocity βi that can produce Čerenkov radiation in a trans-
parent dielectric absorber ranges from a minimum βi referred to as thresh-
old normalized velocity βthr up to βi = 1, corresponding to a range in θCer
from a minimum Čerenkov angle (θCer)min up to a maximum Čerenkov angle
(θCer)max.

For four transparent dielectric absorbers: water (n= 1.33); Lucite (n= 1.50);
sapphire (n= 1.76); and diamond (n= 2.15) traversed by electrons:

(a) Determine the threshold velocity (βi)thr and threshold kinetic energy
(EK)thr/E0.

(b) Determine the minimum Čerenkov angle (θCer)min, maximum Čerenkov
angle (θCer)max, and the dynamic range of θCer in terms of normalized
velocity βi as well as normalized kinetic energy (EK)i of the incident
electron.

(c) Plot θCer against βi for 0 ≤ βi ≤ 1.
(d) Plot θCer against (EK)i/E0 for 0 ≤ (EK)i/E0 ≤ 10.

SOLUTION:

(a) A charged particle moving with uniform velocity in vacuum does not emit
radiation either in the form of bremsstrahlung radiation or in the form of Čerenkov
radiation. However, a charged particle moving with uniform velocity in a transparent
dielectric absorber does not emit bremsstrahlung radiation but may emit Čerenkov
radiation if the velocity of the charged particle exceeds the speed of light c in the
transparent absorber.
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Note: to emit bremsstrahlung radiation a charged particle must be accelerated or
decelerated either in vacuum or in an absorber. Thus, for bremsstrahlung produc-
tion the necessary condition is the acceleration of charged particle; for emission
of Čerenkov radiation the necessary condition is transparent absorber and particle
velocity exceeding speed of light in absorber.

(1) Threshold velocity (βi)thr is defined as the minimum normalized velocity of a
charged particle that produces Čerenkov radiation in a given dielectric absorber and
this velocity is equal to the phase velocity of light cn in the given absorber expressed
as cn = c/n where c is the speed of light in vacuum (c = 3×108 m/s) and n is the
index of refraction of the dielectric absorber. Threshold velocity (υi)thr is thus given
as

(υi)thr = c

n
or (βi)thr = (υi)thr

c
= 1

n
. (4.70)

Equation (4.70) was used to determine the normalized threshold velocity (βi)thr
for electrons propagating in four dielectric materials: water, Lucite, sapphire, and
diamond. Results of the calculation are listed in column (3) of Table 4.7.

(2) Threshold kinetic energy (EK)thr is defined as the minimum charged particle
kinetic energy that produces Čerenkov radiation in a given transparent dielectric
absorber. It is related to threshold velocity (βi)thr through the standard relativistic
EK versus β relationship as (T2.7)

(EK)thr =E0

[
1√

1 − (βi)
2
thr

− 1

]
=E0

[
1√

1 − 1
n2

− 1

]
or

(βi)thr =
√

1 − 1

[1 + (EK)thr
E0

]2
.

(4.71)

For the four transparent dielectrics of Table 4.7 (water, Lucite, sapphire, and di-
amond) (4.71) was used to determine the threshold kinetic energy (EK)thr based
on normalized threshold velocity (βi)thr listed in column (3) and the results of the
(EK)thr calculation are listed in columns (4) and (5) of Table 4.7.

(b) In (4.66) we saw that Čerenkov radiation is emitted in a forward directed cone
centered on the charged particle direction of motion. The cone is specified with the
following Čerenkov angle θCer given, based on consideration of energy and momen-
tum conservation, as

θCer = 1

βin
. (4.72)

For a given transparent dielectric the minimum Čerenkov angle (θCer)min is related
to the normalized threshold velocity (βi)thr of (4.70) as follows

(θCer)min = cos−1
{

1

(βi)thrn

}
= cos−1 1 = 0. (4.73)
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Table 4.7 Basic parameters of Čerenkov radiation produced by energetic electrons in various
transparent dielectric materials

(1) (2) (3) (4) (5) (6) (7)

Dielectric
absorber

n (βi)thr = 1
n

(EK)thr/E0 (EK)thr (MeV) (θCer)min (θCer)max

Water 1.33 0.752 0.517 0.264 0 41.2◦

Lucite 1.50 0.667 0.342 0.175 0 48.2◦

Sapphire 1.76 0.568 0.215 0.110 0 55.4◦

Diamond 2.15 0.465 0.130 0.066 0 62.3◦

The maximum Čerenkov angle (θCer)max is determined from the following limit for
βi → 1

(θCer)max = lim
βi→1

θCer = lim
βi→1

cos−1
{

1

βin

}
= cos−1 1

n
(4.74)

or

(θCer)max = lim
(EKi )i→∞ θCer

= lim
(EKi )i→∞ cos−1

{
1

n

[
1 −

(
1 + (EK)i

E0

)−2]− 1
2
}

= cos−1 1

n
. (4.75)

Equation (4.73) shows that (θCer)min = 0 for all transparent dielectric materials
while, as shown by (4.75), (θCer)max depends on the refractive index n of the mate-
rial. Results of the calculation of (θCer)max for four dielectric materials are listed in
column (6) of Table 4.7.

The following conclusions can now be made with regard to Čerenkov angle θCer:

(1) For Čerenkov radiation to occur the charged particle velocity υi must exceed
the threshold velocity (υi)thr = (βi)thrc= c/n, where n is the index of refrac-
tion of the absorbing medium and c is the speed of light in vacuum.

(2) The dynamic range of Čerenkov angles θCer from (θCer)min = 0 to (θCer)max =
cos−1 1/n corresponds to:

(i) Range in βi from (βi)thr = 1/n to βi → 1 or
(ii) Range in (EK)i from (EK)thr =E0[1/

√
1 − (1/n)2 −1] to (EK)i → ∞.

(c) Plot of Čerenkov angle θCer against normalized velocity βi of (4.72) for elec-
trons in various transparent dielectric absorbers (water, Lucite, sapphire, and dia-
mond) in the range 0 ≤ βi ≤ 1 is shown in Fig. 4.18. For a given dielectric material
the diagram provides (βi)thr = 1/n at θCer = 0 and provides (θCer)max = cos−1(1/n)
at βi → 1.
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Fig. 4.18 Čerenkov angle θCer against normalized velocity βi of the incident electron

Fig. 4.19 Čerenkov angle θCer against normalized kinetic energy (EK)i/E0 of the incident elec-
tron

(d) Plot of Čerenkov angle θCer against normalized kinetic energy (EK)thr/E0 for
electrons in various transparent dielectric absorbers in the range 0 ≤ (EK)thr/E0 ≤
10 is shown in Fig. 4.19. For a given dielectric material the diagram pro-
vides (EK)thr/E0 = {[1 − (1/n)2]−1/2 − 1} at θCer = 0 and provides (θCer)max =
cos−1(1/n) at (EK)i → ∞.



5Two-Particle Collisions

Chapter 5 consists of 10 problems covering two-particle collisions in 3 sec-
tions. Two particle collisions are well known in nuclear physics and radiation
dosimetry. Typically, these collisions are characterized by an energetic pro-
jectile striking a stationary target and resulting in the most general case in an
intermediate compound that subsequently decays into two reaction products.

Three categories of charged particles are considered as projectile: (1) light
charged particles such as electron and positron, (2) heavy charged particle,
such as proton and alpha particle, and (3) neutral particle, such as neutron. The
possible targets are: (1) atoms as a whole, (2) atomic nuclei, and (3) atomic
orbital electrons. The collisions are classified into three categories: (1) nuclear
reactions, (2) elastic collisions, and (3) inelastic collisions.

The many types of interacting particles as well as the various possible cat-
egories of interactions result in a wide range of two-particle collisions of in-
terest in nuclear physics and medical physics.

Problems in Sect. 5.1 deal with general aspects of two-particle collisions in
classical physics, while Sect. 5.2 introduces nuclear reactions and addresses
issues related to reactionQ value and threshold energy. Section 5.2 also deals
with the relationship between reaction Q value and threshold energy and ad-
dresses the relationship between the two as well as the various methods to
determine Q value, such as the atomic rest energy method, the nuclear rest
energy method, and the binding energy method.

Section 5.3 concentrates on elastic two-particle collisions and energy trans-
fer from the projectile to the target in this type of collision covering the gen-
eral energy transfer as well as maximum energy transfer using classical and
relativistic physics.
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5.1 Collisions of Two Particles: General Aspects

5.1.Q1 (117)

An electron e of rest energy mec
2 = 0.511 MeV collides head-on with

a stationary hydrogen atom H of rest energy mHc
2 ≈ mpc

2 + mec
2 =

938.272 MeV + 0.511 MeV = 938.783 MeV.

(a) Determine the fraction of the incident electron kinetic energy (Ee
K)i

transferred as kinetic energy (EH
K)f to the hydrogen atom, assuming that

the collision is elastic.
(b) Determine the minimum initial velocity υe

i and minimum kinetic en-
ergy (Ee

K)i of the incident electron assuming that the collision is inelas-
tic which means that the hydrogen atom, in addition to kinetic energy
(EH

K)f also acquires a characteristic energy E∗ from the incident elec-
tron.

SOLUTION:

(a) For elastic one-dimensional collision, in conjunction with classical mechanics
and the following notation:

υi and υf are the initial and final velocities, respectively, of the electron
ui = 0 and uf are the initial and final velocities, respectively, of the hydrogen
atom,

we consider conservation of momentum p and kinetic energy EK as follows

pe
i = pe

f + pH
f or meυi =meυf +mHυf (5.1)

and
(
Ee

K

)
i = (

Ee
K

)
f + (

EH
K

)
f or

1

2
meυ

2
i = 1

2
meυ

2
f + 1

2
mHυ

2
f . (5.2)

We solve (5.1) for υf and insert the result υf = υi − (mH/me)uf into (5.2) to get

υi = 1

2

(
mH

me
+ 1

)
uf or

uf

υi
= 2me

me +mH
. (5.3)

The fractional energy transfer �Emax/(E
e
K)i from the incident electron with kinetic

energy (Ee
K)i to hydrogen atom (EH

K)f is now given as follows

�Emax

(Ee
K)i

= (EH
K)f

(Ee
K)i

= (Ee
K)i − (Ee

K)f

(Ee
K)i

=
1
2mHu

2
f

1
2meυ

2
i

= 4memH

(me +mH)2
≈ 4me

mH

= 0.0022 = 0.22 %. (5.4)



5.1 Collisions of Two Particles: General Aspects 269

(b) In inelastic collision conservation of momentum remains the same as in elastic
collision; however, the conservation of energy accounts also for the characteristic
energy E∗ that is transferred from the electron to hydrogen atom in addition to
kinetic energy.

Conservation of momentum thus reads

meυi =meυf +mHυf (5.5)

and conservation of energy

1

2
meυ

2
i = 1

2
meυ

2
f + 1

2
mHυ

2
f +E∗. (5.6)

Again, we solve (5.5) for υf and insert the result υf = υi − (mH/me)uf into (5.6) to
get the following quadratic equation for uf as a function of υi and E∗

mH

me

(
mH

me
+ 1

)
u2

f − 2
mH

me
υiuf + 2

E∗

me
= 0. (5.7)

The two general solutions of (5.7) are

uf =
2mH
me
υi ±

√
(2mH
me
υi)2 − 4mH

me
(mH
me

+ 1) 2E∗
me

2mH
me
(mH
me

+ 1)
. (5.8)

A physically meaningful solution to (5.7) requires that the radical in uf be real and
we thus get the following inequality

(
2
mH

me
υi

)2

≥ 4
mH

me

(
mH

me
+ 1

)
2E∗

me
, (5.9)

that gives the following result for the minimum required velocity (υi)min and mini-
mum required kinetic energy [(Ee

K)i]min of the incident electron

(υi)min =
√

2E∗mH +me

memH
≈
√

2E∗
me

(5.10)

and

[(
Ee

K

)
i

]
min = meυ

2
min

2
=E∗

(
1 + me

mH

)
. (5.11)

The result for the minimum kinetic energy of (5.11) indicates that the incident
electron must possess a kinetic energy that exceeds slightly the characteristic en-
ergy E∗.
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5.1.Q2 (118)

Two billiard balls of unknown masses m1 and m2 collide, with the projectile
m1 moving with velocity υ before collision and the target m2 stationary be-
fore collision. After collision m1 has a speed of 1

2υ and moves at 90° to its
original direction.

(a) Determine the direction of motion of billiard ball m2 after the collision.
(b) Determine the ratiom1/m2 between the masses of the two billiard balls.
(c) Determine the velocity of billiard ball m2 as a function of the incident

velocity υ of billiard ball m1.
(d) Determine the energy transfer fraction from ball m1 to ball m2 in the

collision.

SOLUTION:

A schematic diagram of the collision is presented in Fig. 5.1, with m1 and m2 the
two billiard balls; the origin of the Cartesian coordinate system at the center of the
stationary ball m2 before collision; υ1 = υ the velocity of ball m1 before collision;
u1 = 1

2υ the velocity of ballm1 after collision; υ2 = 0 the velocity of ballm2 before
collision; u2 the velocity of ball m2 after collision; θ = 1

2π the scattering angle of
the projectile; and φ the recoil angle of the target.

Parameters of the collision process are evaluated using conservation of momen-
tum p and kinetic energy EK as follows:

Fig. 5.1 Schematic diagram of the collision between billiard ball m1 with billiard ball m2. The
projectile m1 is scattered with scattering angle θ = 1

2π , the target m2 recoils with angle φ
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Conservation of momentum (x component):

m1υ1 =m1u1 cos θ +m2u2 cosφ. (5.12)

Conservation of momentum (y component):

0 = −m1u1 sin θ +m2u2 sinφ = −m1u1 +m2u2 sinφ. (5.13)

Conservation of kinetic energy

1

2
m1υ

2
1 = 1

2
m1u

2
1 + 1

2
m2u

2
2. (5.14)

(a) Recoil angle φ will be determined from (5.12) and (5.13) for conservation of
momentum as follows (note: scattering angle θ = 1

2π ). From (5.12) and (5.13) we
get, respectively,

m1υ1 =m2u2 cosφ or m1υ =m2u2 cosφ (5.15)

and

m1u1 =m2u2 sinφ or m1

(
1

2
υ

)
=m2u2 sinφ, (5.16)

and from (5.15) and (5.16) it follows that tanφ = 1
2 or φ = arctan 0.5 = 26.57◦.

(b) The ratio m1/m2 is calculated from the conservation of energy (5.14) in con-
junction with (5.15) as follows

1

2
m1υ

2 = 1

2
m1

(
1

2
υ

)2

+ 1

2
m2u

2
2 or

m1

m2
= 4

3

(
u2

υ

)2

= 4

3

(
m1

m2

)2

cos−2 φ,

(5.17)
where we used (5.15) to obtain u2/υ = m1/(m2 cosφ) and insert it into (5.17) to
get ratio m1/m2

m1

m2
= 3

4
cos2 φ = 0.60. (5.18)

(c) Velocity u2 as a function of incident velocity υ is easily determined from (5.15)
and (5.18)

u2 = m1

m2

υ

cosφ
= 0.6υ

cos(26.57◦)
= 0.67υ. (5.19)

(d) Energy transfer fraction �EK/(EK)i where (EK)i is the initial kinetic energy
of ball m1 is given as

�EK = m2u
2
2

2
= m1υ

2

2
− m1(

1
2υ)

2

2
= 3

4
(EK)i or

�EK

(EK)i
= 3

4
. (5.20)
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5.2 Nuclear Reactions

5.2.Q1 (119)

In 1932 Chadwick discovered the neutron by bombarding beryllium 9
4Be with

α particles to produce neutron from the following nuclear reaction

9
4Be + α = 12

6C + n or 9
4Be(α,n)12

6C, (5.21)

where reactants 9
4Be and α particle are the target and projectile, respectively,

and 12
6C and n are reaction products carbon-12 and neutron, respectively. In

general, reaction energy is referred to asQ value; positive (Q> 0) in exother-
mic reaction and negative (Q< 0) in endothermic reaction.

(a) State three methods that can be used in calculation of Q value of a
nuclear reaction.

(b) DetermineQ value of the Chadwick nuclear reaction used in discovery
of the neutron.

(c) Is the Chadwick reaction exothermic or endothermic? If it is exother-
mic, can the reaction occur spontaneously or at very low kinetic energy
of α particle?

SOLUTION:

Figure 5.2 shows a schematic diagram of a binary nuclear reaction characterized as
a two-particle collision of a projectile with rest mass M1, velocity υ1, momentum
p1, and kinetic energy (EK)1 striking a stationary target with massM2 and velocity
υ2 = 0. An intermediate compound nucleus is produced temporarily and it decays
into two reaction products, one of mass M3 ejected with velocity υ3 at an angle φ
to the incident projectile direction, and the other of mass M4 ejected with velocity
υ4 at an angle θ to the incident projectile direction of motion.

(a) In any nuclear reaction the sum of total energies before the reaction
∑
i,beforeEi

must equal the sum of total energies after the reaction
∑
i,afterEi , or

∑
i,before

Ei =
∑
i,after

Ei ≡
∑
i

[
(EK)i +Mic2]=

∑
i

[
(EK)i +Mic2]. (5.22)

Any change in the sum of kinetic energies before and after the reaction is com-
pensated by an equivalent change in the sum of rest energies before and after the
reaction or an equivalent change in the sum of binding energies before and after the
reaction. The so-called Q value of a nuclear reaction is used to quantify the change
in kinetic energy.
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Fig. 5.2 Schematic diagram of a two-particle collision evolving into a nuclear reaction

Three methods for calculation of Q value of binary nuclear reactions are:

(1) Kinetic energy method: Subtract the kinetic energy of the reactants (projectile
and target) before the reaction

∑
i,before(EK)i from the sum of kinetic energies of

the reaction products after the reaction
∑
i,after(EK)i , or

Q=
∑
i,after

(EK)i −
∑
i,before

(EK)i =
[
(EK)3 + (EK)4

]− [
(EK)1 + (EK)2

]
. (5.23)

(2) Rest energy method: Subtract the sum of nuclear rest energies of the reaction
products after the reaction

∑
i,beforeMic

2 from the sum of rest energies of reactants
(projectile and target) before the reaction

∑
i,afterMic

2, or

Q=
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = (

M1c
2 +M2c

2)− (
M3c

2 +M4c
2). (5.24)

Note that in (5.24) M stands for nuclear mass. If atomic masses M rather than
nuclear masses are used in calculations of Q values for nuclear reactions, in many
instances the electron masses cancel out, so that there is no difference in theQ value
result. However, in situations where electron masses do not cancel out, special care
must be taken when using atomic masses to account for all electrons involved in the
interaction.

(3) Binding energy method: Subtract the sum of total binding energies of reac-
tants (projectile and target) before the reaction

∑
i,before(EB)i from the sum of total
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binding energies of reaction products after the reaction
∑
i,after(EB)i , or

Q=
∑
i,after

(EB)i −
∑
i,before

(EB)i =
[
(EB)3 + (EB)4

]− [
(EB)1 + (EB)2

]
. (5.25)

(b) Q value of the Chadwick nuclear reaction 9
4Be(α,n)12

6C is calculated with
the nuclear rest energy method as well as with the binding energy method, both
described in (a). The results are summarized as follows:

Table 5.1 Summary of characteristics of the Chadwick 1932 neutron-discovery reaction

1 Nuclear rest energy
(MeV)

Binding energy
(MeV)

2 Projectile m1 α 3 727.3791 28.29569

3 Target m2
9
4Be 8 392.7499 58.16497

4
∑
i,before 12 120.1290 86.46066

5 Reaction product m3
12

6C 11 174.8625 92.16175

6 Reaction product m4 n 939.5653 0

7
∑
i,after 12 114.4278 92.16175

Q value calculated with the rest energy method is

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

mαc
2 +M(9

4Be
)
c2]− [

M
(12

6C
)
c2 +mnc

2]

= 12120.1290 MeV − 12 114.4278 MeV = 5.701 MeV (5.26)

and with the binding energy method the result is the same, as expected

Q =
∑
i,after

(EB)i −
∑
i,before

(EB)i =
[
EB

(12
6C
)+EB(n)

]− [
EB(α)+EB

(9
4Be

)]

= [92.16175 + 0] MeV − [28.29569 + 58.16497] MeV = 5.701 MeV. (5.27)

(c) The Chadwick nuclear reaction is exothermic with Q value of 5.7 MeV and
thus, in principle, should occur spontaneously and release 5.7 MeV of energy irre-
spective of the kinetic energy of the incident α particle. However, the reaction cannot
occur spontaneously or with low energy α particles because of the nuclear potential
barrier that an α particle must overcome when it strikes a positively-charged target
nucleus.

5.2.Q2 (120)

In Prob. 119 the Chadwick nuclear reaction 9
4Be(α,n)12

6C was shown to be
exothermic with Q value of +5.7 MeV. This suggests that the inverse Chad-
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wick reaction 12
6C(n, α)94Be is endothermic with Q value of −5.7 MeV and

thus can occur only when the incident neutron possesses kinetic energy that
is equal to or exceeds a threshold kinetic energy (En

K)thr.

(a) Derive the general expression for threshold kinetic energy (EK)thr of an
endothermic nuclear reaction.

(b) Determine the relationship between threshold kinetic energy (EK)thr
and Q value.

(c) Determine neutron threshold kinetic energy (En
K)thr for the inverse

Chadwick reaction.

SOLUTION:

(a) Threshold kinetic energy (EK)thr of an endothermic nuclear reaction is deter-
mined through the use of the so-called invariantE2 −p2c2 = inv applied to reactants
(projectile and target) before the collision (in laboratory coordinate system) and to
reaction products after the collision (in center-of-mass coordinate system), with

E total energy of the system either before or after collision.
p total momentum of the system either before or after collision.
c speed of light in vacuum.

Total energy and momentum before collision (in laboratory coordinate system):

Ebefore =Ethr +m20c
2 = (EK)thr +m10c

2 +m20c
2 =

√
p2

1c
2 +m10c2 +m20c

2,

(5.28)
whereEthr is the total threshold energy of the projectile, (EK)thr is the kinetic energy
of the projectile, and p1 = pbefore is the momentum of the projectile, all given for
before the collision and related through the standard relativistic expressions Ethr =
(EK)thr +m10c

2 =
√
p2

1c
2 +m10c2.

Total energy and momentum after collision (in center-of-mass coordinate system)

Eafter =m30c
2 +m40c

2 and pafter = 0. (5.29)

The invariant can now be expressed as follows:

E2 − p2c2 =E2
before − p2

beforec
2 ≡ (√

p2
1c

2 +m10c2 +m20c
2)2 − p2

1c
2

=E2
after − p2

afterc
2 ≡ (

m30c
2 +m40c

2)2 − 0, (5.30)

resulting in total threshold energy Ethr expressed as follows

Ethr = (m30c
2 +m40c

2)2 − (m2
10c

4 +m2
20c

4)

2m20c2
= (EK)thr +m10c

2 (5.31)
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and threshold kinetic energy (EK)thr

(EK)thr = (m30c
2 +m40c

2)2 − (m10c
2 +m20c

2)2

2m20c2
. (5.32)

(b) Q value for a nuclear reaction is defined as

Q= (
m10c

2 +m20c
2)− (

m30c
2 +m40c

2) (5.33)

and can be expressed as follows

(
m30c

2 +m40c
2)2 = [(

m10c
2 +m20c

2)−Q]2

= (
m10c

2 +m20c
2)2 − 2Q

(
m10c

2 +m20c
2)+Q2. (5.34)

Inserting (5.34) into (5.32) results in the following expression for (EK)thr in terms
of Q

(EK)thr = −Q
[
m10c

2 +m20c
2

m20c2
+ Q

2m20c2

]
≈ −Q

[
1 + m10

m20

]
, (5.35)

where we can generally ignore the term Q/(2m20c
2), since Q� 2m20c

2. In (5.35)
the threshold kinetic energy of the projectile exceeds |Q| by a relatively small
amount to account for the conservation of energy and momentum in the nuclear
reaction.

(c) Q value for the inverse Chadwick nuclear reaction 12
6C(n, α)94Be is determined

either with the rest energy method or with the binding energy method

Rest energy method:

Q = [
mnc

2 +M(12
6C
)
c2]− [

mαc
2 +M(9

4Be
)
c2]

= [939.5653 + 11174.8625] MeV − [3727.3791 + 8392.7499] MeV

= −5.701 MeV. (5.36)

Binding energy method:

Q= [
EB

(4
2He

)+EB
(9

4Be
)]− [

EB(n)+EB
(12

6C
)]

= [28.29569 + 58.16497] MeV − [0 + 92.16175] = −5.70 MeV. (5.37)

As shown in (5.35), the threshold kinetic energy of the neutron in the inverse Chad-
wick reaction is calculated as follows

(
En

K

)
thr = −Q

(
1 + mn

M(12
6C)

)
= −(−5.70 MeV)×

(
1 + 939.5653

11174.8625

)

= 6.18 MeV. (5.38)
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5.2.Q3 (121)

Consider the following three nuclear reactions:

(1) 13
6C + d = 12

6C + t or 13
6C(d, t)12

6C (5.39)

(2) 14
6C + p = 14

7N + n or 14
6C(p,n)14

7N (5.40)

(3) 14
6N + n = 11

5B + α or 14
7N(n, α)11

5B (5.41)

For each reaction determine:

(a) Q value.
(b) Reaction type (exothermic or endothermic).
(c) Threshold kinetic energy (EK)thr of the projectile.
(d) Coulomb barrier energy ECoul.
(e) Effective threshold energy (EK)min, i.e., minimum kinetic energy of the

projectile required for the nuclear reaction to occur.

Summarize results of (a), (b), (c), (d), and (e) in Table 5.2A.

Table 5.2A Summary of results for the three nuclear reactions of Prob. 121

Nuclear
reaction

ReactionQ
value (MeV)

Reaction
type

Threshold
energy
(EK)thr (MeV)

Coulomb
barrier
ECoul (MeV)

Effective
threshold
(EK)min (MeV)

(1) 13
6C(d, t)12

6C

(2) 14
6C(p,n)14

7N

(3) 14
7N(n, α)11

5B

SOLUTION:

(a) Q value of a nuclear reaction m1(m2,m3)m4 is calculated either with the rest
energy method

Q= (
m1c

2 +m2c
2)− (

m3c
2 +m4c

2) (5.42)

or with the binding energy method

Q= [
EB(m3)+EB(m4)

]− [
EB(m1)+EB(m2)

]
. (5.43)

For a given nuclear reaction both methods give identical results when appropriate
data given in Appendix A are used, as shown below for the three nuclear reactions.
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Q value for nuclear reaction (1):

Q
[13

6C(d, t)12
6C
] = [

mdc
2 +m(13

6C
)]− [

mtc
2 +m(12

6C
)]

= [1875.6128 + 12109.4816] MeV

− [2808.9209 + 11174.8625] MeV

= 1.311 MeV, (5.44)

Q
[13

6C(d, t)12
6C
] = [

EB(t)+EB
(12

6C
)]− [

EB(d)+EB
(13

6C
)]

= [8.48182 + 92.16175] MeV

− [2.22458 + 97.10812] MeV

= 1.311 MeV. (5.45)

Q value for nuclear reaction (2):

Q
[14

6C(p,n)14
7N

] = [
mpc

2 +m(14
6C
)
c2]− [

mnc
2 +m(14

7N
)]

= [938.2720 + 13040.8703] MeV

− [939.5654 + 13040.2028] MeV

= −0.6259 MeV, (5.46)

Q
[14

6C(p,n)14
7N

] = [
EB(n)+EB

(14
7N

)]− [
EB(p)+EB

(14
6C
)]

= [0 + 104.65871] MeV

− [0 + 105.28455] MeV = −0.6258 MeV. (5.47)

Q value for nuclear reaction (3):

Q
[14

7N(n, α)11
5B
] = [

mnc
2 +m(14

7N
)
c2]− [

mαc
2 +m(11

5B
)]

= [939.5655 + 13040.2028] MeV

− [3727.3791 + 10252.5469] MeV

= −0.1577 MeV, (5.48)

Q
[14

7N(n, α)11
5B
] = [

EB(α)+EB
(11

5B
)]− [

EB(n)+EB
(14

7N
)]

= [28.29569 + 76.20524] MeV − [0 + 104.65871] MeV

= −0.1578 MeV. (5.49)

(b) As established in (a), nuclear reaction (1) has a positive Q value, while for
reactions (2) and (3) Q values are negative. This implies that in reaction (1) mass
is converted into kinetic energy shared by the reaction products and, because of the
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energy release, the reaction is called exothermic. Conversely, for reactions (2) and
(3) energy is converted into mass, and the reaction is called endothermic because it
can only happen when the energy of the projectile matches or exceeds a well defined
threshold energy.

(c) Threshold total energy of the projectile Ethr and the threshold kinetic energy
(EK)thr of the projectile are given as follows [see T(5.12) through T(5.15)]

Ethr = (m30c
2 +m40c

2)2 − (m2
10c

4 +m2
20c

4)

2m20c2
= (EK)thr +m10c

2 (5.50)

and

(EK)thr = (m30c
2 +m40c

2)2 − (m10c
2 +m20c

2)2

2m20c2
≈ −Q

(
1 + m10

m20

)
. (5.51)

Threshold kinetic energy (EK)thr for nuclear reaction (1):

(EK)thr = 0 since Q> 0. (5.52)

Threshold kinetic energy (EK)thr for nuclear reaction (2):

(EK)thr ≈ −(−0.6259 MeV)×
(

1 + 938.2720

13040.8703

)
= 0.671 MeV. (5.53)

Threshold kinetic energy (EK)thr for nuclear reaction (3):

(EK)thr ≈ −(−0.1577 MeV)×
(

1 + 939.5655

13040.2028

)
= 0.170 MeV. (5.54)

(d) The Coulomb barrier is important in nuclear reactions where the projectile is
a charged particle such as p, d, t, α, and heavy ion. Even in reactions with positive
Q value resulting in (EK)thr = 0, for a positively charged projectile to penetrate the
nucleus it must possess sufficient kinetic energy to overcome the Coulomb repulsion
between the positively charged nucleus and the positively charged projectile. Thus
in this situation, the Coulomb barrier ECoul represents the effective threshold energy
of the projectile unless, of course, (EK)thr >ECoul in which case (EK)thr plays a role
of the effective threshold kinetic energy.

The Coulomb barrier energy ECoul is estimated from the Coulomb force FCoul as
follows

ECoul ≈
∫ Rsep

∞
FCoul dr = (Z1e)(Z2e)

4πε0

∫ Rsep

∞
dr

r2
= e2

4πε0

Z1Z2

Rsep

≈ e2

4πε0

Z1Z2

R0(
3
√
A1 + 3

√
A1)

= C Z1Z2

( 3
√
A1 + 3

√
A1)

≈ (1.15 MeV)× Z1Z2

( 3
√
A1 + 3

√
A1)

, (5.55)
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Table 5.2B Summary of results for nuclear reactions (5.39), (5.40), and (5.41) of Prob. 121

Nuclear
reaction

Reaction
Q value
(MeV)

Reaction
type

Threshold
energy
(EK)thr (MeV)

Coulomb
barrier
ECoul (MeV)

Effective threshold
kinetic energy
(EK)min (MeV)

(1) 13
6C(d, t)12

6C +1.311 exothermic 0 2.0 ECoul = 2 MeV

(2) 14
6C(p,n)14

7N −0.6259 endothermic 0.671 2.11 ECoul = 2.11 MeV

(3) 14
7N(n, α)11

5B −0.1577 endothermic 0.170 0 (EK)thr = 0.17 MeV

where

Rsep is the distance between the centers of the projectile and the target nucleus
when the two are just touching (note: nuclear radius R is generally estimated
as R ≈R0

3
√
A with the nuclear radius constant R0 = 1.25 fm).

C is the Coulomb barrier constant [e2/(4πε0R0)= 1.15 MeV].
A is the atomic mass number of the target nucleus.
Z is the atomic number of the target nucleus.

For reaction (1) the Coulomb barrier energy ECoul is

ECoul ≈ (1.15 MeV)× 1×6

(
3
√

2 + 3
√

13)
= 2.0 MeV. (5.56)

For reaction (2) the Coulomb barrier energy ECoul is

ECoul ≈ (1.15 MeV)× 1×6

(
3
√

1 + 3
√

14)
= 2.11 MeV. (5.57)

For reaction (3) the Coulomb barrier energy ECoul is ECoul = 0 because the projec-
tile (neutron) is not charged.

(e) Effective threshold energy (EK)min is the minimum kinetic energy that the pro-
jectile must possess in order to trigger the nuclear reaction. For positively charged
projectiles this energy is affected by the Coulomb barrier energy ECoul and by Q
value of the nuclear reaction; for neutral projectiles the Coulomb barrier does not
play any role in determining the effective threshold energy.

For reaction (1) the effective threshold energy of the projectile (EK)min =
ECoul = 2.0 MeV.

For reaction (2) the effective threshold energy of the projectile (EK)min =
ECoul = 2.11 MeV.

For reaction (3) the effective threshold energy of the projectile (EK)min =
(EK)thr = 0.17 MeV.

Summary of results for nuclear reactions (5.39), (5.40), and (5.41) is given in
Table 5.2B.
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5.3 Two-Particle Elastic Scattering: Energy Transfer

5.3.Q1 (122)

Center-of-Momentum or Center-of-Mass (CM) frame is an inertial frame
where the momentum of the center of mass of a system is zero. In dealing
with head-on (direct) elastic collision of two particles with masses m1 and
m2, the velocities of the two particles after the collision are reversed in the
CM frame.

uCM,1 = −vCM,1 and uCM,2 = −vCM,2, (5.58)

where vCM,1 and uCM,1 are velocities of m1 before and after the collision,
respectively, and vCM,2 are uCM,2 are velocities of m2 before and after the
collision, respectively.

(a) Using classical mechanics where the velocities of the two particles are
much less than the speed of light, show that in a head-on elastic colli-
sion of two particles with masses m1 and m2 the velocities of the two
particles after the collision are given by (5.58).

(b) Calculate the classical maximum energy transfer�Emax and maximum
momentum transfer �pmax in a head-on elastic collision between two
particles when the projectile particle of mass m1 and velocity v strikes
a stationary target particle of m2.

SOLUTION:

(a) In the CM frame the total momentum of the two particles is zero. We apply
conservation of momentum for before (indicated by label i) and after (indicated by
label f) the collision to get

(pCM,1)i + (pCM,2)i = (pCM,1)f + (pCM,2)f = 0, (5.59)

where (pCM,1)i =m1vCM,1 and (pCM,2)i =m1vCM,2 are, respectively, momenta of
m1 and m2 before the collision, and (pCM,2)i =m1vCM,2 and (pCM,2)f =m2uCM,2
are, respectively, momenta of m1 and m2 after the collision. From (5.59) we get

(pCM,1)i = −(pCM,2)i and (pCM,1)f = −(pCM,2)f. (5.60)

Since the collision between the two particles is elastic, total kinetic energy before
collision is equal to total kinetic energy after the collision. Applying conservation
of energy we get

(pCM,1)
2
i

2m1
+ (pCM,2)

2
i

2m2
= (pCM,1)

2
f

2m1
+ (pCM,2)

2
f

2m2
. (5.61)
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In (5.61) we used the classical relationshipEK = p2/2mwhereEK is the particle
kinetic energy, p is its momentum, and m is its mass. Inserting (5.60) into (5.61) we
get the following expressions

(pCM,1)
2
i

2(m1 +m2)
= (pCM,1)

2
f

2(m1 +m2)
and

(pCM,2)
2
i

2(m1 +m2)
= (pCM,2)

2
f

2(m1 +m2)
. (5.62)

Two solutions are obtained from (5.62). Either

(pCM,1)f = (pCM,1)i and (pCM,2)f = (pCM,2)i (5.63)

or

(pCM,1)f = −(pCM,1)i and (pCM,2)f = −(pCM,2)i. (5.64)

The solution (5.63) states that the momenta of m1 and m2 did not change after
the collision (i.e., no collision took place), and from (5.64) we conclude that the
momenta of the two particles after the collision are opposite to their momenta before
the collision. Hence, as stated in (5.58)

uCM,1 = −vCM,1 and uCM,2 = −vCM,2. (5.65)

(b) A head-on elastic collision between two particles, results in a maximum possi-
ble momentum transfer �pmax and maximum possible energy transfer �Emax from
the projectile m1 to the target m2. Therefore,

�pmax =m1v −m1u1 =m2u2, (5.66)

and

�Emax = m1υ
2

2
− m1u

2
1

2
= m2u

2
2

2
, (5.67)

where u1 and u2 are the velocities of the projectile m1 and the target m2 after colli-
sion, respectively.

A simple way to obtain u2 is by using (5.58). In this approach, we use Galilean
transformation to calculate the velocity of the target vCM,2 before the collision in the
CM frame, apply (5.58) to get the velocity of the target uCM,2 after the collision in
the CM frame, and then use Galilean transformation to calculate back the velocity of
the target u2 in the LAB frame after the collision. To apply this method, the velocity
VCM of the CM frame with respect to the LAB frame needs to be determined.

The velocity of the CM frame VCM is the velocity of an inertial frame where the
total momentum is equal to zero.

(pCM,1)i + (pCM,2)i =m1vCM,1 +m1vCM,2 = 0. (5.68)

Let velocities of m1 and m2 in the LAB frame be, respectively, v1 and v2. Using
Galilean transformation the velocities of m1 and m2 in the CM frame are, respec-
tively,

vCM,1 = v1 − VCM and vCM,2 = v2 − VCM. (5.69)



5.3 Two-Particle Elastic Scattering: Energy Transfer 283

Inserting (5.69) into (5.68) and solving for VCM we get

VCM = m1v1 +m2v2

m1 +m2
. (5.70)

For projectile with velocity v1 = v and a stationary target with v2 = 0, the veloc-
ity of the CM frame VCM is from (5.70) given by

VCM = m1

m1 +m2
v (5.71)

and the velocity of the target vCM,2 before the collision in the CM frame is

vCM,2 = v2 − VCM = −VCM. (5.72)

Using (5.58), the velocity of the target uCM,2 after the collision in the CM frame is

uCM,2 = −vCM,2 = VCM. (5.73)

The velocity u2 of the target after the collision in the LAB frame is obtained by
applying an inverse Galilean transformation, thus,

u2 = uCM,2 + VCM = 2VCM = 2m1

m1 +m2
v = 2

m1 +m2
pi, (5.74)

where pi =m1v is the initial momentum of the projectile m1.
Inserting (5.74) into (5.66) we get

�pmax =m2u2 = 2m2

m1 +m2
pi, (5.75)

and inserting (5.74) into (5.67) we get

�Emax = m2u
2
2

2
= 4m2

2(m1 +m2)2
p2

i = 4m1m2

(m1 +m2)2
(EK)i, (5.76)

where (EK)i = p2
i /2m1 is the initial kinetic energy of the projectile.

5.3.Q2 (123)

Relativistic analysis of the kinematics of a head-on (direct) elastic collision of
two particles with rest masses m10 and m20 in the center-of-mass (CM) frame
shows that the velocities of the two particles after the collision are opposite to
their velocities before the collision.

uCM,1 = −υCM,1 and uCM,2 = −υCM,2, (5.77)
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where υCM,1 and uCM,1 are velocities of m10 before and after the collision,
respectively, and υCM,2 are uCM,2 are velocities of m20 before and after the
collision, respectively.

(a) Using relativistic mechanics show that the initial and final velocities in
a head-on elastic collision of two particles with rest masses m10 and
m20 are related by (5.77).

(b) Calculate the relativistic maximum energy transfer �Emax and rela-
tivistic maximum momentum transfer �pmax in a head-on elastic colli-
sion between two particles when the projectile particle of mass m10 and
velocity υ strikes a stationary target particle m20.

SOLUTION:

(a) In the CM frame the total momentum of the two particles is zero. We apply
conservation of momentum for before and after the collision to get

(pCM,1)i + (pCM,2)i = (pCM,1)f + (pCM,2)f = 0, (5.78)

with (pCM,1)i and (pCM,2)i momenta of m10 and m20, respectively, before collision
and (pCM,2)i and (pCM,2)f momenta of m10 and m20, respectively, after collision.
From (5.78) we get

(pCM,1)i = −(pCM,2)i and (pCM,1)f = −(pCM,2)f. (5.79)

Since the collision between the two particles is elastic, the total energy before colli-
sion is equal to the total energy after collision. Applying conservation of total energy
we get √

E2
10 + (pCM,1c)

2
i +

√
E2

20 + (pCM,2c)
2
i

=
√
E2

10 + (pCM,1c)
2
f +

√
E2

20 + (pCM,2c)
2
f , (5.80)

whereE10 =m10c
2 andE20 =m20c

2 are rest energies ofm10 andm20, respectively.

In (5.80) we used the relativistic relationship E =
√
E2

0 + (pc)2 where E is the

particle total energy, p is its momentum, E0 =m0c
2 is its rest energy, and c is the

speed of light in vacuum.
Inserting (5.79) into (5.80) yields

√
E2

10 + (pCM,1c)
2
i +

√
E2

20 + (pCM,1c)
2
i

=
√
E2

10 + (pCM,1c)
2
f +

√
E2

20 + (pCM,1c)
2
f , (5.81)
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and √
E2

10 + (pCM,2c)
2
i +

√
E2

20 + (pCM,2c)
2
i

=
√
E2

10 + (pCM,2c)
2
f +

√
E2

20 + (pCM,2c)
2
f . (5.82)

Two possible solutions are obtained from (5.81) and (5.82). Either

(pCM,1)f = (pCM,1)i and (pCM,2)f = (pCM,2)i (5.83)

or

(pCM,1)f = −(pCM,1)i and (pCM,2)f = −(pCM,2)i. (5.84)

The solution (5.83) states that the momenta of m10 and m20 did not change after
the collision (i.e., no collision took place) and from (5.84) we conclude that the
momenta of the two particles after the collision are opposite in direction to their
respective momenta before collision. Hence, as shown in (5.77),

uCM,1 = −υCM,1 and uCM,2 = −υCM,2. (5.85)

It should be noted that the respective total energies of the projectile (ECM,1)f and
the target (ECM,2)f in the CM frame after the collision are equal to their respective
energies before the collision, i.e.,

(ECM,1)f = (ECM,1)i and (ECM,2)f = (ECM,2)i. (5.86)

(b) A head-on elastic collision between a projectile particle m10 with a stationary
target m20, results in a maximum possible momentum transfer �pmax and a max-
imum possible energy transfer �Emax from the projectile m10 to the target m20.
Therefore,

�pmax = (p1)i − (p1)f = (p2)f, (5.87)

and

�Emax = (E2)f −E20, (5.88)

where (p1)i and (p1)i are, respectively, momenta of the projectile m10 before and
after the collision, (p2)f is the momentum of the targetm20 after the collision, (E2)f
is total energy of the target after the collision, and E20 =m20c

2 is the rest energy of
the target.

A simple way to obtain �pmax is by using (5.84). In this approach, we use
the Lorentz transformation for energy and momentum to calculate the momentum
(pCM,2)i and the total energy (ECM,2)i of the target before the collision in the CM
frame, apply (5.84) to get the momentum of the target (pCM,2)f after the collision
in the CM frame, and then use the inverse Lorentz transformation of energy and
momentum to calculate back the momentum of the target (p2)f in the LAB frame
after the collision.
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The Lorentz transformation of total energy E and momentum p in reference
frame S to another reference frame S′ moving with a relative speed of βc is

E′ = γ (E − βpc) and p′c= γ (pc− βE), (5.89)

where E′ and p′ are the total energy and momentum in S′, respectively, and γ =
(1−β2)−1/2. The inverse transformation of total energy E′ and momentum p′ back
into reference frame S is given by

E = γ (E′ + βp′c
)

and pc= γ (p′c+ βE′). (5.90)

The relativistic relative velocity βCM of the CM frame with respect to the LAB
frame for the two colliding particle system is determined as follows. Since the total
initial momenta of the two particles is zero in the CM reference frame, we use (5.89)
with p′c= 0 to get

0 = γCM(pLABc− βCMELAB), (5.91)

where pLAB and ELAB are, respectively, the total momentum and energy of the two
particles in the LAB frame and γCM = (1 − β2

CM)
−1/2. Since γCM ≥ 1, the solution

to (5.91) is

βCM = pLABc

ELAB
. (5.92)

For a system consisting of a projectile particle of rest mass m10 with momentum
(p1)i and a stationary target particle of rest mass m20 in the LAB reference frame,
the initial momentum (pCM,2)i and initial energy (ECM,2)i of the target in the CM
frame are, respectively,

(ECM,2)i = γCM
[
E2 − βCM(p2)ic

]= γCME20, (5.93)

and

(pCM,2)i = γCM
[
(p2)ic− βCME2

]= −γCMβCME2 = −γCMβCME20, (5.94)

where (p2)i = 0 is the initial momentum of the target in the LAB frame and E2 =
E20 =m20c

2 is the initial energy of the target in the LAB frame.
Inserting (5.94) into (5.84) and (5.93) into (5.86), we get

(pCM,2)f = −(pCM,2)i = γCMβCME20, (5.95)

and

(ECM,2)f = (ECM,2)i = γCME20. (5.96)

Applying the inverse Lorentz transformation to obtain (p2)fc, we get

(p2)fc= γCM
[
(pCM,2)f + βCM(ECM,2)f

]= 2γ 2
CMβCME20. (5.97)
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Using γCM = (1 − β2
CM)

−1/2 and βCM = pLABc/ELAB, (5.97) becomes

(p2)f = 2ELABpLABE20

E2
LAB − (pLABc)2

=�pmax. (5.98)

InsertingELAB = (γm10 +m20)c
2, pLAB = (p1)i = 1

c

√
(γm10c2)2 − (m10c2)2, and

E20 = m20c
2 into (5.98) the relativistic maximum momentum transfer �pmax is

expressed as

�pmax = 2(γm10 +m20)m20

m2
10 +m2

20 + 2γm10m20
(p1)i. (5.99)

To obtain the maximum energy transfer �Emax we apply the inverse Lorentz
transformation given in (5.89) to get

(E2)f = γCM
[
(ECM,2)f + βCM(pCM,2)fc

]= (
1 + β2

CM

)
γ 2

CME20 = (
2γ 2

CM − 1
)
E20.

(5.100)
Inserting (5.100) into (5.88) we get

�Emax = (E2)f −E20 = 2
(
γ 2

CM − 1
)
E20 = 2(pLABc)

2E20

E2
LAB − (pLABc)2

. (5.101)

Using (pLABc)
2 = (p1c)

2
i = (γ + 1)E10(EK)i = (γm10c

2)2 − (m10c
2)2, where

(EK)i is the initial kinetic energy for projectile m10, the relativistic maximum en-
ergy transfer �Emax is expressed as

�Emax = 2(γ + 1)m10m20

m2
10 +m2

20 + 2γm10m20
(EK)i. (5.102)

5.3.Q3 (124)

An alpha particle of initial kinetic energy (EαK)i = 5 MeV collides with a
stationary oxygen-17 (O-17) nucleus. The α particle is scattered at a scattering
angle θ of 53.9° and the oxygen nucleus recoils at a recoil angle φ of 59.4°.
The rest energy of the α particle mαc2 is 3727.4 MeV, the rest energy of the
oxygen-17 nucleus mOc

2 is 15830.5 MeV. Use the following convention in
your calculations:

υα and (EαK)i are velocity and kinetic energy, respectively, of the α parti-
cle before collision,
uα and (EαK)f are velocity and kinetic energy, respectively, of the α parti-
cle after collision,
uO and (EO

K)f are velocity and kinetic energy, respectively, of the oxygen
nucleus after collision.
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(a) Prepare a graph showing schematic representation of the scattering pro-
cess.

(b) Determine the ratio uα/uO of final velocities uα and uO for the α parti-
cle and the oxygen nucleus, respectively, after collision.

(c) Determine the ratio υα/uα of velocities υα and uα of the α particle
before and after collision, respectively.

(d) Determine the energy transfer �EK and the energy transfer fraction
�EK/(E

α
K)i from the α particle to the oxygen nucleus in the collision.

(e) State conditions for maximum energy transfer �Emax and the maxi-
mum energy transfer fraction [�E/(EαK)i]max that would occur under
these conditions.

SOLUTION:

The required quantities for this question are calculated using conservation of mo-
mentum p and kinetic energy EK as well as a graph showing a schematic diagram
of the collision in Fig. 5.3.

Conservation of momentum (x component):

mαυα =mαuα cos θ +mOuO cosφ. (5.103)

Conservation of momentum (y component):

0 = −mαuα sin θ +mOuO sinφ. (5.104)

Fig. 5.3 Schematic representation of the scattering process
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Conservation of kinetic energy:

(
EαK

)
i = (

EαK
)

f + (
EO

K

)
f or

1

2
mαυ

2
α = 1

2
mαu

2
α + 1

2
mOu

2
O. (5.105)

The mass ratio mα/mO and its inverse mO/mα appear in several equations used
here, so we state them now

mα

mO
= 3727.4

15830.5
= 0.236 and

mO

mα
= 4.24. (5.106)

(a) A schematic representation of the scattering process is shown in Fig. 5.3.

(b) The velocity ratio uα/uO is determined from (5.104) as follows

uα

uO
= mO

mα

sinφ

sin θ
= 4.24× sin(59.4◦)

sin(53.9◦)
= 4.52. (5.107)

(c) The velocity ratio υα/uα is determined from (5.103) in conjunction with
(5.107)

υα

uα
= cos θ + mO

mα

uO

uα
cosφ = cos

(
53.9◦)+ 4.24

4.52
cos

(
59.4◦)

= 0.589 + 0.478 = 1.067. (5.108)

(d) Energy transfer �E is equal to kinetic energy of the oxygen nucleus af-
ter the collision and is calculated from the well-known equation (T5.25) derived
from the conservation of energy and momentum considerations laid out in (5.103)
through (5.105)

�E = (
EO

K

)
f = 4mαmO

(mα +mO)2

(
EαK

)
i cos2 φ

= 4×3727.4×15830.5

(3727.4 + 15830.5)2
×(5 MeV)× cos2(59.4◦)= 0.8 MeV. (5.109)

Energy transfer fraction �E/(EαK)i is now simply given as

�E

(EαK)i
= 4mαmO

(mα +mO)2
cos2 φ = 4×3727.4×15830.5

(3727.4 + 15830.5)2
× cos2(59.4◦)

= 0.617×0.259 = 0.16, (5.110)

indicating that in our specific collision process (at recoil angle φ = 59.4◦) 16 % of
the incident α particle energy (0.8 MeV) is transferred to the oxygen nucleus and
84 % (4.2 MeV) is kept by the α particle.
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(e) Maximum energy transfer fraction [�E/(EαK)i]max would occur in a head-on
collision for recoil angle φ = 0 and would amount to 61.7 %, as shown below

[
�E

(EαK)i

]
max

= 4mαmO

(mα +mO)2
× cos2 0 = 4×3727.4×15830.5

(3727.4 + 15830.5)2
= 0.617. (5.111)

5.3.Q4 (125)

As derived in Prob. 123, the general expression for maximum energy transfer
�Emax from a projectile with rest energy m10c

2 and incident kinetic energy
(EK)i to a target at rest (υ = 0) with rest energy m20c

2 in a head-on (direct
hit) elastic collision is given as (T5.47)

�Emax = 2(γ + 1)m10m20

m2
10 +m2

20 + 2γm10m20
(EK)i. (5.112)

Several simplifying expressions are available for expressing (�EK)max de-
pending on the relative values of projectile rest mass m10 and target rest mass
m20 as well as for γ → 1 and γ → ∞. Provide a summary of expressions for
�Emax under the following conditions:

(a) Lorentz factor γ → 1 (classical limit).
(b) Lorentz factor γ → ∞.
(c) m10 �m20.
(d) m10 =m20 (projectile m10 and target m20 are distinguishable).
(e) m10 =m20 (projectile m10 and target m20 are indistinguishable).
(f) m10 �m20.

SOLUTION:

(a) In the classical limit as EK → 0 (or γ → 1), the classical limit of (5.112) reads
as follows

�Eclas
max = lim

(EK)i→m10υ
2
1

2
γ→1

�Emax = 4m10m20

(m10 +m20)2
(EK)i, (5.113)

so that the maximum energy transfer fraction η(EK) = �Emax/(EK)i is indepen-
dent of (EK)i and depends solely on the rest masses m10 and m20 of the projectile P
and target T, respectively. Equation (5.113) is well known in classical physics for
determination of maximum energy transfer in classical collisions.

(b) In the limit as kinetic energy (EK)i becomes very large [(EK)i → ∞], the
Lorentz factor γ also approaches infinity and �Emax approaches (EK)i
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lim
(EK)i→∞
γ→∞

�Emax = lim
(EK)i→∞
γ→∞

2(γ + 1)m10m20

m2
10 +m2

20 + 2γm10m20
(EK)i = (EK)i. (5.114)

(c) For projectile rest mass m10 much smaller than the target rest mass m20, i.e.,
m10 �m20, the following approximation applies

�Emax = 2(γ + 1)m10m20

m2
10 +m2

20 + 2γm10m20
(EK)i ≈ 2(γ + 1)

m20
m10

+ 2γ
(EK)i

= 2m10c
2

m20
m10

+ 2γ
× β2

1 − β2
. (5.115)

In the classical limit γ → 1 and (EK)i → 1
2m10υ

2
i , so that (5.115) transforms into

�Eclass
max ≈ 4m10

m20
(EK)i. (5.116)

(d) When the projectile m10 and the target m20 are distinguishable and have equal
mass, i.e., m10 =m20, the maximum energy transfer (�EK)max is equal to (EK)i in
general and the same holds in the classical limit.

(e) When the projectile m10 and the target m20 are indistinguishable and have
equal mass, i.e., m10 =m20, an assumption is made that the particle that leaves the
collision site with the larger energy is the incident particle. This means that the max-
imum possible energy transfer (�EK)max is equal to 1

2 (EK)i. Thus, (�EK)max =
1
2 (EK)i both in general and in the classical limit.

(f) For projectile massm10 much larger than the target massm20, i.e.,m10 �m20,
the following approximation applies

(�EK)max = 2(γ + 1)m10m20

m2
10 +m2

20 + 2γm10m20
(EK)i ≈ 2(γ + 1)

m10
m20

+ 2γ
(EK)i

= 2m10c
2

m10
m20

+ 2γ
× β2

1 − β2
. (5.117)

In the classical limit γ → 1 and (EK)i → 1
2m10υ

2
i so that (5.117) transforms into

(�EK)
clas
max ≈ 2m20υ

2
1 . (5.118)

Note: In (5.115) and (5.117) we used the following identity

(γ + 1)(EK)i = (γ + 1)(γ − 1)E0 = (
γ 2 − 1

)
E0 = β2

1 − β2
E0. (5.119)

Relativistic and classical maximum energy transfers from projectile P to target T in
elastic head-on collision are summarized in Tables 5.3 and 5.4, respectively.
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Table 5.3 Maximum energy transfer (�EK)max from projectile P with incident kinetic energy
(EK) = (γ − 1)m10c

2 and rest mass m10 to stationary target T with rest mass m20 in an elastic
head-on collision. Note: (�EK)max depends on mass of projectile P (m10) and target T (m20) as
well as on the incident kinetic energy (EK)i of the projectile

Projectile m10
Target m20

Relative
magnitude

Projectile & target (�EK)max Example

m10 �=m20 Do not differ
appreciably

2(γ+1)m10m20(EK)i

m2
10+m2

20+2γm10m20
P: α particle

T: carbon nucleus

m10 �m20 P much smaller
than T

2m10c
2

m20
m10

+2γ
× β2

1−β2 P: electron

T: nucleus

m10 =m20 P and T have
equal mass and are
distinguishable

(EK)i = (γ − 1)m10c
2 P: positron

T: orbital electron

m10 =m20 P and T have
equal mass and are
indistinguishable

1
2 (EK)i = 1

2 (γ − 1)m10c
2 P: electron

T: orbital electron

m10 �m20 P much larger
than T

2m20c
2 β2

1−β2 P: heavy CP

T: orbital electron

Table 5.4 Classical limit of the maximum energy transfer (�EK)max from projectile P with inci-
dent velocity υ1, kinetic energy (EK)i = 1

2m10υ
2
1 and mass m10 to stationary target T with mass

m20 in an elastic head-on collision. Note: (�EK)max depends on mass of projectile P (m10) and
mass of target T (m20) but does not depend on the incident kinetic energy (EK)i of the projectile

Projectile m10
Target m20

Relative
magnitude

Comment on
projectile & target

(�EK)max Typical example

m10 �=m20 Do not differ
appreciably

4m10m20
(m10+m20)

2 (EK)i P: Billiard ball (300 g)

T: Billiard ball (500 g)

m10 �m20 P much smaller
than T

∼ 4m10
m20
(EK)i

= 2
m2

10υ
2
1

m20

P: Styrofoam billiard ball

T: Regular billiard ball

m10 =m20 P and T have
equal mass and are
distinguishable

(EK)i = 1
2m10υ

2
1 P: Red billiard ball

T: Red billiard ball

m10 =m20 P and T have
equal mass and are
indistinguishable

1
2 (EK)i = 1

4m10υ
2
1 P: Red billiard ball

T: Black billiard ball

m10 �m20 P much larger
than T

∼ 4m20
m10
(EK)i

= 2m20υ
2
1

P: Regular billiard ball

T: Styrofoam billiard ball
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5.3.Q5 (126)

The maximum energy transfer fraction [η(EK)]max = �Emax/(EK)i from a
projectile with rest energym10c

2 and incident kinetic energy (EK)i to a target
at rest (υ = 0) with rest energym20c

2 in a head-on (direct hit) elastic collision
is given as (T5.47)

[
η(EK)

]
max = �Emax

(EK)i
= 2(γ + 1)m10m20

m2
10 +m2

20 + 2γm10m20
. (5.120)

Determine the maximum energy transfer fraction [η(EK)]max and its clas-
sical limit ηclass

max for a head-on elastic collision of an α particle (mαc2 =
3727.4 MeV) with:

(a) Oxygen-16 nucleus (mO-16c
2 = 14895.1 MeV) and α particle kinetic

energy (EK)i of 5.5 MeV, 500 MeV, 2 GeV, and 20 GeV. Summarize
your answers in row (3) of Table 5.5A and enter them on the O-16 curve
of the graph [η(EK)]max vs (EK)i of Fig. 5.4.

(b) Lead-206 nucleus (mPb-206c
2 = 191820 MeV) and α particle kinetic

energy (EK)i of 5.5 MeV, 500 MeV, 2 GeV, and 20 GeV. Summarize
your answers in row (4) of Table 5.5A and enter them on the Pb-216
curve of the graph [η(EK)]max vs (EK)i of Fig. 5.4.

(c) Orbital electron of the target and α particle kinetic energy (EK)i of
5.5 MeV, 500 MeV, 2 GeV, and 20 GeV. Summarize your answers in
row (5) of Table 5.5A.

(d) Determine the initial kinetic energy (EK)i of α particle that would pro-
duce in an elastic head-on collision with lead-206 nucleus a maximum
energy transfer fraction [η(EK)]max twice as large as that calculated for
a 100 MeV α particle.

Table 5.5A Summary of results for Prob. 126 (a), (b), and (c)

(1) (EK)i Classical limit 5.5 MeV 500 MeV 2 GeV 20 GeV

(2) γ = 1√
1−β2

(3) α vs O-16
[η(EK)]max

(4) α vs Pb-206
[η(EK)]max

(5) α vs electron
[η(EK)]max
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Fig. 5.4 Maximum energy transfer fraction [η(EK)]max against incident kinetic energy (EK)i
given in (5.120) for α particles interacting with oxygen-16 (O-16), lead-206 (Pb-206), and “free”
orbital electron

SOLUTION:

Since the maximum energy transfer fraction [η(EK)]max is a function of the Lorentz
factor γ of the projectile, we first calculate γ from kinetic energy EK of the α
particle using the basic definition of relativistic kinetic energy EK (T1.58)

(EK)i = (γ − 1)mαc
2 or γ = 1 + (EK)i

mαc2
(5.121)

and summarize the answers in row (2) of Table 5.5B.

(a) Elastic collision between projectile (α particle) and target [oxygen-16 (O-16)
nucleus] for α-particle kinetic energies (EK)i of 5.5 MeV, 500 MeV, 2 GeV, and
20 GeV.

The maximum energy transfer fraction [η(EK)]max is calculated from (T5.47)

[
η(EK)

]
max = (�EK)max

(EK)i
= 2(γ + 1)mαc2mO-16c

2

(mαc2)2 + (mO-16c2)2 + 2γmαc2mO-16c2
(5.122)

and the results for the four α particle kinetic energies are displayed in row (3) of
Table 5.5B and entered on the O-16 curve of Fig. 5.5.

The classical limit ηclas of [η(EK)]max is calculated from the classical expression
(T5.48)

ηclass
max = lim

γ→1
η(EK)= 4mαc2mO-16c

2

(mαc2 +mO-16c2)2
= 4×3727.3×14895.1

(3727.3 + 14895.1)2
= 0.64.

(5.123)
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Table 5.5B Summary of results for Prob. 126 (a), (b), and (c)

(1) (EK)i Classical limit 5.5 MeV 500 MeV 2 GeV 20 GeV

(2) γ = 1√
1−β2

1.0 1.0015 1.134 1.537 6.366

(3) α vs O-16
[η(EK)]max

0.640 0.6405 0.655 0.693 0.868

(4) α vs Pb-206
[η(EK)]max

0.075 0.075 0.079 0.093 0.229

(5) α vs electron
[η(EK)]max

5.482×10−4 5.487×10−4 5.490×10−4 6.953×10−4 20.2×10−4

Fig. 5.5 Maximum energy transfer fraction [η(EK)]max against incident kinetic energy (EK)i for
α particles interacting with oxygen-16 (O-16), lead-206 (Pb-206), and “free” orbital electron. The
black data points represent results of calculations of [η(EK)]max for α–16O collision of (a) and
α–206Pb collision of (b) for α particle energies (EK)i of 5.5 MeV, 500 MeV, 2 GeV, and 20 GeV.
The two data points in grey represent the classical approximation of [η(EK)]max calculated in (c)
with (5.127). The two data points designated by × represent results of calculations in (d)

(b) Elastic collision between projectile (α particle) and target [lead-206 (Pb-206)
nucleus] for α-particle particle kinetic energies (EK)i of 5.5 MeV, 500 MeV, 2 GeV,
and 20 GeV.

The maximum energy transfer fraction [η(EK)]max is calculated from

[
η(EK)

]
max = (�EK)max

(EK)i
= 2(γ + 1)mαc2mPb-206c

2

(mαc2)2 + (mPb-206c2)2 + 2γmαc2mPb-206c2

(5.124)
and the results for the four α particle kinetic energies are displayed in row (4) of
Table 5.5B and superimposed on the Pb-206 curve of Fig. 5.5.
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The classical limit ηclas of [η(EK)]max is calculated as follows

ηclass
max = lim

γ→1
η(EK)= 4mαc2mPb-206c

2

(mαc2 +mPb-206c2)2
= 4×3727.3×191820

(3727.3 + 191820)2
= 0.075.

(5.125)

(c) Elastic collision between projectile (α particle) and target (orbital electron) for
α-particle particle kinetic energies (EK)i of 5.5 MeV, 500 MeV, 2 GeV, and 20 GeV.

Maximum energy transfer fraction η(EK) is calculated from

[
η(EK)

]
max = (�EK)max

(EK)i
= 2(γ + 1)mαc2mec

2

(mαc2)2 + (mec2)2 + 2γmαc2mec2
(5.126)

and the results for the various α particle kinetic energies are displayed in row (5) of
Table 5.5B. Classical limit ηclas of η(EK) is calculated as follows

ηclass
max = lim

γ→1
η(EK)= 4mαc2mec

2

(mαc2 +mec2)2
= 4×3727.3×0.511

(3727.3 + 0.511)2
= 5.482×10−4.

(5.127)

(d) To determine the unknown kinetic energy (EK)i of the α particle we first de-
termine the maximum energy transfer fraction [η(EK)]max for a 100 MeV α parti-
cle colliding elastically with Pb-206 nucleus and then find (EK)i for [η(EK)]max at
twice the 100 MeV value.

The maximum energy transfer fraction [η(EK)]max is calculated from (5.120)
with appropriate γ calculated using (5.121) to get

γ = 1 + EK

mαc2
= 1 + 100

3727.3
= 1.027. (5.128)

Insertion of (5.128) into (5.120) gives the following result for [η(EK)]max

[
η(EK)

]
max = (�EK)max

(EK)i
= 2(γ + 1)mαc2mPb-206c

2

(mαc2)2 + (mPb-206c2)2 + 2γmαc2mPb-206c2

= 2×2.027×3727.4×191820

3727.42 + 1918202 + 2×1.027×3727.4×191820
= 0.076.

(5.129)
Next we determine kinetic energy (EK)i of an α particle with [η(EK)]max = 0.152
that is equal to twice the value at 100 MeV calculated as 0.07 in (5.129). Kinetic
energy (EK)i of the α particle is determined in a two-step process: first we solve
(5.128) for γ and then we calculate (EK)i from γ . Equation (5.128) is modified as
follows

η(EK)= (�EK)max

(EK)i
= 2(γ + 1)mαc2mPb-206c

2

(mαc2)2 + (mPb-206c2)2 + 2γmαc2mPb-206c2
= a(γ + 1)

b+ aγ ,
(5.130)
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where a and b are constants given as follows

a = 2mαc
2mPb-206c

2 and b= (
mαc

2)2 + (
mPb-206c

2)2
. (5.131)

We now solve (5.130) for γ and insert γ into (5.121) to get

(EK)i = (γ − 1)mαc
2 =

(
η b
a

− 1

1 − η − 1

)
mαc

2, (5.132)

where

b

a
= (mαc

2)2 + (mPb-206c
2)2

2mαc2mPb-206c2
= 1

2

(
mαc

2

mPb-206c2
+ mPb-206c

2

mαc2

)

= 1

2
×
(

3727.3

191820
+ 191820

3727.3

)
= 25.74. (5.133)

Initial kinetic energy (EK)i of the α particle is thus calculated from (5.132) as

(EK)i =
(

0.152×25.74 − 1

1 − 0.152
− 1

)
×(3727.3 MeV)= 9074 MeV ≈ 9.1 GeV.

(5.134)
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Chapter 6 consists of 22 problems covering 11 sections devoted to general
aspects of charged particle interactions with matter. A charged particle is sur-
rounded by its Coulomb electric field that interacts with orbital electrons and
the nucleus of all atoms it encounters as it penetrates into an absorber. Charged
particle interactions with orbital electrons of the absorber result in collision
loss; interactions with nuclei of the absorber result in radiation loss.

The energy transfer from the charged particle to matter in each individual
atomic interaction is generally small, so that the particle undergoes a large
number of interactions before its kinetic energy is fully spent. The parameter
that is used to describe the gradual loss of energy of the charged particle, as it
penetrates into an absorber, is referred to as stopping power. Two categories
of stopping power are known: (1) collision stopping power that results from
charged particle interaction with orbital electrons of the absorber atoms and
(2) radiation stopping power that results from charged particle interaction with
the nuclei of the absorber.

Chapter 6 starts with problems dealing with general aspects of energy
transfer from charged particle to absorber and with general aspects of stopping
power of absorbers (Sects. 6.1 and 6.2). Section 6.3 covers radiation stopping
power and is followed by several problems on collision stopping power of
absorbing media for heavy charged particles in Sect. 6.4 and for light charged
particles in Sect. 6.5. Section 6.6 deals with total stopping power and the chap-
ter concludes with problems related to various aspects of stopping power, such
as radiation yield (Sect. 6.7), range of charged particle in absorber (Sect. 6.8),
mean and restricted stopping power (Sects. 6.9 and 6.10) and practical aspects
of bremsstrahlung targets (Sect. 6.11).

E.B. Podgoršak, Compendium to Radiation Physics for Medical Physicists,
DOI 10.1007/978-3-642-20186-8_6,
© Springer-Verlag Berlin Heidelberg 2014
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6.1 General Aspects of Energy Transfer from Charged Particle
to Medium

6.1.Q1 (127)

A charged particle (CP) is surrounded by its Coulomb electric field that in-
teracts with orbital electrons and the nucleus of all atoms it encounters, as
it penetrates into an absorbing medium. In penetrating an absorber charged
particles may experience a variety of interactions with atoms of the medium.
Energy transfer from the charged particle to absorbing medium in each in-
dividual atomic interaction is generally but not necessarily small, so that the
energetic particle typically undergoes a large number of interactions before
its incident kinetic energy is fully spent.

(a) Classify charged particles used in medicine for treatment of disease ac-
cording to their mass.

(b) Classify charged particle interactions with absorber atoms and provide
a brief description of each interaction.

(c) Prepare a block diagram for interactions between a charged particle and
absorber atom listed in (b).

(d) Of the CP interactions listed in (b) only a few contribute to CP energy
loss. List and rank the energy loss processes in CP interactions with
absorber atoms.

SOLUTION:

(a) Charged particles (CPs) of interest in medicine for treatment of disease are
usually placed into three categories according to their rest mass:

(1) Light charged particles (CPs), such as electrons and positrons with rest mass
of me = 0.511 MeV/c2.

(2) Intermediate charged particles (CPs), such as negative pions π− with mπ− =
140me.

(3) Heavy charged particles (CPs), such as protons (mp = 1836me), deuterons, α
particles, carbon ions, etc.

In 1970s negative pions were touted as an exciting charged particle option for use in
radiotherapy, however, during the past two decades the study of negative pions has
largely been abandoned in favor of heavy charged particles such as protons because
of simpler means of production and less expensive equipment maintenance.

(b) As energetic charged particles penetrate into an absorbing medium, they inter-
act either with orbital electrons of absorber atoms or with the nucleus of absorbing
atoms. These interactions are typically classified as follows:
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(1) Coulomb interaction between CP and orbital electrons of absorber atom re-
sulting in:

(i) Elastic scattering (no energy loss but change in direction of motion).
(ii) Inelastic collision referred to as soft or distant collision with impact

parameter b much larger than radius of absorbing atom a, i.e., b� a,
resulting in some energy loss (soft collision loss) through excitation or
ionization of absorber atom.

(iii) Inelastic collision referred to as hard or direct collision with impact
parameter b of the order of the radius of absorbing atom a, i.e., b ≈ a,
resulting in some energy loss (hard collision loss) through excitation or
ionization of absorber atom.

(iv) In-flight annihilation (applicable to positrons only) of CP with orbital
electron of absorber resulting in production of annihilation photons (ra-
diation loss).

(2) Coulomb interaction between CP and nucleus of absorber atom resulting in:

(i) Elastic scattering (essentially no energy loss but change in direction of
motion).

(ii) Inelastic scattering referred to as radiation loss with the impact param-
eter b much smaller than the radius of the absorber atom a, i.e., b� a,
resulting in energy loss through production of bremsstrahlung (appli-
cable to light CPs only).

(iii) Penetration of the nucleus of absorbing atom resulting in nuclear re-
action (applicable to heavy and intermediate CPs and much less so to
light CP).

(iv) Inelastic scattering resulting in Coulomb nuclear excitation and subse-
quent emission of gamma rays.

(c) A block diagram of interactions between charged particle and atom is shown
in Fig. 6.1.

(d) The four entries in CP vs orbital electron interaction and the four entries in CP
vs nucleus interaction cover the most important interaction processes of CP inter-
action with absorber atoms. However, the cross sections for individual interactions
vary significantly from one interaction to another and from one particle to another.

(1) CP interactions with orbital electrons of absorber atoms:
Elastic collisions are possible but essentially negligible except at very low CP

energies where the process is referred to as the Ramsauer effect.
Inelastic collisions represent the prevalent interaction between the CP and orbital

electrons of the absorber and are split into two classes: hard and soft collisions, both
classes causing excitation and ionization of absorber atoms. The energy transfer to
orbital electrons is significantly higher in hard collisions in comparison to soft colli-
sions; however, the number of soft collisions exceeds the number of hard collisions
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Fig. 6.1 Classification of charged particle (CP) interactions with absorber atoms. Intermediate
CPs are ignored because they are no longer considered an option for radiotherapy. LCP and HCP
stand for “light charged particles” and “heavy charged particles”, respectively

to such an extent that total energy transfer from the CP to orbital electrons of the
absorber is roughly equal for the two classes of collision.

In-flight annihilation only applies to light CP and of these, only to positrons. It
produces radiation loss that is added to the bremsstrahlung loss but contributes only
a small amount to the total radiation loss and is often ignored in comparison with
hard and soft collision loss.

(2) CP interactions with nuclei of absorber atoms:
Elastic Coulomb scattering of CPs on nuclei of absorber atoms are not pro-

nounced for heavy CPs but are very pronounced for light CPs because of their rel-



6.2 General Aspects of Stopping Power 303

atively small mass in comparison to that of nuclei. For heavy CPs there is some
energy transfer from the CP to the nucleus as the recoil energy of the nucleus but
this recoil energy is miniscule in comparison to energy losses inelastic collisions
between the heavy CP and orbital electrons of the absorber atoms

Inelastic Coulomb scattering of CPs on nuclei is much less probable than elastic
Coulomb scattering. It can be ignored for heavy CPs but it is of significance for
light CPs because it serves as source as source of bremsstrahlung photons that play
a very important role in modern physics in particular as well as science, industry,
and medicine in general.

Penetration of the nucleus by a heavy or light CP that engenders a nuclear reac-
tion is very important in its own right in nuclear physics but play only a minor role
in energy transfer from CP to absorber atom. Thus, in energy transfer considerations
this process is usually neglected.

Coulomb nuclear excitation by a heavy or light CP is of interest in nuclear
physics but is of negligible importance in energy transfer considerations and is there-
fore ignored.

In summary, the most important processes of energy transfer from CP to atoms
of absorber are the inelastic hard and soft collisions between the CP and orbital elec-
trons of absorber engendering collision (ionization) loss and inelastic collisions be-
tween the CP and nucleus of absorber atoms engendering radiation (bremsstrahlung)
loss.

6.2 General Aspects of Stopping Power

6.2.Q1 (128)

Stopping power plays an important role in study of charged particle interac-
tions with absorbing media.

(a) Define stopping power and explain the purpose it serves.
(b) List and briefly describe the various known types of stopping power.
(c) Mass stopping power S depends on physical properties of the absorber

and the type of CP, yet, for a given heavy CP, it is constant within a
factor of 2 for all absorbers. Explain.

SOLUTION:

(a) In traversing an absorbing medium a charged particle (CP) interacts with the
atoms of the absorber and gradually loses its kinetic energy in a large number of
small steps. The mean rate of energy loss per unit path length of the CP of ki-
netic energy EK traversing an absorbing medium of atomic number Z is defined as
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the stopping power of the absorbing medium. Stopping power depends on physi-
cal properties of the absorbing medium as well on properties of the CP traversing
the absorbing medium. Stopping power is considered a property of the absorbing
medium in which a CP propagates.

Stopping power has an important role in many facets of basic science and tech-
nology, and is used heavily in clinical radiation dosimetry based on ionization cham-
bers.

(b) Various types of stopping power are known depending on: (1) the expression
of path length of the CP propagating in the absorbing medium and (2) the mode of
CP interaction with the atoms of the absorbing medium.

(1) With regard to penetration path length two types of stopping power are known:
The rate of energy loss (typically expressed in MeV) per unit penetration path length
(typically expressed in cm) is called the “linear stopping power” s. Linear stopping
power is proportional to the number of absorber atoms Na per volume V and its
typical units are MeV/cm and less commonly keV/µm. Since Na/V = ρNa/m =
ρNA/A, one concludes that the linear stopping power s is proportional to absorber
density ρ and inversely proportional to its atomic mass number A. NA is the Avo-
gadro constant.

To minimize the effect of absorber density ρ on stopping power the penetration
path length is often measured in g/cm2 and the energy loss per unit path length
is then called the “mass stopping power” S with typical unit MeV · cm2/g. The
mass stopping power S is thus proportional to the number of absorber atoms Na
per absorber mass m that is proportional to NA/A. In mass stopping power S the
effect of absorber density is removed and the mass stopping power of all absorber
materials is, within a factor of 2, constant for all absorbers.

Linear and mass stopping powers are thus defined as

s = −dEK

dx
and S = s

ρ
= −dEK

ρ dx
, respectively, (6.1)

where dEK is the energy lost by the CP in absorbing medium at penetration thick-
ness dx.

(2) With regard to mode of interaction between the CP and atoms of absorbing
medium the stopping power is divided into two major groups: inelastic collision in-
teraction between CP and orbital electrons of the absorber result in collision (also
referred to as electronic or ionization) stopping power; inelastic collision interac-
tion between the CP and nucleus of absorber result in radiation stopping power.
Inelastic collisions between CP and orbital electrons are further subdivided into soft
collisions and hard collisions that result in hard collision stopping power and soft
collision stopping power, as shown schematically in Fig. 6.2.

Total stopping power Stot is defined as the sum of radiation stopping power Srad
and collision stopping power Scol consisting of a soft and a hard term. We thus have

Stot = Srad + Scol = Srad + Ssoft
col + Shard

col . (6.2)
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Fig. 6.2 Three different types of collision (hard, sof, and radiation collision) of a charged particle
with a atom depending on the relative size of the impact parameter b and atomic radius a

Table 6.1 Collision stopping powers in MeV · cm2/g of various materials for protons of various
kinetic energies in the range from 0.1 MeV to 1 GeV. Date are from the NIST

Element Atomic
number

0.1 MeV 1 MeV 10 MeV 100 MeV 1000 MeV

Hydrogen 1 3487 676.4 101.9 15.2 4.50

Carbon 6 719 226.3 40.5 6.49 1.94

Aluminum 13 447.7 172.0 33.7 5.68 1.75

Copper 29 209.3 118.2 27.1 4.85 1.52

Silver 47 195.5 96.1 23.1 4.34 1.39

Tungsten 74 116.3 63.5 18.2 3.70 1.22

Lead 82 121.4 63.0 17.8 3.55 1.19

Uranium 92 141 58.8 16.9 3.41 1.14

Water 816 260.8 45.6 7.29 2.21

Air 730 222.9 40.1 6.44 1.96

(c) For heavy CPs the mass radiation stopping power Srad is much smaller than
the mass collision stopping power Scol, so that the total mass stopping power Stot is
roughly equal to Scol. Since Scol originates with inelastic collisions between the CP
and orbital electrons of the absorber atoms, a conclusion can be made that Scol is
proportional to the electron density Ne given as the number of electrons per mass of
the absorber or Ne/m= ZNA/A. Since Z/A is roughly constant in nature, slowly
varying from 0.5 for low Z elements down to ∼0.38 for high Z elements, we con-
clude that Z/A≈ 0.5 (with one notable exception of hydrogen for which Z/A= 1)
and, therefore, Scol should not vary appreciably with atomic number of absorbers
for a given CP of a given kinetic energy EK. However, theoretical derivations of
Scol reveal other Z-dependent terms that cause a decrease in Scol with increasing
atomic number Z of the absorber.
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Fig. 6.3 Mass collision stopping power, i.e., total mass stopping power of various absorbing ma-
terials for protons against proton kinetic energy in the range from 1 keV to 104 MeV

This conclusion is substantiated in Table 6.1 and Fig. 6.3 that give Scol against
EK for protons in the range from 1 keV to 104 MeV for various absorber materials
ranging from hydrogen (Z = 1) to uranium (Z = 92) in addition to water and air.
Data are from the NIST www.physics.nist.gov/PhysRefData/Star/Text/PSTAR.html

6.3 Radiation Stopping Power

6.3.Q1 (129)

According to Bethe and Heitler the mass radiation stopping power Srad of an
absorbing material traversed by light charged particles (electrons or positrons)
of kinetic energy EK can be estimated with the following expression

Srad = αr2
eZNe

(
EK +mec

2)Brad, (6.3)

where

α is the fine structure constant [α = e2/(4πε0�c)= 1/137].
re is the classical electron radius [re = e2/(4πε0mec

2)= 2.818 fm].
Ne is the number of electrons per unit mass (electron density), i.e., Ne =

ZNA/A with Z and A, respectively, the atomic number and atomic
mass of the absorber.

mec
2 electron and positron rest energy (mec

2 = 0.511 MeV).

http://www.physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
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Brad is a slowly varying function of the atomic number Z of the absorber
and total energy Ei = EK + mec

2 of the light charged particle (CP)
with the following recommended mean values: B̄rad ≈ 16/3 ≈ 5.3 in
the non-relativistic kinetic energy range where EK �mec

2; B̄rad ≈ 6
for EK ≈ 1 MeV; B̄rad ≈ 12 for EK ≈ 10 MeV; and B̄rad ≈ 15 for
EK ≈ 100 MeV.

(a) Based on mass radiation stopping power Srad data available from the
NIST and provided for electrons traversing four absorbers (carbon,
copper, tin, and lead) in Table 6.2, determine numerical values for the
function Brad(Z,Ei) for the four absorbers at kinetic energies of EK =
0.01 MeV, 0.1 MeV, 1 MeV, 10 MeV, and 100 MeV.

(b) Describe the dependence of function Brad on kinetic energy EK of the
incident electron and atomic number Z of the absorber.

(c) Based on your calculations, determine average (mean) values of Brad
and compare them to the values recommended in the literature and
stated above.

Table 6.2 Mass radiation stopping power SNIST
rad from the NIST of four absorbers (carbon, copper,

tin, and lead) for five kinetic energies EK of the electron (0.01 MeV, 0.1 MeV, 1 MeV, 10 MeV,
and 100 MV). Ei stands for the total energy of the incident electron

1 EK (MeV) 0.01 0.1 1 10 100

2 Ei (MeV) 0.521 0.611 1.511 10.511 100.511

3 Absorber SNIST
rad Bcalc

rad SNIST
rad Bcalc

rad SNIST
rad Bcalc

rad SNIST
rad Bcalc

rad SNIST
rad Bcalc

rad

4 Carbon C 0.003 0.003 0.011 0.151 2.05

5 Copper Cu 0.012 0.017 0.046 0.565 7.08

6 Tin Sn 0.017 0.028 0.077 0.849 10.40

7 Lead Pb 0.021 0.045 0.129 1.206 14.36

SOLUTION:

(a) As given in (6.3), the mass radiation stopping power Srad contains a fundamen-
tal constant σ0 = αr2

e = 5.8×10−28 cm2 and is proportional to ZNe = Z2NA/A,
total energy Ei = EK + mec

2 of the incident light CP (electron or positron), and
function Brad. Since Table 6.2 provides Srad from the NIST evaluated with a combi-
nation of theoretical bremsstrahlung cross sections described by Berger and Seltzer,
it is easy to determine the function Brad from (6.3) as follows

Brad = Srad

αr2
eZNeEi

. (6.4)

Before embarking on the calculation of Brad, we compile appropriate data for the
four absorbers, such as Z, A, Ne and αr2

eZNe and present them in Table 6.3.
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Table 6.3 Basic atomic properties of the four absorbers: carbon, copper, tin, and lead

1 Absorber Atomic
number Z

Atomic
mass A

Electron density
Ne = ZNA/A

αr2
eZNe (cm2/g)

2 Carbon C 6 12.01 3.008×1023 1.046×10−3

3 Copper Cu 29 63.5 2.749×1023 4.623×10−3

4 Tin Sn 50 118.7 2.537×1023 7.352×10−3

5 Lead Pb 82 207.2 2.383×1023 11.33×10−3

Table 6.4 Calculated values of Brad for the four absorbers (carbon, copper, tin, and lead) at five
kinetic energies EK of the electron. Mass radiation stopping powers Srad are from the NIST

1 EK (MeV) 0.01 0.1 1 10 100

2 Ei (MeV) 0.521 0.611 1.511 10.511 100.511

3 Absorber SNIST
rad Bcalc

rad SNIST
rad Bcalc

rad SNIST
rad Bcalc

rad SNIST
rad Bcalc

rad SNIST
rad Bcalc

rad

4 Carbon C 0.003 5.9 0.003 5.3 0.011 6.6 0.151 13.7 2.05 19.5

5 Copper Cu 0.012 5.1 0.017 6.1 0.046 6.6 0.565 11.6 7.08 15.2

6 Tin Sn 0.017 4.4 0.028 6.3 0.077 6.9 0.849 11.0 10.40 14.1

7 Lead Pb 0.021 3.5 0.045 6.4 0.129 7.5 1.206 10.1 14.36 12.6

We again note thatNe in the first approximation equals to 1
2NA; however, a closer

look shows that Ne ≈ 0.5 for low Z elements and then it slowly drops to reach Ne ≈
0.4 for high Z elements. One can still state that Srad is approximately proportional
to Z of the absorber; however, to make this statement with more confidence we
need to examine the Z-dependence of Brad for a given kinetic energy of the incident
electron or positron.

We now calculate Brad for each of the four absorbers at the five kinetic energies
EK using (6.4) and data that are summarized in Table 6.3. The calculated Brad are
displayed in Table 6.4.

(b) The dependence of the radiation stopping power Brad on kinetic energy EK
of the light CP and atomic number Z of the absorber is determined from Fig. 6.4.
The figure shows that for a given absorber Z at low kinetic energies EK where
EK � mec

2 the parameter Brad amounts to about 5.5. With increasing EK the pa-
rameter remains almost constant and at EK ≈ mec

2 begins to rise slowly to reach
a value of 6 at EK ≈ 1 MeV and then continues to rise slowly until it reaches sat-
uration at around EK ≈ 1000 MeV. For a given EK, on the other hand, Brad is
essentially constant (∼5.5) at EK < 1 MeV but at higher EK > 1 MeV it is in-
versely proportional to Z with the spread in Brad increasing with increasing kinetic
energy EK and amounting to ∼7 ± 0.5 at EK = 1 MeV; ∼12 ± 2 at EK = 10 MeV;
∼16 ± 3.5 at EK = 100 MeV; and ∼17.5 ± 4 at EK = 1000 MeV.

(c) Mean values of Brad determined from the spread in Brad displayed in Fig. 6.4
agrees well with the B̄rad recommended in the literature and indicated with the sym-
bol ⊗ in Fig. 6.4.
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Fig. 6.4 Radiation stopping power parameter Brad against kinetic energy EK for four absorber
materials: carbon, copper, tin, and lead. Symbols ⊗ indicate values of Brad at various kinetic ener-
gies EK as recommended in the literature

6.4 Collision (Electronic) Stopping Power for Heavy Charged
Particles

6.4.Q1 (130)

Energy transfer from energetic heavy charged particles (CP) to a medium (ab-
sorber) they traverse occurs mainly through Coulomb interactions of the CP
with orbital electrons of absorber atoms (collision or electronic loss); inelas-
tic Coulomb interactions between heavy CP and nuclei of the absorber atoms
(radiation loss) are negligible and thus ignored.

(a) Plot a schematic diagram for a typical Coulomb interaction between
a heavy CP and orbital electron of absorber that results in momentum
transfer �p and energy transfer �E from the CP to orbital electron.
Clearly identify all parameters that influence the interaction.

(b) For a heavy CP of charge ze and kinetic energy EK traversing an ab-
sorber of electron density Ne derive expressions for momentum transfer
�p and energy transfer �E from the heavy CP to orbital electron of
absorber. Express the impact parameter indeximpact parameter b as a
function of �p and �E.

(c) Both �p and �E depend on the impact parameter b and both have
a range between a minimum and maximum value, corresponding to a
maximum and minimum value of b, respectively. For the seven elements
listed in Table 6.5 determine the maximum and minimum values of�p,
�E, and b for proton of incident kinetic energy EK = 10 MeV.
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(d) Can an interaction between a heavy CP and absorber orbital electron
occur when the impact parameter b is outside the range bmin ≤ b ≤
bmax? If so, what is the type of interaction? Do any interactions occur
between the incident heavy CP and the nuclei of absorber atoms?

Table 6.5 Mean ionization/excitation potential I (eV) for various elements of interest to medical
physics

1 Element H Al Cu Ag Au W Pb

2 Atomic number Z 1 12 29 47 79 74 82

3 Ionization/excitation potential I (eV) 19 166 322 470 790 727 823

SOLUTION:

(a) Coulomb interaction between a heavy CP (charge ze and mass M) and an
orbital electron (charge e and mass me) of an absorber atom is shown schematically
in Fig. 6.5. Base on assumption that the heavy CP is positively charged, the orbital
electron is located in the inner focus of the hyperbolic trajectory that, in principle,
the heavy CP follows. Note: if the two particle charges were of equal sign, then the
stationary particle would reside in the outer focus of the hyperbola as is the case
in Rutherford scattering. The important parameters of the Coulomb interaction are:
impact parameter b, scattering angle θ , and angle φ between the radius vector r and
the bisector of the hyperbolic trajectory of the CP.

(b) The momentum transfer (impulse) �p from the CP to orbital electron is di-
rected along a line that bisects the angle π − θ , where θ is the scattering angle for
the Coulomb interaction

�p =
∫ ∞

−∞
F�p dt =

∫ ∞

−∞
Fcoul cosφ dt = ze2

4πε0

∫ π−θ
2

− π−θ
2

cosφ

r2

(
dt

dφ

)
dφ

= zremec
2
∫ π−θ

2

− π−θ
2

cosφ

r2

(
dt

dφ

)
dφ, (6.5)

where

r is the distance between the heavy CP and the orbital electron.
φ is the angle between the radius vector r and the bisector of the hyperbola.
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Fig. 6.5 Schematic diagram of a Coulomb collision between a positively charged heavy particle
with massM and an orbital electron with mass me. Since M �me, the scattering angle θ ≈ 0

The Coulomb force between the two charges (ze and e) is given as

Fcoul = ze2

4πε0r2
= zremec

2

r2
, (6.6)

with re the standard classical electron radius constant [re = e2/(4πε0mec
2) =

2.818 fm] and mec
2 rest energy of the electron [mec

2 = 0.511 MeV]. The angular
momentum L for the Coulomb collision process is defined as follows (see Fig. T2.4)

L= |r×Mυ| = rMυ sinψ =Mυb=Mωr2, (6.7)

with

ω angular frequency equal to dφ/dt .
υ velocity of the heavy CP before the interaction.
b impact parameter.

Using the conservation of angular momentum expressed in (6.7), we can now write
(6.5) in a simpler form

�p = zremec
2

υb

∫ π−θ
2

− π−θ
2

cosφ dφ = zremec
2

υb
[sinφ](π−θ)/2

−(π−θ)/2 = 2zremec
2

υb
cos
θ

2
.

(6.8)
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In the case of heavy CP of charge ze and massM interacting with a “stationary”
electron of charge e and mass me, the scattering angle θ is essentially equal to zero
becauseM �me. Thus, the momentum transfer �p from (6.8) and energy transfer
�E, respectively, are given as

�p(b)= 2zremec
2

υb
(6.9)

and

�E(b)= (�p)2

2me
= 2z2r2

emec
2

(υ/c)2b2
. (6.10)

The impact parameter b as a function of �p and �E can thus be expressed
from (6.9) and (6.10) as follows

b= 2zremec
2

υ�p
= zre

(υ/c)

√
2mec2

�E
. (6.11)

(c) Intuitively, we might assume that the impact parameter b ranges from 0 to ∞
and that the energy transfer �E ranges from 0 to EK, the kinetic energy of the
incident heavy CP. However, a closer look at the underlying physics reveals that
�E actually ranges from a minimum �Emin > 0 to a maximum �Emax <EK both
clearly defined and corresponding to maximum and minimum values of b, respec-
tively. Minimum energy transfer �Emin is limited to the mean ionization/excitation
potential I of the given absorber and�Emax is limited by the maximum energy that
can be transferred from particle M0 to particle m0 in a direct-hit collision, classi-
cally given as�Emax = 2meυ

2 [see (T5.30)]. Using (6.9), (6.10), and (6.11) we can
now express the minima and maxima in �p, �E, and b as follows

�pmin = 2zremec
2

υbmax
=√

2meI or bmax = 2zremec
2

υ�pmin
= zre

(υ/c)

√
2mec2

I
,

(6.12)

�pmax = 2zremec
2

υbmin
= 2meυ or bmin = 2zremec

2

υ�pmax
= zre

(υ/c)2
, (6.13)

�Emin = 2z2r2
emec

2

(υ/c)2b2
max

= I or bmax = zre

(υ/c)

√
2mec2

�Emin
= zre

(υ/c)

√
2mec2

I
,

(6.14)

�Emax = 2z2r2
emec

2

(υ/c)2b2
min

= 2meυ
2 or bmin = zre

(υ/c)

√
2mec2

�Emax
= zre

(υ/c)2
.

(6.15)

Using the expressions above, we will determine the minima and maxima as
follows: �pmin = [

√
mec2I ]/c; �pmax = 2mec

2(υ/c)/c;�Emin = I ; �Emax =
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Table 6.6 Mean ionization/excitation potential I , minimum and maximum momentum transfer
(�pmin and �pmax), minimum and maximum energy transfer (�Emin and �Emax), and minimum
and maximum impact parameter (bmin and bmax) for 10 MeV proton traversing various absorbers
of interest to medical physics

1 Element H Al Cu Ag W Au Pb

2 Z 1 12 29 47 74 79 82

3 I (eV) 19 166 322 470 727 790 823

4 �pmin (keV/c) 3.12 9.21 12.83 15.50 19.27 20.09 20.51

5 �pmax (keV/c) ← 151.2 →
6 �Emin (eV) 19 166 322 470 727 790 823

7 �Emax (eV) ← 21.5×103 →
8 bmin (fm) ← 268 →
9 bmax (fm) 8832 2988 2145 1176 1428 1370 1342

2mec
2(υ/c)2; bmin = zre(υ/c)−2; and bmax = [zre/(υ/c)]

√
2mec2/I . From these

expressions it is evident that, on the one hand, the minima in �p and �E are inde-
pendent of the CP and depend only on the mean ionization/excitation potential I of
the absorber; while, on the other hand, the maxima in �p and �E are independent
of the absorber but depend on the velocity υ of the CP. Results of these calculations
are given in Table 6.6.

(c) To work on our problem involving a 10 MeV proton and various absorbers
we will first determine the proton velocity β = υ/c at EK = 10 MeV. Velocity is
determined using the relativistic expression for kinetic energy EK = (γ − 1)mpc

2

to get

β2 = 1 − 1

(1 + EK
mpc2 )

2
= 1 − 1

(1 + 10
938.3 )

2
= 0.021 or β = 0.148. (6.16)

(d) The range of impact parameters b is from b = 0 to b = ∞; however, we must
recognize that energy transfer �E from the CP to orbital electrons of the absorber
atoms can occur only for impact parameters b in a much narrower window that ex-
tends from bmin to bmax, as shown for 10 MeV proton in various absorber materials
in Table 6.6. The table also shows that �Emax which is inversely proportional to
bmin is independent of absorber and depends only on the velocity υ of the CP, while
�Emin which is inversely proportional to bmax depends on the absorber through the
mean ionization/excitation potential I .

The answer to the question on whether or not a Coulomb interaction between
a heavy CP and orbital electron is possible for impact parameters b outside the
window bmin ≤ b ≤ bmax is that it certainly can occur; however, in this situation
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the interaction will be elastic and no energy transfer to absorber will occur. We
also note that interactions between the CP and nuclei of the absorber certainly do
occur, however, again, these interactions are elastic interactions that do not result in
bremsstrahlung production.

6.4.Q2 (131)

The Bethe equation for collision stopping power Scol of an absorbing medium
for a heavy charged particle (CP) such as proton, deuteron and α particle and
heavier ions such as carbon ion and neon ion is in the most general form that
includes the Fano corrections written as

Scol = 4πNe

(
e2

4πε0

)2
z2

mec2β2

{
ln

2mec
2

I
+ ln

β2

1 − β2
− β2 − C

Z
− δ

}

= C1
Nez

2

β2
B̄col. (6.17)

(a) Identify parameters, define constants, and provide numerical values of
constants for the collision stopping power equation (6.17).

(b) Briefly discuss the shell correction C/Z to the collision stopping power
equation (6.17).

(c) Briefly discuss the density correction δ to the collision stopping power
equation (6.17).

(d) Discuss the dependence of Scol of (6.17) on the stopping medium (ab-
sorber).

(e) Discuss the dependence of Scol of (6.17) on heavy CP: mass m0c
2, ve-

locity β = υ/c, and charge ze.

SOLUTION:

(a) Parameters of the general Bethe equation incorporating the Fano corrections
are as follows:

Ne electron density (Ne = ZNA/A) expressed in number of electrons per gram
of absorber medium with Z the atomic number and A the atomic mass of
the absorber. In the first approximation, Z/A≈ 0.5 for all elements with the
notable exception of hydrogen for which Z/A ≈ 1. A closer look at Z/A
shows that forZ ≥ 2 it slowly decreases from 0.5 for lowZ elements to 0.38
for high Z elements. For example, Z/A for helium-4 is 0.5, for cobalt-60 it
is 0.45, and for uranium-235 it is 0.39.

ze charge of the heavy charged particle CP (for proton z = 1; for α particle
z= 2).

mec
2 rest energy of the electron (mec

2 = 0.511 MeV).
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β velocity of the heavy CP normalized to speed of light c = 3×108 m/s in
vacuum.

I mean ionization/excitation potential of the absorber.
C shell correction constant.
δ density correction.
C1 is a collision stopping power constant independent of absorbing medium

as well as of the physical characteristics of the CP. It is defined with the
following expression

C1 = 4π

(
e2

4πε0

)2 1

mec2
= 4π

[(
e2

4πε0

)
1

(mec2)

]2

mec
2 = 4πr2

emec
2

= 4π×(
2.818×10−13 cm

)2×(0.511 MeV)=5.099×10−25 MeV · cm2,

(6.18)
where re is the classical radius of electron defined as

re =
(
e2

4πε0

)
1

(mec2)
= 2.818 fm.

B̄col is the so-called atomic stopping number that depends directly on velocity
β of the charged particle and indirectly on the atomic number Z of the
absorber through the mean ionization/excitation potential I . It is given as

B̄col =
{

ln
2mec

2

I
+ ln

β2

1 − β2
− β2 − C

Z
− δ

}
. (6.19)

(b) Shell correction. Bethe’s derivation of Scol for heavy CPs traversing an ab-
sorber assumes that the velocity υ of the CP is much larger than the velocity υorb
of orbital electrons of the absorber atoms. At high kinetic energy EK of the CP this
assumption (υ � υorb) is correct; however, at low EK where υ ≤ υorb it does not
hold, since orbital electrons do not participate in energy transfer from the CP when
υ ≤ υorb. This effect causes an overestimate in the mean ionization/excitation po-
tential I at low EK and, consequently, results in an underestimate in Scol calculated
from an uncorrected Bethe equation.

Since K shell electrons are the fastest of all orbital electrons in an absorber atom,
they are the first to be affected by low CP velocity with decreasing CP velocity,
as the CP penetrates deeper into the absorber. Often thus, the shell correction is
addressed as the K shell correction and all possible higher shell corrections are
ignored.

The shell correction term C/Z that Fano introduced to correct for the overesti-
mate in I is a function of the absorbing medium as well as of the incident particle
velocity υ; however, for the same absorbing medium and the same particle velocity,
it is the same for all particles including electrons and positrons.

(c) Density effect correction. Fano introduced a second correction term δ to the
Bethe collision stopping power equation to account for the polarization or density
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effect in condensed absorbing media. The effect influences the soft (distant) colli-
sion interactions by polarizing the condensed absorbing medium thereby decreasing
the collision stopping power of the condensed medium in comparison with the same
absorbing medium in the gaseous state. For heavy CPs the density correction is
important at relativistic energies and negligible at intermediate and low energies;
however, for electrons and positrons it plays a role in stopping power formulas at all
energies.

(d) Dependence of Scol on the absorbing medium. Scol depends on atomic
number Z of the absorber in two ways: (1) directly through the electron den-
sity Ne = ZNA/A of the absorber and (2) indirectly through the mean ioniza-
tion/excitation potential I of the absorber.
Scol is directly proportional to Z/A and this implies that Scol decreases with

increasing Z as a result of the slight Z/A dependence on Z. Note: for hydro-
gen Z/A = 1, but for all other elements, it is close to 0.5 ranging from 0.5 for
low Z elements and, with increasing Z, slowly decreasing to ∼0.4 for high Z ele-
ments.

The indirect dependence of Scol on absorberZ is brought about through the − ln I
term in the stopping number B̄col, since I depends on Z, ranging from 19 eV for
hydrogen (Z = 1) to ∼900 eV for uranium (Z = 92). Thus, both the direct and
indirect dependence of Scol on atomic number Z of the absorber causes Scol to
diminish with increasing Z, however, the decrease in Scol is only slight despite the
two orders of magnitude range in atomic number Z of the absorber.

(e) Dependence of Scol on physical characteristic of the charged particle.

(1) As shown in (6.17), Scol depends on CP velocity υ and charge ze but does
not depend either directly or indirectly on the rest mass m0c

2 of the CP. A given
absorbing material will have the same Scol for all heavy CPs of a given kinetic
energy EK and charge ze.

(2) Discussion of Scol dependence on velocity υ must address three ranges in CP
velocity: classical velocity υ at low kinetic energy, intermediate velocity at interme-
diate kinetic energy, and relativistic velocity at high energy. Each one of these three
velocity ranges is characterized with its own effect on Scol. As evident from (6.17),
Scol depends on CP velocity β = υ/c through the 1/β2 term as well as through the
{ln[β2/(1 − β2)] − β2} term contained in the atomic stopping number B̄col.

At low kinetic energies EK the Fano shell correction must be incorporated in the
Bethe equation to account for the low velocity υ of the CP and for non-participation
of inner shell electrons in the stopping power process. In the intermediate energy
region Scol is governed by the 1/β2 term that is proportional to 1/EK and decreases
rapidly with increasing EK. In the high-energy relativistic region, where β ≈ 1,
collision stopping power Scol rises slowly with EK as a result of the slow rise in the
{ln[β2/(1 − β2)] − β2} term which slowly increases with EK.
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(3) As far as the charge dependence of Scol is concerned, we see from (6.17) that
Scol is linearly proportional to z2 where ze stands for the charge of the CP. For
example, z = 1 for proton and deuteron; z = 2 for α particle but z = 1 for singly
ionized helium atom; and z = 1 for singly ionized carbon atom, z = 2 for doubly
ionized carbon atom, and z= 6 for carbon nucleus. This implies, for example, that
Scol of an absorber will differ by a factor of 4 in the case of proton and α particle of
the same velocity β , i.e., Scol(α)= 4Scol(p) for the same β .

6.4.Q3 (132)

Several empirical expressions have been proposed for calculation of the mean
atomic ionization/excitation potential I that is used in calculations of collision
stopping power equations. A few of these approximations are as follows:

(1) I ≈ 19 eV for hydrogen (6.20)

(2) I (in eV)≈ 11.5Z; or I (in eV)≈ 11Z; or I (in eV)≈ 10.5Z
(6.21)

(3) I (in eV)≈ 9.1Z
(
1 + 1.9Z−2/3) (6.22)

(4) I (2 ≤Z ≤ 13)≈ 11.2 + 11.7Z and I (Z > 13)≈ 52.8 + 8.71Z
(6.23)

(5) I (Z < 13)= 7 + 12Z and I (Z > 13)= 9.76Z+ 58.8Z−0.19

(6.24)

Mean ionization/excitation potential I for chemical compounds such as water
and for gas mixtures such as air are calculated with the Bragg additivity rule
using the following expression

ln I =
∑
i NiZi ln Ii∑
i NiZi

, (6.25)

where

i designates an individual component of the chemical compound or of the
gas mixture

Zi is the atomic number of the individual component i
Ni is the number of atoms i in the chemical component or the percentage

by weight of the component i in the gas mixture.

Using (6.24) in conjunction with (6.25) calculate:

(a) Mean ionization/excitation potential I of water (H2O).
(b) Mean ionization/excitation potential I of Lucite (C5H8O2)n.



318 6 Interaction of Charged Particles with Matter

Table 6.7 Mean ionization/excitation potential of hydrogen, carbon, and oxygen

Element Hydrogen Carbon Oxygen

Atomic number Z 1 6 8

Mean ionization/excitation potential I (eV) 19 eV 81.5 eV 104.6 eV

from (6.24) from (6.23) from (6.23)

SOLUTION:

Before using (6.25) we must determine the mean atomic ionization/excitation po-
tential for the following elements: hydrogen and oxygen as constituents of water
(H2O) and hydrogen, carbon, and oxygen as constituents of Lucite (C5H8O2)n. The
appropriate data are presented in Table 6.7.

(a) Mean ionization/excitation potential of water is calculated from (6.25) as fol-
lows: We first calculate the two components of (6.25) and get

∑
i

NiZi ln Ii = 2×1× ln 19 + 1×8× ln 104.6 = 43.1 (6.26)

and ∑
i

NiZi = 2×1 + 1×8 = 10 (6.27)

and then use (6.25) to get

ln I =
∑
i NiZi ln Ii∑
i NiZi

= 43.1

10
= 4.31 or I = 74.4 eV, (6.28)

in good agreement with the value of 75 eV that is in common use for the mean
ionization/excitation potential of water.

(b) Mean ionization/excitation potential I of Lucite (C5H8O2)n is also calculated
from (6.25) by first calculating the numerator and denominator of (6.25), respec-
tively

∑
i

NiZi ln Ii = 5×6× ln 81.5 + 8×1× ln 19 + 2×8× ln 104.6 = 230 (6.29)

and ∑
i

NiZi = 5×6 + 8×1 + 2×8 = 54 (6.30)

and then using (6.25) to get

ln I =
∑
i NiZi ln Ii∑
i NiZi

= 230

54
= 4.26 (6.31)
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resulting in

I = e4.26 = 71 eV (6.32)

in reasonable agreement with the value of 74 eV that is commonly used for the
ionization/excitation potential of Lucite.

6.4.Q4 (133)

In general, the total stopping power for a given charged particle (CP) is the
sum of collision stopping power and radiation stopping power. However, for
heavy charged particles the total stopping power is equal to the collision stop-
ping power, since the radiation stopping power for heavy charged particles is
negligible in comparison with the collision stopping power.

(a) Calculate the mass stopping power of water for a proton of kinetic
energy EK = 100 MeV. Ignore the shell and density corrections.
The atomic ionization/excitation potential of water I is 75 eV (see
Prob. 132).

(b) For 1 MeV and 10 MeV protons in water repeat the calculation carried
out in (a).

(c) Calculate the kinetic energy of the deuteron (mdc
2 = 1875.6 MeV) for

which the stopping power of water is the same as that for the proton
in (a).

(d) Calculate the stopping power of water for α particle (mαc2 =
3727.3 MeV) having the same velocity as the proton in (a).

(e) Compare the results obtained in (a) and (b) for protons and in (d) for α
particles with data available from the NIST for stopping powers of water
for protons and α particles www.nist.gov/pml/data/star/index.cfm.

SOLUTION:

(a) To calculate the mass stopping power of water for a 100 MeV proton we use
the Bethe mass collision stopping power equation (T6.42) that reads

Scol = 4πNe

(
e2

4πε0

)2
z2

mec2β2

{
ln

2mec
2

I
+ ln

β2

1 − β2
− β2

}
= C1

Nez
2

β2
Bcol,

(6.33)
where

Ne is the electron density (Ne = ZNA/A) in number of electrons per gram of
absorber medium with Z the atomic number and A the atomic mass of water.

z is the number of electronic charges on the heavy CP (for proton z= 1; for α
particle z= 2).

β is velocity of the CP normalized to speed of light c in vacuum.

http://www.nist.gov/pml/data/star/index.cfm
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I is the mean ionization/excitation potential of water (I = 75 eV).
Bcol is the so-called atomic stopping number that depends directly on velocity β

of the CP and indirectly on the atomic number Z of the absorber (water in
our case) through the mean ionization/excitation potential I and is given as

Bcol =
{

ln
2mec

2

I
+ ln

β2

1 − β2
− β2

}
. (6.34)

C1 is a collision stopping power constant independent of absorbing medium
as well as of the characteristics of the charged particle. It is expressed as
[see (6.18) in Prob. 131]

C1 =
(
e2

4πε0

)2 4π

mec2
=4πr2

emec
2 =4π

(
2.818×10−13 cm

)2×(0.511 MeV)

= 5.099×10−25 MeV · cm2. (6.35)

Before we use (6.33) to calculate the stopping power of water, we must de-
termine the electron density Ne of water and the velocity β of the 100 MeV
proton.

(1) Calculation of electron density Ne is carried out as follows: 1 mole of wa-
ter (H2O) equals to 18.0153 g of water [see (T1.22)] and, by definition, contains
6.022×1023 molecules of water, each molecule containing 2 hydrogen atoms and
one oxygen atom. Thus, 1 g of water contains 1

18.0153×6.022×1023 molecules of
water and, since each molecule of water contains 10 electrons, we conclude that the
electron density of water Ne is

Ne = 1

18.0153
×
(

6.022×1023 molecule

g

)
×
(

10
electron

molecule

)

= 3.343×1023 electron/g. (6.36)

(2) Calculation of 100-MeV-proton velocity β is carried out using the standard
expression (T2.7) relating relativistic particle velocity β = υ/c with kinetic energy
EK of the particle. The expression is easy to derive from the basic definition of
relativistic kinetic energy EK given as follows

EK = (γ − 1)m0c
2 =

(
1√

1 − υ2/c2
− 1

)
m0c

2, (6.37)

from which we get the following expression for β

β2 = υ2

c2
= 1 − 1

(1 + EK
mpc2 )

2
= 1 − 1

(1 + 100
938.3 )

2
= 0.183, (6.38)

indicating that the velocity υ of a 100 MeV proton is 0.428c.
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Fig. 6.6 Collision stopping power of water for proton and α particle in the kinetic energy range
from 1 keV to 1 GeV. The continuous curves are data from the NIST, the four data points are results
of our calculations of stopping power with the Bethe stopping power equation (6.33) that ignores
the shell correction and the density correction

(3) Calculation of the atomic stopping number Bcol proceeds as follows

Bcol =
{

ln
2mec

2

I
+ ln

β2

1 − β2
− β2

}

= ln
2×0.511×106 eV

75 eV
+ ln

0.183

1 − 0.183
− 0.183

= 9.52 + (−1.50)− 0.183 = 7.84. (6.39)

(4) We now use (6.33) to get the final answer for stopping power of water and
100 MeV protons

Scol = C1
Nez

2

β2
Bcol = (

5.099×10−25 MeV · cm2)×3.343×1023 g−1

0.183
×7.84

= 7.30 MeV · cm2/g (see point A in Fig. 6.6). (6.40)

(b) We now repeat, for 1 MeV and 10 MeV protons in water, the calculation car-
ried out in (a), for each energy first calculating β2 using (6.38) and Bcol using (6.34)
and then using (6.33) to get the final results for the mass stopping power.

For 1 MeV protons we get the following results for β2, Bcol, and Scol

β2 = υ2

c2
= 1 − 1

(1 + EK
mpc2 )

2
= 1 − 1

(1 + 1
938.3 )

2
= 2.128×10−3, (6.41)
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Bcol = ln
2mec

2

I
+ ln

β2

1 − β2
− β2 = 9.520 − 6.150 − 2.128×10−3 = 3.367

(6.42)

and

Scol = C1
Nez

2

β2
Bcol = (

5.099×10−25 MeV · cm2)×3.343×1023 g−1

2.128×10−3
×3.367

= 269.7 MeV · cm2/g (see point B in Fig. 6.6). (6.43)

For 10 MeV protons the results are as follows

β2 = υ2

c2
= 1 − 1

(1 + EK
mpc2 )

2
= 1 − 1

(1 + 10
938.3 )

2
= 0.021, (6.44)

Bcol(10 MeV)= ln
2mec

2

I
+ ln

β2

1 − β2
− β2

= 9.520 − 3.842 − 0.021 = 5.657 (6.45)

and

Scol = C1
Nez

2

β2
Bcol = (

5.099×10−25 MeV · cm2)×3.343×1023 g−1

0.021
×5.657

= 45.9 MeV · cm2/g (see point C in Fig. 6.6). (6.46)

(c) To determine the kinetic energyEK of a deuteron for which the stopping power
of water is the same as that for a 100 MeV proton, we take a closer look at the
functional dependence of (6.33) on physical properties of the charged particle and
note that Scol has five components: C1,Ne, z, β , and Bcol. Of these, C1, Ne, and
Bcol are independent of the charged particle, so that, for the mass stopping power
of water to be the same for proton and deuteron, the two charged particles should
have the same z (they do, since for both particles z= 1) and the same β . As shown
in (6.38), β2 = 0.183 for a 100 MeV proton, therefore we use (6.37) and determine
the deuteron kinetic energy EK that corresponds to β2 = 0.183 as follows

EK = (γ − 1)m0c
2 =

(
1√

1 − β2
− 1

)
m0c

2

=
(

1√
1 − 0.183

− 1

)
×(1875.6 MeV)

= 199.5 MeV ≈ 2

(
1√

1 − β2
− 1

)
mpc

2 = 200 MeV. (6.47)

Thus, for the same stopping power in water, the kinetic energy EK of the charged
particle is proportional to the rest energy of the charged particle.
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Since the rest energy of the deuteron mdc
2 is roughly twice the rest energy mpc

2

of the proton, its kinetic energy EK for the same velocity β is twice as high. Thus,
the mass stopping power of water is the same (7.30 MeV · cm2/g) for a 100 MeV
proton and a 200 MeV deuteron because both charged particles have the same ve-
locity β as well as the same atomic number z= 1.

(d) To calculate the stopping power of water for α particle having the same ve-
locity as the proton, we again evaluate the functional dependence of (6.33) and note
that, in addition to charged particle velocity β , the mass stopping power also de-
pends on the square of the atomic number z. Since z= 2 for α particle compared to
z = 1 for proton, we conclude that the mass stopping power of water is 4 times as
large (4×7.30 MeV · cm2/g = 29.2 MeV · cm2/g) for α particle as that for proton
at the same velocity β of the two particles (see point D in Fig. 6.6).

From the discussion in (c) we also note that, at same velocity β , kinetic energy
EK(α) of an α particle is approximately 4-times as large as that of a proton

EK(α)= (γ − 1)mαc
2 =

(
1√

1 − β2

)
mαc

2

=
(

1√
1 − 0.183

)
×(3727.3 MeV)= 396.4 MeV. (6.48)

(e) For 1 MeV, 10 MeV, and 100 MeV protons we calculated with Bethe equation
(6.33) the following stopping powers of water: 269.7 MeV · cm2/g, 45.9 MeV ·
cm2/g, and 7.30 MeV · cm2/g, respectively, while the NIST, accounting for all
known corrections, gives the following respective results: 260.8 MeV · cm2/g,
45.7 MeV · cm2/g, and 7.29 MeV · cm2/g. For an α particle with kinetic energy
EK(α) = 400 MeV the NIST provides a stopping power of water of 29.2 MeV ·
cm2/g, while our rudimentary calculation yields 29.2 MeV ·cm2/g. Thus, the agree-
ment with the basic Bethe equation (6.33) and the one incorporating all currently
known corrections is quite good.

Stopping power of water for proton and α particle available from the NIST is
shown in Fig. 6.6 in the energy range from 1 keV to 1000 MeV and our calcu-
lated results are superimposed on the graph with data points. The good agreement
between our calculation and the NIST data is evident.

6.4.Q5 (134)

Bethe equation for mass collision stopping power Scol of a stopping medium
(absorber) for heavy charged particles (CP) is given as

Scol = 4πNe

(
e2

4πε0

)2
z2

mec2β2

{
ln

2mec
2

I
+ ln

β2

1 − β2
−β2

}
= C1

Nez
2

β2
Bcol,

(6.49)
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with parameters defined in Prob. 131 and the Fano shell and density correc-
tions neglected.

(a) Determine the mass collision stopping power Scol of water for a proton
with incident kinetic energy EK = 51 MeV. Mean ionization/excitation
potential I of water is 75 eV; electron density Ne = ZNA/A was deter-
mined in Prob. 133 as Ne = 3.343×1023 el/g.

(b) Determine the incident kinetic energy EK of a deuteron for which water
has the same mass collision stopping power Scol as for the proton in (a).

(c) Determine the incident kinetic energy EK and mass collision stopping
power Scol of water for the following particles: α particle, carbon-6 ion,
and neon-10 ion having the same incident velocity β = υ/c as the pro-
ton in (a) and deuteron in (b).

SOLUTION:

(a) To use (6.49) for calculation of Scol of water we will need the following pa-
rameters: (1) constant C1, (2) velocity β = υ/c of proton with EK = 51 MeV, and
(3) collision stopping number of water for 51 MeV proton.

(1) From (6.18) in Prob. 131 we get the following expression for constant C1

C1 = 4π

(
e2

4πε0

)2 1

mec2
= 4πr2

emec
2 = 4π×(

2.818×10−13 cm
)2×(0.511 MeV)

= 5.099×10−25 MeV · cm2. (6.50)

(2) Velocity of the 51-MeV-proton is determined from the standard expression for
relativistic kinetic energy EK as follows

EK = (γ − 1)E0 =
(

1√
1 − β2

− 1

)
mpc

2, (6.51)

from where it follows that

β2 = 1 − 1

(1 + EK
mpc2 )

2
= 1 − 1

(1 + 51
938.3 )

2
= 0.10 and β = 0.01. (6.52)

(3) Atomic stopping number Bcol of proton in water is determined as follows

Bcol =
{

ln
2mec

2

I
+ ln

β2

1 − β2
− β2

}

= ln
2×0.511×106 eV

75 eV
+ ln

0.1

0.9
− 0.1 = 9.52 − 2.197 − 0.10 = 7.22.

(6.53)
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Now that we have all the required parameters we can determine Scol as follows

Scol = C1
Nez

2

β2
Bcol = (

5.099×10−25 MeV · cm2)×3.343×1023

0.1 g
×7.22

= 12.31
MeV · cm2

g
(6.54)

and get a result that is in excellent agreement with the NIST mass collision stopping
power Scol of 12.25 MeV · cm2/g obtained for a 51 MeV proton.

(b) For a heavy CP to engender in absorber the same mass collision stopping
power Scol as does a proton, it must have the same velocity β as well as the same
charge number z= 1. Since for both proton and deuteron z= 1, for a deuteron to en-
gender Scol of 12.31 MeV · cm2/g in water, it must have the same velocity β of 0.01
as does a 51 MeV proton. Since the deuteron is heavier than the proton, its kinetic
energy EK(d)must be higher than that of the proton EK(p). The ratio EK(d)/EK(p)
is determined from (6.51) as follows

EK(p)=mpc
2
(

1√
1 − β2

− 1

)
and EK(d)=mdc

2
(

1√
1 − β2

− 1

)
, (6.55)

from where it follows that the ratio EK(d)/EK(p) is given as follows

EK(d)

EK(p)
= mdc

2

mpc2
= 1875.6

938.3
≈ 2. (6.56)

Thus, for a deuteron to engender the same stopping power in water as does a proton,
it must have the same velocity as the proton, and this implies that it has a kinetic
energy that is twice the kinetic energy of the proton. Mass collision stopping power
Scol of water is therefore 12.31 MeV · cm2/g for 51 MeV proton as well as for
102 MeV deuteron.

(c) We now calculate: (1) kinetic energy EK(m0) of particle with rest mass m0

and (2) mass collision stopping power Scol of water for various CPs (deuteron, α
particle, carbon-6 ion, and neon-10 ion), all of velocity β = 0.01, as determined for
51 MeV proton in (a).

(1) Kinetic energy EK(m0) of heavy CPs that all have the same velocity β is
linearly proportional to CP’s rest energyE0 =m0c

2. Based on (6.56) we reach
a general conclusion that kinetic energy of a given heavy CP of rest mass
m0 can be expressed in terms of kinetic energy of proton of rest mass mp

as

EK(m0)= m0c
2

mpc2
EK(mp), (6.57)
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Table 6.8 Various parameters in calculation of kinetic energy EK and mass stopping power of
water for various heavy CPs (proton, deuteron, α particle, carbon-6 ion, and neon-10 ion)

1 Particle Proton Deuteron α particle Carbon-6 Neon-10

2 E0 =m0c
2 938.3 1875.6 3727.3 11174.9 18617.7

3 m0c
2/mpc

2 1.0 2 3.97 11.91 19.84

4 EK(m0) 51 102 202.5 11175 18616

5 EK/A (MeV/u) 51 ∼51 ∼51 ∼51 ∼51

6 z 1 1 2 6 10

7 Scol(m0, z) (MeV · cm2/g) 12.31 12.31 49.2 443.2 1231

provided that both CPs have the same velocity β . Kinetic energy EK(m0) for
proton, deuteron, α particle, carbon-6 ion, and neon-10 ion, all traveling with
velocity β = 0.01, determined from (6.57) is listed in row (4) of Table 6.8,
while kinetic energy of the various CPs stated in MeV/u is listed in row (5)
of the table. It is evident that CPs with same MeV/u have the same velocity
β and engender the same stopping number Bcol in a given stopping mate-
rial.

(2) Mass collision stopping power Scol(m0, z) for the various CPs of rest mass
m0, all with the same velocity β = 0.01, will now be expressed in terms of
Scol(mp, z) of water for a proton. From (6.49) it is evident that, for a constant
velocity β , Scol(m0, z) is linearly proportional with z2, where z is the number
of charges that the CP carries, i.e.,

Scol(m0, z)= z2Scol(mp, z). (6.58)

Results for Scol(m0, z) of water for proton, deuteron, α particle, carbon-6 ion,
and neon-10 ion are summarized in row (7) of Table 6.8. Note that our Scol of
water for α particles of EK = 202.5 MeV is in excellent agreement with the
NIST value of Scol = 49.03 MeV · cm2/g for the same conditions.

6.4.Q6 (135)

Specific ionization j is defined as the number of primary and secondary ion
pairs produced per unit length of the path traced by a charged particle (CP)
traversing an absorber. It is usually expressed in ion pairs per millimeter
(ip/mm) and increases with the charge of the CP. The specific ionization pro-
duced in the absorber by a CP at a given kinetic energy EK is proportional to
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the linear stopping power s of the absorber and the proportionality constant
(at least for gases) is W , the mean energy required to produce an ion pair in
the absorber at particle energy EK. For gases W is essentially independent of
particle energy and only slightly depends on the CP type. For example, W of
air is W air = 33.97 eV/ip for electrons and x rays, 35 eV/ip for protons, and
36 eV/ip for α particles.

(a) Determine the specific ionization j resulting from the passage of a
10 MeV proton through standard air (T = 0 °C and p = 101.3 kPa).
Density of standard air ρair = 1.293×10−3 g/cm3; the mean ioniza-
tion/excitation potential of air is Iair = 86 eV. Ignore the Fano shell and
density corrections in the calculation of collision stopping powers.

(b) Based on Fig. 6.7 that shows the mass collision stopping power Scol
of standard air against proton kinetic energy EK in the kinetic energy
range from 10−3 MeV to 104 MeV, determine the maximum possible
specific ionization j in standard air for protons. Stopping power data
are from the NIST at http://physics.nist.gov/cgi-bin/Star/ap_table.pl.

(c) Based on data from the NIST, given in Table 6.9A, prepare a plot of
specific ionization j against residual rangeRresidual for a 10 MeV proton
in standard air. In order to get a clear picture of the Bragg peak plot j
only for the last 5 mm of the proton path in air.

Fig. 6.7 Mass collision stopping power Scol of standard air against kinetic energy EK of proton.
Point A highlights Scol of standard air for a 10 MeV proton calculated in (a); point B highlights the
maximum that occurs at 0.084 MeV and is used in calculation of the maximum specific ionization

http://physics.nist.gov/cgi-bin/Star/ap_table.pl


328 6 Interaction of Charged Particles with Matter

Table 6.9A Mass collision stopping power Scol and CSDA range RCSDA for protons in air in the
kinetic energy EK range from 0 to 10 MeV. The table is to be used to determine a plot of specific
ionization against residual range for 10 MeV protons in standard air where EK is kinetic energy
of the proton propagating in standard air, Scol is mass collision stopping power of standard air, scol
is linear collision stopping power of standard air, j is specific ionization produced in standard air
by protons of energy EK, RCSDA is the continuous slowing down approximation (CSDA) range in
g/cm2 for protons of energy EK in standard air, rCSDA is the CSDA range in mm of air for protons
of energy EK

1 EK
(MeV)

Scol
a

(MeV · cm2/g)
scol
(MeV/cm)

j

(i.p./mm)
RCSDA

a

(g/cm2)
Rresidual
(mm)

2 0.001 141.4 9.857×10−6

3 0.005 277.6 2.891×10−5

4 0.01 385.0 4.400×10−5

5 0.05 689.7 1.152×10−4

6 0.07 729.3 1.433×10−4

7 0.08 735.5 1.569×10−4

8 0.09 735.2 1.705×10−4

9 0.2 592.8 3.349×10−4

10 0.5 350.1 1.021×10−3

11 1 222.9 2.867×10−3

12 2 137.1 8.792×10−3

13 5 69.1 4.173×10−2

14 10 40.1 1.408×10−1

aData are from the NIST at http://physics.nist.gov/cgi-bin/Star/ap_table.pl

SOLUTION:

(a) Mean specific ionization j of air for 10 MeV proton is determined using the
following steps:

(1) Use the Bethe equation (6.17) for heavy CP to determine mass collision stop-
ping power S of air for 10 MeV proton as follows

Scol = C1
Nez

2

β2
Bcol, (6.59)

with parameters defined in Prob. 131.
(2) Determine the electron density Ne of air for use in (6.59).
(3) Determine β2 for 10 MeV proton for use in (6.59).
(4) Calculate the atomic stopping number Bcol defined in (6.19) for use in (6.59).

http://physics.nist.gov/cgi-bin/Star/ap_table.pl
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(5) Multiply Scol of (6.59) by density of standard air (ρair = 1.293×10−3 g/cm3)
to get the linear collision stopping power scol.

(6) Multiply scol by W air, the mean energy required to produce an ion pair in air
by a proton, to get the mean specific ionization j of air for a 10 MeV proton.

(1) Before we embark on calculation of the mass collision stopping power Scol we
must determine the parameters of (6.59).

(2) Electron density Ne of air is calculated using the following composition of
air per weight and molecular mass (see Table T8.2): nitrogen N: 75.8 %, MN =
14.0067; oxygen O: 22.6 %,MO = 15.9994; argon Ar: 0.93 %,MAr = 39.948; and
carbon dioxide CO2: 0.03 %,MCO2 = 44.

In one gram of air we thus have the following four constituents of importance:
(0.758 g) of N + (0.226 g) of O + (0.0093 g) of Ar + (0.0003 g) of CO2 and each
one of the four components contributes the following number of electrons:

Nitrogen:

xN = (6.022×1023 at/mol)×(0.758 g)

14.0067 g/mol
×(7 el/at)

= 2.28125×1023 el (6.60)

Oxygen:

xO = (6.022×1023 at/mol)×(0.226 g)

15.9994 g/mol
×(8 el/at)

= 6.80512×1022 el (6.61)

Argon:

xN = (6.022×1023 at/mol)×(0.0093 g)

39.948 g/mol
×(18 el/at)

= 2.524×1021 el (6.62)

Carbon dioxide:

xN = (6.022×1023 at/mol)×(0.0003 g)

44 g/mol
×(28 el/at)

= 1.150×1020 el (6.63)

Electron density Ne of air is given by the sum of the components listed in (6.60)
through (6.63) to yield Ne = 2.99×1023 electron/g.

(3) Velocity β of a 10 MeV proton is determined using the standard relationship
(see T2.7)

β2 = υ2

c2
= 1 − 1

(1 + EK
mpc2 )

2
= 1 − 1

(1 + 10
938.3 )

2
= 0.021. (6.64)
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(4) Atomic stopping number Bcol is calculated as follows

Bcol =
{

ln
2mec

2

I
+ ln

β2

1 − β2
− β2

}
=
{

ln
1.022×106

86
+ ln

0.021

1 − 0.021
− 0.021

}

= {
9.3829 + (−3.842)− 0.021

}= 5.52. (6.65)

Finally, the mass collision stopping power Scol of air for a 10 MeV proton is

Scol = C1
Nez

2

β2
Bcol = (

5.099×10−25 MeV · cm2)×2.99×1023 g−1

0.021
×5.52

= 40.1 MeV · cm2/g (shown as point A in Fig. 6.7), (6.66)

in excellent agreement with the value of 40.1 MeV · cm2/g that the NIST provides
for dry air near sea level and 10 MeV proton at http://physics.nist.gov/cgi-bin/Star/
ap_table.pl.

(5) Linear collision stopping power scol is calculated by multiplying the mass
collision stopping power Scol by density ρ

scol = ρScol = (
1.293×10−3 g/cm3)×(

40.1 MeV · cm2/g
)= 0.0518 MeV/cm.

(6.67)
Since W air is 35 eV for protons in air, we get the following result for the mean
specific ionization j of air for 10 MeV proton

j = scol

W air
= 0.0518×106 eV/cm

35 eV/ip
= 1480 ip/cm = 148 ip/mm. (6.68)

(b) As is evident from Fig. 6.7 (see point B), the maximum possible specific ion-
ization jmax in air is produced when Scol against proton kinetic energy EK is at its
maximum and, for proton in standard air, this maximum occurs at EK = 0.084 MeV
and amounts to Smax

col = 736 MeV · cm2/g.
Based on the discussion in (a), we now calculate jmax as follows

jmax = smax
col

W air
= ρairS

max
col

W air

= (1.293×10−3 g/cm3)×(736×106 eV · cm2/g)

35 eV/ip

= 27190 ip/cm = 2719 ip/mm, (6.69)

in excellent agreement with the value of jmax = 2750 ip/mm stated by Evans
(p. 656).

(c) To plot the specific ionization j against the residual range Rresidual we first
complete Table 6.9A which provides the NIST data on Scol and RCSDA for protons
(0.001 MeV to 10 MeV) in air.

http://physics.nist.gov/cgi-bin/Star/ap_table.pl
http://physics.nist.gov/cgi-bin/Star/ap_table.pl
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Results of our calculation of j and Rresidual are displayed in Table 6.9B. In
Fig. 6.8 we plot the specific ionization j of Table 6.9B against residual range
Rresidual for the last 5 mm of the 10 MeV proton in air where the proton energy
is already significantly diminished, rapidly approaches 0 and the ionization reaches
its maximum value at the Bragg peak. Note that jmax occurs around the residual
range of 1.2 mm where the proton energy falls to EK = 0.084 MeV.

Table 6.9B Various physical parameters of 10 MeV proton traversing standard air

1 EK
(MeV)

Scol (NIST)
(MeV · cm2/g)

scol (6.67)
(MeV/cm)

j (6.68)
(i.p./mm)

RCSDA (NIST)
(g/cm2)

Rresidual
(mm)

2 0.001 141.4 0.148 442.2 9.857×10−6 0.08

3 0.005 277.6 0.332 989.3 2.891×10−5 0.22

4 0.01 385.0 0.469 1,399.0 4.400×10−5 0.34

5 0.05 689.7 0.852 2,540.6 1.152×10−4 0.90

6 0.07 729.3 0.902 2,688.7 1.433×10−4 1.1

7 0.08 735.5 0.910 2,712.0 1.569×10−4 1.2

8 0.09 735.2 0.909 2,711.6 1.705×10−4 1.3

9 0.2 592.8 0.734 2,187.8 3.349×10−4 2.6

10 0.5 350.1 0.433 1,292.3 1.021×10−3 7.9

11 1 222.9 0.276 822.7 2.867×10−3 22.2

12 2 137.1 0.170 506.1 8.792×10−3 68

13 5 69.1 0.086 255.1 4.173×10−2 323

14 10 40.1 0.050 147.9 1.408×10−1 1089

Fig. 6.8 Specific ionization produced in air by a 10 MeV proton traversing standard air at the
last 5 mm of its track. The Bragg peak with maximum specific ionization jmax = 2719 ip/mm is
clearly visible
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6.4.Q7 (136)

The Bethe equation for the mass collision stopping power Scol of an absorber
traversed by a heavy charged particle (CP) generally expressed as [see (6.17)
in Prob. 131]

Scol = 4π

(
e2

4πε0

)2
z2Ne

mec2β2

{
ln

2mec
2

I
+ ln

β2

1 − β2
− β2

}
(6.70)

is often written in more condensed form as

Scol = C1
z2Ne

β2

{
f (β)− ln I

}
. (6.71)

(a) Show how (6.71) is obtained from (6.70).
(b) Determine and plot f (β) against kinetic energy EK of the heavy CP

for the following kinetic energies EK in MeV: 0.01, 0.1, 1, 10, 100, and
1000.

(c) Calculate the mass collision stopping power Scol of water for a 50 MeV
proton using (6.71). Compare your result with data available from the
NIST (http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html).

(d) Use (6.71) to calculate the mass collision stopping power Scol of copper
absorber traversed by α particles with kinetic energy EK of 250 MeV.
The mean ionization/excitation potential I of copper is 322 eV. Com-
pare your result with data from the NIST (http://physics.nist.gov/
PhysRefData/Star/Text/ASTAR.html).

SOLUTION:

(a) To evaluate the link between (6.71) and (6.70) we compare the two equations
directly and first determine the collision stopping power constant C1 [see (6.18) in
Prob. 131]

C1 = 4π

(
e2

4πε0

)2 1

mec2
≡ 4πr2

emec
2

= 4π×(
2.818×10−13cm2)×(0.511 MeV)= 5.099×10−25 MeV · cm2 (6.72)

and then determine the functional form of the velocity function f (β) by rewrit-
ing (6.70) in a more convenient form as

Scol = C1
z2Ne

β2

{
ln

2mec
2β2

1 − β2
− β2 − ln I

}
(6.73)

http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html
http://physics.nist.gov/PhysRefData/Star/Text/ASTAR.html
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Table 6.10 Normalized velocity β and velocity function f (β) for various proton kinetic energies
EK in the range from 0.01 MeV to 1000 MeV

EK (MeV) 0.01 0.1 1 10 100 1000

β2 2.1×10−5 2.13×10−4 0.00213 0.021 0.183 0.766

β 4.58×10−3 0.0146 0.0462 0.145 0.428 0.875

f (β) 2.179 5.384 7.685 9.972 12.16 14.26

Fig. 6.9 Velocity function f (β) against normalized heavy charged particle velocity β

which allows us to define f (β) as follows

f (β)= ln
2mec

2β2

1 − β2
− β2 = ln

1.022×106β2

1 − β2
− β2 (6.74)

and also express the mass collision stopping power Scol, as shown in (6.71), where

C1 is the collision stopping power constant given in (6.72).
f (β) is the velocity function given in (6.74).
ln I is the natural logarithm of the mean ionization/excitation potential of the

absorber expressed in eV.

(b) The velocity function f (β) against kinetic energy EK of the heavy CP is de-
termined by first calculating β for a given EK and then inserting the calculated β
into (6.74) to calculate f (β). The results of the f (β) calculation for EK in MeV
= 0.01, 0.1, 1, 10, 100, and 1000 for protons are listed in Table 6.10 and plotted in
Fig. 6.9 against normalized velocity β and in Fig. 6.10 against kinetic energy EK.

(c) As evident from (6.71), to determine the mass collision stopping power Scol of
water for a proton with kinetic energy EK = 50 MeV we need to know the electron
densityNe of water, mean ionization/excitation potential I of water, and the velocity
β of a 50 MeV proton.Ne of water has been determined in Prob. 133 asNe(water)=
3.343×1023 electron/g. I of water has been determined in Prob. 132 as I (water)=
74.4 eV.
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Fig. 6.10 Velocity function f (β) against kinetic energyEK for protons in the kinetic energy range
from 10−3 MeV to 105 MeV

Normalized velocity β of a 50 MeV proton is calculated from the standard
expression that follows from the basic definition for relativistic kinetic energy
EK = [1/(1 − β2)1/2 − 1]m0c

2, i.e.,

β2 = 1 − 1

(1 + EK
mpc2 )

2
= 1 − 1

(1 + 50
938.3 )

2
= 0.099 or β = 0.314. (6.75)

Velocity function f (β) given in (6.74) yields the following value for a 50 MeV
proton

f (β)= ln
1.022×106β2

1 − β2
− β2 = ln

1.022×106×0.099

0.901
− 0.099 = 11.53. (6.76)

The mass collision stopping power Scol of water is thus given as

Scol = C1
z2Ne

β2

{
f (β)− ln I

}

= (
5.1×10−25 MeV · cm2)×3.343×1023 g−1

0.099
×7.218 = 12.43 MeV · cm2/g

(6.77)
in excellent agreement with the value of 12.45 MeV · cm2/g provided by the NIST
for the collision stopping power of water for 50 MeV proton.

(d) To calculate Scol of copper absorber traversed by a 250 MeV α particle using
(6.71) we first determine β2 for the α particle and then calculate the velocity func-
tion f (β) for the calculated β2. We then insert f (β) into (6.71) to determine Scol.
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Calculation of α particle velocity β from relativistic kinetic energy EK

β2 = 1 − 1

(1 + EK
mpc2 )

2
= 1 − 1

(1 + 250
3727.3 )

2
= 0.122 or β = 0.349. (6.78)

Calculation of velocity function f (β) using (6.74)

f (β)= ln
1.022×106β2

1 − β2
− β2 = ln

1.022×106×0.122

1 − 0.122
− 0.122 = 11.74. (6.79)

Calculation of mass collision stopping power Scol of copper for 250 MeV α particle

Scol = C1
z2Ne

β2

{
f (β)− ln I

}= (
5.099×10−25 MeV · cm2)

×4×2.7485×1023 g−1

0.122
×5.965 = 27.41 MeV · cm2/g (6.80)

in good agreement with the NIST value of 27.24 MeV · cm2/g for mass collision
stopping power of copper traversed by 250 MeV α particle.

6.5 Collision Stopping Power for Light Charged Particles

6.5.Q1 (137)

Mass collision stopping power Scol of a stopping medium (absorber) for light
charged particles (CP) of kinetic energy EK is given as follows

Scol = Ce
Ne

β2

{
ln
E2

K

I 2
+ ln

(
1 + τ

2

)
+ F±(τ )− δ

}
, (6.81)

where

Ce is the stopping power constant for light CP (electron and positron).

Ce = 2πr2
emec

2 = 2π
(
2.818×10−13 cm2)×(0.511 MeV)

= 2.55×10−25 MeV · cm2.
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Ne is the electron density of the absorber: Ne = ZNA/A.
re is the classical electron radius constant: re = e2/(4πε0mec

2)= 2.818 fm.
τ is the electron kinetic energy EK normalized to electron rest mass

mec
2 = 0.511 MeV, i.e., τ =EK/(mec

2).

F±(τ ) is the stopping power function of electron (F−) and positron (F+)
given as follows

F−(τ )= 1

(τ + 1)2

[
1 + τ 2

8
− (2τ + 1) ln 2

]
(6.82)

and

F+(τ )= 2 ln 2 − τ(τ + 2)

12(τ + 1)2

[
23 + 14

τ + 2
+ 10

(τ + 2)2
+ 4

(τ + 2)3

]
. (6.83)

(a) Use (6.81) to calculate the mass collision stopping power Scol of lead
absorber (Z = 82; A = 207.2 g/mol; I = 823 eV) for electrons with
kinetic energies EK of 100 keV, 1 MeV, and 10 MeV.

(b) Compare Scol of lead calculated in (a) for electron kinetic energies EK
of 100 keV, 1 MeV, and 10 MeV with data obtained from the NIST or
from Appendix E of Attix.

(c) Plot the density effect parameter δ of lead against electron kinetic en-
ergy EK in the range from EK = 10 keV to EK = 100 MeV. You can
obtain the density effect parameter δ on-line from the NIST or from
Appendix E of Attix.

SOLUTION:

(a) The problem will be solved in six steps, with the first five steps used to prepare
suitable data for use in the last step that involves calculation of Scol with (6.81). The
six steps are as follows:

(1) Determine electron density Ne of the lead absorber

Ne = ZNA

A
= 82×(6.022×1023 mol−1)

207.2 g/mol
= 2.388×1023 electron/g. (6.84)

(2) Determine the normalized kinetic energy τ for 100 keV, 1 MeV, and 10 MeV
electrons using the following relationship

τ = EK

mec2
. (6.85)

The calculated values of τ for electrons with kinetic energy EK of 100 keV,
1 MeV, and 10 MeV are summarized in row 2 of Table 6.11.
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Table 6.11 Summary of parameters used in calculation of mass collision stopping power Scol of
lead for electrons with kinetic energy EK of 100 keV, 1 MeV, and 10 MeV

1 Electron kinetic energy EK 100 keV 1 MeV 10 MeV

2 Normalized kinetic energy τ 0.1957 1.957 19.57

3 Normalized electron velocity β 0.548 0.941 0.9988

4 β2 0.30 0.886 0.9976

5 1 − β2 0.70 0.114 0.0024

6 Stopping power function F−(τ ) 0.028 −0.220 0.0497

7 Density effect parameter δ 0.0074 0.181 1.52

8 Calculated Scol (MeV · cm2/g) 1.969 0.994 1.198

(3) Determine normalized electron velocity β for 100 keV, 1 MeV, and 10 MeV
electrons using the following expressions

β2 = 1 − 1

(1 + EK
mec2 )

2
= 1 − 1

(1 + τ)2 and

1 − β2 = 1

(1 + EK
mec2 )

2
= 1

(1 + τ)2 .
(6.86)

The calculated values of β , β2, and 1 − β2 are summarized in rows 3, 4, and
5 of Table 6.11, respectively.

(4) Determine stopping power function for electron F−(τ ) using (6.82) for
100 keV, 1 MeV, and 10 MeV electron. The calculated values of F−(τ ) are
summarized in row 6 of Table 6.11.

(5) From the NIST (http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html)
obtain the density effect parameter δ of lead absorber for 100 keV, 1 MeV, and
10 MeV electrons. The respective values of δ are listed in row 7 of Table 6.11.

(6) Finally, employ (6.81) in conjunction with Table 6.11 that summarizes the
supporting data required for use with (6.81) to determine Scol of lead for three
electron kinetic energies EK of 100 keV, 1 MeV, and 10 MeV.

Electron in lead: EK = 100 keV; τ = 0.1957; β = 0.548

Scol = Ce
Ne

β2

{
ln
E2

K

I 2
+ ln

(
1 + τ

2

)
+ F±(τ )− δ

}

= (
2.55×10−25 MeV · cm2)×2.383×1023 g−1

0.30

×
{

ln

(
105

823

)2

+ ln

(
1 + 0.1957

2

)
+ F−(0.1957)− 0.74×10−3

}

= (
0.2026 MeV · cm2/g

)×{9.60 + 0.093 + 0.028 − 0.0074}
= (

0.2026 MeV · cm2/g
)×9.714 = 1.969MeV · cm2/g. (6.87)

http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
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Table 6.12 Comparison of mass collision stopping powers Scol of lead for electrons of kinetic
energy of 100 keV, 1 MeV, and 10 MeV. Data calculated with (6.81) are displayed in row 2; data
obtained from the NIST are shown in row 3; and data obtained from Appendix E of Attix are shown
in row 4

1 Kinetic energy EK of electron 100 keV 1 MeV 10 MeV

2 Scol [calculated with (6.81) in MeV · cm2/g] 1.969 0.994 1.198

3 Scol [from the NIST in MeV · cm2/g] 1.964 0.994 1.201

4 Scol [from Appendix E of Attix in MeV · cm2/g] 1.964 0.994 1.201

Electron in lead: EK = 1 MeV; τ = 1.957; β = 0.941

Scol = Ce
Ne

β2

{
ln
E2

K

I 2
+ ln

(
1 + τ

2

)
+ F±(τ )− δ

}

= (
2.55×10−25 MeV · cm2)×2.383×1023 g−1

0.886

×
{

ln

(
106

823

)2

+ ln

(
1 + 1.957

2

)
+ F−(1.957)− 0.181

}

= (
0.0686 MeV · cm2/g

)×{14.21 + 0.682 − 0.220 − 0.181}
= (

0.0686 MeV · cm2/g
)×14.49 = 0.994 MeV · cm2/g. (6.88)

Electron in lead: EK = 10 MeV; τ = 19.57; β = 0.9988

Scol = Ce
Ne

β2

{
ln
E2

K

I 2
+ ln

(
1 + τ

2

)
+ F±(τ )− δ

}

= (
2.55×10−25 MeV · cm2)×2.383×1023 g−1

0.9976

×
{

ln

(
107

823

)2

+ ln

(
1 + 19.57

2

)
+ F−(19.57)− 1.52

}

= (
0.06091 MeV · cm2/g

)×{18.810 + 2.378 + 0.00497 − 1.52}
= (

0.06091 MeV · cm2/g
)×19.673 = 1.198MeV · cm2/g. (6.89)

(b) Table 6.12 displays mass collision stopping power Scol of lead for electrons
with kinetic energies of 100 keV, 1 MeV, and 10 MeV: row 2 displays values calcu-
lated in (a) and row 3 values obtained from the NIST. The agreement between the
calculated values of (a) and tabulated values from the NIST is excellent suggesting
that (6.81) may be used in conjunction with (6.82) for estimation of mass collision
stopping powers for electrons.

Figure 6.11 shows the mass collision stopping power Scol of water, aluminum,
and lead for electrons against electron kinetic energy EK with heavy solid lines
and, for comparison, mass radiation stopping powers for same absorbers are shown
with light solid lines. Similarly to stopping power behavior for heavy CPs, the data
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for electrons show that higher atomic number absorbers have lower Scol than lower
atomic number absorbers at same electron kinetic energies as a result of the Z/A
term in electron density as well as the (− ln I ) term, where I is the mean ioniza-
tion/excitation potential of the absorbing medium.

Fig. 6.11 Mass collision stopping power Scol of water, aluminum, and lead for electrons of kinetic
energy in the range from 0.01 MeV to 100 MeV. The collision stopping power data are shown with
heavy solid lines; for comparison the light solid lines show the mass radiation stopping power of
same stopping media for electrons. Data were obtained from the NIST. Points (1), (2), and (3)
display the data calculated with (6.81) in (a) for 100 keV, 1 MeV, and 10 MeV electrons in lead

Fig. 6.12 Density effect parameter δ of lead against electron kinetic energy EK. Points (1), (2),
and (3) show data that were used in calculation of mass collision stopping power Scol of lead for
electron energies of 100 keV, 1 MeV, and 10 MeV, respectively
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(c) The density effect parameter δ is a function of the composition and density
of the absorber as well as of the velocity υ of the light CP traversing the absorber.
Figure 6.12 shows δ plotted against electron or positron kinetic energy EK of lead
obtained from the NIST and also provided in Appendix E of Attix. Data used in (a)
for the calculation of the mass collision stopping power Scol of lead for 100 keV, 1
MeV, and 10 MeV electrons are shown as points (1), (2), and (3), respectively. The
dependence of Scol on stopping medium results from two factors in the collision
stopping power expression given in (6.81). The two factors are the electron density
Ne = ZNA/A and the mean ionization/excitation potential I , both lowering Scol
with an increasing atomic number Z of the stopping medium.

6.5.Q2 (138)

Expressions for the mass collision stopping power Scol of a given absorber for
electron and positron traversing the absorber are of the same form except for
the difference in the stopping power functions F− for electron and F+ for
positron. The two functions are given as follows

F−(τ )= 1

(τ + 1)2

[
1 + τ 2

8
− (2τ + 1) ln 2

]
(6.90)

and

F+(τ )= 2 ln 2 − τ(τ + 2)2

12(τ + 1)2

[
23 + 14

τ + 2
+ 10

(τ + 2)2
+ 4

(τ + 2)3

]
, (6.91)

where τ is the kinetic energy of the electron and positron EK normalized to
the electron/positron rest energy mec

2, i.e., τ =EK/(mec
2).

(a) Figure 6.13 plots F−(τ ) and F+(τ ) against kinetic energy EK. Cal-
culate F−(τ ) and F+(τ ) for EK = 0.337 MeV using (6.90) and (6.91),
respectively, and verify that your results fit on the F± graph of Fig. 6.13.

(b) Determine analytically the following features of the two stopping power
functions F− and F+: (1) limτ→0F

−; (2) limτ→0F
+; (3) limτ→∞ F−;

(4) limτ→∞F+; (5) τ−
0 for F−(τ−

0 )= 0; and (6) τ−∗ for absolute min-
imum in F−.

(c) Use Fig. 6.13 to determine the following features of the stopping power
function F+ and F+: (1) τ+

0 for F+(τ 0
0 ) = 0; (2) τ ′ for F+(τ ′) =

F−(τ ′); and (3) τ+∗ for absolute minimum in F+.
(d) Comment on the behavior of the two stopping power functions F− and

F+ with respect to the kinetic energy EK of the electron and positron,
respectively.
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SOLUTION:

(a) We first determine τ = EK/(mec
2)= 0.337/0.511 = 0.66 for the light CP of

kinetic energy EK = 0.337 MeV and then insert τ into (6.90) and (6.91) to get

F−(τ ) = 1

(τ + 1)2

[
1 + τ 2

8
− (2τ + 1) ln 2

]

= 1

1.662

[
1 + 0.662

8
− 2.32 ln 2

]
= −0.20, (6.92)

F+(τ ) = 2 ln 2 − 0.66×2.66

12×1.662

[
23 + 14

2.66
+ 10

2.662
+ 4

2.663

]
= −0.20. (6.93)

As shown in Fig. 6.13, the two functions F− and F+ are identical and equal to −0.2
at 0.337 MeV.

(b) The stopping power functions for electron and positron are from (6.90) and
(6.91) given as

F−(τ )= 1 + τ 2

8 − (2τ + 1) ln 2

(τ + 1)2
,

F+(τ )= 2 ln 2 − τ(τ + 2)

12(τ + 1)2

[
23 + 14

τ + 2
+ 10

(τ + 2)2
+ 4

(τ + 2)3

]
.

(1)

lim
τ→0

F− = lim
τ→0

{
1

(τ + 1)2

[
1 + τ 2

8
− (2τ + 1) ln 2

]}
= 1 − ln 2 = 0.3069. (6.94)

(2)

lim
τ→0

F+(τ )=
{

2 ln 2 − τ(τ + 2)

12(τ + 1)2

[
23 + 14

τ + 2
+ 10

(τ + 2)2
+ 4

(τ + 2)3

]}

= 2 ln 2 ≈ 1.386. (6.95)

(3)

lim
τ→∞F

− = lim
τ→∞

{ 1
τ 2 + 1

8 − 2 ln 2
τ

+ ln 2
τ 2

1 + 2
τ

+ 1
τ 2

}
= 1

8
= 0.125. (6.96)

(4)

lim
τ→∞F

+ = lim
τ→∞

{
2 ln 2− 1+ 2

τ

12+ 24
τ

+ 12
τ 2

[
23+ 14

τ +2
+ 10

(τ +2)2
+ 4

(τ +2)3

]}

= 2 ln 2 − 23

12
= −0.5304. (6.97)
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(5)

F−(τ−
0

)1 + (τ−
0 )

2

8 − (2τ−
0 + 1) ln 2

(τ−
0 + 1)2

= 0 or

(
τ−

0

)2 − (16 ln 2)τ − 8(ln 2 − 1)= 0,

(6.98)

τ−
0 = 16 ln 2 ±√

(16 ln 2)2 + 32(ln 2 − 1)

2
or

(
τ−

0

)
1 = 0.225 →EK

[(
τ−

0

)
1

]= 0.115 MeV,(
τ−

0

)
2 = 10.87 →EK

[(
τ−

0

)
2

]= 5.55 MeV.

(6.99)

(6) To find the absolute minimum in F− we set dF−/dτ |τ=τ−∗ = 0 and get

dF−

dτ

∣∣∣∣
τ=τ−∗

= − 2

(1 + τ)3
[

1 + τ 2

8
− (2τ + 1) ln 2

]
+ 1

(1 + τ)2
[

2τ

8
− 2 ln 2

]
= 0

(6.100)

resulting in

−2 + τ
(

2 ln 2 + 1

4

)
= 0 and τ−∗ = 1.222 or E∗

K = τ−∗ mec
2 = 0.625 MeV.

(6.101)
Results of calculations (1) through (6) are displayed in Fig. 6.13 as data points (1)
through (6) on the F− and F+ stopping power curves.

Fig. 6.13 Stopping power functions F− and F+ against kinetic energy EK of the electron and
positron, respectively. Data points (1) through (6) on F+ and F− curves represent data calculated
in (b) in (6.94), (6.95), (6.96), (6.97), (6.98), and (6.100), respectively. The open circle point de-
fines the point of intersection of the F+ and F− curves at kinetic energy EK = 0.337 MeV, as
calculated in (a)
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(c) We now determine τ+
0 , τ ′, and τ+∗ by reading the values directly from Fig. 6.13

and get: τ+
0 = 0.482 with EK(τ

+
0 ) = τ+

0 mec
2 = 0.247 MeV; τ ′ = −0.66 with

EK(τ
′)= τ ′mec

2 = 0.337, and τ+∗ = 3.52 with EK(τ
+∗ )= τ+∗ mec

2 = 1.8 MeV.

(d) Mass collision stopping powers of a given material differ for electron and
positron because of the differences in the two stopping power functions F− and F+,
respectively, plotted in Fig. 6.13. At low kinetic energies EK, function F−(τ ) ex-
ceeds function F+(τ ) by a factor of 1.386/0.3069 ≈ 4.5, as determined in (b). Both
F− and F+ then decrease with increasing EK, become negative crossing the ab-
scissa axis at ∼0.115 MeV and ∼0.24 MeV, respectively, and become equal (−0.2)
at ∼ 0.3 MeV. Both functions then go through their respective absolute minima at
around EK ≈ 1 MeV and then attain saturation at very high EK;F+ saturates at
∼−0.53 and F− at ∼0.125, as also determined in (b).

6.6 Total Mass Stopping Power

6.6.Q1 (139)

For a given atomic number Z of the stopping medium, kinetic energy EK
of the light CP (electron or positron) at which both components of Stot are
identical is referred to as the critical kinetic energy Ecrit

K . Radiation physics
literature suggests that Ecrit

K for a given stopping material Z can be estimated
from the following empirical expression

Ecrit
K = const

Z
= 800 MeV

Z
. (6.102)

(a) Fig. 6.14 plots Srad and Scol for seven stopping materials: helium, car-
bon, aluminum, copper, silver, lead, and uranium against the kinetic
energy EK of the light CP. Data are from the NIST and the plot is for
EK in the vicinity of Ecrit

K for the seven stopping materials. Curves in
Fig. 6.14 are not labeled. Identify Srad and Scol curves for the 7 stopping
materials.

(b) From appropriately labeled Fig. 6.14 determine the critical kinetic en-
ergy Ecrit

K of the 7 stopping materials, plot Ecrit
K against Z and compare

with a plot of (6.102). Discuss how (6.102) is satisfied for the 7 elements
and draw general conclusions on the validity of (6.102) for stopping ma-
terials in general.
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Fig. 6.14 Mass radiation stopping power Srad and mass collision stopping powers Scol for seven
stopping media around the region where the two stopping powers for a given stopping medium are
equal

SOLUTION:

(a) We identify the stopping power curves of Fig. 6.14 through accounting for the
following two facts related to stopping powers of light CPs:

(1) For all stopping materials irrespective of atomic number Z the collision com-
ponent Scol of Stot predominates at kinetic energies EK < 10 MeV, while the radi-
ation component Srad of Stot predominates at EK > 100 MeV. In the intermediate
region, where EK is between 10 MeV and 100 MeV, the region of predominance
depends on the atomic number Z of the stopping medium. Based on this we con-
clude that the heavy curves in Fig. 6.14 represent Scol of the 7 stopping media and
the light curves represent Srad of the 7 stopping media (see Fig. 6.15).

(2) At a given kinetic energy EK of the light CP, Scol is inversely proportional to Z
of the stopping medium as a result of two properties of the stopping medium: elec-
tron density Ne = ZNA/A and mean ionization/excitation potential I , as evident
from (6.17). Both Ne and ln I decrease Scol with increasing Z. On the other hand,
as shown in (6.3), Srad is proportional to ZNe which suggests a linear proportion of
Srad with Z, since Z/A in Ne is essentially constant for all stopping media.

In Fig. 6.14 we thus arrange the Scol curves in the order of increasing Z from top
(He) to bottom (U) and the Srad curves in reverse order with U on the top and He on
the bottom, as shown in Fig. 6.15.

(b) We are now ready to determine critical kinetic energy Ecrit
K for the seven ma-

terials using data from Fig. 6.15. Ecrit
K is defined as the intercept between Scol and
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Fig. 6.15 Mass radiation and mass collision stopping powers, Srad and Scol, respectively, for seven
stopping media: helium, carbon, aluminum, copper, silver, lead, and uranium around the region
where the two stopping powers for a given stopping medium are equal. Critical kinetic energy
Ecrit

K for the seven stopping media is identified with open circle data points

Table 6.13 Critical kinetic energy of various stopping media. Measured data are obtained from
the NIST, calculated data are determined from (6.102)

(1) Stopping medium Helium
He

Carbon
C

Alumin
Al

Copper
Cu

Silver
Ag

Lead
Pb

Uran
U

(2) Atomic number Z 2 6 13 29 47 82 92

(3) Ecrit
K (MeV) measured

data
277 96 51 24.3 16 10 9

(5) Ecrit
K ×Z (MeV) measured

data
554 576 663 705 752 820 823

(6) Ecrit
K (MeV) calculated

from (6.102)
400 133 61.5 27.6 17.0 9.8 8.7

(7) Ecrit
K ×Z (MeV)

calculated from (6.102)
800 800 800 800 800 800 800

(8) Scol = Srad (MeV · cm2/g) 2.73 1.95 1.79 1.53 1.41 1.20 1.14

Srad curves for the given stopping material and we can now read Ecrit
K directly from

the graph. The results for the 7 stopping media are listed in Table 6.13 in row (3).
Also listed in the table is atomic number Z of the stopping medium in row (2) as
well as in row (6) the critical energy Ecrit

K determined from (6.102).
The measured and calculated Ecrit

K data are plotted in Fig. 6.16 against atomic
number Z of the various stopping materials with data points and solid curve, re-
spectively. The agreement between the two sets appears to be reasonable, suggesting
that (6.102) is a good and simple empirical approximation for determination ofEcrit

K .
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Fig. 6.16 Critical kinetic energy Ecrit
K against atomic number Z for seven stopping materials rang-

ing in Z from 6 to 92. The solid curve represents data calculated from (6.102), the data points
represent data based on mass collision and mass radiation stopping power data obtained from the
NIST

Fig. 6.17 Product of critical kinetic energy Ecrit
K and atomic number Z against atomic number Z

for seven stopping materials ranging in Z from 6 to 92. The solid curve represents data calculated
from (6.102), the data points represent data based on mass collision and mass radiation stopping
power data obtained from the NIST. The grey area represents ±10 % deviation from (6.102)

However, a comparison between rows (3) and (5) of Table 6.13 suggests otherwise,
especially for stopping media of low Z. We therefore re-plot the data in the form of
Ecrit

K ×Z and get a better picture on the discrepancy between (6.102) and the NIST
data, as shown in Fig. 6.17. The grey area in the figure shows a region of ±10 %
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agreement with (6.102) and we note that for Z < 30 data calculated with (6.102)
exceed the NIST data by more than 10 % and the discrepancy margin increases as Z
decreases.

Figure 6.17 shows that (6.102) must be used with caution, especially at low
atomic number Z where it overestimates the critical kinetic energy Ecrit

K by ∼50 %.
At large Z (6.102) provides a more reliable means for estimation of the critical
kinetic energy Ecrit

K achieving an accuracy of about ±5 %.

6.6.Q2 (140)

The ratio between the two components Scol/Srad of light charged particle (CP)
stopping power at a given kinetic energy EK of the light CP depends on EK
as well as on the atomic number Z of the stopping material and can be ap-
proximated with the following empirical expression

Scol

Srad
= Ecrit

K

EK
, (6.103)

where Ecrit
K , the so-called critical kinetic energy, is the kinetic energy of the

light CP at which the two components of Stot are identical, i.e., Scol(E
crit
K )=

Srad(E
crit
K )= 1

2Stot(E
crit
K ).

(a) Figure 6.18 shows an unlabeled graph of Scol in one group and Srad in
another group. Each group of curves covers seven stopping materials:
helium, carbon, aluminum, copper, silver, lead, and uranium against EK
of the light CP. Identify the two groups of curves and for each curve
provide the stopping material.

(b) Verify the validity of (6.103) for the following three stopping materials:
carbon, copper, and lead. Obtain the stopping power and Ecrit

K data for
the three stopping materials from appropriately labeled Fig. 6.18.

(c) For the three stopping materials of (b) plot your results and com-
pare the NIST data on Scol/Srad with the ratio Ecrit

K in the EK range
from 0.01 MeV to 1000 MeV. Make general comments on the validity
of (6.103).

SOLUTION:

(a) Before we can identify the stopping power curves in Fig. 6.18 we should con-
sider the following points:

(1) Both Scol as given in (6.70) and Srad as given in (6.3) depend upon atomic
number Z of the stopping material as well as on kinetic energy EK of the
light CP.
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(2) Dependence of Scol on Z is manifested directly through electron density Ne
that is proportional to Z/A and indirectly on ionization/excitation potential I
through the (− ln I ) term. Both Z/A and (− ln I ) diminish Scol with increas-
ing Z.

(3) Dependence of Srad on Z is manifested directly through the ZNe factor that
indicates direct proportionality of Srad with Z, since Ne through Z/A exhibits
only a slight dependence on Z. Note that in the first approximation Z/A≈ 0.5
for all elements, however, in reality Z/A ranges from 0.5 at low Z down
to ∼0.4 at high Z with only one notable exception of hydrogen for which
Z/A= 1.

(4) Dependence of Scol on EK is divided into 3 regions: at relatively low kinetic
energy, Scol is inversely proportional to EK (i.e., goes as 1/EK), reaches a
broad minimum at a few MeV as the light CP approaches speed of light c, and
then slowly rises at relativistic energies above 10 MeV.

(5) Dependence of Srad on EK is manifested directly through the (EK + mec
2)

term and indirectly through the Brad term that is constant for EK <mec
2 and

exhibits a slow rise with EK increasing above 1 MeV.

(b) We now use Fig. 6.19 that is based on data from the NIST to determine Scol and
Srad for carbon, copper, and lead at the following kinetic energies in MeV: 0.01, 0.1,
1, 10, 100, and 1000. We also determineEcrit

K following the same procedure that was
followed in Prob. 141. Our results are listed in Table 6.14 in which we also give the
ratios Scol/Srad and Ecrit

K /EK. Since the table represents 3 stopping materials, one
each for low Z, intermediate Z, and high Z, we can draw some general conclusions
about the general validity of (6.103), as proscribed in (c).

Fig. 6.18 Mass collision stopping power Scol and mass radiation stopping power Scol for 7 stop-
ping materials in the atomic number Z (range from 2 to 92) against kinetic energy EK of the
light CP
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Fig. 6.19 Mass collision stopping power Scol and mass radiation stopping power Scol for 7 stop-
ping materials in the atomic number Z (range from 2 to 92) against kinetic energy EK of the light
CP. Data are from the NIST

Table 6.14 Ratios Scol/Srad and Ecrit
K /EK of (6.103) of carbon, copper, and lead at various kinetic

energies EK of electron. Data are from the NIST

EK
(MeV)

Carbon Z = 6
Ecrit

K = 96 MeV
Copper Z = 29
Ecrit

K = 24.3 MeV
Lead Z = 82
Ecrit

K = 10 MeV

Srad Scol
Scol
Srad

Ecrit
K
EK

Srad Scol
Scol
Srad

Ecrit
K
EK

Srad Scol
Scol
Srad

Ecrit
K
EK

0.01 0.003 20 6667 9600 0.012 13.2 1100 2430 0.02 8.5 425 1000

0.1 0.0035 3.7 1057 960 0.017 2.7 159 243 0.05 2 44.4 100

1 0.01 1.6 160 96 0.046 1.3 28.3 24.3 0.13 1 7.7 10

10 0.15 1.8 12 9.6 0.57 1.4 2.5 2.43 1.2 1.2 1 1

100 2 2 1 0.96 7 1.7 0.24 0.243 14 1.4 0.1 0.1

1000 22 2.1 0.1 0.1 76.5 1.85 0.024 0.024 155 1 0.01 0.01

(c) To visualize better the results of (6.103) presented in Table 6.14 we plot and
compare the two ratios Scol/Srad (shown as data points) and Ecrit

K /EK (shown with
solid line) in Fig. 6.20. It is evident that the two ratios agree well for electron kinetic
energy EK above 1 MeV; however, for EK < 1 MeV the agreement breaks down
and Scol/Srad < E

crit
K /EK, the lower the kinetic energy the worse is the agreement,

so that at kinetic energy EK = 0.001 MeV ratio Ecrit
K /EK exceeds ratio Scol/Srad by

at least 50 %. We thus conclude that (6.103) is a reasonable approximation for esti-
mation of the ratio Scol/Srad at electron kinetic energy exceeding 1 MeV, however,
for EK < 1 MeV (6.103) is not reliable, especially for kinetic energy that is much
smaller than 1 MeV.
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Fig. 6.20 Comparison of ratios Scol/Srad and Ecrit
K /EK for carbon, copper and lead at various

electron kinetic energies

6.7 Radiation Yield

6.7.Q1 (141)

The following data are provided in Table 6.15: mass radiation stopping power
Srad, mass collision stopping power Scol, total mass stopping power Stot, ratio
Srad/Stot, and ratio Scol/Stot. Based on these data determine the following
quantities for electrons with initial kinetic energy (EK)0 of 4 MeV striking a
lead absorber:

(a) Radiation yield Y [(EK)0].
(b) Energy EK radiated in the form of bremsstrahlung photons (radiation

loss) per incident electron.
(c) Energy Ecol lost by the incident electron through ionization of lead

atoms (collision loss) per incident electron.
(d) Based on data used in calculation of radiation yield Y [(EK)0] for

(EK)0 = 4 MeV in (a) plot Y [(EK)0] for electrons in lead with initial
kinetic energies (EK)0 between 0 and 4 MeV with kinetic energy EK
interval of 0.5 MeV.

SOLUTION:

(a) Radiation yield Y [(EK)0] of an electron with initial kinetic energy (EK)0 strik-
ing an absorber is defined as that fraction of the initial kinetic energy (EK)0 that is
emitted as bremsstrahlung radiation with energy Erad through the slowing down
process of the electron in the absorber.
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Table 6.15 Stopping power data of lead obtained from the NIST in electron kinetic energy range
from 10−3 MeV to 10 MeV

(1) (2) (3) (4) (5) (6) (7) (8)

n EK
(MeV)

Srad
(MeV · cm2/g)

Scol
(MeV · cm2/g)

Stot
(MeV · cm2/g)

Srad/Stot Scol/Stot 1/Stot
(MeV ·cm2/g)−1

1 0 0 0 1.0

2 0.5 0.082 1.053 1.135 0.0725 0.9275 0.8811

3 1 0.129 0.994 1.123 0.1149 0.8851 0.8905

4 1.5 0.179 1.004 1.183 0.1513 0.8487 0.8453

5 2 0.232 1.024 1.256 0.1846 0.8153 0.7962

6 2.5 0.287 1.044 1.331 0.2156 0.7844 0.7513

7 3 0.343 1.063 1.406 0.2440 0.7560 0.7112

8 3.5 0.400 1.080 1.480 0.2703 0.7297 0.6757

9 4 0.458 1.095 1.553 0.2949 0.7057 0.6439

10 4.5 0.517 1.108 1.625 0.3181 0.6818 0.6154

11 5 0.577 1.120 1.697 0.3400 0.6600 0.5893

12 5.5 0.638 1.132 1.770 0.3605 0.6395 0.5650

13 6 0.699 1.142 1.841 0.3797 0.6203 0.5432

14 6.5 0.761 1.151 1.912 0.3980 0.6020 0.5230

15 7 0.823 1.160 1.983 0.4150 0.5850 0.5043

16 7.5 0.886 1.168 2.054 0.4314 0.5686 0.4869

17 8 0.950 1.175 2.125 0.4470 0.5529 0.4706

18 8.5 1.013 1.182 2.195 0.4615 0.5385 0.4556

19 9 1.077 1.189 2.266 0.4753 0.5247 0.4413

20 9.5 1.142 1.195 2.337 0.4887 0.5113 0.4279

21 10 1.206 1.201 2.407 0.5010 0.4990 0.4155

22 10.5 1.272 1.206 2.478 0.5133 0.4867 0.4036

23 11 1.337 1.212 2.549 0.5245 0.4755 0.3923

24 11.5 1.403 1.217 2.619 0.5357 0.4647 0.3818

25 12 1.469 1.221 2.690 0.5461 0.4539 0.3717

26 12.5 1.535 1.226 2.761 0.5560 0.4440 0.3622

27 13 1.602 1.230 2.832 0.5657 0.4343 0.3531

28 13.5 1.668 1.234 2.903 0.5746 0.4251 0.3445

29 14 1.735 1.238 2.974 0.5834 0.4163 0.3362

30 14.5 1.802 1.242 3.045 0.5918 0.4079 0.3284

31 15 1.870 1.246 3.116 0.6001 0.4000 0.3209
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For a heavy charged particle the radiation yield Y [(EK)0] is zero; however, for
light CPs, such as electron and positron, Y [(EK)0] �= 0 and can be determined from
stopping power data as follows

Y
[
(EK)0

]=
∫ (EK)0

0
Srad(EK)
Stot(EK)

dEK∫ (EK)0
0 dEK

= 1

(EK)0

∫ (EK)0

0

Srad(EK)

Stot(EK)
dEK. (6.104)

Since the ratio Srad(EK)/Stot(EK) is generally not available in an analytical
form, the integration in (6.104) is replaced with a numerical summation of
SradEK/Stot(EK) using a suitable EK interval �EK

Y
[
(EK)0

]= 1

(EK)0

∫ (EK)0

0

Srad(EK)

Stot(EK)
dEK = 1

(EK)0

n∑
i=1

(
Srad(EK)

Stot(EK)

)
i

�EK,

(6.105)
where (Srad(EK)/Stot(EK))i stands for the average value of (Srad(EK)/Stot(EK))i
for the interval i and (Srad(EK)/Stot(EK))i�EK represents the area of interval i in
the summation procedure.

To calculate Y [(EK)0] numerically we use the Srad/Stot data provided in col-
umn (6) of Table 6.15, and for practical reasons we choose a relatively wide kinetic
energy interval �EK of 0.5 MeV for the summation. When a computer is used for
this purpose, a much narrower interval would be chosen; however, for our proof of
principle a manual calculation with an interval �EK = 0.5 MeV is adequate. Thus,
for initial kinetic energy (EK)0 = 4 MeV we will have 8 energy intervals at 0.5 MeV
each and, for convenience, we choose EK = 0 for start of the first interval.

Results of our numerical integration in determination of Y [(EK)0] for (EK)0 =
4 MeV are summarized in Table 6.16 and the intervals for the numerical integration
are also displayed in Fig. 6.21. Based on data displayed in column (6) of Table 6.16
we now determine Y [(EK)0] for (EK)0 = 4 MeV as follows

Y
[
(EK)0

]== 1

(EK)0

n=8∑
i=1

(
Srad(EK)

Stot(EK)

)
i

�EK = 1

4 MeV
×0.7002 MeV = 0.175,

(6.106)
indicating that 17.5 % of the 4 MeV incident electron kinetic energy is transformed
into bremsstrahlung photons. It is noteworthy that our result for Y [4 MeV] = 0.175
is in excellent agreement with the value of 0.176 stated by the NIST and undoubt-
edly obtained with a much finer interval length than our 0.5 MeV.

(b) Total energy Erad radiated from a 4 MeV electron striking a lead absorber is
given as

Erad = (EK)0×Y
[
(EK)0

]= (4 MeV)×0.175 = 0.7002 MeV, (6.107)

indicating that out of the incident electron kinetic energy of 4 MeV, 0.7 MeV is
emitted in the form of bremsstrahlung photons.
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Table 6.16 Parameters in numerical integration used to determine the radiation yield Y [(EK)0]
and Erad, the energy emitted in the form of bremsstrahlung photons for an electron of incident
kinetic energy (EK)0 = 4 MeV traversing a lead absorber

(1) (2) (3) (4) (5) (6) (7)

n EK
(MeV)

Srad(EK)i
Stot(EK)i

Srad(EK)i
Stot(EK)i

(
Srad
Stot
)i�EK

(MeV)

∑n
i=1 (

Srad
Stot
)i�EK

(MeV)

∑n
i=1 (

Srad
Stot

)i�EK

(EK)n

0 0.00

1 0.036 0.0180 0.0180 0.036

0.5 0.072

2 0.0937 0.0469 0.0649 0.065

1 0.1149

3 0.1331 0.0666 0.1315 0.088

1.5 0.1573

4 0.1680 0.0840 0.2155 0.108

2 0.1846

5 0.2001 0.1000 0.3155 0.126

2.5 0.2156

6 0.2298 0.1149 0.4304 0.143

3 0.2440

7 0.2572 0.1285 0.5589 0.160

3.5 0.2730

8 0.2826 0.1413 0.7002 0.175

4 0.2949

(c) To deal with Ecol, the energy lost through ionization of lead atoms, of course,
we could reason that if 0.7 MeV out of 4 MeV is transformed into bremsstrahlung
energy then the difference (4 − 0.7) MeV = 3.3 MeV is lost to ionization for a
4 MeV incident electron completely stopped in lead. This is our initial answer, but
we will confirm it now by applying numerical integration using the Scol/Stot ratio
given in column (7) of Table 6.15.

Figure 6.22 shows a plot of the ratio Scol/Stot from Table 6.15 against kinetic
energy EK of the electron and it also shows the integration intervals that we used in
the numerical integration of Scol/Stot, assuming an incident kinetic energy (EK)0 of
the electron of 4 MeV. Table 6.17 displays the results of our numerical integration
of Scol/Stot similar to Table 6.16 that was used in (a) to deal with the numerical
integration of Scol/Stot. Based on column (6) of Table 6.17 we determine Ecol for
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(EK)0 = 4 MeV as follows

Ecol =
∫ (EK)0

0

Scol(EK)

Stot(EK)
dEK =

n=8∑
i=1

(
Scol(EK)

Stot(EK)

)
i

�EK = 3.3 MeV, (6.108)

in excellent agreement with the estimation above that stated Ecol = (EK)0 −Erad.

Fig. 6.21 Ratio Srad/Stot of lead against kinetic energy of electrons. Also shown are energy inter-
vals �EK used in numerical integration of the Srad/Stot ratio

Fig. 6.22 Ratio Scol/Stot of lead against kinetic energy of electrons. Also shown are energy inter-
vals �EK used in numerical integration of the Scol/Stot ratio
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Table 6.17 Parameters in numerical integration used to determine Ecol, energy that the electron
with incident kinetic energy (EK)0 = 4 MeV loses through ionization of lead atoms

(1) (2) (3) (4) (5) (6)

n EK
(MeV)

Scol(EK)i
Stot(EK)i

Scol(EK)i
Stot(EK)i

(
Scol
Stot
)i�EK

(MeV)

∑n
i=1 (

Scol
Stot
)i�EK

(MeV)

0.001 0.9996

1 0.9639 0.4819 0.4819

0.5 0.9275

2 0.9064 0.4532 0.9351

1 0.8851

3 0.8669 0.4334 1.3685

1.5 0.8487

4 0.8320 0.4160 1.7845

2 0.8153

5 0.7998 0.4000 2.1845

2.5 0.7844

6 0.7702 0.3851 2.5696

3 0.7560

7 0.7429 0.3714 2.9410

3.5 0.7297

8 0.7174 0.3587 3.2997

4 0.7057

(d) With (6.106) we determined the radiation yield Y [(EK)0] for initial kinetic
energy (EK)0 of 4 MeV. We now use the same relationship (6.106) to plot the
radiation yield Y [(EK)0] against initial kinetic energy (EK)0 in the range 0 ≤
Y [(EK)0] ≤ 4 MeV and present the appropriate data in column (7) of Table 6.16
as well as in Fig. 6.23. The solid line in the figure represents the NIST data, the
data points are determined with (6.106) for a given (EK)0. Our calculated points
agree well with the NIST data that show that Y [(EK)0] increases with initial kinetic
energy (EK)0 and asymptotically approaches 100 % at initial kinetic energies above
1000 MeV.
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Fig. 6.23 Radiation yield Y [(EK)0] against initial kinetic energy (EK)0 of lead for electrons in
the initial kinetic energy range from 0 to 4 MeV. Solid curve represents data from the NIST, data
points are our calculated values

6.8 Range of Charged Particles

6.8.Q1 (142)

Most of collision and radiation losses as a charged particle penetrates into an
absorber transfer in individual interactions only a minute fraction of the CP
kinetic energy EK to orbital electrons of the absorber. It is therefore conve-
nient, as proposed by Berger and Seltzer, in 1983 to think of the CP moving
through an absorber as if it is losing its kinetic energy gradually and contin-
uously in a process called continuous slowing down approximation (CSDA).
The CSDA range RCSDA is then defined as

RCSDA =
∫ (EK)0

0

dEK

Stot(EK)
(6.109)

and can be determined through integrating the reciprocal of total mass stop-
ping power (1/Stot) over kinetic energy EK from 0 to initial kinetic energy
(EK)0. For heavy CPs, RCSDA is a very good approximation to the mean range
R of the CP in the absorbing medium, because of the essentially rectilinear
path of the CP in the absorbing medium.



6.8 Range of Charged Particles 357

(a) Use data available from the NIST to calculate the CSDA range RCSDA
in water for protons with incident kinetic energy (EK)0 of 100 MeV.

(b) Using data calculated in (a) plot RCSDA for protons in water against
incident kinetic energy (EK)0 in the range from 0 ≤ (EK)0 ≤ 100 MeV.

SOLUTION:

(a) In principle, to determine the CSDA range in water of protons with incident
kinetic energy (EK)0 = 100 MeV we would use (6.109). However, since the recip-
rocal of the total mass stopping power Stot is not available in an analytical form,
we will resort to a numerical integration of 1/Stot data and use a reasonably small
energy interval �EK of 5 MeV in the integration. The steps in the numerical inte-
gration were discussed in Prob. 141, so here we present only a summary of the six
steps involved:

(1) Decide on kinetic energy interval �EK for the numerical integration. We will
use 5 MeV for �EK and thus need data for EK in MeV of 0, 5, 10, 15, . . . ,
95, 100.

(2) Obtain Scol in MeV · cm2/g (http://physics.nist.gov/PhysRefData/Star/Text/
PSTAR.html) from the NIST for protons in water for kinetic energies given
in step (1). Stot for heavy CP in general includes two terms: the predominant
collision term Scol and a minor nuclear term Snuc arising from elastic collisions
between CP and the nucleus of the absorber. In our calculation we ignore the
Snuc term and assume that Stot ≈ Scol. Note: for heavy CP radiation stopping
power Srad is zero in contrast to the situation with light CPs (electrons and
positrons) for which Stot = Scol + Srad.

(3) Calculate 1/Scol, the reciprocal of Scol, for EK given in step (1). Figure 6.24
plots 1/Scol against EK for protons in water and also shows the energy inter-
vals �EK used in the numerical integration.

(4) Calculate 1/Scol, the average of 1/Scol, for each energy interval �EK. For
example, for the last energy interval �EK shown in Fig. 6.24 we calculate
1/Scol as follows

1/Scol(100 MeV) = 1/Scol(100 MeV)− 1/Scol(95 MeV)

= 0.5×[
0.1372

(
MeV · cm2/g

)−1

− 0.1320
(
MeV · cm2/g

)−1]
= 0.1346

(
MeV · cm2/g

)−1
. (6.110)

(5) Calculate the area for each energy interval, i.e., (1/Scol)i×�EK.

http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
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Fig. 6.24 Reciprocal of mass collision stopping power (1/Scol) of water against incident kinetic
energy (EK)0 of protons. Also shown are kinetic energy intervals �EK used in numerical integra-
tion of 1/Scol in calculation of CSDA range

(6) Sum up the areas (1/Scol)i×�EK from area 1 to area n at (EK)0 to get

n∑
i=1

(1/Scol)i×�EK =RCSDA
[
(EK)0

]
. (6.111)

Table 6.18 summarizes the six steps in the calculation of the CSDA range RCSDA
for 100 MeV protons in water and results in RCSDA = 7.71 g/cm2 = 7.71cm. This
result, despite a relatively large energy interval of �EK = 5 MeV agrees well with
the tabulated value of RCSDA = 7.718 g/cm2 obtained from the NIST.

(b) Data required for plotting of RCSDA for protons in water in the kinetic en-
ergy interval 0 ≤ (EK)0 ≤ 100 MeV are actually available from row (6) of Ta-
ble 6.18 where they were used to determine through numerical integration RCSDA

for 100 MeV protons. These data obviously contain range information for all proton
energies up to (EK)0 = 100 MeV and all we need to do is extract it from the table.
For example, for (EK)0 = 75 MeV we get directly from column (15) and row (6)
a CSDA range RCSDA of 4.61 cm; for (EK)0 = 20 MeV we get directly from col-
umn (4) and row (6) a CSDA range of 0.42 cm, etc.

In Fig. 6.25 we plot the CSDA range RCSDA in water of protons with kinetic
energy between 0 and 125 MeV. The data points represent calculated values listed
in row (6) of Table 6.18 and the solid curve represents RCSDA obtained from the
NIST. The agreement between our data calculated with numerical integration using
a relatively large energy interval of 5 MeV and data obtained from the NIST is
excellent.
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Table 6.18 Summary of data for calculation of CSDA range in water for protons of kinetic energy
of 100 MeV. (*) indicates data obtained from the NIST

n 1 2 3 4 5 6 7 8 9 10

1 EK (MeV) 5 10 15 20 25 30 35 40 45 50

2 Stot (*) 79.11 45.67 32.92 26.07 21.75 18.76 16.56 14.88 13.54 12.45

3 1/Stot 0.0126 0.0219 0.0304 0.0384 0.0460 0.0533 0.0604 0.0672 0.0739 0.0803

4 1/Stot 0.0063 0.0173 0.0261 0.0344 0.0422 0.0500 0.0568 0.0638 0.0705 0.0771

5 (1/Stot)�EK 0.0316 0.0863 0.1307 0.1718 0.2108 0.2482 0.2842 0.3190 0.3527 0.3854

6
∑
(1/Stot)�EK 0.0316 0.1179 0.2486 0.4205 0.6313 0.8795 1.1637 1.4827 1.8353 2.2208

n 11 12 13 14 15 16 17 18 19 20

1 EK (MeV) 55 60 65 70 75 80 85 90 95 100

2 Stot (*) 11.54 10.78 10.13 9.559 9.063 8.625 8.236 7.888 7.573 7.289

3 1/Stot 0.0867 0.0928 0.0987 0.1046 0.1103 0.1159 0.1214 0.1268 0.1320 0.1372

4 1/Stot 0.0835 0.0897 0.0957 0.1017 0.1075 0.1131 0.1187 0.1241 0.1294 0.1346

5 (1/Stot)�EK 0.4174 0.4486 0.4787 0.5083 0.5374 0.5657 0.5934 0.6205 0.6471 0.6731

6
∑
(1/Stot)�EK 2.6382 3.0868 3.5655 4.0738 4.6112 5.1769 5.7703 6.3908 7.0378 7.7109

n 21 22 23 24 25 26 27 28 29 30

1 EK (MeV) 105 110 115 120 125 130 135 140 145 150

2 Stot (*) 7.030 6.794 6.577 6.377 6.192 6.021 5.861 5.713 5.575 5.445

3 1/Stot 0.1422 0.1472 0.1520 0.1568 0.1615 0.1661 0.1706 0.1750 0.1794 0.1837

4 1/Stot

5 (1/Stot)�EK

6
∑
(1/Stot)�EK

Fig. 6.25 CSDA range RCSDA against incident kinetic energy (EK)0 for protons in water. Data
points represent our calculated results; the solid curve represents data obtained from the NIST
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6.8.Q2 (143)

According to the derivation of (T6.74), the CSDA range RM0
CSDA[(EM0

K )] of
an arbitrary heavy charged particle (CP) of rest energy M0c

2, charge ze, and
incident kinetic energy (EM0

K )0 in a given absorber can be written in terms of
the CSDA range of a proton Rp

CSDA[(Ep
K)] of rest energy mpc

2 = 938.3 MeV
and equivalent incident kinetic energy (Ep

K)0 in the same absorber as

R
M0
CSDA

[(
E
M0
K

)
0

]= C(M0, z)R
p
CSDA

[(
E

p
K

)
0

]
, (6.112)

where C(M0, z) is a correction factor dependent on rest massM0 and number
z of electron charges e of the heavy CP given in (6.113) and (Ep

K)0 is the
equivalent incident kinetic energy of the proton related to the incident kinetic
energy (EM0

K )0 of the heavy CP through the relationship given in (6.114)

C(M0, z)= 1

z2

M0

mp
(6.113)

and (
E

p
K

)
0 = mp

M0

(
E
M0
K

)
0. (6.114)

(a) Derive (6.112) from the basic definition of RCSDA and Scol for non-
relativistic heavy CPs.

(b) Determine the mass/charge correction factor C(M0, z) for the following

heavy CPs: deuteron d, triton t, α particle 4
2He2+, carbon ion 12

6C
6+

, and
neon ion 20

10Ne10+.
(c) Determine the equivalent proton incident kinetic energy (Ep

K)0 for the
following heavy CPs: deuteron d, triton t, α particle 4

2He2+, carbon ion
12
6C

6+
, and neon ion 20

10Ne10+, all of incident kinetic energy (EM0
K )0 of

500 MeV.
(d) Based on Fig. 6.26 that gives the CSDA range Rp

CSDA of protons in
water against incident kinetic energy (Ep

K)0, determine the CSDA range

R
M0
CSDA in water for the following heavy CPs: deuteron d, triton t, α

particle 4
2He2+, carbon ion 12

6C
6+

, and neon ion 20
10Ne10+, all of incident

kinetic energy (EM0
K )0 of 500 MeV.
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Fig. 6.26 Continuous slowing down approximation range RCSDA in water for proton (solid dark
curve) and α particle (grey curve) against incident kinetic energy (EK)0 based on data from the
NIST. Incident kinetic energies (Ep

K)0 of proton for deuteron, triton, α particle, carbon-6 ion, and

neon-10 ion, all with incident kinetic energy (EM0
K ) of 500 MeV, are indicated with tick marks on

the proton curve

SOLUTION:

(a) The CSDA range RCSDA[(EM0
K )] of a heavy CP with rest massM0 and charge

ze traversing a stopping medium (absorber) is defined as

RCSDA
[(
E
M0
K

)]=
∫ (E

M0
K )

0

dEK

Scol(EK)
, (6.115)

where (EM0
K ) is the incident kinetic energy of the CP and Scol(E

M0
K ) is the mass

collision stopping power of the absorber for heavy particle of rest mass M0. For a
non-relativistic heavy CP, Scol(E

M0
K ) is given by the Bethe stopping power equation

as

Scol
[(
E
M0
K

)] = CAz
2

υ2
ln

2meυ
2

I
= CAz

2

2

2M0

M0υ2
ln

[
4me

I

M0υ
2

2M0

]

= CAz
2

2

M0

E
M0
K

ln

[
4me

I

E
M0
K

M0

]
, (6.116)

where

CA is a constant for a given absorber.
υ is the velocity of the heavy CP.
me is the rest mass of the electron (me = 0.511 MeV/c2).
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I is the ionization/excitation potential of the stopping medium (absorber).
E
M0
K is the kinetic energy of the heavy CP, i.e., EM0

K = 1
2M0υ

2 for non-relativistic
heavy CP.

Combining (6.116) with (6.115) we get the following expression for RCSDA[(EM0
K )]

RCSDA
[(
E
M0
K

)
0

]= 2M0

CAz2

∫ (E
M0
K )

0

E
M0
K
M0

d
E
M0
K
M0

ln[ 4me
I

E
M0
K
M0

]
, (6.117)

which we now expand to make a link between the range RCSDA[(EM0
K )] of the heavy

CP of rest mass M0 and charge ze and range RCSDA[(Ep
K)] of a proton of rest mass

mp = 938.3 MeV and charge e

RCSDA
[(
E
M0
K

)
0

]= M0

z2mp

{
2mp

CA

∫ E
M0
K

0

(
E
M0
K
mp

mp
M0
)d(

E
M0
K
mp

mp
M0
)

ln[( 4me
I
)(
E
M0
K
mp

mp
M0
)]

}

= M0

z2mp

{
2mp

CA

∫ E
p
K

0

(
E

p
K
mp
)d(

E
p
K
mp
)

ln[( 4me
I
)(
E

p
K
mp
)]

}

= M0

z2mp
R

p
CSDA

[(
E

p
K

)
0

]= C(M0, z)RCSDA
[(
E

p
K

)
0

]
, (6.118)

where C(M0, z) is a correction factor for mass M0 and charge ze of the heavy CP
given in (6.119) and (Ep

K)0 is the equivalent incident kinetic energy of a proton that

satisfies (6.112) and is related to (EM0
K )0, as shown in (6.120)

C(M0, z)= M0

zmp
(6.119)

and (
E

p
K

)
0 = mp

M0

(
E
M0
K

)
0. (6.120)

(b) The mass/charge correction factor C(M0, z) for the five heavy charged parti-
cles is determined using (6.113) and listed in column (7) of Table 6.19 which also
lists the basic relevant physical properties of the five heavy charged particles in ad-
dition to proton.

(c) The equivalent proton incident kinetic energy (Ep
K)0 for use in (6.112) in de-

termination of the CSDA range of CPs heavier than the proton is calculated with
(6.114) for five CPs (deuteron, triton, α particle, carbon-6 ion, and neon-10 ion), all
with incident kinetic energy of 500 MeV and given in column (4) of Table 6.20.
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Table 6.19 Physical properties relevant to calculation of CSDA range in water for a selection of
six heavy charged particles: proton, deuteron, triton, α particle, carbon-6 ion, and neon-10 ion

(1) (2) (3) (4) (5) (6) (7) (8)

(2) Heavy CP z A M0c
2 C(M0, z) mp/M0

(3) Proton 1
1H = p 1 1 938.3 1.000 1.000

(4) Deuteron 2
1H = d 1 2 1875.6 1.999 0.500

(5) Triton 3
1H = t 1 3 2808.6 2.993 0.334

(6) α particle 4
2He = α 2 4 3727.3 0.993 0.252

(7) Carbon-6 12
6C

6+
6 12 11174.9 0.331 0.084

(8) Neon-10 20
10Ne10+ 10 20 18617.7 0.198 0.050

Table 6.20 Various parameters of relevance to determination of the CSDA range in water for
various heavy charged particles, all of incident kinetic energy of 500 MeV

(1) (2) (3) (4) (5) (6) (7) (8)

(2) Heavy CP (E
p
K)0 R

p
CSDA (E

M0
K )0 (E

M0
K )0/A R

M0
CSDA

(3) Proton 1
1H = p 500 117 500 500 117

(4) Deuteron 2
1H = d 250 37.9 500 250 75.8

(5) Triton 3
1H = t 167 19 500 167 57.0

(6) α particle 4
2He = α 125.9 11.6 500 125 11.5

(7) Carbon-6 12
6C

6+
42 1.63 500 41.7 0.54

(8) Neon-10 20
10Ne10+ 25.2 0.65 500 25 0.13

(d) The CSDA range of heavy CPs: proton, deuteron, triton, α particle, carbon ion,
and neon ion, all with incident kinetic energy (EM0

K )0 of 500 MeV is determined
with (6.112) and results are displayed in Table 6.20 and in Fig. 6.26. We note that
500 MeV proton, deuterons, and tritons have a range that exceeds the penetration in
water required for radiotherapy, while carbon ions and neon ions at 500 MeV [i.e.,
at 42 MeV/u (∼500 : 12) and 25 MeV/u (∼500 : 20), respectively] exhibit CSDA
ranges that are too low for use in practical radiotherapy.

6.9 Mean Stopping Power

6.9.Q1 (144)

In radiation dosimetry the main interest is in the energy absorbed per unit
mass of the absorbing medium governed by collision losses of charged parti-
cles. It is often convenient to characterize a given radiation beam with elec-
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trons of only one energy (EK)0 rather than with an electron spectrum dφ/dEK
that is present in practice. As shown by Johns and Cunningham [17], one can
define mean mass collision stopping power S̄col[(EK)0] with the following
expression

S̄col
[
(EK)0

]= (EK)0
1 − Y [(EK)0]
RCSDA[(EK)0] . (6.121)

(a) Derive (6.121) from the definition of S̄col[(EK)0] based on electron
spectrum and given as

S̄col
[
(EK)0

]=
∫ (EK)0

0
dφ

dEK
Scol(EK)dEK∫ (EK)0

0
dφ

dEK
dEK

. (6.122)

(b) Using data from the NIST{http://physics.nist.gov/PhysRefData/Star/
Text/ESTAR.html} in conjunction with (6.121) determine S̄col[(EK)0]
of water for the following incident electron kinetic energies (EK)0
in MeV: 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, and 1000.

(c) Figure 6.27 is a plot of the mass collision stopping power Scol[(EK)0] of
water against incident kinetic energy (EK)0 of the electron. On the same
graph plot the data you calculated for the mean mass collision stopping
power S̄col[(EK)0] for several (EK)0 in the range from 10−3 MeV to
103 MeV. Compare Scol[(EK)0] curve with S̄col[(EK)0] curve and ex-
plain the cause of the difference between the two curves.

Fig. 6.27 Mass collision stopping power Scol of water for electrons against kinetic energy EK of
electrons in the electron kinetic energy range from 1 keV to 1000 MeV

http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html
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SOLUTION:

(a) The electron spectrum dφ/dEK, ignoring all possible hard collisions, is ex-
pressed in terms of total mass stopping power Stot(EK) as

dφ(EK)

dEK
= N

Stot(EK)
, (6.123)

where N is the number of mono-energetic electrons of kinetic energy (EK)0 set in
motion per unit mass in the absorbing medium. These electrons will through their
own slowing down process produce a spectrum of electrons in the medium ranging
in energy from (EK)0 down to zero.

The mean value of Scol(EK) is calculated using the standard procedure for av-
eraging physical quantities, as stated in (6.122). The integral in the denominator
of (6.122) after insertion of (6.123) is given as follows

∫ (EK)0

0

dφ(EK)

dEK
dEK =N

∫ (EK)0

0

dEK

Stot(EK)
=N×RCSDA

[
(EK)0

]
, (6.124)

where we use the definition of the CSDA range given as [see (T6.69)]

RCSDA
[
(EK)0

]=
∫ (EK)0

0

dEK

Scol(EK)
. (6.125)

The integral in the numerator of (6.122), again after insertion of (6.123), is deter-
mined as follows

∫ (EK)0

0

dφ

dEK
Scol(EK)dEK = N

∫ (EK)0

0

Scol(EK)

Stot(EK)
dEK

= N
∫ (EK)0

0

Stot(EK)− Srad(EK)

Stot(EK)
dEK

= N×(EK)0 −N×(EK)0Y
[
(EK)0

]
= N×(EK)0

[
1 − Y [(EK)0

]]
, (6.126)

where we used:

(1) Definition of total mass collision stopping power Stot as a sum of two compo-
nents [see (T6.63)], i.e.,

Stot = Scol + Srad. (6.127)

(2) Definition of radiation yield [see (T6.67)]

Y
[
(EK)0

]= 1

(EK)0

∫ (EK)0

0

Srad(EK)

Stot(EK)
dEK. (6.128)
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Table 6.21 Parameters of importance for calculation of the mean mass collision stopping power
S̄col[(EK)0] with (6.121). Data for Scol[(EK)0], Y [(EK)0], and RCSDA[(EK)0] were obtained from
the NIST, data for column (5) were calculated with (6.121)

(1) (2) (3) (4) (5)

(EK)0
(MeV)

Scol[(EK)0]
(MeV · cm2/g)

Y [(EK)0] RCSDA[(EK)0]
(g/cm2)

S̄col[(EK)0]
(MeV · cm2/g)

0.01 22.6 9.41×10−5 2.52×10−4 39.7

0.05 6.60 3.44×10−4 4.32×10−3 11.6

0.1 4.12 5.84×10−4 1.43×10−2 6.99

0.5 2.03 1.98×10−3 1.77×10−1 2.82

1 1.85 3.58×10−3 4.37×10−1 2.28

5 1.89 1.91×10−2 2.55 1.92

10 1.97 4.07×10−2 4.98 1.93

50 2.14 1.92×10−1 19.8 2.04

100 2.20 3.19×10−1 32.6 2.09

500 2.34 6.61×10−1 77.0 2.20

1000 2.40 7.76×10−1 100.2 2.24

Combining (6.122) with (6.124) and (6.126) we now get the expression presented
in (6.121) for the mean mass collision stopping power of an absorber

S̄col
[
(EK)0

]=
∫ (EK)0

0
dφ

dEK
Scol(EK)dEK∫ (EK)0

0
dφ

dEK
dEK

= N×(EK)0[1 − Y [(EK)0]]
N×RCSDA[(EK)0]

= (EK)0
[1 − Y [(EK)0]]
RCSDA[(EK)0] . (6.129)

(b) To solve this part we open the NIST website, collect the required data on
Scol[(EK)0], Y [(EK)0], and RCSDA[(EK)0] for electrons with incident kinetic en-
ergy (EK)0 in water, as prescribed for (b), and display these data in columns (1)
through (4) of Table 6.21. Finally, we calculate the mean mass collision stopping
power S̄col[(EK)0] using (6.121) and display the results in column (5) of Table 6.21.

(c) Columns (2) and (5) of Table 6.21 as well as Fig. 6.28 show that for a given in-
cident electron kinetic energy (EK)0 the mass collision stopping power Scol[(EK)0]
and the mean mass collision stopping power S̄col[(EK)0] differ from one another.
On the one hand, at (EK)0 < 3 MeV, S̄col[(EK)0] exceeds Scol[(EK)0]; the lower
is (EK)0, the larger is the difference. On the other hand, at (EK)0 > 3 MeV the sit-
uation is reversed and S̄col[(EK)0]< Scol[(EK)0], however, the difference is not as
pronounced as it is at low kinetic energies (EK)0.

The difference between Scol[(EK)0] and S̄col[(EK)0] is caused by the difference
in definition of the two quantities: Scol[(EK)0] gives the energy loss by the CP at
the instant when its kinetic energy is (EK)0, while S̄col[(EK)0] gives the mean mass
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Fig. 6.28 Mass collision stopping power Scol of water against kinetic energy EK of electrons
(solid curve) from the NIST and mean mass collision stopping power S̄col of water against kinetic
energy of electrons (data points and dashed curve) calculated using (6.121)

collision stopping power for all kinetic energies from (EK)0 down to zero. We note
the following features:

(1) For (EK)0 < 3 MeV, Scol[(EK)0] increases with decreasing kinetic energy
causing an increase in S̄col[(EK)0].

(2) For (EK)0 exceeding 3 MeV the situation is reversed; as (EK)0 decreases,
Scol[(EK)0] also decreases and this results in S̄col[(EK)0]< Scol[(EK)0].

(3) The two stopping powers, Scol[(EK)0] and S̄col[(EK)0], are identical at
(EK)0 ≈ 5 MeV, as shown in Fig. 6.28, indicating that the low- and high-
energy effects involved in averaging the stopping power cancel one another.

6.10 Restricted Collision Stopping Power

6.10.Q1 (145)

Many expressions, at first glance unrelated to one another, have been used in
the literature to describe the unrestricted mass collision stopping power Scol of
absorbers for electrons. For example, the ICRU Report 37 uses the following
form for Scol

Scol = Ce
Ne

β2

{
ln
E2

K

I 2
+ ln

(
1 + τ

2

)
+ (

1 −β2)[1 + τ
2

8
− (2τ + 1) ln 2

]
− δ

}
,

(6.130)
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while the book by Johns and Cunningham has

Scol = Ce
Ne

β2

{
ln
E2

K(EK + 2E0)

2E0I 2
+ E2

K

8(EK +E0)2
− (2EK +E0)E0 ln 2

(EK +E0)2

+ 1 − β2 − δ
}
, (6.131)

where Ce is a constant given as Ce = 2πr2
eE0 = 2.55×10−25 MeV · cm2;

Ne is the number of electrons per unit mass of absorber (Ne = ZNA/A); EK
is kinetic energy of the electron; E0 is rest energy of the electron; τ is kinetic
energy EK of the electron normalized to electron rest energy E0, i.e., τ =
EK/E0; δ is the so-called density effect parameter that accounts for density
effect in condensed media; and I is the mean ionization/excitation potential
of the absorber.

Bichsel recommends the following expression that can be used for both the
unrestricted as well as the restricted mass collision stopping power

Scol = Ce
Ne

β2

{
ln

2(τ + 2)E2
0

I 2
+ F−(τ, ζ )− δ

}
, (6.132)

where F− is in general defined as

F− = −1−β2 + ln
[
(τ−ζ )ζ ]+ τ

τ − ζ + 1

(τ + 1)2

[
ζ 2

2
+(2τ+1) ln

(
1− ζ
τ

)]
,

(6.133)
with ζ a special parameter defined as ζ = τ/(2E0) for unrestricted stopping
power and as ζ = Δ/E0 for restricted collision stopping power where Δ is
equal to kinetic energy of the delta ray whose kinetic energy is just large
enough to allow it to escape from the region of interest.

(a) Show that (6.130) and (6.131) are equivalent.
(b) Show that (6.132) incorporating (6.133) with ζ = τ/(2E0) is equivalent

to (6.131).
(c) Take (6.132) in conjunction with (6.133), insert ζ =Δ/E0, and derive

the expression for restricted mass collision stopping power given in the
book by Johns and Cunningham as

LΔ = Ce
Ne

β2

{
ln

2(EK + 2E0)(EK −Δ)Δ
E0I 2

+ EK

EK −Δ

+ 1

(EK +E0)2

[
Δ2

2
+E0(2EK +E0) ln

EK −Δ
EK

]
− 1 − β2 − δ

}
.

(6.134)
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SOLUTION:

(a) To prove equivalency of (6.130) with (6.131) we compare the terms inside the
curly brackets of the two equations and transform (6.130) into (6.131) using the
definition of the parameter τ =EK/E0. Starting with (6.130) we get

{
ln
E2

K

I 2
+ ln

(
1 + τ

2

)
+ (

1 − β2)[1 + τ 2

8
− (2τ + 1) ln 2

]
− δ

}

= {
A+B + (C×D)− δ}, (6.135)

where

A= ln
E2

K

I 2
, (6.136)

B = ln

(
1 + τ

2

)
= ln

EK + 2E0

2E0
, (6.137)

A+B = ln
E2

K

I 2
+ ln

(EK + 2E0)

2E0
= ln

E2
K(EK + 2E0)

2E0I 2
, (6.138)

C = 1 − β2 = E2
0

(EK +E0)2
= 1

(τ + 1)2
, (6.139)

D = 1 + τ 2

8
− (2τ + 1) ln 2 = 1 + EK

8E0
− 2EK +E0

E0
ln 2, (6.140)

C×D = 1 − β2 + E2
K

8(EK +E0)2
− (2EK +E0)E0

(EK +E0)2
ln 2. (6.141)

Inserting parameters A, B , C, and D into (6.135) we now get the following expres-
sion for (6.135)
{
A+B + (C×D)− δ}

=
{

ln
E2

K(EK + 2E0)

2E0I 2
+ E2

K

8(EK +E0)2
− (2EK +E0)E0 ln 2

(EK +E0)2
+ 1 − β2 − δ

}
.

(6.142)

Equation (6.142) is identical to (6.131), substantiating the contention that (6.130)
and (6.131) are equivalent to one another. Note: Parameter C of (6.139) is deter-
mined from the basic definition of kinetic energy of the incident electron EK/E0 =
(1 − β2)−1/2 − 1.

(b) To prove the equivalency of (6.132) with (6.130) and (6.131) when parameter
ζ of (6.132) is equal to the maximum possible energy transfer �Emax from the
incident electron of kinetic energy EK to a delta ray electron normalized to electron
rest energy E0.
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According to convention on indistinguishable colliding particles, �Emax equals
to 50 % of the kinetic energyEK of the incident electron. We thus use ζ =EK/(2E0)

and modify (6.132) as follows

{
ln

2(τ + 2)E2
0

I 2
+ F−

(
τ = EK

E0
, ζ = EK

2E0

)
− δ

}
= {
G+ F− − δ}, (6.143)

with

G= ln
2(τ + 2)E2

0

I 2
= ln

(EK + 2E0)E0

I 2
, (6.144)

and

F− = −1 − β2 +H + J +K×L, (6.145)

where

H = ln
[
(τ − ζ )ζ ]= ln

[(
EK

E0
− EK

2E0

)
EK

2E0

]
= ln

E2
K

4E2
0

, (6.146)

J = τ

τ − ζ = EKE0

E0(EK − 1
2EK)

= 2, (6.147)

K = 1

(τ + 1)2
= E2

0

(EK +E0)2
[see (6.139)], (6.148)

L= ζ 2

2
+ (2τ + 1) ln

(
1 − ζ

τ

)
= E2

K

8E2
0

− 2EK +E0

E0
ln 2, (6.149)

K×L= E2
0

(EK +E0)2
×
(
E2

K

8E2
0

− 2EK +E0

E0
ln 2

)

= E2
K

8(EK +E0)2
− (2EK +E0) ln 2

(EK +E0)2
. (6.150)

Function F− of (6.145) can now be expressed as follows

F− = −1 − β2 +H + J +K×L

= 1 − β2 + ln
E2

K

4E2
0

+ E2
K

8(EK +E0)2
− (2EK +E0) ln 2

(EK +E0)2
, (6.151)
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leading to the following expression for (6.143)

{
ln

2(τ + 2)E2
0

I 2
+ F−

(
τ = EK

E0
, ζ = EK

2E0

)
− δ

}

= {
G+ F− − δ}

=
{

ln
(EK + 2E0)E0

I 2
+ E2

K

8(EK +E0)2
− (2EK +E0) ln 2

(EK +E0)2
+ 1 − β2 − δ

}
.

(6.152)
Equation (6.152) is identical to terms in curly bracket of (6.131) allowing us to

conclude that (6.132) with ζ = EK/(2E0) is equivalent to (6.130) which, as shown
in (a), in turn is equivalent to (6.131) for description of the mass unrestricted colli-
sion stopping power of various absorbers for electrons.

(c) In this section we use (6.132) in conjunction with (6.133) and insert into
(6.133) for parameter ζ the δ ray threshold Δ normalized to electron rest energy
E0, i.e., ζ = Δ/E0, to derive (6.134) for restricted stopping power LΔ. First, we
write the terms in curly bracket of (6.132) as follows

{
ln

2(τ + 2)E2
0

I 2
+ F−(τ, ζ )− δ

}
=
{
A+ F−

(
τ = EK

E0
, ζ = Δ

E0

)
− δ

}
(6.153)

where

A= ln
2(τ + 2)E2

0

I 2
= ln

2(EK + 2E0)E0

I 2
(6.154)

and

F−
(
τ = EK

E0
, ζ = Δ

E0

)

= −1 − β2 + ln

[(
EK

E0
− Δ

E0

)
Δ

E0

]
+ EK

EK −�

+ E2
0

(EK −E0)2

[
Δ2

2E2
0

+
(

2EK

E0
+ 1

)
ln

(
1 − Δ

EK

)]
− δ

= −1 − β2 + ln
(EK −Δ)Δ

E2
0

+ EK

EK −Δ

+ 1

(EK −E0)2

[
Δ2

2
+ (2EK +E0)E0 ln

EK −Δ
EK

]
− δ. (6.155)

Next, after inserting (6.154) and (6.155) into (6.153) we get the following expres-
sion for the restricted stopping power LΔ, in agreement with the expression (6.134)
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provided by Johns and Cunningham

L� = Ce
Ne

β2

{
ln

2(EK + 2E0)(EK −Δ)Δ
E0I 2

+ EK

EK −Δ

+ 1

(EK +E0)2

[
Δ2

2
+E0(2EK +E0) ln

EK −Δ
EK

]
− 1 − β2 − δ

}
.

(6.156)

6.10.Q2 (146)

Johns and Cunningham provide expressions for unrestricted and restricted
mass collision stopping powers Scol and LΔ, respectively, in the following
format for electrons

Scol = Ce
Ne

β2

{
ln
E2

K(EK + 2E0)

2E0I 2
+ E2

K

8(EK +E0)2
− (2EK +E0)E0 ln 2

(EK +E0)2

+ 1 − β2 − δ
}

(6.157)

and

LΔ = Ce
Ne

β2

{
ln

2(EK + 2E0)(EK −Δ)Δ
E0I 2

+ EK

EK −Δ

+ 1

(EK +E0)2

[
Δ2

2
+E0(2EK +E0) ln

EK −Δ
EK

]
− 1 − β2 − δ

}
,

(6.158)

where Δ is the delta ray electron threshold energy which is equal to kinetic
energy of the delta ray electron whose kinetic energy is just large enough to
allow it to escape from the region of interest. The other parameters of (6.157)
and (6.158) are defined in Prob. 145.

(a) Use expressions (6.157) and (6.158) to calculate Scol and LΔ, respec-
tively, of water for electrons with the following kinetic energy EK
in MeV: 0.01, 0.1, 1, 10, and 100 and the following delta ray threshold
energies Δ in keV: 1, 10, and 100. The density effect parameter δ, as
provided by the NIST [http://physics.nist.gov/cgi-bin/Star/e_table.pl] is
as follows:
EK = 0.01 MeV: δ = 0; 0.1 MeV: 0; 1 MeV: 0.243; 10 MeV:
2.992; 100 MeV: 7.077; electron density: Ne = 3.343×1023 electron/g
(Prob. 133); mean ionization/excitation potential: 75 eV (see Prob. 132).

http://physics.nist.gov/cgi-bin/Star/e_table.pl
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(b) Insert your results onto Fig. 6.29 that plots unrestricted mass collision
stopping power Scol of water as well as restricted stopping power LΔ
(for Δ of 1 keV, 10 keV, and 100 keV) of water against electron kinetic
energy EK in the kinetic energy range from 1 keV to 100 MeV.

(c) Calculate and plot the ratio LΔ/Scol for the five kinetic energies EK
and three delta ray threshold energies Δ of (a) and (b). Comment on
the meaning of the ratio LΔ/Scol.

(d) Show that (6.158) for restricted stopping power LΔ transforms into
(6.157) for unrestricted stopping power Scol when Δ = �(EK)max =
1
2EK is used in (6.158).

Fig. 6.29 Unrestricted mass collision stopping power Scol of water plotted with heavy solid curve
as well as restricted stopping power LΔ (for Δ of 1 keV, 10 keV, and 100 keV) of water plotted
with light solid curves against electron kinetic energy EK in the kinetic energy range from 1 keV
to 100 MeV

SOLUTION:

(a) Expressions (6.157) for unrestricted mass collision stopping power Scol and
(6.158) for restricted mass collision stopping power LΔ were used to calculate Scol

and LΔ of water for the following kinetic energies EK in MeV: 0.01, 0.1, 1, 10, and
100 and three delta ray threshold energies Δ of 1 keV, 10 keV, and 100 keV. Results
are tabulated in Table 6.22 that also lists appropriate β2 as well as the density effect
parameter δ from the NIST.
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Table 6.22 Unrestricted mass collision stopping power Scol (heavy solid curve) calculated from
(6.157) as well as restricted stopping power LΔ (light solid curves) calculated from (6.158) for
delta ray threshold energies Δ of 1 keV, 10 keV, and 100 keV of water for electrons in kinetic
energy range from 1 keV to 100 MeV

1 Kinetic
energy
E (MeV)

β2 = υ2

c2 δ

from
NIST

Scol
(MeV/cm)

LΔ=1 keV
(MeV/cm)

LΔ=10 keV
(MeV/cm)

LΔ=100 keV
(MeV/cm)

2 0.01 0.03802 0 22.600 19.630 – –

3 0.10 0.30055 0 4.122 3.111 3.741 –

4 1.00 0.85563 0.243 1.852 1.256 1.477 1.695

5 10.00 0.99764 2.992 1.971 1.212 1.409 1.606

6 100.00 0.99997 7.077 2.206 1.248 1.442 1.639

Fig. 6.30 Unrestricted mass collision stopping power Scol (heavy solid curve) as well as restricted
stopping power LΔ (light solid curves) for delta ray threshold energies Δ of 1 keV, 10 keV, and
100 keV of water for electrons in the kinetic energy range from 1 keV to 100 MeV obtained
from the NIST. Superimposed onto the curves are Scol calculated from (6.157) and LΔ calculated
from (6.158)

(b) Figure 6.30 shows the unrestricted mass collision stopping power Scol (heavy
solid curve) as well as restricted stopping power LΔ (light solid curves) for delta
ray threshold energiesΔ of 1 keV, 10 keV, and 100 keV of water for electrons in the
kinetic energy range from 1 keV to 100 MeV obtained from the NIST. Superimposed
onto the curves are Scol calculated from (6.157) and LΔ calculated from (6.158).
Agreement between calculated data and data from the NIST is excellent.

(c) Ratio LΔ/Scol of water for data of Table 6.22 is shown in Table 6.23 and
plotted in Fig. 6.31. The following notable properties of LΔ/Scol are apparent:
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Table 6.23 RatioLΔ/Scol of water for data of Table 6.22 whereLΔ is the restricted mass collision
stopping power and Scol is the unrestricted mass collision stopping power

1 Kinetic
energy
E (MeV)

Scol LΔ=1 keV
LΔ=1 keV
Scol

LΔ=10 keV
LΔ=10 keV
Scol

LΔ=100 keV
LΔ=100 keV

Scol

2 0.01 22.600 19.630 0.869 – – – –

3 0.10 4.122 3.111 0.755 3.741 0.908 – –

4 1.00 1.852 1.256 0.678 1.477 0.800 1.695 0.915

5 10.00 1.971 1.212 0.615 1.409 0.715 1.606 0.815

6 100.00 2.206 1.248 0.566 1.442 0.654 1.639 0.743

Fig. 6.31 Ratio LΔ/Scol of water for data of Table 6.22 where LΔ is the restricted mass collision
stopping power and Scol is the unrestricted mass collision stopping power

(1) For EK ≤ 2Δ, where EK is kinetic energy of the electron and Δ is threshold
delta ray energy, LΔ = Scol and thus LΔ/Scol = 1. Conclusion: No energy
escapes the volume of interest.

(2) As EK increases beyond 2Δ, LΔ becomes increasingly smaller in comparison
to Scol indicating that an increasingly larger portion of incident kinetic energy
escapes the volume of interest.

(3) Ratio LΔ/Scol can be considered the proportion of electron kinetic energy
EK that is absorbed locally. The proportion of EK that escapes the volume of
interest is 1 −LΔ/Scol.

(d) To show that (6.158) for restricted stopping power LΔ transforms into (6.157)
for unrestricted stopping power Scol when delta ray thresholdΔ attains its maximum
possible value of Δ=�(EK)max = 1

2EK we insert Δ= 1
2EK into (6.158) and get
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L
Δ= 1

2EK
= Ce

Ne

β2

{
ln

2(EK + 2E0)(EK − 1
2EK)

1
2EK

E0I 2
+ EK

EK − 1
2EK

+ 1

(EK +E0)2

[
( 1

2EK)
2

2
+E0(2EK +E0) ln

EK − 1
2EK

EK

]

− 1 − β2 − δ
}

= Ce
Ne

β2

{
ln
E2

K(EK + 2E0)

2E0I 2
+ E2

K

8(EK +E0)2
− (2EK +E0)E0 ln 2

(EK +E0)2

+ 1 − β2 − δ
}

= Scol. (6.159)

6.11 Bremsstrahlung Targets

6.11.Q1 (147)

Diagnostic radiology and external beam radiotherapy rely heavily on x rays
produced by energetic electrons striking metallic targets in x-ray tubes of x-
ray machines or in disk-loaded waveguides of linear accelerators (linacs). X-
ray targets come in many forms and are classified according to various at-
tributes, such as: (1) Thickness, (2) Atomic number, (3) Photon spectrum and
effective energy they produce, and (4) Physical integrity.

(a) Categorize the interactions that an energetic electron experiences as it
penetrates into an x-ray target.

(b) Discuss categories of x-ray targets with respect to their thickness.
(c) Discuss categories of x-ray targets with respect to their atomic num-

ber Z.

SOLUTION:

(a) X-ray targets serve as source of x rays and a common feature of all x-ray
targets is that they are bombarded with energetic electrons that penetrate the target.
The source of the energetic electrons most commonly is a heated filament ejecting
electrons that are subsequently accelerated in an electrostatic field (provided in an
x-ray tube) or electromagnetic field (provided in a linac wave guide) to attain kinetic
energy of the order of 50 keV to 50 MeV for medical use and even higher kinetic
energy for research purposes.
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Fig. 6.32 Typical x-ray intensity spectra: (A) for thin target and (B) for thick target. Applied
x-ray tube potential is U , maximum photon energy (Eν)max is equal to eU which, according to
Duane-Hunt law, is equal to kinetic energy EK of incident electrons

Energetic electrons strike and penetrate the x-ray target and in traversing it in-
teract through Coulomb interactions with constituents of target atoms, either orbital
electrons or nuclei. The Coulomb interactions are either elastic collisions resulting
in no energy loss but change in direction of motion or inelastic collisions involving
some energy loss as well as change in direction of motion. There are four types of
interaction available to incident electron striking an x-ray target and interacting with
target atoms:

(1) Elastic collision with orbital electron (no energy loss but change in direction
of motion).

(2) Elastic collision with nucleus (no energy loss but change in direction of mo-
tion).

(3) Inelastic collision with orbital electron resulting in atomic excitation or ioniza-
tion associated with energy loss and change in direction of motion (collision
or ionization loss).

(4) Inelastic collision with nucleus resulting in radiation energy loss, change in
direction of motion, and production of bremsstrahlung x rays.

(b) Based on their thickness in comparison to the mean range R̄ of incident mono-
energetic electrons in the target material, targets are classified into two main groups:
thin targets and thick targets. Thickness of thin targets is much smaller than R̄ while
thickness of thick targets is of the order of R̄.

By definition, a thin target is so thin that incident electrons traverse it with-
out any significant loss of kinetic energy, without significant elastic collisions, and
with relatively small radiation loss. In a thin target essentially all radiation inter-
actions are interactions between electrons of incident kinetic energy and the nu-
clei.

The bremsstrahlung radiation produced in a thin target by electrons of kinetic
energy EK has a constant intensity Iν = I0 for Eν = (Eν)max and zero intensity
Iν = 0 for Eν > (Eν)max, as shown schematically in Fig. 6.32(A). The maximum
photon energy (Eν)max is equal to eU where U is the applied potential.
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According to Duane-Hunt law, eU is equal to kinetic energy EK of incident
electrons striking the x-ray target. Since the x-ray intensity Iν is proportional to
the product (�N/�Eν)×Eν , it follows that, in comparison with the number of
photons of energy (Eν)max, the x-ray spectrum contains twice as many photons of
energy 0.5(Eν)max, 4 times as many photons of energy 0.25(Eν)max, 10 times as
many photons of energy 0.10(Eν)max, etc.

A thick target is defined such that all electrons striking it are absorbed in the
target and no electrons can traverse the thick target. In practice, the thickness of a
thick target is about 110 % of R̄ to ensure that none of the incident electrons can exit
the target. On the other hand, the thick target should be no thicker than necessary,
so as to minimize the absorption of x rays in the target material.

The spectral distribution of thick target bremsstrahlung can be represented as a
superposition of contributions from a large number of thin targets, each thin target
traversed by a lower energy mono-energetic electron beam having a lower (Eν)max
than the previous thin target. In traversing each thin target, the electron loses a small
portion of its kinetic energy and enters the next thin target with a lower energy
until it attains zero kinetic energy in the last thin target, as shown schematically
in Fig. 6.32(B) which depicts a thick target spectrum as a superposition of many
thin target spectra of the type shown in Fig. 6.32(A). The beam intensity Iν for a
thick target as a function of photon energy Eν may be described with the following
empirical linear relationship

Iν ≈ CZ[(Eν)max −Eν
]
, (6.160)

whereC is a constant,Z is the atomic number of the thick target material, (Eν)max is
the maximum energy of the spectrum, and Iν is the x-ray beam intensity at photon
energy Eν = hν with a maximum value CZ(Eν)max at Eν = 0 and a value of 0
for Eν ≥ (Eν)max.

(c) Atomic number Z and kinetic energy EK of the incident electron beam affect
the quality as well as yield of x rays produced by an x-ray target. With regard to
atomic number, x-ray targets are classified as low Z targets, intermediate Z targets,
and high Z targets. In general, the total intensity I of x rays produced by a thick
target is estimated by integrating Iν of (6.160) over the energy range from Eν = 0
to Eν = (Eν)max to get

I = CZ
∫ (Eν)max

0

[
(Eν)max −Eν

]
dEν = 1

2
CZ×(Eν)2max = 1

2
CZ(eU)2 = 1

2
CZE2

K

(6.161)
showing that the total photon intensity I emitted from the x-ray target is proportional
to the target atomic number Z and the square of the accelerating potential U or
kinetic energy EK.

The statement of (6.161) that x-ray intensity I is proportional to ZE2
K reflects the

total bremsstrahlung energy emitted per electron absorbed in the thick x-ray target
or per electron incident onto the thick target, since the definition of a thick target
stipulates that all electrons striking the target will be absorbed in the target.
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Fig. 6.33 Schematic comparison of x-ray production (A) in the diagnostic radiology orthovoltage
range with an x-ray machine (maximum x-ray intensity orthogonally to the electron beam) and
(B) in the radiotherapy megavoltage range with a linear accelerator (x rays emitted mainly in the
direction of the electron beam)

X-ray yield thus depends on the atomic number Z of the target, as stated in
(6.161), but this implies intensity integrated over all photon energies from 0 to max-
imum as well as over the full 4π solid angle. It is well known that intensity of x rays
emanating from an x-ray target is not isotropic and the intensity distribution depends
strongly on kinetic energy of the incident electrons. The intensity maximum in di-
agnostic radiology energy range is at 90° to the direction of the incident electron,
while with increasing kinetic energy the intensity distribution is progressively more
forward peaked. This is why with diagnostic x-ray tubes the patient imaging is car-
ried out at 90° to the incident electron beam direction and in radiotherapy treatment
the patient is positioned at 0° to the incident electron beam direction. This is shown
schematically in Fig. 6.33.

6.11.Q2 (148)

X-ray targets play an important role in x-ray production and their performance
is influenced by many physical and practical parameters, such as atomic num-
ber, composition and design of the target as well as kinetic energy and electron
beam current of electrons striking the x-ray target.

(a) Briefly discuss the important features of x-ray generation in an x-ray
target.

(b) The term “beam quality” is used to indicate the ability of an x-ray beam
to penetrate a water phantom. List at least six x-ray beam quality “spec-
ifiers” or indices.
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(c) Betatrons used clinically in 1950s and 1960s typically operated in the
25 MV x-ray mode. When 25 MV linacs were introduced into clinical
service in the early 1970s, percentage depth doses they produced in wa-
ter were significantly shallower (less penetrating) than those produced
by 25 MV betatrons. How was this surprising finding explained and
rectified?

SOLUTION:

(a) Brief characteristics of x-ray production in an x-ray target:

(1) In an x-ray tube or in a linac accelerating wave guide, energetic electrons strike
a metallic target and a small fraction of their kinetic energy is emitted from the target
in the form of x rays, while most of the kinetic energy carried by incident electrons
is converted into heat.

(2) Efficiency for x-ray production, also called x-ray yield, depends on three pa-
rameters: target atomic number Z, kinetic energy EK of the incident electrons strik-
ing the target, and electron beam current J . X-ray yield increases with increasing Z
for constant J and EK; it increases with increasing J for constant Z and EK; and it
increases with EK for constant Z and J .

(3) Two types of x rays are produced in an x-ray target: characteristic x rays and
bremsstrahlung photons, and both types are produced through energy loss that inci-
dent electrons experience in penetrating the target and interacting with atoms of the
target.

Characteristic x rays are generated as a consequence of Coulomb collisions be-
tween incident electrons and orbital electrons of target atoms, producing excitation
and ionization of target atoms, and creating vacancies in atomic shells of target
atoms. As orbital electrons from higher orbits fill these vacancies, transition energy
is emitted in the form of discrete photons or Auger electrons with energy that is
characteristic of the target material, hence the name characteristic radiation. Energy
loss by electrons through this type of interaction is referred to as collision loss or
ionization loss and contributes to collision stopping power of the target material.

Bremsstrahlung photons are generated in x-ray targets through Coulomb interac-
tions between incident electrons and nuclei of target atoms. Photon spectra produced
in this type of interaction are continuous, ranging in energy from zero to a maximum
energy hνmax equal to kinetic energy EK of incident electrons (Duane-Hunt law).
Energy loss by electrons through this type of interaction is called radiation loss and
contributes to radiation stopping power of the target.

(4) Bremsstrahlung spectrum is continuous while characteristic photons con-
tribute discrete spectral lines that are superimposed onto the continuous brems-
strahlung spectrum. The relative proportion of the number of characteristic photons
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to bremsstrahlung photons in an x-ray beam spectrum varies with atomic number
Z of the target and kinetic energy EK of the incident electrons. For example, x-ray
beams produced in a tungsten target by 100 keV electrons contain about 20 % of
characteristic photons and 80 % of bremsstrahlung photons. In the megavoltage
range the contribution of characteristic photons to the total spectrum is negligible in
comparison to bremsstrahlung photons.

(5) In the diagnostic energy range (30 kVp to 150 kVp) most photons are produced
at close to 90° from the direction of incident electrons striking the target. In the
megavoltage radiotherapy energy range (4 MV to 50 MV), on the other hand, most
photons are produced in the direction of the incident electron beam striking the
target.

(6) Since most of the kinetic energy of the incident electron beam upon striking
an x-ray target is transformed into heat, x-ray targets must have the following prop-
erties: high melting point, good thermal conductivity, and high x-ray yield, while
x-ray producing equipment must have efficient means for cooling the x-ray target.
Target cooling is less of a problem in megavoltage x-ray production than in the diag-
nostic energy range because the efficiency of x-ray production is at least an order of
magnitude higher in the megavoltage range (∼10 %) in comparison to the diagnostic
range (<1 %).

Requirements for cooling of x-ray tubes used in imaging are more stringent than
requirements for cooling of x-ray tubes used in radiotherapy for two reasons: to
achieve short exposure times the instantaneous tube currents used in imaging are one
to two orders of magnitude higher that in radiotherapy tubes. Moreover, focal spots
in imaging tubes are much smaller than those in therapy tubes resulting in more
sophisticated methods for cooling of imaging tubes (e.g., rotating anode) compared
to therapy tubes which employ stationary targets.

(b) Beam quality specification or beam quality indices. Many beam quality indices
have been developed and are in use, but none of them is simple, universal, and easy
to use. Best-known indices are as follows:

(1) Measurement of complete x-ray spectrum produced in an x-ray target and
emitted by x-ray producing equipment for diagnostic or therapeutic use gives the
most rigorous description of beam quality. However, a complete x-ray spectrum is
difficult to measure directly under clinical conditions because of the high photon flu-
ence rate that causes significant photon pile up in the detector. Indirect techniques
have been developed for this purpose, but are cumbersome. Examples are measure-
ment with diffraction spectrometer using Bragg reflection on a single crystal and
registering the intensity of x rays as a function of wavelength or measurement with
high resolution detector using 90° Compton scattering from a known sample and re-
constructing the actual spectrum from the scatter spectrum using the Klein-Nishina
function.
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(2) Measurement of half-value layer (HVL) is practical for beam quality descrip-
tion in the diagnostic x-ray energy region (superficial and orthovoltage x rays) be-
cause of strong dependence of the attenuation coefficient on photon energy. In the
superficial energy region HVL is usually quoted in millimeters of aluminum, in the
orthovoltage region in millimeters of copper. In the megavoltage region, however,
HVL is not used for beam quality specification because in this region the attenuation
coefficient is only a slowly varying function of photon energy.

To minimize effects of radiation scattered in the attenuator the HVL should be
measured under “good geometry” conditions that imply a narrow radiation beam and
a reasonable distance between the attenuator and the detector to minimize the num-
ber of scattered photons reaching the detector. Moreover, the ionization chamber
used in HVL measurement should possess an air equivalent wall and a flat photon
energy response throughout the beam energy spectrum.

(3) Nominal accelerating potential (NAP) was used in early radiation dosimetry
protocols as a matter of convenience and is related to the kinetic energy of incident
electrons striking the target. It is defined in terms of the ionization ratio measured
with a 10×10 cm2 field in water phantom on central beam axis with an ionization
chamber at 100 cm from the target and at depths in water of 20 cm and 10 cm. The
measured dose ratio at the two depths in water was linked with a nominal accelerat-
ing potential which was then used for selection of dosimetric parameters.

(4) Ratio of “tissue-phantom ratios” (TPR20,10) at depths of z = 20 cm and
z= 10 cm in water phantom for a 10×10 cm2 field at 100 cm from the target. TPR
at depth z itself is defined as the ratio of dosesDQ andDQref whereDQ is the dose at
depth z andDQref is the dose at a reference depth, typically chosen as 5 cm or 10 cm.
TPR20,10 is used for megavoltage beam quality specification in many national and
international dosimetry protocols. It is similar to the NAP concept, however, through
the TPR ratio it accounts for the actual penetration of a given clinical beam in water.

(5) Megavoltage beam quality specification can also be quoted with percentage
depth dose (PDD) for a 10×10 cm2 field at a depth of z= 10 cm in water phantom
that is positioned at a distance of 100 cm from the target. Percentage depth dose at
depth of 10 cm is defined as the ratio of doses DQ and DP multiplied by 100, where
DQ is dose at depth of 10 cm in water andDP is the dose at depth of dose maximum
in water for the given megavoltage beam. Effects of electron contamination of the
thick target x-ray beam can be minimized with a lead scattering foil placed into the
photon beam.

(c) During 1950s and 1960s betatrons provided the only viable and practical op-
tion for delivery of megavoltage external beam radiotherapy in the energy range
above 10 MV. However, betatrons suffered some serious drawbacks in compari-
son with cobalt-60 teletherapy machines that were used for megavoltage radiother-
apy during that time, such as low output (∼0.5 Gy/min), relatively small field size
(<20×20 cm2), non-isocentric mounting, and noisy operation, so that high-energy
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Fig. 6.34 Depth dose data measured with 10×10 cm2 field at target–water phantom distance of
100 cm for Varian Clinac-35 operated at 25 MV (solid curve), Allis-Chalmers betatron operated at
25 MV (solid curve) and Allis-Chalmers betatron operated at 16 MV (dashed curve)

linear accelerators (linacs) that solved these drawbacks were a welcome new devel-
opment in radiotherapy in the early 1970s. The basic assumption in the development
of high energy linacs was that, when run at 25 MV, they will provide the same beam
quality as did the 25 MV betatrons but will ameliorate the weak points of betatrons
and be, in comparison with betatrons, much more efficient and practical to use (out-
put up to 10 Gy/min, field size up to 40×40 cm2 at 100 cm from the x-ray target,
isocentric mounting, and quieter operation).

However, when percentage depth dose characteristics (beam penetration into wa-
ter and tissue) were measured, it turned out that the beam produced with the 25 MV
linac (Varian Cl-35) was much less penetrating than that produced with a 25 MV
betatron (Allis-Chalmers), as shown in Fig. 6.34 which also shows that the new
25 MV linac produced a beam that had depth dose characteristics of a betatron op-
erated at 16 MV. This significant discrepancy was subsequently investigated and
traced to differences in design and atomic number of x-ray target and flattening
filter; two mundane, yet important, beam-forming and beam-shaping components,
respectively, of the two megavoltage x-ray machines.

As for the flattening filter, betatron employed a filter made of aluminum, while
the linac used a tungsten flattening filter to conserve space. However, in comparison
to aluminum, tungsten softens the photon beam more than does a low Z filter and
shifts the spectrum toward lower effective energy. Thus, to achieve the highest ef-
fective x-ray beam energy, a linac flattening filter should be made of low Z material.
Since in this question, we are addressing x-ray targets, we now concentrate on x-ray
targets of high-energy linacs.

In Fig. 6.35 we show schematically the way bremsstrahlung was produced in
the two machines. Betatron used a thin tungsten target, while the linac used a thick
tungsten target. Therefore, in the betatron the electrons have only one interaction
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Fig. 6.35 Comparison of x-ray production with a thin target in a betatron to x-ray production with
a thick target in a linear accelerator (linac)

with the thin target or no interaction at all, as they traverse the thin target. If the
electrons have an inelastic collision with a target nucleus, they lose some of their
energy, produce a bremsstrahlung photon, spiral in, as indicated in the figure, and
hit the wall of the donut. If they do not experience a collision, they exit the thin
target with kinetic energy intact, go around the circular orbit once more, and strike
the target again. This means that in a 25 MV betatron each bremsstrahlung photon
is produced by a 25 MeV electron incident on the thin target. On the other hand,
in a 25 MV linac thick target bremsstrahlung is produced by electrons, undergo-
ing multiple collisions, as they slow down from incident energy of 25 MeV to zero
energy. This results in a photon spectrum that contains a larger proportion of lower
energy photons than are present in betatron-produced bremsstrahlung beam and this,
in turn, produces a less penetrating photon beam characterized as thick target spec-
trum.

For same incident electron kinetic energy, thin x-ray targets clearly produce more
penetrating photon beams then do thick x-ray targets; however, thin targets can only
be used in a betatron because of the presence of a strong magnetic field that sweeps
into the donut wall the lower energy electrons that traverse the target after having
had a bremsstrahlung interaction. To introduce this approach to a linac would be
much more difficult as well as less practical than the traditional use of thick targets,
therefore linacs use a thick target to ensure that no electrons can traverse the target
and reach the flattening filter or the patient.

Thick target is the correct practical choice of target for linacs; however, the early
choice of tungsten as the target material in high-energy linacs turned out less than
optimal as far as beam quality was concerned. The choice was based on conventional
wisdom that x-ray yield of thick targets depends linearly on the atomic number Z
of the target, therefore, a high Z target was to maximize beam output for a given
electron beam current passing through the target. However, a closer look at this
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Fig. 6.36 Relative ionization chamber current against depth in water-equivalent phantom for an
unflattened 25 MV linac beam with field size of 10×10 cm2 and target–phantom distance of 100 cm
for three target materials: aluminum, copper, and lead. All depth dose curves were measured in the
forward beam direction and normalized to the same beam current passing through the target

Z dependence shows that it accounts for x-ray output integrated over a full solid
angle in 4π geometry, yet in radiotherapy one is only interested in a small solid
angle in the forward direction which coincides with the direction of the electron
beam striking the target. Furthermore, one actually strives to minimize the x-ray
production in directions other than the forward direction in order to minimize the
leakage radiation emanating from the linac.

In Fig. 6.36 we show central axis depth dose distributions measured in forward
beam direction in a water-equivalent phantom against depth in phantom with various
target materials: aluminum (low Z), copper (intermediate Z), and lead (high Z).
The ordinate plots ionization chamber current against depth in phantom for a given
charge delivered to the target.

Curves for the three target materials in Fig. 6.36 reveal several interesting fea-
tures:

(1) X-ray yield in the forward direction does not depend linearly on target atomic
number Z.

(2) Since aluminum target produces the highest x-ray yield in the forward direc-
tion, we can state that low Z targets are the most efficient in x-ray production
in the forward direction; however, the difference between high Z and low Z
targets is small, so that one can conclude that x-ray yield in the forward direc-
tion is essentially the same for all thick x-ray targets and thus is independent
of atomic number Z of the target.

(3) There is another important characteristic of target material evident from
Fig. 6.36. In the forward direction low Z target does not only produce the
highest x-ray yield by a small margin, more importantly, it also produces the
most energetic beam that can also be described as the most penetrating beam
or the beam with the highest effective energy.
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The question now arises on how to reconcile the linear Z dependence of the
integrated x-ray yield with the independence of x-ray yield in the forward direction
upon Z of the target. Both statements have been proven experimentally, so we can
explain the seeming contradiction as follows: x-ray yield in directions other than the
forward direction depends on Z, so that a high Z target produces significantly more
leakage radiation than a low Z target and this results in the linear dependence of the
integrated x-ray yield upon Z.

Low Z targets thus have at least two advantages over high Z targets: in the
forward direction they produce more penetrating beam and in all other directions
around the target they produce less leakage radiation. Based on Fig. 6.36 one con-
cludes that low Z target should be used in high-energy linac in order to:

(1) Maximize the x-ray beam penetrating power for a given kinetic energy of
electrons striking the x-ray thick target.

(2) Minimize the leakage radiation emanating from the linac.

It is thus obvious that linac targets should be made of low Z materials. In compar-
ison with x-ray tubes, requirements for very high melting point of the target material
in linacs is more relaxed because of the higher x-ray yield and associated lower heat
deposition in the target in the megavoltage energy range. Therefore, many materials
that would not be suitable for x-ray tube targets can in principle be considered for
target use in linacs.

However, materials used for linac targets must possess a high mass density to
minimize the thickness of the thick linac target and it turns out that it is very difficult
to identify a low Z material with a high density comparable to lead and tungsten.
For example, the thickness of the thick target required for a 25 MV linac is as fol-
lows: 1 cm of lead, or 0.6 cm of tungsten, or 1.4 cm of copper, or 5 cm of aluminum.
Aluminum is an excellent candidate from the point of view of atomic number; how-
ever, it is very impractical when the target thickness of 5 cm is considered. On the
other hand, copper is a good candidate on both counts, atomic number (Z = 29) and
density (ρ ≈ 9 g/cm3), and is now the most common material used for x-ray targets
in modern high-energy linacs.

In summary, both the x-ray target and flattening filter of high-energy linacs
should be made of materials with as low as possible atomic number Z to maxi-
mize the beam effective energy and as high as possible mass density to minimize
the space occupied by the two components.



7Interaction of Photons with Matter

Chapter 7 consists of 34 problems spread over 7 sections dealing with var-
ious interactions that photons of energy exceeding the ionization potential
of atoms can have with absorbing media. These photons belong to the cate-
gory of indirectly ionizing radiation and they deposit energy in the absorbing
medium through a two-step process: (1) in the first step energy is transferred
from the photon to one, two or three energetic light charged particles and
(2) in the second step the light charged particles deposit all or part of the
transferred energy into the absorbing medium through collision loss with or-
bital electrons of the absorber atoms. The energy difference between energy
transferred to charged particles and energy absorbed in the absorbing medium
goes into bremsstrahlung (for electrons and positrons) and in-flight annihila-
tion (for positrons only).

Section 7.1 contains several problems that address the general aspects of
photon attenuation in absorbers dealing with: (1) various attenuation and ab-
sorption coefficients, (2) various characteristic absorber thicknesses, such as
half-value layer, mean free path, and tenth-value layer as well as (3) issues
related to narrow beam geometry versus broad beam geometry in photon at-
tenuation measurements.

Sections 7.2 through 7.7 concentrate on individual photon interaction ef-
fects, dealing with all important aspects of relevance to individual effects
starting with basic features and finishing with microscopic and macroscopic
scale attenuation coefficients, energy transfer coefficients, and energy absorp-
tion coefficients. Section 7.2 addresses Thomson scattering and is followed by
a set of 13 problems dealing with Compton (incoherent) scattering in Sect. 7.3
and Sect. 7.4 that concentrates on Rayleigh (coherent) scattering. Next sec-
tion (Sect. 7.5) addresses various aspects of the photoelectric effect with six
problems, Sect. 7.6 deals with both components of pair production (nuclear
and electronic), and Sect. 7.7 concentrates on various aspects of photonuclear
reactions.

E.B. Podgoršak, Compendium to Radiation Physics for Medical Physicists,
DOI 10.1007/978-3-642-20186-8_7,
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7.1 General Aspects of Photon Interactions with Absorbers

7.1.Q1 (149)

Attenuation of a mono-energetic photon beam of intensity I and energy hν in
absorber of thickness x is described by an exponential function as follows

I (x)= I (0)e−μ(Z,hν)x, (7.1)

where I (0) is the intensity of the un-attenuated (x = 0) photon beam and
μ(Z,hν) is the linear attenuation coefficient dependent on atomic number Z
of absorber and energy hν of the photon beam. In addition to μ, several other
attenuation coefficients are also in use, most notably the mass attenuation
coefficient μm and the atomic attenuation coefficient (cross section) aμ.

(a) Draw a typical attenuation curve for a mono-energetic photon beam hν
with incident intensity I (0) against absorber thickness x, as given in
(7.1). On the I vs x curve define the following characteristic thick-
nesses: half-value layer x1/2, mean free path x̄, and tenth-value layer
x1/10 and state the relationships among them.

(b) Complete the diagram for linear attenuation coefficient μ, mass atten-
uation coefficient μm and atomic attenuation coefficient aμ provided in
Fig. 7.1 by identifying the factors used in transferring from one attenu-
ation coefficient to another.

Fig. 7.1 Three important attenuation coefficients: linear μ, mass μm, and atomic aμ as well as
factors used in relationships among the three attenuation coefficients

SOLUTION:

(a) Figure 7.2 is a typical plot of intensity I (x) against absorber thickness x for
a mono-energetic photon beam measured under narrow beam geometry conditions.
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Fig. 7.2 Intensity I (x) against absorber thickness x for a typical mono-energetic photon beam
measured under narrow beam geometry conditions. Half-value layer (HVL) x1/2, mean free path
(MFP) x̄, and tenth-value layer (TVL) x1/10 are identified on the abcissa (x) axis

The functional relationship of I (x) vs x is a perfect exponential function expressed
in (7.1). The figure also highlights: (1) half-value layer x1/2, (2) mean free path
x̄, and (3) tenth-value layer x1/10. These parameters of exponential attenuation are
defined as follows:

(1) Half-value layer (HVL) x1/2 is the thickness of absorber that attenuates the
photon beam from intensity I (0) to 1

2I (0), i.e., to 50 % of its original intensity
I (0).

(2) Mean free path (MFP) x̄ is the thickness of absorber that attenuates the pho-
ton beam from intensity I (0) to e−1I (0) = 0.368I (0), i.e., to 36.8 % of its
original intensity I (0).

(3) Tenth-value layer (TVL) x1/10 is the thickness of absorber that attenuates the
photon beam from intensity I (0) to 1

10I (0), i.e., to 10 % of its original inten-
sity I (0).

Relationships among the characteristic thicknesses: half-value layer (HVL) x1/2,
mean free path (MFP) x̄, and tenth-value layer (TVL) x1/10 are as follows

μ= ln 2

x1/2
= 1

x̄
= ln 10

x1/10
or x1/2 = (ln 2)x̄ = ln 2

ln 10
x1/10 ≡ 0.301x1/10. (7.2)

(b) The three most important attenuation coefficients are: atomic aμ, mass μm,
and linear μ. The basic relationship between the linear attenuation coefficient μ and
atomic attenuation coefficient (also known as atomic cross section) aμ is expressed
as

μ= n�aμ= Na

V aμ= ρNa

m
aμ= ρNA

A
aμ, (7.3)

where
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Fig. 7.3 General relationships among three most common attenuation coefficients: atomic aμ,
mass μm, and linear μ

n� is the number of absorber atomsNa per absorber volume V , i.e., n� =Na/V .
ρ is the mass density of the absorber, typically in g/cm3.
m is the absorber mass, typically in g.
NA is the Avogadro number, typically number of atoms Na per mole of the ab-

sorber (NA = 6.022×1023 mol−1).
A is the molar mass (mass per mole) of the absorber expressed in g/mol.

The common relationships among the three attenuation coefficients: atomic aμ,
mass μm, and linear μ are displayed in Fig. 7.3.

7.1.Q2 (150)

Photon beam attenuation in a given absorber is governed by linear attenua-
tion coefficient μ that in turn depends on energy hν of the photon beam and
atomic number Z of the absorber. In addition to linear attenuation coefficient
μ, several other attenuation coefficients are also in common use, most impor-
tantly the mass attenuation coefficient μm and atomic attenuation coefficient
(cross section) aμ.

(a) An attenuation experiment carried out on an unknown photon beam,
using narrow beam geometry and various thicknesses x of lead (mass
density ρ = 11.36 g/cm3, atomic mass A= 207.2 g/mol) resulted in the
following exposure rate Ẋ data measured with a cylindrical ionization
chamber of appropriate wall thickness. Plot the measured exposure rate
Ẋ against lead thickness x and, based on the graph, determine the linear
attenuation coefficient μ for the unknown beam in lead.

x (mm Pb) 0 2 4 6 8 10 12 15 20 25 30 40 50

Ẋ (R/min) 123.6 108.3 94.9 83.2 72.9 63.9 56.0 45.9 33.0 23.7 17.1 8.8 4.6
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(b) From the linear attenuation coefficient μ determined in (a) calculate the
mass attenuation coefficient μm, atomic attenuation coefficient aμ and
mean free path x̄ for the unknown photon beam.

(c) Based on the graph plotted in (a) describe the spectral distribution and
the quality of the unknown photon beam. Use NIST data to determine
the energy of the unknown photon beam based on the mass attenuation
coefficient determined in (c).

SOLUTION:

(a) Figure 7.4(A) shows a plot of the measured attenuation data on a linear graph
paper and the resulting attenuation curve appears exponential suggesting that our
photon beam is mono-energetic. Data are re-plotted in Fig. 7.4(B) on semi-log graph
paper, resulting in a straight line, confirming true exponential behavior of the mea-
sured data. Applying the least-squares fit to measured data we determine the best
straight line through the measured points and we now have three options for the de-
termination of the linear attenuation coefficient μ using: (1) slope of the straight line
through the measured points, (2) half-value layer, and (3) tenth-value layer (TVL).

(1) Slope of the straight line is determined from the triangle drawn in Fig. 7.4(B)
defined by two arbitrary points P1(x1, y1) and P2(x2, y2) on the straight line with
x1 = 12 mm, y1 = 56.0 R/min and x2 = 30 mm, y2 = 17.1 R/min

tanϕ = lny1 − lny2

−(x1 − x2)
= ln y1

y2

x2 − x1
= ln 56.0

17.1

(30 − 12) mm
= 0.0659 mm−1 = 0.659 cm−1.

(7.4)
We thus have the following result for the linear attenuation coefficient: μ =
0.659 cm−1.

(2) Half-value layer x1/2 of an absorber in a given photon beam hν is defined as
the thickness of the absorber that attenuates the photon beam from its original un-
attenuated value of I (0) to half of its original value or 1

2I (0). Assuming exponential
attenuation of the photon beam, μ and x1/2 are related directly as: μ= (ln 2)/x1/2.
With I (0)= 123.6 R/min we determine the characteristic thickness x1/2 (for which
I (x1/2)= 1

2I (0)= 61.8 R/min) as x1/2 = 1.05 cm of lead and this results in a linear
attenuation coefficient μ of μ= 0.066 mm−1 or 0.66 cm−1.

(3) Tenth-value layer x1/10 of an absorber in a given photon beam hν is defined
as the thickness of the absorber that attenuates the photon beam from its original
un-attenuated value of I (0) to one tenth of its original value or 1

10I (0). Assum-
ing exponential attenuation of the photon beam μ and x1/10 are related directly
as: μ = (ln 10)x1/10. With I (0) = 123.6 R/min we determine the characteristic
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Fig. 7.4 Exposure rate Ẋ against absorber thickness x for a narrow beam attenuation experiment
using a photon beam and lead absorbers. In (A) data are plotted on a linear graph paper, in (B) they
are plotted on a semi-log graph paper

thickness x1/10 (for which I (x1/10) = 1
10I (0) = 12.36 R/min) as x1/10 = 3.49 of

lead and this results in a linear attenuation coefficient μ of μ = 0.066 mm−1 or
0.66 cm−1.

All three methods for determination of the linear attenuation coefficient μ result
in the same value of μ= 0.66 cm−1.

(b) From the linear attenuation coefficient μ = 0.66 cm−1 determined in (a) we
calculate the atomic and mass attenuation coefficients, aμ and μm, respectively,
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using the relationships provided in Fig. 7.3

aμ= μ A

ρNA
= (

0.66 cm−1)× (207.2 g/mol)

(11.36 g/cm3)×(6.022×1023 atom/mol)

= 20×10−24 cm2

atom
= 20

b

atom
(7.5)

and

μm = μ

ρ
= 0.66 cm−1

11.36 cm2/g
= 0.058

cm2

g
(7.6)

or

μm = aμ
NA

A
=
(

20×10−24 cm2

atom

)
×6.022×1023 atom/mol

207.2 g/mol
= 0.058

cm2

g
. (7.7)

From (7.2) we get the following expression for the mean free path x̄ of a photon

beam

x̄ = 1

μ
= x1/2

ln 2
= 1

0.66 cm−1
= 1.52 cm. (7.8)

(c) A plot of measured data in Fig. 7.4(B) results in a straight line indicating per-

fect exponential attenuation behavior through several cycles in exposure rate. Since

this type of behavior can only be achieved with mono-energetic photon beam, we

conclude that the experiment was carried out using a mono-energetic gamma source

rather than with an x-ray machine or linear accelerator that produce heterogeneous

photon beams.

The half-value layer x1/2 of our beam was established to be 1.05 cm of lead

indicating a relatively high-energy gamma ray beam in the megavoltage range. Ex-

amination of the NIST data shows that a cobalt-60 gamma ray beam which pro-

duces an essentially mono-energetic beam with two photon energies close to each

other (1.17 MeV and 1.33 MeV for a mean energy of 1.25 MeV) has an atomic

attenuation coefficient aμ in lead of aμ= 20.2 b/atom in good agreement with our

estimated value of aμ = 20 b/atom. We therefore conclude that the data for this

problem were obtained using a cobalt-60 gamma ray machine.
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7.1.Q3 (151)

Photons with energy in the ionizing radiation region have several options for
interacting with matter. The specific interactions are referred to as effects and
many of these effects carry the name of their discoverer.

(a) List the 7 most important photon interactions with absorbing medium
in medical physics.

(b) For the seven photon interactions with absorbing medium listed in (a)
prepare a table with the following entries: (1) Symbol used for attenua-
tion coefficient, (2) Type of target, (3) Photon fate after interaction, and
(4) Charged particles released or produced in the interaction.

(c) Probability for photon interaction with absorber is described with the
attenuation coefficient (often referred to as cross section). Complete Ta-
ble 7.1A that addresses the basic properties of commonly used attenua-
tion coefficients.

(d) Photon attenuation in absorber can be described with various charac-
teristic thicknesses of absorber. Complete Table 7.2A that deals with
properties of various characteristic absorber thicknesses.

Table 7.1A Common attenuation coefficients used in describing photon interactions with ab-
sorber atoms

1 Coefficient Symbol Relationship
to μ

SI unit Common
unit

Unit of
absorber
thickness

2 Linear attenuation
coefficient

μ _

3 Mass attenuation
coefficient

4 Atomic attenuation
coefficient

5 Linear energy
transfer coefficient

_

6 Mass energy transfer
coefficient

_

7 Linear energy
absorption coefficient

_

8 Mass energy
absorption coefficient

_
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Table 7.2A Characteristic absorber thicknesses and their relationship with the linear attenuation
coefficient μ

1 Characteristic absorber
thickness

Symbol Relationship to
attenuation
coefficient μ

I(x)
I (0) 100 I (x)

I (0)

2 Half-value layer (HVL)

3 Mean free path (MFP)

4 Tenth-value layer (TVL)

5 Three mean free paths

6 Five mean free paths

7 Seven mean free paths

8 Nine mean free paths

SOLUTION:

(a) The 7 most important photon interactions with absorbing medium are:
(1) Thomson scattering, (2) Compton effect, (3) Rayleigh scattering, (4) Photoelec-
tric effect, (5) Nuclear pair production, (6) Electronic pair production, and (7) Pho-
tonuclear reaction (photodisintegration).

(b) Photons of energy in the ionizing radiation category have many options for
interacting with matter. Seven of these are of importance to medical physics and
radiation dosimetry; many others are more specialized and negligible in compari-
son with the important seven, but are nevertheless of academic interest in nuclear
physics. The basic characteristics of the 7 most important photon interactions with
absorbing medium are listed in Table 7.3.

(1) Symbols used for designation of attenuation and absorption coefficients: Of the
seven important photon interactions with atoms of the absorber, two are designated
with separate Greek letters: photoelectric effect with τ (tau) and pair production
with κ (kappa) where κNPP stands for nuclear pair production and κTP for electronic
(triplet) production. Four effects are designated with Greek letter sigma (σ ) that is
in nuclear physics used to designate general interaction cross sections. In radiation
physics σ is used with a subscript to designate four specific types of photon interac-
tion: σTh for Thomson scattering, σC for Compton effect, σR for Rayleigh scattering,
and σPN for photodisintegration (photonuclear effect).

(2) Type of target. A closer look at photon interaction with absorber atom reveals
that the interaction can be either with an orbital electron or nucleus.

(i) Interaction with an orbital electron can be interaction with an essentially
“free electron” (Thomson scattering and Compton effect) or interaction with
a tightly bound electron (photoelectric effect) or interaction with the electric
field of the electron (triplet production).
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Table 7.3 Basic characteristics of the 7 most important photon interactions

0 Photon
interaction
with absorber

Symbol for
attenuation
coefficient

Type of
target

Photon fate Charged particles
released

1 Thomson
scattering

σTh “Free”
electron

Photon is
scattered

None

2 Compton effect σC “Free”
electron

Photon is
scattered

Recoil (Compton)
electron

3 Rayleigh
scattering

σR Whole
atom

Photon is
scattered

None

4 Photoelectric
effect

τ Whole
atom

Photon
disappears

Photoelectron

5 Nuclear pair
production

κNPP Nucleus Photon
disappears

Electron/positron pair

6 Electronic pair
production

κTP “Free”
electron

Photon
disappears

Electron/positron pair
and orbital electron

7 Photonuclear
reaction

σPN Nucleus Photon
disappears

Various heavy charged
particles

(ii) Interaction with the nucleus can be interaction with electric field of the nu-
cleus (nuclear pair production) or actual direct interaction with the nucleus
(photodisintegration).

(3) As far as the fate of the photon after interaction is concerned there are two
possibilities: (i) photon disappearance and (ii) photon scattering.

(i) In photon disappearance the photon is completely absorbed (photoelectric ef-
fect, nuclear pair production, triplet production, and photodisintegration).

(ii) In photon scattering photon is scattered with no energy loss (Rayleigh scatter-
ing) or with concurrent loss of the energy (Compton effect).

(4) Charged particles released or produced in photon interaction with absorber
atom.

(i) In Thomson and Rayleigh scattering there is no release or production of
charged particles. In photoelectric effect, Compton effect, and triplet pro-
duction orbital electrons are released from the absorber atom.

(ii) In pair production and triplet production an electron / positron pair is pro-
duced in the electric field of the nucleus and electric field of the orbital elec-
tron, respectively.

(iii) In photodisintegration heavy charged particles and neutrons may be released
from the nucleus.

(c) Basic properties of the various attenuation coefficients used for describing at-
tenuation of photons in absorbing media are given in Table 7.1B.
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Table 7.1B Basic properties of attenuation coefficients used for describing attenuation of photons
in absorbing media

1 Coefficient Symbol Relationship
to μ

SI unit Common
unit

Unit of
absorber
thickness

2 Linear attenuation
coefficient

μ _ m−1 cm−1 cm

3 Mass attenuation
coefficient

μm μm = μ
ρ

m2

kg
cm2

g
g

cm2

4 Atomic attenuation
coefficient

aμ aμ= μ

n�
m2

atom
cm2

atom
atom
cm2

5 Linear energy
transfer coefficient

μtr μtr = μf̄tr m−1 cm−1 _

6 Mass energy transfer
coefficient

μtr
ρ

μtr
ρ

= μ
ρ
f̄tr

m2

kg
cm2

g _

7 Linear energy
absorption coefficient

μab μab = μf̄ab m−1 cm−1 _

8 Mass energy
absorption coefficient

μab
ρ

μab
ρ

= μ
ρ
f̄ab

m2

kg
cm2

g _

(d) Basic properties of the various characteristic absorber thicknesses used for
describing attenuation of photon beams in absorbing media are given in Table 7.2B.

Table 7.2B Basic properties of various characteristic absorber thicknesses used for describing
attenuation of photon beams in absorbing media

1 Characteristic absorber thickness Symbol Relationship to
attenuation
coefficient μ

I(x)
I (0) 100 I (x)

I (0)

2 Half-value layer (HVL) x1/2
ln 2
μ

= 0.693
μ

0.500 50 %

3 Mean free path (MFP) x̄ 1
μ

0.368 = 1
e

36.8 %

4 Tenth-value layer (TVL) x1/10
ln 10
μ

= 2.303
μ

0.100 10 %

5 Three mean free paths 3x̄ 3
μ

0.050 5 %

6 Five mean free paths 5x̄ 5
μ

∼0.007 0.7 %

7 Seven mean free paths 7x̄ 7
μ

∼0.001 ∼0.1%

8 Nine mean free paths 9x̄ 9
μ

∼0.0001 ∼0.01%

7.1.Q4 (152)

Attenuation properties of absorbing materials are important in radiation
physics, since they provide useful data on interaction of radiation beams with
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absorbers. These materials can be of biological origin, such as patients in di-
agnosis and treatment of disease with ionizing radiation, or condensed matter
objects, such as those used in shielding of radiation sources.

Measurement of attenuation properties of photon beams in absorber are
relatively simple, however, care must be exercised when results of measure-
ments are interpreted. Attenuation can be measured in the so-called narrow
beam (“good”) geometry or in broad beam geometry. The former is used in
measurement of attenuation coefficients for a given beam energy and given
absorber, the latter in determination of shielding requirements of radiation
emitting installations.

(a) Describe the salient features of narrow beam geometry and broad beam
geometry and draw a schematic diagram for the two geometries.

(b) The table below shows a comparison between two attenuation exper-
iments on a radiation source using lead as absorber; experiment (1)
was carried out under narrow beam geometry conditions, experiment
(2) under broad beam conditions. Plot the data for both experiments on
a semi-log plot, identify the source type (mono-energetic or heteroge-
neous beams), and indicate which beam was measured under narrow
beam geometry conditions.

(c) Determine the linear, atomic, and mass attenuation coefficients: μ, aμ,
and μm respectively, in lead for the narrow beam.

(d) Determine the buildup factor B for two absorber thicknesses: 10 cm
and 20 cm. Also determine the effective linear attenuation coefficient
μeff for the broad beam.

Absorber
thickness
(cm)

0 0.5 1.0 1.5 2 5 10 15 20

Transmitted
fraction (1)

1.000 0.719 0.517 0.372 0.267 0.037 1.36×10−3 5.02×10−5 1.85×10−4

Transmitted
fraction (2)

1.000 0.751 0.564 0.423 0.318 0.057 3.24×10−3 18.5×10−5 10.5×10−4

SOLUTION:

(a) Narrow beam geometry technique in attenuation measurements of photon
beams implies a narrowly collimated source of mono-energetic photons and a rela-
tively small radiation detector. As shown in Fig. 7.5(A), a slab of absorber material
of thickness x is placed between the source and detector. The absorber decreases the
detector signal (intensity which is proportional to the number of photons striking the
detector) from I (0)measured without the absorber in place to signal I (x)measured
with absorber thickness x in the beam.

In contrast to the narrow beam geometry that is used in determination of the var-
ious attenuation coefficients for photon beam attenuation, one can also deal with
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Fig. 7.5 Beam geometry for measurement of photon beam attenuation in absorbing materials.
(A) Narrow beam geometry and (B) Broad beam geometry

the so-called broad beam geometry in which the detector reading is not only dimin-
ished by attenuation of the primary beam in the absorber, but is also increased by
the radiation scattered from the absorber into the detector, as shown schematically
in Fig. 7.5(B).

(b) The attenuation data for the two experiments are plotted in Fig. 7.6 on semi-
log graph paper. Two straight lines arise, one for each experiment. Since the data
fall on straight lines, we conclude that the radiation source used in experiments was
a mono-energetic source.

The answer to the question on which of the two straight lines represents the
narrow beam data is relatively simple, since we are dealing with a mono-energetic
source and neither beam hardening nor beam softening effects are expected to hap-
pen in the lead absorber. The lower straight line that appears to give a less penetrat-
ing beam in Fig. 7.6 is attributed to narrow beam geometry and the higher straight
line is attributed to broad beam geometry.

(c) The linear attenuation coefficient μ is calculated from the slope of the narrow
beam attenuation line in Fig. 7.6

μ= ln y0
y1

x1 − x0
= ln 1

0.037

5 cm
= 0.66 cm−1, (7.9)
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Fig. 7.6 Attenuation data plotted on semi-log graph paper against absorber thickness x. Two sets
of data were taken, one set under narrow beam geometry conditions and the other under broad
beam geometry conditions

while the atomic attenuation coefficient aμ and the mass attenuation coefficient μm

are calculated using μ and appropriate proportionality relationships

aμ= A

ρNA
μ= 207.2 g · mol−1

(11.36 g · cm−3)×(6.022×1023 atom · mol−1)
×(

0.66 cm−1)

= 20×10−24 cm2

atom
= 2

b

atom
(7.10)

and

μm = μ

ρ
= 0.66 cm−1

11.36 g · cm−3
= 0.058

cm2

g
. (7.11)

(d) Figure 7.6 shows two sets of attenuation data, one set taken under narrow
beam (good) geometry conditions and the other under broad beam (poor) geometry
conditions. As shown in the figure, poor geometry may overestimate the measured
half-value layer (HVL) of a photon beam and underestimate the attenuation coeffi-
cient of the beam by a significant amount.

The broad beam geometry in comparison with narrow beam geometry can be
evaluated with two methods: (1) with the buildup factor B and (2) with an effective
attenuation coefficient μeff:

(1) Buildup factor B(x) in photon attenuation measurement is defined for a given
absorber thickness x as the ratio between the signal IB(x) measured under broad
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beam conditions to the signal IN(x) measured under narrow beam conditions

B(x)= IB(x)

IN(x)
= IB(x)

IN(0)e−μx
. (7.12)

For the two beams of Fig. 7.6 at a lead thickness x = 10 cm, the relative signal
IB(10 cm) is 3.24×10−3, while the relative signal IN(10 cm) is 1.36×10−3 result-
ing in a buildup factor of B(10 cm)= 2.38. For the two beams of Fig. 7.6 at a lead
thickness x = 20 cm, the relative signal IB(20 cm) is 10.5×10−6, while the relative
signal IN(20 cm) is 1.85×10−6, resulting in a buildup factor of B(20 cm)= 5.68.

Thus, the larger is the absorber thickness x, the larger is the buildup factor B .
This conclusion has obvious implications in radiation physics: If attenuation mea-
surements are carried out for the determination of attenuation coefficients, then it is
imperative to use narrow beam geometry to ensure measurement accuracy. On the
other hand, if measurements are being made for radiation safety purposes, the broad
beam attenuation conditions should be used to ensure that all scattering effects in
the absorber (shielding wall) are accounted for.

The buildup factor B(x) encompasses the scattering events in the absorber; how-
ever, it must be measured for each specific absorber thickness x and is affected by
photon beam energy as well as the geometry, absorber atomic number and thick-
ness, and the quantity measured which can be photon fluence, photon energy flu-
ence, beam intensity, beam exposure, kerma, or dose. For narrow beam geometry
B = 1, for broad beam geometry B > 1 and under certain conditions it can amount
to a factor of 10 or more. Since in broad beam attenuation photons interacting with
the absorber may be scattered into the detector thereby contributing to the measured
signal, the apparent attenuation is lower than that obtained under narrow beam con-
ditions and results in an overestimation of the half-value layer of the beam and
underestimation of the narrow beam attenuation coefficient of the beam.

(2) An alternative concept to the buildup factor B(x) is the concept of mean ef-
fective attenuation coefficient μ̄eff expressed from (7.12) as follows

IB(x)= IN(x)B = IN(0)Be−μx = IN(0)e−μ̄effx. (7.13)

Equation (7.13) yields the following result for μ̄eff

μ̄eff = μ− lnB(x)

x
. (7.14)

We now determine the mean effective attenuation coefficient μ̄eff for the broad beam
of Fig. 7.6 as follows (first for x = 10 cm and then for x = 20 cm)

μ̄eff = μ− lnB(x)

x
= (

0.660 cm−1)− ln 2.38

10 cm
= 0.573 cm−1 (7.15)

and

μ̄eff = μ− lnB(x)

x
= (

0.660 cm−1)− ln 5.68

20 cm
= 0.573 cm−1. (7.16)
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We can also determine the mean effective attenuation coefficient μ̄eff directly from
the broad beam data of Fig. 7.6 as follows

μ̄eff = ln y0
y1

x1 − x0
= ln 1

0.057

5 cm
= 0.573 cm. (7.17)

Thus, all three methods of determining the μ̄eff yield the same result.

7.2 Thomson Scattering

7.2.Q1 (153)

Early information on atomic structure and composition gathered in the begin-
ning of 20-th century has been deduced from x-ray scattering experiments on
low atomic elements for which orbital electrons could be considered essen-
tially free. Thomson developed the classical theory of x-ray scattering on free
electrons and this type of scattering is now referred to as Thomson scattering;
no longer of much practical value because it was superseded by other scat-
tering effects but still important for historical reasons and for providing the
limiting values of low energy Compton scattering.

(a) Derive the differential electronic cross section for Thomson scattering
d eσTh/dΩ for polarized as well as for unpolarized radiation.

(b) Plot the differential electronic cross section for Thomson scattering
d eσTh/dΩ for un-polarized radiation on a Cartesian coordinate system
and polar coordinate system.

SOLUTION:

(a) The differential scattering cross section dσ/dΩ is in general defined as en-
ergy radiated per unit time per unit solid angle which is equal to dP/dΩ (where P
stands for power) divided by incident energy per unit area per unit time (defined as
Poynting vector Sin). The ratio (dP/dΩ) is emitted in the direction Θ and is equal
to r2Sout where Sout is the Poynting vector for the emitted scattered EM waves.

The electric fields Ein for the harmonic incident radiation and Eout for the scat-
tered radiation are given, respectively, as

Ein = E0 sinωt and Eout = e

4πε0

ẍ sinΘ

c2r
, (7.18)

where

E0 is the amplitude of the incident harmonic oscillation.
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Θ is the angle between the direction of emission r and the polarization vector of
the incident wave Ein or the direction of electron acceleration.

ẍ is the acceleration of the electron.

The equation of motion for the accelerated electron vibrating about its equilibrium
position is given as follows

meẍ = eE = eE0 sinωt or ẍ = eE0

me
sinωt. (7.19)

Inserting ẍ from (7.19) into (7.18) results in the following expression for electric
field Eout

Eout = e2E0

4πε0mec2

sinωt sinΘ

r
= re

r
E0 sinωt sinΘ, (7.20)

where re is a constant referred to as the classical electron radius and equal to re =
e2/(4πε0mec

2) or 2.818 fm.
Using (7.18) and (7.20) we now determine the Poynting vectors Sin and Sout as

follows

Sin = ε0cE2
in = ε0cE2

0 sin2ωt (7.21)

and

Sout = ε0cE2
out = ε0cr

2
e E2

0
sin2ωt sin2Θ

r2
. (7.22)

Based on the discussion above we now express the differential cross section for
Thomson classical scattering as follows

d eσTh

dΩ

∣∣∣∣
pol

= dP/dΩ

Sin
= r2 Sout

Sin
= r2

e sin2Θ, (7.23)

with the understanding that (7.23) represents the differential electronic cross section
for Thomson scattering of polarized incident radiation on free electrons. For unpo-
larized beam, on the other hand, the cross section is calculated by averaging over
all possible orientations of the polarizing vector governed by polarization angle ψ
ranging from 0 to 2π .

d eσTh

dΩ

∣∣∣∣
unpol

= r2 S̄out

S̄in
= r2

e sin2Θ. (7.24)

The mean value of sin2Θ , i.e., sin2Θ for unpolarized radiation is determined with
the help of Fig. 7.7 from which the following relationships are evident

cosΘ = a

r
, sin θ = b

r
, and cosψ = a

b
, (7.25)

where angles Θ , scattering angle θ , and polarization angle ψ as well as parameters
a and b are clearly defined in Fig. 7.7. Combining expressions of (7.25) we find the



404 7 Interaction of Photons with Matter

Fig. 7.7 Schematic diagram of Thomson scattering on free electron. The incident photon with
energy hν is scattered and emitted with a scattering angle θ . Note that angles θ and Θ are not
coplanar (i.e., they are not in the same plane)

following expression for cosΘ in terms of sin θ and cosψ

cosΘ = a

r
= b cosψ

r
= r sin θ cosψ

r
= sin θ cosψ. (7.26)

The mean value of sin2Θ is now determined by integration over the polarizing angle
ψ from 0 to 2π and using the relationship sin2Θ = 1 − cos2Θ to get

sin2Θ =
∫ 2π

0 sin2Θdψ∫ 2π
0 dψ

= 1

2π

∫ 2π

0

(
1 − cos2Θ

)
dψ = 1 − sin2 θ

2π

∫ 2π

0
cos2ψdψ

= 1 − sin2 θ

4π
[sinψ cosψ +ψ]2π

0 = 1 − 1

2
sin2 θ = 1

2

(
1 + cos2 θ

)
. (7.27)

Combining (7.27) with (7.24) we now write the electronic cross section for Thom-
son scattering of unpolarized radiation on free electron as follows

d eσTh

dΩ
|unpol = r2

e sin2Θ = r2
e

2

(
1 + cos2 θ

)
in cm2/electron/sterad (7.28)

and plot (7.28) against scattering angle θ in Fig. 7.8(A) in Cartesian coordinate sys-
tem and in Fig. 7.8(B) in polar coordinate system. At θ = 0 and θ = π the Thom-
son differential electronic cross section in area per electron per steradian equals to
r2

e = (2.818 fm)2 = 7.94×10−26 cm2 = 79.4 mb while at θ = 1
2π it amounts to

half of this value, indicating that in Thomson effect forward scattering and back
scattering are twice as strong as is scattering at θ = 1

2π .
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Fig. 7.8 Differential electronic cross section d eσTh/dΩ per unit solid angle against the scattering
angle θ for Thomson scattering of unpolarized radiation on free electron. (A) Plotted in Cartesian
coordinate system; (B) Plotted in polar coordinate system

7.2.Q2 (154)

The differential electronic cross section per unit solid angle d eσTh/dΩ for
Thomson scattering of unpolarized radiation on free electron is expressed as
(T7.39), as derived in Prob. 153

d eσTh

dΩ

∣∣∣∣
unpol

= r2
e

2

(
1 + cos2 θ

)
, (7.29)

where re is the so-called classical electron radius (re = e2/(4πε0mec
2) =

2.818 fm and θ is the scattering angle.
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(a) Starting from (7.29), derive the differential electronic cross section
d eσTh/dθ per unit scattering angle θ for Thomson scattering on free
electrons.

(b) Plot d eσTh/dθ against scattering angle θ from θ = 0 to θ = π and cal-
culate the minima and maxima appearing on the plot.

(c) Calculate the total electronic cross section eσTh for Thomson scattering
starting with: (1) d eσTh/dΩ of (7.29) and (2) d eσTh/dθ derived in (b).

(d) Define the Thomson total atomic cross section aσTh and discuss its lim-
itations.

SOLUTION:

(a) The differential electronic cross section d eσTh/dθ per unit scattering angle
gives the fraction of the photon incident energy that is scattered into a cone con-
tained between θ and θ + dθ . The function is expressed as follows

d eσTh

dθ
= d eσTh

dΩ

dΩ

dθ
= r2

e

2
(1 + cos θ)2π sin θ = πr2

e (1 + cos θ) sin θ. (7.30)

Function d eσTh/dθ plotted against scattering angle θ has two obvious minima, one
at θ = 0 and the other at θ = π where sin θ = 0. The other local extremes are de-
termined by taking the derivative of (7.30) with respect to θ and setting the result
equal to zero, i.e., d2

eσTh/dθ2 = 0.
The derivative of (7.30) is as follows

d2
eσTh

dθ2
= πr2

e

[
(1 + cos θ) cos θ − 2 cos θ sin2 θ

]= πr2
e cos θ

(
3 cos2 θ − 1

)= 0.

(7.31)
Equation (7.31) can be satisfied under three conditions:

(1)

cos θ = 0 or θ = 1

2
π, (7.32)

(2)

cos θ = 1√
3

or θ = arccos 0.577 = 54.7◦, (7.33)

(3)

cos θ = −1/
√

3 or θ = arccos(−0.577)= 125.3◦. (7.34)

The differential cross section is plotted against θ in Fig. 7.9 for 0 ≤ θ ≤ π and
exhibits three minima (at θ = 0, 1

2π , and π ) and two maxima, one at θ = 54.7◦ and
the other at θ = 125.3◦. The non-zero minimum in d eσTh/dθ at θ = 1

2π results in
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Fig. 7.9 Differential electronic cross section d eσTh/dθ per unit angle θ for Thomson scattering
plotted against the scattering angle θ

d eσTh/dθ = πr2
e = 249.4 mb/electron/rad and the maxima at θ = 54.7◦ and θ =

125.3◦ give d eσTh/dθ = 271.6 mb/electron/rad.

(c) The total electronic cross section eσTh for Thomson scattering can be calcu-
lated by: (1) integrating (7.29) over the full solid angle Ω or (2) integrating (7.30)
over scattering angle θ from 0 to π .

(1) We start with the differential electronic cross section d eσTh/dΩ of (7.29) and
integrate over solid angle as follows

eσTh =
∫

d eσTh

dΩ
dΩ = r2

e

2

∫ 2π

0

[∫ π

0

(
1 + cos2 θ

)
sin θ dθ

]
dφ

= πr2
e

[∫ π

0
d(cos θ)+

∫ π

0
cos2 θ d(cos θ)

]
= 8π

3
r2

e = 0.665 b.

(7.35)
(2) We start with the differential cross section d eσTh/dθ of (7.30) and integrate

over scattering angle θ as follows

eσTh =
∫ π

0

d eσTh

dθ
dθ = πr2

e

∫ π

0
sin θ

(
1 + cos2 θ

)
dθ

= πr2
e

[∫ π

0
d(cos θ)+

∫ π

0
cos2 θ d(cos θ)

]
= 8π

3
r2

e = 0.665 b.

(7.36)
The total area under the d eσTh/dθ curve of Fig. 7.9 is equal to the total elec-
tronic scattering cross section eσTh. Thus, eσTh can also be determined directly
by measuring the area under the d eσTh/dθ curve in Fig. 7.9 with an appropri-
ately calibrated planimeter.
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The total cross section eσTh determined in (7.35) and (7.36) is referred to as the
Thomson classical scattering coefficient for a free electron (eσTh = 0.665 b) and has
the same value for all incident photon energies hν. Moreover, in Thomson scattering
no energy is transferred from the incident photon to the free electron, so that the
scattered photon has the same energy as the incident photon, i.e., hν′ = hν.

(d) The atomic cross section for Thomson scattering aσTh is in terms of the elec-
tronic cross section eσTh given as

aσTh = eσThZ = 8π

3
r2

eZ, (7.37)

showing a linear dependence upon atomic number Z, as elucidated experimentally
for low atomic number elements by Charles G. Barkla, a U.K. physicist who re-
ceived the Nobel Prize in Physics for his discovery of characteristic x rays.

For photon energies hν exceeding the electron binding energy but small in com-
parison with the electron rest energy mec

2 = 0.511 MeV, i.e., EB � hν � mec
2,

the atomic cross section aσTh measured at small θ approaches Thomson’s value of
(7.36). At larger θ and larger photon energies hν where hν approaches or exceeds
0.511 MeV, however, the Thomson classical theory breaks down and the intensity of
coherently scattered radiation on free electrons diminishes in favor of incoherently
Compton scattered radiation in which part of the incident photon energy is trans-
ferred to the recoiling electron and the photon is scattered with energy that is lower
than the incident photon energy.

7.3 Incoherent Scattering (Compton Effect)

7.3.Q1 (155)

The basic Compton equation can be derived from principles of energy and
momentum conservation [see (T7.47), (T7.53), and (T7.54)] and is expressed
as follows

�λ= λC(1 − cos θ), (7.38)

where �λ is the change in photon wavelength, λC is the so-called Compton
wavelength of the electron given as λC = h/(mec), and θ is the scattering
angle.

(a) Use the Compton equation (7.38) to express the scattered photon energy
hν′ in terms of the incident photon energy hν and scattering angle θ .

(b) Use the Compton equation (7.38) to express the recoil electron kinetic
energy EK in terms of the incident photon energy hν and scattering
angle θ .
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(c) Show that the fractional energy loss �(hν)/(hν) of a Compton-
scattered photon can be expressed as

�hλ

hλ
= hν − hν′

hν
= �λ

1 +�λ. (7.39)

(d) The term “Compton scattering” usually refers to inelastic scattering of
a photon on loosely bound electrons of an absorber. However, other,
more exotic, Compton phenomena are also known, such as for example,
nuclear Compton effect and inverse Compton effect. Briefly describe
these two phenomena.

(e) Compare the maximum wavelength shift �λe
max in standard photon–

free electron Compton scattering to the maximum wavelength shift
�λ

p
max in Compton scattering of a photon from a proton.

SOLUTION:

(a) We write the basic Compton equation as follows

�λ= λ′ − λ= c

ν′ − c

ν
= h

mec
(1 − cos θ). (7.40)

We now multiply (7.40) with ν/c to get

ν

ν′ − 1 = hν

mec2
(1 − cos θ) and hν′(hν, θ)= hν 1

1 + ε(1 − cos θ)
, (7.41)

where ε hν

mec2 is the photon energy hν normalized to the rest energy mec
2 of the

electron.

(b) From conservation of energy in a Compton process we have: hν = hν′ +EK
and we use this expression in conjunction with (7.41) to get EK in terms of hν and θ

EK(hν, θ)= hν − hν′ = hν − hν 1

1 + ε(1 − cos θ)
= hν ε(1 − cos θ)

1 + ε(1 − cos θ)
. (7.42)

(c) The fractional energy loss �(hν)/(hν) of the Compton-scattered photon is
determined linking (7.39) with an expression for �λ/λC = 1 − cos θ obtained from
(7.38) to get

�hν

hν
= hν − hν′

hν
= EK

hν
= ε(1 − cos θ)

1 + ε(1 − cos θ)
= ε�λ

λC

1 + ε�λ
λC

=
ν
c
�λ

1 + ν
c
�λ

= �λ

1 + �λ
λ

= �λ

1 +�λ. (7.43)
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(d) Nuclear Compton effect is a process in which an incident photon of energy hν
interacts with a nucleus, transfers some energy to nuclear recoil, and is emitted with
diminished energy hν′ at scattering angle θ . This effect may occur but it is much
less probable than the standard Compton effect in which a photon is scattered off a
“free and stationary” orbital electron (see Prob. 182).

Inverse Compton effect is a process in which a low energy photon interacts with
a highly relativistic electron and gains and the electron loses energy in contrast to
the standard Compton effect where through the photon–“free and stationary elec-
tron” interaction the photon loses energy and the recoil electron gains energy (see
Problems 161 and 162).

(e) Maximum wavelength shift �λmax occurs for a scattering angle θ = π and
this type of scattering is referred to as backscattering. Scattering of photons on “free
electrons” is the most common scattering of photon on an absorber; however, pho-
ton scattering on heavier charged particles is also possible, such as for example
scattering of photons on protons.

For standard scattering of photon on a free electron with a scattering angle θ = π
the Compton equation (7.38) gives

�λe
max =�λe

∣∣
θ=π = 2λe

C = 4π�c

mec2
= 4π×(197.3 MeV · fm)

0.511 MeV
= 4860 fm = 0.0486 Å, (7.44)

where λe
C is termed the Compton wavelength of electron: λe

C = h/(mec) =
2430 fm = 0.0243 Å, numerically equal to the wavelength of a photon with en-
ergy hν =mec

2 = 0.511 MeV.
For scattering of photon on a proton with a scattering angle θ = π the Compton

equation (7.38) gives

�λ
p
max =�λp

∣∣
θ=π = 2λp

C = 4π�c

mpc2
= 4π×(197.3 MeV · fm)

938.3 MeV

= 2.64 fm = 2.64×10−5 Å, (7.45)

where λp
C is termed the Compton wavelength of proton: λe

C = h/(mpc)= 1.32 fm =
1.32×10−5 Å, numerically equal to the wavelength of a photon with energy hν =
mpc

2 = 938.3 MeV.

7.3.Q2 (156)

A photon may undergo several successive Compton scattering interactions
(multiple Compton scattering).

(a) Find a general expression for photon energy hνi after incident photon of
energy hν undergoes N Compton scattering events, each event through
a scattering angle θi.
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(b) Use the general expression for N successive Compton scattering events
derived in (a) and calculate the photon energy hνN under the following
conditions:

(1) Single Compton scattering through θ1 = 180◦.
(2) Two successive Compton scatterings, each one through 90◦.
(3) Three successive Compton scatterings, each one through 60◦.
(4) Four successive Compton scatterings, each one through 45◦.
(5) Ten successive Compton scatterings, each one through 18◦.

SOLUTION:

(a) To derive a general expression for N scattering events we first expand the well
known expression for single Compton scattering of photon with energy hν through
a scattering angle θ1 to result in scattered photon hν1 [(T7.71) and (7.41)]

hν1 = hν 1

1 + hν
E0
(1 − cos θ1)

(7.46)

into expressions for two and three successive Compton scattering events, and then
generalize the results to multiple (N ) scattering events. In (7.46) E0 is the electron
rest energy (0.511 MeV).

From (7.46) we get the following expression for hν2 following two successive
Compton scattering events, first through scattering angle θ1 and second through
scattering angle θ2

hν2 = hν1
1

1 + hν1
E0
(1 − cos θ2)

= hν 1

1 + hν
E0
(1 − cos θ1)

× 1

1 + hν
E0

(1−cos θ2)
[1+ hν

E0
(1−cos θ1)]

= hν 1

1 + hν
E0
(2 − cos θ1 − cos θ2)

. (7.47)

In a similar fashion we derive the final energy hν3 for three successive Compton
scattering events through scattering angles θ1, θ2 and θ3 and get

hν3 = hν2
1

1 + hν2
E0
(1 − cos θ3)

= hν 1

1 + hν
E0
(2 − cos θ1 − cos θ2)

× 1

1 + hν
E0

(1−cos θ3)
[1+ hν

E0
(2−cos θ1−cos θ2)]

= hν 1

1 + hν
E0
(3 − cos θ1 − cos θ2 − cos θ3)

. (7.48)
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A closer look at expressions (7.46), (7.47), and (7.48) reveals the following recur-
sive relationship for final photon energy hνN attained after N successive Coulomb
scattering events through angles θ1, θ2, θ3, . . . , θN

hνN = hν 1

1 + hν
E0
(N −∑N

i=1 cos θi)
. (7.49)

(b) We now use the recursive relationship (7.49) to calculate the final photon en-
ergy hνN in N successive Compton scattering events, each event i characterized by
scattering angle θi

(1)

N = 1; θ1 = 180◦;hν1 = hν 1

1 + 2 hν
E0

, (7.50)

(2)

N = 2; θ1 = θ2 = 90◦;hν2 = hν 1

1 + 2 hν
E0

, (7.51)

(3)

N = 3; θ1 = θ2 = θ3 = 60◦;hν3 = hν 1

1 + 1.5 hν
E0

, (7.52)

(4)

N = 4; θ1 = θ2 = θ3 = θ4 = 45◦;hν4 = hν 1

1 + 1.172 hν
E0

, (7.53)

(5)

N = 10; θ1 = θ2 = θ3 = · · · = θ10 = 45◦;hν10 = hν 1

1 + 0.489 hν
E0

. (7.54)

7.3.Q3 (157)

In Compton effect a photon interacts with a free electron and the electron is
released as recoil (Compton) electron with kinetic energy EK. The photon
is scattered with energy hν′ that is smaller than the incident photon energy
hν and depends on the scattering angle θ . Consider a Compton interaction in
which the recoil electron gains kinetic energy of 2 MeV and determine:
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(a) General expression for photon energy hν as a function of the kinetic
energy EK of the recoil electron.

(b) Minimum energy hνmin of the incident photon required for this Comp-
ton interaction (in which recoil electron kinetic energy EK = 2 MeV) to
occur.

(c) Scattering angle θ for this Compton interaction.
(d) Recoil angle φ of the recoil electron for this Compton interaction.

SOLUTION:

(a) The general expression for photon energy hν as a function of the kinetic energy
EK will be obtained from the expression for kinetic energy EK as a function of
the incident photon energy hν and scattering angle θ that was derived in (7.42) of
Prob. 155 and is given as follows

EK = hν ε(1 − cos θ)

1 + ε(1 − cos θ)
=Eν

Eν
E0
(1 − cos θ)

1 + Eν
E0
(1 − cos θ)

= E2
ν (1 − cos θ)

E0 +Eν(1 − cos θ)
,

(7.55)
where we use the following shorthand notation: Eν = hν and E0 =mec

2. Solving
(7.55) for Eν we now get the following quadratic expression for Eν

E2
ν (1 − cos θ)−EK(1 − cos θ)Eν −EKE0 = 0 (7.56)

with the following solution

Eν =
EK(1 − cos θ)±

√
E2

K(1 − cos θ)2 + 4EKE0(1 − cos θ)

2(1 − cos θ)
. (7.57)

Since the photon energy Eν = hν can only be positive, (7.56) has only the following
physically relevant solution

Eν = hν = 1

2
EK

[
1 +

√
1 + 4E0

EK(1 − cos θ)

]
. (7.58)

(b) Equation (7.58) gives a general relationship between the incident photon en-
ergy Eν = hν and recoil electron energy EK in Compton effect. It is evident from
(7.58) that for a given EK the minimum energy hνmin will occur for maximum value
of the function (1− cos θ ) that ranges from 1− cos θ = 0 for θ = 0 (forward scatter-
ing) through 1 − cos θ = 1 for θ = 1

2π (side scattering) to 1 − cos θ = 2 for θ = π
(backscattering).
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Fig. 7.10 Photon energy hν against scattering angle θ relationship expressed in (7.58) for kinetic
energy of recoil electron EK = 2 MeV. The minimum photon energy hνmin required to produce
recoil electron with EK = 2 MeV is 2.23 MeV and it occurs at maximum scattering angle θmax = π

Thus, forEK = 2 MeV, the minimum required photon energy hνmin for Compton
effect to occur is calculated from (7.58) by setting θ = π (backscattering) to get

hνmin = 1

2
EK

[
1 +

√
1 + 4E0

EK(1 − cosπ)

]

= 2 MeV

2

[
1 +

√
1 + 4×(0.511 MeV)

(2 MeV)×2

]
= 2.23 MeV. (7.59)

To show that hν = 2.23 MeV is truly the minimum photon energy for Compton
effect to occur and produce a recoil electron with EK = 2 MeV, we plot in Fig. 7.10
the photon energy Eν = hν against scattering angle θ for EK = 2 MeV, as given
in (7.58).

(c) As discussed in (b) and shown in Fig. 7.10, the minimum photon energy hνmin
occurs at θ = π (backscattering). For electron recoil energy EK = 2 MeV the min-
imum photon energy hνmin = 2.23 MeV and it occurs at the maximum scattering
angle θmax = π .

(d) In Compton effect the scattering angle θ and the recoil angle φ are related
through the following relationship (T7.68)

tanφ = 1

1 + ε cot
θ

2
, (7.60)
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Fig. 7.11 Electron recoil angle φ against photon scattering angle θ for various values of parameter
ε = hν/(mec

2)

plotted in Fig. 7.11 in the form of recoil angle φ against scattering angle θ for
various values of the parameter ε, given as photon energy Eν = hν normalized to
the rest energy of the electron E0 =mec

2 = 0.511 MeV. The figure shows that for
scattering angle θ = π the recoil angle φ = 0 irrespective of the value of ε. We
thus conclude that for the Compton effect addressed in this problem the incident
photon with energy hν is backscattered with scattering angle θ = π and the recoil
electron moves in the direction of the incident photon (recoil angle φ = 0) with
kinetic energy EK = 2 MeV.

7.3.Q4 (158)

The differential Klein-Nishina electronic cross section per unit solid angle for
Compton effect is given as follows

d eσ
KN
c

dΩ
= r2

e

2

(
ν′

ν

)2{
ν′

ν
+ ν

ν′ − sin2 θ

}
(7.61)

and can also be expressed as the product of the differential electronic cross
section per unit solid angle for Thompson scattering d eσTh/dΩ and the Klein-
Nishina form factor FKN

d eσ
KN
C

dΩ
= d eσTh

dΩ
FKN, (7.62)

where

d eσTh

dΩ
= r2

e

2

(
1 + cos2 θ

)
. (7.63)



416 7 Interaction of Photons with Matter

(a) Deduce the Klein-Nishina form factor FKN from (7.61) and (7.62).
(b) Use the Klein-Nishina form factor derived in (a) and calculate its value

for a grid of points defined by ε = 0, 0.1, 0.5, 1, 5, and 10 and θ = 0,
45◦, 90◦, 135◦, and 180◦. Present the calculated data in a tabular form.

(c) Plot the data from (b) on a Cartesian plot of form factor FKN(ε, θ)

against scattering angle θ and sketch the shape of the form factor for
the values of ε given in (b). State at least 5 notable features of the form
factor FKN(ε, θ).

SOLUTION:

(a) For Compton scattering, the energy of the scattered photon hν′ is given in
terms of the incident photon energy hν and scattering angle θ as follows

hν′ = hν 1

1 + ε(1 − cos θ)
or

hν′

hν
= 1

1 + ε(1 − cos θ)
or

hν

hν′ = 1 + ε(1 − cos θ),

(7.64)

where ε is defined as ε = hν/(mec
2), the photon incident energy hν normalized to

the rest energy of the electron mec
2 = 0.511 MeV.

The Klein-Nishina electronic cross section per unit solid angle d eσ
KN
C /dΩ of

(7.61) in conjunction with (7.64) is now expressed as follows

d eσ
KN
c

dΩ
= r2

e

2

(
ν′

ν

)2{
ν′

ν
+ ν

ν′ − sin2 θ

}

= r2
e

2

[
1

1 + ε(1 − cos θ)

]2{ 1

1 + ε(1 − cos θ)

+ [
1 + ε(1 − cos θ)

]− sin2 θ

}
. (7.65)

Rearranging terms in (7.65) and using the trigonometric identity 1 − sin2 θ = cos2 θ

we get the following expression for d eσ
KN
C /dΩ

d eσ
KN
C

dΩ
= r2

e

2

[
1

1 + ε(1 − cos θ)

]2{
cos2 θ + 1 + [1 + ε(1 − cos θ)]ε(1 − cos θ)

1 + ε(1 − cos θ)

}

= r2
e

2

[
1

1 + ε(1 − cos θ)

]2{
cos2 θ + 1 + ε(1 − cos θ)+ [ε(1 − cos θ)]2

1 + ε(1 − cos θ)

}
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= r2
e

2

[
1

1 + ε(1 − cos θ)

]2{
1 + cos2 θ + ε2(1 − cos θ)2

1 + ε(1 − cos θ)

}

=
{
r2

e

2

(
1 + cos2 θ

)}{[ 1

1 + ε(1 − cos θ)

]2

×
[

1 + ε2(1 − cos θ)2

[1 + ε(1 − cos θ)](1 + cos2 θ)

]}
. (7.66)

Recognizing the first term in the fourth row of (7.66) as the Thomson differen-
tial scattering cross section d eσTh/dΩ , Klein and Nishina named the second term,
which depends on incident photon energy hν through ε and also depends on the
scattering angle θ , the scattering form factor. In their honor, this form factor is now
referred to as the Klein-Nishina form factor FKN(hν, θ).

The Klein-Nishina electronic cross section per unit solid angle d eσ
KN
C /dΩ can

thus be expressed in terms of the Thomson differential scattering cross section
d eσTh/dΩ multiplied by the Klein-Nishina form factor as

deσ
KN
C

dΩ
= d eσTh

dΩ
FKN(hν, θ), (7.67)

where the Klein-Nishina form factor is expressed as follows

FKN(hν, θ)=
[

1

1 + ε(1 − cos θ)

]2[
1 + ε2(1 − cos θ)2

[1 + ε(1 − cos θ)](1 + cos2 θ)

]
. (7.68)

(b) Table 7.4 presents values of the Klein-Nishina form factor FKN[ε =
hν(mec

2)−1, θ ] given in (7.68) and calculated for various values of ε and θ pre-
scribed for (b).

Table 7.4 Klein-Nishina form factor FKN(ε, θ)= FKN[hν/(mec
2), θ] given in (7.68) for various

values of ε and θ prescribed in (b)

ε θ

0◦ 45◦ 90◦ 135◦ 180◦

0 1.0 1.0 1.0 1.0 1.0

0.1 1.0 0.944 0.834 0.742 0.706

0.5 1.0 0.770 0.519 0.367 0.313

1 1.0 0.625 0.375 0.234 0.185

5 1.0 0.260 0.144 0.067 0.046

10 1.0 0.159 0.083 0.036 0.024
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(c) The Klein-Nishina form factor FKN(ε, θ) is a complicated function of the en-
ergy parameter ε and scattering angle θ . Five notable features of FKN(ε, θ) are:

(1) FKN(ε, θ)≤ 1 for all θ and ε. Thus, the differential electronic Klein-Nishina
cross section deσ

KN
C /dΩ for Compton scattering is smaller than or equal to

the differential Thomson electronic cross section d eσTh/dΩ , i.e.,

deσ
KN
C

dΩ
≤ d eσTh

dΩ
for all θ and ε. (7.69)

(2) FKN(ε, θ) = 1 for θ = 0 at any ε. Thus, the differential electronic Klein-
Nishina cross section deσ

KN
C /dΩ for Compton scattering is equal to the dif-

ferential Thomson electronic cross section d eσTh/dΩ , i.e.,

deσ
KN
C

dΩ
= d eσTh

dΩ
for θ = 0 at any ε. (7.70)

(3) FKN(ε, θ) = 1 for ε = 0 at any θ . Thus, the differential electronic Klein-
Nishina cross section deσ

KN
C /dΩ for Compton scattering is equal to the dif-

ferential Thomson electronic cross section d eσTh/dΩ , i.e.,

deσ
KN
C

dΩ
= d eσTh

dΩ
for ε = 0 at any θ. (7.71)

(4) For a given ε, FKN(ε, θ) decreases with increasing θ from FKN(ε, θ) = 1 at
θ = 0.

(5) For a given θ , FKN(ε, θ) decreases with increasing ε from FKN(ε, θ) = 1 at
ε = 0.

Fig. 7.12 Klein-Nishina FKN(ε, θ) form factor (7.68) calculated for various values of
ε = hν/(mec

2) and scattering angle θ listed in Table 7.4. Data points are connected by hand
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7.3.Q5 (159)

The Klein-Nishina differential electronic cross section per unit solid angle
deσ

KN
C /dΩ for Compton effect is in its most simple form expressed as

deσ
KN
C

dΩ
= r2

e

2

(
ν′

ν

)2[
ν′

ν
+ ν

ν′ − sin2 θ

]
, (7.72)

where re is the classical electron radius (2.82 fm), hν the incident photon
energy, hν′ the scattered photon energy, and θ the scattering angle.

The Klein-Nishina total electronic cross section for Compton scattering
eσ

KN
C can be calculated through integration of (7.72) over the solid angle Ω

resulting in the following expression

σKN
C =

∫ (
deσ

KN
C

dΩ

)
dΩ = 2πr2

e

[
(1 + ε)
(1 + 2ε)2

+ ln(1 + 2ε)

2ε

+ 2

ε2
−
(

1 + ε
ε2

)
ln(1 + 2ε)

ε

]
(7.73)

with ε an energy parameter defined as ε = hν/(mec
2) and standing for the

incident photon energy hν normalized to the electron rest energy mec
2 =

0.511 MeV.

(a) Derive the Klein-Nishina total electronic cross section for Compton
scattering eσ

KN
C given in (7.73) from the differential electronic cross

section d eσ
KN
C /dΩ given in (7.72).

(b) Show that as hν → 0, the Klein-Nishina total electronic cross section
eσ

KN
C approaches the Thomson total electronic cross section eσTh, i.e.,

lim
ε→0

eσ
KN
C = eσTh = 8

3
πr2

e = 0.665 b. (7.74)

(c) Use the expression for eσ
KN
C derived as (7.73) in (a) and calculate the

anchor points for the graph eσ
KN
C against incident photon energy hν for

the following incident photon energies in MeV: 0.001, 0.1, 1, 10, and
100.

(d) Plot the calculated anchor points for eσ
KN
C vs hν graph and sketch the

eσ
KN
C curve in the photon energy range 0.001 MeV ≤ hν ≤ 100 MeV.

SOLUTION:

(a) As shown in (7.73), eσ
KN
C is derived by integrating d eσ

KN
C /dΩ over the solid

angle Ω where dΩ = sin θ dθ dφ. The angular θ dependence is implicit in (7.72),



420 7 Interaction of Photons with Matter

so we first modify (7.72) to obtain explicit θ dependence by inserting into (7.72) the
hν′ vs hν relationships that read

hν′ = hν 1

1 + ε(1 − cos θ)
or

hν′

hν
= 1

1 + ε(1 − cos θ)
or

hν

hν′ = 1 + ε(1 − cos θ).

(7.75)

Equation (7.72) in conjunction with (7.75) gives

deσ
KN
C

dΩ
= r2

e

2

[
1

1 + ε(1 − cos θ)

]2{ 1

1 + ε(1 − cos θ)
+ [

1 + ε(1 − cos θ)
]− sin2 θ

}

= r2
e

2

{
1

[1 + ε(1 − cos θ)]3
+ 1

1 + ε(1 − cos θ)
− sin2 θ

[1 + ε(1 − cos θ)]2

}

(7.76)

and the total electronic Klein-Nishina cross section for Compton effect eσ
KN
C is now

expressed as

σKN
C =

∫ (
deσ

KN
C

dΩ

)
dΩ =

∫ 2π

0

{∫ π

0

(
deσ

KN
C

dΩ

)
sin θ dθ

}
dφ

= πr2
e

∫ π

0

{
1

[1 + ε(1 − cos θ)]3
+ 1

1 + ε(1 − cos θ)

− sin2 θ

[1 + ε(1 − cos θ)]2

}
sin θ dθ, (7.77)

and calculated through the following six steps:

(1) Define a dimensionless variable x

x = 1 + ε(1 − cos θ). (7.78)

(2) Solve (7.78) for cos θ and determine the differential of cos θ

cos θ = 1 − x − 1

ε
= 1 + ε

ε
− x

ε
and sin θ dθ = dx

ε
. (7.79)

(3) Use the trigonometric identity sin2 θ + cos2 θ = 1 to determine − sin2 θ as
follows

− sin2 θ = cos2 θ − 1 =
(

1 + ε
ε

− x

ε

)2

− 1

= (1 + ε)2
ε2

− 2(1 + ε)x
ε2

+ x2

ε
− 1

= 1 + 2ε

ε2
− 2(1 + ε)x

ε2
+ x2

ε2
. (7.80)
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(4) Write (7.77) as a sum of the following three integrals

eσKN
C

πr2
e

=
∫ π

0

{
1

[1 + ε(1 − cos θ)]3
+ 1

1 + ε(1 − cos θ)

− sin2 θ

[1 + ε(1 − cos θ)]2

}
sin θ dθ = J1 + J2 + J3. (7.81)

(5) Solve the three integrals of (7.81) separately

J1 =
∫ π

0

sin θ dθ

[1 + ε(1 − cos θ)]3
=
∫ 1+2ε

1

dx

εx3
= − 1

2ε

[
1

x2

]1+2ε

1

= − 1

2ε

[
1

(1 + 2ε)2
− 1

]
= 2(1 + ε)
(1 + 2ε)2

, (7.82)

J2 =
∫ π

0

sin θ dθ

1 + ε(1 − cos θ)
=
∫ 1+2ε

1

dx

εx
= 1

ε
[lnx]1+2ε

1 = ln(1 + 2ε)

ε
,

(7.83)

J3 =
∫ π

0

− sin2 θ

[1 + ε(1 − cos θ)]2
sin θ dθ

= 1

ε

[∫ 1+2ε

1

(
1 + 2ε

ε2

)
dx

x2
− 2

∫ 1+2ε

1

(
1 + ε
ε2

)
dx

x
+
∫ 1+2ε

1

dx

ε2

]

= 1

ε

[
−
(

1 + 2ε

ε2

)
1

x
− 2

(
1 + ε
ε2

)
lnx + x

ε2

]1+2ε

1

= 1

ε

[
− 1

ε2
+
(

1 + 2ε

ε2

)
− 2

(
1 + ε
ε2

)
ln(1 + 2ε)+ 0 + 1 + 2ε

ε2
− 1

ε2

]
.

(7.84)

(6) The Klein-Nishina total electronic cross section for Compton scattering eσ
KN
C

is now given as the sum of the three integrals J1 + J2 + J3 given in (7.82),
(7.83) and (7.84), respectively

eσ
KN
C =

∫ (
deσ

KN
C

dΩ

)
dΩ =

∫ 2π

0

{∫ π

0

(
deσ

KN
C

dΩ

)
sin θ dθ

}
dφ

= {J1} + {J2} + {J3}

= πr2
e

{
2(1 + ε)
(1 + 2ε)2

}
+
{

ln(1 + 2ε)

ε

}
+
{(

1 + 2ε

ε3

)
− 2

ε3

− 2

(
1 + ε
ε3

)
ln(1 + 2ε)+ 1 + 2ε

ε3

}
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= 2πr2
e

[
1 + ε

(1 + 2ε)2
+ ln(1 + 2ε)

2ε
+ 2

ε2
− (1 + ε) ln(1 + 2ε)

ε3

]

= 2πr2
e J , (7.85)

where J is a function of ε only and is proportional to eσ
KN
C with the propor-

tionality constant equal to 2πr2
e = 0.4990 b. The third line in (7.85) represents

one of the many possible forms in which the total Klein-Nishina electronic
cross section may be presented. Another form, used in Hubbell’s work and
seemingly more complicated in comparison to the one derived in (7.85), is
given in (T7.104). Both forms, of course, will provide identical results for a
given photon energy hν or energy parameter ε.

(b) The low energy limit of eσ
KN
C where parameter ε approaches zero is of im-

portance, since the Compton effect, like Thomson scattering, is an interaction of
incident photon hν with free electron and one could thus expect that for ε→ 0 the
cross section ε→ 0 approaches the Thomson cross section eσTh = 8

3πr
2
e = 0.665 b.

At first glance, however, eσ
KN
C of (7.85) appears to have a singularity for ε = 0, so

we now take a closer look at (7.85) for ε→ 0.
First, we address the question of the form of (7.85) for ε very small, i.e., for

ε� 1, and expand the two logarithmic terms in (7.85) into a series using the fol-
lowing known expansion

ln(1 + x)≈ x − x2

2
+ x3

3
− x4

4
+ · · · + (−1)n+1 x

n

n
for −1< x <+1. (7.86)

The four terms of function J , namely J1, J2, J3, and J4 of (7.85) are now for ε� 1
expressed as follows

(1)

J1 = 1 + ε
(1 + 2ε)2

≈ (1 + ε)(1 − 4ε)= 1 − 3ε− 4ε2 (7.87)

(2)

J2 = ln(1 + 2ε)

2ε
≈
{

1

2ε

[
2ε− (2ε)2

2
+ (2ε)3

3
− · · ·

]}

=
{

1 − ε+ 4ε2

3
− · · ·

}
(7.88)

(3)

J3 = 2

ε2
(7.89)
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(4)

J4 =
{
− (1 + ε) ln(1 + 2ε)

ε3

}
≈
{
−1 + ε
ε3

[
2ε− (2ε)2

2
+ (2ε)3

3
− · · ·

]}

=
{
−(1 + ε)

[
2

ε2
− 2

ε
+ 8

3
− · · ·

]}

=
{
− 2

ε2
+ 2

ε
− 8

3
− · · · − 2

ε
+ 2 − 8ε

3
· · ·

}

=
{
− 2

ε2
− 8

3
+ 2 − 8ε

3
· · ·

}
=
{
− 2

ε2
− 2

3
· · ·

}
(7.90)

The sum of the four terms: J = {J1 + J2 + J3 + J4} for ε� 1 can now be expressed
as follows

{J1 + J2 + J3 + J4} =
{[

1 − 3ε− 4ε2]+
[

1 − ε+ 4ε2

3
− · · ·

]

+
[

2

ε2

]
+
[
− 2

ε2
− 2

3
· · ·

]}

= 4

3
− 4ε− 8

3
ε2 + · · · . (7.91)

The small ε approximation to eσ
KN
C expressed in (7.91) is obviously much simpler

than (7.85), obviously does not suffer a singularity at ε→ 0, and lends itself to an
easy evaluation of the eσ

KN
C limit for ε→ 0, as shown below

lim
ε→0

(
eσ

KN
C

) = lim
ε→0

{
2πr2

e [J1 + J2 + J3 + J4]
}= lim

ε→0

{
2πr2

e [J ]}

= 2πr2
e lim
ε→0

{
4

3
− 4ε− 8

3
ε2 + · · ·

}
= 8π

3
r2

e = eσTh = 0.665 b.

(7.92)

(c) We now use (7.73) to calculate eσ
KN
C for incident photon energies hν in MeV

of 0.001, 0.1, 1, 10, and 100. Results of our calculation are displayed in Table 7.5,
where for each hν we show the value of the four functions T1,T2,T3, and T4, Klein-
Nishina total electronic cross section eσ

KN
C , and anchor points for the eσ

KN
C vs hν

graph. A comparison between our calculated eσ
KN
C with eσ

KN
C available in the liter-

ature shows excellent agreement and attests to the veracity of (7.73) in calculation
of eσ

KN
C .

(d) Figure 7.13 plots eσ
KN
C against incident photon energy hν and clearly exhibits

the approach to the Thomson limit eσTh = 0.665 b at low hν as well as the fall off
of eσ

KN
C with increasing hν at high hν.
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Table 7.5 Klein-Nishina total electronic cross section eσ
KN
C for Compton scattering for various

incident photon energies hν calculated with (7.85). For very low incident photon energy hν, as
shown in (7.92), the Compton total cross section eσ

KN
C approaches the Thomson total cross section

eσTh = 8
3πre = 0.665 b

hν (MeV) 0.001 0.1 1 10 100

ε = hν
mec2 = hν

0.511 MeV 1.95694×10−3 0.1957 1.957 19.57 195.7

J1 = 1+ε
(1+2ε)2

0.99416 0.6176 0.1225 0.0128 1.278

J2 = ln(1+2ε)
2ε 0.99805 0.8439 0.4066 0.0943 0.0153

J3 = 2
ε2 522242 52.2213 0.5222 0.0052 5.222×10−5

J4 = (1+ε) ln(1+2ε)
ε3 −522242.7 −52.6953 −0.6281 −0.0101 −1.567×10−4

J =∑
i Ji 1.33221 0.9875 1.6794 0.1022 0.0166

eσ
KN
C = 2πr2

e J (7.85) 0.66480 0.4928 0.2112 0.0510 0.0083

Anchor point 0.665 0.50 0.21 0.051 0.008

Fig. 7.13 Klein-Nishina total electronic cross section (attenuation coefficient) for Compton effect
eσ

KN
C on free electron against incident photon energy hν determined from Klein-Nishina equation

given in (7.85). At very low photon energies (hν→ 0)eσKN
C → eσTh = 0.665 b. Data points on the

graph represent the anchor points for the eσ
KN
C vs hν diagram

7.3.Q6 (160)

The Klein-Nishina differential electronic cross section deσ
KN
C /dEK, express-

ing the initial energy spectrum of Compton recoil electrons averaged over all
scattering angles θ , is calculated from the basic Klein-Nishina equation for
deσ

KN
C /dΩ .
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(a) Starting from the basic Klein-Nishina equation for the differential elec-
tronic cross section per unit solid angle for Compton effect deσ

KN
C /dΩ

given as

deσ
KN
C

dΩ
= r2

e

2

(
ν′

ν

)2[
ν′

ν
+ ν

ν′ − sin2 θ

]
, (7.93)

show that deσ
KN
C /dEK can be expressed as

deσ
KN
C

dEK
= πr2

e

εhν

[
2 + E2

K

ε2(hν −EK)2
− 2EK

ε(hν −EK)
+ E2

K

ε2(hν −EK)2

]
,

(7.94)
where re is the classical radius of the electron: re = e2/(4πε0mec

2) =
2.818 fm;hν is the energy of the incident photon; hν′ is the energy
of the scattered photon; θ is the scattering angle; and ε is an energy
parameter defined as ε = hν/(mec

2) with mec
2 = 0.511 MeV the rest

energy of the electron.
(b) For incident photon energy hν of 1 MeV use (7.94) and determine

the differential electronic cross section deσ
KN
C /dEK for Compton re-

coil electron kinetic energies from minimum possible kinetic energy
(EK)min to the maximum possible kinetic energy (EK)max of recoil elec-
trons in steps of 0.1 MeV.

(c) Display the data calculated in (b) on a Cartesian plot to get a distribution
of recoil electrons produced in Compton scattering of 1 MeV photons
on free electrons. Comment on notable features of the plotted curve.

SOLUTION:

(a) Before embarking on calculation of deσ
KN
C /dEK, we recall that:

(1) Energy of the scattered photon hν′ is given in terms of incident photon energy
hν and scattering angle θ as (T7.71)

hν′(hν, θ)= hν 1

1 + ε(1 − cos θ)
, (7.95)

(2) Kinetic energy EK of the Compton recoil electron is given as (T7.79)

EK(hν, θ)= hν ε(1 − cos θ)

1 + ε(1 − cos θ)
, (7.96)

(3) From conservation of energy in Compton effect, hν,hν′, and EK are related
through the following

hν = hν′ +EK or hν′ = hν −EK. (7.97)
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From (7.95) we get the following expression for cos θ

cos θ = 1 − EK

ε(hν −EK)
, (7.98)

which, upon the use of trigonometric identity sin2 θ = 1 − cos2 θ , yields the follow-
ing expression for sin2 θ

sin2 θ = 2EK

ε(hν −EK)
− E2

K

ε2(hν −EK)2
. (7.99)

We now turn to the calculation of electronic cross section deσ
KN
C /dEK using the

chain rule for computing derivative of a composition of two or more functions. This
allows us to express deσ

KN
C /dEK as a product of three simpler derivatives that may

be determined individually as follows

deσ
KN
C

dEK
= deσ

KN
C

dΩ

dΩ

dθ

dθ

dEK
, (7.100)

where

(1) deσ
KN
C /dΩ is the standard Klein-Nishina equation given in (7.93) which, af-

ter incorporating (7.95), (7.98), and (7.99), reads as follows in terms of hν
and EK

deσ
KN
C

dΩ
= r2

e

2

(
ν′

ν

)2[
ν′

ν
+ ν

ν′ − sin2 θ

]

= r2
e

2

(
hν −EK

hν

)2[
hν −EK

hν
+ hν

hν −EK
− 2EK

ε(hν −EK)

+ E2
K

ε2(hν −EK)2

]
, (7.101)

(2) dΩ/dθ is determined from the standard definition of dΩ

dΩ = 2π sin θ dθ or
dΩ

dθ
= 2π sin θ, (7.102)

(3) dθ/dEK is determined from the standard expression for kinetic energy EK of
the Compton recoil electron given in (7.96). Using (7.96) we first determine
dEK/dθ as follows

dEK

dθ
= hν ε sin θ [1 + ε(1 − cos θ)− ε2 sin θ(1 − cos θ)]

[1 + ε(1 − cos θ)]2

= ε(hν −EK)
2

hν
sin θ (7.103)
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and then take the reciprocal of dEK/dθ to get dθ/dEK in terms hν,EK, and θ

dθ

dEK
= hν

ε(hν −EK)2 sin θ
. (7.104)

Insertion of (7.101), (7.102), and (7.103) into (7.100) results in the following ex-
pression for the differential electronic cross section deσ

KN
C /dEK

deσ
KN
C

dEK
=
{

deσ
KN
C

dΩ

}{
dΩ

dθ

}{
dθ

dEK

}

=
{
r2

e

2

(
hν −EK

hν

)2[
hν −EK

hν
+ hν

hν −EK

− 2EK

ε(hν −EK)
+ E2

K

ε2(hν −EK)2

]}

×{2π sin θ}×
{

hν

ε(hν −EK)2 sin θ

}

= πr2
e

εhν

[
hν −EK

hν
+ hν

hν −EK
− 2EK

ε(hν −EK)
+ E2

K

ε2(hν −EK)2

]

= πr2
e

εhν

[
2 + E2

K

hν(hν −EK)
− 2EK

ε(hν −EK)
+ E2

K

ε2(hν −EK)2

]
. (7.105)

(b) To calculate deσ
KN
C /dEK for 1 MeV photons undergoing Compton scattering

we will use four well-defined steps:

(1) First we use (7.96) to determine the minimum and maximum possible kinetic
energies of the Compton recoil electrons, (EK)min and (EK)max, respectively,
for hν = 1 MeV photons. For these photons the energy parameter ε is given
as ε = hν/(mec

2)= 1/0.511 = 1.957. From (7.96) we note that the minimum
kinetic energy (EK)min = 0 occurring at θ = 0 and the maximum kinetic en-
ergy (EK)max = 2hνε/(1 + 2ε) = 0.796 MeV occurring at θ = π . Thus, we
will use (7.105) to calculate deσ

KN
C /dEK from 0 to (EK)max = 0.796 MeV in

steps of 0.1 MeV.
(2) Next, we determine for incident photon energy hν = 1 MeV the value of the

term in front of the square bracket of (7.105)

πr2
e

εhν
= π×(2.181×10−13 cm)2

1.957×(1 MeV · electron)

= 1.275×10−25 cm2

MeV · electron
= 0.1275

b

MeV · electron
. (7.106)
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Table 7.6 The four components of (7.105) for calculation of deσ
KN
C /dEK for various kinetic en-

ergies of recoil electron between (EK)min = 0 and (EK)max = 0.796 MeV for Compton interaction
of 1 MeV photons with free electrons

EK
(MeV)

First term
of (7.105)

E2
K

hν(hν−EK)
− 2EK
ε(hν−EK)

E2
K

ε2(hν−EK)2

∑
of 4

terms

deσ
KN
C

dEK
[b/(MeV · el)]

1 0 2 0 0 0 2.000 0.255

2 0.1 2 0.011 −0.114 0.003 1.900 0.242

3 0.2 2 0.05 −0.255 0.016 1.811 0.231

4 0.3 2 0.129 −0.438 0.048 1.739 0.222

5 0.4 2 0.267 −0.681 0.116 1.702 0.217

6 0.5 2 0.500 −1.022 0.261 1.739 0.222

7 0.6 2 0.900 −1.533 0.588 1.955 0.249

8 0.7 2 1.633 −2.385 1.422 2.670 0.340

9 0.796 2 3.106 −3.988 3.975 5.094 0.649

Fig. 7.14 Differential electronic cross section deσ
KN
C /dEK against kinetic energy EK of recoil

electron for 1 MeV photons undergoing Compton interactions with free electrons. Data points
from (1) to (9) on the graph correspond to rows in Table 7.6

(3) For EK = (EK)min = 0 we note that

deσ
KN
C

dEK
= 2πr2

e

εhν
= 2×0.1275

b

MeV · electron

= 0.255
b

MeV · electron
. (7.107)



7.3 Incoherent Scattering (Compton Effect) 429

(4) Equation (7.105) will now be used to calculate deσ
KN
C /dEK in steps of

0.1 MeV from 0.1 MeV to the last point at 0.796 MeV. Detailed results of
the calculation for the four terms of (7.105) and 9 recoil electron kinetic en-
ergies EK between (EK)min = 0 and (EK)max = 0.796 MeV are displayed in
Table 7.6.

(c) Differential electronic cross sections deσ
KN
C /dEK calculated with (7.105) and

tabulated in Table 7.6 for 1 MeV photons interacting with free electrons in Compton
effect are plotted in Fig. 7.14 against recoil electron kinetic energy EK between
(EK)min = 0 and (EK)max = 0.796 MeV.

7.3.Q7 (161)

A photon of energy Eν = hν collides head-on with a free electron that is
moving exactly in the opposite direction to that of the photon with speed
β = υ/c and total energy Ee = γE0 where E0 is the rest energy of the elec-
tron (E0 = mec

2 = 0.511 MeV). The photon is scattered sideways with a
scattering angle θ = 90◦, as shown schematically below

(a) Show that energy E′
ν = hν′ of the scattered photon can be expressed in

terms of incident photon energy Eν and incident electron velocity β as

E′
ν =Eν 1 + β

1 + Eν
Ee

=Eν 1 + β
1 + ε

γ

=Eν 1 + β
1 + ε√1 − β2

. (7.108)

(b) Define the ratio of scattered photon energy over the incident photon
energy E′

ν/Eν as the scattered photon energy fraction f ′
ν and determine

(f ′
ν)min and (f ′

ν)max for the range of β from 0 to 1.
(c) Determine the kinetic energy E′

K of the Compton recoil electron.
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SOLUTION:

(a) Energy of the scattered photon E′
ν will be determined through an evaluation

of the conservation of total energy and momentum in the Compton process:

Conservation of total energy E in the Compton process is expressed as

Eν +Ee =E′
ν +E′

e. (7.109)

Conservation of momentum p in the direction normal to that of the incident photon
E′
ν (y axis)

0 = p′
e sinφ − p′

ν or 0 = p′
e sinφ − E′

ν

c
, (7.110)

where p′
ν is the momentum of the scattered photon after the Compton interaction.

Conservation of momentum p in the direction of the incident photon E′
ν (x axis)

pν − pe = p′
e cosφ or

Ev

c
− p′

e = p′
e cosφ, (7.111)

where pe and pν are momenta of the incident electron and incident photon, respec-
tively, before Compton interaction and p′

e is the momentum of the recoil electron
after Compton interaction.

We now write (7.110) and (7.111) in the following form

(
p′

e

)2 sin2 φ = (E′
ν)

2

c2
and

(
p′

e

)2 cos2 φ = (Eν)
2

c2
−2pe

E − ν
c

+ (pe)
2. (7.112)

Addition of the two equations of (7.112) and multiplication of the result with c2

gives the following expression for (p′
e)

2c2

(
p′

e

)2
c2 = (Eν)2 + (

E′
ν

)2 − 2pecEν + (pe)
2c2. (7.113)

From conservation of total energy (7.109) and recalling that (E′
e)

2 = (p′
e)

2c2 +E2
0

we now obtain another equation for (p′
e)

2c2 that reads as follows

(
p′

e

)2
c2 = (Eν)2 + (

E′
ν

)2 − 2EνE
′
ν + (Ee)

2 + 2EνEe − 2E′
νEe −E2

0 . (7.114)

We now have two equations [(7.113) and (7.114)] for (p′
e)

2c2 that, when merged,
lead to the following expression

−2pecEν + (pe)
2c2 = −2EνE

′
ν + (Ee)

2 + 2EνEe − 2E′
νEe −E2

0 (7.115)

that can be simplified to the following, recalling that (pe)
2c2 + E2

0 = (Ee)2 and
dividing by 2Eν

−pec+E′
ν −Ee + E′

ν

Eν
Ee = 0. (7.116)
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Using the simple relationship pec = βEe linking particle momentum pe with its
total energy Ee (T1.65), we now express (7.116) as follows

−βEe +E′
ν −Ee + E′

ν

Eν
Ee = 0 or E′

ν

(
Ee

Eν
+ 1

)
=Ee(1 + β), (7.117)

resulting in the following solution for energy of the scattered photon E′
ν

E′
ν =Ee

1 + β
1 + Ee

Eν

=Eν 1 + β
1 + Eν

Ee

=Eν 1 + β
1 + Eν

γE0

=Eν 1 + β
1 + ε

γ

=Eν 1 + β
1 +√

ε1 − β2
,

(7.118)
where ε is defined as the ratio Eν/E0 just like in standard Compton effect.

(b) Scattered photon energy fraction f ′
ν is defined by the ratio of the scattered

photon energy E′
ν over the incident photon energy Eν , i.e., f ′

ν =E′
ν/Eν which from

(7.118) gives

f ′
ν = E′

ν

Eν
= 1 + β

1 + ε√1 − β2
. (7.119)

Equation (7.119) provides an interesting result, at first glance surprising, because it
shows that the energy fraction f ′

ν can be smaller as well as larger than 1, in contrast
to the standard Compton effect for which one assumes that the electron is free and
stationary and this assumption results in f ′

ν < 1 as a rule.
Thus, in the case of Compton effect occurring on a free electron moving with

velocity β = ν/c, the scattered photon energy E′
ν may exceed the incident photon

energy Eν and this suggesting that the incident photon energy is augmented by an
energy transfer from the energetic electron. This effect is not only of theoretical
interest in physics; in astrophysics this type of Compton process actually occurs
and is referred to as the inverse Compton scattering.

Let us now look at several interesting special situations related to scattered pho-
ton energy fraction f ′

ν : (1) limβ→0 f
′
ν , (2) limβ→1 f

′
ν , and (3) β at which f ′

ν = 1.

(1) One would expect that limβ→0 f
′
ν gives a result that coincides with that ob-

tained for the standard Compton effect in which electron velocity β is zero.
That this indeed happens is shown as follows

(
f ′
ν

)
min = lim

β→0

1 + β
1 + ε√1 − β2

= 1

1 + ε , (7.120)

in perfect agreement with the result for the standard Compton effect and side
scattering with a scattering angle θ = 90◦.

(2) The other extreme in f ′
ν is attained for limβ→1 f

′
ν

(
f ′
ν

)
max = lim

β→1

1 + β
1 + ε√1 − β2

= 2, (7.121)
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indicating that photon scattered at 90° cannot exceed the incident photon en-
ergy Eν by more than 100 % even when Compton effect occurs on an ultra-
relativistic electron.

(3) To calculate β at which f ′
ν = 1 (implying that the scattered photon energy E′

ν

is equal to incident photon energy Eν ) we set (7.119) equal to 1 and solve
for β

f ′
ν = E′

ν

Eν
= 1 + β

1 + ε√1 − β2
= 1, (7.122)

resulting in

β = ε√
1 + ε2

. (7.123)

From (7.120) and (7.121) we conclude that the dynamic range of the scattered
photon energy fraction f ′

ν is from (f ′
ν)min = (1 + ε)−1 in effect for side scatter-

ing (θ = 90◦) in standard Compton scattering to (f ′
ν)max = 2 in Compton effect

in which a photon interacts with an ultra-relativistic electron and is scattered at
θ = 1

2π . Figure 7.15 shows a plot of f ′
ν against normalized incident electron ve-

locity β in the range from β = 0 to β = 1 for various values of ε, incident photon
energy normalized to electron rest mass.

(c) Total energy E′
e of the recoil electron is calculated from the conservation of

total energy relationship (7.109) in conjunction with (7.118) which gives the energy
of the scattered photon E′

ν in terms of the incident photon energy Eν and veloc-
ity β of the incident electron. We insert (7.118) into (7.109) and get the following
expression for total energy of the recoil electron E′

e

E′
e =Eν −E′

ν +Ee =Eν
[

1 − 1 + β
1 + ε√1 − β2

]
+Ee

=Eν
[

1 − 1 + β
1 + ε√1 − β2

]
+ E0√

1 − β2
=Eν

[
ε
√

1 − β2 − β
1 + ε√1 − β2

]
+ E0√

1 − β2
,

(7.124)

where we used the standard relativistic relationship between total energy Ee and rest
energy E0 Ee = γE0 =E0/

√
1 − β2 of a particle [see (T1.58)].

Recalling the relativistic relationship between E′
K and E′

e given as E′
K = E′ −

E0, we now express the kinetic energy E′
K of the recoil electron, using (7.124), as

follows

E′
K =E′

e −E0 =Eν
[
ε
√

1 − β2 − β
1 + ε√1 − β2

]
+E0

[
1√

1 − β2
− 1

]
. (7.125)

We now look at two interesting limits of E′
K, one for β → 0 and the other for

β→ 1:
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Fig. 7.15 Scattered photon energy fraction f ′
ν against normalized incident electron velocity β for

various values of normalized incident photon energy ε

(1) The limit of E′
K for β → 0 should coincide with the result for the standard

Compton effect on a stationary electron and photon scattering at θ = 90◦ given
as E′

K = ε/(1 + ε) in (T7.79)

lim
β→0

E′
K = lim

β→0
Eν

[
ε
√

1 − β2 − 1

1 + ε√1 − β2

]
+E0

[
1√

1 − β2
− 1

]
= ε

1 + ε , (7.126)

in full agreement with the standard Compton scattering on stationary electron
and photon scattered with a scattering angle of θ = 90◦ (side scattering).

(2) The limit of E′
K for β → 1 represents Compton effect on an ultra-relativistic

electron and reads as follows

lim
β→1

E′
K = lim

β→1
Eν

[
ε
√

1 − β2 − 1

1 + ε√1 − β2

]
+E0

[
1√

1 − β2
− 1

]
= −Eν + ∞.

(7.127)

At first glance, (7.127) appears surprising, however, since β cannot reach 1 for
a particle, the result simply means that limβ→1E

′
K = −Eν +EK, where EK is the

kinetic energy of the ultra-relativistic electron for which β → 1. This result agrees
well with (7.121) which states that the scattered photon cannot acquire from the
incident electron energy larger than Eν which combined with the incident photon
energy Eν at most doubles the energy of the scattered photon to 2Eν , irrespective
of the magnitude of the incident electron energy EK.

As a test of the validity of our determination of the scattered photon energy E′
ν

(7.118) and the recoil electron total energy E′
e (7.124) we insert (7.118) and (7.124)
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into the conservation of total energy expressed in (7.109) and get

Eν +Ee =E′
ν +E′

e =
[
Eν

1 + β
1 + ε√1 − β2

]
+
[
Eν
ε
√

1 − β2 − β
1 + ε√1 − β2

+ E0√
1 − β2

]

=Eν +Ee, (7.128)

clearly confirming the validity of our results.

7.3.Q8 (162)

Problem 161 deals with Compton scattering of a photon with energy Eν on a
free, yet moving electron. The incident photon Eν and the incident electron
with total energy of Ee are collinear and moving in opposite directions; the
scattered photon is scattered with energy E′

ν and scattering angle θ = 1
2π and

the Compton electron recoils with recoil angle φ.
Analyze the same scattering process as the one described in Prob. 161 but

allow, as shown in the sketch below, the scattering angle θ to attain any value
between 0 (forward scattering) and π (back-scattering).

Under these conditions, representing a more general case of the inverse
Compton effect discussed in Prob. 161, determine the general relationships
for:

(a) Scattered photon energy E′
ν and scattered photon energy fraction f ′

ν

as a function of incident photon energy Eν , scattering angle θ , and nor-
malized velocity β of the incident electron. The scattered photon energy
fraction f ′

ν is defined as the ratio E′
ν/Eν .

(b) Kinetic energyE′
K of the recoil electron as a function of incident photon

energy Eν , scattering angle θ , and normalized velocity β of the incident
electron.
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SOLUTION:

(a) Like in Prob. 161, our approach to solving this general problem will be to
apply the principle of conservation of total energy E and momentum p from before
to after the scattering event.

(1) Conservation of total energy E is expressed as follows

Eν+Ee =E′
ν+E′

e or
(
E′

e

)2 = (Eν+Ee)
2 −2(Eν+Ee)E

′
ν+ (

E′
ν

)2
, (7.129)

where

Eν and E′
ν are energies of the incident and scattered photon, respectively.

Ee and E′
e are total energies of the incident and recoil electron, respectively,

given as follows

E2
e = p2

ec
2 +E2

0 and
(
E′

e

)2 = (
p′

e

)2
c2 +E2

0 (7.130)

with pe and p′
e the momenta of incident and recoil electron and E0

the rest energy of the electron (E0 =mec
2 = 0.511 MeV).

(2) Conservation of momentum (abscissa x axis)

Eν − pec=E′
ν cos θ + p′

ec cosφ or
(
Eν − pec−E′

ν cos θ
)2 = (

p′
e

)2
c2 cos2 φ.

(7.131)
(3) Conservation of momentum (ordinate y axis)

E′
ν sinφ = p′

ec sin θ or
(
E′
ν

)2 sin2 φ = (
p′

e

)2
c2 sin2 φ. (7.132)

Adding (7.131) and (7.132) results in the following expression for electron recoil
momentum p′

e

(
p′

e

)2
c2 = (Eν − pec)

2 − 2(Eν − pec)E
′
ν cos θ + (

E′
ν

)2

= [
(Eν)

2 − 2Eνpec+ (pe)
2c2]− 2(Eν − pec)E

′
ν cos θ + (

E′
ν

)2
.

(7.133)
We now introduce (7.131) into (7.133) for (pe)

2c2 and for (p′
e)

2c2 and get

(
E′

e

)2 −E2
0 = (Eν)2 − 2Eνpec+ (Ee)

2 −E2
0 − 2(Eν − pec)E

′
ν cos θ + (

E′
ν

)2
.

(7.134)
Cancelling E2

0 in (7.134) and introducing (7.129) for (E′
e)

2 we now obtain the fol-
lowing equation

(
E′

e

)2 ≡ (Eν +Ee)
2 − 2(Eν +Ee)E

′
ν + (

E′
ν

)2

= (Eν +Ee)
2 − 2EνEe − 2Eνpec− 2(Eν − pec)E

′
ν cos θ + (

E′
ν

)2
.

(7.135)
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After cancelling (Eν + Ee)
2 and (E′

ν)
2 in (7.135) we are left with the following

components
[
(Eν +Ee)− (Eν − pec) cos θ

]
E′
ν =EνEe +Eνpec, (7.136)

that can be rearranged to yield the following expression for the scattered photon
energy fraction f ′

ν defined as the ratio of the scattered photon energy E′
ν over the

incident photon energy Eν

f ′
ν = E′

ν

Eν
= Ee + pec

Eν(1 − cos θ)+Ee + pec cos θ
≡ 1 + pec

Ee

Eν
Ee
(1 − cos θ)+ 1 + pec

Ee
cos θ

.

(7.137)
Finally, after introducing

pec

Ee
= γE0β

γE0
= β and

Eν

Ee
= Eν

γE0
= ε

γ
= ε

√
1 − β2, (7.138)

we express the scattered photon energy fraction f ′
ν as follows

f ′
ν = E′

ν

Eν
= 1 + β

1 + β cos θ + ε√1 − β2(1 − cos θ)
. (7.139)

A closer look at the expression (7.139) for the scattered photon energy fraction f ′
ν

shows that, similar to the calculation in Prob. 161 in which the scattering angle θ is
1
2π , the scattered photon fraction can exceed 1 in contrast to the standard Compton
effect where f ′

ν ≤ 1. We now take a look at the range of f ′
ν by evaluating several

special situations related to the scattered photon energy fraction f ′
ν : (1) (f ′

ν)min =
limβ→0 f

′
ν , (2) (f ′

ν)max = limβ→1 f
′
ν , and (3) β at which f ′

ν = 1.

(1) One would expect that limβ→0 f
′
ν gives a result that coincides with that ob-

tained for the standard Compton effect in which electron velocity β is zero.
That this indeed happens is shown as follows

(
f ′
ν

)
min = lim

β→0
f ′
ν = lim

β→0

1 + β
1 + β cos θ + ε√1 − β2(1 − cos θ)

= 1

1 + ε(1 − cos θ)
, (7.140)

in perfect agreement with the result for standard Compton effect where β = 0
and θ is any scattering angle between 0 and π .

(2) The other extreme in f ′
ν is attained for limβ→1 f

′
ν as follows

(
f ′
ν

)
max = lim

β→1
f ′
ν = lim

β→1

1 + β
1 + β cos θ + ε√1 − β2(1 − cos θ)

= 1

1 + cos θ
,

(7.141)
ranging from f ′

ν = 1 for θ = 0 through f ′
ν = 2 for θ = 1

2π to f ′
ν → ∞ for

θ = π .
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(3) To calculate β at which f ′
ν = 1 (implying that the scattered photon energy E′

ν

is equal to incident photon energy Eν ) we set (7.139) equal to 1 and solve
for β

f ′
ν = E′

ν

Eν
= 1 + β

1 + β cos θ + ε√1 − β2(1 − cos θ)
= 1, (7.142)

resulting in

β = ε√
1 + ε2

. (7.143)

(b) To determine kinetic energyE′
K of the recoil electron we first determine the to-

tal energyE′
e of the recoil electron and then calculateE′

K fromE′
e using the standard

relativistic relationshipE′
K =E′

e −E0 whereE0 is the rest energy of the electron.E′
e

is calculated from the conservation of energy relationship of (7.129) in conjunction
with (7.139) which gives the energy E′

ν of the scattered photon. Combining (7.139)
with (7.129) we get the following expression for total recoil electron energy E′

e

E′
e =Eν −E′

ν +Ee =Eν
[

1 − 1 + β
1 + β cos θ + ε√1 − β2(1 − cos θ)

]
+Ee

=Eν (ε
√

1 − β2 − β)(1 − cos θ)

1 + β cos θ + ε√1 − β2(1 − cos θ)
+Ee.

(7.144)
Kinetic energy E′

K of the recoil electron is then given as

E′
K =E′

e −E0 =Eν (ε
√

1 − β2)(1 − cos θ)

1 + β cos θ + ε√1 − β2(1 − cos θ)
+EK, (7.145)

where EK is kinetic energy of the incident electron.
The validity of (7.145) can be verified by adding the two energies E′

ν of (7.139)
and E′

e of (7.144) after the Coulomb interaction and comparing the result with the
sum of the two energies (Eν +Ee) before the Coulomb interaction.

We now look at two interesting limits concerning E′
K, one for β → 0 and the

other for β→ ∞.

(1) The limit of E′
K for β → 0 should coincide with the result for the standard

Compton effect on a stationary electron (β = 0) and photon scattering at scat-
tering angle θ given as E′

K = ε(1 − cos θ)/[1 + ε(1 − cos θ)] in (T7.79)

lim
β→0

E′
K = lim

β→0
Eν

(ε
√

1 − β2)(1 − cos θ)

1 + β cos θ + ε√1 − β2(1 − cos θ)
+EK

=Eν ε(1 − cos θ)

1 + ε(1 − cos θ)
(7.146)

in full agreement with the standard Compton scattering on stationary electron
(β = 0).
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(2) The limit of E′
K for β → 1 represents Compton effect on an ultra-relativistic

electron with kinetic energy EK and reads as follows

lim
β→1

E′
K = lim

β→1
Eν

(ε
√

1 − β2)(1 − cos θ)

1 + β cos θ + ε√1 − β2(1 − cos θ)
+EK =EK. (7.147)

7.3.Q9 (163)

A photon of energy hν = 10.22 MeV undergoes Compton scattering in a lead
absorber (Z = 82, A= 207.2 g/mol, ρ = 11.36 g/cm3). Determine:

(a) Energy EC
K transferred from incident photon to charged particles for the

following scattering angles θ : 0,45◦,90◦ and 180◦.
(b) Energy hν′ of the scattered photon for the following scattering angles

θ : 0,30◦,60◦,90◦, and 180◦.
(c) Mean energy transfer fraction f̄C and mean energy ĒC

K transferred to
charged particles in Compton effect.

(d) Klein-Nishina total electronic cross section eσ
KN
C and mass energy

transfer coefficient (σKN
C )tr/ρ for Compton effect of 10.22 MeV pho-

tons in lead.
(e) Maximum angle θmax through which the photon can be scattered and

still be able to undergo a triplet production interaction in the field of a
K-shell electron in lead absorber.

SOLUTION:

(a) Energy EC
K transferred from incident photon hν to recoil electron is given by

(T7.79)

EC
K(θ)= hν

ε(1 − cos θ)

1 + ε(1 − cos θ)
= hν

hν

mec2 (1 − cos θ)

1 + hν

mec2 (1 − cos θ)
, (7.148)

where ε = hν

mec2 = 10.22
0.511 = 20.

Inserting scattering angles θ of 0, 45◦, 90◦, and 180◦ into (7.148) we get the fol-
lowing results for recoil electron energy EC

K: 0, 8.73 MeV, 9.73 MeV, and 9.97 MeV,
corresponding to the following scattered photon energies hν′(θ) = hν − EC

K(θ) of
10 MeV, 1.49 MeV, 0.49 MeV, and 0.25 MeV.

(b) Energy hν′ of the scattered photon is calculated from (T7.71)

hν′(θ)= hν 1

1 + ε(1 − cos θ)
, (7.149)

where again ε = hν/(mec
2)= 10.22/0.511 = 20.
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Fig. 7.16 Scattered photon energy hν′ against incident photon energy hν for various scattering
angles θ in the range from 0 to 180◦

Fig. 7.17 The Compton graph showing the mean energy transfer fraction f̄C against incident
photon energy hν for Compton scattering

Inserting scattering angles θ of 0, 30◦, 60◦, 90◦, and 180◦ into (7.149) we get the
following results for scattered photon energy hν′: 10 MeV, 2.78 MeV, 0.93 MeV,
0.49 MeV, and 0.25 MeV, corresponding to the following recoil electron energies
EC

K(θ)= hν−hν′(θ) of 0, 7.44 MeV, 9.29 MeV, 9.73 MeV, and 9.97 MeV. A graph
depicting the general relationship between hν′ and hν for various scattering angles θ
is given in Fig. 7.16. Energies hν′ calculated for 10.22 MeV photons at various scat-
tering angles in this section are shown in Fig. 7.16 as data points at hν = 10.22 MeV.
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(c) Mean energy transfer fraction f̄C and mean energy ĒC
K transferred from a

10.22 MeV incident photon to charged particles in Compton effect are obtained
directly from the Compton graph for which the point f̄C = 0.68 at hν = 10 MeV
is one of the anchor points. As shown in Fig. 7.17, we get the following results for
f̄C(hν = 10.22 MeV) and ĒC

K(hν = 10.22 MeV)

f̄C(hν = 10.22 MeV)≈ 0.69 and ĒC
K(hν = 10.22 MeV)≈ 6.9 MeV. (7.150)

(d) Klein-Nishina total electronic Compton cross section eσ
KN
C and mass energy

transfer coefficient (σKN
C )tr/ρ are obtained from the Klein-Nishina cross section

graph for which the point eσ
KN
C (10 MeV) = 0.051 b/electron is one of the anchor

points. Thus we get

eσ
KN
C (10.22 MeV)≈ 0.050×10−24 cm2/electron = 0.050 b/electron (7.151)

and

(
σKN

C

)
tr/ρ

∣∣
10.22 MeV = ZNA

A
eσ

KN
C
ĒC

K

hν
= ZNA

A
eσ

KN
C f̄C

≈ (82 el/atom)×(6.022×1023 atom · mol−1)

207.2 g · mol−1
(0.050 b/el)

×0.69 = 8.22×10−3 cm2

g
. (7.152)

From (7.151) we note that the Klein-Nishina electronic Compton energy transfer co-
efficient (eσKN

C )tr is equal to f̄C · eσ
KN
C = 0.69×0.05 b/electron = 0.035 b/electron.

The two electronic coefficients eσ
KN
C and (eσ

KN
C )tr for photon energy hν =

10.22 MeV are plotted as data points on eσ
KN
C and (eσKN

C )tr curves of Fig. 7.18.

(e) We will determine the maximum scattering angle θmax recognizing the follow-
ing two conditions:

(1) The range of scattered photon energies in Compton effect is from hν′ = hν
for θ = 0 (forward scattering) to hν′ = hν/(1 + 2ε) for θ = 180◦ with ε =
hν/(mec

2 = 10.22/0.511 = 20).
(2) Threshold energy hνthr for triplet production (electronic pair production) is

4mec
2 or 2.044 MeV. Therefore, we must determine the scattering angle θ at

which the scattered photon energy hν′ is equal to 2.044 MeV and this will then
be the maximum scattering angle θmax at which triplet production is still pos-
sible. Scattering angles exceeding θmax will produce scattered photons whose
energy is below the threshold for triplet production of 2.044 MeV.

We now determine θmax using (7.149) with appropriate values for hν (10.22 MeV)
and hν′ (2.044 MeV) and get the following relationship incorporating hν′, hν, and θ

hν′(θmax)= hν 1

1 + ε(1 − cos θmax)
(7.153)
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Fig. 7.18 Compton electronic cross section eσ
KN
C and Compton electronic energy transfer cross

section (eσKN
C )tr for a free electron against incident photon energy hν. The two data points at

incident photon energy hν = 10.22 MeV represent results of our calculations of eσ
KN
C and (eσKN

C )tr
in (d)

or

hν′(θmax)

hν
≡ a = 2.044

10.22
= 0.2 = 1

1 + ε(1 − cos θmax)
. (7.154)

Solving (7.154) for cos θmax results in the following θmax

cos θmax = a(1 + ε)− 1

aε
= 0.2×(1 + 20)− 1

0.2×20
= 0.8 or

θmax = arccos 0.8 = 36.9◦.
(7.155)

7.3.Q10 (164)

Scattering plays an important role in atomic and nuclear physics and much of
the current knowledge on atomic and nuclear structure has been acquired from
scattering experiments combined with scattering theories based on atomic and
nuclear form factors, respectively. Form factors represent a Fourier transfor-
mation of a spatial density distribution (most commonly charge distribution)
from geometric to the so-called K space and depend on the type of scattering
(elastic or inelastic) as well as on the type of incident radiation beam (x ray,
electron, or neutron).

Cross sections for Rayleigh (coherent) scattering are expressed as product
of Thomson electronic cross section multiplied by the square of the atomic
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form factor F(x,Z), while differential atomic cross sections for Compton
(incoherent) scattering are expressed as product of Klein-Nishina differential
electronic cross section with the incoherent scattering function S(x,Z) which
is related to the atomic form factor F(x,Z). Theoretical derivation of F(x,Z)
is very complex for all elements except hydrogen for which the ground state
wave function is well known and simple.

(a) Derive the atomic form factor F(x,Z) of hydrogen F(x,Z = 1) =
F(x,H).

(b) On a log-log graph paper plot the atomic form factor of hydrogen
F(x,H) derived in (a) against the momentum transfer variable x.

SOLUTION:

(a) Atomic form factor F(K,Z) for an atom of atomic number Z represents a
Fourier transform of the atomic charge distribution and is defined by the following
integral

F(K,Z)=
∫ ∫ ∫

ρ(r)eiKrdV , (7.156)

where

ρ(r) is the total electron density at r.
K is the momentum transfer vector with magnitude |K| = K defined as

[(T1.106) and (T2.122)]

|K| =K = |�p|
�

= �p

�
= 2h

�λ
sin
θ

2
= 4π

λ
sin
θ

2
= 4πx, (7.157)

with�p the momentum transferred from the incident photon to the scatterer
(T1.119), λ the wavelength of the incident photon, and x the momentum
transfer variable defined as [x = sin( 1

2θ)/λ] where θ is the scattering angle
and λ is the wavelength, h is the Planck constant, and � is the reduced Planck
constant [�= h/(2π)].

For a spherically symmetric charge distribution (central potential) F(K,Z) may be
simplified as follows

F(K,Z)= F(K,Z)=
∫ ∫ ∫

ρ(r)eikrdV

=
∫ 2π

0

∫ π

0

∫ ∞

0
ρ(r)eiKr cos θ r2 dr sin θ dθ dφ

= 2π
∫ ∞

0
r2ρ(r)

{∫ +1

−1
eiKr cos θd(cos θ)

}
dr
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= 4π
∫ ∞

0
r2ρ(r)

eiKr − e−iKr
2iKr

dr

= 4π

K

∫ ∞

0
rρ(r) sin(Kr)dr. (7.158)

For atomic hydrogen the Schrödinger equation yields the following ground state
wave function (T3.71)

ψ100 = 1√
πa3

0

e
− r
a0 , (7.159)

where a0 is the Bohr radius constant equal to a0 = �c/(amec
2)= 0.5292 Å. Elec-

tron density ρ(r) for electron in ground state of hydrogen is given as

ρ(r)= |ψ100|2 = 1

πa3
0

e
− 2r
a0 , (7.160)

and inserting (7.160) into (7.158) yields the following expression for the atomic
form factor F(K,Z = 1)= F(K,H) of hydrogen in ground state

F(K,H)= 4

Ka3
0

∫ ∞

0
re

− 2r
a0 sin(Kr)dr = 4

Ka3
0

J . (7.161)

Integral J is of the following form J = ∫∞
0 ze−βz sin(bz)dz and can be solved

through several tedious steps of integration by parts or through finding the solution
in an extensive table of integrals where one can find the following entry

∫ ∞

0
zne−βz sin(bz)dz= (−1)n

∂n

∂βn

(
b

b2 + β2

)
. (7.162)

For n= 1, (7.162) gives the following solution for integral J

J =
∫ ∞

0
zeβz sin(bz)dz= 2βb

(b2 + β2)2
= 4K

a0(K2 + 4
a2

0
)2

= 4Ka3
0

(4 +K2a2
0)

2
, (7.163)

where the fourth and fifth terms of (7.163) were obtained by inserting into (7.163)
the following parameters: z= r, b=K , and β = 2/a0.

The atomic form factor F(K,H) for hydrogen in the ground state is now given
as follows

F(K,H)= 4

Ka3
0

J = 16

(4 +K2a2
0)

2
= 1

(1 + K2a2
0

4 )2
. (7.164)

Since from (7.157) we note that K = 4πx, we can express F(K,H) in the format
used by Hubbell and the NIST as follows

F(K,H)= F(x,H)= 1

(1 + 4π2a2
0x

2)2
= 1

(1 +Cfx2)2
, (7.165)
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where Cf is a form factor constant equal to Cf = 4π2a2
0 = 4π2(0.5292 Å)2 =

11.056 Å
2
.

Four special regions are of interest for the atomic form factor of (7.165):

(1) Limit for x→ 0:

lim
x→0

F(x,H)= lim
x→0

1

(1 +Cfx2)2
= 1. (7.166)

(2) Region of small x where Cfx� 1:

F(x,H)≈ 1 − 2C1x
2. (7.167)

(3) Region of intermediate x:

F(x,H) is given by (7.165). (7.168)

(2) Region of large x where Cfx
2 � 1 we get:

F(x,H)≈ (
Cfx

2)−2
. (7.169)

(3) Limit for x→ ∞:

lim
x→∞F(x,H)= lim

x→∞
1

(1 + 4π2a2
0x

2)2
= 0. (7.170)

(b) A log-log plot of the atomic form factor F(x,H) of hydrogen against the mo-
mentum transfer variable x determined from (7.165) is shown in Fig. 7.19 over 4
cycles in x and 8 cycles in F(x,H). Limiting values for x→ 0 and x→ ∞ as well
as regions of small x, intermediate x and large x are clearly identified.

Fig. 7.19 Atomic form factor F(x,H) against momentum transfer variable x for hydrogen as
determined from (7.165)
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7.3.Q11 (165)

Compton scattering theory assumes a photon interaction with a free and sta-
tionary electron, but this assumption becomes problematic when photon en-
ergy is comparable to the binding energy of the atomic electron to the nucleus.
Various methods have been developed to account for these binding effects
and most notable of them is Hubbell’s method based on the incoherent scat-
tering function S(x,Z), with x the momentum transfer variable defined as
x = (sin 1

2θ)/λ, λ the wavelength of the incident photon, θ the scattering an-
gle, and Z the atomic number of the absorber. Hubbell has shown that the
incoherent scattering function S(x,Z) of hydrogen is linked to the atomic
form factor F(x,Z) of hydrogen through the following relationship

S(x,Z = 1)= S(x,H)= 1 − [
F(x,H)

]2 = 1 − 1

[1 + 4πa2
0x

2]4
, (7.171)

with the form factor F(x,H) calculated from first principles and the wave
function of the hydrogen atom ground state, as shown in Prob. 164.

(a) For hydrogen determine the atomic form factor F(x,H) and the inco-
herent scattering function S(x,H) using (7.171) for the following values

of x in Å
−1

: 0.001, 0.01, 0.1, 1, 10, and 100. Plot F(x,H) and S(x,H)
against the momentum transfer variable x.

(b) For hydrogen derive an equation for the incoherent scattering func-
tion S(x,H) as a function of scattering angle θ and incident photon
energy Eν . For Eν = hν = 1 keV calculate S(θ,H) for the following
scattering angles θ : 30◦, 60◦, 90◦, 135◦, and 180◦. Using calculated
data sketch S(θ,H) against θ for the full range of θ from 0◦ to 180◦.

SOLUTION:

(a) Atomic form factor F(x,H) of hydrogen was derived in Prob. 164 from first
principles using the ground state wave function of hydrogen. Expressed as a func-
tion of the momentum transfer variable x, the atomic form factor of hydrogen is in
(7.171) implicitly given as

F(x,Z = 1)= F(x,H)= 1

(1 + 4π2a2
0x

2)2
, (7.172)

while S(x,H) is given as

S(x,H)= 1 − 1

(1 + 4π2a2
0x

2)4
. (7.173)
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Table 7.7 Atomic form factor F(x,H) and incoherent scattering function S(x,H), both of hydro-
gen, against momentum transfer variable x

x (Å
−1
) F (x,H) S(x,H)

0.001 1.000 4.42×10−5

0.01 0.998 4.41×10−3

0.1 0.811 0.343

1 6.88×10−3 1.000

10 8.17×10−7 1.000

Fig. 7.20 Atomic form factor F(x,H) of hydrogen against momentum transfer variable x. Solid
curves represent data from the NIST, data points (•) represent values calculated from (7.172)

Fig. 7.21 Incoherent scattering function S(x,H) of hydrogen against momentum transfer vari-
able x. Solid curves represent data from the NIST, data points (•) represent values calculated from
(7.173)



7.3 Incoherent Scattering (Compton Effect) 447

In Table 7.7 we show results of our calculation of F(x,H) and S(x,H) for
various values of the momentum transfer variable x using (7.172) and (7.173),
respectively. Our calculated data are in excellent agreement with F(x,H) and
S(x,H) tables available from the NIST, as shown in Figs. 7.20 and 7.21, which
show the NIST data with solid line curves and our calculation results with data
points.

In contrast to analytic expressions available for calculation of F(x,H) and
S(x,H) for hydrogen, no such expressions are available for multi-electron elements,
and Hubbell determined F(x,H) and S(x,H) for all other elements ranging in Z
from 2 to 100 using various assumptions, theories, and approximations. Hubbell’s
data are available from the NIST approaching the following limiting values for
x→ 0 and x→ ∞

lim
x→0

F(x,Z)= Z; lim
x→∞F(x,Z)→ 0 and

lim
x→0

S(x,Z)= 0; lim
x→∞S(x,Z)= Z.

(7.174)

(b) To plot the incoherent scattering function S(x,H) against scattering angle θ
for a given incident photon energy Eν = hν we first express the momentum transfer
variable x as a function of Eν as well as θ and then we introduce the expression for
x(Eν, θ) into (7.173) to get S(θ,H) for a given Eν . Momentum transfer variable x
is related to Eν and θ as follows

x = 1

λ
sin
θ

2
= ν

c
sin
θ

2
= hν

2π�c
sin
θ

2
= Eν

(1239.7 MeV · fm)
sin
θ

2
. (7.175)

Inserting (7.175) into (7.173) results in the following expression for S(Eν, θ,H)

S(x,H) = 1 − 1

[1 + 4π2a2
0(

Eν sin(θ/2)
1239.7 MeV·fm )2]4

= 1 − 1

[1 + 71939.3
(MeV)2

E2
ν sin2 θ

2 ]4
.

(7.176)

In (7.176) photon energy Eν is a parameter and inserting its given value provides in-
formation on the incoherent scattering function against scattering angle θ . Inserting
Eν = 1 keV into (7.176) gives the following S(θ,H) as a function of θ for incident
photon energy of 1 keV

S(θ,H)= 1 − 1

[1 + 71939.3 1
(MeV)2

×(0.001 MeV)2× sin2 θ
2 ]4

= 1 − 1

[1 + 7.19393×10−2× sin2(θ/2)]4
. (7.177)
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Table 7.8 Incoherent scattering function S(θ,Z) of hydrogen calculated from (7.177) for various
scattering angles θ and photon energy Eν = 1 keV

θ 0◦ 30◦ 60◦ 90◦ 135◦ 180◦

S(θ,H) 0 0.0190 0.0688 0.1318 0.2121 0.2426

Fig. 7.22 Sketch of the incoherent scattering function S(θ,Z) against scattering angle θ for pho-
ton energy Eν = 1 keV. Data points shown with solid circles are calculated from (7.177)

We used (7.177) to calculate S(θ,H) for hν = 1 keV with various scattering
angles θ and obtained results listed in Table 7.8. Next we plot the data of Table 7.8
and obtain a sketch of the incoherent scattering function S(θ,H) for photon energy
Eν = hν = 1 keV plotted against scattering angle θ in Fig. 7.22. From (7.177) it
is evident that, for a given incident photon energy Eν , the incoherent scattering
function S(θ,H) reaches its maximum value at θ = π and this can also be concluded
from Fig. 7.22 and Table 7.8.

7.3.Q12 (166)

Compton electronic cross sections are calculated with Klein-Nishina (KN)
equations valid for free electrons while the KN atomic cross sections are cal-
culated from Compton electronic cross sections by a simple multiplication
with atomic number Z of the absorber. However, at low incident photon en-
ergies the calculated KN atomic cross sections significantly exceed measured
data and this discrepancy has been attributed to binding effects of electrons to
the nuclei of absorber atoms.



7.3 Incoherent Scattering (Compton Effect) 449

Various methods have been developed to account for electronic binding
effects and most notable of them is Hubbell’s method based on the incoherent
scattering function S(x,Z) that expresses the Compton differential atomic
cross section d aσC/dΩ as (T7.116)

d aσC

dΩ
= deσ

KN
C

dΩ
×S(x,Z)= d eσTh

dΩ
×FKN×S(x,Z), (7.178)

where d eσ
KN
C /dΩ is the differential Klein-Nishina electronic cross section

for Compton scattering (T7.90), d eσTh/dΩ is the Thomson differential cross
section for free electron, FKN is the Klein-Nishina form factor, and the mo-
mentum transfer variable x is defined as x = sin(θ/2)λ, with λ the wavelength
of the incident photon.

For hydrogen the incoherent scattering function S(x,H) is related to the
atomic form factor F(x,H) through the following relationship where a0 is
the Bohr radius (0.5292 Å), as described in Prob. 164

S(x,H)= 1 − [
F(x,H)

]2 = 1 − 1

[1 + 4π2a2
0x

2]4
. (7.179)

(a) Using (7.178) calculate the Compton differential atomic cross sections
d aσC/dΩ and d aσC/dθ for photon energy Eν = 1 keV and scatter-
ing angle θ = 60◦. Sketch the two basic components of d aσC/dΩ :
(1) Thomson differential electronic cross section d eσTh/dΩ and
(2) Klein-Nishina form factor FKN in the θ range from 0 to π and
show how your calculated values for Eν = 1 keV and θ = 60◦ fit on the
graph.

(b) Verify your results for d aσC/dΩ and d aσC/dθ calculated in (a) by plot-
ting them onto d aσC/dΩ and d aσC/dθ graphs available for photon en-
ergy Eν = 1 keV.

SOLUTION:

Binding energy corrections to Klein–Nishina equations are treated in the impulse
approximation taking into account all orbital electrons of the absorber atom. This
involves applying a multiplicative correction function S(x,Z) (referred to as the
incoherent scattering function) to the Klein-Nishina differential atomic cross sec-
tions, as expressed in (7.178). For the one-electron atom (hydrogen) Hubbell showed
that the incoherent scattering function S(x,Z) is linked to the atomic form factor
F(x,Z) of hydrogen through (7.179).
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(a) To calculate the Compton differential atomic cross section d aσC/dΩ of hy-
drogen at incident photon energy Eν = hν = 1 keV and scattering angle θ = 60◦
we start with (7.178)

daσC

dΩ
= deσ

KN
C

dΩ
×S(x,H)= d eσTh

dΩ
×FKN(θ,Eν)×S(θ,Eν,H) (7.180)

and introduce expressions for its three component factors:

(1) Thomson differential electronic cross section d eσTh/dΩ (T7.39).
(2) Klein-Nishina form factor FKN(θ,Eν) (see T7.90).
(3) Incoherent scattering function S(θ,Eν,H).

To understand better the contribution of the individual factors to d aσC/dΩ we will
evaluate these factors separately and subsequently multiply them as required by
(7.178) to get d aσC/dΩ for Eν = 1 keV and θ = 60◦.

(1) Thomson differential electronic cross sections deσTh/dΩ and deσ/dθ for
Thomson scattering on free electron are expressed as follows [(T7.39) and
(T7.40)]

d eσTh

dΩ
= r2

e

2

(
1 + cos2 θ

)
and

d eσTh

dθ
= πr2

e

(
1 + cos2 θ

)
sin θ, (7.181)

giving for our specific case of Eν = 1 keV and θ = 60◦ the following results

d eσTh

dΩ
= r2

e

2

(
1 + cos2 θ

)= (2.812×10−13 cm)2

2 el · sr
×(

1 + cos2 60◦)

= 7.94×10.26 cm2

2 el · sr
×(1.25)= 4.96×10−26 cm2

el · sr
= 49.6

mb

el · sr
(7.182)

and

d eσTh

dθ
= d eσTh

dΩ

dΩ

dθ
= r2

e

2

(
1 + cos2 θ

)
2π sin θ

= π×(
2.818×10−13 cm

)2×(
1 + cos2 60◦)

×(
sin 60◦)/[(el · sr)×(sr/rad)

]
= π×[

7.941×10−26 cm2/(el · rad)
]×1.25×0.886

= 2.700×10−25 cm2/(el · rad)= 270mb/(el · rad). (7.183)

Figure 7.23 depicts d eσTh/dΩ for the full range of θ from 0 to π and also
shows the position of d eσTh/dΩ = 49.6 mb/(el · sr) calculated in (7.182) for
θ = 60◦.
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Fig. 7.23 Thomson differential electronic cross section d eσTh/dΩ per unit solid angle against the
scattering angle θ on the range from 0 to θ = π for Thomson scattering on free electron, as given
in (7.181). d eσTh/dΩ = 49.6 mb/(el · sr), calculated in (7.182) for θ = 60◦, is also shown on the
cross section curve

(2) Klein-Nishina form factor FKN(θ,Eν) is in general given as follows (T.7.90)

FKN = 1

[1 + ε(1 − cos θ)]2

{
1 + ε2(1 − cos θ)2

[1 + ε(1 − cos θ)](1 + cos2 θ)

}
(7.184)

and, after inserting values for our case of Eν = 1 keV and θ = 60◦, we get

FKN = 1

[1 + 1.957×10−3×(1 − cos 60◦)]2

×
{

1 + (1.957×10−3)2×(1 − cos 60◦)2

[1 + 1.957×10−3×(1 − cos 60◦)](1 + cos2 60◦)

}

= 1

[1 + 1.957×10−3×0.5]2
×
{

1 + 3.830×10−6×0.25

[1 + 1.957×10−3×0.5]×1.25

}
≈ 0.998.

(7.185)

Figure 7.24 depicts the Klein-Nishina form factor FKN against the scattering
angle θ for various values of the energy parameter ε = Eν/(mec

2) and also
shows on the graph the location of the FKN = 0.998 point for Eν = 1 keV
(ε = 1/511 = 1.957×10−3) and θ = 60◦.
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Fig. 7.24 Klein-Nishina form factor FKN against scattering angle θ as per (7.184) in the range
from θ = 0 to θ = π . KKN determined in (7.185) for scattering angle θ = 60◦ is indicated on the
graph

(2A) As implicitly suggested in (7.178), the Klein-Nishina differential cross
section d eσ

KN
C /dΩ is given by the following product

deσ
KN
C

dΩ
= d eσTh

dΩ
×FKN =

(
49.6

mb

el · sr

)
×0.998 = 49.5

mb

el · sr
.

(7.186)
(2B) The Klein-Nishina differential cross section deσ

KN
C /dθ for free elec-

tron, Eν = 1 keV, and θ = 60◦ is now expressed as follows

d eσ
KN
C

dθ
= d eσTh

dθ
×FKN = [

270 mb/(el · rad)
]×0.998

= 269.5 mb/(el · rad), (7.187)

where we used d eσTh/dθ = 270 mb/(el · rad) of (7.183) and FKN =
0.998 of (7.185).

(3) To express the incoherent scattering function S(x,H) as a function of scatter-
ing angle θ for a given incident photon energy Eν = hν we first express the
momentum transfer variable x as a function ofEν as well as θ , and then we in-
troduce the expression for x(Eν, θ) into (7.179) to get S(θ,H) for a given Eν .
The momentum transfer variable x is related to Eν and θ as follows

x = 1

λ
sin
θ

2
= ν

c
sin
θ

2
= hν

2π�c
sin
θ

2
= Eν

(1239.7 MeV · fm)
sin
θ

2
. (7.188)
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Inserting (7.183) into (7.179) results in the following expression for S(Eν, θ,H)

S(x,H)= 1 − 1

[1 + 4π2a2
0(

Eν sin(θ/2)
1239.7 MeV·fm )2]4

= 1 − 1

[1 + 71939.3
(MeV)2

E2
ν sin2 θ

2 ]4
.

(7.189)
The incoherent scattering function S(x,H) for incident photon energy Eν =

1 keV and scattering angle θ = 60◦ is calculated from (7.189) as follows:

S
(
60◦,H

)= 1 − 1

[1 + 7.19393×10−2× sin2(30◦)]4

= 1 − 1

(1 + 7.19393×10−2×0.25)4

= 1 − 1

(1.01798)4
= 1 − 1

1.0739
= 0.0688. (7.190)

Combining the results of (7.182), (7.185), and (7.190) we now get the Compton
atomic differential cross sections d aσC/dΩ and d aσC/dθ for photon energy Eν =
1 keV and scattering angle θ = 60◦ as follows

daσC

dΩ
= daσTh

dΩ
×FKN×S(x,H)

=
(

49.6
mb

el · sr

)
×0.998×0.0688

el

atom
= 3.41

mb

atom · sr
(7.191)

and

d aσC

dθ
= d aσC

dΩ
2π sin θ = 3.41

mb

el · sr
×2π× sin 60◦

(
sr

rad

)
= 18.6 mb/(el · rad).

(7.192)
(d) Figure 7.25 depicts two differential cross sections plotted per unit solid an-
gle Ω against scattering angle θ for incident photon energy Eν = hν = 1 keV.
The upper curve represents the Klein-Nishina differential electronic cross section
d eσ

KN
C /dΩ for free electron and the lower curve is for the Compton differential

atomic cross section d aσC/dΩ of hydrogen. The two data points show results of
our calculations for scattering angle θ = 60◦: d eσ

KN
C /dΩ = 49.5 mb/(el · sr) given

in (7.186) and d aσC/dΩ = 3.41 mb/(atom · sr) given in (7.191).
Figure 7.26 depicts two differential cross sections plotted per unit scattering an-

gle θ against scattering angle θ for incident photon energy Eν = 1 keV. The upper
curve represents the differential Klein-Nishina electronic cross section d eσ

KN
C /dθ

for free electron and the lower curve is for the differential Compton atomic cross
section d aσC/dθ for hydrogen. The two data points show our results for scat-
tering angle θ = 60◦: d eσ

KN
C /dθ = 269.5 mb/(el · rad) calculated in (7.187) and

d aσC/dθ = 18.6 mb/(atom · rad) calculated in (7.192).
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Fig. 7.25 Differential cross section per unit solid angle plotted against scattering angle θ for
incident photon energy Eν = hν = 1 keV. The upper curve represents Klein-Nishina differential
electronic cross section d eσ

KN
C /dΩ of free electron; the lower curve represents differential atomic

cross section d aσC/dΩ of hydrogen. The two data points are results of our calculations presented
in (7.186) and (7.191), respectively

Fig. 7.26 Differential cross section per unit solid angle plotted against scattering angle θ for
incident photon energy Eν = hν = 1 keV. The upper curve represents Klein-Nishina differential
electronic cross section d eσ

KN
C /dθ of free electron; the lower curve represents differential atomic

cross section d aσC/dθ of hydrogen. The two data points are results of our calculations presented
in (7.187) and (7.192), respectively
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7.4 Incoherent (Rayleigh) Scattering

7.4.Q1 (167)

Much of the early information on composition and structure of atoms was
derived from experiments based on scattering of photons on atoms and two
broad categories of photon scattering on atoms were developed: coherent and
incoherent. In coherent scattering the energy of the scattered photon hν′ is
equal to the incident photon energy hν; consequently, coherent scattering can
also be called elastic scattering. In incoherent scattering hν exceeds hν′; con-
sequently, incoherent scattering can also be referred to as inelastic scatter-
ing.

Both, the coherent and incoherent scattering, are characterized by scatter-
ing angle θ and momentum transfer |�p| =�p from the incident photon with
momentum |p| = p to the scattering center S. Momentum transfer is thus the
vector difference between momentum p of the incident photon and momen-
tum p′ of the scattered photon, i.e., �p = p − p′.

(a) Show that momentum transfer �p in coherent photon scattering can be
expressed as

�p = |�p| = 2
hν

c
sin
θ

2
= 2hx. (7.193)

(b) Show that momentum transfer �p in incoherent photon scattering can
be expressed as

�p = |�p| =
[

2
hν

c
sin
θ

2

]√1 + (ε2 + ε) sin2 θ
2

1 + 2ε sin2 θ
2

= 2hx

√
1 + (ε2 + ε) sin2 θ

2

1 + 2ε sin2 θ
2

. (7.194)

In (7.193) and (7.194)

hν is the incident photon energy with h the Planck constant and ν
photon frequency.

c is the speed of light in vacuum (c≈ 3×108) m/s.
θ is the scattering angle.
ε is incident photon energy normalized to rest energy of electron

(mec
2 = 0.511 MeV).
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x is momentum transfer variable defined as

x = 1

λ
sin
θ

2
, (7.195)

where λ is the wavelength of the incident photon (λ= c/ν).
(c) A photon with energy hν = 20 keV undergoes Rayleigh scattering on a

carbon atom. Scattering angle θ is 20◦. Calculate the momentum trans-
fer variable x, momentum transfer �p, and recoil energy (EK)tr trans-
ferred from the photon to the carbon atom.

SOLUTION:

Photon scattering on a scattering center S is depicted in Fig. 7.27 for both the co-
herent scattering in (A) and (B) and for incoherent scattering in (C). Initial photon
momentum (momentum of the incident photon) is p (vector quantity with magni-
tude |�p| = p), final photon momentum (momentum of the scattered photon) is p′
(vector quantity with magnitude |�p′| = p′). The angle between p and p′ is the
scattering angle θ ranging from θ = 0 (forward scattering) through θ = 90◦ (side
scattering) to θ = 180◦ (backscattering). Photon momentum pν is related to photon
energy Eν ≡ hν through the following well-known expression (T1.76)

pν = Eν

c
= hν

c
= h

λ
. (7.196)

(a) In coherent scattering where p = p′ the momentum vectors form an isosceles
triangle (i.e., triangle in which two sides are equal in length). The scattering center S
is located at the triangle vertex formed by the two equal-length sides of the triangle
(|p| = |p′|). The triangle altitude through this vertex is perpendicular to the base
of the triangle (|�p|) and coincides with the scattering angle bisector cutting the
momentum triangle into two equal rectangular triangles, as shown in Fig. 7.27(A).
The two angles opposite to the scattering angle θ are equal to one another.

For the shaded right-angled triangle of Fig. 7.27(A) we can now state the follow-
ing simple trigonometric relationship connecting 1

2θ and 1
2�p

sin
θ

2
= �p

2p
or �p = 2p sin

θ

2
= 2

hν

c
sin
θ

2
= 2

h

λ
sin
θ

2
= 2hx, (7.197)

showing that the momentum transfer �p is proportional to the momentum transfer
variable x defined in (7.195) which depends upon photon energy hν and scattering
angle θ .

Momentum transfer expression (7.197) can also be derived directly from the
shaded momentum triangle depicted in Fig. 7.27(B) using the law of cosines on
the shaded triangle defined by the three vector momenta: p,p′, and �p as follows

(�p)2 = p2 + (
p′)2 − 2pp′ cos θ. (7.198)
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Fig. 7.27 Momentum diagram for photon scattering on scattering center S. (A) and (B) represents
coherent scattering, (C) represents incoherent scattering

Since in coherent scattering p = p′, we simplify (7.198) to read

�p =
√

2p2(1 − cos θ)=
√

4p2 sin2 θ

2
= 2p sin

θ

2
= 2

hν

c
sin
θ

2
= 2

h

λ
sin
θ

2
= 2hx,

(7.199)
in perfect agreement with (7.197).

(b) In incoherent scattering the photon not only changes direction of motion, it
also loses some of its energy, resulting in p > p′. All sides of the momentum tri-
angle in this situation are unequal (scalene triangle) and the three angles are also
unequal. To derive the momentum transfer �p for incoherent scattering we now
apply the law of cosines on the shaded triangle of Fig. 7.27(C) and get an expres-
sion identical to (7.198) linking magnitudes of the three momenta p,p′ and �p.
However, since p �= p′, the derivation of �p is significantly more complicated for
incoherent scattering than it was for coherent scattering in (a).

Introducing (7.196) into (7.198) we start the derivation of �p for incoherent
scattering with the following expression

c2(�p)2 = (hν)2 + (
hν′)2 − 2(hν)

(
hν′) cos θ. (7.200)
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Recalling the relationship between incident photon energy hν and scattered photon
energy hν′ that applies for incoherent (Compton) scattering (T7.71)

hν′ = hν 1

1 + ε(1 − cos θ)
= hν 1

1 + 2ε sin2 θ
2

(7.201)

and inserting (7.201) into (7.200) we now get

c2(�p)2 = 2(hν)2
{

1 + 2ε sin2 θ
2 + 2ε2 sin4 θ

2 − cos θ − 2ε cos θ sin2 θ
2

[1 + 2ε sin2 θ
2 ]2

}

= 2(hν)2
{

2ε sin2 θ
2 + 2ε2 sin4 θ

2 + 2 sin2 θ
2 − 2ε sin2 θ

2 + 4ε sin4 θ
2

[1 + 2ε sin2 θ
2 ]2

}

= 4(hν)2
{
(ε2 + 2ε) sin4 θ

2 + sin2 θ
2

[1 + 2ε sin2 θ
2 ]2

}

= 4(hν)2
(

sin2 θ

2

) [1 + (ε2 + 2ε) sin2 θ
2 ]

[1 + 2ε sin2 θ
2 ]2

. (7.202)

Momentum transfer �p in incoherent scattering is from (7.202) expressed as

�p = 2

(
hν

c
sin
θ

2

)√1 + (ε2 + 2ε) sin2 θ
2

1 + 2ε sin2 θ
2

= 2hx

√
1 + (ε2 + 2ε) sin2 θ

2

1 + 2ε sin2 θ
2

, (7.203)

where x again is the momentum transfer variable and ε is the incident photon energy
hν normalized to the electron rest energy mec

2 = 0.511 MeV.

(c) Momentum transfer variable x is calculated from (7.195) and (7.197) as fol-
lows

x = 1

λ
sin
θ

2
= hν

2π�c
sin
θ

2
= (20 keV)

2π×(1.973 keV · Å)
sin

10◦

2
= 0.141 Å

−1
.

(7.204)
Momentum transfer �p to carbon atom for x = 0.141 Å

−1
is from (7.199)

�p = 2hx = 4π�cx

c
= 4π(1.973 keV · Å)×(0.141 Å

−1
)

c
= 3.49 keV. (7.205)

Energy transfer (EK)tr to carbon atom for �p = 3.49×103 eV/c is calculated as

(EK)tr = (�p)2

2MC
= c2(�p)2

2MCc2
= (3.49×103 eV)2

2×(11.175×109 eV)
= 5.45×10−4 eV. (7.206)

Energy transfer to carbon atom in a typical Rayleigh scattering event is exceedingly
small and negligible, allowing us to label coherent scattering as elastic scattering.
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7.4.Q2 (168)

Rayleigh differential atomic cross section daσR/dΩ per unit solid angle is
given as (T7.127)

daσR

dΩ
= d eσTh

dΩ

[
F(x,Z)

]2 = r2
e

2

(
1 + cos2 θ

)[
F(x,Z)

]2
, (7.207)

where d eσTh/dΩ is the Thomson differential electronic cross section, re is
the so-called classical radius of the electron, and F(x,Z) is the atomic form
factor which is a function of atomic number Z and momentum transfer vari-
able x defined as x = sin(θ/2)/λ.

(a) Derive and sketch an expression for the momentum transfer function
χ = x/Eν as a function of the scattering angle θ .

(b) Calculate the momentum transfer variable x for scattering angle θ =
60◦ and incident photon energy of Eν = hν = 1 keV.

(c) Using result of (b) and atomic form factor table from the NIST, deter-
mine atomic form factor F(x,Z) of carbon for photon energy Eν =
1 keV and scattering angle θ = 60◦.

(d) Using (7.207) and the results from part (c) calculate the Rayleigh differ-
ential atomic cross sections daσR/dΩ and daσR/dθ of carbon for photon
energy hν = 1 keV and scattering angle of θ = 60◦.

(e) Using same method as in (d) determine daσR/dΩ and daσR/dθ for pho-
tons of energy Eν = 1 keV scattered at θ = 0 (forward scattering) and
θ = π (backscattering).

(f) Verify your results calculated in (d) and (e) by entering them onto
daσR/dΩ and daσR/dθ graphs given in Figs. 7.30 and 7.31, respectively,
for Rayleigh scattering of Eν = 1 keV photons in a carbon absorber.

SOLUTION:

(a) The momentum transfer variable x is a function of the scattering angle θ as
well as the wavelength λ of the incident photon and is defined as (T7.120)

x = sin(θ/2)

λ
= ν sin(θ/2)

c
= hν sin(θ/2)

2π�c
= Eν sin(θ/2)

1239.7 MeV · fm
, (7.208)

where Eν = hν is incident photon energy, h is Planck constant, and c is the speed
of light. In (7.208) we used the standard relationship between photon wavelength λ
and energy Eν

Eν = hν = hc

λ
= 2π�c

λ
= 2π×(197.3 MeV · fm)

λ
= 1239.7 MeV · fm

λ
. (7.209)
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Fig. 7.28 Momentum transfer function χ against scattering angle θ from θ = 0 to θ = π

We now write (7.208) in the form x/Eν to remove the dependence on photon energy
Eν and get the energy-independent momentum transfer function χ

χ = x

Eν
= sin(θ/2)

1239.7 MeV · fm
= (

8.067×10−4 MeV−1 · fm−1) sin
θ

2
= C sin

θ

2
,

(7.210)

where C is a constant equal to (2π�c)−1 = 8.067×10−4 MeV−1 · fm−1.
Function χ depends on scattering angle θ only and is depicted in Fig. 7.28 in

the full scattering angle θ range from 0 to π . It is a simple trigonometric function
exhibiting the following two notable properties:

(1) For small scattering angles θ , it increases linearly with θ as χ = 1
2Cθ .

(2) At large angles where (θ → π), it saturates at a constant C = 8.067×
10−4 MeV−1 · fm−1.

From (7.210) we note that the momentum transfer variable x is a linear function of
the photon energy Eν = hν with the slope of the linear function given by the value
of the momentum transfer function χ at a given scattering angle θ .

(b) To calculate the momentum transfer variable x for scattering angle θ = 60◦
and incident photon energy Eν = 1 keV, we first determine the momentum transfer
function χ at θ = 60◦ from (7.210) or Fig. 7.28 and obtain χ = 0.0004 MeV−1 ·
fm−1.
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Table 7.9 Atomic form factor F(x,Z) of carbon against momentum transfer variable x

x (Å−1) F(x,6) x (Å−1) F(x,6) x (Å−1) F(x,6)

0 6.0000 0.2 3.5775 3.5 8.0432×10−2

0.005 5.9974 0.25 2.9614 4 5.2230×10−2

0.01 5.9898 0.3 2.5015 5 2.4330×10−2

0.015 5.9771 0.4 1.9512 6 1.2650×10−2

0.02 5.9594 0.5 1.6856 7 7.1471×10−2

0.025 5.9369 0.6 1.5353 8 4.3194×10−3

0.03 5.9093 0.7 1.4245 10 1.8363×10−3

0.04 5.8406 0.8 1.3206 15 3.7767×10−4

0.05 5.7544 0.9 1.2165 20 1.2157×10−4

0.07 5.5369 1 1.1121 50 3.2386×10−6

0.09 5.2702 1.25 0.86482 80 5.0734×10−7

0.1 5.1225 1.5 0.65662 100 2.1123×10−7

0.125 4.7407 2 0.37202 1000 3.5964×10−11

0.15 4.3310 2.5 0.21455 1.0×106 1.6609×10−20

0.175 3.9371 3 0.12832 1.0×109 1.6810×10−29

Next, we determine the momentum transfer variable x from (7.210) as

x

(
1 keV,

1

3
π

)
= χ

(
1

3
π

)
Eν = (

0.0004 MeV−1 · fm−1)×(0.001 MeV)

= 4×10−7 fm−1 = 0.04 Å
−1
. (7.211)

(c) Atomic form factors F(x,Z) for elements from Z = 1 to Z = 92 as a function
of the momentum transfer variable x, tabulated by Hubbell, are available from the

NIST and cover a range of values of x from 0 all the way to 109 Å
−1

. In Table 7.9
we present Hubbell’s NIST data for the atomic form factor of carbon and for the

entry of x = 0.04 Å
−1

obtain a form factor of F(x = 0.04 Å
−1
,Z = 6) = 5.8406

(shown in bold face in the table). Of course, if the exact x is not found in the form
factor table, one can resort to a linear interpolation of appropriate entries found in
the table.

(d) Rayleigh atomic differential cross section daσR/dΩ is given by (7.207) and
contains two components: Thomson differential electronic cross section d eσTh/dΩ
multiplied by the square of the atomic form factor F(x,Z). To determine daσR/dΩ
of carbon at θ = 60◦ and Eν = 1 keV we must first calculate d eσTh/dΩ and de-
termine F(x,Z) for the two parameters θ and Eν , and then use (7.207). The form
factor F(x,Z) was determined from the NIST tables in (c).
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Fig. 7.29 Differential electronic cross section d eσTh/dΩ per unit solid angle against the scatter-
ing angle θ for Thomson scattering on free electron. d eσTh/dΩ calculated in (7.212) for scattering
angle θ = 60◦ is shown as measured point on the cross section curve

The Thomson cross section d eσTh/dΩ for θ = 60◦ is calculated as follows

d eσTh

dΩ
= r2

e

2

(
1 + cos2 θ

)= (2.818×10−13 cm)2

2 el · sr
×(

1 + cos2 60◦)

= 7.94×10−26 cm2

2 el · sr
×(1.25)= 4.96×10−26 cm2

el · sr
= 49.6

mb

el · sr
(7.212)

and shown in Fig. 7.29 in the full scattering angle range from θ = 0 to θ = π .
Equation (7.207) now yields the following result for the Rayleigh differential

atomic cross section daσR/dΩ for photon of energy Eν = hν = 1 keV, scattered at
θ = 60◦

daσR

dΩ
= d eσTh

dΩ

[
F(x,Z)

]2 =
(

49.6×10−3 b

at · sr

)
×(5.8406)2 = 1.692

b

at · sr
.

(7.213)
Atomic Rayleigh differential cross section daσR/dΩ at Eν = hν = 1 keV and
θ = 60◦ is calculated as follows

daσR

dθ
= daσR

dΩ

dΩ

dθ
= daσR

dΩ
2π sin θ

=
(

1.692
b

atom · sr

)
×2π sin

(
60◦) sr

rad
= 9.207

b

atom · rad
. (7.214)
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(e) We now use the same method as in (d) and calculate daσR/dΩ and daσR/dθ
for photons of energy Eν = 1 keV scattered at θ = 0 and θ = π .

(1) Let us first look at θ = π . The momentum transfer function χ is determined
as follows

χ = C sin
θ

2
= (

8.067×10−4 MeV−1 · fm−1)× sin
π

2

= 8.067×10−4 MeV−1 · fm−1. (7.215)

The momentum transfer variable x at Eν = 1 keV and θ = π is given as

x =Eνχ = (
10−3 MeV

)×(
8.067×10−4 MeV−1 · fm−1)= 0.08067 Å

−1
.

(7.216)
A linear interpolation of entries for x = 0.07 Å

−1
and x = 0.09 Å

−1
in Ta-

ble 7.9 yields the following atomic form factor F(x = 0.08067 Å
−1
,Z = 6)=

5.3946 for carbon at hν = 1 keV and θ = π . Insertion of this form factor into
(7.207) gives the following result for daσR/dΩ

daσR

dΩ
= d eσTh

dΩ

[
F(x,Z)

]2 =
(

79.4×10−3 b

atom · sr

)
×(5.3946)2

= 2.311
b

atom · sr
. (7.217)

Similarly, for daσR/dθ we get from (7.214)

daσR

dθ
= daσR

dΩ

dΩ

dθ
= daσR

dΩ
2π sin θ =

(
2.311

b

atom · sr

)
×2π sinπ = 0.

(7.218)
(2) At θ = 0 the momentum transfer function χ as well as the momentum trans-

fer variable are both equal to zero and daσR/dΩ = 2.858 b/(atom · sr), ex-
actly 36r2

e b/(atom · sr) or Z2d eσTh(θ = 0)/dΩ . This follows from F(x =
0,Z)= Z valid at all photon energies Eν and atomic numbers Z. Just like for
θ = 180◦ in (7.218), at θ = 0 the differential cross section daσR/dθ = 0.

(f) Figures 7.30 and 7.31 depict daσR/dΩ and daσR/dθ , respectively, against scat-
tering angle θ for hν = 1 keV in the full range of θ from θ = 0 to θ = π . Cross
sections calculated for θ = 60◦ in (d) as well as for θ = 0 and θ = π in (e) are
clearly shown as data points on the graphs and agree well with the curves plotted in
the two figures. Differential atomic Rayleigh cross sections daσR/dΩ and daσR/dθ
of carbon calculated for scattering angles θ of 0◦, 60◦, and 180◦ in (d) and (e) are
summarized in Table 7.10.
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Fig. 7.30 Rayleigh differential atomic cross section of carbon daσR/dΩ per unit solid angle
against the scattering angle θ for Rayleigh scattering of photon with energy hν = 1 keV. Data
points correspond to results from calculations in (d) for θ = 60◦ and in (e) for θ = 0 as well as
θ = π

Fig. 7.31 Rayleigh differential atomic cross section of carbon daσR/dΩ per unit scattering angle
against the scattering angle θ for Rayleigh scattering of photon with energy hν = 1 keV. Data
points correspond to results from calculations in (d) for θ = 60◦ and in (e) for θ = 0 as well as
θ = π
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Table 7.10 Summary of differential atomic Rayleigh cross sections of carbon calculated in (d)
and (e) for photons of energy of 1 keV

Scattering angle θ
degrees

Differential cross section
daσR/dΩ b/(atom sr)

Differential cross section
daσR/dθ b/(atom rad)

0 2.858 0

60 1.692 9.207

180 2.311 0

7.5 Photoelectric Effect

7.5.Q1 (169)

Photoelectric (PE) effect is the term used to describe an interaction between a
photon of energy hν and a tightly bound orbital electron of an absorber atom.
In the interaction the photon is absorbed completely and an orbital electron is
ejected as photoelectron with kinetic energy Epe

K .

(a) Draw a schematic diagram of the photoelectric effect occurring in the
K shell of a multi-electron absorber atom.

(b) Prove that the photoelectric effect cannot happen on a free electron.
(c) Explain the meaning of terms: “loosely bound” electron and “tightly

bound” electron.
(d) It is generally assumed that the kinetic energy Ee

K of the photoelec-
tron released from the atom undergoing a PE process is given as Ee

K =
hν − EB, where EB is the binding energy of the electron to the atom
undergoing the PE process. However, since the PE process occurs in a
photon interaction with a tightly bound electron, the atom M involved
in the PE process must recoil with a certain non-zero, albeit small, re-
coil kinetic energy EM+

K . Do not neglect the recoil kinetic energy of the
atom and calculate the kinetic energy Ee

K of the photoelectron and the

kinetic energy EM+
K of the recoil ion. Determine the ratio EM+

K /Ee
K to

justify neglecting EM+
K in comparison with Ee

K.

SOLUTION:

(a) A schematic diagram of the PE effect is depicted in Fig. 7.32. A photon with
energy hν, exceeding the K-shell electron binding energy EB(K), interacts with a
K-shell electron of a multi-electron atom. The photon is absorbed and the K-shell
electron is ejected from the atom as a photoelectron with kinetic energy EK ≈ hν−
EB(K). The vacancy in the K shell is subsequently filled with a higher orbit electron
and the energy of the electronic transition is emitted in the form of a characteristic
(fluorescence) photon or as an Auger electron.
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Fig. 7.32 Schematic diagram of the photoelectric effect

Fig. 7.33 Schematic diagram of a “gedanken experiment” (thought experiment) in which a photon
undergoes a PE interaction with a free and stationary electron

(b) Photon–free electron PE interaction is not possible because it would violate
the principle of total energy and momentum conservation. To prove this statement
let us create a “gedanken experiment” (thought experiment) in which photon-free
electron PE interaction is possible (Fig. 7.33) and evaluate how it satisfies the con-
servation of total energy and momentum.

(1) Total energy E before and after PE interaction:
Before PE interaction (photon + free electron at rest)

Ebefore = hν +mec
2 (7.219)

After PE interaction (photoelectron)

Eafter =Ee
K +mec

2 (7.220)

Total energy conservation:

Ebefore =Eafter or hν +mec
2 =Ee

K +mec
2 or hν =Ee

K, (7.221)

where hν his energy of the photon,mec
2 is the rest energy of the electron, and

Ee
K is kinetic energy of the photoelectron.

(2) Momentum p before and after PE interaction:
Before PE interaction (photon + free electron at rest)

pbefore = pν = hν

c
(7.222)
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After PE interaction (photoelectron)

pafter = pe = Ee
K

c

√
1 + 2mec2

Ee
K

(7.223)

Momentum conservation:

pbefore = pafter or
hν

c
= Ee

K

c

√
1 + 2mec2

Ee
K

or hν > Ee
K, (7.224)

where pν is the momentum of the photon and pe is the momentum of the
photoelectron.

Equations (7.221) and (7.224) clearly contradict one another, since from conserva-
tion of energy stated in (7.221) we establish that hν = Ee

K and from conservation
of momentum stated in (7.224) we establish that hν > Ee

K. Based on this we con-
clude that in a photon–free electron interaction the photon and free electron alone
cannot simultaneously conserve the total energy and momentum and this makes a
photon–free electron PE interaction impossible.

The extra energy and momentum carried by the photon that is not transferred
to the photoelectron is actually transferred to a third entity, the parent atom of the
photoelectron. However, this extra energy and momentum can be transferred to the
parent atom only when the electron is bound to the parent atom, the tighter is the
binding, the more probable is the PE event, under the condition, of course, that the
photon energy hν must exceed the binding energy EB of the electron to the nucleus.

(c) In the context of photon interactions with absorber atoms the two terms
“loosely bound” electron and “tightly bound” electron are often explained casu-
ally by stating that a tightly bound electron is an inner shell atomic electron, while
a loosely bound electron is an outer shell atomic electron. Since this is not true in
general (for example, a K-shell electron in lead appears loosely bound to a 10 MeV
photon), it is better to explain the two terms by comparing the energy of the inter-
acting photon hν with the binding energy EB of a given atomic electron. We then
get the following definitions:

(1) Loosely bound electron is an electron whose binding energy EB is small in
comparison with photon energy hν, i.e., EB � hν. An interaction between a
photon and a loosely bound electron is considered to be an interaction between
a photon and a “free” (i.e., unbound electron).

(2) Tightly bound electron is an electron whose binding energy EB is compara-
ble to, larger than, or slightly smaller than the photon energy hν. For photon
interaction to occur with a tightly bound electron, binding energy EB of the
electron must be of the order of, but smaller than the photon energy hν, i.e.,
EB � hν. Interaction between photon and a tightly bound electron is consid-
ered an interaction between a photon and the atom as a whole.
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(d) Energy Etr available in a PE process for transfer to photoelectron and residual
ion M+ is given as Etr = hν − EB, where hν is the incident photon energy and
EB is the binding energy of the electron ejected as photoelectron. Energy Etr is
shared as kinetic energy between photoelectron Ee

K and residual ion EM
+

K in inverse
proportion to their mass. Thus, we can state

Etr =Ee
K +EM+

K = M+

M+ +me
Etr + me

M+ +me
Etr = M+

M
(hν−EB)+me

M
(hν−EB),

(7.225)
recognizing thatM =M+ +me, withM the mass of the parent atom,M+ the mass
of the residual ion, and me the photoelectron mass. From (7.225) we now express
Ee

K and EM
+

K as

Ee
K = M+

M
Etr = M+

M
(hν−EB) and EM

+
K = me

M
Etr = me

M
(hν−EB). (7.226)

The ratio Ee
K/E

M+
K shows that the recoil energy of the residual ion is exceedingly

small and can be neglected. Thus, it is reasonable to state that Ee
K ≈Etr = hν−EB.

7.5.Q2 (170)

A 100 keV photon has a photoelectric (PE) interaction with a K-shell elec-
tron in lead atom. The K-shell binding energy EB(K) of lead is 88 keV;
atomic weight of lead is 207.2 u and atomic rest energy M (Pb)c2 is
207.2×931.494 MeV = 193005.5568 MeV.

(a) Determine kinetic energy Ee
K of the ejected photoelectron as well as the

recoil kinetic energy EPb+
K of the residual lead ion.

(b) Determine the magnitude of the momenta pν , pe, and pPb+ of the inci-
dent photon, ejected photoelectron, and recoil residual lead ion, respec-
tively.

(c) Draw a diagram with momentum vectors for the PE interaction of a
100 keV photon with a K-shell electron in lead atom. Do not neglect the
recoil of the residual lead ion.

SOLUTION:

(a) In PE interaction between a photon and an atomic electron the photon is com-
pletely absorbed, the electron is ejected as a photoelectron with a well-defined
kinetic energy, and the residual ion recoils with a small kinetic energy. When a
100 keV photon undergoes a PE interaction with a K-shell electron of lead, photon
disappears and its energy hν of 100 keV is distributed as follows:

(1) A component of photon energy in the amount of 88 keV equal to the binding
energy EB(K) of the K-shell electron in lead is used up to release the K-shell
electron as a photoelectron.
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(2) Energy difference (EK)tr between photon energy hν and electron binding en-
ergy EB(K) is transferred to the photoelectron and residual lead ion as kinetic
energy Ee

K and EPb+
K , respectively,

(EK)tr = hν −EB(K)=Ee
K +EPb+

K . (7.227)

(3) The transferred energy (EK)tr is shared between the photoelectron and resid-
ual ion in the inverse proportion to their mass. Using (7.227) and recalling that
M (Pb)= M (Pb+)+me, where M designates atomic mass, i.e., nuclear mass
M plus mass of orbital electrons, we expand (EK)tr as

(EK)tr =Ee
K +EPb+

K = M (Pb +)
M (Pb+)+me

(EK)tr + me

M (Pb+)+me
(EK)tr

= M (Pb+)
M (Pb)

(EK)tr + me

M (Pb)
(EK)tr

= M (Pb+)
M (Pb)

[
hν −EB(K)

]+ me

M (Pb)

[
hν −EB(K)

]
, (7.228)

resulting in the following expressions for Ee
K and EPb+

K

Ee
K = M (Pb+)

M (Pb)

[
hν −EB(K)

]
and EPb+

K = me

M(Pb)

[
hν −EB(K)

]
.

(7.229)

Inserting appropriate values into (7.229) we get the following results for kinetic
energy Ee

K of the photoelectron and recoil kinetic energy EPb+
K of the residual lead

ion

Ee
K = M Pb+

M Pb

[
hν −EB(K)

]=
(

1 − me

M Pb

)[
hν −EB(K)

]

=
(

1 − 0.511

193005.5568

)
×[100 keV − 88 keV]

= (
1 − 2.6476×10−6)×(12 keV)= 11.999968 keV, (7.230)

EPb+
K = me

M Pb

[
hν −EB(K)

]=
(

0.511

193005.5568

)
×[100 keV − 88 keV]

= 2.6476×10−6×(12 keV)= 3.177×10−5 keV = 3.177×10−2 eV.
(7.231)

In summary, in 100 keV photon interaction with a K-shell electron in lead,
88 keV is used up to release the electron from the atom and the remaining 12 keV is
shared as kinetic energy between the photoelectron and residual lead ion. Equations
(7.230) and (7.231) show that the photoelectron, by virtue of its much smaller mass
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compared to the residual ionic mass, picks up the larger portion by far of the 12 keV
available and the residual ion acquires an exceedingly small portion of the 12 keV
as recoil kinetic energy. This recoil energy is so small that it is usually neglected in
studies of the PE effect. An assumption is thus made that the photoelectron acquires
the full amount of the available energy, i.e., Ee

K ≈ hν − EB, however, for rigorous
work we must recognize that the recoil energy of the residual ion is finite, albeit
small, preventing the PE effect occurring on free electrons.

(b) Magnitude of momenta involved in a 100 keV photon PE interaction with K-
shell electron in lead is determined using the standard expressions for calculation of
photon momentum pν (T1.76) and particle momentum (T1.64)

(1) Magnitude of the incident photon momentum pν

|pν | = pν = Eν

c
= hν

c
= 100 keV

c
= 100 keV/c. (7.232)

(2) Magnitude of the ejected photoelectron momentum pe

|pe| = pe = Ee
K

c

√
1 + 2mec2

Ee
K

= (11.999968 keV)

c

√
1 + 2×0.511

11.999968×10−3
= 111.39 keV/c. (7.233)

(3) Magnitude of the recoil momentum pPb+ of the residual lead ion

|pPb+| = pPb+ = EPb+
K

c

√
1 + 2M (Pb+)c2

EPb+
K

= (3.177×10−5 keV)

c

√
1 + 2×193005.0458

3.2×10−8
= 110.75 keV/c.

(7.234)

(c) Like in general PE effect, three vector momenta play a role in the PE interac-
tion of a 100 keV photon with a K-shell electron in lead atom: (1) momentum of the
incident photon pν , (2) momentum of the ejected photoelectron pe, and (3) recoil
momentum of the residual lead ion pPb+ . The three vector momenta form a triangle
and we know the sides of the triangle, since they are defined by the magnitudes of
the vectors that were determined in (b). The triangle is depicted in Fig. 7.34 and in
principle can be drawn simply on the basis of its three sides. On the other hand, we
can use the trigonometric cosine law and calculate the angles φ and ϕ to facilitate
the drawing of the momentum triangle for the PE effect.
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Fig. 7.34 Vector diagram for a PE interaction of a 100 keV photon with K-shell electron in lead
atom

With help of Fig. 7.34 and the law of cosines we calculate angles φ and ϕ as
follows

p2
Pb+ = p2

ν + p2
e − 2pνpe cosφ or

φ = arccos
p2
ν + p2

e − p2
Pb+

2pνpe
= arccos

1002 + 111.392 − 110.752

2×100×111.39

= arccos 0.455 = 62.9◦

(7.235)

and

p2
e = p2

ν + p2
Pb+ − 2pνpPb+ cosϕ or

ϕ = arccos
p2
ν + p2

Pb+ − p2
e

2pνpPb+
= arccos

1002 + 110.752 − 111.392

2×100×110.75

= arccos 0.440 = 63.9◦.

(7.236)

7.5.Q3 (171)

The most important parameters in photoelectric (PE) interaction of energetic
photons with absorber atoms are: (1) Incident photon energy hν; (2) Atomic
number Z of the absorber atom; (3) Binding energy EB of the ejected elec-
tron; (4) Kinetic energy (EK)tr transferred from incident photon to photoelec-
tron Ee

K and residual ion EM +
K ; (5) Momenta of incident photon pν , ejected

photoelectron pe, and residual ion pM + ; and (6) Emission angle φ of the pho-
toelectron and recoil angle ϕ of the residual ion.
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For photons of energy hν = 0.1 MeV,1 MeV,10 MeV,100 MeV, and
1000 MeV undergoing a PE interaction with a K-shell electron in lead de-
termine:

(a) Kinetic energy (EK)tr transferred from incident photon to photoelectron
Ee

K and residual lead ion EPb+
K .

(b) Momentum of the incident photon pν ; ejected photoelectron pe, and
residual ion pM + .

(c) Ejection angle φ of the photoelectron and recoil angle ϕ of the residual
lead ion Pb+.

(d) Plot momentum vector diagrams for PE interaction of photons with en-
ergy of 0.1 MeV, 1 MeV, 10 MeV, and 100 MeV. Adjust scale of each
graph to normalize the incident photon momentum to 1 MeV/c.

(e) Conservation of energy and momentum seem to suggest a uniquely de-
fined ejection angle φ of the photoelectron for a given photon energy
hν yet experiments showed a broad distribution of ejection angles (see
Evans). Explain the reason for the discrepancy.

K-shell binding energy EB(K) of lead is 88 keV; atomic weight of lead
is 207.2 u; atomic rest energy of lead M (Pb)c2 is 193005.5568 MeV; and
atomic rest energy of residual lead ion is M (Pb+)c2 = M (Pb)c2 − mec

2 =
193005.0458 MeV. For definition of parameters see sketch above.

SOLUTION:

(a) Energy (EK)tr transferred from incident photon to the photoelectron as Ee
K and

to the recoil residual ion as EPb+
K is equal to the difference between photon energy

hν and binding energy EB(K) of K-shell electron in lead

(EK)tr =Ee
K +EPb+

K = hν −EB(K)= hν − 0.088 MeV. (7.237)

Energy (EK)tr transferred from photon to lead atom given in (7.237) is shared
between the photoelectron and residual lead ion in inverse proportion to their mass.
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Thus, Ee
K and EPb+

K are given as

Ee
K = M (Pb+)

M (Pb+)+me
(EK)tr = M (Pb+)

M (Pb)
(EK)tr (7.238)

and

EPb+
K = me

M (Pb+)+me
(EK)tr = me

M (Pb)
(EK)tr. (7.239)

Results of our calculation of (EK)tr, Ee
K, and EPb+

K based on (7.237), (7.238), and
(7.239), respectively, for the five photon energies are given in rows (2), (3), and (4)
of Table 7.11.

(b) Magnitude of momenta of the incident photon pν ; ejected photoelectron pe,
and residual ion pM + involved in PE interaction of incident photon of energy hν
with a K-shell electron in lead is determined using the standard expressions for
calculation of photon momentum pν = |pν | (T1.76) and particle momentum p = |p|
(T1.64), respectively, as

pν = |pν | = Eν

c
= hν

c
, (7.240)

pe = |pe| = Ee
K

c

√
1 + 2mec2

Ee
K

and pPb+ = |pPb+| = EPb+
K

c

√
1 + 2M (Pb+)c2

EPb+
K

.

(7.241)

Results of our calculation of pν with (7.240) and pe as well as pPb+ with (7.241)
for the five photon energies are listed in rows (5), (6), and (7) of Table 7.11.

(c) Ejection angle φ of the photoelectron and recoil angle ϕ of the residual lead
ion are calculated using the rule of cosine on the triangle formed by the three vector
momenta pν , pe, and pM + . The two expressions for φ and ϕ are given as follows

φ = arccos
p2
ν + p2

e − p2
Pb+

2pνpe
(7.242)

and

ϕ = arccos
p2
ν + p2

Pb+ − p2
e

2pνpPb+
. (7.243)

Results of our calculation of ejection angle φ with (7.242) and recoil angle ϕ with
(7.243) for the five photon energies are listed in rows (8) and (9), respectively, of
Table 7.11.

(d) Figure 7.35 shows four graphs of vector momenta pν , pe, and pM + for PE
interaction of energetic photons with K-shell electron in lead. Part (A) is for photon
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Table 7.11 Various parameters important for photoelectric (PE) interaction of photon of energy
hν with a K-shell electron in lead absorber

(1) Eν = hν (MeV) 0.1 1.0 10 100 1000

(2) (EK)tr (MeV) 0.012 0.912 9.912 99.912 999.912

(3) Ee
K (MeV) 0.0119997 0.9119976 9.9119738 99.9117354 999.909352

(4) EPb+
K (MeV) 3.178×10−8 2.415×10−6 2.625×10−5 2.646×10−4 2.648×10−3

(5) pν (MeV/c) 0.1 1 10 100 1000

(6) pe (MeV/c) 0.111391 1.328081 10.410440 100.421435 1000.42022

(7) pPb+ (MeV/c) 0.110751 0.965508 3.183017 10.105717 31.969748

(8) φ 62.9◦ 46.4◦ 17.8◦ 15.8◦ 1.8◦

(9) ϕ 63.9◦ 85.0◦ 88.2◦ 89.5◦ 90.2◦

Fig. 7.35 Vector diagrams for PE interaction between photon of energy hν with K-shell electron
in lead absorber. Three momentum vectors are shown for each photoelectric (PE) interaction: mo-
mentum pν of incident photon, momentum pe of the ejected photoelectron, and recoil momentum
pPb+ of the residual lead ion. (A) is for hν = 0.1 MeV and scale of 1:0.1; (B) for 1 MeV and scale
1:1; (C) for 10 MeV and scale of 1:10; and (D) for 100 MeV and scale 1:10

energy hν = 0.1 MeV and scale of 1:0.1; (B) for 1 MeV and scale 1:1; (C) for
10 MeV and scale 1:10; and (D) for 100 MeV and scale 1:100. Magnitudes of vec-
tors are plotted with decreasing scales such that the magnitude of pν appears the
same in all four graphs.
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From the four graphs of Fig. 7.35 and Table 7.11 we note several interesting
features of the three momenta in PE interaction between an energetic photon and
K-shell electron in lead:

(1) At incident photon energy hν exceeding, but of the order of, EB(K), magni-
tudes of pe and pPb+ are similar to the magnitude of pν .

(2) With increasing incident photon energy hν the magnitude of pe remains sim-
ilar to the magnitude of pν , while the magnitude of pPb+ decreases signifi-
cantly.

(3) At hν = 0.1 MeV the photoelectron ejection angle φ and residual lead ion
recoil angle ϕ are about 60◦. As photon energy hν increases, φ decreases and
photoelectron is ejected more and more in the direction of the incident photon
(forward direction).

(4) As photon energy hν increases from 0.1 MeV, recoil angle ϕ increases from
60◦ and rapidly approaches 90◦ indicating that at high photon energies the
residual lead ion recoils in a direction perpendicular to the incident photon.

(5) Irrespective of photon energy hν, as long as hν > EB(K), kinetic energy Ee
K

of the photo-electron equals photon energy hν less the binding energy EB(K)
of the K-shell electron.

(6) Irrespective of photon energy hν, as long as hν > EB(K), kinetic energyEPb+
K

of the recoil residual lead ion is exceedingly small, the ratioEPb+
K /Ee

K amount-
ing to only ∼3×10−6 and justifying the standard approximation in PE effect:
(EK)tr = hν −EB(K)≈Ee

K and EM +
K ≈ 0.

(e) As shown in (a) and (b), conservation of total energy and momentum applied
to PE effect suggest a discrete energy distribution of photoelectrons (Ee

K) as well as
uniquely defined ejection angles φ of the photoelectron. While discrete Ee

K are born
out by experiment, uniquely defined φ are not, since photoelectrons tend to be emit-
ted within a wide range of angles φ. For a given photon energy hν the directional
distribution of photoelectrons exhibits a bell-type curve that peaks around 60◦ at
relatively low hν and then tends more and more toward forward direction as photon
energy hν increases. Evans describes this behavior by defining a bipartition angle
as a function of photon energy hν. The bipartition angle for a specific quantity is
defined as the half-angle of the cone into which one half of the quantity is scattered.
We note that the ejection angle φ, calculated in (c), roughly follows the bipartition
angle introduced for the PE effect by Evans.

Evans explains the problem in ejection angle φ by stipulating that the photon
indeed transfers its full momentum pν = hν/c to the photoelectron and residual ion
but it also adds a small and varying transverse momentum that arises from the elec-
tric field of the EM wave interacting with charged photoelectron and residual ion.
The extra momentum fluctuates depending on the polarity of the electric field of the
EM wave causing a spread in φ around the angle calculated in (c) from conservation
of energy and momentum principles.
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7.5.Q4 (172)

The probability Pj of the photoelectric effect, if it occurs, to occur within the
j subshell of an absorber atom is determined with the help of the photoelec-
tric effect mass attenuation coefficient τ/ρ plotted against the photon energy
hν encompassing K, L, and M absorption edges. In general, Pj is expressed
as

Pj =
(

1 −
j−1∑
n=0

Pn

)
ξj , (7.244)

where P0 = 0;∑Pj = 1; and ξj is an absorption edge parameter defined for
subshell j as

ξj = (τ/ρ)Hj − (τ/ρ)Lj
(τ/ρ)Hj

, (7.245)

with H and L designating the high and low values, respectively, of the mass
attenuation coefficient τ/ρ at the given absorption edge j .

(a) Plot the photoelectric mass attenuation coefficient τ/ρ for tungsten
(Z = 74) for photon energies in the interval from 10 keV to 100 keV. On
the plot show the K, L1, L2, and L3 absorption edges and determine the
high and low mass attenuation coefficient values (τ/ρ)Hj and (τ/ρ)Lj ,
respectively, for use in (7.245).

(b) Calculate the absorption edge parameter ξj for the K shell as well as
the L1, L2, and L3 subshells.

(c) For a photon with energy hν ≥ EB(K), where EB(K) is the K-shell
binding energy, determine the probabilities of the photoelectric (PE)
effect PK and PL to occur in the K shell and in the L shell, respectively.

(d) Repeat the calculation of (c) for a photon with energy EB(L1)≤ hν <
EB(K) where EB(L1) is the binding energy of the L1 subshell.

SOLUTION:

(a) A plot of the photoelectric mass attenuation coefficient τ/ρ for tungsten in the
energy range between 10 keV and 100 keV is shown in Fig. 7.36. Data were obtained
from the XCOM database that was compiled by Burger et al. and is available online
from the NIST at the following URL: http://www.nist.gov/pml/data/xcom/index.
cfm. The database contains photon cross section data for the photoelectric effect,
Compton and Rayleigh scattering, and pair production photon interactions.

As illustrated in Fig. 7.36, the mass attenuation coefficient for the PE effect as a
function of the incident photon energy hν exhibits a characteristic saw-tooth struc-
ture in which the sharp discontinuities, referred to as the absorption edge, arise

http://www.nist.gov/pml/data/xcom/index.cfm
http://www.nist.gov/pml/data/xcom/index.cfm
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Fig. 7.36 Photoelectric mass attenuation coefficient τ/ρ against incident photon energy hν for
tungsten in the energy range from 10 keV to 100 keV covering the K and L absorption edges. High
and low τ/ρ values at the K absorption edge as well as the three L sub-edges are shown to aid in
the derivation of the absorption edge parameters ξj

whenever the photon energy coincides with the binding energy of a particular elec-
tron shell.

Four tungsten discontinuities in PE attenuation coefficient τ/ρ occur at pho-
ton energies hν = EB(K) = 69.5 keV, hν = EB(L1) = 12.1 keV, hν = EB(L2) =
11.54 keV, and hν = EB(L3) = 10.21 keV. Similar discontinuities in attenuation
coefficient, of course, also occur in higher-level subshells such as those residing in
the M, N, and O shells.

(b) Absorption edge parameter ξj for subshell j is given in (7.245). For the K
shell, we get

ξK = (τ/ρ)HK − (τ/ρ)LK
(τ/ρ)HK

= 10.80 cm2/g − 2.118 cm2/g

10.80 cm2/g
= 0.804. (7.246)

Similarly, the absorption edge parameters ξL1 , ξL2 , ξL3 are:

ξL1 = (τ/ρ)HL1
− (τ/ρ)LL1

(τ/ρ)HL1

= 234.4 cm2/g − 102.8 cm2/g

234.4 cm2/g
= 0.135, (7.247)

ξL2 = (τ/ρ)HL2
− (τ/ρ)LL2

(τ/ρ)HL2

= 227.3 cm2/g − 165.0 cm2/g

227.3 cm2/g
= 0.274, (7.248)
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Table 7.12 High and low values of PE mass attenuation coefficient at absorption edges, (τ/ρ)Hj
and (τ/ρ)Lj , respectively, as well as the absorption edge parameter ξj for the K, L1, L2, and L3
subshells of tungsten

Subshell EB(j) (keV) (τ/ρ)Hj (cm2/g) (τ/ρ)Lj (cm2/g) ξj

K 69.5 10.8 2.118 0.804

L1 12.1 234.4 202.8 0.135

L2 11.54 227.3 165.0 0.274

L3 10.21 229.0 87.59 0.618

and

ξL3 = (τ/ρ)HL3
− (τ/ρ)LL3

(τ/ρ)HL3

= 229.0 cm2/g − 87.59 cm2/g

229.0 cm2/g
= 0.618, (7.249)

respectively. Table 7.12 summarizes the calculated results of (7.246) through
(7.249).

(c) For photons with energies hν ≥ EB(K) to undergo a PE effect with tungsten
atom the photon can in principle be absorbed by any one of the 74 orbital electrons
and the electron undergoing the PE interaction is then ejected from the atom. The
probability Pj of an electron that undergoes PE effect to be ejected from a specific
subshell j can be determined using the recursive relationship given in (7.244). Note:
Pj is the probability of PE effect, if it occurs, to occur in subshell j . It is impor-
tant not to misconstrue Pj as the probability for the PE effect to happen, as this
probability is governed by the attenuation coefficient τ .

For K-shell electrons (7.244) gives the following probability PK

PK =
(

1 −
0∑
n=0

P0

)
ξK = ξK = 0.804, (7.250)

showing that, for an incident photon with hν ≥ EB(K) interacting with a tungsten
atom, there is an 80.4 % probability that its energy is absorbed by one of the two
K-shell electrons. Consequently, the probability of the photon interacting with one
of the other 72 electrons is only 19.6 %. This heavy emphasis on K-shell electrons
results from the weighting of PE interactions in favor of tightly bound electrons;
that is, the tighter is the electron binding to the nucleus, the larger is the electron’s
probability of PE interaction.

To determine the probability PL for the L shell we must first calculate the prob-
abilities PL1 , PL2 , and PL3 for the L1, L2, and L3 subshells, respectively, as follows

PL1 =
(

1 −
1∑
n=0

Pj

)
ξL1 = (1 − PK)ξL1 = (1 − 0.804)×0.135 = 0.026, (7.251)



7.5 Photoelectric Effect 479

PL2 =
(

1 −
2∑
n=0

Pj

)
ξL2 = (1 − PK − PL1)ξL2

= (1 − 0.804 − 0.026)×0.274 = 0.047 (7.252)

and

PL3 =
(

1 −
3∑
n=0

Pj

)
ξL3 = (1 − PK − PL1 − PL2)ξL3

= (1 − 0.804 − 0.026 − 0.047)×0.618 = 0.076. (7.253)

From (7.251), (7.252), and (7.253) we get the probability for the L-shell PL as the
sum of PL1 , PL2 , and PL3

PL = PL1 + PL2 + PL3)= 0.026 + 0.047 + 0.076 = 0.149. (7.254)

Therefore, when a photon with energy hν ≥ EB(K) = 69.5 keV undergoes a PE
interaction with a tungsten atom, the probability of the photoelectron being ejected
from the K shell is 80.4 %, as calculated in (7.250), from the L-shell it is 14.9 %, as
determined in (7.254), and from higher shells it amounts to the remaining 4.7 %.

(d) Calculation of probabilities for K-shell PK and the L-shell PL for an incident
photon with energy EB(L1) ≤ hν < EB(K) follows the same steps as in (c) with
one exception; in this energy range between EB(L1) and EB(K), since the incident
photon energy is less that the binding energyEB(K)the two K-shell electrons cannot
participate in PE interactions, so that PK is equal to 0. PL1 , PL2 , and PL3 are then
from (7.244) and ξj of Table 7.12 calculated as follows

PL1 =
(

1 −
1∑
n=0

Pj

)
ξL1 = (1 − PK)ξL1 = (1 − 0)×0.135 = 0.135, (7.255)

PL2 =
(

1 −
2∑
n=0

Pj

)
ξL2 = (1 − PK − PL1)ξL2 = (1 − 0 − 0.135)×0.274 = 0.237,

(7.256)

and

PL3 =
(

1 −
3∑
n=0

Pj

)
ξL3 = (1 − PK − PL1 − PL2)ξL3

= (1 − 0 − 0.135 − 0.237)×0.618 = 0.388 (7.257)

respectively, and the probability PL for the L-shell now is given as the following
sum, similar to that of (7.254)

PL = PL1 + PL2 + PL3 = 0.135 + 0.237 + 0.388 = 0.760. (7.258)
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For photon with energy between the binding energy of the L1 subshell and K
shell, i.e., for EB(L1) ≤ hν < EB(K), when it undergoes a PE interaction with a
tungsten atom, the probability for interaction in the K shell is zero, the probability
for interaction in the L shell, according to (7.258), is 76 % and the probability for
interaction in higher-level shells is 24 %. The conclusion that we can reach based on
(7.250) and (7.258) is that when PE interaction occurs, by far the highest probability
is for it to occur with a shell or subshell whose binding energy is below hν by the
least amount.

7.5.Q5 (173)

Cross sections (attenuation coefficients) for the photoelectric (PE) interac-
tion of photons with absorbers are readily available from the literature;
however, the most authoritative and up to date source is available at the
NIST (http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html). Based
on Fig. 7.37 that plots the NIST photoelectric (PE) atomic cross section aτ for
5 absorbers ranging in atomic number Z from Z = 1 (hydrogen) to Z = 82
(lead) against photon energy hν ranging from 10−3 MeV to 104 MeV make
the following estimates for absorbers in general:

(a) Dependence of aτ on energy hν of the incident photon.
(b) Dependence of aτ on atomic number Z of the absorber.
(c) Dependence of the photoelectric mass attenuation coefficient τ/ρ on

atomic number Z of the absorber.

Fig. 7.37 Photoelectric atomic cross section (attenuation coefficient) aτ against photon energy hν
for various absorbers ranging from hydrogen (Z = 1) to lead (Z = 82). Data are from the NIST

http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
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SOLUTION:

A cursory inspection of Fig. 7.37, which plots the photoelectric cross section aτ

against photon energy hν (in the range 1 keV ≤ hν ≤ 104 MeV) for various ab-
sorbers (in the atomic number Z range 1 ≤ Z ≤ 82), exhibits several general fea-
tures of aτ :

(1) For a given atomic number Z, aτ is a smooth, continuous function except
for sharp discontinuities called absorption edge that occur when hν is in the
vicinity of electron binding energy EB of atomic shells.

(2) For a given Z, as energy hν increases above the energy of an absorption edge,
aτ decreases with increasing hν.

(3) Energy of a given absorption edge increases with Z of absorber.
(4) For a given photon energy hν, aτ increases with increasing Z of absorber.

(a) An investigation of the aτ dependence upon photon energy hν (Fig. 7.37) for
a given absorber Z reveals that, at hν above the K-shell absorption edge, aτ on aτ

versus hν log-log plot exhibits three distinct regions: two linear regions (1 and 3)
connected by transition region 2. Since linearity on a log-log plot suggests a power
function, we conclude that aτ can be described by two power functions of the form
aτ ∝ (hν)k , each with its own exponent k. In region 1 where hν < ∼0.5 MeV,
k ≈ −3 predominates; in region 3, where hν > ∼10 MeV, k = −1 predominates,
and in region 2, where 0.5 MeV< hν < 10 MeV, aτ is affected by both exponents k,
as shown in Fig. 7.38. Exponents are negative because aτ decreases with increasing
photon energy hν. The intercept between extrapolated linear line of region 1 with
that of region 3 occurs at approximately 1.5 MeV for all absorbers.

Theoretical derivation of the photoelectric cross section aτ is, in contrast to the
derivation of Compton cross sections, very complex. Heitler derived aτ above the K
absorption edge using non-relativistic Born approximation and obtained the follow-
ing expression

aτ = 321/2
eσThα

4Z5ε7/2 = 321/2
eσThα

4Z5(hν/mec
2)7/2

, (7.259)

where eσTh is Thomson electronic cross section and α is fine structure constant.

(b) To investigate the dependence of photoelectric atomic cross section aτ on ab-
sorber atomic number Z we re-plot in Fig. 7.39 the data of Fig. 7.38 and depict on
a log-log scale aτ against Z for the following incident photon energies Eν = hν in
MeV: 0.001, 0.01, 0.1, 1, 10, and 100. For a given Eν the data points appear to be
following a straight line on the log-log plot indicating a power function relationship
of the form aτ ∝ Zn, where n is the exponent of the power function. At first glance
the exponent n appears to be between 3 and 5, since each straight line rises at a rate
of 3 cycles to 5 cycles in aτ per each cycle increase in Z.

A closer look at the aτ versus Z graph reveals two notable features of the straight
line behavior, i.e., aτ versus Zn behavior:
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Fig. 7.38 Atomic cross section aτ against incident photon energy hν for 5 absorbers: hydrogen,
carbon, aluminum, copper, and lead. At photon energy hν below 1 MeV the aτ dependence on
photon energy hν goes approximately as aτ ∝ 1/(hν)3 and at photon energy above 10 MeV the aτ

dependence on photon energy goes as aτ ∝ 1/(hν), as shown in the figure

Fig. 7.39 Photoelectric atomic cross section aτ against atomic number Z of the absorber

(1) Data points for higher photon energy (Eν > 0.1 MeV) fit a straight line much
better than those for lower photon energy (Eν > 0.1 MeV). The reason for
this is attributed to absorption edges causing significant discontinuities in aτ at
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photon energy in the vicinity of absorption edges. Since the highest absorption
edge energy of any element is below 150 keV, the adverse effect of absorption
edges on aτ versus Z dependence is not present at Eν above 150 keV.

(2) Exponent n ranges from n ≈ 3 at low photon energy up to n ≈ 5 at high
photon energy. In the literature n is usually stated as n = 4 at low photon
energy rising to n= 4.6 at high photon energy. Our range in exponent n, based
on Fig. 7.39, is somewhat broader but we must recognize that we made no
attempts at averaging out the discontinuities in aτ at absorption edges.

On the basis of data plotted in Fig. 7.39 we arrive at the general conclusion that
photoelectric atomic cross section aτ is roughly proportional to atomic number Z to
the fourth power, i.e., aτ ∝ Z4.

(c) Photoelectric mass attenuation coefficient τ/ρ dependence on atomic number
Z is derived from the dependence of photoelectric atomic cross section aτ on Z
that was determined in (b) as aτ ∝Z4. The basic relationship between photoelectric
linear attenuation coefficient τ and aτ goes as: τ = n�aτ , where n� is the number
of atoms Na per volume V of the absorber. We thus have the following relationship
between τ/ρ and aτ

τ

ρ
= n�aτ

ρ
= Na

ρV
(aτ)= Na

m
(aτ)= NA

A
(aτ)≈ NA

2Z
(aτ)∝ Z4

Z
= Z3, (7.260)

where we used Na/m = NA/A and A ≈ 2Z. Note: For all elements Z/A ≈ 0.5,
with one notable exception of hydrogen for which Z/A= 1. Actually, Z/A slowly
decreases from 0.5 for low Z elements to ∼0.4 for high Z elements. For example,
Z/A for helium-4 is 0.5, for cobalt-60 it is 0.45, and for uranium-235 it is 0.39.
From (7.260) we see that τ/ρ ∝ Z3, since aτ ∝Z4.

7.6 Pair Production

7.6.Q1 (174)

Pair production is the term used to describe production of an electron-positron
pair (materialization) out of energy (photon) in either the electric field of the
nucleus of an absorber atom (called nuclear pair production) or in the elec-
tric field of an orbital electron of an absorber atom (called triplet production
or electronic pair production). The threshold for nuclear pair production is
slightly larger than the sum of the rest masses of the electron and positron.
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(a) Draw schematic diagrams for the nuclear pair production process and
for the electronic pair production process.

(b) Calculate the energy transferred from photons to charged particles
(CPs) when an x-ray beam containing N(0) = 105 photons passes
through a lead sheet of thickness x = 1.5 cm. Assume that all photon
interactions are of the pair production type and that the pair production
process in lead for 10 MeV photons has a cross section (atomic attenu-
ation coefficient) aκ(Pb,10 MeV)= 12.4×10−24 cm2/atom.

(c) A 10 MeV photon interacts with an absorber in a pair production pro-
cess. Calculate the kinetic energy EK of the positron produced in the
interaction, if the electron emerges from the interaction with kinetic en-
ergy EK = 2 MeV.

(d) A positron with kinetic energy EK = 2 MeV is annihilated by a station-
ary electron. Calculate the total energy that is radiated in the form of
photons.

SOLUTION:

(a) The two pair production processes (nuclear and electronic) are shown schemat-
ically in Fig. 7.40. In both processes the photon disappears and an electron-positron
pair (matter) is produced out of photon energy. This is referred to as “materializa-
tion” and requires an expenditure of energy equivalent of two electronic rest energies
(2mec

2 = 1.022 MeV). The rest of the photon energy (hν− 2mec
2) is transferred to

charged particles released in the absorber.

(b) To calculate the energy that is transferred from the photon beam to the 1.5 cm
thick lead absorber we first determine the number of interactions N that the photon
beam will have in the absorber and then multiply this number by the mean energy
transfer in pair production ĒPP

tr from photon to charged particles.
To calculate the number of pair production interactions in the slab we will need

the linear attenuation coefficient for pair production κ that is related to the atomic
attenuation coefficient (cross section) aκ as follows

κ = n� aκ = ρNA

A
aκ

= (
11.34 g/cm2)×6.022×1023 atom/mol

207.2 g/mol
×(

12.4×10−24 cm2/atom
)

= 0.409 cm−1. (7.261)
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Fig. 7.40 Schematic diagrams of nuclear pair production and triplet production

Number of photons N(x) transmitted through the lead slab of thickness x =
1.5 cm is given as

N(x)=N(0)e−κx = 105×e−(0.409 cm−1)×(1.5 cm) = 105×e−0.6135

= 0.541×105 photons. (7.262)

The number of photons N (x) interacting in the slab will be

N (x)=N(0)−N(x)=N(0)[1 − e−κx]= 0.459×105 photons. (7.263)

In general, in each pair production interaction the energy EPP
tr transferred from

the photon to CPs is the photon energy hν less the rest masses of the two CPs
(electron: me−c2 = 0.511 MeV and positron: me+c2 = 0.511 MeV) produced out of
energy, i.e., EPP

tr = hν − 2mec
2. For photons of energy hν = 10 MeV, the energy

transferred to CPs is 10 MeV − 1.022 MeV = 8.978 MeV.
Since there are 0.459×105 pair production events in the 1.5 cm thick lead slab

and in each event energy of 8.978 MeV is transferred to kinetic energy of CPs, the
total kinetic energy of CPs is

EK(CPs)= 0.459×105×8.978 MeV

= 4.11×105 = (
4.11×1011 eV

)×(
1.6×10−19 J/eV

)
= 6.58×10−8 J. (7.264)

(c) The energy EPP
tr transferred from a 10 MeV photon to CPs in a pair produc-

tion event is given as EPP
tr = hν − 2mec

2 = 10 MeV − 1.022 MeV = 8.978 MeV.
This energy is shared between the electron and the positron that are produced in a
pair production process. Thus, if the electron carries away a kinetic energy EK of
2 MeV from the total available energy of 8.978 MeV, then the positron will get the
remaining part of EPP

tr which is 8.98 MeV−2 MeV = 6.978 MeV. Thus, the kinetic
energy of the positron in this pair production event is 6.978 MeV.
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(d) The process of positron annihilation by a stationary electron before the
positron expended all of its kinetic energy is referred to as in-flight annihilation.
In general, the total energy radiated from the annihilation-in-flight event is equal to
the kinetic energy EK of the positron plus the sum of rest energies of the electron
and positron, i.e., 2mec

2 = 1.022 MeV.
In our example, thus, the total energy radiated from the annihilation in flight

event is 2 MeV + 1.022 MeV = 3.022 MeV.

7.6.Q2 (175)

In pair production (PP) an electron-positron pair is produced (materialization)
out of energy (photon) either in (1) electric field of a nucleus of an absorber
atom (nuclear PP) or in (2) electric field of an orbital electron of an absorber
atom (electronic PP also called triplet production).

(a) Show that materialization (production of matter out of energy) in pair
production cannot occur in free space. Make the following simplifying
assumptions:

(1) Electron and positron are produced with identical kinetic energies
and

(2) All momenta involved in the materialization process are collinear,
as shown schematically in the following diagram

(b) Show that materialization in pair production cannot occur in free space
in general, as shown schematically in the following diagram with
Ee+

K �=Ee−
K and momenta are not collinear
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Table 7.13 Parameters of pair production before and after pair production interaction in free
space under special conditions of Ee−

K =Ee+
K and all momenta collinear

BEFORE PP interaction in free space AFTER PP interaction in free space

Total energy

Eν = hν Epair =Ee−
K +Ee+

K + 2E0 = 2γE0 = 2γmec
2

Charge

q = 0 (photon) q = 0 (electron e− and positron e+)

Momentum

pν = Eν
c

= hν
c

ppair = 2γmeυ =Epair
υ
c2

SOLUTION:

When the incident photon energy Eν = hν exceeds 2mec
2 = 1.022 MeV, where

mec
2 is the rest energy of the electron as well as of its anti-particle, the positron, the

production of an electron-positron pair in conjunction with a complete absorption
of the incident photon by absorber atom becomes energetically possible.

For pair production (PP) effect to occur, three quantities must be conserved: (1)
total energy, (2) charge, and (3) momentum. Thus, to study the possibility of pair
production occurring in free space we must evaluate conservation of the three quan-
tities assuming that photon transformation into an electron-positron pair occurs in
free space.

(a) First we evaluate the simpler special case in which kinetic energies of the elec-
tron and positron, Ee−

K and Ee+
K , respectively, are identical upon production, and

both particles move colinearly in the direction of the incident photon. The parame-
ters before and after PP interaction are presented in Table 7.13.

In (7.269) we assumed that total energy is conserved [see (7.266)] and obtained
a result pν = ppairc/υ . Since the particle velocity υ is always smaller than speed of
light c in vacuum, this result indicates a violation of the momentum conservation
principle and leads to a conclusion that both the total energy and momentum could
not be conserved simultaneously if pair production occurred in free space. Photon
momentum pν before the PP interaction is always larger than ppair, the combined
momentum of the electron and positron after the PP interaction. Thus, the inci-
dent photon possesses momentum excess that cannot be absorbed by the electron-
positron pair but must be absorbed by a collision partner, be it an atomic nucleus of
the absorber atom (nuclear PP) or orbital electron of the absorber atom (electronic
PP).

(1) Conservation of total energy:

Ebefore =Eafter (7.265)

Eν = hν ≡Epair =Ee−
K +Ee+

K + 2E0 = 2γE0 = 2γmec
2 (7.266)
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Table 7.14 Parameters of pair production before and after general pair production interaction in
free space

BEFORE PP interaction in free space AFTER PP interaction in free space

Total energy

Eν = hν Epair =Ee−
K +Ee+

K + 2E0 =Ee−
K +Ee+

K + 2mec
2

Charge

q = 0 (photon) q = 0 (electron e− and positron e+)

Momentum along abscissa (x) axis

(pν)x = Eν
c

= hν
c

(ppair)x = pe+ cos θ + pe− cosφ

Momentum along ordinate (y) axis

(pν)y = 0 (ppair)y = pe+ sin θ − pe− sinφ

(2) Conservation of charge:

qbefore = qafter (7.267)

Charge before pair production interaction is zero (photon) and charge after PP in-
teraction is also zero (negative e− plus positive e+).

(3) Conservation of momentum:

pbefore = pafter (7.268)

pν = Eν

c
= hν

c
≡ Epair

c
= 2γmec

2

c
= (2γmeυ)c

υ
= ppair

c

υ
(7.269)

(b) In this section we look at a general case of PP occurring in free space, with
electron and positron acquiring different kinetic energies (i.e., Ee−

K �=Ee+
K ) and dif-

ferent emission angles φ and θ , respectively. Like in (a), we lay out the conservation
of total energy, charge and momentum equations, however, for the momentum con-
servation we now get two equations, one for the abscissa (x) axis and the other for
the ordinate (y) axis.

The Cartesian coordinate system is oriented such that the incident photon is di-
rected in the positive direction of the abscissa axis, and the pair production event
occurs at the origin (0,0) of the coordinate system. Table 7.14 lists the parameters
of general pair production in free space and the conservation of total energy, charge,
and momentum are expressed as follows:

(1) Conservation of total energy:

Ebefore =Eafter (7.270)

Eν = hν ≡Epair =Ee−
K +Ee+

K + 2E0 =Ee−
K +Ee+

K + 2mec
2 (7.271)
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(2) Conservation of charge:

qbefore = qafter (7.272)

Charge before is 0 (photon) and charge after is also zero (negative e− plus posi-
tive e+).

(3) Conservation of momentum along the abscissa axis:

(pbefore)x = (pafter)x (7.273)

(pν)x = Eν

c
= hν

c
≡ pe+ cos θ + pe− cosφ (7.274)

(4) Conservation of momentum along the ordinate axis:

(pbefore)y = (pafter)y (7.275)

(pν)y = 0 = pe+ sin θ − pe− sinφ (7.276)

Equations (7.271), (7.274), and (7.276) are similar to those that were used in
derivation of the wavelength shift�λ in Compton effect, so we will investigate them
using the same approach. We express (7.274) and (7.276), respectively, as follows

(Eν−pe+c cos θ)2 ≡E2
ν −2Eνpe+c cos θ+p2

e+c2 cos2 θ = (pe+c cosφ)2 (7.277)

and

(pe+c sin θ)2 = (pe−c sinφ)2. (7.278)

Addition of (7.277) and (7.278) results in

E2
ν − 2Eνpe+c cos θ + p2

e+c2 = p2
e−c2. (7.279)

Recalling the standard relativistic relationship between momentum p, rest energy
E0, and kinetic energy EK of a particle expressed as p2c2 = (EK + E0)

2 − E2
0 =

E2
K + 2EKE0, we now express (7.279) as follows

E2
ν − 2Eνpe+c cos θ + (

Ee+
K +E0

)2 = (
Ee−

K +E0
)2
. (7.280)

From conservation of total energy (7.271) we note that

Ee−
K +E0 =Eν −Ee+

K −E0 (7.281)

and introduce (7.281) into (7.280) to get, after convenient cancellation of several
terms, a simple expression

pe+c cos θ ≡
[√(

Ee+
K

)2 + 2Ee+
K E0

]
cos θ =Ee+

K +E0. (7.282)
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Squaring (7.282) and rearranging the terms we finally get the following expression
for cos2 θ

cos2 θ = (Ee+
K +E0)

2

(Ee+
K )

2 + 2Ee+
K E0

= 1 + E2
0

(Ee+
K )

2 + 2Ee+
K E0

≥ 1. (7.283)

In similar fashion we can derive from (7.274) and (7.275) an expression for cos2 φ

that reads

cos2 φ = (Ee−
K +E0)

2

(Ee−
K )

2 + 2Ee−
K E0

= 1 + E2
0

(Ee−
K )

2 + 2Ee−
K E0

≥ 1. (7.284)

Since E0 �= 0, we conclude that (7.283) and (7.284) are always larger than 1 and,
since cosine of any angle will always be smaller or equal to 1, we also conclude
that (7.283) and (7.284) do not describe a viable physical process. This means that
conservation of total energy and momentum cannot be fulfilled simultaneously in
general pair production occurring in free space.

7.6.Q3 (176)

Nuclear reactions are characterized by the following simple equation: a +
A = B + b +Q, where a is the projectile, A is the stationary target, b and
B are reaction products, and Q is reaction energy usually referred to as the
reactionQ value. When a nuclear reaction releases energy (Q> 0), it is called
exothermic or exoergic; when it absorbs energy to get started (Q < 0), it is
called endothermic or endoergic. A special case of nuclear reaction is elastic
collision in which Q= 0 and no energy is produced nor consumed.

In principle, and exothermic reaction can occur spontaneously; an en-
dothermic reaction, on the other hand, cannot get started unless the projec-
tile has kinetic energy equal to or exceeding a threshold energy, whose value
in the center-of-mass system is equal to the absolute Q value. At threshold
energy, the reaction can just take place but the reaction products have zero
kinetic energy.

Using the invariant E2 − p2c2 = inv, where E is the total energy of the
particles and p is the momentum before interaction in the laboratory system
and after interaction in the center-of-mass system, calculate:

(a) Threshold energy ENPP
thr for nuclear pair production.

(b) Threshold energy EEPP
thr for electronic pair production (triplet produc-

tion).
(c) Threshold total energy Ethr and threshold kinetic energy (EK)thr for a

general nuclear reaction expressed as: a + A = B + b.
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SOLUTION:

In physics the invariant is defined as a quantity that does not change when it under-
goes a transformation from one reference frame to another, such as, for example,
when going from laboratory frame before a nuclear interaction to center-of-mass
frame or to center-of-momentum (COM) frame after interaction. COM frame is de-
fined as an inertial frame in which the center of mass is at rest and thus has no
velocity.

(a) Threshold energy (Eν)NPP
thr for nuclear pair production

(1) Before interaction (photon with energy Eν + atomic nucleus with rest energy
mAc

2)
Total energy:

Ebefore = (Eν)NPP
thr +mAc

2 (7.285)

Momentum:

pbefore = (Eν)
NPP
thr

c
(7.286)

Invariant before:

E2
before − p2

beforec
2 = {

(Eν)
NPP
thr +mAc

2}2 −
[
(Eν)

NPP
thr

c

]2

c2

= {[
(Eν)

NPP
thr

]2 + 2(Eν)
NPP
thr mAc

2 + [
mAc

2]2}
− [
(Eν)

NPP
thr

]2
. (7.287)

(2) After interaction (nucleus with rest energymAc
2 + electron/positron pair with

combined rest energy 2mec
2)

Total energy:

Eafter =mAc
2 + 2mec

2 (7.288)

Momentum:

pafter = 0 (7.289)

Invariant after:

E2
after − p2

afterc
2 = {

mAc
2 + 2mec

2}2 − 0

= {(
mAc

2)2 + 4
(
mAc

2)(mec
2)+ 4

(
mec

2)2}− 0 (7.290)

We now equate the two invariants (7.287) and (7.290) and solve for the threshold
energy (Eν)NPP

thr

(Eν)
NPP
thr = 4mec

2(mAc
2 +mec

2)

2mAc2
= 2mec

2
(

1 + mec
2

mAc2

)
. (7.291)
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(b) Threshold energy (Eν)EPP
thr for electronic pair production

(1) Before interaction (photon with energy Eν + atomic orbital electron with rest
energy mec

2)

Total energy:

Ebefore = (Eν)EPP
thr +mec

2 (7.292)

Momentum:

pbefore = (Eν)
EPP
thr

c
(7.293)

Invariant before:

E2
before − p2

beforec
2 = [

(Eν)
EPP
thr +mec

2]2 −
[
(Eν)

EPP
thr

c

]2

c2

= {[
(Eν)

EPP
thr

]2 + 2(Eν)
EPP
thr mec

2 + [
mec

2]2}
− [
(Eν)

EPP
thr

]2
. (7.294)

(2) After interaction (atomic orbital electron with rest mass mec
2 + elec-

tron/positron pair with combined rest mass 2mec
2)

Total energy:

Eafter = 3mec
2 (7.295)

Momentum:

pafter = 0

Invariant after:

E2
after − p2

afterc
2 = [

3mec
2]2 − 0 = 9

(
mec

2)2
. (7.296)

We now equate the two invariants of (7.294) and (7.296) and solve for the threshold
energy (Eν)EPP

thr

(Eν)
EPP
thr = 8(mec

2)2

2mAc2
= 4mec

2. (7.297)

(c) Threshold total energy Ea
thr and threshold kinetic energy (EK)thr for a general

nuclear reaction expressed as: a + A = B + b.

(1) Before nuclear reaction in laboratory system
(projectile a with total energy Ea

thr = (Ea
K)thr +mac

2+ stationary target with
rest energy mAc

2)
Total energy:

Ebefore =
√(
mac2

)2 + p2
ac

2 +mAc
2 (7.298)
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Momentum:

pbefore = (Eν)
EPP
thr

c
(7.299)

Invariant before:

E2
before − p2

beforec
2 = {√(

mac2
)2 + p2

ac
2 +mAc

2}2 − p2
ac

2

= (
mac

2)2 + p2
ac

2 + 2Ea
thrmAc

2 + (
mAc

2)2 − p2
ac

2.

(7.300)
(2) After interaction in center of mass system

(reaction products B and b with rest energies mBc
2 and mbc

2, respectively)
Total energy:

Eafter =mBc
2 +mbc

2 (7.301)

Momentum:

pafter = 0 (7.302)

Invariant after:

E2
after − p2

afterc
2 = [

mBc
2 +mbc

2]2 − 0. (7.303)

We now equate the two invariants of (7.300) and (7.303) and solve for threshold
total energy Ea

thr and obtain the following result

Ea
thr = [mBc

2 +mbc
2]2 − [(mac

2)2 + (mAc
2)2]

2mAc2
. (7.304)

Threshold kinetic energy (Ea
K)thr of projectile a is the difference between the pro-

jectile’s threshold total energy Ea
thr given in (7.304) and its rest energy mac

2

(
Ea

K

)
thr =Ea

thr −mac
2 = [mBc

2 +mbc
2]2 − [(mac

2)2 + (mAc
2)2]

2mAc2
−mac

2

= [mBc
2 +mbc

2]2 − [mAc
2 +mac

2]2

2mAc2
. (7.305)
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Fig. 7.41 Annihilation-in-flight on stationary electron for positron with kinetic energy EK

7.6.Q4 (177)

A pair production event is followed by a two-quantum annihilation of the
positron when the kinetic energy of the positron is EK (in-flight annihila-
tion). Energies of the two photons produced are hν1 and hν2. Assume that the
positron and the two photons are co-linear and:

(a) Draw a schematic diagram of the annihilation event.
(b) Determine the general relationship for energies hν1 and hν2 of the two

quanta emitted.
(c) Show that in the extreme relativistic case, where EK �mec

2, one of the
two quanta has energy hν1 =EK + 3

2mec
2, while the other quantum has

energy hν1 = 1
2mec

2.
(d) Determine the magnitudes of momenta for the incident positron and the

two quanta for EK � mec
2 and ensure that the schematic diagram of

(a) reflects the relative magnitude of the momenta.

SOLUTION:

(a) A simple schematic diagram for positron-electron annihilation event is shown
in Fig. 7.41.

(b) Derivation of the general expressions for hν1 and hν2 is based on principles
of conservation of energy and momentum.

Conservation of energy:

Ee+ +me−c2 ≡ (
EK +me+c2)+me−c2 = hν1 +hν2 or EK +2mec

2 = hν1 +hν2,

(7.306)
where Ee+ is the total energy of the incident positron, me−c2 is the electron rest
mass (0.511 MeV), and me+c2 is the positron rest mass (0.511 MeV).
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Conservation of momentum p:

pe+ ≡ EK

c

√
1 + 2me+c2

EK
= −pν1 + pν2 ≡ −hν1

c
+ hν2

c
or

EK

√
1 + 2mec2

EK
= −hν1 + hν2,

(7.307)

where p stands for momentum, for a particle such as positron, related to EK through
the standard relationship E2 ≡ (EK + m0c

2)2 = p2c2 + m0c
2, as discussed in

(T1.62).
Equations (7.306) and (7.307) provide two equations for two unknowns and

adding them results in the following expression for hν2

EK

[
1 +

√
1 + 2me+c2

EK

]
+ 2mec

2 = 2hν2 or

hν2 = 1

2
EK

[
1 +

√
1 + 2me+c2

EK

]
+mec

2.

(7.308)

Direct insertion of (7.308) into (7.306) results in the following expression for hν1

hν1 = 1

2
EK

[
1 −

√
1 + 2me+c2

EK

]
. (7.309)

(c) We now evaluate hν1 and hν2 for EK � mec
2 and get the following expres-

sions

hν1 = 1

2
EK

[
1 −

√
1 + 2mec2

EK

]
≈ 1

2
EK − 1

2
EK

(
1 + mec

2

EK

)
= 1

2
mec

2 (7.310)

and

hν2 = 1

2
EK

[
1 +

√
1 + 2mec2

EK

]
+mec

2

≈ 1

2
EK + 1

2
EK

(
1 + mec

2

EK

)
+mec

2 =EK + 3

2
mec

2. (7.311)

(d) Magnitudes of momenta pe+ , pν1 , and pν2 are as follows:

(1) Magnitude of momentum pe+ , as shown in (7.307)

|pe+| = pe+ = EK

c

√
1 + 2mec2

EK
≈ EK

c

(
1 + mec

2

EK

)
= 1

c

(
EK +mec

2).
(7.312)
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(2) Magnitude of momentum pν1 using (7.310)

|pν1 | = pν1 = hν1

c
= 1

2c
EK

[
1 −

√
1 + 2me+c2

EK

]
≈ 1

c

(
1

2
mec

2
)
. (7.313)

(3) Magnitude of momentum pν2 using (7.311)

|pν1 | = pν1 = hν1

c
= 1

2c
EK

[
1 +

√
1 + 2me+c2

EK

]
≈ 1

c

(
EK + 3

2
mec

2
)
.

(7.314)

7.6.Q5 (178)

A positron with kinetic energy EK = 2E0 = 2mec
2 undergoes an in-flight

annihilation event with a stationary electron resulting in emission of two pho-
tons (annihilation quanta) hν1 and hν2, as shown in the diagram below.

Assume that hν1 = 2hν2 and determine:

(a) Energies hν1 and hν2 of the two annihilation quanta.
(b) Emission angles θ and φ of the two annihilation quanta.

SOLUTION:

(a) Since we know the energy relationship between the two quanta (hν1 = 2hν2),
we can determine the actual energies of the two quanta directly from the principle of
conservation of energy in the annihilation process. The conservation of total energy
is expressed as follows

Ee+ +me−c2 ≡ (
EK +me+c2)+me−c2 =EK + 2E0 = hν1 + hν2, (7.315)
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where Ee+ is the total energy of the incident positron, me+c2 rest energy of the
positron, given as E0 = 0.511 MeV, and me−c2 rest energy of the electron, also
given as E0 = 0.511 MeV.

Inserting EK = 2E0 and hν1 = 2hν2 into (7.315) gives the following results for
hν1 and hν2

hν1 = 8

3
E0 = 8

3
mec

2 and hν2 = 4

3
E0 = 4

3
mec

2. (7.316)

(b) To determine the emission angles θ and φ we set up two conservation of mo-
mentum equations, one for the abscissa axis and the other for the ordinate axis on
a Cartesian coordinate system oriented such that the incident positron travels in the
positive direction along the abscissa axis. The two conservation of momentum equa-
tions read as follows:

(1) Conservation of momentum along abscissa axis

pe+ = 1

c

√
E2

K + 2E0EK = hν1

c
cos θ + hν2

c
cosφ. (7.317)

After multiplying (7.317) with c and inserting EK = 2E0, hν1 = 8
3E0, and hν2 =

4
3E0 into (7.319) we get the following expression relating θ and φ

3
√

2 = 4 cos θ + 2 cosφ or cos θ = 3

4

√
2 − 1

2
cosφ. (7.318)

(2) Conservation of momentum along ordinate axis

hν1

c
sin θ = hν2

c
sinφ. (7.319)

After multiplying (7.319) with c and inserting EK = 2E0, hν1 = 8
3E0, and hν2 =

4
3E0 into (7.319) we get the following expression relating θ and φ

sin θ = 1

2
sinφ. (7.320)

Equations (7.318) and (7.320) serve as two equations for two unknowns (θ and φ).
Squaring the two equations opens an elegant approach to finding the actual values
of θ and φ

cos2 θ =
(

3
√

2

4
− 1

2
cosφ

)2

= 9

2
− 3

√
2

4
cosφ + 1

4
cos2 φ (7.321)

and

sin2 θ = 1

4
sin2 φ. (7.322)
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Adding (7.321) and (7.322) gives the following equation for cosφ

(
sin2 θ + cos2 θ

)= 9

2
− 3

√
2

4
cosφ + 1

4

(
sin2 φ + cos2 φ

)
. (7.323)

Recalling that sin2 x + cos2 x = 1 and solving (7.323) for cosφ gives the following
result

cosφ = 0.3536 and φ = arccos 0.3536 = 69.3◦. (7.324)

Inserting (7.324) into (7.320) gives the following result for sin θ

sin θ = 1

2
sinφ = 1

2

√
1 − cos2 φ = 0.4677 and θ = arcsin 0.4677 = 27.9◦.

(7.325)
A more general approach for finding θ and φ is possible through the use of the

cosine rule for the determination of the two emission angles. A closer look at the
schematic diagram of the annihilation process shown in Fig. 7.42 reveals that mo-
menta pν1 , pν2 , and pe+ form two triangles for which angles θ and φ can be deter-
mined through the use of the cosine rule as follows

(1) Cosine rule applied to triangle 1 in Fig. 7.42 results in the following expression
for cos θ

p2
ν2

= p2
ν1

+ p2
e+ − 2pν1pe+ cos θ. (7.326)

Solving (7.326) for cos θ gives the following explicit expression for cos θ

cos θ = p2
ν1

+ p2
e+ − p2

ν2

2pν1pe+
= ( 8

3 )
2 + (2√

2)2 − ( 4
3 )

2

2× 8
3×2

√
2

= 0.884, (7.327)

resulting in θ = arccos 0.884 = 27.9◦.

(2) Cosine rule applied to triangle 2 in Fig. 7.42 results in the following expression
for cosφ

p2
ν2

= p2
ν1

+ p2
e+ − 2pν1pe+ cos θ. (7.328)

Solving (7.328) for cosφ gives the following explicit expression for cosφ

cosφ = p2
ν2

+ p2
e+ − p2

ν1

2pν2pe+
= ( 4

3 )
2 + (2√

2)2 − ( 8
3 )

2

2× 4
3×2

√
2

= 0.354, (7.329)

resulting in φ = arccos 0.354 = 69.3◦.
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Fig. 7.42 Schematic diagram of the positron in-flight annihilation process

7.7 Photonuclear Reactions

7.7.Q1 (179)

Photonuclear (PN) reaction (also called nuclear photoelectric effect or photo-
disintegration) is a term used to describe direct interaction between an ener-
getic photon (x ray or gamma ray) and a nucleus of the absorber atom. The
nucleus absorbs the photon and often ejects a neutron [in a (γ,n) process]
or a proton [in a (γ,p) process]. Less common are ejection of a deuteron [in
a (γ,d) process], ejection of multiple nucleons [in (γ,nn) and (γ,np) pro-
cesses], and induction of nuclear fission in the so-called photo-fission process.
For a particle to be ejected from the nucleus the photon energy must exceed
the particle binding energy EB to the nucleus. PN reactions are endother-
mic and the minimum photon energy that can induce a given PN reaction
is called the threshold energy hνPN

thr for the PN reaction. Three methods have
been developed for the calculation of the PN threshold energy: (1) Rest energy
method, (2) Binding energy method, and (3) Relativistic invariant method.

Derive expressions for threshold energy EPN
thr in a photonuclear reaction based

upon:

(a) Rest energies of the target, projectile, and reaction products.
(b) Binding energies of the target, projectile, and reaction products.
(c) Relativistic invariant: E2 − p2c2 = inv for before and after the PN re-

action.
(d) Use the three methods to calculate threshold energy EPN

thr = hνPN
thr of the

208
82Pb(γ,n)207

82Pb photonuclear reaction.
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Fig. 7.43 Schematic diagram of a photonuclear reaction with photon as projectile and nucleus
m20 as target. Reaction products consist of heavier nucleus m30 and nucleon or light nucleus m40

SOLUTION:

The schematic diagram of a PN reaction is similar to that of a general endothermic
nuclear reaction (see Fig. T5.1) except that the projectile, which in general nuclear
reaction is a particle with rest mass m10 and rest energy m10c

2, in a PN reaction is
an energetic photon with energy hν, rest energy m10c

2 = 0, and momentum |pν | =
pν = hν/c, as shown in Fig. 7.43.

Threshold kinetic energy (EK)thr of an endothermic nuclear reaction can be de-
termined:

(1) either indirectly by first determining the Q value of the nuclear reaction and
then calculating the threshold energy from the known Q value

(2) or directly by using the relativistic invariant method.

Q value of a nuclear reaction is determined either with the rest energy method or
with the binding energy method. Once Q value is known, threshold energy (EK)thr

of a nuclear reaction is calculated from the general expression linking (EK)thr with
the Q value (T5.15) of a nuclear reaction given as

(EK)thr = −Q
(

1 + m10

m20

)
, (7.330)

where m10 is the rest mass of the reaction projectile and m20 is the rest mass of
the reaction target. Note: In the case of PN reaction, the projectile is a photon with
rest mass m10 = 0, resulting in the following simple expression for PN reaction
threshold energy

EPN
thr = hνPN

thr = −Q. (7.331)

(a) Rest energy method: Q value of a PN reaction is determined (T5.7) by
subtracting the sum of rest energies of reaction products after the PN reaction
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(m30c
2 +m40c

2) from the rest energy of the target m20c
2 to get

Q=
∑
i,before

mic
2 −

∑
i,after

mic
2 =m20c

2 − (
m30c

2 +m40c
2). (7.332)

Since EPN
thr = hνPN

thr = −Q from (7.331), we get from (7.332) the following expres-
sion for the threshold energy EPN

thr

EPN
thr = hνPN

thr = −Q= (
m30c

2 +m40c
2)−m20c

2. (7.333)

(b) Binding energy method: alternatively to the rest energy method, the Q value
of a PN reaction can be calculated by subtracting the binding energy EB(m20) of
the target from the sum of binding energies of reaction products m30 and m40

Q=
∑
i,after

EB(mi)−
∑
i,before

EB(mi)=EB(m30)+EB(m40)−EB(m20). (7.334)

Since EPN
thr = hνPN

thr = −Q from (7.331), we get from (7.334) the following expres-
sion for threshold energy EPN

thr

EPN
thr = hνPN

thr = −Q=EB(m20)−
[
EB(m30)+EB(m40)

]
. (7.335)

(c) Relativistic invariant method: The relativistic invariant is expressed as

E2 − p2c2 = inv, (7.336)

where E stands for the total energy of a system, p stands for the momentum of a
system, and c is the speed of light in vacuum.

Using the relativistic invariant method, the threshold energy Ethr for an en-
dothermic nuclear reaction is in general calculated by equating the invariant for
the projectile-target ensemble before the nuclear reaction with the invariant for the
ensemble of reaction products after the nuclear reaction and solving for Ethr. The
invariant for the projectile-target ensemble is determined in the laboratory coordi-
nate system for projectile total energy E equal to threshold energy Ethr that in turn
is given as Ethr = (EK)thr +m10c

2 with (EK)thr threshold kinetic energy of the pro-
jectile andm10c

2 its rest energy. The invariant for the ensemble of reaction products
after the reaction is determined in the center-of-mass coordinate system resulting in
total energy given as the sum of rest energies of reaction products and total momen-
tum p equal to zero.

Thus, for a general endothermic nuclear reaction the invariant before the reaction
Jbefore is expressed as

Jbefore = [√
p2

1c
2 + (

m10c2
)2 +m20c

2]2 − p2
1c

2 (7.337)

and the invariant Jafter after the reaction

Jafter = (
m30c

2 +m40c
2)− 0. (7.338)
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From Jbefore = Jafter and recalling that
√
p2

1c
2 + (m10c2)2 = Ethr = (EK)thr +

m10c
2, we obtain the following results for threshold energies Ethr and (EK)thr of

and endothermic nuclear reaction

Ethr = [m30c
2 +m40c

2]2 − [(m10c
2)2 + (m20c

2)2]
2m20c2

= (EK)thr +m10c
2 (7.339)

and

(EK)thr = [m30c
2 +m40c

2]2 − [m10c
2 +m20c

2]2

2m20c2
. (7.340)

For the special case of photonuclear reaction where the projectile is an energetic
photon (m10c

2 = 0), the threshold energy EPN
thr is given by inserting m10c

2 = 0 into
(7.339) or (7.340) to get

EPN
thr = hνPN

thr = [m30c
2 +m40c

2]2 − [m20c
2]2

2m20c2
. (7.341)

In summary, there are three methods for calculation of threshold energy EPN
thr =

hνPN
thr of a photonuclear reaction and they provide the following expressions for

EPN
thr = hνPN

thr :

(1) Rest energy method

EPN
thr = hνPN

thr = (
m30c

2 +m40c
2)−m20c

2 (7.342)

(2) Binding energy method

EPN
thr = hνPN

thr =EB(m20)−
[
EB(m30)+EB(m40)

]
(7.343)

(3) Relativistic invariant method

EPN
thr = hνPN

thr = [m30c
2 +m40c

2]2 − [m20c
2]2

2m20c2
(7.344)

For a given PN reaction one obtains the same end result for threshold energy
EPN

thr = hνPN
thr irrespective of which method one uses, provided, of course, that ap-

propriate data are inserted into the three Eqs. (7.342), (7.343), and (7.344).

(d) Threshold for the photonuclear reaction 208
82Pb(γ,n)207

82Pb is calculated as fol-
lows using appropriate data for (7.342), (7.343), and (7.344) from Appendix A:

(1) Rest energy method:

EPN
thr = hνPN

thr = (
m30c

2 +m40c
2)−m20c

2 = [
M
(207

82Pb
)
c2 +mnc

2]
− [
M
(208

82Pb
)
c2 + 0

]
= [192754.8983 MeV + 939.5654 MeV] − [193687.0956 MeV + 0]
= 7.37 MeV (7.345)
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(2) Binding energy method:

EPN
thr = hνPN

thr =EB(m20)−
[
EB(m30)+EB(m40)

]= [
EB

(208
82Pb

)]
− [
EB

(207
82Pb

)+ 0
]

= 1636.4457 MeV − 1629.0779 MeV = 7.37 MeV (7.346)

(3) Relativistic invariant method:

EPN
thr = hνPN

thr = [m30c
2 +m40c

2]2 − [m20c
2]2

2m20c2

= [M(207
82Pb)c2 +mnc

2]2 − [M(208
82Pb)c2]2

2M(208
82Pb)c2

= [192754.8983 MeV + 939.5654 MeV]2 − [193687.0956 MeV]2

2×(193687.0956 MeV)

= 7.37 MeV (7.347)

As shown in (7.345), (7.346), and (7.347), the three methods (rest energy, binding
energy, and relativistic invariant) for calculation of threshold energy of photonuclear
reaction give identical results.

7.7.Q2 (180)

Nuclear reaction 206
82Pb(γ,n)205

82Pb is an example of a typical photonuclear
(PN) reaction in which a high-energy photon with energy hν exceeding the
PN reaction threshold energy EPN

thr = hνPN
thr induces a PN reaction that causes

photonuclear decay of the target nucleus 206
82Pb into 205

82Pb and emission of a
fast neutron with kinetic energy (EK)n.

(a) Calculate the threshold energy EPN
thr = hνPN

thr for the PN reaction
206
82Pb(γ,n)205

82Pb using three methods that have been developed for de-
termination of PN reaction threshold:

(1) Rest energy method.
(2) Binding energy method.
(3) Relativistic invariant method.

Relevant data on rest energies and binding energies are provided in Ap-
pendix A.

(b) Determine the kinetic energy of the neutron (EK)n and the recoil nu-
cleus (EK)Pb-205 in a PN reaction of a 10 MeV photon with a Pb-206
nucleus.
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(c) Calculate the magnitude of the momentum of the incident photon
pν = |pν |, emitted fast neutron pn = |pn|, and recoil Pb-205 nucleus
pPb-205 = |pPb-205| for PN reaction of a 10 MeV photon with a Pb-206
nucleus.

(d) Draw a vector diagram of momentum pν before the PN reaction and
momenta pPb-205 as well as pn after the PN reaction.

SOLUTION:

(a) Threshold energy of a photonuclear reaction is defined as the minimum photon
energy that can trigger a particular photonuclear reaction. As derived in Prob. 179,
there are three methods for calculation of threshold energy EPN

thr = hνPN
thr of a pho-

tonuclear reaction: (1) Rest energy method, (2) Binding energy method, and (3)
Relativistic invariant method.

We now determine EPN
thr = hνPN

thr of the 206
82Pb(γ,n)205

82Pb PN reaction using the
three methods.

(1) Rest energy method:

EPN
thr = hνPN

thr = (
m30c

2 +m40c
2)−m20c

2 = [
M
(205

82Pb
)
c2 +mnc

2]
− [
M
(206

82Pb
)
c2 + 0

]
= [190890.604 MeV + 939.565 MeV] − [191822.082 MeV + 0]
= 8.087 MeV (7.348)

(2) Binding energy method:

EPN
thr = hνPN

thr =EB(m20)−
[
EB(m30)+EB(m40)

]= [
EB

(206
82Pb

)+ 0
]

− [
EB

(205
82Pb

)+ 0
]

= 1622.326 MeV − 1614.239 MeV = 8.087 MeV (7.349)

(3) Relativistic invariant method:

EPN
thr = hνPN

thr = [m30c
2 +m40c

2]2 − [m20c
2]2

2m20c2

= [M(205
82Pb)c2 +mnc

2]2 − [M(206
82Pb)c2]2

2M(206
82Pb)c2

= [190890.604 MeV + 939.565 MeV]2 − [191822.082 MeV]2

2×(191822.082 MeV)

= 8.087 MeV (7.350)
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As evident from (7.348), (7.349), and (7.350), the three methods for calculation
of threshold energy EPN

thr = hνPN
thr of PN reaction 206

82Pb(γ,n)205
82Pb yield identical

results of 8.087 MeV.

(b) Since the threshold photon energy for the 206
82Pb(γ,n)205

82Pb PN reaction is
8.087 MeV, the reaction products (Pb-205 nucleus and a neutron) resulting from
the PN reaction induced by a 10 MeV photon in a Pb-206 nucleus will share the
energy difference between the photon energy hν = 10 MeV and the threshold en-
ergy EPN

thr = hνPN
thr = 8.087 MeV. The threshold energy of 8.087 MeV is used up to

enable the PN reaction and the excess energy above the threshold energy is shared
as kinetic energy (EK)tr between the liberated neutron and the Pb-205 nucleus, i.e.,

(EK)tr = hν − hνPN
thr = 10 MeV − 8.087 MeV = 1.913 MeV

= (EK)n + (EK)Pb-205

= m(205
82Pb)c2

m(205
82Pb)c2 +mnc2

(EK)tr + mnc
2

m(205
82Pb)c2 +mnc2

(EK)tr, (7.351)

each receiving a fraction of the transferred energy in inverse proportion to their
rest masses. From (7.351) we determine kinetic energies (EK)n and (EK)Pb-205 as
follows

(EK)n = m(205
82Pb)c2

m(205
82Pb)c2 +mnc2

(EK)tr = 190890.604

191830.204
×(1.913 MeV)= 1.9036 MeV

(7.352)
and

(EK)Pb-205 = mnc
2

m(205
82Pb)c2 +mnc2

(EK)tr

= 939.565

191830.204
×(1.913 MeV)= 0.0094 MeV, (7.353)

indicating that most of the energy available for transfer to reaction products
(1.913 MeV) goes to the lighter reaction product (neutron).

(c) The magnitude of the photon momentum pν before PN reaction is given as
follows

|pν | = pν = hν

c
= 10 MeV

c
= 10 MeV/c. (7.354)

As shown in (7.352), after the PN reaction, the neutron kinetic energy (EK)n
is 1.9036 MeV and kinetic energy (EK)Pb-205 of the recoil nucleus Pb-205 is
0.0094 MeV. These two kinetic energies correspond to the following magnitudes
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Fig. 7.44 Schematic diagram of the photonuclear reaction triggered by a 10 MeV photon in-
teracting with a Pb-206 nucleus. Incident photon momentum |pν | = pν = 10 MeV/c before
the reaction; momenta of the emitted neutron and recoil nucleus Pb-205 after the reaction are
|pn| = pn = 59.84 MeV/c and |pPb-205| = pPb-205 = 59.91 MeV/c, respectively

of momenta pn and pPb-205, respectively

|pn| = pn = (EK)n

c

√
1 + 2mnc2

(EK)n

= 1.9036 MeV

c
×
√

1 + 2×939.565

1.9036
= 59.84 MeV/c (7.355)

and

|pPb-205| = pPb-205 = (EK)Pb-205

c

√
1 + 2m(205

82Pb)c2

(EK)Pb-205

= 0.0094 MeV

c
×
√

1 + 2×190890.604

0.0094
= 59.91 MeV/c. (7.356)

(d) Magnitudes of momenta of the incident photon pν , emitted neutron pn, and re-
coil nucleus pPb-205 were determined in (c); however, to plot the momenta as vectors
we must, in addition to vector magnitudes, also determine their direction relative to
the direction of the incident photon. For convenience we choose the incident photon
directed vertically down, and, based on the principle of momentum conservation,
we conclude that the resultant momentum of the neutron and Pb-205 recoil nucleus
must have the same magnitude as that of the incident photon and must also be di-
rected vertically down. This can be achieved if pn and pPb-205 are directed almost
perpendicularly to pν and moving in almost opposite directions to one another, as
shown in Fig. 7.44.

As evident from Fig. 7.44, vectors pν , pn, and pPb-205 form two triangles: TNA
and TPA and are characterized by angles α,β , and γ . To determine the exact direc-
tions of pn and pPb-205 relative to that of pν we now apply the trigonometric law of
cosines to calculate angles α,β , and γ .

(1) Angle α:

p2
Pb-205 = p2

ν + p2
n − 2pνpn cosα (7.357)
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or

α = arccos
p2
ν + p2

n − p2
Pb-205

2pνpn
= arccos

102 + 59.842 − 59.912

2×10×59.84
= 85.6◦.

(7.358)
(2) Angle β:

p2
n = p2

ν + p2
Pb-205 − 2pνpPb-205 cosβ (7.359)

or

β = arccos
p2
ν + p2

Pb-205 − p2
n

2pνpPb-205
= arccos

102 + 59.912 − 59.842

2×10×59.91
= 84.9◦.

(7.360)
(3) Angle γ :

p2
ν = p2

Pb-205 + p2
n − 2pPb-205pn cosγ (7.361)

or

γ = arccos
p2

Pb-205 + p2
n − p2

ν

2pPb-205pn
= arccos

59.912 + 59.842 − 102

2×59.91×59.84
= 9.6◦.

(7.362)

The sum of angles α,β , and γ is 180◦ satisfying the rule that the sum of internal
angles in a triangle must be 180◦.

Summary:

(1) Threshold EPN
thr for the PN reaction 206

82Pb(γ,n)205
82Pb is 8.087 MeV.

(2) In a 10 MeV direct photon interaction with a 206
82Pb nucleus, threshold energy

of 8.087 MeV is used to trigger the PN reaction and the energy difference
between the incident photon energy hν = 10 MeV and the threshold energy
EPN

thr = 8.087 MeV in the amount of 1.913 MeV is transferred as kinetic en-
ergy to reaction products (neutron and Pb-205 nucleus).

(3) Neutron and Pb-205 nucleus share energy of 1.913 MeV in inverse proportion
to their masses. Neutron receives 1.9036 MeV (99.5 %) and Pb-205 nucleus
0.0094 MeV (0.5 %), corresponding to a momentum of 59.84 MeV/c for neu-
tron and 59.91 MeV/c for the Pb-205 nucleus.

7.7.Q3 (181)

Photonuclear (PN) reactions are characterized by reaction threshold defined
as the minimum photon energy EPN

thr = hνPN
thr that can trigger a PN reaction.

Three methods have been developed for determination of threshold energy
EPN

thr = hνPN
thr based either on rest energy of the target and reaction products,

binding energy of the target and reaction products, or on the relativistic invari-
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ant for before and after the photonuclear interaction. Equations for the three
methods were derived in Prob. 180 and are summarized as follows:

(1) Rest energy method:

EPN
thr = hνPN

thr = (
m30c

2 +m40c
2)−m20c

2, (7.363)

(2) Binding energy method:

EPN
thr = hνPN

thr =EB(m20)−
[
EB(m30)+EB(m40)

]
, (7.364)

(3) Relativistic invariant method:

EPN
thr = hνPN

thr = [m30c
2 +m40c

2]2 − [m20c
2]2

2m20c2
, (7.365)

where m20 is the rest mass of the target nucleus and m30 and m40 are rest
masses of reaction products.

Calculate threshold energies EPN
thr = hνPN

thr for the following PN reactions:

(a) d(γ,n)p (b) t(γ,n)d (c) 3
2He(γ,d)p

(d) 3
2He(γ,2p)n (e) 7

3Li(γ,p)62He (f) 9
4Be(γ,n)84Be

(g) 16
8O(γ,α)12

6C

For each PN reaction use all three methods of threshold calculation and show
that they yield identical results.

SOLUTION:

(a) Threshold for PN reaction d(γ,n)p = 2
1H(γ,n)p: (induced deuteron breakup)

(1)

EPN
thr = hνPN

thr = (
m30c

2 +m40c
2)−m20c

2 = [
M(d)c2 + 0

]− [
mnc

2 +mpc
2]

= [1875.6128 MeV + 0] − [939.5654 MeV + 938.2720 MeV]
= 2.225 MeV (7.366)

(2)

EPN
thr = hνPN

thr =EB(m20)−
[
EB(m30)+EB(m40)

]
=EB(d)−

[
EB(n)+EB(p)

]
=EB(d)− [0 + 0] = 2.225 MeV (7.367)
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(3)

EPN
thr = hνPN

thr = [m30c
2 +m40c

2]2 − [m20c
2]2

2m20c2
= [mnc

2 +mpc
2]2 − [mdc

2]2

2mdc2

= [939.5654 MeV + 938.2720 MeV]2 − [1875.6128 MeV]2

2×(1875.6128 MeV)

= 2.226 MeV (7.368)

(b) Threshold for PN reaction t(γ,n)d = 3
1H(γ,n)21H: (induced triton breakup)

(1)

EPN
thr = hνPN

thr = (
m30c

2 +m40c
2)−m20c

2 = [
mdc

2 +mnc
2]−mtc

2

= [1875.6128 MeV + 939.5654 MeV] − [2808.9269 MeV]
= 6.26 MeV (7.369)

(2)

EPN
thr = hνPN

thr =EB(m20)−
[
EB(m30)+EB(m40)

]
=EB(t)−

[
EB(d)+EB(p)

]
= 8.48182 MeV − [2.22458 MeV + 0] = 6.26 MeV (7.370)

(3)

EPN
thr = hνPN

thr = [m30c
2 +m40c

2]2 − [m20c
2]2

2m20c2
= [mdc

2 +mnc
2]2 − [mtc

2]2

2mtc2

= [1875.6128 MeV + 939.5654 MeV]2 − [2808.9269 MeV]2

2×[2808.9269 MeV]
= 6.26 MeV (7.371)

(c) Threshold for PN reaction 3
2He(γ,d)p: (two body breakup channel)

(1)

EPN
thr = hνPN

thr = (
m30c

2 +m40c
2)−m20c

2 = [
M(d)c2 +mpc

2]− [
M
(3

2He
)]

= [1875.6128 MeV + 938.2720 MeV] − [2808.3913 MeV] = 5.49 MeV
(7.372)

(2)

EPN
thr = hνPN

thr =EB(m20)−
[
EB(m30)+EB(m40)

]
=EB

(3
2He

)− [
EB(d)+EB(p)

]
= 7.7181 MeV − 2.2246 MeV = 5.49 MeV (7.373)
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(3)

EPN
thr = hνPN

thr = [m30c
2 +m40c

2]2 − [m20c
2]2

2m20c2

= [M(d)c2 +mpc
2]2 − [M(32He)c2]2

2M(32He)c2

= [1875.6128 MeV + 938.2720 MeV]2 − [2808.3913 MeV]2

2×(2808.3913 MeV)

= 5.50 MeV (7.374)

(d) Threshold for PN reaction 3
2He(γ,2p)n: (three body break up channel)

(1)

EPN
thr = hνPN

thr = (
m30c

2 +m40c
2)−m20c

2 = [
2mpc

2 +mnc
2]− [

M
(3

2He
)
c2]

= [
2×(938.2720 MeV)+ (939.5654 MeV)

]− [2808.3913 MeV]
= 7.72 MeV (7.375)

(2)

EPN
thr = hνPN

thr =EB(m20)−
[
EB(m30)+EB(m40)

]=EB
(3

2He
)− [0 + 0]

= 7.72 MeV (7.376)

(3)

EPN
thr = hνPN

thr = [m30c
2 +m40c

2]2 − [m20c
2]2

2m20c2

= [2mpc
2 +mnc

2] − [M(32He)c2]
2M(32He)c2

= [2×(938.2720 MeV)+ (939.5654 MeV)]2 − [2808.3913 MeV]2

2×(2808.3913 MeV)

= 7.73 MeV (7.377)

(e) Threshold for PN reaction 7
3Li(γ,p)62He: (induced proton emission)

(1)

EPN
thr = hνPN

thr = (
m30c

2 +m40c
2)−m20c

2

= [
M
(6

2He
)
c2 +mpc

2]− [
M
(7

3Li
)
c2]

= [5605.5372 MeV + 938.2720 MeV] − [6533.8330 MeV] = 9.98 MeV
(7.378)
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(2)

EPN
thr = hνPN

thr =EB(m20)−
[
EB(m30)+EB(m40)

]
=EB

(7
3Li

)− [
EB

(6
2He

)+ 0
]

= 39.2446 MeV − 29.2682 MeV = 9.98 MeV (7.379)

(3)

EPN
thr = hνPN

thr = [m30c
2 +m40c

2]2 − [m20c
2]2

2m20c2

= [M(62He)c2 +mpc
2]2 − [M(73Li)c2]2

2M(73Li)c2

= [5605.5372 MeV + 938.2720 MeV]2 − [6533.8330 MeV]2

2×(6533.8330 MeV)

= 9.98 MeV (7.380)

(f) Threshold for PN reaction 9
4Be(γ,n)84Be: (induced neutron emission)

(1)

EPN
thr = hνPN

thr = (
m30c

2 +m40c
2)−m20c

2

= [
M
(8

4Be
)
c2 +mnc

2]− [
M
(9

4Be
)
c2]

= [7454.8500 MeV + 939.5654 MeV] − [8392.7499 MeV] = 1.67 MeV
(7.381)

(2)

EPN
thr = hνPN

thr =EB(m20)−
[
EB(m30)+EB(m40)

]
=EB

(9
4Be

)− [
EB

(8
4Be

)+ 0
]

= 58.1650 MeV − 56.4996 MeV = 1.67 MeV (7.382)

(3)

EPN
thr = hνPN

thr = [m30c
2 +m40c

2]2 − [m20c
2]2

2m20c2

= [M(84Be)c2 +mnc
2]2 − [M(94Be)c2]2

2M(94Be)c2

= [7454.8500 MeV + 939.5654 MeV]2 − [8392.7499 MeV]2

2×(8392.7499 MeV)

= 1.67 MeV (7.383)
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(g) Threshold for PN reaction 16
8O(γ,α)12

6C: (induced α particle emission)

(1)

EPN
thr = hνPN

thr = (
m30c

2 +m40c
2)−m20c

2

= [
M
(12

6C
)
c2 +mαc2]− [

M
(16

8O
)
c2]

= [11174.8625 MeV + 3727.3791 MeV] − [14895.0796 MeV]
= 7.16 MeV (7.384)

(2)

EPN
thr = hνPN

thr =EB(m20)−
[
EB(m30)+EB(m40)

]
=EB

(16
8O

)− [
EB

(12
6C
)−EB(α)

]
= 127.6193 MeV − [92.1618 MeV + 28.2957 MeV] = 7.16 MeV (7.385)

(3)

EPN
thr = hνPN

thr = [m30c
2 +m40c

2]2 − [m20c
2]2

2m20c2

= [M(12
6C)c2 +mαc2] − [M(16

8O)c2]
2M(16

8O)c2

= [11174.8625 MeV + 3727.3791 MeV]2 − [14895.0796 MeV]2

2×(14895.0796 MeV)

= 7.16 MeV (7.386)

7.7.Q4 (182)

Photonuclear reaction (also referred to as photodisintegration) occurs in a
direct interaction between an energetic photon and an absorber nucleus. It
causes nuclear disintegration with emission of a neutron or charged particle
such as proton, deuteron, α particle, fission fragments, etc. If the photon dis-
appears, the reaction may be called nuclear photoelectric effect; if inelastic
scattering occurs between the photon and the nucleus, the effect may be re-
ferred to as nuclear Compton effect.

A (γ,p) photonuclear reaction produces a proton with kinetic energy E′
K =

6 MeV.

(a) Describe in general terms the prominent features of this (γ,p) photonu-
clear reaction.
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(b) Calculate the minimum photon energy (Eν)min required for the (γ,p)
reaction to occur.

(c) Calculate the energy of the scattered photon E′
ν for (Eν)min determined

in (b).
(d) Determine the momentum of the incident photon with energy deter-

mined in (b), scattered photon with energy determined in (c), and recoil
proton with kinetic energy E′

K = 6 MeV.
(e) Draw a schematic diagram of this photonuclear reaction using relative

scale according to momenta determined in (d). Verify that principles of
energy and momentum conservation are upheld.

SOLUTION:

(a) Since no mention is made of the parent nucleus, we assume that the (γ,p)
photon-nucleus interaction is a nuclear Compton effect in which the photon is scat-
tered by a “free and stationary” proton. We also assume that, similarly to the stan-
dard electronic Compton interaction, at a given incident photon energyEν , the recoil
proton will acquire the maximum possible energy from the incident photon at a pho-
ton scattering angle θ of 180◦. Conversely, we can also assume that a given recoil
proton kinetic energy E′

K will be attained with a minimum required incident photon
kinetic energy (Eν)min when the scattering angle θ is 180◦.

(b) From the standard electronic Compton effect we know that the energy transfer
from incident photon to recoil particle is in general given as

E′
K =Eν ε(1 − cos θ)

1 + ε(1 − cos θ)
and for θ = π it is given as E′

K =Eν 2ε

1 + 2ε
,

(7.387)
where ε is the incident photon energy Eν normalized to the rest energy m0c

2 of the
recoil particle, i.e., ε = Eν/(m0c

2). The recoil particle in standard Compton effect
is the electron (mec

2 = 0.511 MeV); in nuclear Compton (γ,p) scattering it is the
proton (mpc

2 = 938.3 MeV).
Since the minimum incident photon energy (Eν)min for the given recoil proton

energy E′
K = 6 MeV will be attained at θ = π , as described in (7.387), we get the

following expression relating E′
K with (Eν)min

E′
K = (Eν)min

2ε

1 + 2ε
= 2(Eν)2min

mpc2 + 2(Eν)min
. (7.388)

Equation (7.388) can be rearranged into a quadratic equation for (Eν)min given as

2(Eν)
2
min − 2E′

K(Eν)min −E′
Kmpc

2 = 0, (7.389)
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Fig. 7.45 Schematic diagram of the (γ,p) Compton photonuclear reaction

with the following physically relevant solution

(Eν)min =
E′

K +
√
(E′

K)
2 + 2E′

Kmpc2

2

= 6 MeV +√
36 (MeV)2 + 2×6×938.3 (MeV)2

2
= 56.14 MeV. (7.390)

(c) The scattered photon energy E′
ν is determined from the conservation of energy

as follows

E′
ν = (Eν)min −E′

K = 56.14 MeV − 6 MeV = 50.14 MeV. (7.391)

(d) Momenta of the incident photon of energy (Eν)min = 50.14 MeV and the scat-
tered photon of energy E′

ν = 50.14 MeV are as follows

pν = |pν | = (Eν)min

c
= 56.14 MeV/c and p′

ν = ∣∣p′
ν

∣∣= E′
ν

c
= 50.14 MeV/c.

(7.392)
Momentum of the recoil proton of kinetic energy E′

K = 6 MeV is determined from
the standard expression relating relativistic momentum p with kinetic energy EK of
a particle as (T1.64)

pp = |pp| = E′
K

c

√
1 + 2mpc2

E′
K

= 6 MeV

c

√
1 + 2×938.3

6
= 106.28 MeV/c.

(7.393)
(e) A schematic diagram of the photon–“free” proton (γ,p) photonuclear reaction
with a scattering angle θ = 180◦ is shown in Fig. 7.45. The recoil proton kinetic en-
ergy E′

K is 6 MeV with proton recoil momentum p′
p of 106.28 MeV/c; incident pho-

ton energy isEν = 56.14 MeV with incident photon momentum pν of 56.14 MeV/c;
and scattered photon energy is E′

ν = 50.14 MeV with scattered photon momentum
p′
ν of 50.14 MeV/c. From the data presented in Fig. 7.45 we note that the principles

of energy and momentum conservation in nuclear Compton effect are upheld.



8Energy Transfer and Energy Absorption
in Photon Interaction with Matter

Chapter 8 contains 15 questions spread over 7 sections that cover energy
transfer to light charged particles and energy absorption in absorbing medium
in photon interaction with matter. Energy transfer exceeds or is equal to en-
ergy absorption, and the difference between the two is attributed to energy
radiated from the charged particles in the form of photons, either bremsstrah-
lung or, under certain conditions, annihilation photons. Many types of photon
interaction with absorbing medium are known. Some of these are only of the-
oretical interest and help in understanding of the general photon interaction
phenomena, others are of great importance in medical physics, since they play
a fundamental role in imaging, radiotherapy as well as radiation dosimetry.

Section 8.1 addresses the macroscopic attenuation coefficients that in gen-
eral represent a sum of attenuation coefficients for all individual interactions
that an ionizing photon may have with atoms of the absorber. The interactions
of interest in the context of attenuation coefficients are the photoelectric ef-
fect, Rayleigh scattering, Compton effect, and pair production, consisting of
the nuclear and electronic component.

Section 8.2 deals with issues related to energy transfer from photons to
charged particles, while Sect. 8.3 concentrates on energy absorption in the ab-
sorber and also deals with the mean radiation fraction (with its two main com-
ponents: the bremsstrahlung fraction and in-flight annihilation fraction) as
well as the mean energy absorption fraction. Section 8.4 consists of problems
dealing with attenuation coefficients of compounds and mixtures; Sect. 8.5
addresses various effects that follow photon interactions with the absorber.

The chapter concludes with problems highlighting a summary of photon
interactions with absorber atoms (Sect. 8.6) and Sect. 8.7 contains two prob-
lems presenting a simple Monte Carlo simulation history of highenergy pho-
tons interacting with a water phantom.

E.B. Podgoršak, Compendium to Radiation Physics for Medical Physicists,
DOI 10.1007/978-3-642-20186-8_8,
© Springer-Verlag Berlin Heidelberg 2014
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8.1 Macroscopic Attenuation Coefficient

8.1.Q1 (183)

The mass attenuation coefficients for photoelectric effect τ/ρ, Rayleigh scat-
tering σR/ρ, Compton scattering σC/ρ, nuclear pair production κNPP/ρ and
electronic pair production (triplet production) κTP/ρ for photons with energy
hν = 5 MeV in tungsten are:

τ/ρ = 9.04×10−4 cm2/g;
σR/ρ = 1.01×10−4 cm2/g;
σC/ρ = 2.01×10−2 cm2/g;
κNPP/ρ = 1.98×10−2 cm2/g;
κTP/ρ = 7.91×10−5 cm2/g.

Physical density ρ and atomic mass A of tungsten are 19.3 g/cm3 and
183.84 g/mol, respectively.

For photons of energy hν = 5 MeV interacting with a tungsten absorber
calculate:

(a) Mass attenuation coefficient μ/ρ.
(b) Linear attenuation coefficient μ.
(c) Atomic attenuation coefficients aτ , aσR, aσC, aκNPP, and aκTP for pho-

toelectric effect, Rayleigh scattering, nuclear pair production and triplet
production, respectively.

(d) Atomic attenuation coefficient aμ.
(e) Electronic attenuation coefficients eσC and eκTP for Compton effect and

triplet production, respectively.

SOLUTION:

As shown in (T8.1) through (T8.4), for an absorber of density ρ, atomic number Z,
and atomic mass A, the expressions for the linear attenuation coefficient μ, mass
attenuation coefficient μm, and atomic attenuation coefficient (cross section) aμ are
given as a sum of contributions μi from the four individual effects.

(1) Linear attenuation coefficient μ

μ=
∑
i

μi = τ + σR + σC + κ, (8.1)

(2) Mass attenuation coefficient μm

μm = μ

ρ
=
∑
i

(
μ

ρ

)
i

= 1

ρ
(τ + σR + σC + κ)= τ

ρ
+ σR

ρ
+ σC

ρ
+ κ

ρ
, (8.2)
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(3) Atomic attenuation coefficient (cross section) aμ

aμ= 1

ρ

A

NA
μ= 1

ρ

A

NA

∑
i

μi = 1

ρ

A

NA
(τ + σR + σC + κ)= aτ + aσR + aσC + aκ,

(8.3)
where τ , σR, σC, and κ are the linear attenuation coefficients for the photoelectric
effect, Rayleigh scattering, Compton effect, and pair production, respectively. The
linear pair production attenuation coefficient κ is usually expressed as the sum of the
linear nuclear pair production attenuation coefficient κNPP and the linear electronic
pair production (triplet production) attenuation coefficient κTP.

(a) As given in (8.2), the mass attenuation coefficient μ/ρ for 5 MeV photons in
tungsten absorber is calculated as a sum of four individual components

μ

ρ
=
∑
i

(
μ

ρ

)
i

= τ

ρ
+ σR

ρ
+ σC

ρ
+
(
κTP

ρ
+ κNPP

ρ

)
= τ

ρ
+ σR

ρ
+ σC

ρ
+ κ

ρ

= [
9.04×10−4 +1.01×10−4 +2.01×10−2 + (

1.98×10−2 +7.91×10−5)] cm2

g

= 4.10×10−2 cm2

g
. (8.4)

(b) Linear attenuation coefficient μ is calculated from the mass attenuation coef-
ficient μ/ρ as follows

μ= μmρ =
(
μ

ρ

)
×ρ = 4.10×10−2 cm2

g
×19.3

g

cm3
= 0.792 cm−1. (8.5)

(c) Atomic attenuation coefficients aμi are calculated from the two basic nuclear
physics expressions relating linear and mass attenuation coefficients with the atomic
coefficient

μi = n�aμi or
μi

ρ
= n�

ρ
aμi = NA

A
aμi, (8.6)

where

n� is the number of atoms Na per volume V , i.e., n� = Na/V = ρNa/m =
ρNA/A.

m is the mass of the absorber.
NA is the Avogadro number (6.022×1023 mol−1).
ρ is the mass density of the absorber.

Atomic attenuation coefficients for the four types of photon interaction of 5 MeV
photons with tungsten atoms are thus given as follows:
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(1) Photoelectric effect

aτ = A

NA

(
τ

ρ

)
= 183.84 g/mol

6.022×1023 atom/mol
×(

9.04×10−4 cm2/g
)

= 2.76×10−25 cm2

atom
= 0.276

b

atom
, (8.7)

(2) Rayleigh scattering

aσR = A

NA

(
σR

ρ

)
= 183.84 g/mol

6.022×1023 atom/mol
×(

1.01×10−4 cm2/g
)

= 3.09×10−26 cm2

atom
= 3.09×10−2 b

atom
, (8.8)

(3) Compton effect

aσC = A

NA

(
σC

ρ

)
= 183.84 g/mol

6.022×1023 atom/mol
×(

2.01×10−2 cm2/g
)

= 6.14×10−24 cm2

atom
= 6.14

b

atom
, (8.9)

(4) Pair production
Atomic attenuation coefficient aκ for pair production has two components:

nuclear aκNPP and electronic (triplet) aκTP

aκNPP = A

NA

(
κNPP

ρ

)
= 183.84 g/mol

6.022×1023 atom/mol
×(

1.98×10−2 cm2/g
)

= 6.05×10−24 cm2

atom
= 6.05

b

atom
(8.10)

and

aκTP = A

NA

(
κTP

ρ

)
= 183.84 g/mol

6.022×1023 atom/mol
×(

7.91×10−6 cm2/g
)

= 2.42×10−27 cm2

atom
= 2.42×10−3 b

atom
. (8.11)

Note: Since aκNPP � aκTP, one can assume that aκ ≈ aκNPP = 6.05 b/atom.

(d) As given in (8.3), the atomic attenuation coefficient aμ for 5 MeV photons
interacting with tungsten is given by the sum of the four individual components
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given in (8.7) through (8.10). We thus have the following result for aμ

aμ=
∑
i

aμi = aτ + aσR + aσC + aκ

= (
0.276 + 3.09×10−2 + 6.14 + 6.05

) b

atom
= 12.5

b

atom
. (8.12)

Using (8.6) in conjunction with (8.12) we can verify the consistency of results for
the mass and linear attenuation coefficients obtained in (8.4) and (8.5), respectively,
as

μ= n�aμ= ρNA

A
aμ

= (
19.3 g/cm3)× (6.022×1023 atom/mol)

(183.84 g/mol)
×(

12.5×10−24 cm2/atom
)

= 0.792 cm−1 (8.13)

and

μm = μ

ρ
= 0.792 cm−1

19.3 g/cm3
= 4.10×10−2 cm2/g ≡ n�

ρ
aμ= NA

A
aμ

= (6.022×1023 atom/mol)

(183.84 g/mol)
×(

12.5×10−24 cm2/atom
)

= 4.10×10−2 cm2/g. (8.14)

(e) Electronic Compton attenuation coefficient eσC is calculated from the atomic
Compton attenuation coefficient aσC as follows

eσC = aσC

Z
= 6.14×10−24 cm2/atom

74 electron/atom
= 8.30×10−26 cm2/electron

= 0.083 b/electron. (8.15)

Electronic triplet production attenuation coefficient eκTP is calculated from the
atomic triplet production attenuation coefficient aκTP as follows

eκTP = aκTP

Z

2.42×10−3 b/atom

74 electron/atom
= 3.27×10−5 b/electron. (8.16)
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8.2 Energy Transfer from Photons to Charged Particles
in Absorber

8.2.Q1 (184)

The five most important photon interactions with matter are the photoelec-
tric effect, Rayleigh scattering, Compton effect, nuclear pair production, and
triplet production. Of these, Rayleigh scattering is elastic and does not trans-
fer any energy to charged particles, so it is ignored in the context of energy
transfer. Three of the remaining four effects (photoelectric, Compton, and
triplet production) produce vacancies in absorber atoms, and these vacancies
engender either characteristic (fluorescence) photons or Auger electrons or
both.

(a) State and sketch the mean energy transfer fractions for the photoelectric
effect f̄PE, Rayleigh scattering f̄R, Compton effect f̄C, and pair produc-
tion f̄PP as a function of incident photon energy hν.

(b) Determine the mean energy transfer fractions f̄PE, f̄R, f̄C, and f̄PP for
5 MeV photons interacting with a tungsten absorber.

SOLUTION:

(a) The total mean energy transfer fraction f̄tr(hν,Z) is defined as the fraction of
photon energy hν that is transferred to kinetic energy of charged particles produced
or released in the absorber during various possible photon interactions with absorber
atoms. It is generally expressed as the sum of four components, each component
representing a specific effect that contributes to photon attenuation in the absorber
(photoelectric effect, Rayleigh scattering, Compton effect, and pair production).

The mean energy transfer fractions for individual photon interactions are ex-
pressed as follows

f̄PE = ĒPE
tr

=
hν − X̄PE

hν
= hν −∑

j Pjωjhν̄j

hν
= 1 −

∑
j Pjωjhν̄j

hν
, (8.17)

f̄R = 0, (8.18)

f̄C = ĒC
tr

hν
= hν − hν̄′ − X̄C

hν
= 1 − hν̄′ + X̄C

hν
≈ 1 − hν̄′

hν
, (8.19)

f̄NPP = ĒNPP
tr

hν
= hν − 2mec

2

hν
= 1 − 2mec

2

hν
= 1 − 2mec

2

hν
, (8.20)
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Fig. 8.1 Mean energy transfer fractions f̄i plotted against photon energy hν for the four main
photon interactions with absorber atoms: f̄PE for photoelectric effect, f̄R for Rayleigh scattering,
f̄C for Compton effect, and f̄PP for pair production. The data points show the mean energy transfer
fractions for the four interactions at photon energy of 5 MeV interacting with tungsten absorber

f̄TP = ĒTP
tr

hν
= hν − 2mec

2 − X̄TP

hν
= 1 − 2mec

2 + X̄TP

hν

≈ 1 − 2mec
2

hν
, (8.21)

where X̄PE, X̄C, and X̄TP are the mean fluorescence emission energies for the pho-
toelectric effect, Compton effect, and triplet production, and hν̄′ is the mean energy
of the scattered photon. In the photoelectric effect it is customary to add the kinetic
energy of the Auger electrons to that of the photoelectron; in Compton effect and
the triplet production the kinetic energy of possible Auger electrons is neglected.

The mean energy transfer fractions f̄PE, f̄R, f̄C, and f̄PP are very important in
radiation dosimetry in particular and medical physics in general. It is therefore im-
perative that a medical physics student be able to sketch and explain the four mean
energy transfer fractions in the photon energy hν range from 1 keV to 1000 MeV.
Figure 8.1 shows the mean energy transfer fractions f̄PE, f̄R, f̄C, and f̄PP for the
photoelectric effect, Rayleigh scattering, Compton effect and pair production. The
graph seems quite busy but a closer look actually shows that the fractions for indi-
vidual effects are relatively easy to understand and to reproduce once a few facts are
recognized. The following points are useful to note:

(1) Of the four fractions, f̄PE for photoelectric effect seems the most cumbersome
since it depends not only on energy hν of the photon but also on the atomic
number Z of the absorber, as a result of the Z-dependence of (i) Pj , the prob-
ability for photoelectric effect, if it occurs, to occur in j shell or sub-shell;
(ii) ωj , the fluorescence yield; and (iii) hν̄j , the mean fluorescence photon
energy.
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Fig. 8.2 Mean energy transfer fractions (A) f̄C for Compton effect and (B) f̄PP for pair produc-
tion. Anchor points listed in Table 8.1 that help with sketching the two curves are highlighted

Table 8.1 Anchor points for mean energy transfer fractions f̄C and f̄PP

hν (MeV) 0.001 0.01 0.1 1.0 5 10 100 1000

f̄C 0 0.02 0.14 0.44 – 0.68 0.80 0.85

f̄PP – – – ∼0 0.5 0.9 ∼1 ∼1

(2) For a given absorber Z, f̄PE ranges from its lowest value at the K absorp-
tion edge [hν = EB(K)] to f̄PE = 1 both at low photon energies where
hν < EB(M) and at high photon energies where hν > 10 MeV.

(3) Energy dependence of f̄R for Rayleigh scattering is trivial since f̄R = 0 irre-
spective of photon hν and Z of the absorber.

(4) f̄C and f̄PP for Compton effect and pair production, respectively, depend on
photon energy hν but are independent of the atomic number Z of the absorber.
For all absorbers, the range of f̄C is from f̄C < 0.02 for hν < 10 keV to
f̄C > 0.85 for hν > 1000 MeV. For all absorbers, the range of f̄PP is from
f̄PP = 0 for hν ≤ 1.02 MeV through f̄PP = 0.5 at hν = 2 MeV to f̄PP ≈ 1 for
hν > 10 MeV.

(5) Not depending on Z of the absorber, f̄C, and f̄PP are given for all absorbers by
only one curve each, and the two curves can be easily reproduced by know-
ing a few anchor points for each curve, as shown in Fig. 8.2, (A) and (B),
respectively, and listed in Table 8.1.

(b) Mean energy transfer fractions f̄PE, f̄R, f̄C, and f̄PP for 5 MeV photon can
be read directly from Fig. 8.1 and are marked on the figure as data points for hν =
5 MeV. The individual mean energy transfer fractions for 5 MeV photon interacting
with a tungsten absorber are as follows

f̄PE ≈ 1.0, f̄R = 0, f̄C = 0.62, and f̄PP = 0.795. (8.22)
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8.2.Q2 (185)

Using the mass attenuation coefficient data for aluminum and tungsten avail-
able from the NIST XCOM database: physics.nist.gov/PhysRefData/Xcom/
html/xcom1.html

(a) Calculate the relative weights wi of the photoelectric effect wPE,
Rayleigh scattering wR, Compton scattering wC, and pair production
(nuclear and electronic combined) wPP, for aluminum and tungsten
for photon energies hν of 0.001 MeV, 0.1 MeV, 1 MeV, 10 MeV, and
100 MeV.

(b) Enter and verify the data calculated in (a) on the two graphs presented in
Fig. 8.3 that plots in (A) for aluminum and (B) for tungsten the relative
weights wi for the photoelectric effect, Rayleigh scattering, Compton
effect, and pair production against photon energy hν in the range from
0.001 MeV to 100 MeV.

(c) Discuss the general behavior of the relative weights wi against photon
energy of the four main types of photon interaction with absorber atoms.

Fig. 8.3 Relative weights wi plotted for aluminum in (A) and tungsten in (B) against photon
energy hν for the four main photon interactions with absorber atoms: photoelectric effect wPE,
Rayleigh scattering wR, Compton effect wC, and pair production wPP. Data calculated using the
NIST XCOM database

SOLUTION:

Out of the large number of possible photon interactions with absorber atoms known
in nuclear physics, in medical physics we usually account for the four most promi-
nent interactions: photoelectric effect (PE), Rayleigh scattering (R), Compton effect
(C), and pair production (PP). Relative weight wi for each of these interactions i is

http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
http://physics.nist.gov/PhysRefData/Xcom/html/xcom1.html
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given by the following ratios

wi = μi/ρ

μ/ρ
(8.23)

with

wPE = τ/ρ

μ/ρ
; wR = σR/ρ

μ/ρ
;

wC = σC/ρ

μ/ρ
; and

κPP/ρ

μ/ρ
= κNPP/ρ + κTP/ρ

μ
,

(8.24)

where μi/ρ is the mass attenuation coefficient for interaction i and μ/ρ is the total
mass attenuation coefficient equal to the sum of mass attenuation coefficients for
each of the four individual interactions i, as indicated below

μ

ρ
=
∑
i

μi

ρ
= τ

ρ
+ σR

ρ
+ σC

ρ
+ κ

ρ
. (8.25)

From (8.24) and (8.25) we note that the sum of the weights wi for the individual
photon interaction effects must by definition equal to 1, i.e.,

∑
i

wi =wPE +wR +wC +wPP = τ/ρ

μ/ρ
+ σR/ρ

μ/ρ
+ σC/ρ

μ/ρ
+ κPP/ρ

μ/ρ
= 1. (8.26)

(a) Based on data available from the NIST we now calculate the relative weights
wi of the photoelectric effect wPE, Rayleigh scattering wR, Compton scattering wC,
and pair production (nuclear and electronic combined) wPP for aluminum and tung-
sten for selected photon energies hν of 0.001 MeV, 0.1 MeV, 1 MeV, 10 MeV, and
100 MeV. NIST data for aluminum are presented in Table 8.1 and for tungsten in
Table 8.2.

(b) The relative weights for the photoelectric effect wPE, Rayleigh scattering wR,
Compton effectwC, and pair productionwPP for various photons in the energy range
between 1 keV and 100 MeV interacting with aluminum and tungsten absorber were
calculated with (8.24) in (a) and are listed in Tables 8.2 and 8.3, respectively. We
entered the calculated wi on the graphs of Fig. 8.4 to verify our calculated data. The
agreement between the graphs based on NIST data and our calculatedwi is excellent
allowing us to make the following conclusions on the photon energy dependence
of wi:

(1) On semi-log photon energy diagram wPE and wPP exhibit a sigmoid shape,
wPE decreasing from 1 with photon energy increasing from 1 keV and wPP
increasing from 0 with photon energy increasing from 1 MeV.

(2) For the photoelectric effect wPE is approximately equal to 1 at relatively low
photon energies hν of the order of the K-shell binding energy EB(K). With
increasing photon energy, wPE decreases and asymptotically approaches 0. It
attains a 50 % point at ∼ 40 keV for low Z absorbers such as aluminum and at



8.2 Energy Transfer from Photons to Charged Particles in Absorber 525

Table 8.2 Relative weights wi for photoelectric effect wPE, Rayleigh scattering wR, Compton
effect wC, and pair production wPP in aluminum absorber for various photon energies hν in the
range from 0.001 MeV to 100 MeV

(1) hν (MeV) 0.001 0.01 0.1 1.0 10.0 100.0

(2) τ/ρ (cm2/g) 1.18×103 25.6 1.84×10−2 2.64×10−5 9.66×10−7 8.64×10−8

(3) σR/ρ (cm2/g) 2.26 0.551 1.32×10−2 1.44×10−4 1.44×10−6 1.44×10−8

(4) σC/ρ (cm2/g) 1.43×10−2 0.106 0.139 6.13×10−2 1.48×10−2 2.40×10−3

(5) κNPP/ρ (cm2/g) 0 0 0 0 8.00×10−3 2.12×10−2

(6) κTP/ρ (cm2/g) 0 0 0 0 3.39×10−4 1.56×10−3

(7) μ/ρ (cm2/g) 1.182×103 26.3 0.171 6.15×10−2 2.31×10−2 2.52×10−2

(8) wPE 0.998 0.975 0.108 4.30×10−4 4.17×10−5 3.34×10−6

(9) wR 1.91×10−3 2.10×10−2 7.74×10−2 2.34×10−3 6.22×10−5 5.72×10−7

(10) wC 1.21×10−5 4.04×10−3 0.815 0.997 0.640 9.54×10−2

(11) wPP 0 0 0 0 0.360 0.905

(12)
∑
i wi ∼1.00 ∼1.00 ∼1.00 ∼1.00 ∼1.00 ∼1.00

Table 8.3 Relative weights wi for photoelectric effect wPE, Rayleigh scattering wR, Compton
effect wR, and pair production wPP in tungsten absorber for various photon energies hν in the
range from 0.001 MeV to 100 MeV

(1) hν (MeV) 0.001 0.01 0.1 1.0 10.0 100.0

(2) τ/ρ (cm2/g) 3.67×103 92.4 4.15 1.28×10−2 3.75×10−4 3.08×10−5

(3) σR/ρ (cm2/g) 11.4 4,45 0.182 2.48×10−3 2.53×10−5 2.53×10−7

(4) σC/ρ (cm2/g) 4.43×10−3 4.79×10−2 0.102 5.09×10−2 1.24×10−2 2.01×10−3

(5) κNPP/ρ (cm2/g) 0 0 0 0 3.44×10−2 8.09×10−2

(6) κTP/ρ (cm2/g) 0 0 0 0 2.79×10−4 1.19×10−3

(7) μ/ρ (cm2/g) 3.68×103 26.3 4.43 6.62×10−2 4.75×10−2 8.79×10−2

(8) wPE 0.997 0.954 0.936 0.193 7.90×10−3 3.50×10−4

(9) wR 3.10×10−3 4.50×10−2 4.10×10−2 3.75×10−2 5.33×10−4 2.88×10−6

(10) wC 1.18×10−6 4.94×10−4 2.30×10−2 0.769 0.261 2.29×10−2

(11) wPP 0 0 0 0 0.730 0.977

(12)
∑
i wi ∼1.00 ∼1.00 ∼1.00 ∼1.00 ∼1.00 ∼1.00

∼500 keV for high Z absorbers such as tungsten. For low Z absorbers wPE ≈
0 for photon energies exceeding 100 keV; for high Z absorbers wPE = 0 at
photon energies exceeding 10 MeV.

(3) For Rayleigh scattering wR follows a bell shaped distribution and reaches a
peak value of about 0.1 or less indicating that the relative weight of Rayleigh
scattering does not amount to more than about 10 % of the total attenuation.
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Fig. 8.4 Relative weightswi for photoelectric effectwPE, Rayleigh scatteringwR, Compton effect
wC, and pair production wPP in aluminum in (A) and tungsten in (B) for various photon energies
hν in the range from 0.001 MeV to 100 MeV. Our calculated data are shown as data points on the
graphs

(4) For Compton scattering wC also follows a bell shaped distribution and for all
absorbers it peaks at ∼1.5 MeV. For low Z absorbers the distribution is broad
and peaks atwC = 1; for high Z absorbers the distribution is narrow and peaks
at wC ≈ 0.7.

(5) For pair production wPP exhibits a sigmoid curve shape starting at the pair
production threshold photon energy of 1.022 MeV. With increasing photon
energy the distribution rises rapidly from wPP = 0 to reach a saturation value
of wPP = 1 at high photon energies. The point of 50 % saturation (wPP = 0.5)
occurs at photon energy of ∼20 MeV for lowZ absorbers and at only ∼5 MeV
for high Z absorbers.
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8.2.Q3 (186)

Total mean energy transfer fraction f̄tr(hν,Z) is defined as the mean fraction
of photon energy hν that is transferred to kinetic energy of charged particles
produced or released in the absorber during the various possible photon inter-
actions with absorber atoms.

(a) Determine f̄tr(hν = 4 MeV,Z = 82) for 4 MeV photons interacting
with a lead absorber.

(b) Determine Ētr, mean energy transferred from 4 MeV photon to charged
particles released or produced in lead absorber.

The following NIST data for 4 MeV photons in lead may prove useful in the
calculations: aτ = 0.593 b/atom, aσR = 0.066 b/atom, aσC = 7.879 b/atom,
aκ = 5.904 b/atom.

SOLUTION:

(a) The total mean energy transfer fraction f̄tr for the four most common photon
interactions (photoelectric, Rayleigh, Compton, and pair production) is expressed
as follows (T8.6)

f̄tr = Ētr

hν
=
∑
i

μi/ρ

μ/ρ
f̄i =

{
τ/ρ

μ/ρ
f̄PE + σR/ρ

μ/ρ
f̄R + σC/ρ

μ/ρ
f̄C + κ/ρ

μ/ρ
f̄PP

}

=
∑
wi

aμi

aμ
=
∑
i

wi f̄i = {wPEf̄PE +wRf̄R +wCf̄C +wPPf̄PP}

=
∑
i

μi

μ

Ēitr

hν
= 1

hν

{
wPEĒ

PE
tr +wRĒ

R
tr +wCĒ

C
tr +wPPĒ

PP
tr

}
, (8.27)

where

f̄i is the mean energy transfer fraction for photon interaction i: f̄PE, f̄R, f̄C, and
f̄PP.

wi is the relative weight of photon interaction i: wPE, wR, wC, and wPP.
Ēitr is the mean energy transferred from photon to charged particles for interac-

tion i.
Ētr is the mean energy transferred from photon to charged particles averaged over

all possible photon interactions at a given photon energy hν and absorber
atomic number Z.

As shown in (8.27), to determine the total mean energy transfer fraction f̄tr for
4 MeV photons interacting with lead absorber we need:
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(1) Mean energy transfer fractions f̄i for each of the four major photon interac-
tions with lead.

(2) Relative weights wi for the four major photon interactions with lead absorber.

(1) To determine the mean energy transfer fractions f̄i we use the definitions for
energy transfer fractions applicable to the individual effects as follows:

(i) Mean energy transfer fraction f̄PE in photoelectric effect is given by (T7.161)

f̄PE = 1 − PKωKηKEB(K)

hν
= 1 − 0.788×0.968×0.915×0.088

4
= 1 − 0.015 = 0.985, (8.28)

where

PK is the probability for the photoelectric effect, if it occurs, to occur
in the K shell of an absorber atom. Probability PK ranges from
PK ≈ 1 for low atomic number Z absorbers to PK ≈ 0.75 for high
Z absorbers.

ωK is the fluorescence yield for the K shell strongly dependent on ab-
sorber atomic number Z.

ηK is the fluorescence efficiency defined for emission of K-shell flu-
orescence photon as the mean fraction of the K-shell binding en-
ergy carried by the fluorescence photon. Fluorescence efficiency
ηK decreases slowly from ηK ≈ 0.97 for low Z absorbers, reaches
a broad minimum of ηK ≈ 0.9 at Z ≈ 50 and then rises slowly to
reach ηK = 0.95 for high Z absorbers.

EB(K) is binding energy of the K-shell electron.

In open literature we find the following data for use in (8.28) for 4 MeV
photons in leadPK = 0.788, ωK = 0.968, ηK = 0.915, and EB(K)= 88 keV.

Mean energy transfer ĒPE
tr in photoelectric effect

ĒPE
tr = f̄PEhν = 0.985×(4 MeV)= 3.94 MeV. (8.29)

(ii) Mean energy transfer fraction f̄R in Rayleigh scattering is equal to 0 for all
photon energies and for all absorber atomic numbers

f̄R = 0 (8.30)

Mean energy transfer ĒR
tr in Rayleigh scattering

ĒR
tr = 0 (8.31)

(iii) Mean energy transfer fraction f̄C in Compton effect is determined from the
Compton graph (Fig. T7.18)

f̄C = 0.61 (8.32)
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Mean energy transfer ĒC
tr in Compton effect is given as

ĒC
tr = f̄Chν = 0.61×(4 MeV)= 2.44 MeV (8.33)

(iv) Mean energy transfer fraction f̄PP in pair production is given by

f̄PP = 1 − 2mec
2

hν
= 1 − 2×0.511

4
= 0.745 (8.34)

Mean energy transfer ĒPP
tr in pair production is

ĒPP
tr = f̄PPhν = 0.745×(4 MeV)= 2.978 MeV (8.35)

(2) To determine the relative weights wi for the four interaction effects of 4 MeV
photons with lead we will use the definition wi = aμi/aμ. Therefore, we first cal-
culate the atomic attenuation coefficient aμ for 4 MeV photons in lead and get

aμ= aτ + aσR + aσC + aκ

= (0.593 + 0.066 + 7.879 + 5.904) b/atom

= 14.442b/atom = 14.442×10−24 cm2/atom. (8.36)

The relative weights wi of photoelectric effect wPE, Rayleigh scattering wR, Comp-
ton effect wC, and pair production wPP are calculated as follows

wPE = aτ

aμ
= 0.593

14.442
= 0.041, (8.37)

wR = aσR

aμ
= 0.066

14.442
= 4.6×10−3, (8.38)

wC = aσC

aμ
= 7.879

14.442
= 0.546, (8.39)

wPP = aκ

aμ
= 5.904

14.442
= 0.409. (8.40)

Addition of the four wi of (8.37) through (8.40) results in 1.0006 instead of 1.00 . . .
and the small discrepancy is attributed to rounding off of attenuation coefficients to
three significant figures.

(3) Total mean energy transfer fraction f̄tr for 4 MeV photons in lead absorber is

f̄tr = {wPEf̄PE +wRf̄R +wCf̄C +wPPf̄PP}
= {0.041×0.985 + 0 + 0.546×0.610 + 0.409×0.745} = 0.678. (8.41)
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Table 8.4 Summary of data and results for 4 MeV photons interacting with lead absorber

Photoelectric
effect

Rayleigh
scattering

Compton
effect

Pair
production

Summation

Cross
section
(cm2/atom)

aτ = 0.593 aσR = 0.066 aσC = 7.879 aκ = 5.904 aμ= 14.442

wi wPE = 0.041 wR = 0.0046 wC = 0.546 wPP = 0.409
∑
i wi ≈ 1.000

f̄i f̄PE = 0.985 f̄R = 0 f̄C = 0.610 f̄PP = 0.745 –

wif̄i wPEf̄PE = 0.040 wRf̄R = 0 wCf̄C = 0.333 wPPf̄PP = 0.305 f̄tr = 0.678

Ēitr ĒPE
tr = 3.94 MeV ĒR

tr = 0 ĒC
tr = 2.44 MeV ĒPP

tr = 2.978 MeV –

wi is relative weight for individual effect i

f̄i is the mean energy transfer fraction for individual effect i

wi f̄i is the mean weighted energy transfer fraction for individual effect i

Ēitr is mean energy transfer for individual effect i

(b) Mean energy Ētr transferred from a 4 MeV photon to charged particles re-
leased or produced in lead absorber can be determined in two ways, both giving the
same result:

(1) Directly using the total mean energy transfer fraction f̄tr as

Ētr = f̄trhν = 0.678×(4 MeV)= 2.71 MeV. (8.42)

(2) Indirectly using mean energy transfers Ēitr in individual effects weighted by
appropriate relative weights wi as follows

Ētr =
∑
i

wiĒ
i
tr =wPEĒ

PE
tr +wRĒ

R
tr +wCĒ

C
tr +wPPĒ

PP
tr

= 0.041×(3.94 MeV)+ 0 + 0.546×(2.44 MeV)+ 0.409×(2.978 MeV)

= (0.161 + 0 + 1.332 + 1.218)MeV = 2.71 MeV. (8.43)

Data and results for 4 MeV photons interacting with lead absorber are summa-
rized in Table 8.4. The calculated mean energy transfer fractions f̄i (i.e., f̄PE, f̄R,
f̄C, and f̄PP) are entered as data points on a graph in Fig. 8.5 showing f̄i against
photon energy hν in the energy range from 1 keV to 100 MeV. The calculated rela-
tive weights wi (i.e., wPE, wR, wC, and wPP) are entered as data points on a graph
in Fig. 8.6 showing wi against photon energy hν in the energy range from 1 keV
to 100 MeV.
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Fig. 8.5 Mean energy transfer fractions f̄i plotted against photon energy hν for the four main
photon interactions with absorber atoms: f̄PE for photoelectric effect, f̄R for Rayleigh scattering,
f̄C for Compton effect, and f̄PP for pair production. The data points show the mean energy transfer
fractions for the four interactions at photon energy of 4 MeV interacting with lead absorber

Fig. 8.6 Relative weights wi for the main photon interactions with lead absorber: photoelectric
effect wPE, Rayleigh scattering wR, Compton effect wC, and pair production wPP. Data were cal-
culated using the NIST XCOM database. The data points highlight results of our calculation of wi
for 4 MeV photons interacting with a lead absorber
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8.3 Energy Transfer and Energy Absorption

8.3.Q1 (187)

At photon energy hν of 4 MeV in lead absorber (Z = 82, A= 207.2 g/mol,
ρ = 11.36 g/cm3) the atomic attenuation coefficients for photoelectric ef-
fect, Rayleigh scattering, Compton scattering, nuclear pair production, and
triplet production according to the NIST are as follows: aτ = 0.5928×
10−24 cm2/atom, aσR = 0.0660×10−24 cm2/atom, aσC = 7.879×
10−24 cm2/atom, aκ

NPP = 5.891×10−24 cm2/atom, and aκ
TP = 0.013×

10−24 cm2/atom. Mean radiation fraction ḡ = 0.13

For 4 MeV photons interacting with lead absorber determine:

(a) Atomic attenuation coefficient aμ.
(b) Mass attenuation coefficient μ/ρ.
(c) Linear attenuation coefficient μ.
(d) Mass energy transfer coefficient μtr/ρ.
(e) Mass energy absorption coefficient μab/ρ.
(f) Total mean energy absorption fraction f̄ab.
(g) Mean energy Ēab absorbed in lead absorber.

SOLUTION:

(a) Atomic attenuation coefficient aμ is given as the sum of the individual atomic
attenuation coefficients for photons in lead at hν = 4 MeV

aμ= aτ + aσR + aσC + (aκNPP + aκTP)= aτ + aσR + aσC + aκ

= [
0.5928 + 0.060 + 7.879 + (5.891 + 0.013)

]×10−24 cm2/atom

= 14.442×10−24 cm2/atom = 14.442 b/atom. (8.44)

(b) Mass attenuation coefficient μ/ρ is calculated from the atomic attenuation
coefficient aμ as follows

μ

ρ
= NA

A
aμ= (6.022×1023 atom/mol−1)×(14.442×10−24 cm2/atom)

207.2 g/mol

= 0.0420 cm2/g. (8.45)

(c) Linear attenuation coefficient μ is calculated from the mass attenuation coef-
ficient μ/ρ as

μ= μmρ =
(

0.0420
cm2

g

)
×
(

11.36
g

cm3

)
= 0.4771 cm−1. (8.46)
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(d) Mass energy transfer coefficient μtr/ρ is calculated from its basic definition
given as

μtr

ρ
= μ

ρ

Ētr

hν
, (8.47)

where Ētr is the mean energy transferred from 4 MeV photon to charged particles
released or created through photon interactions in lead absorber, calculated for hν =
4 MeV photons in Prob. 186(b) as Ētr = 2.71 MeV. We thus have

μtr

ρ
= μ

ρ

Ētr

hν
=
(

0.0420
cm2

g

)
×
(

2.71

4

)
= 0.0285

cm2

g
. (8.48)

(e) Mass energy absorption coefficient μab/ρ is calculated from the mass energy
transfer coefficient μtr/ρ as follows

μab

ρ
= μtr

ρ
(1 − ḡ)=

(
0.0285

cm2

g

)
×(1 − 0.13)= 0.0248

cm2

g
. (8.49)

(f) Total mean energy absorption fraction f̄ab is calculated from its basic definition

f̄ab = f̄tr(1 − ḡ)= Ētr

hν
(1 − ḡ)= 2.71

4
×(1 − 0.13)= 0.678×0.87 = 0.59. (8.50)

(g) Mean energy Ēab absorbed in lead absorber is calculated using the mean en-
ergy absorption fraction f̄ab calculated in (f)

Ēab = f̄abhν = 0.59×(4 MeV)= 2.36 MeV (8.51)

or using mean energy Ētr transferred to charged particles determined in Prob. 186(b)

Ēab = Ētr(1 − ḡ)= (2.71 MeV)×(1 − 0.13)= 2.36 MeV, (8.52)

where ḡ is the mean radiation fraction accounting for radiation energy loss
of charged particles released or created by photons in the absorber through
bremsstrahlung, annihilation in flight and production of fluorescence radiation.

8.3.Q2 (188)

Mono-energetic 10 MeV photons interact with manganese absorber (A =
54.94 g/mol, Z = 25, and ρ = 7.43 g/cm3). Atomic attenuation coefficients
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for photoelectric effect aτ and Rayleigh scattering aσR for 10 MeV photons
in manganese are 9.3×10−4 b/atom and 3.7×10−4 b/atom, respectively. As-
sume that the mean radiation fraction ḡ is ∼ 0.11.

Based on information provided above, determine (clearly stating all as-
sumptions and approximations you make in each individual step in your cal-
culations):

(a) Mass attenuation coefficient μ/ρ.
(b) Mean energy transfer fraction for photoelectric effect f̄PE.
(c) Mean energy transfer fraction for Rayleigh scattering f̄R.
(d) Mean energy transfer fraction for Compton scattering f̄C.
(e) Mean energy transfer fraction for pair production f̄PP.
(f) Total mean energy transfer fraction f̄tr.
(g) Mean energy Ētr transferred from 10 MeV-photon to charged particles

in photon interaction.
(h) Mean kinetic energy of each charged particle produced in an interaction

of a 10 MeV photon with manganese atom.
(i) Mass energy transfer coefficient μtr/ρ.
(j) Mass energy absorption coefficient μab/ρ.
(k) Mean energy absorbed in manganese in a 10 MeV photon interaction

with manganese atom.

SOLUTION:

(a) Mass attenuation coefficient μ/ρ is given as a sum of four attenuation coef-
ficients: photoelectric PE (τ/ρ), Rayleigh R (σR/ρ), Compton C (σC/ρ), and pair
production PP (κ/ρ) as follows

μm = μ

ρ
= τ

ρ
+ σR

ρ
+ σC

ρ
+ κ

ρ
= NA

A
(aτ + aσR + aσC + aκ). (8.53)

Two of the required atomic attenuation coefficients (aτ and aσR) were given above,
the other two (aσC and aκ) we estimate from commonly known radiation physics
facts that can be extracted from Fig. 8.7(A) showing Compton electronic coefficient
aσC against incident photon energy hν and from Fig. 8.7(B) showing regions of
relative predominance of specific photon interactions. Anchor points for the two
graphs are marked with x and allow us to sketch the two graphs with reasonable
accuracy and use them to estimate the value of physical quantities of relevance in
our calculations.

Figure 8.7(A) plots Klein-Nishina coefficients of free electrons representing
Compton electronic cross section eσC against photon energy hν. The anchor point at
hν = 10 MeV amounts to eσC(10 MeV) = 0.05 b/atom = 0.05×10−24 cm2/atom
and is now used for calculation of the Compton atomic cross section, i.e., Compton
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Fig. 8.7 Two graphs of importance in radiation physics. (A) Compton Klein-Nishina coeffi-
cients for free electrons (Compton atomic attenuation coefficients) against incident photon en-
ergy hν with the following anchor points: (Thomson low energy limit, 0.665 b/atom); (1 MeV,
0.21 b/atom); (10 MeV, 0.051 b/atom); and (100 MeV, 0.008 b/atom). (B) Regions of predom-
inance of the three most important processes of photon interaction with absorber atom. Anchor
points of the graph are: (hν = 0.001 MeV, Z = 0); (0.1 MeV, 25); (1 MeV, 100); (4 MeV, 100);
(10 MeV, 25); and (100 MeV, 0). Arrows mark points of interest in our calculation

atomic attenuation coefficient aσC of manganese at photon energy hν = 10 MeV

aσC(10 MeV,Mn) = Z×eσC(10 MeV)= (25 el/atom)×0.051×10−24 cm2/el

= 1.275×10−24 cm2/atom. (8.54)

From Fig. 8.7(B) we note that manganese falls on one of the anchor points
(Z = 25, ν = 10 MeV). This suggests that at 10 MeV in manganese the attenua-
tion coefficients for Compton effect and pair production are identical and further-
more that attenuation coefficients for photoelectric effect and Rayleigh scattering in
comparison with Compton and pair production attenuation coefficients may be ne-
glected in the first approximation. Since, as shown in Fig. 8.7(B), the Compton and
pair production atomic coefficients are approximately equal for 10 MeV photons
interacting with manganese, the atomic attenuation coefficient aμ is determined as

aμ(10 MeV,Mn)= aτ + aσR + aσC + aκ

= (
9.3×10−4 + 3.7×10−4 + 1.275 + 1.275

)
b/atom

≈ 2aσC(10 MeV,Mn)= 2.55 b/atom = 2.55×10−24 cm2/atom
(8.55)

and the mass attenuation coefficient μ/ρ is then from (8.53) given as

μ

ρ
= NA

A
aμ≈ (6.022×1023 atom/mol)×(2.55×10−24 cm2/atom)

54.94 g/mol
= 0.0280

cm2

g
.

(8.56)
(b) Mean energy transfer fraction for photoelectric effect f̄PE at hν = 10 MeV
is very close to unity; however, since the photoelectric effect attenuation coefficient
τ/ρ is 3 orders of magnitude smaller than coefficients for Compton effect σC/ρ and
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Fig. 8.8 Mean energy transfer fractions f̄i for photoelectric effect f̄PE, Rayleigh scattering
f̄R = 0, Compton effect f̄C, and pair production f̄PP for 8 absorbers with atomic numbers Z rang-
ing from 13 for aluminum to 92 for uranium. Mean energy transfer fractions calculated in (b), (c),
(d), and (e) for 10 MeV photons are indicated on the graph with circular data points

pair production κ/ρ, the photoelectric effect makes a negligible contribution to the
mean energy transferred to charged particles.

(c) Mean energy transfer fraction for Rayleigh scattering f̄R is by definition
equal to zero, because there is no energy transfer from photon to charged particles
in Rayleigh scattering.

(d) Mean energy transfer fraction for Compton effect f̄C is provided from the
Compton graph in which the point of hν = 10 MeV and f̄C = 0.68 serves as an an-
chor point. We thus know that in manganese (Z = 25) at hν = 10 MeV the Compton
mean energy transfer fraction is 0.68 and the mean energy transferred to the recoil
electron is ĒC

tr = f̄Chν = 6.8 MeV.

(e) Mean energy transfer fraction for pair production f̄PP at hν = 10 MeV is
calculated as

f̄PP = 1 − 2mec
2

hν
= 1 − 1.022

10
= 0.898 or ĒPP

tr = f̄PPhν ≈ 9 MeV. (8.57)

Mean energy transfer fractions f̄i for photoelectric effect f̄PE, Rayleigh scatter-
ing f̄R = 0, Compton effect f̄C, and pair production f̄PP determined in (b), (c), (d),
and (e), respectively, are plotted with data points in Fig. 8.8. The figure also plots the
four mean energy transfer fractions against photon energy for 8 absorbers ranging
in Z from 13 for aluminum to 92 for uranium. Note: At all energies and for all ab-
sorbers f̄R = 0 because, in Rayleigh scattering, no energy gets transferred from the
photon to charged particles. Of the remaining three energy transfer fractions, only
f̄PP depends on atomic number Z, the other two (f̄C and f̄PP) are independent of Z.
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(f) In general, the total mean energy transfer fraction f̄tr is a sum of four
weighted mean energy transfer fractions: photoelectric wPEf̄PE, Rayleigh wRf̄R,
ComptonwCf̄C, and pair productionwPPf̄PP wherewi stands for the relative weight
of interaction i

f̄tr = Ētr

hν
=
∑
i

wi f̄i =wPEf̄PE +wRf̄R +wCf̄C +wPPf̄PP

= aτ

aμ
f̄PE + aσR

aμ
f̄R + aσC

aμ
f̄C + aκ

aμ
f̄PP

= 1

aμ
(aτ f̄PE + aσRf̄R + aσCf̄C + aκf̄PP), (8.58)

where wi is the relative weight of given effect i for photon energy hν and absorber
atomic number Z defined as the ratio between the atomic attenuation coefficient aμi
for the given effect i and the total atomic attenuation coefficient aμ which, as given
in (8.53), is the sum of individual atomic attenuation coefficients, i.e., aμ=∑

aμi .
Thus, the total mean energy transfer fraction in the interaction of 10 MeV pho-

tons with manganese atoms would in general account for the four major effects that
the photon can experience in interacting with manganese atom. However, for our
specific case we know:

(1) f̄R is always zero, so f̄R does not contribute to f̄tr.
(2) f̄PE ≈ 1; however, the probability for a photoelectric interaction is 3 orders of

magnitude lower than that for Compton effect and pair production allowing
us to ignore the f̄PE contribution to f̄tr through an assumption that wPE ≈ 0.

(3) Since the probabilities for Compton effect and pair production in 10 MeV
photon interaction with manganese atom are essentially identical, we assign a
weight of 0.5 to each one of the two attenuation coefficients.

Thus, we have: wC ≈wPP ≈ 0.5 and using (8.58) we now get the following
result for f̄tr

f̄tr =wPEf̄PE +wRf̄R +wCf̄C +wPPf̄PP

= 0 + 0 + 0.5 + ×0.68 + 0.5×0.898 = 0.789. (8.59)

(g) Mean energy Ētr transferred to charged particles in interaction of a 10-
MeV photon with manganese atom is determined from the simple expression

Ētr = f̄trhν = (wPEf̄PE +wRf̄R +wCf̄C +wPPf̄PP)hν

= 0.789×(10 MeV)= 7.9 MeV. (8.60)

Note: since the cross sections for Compton effect and pair production are the same,
a simple average between ĒC

tr and ĒPP
tr will give us the combined mean energy

transfer in 10 MeV photon interaction with manganese absorber, i.e.,

Ētr ≈ ĒC
tr + ĒPP

tr

2
= 6.8 MeV + 9 MeV

2
= 7.9 MeV. (8.61)
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(h) To determine the mean kinetic energy Ētr transferred from photon to in-
dividual charged particles in 10 MeV photon interaction with manganese atom we
again assume that there is equal rate for Compton and pair production interactions
and we again neglect photoelectric and Rayleigh scattering. Thus, for each Compton
interaction that produces a 6.8 MeV recoil electron, we get an electron-positron pair
with combined kinetic energy of 9 MeV or 4.5 MeV on average for each particle of
the pair. The mean kinetic energy for all charged particles released (recoil electron)
or produced (electron and positron of the pair) is thus given as the mean value of
kinetic energies of the three particles

ĒK = 6.8 MeV + 4.5 MeV + 4.5 MeV

3
= 5.3 MeV. (8.62)

(i) Mass energy transfer coefficient μtr/ρ is calculated using the basic definition
of the mass energy transfer coefficient as follows (T7.19)

μtr

ρ
= μ

ρ

Ētr

hν
= μ

ρ
f̄tr = 0.0280×7.9

10

cm2

g
= 0.0221

cm2

g
. (8.63)

(j) Mass energy absorption coefficient μab/ρ is calculated by multiplying μtr/ρ

by (1 − ḡ) where ḡ is the mean radiation fraction for 10 MeV photon interaction
with manganese atom

μab

ρ
= μtr

ρ
(1 − ḡ)= μ

ρ

Ēab

hν
= 0.0221×(1 − 0.11)

cm2

g

= 0.0221×0.89
cm2

g
= 0.0197

cm2

g
. (8.64)

(k) Mean energy Ēab absorbed in manganese absorber in 10 MeV photon in-
teraction with manganese atom is determined from the basic definition of the mass
energy absorption coefficient μab/ρ given as (T7.20)

μab

ρ
= μ

ρ

Ēab

hν
(8.65)

from where it follows that

Ēab = hν μab/ρ

μ/ρ
= (10 MeV)×0.0193

0.0274
= 7 MeV. (8.66)

Note: A comparison of our results with those provided by the NIST shows that our
estimate for the atomic attenuation coefficient for 10 MeV photons in manganese is
about 3 % too low (2.55 b/atom vs. NIST value of 2.62 b/atom). Considering the
many approximations that we made in our simplified calculation, a discrepancy of
less than 3 % seems acceptable.
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8.3.Q3 (189)

A narrow x-ray beam containing N = 1021 photons of energy hν = 5 MeV
strikes perpendicularly a 14 mm thick slab of gold (Z = 79, A= 197 g/mol,
ρ = 19.3 g/cm2).

(a) List at least 4 possible interactions of importance to medical physics
that the 5 MeV photons can have in the gold slab.

(b) Figure 8.9 plots three atomic attenuation coefficients for gold. Identify
and label the three curves with the appropriate interaction. Also label
the abscissa (x) axis with appropriate values for the energy scale.

(c) Determine the mass attenuation coefficient μ/ρ for 5 MeV photons in
gold.

(d) Determine the half value layer x1/2 in gold for the narrow photon beam.
(e) Determine the total mean energy transfer fraction f̄tr.
(f) Determine the mean energy transferred to charged particles Ētr for in-

teraction of 5-MeV photon with gold atom.
(g) Determine the mass energy transfer coefficient μtr/ρ for 5 MeV pho-

tons interacting with gold atom.
(h) Given that the radiation fraction ḡ in gold for 5 MeV photons is 0.15,

determine the mass energy absorption coefficientμab/ρ for 5 MeV pho-
tons interacting with gold atom.

(i) Determine the mean energy absorbed in the gold slab for each 5 MeV
photon interaction with gold atom.

(j) For each interaction listed in (a) determine the number of interactions
occurring in the gold slab.

Fig. 8.9 Atomic attenuation coefficient aμ against photon energy hν for three photon–gold atom
interactions
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SOLUTION:

(a) At energy of 5 MeV a photon can have all mainstream interactions with a
gold atom. The list of 5 interactions thus reads as follows: (1) Photoelectric ef-
fect, (2) Rayleigh scattering, (3) Compton effect, (4) Nuclear pair production, and
(5) Triplet production. The last two interactions are often jointly referred to as pair
production.

(b) The three curves of Fig. 8.9 are plots of three types of atomic attenuation
coefficients for interaction of photons with gold atoms: curve (1) is for Compton ef-
fect, curve (2) for Rayleigh scattering, and curve (3) for photoelectric effect. Curve
for pair production is not shown but that does not mean that pair production can-
not occur with a 5 MeV photon. Figure 8.10(A) shows completed Fig. 8.9 with
photon energy scale on the abscissa axis and curves (1), (2), and (3) appropriately
labeled.

(c) To get the mass and linear attenuation coefficients μ/ρ and μ, respectively,
we first calculate the atomic attenuation coefficient aμ based on information avail-
able from Fig. 8.9. We obtain the following atomic coefficients for hν = 5 MeV
in gold absorber from Fig. 8.9: aτ = 0.35 b/atom, aσR = 0.04 b/atom, and aσC =
7.0 b/atom. Since the atomic coefficient for pair production aκ cannot be negligible,
we consult the graph displaying regions of predominance for the main photon inter-
actions and we notice that gold (Z = 79) at 5 MeV lands on the curve that displays
(hν,Z) values for which aσC = aκ .

Fig. 8.10 (A) Atomic attenuation coefficients for photoelectric effect aτ , Rayleigh scattering aσR,
and Compton effect aσC against photon energy hν in the energy range 0.01 MeV ≤ hν ≤ 10 MeV.
(B) Representation of the relative predominance of photoelectric effect, Compton effect, and pair
production in a(hν,Z) diagram where hν is photon energy and Z the atomic number of absorber.
The dot on the aσC = aκ curve indicates the point for 5 MeV photon interacting with gold (Z = 79)
at which aσC = aκ
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We thus conclude that aκ is equal to aσC for 5 MeV photons in gold and we get:
aκ ≈ aσC ≈ 7 b/atom. Atomic attenuation coefficient is then given as follows

aμ= aτ + aσR + aσC + aκ = (0.35 + 0.04 + 7.0 + 7.0) b/atom = 14.4 b/atom
(8.67)

mass attenuation coefficient μ/ρ

μ

ρ
= NA

A
aμ= 6.022×1023 mol−1

197 g · mol−1
×(

14.4×10−24 cm2)= 0.044
cm2

g
, (8.68)

and linear attenuation coefficient μ

μ= μ

ρ
ρ =

(
0.044

cm2

g

)
×
(

19.3
g

cm3

)
= 0.85 cm−1. (8.69)

(d) Half-value layer x1/2 of a beam is that thickness of an absorber that decreases
a narrow photon beam intensity to 50 % of its original value. Half-value layer of a
5 MeV beam in gold absorber is related to the linear attenuation coefficient μ as
follows

x1/2 = ln 2

μ
= 0.693

0.85 cm−1
= 0.81 cm. (8.70)

(e) Total mean energy transfer fraction f̄tr is defined as the sum of four
weighted mean energy transfer fractions: photoelectric wPEf̄PE, Rayleigh wRf̄R,
ComptonwCf̄C, and pair productionwPPf̄PP wherewi stands for the relative weight
of interaction i

f̄tr = Ētr

hν
=
∑
i

wi f̄i =wPEf̄PE +wRf̄R +wCf̄C +wPPf̄PP

= aτ

aμ
f̄PE + aσR

aμ
f̄R + aσC

aμ
f̄C + aκ

aμ
f̄PP

= 1

aμ
(aτ f̄PE + aσRf̄R + aσCf̄C + aκf̄PP). (8.71)

We now estimate the mean energy transfer fractions f̄i and their weights wi for the
four main interactions that a 5 MeV photon can have with gold atom (photoelectric,
Rayleigh, Compton, and pair production).

(1) Photoelectric effect:

f̄PE = 1 − PKωKηKE(K)

hν
= 1 − 0.8×0.96×0.91×(0.0807 MeV)

5 MeV
= 0.989,

(8.72)
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where

PK is the probability for the photoelectric effect, if it occurs, to occur in the
K shell of gold atom. The range of PK in nature is from PK ≈ 1 for low
atomic number Z materials slowly dropping to PK ≈ 0.8 for high Z ma-
terials. We take PK = 0.8 for gold atom.

ωK is the fluorescence yield, ranging in nature from ωK = 0 for Z ≤ 10,
through ωK = 0.5 for Z = 30, and saturating at ωK = 0.98 at very high Z.
For gold we estimate ωK = 0.96.

ηK is the fluorescence efficiency defined as the mean fraction of the K shell
binding energy EB(K) carried by the fluorescence photon, ranging in na-
ture from ηK ≈ 0.98 at low Z, slowly dropping to reach a minimum at
ηK ≈ 0.9 at intermediate Z, and then slowly rising to reach ηK ≈ 0.93 at
high Z. For gold we estimate ηK = 0.91.

EB(K) is the binding energy of K shell electrons that can be estimated with rea-
sonable accuracy with the Hartree approximation:EB(K)≈ER(Z−2)2 =
(13.6 eV)×772 = 80.7 keV.

Mean energy transferred to electrons in photoelectric effect ĒPE
tr is thus given as

ĒPE
tr = f̄PEhν = (5 MeV)×0.989 = 4.95 MeV. (8.73)

Photoelectric weight wPE is determined from the simple expression wPE = aτ/aμ=
0.35/14.4 = 0.024.

(2) Rayleigh scattering: Since in Rayleigh scattering there is no energy transfer
from the photon to charged particles, we conclude that the mean energy transfer
fraction for Rayleigh scattering is zero (f̄R = 0).

Weight for Rayleigh scattering is determined as wR = aσR/aμ = 0.04/14.4 =
2.8×10−3.

(3) Compton effect: The mean energy transfer fraction for Compton effect f̄C is
determined from the Compton graph from which we get f̄C = 0.62 and the Compton
weight wC is determined as wC = aσC/aμ = 7/14.4 = 0.486. The mean energy
transfer ĒC

tr to recoil electron in Compton effect is ĒC
tr = f̄Chν = 0.62×(5 MeV)=

3.1 MeV.

(4) Pair production (including nuclear pair production and triplet production): The
mean energy transfer fraction for pair production f̄PP is determined as

f̄PP = 1 − 2mec
2/(hν)= 1 − 1.022/5 = 0.796, (8.74)

resulting in the following mean energy transfer ĒPP
tr from photon to charged parti-

cles (electron and positron) in pair production of 5 MeV photon ĒPP
tr = f̄PPhν =

0.796×(5 MeV) = 3.98 MeV. Pair production weight wPP is calculated from
wPP = aκ/aμ= 7/14.4 = 0.486.
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The total mean energy transfer fraction f̄tr is now calculated as

f̄tr = Ētr

hν
=
∑
i

wi f̄i =wPEf̄PE +wRf̄R +wCf̄C +wPPf̄PP

= 0.024×0.989 + 0 + 0.486×0.62 + 0.486×0.796 = 0.712. (8.75)

(f) Mean energy transferred from photon to charged particles in 5 MeV photon
interaction with gold atom is now easily determined from (8.75) as follows

Ētr = f̄trhν = 0.712×(5 MeV)= 3.56 MeV. (8.76)

(g) Mass energy transfer coefficient μtr/ρ is determined from its basic definition

μtr

ρ
= μ

ρ

Ētr

hν
= μ

ρ
f̄tr =

(
0.044

cm2

g

)
×0.712 = 0.0313

cm2

g
. (8.77)

(h) Mass energy absorption coefficient μab/ρ is determined from μtr/ρ and the
mean radiation fraction ḡ as follows

μab

ρ
= μtr

ρ
(1 − ḡ)=

(
0.0313

cm2

g

)
×(1 − 0.15)= 0.0266

cm2

g
. (8.78)

(i) Mean energy absorbed in the gold slab for each 5 MeV photon interaction
with gold atom

Ēab = f̄abhν = f̄tr(1 − ḡ)hν = 0.712×(1 − 0.15)×(5 MeV)= 3.03 MeV. (8.79)

(j) Number N of photons transmitted through the gold slab of t = 1.4 cm is

N =N0e
−μt = 1021×e−0.85×1.4 = 0.304×1021. (8.80)

Number of photons N that undergo an interaction with gold atoms in traversing the
gold slab

N =N0 −N = (1 − 0.304)×1021 = 0.696×1021. (8.81)

Distribution of interactions is given by the individual weights wi for interaction i

Number of photoelectric (PE) interactions

=wPE×N = 0.024×0.696×1021 = 1.67×1019 (8.82)

Number of Rayleigh interactions

=wR×N = 0.004×0.696×1021 = 1.95×1018 (8.83)

Number of Compton interactions

=wC×N = 0.486×0.696×1021 = 3.38×1020 (8.84)
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Number of pair production (PP) interactions

=wPP×N = 0.486×0.696×1021 = 3.38×1020 (8.85)

8.3.Q4 (190)

Photons with energy hν of 2 MeV interact with lead (Z = 82, A =
207.2 g/mol, ρ = 11.34 g/cm2) and light charged particles may be released
or produced in the lead absorber through photoelectric effect, Rayleigh scat-
tering, Compton effect, nuclear pair production, and triplet production. De-
termine and briefly explain

(1) Maximum kinetic energy (EK)max that may be transferred from the in-
cident photon with energy hν to charged particles (CPs),

(2) Mean kinetic energy Ētr that is transferred from the incident photon hν
to CPs, and

(3) Mean energy transfer fraction f̄i

for each of the five main photon interaction processes:

(a) Photoelectric effect
(b) Rayleigh scattering
(c) Compton effect
(d) Nuclear pair production
(e) Triplet production
(g) Summarize your results of (a), (b), (c), (d), and (e) by completing Ta-

ble 8.5A.

Table 8.5A Maximum and mean energy transfer as well as mean energy transfer fraction for
2 MeV photon interacting with lead absorber through various photon interactions with lead atoms

Photon (hν = 2 MeV)
interaction with lead
absorber

(EK)max Ētr f̄i

(a) Photoelectric effect (EPE
K )max = ĒPE

tr = f̄PE =
(b) Rayleigh scattering (ER

tr )max = ĒR
tr = f̄R =

(c) Compton effect (EC
tr )max = ĒC

tr = f̄C =
(d) Nuclear pair production (ENPP

tr )max = (ĒNPP
tr )max = f̄NPP =

(e) Triplet production (ETP
tr )max = (ĒTP

tr )max = f̄TP =

SOLUTION:

(a) In photoelectric effect the photon interacts with a tightly bound orbital elec-
tron of the absorber atom. If the photon energy ν exceeds the binding energy EB
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of the orbital electron, the electron is ejected from the atom as a photoelectron with
kinetic energy EK = hν −EB.

Since in our case the photon energy hν = 2 MeV exceeds the binding energy
of the K shell electron in lead [EB(K) = 0.088 MeV], if photoelectric effect does
occur, it will most likely occur with a K shell electron (∼80 % probability), rather
than with any of the higher shell electrons.

(1) Maximum kinetic energy (EPE
tr )max transferred from 2-MeV photon to CPs in

photoelectric effect will be attained when the binding energy of the K shell vacancy
is transferred in full to Auger electrons. The combined energy of the photoelec-
tron [EK = 2 MeV − 0.088 MeV = 1.912 MeV] and Auger electrons with total
kinetic energy EK = 0.088 MeV is then equal to (EPE

tr )max which in turn equals
to hν = 2 MeV. Thus, in this situation, the total energy of the photon hν is trans-
ferred to charged particles (electrons) in the form of the photoelectron that receives
1.912 MeV and several Auger electrons that receive a combined total kinetic energy
of 0.088 MeV. Maximum energy transfer (EPE

tr )max thus equals to 2 MeV.

(2) Mean energy ĒPE
tr transferred from 2 MeV photon to CPs in photoelectric ef-

fect will be between two extremes, (EK)min = hν −EB(K) and (EK)max = hν, and
is in radiation physics expressed as follows (T7.161)

ĒPE
tr = hν − PKωKηKEB(K), (8.86)

where

PK is the probability for the photoelectric effect, if it occurs, to occur in the
K shell of lead atom. The range of PK in nature is from PK ≈ 1 for low
atomic number Z materials slowly dropping to PK ≈ 0.8 for high Z ma-
terials. We take PK = 0.8 for the lead atom.

ωK is the fluorescence yield, ranging in nature from ωK = 0 for Z ≤ 10,
through ωK = 0.5 for Z = 30, and saturating at ωK = 0.98 at very high Z.
For lead we estimate ωK = 0.97.

ηK is the fluorescence efficiency defined as the mean fraction of the K shell
binding energy EB(K) carried by the fluorescence photon, ranging in na-
ture from ηK ≈ 0.98 at low Z, slowly dropping to reach a minimum at
ηK ≈ 0.90 at intermediate Z, and then slowly rising to reach ηK ≈ 0.93 at
high Z. For lead we estimate ηK = 0.93.

EB(K) is the binding energy of K shell electrons that can be estimated with
reasonable accuracy with the Hartree approximation. For lead: EB(K)≈
ER(Z − 2)2 = (13.6 eV)×822 ≈ 88 keV.

For photoelectric interaction between a 2 MeV photon and lead atom the mean
energy transferred to charged particles (photoelectron and Auger electrons) is
thus estimated with (8.86) as ĒPE

tr = 2 MeV − 0.8×0.97×0.93×0.088 MeV =
1.936 MeV.
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Fig. 8.11 Mean energy transfer fractions f̄PE, f̄R, f̄C, and f̄PP against photon energy hν. The
location of points designating mean transfer fractions for hν = 2 MeV is also shown on the graph

(3) Mean energy transfer fraction f̄PE for photoelectric effect is given by the ratio
ĒPE

tr /hν resulting in

f̄PE = ĒPE
tr

hν
= hν − PKωKηKEB(K)

hν
= 1 − PKωKηKEB(K)

hν
= 1.936

2
= 0.968,

(8.87)
as shown in Fig. 8.11.

(b) Rayleigh scattering is an interaction between incident photon and the whole
complement of atomic orbital electrons. It is therefore characterized as photon scat-
tering on tightly bound atomic electrons. In the interaction the atom is neither ex-
cited nor ionized; after the interaction the bound electrons revert to their original
state, the atom as a whole absorbs the transferred momentum but its recoil en-
ergy, because of its large mass, is very small and the incident photon scattered with
scattering angle θ has essentially the same energy as the original photon. Since in
Rayleigh scattering no electrons are released or produced, there is no energy transfer
to CPs and therefore (ER

tr )max = ĒR
tr = f̄R = 0.

(c) Compton effect is the term used to describe a photon interaction with a loosely
bound atomic orbital electron and, in theoretical studies, an assumption is usually
made that the interacting electron is “free and stationary”.

(1) Maximum energy (EC
tr )max transferred from a 2 MeV photon to Compton

recoil electron is determined from the following well-known Compton expres-
sion (T7.81)

(
EC

tr

)
max = hν 2ε

1 + 2ε
= (2 MeV)

2×3.91

1 + 2×3.91
= 1.77 MeV, (8.88)
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where ε is an energy parameter defined as the ratio between the incident photon
energy hν and the rest energy of the electronmec

2 = 0.511 MeV, i.e., ε = hν/mec
2.

(2) Mean energy ĒC
tr transferred from a 2 MeV photon to Compton recoil electron

is determined from the Compton graph that actually plots the mean energy transfer
fraction f̄C against photon energy hν and, as shown in Fig. 8.11, at hν = 2 MeV
amounts to f̄C = 0.54. This means that ĒC

tr which is by definition equal to f̄Chν

amounts to 0.54×2 MeV = 1.08 MeV.

(3) Compton mean energy transfer fraction f̄C, as discussed in (2) above, is
f̄C = 0.54.

(d) Nuclear pair production is the term used to describe pair production
(electron-positron materialization) in the field of the nucleus. The photon disappears
and an electron-positron pair is produced with the two particles sharing the available
total kinetic energy EPP

tr = hν − 2mec
2, where hν is the incident photon energy.

(1) Maximum energy (EPP
tr )max transferred from 2-MeV photon to CPs is given

as the photon energy hν less the rest energies of the electron and positron that were
produced out of energy in the pair production interaction. (EPP

tr )max is thus given as
hν − 2mec

2 and this kinetic energy is shared between the electron and the positron
in such a way that the sum of EK(electron) and EK(positron) always amounts to
(ENPP

tr )max = hν − 2mec
2. For 2-MeV photon we get

(
ENPP

tr

)
max = hν − 2mec

2 = 2 MeV − 1.022 MeV = 0.978 MeV. (8.89)

(2) Mean energy ĒNPP
tr transferred from 2-MeV photon to CPs is equal

(ENPP
tr )max = 0.978 MeV.

(3) The mean energy transfer fraction f̄NPP for nuclear pair production, is cal-
culated from the ratio (ĒPP

tr )max/hν and amounts to f̄NPP = 0.978/2 = 0.489, as
shown in Fig. 8.11.

(e) Electronic pair production, also called triplet production, is a photon inter-
action in which a pair production event occurs in the field of an orbital electron of
the absorber. The photon disappears and three particles leave the interaction site:
electron-positron pair as well as the interacting orbital electron. Here, the three
particles share the available energy of hν − 2mec

2. Since the threshold energy
hνthr for triplet production is 4mec

2 = 2.044 MeV, a 2-MeV photon cannot un-
dergo triplet production and there is no energy transfer to charged particles. Thus,
(ETP

tr )= ĒTP
tr = f̄TP = 0 for hν = 2 MeV.

(g) Table 8.5B presents a summary of results for calculation of maximum energy
transfer (EK)max, mean energy transfer Ētr, and mean energy transfer fraction f̄i
for 2 MeV photons interacting with lead absorber atoms through (a) photoelectric
effect, (b) Rayleigh scattering, (c) Compton effect, (d) nuclear pair production, and
(e) triplet production.
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Table 8.5B Summary of results for calculation of maximum energy transfer (EK)max, mean en-
ergy transfer Ētr, and mean energy transfer fraction f̄i for 2 MeV photons interacting with lead
absorber atoms through photoelectric effect, Rayleigh scattering, Compton effect, nuclear pair pro-
duction, and triplet production

Photon (hν = 2 MeV)
interaction with lead
absorber

(EK)max Ētr f̄i

(a) Photoelectric effect (EPE
K )max = 2 MeV ĒPE

tr = 1.936 MeV f̄PE = 0.968

(b) Rayleigh scattering (ER
tr )max = 0 ĒR

tr = 0 f̄R = 0

(c) Compton effect (EC
tr )max = 1.77 MeV ĒC

tr = 1.08 MeV f̄C = 0.54

(d) Nuclear pair production (ENPP
tr )max = 0.978 MeV (ĒNPP

tr )max = 0.978 MeV f̄NPP = 0.489

(e) Triplet production (ETP
tr )max = 0 (ĒTP

tr )max = 0 f̄TP = 0

8.4 Coefficients of Compounds and Mixtures

8.4.Q1 (191)

Discovered in 1907, Bakelite (C45H38O7) is a synthetic resin based on a
chemical combination of phenol and formaldehyde and belonging to the
group of thermosetting polymers. In addition to being an excellent electric
insulator, it is also resistant to chemical solvents and heat. Because of its
excellent chemical and physical properties, it is also used as air equivalent
material for various types of ionization chambers.

For photons with energy of 100 keV and 10 MeV interacting with Bakelite
absorber determine:

(a) Proportion by weight of the constituent elements of Bakelite.
(b) Mass attenuation coefficient μ/ρ of Bakelite.
(c) Mass energy transfer coefficient μtr/ρ of Bakelite.
(d) Mass energy absorption coefficient μab/ρ of Bakelite.
(e) Mean energy Ētr transferred from photon to charged particles (electrons

and positrons) in Bakelite absorber.
(f) Mean energy Ēab absorbed in the Bakelite absorber.
(g) Mean energy Ērad radiated from charged particles in the form of radia-

tion loss consisting of bremsstrahlung photons and annihilation quanta
from in-flight annihilation in Bakelite.

Atomic weight: Hydrogen H—1.00794; Carbon C—12.0107; Oxygen O—
15.9994.
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Table 8.6 Mass attenuation coefficients μ/ρ, mass energy transfer coefficient μtr/ρ, and mass
energy absorption coefficient μab/ρ for photons of energy hν = 100 keV and hν = 10 MeV in-
teracting with carbon. (*)Data for mass attenuation coefficient are from the NIST. (**)Data for the
mass energy transfer coefficient and mass energy absorption coefficient are from Johns, HE and
Cunningham, JR

Element HYDROGEN (Z = 6) CARBON C (Z = 1) OXYGEN O (Z = 8)

Photon energy 100 keV 10 MeV 100 keV 10 MeV 100 keV 10 MeV

μ/ρ (cm2/g)(*) 0.2944 0.0325 0.1514 0.0196 0.1551 0.0209

μtr/ρ (cm2/g)(**) 0.0406 0.0277 0.0213 0.0143 0.0234 0.0155

μab/ρ (cm2/g)(**) 0.0406 0.0225 0.0213 0.0138 0.0234 0.0149

SOLUTION:

At a given photon energy hν the attenuation coefficients μ, energy transfer coef-
ficients μtr, and energy absorption coefficients μab of a compound or mixture of
elements are approximated by a summation of the weighted mean of the masses of
constituent elements, as follows

μ=
∑
j

wjμj , μtr =
∑
j

wj (μtr)j , μab =
∑
j

wj (μab)j , (8.90)

where wj is the proportion by weight of the j -th constituent element.

(a) The proportion by mass of the constituent elements (C, H, and O) of Bakelite
is determined as follows:

(1) Bakelite C45H38O7 according to its chemical formula contains 45 atoms of
carbon, 38 atoms of hydrogen, and 7 atoms of oxygen. The molecular weight MBak
of Bakelite thus is:

MBak = 45×12.0107 + 38×1.0079 + 7×15.9994 = 690.7775 g/mol. (8.91)

(2) Proportion by mass of hydrogen in Bakelite

wH = 38×1.0079

690.7775
= 0.0555 (8.92)

(3) Proportion by mass of carbon in Bakelite

wC = 45×12.0107

690.7775
= 0.7824 (8.93)

(4) Proportion by mass of oxygen in Bakelite

wO = 7×15.9994

690.7775
= 0.1621 (8.94)
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(b) Mass attenuation coefficient μ/ρ of Bakelite for photon energy hν will be
calculated with (8.90) and data from Table 8.6 for the three constituents of Bakelite
as follows

(
μ

ρ

)hν
Bak

=
∑
j

wj

(
μ

ρ

)hν
j

=wC

(
μ

ρ

)hν
C

+wH

(
μ

ρ

)hν
H

+wO

(
μ

ρ

)hν
O
. (8.95)

For photon energy hν = 100 keV in Bakelite using (8.95) we get

(
μ

ρ

)100 keV

Bak
=
∑
j

wj

(
μ

ρ

)100 keV

j

= wC

(
μ

ρ

)100 keV

C
+wH

(
μ

ρ

)100 keV

H
+wO

(
μ

ρ

)100 keV

O

= (0.7824×0.1514 + 0.0555×0.2944 + 0.1621×0.1551) cm2/g

= 0.1600 cm2/g (8.96)

and for photon energy hν = 10 MeV in Bakelite

(
μ

ρ

)10 MeV

Bak
=
∑
j

wj

(
μ

ρ

)10 MeV

j

= wC

(
μ

ρ

)10 MeV

C
+wH

(
μ

ρ

)10 MeV

H
+wO

(
μ

ρ

)10 MeV

O

= (0.7824×0.0196 + 0.0555×0.0325 + 0.1621×0.0209) cm2/g

= 0.0206 cm2/g. (8.97)

(c) Mass energy transfer coefficient μtr/ρ of Bakelite for photon energy hν will be
calculated with (8.90) and data from Table 8.6 for the three constituents of Bakelite
as follows

(
μtr

ρ

)hν
Bak

=
∑
j

wj

(
μtr

ρ

)hν
j

=wC

(
μtr

ρ

)hν
C

+wH

(
μtr

ρ

)hν
H

+wO

(
μtr

ρ

)hν
O
.

(8.98)
For photon energy hν = 100 keV in Bakelite using (8.98) we get

(
μtr

ρ

)100 keV

Bak
=
∑
j

wj

(
μtr

ρ

)100 keV

j

=wC

(
μtr

ρ

)100 keV

C
+wH

(
μtr

ρ

)100 keV

H
+wO

(
μtr

ρ

)100 keV

O
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= (0.7824×0.0213 + 0.0555×0.0406 + 0.1621×0.0234) cm2/g

= 0.0227 cm2/g (8.99)

and for photon energy hν = 10 MeV in Bakelite

(
μtr

ρ

)10 MeV

Bak
=
∑
j

wj

(
μtr

ρ

)10 MeV

j

= wC

(
μtr

ρ

)10 MeV

C
+wH

(
μtr

ρ

)10 MeV

H
+wO

(
μtr

ρ

)10 MeV

O

= (0.7824×0.0143 + 0.0555×0.0227 + 0.1621×0.0155) cm2/g

= 0.0150 cm2/g. (8.100)

(d) Mass energy absorption coefficient μab/ρ of Bakelite for photon energy hν
will be calculated with (8.90) and data from Table 8.6 for the three constituents of
Bakelite as follows

(
μab

ρ

)hν
Bak

=
∑
j

wj

(
μab

ρ

)hν
j

=wC

(
μab

ρ

)hν
C

+wH

(
μab

ρ

)hν
H

+wO

(
μab

ρ

)hν
O
.

(8.101)
For photon energy hν = 100 keV in Bakelite using (8.101) we get

(
μab

ρ

)100 keV

Bak
=
∑
j

wj

(
μab

ρ

)100 keV

j

= wC

(
μab

ρ

)100 keV

C
+wH

(
μab

ρ

)100 keV

H
+wO

(
μab

ρ

)100 keV

O

= (0.7824×0.0213 + 0.0555×0.0406 + 0.1621×0.0234) cm2/g

= 0.0227 cm2/g (8.102)

and for photon energy hν = 10 MeV in Bakelite

(
μab

ρ

)10 MeV

Bak
=
∑
j

wj

(
μab

ρ

)10 MeV

j

= wC

(
μab

ρ

)10 MeV

C
+wH

(
μab

ρ

)10 MeV

H
+wO

(
μab

ρ

)10 MeV

O

= (0.7824×0.0138 + 0.0555×0.0225 + 0.1621×0.0149) cm2/g

= 0.0145 cm2/g. (8.103)
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(e) Mean energy Ētr transferred from photon with energy hν to charged particles
(electron and positron) in Bakelite absorber is determined from the standard expres-
sion linking mass energy transfer coefficient μtr/ρ with mass attenuation coefficient
μ/ρ, as shown in (T8.5)

μtr

ρ
= f̄tr

μ

ρ
= Ētr

hν

μ

ρ
or Ētr = hν μtr/ρ

μ/ρ
. (8.104)

Mean energy transferred from photons of energy hν = 100 keV to charged particles
in Bakelite from (8.104) is

Ētr = hν μtr/ρ

μ/ρ
= (100 keV)×0.0227

0.1600
= 14.2 keV, (8.105)

while mean energy transferred from photons of energy hν = 10 MeV to charged
particles is

Ētr = hν μtr/ρ

μ/ρ
= (10 MeV)×0.0150

0.0206
= 7.28 MeV. (8.106)

(f) Mean energy Ēab absorbed in the Bakelite absorber is determined from the
standard expression linking mass energy absorption coefficient μab/ρ with mass
attenuation coefficient μ/ρ as follows

μab

ρ
= f̄ab

μ

ρ
= Ēab

hν

μ

ρ
or Ēab = hν μab/ρ

μ/ρ
. (8.107)

Mean energy absorbed in Bakelite through a 100 keV photon interaction with Bake-
lite is

Ēab = hν μab/ρ

μ/ρ
= (100 keV)×0.0227

0.1600
= 14.2 keV (8.108)

and for a 10 MeV photon

Ēab = hν μab/ρ

μ/ρ
= (10 MeV)×0.0145

0.0206
= 7.04 MeV. (8.109)

(g) Mean energy Ērad radiated from charged particles released or produced in
Bakelite absorber is equal to energy difference between the energy transferred Ētr
to charged particles in Bakelite absorber and energy absorbed Ēab in the Bakelite
absorber, i.e., Ērad = Ētr − Ēab.

For 100 keV incident photon we have

Ērad = Ētr − Ēab = 14.2 keV − 14.2 keV = 0 (8.110)

and for 10 MeV photon

Ērad = Ētr − Ēab = 7.28 MeV − 7.04 MeV = 0.24 MeV. (8.111)
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8.5 Effects Following Photon Interactions with Absorber

8.5.Q1 (192)

Six modes of photon interaction with absorber atoms are of importance to
medical physics. Each of these interaction modes has its own peculiar char-
acteristics, some of these are common to several of the six modes and others
are specific to the given mode. For the six interaction modes of importance
to medical physics describe the events that follow each one of these interac-
tions.

(a) Photoelectric effect
(b) Rayleigh scattering
(c) Compton scattering
(d) Nuclear pair production
(e) Electronic pair production
(f) Photonuclear reaction

SOLUTION:

(a) Photoelectric effect, an interaction between the incident photon and a tightly
bound orbital electron of the absorber atom, is considered an interaction between
the photon and whole atom. The photon disappears and the orbital electron, called
photoelectron, is ejected from the absorber atom leaving behind a shell vacancy
in the absorber atom. The fate of the vacancy is discussed in (g), the fate of the
photoelectron in (h).

(b) Rayleigh scattering, also called coherent scattering, refers to an interaction
of the incident photon with a full complement of orbital electrons tightly bound
to the nucleus of the absorber atom. This means that the photon interacts with the
whole atom. The scattered photon is emitted with scattering angle θ and with energy
identical to that of the incident photon. No vacancy is produced in the absorber atom
and the incident photon loses no energy except for the negligible amount of energy
used up as recoil energy of the absorber atom.

(c) Compton effect, also known as incoherent scattering and Compton scattering,
is an interaction of the incident photon with a loosely bound, essentially “free elec-
tron”. The incident photon is scattered with scattering angle θ and some of its in-
cident energy is transferred to the emitted electron, referred to as the Compton or
recoil electron.
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The scattered photon leaves the interaction site with a lower energy than that of
the incident photon and in a direction different from that of the incident photon. The
Compton electron leaves behind an electronic vacancy in the absorber atom and the
fate of the vacancy as well as the fate of the Compton electron are discussed in (g)
and (h), respectively.

(d) Nuclear pair production refers to a photon interaction in which a photon dis-
appears under the influence of the nuclear electric field and an electron-positron pair
is produced (materialization) out of the photon energy. No electronic vacancy is pro-
duced in this interaction, however, the electron and positron leaving the interaction
site are moving through the absorbing medium and losing energy in collisions with
absorber atoms discussed in (h). In addition, positron undergoes annihilation with
an available free electron, as discussed in (i).

(e) Electronic pair production, also known as triplet production, is a photon in-
teraction that occurs in the electric field of an orbital electron. The photon dis-
appears and an electron-positron pair is produced. The incident photon energy is
shared among three particles: orbital electron that enabled the interaction as well as
the electron and positron produced in the interaction. As the three particles travel
through the absorber, they lose their energy through collisions with atoms of the
absorber, as discussed in (h). In addition the positron undergoes annihilation with
an available free electron, as discussed in (i).

(f) Photonuclear reaction, also known as photodisintegration or nuclear photo-
electric effect, is a direct interaction between the incident photon with nucleus of
an absorber atom. The photon disappears and the nucleus ejects a neutron, proton,
or even heavier particle that move through the absorbing medium and lose energy
through Coulomb collisions or nuclear reactions. No vacancies are produced in the
absorber atom and no energetic electrons are generated in the initial interaction. In
medical physics, the photonuclear reaction is more of a curiosity that of real im-
portance, so that most of the time it is ignored in comparison to the other modes of
photon interaction with absorber atoms.

(g) Electronic vacancies are produced in absorber atoms by ejection of orbital
electrons through the following photon interaction modes with absorber atoms: pho-
toelectric effect (ejection of photoelectron), Compton effect (ejection of Compton
recoil electron), and electronic pair production or triplet production (ejection of or-
bital electron). The three effects are significantly different from one another, how-
ever, they have vacancy formation in common and the fate of a vacancy does not at
all depend on how it was created; all vacancies evolve along the same path and in
the same manner.

If the shell vacancy occurs in a shell other than the outer (valence) shell of the
absorber atom, an orbital electron from a higher level shell will fill the original
vacancy (leaving behind a vacancy in its own shell) and the transition energy will
be emitted either as a characteristic (fluorescence) photon or will be transferred
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to a higher shell orbital electron. This electron will be ejected from the absorber
atom as an Auger electron, leaving behind a new electronic vacancy in the absorber
atom.

In electronic transition from higher to lower electronic shell, the vacancy makes a
transition in the opposite direction and eventually migrates to the outer atomic shell
of the absorber atom. Each emitted Auger electron, on the other hand, adds a new
vacancy to the absorber atom that will also migrate to the outer atomic shell. Free
electrons from the surroundings of the absorber atom will eventually fill the outer
shell vacancies and this will return the absorber atom into its original neutral state
that was in effect before the incident photon interaction occurred.

(h) Energetic charged particles (electrons and positrons) produced or released in
several modes of incident photon interaction with absorber atom all travel through
the absorber and lose kinetic energy in Coulomb interactions be it with orbital elec-
trons or with nuclei of absorber atoms. These charged particles (CPs) can be pho-
toelectron from photoelectric effect, Compton electron from Compton scattering,
pair production electron and positron from nuclear pair production, or the orbital
electron as well as the pair production electron and positron from triplet produc-
tion.

Coulomb interactions between energetic CP and orbital electrons of absorber
atom contribute to collision loss of the charged particle and cause ionization and
excitation of absorber atoms that eventually result in absorbed dose through col-
lision stopping power. Coulomb interactions between the energetic CPs (electrons
and positrons) and nucleus of absorber atoms contribute to radiation loss of the CP
and cause production of bremsstrahlung photons that generally escape the region of
interest.

(i) Positrons produced in nuclear as well as electronic pair production move
through absorber in a similar manner as electrons and lose their kinetic energy
through Coulomb interactions with orbital electrons and nuclei of absorber atoms
producing collision and radiation loss. However, upon losing their kinetic energy
positrons undergo annihilation with a free electron from the environment and pro-
duce two 511 MeV photons (annihilation photons) leaving the annihilation site
in opposite directions to satisfy conservation of energy and momentum princi-
ples.

In rare instances in a process referred to as in-flight annihilation, positron anni-
hilation occurs before the positron expended all of its kinetic energy. One or more
photons are produced in the annihilation process and photon energy must be such
that conservation of energy and momentum principles are upheld.

Events following the six modes of photon interactions with absorber atoms that
are of importance in medical physics are summarized in Fig. 8.12.
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Fig. 8.12 Schematic diagram of the six modes available to incident photons for interaction with
absorber atoms of importance to medical physics. Also shown are the particles released in or
produced in the absorber during a given photon interaction as well as the effects that follow
a given photon interaction, such as emission of characteristic radiation, Auger electrons, anni-
hilation quanta, and bremsstrahlung photons. The figure also indicates that the secondary pho-
tons (Rayleigh- and Compton scattered photons, characteristic photons, annihilation quanta, and
bremsstrahlung photons) can start their own photon interaction cycle in the absorber



8.6 Summary of Photon Interactions with Absorbers 557

8.6 Summary of Photon Interactions with Absorbers

8.6.Q1 (193)

Over a dozen different modes of photon interaction with absorber atoms have
been identified in nuclear physics and six of these are of significance in med-
ical physics, since they form the basis for use of radiation in imaging and
therapy of disease. The six interactions or effects are:

(A) Photoelectric effect
(B) Rayleigh scattering
(C) Compton effect
(D) Nuclear pair production
(E) Electronic pair production (also known as triplet production)
(F) Photonuclear reactions (also known as photodisintegration)

For each photon interaction with absorber atoms:

(a) State the entity with which the photon interacts (absorber atom, nucleus
of absorber atom, or orbital electron of absorber atom).

(b) List interactions that result in shell vacancy in absorber atom.
(c) List interactions that release charged particles in the absorber and iden-

tify the charged particles.
(d) List interactions that produce charged particles in the absorber and iden-

tify the charged particles.
(e) Draw a schematic diagram.

SOLUTION:

Answers to (a), (b), (c), and (d) are given in Table 8.7, to (e) in Fig. 8.13.

Table 8.7 Various properties of photon interaction with absorber atoms such as the entity with
which interaction occurs, production of shell vacancy, release or production of charged particles

Mode of photon
interaction

Photoelectric Rayleigh
scattering

Compton Nuclear
pair prod.

Electronic
pair prod.

Photonuclear

(a) Entity Whole atom Whole
atom

Orbital
electron

Electric
field of
nucleus

Electric
field of
orb. elect.

Nucleus

(b) Shell vacancy Yes No Yes No Yes No

(c) Charged particle
release

Photoelectron – Compton
electron

– Orbital
electron

–

(d) Charged particle
production

– – – Electron,
Positron

Electron,
Positron

Proton, etc.
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Fig. 8.13 Schematic diagrams of the six most important modes of photon interaction with atoms
of absorber: (A) Photoelectric effect, (B) Rayleigh scattering, (C) Compton effect, (D) Nuclear pair
production, (E) Electronic pair production, and (F) Photodisintegration. Modes (A), (B), (C), and
(E) represent photon interactions with orbital electrons of absorber, modes (D) and (E) interactions
with the nucleus of absorber. The nuclear and electronic pair production are usually handled to-
gether under the header “pair production”, and photonuclear are usually ignored, so that in medical
physics often an assumption is made that there are only four important modes of photon interac-
tion with absorber atoms: photoelectric effect, Rayleigh scattering, Compton scattering, and pair
production
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8.6.Q2 (194)

Mono-energetic photons of energy hν = 60 MeV interact with copper ab-
sorber (Z = 29, A= 63.54 g/mol, ρ = 8.96 g/cm3). Atomic attenuation co-
efficients (cross sections) of copper at hν = 60 keV are:

aτ = 139.60×10−24 cm2/atom for photoelectric effect (PE)

aσC = 13.93×10−24 cm2/atom for Compton effect (C)

aσR = 11.29×10−24 cm2/atom for Rayleigh scattering (R)

For interaction of 60 keV photons with copper absorber determine:

(a) Mass attenuation coefficient μ/ρ.
(b) Mean energy Ētr transferred to electrons in copper absorber.
(c) Mean energy transfer fraction f̄tr.
(d) Mass energy transfer coefficient μtr/ρ.
(e) Mass energy absorption coefficient μab/ρ.

SOLUTION:

(a) Mass attenuation coefficient μ/ρ is the sum of mass attenuation coefficients
for photoelectric effect τ/ρ, Compton effect σC/ρ, and Rayleigh scattering σR/ρ

(T8.2)

μ

ρ
= τ

ρ
+ σC

ρ
+ σR

ρ
+ κ

ρ
= NA

A
aμ= NA

A
(aτ + aσC + aσR + aκ)

= 6.022×1023 atom · mol−1

63.54 g · mol−1
×(139.60 + 13.93 + 11.29 + 0)×10−24 cm2

atom

= 6.022×1023 atom · mol−1

63.54 g · mol−1
×164.82×10−24 cm2

atom
= 1.562

cm2

g
. (8.112)

Note: Attenuation coefficient for pair production κ is equal to zero for photons of
energy hν = 60 keV because this energy is below the threshold energy of 1.02 MeV
for pair production.

(b) Mean energy Ētr transferred to electrons from photon of energy 60 keV inter-
acting with copper absorber is determined through considering mean energy transfer
Ēitr from each individual effect that contributes to photon interaction and adding the
weighted mean values to obtain the total combined mean value (T8.12)

Ētr =
∑
i

wiĒ
i
tr =wPEĒ

PE
tr +wCĒ

C
tr +wRĒ

R
tr +wPPĒ

PP
tr . (8.113)
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Fig. 8.14 Various atomic parameters for the K shell of the absorber relevant to photoelectric effect
plotted against atomic number Z of the absorber: (A) Fluorescence yield ωK, photoelectric prob-
ability PK, and fluorescence efficiency ηK; (B) K-shell binding energy EB(K), mean fluorescence
photon energy ηKEB(K), and mean fluorescence emission energy PKωKηKEB(K)

Note: In our problem ĒR
tr = 0 (this is true in general, because there is no energy

transfer to charged particles in Rayleigh scattering) and ĒPP
tr = 0 because 60 keV is

below the threshold energy of 1.02 MeV for pair production.

(1) Mean energy ĒPE
tr transferred to photoelectron and Auger electrons in photo-

electric effect is calculated as (T7.161)

ĒPE
tr = hν − PKωKηKEB(K)= 60 keV − 0.86×0.45×0.91×9 keV = 56.86 keV,

(8.114)
with parameters PK = 0.86 (photoelectric probability for K shell, if photoelectric
effect happens), ωK = 0.45 (fluorescence yield for K shell), and ηK = 0.91 (fluo-
rescence efficiency for K shell), plotted against atomic number Z of absorber in
Fig. 8.14(A) and EB(K)= 9 keV binding energy of K shell plotted against atomic
numberZ of absorber in Fig. 8.14(B) or estimated with Hartree approximation given
as follows: EB(K)≈ (13.61 eV)×(Z − 2)2.

(2) Mean energy ĒC
tr transferred to recoil electron in Compton effect is obtained

from the “Compton Graph” which plots the mean energy transfer fraction f̄C for the
Compton effect against incident photon energy hν. From the “Compton Graph” we
find f̄C = 0.10 at hν = 60 keV, as shown in Fig. 8.15. Since f̄C = ĒC

tr/hν, we get
ĒC

tr = 0.1×60 keV = 6 keV.

(3) Mean energy ĒR
tr transferred to electrons in Rayleigh scattering is zero, since

in Rayleigh scattering no energy is transferred to electrons, i.e., ĒR
tr = 0.

(4) We now use (8.113) to determine the total mean energy transfer Ētr to electrons
in interaction of 60 keV photons with copper absorber
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Fig. 8.15 The “Compton Graph” plotting the mean energy transfer fraction f̄C against photon
energy hν for Compton effect. Anchor points for the Compton curve are shown with solid circles,
result of our calculation of the mean Compton energy transfer fraction f̄C at hν = 60 keV is shown
by ×

Ētr =
∑
i

wiĒ
i
tr =wPEĒ

PE
tr +wCĒ

C
tr +wRĒ

R
tr = aτ

aμ
ĒPE

tr + aσC

aμ
ĒC

tr + aσR

aμ
ĒR

tr

= 139.60

164.82
×56.86 keV + 13.93

164.82
×6 keV + 11.29

164.82
×0 = 48.7 keV. (8.115)

(c) Mean energy transfer fraction f̄tr can be determined directly from (8.115) or
through a weighted summation of transfer fractions for the individual effects that
contribute to 60 keV photon interactions with copper absorber (T8.5)

f̄tr = Ētr

hν
= 48.7

60
= 0.812 ≡wPEf̄PE +wCf̄C +wRf̄R

= 139.60

164.82
×56.86

60
+ 13.93

164.82
× 6

60
= 0.812. (8.116)

(d) Mass energy transfer coefficient μtr/ρ is calculated from its basic definition
as follows

μtr

ρ
= f̄tr

μ

ρ
= 0.812×1.562

cm2

g
= 1.268 cm2/g. (8.117)

(e) Mass energy absorption coefficient μab/ρ is in general given as (T8.14)

μab

ρ
= μ

ρ

Ēab

hν
= μ

ρ

Ētr − Ērad

hν
= μtr

ρ
(1 − ḡ)= f̄tr

μ

ρ
(1 − ḡ), (8.118)

where ḡ is the mean radiation fraction consisting of two main components: mean
bremsstrahlung fraction ḡB and mean in-flight annihilation fraction ḡA. However,
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here we are dealing with interaction of 60 keV photons with copper absorber and
at this relatively low photon energy the mean radiation fraction ḡ is 0. This means
that μab/ρ is approximately equal to μtr/ρ, since essentially none of the energy
transferred from photons to electrons in the copper absorber is re-emitted in the
form of bremsstrahlung. We can thus conclude that all of the energy transferred to
charged particles in the absorber is also absorbed in the absorber.

8.6.Q3 (195)

Photons with energy hν = 10 MeV interact with carbon absorber. Mean en-
ergy Ētr transferred from the photons to charged particles is 7.30 MeV; mean
energy Ēab absorbed by the carbon absorber is 7.06 MeV.

(a) Based on these rudimentary data present a schematic diagram of the
average interaction and fill-in as many missing links as you can.

(b) Describe and evaluate the most probable events that lead to the mean
values quoted above.

SOLUTION:

(a) The main steps in developing a picture of the 10-MeV-photon interaction with
carbon absorber are as follows:

(1) In the first approximation we assume that we are dealing with Compton effect
(C) only and, based on their lower probabilities, we ignore the other possible
photon interactions with carbon atoms, such as the photoelectric effect (PE)
and pair production (PP). Thus, the incident photon energy hν = 10 MeV is
shared between the recoil (Compton) electron kinetic energy E′

K = 7.3 MeV
and the scattered (Compton) photon hν′ = hν −E′

K = 2.7 MeV.
(2) Before we can make a realistic diagram of the Compton interaction repre-

senting the 10 MeV photon interaction with carbon nuclei, we must know all
parameters of the interaction: incident photon energy Eν = hν and momen-
tum pν , scattered photon energy E′

ν = hν′ and momentum p′
ν , recoil electron

kinetic energy E′
K and momentum p′

e, photon scattering angle θ , and electron
recoil angle φ. We already have the three required energies: Eν = 10 MeV,
E′
ν = 2.7 MeV, and E′

K = 7.3 MeV.
(3) The required photon momenta are determined as follows (T1.76)

pν = Eν

c
= 10 MeV/c and p′

ν = E′
ν

c
= 2.7 MeV/c, (8.119)

while the recoil electron momentum is determined using the standard p vs E′
K

relationship (T1.64)

p′
e = E′

K

c

√
1 + 2E0

E′
K

= 7.3 MeV

c
×
√

1 + 2×0.511

7.3
= 7.8 MeV/c. (8.120)
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Fig. 8.16 Schematic diagram of the “first approximation (Compton effect)” to the 10 MeV photon
interaction with carbon absorber

(4) The photon scattering angle θ , corresponding to scattered photon energy
hν′ = 2.7 MeV, is determined from the standard expression (T7.71) linking
hν′, hν, and θ where ε is the incident photon energy normalized to electron
rest energy ε = hν/(mec

2)= 10/0.511 = 19.57.

hν′

hν
= 1

1 + ε(1 − cos θ)
≡ a = 2.7

10
= 0.27. (8.121)

Solving (8.121) for cos θ gives

cos θ = a(ε+ 1)− 1

aε
= 0.27×(19.57 + 1)− 1

0.27×19.57
= 0.862 (8.122)

and

θ = arccos 0.862 = 30.5◦. (8.123)

(5) The electron recoil angle φ, corresponding to electron recoil kinetic energy
E′

K = 7.3 MeV, is determined from the simple expression relating φ, θ , and ε
as follows (T7.68)

tanφ = 1

1 + ε cot
θ

2
= 1

1 + ε
(

tan
θ

2

)−1

= 1

1 + 19.57

(
tan 15.25◦)−1 = 0.178

(8.124)
or

θ = arctan 0.178 = 10.1◦. (8.125)

(6) We are now ready to plot the “first approximation” diagram of the 10 MeV
photon interaction with carbon absorber. The plot is provided in Fig. 8.16 and
shows a 10 MeV incident photon undergoing a Compton effect on a free and
stationary electron. The electron recoils with kinetic energy E′

K = 7.3 MeV
and the recoil angle φ is 10.1°. The photon is scattered with energy hν′ =
2.7 MeV and the scattering angle θ is 30.5°.
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Fig. 8.17 Mean energy transfer fractions for Compton scattering and pair production f̄C and f̄PP,
respectively, against incident photon energy hν. Mean transfer fraction for Compton effect is re-
ferred to as the “Compton Graph” because of its importance to radiation dosimetry. As highlighted
in the graph, at hν = 10 MeV, f̄C = 0.684 and f̄PP = 0.898

(7) The released recoil electron with kinetic energy E′
K = 7.3 MeV travels

through the carbon absorber and experiences Coulomb interactions with or-
bital electrons of carbon atoms resulting in collision loss and with nuclei
of carbon atoms resulting in elastic scattering as well as some radiation
loss. The collision loss is deposited locally in the absorber (7.06 MeV);
radiation loss (bremsstrahlung) escapes from the absorber with energy of
(7.3 MeV − 7.06 MeV = 0.24 MeV).

(b) The basic picture of the 10 MeV photon interaction with carbon absorber is
described in (a) and depicted schematically in Fig. 8.16; however, a closer look at
possible interactions, in addition to Compton effect, reveals a much more elaborate
and interesting picture.

(1) For example, it is well known from the “Compton graph” (see Fig. 8.17) that
the mean energy ĒC

tr transferred to Compton recoil electron from 10 MeV
photons is 6.84 MeV. Since our problem states that the mean energy trans-
ferred from 10 MeV photons to charged particles (CPs) in carbon amounts to
7.3 MeV, it is obvious that there must be at least one more effect, in addition
to Compton effect, that contributes to the energy transfer.

(2) Recalling the diagram on the relative predominance of the three main pho-
ton interactions (PE, C, and PP) with matter and entering our point of (hν =
10 MeV, Z = 6) onto the graph, as shown in Fig. 8.18, reveals that the point
clearly falls into the Compton domain of predominance, however, while we
can ignore the PE probability, the point is relatively close to the 50-50 σC = κ
curve which defines equal weight for Compton effect and pair production (PP)
suggesting that we should also consider the probability of PP, in addition to
probability of C, to understand better the source of the 7.3 MeV mean energy
transfer to charged particles.



8.6 Summary of Photon Interactions with Absorbers 565

Fig. 8.18 Domains of relative predominance of the three main processes of photon interaction
with absorber atom: photoelectric effect τ , Compton effect σC, and pair production κ in a (hν,Z)
graph where hν is photon energy and Z is the absorber atomic number. The two curves in the graph
connect points where photoelectric and Compton cross section are equal (τ = σC) and points where
Compton and pair production cross sections are equal (σC = κ)

(3) In contrast to Compton effect where the mean energy transfer to CPs from
10 MeV photons is ĒC

tr = 6.84 MeV, in pair production the mean energy trans-
fer ĒPP

tr is hν − 2mec
2 = 8.98 MeV, as also shown in Fig. 8.17.

(4) The location of the point (hν = 10 MeV, Z = 6) in Fig. 8.18 suggests less than
complete predominance of the Compton effect and a non-negligible contribu-
tion of pair production, so we now make a reasonable guess and assume the
following weights of the two effects: wC ≈ 0.80 % and wPP ≈ 20 %. Using
these weights we now estimate the following mean energy transferred from
10 MeV photons to CPs in carbon absorbers

Ētr =
∑
i

wiĒ
i
tr =wCĒ

C
tr +wPPĒ

PP
tr

= 0.80×6.84 MeV× + 0.20×8.98 MeV = 7.27 MeV, (8.126)

in good agreement with the value of 7.3 MeV quoted above, confirming the
choice of weights we made with 80 % for Compton scattering and 20 % for
pair production as reasonably good guess.

Mass attenuation coefficients σC/ρ and κ/ρ provided by the NIST are
1.539×10−2cm2/g and 0.421×10−2 cm2/g, respectively, resulting in weights
wC for Compton effect of 78.5 % and wPP for pair production of 21.5 %. Our
guess of 80 % Compton and 20 % pair production is thus in reasonably good
agreement with the NIST. The NIST mass attenuation coefficients τ/ρ and
σR/ρ are 5.059×10−8 cm2/g and 3.853×10−7 cm2/g, respectively, substan-
tiating our neglect of these two coefficients in comparison with Compton and
pair production coefficients.
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Fig. 8.19 Mean radiation fraction ḡ and mean in-flight annihilation fraction ḡA against photon en-
ergy hν for eight selected absorbers including carbon. Data were calculated using the g/EGSnrcMP
code obtained from the NRC, Ottawa. Mean radiation fractions ḡ and ḡA for 10 MeV photons are
highlighted on the graphs

(5) The next issue that we need to consider is the mean energy absorbed in car-
bon quoted above as Ēab. In (a) we assumed the energy difference Ētr − Ēab

equal to 0.24 MeV is the mean energy Ērad emitted by CPs in the form of
bremsstrahlung. In the first approximation this is correct; however, the pres-
ence of pair production introduces positrons into the picture and positrons, as
they travel through the absorber, may lose energy in the form of in-flight anni-
hilation in addition to bremsstrahlung, so that the energy of 0.24 MeV should
not be attributed only to bremsstrahlung, as was done in (a).

(6) In Fig. 8.19 we show the mean radiation fraction ḡ (which is the sum of
the mean bremsstrahlung fraction ḡB and the mean in-flight annihilation
fraction ḡA) as well as the mean in-flight annihilation fraction ḡA against
incident photon energy hν for various absorbers including carbon. It is
obvious that ḡA is a relatively small component of ḡ, making the mean
bremsstrahlung fraction ḡB the predominant component of ḡ. From Fig. 8.19
we also note that ḡ at hν = 10 MeV is ∼0.033 in good agreement with
Ērad = 0.24 MeV emitted in the form of radiation out of 7.3 MeV trans-
ferred to CPs since ḡ = 0.24/7.3 = 0.033. We also note that at hν = 10 MeV
the in-flight annihilation fraction ḡA ≈ 0.0055 and the bremsstrahlung frac-
tion ḡB ≈ ḡ − ḡA = 0.033 − 0.0055 = 0.0275, indicating that ∼17 % of
ḡ = 0.033 is contributed by in-flight annihilation, while ∼83 % comes directly
from the bremsstrahlung component. We thus conclude that the radiation loss
of 0.24 MeV in the interaction of a 10 MeV photon with carbon absorber
0.20 MeV escapes through bremsstrahlung and 0.04 through in-flight annihi-
lation.
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8.7 Sample Calculations

8.7.Q1 (196)

Diagram in Fig. 8.20 shows a simple Monte Carlo history of a 20 MeV photon
in a water phantom that is divided into five volume elements (voxels), labeled
A, B, C, D, and E. As a guide through various processes some photon energies
hν and charged particle kinetic energies EK are given at interaction points
(indicated by bullet points • and identified by integer numbers 1 through 8)
or at voxel boundaries (indicated by asterisks ∗).

(a) Indicate and briefly describe interaction mechanisms occurring at inter-
action points labeled 1 through 8. For interactions [1] and [3], in addi-
tion to interaction energies, also determine angles θ and φ.

(b) Determine energy Etr transferred from photon to charged particles in
voxels A, B, C, D, and E.

(c) Determine net energy Enet
tr transferred from photon to charged particles

in voxels A, B, C, D, and E.
(d) Determine energy Eab absorbed in voxels A, B, C, D, and E.

Fig. 8.20 A simple Monte Carlo history of a 20 MeV photon in a water phantom divided into five
volume elements
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SOLUTION:

(a) Analysis of a typical Monte Carlo history of a 20 MeV photon traversing a
water phantom consisting of 5 volume elements (voxels).

Interaction [1]—Voxel A: Compton scattering

To make progress through the Monte Carlo history we need energy hν′ of the scat-
tered photon, kinetic energy EK of the Compton recoil electron, and recoil angle φ
of the recoil electron.

(1) Incident photon energy hν is given as: hν = 20 MeV and ε = hν

mec2 = 20
0.511 =

39.14.
(2) Scattering angle θ = 15.9◦ (see diagram).
(3) Scattered photon energy hν′ is calculated from the standard expression for hν′

as a function of incident photon energy hν and scattering angle θ (T7.71)

hν′ = hν

1 + ε(1 − cos θ)
= 20 MeV

1 + 39.14×(1 − cos 15.9◦)
= 8 MeV. (8.127)

(4) Recoil angle φ of the Compton recoil electron is calculated from (T7.67) as

cotφ = 1

tanφ
= (1 + ε) tan

θ

2
= (1 + 39.14)× tan 7.95◦ = 5.61 = 1

0.1784
(8.128)

and

φ = arctan 0.1784 = 10.11◦. (8.129)

(5) Kinetic energy EK of the recoil electron is the energy transferred from the
photon to charged particles (recoil electron in Compton scattering) and is de-
termined from the principle of energy conservation as energy difference be-
tween incident hν and scattered hν′ photon

EK = hν − hν′ = 20 MeV − 8 MeV = 12 MeV. (8.130)

The recoil electron in traversing voxel A loses 9 MeV through collision loss
in voxel A and enters voxel B with kinetic energy EK = 3 MeV.

Interaction [2]—Voxel B: Radiation loss (bremsstrahlung photon with hν =
1 MeV)

Recoil electron, produced in interaction [1], enters voxel B with kinetic energy
EK = 3 MeV and loses all of this energy in voxel B: 2 MeV in collision loss with
orbital electrons in voxel B that contributes to absorbed energy Eab in voxel B and
1 MeV in radiation loss (bremsstrahlung) that escapes voxel B and the water phan-
tom.
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Interaction [3]—Voxel C: Compton scattering

(1) Incident photon energy hν = 8 MeV or ε = hν/(mec
2) = 8/0.511 = 15.66

(from interaction [1]).
(2) Scattered photon energy hν′ = 4.11 MeV (see diagram).
(3) Scattering angle θ is calculated from (8.127) linking incident photon energy

hν and the scattered photon energy hν′ and scattering angle θ

hν′ = hν

1 + ε(1 − cos θ)
or cos θ = 1 − 1

ε

(
hν

hν′ − 1

)
(8.131)

resulting in the following expression for scattering angle θ as a function of hν
and hν′

θ = arccos

[
1 − 1

ε

(
hν

hν′ − 1

)]
arccos

[
1 − 1

15.66

(
8

4.11
− 1

)]

= arccos 0.94 = 20◦. (8.132)

(4) Recoil electron angle φ is calculated from standard expression linking φ and θ
(T7.67)

cotφ = 1

tanφ
= (1 + ε) tan

θ

2
= (1 + 15.66) tan 10◦ = 2.94 = 1

0.34
(8.133)

resulting in

φ = arctan 0.34 = 18.79◦. (8.134)

(5) Recoil electron kinetic energy EK, similar to (8.130), is given as

EK = hν − hν′ = 8 MeV − 4.11 MeV = 3.89 MeV. (8.135)

This is the energy transferred from photon to charged particles (electron) in
voxel C. The recoil electron, produced in interaction [3], loses 1.39 MeV
(3.89 MeV − 2.5 MeV) through collision loss in voxel C and enters voxel D
with kinetic energy EK = 2.5 MeV, as indicated in the diagram. Energy
1.39 MeV is deposited (absorbed) in voxel C.

Interaction [4]—Voxel D: Radiation loss (bremsstrahlung photon with hν =
0.5 MeV)

Recoil electron, produced in interaction [3], enters voxel D with kinetic energy
EK = 2.5 MeV. It loses 0.5 MeV through radiation loss (bremsstrahlung) in in-
teraction [4] in voxel D. This bremsstrahlung photon escapes from voxel D and
the water phantom and the rest of recoil electron’s kinetic energy (2 MeV) is lost
through collision loss that is deposited (absorbed) in voxel D.
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Interaction [5]—Voxel D: Nuclear pair production

(1) Scattered photon of energy hν = 4.11 MeV, originating in interaction [3],
undergoes nuclear pair production in voxel D. Photon disappears and an
electron–positron pair with combined kinetic energy EK of 3.09 MeV is cre-
ated. Note: 1.02 MeV of the incident photon energy of 4.11 MeV is used
up for creation of the electron–positron pair (materialization) and the rest
(4.11 MeV − 1.02 MeV = 3.09 MeV) goes into combined kinetic energy of
the electron and positron. Thus, the energy transferred from photon to charged
particles (electron and positron) in interaction 5 is 3.09 MeV. As shown on the
diagram, the electron of the electron–positron pair receives kinetic energy of
EK = 1.09 MeV, which means that the positron received the difference be-
tween 3.09 MeV and 1.09 MeV, i.e., EK = 2 MeV.

(2) Kinetic energy EK = 1.09 MeV of the pair production electron is lost through
collision loss, of this 0.09 MeV is lost in voxel D and 1 MeV in voxel E.

(3) The positron also loses all of its kinetic energy (2 MeV) through collision loss:
1.5 MeV is lost and absorbed in voxel D and 0.5 MeV in voxel E.

Interaction [6]—Voxel E: Positron annihilation

Positron produced in interaction [5] receives kinetic energy 2 MeV, travels through
voxels D and E, and loses all of its kinetic energy through collision loss. This energy
of 2 MeV is thus absorbed in voxels D and E; 1.5 MeV in voxel D and 0.5 MeV in
voxel E. When the positron reaches zero kinetic energy in voxel E, it annihilates with
a “free and stationary” electron in interaction [6] and two annihilation quanta, each
of energy 0.511 MeV are produced travelling in opposite directions to one another.
One of the two annihilation quanta escapes voxel E as well as water phantom, the
other annihilation quantum has interaction [7] in voxel E.

Interaction [7]—Voxel E: Photoelectric effect

The photoelectric effect between the annihilation quantum of energy 0.511 MeV
and a low atomic number atom in the water phantom results in photon disappear-
ance and emission of an orbital electron referred to as a photoelectron. The binding
energy of the emitted orbital electron is negligible in comparison to the 0.511 MeV
energy of the annihilation quantum, so that one can assume that the photoelectron ki-
netic energy is ∼0.511 MeV and that the energy transferred from photon to charged
particles (photoelectron in this case) is 0.511 MeV.

Interaction [8]—Voxel E: Radiation loss (bremsstrahlung photon with hν =
0.111 MeV)

Photoelectron, released in interaction [7] with kinetic energy of 0.511 MeV, travels
through voxel E and loses its kinetic energy through collision loss as well as ra-
diation loss through production of a bremsstrahlung photon of energy 0.111 MeV
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in interaction [8]. The bremsstrahlung photon escapes voxel E as well as the water
phantom. The collision loss of the photoelectron amounts to 0.4 MeV (0.511 MeV−
0.111 MeV) and is absorbed in voxel E.

(b) Energy transferred from photons to charged particles (electrons and positrons)
Etr in a given voxel of the water phantom

Voxel A—Interaction [1]: Kinetic energy of Compton electron EK =Etr = 12 MeV.
Voxel B—No energy transfer from photons to charged particles; Etr = 0.
Voxel C—Interaction [3]: Kinetic energy of Compton electron EK = Etr =
3.89 MeV.
Voxel D—Interaction [5]: Kinetic energy of electron–positron pair EK = Etr =
3.09 MeV.
Voxel E—Interaction [7]: Kinetic energy of photoelectron EK =Etr ≈ 0.511 MeV.

(c) Net energy transferred from photons to charged particles Enet
tr in a given

voxel of the water phantom is defined as energy transferred Etr to charged particles
less energy subsequently lost by these charged particles in radiation collisions Erad,
such as production of bremsstrahlung (for electrons and positrons) or in-flight anni-
hilation (for positrons). Thus, Enet

tr =Etr −Erad, irrespective of where the radiation
loss occurs.

Voxel A—Interaction [1]: Compton electron is released with kinetic energy EK =
12 MeV, however, it subsequently loses Erad = 1 MeV of energy to bremsstrahlung
production. Thus, net energy transfer is given as follows: Enet

tr = Etr − Erad =
12 MeV − 1 MeV = 11 MeV.
Voxel B—No net energy transfer from photons to charged particles, since Etr = 0.
Voxel C—Interaction [3]: Compton electron is released with kinetic energy EK =
3.89 MeV but it subsequently loses Erad = 0.5 MeV of energy to bremsstrahlung
production. Thus we have Enet

tr =Etr −Erad = 3.89 MeV − 0.5 MeV = 3.39 MeV.
Voxel D—Interaction [5]: Electron–pair is created and released with combined ki-
netic energy EK =Etr = 3.09 MeV. Since neither the electron nor the positron lose
any of their kinetic energy through radiation loss, we have Enet

tr =Etr = 3.09 MeV.
Voxel E—Interaction [7]: Photoelectron is released with kinetic energy EK =Etr ≈
0.511 MeV, but it subsequently loses Erad = 0.111 MeV to bremsstrahlung produc-
tion. Thus, we get Enet

tr =Etr −Erad ≈ 0.511 MeV − 0.111MeV = 0.4 MeV.

(d) Energy absorbed Eab in a given voxel of the water phantom

Voxel A—Compton electron, released in interaction [1] with kinetic energy of
12 MeV, travels through voxels A and B. It crosses the boundary between vox-
els A and B with a kinetic energy of 3 MeV which means that it lost 9 MeV through
collision loss in voxel A. This also indicates that Eab = 9 MeV in voxel A.
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Table 8.8 Summary of results for the simple Monte Carlo history depicted in Fig. 8.20

Voxel A B C D E

Etr 12 MeV 0 3.89 MeV 3.09 MeV 0.511 MeV

Enet
tr 11 MeV 0 3.39 MeV 3.09 MeV 0.4 MeV

Eab 9 MeV 2 MeV 1.39 MeV 3.59 MeV 0.9 MeV

Voxel B—Compton electron, released in voxel A in interaction 1 arrives at the
boundary between voxels A and B with kinetic energy of 3 MeV. Since its track ends
in voxel B and it loses 1 MeV to bremsstrahlung, we conclude that Eab = 2 MeV
for voxel B.
Voxel C—Compton electron released with EK = 3.89 MeV in interaction [3] in
voxel C travels from voxel C to voxel D and crosses the boundary with a kinetic
energy of 2.5 MeV. This means that it lost (3.89 MeV − 2.5 MeV) = 1.39 MeV
through collision loss in voxel C and this energy was absorbed in voxel C as Eab =
1.39 MeV.
Voxel D—Compton electron from interaction [3] enters voxel D with kinetic en-
ergy of 2.5 MeV. It loses this energy in voxel D mainly through collision loss of
2 MeV, absorbed in voxel D and contributing to Eab in voxel D, and radiation loss
of 0.5 MeV in interaction [4]. In voxel D we also have interaction [5] that releases an
electron–positron pair with kinetic energy of 3.09 MeV. Both electron and positron
travel across the boundary between voxels D and A, crossing the boundary with
EK = 1 MeV for the electron and EK = 0.5 MeV for the positron. Since in inter-
action [5] the electron was released with EK = 1.09 MeV and the positron with
EK = 2 MeV, we conclude that the electron lost 0.09 MeV through collision loss in
voxel D, while the positron lost 1.5 MeV through collision loss in voxel D. We thus
get Eab = 2 MeV + 0.09 MeV + 1.5 MeV = 3.59 MeV, with 2 MeV contributed
by the Compton electron produced in interaction [3] (that entered voxel D with en-
ergy 2.5 MeV and lost 0.5 MeV to bremsstrahlung), 0.09 MeV contributed by the
pair production electron produced in interaction [5] (that was released with energy
1.09 MeV and left voxel D with energy 1 MeV), and 1.5 MeV contributed by the
pair production positron produced in interaction [5] (that was released with energy
2 MeV and left voxel D with energy 0.5 MeV).
Voxel E—Positron from interaction [5] enters voxel E with EK = 0.5 MeV and
loses all of this energy through collision loss before interaction [6]. It thus con-
tributes 0.5 MeV to Eab in voxel E. Photoelectron is released with kinetic energy of
0.511 MeV in interaction [8]. It loses 0.111 MeV of kinetic energy through radiation
(bremsstrahlung loss) and 0.4 MeV through collision loss that is absorbed in voxel
E. We thus have Eab = 0.9 MeV consisting of 0.5 MeV of absorbed energy from the
positron of interaction [5] and 0.4 MeV from the photoelectron of interaction [7].

A summary of (b), (c), and (d) is provided in Table 8.8.
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8.7.Q2 (197)

Diagram in Fig. 8.21 shows a simple Monte Carlo history of a 15 MeV pho-
ton in a water phantom that is divided into three volume elements (voxels), la-
beled A, B, and C. As a guide through various processes some photon energies
hν and charged particle kinetic energiesEK are given at interaction points (in-
dicated by bullet points • and identified by integer numbers 1 through 7) or at
voxel boundaries (indicated by asterisks ∗).

(a) Indicate and briefly describe interaction mechanisms occurring at inter-
action points labeled 1 through 7. For interactions [4] and [5], in addi-
tion to interaction energies, also determine angles θ and φ.

(b) Determine energy Etr transferred from photon to charged particles in
voxels A, B, and C.

(c) Determine net energy Enet
tr transferred from photon to charged particles

in voxels A, B, and C.
(d) Determine energy Eab absorbed in voxels A, B, and C.

Fig. 8.21 Typical Monte Carlo history of a 15 MeV photon striking a water phantom divided into
three voxels: A, B, and C

SOLUTION:

(a) Analysis of a typical Monte Carlo history of a 15 MeV photon traversing a
water phantom consisting of 3 volume elements (voxels).
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Interaction [1]—Voxel A: Triplet production also known as electronic pair pro-
duction

At interaction point [1] the incident 15 MeV-photon interacts with the electric field
of an orbital electron. The photon disappears and 1.02 MeV of its energy is used
up in the creation of an electron–positron pair. The remaining photon energy of
13.98 MeV (15 MeV − 1.02 MeV) is transferred to three charged particles released
in the triplet interaction: orbital electron that enabled the pair production process
in its Coulomb field and the electron–positron pair (i.e., electron and positron) pro-
duced by the electronic pair production interaction.

As shown in the diagram, initial kinetic energies of two of the three charged
particles of the triplet are 4 MeV and 5 MeV. This means that the third charged
particle receives the remaining available energy of 4.98 MeV, making the kinetic
energy that is transferred to charged particles equal to 13.98 MeV. Since, as evident
from the diagram, the 4 MeV and the 4.98 MeV charged particles do not annihilate
with an orbital electron in their path, we conclude that the charged particle of the
triplet with initial kinetic energy of 5 MeV must be the positron.

Interaction [2]—Voxel A: Radiation loss (bremsstrahlung photon with hν =
0.98 MeV)

Electron released in interaction [1] with kinetic energy of 4.98 MeV travels through
voxel A and loses energy mainly through collision interactions with orbital elec-
trons of the absorber. However, at interaction point [2] the electron experiences an
inelastic collision with a nucleus of the absorber and loses 0.98 MeV of energy
to a bremsstrahlung photon, which leaves voxel A as well as the water phantom.
After the radiation loss at point [2] the electron continues losing energy through
collision losses, crosses the boundary between voxels A and B with kinetic energy
EK = 1 MeV and then loses all of this energy in voxel B. Total collision loss of the
4.98 MeV electron is thus 4 MeV (4.98 MeV − 0.98 MeV); of this, collision loss
is 3 MeV in voxel A and 1 MeV in voxel B. These collision loses contribute to the
absorbed energy in a given voxel.

Interaction [3]—Voxel A: Hard electron-electron collision

The 4 MeV electron produced in interaction [1] travels through voxel A and loses the
major part of its energy in voxel A through collision loss with orbital electrons and
through a hard electron-electron collision at interaction point [3] where a δ electron
with kinetic energy of 1.5 MeV is released. The δ electron travels through voxel A
and loses all of its kinetic energy through collision losses in voxel A. The original
electron continues its path through voxel A, crosses the boundary between voxels A
and B with kinetic energy of 0.2 MeV and loses this energy through collision loss
in voxel B.
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Interaction [4]—Voxel B: In-flight annihilation of the positron

Positron receiving kinetic energy of 5 MeV at interaction point [1] travels through
voxel A and loses energy through collision loss with orbital electrons and enters
voxel B with kinetic energy of 3 MeV. Thus, it loses 2 MeV of its kinetic energy in
voxel A.

After crossing the boundary between voxels A and B the positron travels through
voxel B and undergoes collision losses until at interaction point [4] it experiences
in-flight annihilation with an orbital electron of the absorber. As shown in the dia-
gram, two photons are produced in the in-flight annihilation process: one with en-
ergy hν1 = 1 MeV and the other with energy hν2 = 2 MeV.

(1) In order to determine angles θ and φ with respect to the positron trajectory we
must calculate the kinetic energy of the positron at the interaction point [4].
We do this by invoking the conservation of total energy principle for the in-
flight annihilation process recalling that: Total energy before annihilation =
Total energy after annihilation, or

Ee+
K +me+c2 +me−c2 = hν1 + hν2. (8.136)

We thus have the following expression for kinetic energy of the positron be-
fore in-flight annihilation

Ee+
K = hν1 + hν2 − +me+c2 −me−c2

= (1 + 2 − 0.511 − 0.511)MeV + 1.98 MeV. (8.137)

(2) From the three equations for conservation of total energy and momentum one
can derive the following implicit expressions for angles φ and θ ((T7.215)
and (T7.216), respectively) containing the ratio of the two photon energies
hν1 and hν2 as well as parameters E and A

hν1

hν2
= E2 +A2 − 2EA cosφ

E2 −A2
= E2 −A2

E2 +A2 − 2EA cos θ
, (8.138)

where parameters E and A are defined as follows

E =Ee+
K + 2mec

2 and A=Ee+
K

√
1 + 2mec2

Ee+
K

. (8.139)

In (8.137) we determined the kinetic energy of the positron at the time of in-
flight annihilation as Ee+

K = 1.98 MeV and this results in E = 3 MeV and
A= 2.44 MeV for the two parameters of (8.139).
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(3) Annihilation quantum emission angles θ and φ, respectively, are determined
from (8.138) as follows

θ = arccos
E2 +A2 − (E2 −A2)hν2

hν1

2EA

= arccos
[32 + 2.442 − (32 − 2.442)× 2]

2 × 3 × 2.44

= arccos
8.862

14.64
= arccos 0.605 = 52.75◦ (8.140)

and

φ = arccos
E2 +A2 − (E2 −A2)hν1

hν2

2EA

= arccos
[32 + 2.442 − (32 − 2.442)× 0.5]

2 × 3 × 2.44

= arccos
13.431

14.64
= arccos 0.917 = 23.45◦. (8.141)

Interaction [5]—Voxel B: Photoelectric effect

The 1 MeV annihilation quantum hν1 produced at interaction point [4] propagates
through voxel B and interacts at interaction point [5] with an orbital electron through
photoelectric effect. The interaction results in photon hν1 disappearance and the or-
bital electron is emitted as photoelectron with kinetic energy that is essentially equal
to the photon energy of 1.0 MeV, since the binding energy of the orbital electron in
water is negligible in comparison to the energy of the photon. The 1 MeV electron
travels through voxel B, crosses the boundary between voxels B and C with kinetic
energy of 0.5 MeV, and finally stops in voxel C. In its track, the 1 MeV photoelec-
tron loses all of its energy through collision losses, half in voxel B and the remaining
half in voxel C.

Interaction [6]—Voxel B: Compton scattering

The 2 MeV annihilation quantum hν2 produced at interaction point [4] propagates
through voxel B and interacts at interaction point [6] with an orbital electron through
Compton scattering. To make progress through the Monte Carlo history we need
energy hν′ of the scattered photon, kinetic energy EK of the Compton recoil elec-
tron, and angle θ of the scattered photon hν′ with respect to the incident pho-
ton hν.
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(1) For interaction point [6] incident photon energy hν is given as: hν = 2.0 MeV
and parameter ε = hν/(mec

2)= 2/0.511 = 3.914.
(2) Recoil electron angle φ = 14.5◦ (see diagram).
(3) Scattered photon angle θ is calculated from (T7.67) as

tan
θ

2
= 1

1 + ε cotφ = 1

1 + 3.914
cot 14.5◦ = 0.787 or

θ = 2 × arctan 0.787 = 76.4◦.
(8.142)

(4) Scattered photon energy hν′ is determined using the standard expression for
hν′ as a function of incident photon energy hν and scattering angle θ (T7.71)

hν′ = hν

1 + ε(1 − cos θ)
= 2.0 MeV

1 + 3.914×(1 − cos 76.4◦)
= 0.5 MeV. (8.143)

(5) Kinetic energy EK of the recoil electron is the energy transferred from the
photon to charged particles (recoil electron in Compton scattering) and is de-
termined from the principle of energy conservation as energy difference be-
tween incident hν and scattered photon hν′

EK = hν − hν′ = 2.0 MeV − 0.5 MeV = 1.5 MeV. (8.144)

The recoil electron loses all of its energy of 1.5 MeV in voxel B through
collision loss with orbital electrons of absorber atoms.

Interaction [7]—Voxel C: Rayleigh scattering

The scattered photon, produced in interaction [6] with energy hν = 0.5 MeV, enters
voxel C and undergoes a Rayleigh scattering interaction with an atom at interaction
point [7]. No energy is transferred to charged particles in Rayleigh scattering and the
energy of the scattered photon hν′ is essentially equal to the energy of the incident
photon hν. The Rayleigh-scattered photon with energy 0.5 MeV escapes voxel C
and the water phantom.

(b) Energy transferred from photons to charged particles (electrons and positrons)
Etr in a given voxel of the water phantom:

Voxel A—Interaction [1]: Kinetic energy of the electron–positron pair and the orbital
electron which enabled the triplet production process Etr = 15 MeV − 1.02 MeV =
13.98 MeV.
Voxel B—Interactions [5] and [6]: Kinetic energies of the photoelectron (1 MeV)
and the Compton electron (1.5 MeV) result in Etr = 1 MeV + 1.5 MeV = 2.5 MeV.
Voxel C—No energy transferred from photons to electrons in voxel C, resulting in
Etr = 0.

(c) Net energy transferred from photons to charged particles Enet
tr in a given

voxel of the water phantom is defined as energy transferred Etr to charged particles
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less energy subsequently lost by these charged particles in radiation collisions Erad,
such as production of bremsstrahlung (for electrons and positrons) or in-flight anni-
hilation (for positrons). Thus, Enet

tr = Etr −Erad irrespective of where the radiation
loss occurs.

Voxel A—Interaction [1]: Three charged particles are released with a combined en-
ergy of Etr = 13.98 MeV.

(1) The 4.98 MeV electron loses Erad = 0.98 MeV of energy to bremsstrahlung
production at interaction point [2] resulting in net energy transfer of
(4.98 MeV − 0.98 MeV)= 4 MeV.

(2) The positron loses part of its initial kinetic energy of 5 MeV through in-flight
annihilation process in voxel B at interaction point [4]. Since the in-flight
annihilation occurs when the positron has kinetic energy of 1.98 MeV (see
discussion in (a) for interaction point [4]), we conclude that the net energy
transfer for the positron is 3.02 MeV (5 MeV − 1.98 MeV).

(3) Total net energy transfer Enet
tr in voxel A accounting for the three charged

particles released in triplet production at interaction point [1] is Enet
tr =

Etr −Erad where Etr = 13.98 MeV from (b) and Erad is energy that the elec-
tron loses to bremsstrahlung at interaction point [2] plus kinetic energy of
the positron (1.98 MeV) at interaction point [4] where the positron under-
goes in-flight annihilation. Thus, Enet

tr = 13.98 MeV − (0.98 + 1.98)MeV =
11.02 MeV.

Voxel B—Energy transferred to the photoelectron in interaction [5] as well as en-
ergy transferred to the Compton electron in interaction [6] is lost in collision loses
only, thus, Erad = 0. Therefore, the net energy transferred Enet

tr is equal to energy
transferred Etr, i.e., Enet

tr =Etr = 1 MeV + 1.5 MeV = 2.5 MeV.
Voxel C—No net energy transfer from photons to charged particles, since there is no
energy transfer from photons to charged particles in voxel C, i.e., Enet

tr =Etr = 0.

(d) Energy absorbed Eab in a given voxel of the water phantom

Voxel A—At interaction point [1] in voxel A three charged particles (2 electrons and
a positron) are released with a combined kinetic energy of 13.98 MeV.

(1) The 4 MeV triplet electron loses 3.8 MeV in voxel A through collision losses
resulting in a 3.8 MeV energy deposition in voxel A. At interaction point [3]
the electron has a hard collision with an orbital electron that is ejected as a δ
ray that deposits all of its kinetic energy of 1.5 MeV in voxel A. The δ ray
energy forms part of the 3.8 MeV energy deposited by the 4 MeV electron in
voxel A.

(2) The 5 MeV triplet positron travels through voxel A, loses kinetic energy
through collision losses, and reaches the boundary between voxels A and B
with kinetic energy 3 MeV. This means that it lost 2 MeV in voxel A and thus
contributes 2 MeV to the absorbed energy in voxel A.
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(3) The 4.98 MeV triplet electron travels through voxel A and reaches the bound-
ary between voxels A and B with a kinetic energy of 1 MeV. Of the 3.98 MeV
energy that it lost in voxel A, 0.98 MeV is through radiation collision at in-
teraction point [2] and 3 MeV is through collision losses. The contribution of
this electron to total energy absorption in voxel A is thus 3 MeV.

Total contribution to absorbed energy in voxel A from charged particles is thus equal
to

Eab = 3.8 MeV + 2 MeV + 3 MeV = 8.8 MeV.

Voxel B—Several electrons and a positron contribute to energy deposition in
voxel B.

(1) The two electrons that are produced at interaction point [1] in voxel A enter
voxel B with a combined energy of 1.2 MeV that is deposited completely in
voxel B.

(2) The positron produced at interaction point [1] enters voxel B with kinetic
energy of 3.0 MeV of which 1.02 MeV is deposited in voxel B and the
remaining 1.98 MeV is used up for production of two annihilation quanta
(hν1 = 1 MeV and hν2 = 2 MeV) in in-flight annihilation of the positron with
EK = 1.98 MeV.

(3) One of the annihilation quanta (hν1) undergoes photoelectric effect at interac-
tion point [5] in voxel B and the photoelectron is released with kinetic energy
of ∼ 1 MeV. The photoelectron loses all of its kinetic energy through collision
losses, 0.5 MeV in voxel B and 0.5 MeV in voxel C.

(4) The hν2 = 2 MeV annihilation quantum undergoes Compton effect at inter-
action point [6] in voxel B and releases a Compton electron of kinetic energy
of 1.5 MeV. The Compton electron loses all of its kinetic energy in voxel B
through collision losses.

The absorbed energy in voxel B is thus a sum of contributions from: (1) Elec-
trons released in interaction [1] (1.2 MeV); (2) Positron produced in interaction [1]
(1.02 MeV); (3) Photoelectron released in interaction [5] (0.5 MeV); and (4) Comp-
ton recoil electron released in interaction [6] (1.5 MeV). Thus, absorbed energy in
voxel B is:

Eab = 1.2 MeV + 1.02 MeV + 0.5 MeV + 1.5 MeV = 4.22 MeV.

Voxel C—The photoelectron produced in interaction [5] enters voxel C with a ki-
netic energy of 0.5 MeV and loses all of this energy through collision losses in
voxel C. Therefore, the absorbed energy in voxel C is Eab = 0.5 MeV.

A summary of (b), (c), and (d) is provided in Table 8.9 and Fig. 8.22.
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Table 8.9 Summary of energy transferred Etr, net energy transferred Enet
tr , and energy absorbed

Eab for 15 MeV photon striking a water phantom divided into voxels A, B, and C

Voxel A B C

Etr 13.98 MeV 2.5 MeV 0

Enet
tr 11.02 MeV 2.5 MeV 0

Eab 8.8 MeV 4.22 MeV 0.5 MeV

Fig. 8.22 Summary of calculations of Monte Carlo history for 15 MeV photon striking a water
phantom consisting of three voxels: A, B, and C. The interaction points marked with • are as
follows: [1] Triplet production, [2] Radiation loss (bremsstrahlung), [3] Hard electron-electron
collision, [4] In-flight annihilation, [5] Photoelectric effect, [6] Compton scattering, [7] Rayleigh
scattering



9Interaction of Neutrons with Matter

Chapter 9 consists of 13 problems covering 6 sections that deal with vari-
ous aspects of neutron interactions with matter. Neutrons, by virtue of their
neutrality, are considered indirectly ionizing radiation that exhibits a quasi
exponential penetration into the absorber and deposits energy in an absorber
through a two-step process: (1) energy transfer to heavy charged particles and
(2) energy deposition in the absorber through Coulomb interactions of these
charged particles with atoms of the absorber. As they penetrate into the ab-
sorber, neutrons may undergo elastic and inelastic scattering as well as trigger
nuclear reactions, such as neutron capture, spallation, and fission.

Two distinct categories of neutron are of direct importance in medical
physics: (1) thermal neutrons used in boron neutron capture therapy (BNCT)
and (2) fast neutrons used in external beam radiotherapy. Indirectly, thermal
neutrons also play an important role in production of radionuclide sources
for use in external beam radiotherapy, in remote afterloading brachytherapy,
and nuclear medicine imaging. A nuclear reactor and two types of thermal
neutron interaction are used for production of radioactive sources: (1) neu-
tron activation of suitable target material and (2) fission reaction induced by
thermal neutron in fissile target material.

Section 9.1 presents long questions on general aspects of neutron inter-
actions with absorber nuclei and Sect. 9.2 deals with various processes by
which neutrons interact with nuclei of the absorber, such as elastic, inelastic,
and non-elastic scattering as well as neutron capture, spallation, and fission.

Section 9.3 presents a problem on neutron kerma and Sect. 9.4 presents a
problem on the neutron kerma factor. Section 9.5 introduces two problems on
neutron dose deposition in tissue by thermal neutrons, intermediate neutrons,
and fast neutrons. The last section (Sect. 9.6) provides problems on the use
of neutrons in medicine either (1) for boron neutron capture therapy (BNCT),
(2) production of fast neutron beams for radiotherapy, or (3) use of neutron
emitters in brachytherapy.
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DOI 10.1007/978-3-642-20186-8_9,
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9.1 General Aspects of Neutron Interactions with Absorbers

9.1.Q1 (198)

Neutrons, like photons, belong to the category of indirectly ionizing radiation.
Used in science, industry, and medicine, they come in a wide spectrum of
kinetic energy En

K, ranging from 10−8 eV for ultra-cold neutrons up to few
GeV for relativistic cosmic neutrons. Neutrons transfer energy to absorbing
medium through an intermediate step in which energy is transferred from the
neutron to a charged particle which in turn transfers energy to the absorber
medium through Coulomb interactions between the liberated charged particle
and orbital electrons of the absorber. Thus, energy deposition in absorber by
a neutron beam occurs through secondary charged particles, such as protons,
α-particles, and recoiling nuclei. As they penetrate into absorbing medium,
neutrons may undergo elastic, inelastic, or non-elastic scattering or they may
trigger nuclear reactions, such as neutron capture, spallation, and fission.

Two distinct categories of neutrons are of direct importance in medical
physics:

(1) Thermal neutrons used in boron-neutron capture therapy (BNCT).
(2) Fast neutrons used in external beam radiotherapy and brachytherapy.

Indirectly, thermal neutrons play an important role in production of radionu-
clide sources that are used in external beam radiotherapy, brachytherapy, and
nuclear medicine imaging. In neutron dosimetry three regions of neutron ki-
netic energy are of importance: thermal, intermediate, and fast neutron region.

(a) Discuss the basic properties of neutrons relevant to the use of neutrons
in medicine for diagnosis (imaging) and therapy (radiotherapy) of dis-
ease.

(b) Calculate the velocity of neutrons with kinetic energy EK of 10−7 eV
(ultra-cold neutron), 10−4 eV (cold neutron), 0.025 eV (thermal neu-
tron), 1 MeV (fast neutron), 14.1 MeV (fast neutron from d-t reaction),
100 MeV (cosmic neutron) and 1 GeV (cosmic neutron).

SOLUTION:

(a) Basic properties of neutrons with emphasis on use in medicine.

(1) Neutron is a subatomic particle in the family of hadrons, composed of three
quarks and exhibiting strong interaction with other hadrons.

(2) Ernest Rutherford in 1920 postulated the existence of the neutron and William
Chadwick in 1932 discovered it at the University of Cambridge in the U.K.



9.1 General Aspects of Neutron Interactions with Absorbers 583

(3) The symbol for the neutron is n or n0. It possesses no electric charge and its
rest mass mn is slightly larger than that of the proton.

Rest mass of neutron: mn = 939.6 MeV/c2; rest mass of proton: mp =
938.3 MeV/c2.

(4) Neutron is stable when it is bound in atomic nucleus; however, a free (extra-
nuclear) neutron is unstable (radioactive) and decays through β− decay into a
proton, electron, and electronic antineutrino (n0 → p+ +e− + ν̄e) with a mean
lifetime τ ≈ 14.9 min or half-life t1/2 = τ ln 2 ≈ 10.3 min. In unstable nuclei
that harbor an excess number of neutrons, neutron can also decay through
β− decay, however, the half life of this β− decay is a characteristic of the
decaying nucleus and different from that of the free neutron.

(5) Free neutrons easily pass through atoms, because they have no electrical
charge, thereby forming highly penetrating, indirectly ionizing, radiation
beams that interact with matter only through direct collisions with nuclei of
absorber atoms. Interactions of neutrons with orbital electrons of absorber
atoms are generally not of any importance and are thus ignored.

(6) Neutron detection is more complex than detection of directly ionizing charged
particles and indirectly ionizing photons. Most common methods for detection
of neutrons rely on neutron capture (neutron absorption) by the nucleus of an
absorber atom or on elastic scattering of neutrons off nuclei of absorber.

(7) The secondary charged particles released by fast neutrons in the absorbing
medium produce a dose build-up similar to that that occurs in megavoltage
photon beams. The depth of dose maximum zmax of a clinical fast neutron
beam depends on the energy and spectrum of the beam and for a source-
surface distance of 100 cm and field size of 10×10 cm2 is of the order from
0.5 cm to 1.5 cm. Beyond zmax there is a continuous quasi-exponential fall-off
in the dose with increasing depth in water as a result of:

(i) Attenuation of the neutron beam by absorbing medium (water).
(ii) Increase in distance from the source (inverse square law).

In contrast to megavoltage x-ray beams, the field size of neutron beams has a
significant effect on depth dose characteristics because of the high probability
for neutron scattering within the neutron beam.

(8) Fast neutron beams are significantly more complex and more expensive to use
in radiotherapy than are megavoltage x-ray beams, yet, from a physics point-
of-view, they produce no better dose distributions than do megavoltage x-ray
beams. However, from a radiobiological point-of-view, fast neutrons offer a
distinct advantage over megavoltage x-ray beams because of the so-called
oxygen enhancement ratio (OER) which amounts to 3 for x rays while it is
much closer to 1 for fast neutron beams.

It turns out that the presence of oxygen in a cell acts as a radiosensitizer,
making radiation more damaging for a given delivered dose. Since tumor cells
are typically poorly oxygenated (tumor hypoxia) in comparison to normal
cells, a given dose of x rays causes more damage to well oxygenated normal
cells than to hypoxic tumor cells. Thus, in comparison to normal tissue, the
oxygen effect decreases the sensitivity of tumor tissue to megavoltage x rays
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Table 9.1 Results of calculation of neutron velocity υ against kinetic energy EK for neutrons
ranging in kinetic energy from 10−7 eV to 1 GeV. Velocities in bold face are calculated with the
relativistic equation (9.2) while velocities in standard font are calculated for comparison purposes
with the classical equation (9.1)

(1) Neutron Kinetic
energy EK

υ
c

(classical) υ
c

(relativistic) υ(m
s )

(2) Ultra-cold 10−7 eV 1.46×10−8 – 4.4

(3) Cold 10−4 eV 4.61×10−7 – 138.4

(4) Thermal 0.025 eV 7.29×10−6 – ∼ 2200

(5) Fast 1 MeV 0.04614 0.04610 ∼ 1.38×107

(6) Fast 14.1 MeV 0.1732 0.1713 ∼ 5.14×107

(7) Cosmic 100 MeV 0.4614 0.4279 ∼ 1.28×108

(8) Cosmic 1 GeV – 0.8748 ∼ 2.62×108

and decreases the tumor control probability. It is generally believed that fast
neutron irradiation overcomes this effect, because the OER of fast neutrons is
much smaller than that of megavoltage x rays.

(9) For use in radiotherapy, neutron beams are produced either with a cyclotron
or a neutron generator. In a cyclotron protons or deuterons are accelerated
to kinetic energies of 50 MeV to 80 MeV and strike a thick beryllium tar-
get to produce fast neutrons that are collimated into a clinical neutron beam.
The neutron beam produced with a beryllium target has beam penetration and
build-up characteristics similar to those of 4 MV to 10 MV megavoltage x-
ray beams. In a neutron generator deuterons (d) are accelerated to 250 keV
and strike a tritium (t) target to produce a 14.1 MeV neutron beam with depth
dose characteristics similar to those obtained for a cobalt-60 teletherapy γ -ray
beam.

(b) Velocity of a neutron with a given kinetic energy EK and rest energy mnc
2 =

939.6 MeV is calculated from the classical expression for kinetic energy (T2.5)

EK = mnυ
2

2
= mnc

2

2

(
υ

c

)2

or
υ

c
=
√

2EK

mnc2
(9.1)

for relatively slow neutrons with velocity υ < 0.01c and from the relativistic ex-
pression for EK (T2.7)

EK =mnc
2
(

1√
1 − υ2

c2

− 1

)
or

υ

c
=
√

1 − 1

(1 + EK
mnc2 )

2
(9.2)

for fast neutrons with velocity υ > 0.01c.
Results of our neutron velocity calculations are displayed in Table 9.1 and plotted

in Fig. 9.1 in the form of log υ/c against log EK which appears to follow a power
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Fig. 9.1 Normalized velocity υ/c against neutron kinetic energy EK

function of exponent 1/2 [classical expression (9.1)], except for saturation occurring
at very high (relativistic) kinetic energies where (9.2) must be used and (9.1) is no
longer applicable.

9.1.Q2 (199)

Neutrons are classified, similarly to x rays and γ rays, as indirectly ionizing
radiation that deposits energy in absorbing medium through an intermedi-
ate step involving release of secondary charged particles in the attenuating
medium. Whereas photons interact with atomic electrons and release elec-
trons and positrons in the attenuating medium, neutrons interact with nuclei
of the attenuator and release nuclear particles, such as protons, deuterons, α
particles, and heavier nuclear recoils.

(a) Define neutron fluence ϕ and neutron fluence rate (neutron flux density)
ϕ̇.

(b) Define total microscopic neutron cross section σ and total macroscopic
cross section Σ .

(c) Describe attenuation of a collimated neutron beam in attenuating
medium.

(d) Define the mean free pathΛ of neutrons and reaction rate Ṙ of neutrons.
(e) A lead attenuator (atomic numberZ = 82, mass density ρ = 11.3 g/cm3,

atomic weight A = 207.2 g/mol) of thickness z = 2 cm attenuates
a collimated neutron beam of kinetic energy En

K = 10 MeV from
neutron fluence rate ϕ̇ = 2×1012 cm−2 · s−1 to a fluence rate of
ϕ̇ = 1.43×1012 cm−2 · s−1. For this neutron beam interacting with lead
attenuator calculate:
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(1) Total macroscopic cross section Σ .
(2) Total microscopic cross section σ .
(3) Mean free path Λ.
(4) Neutron reaction rate Ṙ at a depth of 1 cm in lead attenuator.

SOLUTION:

(a) Neutron fluence ϕ and neutron fluence rate ϕ̇ are two basic physical quanti-
ties used for describing neutron beams and neutron fields. A neutron radiation field
is established by neutron sources in conjunction with an attenuating medium that
causes absorption as well as scattering of neutrons.

(1) Neutron fluence ϕ, according to the ICRU, is defined as the quotient of �N
by �a or ϕ =�N/�a, with �N the number of particles that enter a sphere
of cross sectional area �a.

(2) Neutron fluence rate or neutron flux density ϕ̇, in addition to neutron kinetic
energy EK, is a convenient parameter used for describing the presence of free
neutrons in an attenuating medium. Several closely related definitions of neu-
tron fluence rate (neutron flux) are in use:

(i) According to the ICRU, neutron fluence rate ϕ̇ is the quotient of�ϕ by
�t where �ϕ is the increment of neutron fluence in the time interval
�t ;

(ii) Fluence rate ϕ̇ is also defined as the number of neutrons passing
through a particular cross sectional area in any direction per unit time;
and

(iii) Fluence rate ϕ̇ is the product of neutron velocity υ and neutron density
(number of free neutrons per unit volume of the attenuator) n given as
ϕ̇ = nυ .

Typical unit of neutron fluence ϕ is cm−2, expressing number of neutrons per cm2.
Typical unit of neutron fluence rate or flux density ϕ̇ is cm−2 · s−1, expressing num-
ber of neutrons per cm2 per second.

(b) Neutrons being uncharged particles interact with nuclei of attenuating media
through direct collisions rather than via Coulomb interactions. Many modes of in-
teraction between incident neutron and nuclei of attenuating medium are available
to a neutron propagating through an attenuating medium.

(1) Total microscopic cross sections. The probability of a given type of interaction
i is expressed in terms of a microscopic cross section σi for the given target
nucleus. For a given target nucleus and a given neutron kinetic energy En

K a
set of partial microscopic cross sections σi is usually available for the various
possible interaction modes i. At a given En

K and target nucleus, the sum
∑
i σi

is referred to as the total microscopic cross section σ . Units of microscopic
cross sections are cm2/atom, m2/atom, and barns per atom (b/atom).
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(2) Total macroscopic cross sectionΣ for a given attenuating medium is obtained
by multiplying the total microscopic cross section σ (sum of all relevant par-
tial microscopic cross sections) with the atomic density n�

Σ = n�σ (
in units of cm−1 or m−1

)
, (9.3)

with the atomic density n� defined as the number of atoms or nuclei Na per
volume V of the attenuator

n� = Na

V
= ρNa

m
= ρNA

A

(
in units of cm−3 or m−3

)
, (9.4)

where NA is the Avogadro number (6.022×1023 mol−1), ρ is mass density of
the attenuator, and A is the atomic weight or atomic mass number in g/mol.

Like the microscopic cross section σ , the macroscopic cross section Σ de-
pends on neutron kinetic energy En

K and physical properties of the attenuating
medium. Relationship (9.4) is similar to the relationship in photon interac-
tions with matter where the linear attenuation coefficient μ for a given photon
interaction is a product of the atomic attenuation coefficient (also known as
atomic cross section) aμ and the atomic density n� or μ= n�aμ.

(c) Just as the linear attenuation coefficient μ is used for description of photon
beam attenuation in attenuating medium, so is the macroscopic cross section Σ
used for describing attenuation of collimated neutron beams in attenuating medium.
The decrease in beam intensity dI is proportional to the neutron beam intensity I ,
microscopic cross section σ of the attenuator, atomic density n� of attenuator, and
thickness dx of the attenuating medium

dI = −Iσn� dx = −IΣ dx or I = I0e−Σx, (9.5)

where Σ is the macroscopic cross section of the attenuating medium for neutrons
with kinetic energy En

K.

(d) Macroscopic quantities: cross section Σ , mean free path Λ, and reaction rate
Ṙ of neutrons traversing an attenuating medium depend upon atomic density n� of
the attenuating medium and kinetic energy En

K of the incident neutron.

(1) Similarly to mean free path of photons, the mean free path Λ of neutrons is
defined as that thickness Λ of attenuator that attenuates the neutron intensity
I from original intensity I0 to I0/e or, expressed mathematically, we can say

I (Λ)= I0

e
= 0.368I0 = I0e−ΣΛ or e−1 = e−ΣΛ or Λ= 1

Σ
. (9.6)

Mean free path Λ also is a measure of the mean distance that a neutron of
given kinetic energy travels through a given attenuating medium before inter-
acting with a nucleus. This definition is similar to the definition of mean free
path x̄ of photons in attenuating medium, where x̄ = 1/μ with μ the linear
attenuation coefficient.
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(2) Reaction rate Ṙ between neutrons and nuclei of attenuator is defined as the
product of the macroscopic cross section Σ and neutron fluence rate ϕ̇ or

Ṙ =Σϕ̇ = (
n�Σ

)
(nυ), (9.7)

indicating that the reaction rate Ṙ is linearly proportional to the atomic den-
sity n�, microscopic cross section σ , neutron density n, and velocity of neu-
trons υ . From (9.7) we note that the unit of reaction rate Ṙ is cm−3 · s−1.

(e) Attenuation of a collimated neutron beam in an attenuator is expressed as

I = I0e−Σx, (9.8)

where I0 and I are the incident fluence rate (2×1012 cm−2 · s−1) and transmitted
fluence rate (1.43×1012 cm−2 · s−1), respectively, and Σ is the macroscopic cross
section. Based on (9.8) and data provided on lead we now calculate:

(1) Total macroscopic cross section Σ .
(2) Total microscopic cross section σ .
(3) Mean free path Λ.
(4) Neutron reaction rate Ṙ at a depth of 1 cm in lead attenuator.

(1) Solving (9.8) for Σ we get the following result for the macroscopic cross
section Σ

Σ = 1

x
ln
I0

I
= 1

(2 cm)
ln

2×1022

1.43×1022
= 0.168 cm−1. (9.9)

(2) Next we calculate the microscopic cross section σ using (9.4) as follows

σ = Σ

n�
= AΣ

ρNA
= (207.2 g · mol−1)×(0.168 cm−1)

(11.3 g/cm3)×(6.022×1023 mol−1)

= 5.12×10−24 cm−2/atom = 5.12 b/atom. (9.10)

(3) Mean free path Λ is calculated using (9.6) as follows

Λ= 1

Σ
= 1

0.168 cm−1
= 5.95 cm. (9.11)

This means that a 10 MeV neutron travels on average about 6 cm in lead before
it experiences one of the possible nuclear interactions with a lead nucleus of
the attenuator.

(4) Reaction rate Ṙ of a neutron beam is, according to (9.7), expressed as
Ṙ =Σϕ̇, where Σ is the total macroscopic cross section determined in (9.9)
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as Σ = 0.168 cm−1 and ϕ̇ is the fluence rate at depth of x = 1 cm in lead
determined from (9.5) as follows

I (x = 1 cm) = I0e−Σx = (
2×1012 cm−2 · s−1)e−(0.168 cm−1)×(1 cm)

= 1.69×1012 cm−2 · s−1. (9.12)

Reaction rate Ṙ at a depth of x = 1 cm in lead is now calculated as

Ṙ =Σϕ̇ = (
0.168 cm−1)×(

1.69×1012 cm−2 · s−1)= 2.84×1012 cm−3 · s−1.

(9.13)

9.2 Neutron Interactions with Nuclei of the Absorber

9.2.Q1 (200)

Neutrons by virtue of being neutral particles can approach a target nucleus
without any interference from a Coulomb repulsive or attractive force, since
they, unlike protons and electrons, are not affected by nuclear charge. Once in
close proximity to the target nucleus, neutrons can interact with it through the
short-range attractive nuclear forces and trigger various nuclear reactions.

(a) List and briefly describe at least 5 principal processes by which neutrons
interact with nuclei of an absorber.

(b) Provide a list and a brief description of the best-known neutron sources
of use in medicine and of importance in medical physics.

SOLUTION:

(a) Six principal processes by which neutrons interact with nuclei of the absorber
are:

(1) Elastic scattering.
(2) Inelastic scattering.
(3) Non-elastic scattering.
(4) Neutron capture.
(5) Spallation.
(6) Fission.

A brief description of each of these neutron interactions is as follows:

(1) Elastic scattering of neutron on absorber nucleus is the most important process
for slowing down neutrons. The neutron collides with a nucleus of mass M that
recoils with an angle φ with respect to the neutron initial direction of motion and
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the neutron is scattered by a scattering angle θ . Total energy and momentum are
conserved in the elastic scattering interaction which means that kinetic energy lost
by the neutron is equal to recoil energy of the target nucleus. The lighter is the target
nucleus, the larger is the energy transfer from the neutron to the nucleus in an elastic
scattering process; however, the target nucleus remains in the ground state.

(2) Inelastic scattering of neutron with absorber nucleus is similar to elastic scat-
tering except that some of neutron’s kinetic energy is transferred to the nucleus not
only to manifest itself as nuclear recoil kinetic energy but also to raise the nucleus
from the ground state to an excited state. The nucleus de-excites by emitting high-
energy γ rays and the neutron is scattered and moves on with kinetic energy that
is lower than its incident energy. For inelastic scattering to occur, kinetic energy of
the incident neutron must exceed the excitation energy of the nucleus. In contrast
to elastic scattering, inelastic scattering is a threshold process and, when it occurs,
neutron loses more energy in inelastic than in an elastic collision with absorber nu-
cleus in order to account for the energy of the emitted γ ray. Therefore, only fast
neutrons undergo inelastic scattering.

(3) Non-elastic scattering is in certain respect similar to inelastic scattering ex-
cept that the secondary particle that is emitted is not a neutron. On the other hand,
non-elastic scattering can also be considered neutron capture, except that the term
neutron capture usually applies to capture of thermal neutron while non-elastic scat-
ter typically deals with fast neutrons. An example of non-elastic scattering is

12
6C(n, α)94Be. (9.14)

(4) Neutron capture is a term used to describe a nuclear reaction in which a ther-
mal neutron collides with a target nucleus leading to neutron absorption in the target
nucleus, formation of a new nuclide of different atomic mass number and/or atomic
number from those of the target nucleus, and emission of a proton [(n,p) reaction:
neutron capture with particle emission] or gamma ray [(n, γ ) reaction: neutron cap-
ture with emission of γ radiation] in the process. Neutron capture, even after an
immediate emission of a particle or γ ray, often results in an unstable radionuclide
which decays with its own half-life that can range from a fraction of a second to
many years depending on the nature of the neutron capture product. The majority of
artificial radionuclides produced during the past decades have been discovered by
means of thermal neutron capture in stable samples placed into nuclear fission re-
actors. When neutron capture is used for production of radionuclides or for analysis
of trace elements in material samples, it is usually referred to as neutron activation
instead of neutron capture.

(5) Spallation is defined as fragmentation of a target into many smaller compo-
nents as a result of impact or stress. Consequently, nuclear spallation is defined as
disintegration of a target nucleus into many small residual components such as α
particles and nucleons (protons and neutrons) upon bombardment with a suitable
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projectile such as light or heavy ion beams or neutrons. Nuclear spallation can also
occur naturally in earth’s atmosphere as a result of exposure of nuclides to energetic
cosmic rays such as protons.

An example of spallation is as follows

16
8O + n → 3α + 2p + 3n. (9.15)

Most of the energy released in the spallation process is carried away by the heavier
fragments that deposit their energy in the absorber locally. On the other hand, neu-
trons and de-excitation γ rays produced in spallation carry their energy to a remote
location. Spallation can be used for production of radionuclides and for generation
of intense neutron beams in spallation neutron generators.

(6) Fission is a particular type of neutron interaction produced by bombardment of
certain very high atomic number nuclei (Z ≥ 92) by thermal or fast neutrons. The
target nucleus fragments into two daughter nuclei of lighter mass and the fission
process is accompanied with production of several fast neutrons. Nuclei that are
capable of undergoing fission are called fissionable nuclei in general; nuclei that
undergo fission with thermal neutrons are called fissile nuclei. Fission fragments
combined with the nuclei that are subsequently formed through radioactive decay
of fission fragments are called fission products.

(b) Neutron source is defined as a device that emits mono-energetic neutrons or a
spectrum of neutrons. A wide variety of neutron sources are available ranging from
small, encapsulated sources through particle accelerators and neutron generators to
nuclear fission reactors.

(1) Nuclear fission reactor is the most abundant source of neutrons producing
neutrons with an energy spectrum in the range from a few keV to over 10 MeV and
average neutron energy of 2 MeV. Neutrons produced in research nuclear reactors
are used for neutron scattering experiments, non-destructive testing, production of
radionuclides for use in science, industry and medicine, and on a limited scale have
been and still are also used in boron neutron capture therapy.

(2) Particle accelerators generate neutron beams by means of nuclear reactions
with accelerated projectiles (protons or deuterons) striking a suitable target (typi-
cally of low atomic number) resulting in a product nucleus and a mono-energetic
neutron beam. Best-known nuclear reactions for neutron production with neutron
generators are exothermic reactions 3

1H(d,n)42He with a Q value of 17.6 MeV and
2
1H(d,n)32He with a Q value of 3.3 MeV. Cyclotron-produced fast neutrons rely on
acceleration of protons to about 50 MeV and directing them onto a beryllium target
in which fast neutrons are produced for use in radiotherapy. Most intense pulsed
neutron beams for industrial research are produced by spallation neutron sources
that are accelerator based.
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(3) Radioactive neutron sources are produced by means of mixing an α emitter
(such as radium-226 or americium-241) with a light metal (such as beryllium or
boron) in powder form and encapsulating the mixture to make a neutron source
generating neutrons through (α,n) reactions. The source intensity is governed by the
half-life of the α emitter and the energy spectrum of emitted neutrons is continuous
with maximum energy equal to the sum of the reaction Q value and kinetic energy
of the α particle striking the nucleus.

(4) Photoneutron sources make use of photonuclear (γ,n) reactions and use mix-
tures of a mono-energetic γ emitter with beryllium metal. Photonuclear sources with
mono-energetic γ emitters produce mono-energetic neutrons in contrast to (α,n)
neutron sources that produce a spectrum of neutrons because of the random energy
degradation of the α particles before they interact with the nucleus. The intensity of
the photonuclear sources is governed by the half-life of the γ emitter component of
the neutron source.

(5) Spontaneous fission neutron sources contain encapsulated high atomic num-
ber elements that undergo spontaneous fission and emit neutrons in the process.
The best-known example of an intense spontaneous neutron fission source is
californium-252 that was found useful in a wide range of specialized areas of sci-
ence, industry, and medicine, such as the study of fission, neutron activation analy-
sis, neutron radiography, well logging, nuclear reactor start up, and brachytherapy.

9.2.Q2 (201)

Elastic scattering of neutrons interacting with atomic nuclei of absorber is the
most probable interaction of neutrons with absorbing medium for neutrons
with kinetic energy EK ≤ 2 MeV. The other possible interactions are inelastic
scattering, neutron capture, spallation, and fission. In the energy range below
10 MeV the elastic scattering of neutrons can be treated classically, as shown
schematically in Fig. 9.2 for two-particle elastic collision between projectile
m1 (neutron) moving with velocity υ1 and a stationary target m2 (nucleus of
absorber), with θ the scattering angle of the projectile, φ the recoil angle of
the target, and b the so-called impact parameter. After collision projectile m1
continues with velocity u1 and the target recoils with velocity u2.

(a) Use the classical principles of energy and momentum conservation to
derive an expression for energy transfer �EK from the projectile m1 to
the stationary target m2 in laboratory coordinate system.

(b) Using the general expression for �EK derived in (a), express �EK
for the specific example of neutron elastic scattering on a nucleus of the
absorbing medium. Also state the energy transfer fraction ftr, maximum
energy transfer fraction (ftr)max, and mean energy transfer fraction f̄tr
for elastic scattering of neutrons on target nuclei of atomic mass A.
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(c) Using the expression derived in (b) for kinetic energy transfer �EK
from neutron to target nucleus in elastic scattering, determine mean en-
ergy �EK transferred from neutron to target nucleus in elastic scatter-
ing.

(d) Determine an expression for mean energy En
K that a neutron carries

from an elastic scattering event with target nucleus of atomic weight A.
Calculate post-elastic scattering neutron kinetic energy as a fraction of
incident neutron energy (En

K)0 for the following target nuclei: hydrogen
(A= 1), cadmium (A= 112), and uranium (A= 238).

Fig. 9.2 Schematic diagram of an elastic collision between a projectile with mass m1 and
velocity υ1 striking a stationary target m2. Projectile is scattered with a scattering angle
θ , target recoils with recoil angle φ, and the impact parameter is b. After the collision the
velocity of the projectile is u1 and the velocity of the recoiling target is u2

SOLUTION:

(a) The kinetic energy transfer �EK from projectile m1 to the target m2 is deter-
mined classically in laboratory coordinate system using the conservation of energy
and momentum laws as follows (see Fig. 9.2):

(1) Conservation of kinetic energy:

(EK)0 + 0 = 1

2
m1υ1 + 0 = 1

2
m1u1 + 1

2
m2u2, (9.16)

where (EK)0 is the kinetic energy of the projectile (incident particle) m1.
(2) Conservation of momentum along abscissa (x) axis (note: the incident particle

is moving along the abscissa axis in the positive direction):

m1υ1 =m1u1 cos θ +m2u2 cosφ. (9.17)
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(3) Conservation of momentum along ordinate (y) axis:

0 =m1u1 sin θ −m2u2 sinφ. (9.18)

Equations (9.17) and (9.18) can, respectively, be written as follows

(m1υ1 −m2u2 cosφ)2 = (m1u1 cos θ)2 (9.19)

and

(m1u1 sin θ)2 ≡m2
1u

2
1 −m2

1u
2
1 cos2 θ = (m2u2 sinφ)2. (9.20)

Inserting (9.19) into (9.20) gives the following expression

m2
2u

2
2 =m2

1u
2
1 −m2

1υ
2
1 + 2m1υ1m2u2 cosφ, (9.21)

which, after inserting (9.16) multiplied by 2m1, reads

m2
2u

2
2 = 2m1υ1m2u2 cosφ −m1m2u

2
2 (9.22)

or

2m1υ1 cosφ = (m1 +m2)u1. (9.23)

Since �EK = 1
2m2u

2
2 [i.e., energy transfer �EK from the projectile (incident parti-

cle) m1 with kinetic energy (EK)0 to the target of mass m2 is equal to recoil energy
of the target 1

2m2u
2
2], we get the following general expression for energy transfer

�EK

�EK = 4m1m2

(m1 +m2)2
(EK)0 cos2 φ, (9.24)

showing that the energy �EK transferred from the projectile to the recoiling target
is governed by the recoil angle φ. With regard to recoil angle φ there are two special
angles to consider:

(1) In an elastic, head-on collision, the recoil angle φ of the target is zero and
�EK attains its maximum value (�EK)max for given projectile mass m1, tar-
get mass m2, and kinetic energy (EK)0 of the projectile expressed as a conse-
quence of cos 0◦ = 1 as

(�EK)max = 4m1m2

(m1 +m2)2
(EK)0 cos2 0◦ = 4m1m2

(m1 +m2)2
(EK)0. (9.25)

(2) In grazing angle interaction between projectile and target, the recoil angle φ of
the target is 90°, resulting in no energy transfer (�EK = 0), as a consequence
of cos 90◦ = 0.

(3) All other recoil angles are between 0° and 90° and the energy transfer from
incident particle (neutron) to recoiling target (nucleus) is between (�EK)max
and 0.
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(b) For the specific case of neutron scattering on an absorber nucleus we simplify
the general classical expression (9.24) making the following changes:

(1) Projectilem1 is the incident neutron with massmn and incident kinetic energy
(En

K)0.
(2) Target is the nucleus of the attenuating medium with mass consisting of

A nucleons (atomic mass number), i.e., m2 ≈ Amn where we assume that
proton mass mp and neutron mass mn are approximately equal (mp =
938.3 MeV/c2 ≈mn = 939.6 MeV/c2).

With A the atomic weight of the target nucleus we now get the following simple
expression for (9.24)

�EK = 4mn[Zmp + (A−Z)mn]
{mn + [Zmp + (A−Z)mn]}2

(
En

K

)
0 cos2 φ ≈ 4A

(1 +A)2
(
En

K

)
0 cos2 φ,

(9.26)
or we can state that the energy transfer fraction ftr =�EK/(E

n
K)0 that is, the frac-

tion of kinetic energy of the incident neutron transferred to the stationary target,
is

ftr = �EK

(En
K)0

= 4A

(1 +A)2 cos2 φ. (9.27)

Like in the general case described by (9.24), we again have two special angles:
φ = 0 and φ = 90◦. For direct, head-on collision where the nucleus recoils with
φ = 0 the energy transfer �EK and energy transfer fraction ftr attain its maximum
possible value, respectively, since cos 0◦ = 1 in (9.26) and (9.27)

(�EK)max =�EK|φ=0 = 4A

(1 +A)2 (EK)0 (9.28)

and

(ftr)max = ftr|φ=0 = (�EK)max

(En
K)0

= 4A

(1 +A)2 . (9.29)

Note that for a direct hit (φ = 0), the maximum energy transfer fraction (ftr)max that
is transferred from the incident neutron to recoil nucleus has the following proper-
ties:

(1) Depends only on the atomic mass number A (atomic weight) of the target
nucleus.

(2) Is equal to 1 when the target nucleus is the hydrogen nucleus (proton) with
(A= 1).

(3) Decreases from (ftr)max = 1 as the target mass increases from A= 1.

For grazing incidence where the nucleus recoils with φ = 90◦ the energy transfer
fraction ftr attains its minimum value of ftr = 0, as a result of cos 0◦ = 0 in (9.27)

(ftr)min = �EK|φ=0

(En
K)0

= 0 or �EK|φ=90◦ = 0. (9.30)
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Fig. 9.3 Maximum and mean energy transfer fractions (ftr)max and f̄tr for elastic collision of
neutrons with moderator nuclei of atomic weight A

(c) Mean kinetic energy transfer�EK from neutron to target nucleus is calculated
by averaging (9.26) over the recoil angle φ of the target nucleus as follows

�EK = 4A

(1 +A)2
(
En

K

)
0cos2 φ, (9.31)

with cos2 φ determined as

cos2 φ =
∫ π/2

0 cos2 φ dφ∫ π/2
0 dφ

= 1

π

∫ π/2

0

1 + cos(2φ)

2
d(2φ)= 1

π

[
φ+ sin(2φ)

2

] π
2

0
= 1

2
.

(9.32)
Mean energy transfer �EK from neutron to target nucleus is thus given as follows

�EK = 4A

(1 +A)2
(
En

K

)
0cos2 φ = 2A

(1 +A)2
(
En

K

)
0 (9.33)

and similarly for the mean energy transfer fraction f̄tr

f̄tr = �EK

(En
K)0

= 2A

(1 +A)2 . (9.34)

Equations (9.29) and (9.32) show that to moderate neutrons (that is to slow them
down) with the fewest number of elastic collisions, target nuclei with as low as pos-
sible atomic weight A should be used as absorber medium. Thus, the most efficient
nucleus for this purpose is hydrogen with A = 1 for which (�EK)max = (EK)0,
�EK = 1

2 (EK)0, and f̄tr = 1
2 as seen by inserting A = 1 into (9.28), (9.29), and

(9.32), respectively.
In Fig. 9.3 we plot, against atomic mass number A, the maximum energy transfer

fraction (ftr)max given in (9.29) and the mean energy transfer fraction f̄tr given
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in (9.32) and show that the two energy transfer fractions decline rapidly roughly
as 1/A with increasing A from their high values of 1 and 0.5, respectively, for
hydrogen and amount to only 0.017 and 0.0085, respectively, for uranium-238, as
also indicated in Fig. 9.3. Several other nuclides are also identified in the graph.

(d) Mean kinetic energy En
K of post-elastic collision neutron is calculated as mean

energy transfer �EK from neutron to target nucleus subtracted from incident neu-
tron energy (En

K)0

En
K = (

En
K

)
0 −�EK = (

En
K

)
0

[
1 − 2A

(1 +A)2
]

= (
En

K

)
0

1 +A2

(1 +A)2 . (9.35)

Fractions of incident energy (En
K)0 that a neutron retains after elastic collision

with a given target nucleus are calculated from (9.35) as follows: En
K/(E

n
K)0 =

(1 + A2)/(1 + A)2En
K/(E

n
K)0 = 0.5 for H (A = 1); 0.858 for C (A = 12); 0.982

for Cd (A= 112); and 0.992 for U (A= 238).

9.2.Q3 (202)

Moderation (slowing down) of neutrons in nuclear reactors is very important
for sustaining fission reaction. Neutrons generated in a typical fission reaction
have kinetic energy (En

K)0 of about 2 MeV, while thermal neutrons of kinetic
energy (En

K)T ≈ 0.025 eV are required for efficient fission of uranium-235
(highest fission capture cross section) and for sustaining a fission chain reac-
tion. A moderator is used for reduction of kinetic energy (thermalization) of
neutrons generated in fission reactions and this is achieved through multiple,
mainly elastic, scattering of neutrons whereby some of the neutron kinetic
energy is transferred to the moderator in each scattering event. The mean en-
ergy�EK transferred from neutron to target nucleus of the moderator in each
scattering interaction depends on incident neutron energy (En

K)0 as well as on
the atomic mass number A of the target nucleus and is given by

�EK = (
En

K

)
0

2A

(1 +A)2 . (9.36)

(a) Derive a recurrence equation to describe neutron kinetic energy (En
K)m

after an incident neutron with initial kinetic energy (En
K)0 undergoes a

sequence of m elastic scattering collisions with nuclei of atomic mass
number A.

(b) Use the recurrence equation derived in (a) to determine the required
number of elastic scattering interactions to moderate neutrons with
(En

K)0 = 2 MeV down to thermal energy (En
K)m = 0.025 MeV in hy-

drogen, carbon, cadmium, lead, and uranium.
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SOLUTION:

(a) The simplest manner in which one can derive a recurrence equation to recur-
sively define a sequence of events is to write the first few terms of the sequence and
from a comparison of the terms deduce the recurrence equation. Moderation (slow-
ing down) of neutrons by elastic scattering is a good example of a sequence that
can be described by a recurrence equation and we derive the general equation by
laying out the first few terms of the neutron slowing down process through elastic
scattering.

For each elastic scattering event the mean energy �EK transferred from the in-
cident neutron of kinetic energy (En

K)inc to the moderator is derived in (9.35) and
given in (9.36). Consequently, we can write the kinetic energy of the neutron after
each elastic scattering event as the difference between (En

K)inc and �EK as fol-
lows

(
En

K

)
after = (

En
K

)
inc −�EK = (

En
K

)
inc

[
1 − 2A

(1 +A)2
]

= (
En

K

)
inc

[
1 +A2

(1 +A)2
]
.

(9.37)
The first few elastic scattering events in the slowing down of a neutron in a sequence
of elastic scattering events are now expressed as follows:

(1) We start with an incident neutron with kinetic energy (En
K)0 striking the mod-

erator of atomic weight A. As suggested in (9.37), the kinetic energy (En
K)1

of the neutron after the first elastic scattering interaction is given as

(
En

K

)
1 = (

En
K

)
0

[
1 +A2

(1 +A)2
]
. (9.38)

(2) Incident kinetic energy for the second scattering event is now (En
K)1 so that,

according to (9.37) in conjunction with (9.38), we write the neutron kinetic
energy (En

K)2 after the second scattering event as

(
En

K

)
2 = (

En
K

)
1

[
1 +A2

(1 +A)2
]

= (
En

K

)
0

[
1 +A2

(1 +A)2
]2

. (9.39)

(3) The third scattering event starts with neutron of kinetic energy (En
K)2 and the

neutron kinetic energy (En
K)3 after the third scattering event with the help

of (9.37) and (9.39) is

(
En

K

)
3 = (

En
K

)
2

[
1 +A2

(1 +A)2
]

= (
En

K

)
0

[
1 +A2

(1 +A)2
]3

. (9.40)

(4) The recurrence equation is now becoming obvious: after m elastic scatter-
ing interactions (with m an integer), neutron energy (En

K)m can be written as
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follows

(
En

K

)
m

= (
En

K

)
0

[
1 +A2

(1 +A)2
]m

(9.41)

or

(En
K)0

(En
K)m

=
[
(1 +A)2
1 +A2

]m
=
[

1 + 2A

1 +A2

]m
, (9.42)

where (En
K)0 is the kinetic energy of the incident neutron entering modera-

tor A and starting the elastic scattering slowing down sequence.

(b) The process of slowing down energetic neutrons to thermal energy of
0.025 eV with elastic scattering in a moderator medium is referred to as ther-
malization of neutrons. The mean number m of elastic scattering interactions
is easily determined by solving the recurrence equation (9.42) for m as fol-
lows

m=
ln
(En

K)0
(En

K)T

ln[1 + 2A
1+A2 ] , (9.43)

where

(En
K)T is the final kinetic energy of the neutron after thermalization through m

scattering events.
(En

K)0 is the initial kinetic energy of the neutron when it strikes the moderator.
A is the atomic mass number (atomic weight) of the moderator.

The number m of elastic scattering events for thermalization of (En
K)0 = 2 MeV

neutrons in hydrogen (A = 1), carbon (A = 12), cadmium (A = 112), lead (A =
207), and uranium (A= 238), respectively, is determined as follows

mH = ln[(2×106)/0.025]
ln[1 + (2×1)/(1 + 12)] ≈ 27, (9.44)

mC = ln[(2×106)/0.025]
ln[1 + (2×12)/(1 + 122)] ≈ 119, (9.45)

mCd = ln[(2×106)/0.025]
ln[1 + (2×112)/(1 + 1122)] ≈ 1029, (9.46)

mPb = ln[(2×106)/0.025]
ln[1 + (2×207)/(1 + 2072)] ≈ 1893, (9.47)

mU = ln[(2×106)/0.025]
ln[1 + (2×238)/(1 + 2382)] ≈ 2175. (9.48)

In Fig. 9.4 we plot the mean number of elastic collisions m given by (9.43)
against atomic weight A for three kinetic energies (EK)0 of incident neutrons:
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Fig. 9.4 Mean number of elastic collisions m against atomic weight A for three kinetic energies
of incident neutrons: 0.1 MeV, 2 MeV, and 10 MeV

100 keV, 2 MeV, and 10 MeV. The data points on the (En
K)0 = 2 MeV line are

data that were calculated for various target materials in (9.44) through (9.48).
For a given incident neutron energy (En

K)0 the plot of m against A is very close
to a linear function even though (9.43) appears to be a complicated function. How-
ever, it turns out that ln[1 + 2A/(1 + A2)] can easily be expanded into a series as
follows

ln(1 + x)≈ x − 1

2
x2 + 1

3
x3 − 1

4
x4 + · · · for −1< x < 1. (9.49)

By setting x = 2A/(1 +A2) and using only the first two terms of the series (9.49)
we obtain the following simplification for ln[1 + 2A/(1 +A2)] of (9.43)

ln

[
1 + 2A

1 +A2

]
≈ 2A

1 +A2

[
1 − A

1 +A2

]
≈

2A
1+A2

1 + A

1+A2

= 2A

1 +A+A2
. (9.50)

Inserting (9.50) into (9.43) we get the following approximation for the mean number
of elastic scattering events required to moderate a neutron from incident kinetic en-
ergy (En

K)0 of a few MeV down to thermal energy (En
K)T which typically amounts

to 0.025 eV

m=
ln
(En

K)0
(En

K)T

ln[1 + 2A
1+A2 ] ≈ 1 +A+A2

2A
ln
(En

K)0

(En
K)T

. (9.51)
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9.3 Neutron Kerma

9.3.Q1 (203)

Neutron interactions with absorber are classified into two main groups (scat-
tering and absorption) that in turn are split into several components. Each
component is characterized by an interaction probability commonly referred
to as cross section. Kerma and dose, of importance in radiation dosimetry,
depend on neutron fluence and interaction cross section that in turn depends
on neutron energy and type of interaction between the neutron and nuclei of
attenuating medium.

(a) Classify neutron interactions with attenuating medium. For each inter-
action define the microscopic cross section σ and briefly discuss its
dependence on neutron velocity υ and kinetic energy EK.

(b) Define kerma in general for photons and neutrons and describe how
kerma is calculated for neutrons.

SOLUTION:

(a) Neutron interactions with nuclei of an attenuator are summarized in Table 9.2.
The interactions fall into two main categories: neutron scattering and neutron ab-
sorption.

Neutron scattering is further subdivided into two categories: (1) elastic scattering
and (2) inelastic scattering. In both types of scattering a portion of neutron’s kinetic
energy is transferred to the recoiling nucleus of the attenuator.

(1) In elastic scattering the kinetic energy of the recoiling nucleus is equal to the
kinetic energy that the neutron loses in the elastic scattering interaction, i.e.,
kinetic energy is conserved in the interaction.

(2) In inelastic scattering, on the other hand, in addition to transferring energy to
kinetic energy of the recoil nucleus, some of the energy that the neutron loses
in the interaction is used to excite the recoil nucleus into an available nuclear
exciting state. Consequently, kinetic energy is not conserved in the inelastic
interaction even though the total energy is. Since energy to excite a given
nucleus is discrete, inelastic scattering is an interaction process characterized
by threshold energy.

(3) An additional category of scattering termed non-elastic scattering is often
added to the elastic and inelastic scattering categories. It refers to energetic
neutron interaction with attenuator nucleus in which the energetic neutron is
absorbed and a charged particle rather than a neutron is emitted. This type
of interaction could also be categorized as neutron capture, however, the term
“neutron capture” is usually reserved for absorption of thermal neutrons rather
than energetic neutrons.
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Table 9.2 Classification of neutron interactions with nucleus of attenuator

Neutron absorption is subdivided into five diverse categories that all have one
common feature: penetration of the neutron into the attenuator nucleus, neutron dis-
appearance from the neutron beam, emission of various particles, and transforma-
tion of the attenuator nucleus into a new, usually radioactive, nuclide. Often neutron
absorption is referred to as neutron capture and the term implies absorption of a
thermal neutron.

The five categories of neutron absorption are:

(1) Neutron activation (n, γ ) nuclear reaction also referred to as thermal neutron
capture. This reaction is most commonly triggered with thermal neutrons in a
nuclear reactor and produces a radioactive isotope of target nucleus.

(2) Neutron capture accompanied by release of nuclear charged particles, such as
protons in (n,p) reaction, deuterons in (n,d) reaction, and α particles in (n, α)
reaction. This reaction plays an important role in the calculation and measure-
ment of kerma and absorbed dose in radiotherapy and radiation dosimetry.
Neutron capture accompanied by emission of a γ ray rather than charged par-
ticle is also very common.

(3) Neutron absorption that releases more than one neutron. Emission of only
one neutron is indistinguishable from a scattering event, so it falls under the
scattering category. However, emission of more than one neutron multiplies
the number of neutrons in the beam and affects the neutron fluence, so it is
accounted for in this category.

(4) Spallation neutron reaction. At very high neutron energy the penetration of
the nucleus by a neutron can add a sufficient amount of energy to the nucleus
to cause nuclear fragmentation into many small residual components.

(5) Fission. Certain high atomic number Z target nuclei when bombarded with
thermal or fast neutrons can split into two nuclei of smaller Z accompanied
by release of several energetic neutrons that can be used for sustaining a fission
chain reaction.
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Nuclei of attenuator atoms are associated with cross sections that are proportional
to the probability of specific interaction between incident neutron and nucleus of
the attenuator and are measured in units of cm2/atom, m2/atom, or, most often in
barns/atom (b/atom) where 1 b = 10−24 cm2. A specific microscopic cross section
σi can be associated with each one of the various neutron interactions with the nuclei
of the attenuating medium, as indicated in Table 9.2.

Total microscopic cross section σ or reaction probability is given as the sum of
partial cross sections σi applicable for the individual interactions. Often, a partic-
ular calculation of a given physical problem requires the application of a specific
microscopic cross section σi only. Since the individual cross sections σi depend
on neutron kinetic energy EK and, consequently, on neutron velocity υ as well as
on composition of the target nucleus, there are large variations in total microscopic
cross section σ from one target nucleus to another. At low EK the elastic cross sec-
tion σn,n is nearly constant with increasing kinetic energy EK, whereas the inelastic
cross section σn,n′ and all capture cross sections decrease with increasing EK and
are proportional to 1/υ , where υ is the neutron velocity.

Values of partial cross sections σi are tabulated and usually given in units of
cm2/atom; however, cross sections are usually combined first into one of the two
major microscopic cross sections: scattering cross section σs (where σs = σn,n +
σn,n′ ) and absorption cross section σa (where σa = σn,γ +σn,xn′ +σn,cp +σn,s +σn,f)
for a given target nucleus and are then added to form the total microscopic cross
section σ = σs + σa under the understanding that not all specific cross sections
listed in Table 9.2 will be relevant for a given attenuating material at a given neutron
energy.

(d) Kerma, an acronym for kinetic energy released in matter by indirectly ionizing
radiation, is used in radiation dosimetry of photon and neutron beams. It is defined
as energy that is transferred from neutral particles (photons or neutrons) to charged
particles (CPs) per unit mass at a point-of-interest in the absorbing medium. In the
case of photons the CPs released are electrons and positrons; in the case of neutrons
they are protons and heavier ions.

Kerma is closely related to absorbed dose but the two quantities differ from each
other because of radiation transport effects that manifest themselves through the
finite range of the secondary charged particles released in the absorbing medium by
indirectly ionizing radiation. Because of the very short range of heavy CPs released
in absorbing medium by neutrons compared to the range of electrons and positrons
released by photons, the charged particle equilibrium (CPE) is attained much faster
in neutron beams than in photon beams.

(1) For mono-energetic photons of energy hν traversing an attenuating medium
of atomic number Z and mass density ρ, kerma K at point-of-interest P in the
attenuator is related to the photon energy fluence ψ at point P through the mass
energy transfer coefficient (μtr/ρ) for given photon energy hν and attenuator atomic
number Z. The mass energy transfer coefficient (μtr/ρ) is expressed as
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μtr

ρ
= μ

ρ

Ētr

hν
= μ

ρ
f̄tr, (9.52)

where

ρ is the mass density of the attenuator.
μ is the linear attenuation coefficient in units of cm−1 or m−1 for a given photon

energy hν and attenuator atomic number Z.
μtr is the linear energy transfer coefficient in units of cm−1 or m−1 for a given

photon energy hν and attenuator atomic number Z.
Ētr is mean energy transferred from photons of energy hν to charged particles

(electrons and positrons) at point P in the attenuator of atomic number Z.
f̄tr is the mean energy transfer fraction for photons of energy hν and attenuating

medium of atomic number Z.

Photon kerma Kγ at point P is thus expressed for mono-energetic photons as

Kγ =ψ μtr

ρ
= ϕhνμ

ρ

Ētr

hν
= ϕhνμ

ρ
f̄tr = ϕμ

ρ
Ētr, (9.53)

where

φ is the photon fluence in cm−2 or m−2 expressing number of photons per area.
ψ is the photon energy fluence in MeV · cm−2 or J · m−2.

For a spectrum of photons energy fluence ψ ′(hν) at point-of-interest P and mass
energy transfer coefficient (μtr/ρ)hν,Z as a function of photon energy hν and atten-
uator atomic number Z, the kerma at point P is determined through the following
integration

K =
∫ hνmax

hν=0
ψ ′(hν)

(
μtr

ρ

)
hν,Z

dhν, (9.54)

where ψ ′(hν) is the differential distribution of photon energy fluence.

(2) The situation with neutron kerma is similar, yet not identical, to that of pho-
tons. For mono-energetic neutrons of kinetic energy En

K traversing an attenuating
medium of mass density ρ and atomic number Z, the kerma at point P in the at-
tenuating medium is related to neutron fluence ϕ through the neutron kerma factor
(Fn)hν,Z that is characteristic of both hν and Z and expressed as follows

(Fn)hν,Z = Σ

ρ
�EK = Σ

ρ

�EK

En
K
En

K = Σtr

ρ
En

K, (9.55)

where

Σ is the total macroscopic cross section in units of cm−1 or m−1 for neutron
interaction in attenuating medium Z for neutrons of kinetic energy En

K.
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�EK is mean energy transferred from neutrons to charged particles (mainly pro-
tons) at point P in the attenuator.

Σtr/ρ is a parameter that plays a role of mass energy transfer coefficient and is
for neutrons given by

Σtr

ρ
= Σ

ρ

�EK

En
K
. (9.56)

Kerma Kn for mono-energetic neutrons of kinetic energy En
K is thus expressed in

terms of the neutron kerma factor Fn as follows

Kn = Fnϕ = Σ

ρ
�EK = n�σ

ρ
�EK, (9.57)

where we used the standard relationship between the macroscopic interaction cross
section Σ and microscopic cross section σ

Σ = n�σ, (9.58)

with n� the number of atoms (nuclei) per volume of the attenuating medium.
Kerma factors Fn are available from the literature in tabular format for various

elements and compounds for a range of neutron kinetic energies En
K from thermal

neutrons to fast neutrons (see, for example, the ICRU Report 26 or textbook by
Attix).

For neutrons with an energy spectrum of neutron fluence ϕ′(En
K) the following

integral is used in calculation of neutron kerma

Kn =
∫ (En

K)max

En
K=0

ϕ′(En
K

)
(Fn)En

K,Z
dEn

K, (9.59)

where (Fn)En
K,Z

represents neutron kerma factor as a function of En
K for a given

attenuator medium Z.

9.4 Neutron Kerma Factor

9.4.Q1 (204)

Neutron kerma factor Fn plays an important role in neutron dosimetry sim-
ilarly to the role that mass energy transfer coefficient μtr/ρ plays in photon
dosimetry. However, Fn and μtr/ρ are defined differently to account for the
differences in describing neutron fields in comparison to photon fields.
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Photon fields are usually described by photon energy fluence ψ resulting
in kerma expressed as K = (μtr/ρ)ψ , while neutron fields are described by
neutron fluence ϕ resulting in kerma expressed as K = Fnϕ.

Total microscopic interaction cross section σ for neutrons with kinetic
energy En

K of 10 MeV is 0.94 b in hydrogen and 1.25 b in oxygen. For
En

K = 10 MeV neutrons determine:

(a) Total macroscopic interaction cross sectionsΣ of hydrogen and oxygen
both at standard temperature and pressure (STP) of 0 °C and 101.3 kPa,
respectively.

(b) Total macroscopic interaction cross section Σ of water.
(c) Neutron kerma factor Fn of hydrogen and oxygen at standard tempera-

ture and pressure.
(d) Neutron kerma factor Fn of water.
(e) Verify your results calculated in (c) and (d) on the graph of Fig. 9.5A

that plots Fn against En
K for various attenuating media including hydro-

gen, oxygen, and water.

Fig. 9.5A Neutron kerma factor Fn against neutron kinetic energy EK for various materials of
interest in medical physics. Data were obtained from the NIST

SOLUTION:

(a) The total macroscopic interaction cross sections of hydrogen ΣH2 and oxy-
gen ΣO2 are calculated from the following expression linking the macroscopic and
microscopic cross sections

Σ = n�σ, (9.60)
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where σ is the total microscopic cross section for the given neutron interaction and
n� is the atomic (nuclear) density, i.e., number of atoms (nuclei) per volume V
of the attenuating medium expressed as n� = Na/V = ρNa/m = ρNA/A. Since
hydrogen and oxygen are gases, we determine the appropriate nuclear densities n�

at STP (0 °C and 101.3 kPa) invoking the ideal gas law which states that 1 mol of
ideal gas at STP occupies a volume of 22.4 liters, i.e., 22.4×103 cm3.

(1) Hydrogen gas in molecular form (H2) has a molecular weight of M =
2×1.00794 g/mol and since, according to ideal gas law, 1 mol of hydrogen
gas at STP corresponds to a volume V of 22.4×102 cm3, we obtain the fol-
lowing mass density of hydrogen gas

ρH2 = 2×(1.00794 g/mol)

22.4×103 cm3/mol
= 9×10−5 g/cm3. (9.61)

(2) Oxygen gas in molecular form (O2) has a molecular weight of M =
2×15.9994 g/mol and since, according to ideal gas law, 1 mol of oxygen gas
at STP corresponds to a volume V of 22.4×102 cm3, we obtain the following
mass density of oxygen gas

ρO2 = 2×(15.9994 g/mol)

22.4×103 cm3/mol
= 1.429×10−3 g/cm3. (9.62)

We now use (9.60) to determine macroscopic interaction cross sections ΣH2 and
ΣO2 of hydrogen at STP and oxygen at STP, respectively, for neutrons with En

K =
10 MeV.

(1) Total macroscopic cross section of hydrogen ΣH2 at STP for 10 MeV neutron

ΣH2 = n�H2
σH2 = ρH2

NA

AH2

σH2

= (9×10−5 g/cm3)×(6.022×1023 mol−1)×(0.94×10−24 cm2)

2×1.00794 g · mol−1

= 2.53×10−5 cm−1. (9.63)

(2) Total macroscopic cross section of oxygen ΣO2 at STP for 10 MeV neutron

ΣO2 = n�O2
σO2 = ρO2

NA

AO2

σO2

= (1.429×10−3 g/cm3)×(6.022×1023 mol−1)×(1.25×10−24 cm2)

2×15.9994 g · mol−1

= 3.36×10−5 cm−1. (9.64)
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(b) Total macroscopic interaction cross section of water ΣH2O for 10 MeV neu-
trons is calculated from the sum of contributions from hydrogen and oxygen nuclei
constituting the water molecule

ΣH2O =
∑
i

n�i σi = n�H σH + n�O σO. (9.65)

To find the atomic (nuclear) densities n�H and n�O , i.e., number of hydrogen and
oxygen atoms (nuclei), respectively, per volume of water, we first determine the
molecular density n�H2O of water (i.e., number of water molecules per cm3 of water)
as follows

n�H2O = Nmol

V
= ρH2O

Nmol

mH2O

= ρH2O
NA

AH2O
= (1 g · cm−3)×(6.022×1023 mol−1)

18.01528 g · mol−1

= 3.343×1022 cm−3. (9.66)

Since the molecular density of water is 3.343×1022 molecules per cm3 and each
water molecule contains 2 atoms of hydrogen and 1 atom of oxygen, we conclude
that the atomic density of hydrogen in water n�H is 2×3.343×1022 = 6.686×1022

hydrogen atoms per cm3 of water, while the atomic density of oxygen in water n�O
is 3.343×1022 oxygen atoms per cm3 of water.

The macroscopic interaction cross section of water ΣH2O for 10 MeV neutrons
is now calculated as follows

ΣH2O = n�H σH + n�O σO

= (
6.686×1022 cm−3)×(

0.94×10−24 cm2)
+ (

3.343×1022 cm−3)×(
1.25×10−24 cm2)

= 0.0628 cm−1 + 0.0418 cm−1 = 0.1046 cm−1. (9.67)

(c) Neutron kerma factor Fn of hydrogen and oxygen for 10 MeV neutrons is
calculated from the following expression

Fn = Σ

ρ
�EK = n�σ

ρ
�EK = Na

ρV
σ�EK = NA

A
σ�EK = NA

A
σ

2A

(1 +A)2E
n
K,

(9.68)
where

Σ is the total macroscopic interaction cross section of attenuating medium for
neutrons.

ρ is the density of attenuating medium (hydrogen or oxygen).
n� atomic (nuclear) density of attenuating medium: n� =Na/V withNa num-

ber of atoms and V volume of attenuating medium.



9.4 Neutron Kerma Factor 609

σ is the total microscopic interaction cross section of attenuating medium for
neutrons.

NA is the Avogadro number: 6.022×1023 atoms (nuclei) per mol.
A is the atomic mass number (atomic weight) of the attenuating medium.
�EK is mean energy transferred from neutrons to charged particles at point-of-

interest in attenuating medium calculated for neutrons of kinetic energy En
K

from the following expression

�EK = 2A

(1 +A)2E
n
K. (9.69)

(1) Mean energy transfer �EK from neutron with kinetic energy En
K = 10 MeV

interacting with hydrogen nucleus (A= 1) is from (9.69) given as

�EK = 2A

(1 +A)2E
n
K = 2

22
×(10 MeV)= 5 MeV. (9.70)

(2) Mean energy transfer �EK from neutron with kinetic energy En
K = 10 MeV

interacting with oxygen nucleus (A= 16) is from (9.69) given as

�EK = 2A

(1 +A)2E
n
K = 2×16

(1 + 16)2
×(10 MeV)= 1.11 MeV. (9.71)

We now determine the neutron kerma factors Fn of hydrogen and oxygen us-
ing (9.68) in conjunction with (9.70) and (9.71), respectively

(1) Neutron kerma factor of hydrogen (Fn)H for 10 MeV neutrons is given as

(Fn)H = NA

AH
σH(�EK)H = (6.022×1023 mol−1)×(0.94×10−24 cm2)×(5 MeV)

(1.00794 g · mol−1)

× (1.602×10−13 J/MeV)×(102 cGy/Gy)

(10−3 kg/g)

= 4.49×10−8 cGy · cm2. (9.72)

(2) Neutron kerma factor of oxygen (Fn)O for 10 MeV neutrons is given as

(Fn)O = NA

AO
σO(�EK)O = (6.022×1023 mol−1)×(1.25×10−24 cm2)×(1.11 MeV)

(15.9994 g · mol−1)

× (1.602×10−13 J/MeV)×(102 cGy/Gy)

(10−3 kg/g)

= 8.36×10−10 cGy · cm2. (9.73)
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(d) Neutron kerma factor (Fn)H2O of water for 10 MeV neutrons is determined by
summing up contributions to kerma factor from hydrogen and oxygen. Thus, 1 mol
of water contains NA molecules of water and, since each water molecule contains
two hydrogen atoms (nuclei) as well as one oxygen atom (nucleus), one can say that
1 mol of water contains 2NA atoms (nuclei) of hydrogen as well as NA atoms of
oxygen. (Fn)H2O is thus calculated as follows

(Fn)H2O =
∑
i

n�i
ρH2O

σi(�EK)i =
∑
i

NA

AH2O
σi(�EK)i

= 2NA

AH2O
σH(�EK)H + NA

AH2O
σO(�EK)O

= 2×(6.022×1023 mol−1)×(0.94×10−24 cm2)×(5 MeV)

18.0153 g · mol−1

× (1.6×10−13 J/MeV)×(102 cGy/Gy)

(10−3 kg/g)

= (6.022×1023 mol−1)×(1.25×10−24 cm2)×(1.11 MeV)

(18.0153 g · mol−1)

× (1.6×10−13 J/MeV)×(102 cGy/Gy)

(10−3 kg/g)

= 0.503×10−8 cGy · cm2 + 0.074×10−8 cGy · cm2

= 5.77×10−9 cGy · cm2. (9.74)

Neutron kerma factor Fn is usually given in units of cGy · cm2 meaning cGy per
neutron/cm2. This follows from the definition of neutron kerma K = Fnϕ, so that
the kerma factor Fn =K/ϕ is sometimes referred to as fluence-to-kerma factor.

In neutron beam dosimetry kerma and dose in tissue are obtained by multiplying
kerma and dose measured with an instrument that is generally not perfectly tissue
equivalent by the ratio of kerma factors of the two attenuating media. This approach
is similar to photon beam dosimetry where kerma and dose in tissue are obtained
by multiplying kerma and dose in non-tissue equivalent medium by the ratio of
mass energy transfer coefficients and ratio of mass energy absorption coefficients,
respectively, of the two attenuating media. Note: unlike in photon beams, in neutron
beams there is no energy loss to bremsstrahlung by charged particles released in the
attenuating medium.

(e) Figure 9.5B provides the neutron kerma factor Fn against neutron kinetic
energy En

K for various materials of interest in medical physics including hydro-
gen, oxygen, and water; the three materials used in this question. Data points at
En

K = 10 MeV show results of our calculations of kerma factor in (c) and (d) in
good agreement with the graphs published by the ICRU, Report 26.
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Fig. 9.5B Neutron kerma factor Fn against neutron kinetic energy En
K for various materials in-

cluding hydrogen, oxygen, and water; materials used in this question. Data points at En
K = 10 MeV

show results of our calculations in (c) and (d)

9.5 Neutron Dose Deposition in Tissue

9.5.Q1 (205)

Neutrons, by virtue of their neutrality, similarly to photons, deposit dose in
tissue through a two-step process:

Step 1: Energy transfer from neutron to heavy charged particles (CPs), such
as protons and heavier nuclei in tissue (resulting in kerma).

Step 2: Energy deposition in tissue by heavy CPs through Coulomb inter-
actions of CPs with atoms of tissue (resulting in absorbed dose).

Soft tissue elemental composition is of importance in neutron dosimetry
and is given by the ICRU in fraction by weight as follows: hydrogen H—
0.102; carbon—0.123; nitrogen—0.035; oxygen—0.729; and many other el-
ements combined to contribute 0.011.

(a) Three regions of neutron kinetic energyEn
K are of importance in neutron

dosimetry. Define the three regions, give examples of nuclear reactions
for each of the three regions, and explain the mechanism for energy
deposition in tissue for each nuclear reaction.
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(b) Based on the ICRU elemental tissue composition data calculate the
number of hydrogen, carbon, nitrogen, and oxygen nuclei per unit mass
of tissue.

(c) Calculate the mean energy transfer fraction f̄ n
tr =�EK/E

n
K for neutrons

interacting elastically with atoms of hydrogen, carbon, nitrogen, and
oxygen.

SOLUTION:

(a) Depending on their kinetic energy En
K, neutrons are classified into many cat-

egories ranging from ultra-cold neutrons through thermal and intermediate neu-
trons to fast and relativistic neutrons. However, for dosimetric purposes, it is conve-
nient to separate neutrons into only three categories: (1) thermal neutron region for
En

K < 1 eV, (2) intermediate energy region for 1 eV < En
K < 10 keV, and (3) fast

neutron region for En
K > 10 keV. A brief description of the three energy regions

follows below and is summarized in Table 9.3.

(1) Dose deposition by neutrons of kinetic energy En
K < 1 eV (thermal neutron

dosimetric region) in human tissue is governed by thermal neutron capture (absorp-
tion) reactions of neutron with 14

7N and 1
1H atoms in tissue producing the following

two reactions:

14
7N + n → p + 14

6C +QN or 14
7N(n,p)14

6C (9.75)

1
1H + n → γ + 2

1H +QH, or 1
1H(n, γ )21H (9.76)

whereQN andQH are reactionQ values that are both positive, making the reactions
exothermic.

(2) Intermediate kinetic energy neutrons 1 eV< En
K < 10 keV primarily interact

with hydrogen nuclei of tissue through elastic scattering interaction and dose is de-
posited in tissue by the recoil energy picked up by hydrogen nuclei (proton) in the
elastic scattering interaction. The mean energy transfer per one collision of neutron
with hydrogen atom is 50 % of the kinetic energy of the neutron.

(3) Dose delivered to human tissue by interactions of fast neutrons (En
K > 10 keV)

with atoms of human tissue is mainly due to elastic collisions of neutrons with atoms
of tissue, most importantly with hydrogen atoms, because of the high efficiency of
mean energy transfer from neutron to hydrogen atom (proton) in elastic collisions.
Also of some importance are fast neutron interactions with carbon and oxygen atoms
of tissue via inelastic collision processes that release α particles in reactions of the
type (n,n′3α) and via non-elastic processes producing α particles and heavier ions.
The α particles and heavier ions released in the fast neutron interactions are respon-
sible for the dose deposition in tissue.
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Table 9.3 Principal neutron interactions resulting in tissue kerma and types of energy deposition
resulting in tissue dose

Energy region Principal interactions Mechanism of energy
deposition in tissue

Thermal
En

K < 1 eV
Neutron capture
1
1H(n, γ )21H σ 1

1H = 0.33 b/atom Eγ = 2.225 MeV
14

7N(n,p)12
6C σ 14

7N = 1.8 b/atom E
p
K = 0.58 MeV

14
7N(n, γ )15

7N σ 14
7H ≈ 0.06 b/atom Eγ = 10.8 MeV

Intermediate
1 eV<En

K < 10 keV
Elastic scattering
1
1H(n,n)11H Ē

p
K ≈ 1

2E
n
K

Fast
En

K > 10 keV
Elastic scattering
1
1H(n,n)11H Ē

p
K ≈ 1

2E
n
K

Inelastic scattering
12

6C(n,n′)3α (En
K)thr ≈ 9 MeV EαK

Non-elastic scattering
12

6C(n, α)94Be (En
K)thr ≈ 6 MeV EαK and EBe

γ
16

8O(n, α)13
6C (En

K)thr ≈ 4 MeV EαK

Table 9.4 Physical characteristics of elemental constituents of human tissue

(1) Tissue element Hydrogen H Carbon C Nitrogen N Oxygen O

(2) Atomic number Z 1 6 7 8

(3) Atomic weight A 1.008 12.01 14.01 16.00

(4) Fraction by weight fw 0.102 0.123 0.035 0.729

(5) NX/mtissue (atom/g tissue) 6.09×1022 0.62×1022 0.15×1022 2.74×1022

(6) f̄tr =�EK/E
n
K 0.50 0.142 0.124 0.111

(b) The main constituent elements of human tissue are hydrogen H, carbon C,
nitrogen N, and oxygen O and their fractions by weight fX according to the ICRU
are, respectively, 0.102, 0.123, 0.035, and 0.729. The number of atoms (nuclei) of a
given element X per unit mass of tissue, NX/mtissue, is determined as follows:

(1) Number of atoms X per mole AX of element X is constant and referred to as
the Avogadro number NA = 6.022×1023 mol−1.

(2) Number of atoms X per gram of element X is given by NA/AX .
(3) Number of atoms X per gram of tissue, NX/mtissue, is given as NX/mtissue =

fXNA/AX .

Results of the calculation of NX/mtissue for H, C, N, and O are listed in row
(5) of Table 9.4 and show that per unit mass of tissue hydrogen H atoms (nu-
clei) are the most abundant with 6.09×1022 atom/g, followed by oxygen O atoms
with 2.74×1022 atom/g. Carbon C and nitrogen N make a much lower contri-
bution to NX/mtissue, the number of atoms (nuclei) per unit mass of tissue with
0.62×1022 atom/g and 0.15×1022 atom/g, respectively.
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NX/mtissue is of importance in determination of neutron kerma and absorbed
dose, since both of these dosimetric quantities are linearly proportional toNX/mtissue.

(c) Mean energy transfer fraction f̄tr for elastic scattering of neutrons is calculated
using the following expression

f̄tr = �EK

En
K

= 2A

(1 +A)2 , (9.77)

where

�EK is the mean energy transferred from the incident neutron with kinetic energy
En

K to the target (nucleus) of the attenuating medium.
A is the atomic weight of the target atom (nucleus) in the attenuating medium.

Equation (9.77) is derived from the standard classical equation for energy transfer
�EK from projectile with mass m1 to the stationary target with mass m2 in elastic
collision (T5.25)

�EK = 4m1m2

(m1 +m2)2
(EK)0 cos2 φ, (9.78)

where

(EK)0 is the kinetic energy of the projectile (incident particle) m1.
φ is the recoil angle of the target measured with respect to the direction of

incident neutron.

Equation (9.77) can be obtained from (9.78) with the following assumptions:

(1) The incident particle (projectile) is the neutron: m1 =mn.
(2) Kinetic energy of the projectile is the kinetic energy of the incident neutron:

(EK)0 =En
K.

(3) Mean energy transfer�EK from projectile m1 to stationary target m2 is given
as

�EK = 4m1m2

(m1 +m2)2
(EK)0cos2 φ = 2m1m2

(m1 +m2)2
(EK)0, since

cos2 φ = 1

2
.

(9.79)

(4) The target is the nucleus of attenuator atom, i.e., m2 = Zmp + (A−Z)mn ≈
Amn, where we assume that the proton mass mp and the neutron mass mn are
approximately equal.

(5) Equation (9.78) for the mean energy transfer fraction f̄tr from neutron to nu-
cleus of attenuating medium can now be written in the simplified form of
(9.77) as follows

f̄tr = �EK

(EK)0
= 2m1m2

(m1 +m2)2
= �EK

En
K

≈ 2A

(1 +A)2 . (9.80)
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Mean energy transfer fractions f̄tr for hydrogen, carbon, nitrogen, and oxygen
were calculated with (9.77) and results are displayed in row (6) of Table 9.4. Hydro-
gen is obviously the best nuclear target for energy transfer from neutron to target in
elastic scattering, on the average receiving 50 % of neutron kinetic energy per elas-
tic scattering collision. As shown in Table 9.4, f̄tr rapidly decreases with increasing
number of nucleon A in the target, amounting to 0.142, 0.124, and 0.111 for carbon,
nitrogen, and oxygen, respectively.

9.5.Q2 (206)

Neutrons with kinetic energy below 10 eV fall into the thermal neutron
dosimetric energy region that is categorized by thermal neutron capture in-
teractions with elemental hydrogen 1

1H and elemental nitrogen 14
7N in tis-

sue. Nitrogen 14
7N actually offers two neutron capture reactions, reaction (1)

14
7N(n,p)13

6C with cross section of σ(14
7N) ≈ 1.18 b/atom and reaction (2)

14
7N(n, γ )15

6N with a much smaller cross section of σ(14
7N) ≈ 0.06 b/atom.

Hydrogen 1
1H contributes to neutron capture through reaction (3) 1

1H(n, γ )21H
with a cross section of σ(11H)= 0.33 b/atom.

(a) Nuclear reactions are characterized with aQ value that can be positive,
zero, or negative. Define theQ value for a nuclear reaction and describe
the two methods that are used for its determination in a typical nuclear
reaction.

(b) Calculate the Q values of the three neutron capture reactions that rep-
resent the most prominent interactions of thermal neutrons with tissue.
In your calculations use the two methods described in (a) and show that
both methods yield the same results for a given thermal neutron capture
reaction. Appropriate rest energy and binding energy data are given in
Appendix A.

(c) For each of the three reactions determine the kinetic energies of the re-
coil nucleus and particles released [proton in reaction (1) and γ photons
in reactions (2) and (3)].

SOLUTION:

(a) Two methods are used for determination of reaction Q value:

(1) Rest energy method in which we subtract the sum of nuclear rest energies
of reaction products after the reaction

∑
i,afterMic

2 from the sum of nuclear rest
energies of reactants (projectile and target) before the reaction

∑
i,beforeMic

2, or

Q=
∑
i,before

Mic
2 −

∑
i,after

Mic
2. (9.81)
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(2) Binding energy method in which we subtract the sum of nuclear binding ener-
gies of reactants before the reaction

∑
i,beforeEB(i) from the sum of nuclear binding

energies of reaction products after the reaction
∑
i,beforeEB(i), or

Q=
∑
i,after

EB(i)−
∑
i,before

EB(i). (9.82)

(b) Two thermal neutron capture reactions are important in thermal neutron inter-
actions with tissue: 1

1H(n, γ )21H and 14
7N(n,p)14

6C. Another thermal neutron reac-
tion 14

7N(n, γ )15
7N is possible for thermal neutrons interacting with tissue but it has

a much smaller probability than the 14
7N(n,p)14

6C reaction.

(1) Thermal neutron capture reaction 14
7N(n,p)14

6C can be written as

14
7N + n = p + 14

6C +Q (9.83)

and its Q value is determined as follows:

Rest energy method

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

M
(14

7N
)+mnc

2]− [
mpc

2 +M(14
6C
)]

= [13040.2028 MeV + 939.5653 MeV] − [938.2720 MeV + 13040.8703 MeV]
= [13979.7681 MeV − 13979.1423 MeV] = 0.626 MeV. (9.84)

Binding energy method

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
0 +EB

(14
6C
)]− [

EB
(14

7N
)+ 0

]

= 105.2846 MeV − 104.6587 MeV = 0.626 MeV. (9.85)

(2) Thermal neutron capture reaction 14
7N(n, γ )15

7N can be written as

14
7N + n = γ + 15

7N +Q (9.86)

and its Q value is determined as follows:

Rest energy method

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

M
(14

7N
)+mnc

2]− [
0 +M(15

7N
)]

= [130402028 MeV + 939.5653 MeV] − [13968.9350 MeV]
= [13979.7681 MeV − 13968.9350 MeV] = 10.83 MeV. (9.87)
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Binding energy method

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
0 +EB

(15
7N

)]− [
EB

(14
7N

)+ 0
]

= 115.4914 MeV + 104.6587 MeV = 10.83 MeV. (9.88)

(3) Thermal neutron capture reaction 1
1H(n, γ )21H can be written as

1
1H + n = γ + 2

1H +Q (9.89)

and its Q value is determined as follows

Rest energy method

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

M
(1

1H
)+mnc

2]− [
0 +M(2

1H
)]

= [938.2720 MeV + 939.5653 MeV] − [0 + 1875.6128 MeV]
= [1877.8373 MeV − 1875.6128 MeV] = 2.225 MeV. (9.90)

Binding energy method

Q=
∑
i,after

EB(i)−
∑
i,before

EB(i)=EB
(1

2H
)− 0 = 2.225 MeV. (9.91)

Q values for the three thermal neutron capture reactions have been calculated with
the rest energy method and the binding energy method and, for a given nuclear
reaction, the two techniques provided identical results.

(c) For a typical nuclear reaction triggered by projectile with massm10 and kinetic
energy (EK)0 striking a stationary target m20 and resulting in two reaction products
with masses m30 and m40, the Q value is defined as

Q= (
m10c

2 +m20c
2)− (

m30c
2 +m40c

2). (9.92)

Conservation of total energy in nuclear reaction, on the other hand, results in the
following expression
[
m10c

2 + (EK)0
]+ [

m20c
2 + 0

]= [
m30c

2 + (EK)3
]+ [

m40c
2 + (EK)4

]
, (9.93)

where (EK)3 and (EK)4 are kinetic energies of the reaction products m30 and m40
and the other quantities were defined above. Insertion of (9.92) into (9.93) results in
the following simplification of (9.93)

(EK)0 +Q= (EK)3 + (EK)4. (9.94)

Equation (9.94) can now be further simplified for thermal neutron capture reaction
since the incident thermal neutron energy (EK)0 =En

K = 0.025 eV ≈ 0.
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Thus, for thermal neutron capture reaction we can state that the sum of kinetic
energies of the reaction products equals to Q value of the reaction

Q= (EK)3 + (EK)4 = |pm30 |2
2m30

|pm40 |2
2m40

= p2

2

[
1

m30
+ 1

m40

]
, (9.95)

where |pm30 | and |pm40 | are momenta of reaction products m30 and m40 and we use
the classical expression for kinetic energy of a particle. Total momentum before the
capture reaction is zero, so that to fulfill the principle of momentum conservation the
two momenta after the reaction must be equal in magnitude, i.e., |pm30 | = |pm40 | =
p, and opposite in direction.

We now address the three neutron capture reactions of thermal neutrons with
tissue atoms, two of the reactions produce a recoil atom and a γ ray and one reaction
produces a recoil atom and a proton.

(1) Q value for reaction 14
7N(n,p)14

6C was determined in (b) as Q= 0.626 MeV.
This energy is shared as kinetic energy between two reaction products: proton and
14
6C nucleus in the inverse proportion of their masses, since both reaction products

carry away the same momentum but in opposite directions. Equation (9.95) for this
reaction is expressed as follows

Q=Ep
K +E

14
7C

K = p2

2

[
1

mp
+ 1

M(14
7C)

]
= p2

2

[ [M(14
7C)+mp]

mpM(
14
7C)

]
. (9.96)

After rearranging (9.96) we get the following expression for p2

p2 = 2Q
mpM(

14
7C)

M(14
7C)+mp

, (9.97)

so that we now express kinetic energy of the proton Ep
K as

E
p
K = p2

2mp
=Q M(14

7C)

M(14
7C)+mp

=Q M(14
7C)c2

M(14
7C)c2 +mpc2

= (0.626 MeV)× 13040.8703

13040.8703 + 938.2720
= 0.584 MeV (9.98)

and kinetic energy of the 14
6C nucleus as

E
14
7C

K = p2

2M(14
7C)

=Q mp

M(14
7C)+mp

=Q mpc
2

M(14
7C)c2 +mpc2

= (0.626 MeV)× 938.2720

13040.8703 + 938.2720
= 0.042 MeV. (9.99)

From (9.98) and (9.99) we note that in neutron capture reaction 14
7N(n,p)14

6C
the proton and the 14

6C nucleus share the Q = 0.626 MeV available energy in the
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inverse proportion of their rest masses, so that the proton carries away kinetic energy

of Ep
K = 0.584 MeV and the 14

6C nucleus carries away kinetic energy of E
14
6C

K =
0.042 MeV.

Dose deposition in tissue from thermal neutron absorption is a two-step pro-
cess. In the first step, energy is transferred from neutron to charged particles via
thermal neutron capture contributing to tissue kerma. In the second step, energy is
transferred from charged particles to tissue via Coulomb interactions with orbital
electrons of tissue atoms, contributing to tissue dose.

In contrast to reaction (1) that in addition to recoil nucleus produces a proton,
capture reactions (2) and (3) in addition to recoil nucleus produce a γ photon. The
magnitude of the photon momentum pν is equal to the magnitude of the recoil nu-
cleus momentum p(m30) and the two momenta are opposite in direction to satisfy
conservation of momentum in thermal neutron capture (note: total momentum be-
fore reaction is zero, since the neutron is of thermal energy and the target is sta-
tionary). The presence of γ photon after reaction requires a modification of (9.92)
and (9.94) to read

Q= (
m10c

2 +m20c
2)− (

m30c
2 + 0

)
(9.100)

and

Q= (EK)3 +Eν = p2
ν

2m30
+ pνc. (9.101)

Solving (9.101) for pν results in the following quadratic equation

p2
ν + 2m30pνc− 2m30Q= 0, (9.102)

with the following physical solution for the magnitude of the photon and recoil
nucleus momenta

pν =
−2m30c+

√
4m2

30 + 8m30Q

2
= m30c

2

c

[√
1 + 2Q

m30c2
− 1

]
. (9.103)

We now apply (9.103) to reactions (2) and (3) to determine pν .

(2) In neutron capture reaction 14
7N(n, γ )13

7N we determined the Q value as Q=
10.83 MeV and m30 of (9.103) isM(13

7N), resulting in the following pν

pν = M(14
6C)c2

c

[√
1 + 2Q

M(13
7N)c2

− 1

]

= 12111.1912 MeV

c

[√
1 + 2×10.83

12111.1912
− 1

]

= 12111.1912 MeV

c
×(

8.94×10−4)= 10.826 MeV/c. (9.104)
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The photon momentum pν and recoil momentum p(13
7N)= pν = 10.826 MeV/c

give the following γ photon energy

Eγ = hν = pνc= (10.826 MeV/c)×c= 10.826 MeV (9.105)

and kinetic energy of the recoil nucleus E
13
7N

K

E
13
7N

K = p2
νc

2

2M(13
7N)c2

= 10.8262

2×12111.1912
MeV = 4.8×10−3 MeV. (9.106)

(3) In neutron capture reaction 1
1H(n, γ )21H we determined the Q value as Q =

2.225 MeV and m30 of (9.103) isM(21H), resulting in the following pν

pν = M(21H)c2

c

[√
1 + 2Q

M(21H)c2
− 1

]
= 1875.6128 MeV

c

[√
1 + 2×2.225

1875.6128
− 1

]

= 1875.6128 MeV

c
×(

1.19×10−3)= 2.224 MeV/c. (9.107)

The photon momentum pν and recoil momentum p(21H) = pν = 2.224 MeV/c
give the following γ photon energy

Eγ = hν = pνc= (2.224 MeV/c)×c= 2.224 MeV (9.108)

and kinetic energy of the recoil nucleus Ed
K, where d stands for the deuteron pro-

duced in the neutron capture reaction

E
2
1H
K =Ed

K = p2
νc

2

2M(21H)c2
= 2.2242

2×1875.6128
MeV = 1.3×10−3 MeV. (9.109)

From (9.105) and (9.106) as well as from (9.108) and (9.109) it is evident that the
γ photon acquires most of the energy available from the Q value (of the order of
99.95 %) and the recoil nucleus, because of its large mass, receives only a small
fraction of the available energy (0.05 %). In the first approximation, one can ignore
the nuclear recoil energy and assume the full amount of the availableQ value of the
neutron thermal capture reaction is acquired by the photon when a photon is one of
the reaction products.
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9.6 Neutron Beams in Medicine

9.6.Q1 (207)

Boron neutron capture therapy (BNCT) is a binary radiotherapy modality
used in treatment of brain lesions. First, the patient is injected with a tumor
seeking drug containing a stable boron-10 nuclide that has a high cross section
for thermal neutron capture (σ = 3838 b) that is over three orders of magni-
tude larger than the thermal neutron cross section of other nuclides (H, C, N,
and O) constituting human tissue. In the second step, the patient is exposed to
thermal neutrons which trigger a biologically destructive nuclear reaction in
boron-10 accumulated in the tumor, thereby significantly increasing, at least
in principle, the therapeutic ratio and the tumor control probability (TCP).

Thermal neutron capture reaction in boron-10 proceeds as shown in
Fig. 9.6 below

Fig. 9.6 Boron-10 thermal neutron capture reaction

(a) CalculateQ value of the neutron capture reaction. Use both the rest en-
ergy method and the binding energy method. Appropriate nuclear data
are provided in Appendix A.

(b) Determine the kinetic energy En
K of the α particle and the 7

3Li
3+

ion for
both branches of the neutron capture reaction.

(c) Determine whether or not it is possible for the α particles produced in
the thermal neutron capture reaction 10

5B(n, α)73Li to produce 13
7N in the

following reaction: 10
5B(α,n)13

7N.

SOLUTION:

(a) As shown in Fig. 9.6, boron-10 exposed to thermal neutrons may undergo a
neutron capture nuclear reaction that produces two reaction products (7

3Li ion and α

particle) with two possible branches: (73Li, α) and (7
3Li

∗
, α) with a branching ratio of

6 % vs. 94 %. The lithium-7 excited state de-excites to ground state with emission
of a γ ray of energy Eγ = 0.48 MeV.
Q value for both branches of the (10

5B,n) neutron capture reaction is calculated
as follows [(T5.7) and (T5.8)]
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(1) Rest energy method:

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

M
(10

5B
)
c2 +mnc

2]− [
mαc

2 +M(7
3Li

)
c2]

= [9324.4362 MeV + 939.5654 MeV] − [3727.3791 MeV + 6533.8329 MeV]
= 10264.0016 MeV − 10261.2120 MeV = 2.79 MeV. (9.110)

(2) Binding energy method:

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
EB

(7
3Li

)+EB
(4

2He
)]− [

EB
(10

5B
)+ 0

]

= [39.2446 MeV + 28.2957 MeV] − [64.7507 MeV + 0]
= 2.79 MeV. (9.111)

Q value for both branches of the (10
5B,n) neutron capture reaction is 2.79 MeV;

however, in the first branch (7
3Li, α) the two ions released share the full Q value in

energy while in the second branch, which also produces a 0.48 MeV γ ray in the
de-excitation process of 7

3Li
∗
, the two ions share the remaining energy Q− Eγ =

2.79 MeV − 0.48 MeV = 2.31 MeV.

(b) Kinetic energy of reaction products in the neutron capture reaction is deter-
mined from the known Q value for the reaction calculated in (a).

(1) Kinetic energies of the α particle and the 7
3Li

3+
ion produced in the (7

3Li, α)
branch of the boron-10 neutron capture reaction are calculated as follows. The two
reaction products share theQ value energy in the inverse proportion of their masses,
since the momenta of the two reaction products (α particle and 7

3Li ion) are equal
in magnitude but opposite in direction to satisfy the conservation of momentum
principle in thermal neutron capture reaction. Note: Total momentum before reaction
is zero, so total momentum after capture reaction must also be zero.
Q value can be expressed as follows

Q=ELi
K +EαK = p2

Li

2M(73Li)
+ p2

α

2mα
= p2

2

[
1

M(73Li)
+ 1

mα

]
= p2

2

mα +M(73Li)

M(73Li)mα
,

(9.112)
where ELi

K and EαK are kinetic energy of the 7
3Li ion and α particle, respectively, and

p stands for |pLi| = pLi as well as for |pα| = pα , since the magnitudes of the two
momentum vectors are equal.
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Solving (9.112) for p2 allows us to express the kinetic energies ELi
K and EαK,

respectively, as follows

ELi
K = p2

2M(73Li)
=Q mαc

2

M(73Li)c2 +mαc2

= (2.79 MeV)× 3727.3791

6533.8330 + 3727.3791
= (2.79 MeV)×0.363 = 1.01 MeV

(9.113)
and

EαK = p2

2mαc2
=Q M(73Li)

M(73Li)c2 +mαc2

= (2.79 MeV)× 6533.8330

6533.8330 + 3727.3791
= (2.79 MeV)×0.637 = 1.78 MeV.

(9.114)

(2) Kinetic energies of the α particle and the 7
3Li

3+
excited ion produced in the

(7
3Li

∗
, α) branch of the boron-10 neutron capture reaction are calculated as follows.

The excited nucleus 7
3Li

∗
attains the ground state of 7

3Li through emission of a γ ray
of energy Eγ = 0.48 MeV. Thus, the energy differenceQ−Eγ = 2.31 MeV rather
than the full energy of theQ value is available for sharing between the 7

3Li ion and α
particle and the energy is again shared in the inverse proportion of the masses of the
two ions. For this branch of the boron-10 neutron capture reaction kinetic energies
ELi

K and EαK, respectively, are given as follows

ELi
K = p2

2M(73Li)
= (Q−Eγ ) mαc

2

M(73Li)c2 +mαc2

= (2.31 MeV)× 3727.3791

6533.8330 + 3727.3791
= (2.31 MeV)×0.363 = 0.84 MeV

(9.115)
and

EαK = p2

2mαc2
= (Q−Eγ ) M(73Li)

M(73Li)c2 +mαc2

= (2.31 MeV)× 6533.8330

6533.8330 + 3727.3791
= (2.31 MeV)×0.637 = 1.47 MeV.

(9.116)
(c) Neutron capture reaction 10

5B(n, α)73Li proceeds in two branches, the 6 %
branch producing 1.78 MeV α particles and the 94 % branch producing 1.47 MeV
α particles [see (b)]. To establish whether or not reaction 10

5B(α,n)13
7N can run with

these α particles we first evaluate the reactionQ value using the rest energy method
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and the binding energy method as follows

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

M
(10

5B
)
c2 +mαc2]− [

mnc
2 +M(13

7N
)
c2]

= [9324.4362 MeV + 3727.3791 MeV] − [939.5654 MeV + 1211.1910 MeV]
= 13051.8153 MeV − 13050.7564 MeV = 1.059 MeV, (9.117)

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
0 +EB

(13
7N

)]− [
EB

(10
5B
)+EB

(4
2He

)]

= [0 + 94.1053 MeV] − [64.7507 MeV + 28.2957 MeV] = 1.059 MeV.
(9.118)

Since Q value of the reaction 10
5B(α,n)13

7N is positive, the reaction is exothermic
and can proceed without any threshold energy restrictions.

9.6.Q2 (208)

Primary sources of neutrons are: nuclear reactors, neutron emitting radionu-
clides, and accelerator-based neutron generators. The latter are small, rela-
tively low voltage (of the order of 100 kV) accelerators based on deuteron-
triton (d-t) and deuteron-deuteron (d-d) fusion reactions:

d + t = 2
1H + 3

1H → 4
2He + n +Q (9.119)

d + d = 2
1H + 2

1H → 3
2He + n +Q (9.120)

Neutron generators based on the d-t fusion reaction are more common than
those based on the d-d reaction because the neutron yield of the d-t reaction
is up to 100 times larger than that of the d-d reaction.

(a) Using both the rest energy method and the binding energy method, de-
termineQ value of the two fusion reactions used in neutron generators.
Appropriate data are available in Appendix A.

(b) Determine kinetic energy of the neutron and the helium ions produced
in the two fusion reactions.

(c) Determine the velocity υ/c of neutrons produced in the d-t and d-d
fusion reactions of (9.119) and (9.120), respectively. Plot υ/c against
kinetic energy En

K of neutron and enter onto the graph your calculated
values for the d-t and d-d fusion reactions.

SOLUTION:

(a) Q values of the fusion reactions used for fast-neutron production in neutron
generators.



9.6 Neutron Beams in Medicine 625

(1) Q value of the d-t fusion reaction: Rest energy method.

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

mdc
2 +mtc

2]− [
M
(4

2He
)
c2 +mnc

2]

= [1875.6128 MeV + 2808.9209MeV] − [3727.3791 MeV + 939.5654 MeV]
= 4684.5337 MeV − 4666.9445 MeV = 17.59 MeV. (9.121)

Q value of the d-t fusion reaction: Binding energy method.

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
EB

(4
2He

)+ 0
]− [

EB(d)+EB(t)
]

= [28.2957 MeV + 0] − [2.2246 MeV + 8.4818 MeV]
= 28.2957 MeV − 10.7064 MeV = 17.59 MeV. (9.122)

Both the rest energy method and the binding energy method give the same result
for the Q value of the d-t fusion reaction: 17.59 MeV.

(2) Q value of the d-d fusion reaction: Rest energy method.

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

mdc
2 +mdc

2]− [
M
(3

2He
)
c2 +mnc

2]

= [1875.6128 MeV + 1875.6128 MeV] − [2808.6128 MeV + 939.5654 MeV]
= 3751.2256 MeV − 3747.9567 MeV = 3.27 MeV. (9.123)

Q value of the d-d fusion reaction: Binding energy method

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
EB

(3
2He

)+ 0
]− [

EB(d)+EB(d)
]

= [7.7181 MeV + 0] − [2.2246 MeV + 2.2246 MeV]
= 7.7181 MeV − 4.4492 MeV = 3.27 MeV. (9.124)

Both the rest energy method and the binding energy method give the same result
for the Q value of the d-d fusion reaction: 3.27 MeV.

(b) Kinetic energy of the two reaction products of the d-t fusion reaction are cal-
culated assuming that the kinetic energy of the deuteron projectile is negligible in
comparison to kinetic energies EαK and En

K of the reaction products after the reac-
tion. Under this assumption the reaction Q value of 17.59 MeV is shared as kinetic
energy of the two reaction products in inverse proportions to the masses of reaction
products. Since the total momentum before the reaction is ∼0, we conclude that
the momenta of the two reaction products are equal in magnitude and opposite in
direction, i.e.,

|pα| = |pn| = p. (9.125)
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(1) Kinetic energy of the reaction products of the d-t fusion reaction is determined
from the Q value calculated in (9.123) and (9.124). The expression for the Q value
of the d-t fusion reaction is written as

Q=EHe-4
K +En

K = p2
He-4

2M(42He)
+ p2

n

2mn
= p2

2

[
1

M(42He)
+ 1

mn

]
= p2

2

mn +M(42He)

mnM(
4
2He)

.

(9.126)
After solving (9.126) for p2 and inserting p2 into equations for EαK and En

K we
get the following results for kinetic energy of the α particle and neutron, respectively

EHe-4
K = p2

2M(42He)
=Q (mnc

2)

M(42He)+mnc2

= (17.59 MeV)× 939.5654

3727.3791 + 939.5654

= (17.59 MeV)×0.20 = 3.54 MeV (9.127)

and

En
K = p2

2mn
=Q M(42He)

M(42He)+mnc2

= (17.59 MeV)× 3727.3791

3727.3791 + 939.5654

= (17.59 MeV)×0.80 = 14.05 MeV. (9.128)

(2) Kinetic energies of the two reaction products (3
2He ion and neutron) of the

d-d fusion reaction are calculated using the same assumptions that were used for
the d-t reactions above. Kinetic energy of the EHe-3

K ion and kinetic energy En
K of

the neutron are calculated with (9.126), (9.127) and (9.128), respectively, all three
equations modified to account for the rest mass of the 3

2He ion. The expression for
Q value of the d-d fusion reaction is written as

Q=EHe-3
K +En

K = p2
He-3

2M(32He)
+ p2

n

2mn
= p2

2

[
1

M(32He)
+ 1

mn

]
= p2

2

mn +M(32He)

mnM(
3
2He)

.

(9.129)
After solving (9.129) for p2, kinetic energies of 3

2He ion and neutron are calculated
as follows

EHe-3
K = p2

2M(32He
) =Q (mnc

2)

M(32He)c2 +mnc2

= (3.27 MeV)× 939.5654

2808.3913 + 939.5654

= (3.27 MeV)×0.251 = 0.82 MeV (9.130)
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and

En
K = p2

2mn
=Q M(32He)

M(32He)+mnc2

= (3.27 MeV)× 2808.3913

2808.3913 + 939.5654

= (3.27 MeV)×0.749 = 2.45 MeV. (9.131)

The d-t fusion reaction is the easiest fusion reaction to ignite and occurs when
the deuteron and triton have essentially negligible kinetic energy in comparison to
17.59 MeV of energy that is released in the d-t fusion reaction. In both d-t as well
as d-d fusion reaction neutrons are produced in a suitable target and emitted almost
isotropically. Neutron and helium ion (α particle in d-t reaction and 3

2He ion in d-d
reaction) are emitted in directions opposite to each other in order to conserve the
total momentum that before the interaction is essentially zero.

(c) Velocity of neutrons produced in d-t reaction with kinetic energy of 14.05 MeV
and in d-d reaction with kinetic energy of 3.27 MeV is calculated from the standard
relativistic expression for kinetic energy that is given as follows (T1.58). In (9.132)
En

K is kinetic energy of the neutron, γ is the Lorentz factor (T1.43), and mnc
2 is the

rest energy of the neutron (939.6 MeV).

En
K = (γ − 1)mnc

2 =
(

1√
1 − υ2

c2

− 1

)
mnc

2. (9.132)

Solving (9.132) for υ/c results in the following expression (T2.7)

υ

c
=
√√√√1 − 1

(1 + En
K

mnc2 )
2
, (9.133)

resulting in υ/c = 0.17 for neutron kinetic energy of En
K = 14.05 MeV pro-

duced in the d-t fusion reaction and in υ/c = 0.072 for neutron kinetic energy of
En

K = 2.45 MeV produced in the d-d fusion reaction. A plot of (9.133) showing υ/c
against kinetic energy En

K of a neutron in the kinetic energy range from 1 keV to
100 MeV is presented in Fig. 9.7.
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Fig. 9.7 Neutron velocity υ normalized to speed of light c in vacuum against kinetic energy En
K

of the neutron. The two data points on the graph represent neutron velocities calculated for the
2.45 MeV and 14.05 MeV neutrons produced in the d-d and d-t reaction, respectively

9.6.Q3 (209)

The most common and efficient means for production of clinical neutron
beam in a cyclotron is to accelerate protons p or deuterons d in the energy
range from 50 MeV to 70 MeV onto a thick beryllium-9 target. This results in
neutron spectra that are characteristic of the particular nuclear reaction used,
with the maximum neutron energy in the spectrum given as the sum of the
incident charged particle kinetic energy and the reaction Q value for the par-
ticular nuclear reaction that produces the neutrons.

Neutron-generating nuclear reactions occurring in the beryllium-9 target
are as follows

9
4Be + p → n + 9

5B +Q (9.134)

and
9
4Be + d → n + 10

5B +Q (9.135)

(a) Calculate Q values for reactions (9.134) and (9.135) and for the two
nuclear reactions determine if the reactions are exothermic or endother-
mic. Appropriate nuclear data are given in Appendix A.

(b) For endothermic reactions of (a) calculate the threshold energy, i.e., the
minimum kinetic energy that the incident charged particle must possess
in order to trigger the nuclear reaction.
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SOLUTION:

(a) Q values of reactions (9.134) and (9.135) are calculated either with the rest
energy method or with the binding energy method.

(1) Q value for reaction 9
4Be + p → n + 9

5B +Q determined with the rest energy
method:

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

M
(9

4Be
)
c2 +mpc

2]− [
mnc

2 +M(9
5B
)
c2]

= [8392.7499 MeV + 938.2703 MeV] − [939.5654 MeV + 8393.3071 MeV]
= 9331.0202 MeV − 9332.8725 MeV = −1.85 MeV. (9.136)

Q value for reaction 9
4Be + p → n + 9

5B +Q determined with the binding energy
method:

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
0 +EB

(9
5B
)]− [

EB
(9

4Be
)+ 0

]

= [0 + 56.3145 MeV] − [58.1650 MeV + 0] = −1.85 MeV. (9.137)

Q value for reaction 9
4Be + p → n + 9

5B is negative (Q = −1.85 MeV) which
means that the reaction is endothermic and the incident proton must possess a min-
imum kinetic energy, referred to as the threshold kinetic energy (Ep

K)thr, in order to
be able to trigger the nuclear reaction. The threshold total energy and the threshold
kinetic energy of the proton to be able to trigger neutron production in a beryllium
thick target will be determined in (b).

(2) Q value for reaction 9
4Be + d → n + 10

5B +Q determined with the rest energy
method:

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

M
(9

4Be
)
c2 +mdc

2]− [
mnc

2 +M(10
5B
)
c2]

= [8392.7499 MeV + 1875.6128 MeV]
− [939.5654 MeV + 9324.4362 MeV] (9.138)

= 10268.3627 MeV − 10264.0016 MeV = +4.36 MeV. (9.139)

Q value for reaction 9
4Be+d → n+ 10

5B+Q determined with the binding energy
method:

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
0 +EB

(10
5B
)]− [

EB
(9

4Be
)+EB(d)

]

= [0 + 64.7507 MeV] − [58.1650 MeV + 2.2246 MeV]
= +4.36 MeV. (9.140)
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Q value for reaction 9
4Be + d → n + 10

5B is positive (Q = +4.36 MeV) which
means that the reaction is exothermic and there is no minimum energy prescribed
for the deuteron to trigger the nuclear reaction.

(b) Fast neutrons are produced in accelerators in which either protons or deuterons
are first accelerated to relatively high kinetic energy and then bombard a thick beryl-
lium target in which a spectrum of fast neutrons is produced. As shown in (a),
Q value of the 9

4Be(p,n)95B reaction is negative at −1.85 MeV, while Q value of
the 9

4Be(d,n)10
5B reaction is positive at +4.36 MeV.

A positiveQ value suggests that the reaction is exothermic (also called exoergic),
has no threshold, and results in release of energy. On the other hand, a negative
Q value suggests that the reaction is endothermic (also called endoergic) and that
for the reaction to take place the incident proton (projectile) energy must exceed a
minimum energy that is referred to as the reaction threshold energy.

The threshold energy for a general endothermic collision of projectile m10 with
stationary target m20 that results in two reaction products (m30 and m40) is deter-
mined through the use of the so-called relativistic invariant

E2 − p2c2 = invariant, (9.141)

where E is the total energy before the collision and the total energy after the colli-
sion, p is the total momentum before and after the collision, and c is the speed of
light in vacuum.

The invariant is valid for both the laboratory coordinate system and for the
center-of-mass coordinate system and, for convenience, the conditions before the
collision are written for the laboratory system while the conditions after the colli-
sion are written for the center-of-mass system. The conditions for before and after
the collision are written as follows:

(1) Before collision:

Total energy before collision: Ethr +m20c
2 =

√
m2

10c
4 + p2

1c
2 +m20c

2,

(9.142)
where Ethr is the total threshold energy of the projectile.
Total momentum before collision: p1

(2) After collision:

Total energy after collision: in the center-of-mass system: m30c
2 +m40c

2

(9.143)
Total momentum after collision: in the center-of-mass system: 0

The invariant of (9.141) for before and after the collision is now expressed as follows

E2 − p2c2 =
(√
m2

10c
4 + p2

1c
2 +m20c

2
)2 − p2

1c
2 = (

m30c
2 +m40c

2)2 − 0.

(9.144)
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Solving for Ethr =
√
m2

10c
4 + p2

1c
2 results in the following expression for the total

threshold energy for the collision (nuclear reaction)

Ethr = (m30c
2 +m40c

2)2 − (m2
10c

4 +m2
20c

4)

2m20c2
. (9.145)

Noting that Ethr = (EK)thr +m10c
2, where (EK)thr is the threshold kinetic energy

of the projectile, we get the following expression for (EK)thr

(EK)thr = (m30c
2 +m40c

2)2 − (m10c
2 +m20c

2)2

2m20c2
. (9.146)

The threshold kinetic energy (EK)thr of the projectile given in (9.146) may now be
written in terms of the nuclear reaction Q value as follows:

(1) Recalling thatQ value for the general endothermic nuclear reaction is written
as (T5.5)

Q=m10c
2 +m20c

2 +m30c
2 +m40c

2, (9.147)

we rearrange the terms of (9.147) to get the following expression

(
m30c

2 +m40c
2)2 = (

m10c
2 +m20c

2)2 +Q2 − 2Q
(
m10c

2 +m20c
2).

(9.148)
(2) Inserting the relationship of (9.147) into (9.146) we obtain

(EK)thr = −Q
[
m10c

2 +m20c
2

m20c2
− Q

2m20c2

]
≈ −Q

(
1 + m10

m20

)
, (9.149)

where, since Q�m20c
2, we can ignore the Q

2m20c
2 term in (9.149).

In (9.149) the threshold kinetic energy (EK)thr of projectile exceeds the |Q|
value by a relatively small amount to account for conservation of both energy
and momentum in the collision.

Reaction 9
4Be(p,n)95B in (a) is endothermic, so we now determine its threshold to-

tal energy Ethr and its threshold kinetic energy (EK)thr using (9.145) and (9.146),
respectively.

(1) Threshold total energy Ethr is calculated as follows

Ethr = (m30c
2 +m40c

2)2 − (m2
10c

4 +m2
20c

4)

2m20c2

= [mnc
2 +M(95B)c2]2 − [m2

pc
4 + (M(94Be))2c4]

2M(94Be)c2

= [939.5654 MeV + 8393.3071 MeV]2 − [(938.2720 MeV)2 + (8392.7499 MeV)2]
2×(8392.7499 MeV)

= 940.33 MeV. (9.150)
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(2) Threshold kinetic energy (EK)thr is calculated from the following expression

(EK)thr ≡ Ethr −mpc
2 = (m30c

2 +m40c
2)2 − (m10c

2 +m20c
2)2

2m20c2

= [mnc
2 +M(95B)c2]2 − [mpc

2 +M(94Be)c2]2

2M(94Be)c2

= [939.5654 MeV + 8393.3071 MeV]2 − [938.2720 MeV + 8392.7499 MeV]2

2×(8392.7499 MeV)

= 2.06 MeV. (9.151)

Threshold kinetic energy (EK)thr can also be determined using Q value of the
endothermic reaction, as stated in (9.149)

(EK)thr ≈ −Q
[

1 + m10

m20

]
= −Q

[
1 + mp

M(94Be)

]

= −(−1.85 MeV)×
[

1 + 938.2720

8392.7499

]

= (1.85 MeV)×1.11 = 2.06 MeV. (9.152)

Threshold kinetic energy (EK)thr of the proton in the 9
4Be(p,n)95B reaction ex-

ceeds the |Q| value of the reaction by a relatively small amount of 11 % to account
for conservation of both energy and momentum in the reaction.

9.6.Q4 (210)

Californium (Cf) is a synthetic radioactive transuranic element in the actinide
series with an atomic number Z of 98 and 20 known radioisotopes. Of these
only Cf-252, as an intense neutron emitter, is of commercial interest and was
found useful in a wide range of specialized areas of science, industry, and
medicine, such as the study of fission, neutron activation analysis, neutron ra-
diography, well logging, nuclear reactor start up, and brachytherapy of cancer.

Californium-252 decays through two radioactive decay modes: (1) α decay
with half life (t1/2)α = 2.73 years and branching fraction (ratio) of 0.969 and
(2) spontaneous fission accompanied by emission of neutrons with half life of
(t1/2)SF = 85.5 years and branching fraction (ratio) of 0.031. Mean neutron
fraction f̄n, i.e., the mean number of neutrons emitted per each spontaneous
fission decay is f̄n = 3.8.
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(a) Determine the effective half-life (t1/2)eff of a 252
98Cf neutron source.

(b) Determine the monthly decay (in %) of a 252
98Cf neutron source.

(c) Determine specific activity aSF for spontaneous fission of 252
98Cf.

(d) Determine specific activity aα for α decay of 252
98Cf.

(e) Determine specific activity aeff for decay of 252
98Cf.

(f) Determine the neutron production rate of 252
98Cf in number of neutrons

per second.
(g) Calculate Q value for α decay of 252

98Cf into 248
96Cm (curium) and deter-

mine the kinetic energy EαK of the emitted α particle.

SOLUTION:

(a) The effective half-life (t1/2)eff is calculated via the total decay constant λ of
252
98Cf which follows the general rule of radioactivity stipulating that when more

than one mode of decay is available to the radioactive nucleus (branching), the total
decay constant λ is the sum of the partial decay constants λi applicable to each
mode. We thus have

λ=
∑
i

λi =λα+λSF = ln 2

(t1/2)α
+ ln 2

(t1/2)SF
= (ln 2)

[
1

(t1/2)α
+ 1

(t1/2)SF

]
= ln 2

(t1/2)eff
.

(9.153)
The effective half-life (t1/2)eff of a 252

98Cf source is calculated as follows

1

(t1/2)eff
= 1

(t1/2)α
+ 1

(t1/2)SF
= 1

2.73 y
+ 1

85.5 y
= 0.378 y−1, (9.154)

resulting in (t1/2)eff = 2.645 y.

(b) The monthly decay (in %) of a 252
98Cf neutron source is calculated by assuming

exponential source decay and an effective half-life (t1/2)eff = 2.645 y, as determined
in (9.154). The monthly rate of source decay is expressed with the ratio I/I0, where
I0 is the source intensity at a given distance d from the source on day 0 (time: t = 0)
and I is the source intensity at the same distance d from the source on day 30 (time:
t = 30 days). I/I0 is given as follows

I

I0
= e−

ln 2
(t1/2)eff

t = e− (ln 2)×30
2.645×365 = e−0.0216 = 0.979 (9.155)

indicating that in one month a 252
98Cf neutron source will decay by 2.1 %.

(c) Specific activity aSF of 252
98Cf for spontaneous fission is calculated from activity

ASF for spontaneous fission defined as ASF = λSFN where N stands for the number
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of radioactive atoms, NA is the Avogadro number (6.022×1023 mol−1), and A is
the atomic mass number in g/mol

aSF = ASF

m
= λSFN

m
= λSFNA

A
= ln 2

(t1/2)SF

NA

A

= (ln 2)×(6.022×1023 mol−1)

(85.5 y)×(365 day/y)×(24 h/day)×(3600 s/h)×(252 g · mol−1)

= 6.143×1011 s−1 · g−1 = 0.6143 TBq · g−1. (9.156)

(d) Specific activity aα of 252
98Cf for α decay is calculated from activity Aα for α

decay defined as Aα = λαN

aα = Aα
m

= λαN

m
= λαNA

A
= ln 2

(t1/2)α

NA

A

= (ln 2)×(6.022×1023 mol−1)

(2.73 y)×(365 day/y)×(24 h/day)×(3600 s/h)×(252 g · mol−1)

= 19.24×1012 s−1 · g−1 = 19.24 TBq · g−1. (9.157)

(e) Specific activity aeff of 252
98Cf is simply the sum of specific activities for α

decay and for spontaneous fission

aeff = aα + aSF = 19.24 TBq/s + 0.61 TBq/g = 19.85 TBq/g. (9.158)

We can obtain the same result calculated directly from activity A of 252
98Cf defined

as A = λN

aeff = A
m

= λN

m
= λNA

A
= ln 2

(t1/2)eff

NA

A

= (ln 2)×(6.022×1023 mol−1)

(2.645 y)×(365 day/y)×(24 h/day)×(3600 s/h)×(252 g · mol−1)

= 19.85×1012 s−1 · g−1 = 19.85 TBq · g−1

= 19.85×1012 Bq · g−1

3.7×1010 Bq/Ci
= 536.5 Ci/g. (9.159)

(f) Neutron production rate in units of g−1 · s−1 is calculated by multiplying the
specific activity aSF of 252

98Cf for spontaneous fission by the neutron factor f̄n (de-
fined as the mean number of neutrons produced by each spontaneous fission decay)
to get

f̄naSF = 3.8×(
0.6143×1012 s−1 · g−1)= 2.33×1012 s−1 · g−1. (9.160)
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(1) Industrial sources contain up to 50 mg of emitting of the order of ∼1011 neu-
trons per second [(50×10−3 g)×(2.33×1012 s−1 · g−1)≈ 1011 s−1].

(2) High dose rate brachytherapy (HDR) source requires about 500 µg of
252
98Cf per source emitting of the order of ∼109 neutron/s [(500×10−6 g)×
(2.33×1012 s−1 · g−1)≈ 109 s−1].

(g) Q value for α decay of 252
98Cf into 248

96Cm is calculated in a manner similar to
the calculation of Q value for nuclear reactions using either (1) rest energy method
or (2) binding energy method.

(1) Rest energy method for α decay: 252
98Cf → 248

96Cm + α

Qα =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

M
(252

98Cf
)]− [

M
(248

96Cm
)
c2 +mαc2]

= [234762.4495 MeV] − [231028.8556 MeV + 3727.3791 MeV]
= [234762.4495 MeV] − [234756.2347MeV] = 6.215 MeV. (9.161)

(2) Binding energy method for α decay: 252
98Cf → 248

96Cm + α

Qα =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
ECm-248

B +ECm-248
B

]− [
ECf-252

B

]

= [1859.1902 MeV + 28.2957 MeV] − [1881.2748 MeV]
= [1887.4859 MeV] − [1881.2748MeV] = 6.212 MeV. (9.162)

(3) Q value of the α decay is shared between the α particle and the recoil Cm-248
nucleus in inverse proportions to the rest energies, so that α particle receives
about 98 % of the energy available in Q value.
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Chapter 10 consists of 13 problems spread over 8 sections dealing with the
kinetics of radioactivity also known as radioactive decay, nuclear transfor-
mation, and nuclear disintegration. Radioactivity is a spontaneous process by
which an unstable parent nucleus emits a particle or electromagnetic radiation
and transforms into a more stable daughter nucleus that may or may not be
stable. An unstable nucleus will decay further in a decay series until a stable
nuclear configuration is reached.

The radioactive decay is governed by the formalism based on the defini-
tion of activity and the radioactive decay constant. Henri Becquerel discov-
ered the process of natural radioactivity in 1896 and soon thereafter in 1898
Pierre Curie and Marie Skłodowska-Curie discovered radium and polonium
and coined the term “radioactivity to describe emission of “emanations” from
unstable natural elements. Fréderic Joliot and Irène Joliot-Curie discovered
artificial radioactivity in 1934.

The first problem of this chapter (Sect. 10.1) deals with general aspects of
radioactivity, such as activity, specific activity, decay constant, half-life, mean
lifetime, and units of activity. Section 10.2 contains two problems address-
ing the simple kinetics of radioactive parent decaying into a stable daughter.
Section 10.3 is dedicated to several long problems that deal with radioactive
series decay from various angles to improve the understanding of the radioac-
tive chain decay.

Section 10.4 introduces the concept of the general form of daughter activ-
ity, while Sect. 10.5 deals with the various equilibriums in parent-daughter
activities, such as secular, transient, and ideal equilibrium. Next (Sect. 10.6)
come two problems on general radioactive decay series with many chain links
that are handled with Bateman equations, a problem in Sect. 10.7 on decay
kinetics for a mixture of two or more independently decaying radionuclides,
and the chapter concludes with a problem addressing the issue of branching
decay and branching fraction (Sect. 10.8).
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10.1 General Aspects of Radioactivity

10.1.Q1 (211)

During the past century radioactivity has revolutionized science, played an
important role in industrial development, introduced several new branches of
physics, and helped in establishing medical physics as a branch of physics of
importance to both physics and medicine.

(a) Define radioactivity and list a few other terms that are used to describe
the process.

(b) For the following phenomena name the scientist credited with the dis-
covery and the year of discovery: (1) Natural radioactivity, (2) Radium
and polonium, (3) Exponential laws of radioactivity, (4) Artificial ra-
dioactivity, and (5) Fission.

(c) Name and define the characteristic parameter that is used to describe a
given radioactive process. Discuss the dependence of this parameter on
prevailing physical conditions in radioactive atom’s environment.

(d) In a radioactive substance that contains a large number N of identical
radioactive atoms, what is the probability that a given atom will decay
during a time interval �t? Are there any restrictions on the magnitude
of �t?

(e) Define activity A of a radioactive substance and state its relationship
with the number N of radioactive atoms present in the sample. State
the unit of activity in the SI system of units and in the old (traditional)
system of units. Also state the relationship between the two systems.

(f) Both hertz (Hz) and becquerel (Bq) are units of a physical quantity and
equal to 1/s. What is the difference between the two units and which
physical quantities do they represent?

(g) Define specific activity a and show how it is determined for a given
radionuclide. State the unit of specific activity in the SI system of units
and in the old (traditional) system of units.

SOLUTION:

(a) Radioactivity is a process by which an unstable parent nucleus transforms
spontaneously into one or several daughter nuclei that are more stable than the par-
ent nucleus by having larger binding energies per nucleon than does the parent nu-
cleus. The daughter nucleus may be stable or may also be unstable and decay further
through a chain of radioactive decays until a stable nuclear configuration is reached.
Radioactive decay is usually accompanied by emission of energetic particles, γ rays
or both.
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In addition to radioactivity, other terms used to describe spontaneous nuclear
decay are radioactive decay, nuclear disintegration, nuclear transformation, and nu-
clear transmutation.

(b) Discoveries related to radioactivity:

(1) Natural radioactivity: Henri Becquerel (1896).
(2) Radium and polonium: Marie Curie-Skłodowska and Pierre Curie (1898).
(3) Exponential laws of radioactivity: Ernest Rutherford and Frederick Soddy

(1902).
(4) Artificial radioactivity: Frédéric Joliot and Irène Joliot-Curie (1934).
(5) Fission: Lise Meitner, Otto Frisch, Otto Hahn, and Friedrich W. Strassmann

(1938).

(c) All radioactive decay processes are governed by the same general formalism
that is based on the definition of the activity A(t) and on the total radioactive decay
constant λ that is a characteristic parameter for each radioactive decay process with
dimensions of reciprocal time usually in s−1. The decay constant λ is independent of
the age of the radioactive atom and is essentially independent of physical conditions
such as temperature, pressure, and chemical state of the atom’s environment.

(d) The total radioactive decay constant λ multiplied by a time interval �t that
is much smaller than 1/λ represents the probability that any particular atom of ra-
dioactive substance containing a large number N(t) of identical radioactive atoms
will decay in that time interval.

(e) Activity A(t) of a radioactive substance containing a large number N(t) of
identical radioactive atoms represents the total number of decays per unit time and
is defined as a product between N(t) and decay constant λ, i.e.,

A(t)= λN(t). (10.1)

SI unit of activity is the becquerel (Bq) defined as 1 Bq = 1 s−1. The old unit of
activity, the curie (Ci), was initially defined as the activity of 1 g of radium-226 and
given as 1 Ci = 3.7×1010 s−1. The activity of 1 g of radium-226 was subsequently
measured to be 3.665×1010 s−1; however, the definition of the curie was kept at
3.7×1010 s−1. The current value of the activity of 1 g of radium-226 is thus 0.988
Ci or 3.665×1010 Bq. The SI unit becquerel and the traditional unit curie are related
as follows

1 Ci = 3.7×1010 Bq = 0.037 TBq and 1 Bq = 2.703×10−11 Ci. (10.2)

(f) Becquerel (Bq) and hertz (Hz) both correspond to 1 s−1; however, becquerel
refers to physical quantity “activity” and hertz refers to periodic motion (“fre-
quency”).

(g) Specific activity a of a radioactive substance is defined as the activity A per
unit mass m
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a = A
m

= λN

m
= λNA

A
= (ln 2)NA

t1/2A
, (10.3)

whereNA is the Avogadro number (6.022×1023 mol−1), A is the atomic mass num-
ber, and t1/2 is the half life of the radioactive substance. The units of specific activity
are Bq/kg (SI unit) and Ci/g (traditional unit). The relationship between the two units
is given as: 1 Ci/g = 37 TBq/kg.

10.2 Decay of Radioactive Parent into a Stable Daughter

10.2.Q1 (212)

In its simplest form the radioactive decay is characterized by a radioactive par-
ent nucleus P decaying with decay constant λP into a stable daughter nucleus
D

P
λP−→ D. (10.4)

The rate of depletion of the number of radioactive parent nucleiNP(t) is equal
to the activity AP(t) at time t , i.e.,

dNP(t)

dt
= −AP(t)= −λPNP(t). (10.5)

(a) Solve the differential equation (10.5) to obtain the number of parent
nuclei NP(t) at time t in terms of the number of parent nuclei NP(0) at
time t = 0.

(b) Using the results of (a) express the activity AP(t) at time t in terms of
the activity AP(0) at time t = 0.

(c) Half-life (t1/2)P of a radioactive substance P is defined as the time dur-
ing which the number of radioactive nuclei of the substance decays to
half of the initial value NP(0) present at time t = 0. Show that

(t1/2)P = ln 2

λP
. (10.6)

(d) Obtain an expression for the average (mean) lifetime τP of a radioactive
parent substance P and derive the relationship between mean lifetime
τP and half-life (t1/2)P.

SOLUTION:

(a) The fundamental differential equation (10.5) for describing radioactive decay
can be rewritten in general integral form to get
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∫ NP(t)

NP(0)

dNP(t)

NP(t)
= −

∫ t

0
λP dt. (10.7)

Integration of both sides of (10.7) results in the following solution

ln
NP(t)

NP(0)
= −λPt, (10.8)

which can also be expressed as

NP(t)=NP(0)e
−λPt . (10.9)

(b) The activity AP(t) is proportional to the number of parent nucleiNP(t) and the
proportionality constant is the decay constant λP, i.e.,

AP(t)= λPNP(t). (10.10)

Multiplying both sides of (10.9) by the decay constant λP and recalling (10.10) we
get

λPNP(t)= λPNP(0)e
−λPt or AP(t)= AP(0)e

−λPt . (10.11)

(c) The definition of half-life (t1/2)P of a radioactive substance in conjunction with
(10.9) implies the following relationship

NP
[
t = (t1/2)P

]= 1

2
NP(0)=NP(0)e

−λP(t1/2)P , (10.12)

while in conjunction with (10.11) it gives the following expression

AP
[
t = (t1/2)P

]= 1

2
AP(0)= AP(0)e

−λP(t1/2)P . (10.13)

Cancelling NP(0) in (10.12) or cancelling AP(0) in (10.13) we first get

1

2
= e−λP(t1/2)P or ln

1

2
= −λP(t1/2)P. (10.14)

Solving (10.14) for (t1/2)P we obtain the following relationship linking half-life
(t1/2)P of the parent nucleus with its decay constant λP

(t1/2)P = ln 2

λP
or λP = ln 2

(t1/2)P
. (10.15)

(d) The actual lifetime of any radioactive parent nucleus P can vary from 0 to ∞;
however, for a large number NP of parent nuclei we can define the average (mean)
lifetime or expectation value τP of radioactive parent substance P that equals the
sum of lifetimes of all individual atoms divided by the initial number NP(0) of
radioactive nuclei.
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The average (mean) lifetime τP thus represents the average life expectancy of all
nuclei in radioactive substance P at time t = 0; i.e.,

AP(0)τP = AP(0)
∫ ∞

0
e−λPt dt = AP(0)

λP
=NP(0). (10.16)

Therefore, mean lifetime τP, half-life (t1/2)P, and the decay constant λP are related
through the following expression

τP = 1

λP
= (t1/2)P

ln 2
. (10.17)

Inserting (10.17) into (10.9), the mean life τP can also be defined as the time re-
quired for the number of radioactive atoms NP(t) to fall from its initial value NP(0)
at time t = 0 to a value of e−1NP(0) corresponding to 0.368NP(0) or to 36.8 % of
NP(0) at time t = τP. In similar fashion, inserting (10.17) into (10.11), the mean life
τP can be defined as the time required for the activity of radioactive substance AP(t)

to fall from its initial value AP(0) at time t = 0 to a value of e−1AP(0) corresponding
to 0.368AP(0) or to 36.8 % of AP(0) at time t = τP.

The mean (average) survival life τP of a parent nucleus P can also be determined
using the standard method for finding the average (mean) of a continuous variable
as follows

τP =
∫∞

0 te−λPt dt∫∞
0 e−λPt dt

=
1
λ2

P
1
λP

= 1

λP
, (10.18)

where the integral in the numerator of (10.18) is determined using the method of
integration by parts.

10.2.Q2 (213)

Data in Table 10.1 represent measured activity AP in millicuries (mCi) as a
function of time t for an unknown radionuclide P that decays into a stable
daughter D. For the unknown radionuclide substance P:

(a) Plot the data of Table 10.1 in the format of activity AP against time t
on Cartesian and semi-logarithmic graph paper and estimate the decay
half-life (t1/2)P of radionuclide P.

(b) Using the least squares fit to measured data determine the decay con-
stant λP.

(c) Determine the half-life (t1/2)P.
(d) Determine the mean lifetime τP.
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Table 10.1 Measured activity AP measured at various times t after the first measurement AP(0)
at time t = 0 for radioactive parent P decaying into stable daughter D

Time t (min) 0 1 2 3 4 5 6 8 10 12

Activity AP(t) (mCi) 3.6 3.2 2.8 2.4 2.1 1.9 1.6 1.3 1.0 0.7

Fig. 10.1 Data of Table 10.1 for activity of parent P decaying into daughter D plotted in (A) on
Cartesian scale and in (B) on semi-logarithmic scale. Rough estimate of half-life (t1/2)P = 5.2 min
is 5.2 minutes

SOLUTION:

(a) Measured data presented in Table 10.1 are depicted in Fig. 10.1 with activity
AP plotted on the ordinate (y axis) and time t on the abscissa (x axis). Part (A) is
plotted on Cartesian scale, part (B) on semi-logarithmic (log-lin) scale. Both graphs
support the assumption that the relationship between activity AP and time t is expo-
nential.
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Activity AP(t) at time t of parent nuclide P decaying into stable daughter D is
described by the following exponential expression

AP(t)= AP(0)e
−λPt , (10.19)

where AP(0) is the parent activity at time t = 0 and λP is a decay parameter referred
to as the decay constant related to half-life (t1/2)P and mean lifetime τP as follows

λP = ln 2

(t1/2)P
= 1

τP
. (10.20)

Based on graphs in Fig. 10.1 we can estimate the half-life (t1/2)P of the unknown
radioactive substance P by estimating the time required for the activity AP to de-
crease from AP(0) = 3.6 mCi to 0.5AP(0) = 1.8 mCi. This direct approach results
in an estimate of (t1/2)P ≈ 5.2 min.

(b) To improve on the rough estimate of (t1/2)P ≈ 5.2 min in (a) we now ap-
ply the method of linear curve fitting based on least-squares fit to measured data.
To determine the decay constant λP from the data presented in Table 10.1 we first
transform (10.19) into a linear function by applying the natural algorithm to both
sides of (10.19) as follows

ln AP(t)= ln AP(0)− λPt. (10.21)

Equation (10.21) is a linear equation of the standard form y = b+ ax with depen-
dent variable y given as ln AP(t), ordinate (y) axis intercept b given as ln AP(0),
dependent variable x given as t , and slope a given as −λP. We assume that val-
ues of the independent variable xi are set accurately and values of the dependent
variable yi are measurements subject to some small uncertainty.

Next we apply the method of least squares fit using the following standard least
squares fit expressions for the slope a of the linear function (10.21) and the y inter-
cept b of the linear function

a = n
∑n
i=1 xiyi −

∑n
i=1 xi

∑n
i=1 yi

n
∑n
i=1 x

2
i − (∑n

i=1 xi)
2

(10.22)

and

b=
∑n
i=1 x

2
i

∑n
i=1 yi −

∑n
i=1 xi

∑n
i=1 xiyi

n
∑n
i=1 x

2
i − (∑n

i=1 xi)
2

, (10.23)

where i is the running index and n is the number of data points in a particular set of
data. In Table 10.2 we show the individual components (xi , yi , x2

i , and xiyi ) of the
data set used for the least squares fit method. In addition, row (12) of the table gives
the calculated sums

∑n
i=1 xi ,

∑n
i=1 yi ,

∑n
i=1 x

2
i , and

∑n
i=1 xiyi for use in (10.22)

and (10.23) in determination of a and b.
Data in row (12) of Table 10.2 in conjunction with (10.22) and (10.23) give the

following results for the slope a and y intercept b, respectively,
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Table 10.2 Parameters xi , yi , x2
i , and xiyi for the data set presented in Table 10.1 representing

measured activity AP(t) as a function of time t for a radioactive parent nucleus P decaying into
a stable daughter D. Row (12) of the table provides the sum of the individual components for
parameters xi , yi , x2

i , and xiyi

(1) i xi yi x2
i xiyi

(2) 1 0 1.281 0 0.000

(3) 2 1 1.163 1 1.163

(4) 3 2 1.030 4 2.059

(5) 4 3 0.875 9 2.626

(6) 5 4 0.742 16 2.968

(7) 6 5 0.642 25 3.209

(8) 7 6 0.470 36 2.820

(9) 8 8 0.262 64 2.099

(10) 9 10 0.000 100 0

(11) 10 12 −0.357 144 −4.280

(12) SUM
∑n
i=1 51 6.109 399 12.665

a = n
∑n
i=1 xiyi −

∑n
i=1 xi

∑n
i=1 yi

n
∑n
i=1 x

2
i − (∑n

i=1 xi)
2

= 10×12.665 − 51×6.109

10×399 − (51)2
= −0.133

(10.24)
and

b =
∑n
i=1 x

2
i

∑n
i=1 yi −

∑n
i=1 xi

∑n
i=1 xiyi

n
∑n
i=1 x

2
i − (∑n

i=1 xi)
2

= 399×6.109 − 51×12.665

10×399 − (51)2
= 1.290. (10.25)

A plot of the data points (xi, yi ) from Table 10.2 as well as the line y = b+ ax
with slope a = −0.133 and y intercept b= 1.29 is shown in Fig. 10.2. From (10.24)
and (10.25) we can now determine the decay constant λP and the initial activity
AP(0) as follows

λP = −a = 0.133 min−1 (10.26)

and

AP(0)= eb = e1.29 = 3.63 mCi. (10.27)

(c) Half-life (t1/2)P of the radionuclide P is determined from the well-known re-
lationship between (t1/2)P and λP given in (10.20) as

(t1/2)P = ln 2

λP
= ln 2

0.133 min−1
= 5.21 min. (10.28)
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Fig. 10.2 Plot of the data points (xi, yi ) from Table 10.2 as well as the line y = b+ ax with slope
a = −0.133 and y intercept b= 1.29

Mean lifetime τP of the radionuclide P is also determined from (10.20)

τP = 1

λP
= 1

0.133 min−1
= 7.52 min. (10.29)

10.3 Radioactive Series Decay

10.3.Q1 (214)

Radioactive decay through a series of radioactive transformations is much
more common than the simple radioactive decay from a radioactive parent
into stable daughter. The radioactive decay series forms a decay chain start-
ing with the parent radionuclide and moves through several generations to
eventually end with a stable nuclide.

Consider the simple chain P → D → G where both the parent P and daugh-
ter D are radioactive and the granddaughter G is stable. The parent decays
with a decay constant λP while the daughter decays with a decay constant λD.
For this simple decay series:

(a) State the differential equations governing the kinetics of the radioactive
parent and radioactive daughter.
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(b) Solve the differential equations in (a) with the following initial condi-
tions:

(1) Initial number of parent nuclei NP(t) at time t = 0 is NP(0).
(2) Initial number of daughter nuclei ND(t = 0)=ND(0)= 0.

to get expressions for the number of parent nuclei NP and for the num-
ber of daughter nuclei ND(t) as a function of time t .

(c) Using the results of (b) obtain an expression for activity of the daughter
AD(t).

(d) The expression for the daughter activity AD(t) derived in (c) should
predict AD(t) = 0 for t = 0 [recall the initial condition ND(0) = 0] as
well as for t → ∞ (recall that at t = ∞ all daughter nuclei will have
decayed). This means that AD(t) must reach a maximum value (AD)max
at a characteristic time (tmax)D somewhere between the two extremes:
t = 0 and t = ∞, i.e., 0 < (tmax)D <∞. Derive an expression for the
characteristic time (tmax)D.

(e) Show that for λP � λD (but not λP = λD) and for λP � λD (but
not λP = λD) the characteristic time (tmax)D can be approximated by
(tmax)D ≈ 1/

√
λPλD. To verify this approximation calculate (tmax)D

with this approximation and compare results with the expression de-
rived in (d) for the following two radioactive series decays: (1) Series
decay with λP = 2.1 y−1 and λD = 2.0 y−1 and (2) Series decay with
λP = 5.1 s−1 and λP = 5.5 s−1.

SOLUTION:

(a) The differential equations governing the kinetics of the parent P and the daugh-
ter D nuclei in the simple P → D → G decay chain describe the rate of change in
the number of parent nuclei NP(t) and in the number of daughter nuclei ND(t).

(1) For the parent, the rate of change dNP(t)/dt in the number of parent nuclei is
given by the standard expression dealing with nuclear decay

dNP(t)

dt
= −λPNP(t), (10.30)

with the minus sign indicating a decrease in the number of parent nucleiNP(t)

with increasing time t .
(2) The rate of change dND(t)/dt in the number of daughter nuclei D is equal

to the supply of new daughter nuclei D through the decay of P given as
λPNP(t) and the loss of daughter nuclei D from the decay of D to G given
as [−λDND(t)]. The rate of change dND/dt is expressed as
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dND(t)

dt
= λPNP(t)− λDND(t). (10.31)

(b) Equation (10.30) shows that the parent P follows a straightforward radioac-
tive decay process with the initial condition NP(t = 0) = NP(0) and the following
solution

NP(t)=NP(0)e
−λPt . (10.32)

The solution to (10.31) for the daughter, on the other hand, is more complicated and
will be determined after inserting (10.32) into (10.31) to get the following expres-
sion for the rate of change in the number of daughter nuclei

dND(t)

dt
= λPNP(0)e

−λPt − λDND(t). (10.33)

The general solution of the differential equation given by (10.33) is given as

ND(t)=NP(0)
[
pe−λPt + de−λDt

]
, (10.34)

where p and d are constants to be determined using the following four steps:

1. Differentiate (10.34) with respect to time t to obtain

dND(t)

dt
=NP(0)

[−pλPe
−λPt − dλDe

−λDt
]
. (10.35)

2. Insert (10.34) and (10.35) into (10.33) and rearrange the terms to get

e−λPt [−pλP − λP + pλD] = 0. (10.36)

3. The factor in square brackets of (10.36) must be equal to zero to satisfy the
equation for all possible values of t , yielding the following expression for the
constant p

p = λP

λD − λP
. (10.37)

4. The coefficient d depends on the initial condition for ND(t) at t = 0. With
the standard initial condition ND(0)= 0 we get the following simple equation
from (10.34)

p+ d = 0 (10.38)

which upon insertion of (10.37) provides the following result for constant d

d = −p = − λP

λD − λP
= λP

λP − λD
. (10.39)
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After inserting (10.37) and (10.39) into (10.34) we get the following expression for
the number of daughter nuclei ND(t) as a function of time t

ND(t)=NP(0)
λP

λD − λP

[
e−λPt − e−λDt

]
. (10.40)

(c) The simple P → D → G radioactive series decay with radioactive parent P de-
caying through radioactive daughter D into stable grand-daughter G is characterized
by equations describing the number of parent nuclei NP(t) and number of daughter
nuclei ND(t) given by (10.32) and (10.40), respectively. Activities AP(t) and AD(t)

of the parent and daughter, respectively, in a radioactive sample are also of interest
and can be determined by recalling that, in general, the activity A(t) of a radionu-
clide is the product of its decay constant λ and the numberN(t) of radioactive nuclei
present in the sample.

We thus get the following expressions for the activity of the parent AP(t)

from (10.32) and activity of the daughter AD(t) from (10.40), respectively

AP(t)= λPNP(t)= λPNP(0)e
−λPt = AP(0)e

−λPt (10.41)

and

AD(t) = λDND(t)= λDNP(0)
λP

λD − λP

[
e−λPt − e−λDt

]

= λPNP(0)
λD

λD − λP

[
e−λPt − e−λDt

]= AP(0)
λD

λD − λP

[
e−λPt − e−λDt

]
,

(10.42)

where AP(0) is the activity of the parent at time t = 0.
A test of the limiting value of AD(t) given in (10.42) for t = 0 and t → ∞ yields

zero, as it should according to: (1) initial condition ND(0)= 0 and (2) at t = ∞ all
daughter nuclei will have decayed. From (10.42) we note: (1) limt→0 AD(t)= 0 and
(2) limt→∞ AD(t)= 0.

(d) The characteristic time (tmax)D at which the daughter activity AD(t) attains its
maximum value (AD)max is determined by setting dAD/dt = 0 at t = (tmax)D and
solving for (tmax)D to get

dAD(t)

dt

∣∣∣∣
t=(tmax)D

= NP(0)
λDλP

λD − λP

d

dt

[
e−λPt − e−λDt

]
t=(tmax)D

= NP(0)
λDλP

λD − λP

[−λPe
−λP(tmax)D + λDe

−λD(tmax)D
]= 0.

(10.43)

From (10.43) we first get

λPe
−λP(tmax)D = λDe

−λD(tmax)D (10.44)
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then
λP

λD
= e(λP−λD)×(tmax)D (10.45)

and finally get the following general result for (tmax)D

(tmax)D = ln λP
λD

λP − λD
. (10.46)

(e) For λP � λD and 0 < ε � 1 we assume the following relationship between
decay constants λP and λD of the parent and daughter, respectively

λP = λD(1 + ε) or λP(1 − ε)≈ λD. (10.47)

Inserting (10.47) into (10.46) we get

(tmax)D = ln λP
λD

λP − λD
≈ ln(1 + ε)

ελD
. (10.48)

The logarithm in (10.48) can be simplified with Taylor expansion into a series as
follows

ln(1 + ε)≈ ε− 1

2
ε2 + 1

3
ε3 − 1

4
ε4 + · · · . (10.49)

For very small ε we insert (10.47) and the first two terms of the Taylor series (10.49)
into (10.48) and get the following expression for (tmax)D

(tmax)D ≈ ln(1 + ε)
ελD

≈ 1 − 1
2ε

λD
≈

√
1 − ε
λD

≈ 1√
λPλD

. (10.50)

Similarly, for λPλD and 0< ε� 1 we assume the following relationship

λP = λD(1 − ε) or λP(1 + ε)= λD. (10.51)

Inserting (10.51) into (10.48) we get

(tmax)D = ln λP
λD

λP − λD
≈ ln(1 − ε)

−ελD
. (10.52)

The logarithm in (10.52) can be simplified with Taylor expansion into a series as
follows

ln(1 − ε)≈ −
[
ε+ 1

2
ε2 + 1

3
ε3 + 1

4
ε4 + · · ·

]
. (10.53)

For very small ε we insert (10.51) and the first two terms of the Taylor expansion
(10.53) into (10.52) and get the following expression for (tmax)D

(tmax)D ≈ ln(1 − ε)
ελD

≈ 1 + 1
2ε

λD
≈

√
1 + ε
λD

≈ 1√
λPλD

. (10.54)
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We now compare results of (tmax)D calculation with the general expression for
(tmax)D given in (10.46) and with the approximation given in (10.51) and (10.54).

(1) Series decay with λP = 2.1 y−1 and λD = 2.0 y−1 for which λPλD

(tmax)D = ln λP
λD

λP − λD
= ln 2.1

2.0

2.1 − 2.0
y−1 = 0.4879 y, (10.55)

(tmax)D ≈ 1√
λPλD

= 1√
2.1×2.0

y = 0.48795 y. (10.56)

(2) Series decay with λP = 5.1 s−1 and λP = 5.5 s−1

(tmax)D = ln λP
λD

λP − λD
= ln 5.1

5.5

5.1 − 5.5
y−1 = 0.1888 y, (10.57)

(tmax)D ≈ 1√
λPλD

= 1√
2.1×2.0

y = 0.1888 y. (10.58)

10.3.Q2 (215)

The molybdenum-99 (Mo-99) → technetium-99m (Tc-99m) → technetium-
99 (Tc-99) decay series plays an important role in nuclear medicine, since it
serves as the source of Tc-99m, the most widely used radionuclide for nuclear
imaging tests. The series parent radionuclide Mo-99 decays through β− decay
with a half-life (t1/2)Mo-99 = 66.0 hours into daughter radionuclide Tc-99m.
Subsequently, the daughter Tc-99m decays through gamma emission with a
half-life (t1/2)Tc-99m = 6.02 hours to the granddaughter radionuclide Tc-99.
The Tc-99 radionuclide has a much longer half-life [(t1/2)Tc-99 = 2.1×105 y]
in comparison with Mo-99 and Tc-99m and decays through β− decay to
ruthenium-99 (Ru-99).

Starting with a pure 10 mCi (0.37 GBq) Mo-99 source:

(a) State or derive equations for activities of the Mo-99 parent and Tc-99m
daughter as a function of time.

(b) Calculate the characteristic time (tmax)Tc-99m at which the Tc-99m
daughter radionuclide attains its maximum activity.

(c) Determine the maximum activity AD[(tmax)Tc-99m] of the Tc-99m ra-
dionuclide.

(d) Show that activities of the parent AP[(tmax)Tc-99m] and the daughter
AD[(tmax)Tc-99m] are equal at the characteristic time (tmax)Tc-99m.
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(e) Sketch the activities of the Mo-99 parent and Tc-99m daughter as a
function of time and highlight the salient features of the two radioactive
decay curves.

SOLUTION:

(a) Activities of the parent AP(t) = AMo-99(t) and of the daughter AD(t) =
ATc-99m(t) as a function of time t are, respectively, given by [see (T10.10)
and (T10.35), respectively]

AP(t)= AP(0)e
−λPt (10.59)

or

AMo-99(t)= AMo-99(0)e
−λMo-99t (10.60)

and

AD(t)= AP(0)
λD

λD − λP

[
e−λPt − e−λDt

]
(10.61)

or

ATc-99m(t)= AMo(0)
λTc-99m

λTc-99m − λMo-99

[
e−λMo-99t − e−λTc-99mt

]
, (10.62)

where

AP(0) is the activity of the parent P at time t = 0.
λP is the decay constant for the parent P radionuclide.
λD is the decay constant for the daughter D radionuclide.

Decay constants λ for molybdenum-99 and technetium-99m are obtained from their
known half-lives t1/2 using the standard relationship λ= (ln 2)/t1/2. Thus, for Mo-
99 we have

λP = λMo-99 = ln 2

(t1/2)Mo-99
= ln 2

66.0 h
= 1.05×10−2 h−1 (10.63)

and for Tc-99m

λD = λTc-99m = ln 2

(t1/2)Tc-99m
= ln 2

6.02 h
= 0.115 h−1. (10.64)

Inserting (10.63) and (10.64) into (10.59) and (10.61) and using the initial activity
AP(0)= 10 mCi of the parent (Mo-99) radionuclide we get

AP(t)= AMo-99(t)= (10 mCi)×e−(1.05×10−2 h−1)×t (10.65)
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and

AD(t) = ATc-99m(t)

= (10 mCi)× 0.115

0.115 − 1.05×10−2

[
e−(1.05×10−2 h−1)×t − e−(0.115 h−1)×t]

= (11.0 mCi)×[
e−(1.05×10−2 h−1)×t − e−(0.115 h−1)×t]. (10.66)

(b) Activity of the parent AP(t) falls exponentially with increasing time t ; how-
ever, activity of the daughter AD(t) initially increases from zero to reach a maximum
at a specific characteristic time (tmax)D and then decreases with increasing time t to
return to zero at t → ∞.

The characteristic time (tmax)D is determined by setting dAD(t)/dt = 0 at
t = (tmax)D. Differentiating (10.61) results in

dAD(t)

dt
= AP(0)

λD

λD − λP

[
λDe

−λDt − λPe
−λPt

]
(10.67)

and setting dAD(t)/dt = 0 at t = (tmax)D we get

λDe
−λD(tmax)D = λPe

−λP(tmax)D . (10.68)

Solving (10.68) for (tmax)D finally yields the following result for characteristic
time (tmax)D

(tmax)D = ln λP
λD

λP − λD
. (10.69)

For the Mo-99 → Tc-99m → Tc-99 decay series the characteristic time (tmax)D at
which ATc-99m(t) attains its maximum value is calculated as follows

(tmax)D = (tmax)Tc-99m = ln 1.05×10−2

0.115

(1.05×10−2 h−1 − 0.115 h−1)
= 22.88 h ≈ 23 h.

(10.70)
(c) Maximum activity AD[(tmax)D] of the daughter Tc-99m at (tmax)D is obtained
by inserting into (10.66) the characteristic time t = (tmax)D ≈ 22.88 hr that was
calculated in (10.70) to get

AD
[
(tmax)D

] = ATc-99m
[
(tmax)Tc-99m

]
= (11.0 mCi)×[

e−1.05×10−2×22.88 − e−0.115×22.88]
= 7.86 mCi. (10.71)

(d) Daughter activity AD(t) in (10.61) can be expressed as a function of parent
activity AP(t) as follows

AD(t)= AP(0)e
−λPt

λD

λD − λP

[
1 − e−(λD−λP)t

]= AP(t)
λD

λD − λP

[
1 − e−(λD−λP)t

]
,

(10.72)
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and at characteristic time (tmax)D (10.72) becomes

AD
[
(tmax)D

]= AP
[
(tmax)D

] λD

λD − λP

[
1 − e−(λD−λP)(tmax)D

]
. (10.73)

Inserting (10.69) for (tmax)D into (10.73) gives the following expression for
AD[t = (tmax)D]

AD
[
(tmax)D

] = AP
[
(tmax)D

] λD

λD − λP

[
1 − e−(λD−λP)

ln
λP
λD

λP−λD
]

= AP
[
(tmax)D

] λD

λD − λP

[
1 − λP

λD

]
= AP

[
(tmax)D

]
, (10.74)

showing explicitly that at t = (tmax)D the parent and daughter activities are equal.
We now determine the maximum activity of the daughter Tc-99m in AD[(tmax)D]

using (10.65) with t = (tmax)D ≈ 22.88 hr

AD
[
(tmax)D

]= AP
[
(tmax)D

]= (10 mCi)×e−1.05×10−2×22.88 = 7.86 mCi (10.75)

and obtain the same result as we did with (10.66) for the daughter activity
AD[(tmax)D]. Thus, at t = (tmax)D activities of the parent and the daughter are equal
in general and, in our case with 10 mCi parent at t = 0, the activity of parent and
daughter are 7.86 mCi and (tmax)D ≈ 23 h.

(e) The parent (Mo-99) and daughter (Tc-99m) activities AP(t) and AD(t), re-
spectively, are shown in Fig. 10.3 plotted against time t using (10.65) and (10.66),
respectively. A sketch of the two activity curves can be drawn based on a few im-
portant features or anchor points shown on the curves. The following features of
P → D → G radioactive decay series should be considered:

(1) Parent activity AP(t) = AMo-99(t) follows exponential decay starting at
AMo-99(0)= 10 mCi (see Point 1 in Fig. 10.3).

(2) Since (t1/2)Mo = 66 h, we know that AMo-99(66 h) = 5 mCi (see Point 4 in
Fig. 10.3), AMo-99(132 h)= 2.5 mCi, etc.

(3) Daughter activity AD(t) = ATc-99m(t) is zero at t = 0 (initial condition: see
Point 2 in Fig. 10.3). With increase in time, ATc-99m(t) first increases, reaches
a peak of 7.86 mCi (see Point 3 in Fig. 10.3) as determined in (c), at a charac-
teristic time (tmax)Tc-99m ≈ 23 h as determined in (b).
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Fig. 10.3 Activity of parent (Mo-99) and daughter (Tc-99m), AP(t) and AD(t), respectively,
against time t . Point (1): initial condition AMo-99(0) = 10 mCi; point (2): initial condition
ATc-99m(0) = 0; point (3) characteristic time (tmax)Tc-99m ≈ 23 h and ATc-99m[(tmax)Tc-99m] =
7.86 mCi; and point (4) half-life of Mo-99 (t1/2)Mo-99 = 66 h

10.3.Q3 (216)

Figure 10.4 shows three activity A(t) curves plotted against time t for
the radioactive series decay: Molybdenum-99 (Mo-99) → Technetium-
99m (Tc-99m) → Technetium-99 (Tc-99) starting with a pure 10 mCi
(0.37 GBq) Mo-99 source. Half-lives (t1/2)P = (t1/2)Mo-99 = 66 h and
(t1/2)D = (t1/2)Tc-99m = 6.02 h correspond to decay constants λP = λMo-99 =
1.05×10−2 h−1 and λD = λTc-99m = 0.115 h−1, respectively. The following
three points should be noted:

(1) Curve 1 is exponential and represents the parent P radionuclide Mo-
99 decay into daughter D radionuclide Tc-99m starting with activity
AP(0)= 10 mCi at time t = 0.

(2) Curve 2 shows the activity AD(t) of daughter radionuclide for initial
condition AD(0)= 0.

(3) Curve 3 represents the total activity Atot(t) of the Mo-Tc sample as the
sum of the parent and daughter activity as a function of time starting
with Atot(0)= 10 mCi at time t = 0.

(a) State or derive equations for the three activity curves shown in Fig. 10.4.
(b) For curve 2 of Fig. 10.4 verify that limt→0 AD(t)= 0 and limt→∞ AD(t)

= 0 and determine the characteristic time (tmax)D at which activity
AD(t) reaches its maximum value.
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Fig. 10.4 Activities of parent Mo-99 (curve 1) and daughter Tc-99m (curve 2) against time t for
molybdenum-99 → technetium-99m → technetium-99 radioactive decay series for a pure molyb-
denum source with initial activity of 10 mCi at time t = 0. Also shown is the total activity of the
sample (curve 3) against time given as the sum of the parent and daughter activities

(c) For curve 3 of Fig. 10.4 verify that limt→0 Atot(t) = 10 mCi and
limt→∞ Atot(t)= 0.

(d) Derive a general expression for calculation of the characteristic time
Tmax at which curve 3 of Fig. 10.4 representing the total activity Atot(t)

of the Mo-Tc sample attains its maximum value.
(e) Calculate Tmax for curve 3 of Fig. 10.4.
(f) Calculate the maximum total activity Atot(t) at t = Tmax for curve 3 of

Fig. 10.4.

SOLUTION:

(a) Since the daughter product Tc-99m of the Mo-99 → Tc-99m → Tc-99 ra-
dioactive decay series is a metal, it remains in the molybdenum sample unless it is
separated for medical purpose from the sample by means of a solvent (elution pro-
cess). When left in the Mo-99 sample, the total activity Atot(t) of the sample is the
sum of the parent (Mo-99) activity AP(t) and the daughter (Tc-99m) activity AD(t).
The daughter Tc-99m decays into granddaughter G (Tc-99) which is a radionuclide
with a very long half-life of 211000 years, so that we assume that G in our decay
series is stable.

Expressions for the three decay curves of Fig. 10.4 are as follows:
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(1) Curve 1 represents a simple exponential decay of the parent nucleus expressed
as (T10.10)

AP(t)= AP(0)e
−λPt , (10.76)

with the initial condition AP(0)= 10 mCi.
(2) Curve 2 represents the activity AD(t) of the daughter radionuclide and is ex-

pressed as follows (T10.35)

AD(t)= AP(0)
λD

λD − λP

[
e−λpt − e−λDt

]
, (10.77)

with the initial condition AD(0)= 0.
(3) Curve 3 represents the total activity Atot(t) of the Mo-Tc sample and is given

as a sum of AP(t) of (10.76) and AD(t) of (10.77) as follows

Atot(t) = AP(t)+ AD(t)= AP(0)e
−λPt + AP(0)

λD

λD − λP

[
e−λpt − e−λDt

]

= AP(0)

λD − λP

[
(2λD − λP)e

−λpt − λDe
−λDt

]
. (10.78)

(b) Daughter activity AD(t) is given by (10.77) and the limits for (1) t → 0 and
(2) t → ∞ are

(1)

lim
t→0

AD(t)= AP(0)
λD

λD − λP
lim
t→0

[
e−λpt − e−λDt

]= AP(0)
λD

λD − λP
[1 − 1] = 0

(10.79)
and

(2)

lim
t→∞ AD(t)= AP(0)

λD

λD − λP
lim
t→∞

[
e−λpt−e−λDt

]= AP(0)
λD

λD − λP
[0−0] = 0

(10.80)
(3) Characteristic time (tmax)D at which AD(t) reaches its maximum is determined

by setting dAD(t)/dt = 0 at t = (tmax)D and solving for (tmax)D to get the
following result for Tc-99m (T10.37) using the following decay constants for
Tc-99m: λP = λMo-99 = 1.05×10−2 h−1 and λD = λTc-99m = 0.115 h−1

(tmax)D = ln λP
λD

λP − λD
= ln 1.05×10−2

0.115

1.05×10−2 h−1 − 0.115 h−1
= −2.394

−0.1045 h−1
.

= 22.9 h. (10.81)

(c) Total activity Atot(t) is given by (10.78) and the limits for t → 0 and t → ∞
are as follows

lim
t→0

Atot(t) = AP(0)

λD − λP
lim
t→0

[
(2λD − λP)e

−λpt − λDe
−λDt

]= AP(0)

λD − λP
(λD − λP)

= AP(0) (10.82)



658 10 Kinetics of Radioactive Decay

and

lim
t→∞ Atot(t)= AP(0)

λD − λP
lim
t→∞

[
(2λD − λP)e

−λpt − λDe
−λDt

]= AP(0)

λD − λP
[0 − 0] = 0.

(10.83)
(d) As curve 3 of Fig. 10.4 shows, Atot(t) is equal to AP(0) = 10 mCi at t = 0
where AD(0) = 0, and then rises with increasing time t until it reaches a peak at a
characteristic time t = Tmax. After the peak, total activity Atot(t) decreases toward 0
with increasing t following the decrease of both AP(t) and AD(t) toward 0 at t = ∞.
Characteristic time Tmax should not be confused with (tmax)D, the characteristic
time at which the daughter activity AD(t) attains its maximum value, since the two
characteristic times are not equal.

(e) Tmax is determined by setting dAtot/dt = 0 at t = Tmax and solving for Tmax as
follows

dAtot

dt

∣∣∣∣
t=Tmax

= AP(0)

λD − λP

[−(2λD − λP)λPe
−λpTmax + λ2

De
−λDTmax

]= 0. (10.84)

Equation (10.84) can be simplified to read

(2λD − λP)λPe
−λpTmax = λ2

De
−λDTmax , (10.85)

resulting in the following general expression for Tmax

Tmax =
ln (2λD−λP)λP

λ2
D

λP − λD
(10.86)

and the following solution for our problem with decay constants λP = λMo-99 =
1.05×10−2 h−1 and λD = λTc-99m = 0.115 h−1

Tmax =
ln (2λD−λP)λP

λ2
D

λP − λD
= ln (2×0.115−1.05×10−2)×1.05×10−2

0.115×0.115

(1.05×10−2 − 0.115) h−1
= 16.72 h. (10.87)

(f) The maximum in total activity Atot occurs at Tmax = 16.72 h, as determined
in (e). At t = Tmax the total activity has the following magnitude

Atot(Tmax) = AP(0)

λD − λP

[
(2λD − λP)e

−λpTmax − λDe
−λDTmax

]

= 10 mCi

(0.115 − 1.05×10−2)

[(
2×0.115 − 1.05×10−2)e−1.05×10−2×16.72

− 0.115e−0.115×16.72]
= 16.02 mCi. (10.88)

Equation (10.88) shows that the total activity Atot(t) of a pure molybdenum-99
source increases with time from t = 0 until it reaches peak activity Atot(Tmax) at a
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characteristic time Tmax and then it decreases with time until it reaches zero activity
at time t → ∞. In contrast, the daughter activity AD reaches its maximum value at
its own characteristic time (tmax)D that is larger than the characteristic time Tmax.

For initial activity of a pure molybdenum source of 10 mCi, the total sample
activity reaches its maximum of 16.02 mCi at a characteristic time Tmax of 16.72
hours. The daughter activity, on the other hand, reaches its maximum at a character-
istic time (tmax)D of 23 hours.

10.3.Q4 (217)

Consider the simplest radioactive decay series: P → D → G, where both the
parent P and daughter D are radioactive and the granddaughter G is stable.

(a) State or derive expressions for NP(t), ND(t) where NP(t) is the number
of parent nuclei, ND(t) the number of daughter nuclei, and NG(t) the
number of grand-daughter nuclei, all as a function of time t , where 0 ≤
t ≤ ∞. Use the following initial conditions: NP(t = 0) = NP(0) > 0,
ND(t = 0)= 0, and NG(t = 0)= 0.

(b) Validate the expression for NG(t) derived in (a) by showing that:
(1) limt→0NG(0)= 0 and (2) limt→∞NG(0)=NP(0).

(c) Calculate the sum NP(t)+ND(t)+NG(t) using expressions for NP(t),
ND(t), and NG(t) from (a). Do you get the result you expected?

(d) Figure 10.5 shows 3 curves representing NP(t), ND(t), and NG(t) nor-
malized such that NP(t = 0) = 1 and plotted against time t for the
decay series Mo-99 → Tc-99m → Tc-99 with λP = 1.05×10−2 h−1,
λD = 0.115 h−1, and λG ≈ 0. Identify the 3 curves.

Fig. 10.5 Normalized number of nuclei NP, ND, and NG against time t for the radioactive decay
series Mo-99 → Tc-99m → Tc-99



660 10 Kinetics of Radioactive Decay

(e) Of the 3 curves in Fig. 10.5, curve 1 decreases from 1 exponentially
with time; curve 2 starts at zero, increases with time, exhibits a peak
and then decreases with time; and curve 3 increases with time from zero
and approaches 1 asymptotically. For curve 2, calculate the time tmax at
which the curve attains its peak value and determine the normalized
peak value.

SOLUTION:

(a) Expressions for NP(t) and ND(t) are well known [see, for example, (T10.9)
and (T10.34), respectively], so they will not be derived here. NP(t) exhibits a pure
exponential behavior and ND(t) accounts for the supply of new daughter nuclei
through the decay of P given as λPNP(t) and the loss of daughter nuclei D from the
concurrent decay of D to G given as −λDND(t), where λP and λD are the decay
constants of parent P and daughter D, respectively.

For initial conditions NP(t = 0)=NP(0) and ND(t = 0)= 0 we have the follow-
ing expressions for NP(t) and ND(t), respectively

dNP(t)

dt
= −λPNP(t) or NP(t)=NP(0)e

−λPt (10.89)

and

dND(t)

dt
= λPNP(t)− λDND(t) or ND(t)=NP(0)

λP

λD − λP

[
e−λPt − e−λDt

]
.

(10.90)
Functional dependence of NG(t) is less known and can be derived by recognizing
that the rate of change (growth) of G is governed by the decay of D, expressed as
follows

dNG(t)

dt
= −λDND(t). (10.91)

Inserting (10.90) into (10.91) we get the following expression for dNG(t)/dt

dNG(t)

dt
=NP(0)

λDλP

λD − λP

[
e−λPt − e−λDt

]
. (10.92)

Upon integration of (10.92) from 0 to t we get the following expression for NG(t)

NG(t)=NP(0)
λDλP

λD − λP

[
−e

−λPt

λP
+ e−λDt

λD

]
+C, (10.93)

where C is an integration constant, for initial condition NG(t = 0)= 0 given as

NG(t = 0)=NP(0)
λDλP

λD − λP

[
− 1

λD
+ 1

λP

]
+C =NP(0)

λP − λD

λD − λP
+C = 0 (10.94)
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or

C =NP(0). (10.95)

Based on (10.93) incorporating (10.95) the number of grand-daughter nuclei NG(t)

as a function of time t is given as follows

NG(t) = NP(0)

{
1 − λDλP

λD − λP

[
e−λPt

λP
− e−λDt

λD

]}

= NP(0)

{
1 − λDe

−λPt

λD − λP
+ λPe

−λDt

λD − λP

}
. (10.96)

In summary, the number of parent nuclei NP(t) is given by (10.89), the number of
daughter nuclei ND(t) by (10.90), and the number of granddaughter nuclei NG(t)

by (10.96).

(b) The limits of NG(t) for t → 0 and t → ∞ resulting from (10.96) are as fol-
lows

(1)

lim
t→0

NG(t) = NP(0) lim
t→0

{
1 − λDe

−λPt

λD − λP
+ λPe

−λDt

λD − λP

}

= NP(0)

{
1 − λD

λD − λP
+ λP

λD − λP

}
= 0 (10.97)

(2)

lim
t→∞NG(t)=NP(0) lim

t→∞

{
1 − λDe

−λPt

λD − λP
+ λPe

−λDt

λD − λP

}
=NP(0). (10.98)

(c) Since the initial conditions for our radioactive sample stipulate that at t = 0
we are dealing with a pure parent radioactive source, i.e., NP(t = 0) = NP(0),
ND(t = 0) = 0, and NG(t = 0) = 0, we conclude that at any time t > 0 the sum
of all nuclei NP(t), ND(t), and NG(t) must be equal to NP(0), the initial number of
nuclei in the decay series. We now prove that this conclusion is correct by producing
a sum consisting of NP(t) given in (10.89), ND(t) given in (10.90), and NG(t) given
in (10.96) as follows

NP(t)+ND(t)+NG(t)

=NP(0)e
−λPt

+NP(0)
λP

λD − λP

[
e−λPt − e−λDt

]+NP(0)

{
1 − λDe

−λPt

λD − λP
+ λPe

−λDt

λD − λP

}

=NP(0)

(
e−λPt + λPe

−λPt

λD − λP
− λPe

−λDt

λD − λP
+ 1 − λDe

−λPt

λD − λP
+ λPe

−λDt

λD − λP

)

=NP(0). (10.99)
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(d) The curves of Fig. 10.5 represent the number of nuclei of either the parent
(Mo-99), daughter (Tc-99m), or grand-daughter (Tc-99) for the radioactive decay
series starting with a pure source of molybdenum-99 radionuclide. The three curves
are identified as follows:

(1) Curve 1 depicts decay of the parent radionuclide Mo-99.
(2) Curve 2 depicts growth and decay of the daughter radionuclide Tc-99m.
(3) Curve 3 depicts growth of the granddaughter nuclide Tc-99 under the assump-

tion that, because of its very long half-life, Tc-99 is essentially stable.

(e) The characteristic time (tmax)D in which the ND(t) curve reaches its maximum
is determined by setting dND/dt = 0 at t = (tmax)D. Differentiating (10.90) results
in

dND(t)

dt
=NP(0)

λP

λD − λP

[−λPe
−λPt + λDe

−λDt
]

(10.100)

and after setting dND/dt = 0 at t = (tmax)D we get

λPe
−λP(tmax)D = λDe

−λD(tmax)D . (10.101)

Solving (10.101) for (tmax)D finally yields the following general result for charac-
teristic time (tmax)D at which the daughter attains its maximum number of nuclei in
the radioactive decay series

(tmax)D = ln λP
λD

λP − λD
= ln λD

λP

λD − λP
. (10.102)

For our specific case of Mo-99 → Tc-99m → Tc-99 radioactive decay series the
characteristic time (tmax)D is calculated as follows

(tmax)D = (tmax)Tc-99m = ln λP
λD

λP − λD
= ln 1.05×10−2

0.115

(1.05×10−2 h−1 − 0.115 h−1)
= 22.88 h.

(10.104)
This result matches the characteristic time (tmax)D in which the daughter in a ra-
dioactive decay series reaches its maximum activity [see Prob. 216(b)]

The normalized peak value of ND(t)/NP(0) at [t = (tmax)D] is calculated by
inserting t = (tmax)D into (10.96) to get the following result

ND(t)

NP(0)
= λP

λD − λP

[
e−λP(tmax)D − e−λD(tmax)D

]

= 1.05×10−2

(0.115 − 1.05×10−2)

[
e−1.05×10−2×22.88 − e−0.115×22.88]= 0.072.

(10.105)



10.4 General Form of Daughter Activity 663

10.4 General Form of Daughter Activity

10.4.Q1 (218)

The parent P and daughter D activities AP(t) and AD(t), respectively, in a
Parent → Daughter → Granddaughter decay series (chain) can be expressed
in a general form covering all possible physical situations. This is achieved
by:

(1) Defining the ratio λP/λD as the decay factor m where λP and λD are the
decay constants of parent and daughter, respectively.

(2) Normalizing time t to the parent half-life (t1/2)P to get new variable
x = t/(t1/2)P.

(3) Normalizing the parent activity AP(t) to initial parent activity AP(0) to
get a new variable yP = AP(t)/AP(0)= exp(−λPt).

(4) Normalizing the daughter activity AD(t) to initial parent activity AP(0)
to get a new variable yD = AD(t)/AP(0).

(a) Transform the equation that describes the parent activity AP(t) into a
general form of yP as a function of dimensionless variable x.

(b) Transform the equation that describes the daughter activity AD(t) into a
general form of yD as a function of dimensionless variable x and decay
factor m.

(c) Use the L’Hôpital rule to obtain the general form of the daughter activity
yD derived in (b) when the decay factor m= 1.

(d) Characteristic time tmax is the time in which the daughter activity AD(t)

reaches its maximum value. Determine (xD)max as a function of decay
factor m for all possible positive m including m= 1.

(e) Determine (yD)max as a function ofm for all possible positivem includ-
ing m= 1.

(f) Evaluate the relationship between (yD)max and (xD)max for all possible
positive values of m including m= 1.

(g) Calculate and plot data points for the following two functions:

(1) General parent activity yP for 0 ≤ x ≤ 10 in steps of 1.
(2) General daughter activity yD for m = 1 and 0 ≤ x ≤ 10 in steps

of 1.

Sketch the two curves through the data points and identify the region of
m> 1 and the region of m< 1.
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SOLUTION:

The general variables x, yP, and yD as well as the decay factor m are defined as
follows

x = 1

(t1/2)P
, (10.106)

yP = AP(t)

AP(0)
, (10.107)

yD = AD(t)

AP(0)
, (10.108)

m= λP

λD
. (10.109)

(a) The standard form of parent activity AP(t), expressed as follows (T10.10) ir-
respective of the status of the daughter (stable or radioactive)

AP(t)= AP(0)e
−λPt = AP(0)e

− (ln 2)t
(t1/2)P , (10.110)

is, after incorporating (10.106) and (10.107), written as (T10.47)

yP = AP(t)

AP(0)
= e−

(ln 2)t
(t1/2)P = e−x ln 2−x = 2−x = 1

2x
. (10.111)

(b) The standard form of daughter activity AD(t), expressed as follows (T10.35)
irrespective of the stability status of the granddaughter (stable or radioactive)

AD(t)= AP(0)
λD

λD − λP

[
e−λPt − e−λDt

]
, (10.112)

is, after incorporating (10.106), (10.108), and (10.110), written as (T10.45)

yD = AD(t)

AP(0)
= 1

1 −m
[
e−x ln 2 − e− x

m
ln 2]= 1

1 −m
[
eln 2−x − eln 2− x

m
]

= 1

1 −m
[

1

2x
− 1

2x/m

]
. (10.113)

(c) Equation (10.113) for yD as a function of x has physical meaning for all posi-
tive values of decay factorm except form= 1 for which yD is not defined. However,
since for m= 1, (10.113) gives yD = 0/0, we can apply the l’Hôpital rule and de-
termine the function that governs yD at m= 1 as follows

yD
∣∣
m=1 = lim

m→1

d
dm [ 1

2x − 1
2x/m

]
d

dm(1 −m) = lim
m→1

−2− x
m (ln 2) x

m2

−1
= (ln 2)

x

2x
. (10.114)
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(d) The characteristic time (tmax)D which represents the time of maximum daugh-
ter activity and is written as (T10.37)

(tmax)D = ln λP
λD

λP − λD
(10.115)

can be expressed in general form incorporating (10.106) and (10.108) into (10.115)
as follows

(xD)max = (tmax)D

(t1/2)P
= λP ln λP

λD

(ln 2)(λP − λD)
= ln λP

λD

(ln 2)(1 − λD
λP
)

= m lnm

(ln 2)(m− 1)
.

(10.116)
Equation (10.116) has physical meaning for all positive m except for m= 1 for

which it is not defined, since it gives (xD)max = 0/0. Again we apply l’Hôpital rule
to get a finite value for (xD)max|m=1 as follows

(xD)max
∣∣
m=1 = lim

m→1

d(m lnm)
dm

(ln 2) d(m−1)
dm

= lim
m→1

(lnm+ 1)

ln 2
= 1

ln 2
= 1.4427. (10.117)

(e) The maximum daughter activity (yD)max can be determined by inserting
(xD)max into yD given by (10.113). However, since at the point of maximum
daughter activity both the parent and the daughter have identical activities equal
to (yD)max, it is much easier to obtain (yD)max by inserting (xD)max into yP given
by (10.110)

(yD)max = yP
[
(xD)max

]= 1

2(xD)max
= 2

m lnm
(ln 2)(1−m) = e m

1−m lnm. (10.118)

Equation (10.118) is valid for all positivem except form= 1 in which case (yD)max
can be determined by applying the l’Hôpital rule to (10.118) as follows

(yD)max
∣∣
m=1 = lim

m→1
exp

d(m lnm)
dm

d(1−m)
dm

= lim
m→1

exp
lnm+ 1

−1
= e−1 = 1

e
= 0.368.

(10.119)
(f) It is easy to show that the relationship for positive m but m �= 1 between
(yD)max given by (10.118) and (xD)max given by (10.116) is a simple exponential
expression

(yD)max = e m
1−m lnm = e− m

m−1 lnm = e−(ln 2)(xD)max = 2−(xD)max , (10.120)

while for m = 1, (yD)max = 1/e = 0.368, as shown in (10.119), and (xD)max =
1/ ln 2 = 1.4427, as shown in (10.117).

(g) Data points for yP(x) are calculated from (10.111) and for yD(x) from (10.113)
and results for 0 ≤ x ≤ 10 in steps of 1 are displayed in Table 10.3 and plotted
in Fig. 10.6. The maximum value of yD for m = 1 is 1/e = 0.368 and occurs at
x = 1/ ln 2 = 1.4427 which is also the intersection point of yP and yD curves.
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Table 10.3 Data points for yP and yD at various values of x for 0 ≤ x ≤ 10

x 0 1 2 3 4 5 6 7 8 9 10

yP 1 0.5 0.25 0.125 0.063 0.031 0.016 0.008 0.004 0.002 0.001

yD 0 0.347 0.347 0.259 0.173 0.108 0.065 0.038 0.022 0.012 0.007

Fig. 10.6 Normalized activities yP and yD against normalized time x. The yD curve is for decay
factorm= 1 and has no physical meaning, however, it separates the yD curves form> 1 (λP > λD)
from yD curves for m< 1 (λP < λD) and is governed by the simple function given in (10.114)

10.5 Equilibria in Parent-Daughter Activities

10.5.Q1 (219)

In many parent P → daughter D → granddaughter G relationships after a
certain time t the parent and daughter activities AP(t) and AD(t), respectively,
reach a constant ratio that is independent of a further increase in time t . This
condition is referred to as radioactive equilibrium and can be analyses by ex-
amining the behavior of the activity ratio AD(t)/AP(t)which can be expressed
as follows [see (T10.35)]

ζ = AD(t)

AP(t)
= λD

λD − λP

[
1 − e−(λD−λP)t

]
. (10.121)
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(a) Show that by introducing into (10.121) a parameter called the decay fac-
tor m= λD/λP and new variables x = t/(t1/2)P, yP = AP(t)/AP(0), and
yD = AD(t)/AP(0) we get the following expression for activity ratio ζ

ζ = AD(t)

AP(t)
= yD

yP
= 1

1 −m
[
1 − 2

m−1
m
x
]
. (10.122)

(b) Expression (10.122) for ζ(x) is valid for all positive m except for m=
1 (or λP = λD) for which it is not defined since it results in ζ(x) =
0/0. Despite this indeterminate result there is a functional relationship
between ζ(x) and x for m= 1. Determine the function.

(c) Figure 10.7 plots the activity ratio ζ(x) of (10.122) against time variable
x for selected values of the decay factor m in the range from 0.1 to
10. Based on the figure, discuss the relationship between radioactive
equilibrium and decay factor m.

(d) Summarize in a table the four special regions for the decay factor m
between 0<m<∞.

SOLUTION:

(a) The radioactive parent activity AP(t) is given as (T10.10)

AP(t)= AP(0)e
−λPt = λPNP(0)e

−λPt = AP(0)e
− (ln 2)
(t1/2)P

t
, (10.123)

while the radioactive daughter activity AD(t) is (T10.35)

AD(t)= AP(t)
λD

λD − λP

[
1 − e−(λD−λP)t

]
, (10.124)

where AP(0) is the initial activity of the parent at time t = 0, λP is the decay constant
of the parent radionuclide, and λD is the decay constant of the daughter radionuclide.
The initial daughter activity AD(0) is assumed to be zero at t = 0.

The activity ratio ζ is defined as the ratio between the daughter and parent activ-
ities at time t that from (10.124) can be expressed as follows after introducing the
definitions for the new variable x = t/(t1/2)P and the decay factor m= λP/λD

ζ = AD(t)

AP(t)
= λD

λD − λP

[
1 − e−(λD−λP)t

]= 1

1 − λP
λD

[
1 − e−(ln 2)( λD

λP
−1) t

(t1/2)P
]

= 1

1 −m
[
1 − 2

m−1
m
x
]
. (10.125)

(b) Since ζ(x) of (10.122) and (10.125) for m = 1 or λP = λD results in ζ(x) =
0/0, we can determine the ζ(x) function for m= 1 by applying the l’Hôpital rule to
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convert the indeterminate form into a determinate form which allows the evaluation
of the m→ 1 limit as follows

ζ(x)
∣∣
m=1 = lim

m→1

d
dm [1 − 2

m−1
1 x]

d(1−m)
dm

= lim
m→1

{−2
m−1
m
x(ln 2)[ x

m
− m−1

m2 x]}
−1

= lim
m→1

−2
m−1
m
x(ln 2) x

m2

−1
= (ln 2)x. (10.126)

Equation (10.126) shows that ζ(x) for m = 1 is a simple linear function of the
type y = b + ax for which the y intercept is b = 0 and the slope is a = ln 2 =
0.6931 . . . , resulting in an angle of 34.7◦ between the abscissa and the straight line
of the linear function.

(c) In Fig. 10.8 we show a plot of the linear expression given in (10.126) and
derived in (b) for the activity ratio ζ(x) for m = 1 superimposed on ζ(x) curves
plotted in Fig. 10.7 for various m between 0.1 and 10. The m = 1 linear equation
actually separates two distinct regions of the activity ratio ζ(x): (1) Region where
m> 1 and (2) Region where 0<m< 1.

(1) For the m> 1 region we write (10.125) as follows

ζ(x)= 1

m− 1

[
e
m−1
m
x ln 2 − 1

]
. (10.127)

Since m > 1, ζ(x) in (10.127) rises exponentially with x, implying that the
ratio AD(t)/AP(t) also increases with time t and thus no equilibrium between
AP(t) and AD(t) will ensue with an increasing time t . The exponential growth
of ζ(x) for m> 1 with time t is clearly shown with dashed curves in Fig. 10.8
in the range of decay factor 1<m<∞.

Thus, form> 1, which means that λP > λD or that half-life of the daughter
exceeds that of the parent [(t1/2)D > (t1/2)P] or one can say that the daughter
is longer-lived than the parent, the activity ratio ζ(x) increases exponentially
with time t and no equilibrium can be reached between the parent activity
AP(t) and AD(t) for any time t .

(2) For the 0<m< 1 region we rearrange the terms in (10.125) to get a clearer
picture as follows

ζ(x)= 1

1 −m
[
1 − e−(ln 2)( 1−m

m
)x
]= 1

1 −m
[
1 − 2− 1−m

m
x
]

(10.128)

and notice that the exponential term diminishes with increasing x and expo-
nentially approaches zero as x → ∞. This means that at large x the activity
ratio ζ(x) saturates at a constant value that is independent of x and is equal to
1/(1 −m). Under these conditions the parent activity AP(t) and the daughter
activity AD(t) are said to be in transient equilibrium and are governed by the
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following relationship

ζ(x)= AD(t)

AP(t)
= yD

yP
= 1

1 −m = 1

1 − λP
λD

= λD

λD − λP
= const> 1 (10.129)

provided, of course, that λP < λD, i.e., (t1/2)P > (t1/2)D.
Thus, for 0<m< 1, which means that λP < λD or that the half-life of the

daughter is shorter than the half-life of the parent [(t1/2)D < (t1/2)P] or one
can say that the daughter is shorter-lived than the parent, the activity ratio ζ(x)
at some large time saturates at a constant value given by (10.129) and larger
than 1. The constancy of the ratio AD(t)/AP(t) at large t implies a transient
equilibrium between AP(t) and AD(t).

(3) A special case of transient equilibrium occurs when the daughter is much
shorter-lived than the parent [(t1/2)D � (t1/2)P] or we can say that m� 1 to
get the following expression for (10.128)

ζ(x) = AD

AP
= 1

1 −m
[
1 − e−(ln 2)( 1−m

m
)x
]= 1

1 −m
[
1 − 2− 1−m

m
x
]

≈ 1 − e−(ln 2) x
m = 1 − e−λDt . (10.130)

Equation (10.130) becomes equal to unity for a relatively large time x �
(xD)max where (xD)max is the normalized time of maximum daughter activity
which indicates that AD(t)≈ AP(t) or ζ ≈ 1, so that the parent and daughter
decay together at the rate of the parent. This special case of transient equi-
librium in which the daughter and parent activities are essentially identical is
referred to as secular equilibrium.

(d) Important features of the four special regions characterized by the decay factor
m between m= 0 and m= ∞ are summarized in Table 10.4. Region where m→ 0
results in secular equilibrium between the parent and daughter activities AP(t) and
AD(t), respectively, and the region where 0<m< 1 results in transient equilibrium
between the parent and daughter activities. Regions where m= 1 and m> 1 do not
result in equilibrium between the parent and daughter activities. The relationship
between AP(t) and AD(t) expressed by a linear function ζ(x) = (ln 2)x for m = 1
separates the secular equilibrium region characterized by m→ 0 and the transient
equilibrium region characterized by 0 < m < 1 from the non-equilibrium region
where 1<m<∞.
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Fig. 10.7 Activity ratio ζ(x) against normalized time x for several decay factors m in the range
from 0.1 through 1 to 10 calculated using (10.122)

Fig. 10.8 Activity ratio ζ(x) against normalized time x for several decay factors m in the range
from 0.1 through 1 to 10 calculated using (10.122) except for ζ(m = 1) which gives a linear
function determined in (10.126). The linear function for m = 1 separates the region of transient
equilibrium where 0<m< 1 from the region of no equilibrium where m> 1

Table 10.4 Four distinct regions of the decay factor m

Decay factor m Relative value Equilibrium Relationship for ξ = AD(t)
AP(t)

m≈ 0 λD � λP Secular ξ = 1

0<m< 1 λD > λP Transient ξ = 1
1−m = λD

λD−λP
See (10.129)

m= 1 λD = λP No ξ = t ln 2
(t1/2)P

= x ln 2 See (10.126)

m> 1 λD < λP No ξ = 1
m−1 {e

m−1
m

t ln 2
(t1/2)P − 1} See (10.127)



10.6 Bateman Equations for Radioactive Decay Chain 671

10.6 Bateman Equations for Radioactive Decay Chain

10.6.Q1 (220)

Ernest Rutherford and Frederick Soddy introduced the exponential laws of ra-
dioactive decay in 1902 to explain results of their experiments on the thorium
series of radionuclides. In 1910 Harry Bateman extended the series decay
formalism from the simple radioactive decay series Parent → Daughter →
Granddaughter to a general chain of decaying nuclei with an arbitrary number
of radioactive chain links designated as follows: N1 → N2 → N3 → ·· · →
Ni−1 → Ni , where N stands for number of nuclei in a given generation of
nuclear progeny. The initial conditions stipulate that only the first generation
parent nuclei are present in a sample at time t = 0, i.e., N1(t = 0) = N1(0)
and N2(0)=N3(0)= · · ·Nn−1(0)=Nn(0)= 0.

Bateman equations are usually given as a set of equations that give the
number of atoms Nn(t) of each nuclide of a radioactive decay chain pro-
duced after a given time t recognizing that at t = 0 (initial condition) only a
given number of parent nuclei N1(0) were present. For generation n the set of
Bateman equation and constants is usually presented in the following simple
format

Nn(t)= C1e
−λ1t +C2e

−λ2t +C3e
−λ3t + · · · +Cne−λnt , (10.131)

where C1,C2, . . . ,Cn are constants given as follows

C1 =N1(0)
λ1λ2 · · ·λi−1

(λ2 − λ1)(λ3 − λ1) · · · (λi − λ1)
, (10.132)

C2 =N1(0)
λ1λ2 · · ·λn−1

(λ1 − λ2)(λ3 − λ2) · · · (λn − λ2)
, (10.133)

...

Cn =N1(0)
λ1λ2 · · ·λn−1

(λ1 − λn)(λ3 − λn) · · · (λn−1 − λn) . (10.134)

(a) Consolidate the Bateman equation and its constants into a single ex-
pression for generation n in radioactive decay series.

(b) Use the consolidated Bateman equation determined in (a) to express
the number of nuclei for the first four generations of a radioactive decay
chain.

(c) Based on results of (b) determine the activities of decay series progeny
for the first four generations of a radioactive decay chain.
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SOLUTION:

(a) The number Nn(t) of nuclei of generation n can be expressed by a simple sum
as follows

Nn(t)=
n∑
m=1

Cme
−λmt , (10.135)

while the constants C1,C2, . . . ,Cn can be expressed by simple products as follows

Cm =N1(0)

∏n−1
i=1 λi∏n

i=1
i �=m

(λi − λm) . (10.136)

Inserting (10.136) into (10.135) we obtain a single expression for Nn(t)

Nn(t)=
n∑
m=1

Cme
−λmt =N1(0)

n∑
m=1

[ ∏n−1
i=1 λi∏n

i=1
i �=m

(λi − λm)
]
e−λmt . (10.137)

(b) Equation (10.131) is used to determine the number of radioactive nuclei
present for a given generation in nuclear decay series at a given time t ≥ 0 with
t = 0 defining the initial conditions N1(t = 0) = N1(0) and N2(t = 0) = N3(t =
0)= · · ·Nn(t = 0)= 0.

(1) First generation (n= 1)—Number of parent nucleiN1(t) is expressed with the
standard equation for description of exponential decay of radioactive nuclides

C1 =N1(0)

∏n−1
m=1 λi∏n

i=1
i �=m

(λi − λm) =N1(0), (10.138)

N1(t)=
n=1∑
m=1

Cme
−λmt = C1e

−λ1t =N1(0)e
−λ1t . (10.139)

(2) Second generation (n= 2)—Number of daughter nuclei N2(t)

C1 =N1(0)

∏1
i=1 λi∏1

i=1
i �=1
(λi − λ1)

=N1(0)
λ1

λ2 − λ1
, (10.140)

C2 =N1(0)

∏1
i=1 λi∏1

i=1
i �=2
(λi − λ2)

=N1(0)
λ1

λ1 − λ2
, (10.141)

N2(t)=
n=2∑
m=1

Cme
−λmt = C1e

−λ1t +C2e
−λ2t =N1(0)

λ1

λ2 − λ1

[
e−λ1t − e−λ2t

]
.

(10.142)
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(3) Third generation (n= 3)—Number of granddaughter nuclei N3(t)

C1 =N1(0)

∏2
i=1 λi∏3

i=1
i �=1
(λi − λ1)

=N1(0)
λ1λ2

(λ2 − λ1)(λ3 − λ1)
, (10.143)

C2 =N1(0)

∏2
i=1 λi∏3

i=1
i �=2
(λi − λ2)

=N1(0)
λ1λ2

(λ1 − λ2)(λ3 − λ2)
, (10.144)

C3 =N1(0)

∏2
i=1 λi∏3

i=1
i �=3
(λi − λ3)

=N1(0)
λ1λ2

(λ1 − λ3)(λ2 − λ3)
, (10.145)

N3(t) =
n=3∑
m=1

Cme
−λmt = C1e

−λ1t +C2e
−λ2t +C3e

−λ3t

= N1(0)λ1λ2

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)
+ e−λ2t

(λ1 − λ2)(λ3 − λ2)

+ e−λ3t

(λ1 − λ3)(λ2 − λ3)

]
. (10.146)

(4) Fourth generation (n= 4)—Number of great granddaughter nuclei N4(t)

C1 =N1(0)

∏3
i=1 λi∏4

i=1
i �=1
(λi − λ1)

=N1(0)
λ1λ2λ3

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)
, (10.147)

C2 =N1(0)

∏3
i=1 λi∏4

i=1
i �=1
(λi − λ2)

=N1(0)
λ1λ2λ3

(λ1 − λ2)(λ3 − λ2)(λ4 − λ2)
, (10.148)

C3 =N1(0)

∏3
i=1 λi∏4

i=1
i �=3
(λi − λ3)

=N1(0)
λ1λ2λ3

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)
, (10.149)

C4 =N1(0)

∏3
i=1 λi∏4

i=1
i �=4
(λi − λ1)

=N1(0)
λ1λ2λ3

(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)
, (10.150)

N4(t)=
n=3∑
m=1

Cme
−λmt = C1e

−λ1t +C2e
−λ2t +C3e

−λ3t +C4e
−λ4t

=N1(0)λ1λ2λ3

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)
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+ e−λ2t

(λ1 − λ2)(λ3 − λ2)(λ4 − λ2)
+ e−λ3t

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)

+ e−λ4t

(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)

]
. (10.151)

(c) Activities An(t) of progeny in a radioactive decay series are calculated using
results obtained from Bateman equation in (b).

(1) Parent activity A1(t) at time t is given by the product of the parent decay
constant λ1 and the number of parent nuclei N1(t) present at time t in the sample,
as given in (10.139)

A1(t)= λ1N1(t)= λ1N1(0)e
−λ1t = A1(0)e

−λ1t . (10.152)

(2) Daughter activity A2(t) at time t is given by the product of the daughter decay
constant λ2 and the number of parent nuclei N2(t) present at time t in the sample,
as given in (10.142)

A2(t)= λ2N2(t)=N1(0)
λ1λ2

λ2 − λ1

[
e−λ1t − e−λ2t

]= A1(0)
λ2

λ2 − λ1

[
e−λ1t − e−λ2t

]
,

(10.153)
where A1(0) is the initial activity of the parent nuclei.

(3) Granddaughter activity A3(t) at time t is given by the product of the grand-
daughter decay constant λ3 and the number of granddaughter nuclei N3(t) present
at time t in the sample as given in (10.146)

A3(t) = λ3N3(t)

= N1(0)λ1λ2λ3

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)
+ e−λ2t

(λ1 − λ2)(λ3 − λ2)

+ e−λ3t

(λ1 − λ3)(λ2 − λ3)

]
. (10.154)

(4) Great granddaughter activity A4(t) at time t is given by the product of the de-
cay constant λ4 of the great grand daughter and the number of great granddaughter
nuclei N4(t) present at time t in the sample, as given in (10.151)

A4(t) = λ4N4(t)

= N1(0)λ1λ2λ3λ4

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)

+ e−λ2t

(λ1 − λ2)(λ3 − λ2)(λ4 − λ2)
+ e−λ3t

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)

+ e−λ4t

(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)

]
. (10.155)
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10.6.Q2 (221)

In Prob. 220 we determined general expressions for the number N(t) as well
as activity A(t) of the parent P, daughter D, granddaughter G, and great grand-
daughter GG nuclei present at time t > 0 for radioactive decay series. The
initial conditions at time t = 0 were that the initial number of parent nuclei
N1(t = 0) was N1(0) and no other descendants were present at t = 0.

In this problem we will assume a specific radioactive decay series, starting
with initial parent activity A1(0) = 2.5 mCi and zero initial activity of all
other descendants. The half-lives of first four generations of descendants are
as follows: (t1/2)1 = 1.5 d, (t1/2)2 = 0.2 d, (t1/2)3 = 3.5 d, and (t1/2)1 =
1.3 d. For this radioactive decay series:

(a) Determine expressions for the number of parent N1(t), daughter N2(t),
granddaughter N3(t), and great granddaughter N4(t) nuclei as a func-
tion of time t .

(b) Determine expressions for the activity of the parent A1(t), daughter
A2(t), granddaughter A3(t), and great granddaughter A4(t) as a func-
tion of time t .

(c) Calculate N1(t), N2(t), N3(t), and N4(t) for time t of 2.5 d.
(d) Calculate A1(t), A2(t), A3(t), and A4(t) for time t of 2.5 d.
(e) Enter results calculated in (c) onto curves in Fig. 10.9(A) which show

N1(t), N2(t), N3(t), and N4(t) against time t .
(f) Enter results calculated in (c) onto curves in Fig. 10.9(B) which show

A1(t), A2(t), A3(t), and A4(t) against time t .
(g) Identify the curves in Figs. 10.9(A) and 10.9(B).

SOLUTION:

In Prob. 220 the Bateman equation and Bateman constants were consolidated into
one general equation which was used to determine general expressions for the num-
ber of nuclei and activity for the first four generations of a radioactive decay series:
P → D → G → GG. The general Bateman equation is written as follows

Nn(t)=
n∑
m=1

Cme
−λmt =N1(0)

n∑
m=1

[ ∏n−1
i=1 λi∏n

i=1
i �=m

(λi − λm)
]
e−λmt . (10.156)

(1) The general expressions for the number of nuclei N1(t), N2(t), N3(t), and
N4(t) were given as follows with N1(0) the initial number of parent nuclei
and λi the decay constant of generation i.

N1(t)=N1(0)e
−λ1t , (10.157)
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Fig. 10.9 Number of nuclei n in (A) and activity A(t) in (B) both against time t for parent,
daughter, granddaughter, and great granddaughter of the specified radioactive decay series

N2(t)=N1(0)
λ1

λ2 − λ1

[
e−λ1t − e−λ2t

]
, (10.158)

N3(t)=N1(0)λ1λ2

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)
+ e−λ2t

(λ1 − λ2)(λ3 − λ2)

+ e−λ3t

(λ1 − λ3)(λ2 − λ3)

]
, (10.159)

N4(t)=N1(0)λ1λ2λ3

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)

+ e−λ2t

(λ1 − λ2)(λ3 − λ2)(λ4 − λ2)
+ e−λ3t

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)
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+ e−λ4t

(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)

]
. (10.160)

(2) The general expressions for activities A1(t), A2(t), A3(t), and A4(t) were
given as follows with A1(0), the initial activity of the parent radionuclide

A1(t)= λ1N1(t)= A(0)e−λ1t , (10.161)

A2(t)= λ2N2(t)= A1(0)
λ2

λ2 − λ1

[
e−λ1t − e−λ2t

]
, (10.162)

A3(t)= λ3N3(t)=N1(0)λ1λ2λ3

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)
+ e−λ2t

(λ1 − λ2)(λ3 − λ2)

+ e−λ3t

(λ1 − λ3)(λ2 − λ3)

]
, (10.163)

A4(t)= λ4N4(t)

=N1(0)λ1λ2λ3λ4

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)

+ e−λ2t

(λ1 − λ2)(λ3 − λ2)(λ4 − λ2)
+ e−λ3t

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)

+ e−λ4t

(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)

]
. (10.164)

(3) Decay constant λi is related to half-life (t1/2)i through the standard expression

λi = ln 2

(t1/2)i
. (10.165)

(4) Initial number of parent nuclei N1(0) is related to initial parent activity A1(0)
as follows

N1(0) = A1(0)

λ1
= A1(0)

ln 2
(t1/2)1

= (2.5 mCi)×(1.5 d)

ln 2
×(

3.7×107 s−1/mCi
)×(24 h/d)×(3600 s/h)

= 1.73×1013. (10.166)

(5) Table 10.5 provides a summary of relevant specific data for the first four gen-
erations of the radioactive decay series analyzed in this problem.

(a) Expressions for the number of parent N1(t), daughter N2(t), granddaughter
N3(t), and great granddaughter N4(t) nuclei as a function of time t is obtained by
inserting (10.165) and appropriate decay constants into (10.157), (10.158), (10.159),
and (10.160), respectively
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Table 10.5 Summary of relevant specific data for the first four generations of the radioactive
decay series of Prob. 221

Radionuclide Parent Daughter Granddaughter Great granddaughter

Generation n n= 1 n= 2 n= 3 n= 4

Half-life (t1/2)n (t1/2)1 = 1.5 d (t1/2)2 = 0.2 d (t1/2)3 = 3.5 d (t1/2)4 = 1.3 d

Decay constant λ (d−1) 0.462 3.466 0.198 0.533

(1)

N1(t)=N1(0)e
−λ1t = 1.73×1013×e−(0.462 d−1)t , (10.167)

(2)

N2(t) = N1(0)
λ1

λ2 − λ1

[
e−λ1t − e−λ2t

]

= 2.66×10−12×[
e−(0.462 d−1)t − e−(3.466 d−1)t

]
, (10.168)

(3)

N3(t) = N1(0)λ1λ2

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)
+ e−λ2t

(λ1 − λ2)(λ3 − λ2)

+ e−λ3t

(λ1 − λ3)(λ2 − λ3)

]

= −3.49×1013×e−(0.462 d−1)×t + 2.82×10−13×e−(3.466 d−1)×t

+ 3.21×1013×e−(0.198 d−1)×t , (10.169)

(4)

N4(t) = N1(0)λ1λ2λ3

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)

+ e−λ2t

(λ1 − λ2)(λ3 − λ2)(λ4 − λ2)
+ e−λ3t

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)

+ e−λ4t

(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)

]

= −9.73×1013×e−(0.462 d−1)×t − 1.91×1011×e−(3.4662 d−1)×t

+ 1.90×1013×e−(0.198 d−1)×t + 7.85×1013

×e−(0.533 d−1)×t . (10.170)

(b) Expressions for the activity of the parent A1(t), daughter A2(t), granddaughter
A3(t), and great granddaughter A4(t) as a function of time t is obtained by inserting
A1(0)= 2.5 mCi and appropriate decay constants into (10.161), (10.162), (10.163),
and (10.164), respectively
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(1)
A1(t)= λ1N1(t)= A1(0)e

−λ1t = [
2.5×e−(0.462 d−1)×t ] mCi, (10.171)

(2)

A2(t) = λ2N2(t)A1(0)
λ2

λ2 − λ1

[
e−λ1t − e−λ2t

]

= 2.88×[
e−(0.462 d−1)×t − e−(3.466 d−1)×t] mCi, (10.172)

(3)

A3(t) = λ3N3(t)=N1(0)λ1λ2λ3

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)

+ e−λ2t

(λ1 − λ2)(λ3 − λ2)
+ e−λ3t

(λ1 − λ3)(λ2 − λ3)

]

= [−2.16×e−(0.462 d−1)×t + 0.175×e−(3.466 d−1)×t

+ 1.99×e−(0.198 d−1)×t] mCi, (10.173)

(4)

A4(t) = λ4N4(t)=N1(0)λ1λ2λ3λ4

[
e−λ1t

(λ2 − λ1)(λ3 − λ1)(λ4 − λ1)

+ e−λ2t

(λ1 − λ2)(λ3 − λ2)(λ4 − λ2)
+ e−λ3t

(λ1 − λ3)(λ2 − λ3)(λ4 − λ3)

+ e−λ4t

(λ1 − λ4)(λ2 − λ4)(λ3 − λ4)

]

= [−2.16×e−(0.462 d−1)×t + 0.175×e−(3.466 d−1)×t

+ 1.99×e−(0.198 d−1)×t + 1.99×e−(0.198 d−1)×t ] mCi. (10.174)

(c) Numbers of nuclei N1(t), N2(t), N3(t), and N4(t) present at time t = 2.5 d
are calculated inserting t = 2.5 d into (10.167), (10.168), (10.169), and (10.170),
respectively.

(1)
N1(t)= 1.73×1013×e−0.462×2.5 = 5.45×1012, (10.175)

(2)

N2(t)= 2.66×1012×[
e−0.462×2.5 − e−3.466×2.5]= 0.838×1012, (10.176)

(3)

N3(t) = −3.49×1013×e−0.462×2.5 + 2.82×1013×e−3.466×2.5

+ 3.21×1013×e−0.198×2.5 = 8.58×1012 (10.177)
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(4)

N4(t) = −9.73×1013×e−0.462×2.5 − 1.91×1013×e−3.466×2.5

+ 1.9×1013×e−0.198×2.5 + 7.85×1013×e−0.533×2.5

= 1.64×1012. (10.178)

(d) Activities A1(t), A2(t), A3(t), and A4(t) present at time t = 2.5 d are calcu-
lated by multiplication of the number of nuclei N1(t), N2(t), N3(t), and N4(t),
respectively, with appropriate decay constant λ

(1)

A1(t) = λ1N1(t)= (0.462 d−1)×5.45×1012

(24 h/d)×(3.6×103 s/h)×(3.7×107 mCi/s)

= 0.788 mCi, (10.179)

(2)

A2(t) = λ2N2(t)= (3.466 d−1)×0.838×1012

(24 h/d)×(3.6×103 s/h)×(3.7×107 mCi/s)

= 0.909 mCi, (10.180)

(3)

A3(t) = λ3N3(t)= (0.198 d−1)×8.58×1012

(24 h/d)×(3.6×103 s/h)×(3.7×107 mCi/s)

= 0.531 mCi, (10.181)

(4)

A4(t) = λ4N4(t)= (0.533 d−1)×1.64×1012

(24 h/d)×(3.6×103 s/h)×(3.7×107 mCi/s)

= 0.273 mCi. (10.182)

Results of (c) and (d) are summarized in Table 10.6.

(e) Data calculated in (c) for the numbers of nucleiN1(t),N2(t),N3(t), andN4(t)

present at time t = 2.5 d are superimposed onto curves plotting number of nuclei
N(t) against time t , as shown in Fig. 10.10.

(f) Data calculated in (d) for activities A1(t), A2(t), A3(t), and A4(t) present at
time t = 2.5 d are superimposed onto curves plotting activities A1(t), A2(t), A3(t),
and A4(t) against time t , as shown in Fig. 10.11.
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Table 10.6 Summary of results of (c) and (d)

P (i = 1) D(i = 2) G(i = 3) GG(i = 4)

Ni(t = 0) 1.73×1013 0 0 0

Ni(t = 2.5d) 0.545×1013 0.084×1013 0.858×1013 0.164×1013

Ai (t = 0) 2.5 mCi 0 0 0

Ai (t = 2.5d) 0.788 mCi 0.909 mCi 0.531 mCi 0.273 mCi

Fig. 10.10 Number Ni(t) of nuclei against time t for parent N1(t) given in (10.167), daughter
N2(t) given in (10.168), granddaughter N3(t) given in (10.169), and great granddaughter N4(t)

given in (10.170) of the specified radioactive decay series. Numbers of nuclei calculated in (c) for
t = 2.5 d are shown as data points superimposed onto the curves plotted for the numbers of nuclei

Fig. 10.11 Activity Ai (t) against time t for parent A1(t) given in (10.171), daughter A2(t)

given in (10.172), granddaughter A3(t) given in (10.173), and great granddaughter Ai (t) given
in (10.174) of the specified radioactive decay series. Activities calculated in (d) for t = 2.5 d are
shown with data points superimposed onto the activity curves
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10.7 Mixture of Two or More Independently Decaying
Radionuclides in a Sample

10.7.Q1 (222)

An unknown mixture of two or more independently decaying radionuclides,
each with its own half-life and decay constant, will produce a composite decay
curve that does not result in a straight line when plotted on a semi-logarithmic
plot, unless, of course, all radionuclides have identical or very similar half-
lives. In principle, the decay curves of the individual radionuclides can be
resolved graphically, if their half-lives differ sufficiently and if at most three
radioactive components are present.

A solution contains an unknown amount of gold-198 (Au-198) and iodine-131
(I-131) beta emitters. If the total activity A(t) of the solution at time t = 0 is
0.140 µCi (5.18 kBq) and drops to half of its initial value in 3 days,

(a) Calculate the initial activities AAu(0) and AI(0) of Au-198 and I-131,
respectively, in the solution. Half-lives of Au-198 and I-131 are 2.70 d
and 8.05 d, respectively.

(b) Calculate the total activity A(t) of the solution at time t = 15 d.
(c) Calculate the time t as well as the total activity A(t) at which the activ-

ities of Au-198 and I-131 in the solution are equal.
(d) Plot on a semi-logarithmic graph the activities AAu(t) and AI(t) of Au-

198 and I-131, respectively, and the total activity A(t) in the solution as
a function of time. Show on the plot the activities at t = 3 d, t = 15 d,
and at time t determined in (c).

SOLUTION:

(a) Activities AAu(t) and AI(t) of Au-198 and I-131 beta emitters, respectively,
in a solution can be described with the standard exponential decay law governing
radioactivity. We thus express activity AAu(t) as a function of time t in the solution
as

AAu(t)= AAu(0)e
−λAut = AAu(0)e

− ln 2
(t1/2)Au

t
(10.183)

and activity AI(t) as a function of time t in the solution as

AI(t)= AI(0)e
−λIt = AI(0)e

− ln 2
(t1/2)I

t
, (10.184)

where the decay constant λ is related to half-life t1/2 through the relationship λ =
(ln 2)/t1/2 and
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AAu(0) and AI(0) are the initial activities at t = 0 of Au-198 and I-131, respec-
tively.

λAu and λI are the decay constants of Au-198 and I-131, respectively.
(t1/2)Au and (t1/2)I are the half-lives of Au-198 and I-131, respectively.

Total activity A(t) of the radioactive solution as a function of time t is in general
the sum of AAu(t) given in (10.183) and AI(t) given in (10.184), i.e.,

A(t)= AAu(t)+ AI(t)= AAu(0)e
− ln 2
(t1/2)Au

t + AI(0)e
− ln 2
(t1/2)I

t
. (10.185)

Data for our problem stipulate that the initial activity A(0) at t = 0 of our radioac-
tive solution is 0.140 µCi, while its activity A(t) at t = 3 days is 0.070 µCi. Us-
ing (10.184) we now express A(0) at t = 0 and A(t) at t = 3 d, respectively, as
follows

A(0)= A(t = 0)= AAu(0)+ AI(0)= 0.140 µCi (10.186)

and

A(t = 3 d) = AAu(t)+ AI(t)= AAu(0)e
− ln 2
(t1/2)Au

t + AI(0)e
− ln 2
(t1/2)I

t

= AAu(0)e
− (ln 2)×(3 d)

2.70 d + AI(0)e
− (ln 2)×(3 d)

8.05 d = 0.463AAu(0)+ 0.772AI(0)

= 0.070 µCi. (10.187)

In (10.186) and (10.187) we have two equations for two unknowns: AAu(0) and
AI(0). Solving (10.186) for AAu(0) and inserting AAu(0) = 0.140 µCi − AI(0)
into (10.187) we obtain the following results:

AAu(0)= 0.123 µCi and AI(0)= 0.017 µCi. (10.188)

(b) To calculate the total activity of the solution at time t = 15 d we use (10.185)
in conjunction with the initial activities AAu(0) and AI(0) at time t = 0 given
in (10.188) and get

A(t) = AAu(t)+ AI(t)= AAu(0)e
− ln 2
(t1/2)Au

t + AI(0)e
− ln 2
(t1/2)I

t

= (0.123 µCi)×e− (ln 2)×(15 d)
2.70 d + (0.017 µCi)×e− (ln 2)×(15 d)

8.05 d

= 2.62×10−3 µCi + 4.67×10−3 µCi = 7.29×10−3 µCi. (10.189)

(c) To determine the time t = teq at which the activities AAu(t) and AI(t) are equal
we write (10.183) and (10.184) in the following form

AAu(teq)= AAu(0)e
− ln 2
(t1/2)Au

teq = AI(teq)= AI(0)e
− ln 2
(t1/2)I

teq
. (10.190)
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Solving (10.190) for teq we first get the general result

teq = (t1/2)Au(t1/2)I ln AAu(0)
AI(0)

[(t1/2)B − (t1/2)A] ln 2
(10.191)

and after inserting the initial activities AAu(0) and AI(0) from (10.188) we determine
teq as

teq = (2.70 d)×(8.05d)× ln 0.123
0.017

(8.05 d − 2.70 d)× ln 2
= 11.6 d. (10.192)

Activity A(t) of the radioactive solution at t = teq = 11.6 d is calculated
from (10.185)

A(t = teq) = AAu(teq)+ AI(teq)= 2AAu(teq)= 2AI(teq)

= AAu(0)e
− ln 2
(t1/2)Au

teq + AI(0)e
− ln 2
(t1/2)I

teq

= (0.123 µCi)×e− (ln 2)×(11.6 d)
2.70 d + (0.017 µCi)×e− (ln 2)×(11.6 d)

8.05 d

= 6.26×10−3 µCi + 6.26×10−3 µCi = 0.0125 µCi. (10.193)

(d) The radioactive solution investigated in this problem consists of two beta emit-
ters: gold-198 and iodine-131 of unknown initial activities. Based on known solu-
tion’s total initial activity A(0) and total activity at t = 3 h, activities AAu(t), AI(t),
and A(t) were determined and are plotted against time t in Fig. 10.12.

Fig. 10.12 Activities AAu(t) of (10.183), AI(t) of (10.184), and A(t) of (10.185) against time t
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10.8 Branching Decay and Branching Fraction

10.8.Q1 (225)

In many instances decay of a radionuclide can proceed by more than one
mode of decay and the radionuclide is said to undergo branching decay to
two or more different daughter nuclides. In general, the total decay constant
λP for the parent decay is the sum of the partial decay constants (λP)i for each
possible branch or mode of decay

λP =
N∑
i

(λP)i = (ln 2)
N∑
i

1

(t1/2)
i
P

, (10.194)

where N is the number of decay branches or modes available and (t1/2)iP is
the half-life of the parent radionuclide for decay in mode i. The branching
fraction fi of mode i is defined as the ratio fi = (λP)i/λP = (t1/2)P/(t1/2)iP.

Bismuth-212 (Bi-212) with a half-life (t1/2)Bi-212 = 60.55 min = 3633 s de-
cays into two radio-nuclides: (1) thalium-208 (Tl-208) through α alpha decay
with a branching fraction fα = 0.36 and (2) polonium-212 (Po-212) through
β− beta decay with a branching fraction fβ− = 0.64. Both daughters sub-
sequently decay into stable lead-208 (Pb-208) nuclide: thallium-208 through
β− decay with a half-life (t1/2)Tl-208 = 183.2 s and polonium-212 through α
decay with a half-life (t1/2)Po-212 = 0.3 µs.

(a) For bismuth-212 determine: (1) decay constant λBi-212; (2) partial decay
constant (λα)Bi-212 for α decay; (3) partial decay constant (λβ−)Bi-212
for β− decay; (4) half-life (t1/2)αBi-212 for α decay; and (5) half-life

(t1/2)
β−
Bi-212 for β− decay. Verify the self-consistency of results.

(b) Express the activities of (1) thalium-208 and (2) polonium-212 as a
function of time t and initial parent activity ABi-212(0) for initial condi-
tions: NTl-208(0)=NPo-212(0)= 0.

(c) Prepare a table for the four nuclides involved in series decay of bismuth-
212 into lead-208 and provide the following rows to serve as summary
of the Bi-212 series decay: (1) Name of nuclide, (2) Symbol, (3) Desig-
nation, (4) Atomic number Z, (5) Atomic mass number A, (6) Type of
decay, (7) Branching ratio, (8) Half-life t1/2, and (9) Decay constant λ.

(d) Express the accumulation of the granddaughter nuclide (Pb-208) as a
function of time for the initial conditions: NP(t = 0) = NBi-212(0) and
NG(0)=NPb-208(0)= 0.
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(e) Figure 10.13 shows five curves depicting the number of various nuclei
against time t for series decay of Bi-212 through either Tl-208 or Po-
212 into Pb-208 with initial conditions NPb-212(t = 0)=NPb-212(0) and
NTl-208(0) = NPo-212(0) = NPb-208(0) = 0. All curves are normalized
to NBi-212(0) = 1. Based on results in (a) through (d) identify the five
curves.

Fig. 10.13 Number of various nuclei against time t for the series decay of Bi-212 through either
Tl-208 or Po-212 into Pb-208. All curves are normalized to NBi-212(0)= 1 with initial conditions
NPb-212(t = 0)=NPb-212(0) and NTl-208(0)=NPo-212(0)=NPb-208(0)= 0

SOLUTION:

(a) Radioactive decay of bismuth-212 nucleus can proceed by two modes of de-
cay: either α decay into thallium-208 or β− decay into polonium-212. Therefore,
in addition to total decay constant λBi-212 and half-life (t1/2)Bi-212, Bi-212 is also
characterized by its partial decay constants (λα)Bi-212 and (λβ−)Bi-212 for α and β−

decay, respectively, as well as by half-lives (t1/2)αBi-212 and (t1/2)
β−
Bi-212 for α and β−

decay, respectively.

(1) Decay constant λBi-212 for bismuth-212 is calculated from the standard rela-
tionship between decay constant λ and half-life t1/2 as follows

λBi-212 = ln 2

(t1/2)Bi-212
= ln 2

(60.55 min)×(60 s/min)
= 1.91×10−4 s−1.

(10.195)
(2) Partial decay constant (λα)Bi-212 for α decay of Bi-212 is calculated using the

definition of branching fraction fi = (λP)i/λP = (t1/2)P/(t1/2)iP
(λα)Bi-212 = fαλBi-212 = 0.36×(

1.91×10−4 s−1)= 6.876×10−5 s−1.

(10.196)
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(3) In same manner we calculate the partial decay constant (λβ−)Bi-212 for β−
decay of Bi-212

(λβ−)Bi-212 = fβ−λBi-212 = 0.64×(
1.91×10−4 s−1)= 12.224×10−5 s−1.

(10.197)
(4) Half-life (t1/2)αBi-212 for α decay of Bi-212 is calculated from the standard

relationship (CC) linking decay constant λ and half-life t1/2

(t1/2)
α
Bi-212 = ln 2

(λα)Bi-212
= ln 2

6.876×10−5 s−1
= 10081 s = 168 min.

(10.198)

(5) Half-life (t1/2)
β−
Bi-212 for β− decay of Bi-212 is given as

(t1/2)
β−
Bi-212 = ln 2

(λβ−)Bi-212
= ln 2

12.224×10−5 s−1
= 5670.4 s = 94.51 min.

(10.199)
A simple test can be carried out to verify the self-consistency of results in this
section. According to (10.194) our calculations should satisfy the following
equation

λBi-212 = (λα)Bi-212 + (λβ−)Bi-212 = 6.876×10−5 s−1 + 12.224×10−5 s−1

= 1.91×10−4 s−1. (10.200)

(6) Equation (10.200) can also be written so as to link the half-lives of individual
branches of the parent with the half-life of the parent as follows

ln 2

(t1/2)Bi-212
= ln 2

(t1/2)
α
Bi-212

+ ln 2

(t1/2)
β−
Bi-212

(10.201)

or

(t1/2)Bi-212 = [(t1/2)αBi-212]×[(t1/2)β
−

Bi-212]
[(t1/2)αBi-212] + [(t1/2)β−

Bi-212]
= 10081×5670.4

10081 + 5670.4
s

= 3629.1 s = 60.5 min (10.202)

and

fα = (t1/2)Bi-212

(t1/2)
α
Bi-212

= 3629.1

10081
= 0.36 and

fβ− = (t1/2)Bi-212

(t1/2)
β−
Bi-212

= 3629.1

5670.4
= 0.64. (10.203)
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(b) In multichannel decays of the parent P several daughters appear, each one
characterized by its own growth and decay kinematics. The rate of change dND/dt
in the number of given daughter D nuclei is equal to the supply of new daughter nu-
clei through the decay of P channeled into the branch i containing D and expressed
as (λP)iNP(0)e−(λP)i t = fiλPNP(0)e−fiλPt less the loss of daughter nuclei D from
the decay of D into G given by [−λDND(t)], where λD is the decay constant of the
daughter D. The rate of change dND/dt is thus given by

dND(t)

dt
= (λP)iNP(0)e

−λPt − λDND(t)= fiλPNP(0)e
−λPt − λDND(t). (10.204)

Equation (10.204) has the following solution (T10.35) for the number of daughter
nuclei ND as a function of time t

ND(t)= fiNP(0)
λP

λD − λP

[
e−λPt − e−λDt

]
(10.205)

and for the activity of daughter nuclide AD(t) as a function of time t

AD(t) = λDND(t)= λDfiNP(0)
λP

λD − λP

[
e−λPt − e−λDt

]

= fiAP(0)
λD

λD − λP

[
e−λPt − e−λDt

]
. (10.206)

Before addressing the calculation of activity of Tl-208 and Po-212 [ATl-208(t) and
APo-212(t), respectively], we determine decay constants of the two daughter products
of Bi-212 (Tl-208 and Po-212) from their half-lives

λTl-208
ln 2

(t1/2)Tl-208
= ln 2

183.2 s
= 3.784×10−3 s−1, (10.207)

λPo-212
ln 2

(t1/2)Po-212
= ln 2

0.3×10−6 s
= 2.31×106 s−1. (10.208)

(1) From (10.205) we get the following expression for the activity of thallium
(Th-208) daughter as a result of the decay of the bismuth-212 parent

ATl-208(t) = fαABi-212(0)
λTl-208

λTl-208 − λBi-212

[
e−λBi-212t − e−λTl-208t

]

= 0.36ABi-212(0)
3.784×10−3

3.784×10−3 − 1.91×10−4

×[
e−(1.91×10−4 s−1)t − e−(3.784×10−3 s−1)t

]
= 0.379×[

e−(1.91×10−4 s−1)t − e−(3.784×10−3 s−1)t
]
ABi-212(0).

(10.209)
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Table 10.7 Properties of nuclides associated with series decay of bismuth-212

(1) Radionuclide Thallium Lead Bismuth Polonium

(2) Symbol Tl Pb Bi Po

(3) Designation Daughter Granddaughter Parent Daughter

(4) Z 81 82 83 84

(5) A 208 208 212 212

(6) Decay type β− stable α and β− α

(7) Branching f fβ− = 1 – fα = 0.36, fβ− = 0.64 fα = 1

(8) Half-life t1/2 183.2 s stable 60.55 min 0.3 µs

(9) Decay constant λ 3.784×10−3 s−1 stable 1.91×10−4 s−1 2.31×106 s−1

(2) In similar manner we get from (10.206) the following expression for the ac-
tivity of polonium-212 (Po-212) daughter nuclide as a result of the decay of
the bismuth-212 parent nuclide

APo-212(t) = fβABi-212(0)
λPo-212

λPo-212 − λBi-212

[
e−λBi-212t − e−λPo-212t

]

= 0.64ABi-212(0)
2.31×106

2.31×106 − 1.91×10−4

×[
e−(1.91×10−4 s−1)t − e−(2.31×106 s−1)t

]
= 0.64×[

e−(1.91×10−4 s−1)t − e−(2.31×106 s−1)t
]
ABi-212(0).

(10.210)

(c) Table 10.7 summarizes properties of nuclides involved in the 2-bransh decay
of bismuth-212 into lead-208. Figure 10.14 shows a schematic diagram of the series
decay of Bi-212 through either Tl-208 or Po-212 into Pb-208.

(d) In a radioactive decay series the growth of granddaughter G nuclide starting
with the initial condition NG(t = 0) = 0 is calculated from the expression for the
rate of change dNG/dt in the number of granddaughter nuclei. For a stable grand-
daughter nuclide the rate of accumulation of G is equal to the rate of decay of the
daughter nuclide D, i.e.,

dNG

dt
= λDND(t)= fi λDλP

λD − λP

[
e−λPt − e−λDt

]
, (10.211)

where ND(t) is the number of daughter nuclei at time t given in (10.205). Since
in our example of bismuth-212 decay series, the lead-208 nuclide is accumulated
through two channels, one represented by β− decay of thallium-208 and the other
by α decay of polonium-212, we calculate the contribution of each channel sepa-
rately and then add the two contributions to obtain the total contribution from both
channels.
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Fig. 10.14 Schematic diagram of the bismuth-212 decay series concluding with lead-208

Upon integration of (10.211) from 0 to t we get the following expression for
NG(t)

NG(t)= fiNP(0)
λDλP

λD − λP

[
−e

−λPt

λP
+ e−λDt

λD

]
+C, (10.212)

where C is an integration constant. For the initial condition NG(t = 0)= 0 (10.211)
is given as

NG(t = 0)= fiNP(0)
λDλP

λD − λP

[
− 1

λD
+ 1

λP

]
+C = fiNP(0)

λP − λD

λD − λP
+C = 0

(10.213)
and results in the following simple expression for constant C

C = fiNP(0). (10.214)

Inserting (10.214) into (10.212) we get the following expression for the number of
granddaughter nuclei NG(t) accumulated from the decay of daughter D

NG(t) = fiNP(0)

{
1 − λDλP

λD − λP

[
−e

−λPt

λP
+ e−λDt

λD

]}

= fiNP(0)

{
1 − λDe

−λPt

λD − λP
+ λPe

−λDt

λD − λP

}
. (10.215)

(1) Accumulation of Pb-208 nuclei as a result of Tl-208 decay is now given as

NTl-208
Pb-208(t) = 0.36NP(0)

{
1 − 1.053×e−(1.91×10−4 s−1)t + 5.309×10−2

×e−(3.78×10−3 s−1)t
}
. (10.216)
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(2) Accumulation of Pb-208 nuclei as a result of Po-212 decay is now given as

NPo-212
Pb-208 (t)= 0.64NP(0)

{
1 − e−(1.91×10−4 s−1)t + 8.230×10−11×e−(2.31×106 s−1)t

}
.

(10.217)
The total accumulation of Pb-208 nuclei as a function of time t is given by the

sum of (10.216) and (10.217) as follows

NPb-208(t) = NTl-208
Pb-208(t)+NPo-212

Pb-208 (t)

= 0.36NP(0)
{
1 − 1.053×e−(1.91×10−4 s−1)t + 5.309×10−2

×e−(3.78×10−3 s−1)t
}

+ 0.64NP(0)
{
1 − e−(1.91×10−4 s−1)t + 8.230×10−11

×e−(2.31×106 s−1)t
}

= NP(0)
[
1 − 1.02e−(1.91×10−4 s−1)t + 1.91e−(3.78×10−3 s−1)t

+ 5.27×10−11e−(2.3×106 s−1)t
]
. (10.218)

(d) Five curves, all normalized to NBi-212(0) = 1 and all dealing with the series
decay of parent nucleus Bi-212 through either the Tl-208 branch or the Po-212
branch to the granddaughter Pb-208 nucleus, are shown in Fig. 10.13.

(1) Curve 1 plots the number of Bi-212 nuclei against time t , exhibiting the
standard radioactive decay characteristics with a half-life (t1/2)Bi-212 of
60.55 min = 3633 s and a decay constant λBi-212 of 1.91×10−4 s−1.

(2) Curve 2 shows the growth and decay of the daughter productNTl-208(t) against
time t . Half-life and decay constant of the NTl-208 radionuclide are, respec-
tively, (t1/2)Tl-208 = 183.2 s and λTl-208 = 3.78×10−3 s−1. Because of the
relatively short half-life of thallium-208 compared to the half-life of the par-
ent nucleus Bi-212, the number of Tl-208 nuclei transforms rapidly into the
Pb-208 nucleus causing a relatively rapid accumulation of lead nuclei through
the thallium branch.

We should note that the curve representing the growth and decay of the
Po-212 nuclei is not discernible on the scale of Fig. 10.13 because of the
extremely short half-life of the polonium-212 nucleus.

(3) Curve 3 represents the accumulation of Pb-208 nuclei as a result of the decay
of Bi-212 through the thallium decay branch. Since the Pb-208 nucleus is
stable, the accumulation curve exhibits the standard exponential growth shape
and saturates at 0.36 which is the branching fraction of the Bi-212 α decay
through the Tl-208 branch.

(4) Curve 4 also represents the accumulation of Pb-208 nuclei as a result of Bi-
212 decay, in this case through the polonium decay branch. This curve too
exhibits the standard exponential growth but saturates at 0.64 which is the
branching fraction of the Bi-212 β− decay through the Po-212 branch.
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(5) Curve 5 is for the total accumulation of Pb-208 through both branches of the
Bi-212 decay and is given as the sum of the two exponential curves: curve 3
for the Tl-208 branch and curve 4 for the Po-212 branch. Since both curve 3
and curve 4 are exponential, curve 5 is also exponential and saturates at the
sum of saturations of the two curves (0.36 + 0.64 = 1).



11Modes of Radioactive Decay

Chapter 11 consists of 22 problems covering 13 sections that deal with
most important modes of radioactive decay. Radioactive nuclides, either nat-
urally occurring or artificially produced by nuclear reactions, are unstable and
strive to reach more stable nuclear configurations through various processes
of spontaneous radioactive decay that involve transformation to a more sta-
ble nuclide and emission of energetic particles. The early investigators of
radioactivity explained the macroscopic kinetics of radioactive decay soon
after Becquerel’s discovery of natural radioactivity in 1896 through the work
of Marie Skłodowska-Curie, Pierre Curie, Ernest Rutherford and Frederick
Soddy. However, it took several decades before the various radioactive decay
modes were fully understood on a microscopic scale.

Currently, the most important modes of radioactive decay are: alpha, beta
minus, beta plus, electron capture, gamma and internal conversion. In addi-
tion to these standard modes, questions in this chapter also cover proton and
neutron decay as well as spontaneous fission as interesting examples of spon-
taneous radioactive decay despite their limited relevance to medical physics.

Section 11.1 of this chapter contains one problem covering a general in-
troduction to radioactive decay processes, Sect. 11.2 covers theoretical and
practical aspects of alpha decay, Sect. 11.3 deals with general aspects of beta
decay, while Sects. 11.4 and 11.5 cover beta minus and beta plus decay, re-
spectively.

Electron capture decay is addressed in Sect. 11.6. Sections 11.7 and 11.8,
respectively, cover gamma decay and its competing process, internal conver-
sion. Section 11.9 addresses spontaneous fission and Sects. 11.10 and 11.11
deal with proton emission decay and neutron emission decay, respectively.
Next comes Sect. 11.12 that contains several problems concentrating on the
Chart of Nuclides (also called Segrè chart) and the chapter concludes with
problems in Sect. 11.13 that deal with a summary of issues related to radioac-
tive decay modes.

E.B. Podgoršak, Compendium to Radiation Physics for Medical Physicists,
DOI 10.1007/978-3-642-20186-8_11,
© Springer-Verlag Berlin Heidelberg 2014
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11.1 Introduction to Radioactive Decay Processes

11.1.Q1 (224)

Radioactive nuclides, either naturally occurring or produced artificially by
nuclear reactions, are unstable and strive to reach more stable nuclear con-
figurations through various processes of spontaneous radioactive decay that
involve nuclear transformation to a more stable nuclide and emission of ener-
getic particles.

(a) A closer look at radioactive decay processes reveals that they are di-
vided into six main categories. Provide a list of the six main categories
of nuclear decay.

(b) Two of the six nuclear decay categories are divided into subcategories.
Identify these two categories and list their subcategories.

(c) On a microscopic scale there are nine major modes of radioactive decay.
List the nine modes of nuclear decay.

(d) For each of the major nine modes of nuclear decay identify the particle
that is released in the nuclear decay mode.

(e) List the most important physical quantities that must be conserved in
nuclear decay.

(f) For radioactive nuclear decay define the disintegration or decay energy
that is often also referred to as Q value of radioactive decay.

(g) Explain the meaning of terms: “neutron-rich” and “proton rich”.

SOLUTION:

(a) The six main categories of radioactive nuclear decay are:

(1) Alpha (α) decay
(2) Beta (β) decay
(3) Gamma (γ ) decay
(4) Spontaneous fission (SF)
(5) Proton emission (PE) decay
(6) Neutron emission (NE) decay

(b) The two categories of radioactive nuclear decay that are divided into subcate-
gories are:

(1) Beta (β) decay that is subdivided into: beta minus (β−) decay, beta plus (β+)
decay, and electron capture (EC) decay.

(2) Gamma (γ ) decay that is subdivided into gamma emission (GE) decay and
internal conversion (IC) decay.
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Table 11.1 Modes of radioactive nuclear decay and particles released in nuclear decays

Mode of radioactive nuclear decay Particles released in radioactive nuclear decay

(1) α α particle (helium nucleus)

(2) β− Electron e− and electronic antineutrino ν̄e

(3) β+ Positron e+ and electronic neutrino νe

(4) EC (electron capture) Electronic neutrino νe

(5) Gamma emission γ ray photon

(6) IC (internal conversion) Atomic orbital electron eorb

(7) SF (spontaneous fission) Neutron and fission product nuclei

(8) Proton emission Proton

(9) Neutron emission Neutron

(c) The nine major modes of radioactive nuclear decay are:

(1) α decay
(2) β− decay
(3) β+ decay
(4) Electron capture (EC)
(5) γ emission decay
(6) Internal conversion (IC)
(7) Spontaneous fission (SF)
(8) Proton emission decay
(9) Neutron emission decay

(d) In each mode of radioactive nuclear decay the parent P nucleus transforms
into a daughter D nucleus that differs from the parent nucleus in one or more of
the following parameters: atomic number Z, neutron number N , and atomic mass
number A. In addition, in each mode of nuclear decay one or more particles are
released, as listed in Table 11.1.

(e) Most important physical quantities that must be conserved in radioactive nu-
clear decay are:

(1) Total energy
(2) Momentum
(3) Total charge
(4) Atomic number
(5) Atomic mass number (number of nucleons)

(f) Total energy of particles released by the nuclear transformation process is equal
to the net decrease in the rest energy of the neutral atom, from parent P to daugh-
ter D. The disintegration (decay) energy, often referred to as Q value for the ra-
dioactive decay, is defined as follows
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Q= {
M(P)− [

M(D)+m]}c2, (11.1)

where M(P), M(D), and m are the nuclear rest masses (in unified atomic mass
units u) of the parent, daughter, and emitted particles, respectively. The energy
equivalent of u is 931.5 MeV.

Often atomic masses rather than nuclear masses are used in calculations of Q
values for radioactive decay. In many decay modes the electron masses cancel out,
so that it makes no difference if atomic or nuclear masses are used in (11.1). On
the other hand, there are situations where electron masses do not cancel out (e.g.,
β+ decay) and there special care must be taken to account for all electrons involved
when atomic rest masses are used in (11.1).

For radioactive decay to be energetically possible the Q value must be greater
than zero. This means that spontaneous radioactive decay processes release energy
and are called exoergic or exothermic. For Q> 0, the energy equivalent of the Q
value is shared as kinetic energy between the particles emitted in the decay process
and the daughter product. Since the daughter has a much larger mass than the other
emitted particles, the kinetic energy acquired by the daughter is usually negligibly
small.

(g) In light (low atomic number) elements nuclear stability is achieved when
the number of neutrons N and the number of protons Z is approximately equal
(N ≈ Z). As the atomic number increases, the N/Z ratio for stable nuclei increases
from 1 at low Z elements to about 1.5 for heavy stable elements.

(1) If a nucleus has a N/Z ratio that is too low for nuclear stability, it has an
excess of protons and is called proton-rich. It decays through conversion of a
proton into a neutron and emits a positron and a neutrino (β+ decay). Alter-
natively, the nucleus may capture an orbital electron, transform a proton into
a neutron and emit a neutrino (electron capture). A direct emission of a proton
is also possible, but less likely, unless the nuclear imbalance is very high.

(2) If a nucleus has a N/Z ratio too high for nuclear stability, it has an excess of
neutrons and is called neutron-rich. It decays through conversion of a neutron
into a proton and emits an electron and anti-neutrino. This process is referred
to as β− decay. If the N/Z ratio is extremely high, a direct emission of a
neutron is possible.

11.2 Alpha Decay

11.2.Q1 (225)

Alpha (α) decay was the first mode of radioactive decay detected and in-
vestigated after Henri Becquerel discovered natural radioactivity in 1896. It
played an important role in early modern physics experiments that lead to the
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currently accepted Rutherford-Bohr atomic model and is characterized by a
nuclear transformation in which an unstable parent nucleus P attains a more
stable nuclear configuration in daughter D through ejection of an α particle.

(a) Briefly discuss the history of α decay and explain its historical signifi-
cance for physics in particular and science in general.

(b) List three methods that are used to calculate decay energy Qα(P) that
is often also referred to as Q value of α decay

(c) List and briefly describe the important features of α decay.
(d) Q value of α decay is of similar magnitude but not equal to kinetic

energy (EK)α of the α particle ejected in α decay. Explain the difference
between the two energies.

(e) (EK)α is often expressed as (EK)α ≈Qα(P)[1 − 4/AP]. Show and ex-
plain the derivation of this approximation.

SOLUTION:

(a) Alpha particles produced in natural α decay were used in one of the most im-
portant experiments in history of physics and science in general when Hans Geiger
and Ernest Marsden carried out their momentous 1909 study of α particle scatter-
ing on a gold foil. Based on their experimental results that clearly contradicted the
then-prevailing Thomson atomic model, Ernest Rutherford proposed a completely
new atomic model with two main features:

(1) Mass and positive charge of the atom are concentrated in the atomic nucleus
the size of which is of the order of 10−15 m = 1 fm, i.e., 5 orders of magnitude
smaller than the size of the atom.

(2) Negatively charged electrons revolve about the nucleus in a cloud, the radius
of which is of the order 10−10 = 1 Å.

Despite importance of α particles in early nuclear physics experiments, attempts
to explain alpha decay theoretically were unsuccessful until 1928 when George
Gamow unraveled its exact nature by introducing into physics the quantum-
mechanical concept of tunneling of α particles through a potential barrier.

(b) Similarly to the calculation of the Q value of a nuclear reaction in which a
projectile strikes a nuclear target to produce two reaction products, in nuclear α
decay of parent P nucleus that results in daughter D nucleus and emission of an α
particle, the α decay Q value or Qα can be determined with three methods:

(1) Atomic rest energy method in which one subtracts the sum of atomic rest en-
ergies of decay products after the α decay (

∑
i, after Mic

2) from atomic rest
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energy of the parent atom M (P)c2

Qα = M (P)c2 −
∑
i, after

Mic
2 = {

M (P)− [
M (D)+ M

(4
2He

)]}
c2. (11.2)

(2) Nuclear rest energy method in which one subtracts the sum of nuclear rest
energies of decay products after the decay (

∑
i, afterMic

2) from the rest energy
of the parent nucleusM(P)c2

Qα =M(P)c2 −
∑
i, after

Mic
2 = {

M(P)− [
M(D)+mα

]}
c2. (11.3)

(3) Nuclear binding energy method in which the binding energy EB(P) of the
parent nucleus before decay is subtracted from the sum of binding energies of
decay products after the decay (

∑
i,afterEB(P))

Qα =
∑
i,after

EB(i)−EB(P)=
[
EB(D)+EB

(4
2He

)]−EB(P). (11.4)

(c) The prominent features of α decay are summarized as follows:

(1) In α decay, the number of protons Z and the number of neutrons N is con-
served by producing a 4

2He nucleus (α particle) and lowering the parent’s
atomic mass number AP by 4 and parent’s atomic number ZP by 2 to get a
daughter with AD =AP − 4 and ZD = ZP − 2, i.e.,

A
ZP → A−4

Z−2P + 4
2He = A−4

Z−2P + α. (11.5)

(2) The energetic α particle emitted in α decay slows down in moving through the
absorber medium and eventually captures two electrons from its surroundings
to become a neutral 4

2He atom.
(3) Typical kinetic energies of α particles released by naturally occurring radionu-

clides are between 4 MeV and 9 MeV, corresponding to a range in air of about
1 cm to 10 cm, respectively, and in tissue of about 10−3 cm and 10−2 cm,
respectively.

(4) α decay occurs commonly in nuclei with Z > 82 because in this range of
atomic number Z decay energiesQα determined in (b) are positive and of the
order of ∼4 MeV to ∼9 MeV.

(5) Total decay energy Qα must be positive for α decay to occur and the
Qα > 0 results mainly from the high total binding energy of the 4

2He nucleus
(29.3 MeV) that is significantly higher than for nuclei of 3

2He, 3
1He, and 2

1He
for which spontaneous ejection from parent nuclei energetically is not feasi-
ble.

(6) Ejection of a heavy nucleus from the parent nucleus is energetically possible
(large Q value); however, the effect of tunneling through the potential barrier
is then also much more difficult for the heavy nucleus in comparison with
tunneling for the α particle.
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(7) Emission of heavy particles from parent nuclei with Z > 92 is possible and
represents a mode of radioactive decay competing with α decay and referred
to as spontaneous fission.

(d) In α decay the principles of energy and momentum conservation must be up-
held and as a result α decay energy Qα is shared between daughter atom and α
particle. For a stationary parent nucleus the momentum before decay is zero, imply-
ing that the α particle and daughter atom together must have zero momentum after
decay. This can be achieved only if the two decay products (α particle and daughter
atom) acquire momenta opposite in direction and equal in magnitude

0 = pα + pPo-218 (11.6)

or

|pα| ≡ pα =
√
(EK)α

2mα
= |pPo-218| ≡ pPo-218 =

√
(EK)Po-218

2MPo-218
, (11.7)

where pα and pD are vector momenta of the α particle and daughter atom, respec-
tively, and |pα| ≡ pα and |pD| = pD are magnitudes of the momentum vectors of
the α particle and daughter atom, respectively.

Considering total energy conservation we recognize that kinetic energies of de-
cay products in α decay are relatively small allowing us to use classical mechanics
for expression of energy conservation to get the following expression for the decay
energy Qα(P)

Qα(P) = (EK)α + (EK)D = p2
α

2mα
+ p2

D

2MD
= p2

α

2

[
1

mα
+ 1

MD

]

= (EK)α

[
1 + mα

MD

]
= (EK)D

[
1 + MD

mα

]
. (11.8)

From (11.8) we extract the following expressions for kinetic energies (EK)α and
(EK)D of α decay products

(EK)α =Qα(P)
[

1 + mα

MD

]−1

and (EK)D =Qα(P)
[

1 + MD

mα

]−1

, (11.9)

where Qα(P) is the α decay energy (Q value) determined through one of the three
methods introduced in (b). Noting that in α decay mα � MD, (11.9) suggests that
the α particle and daughter D atom will share the decay energyQα(P) in the inverse
proportion of their masses, resulting in a large portion of the available energy Qα
going to the α particle and only a small percentage ofQα transferred to the daughter
atom.

(e) Equations (11.9) for kinetic energies (EK)α and (EK)D of the α particle
and daughter atom, respectively, can be approximated as follows provided that
mα � MP
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(EK)α = Qα(P)

1 + mα
MD

≈ Qα(P)

1 + mα
MP−mα

=Qα(P)MP −mα
MP

≈Qα(P)AP −AHe

AP
=Qα(P)AP − 4

AP
, (11.10)

whereAP is the atomic mass number of the parent nucleus andAHe = 4 is the atomic
mass number of the helium nucleus.

Similarly, we get the following approximation for the recoil kinetic energy (EK)D
of the daughter atom D

(EK)D = Qα(P)

1 + MD
mα

= Qα(P)mα
mα + MD

≈Qα(P)mαMP
≈ 4

AP
. (11.11)

11.2.Q2 (226)

Radon is an inert noble gas that mixes with air and has 36 known isotopes, all
radioactive. It occurs naturally as the decay product of uranium or thorium,
and its most common isotope is radon-222 which is a daughter product of
radium-226 decay. Radon daughters are solids that attach themselves to dust
particles in air and pose a radiation risk to humans when inhaled causing
bronchial and lung tissue damage possibly leading to lung cancer.

(a) Determine decay energy Qα for the α decay of radon-222 into
polonium-218. Use and compare three methods for Qα calculation:
(1) Atomic rest energy method, (2) Nuclear rest energy method, and
(3) Nuclear binding energy method. All required atomic and nuclear
data are provided in Appendix A.

(b) Determine kinetic energy (EK)α of the α particle emitted in the Rn-222
α decay.

(c) Determine recoil kinetic energy (EK)Po-218 of polonium-218 daughter
in Rn-222 α decay.

(d) Find a decay scheme of radon-222 in the literature and verify whether
or not your result of (b) agrees with the decay scheme you found in the
literature.

SOLUTION:

(a) Decay energy or Q value of the radioactive nuclear α decay can be calculated
with three methods and all three are expected to give the same result (see T11.1).
The three methods are: (1) Atomic rest energy method (T11.3), (2) Nuclear rest
energy method (T11.3), and (3) Nuclear binding energy method (T11.4).
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(1) Atomic rest energy method:

Qα
(222

86Rn
) = {

M
(222

86Rn
)− M

(218
84Po

)− M
(4

2He
)}
c2

= (222.017571u− 218.008973u− 4.002603u)

= (
5.995×10−3u

)×(931.494028 MeV/u)

= 5.58 MeV. (11.12)

(2) Nuclear rest energy method:

Qα
(222

86Rn
) = {

M
(222

86Rn
)−M(218

84Po
)−mα

}
c2

= (206764.1025 − 203031.1324 − 3727.3791)MeV

= 5.59 MeV. (11.13)

(3) Nuclear binding energy method:

Qα
(222

86Rn
) = EB

(218
84Po

)+EB
(4

2He
)−EB

(222
86Rn

)
= (1685.47305 + 28.29569 − 1708.17777)MeV

= 5.59 MeV. (11.14)

(b) We now use the principles of (1) total energy conservation and (2) momen-
tum conservation to determine kinetic energy (EK)α of the α particle ejected in the
α decay of radon-222 and recoil energy (EK)Po-218 of the polonium-218 daughter
product. The two conservation principles are for α decay expressed as follows:

(1) For total energy conservation we recognize that kinetic energies in α decay
are relatively small allowing us to use classical mechanics for expression of
energy conservation

Qα
(222

86Rn
)= (EK)α + (EK)Po-218 = p2

α

2mα
+ p2

Po-218

2MPo-218
. (11.15)

(2) For momentum conservation we note that momentum before α decay is zero
causing the two momenta pα and pPo-218 after the α decay to be opposite in
direction and equal in magnitude

0 = pα + pPo-218 (11.16)

or

|pα| ≡ pα =
√
(EK)α

2mα
= |pPo-218| ≡ pPo-218 =

√
(EK)Po-218

2MPo-218
, (11.17)

where
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pα is the magnitude of α particle momentum.
pPo-218 is the magnitude of the polonium-218 atomic recoil momentum.
mα is the rest mass of the α particle.
MPo-218 is the rest mass of the polonium-218 atom

(218.008973 u)×(931.494028 MeV/u)= 203074.0564 MeV/c2.

Using (11.15) we can now express the conservation of energy as

Qα
(222

86Rn
)= (EK)α + (EK)Po-218 = p2

α

2mα
+ p2

Po-218

2MPo-218
= p2

α

2

[
1

mα
+ 1

MPo-218

]

(11.18)

from where it follows that

p2
α = p2

Po-218 = 2Qα
(222

86Rn
)[ 1

mα
+ 1

MPo-218

]−1

. (11.19)

Inserting (11.19) into (11.18) we now get the following expressions for (EK)α and
(EK)Po-218

(EK)α = p2
α

2mα
= Qα(

222
86Rn)

mα

[
1

mα
+ 1

MPo-218

]−1

= Qα(
222

86Rn)

[1 + mα
MPo-218

] (11.20)

= 5.59 MeV

[1 + 3727.3791
203074.0564 ] = 5.59 MeV

1.0184
= 5.49 MeV (11.21)

and

(EK)Po-218 = p2
Po-218

2MPo-218
= Qα(

222
86Rn)

MPo-218

[
1

mα
+ 1

MPo-218

]−1

= Qα(
222
86Rn)

[1 + MPo-218
mα

]

= 5.59 MeV

[1 + 203074.0564
3727.3791 ] = 5.59 MeV

55.48
= 0.10 MeV. (11.22)

Same results can be obtained with the approximations presented in (T11.7) as

(EK)α =Qα
(222

86Rn
)[

1 − 4

ARn-222

]
= (5.59 MeV)×

[
1 − 4

222

]
= 5.49 MeV

(11.23)
and

(EK)Po-218 ≈Qα
(222

86Rn
) 4

ARn-22
= (5.59 MeV)× 4

222
= 0.10 MeV. (11.24)

(d) In Fig. 11.1 we show the energy level diagram we found in the literature for
α decay of radon-222 into polonium-218. Our calculated kinetic energy (EK)α =
5.49 MeV of the α particle that radon-222 emits in its decay into polonium-218
agrees well with the published data.
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Fig. 11.1 Energy level diagram for α decay of radon-222 into polonium-218. The relative
mass-energy levels for the ground states of the two radionuclides are calculated for the respec-
tive atomic masses of the two radionuclides given in Appendix A

11.3 Beta Decay

11.3.Q1 (227)

The term beta decay encompasses 3 modes of radioactive decay in which the
atomic number Z between the parent and the daughter nuclide changes by
one unit (±1), while the atomic mass number A remains constant. Thus, the
number of nucleons and the total charge are both conserved in the beta decay
processes and one can say that the daughter D is an isobar of the parent P,
since the two contain the same number of nucleons.

(a) List and briefly discuss the three radioactive decay processes that belong
to the beta decay category.

(b) Often a β decay process of the parent is accompanied by emission of
characteristic x rays or Auger electrons emitted by the daughter nucleus.
Describe the mechanisms of these events.

(c) In α decay the emitted α particles are mono-energetic for a given α de-
cay process. In β decay, however, β particles (electrons in β− decay or
positrons in β+ decay) are emitted with a spectral distribution. Explain
why this is so and sketch a typical β emission spectrum for electrons
and positrons.

(d) In β− and β+ decay the daughter D recoils with kinetic energy (EK)D
ranging from 0 to a maximum value. Explain the conditions under
which (1) (EK)D = 0 and (2) (EK)D = max.
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(e) Q value of β decay (also referred to as decay energy Qβ ) can be ex-
pressed as the sum of kinetic energies of β decay products after β decay.
Derive an expression for Qβ the as a function of the maximum energy
(Eβ)max of the beta particle after β decay.

(f) From the result for Qβ in (e) express (Eβ)max as a function of Qβ and
show that in the first approximation (Eβ)max ≈Qβ(1 − ηβ), where ηβ
is a very small correction factor. Determine the correction factor ηβ .

SOLUTION:

(a) Three processes fall into the category of β decay:

(1) Beta minus (β−) decay with the following characteristics: Z→ Z + 1; A =
const.

n → p + e− + ν̄e,
A
ZP → A

Z+1D + e− + ν̄e. (11.25)

A neutron-rich radioactive nucleus transforms a neutron into proton and ejects
an electron and an antineutrino. Free (extra-nuclear) neutrons actually decay
into protons through the β− decay process with a lifetime τ of 11.24 min.
This decay is possible since the neutron rest mass exceeds that of the proton.

(2) Beta plus (β+) decay with the following characteristics: Z → Z − 1; A =
const.

p → n + e+ + νe,
A
ZP → A

Z−1D + e+ + νe. (11.26)

A proton-rich radioactive nucleus transforms a proton into neutron and ejects
a positron and a neutrino. Free (extra-nuclear) protons cannot decay into neu-
trons through a β+ decay process because the rest mass of the proton is
smaller than that of the neutron.

(3) Electron capture with the following characteristics: Z→Z − 1; A= const.

p + e− = n + νe,
A
ZP + e− = A

Z−1D + νe. (11.27)

A proton-rich radioactive nucleus captures an inner shell orbital electron (usu-
ally K shell), transforms a proton into a neutron, and ejects a neutrino.

(b) In many cases, β decay of a parent nucleus does not lead directly to the ground
state of the daughter nucleus; rather it leads to an unstable or even metastable excited
state of the daughter. The excited state de-excites through emission of gamma rays
or through emission of internal conversion electrons. Of course, the orbital shell
vacancies produced by the electron capture or internal conversion process will be
followed by emission of discrete characteristic photons or Auger electrons, as is the
case with all atomic shell vacancies no matter how they are produced.
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Fig. 11.2 Typical β particle energy spectra for β− and β+ decay normalized to the maximum
energy of the β particles

Beta decay can only take place when the binding energy of the daughter nucleus
EB(D) exceeds the binding energy of the parent nucleus EB(P).

(c) For a given β decay, similarly to the situation in α decay, the β-decay energy
is uniquely defined by the difference in mass-energy between the parent and daugh-
ter nuclei. However, in contrast to the α decay where the energy of the emitted α
particles is also uniquely defined, the β particles emitted in β decay are not mono-
energetic, rather they exhibit a continuous spectral kinetic energy distribution with
only the maximum kinetic energy (Ee)max corresponding to the β decay energy.

This apparent contravention of the energy conservation law was puzzling physi-
cists for many years until in 1930 Wolfgang Pauli postulated the existence of the
neutrino to explain the continuous spectrum of electrons emitted in β decay. In
1934 Enrico Fermi expanded on Pauli’s neutrino idea and developed a theory of
β− and β+ decay. The theory includes the neutrino or the antineutrino as the third
particle sharing the available decay energy and momentum with the β particle and
the recoil nucleus. With the emission of a third particle, the neutrino or antineutrino,
the momentum and energy can be conserved in β decay.

Typical shapes of β− and β+ spectra are shown in Fig. 11.2. In general, the spec-
tra exhibit low values at small kinetic energies, reach a maximum at a certain kinetic
energy, and then decrease with kinetic energy until they reach zero at a maximum
energy [(EK)β ]max that corresponds to the β decay energy Qβ , if we neglect the
small recoil energy acquired by the daughter nucleus.

The shapes of β− and β+ spectra differ at low kinetic energies owing to the
charge of the β particles: electrons in β− decay are attracted to the nucleus;
positrons in β+ decay are repelled by the nucleus. The charge effects cause an en-
ergy shift to lower energies for electrons and to higher energies for positrons, as is
clearly shown in Fig. 11.2.
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For use in internal dosimetry calculations of β sources the effective energy
[(EK)β ]eff of β decay spectra is usually estimated as

[
(EK)β

]
eff = 1

3

[
(EK)β

]
max. (11.28)

(d) Because of the presence of the third decay product (the elusive neutrino or
antineutrino) in β decay that shares the available decay energyQβ , the recoil energy
(EK)D can take on values between zero and a maximum value.

(1) Recoil kinetic energy of the daughter decay product is zero, i.e., (EK)D = 0,
when the electron and antineutrino in β− decay or positron and neutrino in β+
decay are emitted with the same momentum but in opposite directions.

(2) Maximum recoil kinetic energy (EK)D = [(EK)D]max = max of the daughter,
on the other hand, occurs when either one of the two light decay particles (electron
or antineutrino in β− decay; positron or neutrino in β+ decay) is emitted with the
maximum available kinetic energy [(EK)β ]max.

(e) Q value of β decay or β-decay energy Qβ is expressed as the sum of kinetic
energies of decay products after the β decay. For simplicity we use [(EK)D]max and
(EK)max in the sum to get

Qβ = [
(EK)D

]
max + [

(EK)β
]

max (11.29)

and then express [(EK)D]max in terms of [(EK)β ]max.
Maximum recoil kinetic energy of the daughter [(EK)D]max is determined using

the principles of energy and momentum conservation and accounting for the rel-
ativistic mass changes of the β particle (electron or positron) and using classical
mechanics for recoil kinetic energy [(EK)D]max of the daughter.

Since the parent momentum before β decay is zero, the total momentum shared
by the daughter D and the β particle e± (under the special condition of neutrino
or antineutrino energy equaling zero) must also equal to 0 after the β decay and
this means that the two vector momenta pD and pe± after β decay must be opposite
in direction and equal in magnitude. The magnitudes of the two momenta are thus
related as follows

M (D)υD = pD ≡ |pD| = |pe±| ≡ pe± = γe±meυe± = meυe±√
1 − β2

e±
= mecβe±√

1 − β2
e±
,

(11.30)
where

me is the rest mass of the β particle (electron or positron):me = 0.511 MeV/c2.
γe± is the Lorentz factor of the beta particle: γe± = (1 − β2

e±)−1/2.
βe± is the velocity υe± of the β particle normalized to speed of light c.
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M (D) is the atomic rest mass of the daughter β decay product.
βe± is the velocity of the daughter D after β decay.

Maximum recoil kinetic energy [(EE)D]max of the daughter is expressed as follows

[
(EK)D

]
max = p2

D

2M (D)c2
= (mec

2)2

2M (D)c2

β2
e±

1 − β2
e±
. (11.31)

From the standard expression for [(EK)β ]max = (γe± − 1)mec
2 we determine the

following expression for β2
e±/(1 − β2

e±)

β2
e±

1 − β2
e±

= 2[(EK)β ]max

mec2
+
[ [(EK)β ]max

mec2

]2

. (11.32)

Inserting (11.32) into (11.31) we obtain the following result for the maximum recoil
kinetic energy of the daughter D after β decay

[
(EK)D

]
max = mec

2

M (D)c2

[
(EK)β

]
max + 1

2M (D)c2

[
(EK)β

]2
max. (11.33)

Beta decay energy Qβ is now given by the following expression

Qβ = [
(EK)β

]
max + [

(EK)D
]

max

= [
(EK)β

]
max +

[
mec

2

M (D)c2

[
(EK)β

]
max + 1

2M (D)c2

[
(EK)β

]2
max

]

= [
(EK)β

]
max + [

(EK)β
]

max

[
mec

2 + 1
2 [(EK)β ]max

M (D)c2

]
, (11.34)

showing clearly that in beta minus decay as well as in beta plus decay by far the
larger energy component is the component [(EK)β ]max that is shared between the
electron and antineutrino in beta minus decay and by the positron and neutrino in
beta plus decay. Recoil energy [(EK)D]max given to the daughter, even at its maxi-
mum spelled out in (11.33), is extremely small and generally neglected in compari-
son with [(EK)β ]max.

Equation (11.34) can be written in the form of a quadratic equation for
[(EK)β ]max as a function of Qβ

1

2M (D)c2

[
(EK)β

]2
max +

[
1 + mec

2

M (D)c2

][
(EK)β

]
max −Qβ = 0, (11.35)

with the following physically-relevant solution [note: [(EK)β ]max > 0]

[
(EK)β

]
max = M (D)c2

{
−
[

1 + mec
2

M (D)c2

]
+
√[

1 + mec2

M (D)c2

]2

+ 2Qβ
M (D)c2

}
.

(11.36)
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(f) To evaluate (11.36) further we write it in the following form

[
(EK)β

]
max = M (D)c2

[
1 + mec

2

M (D)c2

]{√
1 + 2Qβ

M (D)c2

[
1 + mec2

M (D)c2

]−2

− 1

}
.

(11.37)
The second term under the square root is obviously much smaller than 1 since it is
governed by the ratio 2Qβ/[M (D)c2], allowing us to expand the square root into a
series and keeping only the first two terms to get

[
(EK)β

]
max ≈ M (D)c2

[
1 + mec

2

M (D)c2

]{
1 + Qβ

M (D)c2

[
1 + mec

2

M (D)c2

]−2

+ · · · − 1

}

= Qβ

1 + mec2

M (D)c2

≈Qβ
[

1 − mec
2

M (D)c2

]
=Qβ(1 − η), (11.38)

where ηβ is a small correction factor for β decay given as ηβ = mec
2/(M (D)c2)

and this ratio multiplied by Qβ is actually the maximum recoil kinetic energy
[(EK)D]max of the daughter after the β decay

[
(EK)D

]
max =Qβ − [

(EK)β
]

max =Qβ −Qβ(1 − ηβ)= ηβQβ = mec
2

M (D)c2
Qβ.

(11.39)

11.4 Beta Minus Decay

11.4.Q1 (228)

Several radionuclides decaying by beta minus (β−) decay are used in
medicine for external beam radiotherapy, brachytherapy, and nuclear imag-
ing. Parent P radionuclide decays by β− decay into excited daughter D that
instantaneously or through metastable decay, decays into its ground state and
emits the excitation energy in the form gamma rays.

(a) State expressions for β− decay energy Qβ− (Q value of β− decay)
based on: (1) nuclear rest energy of parent P and daughter D; (2) atomic
rest energy of parent P and daughter D.

(b) Decay energyQβ− for β− decay can be written as the sum of maximum
recoil kinetic energy [(EK)D]max of the daughter and maximum kinetic
energy [(EK)β ]max of the β− particle (electron) ejected from the nu-
cleus in β− decay. State the expressions for [(EK)D]max and [(EK)β ]max
in terms of Qβ− .
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(c) Decay of a free (extra-nuclear) neutron into a proton p, electron e, and
electronic anti-neutrino ν̄e is the simplest example of β− decay. Calcu-
late the Q value Qβ−(n) of a neutron undergoing β− decay. Appropri-
ate rest energies of neutron, proton, and electron are available in Ap-
pendix A.

(d) For β− decay of neutron determine the maximum kinetic energy
[(EK)β ]max of the ejected electron and the maximum recoil kinetic en-
ergy [(EK)D]max of the proton.

SOLUTION:

(a) Beta minus (β−) decay is characterized by a spontaneous transformation of
a neutron into a proton in a neutron-rich nucleus concurrently with ejection of an
electron and antineutrino

n → p + e− + ν̄e or A
ZP → A

Z+1D + e− + ν̄e or

P(Z,A)→ D(Z + 1,A)+ e− + ν̄e.
(11.40)

Similarly to the case of nuclear reaction and the case of α decay, the decay energy
Qβ−(P) for beta minus decay can be determined either with (1) nuclear rest energy
method or (2) atomic rest energy method.

(1) In the nuclear rest energy method, one subtracts the sum of rest energies of de-
cay products after the β− decay (daughter D, electron e−, and antineutrino ν̄e)
from the rest energy of the parent nucleusM(P)c2. Decay energyQβ− for the
β− decay process must be positive for β− decay to occur and is given in terms
of nuclear rest massM as follows

Qβ−(P)=M(P)c2 −
∑
i, after

Mic
2 = {

M(Z,A)− [
M(Z+1,A)+me +0

]}
c2,

(11.41)
where the term in square brackets represents the sum of nuclear rest masses
of decay products: daughter M(Z + 1,A), electron me, and 0 representing
the rest mass of antineutrino. However, in terms of nuclear rest masses, the
conditionQβ− > 0 is a necessary but not sufficient condition for β− decay to
occur. As indicated in (11.41), β− decay can occur to a neutron-rich unstable
parent nucleus only when the mass M(Z,A) of the parent P nucleus exceeds
the mass M(Z + 1,A) of the daughter D nucleus by more than one electron
rest mass me, i.e., M(Z,A) >M(Z + 1,A)+me.

(2) Adding and subtractingZmec
2 to the right-hand side of (11.41) and neglecting

the electron binding energies to the nucleus we obtain

Qβ−(P) = {[
M(Z,A)+Zme

]− [
M(Z + 1,A)+me + 0 +Zme

]}
c2

= {[
M (Z,A)

]− [
M (Z + 1,A

]}
c2, (11.42)



710 11 Modes of Radioactive Decay

where M (Z,A) and M (Z + 1,A) represent the atomic rest masses of the
parent and daughter, respectively, noting that the following expressions link
atomic and nuclear masses, M andM , respectively

M (Z,A)=M(Z,A)+Zme (11.43)

and

M (Z + 1,A)=M(Z + 1,A)+ (Z + 1)me. (11.44)

For the β− decay to occur, as stated in (11.42), Qβ−(P) must be positive, and we
conclude from (11.42) that, in terms of atomic masses, the atomic mass of the
parent M (Z,A) must exceed the atomic mass of the daughter M (Z + 1,A); i.e.,
M (Z,A) > M (Z + 1,A), in contrast consideration of nuclear masses where, as
stated in (11.41), the rest mass of parent nucleusM(Z,A) must exceed the mass of
the daughter nucleus M(Z + 1,A) by more than one electron rest mass me for β−
decay to be feasible.

(b) Expressions for maximum kinetic energy [(EK)β ]max of the electron ejected
in β− decay were derived in Prob. 227 (11.37) and can be restated in relativistic
format as follows

[
(EK)β

]
max = M (D)c2

[
1 + mec

2

M (D)
c2
]{√

1 + 2Qβ
M (D)c2

[
1 + mec2

M (D)c2

]−2

− 1

}

(11.45)

and, after recognizing that mec
2 � M (D)c2, (11.45) is simplified greatly to read

[
(EK)β

]
max ≈Qβ

[
1 − mec

2

M (D)c2

]
=Qβ(1 − η) (11.46)

and provides the following result for maximum recoil kinetic energy [(EK)D]max of
the daughter

[
(EK)D

]
max =Qβ − [

(EK)β
]

max =Qβ −Qβ(1 − η)= ηQβ = mec
2

M (D)c2
Qβ.

(11.47)
(c) Decay energy Qβ− of neutron undergoing β− decay is calculated using either
the nuclear rest energy method of (11.41) or atomic rest energy method of (11.42).
In the nuclear energy method the rest energy of the parent (neutron) must exceed the
rest energy of the daughter (proton) by more than one electronic rest mass mec

2 =
0.5110 MeV.

As shown in Appendix A, M(Z,A)c2 = mnc
2 = 939.5654 MeV and M(Z +

1,A)c2 =mpc
2 = 938.2720 MeV, leading us to the conclusion that the parent nu-

cleus (neutron) rest energy exceeds the daughter nucleus (proton) rest energy by
1.2934 MeV, an amount larger that the minimum of one electron rest mass required
for β− decay to be feasible.
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(1) Using the nuclear rest energy method (11.41) we obtain the following result
for Qβ−

Qβ−(n) = {
M(Z,A)− [

M(Z + 1,A)+me
]}=mnc

2 −mpc
2 −mec

2

= 939.5654 MeV − 938.2720 MeV − 0.5110 MeV = 0.7824 MeV.

(11.48)

(2) Same result will be obtained using the atomic rest energy method (11.42) by
assuming that the daughter product is the hydrogen atom

Qβ−(n) = {
M (Z,A)− M (Z + 1,A)

}=mnc
2 − M

(1
1H

)
c2

= 939.5654 MeV − (1.007825u)×(931.494028 MeV/u)

= 939.5654 MeV − 938.7830 MeV = 0.7824 MeV. (11.49)

(d) Maximum kinetic energy [(EK)β ]max of the beta particle and maximum recoil
energy [(EK)D]max of the daughter nucleus are calculated from (11.46) and (11.47),
respectively, as follows

[
(EK)β

]
max =Qβ−(n)

[
1 − mec

2

mpc2

]
= (0.7824 MeV)×

[
1 − 0.5110

938.272

]

= 0.7820 MeV (11.50)

and

[
(EK)D

]
max =Qβ−(n)− [

(EK)β
]

max =Qβ−(n)

[
mec

2

mpc2

]

= (0.7824 MeV)×
[

0.5110

938.272

]
= 4×10−4 MeV. (11.51)

In neutron β− decay the proton (daughter product) acquires only a minute frac-
tion that amounts to at most [(EK)D]max = 4×10−4 MeV of the total decay en-
ergy Qβ− = 0.7824 MeV. The rest of the decay energy (0.7820 MeV) is carried
away by the ejected beta particle and antineutrino in random proportions; how-
ever, the sum of kinetic energies carried by the two particles (electron and neu-
trino) must be equal to the maximum kinetic energy available for the two particles
[(EK)β ]max = 0.7820 MeV. Note: Kinetic energy of the two particles (0.7820 MeV)
plus recoil kinetic energy of the daughter product (0.0004 MeV) is equal to the de-
cay energy Qβ− = 0.7824 MeV.
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11.4.Q2 (229)

Most notable β− emitters of significance in medical physics are: cobalt-60
(60

27Co), cesium-137 (137
55Cs), and europium-152 (152

63Eu) as radiation sources
for external beam radiotherapy and iodine-131 (131

53I) for thyroid nuclear
imaging and thyroid ablation.

Calculate for the following radionuclides:

(1) Cobalt-60.
(2) Iodine-131.
(3) Cesium-137.
(4) Europium-152.

(a) Specific activity a.
(b) Binding energy per nucleon EB/A.
(c) Decay energyQβ− . Use both the atomic and nuclear rest energy method

in the calculation ofQβ− . Appropriate nuclear and atomic data are pro-
vided in Appendix A.

(d) Summarize in a tabular format your results obtained in (a), (b), and (c).

SOLUTION:

(a) Specific activity a of a radionuclide is defined as activity A per unit mass m

a = A
m

= λN

m
= (ln 2)N

t1/2m
= (ln 2)NA

t1/2A
, (11.52)

where, for a given radionuclide, λ is the decay constant [λ = (ln 2)/t1/2] with t1/2
the half-life, NA is the Avogadro number (6.022×1023 mol−1), and A is the atomic
mass. From (11.52) we note that specific activity a is inversely proportional to both
the half-life t1/2 as well as atomic mass A.

(1) Specific activity a of cobalt-60 (t1/2 = 5.26 a):

aCo-60 = (ln 2)×(6.022×1023 mol−1)

(60 g · mol−1)×(5.26 a)×(365 d/a)×(24 h/d)×(3600 s/h)

= 4.194×1013 s−1/g = 4.194×1013 Bq/g

= 4.194×104 GBq/g = 1133 Ci/g. (11.53)

(2) Specific activity a of iodine-131 (t1/2 = 8.02 d):

aI-131 = (ln 2)×(6.022×1023 mol−1)

(131 g · mol−1)×(8.02 d)×(24 h/d)×(3600 s/h)
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= 4.6×1015 s−1/g

= 4.6×106 Bq/g = 4.6×106 GBq/g = 124280 Ci/g. (11.54)

(3) Specific activity a of cesium-137 (t1/2 = 30 a)

aCs-137 = (ln 2)×(6.022×1023 mol−1)

(137 g · mol−1)×(30 a)×(365 d/a)×(24 h/d)×(3600 s/h)

= 3.22×1012 s−1/g = 3.22×1012 Bq/g

= 3.22×103 GBq/g = 87 Ci/g. (11.55)

(4) Specific activity a of europium-152 (t1/2 = 13.52 a):

aEu-152 = (ln 2)×(6.022×1023 mol−1)

(152 g · mol−1)×(13.52 a)×(365 d/a)×(24 h/d)×(3600 s/h)

= 6.44×1012 s−1/g = 6.44×1012 Bq/g

= 6.44×104 GBq/g = 174.1 Ci/g. (11.56)

(b) The sum of masses of individual components of a nucleus that contains Z
protons and A − Z neutrons is larger than the actual mass of the nucleus. This
difference in mass is called the mass defect (deficit) �m and its energy equivalent
�mc2 is called the total binding energyEB of the given nucleus (Z,A). The binding
energy per nucleon EB/A of a nucleus, i.e., the total binding energy of a nucleus
EB divided by the number of nucleons A, varies with the number of nucleons, is of
the order of ∼8 MeV/nucleon, and is determined as follows

EB

A
= �mc2

A
= Zmpc

2 + (A−Z)mnc
2 −Mc2

A
, (11.57)

where mpc
2 is the proton rest energy (938.272013 MeV), mnc

2 is the neutron rest
energy (939.565346 MeV), andMc2 is the rest energy of nucleus (Z,A).

(1) Binding energy per nucleon of cobalt-60 (Z = 27, A= 60):

EB

A

∣∣∣∣
Co-60

= 27×938.272013 MeV + 33×939.565346 MeV − 55814.2014 MeV

60

= 524.7994 MeV

60
= 8.7467 MeV. (11.58)

(2) Binding energy per nucleon of iodine-131 (Z = 53, A= 131):

EB

A

∣∣∣∣
I-131

= 53×938.272013 MeV + 78×939.565346 MeV − 121911.1907 MeV

131

= 1103.32300 MeV

131
= 8.4223 MeV. (11.59)
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Fig. 11.3 Binding energy per nucleon EB/A in MeV/nucleon against atomic mass number A

(3) Binding energy per nucleon of cesium-137 (Z = 55, A= 137):

EB

A

∣∣∣∣
Cs-137

= 55×938.272013 MeV + 82×939.565346 MeV − 127500.0283 MeV

137

= 1149.2908 MeV

137
= 8.389 MeV. (11.60)

(4) Binding energy per nucleon of europium-152 (Z = 63, A= 152):

EB

A

∣∣∣∣
Eu-152

= 63×938.272013 MeV + 89×939.565346 MeV − 141480.2400 MeV

152

= 1252.21613 MeV

152
= 8.238 MeV. (11.61)

Figure 11.3 plots binding energy per nucleon against atomic mass number A in
the range of A from 1 to 250. Results calculated in (b) for Co-60, I-131, Cs-137,
and Eu-152 are also shown. In general, the larger is the binding energy per nucleon
EB/A of an atom, the larger is the stability of its nucleus. Thus, the most stable
nuclei in nature are the ones with A≈ 60 (iron, cobalt, and nickel).

(c) Beta minus Q value also known as β− decay energy Qβ− can be determined
either with the atomic rest energy method or with the nuclear rest energy method,
which, respectively, can be expressed as follows

Qβ−(P)= {
M (Z,A)− M (Z + 1,A)

}
c2 (11.62)

and

Qβ−(P)= {
M(Z,A)−M(Z + 1,A)−me

}
c2, (11.63)
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where P stands for parent nucleus with atomic number Z and atomic mass number
A,M stands for nuclear rest mass, M stands for atomic rest mass, and me is the rest
mass of the electron.

(1) Beta minus decay energy Qβ− for cobalt-60 decay into nickel-60 (t1/2 =
5.26 a)

60
27Co → 60

28Ni + e− + ν̄e +Qβ−
(60

27Co
)
. (11.64)

Atomic rest energy method

Qβ−
(60

27Co
) = {

M (Z,A)− M (Z + 1,A)
}
c2 = {

M
(60

27Co
)− M

(60
28Ni

)}
c2

= [59.933822u− 59.930791u]c2

= 3.031×10−3×(931.494028 MeV)= 2.824 MeV. (11.65)

Nuclear rest energy method

Qβ−
(60

27Co
) = {

M(Z,A)−M(Z + 1,A)−me
}
c2

= {
M
(60

27Co
)−M(60

28Ni
)−me

}
c2

= 55814.2014 MeV − 55810.8665 MeV − 0.5110 MeV

= 2.824 MeV. (11.66)

(2) Beta minus decay energy Qβ− for iodine-131 decay into xenon-131 (t1/2 =
8.02 d)

131
53I → 131

54Xe + e− + ν̄e +Qβ−
(131

53I
)
. (11.67)

Atomic rest energy method

Qβ−
(131

53I
) = {

M (Z,A)− M (Z + 1,A)
}
c2 = {

M
(131

53I
)− M

(131
54Xe

)}
c2

= [130.906125u− 130.905082u]c2

= 1.043×10−3×(931.494028 MeV)= 0.972 MeV. (11.68)

Nuclear rest energy method

Qβ−
(131

53I
) = {

M(Z,A)−M(Z + 1,A)−me
}
c2

= {
M
(131

53I
)−M(131

54Xe
)−me

}
c2

= 121911.1907 MeV − 121909.7081 MeV − 0.5110 MeV

= 0.972 MeV. (11.69)

(3) Beta minus decay energy Qβ− for cesium-137 decay into barium-137 (t1/2 =
30 a)

137
55Cs → 137

56Ba + e− + ν̄e +Qβ−
(137

53Cs
)
. (11.70)
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Atomic rest energy method

Qβ−
(137

55Cs
) = {

M (Z,A)− M (Z + 1,A)
}
c2 = {

M
(137

55Cs
)− M

(137
56Ba

)}
c2

= [136.907084u− 136.905821u]c2

= 1.263×10−3×(931.494028 MeV)= 1.176 MeV. (11.71)

Nuclear rest energy method

Qβ−
(137

55Cs
) = {

M(Z,A)−M(Z + 1,A)−me
}
c2

= {
M
(137

55Cs
)−M(137

56Ba
)−me

}
c2

= 127500.0283 MeV − 127498.3408 MeV

− 0.5110 MeV = 1.176 MeV. (11.72)

(4) Beta minus decay energy Qβ− for europium-152 decay into gadolinium-152
(t1/2 = 13.52 a)

152
63Eu → 152

64Gd + e− + ν̄e +Qβ−
(152

63Eu
)
. (11.73)

Atomic rest energy method

Qβ−
(152

63Eu
) = {

M (Z,A)− M (Z + 1,A)
}
c2 = {

M
(152

63Eu
)− M

(152
64Gd

)}
c2

= [151.921745u− 151.919791u]c2

= 1.954×10−3×(931.494028 MeV)= 1.820 MeV. (11.74)

Nuclear rest energy method

Qβ−
(152

63Eu
) = {

M(Z,A)−M(Z + 1,A)−me
}
c2

= {
M
(152

63Eu
)−M(152

64Gd
)−me

}
c2

= 141482.0052 MeV − 141479.6741 MeV − 0.5110 MeV

= 1.820 MeV. (11.75)

Beta minus decay energy Qβ−(P) was calculated for four radionuclides (Co-60,
I-131, Cs-137, and Eu-152) that decay with β− decay and are of importance in med-
ical physics, three of them (Co-60, Cs-137, and Eu-152) as radiation sources for ex-
ternal beam radiotherapy and I-131 for thyroid imaging or ablation. Europium-152
has not been used clinically yet, however, studies have shown its potential useful-
ness as radiation source. In addition to β− decay (27.9 %), Eu-152 also decays with
electron capture (72.1 %) and β+ decay (0.03 %). The other three radionuclides
decay only through β− decay (100 %).

Decay energies Qβ−(P) for the four radionuclides were calculated with the
atomic rest energy method and with the nuclear rest energy method. For a given
radionuclide both methods gave identical results, as shown above.
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Table 11.2 Various nuclear parameters for four radionuclides of importance to medical physics

(1) Radionuclide Specific activity
a (Ci/g)

Binding energy per
nucleon EB/A (MeV)

Beta minus decay energy
Qβ− (MeV)

(2) Cobalt-60 1133 8.75 2.824

(3) Iodine-131 124280 8.42 0.972

(4) Cesium-137 87 8.39 1.176

(5) Europium-152 174 8.24 1.820

(d) Summary of results on specific activity a, binding energy per nucleon EB/A,
and β− decay energy Qβ− for radionuclides: cobalt-60, iodine-131, cesium-137,
and europium-152 is presented in Table 11.2.

11.5 Beta Plus Decay

11.5.Q1 (230)

Beta plus (β+) decay is characterized by the production of positrons that ap-
pear in a spectral distribution with maximum positron energy specific to the
particular β+ decay. As in the β− decay, the daughter recoil kinetic energy in
β+ decay is essentially negligible. Radionuclides undergoing β+ decay are
often called positron emitters and are used in medicine for functional imag-
ing with a special imaging technique called positron emission tomography
(PET).

(a) List at least 5 positron emitting radionuclides that can be attached to
biological markers and used in PET imaging.

(b) Briefly discuss the main characteristics of PET imaging:

(1) Information that it provides.
(2) Production of radionuclides for use in PET studies.
(3) Acquisition of PET scans.

(c) State expressions for β+ decay energy Qβ+ (Q value of β+ decay)
based on:

(1) Nuclear rest energy of parent P and daughter D.
(2) Atomic rest energy of parent P and daughter D.

(d) Show a schematic representation of a typical radioactive beta plus β+
decay transition from a parent nucleus P(Z,A) to ground state of a
daughter nucleus D(Z − 1,A) based on:
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(1) Atomic rest energies.
(2) Nuclear rest energies.

Appropriate atomic and nuclear data are available from Appendix A.
Show the correspondence between the two graphs.

SOLUTION:

The most frequently used positron emitters are: carbon-11 (11
6C); nitrogen-13 (13

7N);
oxygen-15 (15

8O); fluorine-18 (18
9F); and rubidium-82 (82

37Rb).
Of these, fluorine-18 is the most frequently used radionuclide in PET scanning.

It is applied for labeling the deoxyglucose biological marker thereby forming the
radiopharmaceutical fluorodeoxyglucose (FDG) for use in studies involving glucose
metabolism in cancer diagnosis.

(b) Main characteristics of PET imaging are as follows:

(1) PET is a nuclear medicine molecular imaging technique that provides infor-
mation on metabolic function of organs or tissues by detecting how cells pro-
cess certain compounds such as, for example, glucose. Cancer cells metabo-
lize glucose at a much higher rate than normal tissues. By detecting increased
radiolabelled glucose metabolism with a high degree of sensitivity, PET iden-
tifies cancerous cells, even at an early stage when other imaging modalities
may miss them.

(2) The radionuclides used in PET studies are most commonly produced by bom-
bardment of an appropriate stable nuclide with protons from a cyclotron
thereby producing positron-emitting radionuclides that are subsequently used
for labeling biochemical substances and producing radioactive tracers. An-
other means of production of proton-rich radionuclides is by using a suit-
able generator, such as, for example, a rubidium-82 generator containing
strontium-82 that decays by electron capture into positron emitting rubidium-
82.

(3) In a PET study one administers a positron-emitting radionuclide by injection
or inhalation. The radionuclide circulates through the bloodstream to reach
a particular organ. The positrons emitted by the radionuclide have a very
short range in tissue (of the order of 1 mm) and undergo annihilation with
an available atomic orbital electron typically at the end of their tracks. This
process generally results in emission of two gamma photons called annihila-
tion quanta, each with energy of 0.511 MeV, moving away from the point of
production in nearly opposite directions.

(4) Decay events are detected by coincidence detection of the annihilation quanta
with a timing window of the order of few nanoseconds. Typical detectors are
scintillators coupled with a photomultiplier tube (PMT) or photodiode and
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arranged in a ring about the patient. The line connecting the two detectors
triggered in coincidence is called the coincidence line and many such lines
are formed during acquisition of a PET scan. Spatial activity distribution in the
organ of interest within the field-of-view is reconstructed from the measured
projections with the help of mathematical algorithms.

(c) Beta plus (β+) decay is characterized by a spontaneous transformation of
a proton into a neutron in a proton-rich nucleus concurrently with ejection of a
positron and electronic neutrino

p → n + e+ + νe or A
ZP → A

Z−1D + e+ + νe or

P(Z,A)→ D(Z − 1,A)+ e+ + νe.
(11.76)

Similarly to the case of nuclear reaction, α decay, and β− decay, the decay energy
Qβ+(P) for beta plus decay can be determined either with (1) nuclear rest energy
method or (2) atomic rest energy method.

(1) In the nuclear rest energy method, one subtracts the sum of rest energies of
decay products after the β+ decay (daughter D, positron e+, and electronic
neutrino νe) from the rest energy of the parent nucleusM(P)c2. Decay energy
Qβ+(P) for the β+ decay process must be positive for β+ decay to occur and
is given in terms of nuclear rest massM as follows

Qβ+(P)=M(P)c2 −
∑
i

Mic
2 = {

M(Z,A)− [
M(Z − 1,A)+me + 0

]}
c2,

(11.77)
where the term in square brackets represents the sum of nuclear rest masses
of decay products: daughterM(Z−1,A), positronme, and 0 representing the
rest mass of neutrino. However, in terms of nuclear rest masses, the condition
Qβ+ > 0 is a necessary but not sufficient condition for β+ decay to occur.

As indicated in (11.77), β+ decay can occur to a proton-rich unstable par-
ent nucleus only when the mass M(Z,A) of the parent P nucleus exceeds the
mass M(Z − 1,A) of the daughter D nucleus by more than one positron rest
mass me, i.e.,M(Z,A) >M(Z − 1,A)+me.

(2) Adding and subtractingZmec
2 to the right-hand side of (11.77) and neglecting

the electron binding energies to the nucleus we obtain the following expres-
sion for Qβ+(P) for the atomic rest energy method

Qβ+(P) = {[
M(Z,A)+Zme

]− [
M(Z − 1,A)+Zme +me

]}
c2

= {[
M(Z,A)+Zme

]− [
M(Z − 1,A)+ (Z − 1)me + 2me

]}
c2

= {
M (Z,A)− [

M (Z − 1,A)+ 2me
]}
c2, (11.78)

where M(Z,A) and M(Z − 1,A) stand for nuclear rest masses of the parent
and daughter, respectively, and M (Z,A) and M (Z − 1,A) stand for atomic
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Fig. 11.4 Schematic diagram for β+ decay; atomic rest energy on the left and nuclear rest energy
on the right

rest masses of the parent and daughter, respectively, noting that the following
expressions link atomic and nuclear masses, M andM , respectively

M (Z,A)=M(Z,A)+Zme (11.79)

and

M (Z − 1,A)=M(Z − 1,A)+ (Z − 1)me. (11.80)

From (11.78) a conclusion can be made that, for β+ decay to occur, the atomic
mass of the parent M (Z,A) must exceed the atomic mass of the daughter
M (Z− 1,A) by more than two positron rest masses, or, in terms of rest ener-
gies

M (Z,A)c2 >M (Z − 1,A)c2 + 2mec
2. (11.81)

(d) From (11.77) and (11.78) we note that Qβ+(P) can be expressed in terms of
nuclear masses M or in terms of atomic masses M of parent P(Z,A) and daughter
D(Z − 1,A) as follows

Qβ+(P) = {
M(Z,A)− [

M(Z − 1,A)+me
]}
c2

= {
M (Z,A)− [

M (Z − 1,A)+ 2me
]}
c2. (11.82)

A schematic diagram of β+ decay is shown in Fig. 11.4 using atomic masses
on the left and nuclear masses on the right for the parent P(Z,A) and daughter
D(Z − 1,A). Of course, both methods must yield identical results for Qβ+(P), as
evident from the two energy level diagrams in Fig. 11.4. The magnitude of Qβ+(P)
resulting from the atomic rest energy method in the left diagram is identical to that
resulting from the nuclear rest energy method shown in the right diagram.
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11.5.Q2 (231)

The most frequently used positron emitters in clinical studies with PET scan-
ners are: carbon-11 (C-11), nitrogen-13 (N-13), oxygen-15 (O-15), fluorine-
18 (F-18), and rubidium-82 (Rb-82).

(a) Determine the beta plus decay energy Qβ+ (also known as the Q value
for β+ decay) for the five most frequently used positron emitters: C-11,
N-13, O-15, F-18, and Rb-82. In your calculation of Qβ+(P) use both
the atomic rest energy method as well as the nuclear rest energy method
and convince yourself that both methods provide the identical results for
a given radionuclide. Appropriate atomic and nuclear data are provided
in Appendix A.

(b) Determine the maximum energy [(EK)β ]max of the positron emitted in
β+ decay of positron emitters listed in (a).

(c) Prepare a table in which you list for the 5 most frequently used positron
emitters of (a) and (b) the following parameters: Row (1): positron
emitter; row (2): atomic number Z; row (3): atomic mass number A;
row (4): half-life t1/2; row (5): daughter product; row (6): decay en-
ergy Qβ+ ; row (7): maximum positron energy [(EK)β ]max normal-
ized to Qβ+ ; row (8): maximum recoil kinetic energy of the daugh-
ter [(EK)D]max normalized to Qβ+ ; row (9): means of production (ma-
chine); and row (10): means of production (nuclear reaction).

If you do not know certain parameters, use available literature to find the
answers.

SOLUTION:

(a) Q value for β+ decay of positron emitters is determined either with the atomic
rest energy method or with the nuclear rest energy method. The two methods were
studied in detail in Prob. 232 and their relevant expressions can be summarized as
follows:

(1) For the atomic rest energy method with M designating atomic mass

Qβ+(P) = M (P)c2 − [
M (D)+ 2me

]
c2

= M (Z,A)c2 − [
M (Z − 1,A)+ 2me

]
c2. (11.83)

(2) For the nuclear rest energy method withM designating nuclear mass

Qβ+(P)=M(P)c2 − [
M(D)+me

]
c2 =M(Z,A)c2 − [

M(Z − 1,A)+me
]
c2.

(11.84)
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Of course, both methods are expected to give identical results when used to calculate
Qβ+(P) for the same positron emitter. We will use both methods in the calculation
of Qβ+(P).

(1) Carbon-11 is a positron emitter produced in a cyclotron by bombardment
of nitrogen-14 with a proton beam resulting in the following nuclear reaction:
14
7N(p, α)11

6C.
The beta plus decay of C-11 proceeds as follows:

11
6C → 11

5B + e+ + νe +Qβ+
(11

6C
)
. (11.85)

Decay energy Qβ+(11
6C) is calculated with the atomic rest energy M and nuclear

rest energyM

Qβ+
(11

6C
) = [

M
(11

6C
)− M

(11
5B
)− 2me

]
c2

= [11.011434u− 11.009305u]c2 − 2mec
2

= (
2.129×10−3u

)×(931.494028 MeV/u)− 1.022 MeV

= 0.960 MeV, (11.86)

Qβ+
(11

6C
) =M(11

6C
)
c2 −M(11

5B
)
c2 −mec

2

= 10254.0190 MeV − 10252.5469 MeV − 0.511 MeV

= 0.960 MeV. (11.87)

(2) Nitrogen-13 is a positron emitter produced in a cyclotron by bombardment
of oxygen-16 with a proton beam resulting in the following nuclear reaction:
16
8O(p, α)13

6N.
The beta plus decay of N-13 proceeds as follows:

13
7N → 13

6C + e+ + νe +Qβ+
(13

7N
)
. (11.88)

Decay energy Qβ+(11
6C) is calculated with the atomic rest energy M and nuclear

rest energyM

Qβ+
(13

7N
) = [

M
(13

7N
)− M

(13
6C
)− 2me

]
c2

= [13.005739u− 13.003355]c2 − 2mec
2

= (
2.384×10−3u

)×(931.494028 MeV/u)− 1.022 MeV

= 1.198 MeV, (11.89)

Qβ+
(13

7N
) =M(13

7N
)
c2 −M(13

6C
)
c2 −mec

2

= 12111.1910 MeV − 12109.4816 MeV − 0.511 MeV

= 1.198 MeV. (11.90)
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(3) Oxygen-15 is a positron emitter produced in a cyclotron by bombardment
of nitrogen-15 with a proton beam resulting in the following nuclear reactions
15
7N(p,n)15

8O or by bombardment of nitrogen-14 with a deuteron beam resulting
in the following reaction: 15

7N(d,n)15
8O.

The beta plus decay of O-15 proceeds as follows:

18
8O → 15

7N + e+ + νe +Qβ+
(15

8O
)
. (11.91)

Decay energy Qβ+(15
8O) is calculated with the atomic rest energy M and nuclear

rest energyM

Qβ+
(15

8O
) = [

M
(15

8O
)− M

(15
7N

)− 2me
]
c2

= [15.003066u− 15.000109]c2 − 2mec
2

= (
2.957×10−3u

)×(931.494028 MeV/u)− 1.022 MeV

= 1.732 MeV, (11.92)

Qβ+
(15

8O
) =M(15

8O
)
c2 −M(15

7N
)
c2 −mec

2

= 13971.1784 MeV − 13968.9350 MeV − 0.511 MeV

= 1.732 MeV. (11.93)

(4) Fluorine-18 is a positron emitter produced in a cyclotron by bombardment
of oxygen-18 with a proton beam resulting in the following nuclear reaction:
18
8O(p,n)18

9F.
The beta plus decay of F-18 proceeds as follows:

18
9F → 18

8O + e+ + νe +Qβ+
(18

9F
)
. (11.94)

Decay energy Qβ+(18
9F) is calculated with the atomic rest energy M and nuclear

rest energyM

Qβ+
(18

9F
) = [

M
(18

9F
)− M

(18
8O

)− 2me
]
c2

= [18.000938u− 17.999160]c2 − 2mec
2

= (
1.778×10−3u

)×(931.494028 MeV/u)− 1.022 MeV

= 0.634 MeV, (11.95)

Qβ+
(18

9F
) =M(18

9F
)
c2 −M(18

8O
)
c2 −mec

2

= 16763.1673 MeV − 16762.0221 MeV − 0.511 MeV

= 0.634 MeV. (11.96)
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(5) Rubidium-82 is a positron emitter produced in a rubidium-82 generator by
electron capture decay of strontium-82 (t1/2 = 25.4 d) through the following decay
reaction 82

38Sr + e− = 82
37Rb + νe.

The beta plus decay of Rb-82 proceeds as follows:

82
37Rb → 82

36Kr + e+ + νe +Qβ+
(82

37Rb
)
. (11.97)

Decay energy Qβ+(82
37Rb) is calculated with the atomic rest energy M and nuclear

rest energyM

Qβ+
(82

37Rb
) = [

M
(82

37Rb
)− M

(82
36Kr

)− 2me
]
c2

= [81.918209u− 81.913484]c2 − 2mec
2

= (
4.725×10−3u

)×(931.494028 MeV/u)− 1.022 MeV

= 3.379 MeV, (11.98)

Qβ+
(82

37Rb
) =M(82

37Rb
)
c2 −M(82

36Kr
)
c2 −mec

2

= 76287.4155 MeV − 76283.5252 MeV − 0.511 MeV

= 3.379 MeV. (11.99)

(b) In the first approximation, maximum kinetic energy [(EK)β ]max of the positron
emitted in β+ decay can be considered equal to the decay energy Qβ+ , neglecting
the exceedingly small recoil kinetic energy [(EK)D]max of the daughter atom. If,
however, recoil energy [(EK)D]max is not neglected, then [(EK)β ]max is slightly
smaller than Qβ+ and given as (T11.23)

[
(EK)β

]
max = M (D)c2

[
1 + mec

2

M (D)c2

]{√
1 + 2Qβ−

M (D)c2

[
1 + mec2

M (D)c2

]−2

− 1

}
.

(11.100)

Recognizing that mec
2 � M (D)c2, we simplify (11.100) to read

[
(EK)β

]
max ≈Qβ+

[
1 − mec

2

M (D)c2

]
(11.101)

and we will use this approximation to determine maximum energy [(EK)β ]max of
the beta particle for the five positron emitters used most frequently in clinical PET
scanning.

(1) Carbon-11 11
6C → 11

5B + e+ + νe +Qβ+(11
6C), Qβ+(11

6C)= 0.960 MeV

[
(EK)β

]
max ≈Qβ+

(11
6C
)[

1 − mec
2

M (11
6C)c2

]
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=Qβ+
(11

6 C
)[

1 − 0.511

11.009305×931.494

]

=Qβ+
(11

6C
)[

1 − 4.98×10−5]. (11.102)

(2) Nitrogen-13 13
7N → 13

6C + e+ + νe +Qβ+(13
7N), Qβ+(13

7N)= 1.198 MeV

[
(EK)β

]
max ≈Qβ+

(13
7N

)[
1 − mec

2

M (13
6C)c2

]

=Qβ+
(13

7N
)×

[
1 − 0.511

13.003355×931.494

]

=Qβ+
(13

7N
)×[

1 − 4.22×10−5]. (11.103)

(3) Oxygen-15 15
8O → 15

7 N + e+ + νe +Qβ+(15
8O), Qβ+(15

8O)= 1.732 MeV

[
(EK)β

]
max ≈Qβ+

(15
8O

)[
1 − mec

2

M (15
7N)c2

]

=Qβ+
(15

8O
)[

1 − 0.511

15.000109×931.494

]

=Qβ+
(15

8O
)[

1 − 3.66×10−5]. (11.104)

(4) Fluorine-18 18
9F → 18

8O + e+ + νe +Qβ+(18
9F), Qβ+(18

9F)= 0.634 MeV

[
(EK)β

]
max ≈Qβ+

(18
9F
)[

1 − mec
2

M (18
8O)c2

]

=Qβ+
(18

9 F
)[

1 − 0.511

17.999160×931.494

]

=Qβ+
(18

9F
)[

1 − 3.05×10−5]. (11.105)

(5) Rubidium-82 82
37Rb → 82

36Kr+e++νe +Qβ+(82
37Rb),Qβ+(82

37Rb)= 3.379 MeV

[
(EK)β

]
max ≈Qβ+

(82
37Rb

)[
1 − mec

2

M (82
36Kr)c2

]

=Qβ+
(82

37Rb
)[

1 − 0.511

81.913484×931.494

]

=Qβ+
(82

37Rb
)[

1 − 0.67×10−5]. (11.106)

(c) Table 11.3 presents various characteristics of the positron emitting radionu-
clides most frequently used in clinical PET scanning: carbon-11, nitrogen-13,
oxygen-15, fluorine-18, and rubidium-82.
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11.6 Electron Capture

11.6.Q1 (232)

Electron capture (EC) radioactive decay may occur in proton-rich, unstable
parent nuclei, when an atomic electron ventures inside the nuclear volume, is
captured by a proton, and triggers a proton to neutron transformation causing
ejection of an energetic neutrino. EC decay is a competing process to β+
decay; however, conditions on EC decay as far as relative atomic masses are
concerned are less restrictive than those imposed on β+ decay that results
in positron emission and subsequent positron annihilation with emission of
annihilation quanta.

(a) Derive expressions for EC decay energy based on: (1) nuclear rest en-
ergies and (2) atomic rest energies of the parent P and daughter D.

(b) Compare restrictions on EC decay with those imposed on β+ decay.
(c) Derive an expression for energy Eν of the mono-energetic neutrino

emitted in EC decay as a function of EC decay energy QEC and rest
energy M (D)c2 of the daughter atom. Also derive an expression for the
recoil kinetic energy (EK)D of the daughter atom in EC decay.

SOLUTION:

(a) Decay energy QEC or Q value for EC decay is determined from the standard
expression for calculating Q value of a nuclear reaction written in its most general
format as follows

QEC =
∑
i,before

Mic
2 −

∑
i,after

Mic
2, (11.107)

where M stands for nuclear rest masses and the labels “before” and “after” refer to
before EC decay and after EC decay, respectively. For EC decay to occurQEC must
be positive.

Electron capture decay is described as follows

p + e− → n + νe or P(Z,A)+ e− → D(Z − 1,A)+ νe +QEC(P), (11.108)

indicating that in EC decay parent P and daughter D must have identical atomic
mass number A (parent and daughter are said to be isobars) but the atomic number
Z decreases by 1 and the number of neutrons increases by 1.

(1) Equation (11.107) is for EC decay expressed in terms of nuclear rest masses
M as follows

QEC(P) =
[
M(P)c2 +mec

2]− [
M(D)c2 +mνec

2]
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= [
M(Z,A)c2 +mec

2]− [
M(Z − 1,A)+ 0

]
, (11.109)

where we make an assumption that the rest energy of neutrino is equal to zero
(mνec

2 ≈ 0).
From (11.109) we note that for QEC > 0, i.e., for EC decay to occur, the parent

nuclear rest energy M(P)c2 =M(Z,A) combined with the rest energy of an elec-
tron mec

2 must exceed the daughter nuclear rest energy M(D)c2 =M(Z − 1,A),
i.e.,

M(P)c2 +mec
2 >M(D)c2. (11.110)

(2) Equation (11.109) expresses EC decay energy in terms of nuclear rest energies
as follows

QEC(P)=
[
M(Z,A)c2 +mec

2]− [
M(Z − 1,A)

]
. (11.111)

Adding and subtracting Zmec
2 to the right hand side of (11.111) and rearranging

the terms results in the following

QEC(P) =
[
M(Z,A)c2 +Zmec

2]− [
M(Z − 1,A)c2 +Zmec

2 −mec
2]

= [
M (Z,A)c2]− [

M (Z − 1,A)c2], (11.112)

where we have used the following standard relationships between atomic rest energy
M and nuclear rest energyM and ignored the binding energy of orbital electrons to
the nucleus, as is the standard practice

M (Z,A)c2 =M(Z,A)c2 +Zmec
2 (11.113)

and

M (Z − 1,A)c2 =M(Z − 1,A)c2 + (Z − 1)mec
2. (11.114)

From (11.112) it is evident that, in terms of atomic masses, EC decay can occur if
the atomic rest energy of the parent M (Z,A)c2 exceeds the atomic rest energy of
the daughter M (Z − 1,A)c2

M (Z,A)c2 >M (Z − 1,A)c2. (11.115)

Thus, in electron capture decay, the atomic rest energy difference between the parent
P and the daughter D is shared between the neutrino and recoil daughter.

(b) EC decay can occur on a proton-rich radionuclide when the parent atomic
rest mass M (P) simply exceeds the daughter atomic rest mass M (D), i.e., M (P) >
M (D), in contrast to β+ decay that is energetically possible only when the parent
atomic rest mass M (P) exceeds that of the daughter M (D) by a minimum of two
electronic masses, i.e., M (P) >M (D)+ 2mec

2.
The following additional conditions apply to EC decay:
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(1) When the condition QEC > 0 is satisfied but Qβ+ is negative, the β+ decay
will not happen because it is energetically forbidden and EC decay will happen
alone.

(2) WhenQβ+ > 0 thenQEC is always positive and both decays (β+ and EC) can
happen. The branching ratios λEC/λβ+ vary considerably from one radionu-
clide to another, for example, from a low of 0.03 for fluorine-18 to several
hundred for some other proton-rich radionuclides.

(3) In contrast to β− and β+ decay in which three decay products share the de-
cay energy and produce a continuous spectral distribution, in EC decay the
two decay products (neutrino and recoil daughter) do not have a continuous
spectral distribution; rather they are given discrete (mono-energetic) energies.
Mono-energetic neutrinos produce a line spectrum with energy Eν , while the
daughter has a discrete recoil kinetic energy (EK)D governed by the EC decay
energy QEC.

(4) Recall that the three decay products in β− decay are: electron, antineutrino,
and recoil daughter; in β+ decay they are: positron, neutrino, and recoil
daughter. In EC decay there are only two decay products: neutrino and recoil
daughter.

(c) In EC decay kinetic energy (EK)D of the recoil daughter atom and energy Eν
of the mono-energetic neutrino are determined using conservation of momentum
and energy principles.

Conservation of momentum

(1) Before EC decay the total momentum p = 0 (assuming that the parent atom is
stationary).

(2) After EC decay the total momentum carried by recoil daughter atom pD and
mono-energetic neutrino pν must also be zero (pD + pν = 0), meaning that the two
momenta pD and pν are opposite in direction and identical in magnitude

|pD| ≡ pD = M (D)υD = |pν | ≡ pν = Eν

c
, or υD =

√
Eν

M (D)c
, (11.116)

where

M (D) is the mass of the recoil daughter atom.
υD is the velocity of the daughter recoil atom.
Eν is the energy of the mono-energetic neutrino emitted in the EC decay.

Conservation of energy

(1) Before EC the total energy is the EC decay energyQEC less the binding energy
EB of the orbital electron that is captured by the nucleus (QEC −EB).
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(2) After EC decay the total available energy (QEC − EB) is shared between the
two decay products (neutrino and recoil daughter atom)

QEC −EB =Eν + (EK)D. (11.117)

Recoil energy (EK)D of the daughter atom can be classically expressed as

(EK)D = p2
D

2M (D)
= M (D)υ2

D

2
= E2

ν

2M (D)c2
. (11.118)

Inserting (11.118) into (11.117) we now obtain the following quadratic equation
for the energy Eν of the mono-energetic neutrino emitted in the EC decay

1

2M (D)
E2
ν +Eν − (QEC −EB)= 0, (11.119)

with the following physically relevant solution

Eν =
{√

1 + 2(QEC −EB)

M (D)c2
− 1

}
M (D)c2. (11.120)

Since 2(QEC −EB)� M (D)c2, we can simplify (11.120) to read

Eν =
{√

1 + 2(QEC −EB)

M (D)c2
− 1

}
M (D)c2

=
{

1 + QEC −EB

M (D)c2
+ · · · − 1

}
M (D)c2 =QEC −EB. (11.121)

Incorporating (11.121) into (11.118) recoil kinetic energy of the daughter atom
(EK)D is now expressed as follows

(EK)D = E2
ν

2M (D)c2
= (QEC −EB)

2

2M (D)c2
. (11.122)

Equations (11.121) and (11.122) express the energy Eν of the mono-energetic
neutrino and the recoil kinetic energy (EK)D of the daughter atom as a function of
the EC decay energyQEC. However, since in many EC situations the binding energy
of K or L shell orbital electrons is much smaller than the EC decay energy (EB �
QEC), we can, in the first approximation, assume that Eν ≈QEC and (EK)D ≈ 0.
This means that the energy of the mono-energetic neutrino is assumed to be equal
to the EC decay energy.
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11.6.Q2 (233)

Iridium-192 (192
77Ir|) serves as an important radiation source in remote after-

loading brachytherapy. It decays with a half-life of 74 days into either stable
platinum-192 (192

78Pt) or stable osmium-192 (192
76Os). The iridium source is

produced in a nuclear reactor through a thermal neutron activation process on
stable iridium-191.

(a) Establish which nuclear decay processes may be involved in the decay
of iridium-192 into daughter products platinum-192 and osmium-192.

(b) For iridium-192 calculate the decay energies for the decay processes es-
tablished in (a). Relevant data for Ir-192, Os-192, and Pt-192 are avail-
able in Appendix A.

(c) For each decay process of iridium-192 determined in (b) calculate en-
ergies of all decay products.

SOLUTION:

(a) There are 8 major radioactive decays that may possibly play a role in the decay
of Ir-192 into Os-192 and Pt-192. The 8 decays are listed in Table 11.4 and, for each
decay, the table lists �Z, the change in atomic number Z, and �A, the change in
atomic mass number A. A cursory analysis of �Z and �A for the decay of Ir-192
into either Os-192 or Pt-192 shows that�A for both decays is 0, while for the decay
Ir-192 → Os-192 the change in Z is �Z = +1 and for the decay Ir-192 → Pt-192
it is �Z = −1.

A comparison of these findings with data of Table 11.4 shows that 4 out of 8
decays satisfy the�Z = ±1 condition and that 5 out of 8 decays satisfy the�A= 0
condition. However, only 3 out of 8 decays (β−, β+ and EC) satisfy both conditions
simultaneously and we conclude that, out of potential 8 decay processes, only β−
decay, β+ decay, and electron capture may play a role in nuclear decay of Ir-192.
Further analysis will be required to establish which of these three decays are actually
implicated in the radioactive decay of iridium-192.

(1) The decay 192
77Ir → 192

78Pt is characterized with�A= 0 and�Z = −1 suggest-
ing a β− decay process in which a neutron transforms into a proton and an electron
and antineutrino are ejected from the nucleus

192
77Ir → 192

78Pt + e− + ν̄e +Qβ−
(192

77Ir
)
. (11.123)

(2) The decay 192
77Ir → 192

76Os is characterized with �A = 0 and �Z = +1 sug-
gesting a β+ decay process in which a proton transforms into a neutron and a
positron and neutrino are ejected from the nucleus

192
77Ir → 192

76Os + e+ + νe +Qβ+
(192

77Ir
)
. (11.124)
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Table 11.4 Change in atomic numberZ and atomic mass numberA in 8 major radioactive nuclear
decays

Decay α β− β+ EC γ IC PE NE

�Z +2 −1 +1 +1 0 0 +1 0

�A +4 0 0 0 0 0 +1 +1

Legend:

EC = electron capture, IC = internal conversion, PE = proton emission, NE = neutron emission

�Z = Zb − Za and �A = Ab − Aa where “b” stands for before decay and “a” stands for after
decay

(3) The decay 192
77Ir → 192

76Os characterized with�A= 0 and�Z = +1 could also
be attributed to electron capture decay in which an orbital electron ventures into the
nucleus, is captured, and causes a transformation of a proton into a neutron and
ejection of a neutrino from the nucleus

192
77Ir + e− → 192

76Os + νe +QEC
(192

77Ir
)
. (11.125)

(b) Next step is to evaluate decay energies for the three possible decay processes
(β−, β+, and EC) that were identified in (a) with help of Table 11.4. For a given
decay to occur, decay energy Qdecay must be positive; however, if Qdecay is just
barely positive, not much energy will be released in the decay process. Decay energy
Qdecay is in the most general form written as

Qdecay =
∑
i,before

Mic
2 −

∑
i,after

Mic
2, (11.126)

whereMi are nuclear masses and masses of other particles involved in decay. Based
on (11.123) β−, β+, and EC decay energies can now be expressed as follows using
either the nuclear mass M method or the atomic mass M method for the parent P
and daughter D

Qβ− =M(P)c2 −M(D)c2 −mec
2 = M (P)c2 − M (D)c2, (11.127)

Qβ+ =M(P)c2 −M(D)c2 −mec
2 = M (P)c2 − M (D)c2 − 2mec

2, (11.128)

QEC =M(P)c2 +mec
2 −M(D)c2 = M (P)c2 − M (D)c2, (11.129)

where M in (11.127), (11.128), and (11.129) stands for the atomic mass and M c2

for the atomic rest energy. Both approaches spelled out in (11.127) through (11.129),
of course, provide the same results when appropriate nuclear or atomic data are used
in the calculation.

(1) Beta minus decay energy Qβ− is calculated with (11.127) as follows

Qβ−
(192

77Ir
) = M (P)c2 − M (D)c2 = M

(192
77Ir

)
c2 − M

(192
78Pt

)
c2
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= [191.962602u− 191.961035u]c2

= (
1.567×10−3u

)×(931.494028 MeV/u)

= 1.460 MeV. (11.130)

Decay energy for β− decay of Ir-192 was calculated to be 1.460 MeV confirming
β− decay of Ir-192 into Pt-192 as one of the processes contributing to the Ir-192
decay. Note that same result can be obtained, if the nuclear rest energy method
stated in (11.127) is used in the calculation.

Qβ−
(192

77Ir
) =M(P)c2 −M(D)c2 −mec

2

= 178772.6733 MeV − 178770.7027 MeV − 0.511 MeV

= 1.460 MeV. (11.131)

(2) Beta plus decay energy Qβ+ is calculated with (11.128) as follows

Qβ+
(192

77Ir
) = M (P)c2 − M (D)c2 = M

(192
77Ir

)
c2 − M

(192
76Os

)
c2 − 2mec

2

= [191.962602u− 191.961479u]c2 − 2mec
2

= (
1.123×10−3u

)×(931.494028 MeV/u)− 1.022 MeV

= 0.024 MeV. (11.132)

Decay energy for β+ decay of Ir-192 was calculated to be 0.024 MeV. Since the
result is positive, β+ decay is energetically possible but the energy available for
sharing among the decay products is very small making the β+ decay of Ir-192
improbable in comparison with its competing process, the electron capture. Note
that same result can be obtained, if the nuclear rest energy method stated in (11.128)
is used in the calculation

Qβ+
(192

77Ir
) =M(P)c2 −M(D)c2 −mec

2

= 178772.6733 MeV − 178772.1383 MeV − 0.5110 MeV

= 0.024 MeV. (11.133)

(3) Electron capture decay energy QEC is calculated with (11.129) as follows

QEC
(192

77Ir
) = M (P)c2 − M (D)c2 = M

(192
77Ir

)
c2 − M

(192
76Os

)
c2

= [191.962602u− 191.961479u]c2

= (
1.123×10−3u

)×(931.494028 MeV/u)

= 1.046 MeV. (11.134)

Decay energyQEC for EC decay of Ir-192 was calculated to be 1.046 MeV, confirm-
ing the EC decay of Ir-192 into Os-192 as one of the decay processes contributing to
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the decay of Ir-192. Note that same result can be obtained, if the nuclear rest energy
method stated in (11.129) is used in the calculation

QEC
(192

77Ir
) =M(P)c2 +mec

2 −M(D)c2

= 178772.6733 MeV + 0.5110 MeV − 178772.1383 MeV

= 1.046 MeV. (11.135)

(c) Energy of decay products in the Ir-192 radioactive decay is determined using
conservation of momentum and total energy principles.

(1) Beta minus decay of Ir-192:

192
77Ir → 192

78Pt + e− + ν̄e +Qβ−
(192

77Ir
)
. (11.136)

The decay products in Ir-192 β− decay are: electron e−, antineutrino ν̄e, and the
daughter atom Pt-192. Energy of β− decay products exhibits a spectral distribu-
tion and we will here evaluate only the maxima in the spectrum: [(EK)β−]max and
[(EK)Pt-192]max as representative values of energy transfer in β− decay of Ir-192.

The β− decay energy Qβ−(192
77Ir) is shared between the emitted electron as

[(EK)β−]max and recoil daughter atom as [(EK)Pt-192]max when the neutrino energy
is zero. Hence,

Qβ−
(192

77Ir
)= [

(EK)β−
]

max + [
(EK)Pt-192

]
max (11.137)

and the two momenta pβ− ≡ pe− and pD ≡ pPt-192 are opposite in direction and
equal in magnitude. Thus, we can write the magnitude of vector pPt-192 as follows

|pPt-192| ≡ pPt-192 = pe− = mecβe−√
1 − β2

e−
, (11.138)

where

me is the rest mass of the β particle (electron): me = 0.511 MeV/c2.
βe− is the velocity of the electron normalized to the speed of light c in vacuum.

Combining (11.138) with the classical expression for maximum kinetic energy
[(EK)Pt-192]max of the daughter atom Pt-192 we get

[
(EK)Pt-192

]
max = p2

Ir-192

2M (192
78Pt)c2

= p2
e−

2M (192
78Pt)c2

= (mec
2)2

2M (192
78Pt)c2

β2
e−

1 − β2
e−
.

(11.139)

From the standard expression for [(EK)β−]max = [(1 − β2
e−)−1/2 − 1]mec

2 we de-
termine the following expression for β2

e−/(1 − β2
e−)

β2
e−

1 − β2
e−

= 2[(EK)β−]max

mec2
+
[ [(EK)β−]max

mec2

]2

. (11.140)
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Combining (11.140) with (11.139) we get the following expression for the maxi-
mum recoil kinetic energy [(EK)Pt-192]max of the daughter atom

[
(EK)Pt-192

]
max = mec

2

M (D)c2

[
(EK)β

]
max + 1

2M (D)c2

[
(EK)β

]2
max

=Qβ−
(192

77Ir
)− [

(EK)β−
]

max. (11.141)

Equation (11.141) can be written in the form of a quadratic equation for
[(EK)β−]max as a function of the decay energy Qβ−(192

77Ir)

1

2M (192
78Pt)c2

[
(EK)β−

]2
max +

[
1 + mec

2

M (192
78Pt)c2

][
(EK)β−

]
max −Qβ−

(192
77Ir

)= 0

(11.142)
with the following physically-relevant solution [note: [(EK)β ]max > 0]

[
(EK)β−

]
max = M

(192
78Pt

)
c2
{
−
[

1 + mec
2

M (192
78Pt)c2

]

+
√√√√[

1 + mec2

M (192
78Pt)c2

]2

+ 2Qβ−

M (192
78Pt)c2

}
. (11.143)

The second term under the square root is obviously much smaller than 1 since it is
governed by the ratio 2Qβ/[M (D)c2], allowing us to expand the square root into a
series and keeping only the first two terms of the series to get

[
(EK)β−

]
max ≈ M

(192
78Pt

)
c2
[

1 + mec
2

M (192
78Pt)c2

]

×
{

1 + Qβ−(192
77Ir)

M (192
78Pt)c2

[
1 + mec

2

M (192
78Pt)c2

]−2

+ · · · − 1

}

= Qβ−(192
77Ir)

1 + mec2

M ( 192
78Pt)c2

≈Qβ−
(192

77 Ir
)[

1 − mec
2

M (192
78Pt)c2

]

= (1 − η)Qβ−
(192

77Ir
)
, (11.144)

where η is a small correction given as η = mec
2/(M (192

78Pt)c2) and this correc-
tion η multiplied by Qβ−(192

77Ir) is actually the maximum recoil kinetic energy
[(EK)Pt-192]max of the daughter expressed as

[
(EK)Pt-192

]
max =Qβ−

(192
77Ir

)− [
(EK)β−

]
max = ηQβ−

(192
77Ir

)

= mec
2

M (192
78Pt)c2

Qβ−
(192

77Ir
)
. (11.145)
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We now use (11.144) to calculate [(EK)β−]max and (11.145) to calculate
[(EK)Pt-192]max for β− decay of Ir-192 for which β− decay energy was calcu-
lated in (11.130) to be 1.46 MeV. The maximum kinetic energy of the emitted beta
particle (electron) is essentially equal to the decay energyQβ−(192

77Ir)

[
(EK)β−

]
max ≈Qβ−

(192
77Ir

)[
1 − mec

2

M (192
78Pt)c2

]

= (1.46 MeV)

[
1 − 0.511

191.961035×931.494028

]

= (1.46 MeV)
[
1 − 2.86×10−6]≈ 1.46 MeV

=Qβ−
(192

77Ir
)
. (11.146)

From (11.146) we note that the maximum energy of the electron emitted by
the nucleus in β− decay of Ir-192 is essentially equal to the β− decay energy
Qβ−(192

77Ir) = 1.46 MeV, so that essentially all energy available for sharing be-
tween the beta particle (electron) and the recoil atom is picked up by the elec-
tron as [(EK)β−]max and an exceedingly small amount [(EK)Pt-192]max, as stated
in (11.145), is carried by the Pt-192 recoil atom, as shown below

[
(EK)Pt-192

]
max = mec

2

M (192
78Pt)c2

Qβ−
(192

77Ir
)

= 0.511

191.961035×931.494028
×(1.46 MeV)

= 4.17×10−6 MeV = 4.17 eV. (11.147)

(2) Decay energy for β+ decay of Ir-192 was in (11.132) given as 0.0241 MeV,
making β+ decay of Ir-192 allowed but of very low probability in comparison with
electron capture decay.

(3) Decay energy QEC for EC decay of Ir-192 was in (11.134) calculated as
1.046 MeV. The decay products of Ir-192 electron capture decay into Os-192 are
the neutrino and the Os-192 recoil atom and the two share the decay energy QEC

corrected for the binding energy EB of the captured electron. The energy conserva-
tion can thus be expressed as follows

QEC −EB =Eν + (EK)Os-192. (11.148)

As shown in Prob. 234, neutrino energy Eν and daughter recoil kinetic energy
(EK)Os-192 are given, respectively, as follows

Eν ≈QEC −EB = 1.046 MeV − 0.0765 MeV = 0.97 MeV, (11.149)



11.7 Gamma Decay 737

and

(EK)Os-192 = (QEC −EB)
2

2M (192
76Os)c2

= (1.046 MeV − 0.0765 MeV)2

2×(191.961479u)×(931.494028 MeV/u)

= 2.6×10−6 MeV = 2.6 eV (11.150)

again, like in the case of β− decay, indicating that the kinetic energy of the recoil
atom in comparison to neutrino energy in EC decay or beta particle energy in β−
decay is exceedingly small as a result of the large atomic rest mass compared to that
of neutrino or electron.

In (11.149) and (11.150) we first assumed that the captured electron comes from
the K shell of the Ir-192 atom and then we used the Hartree approximation (T3.38)
to calculate the K shell binding energy to the Ir-192 nucleus

EB(K)≈ER(ZIr − 2)2 = (13.61 eV)×(77 − 2)2 ≈ 77 keV = 0.0765 MeV
(11.151)

in excellent agreement with the value of 76.1 keV provided for iridium by the NIST.

11.7 Gamma Decay

11.7.Q1 (234)

Alpha decay as well as the three beta decay modes may produce a daughter
nucleus in an excited state without expending the full amount of the decay
energy available. The daughter nucleus will reach its ground state (i.e., it will
de-excite) through one of the following two processes:

(1) Emit the excitation energy in the form of a γ photon (γ ray) in a ra-
dioactive decay process referred to as gamma (γ ) emission decay.

(2) Transfer the excitation energy to one of its associated atomic orbital
electrons in a process called internal conversion (IC). The orbital elec-
tron is ejected from the atom and referred to as an internal conversion
electron.

(a) A few of the important gamma emitters in medical physics, for rea-
son of historical significance, environmental hazard, or contemporary
use in medicine, are: radium-226, radon-222, cobalt-60, cesium-137,
molybdenum-99, and iridium-192.
Find in the literature and sketch the decay schemes for these radionu-
clides.
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(b) A closer look at the decay schemes plotted in (a) reveals that the gamma
rays actually come from the daughter product, yet we identify them as
if they originated in the parent radionuclide. Explain. Define the terms
isomer and metastable state.

(c) Determine decay energy Qγ for γ emission decay of cobalt-60 into
nickel-60.

SOLUTION:

(a) The six examples of radionuclides of importance to medical physics were cho-
sen for the following reasons:

(1) Radium-226 for its historical importance in early radiotherapy both as external
or internal source of radiation. It is no longer used in medicine because it,
as well as its daughter product radon-222, are dangerous as cancer inducing
substances.

(2) Radon-222, as environmentally hazardous gas, is a daughter product of
radium-226 α decay. It was used as sealed encapsulated brachytherapy source
in the past, but has been replaced by other safer and more practical radionu-
clides.

(3) Cobalt-60 as the most practical sealed source for external beam radiotherapy.
It has been used for this purpose since the early 1950s and still offers reason-
ably inexpensive means for radiotherapy in the developing world. In devel-
oped countries linear accelerators have largely replaced cobalt-60 teletherapy
machines for use in radiotherapy.

(4) Cesium-137 is still used as radiation source in blood irradiators but its use is
declining because of security concerns.

(5) Molybdenum-99 as the radioactive source of technetium-99m produced in
technetium generators and used heavily in nuclear medicine imaging.

(6) Iridium-192 as sealed source in modern high dose rate remote afterloading
brachytherapy machines.

(b) In most radioactive α or β decays the daughter nucleus de-excitation occurs
instantaneously (i.e., within 10−12 s), so that we refer to the emitted γ rays as if
they were produced by the parent nucleus. For example, as shown in Fig. 11.5,
for the cobalt-60 β− decay into nickel-60, the γ rays following the β− decay ac-
tually originate from nuclear de-excitations of nickel-60, yet, for convenience, we
refer to these γ rays as the cobalt-60 γ rays. Similarly, we refer to γ photons fol-
lowing the β− decay of cesium-137 into barium-137m as cesium-137 γ rays even
though the γ photons actually originate from a transition in the barium-137 nu-
cleus.
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Fig. 11.5 Decay schemes for various radionuclides of importance to medical physics: (A) Ra-
dium-226; (B) Radon-222; (C) Cobalt-60; (D) Cesium-137; (E) Molybdenum-99; and (F) Iridi-
um-192. All decays have a gamma emission decay component following α decay of radium-226
and radon-222, β− decay of cobalt-60, cesium-137, molybdenum-99, and iridium-192, or electron
capture decay of iridium-192

In certain α or β decays, the excited daughter nucleus does not immediately
decay to its ground state; rather, it de-excites with a time delay:

(1) The excited state of the daughter is then referred to as a metastable state and
the process of de-excitation is called an isomeric transition. The metastable
states are characterized by their own half-lives t1/2 and mean (average) lives τ .
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(2) The nucleus in a metastable state is identified with a letterm next to the atomic
mass number designation, as shown in Fig. 11.5 in (E) for technetium-99m or
99m

43Tc with a half-life of 6.01 hours.
(3) The term isomer is used for designation of nuclei that have the same atomic

number Z and same atomic mass number A but differ in energy states.

In addition to α and β decay there are many other modes for producing nuclei in
excited states that subsequently undergo γ decay. For example, excited states with
energies up to 8 MeV may be produced with neutron capture (n, γ ) reactions as well
as with other nuclear reactions, such as (p, γ ) and (α,γ ), etc. Examples of γ rays
following α and β decays are given in Fig. 11.5 in (A) and (B) for α decay and
in (C), (D), (E) and (F) for β− decay, and in (E) also for electron capture decay.

(c) In general, the decay energy Qγ in single γ emission decay is the sum of the
emitted γ -ray energy Eγ and the recoil kinetic energy (EK)D of the daughter or

Qγ (D)=Eγ + (EK)D. (11.152)

Conservation of momentum and energy considerations allow us to evaluate further
the decay energy Qγ of (11.152). Momentum before γ decay is zero, so that after
γ decay total momentum resulting from the γ -ray photon pγ and recoil atom pD
must also equal to zero. Thus, the two vector momenta pγ and pD must be opposite
in direction and equal in magnitude, i.e.,

pγ + pD = 0 or |pγ | ≡ pγ = Eγ

c
= |pD| ≡ pD. (11.153)

The partition of energy between the γ photon energy Eγ = pγ c and the recoil
daughter kinetic energy (EK)D can now be expressed as follows

(EK)D = p2
D

2M (D)
= p2

γ

2M (D)
= E2

γ

2M (D)c2
, (11.154)

where M (D)c2 is the rest energy of the daughter atom.
The γ decay energy Qγ (D) after inserting (11.154) into (11.152) is now ex-

pressed as follows

Qγ (D)=Eγ + (EK)D =Eγ
[

1 + Eγ

2M (D)c2

]
. (11.155)

Equation (11.155) shows that the recoil kinetic energy of the daughter (EK)D rep-
resents only a small fraction of the γ -ray energy Eγ and is therefore negligible in
comparison to Eγ for most practical purposes and therefore one may conclude that
Qγ (D)≈ Eγ . However, if one wishes to calculate the recoil kinetic energy (EK)D
of the daughter one must use (11.154).

The label for “daughter” in gamma decay is used in parallel with the same la-
bel used in other nuclear decays that are clearly defined with parent decaying into
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daughter. In gamma decay the parent and daughter represent the same nucleus, ex-
cept that the parent nucleus is in an excited state and the daughter nucleus is in a
lower excited state or the ground state.

For the cobalt-60 gamma rays, as shown in Fig. 11.5, the cobalt-60 nucleus de-
cays through β− decay into nickel-60 (Ni-60) in 2nd excited state. The Ni-60 nu-
cleus immediately de-excites through two transitions, first from 2nd excited state to
1st excited state emitting a γ photon of energy Eγ1 = 1.173 MeV and then from 1st

excited state to ground state emitting a γ photon of energy Eγ2 = 1.332 MeV.
Decay energy Qγ is the sum of two decay energies, Qγ1 for the first γ ray tran-

sition and Qγ2 for the second γ ray transition both calculated with (11.155) and
appropriate data. We get

Qγ =Qγ1 +Qγ2 =
[
Eγ1 + E2

γ1

2M (60
28Ni)c2

]
+
[
Eγ2 + E2

γ2

2M (60
28Ni)c2

]

= Eγ1 +Eγ2 + E2
γ1

+E2
γ2

2M (60
28Ni)c2

= 2.505 MeV + 2.8×10−5 MeV

≈ 2.505 MeV. (11.156)

From (11.156) we note that recoil kinetic energy (EK)Ni-60 of the daughter atom
Ni-60 is 28 eV.

11.8 Internal Conversion

11.8.Q1 (235)

In α or β decay the daughter nucleus is often left in an excited state and
may attain the ground state through emission of one or several γ ray photons.
However, γ emission decay is not the only option for de-excitation of the
daughter nucleus. The de-excitation energy may also be transferred from the
parent nucleus almost in full to an orbital electron of the same atom in a
process referred to as internal conversion (IC). A small portion of the nuclear
de-excitation energy Qγ is required to overcome the binding energy EB of
the electron in its atomic shell. The remaining part of the decay energy Qγ
is shared as kinetic energy between the conversion electron (EK)IC and the
recoil daughter nucleus (EK)D

QIC =Qγ −EB = (EK)IC + (EK)D, (11.157)

where QIC is the decay energy for internal conversion.
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(a) Derive relationships for IC decay energy QIC as well as kinetic en-
ergy of the internal conversion electron (EK)IC and recoil daughter atom
(EK)D.

(b) The radioactive decay scheme of cesium-137, shown in Fig. 11.6, is an
excellent example of β− decay resulting not only in spectrum of beta
particles (electrons) but also in γ rays (0.662 keV) through γ emis-
sion decay as well as IC electrons through IC decay. The β− decay
energy Qβ−(137

55Cs) is 1.176 MeV. Using expressions derived in (a) de-
termine kinetic energy (EK)IC of the IC electron ejected from the K
shell of the barium-137 daughter atom as well as the recoil kinetic en-
ergy (EK)Ba-137 of the barium-137 daughter atom.

(c) Define the internal conversion (IC) factor αIC and from the decay
scheme of cesium-137 displayed in Fig. 11.6 determine the total con-
version factor αIC for de-excitation of barium-137 into ground state in
β− decay of cesium-137 into barium-137.

SOLUTION:

(a) Equation (11.157) gives the IC decay energyQIC as the corresponding γ decay
energy Qγ less the binding energy EB of the IC electron. Qγ is the sum of photon
energy Eγ and recoil kinetic energy (EK)D of the daughter atom and, since (EK)D
is exceedingly small in comparison with Eγ , we can say that, in the first approxima-
tion, Qγ ≈Eγ . Similarly, for IC we can say that QIC = (EK)IC + (EK)D ≈ (EK)IC
since (EK)IC � (EK)D.

Now we turn to the calculation of kinetic energy (EK)IC of the IC electron and
kinetic energy (EK)D of the recoil atom using conservation of momentum and total
energy principles. Before the IC event the daughter atom is stationary and its mo-
mentum is zero. Therefore, after the IC event, the two vector momenta pIC of the IC
electron and pD of the recoil daughter atom of mass M (D) and rest energy M (D)c2

must be opposite in direction and equal in magnitude. The magnitudes of the two
momenta are thus related as follows

|pD| ≡ pD =
√

2(EK)DM (D)= |pIC| = pIC = mecβIC√
1 − β2

IC

, (11.158)

where

me is the rest mass of the IC electron (me = 0.511 MeV/c2).
βIC is the velocity of the IC electron normalized to speed of light in vacuum

(c≈ 3×108 m/s).
M (D) is the rest mass of the daughter atom.
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Recoil kinetic energy (EK)D of the daughter atom can classically be expressed as

(EK)D = p2
D

2M (D)
= p2

IC

2M (D)
= (mec

2)2

2M (D)c2

β2
IC

(1 − β2
IC)

= E2
0

2M (D)c2

β2
IC

(1 − β2
IC)
,

(11.159)

after insertion of relativistic (11.158) into the classical expression for kinetic energy
(EK)D. Note that E0 is the rest energy of the IC electron.

We now express β2
IC/(1 − β2

IC) in terms of the kinetic energy (EK)IC of the IC
electron. From the standard expression for relativistic kinetic energy (EK)IC of the
IC electron

(EK)IC =
(

1√
1 − β2

IC

− 1

)
mec

2 =
(

1√
1 − β2

IC

− 1

)
E0, (11.160)

we first get the following expression

1

1 − β2
IC

=
[

1 + (EK)IC

E0

]2

= 1 + 2
(EK)IC

E0
+ (EK)

2
IC

E2
0

. (11.161)

Equation (11.161) after slight rearrangement yields the following expression for
β2

IC/(1 − β2
IC)

1

1 − β2
IC

− 1 = β2
IC

1 − β2
IC

= 2
(EK)IC

E0
+ (EK)

2
IC

E2
0

. (11.162)

After inserting (11.162) into (11.159) and rearranging the terms we get the following
quadratic equation for (EK)IC as a function of (EK)D

1

2M (D)c2
(EK)

2
IC + E0

M (D)c2
(EK)IC − (EK)D = 0 (11.163)

or as a function of QIC, after inserting (EK)D =QIC − (EK)IC into (11.163)

1

2M (D)c2
(EK)

2
IC +

[
1 + E0

M (D)c2

]
(EK)IC −QIC = 0. (11.164)

The quadratic equation (11.164) has the following physically relevant solution
(EK)IC > 0

(EK)IC = M (D)c2
{√[

1 + E0

M (D)c2

]2

+ 2QIC

M (D)c2
−
[

1 + E0

M (D)c2

]}

= M (D)c2
[

1 + E0

M (D)c2

]{√
1 + 2QIC

M (D)c2

[
1 + E0

M (D)c2

]−2

− 1

}
.

(11.165)
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Since the second term under the square root is much smaller than 1 as a result of
QIC � M (D)c2 and E0 � M (D)c2, we expand the square root term into a Taylor
series and keep only the first two terms to get

(EK)IC = M (D)c2
[

1 + E0

M (D)c2

]{
1 + QIC

M (D)c2

[
1 + E0

M (D)c2

]−2

+ · · · − 1

}

= QIC

[1 + E0
M (D)c2 ] ≈QIC

[
1 − E0

M (D)c2

]
=QIC(1 − η)

= (Qγ −EB)(1 − η), (11.166)

where η is a small correction factor to account for the kinetic energy of the recoil
daughter atom.

We now estimate (EK)D incorporating (11.166) into (11.157) to get

(EK)D =QIC − (EK)IC =QIC −QIC(1 − η)= ηQIC = E0

M (D)c2
QIC

= E0

M (D)c2
(Qγ −EB). (11.167)

(b) We now use (11.166) to determine kinetic energy (EK)IC of the IC electron
and (11.167) to determine recoil kinetic energy (EK)D of the daughter atom.

(1) We note that to use (11.166) we need the gamma decay energy Qγ which we
can approximate with photon energy Eγ = 662 keV. In addition to Qγ , we also
need the binding energy of the K shell electron in barium-137 atom and we estimate
this binding energy with the Hartree approximation method (see (T3.38))

EB(K shell Ba)≈ Z2
effER = (56 − 2)2×13.61 eV ≈ 40 keV. (11.168)

Equation (11.166) now gives the following result for (EK)IC

(EK)IC = (Qγ −EB)(1 − η)= (Qγ −EB)

[
1 − E0

M (D)c2

]

= (0.662 MeV − 0.040 MeV)×
[

1 − 0.511

136.9×931.5

]

= (0.622 MeV)×(
1 − 4.0×10−6)≈ 0.622 MeV. (11.169)

(2) In (11.169) it is reasonable to neglect the ratio E0/[M (137
56Ba)c2] because it

is exceedingly small, however, in calculation of the daughter recoil kinetic energy
we must use it, if we want to determine the extremely small recoil energy. Equa-
tion (11.167) thus gives

(EK)D = E0

M (D)c2
(Qγ −EB)
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Fig. 11.6 Decay scheme for β− decay of cesium-137 into barium-137. Relative mass-energy
levels (decay energies or Q values) for the ground states of the two nuclides were calculated from
either atomic rest energies or nuclear rest energies listed in Appendix A

= 0.511

136.9×931.5
×(0.662 MeV − 0.040 MeV)

≈ 2.5 eV. (11.170)

Note that the recoil kinetic energy (EK)D is indeed very small in comparison with
decay energies in nuclear physics but nonetheless of the order of magnitude of im-
portance in atomic physics.

(c) In typical nuclear de-excitation process two competing nuclear processes are
possible: γ -ray emission and internal conversion electron emission. In contrast to
the fluorescence yield ω that is defined as the number of characteristic photons emit-
ted per vacancy in a given atomic shell, the total internal conversion factor αIC is
defined as the ratio

αIC = conversion probability

γ -emission probability
= NIC

Nγ
, (11.171)

where NIC is the number of conversion electrons ejected from all atomic shells per
unit time and Nγ is the number of γ photons emitted per unit time. In addition to
the total internal conversion factor one can also define partial internal conversion
factors according to the shell from which the electron was ejected.

The internal conversion factor αIC in cesium-137 decay is determined based on
the decay scheme and associated relevant data presented in Fig. 11.6.

(1) Decay energy Qβ−(137
55Cs) is 1.176 MeV determined either with atomic rest

energy data or with nuclear rest energy data for cesium-137 and barium-137 listed
in Appendix A.

(2) Of 100 β− decays of 137
55Cs radionuclide 94.6 decays land in the first excited

state of the barium-137 (137
56Ba) daughter nucleus which is 0.662 MeV above the
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ground state of Ba-137. The maximum energy of the beta particle (electron) emitted
in this transition is 1.176 MeV − 0.662 MeV = 0.514 MeV, ignoring the minute
recoil of the barium-137 daughter nucleus.

(3) Of 100 β− decays of 137
55Cs radionuclide 5.4 decays proceed directly to the

ground state of Ba-137 and the maximum energy of the emitted beta particle (elec-
tron) is 1.176 MeV, ignoring the minute recoil energy of the Ba-137 daughter
atom.

(4) The 94.6 transitions from Cs-137 to first excited state of Ba-137 will result in
85 γ ray photons of energy Eγ = 662 keV and 9.6 IC electrons—7.8 of these will
be ejected from the K shell of the Ba-137 atom and 1.8 will be ejected from the L
shell of the Ba-137 atom.

(5) The internal conversion factor αIC is defined as the ratio between IC prob-
ability and γ emission probability or as the ratio between the number NIC of IC
electrons ejected and the number Nγ of γ ray photons emitted. For Cs-137 the IC
factor αIC is thus given as

αIC = NIC

Nγ
= 7.8 + 1.8

85
= 0.113. (11.172)

11.9 Spontaneous Fission

11.9.Q1 (236)

Spontaneous fission (SF) is a radioactive decay process by which a nucleus
of atomic number Z ≥ 92 splits spontaneously into two fission fragments and
emits 2 to 4 neutrons as well as a significant amount of energy. SF usually
competes with α decay and is, like α decay, explained theoretically as a quan-
tum mechanical tunneling process.

Flerov and Petržak discovered SF in 1940 when they noticed that uranium-
238, in addition to α decay, may undergo the process of spontaneous fission.
The half-life t1/2 of uranium-238 (U-238) is 4.47×109 a. The rate of SF decay
was measured to be about 24 SF decays per gram of U-238 per hour and the
neutron factor fn (neutron yield per SF decay) is about 2.1.

For uranium-238 (238
92U) determine:
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(a) Decay constant λ.
(b) Decay rate per gram per second.
(c) Specific activity in Ci/g.
(d) Half-life (t1/2)SF and decay constant λSF for SF decay.
(e) How many times more probable is α decay compared to SF decay?
(f) Production rate of neutrons (neutron yield) per gram per second.

SOLUTION:

(a) Decay constant λ of U-238 is determined from the standard relationship be-
tween half-life t1/2 and decay constant λ

λ = ln 2

t1/2
= ln 2

(4.47×109 a)×(365 d/a)×(24 h/d)×(3600 s/h)

= 4.92×10−18 s−1. (11.173)

(b) Decay rate of U-238 per gram per second is by definition equal to the specific
activity a defined as activity A per unit mass m (in Bq/g where 1 Bq = 1 s−1)
calculated as follows (T10.2)

a = A
m

= λN

m
= λNA

A
= (4.92×10−18 s−1)×(6.022×1023 mol−1)

(238 g · mol)

= 12449 Bq/g. (11.174)

(c) Specific activity of U-238 a in Ci/g is determined from specific activity in
Bq/g recalling the well known relationships 1 Ci = 3.7×1010 Bq or 1 Bq =
2.703×10−11 Ci to get

a = 12449 Bq/g = 12449×(
2.703×10−11 Ci/g

)= 3.36×10−7 Ci/g

= 0.336 µCi/g. (11.175)

(d) Half-life (t1/2)SF for SF decay of U-238 will be determined from the measured
SF decay rate of 24 SF decays per hour per gram of U-238. This decay rate is
essentially the specific activity aSF of U-238 for spontaneous decay given as

aSF = λSF
NA

A
= (ln 2)

(t1/2)SF

NA

A
= 24 h−1 · g−1 = 6.67×10−3 s−1 · g−1

= 6.67×10−3 Bq/g (11.176)

from where it follows that the half-life (t1/2)SF for SF decay is given as

(t1/2)SF = (ln 2)

aSF

NA

A
= (ln 2)×(6.022×1023 mol−1)

(24 h−1 · g−1)×(238 g · mol−1)
= 7.31×1019 h
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= 7.31×1019 h

(24 h/d)×365 d/a)
= 8.3×1015 a. (11.177)

Decay constant λSF for SF decay of U-238 is given by the standard expression link-
ing half-life t1/2 and decay constant λ as (T10.3)

λSF = ln 2

(t1/2)SF
= ln 2

(8.3×1015 a)×(365 d/a)×(24 h/d)×(3600 s/h)

= 2.65×10−24 s−1. (11.178)

(e) Decay constant λ calculated in (a) is actually the total decay constant of U-
238 equal to the sum of two partial decay constants: λα for α decay and λSF for
SF decay. However, since, as shown by a comparison of (11.173) and (11.178), the
SF decay constant λSF = 2.65×10−24 s−1 is more than six orders of magnitude
smaller than the total decay constant λ= 4.92×10−18 s−1, we can assume that the
α decay constant λα is approximately equal to the total decay constant λ, i.e., λα ≈
λ. This allows us to conclude that the probabilities for α decay and SF decay are
proportional to decay constants for the two decay modes making α decay a factor of
[4.92×10−18/(2.65×10−24)] = 1.85×106 more probable than SF decay, or simply
spontaneous fission probability per decay is 5.4×10−7.

(f) Neutron yield of U-238 per gram per second is given by the neutron factor
fn = 2.1 multiplied by the specific activity aSF for SF decay calculated in (d)

fnaSF = 2.1×(
6.67×10−3 s−1 · g−1)= 14×10−3 s−1 · g−1 ≈ 50 h−1 · g−1.

(11.179)
Equation (11.179) shows that 1 gram of U-238 produces ∼50 neutrons per hour
through SF decay.

11.10 Proton Emission Decay

11.10.Q1 (237)

Proton-rich nuclides normally approach stability through β+ decay or α de-
cay. However, in the extreme case of very large proton excess a nucleus may
also move toward stability through emission of one or even two protons. Pro-
ton emission (PE) decay is thus a competing process to β+ and α decay and
is, similarly to α decay and spontaneous fission (SF), an example of particle
tunneling through the nuclear barrier potential.

(a) List the main characteristics of PE decay.
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(b) Derive general expressions for decay energy QPE in PE decay using:

(1) Nuclear rest energy method.
(2) Atomic rest energy method.
(3) Nuclear binding energy method.

(c) Derive expressions for two-proton emission (2PE) decay in general and
use them to calculate the decay energyQ2PE(

45
26Fe) for 2PE decay of the

iron-45 nucleus. Use the three methods available forQ value calculation
and show that all three give the same end result. Show that single proton
emission from Fe-45 nucleus is energetically forbidden.

SOLUTION:

(a) Proton emission (PE) decay is much less common than are β+ and α decay
and is not observed in naturally occurring radionuclides. In this type of decay the
atomic number Z decreases by 1 and so does the atomic mass A

A
ZP → A−1

Z−1D + p. (11.180)

The main characteristics of PE decay are:

(1) In PE decay a proton is ejected from the parent nucleus P and the parent
nucleus sheds an orbital electron from its outermost shell to become a neutral
daughter atom A−1

Z−1D.
(2) The energetic proton ejected in PE decay slows down in moving through the

absorber and captures an electron from its surroundings to become a neutral
hydrogen atom 1

1H.
(3) Since N , the number of neutrons, does not change in proton emission decay,

the parent P and daughter D have the same number of neutrons and are called
isotones.

(4) For lighter, very proton-rich nuclei with an odd number of protons Z, proton
emission decay is energetically possible and thus very likely to happen.

(5) For lighter, very proton-rich nuclei (A≈ 50) with an even number of protons
Z, a simultaneous 2-proton emission may occur in situations where a sequen-
tial emission of two independent protons is energetically not possible.

(6) PE decay as a radioactive decay phenomenon was postulated in the early
1960s and discovered experimentally in the early 1980s in the category of
single proton emission decay and in 2002 in the category of two-proton emis-
sion decay.

(b) Like in other types of nuclear decay and for nuclear reactions in general, decay
energy QPE (also called QPE value) can be determined by using: (1) Nuclear rest
energies, (2) Atomic rest energies, and (3) Nuclear binding energies.
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(1) Nuclear rest energy method is expressed as follows

QPE =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = {

M(P)− [
M(D)+mp

]}
c2, (11.181)

suggesting thatQPE value is determined by subtracting the sum of nuclear rest ener-
gies of reaction products (daughter nucleus D and ejected proton)

∑
i,afterMic

2 af-
ter the reaction from the sum of nuclear rest energies of reactants (parent nucleus P)∑
i,beforeMic

2 before the reaction. Note:M stands for nuclear mass.

(2) Atomic rest energy method is based on atomic rest energies and must account
for all electrons participating in the PE decay, in addition to all nuclei

QPE =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = {

M (P)− [
M (D)+ M

(1
1H

)]}
c2, (11.182)

suggesting thatQPE value is determined by subtracting the sum of atomic rest ener-
gies of reaction products (daughter atom D and ejected proton that becomes hydro-
gen atom H)

∑
i,after Mic

2 after the reaction from the sum of atomic rest energies
of reactants (parent atom P)

∑
i,before Mic

2 before the reaction. Note: M stands for
atomic mass.

(3) Binding energy method. Q value for PE decay can also be determined with
the help of nuclear binding energy EB by subtracting the sum of nuclear binding
energies of reactants (parent nucleus P) before the interaction

∑
i,beforeEB(i) from

the sum of nuclear binding energies of reaction products (daughter nucleus D) after
the interaction

∑
i,afterEB(i), or

QPE =
∑
i,after

EB(i)−
∑
i,before

EB(i)=EB(D)−EB(P). (11.183)

For PE decay to be feasible, QPE must be positive and this implies that:

(1) As is evident from (11.181), the rest mass of the parent nucleus P must ex-
ceed the combined rest masses of the daughter nucleus D and the proton, i.e.,
M(P) >M(D)+mp.

(2) As is evident from (11.182), the rest mass of the parent atom P must exceed
the combined rest masses of the daughter atom D and the hydrogen atom H,
i.e., M (P) >M (D)+ M (11H).

(3) As is evident from (11.183), the total binding energy of the daughter nucleus
EB(D) must exceed the total binding energy of the parent nucleus EB(P), i.e.,
EB(D) > EB(P).

(c) In some very proton-rich nuclei, such as iron-45, single proton emission decay
is energetically forbidden (Q value is negative) but it turns out that a simultaneous
emission of two protons (2PE decay) is energetically possible because itsQ value is
positive. The three methods for 2-proton emission decay are expressed as follows:



11.10 Proton Emission Decay 751

(1) Nuclear rest energy method

Q2PE
(45

26Fe
) = {

M(P)− [
M(D)+mp

]}
c2

= {
M
(45

26Fe
)− [

M
(43

24Cr
)+ 2mp

]}
c2

= {
41917.5085 MeV − [

40039.8468 MeV + 2

×(938.2720 MeV)
]}

= 1.118 MeV. (11.184)

(2) Atomic rest energy method

Q2PE
(45

26Fe
) = {

M (P)− [
M (D)+ 2M

(1
1H

)]}
c2

= {
M
(45

26Fe
)− [

M
(43

24Cr
)+ 2M

(1
1H

)]}
c2

= {
45.014560u− [

42.997711u+ 2×(1.007825u)
]}

= (
1.199×10−3u

)×(931.494028 MeV/u)

= 1.117 MeV. (11.185)

(3) Nuclear binding energy method

Q2PE
(45

26Fe
) = EB(D)−EB(P)=EB

(43
24Cr

)−EB
(45

26Fe
)

= 330.42378 MeV − 329.30608 MeV

= 1.118 MeV. (11.186)

The three methods for calculation of decay energy in 2PE decay of 45
26Fe into 43

24Cr
give the same positive result (1.118 MeV) forQ2PE(

45
26Fe), so we conclude that 2PE

decay of 45
26Fe is energetically feasible. However, the question of single PE decay still

stands, so we now calculate the decay energy QPE(
45
26Fe) for PE decay of 45

26Fe into
manganese 45

25Mn using (11.181), (11.182), and (11.183), respectively, as follows

QPE
(45

26Fe
) = {

M
(45

26Fe
)− [

M
(44

25Mn
)+mp

]}
c2

= {
41917.5085 MeV − [40979.3623MeV + 938.2713 MeV]}

= −0125 MeV, (11.187)

QPE
(45

26Fe
) = {

M
(45

26Fe
)− [

M
(44

25Mn
)+ M

(1
1H

)]}
c2

= {
45.014560u− [44.006870u+ 1.007825u]}

= (−1.35×10−4u
)×(931.494028 MeV)

= −0.1258 MeV (11.188)
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and

QPE
(45

26Fe
) = EB

(44
25Mn

)−EB
(45

26Fe
)= 329.18028 MeV − 329.30608 MeV

= −0.1258 MeV. (11.189)

As expected, the three methods for calculation of QPE decay energy provide the
same negative result (QPE = −0.125 MeV < 0) showing that single PE decay of
iron-45 is energetically forbidden; however, 2PE decay of iron-45 into chromium-
43 is allowed, because its decay energy Q2PE is positive (Q2PE = 1.117 MeV> 0),
as shown in (11.184), (11.185), and (11.186).

11.10.Q2 (238)

Proton emission (PE) decay is a relatively rare nuclear decay mode character-
ized by spontaneous emission of an energetic proton. Proton-rich artificially
produced nuclei are susceptible to this type of radioactive decay that competes
with β+ decay. Two types of PE decay are known:

(1) PE decay may occur from high-level excited states in daughter nucleus
following β decay—this type of PE decay is called beta-delayed PE
decay,

(2) PE may occur from the ground state of very proton-rich nuclei—this
type of PE decay is similar to the α decay tunneling process.

(a) Determine decay energy QPE(
5
3Li) for proton emission (PE) decay of

lithium-5 (53Li) into helium-4 atom and free proton ejected from the
parent nucleus. Use the three standard methods for calculation of the
decay energy.

(b) For the proton emission decay of (a) determine kinetic energy of the
proton (EK)p and recoil kinetic energy (EK)He-4 of the He-4 daughter
atom.

SOLUTION:

(a) Lithium-5 radionuclide undergoes the following radioactive decay in which an
energetic proton is ejected from the nucleus and the parent nucleus transforms into a
helium-4 daughter nucleus. The process is referred to as proton emission (PE) decay
and is written as follows

5
3Li → 4

2He + p +QPE
(5

3Li
)
. (11.190)

Decay energy QPE(
5
3Li) will be calculated with three methods: (1) Nuclear rest

energy method, (2) Atomic rest energy method, and (3) Nuclear binding energy
method.
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(1) Nuclear rest energy method withM standing for the nuclear rest mass

QPE
(5

3Li
) =M(5

3Li
)
c2 −M(4

2He
)
c2 −mpc

2

= 4.667.6182 MeV − 3727.3791 MeV − 938.2720 MeV

= 1.967 MeV. (11.191)

(2) Atomic rest energy method with M standing for the atomic rest mass

QPE
(5

3Li
) = M

(5
3Li

)− M
(4

2He
)− M

(1
1H

)
= (5.012540u− 4.002603u− 1.007825u)

= (
1.112×10−3u

)×(931.494028 MeV/u)

= 1.967 MeV. (11.192)

(3) Binding energy method

QPE
(5

3Li
) = EB

(4
2He

)
c2 −EB

(5
3Li

)
c2 = 28.2957 MeV − 26.3287 MeV

= 1.967 MeV. (11.193)

(b) Decay energy QPE(
5
3Li) calculated with three methods in (a) provides iden-

tical positive results, so a conclusion can be made that PE decay of lithium-5 into
helium-4 is energetically allowed and its QPE decay energy is 1.967 MeV shared
between the two decay products: ejected proton and recoil helium-4 daughter nu-
cleus.

Now that we have the PE decay energyQPE, we concentrate on the calculation of
kinetic energy of the two decay products produced in PE decay: the proton and the
recoil daughter. In contrast to the situation with beta decays (β−, β+, and electron
capture), we should not expect the daughter nucleus in PE decay to acquire only
a miniscule and negligible portion of the decay energy. This is so, because in beta
decay the rest energy of the daughter atom is several orders of magnitude larger than
that of the emitted beta particle and even more so for the neutrino. This significant
difference in rest energy among the decay products results in an exceedingly small
and essentially negligible energy transfer to the daughter atom, which means that
the other decay products share the full amount of the decay energy.

In PE decay, on the other hand, the emitted proton’s rest energy is comparable
to that of the daughter atom, so that the two decay products share the decay energy
QPE in inverse proportion to their rest energies and the recoil daughter picks up an
appreciable amount of energy.

For decay of the parent nucleus at rest the proton and the daughter atom acquire
vector momenta pp and pD, respectively, that are equal in magnitude but opposite
in direction. Kinetic energies of the proton (EK)p and recoil daughter atom (EK)D
are given classically as follows

(EK)p = p2

2mp
and (EK)D = p2

2M (D)
, (11.194)
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where

p is the magnitude of the momenta of the proton and daughter atom: |pp| =
|pD| = p.

mp is the rest mass of the proton (mp = 938.2720 MeV/c2).
M (D) is the rest mass of the daughter atom.

Decay energy QPE must be positive for PE decay to occur and is equal to the sum
of kinetic energies (EK)p and (EK)D acquired by the emitted proton and recoil
daughter atom, respectively

QPE(P) = (EK)p + (EK)D = p2

2mp
+ p2

2M (D)
= p2

2

[
1

mp
+ 1

M (D)

]

= p2

2mp

[
1 + mp

M (D)

]
= p2

2M (D)

[
M (D)
mp

+ 1

]
. (11.195)

Equation (11.195) can now be written as follows

QPE(P)= (EK)p

[
1 + mp

M (D)

]
= (EK)D

[
M (D)
mp

+ 1

]
, (11.196)

yielding the following expressions for kinetic energies (EK)p and (EK)D of the
emitted proton and the recoil daughter nucleus, respectively

(EK)p =QPE(P)
1

1 + mp
M (D)

=QPE(P)
M (D)

M (D)+mp
=QPE(P)

M (D)c2

M (D)c2 +mpc2

(11.197)
and

(EK)D =QPE(P)
1

1 + M (D)
mp

=QPE(P)
mp

M (D)+mp
=QPE(P)

mpc
2

M (D)c2 +mpc2
.

(11.198)
We now use (11.197) and (11.198) to determine the ejected proton kinetic energy

(EK)p and recoil daughter kinetic energy (EK)D for our specific example of PE
decay of 5

3Li into 4
2He and proton with decay energy QPE of 1.967 MeV.

(1) For ejected proton energy (EK)p we get

(EK)p =QPE
(5

3Li
) M (42He)c2

M (42He)c2 +mpc2

= (1.967 MeV)

× (4.002603u)×(931.494028 MeV/u)

(4.002603u)×(931.494028 MeV/u)+ 938.272013 MeV

= (1.967 MeV)×3728.400791

4666.672804
= 1.572 MeV. (11.199)
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(2) Recoil kinetic energy (EK)He-4 of the helium-4 atom is

(EK)D =QPE
(5

3Li
) mpc

2

M (42He)c2 +mpc2

= (1.967 MeV)

× (938.272013 MeV)

(4.002603u)×(931.494028 MeV/u)+ 938.272013 MeV

= (1.967 MeV)× 938.272013

4666.672804
= 0.395 MeV. (11.200)

In PE decay of lithium-5 into helium-4 and a proton, 79.9 % (1.572 MeV) of the
decay energy QPE of 1.967 MeV is transferred to the ejected proton and 20.1 %
(0.395 MeV) is transferred to the recoil helium-4 atom.

11.11 Neutron Emission Decay

11.11.Q1 (239)

Neutron emission (NE) decay from a neutron-rich nucleus is a competing
process to β− decay but is much less common then β− decay and is not ob-
served in naturally occurring radionuclides. In contrast to spontaneous fission
that also produces neutrons, in neutron emission decay the atomic number Z
remains the same but the atomic mass number A decreases by 1. Both the par-
ent nucleus P and the daughter nucleus D are thus isotopes of the same nuclear
species. The neutron emission decay relationship is written as follows:

A
ZX → A−1

ZX + n. (11.201)

(a) Determine the general expressions for decay energyQNE for NE decay
using (1) nuclear rest energy method, (2) atomic rest energy method,
and (3) nuclear binding energy method.

(b) Determine general expressions for kinetic energy (EK)n of the ejected
neutron and recoil kinetic energy (EK)D of the daughter atom.

(c) Using the general expressions for decay energyQNE derived in (a), cal-
culateQNE for the following NE decay: 13

4Be → 12
4Be+n+QNE(

13
4Be).

Show that the three methods in use for calculation of decay energy give
the same results.
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(d) For the neutron emission (NE) decay of (c) use the expressions derived
in (b) and determine kinetic energy (EK)n of the ejected neutron and
recoil kinetic energy (EK)Be-12 of the Be-12 daughter atom.

SOLUTION:

(a) Decay energy QNE of neutron emission (NE) decay appears as kinetic energy
shared between the neutron ejected from the parent P nucleus and the recoil daughter
D nucleus. I can be determined using three methods: (1) Nuclear rest energy method,
(2) Atomic rest energy method, and (3) Nuclear binding energy method. All three
methods must provide the same results and for NE decay to be energetically allowed
QNE must be positive. Expressions for the three methods are written as follows
(T5.7):

(1) Nuclear rest energy method is expressed as follows with M standing for nu-
clear rest mass

QNE(P)=
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = {

M(P)− [
M(D)+mn

]}
c2. (11.202)

(2) Atomic rest energy method is expressed as follows with M standing for atomic
rest mass

QNE(P)=
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = {

M (P)− [
M (D)+mn

]}
c2. (11.203)

(3) Nuclear binding energy method is expressed as follows with EB standing for
the total nuclear binding energy

QNE(P)=
∑
i,after

EB(i)−
∑
i,before

EB(i)=EB(D)−EB(P). (11.204)

Note: In method (1) and (2) the sum of rest energies of reaction products (daughter
D and ejected neutron) after the NE decay is subtracted from parent P rest energy
before the NE decay. In method (3) binding energy of parent nucleus before the NE
decay is subtracted from the binding energy of the daughter after the NE decay.

(b) For NE decay with the parent nucleus at rest, the ejected neutron and the recoil
daughter atom acquire vector momenta pn and pD, respectively, that are opposite in
direction and equal in magnitude in order to satisfy the conservation of momentum
principle. Conservation of total energy is satisfied with decay energy QNE being
shared between the ejected neutron and recoil daughter atom.
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Kinetic energies of the neutron (EK)n and recoil daughter atom (EK)D are given
classically as follows

(EK)n = p2

2mn
and (EK)D = p2

2M (D)
, (11.205)

where

p is the magnitude of the momenta of the neutron and daughter atom: |pp| =
|pD| = p.

mn is the rest mass of the proton (mn = 939.5654 MeV/c2).
M (D) is the rest mass of the daughter atom.

Decay energy QNE must be positive for NE decay to occur and is equal to the
sum of kinetic energies (EK)n and (EK)n acquired by the emitted proton and recoil
daughter atom, respectively

QNE(P) = (EK)n + (EK)D = p2

2mn
+ p2

2M (D)
= p2

2

[
1

mn
+ 1

M
(D)

]

= p2

2mn

[
1 + mn

M (D)

]
= p2

2M (D)

[
M (D)
mn

+ 1

]
. (11.206)

Equation (11.206) can now be written as follows

QNE(P)= (EK)n

[
1 + mn

M (D)

]
= (EK)D

[
M (D)
mn

+ 1

]
, (11.207)

yielding the following expressions for kinetic energies (EK)n and (EK)D of the
emitted proton and the recoil daughter nucleus, respectively

(EK)n =QNE(P)
1

1 + mn
M (D)

=QNE(P)
M (D)

M (D)+mn
=QNE(P)

M (D)c2

M (D)c2 +mnc2

(11.208)
and

(EK)D =QNE(P)
1

1 + M (D)
mn

=QNE(P)
mn

M (D)+mn
=QNE(P)

mnc
2

M (D)c2 +mnc2
.

(11.209)
(c) Decay energy QNE(

13
4Be) for neutron emission decay of 13

4Be will be cal-
culated using three methods: (1) Nuclear rest energy method derived in (11.202),
(2) Atomic rest energy method derived in (11.203), and (3) Nuclear binding energy
method derived in (11.204).

(1) Nuclear rest energy method

QNE
(13

4Be
) = {

M
(13

4Be
)− [

M
(12

4Be
)+mn

]}
c2

= 12140.6243 MeV − 11200.9611 MeV − 9395654 MeV

= 0.0978 MeV. (11.210)
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(2) Atomic rest energy method

QNE
(13

4Be
) = {

M
(13

4Be
)− [

M
(12

4Be
)+mn

]}
c2

= (13.035691u− 12.026921u)− 939.5654 MeV

= (1.00877u)×(931.494028MeV/u)− 939.5654 MeV

= 0.0978 MeV. (11.211)

(3) Nuclear binding energy method

QNE
(13

4Be
) = EB

(12
4Be

)−EB
(13

4Be
)

= 68.64972 MeV − 68.55187 MeV

= 0.0979 MeV. (11.212)

The three methods for calculation of decay energy in NE decay give the same
positive result; therefore, one may conclude that NE decay of Be-13 is feasible. The
decay energy is somewhat low, so that the kinetic energy of the ejected neutron and
the recoil energy of the Be-12 daughter atom are also expected to be low and their
exact values will be determined in (d).

(d) We now use (11.205) and (11.209) to determine the ejected neutron kinetic
energy (EK)n and recoil daughter kinetic energy (EK)D for our specific example of
NE decay of 13

4Be into 12
4Be and proton with decay energy QNE of 0.0978 MeV.

(1) For ejected neutron energy (EK)n we get

(EK)p =QPE
(13

4Be
) M (12

4Be)c2

M (12
4Be)c2 +mnc2

= (0.0978 MeV)

× (12.026921u)×(931.494028 MeV/u)

(12.026921u)×(931.494028 MeV/u)+ 939.565346 MeV

= (0.0978 MeV)×11203.00509

12142.57043
= (0.0978 MeV)×0.923

= 0.0902 MeV. (11.213)

(2) Recoil kinetic energy (EK)Be-12 of the beryllium-12 atom is

(EK)Be-12 =QPE(
13
4Be)

mnc
2

M (12
4Be)c2 +mnc2

= (0.0978 MeV)

× (939.565346 MeV)

(12.02692u)×(931.494028 MeV/u)+ 939.565346 MeV
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= (0.0978 MeV)×939.565346

12142.5695
= (0.0978 MeV)×0.077

= 0.0076 MeV. (11.214)

In NE decay of beryllium-13 into beryllium-12 and a free neutron, 92.3 %
(0.0902 MeV) of the decay energyQNE of 0.0978 MeV is transferred to the ejected
neutron and 7.7 % (0.0076 MeV) is transferred to the recoil beryllium-12 atom.

11.12 Chart of Nuclides

11.12.Q1 (240)

Nuclear data for stable and radioactive nuclides are compiled in a graphic
form referred to as the “Chart of Nuclides” drawn in such a way that each
nuclide is assigned a unique pixel position in two-dimensional Cartesian dia-
gram.

(a) Provide names of at least four institutions or organizations that feature
a chart of nuclides on their web site.

(b) Answer the following basic questions on the chart of nuclides:

(1) Who is credited with developing the chart of nuclides and when?
(2) What information does a typical chart of nuclides feature?
(3) Roughly how many stable and radioactive nuclides are listed in a

typical modern chart of nuclides?
(4) In chemistry and atomic physics there is an analog to the chart of

nuclides. What is it called, who developed it, and when?

(c) All known nuclides plotted on a typical chart of nuclides form an island
on a map of nuclides. Sketch the “island of nuclides” in first quadrant
of a Cartesian diagram and:

(1) On the map of nuclides label the abscissa and ordinate and indi-
cate the cardinal directions (North, East, South, and West) with
North pointing in the positive ordinate direction.

(2) Describe the shape and orientation of the “island of nuclides” on
the map of nuclides.

(3) Discuss the shores of the island of nuclides and their relationship
to “drip lines”.

(4) Explain the meaning of the mountain range on the “island of nu-
clides”.
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(d) Special features evident from the layout of the chart of nuclides:

(1) Discuss “magic numbers” and the “curve of stability” on the is-
land of nuclides.

(2) What do horizontal rows in the chart of nuclides represent?
(3) What do vertical columns in the chart of nuclides represent?
(4) What do diagonal lines in the ordinal direction SE → NW on the

island of nuclides represent?

SOLUTION:

(a) Some examples of a chart of nuclides available on the web:

(1) Brookhaven National Laboratory—National Data Center: www.nndc.bnl.gov/
chart/

(2) International Atomic Energy Agency—Nuclear Data Services: www-nds.iaea.
org/

(3) Karlsruhe Nuclide Chart—European Atomic Energy Community: www.
nucleonica.net/

(b) All known nuclides are uniquely characterized by their number of protons Z
(atomic number) and their number of neutrons N = A− Z where A is the number
of nucleons (atomic mass number).

(1) Italian-American nuclear physicist Emilio Segrè was the first to suggest in the
early 1940s the particular orderly presentation of all known nuclear species (stable
nuclides and radioactive nuclides usually called radionuclides) in a chart of nuclides
on a 2-dimensional Cartesian plot.

Each nuclide is characterized with its own unique combination of atomic number
Z and neutron number N and allocated a square (pixel) on the chart of nuclides
according to the N and Z values of the nuclide. To honor Segrè’s contribution to
nuclear physics and his efforts on developing the nuclide chart the modern chart of
nuclides is often referred to as the Segrè chart.

(2) In addition to the number of protons Z and number of neutrons N for a given
nuclide, the Segrè chart usually indicates the possible radioactive decay paths for
radionuclides and provides the following nuclear data:

• For stable nuclides it provides the atomic mass number A; the nuclear mass
in unified atomic mass units u; the natural abundance; and, for example, cross
sections for activation interactions.

• For radionuclides it provides the atomic mass number A, nuclear mass in uni-
fied atomic mass units u, radioactive half-life, and mode of decay.

http://www.nndc.bnl.gov/chart/
http://www.nndc.bnl.gov/chart/
http://www-nds.iaea.org/
http://www-nds.iaea.org/
http://www.nucleonica.net/
http://www.nucleonica.net/
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(3) Currently there are 280 stable nuclides and close to 3500 natural and artificially
produced radionuclides featured in a state-of-the-art Segrè chart.

(4) Recognizing periodicity in chemical behavior of then-known elements, Rus-
sian chemist Dmitry Mendeleyev in 1869 organized the elements in a table of el-
ements with rows and columns in order of increasing atomic weight. The rows
and columns were organized such that they accounted for periodicity in chemical
properties of elements by listing elements with similar chemical properties in the
same column of the table. Mendeleyev’s table of elements eventually evolved into
the modern Periodic Table of Elements in which each element, represented by a
chemical symbol and its atomic number, is allocated a unique position in the table
depending on its chemical and physical properties.

(c) Figure 11.7 shows a typical example of a condensed version of a modern Chart
of Nuclides available from the European Atomic Energy Community in Karlsruhe,
Germany. The chart includes all known nuclides from Z = 1 to Z = 118 and, in ad-
dition, it also shows regions of possible, but to date not yet discovered radionuclides.
Pixels representing known, as well as unknown yet theoretically feasible nuclides,
form a nuclear landscape in the shape of an “island of nuclides” in the sea of nuclear
pixels ranging in Z from 0 to 120 and in N from 0 to ∼180, with the stable nuclides
(shown with black pixels) forming the backbone (mountain range) in the central part
of the island.

(1) For a given nuclear species, the number of neutrons N = A−Z is plotted on
the abscissa of the map of nuclides while Z is plotted on the ordinate axis. North on
the map of nuclides is at the top of the map and South is at the bottom, East is on
the right and West is on the left.

(2) The “island of nuclides” on the chart or map of nuclides is in the shape of
an elongated island oriented from the South-West corner to the North-East corner
on the map. The south shore of the island below the mountain ridge is occupied
by known neutron-rich radionuclides and a vast “terra incognita” region formed by
not yet discovered neutron-rich radionuclides (shown in dark grey color). The north
shore of the island above the mountain ridge is occupied by known proton-rich ra-
dionuclides as well as by a small number of yet undiscovered proton-rich radionu-
clides. Very heavy nuclides that are prone to spontaneous fission (SF) occupy the
NE tip of the island.

(3) The shores of the “island on nuclides” are delineated by the so-called drip lines
beyond which nucleons are no longer bound to the nucleus. The neutron drip line
(white line on the map) delineates the extent of the south shore, the proton drip line
delineates the north shore, and the spontaneous fission drip line delineates the NE
tip of the island.
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Fig. 11.7 Chart of Nuclides also known as the Segrè chart. Each known stable and radioactive nu-
clide is characterized by a unique combination of the number of protons Z and number of neutrons
N , and assigned a pixel in a 2-dimensional chart displaying N on the abscissa axis and Z on the
ordinate axis. Stable nuclides are shown by dark pixel squares, radioactive nuclides by white pixel
squares. The ensemble of stable nuclides forms a “curve of stability”; neutron-rich radionuclides
are below the curve of stability; proton-rich radionuclides are above it. Magic numbers for protons
and neutrons are indicated as are lines of isotones, lines of isotopes, and lines of isobars

The actual position of the shore as delineated by the drip line, especially in the
high Z region, is somewhat arbitrary and depends on various theories and a few
sketchy experimental data. The position of the neutron and proton drip lines is gov-
erned by interplay in the nucleus between the nuclear strong attractive force in effect
among all nucleons and the repulsive Coulomb force in effect among protons. The
proton drip line is reached when the binding energy of the outermost proton in a nu-
cleus becomes zero, and, similarly, the neutron drip line is reached when the binding
energy of the outermost neutron becomes zero. Since the Coulomb force does not af-
fect neutrons, the neutron drip line is much farther away from the “mountain range”
of stable nuclides and the “terra incognita” region for neutron-rich radionuclides is
much larger than that for proton-rich nuclides.

(4) Stable nuclides contain a balanced configuration of protons and neutrons be-
cause of a preference for pairing of nucleons. On the chart of nuclides they form
the backbone or the mountain range of the “island of nuclides” (shown with black
pixels in Fig. 11.7) and follow a curve of stability that is defined by an optimum
number of protons and neutrons. The curve of stability follows Z ≈ N for low Z
nuclides and then slowly transforms into N ≈ 1.5Z with increasing Z.
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Below the curve of stability are neutron-rich radionuclides. Most of them un-
dergo a nuclear transmutation by β− decay but a few do so by direct neutron emis-
sion. Above the curve of stability are proton-rich radionuclides. Most of these un-
dergo a nuclear transmutation by β+ decay or electron capture but a few do so by
direct emission of one proton or even two protons. All nuclides with Z > 82 are
shown close to the NE tip of the “island of nuclides”. They undergo α decay or
spontaneous fission and some may also undergo β decay.

(d) Special features of the Segrè chart of nuclides are noted as follows:

(1) In nature there are 280 nuclides that are considered stable with respect to ra-
dioactive decay. Some 60 % of these stable nuclei have an even number of protons
and an even number of neutrons (even-even nuclei); some 20 % have an even-odd
configuration and a further 20 % have and odd-even configuration. Only 4 stable nu-
clei are known to have an odd-odd proton / neutron configuration. A conclusion may
thus be made that an even number of protons or even number of neutrons promotes
stability of nuclear configurations.

When the number of protons is: 2, 8, 20, 28, 50, 82 or the number of neutrons
is: 2, 8, 20, 28, 50, 82, 126 the nucleus is observed particularly stable and these
numbers are referred to as magic numbers. Nuclei in which the number of protons
as well as the number of neutrons is equal to a magic number belong to the most
stable group of nuclei.

(2) Horizontal rows give the list of known isotopes (Z = const) for a given nuclear
species. Stable nuclides are usually shown in black and other colors are used the
designate neutron-rich versus proton-rich radionuclides.

(3) Vertical columns give the list of isotones (N = const) which are defined by
nuclear species that have the same number of neutrons.

(4) Diagonal lines (in direction roughly perpendicular to the “curve of stability”)
give the list of isobars for which A= Z+N = const defined as nuclear species that
contain the same number of nucleons.

11.12.Q2 (241)

The Chart of Nuclides also known as the Segrè chart summarizes the contem-
porary knowledge in nuclear physics and is available from many authors, in-
stitutions, publishers, commercial vendors, and standards laboratories. A typ-
ical example of the chart of nuclides is shown in Fig. 11.8, displaying a con-
densed version of the “Karlsruher Nuklidkarte” (Karlsruhe Chart of Nuclides)
issued by the Joint Research Center of the European Commission in Karl-
sruhe, Germany. The 7th edition of the chart, issued in 2007, contained data
on 280 stable nuclides, 2962 radionuclides in ground state, and 692 isomeric
radionuclides as well as 8 radioactive decay modes.
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(a) Define stable nuclide, radionuclide in ground state, and isomeric ra-
dionuclide.

(b) Discuss important features of nuclear stability.
(c) Discuss the pertinent features of the Chart of Nuclides based on

Fig. 11.8.

Fig. 11.8 Chart of the Nuclides also known as the Segrè chart. Each known stable and radioactive
nuclide is characterized by its unique combination of the number of protons Z and number of
neutrons N , and assigned a pixel in a 2-dimensional chart displaying Z on the ordinate axis and
N on the abscissa axis. The stable nuclides are shown by dark pixel squares, radioactive nuclides
by colored pixel squares. The plot of stable nuclides forms a curve of stability. The color code for
nuclear decay is displayed on the left side-bar to the chart

SOLUTION:

(a) In terms of nuclear stability three categories of nuclides are known: (1) stable
nuclide, (2) radioactive nuclide (radionuclide), and (3) isomer (metastable radionu-
clide).

(1) A stable nuclide contains nuclei that have zero probability of undergoing spon-
taneous nuclear decay. If a nuclide emits no radiation, it is not radioactive, and is
assumed stable. If a nuclide emits radiation but has a half-life t1/2 too long to be
measured, it is also considered stable.
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The number of known stable nuclides stands at 280, distributed over 80 elements
with atomic number Z between 1 and 82. The number of stable isotopes for a given
element varies between 1 for 26 elements up to 10 for tin (Z = 50), with 3.5 the
mean number of isotopes per element. Two elements with Z < 83 (technetium:Z =
43 and promethium:Z = 61) have no stable isotope.

(2) A radionuclide contains unstable (radioactive) nuclei in ground state, decay-
ing with a defined half-life t1/2 into more stable nuclear species that may be stable
or radioactive and differ from the original radioactive nucleus in atomic number Z
and atomic mass number A. Various decay modes are available to an unstable nu-
cleus to achieve a more stable configuration and they result in emission of photons
or subatomic particles. Most common of these decay modes are: α decay, β− de-
cay, electron capture (EC), β+ decay, and spontaneous fission (SF). Alpha and beta
decays often leave the daughter nucleus in an excited state which essentially imme-
diately decays directly or through other excited states into ground state emitting a
gamma ray or internal conversion electron.

(3) Isomeric or metastable radionuclide contains unstable, excited nuclei decay-
ing through gamma decay or internal conversion to the ground state of the same
nuclei with a half-life t1/2 > 10−9 s. Thus, isomeric nuclear transitions result in
emission of gamma rays or internal conversion electrons. Unlike in decay modes of
radionuclides in ground state, in decay of isomeric radionuclides, atomic number Z
and atomic mass number A do not change and this sets the isomeric nuclides apart
from radionuclides in the nuclear ground state.

Close to 700 isomeric or metastable radionuclides have been identified and the
best known of these in medical physics is technetium-99m, the most widely used
radionuclide for diagnostic imaging in nuclear medicine.

(b) Experiments have shown that the number of nucleons (protons and neutrons)
the atomic nucleus contains affects the nuclear stability against decay. The general
trend in binding energy per nucleon EB/A provides the EB/A maximum at around
A= 60 and then drops for smaller and larger A. However, there are also consider-
able variations in stability of nuclei depending on the parity in the number of protons
and neutrons forming a nucleus.

(1) The nucleus is held together by attractive strong force between the nucleons
that must overcome the electrostatic repulsion between protons. Because of
this repulsion the ratio Z/N decreases with increasing atomic number from
Z/N = 1 for light (low Z) nuclei (1 proton for every neutron) to Z/N ≈ 0.64
for heavy (high Z) nuclei (2 protons for every 3 neutrons).

(2) When the number of protons is: 2, 8, 20, 28, 50, 82 or the number of neutrons
is: 2, 8, 20, 28, 50, 82, 126, the nucleus is observed particularly stable and
in nuclear physics these numbers are referred to as magic numbers. Nuclei in
which the number of protons as well as the number of neutrons is equal to a
magic number are called “double magic” and belong to the most stable group
of nuclei.
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(3) In nature there are 280 nuclides that are considered stable with respect to
radioactive decay, all other nuclides (and there are over 3000 of them) are
radioactive. Some 60 % (166) of these stable nuclides have an even number of
protons and an even number of neutrons (even-even nuclei); some 20 % (57)
have an even-odd configuration and a further 20 % (53) have and odd-even
configuration. Only 4 stable nuclides are known to have an odd-odd proton–
neutron configuration. A conclusion may thus be made that an even number
of protons or even number of neutrons (pairing of nucleons) promotes the
stability of nuclear configurations.

(4) If the optimal equilibrium between protons and neutrons does not exist in a
nucleus, the nucleus is unstable (radioactive) and decays with a specific decay
constant into a more stable configuration that may also be unstable and decays
further, forming a decay chain that eventually ends with a stable nuclide. Nine
main processes or modes are available to unstable nuclei (radionuclides) to
advance toward a more stable nuclear configuration; for a given radionuclide
generally only one type or at most two types of decay process will occur.

(c) The Chart of Nuclides in Fig. 11.8 presents a condensed version of the whole
chart and allows identification of its general features. Also shown are the magic
numbers for protons and neutrons as well as the curve of nuclear stability that can
be identified by following the landscape formed by stable nuclides shown with black
pixel squares. Neutron-rich radionuclides are below the curve of stability and shown
in green color, while proton-rich radionuclides are above the curve of stability and
shown in orange color. The following features of the Chart of Nuclides are notable:

(1) For a slight imbalance, radionuclides will decay by beta decay characterized
by transformation of a proton into a neutron in β+ decay and a transformation
of a neutron into a proton in β− decay.

(2) For a large imbalance, the radionuclides will decay by emission of nucleons: α
particles in α decay, protons in PE decay, and neutrons in NE decay.

(3) For very large atomic mass number nuclides (A > 230) spontaneous fission,
which competes with α decay, is also possible.

(4) When radionuclide (Z,N ) is below the curve of stability (i.e., is neutron-rich),
the β− decay and in extreme cases neutron emission are possible means to
attain a more stable configuration. The resulting nucleus will be characterized
by (Z+1,N−1) for β− decay and by (Z,N−1) for neutron emission decay.
In β− the atomic mass number A of the daughter is the same as that of the
parent; in neutron emission decay A of the daughter decreases by 1.

(5) When radionuclide (Z,N ) is above the curve of stability (i.e., is proton-rich),
the β+ decay, electron capture or in extreme cases proton emission may be
possible means to attain a more stable configuration. The resulting nucleus
will be characterized by (Z − 1,N + 1) for β+ decay and electron capture,
and by (Z−1,N ) for proton emission decay. In β+ decay and electron capture
decay the atomic mass number A of the daughter nucleus is the same as that
of the parent nucleus; in proton emission decay both Z and A decrease by 1.
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(6) Proton and neutron emission decay are much less common than α and β
decays. The two nucleon emission decays are of no importance in medical
physics and occur only in artificially produced radionuclides. The main char-
acteristics of radionuclides that decay by proton or neutron emission are an
extreme imbalance between the number of protons and the number of neu-
trons in their nuclei as well as very short half-lives.

(7) In addition to β decay the radionuclides (Z,N ) with Z > 83 may decay by α
decay or spontaneous fission. In α decay the resulting nucleus is characterized
by (Z−2,N−2), in contrast to spontaneous fission where the resulting nuclei
are much lighter than the parent nucleus.

(8) In gamma decay and internal conversion decay the parent nucleus is excited
and undergoes a de-excitation process by emitting a γ photon or a conversion
electron, respectively. Both the parent nucleus and the daughter nucleus are
characterized by (Z,N ), since the number of protons as well as the number of
neutrons does not change in the decay process.

11.12.Q3 (242)

Most of the naturally occurring elements are mixtures of several stable iso-
topes, each isotope with its own relative natural abundance (also known as
isotopic composition) wi . For a given chemical element one stable isotope
usually predominates; however, natural elements generally consist of atoms
of same atomic number Z but of various different atomic mass numbers A as
a result of different numbers of neutrons N . The mean atomic mass M̄ of a
given natural element (also referred to as the standard atomic weight of the
natural element) is determined as the weighted mean for all stable isotopes
constituting the given element as follows

M̄ =
∑
i

wiMi and
∑
i

wi = 1, (11.215)

where wi is the relative weight (also called isotopic composition) of stable
isotope i and Mi is the atomic mass of stable isotope i constituting the given
natural element.

(a) Isotopic composition of a given natural element is not of much concern
as far as chemical properties of the element are concerned. However,
isotopes of the same element, despite having almost identical chemi-
cal properties, may differ significantly in nuclear properties. Briefly de-
scribe methods for separating a mixture of isotopes of a given element
and compare the methods with those used for chemical separation of
elements.
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(b) Determine the standard atomic weight M̄ of molybdenum from data on
stable molybdenum isotopes available from the NIST (www.nist.gov/pml/
data/comp.cfm).

(c) Determine the standard atomic weight M̄ of lead from data on stable
lead isotopes available from the NIST (www.nist.gov/pml/data/comp.cfm).

SOLUTION:

(a) Mixtures of chemical elements can in general be separated with chemical
methods, however, mixtures of different isotopes of the same element are more dif-
ficult to separate because they generally do not differ in chemical properties and
the separation must be based on more complex physical differences, such as atomic
mass, rather than on chemical differences.

Isotope separation implies a physical separation of a specific isotope from a
chemical element sample containing several isotopes of the same element. The mo-
tivation for isotope separation comes from the knowledge that isotopes of same el-
ement, despite having almost identical chemical properties, may differ significantly
in nuclear properties.

The best-known and probably most important example of isotope separation is
enrichment of natural uranium that contains 99.3 % of U-238 and 0.7 % of U-235.
The uranium enrichment process increases the percent composition of U-235 in the
sample from the natural level to a concentration of 1 % to 2 % in slightly enriched
uranium, 3 % to 5 % in lowly enriched uranium to above 20 % in highly enriched
uranium. The U-238 remaining in the sample after enrichment is known as depleted
uranium and the separation of U-235 from U-238 is of importance because U-235
is fissile by thermal neutrons and U-238 is not.

(b) For molybdenum Mo with atomic number Z of 42, the NIST lists 7 stable
isotopes (Mo-92, Mo-94, Mo-95, Mo-96, Mo-97, Mo-98, and Mo-100) and 26 ra-
dioactive isotopes ranging in atomic mass A from 83 to 115. The atomic mass Mi

and natural isotopic composition wi for the 7 stable isotopes of molybdenum ob-
tained from the NIST are listed in Table 11.5 that also shows that, accounting for
the seven stable isotopes and their isotopic composition, the atomic weight (mean
atomic mass) M̄ of natural molybdenum is 95.937.

(c) For lead Pb with atomic number Z of 82, the NIST lists 4 stable isotopes (Pb-
204, Pb-206, Pb-207, and Pb-208) and 34 radioactive isotopes ranging in atomic
massA from 83 to 115. The atomic mass Mi and natural isotopic compositionwi for
the 4 stable isotopes of lead obtained from the NIST are listed in Table 11.6 that also
shows that, accounting for the four stable isotopes and their isotopic composition,
the atomic weight (mean atomic mass) M̄ of natural lead is 207.22.

http://www.nist.gov/pml/data/comp.cfm
http://www.nist.gov/pml/data/comp.cfm
http://www.nist.gov/pml/data/comp.cfm
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Table 11.5 Atomic mass Mi , isotopic composition wi , and the product wiMi for the 7 stable
isotopes of molybdenum

i Stable isotope of
molybdenum

Atomic mass Mi Isotopic composition
wi

wiMi

1 Mo-92 91.9068114 0.1477 13.575

2 Mo-94 93.9050883 0.0923 8.667

3 Mo-95 94.9058421 0.1590 15.090

4 Mo-96 95.9046795 0.1668 15.997

5 Mo-97 96.9060215 0.0956 9.264

6 Mo-98 97.9054082 0.2419 23.683

7 Mo-100 99.9074776 0.0967 9.661∑7
i=1wi = 1

∑7
i=1wiMi = 95.937

Table 11.6 Atomic mass Mi , isotopic composition wi , and the product wiMi for the 4 stable
isotopes of lead

i Stable isotope of lead
Pb

Atomic mass Mi Isotopic composition
wi

wiMi

1 Pb-204 203.9730436 0.014 2.8556

2 Pb-206 205.9754653 0.241 49.6401

3 Pb-207 206.9758969 0.221 45.7417

4 Pb-208 207.9766521 0.524 108.9798∑4
i=1wi = 1

∑4
i=1wiMi = 207.22

11.12.Q4 (243)

Atomic masses M and nuclear masses M as well as the atomic rest ener-
gies M c2, nuclear rest energiesMc2, and nuclear binding energies EB for all
nuclides discussed in this book are provided in Appendix A and were deter-
mined from the atomic mass data compiled by the NIST and available from
the NIST at: www.nist.gov/pml/data/comp.cfm.

(1) For a given nuclide listed in Appendix A, its nuclear rest energy Mc2

was determined by ignoring the binding energy of atomic orbital electrons
and subtracting the rest energy of all atomic orbital electrons (Zmec

2) from
the atomic rest energy M (u)c2 as follows

Mc2 = M c2 −Zmec
2 = M (u)×931.494028 MeV/u −Z×0.510 999 MeV.

(11.216)

http://www.nist.gov/pml/data/comp.cfm
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(2) Nuclear binding energy EB for a given nuclide listed in Appendix A is

determined using the mass deficit equation (T1.25) which reads as follows

EB = Zmpc
2 + (A−Z)mnc

2 −Mc2, (11.217)

where the nuclear rest energy is determined with (11.216).

(3) For a given nuclide listed in Appendix A, binding energy per nucleon
EB/A is calculated by dividing (11.214) with the number of nucleons given
by the atomic mass number A.

Using NIST atomic mass data for europium (Z = 63) determine:

(a) Standard atomic weight of europium.
(b) Atomic rest energy M c2, nuclear rest energy Mc2, nuclear binding en-

ergy EB, and binding energy per nucleon EB/A for europium-151.
(c) Atomic rest energy M c2, nuclear rest energy Mc2, nuclear binding en-

ergy EB, and binding energy per nucleon EB/A for europium-153.
(d) In (11.216) nuclear rest energy Mc2 is determined by subtracting the

total rest energy of all atomic electrons Zmec
2 from the atomic rest en-

ergy M (u)c2. Binding energy
∑Z
i=1EB(i) of the ensemble of atomic

electrons to the atomic nucleus is ignored in (11.216) under the as-
sumption that it is negligible in comparison to atomic and nuclear rest
energies. Investigate the effect of electronic binding energy

∑Z
i=1EB(i)

on (11.216) and show that it can indeed be neglected in (11.216).

SOLUTION:

Nuclear data of Appendix A are based on atomic mass M data available from the
NIST and a summary of the calculation procedure is as follows

M
(1)−→ M c2 (2)−→Mc2 (3)−→EB

(4)−→ EB

A

(1)M c2 = M (u)×931.494028 MeV

(2) Mc2 = M c2 −Zmec
2 = M c2 − (0.5110 MeV)Z (11.218)

(3) EB = Zmpc
2 + (A−Z)mnc

2 −Mc2 =�Mc2

(4)
EB

A
= �Mc2

A
,

where �Mc2 is the energy equivalent of the nuclear mass deficit �M = Zmp +
(A−Z)mn −M .
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(a) The general expression for calculation of the standard atomic weight of an
element is

M̄ =
∑
i

wiMi and
∑
i

wi = 1, (11.219)

where wi stands for the isotopic composition (weight) which is also available from
the NIST.

According to the NIST europium has two stable isotopes: Eu-151 and Eu-
153. Europium-151 has a relative weight of wEu-151 = 0.4781 and atomic mass
of MEu-151 = 150.9198502; Eu-153 has a relative weight of wEu-153 = 0.5219 and
atomic weight of MEu-153 = 152.9212303.

The standard atomic weight (mean atomic mass) is thus calculated as follows

M̄ =
∑
i

wiMi =wEu-151MEu-151 +wEu-153MEu-153

= 0.4781×150.9198502u+ 0.5219×152.921303u

= 151.964u. (11.220)

(b) We now calculate atomic rest energy M c2, nuclear rest energy Mc2, nuclear
binding energy EB, and binding energy per nucleon EB/A for Eu-152 based on
MEu-151 = 150.9198502.

(1) Atomic rest energy MEu-151c
2 of Eu-151 is calculated by multiplying the

atomic rest mass in unified atomic mass units u with the energy equivalent of u
which is uc2 = 931.494028 MeV

MEu-151c
2 = (150.9198502u)×(931.494028 MeV/u)= 140 580.9392 MeV.

(11.221)
(2) Nuclear rest energy Mc2 of Eu-151 is equal to atomic rest energy M c2 less
rest energy of all atomic electrons Zmec

2

MEu-151c
2 = MEu-151c

2 −Zmec
2 = 140 580.9392 MeV − 63×(0.510 999 MeV)

= 140 580.9392 MeV + 32.193 MeV = 140 548.7462 MeV. (11.222)

(3) Nuclear binding energy EB of Eu-151 is determined using the mass deficit
equation (T1.25) as follows

EB = Zmpc
2 + (A−Z)mnc

2 −Mc2

= 63×(938.272013 MeV)+ 88×(939.565346 MeV)− (140548.7462 MeV)

= 59111.13682 MeV + 82681.75045 MeV − 140548.7462 MeV

= 1244.1411 MeV. (11.223)
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(4) Binding energy per nucleon EB/A for Eu-151 is calculated by dividing
(11.223) with the number of nucleons given by the atomic mass number A which
for Eu-151 is 151 nucleons

EB

A
= 1244.1411 MeV

151
= 8.2393 MeV. (11.224)

(c) For europium-153 we now apply the same process as in (b) and calculate
atomic rest energy M c2, nuclear rest energy Mc2, nuclear binding energy EB, and
binding energy per nucleon EB/A based on the NIST value for the rest mass in
unified atomic mass units u MEu-153 = 152.9212303.

(1) Atomic rest energy MEu-153c
2 is calculated by multiplying the atomic rest

mass in unified atomic mass units u with the energy equivalent of u which is
uc2 = 931.494028 MeV

MEu-153c
2 = (152.9212303u)×(931.494028 MeV/u)= 142 445.2128 MeV.

(11.225)

(2) Nuclear rest energyMc2 of Eu-151 nucleus is equal to atomic rest energy M c2

less rest energy of all atomic electrons Zmec
2

MEu-153c
2 = MEu-153c

2 −Zmec
2 = 142 445.2128 MeV − 63×0.510 999 MeV

= 142 445.2128 MeV − 32.193 MeV = 142 413.0198 MeV. (11.226)

(3) Nuclear binding energy EB for Eu-153 is determined using the mass deficit

equation (T1.25) as follows

EB = Zmpc
2 + (A−Z)mnc

2 −Mc2

= 63×(938.272013 MeV)+ 90×(939.565346 MeV)− (142445.2128 MeV)

= 59111.13682 MeV + 84560.88114 MeV − 142445.2128 MeV

= 1226.8052 MeV. (11.227)

(4) Binding energy per nucleon EB/A is calculated by dividing (11.227) with the
number of nucleons given by the atomic mass number A which for Eu-151 is 151
nucleons

EB

A
= 1226.8052 MeV

153
= 8.0183 MeV. (11.228)

(d) In (11.216) the nuclear rest energy Mc2 is determined simply by subtracting
Zmec

2, total rest energy of the ensemble of all atomic electrons, from the atomic
rest energy M c2. Binding energy of orbital electrons

∑E
i=1EB(i) to the atomic

nucleus is neglected in (11.216) and in this section we investigate the validity of this
approach.
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To account for the electron binding energy we write (11.216) as follows

Mc2 = M c2 −
[
Zmec

2 −
Z∑
i=1

EB(i)

]
, (11.229)

where
∑Z
i=1EB(i) is a sum of binding energies of individual electrons to the atomic

nucleus ranging from 13.6 eV for hydrogen that has one orbital electron up to
∼1 MeV for the heaviest elements with close to 100 orbital electrons, some of them
in inner atomic shells (2 electrons in K shell, 8 electrons in L shell, etc.) that are
very tightly bound to the nucleus. The total atomic binding energy

∑Z
i=1EB(i) of all

atomic electrons can, of course, be established by inspecting the atomic energy level
diagram of a given atom and summing up binding energies of individual electrons.
However, there is also an empirical expression available based on the Thomas-Fermi
atomic model (T2.47) using an empirical constant as follows

Z∑
i=1

EB(i)≈ 15.73Z7/3. (11.230)

For europium (Z = 63) the empirical expression (11.230) yields total atomic
binding energy

∑Z
i=1EB(i) of 248 keV or 0.248 MeV while the sum of 63 elec-

tronic rest energies in (11.216) amounts to 32.2 MeV. This means that, instead of
subtracting 32.2 MeV from atomic rest energy M c2 in (11.216), we should subtract
(32.2 MeV−0.25 MeV = 31.95 MeV). Since the difference between accounting for
and neglecting the total atomic binding energy is small and, moreover, since the total
atomic binding energy in comparison to nuclear binding energy of ∼8 MeV/nucleon
is over 4 orders of magnitude smaller, it is customary and reasonable to neglect the
total atomic binding energy in nuclear calculations unless one is interested in ex-
treme precision.

11.13 Summary of Radioactive Decay Modes

11.13.Q1 (244)

Since Becquerel’s discovery of natural radioactivity in 1896, radionuclides
have found many important applications in science, industry, and medicine.
In radiation medicine radionuclides are used for imaging in nuclear medicine,
for radiotherapy in external beam radiotherapy as well as in brachytherapy,
for blood irradiation in prevention of transfusion-associated graft versus host
disease and for sterilization of medical supplies and equipment.
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(a) List at least 5 important characteristics of radionuclides used as radia-
tion source for external beam radiotherapy.

(b) List four radionuclides that out of close to 3000 known natural or ar-
tificial radionuclides were found suitable as source in external beam
radiotherapy.

(c) Calculate specific activity a for the four radionuclides potentially useful
as teletherapy sources.

SOLUTION:

(a) The sought-after beams for use in external beam radiotherapy with a radioac-
tive source are gamma rays that follow alpha or beta decay of a suitable radionu-
clide. The most important characteristics of gamma emitters used in external beam
radiotherapy are:

(1) Relatively high gamma ray energy to enable external beam radiotherapy in the
megavoltage energy range.

(2) Relatively long half-life to allow for relatively long (few years) duration of
source usage. This minimizes the cost of periodic source replacements and
machine downtime caused by source replacement.

(3) High specific activity to minimize the source size for a given machine output.
The smaller is the source size, the smaller is the geometric penumbra of the
clinical beam.

(4) Large specific air-kerma rate constant to maximize source output.
(5) As low cost as possible for source manufacturing to minimize the cost of ma-

chine operation.
(6) Low safety hazard to minimize the danger of malevolent usage.

(b) Out of close to 3000 natural and artificial radionuclides known, only four were
identified as useful (radium-226, cobalt-60, and cesium-137) or potentially useful
(europium-152) as source in external beam radiotherapy or in blood and food irradi-
ators. And, even these four radionuclides do not meet to the same level all six source
requirements listed in (a).

(1) Radium-226 is an alpha emitter decaying with a half-life t1/2 of 1602 years
into radon-222 which in itself is radioactive and decays with a half-life t1/2 of 3.824
days by alpha decay into polonium-218

226
88Ra

t1/2=1602 a−→ 222
88Ra+α+Qα

(226
88Ra

)
withQα

(226
88Ra

)= 4.87 MeV. (11.231)

The radioactive progeny of the radium-226 radioactive decay series, when en-
closed in a sealed radium source, undergo their own α or β decays accompanied by
a spectrum of energetic γ rays that can be used in external beam radiotherapy.
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Before the advent of cobalt-60 and cesium-137 teletherapy machines in 1950s
all radionuclide based external beam radiotherapy machines made use of radium-
226. They were called teleradium machines, contained up to 10 g of radium-226
(∼10 Ci = 370 TBq) and were very expensive because of the tedious radium-226
manufacturing process. They were also very inefficient because of the low specific
activity of radium-226 and self-absorption of γ radiation in the source. Therefore,
radium-226 appears on the list of radionuclide external beam sources largely be-
cause of its historical importance in early days of radioactivity studies; its use for
external beam radiotherapy has been supplanted mainly by cobalt-60, less and less
so by cesium-137, and possibly in the future by europium-152.

(2) Cobalt-60 is β− emitter that appeared on the teletherapy scene in the early
1950s when Canadian medical physicist Harold Johns developed a cobalt-60
teletherapy machine for use in cancer therapy. Since then, cobalt-60, produced by
thermal neutron activation of stable cobalt-59 in a nuclear reactor, became the ra-
dionuclide source of choice for teletherapy machines. It has several characteris-
tics that, in comparison with radium-226, make it much more suitable as source in
teletherapy machines and its only relatively weak point is its half-life t1/2 of 5.26
years which necessitates a source change every 5 to 10 years.

Cobalt-60 decays through β− decay into nickel-60 as follows

60
27Co

t1/2=5.26 a−→ 60
28Ni + e− + ν̄ +Qβ−

(60
27Co

)
withQα

(60
27Co

)= 2.82 MeV.
(11.232)

The invention of the cobalt-60 teletherapy machine provided a tremendous boost
in the quest for higher photon energies and placed the cobalt-60 machine into the
forefront of radiotherapy for a number of years, mainly because it incorporated a
radioactive source that very nicely met the essential requirements for radionuclide
source enunciated in (a).

During the last 3 decades the linear accelerator, designed for radiotherapy and
incorporating several new and exciting features not available from radionuclide
sources, eclipsed the cobalt-60 teletherapy machine and became the machine of
choice for radiotherapy of deep-seated tumors. However, because of its lower cost
as well as simplicity in operation, the cobalt-60 teletherapy machine still serves an
important purpose in developing countries.

(3) Cesium-137 is one of only three radionuclides that have been used clinically to
date for source in external beam radiotherapy. In comparison with cobalt-60, it does
not satisfy the six requirements stated in (a) as well as does cobalt-60, except that it
undergoes β− decay into barium-137 with a half-life t1/2 of 30 years compared to
5.26 years for cobalt

137
55Cs

t1/2=30 a−→ 137
56Ba + e− + ν̄ +Qβ−

(137
55Cs

)
withQα

(137
55Cs

)= 1.176 MeV.
(11.233)

In the past cesium-137 has been used as source in external beam radiotherapy, as
brachytherapy source, as well as a source for blood irradiators. During the last
decade, its use for brachytherapy has been abandoned in favor of more practical
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iridium-192 radionuclide, its use in teletherapy machines has been abandoned be-
cause of security concerns, and currently its use is limited to blood irradiators largely
for practical reasons of long half-life (long-lasting machines) and lower γ ray en-
ergy that diminishes shielding requirements.

(4) Cobalt-60 meets the source criteria of (a) in all aspects quite well except for
half-life t1/2 which at 5.26 years is relatively short requiring costly source changes
at higher than optimal frequency. In this regard, cesium-137 with t1/2 = 30 years is
a much better source material, however, Cs-137 is also highly soluble in water and
dispersible in air and thus poses a serious security problem that precludes its clinical
use in modern teletherapy machines.

In mid 1990s reports appeared on a new source material, Europium-152, said to
meet all source criteria as well or better than Co-60. For example, its half-life t1/2
is 13.54 years, almost 3 times as long as that of Co-60, and, moreover, it can be
produced in a nuclear reactor with thermal neutron activation about 10 times faster
(few months) than Co-60 which takes several years making the source significantly
cheaper.

Europium with atomic number Z = 63 is in the group of rare earth metals with
two stable isotopes (Eu-151 and Eu-153) and 36 radioactive isotopes, most of them
short-lived and ranging in atomic mass A from 130 to 167. In comparison with
decay schemes of Co-60 and Cs-137, the decay scheme of Eu-152 is much more
complex featuring 3 decay modes: β−, electron capture, and β+, with branching
fractions fi : fβ− = 27.9 %, fEC = 72.1 %, and fβ+ = 0.03 %, respectively. The
Eu-152 decay modes result in many γ ray photons originating from the daughters
gadolinium-152 and samarium-152 and producing effective photon energy close to
that of essentially mono-energetic Co-60. In addition, Eu-152 also produces β−
particles (electrons), β+ particles (positrons), internal conversion electrons, Auger
electrons, and characteristic x-ray photons and these additional emanations will be
absorbed in source capsule of the Eu-152 source.

The decay modes of Eu-152 are as follows

152
63Eu

t1/2=48.53 a−→ 152
64Gd + e− + ν̄+Qβ−

(152
63Eu

)
withQβ−

(152
63Eu

)= 1.820 MeV,
(11.234)

152
63Eu + e+ t1/2=18.79 a−→ 152

62Sm + ν+QEC
(152

63Eu
)

withQEC
(152

63Eu
)= 1.875 MeV,

(11.235)

152
63Eu

t1/2=45133 a−→ 152
63Sm + e− + ν +Qβ+

(152
63Eu

)
withQβ+

(152
63Eu

)= 0.853 MeV
(11.236)

where decay energies Q for the three decay modes: β−, EC, and β+ of Eu-152
were calculated using the standard expressions given by (T11.26), (T11.48), and
(T11.39), respectively, and the partial half-lives (t1/2)i for individual decay i were
determined based on branching fraction fi for each given decay (T10.78). A sum-
mary of these calculations using appropriate data from Appendix A is as follows:
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Half-life t1/2 for decay of Eu-152 is 13.54 years and this is equivalent to the total
decay constant λ

λ= ln 2

t1/2
= ln 2

(13.54 a)×(365 d/a)×(24 h/d)×(3600 s/h)
= 1.623×10−9 s−1,

(11.237)

that is the sum of three partial decay constants for the three decay modes of Eu-152

λ =
3∑
i=1

λi =
3∑
i=1

fiλ= λβ− + λEC + λβ+ = fβ−λ+ fECλ+ fβ+λ

= (fβ− + fEC + fβ+)λ. (11.238)

(1) Beta minus (β−) decay of europium-152 into gadolinium-152

Qβ−
(152

63Eu
) = [

M (Z,A)− M (Z + 1,A)
]
c2 = M

(152
63Eu

)
c2 − M

(152
64Gd

)
c2

= [151.921745u− 151.919791u]c2

= (
1.954×10−3u

)×(931.494028 MeV/u)

= 1.820 MeV. (11.239)

(2) Electron capture (EC) decay of europium-152 into samarium-152

QEC
(152

63Eu
) = [

M (Z,A)− M (Z − 1,A)
]
c2 = M

(152
63Eu

)
c2 − M

(152
62Sm

)
c2

= [151.921745u− 151.919732u]c2

= (
2.013×10−3u

)×(931.494028 MeV/u)

= 1.875 MeV. (11.240)

(3) Beta plus (β+) decay of europium-152 into samarium-152

Qβ+
(152

63Eu
) = [

M (Z,A)− M (Z − 1,A)+ 2mec
2]c2

= M
(152

63Eu
)
c2 − M

(152
64Gd

)
c2 − 2mec

2

= [
151.921745u− 151.919732u− 2×5.4858×10−4u

]
c2

= (
0.916×10−3u

)×(931.494028 MeV/u)

= 0.853 MeV. (11.241)
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(4) Decay constant λβ− and half-life (t1/2)β− for beta minus decay of Eu-152 are
as follows

λβ− = fβ−λ= 0.279×(
1.623×10−9 s−1)= 4.528×10−10 s−1 (11.242)

and

(t1/2)β− = ln 2

λβ−
= ln 2

(4.528×10−10 s−1)
= 1.531×109 s = 48.54 a. (11.243)

(5) Decay constant λEC and half-life (t1/2)EC for electron capture decay of Eu-
152 are

λEC = fECλ= 0.721×(
1.623×10−9 s−1)= 1.170×10−9 s−1 (11.244)

and

(t1/2)EC = ln 2

λEC
= ln 2

(1.170×10−9 s−1)
= 5.924×108 s = 18.79 a. (11.245)

(6) Decay constant λβ+ and half-life (t1/2)β+ for beta plus decay of Eu-152 are
as follows

λβ+ = fβ+λ= 0.0003×(
1.623×10−9 s−1)= 4.869×10−13 s−1 (11.246)

and

(t1/2)β+ = ln 2

λβ+
= ln 2

(4.869×10−13 s−1)
= 1.424×1012 s = 45142 a.

(11.247)

To verify the calculated partial decay constants λi and calculated half-lives (t1/2)i
for the three decay modes of Eu-152 we write (11.238) as follows

λ= ln 2

t1/2
=

3∑
i=1

λi = (ln 2)
3∑
i=1

1

(t1/2)i
= (ln 2)

[
1

(t1/2)β−
+ 1

(t1/2)EC
+ 1

(t1/2)β+

]
.

(11.248)
From (11.248) we now get the following expression for the effective half-life t1/2

for the combined effect of three modes of decay (β−, EC, and β+) of Europium-152

1

t1/2
= 1

(t1/2)β−
+ 1

(t1/2)EC
+ 1

(t1/2)β+
= 1

48.54 a
+ 1

18.79 a
+ 1

45142 a

= 0.07384 a−1, (11.249)

from where it follows that t1/2 = 13.54 a, as stated above in the discussion of suit-
ability of Eu-152 as material for teletherapy machine source.
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(c) Specific activity a of a radionuclide is defined as activity A per unit mass m
and is determined from the following expression

a = A
m

= λN

m
= λNA

A
= (ln 2)

t1/2

NA

A
. (11.250)

(1) Specific activity a of radium-226 is

a = (ln 2)

t1/2

NA

A
= (ln 2)

(1602 a)×(365 d/a)×(24 h/d)×(3600 s/h)

× (6.022×1023 mol−1)

(226 g · mol−1)

= 3.66×1010 s−1 · g−1 = 36.6 TBq/g = 3.66×1010 Bq/g

3.7×1010 Bq/Ci

= 0.989 Ci/g ≈ 1 Ci/g. (11.251)

The old unit of activity, the curie (Ci), was initially defined as the activity of
1 g of radium-226 and given as 1 Ci = 3.7×1010 s−1. The activity of 1 g of
radium-226 was subsequently measured to be 3.665×1010 s−1; however, the
definition of the curie was kept at 1 Ci = 3.7×1010 s−1. The current activity
of 1 g of radium-226 is thus 0.988 Ci or 3.665×1010 Bq = 36.65 TBq.

(2) Specific activity a of cobalt-60 is

a = (ln 2)

t1/2

NA

A
= (ln 2)

(5.26 a)×(365 d/a)×(24 h/d)×(3600 s/h)

× (6.022×1023 mol−1)

(60 g · mol−1)

= 4.194×1013 s−1 · g−1 = 41940 TBq/g

= 4.194×1013 Bq/g

3.7×1010 Bq/Ci
= 1133 Ci/g. (11.252)

Specific activity of cobalt-60 of 1133 Ci/g is the theoretical specific activity of
carrier-free cobalt-60 source. This means that the source sample of cobalt-60
contains only cobalt-60 atoms. However, as a result of cobalt-60 production
with neutron activation of cobalt-59 in a nuclear reactor, a practical commer-
cial cobalt-60 source is not carrier free, rather, it contains a significant amount
of cobalt-59 atoms remaining from the activation process as well as nickel-
60 atoms from cobalt-60 decay during the activation process. Therefore, a
practical commercial cobalt-60 teletherapy source activity does not exceed
∼300 Ci/g.
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(3) Specific activity a of cesium-137 is

a = (ln 2)

t1/2

NA

A
= (ln 2)

(30 a)×(365 d/a)×(24 h/d)×(3600 s/h)

× (6.022×1023 mol−1)

(137 g · mol−1)

= 3.221×1012 s−1 · g−1 = 3221 TBq/g

= 3.221×1012 Bq/g

3.7×1010 Bq/Ci
= 87.04 Ci/g. (11.253)

(4) Specific activity a of europium-152 is

a = (ln 2)

t1/2

NA

A
= (ln 2)

(13.54 a)×(365 d/a)×(24 h/d)×(3600 s/h)

× (6.022×1023 mol−1)

(152 g · mol−1)

= 6.431×1012 s−1 · g−1 = 6431 TBq/g

= 6.431×1012 Bq/g

3.7×1010 Bq/Ci
= 173.8 Ci/g. (11.254)

Europium-152 source, similarly to cobalt-60 source, cannot be produced

carrier-free with neutron activation of Eu-151 in a nuclear reactor. The practi-

cal activity is said to be around 150 Ci/g.

11.13.Q2 (245)

The chart of nuclides, also known as the Segrè chart, allocates to each known
nuclide a pixel square uniquely defined by the nuclide’s number of neutronsN
plotted on the abscissa axis and number of protons Z plotted on the ordinate
axis. For each nuclide entered into the chart, in addition to providing nuclear
data, the chart also allows an investigation of possible nuclear decays as well
as possible results of nuclear bombardment with various nuclear particles.
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Fig. 11.9 A small section of the Chart of Nuclides centered about an original nucleus X
with coordinates (N,Z). (A) Possible decay paths are indicated with numbered arrows and
four special directions on the chart are labeled with roman numerals. (B) The small section
of the Chart of Nuclides of (A) split into half along diagonal line. The upper half represents
the region of nuclear bombardment; the lower half represents nuclear decay

(a) Figure 11.9(A) shows a small section of the Chart of Nuclides centered
about the “original nucleus” X with coordinates (N,Z). Possible nu-
clear decay paths are indicated with arrows numbered from 1 to 5. For
each arrow, identify and explain briefly the decay it represents and write
appropriate equations to describe the decay as well as the associated de-
cay energy (Q value). Note that an arrow may represent more than one
decay mode.

(b) Four special directions (lines) are indicated in Fig. 11.9(A) with roman
numerals I, II, III, and IV. Identify and explain briefly the special direc-
tions and explain their meaning.

(c) Figure 11.9(B) shows the small section of the Chart of Nuclides cut in
half along the diagonal line IV. The upper half (dark grey pixels) rep-
resents the region of possible bombardment of nucleus X; the lower
half (light grey pixels) represents the region of possible decay of nu-
cleus X. The particles of interest in both regions are: β− (electron), β+
(positron), p (proton), n (neutron), d (deuteron), t (triton), helium-3 nu-
cleus, and α particle (helium-4 nucleus). Place the particles of interest
into appropriate pixel area using + sign in the nuclear bombardment
region (absorption of particle) and − sign in the nuclear decay region
(emission of particle).
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SOLUTION:

(a) The decay paths of interest in connection with Fig. 11.9(A) can all be charac-
terized with a defined, orderly, and reproducible change either in proton number Z
or neutron numberN or in both. Thus, gamma decay and internal conversion are ex-
cluded from this exercise because the two nuclear decays do not engender a change
in either Z or N . Spontaneous fission is also excluded, because it is not linked with
an orderly and reproducible change in Z orN . However, all the other standard decay
modes are included and their effect on Fig. 11.9(A) will be investigated.

The decay modes to be considered are thus as follows: (1) alpha (α) decay,
(2) beta minus (β−) decay, (3) electron capture (EC) decay, (4) beta plus (β+)
decay, (5) proton emission (PE) decay, (6) two proton emission (2PE) decay, and
(7) neutron emission (NE) decay.

Arrows of Fig. 11.9(A) are identified as follows (note: in equations below M

stands for nuclear mass, M for atomic mass, P for parent, and D for daughter):

(1) Arrow #1 represents α decay that is characterized by the following changes
in atomic number Z, neutron number N , and atomic mass number A: Z→ Z − 2,
N → N − 2, and A→ A − 4 to account for emission of an α particle (helium-4
nucleus) from the parent atom. The basic relationship for α decay is expressed as
follows [see (T10.2)]

A
ZP → A−4

Z−2D + α+Qα(P), (11.255)

where Qα(P) is α decay energy (Q value) for parent P decaying into daughter D
expressed by three possible methods (nuclear rest energy, atomic rest energy, or
binding energy) as follows

Qα(P) =
{
M(P)− [

M(D)+mα
]}
c2 = {

M (P)− [
M (D)+ M

(4
2He

)]}
c2

= EB(D)+EB(α)−EB(P)= (EK)α + (EK)D. (11.256)

(2) Arrow #2 represents β− decay characterized by A remaining the same, how-
ever, a neutron from the parent nucleus transforms into a proton, so that Z→Z+ 1
and N → N − 1 resulting in A = const and a β− particle and an antineutrino are
emitted. The basic relationship for β− decay is expressed as follows [see (T10.15)]

A
ZP → A

Z+1D + e− + ν̄e +Qβ−(P), (11.257)

whereQβ−(P) is β− decay energy (Q value) for parent P decaying into daughter D
expressed with the nuclear rest energy method or the atomic rest energy method as
follows

Qβ−(P) = {
M(P)− [

M(D)+me
]}
c2 = {

M (P)− M (D)
}
c2

= (Eβ−)max + (EK)Dmax = (Eβ)max

{
1 + mec

2 + 1
2 (Eβ)max

M(D)c2

}
.

(11.258)
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(3a) Arrow #3 represents electron capture (EC) decay in which the parent nu-
cleus captures an orbital electron, a proton transforms into a neutron, and a neutrino
is emitted. Thus, Z → Z − 1, N → N + 1, and A remains the same. The basic
relationship for electron capture decay is given as [see (T10.17)]

A
ZP + e− = A

Z−1D + νe +QEC(P), (11.259)

whereQEC(P) is EC decay energy (Q value) for parent P decaying into daughter D
expressed with the nuclear rest energy method or with atomic rest energy method as
follows

QEC(P) =
{[
M(P)+me

]−M(D)}c2

= {
M(P)− [

M(D)−me
]}
c2 = {

M (P)− M (D)
}
c2 = (EK)D +Eνe .

(11.260)

(3b) Arrow #3, in addition to EC decay, also represents β+ decay characterized by
a proton from the parent nucleus transforming into a neutron accompanied by emis-
sion of a β+ particle (positron) and a neutrino. Thus, Z→ Z− 1, N →N + 1, and
A remains the same. The basic relationship for β+ decay is given as [see (T10.16)]

A
ZP → A

Z−1D + e+ + νe +Qβ+(P), (11.261)

whereQβ+(P) is β+ decay energy (Q value) for parent P decaying into daughter D
expressed with the nuclear rest energy method or the atomic rest energy method as
follows

Qβ+(P) = {
M(P)− [

M(D)+me
]}
c2 = {

M (P)− M (D)+ 2me
}
c2

= (Eβ+)max + (EK)Dmax = (Eβ)max

{
1 + mec

2 + 1
2 (Eβ)max

M(D)c2

}
.

(11.262)

(4a) Arrow #4 represents proton emission (PE) decay in which parent nucleus
emits a proton and the decay process is characterized by Z → Z − 1, N = const,
and A→A− 1. The basic relationship for PE decay is given as follows

A
ZP → A−1

Z−1D + p +QPE(P), (11.263)

whereQPE(P) is proton emission decay energy (Q value) for parent P decaying into
daughter D expressed with the nuclear rest energy method or atomic energy method
as follows

QPE(P) =
{
M(P)− [

M(D)+mp
]}
c2 = {

M (P)− [
M (D)+ M

(1
1H

)]}
c2

= EB(D)−EB(P )= (EK)p + (EK)D. (11.264)
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(4b) Arrow #4 extended vertically down from the Z − 1 pixel to the next pixel at
Z − 2 [not shown in Fig. 11.9(A)] represents two-proton emission (2PE) decay in
which the parent nucleus emits two protons and the decay process is characterized
by Z→ Z − 2, N = const, and A→A− 2. The basic relationships for 2PE decay
are as follows

A
ZP → A−2

Z−2D + 2p +Q2PE(P), (11.265)

where Q2PE(P) is decay energy for two-proton decay of parent P into daughter
D expressed with the nuclear rest energy method or the atomic energy method as
follows

Q2PE(P) =
{
M(P)− [

M(D)+ 2mp
]}
c2 = {

M (P)− [
M (D)+ 2M

(1
1H

)]}
c2

= EB(D)−EB(P )= 2(EK)p + (EK)D. (11.266)

(5) Arrow #5 represents neutron emission (NE) decay in which the parent nucleus
emits a neutron and the decay process is characterized by Z = const, N →N − 1,
and A→A− 1. The basic relationship for NE decay is

A
ZP → A−1

ZD + n +QNE(P), (11.267)

whereQNE(P) is decay energy (Q value) for parent P decay into daughter D through
NE decay

QNE(P) =
{
M(P)− [

M(D)+mn
]}
c2 = {

M (P)− [
M (D)+mn

]}
c2

= EB(D)−EB(P)= (EK)n + (EK)D. (11.268)

The decay paths and decay expressions listed above are generic expressions and,
of course, do not all hold in general. For a given nuclide, a particular decay can only
happen if:

(1) Nuclide is radioactive.
(2) Decay energy Qdecay for a particular decay process is positive.

Figure 11.10 is a graphic answer to question in (a).

(b) As also indicated in Fig. 11.10, the four special lines through the parent nu-
cleus, shown in Fig. 11.9(A), govern various nuclear decays and are named as fol-
lows:

(1) Alpha decay line (I) governs α decay. In α decay parent P and daughter D are
second nearest neighbors on the α decay line.

(2) Isotope line (II) for Z = const governs neutron emission decay. In NE decay
parent P and daughter D are nearest neighbors on the isotope line.

(3) Isotone line (III) for N = const governs proton emission decay. In PE decay
parent P and daughter D are nearest neighbors on the isotone line.
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Fig. 11.10 Possible decay paths available in the Chart of Nuclides to a parent nuclide (N,Z) in its
quest to attain a more stable configuration. Parent nucleus is shown by solid black circle, daughter
nucleus is shown by open circles. Four special lines (α decay line, isotope line, isotone line, and
isobar line) through the parent nucleus are also indicated

(4) Isobar line (IV) for A = const governs β− decay, electron capture, and β+
decay. In β− decay, electron capture, and β+ decay parent P and daughter D
are nearest neighbors on the isobar line.

(c) Figure 11.9(B) shows a small section of the Chart of Nuclides containing 25
pixels arranged in 5 rows and 5 columns with the nucleus of interest X at the center.
The layout is split diagonally into two regions along the isobar line: the upper region
(dark grey pixels) is the region of nuclear bombardment, the lower region (light
grey pixels) is the region of nuclear decay. The same particles are of interest in both
regions: β− (electron), β+ (positron), p (proton), n (neutron), d (deuteron), t (triton),
3
2He (helium-3 nucleus), and α particle (helium-4 nucleus).

On the one hand, in the nuclear bombardment region these particles are projec-
tiles entering the nucleus X and causing a nuclear reaction through first creating a
composite nucleus Y∗; on the other hand, in the nuclear decay region these particles
are emitted from the nucleus in one of many possible decay modes.

For each of the above-listed particles we now find an appropriate pixel in the
bombardment region and a corresponding pixel in the decay region. For example,
for the α particle we look on the α-decay line and identify pixel #(+5) in the bom-
bardment region and corresponding pixel #(−5) in the decay region. We then mark
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Fig. 11.11 Small section of the Chart of Nuclides containing 25 pixels arranged in 5 rows and 5
columns with the nucleus of interest X at the center. The layout is split diagonally into two regions
along the isobar line: the upper region (dark grey pixels) is the region of nuclear bombardment, the
lower region (light grey pixels) is the region of nuclear decay. The same particles are of interest in
both nuclear regions: β− (electron), β+ (positron), p (proton), n (neutron), d (deuteron), t (triton),
3
2He (helium-3 nucleus), and α particle (helium-4 nucleus)

pixel #(+5) with +α and pixel #(−5) with −α, indicating, respectively, bombard-
ment of target X with α particle (AZX + α→ A+4

Z+2Y∗) and decay of nuclide X with

emission of α particle (AZX → A−2
Z−2Y + α).

Following the approach that we took with the α particle with pixels +5 and
−5, we identify pixels for the other listed particles and get the results shown in
Fig. 11.11.



12Production of Radionuclides

Chapter 12 consists of 26 problems distributed over 10 sections devoted to
practical and theoretical aspects of production of radionuclides that originated
with the discovery of artificial radioactivity in 1934 credited to Frédéric Joliot
and Irène Joliot-Curie. The vast majority of currently known radionuclides
are man-made and artificially produced through a process of nuclear acti-
vation that uses bombardment of a stable nuclide with a suitable particle to
induce a nuclear transformation of a stable parent into a radioactive daughter.
Various particles or electromagnetic radiation generated by a variety of ma-
chines are used for the purpose of nuclear activation, most notably neutrons
from nuclear fission reactors for neutron activation, protons from cyclotrons
for proton activation, and high energy x-rays from high energy linear acceler-
ators for photoactivation.

Section 12.1 addresses the origin of radioactive nuclides and touches upon
the historical background on the discovery of natural and artificial radioac-
tivity. Origin of radionuclides is covered by next two sections; naturally oc-
curring in Sect. 12.2 and artificially produced in Sect. 12.3. The problem of
radionuclides present in the environment is covered in Sect. 12.4.

The second part of this chapter deals with production of radionuclides, i.e.,
nuclear activation. Section 12.5 addresses general aspects of various types
of nuclear activation and Sect. 12.6 addresses in detail the activation with
thermal neutrons that is the most common type of nuclear activation. Three
neutron activation models are studied: (1) Saturation model, (2) Depletion
model, and (3) Parent depletion–daughter activation model.

Also addressed are problems dealing with nuclear fission induced by
thermal neutrons. General aspects of neutron-induced fission are covered
in Sect. 12.7 and Sect. 12.8 addresses the nuclear chain reaction covering
the nuclear reactor and nuclear power generation. Problems in Sects. 12.9
and 12.10 concentrate on radionuclide generators and nuclear activation with
heavy charged particle beams, respectively.

E.B. Podgoršak, Compendium to Radiation Physics for Medical Physicists,
DOI 10.1007/978-3-642-20186-8_12,
© Springer-Verlag Berlin Heidelberg 2014
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12.1 Origin of Radioactive Elements (Radionuclides)

12.1.Q1 (246)

According to their origin, radionuclides are placed into two general cate-
gories: (1) Naturally-occurring radionuclides and (2) Man-made (artificial)
radionuclides.

(a) Describe the experiments that lead to the discovery of: (1) Natural ra-
dioactivity and (2) Artificial or induced radioactivity. Also provide the
names of physicists credited with the discoveries and the year of the
discoveries.

(b) Polonium-210, discovered in 1896 by Marie Skłodowska-Curie and
Pierre Curie, was an important source of α particles during the first few
decades of nuclear physics. Plot the decay scheme for polonium-210
and calculate: (1) Its specific activity, (2) Its α decay energy (Q value),
(3) Kinetic energy (EK)α of the α particles it emits, (4) Power generated
per gram of Po-210, and (5) Mass of radium-226 to produce the same
rate of α particle emission as obtained from 1 mg of polonium-210.

(c) Frédéric and Irène Joliot-Curie discovered artificial radioactivity using
their strong polonium-210 source of α particles to bombard aluminum-
27 nuclei triggering the following nuclear reaction (now referred to as
the Joliot-Curie nuclear reaction)

27
13Al + α = 30

15P + n. (12.1)

Determine Q value for the Joliot-Curie nuclear reaction.
(d) Calculate the threshold kinetic energy (EK)thr of the Joliot-Curie nu-

clear reaction and show that kinetic energy (EK)α of polonium-210 α
particles determined in (b) is sufficient to trigger the reaction.

SOLUTION:

(a) In this section we discuss the natural and artificial (induced) radioactivity.
These two phenomena are but two steps in the 40-year long march of humanity
from the basic understanding of the atomic nucleus to nuclear fission.

(1) Henri Becquerel discovered natural radioactivity in 1896 and received 50 % of
the 1903 Nobel Prize in Physics for his discovery. The recipients of the other half
of the Prize were Marie Skłodowska-Curie and Pierre Curie for their discovery of
radium and polonium.

In the early 1896, soon after Röntgen’s discovery of x rays, Becquerel decided
to investigate a possible link between minerals that glow when exposed to light and
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Röntgen’s new rays, the x rays. Much of his work until that time involved studies
of the phenomena of fluorescence and phosphorescence produced by uranium salts
(potassium uranyl sulfate) which were recognized as efficient phosphors (fluoresc-
ing materials). His plan was to expose his fluorescing material to the sun and then
place it and an object to be imaged onto a photographic plate, speculating that the
photographic plate may show the image of the object and this would serve as proof
that fluorescing materials emit x rays.

For several days the weather did not cooperate and Becquerel stored his uranium
salt sample and the object in a drawer together with a photographic plate, waiting
for a sunny day to carry out his experiment. When he finally removed the sample
from the drawer, he noticed to his great surprise that the photographic plate was
exposed and the object was clearly visible, despite his uranium salt not having been
exposed to any sunlight. Several things became obvious to Becquerel:

(i) Exposure of the plate was not caused by fluorescence or phosphorescence of
the salt.

(ii) Rays that produced exposure of the plate could not have been the recently
discovered x rays.

(iii) Uranium salt must be emitting the rays that cause the exposure of the photo-
graphic plate.

Becquerel’s discovery of natural radioactivity, like Röntgen’s discovery of x rays,
is an example of momentous yet unexpected discoveries in science where a scientist,
working on a mundane experiment, serendipitously finds stunning results and the
pursuit of these results leads to completely new directions and new disciplines in
science.

(2) Irène Joliot-Curie and Frédéric Joliot-Curie discovered artificial radioactivity
in 1934 and in 1935 they received the Nobel Prize in Chemistry for their discovery
that came on the heels of two other important discoveries in nuclear physics in 1932:
namely, James Chadwick’s discovery of the neutron and Carl Anderson’s discovery
of the positron. Both these discoveries played an important role in the discovery
of induced radioactivity; however, it is reasonable to assume that Rutherford and
his colleagues with their α particle scattering experiments on various metallic foils
must have already dealt, albeit unknowingly, with induced radioactivity some 25
years earlier. Rutherford is also credited with the discovery of natural transmutation
in 1919 when he irradiated nitrogen-14 nuclide with α particles and produced stable
oxygen-17 nuclide and hydrogen

14
7N + α→ 17

8O + p. (12.2)

The idea of artificial (induced) radioactivity has been around for many years
before the Joliot-Curie team actually carried out their definitive experiment in 1934
in which they irradiated an aluminum foil with α particles from a polonium source
and noticed that the irradiated aluminum sample continued to eject ionizing particles
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in large number long after the α particle irradiation was discontinued. The initial
experiment is described as follows

27
13Al + α→ 30

15P + n, (12.3)

and it resulted in a new, never seen before, isotope of phosphorus (30
15P) and free

neutrons. However, in addition to the products of this reaction, the Joliot-Curies
also observed energetic positrons emanating from the irradiated sample and they
explained this phenomenon with β+ decay of the phosphorus-30 nuclide that was
produced in the initial reaction (12.3) and was undergoing its own decay with a half-
life t1/2 of about 3 minutes. One can thus consider 30

15P an intermediate compound
nucleus that is first created by irradiation of 27

13Al with α particles and then decays
through β+ decay into 30

14Si, positron, and neutrino. The whole production process
of induced radioactivity in 27

13Al is thus given as follows

27
13Al + α→ 30

15P + n

β+
� 30

14Si + e+ + νc (12.4)

The discovery of induced radioactivity lead rapidly to production of new radionu-
clides for use in science, industry, biology, and medicine. During the past 80 years
several thousand new nuclides have been produced and investigated, placing the
discovery of induced radioactivity among the most important discoveries of the 20th

century and making it an important step toward discovery of nuclear fission.

(b) Polonium-210 is a rare radionuclide with a half-life t1/2 = 138.38 d. It is pro-
duced naturally as a component of the uranium-238 / radium-226 decay chain but it
can also be produced artificially in a nuclear reactor bombarding bismuth-209 with
thermal neutrons to produce bismuth-210 which is also a component of the uranium-
238 / radium-226 decay chain and decays to polonium-210 through β+ decay with
a half-life t1/2 of 5 days.

As shown in Table 12.1, the uranium-238 / radium-226 decay chain consists of
14 radionuclides, 8 of these decay with α decay and 6 with β+ decay. The de-
cay scheme for the last element of the uranium-238 / radium-226 decay chain,
polonium-210 decay into lead-206, is given in Fig. 12.1.

(1) Specific activity a of Po-210 is calculated as follows

a = A
m

= λN

m
= λNA

A
= (ln 2)NA

t1/2A

= (ln 2)×(6.022×1023 mol−1)

(138.38 d)×(210 g)×(24 h/d)×(3600 s/h)

= 1.663×1014 Bq/g = 4493 Ci/g. (12.5)
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Table 12.1 Constituents of the uranium-238 / radium-226 decay chain

n Symbol Nuclide Decay Half-life t1/2 Decay product

1 U-238 Uranium-238 Alpha 4.5×109 a Thorium-234

2 Th-234 Thorium-234 Beta plus 24.1 d Protactinium-234

3 Pa-234 Protactinium-234 Beta plus 1.17 min Uranium-234

4 U-234 Uranium-234 Alpha 2.5×105 a Thorium-230

5 Th-230 Thorium-230 Alpha 8×104 a Radium-226

6 Ra-226 Radium-226 Alpha 1602 a Radon-222

7 Rn-222 Radon-222 Alpha 3.82 d Polonium-218

8 Po-218 Polonium-218 Alpha 3.1 min Lead-214

9 Pb-214 Lead-214 Beta plus 27 min Bismuth-214

10 Bi-214 Bismuth-214 Beta plus 19.7 min Polonium-214

11 Po-214 Polonium-214 Alpha 1 µs Lead-210

12 Pb-210 Lead-210 Beta plus 22.3 a Bismuth-210

13 Bi-210 Bismuth-210 Beta plus 5 d Polonium-210

14 Po-210 Polonium-210 Alpha 138.4 d Lead-206

15 Pb-206 Lead-206 none STABLE none

Fig. 12.1 Energy level diagram for the α decay of polonium-210 into stable lead-206. The relative
rest energy levels for the ground states of the two nuclides are calculated from the respective atomic
or nuclear rest energies given in Appendix A

(2) As discussed in detail in (T11.11), the decay energy for α decay of polonium-
210 into stable lead-206 can be calculated with atomic rest energies, nuclear rest
energies, or nuclear binding energies with data provided in Appendix A. In this
example we will use nuclear rest energies as follows
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Qα
(210

84Po
) =M(210

84Po
)
c2 − [

M
(206

82Pb
)+mα

]
c2

= 195554.8682 MeV − [191822.0820 MeV + 3727.3791 MeV]
= 5.41 MeV. (12.6)

(3) Most of the decay energy Qα goes to the emitted α particle as kinetic energy
(EK)α and a very small amount to the lead-206 daughter nucleus, as a result of the
large difference in mass between the α particle and the lead-206 nucleus. The two
particles share the Qα(

210
84Po) in the inverse proportion to their mass. We thus have

(T11.6)

(EK)α = Qα(
210
84Po)

1 + mα

M( 206
82Pb)

≈ 5.41 MeV

1 + 3727.3791
191822.0820

= 5.41 MeV

1.0194
≈ 5.31 MeV. (12.7)

(4) Power P emitted by the polonium-210 nuclide per gram is determined from
the specific activity a that gives the number of α decays per second multiplied by
the kinetic energy carried by each α particle to get

P = a×(EK)α

= (
1.663×1014 s−1 · g−1)×(

5.31×106 eV
)×(

1.6×10−19 J/eV
)

= 141.0 J · s−1 · g−1 = 141 W/g. (12.8)

(5) Rate of α particle emission per unit mass of an α emitter is given by specific
activity a expressed in units Bq/g giving the number of α decays per second. For
radium-226 the specific activity a was defined as 1 Ci/g and subsequently refined to
0.988 Ci/g, i.e., 3.665×1010 Bq/g.

In (12.5) we calculated the specific activity of polonium-210 as 1.663×1014 Bq/g
(4493 Ci/g) which means that 1.663×1011 α particles are produced per second in
1 mg sample of polonium-210. To obtain this rate of α particle emission from
radium-226 we would need a radium-226 source with a mass of

mRa-226 = 1.663×1011

3.665×1010
g = 4.5 g. (12.9)

(c) Q value of the Joliot-Curie nuclear reaction 27
13Al + α = 30

15P + n (12.1) can be
determined with three methods: (1) Nuclear rest energy (Mc2) method, (2) Atomic
rest energy (M c2) method, and (3) Nuclear binding energy (EB) method. All three
methods should give the same result.

(1) In the nuclear rest energy (Mc2) method Q value of the Joliot-Curie nuclear
reaction is calculated as follows

Q
(27

13Al, α
) =

∑
i,before

Mic
2 −

∑
i,after

Mic
2

= [
M
(27

13Al
)
c2 +mαc2]− [

M
(30

15P
)
c2 +mnc

2]
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= [25126.4994 MeV + 3727.3791 MeV]
− [27916.9555 MeV + 939.5654 MeV]

= −2.642 MeV. (12.10)

(2) In the atomic rest energy (M c2) method Q value of the Joliot-Curie nuclear
reaction is calculated as follows

Q
(27

13Al, α
) =

∑
i,before

Mic
2 −

∑
i,after

Mic
2

= [
M
(27

13Al
)
c2 + M

(4
2He

)
c2]− [

M
(30

15P
)
c2 +mnc

2]
= [26.981539u+ 4.002603u] − [29.978314u+ 1.008664u]
= (−2.836×10−3u

)×(931.494028 MeV/u)

= −2.642 MeV. (12.11)

(3) In the nuclear binding energy (EB) methodQ value of the Joliot-Curie nuclear
reaction is calculated as follows

Q
(27

13Al, α
) =

∑
i,after

EB(i)−
∑
i,before

EB(i)

= EB
(30

15P
)
c2 − [

EB
(27

13Al
)+EB

(4
2He

)]
= [250.60489 MeV] − [224.95161 MeV + 28.29569 MeV]
= −2.642 MeV. (12.12)

As expected, the three methods for calculating Q value of the Joliot-Curie nu-
clear reaction (12.1) give the same result: −2.642 MeV. The negative value tells us
that the reaction is endothermic, cannot occur spontaneously, and has a threshold
energy that the α particle must meet or exceed in order to trigger the reaction.

(d) Two related methods are in use for calculation of threshold kinetic energy
(EK)thr of a projectile bombarding the target in an endothermic nuclear reaction
(Q< 0); one is based on the relativistic invariant and the other on Q value of the
nuclear reaction.

(1) The relativistic invariant is expressed as follows: E2 − p2c2|before =
E2 − p2c2|after = inv, where E is the total energy of the system and p is the mo-
mentum of the system before and after the collision. Before the collision, the system
consists of the projectile and the target and the invariant is expressed in the labo-
ratory coordinate system, after the collision the system typically consists of two
reaction products and the invariant is expressed in the center-of-mass coordinate
system (T5.9).



794 12 Production of Radionuclides

The relativistic invariant for the Joliot-Curie nuclear reaction is given as

E2 − p2c2 =
[
M
(27

13Al
)
c2 +

√(
mαc2

)2 + p2
αc

2
]2 − p2

αc
2

= [
M
(30

15P
)
c2 +mnc

2]2 − 0. (12.13)

Solving (12.13) for Ethr which is given as Ethr = √
(mαc2)2 + p2

αc
2 results in the

following equation for the total threshold energy

Ethr = {M(30
15P)c2 +mnc

2}2 − {[M(27
13Al)c2]2 − (mαc2)2}

2M(27
13Al)c2

. (12.14)

Noting that total threshold energyEthr can be expressed in terms of threshold kinetic
energy (EK)thr of the projectile (α particle) as Ethr = (EK)thr +mαc2, we now get
the following expression for (EK)thr

(EK)thr = Ethr −mαc2 = {M(30
15P)c2 +mnc

2}2 − {M(27
13Al)c2 +mαc2}2

2M(27
13Al)c2

= [27916.9555 + 939.5654]2 − [25126.4994 + 3727.3791]2

2×25126.4994
MeV

= 152493.96

50252.9988
MeV = 3.035 MeV. (12.15)

(2) Threshold kinetic energy (EK)thr of the α particle is in terms ofQ value given
as (T5.15)

(EK)thr ≈ −Q
(

1 + mαc
2

M(27
13Al)c2

)
= −(−2.642 MeV)×

(
1 + 3727.3791

25126.4994

)

= (2.642 MeV)×1.148 = 3.033 MeV. (12.16)

Threshold kinetic energy (EK)thr of the α particle is about 15 % larger than
reaction Q value to satisfy the principle of conservation of total energy and mo-
mentum in the reaction. As shown in (b), kinetic energy of α particles emitted by
Po-210 [(EK)α = 5.31 MeV] exceeds threshold kinetic energy of the Joliot-Curie
reaction (12.1) [(EK)thr = 3.03 MeV], attesting to the feasibility of the Joliot-Curie
experiment that lead to discovery of artificial radioactivity.
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12.2 Naturally Occurring Radionuclides

12.2.Q1 (247)

Naturally occurring radioactive elements (radionuclides) are almost exclu-
sively members of one of four radioactive series that all begin with very heavy
and long-lived parent that has a half-life of the order of the age of the Earth.

(a) Give the standard categories and origin of naturally occurring radionu-
clides.

(b) Prepare a table for the four naturally occurring radioactive series, fill-
ing out the following rows: (1) Name of series, (2) Parent radionu-
clide, (3) Atomic number Z, (4) Atomic mass number A, (5) Number
of stages in chain, (6) Number of α decays in the chain, (7) Number
of β decays in the chain, (8) Half-life (109 a), (9) Stable end product,
(10) Found in nature? (11) Specific activity a in Bq/g, and (12) Specific
activity a in Ci/g.

(c) Carbon-14 is a cosmogenic radionuclide that can be used in dating of
organic remains less than ∼60 000 years old. For carbon-14: (1) Discuss
how it is produced. (2) Discuss the principles of carbon dating, and
(3) Estimate the age of a small sample of papyrus for which a very
accurate β counting technique determined a counting rate of 7.5 CPM
(counts per minute) per gram.

SOLUTION:

(a) Naturally occurring radionuclides fall into 3 groups: primordial, secondary,
and cosmogenic.

(1) Primordial radionuclides have existed since the formation of the Earth 4.6
billion years ago and are still present because of their very long half-life. Most
primordial radionuclides are in the group of heavy elements, such as uranium-238
and thorium-232; however, a few examples of light primordial radionuclides are also
known, such as potassium-40 (t1/2 = 1.277×109 years).

(2) Secondary radionuclides are radionuclides derived from radioactive decay of
primordial radionuclides. Since their half-lives are shorter than those of primor-
dial radionuclides, they are still present only because of continuous replenishment
through the decay of primordial radionuclides. Nuclides, be it stable or radioactive,
produced through decay of a parent radionuclide are called radiogenic nuclides.

(3) Cosmogenic radionuclides have relatively short half-lives and are present in
nature because cosmic rays are continuously forming them in the atmosphere.
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Carbon-14 is the best-known radionuclide in this category. It decays with a half-
life of 5730 years and is used for the so-called carbon dating of once-living objects,
no older than some 60 000 years. Cosmic rays are energetic particles that originate
from outer space and strike the Earth’s atmosphere. The vast majority of cosmic rays
(∼87 %) are protons, some 12 % are alpha particles, and about 1 % are electrons.

(b) The naturally occurring radioactive elements are almost exclusively members
of one of four radioactive series that all begin with very heavy and long-lived pri-
mordial parents that have half-lives of the order of the age of the earth. The four
naturally occurring series and their original parent radionuclide are named as fol-
lows:

(1) Thorium series originates with thorium-232.
(2) Neptunium series originates with neptunium-237.
(3) Uranium series (also known as U-238 / radium-226 series) originates with

uranium-238.
(4) Actinium series originates with uranium-235.

The series begin with a specific parent nucleus that decays through several daugh-
ter products to reach a stable lead isotope in the thorium, actinium, and uranium
series and stable bismuth-209 nuclide in the neptunium series. For each one of the
four series most of the transitions toward the stable nuclides are α decays (6 to 8)
interspersed with a few β decays.

The atomic mass numbers A for each member of the thorium series are multi-
ples of 4 and, consequently, the thorium series is sometimes referred to as the 4n
series. The atomic mass numbers of members of the neptunium series follow the
rule 4n+ 1, the uranium series 4n+ 2, and the actinium series 4n+ 3. Therefore,
these series are often referred to as the 4n+ 1, 4n+ 2, and 4n+ 3 series. Table 12.2
provides the basic characteristics of the four naturally occurring radioactive series
(thorium, neptunium, uranium, and actinium).

(c) Atmospheric carbon contains three isotopes of carbon: stable carbon-12
(99 %), stable carbon-13 (∼1 %), and radioactive carbon-14 continuously produced
at a constant rate in the atmosphere by cosmic rays. Abundance of the carbon-14
isotope in atmospheric carbon is estimated at 1 ppt (1 part per trillion) and repre-
sents equilibrium between generation by cosmic rays and radioactive decay. This
corresponds to about 600 billion of carbon-14 nuclei per mole of carbon (12 g) and
is considered the equilibrium level of C-14. Thus, the ratio 14

6C/12
6C ≈ 10−12.

(1) Carbon-14 is a relatively short-lived cosmogenic radionulide decaying through
β− decay into nitrogen-14 with a half-life t1/2 of 5730 years. It is produced in the
upper Earth’s atmosphere by nuclear reactions between free neutrons and nitrogen-
14 nuclei in the following nuclear reaction: 14

7N + n → 14
6C + p. Free neutrons,

required for this reaction, are produced in the upper atmosphere by cosmic rays
(mainly protons) interacting with atmospheric molecules. Carbon-14 produced in
the atmosphere through neutron interaction with nitrogen-14 immediately oxidizes
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Table 12.2 Main characteristics of the four naturally occurring radioactive decay series

Name of series Thorium Neptunium Uranium Actinium

4n 4n+ 1 4n+ 2 4n+ 3

Parent radionuclide Thorium-232 Neptunium-237 Uranium-238 Uranium-235

Atomic number Z 90 93 92 92

Atomic mass A 232 237 238 235

Number of stages 10 12 14 11

Number α decays 6 7 8 7

Number β decays 4 5 6 4

Half-life (109 a) 14.05 2.144×10−3 4.47 0.704

Stable end product 208
82Pb 209

83Bi 206
82Pb 207

82Pb

Found in nature YES NO YES YES

Specific activity a 4060 Bq/g 2.66×107 Bq/g 12442 Bq/g 8×104 Bq/g

Specific activity a 0.11 µCi/g 710 µCi/g 0.34 µCi/g 2.2 µCi/g

(combines with oxygen) to form carbon dioxide and gets incorporated into living
organic materials with the C-14/C-12 ratio that equals to the atmospheric ratio of
10−12.

(2) Radiocarbon dating method was developed by Willard Libby at the University
of Chicago and in 1960 he received the Nobel Prize in Chemistry for this work. The
method is based on two premises. One premise assumes that radioactive C-14 is in-
corporated into living organisms by photosynthesis or ingestion of organic material
with a C-14/C-12 ratio equal to atmospheric C-14/C-12 ratio; however, after organ-
ism’s death the ratio gets progressively smaller with time because C-14 undergoes
exponential radioactive decay and no longer gets replenished in dead organic mate-
rial. The second premise assumes that the equilibrium ratio C-14/C-12 was constant
for the past 60 000 years making the past 60 000 years the upper limit for the useful
range in radiocarbon dating.

Assuming that the two premises are correct, a conclusion can be reached that for
organic material the measured C-14/C-12 ratio in comparison with the equilibrium
ratio of 10−12 can be used to estimate the age of the dead organic material.

(3) To establish the time period during which the C-14 nuclide has been decaying
in the papyrus sample, we must first determine the equilibrium level of the ratio
C-14/C-12 in CPM. In 1 g of carbon we have 1

12 6.022×1023 atoms and of these
1
12 6.022×1011 are C-14 atoms, since we know that 14

6C/12
6C ≈ 10−12. The specific

activity of 1 g of natural carbon is thus given as follows

aC = (ln 2)NA

(t1/2)C-14A
= (ln 2)×(6.022×1011)

(5730 a)×(14 g)×(365 d/a)×(24 h/d)×(3600 s/h)

= 0.165 s−1 · g−1 (12.17)
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or count rate C0 in counts per minute C0 ∼ 10 CPM/g. Since the sample count rate is
C = 7.5 CPM/g, we get the following result for the exponential decay of the organic
papyrus sample

C(T )≈ C0e
− (ln 2)
t1/2

T
or T = − ln(C/C0)

ln 2
(t1/2)C-14 = − ln 0.75

ln 2
×(5730 a)

= 2380 a. (12.18)

Thus, the age of the papyrus sample is estimated as 2380 years.

12.3 Man-Made (Artificial) Radionuclides

12.3.Q1 (248)

Since Irène Joliot-Curie and Frédéric Joliot-Curie discovered artificial (in-
duced) radioactivity in 1934 over 3000 different artificial radionuclides have
been synthesized and investigated. Thus, the current list of known nuclides
entered in a typical Chart of Nuclides (Segrè chart) contains some 280 stable
nuclides and over 3500 radioactive nuclides (radionuclides).

(a) Briefly discuss most common techniques and particles that are used in
production of artificial radionuclides.

(b) Many different names are used to designate nuclear reactions that pro-
duce artificial radionuclides. Discuss a few typical examples.

(c) Briefly discuss the machines that are used in production of artificial
radionuclides.

(d) Compile as many terms as possible that are used for nuclear reactions
of high-energy x rays interacting with target nuclei.

SOLUTION:

(a) Irène and Frédéric Joliot-Curie are credited with producing the first known
artificial radionuclide, phosphorus-30, by irradiating an aluminum-27 foil with α
particles from a polonium-210 source. Since then, several 1000 different artificial
radionuclides have been produced and studied by using special techniques and ma-
chines, all based on the same basic principles enunciated by Joliot-Curies with their
experiment in 1934.

The most common modern technique for producing artificial radionuclides is by
inducing a nuclear reaction with a projectile bombarding a target (stable nuclide
or long-lived radionuclide) and releasing two reaction products, one of them being
the desired radionuclide and the other either a subatomic particle (most commonly
neutron, proton, or α particle) or γ photon.
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Various types of projectile are in use, such as:

(1) Thermal neutrons typically inducing (n, γ ) reaction and producing a radioac-
tive isotope of the stable target (for example, 59

27Co + n → 60
27Co + γ ).

(2) Energetic heavy charged particles typically inducing (p,n) reaction and pro-
ducing a radionuclide different in atomic number Z from that of the target (for
example, 18

8O + p → 18
9F + n).

(3) High-energy x rays most often inducing (γ,n) reaction and producing an iso-
tope of the target with a lower atomic number Z than that of the target (for
example, d + γ → p + n, where d stands for deuteron).

(b) The lack of consistency in naming the various nuclear reactions associated
with induced radioactivity can be attributed to several reasons, such as historical
development of a technique, interest of the specific scientific community using a
particular technique, and motivation for using a particular nuclear reaction.

(1) When the objective of a particular bombardment of a target is purely scien-
tific and focuses on the particular collision and on basic nuclear physics, then
the nuclear reaction in relation to various types of projectile is referred to as
capture reaction. Thus, (n, γ ) stands for neutron capture, (p,n) for proton
capture, and (γ,n) for photon capture.

(2) When the ultimate goal of using nuclear bombardment of a target is to pro-
duce induced radioactivity in the target, then the technique is referred to as
nuclear activation, with (n, γ ) standing for neutron activation, (p,n) for pro-
ton activation, and (γ,n) for photon activation or photo-activation in short.
During the past decades artificial radioactivity grew from a scientific curiosity
into an important component of modern society, extremely useful for scien-
tific, industrial, and medical purposes, but also controversial and potentially
dangerous. Radionuclide sources produced under this category for scientific,
industrial, and medical use have numerous applications in modern society and
are of significant importance to medical physics in treatment of malignant
disease with external beam radiotherapy and brachytherapy as well as for di-
agnostic imaging of disease in nuclear medicine.

(3) When the ultimate goal of using the bombardment of a sample is an analysis
of unknown sample’s chemical composition, the techniques are referred to as
nuclear activation analysis, with (n, γ ) standing for neutron activation anal-
ysis, (p,n) for proton activation analysis, and (γ,n) for photon activation or
photoactivation analysis in short.

The majority of activation analyses are carried out with neutron bombard-
ment of a sample and the term activation analysis usually implies neutron
activation analysis (NAA) with irradiation of the sample by thermal neutrons
from a nuclear reactor. NAA is specific, highly sensitive, and can be applied
to practically all elements of the periodic table of elements. Capture of a neu-
tron in a nucleus of the sample results in formation of a new nucleus with
the same atomic number Z as that of the original nucleus but with one more
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neutron in the nucleus. This new isotope is usually radioactive and emits radi-
ation through various possible nuclear decays. Most notable are γ rays that are
emitted with unique and discrete energy levels, characteristic of a particular
radionuclide emitting them. The γ ray spectrum is measured with γ ray spec-
troscopy and the results allow identification of elements present in the sample,
since each nuclide in the chart of nuclides possesses its own characteristic γ
ray imprint.

(4) When the ultimate goal of a study is in-vivo body composition measurement
using nuclear activation, the study is referred to as body composition acti-
vation analysis. The technique is established well using neutron activation;
however, attempts at using photoactivation for this purpose have been made in
the past but so far have not attained any widespread use, most likely because,
for this type of work, one requires a linac with energy of 25 MV or higher and
these machines are not readily available in radiotherapy departments.

(c) Machines used in modern production of radionuclides are: (1) Nuclear re-
actors, (2) Heavy charged particle accelerators, (3) Radionuclide generators, and
(4) High-energy electron linear accelerator.

(1a) In nuclear reactors a high fluence of thermal neutrons is used to activate a
stable nuclide to produce a neutron-rich radionuclide that typically decays
through β− decay with a given half-life t1/2 and concurrently produces γ
rays. Examples of neutron activation in a nuclear reactor of importance to
medical physics and medicine are the production of sources for teletherapy
machines (cobalt-60 and cesium-137), sources for brachytherapy procedures
(e.g., iridium-192, gold-198), and radionuclides for nuclear medicine imag-
ing (e.g., thallium-201, iodine-131).

(1b) Another mode of induced radioactivity made possible with a nuclear reac-
tor is induced fission of the reactor fuel triggered by neutrons. Most of the
fission products produced in a reactor are radioactive, cover a wide range of
atomic numbers and atomic abundances, and most are of no practical use.
However, a few fission products can be separated by chemical means from
all the other fission products present in the spent reactor fuel (for example,
molybdenum-99) and they end up with much higher specific activity than that
achievable with neutron activation. However, chemical separation of one fis-
sion radionuclide from the others is quite an elaborate procedure and often
not possible for arbitrary radionuclides.

(2) Heavy charged particle accelerators accelerate protons or heavier ions that
bombard a target nuclide to produce a proton-rich radionuclide (often re-
ferred to as positron-emitting radionuclide) that typically decays through
β+ decay or electron capture and may or may not concurrently produce γ
rays. Examples of proton-activated radionuclides of importance in medical
physics and medicine (positron emission tomography—PET) are carbon-11,
nitrogen-13, oxygen-15, fluorine-18, and rubidium-82.
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(3) Radionuclide generator contains a parent radionuclide that is usually pro-
duced in a nuclear reactor, has a relatively long half-life, and undergoes β−
decay into a daughter product that is used for nuclear medicine imaging and
has a relatively short half-life. Several radionuclide generators are used to
produce γ emitting radionuclides for imaging; however, the molybdenum-
technetium (Mo-Tc) generator is by far the most common.

(4) High-energy electron linear accelerators can be used to produce a brems-
strahlung photon spectrum with a high-energy component matching the giant
resonance cross section for photonuclear reaction with a given target nucleus.
This may trigger a photonuclear reaction (also called photodisintegration or
phototransmutation) of the (γ,n), (γ,p), or (γ,α) type, resulting in a lighter
isotope of the target nucleus in (γ,n) reaction or in a new nuclide in (γ,p)
or (γ,α) reaction.

(d) In comparison to (n, γ ) nuclear reaction normally described as neutron cap-
ture or neutron activation and (p,n) nuclear reaction normally described as proton
capture and proton activation, many terms are used to describe high-energy pho-
ton interactions with target nuclei, such as: (1) Photonuclear reaction, (2) Photon
capture, (3) Photodisintegration, (4) Photoactivation, and (5) Phototransmutation.

12.4 Radionuclides in the Environment

12.4.Q1 (249)

Over 60 radionuclides can be found in the environment and some of them
pose a health hazard to humans.

(a) Radionuclides that are found in the environment are grouped into four
categories. List and briefly discuss the four categories. For each cate-
gory give a few most notable examples.

(b) Estimate the mean activity of modern carbon in organic material where
carbon-14 decay is in equilibrium with cosmogenic production of C-14.
The equilibrium ratio C-14/C-12 in organic material is 10−12, that is, in
organic carbon there is 1 carbon-14 atom per 1012 carbon-12 atoms. The
half-life of carbon-14 is t1/2 = 5730 a. Compare your result calculated
for natural carbon with that calculated for pure carbon-14.

(c) Tritium is an important cosmogenic isotope of hydrogen undergoing β−
decay with a half-life t1/2 of 12.3 years. Its concentration is expressed
in tritium units (TU) where 1 TU corresponds to 1 tritium atom per 1018

hydrogen atoms. Determine the specific activity aH-3 of tritium as well
as the specific activity aH2O of water in Bq/kg and Ci/kg containing
1 TU of tritium.
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SOLUTION:

(a) Radionuclides are dispersed in varying concentrations over all components of
the environment: soil, rock, water, air, upper atmosphere, etc., and they present vary-
ing levels of radiation hazard to humans. Based on their origin, radionuclides found
in the environment are placed into the following four categories: (1) Primordial,
(2) Secondary, (3) Cosmogenic, and (4) Anthropogenic.

(1) Primordial nuclides (stable or radioactive) are nuclides found on Earth that
were formed by nuclear processes in stars and have existed in their current form al-
ready before the solar system was formed some 4.6×106 years ago. The number of
these nuclides stands at 288 and of these, 34, called primordial radionuclides, have
been found radioactive with long half-life t1/2 exceeding 80×106 years (1.7 % of
the age of the Earth). It is possible that of the 254 primordial nuclides that are con-
sidered stable today some are actually radioactive but their extremely long half-lives
cannot be measured with currently available equipment. Two types of primordial ra-
dionuclides are known: those that head a radioactive decay chain or series and those
that do not, since they decay directly into stable nuclides. There are over 20 ra-
dionuclides in the latter category; however, potassium-40 (amounting to a 0.012 %
fraction of natural potassium t1/2 = 1.3×109) is by far the most important source of
background radiation for humans.

The other category of primordial radionuclides consists of three radioactive
chain-forming radionuclides: uranium-238 (uranium series), uranium-235 (actinium
series), and thorium-232 (thorium series), each one heading a chain that ends with
a stable lead nuclide after a series of α and β− decays some of which are also
accompanied by γ decays.

(2) In the category of secondary radionuclides we find radiogenic progeny of the
three chain-forming primordial radionuclides. Often this category is considered part
of the primordial category, however, the secondary radionuclides are clearly sep-
arated from the primordial ones. The secondary radionuclides have much shorter
half-lives than the primordial radionuclides, thus, if they were around at the for-
mation of the solar system, they would have definitely decayed by now. However,
as members of one of the three primordial decay chains, they can exist in transient
or secular equilibrium with long-lived parents and their numbers get replenished
despite their short half-lives.

It is estimated that the naturally occurring radionuclides in the three primordial
radioactive chains contribute about 50 % of the natural background external ra-
diation and over 80 % of the natural background internal radiation. Radium-226
(t1/2 = 1602 s) and radon-222 (t1/2 = 3.85 d), members of the uranium decay series,
are α emitters and are recognized as the most radiotoxic radionuclides contributing
the major dose components from naturally occurring internal emitters. Radium-226
is chemically similar to calcium and concentrates in bone; radon-222 is in gaseous
form and accumulates in the lung.
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(3) Cosmogenic radionuclides are produced in the upper atmosphere where cos-
mic radiation (galactic and solar) through primary interactions with atmospheric
molecules produces neutrons which in turn produce other radionuclides through
neutron capture interactions with molecules of nitrogen, oxygen, argon, and other
atmospheric gases. Radionuclides produced in the upper atmosphere are brought to
the earth surface by rainwater and winds.

Cosmogenic radionuclides are not primordial since their half-lives are relatively
short in comparison with the age of the solar system; however, cosmic radiation
continuously replenishes the cosmogenic radionuclides establishing equilibrium be-
tween the cosmogenic production of a radionuclide and its radioactive decay.

The two most prevalent cosmogenic radionuclides are carbon-14 (C-14) with
half-life t1/2 = 5730 years and tritium (H-3) with half-life t1/2 = 12.3 years. Both
C-14 and H-3 are produced by neutron capture interaction between neutron and
nitrogen-14 nucleus; C-14 by collision of a thermal neutron with N-14 and H-3 by
collision of a fast neutron with N-14, as follows

14
7N + n → 14

6C + p and 14
7N + n → 12

6C + 3
1H. (12.19)

Both C-14 and H-3 are β− emitters and both react with atmospheric oxygen;
C-14 is incorporated into carbon dioxide and H-3 into water, both gravitating to-
ward the earth surface and contributing to background radiation in the environment.
On the Earth’s surface carbon-14 is incorporated into organic materials through pho-
tosynthesis and the standard food chain. The contribution of cosmogenic radionu-
clides to the environmental background equivalent dose is relatively small and not
of concern from the radiation safety point of view.

(4) Anthropogenic radionuclides (i.e., man-made or artificial) have been released
inadvertently or in controlled fashion into the environment during the 7 decades
since the discovery of fission in 1938. This category of radionuclides consists of all
radionuclides found in the environment that do not fit into one of the three natural
categories listed above. Examples of inadvertent as well as controlled release of
radioactivity into the environment are:

(1) Atmospheric nuclear weapons tests (during 1940s–1960s) and use in Hi-
roshima and Nagasaki (1945).

(2) Controlled release from nuclear power reactors.
(3) Nuclear power reactor accidents, most notably Three Mile Island (USA—

1979), Chornobyl (USSR—1986), and Fukushima (Japan—2011).
(4) Controlled release from nuclear medicine tests and facilities.
(5) Atmospheric burnout of satellites carrying radioactive sources.
(6) Repository for spent nuclear reactor fuel and other high level nuclear waste.
(7) Radioactive power generators in remote locations.

Most anthropogenic radionuclides are short-lived and do not pose much radiation
hazard to humans. However, in this category there are also a few fission fragments,
such as strontium-90 (t1/2 = 28.1 years) and cesium-137 (t1/2 = 30 years) that are
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a serious threat to humans from a radiation safety point of view. Since radioactive
iodine-129 and iodine-131 have the same physical properties as stable iodine, the
two fission fragments produced from uncontrolled fission of uranium are of serious
concern for humans because of iodine accumulation in the thyroid gland.

(b) Carbon-14 is a cosmogenic radionuclide continuously present in the environ-
ment because its radioactive decay with a half-life t1/2 = 5730 a is in equilibrium
with its production in the upper atmosphere through thermal neutron interaction
with nitrogen-14 stable nuclide. We first determine the specific activity aC-14 of
carbon-14 and then calculate the specific activity aC of natural carbon.

(1) Specific activity aC-14 of carbon-14 is calculated as follows

aC-14 = AC-14

mC-14
= λC-14NC-14

mC-14
= λC-14NA

AC-14
= (ln 2)NA

(t1/2)C-14AC-14

= (ln 2)×(6.022×1023 mol−1)

(5730 a)×(14 g)×(365 d/a)×(24 h/d)×(3600 s/h)

= 0.165×1012 s−1 · g−1 = 165 TBq/g = 0.165×1012 Bq/g

3.7×1010 Bq/Ci
= 4.46 Ci/g, (12.20)

where AC-14 is the activity of carbon-14,mC-14 is the mass of carrier-free carbon-14,
NA is Avogadro number (NA = 6.022×1023 atoms per mole), and AC-14 = 14 g is
a mole of carbon-14.

(2) Now to the specific activity aC of natural carbon in organic material that we
calculate recalling that 1 g of natural carbon contains the following number of car-
bon atoms

nC = NC

mC
= 1

A
NA = 1

(12 g/mol)
×(

6.022×1023 atom/mol
)= 5.02×1022 atom/g.

(12.21)
Therefore in 1 g of natural carbon atoms in organic material the number nC-14 of
carbon-14 atoms is given as nC-14 =NC-14/mC = 5.02×1022×10−12 = 5.02×1010

carbon-14 atoms, as a result of the equilibrium ratio C-14/C-12 = 10−12.
This means that the specific activity of carbon in organic material can be ex-

pressed as

aC = AC

mC
= λNC-14

mC
= (ln 2)NC-14

(t1/2)C-14mC

= (ln 2)×5.02×1010

(5730 a)×(1 g)×(365 d/a)×(24 h/d)×(3600 s/h)

= 0.193 s−1/g = 0.193 Bq/g = 11.6 dpm = 0.193 Bq/g

3.7×1010 Bq/Ci

= 5.2 pCi/g, (12.22)
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where AC stands for activity of natural carbon, mC mass of natural carbon, and dpm
for number of decays per minute.

Comparing (12.20) with (12.22) we note that the specific activity aC-14 of C-14
exceeds the specific activity aC of natural carbon almost by a factor of 1012 which
is the ratio C-12/C-14.

(c) Specific activity aH-3 of carrier-free tritium is calculated as follows

aH-3 = AH-3

mH-3
= λH-3NH-3

mH-3
= (ln 2)NA

(t1/2)H-3AH-3

= (ln 2)×(6.022×1023 mol)

(12.3 a)×(3.016 g)×(365 d/a)×(24 h/d)×(3600s/h)

= 3.568×1014 s−1 · g−1 = 3568 TBq/g = 3.568×1014 Bq/g

3.7×1010 Bq/Ci

= 9643 Ci/g. (12.23)

Specific activity aH2O of water containing 1 TU of tritium is determined as follows:
1 g of water contains 1

18×6.022×1023 molecules of water or 2
18×6.022×1023 hy-

drogen atoms. Since in 1 TU we have 1 tritium atom per 1018 hydrogen atoms, in
1 g of water we have nTU = 2

18×6.022×1023×10−18 g−1 = 6.69×104 g−1 atoms
of tritium.

The specific activity aH2O of water with 1 TU of tritium is thus given

aH2O = (ln 2)

(t1/2)H-3
nTU = (ln 2)×(6.69×104 g−1)

(12.3 a)×(365 d/a)×(24 h/d)×(3600 s/h)

= 0.12 Bq/kg = 3.2 pCi/kg. (12.24)

12.5 General Aspects of Nuclear Activation

12.5.Q1 (250)

Several types of nuclear activation are known. Activation with thermal or fast
neutrons is called neutron activation; activation with protons is proton acti-
vation; activation with high-energy photons is nuclear photoactivation. There
are several common features that govern the physics behind the activation
processes, such as cross section, target thickness, Q value, and threshold.
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(a) Cross section σ of a nuclear reaction is proportional to probability P
of reaction occurrence, has units of area, and is defined as reaction rate
divided by the incident particle fluence. Derive an expression for the
probability P of an incident projectile to trigger a reaction in thin target
and thick target. State all assumptions involved.

(b) Define the reaction rate Ṙ and derive its relationship with cross section
σ for thin and thick targets.

(c) An aluminum foil of thickness x = 0.2 mm is bombarded by neutrons
in a nuclear reactor and the target gets activated through neutron capture
reaction expressed by the following 27

13Al+n → 28
13Al+γ . Calculate the

number of neutrons captured per second by 1 cm2 of the aluminum foil.
Neutron capture cross section σ of aluminum is 2 mb, mass density ρAl
of aluminum is 2.7 g/cm3, and the neutron fluence rate ϕ̇ in the nuclear
reactor is 1013 cm−2 · s−1.

(d) Estimate the probability that nuclear reactor-produced electronic an-
tineutrino has an interaction with a proton when traversing the earth.
Cross section for antineutrino interacting with a proton is 10−43 cm2,
mean earth radius is 6.37×108 cm, and mean mass density of the Earth
is 5.52 g/cm3.

SOLUTION:

(a) Many ways have been devised for deriving and explaining nuclear reaction
probability and reaction cross section.

(1) In a simplistic approach we might consider estimating the probability for a
reaction between the incident particle and a target nucleus by treating the incident
particles as points and the target nuclei as projecting an area πR2 defined by the
nuclear radius R. Any time an incident particle hits a nucleus, a reaction is assumed
to happen; no reaction occurs when the particle misses the nucleus. This geometrical
picture takes no account of the finite size of the incident particle nor does it consider
the range of interaction forces that are in effect between the incident particle and the
target nucleus. This approach is simple but suffers serious deficiencies.

(2) Rather than treating a geometrical cross sectional area πR2 as a measure of
interaction probability, we assign to the nucleus an effective area σ perpendicular to
the incident beam such that a reaction occurs every time a bombarding particle hits
any part of the effective disk area. This effective area is referred to as the reaction
cross-section σ and is usually measured in barn, where 1 barn = 1 b = 10−24 cm2 =
10−28 m2. Cross section σ is proportional to the reaction probability P . The range
of reaction cross sections σ in nuclear physics varies from a low of 10−19 b to a high
of 106 b, with the lower limit in effect for weak neutrino interactions with nuclei and
the upper limit in effect for thermal neutron capture in certain nuclides.
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Target of thickness x0 projects an area S to the incident particle beam. The target
contains N nuclei, each characterized with a reaction cross section σ . The density
of target nuclei n� is equal to the atomic density (number of atoms per volume)
and represents the number of nuclei N per volume V of the target with V = Sx0.
To determine the reaction rate R (number of nuclear reactions per unit time) we
consider two target options with regard to target thickness x0: thin targets and thick
targets.

(1) A thin target is thin enough so that no significant overlap between target nu-
clei occurs as the particle beam penetrates the target. This implies that negligible
masking of target nuclei occurs in a thin target. The probability P for an incident
particle to trigger a reaction in a thin target is the ratio of the effective area σN over
the target area S

P = σN

S
= σNx0

Sx0
= n�σx0, (12.25)

where we used the definition of density of target nuclei given as n� = N/V =
N/(Sx0).

(2) In comparison with a thin target, a thick target has a thickness x0 that engen-
ders significant masking of target nuclei. In this case we assume that a thick target
consists of a large number of thin targets. In each thin target layer of thickness dx
the number of incident particles per unit area per unit time Ṅ diminishes by dṄ so
that we can write dṄ (x) as

−dṄ (x)= Ṅ (x)n�σ dx (12.26)

or ∫ Ṅ (x0)

Ṅ 0

dṄ (x)

Ṅ (x)
= −

∫ x0

0
n�σ dx, (12.27)

where

Ṅ 0 is the number of particles per unit area per unit time striking the target.
Ṅ (x0) is the number of particles per unit area per unit time that traverse the thick

target x0.

The solution to the simple integral equation (12.27) is an exponential function

Ṅ (x0)= Ṅ 0e
−n�σx0 (12.28)

and the number of incident particles N that undergo a reaction in the thick target is
expressed as the incident number of particles per unit area per unit time Ṅ 0 minus
the number of particles Ṅ (x0) per unit area per unit time that traversed the thick
target.

Ṅ = Ṅ 0 − Ṅ (x0)= Ṅ 0
(
1 − e−n�σx0

)
. (12.29)
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(b) The reaction rate Ṙ is the number of reactions per unit time and is a product
of the reaction probability P and the number of incident particles per unit area per
unit time

Ṙ = P Ṅ . (12.30)

(1) If the number of incident particles per area per unit time (fluence rate) is Ṅ 0 =
ϕ̇, then Ṙ , the number of reactions per unit area and unit time, for a thin target after
incorporating (12.25) into (12.30) is given as follows

Ṙ = P Ṅ 0 = Ṅ 0n
�σx0. (12.31)

(2) For a thick target the number of reactions per unit area per unit time Ṙ is given
by the number of incident particles N that undergo a reaction in the target given
in (12.89)

Ṙ = Ṅ 0 − Ṅ (x0)= Ṅ 0
{
1 − e−n�σx0

}
. (12.32)

Note that (12.32) transforms into (12.31) for small x0 since 1 − e−n�σx0 ≈ n�σx0.

(c) To calculate the number of neutrons captured per cm2 per second (activation
rate) we will assume that we are dealing with a thin target and use (12.31) with cross
section for neutron capture in aluminum σ = 2 mb, target thickness x0 = 0.2 mm,
neutron fluence Ṅ 0 = ϕ̇ = 1013 cm−2 · s−1, and number of aluminum nuclei per
volume n�Al determined as follows

n�Al = Na

V
= ρNa

m
= ρNA

A
= (2.7 g/cm3)×(6.022×1023 mol−1)

(27 g · mol−1)

= 6.022×1022 cm−3. (12.33)

Probability P of neutron capture reaction to occur is given in (12.25) as

P = n�σx0 = (
6.022×1022 cm−3)×(

2×10−3×10−24 cm2)×(0.02 cm)

= 2.41×10−6. (12.34)

Reaction rate Ṙ is the number of incident neutrons per cm2 per second in (12.31)
given as

Ṙ = P Ṅ 0 = (
2.41×10−6)×(

1013 cm−2 · s−1)= 2.41×107. (12.35)

Of 1013 neutrons incident on 1 cm2 of the target each second, the number of neu-
trons captured is 2.41×107 or 1 captured neutron per ∼415 000 incident neutrons.

In the calculation above we assume that the target is a thin target. We now re-
peat the calculation assuming we are dealing with a thick target and use (12.32) to
calculate the reaction rate, i.e., the number of captured neutrons per cm2 per second
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Ṙ = Ṅ 0
{
1 − e−n�σx0

}
= (

1013 cm−2 · s−1)×{
1 − e−(6.022×1022)×(2×10−3×10−24)×(2×10−2)

}
= (

1013 cm−2 · s−1)×{
1 − e−(2.41×10−6)

}
≈ (

1013 cm−2 · s−1)×{
1 − (

1 + 2.41×10−6)}
= 2.41×107 cm−2 · s−1. (12.36)

Result (12.36) is identical to result (12.35) indicating that the target in this particular
activation experiment can be considered a thin target and the simple equation (12.31)
can be used for determination of the activation rate.

(d) Probability of antineutrino traversing Earth along the diameter of the earth
being captured by a proton (capture cross section is estimates as ∼10−43 cm2) is
estimated using an assumption that the protons of the Earth represent a thin target
to an antineutrino. We therefore use (12.25) with thin target thickness x0 of earth
diameter 2×(6.37×108 cm) = 12.74×108 cm, cross section σ of 10−43 cm2, and
calculate n�, the proton density, i.e., number of protons per cm3 as follows

n� = Np

V
= ρ̄Np

m
= ρ̄NA

A

(
A

2

)

= (5.52 g/cm3)×(6.022×1023 mol−1)

A (g · mol−1)
×
(
A

2

)

= 1.662×1024 cm−3, (12.37)

where we assumed that the mean atomic weight of the Earth is around iron which
means that the number of protons is approximately equal to the number of neutrons,
so that number of protons in the mean nucleus of the Earth is ∼A/2.

Probability for antineutrino interaction with a proton is now given as

P = n�σx0 = (
1.662×1024 cm−3)×(

10−43 cm2)×(
12.74×108 cm

)
= 2.1×10−10, (12.38)

indicating that the neutrino interaction with a proton is very improbable.

12.6 Nuclear Activation with Neutrons

12.6.Q1 (251)

In practice the most commonly used nuclear activation process is triggered by
thermal neutrons in a nuclear reactor, where a stable parent target nucleus P
of thermal neutron cross section σP (in cm2) upon bombardment with ther-
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mal neutron fluence rate ϕ̇ (in cm−2 · s−1) is transformed into a radioactive
daughter D that decays with a decay constant λD into a granddaughter G that
may be stable or is radioactive

P → D → G. (12.39)

(a) Discuss the initial and general conditions that apply to neutron activa-
tion process and state the general differential equation from which the
activity AD(t) of the daughter radionuclide D is derived for nuclear acti-
vation of the stable parent P. Define all parameters used in the derivation
of AD(t).

(b) Use the general expression for dND/dt described in (a) and derive
AD(t) valid for the saturation model of neutron activation.

(c) Use the general expression for dND/dt described in (a) and derive
AD(t) valid for the depletion model of neutron activation.

(d) Use the general expression for dND/dt described in (a) and derive
AD(t) valid for the parent depletion–daughter activation model of neu-
tron activation.

SOLUTION:

(a) In artificial production of a radionuclide with thermal neutron activation the
main objective is to produce activity AD(t) in the activated daughter sample D which
is an isotope of the stable parent nuclide P. The induced radioactivity AD(t) depends
on many factors, such as mass m and activation cross section σP of the parent sam-
ple, neutron fluence rate ϕ̇ in the reactor, as well as the decay constant λD and
activation cross section σD of the daughter radionuclide. The daughter D nuclei are
produced at a rate of σPϕ̇NP(t) and they decay with a rate of λDND(t). If the daugh-
ter D is affected by exposure to activation particles, one accounts for the daughter
activation with the term σDϕ̇ND(t). The number of daughter nuclei is ND(t) and
the overall rate of change of the number of daughter nuclei is dND/dt obtained by
combining the production rate of daughter nuclei σPϕ̇NP(t) with the decay rate of
daughter nuclei λDND(t) and depletion of daughter nuclei through σDϕ̇ND(t) to get
the following differential equation for dND(t)/dt

dND(t)

dt
= σPϕ̇NP(t)− λDND(t)− σDϕ̇ND(t), (12.40)

where σP is the thermal neutron cross section of the parent nucleus, σD is the ther-
mal neutron cross section of the daughter nucleus, ϕ̇ is the fluence rate of thermal
neutrons, NP(t) is the number of parent P target nuclei, ND(t) is the number of
daughter D nuclei and λD is the decay constant of the daughter nucleus related to its
half-life (t1/2)D through (t1/2)D = (ln 2)/λD.
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The solution to differential equation (12.40) for ND(t) is affected by several con-
ditions, such as:

(1) Initial conditions on the initial number NP(0) of parent nuclei at time t = 0
and initial number ND(0) of daughter nuclei at time t = 0.

(2) General conditions on NP(t) during the activation process allowing two possi-
bilities: (i) NP(t) is essentially constant with activation time t suggesting that
NP(t) is not affected by activation of parent nuclei into daughter nuclei and
(ii) NP(t) is diminishing with activation time t as a result of the activation of
parent nuclei into daughter nuclei. The first [NP(t)= const] option represents
the saturation model of nuclear activation, while the second option represents
the depletion model of nuclear activation.

(3) General conditions on ND(t) during the activation process of the parent P.
ND(t) grows through activation of parent P and diminishes during the acti-
vation process because of (i) daughter decay or (ii) daughter decay combined
with daughter activation as a result of daughter exposure to neutrons. The sat-
uration model or the depletion model of activation, listed in (2), cover the first
option which assumes that the daughter is not affected by neutron exposure,
while the second option which incorporates the daughter activation by neutron
exposure represents the parent depletion–daughter activation model.

(b) For standard initial conditions NP(t = 0)=NP(0) and ND(t = 0)=ND(0)=
0 as well as the general condition for the saturation model that (1) number of parent
nuclei is constant, i.e., is so large that it is not affected by exposure to neutrons
[NP(t)=NP(0)= const] and (2) daughter radionuclide is not affected by exposure
to neutrons (σD = 0), the differential equation for dND/dt of (12.40) is written as

dND(t)

dt
= σPϕ̇NP(0)− λDND(t) (12.41)

or in integral form as

∫ ND(t)

0

d{σPϕ̇NP(0)− λDND}
σPϕ̇NP(0)− λDND

= −λD

∫ t

0
dt. (12.42)

The solution of the simple differential equation (12.42) is as follows

ND(t)= σPϕ̇NP(0)

λD

{
1 − e−λDt

}
. (12.43)

Since the daughter activity AD(t) equals to λDND(t), we can write AD(t) for the
saturation model of neutron activation as (T12.13)

AD(t)= σPϕ̇NP(0)
{
1 − e−λDt

}= (AD)sat
{
1 − e−λDt

}
, (12.44)

where we define (AD)sat, the saturation daughter D activity that can be produced by
bombardment of the parent P target with neutrons, as equal to σPϕ̇NP(0).
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The specific activity a of a radioactive source is defined as activity A of
the source per unit mass M of the source, i.e., a = A/M . For the saturation
model (12.44), we can thus express specific activity a as a function of activation
time t as

a(t)= A(t)
M

= σPϕ̇NP(0)

M

{
1 − e−λDt

}= σPϕ̇NA

AP

{
1 − e−λDt

}= asat
{
1 − e−λDt

}
,

(12.45)
where we define asat as the saturation specific activity (asat = σPϕ̇NA/AP) and we
used the identity NP(0)/M = NA/AP with AP the atomic weight of the parent nu-
cleus and NA the Avogadro number (6.022×1023 mol−1).

(c) In the parent depletion model of neutron activation, one must account for the
finite number of parent nuclei [NP(t) �= const]; however, an assumption is made
that the daughter radionuclide is not affected by neutron exposure [σP = 0]. Equa-
tion (12.40) is for the depletion model stated as follows

dND(t)

dt
= σPϕ̇NP(t)− λDND(t), (12.46)

with NP(t) given as NP(t) = NP(0)e−σPϕ̇t , where NP(0) is the initial number of
parent nuclei placed into the neutron fluence rate ϕ̇ at time t = 0.

The solution to (12.46), following the steps taken in the derivation of (T10.34)
for the nuclear decay series P → D → G and using the following initial conditions
NP(t = 0)=NP(0) and ND(t = 0)=ND(0)= 0 is given as follows (T12.21)

ND(t)=NP(0)
σPϕ̇

λD − σPϕ̇

[
e−σPϕ̇t − e−λDt

]
. (12.47)

Recognizing that activity AD(t)= λDND(t) we get the following expression for the
growth in daughter activity AD(t) with activation time t

AD(t)= λDND(t)=NP(0)
λDσPϕ̇

λD − σPϕ̇

[
e−σPϕ̇t − e−λDt

]
. (12.48)

Several interesting features are evident from (12.48), such as, for example:

(1) Generally, in neutron activation σPϕ̇ < λD resulting in dynamics similar to
that referred to as transient equilibrium in nuclear decay series.

(2) When σPϕ̇� λD, we are dealing with a special case of transient equilibrium
dynamics that in nuclear decay series is referred to as secular equilibrium
dynamics. In this case, (12.48) simplifies to the expression derived above
in (12.44) for the saturation model and is valid under the assumption that the
fraction of nuclei transformed from parent to daughter in neutron activation is
negligible in comparison to the initial number NP(0) of parent nuclei.

(3) Equation (12.48) shows that, rather than reaching saturation at t → ∞, the
daughter activity AD(t) is zero at t = 0 and, with increasing time from t = 0,
first rises with t , reaches a maximum (AD)max at time t = (tmax)D, and then
decreases as t increases further, until at t = ∞ it becomes zero again.
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(4) The time (tmax)D is determined by setting (dAD/dt)t=(tmax)D = 0 to get the
following result

(tmax)D = ln σPϕ̇
λD

σPϕ̇ − λD
≡ ln λD

σPϕ̇

λD − σPϕ̇
. (12.49)

(d) Equation (12.40) describes the most general neutron activation process in
which the parent P is exposed to neutrons and transforms into radioactive daugh-
ter D which decays with its own decay constant λD and, in addition, is affected by
exposure to neutrons (σD �= 0). The model that deals with this general nuclear acti-
vation process is referred to as the “parent depletion–daughter activation” model and
can be described by a simple consolidation of the daughter decay term [λDND(t)]
and daughter activation term [σDϕ̇ND(t)] into one term governed by a modified de-
cay constant expressed as follows: λ∗

D = λD + σDϕ̇, resulting in the following form
of (12.40)

dND(t)

dt
= σPϕ̇NP(t)− λDND(t)− σDϕ̇ND(t)= σPϕ̇NP(t)− λ∗

DND(t). (12.50)

The solution to differential equation (12.50) is similar to that of (12.46) except that
λD in (12.46) is replaced by a modified decay constant λ∗

D resulting in the following
solution to (12.50)

ND(t)=NP(0)
σPϕ̇

λ∗
D − σPϕ̇

[
e−σPϕ̇t − e−λ∗

Dt
]
. (12.51)

The daughter activity AD(t) = λDND(t) is in the depletion–activation model ex-
pressed as

AD(t)=NP(0)
λDσPϕ̇

λ∗
D − σPϕ̇

[
e−σPϕ̇t − e−λ∗

Dt
]= σPϕ̇NP(0)

λD
λ∗

D

1 − σPϕ̇
λ∗

D

[
e−σPϕ̇t − e−λ∗

Dt
]
.

(12.52)

12.6.Q2 (252)

For better understanding of neutron activation processes we can express them
in a general format by renormalizing the number of parent nuclei NP(t) and
the number of daughter nuclei ND(t), defining a new parameter m, and new
variables x, yP, and yD, similarly to the approach we took in Prob. 218 for ra-
dioactive decay series. The general parameters and variables for the saturation
and depletion models of neutron activation are given as follows:
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(1) Parameter m, now called activation factor in parallel with the decay
factor m of the radioactive decay series, is defined by the ratio: m =
σPϕ̇/λD,

(2) Normalized activation time—variable x is defined as time normalized
to half-life (t1/2)D of the daughter nucleus as follows: x =mt/(t1/2)D,

(3) Normalized number of parent nuclei yP is defined as: yP =NP(t)/NP(0),

(4) Normalized number of daughter nuclei yD is given as: yD = λDND(t)
σPϕ̇NP(0)

=
AD(t)

σPϕ̇NP(0)
,

where σP is the cross section of the parent nucleus for neutron activation, ϕ̇ is
the neutron fluence rate in the reactor, λD is the decay constant of the daughter
nucleus, NP(0) is the initial number of parent nuclei, and AD(t) is the activity
of the daughter radionuclide.

(a) Transform the equation that describes the number of parent nucleiNP(t)

into a general format given by yP as a function of variable x.
(b) For the saturation model and depletion model of neutron activation

transform the equation that describes the number of daughter nuclei
ND(t) into a general format given by zD(x) for the saturation model
and yD(x) for the depletion model as a function of dimensionless vari-
able x and activation factor m.

(c) For the depletion model and activation factor m = 1 use the l’Hôpital
rule to obtain the general form of the daughter activity yD derived in (b).

(d) In the depletion model the characteristic time tmax is defined as the time
in which the daughter activity AD(t) reaches its maximum value. Using
the expression for yD calculated in (b), determine the normalized time
(xD)max at which yD(x) reaches its maximum for arbitrary positive ac-
tivation factor m in the range 0 ≤m≤ ∞ including m= 1.

(e) Determine (yD)max as a function of activation factor m for all possible
positive m in the range 0 ≤m≤ ∞ including m= 1.

(f) Evaluate the relationship between (yD)max and (xD)max for all possible
positive m in the range 0 ≤m≤ ∞ including m= 1.

SOLUTION:

The general variables x, yP, yD as well as the activation factor m are for neutron
activation defined as follows

x =m t

(t1/2)D
; (12.53)

yP = NP(t)

NP(0)
; (12.54)
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yD = ND(t)

mNP(0)
= AD(t)

σPϕ̇NP(0)
; (12.55)

m= σPϕ̇

λD
. (12.56)

(a) The standard form for the number of parent nuclei NP(t), undergoing neutron
activation in neutron fluence rate ϕ̇, is expressed by the following equation

NP(t)=NP(0)e
−σPϕ̇t , (12.57)

which, after incorporating (12.53), (12.54), and (12.56), takes up the following
form (T12.27), giving the number of parent nuclei NP(t) normalized to the initial
number of parent nuclei NP(0)

yP = NP(t)

NP(0)
= e−σPϕ̇t = e−mλDt = e−m

t
(t1/2)D

ln 2 = e−x ln 2 = 1

2x
≡ 2−x. (12.58)

(b) The number of daughter nuclei ND(t) is proportional to the number of initial
parent nuclei NP(t) but differs for the two neutron activation models, as derived in
Prob. 251:

(1) For the saturation model given in (12.43) in Prob. 251 ND(t) and AD(t) are

ND(t)= σPϕ̇NP(0)

λD

[
1 − e−λDt

]
(12.59)

and

AD(t)= λDND(t)= σPϕ̇NP(0)
[
1 − e−λDt

]= Asat
[
1 − e−λDt

]
, (12.60)

where Asat is the saturation activity defined as the product σPϕ̇NP(0) and attained at
time t → ∞.

Combining (12.60) with (12.55) and (12.56) we now write the normalized daugh-
ter activity zD(x) for the saturation model as

zD(x) = ND(t)

mNP(0)
= λDND(t)

σPϕ̇NP(0)
= AD(t)

σPϕ̇NP(0)

= 1 − e−λDt = 1 − e−
t ln 2
(t1/2)D = 1 − e− x

m
ln 2 = 1 − 1

2x/m
. (12.61)

(2) For the depletion model given in (12.47) in Prob. 251, ND(t) and AD(t) are

ND(t)= σPϕ̇NP(0)

λD − σPϕ̇

[
e−σPϕ̇t − e−λDt

]
(12.62)

and

AD(t)= λDND(t)= λDσPϕ̇NP(0)

λD − σPϕ̇

[
e−σPϕ̇t − e−λDt

]
. (12.63)
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Combining (12.63) with (12.55) and (12.56) we now write the normalized daughter
activity yP for the depletion model as

yD = ND(t)

mNP(0)
= λDND(t)

σPϕ̇NP(0)
= λD

λD − σPϕ̇

[
e−σPϕ̇ − e−λD

]

= 1

1 − σPϕ̇
λD

[
e
− σPϕ̇ ln 2
λD(t1/2)D − e−

t ln 2
(t1/2)D

λ]

= 1

1 −m
[
e
− mt ln 2
(t1/2)D − e−

t ln 2
(t1/2)D

λ]= 1

1 −m
[
e−x ln 2 − e− x

m
ln 2]

= 1

1 −m
[

1

2x
− 1

2x/m

]
. (12.64)

(c) Equation (12.64) for normalized daughter activity yD as a function of normal-
ized time x is valid for all positive values of the activation factor m from 0 to ∞
with the exception of m= 1 for which yD is not defined. However, since for m= 1
(12.64) gives yD = 0/0, we can apply the l’Hôpital rule and determine the function
that governs yD at m= 1 as follows (T10.46)

yD|m=1 = lim
m→1

d
dm [ 1

2x − 1
2x/m

]
d

dm(1 −m) = lim
m→1

−2− x
m (ln 2) x

m2

−1
= (ln 2)

x

2x
. (12.65)

(d) Equation (12.64) of (b) gives the normalized daughter activity yD [see (12.55)]
as a function of normalized activation time x [see (12.53)] for 0 ≤m≤ ∞ with the
exception of m= 1 for which yD is simplified and given by (12.65) in (c). Normal-
ized daughter activities yD of (12.64) and (12.65) are equal to zero for x = 0 (initial
condition) and x = ∞ (when all nuclei of parent P and daughter D have decayed).
This suggests that yD (in conjunction with AD) passes through a maximum at a spec-
ified characteristic normalized time (xD)max between 0 and ∞ for all m except for
m= 1. The characteristic time (xD)max can be determined as a function of activation
factor m by setting dyD/dx|x=(xD)max = 0 and solving for (xD)max as follows

dyD

dx

∣∣∣∣
x=(xD)max

= d

dx

[
1

1 −m
(

1

2x
− 1

2x/m

)]∣∣∣∣
x=(xD)max

= 1

1 −m
[
−2−x ln 2 + 1

m
2− x

m ln 2

]∣∣∣∣
x=(xD)max

= 0. (12.66)

Solving (12.66) for (xD)max we now get

2−(xD)max = 1

m
2−(xD)max/m or − (xD)max ln 2 = ln

1

m
− (xD)max

m
ln 2 (12.67)

and finally

(xD)max = m

m− 1

lnm

ln 2
. (12.68)



12.6 Nuclear Activation with Neutrons 817

For m = 1, (12.68) is not defined, however, since it gives (xD)max = 0/0, we can
apply the l’Hôpital rule to get (xD)max|m→1 as follows

(xD)max|m→1 = lim
m→1

d(m lnm)
dm

d(m−1)
dm ln 2

= lim
m→1

1 + lnm

ln 2
= 1

ln 2
= 1.4427. (12.69)

Thus, (xD)max is calculated from (12.68) for any positive m except for m = 1 for
which (xD)max = 1.44, as determined in (12.69).

(e) The maximum daughter activity (yD)max can be determined by inserting
(xD)max of (12.68) into yD given by (12.64) as follows

(yD)max = yD
[
(xD)max

]= 1

1 −m
[

1

2(xD)max
− 1

2(xD)max/m

]

= (1 −m)−1

2(xD)max

[
1 − 1

2[(xD)max/m]−(xD)max

]

= (1 −m)−1

2(xD)max

[
1 − 1

2(xD)max[ 1−m
m

]

]
= 1

1 −mF1[1 − F2]. (12.70)

Components F1 and F2 of (12.70), after insertion of (xD)max given by (12.68) and
using the following identity ez ln 2 = eln 2z = 2z, yield the following expressions

F1 = 1

2(xD)max
= 1

2
m

(m−1)
lnm
ln 2

= 2
m

(1−m)
lnm
ln 2 = eln 2

m
(1−m) lnm

ln 2 = e m
1−m lnm (12.71)

and

F2 = 1

2(xD)max[ 1−m
m

] = 1

2
m

(m−1)
lnm
ln 2 [ 1−m

m
] = 2

lnm
ln 2 = elnm =m. (12.72)

The maximum normalized daughter activity (yD)max of (12.70), after incorporating
F1 of (12.71) and F2 of (12.72), can now be written as follows

(yD)max = 1

1 −mF1[1 − F2] = 1

1 −me
m

1−m lnm[1 −m] = e m
1−m lnm. (12.73)

Since (xD)max not only defines the maximum in the normalized daughter activity
yD(x) but also defines the point of ideal equilibrium where the yD(x) curve crosses
over the yP(x) curve that is given in (12.58), we can state the following relationship

yD
[
(xD)max

]= (yD)max = yP
[
(xD)max

]
, (12.74)

suggesting a much simpler calculation of yD[(xD)max] than that carried out
in (12.70). In (12.58) we saw that yP(x) is given by a very simple expression as
yP(x)= 2−x = e−x ln 2, allowing us to determine yD[(xD)max] directly from (12.74)
as follows
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yD
[
(xD)max

] = (yD)max = yP
[
(xD)max

]= e−(xD)max ln 2 = e m
1−m lnm = elnm

m
1−m

= m m
1−m . (12.75)

Equation (12.73) is valid for all positive m except for m= 1 in which case (yD)max

can be determined by applying the l’Hôpital rule to (12.73) as follows

(yD)max|m=1 = lim
m→1

exp
d(m lnm)

dm
d(1−m)

dm

= lim
m→1

exp
lnm+ 1

−1
= e−1 = 1

e
= 0.368.

(12.76)

(f) It is easy to show that the relationship for positive m but m �= 1 between

(yD)max given by (12.73) and (xD)max given by (12.68) is a simple exponential

expression

(yD)max = e m
1−m lnm = e− m

m−1 lnm = e−(ln 2)(xD)max = 2−(xD)max = 1

2(xD)max
, (12.77)

while for m = 1, (yD)max = 1/e = 0.368, as shown in (12.76), and (xD)max =
1/ ln 2 = 1.4427, as shown in (12.69).

12.6.Q3 (253)

The general parameters of the neutron activation process, such as activation
factor m, normalized time x, normalized number of parent nuclei yP, and
normalized daughter activities zD and yD, are defined for the saturation model
and depletion model of neutron activation in Prob. 252 and in Sect. T12.6.2.

(a) For the saturation and depletion models of neutron activation and four
activation factors m (0.2, 0.5, 1.0, and 5.0) calculate and plot on one
graph yP(x), zD(x), and yD(x) against x for 0 ≤ x ≤ 3 (in steps of x
equal to 0.5). Plot data points for saturation model with open circles
and connect them with dashed curves, those for depletion model with
solid circles and connect them with solid curves.

(b) For the curves plotted in (a) discuss the behavior of the saturation model
curves in comparison with the depletion model curves for the same ac-
tivation factor m.
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(c) For the saturation model curves and depletion model curves plotted in
(a) calculate the initial slopes dyD/dx|x=0 and determine the radioacti-
vation yield YD = dyD/dx|x=0.

(d) For the four depletion model curves plotted in (a) determine x, yP and
yD for points of ideal equilibrium. Summarize results for ideal equilib-
rium in tabular format.

SOLUTION:

Parameters of neutron activation are defined as follows (see Sect. T12.6.2):

(1) Activation factor:

m= qPϕ̇

λD
= (t1/2)DσPϕ̇

ln 2
. (12.78)

(2) Normalized activation time:

x = σPϕ̇

ln 2
t = mt

(t1/2)D
. (12.79)

(3) Normalized number of parent nuclei:

yP(x)= e−x ln 2 = 2−x. (12.80)

(4) Normalized daughter activity yD(x) according to saturation model of neutron
activation:

zD(x)= AD(t)

σPϕ̇NP(0)
= 1 − e− x ln 2

m = 1 − 2− x
m , (12.81)

valid for all positive activation factors m.

(5) Normalized daughter activity yD(x) according to depletion model of neutron
activation

yD(x)= 1

1 −m
[
e−x ln 2 − e− x ln 2

m
]= 1

1 −m
[

1

2x
− 1

2x/m

]
, (12.82)

valid for all positive activation factors m except for m= 1 for which yD(x) is
simplified to read (T12.34)

yD(x)|m=1 = x ln 2

2x
= xe−x ln 2 ln 2. (12.83)

In (12.78) through (12.83) σP is the neutron activation cross section of the parent
nucleus, ϕ̇ is the neutron fluence rate in the nuclear reactor, λD is the decay constant
of the daughter nucleus, and (t1/2)D is the half-life of the daughter radionuclide.
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Table 12.3 Normalized daughter activities zD(x) for saturation model and yD(x) for depletion
model for four values of activation factor m (0.2, 0.5, 1.0. and 5.0) in the range of normalized
activation time x defined in (12.79) from x = 0 to x = 3 in steps of 0.5. Activity zD(x) for satu-
ration model is calculated from (12.81) for all m, while yD(x) for all positive m except for m= 1
is calculated from (12.82) and yD(x) for m= 1 is calculated from (12.83). The number of parent
nuclei yP(x) as a function of normalized activation time x is given for comparison

x yP(x) Saturation model Depletion model

zD(x) yD(x)

m= 0.2 m= 0.5 m= 1.0 m= 5.0 m= 0.2 m= 0.5 m= 1.0 m= 5.0

0 1.0 0 0 0 0 0 0 0 0

0.5 0.707 0.823 0.00 0.293 0.067 0.663 0.414 0.245 0.058

1.0 0.500 0.969 0.750 0.500 0.129 0.586 0.500 0.347 0.093

1.5 0.354 0.994 0.875 0.646 0.188 0.435 0.457 0.368 0.115

2.0 0.250 0.999 0.938 0.750 0.242 0.311 0.375 0.347 0.127

2.5 0.177 1.0 0.969 0.823 0.293 0.221 0.291 0.306 0.133

3.0 0.125 1.0 0.984 0.875 0.340 0.156 0.219 0.260 0.134

∞ 0 1.0 1.0 1.0 1.0 0 0 0 0

(a) The general physical quantities yP, zD, yD of neutron activation were calcu-
lated using (12.80), (12.81), and (12.82), respectively, for four activation parameters
m (0.2, 0.5, 1.0, and 5) in steps of 0.5 for normalized time x in the range 0 ≤ x ≤ 3.
Data points so calculated are listed in Table 12.3 and plotted in Fig. 12.2.

(1) The number of parent nuclei yP(x) is given by (12.80) and plotted in Fig. 12.2
with an exponentially diminishing curve in grey against x which is linearly propor-
tional to σP and ϕ̇. The curve indicates that the depletion in the number of target
nuclei is an exponential function of the form: yP(x)= e−x ln 2.

(2) The normalized daughter activity zD(x) curves, calculated for the saturation
model given by (12.81), for a given m grow exponentially from zD = 0 at x = 0
to zD = 1 at x → ∞ and are shown by the four dashed curves in Fig. 12.2. In the
saturation model we assume that the number of parent nuclei NP is independent of
activation time t , and this happens either by NP being very large or activation factor
m being very small.

(3) The depletion model is more realistic than the saturation model, since it also
accounts for the depletion of the number of parent nuclei affecting the rate of pro-
duction of daughter nuclei. This causes the normalized daughter activity yD(x) first
to grow linearly with x from x = 0, then gradually reach a peak that is smaller than
1 attained in the saturation model, and then decrease toward zero for x → ∞. The
four dark solid curves in Fig. 12.2 represent normalized daughter activities yD(x)

for four values of the activation factorm and given by (12.82) form �= 1 and (12.83)
for m= 1.
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Fig. 12.2 Normalized daughter activities zD(x) for saturation model (dashed curves) and yD(x)

for depletion model (heavy solid curves) as well as normalized number of parent nuclei yP(x) (light
solid curve) against normalized activation time x

(b) In Fig. 12.2 we show a comparison of typical normalized activity curves for
the saturation model (dashed) and depletion model (solid) of neutron activation.
Based on the figure, the following conclusions can be reached:

(1) A comparison between the saturation model curve zD(x) and depletion model
curve yD(x) for a given m shows a significant difference between the two curves.
Activity curve zD(x) exponentially approaches saturation at zD(x)= 1.0 for large x,
while curve yD(x) reaches a peak (yD)max at (xD)max that is generally below
yD(x)= 1 and then decreases to yD(x)= 0 as x→ ∞. The larger is m, the larger is
the discrepancy between the two models and the smaller is (yD)max in comparison
with (zD)sat = 1.

(2) In the saturation model the rate of production of daughter nuclei from the
parent nuclei is balanced by the rate of decay of daughter nuclei and a perfect equi-
librium between the two is reached in saturation. Since the number of parent nuclei
suffers no depletion, the state of equilibrium continues to x = ∞.

(3) In the depletion model the number of parent nuclei decreases exponentially
and this causes the daughter activity to grow at first, reach a peak, and then decrease
to zero as x → ∞, because of daughter decay as well as a diminishing number of
parent nuclei being transformed into daughter nuclei. At x = ∞ we can assume that
all parent nuclei have been transformed into daughter nuclei and all daughter nuclei
have decayed, resulting in zero daughter activity.

(4) In practical neutron activation procedures the activation factor defined in (12.78)
as m = σPϕ̇/λD is generally very small, justifying the use of the saturation model
in studies of radioactivation dynamics. However, since m depends linearly on the
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fluence rate ϕ̇, neutron activation processes with very high neutron fluence rates or
relatively long activation times may invalidate the saturation model in favor of the
depletion model.

(c) The radioactivation yield YD of daughter D is defined by the initial slope of the
zD or yD versus x normalized activity curve:

(1) For the saturation model zD(x) is given by (12.81) and its initial slope
dzD/dx|x=0 is given as

YD = dzD

dx

∣∣∣∣
x=0

= d

dx

[
1 − e− x ln 2

m

]∣∣∣∣
x=0

=
[

ln 2

m
e−

x ln 2
m

]∣∣∣∣
x=0

= ln 2

m
. (12.84)

(2) For the depletion model yD(x) is given by (12.82) for m �= 1 and by (12.83)
for m= 1. For m �= 1 the radioactivation yield is calculated from (12.82)

YD = dyD

dx

∣∣∣∣
x=0

= 1

1 −m
d

dx

[
e−x ln 2 − e− x ln 2

m

]∣∣∣∣
x=0

= 1

1 −m
[
− ln 2e−x ln 2 + ln 2

m
e−

x ln 2
m

]∣∣∣∣
x=0

= ln 2

m
, (12.85)

while for m= 1 it is calculated from (12.83)

YD = dyD

dx

∣∣∣∣
x=0

= d

dx
[xe−x ln 2 ln 2]

∣∣∣∣
x=0
(ln 2)

[
e−x ln 2 − x ln 2e−x ln 2]∣∣

x=0 = ln 2.

(12.86)
As evident from (12.84), (12.85), and (12.82) the radioactivation yield YD of

the daughter is equal to (ln 2)/m for both the saturation and the depletion models
and for all activation factors m. This is also evident from Fig. 12.2 which shows
that, for a given m, the initial slopes of daughter activity curves zD(x) and yD(x) at
x = 0 are identical even though the two curves show completely different behavior
as x increases from 0. Since YD is inversely proportional to m, we conclude that
the larger is m, the shallower is the initial slope, the smaller is YD, the slower is the
approach to saturation for zD(x) and the larger is (xD)max, the normalized activation
time, at which the peak in yD(x) occurs.

Results of radioactivation YD calculation for the four activation factors m (0.2,
0.5, 1.0, and 5.0) are as follows: YD = (ln 2)/m in general; m = 0.2, YD = 3.47;
m= 0.5, YD = 1.39; m= 1.0, YD = ln 2 = 0.693, and m= 5, YD = 0.139.

(d) The point of ideal equilibrium, as defined by Evans, is the point on yD(x)

activity curve (for a given activation factor m and the depletion model) at which
yD(x) exhibits its maximum value with coordinates [(xD)max, (yD)max]. One should
note that this point occurs at the intersection of the yD curve with the yP curve, as
indicated by points × in Fig. 12.2.



12.6 Nuclear Activation with Neutrons 823

(1) We now determine the general expression for (xD)max as a function of m by
setting dyD/dx|x=(xD)max = 0 for yD(x) of (12.82) and solving for (xD)max to get

dyD

dx

∣∣∣∣
x=(xD)max

= 1

1 −m
d

dx

[
e−x ln 2 − e− x ln 2

m
]∣∣∣∣
x=(xD)max

= ln 2

1 −m
[
−e−x ln 2 + 1

m
e−

x ln 2
m

]∣∣∣∣
x=(xD)max

= ln 2

1 −m
[
−e−(xD)max ln 2 + 1

m
e−

(xD)max ln 2
m

]
= 0. (12.87)

Solving (12.87) for (xD)max results in the following expression for (xD)max

(xD)max = m

m− 1

lnm

ln 2
, (12.88)

valid for all positive m except for m= 1 for which (12.88) is not defined; however,
since it gives (xD)max = 0/0, we can apply the L’Hôpital rule to get (xD)max|m→1

as follows

(xD)max|m→1 = lim
m→1

d(m lnm)
dm

ln 2 d(m−1)
dm

= lim
m→1

1 + lnm

ln 2
= 1

ln 2
= 1.44. (12.89)

(2) The maximum normalized activity (yD)max for a given activation factor m can
be calculated simply by determining yP(x) of (12.80) at x = (xD)max, recognizing
that at the point of ideal equilibrium yP[(xD)max] = yD[(xD)max]. Of course, to de-
termine (yD)max we can also insert (12.88) into yD(x) given by (12.82), but the
calculation becomes much more cumbersome. The simpler approach thus gives

(yD)max = yD
[
(xD)max

]= yP
[
(xD)max

]= e−(xD)max ln 2 = 2(
m

1−m )
lnm
ln 2 = e m lnm

1−m .
(12.90)

Equation (12.90) is valid for all positive m except for m= 1. We determine (yD)max

for m= 1 by applying the L’Hôpital rule to (12.90) as follows

(yD)max|m=1 = lim
m→1

e

d
dm (m lnm)

d
dm (1−m) = lim

m→1
e

lnm+1
−1 = e−1 = 0.368. (12.91)

The two coordinates for points of ideal equilibrium (xD)max and (yD)max were
for activation factors m of 0.2, 0.5, and 5.0 (m �= 1) calculated using (12.88)
and (12.90), respectively, and for m = 1 were given by (12.89) and (12.91), re-
spectively. The summary of (xD)max and (yD)max results is presented in Table 12.4.
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Table 12.4 Points of ideal equilibrium, as defined by Evans, with coordinates (xD)max and
(yD)max calculated from (12.88) and (12.90), respectively, for m �= 1. For m = 1 the two coor-
dinates are given by (12.89) and (12.91), respectively

Activation factor m 0.2 0.5 1.0 5.0

(xD)max = m lnm
(m−1) ln 2 for m �= 1 0.581 1.000 1

ln 2 = 1.443 2.902

(yD)max = e m lnm
1−m for m �= 1 0.669 0.500 1

e
= 0.368 0.134

12.6.Q4 (254)

In discussions of neutron activation one usually assumes that the daughter
radionuclide is not affected by the activation particles. However, there are
situations in which this assumption does not hold and account must then be
taken of the activation of the daughter radionuclide into a granddaughter nu-
clide. The model that deals with this type of activation is called the “parent
depletion–daughter activation” model and this model too, similarly to the sat-
uration and depletion models, can be written in compact format by introduc-
ing new parameters (see Sect. T12.6.5), in addition to the ones (x,m,yP, yD)
used already in saturation and depletion models.

The standard parameters yP and yD of the saturation and depletion models
are defined in Prob. 252 and the new parameters λ∗

D, ε∗, m∗, and y∗
D, used in

conjunction with “depletion–activation” model are defined as follows:

λ∗
D = λD + σDϕ̇, ε∗ = λ∗

D

λD
= 1 + σDϕ̇

λD
,

m∗ = σPϕ̇

λ∗
D

= m

ε∗
, and y∗

D = A∗
D(t)

σPϕ̇NP(0)
,

where σP and σD are activation cross sections of parent P and daughter D
nuclides, respectively, λD is the decay constant of the daughter, λ∗ is the
modified decay constant, ϕ̇ is the neutron fluence rate in the nuclear reac-
tor, m is the activation factor, m∗ is the modified activation factor, A∗

D(t) is
the daughter radionuclide D activity, and NP(0) is the initial number of parent
nuclei.

For the “parent depletion–daughter activation model”:

(a) Transform the equation that describes the number of parent nucleiNP(t)

into a general format given by yP as a function of normalized time vari-
able x.

(b) Transform the equation that describes the activity of daughter nuclei
AD(t) of (d) in Prob. 251 into a general format given by y∗

D(x) as a
function of normalized time x and modified activation factor m∗.
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(c) Compare y∗
D(x) calculated in (b) with yD(x) given for the depletion

model in (b) of Prob. 252 and derive expressions for (x∗
D)max and

(y∗
D)max as a function of m∗.

SOLUTION:

For the saturation and depletion models of neutron activation the general variables
x, yP, yD as well as the activation factor m are defined as follows

x =m t

(t1/2)D
; (12.92)

yP = NP(t)

NP(0)
; (12.93)

yD = ND(t)

mNP(0)
= AD(t)

σPϕ̇NP(0)
; (12.94)

m= σPϕ̇

λD
. (12.95)

In the “parent depletion–daughter activation model” we use the following additional
parameters: λ∗

D, ε∗, andm∗ as well as variable y∗
D(x). The additional parameters are

defined as follows

λ∗
D = λD + σDϕ̇; (12.96)

ε∗ = λ∗
D

λD
= 1 + σDϕ̇

λD
; (12.97)

m∗ = σPϕ̇

λ∗
D

= m

ε∗
; (12.98)

y∗
D = A∗

D(t)

σPϕ̇NP(0)
. (12.99)

(a) The standard form for the number of parent nuclei NP(t), undergoing nuclear
activation in particle fluence rate ϕ̇, is expressed by the following equation

NP(t)=NP(0)e
−σPϕ̇t , (12.100)

that, after incorporating (12.92), (12.93), and (12.95), takes up the following form
giving the number of parent nuclei NP(t) normalized to the initial number of parent
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nuclei NP(0) as

yP = NP(t)

NP(0)
= e−σPϕ̇t = e−mλDt = e−m

t
(t1/2)D

ln 2 = e−x ln 2 = 1

2x
≡ 2−x. (12.101)

Equation (12.101) is valid in general irrespective of the activation model used, and
is thus valid for the saturation, depletion, as well as depletion–activation model.

(b) The standard equation used for describing the depletion–activation model is in
Prob. 251 [see (12.51)] expressed as (T12.47)

dND(t)

dt
= σPϕ̇NP(t)− λDND(t)− σDϕ̇ND(t)= σPϕ̇NP(t)− λ∗

DND(t), (12.102)

resulting in the following expression [Prob. 251, see (12.52)] for the daughter activ-
ity A∗

D(t)

A∗
D(t)= λDNP(t)= σPϕ̇NP(0)

λD
λ∗

D

1 − σPϕ̇
λ∗

D

[
e−σPϕ̇t − e−λ∗

Dt
]
, (12.103)

where λ∗
D = λD + σDϕ̇ is the modified decay constant for the daughter accounting

for the radioactive daughter decay (through λD) as well as the daughter activation
(through σD and ϕ̇).

Combining (12.103) with (12.96), (12.97), (12.98), and (12.99) as well as recall-
ing that σPϕ̇t = x ln 2 and λ∗

Dt = (x/m∗) ln 2 we obtain the following expression
(T12.57) for the normalized daughter activity y∗

D

y∗
D(x)=

AD(t)

σPϕ̇NP(0)
= 1

ε∗(1 −m∗)
[
e−x ln 2 − e− x

m∗ ln 2]= 1

ε∗(1 −m∗)

[
1

2x
− 1

2
x
m∗

]
.

(12.104)

(c) Normalized daughter activity for the depletion model was determined in (12.64)
of Prob. 252 as

yD(x) = ND(t)

mNP(0)
= λDND(t)

σPϕ̇NP(0)
= 1

1 −m
[
e−x ln 2 − e− x

m
ln 2]

= 1

1 −m
[

1

2x
− 1

2x/m

]
. (12.105)

(1) A comparison of y∗
D given by (12.104) for the depletion–activation model with

yD(x) given by (12.105) for the depletion model shows that the two expressions are
similar except for the factor ε∗ which is equal or larger than 1 (ε∗ ≥ 1) and depends
on fluence rate ϕ̇. A closer look at expressions (12.104) and (12.105) shows that
(12.105) of the depletion model actually follows from (12.104) of the depletion–
activation model, since, for the depletion model, λ∗

D = λD and ε∗ = 1 as a result of
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σD = 0. We conclude that the depletion model is a special case of the depletion–
activation model when the activation cross section σD of the daughter nucleus is
zero. Thus, we expect the behavior of y∗

D(x) of the depletion–activation model to be
similar to that of yD(x) of the depletion model: rise from 0 at x = 0 to reach a max-
imum (y∗

D)max at x = (x∗
D)max, and then asymptotically decrease to 0 as x→ ∞.

(2) The characteristic normalized time (x∗
D)max at which y∗

D exhibits its maxi-
mum (y∗

D)max can be determined as a function of the activation factor m∗ by setting
dy∗

D/dx|x=(x∗
D)max and solving for (x∗

D)max as follows

dy∗
D

dr

∣∣∣∣
x=(x∗

D)max

= d

dx

[
1

ε∗(1 −m∗)

(
1

2x
− 1

2x/m∗

)]∣∣∣∣
x=(x∗

D)max

= 1

ε∗(1 −m∗)

[
−2−x ln 2 + 1

m∗ 2− x
m∗ ln 2

]∣∣∣∣
x=(x∗

D)max

= 0.

(12.106)

Solving (12.106) for (x∗
D)max we now get

2−(x∗
D)max = 1

m∗ 2−(x∗
D)max/m

∗
or − (

x∗
D

)
max ln 2 = ln

1

m∗ − (x∗
D)max

m∗ ln 2

(12.107)
and finally the following expression for (x∗

D)max

(
x∗

D

)
max = m∗

(m∗ − 1)

lnm∗

ln 2
. (12.108)

For m∗ = 1 (12.108) is not defined; however, since it gives (x∗
D)max = 0/0, we can

apply the l’Hôpital rule to get (x∗
D)max|m→1 as follows

(
x∗

D

)
max

∣∣
m∗→1 = lim

m∗→1

d(m∗ lnm∗)
dm∗

d(m∗−1)
dm∗ ln 2

= lim
m∗→1

1 + lnm∗

ln 2
= 1

ln 2
= 1.443. (12.109)

Thus, (x∗
D)max is given by (12.108) for any positive m∗ except for m∗ = 1 for which

(x∗
D)max = 1.443, as determined in (12.109).

(3) The maximum daughter activity (y∗
D)max can be determined by inserting

(x∗
D)max of (12.108) into y∗

D(x) given by (12.104) as follows

(
y∗

D

)
max = y∗

D

[(
x∗

D

)
max

]= 1

ε∗(1 −m∗)

[
1

2(x
∗
D)max

− 1

2(x
∗
D)max/m∗

]

= [ε∗(1 −m∗)]−1

2(xD)max

[
1 − 1

2[(x∗
D)max/m∗]−(x∗

D)max

]
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= [ε∗(1 −m∗)]−1

2(x
∗
D)max

[
1 − 1

2(x
∗
D)max[ 1−m∗

m∗ ]

]

= 1

ε∗(1 −m∗)
F ∗

1

[
1 − F ∗

2

]
. (12.110)

Components F ∗
1 and F ∗

2 of (12.110), after insertion of (x∗
D)max given by (12.108)

and using the following identity ez ln 2 = eln 2z = 2z, yield the following expressions

F ∗
1 = 1

2(x
∗
D)max

= 1

2
m∗

(m∗−1)
lnm∗
ln 2

= 2
m∗

(1−m∗)
lnm∗
ln 2 = eln 2

m∗
(1−m∗)

lnm∗
ln 2 = e m∗

1−m∗ lnm∗

(12.111)
and

F ∗
2 = 1

2(x
∗
D)max[ 1−m∗

m∗ ] = 1

2
m∗

(m∗−1)
lnm∗
ln 2 [ 1−m∗

m∗ ] = 2
lnm∗
ln 2 = elnm∗ =m∗. (12.112)

The maximum normalized daughter activity (y∗
D)max of (12.109) after incorporating

F ∗
1 of (12.111) and F ∗

2 of (12.112) can now be written as follows

(
y∗

D

)
max = 1

ε∗(1 −m∗)
F ∗

1

[
1 − F ∗

2

]= 1

ε∗(1 −m∗)
e

m∗
e1−m∗ lnm∗[

1 −m∗]

= 1

ε∗
e

m∗
1−m∗ lnm∗ = 1

ε∗
(
m∗) m∗

1−m∗ . (12.113)

12.6.Q5 (255)

In its most general form the “parent depletion–daughter activation model” (in
short: “depletion–activation model”) describes the behavior of the normalized
daughter activity with the following expression, as given in (12.104)

yD(x)= 1

ε∗(1 −m∗)

{
1

2x
− 1

2x/m∗

}
= 1

ε∗(1 −m∗)
{
e−x ln 2 − e−(x/m∗) ln 2},

(12.114)
with parameters defined as follows: yD = AD(t)/[σPϕ̇NP(0)]; x =m∗λ∗

Dt/ ln 2;
m= σPϕ̇/λD; λ∗

D = λD + σDϕ̇; ε∗ = λ∗
D/λD; m∗ =m/ε∗.

Under special circumstances two simplifications of (12.114) are possible:
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(1) Daughter D is not affected by particle fluence rate ϕ̇, describing the so-
called “depletion model” of nuclear activation and simplifying (12.114)
to read [see (T12.28)]

yD(x)= 1

(1 −m)
{

1

2x
− 1

2x/m

}
= 1

(1 −m)
{
e−x ln 2 − e−(x/m) ln 2}.

(12.115)
(2) The process of nuclear activation affects neither the number of parent

nuclei which is very large [NP(t) = NP(0) = const] nor the daughter
nuclei (σD = 0), describing the so-called “saturation model” of nuclear
activation and simplifying (12.115) further to read [(T12.35)]

yD(x)=
{

1 − 1

2x/m

}
= {

1 − e−(x/m) ln 2}. (12.116)

(a) Elaborate on parameters of (12.114) and derive (12.115) and (12.116)
from (12.114), clearly stating all assumptions and approximations made
in the derivations.

(b) Figure 12.3 plots normalized daughter activity yD against normalized
time x for various activation factorsm in the rangem= 10−4 tom= 10.
For eachm two yD curves are plotted: the dashed curve is for the satura-
tion model (12.116), the solid curve is for the depletion model (12.115).
Also plotted is the normalized number yP(x) of parent P nuclei. State
an expression for yP as a function of x for the saturation model and
the depletion model. Based on Fig. 12.3 draw conclusions with regard
to behavior of yD(x) for the two models and discuss the effect of the
activation factor m on yD(x).

(c) Equation (12.115) is not defined for m= 1. Determine an equation that
replaces (12.115) in the limit as m→ 1.

(d) The solid dots in Fig. 12.3 indicate maxima on depletion model curves.
Derive expressions for (xD)max and (yD)max for a given positive activa-
tion factor m including m = 1. Compare (yD)max for depletion curves
with (yD)sat for saturation curves.

SOLUTION:

(a) Equation (12.114) represents the general form of the (parent) depletion–
(daughter) activation model of the nuclear activation process in which parent P
nuclei are transformed into daughter D nuclei, most often but not necessarily ra-
dioactive. The depletion–activation model of (12.114) accounts for the following
factors that are effective during the activation process:

(i) Activation of parent P nuclei through the activation cross section σP of the
parent P nucleus.
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Fig. 12.3 Normalized daughter activity yD against normalized time x for various activation fac-
tors m in the range m= 10−4 to m= 10. For each m two yD curves are plotted: the dashed curve
for the saturation model (12.116), the solid curve for the depletion model (12.115). Also plotted is
the normalized number yP of parent P nuclei indicated with symbol ×

(ii) Particle fluence rate ϕ̇.
(iii) Depletion of parent nuclei through the initial number NP(0) of the parent

nuclei.
(iv) Decay of daughter nuclei through the decay constant λD and half-life (t1/2)D

of the daughter D nucleus.
(v) Activation of daughter D nuclei through the activation cross section σD of the

daughter D nucleus.

Equation (12.114) gives the normalized activity yD as a function of normalized ac-
tivation time x and its parameters are defined as follows:

yD = AD(t)/
[
σPϕ̇NP(0)

]
is the daughter activity AD(t) normalized to σPϕ̇NP(0).

(12.117)

x =m∗λ∗
Dt/ ln 2 =mλDt/ ln 2 is the activation time t normalized to

ln 2

mλD
= (t1/2)

m
.

(12.118)

m= σPϕ̇/λD is the activation factor defined by the quotient qPϕ̇/λD. (12.119)

λ∗
D = λD + σDϕ̇ is the decay constant λD of the daughter D corrected for the loss

of daughter D nuclei caused by activation of daughter D nuclei. (12.120)

ε∗ = λ∗
D/λD is a parameter defined by the ratio between λ∗

D and λD. (12.121)
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m∗ = m/ε∗ =mλD/λ
∗
D is the activation factor m corrected for the loss

of daughter D nuclei caused by activation of daughter D nuclei by

activation particles. (12.122)

Equation (12.114) provides a general form for description of the nuclear activa-
tion process. Under special situations two approximations can be introduced to sim-
plify (12.114):

(1) Depletion model evolves from the (parent) depletion–(daughter) activation
model described by (12.114) under the condition that the daughter D nuclei are
not affected by the activation particles, i.e., σD = 0. Parameters of (12.115) with
σD = 0 are then given as follows

λ∗
D = λD + σDϕ̇ = λD; ε∗ = λ∗

D

λD
= 1; and m∗ = m

ε∗
=m= σPϕ̇

λD
.

(12.123)

Insertion of (12.117) into (12.114) results in the following expression for yD(x)

yD(x)= 1

(1 −m)
{

1

2x
− 1

2x/m

}
= 1

(1 −m)
{
e−x ln 2 − e−(x/m) ln 2}. (12.124)

(2) Saturation model evolves from the depletion model (12.118) under the as-
sumption that the number of parent nucleiNP(t) is very large, i.e.,NP(t)=NP(0)=
const and therefore minimally affected by the activation process. This condition is
satisfied when the activation factor m = σPϕ̇/λD � 1 is very small (typically for
m ≤ 10−3) which means that σPϕ̇� λD. In this case (12.118) simplifies further to
read

yP = lim
m→0

{
1

1 −m
[
e−x ln 2 − e−(x/m) ln 2]}= lim

m→0

{
1

1 −m
[
2−x − 2−(x/m)]}

= lim
m→0

{
1

1 −m
[
e−mλDt − e−λDt

]}= 1 − e−λDt = 1 − e−(x/m) ln 2

= 1 − 2− x
m . (12.125)

(b) Figure 12.3 displays normalized daughter activity yD against normalized time
x for saturation model (12.116) of nuclear activation (dashed curves) and (parent)
depletion model (12.115) of nuclear activation (solid curves) for activation factors
m in the range 10−4 ≤ m ≤ 10. Also shown (with symbols ×) is the normalized
number yP of parent nuclei given for both activation models as follows

yP = NP(t)

NP(0)
= e−σPϕ̇t = e−x ln 2 = 1

2x
. (12.126)
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Equation (12.126) exhibits pure exponential decay behavior with activation time t
and is governed by the activation cross section σP usually in b (barn) where 1 b =
10−24 cm2 and particle fluence rate ϕ̇ in cm−2 · s−1.

A few notable features of (12.115) and (12.116) deduced from Fig. 12.3 are as
follows:

(1) In practical nuclear activation procedures the activation factor m defined
in (12.119) as m= σPϕ̇/λD is positive but generally small, justifying the use
of the saturation model in studies of radioactivation dynamics. However, since
m depends linearly on the fluence rate ϕ̇, nuclear activation processes with
very high fluence rates ϕ̇ or relatively long activation times x may invalidate
the saturation model in favor of the depletion model.

(2) For all m and both activation models yD(x)= 0 for x = 0 and then increases
with increasing x. For both models the initial slopes dyD/dx of the yD(x)

curves are the same for a given m. The initial slope is proportional to the
radioactivation yield Y .

(3) In the saturation model, yD(x) exponentially approaches its saturation value
of (yD)sat = 1 and remains in saturation as x→ ∞. The larger is m, the shal-
lower is the initial slope of the yD(x) curve and the slower is the approach to
saturation.

(4) In depletion model, yD(x) reaches a peak value (yD)max at x = (xD)max, then
decreases with increasing x and reverts back to 0 at x → ∞. Peak value in
yD(x) calculated for the depletion model is referred to as the point of ideal
equilibrium and is equal to the saturation (yD)max = (yD)sat = 1 for small ac-
tivation factor m (typically smaller than 10−3) but decreases in magnitude
as m increases. The larger is m, the larger is the discrepancy between the
two models and the smaller is (yD)max in comparison with (yD)sat = 1. Thus,
(yD)max = (yD)sat = 1 for m ≤ 10−3; for m > 10−3 parameter (yD)max de-
creases with increasing m. For m> 10−3 the depletion model rather than the
saturation model should be used for determination of daughter activity.

(5) For m< 10−3 and x ≤ (xD)max, the saturation model and the depletion model
give identical results for yD(x) and attain a value of 1 at x = (xD)max. How-
ever, for x > (xD)max, yD determined for the saturation model remains in sat-
uration, while yD determined for the depletion model decreases in harmony
with yP.

(6) Similarly to the radioactive series decay, we can say that for all 0 < m < 1,
variables yP and yD are in transient equilibrium at x� (xD)max. Form≥ 1 no
equilibrium between yP and yD exists at any x. Furthermore, for m < 10−2,
we can say that yP and yD are in a special form of transient equilibrium called
secular equilibrium.

(c) Equation (12.115) given by the depletion model of nuclear activation for the
normalized daughter activity yD against normalized activation time x

yD(x)= 1

(1 −m)
{

1

2x
− 1

2x/m

}
= 1

(1 −m)
{
e−x ln 2 − e−(x/m) ln 2} (12.127)
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has physical meaning for all positive activation factorsm except form= 1 for which
it yields and indeterminate form (0/0) that can be rendered determinate by applying
the l’Hôpital rule on (12.115) as follows

yD(x)|m=1 = lim
m→1

d
dm {e−x ln 2 − e− x

m
ln 2}

d
dm(1 −m) = lim

m→1

− x

m2 (ln 2)e− x
m

ln 2

−1

= x(ln 2)e−x ln 2 = (ln 2)
x

2x
. (12.128)

Thus, the solid curves, representing the depletion model in Fig. 12.3 for various
positive activation factorsm in the range betweenm= 10−4 andm= 10, are plotted
using (12.115) for all m except for m = 1. The curve for m = 1 is plotted using
(12.128) and this curve, despite having no physical meaning, separates the parent–
daughter equilibrium region characterized by m< 1 from the parent–daughter non-
equilibrium region characterized by m> 1.

(d) The solid dots in Fig. 12.3 indicate points of ideal equilibrium on yD(x) curves
for the depletion model and for all m> 0 occur at the intercept between yD(x) and
yP(x) curves.

(1) The coordinate (xD)max of the point of ideal equilibrium for the depletion
model (12.115) is determined by setting the first derivative dyD/dx equal to 0 at
x = (xD)max as follows

dyD

dx

∣∣∣∣
x=(xD)max

= 0 = d

dx

{
1

1 −m
[
e−x ln 2 − e− x

m
ln 2]}∣∣∣∣

x=(xD)max

=
{

ln 2

1 −m
[
−e−x ln 2 + 1

m
e−

x
m

ln 2
]}∣∣∣∣

x=(xD)max

. (12.129)

Inserting x = (xD)max into (12.129) and solving for (xD)max gives

(xD)max ln 2 = lnm+ (xD)max

m
ln 2 or (xD)max = m

m− 1

lnm

ln 2
. (12.130)

(2) The coordinate (yD)max of the point of ideal equilibrium can be determined
by inserting (12.130) into (12.115) and finding (yD)max. However, the calculation
is cumbersome and a faster approach is to insert (12.130) into (12.126) which, in
comparison with (12.115) is much simpler. Since for the point of ideal equilibrium
(yD)max = yD[(xD)max] ≡ yP[(xD)max], we get (yD)max as follows

(yD)max = yD
[
(xD)max

]≡ yP
[
(xD)max

]= e−(xD)max ln 2 = e m
1−m lnm. (12.131)

(3) Equations (12.130) and (12.131) are valid for all positivem with the exception
ofm= 1 for which they give 0/0. We now determine (xD)max|m=1 and (yD)max|m=1
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by applying the l’Hôpital rule to get

(xD)max|m→1 = lim
m→1

d(m lnm)
dm

(ln 2) d(m−1)
dm

= lim
m→1

1 + lnm

ln 2
= 1

ln 2
= 1.44 (12.132)

and

(yD)max|m→1 = lim
m→1

e

d(m lnm)
dm

d(1−m)
dm = lim

m→1
e

lnm+1
−1 = e−1 = 0.368. (12.133)

(4) Parameter (yD)max of the depletion model of nuclear activation is the point of
ideal equilibrium calculated from (12.131) for m �= 1 and given as a constant equal
to 1/e by (12.133) for m= 1. Parameter (xD)max, in turn, depends on the activation
factor m and is calculated from (12.130) for m �= 1 and given as a constant 1/ ln 2
by (12.132). From (12.133) we see that (yD)max is a simple exponential function of
(xD)max and from (12.130) we note that (xD)max increases with an increasingm. We
thus conclude that as m increases from zero, (yD)max decreases from 1.0, attains a
value of 1/e = 0.368 at m = 1, and then exponentially approaches 0 as m→ ∞.
This is also shown by dots on the yP curve in Fig. 12.3.

(5) Since (AD)sat is defined as (AD)sat = σPϕ̇NP(0) and yD(x)= (AD)sat/[σPϕ̇NP(0)],
we conclude that (yD)sat = 1.0.

(6) Since according to the depletion model of nuclear activation the normalized
daughter activity yD(x) decreases with x for x > (xD)max, it is obvious that in
practice activation times beyond (xD)max are counter-productive and result in lower
daughter activity that in optimal regions for x < (xD)max.

12.6.Q6 (256)

Specific activity (aD)theor of a radionuclide D is defined as activity AD per unit
massMD of the radionuclide and is for a carrier-free radionuclide determined
as follows

(aD)theor = AD

MD
= λDN

MD
= λDNA

AD
= (ln 2)NA

(t1/2)DAD
, (12.134)

where λD, (t1/2)D, and AD are the decay constant, half-life, and atomic
mass, respectively, of the radionuclide D and NA is the Avogadro constant
(6.022×1023 mol−1).
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(a) Derive expressions for specific activity aD of radionuclides produced in
nuclear activation using: (1) saturation model of nuclear activation and
(2) depletion model of nuclear activation. Discuss the dependence of
aD on activation time t and particle fluence rate ϕ̇. What is the maxi-
mum specific activity (aD)max achievable in nuclear activation using the
saturation model and the depletion model?

(b) Calculate the theoretical specific activity (aD)theor given in (12.134) for
the following radionuclides D of interest in medical physics: cobalt-60
(Co-60), molybdenum-99 (Mo-99), europium-152 (Eu-152), iridium-
192 (Ir-192), and gold-198 (Au-198).

(c) Determine the maximum specific activity (aD)max attainable in ther-
mal neutron activation in a nuclear reactor with neutron fluence rate ϕ̇
of 5×1011 cm−2 · s−1, 2×1013 cm−2 · s−1, 3×1014 cm−2 · s−1, and
1.2×1016 cm−2 · s−1 for the daughter nuclei of (b). Use both the satura-
tion model and the depletion model of nuclear activation and compare
the results obtained with the two models.

(d) Determine activation times (tmax)D required to attain maximum spe-
cific activities (aD)max of daughter D radionuclides of (b) and neutron
fluence rates ϕ̇ of (c).

SOLUTION:

(a) The equation used for expressing nuclear activation with particle beams
(T12.57) accounts for activation and depletion of parent P nuclei as well as for
activation of daughter D nuclei. Activation of parent P and daughter D nuclei is
governed by cross sections σP and σD, respectively; depletion of parent P nuclei is
described by the difference between the number of parent P nuclei NP(t) at time t
and the initial number NP(0) of parent nuclei P at time t = 0, where t stands for
activation time.

Two approximations to the general activation equation [see (T12.57)] are in use:

(1) The activation process affects neither the daughter nuclei (σD = 0) nor the
number NP(t) of parent nuclei [NP(t) = NP(0) = constant] resulting in the
so-called saturation model of nuclear activation. The initial number NP(0) of
parent nuclei is assumed infinitely large and not affected by nuclear activation
of parent P into daughter D.

(2) The activation process does not affect the daughter nuclei (σD = 0); however,
it affects the number NP(t) of parent nuclei [NP(0) > NP(t) �= constant] re-
sulting in the so-called depletion model of nuclear activation. NP(0) is finite
and undergoes depletion during the nuclear activation process.

(1) Saturation model: The general equation for normalized daughter activity
yD(x) as a function of normalized activation time x, with x = mλDt/ ln 2 =
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σPϕ̇t/ ln 2, is for the saturation model of nuclear activation expressed as [see (T12.35)]

yD(x)= AD(t)

σPϕ̇NP(0)
= AD(t)

(AD)sat
= 1 − e− x

m
ln 2, (12.135)

where

(AD)sat is the saturation activity of the daughter defined as (AD)sat = σPϕ̇NP(0).
ϕ̇ is the particle fluence rate.
m is the activation factor defined as m= σPϕ̇/λD.

After insertion of (12.135) into (12.134) the specific activity aD for the saturation
model is given by the following expression

aD = AD(t)

MP
= (AD)satyD(x)

MP
= (AD)sat

MP

{
1 − e− x

m
ln 2}= σPϕ̇NP(0)

MP

{
1 − e− x

m
ln 2}

= σPϕ̇NA

AP

{
1 − e− x

m
ln 2}= σPϕ̇NA

AP

{
1 − 1

2x/m

}
, (12.136)

where we used the standard expression for NP(0)/MP =NA/AP withMP the initial
mass of the parent P nuclide and AP the atomic mass of the parent nuclide.

From (12.136) we note that the maximum activity (aD)max for x→ ∞ is propor-
tional to the particle fluence rate ϕ̇ and the proportionality constant is (σPNA/AP)

(aD)max = σPNA

AP
ϕ̇. (12.137)

The linear relationship between (aD)max and ϕ̇ works fine at relatively low ϕ̇;
however, at ϕ̇→ ∞, (12.137) suggests that (aD)max → ∞ in contradiction with the
theoretical specific activity (aD)theor of (12.134) that is well defined, independent of
ϕ̇, and finite for a given radionuclide.

(2) Depletion model: The general equation for normalized daughter activity
yD(x) as a function of normalized activation time x, with x = mλDt/ ln 2 =
σPϕ̇t/ ln 2, is for the depletion model of nuclear activation expressed as [see (T12.33)]

yD(x)= AD(t)

σPϕ̇NP(0)
= 1

1 −m
{
e−x ln 2 − e− x

m
ln 2}= 1

1 −m
{

1

2x
− 1

2x/m

}
,

(12.138)

where m is the activation factor defined as m= σPϕ̇/λD.
After insertion of (12.138) into (12.134) the specific activity aD for the depletion

model is given by the following
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aD = AD(t)

MP
= σPϕ̇NP(0)yD(x)

MP
= σPϕ̇NAyD(x)

AP
= σPϕ̇NA

AP(1 −m)
{
e−x ln 2 −e− x

m
ln 2},

(12.139)
where, as in (12.136), we used the relationship NP(0)/MP =NA/AP.

In contrast to (12.136) which exhibits (aD)max given by (12.137) at x → ∞,
(12.139) exhibits maximum specific activity (aD)max at the point of ideal equilib-
rium between yP and yD which occurs at [(xD)max, (yD)max], as shown in (T12.29
through (T12.32)), while limx→∞(aD)max = 0.

The maximum specific activity (aD)max calculated for the depletion model is
from (12.139) now written as follows

(aD)max = σPϕ̇NA(yD)max

AP
= σPNA

AP
ϕ̇e

m
1−m lnm = σPNA

AP
ϕ̇ exp

{
−

σPϕ̇
λD

σPϕ̇
λD

− 1
ln
σPϕ̇

λD

}
,

(12.140)
where we used the definition ofm= σPϕ̇/λD and the expression for (yD)max derived
in (12.131) of Prob. 255.

(b) Specific activity aD of daughter radionuclide D produced in nuclear activation
of parent nuclide P depends on various activation parameters, such as: activation
cross section σP of the parent P nucleus, decay constant λD of the daughter D nu-
cleus, activation particle fluence rate ϕ̇, and activation time t . For a given parent–
daughter nuclear configuration, σP and λD are fixed, so that the specific activity aD
depends on ϕ̇ and t , as shown for the saturation model in (12.136) and for the deple-
tion model in (12.139). However, as shown in Prob. 258, the maximum attainable
specific activity (aD)max is limited by the theoretical specific activity (aD)theor given
in (12.134) which defines the upper limit of achievable specific activities in nuclear
activation for a given parent–daughter configuration.

Theoretical specific activities (aD)theor of various radionuclides of importance in
medical physics (Co-60, Mo-99, Eu-152, Ir-192, and Au-198) are calculated with
(12.134) as follows (thermal neutron cross sections σD are from the IAEA TRS
Report #156)

(1) Cobalt-60: (t1/2)Co-60 = 5.26 a, ACo-60 = 59.93 g/mol
Parent nucleus: cobalt-59, σCo-59 = 37.2 b

(aCo-60)theor = (ln 2)NA

(t1/2)Co-60ACo-60

= (ln 2)×(6.022×1023 mol−1)

(5.26 a)×(365 d/a)×(24 h/d)×(3600 s/h)×(59.93 g · mol−1)

= 4.199×1013 Bq/g = 42.99 TBq/g = 4.199×1013 Bq/g

3.7×1010 Bq/Ci

= 1.135×103 Ci/g. (12.141)
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(2) Molybdenum-99: (t1/2)Mo-99 = 65.94 h, AMo-99 = 98.91 g/mol
Parent nucleus: molybdenum-98, σMo-98 = 0.13 b

(aMo-99)theor = (ln 2)NA

(t1/2)Mo-99AMo-99

= (ln 2)×(6.022×1023 mol−1)

(65.94 h)×(3600 s/h)×(98.91 g · mol−1)

= 1.778×1016 Bq/g = 1.778×1016 Bq/g

3.7×1010 Bq/Ci

= 4.805×105 Ci/g. (12.142)

(3) Europium-152: (t1/2)Eu-152 = 13.54 a, AEu-152 = 151.92 g/mol
Parent nucleus: europium-151, σEu-151 = 5300 b

(aEu-152)theor = (ln 2)NA

(t1/2)Eu-152AEu-152

= (ln 2)×(6.022×1023 mol−1)

(13.54 a)×(365 d/a)×(24 h/d)×(3600 s/h)×(151.92 g · mol−1)

= 6.434×1012 Bq/g = 6.434 TBq/g = 6.434×1012 Bq/g

3.7×1010 Bq/Ci

= 1.739×102 Ci/g. (12.143)

(4) Iridium-192: (t1/2)Ir-192 = 73.8 d, AMo-99 = 98.91 g/mol
Parent nucleus: iridium-191, σIr-191 = 954 b

(aIr-192)theor = (ln 2)NA

(t1/2)Ir-192AIr-192

= (ln 2)×(6.022×1023 mol−1)

(73.8 d)×(24 h/d)×(3600 s/h)×(191.96 g · mol−1)

= 3.410×1014 Bq/g = 341 TBq/g = 3.410×1012 Bq/g

3.7×1010 Bq/Ci

= 9.217×103 Ci/g. (12.144)

(5) Gold-198: (t1/2)Au-198 = 64.68 h, AAu-198 = 197.97 g/mol
Parent nucleus: gold-197, σAu-197 = 98.8 b

(aAu-198)theor = (ln 2)NA

(t1/2)Au-198AAu-198

= (ln 2)×(6.022×1023 mol−1)

(64.68 h)×(3600 s/h)×(197.97g · mol−1)
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= 9.055×1015 Bq/g = 9.055×1015 Bq/g

3.7×1010 Bq/Ci

= 2.447×105 Ci/g. (12.145)

(c) Maximum specific activities (aD)max of radionuclide D attainable in nuclear
activation were derived in (a) and are given in (12.137) and (12.140) for the satu-
ration model and the depletion model, respectively. We will now use these two ex-
pressions to determine (aD)max of (1) Co-60, (2) Mo-99, (3) Eu-152, (4) Ir-192, and
(5) Au-198 for four neutron fluence rates: 5×1011 cm−2 · s−1, 2×1013 cm−2 · s−1,
3×1014 cm−2 · s−1, and 1.2×1016 cm−2 · s−1. Before embarking on calculation of
(aD)max, we summarize in Table 12.5 the relevant physical data, obtained from Ap-
pendix A or from the literature for the five radionuclides. Entries for (aD)theor were
determined in (b) with (12.134). In Table 12.6 we list activation factors m for the
five radionuclides and four thermal neutron fluence ϕ̇ rates. It is evident that the
range in ϕ̇ in nature is quite large in our example extending from about ∼2×10−8

to ∼4×104. Entries for (aD)theor were calculated in (b) with (12.134).
Results of (aD)max calculations are summarized for radionuclides cobalt-60,

molybdenum-99, europium-152, iridium-192, and gold-198 in Table 12.7 for the
saturation model determined with (12.137) and in Table 12.8 for the depletion model
determined with (12.140). For a given radionuclide the maximum specific activity
(aD)max in Table 12.7 is linearly proportional with ϕ̇ in the whole fluence rate range,
while in Table 12.8 the maximum specific activity (aD)max is proportional to ϕ̇ at
low ϕ̇ and saturates at (aD)theor at high ϕ̇. Results displayed in Tables 12.7 and 12.8
are plotted in Fig. 12.4, for the saturation model with light solid lines and for the
depletion model with heavy solid curves.

The practical range of thermal neutron fluence ϕ̇ in nuclear reactors ranges from
∼1011 cm−2 · s−1 to ∼1016 cm−2 · s−1. The range covered in Fig. 12.4 is an ex-
panded practical range to illustrate the behavior of (aD)max that would be observed
with saturation and depletion models if the practical fluence rate range were ex-
panded to ∼1022 cm−2 · s−1. It is obvious that in the practical range of ϕ̇ activation
of Mo-99 and to a large extent also of Au-198 can be adequately described by the
saturation model of nuclear activation. Ir-192 and Co-60 follow the saturation model
for ϕ̇ <∼ 1013 cm−2 · s−1 but above 1013 cm−2 · s−1 should be described with the
depletion model. Eu-152 for all practical fluence rates ϕ̇ should be described with
the depletion model.

(d) Activation time (tmax)D required to attain the maximum specific activity
(aD)max of daughter D radionuclide at a given neutron fluence rate ϕ̇ is determined
from the expression for (xD)max which gives the normalized time coordinate of
the point of ideal parent-daughter equilibrium, derived in (12.88) of Prob. 253 and
in (T12.29). The following relationship holds for (xD)max and (tmax)D

(xD)max = m

m− 1

lnm

ln 2
= mλD(tmax)D

ln 2
or (tmax)D = (xD)max ln 2

mλD
= lnm

(m− 1)λD
,

(12.146)
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Table 12.6 Activation factor m = σPϕ̇/λD for various radionuclides of interest in medical
physics and for four thermal neutron fluence rates ϕ̇ : 5×1011 cm−2 · s−1, 2×1013 cm−2 · s−1,
3×1014 cm−2 · s−1, and 1.2×1016 cm−2 · s−1

Radionuclide σP/λD (cm2 · s) Activation factor m= σPϕ̇/λD

Thermal neutron fluence rate ϕ̇ (cm−2 · s−1)

5×1011 2×1013 3×1014 1.2×1016

Cobalt-60 8.902×10−15 4.5×10−3 0.18 2.7 1.1×102

Molybdenum-99 4.452×10−20 2.2×10−8 8.9×10−7 1.3×10−5 5.3×10−4

Europium-152 3.266×10−12 1.7 65 9.8×102 3.9×104

Iridium-192 8.776×10−15 4.4×10−3 0.18 2.6 1.1×102

Gold-198 3.309×10−17 3.3×10−5 6.6×10−4 9.9×10−3 0.4

Table 12.7 Maximum attainable specific activities (aD)max in nuclear activation for five neutron
activation reactions of importance in medical physics and for four neutron fluence rates ϕ̇ according
to the saturation model of neutron activation given in (12.137). Specific activities are given in Ci/g

ϕ̇ (cm−2 · s−1) 5×1011 2×1013 3×1014 1.2×1016

Cobalt-60 5.14 2.06×102 3.08×103 1.23×105

Molybdenum-99 1.08×10−2 4.32×10−1 6.48 2.59×102

Europium-152 2.86×102 1.14×104 1.72×105 6.86×106

Iridium-192 4.07×10 1.63×103 2.44×104 9.76×105

Gold-198 4.08 1.63×102 2.45×103 9.80×104

Table 12.8 Maximum attainable specific activities (aD)max in nuclear activation for five neutron
activation reactions of importance in medical physics and for four neutron fluence rates ϕ̇ according
to the depletion model of neutron activation given in (12.140). Specific activities are given in Ci/g

ϕ̇ (cm−2 · s−1) 5×1011 2×1013 3×1014 1.2×1016

Cobalt-60 5.01 1.41×102 6.41×102 1.10×103

Molybdenum-99 1.08×10−2 4.32×10−1 6.48 2.58×102

Europium-152 8.07×10 1.64×102 1.74×102 1.75×102

Iridium-192 3.97×10 1.12×103 5.12×103 8.86×103

Gold-198 4.08 1.63×103 2.34×103 5.33×104

where m is the activation factor defined as m= σPϕ̇/λD, σP is the activation cross
section of the parent nuclide, and λD is the decay constant of the daughter radionu-
clide. Results of (tmax)D calculation using (12.146) are summarized in Table 12.9
and show that, for a given daughter radionuclide D, (tmax)D is roughly inversely
proportional to the particle fluence rate ϕ̇. Thus, the higher is the thermal neutron
fluence ϕ̇, the shorter is the activation time (tmax)D required to attain the maximum
specific activity (aD)max for a given daughter D radionuclide.
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Fig. 12.4 Maximum attainable specific activity (aD)max against thermal neutron fluence rate ϕ̇ for
saturation model of neutron activation according to (12.137) and for depletion model of neutron
activation according to (12.139). The four heavy vertical lines represent the four fluence rates used
in calculation of data for Tables 12.7 and 12.8. Data for saturation model saturate at (aD)max → ∞
as ϕ̇→ ∞, data for depletion model saturate at (aD)max → (aD)theor as ϕ̇→ ∞

Table 12.9 Activation time (tmax)D required to attain the maximum specific activity (aD)max
of daughter D radionuclide at a given neutron fluence rate ϕ̇ according to the depletion model
of nuclear activation for five radionuclides of interest to medical physics. Data were calculated
with (12.146) for photon fluence rates ϕ̇ of 5×1011 cm−2 · s−1, 2×1013 cm−2 · s−1, 3×1014 cm−2 ·
s−1, and 1.2×1016 cm−2 · s−1

Radionuclide (t1/2)D Thermal neutron fluence rate ϕ̇ (cm−2 · s−1)

5×1011 2×1013 3×1014 1.2×1016

Cobalt-60 5.26 a 41.3 a 15.9 a 4.46 a 0.34 a

Molybdenum-99 65.9 h 69.8 h 55.2 h 44.5 h 29.9 h

Europium-152 13.53 a 15.1 a 1.27 a 0.14 a 0.005 a

Iridium-192 73.8 d 580.6 d 224.7 d 63.1 d 4.8 d

Gold-198 64.5 h 42.7 d 28.4 d 18.1 d 5.9 d
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12.6.Q7 (257)

The depletion model of nuclear activation accounts for depletion in number
NP of parent P nuclei as a function of activation time t but assumes that
the daughter D nuclei are not affected by the activation particles, resulting
in σD = 0. As shown in Prob. 252 and (T12.31), the maximum normalized
daughter activity (yD)max occurs at the point of ideal equilibrium and is for
m �= 1 expressed as

(yD)max = (AD)max

σPϕ̇NP(0)
= yD

[
(xD)max

]= e− m
1−m lnm, (12.147)

where m is the activation factor defined as m= σPϕ̇/λD.
In contrast to the depletion model, the parent depletion–daughter activation

model, as shown in Prob. 254, accounts for daughter activation (σD �= 0) and
the maximum normalized daughter activity (y∗

D)max is expressed as follows

(
y∗

D

)
max = (A∗

D)max

σPϕ̇NP(0)
= 1

ε∗
e−(x∗

D) ln 2 = 1

ε∗
e
− m∗

1−m∗ lnm∗
, (12.148)

where m∗ is the modified activation factor defined as m∗ = σPϕ̇/λ
∗
D =

σPϕ̇/(λD + σDϕ̇) = m/ε∗ and ε∗ is a parameter defined as ε∗ = λ∗
D/λD =

1 + σDϕ̇/λD.

(a) A typical example for parent depletion–daughter activation model is
activation of iridium-191 into iridium-192 with the following rele-
vant data: σIr-191 = 954 b, σIr-192 = 1420 b, (t1/2)Ir-192 = 73.8 d, and
λIr-192 = 1.087×10−7 s−1. Assume that a sample of Ir-191 under-
goes neutron activation in a nuclear reactor with neutron fluence rate
ϕ̇ = 1014 cm−2 · s−1 and calculate as well as plot (using steps of 0.5 in x
for 0 ≤ x ≤ 5) the following quantities: yIr-191 for saturation, depletion,
and depletion activation models; zIr-192 for saturation model; yIr-192,
(xIr-192)max, and (yIr-192)max for depletion model; y∗

Ir-192, (x∗
Ir-192)max,

and (y∗
Ir-192)max for depletion–activation model.

(b) In Prob. 256 the maximum attainable specific activity (aIr-192)max for
neutron activation of iridium-191 was determined using the depletion
model which ignores the activation cross section σIr-192 = 1420 b of
the daughter Ir-192. Using the “parent depletion–daughter activation
model” which accounts for daughter activation, calculate (aIr-192)max
for four neutron fluence rates ϕ̇ (in cm−2 · s−1) of 5×1011, 2×1013,
1×1014, 3×1014, and 1.2×1016. Also determine the normalized time
(x∗

Ir-192)max at which maximum specific activity occurs.
(c) Compare (aIr-192)max calculated for the depletion-activation model in

(b) with (aIr-192)max calculated for the depletion model in Prob. 256(c).
Explain the difference in results.
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SOLUTION:

(a) Parameters of the saturation model, depletion model, and the depletion–
activation model applied to neutron activation of iridium-191 nuclide into iridium-
192 radionuclide in a neutron fluence rate ϕ̇ of 1014 cm−2 · s−1 are determined as
follows:

(1)

(t1/2)D = (t1/2)Ir-192 = 73.8 d = 6.376×106 s. (12.149)

(2)

λD = λIr-192 = ln 2

(t1/2)Ir-192
= ln 2

6.376×106 s
= 1.087×10−7 s−1. (12.150)

(3)

σP = σIr-191 = 954 b = 954×10−24 cm2. (12.151)

(4)

σD = σIr-192 = 1420 b = 1420×10−24 cm2. (12.152)

(5)

m= σPϕ̇

λD
= σIr-191ϕ̇

λIr-192
= (954×10−24 cm2)×(1014 cm−2 · s−1)

1.087×10−7 s−1
= 0.878.

(12.153)
(6)

λ∗
D = λ∗

Ir-192 = λIr-192 + σIr-192ϕ̇ = 2.507×10−7 s−1 [see (T12.48)].
(12.154)

(7)

ε∗ = λ∗
D

λD
= λ∗

Ir-192

λIr-192
= 2.507×10−7

1.087×10−7 = 2.306 [see T12.52)]. (12.155)

(8)

m∗ = σPϕ̇

λ∗
D

= σIr-192ϕ̇

λ∗
Ir-192

= m

ε∗
= 0.878

2.306
= 0.381 [see T12.54)]. (12.156)

(9)

(xD)max = (xIr-192)max = m lnm

(m− 1) ln 2

= 0.878× ln 0.878

(0.878 − 1)× ln 2
= 1.351 [see Prob. 252 (12.68)].

(12.157)
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(10)

(
x∗

D

)
max = (

x∗
Ir-192

)
max = m∗ lnm∗

(m∗ − 1) ln 2

= 0.381× ln 0.381

(0.381 − 1)× ln 2
= 0.857 [see Prob. 254 (12.108)].

(12.158)

(11)

(yD)max = (yIr-192)max =m m
1−m = 0.878

0.878
1−0.878 = 0.392

[see Prob. 252 (12.73)]. (12.159)

(12)

(
y∗

D

)
max = (

y∗
Ir-192

)
max = 1

ε∗
(
m∗) m∗

1−m∗ = 0.381
0.381

1−0.381

2.306
= 0.239

[see Prob. 254 (12.110)]. (12.160)

The normalized quantity yP(x) representing the number of parent nuclei NP(t)

normalized to the initial number NP(0) of parent nuclei as a function of normal-
ized time x = mt/(t1/2)D is the same for all three activation models and is given
by (12.58) of Prob. 252 and (T12.27) as

yP(x)= e−x ln 2 = 2−x. (12.161)

The normalized daughter activity yD(x) defined as yD(x) = AD(t)/[σPϕ̇NP(0)] is
calculated:

(i) for the saturation model with (12.61) of Prob. 252 expressed as

zD(x)= AD(t)

σPϕ̇NP(0)
= 1 − e− x

m
ln 2 = 1 − 1

2
x
m

, (12.162)

(ii) for the depletion model with (12.64) of Prob. 252 expressed as

yD(x)= AD(t)

σPϕ̇NP(0)
= 1

1 −m
{
e−x ln 2 − e− x

m
ln 2}= 1

1 −m
{

1

2x
− 1

2
x
m

}
,

(12.163)

(iii) for the depletion–activation model with (12.104) of Prob. 254 expressed as

y∗
D(x) =

AD(t)

σPϕ̇NP(0)
= 1

ε∗(1 −m∗)
{
e−x ln 2 − e− x

m∗ ln 2}

= 1

ε∗(1 −m∗)

{
1

2x
− 1

2
x

m2

}
. (12.164)
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Table 12.10 Neutron activation of Ir-191 into Ir-192 in thermal neutron fluence rate ϕ̇ of
1014 cm−2 · s−1 listing: (i) normalized number yIr-191 of Ir-191 nuclei calculated with (12.161);
(ii) normalized activity zIr-192 of Ir-192 calculated for saturation model with (12.162); (iii) nor-
malized activity yIr-192 calculated for depletion model with (12.163); and (iv) normalized activity
y∗

Ir-192 of Ir-192 calculated for depletion–activation model with (12.164)

x yIr-191 zIr-192 yIr-192 y∗
Ir-192 x yIr-191 zIr-192 yIr-192 y∗

Ir-192

0 1.000 0 0 0 3.0 0.125 0.906 0.257 0.085

0.5 0.707 0.326 0.273 0.213 3.5 0.088 0.937 0.207 0.061

1.0 0.500 0.546 0.376 0.237 4.0 0.063 0.958 0.164 0.043

1.5 0.354 0.694 0.390 0.202 4.5 0.044 0.971 0.127 0.031

2.0 0.250 0.794 0.359 0.157 5.0 0.031 0.981 0.098 0.022

2.5 0.177 0.861 0.310 0.116 5.5 0.022 0.987 0.074 0.015

Normalized number of parent nuclei yIr-191 as well as normalized daughter ac-
tivities zIr-192 for the saturation model, yIr-192 for the depletion model, and y∗

Ir-192
for the depletion–activation model were calculated for normalized time x using
(12.161), (12.162), (12.163), and (12.164), respectively, and the results are dis-
played in Table 12.10 and Fig. 12.5. Data were calculated for normalized time x
in the range from x = 0 to x = 5.5 in increments of 0.5 and for neutron fluence rate
ϕ̇ of 1014 cm−2 · s−1.

Several features of the data displayed in Fig. 12.5 are of note:

(1) Plot of yIr-191 is the same for the three activation models.
(2) Normalized activity of Ir-192 saturates at zIr-192 = 1 at large x for the satura-

tion model and displays a maximum for the depletion model and depletion–
activation models.

(3) Maximum in normalized activity of Ir-192 occurs at the point of ideal equilib-
rium at (xIr-192)max for the depletion model, while for the depletion–activation
model it occurs at (x∗

Ir-192)max < (xIr-192)max.
(4) Maximum (yIr-192)max for the depletion model at the point of ideal equilib-

rium exceeds the maximum (y∗
Ir-192)max for the parent depletion–daughter ac-

tivation model.

(b) The maximum specific activity (a∗
D)max for the depletion–activation model

(T12.59) is determined from (12.164) and (12.160) using the following expression

(
a∗

D

)
max = (A∗

D)max

MD
= σPϕ̇NP(0)

MD

(
y∗

D

)
max ≈ σPϕ̇NA

AP

(
y∗

D

)
max

= σPNA

AP

ϕ̇

ε∗
(
m∗) m∗

1−m∗ . (12.165)

Furthermore, the maximum in specific activity (a∗
D)max occurs at normalized time

(x∗
D)max determined by setting dy∗

D/dx|x=(x∗
D)max = 0 at x = (x∗

D)max and solving for



12.6 Nuclear Activation with Neutrons 847

Fig. 12.5 (i) Normalized number yIr-191 of Ir-191 nuclei (light solid curve) calculated with
(12.161); (ii) normalized activity zIr-191 of Ir-192 nuclei (dotted curve) calculated for saturation
model with (12.162); (iii) normalized activity yIr-192 of Ir-192 nuclei (dashed curve) calculated for
depletion model with (12.163); and (iv) normalized activity y∗

Ir-191 of Ir-192 nuclei (heavy solid
curve) calculated for depletion–activation model with (12.164), all plotted against normalized ac-
tivation time x for neutron activation of Ir-191 into Ir-192 in thermal neutron fluence rate ϕ̇ of
1014 cm−2 · s−1. Maxima in yIr-192(x) and y∗

Ir-192(x) are indicated with ×

(x∗
D)max to get the expression given in (12.158)

(
x∗

D

)
max = m∗ lnm∗

(m∗ − 1) ln 2
. (12.166)

We now use the parent depletion–daughter activation model to determine with
(UU) the maximum attainable specific activity (a∗

Ir-192)max and with (12.166) the
normalized activation time (x∗

Ir-192)max required to attain (a∗
Ir-192)max in neutron ac-

tivation of parent P (Ir-191) into daughter D (Ir-192) for five thermal neutron fluence
rates ϕ̇ in (cm−2 · s−1): 5×1011, 2×1013, 1×1014, 3×1014, and 1.2×1016. In addi-
tion to basic parameters: parent thermal neutron cross section σP = σIr-191 = 954 b,
daughter thermal neutron cross section σD = σIr-192 = 1420 b, and parent atomic
mass AP =AIr-191 = 190.96 g/mol, the other relevant parameters used in the calcu-
lations are listed in Table 12.11.

In Table 12.12 we list the maximum attainable specific activities (aIr-192)max and
(a∗

Ir-192)max as well as the associated normalized activation times (xIr-192)max and
(x∗

Ir-192)max for neutron activation of Ir-191 into Ir-192 with various neutron fluence
rates ϕ̇ calculated for depletion and depletion–activation models, respectively. The
data for the depletion model were determined in Prob. 256, data for the depletion–
activation model were calculated with (12.165) and (12.166), respectively.

Several interesting conclusions, with regard to the maximum attainable specific
activity and characteristic activation time can be reached based on information given
in Table 12.12. We note that for all neutron fluence rates ϕ̇:
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Table 12.11 Basic parameters of thermal neutron activation of Ir-191 into Ir-192 for the depletion
model and the parent depletion–daughter activation model for various thermal neutron fluence
rates ϕ̇

(1) ϕ̇ (cm−2 · s−1) 5×1011 2×1013 1×1014 3×1014 1.2×1016

(2) λ∗
Ir-192 1.094×10−7 1.371×10−7 2.51×10−7 5.347×10−7 1.175×10−5

(3) ε∗ = λ∗
Ir-192/λIr-192 1.007 1.261 2.310 4.919 157.8

(4) m= σIr-192ϕ̇/λP 4.388×10−3 1.755×10−1 0.878 2.633 105.3

(5) m∗ =m/ε∗ 4.36×10−3 1.39×10−1 0.381 5.35×10−1 6.68×10−1

Table 12.12 Maximum attainable specific activities (aIr-192)max and (a∗
Ir-192)max as well as the

associated normalized activation times (xD)max and (x∗
D)max calculated for neutron activation of

Ir-191 into Ir-192 using depletion and depletion–activation models, respectively

(1) ϕ̇ (cm−2 · s−1) 5×1011 2×1013 1×1014 3×1014 1.2×1016

(2) (xIr-192)max 0.035 0.543 1.35 2.24 6.85

(3) (x∗
Ir-192)max 0.0343 0.460 0.86 1.038 1.171

(4) (xIr-192)max/(x
∗
Ir-192)max 1.03 1.18 1.57 2.15 5.85

(5) (xIr-192)max − (x∗
Ir-192)max 0.001 0.083 0.49 1.20 5.68

(6) (aIr-192)max (Ci/g) 39.7 1120 3177 5120 8860

(7) (a∗
Ir-192)max (Ci/g) 39.24 932.5 1937 2402 2733

(7) (aIr-192)max/(a
∗
Ir-192)max 1.01 1.20 1.64 2.13 3.24

(8) (aIr-192)max − (a∗
Ir-192)max 0.5 187 1240 2718 6127

(1) Normalized characteristic activation time (xIr-192)max for the depletion model
exceeds (x∗

Ir-192)max for the depletion–activation model.
(2) Ratio (xIr-192)max/(x

∗
Ir-192)max increases from ∼1 at low fluence rate ϕ̇ =

5×1011 cm−2 ·s−1 through ∼1.6 at intermediate fluence rate ϕ̇ = 5×1011 cm−2 ·
s−1 to ∼6 at high fluence rate ϕ̇ = 1.2×1016 cm−2 · s−1. Thus, the difference
between (xIr-192)max and (x∗

Ir-192)max increases with fluence rate ϕ̇.
(3) Maximum attainable specific activity (aIr-192)max for the depletion model ex-

ceeds (a∗
Ir-192)max for the depletion–activation model. This is explained by the

loss of daughter D nuclei to nuclear activation that is ignored in the depletion
model but is accounted for in the depletion–activation model.

(4) Ratio (aIr-192)max/(a
∗
Ir-192)max increases from ∼1 at low fluence rate ϕ̇ =

5×1011 cm−2 ·s−1 through ∼1.6 at intermediate fluence rate ϕ̇ = 5×1011 cm−2 ·
s−1 to ∼3.5 at high fluence rate ϕ̇ = 1.2×1016 cm−2 ·s−1. Thus, the difference
between (aIr-192)max and (a∗

Ir-192)max increases with fluence rate ϕ̇.
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12.6.Q8 (258)

Three models are used for describing nuclear activation processes. Listed in
order of increasing complexity they are: (1) Saturation model, (2) Depletion
model, and (3) Depletion–activation model. The three models predict differ-
ent expressions for normalized daughter D activity yD(x) as well as for the
maximum daughter activity (aD)max attainable in nuclear activation. Expres-
sions for (aD)max derived in Prob. 256 for the saturation and depletion models
and in Prob. 257 for the depletion–activation model are, respectively, given as

(aD)max = σPNA

AP
ϕ̇ [see (12.137) in Prob. 256], (12.167)

(aD)max = σPNA

AP
ϕ̇m

m
1−m [see (12.140) in Prob. 256], (12.168)

(
a∗

D

)
max = σPNA

AP

ϕ̇

ε∗
(m∗)

m∗
1−m∗ [see (12.165) in Prob. 257], (12.169)

where m and m∗ are activation factors defined as m = σPϕ̇/λD and m∗ =
σPϕ̇/(λD + σDϕ̇), respectively, with σP and σD the parent P and daughter D
activation cross sections, respectively, ϕ̇ the fluence rate, and λD the daughter
decay constant.

At first glance the three models seem to suggest that (aD)max is linearly
proportional to ϕ̇, irrespective of the magnitude of ϕ̇, making (aD)max go
to ∞ as ϕ̇ → ∞. This contradicts the standard relationship for specific ac-
tivity (aD)theor of a radionuclide D which states that (aD)theor is finite and
proportional to λD/AD where λD and AD are the decay constant and atomic
mass of the radionuclide D and NA, the Avogadro number, is the propor-
tionality constant. The obvious conclusion is that (aD)max cannot exceed
(aD)theor = λDNA/AD irrespective of magnitude of ϕ̇.

(a) Show that (12.168) for depletion model and (12.169) for depletion–
activation model fulfill the condition limϕ̇→∞(aD)max ≤ (aD)max in
contrast to (12.167) which predicts that, as ϕ̇→ ∞, limϕ̇→∞(aD)max =
∞ producing a physically impossible result (aD)max � (aD)theor.

(b) Show that the ratio between limϕ̇→∞(a∗
D)max for the depletion–

activation model and limϕ̇→∞(aD)max for the depletion model is equal
to a factor g∗ that depends only on the parent–daughter cross section
ratio k∗ = σP/σD.

(c) Calculate and plot the depletion–activation factor g∗(k∗) against the
parent–daughter cross section ratio k∗ for k∗ of 10−3, 10−2, 10−1, 1,
10, 100, and 1000. Discuss a few notable properties of g∗(k∗).
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SOLUTION:

(a) Equations for the maximum attainable specific activity (aD)max given for the
three nuclear activation models above depend linearly on the fluence rate ϕ̇ and for
ϕ̇ → ∞ seemingly contradict the expression for (aD)theor that predicts a definite
and finite upper limit for (aD)max. This apparent contradiction can be explained by
evaluating the implicit dependence of activation factors m and m∗ on ϕ̇.

(1) The maximum specific activity (aD)max given in (12.167) for the saturation
model of nuclear activation is proportional to fluence rate ϕ̇ and predicts
clearly that, with increasing ϕ̇, (aD)max will eventually exceed (aD)theor =
λDNA/AP and, as ϕ̇ → ∞, (aD)max → ∞. Since (aD)max cannot exceed
(aD)theor, we note that the validity of (12.167) is limited and some of its pre-
dictions cannot be trusted.

(2) At first glance it seems that (aD)max given by (12.168) for the depletion model
is, like (12.167) for the saturation model, proportional to ϕ̇ and therefore
also exceeds the theoretical specific activity (aD)theor for ϕ̇→ ∞. However, a
closer look at limϕ̇→∞(aD)max for (12.168) produces a logical result, namely
that the maximum daughter specific activity (aD)max derived from (12.168)
does not exceed (aD)theor = λDNA/AP even for ϕ̇ → ∞. Actually, in deter-
mining the limit of (12.168) for ϕ̇ → ∞, after introducing the definition of
the activation factor m = σPϕ̇/λD into (12.168), we show in (12.170) that
limϕ̇→∞(aD)max ≈ (aD)theor

lim
ϕ̇→∞(aD)max = σPNA

AP
lim
ϕ̇→∞

{
ϕ̇m

m
1−m

}= σPNA

AP
lim
ϕ̇→∞

{
ϕ̇e

m lnm
1−m

}

= σPNA

AP
lim
ϕ̇→∞

{
ϕ̇ exp

[ σPϕ̇
λD

1 − σPϕ̇
λD

ln
σPϕ̇

λD

]}

= σPNA

AP
lim
ϕ̇→∞

{
ϕ̇ exp

[
− ln

σPϕ̇

λD

]}

= σPNA

AP
ϕ̇
λD

σPϕ̇
= λDNA

AP
≈ (aD)theor. (12.170)

The result of (12.170) for ϕ̇ → ∞ is independent of particle fluence ϕ̇, irre-
spective of the magnitude of ϕ̇ and depends only on the decay constant λD

of the daughter D radionuclide and the atomic mass AP of the parent. Recog-
nizing that AP ≈ AD, at least for large atomic number activation targets, we
can state that for depletion model of nuclear activation λDNA/AP ≈ (aD)theor.
Equation (12.170) shows that, according to the depletion model, (aD)theor is
the maximum specific activity (aD)max achievable in nuclear activation even
with very high particle fluence rate ϕ̇.
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(3) It is also interesting to investigate lim(aD)max of (12.168) for ϕ̇→ 0 yielding
the following result

lim
ϕ̇→0

(aD)max = lim
m→0

(aD)max = lim
m→0

mλDNA

AP
e

m
1−m lnm = lim

m→0

mλDNA

AP
elnmm

= lim
m→0

mλDNA

AP
mm = mλDNA

AP
= σPNA

AP
ϕ̇, (12.171)

where we note that limm→0m
m = 1. The result of (12.171) for the deple-

tion model at ϕ̇ → 0 is in perfect agreement with (12.167) obtained for the
saturation model leading to the conclusion that for small particle fluence
rate (ϕ̇ → 0) both the saturation model and the depletion model give iden-
tical result for (aD)max proportional to ϕ̇. However, as shown in (12.170)
for ϕ̇ → ∞, the saturation model predicts the physically impossible result
of (aD)max → ∞, while (12.170) for the depletion model predicts the logical
result that (aD)max approaches (aD)theor.

(4) We now evaluate (a∗
D)max of (12.169) as ϕ̇→ ∞ for the depletion–activation

model. Both m∗ and ε∗, defined as

m∗ = m

ε∗
= σPϕ̇

λD + σDϕ̇
(12.172)

and

ε∗ = λ∗
D

λD
= λD + σDϕ̇

λD
= 1 + σDϕ̇

λD
, (12.173)

respectively, depend on ϕ̇ and the limit of (a∗
D)max as ϕ̇ → ∞ is determined

as follows

lim
ϕ̇→∞

(
a∗

D

)
max = σPNA

AP
lim
ϕ̇→∞

{
ϕ̇

ε∗
(
m∗) m∗

1−m∗
}

= σPNA

AP
lim
ϕ̇→∞

{
ϕ̇

ε∗
e
m∗ lnm∗

1−m∗
}

= σPNA

AP
lim
ϕ̇→∞

{
λDϕ̇

λD + σDϕ̇
exp

[ σPϕ̇
λD+σDϕ̇

1 − σPϕ̇
λD+σDϕ̇

ln
σPϕ̇

λD + σDϕ̇

]}

= σPNA

AP
lim
ϕ̇→∞

{
λD

σD
exp

[ σP
σD

1 − σP
σD

ln
σP

σD

]}

≈ (aD)theork
∗e

k∗ ln k∗
1−k∗ , (12.174)

where we define the parent–daughter cross section ratio σP/σD as k∗ and we
make the approximation AP ≈ AD to be able to use λDNA/AP ≈ (aD)theor.
The maximum attainable specific activity (a∗

D)max as ϕ̇ → ∞ for depletion–
activation model is according to (12.174) equal to (a∗

D)theor multiplied by a
factor that depends on the parent–daughter cross section ratio k∗.
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(b) The ratio between limϕ̇→∞(a∗
D)max of (12.174) for the depletion–activation

model and limϕ̇→∞(aD)max of (12.170) for the depletion model is expressed as a
function of the parent–daughter cross section ratio k∗ = σP/σD as follows

limϕ̇→∞(a∗
D)max

limϕ̇→∞(aD)max
= k∗e k

∗ lnk∗
1−k∗ = g∗(k∗), (12.175)

where we introduce the depletion–activation factor g∗(k∗) and define it as

g∗(k∗)= k∗e− k∗ ln k∗
k∗−1 = e− lnk∗

1−k∗ = (
k∗
) 1

1−k∗ . (12.176)

The parent–daughter cross section ratio k∗ = σP/σD is always positive and ranges
from k∗ = 0 for σP = 0 through k∗ = 1 for σP = σD to k∗ = ∞ for σD = 0. The
depletion–activation factor g∗(k∗), on the other hand, ranges from g∗(k∗) = 0 for
k∗ = 0 through g∗(k∗) = 1/e for k∗ = 1 to g∗(k∗) = 1 for k∗ = ∞. The physical
range of g∗(k∗) is determined using the l’Hôpital rule as follows

g|k∗→0 = lim
k∗→0

(
k∗
) 1

1−k∗ = lim
k∗→0

e
ln k∗
1−k∗ = lim

k∗→0
e

d ln k∗
dk∗

d(1−k∗)
dk∗ = lim

k∗→0
e

1
k∗−1 = e−∞ = 0,

(12.177)

g|k∗→1 = lim
k∗→1

(
k∗
) 1

1−k∗ = lim
k∗→1

e
ln k∗
1−k∗ = lim

k∗→1
e

d ln k∗
dk∗

d(1−k∗)
dk∗ = lim

k∗→1
e

1
k∗−1 = e−1 = 1

e
(12.178)

and

g|k∗→∞ = lim
k∗→∞

(
k∗
) 1

1−k∗ = lim
k∗→∞ e

lnk∗
1−k∗ = lim

k∗→∞ e

d ln k∗
dk∗

d(1−k∗)
dk∗

= lim
k∗→∞ e

1
k∗−1 = e0 = 1. (12.179)

Equation (12.170) shows that for the depletion model (aD)max cannot exceed
(aD)theor and (12.174) shows that for the depletion–activation model (aD)max cannot
exceed (aD)max multiplied by g∗(k∗). Since is g∗(k∗) smaller than or equal to 1, we
conclude that (aD)max for the depletion–activation model is generally smaller than
(aD)max for the depletion model.

Table 12.13 Depletion–activation factor g∗ for various values of the parent–daughter cross sec-
tion ratio k∗ in the range from 0.001 to 1000

k∗ = σP
σD

0.001 0.01 0.1 1 10 100 1000

g∗ = (k∗) 1
1−k∗ 0.001 0.009 0.077 0.368 0.774 0.955 0.993
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Fig. 12.6 Depletion–activation factor g∗ against the parent–daughter cross section ratio k∗ in the
k∗ range from 10−3 to 103. In general, k∗ ranges from 0 to ∞ while correspondingly g∗ ranges
from 0 to 1

(c) As shown in (12.177) the depletion–activation factor g∗ depends on the parent–
daughter cross section ratio k∗ which has a physical range from 0 to ∞. Table 12.13
and Fig. 12.6 display results of our calculation of g∗ for several values of k∗ in
the range from 10−3 to 103. Based on the g∗ vs k∗ plot we note the following
characteristics of the depletion–activation factor g∗:

(1) The range of g∗ is from g∗ = 0 for k∗ = 0 (σP = 0) through g∗ = 1/e for
k∗ = 1 (σP = σD) to g∗ = 1 for k∗ = ∞ (σD = 0), as shown in (12.177),
(12.178), and (12.179), respectively.

(2) Since (a∗
D)max ≈ (a∗

D)theorg
∗, as derived in (12.174), and the range of g∗ is

given as 0 ≤ g∗ ≤ 1, we conclude that (a∗
D)max ≤ (a∗

D)theor.

(3) For g∗ = 0, i.e., σP = 0, we get from (12.174) that (a∗
D)max = 0. This means

that there is no parent activation and no production of radioactivity.

(4) For g∗ = 1, i.e., σD = 0, we get from (12.174) that (a∗
D)max = (aD)theor. This

means that the daughter produced in activation does not get activated, so that
the depletion model and the depletion–activation model give the same result
for the maximum attainable daughter specific activity: (a∗

D)max = (aD)max =
(aD)theor = λPNA/AD.

(5) For σP < σD, k∗ < 1 and 0< g∗ < 1/e.

(6) For σP = σD, k∗ = 1 and g∗ = 1/e.

(7) For σP > σD, k∗ > 1 and 1/e < g∗ < 1.
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12.6.Q9 (259)

To date, out of over 3500 known radionuclides only four (cesium-137, cobalt-
60, europium-152, and radium-226) meet requirements for use in external
beam radiotherapy and, of these, only cobalt-60 has gained widespread use as
teletherapy source material. Cobalt-60 radionuclide is produced in a nuclear
reactor through thermal neutron activation of stable cobalt-59.

A 10 g sample of cobalt-59 (atomic mass M = 58.93 g/mol) is irradiated
with thermal neutrons in a nuclear reactor with thermal neutron fluence rate
ϕ̇ = 1.2×1013 cm−2 · s−1. Thermal neutron cross section σCo-59 of cobalt-59
is 37 b/atom and the half-life (t1/2)Co-60 of cobalt-60 is 5.26 a, where a stands
for year (annum).

(a) Using the saturation model of neutron activation, discussed in Prob. 251
(12.44), calculate: (1) Saturation activity (ACo-60)sat, (2) Activity
ACo-60(t) against activation time t in steps of 1 year in the range
0 ≤ t ≤ 30 a, and (3) Activation time t required for the sample activity
ACo-60(t) to reach 25 %, 50 %, 75 %, 90 %, and 100 % of saturation
activity (ACo-60)sat.

(b) Using the depletion model of neutron activation, discussed in Prob. 251
(12.48), calculate: (1) Activity ACo-60(t) against activation time t in
steps of 1 year in the range 0 ≤ t ≤ 30 a, (2) Characteristic activation
time (tmax)Co-60 required for the sample activity ACo-60(t) to reach its
maximum activity (ACo-60)max, (3) Maximum activity (ACo-60)max, and
(4) Activation time t required for the sample activity ACo-60(t) to reach
fraction f of its maximum activity (ACo-60)max for f = 0.25, 0.50, 0.75,
0.90, and 1.00.

(c) Radioactivation yield YD of the daughter activation product is defined
by the initial slope dAD/dt of the AD(t) curve at t = 0 (T12.14). Deter-
mine YCo-60 for the saturation model (T12.13) of (a) and the depletion
model (T12.22) of (b).

(d) On one graph plot the activity data of (a) for the saturation model with
open circles and (b) for the depletion model with solid circles. On the
saturation curve indicate the saturation activity (ACo-60)sat and on the
depletion curve indicate the maximum activity (ACo-60)max.

SOLUTION:

Recalling that half-life (t1/2)Co-60 = 5.26 a the decay constant of cobalt-60 is given
as follows

λCo-60 = ln 2

(t1/2)Co-60
= ln 2

5.26 a
= 0.1318 a−1
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= ln 2

(5.26 a)×(365 d/a)×(24 h/d)×(3600 s/h)

= 4.179×10−9 s−1. (12.180)

The product σCo-59ϕ̇ plays an important role in neutron activation theory and has,
for our example that deals with cobalt-59 to cobalt-60 neutron activation in a nuclear
reactor with thermal neutron fluence rate of ϕ̇ = 1.2×1013 cm−2 · s−1, the following
value

σCo-59ϕ̇ = (
37×10−24 cm2)×(

1.2×1013 cm−2 · s−1)= 4.44×10−10 s−1

= 0.014 a−1. (12.181)

(a) Infinite number of parent nuclei: Saturation model
Activity ACo-60(t) as a function of activation time t is in the saturation model ex-
pressed as follows (T12.13)

ACo-60(t)= σCo-59ϕ̇NCo-59(0)
[
1−e−λCo-60t

]= (ACo-60)sat
[
1−e−λCo-60t

]
, (12.182)

where the saturation activity (ACo-60)sat is defined as

(ACo-60)sat = σCo-59ϕ̇NCo-59(0), (12.183)

with NCo-59(0) the initial number of Co-59 nuclei placed at activation time t = 0
into the nuclear reactor with thermal neutron fluence rate ϕ̇ of 1.2×1013 cm−2 · s−1

NCo-59(0)= NA

A
m= 6.022×1023 mol−1

58.93 g · mol−1
×(10 g)= 1.022×1023. (12.184)

(1) After inserting (12.181) and (12.184) into (12.183), we now determine the satu-
ration activity (ACo-60)sat for our neutron activation example as follows

(ACo-60)sat = σCo-59ϕ̇NCo-59(0)=
(
4.44×10−10 s−1)×(

1.022×10−23)

= 4.537×1013 s−1 = 4.537×1013 Bq = 4.537×10−13 Bq

3.7×1010 Bq/Ci

= 1226.3 Ci. (12.185)

(2) After inserting (12.185) into (12.182), the activity ACo-60(t) of the sample as a
function of activation time t is now given as

ACo-60(t) = (ACo-60)sat
[
1 − e−λCo-60t

]
= (

4.537×1013 Bq
)×[

1 − e−(4.179×10−9 s−1)t
]

= (1226.3 Ci)×[
1 − e−(0.1318 a−1)t

]
. (12.186)
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Table 12.14 Activity ACo-60(t) of cobalt-60 for various activation times t in the range 0 ≤ t ≤
30 a (where a stands for year) calculated for the saturation model of neutron activation, as given
in (12.186) under the following conditions: mass of cobalt-59 sample m = 59 g; neutron fluence
rate ϕ̇ = 1.2×1013 cm−2 · s−1

t (a) ACo-60(t) t (a) ACo-60(t) t (a) ACo-60(t) t (a) ACo-60(t)

0 0 8 799.06 16 1077.45 24 1174.44

1 151.43 9 851.81 17 1095.83 25 1180.84

2 284.16 10 898.06 18 1111.94 26 1186.46

3 400.50 11 938.59 19 1126.06 27 1094.22

4 502.47 12 974.12 20 1138.44 28 1195.69

5 591.85 13 1005.26 21 1149.29 29 1199.47

6 670.20 14 1032.55 22 1158.80 30 1202.78

7 738.87 15 1056.48 23 1167.13 ∞ 1226.30

Table 12.15 Time t in years (a) and in cobalt-60 half-lives (t1/2)Co-60 = 5.26 a required for
sample activity ACo-60(t) to reach a given fraction fCo-60 = ACo-60(t)/(ACo-60)sat of the saturation
activity (ACo-60)sat

fCo-60 0.25 0.50 0.75 0.90 1.00

1 − fCo-60 0.75 0.50 0.25 0.10 0

t (a) 2.18 5.26 10.52 17.5 ∞
t [(t1/2)Co-60] 0.41 1.0 2.0 3.33 ∞

Activities ACo-60(t) of cobalt-60 calculated from (12.186) for the saturation
model of neutron activation in steps of 1 year for activation times 0 ≤ t ≤ 30 a
are listed in Table 12.14.

(3) To estimate the activation time t during which a given activity fraction fCo-60

of (ACo-60)sat is attained we modify (12.182) as follows

ACo-60(t)

(ACo-60)sat
= fCo-60 = 1 − e−λCo-60t . (12.187)

Solving (12.187) for activation time t gives

t = −− ln(1 − fCo-60)

λCo-60
= ln 1

1−fCo-60

λCo-60
. (12.188)

Results of (12.188) for activity fractions λCo-60 of 0.25, 0.50, 0.75, 0.90, and 1.0 are
given in Table 12.15.
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(b) Finite number of parent nuclei: Depletion model
Activity ACo-60(t) as a function of activation time t is in the depletion model ex-
pressed as follows (T12.22)

ACo-60(t) = (σCo-59ϕ̇)NCo-59(0)
λCo-60

λCo-60 − σCo-59ϕ̇

[
e−σCo-59ϕ̇t − e−λCo-60t

]

= A0
[
e−σCo-59ϕ̇t − e−λCo-60t

]
, (12.189)

where AD is a parameter of the depletion model, dependent on neutron cross section
σCo-59 of the Co-59 nucleus, neutron fluence rate ϕ̇ in the reactor, and the initial
number NCo-59(0) of Co-59 nuclei placed into the reactor, as well as the decay
constant λCo-60. Parameter A0 of (12.189) is fortuitously related to the saturation
activity (ACo-60)sat of the saturation model given in (12.185) and is for our neutron
activation example given as follows

A0 = (σCo-59ϕ̇)NCo-59(0)
λCo-60

λCo-60 − σCo-59ϕ̇
= (ACo-60)sat

λCo-60

(λCo-60 − σCo-59ϕ̇)

= (
4.537×1013 s−1)× (4.179×10−9 s−1)

(4.179×10−9 s−1 − 0.444×10−9 s−1)

= 5.076×1013 s−1 = 50.76 TBq = 5.076×1013 Bq

3.7×1010 Bq/Ci

= 1372.19 Ci. (12.190)

(1) Following the depletion model of neutron activation, after inserting (12.180),
(12.181), and (12.190) into (12.188), the activity ACo-60(t) as a function of activation
time t is expressed as

ACo-60(t) = A0
[
e−σCo-59ϕ̇t − e−λCo-60t

]
= (1372.19 Ci)×[

e−(0.014 a−1)t − e−0.132 a−1)t
]

= (
5.077×1013 Bq

)×[
e−(0.444×10−9 s−1)t − e−4.179×10−9 s−1)t

]
.

(12.191)

(2) For the depletion model, the activity ACo-60 is 0 at activation time t = 0, rises
with t until it reaches a maximum (ACo-60)max at characteristic activation time t =
(tCo-60)max, then it decreases with t and asymptotically approaches 0 at t → ∞. The
characteristic activation time (tmax)Co-60, at which activity maximum (ACo-60)max
occurs, is given by the following expression (T12.24), determined from setting to
zero the derivative of (12.191) with respect to activation time t . For our specific
example the characteristic time (tmax)Co-60 is given as

(tmax)Co-60 = ln λCo-60
σCo-59ϕ̇

λCo-60 − σCo-59ϕ̇
= ln 4.179×10−9 s−1

0.444×10−9 s−1

4.179×10−9 s−1 − 0.444×10−9 s−1
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= 6.003×108 s = 19.03a. (12.192)

(3) The maximum activity (ACo-60)max is calculated by inserting (tmax)Co-60 deter-
mined in (12.192) into (12.191) to get

(ACo-60)max = ACo-60
[
(tmax)Co-60

]= A0
[
e−(σCo-59ϕ̇)×(tmax)Co-60 − e−λCo-60×(tmax)Co-60

]
= (1372.19 Ci)×[

e−(0.444×10−9 s−1)×(6.003×108 s)

− e−(4.179×10−9 s−1)×(6.003×108 s)]
= (1372.19 Ci)×[

e−0.2665 − e−2.509]
= (1372.19 Ci)×[0.766 − 0.081]
= (1372.19 Ci)×0.685 = 940 Ci = (940 Ci)×(

3.7×1010 Bq/Ci
)

= 3.478×1013 Bq. (12.193)

It is interesting to note that, for our specific example, the saturation activity
(ACo-60)sat is 1226.3 Ci, as determined with the saturation model, while the max-
imum activity (ACo-60)max is 940 Ci, as determined with the depletion model.

Activities ACo-60(t) of cobalt-60 calculated from (12.191) for the depletion model
of neutron activation in steps of 1 year for activation times 0 ≤ t ≤ 30 are listed in
Table 12.16.

(4) The activation time t , required for cobalt-60 activity ACo-60(t) to reach
a fraction f of its maximum value (ACo-60)max, is determined by inserting
f (ACo-60)max = (940 Ci)×f into (12.191) and solving for activation time t . The
result is a transcendental equation of the form

ACo-60(t)= (1372.19 Ci)×[
e−(0.014 a−1)t−e−(0.132 a−1)t

]= (940 Ci)×f (12.194)

or

e−(0.014 a−1)t = e−(0.132 a−1)t + 0.685f. (12.195)

The transcendental equation (12.195) can be solved graphically for activation
time t by plotting on the same graph the left side function y1(t) = e−(0.014 a−1)t

of (12.195) separately from the right side function y2(t) = e−(0.132 a−1)t + 0.685f
of (12.195) and determining the intercept of the two functions as the solution
of (12.195).

A plot of the two functions y1 and y2 is shown in Fig. 12.7 for five values of
fraction f : 0.25, 0.50, 0.75, 0.90, and 1.0. For a given f the intercept between
functions y1 and y2 provides the solution to the transcendental equation (12.195).
For all f (except for f = 1) the two functions y1 and y2 exhibit two intercepts,
one (tf-asc) for the ascending portion of the activity ACo-60(t) curve and another
(tf-denc) for the descending portion of the ACo-60(t) curve. For f = 1 there is only
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Table 12.16 Activity ACo-60(t) of cobalt-60 for various activation times t in the range 0 ≤ t ≤
30 a (where a stands for year) calculated for the depletion model of neutron activation, as given
in (12.190) under the following conditions: mass of cobalt-59 sample m = 59 g; neutron fluence
rate ϕ̇ = 1.2×1013 cm−2 · s−1

t (a) ACo-60 (t) t (a) ACo-60 (t) t (a) ACo-60 (t) t (a) ACo-60 (t)

0 0 8 749.49 16 930.78 24 922.85

1 150.61 9 791.46 17 936.07 25 916.36

2 280.50 10 826.36 18 939.02 26 909.17

3 392.26 11 855.11 19 939.96 27 901.40

4 488.16 12 878.48 20 939.16 28 893.13

5 570.20 13 897.16 21 936.85 29 884.45

6 640.12 14 911.77 22 933.24 30 875.43

7 699.43 15 922.82 23 928.52 ∞ 0

Fig. 12.7 Graphical solution to transcendental equation (QQ) provided by the intercept of two
functions: y1 = e−(0.014 a−1)t (shown dashed) and y2 = e−(0.132 a−1)t + 0.685f (shown with solid
curves for five values of fraction f = ACo-60(t)/(ACo-60)max). Intercepts between functions y1
and y2 are indicated by ×. For all values of f except for f = 1 functions y1 and y2 exhibit two
intercepts; for f = 1 there is only one intercept occurring at the maximum of the activity ACo-60(t)

curve

one intercept between y1 and y2 and it occurs at the maximum of the ACo-60(t) curve
at the characteristic activation time (tmax)Co-60, given in (12.192).

Activation times tf required for the cobalt sample to reach a given fraction f of
the maximum activity (ACo-60)max are given in Table 12.17 for 5 selected values of
f (0.25, 0.50, 0.75, 0.90, and 1.0). In practice, for obvious reasons, one would only
be interested in activation time tf−asc to reach a desired activity fraction f .
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Table 12.17 Activation times tf−asc and tf−desc on the ascending and descending portions, respec-
tively, of the activity ACo-60(t) curve for five values of fraction f : 0.25, 0.50, 0.75, 0.90, and 1.0.
The f fraction is defined as f = ACo-60(t)/(ACo-60)max with (ACo-60)max = 940 Ci for our example
of cobalt-59 to cobalt-60 neutron activation and its analysis using the depletion model

f 0.25 0.50 0.75 0.90 1.00

f×(ACo-60)max (Ci) 235 470 705 846 940

tf-asc (a) 1.63 3.80 7.09 10.66 19.03

tf-desc (a) 126.04 76.53 47.35 33.13 19.03

(c) Radioactivation yield YCo-60 = dACo-60/dt |t=0 is calculated as follows:

(1) For the saturation model (12.186) gives the following expression for ACo-60(t)

ACo-60(t) =
(
4.537×1013 Bq

)×[
1 − e−(4.179×10−9 s−1)t

]
= (1226.3 Ci)×[

1 − e−(0.1318 a−1)t
]

(12.196)

and the radioactivation yield YCo-60 = dACo-60/dt |t=0 is then determined as
follows

YCo-60 = dACo-60

dt

∣∣∣∣
t=0

= (
4.537×1013 s−1)×(

4.179×10−9 s−1)

= 1.9×105 s−2. (12.197)

(2) For the depletion model (12.101) gives the following expression for ACo-60(t)

ACo-60(t)=
(
5.077×1013 Bq

)×[
e−(0.444×10−9 s−1)×t − e−(4.179×10−9 s−1)×t ]

(12.198)

and the radioactivation yield YCo-60 = dACo-60/dt |t=0 is then determined as
follows

YCo-60 = dACo-60

dt

∣∣∣∣
t=0

= (
5.077×1013 Bq

)×[−0.444×10−9 s−1 + 4.179 + 10−9 s−1]
= (

5.077×1013 Bq
)×(

3.735×10−9)
= 1.9×105 s−2. (12.199)

As expected, both activation models give identical results for the radioactivation
yield YCo-60 as a result of identical initial (t = 0) slopes of ACo-60(t) curves plotted
against activation time t .

(d) Figure 12.8 plots the cobalt-60 activity ACo-60(t) against activation time t for
our example of neutron activation of a 10 g sample of cobalt-59 into cobalt-60 in a
nuclear reactor with thermal neutron fluence ϕ̇ of 1.2×1013 cm−2 · s−1. ACo-60(t) is
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Fig. 12.8 Cobalt-60 activity ACo-60(t) against activation time t for neutron activation of a
10 g sample of cobalt-59 into cobalt-60 in a nuclear reactor with thermal neutron fluence ϕ̇ of
1.2×1013 cm−2 · s−1. Dashed curve plots ACo-60(t) determined with the saturation model of
neutron activation expressed with (12.186); solid curve plots ACo-60(t) determined with the de-
pletion model of neutron activation expressed with (12.191). The saturation model curve satu-
rates at (ACo-60)sat = 1226.3 Ci for t → ∞; the depletion model curve attains a broad maximum
(ACo-60)max = 940 Ci at (tmax)Co-60 = 19.03 a

shown with dashed curve for the saturation model (12.186) and with solid curve for
the depletion model (12.191). Both curves exhibit the same initial slope at t = 0 (i.e.,
same radioactivation yield YCo-60 = 1.9×105 s−2); however, with increasing activa-
tion time t the curves diverge and the saturation model curve increases exponentially
and saturates at (ACo-60)sat = 1226.3 Ci for t → ∞, while the depletion model curve
attains a broad maximum (ACo-60)max = 940 Ci at (tmax)Co-60 = 19.03 a and then
gradually drops to 0 as t → ∞.

12.6.Q10 (260)

Production of cobalt-60 (Co-60) radionuclide from cobalt-59 (Co-59) nuclide
is usually treated like a simple parent P–daughter D–granddaughter G nuclear
series, whereby the natural parent Co-59 nuclide is activated with thermal
neutrons (activation cross section σP = 37 b) in a nuclear reactor into daughter
radionuclide Co-60 that subsequently decays through β− nuclear decay with
a half-life t1/2 = 5.26 a into the granddaughter nuclide nickel-60 (Ni-60) [see
Fig. 12.9(A)].

However, a closer look at the activation and decay diagrams of Co-60
nuclide shows that the activation process is significantly more complex, as
shown schematically in Fig. 12.9(B). Activation of Co-59 actually has two
possible branches:
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Branch (1) leads directly to ground state of Co-60 with σP1 = f P
1 σP = 17 b

and f P
1 = 17/37 = 0.46 Branch (2) leads to a metastable state of Co-60m with

σP2 = f P
2 σP = 20 b and f P

2 = 20/37 = 0.54.
The Co-60 daughter D1 radionuclide has two possible avenues open for

transformation:

(1) To decay through β− decay into Ni-60 with t1/2 = 5.26 a.
(2) To become activated by thermal neutrons into Co-61 with σD1 = 2 b.

The Co-60m daughter D2 radionuclide has 3 avenues open for transforma-
tion:

(1) To become activated by thermal neutrons into Co-61m with σD2 = 58 b.
(2) To decay with t1/2 = 10.5 m through γ decay into Co-60 (branching

ratio f D2
γ = 0.998).

(3) To decay with t1/2 = 10.5 m through β− decay into Ni-60 (branching
ratio f D2

β− = 0.002).

(a) Write and solve the differential equation governing the change dND/dt
in the number of daughter D (Co-60) nuclei for the activation–decay
series (A) of Fig. 12.9. Express the activity AD(t) of daughter D (Co-
60) against t for the following initial conditions at t = 0: initial number
of parent P nuclei is NP(0); initial number of daughter nuclei ND(t =
0)= 0.

(b) Write and solve the differential equation governing the change dND1/dt
in the number of daughter D1 (Co-60) nuclei for the activation–decay
series (B) of Fig. 12.9. Express the activity AD(t) of daughter D (Co-
60) against t for the following initial conditions at t = 0: initial num-
ber of parent P nuclei is NP(0); initial number of daughter nuclei
ND(t = 0)= 0.

(c) A pure 10 g Co-59 target is placed into a nuclear reactor with thermal
neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1. Calculate the activity of
Co-60 against time t in steps of 2 years from 0 to 10 years based on
expressions derived in (a) and (b) above for nuclear activation–decay
schemes (A) and (B) of Fig. 12.9. Superimpose your calculated results
on the graph presented in Fig. 12.10.

SOLUTION:

(a) The differential equation for change dND/dt in the number of daughter D
(Co-60) nuclei for nuclear activation–decay series of Fig. 12.9(A) is given as fol-
lows, recognizing that dND/dt is governed by two terms describing:
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Fig. 12.9 Nuclear activation–decay series in production of cobalt-60 through neutron activation
of cobalt-59. Decay series (A) depicts the simplified model, decay series (B) depicts the actual
activation–decay scheme

Fig. 12.10 Activity of cobalt-60 daughter against activation time t for neutron activation of
cobalt-59 of mass m= 10 g in a nuclear reactor with neutron fluence rate ϕ̇ = 5×1014 cm−2 · s−1.
Curve (1) is for simplified nuclear activation–decay series (A) of Fig. 12.9, curve (2) for the actual
nuclear activation–decay series shown as series (B) in Fig. 12.9. Curve (3) is added for compari-
son and represents daughter activity calculated for series (A) and the saturation model of nuclear
activation that ignores the decay of cobalt-60 radionuclide during the activation process

(1) Production rate of daughter D (Co-60) through neutron activation of parent P
(Co-59), expressed as +σPϕ̇NP(0)e−σPϕ̇t ,

(2) Loss of daughter D (Co-60) through β− decay of daughter D (Co-60) into
granddaughter G (Ni-60), expressed as −λDND(t),

resulting in the following expression for dND/dt

dND

dt
= σPϕ̇NP(0)e

−σPϕ̇t − λDND(t). (12.200)
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Equation (12.200) is a first order differential equation of the form

dη(t)

dt
+ p(t)η(t)= q(t), (12.201)

with the following solution

η(t)=
∫
u(t)q(t)dt +C

u(t)
, (12.202)

where C is a constant and the function u(t) is defined as

u(t)= e
∫
p(t)dt . (12.203)

After rearranging (12.200) to match the format of (12.201), we get the fol-
lowing values for parameters of (12.201): p(t) = λD, u(t) = eλDt , and q(t) =
σPϕ̇NP(0)e−σPϕ̇t . Inserting these parameters into (12.202) we get the following ex-
pression for ND(t)

ND(t)= σPϕ̇NP(0)

λD − σPϕ̇
e−σPϕ̇t +Ce−λDt . (12.204)

To determine constant C we apply the initial condition ND(t = 0)= 0 to get

C = −σPϕ̇NP(0)

λD − σPϕ̇
(12.205)

and, after inserting (12.205) into (12.204), we get the following well-known solu-
tions for the number of daughter D (Co-60) nuclei (T10.34)

ND(t)= σPϕ̇NP(0)

λD − σPϕ̇

[
e−σPϕ̇t − e−λDt

]
(12.206)

and the daughter D (Co-60) activity AD(t) = λDND(t) is expressed as follows
(T10.35)

AD(t)= λDσPϕ̇NP(0)

λD − σPϕ̇

[
e−σPϕ̇t − e−λDt

]
. (12.207)

(b) The differential equation for change dND1/dt in the number of daughter D1
(Co-60) nuclei for nuclear activation–decay series depicted in Fig. 12.9(B) is given
as follows, recognizing that dND1/dt is governed by four terms describing:

(1) Production rate of daughter D1 (Co-60) through neutron activation of parent
P (Co-59), expressed as +f P

1 σPϕ̇NP(0)e−σPϕ̇t ,
(2) Production rate of daughter D1 (Co-60) through γ decay of daughter D2

(Co-60m), expressed as +f D2
γ λD2ND2(t),

(3) Loss of daughter D1 (Co-60) through activation of daughter D1 (Co-60) into
Co-61, expressed as −σD1ϕ̇ND1(t),
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(4) Loss of daughter D1 (Co-60) through β− decay of daughter D2 (Co-60) into
grand-daughter G (Ni-60), expressed as −λD1ND1(t),

resulting in the following expression for dND1/dt

dND1

dt
= f P

1 σPϕ̇NP(0)e
−σPϕ̇t + f D2

γ λD2ND2(t)− λ∗
D1ND1(t), (12.208)

where λ∗
D1 is a modified decay constant linking into one constant the β− decay and

neutron activation of D1 expressed as

λ∗
D1 = λD1 + σD1ϕ̇, (12.209)

with λD1 the decay constant of daughter D1, σD1 the neutron activation cross section
of daughter D1, and ϕ̇ the neutron fluence rate.

To solve (12.208) we will need to know the number of daughter D2 (Co-60m)
nuclei ND2(t) appearing in (12.208). Therefore, we now set up a differential equa-
tion that describes the change dND2/dt in the number ND2 that is, as shown in
Fig. 12.9(B), governed by 4 terms:

(1) Production rate of daughter D2 (Co-60m) through activation of parent P
(Co-59), expressed as: +f P

2 σPϕ̇NP(0)e−σPϕ̇t ,
(2) Loss of daughter D2 (Co-60m) through neutron activation of daughter D2

(Co-60m) into Co-61m, expressed as −σD2ϕ̇ND2(t),
(3) Loss of daughter D2 (Co-60m) through β− decay into granddaughter G

(Ni-60), expressed as −f D2
β− λD2ND2(t),

(4) Loss of daughter D2 (Co-60m) through isomeric γ decay into daughter D1
(Co-60), expressed as −f D2

γ λD2ND2(t).

The change dND2/dt in the number of daughter D2 nuclei is thus expressed as
follows

dND2

dt
= f P

2 σPϕ̇NP(0)e
−σPϕ̇t − [

σD2ϕ̇ + f D2
β− λD2 + f D2

γ λD2
]
ND2(t)

= f P
2 σPϕ̇NP(0)e

−σPϕ̇t − λ∗
D2ND2(t), (12.210)

where λ∗
D2 is a modified decay constant linking into one constant the β− decay,

isomeric γ decay, and neutron activation of daughter D2 expressed as

λ∗
D2 = σD2ϕ̇ + f D2

β− λD2 + f D2
γ λD2 = σD2ϕ̇ + λD2, (12.211)

with σD2 the neutron activation cross section of daughter D2 and λD2 the decay
constant of D2.

Rearranging (12.210) to match the format of (12.201) we get the following
values for the parameters of (12.201): p(t) = λ∗

D2, u(t) = eλ
∗
D2t , and q(t) =

f P
2 σPϕ̇NP(0)e−σPϕ̇t . Inserting these parameters into (12.202) we get the following

expression for ND2(t)

ND2(t) =
∫
eλ

∗
D2t f P

2 σPϕ̇NP(0)e−σPϕ̇t dt +C
eλ

∗
D2t
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= f P
2 σPϕ̇NP(0)e

−λ∗
D2t

∫
e(λ

∗
D2−σPϕ̇)t dt +Ce−λ∗

D2t

= f P
2 σPϕ̇NP(0)

λ∗
D2 − σPϕ̇

e−σPϕ̇t +Ce−λ∗
D2t . (12.212)

We now use the initial condition ND2(t = 0) = 0 and get from (12.212) the con-
stant C

C = −f
P
2 σPϕ̇NP(0)

λ∗
D2 − σPϕ̇

. (12.213)

After inserting (12.213) into (12.212) we get the number ND2(t) of daughter D2
(Co-60m) nuclei as follows

ND2(t)= f P
2 σPϕ̇NP(0)

λ∗
D2 − σPϕ̇

{
e−σPϕ̇t − e−λ∗

D2t
}
. (12.214)

Inserting (12.214) into (12.208) and rearranging the terms to match with (12.201),
we now obtain the following differential equation for the change dND1/dt in number
of daughter nuclei D1 (Co-60)

dND1(t)

dt
+ λ∗

D1ND1(t)

= f P
1 σPϕ̇NP(0)e

−σPϕ̇t + f D2
γ λD2f

P
2 σPϕ̇NP(0)

λ∗
D2 − σPϕ̇

{
e−σPϕ̇t − e−λ∗

D2t
}
,

(12.215)

similar to (12.200) and (12.208), another first order differential equation that upon
comparison with (12.201) yields the following values for the parameters of (12.201)

p(t)= λ∗
D1, u(t)= eλ∗

D1t , and

q(t)= f P
1 σPϕ̇NP(0)e

−σPϕ̇t + f D2
γ λD2f

P
2 σPϕ̇NP(0)

λ∗
D2 − σPϕ̇

{
e−σPϕ̇t − e−λ∗

D2t
}
.

(12.216)

Inserting parameters of (12.216) into (12.202) we get the following expression for
ND1(t)

ND1(t) =
∫
eλ

∗
D1t {f P

1 σPϕ̇NP(0)e−σPϕ̇t + fD2
γ λD2f

P
2 σPϕ̇NP(0)

λ∗
D2−σPϕ̇

{e−σPϕ̇t − e−λ∗
D2t }}dt +C

eλ
∗
D1t

=
{f P

1 σPϕ̇NP(0)+ fD2
γ λD2f

P
2 σPϕ̇NP(0)

λ∗
D2−σPϕ̇

} ∫ e(λ∗
D1−σPϕ̇)t dt

eλ
∗
D1t
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−
fD2
γ λD2f

P
2 σPϕ̇NP(0)

λ∗
D2−σPϕ̇

∫
e(λ

∗
D1−λ∗

D2)t dt

eλ
∗
D1t

+Ce−λ∗
D1t

=
f P

1 σPϕ̇NP(0)+ fD2
γ λD2f

P
2 σPϕ̇NP(0)

λ∗
D2−σPϕ̇

λ∗
D1 − σPϕ̇

e−σPϕ̇t

− f D2
γ λD2f

P
2 σPϕ̇NP(0)

(λ∗
D2 − σPϕ̇)(λ

∗
D1 − λ∗

D2)
e−λ∗

D2t +Ce−λ∗
D1t . (12.217)

To determine the constant C we use the initial condition ND1(t = 0)= 0 to get

C = f D2
γ λD2f

P
2 σPϕ̇NP(0)

(λ∗
D2 − σPϕ̇)(λ

∗
D1 − λ∗

D2)
−
f P

1 σPϕ̇NP(0)+ fD2
γ λD2f

P
2 σPϕ̇NP(0)

λ∗
D2−σPϕ̇

λ∗
D1 − σPϕ̇

. (12.218)

Substituting (12.218) into (12.217) we get the following expression for the number
ND1(t) of daughter D1 (Co-60) nuclei for nuclear activation–decay series depicted
in Fig. 12.9(B)

ND1(t) =
f P

1 σPϕ̇NP(0)+ fD2
γ λD2f

P
2 σPϕ̇NP(0)

λ∗
D2−σPϕ̇

λ∗
D1 − σPϕ̇

{
e−σPϕ̇t − e−λ∗

D1t
}

− f D2
γ λD2f

P
2 σPϕ̇NP(0)

(λ∗
D2 − σPϕ̇)(λ

∗
D1 − λ∗

D2)

{
e−λ∗

D2t − e−λ∗
D1t

}
. (12.219)

Activity AD1(t) of daughter D1 (Co-60) is determined by multiplying (12.219) with
the decay constant λD1 resulting in the following

AD1(t) = λD1ND1(t)

=
λD1f

P
1 σPϕ̇NP(0)+ λD1f

D2
γ λD2f

P
2 σPϕ̇NP(0)

λ∗
D2−σPϕ̇

λ∗
D1 − σPϕ̇

{
e−σPϕ̇t − e−λ∗

D1t
}

− λD1f
D2
γ λD2f

P
2 σPϕ̇NP(0)

(λ∗
D2 − σPϕ̇)(λ

∗
D1 − λ∗

D2)

{
e−λ∗

D2t − e−λ∗
D1t

}
. (12.220)

Daughter D1 (Co-60) activity of (12.220) appears quite complicated, however, we
can rearrange its terms to get an expression consisting of a simple term in the form
of (12.207) for the activation–decay series depicted in Fig. 12.9(A) multiplied by
a correction factor F corr to account for the increased complexity of the activation–
decay series depicted in Fig. 12.9(B). Equation (12.220) thus reads

AD1(t) = λD1f
P
1 σPϕ̇NP(0)

λ∗
D1 − σPϕ̇

[
e−σPϕ̇t − e−λ∗

D1t
]{

1 + f P
2

f P
1

λD2

λD1

f D2
γ

λ∗
D2 − σPϕ̇



868 12 Production of Radionuclides

Table 12.18 Relevant parameters for use in (12.207) with mass of Co-59 sample mCo-59 = 10 g
and neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1

σP 37×10−24 cm2

λD = ln(2)/(t1/2)Co-60 ln(2)/5.26 a = 4.179×10−9 s−1

ϕ̇ 5×1014 cm−2 s−1

NP(0)=mNA/A (10 g)×(6.022×1023 atom/mol)/(59 g/mol)= 1.021×1023 atom

σPϕ̇ (37×10−24 cm2)×(5×1014 cm−2 s−1)= 1.85×10−8 s−1

λDσPϕ̇NP(0) (4.179×10−9 s−1)×(1.85×10−8 s−1)×(1.021×1023 atom)=
7.890×106 s−2

λD − σPϕ̇ 4.179×10−9 s−1 − 1.85×10−8 s−1 = −1.432×10−8 s−1

− f P
2 f

D2
γ λD2(λ

∗
D1 − σPϕ̇)

(λ∗
D2 − σPϕ̇)(λ

∗
D1 − λ∗

D2)

(e−λ∗
D2t − e−λ∗

D1t )

(e−σPϕ̇t − e−λ∗
D1t )

}

= λD1f
P
1 σPϕ̇NP(0)

λ∗
D1 − σPϕ̇

[
e−σPϕ̇t − e−λ∗

D1t
]×Fcorr. (12.221)

Comparing the two activation–decay series (A) and (B) of Fig. 12.9 we note that
series (B) transforms into series (A) for the following special values of parameters:
f P

1 = 1, f P
2 = 0, λD1 = λD, and σD1 = 0. Inserting these values into (12.221) we

indeed get (12.207) from (12.221) for the activity of the daughter Co-60 in neutron
activation of Co-59 since λ∗

D1 = λD1 = λD and Fcorr = 1.

(c) We now investigate the specific Co-60 activation–decay example for a Co-
59 sample (mass mCo-59 = 10 g and neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1)
and calculate the daughter D1 activity first with (12.207) for the activation–decay
series (A) of Fig. 12.9 and then with (12.221) for the activation–decay series (B) of
Fig. 12.9.

(1) Nuclear activation–decay series (A) of Fig. 12.9. The relevant parameters for
use of (12.207), summarized in Table 12.18, result in the following expression for
activity AD(t) of daughter D (Co-60) as a function of activation time t

AD(t) = 7.890×106 s−2

−1.432×10−8 s−1
×{
e−(1.850×10−8 s−1)t − e−(4.179×10−9 s−1)t

}

= (
5.509×1014 Bq

)×{
e−(4.179×10−9 s−1)t − e−(1.850×10−8 s−1)t

}
= (14890 Ci)×{

e−(4.179×10−9 s−1)t − e−(1.850×10−8 s−1)t
}
. (12.222)

Using (12.222) with activation times t from 0 to 10 years in steps of 2 years yields
activities AD(t) summarized in Table 12.19. The data presented in Table 12.19 are
also plotted as data points in Fig. 12.10 on curve (1).
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Table 12.19 Activity AD(t) of daughter D (Co-60) calculated from (12.222) for mass of
Co-59 sample mCo-59 = 10 g and neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1 for activation times
t between 0 and 10 years in steps of 2 years. These data points are superimposed on curve (1) in
Fig. 12.10

t (years) e−(1.850×10−8 s−1)t e−(4.179×10−9 s−1)t AD(t) (Ci)

0 1.000 1.000 0

2 0.311 0.768 6804

4 0.097 0.590 7346

6 0.030 0.454 6304

8 0.009 0.348 5049

10 0.003 0.268 3943

Table 12.20 Relevant parameters for use in (12.221) with mass of Co-59 sample mCo-59 = 10 g
and neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1

σP 37×10−24 cm2

σD1 2 b = 2×10−24 cm2

σD2 58 b = 58×10−24 cm2

f P
1 0.46

f P
2 0.54

f D2
γ 0.998

λD1 = ln(2)/(t1/2)Co-60 ln(2)/(5.29 a)= 4.179×10−9 s−1

λD2 = ln(2)/(t1/2)Co-60m ln(2)/(10.5 m)= 1.1×10−3 s−1

ϕ̇ 5×1014 cm−2 s−1

σPϕ̇ (37×10−24 cm2)×(5×1014 cm−2 s−1)= 1.85×10−8 s−1

σD1ϕ̇ (2×10−24 cm2)×(5×1014 cm−2 s−1)= 1.00×10−9 s−1

σD2ϕ̇ (58×10−24 cm2)×(5×1014 cm−2 s−1)= 2.90×10−8 s−1

λ∗
D1 = λD1 + σD1ϕ̇ (4.179×10−9 s−1)+ (1.00×10−9 s−1)= 5.179×10−9 s−1

λ∗
D2 = λD2 + σD2ϕ̇ (1.1×10−3 s−1)+ (2.90×10−8 s−1)≈ 1.1×10−3 s−1

NP(0)=mNA/A (10 g)×(6.022×1023 mol−1)/(59 g/mol)= 1.021×1023 atom

λ∗
D1 − σPϕ̇ 5.179×10−9 s−1 − 1.85×10−8 s−1 = −1.332×10−8 s−1

λ∗
D2 − σPϕ̇ 1.1×10−3 s−1 − 1.85×10−8 s−1 ≈ 1.1×10−3 s−1

λ∗
D1 − λ∗

D2 5.179×10−9 s−1 − 1.1×10−3 s−1 ≈ −1.1×10−3 s−1

λD1f
P
1 σPϕ̇NP(0) (4.179×10−9 s−1)×(0.46)×(1.85×10−8 s−1)×

(1.021×1023 atom)= 3.63×105 s−2

λD1f
D2
γ λD2f

P
2 σPϕ̇NP(0) (4.179×10−9 s−1)×(0.998)×(1.1×10−3 s−1)×(0.54)×

(1.85×10−8 s−1)×(1.021×1023 atom)= 4.678×103 s−3
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Table 12.21 Activity AD(t) of daughter D1 (Co-60) calculated from (12.223) for mass of Co-
59 sample mCo-59 = 10 g and neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1 for activation times t
between 0 and 10 years in steps of 2 years. Data points listed in this table are superimposed onto
curve (2) in Fig. 12.10

t (years) e−(1.850×10−8 s−1)t e−(5.179×10−9 s−1)×t e−(1.1×10−3 s−1)×t AD1(t) (Ci)

0 1.000 1.000 1.000 0

2 0.311 0.721 0 6556

4 0.097 0.520 0 6771

6 0.030 0.375 0 5520

8 0.009 0.271 0 4179

10 0.003 0.195 0 3076

(2) Nuclear activation–decay series (B) of Fig. 12.9. The relevant parameters for
use with (12.207), summarized in Table 12.20, result in the following expression for
activity AD1(t) of daughter D1 (Co-60) as a function of activation time t

AD1(t) =
3.63×105 s−2 + 4.678×103 s−3

1.1×10−3 s−1

−1.332×10−8 s−1

{
e−(1.85×10−8 s−1)t − e−(5.179×10−9 s−1)t

}

− 4.678×103 s−3

(1.1×10−3 s−1)×(−1.1×10−3 s−1)

×{
e−(1.1×10−3 s−1)t − e−(5.179×10−9 s−1)t

}
= (15990 Ci)×{

e−(5.179×10−9 s−1)×t − e−(1.85×10−8 s−1)×t}
+ (0.1044 Ci)×{

e−(1.1×10−3 s−1)×t − e−(5.179×10−9 s−1)×t}. (12.223)

Using (12.223) with activation times t from 0 to 10 years in steps of 2 years yields
activities AD1(t) summarized in Table 12.21. The data presented in Table 12.21 are
also plotted as data points in Fig. 12.10 on curve (2).

12.6.Q11 (261)

A 10 g cobalt-59 (Co-59) sample is placed in a nuclear reactor with a neutron
fluence rate ϕ̇ of 5×1014 cm2 · s−1.

(a) Calculate the activity ACo-60(t) of the Co-60 daughter against activation
time t in steps of 2 years from 0 to 10 years as well as the maximum
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activity (ACo-60)max and time (tmax)Co-60 at which it is attained using
three nuclear activation models:

(1) Saturation model.
(2) Parent depletion model.
(3) Parent depletion–daughter activation model.

The neutron activation cross sections for the parent Co-59 nucleus and
for the daughter Co-60 nucleus are σP = 37×10−24 cm2 = 37 b and
σP = 2×10−24 cm2 = 2 b, respectively, and the half-life of Co-60 is
(t1/2)Co-60 = 5.26 a. Compare the results of (ACo-60)max and (tmax)Co-60
with a summary in tabular form for the three activation models.

(b) Compare the activities of Co-60 calculated in (a) to the activities in
Table 12.21 calculated using the complex activation scheme presented
in Prob. 260.

(c) Plot activities of Co-60 calculated in (a) and indicate parameters
(ACo-60)max and (tmax)Co-60 for the 3 models.

SOLUTION:

(a) In nuclear activation four effects contribute to activity AD(t) of the daughter:

(i) Production of the daughter through parent activation,
(ii) Depletion of the parent,
(iii) Decay of the daughter, and
(iv) Activation of the daughter.

Many levels of complexity are available for description of cobalt-60 activity in nu-
clear activation of cobalt-59 ranging from a simple saturation model all the way to
accounting for the two branches available for Co-59 activation, shown schemati-
cally in Fig. 12.9 (Prob. 260). In this problem we compare ACo-60(t) for the three
simplest models assuming that Co-60 is produced from Co-59 through only one
branch rather than two and that the cross section σCo-59 for neutron activation of
Co-59 is equal to 37 b which is the sum of cross sections of the two branches. In
reality, Co-60 is produced (i) directly through one branch with a cross section of
17 b and (ii) through an intermediate step of metastable Co-60m with a cross sec-
tion of 20 b. The metastable Co-60m has a very short half-life and, for simplicity,
one usually assumes that Co-60 is produced only through the direct branch with a
cross section of 37 b.

(1) Saturation model: In the saturation model, parent depletion and daughter ac-
tivation are ignored during the activation process and the activity of the daughter
AD(t) as a function of activation time t is

AD(t)= σPϕ̇NP(0)
[
1 − e−λDt

]
, (12.224)
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Table 12.22 Relevant parameters for use of the saturation model (12.224) in neutron activation
of Co-59 with mass mCo-59 = 10 g in a reactor with neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1

σCo-59 37×10−24 cm2

λCo-60 = ln 2/(t1/2)Co-60 ln(2)/5.26 a = 4.179×10−9 s−1

ϕ̇ 5×1014 cm−2 s−1

NCo-59(0)=mNA/A (10 g)×(6.022×1023 mol−1)/(59 g · mol−1)= 1.021×1023 (atoms)

σCo-59ϕ̇ (37×10−24 cm2)×(5×1014 cm−2 s−1)= 1.85×10−8 s−1

σCo-59ϕ̇NCo-59(0) (1.85×10−8 s−1)×(1.021×1023)= 1.889×1015 s−1

Table 12.23 Activity ACo-60(t) of daughter Co-60 calculated from the saturation model (12.225)
for mass of Co-59 sample mCo-59 = 10 g and neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1 for
activation times t between 0 and 10 years in steps of 2 years. Data are also plotted as curve (1) in
Fig. 12.11

t (years) e−(4.179×10−9 s−1)t ACo-60(t) (Ci)

0 1.000 0

2 0.768 11824

4 0.590 20908

6 0.454 27888

8 0.348 33250

10 0.268 37371

∞ 0 51054

where NP(0) is the number of parent nuclei at time t = 0 and λD = ln 2/(t1/2)D is
the decay constant of the daughter.

The relevant parameters for use of (12.224) in Co-59 nuclear activation are sum-
marized in Table 12.22 and result in the following expression for activity ACo-60(t)

of the Co-60 daughter as a function of activation time t

ACo-60(t) = σCo-59ϕ̇NCo-59(0)
[
1 − e−λCo-60t

]
= (

1.889×1015 Bq
)×[

1 − e−(4.179×10−9 s−1)t
]

= 1.889×1015 Bq

3.7×1010 Bq/Ci

[
1 − e−(4.179×10−9 s−1)t

]

= (51054 Ci)×[
1 − e−(4.179×10−9 s−1)t

]
. (12.225)

The use of (12.225) with activation times t from 0 to 10 years in steps of 2 years
yields Co-60 activities ACo-60(t) that are summarized in Table 12.23 and plotted as
curve (1) with open square data points in Fig. 12.11.

For the saturation model, the maximum daughter activity (ACo-60)max occurs at
the saturation activity (ACo-60)sat = σCo-59ϕ̇NCo-59(0) that is attained at activation
time t → ∞. Thus, for the mass of Co-59 samplemCo-59 = 10 g and neutron fluence
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Table 12.24 Relevant parameters for use of the parent depletion model (12.227) in activation of
a Co-59 sample with mass mCo-59 = 10 g and neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1

σCo-59 37×10−24 cm2

λCo-60 = ln 2/(t1/2)Co-60 ln(2)/5.26 a = 4.179×10−9 s−1 = 0.4179×10−8 s−1

ϕ̇ 5×1014 cm−2 s−1

NCo-59(0)=mNA/A (10 g)×(6.022×1023 mol−1)/(59 g · mol−1)=
1.021×1023 (atoms)

σCo-59ϕ̇ (37×10−24 cm2)×(5×1014 cm−2 s−1)= 1.85×10−8 s−1

λCo-60σCo-59ϕ̇NCo-59(0) (4.179×10−9 s−1)×(1.85×10−8 s−1)×(1.021×1023)=
7.890×106 s−2

λCo-60 − σCo-59ϕ̇ 0.4179×10−8 s−1 − 1.85×10−8 s−1 = −1.432×10−8 s−1

rate ϕ̇ = 5×1014 cm2 · s−1

(ACo-60)max = (ACo-60)sat = σCo-59ϕ̇NCo-59(0)= 1.889×1015 Bq = 51054 Ci.
(12.226)

(2) Parent depletion model: In the parent depletion model, the activity of the
daughter AD(t) as a function of activation time t takes into account the depletion of
parent nuclei during the activation process but ignores the loss of daughter nuclei as
a result of neutron activation. The daughter activity AD(t) is in general expressed as
follows

AD(t)= λDσPϕ̇NP(0)

λD − σPϕ̇

[
e−σPϕ̇t − e−λDt

]
. (12.227)

The relevant parameters for describing the Co-60 activity ACo-60(t) with the par-
ent depletion model in nuclear activation of Co-59 are summarized in Table 12.24
and result in the following expression for activity ACo-60(t) as a function of activa-
tion time t

AD(t) = 7.890×106 s−2

−1.432×10−8 s−1
×[
e−(1.850×10−8 s−1)t − e−(4.179×10−9 s−1)t

]

= (
5.510×1014 Bq

)×[
e−(4.179×10−9 s−1)t − e−(1.850×10−8 s−1)t

]
= (14891 Ci)×[

e−(4.179×10−9 s−1)t − e−(1.850×10−8 s−1)t
]
. (12.228)

The use of (12.228) with activation times t from 0 to 10 years in steps of 2 years
yields Co-60 activities ACo-60(t) that are summarized in Table 12.25 and plotted
with open circle data points in Fig. 12.11 as curve (2).

As evident from curve (2) of Fig. 12.11, in parent depletion model the daugh-
ter activity AD(t) is zero at activation time t = 0, and with increasing t reaches
a maximum (AD)max at t = (tmax)D and then drops as t increases further until at
t = ∞ it becomes zero again. The maximum daughter activity (AD)max is attained
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Table 12.25 Activity AD(t) of daughter Co-60 calculated from (12.228) for mass of Co-59 sam-
ple mCo-59 = 10 g and neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1 for activation times t between 0
and 10 years in steps of 2 years. Data are also plotted in Fig. 12.11 as curve (2)

t (years) e−(1.850×10−8 s−1)t e−(4.179×10−9 s−1)t ACo-60(t) (Ci)

0 1.000 1.000 0

2 0.311 0.768 6804

4 0.097 0.590 7346

6 0.030 0.454 6304

8 0.009 0.348 5049

10 0.003 0.268 3943

∞ 0 0 0

at a characteristic time (tmax)D given by

(tmax)D = ln σPϕ̇
λD

σPϕ̇ − λD
. (12.229)

For a neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1, Co-59 parent nuclei, and Co-60
daughter nuclei the characteristic time (tmax)Co-60 is calculated as follows

(tmax)Co-60 = ln σCo-59ϕ̇
λCo-60

σCo-59ϕ̇ − λCo-60
= ln 1.85×10−8 s−1

4.179×10−9 s−1

1.85×10−8 s−1 − 0.4179×10−9 s−1

= 1.039×108 s = 3.29 a. (12.230)

To determine the maximum activity of Co-60 (ACo-60)max at activation time
(tmax)Co-60 given in (12.230) for Co-59 sample mass mCo-59 = 10 g and neutron
fluence rate ϕ̇ = 5×1014 cm2 · s−1 we insert (12.230) into (12.228) and get

(Amax)Co-60 = ACo-60
[
(tmax)Co-60

]

= λCo-60σCo-59ϕ̇NCo-59(0)

λCo-60 − σCo-59ϕ̇

[
e−σCo-59ϕ̇×(tmax)Co-60 − e−λCo-60×(tmax)Co-60

]

= 7.890×106 s−2

−1.432×10−8 s−1
×[
e−(4.179×10−9 s−1)×(1.039×108 s−1)

− e−(1.850×10−8 s−1)×(1.039×108 s−1)
]

= (
5.510×1014 Bq

)×(0.6478 − 0.1463)

= (14891 Ci)×0.5015 = 7468 Ci. (12.231)

(3) Parent depletion–daughter activation model: In the parent deletion–daughter
activation model, the activity of the daughter AD(t) as a function of activation time
t taking into account depletion of parent nuclei during activation as well as loss of
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Table 12.26 Relevant parameters for use of (12.232) with mass of Co-59 sample mCo-59 = 10 g
and neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1

σCo-59 37 b = 37×10−24 cm2

σCo-60 2 b = 2×10−24 cm2

λCo-60 = ln 2/(t1/2)Co-60 ln 2/5.26 a = 4.179×10−9 s−1

ϕ̇ 5×1014 cm−2 · s−1

NCo-59(0)=mNA/A (10 g)×(6.022×1023 mol−1)/(59 g · mol−1)=
1.021×1023 (atoms)

σCo-59ϕ̇ (37×10−24 cm2)×(5×1014 cm−2 · s−1)= 1.85×10−8 s−1

σCo-60ϕ̇ (2×10−24 cm2)×(5×1014 cm−2 · s−1)= 1×10−9 s−1

λ∗
Co-60 = λCo-60 + σCo-60ϕ̇ (4.179×10−9 s−1)+ (1×10−9 s−1)= 5.179×10−9 s−1

λCo-60σCo-59ϕ̇NCo-59(0) (4.179×10−9 s−1)×(1.85×10−8 s−1)×(1.021×1023)=
7.890×106 s−2

λ∗
Co-60 − σCo-59ϕ̇ 0.5179×10−8 s−1 − 1.85×10−8 s−1 = −1.332×10−8 s−1

daughter nuclei because of neutron activation is given by

AD(t)= λDσPϕ̇NP(0)

λ∗
D − σPϕ̇

[
e−σPϕ̇t − e−λ∗

Dt
]
, (12.232)

where λ∗
D = λD + σDϕ̇ is a modified decay constant accounting for daughter decay

as well as for daughter activation.
The relevant parameters for describing the Co-60 activity ACo-60(t) with the par-

ent depletion–daughter activation model in nuclear activation of Co-59 are summa-
rized in Table 12.26 and result in the following expression for activity ACo-60(t) as
a function of time t

ACo-60(t) = λCo-60σCo-59ϕ̇NCo-59(0)

λ∗
Co-60 − σCo-59ϕ̇

[
e−σCo-59ϕ̇t − e−λ∗

Co-60t
]

= 7.890×106 s−2

−1.332×10−8 s−1
×[
e−(1.850×10−8 s−1)t − e−(0.5179×10−8 s−1)t

]

= (
5.923×1014 Bq

)×[
e−(0.5179×10−8 s−1)t − e−(1.850×10−8 s −1)t

]
= (16008 Ci)×[

e−(5.179×10−9 s−1)t − e−(1.850×10−8 s−1)t
]
. (12.233)

The use of (12.233) with activation times t from 0 to 10 years in steps of 2 years
yields Co-60 activities ACo-60(t) that are summarized in Table 12.27 and plotted as
curve (3) with solid circle data points in Fig. 12.11.

For the parent depletion–daughter activation model, the maximum daughter ac-
tivity (A∗

D)max is attained at a characteristic time (t∗max)D given by

(
t∗max

)
D =

ln σPϕ̇
λ∗

D

σPϕ̇ − λ∗
D
, (12.234)
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Table 12.27 Activity AD(t) of daughter Co-60 calculated from (12.233) for mass of Co-59 sam-
ple mCo-59 = 10 g and neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1 for activation times t between 0
and 10 years in steps of 2 years. The data are also plotted as solid circle data points in Fig. 12.11

t (years) e−(1.850×10−8 s−1)t e−(5.179×10−9 s−1)t AD(t) (Ci)

0 1.000 1.000 0

2 0.311 0.721 6563

4 0.097 0.520 6778

6 0.030 0.375 5526

8 0.009 0.270 4184

10 0.003 0.195 3080

which is of same form as (12.229) for parent depletion model except that λD is
replaced by λ∗

D.
For neutron fluence rate ϕ̇ of 5×1014 cm2 · s−1, Co-59 parent, and Co-60 daugh-

ter the characteristic time (t∗max)D at maximum activity (A∗
Co-60)max of the Co-60

daughter for the parent depletion–daughter activation model is calculated as

(
t∗max

)
Co-60 =

ln σCo-59ϕ̇
λ∗

Co-60

σCo-59ϕ̇ − λ∗
Co-60

= ln 1.85×10−8 s−1

5.179×10−9 s−1

1.85×10−8 s−1 − 0.5179×10−8 s−1

= 1.273

1.332×10−8 s−1
= 9.557×107 s = 3.03 a. (12.235)

To determine the maximum activity (A∗
Co-60)max attained during neutron acti-

vation in the Co-59 sample of mass mCo-59 = 10 g and with neutron fluence rate
ϕ̇ = 5×1014 cm2 · s−1 we insert (12.235) into (12.233) and get

(
A∗

Co-60

)
max = ACo-60

[(
t∗max

)
Co-60

]

= λCo-60σCo-59ϕ̇NCo-59(0)

λ∗
Co-60 − σCo-59ϕ̇

[
e−(σCo-59ϕ̇)×(t∗max)Co-60

− e−(λ∗
Co-60)×(t∗max)Co-60

]
= (16008 Ci)×[

e−(5.179×10−9 s−1)×(9.557×107 s)

− e−(1.850×10−8 s−1)×(9.557×107 s)]
= 7027 Ci. (12.236)

Table 12.28 presents the maximum Co-60 activity (ACo-60)max as well as char-
acteristic times (tmax)Co-60 at which the maximum activity (ACo-60)max of Co-60
occurs in neutron activation of a 10 g sample of Co-59 in a nuclear reactor with
neutron fluence rate ϕ̇ of 5×1014 cm−2 · s−1 as predicted by three activation mod-
els: (1) saturation, (2) parent depletion, and (3) parent depletion–daughter activation.
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Table 12.28 Maximum activity (ACo-60)max and characteristic time (tmax)Co-60 for the neutron
activation of 10 g sample of Co-59 in reactor with neutron fluence rate ϕ̇ of 5×1014 cm−2 · s−1

for three activation models: (1) Saturation, (2) Parent depletion, and (3) Parent depletion–daughter
activation

Activation model Maximum activity
(ACo-60)max (Ci)

Characteristic time
(tmax)Co-60 (a)

Saturation 51054 ∞
Parent depletion 7468 3.29

Parent depletion–daughter activation 7027 3.03

Table 12.29 Activity ACo-60(t) of daughter Co-60 calculated using (1) saturation model, (2) par-
ent depletion model, (3) parent depletion–daughter activation model, and (4) complex model
of Prob. 260 for mass of Co-59 sample mCo-59 = 10 g and reactor neutron fluence rate ϕ̇ =
5×1014 cm2 · s−1 for activation times t between 0 and 10 years in steps of 2 years

t (years) Activity ACo-60(t) of daughter Co-60

Saturation Parent depletion Parent depletion–
daughter activation

Complex model

(1) (2) (3) (4)

0 0 0 0 0

2 11824 6804 6563 6556

4 20908 7346 6778 6771

6 27888 6304 5526 5520

8 33250 5049 4184 4179

10 37371 3943 3080 3076

∞ 51054 0 0 0

It is obvious that the saturation model grossly over-predicts (ACo-60)max in compar-
ison to the other two models because σCo-59ϕ̇ and λCo-60 are of the same order of
magnitude and the saturation model is valid only when σPϕ̇� λCo-60.

(b) Activities ACo-60(t) of Co-60 calculated using the saturation model (12.226),
the parent depletion model (12.228), the parent depletion–daughter activation
(12.232) model, and the complex model presented in Prob. 262 for a Co-59 sample
of mass mCo-59 = 10 g irradiated with neutron fluence rate ϕ̇ = 5×1014 cm2 · s−1

for activation times t between 0 and 10 years in steps of 2 years are for compari-
son purposes listed in Table 12.29. The four models are listed in order of increasing
complexity, the complex model accounting for all possible avenues and effects that
affect the production of Co-60 through neutron activation of Co-59. This suggests
the choice of model (4) as the gold standard to which the other models can be com-
pared. Several observations can now be made about the four activation models based
on Table 12.29:
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Fig. 12.11 Activity of cobalt-60 daughter against activation time t for neutron activation
of a cobalt-59 sample of mass m = 10 g in a nuclear reactor with neutron fluence rate
ϕ̇ = 5×1014 cm−2 · s−1. Open square points (�) represent data calculated from (12.225) for the
saturation model (1), open circle points (◦) represent data calculated from (12.228) for the parent
depletion model (2), and solid circle points (•) represent data calculated from (12.233) for the
parent depletion–daughter activation model (3). Maxima in activity for the parent depletion model
and for the parent depletion–daughter activation model are designated by (×)

(i) In comparison with the complex model the other three models all overesti-
mate the activity of Co-60 for all activation times.

(ii) All four models exhibit the same initial slope (radiation yield); however, with
increasing activation time t they exhibit their own behavior against time t .
Saturation model saturates for t → ∞ at very high and unrealistic satura-
tion activity Asat(∞) = 51054 Ci; the other three models reach a peak at
(ACo-60)max around 7000 Ci and then approach zero as t → ∞.

(iii) In comparison with the complex model, activities calculated for the saturation
model are significantly higher; for the parent depletion model are up to 30 %
higher; and for the parent depletion–daughter activation model are essentially
identical. This suggests that the parent depletion–daughter activation model,
despite ignoring the intermediate branch of the Co-59 activation process, is
an excellent and significantly better replacement for the more complicated
and cumbersome complex model studied in Prob. 262.

(c) Activities ACo-60(t) of Co-60 calculated in (a) and presented in Table 12.28 for
(1) saturation model, (2) parent depletion model, and (3) parent depletion–daughter
activation model are plotted in Fig. 12.11. The data calculated for the complex acti-
vation model in Prob. 262 are not shown separately in the figure but we note that they
are essentially identical with the data presented in curve (3) for the parent depletion–
daughter activation model. Conclusions reached in (b) based on Table 12.29 are
substantiated by diagrams of Fig. 12.11.
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12.6.Q11 (262)

Gold-198 seeds or grains are used for permanent interstitial brachytherapy
procedures. Gold-198 is produced in nuclear reactors by activation of pure
gold-197 seeds (parent nuclei) with thermal neutrons. Neutron activation
cross section σP for the parent nuclei is 98.7 barns. Gold seeds are activated
in the reactor to achieve a specific activity a of approximately 2600 TBq/g
(70 Ci/g). Gold-198 is β− emitter, decaying with a half-life t1/2 of 2.7 days
into 3 states (2 excited states and ground state) of mercury-198. Gamma rays
associated with gold-198 decay actually come from the de-excitation of the
mercury-198 nuclide that instantaneously follows the β− decay of gold-198.

(a) Assuming that the saturation model is adequate for describing the
growth of gold-198 activity during activation with thermal neutrons,
state an equation that describes the growth in specific activity of gold-
198 during activation in a reactor with a constant neutron fluence rate
ϕ̇ = 4×1013 cm−2 · s−1.

(b) Determine the maximum attainable specific activity (saturation specific
activity) asat for the gold seed in this reactor.

(c) Plot the specific activity a(t) given in (a) from time t = 0 to t = 300 h.
(d) Calculate activation time t required to obtain specific activity a of gold-

198 equal to: (1) 70 Ci/g, (2) half of saturation specific activity asat
determined in (b), and (3) 95 % of saturation specific activity asat deter-
mined in (b).

(e) Estimate the fraction of depleted parent nuclei for the activation times
determined in (d) and justify the use of the saturation activation model
in production of gold-198 seeds.

(f) Define the radioactivation yield YD in general and calculate it for the
gold-197 activation into gold-198 in a nuclear reactor with neutron flu-
ence ϕ̇ of 4×1013 cm−2 · s−1.

SOLUTION:

(a) Specific activity a of a radioactive source is defined as activity A of the source
per unit massM of the source, i.e., a = A/M . For the saturation model, we can thus
express specific activity a against activation time t as (T12.13)

a(t)= A(t)
M

= σPϕ̇NP(0)

M

{
1 − e−λDt

}= σPϕ̇NP

AP

{
1 − e−λDt

}= asat
{
1 − e−λDt

}
,

(12.237)
where we define asat as the saturation specific activity (asat = σPϕ̇NA/AP) and we
used the identity NP(0)/M = NA/AP with AP the atomic weight of the parent nu-
cleus and NA is the Avogadro number (6.022×1023 mol−1).
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For our specific case of gold-198 produced by activation of stable gold-197 with
thermal neutron (ϕ̇ = 4×1013 cm−2 · s−1) in a nuclear reactor, the growth of specific
activity a(t) of gold-198 seed is, based on (12.237), given as

a(t) = σAu-197ϕ̇NA

AAu-197

{
1 − e−

(ln 2)t
t1/2

}

= (98.7×10−24 cm2)×(4×1013 cm−2 · s−1)×(6.022×1023 mol−1)

(197 g · mol−1)

×{
1 − e−(0.0107 h)t}

= (
1.21×1013 Bq · g−1)×{

1 − e−(0.0107 h−1)t
}= (326.2 Ci/g)

×{
1 − e−(0.0107 h−1)t

}
, (12.238)

where we made use of the conversion: 1 s−1 = 1 Bq = (3.7×1010)−1 Ci and calcu-
lated the decay constant of the daughter nucleus λD as

λD = ln 2

(t1/2)D
= ln 2

(2.7 d)×(24 h/d)
= 0.0107 h−1 = 2.972×10−6 s−1. (12.239)

(b) Under the assumption that the saturation model adequately describes the
growth of gold-198 specific activity for thermal neutron activation of gold-197, the
maximum attainable specific activity (saturation value) is determined using (12.238)
with time t = ∞ or we use our definition of asat that we introduced with (12.237)

asat = σPϕ̇NA

AP

= (98.7×10−24 cm2)×(4×1013 cm−2 · s−1)×(6.022×1023 mol−1)

(197 g · mol−1)

= lim
t→∞a = lim

t→∞
σAu-197ϕ̇NA

AAu-197

{
1 − e−λDt

}

= (326.2 Ci/g)× lim
t→∞

{
1 − e−(0.0107 h−1)t

}

= 326.2 Ci/g = 1.21×1013 Bq/g. (12.240)

(c) In preparation to plot the specific activity a(t) for the first 300 hours of the ac-
tivation process of gold-197 into gold-198 we use (12.238) to calculate the specific
activity a(t) from time t = 0 to time t = 300 h in steps of 50 hours and show the
results in Table 12.30 and Fig. 12.12.

(d) In this section we determine activation times t under various conditions using
(12.238) solved for the specific time t as follows

a(t)

asat
= {

1 − e−λDt
}

or t = − 1

λD

{
1 − a(t)

asat

}
. (12.241)
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Table 12.30 Growth of gold-198 specific activity during the first 300 hours of thermal neutron
activation of gold-197 in nuclear reactor with neutron fluence rate ϕ̇ = 4×1013 cm−2 · s−1

Time t (h) (0.0107 h−1)t 1 − e−(0.0107 h−1)t a(t)= (326.2 Ci/g)×{1 − e−(0.0107 h−1)t }
0 0.000 0.000 0.0

50 0.535 0.414 135.1

100 1.070 0.657 214.3

150 1.605 0.799 260.6

200 2.140 0.882 287.8

250 2.675 0.931 303.7

300 3.210 0.960 313.3

∞ ∞ 1.0 326.2

Fig. 12.12 Specific activity a(t) against activation time t for activation of gold-197 into gold-198
[(t1/2)D = (t1/2)Au-198 = 2.7 d] with thermal neutrons in a nuclear reactor with fluence rate ϕ̇ of
4×1013 cm−2 ·s−1. Cross section σP = σAu-197 for thermal neutron activation of gold-197 is 98.7 b;
data points calculated with (12.238) are shown with solid circles, specific activities calculated in
(d) are shown with symbol ×

(1) Time t1 required for the specific activity a(t1) = a1 of the Au-197/Au-198
gold seed to reach 70 Ci/g.

t1 = − 1

λD
ln

{
1 − a(t1)

asat

}
= − 1

0.0107 h−1
ln

{
1 − 70 Ci/g

326.2 Ci/g

}

= 22.6 h = 0.94 d. (12.242)

(2) Time t2 required for specific activity a2 of the Au-197/Au-198 gold seed to
reach 50 % of the saturation specific activity asat determined in (b) as asat =
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326.2 Ci/g; i.e., a2 = 163.1 Ci/g.

t2 = − 1

λD
ln

{
1 − a(t2)

asat

}
= − 1

0.0107 h−1
ln

{
1 − 163.1 Ci/g

326.2 Ci/g

}

= ln 2

0.0107 h−1

= 1

λD
= (t1/2)Au-198 = 2.7 d = 64.8 h. (12.243)

In the saturation neutron activation model where an assumption is made that
the number of parent nuclei is infinite, 50 % of saturation specific activity
is attained in an activation time t that is equal to the half-life (t1/2)D of the
daughter nucleus. In the case of Au-197 → Au-198 activation, a specific ac-
tivity equal to 50 % of the saturation specific activity is reached at an activa-
tion time t equal to the half-life (t1/2)Au-198 = 2.7 d of the daughter Au-198
nucleus.

(3) Time t3 required for specific activity a3 of the Au-197/Au-198 gold seed to
reach 95 % of the saturation specific activity asat determined in (b) as asat =
326.2 Ci/g, i.e., a3 = 309.9 Ci/g.

t3 = − 1

λD
ln

{
1 − a(t3)

asat

}
= − 1

0.0107 h−1
ln

{
1 − 309.9 Ci/g

326.2 Ci/g

}

= ln(1 − 0.95)

0.0107 h−1
= 280.0 h. (12.244)

(e) The depletion of parent nuclei during activation is described with the following
relationship

NP(t)=NP(0)e
−σPϕ̇t , (12.245)

where NP(0) is the initial number of parent nuclei at time t = 0 and NP(t) is the
number of parent nuclei at time t . The fraction of depleted parent nuclei fdep after
activation time t is defined as the ratio

fdep = NP(0)−NP(t)

NP(0)
= 1 − NP(t)

NP(0)
= 1 − e−σPϕ̇t . (12.246)

Therefore, the fractions (fdep)1, (fdep)2, and (fdep)3 of depleted gold-197 nuclei
after activation times determined in (d) as (1) t1 = 22.6 h, (2) t2 = 64.8 h, and
(3) t3 = 280.0 h, respectively, in a nuclear reactor with a neutron fluence rate ϕ̇ =
4×1013 cm−2 · s−1 are from (12.246) given as

(fdep)1 = 1 − e−(98.7×10−24 cm2)×(4×1013 cm−2·s−1)×(22.6 h)×(3600 s/h) ≈ 3.2×10−4,

(12.247)

(fdep)2 = 1 − e−(98.7×10−24 cm2)×(4×1013 cm−2·s−1)×(64.8 h)×(3600 s/h) ≈ 9.2×10−4,

(12.248)
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(fdep)3 = 1 − e−(98.7×10−24 cm2)×(4×1013 cm−2·s−1)×(280 h)×(3600 s/h) ≈ 4×10−3.

(12.249)
Equations (12.247), (12.248), and (12.249) show that the fraction of depleted

gold-197 nuclei during activation in a reactor with a neutron fluence rate of ϕ̇ =
4×1013 cm−2 ·s−1 is small and can be neglected so as to be able to use the saturation
activation model. For example, as shown in (PP), even at 95 % of the saturation
specific activity of gold-198, the depletion of gold-197 nuclei is less than 0.5 % of
the initial value, and at smaller fractions of saturation specific activity, the depletion
is even less pronounced.

(f) Specific activity aD(t) of the daughter nuclide D given in (12.237) exhibits a
simple exponential growth behavior and its initial slope at t = 0 is defined as the
radio-activation yield YD of the daughter nuclide produced in the radioactivation
process. YD represents the initial rate of formation of the new daughter activity that
depends upon the irradiation conditions as well as the decay constant λD of the
daughter

YD = daD(t)

dt
= lim
t→0

σPϕ̇
NA

A
λDe

−λDt = σPϕ̇
NA

A
λD = asatλD. (12.250)

Radioactivation yield YD for the specific case of gold-197 radioactivation into gold-
198 in nuclear reactor with neutron fluence rate ϕ̇ of 4×1013 cm−2 ·s−1 is calculated
as follows

YAu-198 = σAu-197ϕ̇
NA

A
λAu-198 = asatλAu-198

= (
2.972×10−6 s−1)×(

1.21×1013 s−1 · g−1)= 3.6×107 s−2 · g−1,

(12.251)

where the saturation specific activity asat was determined in (12.239) and the decay
constant λAu-198 of gold-198 was determined in (12.238).

12.6.Q13 (263)

The most common type of nuclear reaction is that in which two nuclei inter-
act and produce one or more reaction products. The reaction is called binary
and one of the two reactants is the projectile (usually a moving particle or
photon) and the other is the target (usually a stationary nucleus). Nuclear re-
action between a neutron n and atomic nucleus AZX is an example of a typical
binary interaction, most commonly resulting in emission of a γ ray photon
or emission of a proton. The reaction is called neutron capture or neutron
activation.
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(a) What, if any, is the difference between the terms “neutron capture” and
“neutron activation”? Describe the important features of the (n, γ ) re-
action and the (n, p) reaction.

(b) List and briefly describe 4 neutron capture (neutron activation) reactions
of importance to medical physics. For each activation product discuss
the isotopic purity and specific activity of the resulting radiation source.

(c) For each neutron activation daughter D listed in (b) prepare a table con-
taining the following

(1) Parent nuclide P.
(2) Neutron capture cross section σP.
(3) Neutron capture reaction AZP(n, γ )A+1

ZP.
(4) Daughter nuclide D.
(5) Half-life. (t1/2)D.
(6) Decay constant λD.
(7) Decay mode of daughter D.
(8) Theoretical specific activity (aD)theor.
(9) Practical specific activity (aD)pract.

SOLUTION:

(a) As far as the nuclear reaction between a neutron (projectile) n and parent nu-
cleus (target) AZX is concerned, there is no essential difference between the terms
“neutron capture” and “neutron activation”. Both terms describe the same reaction
and its outcome, that is, activation of the target nucleus through capture of the neu-
tron projectile. However, the choice between the two names that are used for the
nuclear reaction triggered by the neutron depends on the reaction outcome. When
our interest is the fate of the neutron projectile, we call the reaction neutron capture
and when our interest is in the production of radioactive daughter product, we call
the reaction neutron activation.

The (n, γ ) and (n, p) nuclear reactions are the two most common types of neutron
capture reaction:

(1) The (n, γ ) reaction results in neutron capture and emission of one or more γ
rays. The schematic representation of the nuclear reaction is as follows

A
ZX + n = A+1

ZX + γ or A
ZX(n, γ )A+1

ZX. (12.252)

In the (n, γ ) reaction the target nucleus AZX captures a neutron and is converted

into an excited nucleus A+1
ZX

∗
that undergoes an immediate de-excitation to

its ground state A+1
ZX through emission of a γ ray or several γ rays if the
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transition to ground state goes through intermediate excited states. Note that
the parent nucleus A

ZX and the daughter nucleus A+1
ZX are isotopes of the

same chemical element. The A+1
ZX nucleus is neutron rich as well as unstable

(radioactive) and decays with a given half-life through β− decay into a more
stable configuration.

(2) The (n, p) reaction results in neutron capture and emission of a proton and is
schematically represented as follows

A
ZX + n = A

Z−1Y + p or A
ZX(n,p) A

Z−1Y. (12.253)

The (n, p) reaction produces a new nucleus A
Z−1Y that is an isobar of the target

nucleus AZX. The target nucleus captures the neutron projectile and promptly
ejects a proton to become converted into a new nucleus A

Z−1Y. Note that nuclei
A
ZX and A

Z−1Y do not represent the same chemical element; however, they
posses the same atomic mass number A which means that they are isobars.

(b) The four neutron activation processes of importance to medical physics are:

(1) Production of cobalt-60 radionuclide for use in cobalt-60 sealed sources for
external beam radiotherapy.

(2) Production of iridium-192 radionuclide for use in iridium-192 sealed sources
for high dose rate (HDR) remote afterloading brachytherapy.

(3) Production of molybdenum-99 radionuclide for use in generating technetium-
99m radionuclide with radionuclide generators for nuclear medicine imaging.

(4) Production of lithium-7 radionuclide in boron neutron capture therapy.

(1) Cobalt-60 is the most widely used radionuclide source in teletherapy machines
for external beam radiotherapy and is the radionuclide of choice in Gamma units
used for stereotactic radiosurgery. It has also been used in blood irradiators as well
as in remote afterloading machines for brachytherapy.

Cobalt-60 is produced in a nuclear reactor by irradiating stable cobalt-59 with
thermal neutrons [59Co(n, γ )60Co] and it decays through beta minus decay with a
half-life (t1/2)Co-60 of 5.26 years into excited nickel-60, in each Co-60 nuclear disin-
tegration, emitting a beta particle (electron) and two gamma ray photons (1.17 MeV
and 1.33 MeV). The beta particle comes from the beta minus decay of cobalt-60; the
two gamma rays originate from the gamma decay of excited nickel-60 into ground
state of nickel-60. Since the two gamma rays originating from the gamma decay
of nickel-60 follow instantaneously the beta minus nuclear decay of cobalt-60 into
excited nickel-60, it is customary to refer to these gamma rays as cobalt-60 gamma
rays even though they are actually produced in the gamma decay of nickel-60.

As shown in Probs. 260 and 261 (see Figs. 12.9 and 12.11), the actual nuclear ac-
tivation / decay scheme of Co-60 is significantly more complicated than the simpli-
fied, yet adequate for practical purposes, scheme normally invoked in the discussion
of Co-60 activation and decay.
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The theoretical specific activity (aCo-60) of cobalt-60 is calculated under the as-
sumption that the radioactive nuclide contains only the daughter nuclei, i.e., the
source is carrier-free

(aCo-60)theor = ACo-60

m
= λCo-60NCo-60

m
= (ln 2)NA

(t1/2)Co-60ACo-60

= (ln 2)×(6.022×1023 mol−1)

(5.26 a)×(365 d/a)×(24 h/d)×(3600 s/h)×(60 g · mol−1)

= 4.194×1013 s−1/g = 41.94 TBq/g = 41.94×1012 Bq · g−1

3.7×1010 Bq/Ci

= 1133.5 Ci/g. (12.254)

In practice, manufacturing a cobalt-60 carrier-free source would be very difficult
because cobalt-60 is produced through neutron activation in a nuclear reactor and
at the end of the relatively lengthy activation process (few months to few years) the
cobalt-60 radionuclide is found in a mixture consisting of:

(i) Cobalt-60 nuclei produced by neutron capture in cobalt-59.
(ii) Remaining cobalt-59 parent nuclei that escaped activation.

(iii) Nickel-60 nuclei that were produced in beta minus decay of some of cobalt-
60 nuclei during the activation process.

Typical activity of a cobalt source for external beam radiotherapy is of the order of
104 Ci (370 TBq). A Gamma Unit contains about 200 cobalt sources at ∼30 Ci each
for a total activity of some 6000 Ci per machine.

Because of the difficulty in physical separation of Co-60 from the mixture, a
cobalt-60 teletherapy source is not carrier-free; rather, it contains a mixture of
Co-59, Co-60, and Ni-60. The highest practical specific activity of a cobalt-60
source amounts to about 300 Ci/g or about 25 % of the theoretical specific activ-
ity of Co-60 given in (12.254). Obviously, the higher is the specific activity of a
teletherapy source, the smaller is the source diameter, the closer comes the source
to point source geometry, and the smaller is the geometrical beam penumbra.

(2) Iridium-192 is the most widely used radionuclide source in remote afterload-
ing machines for brachytherapy. It is produced in a nuclear reactor by irradiating
with thermal neutrons natural iridium samples consisting of Ir-191 (natural abun-
dance of 37.3 %) and Ir-193 (natural abundance of 62.7 %). Both isotopes in natural
iridium are stable with cross sections σP of 954 b and 100 b, respectively.

Irradiation with thermal neutrons of Ir-191 results in Ir-192 [191Ir(n, γ )192Ir],
irradiation of Ir-193 results in Ir-194 [193Ir(n, γ )194Ir]. Both Ir-192 and Ir-194 are
radioactive isotopes of iridium with half-lives of 73.8 days and 19.3 hours, respec-
tively. Iridium-194 produced in natural iridium by neutron activation has a much
shorter half-life than Ir-192 and it decays to stable platinum-194 within a few days,
thereby not affecting the radiation emanating from an Ir-192 source.
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Similarly to the cobalt-60 source, an iridium-192 source is not carrier-free be-
cause of the difficulty involved in separation of Ir-192 from the sample mixture that
is even more complicated than that of a cobalt source. After the activation process,
the iridium-192 source contains:

(i) Remaining Ir-191.
(ii) Osmium-192 (Os-192) and platinum-192 (Pt-192), both daughters of Ir-192

that was produced and decayed during the activation process through β−
decay into Pt-192 or through electron capture into Os-192.

(iii) Ir-193 remaining from the activation process or produced by neutron activa-
tion of Ir-192.

(iv) Ir-194 produced through neutron activation of Ir-193.
(v) Daughter products of Ir-194 decay.

Clearly, the practical specific activity of an iridium-192 source is lower than the
theoretical specific activity of Ir-192 calculated as follows

(aIr-192)theor = AIr-192

m
= λIr-192NIr-192

m
= (ln 2)NA

(t1/2)Ir-192AIr-192

= (ln 2)×(6.022×1023 mol−1)

(73.8 d)×(24 h/d)×(3600 s/h)×(192 g · mol−1)

= 3.410×1014 s−1/g = 341 TBq/g = 341×1012 Bq · g−1

3.7×1010 Bq/Ci

= 9216 Ci/g. (12.255)

Production of iridium-192 radionuclide suffers the additional complication of
the activation product Ir-192 being affected by neutron irradiation and undergoing
its own activation with a cross section σIr-192 of 1420 b. During the activation pro-
cess this results in depletion of Ir-192 not only because of its radioactive decay but
also because of its activation into Ir-193. This suggests that, instead of the standard
depletion model of nuclear activation, one should use the parent depletion–daughter
activation model which offers a better approximation to the production of the Ir-192
daughter radionuclide and accounts for the loss in daughter nuclei not only because
of the decay of the radioactive daughter but also because of the neutron activation
of the daughter.

Typical Ir-192 source activity for use in HDR brachytherapy is 10 Ci (0.37 TBq)
and the practical specific activity of the brachytherapy source is up to ∼600 Ci/g,
compared to the theoretical specific activity of Ir-192 given in (12.255) as
9216 Ci/g.

(3) Molybdenum-99 (Mo-99) is a radionuclide of importance to medical physics,
since it serves as parent nucleus for production of technetium-99m (Tc-99m) in
radionuclide 99Mo–99mTc generators. These generators are devices that allow ex-
traction of Tc-99m radionuclide of high specific activity from a radioactive mixture
produced by Mo-99 beta minus decay into Tc-99m.
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Technetium-99m (Tc-99m) is the most widely used radionuclide in nuclear
medicine, being used in some 80 % of all clinical nuclear imaging tests. It emits
140.5 keV gamma rays with a physical half-life of 6.02 hours and thus possesses
properties that make it very suitable for nuclear clinical imaging, providing high
quality images combined with relatively low patient radiation dose.

Two techniques are in use for commercial production of Mo-99, both using ther-
mal neutrons from a nuclear reactor to irradiate suitably prepared targets. The preva-
lent technique for Mo-99 production uses the fission process in highly enriched
uranium-235 (HEU) targets and the less common technique uses neutron capture in
enriched Mo-98 targets. The two reactions are expressed as follows: (1) Fission—
235U(n, f)99Mo and (2) Neutron activation—98Mo(n, γ )99Mo.

While each technique has its advantages and disadvantages over the other tech-
nique, fission compared to neutron activation produces Mo-99 with a significantly
higher specific activity, as a result of its more than two orders of magnitude larger
cross section for Mo-99 production (37 b against 0.13 b). The main drawback of
fission is that it produces a high level of nuclear waste in comparison with neutron
activation of Mo-98 which produces minimal nuclear waste. In addition to Mo-99,
fission of U-235 produces a large number of other fission products and three of them
are also of importance in medical physics: iodine-131 and xenon-133 both used in
nuclear imaging and cesium-137 used as radiation source, mainly in blood irradia-
tors but was in the past also used as source for external beam radiotherapy.

Theoretical specific activity aMo-99 of Mo-99 is determined as follows

(aMo-99)theor = AMo-99

m
= λMo-99NMo-99

m
= (ln 2)NA

(t1/2)Mo-99AMo-99

= (ln 2)×(6.022×1023 mol−1)

(66 h)×(3600 s/h)×(99 g · mol−1)
= 1.775×1016 s−1/g

= 1.775×104 TBq/g = 1.775×1016 Bq · g−1

3.7×1010 Bq/Ci

= 4.797×105 Ci/g. (12.256)

The thermal neutron cross section for fission of U-235 is 600 b and the fission
yield of Mo-99 in a U-235 target is about 6 %, suggesting a fission cross section for
Mo-99 of 37 b. The neutron activation cross section of Mo-98 is about 300 times
smaller at about 0.13 b. The practical specific activity of fission-produced Mo-99
with 90 % HEU can exceed 5000 Ci/g, while the practical specific activity of Mo-99
produced with neutron activation of Mo-98 is of the order of 1 Ci/g, clearly much
lower than that of fission-produced Mo-99. Of course, practical specific activities
for both the fission- as well as activation-produced Mo-99 are much lower than the
theoretical specific activities calculated in (12.256) assuming a carrier-free Mo-99
radionuclide.



12.6 Nuclear Activation with Neutrons 889

Table 12.31 Several important parameters of four nuclides of interest in medical physics: cobalt-
60 used as sealed radiation source for external beam radiotherapy, iridium-192 used as sealed
radiation source for high dose rate brachytherapy, molybdenum-99 used for generating technetium-
99m for nuclear imaging, and lithium-7 produced as the daughter nuclide in boron neutron capture
therapy

(1) Parent nuclide P Cobalt-59
(Co-59)

Iridium-191
(Ir-191)

Molybdenum-99
(Mo-99)

Boron-10
(B-10)

(2) Neutron capture
cross section σP

37.2 954 0.13 3840

(3) Neutron capture
reaction
A
ZP(n, γ )A+1

ZP

59
27Co(n, γ )60

27Co 191
77Ir(n, γ )192

77Ir 98
42Mo(n, γ )99

42Mo 10
5B(n, α)73Li

(4) Daughter nuclide D Cobalt-60
(Co-60)

Iridium-192
(Ir-192)

Molybdenum-98
(Mo-99)

Lithium-7
(Li-7)

(5) Half-life
(t1/2)D = ln 2

λD

5.26 a 73.8 d 66 h Stable

(6) Decay constant
λD(s−1)=
(ln 2)/(t1/2)D

4.179×10−9 1.087×10−7 2.917×10−6 N/A

(7) Decay mode of
daughter
(granddaughter in
bracket)

β−(60
28Ni) β−(192

78Pt) and

EC (192
76Os)

β−(99m
43Tc) N/A

(8) Theoretical specific
activity (aD)theor

1.133×103 9.215×103 4.797×105 N/A

(9) Practical specific
activity (aD)pract

∼300 ∼500 ∼1 N/A

Notes: EC = electron capture; N/A = not applicable; A = atomic mass number; Z =
atomic number

(4) Boron neutron capture therapy (BNCT) is another example of the use of neu-
tron capture for medical purpose. In contrast to the three other examples discussed
above (Co-59, Ir-191, and Mo-98) where neutron activation is used to manufacture
radionuclides (Co-60, Ir-192, and Mo-99, respectively) for use in medicine, BNCT
represents an example in which thermal neutrons are used directly in clinical work.
A thermal neutron beam from a nuclear reactor is made to irradiate tissue previously
loaded with boron-10 radionuclide to produce, in tissue, energetic heavy charged
particles (7

3Li and α) through the following neutron capture nuclear reaction

10
5B + n→ 7

3Li + α +Q(2.79 MeV). (12.257)

Q value for the neutron capture reaction (12.257) of 2.79 MeV can be calculated
with data available in Appendix A using the rest energy method or the binding
energy method (see Prob. 207). The Li-7 ion and the α particle produced in the
neutron capture reaction shareQ value energy in the inverse proportion of their rest
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masses, so that they acquire kinetic energy of the order of 1 MeV each. This kinetic
energy gives them a range of about 10 µm in tissue that is of the order of a typical
cell diameter. By virtue of their relatively large masses and large kinetic energy
both reaction products are densely ionizing (high LET) particles that can produce
significant radiation damage on the cellular level during their short travel through
tissue. In addition, the cellular damage produced by these densely ionizing particles
depends much less on the presence of oxygen than is the case with standard sparsely
ionizing beams, such as x rays, gamma rays, and electrons.

(c) In (b) we list four neutron activation (capture) nuclear reactions for the fol-
lowing daughter nuclides of interest to medical physics: cobalt-60, iridium-192,
molybdenum-99, and lithium-7. Several important parameters of these daughter nu-
clides and their parent nuclides are listed in Table 12.31.

12.7 Nuclear Fission Induced by Neutron Bombardment

12.7.Q1 (264)

When neutrons bombard certain heavy nuclei (atomic number Z ≥ 92), rather
than undergoing capture, i.e., inducing nuclear activation, the neutrons may
induce a process called nuclear fission in which the target nucleus breaks up
into two daughter nuclei of lighter mass. The fission process is accompanied
with production of several fast neutrons and γ rays.

(a) Define the following terms that are part of the nomenclature describing
nuclear fission:

(1) Thermal neutron vs. fast neutron.
(2) Prompt neutron vs. delayed neutron.
(3) Fission reaction vs. fusion reaction.
(4) Fission: spontaneous vs. neutron-induced.
(5) Fissionable vs. fissile nucleus.
(6) Fertile nuclide vs. fissile nuclide.
(7) Fission: fragment vs. product.
(8) Uranium ore vs. uranium tailings.
(9) Enriched vs. depleted uranium.

(10) Fissile radionuclide: naturally-occurring vs. artificially pro-
duced.

(b) Estimate energy release per fission of U-235 induced by a thermal neu-
tron. Determine the fraction of U-235 mass converted into energy in
U-235 fission induced by thermal neutrons. Relevant data are available
in Appendix A.
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(c) Use the result of (b) to estimate energy release from 1 g of U-235 un-
dergoing fission induced by thermal neutrons and compare the result to
energy-equivalent of 1 g of U-235.

(d) Assume that a nuclear reactor consumes 1 g of U-235 per day. Estimate
the power of the reactor and the number of fissions per second required
for sustaining such power output.

SOLUTION:

(a) The nomenclature used in the physics of fission is defined as follows:

(1) Thermal neutron vs. fast neutron. Neutrons belong to the category of indi-
rectly ionizing radiation, transferring energy to absorbing medium through an inter-
mediate step in which energy is transferred to a charged particle (proton or heavier
nuclei) first and then transferred from the charged particle to the absorbing medium
in the second step. In terms of their kinetic energy EK, free neutrons (also referred
to as extra-nuclear neutrons) are classified into several categories; of these, the best-
known categories are thermal neutron and fast neutron, both types also of interest
in medical physics with thermal neutrons used in boron neutron capture therapy
(BNCT) and fast neutrons used in external beam radiotherapy and brachytherapy.

Thermal neutron is defined as a free neutron in equilibrium with its environment.
When a thermal neutron propagates through an absorber at room temperature, its ki-
netic energy is thus of the order of 0.025 eV, corresponding to a speed of ∼2000 m/s
and deBroglie wavelength of ∼2 Å. Note that at room temperature (∼300 K) ther-
mal energy kT , where k is the Boltzmann constant (8.6173×10−5 eV/K), is equal
to ∼(1/40) eV = 0.025 eV.

Fast neutron is defined as a free neutron with kinetic energy EK exceeding
0.1 MeV. Neutrons produced in fission have kinetic energy EK of the order of a
few MeV. Fission cross section of a given absorber has a strong dependence on neu-
tron kinetic energy. For example, uranium-235 has a large fission cross section for a
thermal neutron and a much smaller cross section for a fast neutron.

(2) Prompt neutron vs. delayed neutron. Prompt neutron is a neutron emitted
within 10−14 s of the fission process in which also fission fragments are released.
Delayed neutron is a neutron emitted after the fission event as a result of β− decays
of the fission fragments that follow the fission process. In β− decay the daughter
nucleus is normally left in an excited state and it attains the ground state through
γ decay. However, the daughter nucleus may be left in such highly excited state
that neutron emission decay may become possible whereby the daughter releases an
energetic free neutron. The neutron emission is delayed by the β− decay half-life of
the parent fission product.

The vast majority (>99 %) of fission-emitted neutrons are of the prompt variety
and less than 1 % are delayed neutrons. The mean kinetic energy of delayed neutrons
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is ∼500 keV as compared to 2 MeV for prompt neutrons. In terms of numbers and
energy the delayed neutrons are of little importance, however, they play an important
role in controlling the nuclear chain reaction in nuclear reactors.

(3) Fission nuclear reaction vs. fusion nuclear reaction. Nuclear fission is a
nuclear process in which a heavy nucleus breaks up into smaller components, typi-
cally consisting of two lighter nuclei, several neutrons, and gamma rays, all carrying
a relatively large amount of energy. Fission occurs either spontaneously as a type of
radioactive decay called spontaneous fission (SF) or is induced by bombarding a
suitable (fissionable) nucleus with a neutron resulting in a nuclear reaction referred
to as neutron-induced fission. Fusion, on the other hand, is described as a nuclear
reaction in which two light nuclei overcome their mutual Coulomb repulsion and
fuse into a heavier nucleus. In fission and fusion a relatively large amount of energy
is released as a result of higher binding energy per nucleon in daughter products
compared to parent products.

(4) Spontaneous fission vs. neutron-induced fission. Fission only occurs in very
heavy nuclei with atomic number Z of 92 or higher. Two types of fission are known:
spontaneous and neutron induced. In spontaneous fission (SF) a heavy nucleus dis-
integrates spontaneously by splitting into two nearly equal fission fragments and
emitting 2 to 4 neutrons. G.N. Flerov and K.A. Petržak are credited with discovery
of SF nuclear decay in 1940 noticing that uranium-238, in addition to α decay, may
undergo spontaneous nuclear break up.

Neutron-induced fission is characterized by an interaction between a free neutron
and a heavy nucleus. The neutron enters the nucleus and is captured by the nucleus;
however, instead of producing a heavier radionuclide through a process referred
to as neutron activation (neutron capture). The neutron causes an imbalance in the
nucleus, leading the parent nucleus to break apart into two lighter radioactive nuclei
with concurrent emission of γ rays and several neutrons.

Otto Hahn and Friedrich Strassmann in 1938 carried out experiments that lead
to the discovery of uranium’s ability to break apart (fission) under the influence of
neutron bombardment. L. Meitner and O. Frisch in 1939 offered physical explana-
tion of the nuclear fission process and coined the term “fission”. In 1942 E. Fermi
and L. Szilárd postulated neutron multiplication and chain reaction in uranium and
offered experimental proof of it in 1942.

(5) Fissionable nucleus vs. fissile nucleus. Heavy nuclei that can undergo in-
duced fission when struck by a neutron are in general referred to as fissionable nu-
clei. Fissile nucleus is a narrower term referring to a nucleus undergoing fission with
thermal neutrons. For example, uranium-238 is a fissionable nuclide because it can
undergo fission with fast neutrons; however, it is not fissile, since thermal neutrons
cannot induce fission in it. On the other hand, uranium-235 is a fissionable nuclide
in general terms but is also called fissile, since it fissions with thermal neutrons.

Often fissile nuclides are defined alternatively as those nuclides that are not only
fissionable but also through fission produce a sufficient number of neutrons to be
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able to sustain a nuclear chain reaction. Fissionable nuclides, on the other hand, are
then those that can be made to undergo fission but do not produce a large enough
number of neutrons to sustain a chain reaction. Under this definition, uranium-235
is fissile because it can sustain a nuclear chain reaction, while uranium-238 is fis-
sionable yet not fissile because it cannot sustain a nuclear chain reaction.

(6) Fertile nuclide vs. fissile nuclide. Nuclides that do not undergo fission them-
selves when bombarded with thermal neutrons but transform into a fissile nuclide
through neutron activation followed by two β− decay processes are referred to as
fertile nuclides. Best known examples of fertile nuclide are U-238 and thorium-232
(Th-232) which, through exposure to fast neutrons in a nuclear reactor followed by
two relatively short-half-life β− decays, transform into fissile plutonium-239 (Pu-
239) and uranium-233 (U-233), respectively, as follows

238
92U + n → 239

92U
β−

−→
23.5 min

239
93Np

β−
−→
2.33 d

239
94Pu (12.258)

and

232
90Th + n → 233

90Th
β−

−→
22 min

233
91Pa

β−
−→
27 d

233
92U. (12.259)

Plutonium-239 (239Pu) is artificially produced from fertile uranium-238 bom-
barded with neutrons to get uranium-239 through neutron activation. Uranium-239
undergoes β− decay with a half-life of 23.5 minutes into neptunium-239 that, in
turn, undergoes β− decay with a half-life of 2.33 days into fissile plutonium-239.

Uranium-233 (233U) is artificially produced from thorium-232 bombarded with
neutrons to get thorium-233 through neutron activation. Thorium-233 undergoes β−
decay with a half-life of 22 minutes into protactinium-233 that, in turn, undergoes
β− decay with a half-life of 27 days into fissile uranium-233.

(7) Fission fragment vs. fission product (by-product). Fission fragment is the
common name for nuclei directly produced in nuclear fission. The mass distribution
of the fragments depends on the atomic mass of the fissionable nucleus and on
the kinetic energy of the neutron projectile. Any combination of lighter nuclei is
possible for fission fragments as long as the fission process honors the conservation
of atomic number Z and mass number A.

Nuclei formed in fission as fission fragments range in atomic number from 30 to
64 and in atomic mass from 60 to about 150. At low excitation energy (thermal neu-
tron) the fissile nucleus undergoes fission that results in an asymmetric distribution
of fission fragments with daughter nuclei clustering around atomic mass numbers
A of 95 and 140, while in fission triggered by fast neutrons the mass distribution of
fission fragments is close to symmetric.

The fission fragments are highly unstable because they usually contain an exces-
sive number of neutrons, i.e., are neutron-rich; consequently they undergo a series of
nuclear decays until a stable configuration of nucleons is reached. Fission fragments
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along with their nuclear decay progeny are referred to as nuclear fission product or
fission by-product.

(8) Uranium ore vs. uranium tailings. Uranium ore is described as uranium-
bearing mineral that contains a sufficiently high concentration of uranium to make
extraction of uranium economically profitable. Primary uranium ores are uraninite
and pitchblende, both naturally occurring uranium oxides. Uranium is extracted
from uranium-bearing minerals at uranium processing plants.

Uranium tailings are a type of long-lived, low-level radioactive waste generated
during processing of uranium ore to extract uranium. Tailings are deposited in large
mounds in the vicinity of mills where uranium ore is processed. They contain many
radioactive contaminants, the most important being radium-226 which decays into
radon-222, making the tailings a radiation health hazard for the general public.

(9) Enriched uranium vs. depleted uranium. Uranium (U) is one of the three
natural elements contributing to terrestrial radioactivity; the other two are thorium
(Th) and potassium (K). The natural composition of uranium is 92.27 % of U-238
that is fissionable, 0.72 % of U-235 that is fissile, and ∼0.01 % of U-234.

Since U-235 is the fissile component of uranium and most power reactors and
even more so, atomic weapons, require a higher concentration of U-235, isotope
separation methods have been developed for enhancing the percentage of U-235 in
uranium samples. These methods are referred to as uranium enrichment and ura-
nium so produced is called enriched uranium. Several grades of enriched uranium
are known and in increasing percentage of U-235 they are:

(i) Slightly enriched uranium (0.9 % to 2 % of U-235).
(ii) Low enriched uranium (2 % to 20 % of U-235).

(iii) Reactor grade U (3 % to 5 % of U-235).
(v) Highly enriched U (above 20 % of U-235).

(vi) Weapons grade U (above 85 % of U-235).

Uranium enrichment process leaves behind a large amount of uranium that is de-
pleted of U-235 and referred to as depleted uranium when it contains less than 0.3 %
of U-235. Thus, depleted uranium is a waste product in the manufacture of fuel for
nuclear reactors and weapons grade uranium. It has many civilian and military ap-
plications mainly because of its high physical density (19.1 g/cm3), however, it also
presents both a chemical and radiological hazard to general public.

(10) Naturally occurring fissile radionuclide vs. artificially produced fissile
radionuclide. Many heavy nuclides are fissionable, however, only three fissile nu-
clides that can undergo thermal neutron induced fission are known: uranium-235
appears in nature and two (plutonium-239 and uranium-233) are produced artifi-
cially from fertile nuclides (U-238 and Th-232, respectively).

(b) Uranium-235 is the only naturally occurring fissile nuclide. In fission induced
by a thermal neutron, the U-235 nucleus breaks up into two smaller nuclei (one with
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atomic mass A of about 95 and the other with A≈ 140) as well as 2 to 6 neutrons
(2.5 neutrons per fission on average):

(1) Binding energy per nucleon EB/A before fission of U-235 is EU-235
B /A =

7.6 MeV/nucleon.
(2) Binding energy per nucleon EB/A after fission for each of the two fission

fragments (FF) is EFF
B /A≈ 8.45 MeV/nucleon.

(3) Energy per nucleon released per fission of U-235 is estimated as

�E/A = Eafter
B /A−Ebefore

B /A=EFF
B /A−EU-235

B /A

≈ 8.45 MeV/nucleon − 7.6 MeV/nucleon

= 0.85 MeV/nucleon. (12.260)

Since the U-235 nucleus has 235 nucleons (92 protons + 143 neutrons), we estimate
the total energy release per fission of U-235 as

�E =A(�E/A)= (235 nucleon)×0.85 MeV/nucleon ≈ 200 MeV/fission.
(12.261)

Nuclear rest energy of U-235 nucleus is MU-235c
2 = 218894.9987 MeV. There-

fore, fraction of U-235 mass converted into energy in nuclear fission of U-235 is
∼190/218895 = 0.0009 ≈ 0.1 %

(c) Energy release in fission of 1 g of U-235.
We first determine the number of U-235 atoms in 1 g of U-235 and then multiply
this number with 200 MeV per fission to obtain the energy release per 1 g of U-235:

(1) One mole of U-235 is 235.04 g of U-235 and by definition it contains Avo-
gadro number of atoms of U-235 (NA = 6.022×1023 mol−1).

Therefore, in 1 g of U-235 there areNA/235 atoms, i.e., 2.562×1021 atoms
of U-235.

(2) Energy release per fission of 1 g of U-235 is now given as

∼(
2.562×1021)×(200 MeV)

= 5.124×1029 eV

= (
5.124×1029 eV

)×(
1.6×10−19 J/eV

)= 8.21×1010 J

= 8.21×107 kJ. (12.262)

(3) Energy equivalent of 1 g of U-235 is given as

mc2 = (1 g)×(
3×108 m/s

)2 = 9×1016×10−3 kg · m2 · s−2

= 9×1013 J = 9×1013 J

1.6×10−19 J/eV
= 5.6×1032 eV. (12.263)
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This again, like in (b), shows that in fission of U-235 approximately 0.1 % of
the total mass of U-235 is transformed into energy [(8.2×1010 J)/(9×1013 J)≈
0.001].

(d) Consumption of 1 g of U-235 per day implies an operating power of

8.2×1010 J

d
= 8.2×1010 J

24×3600 s
≈ 9.5×105 W ≈ 1 MW. (12.264)

If a nuclear reactor consumes 1 g of U-235 per day, i.e., operates at ∼1 MW of
power, it means that 2.562×1021 fissions occur per day or (2.562×1021)/(24×3600)≈
3×1016 fissions occur per second. This corresponds to ∼3×1010 fissions per watt
of power per gram of U-235.

12.7.Q2 (265)

The general equation for fission of uranium-235 (U-235) is expressed as fol-
lows

235
92U + n → 236

92U
∗ → b

aX + d
cY + f n, (12.265)

where parent nucleus 235
92U has been penetrated by a thermal neutron n to

produce a compound nucleus 236
92U

∗
that is unstable and breaks up by the

fission process into two unstable nuclei (fission fragments) baX and dcY as well
as several (f ) fast neutrons.

(a) Discuss the rules governing a, b, c, d , and f of (12.265) and sketch the
yield of fission fragments in fission of U-235.

(b) Two examples of U-235 fission with thermal neutron are given in
(12.266) and (12.267) as

(1) 235
92U + n → 236

92U
∗ → 91

36Kr + 142
56Ba + 3n +Q (12.266)

and

(2) 235
92U + n → 236

92U
∗ → 94

38Sr + 140
54Xe + 2n +Q. (12.267)

Determine the energy released in the fission processes (12.266) and
(12.267) using two methods: (i) Rest energy method and (ii) Binding
energy method. Both methods should give same result for a given fis-
sion reaction. Appropriate data are available in Appendix A.

(c) It is generally assumed that in U-235 fission with thermal neutrons en-
ergy of ∼200 MeV is released. Prepare a block diagram and partition
the energy of 200 MeV in absolute terms and as percentage of 200 MeV
over all events that (i) accompany or (ii) follow the fission process.
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Fig. 12.13 Yield of fission fragments against atomic mass number A for uranium-235 bombarded
with thermal neutrons

SOLUTION:

(a) A uranium-235 nucleus undergoing fission does not break up into two equal
fragments; rather, it breaks up into several fast neutrons and two unequal fragments
of which, in comparison with 50 % of the U-235 nuclear mass, one is significantly
lighter and the other significantly heavier. In a given fission event any combination
of fission fragments is possible as long as the fission process honors the conservation
of atomic number Z and atomic mass number A. This means that in (12.265) the
following rules apply: a + c = 92 and b + d + f = 236, with f the number of
neutrons produced in fission that can vary between 2 to 6 with mean value of 2.4.

Nuclei formed in fission as fission fragments range in Z from 30 to 64 and in A
from 60 to 150 and over 100 nuclides of 35 different elements have been identified
as fission fragments of U-235 fission. As shown in Fig. 12.13, fission fragments have
an asymmetrical yield distribution with daughter nuclei clustering around A = 95
and A= 140 with much higher probability than around A= 118 which would give
a symmetrical distribution of fission yield.

All fission fragments are by virtue of their synthesis neutron-rich and therefore
unstable (radioactive). They progress to nuclear stability by a succession of β− de-
cays forming chains of isobars, accompanied by beta particles and antineutrinos.
Two of the fission-generated isobar chains are well known in medical physics, one
with A = 99 (molybdenum-99) and the other with A = 140 (xenon-140), each oc-
curring in about 6 % of all U-235 fissions. Distributions of fission yields for the other
two fissile nuclides (uranium-233 and plutonium-239) are similar to that shown for
U-235 in Fig. 12.13.
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(b) In the calculation of fission Q value (energy released in fission) of (12.266)
and (12.267) we note that the fission is induced by a thermal neutron which, as
the name implies, has negligible kinetic energy of the order of 0.025 eV. In the
calculation of Q value for the fission reaction we can therefore assume that the two
reactants (projectile: neutron and target: U-235 nucleus) are both at rest before the
reaction.

Two simple methods are in use for determining Q value of a typical fission nu-
clear reaction [(T5.7) and (T5.8)]:

Rest energy method: Q value is determined by subtracting the sum of nuclear rest
energies of reaction products (fission fragments and free neutrons released) after the
reaction

∑
i,afterMic

2 from the sum of nuclear rest energies of reactants (projectile:
thermal neutron and target: fissile nucleus) before the reaction

∑
i,beforeMic

2, or

Q=
∑
i,before

Mic
2 −

∑
i,after

Mic
2. (12.268)

Binding energy method: Q value is determined by subtracting the sum of nuclear
binding energies of reactants (thermal neutron and fissile target) before the reac-
tion

∑
i,beforeEB(i) from the sum of nuclear binding energies of reaction products

(fission fragments) after the reaction
∑
i,afterEB(i), or

Q=
∑
i,after

EB(i)−
∑
i,before

EB(i). (12.269)

We now determine Q value for fission reactions (12.266) and (12.267) using
(12.268) and (12.269) for both reactions.

(1) Fission reaction (12.266): 235
92U + n → 236

92U
∗ → 91

36Kr + 142
56Ba + 3n +Q.

Rest energy method:

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2

= {
M
(235

92U
)
c2 +mnc

2}− {
M
(91

36Kr
)
c2 +M(142

56Ba
)
c2 + 3mnc

2}
= [{218894.9987 + 939.5654}

− {132165.7134 + 84676.2556 + 2818.6962}] MeV

= [219834.5641 − 219660.6652] MeV = 173.9 MeV. (12.270)

Binding energy method:

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
{
EB

(91
36Kr

)+EB
(142

56Ba
)}− {

EB
(235

92U
)+ 0

}

= {777.6357 MeV + 1180.1387 MeV} − {1783.8710 MeV + 0} = 173.9 MeV.

(12.271)
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(2) Fission reaction (12.267): 235
92U + n → 236

92U
∗ → 94

38Sr + 140
54Xe + 2n +Q.

Rest energy method:

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2

= {
M
(235

92U
)
c2 +mnc

2}− {
M
(94

38Sr
)
c2 +M(140

54Xe
)
c2 + 2mnc

2}
= [{218894.9987 + 939.5654}

− {87462.1839 + 130308.7287 + 1879.1308}] MeV

= [219834.5641 − 219650.0434] MeV = 184.5 MeV. (12.272)

Binding energy method:

Q =
{∑
i,after

EB(i)

}
−
{ ∑
i,before

EB(i)

}

= {
EB

(94
38Sr

)+EB
(140

54Xe
)}− {

EB
(235

92U
)+ 0

}
= {807.8150 MeV + 1160.7287 MeV} − {1783.8710 MeV + 0}
= 184.6 MeV. (12.272)

Since we can get similar results for any of the numerous known fission reactions,
we can make three conclusions regarding the fission Q value:

(1) Q value of a fission reaction induced by thermal neutron in a fissile mate-
rial is positive and this means that fission reactions are exothermic, release a
significant amount of energy, and, to run, require no threshold energy.

(2) The two methods available for calculation ofQ value (rest energy method and
binding energy method) give identical results for a given fission reaction.

(3) Equations (12.266) and (12.267) are two examples of typical U-235 fission
reaction but they give different Q values: (12.266) gives 173.9 MeV and
(12.267) gives 184.5 MeV. This illustrates the well-known fact about fission
reactions, namely, that there are large variations in energies released in fission
even for the same fissile nuclide.

(c) Energy released per fission event is of great theoretical and practical interest.
Because of the large variations in various possible fission events for a given fissile
material, only mean values for the various physical parameters are usually given.
For example, some notable parameters of U-235 fission are as follows:

(1) The number of prompt neutrons produced ranges from 2 to 8 with the mean
value of 2.5.

(2) Kinetic energies of prompt neutrons ranges from 0.5 MeV to 4 MeV with
mean at 2 MeV.



900 12 Production of Radionuclides

Fig. 12.14 Partition of mean energy release of 200 MeV in fission of U-235 by thermal neu-
trons. Energy release is divided into two main components: prompt energy release (180 MeV) and
delayed energy release (20 MeV)

(3) The mean total energy release is assumed to be 200 MeV. It consists of
180 MeV (90 %) for prompt energy release and 20 MeV (10 %) for delayed
energy release.

(4) The prompt energy release consists of 180 MeV (90 %) of 168 MeV (84 %)
for kinetic energy of fission fragments, 5 MeV (2.5 %) for kinetic energy
of prompt neutrons (2.5 neutrons at 2 MeV/neutron), and 7 MeV (3.5 %) as
prompt γ ray energy.

(5) The delayed energy release of 20 MeV (10 %) is caused by the β− decay of
neutron-rich fission fragments and consists of 6 MeV (3 %) for beta particles,
6 MeV (3 %) for antineutrinos, and 6 MeV for delayed γ rays, all three from
the β− decay of fission fragments.

(6) Delayed neutrons also originate from β− when the daughter nucleus is so
highly excited that it undergoes neutron emission decay rather than the stan-
dard γ decay. However, the number and energy of delayed neutrons are small,
so that they are ignored in stating the mean fission energy partition.

Points (1) through (6) above are illustrated in Fig. 12.14 indicating that:

Prompt energy release has 3 components:

(i) Kinetic energy of fission fragments (168 MeV).
(ii) Kinetic energy of prompt neutrons (5 MeV).
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(iii) Energy of prompt gamma rays.

Delayed energy release is attributed to the beta minus decay of the neutron-rich
fission fragments and has 4 components:

(i) Kinetic energy of beta particles (6 MeV).
(ii) Delayed gamma rays (6 MeV).

(iii) Antineutrino energy (8 MeV).
(iv) Energy of delayed neutrons which is essentially negligible.

12.8 Nuclear Chain Reaction

12.8.Q1 (266)

Chain reaction is defined as reaction resulting in products that on the average
cause one or more reactions of the same type as the original reaction and the
process continues for several generations forming a chain of reactions. While
chemical chain reactions are possible, the best known chain reactions occur
in nuclear physics in connection with nuclear fission where they are referred
to as nuclear chain reactions.

(a) Define the following terms that form the nomenclature describing nu-
clear reactors:

(1) Chemical reaction vs. nuclear reaction.
(2) Controlled nuclear fission chain reaction vs. uncontrolled fission

chain reaction.
(3) Critical mass vs. subcritical mass and super-critical mass.
(4) Moderator of nuclear reactor vs. control rod of nuclear reactor.
(5) Advantages and disadvantages of nuclear power.
(6) Commissioning of nuclear reactor vs. decommissioning of nu-

clear reactor.

(b) For a nuclear reactor core: (1) List principal components and (2) Draw
its block diagram.

(c) List and briefly describe three nuclear reactor accidents from around the
world that had a serious negative effect on development of fission-based
nuclear power generation.

SOLUTION:

(a) The nomenclature used in reactor physics is defined as follows:

(1) Chemical reaction vs. nuclear reaction. The two types of reaction have many
similarities and are defined in similar fashion. For example, both types of reaction
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can be either spontaneous (exothermic) requiring no energy input and releasing en-
ergy or they can be induced (endothermic) requiring energy input and characterized
by an energy threshold. Moreover, components initially involved in a reaction are
called reactants, while the components resulting from a reaction are called reaction
products.

The main difference between chemical and nuclear reaction is that a chemical
reaction deals with orbital electrons of outer atomic shells (valence electron) with
binding energy of the order of a few eV, while a nuclear reaction deals with nucleons
(proton and neutron) residing in atomic nucleus with binding energy of the order of
a few MeV. Thus, the potential for energy release in a nuclear reaction is several
orders of magnitude larger than that in a chemical reaction.

For example, this is of great significance in power generation, where nuclear
energy released in fission of 1 g of uranium-235 is equivalent to energy release
generated by burning 3 tons of high-grade coal.

(2) Controlled nuclear fission chain reaction vs. uncontrolled fission chain re-
action. In a nuclear chain reaction, a neutron starts a fission reaction and at least
one neutron that can start a new fission reaction is produced in the initial reaction as
well as in all subsequent generations.

The most important characteristic of nuclear chain reactions is that the reactions
are self-sustaining. For example, in fission of uranium-235 nucleus on average 2.5
neutrons are produced along with the two daughter fission fragments. These new
neutrons can induce additional fission in the uranium-235 absorber and in principle
a self-sustaining chain reaction becomes possible.

An uncontrolled fission chain reaction is defined as a chain reaction in which the
number of neutrons available for inducing fission is growing from one generation
to the next, such as, for example, in an atomic bomb. A controlled fission chain
reaction, on the other hand, is a chain reaction in which the number of neutrons
available for inducing fission in the next generation is maintained in a nuclear reac-
tor by the so-called control rods at a level that keeps the reaction rate constant, i.e.,
controlled.

(3) Critical mass vs. subcritical mass and super-critical mass. Any nuclear
chain reaction can be described by a parameter called effective neutron multipli-
cation factor (also known as fission reproduction factor) k, defined as the number
of neutrons from a given fission in a given generation that can cause fission in the
next generation. Generally, the factor k is smaller than the actual number of fission-
generated neutrons because some of the neutrons generated either escape the system
or undergo non-fission reactions. The value of k determines the fate of a chain reac-
tion as follows:

For k < 1, the system cannot sustain a chain reaction, the fission power dimin-
ishes with time, and the mass of the fissile material is classified as sub-critical.

For k = 1, every fission event causes a new fission on average. This leads to a
constant fission power level, a steady-state chain reaction, and the fissile mass is
classified as critical. The critical mass is defined as the smallest amount of fissile
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material able to sustain a nuclear chain reaction. Nuclear power plants operate in this
mode. The critical mass of a fissile material depends upon its nuclear fission cross
section, density, enrichment, shape, and temperature. For a given fissile material, the
shape with minimal critical mass is spherical, since a sphere requires the minimum
surface area per mass.

For k > 1, every fission event causes an increase in number of subsequent fissions
leading to a runaway chain reaction described as super-critical. Nuclear weapons
operate in this mode.

(4) Moderator vs. control rod in nuclear reactor. Fission cross section of fissile
materials (U-235, Pu-239, and U-233) is inversely proportional to neutron velocity,
therefore, a thermal neutron has a much higher fission cross section than a fast neu-
tron. On the other hand, nuclear fission results in fast neutrons with kinetic energy
of a few MeV rather than thermal neutrons, so, in order to sustain a chain reaction,
the fast neutrons produced in fission must be slowed down to thermal energy. In a
nuclear reactor the neutron moderator is a medium that reduces the speed of fast
neutrons produced in fission reactions and transforms them into thermal neutrons to
sustain the chain reaction. This process is called neutron thermalization or slowing
down.

Materials commonly used as reactor moderators are: ordinary water, heavy wa-
ter, or solid graphite and the slowing down of neutrons is caused by inelastic and
elastic collisions between the neutron and nuclei of the moderator. Since neutron
is relatively light, the most efficient energy transfer in a collision with moderator
nucleus will be, when the mass of the nucleus is of the order of the neutron mass.
Protium in ordinary water, deuterium in heavy water and carbon in solid graphite
are therefore the most efficient moderator materials.

The role of reactor control rods is to absorb a large number of neutrons that are
produced in fission. Therefore, the rod contains elements that have a large cross
section for absorption of neutrons and are not fissionable. Boron-10 and cadmium-
113 are most common materials used for neutron absorption in reactor control rods.
The rods are used to maintain a desired fission reaction rate and also to shut down
the nuclear reactor.

(5) Advantages and disadvantages of nuclear power. Since its inception six
decades ago, nuclear power has been the most controversial of large-scale electric
power technologies. On the one hand, it has a significant advantage over fossil fuel
based electric power generation, since a claim can be made that, during its opera-
tion, it does not produce greenhouse gases nor does it produce acid rain and cause
global warming. On the other hand, it has a serious side effect, because it produces
radioactive waste in spent fuel, some of it very long-lived, that will be bothersome
and hazardous to humans and environment for many generations to come.

Another issue with fission-based nuclear power is the inherent safety of nuclear
technology. In principle, fission reactors are extremely safe and well protected with
safety features of multiple redundancies; however, history has shown that reactors
are not completely fail safe and the world has already seen several serious accidental
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partial or complete reactor core meltdowns with drastic consequences for humans
and environment.

There clearly is a need for replacing the fossil fuel based electric power gen-
eration, and fission based nuclear power largely, but not completely, meets the re-
quirements. The nagging problems of potential for serious accidents, disposal of
radioactive waste, and decommissioning of old and contaminated nuclear power
plants are three aspects of the fission based nuclear power cycle that have not been
satisfactorily solved to date and have fueled the debate on whether or not to use nu-
clear power. With rapid advancement in nuclear technology, be it fission or fusion
based, there is hope that in the future humanity will succeed in developing efficient,
clean, safe, and environmentally friendly nuclear technology and silence the current
debate on merits of nuclear power.

(6) Commissioning and decommissioning of nuclear reactors are two very im-
portant components of a nuclear power plant life cycle; commissioning is carried out
just before the beginning of commercial operation of a nuclear power plant, decom-
missioning after the end of commercial use. According to the International Atomic
Energy Agency (IAEA) from Vienna, Austria there are currently close to 450 nu-
clear power plants in operation around the world and some 140 nuclear plants have
already been shut down after reaching their design life. Since the projected life of a
nuclear power plant is 40 years to 50 years and the first nuclear power plants were
opened in the 1950s, the number of nuclear power plants reaching obsolescence is
rapidly increasing.

Commissioning is carried out by the owner institution and involves verification
and testing of all systems, structures, equipment, and procedures to be used during
commercial operation of the plant under routine as well as emergency conditions.
The commissioning process must be approved by the national licensing agency and
should be sufficiently extensive to allow institutional operators to become familiar
with the proposed plant operation and functioning of all systems and equipment.

Testing of the nuclear reactor is the most important component of the commis-
sioning process. It should cover the following aspects:

(i) Fuel loading and pre-criticality test of equipment performance,
(ii) Making the reactor critical,

(iii) Testing all aspects of power generation,
(iv) Carrying out extensive radiation survey of the entire plant in normal power

generation mode,
(v) Testing emergency shut-down procedures.

During the commissioning it should be established that, for use of the operators,
clear and detailed instruction manuals are available and understood by the opera-
tors and that the manuals cover all procedures, systems and equipment both under
routine and emergency conditions.

Results of all tests carried out under the commissioning process should be doc-
umented clearly and extensively and submitted to the national body that will issue
the operating license for the commercial use of the plant.
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As some “nuclear” countries are opting out of nuclear power as a result of a few,
yet catastrophic, nuclear power accidents and as the first batch of nuclear power
plants installed in 1950s and 1960s is becoming obsolete, decommissioning of nu-
clear power plants is rapidly becoming an important issue for governments and so-
cieties around the world.

The term “decommissioning” involves all steps involved in dealing with end-of-
life closure of nuclear facilities such as nuclear power plants. In comparison with
decommissioning processes of other major industrial installations, the decommis-
sioning of nuclear installations is the most complicated and controversial, since it
deals mainly with issues related to radioactive contamination of the nuclear power
plant and the safe disposal of the contaminated material to bring the plant area back
to an unrestricted level or to a partially restricted level.

Three protocols have been used for decommissioning of nuclear power plants;
however, experience with the process is still scarce because of the relatively low
number of obsolete nuclear power plants to date. All three protocols prescribe re-
moval of the spent nuclear fuel from the reactor for disposal at a suitable govern-
ment approved radioactive dump. In all other aspects the three protocols differ sig-
nificantly from each other. Decommissioning is clearly an expensive proposition,
costing about 15 % to 20 % of capital cost of a new nuclear power plant installation;
however, it must be taken seriously, irrespective of the cost. The three protocols
are:

(i) Immediate dismantling involves immediate separation of radioactive debris
from non-radioactive debris and removal of both to appropriate and approved
sites.

(ii) Deferred dismantling postpones dismantling for a long period of time to al-
low the short-lived contamination to decay, but it postpones the actual dis-
mantling to future generations.

(iii) Entombment involves placement of the reactor building into a concrete enve-
lope (sarcophagus).

Routine operation of nuclear power plants actually does not produce much radioac-
tive waste on an annual basis; however, decommissioning of a nuclear power plant
produces a significant amount of radioactive waste, some of it to remain radioactive
for many generations as well as centuries to come. It is imperative that this is taken
into account in design of new nuclear power plants to make the eventual decom-
missioning efficient and to minimize the expense and amount of radioactive waste
produced.

(b) Principal components of a nuclear reactor core are (see Fig. 12.15)

(1) Fuel elements containing fissile fission material, such as uranium-233,
uranium-235, or plutonium-239.

(2) Control rods (containing neutron absorber such as boron or cadmium) for con-
trol of mean neutron generation factor k.

(3) Moderator (e.g., water, heavy water, or solid graphite) to slow down fission-
produced fast neutrons to thermal neutron velocity.
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Fig. 12.15 Schematic diagram of nuclear reactor core highlighting the four main components:
(fuel elements, (2) Control rods, (3) Moderator, and (4) Coolant

(4) Coolant (usually water) to maintain a stable temperature in the reactor core.

(c) Major accidents in nuclear power plants are rare but they do happen occasion-
ally, and when they do, the consequences can be very serious. In 1989 the Inter-
national Atomic Energy Agency (IAEA) introduced the International Nuclear and
Radiological Event Scale (INES) as a tool for promptly communicating to the pub-
lic in consistent terms the safety significance of reported nuclear and radiological
incidents (lower levels) and accidents (upper levels). The INES scale has 7 levels
ranging from 0 (no safety significance) in steps of 1 to level 7 (major accident).

The following three nuclear power plant accidents stand out as the worst acci-
dents in the history of fission-based nuclear power: (1) Three Mile Island (TMI),
USA, (2) Chornobyl, Ukraine (former Soviet Union), and (3) Fukushima Daiichi,
Japan. Each one of these accidents highlights how a succession of mundane and
well controllable malfunctions can escalate a relatively simple incident into a major
catastrophe.

(1) Three Mile Island (TMI) accident of 1979 is a perfect example on how a mi-
nor malfunction in a secondary non-nuclear system can, with bad luck, bad design,
and improper action by personnel, escalate into a major disaster. The TMI accident
was caused by a minor problem in the secondary cooling system that caused the
temperature as well as pressure to rise in the primary cooling system and resulted
in an automatic reactor shut down. The pressure relief valve controlled excessive
pressure in the primary cooling system (as per design); however, the valve, after the
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pressure problem was rectified, remained stuck in the open position and continued
to drain the coolant from the primary cooling circuit, yet neither the safety inter-
locks nor the operators noticed the malfunction. The reactor core was left without
adequate cooling, the residual decay heat was not properly removed from the reactor
core, and a portion of the core with fuel rods melted.

Adequate water-cooling of the reactor core was eventually restored but the reac-
tor core sustained such severe damage that its repair and continued operation were
not feasible. On the positive side, the containment building housing the reactor pre-
vented any serious radiation leak and no physical or radiological injuries to person-
nel or general public were reported. The contamination cleanup was very costly and
took about 14 years to complete. Currently, the reactor is permanently shut down and
all radioactive waste including the reactor fuel and the damaged core were shipped
to an off-site government storage facility. The reactor site is still monitored and the
reactor building is slated for decommissioning in 2014.

The TMI accident was the first in a series of serious nuclear accidents involving
reactor meltdown. It brought about much more stringent reactor safety regulations
and seriously dampened the enthusiasm for new fission based nuclear power plants
around the world.

(2) Chornobyl nuclear accident of 1986 turned out to be the worst industrial
accident of all time. It had such far-reaching consequences that the term accident
does not adequately characterize it; far more appropriate terms to describe it are
“calamity”, “disaster”, or “catastrophe”, because it affected so many people, con-
taminated such vast areas of the world, cost an enormous amount of money to miti-
gate, and hastened the demise of a world power, the Soviet Union.

In the mid 1980s the Chornobyl nuclear power plant housed four nuclear reactors
of Soviet design using slightly enriched uranium (2 %) oxide for the fissile fuel but
it also had several design flaws that proved fateful. For example, a design quirk pro-
duced a temporary increase in reactor power output when control rods were inserted
into the reactor core. Under certain conditions this could cause severe core overheat-
ing. The moderator used by the reactor was made of graphite, a known moderator
material but potentially dangerous because, in overheating, its carbon constituent
can catch fire. Moreover, the reactor itself was used not only for power genera-
tion but also for production of plutonium-239 for military purposes. This required
special cranes for rapid exchange of fuel rods thereby precluding construction of a
containment building that, for prevention of radioactive escape of fission products
in core meltdown, is an essential and standard component of a nuclear power plant.

The disaster started during a rather mundane experiment to verify the reactor’s
behavior when operated under emergency power. To avoid being hindered by reac-
tor shut down triggered by safety circuits, the operators by-passed them and lifted
the control rods from the reactor core. This caused a significant increase in fission
rate and surge in power which in turn increased the temperature of the reactor to
over 2000 C, melted the fuel rods, and produced such high steam pressure in the
water cooling circuit that the top of the reactor was blown off. Next, carbon of the
graphite moderator ignited scattering large amounts of radioactivity, such as iodine-
131, cesium-137, and strontium-90, from the melted fuel rods into the atmosphere.
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Investigations of the disaster have shown that the disaster was completely self-
inflicted and resulted from several bad decisions on the part of reactor operators
as well as some design problems with the reactor. If the safety circuits were not
disabled, they would manage the reactor overheating and bring it under control.
However, without the safety interlocks, the operators were too slow in lowering the
control rods to prevent the core meltdown and, once the meltdown got started, there
was no way to stop it.

The consequences of the disaster were enormous. Some 30 workers died during
the first few days of the accident and several dozen workers perished as result of
radiation poisoning during subsequent weeks. Radioactive fallout was spread over
the northern hemisphere, neighboring cities of Pripyat (pop. 50 000) and Chornobyl
(pop. 12 500) were made inhabitable, about 350 000 people from the vicinity of the
reactor were resettled, and a permanent 30 km radius exclusion zone around the
reactor was established.

Health effects on millions of people who received excessive radiation doses are
difficult to quantify. It is clear, however, that health effects on millions of people
living in the former Soviet Union as well as eastern, central, and northern Europe
were not negligible and not all of them manifested themselves to date.

The demolished reactor building and the remnants of the reactor were entombed
into a concrete envelope (sarcophagus) that, unfortunately, only 25 years later is
already crumbling. This means that soon a new entombment will need to be carried
out, again at enormous cost that Ukraine, now the new country owning the problem,
will not be able to finance alone.

Note: The nuclear power plant accident occurred in Soviet Union and was origi-
nally known as the “Chernobyl” accident; however, since Chornobyl is now located
in Ukraine, it seems more appropriate to use Ukrainian spelling “Chornobyl” rather
than the Russian spelling “Chernobyl”.

(3) Fukushima nuclear disaster of 2011 is an example of natural forces play-
ing havoc with well-constructed nuclear power reactors. The Fukushima Daiichi
nuclear power plant is located on the west cost of the largest Japanese island of
Honshu, some 300 km north of Tokyo. It consisted of six boiling water nuclear
power reactors designed by General Electric, each protected by its own containment
building constructed to withstand the most severe earthquake on record in Japan.
A sea wall, able to withstand tsunami waves of up to 5.5 m in height, was built to
protect the plant, since it is located on the seacoast and under sea-level earthquakes
tend to cause tsunamis with waves that travel rapidly across the sea and can become
very high when reaching coastal shallow waters.

An enormous earthquake hit the Honshu island of Japan in March of 2011. Its
epicenter was about 200 km off the coast of the Fukushima Daiichi nuclear power
plant and its magnitude read 9 on the Richter scale. At the time of the earthquake,
three of the six reactors were in operation and all three shut down automatically and
orderly as a result of signals from the seismic reactor protection detectors. Struc-
turally all six reactors withstood the earthquake well; however, all external electrical
power to the plant was lost and emergency diesel generators began to provide the
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necessary AC power to emergency services used mainly for cooling of the reactors.
One hour after the main tremor the situation in the plant was under control; however,
serious problems arose when the tsunami waves started arriving at the doorstep of
the power plant.

The tsunami waves were enormous exceeding the 5.5 m high protective wall of
the power plant by a factor of 3. They overwhelmed the site, flooded the emergency
diesel generators rendering them inoperable, and disabled the reactor core cooling
used to remove the decay heat. Reactor core temperatures increased past tolerance
levels, fuel rods became damaged generating contamination radioactivity as well as
hydrogen through oxidation of overheated zirconium fuel rod cladding, and con-
tainment pressures increased drastically. Core meltdown occurred in several reac-
tors; however, the extent of the damage is not known yet. Several explosions, most
likely caused by build up of hydrogen have damaged the containment domes caus-
ing escape of radioactivity into the environment, mainly iodine-131, cesium-137,
and strontium-90.

Three fire engines were used to pump sea water into the reactor cooling pools and
eventually the situation was brought under control, but not before a large amount of
radioactivity was released from the plant and contaminated the immediate vicinity
of the plant. Some radioactive contamination from the damaged reactors escaped
into the sea.

In contrast with the Chornobyl accident that spewed radioactivity all over Eu-
rope, most of the radioactivity that escaped from the Fukushima plant was dispersed
over the Pacific ocean, making the health consequences less of a concern than did
Chornobyl. Consequences of the Fukushima disaster were not as severe as those of
Chornobyl; however, on the INES scale the disaster, like that of Chornobyl, is rated
as level 7, because in the Fukushima power plant there were six nuclear reactor that
were more or less affected by problems with reactor core cooling.

12.8.Q2 (267)

Boron-10 and cadmium-113 are used in control rods of nuclear reactors to
maintain controlled chain reaction and to shut down the reactor. The respec-
tive nuclear reactions are: 10

5B(n, α)75Li and 113
48Cd(n, γ )114

48Cd.

(a) Determine Q value for the 10
5B(n, α)75Li neutron capture nuclear re-

action. Use and compare three methods for Q value calculation:
(1) Atomic rest energy method, (2) Nuclear rest energy method, and
(3) Nuclear binding energy method. All required atomic and nuclear
data are provided in Appendix A.
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(b) For 10
5B(n, α)75Li neutron capture nuclear reaction determine kinetic en-

ergy (EK)α of the α particle and recoil kinetic energy (EK)Li-7 of the
Li-7 nucleus.

(c) Determine Q value for the 113
48Cd(n, γ )114

48Cd neutron capture nuclear
reaction. Use and compare three methods for Q value calculation:
(1) Atomic rest mass method, (2) Nuclear rest energy method, and
(3) Nuclear binding energy method. All required atomic and nuclear
data are provided in Appendix A.

(d) For 113
48Cd(n, γ )114

48Cd neutron capture nuclear reaction determine en-
ergy Eγ of the γ ray photon and recoil kinetic energy (EK)Cd-114 of the
Cd-114 nucleus.

SOLUTION:

Reaction energy orQ value of a nuclear reaction can be calculated with three meth-
ods and all three are expected to give the same result for a given nuclear reaction.
The three methods are:

(1) Atomic rest energy method (T5.7).
(2) Nuclear rest energy method (T5.7).
(3) Nuclear binding energy method (T5.8).

We note the following general points related to the two neutron capture reactions:

(i) Neutrons in the two nuclear reactions of this problem are thermal neutrons.
In our calculations we can thus assume that their kinetic energy En

K ≈ 0 is
negligible and that the two target nuclei (boron-10 and cadmium-113) are
initially at rest.

(ii) Total momentum before the nuclear reaction is zero causing the momenta of
reaction products after the reaction to be opposite in direction and equal in
magnitude.

(iii) Principles of total energy conservation and momentum conservation are used
in the calculation of nuclear reaction Q value as well as energy and momen-
tum of the reaction products.

(a) Q value of the 10
5B(n, α)73Li neutron capture nuclear reaction is determined as

follows:

(1) Atomic rest energy M method:

Q = {
M
(10

5B
)
c2 +mnc

2}− {
M
(7

3Li
)
c2 + M

(4
2He

)
c2}

= {
(10.012937 u)+ (1.008665 u)

}
c2 − {

(7.016004 u)+ (4.002603 u)
}
c2

= {11.021602 − 11.018607}×(931.494028 MeV)= 2.79 MeV. (12.273)
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(2) Nuclear rest energyM method:

Q = {
M(10

5B)c2 +mnc
2}− {

M(73Li)c2 +mαc2}
= {9324.4360 MeV + 939.5654 MeV}

− {6533.8328 MeV + 3727.3788 MeV}
= {10264.0014 MeV − 10261.2116 MeV} = 2.79 MeV. (12.274)

(3) Binding energy EB method:

Q = {
EB

(7
3Li

)+EB
(4

2He
)}− {

EB
(10

5B
)
c2 + 0

}
= {39.2446 MeV + 28.2959 MeV} − {64.7508 MeV} = 2.79 MeV.

(12.275)

The three methods used in determination of Q value provide identical results, as
expected. Note that in the atomic rest energy method of (12.273) we use the atomic
rest mass M of the helium-4 atom (α particle neutralized by two electrons) to ac-
count for all orbital electrons involved in the reaction, while in (12.274) we use the
nuclear rest mass M of the α particle. In (12.275) the thermal neutron is free and
thus has no binding energy.

(b) To determine for the nuclear reaction 10
5B(n, α)73Li kinetic energy (EK)α of the

α particle ejected in the nuclear reaction and recoil energy (EK)Pb-218 (EK)Li-7 of
the lithium-7 reaction product we use the principles of: (1) total energy conservation
and (2) momentum conservation. The two conservation principles are for the nuclear
reaction expressed as follows:

(1) For total energy conservation (T5.6) we recognize that kinetic energies in α
decay are relatively small allowing us to use classical mechanics for expression of
energy conservation

Q= (EK)α + (EK)Li-7 = p2
α

2mα
+ p2

Li-7

2MLi-7
. (12.276)

(2) For momentum conservation we note that momentum before the nuclear reac-
tion is zero causing the two momenta pα and pLi-7 after the nuclear reaction to be
opposite in direction and equal in magnitude

0 = pα + pLi-7 (12.277)

or

|pα| ≡ pα =√
2mα(EK)α = |pLi-7| ≡ pLi-7 =

√
2MLi-7(EK)Li-7, (12.278)

where
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pα is the magnitude of α particle momentum.
pLi-7 is the magnitude of the lithium-7 atomic recoil momentum.
mα is the rest mass of the α particle.
MLi-7 is the rest mass of the lithium-7 atom

MLi-7c
2 = (7.016004 u)×(931.494024 MeV/u)= 6535.3658 MeV.

Using (12.276) we can now express the conservation of energy as

Q= (EK)α + (EK)Li-7 = p2
α

2mα
+ p2

Li-7

2MLi-7
= p2

α

2

[
1

mα
+ 1

MLi-7

]
(12.279)

from where it follows that

p2
α = p2

Li-7 = 2Q

[
1

mα
+ 1

MLi-7

]−1

. (12.280)

Inserting (12.280) into (12.279) we now get the following expressions for (EK)α
and (EK)Li-7

(EK)α = p2
α

2mα
= Q

mα

[
1

mα
+ 1

MLi-7

]−1

= Q

[1 + mα
MLi-7

] (12.281)

= 2.79 MeV

{1 + 3727.3791 MeV
(7.016004 u)×(931.494028 MeV/u) }

= 2.79 MeV

1.5703

= 1.78 MeV (12.282)

and

(EK)Li-7 = p2
Li-7

2MLi-7
= Q

MLi-7

[
1

mα
+ 1

MLi-7

]−1

= Q

[1 + MLi−7
mα

]

= 2.79 MeV

{1 + 7.016004 u)×(931.494028 MeV/u)
3727.3791 MeV } = 2.79 MeV

2.7533
= 1.01 MeV.

(12.283)

(c) Q value of the 113
48Cd(n, γ )114

48Cd neutron capture nuclear reaction is deter-
mined as follows:

(1) Atomic rest energy M method:

Q = {
M
(113

48Cd
)
c2 +mnc

2}− {
M
(114

48Cd
)
c2 + 0

}
= {
(112.904402 u)+ (1.008665 u)

}
c2 − {(

113.903359u
)}
c2

= {113.913067 − 113.903359}×(931.494028 MeV)= 9.04294 MeV.

(12.284)
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(2) Nuclear rest energyM method:

Q = {
M(113

48Cd)c2 +mnc
2}− {

M
(114

48Cd
)
c2 + 0

}
= {105145.2523 MeV + 939.5654 MeV} − {106075.7748 MeV}
= {106084.8177 MeV − 106075.7748 MeV} = 9.0429 MeV.

(12.285)

(3) Binding energy EB method:

Q = {
EB

(114
48Cd

)+ 0
}− {

EB
(113

48Cd
)
c2 + 0

}
= 972.5984 MeV − 963.5555 MeV = 9.0429 MeV. (12.286)

(d) To determine for the nuclear reaction 113
48Cd(n, γ )114

48Cd energy Eγ of the γ
ray ejected in the nuclear reaction and recoil energy (EK)Cd-114 of the cadmium-
114 reaction product we use the principles of:

(1) Conservation of total energy.
(2) Conservation of momentum.

The two conservation principles are for the nuclear reaction expressed as:

(1) Total energy conservation (T5.6) is expressed as follows

Q=Eγ + (EK)Cd-114 =Eγ + p2
Cd-114

2MCd-114
. (12.287)

(2) For momentum conservation we note that momentum before the nuclear reac-
tion is zero causing the two momenta pγ and pCd-114 after the nuclear reaction to be
opposite in direction and equal in magnitude

0 = pγ + pCd-114 (12.288)

or

|pγ | ≡ pγ = Eγ

c
= |pCd-114| ≡ pCd-114 =

√
2MCd-114(EK)Cd-114, (12.289)

where

pγ is the magnitude of γ photon momentum.
pCd-114 is the magnitude of the cadmium-114 atomic recoil momentum.
MCd-114 is the rest mass of the cadmium-114 atom. Note: in the calculation

we use atomic mass rather than nuclear mass, since the whole atom
rather than just the nucleus recoils after the reaction. MCd-114c

2 =
(113.903359 u)×(931.494024 MeV/u)= 106100.2987 MeV.
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Inserting (12.289) in the form of pCd-114 =Eγ /c into (12.287) we obtain a quadratic
equation for photon energy Eγ

E2
γ

2MCd-114c2
+Eγ −Q= 0, (12.290)

with the following physically relevant solution

Eγ = MCd-114c
2
{√

1 + 2Q

MCd-114c2
− 1

}

= (106100.2987 MeV)×
{√

1 + 2×(9.0429 MeV)

106100.2987 MeV
− 1

}

= 9.0425 MeV. (12.291)

Recoil energy (EK)Cd-114 of the cadmium-114 atom is from (12.276) given as the
difference between Q value of 9.0429 MeV and photon energy Eγ = 9.0425 MeV
of (12.291). The recoil energy of the cadmium-114 atom is thus given as

(EK)Cd-114 =Q−Eγ = 9.0429 MeV − 9.0425 MeV = 0.0004 MeV = 400 eV.
(12.292)

As shown in (12.291) and (12.292), the photon carries away most of the energy
released by the nuclear reaction 113

48Cd(n, γ )114
48Cd. Only a minute, essentially neg-

ligible, fraction (0.004 %) is given to the cadmium-114 recoil atom.

12.9 Production of Radionuclides with Radionuclide Generator

12.9.Q1 (268)

Used in some 80 % of all nuclear medicine imaging tests, technetium-
99m (Tc-99m) is the most widely used radionuclide for imaging in nu-
clear medicine. Its parent nucleus is molybdenum-99 (Mo-99) which de-
cays into Tc-99m through β− decay with a half-life of 2.75 days (66 hours).
Technetium-99m is an isomeric (metastable) radionuclide emitting 140 keV
gamma rays with a physical half-life of 6.01 hours. It provides sufficiently
high-energy γ rays for clinical imaging and has a half-life long enough for
investigation of metabolic processes, yet short enough so as not to deliver an
excessive total body dose to the patient.
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The relatively short 6-hour half-life of Tc-99m makes the logistics of
source production, delivery, and storage problematic.

A method to circumvent the transportation and delivery problem was de-
veloped in 1950s at the Brookhaven National Laboratory in Upton, NY,
whereby a supplier, rather than shipping the Tc-99m radionuclide, ships the
longer-lived parent radionuclide Mo-99 in a device referred to as radionu-
clide generator and Tc-99m is extracted from the generator when it is actually
needed.

Two techniques, both based on nuclear reactor technology, are used for
producing the parent radionuclide Mo-99 used in Tc-99m generators for on-
site generation of the Tc-99m radionuclide. One technique is based on neutron
activation of stable nuclide Mo-98 to produce the daughter radionuclide Mo-
99 through the neutron capture reaction 98

42Mo(n, γ )99
42Mo. The second, more

common, technique uses fission of enriched uranium-235 to produce Mo-99
as one of the many fission fragments in the U-235 target bombarded with
thermal neutrons.

(a) Describe the targets used in production of Mo-99 with:

(1) Neutron activation of Mo-98 technique.
(2) Fission of uranium-235 technique.

(b) Discuss post-production processing of targets in the two Mo-99 produc-
tion techniques.

(c) Find the appropriate model for describing the growth of the Mo-99 ra-
dionuclide when either Mo-98 or U-235 target is bombarded with ther-
mal neutrons in a nuclear reactor.
Calculate the maximum achievable specific activities of Mo-99 pro-
duced from pure natural molybdenum target and pure natural uranium
target in a nuclear reactor with a fluence rate ϕ̇ = 5×1013 cm−2 · s−1.
Most of the appropriate data can be found in Appendix A; however, the
additional information provided in Table 12.32 may be useful.

(d) Express the specific activity aMo-99(t) against time t for the two Mo-
99 production techniques of target activation in a nuclear reactor. For
pure natural molybdenum target as well as for natural uranium target
calculate and plot at least 10 points ranging in specific activity aMo-99(t)

from 0 to 0.98 (aMo-99)max.

SOLUTION:

(a) Both techniques currently used in production of Mo-99 radionuclide rely on
thermal neutron irradiation of appropriate targets in a nuclear reactor; however, each
technique is based on its own specific physical process and uses its own specific tar-
get: (1) neutron activation technique uses thermal neutron capture in Mo-98 parent
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Table 12.32 Some atomic and nuclear properties of molybdenum-98 and uranium-235 that
may be of use in answering questions related to the production of molybdenum-99 for use in
molybdenum–technetium radionuclide generators

Parent P nuclide Molybdenum-98
(Mo-98)

Uranium-235
(U-235)

Natural abundance wP (%) 24.13 0.72

Cross section σP (b) 0.13 (neutron activation) 587 (nuclear fission)

Daughter D radionuclide Mo-99 Mo-99

Branching ratio fMo-99 (%) 100 6.1

nuclide to produce Mo-99 daughter radionuclide and (2) nuclear fission technique
uses nuclear fission of uranium-235 radionuclide and extracts Mo-99 from the fam-
ily of fission fragments produced in the U-235 target.

(1) Neutron activation of Mo-98 into Mo-99 (neutron activation target) The
most common target for neutron activation of Mo-98 into Mo-99 is molybdenum
trioxide (MoO3) without any Mo-98 enrichment. Molybdenum has 7 natural stable
isotopes with Mo-98 (abundance 24.13 %) the most abundant natural molybdenum
isotope. Enrichment of Mo-98 in molybdenum target can produce up to a 4-fold in-
crease in specific activity of the molybdenum target; however, in comparison with
the enrichment process, irradiation with neutrons of larger targets is more economi-
cal.

In addition to Mo-98 two other natural isotopes in molybdenum target also get
activated: Mo-92 into Mo-93 and Mo-100 into Mo-101. However, both Mo-93 and
Mo-101 have relatively short half-lives (6.9 h and 14.6 min, respectively) in com-
parison with Mo-99 half-life of 66 h, so that the two radioisotopes do not contribute
appreciably to the radioactivity of the molybdenum neutron activation product. On
the other hand, chemical impurities in molybdenum targets should be removed prior
to neutron activation to maximize the radionuclidic purity of the Mo-99 product for
use in nuclear medicine imaging.

(2) Fission of uranium-235 for Mo-99 production (nuclear fission target) Cur-
rently, most of the Mo-99 radionuclide used in Mo/Tc radionuclide generators is
produced by bombarding a U-235 target with thermal neutron causing a nuclear
fission reaction which results in U-235 fission. About 6.1 % of fission reactions
produce Mo-99 nuclei either through direct fission or through subsequent decay of
nuclear fission fragments. Targets used in production of Mo-99 are usually made of
highly enriched uranium (HEU) to maximize the yield of Mo-99. The abundance of
U-235 in natural uranium is 0.7 % compared to 99.3 % for U-238 and an HEU target
contains U-235 in excess of 90 %, making the transportation and use of these targets
problematic because of the possibility of use of these targets for military purposes.
Targets come in the form of fuel plates containing an aluminum-uranium alloy or in
the form of uranium oxide thin films coated inside a stainless steel tube.
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(b) Post–irradiation processing in production of Mo-99.

(1) Neutron activation of Mo-98 into Mo-99 Target processing in which chemi-
cal impurities are removed to minimize the production of undesirable radionuclides
is mainly done prior to target bombardment with neutrons. After bombardment the
radionuclidic purity of the Mo-99 target product is verified by measuring activities
of radionuclides other than Mo-99 and its daughter Tc-99m to ensure that they are
at maximum acceptable levels or below.

(2) Fission of uranium-235 in Mo-99 production (fission targets) Processing of
fission targets post irradiation allows production of high purity and high specific ac-
tivity of Mo-99 radionuclide. Processing must be carried out rapidly after irradiation
to minimize the loss of Mo-99 to natural radioactive decay.

The processing is carried out in hot cells where chemicals are added to dissolve
the target. For targets containing aluminum, alkaline dissolution is used in a sodium
hydroxide solution (NaOH) whereas acidic dissolution is used for uranium oxide
based targets.

(c) Maximum attainable specific activity (aMo-99)max for the two targets: (1) Mo-
98 target undergoing thermal neutron activation into Mo-99 and (2) U-235 target
undergoing neutron fission producing Mo-99 as one of the fission fragments.

To calculate the maximum attainable specific activity (aMo-99)max for the two tar-
gets (Mo-98 and U-235) we need to determine which of the available mathematical
models for nuclear activation best describes the growth of the Mo-99 activity in the
target. As shown in Prob. 251, three nuclear activation models are available in gen-
eral: saturation model, depletion model, and depletion–activation model. Since the
choice of which model to use depends largely on the activation factor m= σPϕ̇/λD
for the given nuclear target (note: for m< 10−3 the simple saturation model of nu-
clear activation can be used for describing the growth of the daughter activity), we
first determine m for the two target nuclides.

(1) For the Mo-98 target, the neutron activation cross section of the parent nucleus
Mo-98 is σMo-98 = 0.13 b (1 b = 1 barn = 10−24 cm2) and when the molybdenum
target is placed in a neutron fluence rate ϕ̇ = 5×1013 cm2 · s−1 the activation factor
m is given as follows

m = σMo-98ϕ̇

λMo-98
= (0.13×10−24 cm2)×(5×1013 cm−2 · s−1)

2.92×10−6 s−1

= 2.23×10−6 � 0.001. (12.293)

(2) For the uranium target, only 6.1 % of all fission processes of the parent nuclei
U-235 produce Mo-99. The production of Mo-99 in this case is governed by the
an effective cross section (σU-235)eff that is the product of the general fission cross
section of the parent U-235 nuclide and the yield fMo-99 = 0.061 of the daughter
Mo-99 nuclide. The effective activation cross section (σU-235)eff is thus as follows

(σU-235)eff = fMo-99σU-235 = 0.061×(587 b)= 35.8 b. (12.294)



918 12 Production of Radionuclides

For U-235 target placed in a neutron fluence rate ϕ̇ = 5×1013 cm2 ·s−1 the activation
factor m is

m = (σU-235)effϕ̇

λMo-99
= (35.8×10−24 cm2)×(5×1013 cm−2 · s−1)

2.92×10−6 s−1

= 6.14×10−4 < 0.001. (12.295)

We conclude from (12.293) and (12.295) that the simple saturation model may
be used to describe the growth of Mo-99 activity for both activation processes,
since m < 0.001 for both processes. The general expression for the daughter ac-
tivity AD(t) is, according to the saturation model of nuclear activation, given as
follows (T.12.23)

AD(t)= Asat
[
1 − e−λDt

]= σPϕ̇NP(0)
[
1 − e−λDt

]
, (12.296)

where Asat is the saturation activity, NP(0) is the initial number of parent P nuclei,
λD is the decay constant of daughter D, and σP is the cross section for thermal
neutron interaction with the parent P atom, be it neutron activation of a molybdenum
(Mo-98) target or nuclear fission of an uranium (U-235) target.

Using (12.296) we now write the specific activity of the Mo-99 daughter radionu-
clide as

aMo-99(t) = AMo-99

mP
= σPϕ̇NP(0)

mP

[
1 − e−λMo-99t

]

≈ σPϕ̇NA

AP

[
1 − e−λMo-99t

]= (aMo-99)max
[
1 − e−λMo-99t

]
,

(12.297)

where mP stands for the mass of the parent nuclide and NA is the Avogadro num-
ber. We use the ≈ sign in (12.297) because we are determining the specific activity
of Mo-99 that is not carrier-free, rather, it is mixed together with all natural iso-
topes of either molybdenum in a molybdenum target or uranium in a uranium tar-
get. In (12.297) we then use for AP the atomic weights for natural molybdenum
(AMo = 95.962 g/mol) and natural uranium (AU = 238.0289 g/mol), respectively,
but we also account for the fraction by weight wP of the particular parent isotope
and for the branching ratio, as shown in the calculation of the maximum specific
activity (aMo-99)max below.

The maximum specific activities of the Mo-99 radionuclide are from (12.297)
given as follows:

(1) For a pure natural molybdenum target

(aMo-99)max = wMo-98
σMo-98ϕ̇NA

AMo

= 0.2413×(
0.13×10−24 cm2)×(

5×1013 cm−2 · s−1)
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× (6.022×1023 mol−1)

95.96 g · mol−1

= 9.84×109 Bq/g = 9.84×109 Bq/g

3.7×1010 Bq/Ci

≈ 0.27 Ci/g, (12.298)

where wMo-98 accounts for the fraction by weight of the Mo-98 isotope in nat-
ural molybdenum (24.13 %) from which the Mo-99 radionuclide is produced
through neutron activation in nuclear reactor.

(2) For a natural uranium target

(aMo-99)max = wU-235(σU-235)effϕ̇
NA

AU

= 0.0072×(
35.8×10−24 cm2)×(

5×1013 cm−2 · s−1)

×6.022×1023 mol

238.03 g/mol

= 3.26×1010 Bq/g = 3.26×1010 Bq/g

3.7×1010 Bq/Ci

≈ 0.9 Ci/g, (12.299)

where wU-235 accounts for the fraction by weight of U-235 in natural uranium
(0.72 %) from which the Mo-99 radionuclide is produced through the fission
reaction of thermal neutrons on uranium target. The effective cross section
(σU-235)eff is defined in (12.294).

Comparing (12.299) and (12.298) we note that the maximum attainable specific ac-
tivity of Mo-99 from a natural uranium target is about 3.3 times larger than that from
a natural molybdenum target. Significantly higher specific activities through fission
are achievable when instead of natural uranium target a highly enriched uranium
target with fU-235 > 0.95 is used providing a two orders of magnitude increase in
specific activity. Moreover, the chemical separation of Mo-99 from all other fission
products in the U-235 fission target also increases the specific activity of the Mo-99
activation product. Therefore, for practical reasons most of the Mo-99 radionuclide
produced in nuclear reactors for use in radionuclide generators around the world is
produced through enriched uranium targets. The main drawbacks of this approach
are the security concerns related to manufacturing, transportation, and use of highly
enriched (nuclear weapons grade) uranium as well as the associated production of
radioactive nuclear waste.

(d) Combining (12.297) and (12.298) or (12.299) we express the growth of spe-
cific activity aMo-99(t) as:
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(1) For a pure natural molybdenum target

aMo-99(t) = (aMo-99)max
[
1 − e−λMo-99t

]
= (0.27 Ci/g)×[

1 − e−(0.0105 h−1)t
]
. (12.300)

(2) For a pure natural uranium target

aMo-99(t) = (aMo-99)max
[
1 − e−λMo-99t

]
= (0.9 Ci/g)×[

1 − e−(0.0105 h−1)t
]
. (12.301)

According to (12.300) and (12.301) the maximum specific activity (aMo-99)max is
attained at time t = ∞ in the two types of target. However, we can find a reasonable
activation time frame by determining at what time t is the specific activity equal to
say 98 % of (aMo-99)max. Solving

aMo-99(t0.98)

(aMo-99)max
= 0.98 = [

1 − e−(0.0105 h−1)t0.98
]

(12.302)

for t0.98 we get t0.98 = 505 h. We thus choose a time scale from 0 to 600 hours
and use (12.300) and (12.301) to calculate the growth of Mo-99 specific activity
aMo-99(t) in steps of 50 hours from 0 to 550 hours. The results of the calculation
are shown in Table 12.33 and plotted in Fig. 12.16 for pure molybdenum and pure
uranium targets.

Table 12.33 Specific activity aMo-99(t) against activation time t calculated for natural molybde-
num target from (12.300) and for natural uranium target from (12.301) for activation times between
0 and 600 h in steps of 50 h

(1) Activation time (h) 0 50 100 150 200 250 300

(2) Molybdenum target 0.0 0.110 0.176 0.214 0.237 0.250 0.258

(3) Uranium target 0.0 0.368 0.585 0.714 0.790 0.835 0.861

(1) Activation time (h) 350 400 450 500 550 600 ∞
(2) Molybdenum target 0.263 0.266 0.268 0.269 0.269 0.270 0.270

(3) Uranium target 0.877 0.887 0.892 0.895 0.897 0.898 0.9
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Fig. 12.16 Specific activity aMo-99(t) against activation time t for molybdenum-99 radionuclide
produced by nuclear activation of natural molybdenum target (dashed curve and open circle data
points) and thermal neutron fission of natural uranium target (solid curve and solid circle data
points)

12.9.Q2 (269)

Some 40 million nuclear medicine imaging procedures are carried out around
the world every year and about 80 % of these rely on technetium-99m
(Tc-99m) radionuclide as radiation source. The Tc-99m radionuclide is de-
rived from radionuclide generators based on molybdenum-99 (Mo-99) as the
longer-lived parent radionuclide in the generator. Currently, Mo-99 used in
generators is produced by neutron bombardment of suitable targets in nuclear
reactors.

Two types of target are used in Mo-99 production: (1) Natural molybde-
num target relying on neutron activation of Mo-98 into Mo-99 and (2) Highly
enriched uranium-235 (HEU) target relying on fission of U-235 which in
about 6.1 % of fissions results in Mo-99 radionuclide.

(a) Briefly discuss the advantages and disadvantages of each of the two
current Mo-99 production techniques, both based on nuclear reactor.

(b) Some of the concerns with regard to the HEU based Mo-99 production
technique are so serious that much effort is spent on trying to develop
a less controversial technique. State the major concerns with the HEU
technique and briefly describe a few alternative techniques that may
prove practical for large scale Mo-99 production in the future.

(c) Prepare a table listing at least 5 possible techniques for Mo-99 radionu-
clide production based on particle accelerators. For each technique pre-
pare the following table columns:
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(1) Type of particle accelerator.
(2) Projectile used in nuclear reaction for production of Mo-99 ra-

dionuclide.
(3) Accelerator target for generating the required projectile.
(4) Target used in nuclear reaction to produce the Mo-99 radionu-

clide.
(5) Nuclear reaction with which Mo-99 radionuclide is produced.

SOLUTION:

(a) Of the two nuclear reactor based Mo-99 production techniques, the HEU fis-
sion technique, in comparison with Mo-98 neutron activation technique, is by far the
prevalent technique, mainly because it provides Mo-99 with a significantly higher
specific activity. Another advantage of the uranium fission technique is that, concur-
rently with Mo-99, it produces other fission products, such as iodine-131, that can
be used in nuclear medicine.

However, the U-235 fission technique is characterized by two serious disadvan-
tages in comparison with the Mo-98 neutron activation technique: (1) Security issue
related to the use of highly enriched (weapons grade) uranium-235 for non-military
purposes and (2) Production of radioactive waste. We note that Mo-98 activation, in
contrast to HEU fission, is not associated with any extraordinary security concerns
nor does it produce any radioactive waste.

Both techniques are reactor based, so that as far as the Mo-99 supply chain is
concerned both techniques suffer similar problems. There are only a few nuclear
reactors around the world (all of them of advanced age and close to end-of-life) that
have additional facilities required for production of Mo-99 radionuclide using HEU
targets. Therefore, migration of Mo-99 production from nuclear reactors to other
non-reactor based techniques is a long-term goal that to date has been discussed at
great lengths but has not yet been realized.

(b) The most serious concern with regard to the production of Mo-99 with the
HEU fission technique is that the process involves the use of weapons-grade HEU,
presenting a significant security risk related to nuclear proliferation stemming from
production, transport, and use of HEU for non-military purpose. This leads to in-
creased pressure to discontinue civilian use of HEU in favor of much safer natural
uranium or, preferably, depleted uranium as target material for Mo-99 production in
nuclear reactors.

Of course, migration from HEU to depleted uranium would only alleviate the
HEU security problem while the problem of aging nuclear reactors and production
of radioactive waste in the form of fission fragments would still be present.

Radioactive waste generated in Mo-99 production is of concern since Mo-99
appears in HEU target as fission fragment characterized with a branching ratio of
only 6.1 %. Most often, all other fragments produced in the target are discarded as
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radioactive waste, highlighting the question of disposal and storage of long-lived
radioactive waste for generations to come.

The security issue related to HEU targets as well as problems with radioactive
waste and aging nuclear reactors are stimulating serious proposals for devising Mo-
99 production techniques based on particle accelerators rather than on nuclear re-
actors. Most of these techniques have been known for years; however, developing
them for large-scale clinical Mo-99 production is neither simple nor inexpensive.

Several promising nuclear reactions are under consideration. Electron accelera-
tors as well as proton and heavier ion machines have been considered as possible
alternative means for Mo-99 production, but no concrete practical solutions have
been developed to date.

Some of these innovative techniques, aimed at dispensing with use of HEU tar-
gets, are as follows:

(1) High-power electron linear accelerators (linacs) producing bremsstrahlung x-
ray beams in bremsstrahlung targets can be considered as potential source of
high intensity photon beam used either in: (i) photonuclear (photodisintegra-
tion) reaction on Mo-100 through the reaction 100

42Mo(γ,n)99
42Mo or (ii) photo-

fission reaction on uranium-238.
Both the photodisintegration and photo-fission techniques are feasible but

require very high intensity x-ray beams that are not yet readily available.
Moreover, the electron accelerator, be it a high-energy linac or a microtron,
must produce a photon beam spectrum with peak energy exceeding the thresh-
old for (i) photonuclear reaction and (ii) photo-fission, respectively.

The Mo-99 branching ratio in photo-fission of U-238 is about 6 % just
like in regular neutron triggered U-235 fission; however, the cross section of
photo-fission in contrast to regular fission is over two orders of magnitude
lower, requiring very high intensity photon beams. The major advantage of
photo-fission is that it bypasses the need for nuclear reactor and that it is based
on readily available U-238 (in natural uranium or in depleted uranium). Thus,
no highly enriched U-235 would be required, but the problem of production
and disposal of radioactive waste in the form of fission products would remain.

(2) Proton accelerators generating protons that bombard high atomic number tar-
gets to produce neutrons can be used as source of neutrons for (i) neutron
activation of Mo-98 targets or (ii) nuclear fission of U-235 targets, similar to
the current nuclear reactor based Mo-99 production techniques. This would
solve the problem with aging nuclear reactors; however, it would not alleviate
the problem of nuclear waste produced in U-235 targets.

(3) Deuteron accelerators generating deuterons striking a low atomic number tar-
get (tritium or carbon) to produce fast neutrons could be used to bombard
enriched Mo-100 targets with fast neutrons to trigger the following neutron

activation reaction: 100
42Mo(n,2n)99

42Mo. Advantage of this technique would be
that production of radioactive waste would be very small.

(4) Another possibility under consideration for Mo-99 production is bombard-
ment of zirconium-96 (Zr-96) target with energetic α particles obtained by
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accelerating 4
2He nuclei (α particles) in an accelerator. While α particle accel-

erators are available, it is not clear whether or not they can provide sufficiently
high currents to enable an efficient production of Mo-99 through the nuclear
reaction 96

40Zr(α,n)99
42Mo. Of course, the α particle kinetic energy must exceed

the threshold kinetic energy of the nuclear reaction (see Prob. 270).
(5) Also considered is direct production of Tc-99m based on nuclear reaction

100
42Mo(p,2n)99m

42Tc triggered with protons from a cyclotron bombarding a
Mo-100 target. This approach would bypass the intermediate step of Mo-99
production that is used in all currently employed or investigated options for
Tc-99m production.

This direct solution is feasible, however, since Tc-99m would be produced directly
rather than through the intermediate Mo-99 step, the short Tc-99m half-life would
preclude the shipping of Tc-99m to sites remote from the cyclotron. Thus, the user
would have to produce Tc-99m on-site and only a few medical centers around the
world would be capable of implementing this approach because of the large cost
involved in purchasing and operating a cyclotron just for the purpose of Tc-99m
production. We should note, however, that this approach has the added attraction of
not producing radioactive waste associated with reactor based nuclear fission in ura-
nium targets as well as with linac based photo-fission in uranium targets. Moreover,
around the world there already is a hospital-installed base of cyclotrons for produc-
ing fluorine-18 radionuclide for positron emission studies. Many of these machines
could be used for production of Tc-99m in the future.

(c) The techniques for Mo-99 production, discussed in (b), are summarized in
Table 12.34. In contrast to the two current techniques for Mo-99 production both
based on nuclear reactors, Table 12.34 presents 6 possible techniques using a variety
of reaction targets (Mo-98, Mo-100, U-235, and Zr-96) as well as four different
particle accelerators:

(1) Two techniques use high energy electron linear accelerators (linacs) to pro-
duce high energy x rays which are used to induce: (1) photodisintegration
[(γ,n) reaction] of a Mo-100 target into Mo-99 radionuclide and (2) photo-
fission of U-238 target producing fission fragment Mo-99 among many other
fission fragments.

(2) Two techniques use proton accelerators to produce neutrons which can be used
to induce: (1) neutron activation in a Mo-98 target or (2) nuclear fission in a U-
235 target. The two techniques are similar to the currently used reactor based
techniques except that neutron projectiles originate in a particle accelerator
rather than in a nuclear reactor. Like in a nuclear reactor, the result of neutron
bombardment of Mo-98 or U-235 targets results in production of the Mo-99
radionuclide and uranium targets produce radioactive waste that must be dealt
with appropriately.

(3) The fifth technique uses neutrons produced in a deuteron accelerator and bom-
bards a Mo-100 target to produce Mo-99 through a (n,2n) nuclear reaction.

(4) The sixth technique uses energetic α particles from a particle accelerator to
bombard Zr-96 to produce the Mo-99 radionuclide.
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Table 12.34 Six potential techniques for production of Mo-99 based on particle accelerators:
(i) Two techniques are based on high-energy electron linac producing high-energy x-ray photons
for photodisintegration of Mo-100 and for photo-fission of U-238. (ii) Two techniques are based
on proton accelerator producing neutrons for neutron activation of Mo-98 and nuclear fission of
U-235. (iii) One technique is based on deuteron accelerator producing fast neutrons for neutron
activation of Mo-100. (iv) One technique is based on α particle accelerator producing α particles
to trigger nuclear reaction 96

40Zr(α,n)99
42Mo

(1) (2) (3) (4) (5)

Type of
accelerator

Accelerator
target

Projectile
produced

Target for nuclear
reaction

Nuclear reaction

(1) Electron
accelerator

Bremsstrahlung
target

X-ray photon Mo-100 Photodisintegration
100
42Mo(γ,n)99

42Mo

(2) U-238 Photo-fission
238
92U(γ, f)99

42Mo

(3) Proton accelerator High atomic
number target (Pb,
W, U, etc.)

Neutron Mo-98 Neutron activation
98
42Mo(n, γ )99

42Mo

(4) U-235 Nuclear fission
235
92U(n, f)99

42U

(5) Deuteron
accelerator

Tritium or carbon
target

Fast neutron Mo-100 Neutron activation
100
42Mo(n,2n)99

42Mn

(6) Alpha particle
accelerator

– – Zr-96 Nuclear reaction
96
40Zr(α,n)99

42Mo

12.9.Q3 (270)

Several nuclear reactions, all endothermic and based on particle accelerators,
are investigated for possible use in large-scale production of molybdenum-99
(Mo-99) radionuclide for radionuclide Tc-99m generators [e.g., 100

42Mo(γ,n)99
42Mo

and 96
40Zr(α,n)99

42Mo] or for direct production of Tc-99m radionuclide [e.g.,
100
42Mo(p,2n)99m

42Tc].

(a) Define Q value of a nuclear reaction and its relationship with threshold
energy Ethr of the nuclear reaction. Describe the various methods used
in calculation of Q value and Ethr.

(b) CalculateQ value and threshold photon energy (EPN
γ )thr for photodisin-

tegration of Mo-100, i.e., for photonuclear reaction 100
42Mo(γ,n)99

42Mo,
investigated for use in production of the Mo-99 radionuclide, serving
as source of Tc-99m radionuclide in radionuclide generators. Provide a
schematic diagram for the photodisintegration process.

(c) CalculateQ value and threshold kinetic energy (EαK)thr of the α particle
projectile for the nuclear reaction 96

40Zr(α,n)99
42Mo investigated for use

in production of the Mo-99 radionuclide.
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(d) Calculate Q value and threshold kinetic energy (Ep
K)thr of the proton

projectile for the nuclear reaction 100
42Mo(p,2n)99m

43Tc investigated for
clinical use in direct production of the Tc-99m radionuclide.

(e) Another possible nuclear reaction for use in Mo-99 production is
neutron activation of Mo-100 through the nuclear reaction 100

42Mo(n,
2n)99

42Mo. Calculate Q value for the reaction and determine the type of
neutron to be used for the activation process.

SOLUTION:

(a) Q value of a nuclear reaction is defined as the difference between
∑
i,beforeMic

2,
the sum of rest energiesMic2 of reactants (typically, the projectile and target) before
the reaction and

∑
i,afterMic

2, the sum of rest energies of reaction products after the
reaction. In short, Q value with the rest energy method is determined as follows

Q=
∑
i,before

Mic
2
∑
i,after

Mic
2. (12.303)

Alternatively, Q value of a nuclear reaction is defined as the difference between∑
i,afterEB(i), the sum of binding energies EB(i) of reaction products after the re-

action and
∑
i,beforeEB(i), the sum of binding energies of reactants (typically, the

projectile and target) before the reaction. In short, Q value with the binding energy
method is given as

Q=
∑
i,after

EB(i)−
∑
i,before

EB(i). (12.304)

Thus, two methods are in use for determining a nuclear reactionQ value: (1) rest
energy method and (2) binding energy method, and both methods should provide
identical result. Each nuclear reaction possesses a characteristicQ value that can be
either positive (Q > 0), zero (Q= 0), or negative (Q < 0).

For Q> 0, the nuclear reaction is called exothermic (or exoergic) and results in
release of energy.

For Q= 0, the nuclear reaction is termed elastic and no energy is released or
absorbed.

For Q< 0, the nuclear reaction is called endothermic (or endoergic) and, to take
place, it requires an energy transfer from the projectile to the target.

An exothermic reaction can proceed spontaneously; an endothermic reaction, on
the other hand, cannot take place unless the projectile has a kinetic energy exceeding
a minimum energy referred to as threshold energy Ethr. In general, threshold kinetic
energy (EK)thr is related to Q value by the following expression (T5.15)

(EK)thr = −Q
[

1 + mprojectilec
2

Mtargetc2

]
, (12.305)
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where mprojectile and Mtarget are rest masses of the projectile and target, respec-
tively. As a result of photon rest mass mγ being zero, we note that threshold energy
(EPN
γ )thr for a photonuclear reaction in which a photon plays the role of projectile is

equal to −Q or we can say that the absolute value ofQ is equal to threshold energy,
i.e., (EPN

γ )thr = |Q|.
Alternatively, threshold kinetic energy (EK)thr of an endothermic nuclear re-

action (or minimum energy that a projectile must possess in order to trigger
an endothermic nuclear reaction) can be derived using the relativistic invariant
E2 − p2c2 = inv (T5.9) to get the following expression (T5.13)

(EK)thr = [∑i,afterMic
2]2 − [Mtargetc

2 +mprojectilec
2]2

2Mtargetc2
, (12.306)

where
∑
i,afterMic

2 stands for a sum of rest energies of reaction products after the
nuclear reaction. Note that (12.305) is derived from (12.306) making an assumption
that Q�Mtargetc

2.

(b) We now determine Q value of the 100
42Mo(γ,n)99

42Mo photonuclear reaction,
first using the rest energy method of (12.303) and then the binding energy method
of (12.304):

(1) Rest energy method:

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

0 +M(100
42Mo

)
c2]− [

M
(99

42Mo
)
c2 +mnc

2]

= [0 + 93041.7604 MeV] − [92110.4849 MeV + 939.5654 MeV]
= [93041.7604 MeV] − [93050.0503 MeV] = −8.29 MeV. (12.307)

(2) Binding energy method:

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
EB

(99
42Mo

)+ 0
]− [

0 +EB
(100

42Mo
)]

= [852.1677 MeV] − [860.4575 MeV] = −8.29 MeV. (12.308)

Components i of the photonuclear reaction are defined in Fig. 12.17 and the param-
eters Mic2 of (12.307) and EB(i) of (12.308) are listed in Appendix A. As evident
from (12.307) and (12.308), the two methods for calculation ofQ value of photonu-
clear reaction 100

42Mo(γ,n)99
42Mo yield identical results of −8.29 MeV. A negative

Q value indicates that the reaction is endothermic, which means that the reaction
cannot run spontaneously, rather, energy must be supplied for reaction to occur.
Usually energy for endothermic reactions is supplied in the form of kinetic energy
of the projectile when the projectile is a particle. In the case of photonuclear reac-
tions the photon plays the role of projectile and energy is supplied in the form of
photon energy hν.
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Fig. 12.17 Schematic diagram of the photonuclear (PN) reaction 100
42Mo(γ,n)99

42Mo. A high-en-
ergy bremsstrahlung photon, generated by a high-energy electron striking a linac target, plays the
role of the projectile, while a molybdenum-100 (Mo-100) nucleus is the nuclear reaction target.
Mo-99 and a free neutron are reaction products

Threshold energy (EPN
γ )thr of 8.29 MeV for the 100

42Mo(γ,n)99
42Mo photonuclear

reaction is relatively high and to get a photon spectrum with such a high maxi-
mum energy requires a high-energy electron accelerator that generates high-energy
bremsstrahlung x rays through bombarding a suitable thick target with electrons of
kinetic energy exceeding 8.29 MeV. The electron linac also should produce a high
intensity bremsstrahlung beam, because the cross section for the photonuclear reac-
tion is relatively small.

(c) Q value of nuclear reaction 96
40Zr(α,n)99

42Mo is determined using: (1) rest en-
ergy method of (12.303) and (2) binding energy method of (12.304):

(1) Rest energy method:

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

mαc
2 +M(96

40Zr
)
c2]− [

M
(99

42Mo
)
c2 +mnc

2]

= [3727.3788 MeV + 89317.5477 MeV]
− [92110.4849 MeV + 939.5654 MeV]

= [93044.9265 MeV] − [93050.0503 MeV] = −5.1238 MeV. (12.309)

(2) Binding energy method:

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
EB

(99
42Mo

)+ 0
]− [

EB(α)+EB
(96

40Zr
)]

= [852.1677 MeV] − [828.9953 MeV + 28.2959 MeV]
= [852.1677 MeV] − [857.2912 MeV] = −5.1235 MeV. (12.310)

Since Q value is negative, the nuclear reaction is endothermic and is triggered
by energy supplied in the form of kinetic energy of the α particle projectile. Mini-
mum energy (EαK)thr to trigger the reaction is referred to as threshold energy and is
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from (12.305) calculated as

(
EαK

)
thr = −Q

[
1 + mαc

2

M(100
42Mo)c2

]
= −(−5.1238 MeV)

[
1 + 3727.3788

89317.5439

]

= (5.1238 MeV)×1.0417 = 5.34 MeV. (12.311)

We can also calculate threshold energy of the α particle projectile directly from
(12.306) as follows

(
EαK

)
thr = [M(99

42Mo)c2 +mnc
2]2 − [mαc2 +M(96

40Zr)c2]2

2M(96
40Zr)c2

= {[92110.4849 + 939.5654]2 − [3727.3788 + 89317.5477]2} (MeV)2

2×(89317.5477 MeV)

= 8658311861 − 8657358347

178635.0954
MeV = 5.34 MeV. (12.312)

As expected, (12.311) and (12.312) give identical result, confirming 5.34 MeV as
threshold kinetic energy (EαK)thr that a α particle must exceed to trigger the nuclear
reaction 96

40Zr(α,n)99
42Mo.

(d) Q value of nuclear reaction 100
42Mo(p,2n)99m

43Tc is determined using: (1) rest
energy method of (12.303) and (2) binding energy method of (12.304):

(1) Rest energy method:

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

mpc
2 +M(100

42Mo
)
c2]− [

M
(99m

43Tc
)
c2 +mnc

2]

= [938.2720 + 93041.7604] (MeV)− [92108.6129 + 2×939.5654] (MeV)

= [93980.0324 MeV] − [93987.7437 MeV] = −7.7113 MeV. (12.313)

(2) Binding energy method:

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
EB

(99m
43Tc

)+ 0
]− [

EB
(100

42Mo
)+ 0

]

= [852.7430 MeV] − [860.4575 MeV] = −7.7145 MeV. (12.314)

SinceQ value is negative, the nuclear reaction is endothermic and is triggered by
energy supplied in the form of kinetic energy of the proton projectile. Both the rest
energy method and the binding energy method give almost identical results with an
averageQ value of −7.7129 MeV. Minimum energy (Ep

K)thr to trigger the reaction
is referred to as threshold energy and is from (12.305) calculated as

(
E

p
K

)
thr = −Q

[
1 + mpc

2

M(100
42Mo)c2

]
= −(−7.7129 MeV)

[
1 + 938.2720

93041.7604

]
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= (7.7129 MeV)×1.010 = 7.79 MeV. (12.315)

We can also calculate threshold energy of the proton projectile (Ep
K)thr directly from

(12.316)

(
E

p
K

)
thr = [M(99m

42Tc)c2 + 2mnc
2]2 − [

mpc
2 +M(100

42Mo)c2
]2

2M(100
42Mo)c2

= {[92108.6129 + 2×939.5654]2 − [938.2720 + 93041.7604]2}(MeV)2

2×(93041.7604 MeV)

= 8833695966 − 8832246490

186083.5208
MeV = 7.79 MeV. (12.316)

As expected, (12.314) and (12.316) give identical result, confirming 7.79 MeV as
threshold kinetic energy (Ep

K)thr that a proton must exceed to trigger the nuclear
reaction 100

42Mo(p,2n)99m
43Tc.

(e) Q value of neutron activation reaction 100
42Mo(n,2n)99

42Mo calculated with:
(1) the rest energy method of (12.303) and (2) the binding energy method of (12.304)
is obtained as follows

(1) Rest energy method:

Q =
∑
i,before

Mic
2 −

∑
i,after

Mic
2 = [

mnc
2 +M(100

42Mo
)
c2]− [

M
(99

42Mo
)
c2 + 2mnc

2]

= [939.5645 + 93041.7604] (MeV)− [92110.4849 + 2×939.5654] (MeV)

= [93981.3258 MeV] − [93989.6157 MeV] = −8.29 MeV. (12.317)

(2) Binding energy method:

Q =
∑
i,after

EB(i)−
∑
i,before

EB(i)=
[
EB

(99
42Mo

)+ 0
]− [

EB
(100

42Mo
)]

= [852.1677 MeV] − [860.4575 MeV] = −8.29 MeV. (12.318)

Since Q value is negative, the neutron activation reaction is endothermic and is
triggered by energy supplied in the form of kinetic energy of the neutron projectile.
This means that thermal neutrons cannot be used to trigger this nuclear reaction;
however, fast neutrons with kinetic energy exceeding threshold kinetic energy will
be suitable. We now use (12.305) to determine the threshold kinetic energy (En

K)thr
that a fast neutron must posses to be able to trigger the nuclear reaction

(
En

K

)
thr = −Q

[
1 + mnc

2

M(100
42Mo)c2

]
= −(−8.29 MeV)

[
1 + 939.5654

93041.7604

]

= (8.29 MeV)×1.010 = 8.37 MeV. (12.319)
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We can also calculate threshold energy of the neutron projectile (En
K)thr directly

from (12.306)

(
En

K

)
thr = [M(99

42Mo)c2 + 2mnc
2]2 − [mnc

2 +M(100
42Mo)c2]2

2M(100
42Mo)c2

= {[92110.4849 + 2×939.5654]2 − [939.5654 + 93041.7604]2} (MeV)2

2×(93041.7604 MeV)

= 8834047859 − 8832489599

186083.5208
MeV = 8.37 MeV. (12.320)

Both (12.319) and (12.320) give the same result, confirming that threshold kinetic
energy the neutron projectile in neutron activation reaction 100

42Mo(n,2n)99
42Mo must

possess is 8.37 MeV and suggesting that fast neutrons from a machine accelerating
deuterons that bombard a light nuclear target, such as tritium or carbon, may be
suitable for this purpose.

12.10 Nuclear Activation with Protons and Heavier Charged
Particles

12.10.Q1 (271)

Radionuclides produced in cyclotron with charged particle activation are
positron emitters used in positron emission tomography (PET) scanners for
diagnostic imaging. PET scanning is considered a non-invasive imaging tech-
nique that provides a functional image of organs and tissues, in contrast to
CT scanning and MRI scanning that provide anatomic images of organs and
tissues. Carbon-11, a positron emitter decaying through β+ decay with a half-
life t1/2 of 20.4 minutes into boron-11, is the most stable artificial radioisotope
of carbon and is one of four common positron emitters used in medicine for
imaging with PET scanners.

A cyclotron operating at 40 µA and generating a 15 MeV proton beam is used
to produce carbon-11 radionuclide through nuclear activation of a gaseous
nitrogen-14 pressurized target. The principal nuclear activation reaction for
production of carbon-11 is

14N + p→ 11C + α. (12.321)
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(a) Calculate the nuclear reaction energyQ for activation reaction (12.321).
The appropriate rest energies and nuclear binding energies of compo-
nents of (12.321) are provided in Appendix A. Use the three known
methods for calculation of Q value (nuclear rest energy, atomic rest
energy, and nuclear binding energy) and show that they give the same
result.

(b) Calculate threshold kinetic energy (EK)
p
thr of the proton for the pro-

ton activation reaction (12.321) assuming that the target parent nucleus
(nitrogen-14) is initially at rest.

(c) Determine the effective gaseous nitrogen-14 activation target thickness
xeff for the incident 15 MeV proton beam, if the pressure of the gas is
15 atm and its temperature is 20 °C. The density of nitrogen gas at STP
(0 °C and 1 atm) is ρSTP = 1.251×10−3 g/cm3.

(d) If the activity of the daughter is 3.52 Ci after an activation time t =
(t1/2)11C, calculate the mean activation cross section σ̄P in the (12.321)
activation reaction for the incident proton beam of kinetic energy (EK)

p
0.

SOLUTION:

(a) Nuclear reaction energyQ, also known as reactionQ value for a nuclear reac-
tion, provides the energy release or energy absorption during the nuclear reaction.
We will determine Q value of the activation reaction (12.321) with the following
three methods:

(1) Nuclear rest energy method: The sum of nuclear rest energies of the reaction
products (i.e., total nuclear rest energy after reaction) is subtracted from the sum of
nuclear rest energies of the reactants (i.e., total nuclear rest energy before reaction)

Q =
{∑
i

Mic
2
}

before
−
{∑
i

Mic
2
}

after

= {
M
(14

7N
)
c2 +mpc

2}− {
M
(11

6C
)
c2 +mαc2}

= {13040.2028 + 938.2720} (MeV)− {10254.0186 + 3727.3791} (MeV)

= −2.92 MeV. (12.322)

(2) Atomic rest energy method: The sum of atomic rest energies of the reaction
products (i.e., total atomic rest energy after reaction) is subtracted from the sum of
atomic rest energies of the reactants (i.e., total atomic rest energy before reaction)

Q =
{∑
i

Mic
2
}

before
−
{∑
i

Mic
2
}

after
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= {
M
(14

7N
)
c2 + M

(1
1H

)
c2}− {

M
(11

6C
)
c2 + M

(4
2He

)
c2}

= {14.003074u+ 1.007825u} − {11.011434u+ 4.002603u}
= −(

3.138×10−3u
)×(931.494028 MeV/u)= −2.92 MeV. (12.323)

(3) Binding energy method: The sum of nuclear binding energies of the reactants
(i.e., total binding energy before reaction) is subtracted from the sum of nuclear
binding energies of reaction products (i.e., total binding energy after reaction)

Q =
{∑
i

(EB)i

}
after

−
{∑
i

(EB)

}
before

= {
EB

(11
6C
)+EB

(4
2He

)}− {
EB

(14
7N

)+ 0
}

= 73.4402 MeV + 28.2957 MeV − (104.6587 MeV + 0 MeV)

= −2.92 MeV. (12.324)

As expected, the three calculation methods of Q value (activation energy) give the
same result equal to −2.92 MeV, indicating that the activation reaction is endother-
mic (endoergic) and that for the activation to happen, the proton must have a certain
minimum kinetic energy called the threshold kinetic energy (EK)

p
thr that will be

determined in (b).

(b) An exothermic reaction can occur spontaneously; an endothermic reaction
cannot take place unless the projectile possesses total energy E exceeding the re-
action threshold energy Ethr. This means that the projectile must possess kinetic
energy exceeding threshold kinetic energy (EK)thr that can be determined from the
relativistic invariant

J =E2 − p2c2 = inv, (12.325)

where E stands for the total energy before the collision and total energy after the
collision and p is the total momentum before collision and total momentum after
the collision.

The invariant for conditions before the collision is written in laboratory coordi-
nate system, the invariant for conditions after the collision is written in the center-
of-mass coordinate system. For a general endothermic nuclear reaction A(a, b)B,
where a is the projectile and A is the target, the relativistic invariant is given as
follows

Jbefore =
(√
m2

ac
4 + p2

ac
2 +mAc

2
)2 − p2

ac
2 = Jafter = (

mBc
2 +mbc

2)2 − 0.

(12.326)
Solving (12.326) for Ea

thr = √
m2

ac
4 + p2

ac
2, with pa the total momentum before

interaction, results in the following expression for the total threshold energy Ea
thr

(T5.12) of the nuclear reaction

Ea
thr = (mBc

2 +mbc
2)2 − (m2

ac
4 +m2

Ac
4)

2mAc2
. (12.327)
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Noting that Ea
thr = (EK)

a
thr +mac

2, where (EK)
a
thr is the threshold kinetic energy of

the projectile, we get the following expression for (EK)
a
thj (T5.13)

(EK)
a
thr = (mBc

2 +mbc
2)2 − (mac

2 +mAc
2)2

2mBc2
. (12.328)

The threshold kinetic energy (EK)
a
thr of the projectile given in (12.328) may now

be written in terms of nuclear reaction Q value. First, we note that from the defini-
tion of Q value (T5.5) we can write the following expression linking Q value with
rest masses of the projectile ma, target mA, and reaction products mB and mb

(
mBc

2 +mbc
2)2 = (

mac
2 +mAc

2)2 +Q2 − 2Q
(
mac

2 +mAc
2). (12.329)

Inserting the relationship (12.329) into (12.328) we obtain the following expression
for (EK)

a
thr (T5.15)

(EK)
a
thr = −Q

[
mac

2 +mAc
2

mAc2
− Q

2mAc2

]
≈ −Q

(
1 + ma

mA

)
, (12.330)

where, since Q�mAc
2, we can ignore the Q/2mAc

2 term in (12.330).
In (12.330) the threshold kinetic energy (EK)

a
thr of the projectile exceeds the |Q|

value by a relatively small amount to account for conservation of both energy and
momentum in the collision.

We now use (12.327), (12.328), and (12.330) to calculate total threshold energy
E

p
thr and threshold kinetic energy (EK)

p
thr of the incident proton in the proton acti-

vation reaction 14N + p→ 11C + α given in (12.321).

(1) Threshold energy Ep
thr of the proton using (12.327) is expressed as

E
p
thr = {M(11

6C)c2 +mαc2}2 − {[M(14
7N)]2c4 +m2

pc
4}

2M(14
7N)c2

= {10254.0186 + 3727.3791}2 − {[938.2720]2 + [13040.2028]2}
2×(13040.2028)

MeV

= 941.4055 MeV (12.331)

resulting in threshold kinetic energy of 941.4055 MeV − 938.2720 MeV =
3.1335 MeV.

(2) Threshold energy Ep
thr of the proton using (12.328)

E
p
thr = {M(11

6C)c2 +mαc2}2 − {M(14
7N)c2 +m2

pc
4}2

2M(14
7N)c2

= {10254.0186 + 3727.3791}2 − {938.2720 + 13040.2028}2

2×(13040.2028)
MeV

= 941.4055 MeV. (12.332)
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(3) Threshold kinetic energy (EK)
p
thr of the proton using (12.330)

(EK)
p
thr ≈ −Q

(
1 + mpc

2

M(14
7N)c2

)
= −(−2.92 MeV)

(
1 + 938.2720

13040.2028

)

= 3.130 MeV. (12.333)

From (12.331), (12.332), and (12.333) we note that the calculated threshold results
are consistent, since

(EK)
p
thr =Ep

thr −mpc
2 ≈ −Q

(
1 + mpc

2

M(14
7N)c2

)
= 3.13 MeV. (12.334)

In (a) we determined the activation energy |Q| = 2.92 MeV (12.322) for activation
reaction (12.321) and in (12.334) we determined that the threshold proton kinetic
energy (EK)

p
thr = 3.13 MeV that is ∼7 % higher than |Q| to account for the recoil

kinetic energy of the target.

(c) Cyclotron targets are most commonly of the thick target variety, resulting in
complete beam absorption in the target material. As the proton beam penetrates
the target, its energy decreases as a result of Coulomb interactions with the orbital
electrons of the target. Nuclear activation can only be produced in the target in layers
where kinetic energy of protons is greater than or equal to the threshold kinetic
energy of the projectile for the nuclear reaction to occur. We refer to this target
thickness as the effective activation target thickness xeff for a given incident kinetic
energy (EK)

p
0 and determine it using the continuous-slowing-down-approximation

range RCSDA as follows

xeff = RCSDA[(EK)
p
0] −RCSDA[(EK)

p
thr]

ρ
, (12.335)

where ρ is the mass density of the target and we accounted for threshold kinetic
energy (EK)

p
thr of the proton by subtracting the proton CSDA range RCSDA[(EK)

p
thr]

for the threshold kinetic energy from the proton range RCSDA[(EK)
p
0] for the inci-

dent proton kinetic energy (EK)
p
0.

The nitrogen-14 target of our example is pressurized to P = 15 and ran at a
temperature T = 20 °C, resulting in the following target density ρ determined from
the ideal gas formula

ρ(T ,P ) = ρNTP×273.2 K

T
× P

(101.325 kPa)

= (
1.251×10−3 g/cm3)×273.2

293.2
×15

1
= 1.748×10−2 g/cm3.

(12.336)
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Looking up data for the proton CSDA range RCSDA in nitrogen-14 from the NIST
database (shown in Fig. 12.18) and using the density ρ calculated in (12.336), we
get the following result for the required effective nitrogen target thickness xeff

xeff = RCSDA[(EK)
p
0 = 15 MeV] −RCSDA[(EK)

p
thr − 3.13 MeV]

ρ

= 0.2870 g/cm2 − 0.0184 g/cm2

1.748×10−2 g/cm3
= 15.37 cm, (12.337)

where we used 15 MeV for the incident proton energy (EK)
p
0 and 3.13 MeV for

threshold proton energy (EK)
p
0, as determined in (12.334). Note: Proton data in

the NIST table (physics.nist.gov/PhysRefData/Star/Text/PSTAR.html) are given for
density at temperature of 20 °C and pressure of 101.325 kPa (1 atm).

(d) Discussions presented for neutron activation could in principle be generalized
to charged particle activation; however, the following points should be considered:

(1) In neutron activation the target is immersed in a see of thermal neutrons and
the neutron fluence is constant. In charged particle activation, beam attenua-
tion in thick targets that are routinely used in production of medical positron-
emitting radionuclides complicates matters considerably. In the thick target
the particle beam is completely stopped in the target or, at least, it is degraded
in energy to a level below the threshold energy.

(2) As the charged particles traversing a thick target lose energy through Coulomb
interactions with orbital electrons of the target, the activation yield is affected,
since the cross section for activation depends on charged particle energy.

(3) The specific activities produced by charged particle activation are several or-
ders of magnitude lower than those produced in neutron activation, so that in
general parent nuclide depletion is not of concern in charged particle activa-
tion.

Charged particle activation is illustrated in Fig. 12.19. The charged particle beam
is striking a target of cross sectional area A and activation takes place in the target
from the surface to effective depth xeff. Since the saturation model can be used to
describe charged particle activation, we express the growth of activity dA(t) in a
slab thickness of dx as

dA(t)= σP(EK)ϕ̇
(
1 − e−λDt

)
dNP(0), (12.338)

where σP(EK) is the activation cross section at proton kinetic energyEK and dNP(0)
is the number of parent nuclei in the slab thickness dx.

For a beam current I the particle fluence rate ϕ̇ is given as

ϕ̇ = I

qA
, (12.339)

http://physics.nist.gov/PhysRefData/Star/Text/PSTAR.html
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Fig. 12.18 CSDA range of protons against incident kinetic energy (EK)
p
0 in nitrogen. Data are

from the NIST. Point (1) is for incident proton kinetic energy of 15 MeV, point (2) is for threshold
kinetic energy of 3.13 keV applicable to activation reaction 14N + p→ 11C + α (12.321)

Fig. 12.19 Schematic diagram of thick target used in charged particle activation. Activation re-
gion, ranging from the target surface where proton kinetic energy equals to incident proton kinetic
energy (EK)

p
0 = 15 MeV down to proton kinetic energy (EK)

p
thr = 3.13 MeV that is the threshold

energy for the activation reaction 14N + p→ 11C + α (12.321), is shown in grey color. Effective
depth xeff in the thick target is the depth (measured in the direction of the incident proton beam) at
which the proton energy drops to the threshold kinetic energy for the activation reaction

where q is the charge of the incident charged particle and A is the cross sectional
area of the beam. dNP(0) can be expressed in terms of the density n� of the target
nuclei (number of target nuclei per volume) as

dNP(0)= n�Adx. (12.340)
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Fig. 12.20 Cross section σN-14 against proton kinetic energy EK for proton capture in nitro-
gen-14. The activation region for the activation reaction 14N+p→ 11C+α is shown in grey color
and ranges from the incident proton kinetic energy of (EK)

p
0 = 15 MeV down to threshold ki-

netic energy of (EK)
p
thr = 3.13 MeV. Data are from the National Nuclear Data Center, Brookhaven

National Laboratory, New York, USA at www.nndc.bnl.gov/

Upon inserting (12.339) and (12.340) into (12.338) we get the following expression

dA(t)= nI
q

(
1 − e−λDt

)
σP(EK)dx. (12.341)

The total daughter activity is obtained by integrating (12.341) as follows

A(t)=
∫ xeff

0
dA(t)= n� I

q

(
1 − e−λDt

)∫ xeff

0
σP(EK)dx. (12.342)

The second integral in (12.341) can be expressed as

∫ xeff

0
σP(EK)dx =

∫ (EK)
p
thr

(EK)
p
0

σP(EK)
dx

dEK
dEK

∫ (EK)
p
thr

(EK)
p
0

σP(EK)

ρScol(EK)
dEK, (12.343)

where Scol(EK) is the collision stopping power for the charged particles. As shown
in Fig. 12.20 for our example of proton activation of nitrogen-14 with protons of
kinetic energy of 15 MeV, the activation cross section σP(EK) is a complex function
of the particle kinetic energy and (12.343) can be calculated by numerical methods.
To simplify matters we express (12.343) as a product of thickness xeff and a mean
activation cross section σ̄P to obtain the following simplified expression for (12.344)

A(t)= n� I
q
σ̄Pxeff

(
1 − e−λDt

)= n� I
q
σ̄Pxeff

(
1 − e−

(ln 2)t
(t1/2)D

)
, (12.344)

where we used the standard relationship between decay constant λD and half-life
(t1/2)D for the activation product (daughter D) λD = (ln 2)/(t1/2)D.

http://www.nndc.bnl.gov/
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After solving (12.344) for σ̄P we get

σ̄P = A(t)q

n�Ixeff[1 − e−
ln(2)
(t1/2)D

t ]
. (12.345)

For the problem at hand, the nuclear density n� for the nitrogen-14 target is calcu-
lated as

n� = ρNA

A
= (

1.748×10−2 g/cm3)× (6.022×1023 mol−1)

(14 g · mol−1)
= 7.459×1020 cm−3

(12.346)
and (12.345) gives the following result for the mean activation cross section σ̄N-14
of nitrogen-14 with the following input data: xeff = 15.37 cm, as determined
in (12.337); activation time t = (t1/2)C-11 = 20.4 min; activity A(t) at activation
time t is 3.52 Ci = 1.30×1011 Bq; proton charge q = 1.602×10−19 C; and the pro-
ton beam current I = 4×10−5 A

σ̄N-14 = A(t)q

n�Ixmax[1 − e−
ln(2)
(t1/2)D

t ]

= (1.30×1011 s−1)×(1.602×10−19 A · s)

(7.459×1020 cm−3)×(4×10−5 A)×(15.49 cm)×0.5

= 9.09×10−26 cm2 = 90.9 mbarn. (12.347)



13Waveguide Theory

Chapter 13 consists of 17 problems distributed over 11 sections and dealing
with theoretical and practical aspects of uniform waveguides and acceleration
waveguides used in linear accelerators (linacs) for acceleration of electrons
in generation of clinical x-ray and electron beams. Because of their versa-
tility and compact design, clinical linacs are currently the most widely used
radiation source for external beam radiotherapy in the developed world. They
represent a significant technological advancement over x-ray machines and
cobalt-60 teletherapy machines that were used for routine radiotherapy in the
past before the advent of linacs.

Section 13.1 covers general aspects of transmission of energy and commu-
nication signals through three types of waveguide: electromagnetic (EM), op-
tical, and acoustic. Boundary conditions governing propagation microwaves
in an EM waveguide are covered in Sect. 13.2 and Sect. 13.3 addresses the
partial differential equations that are used for describing the propagation
of microwaves through a uniform EM rectangular or circular transmission
waveguide. Electric and magnetic fields present in an EM waveguide are de-
scribed in Sect. 13.4 and Sect. 13.5 deals with general conditions that must be
met for particle acceleration.

The second half of the chapter starts with the dispersion relationship for a
uniform EM waveguide covered by problems in Sect. 13.6. Section 13.7 deals
with the transverse magnetic (TM)01 mode that is the mode that is used for
particle acceleration in acceleration waveguides. Relationships between the
phase velocity of the RF wave and the particle velocity is studied in Sect. 13.8,
while Sect. 13.9 concentrates on the relationship between group velocity of
the RF wave and the velocity of energy flow in a uniform waveguide.

The chapter concludes with Sect. 13.10 that deals with theoretical and
practical aspects of acceleration waveguides and Sect. 13.11 that concentrates
on the capture condition applied to acceleration waveguides.

E.B. Podgoršak, Compendium to Radiation Physics for Medical Physicists,
DOI 10.1007/978-3-642-20186-8_13,
© Springer-Verlag Berlin Heidelberg 2014
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13.1 Microwave Propagation in Uniform Waveguide

13.1.Q1 (272)

Theory of waveguide is a highly specialized subject in communication en-
gineering; however, it also plays an important role in the science of medical
physics. This is so because the most sophisticated and most prevalent modern
high-technology machine, the linear accelerator (linac), used in radiotherapy
is based on a specially designed waveguide called acceleration waveguide.
Therefore, a medical physicist who calibrates the output and all other oper-
ating parameters of a clinical linac must understand the basic theory behind
the waveguide, since an acceleration waveguide is the linac component that
enables the acceleration of electrons to relativistic energies required for pro-
duction of clinical x-ray and electron beams with a linac.

(a) Define a waveguide and briefly describe its basic characteristics.
(b) List and briefly discuss at least three domains that make use of waveg-

uide. Prepare a table listing the three domains and for each domain state
the waveguide core material as well as the waveguide wall material.

(c) Define the propagation mode of a waveguide and cutoff frequency of a
waveguide.

(d) Define the dispersion relationship for an EM waveguide.
(e) Define phase velocity υph and group velocity υgr for an EM wave prop-

agating through a waveguide.

SOLUTION:

(a) Transmission of energy and communication signals carried by waves is very
important in modern technology and is studied extensively in communication en-
gineering. A given frequency range generally requires a specifically designed
“medium” (transmission line) for optimal transmission of waves in that frequency
range. For example, ordinary electrical cables are used for carrying low frequency
alternating current (AC), but these cannot be used for transmission of higher fre-
quency radio-signals and microwaves. The problem with transmission of high fre-
quency waves through regular cable arises because power loss in the form of emit-
ted radiation and wave reflection at discontinuities in the cable prevent efficient
transmission. Therefore, high frequency waves must be transmitted through other
means, such as coaxial cables, strip lines, optical fibers, and waveguides, the choice
depending on frequency and type of wave as well as the material used for wave
transmission.

Waveguide is a special transmission line used in transmission of a variety of
waves of appropriate frequency, such as microwaves, acoustic waves, and optical
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signals. Some design characteristics of waveguides for these different domains are
the same or similar for all applications and others are specific to a particular area.

Characteristics common to waveguides in all domains can be summarized as
follows:

(1) Waveguides are shaped in the form of a tube with a cylindrical or rectangular
cross section.

(2) In a waveguide waves propagate in the direction of the central axis of the tube
and under ideal conditions no power is lost.

(3) Waveguide tube is filled with vacuum or with medium in which the wave is
propagated; waveguide wall guides the waves along the central axis of the
tube and contains the waves.

(4) The diameter of the waveguide tube in cylindrical cross section and the longer
side of the rectangle in rectangular waveguide tube cross section are of the
order of the wavelength of the wave transmitted through the waveguide.

(5) Properties of waves in a waveguide depend on initial conditions and boundary
conditions.

(6) Because of the boundary conditions there are only a limited number of fre-
quencies that can propagate in the waveguide.

(b) Three most common domains of waveguide use are in transmission of:
(1) electromagnetic (EM) waves, (2) optical waves, and (3) acoustic (sound) waves.
In addition to the common characteristics discussed in (a), waveguide types have
their own specific characteristics that depend on their physical characteristics and
boundary conditions. A summary of main characteristics of the three domains of
waveguides: electromagnetic, optical, and acoustic is presented in Table 13.1.

(1) Electromagnetic waveguides have the tube walls made of a conductor most
often copper and the inside of the tube is either evacuated or filled with a
dielectric gas such as sulfur-hexafluoride SF6 under pressure exceeding at-
mospheric pressure. EM waves striking a conductor are fully reflected by the
conductor; they do not pass through a conductor. The boundary conditions
are such that electric field at the boundary with a conductor is perpendicu-
lar to the boundary, while the magnetic field is parallel to it. EM waveguides
are excellent in transmission of microwaves in the frequency range between
∼300 MHz and ∼30 GHz.

There are numerous examples of EM waveguide use in modern life, such
as: (i) in radar technology where waveguides transfer RF power from the
source to antenna and back, (ii) in microwave oven where EM waveguide
is used to deliver RF from the magnetron source to the cooking chamber, and
(iii) in medical linear accelerator employing two types of waveguide: trans-
mission waveguide for transmitting microwave power from the power source
to the acceleration waveguide that is used for accelerating electrons to the high
energies used in radiotherapy.

(2) Optical waveguides are usually referred to as fiber optic cables or light pipes
and the waveguide consists of a fiber cable made of a high-purity transpar-
ent dielectric material such as glass or plastic as core material, coated with a
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Table 13.1 Three domains of waveguides: electromagnetic, optical, and acoustic

Wave type Waveguide core:
transmitting medium

Waveguide wall

Electromagnetic (EM) Vacuum or dielectric gas Conductor (copper)

Optical Transparent glass of plastic “Cladding layer”

Acoustic (sound) Air or wire Rigid solid wall

“cladding” layer of lower refractive index than that of the core and providing
total internal light reflection inside the core. Light and optical signals are very
efficiently transmitted through a fiber optic cable for very long distances and
with minimal loss of signal. Examples of optical waveguide use in medicine
are bronchoscope, endoscope, and laparoscope in various diagnostic proce-
dures.

(3) Acoustic waveguides consist either of a rigid tube filled with some medium,
such as air that allows propagation of sound waves, or is simply a wire used
to transmit ultrasonic waves. In medicine acoustic waveguides are used in
many areas from the simple yet very important stethoscope to transmission
of ultrasound for diagnostic and therapeutic purpose, such as in ultrasonic
angioplasty in treatment of heart disease or in interstitial and intracavitary
hyperthermia in treatment of cancer.

(c) Waveguides act as high-pass filter, meaning that they pass frequencies exceed-
ing a certain lowest frequency called the cutoff frequency ωc and they attenuate
frequencies below the cutoff frequency. The cutoff frequency ωc thus defines the
high pass filter properties of the waveguide.

(1) Frequencies that can propagate through a waveguide for a given boundary
condition form a transmission mode of the waveguide.

(2) The lowest frequency of a given mode that can propagate through a waveguide
is called the cutoff frequency ωc for the given mode of the waveguide.

(3) The mode with the lowest cutoff frequency is called the basic mode of the
waveguide and its cutoff frequency is defined as the cutoff frequency ωc of
the waveguide.

(4) For a given frequency ω of an EM wave to be transmitted, a waveguide is
chosen whose dimensions are such that ω exceeds ωc of the waveguide’s basic
mode but is smaller than ωc of all other modes. This ensures that the basic
mode is the only mode of propagation through the waveguide.

(d) Dispersion relationship (ω,kg) for an EM waveguide relates the frequency
ω of an EM wave and waveguide wave number (propagation coefficient) kg. It is
derived from the Maxwell equations for a uniform waveguide and is given by the
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following hyperbolic equation

ω=
√
ω2

c + c2k2
g . (13.1)

(e) Propagation of an EM wave through a waveguide is characterized by two types
of velocity: phase velocity υph and group velocity υgr, both following from the
dispersion relationship as

υph = ω

kg
= c√

1 − ω2
c
ω2

(13.2)

and

υgr = dω

dkg
= c

√
1 − ω2

c

ω2
. (13.3)

From (13.2) and (13.3) we note that since ω ≥ ωc, the phase velocity υph ≥ c and the
group velocity that is defined as the velocity of energy transmission in the waveguide
υgr ≤ c.

13.2 Boundary Conditions

13.2.Q1 (273)

Propagation of electromagnetic (EM) waves inside conducting tubes (waveg-
uides) that are either evacuated or filled with a non-conducting dielectric
medium is described with the help of Maxwell equations and appropriate
boundary conditions. The boundary conditions can be derived from Maxwell
equations and depend on the waveguide geometry as well as the electric and
magnetic properties of waveguide materials.

(a) For a given medium define the permittivity ε and permeability μ.
(b) For vacuum state its permittivity (electric constant) ε0 and permeability

(magnetic constant) μ0.
(c) For a given medium define its relative permittivity εr and relative per-

meability μr.
(d) Discuss the effect of boundary conditions on propagation of EM waves.
(e) Consider a boundary between two dielectric media: medium 1 is char-

acterized by permittivity ε1 and permeability μ1 and medium 2 is char-
acterized by permittivity ε2 and permeability μ2. Derive the general
boundary condition on electric field E from appropriate Maxwell equa-
tion in the differential form.
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(f) Consider a boundary between two dielectric media: medium 1 is char-
acterized by permittivity ε1 and permeability μ1 and medium 2 is char-
acterized by permittivity ε2 and permeability μ2. Derive the general
boundary condition on magnetic field B from appropriate Maxwell
equation in the differential form.

(g) Assume that medium 1 in (e) and (f) is vacuum and medium 2 is a
perfect conductor. Determine the boundary conditions on electric field
E and magnetic field B .

SOLUTION:

(a) Permittivity ε of a given material is a measure for how the polarization of the
material is affected by the application of an external electric field.

Permeability μ of a given material is a measure for how the magnetization of a
given material is affected by the application of an external magnetic field.

(b) Permittivity ε0 of vacuum, also called the electric constant and permittivity of
free space, is a physical constant equal to ε0 = 8.85×10−12 (A · s)/(V · m) and
determined from the following expression ε0 = 1/(c2μ0), where c is the speed
of light in vacuum (∼3×108 m/s) and μ0 is the magnetic constant defined as
4π×107 (V · s)/(A · m).

Permeability μ0 of vacuum, also called the magnetic constant and permeability
of free space, is a physical constant defined as 4π×107 (V · s)/(A · m).

(c) Relative electric permittivity εr of a given material is defined as the ratio of
permittivity ε of the material divided by the electric constant ε0, i.e., εr = ε/ε0.

Relative magnetic permeability μr of a given material is defined as the ratio of
permeability μ of the material divided by the magnetic constant μ0, i.e., μr = μ/μ0.

(d) Electromagnetic waves in free space are not subject to any restrictions on al-
lowed frequencies; however, in the presence of boundaries, only certain frequencies
and wavelengths are allowed for EM waves in a bound region, such as a waveguide.
Boundaries between media of different electric and magnetic properties impose con-
ditions on electric and magnetic fields at boundaries as well as on EM waves in
bound regions. These constraints are referred to as boundary conditions and can be
derived from Maxwell equations in the differential form in conjunction with Stokes
and Gauss theorems to obtain Maxwell equations in the integral form.

In studies of the behavior of electric field EEE and magnetic field BBB it is customary
to decompose each of these vectors into two orthogonal components: normal com-
ponents En and Bn that are perpendicular to the boundary between media 1 and 2
and tangential components Et and Bt that are in the plane of the boundary. For the
two media 1 and 2 we thus have the following components: En1, Et1, En2, and Et2
lying in the plane of vectors EEE1 and EEE2 for the electric field and Bn1, Bt1, Bn2, and
Bt2 lying in the plane of vectors BBB1 and BBB2 for the magnetic field.
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Fig. 13.1 Boundary condition on electric field EEE at the boundary between two dielectric media:
medium 1 with permittivity ε1 and medium 2 with permittivity ε2. (A) shows the horizontal plane
forming the boundary between the two media. It also shows the two electric field vectors EEE1 and EEE2
in the vertical plane decomposed into transverse components Et1 and Et2 and normal components
En1 and En2. The two transverse components are equal. (B) shows the method used for evaluation
of the closed loop integral of (13.5)

(e) Boundary condition on electric field EEE at a boundary between medium 1 and
medium 2 is derived from the following Maxwell equation (T1.138) in the differen-
tial form

∇ · EEE = −∂BBB
∂t
. (13.4)

After applying Stokes theorem (T1.135) on Maxwell equation (13.4), we get the
Maxwell–Faraday equation [Maxwell equation (13.4) in integral form]

¨
A

∇ · EEE dA =
˛
�

EEE · dL = − d

dt

¨
A

BBB · dA = −dφmag

dt
, (13.5)

stating that the line integral of EEE around loop � is equal to the rate of change of the
magnetic flux φmag through area A defined by loop �.

Consider a rectangular contour (loop) � of width �w and length �L embedded
into the two media and straddling the boundary between the two media, as shown in
Fig. 13.1. In the limit as �w→ 0, the magnetic flux crossing the loop decreases to
0, so that the line integral becomes

˛
EEE · dL =

ˆ B

A
EEE1 · dL +

ˆ D

C
EEE2 · dL = 0. (13.6)

For small �L (13.6) can be simplified to read

EEE1 ·�L + EEE2 · (−�L)= 0, (13.7)
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yielding the following result for the boundary condition on tangential components
Et1 and Et2 of the electric field in medium 1 and medium 2

Et1�L− Et2�L= 0 or Et1 = Et2 (13.8)

and showing that the tangential component Et of the electric field EEE is continu-
ous on the boundary between two dielectric media with different permittivity ε and
permeability μ. We can also state that on either side of the boundary between two
dielectric media the tangential components of the electric field EEE are equal. The
boundary condition (13.8) in scalar form can be expressed in vector form as follows

n̂×(EEE1 − EEE2)= 0, (13.9)

where n̂ is a unit vector perpendicular to the contour at the point of interest.

(f) Boundary condition on magnetic field BBB at a boundary between medium 1 and
medium 2 is derived from the following Maxwell equation (T1.137) in the differen-
tial form

∇ · BBB = 0. (13.10)

After applying the Gauss theorem (T1.134) on Maxwell equation (13.6), we get the
Maxwell–Faraday equation [Maxwell equation (13.6) in integral form]

˚
V

∇ · BBB dV =
‹
A

BBB · dA = 0. (13.11)

Consider a thin cylinder of height �h and mantle area of �A3 and two sides
of areas �A1 and �A2 where �A1 = �A2 � �A3. The cylinder straddles the
boundary between the two media 1 and 2, as shown in Fig. 13.2.

The closed surface integral of (13.11) can now be expressed as follows
‹
A

BBB · dA =
¨
A1

BBB · dA +
¨
A2

BBB · dA +
¨
A3

BBB · dA

=
¨
A1

BBB · n̂ dA+
¨
A2

BBB · n̂ dA+
¨
A3

BBB · n̂ dA= 0, (13.12)

where the last term of (13.12) results from the limit as the cylinder height �h→ 0
and mantle area A3 → 0. Furthermore, if each end of the cylinder is of small area
�A with opposing unit vectors that are both perpendicular to the boundary, we can
write (13.12) as

Bn1�A− Bn2�A= 0 or Bn1 = Bn2. (13.13)

Thus, the normal component Bn of the magnetic field BBB is continuous on the
boundary between two dielectric media. We can also state that on either side of
the boundary between two dielectric media the normal components of the magnetic
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Fig. 13.2 Boundary condition on magnetic field BBB at the boundary between two dielectric media:
medium 1 with permeability μ1 and medium 2 with permeability μ2. (A) shows the horizontal
plane forming the boundary between the two media. It also shows the two magnetic field vectors
BBB1 and BBB2 in the vertical plane decomposed into transverse components Bt1 and Bt2 and normal
components Bn1 and Bn2. The two normal components are equal. (B) shows the method used in
calculation of the closed surface integral of (13.12)

field BBB are equal. The boundary condition (13.13) in scalar form can be expressed
in vector form as follows

n̂ · (BBB1 − BBB2)= 0, (13.14)

where n̂ is a unit vector perpendicular to the contour at the point of interest.

(g) The general EM boundary conditions on electric field EEE and magnetic field
BBB at a boundary between two dielectric media 1 and 2 can be expressed in scalar
notation and vector notation as follows:

(1) Tangential component Et of EEE is continuous across the boundary, i.e., the same
on each side of the boundary

Et1 = Et2 or (EEE1 − EEE2)×n̂ = 0. (13.15)

(2) Normal component Bn of BBB is continuous across the boundary, i.e., the same
on each side of the boundary

Bn1 = Bn2 or (BBB1 − BBB2) · n̂ = 0. (13.16)

Boundary conditions on electric field EEE and magnetic field BBB at a boundary be-
tween a dielectric non-conducting medium 1 and perfect conductor (medium 2) fol-
lows from (13.15) and (13.16) recognizing that inside a perfect conductor there is
no electric field and no magnetic field, because the charges inside the conductor are
assume to be so mobile that they move instantly in response to changes in the fields
to generate appropriate surface charges and surface currents to produce zero electric
and magnetic fields inside the conductor.
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For a boundary between dielectric medium 1 and perfect conductor [medium 2:
Et2 = 0 and Bn2 = 0] we conclude from (13.15) and (13.16) that:

(1) Et1 = 0, since in general Et1 = Et2, therefore Et1 must be zero, if Et2 = 0.
Thus, there is no tangential component of electric field on the dielectric side
of the dielectric–conductor boundary and the normal component of the elec-
tric field coincides with the electric field. The electric field lines are always
perpendicular to the boundary. The boundary condition for electric field in the
dielectric material is from (13.15) given as EEE1×n̂|S = 0.

(2) Bn1 = 0, since in general Bn1 = Bn2, therefore Bn1 must be zero, if Bn2 = 0.
Thus, there is no normal component of the magnetic field on the dielectric
side of the dielectric–conductor boundary and the tangential component of
the magnetic field coincides with the magnetic field. The magnetic field lines
are parallel to the boundary. The boundary condition for magnetic field in the
dielectric material is from (13.16) given as BBB1 · n̂|S = 0.

13.3 Differential Wave Equation

13.3.Q1 (274)

Electromagnetic (EM) waveguide is a device used for propagation of EM
waves in the radiofrequency (microwave) domain from source to user. Two
types of EM waveguide are in use: (1) Uniform waveguide used for transmis-
sion of RF power and (2) Accelerating waveguide used for acceleration of
elementary particles in linear accelerators (linacs). The behavior of the uni-
form and accelerating waveguide is described with the 3-dimensional partial
differential wave equation for the electric field EEE and magnetic field BBB in con-
junction with appropriate boundary conditions on EEE and BBB .

(a) Briefly summarize the main characteristics of a uniform EM waveguide
and sketch the geometry used in design and study of EM waveguides.

(b) Briefly describe how waveguides are analyzed theoretically and state
the boundary conditions on Ez and Bz at the boundary between the
waveguide core and waveguide wall.

(c) From appropriate Maxwell equations derive the wave equations for
electric field EEE for an EM waveguide with copper wall and evacuated
core.

(d) From appropriate Maxwell equations derive the wave equations for
magnetic field BBB for an EM waveguide with copper wall and evacuated
core.
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Fig. 13.3 Geometry used in study of uniform EM waveguides: (A) rectangular waveguide with
sides a and b and (B) circular waveguide with radius a. Waveguide wall is made of conducting
material (copper), waveguide core is evacuated or filled with pressurized dielectric gas

SOLUTION:

(a) Electromagnetic (EM) uniform waveguide is a hollow metallic pipe used for
transmission of microwaves from the source of microwave power (magnetron or
klystron) to user (transmitting antenna in radar installations, cooking chamber in
microwave ovens, accelerating waveguide in particle linacs, etc.). The main charac-
teristics of a uniform waveguide are:

(1) The cross sectional profile of a uniform waveguide is most commonly rectan-
gular (with longer side a and shorter side b) or circular (with radius a) and, as
the name implies, uniform (i.e., the cross sectional profile is smooth and does
not change along the axis of the waveguide). Figure 13.3 shows the geome-
try used for rectangular waveguides in (A) and circular waveguides in (B). It
is assumed that the axis of the waveguide tube is oriented in the direction of
the z-axis of the Cartesian coordinate system for rectangular waveguides and
cylindrical coordinate system for circular waveguides.

(2) Walls of uniform waveguides are made of a conducting medium, such as cop-
per; core of the uniform waveguide is either evacuated or more commonly
filled with pressurized (∼2 atm) dielectric gas, such as sulfur hexafluoride
(SF6).

(3) The cross sectional dimensions of a typical uniform EM waveguide are of the
order of the wavelength of the RF waves that the waveguide transmits.

(4) Radiofrequency waves propagate in a uniform waveguide with phase velocity
υph that exceeds the speed of light c in vacuum and with group velocity υgr
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that is between 0 and c. Since υgr is generally less than c, uniform waveguides
can be used for transmission of radiofrequency power but cannot be used for
acceleration of charged particles in linear accelerators (linacs).

(5) EM waveguides function as a high pass filter. This means that to propagate
in a given waveguide the RF frequency must exceed a certain minimum fre-
quency referred to as the cutoff frequency of the waveguide. Waveguides also
function as wideband devices and are used for transmission of RF power or
communication signals.

(b) Waveguides are analyzed by solving the wave equations for the electric field
EEE and magnetic field BBB in the core of the waveguide in conjunction with boundary
conditions that account for waveguide wall and core materials as well as waveguide
geometry. The wave equations are partial differential equations of the second or-
der derived from Maxwell equations. They have multiple solutions or modes, each
mode categorized by its minimum frequency, called cutoff frequency that can be
transmitted through the waveguide.

The general boundary conditions for EM waveguides with perfect copper con-
ductor wall and dielectric (non-conducting) core are written in vector form as fol-
lows: EEE×n̂|S = 0 and BBB · n̂|S = 0, with S representing the boundary surface between
the conductor and dielectric of the waveguide and n̂ the unit vector normal to sur-
face S. Thus, just inside the waveguide core only normal component of EEE and tan-
gential component of BBB can exist and moreover, inside the perfect conductor there
are no electric and magnetic fields.

In scalar form we express the boundary conditions as: Etang|S = 0 and Bnorm|S =
0, where Etang|S and Bnorm|S are the tangential component of EEE and normal compo-
nent of BBB , respectively, at the boundary surface. Furthermore, Etang|S , the tangential
component of EEE , is actually given as Ez|S and Bnorm|S , the normal component of BBB ,
is given as (∂Bz/∂n)|S . The general boundary conditions on EEE and BBB can thus be
summarized as follows

EEE×n̂|S = 0 or Etang|S = 0 or Ez|S = 0 (13.17)

and

BBB · n̂|S = 0 or Bnorm|S = 0 or
∂Bz
∂n

∣∣∣∣
S

= 0. (13.18)

The boundary conditions imposed on Ez and Bz differ from one another and in
general cannot be satisfied simultaneously. Therefore, the transverse fields inside a
uniform waveguide are divided into two distinct modes: transverse magnetic (TM)
and transverse electric (TE) with the following characteristics:

(1) In the TM mode, the magnetic field Bz in the direction of propagation is zero
everywhere and the boundary condition on Ez is given by (13.17).

(2) In the TE mode, the electric field Ez in the direction of propagation is zero
everywhere and the boundary condition on Bz is given by (13.18).
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(c) The propagation of microwaves through a uniform EM waveguide is gov-
erned by four Maxwell equations and appropriate boundary conditions. The four
Maxwell equations for electric field EEE and magnetic field BBB (in general differ-
ential form on the left and in differential form suitable for use with waveguides
on the right, accounting for absence of charges and currents resulting in charge
density in vacuum ρ = 0 and current density in vacuum j = 0) are given as fol-
lows:

(1) Maxwell–Gauss equation (also known as Gauss law of electricity)

∇ · EEE = ρ

ε0
; (13.19)

∇ · EEE = 0. (13.20)

(2) Maxwell–Gauss law (also known as Gauss law of magnetism)

∇ · BBB = 0; (13.21)

∇ · BBB = 0. (13.22)

(3) Maxwell–Faraday equation (also known as Faraday law of induction)

∇×EEE = −∂BBB
∂t

; (13.23)

∇×EEE = −∂BBB
∂t
. (13.24)

(4) Maxwell–Ampère equation (also known as Ampère circuital law)

∇×BBB = μ0j + 1

c2

∂EEE
∂t

; (13.25)

∇×BBB = 1

c2

∂EEE
∂t
. (13.26)

Applying the curl vector operator (∇×) on (13.24) and using the vector iden-
tity

∇×∇×A = ∇∇ · A − ∇2A, (13.27)

where

A is an arbitrary vector function,
∇ is the gradient vector operator often labeled as grad,
∇· is the divergence vector operator often labeled as div,
∇2 is the vector Laplacian operator where ∇2 ≡�= ∇ · ∇ ≡ div grad,
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results in the following expression linking electric field vector EEE and magnetic field
vector BBB

∇×∇×EEE = ∇∇ · EEE − ∇2EEE = − ∂

∂t
∇×BBB, (13.28)

which, after inserting (13.20) and (13.26), evolves into a 3-dimensional linear par-
tial differential wave equation of the second order in four variables (3 spatial and 1
temporal) for the electric field vector EEE

∇2EEE = 1

c2

∂2EEE
∂t2

. (13.29)

(d) Applying the curl vector operator (∇×) on (13.26) and using the vector iden-
tity (13.27) results in the following expression linking magnetic field vector BBB and
electric field vector EEE

∇×∇×BBB = ∇∇ · BBB − ∇2BBB = − ∂

∂t
∇×EEE, (13.30)

which, after inserting (13.22) and (13.24), evolves into a 3-dimensional partial dif-
ferential wave equation of the second order in four variables (3 spatial and 1 tempo-
ral) for the magnetic field vector BBB

∇2BBB = 1

c2

∂2BBB
∂t2

. (13.31)

13.3.Q2 (275)

Electric field EEE and magnetic field BBB in a uniform EM waveguide are de-
scribed with wave equations

∇2EEE = 1

c2

∂2EEE
∂x2

(13.32)

and

∇2BBB = 1

c2

∂2BBB
∂x2

(13.33)

in conjunction with appropriate boundary conditions.

Consider a rectangular uniform EM waveguide oriented along the z axis
of the Cartesian coordinate system, while the long side a of the rectangular
cross section is oriented along the x axis and the short side b along the y axis,
as shown on the sketch in Fig. 13.4.
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Fig. 13.4 Geometry for the rectangular uniform EM waveguide with sides a and b with
a > b

(a) Specify the boundary conditions on the tangential electric field compo-
nent Etang|S and on the normal magnetic field component Bnorm|S for
the rectangular uniform EM waveguide.

(b) Using boundary conditions derived in (a), solve wave equations (13.32)
and (13.33) for the z components Ez and Bz of the electric field EEE and
magnetic field BBB , respectively, for propagation of microwaves in the
positive z direction of the rectangular uniform EM waveguide.

(c) Introduce the special modes of EM fields propagating in uniform EM
waveguides.

(d) Briefly discuss the validity of the assumption that electric and mag-
netic fields that propagate through the core of a uniform EM waveg-
uide vanish at the boundary between the waveguide core and conducting
wall.

SOLUTION:

(a) Solutions to wave equations (13.32) and (13.33) depend on boundary condi-
tions and, in general, uniform EM waveguides are governed by boundary conditions
on the tangential component of electric field EEE and normal component of magnetic
field BBB , respectively as

EEE×n̂|S = Etang|S = 0 and BBB · n̂|S = Bnorm|S = 0. (13.34)
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For a rectangular waveguide of sides a and b boundary conditions (13.34) can be
expressed as follows:

(1) Dirichlet-type boundary conditions on tangential component of electric field:
Etang|S = 0

Ez|x=0 = Ez|x=a = 0 and Ez|y=0 = Ez|y=b = 0. (13.35)

(2) Neumann-type boundary condition on normal component of magnetic field:
Bnorm|S = 0

∂Bz
∂x

∣∣∣∣
x=0

= ∂Bz
∂x

∣∣∣∣
x=a

= 0 and
∂Bz
∂y

∣∣∣∣
y=0

= ∂Bz
∂y

∣∣∣∣
y=b

= 0. (13.36)

(b) Since the problem deals with a rectangular waveguide, we will seek solutions
to wave equations (13.32) and (13.33) in the Cartesian coordinate system. The elec-
tric field EEE of (13.32) has three components and each component is a function of
spatial coordinates x, y, and z as well as of the temporal coordinate t

EEE = [
Ex(x, y, z, t),Ey(x, y, z, t),Ez(x, y, z, t)

]
. (13.37)

Similarly, the magnetic field BBB of (13.33) has three components and each of them
depends on spatial coordinates x, y, and z as well as of the temporal coordinate t

BBB = [
Bx(x, y, z, t),By(x, y, z, t),Bz(x, y, z, t)

]
. (13.38)

Wave equations (13.32) for EEE and (13.33) for BBB contain the vector Laplacian
operator ∇2 which, when applied to an arbitrary vector field A (such as EEE and BBB)
with components Ax , Ay , and Az, generates another vector field. In Cartesian coor-
dinates the generated vector field is equal to the vector field of the scalar Laplacian
operator applied to the individual components of the vector field.

Expressed in Cartesian coordinates, (13.32) and (13.33) are given in the follow-
ing format

∇2A ≡

∣∣∣∣∣∣∣∣∣∣

∂2Ax
∂x2 + ∂2Ax

∂y2 + ∂2Ax
∂z2

∂2Ay

∂x2 + ∂2Ay

∂y2 + ∂2Ay

∂z2

∂2Az
∂x2 + ∂2Az

∂y2 + ∂2Az
∂z2

∣∣∣∣∣∣∣∣∣∣
= 1

c2

∂2A
∂t2

≡ 1

c2

∣∣∣∣∣∣∣∣∣∣

∂2Ax
∂t2

∂2Ay

∂t2

∂2Az
∂t2

∣∣∣∣∣∣∣∣∣∣
, (13.39)

clearly showing that the three components of A which stands for EEE or BBB can
be obtained by applying the scalar Laplacian operator on the individual compo-
nents and for each component (Ax , Ay , and Az) we get the wave equation of the
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form

∇2η= ∂2η

∂x2
+ ∂2η

∂y2
+ ∂2η

∂z2
= 1

c2

∂2η

∂t2
, (13.40)

where η stands for components of the electric field EEE (Ex , Ey , and Ez) as well as
components of magnetic field BBB (Bx , By , and Bz) and all components are a function
of spatial coordinates x, y, and z as well as of the temporal coordinate t . In waveg-
uide theory finding the Ez and Bz components of EEE and BBB , respectively, is of main
interest, since the waveguide axis is parallel to the z axis of the Cartesian coordinate
system and the RF wave is propagating as a plane wave in the z direction.

Conditions imposed on η(x, y, z, t) fall into two categories:

(1) Those involving spatial coordinates x, y, and z and governed by boundary
conditions given in (13.35) for Dirichlet-type boundary conditions and in
(13.36) for Neumann-type boundary conditions.

(2) Those involving the temporal coordinate t and governed by initial condi-
tions.

The most common approach to solving the 3-dimensional wave equation (13.40)
is to apply the method of separation of variables. This method usually provides
a solution to a partial differential equation in the form of an infinite series, such
as a Fourier series, for example. We first separate out the time factor by defining
η(x, y, z, t) as a product of two functions: φ and T

η(x, y, z, t)= φ(x, y, z)T (t), (13.41)

where φ is a function of spatial coordinates x, y, and z only and T is a function of
time t only.

Inserting (13.41) into (13.40) and dividing by φ(x, y, z)T (t) gives

∇2φ

φ
≡ 1

c2

1

T

∂2T

∂t2
, (13.42)

with the left hand side of (13.42) depending on spatial coordinates x. y, and z only,
and the right hand side depending on time t only. If this equality is to hold for all x,
y, z and t , it is evident that each side must be equal to a constant. This constant is
identical for both sides and usually referred to as the separation constant Λ. From
(13.42) we thus get two equations

∇2φ =Λφ (13.43)

and

∂2T

∂t2
=Λc2T . (13.44)

Equation (13.43) is referred to as the Helmholtz partial differential equation rep-
resenting an eigenvalue problem in three dimensions with φ the eigenfunction,Λ the
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eigenvalue, and ∇2 the scalar Laplacian operator in Cartesian coordinates. The
Helmholtz equation (13.43) results in three different types of solution depending
on the value of the separation constant Λ:

(1) For Λ> 0 the solutions are exponential functions.
(2) For Λ= 0 the solution is a linear function.
(3) For Λ< 0 the solutions are trigonometric functions.

The Dirichlet boundary condition of (13.35) can be satisfied only forΛ< 0 and this
will result in trigonometric solutions for function η. We now concentrate on finding
solutions to the wave equation and set Λ = −k2 to satisfy the usual periodicity
requirement. Parameter k is called the free space wave number and is related to
angular frequency ω through the standard relationship

k = ω

c
, (13.45)

with c the speed of light in vacuum. IncorporatingΛ= −k2 into (13.43) and (13.44)
yields the following equations for φ(x, y, z) and T (t), respectively

∇2φ + k2φ = 0 (13.46)

and

∂2T

∂t2
+ k2c2T = ∂2T

∂t2
+ω2T = 0. (13.47)

The solutions for T (t) in (13.47) are either trigonometric or exponential but we
reject the latter on physical grounds. Instead of using real trigonometric functions
we express T (t) as

T (t)∝ e−iωt , (13.48)

and assume that ω may be either positive or negative.
For the Helmholtz equation, given in (13.43), we again use the method of separa-

tion of variables and express φ(x, y, z) as a product of three functions: X(x), Y(y),
and Z(z) to get

φ(x, y, z)=X(x)Y (y)Z(z), (13.49)

insert (13.49) into (13.46), divide the result by X(x)Y (y)Z(z), and get

1

X

∂2X

∂x2
+ 1

Y

∂2Y

∂y2
+ 1

Z

∂2Z

∂z2
+ k2 = 0. (13.50)

Since in our waveguide geometry the RF wave is propagating in the positive z di-
rection as a plane wave, we rewrite (13.50) as

− 1

X

∂2X

∂x2
− 1

Y

∂2Y

∂y2
= 1

Z

∂2Z

∂z2
+ k2 (13.51)
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and note that the left hand side of (13.51) is a function of x and y only and the
right hand side is a function of z only. This can hold only when the two sides are
equal to a constant that we designate as γ 2. The right hand side of (13.51) now
gives

1

Z

∂2Z

∂z2
+ k2 = γ 2 or

∂2Z

∂z2
+ k2

zZ = 0, (13.52)

and results in the following trigonometric solution for propagation in the positive z
direction

Z(z)∝ eikzz, (13.53)

where kz is referred to as waveguide wave number or propagation coefficient and
defined as

k2
z = k2 − γ 2 or γ 2 = k2 − k2

z . (13.54)

We now address the left hand side of (13.51) that, after insertion of (13.52), reads

1

X

∂2X

∂x2
+ 1

Y

∂2Y

∂y2
+ (
k2 − k2

z

)= 0. (13.55)

Equation (13.55) can be separated into the following two Helmholtz equations

∂2X

∂x2
+ k2

xX = 0 and
∂2Y

∂y2
+ k2

yY = 0 (13.56)

with the provision that

k2
x + k2

y = k2 − k2
z or k2

x + k2
y + k2

z = k2 = ω2

c2
. (13.57)

Equation (13.57) is called the dispersion relationship linking the RF frequency
ω with the propagation coefficient kz in a rectangular uniform EM waveguide. This
relationship is of importance in waveguide theory, since it defines the propagation
coefficient kz for a given frequency ω and a given mode. Moreover, it enables the
determination of RF frequencies that can propagate through a given waveguide as
well as phase and group velocities of RF waves based on boundary conditions and
waveguide geometry.

Solutions to (13.56) depend on the boundary conditions which are, for EEE and BBB
in a rectangular waveguide of sides a and b and based on (13.35) and (13.36) of (a),
respectively, given as follows

(1) Dirichlet boundary conditions on tangential component of electric field:
Et|S = 0

Ez|x=0 = Ez|x=a = 0 and Ez|y=0 = Ez|y=b = 0, (13.58)
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resulting in the following solutions for X(x) and Y(y)

X(x)= sinkxx = sin
mπ

a
x and Y(Y )= sin kyy = sin

nπ

b
y, (13.59)

since from the boundary conditions (13.58) it follows that kx = mπ/a and
ky = nπ/b, where m and n are integers.

(2) Neumann-type boundary condition on normal component of magnetic field:
BBB · n̂|S = 0

∂Bz
∂x

∣∣∣∣
x=0

= ∂Bz
∂x

∣∣∣∣
x=a

= 0 and
∂Bz
∂y

∣∣∣∣
y=0

= ∂Bz
∂y

∣∣∣∣
y=b

= 0, (13.60)

resulting in the following solutions for X(x) and Y(y)

X(x)= coskxx = cos
mπ

a
x and Y(y)= coskyy = cos

nπ

b
y, (13.61)

since from the boundary conditions (13.60) it follows that kx = mπ/a and
ky = nπ/b, where m and n are integers.

According to the boundary conditions (13.60) and (13.60) for a rectangular uniform
EM waveguide, the following points can be made on tangential EEE and normal BBB
components:

(1) Tangential component of the electric field EEE must vanish at all boundaries of
the waveguide which means that Ez must be zero for all times t and for all z
at x = 0 and x = a as well as at y = 0 and y = b.

(2) Normal component of the magnetic field BBB must vanish at all boundaries of
the waveguide which means that ∂Bz/∂x must be zero for all times t and for
all z at x = 0 and x = a. In addition, it means that ∂Bz/∂y must be zero for
all t and for all z at y = 0 and y = b.

The general solution for Ez, based on (13.48), (13.53), and (13.60), can now be
expressed as superposition of all modes

Ez(x, y, z, t)= T (t)Z(z)X(x)Y (y)=
∞∑
m=0

∞∑
n=0

Amn sin
mπx

a
sin
nπy

b
ei(kzz−ωmnt)

(13.62)
while the general solution for Bz, based on (13.48), (13.53), and (13.61), as super-
position of all modes is given as

Bz(x, y, z, t)= T (t)Z(z)X(x)Y (y)=
∞∑
m=0

∞∑
n=0

Bmn cos
mπx

a
cos
nπy

b
ei(kzz−ωmnt).

(13.63)
(c) The boundary conditions on EEE and BBB in EM waveguides are dissimilar, there-
fore, in general, they cannot be satisfied simultaneously and this results in two dis-
tinct modes of EM fields in the waveguide:
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(1) Transverse electric (TE) mode for which Ez = 0 everywhere and the boundary
condition is ∂Bz/∂x|x=0 = ∂Bz/∂x|x=a = ∂Bz/∂y|y=0 = ∂Bz/∂y|y=b = 0.

(2) Transverse magnetic (TM) mode for which Bz = 0 everywhere and the bound-
ary condition is Ez|x=0 =Ez|x=a =Ez|y=0 =Ez|y=b = 0.

(3) In addition to TE and TM modes another mode is known, the so-called TEM
mode (transverse electromagnetic mode) for which both Ez and Bz com-
ponents are zero everywhere. However, it turns out that this mode cannot
propagate in a regular EM waveguide, since two distinct conducting sur-
faces (for example, a coaxial cable) are required for propagation of the TEM
mode.

(d) As an EM wave strikes an ideal conductor characterized by infinite conductiv-
ity, the wave is completely reflected; however, in practice the current density js on
the surface of the conductor does not drop to zero instantaneously; rather, it drops
exponentially with depth d of penetration into the conductor, i.e., as j = jse−d/δ .
This phenomenon is referred to as the skin effect and skin depth δ, defined as the
depth at which the current density drops to 1/e (∼36.8 %) of the surface value, is
inversely proportional to the square root of the EM frequency ν and permeability μ
of the conductor.

The skin effect is of importance in microwave transmission with waveguides and
also plays a role in AC power transmission at 50 Hz or 60 Hz. For example, ac-
cording to Jackson, at 50 Hz skin depth in copper is ∼1 cm, while at 1000 MHz it
drops four orders of magnitude to ∼1 µm, justifying the assumption of zero elec-
tric and magnetic fields in the wall of a EM waveguide used in microwave power
transmission.

13.3.Q3 (276)

Electric field EEE and magnetic field BBB in a uniform EM waveguide are de-
scribed with wave equation

∇2EEE = 1

c2

∂2EEE
∂t2

(13.64)

and

∇2BBB = 1

c2

∂2BBB
∂t2

(13.65)

in conjunction with appropriate boundary conditions.

Consider a circular uniform EM waveguide of radius a oriented along
the z axis of the cylindrical coordinate system, as shown on the sketch in
Fig. 13.5.
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Fig. 13.5 (A) Geometry for the circular uniform EM waveguide of radius a and centered
along z axis of a cylindrical coordinate system; (B) Relationship between Cartesian coor-
dinate system (x, y, z) and cylindrical coordinate system (r, θ, z)

(a) Specify the boundary conditions on the tangential electric field compo-
nent Etang|S and on the normal magnetic field component Bnorm|S for
the circular uniform EM waveguide.

(b) Using boundary conditions derived in (a), solve wave equations (13.64)
and (13.65) for the z components Ez and Bz of the electric field EEE and
magnetic field BBB , respectively, for propagation of microwaves in the
positive z direction of the rectangular uniform EM waveguide.

(c) Using boundary conditions derived in (a) and general solutions derived
for Ez and Bz in (b), determine expressions for Ez in the lowest TM
mode and Bz in the lowest TE mode.

SOLUTION:

(a) Solutions to wave equations (13.64) and (13.65) depend on boundary condi-
tions and, in general, uniform EM waveguides are governed by boundary conditions
on the tangential component of electric field EEE and normal component of magnetic
field BBB , respectively, as

EEE×n̂|S = Etang|S = 0 and BBB · n̂|S = Bnorm|S = 0. (13.66)

For a circular waveguide of radius a boundary conditions (13.66) can be expressed
as follows
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(1) Dirichlet-type boundary condition on tangential component of electric field:
Etang|S = 0

Ez|S = 0 or Ez|r=a = 0. (13.67)

(2) Neumann-type boundary condition on normal component of magnetic field:
Bnorm|S = 0

dBz
dn

∣∣∣∣
S

= 0 or
dBz
dr

∣∣∣∣
r=a

= 0. (13.68)

(b) Since the problem deals with a circular waveguide, we will seek solutions to
wave equations (13.64) and (13.65) in the cylindrical coordinate system, as indicated
in Fig. 13.5(A). The standard relationship between the Cartesian and cylindrical
coordinate system with a common z axis is presented in Fig. 13.5(B) and is given as

x = r cos θ, y = r sin θ, and z= z. (13.69)

The electric field EEE of (13.64) has three components in cylindrical coordinates and
each component is a function of spatial coordinates r , θ , and z as well as of the
temporal coordinate t

EEE = [
Er (r, θ, z, t),Eθ (r, θ, z, t),Ez(r, θ, z, t)

]
. (13.70)

Similarly, the magnetic field BBB of (13.65) has three components in cylindrical coor-
dinates and each of them depends on spatial coordinates r , θ , and z as well as the
temporal coordinate t

BBB = [
Br (r, θ, z, t),Bθ (r, θ, z, t),Bz(r, θ, z, t)

]
. (13.71)

Wave equations (13.64) for EEE and (13.65) for BBB contain the vector Laplacian
operator ∇2 which, when applied to an arbitrary vector field A (such as EEE and BBB)
with components Ar , Aθ , and Az, generates another vector field. The generated
vector field is equal to the vector field of the scalar Laplacian operator applied to the
individual components of the vector field.

Expressed in cylindrical coordinates, (13.64) and (13.65) are given in the follow-
ing format

∇2A =

∣∣∣∣∣∣∣∣∣

∂2Ar
∂r2 + 1

r
∂Ar
∂r

+ 1
r2
∂2Ar
∂2θ2 + ∂2Ar

∂z2 − 2
r2
∂Aθ
∂θ

− Ar
r2

∂2Aθ
∂r2 + 1

r
∂Aθ
∂r

+ 1
r2
∂2Aθ
∂2θ2 + ∂2Aθ

∂z2 + 2
r2
∂Ar
∂θ

− Aθ
r2

∂2Az
∂r2 + 1

r
∂Az
∂r

+ 1
r2
∂2Az
∂2θ2 + ∂2Az

∂z2 + 0 + 0

∣∣∣∣∣∣∣∣∣
= 1

c2

∂2A
∂t2

= 1

c2

∣∣∣∣∣∣∣∣∣

∂2Ar
∂t2

∂2Aθ
∂t2

∂2Az
∂t2

∣∣∣∣∣∣∣∣∣
.

(13.72)
As evident from (13.72), the individual relationships for the r and θ components

of vector field A are quite complicated; however, the relationship for the z compo-
nent of A retains the original form of the wave equation, expressed by the scalar
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Laplacian operator in the cylindrical coordinate system as

∂2Az

∂r2
+ 1

r

∂Az

∂r
+ 1

r2

∂2Az

∂θ2
+ ∂

2Az

∂z2
≡ 1

r

∂

∂r

(
∂Az

∂r

)
+ 1

r2

∂2Az

∂θ2
+ ∂

2Az

∂z2
= 1

c2

∂2Az

∂t2
.

(13.73)
Using the scalar Laplacian operator in cylindrical coordinates of (13.73), we now
express the wave equations for Ez and Bz as follows

∇2Ez ≡ ∂2Ez
∂r2

+ 1

r

∂Ez
∂r

+ 1

r2

∂2Ez
∂θ2

+ ∂2Ez
∂z2

= 1

c2

∂2Ez
∂t2

(13.74)

and

∇2Bz ≡ ∂2Bz
∂r2

+ 1

r

∂Bz
∂r

+ 1

r2

∂2Bz
∂θ2

+ ∂2Bz
∂z2

= 1

c2

∂2Bz
∂t2

. (13.75)

Equations (13.74) and (13.75) for Ez and Bz, respectively, are known as 3-
dimensional wave equations in cylindrical coordinates; they are linear partial differ-
ential equations of the second order in four variables (three spatial variables: r , θ ,
and z, and one temporal variable: t) with constant coefficients. The two equations
have identical form and can in general be written as follows

∇2η≡ 1

r

∂

∂r

(
r
∂η

∂r

)
+ 1

r2

∂2η

∂θ2
+ ∂2η

∂z2
= ∂2η

∂r2
+ 1

r

∂η

∂r
+ 1

r2

∂2η

∂θ2
+ ∂2η

∂z2
= 1

c2

∂2η

∂t2
,

(13.76)
with η a function of r, θ, z, and t representing both Ez(r, θ, z, t) and Bz(r, θ, z, t).

The conditions imposed on η(r, θ, z, t) fall into two categories:

(1) Those involving spatial coordinates r , θ , and z and governed by boundary con-
ditions, given in (13.67) for Dirichlet-type boundary condition and in (13.68)
for Neumann-type boundary condition.

(2) Those involving the temporal coordinate t and governed by initial conditions.

The most common approach to solving the 3-dimensional wave equation (13.76)
is to apply the method of separation of variables. This method usually provides
a solution to a partial differential equation in the form of an infinite series, such
as a Fourier series, for example. We first separate out the time factor by defining
η(r, θ, z, t) as a product of two functions: φ and T

η(r, θ, z, t)= φ(r, θ, z)T (t), (13.77)

where φ is a function of spatial coordinates r , θ , and z only and T is a function of
time t only.

Inserting (13.77) into (13.76) and dividing by φ(r, θ, z)T (t) gives

∇2φ

φ
≡ 1

c2

1

T

∂2T

∂t2
, (13.78)

with the left hand side of (13.78) depending on spatial coordinates r , θ , and z only,
and the right hand side depending on time t only. If (13.78) is to hold for all r , θ , z,
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and t , it is evident that each side must be equal to a constant. This constant is iden-
tical for both sides of (13.78) and usually referred to as the separation constant Λ.
From (13.78) we thus get two equations

∇2φ =Λφ (13.79)

and

∂2T

∂t2
=Λc2T . (13.80)

Equation (13.79) is referred to as the Helmholtz partial differential equation rep-
resenting an eigenvalue problem in three dimensions with φ the eigenfunction, Λ
the eigenvalue, and ∇2 the scalar Laplacian operator in cylindrical coordinates [see
(13.76)]. The Helmholtz equation (13.79) results in three different types of solution,
depending on the value of the separation constant Λ:

(1) For Λ> 0 the solutions are exponential functions.
(2) For Λ= 0 the solution is a linear function.
(3) For Λ< 0 the solutions are trigonometric functions.

The Dirichlet boundary condition of (13.67) can be satisfied only for Λ < 0 and
this will result in trigonometric solutions for function η. We now concentrate on
finding solutions to the wave equation and set Λ= −k2 to satisfy the usual period-
icity requirement. Parameter k is called the free space wave number or free space
propagation coefficient and is related to angular frequency ω through the standard
relationship

k = ω

c
, (13.81)

with c the speed of light in vacuum. IncorporatingΛ= −k2 into (13.79) and (13.80)
yields the following equations for φ(r, θ, z) and T (t), respectively

∇2φ = k2φ = 0 (13.82)

and

∂2T

∂t2
+ k2c2T = ∂2T

∂t2
+ω2T = 0. (13.83)

The solutions for T (t) of (13.83) are either trigonometric or exponential functions
but we reject the latter on physical grounds. Instead of using real trigonometric
functions we express T (t) as

T (t)∝ e−iωt , (13.84)

and assume that ω may be either positive or negative.
For the Helmholtz equation, given in (13.82), we again use the method of separa-

tion of variables and express φ(r, θ, z) as a product of three functions: R(r), Θ(θ),
and Z(z) to get

φ(r, θ, z)=R(r)Θ(θ)Z(z). (13.85)
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We now insert (13.85) into (13.82), divide the result by R(r)Θ(θ)Z(z), and get the
following

1

R

∂2R

∂r2
+ 1

rR

∂R

∂r
+ 1

r2

1

Θ

∂2Θ

∂θ2
+ 1

Z

∂2Z

∂z2
+ k2 = 0. (13.86)

Since in our waveguide geometry the RF wave is propagating in the positive z di-
rection as a plane wave, we rewrite (13.86) as

−
[

1

R

∂2R

∂r2
+ 1

rR

∂R

∂r
+ 1

r2

1

Θ

∂2Θ

∂θ2

]
= 1

Z

∂2Z

∂z2
+ k2 (13.87)

and note that the left hand side of (13.87) is a function of r and θ only and the right
hand side of (13.87) is a function of z only. This can hold only when the two sides
are equal to a constant that we designate as γ 2

n . The right hand side of (13.87) now
gives

1

Z

∂2Z

∂z2
+ k2 = γ 2

n or
1

Z

∂2Z

∂z2
+ k2

g = 0, (13.88)

and results in the following trigonometric solution for propagation in the positive z
direction

Z(z)∝ eikzz, (13.89)

where kg is referred to as the waveguide wave number or waveguide propagation
coefficient and defined as

k2
g = k2 − γ 2

n . (13.90)

Equation (13.90) is a general form of the dispersion relationship for uniform
circular EM waveguide dependent on constant γn. Once γn is determined through
boundary conditions on z components Ez and Bz of the electric field EEE and magnetic
field BBB , the dispersion relationship is expressed in the form ω = f (kg) and used in
calculation of cutoff frequency ωc, phase velocity υph and group velocity υgr for a
given transmission mode.

We now address the left hand side of (13.87) which, after insertion of (13.88),
reads

−
[
r2

R

∂2R

∂r2
+ r

R

∂R

∂r
+ γ 2

n r
2
]

= 1

Θ

∂2Θ

∂θ2
. (13.91)

The left hand side of (13.91) depends on r alone and the right hand side on θ alone
and again, as seen above, this can hold in general if both sides are equal to a constant
that must be negative to provide physically relevant solutions. We therefore set the
constant equal to −m2 and get the following expression for the right hand side of
(13.91)

∂2Θ

∂θ2
+m2Θ = 0 (m= 0,1,2,3, . . .). (13.92)
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Equation (13.92) has the following standard general trigonometric solution leading
to trigonometric or complex exponential functions that serve as eigenfunctions

Θ(θ)=A cosmθ +B sinmθ. (13.93)

Inserting (13.92) into (13.91) and multiplying the result with R/r2 gives the follow-
ing expression for R(r)

∂2R

∂r2
+ 1

r

∂R

∂r
+
(
γ 2
n − m2

r2

)
R = 0, (13.94)

representing the Bessel differential equation of order m or an eigenvalue equation
with eigenvalue γ 2

n when boundary conditions are imposed on R(r). The physical
conditions imposed on Ez and Bz, and thus on R(r) as well, stipulate that:

(1) R(r) must be finite at r = 0.
(2) R(r = a) must satisfy either the Dirichlet boundary condition R(r)|r=a = 0

of (13.67) or the Neumann boundary condition dR/dr|r=a = 0 of (13.68).

The general solution to the Bessel equation (13.94) of order m consists of cylin-
drical functions; among these, given for non-negative integer values of m, the best
known are the Bessel functions of the first kind Jm(γnr) and Bessel functions of the
second kindNm(γnr) (also known as Neumann functions). A few important features
of Jm(x) and Nm(x) are apparent:

(1) With increasing x, functions Jm(x) and Nm(x) oscillate about zero with a
slowly diminishing amplitude and a decrease in separation between successive
roots (zeros).

(2) The two Bessel functions Jm(x) and Nm(x) possess an infinite number of
roots, usually designated as xmn and defined as those values of x at which the
Bessel functions cross zero, i.e., where Jm(x)= 0 or Nm(x)= 0.

(3) For x = 0, the Bessel functions of the first kind are finite; for integer m > 0
all Bessel functions of the first kind are equal to zero, i.e., Jm>0(x)|x=0 = 0
and for m= 0 the zero order Bessel function of the first kind equals to 1, i.e.,
J0(x)|x=0 = 1.

(4) For x = 0, the Bessel functions of the second kind (Neumann functions) ex-
hibit a singularity, i.e., limx→0Nm(x)= −∞.

The general solution to the Bessel differential equation (13.94) is given as

R(r)= CJm(γnr)+DNm(γnr), (13.95)

where C and D are coefficients determined from the initial conditions. Since the
Neumann functions are singular at r = 0, to obtain a physically relevant solution to
(13.94) we set D = 0 in (13.95) to get the following general solution for R(r)

R(r)= CJm(γnr). (13.96)
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Combining solutions for R(r), Θ(θ), Z(z), and T (t) given in (13.96), (13.94),
(13.89), and (13.84), respectively, we get the following general solution of the wave
equation (13.76) for η(r, θ, z, t) representing the electric field component Ez and the
magnetic field component Bz. The general solution is written in the form of a double
series with Amn and Bmn that can be determined with the help of initial conditions

η(r, θ, z, t) = R(r)Θ(θ)Z(z)T (t)

=
∞∑
m=0

∞∑
n=1

Jm(γnr){Amn cosmθ +Bmn sinmθ}e+i(kgz−ωt)

=
∞∑
m=0

∞∑
n=1

Jm(γnr){Amn cosmθ +Bmn sinmθ}e+iϕ. (13.97)

In (13.97)m is the order of the Bessel function, n the rank order number of the given
root of the Bessel function, and (kgz−ωmnt) is usually referred to as the phase of the
wave ϕ. Each pair of integers (m,n) corresponds to a particular characteristic mode
of RF propagation through the uniform waveguide. The general solution (13.97) to
the wave equation (13.76) is given as a linear superposition of all allowed modes
for m = 0,1,2, . . . and n = 1,2,3, . . . . The value of γn is determined using the
boundary condition (13.67) for electric field EEE or (13.68) for magnetic field BBB in
conjunction with the general solution (13.97) for Ez or Bz.

(c) The z components of the electric field EEE and magnetic field BBB are written,
respectively, in general form as double series with both Ez and Bz different from
zero

Ez(r, θ, z, t)=
∞∑
m=0

∞∑
n=1

Jm(γnr)[Amn cosmθ +Bmn sinmθ ]ei(kgz−ωt) (13.98)

and

Bz(r, θ, z, t)=
∞∑
m=0

∞∑
n=1

Jm(γnr)[Cmn cosmθ +Dmn sinmθ ]ei(kgz−ωt), (13.99)

where Amn, Bmn, Cmn, and Dmn are coefficients that can be determined from initial
conditions. On the other hand, parameter γn in the argument of the Bessel function
of (13.98) and (13.99) is determined from the boundary conditions on Ez and Bz.
Since these are generally different, they cannot be applied simultaneously and the
fields are split into two special categories: transverse magnetic (TM) modes and
transverse electric (TE) modes, characterized as follows:

(1) For the TMmn modes, Bz = 0 everywhere in the waveguide core and Ez is
governed by the Dirichlet-type boundary condition Ez|r=a = 0 which specifies
that Ez = 0 at the boundary between waveguide core and conducting wall of
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Table 13.2 Zeros (roots) of Bessel functions (xmn: left side of table) and first derivative of Bessel
functions (ymn: right side of table) for order m of Bessel function in the range from 0 to 3 and rank
order number n of the roots from 1 to 3. The lowest values of z for Jm(z) and for dJm(z)/dz are
shown in bold face

xmn for Jm(z)= 0

n= 1 n= 2 n= 3

m= 0 2.405 5.520 8.654

m= 1 3.832 7.016 10.174

m= 2 5.136 8.417 11.620

m= 3 6.380 9.761 13.015

ymn for dJm(z)/dz= 0

n= 1 n= 2 n= 3

m= 0 0 3.832 7.016

m= 1 1.841 5.331 8.536

m= 2 3.054 6.706 9.970

m= 3 4.201 8.015 11.346

the waveguide. The Ez|r=a = 0 boundary condition results in the following
solution for γn of (13.98)

Ez|r=a = Jm(γnr)|r=a = Jm(γna)= 0 → γn = xmn

a
, (13.100)

where xmn is the n-th zero (root) of the m-th order Bessel function. Roots
of Bessel functions for 0 ≤ m ≤ 2 and 1 ≤ n ≤ 3 are listed in Table 13.2.
The lowest TMmn mode will be for m = 0 and n = 1, giving the following
expression for Ez

Ez(r, θ, z, t)= Ez0J0

(
x01

a
r

)
eiϕ = Ez0J0

(
2.405

a
r

)
eiϕ (13.101)

where Ez0 is the electric field amplitude, ϕ is the phase of the wave, and
x01 = 2.405 is the first zero (root) of the J0(z) Bessel function, as found in
standard tables of Bessel functions and listed in Table 13.2.

(2) For the TEmn modes, Ez = 0 everywhere in the waveguide core and Bz is gov-
erned by the Neumann-type boundary condition dBz/dr|r=a = 0, that results
in the following solution for γn of (13.99)

dBz
dr

∣∣∣∣
r=a

= dJm(γnr)

dr

∣∣∣∣
r=a

= dJm(γna)

dr
= 0 → γn = ymn

a
, (13.102)

where ymn is the n-th zero (root) of the first derivative of them-th order Bessel
function. Roots of the first derivative of Bessel functions for 0 ≤ m ≤ 3 and
1 ≤ n≤ 3 are listed in Table 13.2.

As shown in Table 13.2, the lowest non-trivial TEmn mode will be for m= 1 and
n= 1, resulting in the following expression for Bz

Bz(r, θ, z, t)= Bz0J1

(
y11

a
r

)
eiϕ = Bz0J1

(
1.841

a
r

)
eiϕ, (13.103)

where Bz0 is the magnetic field amplitude, ϕ is the phase of the wave, and y11 =
1.841 is the first zero (root) of the derivative of the J1(z) Bessel function, as found
in standard tables of Bessel functions and listed in Table 13.2.



970 13 Waveguide Theory

13.4 Electric and Magnetic Fields in Uniform Waveguides

13.4.Q1 (277)

Two types of waveguide are used for transmission of microwave power and
signals: rectangular and circular. Waveguides are usually oriented with their
central axes parallel to the z axis of the Cartesian coordinate system for rect-
angular waveguides and cylindrical coordinate system for circular waveg-
uides. The z components Ez and Bz of electric field EEE and magnetic field
BBB , respectively, are for rectangular waveguides in general given as follows

Ez(x, y, z, t)=
∞∑
m=0

∞∑
n=0

Amn sin kxx sin kyye
i(kzz−ωt)

=
∞∑
m=0

∞∑
n=0

Amn sin
mπx

a
sin
nπy

b
eiϕ (13.104)

and

Bz(x, y, z, t)=
∞∑
m=0

∞∑
n=0

Bmn coskxx coskyye
i(kzz−ωt)

=
∞∑
m=0

∞∑
n=0

Bmn cos
mπx

a
cos
nπy

b
eiϕ, (13.105)

where Amn and Bmn are constants that can be determined from initial condi-
tions, ϕ = kzz − ωt is the phase of the RF wave, and kx , ky , and kz are the
waveguide wave numbers or propagation coefficients with kx and ky deter-
mined from boundary conditions.

(a) For a uniform rectangular EM waveguide of cross section sides a and b
where a > b:

(1) Explain how components Ez and Bz of electric field EEE and mag-
netic field BBB , respectively, are determined.

(2) Explain how other components of EEE and BBB are determined once
Ez and Bz are known.

(b) Show that for a uniform rectangular EM waveguide the transverse com-
ponents Ex and Ey of the electric field EEE as well as the transverse com-
ponents Bx and By of the magnetic field BBB can be determined directly
from known axial components Ez and Bz of electric field EEE and mag-
netic field BBB , respectively.
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(c) For a uniform rectangular EM waveguide determine the transverse
fields Ex , Ey , Bx and By for: (1) TM modes, (2) TE modes, and (3) TEM
modes. In your calculations assume that axial components Ez and Bz are
known and use the general expressions from (b).

(d) For a uniform rectangular EM waveguide determine all components
of electric field EEE and magnetic field BBB for the lowest (dominant): (1)
transverse electric (TE) mode and (2) transverse magnetic (TM) mode.
The rectangular cross section of the waveguide core has sides a and b
with a > b.

SOLUTION:

(a) Electric field EEE and magnetic field BBB in the core of a uniform EM waveg-
uide are vectors with three components, each component depending on three spatial
coordinates and one temporal coordinate. For a rectangular EM waveguide the com-
ponents of EEE and BBB are:

EEE = [
Ex(x, y, z, t),Ey(x, y, z, t),Ez(x, y, z, t)

]
(13.106)

and

BBB = [
Bx(x, y, z, t),By(x, y, z, t),Bz(x, y, z, t)

]
. (13.107)

(1) Components Ez and Bz are determined from wave equations for Ez and Bz
given as

∇2Ez = 1

c2

∂2Ez
∂2t2

(13.108)

and

∇2Bz = 1

c2

∂2Bz
∂2t2

, (13.109)

where c is the speed of light in vacuum and ∇2 is the scalar Laplacian operator
expressed in Cartesian coordinates for rectangular waveguide as follows

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
. (13.110)

Wave equations (13.108) and (13.109) are linear partial differential equations
of the second order in four variables (3 spatial and one temporal) with constant
coefficients. The most common method for solving the wave equations is the
method of separation of variables leading to solutions for the z components
Ez and Bz of the electric field EEE and magnetic field BBB , respectively, in the core
of the waveguide.
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(2) Once Ez and Bz are known, the other components of EEE and BBB are determined
from Maxwell equations for free space expressed as follows

∇ · EEE = 0; (13.111)

∇ · BBB = 0; (13.112)

∇×EEE = −∂BBB
∂t

; (13.113)

∇×BBB = 1

c2

∂EEE
∂t
, (13.114)

with (∇·) the divergence and (∇×) the curl on vectors EEE and BBB . It is also use-
ful to note that from (13.104) and (13.105) the following expressions apply
for derivatives: ∂/∂z = ikz and ∂/∂t = −iω with kz the waveguide propaga-
tion coefficient parallel to the central axis of the waveguide and ω the angular
frequency of the EM wave in contrast to k = ω/c that is defined as the free
space propagation coefficient.

(b) We start the derivation of components Ex , Ey , Bx , and By with (13.111) and
(13.112) for rectangular EM waveguide and express the two equations in Cartesian
coordinates as follows

∇ · EEE = ∂Ex
∂x

+ ∂Ey
∂y

+ ∂Ez
∂z

= ∂Ex
∂x

+ ∂Ey
∂y

+ ikzEz = 0 (13.115)

and

∇ · BBB = ∂Bx
∂x

+ ∂By
∂y

+ ∂Bz
∂z

= ∂Bx
∂x

+ ∂By
∂y

+ ikzBz = 0 (13.116)

and then express (13.113) and (13.114) in Cartesian coordinates as

∇×EEE =
∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Ex Ey Ez

∣∣∣∣∣∣= − ∂

∂t

∣∣∣∣∣∣∣
Bx î
By ĵ
Bzk̂

∣∣∣∣∣∣∣
= iω

∣∣∣∣∣∣∣
Bx î
By ĵ
Bzk̂

∣∣∣∣∣∣∣
(13.117)

and

∇×BBB =
∣∣∣∣∣∣

î ĵ k̂
∂
∂x

∂
∂y

∂
∂z

Bx By Bz

∣∣∣∣∣∣=
1

c2

∂

∂t

∣∣∣∣∣∣∣
Ex î
Ey ĵ
Ezk̂

∣∣∣∣∣∣∣
= − iω

c2

∣∣∣∣∣∣∣
Ex î
Ey ĵ
Ezk̂

∣∣∣∣∣∣∣
(13.118)

where î, ĵ, and k̂ are the standard unit vectors along x, y, and z axes of the Cartesian
coordinate system. Equations (13.117) and (13.118) have the following components
of the curl operator [Note: (13.119), (13.120), and (13.121) follow from (13.117);
(13.122), (13.123), and (13.129) follow from (13.118)]

∂Ez
∂y

− ∂Ey
∂z

= iωBx = ∂Ez
∂y

− ikzEy or Bx = − i
ω

∂Ez
∂y

− kz

ω
Ey, (13.119)
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∂Ex
∂z

− ∂Ez
∂x

= iωBy = ikzEx − ∂Ez
∂x

or By = + i
ω

∂Ez
∂x

+ kz

ω
Ex, (13.120)

∂Ey
∂x

− ∂Ex
∂y

= iωBz or Bz = i

ω

[
−∂Ey
∂x

+ ∂Ex
∂y

]
, (13.121)

∂Bz
∂y

− ∂By
∂z

= − iω
c2

Ex = ∂Bz
∂y

− ikzBy or Ex = ic2

ω

∂Bz
∂y

+ kzc
2

ω
By, (13.122)

∂Bx
∂z

− ∂Bz
∂x

= − iω
c2

Ey = ikzBx − ∂Bz
∂x

or

Ey = −kzc
2

ω
Bx − ic2

ω

∂Bz
∂x
,

(13.123)

∂By
∂x

− ∂Bx
∂y

= − iω
c2

Ez or Ez = ic2

ω

[
−∂By
∂x

− ∂Bx
∂y

]
. (13.124)

Pairing up appropriate equations in the group from (13.119) to (13.124), we can
now determine components Ex , Ey , Bx , and By as follows:

(1) Inserting By of (13.120) into (13.122) gives the following expression for com-
ponent Ex

Ex = i
[
kzc

2

ω2

∂Ez
∂x

+ c2

ω

∂Bz
∂y

](
1 − k2

z c
2

ω2

)−1

= i

γ 2

[
kz
∂Ez
∂x

+ω∂Bz
∂y

]
.

(13.125)
(2) Inserting Bx of (13.119) into (13.123) gives the following expression for com-

ponent Ey

Ey = i
[
−c

2

ω

∂Bz
∂x

+ kzc
2

ω2

∂Ez
∂y

](
1 − k2

z c
2

ω2

)−1

= i

γ 2

[
−ω∂Bz

∂x
+ kz ∂Ez

∂y

]
.

(13.126)
(3) Inserting Ey of (13.123) into (13.119) gives the following expression for com-

ponent Bx

Bx = i
[
kzc

2

ω2

∂Bz
∂x

− 1

ω

∂Ez
∂y

](
1 − k2

z c
2

ω2

)−1

= i

γ 2

[
kz
∂Bz
∂x

− ω

c2

∂Ez
∂y

]
.

(13.127)
(4) Inserting Ex of (13.122) into (13.120) gives the following expression for com-

ponent By

By = i
[

1

ω

∂Ez
∂x

+ kzc
2

ω2

∂Bz
∂y

](
1 − k2

z c
2

ω2

)−1

= i

γ 2

[
ω

c2

∂Ez
∂x

+ kz ∂Bz
∂y

]
.

(13.128)
with γ 2 = k2 − k2

z and ω = kc where c is the speed of light in vacuum and k
is the free space propagation coefficient. Equations (13.125) through (13.128)
show that the transverse components Ex , Ey , Bx , and By can be determined
with relative ease directly from known axial components Ez and Bz.
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(c) Equations (13.125) through (13.128) give general expressions for transverse
components Ex , Ey , Bx , and By as a function of axial components Ez and Bz for
a uniform rectangular EM waveguide. We now determine the transverse compo-
nents for the three special modes: (1) TM where Bz = 0 everywhere, (2) TE where
Ez = 0, and (3) TEM where Bz = Ez = 0 everywhere. The three special modes are
characterized as follows:

(1) TM modes: Bz = 0 everywhere inside the waveguide core and the transverse
components Ex , Ey , Bx , and By are given as follows

Ex = ikz

γ 2

∂Ez
∂x
, Ey = ikz

γ 2

∂Ez
∂y
, Bx = − i

γ 2

ω

c2

∂Ez
∂y
, By = i

γ 2

ω

c2

∂Ez
∂x
.

(13.129)
(2) TE modes: Ez = 0 everywhere inside the waveguide core and the transverse

components Ex , Ey , Bx , and By are given as follows

Ex = iω

γ 2

∂Bz
∂y
, Ey = − iω

γ 2

∂Bz
∂x
, Bx = ikz

γ 2

∂Bz
∂x
, By = ikz

γ 2

∂Bz
∂y
.

(13.130)
(3) TEM mode: Both Ez = 0 and Bz = 0 everywhere and (13.125) through

(13.128) show that all transverse components Ex , Ey , Bx , and By are also
equal to zero.

(d) Components of lowest (dominant) TE and TM modes in a uniform rectangular
EM waveguide with a > b are determined as follows:

The general expressions for z components Ez and Bz of electric field EEE and mag-
netic field BBB , respectively, are determined from appropriate wave equations (see
Prob. 277) and given in (13.104) and (13.105), respectively, while the general ex-
pressions for the other four components Ex , Ey , Bx , and By were derived in (b). We
now use these expressions to determine the electric and magnetic field components
for the dominant TE and TM modes, recalling that parameter γ is for rectangular
EM waveguide given as

γ 2 = k2 − k2
z = k2

x + k2
y =

(
mπ

a

)2

+
(
nπ

b

)2

, (13.131)

where k is the free space wave number related to microwave angular frequency ω
through k = ω/c and kx , ky , and kz are waveguide propagation constants, the first
two determined from boundary conditions and kz the wave number for the plane
wave propagating unhindered along the axis of the waveguide.

(1) Transverse electric (TE) modes are characterized by Ez = 0 everywhere in the
waveguide core and the dominant (lowest) TE mode occurs for m = 1 and n = 0
(note: cos 0◦ = 1). Inserting m = 1 and n = 0 into (13.131) we get the following



13.4 Electric and Magnetic Fields in Uniform Waveguides 975

expression for parameter γ 2

γ 2 =
(
mπ

a

)2

+
(
nπ

b

)2

= π2

a2
. (13.132)

(i) Magnetic field component Bz for the dominant TE mode is now from
(13.105) given as

Bz = B10 cos

(
πx

a

)
eiϕ. (13.133)

(ii) Electric field component Ex of (13.125) is zero because ∂Ez/∂x = 0 and
∂Bz/∂y = 0.

(iii) Electric field component Ey is determined from (13.126) using Ez = 0, Bz
from (13.132), ∂Ez/∂y = 0, and γ 2 from (13.132) as follows

Ey = −i ω
γ 2

∂Bz
∂x

= i πω
γ 2a

B10 sin

(
πx

a

)
eiϕ = i ωa

π
B10 sin

(
πx

a

)
eiϕ.

(13.134)
(iv) Magnetic field component Bx is determined from (13.127) using Ez = 0, Bz

from (13.132), ∂Ez/∂y = 0, and γ 2 from (13.132) as follows

Bx = i kz
γ 2

∂Bz
∂x

= −i πkz
γ 2a

B10 sin

(
πx

a

)
eiϕ = −i kza

π
B10 sin

(
πx

a

)
eiϕ.

(13.135)
(v) Magnetic field component By of (13.128) is zero because ∂Ez/∂x = 0 and

∂Bz/∂y = 0.

(2) Transverse magnetic (TM) modes are characterized by Bz = 0 everywhere in
the waveguide core and the dominant (lowest) TM mode occurs form= 1 and n= 1
(note: sin 0◦ = 0). Inserting m = 1 and n = 1 into (13.131) we get the following
expression for parameter γ 2

γ 2 =
(
mπ

a

)2

+
(
nπ

b

)2

= π2
(

1

a2
+ 1

b2

)
. (13.136)

(i) The electric field component Ez for the dominant TM mode is now from
(13.104) given as

Ez = E11 sin

(
πx

a

)
sin

(
πy

b

)
eiϕ. (13.137)
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(ii) The electric field component Ex is determined from (13.125) using Bz = 0,
Ez from (13.137), ∂Bz/∂y = 0, and γ 2 from (13.136) as follows

Ex = i kz
γ 2

∂Ez
∂x

= i πkz
γ 2a

E11 cos

(
πx

a

)
sin

(
πy

b

)
eiϕ

= i kz

π( 1
a

+ a

b2 )
B11 cos

(
πx

a

)
sin

(
πy

b

)
eiϕ. (13.138)

(iii) The electric field component Ey is determined from (13.126) using Bz = 0,
Ez from (13.137), ∂Bz/∂x = 0, and γ 2 from (13.136) as follows

Ey = i kz
γ 2

∂Ez
∂y

= i πkz
γ 2b

E11 sin

(
πx

a

)
cos

(
πy

b

)
eiϕ

= i kz

π( b
a2 + 1

b
)

B11 sin

(
πx

a

)
cos

(
πy

b

)
eiϕ. (13.139)

(iv) The magnetic field component Bx is determined from (13.127) using Bz = 0,
Ez from (13.137), ∂Bz/∂x = 0, and γ 2 from (13.136) as follows

Bx = −i ω
γ 2c2

∂Ez
∂y

= −i πω
γ 2c2b

E11 sin

(
πx

a

)
cos

(
πy

b

)
eiϕ

= −i πω

π( b
a2 + 1

b
)

E11 sin

(
πx

a

)
cos

(
πy

b

)
eiϕ. (13.140)

(v) The magnetic field component By is determined from (13.128) using Bz = 0,
Ez from (13.137), ∂Bz/∂y = 0, and γ 2 from (13.136) as follows

By = i ω
γ 2c2

∂Ez
∂x

= i πω
γ 2c2a

E11 cos

(
πx

a

)
sin

(
πy

b

)
eiϕ

= i ω

πc2( 1
a

+ a

b2 )
E11 cos

(
πx

a

)
sin

(
πy

b

)
eiϕ. (13.141)

13.5 General Conditions for Particle Acceleration

13.5.Q1 (278)

Particle accelerators have played an invaluable role in science, industry, and
medicine since Röntgen’s discovery of x rays in 1895. They are also per-
fect example of translational research that is characterized with translation of
novel scientific advances to industry and medicine for the benefit of humanity.
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Many particle accelerators have been developed during the past 100 years and
most of them have proven useful in imaging and/or therapy of disease with
ionizing radiation.

(a) List and briefly discuss at least 3 basic physical conditions for particle
acceleration that must be met in a particle accelerator irrespective of
accelerator design.

(b) In addition to the general conditions presented in (a) list and briefly
discuss at least 3 additional conditions that electric field used in accel-
eration of electrons in a linear accelerator (linac) must meet.

(c) Briefly discuss the difference between a uniform circular EM waveg-
uide used in transmission of microwave power and an accelerator EM
waveguide used for electron acceleration in a linear accelerator.

SOLUTION:

(a) Three general conditions that must be met for particle acceleration in an accel-
erator are:

(1) Particle to be accelerated must be charged. Charge, either positive or negative,
is the most important attribute that a particle to be accelerated must possess. It is
impossible to accelerate neutral particles in an accelerator, yet, accelerators that
produce neutral particles are quite common in science, industry, and medicine, such
as for example, (i) X-ray machines, (ii) Linear accelerators producing high-energy x
rays, (iii) Neutron generators, and (iv) Cyclotrons producing neutrons. However, in
all these machines, neutral particles (x-ray photons and neutrons) are not accelerated
in the machine; rather, they are produced in a suitable target by charged particles
that are accelerated in the machine and made to strike the target after they have been
accelerated to the desired kinetic energy.

X rays are produced in the target by energetic electrons that strike the target and
undergo bremsstrahlung interactions with the nuclei of the target. Neutrons, on the
other hand, are produced in nuclear reactions between heavy charged particles, such
as deuterons striking a tritium target in a neutron generator and protons or deuterons
striking a beryllium-9 target in a cyclotron.

(2) In an accelerator particles are accelerated with an electric field according to
the following convention: Electric field used for particle acceleration must be ori-
ented in the direction of propagation for positively charged particles and in direction
opposite to direction of propagation for negatively charged particles.

Depending on the type of electric field used in particle acceleration, accelerators
are divided into two major categories: (i) Electrostatic accelerators employ electro-
static fields and (ii) Cyclic accelerators use electromagnetic (EM) fields of a given,
well-defined frequency.
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In an electrostatic accelerator the particles are accelerated by applying an elec-
trostatic field using a constant potential that fixes the magnitude of the final kinetic
energy of the charged particle accelerated in the machine. Since the electrostatic
fields EEE are conservative (∇×EEE = 0), final kinetic energy that a charged particle
can attain in an electrostatic machine depends only on the potential difference exist-
ing in the machine between the source of charged particles and the exit point on the
machine. Kinetic energy that an electrostatic accelerator can produce is limited to
few MeV by electrical discharges that occur between the high voltage terminal and
the grounded components of the machine.

Electric fields used in cyclic accelerators are variable, non-conservative (∇×EEE �=
0), and associated with a variable magnetic field. This results in some closed paths
along which the kinetic energy gained by the particle differs from zero. If the
charged particle follows such a closed path many times over, it gains a small amount
of energy in each passage and, after a large number of passes through the same path,
attains a high kinetic energy that exceeds significantly the maximum potential dif-
ference existing in the machine. The final kinetic energy of the accelerated charged
particle is thus equal to the relatively small energy gain acquired by the charged
particle in each passage through the closed path multiplied by the number of passes
made by the charged particle.

Kinetic energy attained in cyclic accelerators can be very large and depends more
on machine design and available funding than on any practical problems unlike the
discharge that limits the maximum kinetic energy in electrostatic machines. Best
known examples of electrostatic machine are: x-ray machine, neutron generator,
and Van de Graaff accelerator. In the group of cyclic accelerator we have linear
accelerator (linac), betatron, microtron, cyclotron, and synchrotron.

(3) The charged particle must be accelerated in high vacuum. Acceleration of
charged particles in accelerators can only happen in evacuated structures to avoid
deleterious collisions between the accelerated particles and the medium in which the
particles propagate. These collisions would result in loss of particle kinetic energy
through inelastic collisions with nuclei of the medium or in change in direction
through elastic scattering between the accelerated particle and nuclei of the medium.
Both effects would adversely affect the accelerating process and are avoided by
accelerating the particles in evacuated chambers. Typical vacuum in accelerating
structures is of the order of 10−7 torr.

(b) Four specific conditions for acceleration of electrons in linear accelerators
(linacs) are all related to the radiofrequency mode used for electron acceleration
that must:

(1) Possess a phase velocity υph that matches the velocity of the accelerated parti-
cle υpart. Since particles cannot exceed the speed of light c in vacuum, the condition
υpart � υph means that the phase velocity υph of RF waves used in particle acceler-
ation should not exceed the speed of light c.
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Fig. 13.6 Schematic diagram of EM waveguide. (A) Uniform (transmission) waveguide and (B)
disk-loaded (acceleration) waveguide. The section of the waveguide between two successive irises
in an acceleration waveguide is called a waveguide cavity. The electron gun serves as source of
electrons to be accelerated in the waveguide

(2) Provide a finite, non-zero value for the z component Ez of the electric field EEE
at r = 0, so as to enable electron acceleration along the central axis of the circular
waveguide used for acceleration.

(3) Satisfy the Dirichlet boundary condition Ez = 0 at r = a on the boundary be-
tween the evacuated core and wall of the waveguide to enable particle acceleration
along the central axis of the circular waveguide.

(4) Produce Bz = 0 everywhere in the core of the EM waveguide to prevent inter-
ference of axial magnetic field on the propagation of the accelerated electrons along
the central axis of the waveguide.

(c) EM waveguides used for transmission of microwave power or signals have
either rectangular or circular cross section and are either evacuated or filled with a
pressurized dielectric gas. They are called uniform waveguide because their cross
sections do not vary with the z coordinate along the central axis of the waveguide.

Waveguides used for particle acceleration in linear accelerators, on the other
hand, are called acceleration waveguide. They are always evacuated and have a cir-
cular cross section that is not uniform; rather, it varies with the z coordinate and
consists of a circular, uniform waveguide, periodically loaded with irises or disks,
as shown schematically in Fig. 13.6.

Out of necessity, an acceleration waveguide is much more complicated than
a uniform waveguide. While in principle one could contemplate using a uniform
waveguide for charged particle acceleration, a closer look at the properties of a uni-
form waveguide reveals that RF waves propagate in a uniform waveguide with a
phase velocity υph that exceeds the speed of light c in vacuum. Since the particle
velocity υpart cannot exceed c and υph exceeds c the requirement for υpart = υph
cannot be met and this automatically excludes a uniform waveguide from charged
particle acceleration. However, the υpart = υph requirement can be met in a waveg-
uide by lowering the RF phase velocity to c and this can be achieved by loading
a uniform waveguide with periodic perturbations in the form of irises that effec-
tively decrease the uniform waveguide phase velocity to a level that the accelerated
charged particle can follow.
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13.6 Dispersion Relationship

13.6.Q1 (279)

Wave properties of photons and matter, such as wavelength λ, wave vector
k, frequency ν, angular frequency ω, phase velocity υph, group velocity υgr,
speed of light c, and index of refraction n, are connected through various sim-
ple relationships. These are usually summarized with the so-called dispersion
relationship, expressed in the format of ω against k.

In addition to playing an important role in condensed matter physics, op-
tics, and acoustics dispersion is also relevant to propagation of microwaves
through uniform as well as accelerating electromagnetic (EM) waveguides.
Uniform EM waveguides are: (i) rectangular or circular in cross section,
(ii) evacuated or filled with pressurized dielectric gas, and (iii) governed by
geometric boundary conditions that are either of the Dirichlet-type or the
Neumann-type.

Consider a rectangular uniform EM waveguide oriented along the z axis of
the Cartesian coordinate system, while the long side a of the rectangular cross
section is oriented along the x axis and the short side b along the y axis.

(a) State and briefly discuss the dispersion relationship for a plane electro-
magnetic (EM) wave in vacuum.

(b) For an evacuated rectangular uniform EM waveguide sketch a diagram
with the waveguide in Cartesian coordinate system and summarize the
derivation of the dispersion (ω,kz) relationship starting with the wave
equation for electric field EEE and magnetic field BBB .

(c) For an evacuated rectangular uniform EM waveguide derive: (1) Cut-
off frequency ωc for a given RF mode, (2) Phase velocity υph, and
(3) Group velocity υgr.

(d) For uniform rectangular EM waveguide: (1) Sketch the dispersion
(ω,kz) relationship. For an arbitrary point on the dispersion curve in-
dicate how to determine phase velocity υph and group velocity υgr. (2)
Sketch the normalized phase velocity υph/c and group velocity υgr/c

against ω/ωc for 0 ≤ ω/ωc ≤ 5.
(e) Determine: (1) Lowest TMmn cutoff frequency for the TMmn mode

where Bz = 0 everywhere and Ez|x=0,a = Ez|y=0,b = 0, (2) Lowest
TEmn cutoff frequency for the TEmn mode where Ez = 0 everywhere
and ∂Bz/∂z|x=0,a = ∂Bz/∂z|y=0,b = 0, (3) Ratio between the lowest
cutoff frequency for TM modes and lowest cutoff frequency for TE
modes, and (4) Cutoff frequency ωc of the waveguide.
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SOLUTION:

(a) Dispersion relationship for a plane EM wave in vacuum is derived from the
basic relationship ν = c/λ for photons in vacuum without any constraints imposed
by either boundary conditions or interaction with media. Multiplication of both
sides of ν = c/λ with 2π results in the following simple (ω, k) dispersion rela-
tionship

2πν = 2π

λ
c or ω= ck, (13.142)

since 2πν = ω and 2π/λ = k. The dispersion relationship (13.142) states that an-
gular frequency ω of a photon is proportional to its wave number k with speed of
light c in vacuum the proportionality constant.

From (13.142) it follows that the phase velocity υph, defined as the ratio ω/k,
is equal to speed of light c in vacuum and so is the group velocity υgr, defined as
dω/dk. Thus, for a plane EM wave in vacuum, we have both υph and υgr equal to a
constant, the speed of light c in vacuum.

υph = ω

k
= c and υgr = dω

dk
= c. (13.143)

(b) Dispersion (ω, kz) relationship, cutoff frequency ωc, phase velocity υph, and
group velocity υgr for a uniform rectangular EM waveguide are derived from the
wave equations for the z components of the electric field EEE and magnetic field BBB in
conjunction with boundary conditions on the tangential component of EEE and normal
component of BBB in a rectangular uniform EM waveguide. The wave equations for EEE
and BBB are derived from Maxwell equations in vacuum [see (T13.13) and (T13.16),
respectively and Prob. 274].

The wave equations for Ez and Bz are given as 3-dimensional linear partial dif-
ferential equation of the second order in four variables (3 spatial and one temporal)
in the following form

∇2η(x, y, z, t)= 1

c2

∂2η(x, y, z, t)

∂t2
, (13.144)

where η(x, y, z, t) stands for Ez(x, y, z, t) and Bz(x, y, z, t) components of EEE and
BBB , respectively.

The Ez and Bz components are the important solutions obtained from wave equa-
tions (13.144). The other components (Ex , Ey , Bx , and By ) are determined using Ez
and Bz solutions of (13.144) in conjunction with the four Maxwell equations for
free space (see Prob. 277).
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The most common approach to solving the wave equation (13.144) for
η(x, y, z, t) is to apply the method of separation of variables. The method was
described in detail in Prob. 276 and here only the important points will be summa-
rized:

(1) First, the time factor is isolated by defining η(x, y, z, t) as a product of two
functions: [φ(x, y, z, t) and T (t)] and inserting the product into (13.144) to
get

∇2φ

φ
= 1

c2

∂2T

∂t2
= −k2, (13.145)

where k2 is a positive constant and k is called the free space wave number
or free space propagation coefficient. The solution for T (t) is T (t) ∝ e−iωt
where ω= ck with ω the angular frequency of the RF wave.

(2) Next, function φ(x, y, z) is defined as product of three functions φ(x, y, z)=
X(x)Y (y)Z(z) and we now express the Helmholtz equation of (13.145) as

− 1

X

∂2X

∂x2
− 1

Y

∂2Y

∂y2
= 1

Z

∂2Z

∂z2
+ k2 = γ 2. (13.146)

From the right hand side of (13.146) we get the following Helmholtz equation
for Z(z)

∂2Z

∂z2
+ k2

zZ = 0, (13.147)

with solution for Z(z) given as Z(z) ∝ eikzz, where γ 2 is a constant and kz
is the waveguide wave number or waveguide propagation coefficient defined
as k2

z = k2 − γ 2 for plane wave propagation along the z axis of the Cartesian
coordinate system.

(3) The left side of (13.146) now reads

1

X

∂2X

∂x2
+ 1

Y

∂2Y

∂y2
+ γ 2 = 1

X

∂2X

∂x2
+ 1

Y

∂2Y

∂y2
+ (
k2 − k2

z

)= 0 (13.148)

and can be separated into two Helmholtz equations given as follows

∂2X

∂x2
+ k2

xX = 0 and
∂2Y

∂y2
+ k2

yY = 0, (13.149)

with the provision that

k2
x + k2

y = k2 − k2
z = γ 2 or k2

x + k2
y + k2

z = k2 = ω2

c2
. (13.150)
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Equation (13.150) is the so-called dispersion relationship (ω,kz) linking the
RF frequency ω with the propagation coefficient kz in an evacuated uni-
form EM waveguide. The dispersion relationship (13.150) is of importance
in waveguide theory, since it defines the propagation coefficient kz for a given
frequency ω and a given mode of the RF wave. Moreover, it enables deter-
mination of RF frequencies that can propagate through a given waveguide as
well as the cutoff frequency ωc, phase velocity υph, and group velocity υgr of
RF waves, based on boundary conditions and waveguide geometry.

(4) Solutions to the two equations in (13.149) as well as coefficients kx and ky are
determined from the boundary conditions that are, for EEE and BBB in a rectangular
waveguide of sides a and b, respectively, given as follows:

(i) The general Dirichlet boundary condition on the tangential component
of electric field Et|S = 0 is for a rectangular uniform EM waveguide
expressed as

Ez|x=0 = Ez|x=a = 0 and Ez|y=0 = Ez|y=b = 0, (13.151)

resulting in the following solutions for X(x) and Y(y)

X(x)= sinkxx = sin
mπ

a
x and Y(y)= sin kyy = sin

nπ

b
y,

(13.152)
since from the boundary conditions (13.151) it follows that kx = mπ

a

and ky = nπ
b

, where m and n are integers ranging from 1 to ∞ where
the lowest value is 1 rather than 0 to avoid nontrivial solutions.

(ii) The general Neumann-type boundary condition on normal component
of magnetic field BBB · n̂|S = 0 is for a rectangular uniform EM waveguide
expressed as

∂Bz
∂x

∣∣∣∣
x=0

= ∂Bz
∂x

∣∣∣∣
x=a

= 0 and
∂Bz
∂y

∣∣∣∣
y=0

= ∂Bz
∂y

∣∣∣∣
y=b

= 0, (13.153)

resulting in the following solutions for X(x) and Y(y)

X(x)= coskxx = cos
mπ

a
x and Y(y)= coskyy = cos

nπ

b
y,

(13.154)
since from the boundary conditions (13.153) it follows that kx = mπ

a

and ky = nπ
b

, where m and n are integers ranging from 0 to ∞.

(5) We now take a closer look at the dispersion relationship (13.150), insert the
expressions for kx = mπ/a and ky = nπ/b from (13.152) and (13.154) into
(13.150), and obtain the following dispersion relationship for an evacuated
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rectangular uniform EM waveguide

kz =
√

1 − ω2

c2
− k2

x − k2
y = 1

c

√
ω2c2

(
k2
x + k2

y

)= 1

c

√
ω2 − π2c2

[
m2

a2
+ n2

b2

]
,

(13.155)
where the two integers m and n specify the mode of transverse electric and
magnetic fields in a waveguide; however, they do not uniquely specify the
frequency, since boundaries are in effect only in transverse directions x and y
but not in the longitudinal direction of wave propagation along the z axis.

(c) Cutoff frequency ωc, phase velocity υph, and group velocity υgr for RF waves
propagating in a given rectangular uniform EM waveguide are determined as fol-
lows:

(1) Cutoff frequency ωc for a given RF mode. From (13.155) we note that for an
RF wave to propagate without attenuation, the propagation constant kz must
be real. Thus, ω2/c2 must exceed k2

x + k2
y = π[(m/a)2 + (n/b)2], i.e.,

ω

c
> π

√
m2

a2
+ n2

b2
(13.156)

and, as a consequence, eachmnmode of a waveguide is associated with a min-
imum frequency, called cutoff frequency (ωc)mn of the mn mode and defined
as

(ωc)mn = c
√(

mπ

a

)2

+
(
nπ

b

)2

. (13.157)

Inserting (13.157) into (13.155), we now get the following equation for the
propagation coefficient kz

kz =
√
ω2

c2
− k2

x − k2
y = 1

c

√
ω2 − π2c2

[
m2

a2
+ n2

b2

]
= 1

c

√
ω2 − (ωc)2mn.

(13.158)
Equation (13.158) can also be expressed in the canonical form of a hyperbola
given as

ω2

(ωc)2mn
− c2

(ωc)2mn
k2
z = 1, (13.159)

where the cutoff frequency (ωc)
2
mn is the distance between the center C and

apex A of the hyperbola. However, in contrast to (13.158) and (13.159), the
dispersion relationship for an EM waveguide is most often presented as

ω2 = (ωc)
2
mn + c2k2

z or ω= ±
√
(ωc)2mn + c2k2

z . (13.160)
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(2) Phase velocity υph for a rectangular waveguide is defined as the ratio ω/kz and
represents the speed with which one would need to travel along the waveguide
axis in order to stay in phase with the RF wave

υph = ω

kz
=
c
√
k2
x + k2

y + k2
z

kz
=
c

√
k2
z + (mπ

a
)2 + ( nπ

b
)2

kz

= cω√
ω2 − (ωc)2mn

= c√
1 − (ωc)2mn

ω2

. (13.161)

From (13.161) we note that υph ≥ c and that the dynamic range for the phase
velocity υph is from c for ω→ ∞ to ∞ for ω→ (ωc)mn, i.e., c ≤ υph ≤ ∞.
Thus, phase velocity υph of an RF wave in a rectangular uniform waveguide
always exceeds the speed of light c in vacuum and approaches c as ω→ ∞.

(3) Group velocity υgr is the speed of propagation of energy and information along
the waveguide and is defined as dω/dkz

υgr = dω

dkz
= ckz√

k2
x + k2

y + k2
z

= ckz√
k2
z + (mπ

a
)2 + ( nπ

b
)2

= c
√
ω2 − (ωc)2mn

ω
= c

√
1 − (ωc)2mn

ω2
. (13.162)

From (13.162) we note that υgr ≤ c and that the dynamic range of the group
velocity is from 0 for ω→ (ωc)mn to c for ω→ ∞, i.e., 0 ≤ υgr ≤ c. Thus,
group velocity υgr, which represents the velocity of energy and signal propa-
gation in uniform rectangular EM waveguide, is always less than the speed of
light c in vacuum and approaches c as ω→ ∞.

(d) Figure 13.7 shows a sketch of the hyperbolic dispersion relationship (ω,kz)
with kz plotted on the abscissa axis and ω on the ordinate axis for a uniform rect-
angular EM waveguide. The asymptotes to the hyperbola form an angle of arctan c
with the kz axis. For an arbitrary point P on the hyperbola one can determine the
phase velocity υph and group velocity υgr as follows:

(1) Phase velocity υph: Connect point P with the origin O of the coordinate system
(note: point O corresponds to center C of the dispersion hyperbola). The angle
between the PO line and the +kz abscissa axis is labeled as αph and the tangent
of this angle is the phase velocity

υph = tanαph = ω

kz
. (13.163)

(2) Group velocity υgr: Draw a tangent to dispersion curve at point P. The angle
between the tangential line through point P and the kz axis is labeled as αgr
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Fig. 13.7 Sketch of the dispersion hyperbolic relationship (13.160) with A the vertex and C the
center of the hyperbola

Fig. 13.8 Sketch of phase velocity υph and υgr, both normalized to speed of light c in vacuum
and plotted against frequency ω normalized to the cutoff frequency ωc for a uniform rectangular
EM waveguide

and the trigonometric tangent of this angle is equal to group velocity

υgr = tanαgr = dω

dkz
. (13.164)

Figure 13.8 shows a sketch of phase velocity υph [see (13.161)] and group ve-
locity υgr [see (13.162)] both normalized to speed of light c in vacuum and plotted
against frequency ω normalized to cutoff frequency ωc.
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13.6.Q2 (280)

Electromagnetic (EM) waveguides are hollow structures with metallic walls
and central core that is either evacuated or filled with pressurized dielectric
gas. It is mainly used for transmission of microwave power and signals; how-
ever, with some structural modifications, it can also be used for acceleration
of charged particles. The cross section of EM waveguides is either rectangular
with core sides a and b where a > b or circular with core radius a.

(a) For a uniform rectangular evacuated EM waveguide:

(1) State the dispersion relationship (ω, kz) for a given mode mn.
(2) State the general cutoff frequency (ωc)mn for a given mode mn.
(3) For the TMmn mode where Bz = 0 everywhere and Ez|x=0,a =

Ez|y=0,b = 0 determine the lowest cutoff frequency (ωc)mn as
well as the z component Ez of the electric field EEE .

(4) For the TEmn mode where Ez = 0 everywhere and ∂Bz/∂z|x=0,a =
∂Bz/∂z|y=0,b = 0 determine the lowest cutoff frequency (ωc)mn
as well as the z component Bz of the magnetic field BBB .

(5) Determine the ratio between the lowest TM cutoff frequency and
the lowest TE cutoff frequency.

(6) Determine the cutoff frequency ωc of the waveguide.

(b) A uniform rectangular evacuated EM waveguide is used for transmis-
sion of microwave power. The longer side a of the rectangular cross
section of the waveguide core is 8.05 cm, the shorter side b is 3.26 cm.
For the waveguide determine: (1) the 5 lowest cutoff frequencies of the
TEmn modes, (2) the 5 lowest cutoff frequencies of TMmn modes, and
(3) the 5 lowest modes (either TE or TM) that will be allowed to prop-
agate in the waveguide.

(c) The waveguide of (b) is used for transmission of microwave power
in the S microwave band at ν = 2856 MHz. State the modes of the
2856 MHz microwave input that will be allowed to propagate in the
EM waveguide.

(d) Determine the phase velocity υph and group velocity υgr of the
2856 MHz microwaves propagating in the waveguide of (b).

SOLUTION:

(a) Parameters of uniform rectangular evacuated EM waveguide (see Prob. 279):

(1) Dispersion relationship (ω, kz) for a given mode mn is expressed as follows

ω2 = (ωc)
2
mn + c2k2

z , (13.165)
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where ωmn is the microwave angular frequency, (ωc)mn is the cutoff frequency, and
kz is the propagation coefficient.

(2) In general as well as for special transverse magnetic (TM) and transverse elec-
tric (TE) modes the cutoff frequency (ωc)mn for a given mode mn is expressed as

(ωc)mn = c
√
k2
x + k2

y = πc
√(

m

a

)2

+
(
n

b

)2

. (13.166)

(3) Lowest cutoff frequency (ωTM
c )mn for TMmn modes. The TMmn modes are:

(i) characterized by Bz=0 everywhere in the core of the waveguide and (ii) governed
by the Dirichlet-type boundary condition on the boundary between the core and
wall of the waveguide, i.e., Ez|x=0,a = Ez|y=0,b = 0. The TMmn solution of the
wave equation for Ez accounting for the Dirichlet-type boundary condition is

Ez(x, y, z, t)=
∑
m

∑
n

(Ez0)mn sin
mπ

a
x sin

nπ

b
yei(kzz−ωt), (13.167)

with (Ez0)mn the amplitude of the TM wave. Based on (13.166) and (13.167) we
note that the lowest non-trivial TM mode will be characterized by m= 1 and n= 1
to give the following cutoff frequency (ωTM

c )11

(
ωTM

c

)
11 = πc

√
1

a2
+ 1

b2
= πc

a

√
1 +

(
a

b

)2

(13.168)

and z component Ez of the electric field EEE

Ez(x, y, z, t)= (Ez0)11 sin
π

a
x cos

π

b
yei(kzz−ωt). (13.169)

(4) Lowest cutoff frequency (ωTE
c )mn for TEmn modes. The TEmn modes are

(i) characterized by Ez = 0 everywhere in the core of the waveguide and (ii) gov-
erned by the Neumann-type boundary condition on the boundary between the core
and wall of the waveguide, i.e., dBz/dz|x=0,a = dBz/dz|y=0,b = 0. The TEmn solu-
tion of the wave equation for Bz accounting for the Neumann-type boundary condi-
tion is

Bz(x, y, z, t)=
∑
m

∑
n

(Bz0)mn cos
mπ

a
x cos

nπ

b
yei(kzz−ωt), (13.170)

with (Bz0)mn the amplitude of the TE wave.
Based on (13.166) and (13.167) we note that the lowest non-trivial TE mode

for a > b will be characterized by m = 1 and n = 0 to give the following cutoff
frequency (ωTE

c )10

(
ωTE

c

)
10 = πc

√
1

a2
= πc

a
(13.171)



13.6 Dispersion Relationship 989

and z component Bz of the magnetic field BBB

Bz(x, y, z, t)= (Bz0)10 cos
π

a
xei(kzz−ωt). (13.172)

(5) Using (13.168) and (13.169), the ratio between the lowest cutoff frequency
(ωTM

c )11 for the TM modes and the lowest cutoff frequency (ωTE
c )10 for the TE

modes is given as

(ωTM
c )11

(ωTE
c )10

=
√

1 +
(
a

b

)2

. (13.173)

Since a > b, we note that (ωTM
c )11 > (ω

TE
c )10 and this tells us that the lowest cutoff

frequency for all modes in the rectangular waveguide is the TE10 mode.

(6) Cutoff frequency ωc for a given waveguide is defined as the cutoff frequency of
the lowest mode mn that can propagate through a waveguide. Thus, the TE10 is the
mode with the lowest cutoff frequency of all modes in a uniform rectangular EM
waveguide and therefore the cutoff frequency for rectangular waveguides is from
(13.166) given as (ωTE

c )10 = πc/a. Note that the cutoff frequency of a rectangular
waveguide is inversely proportional to a, the long side of the rectangular waveguide
cross section but does not depend on b, the short side of the rectangular waveguide
cross section.

Waveguide for transmission of a given radiofrequency (RF) are usually designed
such that, at the given RF, the only mode they transmit is the TE10 mode. This means
that the cutoff frequencies of all TM modes as well as the cutoff frequencies of all
TE modes above the TE10 mode exceed the given RF.

(b) The general dispersion equation used for the determination of the cutoff fre-
quency (νc)mn of the mn mode in a rectangular EM waveguide is given as

(νc)mn = 1

2π
(ωc)mn = c

2

√(
m

a

)2

+
(
n

b

)2

. (13.174)

The same equation (13.174) is used for the special TMmn and TEmn modes; how-
ever, we must recognize the lower limits on m and n for each of the special modes
as a result of the boundary conditions. As shown in (a), the lower limits on m and n
are as follows: for TMmn modes m≥ 1 and n≥ 1, while for TEmn m≥ 1 and n≥ 0
or m≥ 0 and n≥ 1.

We now use (13.175) to determine the cutoff frequencies for a set of TEmn and
TMmn modes for various values of m and n starting with the lowest allowed values.
The results are shown in Table 13.3. We also rank the TEmn and TEmn modes for
the first five cutoff frequencies starting with the lowest value.

According to Table 13.3:
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Table 13.3 Set of cutoff frequencies for TEmn modes and TMmn modes to determine the 5 lowest
cutoff frequencies (νTE

c )mn for TEmn modes and 5 lowest cutoff frequencies (νTM
c )mn for TMmn

modes in a uniform rectangular EM waveguide with longer side a = 8.05 cm and shorter side
b= 3.26 cm. The lowest TE mode and lowest TM mode are shown in bold

(1) TEmn cutoff frequencies (νTE
c )mn (MHz)

m n (νTE
c )mn Rank

1 0 1863 (1)

0 1 4600 (3)

1 1 4964 (4)

1 2 9389

1 3 13929

2 0 3726 (2)

2 1 5921

2 2 9928

2 3 14298

3 0 5590 (5)

3 1 7240

3 2 10767

(2) TMmn cutoff frequencies (νTM
c )mn (MHz)

m n (νTM
c )mn Rank

1 1 4964 (1)

1 2 9389 (5)

2 1 5921 (2)

2 2 9928

2 3 14298

3 1 7240 (3)

3 2 10767

3 3 14575

4 1 8759 (4)

(1) Five lowest cutoff frequencies (νTE
c )mn for TEmn modes are: TE10 (1863 MHz),

TE20 (3726 MHz), TE01 (4600 MHz), TE11 (4964 MHz), TE30 (5590 MHz).
(2) Five lowest cutoff frequencies for the TMmn modes are: TM11 (4964 MHz),

TM21 (5921 MHz), TM31 (7240 MHz), TM41 (8759 MHz), TM12 (9389 MHz).
(3) Combined order of 5 lowest special modes in the waveguide is as follows:

TE10 (1863 MHz), TE20 (3726 MHz), TE01 (4600 MHz), TM11 (4964 MHz),
TE11 (4964 MHz).

(c) The input microwaves to be transmitted through the waveguide have a fre-
quency ν = 2856 MHz that is below the lowest TM11 mode cutoff, but is above the
waveguide cutoff of 1863 MHz (lowest cutoff for TEmn modes). Since the second
lowest cutoff for TEmn modes is at 3736 MHz (TM20) exceeding 2856 MHz, the
input microwaves can propagate only with the TE10 mode. This “single mode op-
eration” reflects the standard approach to design of transmission waveguides where
the cross sectional dimensions are chosen such that they allow only one mode and
all the other modes are excluded.

(d) As derived in Prob. 279 [(13.161) and (13.162)], the phase velocity υph and
group velocity υgr of microwaves propagating in a uniform rectangular EM waveg-
uide with angular frequency ω or frequency ν are, respectively, expressed as

υph = c√
1 − (ωc)2mn

ω2

= c√
1 − (νc)2mn

ν2

(13.175)
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and

υph = c
√

1 − (ωc)2mn

ω2
= c

√
1 − (νc)2mn

ν2
. (13.176)

As shown in (b), microwaves of frequency ν = 2856 MHz propagate through
rectangular EM waveguide (a = 8.05 cm and b= 3.26 cm) in only one mode (trans-
verse electric TE10 mode) for which the cutoff frequency is (νTE

c )10 = 1863 MHz,
as shown in Table 13.6.

(1) Phase velocity υph is calculated using (13.175) as follows

υph = c√
1 − (ωc)2mn

ω2

= c√
1 − (νc)2mn

ν2

= c√
1 − ( 1863

2856 )
2

= 1.32c= 3.96×108 m/s> c. (13.177)

(2) Group velocity υgr is calculated using (13.176) as

υph = c
√

1 − (ωc)2mn

ω2
= c

√
1 − (νc)2mn

ν2
= c

√
1 −

(
1863

2856

)2

= 0.76c= 2.27×108 m/s< c. (13.178)

13.6.Q3 (281)

The theory of uniform circular electromagnetic (EM) waveguides relies on so-
lutions to wave equations and boundary conditions in cylindrical coordinates
as well as Bessel functions and first derivative of Bessel functions.

(a) For a uniform circular evacuated EM waveguide of core radius a:

(1) State the general dispersion relationship for a uniform circular
EM waveguide.

(2) State the general cutoff frequency (ωc)mn for a given mode mn.
(3) For the TMmn mode where Bz = 0 everywhere and Ez|r=a = 0

determine the lowest cutoff frequency (ωTM
c )mn.

(4) For the TEmn mode where Ez = 0 everywhere and ∂Bz/∂r|r=a =
0 determine the lowest cutoff frequency (ωTE

c )mn.
(5) Determine the ratio between the lowest TM cutoff frequency and

the lowest TE cutoff frequency.
(6) Derive an expression for the cutoff frequency ωc of a circular EM

waveguide.
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(b) Figure 13.9 displays five Bessel functions Jm(z) for 0 ≤ m ≤ 4 and
0 ≤ z≤ 10. Use the diagram to determine all zeros (roots) of: (1) Bessel
functions displayed and (2) First derivatives of the Bessel functions dis-
played. Mark the zeros on the diagram using solid circles for zeros of
Bessel functions and open circles for zeros of the first derivative of the
Bessel functions. Identify the zeros on the diagram using xmn for the ze-
ros of Bessel functions and ymn for zeros of the first derivative of Bessel
functions.

(c) A uniform circular evacuated EM waveguide with core radius a =
1.05 cm is used for transmission of microwave power. For the waveg-
uide determine:

(1) Five lowest cutoff frequencies (νTM
c )mn for TMmn modes.

(2) Five lowest cutoff frequencies (νTE
c )mn for TEmn modes.

(3) Five lowest cutoff frequencies (νc)mn for the circular EM waveg-
uide.

(4) Cutoff frequency νc for the circular EM waveguide.

(d) Assume that the circular EM waveguide of (c) is used for transmission
of microwave power in the X band at ν = 104×104 MHz. Determine
the TEmn and TMmn modes that are allowed to propagate through the
waveguide.

(e) Determine: (1) phase velocity υph and (2) group velocity υgr of
104 MHz microwaves propagating in the uniform circular EM waveg-
uide of (c).

Fig. 13.9 Bessel functions Jm(z)withm the order of Bessel function and z the argument of Bessel
function for 0 ≤m≤ 4 and 0 ≤ z≤ 10

SOLUTION:

(a) Parameters of uniform circular evacuated EM waveguide (see Prob. 276):

(1) Dispersion relationship for a uniform circular EM waveguide is in general
form written as
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γ 2
n = k2 − k2

g, (13.179)

where k is the free space wave number (k = ω/c), kg is the wave number or prop-
agation coefficient of the circular waveguide, and γn is a constant determined from
Ez and Bz solutions to wave equations in conjunction with the boundary conditions
on Ez and Bz for a circular EM waveguide.

The z components Ez and Bz of the electric field EEE and magnetic field BBB are
written, respectively, in general form as a double series

Ez(x, θ, z, t)=
∞∑
m=0

∞∑
n=1

Jm(γnr)[Amn cosmθ +Bmn sinmθ ]ei(kgz−ωt) (13.180)

and

Bz(x, θ, z, t)=
∞∑
m=0

∞∑
n=1

Jm(γnr)[Cmn cosmθ +Dmn sinmθ ]ei(kgz−ωt), (13.181)

where Amn, Bmn, Cmn, and Dmn are constants that can be determined from initial
conditions. Parameter γn in the argument of the Bessel function Jm(γnr) in (13.180)
and (13.181) is determined from the boundary conditions on Ez and Bz. Since these
are generally different, they cannot be applied simultaneously and the two fields are
split into two special categories or modes [transverse magnetic (TM) and transverse
electric (TE)], characterized as follows:

(i) For the TMmn modes, Bz = 0 everywhere in the waveguide core and Ez is
governed by the Dirichlet-type boundary condition Ez|r=a = 0 which speci-
fies that Ez = 0 at the boundary between the waveguide core and the conduct-
ing wall of the waveguide. The Ez|r=a = 0 boundary condition results in the
following solution for γn of (13.180)

Ez|r=a = Jm(γnr)|r=a = Jm(γna)= 0 resulting in γn = xmn

a
, (13.182)

where xmn is the n-th zero (root) of the m-th order Bessel function of the
first kind (Jm). Insertion of (13.182) into (13.179) results in the following
expression for the TMmn dispersion relationship in the form of ω= f (kg)

ω2 = c2
(
xmn

a

)2

+ c2k2
g = (

ωTM
c

)
mn

+ c2k2
g or ω=

√(
ωTM

c

)
mn

+ c2k2
g,

(13.183)
where (ωTM

c )mn = cxmn/a is the cutoff frequency for TMmn modes at kg = 0.
(ii) For the TEmn modes, Ez = 0 everywhere in the waveguide core and Bz is gov-

erned by the Neumann-type boundary condition dBz/dr|r=a = 0 that results
in the following solution for γn of (13.181)

dBz
dr

∣∣∣∣
r=a

= dJm(γnr)

dr

∣∣∣∣
r=a

= dJm(γna)

dr
= 0 resulting in γn = ymn

a
,

(13.184)
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where ymn is the n-th zero (root) of the first derivative of the m-th order
Bessel function of the first kind. Insertion of (13.184) into (13.179) results in
the following expression for the TEmn dispersion relationship in the form of
ω= f (kg)

ω2 = c2
(
ymn

a

)2

+ c2k2
g = (

ωTE
c

)
mn

+ c2k2
g or ω=

√(
ωTE

c

)
mn

+ c2k2
g,

(13.185)
where (ωTE

c )mn = cymn/a is the cutoff frequency for TEmn modes at kg = 0.

(2) Cutoff frequency (ωc)mn is the lowest frequency with which a mode mn can
propagate through an EM waveguide. All frequencies exceeding (ωc)mn can prop-
agate through the waveguide without attenuation; frequencies below (ωc)mn are at-
tenuated and cannot propagate through the waveguide.

(i) Cutoff frequency (ωTM
c )mn for given transverse magnetic (TM) mode mn is

from (13.183) for kg = 0 expressed as

(
ωTM

c

)
mn

= cxmn
a
, (13.186)

where xmn is the n-th zero (root) of the m-th order Bessel function (Jm).
(ii) Cutoff frequency (ωTE

c )mn for given transverse electric (TE) modemn is from
(13.185) for kg = 0 expressed as

(
ωTM

c

)
mn

= cymn
a
, (13.187)

where ymn is the n-th zero (root) of the first derivative of them-th order Bessel
function.

(3) Lowest cutoff frequency (ωTM
c )mn for TMmn modes. The lowest TMmn mode

will occur for m= 0 and n= 1, giving the following expressions for Ez of (13.180)

Ez(r, θ, z, t)= Ez0J0

(
x01

a
r

)
eiϕ = Ez0J0

(
2.405

a
r

)
eiϕ (13.188)

and for (ωTM
c )mn of (13.186)

(
ωTM

c

)
01 = cx01

a
= c2.405

a
, (13.189)

where Ez0 is the electric field amplitude, ϕ is the phase of the wave, x01 = 2.405 is
the first zero (root) of the zeroth order Bessel function of the first kind [J0(z)], c is
the speed of light in vacuum, and a is the radius of the uniform circular evacuated
EM waveguide.
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(4) Lowest cutoff frequency (ωTE
c )mn for TEmn modes. The lowest TEmn mode

will be for m= 1 and n= 1, giving the following expression for Bz of (13.181)

Bz(r, θ, z, t)= Bz0J1

(
y11

a
r

)
eiϕ = Bz0J1

(
1.841

a
r

)
eiϕ (13.190)

and for (ωTE
c )mn of (13.187)

(
ωTE

c

)
11 = cy11

a
= c1.841

a
, (13.191)

where Bz0 is the magnetic field amplitude, ϕ is the phase of the wave, and y11 =
1.841 is the first zero (root) of the derivative of the J1(z) Bessel function of the first
kind.

(5) Using (13.189) and (13.191), the ratio between the lowest cutoff frequency
(ωTM

c )01 for TM modes and the lowest cutoff frequency (ωTE
c )11 for TE modes is

given as

(ωTM
c )01

(ωTE
c )11

= 2.405

1.841
= 1.306. (13.192)

(6) Cutoff frequency ωc for a given waveguide is defined as the cutoff frequency
of the lowest mode mn that can propagate through a waveguide. Thus, the TE11

is the mode with the lowest cutoff frequency of all modes in a uniform circular
EM waveguide and therefore the cutoff frequency for circular waveguides is from
(13.191) given as ωc = 1.841c/a. Note that the cutoff frequency of a circular EM
waveguide is inversely proportional to radius a of the waveguide core.

Circular waveguides for transmission of a given radiofrequency (RF) are usually
designed such that, at the given RF, the only mode they transmit is the TE11 mode.
This means that the cutoff frequencies of all TM modes as well as the cutoff frequen-
cies of all TE modes with the exception of the TE11 mode exceed the frequency of
the given RF.

Circular waveguides used for particle acceleration are loaded with disks (irises)
and designed such that, in addition to the TE11 mode, they also transmit the TM01

mode to enable particle acceleration.

(b) Figure 13.10 displays five Bessel functions Jm(z) for 0 ≤m ≤ 4 and z in the
range from 0 to 10. Superimposed onto the diagram are zeros (roots) xmn of the
five Bessel functions as well as zeros (roots) ymn of the first derivatives of the five
Bessel functions.

Roots xmn of a Bessel function Jm(z) occur at points where the Bessel curve
crosses the abscissa (z) axis with m designating the order of the Bessel function and
n designating the rank of a given root starting with n= 1 for the first non-trivial root
as z increases from 0 to ∞.
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Fig. 13.10 Bessel functions Jm(z) with m the order of Bessel function and z the argument of
Bessel function for 0 ≤ z ≤ 10 and 0 ≤ m ≤ 4. Superimposed on the Bessel curves are the zeros
(roots) xmn (shown with solid circles) of Bessel function Jm(z) as well as ymn (shown with open
circles) of the first derivative dJm(z)/dz of Bessel function Jm(z)

Table 13.4 Zeros (roots) of Bessel functions (xmn—left side of table) and zeros of first derivative
of Bessel functions (ymn—right side of table) for order m of Bessel function Jm(z) in the range
from 0 to 4 and rank order number n of the roots from 1 to 3. Data were obtained to two significant
figures from Fig. 13.10

xmn for Jm(z)= 0

n= 1 n= 2 n= 3

m= 0 2.4 5.5 8.7

m= 1 3.8 7.0 –

m= 2 5.1 8.4 –

m= 3 6.4 9.8 –

m= 4 7.6 – –

ymn for dJm(z)/dz= 0

n= 1 n= 2 n= 3

m= 0 0 3.8 7.0

m= 1 1.8 5.3 8.5

m= 2 3.1 6.7 10

m= 3 4.2 8.2 –

m= 4 5.3 9.3 –

Roots ymn of the first derivative dJm(z)/dz of Bessel function Jm(z) occur at
points where Jm(z) exhibits a local maximum or minimum, i.e., where the tangent
on the Bessel curve becomes horizontal. In ymn parameter m again is the order of
the Bessel function and n is the rank of the root starting with n= 1 for the root with
the lowest z value.

Roots xmn of ymn and Jm(z) and dJm(z)/dz, respectively, for 0 ≤ m ≤ 4 and
0 ≤ z≤ 10 estimated to two significant figures from the five curves of Fig. 13.10 are
listed in Table 13.4 for use in (c) in calculation of cutoff frequencies (νTM

c )mn and
(νTE

c )mn of uniform circular EM waveguides.

(c) Cutoff frequencies (νTM
c )mn and (νTE

c )mn for the TMmn and TEmn modes, re-
spectively, in a uniform circular EM waveguide of core radius a were calculated
from the following expressions derived from (13.186) and (13.187), respectively

(
νTM

c

)
mn

= 1

2π

(
νTM

c

)
mn

= c

2πa
xmn = ξaxmn (13.193)
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Table 13.5 TM and TE cutoff frequencies (νTM
c )mn and (νTE

c )mn for a uniform circular EM
waveguide with a core radius of 1.05 cm

TM cutoff frequencies (νTM
c )mn TE cutoff frequencies (νTE

c )mn

m n Notation xmn (νTM
c )mn Rank m n Notation xmn (νTE

c )mn Rank

0 1 x01 2.4 10920 (1) 0 1 y01 0 0 (0)

0 2 x02 5.5 25025 (4) 0 2 y02 3.8 17290 (3)

0 3 x03 8.7 39585 (9) 0 3 y03 7.0 31850 (8)

1 1 x11 3.8 17290 (2) 1 1 y11 1.8 8190 (1)

1 2 x12 7.0 31850 (6) 1 2 y12 5.4 24570 (6)

1 3 x13 10.2 46410 (11) 1 3 y13 8.5 38675 (10)

2 1 x21 5.1 23205 (3) 2 1 y21 3.1 14105 (2)

2 2 x22 8.4 38220 (8) 2 2 y22 6.7 30485 (7)

3 1 x31 6.4 29120 (5) 2 3 y23 10 45500 (12)

3 2 x32 9.8 44590 (10) 3 1 y31 4.2 19110 (4)

4 1 x41 7.6 34580 (7) 3 2 y32 8.0 36400 (9)

4 1 y41 5.3 24115 (5)

4 2 y42 9.3 42315 (11)

and
(
νTE

c

)
mn

= 1

2π

(
νTE

c

)
mn

= c

2πa
ymn = ξaymn, (13.194)

where xmn is the n-th zero (root) of the m-th order Bessel function and ymn is the
n-th zero of the first derivative of the m-th order Bessel function, and ξa = c/(2πa)
is a constant used in calculation of TM and TE cutoff frequencies in an evacuated
waveguide of radius a.

Before embarking on calculation of cutoff frequencies using (13.193) and
(13.194) we determine the waveguide constant ξa for use in (13.193) to determine
TM cutoff frequencies (νTM

c )mn and in (13.194) to determine TE cutoff frequencies
(νTE

c )mn

ξa = c

2πa
= 3×108 m/s

2π×(1.05×10−2 m)
= 4.55×109 Hz = 4550 MHz. (13.195)

Next we calculate a set of low-level TM cutoff frequencies using (13.193) in con-
junction with (13.195) and xmn data of Table 13.4 and a set of TE cutoff frequencies
using (13.194) in conjunction with (13.195) and ymn data of Table 13.4. Results of
TM and TE cutoff frequencies calculated for a uniform circular EM waveguide with
core radius of 1.05 cm are presented in Table 13.5.

According to Table 13.5:

(1) Five lowest cutoff frequencies (νTM
c )mn for TMmn modes are: TM01

(10920 MHz), TM11 (17290 MHz), TM21 (23205 MHz), TM02 (25025 MHz),
and TM31 (29120 MHz).
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(2) Five lowest cutoff frequencies (νTE
c )mn for TEmn modes are: TE11 (8190 MHz),

TE21 (14105 MHz), TE02 (17290 MHz), TE31 (19110 MHz), and TE41
(24115 MHz).

(3) Combined order of 5 lowest special modes in the waveguide is as fol-
lows: TE11 (8190 MHz), TM01 (10920 MHz), TE21 (14105 MHz), TM11
(17290 MHz), and TE01 (17290 MHz).

(4) The cutoff frequency ωc = 2πνc of the waveguide is given by the lowest cut-
off frequency of the two special modes (TM and TE) propagating through the
waveguide. For the circular EM waveguide in this problem, the lowest cut-
off frequency occurs for the TE11 mode with (νTE

c )11 = 8190 MHz and we
conclude that the cutoff frequency νc of the waveguide is 8190 MHz.

(d) The input microwaves to be transmitted through the circular waveguide have a
frequency ν = 104 MHz in the X band microwave frequency range. This frequency
is below the lowest TM cutoff frequency of (νTM

c )01 = 10920 MHz which means
that no TM modes can propagate in this EM waveguide. Of the TE modes only
the TE11 can propagate, since its cutoff frequency of 8190 MHz is below the input
microwave frequency of 104 MHz. Thus, the circular EM waveguide with a radius
of 1.05 cm allows propagation of 104 MHz microwaves only in one mode, the TE11
mode with a cutoff frequency (νTE

c )11 = 8190 MHz. This is another example of
waveguide design that allows only a single mode operation.

(e) The phase velocity υph and group velocity υgr of microwaves propagating in
a uniform circular EM waveguide with angular frequency ω or frequency ν are
calculated from the dispersion relationship (ω, kg) given in (13.184) as follows

ω=
√
(ωc)2mn + c2k2

g or kg = 1

c

√
ω2 − (ωc)2mn, (13.196)

where (ωc)mn = 2π(νc)mn is the cutoff frequency of mode mn propagating through
the circular EM waveguide and kg is the propagation coefficient of the waveguide.

(1) In general, the phase velocity υph is defined as the ratio between ω of the
propagating wave and the associated kg of the waveguide

υph = ω

kg
= cω√

ω2 − (ωc)2mn

= c√
1 − (ωc)2mn

ω2

= c√
1 − (νc)2mn

ν2

. (13.197)

In (d) we established that in a circular EM waveguide with core radius a =
1.05 cm microwaves with frequency ν = 104 MHz in the X microwave band can
only propagate in a TE11 mode that has a cutoff frequency (νTE

c )11 = 8190 MHz.
Therefore, the phase velocity υph of 10000 MHz microwaves propagating in this
waveguide is from (13.197) calculated as follows

υph = c√
1 − (νTM

c )211
ν2

= c√
1 − ( 8190

10000 )
2

= 1.74c= 5.5×108 m/s> c. (13.198)
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(2) Group velocity υgr is in general defined as the derivative dω/dkg

υgr = dω

dkg
= d

dkg

(√
(ωc)2mn + c2k2

g

)
= 2c2kg

2
√
(ωc)2mn + c2k2

g

= c
√
ω2 − (ωc)2mn

ω

= c
√

1 − (ωc)2mn

ω2
= c

√
1 − (νc)2mn

ν2
. (13.199)

For the cutoff frequency νc = (νTE
c )11 = 8190 MHz and microwave frequency

of 104 Hz propagating through a circular EM waveguide of radius a = 1.05 cm the
group velocity υgr is from (13.199) calculated as

υgr = c
√

1 − (νTE
c )

2
11

ν2
= c

√
1 −

(
8190

10000

)2

= 0.57c= 1.72×108 m/s< c.

(13.200)
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13.7.Q1 (282)

Electromagnetic (EM) waveguides are used for transmission of microwave
power and signals as well as for charged particle acceleration in linear accel-
erators (linacs).

(a) Briefly describe at least five notable differences between EM waveg-
uides used for:

(1) Transmission of microwave power and signals in a transmission
waveguide.

(2) Acceleration of charged particles in an acceleration waveguide of
a linac.

(b) For a uniform circular evacuated EM waveguide:

(1) State z components Ez and Bz of electric field EEE and magnetic
field BBB , respectively.

(2) Explain how components Ez and Bz are determined.
(3) Explain how the other four components (Er , Eθ , Br , and Bθ ) of EEE

and BBB are determined once Ez and Bz are known.

(c) Show that for a uniform circular evacuated EM waveguide the trans-
verse components Er and Eθ of the electric field EEE as well as the trans-
verse components Br and Bθ of the magnetic field B can be determined
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directly from known axial components Ez and Bz of electric field EEE and
magnetic field BBB , respectively.

(d) For a uniform circular evacuated EM waveguide determine the trans-
verse fields Er , Eθ , Br , and Bθ for:

(1) Transverse magnetic (TM) modes (Bz = 0 everywhere).
(2) Transverse electric (TE) modes (Ez = 0 everywhere).
(3) Transverse electromagnetic (TEM) modes (Ez = 0 and Bz = 0 ev-

erywhere).

(e) For a uniform circular evacuated EM waveguide determine all com-
ponents of electric field EEE and magnetic field BBB for the lowest (dom-
inant): (1) transverse magnetic (TM) mode and (2) transverse electric
(TE) mode. The radius of the circular waveguide core is a.

SOLUTION:

(a) The basic principles behind transmission EM waveguides and acceleration EM
waveguides are the same; however, there are several notable differences between the
two types of waveguide with respect to: (1) Design, (2) Cross section, (3) Operating
mode, (4) Core material, and (5) Microwave phase velocity. Summary of notable
differences is provided in Table 13.6.

(1) Design. Transmission waveguides are uniform in cross section meaning that
their cross section does not change along the direction of RF propagation. Accel-
eration waveguides, on the other hand, are non-uniform meaning that their cross
section varies periodically along the direction of RF propagation. They are loaded
with disks that define distinct cavities in the acceleration waveguide and cause par-
tial reflection of the RF wave in order to slow down the phase velocity below the
speed of light in vacuum.

(2) Cross section. Transmission waveguide most often has a rectangular cross sec-
tion with sides a and b where a > b, while the cross section of accelerator waveg-
uide is circular with basic core radius a and disk radius b where a > b. In addition
to rectangular transmission waveguides, it is possible to have circular transmission
EM waveguides; however, all acceleration waveguides are circular.

(3) Operating mode. Transmission waveguides are usually designed such that
only the lowest (dominant) transverse microwave mode can propagate through the
waveguide. This is the transverse electric TE11 mode characterized by m = 1 and
n= 1. Particle acceleration, on the other hand, is carried out with the lowest (dom-
inant) transverse magnetic (TM01) mode characterized by m = 0 and n = 1, since
this is the lowest special mode with Ez oriented in the direction of particle motion;
a necessary condition for charged particle acceleration.
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Table 13.6 Summary of notable differences between transmission and acceleration EM waveg-
uides

Characteristic feature Transmission EM waveguide Acceleration EM waveguide

Design Uniform Non-uniform (disk-loaded)

Cross section Rectangular (circular possible) Circular only

Operating special mode Transverse electric TE10 Transverse magnetic TM01

Core medium Dielectric gas or vacuum Vacuum only

RF phase velocity υph υph > c υph � c

(4) Core medium. Transmission waveguides are usually filled with a pressurized
dielectric gas, however, it is also possible to transmit microwaves in evacuated trans-
mission waveguides; acceleration waveguides are always evacuated.

(5) Phase velocity. In transmission waveguides the phase velocity υph of the RF
wave exceeds the speed of light c in vacuum (υph > c); acceleration waveguides,
on the other hand, are designed such that υph is slowed down to slightly below c in
order to allow the charged particle to follow the RF wave.

(b) Electric field EEE and magnetic field BBB in the core of a uniform circular evacu-
ated EM waveguide are vectors with three components, each component depending
on three spatial coordinates and one temporal coordinate

EEE = [
Er (r, θ, z, t),Eθ (r, θ, z, t),Ez(r, θ, z, t)

]
and

BBB = [
Br (r, θ, z, t),Br (r, θ, z, t),Br (r, θ, z, t)

]
.

(1) The Ez and Bz components of EEE and BBB for a uniform evacuated circular EM
waveguide are given by the following expressions

Ez(x, θ, z, t)=
∞∑
m=0

∞∑
n=0

Jm(γnr)[Amn cosmθ +Bmn sinmθ ]eiϕ (13.201)

and

Bz(x, θ, z, t)=
∞∑
m=0

∞∑
n=0

Jm(γnr)[Cmn cosmθ +Cmn sinmθ ]eiϕ, (13.202)

where γn is a parameter determined from boundary conditions and related to free
space wave number k and waveguide wave number (waveguide propagation coeffi-
cient) kg as γ 2

n = k2 − k2
g , ϕ = kgz−ωt is the phase of the RF wave, and Amn, Bmn,

Cmn, and Dmn are coefficients that are determined from initial conditions.

(2) Components Ez and Bz are determined from wave equations for Ez and Bz

∇2Ez = 1

c2

∂2Ez
∂2t2

(13.203)
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and

∇2Bz = 1

c2

∂2Bz
∂2t2

(13.204)

where c is the speed of light in vacuum and ∇2 is the scalar Laplacian operator
expressed in cylindrical coordinates for circular EM waveguide as follows

∇2 = ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂θ2
+ ∂2

∂z2
. (13.205)

Wave equations (13.203) and (13.204) are linear partial differential equations of the
second order in four variables (3 spatial and one temporal) with constant coeffi-
cients. The most common method for solving the two wave equations is the method
of separation of variables leading to solutions for the z components Ez and Bz of the
electric field EEE and magnetic field BBB in the core of the waveguide.

(3) Once Ez and Bz are known, the other components of EEE and BBB in an evacu-
ated circular EM waveguide are determined from Maxwell equations for free space
expressed as follows

∇ · EEE = 0, (13.206)

∇ · BBB = 0, (13.207)

∇×EEE = −∂BBB
∂t
, (13.208)

∇×BBB = 1

c2

∂EEE
∂t

(13.209)

with (∇·) the divergence and (∇×) the curl on vectors EEE and BBB .

(c) We start the derivation of components Er , Eθ , Br , and Bθ for circular EM
waveguide with Maxwell equations (13.206) and (13.207) as ∇ ·EEE = 0 and ∇ ·BBB =
0, respectively, and express them in cylindrical coordinates as follows

∇ · EEE = 1

r

∂

∂r
(rEr )+ 1

r

∂Eθ
∂θ

+ ∂Ez
∂z

= 1

r

∂

∂r
(rEr )+ 1

r

∂Eθ
∂θ

+ ikzEz = 0 (13.210)

and

∇ · BBB = 1

r

∂

∂r
(rBr )+ 1

r

∂Bθ
∂θ

+ ∂Bz
∂z

= 1

r

∂

∂r
(rBr )+ 1

r

∂Bθ
∂θ

+ ikzBz = 0. (13.211)

Next, we express (13.208) and (13.209), respectively, in cylindrical coordinates as

∇×EEE = curlEEE rotEEE =
∣∣∣∣∣∣

r̂
r

Θ̂ ẑ
r

∂
∂r

∂
∂θ

∂
∂z

Er rEθ Ez

∣∣∣∣∣∣= − ∂

∂t

∣∣∣∣∣∣
Br r̂

BθΘ̂
Bzẑ

∣∣∣∣∣∣= iω
∣∣∣∣∣∣

Br r̂
BθΘ̂
Bzẑ

∣∣∣∣∣∣
=
[

1

r

∂Ez
∂θ

− ∂Eθ
∂z

]
r̂ +

[
∂Er
∂z

− ∂Ez
∂r

]
Θ̂ + 1

r

[
∂(rEθ )
∂r

− ∂Er
∂θ

]
ẑ (13.212)
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and

∇×BBB = curlBBB rotBBB =
∣∣∣∣∣∣

r̂
r

Θ̂ ẑ
r

∂
∂r

∂
∂θ

∂
∂z

Br rBθ Bz

∣∣∣∣∣∣=
1

c2

∂

∂t

∣∣∣∣∣∣
Er r̂

EθΘ̂
Ezẑ

∣∣∣∣∣∣= − iω
c2

∣∣∣∣∣∣
Er r̂

EθΘ̂
Ezẑ

∣∣∣∣∣∣
=
[

1

r

∂Bz
∂θ

− ∂Bθ
∂z

]
r̂ +

[
∂Br
∂z

− ∂Bz
∂r

]
Θ̂ + 1

r

[
∂(rBθ )
∂r

− ∂Br
∂θ

]
ẑ, (13.213)

where r̂, Θ̂ , and ẑ are the standard unit vectors in the cylindrical coordinate system.
Equations (13.212) and (13.213) have the following components of the curl operator
[Note: (13.214), (13.215), and (13.216) follow from (13.212); (13.217), (13.218),
and (13.219) from (13.213)]

1

r

∂Ez
∂θ

− ∂Eθ
∂z

= iωBr = 1

r

∂Ez
∂θ

− ikzEθ or Br = − i

ωr

∂Ez
∂θ

− kg

ω
Eθ , (13.214)

∂Ez
∂z

− ∂Ez
∂r

= iωBθ = ikgEr − ∂Ez
∂r

or Bθ = kg

ω
Er + i

ω

∂Ez
∂r
, (13.215)

1

r

[
∂(rEθ )
∂r

− ∂Er
∂θ

]
= iωBz or Bz = i

ωr

[
−∂(rEθ )

∂r
+ ∂Er
∂θ

]
, (13.216)

1

r

∂Bz
∂θ

− ∂Bθ
∂z

= − iω
c2

Er = 1

r

∂Bz
∂θ

− ikgBθ or

Er = ic2

ωr

∂Bz
∂θ

+ kgc
2

ω
Bθ ,

(13.217)

∂Br
∂z

− ∂Bz
∂r

= − iω
c2

Eθ = ikgBr − ∂Bz
∂r

or Eθ = −kgc
2

ω
Br − ic2

ω

∂Bz
∂r
, (13.218)

1

r

∂(rBθ )
∂r

− ∂Br
∂θ

= − iω
c2

Ez or Ez = ic2

ω

[
∂By
∂x

− ∂Bx
∂y

]
. (13.219)

Pairing up appropriate equations in the group from (13.214) to (13.219), we can
now determine components Er , Eθ , Br , and Bθ as follows:

(1) Inserting Bθ of (13.215) into (13.217) gives the following expression for com-
ponent Er

Er = i
[
kgc

2

ω2

∂Ez
∂r

+ c2

ωr

∂Bz
∂θ

](
1 − k2

gc
2

ω2

)−1

= i

γ 2
n

[
kg
∂Ez
∂r

+ ω

r

∂Bz
∂θ

]
.

(13.220)
(2) Inserting Br of (13.214) into (13.218) gives the following expression for com-

ponent Eθ

Eθ = i
[
−c

2

ω

∂Bz
∂r

+ kgc
2

ω2r

∂Ez
∂θ

](
1 − k2

gc
2

ω2

)−1

= i

γ 2
n

[
−ω∂Bz

∂r
+ kg

r

∂Ez
∂θ

]
.

(13.221)
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(3) Inserting Eθ of (13.218) into (13.214) gives the following expression for com-
ponent Br

Br = i
[
kgc

2

ω2

∂Bz
∂r

− 1

ωr

∂Ez
∂θ

](
1 − k2

gc
2

ω2

)−1

= i

γ 2
n

[
kg
∂Bz
∂r

+ ω

c2r

∂Ez
∂θ

]
.

(13.222)
(4) Inserting Er of (13.217) into (13.215) gives the following expression for com-

ponent Bθ

Bθ = i
[

1

ω

∂Ez
∂r

+ kgc
2

ω2r

∂Bz
∂θ

](
1 − k2

gc
2

ω2

)−1

= i

γ 2
n

[
ω

c2

∂Ez
∂r

+ kg

r

∂Bz
∂θ

]
.

(13.223)
with γ 2

n = k2 − k2
g and γ = kc where k is the free space propagation coeffi-

cient. Equations (TT) through (13.223) show that the transverse components
Er , Eθ , Br , and Bθ can be determined with relative ease using Maxwell equa-
tions for free space in conjunction with known axial components Ez and Bz
that are determined from appropriate wave equations (13.203) and (13.204),
respectively.

(d) Equations (13.220) through (13.223) give general expressions for transverse
components Er , Eθ , Br , and Bθ as a function of axial components Ez and Bz for
a uniform circular EM waveguide. We now determine the transverse components
for the three special modes: transverse magnetic (TM), transverse electric (TE), and
transverse electromagnetic (TEM) that are characterized as follows:

(1) TM modes: Bz = 0 everywhere inside the waveguide core and the Dirichlet-
type boundary condition Ez|r=a = 0 applies to Ez at the boundary between the
waveguide core and waveguide wall resulting in the following expression for γn

γn = xmn

a
, (13.224)

where xmn is the n-th zero of the m-th order Bessel function.
The transverse components Er , Eθ , Br , and Bθ are now from (13.220) through

(13.223) simplified as follows, recognizing that ∂Bz/∂r = ∂Bz/∂θ = 0, since for
TM modes Bz = 0 everywhere inside the waveguide core

Er = ikg

γ 2
n

∂Ez
∂r
, (13.225)

Eθ = ikg

γ 2
n r

∂Ez
∂θ
, (13.226)

Br = iω

γ 2
n c

2r

∂Ez
∂θ
, (13.227)

Bθ = iω

γ 2
n c

2

∂Ez
∂r
. (13.228)
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(2) TE modes: Ez = 0 everywhere inside the waveguide core and the Neumann-
type boundary condition ∂Bz/∂r|r=a = 0 applies to ∂Bz/∂r at the boundary be-
tween the waveguide core and waveguide wall resulting in the following expression
for γn

γn = ymn

a
, (13.229)

where ymn is the n-th zero of the first derivative of the m-th order Bessel function.
The transverse components Er , Eθ , Br , and Bθ are now from (13.220) through

(13.223) given as follows, recognizing that ∂Ez/∂r = ∂Ez/∂θ = 0, since Ez = 0
everywhere in the waveguide core

Er = iω

γ 2
n r

∂Bz
∂θ
, (13.230)

Eθ = − iω
γ 2
n

∂Bz
∂r
, (13.231)

Br = ikg

γ 2
n

∂Bz
∂r
, (13.232)

Bθ = ikg

γ 2
n r

∂Bz
∂θ
. (13.233)

(3) TEM mode: Both Ez = 0 and Bz = 0 everywhere and (13.220) through
(13.223) show that all transverse components Er , Eθ , Br , and Bθ are also equal
to zero. We conclude that TEM modes cannot propagate through uniform circular
EM waveguides.

(e) Components of lowest (dominant) TM and TE modes in a uniform evacuated
circular EM waveguide with radius a are determined using the following steps:

The general expressions for z components Ez and Bz of electric field EEE and mag-
netic field BBB , respectively, given in (13.201) and (13.202), respectively, are used here
to determine Ez and Bz for the dominant TM and TE modes, respectively. Expres-
sions for the other four components Er , Eθ , Br , and Bθ for the special modes were
derived in (d). We now use these expressions to determine the electric and magnetic
field components for the dominant TM and TE modes.

(1) Transverse magnetic (TM) modes are characterized by Bz = 0 everywhere in
the waveguide core and the dominant (lowest) TM mode occurs for m = 0 and
n= 1, resulting in the following expression for parameter γn from (13.224)

γn = x01

a
= 2.405

a
. (13.234)
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(i) The electric field component Ez for the dominant TM01 mode is now from
(13.201) given as

Ez = E01J0(γ1r)e
iϕ = E01J0

(
x01

a
r

)
eiϕ = E01J0

(
2.405

a
r

)
eiϕ. (13.235)

(ii) The magnetic field component Bz = 0 everywhere in the waveguide core for
TM modes.

(iii) The electric field component Er is determined from (aa) using Bz = 0, Ez
from (13.235), and γn from (13.234) form= 0 and n= 1 to get the following
result

Er = i kg

γ 2
1

∂Ez
∂r

= i kg

γ 2
n

∂

∂r

[
E01J0

(
x01

a
r

)
eiϕ

]
= −i kg

γ 2
n

x01

a
E01J1

(
x01

a
r

)
eiϕ

= −i kga

x01
E01J1

(
x01

a
r

)
eiϕ = −i kga

2.405
E01J1

(
2.405

a
r

)
eiϕ, (13.236)

where we used x01 = 2.405 and the following recursive relationship for
Bessel function Jm(x)

dJm(x)
dx = −Jm+1(x) + m

x
Jm(x) resulting in dJ0(x)

dx =
−J1(x) or d

dr J0(
x01
a
r)= − x01

a
J1(

x01
a
r).

(iv) The electric field component Eθ of (13.226) is zero because ∂Ez/∂θ = 0

Eθ = i kg

γ 2
n r

∂Ez
∂θ

= 0. (13.237)

(v) The magnetic field component Br of (13.227) is zero because ∂Ez/∂θ = 0

Br = i ω
γ 2
n c

2

∂Ez
∂θ

= 0. (13.238)

(vi) The magnetic field component Bθ for the dominant TM01 mode is determined
from (13.228) using Bz = 0, Ez from (13.235), and γn from (13.234) for
m= 0 and n= 1 as follows

Bθ = i ω
γ 2
n c

2

∂Ez
∂r

= i ω
γ 2
n c

2

∂

∂r

[
E01J0

(
x01

a
r

)
eiϕ

]

= −i ωx01

γ 2
n c

2a
E01J1

(
x01

a
r

)
eiϕ = −i ωa

c2x01
E01J1

(
x01

a
r

)
eiϕ

= −i ωa

2.405c2
E01J1

(
2.405

a
r

)
eiϕ, (13.239)

where we used again d
dr J0(

x01
a
r)= − x01

a
J1(

x01
a
r).

(2) Transverse electric (TE) modes are characterized by Ez = 0 everywhere in the
waveguide core and the dominant (lowest) TE mode occurs for m = 1 and n = 1,
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resulting in the following expression for parameter γn from (13.229)

γn = y11

a
= 1.841

a
. (13.240)

(i) The magnetic field component Bz for the dominant TE11 mode is from
(13.202) given as

Bz = B11J0(γ1r)e
iϕ = B11J0

(
y11

a
r

)
eiϕ = B11J0

(
1.841

a
r

)
eiϕ. (13.241)

(ii) The electric field component Ez = 0 everywhere in the waveguide core for
TE modes.

(iii) The electric field component Er of (13.230) is zero because ∂Bz/∂θ = 0

Er = i ω
γ 2
n r

∂Bz
∂θ

= 0. (13.242)

(iv) The electric field component Eθ for the dominant TE11 mode is determined
from (13.231) using Ez = 0, Bz from (13.241), and γn from (13.240) for
m= 1 and n= 1 as follows

Eθ = −i ω
γ 2
n

∂Bz
∂r

= −i ω
γ 2
n

∂

∂r

[
B11J0

(
y11

a
r

)
eiϕ

]
= i ωy11

γ 2
n a

B11J1

(
y11

a
r

)
eiϕ

= i ωa
y01

B01J1

(
y11

a
r

)
eiϕ = i ωa

1.841c2
B11J1

(
1.841

a
r

)
eiϕ, (13.243)

where we used y11 = 1.841 and the following recursive relationship for
Bessel function Jm(x)

dJm(x)

dx
= −Jm+1(x)+ m

x
Jm(x) that results in

dJ0(x)

dx
= −J1(x) or

d

dr
J0

(
y11

a
r

)
= −y11

a
J1

(
y11

a
r

)
.

(v) The magnetic field component Br for the dominant TE11 mode is determined
from (13.232) using Ez = 0, Bz from (13.241), and γn from (13.240) for
m= 1 and n= 1 as follows

Br = i kg

γ 2
n

∂Bz
∂r

= i kg

γ 2
n

∂

∂r

[
B11J0

(
y11

a
r

)
eiϕ

]
= −i kgy11

γ 2
n a

B11J1

(
y11

a
r

)
eiϕ

= −i kga

y11
B11J1

(
y11

a
r

)
eiϕ = −i kga

1.841
B11J1

(
1.841

a
r

)
eiϕ, (13.244)

where we used again d
dr J0(

y11
a
r)= − y11

a
J1(

y11
a
r).
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(vi) The magnetic field component Bθ of (13.233) is zero because ∂Bz/∂θ = 0

Bθ = i kg

γ 2
n r

∂Bz
∂θ

= 0. (13.245)

13.8 Acceleration Waveguide Compared to Transmission
Waveguide

13.8.Q1 (283)

The theory of waveguides used for charged particle acceleration in linear ac-
celerators (linacs) is very complex and relies on many approximations and
empirical relationships. However, the acceleration waveguide theory is based
solidly on the theory of uniform circular EM waveguides that is well un-
derstood, relatively simple, and governs the transmission of microwaves in
waveguides. Therefore, each acceleration waveguide has an equivalent cir-
cular transmission waveguide that provides a rough guidance for determi-
nation of parameters governing electron acceleration in acceleration waveg-
uides.

(a) Microwaves used for acceleration of electrons in standard clinical linacs
used for radiotherapy are produced in an RF driver that operates at a fre-
quency ν of 2856 MHz. For microwaves of ν = 2856 MHz and a uni-
form circular EM waveguide equivalent to an acceleration waveguide
of core radius a = 5.25 cm state or calculate:

(1) Wavelength λ and wave number k.
(2) Special RF mode used for electron acceleration in acceleration

waveguide.
(3) Cutoff frequency νc for the special RF mode used for electron

acceleration.
(4) Cutoff frequency νc of the acceleration waveguide with core ra-

dius a = 5.25 cm.
(5) Parameter γn of the equivalent transmission waveguide for the

special mode used for electron acceleration of (2).
(6) Parameter γn of equivalent transmission waveguide for the domi-

nant special mode.
(7) Wave number (waveguide propagation coefficient) kg for the spe-

cial mode used for electron acceleration of (2).
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(b) Assume that 2856 MHz microwaves used for electron acceleration in an
acceleration waveguide of radius a = 5.25 cm are propagating through
an equivalent uniform EM waveguide. For the uniform circular EM
waveguide of radius 5.25 cm calculate and plot:

(1) Dispersion relationship (ω vs kg).
(2) Point P on the ω vs kg dispersion curve.
(3) Phase velocity υph at point P.
(4) Group velocity υgr at point P.

(c) Show that for particle acceleration with microwaves in a waveguide the
particle velocity υpart must be approximately equal to the phase veloc-
ity υph of the microwaves that are used for particle acceleration in the
waveguide.

(d) Explain why uniform EM waveguides are not suitable for charged par-
ticle acceleration.

SOLUTION:

(a) In this problem, the acceleration waveguide has a core radius a of 5.25 cm. Its
equivalent uniform waveguide also has a core radius of 5.25 cm and, despite being
significantly simpler, provides several useful basic parameters of the acceleration
waveguide.

(1) Wavelength λ and wave number k for microwaves with frequency ν =
2856 MHz or angular frequency ω= 2πν = 2π×(2856 MHz)= 17936 MHz

λ= c

ν
= 3×108 m · s−1

2.856×109 s−1
= 0.105 m = 10.5 cm (13.246)

and

k = 2π

λ
= 2πν

c
= ω

c
= 2π

0.105 m
59.8 m−1, (13.247)

where c is the speed of light in vacuum (3×108 m/s).

(2) Electron acceleration is carried out in an acceleration waveguide with mi-
crowaves of ν = 2856 MHz (λ= 10.5 cm) propagating in the transverse magnetic
(TM01) special mode with m= 0 and n= 1. This mode has several useful features
for charged particle acceleration, such as: (i) Z component of magnetic field Bz is
zero everywhere in the waveguide core, (ii) Ez �= 0 on the central axis of the waveg-
uide enabling particle acceleration along waveguide z axis, and (iii) Ez|r=a = 0 at
the boundary between the waveguide core and waveguide wall at r = a (Dirichlet-
type boundary condition).
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(3) Cutoff frequency (νTM
c ) for the TM01 special mode used for electron accel-

eration is the same for both the acceleration waveguide and its equivalent uniform
waveguide and calculated as

(
νTM

c

)
01 = (ωTM

c )01

2π
= c

2π

x01

a
= (3×108 m · s−1)×2.405

2π×(5.25×10−2 m)

= 2.188×109 s−1 = 2188 MHz, (13.248)

or

(
ωTM

c

)
01 = cx01

a
= 2π

(
νTM

c

)
012π×(2188 MHz)= 13741 MHz, (13.249)

where x01 = 2.405 is the first zero (root) of the Bessel function of zero order (see
Prob. 281).

(4) The cutoff frequency νc of the waveguide is by definition equal to the cutoff
frequency of the dominant (lowest) special mode propagating through the waveg-
uide. For a uniform circular EM waveguide the dominant mode is the TE11 mode
and its cutoff frequency (νTE

c )11 is defined as the waveguide cutoff frequency νc and
determined from

(
νTE

c

)
11 = (ωTE

c )11

2π
= c

2π

y11

a
= (3×108 m · s−1)×1.841

2π×(5.25×10−2 m)

= 1.675×109 s−1 = 1675 MHz, (13.250)

or (
ωTE

c

)
11 = 2π

(
νTE

c

)
11 = 2π×(1675 MHz)= 10519 MHz, (13.251)

where y01 = 1.841 is the first zero (root) of the first derivative of the Bessel function
of zero order (see Prob. 281). Note that the dominant mode in the circular waveguide
(TE11) cannot be used for particle acceleration because in the TEmn special modes
Ez = 0 everywhere in the waveguide core and Ez �= 0 is required for charged particle
acceleration.

(5) Parameter γn for the TM01 mode and microwaves of frequency ν = 2856 MHz

γn = x01

a
= 2.405

5.25×10−2 m
= 45.8 m−1. (13.252)

(6) The dominant mode in the waveguide is the TE11 mode and the parameter γn
for this mode is given as follows

γn = y11

a
= 1.841

5.25×10−2 m
= 35.1 m−1. (13.253)
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(7) Waveguide propagation coefficient kg for 2856 MHz microwaves and TM01
special mode

kg =
√
k2 − γ 2

n =
√
(59.8 m)2 − (45.8 m)2 = 38.5 m−1. (13.254)

(b) The basic dispersion relationship for TMmn modes in uniform circular EM
waveguides is

γ 2
n =

(
xmn

a

)2

= (ωTM
c )2mn

c2
k2 − k2

g = ω2

c2
− k2

g, (13.255)

while for TEmn modes it is given as

γ 2
n =

(
ymn

a

)2

= (ωTE
c )

2
mn

c2
k2 − k2

g = ω2

c2
− k2

g, (13.256)

where xmn is the n-th zero (root) of the m-th order Bessel function and ymn is the
n-th zero of the first derivative of the m-th order Bessel function. (ωTM

c )2mn and
(ωTE

c )
2
mn are cutoff angular frequencies for microwaves propagating through the

uniform waveguide in TMmn and TEmn special modes, respectively.

(1) After rearranging the terms in (13.256) we get the standard form of the general
dispersion relationship for TMmn modes in circular EM waveguide of radius
a = 5.25 cm

ω2 = (
ωTM

c

)2
mn

+ c2k2
g or ω=

√(
ωTM

c

)2
mn

+ c2k2
g (13.257)

that, for the TM01 mode with (ωTM
c )01 = 2π(νTM

c )01 from (13.249), is written
as

ω=
√(
ωTM

c

)2
01 + c2k2

g =
√(

1.3741×1010 Hz
)2 + (

3×108 m · s−1
)2×k2

g .

(13.258)
A plot of (13.258) in the kg range from 0 to ±120 m−1 corresponding to ω
range from 0 to 45 GHz is shown in Fig. 13.11. The shape of the (13.258)
curve shows a hyperbola whose vertex V is the cutoff angular frequency
(ωTM

c )01 = 1.374 GHz and whose center C is at the origin of the (kg,ω) Carte-
sian coordinate system.

(2) Also shown in Fig. 13.11 is point P representing the (kg = 38.5 m−1,
ω = 17.936 GHz) point on the diagram corresponding to propagation of
ν = 2856 MHz microwaves through the uniform waveguide in the TM01
mode.

(3) Phase velocity υph at point P is calculated from the basic definition

υph = ω

kg
= 1.7936×1010 s−1

38.5 m−1
= 4.66×108 m/s (13.259)
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Fig. 13.11 Hyperbolic dispersion diagram of (13.257) for a uniform circular EM waveguide with
radius a of 5.25 cm. Point P indicates the (ω,kg) position on the dispersion hyperbola for mi-
crowaves with ν = 2856 MHz propagating through the waveguide. The asymptotes of the disper-
sion hyperbola form an angle of arctan c with the abscissa (kg) axis. The two faint lines through
point P define angles αph and αgr that can be used for graphical determination of the phase velocity
υph and group velocity υgr, respectively

or from the dispersion relationship (13.257) as

υph = c√
1 − [ (ωTM

c )01
ω

]2
= c√

1 − [ 13741
17936 ]2

= c√
0.413

= 1.56c= 4.67×108 m/s> c (13.260)

or graphically from the graph of Fig. 13.11 recalling that υph = tanαph.
(4) Group velocity υph at point P is calculated from the dispersion relationship as

follows

υgr = dω

dkg
c

√
1 −

[
(ωTM

c )01

ω

]2

= c
√

1 −
[

13741

17936

]2

= 0.642c= 1.93×108 m/s< c (13.261)

or graphically from the graph of Fig. 13.11 recalling that υgr = tanαgr.

(c) The phase ϕ of the radiofrequency wave propagating in the +z direction that
coincides with the central axis of a uniform circular waveguide is expressed as fol-
lows

ϕ = kgz−ωt, (13.262)
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where ω is the angular frequency of the RF wave and kg is the waveguide wave
number or propagation coefficient.

The angular frequency ω of the RF wave as seen by a stationary observer (z =
const) is given by ∣∣∣∣dϕdt

∣∣∣∣=
∣∣∣∣ d

dt
(kgz−ωt)

∣∣∣∣= ω. (13.263)

The angular frequency ω′ of the RF wave as seen by an observer (or accelerated
charged particle) traveling with the RF wave is calculated as follows

dϕ

dt ′
= ω′ = d

dt ′
(kgz−ωt)= kg

dz

dt ′
−ω dt

dt ′
= kg

dz

dt

dt

dt ′
−ω dt

dt ′
= (kgυpart −ω) dt

dt ′
,

(13.264)
where t ′ is the time measured in the reference frame of the moving observer and the
particle velocity υpart is defined as υpart = dz/dt where t is the time measured by
stationary observer.

Since dt/dt ′ is the Lorentz factor γ in relativistic physics and the phase velocity
υph of the RF wave is defined as υph = ω/kg, we can write (13.264) as

ω′ = dt

dt ′
(kgυpart −ω)= γ (kgυpart −ω)= γω

(
υpart

υph
− 1

)
. (13.265)

Equation (13.265) is known as the relativistic Doppler effect. We note from
(13.265) that, for the accelerated charged particle to continuously see an acceler-
ating field with a constant phase along the central axis of the waveguide, the an-
gular frequency ω′ in the reference frame of the charged particle must be zero or
at least small. The ω′ = 0 condition is met when in (13.265) we set υpart/υph = 1
or υpart = υph. Based on this, one concludes that a necessary condition for particle
acceleration with electromagnetic fields in the microwave radiofrequency region is
that the particle velocity υpart must be approximately equal to the phase velocity υph

of microwaves used for particle acceleration.

(d) Several conclusions can be reached based on the discussion in sections (a),
(b), and (c):

(1) In (c) we showed that, for charged particle acceleration with microwaves, the
accelerated charged particle should see a constant RF phase ϕ during the acceler-
ation process. This condition is fulfilled when the velocity υpart of the accelerated
particle is equal to the phase velocity υph of the RF wave used in particle accelera-
tion.

(2) In (b) we showed that in a uniform waveguide the phase velocity υph of a typi-
cal RF wave used in particle acceleration (ν = 2856 MHz) exceeds the speed of light
c in vacuum. Since this is true for all uniform EM waveguides in general and since
no particle can travel faster than c in vacuum, it is obvious that uniform waveguides,
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propagating RF waves with υph exceeding c, cannot be used for charged particle ac-
celeration.

(3) The necessary condition for charged particle acceleration with microwaves is
that particle velocity υpart is equal to the RF phase velocity υph. Since υph in uniform
EM waveguides exceeds c and particle velocity cannot exceed c, it is obvious that
means must be used to decrease υph of uniform waveguides below c, if RF waves
are to be used for particle acceleration. This is what was done when acceleration
EM waveguide was developed from uniform circular EM waveguide by loading
the latter with disks or irises that slow down the phase velocity of the RF wave to
slightly below c enabling the accelerated charged particle to follow the accelerating
RF field.

(4) We also note from (a) that the special waveguide mode that fulfills the condi-
tion of having electric field in the direction of circular waveguide central axis is the
TM01 transverse magnetic mode in contrast with the dominant mode of the circular
waveguide that is the TE11 transverse electric mode that cannot be used for particle
acceleration but is very suitable for transmission of microwave power and signals.

13.9 Relationship Between Velocity of Energy Flow and Group
Velocity in Uniform Waveguide

13.9.Q1 (284)

During the past three decades linear accelerator (linac) grew from a sophis-
ticated and expensive alternative machine for megavoltage radiotherapy into
the most widely used high technology machine in modern cancer treatment
with ionizing radiation. In contrast to cobalt teletherapy machines that are
based on radionuclide cobalt-60 gamma source, a linac uses microwave power
to accelerate electrons to megavoltage kinetic energy. Three conditions must
be met for charged particle acceleration with microwave power in an electro-
magnetic (EM) waveguide:

(i) An electric field component oriented in, or opposite to, the direction of
the waveguide axis must be present in the waveguide (Ez �= 0 on the
waveguide axis at r = 0).

(ii) The velocity υpart of the accelerated charged particle should match
the phase velocity υph of microwaves used in the acceleration process
(υpart = υph).

(iii) The phase velocity υph of the radiofrequency wave used in electron
acceleration must not exceed the speed of light c in vacuum (υph < c).
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(a) Briefly discuss how condition (i) above is satisfied in acceleration of
electrons in an EM waveguide of a linac.

(b) Briefly discuss why condition (ii) is important for charged particle ac-
celeration with microwave fields.

(c) Briefly discuss how condition (iii) above is fulfilled in acceleration of
electrons in an acceleration waveguide of a linac.

(d) Determine the relationship between velocity υen of energy flow and
group velocity υgr of microwaves propagating through a uniform cir-
cular EM waveguide in the transverse magnetic TM01 mode.

SOLUTION:

(a) In a uniform circular EM waveguide of core radius a, condition (i) is satisfied
in the simplest manner by the transverse magnetic TM01 special mode propagat-
ing through a uniform EM waveguide. This mode is the dominant TMmn mode;
however, it is not the dominant mode of the waveguide. This distinction belongs to
the transverse electric TE11 mode that has the lowest cutoff frequency of all modes
propagating through the waveguide, but does not have a non-zero electric field com-
ponent Ez in the direction of the waveguide axis. Therefore, the TE11 mode cannot
be considered for electron acceleration; however, it is used for efficient transmis-
sion of microwave power and signals, while the TM01 mode is a candidate for use
in electron acceleration with radiofrequency (RF) waves, because it fulfills condi-
tion (i) above.

The transverse magnetic TM01 mode fulfills condition (i) and is characterized by
the following attributes:

(1) Magnetic field component Bz is zero everywhere in the waveguide core (only
the transverse component Bθ is present in the core; Br is also zero).

(2) In contrast to the TE11 mode where Ez = 0 everywhere in the core of the
waveguide, in the TM01 mode a non-zero electric field component Ez is
present on the central axis of the waveguide, thereby satisfying condition (i)
for particle acceleration.

(3) The Ez component of the electric field EEE is governed by the Dirichlet-type
boundary condition Ez|r=a = 0 at the r = a boundary between the evacuated
waveguide core and the conductive waveguide wall.

(b) Condition (ii) results from the requirement that the accelerated charged par-
ticle must continuously see an accelerating electric field in the direction of prop-
agation along the central axis of the acceleration waveguide. This means that the
phase ϕ of the Ez component of the electric field EEE must remain constant; that is,
the angular frequency ω′ of the RF wave as measured by an observer traveling with
the accelerated particle should be zero or at least very small. The ω′ = 0 condition
is fulfilled when the velocity υpart of the accelerated particle is equal to the phase
velocity υph of the RF wave used in particle acceleration (see Prob. 283).
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(c) Condition (i) is fulfilled by the TM01 special mode propagating through a uni-
form circular EM waveguide and condition (ii) simply states that υpart = υph. How-
ever, condition (iii) requires that υph<∼ c and this immediately excludes the potential

use of a uniform waveguide for charged particle acceleration, because the phase ve-
locity υph of microwaves propagating in a uniform EM waveguide always exceeds
c and approaches c only for ω→ ∞.

Since particle velocity cannot be increased above c, the condition υpart = υph can
be met only by decreasing the phase velocity of the RF wave in the waveguide below
c. This entails adding a periodic perturbation into a uniform waveguide of core
radius a in the form of disks or irises with circular holes of radius b in the center. At
these obstacles RF waves suffer partial reflection and this effectively reduces υph of
the RF wave propagating through the waveguide. With an appropriate choice of disk
separation and radii a and b where b� a, wave reflections at the disks can push υph
down to a level where υph<∼ c, making particle acceleration physically possible.

In contrast to uniform circular EM waveguides (also called transmission EM
waveguides) circular EM waveguides suitable for particle acceleration are called
acceleration waveguides or disk-loaded waveguides. They are more complicated
than uniform waveguides; however, many parameters of acceleration waveguides
are similar to those of uniform waveguides of the same radius a, so that data mea-
sured for transmission waveguides are routinely used to approximate parameters of
acceleration waveguides.

(d) The velocity υen of energy flow in a waveguide will be determined from the
general relationship

P̄ =Wtotυen or υen = P̄

Wtot
, (13.266)

where

P̄ is the mean power flowing through a transverse cross sectionA of the waveg-
uide.

Wtot is the total EM energy stored per unit length in the waveguide.

Mean power P̄ is related to the Poynting vector S that represents energy flow with
dimensions of energy/(area×time) or power/area. Mean power P̄ is thus determined
by integrating the Poynting vector S over the transverse cross section A of the
waveguide

P̄ =
¨
A

S̄ dA = 1

2μ0
Re

¨
A

EEE×BBB∗ dA = 1

2μ0
Re

¨
A

ETB∗
T dA, (13.267)

where EEE and BBB are the electric and magnetic field, respectively, and ET and BT are
the transverse components (perpendicular to direction of propagation as well as to
one another) of EEE and BBB , respectively. The factor of 1

2 in (13.267) arises from the
time average over one complete period, Re stands for “real part”, and the asterisk
(*) indicates complex conjugate.
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The time average of stored energyWtot per unit length of the waveguide has two
components: electricWel and magneticWmag given as follows

Wel = 1

4
ε0

¨
A

ETE∗
T dA (13.268)

and

Wmag = 1

4μ0

¨
A

BTB∗
T dA, (13.269)

the extra factor of 1
2 in (13.268) and (13.269) arises from the time average over one

complete period, and ε0 and μ0 are the electric and magnetic constant, respectively.
The stored energy per unit length of the waveguide Wtot is given as the sum of

the two components:Wel and Wmag

Wtot =Wel +Wmag = 1

4
ε0

¨
A

ETE∗
T dA+ 1

4μ0

¨
A

BTB∗
T dA= 1

2μ0

¨
A

BTB∗
T dA,

(13.270)
where in the last term of (13.270) we simplified the expression forWtot recognizing
that the two componentsWel and Wmag are equal givingWtot = 2Wmag.

Inserting (12.267) and (13.270) into (13.265) results in the following general
expression for the velocity of energy flow in a uniform EM waveguide

υen = P̄

Wtot
=

1
2μ0

Re
˜
A

ETB∗
T dA

1
2μ0

˜
A

BTB∗
T dA

. (13.271)

We now use the general expression (13.271) to calculate the velocity of energy
flow for the transverse magnetic TM01 mode of microwaves propagating in a uni-
form circular EM waveguide of radius a. The TM01 mode is the dominant TMmn

mode in a circular EM waveguide and is characterized by:

(i) Bz = 0 everywhere in the waveguide core.
(ii) Dirichlet-type boundary condition Ez|r=a = 0.

(iii) Non-zero z component of electric field (Ez �= 0) on the axis of the waveguide
and as such under appropriate circumstances can be used for charged particle
acceleration.

In general, the Ez and Bz components of EEE and BBB are determined from wave equa-
tions and the remaining components (Er ,Eθ ,Br , and Bθ ) of EEE and BBB are determined
from Maxwell equations. In Prob. 282(e) we derived the following expressions for
the z components as well as the transverse components of EEE and BBB of the TM01
mode in a uniform circular EM waveguide of radius a

Er = −ikg

(
a

x01

)
E01J1

(
x01

a
r

)
eiϕ, (13.272)



1018 13 Waveguide Theory

Eθ = 0, (13.273)

Ez = E01J0

(
x01

a
r

)
eiϕ, (13.274)

Br = 0, (13.275)

Bθ = −i ω
c2

(
a

x01

)
E01J1

(
x01

a
r

)
eiϕ, (13.276)

Bz = 0. (13.277)

For the TM01 mode the mean power P̄ of (13.267) and energy stored per unit
distance Wtot of (13.271) are calculated as follows

P̄ = 1

2μ0
Re

¨
A

ETB∗
T dA= 1

2μ0

ˆ a

0

ˆ 2π

0
ErB∗

θ r dr dθ

= π

μ0

ˆ a

0

{
(−i)kg

(
a

x01

)
E01J1

(
x01

a
r

)
eiϕ

}

×
{
(+i) ω

c2

(
a

x01

)
E01J1

(
x01

a
r

)
e−iϕ

}
r dr

= πkgω

μ0c2

(
a

x01

)2

E2
01

ˆ a

0
J 2

1

(
x01

a
r

)
r dr (13.278)

and

Wtot = 1

2μ0

¨
A

BTB∗
T dA= 1

2μ0

ˆ a

0

ˆ 2π

0
BθB∗

θ r dr dθ

= π

μ0

ˆ a

0

{
(−i) ω

c2

(
a

x01

)
E01J1

(
x01

a
r

)
eiϕ

}

×
{
i
ω

c2

(
a

x01

)
E01J1

(
x01

a
r

)
e−iϕ

}
r dr

= πω2

μ0c4

(
a

x01

)2

E2
01

ˆ a

0
J 2

1

(
x01

a
r

)
r dr. (13.279)

After inserting (13.278) and (13.279) into (13.266) we get, for the TM01 mode,
the following expression for the velocity υen of energy flow in a uniform circular
EM waveguide of radius a

υen = P̄

Wtot
=

πkgω

μ0c
2 (

a
x01
)2E2

01

´ a
0 J

2
1 (
x01
a
r)r dr

πω2

μ0c
4 (

a
x01
)2E2

01

´ a
0 J

2
1 (
x01
a
r)r dr

= kgc
2

ω
. (13.280)

Several observations are now possible after a closer look at the result υen = kgc
2

ω
:
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(1) Since by definition υph = ω
kg

and υph ≥ c, we note that υen = c2

υph
≤ c.

(2) Since υphυgr = c2, we note from (13.280) that υen = υgr.

(3) Since kg =
√
ω2−ω2

c
c

, we note that υen = c
√

1 − ω2
c
ω2 = υgr.

Thus, the velocity υen of energy flow through the waveguide is equal to the group
velocity υgr of microwave propagation in the waveguide.

13.9.Q2 (285)

A microwave travelling in a uniform EM waveguide can be characterized by
its frequency ν, angular frequency ω= 2πν, wavelength λg, propagation co-
efficient kg2π/λg, energy hν = hc/λg, phase velocity υph = ω/kg, group ve-
locity υgr = dω/dkg, as well as associated electric field EEE and magnetic field
BBB , each field with three spatial components and one temporal component. In
general, the Ez and Bz components of EEE and BBB are determined from wave
equations and the remaining components are determined from Maxwell equa-
tions.

For a uniform rectangular EM waveguide with cross sectional sides a and
b where a > b determine the velocity of energy flow υen for microwaves
traveling through the waveguide in the transverse electric (TEmn) mode and
show that υen equals the group velocity υgr of the microwave. Determine υen
using the following intermediate steps:

(a) Determine the x, y, and z components of the electric field EEE and mag-
netic field BBB .

(b) Calculate the time averaged Poynting vector S̄ for the microwave de-
scribed in (a).

(c) Calculate the mean energy density ρen for the microwave described
in (a).

(d) Integrate S of (b) over the waveguide cross section to get the mean
power P flowing through a transverse cross section A of the waveguide.

(e) Integrate ρen of (c) over the cross section A of the waveguide to get the
total energy Wtot stored per unit length in the waveguide.

(f) The ratio between P of (d) and Wtot of (e) is by definition equal to υen
of energy flow in the waveguide core. Determine this ratio and show
that υen equals to the group velocity υgr of microwaves propagating in
the TEmn mode through the waveguide.

SOLUTION:

(a) As shown in Prob. 277, components Ez and Bz of the electric and magnetic
fields EEE and BBB , respectively, are determined from wave equations for Ez and Bz. For
TEmn modes (Ez = 0) everywhere in the waveguide core) propagating in a uniform
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rectangular EM waveguide the results for Ez and Bz are as follows

Ez(x, y, z, t)= 0 and Bz(x, y, z, t)= B0 cos

(
mπ

a
x

)
cos

(
nπ

b
y

)
eiϕ,

(13.281)
where m and n are integers, and ϕ = kzz−ωt is the phase of the microwave. When
deriving the other components for the electric and magnetic fields (Ex , Ey , Bx and
By ) we will need derivatives ∂Bz/∂x and ∂Bz/∂y, so we state them here

∂Bz
∂x

= −mπ
a

B0 sin

(
mπ

a
x

)
cos

(
nπ

b
y

)
eiϕ (13.282)

and

∂Bz
∂y

= −nπ
b

B0 cos

(
mπ

a
x

)
sin

(
nπ

b
y

)
eiϕ. (13.283)

In (13.130) it was shown that components Ex and Ey as well as Bx and By can
be expressed simply as function of axial components and for special modes (TE
and TM) the situation is even simpler with transverse components for TE modes
expressed as a function of Bz and for TM modes as a function of Ez. For the TEmn
modes we thus have the following expressions for components Ex , Ey , Bx , and By
derived from Maxwell equations

Ex = iω

γ 2

∂Bz
∂y

= − iω
γ 2

nπ

b
B0 cos

(
mπ

a
x

)
sin

(
nπ

b
y

)
eiϕ, (13.284)

Ey = − iω
γ 2

∂Bz
∂x

= iω

γ 2

mπ

a
B0 sin

(
mπ

a
x

)
cos

(
nπ

b
y

)
eiϕ, (13.285)

Bx = ikz

γ 2

∂Bz
∂x

= − ikz
γ 2

mπ

a
B0 sin

(
mπ

a
x

)
cos

(
nπ

b
y

)
eiϕ (13.286)

and

By = ikz

γ 2

∂Bz
∂y

= − ikz
γ 2

nπ

b
B0 cos

(
mπ

a
x

)
sin

(
nπ

b
y

)
eiϕ, (13.287)

where parameter γ is defined as

γ 2 = k2 − k2
z = ω2

c2
− k2

z =
(
mπ

a

)2

+
(
nπ

b

)2

= ω2
c

c2
(13.288)

with ωc the cutoff frequency for the uniform rectangular EM waveguide and TEmn
mode.

(b) The Poynting vector S is in general defined as the energy flow per unit time
(power) per unit area A and is given by the vector product S = EEE×BBB/μ0, where
μ0 is the magnetic constant. For periodic sinusoidal electromagnetic (EM) fields of
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more interest is the mean Poynting vector S averaged over time and determined by
treating the electric and magnetic field vectors EEE and BBB as complex vectors to get

S = 1

2μ0
EEE×BBB∗, (13.289)

with BBB∗ the complex conjugate of BBB and the factor 1/2 arising from the time average
of the sinusoidal function over one time period.

In matrix format we now express the mean Poynting vector S as

S= 1

2μ0

⎡
⎣ î ĵ k̂

Ex Ey Ez
B∗
x B∗

y B∗
z

⎤
⎦= (

EyB∗
z −EzB∗

y

)
î−(

ExB∗
z −EzB∗

x

)
ĵ+(

ExB∗
y−EyB∗

x

)
k̂,

(13.290)
resulting in the following expressions for components Sx , Sy , and Sz of the Poynting
vector S

Sx = 1

2μ0

(
EyB∗

z − EzB∗
y

)

= iωB2
0

2μ0γ 4

(
mπ

a

)
sin

(
mπ

a
x

)
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(
mπ

a
x

)
cos2

(
nπ

b
y

)
, (13.291)

Sy = 1

2μ0

(
EzB∗

x − ExB∗
z

)

= iωB2
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2μ0γ 4

(
nπ

b

)
cos2

(
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(
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)
(13.292)

and

Sz = 1

2μ0

(
ExB∗

y − EyB∗
x

)

= ωkB2
0

2μ0γ 4

[(
nπ

b

)2
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(
mπ

a

)2
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. (13.293)

(c) Mean energy density ρen for the microwave is given by (note: the extra factor
1
2 again accounts for average over time period)

ρen = 1

4

(
ε0EEE · EEE∗ + 1

μ
BBB · BBB∗

)

= ε0

4

(
Ex · E∗

x + Ey · E∗
y + Ez · E∗

z

)+ 1

4μ0

(
Bx · B∗

x + By · B∗
y + Bz · B∗

z

)
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= ε0ω
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. (13.294)

(d) Mean power P flowing through a transverse cross section A of the waveguide
core is given by an integral of the axial component of the mean Poynting vector S
over A

P =
ˆ

S · dA =
ˆ a

0

ˆ b

0
Sz dx dy = ωkzB2

0ab

8μ0γ 4

[(
nπ

b

)2

+
(
mπ

a

)2]
, (13.295)

where we used the following definite integrals

ˆ a

0
sin2

(
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a
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)
dx =

ˆ a

0
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)
dx = a

2
(13.296)

and
ˆ b

0
sin2

(
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b
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)
dy =

ˆ b

0
cos2

(
nπ

b
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)
dy = b

2
. (13.297)

Recalling the identity (13.288), the mean power P flowing through cross section A
given in (13.295) simplifies to read

P = ωkzB2
0ab

8μ0γ 4

[(
nπ

b

)2

+
(
mπ

a

)]
= ωkzB2

0ab

8μ0ω2
c
. (13.298)

(e) The time average of total stored energyWtot per unit length of waveguide core
is given by the integral of mean energy density ρen over the cross section of the
waveguide core A

Wtot =
ˆ
A

ρen dA=
ˆ a

0

ˆ b

0
ρen dx dy. (13.299)
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Integrating (13.294) in conjunction with (13.288) and the well-known identity c2 =
(ε0μ0)

−1 we obtain

Wtot =
ˆ
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ρen dA=
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0
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0
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. (13.300)

(f) The velocity υen of energy propagation in the waveguide core is determined
from the ratio between P of (13.298) and Wtot of (13.300)

υen =
´ a

0

´ b
0 Sz dx dy´ a

0

´ b
0 ρen dx dy

=
ωkc2B2

0ab

8μ0ω
2
c

ω2B2
0ab

8μ0ω
2
c

= kzc
2

ω
. (13.301)

Several observations are now possible after a closer look at the result υen =
kgc

2/ω of (13.301). We note that (13.301) obtained for a rectangular uniform
waveguide is identical to (13.280) obtained for a cylindrical uniform waveguide.
Therefore, the same conclusions we reached in Prob. 284 for cylindrical waveguide
will apply to a rectangular waveguide of interest in this problem. The following
points can be made:

(1) Since by definition υph = ω/kg and υph ≥ c, we note that υen = c2/υph ≤ c.
(2) Since υphυgr = c2, we note from (13.301) that υen = υgr.
(3) Since kgr =√

ω2 −ω2
c/c, we note that υen = c√1 −ω2

c/ω
2 = υgr.

Thus, the velocity υen of energy flow through the waveguide is equal to the group
velocity υgr of microwave propagation in the waveguide.

13.10 Disk-Loaded Waveguide

13.10.Q1 (286)

Uniform electromagnetic (EM) waveguides (also called transmission EM
waveguides) are suitable for transmission of microwave power and signals
and they also meet several, but not all, requirements for charged particle ac-
celeration. It turns out, however, that with certain modifications, uniform EM
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waveguides can be transformed into waveguides suitable for particle accelera-
tion and, to distinguish them from uniform waveguides, they are then referred
to as disk-loaded EM waveguides or acceleration EM waveguides.

(a) Briefly discuss the differences between a transmission EM waveguide
and an acceleration EM waveguide.

(b) Draw schematic diagrams of a transmission EM waveguide and an ac-
celeration EM waveguide.

(c) Draw the dispersion diagram for a typical acceleration EM waveguide
and its equivalent uniform EM waveguide.

(d) Briefly state and explain the salient features of an acceleration EM
waveguide.

SOLUTION:

(a) Both types of waveguide: (i) uniform (transmission) waveguide and (ii) ac-
celerating (disk-loaded) waveguide are used for transmission of microwave power;
however, in design and purpose there are significant differences between the two
waveguide types, such as:

(1) Transmission waveguide is much simpler in design than acceleration waveg-
uide.

(2) Transverse cross section of transmission waveguide is either rectangular or
circular, while cross section of acceleration waveguide is always circular.

(3) Core of transmission waveguide is either evacuated or filled with pressurized
dielectric gas, that of acceleration waveguide is always evacuated.

(4) Transmission waveguide is essentially a pipe of uniform cross section (rect-
angular or circular); acceleration waveguide is a cylinder loaded with periodic
perturbations in the form of disks (irises) that create partitions in the waveg-
uide tube and define sections called cavity in the waveguide.

(5) The phase velocity υph of microwaves propagating in a transmission waveg-
uide exceeds the speed of light c in vacuum making charged particle accelera-
tion impossible; the phase velocity of microwaves propagating in acceleration
waveguide is slightly less than c to allow charged particle acceleration. The
role of disks in acceleration waveguide is to decrease the phase velocity υph
of a uniform waveguide, where for practical microwave frequencies it always
exceeds the speed of light c in vacuum, to a level below c to allow charged
particle acceleration.

(6) It is clear that the transmission (uniform) waveguide and the acceleration
(disk-loaded) waveguide are related, since the latter slowly evolved from
the former. One may state that in view of this relationship each disk-loaded
waveguide can be approximated with a uniform waveguide and we can refer to
it as an equivalent, yet much simpler, waveguide. This equivalent waveguide
has the same core radius as the accelerator waveguide but cannot be used for
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Fig. 13.12 Schematic diagram of (A) uniform (transmission) waveguide and (B) disk-loaded (ac-
celeration) waveguide both of core radius a. One may say that the uniform waveguide serves as
the equivalent waveguide to the accelerator waveguide

charged particle acceleration (recall that υph > c in uniform waveguide and
for particle acceleration we must have υpart ≈ υph); however, the equivalent
uniform waveguide can serve as a simple pathway toward determination of
the basic parameters of the acceleration waveguide.

(b) Figure 13.12 shows schematic diagrams of a uniform (transmission) circular
EM waveguide of core radius a and of a disk-loaded (acceleration) EM waveguide
of core radius a, radius b of circular hole at the center of the disk, disk-separation
(cavity height) d , and disk thickness s.

(c) Figure 13.13 shows the dispersion (ω,kg) diagrams for an acceleration waveg-
uide (solid curves) and for its equivalent uniform waveguide (dotted curve). The uni-
form waveguide curve is a hyperbola with only one cutoff frequency ωc and its pass
band ranges in frequency from ω = ωc to ω = ∞, while its stop band has frequen-
cies from ω= 0 to ω= ωc. The acceleration waveguide features an infinite number
of pass bands and stop bands, but only the lowest pass band for ωc1 < ω < ωc2 in
the transverse magnetic TM mode can be used for charged particle acceleration. The
lowest cutoff frequency ωc1 of the acceleration waveguide in the TM mode is equal
to the cutoff frequency ωc of the equivalent uniform waveguide.

(d) Figure 13.13 depicts dispersion (ω,kg) diagrams for an acceleration (disk-
loaded) waveguide (solid curves) and its equivalent (same core radius a) transmis-
sion (uniform) waveguide (dotted curve). The dispersion diagram for the equivalent
uniform waveguide is a simple hyperbola with its vertex defining the cutoff fre-
quency ωc and the center of the hyperbola coinciding with the origin of the Cartesian
(kg,ω) coordinate system.
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Fig. 13.13 Dispersion diagram (ω,kg) for a disk-loaded (acceleration) EM waveguide. For com-
parison the dispersion diagram for an equivalent (same core radius a) uniform circular EM waveg-
uide is shown in the background with the dotted curve and its asymptotes are plotted with dashed
straight lines. The first Brillouin zone for (ωTM

c1 )01 ≤ ω ≤ (ωTM
c2 )01 and −π/d ≤ kg ≤ π/d is shown

in grey color. Electron acceleration is carried out with kg and ω in the first Brillouin zone for special
transverse magnetic mode TMmn for m= 0 and n= 1

The dispersion diagram for the acceleration waveguide is considerably more
complicated than that of its equivalent uniform waveguide. It features an infinite
number of pass bands and stop bands that are limited by cutoff frequencies ωcN and
Brillouin zones limited by distinct wavenumbers kg in increments of π/d with d the
separation between two successive disks in the waveguide, as shown in Fig. 13.12.

Brillouin zones play an important role in many types of periodic structures in
physics and engineering, such as, for example, models governing x-ray, neutron, and
electron wave propagation in crystals where the crystal lattice represents a typical
periodic structure. The dispersion diagram (E,k) for a crystal can be plotted in
the form of energy E against wave number k for: (i) a free electron resulting in a
dispersion diagram (E,k) similar to the dispersion diagram (ω,kg) for a uniform
waveguide and (ii) for an electron in a monoatomic linear lattice of lattice constant
d , resulting in a dispersion diagram (E,k) similar to the dispersion diagram (ω,kg)
for a disk-loaded EM waveguide.

Charged particle acceleration is carried out only in the first Brillouin zone in
the kg range extending from −π/d to π/d and in the TM01 mode with the cutoff
angular frequency (ωTM

c1 )01 that is identical to the cutoff frequency (ωTM
c )01 of the

equivalent uniform (transmission) waveguide.
As an RF wave propagates through a disk-loaded waveguide, it is partially re-

flected at each disk, the reflected fraction depending on the relative magnitudes of
the wavelength λg and the perturbation parameter (a − b) with a the radius of the
uniform waveguide and b the radius of the disk opening, as shown in Fig. 13.12.
When radius b is comparable to a, i.e, a − b� a, the perturbation caused by the
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disks is small, the reflection of the radiofrequency wave at the disk is negligible, and
the disk-loaded waveguide behaves much like uniform waveguide with radius a.

In general, when λg � (a − b), corresponding to kg � (a − b), the fraction
of wave reflection at disks is small. The dispersion relationship of the disk-loaded
waveguide then tends to that of a uniform waveguide and the cut-off frequency ωc
at kg = 0 of the disk-loaded waveguide is identical to that of a uniform waveguide.
However, with increasing kg, corresponding to a decreasing λg since kg = 2π/λg,
the fraction of the reflected wave at each disk steadily increases, and so does the
interference between the incident and reflected wave, until at λg = 2d or kg = π/d
purely stationary waves are setup in each cavity defined by the disk separation d . In
this case, the cavities are in resonance, only stationary waves are present in the cav-
ities, and there is no energy propagation possible from one cavity to another. This
implies that the group velocity υgr at point F of Fig. 13.13 is zero (υgr = 0) and the
tangent to the (ω − kg) dispersion relationship at kg = π/d must be horizontal, in
contrast to the uniform waveguide where the tangent to the dispersion relationship
is horizontal only at kg = 0, and then with an increasing kg its slope steadily rises to
its limit of c as kg → ∞.

For both the uniform as well as the disk-loaded waveguide the group velocity υgr
is zero at the cutoff frequency corresponding to the propagation coefficient kg = 0
(point A in Fig. 13.13). As kg increases from 0, the group velocity for uniform
waveguide steadily increases until at kg = ∞ it reaches a value of c. For a disk-
loaded waveguide, on the other hand, with kg increasing from zero, υgr first in-
creases, reaches a maximum smaller than c, and then decreases until at kg = π/d it
reverts to υgr = 0.

The dispersion curve for a disk-loaded waveguide thus deviates from that of a
uniform waveguide and, as shown in Fig. 13.13, exhibits discontinuities at kg =
nπ/d , with n an integer. The discontinuities in frequency ω separate regions of ω
that can pass through the disk-loaded waveguide (pass bands) from regions of ω
that cannot pass (stop bands). Two such bands are shown in Fig. 13.13: a pass band
for frequencies ω between (ωc1) and (ωc2) in light grey color, and a stop band for
frequencies between (ωc2) and (ωc3). The region between k = −π/d and k = +π/d
is called the first Brillouin zone and energy E versus wave number k diagram is
called the Brillouin diagram.

A closer look at the disk-loaded dispersion relationship curve of Fig. 13.13 shows
the following features:

(1) For angular frequencies ω in the range (ωc1) ≤ ω ≤ (ωc2) in the first pass
band (also called the first Brillouin zone) frequencies in the region between
points C and F on the dispersion plot have a phase velocity υph smaller than or
equal to c as a result of αph ≤ arctan c. Loading the uniform waveguide with
disks thus decreases the phase velocity below c for certain angular frequen-
cies ω, opening the possibility for electron acceleration with radiofrequency
microwaves.

(2) Frequency (ωc2) clearly has a phase velocity υph which is smaller than c; yet,
the frequency (ωc2) would not be suitable for electron acceleration despite
υphc because, simultaneously, at frequency (ωc2), the group velocity of the
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wave is zero (υgr = 0; tangent to dispersion curve at point F is horizontal).
Since the velocity υen of energy flow in a waveguide equals to group velocity
υgr of microwaves propagating in the waveguide, it is obvious that for υgr =
υen = 0 energy transfer from the microwave to the accelerated electrons is not
impossible and thus points such as point F will not be suitable for acceleration
despite satisfying the necessary (but not sufficient) condition υph < c.

(3) However, there are frequencies in the frequency pass band between (ωc1)
and (ωc2), such as angular frequency ω for point D on the dispersion plot
in Fig. 13.13, for which υph � c and at the same time υgr > 0, and these fre-
quencies are suitable for electron acceleration.

(4) In practice, frequencies which give υph smaller than yet close to c, i.e.,
υph � c, are used for electron acceleration in disk-loaded waveguides. The
group velocities for these frequencies between points C and D on the disper-
sion curve of Fig. 13.13 are non-zero but nonetheless very low, so that for a
typical accelerating waveguide the phase velocity is about two orders of mag-
nitude larger than the group velocity (υph/υgr ≈ 100).

13.11 Capture Condition

13.11.Q1 (287)

Several conditions must be met for particle acceleration with microwaves in
an acceleration waveguide of a linear accelerator (linac). Some of these con-
ditions are general and valid for all particle accelerators, others are specific to
linear accelerators only.

(a) State and briefly explain at least three conditions for particle accelera-
tion that are common to all accelerators.

(b) State and briefly explain at least three conditions for particle accelera-
tion that are specific to particle acceleration in acceleration waveguide
of a linac.

(c) Derive the capture condition for particle acceleration with microwaves
in an acceleration waveguide of a linac.

(d) Determine the limits for the minimum electric field amplitude (Ez0)min
of the capture condition as β0 → 0 and β0 → 1 and explain the results.

(e) Sketch the minimum electric field amplitude (Ez0)min against electron
injection velocity β0 for the capture condition and microwaves of fre-
quency ν = 2856 MHz in an acceleration waveguide of a clinical linac.

SOLUTION:

(a) Three general conditions for particle acceleration in any type of particle accel-
erator are:
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(1) Particle to be accelerated must be charged. All particles generated by accel-
erators are accelerated by electric fields, be it electrostatic fields in electrostatic
accelerators or electromagnetic fields in cyclic accelerators. Particles with positive
charge move in the direction of electric field, negatively charged particles move in
direction opposite to the electric field. Neutral particles cannot be accelerated with
electric fields.

(2) Electric field used for particle acceleration must be oriented in the direction of
propagation of the charged particle for positively charged particles and in direction
opposite to propagation for negatively charged particles.. In a particle accelerator the
trajectory of the accelerated particle is: (i) linear, (ii) circular, or (iii) in the shape of
racetrack.

(i) Linear trajectory is found in x-ray tube, neutron generator, Van de Graaff
generator, and linear accelerator.

(ii) Circular trajectory is found in betatron, cyclotron, and microtron.
(iii) Racetrack trajectory is used in microtron and synchrotron.

(3) Particle must be accelerated in vacuum rather than in a dielectric material
to avoid deleterious collisions between the accelerated particle and atoms of the
medium in which the accelerated particle is traveling.

(b) Three conditions that must be met for acceleration of electrons in an accelera-
tion electromagnetic (EM) waveguide of a linear accelerator (linac).

(1) The radiofrequency (RF) mode to be used for electron acceleration in an EM
waveguide must provide a finite, non-zero value electric field component Ez0 at
r = 0 to enable the electron acceleration along the central axis of the waveguide. Of
the three special modes of relevance to RF propagation:

(i) Transverse electric (TEmn) mode for which Ez = 0 everywhere in waveguide
core,

(ii) Transverse magnetic (TMmn) mode for which Bz = 0 everywhere in the
waveguide core,

(iii) Transverse electromagnetic (TEMmn) mode for which Ez = Bz = 0,

only two modes (TE and TM) can propagate in an EM waveguide, and only one
(TM) of these two modes produces non-zero electric field along the central axis of
the waveguide, i.e., Ez|r=a �= 0. Thus, TMmn modes are used for electron accel-
eration and, of all possible m and n values, the lowest ones are used for electron
acceleration (m= 0 and n= 1). Of all possible angular frequencies ω, the angular
frequency used for acceleration must be in the first Brillouin zone between cutoff
frequencies ωc1 and ωc2 and of such magnitude that produces a phase velocity υph
less than and approximately equal to speed of light c in vacuum and a group velocity
υgr larger than zero.

While TMmn modes can propagate in a uniform EM waveguide, the phase veloc-
ity υph in a uniform waveguide exceeds c making uniform waveguides unsuitable
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for charged particle acceleration. To achieve υph ≤ c one uses a uniform waveg-
uide modified with periodic perturbations (disks or irises) that effectively decrease
υph to a level below c and this type of waveguide is referred to as disk-loaded or
acceleration waveguide.

(2) To allow the RF wave to accelerate electrons the phase velocity υph of the
RF wave must be equal to the particle velocity υpart. Thus, the electron generated
by the electron gun must be injected into the acceleration waveguide with a certain
velocity υpart [corresponding to a certain kinetic energy (EK)inj] that matches the
phase velocity of the RF wave. Since: (i) the accelerated particle velocity cannot
exceed c and (ii) υpart must be matched with υph, it becomes obvious that υph of
the RF wave used for particle acceleration in an acceleration waveguide should be
equal or less than c, i.e., υph ≤ c.
(3) Condition (2) states that for electron acceleration with RF fields υpart ≈ υph;
however, the electron is injected into the acceleration waveguide with a relatively
low velocity υpart [that is with relatively low kinetic energy (EK)inj] that is sub-
stantially smaller than c and is then accelerated in the waveguide to final relativistic
kinetic energy corresponding to final velocity ∼c. Thus, the condition υpart ≈ υph
cannot be fulfilled easily at the entrance side of the waveguide.

There are two possible solutions to this problem: one is to lower the phase ve-
locity of the RF wave υph on the electron gun side of the acceleration waveguide
to obtain υinj ≈ υph and then gradually increase the phase velocity υph toward c as
the accelerated charged particle gains kinetic energy. This approach is referred to as
velocity modulation of the RF wave.

The other solution is to provide sufficiently large amplitude of the electric field
Ez0 for the wave to capture the electron at the entrance to the accelerating waveguide
despite its relatively low injection velocity υ0 that is significantly smaller than the
phase velocity υph of the RF wave.

Of the two options, the first one is more difficult as it involves modulation of the
phase velocity υph by using non-uniform cavities in the entrance section of the ac-
celeration waveguide and uniform cavities farther down the waveguide. Early linac
designs contained many cavities with varying inner diameter, aperture radius, and
axial spacing; more recently, only a few cavities were used for this purpose, and
currently, a single half-cavity provides the phase modulation. The improved under-
standing of velocity modulation has resulted in a substantial lowering of the required
gun injection voltage from historical levels of above 100 kV to current levels of
around 25 kV.

The second approach to υ0 < υph ≈ 0 is based on the calculation of the minimum
amplitude of the electric field [(Ez)0]min that still allows the RF wave to capture
the electron injected with a relatively low velocity υinj from the electron gun into
the acceleration waveguide. The larger is [(Ez)0]min in the waveguide the lower is
the required injection velocity or injection kinetic energy of the electron entering
the waveguide. The relationship between [(Ez)0]min and υ0 is referred to as the
capture condition for an acceleration EM waveguide and must be satisfied for the
acceleration to proceed.
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(c) The capture condition is derived from the relativistic equation of motion of
the electron in the electric field with the help of two simplifying assumptions:

(1) RF wave propagates through the acceleration waveguide with a phase velocity
υph approximately equal to c (i.e., υph ≈ c).

(2) Electric field Ez is in the direction of propagation and has a sinusoidal behavior
in time, such that

Ez = (Ez)0 sinϕ, (13.302)

with Ez0 the amplitude of the electric field and ϕ the phase angle between the wave
and the electron, given as:

ϕ = kgz−ωt, (13.303)

where

ω is the angular frequency of the wave.
kg is the waveguide wave number or propagation coefficient.
z is the coordinate along the waveguide axis.

The rate of change d/dt of phase ϕ with time t is from (BB) given as

dϕ

dt
= kg

dz

dt
−ω= kgυpart −ω= 2π

λg
(β − 1) (13.304)

with υph ≈ c [assumption (1) above], kg = 2π/λg where λg is the RF wavelength,
and β = υpart/c is the electron velocity υpart normalized to speed of light c in vac-
uum. The relativistic equation of motion for the electron moving in the electric field
Ez may be written as

F = dp

dt
= d

dt
m(υ)υ = d

dt

meβc

(1 − β2)1/2
= eE = e(Ez)0 sinϕ, (13.305)

with

F force exerted on the electron by the electric field Ez.
p electron momentum.
m(υ) mass of the electron at velocity υ .
me electron rest mass (0.511 MeV).

Equations (13.304) and (13.305) are now simplified as follows

dϕ

dt
= a(β − 1) (13.306)
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and

d

dt

β

(1 − β2)1/2
= b sinϕ, (13.307)

respectively, introducing parameters a and b defined as a = 2πc/λg and b =
e(Ez)0/(mec).

Introducing a new variable cosα = β into (13.306) and (13.307) we get, respec-
tively,

dϕ

dt
≡ dϕ

dα

dα

dt
= a(cosα− 1) or

dα

dt
= a(cosα − 1)

dα

dϕ
(13.308)

and

d

dt

cosα

sinα
≡ d

dt
cotα ≡ d cotα

dα

dα

dt
≡ 1

sin2 α

dα

dt
= b sinα or

dα

dt
= −b sin2 α sinϕ.

(13.309)
After equating the two expressions above for dα/dt , rearranging terms, and inte-
grating over ϕ from initial ϕ0 to ϕ and over α from initial α0 to α, we get

−b
a

ˆ ϕ

ϕ0

sinϕ dϕ =
ˆ α

α0

cosα − 1

sin2 α
dα ≡

ˆ α

α0

cosα

sin2 α
dα −

ˆ α

α0

dα

sin2 α

≡
ˆ α

α0

d(sinα)

sin2 α
−
ˆ α

α0

dα

sin2 α
, (13.310)

that results in

b

a
[cosϕ − cosϕ0] =

[
− 1

sinα
+ cotα

]α
α0

≡
[

cosα − 1

sinα

]α
α0

≡
[
−

√
1 − cosα

√
1 − cosα√

1 − cosα
√

1 + cosα

]α
α0

≡
(

1 − cosα0

1 + cosα0

)1/2

−
(

1 − cosα

1 + cosα

)1/2

. (13.311)

After inserting cosα = β and cosα0 = β0, and recognizing that at the end of the
acceleration process β ≈ 1, we obtain

cosϕ − cosϕ0 = a

b

(
1 − β0

1 + β0

)1/2

= 2π

λg

mec
2

e(Ez)0

(
1 − β0

1 + β0

)1/2

, (13.312)

where β0 = υ0/c with υ0 the initial (injection) velocity of the electron injected
into the accelerating waveguide from the electron gun. Since the left-hand side of
(13.312) cannot exceed 2, we obtain the following relationship for the capture con-
dition
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(Ez)0 ≥ πmec
2

λge

√
1 − β0

1 + β0
= K

λg

√
1 − β0

1 + β0
, (13.313)

where K = πmec
2/e = 1.605 MV is the capture constant of the electron in a

disk-loaded acceleration waveguide. The minimum amplitude of the electric field
[(Ez)0]min is thus expressed as follows

[(Ez)0]min = K

λg

√
1 − β0

1 + β0
. (13.314)

Equation (13.314) is referred to as the capture condition and must be satisfied, if
an electron entering the acceleration waveguide from the electron gun with initial
velocity υ0 is to be captured by the radiofrequency wave that has a phase velocity
close to c.

The well known relativistic relationship between the electron initial (injection)
velocity β0 and the electron initial kinetic energy (EK)0 is given as follows [see
(T2.7)]

β0 =
√√√√1 − 1

(1 + (EK)0
mec2 )

2
, (13.315)

allowing us to estimate [(Ez)0]min, the minimum amplitude of the radiofrequency
field, for typical gun injection voltage potentials in the range from 20 keV to
100 keV.

(d) The capture condition (13.314), relating (i) minimum amplitude [(Ez)0]min of
electric field required to capture an electron injected into an acceleration EM waveg-
uide and (ii) velocity β0 of an electron injected into the waveguide from the electron
gun, is given in (13.293). The range covered by the capture condition extends from
0 to 1 for normalized velocity β and the limiting values of [(Ez)0]min are given as
follows:

(1) The upper limit of [(Ez)0]min is attained when β0 → 0 corresponding to υ0 = 0

lim
β0→0

[
(Ez)0

]
min = lim

β0→0

K

λg

√
1 − β0

1 + β0
= K

λg
= 1.605 MV

λg
, (13.316)

indicating that microwaves with an electric field amplitude (Ez)0 > 1.605 MV/λg
would be able to catch stationary or low kinetic energy free electrons and accelerate
them to speed of light c without any velocity modulation.

The β0 → 0 limit, of course, begs the question on whether or not this is feasible in
practice. Standard clinical linacs operate at a microwave frequency ν of 2856 MHz
corresponding to microwave wavelength λg = 10.5 cm and a limit in (13.316) of
1.53×107 V/m. For miniature waveguides used in specialized equipment, such as
CyberKnife and Tomotherapy, the operating frequency ν is 104 MHz corresponding
to λg = 3 cm and a limit in (13.316) of 5.35×107 V/m. Currently, microwaves of
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Table 13.7 Minimum electric field amplitude [(Ez)0]min against initial electron velocity β0 for
the capture condition and microwave frequency of ν = 2856 MHz

β0 = υ0/c 0 0.2 0.4 0.6 0.8 1.0

[(Ez)0]min (MV/m) 15.3 12.5 10.0 7.65 5.1 0

Fig. 13.14 Sketch of minimum electric field amplitude [(Ez)0]min against initial electron velocity
β0 for the capture condition and microwave frequency of ν = 2856 MHz. The solid circle data
points are taken from Table 13.7

electric field amplitudes exceeding 107 V/m are about an order of magnitude larger
than the levels available from commercial microwave power sources (klystrons and
magnetrons). However, during the past four decades of commercial development of
clinical linacs, the electron gun potentials have been steadily dropping from about
150 kV to about 25 kV as a result of steady improvement in design of microwave
power sources.

(2) The lower limit of [(Ez)0]min is attained when β0 → 1 corresponding to υ0 = c

lim
β0→1

[
(Ez)0

]
min = lim

β0→1

K

λg

√
1 − β0

1 + β0
= 0. (13.317)

This limit is obviously trivial, since once the electron travels with velocity c there
is no need for a further acceleration, at least not in the range of clinically relevant
electron kinetic energies.

(e) A sketch of [(Ez)0]min against β0 for microwave frequency of ν = 2856 MHz
(λg = 10.5 cm) is prepared by using the capture condition of (13.314) and calcu-
lating several points of [(Ez)0]min = f (β0) for 0 ≤ β0 ≤ 1 in β0 increments of 0.2.
Results of the calculation are shown in Table 13.7 and Fig. 13.14 noting that the
upper (β0 → 0) and lower (β0 → 1) limits in (Ez0)min that were discussed in (d) are
also included in the table.
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13.11.Q2 (288)

In a clinical linear accelerator electrons are generated by an electron gun and
injected into the acceleration waveguide with a relatively low kinetic energy
(EK)0 between 20 keV and 150 keV (depending on the gun design). At the
end of the acceleration process the electrons exit the acceleration waveguide
with kinetic energy EK between 4 MeV and 25 MeV (depending on waveg-
uide design). Most modern waveguides do not use phase velocity modulation
for capturing electrons injected from the gun into the acceleration waveguide;
rather, they rely on the capture condition and employ sufficiently high electric
field amplitude Ez0 of the accelerating radio-frequency (RF) fields to capture
the injected electrons and accelerate them to the desired final kinetic energy.

(a) Calculate the minimum injection kinetic energy [(EK)0]min of electrons
in an acceleration waveguide with constant phase velocity υph, electric
field amplitude (Ez)0 = 8×106 V/m, and microwave frequency ν =
2856 MHz.

(b) Express the capture condition in the form [(Ez)0]min as a function of the
injected electron kinetic energy (EK)0 and:

(1) Prepare a table listing [(Ez)0]min of the capture condition (see
Prob. 287) for microwaves of frequency ν = 2856 MHz and the
following kinetic energies (EK)0 in MeV of an electron injected
into the acceleration waveguide: 001, 0.01, 0.1, 1, 10, and 100.

(2) Determine two limits of interest on [(Ez)0]min for (EK)0 → 0 and
(EK)0 → ∞.

(3) Plot the tabulated data as solid circle data points on a graph of
[(Ez)0]min against (EK)0 with [(Ez)0]min on the ordinate axis (lin-
ear scale) and (EK)0 on the abscissa axis (logarithmic scale). Also
plot on the graph with an open circle the result of the [(EK)0]min
calculation carried out in (a).

(c) Calculate the minimum electric field amplitude [(Ez)0]min required for
an electron acceleration waveguide operated with constant phase veloc-
ity υph, final electron kinetic energy of 6 MeV, electron injection kinetic
energy (EK)0 of 20 keV, and microwave frequency ν = 104 MHz.

(d) Comment on the dependence of the minimum electric field amplitude
[(Ez)0]min on: (1) wavelength λg and frequency ν of microwaves used
for acceleration of electrons with no velocity modulation and (2) ve-
locity β0 and kinetic energy (EK)0 of electrons injected into the ac-
celeration waveguide for acceleration without velocity modulation of
microwaves.
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SOLUTION:

(a) The minimum injection kinetic energy (EK)min is calculated from the capture
condition (13.314) expressed in Prob. 287 as follows

[
(Ez)0

]
min = K

λg

√
1 − β0

1 + β0
, (13.318)

where

[(Ez)0]min is the minimum microwave electric field amplitude required for captur-
ing an electron injected into the acceleration waveguide with initial normalized
velocity β0.

K is the capture constant of the electron K = πmec
2/e= 1.605 MV.

λg is the wavelength of the microwaves used for electron acceleration in the
waveguide.

β0 is the normalized initial (injection) velocity of the electron injected into the
waveguide.

In this problem, (Ez)0 in (13.318) is known (8×106 V/m) and we are looking first
for the minimum required normalized velocity (β0)min and then for minimum re-
quired kinetic energy (EK)min that satisfies (13.318) for the given electric field am-
plitude (Ez)0. We write (13.318) as

(Ez)0 = K

λg

√
1 − (β0)min

1 + (β0)min
or

[
λg

K
(Ez)0

]2

≡ κ2 = 1 − (β0)min

1 + (β0)min
, (13.319)

where we introduce a new constant κ for the problem at hand

κ = λg(Ez)0
K

= c(Ez)0
νK

= (3×108 m/s)×(8×106 V/m)

(2856×106 s−1)×(1.605×106 V)
= 0.524. (13.320)

Solving (13.319) for (β0)min we get

(β0)min = 1 − κ2

1 + κ2
= 1 − 0.5242

1 + 0.5242
= 0.569 (13.321)

for the minimum normalized velocity (β0)min of an electron injected into the ac-
celeration waveguide in which the accelerating microwave electric field amplitude
(Ez)0 is 8 MV/m.

A (β0)min of 0.569 corresponds to the following minimum kinetic energy
(EK)min of the electron injected into the acceleration waveguide

(EK)min = mec
2
(

1√
1 − (β0)

2
min

)
= (0.511 MeV)×

(
1√

1 − 0.5692
− 1

)

= 0.110 MeV. (13.322)
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Thus, the minimum required kinetic energy (EK)min that an electron must possess
to be captured by microwaves of frequency ν = 2856 MHz and electric field ampli-
tude (Ez)0 = 8 MV/m upon its injection from the electron gun into the acceleration
waveguide is 110 keV.

(b) The minimum electric field amplitudes [(Ez)0]min of ν = 2856 MHz mi-
crowaves that are just high enough to capture electrons of a given kinetic energy
(EK)0 injected into an acceleration waveguide are determined using the capture
condition (T13.110) expressed in the form [(Ez)0]min as a function of (EK)0 rather
than β0.

The modification of the capture condition from the β0 to (EK)0 dependence is
simple, since β0 and (EK)0 are related through the following relativistic expressions
(T2.7)

(EK)0 =mec
2
[

1√
1 − (β0)2

− 1

]
or β0 =

√√√√1 − 1

[1 + (EK)0
mec2 ]2

, (13.323)

where mec
2 is the rest energy of the electron (0.511 MeV).

Insertion of (13.323) into the capture condition (13.318) results in the following
expression for the capture condition

[
(Ez)0

]
min = K

λg

√√√√√√√√
1 −

√
1 − 1

[1+ (EK)0
mec2

]2

1 +
√

1 − 1

[1+ (EK)0
mec2

]2

. (13.324)

(1) Equation (13.324) was used to calculate [(Ez)0]min as a function of (EK)0 data
presented in Table 13.8 and shown with solid circles in Fig. 13.15. The limit of
[(Ez)0]min for (EK)0 → 0 isK/λg and the limit of [(Ez)0]min for (EK)0 → ∞
is 0.

(2) The two limits of (13.324) for (EK)0 → 0 and (EK)0 → ∞ corresponding to
limits β0 → 0 and β0 → 1, respectively, are

lim
(EK)0→0

[
(Ez)0

]
min = lim

β0→0

[
(Ez)0

]
min = lim

υ0→0

[
(Ez)0

]
min

= K

λg
= 1.605×106 V

10.5×10−2 m
= 15.3 MV/m (13.325)

and

lim
(EK)0→∞

[
(Ez)0

]
min = lim

β0→∞
[
(Ez)0

]
min = lim

υ0→∞
[
(Ez)0

]
min = 0. (13.326)

(3) The data of Table 13.8 for 2856 MHz microwaves are plotted in Fig. 13.15
with solid circles on a semi-logarithmic plot of the form (Ez0)min on the ordi-
nate (linear scale: y axis) against (EK)0 on the abscissa (logarithmic scale: x



1038 13 Waveguide Theory

Table 13.8 Minimum electric field amplitude [(Ez)0]min of ν = 2856 MHz microwaves against
kinetic energy (EK)0 calculated using (13.324) for various incident kinetic energies (EK)0 of elec-
trons injected into an acceleration waveguide

(EK)0 (MeV) 0 0.001 0.01 0.1 1.0 10 100 ∞
[(Ez)0]min (MV/m) 15.3 14.4 12.6 8.26 2.66 0.38 0.004 0

Fig. 13.15 Minimum electric field amplitude [(Ez)0]min of ν = 2856 MHz microwaves plotted
against kinetic energy (EK)0 of electrons injected into an acceleration waveguide for the capture
condition (13.324). Solid circles represent data presented in Table 13.8; the open circle represents
the electron injection kinetic energy calculated in (a) for [(Ez)0]min = 8 MV/m

axis). The open circle on the graph represents the result of the (EK)0 calcula-
tion for [(Ez)0]min = 8×10 MV/m.

(c) The minimum electric field amplitude [(Ez)0]min of ν = 104 MHz (λg = 3 cm)
microwaves that is just high enough to capture electrons of kinetic energy (EK)0 =
25 keV = 0.025 MeV injected into a miniature acceleration waveguide is deter-
mined using the capture condition (13.324) as follows

[
(Ez)0

]
min = K

λg

√√√√√√√√
1 −

√
1 − 1

[1+ (EK)0
mec2

]2

1 +
√

1 − 1

[1+ (EK)0
mec2

]2

= 1.605×106 V

3×10−2 m
×

√√√√√√√√
1 −

√
1 − 1

[1+ 20×103

0.511×106 ]2

1 +
√

1 − 1

[1+ 20×103

0.511×106 ]2
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=
[

53.5×106 V

m

]
×
√

1 − 0.272

1 + 0.272

=
[

53.5×106 V

m

]
×0.757 = 40 MV/m. (13.327)

(d) As seen from the capture condition (13.318) and the modified capture condi-
tion (13.324), the minimum electric field amplitude [(Ez)0]min is inversely propor-
tional to microwave wavelength λg or proportional to microwave frequency ν since
ν = c/λg. Thus, for the same electron injection velocity β0 or same injection ki-
netic energy (EK)0 the minimum electric field amplitude [(Ez)0]min increases with
microwave frequency ν. This means that a miniature waveguide operated in the X
band at 104 MHz (λg = 3 cm) has by factor of 10.5/3 = 3.5 larger [(Ez)0]min than
a standard linac acceleration waveguide operating in the S band at a frequency of
ν = 2856 MHz corresponding to a wavelength of λg = 10.5 cm.

As also seen from the capture condition of (13.318) and modified capture condi-
tion of (13.324), for a given microwave wavelength λg or frequency ν, the maximum
in [(Ez)0]min =K/λg occurs as β0 → 0 corresponding to (EK)0 → 0. Furthermore,
as β0 [i.e., (EK)0] increase from zero, [(Ez)0]min decreases from K/λg and ap-
proaches zero as β0 → 1 corresponding to (EK)0 → ∞.



14Particle Accelerators in Medicine

Chapter 14 consists of 12 problems spread over 6 sections that deal with
practical aspects of particle accelerators in medicine. Many types of particle
accelerators were built for nuclear physics and particle physics research and
most of them have also found some use in medicine, mainly but not solely for
treatment of cancer. Two categories of particle accelerator are known: elec-
trostatic and cyclic.

The best-known examples of electrostatic accelerator are the x-ray tube
and the neutron generator. Three types of x-ray tube (Crookes tube, Coolidge
tube, field emission carbon nanotube) are covered in this chapter. Cyclic acce-
lerators are divided into two categories: linear and circular. Many types of cir-
cular accelerator have been designed for research purposes and most are also
used in medicine, such as betatron, microtron, cyclotron, and synchrotron.

Of all cyclic accelerators, the linear accelerator (linac) is by far the most
important and most widely used accelerator in medicine because of its ver-
satility and compact design. Modern radiotherapy achieved its successes as
a result of the advances that were introduced during the past few years in
the linear accelerator technology and computerization, making the dose de-
livery extremely sophisticated and heavily dependent on skills of the radio-
therapy team consisting of radiation oncologist, medical physicist, radiation
dosimetrist, and treatment technologist.

Section 14.1 concentrates on basic characteristics of particle accelerators
and Sect. 14.2 deals with practical use of x rays. Practical considerations
in production of x rays are covered in Sect. 14.3, while Sect. 14.4 consists
of several problems on traditional sources of x rays. Section 14.5 concen-
trates on circular accelerators and covers the betatron, microtron, yclotron,
synchrotron, and synchrotron light source; all machines that have been or are
used in medicine. The chapter concludes with a large section covering various
practical issues related to linear accelerators (linacs) used in radiotherapy for
generation of megavoltage xray and electron beams.

E.B. Podgoršak, Compendium to Radiation Physics for Medical Physicists,
DOI 10.1007/978-3-642-20186-8_14,
© Springer-Verlag Berlin Heidelberg 2014
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14.1 Basic Characteristics of Particle Accelerators

14.1.Q1 (289)

Numerous types of accelerator have been built for basic research in nuclear
physics and high-energy physics and most of them have been adapted for at
least some limited use in radiotherapy.

(a) State the three basic physical conditions that must be met for particle
acceleration in an accelerator.

(b) State the two major classes of particle accelerator and briefly explain
the main characteristics of each class.

(c) Provide a table that lists: (i) Most important accelerators in physics,
(ii) Their inventor, if known, (iii) Year of invention, (iv) Particles accel-
erated by the accelerator, (v) Is or was the particular accelerator used in
radiotherapy?

(d) Summarize the list of most important accelerators in physics in a clas-
sification diagram format.

SOLUTION:

(a) Irrespective of the accelerator type, three basic physical conditions must be
met for particle acceleration:

(1) Particle to be accelerated must be charged (either positively or negatively).
(2) The accelerator must provide electric field for particle acceleration.
(3) The electric field used for particle acceleration must be provided in the direc-

tion of particle motion.

The various types of particle accelerators differ in the way they produce the acceler-
ating electric field and in how the field acts on the charged particles to be accelerated
in the machine.

(b) As far as the accelerating electric field is concerned, there are two main classes
of accelerator: (1) electrostatic and (2) cyclic.

(1) In electrostatic accelerators the particles are accelerated by applying an elec-
trostatic electric field through a voltage difference, constant in time, whose value
fixes the value of the final kinetic energy of the accelerated particle. Since the elec-
trostatic fields are conservative, the kinetic energy that the particle can gain depends
only on the point of departure and point of arrival and, hence, cannot be larger than
the potential energy corresponding to the maximum voltage drop existing in the
machine. Kinetic energy that an electrostatic accelerator can reach is limited by the
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Table 14.1 Some characteristics of most important particle accelerators in physics

Electrostatic
accelerators

Inventor(s) Year of
invention

Particles
accelerated

Used in
radiotherapy

X-ray machine William Crookes ∼1872 Electrons YES

William Coolidge 1913

Neutron generator – – Deuteron YES

Van de Graaff
generator

Van de Graaff 1929 Electrons
Protons

YES

Cockroft-Walton
generator

John D. Cockroft 1932 Protons No

Ernest T.S. Walton

Cyclic accelerators

Linear accelerator – – Electrons YES

Protons

Betatron Donald Kerst 1940 Electrons YES

Microtron Vladimir Veksler 1950 Electrons YES

Cyclotron Leo Szilard 1932 Protons YES

Ernest Lawrence Heavier ions

Synchrocyclotron Edwin McMillan 1952 Protons NO

Heavier ions

Synchrotron Vladimir Veksler ∼1944 Electrons YES

Edwin McMillan Protons

discharges that occur between the high voltage terminal and the walls of the ac-
celerator chamber when the voltage drop exceeds a certain critical value (typically
1 MV).

(2) The electric fields used in cyclic accelerators are variable and non-conservative,
associated with a variable magnetic field and resulting in some close paths along
which the kinetic energy gained by the particle differs from zero. If the particle is
made to follow such a closed path many times over, one obtains a process of gradual
acceleration that is not limited to the maximum voltage drop existing in the accel-
erator. Thus, the final kinetic energy of the particle is obtained by submitting the
charged particle to the same, relatively small, potential difference a large number
of times, each cycle adding a small amount of energy to total kinetic energy of the
particle.

Cyclic accelerators fall into two main categories: linear and circular, depending
on particle’s trajectory during the acceleration. In a linear accelerator the particle
undergoes rectilinear motion, while in a circular accelerator the particle’s trajec-
tory is circular. All cyclic accelerators except for the linear accelerator fall into the
category of circular accelerator.
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Fig. 14.1 Classification diagram of particle accelerators of importance in physics and medical
physics. Accelerators used in medicine in addition to physics are shown with grey background; the
two most common machines (x-ray machine and linear accelerator) are shown in darker grey color

Examples of electrostatic accelerators used in medicine are: superficial and or-
thovoltage x-ray machines and neutron generators. In the past, Van de Graaff accel-
erators have been used for megavoltage radiotherapy, however, their use was dis-
continued with the advent of first the betatron and then the linear accelerator. For
medical use, the best-known example of a cyclic accelerator is the linear accelera-
tor (linac); all other examples fall into the circular accelerator category and are the
microtron, betatron, cyclotron, and synchrotron.

(c) A list of most important particle accelerators in physics is given in Ta-
ble 14.1.

(d) Charged particle accelerators are divided into two main categories: electro-
static and cyclic and each of the two categories is subdivided further into several
distinct subgroups depending on the specific technique they use for particle accel-
eration. The classification diagram for most important particle accelerators is given
in Fig. 14.1.
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14.2 Practical Use of X Rays

14.2.Q1 (290)

The serendipitous discovery of x rays by Röntgen in 1895 ushered in the era of
modern physics and spawned two new medical specialties and a new physics
specialty.

(a) Name and briefly describe the three new specialties resulting from the
discovery of x rays.

(b) Two other radiation physics discoveries soon after Röntgen’s discov-
ery of x rays in 1895 also made a significant contribution to science in
general and medicine in particular. Name and briefly discuss the two
discoveries.

(c) X rays are not only used in science and medicine, they are also heavily
used in industry and in many other aspects of modern life. List and
briefly discuss at least five areas of x ray use in industry and modern
life.

(d) Three areas of x-ray physics: (1) x-ray crystallography, (2) x-ray spec-
troscopy, and (3) x-ray astronomy became scientific specialties in their
own right. Briefly discuss the three scientific specialties.

SOLUTION:

(a) The usefulness of x rays for medical applications in diagnosis and treatment
of human disease became apparent within a few weeks after Wilhelm Röntgen’s
discovery of x rays in 1895. First came the use of x rays for imaging of diseased
organs, for locating foreign objects imbedded in tissues (gun shot wounds) and for
identifying broken bones, eventually leading to the medical specialty of diagnostic
radiology.

Concurrently with the development of the x-ray imaging modality, attempts were
made to use x rays for treatment of disease, eventually leading to the medical spe-
cialty of radiotherapy, also called therapeutic radiology or radiation oncology.

From their early beginnings both diagnostic radiology as well as radiation oncol-
ogy relied heavily on physicists for routine use of radiation and for developments
of new techniques and equipment. The involvement of physicists in the two new
medical specialties eventually lead to a specialty of physics referred to as medical
physics. During the past two decades medical physics has undergone a tremendous
evolution, progressing from a branch of applied science on the fringes of physics
into an important mainstream discipline that can now be placed on equal footing
with other more traditional branches of physics such as nuclear physics, particle
physics, and condensed matter physics.
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Initially, most technological advances in medical use of ionizing radiation were
related to:

(1) Improvements in efficient x-ray beam delivery.
(2) Development of analog imaging techniques.
(3) Optimization of image quality with concurrent minimization of delivered

dose.
(4) Increase in beam energies for radiotherapy.

During the past two decades, on the other hand, most developments in radiation
medicine were related to integration of computers in imaging, development of dig-
ital diagnostic imaging techniques, and incorporation of computers into therapeutic
dose delivery with high-energy linear accelerators. Radiation dosimetry and treat-
ment planning have also undergone tremendous advances in recent years: from de-
velopment of new absolute and relative dosimetry techniques to improved theoret-
ical understanding of basic radiation interactions with human tissues, and to the
introduction of Monte Carlo techniques in the determination of dose distributions
resulting from penetration of ionizing radiation into tissue.

(b) Two physics discoveries, important not only for modern physics but also for
radiation medicine, followed soon after Röntgen’s discovery of x rays. In 1896 Henri
Becquerel discovered natural radioactivity; the discovery eventually leading to the
physics specialties of nuclear physics and high-energy physics and a subspecialty
of diagnostic radiology referred to as nuclear medicine. In 1898 Marie Sklodowska-
Curie and Pierre Curie discovered radium and the discovery lead to applications
of sealed radionuclides in treatment of malignant disease referred to as brachyther-
apy.

(c) X rays for industrial use are produced by x-ray machines, linear accelerators
(also called linacs), and betatrons, depending on the x-ray energy required. Superfi-
cial and orthovoltage x rays originate in x-ray machines, x-rays in the megavoltage
range of energies are produced by linear accelerators and betatrons Industrial use of
x rays covers a wide variety of purposes dealing with safety and quality assurance
issues, such as:

(1) Inspection of luggage, shoes, mail, cargo containers, etc.
(2) Nondestructive testing and inspection of welds, cast metals, parts of automo-

biles and airplanes, iron reinforcement bars, cracks and pipes inside concrete
structures.

(3) Food irradiators for sterilization and pest control.
(4) Ionizing radiation based sterilizers of surgical equipment and blood irradia-

tors.
(5) Small animal irradiators for radiobiological experiments.

(d) In addition to stimulating new specialties in medicine and physics, as men-
tioned in (a), and to some extent in industry, as mentioned in (c), x rays also en-
abled new developments in physics, chemistry, and astronomy, such as: (1) x-ray
crystallography, (2) x-ray spectroscopy, and (3) x-ray astronomy.
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(1) X-ray crystallography is a study of crystal structures through the use of x-ray
diffraction techniques. X rays are very suitable for this purpose because their wave-
length in the 10 keV to 100 keV energy range is of the order of typical crystalline
lattice separations. An x-ray beam striking a crystalline lattice is scattered by the
spatial distribution of atomic electrons and the imaged diffraction pattern provides
information on the atomic or molecular structure of the crystalline sample.

In 1912 Max von Laue established the wave nature of x rays and predicted
that crystals exhibit diffraction phenomena. Soon thereafter, William H. Bragg and
William L. Bragg analyzed the crystalline structure of sodium chloride, derived the
Bragg relationship 2d sinφ = mλ linking the lattice spacing d with x-ray wave-
length λ, and laid the foundation for x-ray crystallography. The crystal lattice of a
sample acts as a diffraction grating and the interaction of x rays with the atomic
electrons creates a diffraction pattern which is related, through a Fourier transform,
to the electron spectral distribution in the sample under investigation.

Instrumentation for x-ray diffraction studies consists of a mono-energetic x-ray
source, a device to hold and rotate the crystal, and a detector suitable for measuring
the positions and intensities of the diffraction pattern. Mono-energetic x rays are
obtained by special filtration of x rays produced either by an x-ray tube or from an
electron synchrotron storage ring. The basic principles of modern x-ray crystallog-
raphy are essentially the same as those enunciated almost 100 years ago by von Laue
and the Braggs; however, the technique received a tremendous boost by incorpora-
tion of computer technology after the 1970s, increasing significantly the accuracy
and speed of the technique.

(2) X-ray spectroscopy is an analytical technique for determination of elemen-
tal composition of solid or liquid samples in many fields, such as material science,
environmental science, geology, biology, forensic science, and archaeometry (ar-
chaeological science). The technique is divided into three related categories: the
most common of them is the x-ray absorption spectrometry (also called x-ray fluo-
rescence spectrometry), and the other two are x-ray photoelectron spectrometry and
Auger spectrometry. All three techniques rely on creation of vacancies in atomic
shells of the various elements in the sample under study as well as on an analysis
of the effects that accompany the creation of vacancies (e.g., emission of photo-
electron, emission of characteristic line spectrum, and emission of Auger electron).
Like other practical emission spectroscopic methods, x-ray spectroscopy consists of
three steps:

(i) Excitation of atoms in the sample to produce fluorescence emission lines (or
photoelectrons or Auger electrons) characteristic of the elements in the sam-
ple.

(ii) Measurement of intensity and energy of the emitted characteristic lines (or
electrons).

(iii) Conversion of measured data to concentration or mass with the nanogram
range reached with standard spectrometers.

While x-ray spectroscopy was initially used to further the understanding of x-ray
absorption and emission spectra from various elements, its role now is reversed and
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it is used as a non-destructive analytical tool for the purpose of chemical analysis of
samples of unknown composition.

(3) X-ray astronomy is a relatively new branch of astronomy dealing with the
study of x-ray emission from celestial objects, such as neutron stars, pulsars, and
black holes. The specialty was born in 1962 when Italian-American astronomer
Riccardo Giacconi discovered a cosmic x-ray source in the form of a compact star
located in the constellation of Scorpius. For this discovery Giacconi received the
2002 Nobel Prize in Physics.

Since the x-rays emitted by celestial objects have relatively low energies of the
order of a few kiloelectron volts, they cannot penetrate through the Earth’s atmo-
sphere to reach the surface of the Earth. Thus, to study these celestial rays, detectors
must be taken above the Earth’s atmosphere. Methods used to achieve this involve
mounting x-ray detectors on rockets, balloons, or satellites. The x-ray detectors used
for this purpose are either special charge-coupled devices (CCDs) or microcalorime-
ters.

14.3 Practical Considerations in Production of X Rays

14.3.Q1 (291)

In principle, all charged particles can emit radiation under certain conditions.
In practice, however, the choice of charged particles that can produce mea-
surable amounts of radiation of interest in medical physics, medicine, and
industry is limited to light charged particles (electrons and positrons). It is
well known that light charged particles interacting with an absorber (target)
emit characteristic radiation and bremsstrahlung photons. However, it is less
known that, when light charged particles interact with a target, other types of
radiation may also be produced, depending on specific conditions related to
the particle interaction with the target atoms.

Below we list 8 possible interactions between electrons and positrons with
their environment that may result in emission of some sort of radiation. For
each interaction state the name of inter-action and type of radiation emitted
followed by a brief description of the interaction.

(a) Rapid deceleration of energetic electrons striking an absorber (target).
(b) Direct interaction between high-energy electron and nucleus
(c) Deceleration of electrons in a retarding potential in vacuum.
(d) Deceleration of electrons in patients irradiated with photon or electron

beams.
(e) Acceleration of electrons in a linac waveguide.
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(f) Curved motion of electrons in circular accelerators.
(g) Deceleration of positrons in positron emission tomography (PET).
(h) Atomic polarization effects when electrons move through transparent

dielectric absorber.

SOLUTION:

(a) Rapid deceleration of energetic electrons striking an absorber (target).
As energetic electrons strike an absorber (target) they penetrate the target and may
experience various Coulomb-type interactions with atoms of the target. These in-
teractions are either elastic or inelastic collisions between the incident electrons
with either orbital electrons of the target or nuclei of the target. Of the four types
of Coulomb interactions, inelastic collisions between incident electron and orbital
electrons result in the so-called characteristic (fluorescence) x rays and inelastic
collisions between incident electron and nucleus of the target result in the so-called
bremsstrahlung x rays. Energy of a characteristic x-ray photon is equal to the orbital
energy transition that produced the photon and this energy is characteristic of the
target atom, hence the name “characteristic radiation”. Energy of bremsstrahlung
photon depends on the kinetic energy of the incident electron and the strength of the
Coulomb interaction between the incident electron and the nucleus.

Thus, the x-ray spectrum produced by electrons striking a target has a continuous
bremsstrahlung component ranging from 0 to kinetic energy of incident electrons
and superimposed on this continuous spectrum are several discrete spectral lines
characteristic of the target material.

The photon spectra used in medicine for diagnosis of disease typically range from
50 kVp to 150 kVp, while x-ray spectra used in radiotherapy for treatment of disease
fall into three somewhat arbitrarily defined ranges: superficial x rays from 50 kVp
to 80 kVp and orthovoltage x rays from 80 kVp to 350 kVp, both types generated
by x-ray machines, as well as megavoltage x rays from 4 MV to 25 MV, generated
mainly by linear accelerators and less commonly by microtrons and betatrons.

(b) Direct interaction between high-energy electron and nucleus. Many types
of interaction are available to energetic electrons as they penetrate a target and inter-
act elastically or in-elastically with orbital electrons and nuclei of the target atoms.
Most of these interactions are of the Coulomb type and the inelastic interactions
with orbital electrons are followed by characteristic x rays, while inelastic interac-
tions with nuclei are accompanied by bremsstrahlung x rays, as discussed in (a).

In addition to these effects, the incident electrons may also undergo direct nuclear
interaction with target nuclei and precipitate emission of neutron or proton through
nuclear reactions labeled as: (e, n), (e, p), and (e, np) accompanied by transmutation
of the target nucleus from stable to radioactive or from highly radioactive to less
radioactive or even stable. Transition from stable to radioactive state is of concern
in activation of linac components in high-energy radiotherapy, while transition from
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radioactive to more stable configuration is of great interest in the possible decon-
tamination of highly radioactive waste.

The bremsstrahlung photons produced in electron–nucleus inelastic collision
may also have a nuclear interaction with target nuclei of the type (γ,n), (γ,p), and
(γ,np), similar to direct electron interactions with target nuclei of the type (e, n),
(e, p), and (e, np), discussed above. These photon interactions have similar out-
comes as the electron–nucleus interactions and are called photonuclear reaction or
photodisintegration. In addition to these, photons may also trigger fission reactions
in heavy nuclei and this type of interaction is referred to as the photofission reaction
(γ, f). Thus, direct electron–nucleus interactions and reactions between electron-
generated bremsstrahlung photon and nucleus have essentially identical outcomes;
however, the cross sections for photonuclear reaction are significantly larger than
those for associated direct electron–nucleus reactions.

(c) Deceleration of electrons in a retarding potential in vacuum. Deceleration
of electrons in a retarding potential results in microwave radiation in contrast to de-
celeration of light charged particles in solid targets that produces bremsstrahlung x
rays. Deceleration of electrons in a retarding potential is used in magnetrons and
klystrons that serve as sources of radiofrequency power and amplifiers of radiofre-
quency power, respectively, for particle acceleration in linear accelerator (linac),
microtron, and synchrotron.

(d) Deceleration of electrons released or produced in patients irradiated with
photon beams. When high-energy photon beams are used in patient irradiation,
photons interact with atoms of the irradiated tissue and, in these interactions, en-
ergetic electrons (in photoelectric effect, Compton effect, pair production) and
positrons (in pair production) are set in motion in tissue. As the energetic electrons
and positrons travel through tissue, they experience standard Coulomb interactions
with tissue atoms and in some of these interactions bremsstrahlung photons are pro-
duced. These photons carry their energy out of the irradiated volume and contribute
to the unwanted total body dose that the patient receives during the treatment of
localized disease.

(e) Acceleration of electrons in a linac waveguide. The electron is injected into
a linac waveguide with a typical kinetic energy of 25 keV that it receives in the
electron gun. In the waveguide the electron is then accelerated from 25 keV up to
the nominal energy of the linac which is of the order of several MeV or even larger in
research linacs. According to Larmor relationship a charged particle accelerated or
decelerated will lose part of its kinetic energy in the form of photons. Thus, at least
in principle, an electron following a rectilinear motion in a linac waveguide should
emit some bremsstrahlung radiation during its acceleration process. It turns out,
however, that the emission of this unwanted radiation is minimal and is accounted
for when the total leakage radiation produced by a clinical linac is measured.

(f) Motion of electrons in circular accelerators such as betatron, microtron,
and synchrotron as well as storage ring implies curved motion of charged parti-
cles in transverse magnetic field resulting in circular paths and constant acceleration.
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According to Larmor relationship, this results in emission of radiation that is called
synchrotron radiation or “magnetic bremsstrahlung” and is typically of lower en-
ergy than standard bremsstrahlung. In comparison with synchrotron radiation, the
accelerations in production of standard bremsstrahlung are random and also much
stronger.

On the one hand, in circular electron accelerators the synchrotron radiation is
an unwanted result of the electron acceleration process in circular paths and, on
the other hand, storage rings may be designed such that they generate synchrotron
radiation for use in science and medicine.

(g) Deceleration of positrons (slowing down before annihilation) in positron
emission tomography (PET) imaging studies of human organs results in unwanted
stray radiation through the bremsstrahlung process between the positron and nuclei
of tissue atoms. In a clinical PET test a positron-emitting radionuclide is adminis-
tered to the patient by injection or inhalation. The radionuclide circulates through
the bloodstream to reach a particular organ. The positrons emitted by the radionu-
clide have a relatively short range in tissue but most of them lose all of their kinetic
energy either through collisions with orbital electrons of tissue atoms (collision loss)
or nuclei of tissue atoms (radiation loss). The positron eventually annihilates with an
orbital electron of a tissue atom and two annihilation quanta used for PET imaging
are emitted.

(h) Atomic polarization effects when electrons move through a transparent di-
electric absorber with a uniform velocity that exceeds the speed of light in the di-
electric absorber result in visible light referred to as Čerenkov radiation. The effi-
ciency for production of Čerenkov radiation is several orders of magnitude lower
than the efficiency for bremsstrahlung production.

The emitted Čerenkov radiation does not come directly from the charged parti-
cle. Rather, the emission of Čerenkov radiation involves a large number of atoms of
the transparent dielectric medium that become polarized by the fast charged parti-
cle moving with uniform velocity through the medium. The orbital electrons of the
polarized atoms are accelerated by the fields of the charged particle and emit radia-
tion coherently along the surface of a forward directed cone centered on the charged
particle direction of motion.

14.4 Traditional Sources of X Rays

14.4.Q1 (292)

William Crookes is one of the prominent scientists of the 19th century, best
known for his invention in the early 1870s of the “cathode ray” tube, now
referred to as the Crookes tube. Crookes tubes were used in experimental
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physics for almost 50 years and are a precursor to modern vacuum tubes and
cathode ray TV tubes.

(a) Describe the basic principles of the Crookes tube.
(b) Describe the difference between the Crookes tube and Crookes x-ray

tube.
(c) List and briefly describe at least 3 of the many seminal physics experi-

ments that were carried out with Crookes tubes at the end of 19th century
and the beginning of 20th century.

SOLUTION:

(a) Crookes tube is an electric discharge tube consisting of a sealed glass enve-
lope that is evacuated to an air pressure between 0.005 Pa (4×10−5 torr) and 0.1 Pa
(7.5×10−4 torr) and incorporates two electrodes (cathode and anode) connected to
an external high voltage DC power supply. During the first three decades after the
invention of the Crookes tube, many important experiments were carried out with
the tube, and physicists soon established that the positively charged anode attracted
unknown rays (referred to as “cathode rays”) originating in the cathode. Physicists
were studying the cathode rays of Crookes tubes for many years but the understand-
ing of their exact nature eluded them until Joseph J. Thomson in 1897 established
that they were a new species of particle, negatively charged, and with mass of the
order of 1800 times smaller than that of the hydrogen ion. Thomson called the new
particle electron and succeeded in measuring the ratio between its charge and mass.

The basic principles of Crookes tube are now understood as follows: When high
voltage is applied to the tube, electric discharge in the rarefied residual air inside
the tube ionizes some air molecules. Positive ions move in the electric field toward
the negatively charged cathode and create more ions through collisions with air
molecules. As positive ions strike the negatively charged cold cathode, electrons
are released from the cathode, move toward the anode in the electric field that is
present between the cathode and the anode, and strike the anode. In contrast to a hot
cathode that is based on thermionic electron emission, a cold cathode of a Crookes
tube emits electrons upon impact by positive ions.

(b) Crookes x-ray tube. There is no essential difference in design between the
Crookes tube and the Crookes x-ray tube. Both terms refer to the so-called “cathode
ray” tube that Crookes developed in 1870s for investigation of electrical conductiv-
ity of gases at low pressure. However, after Röntgen’s discovery of x rays, it became
apparent that a Crookes tube produced not only “cathode rays” but also a “new kind
of ray” that became called x ray, so the description of the Crookes apparatus was
expanded to encompass the “new kind of ray” and became known as Crookes x-ray
tube.
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(c) Of the many discoveries that originated through experimental work based on
Crookes tube, three that seem the most important and were recognized with Nobel
Prize in Physics are:

(1) Discovery of x rays by Wilhelm K. Röntgen in 1895 (Nobel Prize in Physics—
1901).

(2) Discovery of electron by Joseph J. Thomson in 1897 (Nobel Prize in Physics—
1906).

(3) Oil-drop experiment and determination of electron mass by Robert A. Mil-
likan in 1913 (Nobel Prize in Physics—1923).

(1) Discovery of x rays. In November 1895 Wilhelm K. Röntgen, a German
physicist working at the University of Würzburg, discovered serendipitously that
a Crookes tube, in addition to “cathode rays”, generated a new kind of ray which
penetrated the tube housing and behaved in a very peculiar fashion outside the tube.
For example, the rays were inducing fluorescence in platinocyanide crystals stored
on a shelf across the laboratory. They were also capable of exposing photographic
film and had the ability to penetrate opaque objects including hands, feet, and other
parts of the human body. Röntgen named the unknown radiation x rays and soon
thereafter the “new kind of rays” were introduced in medicine for diagnostic pur-
poses. Röntgen’s discovery ushered in the era of modern physics and revolutionized
medicine by spawning three new specialties: diagnostic imaging and radiotherapy
as specialties of medicine as well as medical physics as a specialty of physics. For
his discovery Röntgen received many honors and awards that culminated in his re-
ceiving the inaugural Nobel Prize in Physics in 1901.

The exact nature of x rays remained a mystery for a number of years until in
1912 Max von Laue, a German physicist, showed with a crystal diffraction experi-
ment that x rays were electromagnetic radiation similar to visible light but of much
smaller wavelength. Subsequently it became apparent that when the “cathode ray”
electrons strike the anode (target), they undergo interactions with orbital electrons
and nuclei of the target and some of these interactions result in characteristic and
bremsstrahlung photons, respectively, that form the x-ray spectrum.

(2) Discovery of electron. In 1897 Joseph J. Thomson, a British physicist from
the Cavendish Laboratory of Cambridge University, proposed that “cathode rays”
observed in Crookes tubes were actually very small constituents of atoms and called
them negatively charged particles or corpuscles. This was a very bold speculation
at a time when atom was considered the smallest building block of matter and, as
such, indivisible. Further experiments have shown that Thomson’s speculation was
correct and the negatively charged corpuscles forming cathode rays were accepted
as building blocks of all atoms and were called electron. However, Thomson’s hy-
pothesis that electrons were the only building blocks of atoms was proven wrong
with the subsequent discovery of proton and neutron as additional constituents of
the atom.

Thomson could not measure directly the mass me and charge e of the electron;
however, he succeeded in determining their ratio, the specific charge of the electron
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e/me, by measuring the deflection of electron trajectories in electric field E and
magnetic field B both applied to a modified Crookes tube perpendicularly to the
electron trajectory. Thomson’s experiment consisted of 3 stages:

(i) First he proved that, at sufficiently low air pressure in the Crookes tube, the
electric field E and magnetic field B affected the trajectory of electrons in the
tube.

(ii) Next, he balanced the electric force FE = eE and magnetic force FB = eυB
to achieve zero deflection of the electron trajectory with non-zero electric and
magnetic fields. From FE = FB and the known E and B he determined the
velocity υ of the electrons in the tube as υ = E/B .

(iii) Then, he turned off the magnetic field, measured the deflection of the electron
trajectory as a result of electric field E , and from the measured deflection and
known velocity of the electrons determined the specific charge of the electron
e/me as ∼ 1.7×1011 C/kg.

The measured specific charge of the electron of e/me ≈ 1.7×1011 C/kg was several
orders of magnitude larger than the then largest known specific charge of positive
hydrogen ion (now known as proton) of e/mH+ ≈ 108 C/kg. The ratio of 1700
between the two specific charges could be explained either by much larger charge of
the electron than hydrogen ion or by a much smaller mass of the electron compared
to mass of the hydrogen ion. Thomson was convinced that the difference was caused
by the much smaller mass of the electron compared to hydrogen ion, and it later
turned out that his reasoning was correct. Thomson received the 1906 Nobel Prize
in Physics “in recognition of the great merits of his theoretical and experimental
investigations on the conduction of electricity by gases”. The currently accepted
value for the specific charge of the electron is e/me ≈ 1.759×1011 C/kg, indicating
that Thomson’s result of ∼1.7×1011 C/kg was quite reasonable if one considers the
type of equipment in use for physics measurements more than a century ago.

(3) Determination of electron charge e. In 1909 Robert A. Millikan, an Amer-
ican physicist, carried out at the University of Chicago his now-famous oil-drop
experiment with which he determined the charge of the electron and proved experi-
mentally the quantization of electric charge. Millikan’s experimental apparatus was
simple and consisted of two chambers (upper and lower) connected with a small
hole. An oil droplet atomizer was connected to the upper chamber and the hole al-
lowed some small oil droplets to fall from the upper chamber into the lower chamber
equipped with two electrodes connected to a variable DC power supply. The move-
ment of oil droplets in the lower chamber was traced with a microscope used to
establish the droplet speed and size.

Charge was applied to droplets randomly through irradiation of the air in the
lower chamber using a Crookes x-ray tube. X rays ionized the air producing positive
ions and electrons. Free electrons produced by ionizing radiation in air do not move
freely in air, rather, they attach themselves to molecules of oxygen to form negative
ions. The presence of oil droplets in ionized air also allowed free electrons to attach
themselves to oil drops, changing some oil droplets from neutral to charged state.
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Oil droplets were observed with the microscope and once a given oil droplet was
identified the electrode potential was varied until the droplet stopped falling and
was suspended in mid air. This indicated that the vertical electric force eE balanced
perfectly the pull of gravity on the droplet, i.e., its weight mg. Droplets that did not
acquire any electrons would not be affected by the electric field and would continue
to drop; droplets that acquired more than one electron charge would require a lower
electric potential to achieve suspension with no motion in air.

After numerous experiments Millikan determined that the electron charge e (el-
ementary charge of electricity) was e = 1.59×10−19 C which is within 1 % of the
value e = 1.602×10−19 C accepted today. He also noticed that there was varia-
tion in measured charge on oil droplets; however, the measured charge was always
e = 1.59×10−19 C or an integer multiple of this number. This means that electric
charge in nature is quantized and its lowest value is e = 1.59×10−19 C. Millikan
received the Nobel Prize in Physics in 1923 “for his work on the elementary charge
of electricity and on the photoelectric effect”.

14.4.Q2 (293)

A typical x-ray system used in science, medicine, or industry consists of five
major components: (1) X-ray tube, (2) X-ray generator, (3) Control console,
(4) Object under study, and (5) Image receptor.

(a) Briefly describe the role of the five basic components of an x-ray sys-
tem.

(b) Draw a basic schematic diagram of an x-ray tube and briefly describe
its major components.

(c) Discuss the three x-ray tube designs that have been in use for x-ray
production with x-ray tubes since Röntgen discovered x rays in 1895.

(d) Prepare a table listing the following entries for the three x-ray tube de-
signs: (1) X-ray tube type, (2) Cathode type (cold or hot cathode), (3)
Electron ejection process from the cathode, (4) Air pressure in the x-ray
tube, (5) Relative x-ray output, (6) Time of introduction and period of
clinical use.

(e) The anode of an x-ray tube is also called target. Briefly describe the
main characteristics of a typical x-ray target.

SOLUTION:

(a) The basic components of an x-ray system are: (1) X-ray tube, (2) X-ray gen-
erator, (3) Control console, (4) Imaged object, and (5) Image receptor.

(1) X-ray tube serves as the source of x rays that are produced in the tube by
relatively high energy electrons striking the tube anode, also called the x-ray target.



1056 14 Particle Accelerators in Medicine

The electrons are generated in the tube cathode and accelerated toward the target
by the electrostatic field between the tube anode and the tube cathode. In the x-ray
target, electrons suffer rapid deceleration and through interactions with target atoms
produce x-ray photons: characteristic x-ray photons in electron–orbital electron in-
teractions and bremsstrahlung x-ray photons in electron–nucleus interactions.

(2) X-ray generator (also referred to as high-voltage power supply) provides cur-
rent at DC high voltage used for acceleration of electrons in the x-ray tube, thereby
controlling the quantity and characteristics of x rays that the x-ray tube emits. X-ray
equipment requires an adjustable high voltage ranging from ∼50 kV to ∼150 kV
for standard x-ray procedures. Some special procedures are carried out with voltage
below or above this range.

The DC high voltage in an x-ray machine is usually produced from a low voltage
AC power grid by first increasing the AC voltage with a step-up transformer and
then applying a rectifier circuit to obtain DC high voltage. Several methods are
used for DC rectification and the objective of these is to deliver DC voltage with
as small voltage variation (also called ripple) as possible. Typically, an increased
sophistication in circuitry of an x-ray generator increases its cost but decreases its
output voltage ripple and brings the output voltage closer to perfect DC potential.
The high frequency x-ray generator currently represents the state-of-the-art choice
in diagnostic x-ray systems for delivery of optimal DC potential.

(3) Control console is used to select the operating parameters of the x-ray gener-
ator, such as mode of operation, kilovoltage, tube current, and exposure time. These
parameters in turn control the quantity and quality of the x-ray beam used for imag-
ing of the object.

(4) Imaged object under study can be a patient or an inanimate object undergoing
a diagnostic test intended to provide nondestructive testing of interior organs or
structures. Thus, from a technical perspective the imaged object becomes part of
the x-ray system. The acquisition of the desired information depends heavily on the
characteristics of the imaged object and appropriate choice of parameters to be used
in the imaging study. One should note that only a small fraction of energy expended
to produce the x rays will be carried by the x rays, as most of the energy goes into
heat that must be dissipated from the target. Furthermore, most of the energy carried
by the x rays is actually absorbed by the imaged object and only a small fraction is
transmitted through the object and carried to the image receptor to form the latent
image.

(5) Image receptor is a series of devices that convert into visible image the radio-
graphic information contained by the x-ray beam emanating from the imaged object.
Various devices have been developed as image receptors during the more than 100
years of x-ray imaging:

(i) The most common image receptor in the past during the era of analog conven-
tional radiography has been radiographic film combined with special screens
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Fig. 14.2 Schematic diagram of a typical x-ray tube and its main components

and a film developer. Upon exposure of the imaged object, film stored the
latent image that was subsequently rendered visible through chemical devel-
opment of the exposed film in a film developer.

(ii) In the current era of digital imaging there are two options: computed radiog-
raphy and digital radiography.

In computed radiography the image receptor is the digital imaging cassette that
stores the latent image on a special reusable plate coated with photostimulable phos-
phor (barium fluorohalide). For readout, the plate is transferred to a laser reader that
scans the latent image with red light and renders it visible in blue light that is cap-
tured by a photodetector and converted to a digital signal for viewing.

In digital radiography the latent x-ray image is captured with a flat panel detector
containing a photoconductor that absorbs x rays in an amorphous selenium material
and converts the latent image into digital signal.

(b) In Fig. 14.2 we show a schematic diagram of a simple x-ray tube with “cathode
rays” (electrons) emanating from the cathode and accelerated toward the anode (tar-
get). The electrons strike the anode and lose some of their kinetic energy (typically
only 1 % or less) in the form of x rays. The high voltage power supply establishes
the DC potential between the cathode and the anode. The x-ray tube is evacuated,
however, the residual pressure in the tube depends on the tube design.

(c) Three x-ray tube designs have been in use since 1895 when Röntgen discov-
ered that cathode rays in Crookes cathode ray tube produce x rays in striking the
tube anode. Basic components of x-ray tubes shown in Fig. 14.2 are the same for
all x-ray tubes used to date; however, the three designs differ in their method for
electron generation in the cathode, with two designs using a cold cathode and one
a hot cathode. The three designs are: (1) Crookes x-ray tube—using cold cathode
bombardment with positive air molecules to eject electrons from the cold cathode,
(2) Coolidge x-ray tube—using thermionic emission of electrons from the hot cath-
ode, and (3) Carbon nanotube (CNT) x-ray tube—using field emission for electron
ejection from the cold cathode.
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(1) Crookes x-ray tube is a Crookes cathode ray tube used for production of x
rays. It is an electric discharge tube invented by British chemist/physicist William
Crookes in the early 1870s. It consists of a sealed glass tube which is evacuated to
an air pressure between 0.005 Pa and 0.1 Pa (4×10−5 tor and 7.5×10−4 tor) and
incorporates two electrodes (cathode and anode) connected to an external DC power
supply. When high voltage is applied to the tube, electric discharge in the rarefied air
inside the tube ionizes some air molecules. Positive ions move in the electric field
toward the cathode and create more ions through collisions with air molecules. As
positive ions strike the cathode, electrons (cathode rays) are released from the cath-
ode, move toward the anode in the electric field that is present between the cathode
and the anode, and strike the anode. Investigating “cathode rays”, Röntgen in 1895
serendipitously discovered x rays as rays emanating from the anode bombarded with
“cathode rays”.

For the first two decades after 1895, x-ray tubes used for clinical work were of
the Crookes tube type; simple in design but suffering from severe practical prob-
lems related to the magnitude and reliability of the x-ray output. Low x-ray output
combined with large fluctuations in x-ray output and difficulties in controlling the
output were the main drawbacks of Crookes x-ray tubes.

(2) Coolidge x-ray tube. In 1913 William Coolidge, an American physicist, in-
troduced a new x-ray tube design based on a hot cathode which significantly im-
proved the reliability and performance of clinical x-ray tubes. Almost 100 years
later, Coolidge’s hot cathode idea still provides the basis for design of modern x-ray
tubes.

The hot cathode consists of a filament made of a high melting point metal, typ-
ically tungsten (melting point 3422 °C) or a tungsten based alloy, heated to a rela-
tively high temperature to serve as source of electrons. The hot cathode emits elec-
trons thermionically (see Sect. 1.27) in contrast to the cold cathode of the Crookes
x-ray tube in which positive air ions striking the cathode trigger the generation of
electrons. Another important difference between the Coolidge tube and the Crookes
tube is that the Coolidge tube operates under high vacuum of the order of 10−4 Pa
to prevent collisions between electrons and molecules of air and also to prevent
filament deterioration because of oxidation.

The main advantages of the Coolidge x-ray tube are its stability and its design
feature that allows the external control of the x-ray output. The hotter is the filament,
the larger is the number of emitted electrons. The filament is heated with electric
current; increasing the filament current increases the filament temperature and this
in turn results in an increase in number of thermionically emitted electrons. This
number of emitted electrons is proportional to the number of electrons accelerated
toward the anode (tube current) and this in turn is proportional to the number of
x rays produced in the anode (x-ray output). Increasing the high voltage potential
between the anode and the cathode increases the kinetic energy of the electrons
striking the target (anode) and this increases the energy of the emitted x rays.

(3) Carbon nanotube based x-ray tube. The Coolidge hot cathode improved
significantly the x-ray tube performance, however, hot cathodes have some draw-
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backs, so that for decades, concurrently with improvements in hot cathode technol-
ogy, search was on for alternative, more practical, and cheaper source of electrons
preferably based on cold cathode design.

Field emission (see Sect. 1.28.2), which allows emission of electrons from the
surface of a solid under the influence of a strong electric field, seems an excellent
candidate for a practical and efficient cold cathode design. Attempts in this direc-
tion have been made for decades; however, the use of extremely small metal tips to
achieve the large local electric field always resulted in electrodes that were unreli-
able, relatively inefficient, and not durable enough for routine x-ray tube operation.

During the past decade, a new generation of carbon based material called carbon
nanotube (CNT) has been developed in nanotechnology laboratories and showed
great promise for use as cold cathode-type electron source. Carbon nanotubes are or-
dered molecular structures formed by carbon, yet different from the two well-known
carbon forms: graphite and diamond. They are molecular scale tubes with typical
diameter of a few nanometers and a height of up to a few millimeters. The tubes
have remarkable electronic properties and special physical characteristics that make
them of great academic as well as potential commercial interest. They are extremely
strong, yet flexible as well as light and thus hold promise for aerospace applications.
Depending on their structure, they can behave like metal with conductivity higher
than copper or like semiconductor potentially useful in design of nanoscale elec-
tronic devices. CNTs are mechanically, chemically, and thermally extremely robust
and, since they also form atomically very sharp tips, they are also very efficient field
emission materials for use as cold cathode electron source in x-ray tubes.

Miniature x-ray tubes using CNT cold cathode design are already commercially
available. They generate electrons at room temperature and provide controllable as
well as stable output currents and respectable life of the cathode. They can be used
for “electronic brachytherapy” in medicine where they replace sealed radionuclide
sources as well as in space exploration for performing remote mineralogical anal-
yses on solid bodies of the solar system. Use of cold cathode for high power x-ray
tubes in medicine and industry, however, if it happens, is far in the future, since the
technology of CNT production is still in a rudimentary stage and field emission cold
cathodes are currently no match for the standard Coolidge hot cathode x-ray tube
design.

(d) Table 14.2 lists the main characteristics of the three main types of x-ray tube
categorized according to cathode design: Crookes x-ray tube, Coolidge x-ray tube,
and Carbon nanotube (CNT) x-ray tube. However, Crookes x-ray tubes are no longer
is use and CNT x-ray tubes are not ready yet for mainstream use. This means that
Crookes tubes are on the list because of their historical significance and CNT x-
ray tubes are on the list because of their potential for practical use in the future.
Currently, the vast majority of x-ray tubes used in medicine and industry are of
Coolidge type design using a hot cathode.

Table 14.2 lists the following entries: (1) X-ray tube type, (2) Cathode type (cold
or hot), (3) Electron ejection process, (4) Air pressure in x-ray tube, (5) Relative
x-ray output, and (6) Period of clinical use.
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Table 14.2 Main characteristics of x-ray tubes: Crookes x-ray tube, Coolidge x-ray tube, and
carbon nanotube (CNT) x-ray tube

(1) X-ray tube type Crookes x-ray tube Coolidge x-ray tube CNT x-ray tube

(2) Cathode type COLD HOT COLD

(3) Electron
ejection

Cathode bombardment
with positive ions

Thermionic emission Field emission in
strong electric field

(4) Air pressure Intermediate vacuum
0.005 Pa to 0.1 Pa

High vacuum
∼10−4 Pa

Intermediate
vacuum ∼10−4 Pa

(5) Relative x-ray
output

LOW and erratic;
depends on air
pressure inside tube

HIGH, variable and
steady; depends on
cathode temperature

LOW; depends on
CNT design

(6) Clinical use
period

1895 to ∼1920 1913 to present Relatively new
design

(e) Electrons generated by the cathode bombard the target (anode) of an x-ray
tube and a minute fraction of the electron’s kinetic energy (typically 1 % or less)
is transformed into x rays (characteristic radiation and bremsstrahlung) and the rest
into heat. The anode thus has three functions in an x-ray tube: (1) to define the
positive potential in the x-ray tube, (2) to produce x rays, and (3) to dissipate the
heat.

The anode material must have a high melting point to be able to withstand the
high operating temperature and a relatively high atomic number for adequate x-ray
production. Most common target materials for x-ray tubes are tungsten (wolfram)
with atomic number Z = 74 and melting point of 3422 °C and molybdenum with
Z = 42 and melting point of 2617 °C. Tungsten is used in x-ray tubes operating
above 50 kV and molybdenum in x-ray tubes below 50 kV.

The two most important practical attributes of x-ray targets for imaging or radio-
therapy are:

(1) Small focal spot (as close as possible to “point source”) to minimize beam
penumbra. A smaller beam penumbra results in sharper image in x-ray imag-
ing and in better dose distribution in radiotherapy.

(2) Relatively large beam output (large electron fluence striking the target) to min-
imize exposure time. Short exposure time in imaging as well as radiotherapy
minimizes potential for patient or organ motion during x-ray exposure.

A “point source” and short exposure time, of course, are mutually exclusive, since,
in the limit, they imply a concentration of infinite electron fluence on zero area
focal spot, a situation that cannot be supported in practice. Many practical ways for
spreading the electrons striking the target over a large area of the target and still
keeping the appearance of a small focal spot have been introduced into x-ray tube
design, such as so-called line focus and rotating anode.

In (d) we saw that x-ray tubes may be classified according to cathode design
into three categories: however, since essentially all x-ray tubes currently used in
medicine or industry are of Coolidge type design, the classification according to
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cathode design is only of historical significance. For practical purposes, modern x-
ray tubes are classified according to anode (target) design into imaging x-ray tubes
and radiotherapy x-ray tubes. Targets of imaging tubes fulfill more stringent focal
size requirements and have smaller focal spots than therapy x-ray tubes. On the
other hand, in comparison with imaging tubes, targets of therapy tubes are simpler
in design, have larger focal spots, and must withstand 10 times as high mean energy
input but only 10 % of instantaneous energy input.

14.5 Circular Accelerators

14.5.Q1 (294)

With the exception of the linear accelerator, all cyclic particle accelerators
used in science, industry, and medicine fall into the category of circular ac-
celerators. Common to all circular accelerators is the circular motion of ac-
celerated particles with either a constant radius or increasing radius.

(a) Five types of circular cyclic particle accelerator have found use in
medicine. List the five machines and briefly explain the purpose of their
application in medicine.

(b) Prepare a table for the five machines listed in (a) with the following
entries:

(1) Name of particle accelerator. (2) Inventor of the machine.
(3) Year of invention. (4) Particles accelerated.
(5) Frequency of operation. (6)Magnetic field used

(static or variable).
(7) Particle trajectory. (8) Radius of orbit

(constant or increasing).

(c) Draw a schematic diagram for each of the five machines listed in (a).

SOLUTION:

(a) The five cyclic particle accelerators that accelerate charged particles in circular
or spiral orbits and were found useful in medicine are: (1) Betatron, (2) Cyclotron,
(3) Microtron, (4) Synchrotron, and (5) Storage ring. The machines differ signifi-
cantly in design and mode of operation; however, in all five machines the charged
particles are accelerated by an appropriate electric field oriented in the direction of
particle motion and are kept in curved orbits by a strong static magnetic field.

(1) Betatron was developed in 1940 by Donald Kerst at the University of Illinois
in Urbana-Champlain as a cyclic electron accelerator for basic nuclear physics re-
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search; however, its potential for use in radiotherapy for treatment of deep-seated
malignant tumors was realized soon thereafter.

In 1950s and 1960s, before the advent of clinical linear accelerators (linacs), be-
tatrons played an important role in megavoltage radiotherapy with photon energies
above that of 1.25 MeV cobalt-60 gamma rays. At that time betatron provided the
only practical means for production of clinical megavoltage photon beams in the
range from 10 MV to 25 MV and for production of clinical electron beams in the
energy range from 4 MeV to 30 MeV.

The rapid development of clinical linacs after 1970 made the betatron use in
radiotherapy obsolete, because of the numerous advantages of clinical linacs over
betatrons. Today, betatrons are no longer used in radiotherapy; however, they con-
tinue to be used for industrial radiography at relatively low photon energy of 25 MV
and for high-energy physics research at electron kinetic energy up to 350 MeV.

(2) Cyclotron was developed by Ernest O. Lawrence in 1932 at the University of
California in Berkeley for acceleration of positive or negative ions to kinetic energy
of a few MeV. Initially the cyclotron was used for basic nuclear physics research
and subsequently also became used in medicine for:

(i) Production of radionuclides, such as molybdenum-99 that is used in radionu-
clide generator for generation of technetium-99m, for nuclear medicine tests.

(ii) Production of proton and neutron beams for radiotherapy treatment of cancer
patients.

(iii) Production of positron emitting radionuclides, such as fluorine-18, for use in
positron emission tomography (PET) imaging.

(3) Microtron is a cyclic electron accelerator producing electrons in the energy
range from 5 MeV to 50 MeV. Vladimir Veksler proposed the microtron concept in
1944 and the first prototype machine was built at the National Research Council of
Canada in 1947.

Despite the early development of microtrons for scientific purposes, their transla-
tion into medical environment was much slower and less successful than that of clin-
ical linacs. Microtron has some significant advantages over a clinical linac, such as
more compact design, smaller focal spot, and smaller electron beam energy spread,
yet clinical linac is by far the prevalent machine used for megavoltage radiother-
apy around the world. It seems that clinical linacs had a head start during 1960s
and microtrons with their clinical appearance in mid 1970s have never been able to
catch up. In terms of beam characteristics for the same nominal beam energy clinical
beams from microtrons and linacs are essentially the same.

(4) Synchrotron is a cyclic particle accelerator used for acceleration of electrons
and heavy charged particles such as protons and heavier ions to relativistic energies.
American physicist Edwin M. McMillan at the University of California in Berkeley
built the first electron synchrotron in 1945 but Russian physicist Vladimir Veksler
published the principles of the machine independently before. Marcus L.E. Oliphant
from Birmingham, UK designed and built the first proton synchrotron in 1952.
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Synchrotron is a complex and expensive accelerator, so its potential for use in
medicine is limited. In the past, it has been used as source of protons and heav-
ier charged particles for radiotherapy and recently has been considered for produc-
tion of molybdenum-99 (Mo-99) radionuclide in manufacturing of technetium-99m
radionuclide generators for nuclear medicine studies. Currently, most of Mo-99 is
produced by nuclear reactors; however, this avenue has some serious practical draw-
backs and synchrotron is considered as a possible replacement of nuclear reactors
in Mo-99 production.

(5) Storage ring also called synchrotron light source is a synchrotron cyclic
accelerator modified for use in storing charged particles of a given kinetic energy
for the purpose of applying the radiation emitted by the charged particles for basic
research and medical purposes. It is well known that a charged particle moving on a
curved path or orbit is constantly accelerated and loses part of its kinetic energy in
the form of radiation according to the Larmor law (T4.18). The radiation so emitted
by relativistic charged particles moving in circular trajectories is called synchrotron
radiation (SR) or “magnetic bremsstrahlung”. SR radiation is extracted from storage
rings through special ports referred to as beam-lines.

The unique properties of SR beams, such as their very large intensity, small an-
gular beam divergence, vertical collimation, a broad band of energies, and ease of
rendering them monochromatic, make SR an attractive imaging tool for new imag-
ing studies. Of course, because of cost, synchrotrons and storage rings are of lim-
ited availability around the world, so medical use of SR is not expected to become
widespread. However, one can assume that the most sophisticated and unique SR

Table 14.3 Basic physical parameters of the five types of cyclic accelerators used in medicine.
The table lists only cyclic accelerators in which particles move in circular or spiral orbits

(1) Circular
accelerator

Betatron Cyclotron Microtron Synchrotron Storage ring

(2) Inventor Donald W.
Kerst

Ernest O.
Lawrence

Vladimir
Veksler

Edwin M.
McMillan

–

(3) Year of
invention

1940 1932 1944 1945 –

(4) Particle(s)
accelerated

Electron Proton or
heavier ion

Electron Electron or
proton or
ion

Electron or
proton or
ion

(5) Operational
frequency

60 Hz to
180 Hz

10 MHz to
30 MHz

3 GHz or 10
GHz

e: few 100
MHz
p: MHz

e: few 100
MHz
p: MHz

(6) Magnetic
field

Variable Static Static Variable Variable

(7) Particle
trajectory

Circle Spiral Spiral Circle Circle

(8) Radius of
orbit

Const Increases
with energy

Increases
with energy

Const Const
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Fig. 14.3 Schematic diagrams of various cyclic accelerators used in medicine: (A) Betatron, (B)
Cyclotron, (C) Microtron, (D) Synchrotron, and (E) Storage ring (synchrotron light source)
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techniques will become available around the world on national scale, similar to the
situation with heavy ion synchrotrons for use in radiotherapy that are becoming
available on centralized national basis.

Medical use of SR is rapidly expanding with studies of medical use of SR concen-
trated in two broad areas: imaging and radiotherapy, for example, in multiple-energy
computed tomography and microbeam radiotherapy, respectively. Most imaging
studies are done on cardiovascular imaging and coronary angiography, mammog-
raphy in breast cancer, bronchography, and bone disease.

In radiotherapy the use of the concept of microbeam radiotherapy (MRT) de-
veloped at the Brookhaven National Laboratory is studied using strips of multiple,
parallel, narrow SR microbeams (width: ∼50 µm; height: few millimeters) with en-
ergy between 50 keV and 150 keV. The separation between microbeams is of the
order of 100 µm. The rationale behind microbeam radiotherapy is that endothelial
cells that are destroyed by high radiation dose within the microbeam will regen-
erate from endothelial cells populating the contiguous strips between microbeams.
Obviously, MRT would be difficult to incorporate on standard radiotherapy equip-
ment.

Medical investigation of SR is concentrated on areas not already covered by stan-
dard imaging and radiotherapy techniques. The motivation obviously is to open new
modalities for imaging and therapy of disease by employing the unique characteris-
tics of SR, rather than simply moving standard imaging and therapy techniques onto
significantly more expensive storage rings.

(b) Table 14.3 lists the basic physical parameters of the five cyclic particle accel-
erators that have found use in medicine: (1) Betatron, (2) Cyclotron, (3) Microtron,
(4) Synchrotron, and (5) Storage ring.

(c) Figure 14.3 shows schematic diagrams for 5 cyclic accelerators used in
medicine: (A) Betatron, (B) Cyclotron, (C) Microtron, (D) Synchrotron, and (E)
Storage ring.

14.5.Q2 (296)

The ultimate limiting factor in the quest for maximum practical attainable par-
ticle energy in particle accelerator (ignoring escalating cost) is the radiation
loss that the particle experiences during the acceleration process. The radia-
tion loss by accelerated charged particle is in classical physics expressed by
the Larmor equation (14.1) and in relativistic physics by the Liénard equation
(14.2) as follows

P = dE

dt
= q2

6πε0c3
υ̇2 = q2

6πε0c3

(
dυ

dt

)2

= q2

6πε0m2c3

(
dp
dt

)(
dp
dt

)

(14.1)
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and

P = dE

dt
= q2γ 6

6πε0c3

[
υ̇2 − (υ×υ̇)2

c2

]
, (14.2)

where P is the power emitted by a particle of charge q accelerated with accel-
eration a = υ̇ and γ is the Lorentz factor (1 − β2)−1/2 = E/E0 with E and
E0 the charged particle total energy and rest energy, respectively, and β the
velocity normalized to speed of light c in vacuum.

(a) Calculate the ratio fP of power P radiated to power dE/dt supplied by
external sources for an electron accelerated in a linear accelerator (linac)
waveguide. Assume that typical energy gain for an electron accelerated
in a linac waveguide is ∼10 MeV/m.

(b) Since synchrotron radiation is usually produced in circular machines,
the corresponding energy loss per full turn (revolution) in an important
parameter. Derive an expression for energy Erad radiated per revolution
for an electron accelerated in a synchrotron accelerator.

(c) Assume that typical energy gain per revolution of an electron accel-
erated in a synchrotron with radius R = 1 m and nominal energy of
300 MeV is ∼5 keV per turn. Determine the fractional energy loss per
revolution fE, i.e., ratio of radiation energy loss per revolution to energy
gain per revolution.

(d) For synchrotron radiation plot the energy Erad radiated per revolution
against the nominal energy E of the synchrotron in the range 1 MeV ≤
E ≤ 105 MeV for circular trajectories with radii R of 1 m, 10 m, 100 m,
and 1000 m.

(e) According to the Larmor law a charged particle undergoing acceler-
ation or deceleration emits part of its kinetic energy in the form of
radiation. For electron and proton compare emission of radiation in:
(1) Bremsstrahlung radiation loss in traversing a target and (2) Syn-
chrotron radiation loss in synchrotron or storage ring.

SOLUTION:

(a) Electrons, even in low energy 4 MV linacs used in radiotherapy, are already
relativistic and become ultra-relativistic at the extremely high energies used in large
research linacs. Therefore, we use the Liénard relationship of (14.2) in our calcula-
tion of energy loss in a linac waveguide and simplify it by accounting for co-linearity
of vectors υ and a = υ̇ . Under the condition υ ‖ υ̇ we note that υ×υ̇ = 0. The Lié-
nard equation for rectilinear acceleration of an electron in a linac is then given by
an expression similar in form to the classical Larmor equation (14.1) except for
the Lorentz γ factor to sixth power which seems to point to a drastic increase in



14.5 Circular Accelerators 1067

radiation loss when particle velocity υ approaches c resulting in γ → ∞

P = dE

dt
= q2γ 6

6πε0c3
υ̇2. (14.3)

Next, we express the product of the cube of the Lorentz factor γ 3 and electron
acceleration a = υ̇ of (14.3) as a function of dp/dt starting with the general rela-
tivistic relationship

p =mυ = γmeυ (14.4)

and

dp

dt
= d

dt
(γmeυ)= γmeυ̇ + γ̇ meυ = γmeυ̇ +

(
γ 3υ

c2
υ̇

)
meυ = γmeυ̇

(
1 + γ 2β2)

= γ 3meυ̇, (14.5)

where

m is the relativistic mass of the accelerated electron (m= γme).
me is the electron rest mass (me = 0.5110 MeV/c2).
γ is the Lorentz factor given as γ = (1 − β2)−1/2 with β = υ/c and υ the elec-

tron velocity.
υ̇ is the electron acceleration.

In the derivation of (14.5) we used the following two relationships

γ̇ = 1

(1 − υ2

c2 )
3/2

υ

c2
υ̇ (14.6)

and

1 + γ 2β2 = 1 + β2

1 − β2
= 1 − β2 + β2

1 − β2
= γ 2. (14.7)

After inserting (14.5) in the form γ 3υ̇ = (1/me)(dp/dt) into (14.3), we now get the
following expression for the radiation loss of an electron accelerated rectilinearly in
a linac waveguide

P = dE

dt
= e2(γ 3υ̇)2

6πε0c3
= e2

6πε0m2
ec

3

(
dp

dt

)2

= e2

6πε0m2
ec

3

(
dE

dx

)2

, (14.8)

where we used the relationship dp/dt = dE/dx. This relationship follows from gen-
eral physics relationships dp/dt = d(mυ)/dt = F = dE/dx indicating that dp/dt ,
the rate of change of electron momentum, is equal to dE/dx, the change in total en-
ergy of the particle per unit distance. Equation (14.8) shows that in one-dimensional
linear acceleration of electron accelerated in a waveguide the radiated power P does
not depend on electron total energyE or momentum p but depends on external force
F provided by the electric field in the waveguide.
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Fraction fP of radiated power P to input power dE/dt is from (14.8) given as

fP = P

dE/dt
= e2

6πε0m2
ec

3

( dE
dx )(

dE
dx )

( dE
dt )

= 2

3

(
e2

4πε0mec2

)
1

mec2β

(
dE

dx

)

= 2re
3mec2β

(
de

dx

)
, (14.9)

where re is a constant called classical radius of the electron (2.818 fm) and β is the
electron velocity υ normalized to the speed of light in vacuum.

For a typical linac we have dE/dt ≈ 10 MeV/m and β ≈ 1, so that (14.9) gives
the following fractional radiation loss fE for an electron accelerated in a linac
waveguide

fP = 2re
3mec2

(
dE

dx

)
= 2×(2.818×10−15 m)

3×(0.511 MeV)
×(10 MeV/m)≈ 3.7×10−14.

(14.10)
As shown by (14.10), the radiation loss experienced by an electron accelerated in a
linac waveguide is extremely small and therefore negligible. This holds even more
for heavier charged particles such as a proton because of the inverse proportionality
of radiation loss with the rest mass of the accelerated particle [see (d)].

(b) To determine radiation loss of an electron accelerated in a synchrotron acceler-
ator or of an electron in a holding pattern in a storage ring we again use the Liénard
relativistic equation (14.3) and note that, in a synchrotron, acceleration a = υ̇ is al-
ways perpendicular to velocity υ and this results in another significant simplification
of (14.3)

P = dE

dt
= e2γ 6

6πε0c3
=
[
υ̇2 − (υ×υ̇)2

c2

]

= e2γ 6

6πε0c3

[
υ̇2 − υ2υ̇2

c2

]
= e2γ 6υ̇2

6πε0c3

(
1 − β2)= e2γ 4υ4

6πε0c3R2

= ce2γ 4β4

6πε0R2
, (14.11)

where we used 1 − β2 = 1/γ 2 and for circular motion υ̇ = υ2/R.
Radiation loss �E in one complete revolution of a highly relativistic electron

(β→ 1) is calculated by first determining the duration τ of one revolution as

τ = 2πR

υ
≈ 2πR

c
, (14.12)

where R is the radius of the electron circular trajectory in a synchrotron and we
used υ → c for relativistic electron. Radiation loss ESR in the form of synchrotron
radiation (SR) per one revolution is now given as
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ESR = Pτ = ce2γ 4β4

6πε0R2

2πR

c
= e2γ 4

3ε0R
= e2

3ε0R

(
E

mec2

)4

= e2

3ε0(mec2)4

E4

R
=
{

8.85×10−8 eV · m

(MeV)4

}
E4

R
. (14.13)

The radiation loss per revolution of an electron accelerated in a synchrotron or
stored in a storage ring is calculated from (14.13), showing that the radiation emit-
ted is proportional to the fourth power of nominal electron energy E and inversely
proportional to the radius R of the electron orbit. The proportionality constant is
8.85×10−8 eV · m · (MeV)−4.

(c) For an electron synchrotron of radius R = 1 m and nominal energy E =
300 MeV, and energy gain Egain = 5 keV per revolution we determine the elec-
tron energy loss ESR per revolution in the form of synchrotron radiation from (14.3)
as follows

ESR =
{

8.85×10−8 eV · m

(MeV)4

}
E4

R
=
{

8.85×10−8 eV · m

(MeV)4

}
× (300 MeV)4

(1 m)

≈ 0.7 keV. (14.14)

Fractional energy loss per revolution fE is given by the ratio fE =ESR/Egain to get

fE = ESR

Egain
= 0.7

5
= 0.14, (14.15)

obviously of significant magnitude in comparison with the fractional power loss of
electrons in a linear accelerator, determined in (a).

(d) In Fig. 14.4 we plot (14.13) on a log-log scale the energy lost in the form of
synchrotron radiation ESR in eV against nominal synchrotron energy E in the range
from E = 1 MeV to E = 105 MeV for four synchrotron radii: 1 m, 10 m, 100 m, and
1000 m. Since we are dealing with a power function, the resulting graph comprises
four parallel lines, one for each of the four synchrotron radii. The solid data point on
the R = 1 m plot indicates the result of the calculation presented in (14.14) of (c).

(e) According to the Larmor law stated in (14.1) a charged particle undergoing
acceleration or deceleration emits a portion of its kinetic energy in the form of elec-
tromagnetic radiation, be it as bremsstrahlung photons or as synchrotron radiation
depending on the force acting on the charged particle.

(1) Emission of bremsstrahlung radiation by charged particle traversing a tar-
get. The Larmor equation (14.1) states that the rate of bremsstrahlung energy loss
dEB/dt is proportional to |υ̇|2 where |υ̇|, the acceleration of charged particle of
mass m0 and charge ze passing through a target of atomic number Z, is in turn
proportional to zEe2/m0 by virtue of the Coulomb force FCoul = (zZe2)/(4πε0r

2)
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Fig. 14.4 Energy ESR lost in the form of synchrotron radiation (SR) per revolution in a syn-
chrotron accelerator or in an electron storage ring against nominal synchrotron energy E in the
range from E = 1 MeV to E = 105 MeV for four synchrotron radii: 1 m, 10 m, 100 m, and
1000 m. The solid data point on the R = 1 m plot indicates the result of the calculation presented
in (14.14) of (c) predicting that, in a synchrotron accelerator with a radius of 1 m, energy lost in
the form of synchrotron radiation in one revolution amounts to ESR = 0.7 keV

in effect between the charged particle and absorber nuclei. Note: r is the distance
between the two charges—nucleus and charged particle).

Bremsstrahlung loss is thus inversely proportional to m2
0, the square of the mass

of the accelerated charged particle traversing the absorber target. As a consequence
of this dependence on mass, the bremsstrahlung loss of electron and positron is sig-
nificantly larger than the loss experienced by a proton, α particle, or heavier ion.
Therefore, radiation stopping power is only considered for electrons and positrons
and deemed negligible for heavier charged particles. To put an order of magnitude
on the bremsstrahlung power ratio PB(electron)/PB(proton) at the same kinetic en-
ergy of the electron and proton, we simply take the square of the ratio of rest masses
of the two charged particles to get

PB(electron)

PB(proton)
= m2

p

m2
e

= 938.32

0.5112
= 18362 ≈ 3.4×106. (14.16)

The result of (14.16) shows that an electron is about 3.4×106 times more efficient
than proton in production of bremsstrahlung.

(2) Emission of synchrotron radiation by charged particle moving in magnetic
field of a synchrotron or storage ring. The Liénard equation (14.11) states that the
rate of energy loss dESR/dt in emission of synchrotron radiation is proportional to
γ 4υ̇2, where υ̇ is the charged particle acceleration (υ̇ = υ̇2/R) and γ is the particle
Lorentz factor given as γ = E/E0 with E and E0 the charged particle total energy
and rest energy, respectively.

Since E0 = m0c
2, we note that the synchrotron radiation loss dESR/dt is in-

versely proportional to m4
0, the fourth power of the rest mass of the accelerated
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charged particle. As a consequence of this dependence on mass, the synchrotron
radiation loss of electron and positron is significantly larger than that experienced
by a proton for the same radius of curvature R of the trajectory and same particle
energy E. To put an order of magnitude on the synchrotron radiation power ratio
PSR(electron)/PSR(proton) at the same total energy E of the two particles and the
same radius R of their circular trajectory, we simply take the fourth power of the
ratio of rest masses of the two particles to get

PSR(electron)

PSR(proton)
= m4

p

m4
e

= 938.34

0.5114
= 18364 ≈ 1.14×1013. (14.17)

The result of (14.17) shows that an electron is 1.14×1013 times more efficient than
proton in production of synchrotron radiation.

14.5.Q3 (296)

In a cyclotron the particles are accelerated along a spiral trajectory guided in-
side two evacuated half-cylindrical electrodes (referred to as dees because of
their D-shape form) by a uniform magnetic field that is produced between the
pole pieces of a large magnet. A radiofrequency (RF) voltage with a constant
frequency is applied between the two electrodes and the charged particle is
accelerated while crossing the gap between the two electrodes.

The operation of a cyclotron is possible if the time required for the particles
to describe each semicircle in a dee is constant and if the angular frequency
ω of the RF generator is such that the transit time inside one of the two dees
is equal to half period of field oscillation. In standard cyclotron operation the
Lorentz force FL keeping the particle in circular orbit is equal to the cen-
tripetal force

FL = qυB = mυ2

r
, (14.18)

where q is the charge of the accelerated particle, υ is the velocity of the par-
ticle, B is the magnetic field used for keeping the charged particle in circular
orbit inside the dees, m is the mass of the charged particle, and r is the radius
of particle orbit during one revolution.

Assuming the validity of classical mechanics (m= constant), (14.18) can
be solved for the angular frequency ω = υ/r and for radius r to get the fol-
lowing expressions for ω and r

ω= ωcyc = 2π

T
= 2πνcyc = qB

m0
(14.19)
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and

r = m0υ

qB
=

√
2m0EK

qB
, (14.20)

where q is the charge of the particle and EK is its kinetic energy.

A cyclotron with radius R = 1.34 m of the dees, a magnetic field B =
0.45 Vs/m2, and a potential difference�V = 150 kV between the two dees is
used to accelerate protons. Mass of proton is mp = 938.3 MeV/c2 and charge
of proton q = e= 1.602×10−19 A · s. Determine:

(a) Maximum achievable kinetic energy (EK)max for protons accelerated
from rest.

(b) Angular frequency (also called angular cyclotron frequency) ωcyc and
cyclotron frequency νcyc of the RF generator.

(c) Time required to accelerate a proton from rest to the maximum energy
determined in (a).

(d) Maximum achievable kinetic energy (EK)max and cyclotron frequency
ωcyc of the RF generator if the cyclotron is used to accelerate alpha
particles. Mass of alpha particle is mα = 3727.4 MeV/c2 and charge of
alpha particle q = 2e= 3.204×10−19 A · s.

(e) Time required for accelerating α particle from rest to maximum energy
determined in (d).

(f) Relativistic form of (14.19) and (14.20) for relativistic particles.

SOLUTION:

(a) The final kinetic energy (EK)max of a particle accelerated in a cyclotron de-
pends on the radius of R of the dees, charge q and rest energy m0c

2 of the charged
particle, and magnetic field B holding the charged particle in a circular orbit. The
velocity υ of the particle during the last acceleration across the gap between the
dees is from (14.20) given as

υ = qBR
m0

, (14.21)

resulting in the following expression for final kinetic energy (EK)max

EK = m0υ
2

2
= R2q2B2

2m0
. (14.22)

For R = 1.34 m and B = 0.45 Vs/m2 the maximum kinetic energy of an accelerated
proton is

(EK)max = R2q2B2

2m0
= (1.34 m)2×e2×(0.45 V · s · m−2)2×(3×108 m · s−1)2

2×(938.3×106 eV)
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= (1.34)2×(0.45)2×(3×108)2 eV

2×(938.3×106)
= 17.4×106 eV

= 17.4 MeV. (14.23)

(b) Angular frequency ωcyc of the RF generator is given in (14.19). For cyclotron
with a magnetic field B = 0.45 Vs/m2 used for acceleration of protons we get

ωcyc = qB
m0

= e×(0.45 V · s · m−2)×(3×108 m · s−1)2

(938.3×106 eV)
= 4.31×107 s−1

= 43.2 MHz. (14.24)

(c) Protons, while inside the cyclotron, follow a spiral trajectory. After crossing
the gap between the two electrodes, the protons follow a semicircular orbit with a
radius defined by (14.20). If N is the number of crossings the proton makes between
the two electrodes and �EK is the kinetic energy gained by protons in a single
crossing, protons must cross the electrodes N = EK/�EK times to reach kinetic
energy of EK.

For protons accelerated in a cyclotron with a potential difference of �V =
150 kV kinetic energy �EK gained after a single crossing of the gap between elec-
trodes is

�EK = q�V = e×(150 kV)= 150 keV. (14.25)

For �EK = 150 keV the number of electrode crossings N required for protons to
reach a kinetic energy (EK)max = 17.4 MeV is

N = (EK)max

�EK
= 17.4 MeV

150 keV
≈ 116. (14.26)

Since the protons follow a semicircular path between two consecutive crossings
each the number of semicircle paths is N − 1. Thus, the time T required for protons
to gain energy (EK)max = 17.4 MeV is

T = π×(N − 1)

ωcyc
= π×115

4.31×107 s−1
≈ 8.4 µs. (14.27)

(d) The maximum achievable kinetic energy (EK)max of the alpha particle when
accelerated using a cyclotron with R = 1.34 m and B = 0.45 Vs/m2 is determined
using (14.22) with mα = 3727.4 MeV/c2 and q = 3.204×10−19 A · s. Thus,

(EK)max = R2q2B2

2m0
= (1.34 m)2×(2e)2×(0.45 V · s · m−2)2×(3×108 m · s−1)

2×(3727.4×106 eV/c2)

= (1.34)2×4×(0.45)2×(9×1016)

2×(3727.4×106)
= 17.6×106 eV = 17.6 MeV. (14.28)

Note: Maximum kinetic energy (EK)max of proton and alpha particle accelerated
in a cyclotron of same dee radius R of and same magnetic field B are essentially
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identical as a result of the ratio qp/(mpc
2) for the proton being essentially equal to

the ratio qα/(mαc2) for the alpha particle.
Angular frequency ωcyc of the RF generator for alpha particles accelerated in

cyclotron with dee radius R = 1.34 m and magnetic field B = 0.45 Vs/m2 is calcu-
lated from (14.19) as

ωcyc = qB
m0

= (2e)×(0.45 V · s · m−2)×(3×108 m · s−1)2

(3727.4×106 eV)
= 2.17×107 s−1

= 21.7 MHz. (14.29)

(e) Kinetic energy gained by alpha particle in a single crossing of an electrode gap
of �V = 150 kV is

�EK = q�V = 2e×(150 kV)= 300 keV, (14.30)

and to reach a kinetic energy of (EK)max = 17.6 MeV from rest, the number of times
the alpha particles must cross the electrode gap is

N = (EK)max

�EK
= 17.6 MeV

150 keV
≈ 59. (14.31)

Time required to accelerate an α particle from rest to maximum energy (EK)max
of 17.6 MeV is calculated from (14.27) with N = 59 and ωcyc = 21.7 MHz

T = π×(N − 1)

ωcyc
= π×58

2.17×107 s−1
≈ 8.4 µs. (14.32)

(f) Equations (14.19) and (14.20) for cyclotron frequency ωcyc and radius r , re-
spectively, are valid for classical physics where an assumption is made that particle
mass m0 is constant and kinetic energy is given as EK = 1

2m0υ
2 irrespective of par-

ticle velocity υ . To get corresponding equations for relativistic particles we replace
m0 of (14.19) and (14.20) with relativistic mass m = γm0 where γ is the Lorentz
factor γ = (1 − β2)−1/2 and β = υ/c to get (see Prob. 35)

ωcyc = qB
γm0

(14.33)

and

r = γm0υ

qB
= p

qB
=
EK

√
1 + 2m0c

2

EK

qBc
or r = γm0υ

qB
= γm0c

2β

qBc
= Eβ

qBc
,

(14.34)
where

m0 is particle rest mass.
p is particle momentum [p =mυ = γm0βc].
EK is particle kinetic energy [EK =E −E0 = (γ − 1)E0 = (γ − 1)m0c

2].
E is particle total energy [E =EK +E0 = γE0 = γm0c

2].
E0 is particle rest energy [E0 =m0c

2].
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14.6 Clinical Linear Accelerator

14.6.Q1 (297)

During the past two decades medical linear accelerator (linac) has become the
most common and most versatile machine in treatment of cancer with ionizing
radiation. In contrast to linacs used for high-energy physics research, medical
linacs are compact machines mounted isocentrically so as to allow practical
radiation treatment aiming the radiation beam toward the patient from various
directions to concentrate the radiation dose in the tumor and spare healthy
tissues as much as possible.

(a) Provide a historical perspective on the development of high technology
radiotherapy machines.

(b) Briefly discuss the general features of a typical modern multipurpose
medical linac.

(c) List and discuss briefly the advantages and disadvantages of linacs over
cobalt-60 teletherapy machines in megavoltage radiotherapy.

(d) List and briefly discuss the advantages and disadvantages of linacs over
betatrons in megavoltage radiotherapy.

(e) During the past 50 years medical linacs have gone through five distinct
generations. List and briefly discuss the features introduced in each new
generation of medical linacs.

SOLUTION:

(a) Soon after their invention, essentially all new high technology machines devel-
oped for physics research have been translated into medicine for imaging or treat-
ment of disease. The trend started within weeks of Röntgen’s discovery of x rays in
1895 with the Crookes x-ray tube becoming an important medical tool and spawn-
ing two new medical specialties: diagnostic radiology and radiotherapy as well as
a new physics specialty: medical physics. Soon thereafter came the Coolidge x-
ray tube (1913), Van de Graaff generator (1929), proton cyclotron (1932), betatron
(1940), microtron (1944), synchrotron (1945), and linear accelerator (early 1950s).
All these machines were first introduced in physics research and soon thereafter
applied in medicine for imaging or radiotherapy.

The first machine designed and built directly for radiotherapy without prior use
in nuclear physics was the cobalt-60 teletherapy machine. Developed in Canada
in the early 1950s by medical physicist Harold E. Johns, the cobalt-60 machine
became the first truly practical and widely available megavoltage cancer therapy
machine in the world. It incorporates a cobalt-60 source artificially produced with
neutron activation of natural cobalt in a nuclear reactor. The cobalt-60 radionuclide
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is characterized with features suitable for use in external beam radiotherapy, such
as high gamma ray energy (∼1.25 MeV) for better beam penetration into tissue,
relatively long half-life (5.26 years) to avoid frequent need for source replacement,
and high specific activity to minimize the source size.

Another notable direct development for medical use was the GammaKnife ma-
chine that Swedish neurosurgeon Lars Leksell introduced in 1968 for use in stereo-
tactic radiosurgery, a sophisticated specialized radiotherapy technique for irradia-
tion of brain lesions. The machine incorporated close to 200 miniature cobalt-60
sources, each source with activity of about 30 Ci (1.11 TBq) producing a small radi-
ation beam aimed toward the isocenter of the machine. Even today the modern ver-
sion of the GammaKnife is a popular neurosurgical tool around the world; however,
during the past two decades the radiosurgical technique became readily available on
modern medical linacs as well as on specialized linacs such as the CyberKnife.

During the late 1950s and throughout the 1960s the cobalt teletherapy machine
was the workhorse machine in radiotherapy departments and high-energy radiother-
apy with megavoltage beams of effective energy above 8 MeV was carried out at
that time with betatrons in a few specialized centers around the world. However,
since betatrons provided less than an optimal option for megavoltage radiotherapy,
a significant effort was made by several manufacturers of specialized medical equip-
ment toward developing a compact and practical isocentric low energy linac (4 MV
and 6 MV) to compete with cobalt machines as well as a 25 MV linac to provide a
better option than betatron for high-energy radiotherapy.

The development of a practical clinical linac took some time, but in the early
1970s several low-energy (4 MV and 6 MV) linacs as well as high-energy (25 MV)
linacs became commercially available and started to serve as replacement machines
for cobalt machines and betatrons. By the late 1980s, cobalt-60 machines became
almost extinct in the developed world and betatrons were no longer used for cancer
therapy. Since then, linacs have undergone tremendous technological development
through 5 generations; each generation introducing significant improvements over
the previous one. It is now impossible to imagine modern radiotherapy without ac-
cess to a state-of-the-art fifth generation clinical linear accelerator.

(b) The main characteristics of a multipurpose medical linac are as follows:

(1) Medical linacs are cyclic electron accelerators that accelerate electrons to ki-
netic energy in the range between 4 MeV and 25 MeV using non-conservative mi-
crowave radiofrequency (RF) fields.

(2) Most standard medical linacs operate in the S-band microwave frequency
range at 2856 MHz (wavelength λ≈ 10.5 cm); some special purpose medical linacs
(for example, CyberKnife and Tomotherapy machine) operate with a miniature
waveguide in the X-band microwave frequency range at ∼104 MHz (wavelength
λ≈ 3 cm).

(3) In a linac, the electrons, produced in an “electron gun”, are accelerated follow-
ing straight trajectories in special, evacuated, disk-loaded structures called acceler-
ation waveguides. Electrons follow a linear path through the same, relatively low,
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potential difference several times, each time gaining a defined increment in kinetic
energy, until they exit the acceleration waveguide in the form of a pulsed electron
pencil beam.

(4) The electron pencil beam, upon exiting the acceleration waveguide, enters the
“clinical beam forming system” that generates the clinical beam from the pencil
electron beam. Two types of clinical beams (either x rays or electrons) are usually
available from a medical linac; both types are characterized by various clinically-
relevant characteristics, such as effective energy, field size, dose rate, depth dose
distribution in water, flatness, symmetry, etc.

(5) Typical multipurpose medical linac is isocentrically-mounted with a source-
axis distance (SAD) of 100 cm, producing either a flat and symmetric clinical x-ray
beam with variable field sizes up to 40×40 cm2 at the linac isocenter or a flat and
symmetric clinical electron beam with field sizes up to 25×25 cm2 at a source-skin
distance (SSD) of 100 cm.

(6) Typical multipurpose medical linac produces two x-ray energies (6 MV and 18
MV) and 5 to 6 electron energies (in MeV: 4, 6, 9, 12, 15, and 18) with a dose rate
at the isocenter of ∼100 cGy/min to ∼500 cGy/min. Optional high dose rates ex-
ceeding 1000 cGy/min are available for use in specialized radiotherapy treatments
such as total body irradiation, stereotactic radiosurgery, and total skin electron irra-
diation.

(7) Two independent transmission ionization chambers continuously monitor the
parameters of the clinical beam, such as flatness, symmetry, output, and delivered
dose. The ionization chambers turn the machine off either when the preset dose at
the dose reference point in the patient has been delivered or before, for patient safety,
if any deviation of beam parameters from preset tolerance levels have occurred.

(8) Modern multipurpose linacs are equipped to deliver, in addition to traditional
radiotherapy beams and treatment plans, a series of modern radiotherapy techniques,
such as intensity modulated radiotherapy (IMRT), intensity modulated arc therapy
(IMAT), image guided radiotherapy (IGRT), and adaptive radiotherapy (ART). They
also can deliver a series of specialized radiotherapy techniques, such as total body
irradiation (TBI) with x-ray beams, total skin electron irradiation (TSEI), electron
arc therapy, and stereotactic external beam irradiation.

(c) During the past two decades linac eclipsed the cobalt-60 teletherapy machine
and became the most widely used radiation-producing machine in modern radiother-
apy. In comparison with a cobalt-60 teletherapy machine, advantages of a typical
modern linac are:

(1) Higher photon beam energy resulting in better skin sparing effect and more
effective beam penetration into tissue.

(2) Electron beams for treatment of superficial lesions.
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(3) X-ray mode with two beam energies (6 MV and 18 MV) and electron mode
with 5 or 6 electron beam energies in the range from 6 MeV to 22 MeV.

(4) Higher output dose rate resulting in shorter treatment time.
(5) Beam intensity modulation for IMRT treatment.
(6) No highly radioactive source replacement is required.
(7) No high activity radionuclide with associated security and decommissioning

issues is present.

Despite the significant technological and practical advantages of linacs over cobalt
machines, the latter still occupy an important place in the radiotherapy armamen-
tarium, mainly because of significantly lower capital, installation, maintenance, and
operation costs in comparison with linacs. Manufacturers of cobalt machines were
slow in incorporating the many new features that are not necessarily unique to linacs,
such as large source-axis distance, high output, dynamic wedge, independent jaws,
and a multilef collimator. With these features slowly moving unto modern cobalt
machines, one can expect that, in the developing world, the cobalt-60 teletherapy
machines, owing to their relatively low cost, simplicity of design, ease of operation,
and relatively inexpensive maintenance and calibration cost, are likely to play an
important role in cancer therapy for the foreseeable future.

(d) Betatron provided a relatively inexpensive option for access to high-energy ra-
diotherapy during 1950s and 1960s; however, it had several serious inherent draw-
backs that made its use in radiotherapy obsolete immediately after clinical linacs
became available in the early 1970s. The main clinical disadvantages of betatron in
comparison to linac are as follows:

(1) Significantly lower beam output resulting in long and inconvenient treatment
times.

(2) Relatively small field sizes (as a result of flattening the low-output beam) lim-
iting the treatment fields required for radiotherapy.

(3) Very noisy operation when beam is turned on, resulting in an uncomfortable
treatment procedure for the patient.

(4) Design incorporating the bulky magnet used for electron acceleration and
for keeping the electron in circular motion does not lend itself to isocentric
mounting thereby presenting a severe obstacle to efficient radiotherapy treat-
ment.

As far as advantages of betatron over linac are concerned, two come to mind:

(1) The bremsstrahlung x-ray beam is produced in a betatron by a thin target and
in a linac by a thick target. This means that, for electrons of same kinetic en-
ergy striking the target, the betatron x-ray beam is inherently more penetrating
than a linac x-ray beam; however, this discrepancy is not very pronounced and
can be mitigated by using in a linac a low atomic number Z thick target (e.g.,
copper) and a low Z flattening filter.

(2) Betatron for the same nominal beam energy, costing only about 50 % of the
cost of a linac, is significantly cheaper than a linac; however, the difference in
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cost does not outweigh the disadvantages that the use of a betatron entails in
a clinical setting. Difference in cost notwithstanding, as soon as high-energy
clinical linacs became commercially available, they immediately replaced be-
tatrons as the machine of choice for high-energy radiotherapy.

(e) During the past 50 years, medical linacs have gone through five distinct gener-
ations, making the contemporary machines extremely sophisticated in comparison
with machines of the 1960s. Each generation introduced the following new fea-
tures:

(1) Low energy photons (4–8 MV):
straight-through beam; fixed flattening filter; external wedges; symmetric
jaws; single transmission ionization chamber; isocentric mounting.

(2) Medium energy photons (10–15 MV) and electrons:
bent beam; movable target and flattening filter; scattering foils; dual transmis-
sion ionization chamber; electron cones (applicators).

(3) High energy photons (18–25 MV) and electrons:
dual photon energy and multiple electron energies; achromatic bending mag-
net; dual scattering foils or scanned electron pencil beam; motorized wedge;
asymmetric or independent collimator jaws.

(4) High energy photons and electrons:
computer-controlled operation; dynamic wedge; electronic portal imaging de-
vice; multileaf collimator (MLC).

(5) High energy photons and electrons:
photon beam intensity modulation with multileaf collimator; full dynamic
conformal dose delivery with intensity modulated beams produced with a mul-
tileaf collimator; on-board imaging for use in adaptive radiotherapy.

14.6.Q2 (298)

Various types of linacs are available for clinical use. Some provide x rays
only in the low megavoltage range (4 MV or 6 MV), others provide both x
rays and electrons at various megavoltage energies. Some medical linacs are
highly specialized and use miniature waveguides to achieve their specialized
aims. A typical modern high-energy linac provides two photon energies (e.g.,
6 MV and 18 MV) and several electron energies in the range from 4 MeV to
22 MeV.

(a) Draw a schematic diagram of a typical modern S band medical linac
and identify its main components.

(b) Beam-forming components of medical linacs are usually grouped into
six systems. List and briefly discuss each of the six systems.
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(c) The treatment head of a medical linac contains several components that
contribute to the production, shaping, localizing, and monitoring of clin-
ical x-ray beams. List (in the direction of the pencil electron beam exit-
ing the accelerating waveguide) and briefly discuss the important com-
ponents found in a typical head of a modern medical linac and used in
production of clinical x-ray beam.

(d) Treatment head of a medical linac contains several components that
contribute to the production, shaping, localizing, and monitoring of clin-
ical electron beams. List (in the direction of the pencil electron beam
exiting the accelerating waveguide) and briefly discuss the important
components found in a typical head of a modern medical linac and used
in production of clinical electron beams.

(e) Draw a schematic diagram of a typical high-energy linac head indicat-
ing the important components that are used in production of: (A) clinical
x-ray beams and (B) clinical electron beams.

SOLUTION:

(a) A schematic diagram of a typical modern S-band medical linac is shown in
Fig. 14.5. Also shown are the connections and relationships among the various linac
components. The diagram provides a general layout of the important linac compo-
nents; however, there are significant variations from one commercial machine to
another, depending on the final electron beam kinetic energy as well as on the par-
ticular design used by the manufacturer. The length of the accelerating waveguide
depends on the final electron kinetic energy, and ranges from ∼30 cm at 4 MeV to
∼150 cm at 25 MeV. It is reasonable to assume that all clinical linacs will have a
schematic diagram similar to the one shown in Fig. 14.5.

The process of producing a clinical x-ray beam or a clinical electron beam out
of the electron pencil beam generated by an electron linac is quite sophisticated.
It incorporates 50 years of basic research, clinical experience, and technological
development all merged into producing a clinical beam with the goal of providing
an efficient and optimal treatment of patients who suffer life-threatening, mainly
malignant, disease that can be treated with ionizing radiation.

(b) Beam-forming components of medical linacs are as follows:

(1) Injection system.
(2) RF power generation system.
(3) Accelerating waveguide.
(4) Auxiliary system.
(5) Beam transport system.
(6) Beam collimation and beam monitoring system.
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Fig. 14.5 Schematic diagram of a medical linear accelerator (linac) depicting the major compo-
nents that are involved in the production of clinical radiation beams for use in treatment of disease

(1) Injection system is the source of electrons, essentially a simple electrostatic ac-
celerator called an electron gun. Two types of electron gun are in use: diode type and
triode type, both containing a heated cathode (at a negative potential of the order of
−25 kV) and a perforated grounded anode. In addition, triode type gun also incorpo-
rates a grid placed between the cathode and the anode. Electrons are thermionically
emitted from the heated cathode, focused into a pencil beam and accelerated toward
the perforated anode through which they drift into the accelerating waveguide.

(2) Radiofrequency (RF) power generating system produces the high power mi-
crowave radiation used for electron acceleration in the accelerating waveguide and
consists of two components: the RF power source and the pulsed modulator. The RF
power source is either a magnetron or a klystron in conjunction with a low power
RF oscillator (RF driver). Both devices use electron acceleration and deceleration
in vacuum for production of the high power RF fields. The pulsed modulator pro-
duces the high voltage, high current, short duration pulses required by the RF power
source and the electron injection system for electron acceleration in the linac.

(3) Electrons are accelerated in the acceleration waveguide by means of an en-
ergy transfer from the pulsed high power RF field that is set up in the acceleration
waveguide and produced by the RF power generator. The accelerating waveguide
is in principle obtained from a circular uniform waveguide by adding a series of
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disks (irises) with circular holes at the center, positioned at equal distances along
the tube. These disks divide the acceleration waveguide into a series of cylindrical
cavities that form the basic structure of the accelerating waveguide of a linac.

(4) Auxiliary system of a linac consists of several basic systems that are not di-
rectly involved with electron acceleration, yet they make the acceleration possible
and the linac viable for clinical operation. These systems are: the vacuum-pumping
system, water-cooling system, air-pressure system, and shielding against leakage
radiation.

(5) Electron beam transport system brings the pulsed high-energy electron pencil
beam from the acceleration waveguide onto the target in the x-ray therapy mode and
onto the scattering foil in the electron therapy mode.

(6) Beam monitoring system and beam collimation system forms an essential sys-
tem in a medical linac ensuring that radiation dose as well as radiation field may be
delivered to the patient as prescribed, with a high numerical and spatial accuracy.

(c) Production of clinical x-ray beam in the x-ray therapy mode. Electrons, orig-
inating in the electron gun, are accelerated in the accelerating waveguide to the de-
sired kinetic energy and then brought, in the form of a pulsed pencil beam, through
the beam transport system into the linac treatment head, where the clinical x-ray
beams are formed. The important components used in clinical x-ray beam produc-
tion are (listed in the direction of the accelerated electron pencil beam):

(1) Bremsstrahlung target (retractable).
(2) Beryllium exit window.
(3) Primary collimator.
(4) Flattening filter (retractable).
(5) Dose monitoring system.
(6) Upper adjustable and independent collimator jaws.
(7) Lower adjustable and independent collimator jaws.
(8) Multileaf collimator (completely open).

(1) Bremsstrahlung target (retractable). As the electron pencil beam of kinetic
energy EK strikes the thick target (with a typical focal spot of 2 mm diameter)
electrons are rapidly decelerated and lose part of their kinetic energy in the form
of bremsstrahlung x rays through inelastic interactions with target nuclei. The x-
ray beam thus produced has a continuous spectral distribution with photon energies
ranging from 0 up to EK. The intensity of the x-ray beam produced in the target is
mainly forward peaked and a flattening filter is used to flatten the beam and make
is suitable for clinical application. In low energy linacs that do not have a clinical
electron therapy option the bremsstrahlung target is not retractable and is usually
permanently imbedded into the accelerating waveguide. In linacs that also offer
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electron beam therapy mode the bremsstrahlung target is retractable and in clini-
cal electron therapy mode moves away from the path of the electron pencil beam to
allow production of a clinical electron beam.

(2) Beryllium exit window separates from the atmospheric pressure the evacuated
linac components (∼10−6 tor) that produce and transport the electron pencil beam.

(3) Primary collimator defines the maximum circular field available from the
linac. This maximum field size is typically of the order of 30 cm diameter at 100 cm
from the target.

(4) Flattening filter produces a flat x-ray beam out of the forward peaked beam
generated in the bremsstrahlung thick target. Typical profile of an unflattened beam
produced in a bremsstrahlung target measured at 100 cm from the target exhibits
a peak (100 %) on the beam central axis and drops to ∼30 % at the edge of the
maximum field defined by the primary collimator. Thus, to flatten this raw (unflat-
tened) beam profile, the intensity on the central beam axis must be diminished from
100 % down to ∼30 %. All other points on the raw intensity profile must also be di-
minished to read as close as possible to the same absolute intensity measured at the
edge of the maximum field, and this is achieved with a flattening filter that is usually
designed empirically in the form of a cone centered on the beam central axis.

(5) Dose monitoring system of a medical linac is based on two independent trans-
mission ionization chambers permanently imbedded into the linac clinical x-ray and
electron beams. The chambers are used to monitor the beam output (patient dose)
continuously during patient treatment. In addition to dose monitoring, the chambers
are also used for monitoring the radial and transverse flatness of the radiation beam
as well as its symmetry and energy.

For patient safety, the linac dosimetry system usually consists of two separately
sealed ionization chambers with completely independent biasing power supplies and
read out electrometers. If the primary chamber fails during patient treatment, the
secondary chamber will terminate the irradiation, usually after an additional dose
of only a few % above the prescribed dose has been delivered. For added patient
safety linacs are also equipped with backup timers in addition to two ionization
chambers. In the event of simultaneous failure of both the primary as well as the
secondary ionization chamber, the linac timer will shut the machine down with a
minimal overdose delivered to the patient.

(6) and (7) Upper adjustable and independent collimator jaws together with the
lower adjustable and independent collimator jaws form the secondary collimator
system of a clinical linac. The jaws are adjustable to project square and rectangular
fields of dimensions from 0×0 up to 40×40 cm2 at the linac isocenter that is 100 cm
from the bremsstrahlung target. Since the jaws are independent, asymmetric square
and rectangular fields are also possible.
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(8) Multileaf collimator (MLC). The MLC is a relatively new addition to modern
linac dose delivery technology. In principle, the idea behind an MLC is simple:
MLC allows production of irregularly shaped radiation fields with much accuracy
as well as efficiency and is based on an array of narrow collimator leaf pairs, each
leaf controlled with its own miniature motor. The building of a reliable MLC system
presents a substantial technological challenge and current models incorporate up to
160 leaves (80 pairs) covering radiation fields up to 40×40 cm2 and requiring 160
individually computer-controlled motors and control circuits.

Note: A typical modern high-energy linac offers two clinical x-ray beams: low
megavoltage energy at 6 MV and high energy at ∼18 MV. In order to obtain an op-
timized clinical beam, linac employs a separate target—flattening filter combination
for each beam energy.

(d) Production of clinical electron beam in the electron beam therapy mode.
Megavoltage electron beams in the energy range from 4 MeV to 22 MeV represent
an important treatment modality in modern radiotherapy, often providing a unique
option in treatment of superficial tumors. Like clinical x-ray beams, clinical electron
beams are also produced in the head of the modern medical linac, starting with
the electron pencil beam of desired kinetic energy (Note: the pencil electron beam
current used to produce the same dose rate at depth of dose maximum in the patient
is approximately two to three orders of magnitude lower in the clinical electron
beam mode compared to the clinical photon beam mode).

While clinical x-ray beams are produced with an appropriate target—flattening
filter combination and collimated to desired field shape using the primary, sec-
ondary, and multileaf collimators, clinical electron beams are most commonly pro-
duced with scattering foils and collimated with electron cones. The important com-
ponents used in clinical electron beam production (listed in the direction of the
accelerated electron pencil beam) are:

(1) ———–
(2) Beryllium exit window.
(3) Primary collimator.
(4) Scattering foil, also called scattering filter (retracted in the clinical x-ray ther-

apy mode).
(5) Two independent transmission ionization chambers.
(6) Upper adjustable and independent collimator jaws.
(7) Lower adjustable and independent collimator jaws.
(8) Multileaf collimator (fully opened in the clinical electron therapy mode).
(9) Electron cone (also called electron applicator).

(1) Bremsstrahlung target used for production of clinical x-ray beam is in produc-
tion of clinical electron beam retracted from the pencil beam.

(2) Beryllium exit window separates the evacuated linac components (∼10−6 tor)
from the atmospheric pressure. It is strong to withstand the pressure difference be-
tween vacuum and atmospheric pressure, yet very thin to transmit the electron pencil



14.6 Clinical Linear Accelerator 1085

beam from the vacuum into atmospheric pressure. It is made of low atomic number
material (Z = 4) to produce as little bremsstrahlung contamination of the electron
beam as possible.

(3) Primary collimator affects the unflattened photon beam produced in the
bremsstrahlung target in the clinical x-ray therapy mode. It has no effect on the
pencil electron beam in the clinical electron therapy mode.

(4) Scattering foils. The scattering of the electron pencil beam over the relatively
large area used in electron beam radiotherapy (up to 30×30 cm2 at linac isocenter)
is achieved by placing one or more thin foils of high atomic number material (e.g.,
lead) into the pencil beam at the level of the flattening filter used in the x-ray therapy
mode. Another option for producing large electron fields, albeit much more complex
and therefore seldom used, is pencil beam magnetic scanning. The technique is im-
plemented with two computer-controlled magnets that deflect the electron pencil
beam in two orthogonal planes, thereby scanning the pencil beam across the clinical
treatment field.

(5) Dose monitoring system is the same for the clinical x-ray therapy mode and
the clinical electron therapy mode, discussed in (c).

(6) and (7) Because of the significant scattering of electrons in air compared to
photon scattering in air the secondary collimator system cannot be used for defining
the field size in clinical electron beams. Therefore, the secondary collimation sys-
tem plays only a secondary role in electron beam therapy unlike the situation with
clinical x-ray beams where the clinical beam is formed with three collimator types:
primary, secondary, and MLC.

Radiation field for clinical electron beams is determined with the electron beam
cones rather than with the upper and lower jaws of the secondary collimator and the
MLC. However, for a given electron cone size, the MLC is placed into a completely
open position and the upper and lower jaws must be set to a position prescribed for
a particular electron cone, so as to reproduce the electron scattering conditions and
keep the electron beam flatness optimal.

(8) Multileaf collimator plays no role in clinical electron therapy mode and must
be placed into fully open position in the clinical electron therapy mode.

(9) Electron cones are used to define the desired clinical electron beam field size.
The scattering of electrons in air makes the use of photon collimators that are placed
relatively far (typically 40 cm to 50 cm) from the patient impossible and the colli-
mation for electron beams must be placed close to the patient, typically a few cen-
timeters from the patient surface. This is achieved with electron cones that define
the electron beam field size and must be removed when clinical x-ray beam therapy
mode is used.

(e) Figure 14.6 depicts a typical linac head employed in production of (A) clinical
x-ray beams and (B) clinical electron beams.
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Fig. 14.6 Schematic representation of a typical medical linac head with (A) depicting the impor-
tant components briefly described in (c) for production of clinical x-ray beams and (B) depicting
the important components briefly described in (d) for production of clinical electron beams

14.6.Q3 (299)

Except for constant potential x-ray machines, all particle accelerators operate
in some sort of pulsed operation. In linear accelerator (linac) the major com-
ponents including the source of radiofrequency (RF system), electron gun
(injection system), acceleration of electrons in the accelerating wave guide
(acceleration system), and production of bremsstrahlung x rays in the linac
bremsstrahlung target in the clinical x-ray mode or arrival of electrons at the
scattering foils in the clinical electron mode operate in a pulsed mode with a
relatively low duty cycle.

A medical 18 MV linac operates at a pulse repetition rate (rep rate) ρ =
100 s−1 = 100 pps, duty cycle δ = 2×10−4, and a peak current IP = 120 mA.
A thick bremsstrahlung target is used for x-ray production and the cathode
of the electron gun (triode type) is operated at −25 kV. The linac runs in the
S-band frequency range at ν = 2856 MHz.

(a) Define the duty cycle δ and pulse repetition rate ρ.
(b) Calculate the period T of the pulsed operation of the linac.
(c) Calculate the pulse width τ of the linac.
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(d) Calculate the mean pencil beam current Ī of the linac.
(e) Calculate the charge qτ deposited per pulse in the thick target of the

linac.
(f) Calculate the charge qt=1 s deposited per second in the thick linac

bremsstrahlung target.
(g) Calculate the power Ppulse deposited per pulse in the thick linac

bremsstrahlung target.
(h) Calculate the mean power P̄ deposited in the thick bremsstrahlung tar-

get of the linac.
(i) Sketch the linac pulse sequence and identify its main parameters of the

linac above: (1) Pulse width τ , (2) Period T , (3) Peak current IP, and
(4) Mean current Ī .

(j) Calculate the power PX deposited in the target (anode) of a typical
constant potential x-ray tube used for radiotherapy at anode voltage
Ua = 100 kV and tube current I = 50 mA. Compare your result for
the x-ray tube with the mean power P̄L deposited onto a linac target
calculated in (g). Explain the difference.

(k) Define thick and thin targets in linac x-ray production.
(l) Briefly describe the main steps in the pulsed operation of a medical

linac. Indicate these steps for the linac on the graph plotted in (h).

SOLUTION:

(a) In telecommunications and electronics the duty cycle δ is defined as the frac-
tion of time during which a particular periodic system is in active state or

δ = τ

T
, (14.35)

where τ is the duration of the active pulse and T is the period of the periodic oper-
ation. The pulse repetition rate ρ (in short, “rep rate”) is defined as the number of
pulses per unit time.

(b) Period T of pulsed operation for linac

T = 1

ρ
= 1

100 s−1
= 10−2 s = 104 µs. (14.36)

(c) Pulse width τ for linac(*)

τ = δ · T = (
2×10−4)×(

10−2 s
)= 2×10−6 s = 2 µs. (14.37)

(d) Mean pencil beam current Ī in the accelerating waveguide

Ī = δ · IP = (
2×10−4)×(

120×10−3 A
)= 2.4×10−5 A = 24 µA. (14.38)
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Fig. 14.7 Pulse sequence for electrons arriving at the bremsstrahlung target. Numbers (1) through
(5) refer to main steps of linac pulse sequence listed in (l)

(e) Charge qτ deposited per pulse in the thick bremsstrahlung target

qτ = IP · τ = (
120×10−3 A

)×(
2×10−6 s

)= 2.4×10−7 As = 0.24 µC = 240 nC.
(14.39)

(f) Charge qt=1 s deposited per t = 1 s in the x-ray target

qt=1 s = Ī · t = (
2.4×10−5 A

)×(1 s)= 2.4×10−5 As = 24 µC. (14.40)

(g) Power Pτ deposited per pulse in the thick bremsstrahlung target (instantaneous
power):

Pτ = IPU = (
120×10−3 A

)×(
18×106 V

)= 2.16×106 W = 2.16 MW. (14.41)

(h) Mean power P̄ deposited in the thick bremsstrahlung target

P̄ = Ī ·U = (
2.4×10−5 A

)×(
18×106 V

)= 432 W = 0.432 kW. (14.42)

Note: Cathode potential of −25 kV is irrelevant in the calculation of power per pulse
Pτ and the mean power P̄ ; the important quantity in power calculation is the kinetic
energy EK = 18 MeV of the electron striking the bremsstrahlung target, implying a
potential U of 18 MV.

(i) Sketch of the linac pulse sequence based on linac data given above is summa-
rized in Fig. 14.7. Parameters calculated for the specific medical linac data of this
problem are as follows: period T = 104 µs, pulse width τ = 2 µs, mean pencil beam
current Ī = 24 µA, charge deposited per pulse qτ = 240 nC, charge deposited per
1 second qt=1 s = 240 µC, power deposited per pulse Pτ = 2.16 MW, and mean
power P̄ = 432 W.

(j) Power PX deposited in the target (anode) of the x-ray tube:

PX = IaU = (50 mA)×(100 kV)= 5000 W = 5 kW. (14.43)
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In (h) we show that for a typical medical linac the mean power P̄ deposited in
its thick bremsstrahlung target by an electron pencil beam with kinetic energy EK
of 18 MeV is ∼432 W. On the other hand, in (14.43) we show that for a typical
therapy x-ray machine the power deposited in its x-ray target (anode) by an electron
pencil beam with kinetic energy EK of 100 keV is ∼5000 W. A comparison of the
two power values shows that the power deposited into a linac target is more than
an order of magnitude lower than that deposited into an x-ray target. We Note: the
calculated power depositions are normalized to roughly the same output for both
machines, amounting to about 100 cGy/min at a distance of 100 cm from the target.

The two calculations confirm that efficiency for bremsstrahlung production in-
creases with kinetic energy EK of the incident electron in addition to also depending
on the atomic number Z of the target. It is well known that in x-ray tubes operating
in the diagnostic energy range of the order of 100 kV (referred to as the orthovoltage
range in radiotherapy) the efficiency of x-ray production is of the order of 1 %. This
means that only 1 % of the incident electron’s kinetic energy EK goes into x-ray
production and 99 % is transformed into heat that must be somehow dissipated so
as not to damage the target (anode). Thus the heat that must be dissipated amounts to
almost 100 times the energy transformed into x rays and this is not a simple task, as
shown by the complicated design of cooling methods applied to commercial x-ray
tubes.

In megavoltage radiotherapy, on the other hand, as a result of the relatively high
kinetic energy EK of electrons striking the bremsstrahlung target (from 4 MeV to
25 MeV), the efficiency for x-ray production at ∼10 % is much higher than in ortho-
voltage x-ray tubes where the efficiency is below 1 %. Thus, since the ratio between
cooling power and x-ray power is only a factor of 10 for linacs rather than 100 for x-
ray tubes, the cooling of linac targets is less of a concern than the cooling of targets
in x-ray tubes.

Efficiency for x-ray production also depends on the atomic number of the
bremsstrahlung target. For the same kinetic energy EK of the incident electron, the
higher is the atomic number Z of the target, the larger is the intensity of the emitted
bremsstrahlung. However, we must note that here we are talking about the emitted
intensity integrated over the 4π geometry around the target. In the first approxi-
mation we can state that the integrated intensity of the emitted bremsstrahlung is
proportional to Z2 for a thin target and is approximately linearly proportional to Z
for a thick target.

(k) For a given incident kinetic energy (EK)0 a thin target is a target whose thick-
ness is much less than the range of electrons of kinetic energy (EK)0 in the target
material. A thick target, on the other hand, is defined as a target with thickness of
the order of the range of electrons of kinetic energy EK in the target material.

The effective energy of the thin target photon spectrum is higher than that of
a thick target because in a thin target incident electrons of kinetic energy (EK)0
produce all bremsstrahlung photons while bremsstrahlung photons produced in a
thick target are produced by electrons ranging in kinetic energy from incident kinetic
energy (EK)0 all the way down to zero.
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(l) Typical medical linac pulsed operation sequence proceeds as follows (the 5
steps are indicated on the pulse sequence diagram of Fig. 14.7 for the specific data
for the medical linac of this problem):

(1) Control unit turns ON the RF power in the RF system. It takes of the order
of 1 µs to fill the acceleration waveguide with RF power and produce a field
required for acceleration of electrons.

(2) Electron gun is then turned ON, electrons are injected into the acceleration
waveguide for a few microseconds and accelerated toward the bremsstrahlung
target.

(3) Electron gun is turned OFF and injection of electrons into the acceleration
waveguide is stopped.

(4) RF system is switched OFF, the acceleration waveguide is completely de-
excited in about 1 µs through dumping the residual energy into a dissipative
load.

(5) System is ready for the next cycle that will start after a time interval T − τ −
(∼1 µs).

14.6.Q4 (300)

Medical linear accelerators (linacs) vary in design from one manufacturer to
another; however, all medical linacs contain the same basic systems and com-
ponents and apply similar techniques to produce clinical x-ray beams and
clinical electron beams.

Figure 14.8 depicts a schematic diagram of a medical linac with systems as
well a major and minor components identified only with white or black num-
bers.

(a) Identify the numbered systems, major components, and minor compo-
nents. For each entry write a short note explaining the role the system
or component plays in the linac operation.

(b) Answer the following short questions on the linac represented in
Fig. 14.8.

(1) What type of linac does the diagram most likely represent and
why?

(2) What clinical mode does the diagram represent and why?
(3) What type of electron gun does the diagram show? Explain.
(4) What type of RF generator does the diagram show? Explain.

(c) Give the order of magnitude for the following parameters of a typical
medical linac:

(1) Peak pencil beam current.
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(2) Mean pencil beam current for clinical x-ray mode.
(3) Mean beam current for clinical electron mode.
(4) Duty cycle and pulse repetition rate.
(5) Peak modulator current and peak voltage.
(6) Radiofrequency of operation for standard linac and miniature

linac.
(7) Beam current pulse width.

Fig. 14.8 Schematic diagram of a typical medical linear accelerator (linac)

SOLUTION:

(a) MAJOR SYSTEMS AND COMPONENTS of a medical linac are as follows:

(1) Control unit forms part of the control console located in the control area of
a medical linac installation immediately outside the shielded treatment room. The
control unit usually has two major components: machine control unit and treatment
control unit, both integrated and handled by a computer. Based on the information
that was entered on the treatment control unit, the machine control unit sends the
appropriate trigger pulses to the beam forming system of the linac, sets the desired
dose rate, controls the pulsed operation of the beam forming system, and terminates
the production of radiation once the preset dose has been attained.
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(2) Pulsed modulator generates the high current (∼100 A), high voltage
(∼100 V) and short duration (few µs) pulses required to run the RF power gen-
erating system (4) and the electron gun (5). The main components of a pulsed
modulator are: (i) three-phase full wave rectifier, (ii) pulse-forming network (PFN),
(iii) hydrogen thyratron, (iv) pulse transformer, and (v) pulse repetition frequency
generator.

(3) RF driver is a low power microwave oscillator providing low power RF input
to a klystron tube for amplification and subsequent use for electron acceleration in
accelerating waveguide.

(4) RF power generation system is the source of RF fields that are used in the
accelerating waveguide (6) for accelerating electrons by means of energy transfer
from the high power RF fields set up in the accelerating waveguide by microwave
radiation. These fields are generated either by a magnetron that serves as source and
amplifier of RF power or by a klystron which uses low power RF from a microwave
oscillator (RF driver) and amplifies it into high power RF field. Both magnetron
and klystron are devices that rely on electron deceleration in vacuum for production
of the high power RF fields required for electron acceleration in the accelerating
waveguide.

(5) Electron gun serves as the electron injection system producing low energy
electrons and injecting them into the accelerating waveguide. The electron gun is a
simple electrostatic electron accelerator, thermionically releasing electrons from a
heated cathode and accelerating them toward the anode. Two types of electron gun
are in use: (i) diode-type gun has only two electrodes: cathode and anode and (ii)
triode-type gun has a grid electrode in addition to cathode and anode. In a diode
gun the pulsed electron injection into the accelerating waveguide is controlled with
pulsed cathode voltage while in a triode gun the pulsed emission of electrons is
controlled with appropriate grid potential. Typical gun voltage on both gun types
is −25 kV on the cathode with a grounded anode. The gun on this diagram is a
triode-type gun, since it incorporates a grid.

(6) Acceleration waveguide provides the mechanism for electron acceleration in
a linac. It is a hollow evacuated (∼10−6 tor) copper cylinder loaded with periodic
copper disks (irises) with a hole in the center. The disks divide the waveguide into a
series of cylindrical cavities that form the basic structure of the acceleration waveg-
uide in a linac. The role of the cavities is: (i) to slow down the phase velocity of
the microwaves in the waveguide to allow electrons to follow the wave during the
acceleration process, (ii) to couple and distribute microwave power between adja-
cent cavities, and (iii) to provide a suitable electric field pattern for acceleration of
electrons.

Two types of acceleration waveguide have been developed for acceleration of
electrons: travelling wave structure and standing wave structure. In the travelling
wave structure the microwaves enter the waveguide on the gun side and propagate
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toward the high-energy end of the waveguide where they are either absorbed without
any reflection or exit the waveguide to be absorbed in a resistive load of fed back
to the input end of the accelerating structure. In the standing wave structure, each
end of the acceleration waveguide is terminated with a conducting disk to reflect the
microwave power with a π/2 phase change, resulting in a buildup of standing waves
in the waveguide.

Most medical linacs operate in the S band frequency range at 2856 MHz where
typical accelerating cavities are about 10 cm in diameter and 2.5 cm to 5 cm in
length. Typical energy gain in the acceleration waveguide is about 1 MeV per cav-
ity. The length of the acceleration waveguide depends on the final electron kinetic
energy and the type of waveguide (travelling type is about twice as long as the
standing waveguide for the same final energy) and ranges from ∼30 cm at 4 MeV
(standing wave) to ∼150 cm at 10 MeV (travelling wave).

(7) Gas pressure system is filled with a dielectric gas used to pressurize the uni-
form waveguides that transfer the microwave power from the RF power generation
system into the accelerating waveguide. While accelerating waveguides must be
evacuated for acceleration of electrons, uniform waveguides that are used for effi-
cient transmission of microwave power can do so either in vacuum or at elevated
dielectric gas pressure. Since keeping high vacuum in a uniform waveguide is much
more difficult than keeping elevated gas pressure, it is standard procedure to fill the
microwave transmission lines (uniform waveguides) with a suitable dielectric gas
at elevated pressure. Most common gas used for this purpose is sulfur-hexafluoride
(SF6) at double the atmospheric pressure.

(8) Water-cooling system uses cooling water circulating through a heat ex-
changer for cooling of linac components that heat up during the use of the linac.
These are: (i) RF power generating system, (ii) Circulator and RF load, (iii) Pulse
transformer in the modulator, (iv) Accelerating waveguide, (v) Bending magnets in
the beam transport system, and (vi) Bremsstrahlung target when linac operates in
the clinical x-ray mode.

(9) Vacuum system incorporating an ion pump to maintain high operating vac-
uum in all linac systems transmitting electrons in the electron acceleration process:
(i) injection system, (ii) electron acceleration system, and (iii) electron beam trans-
port system. The ion pump operates as a cold cathode discharge tube and provides
the high vacuum required for unimpeded motion of the electron pencil beam from
the electron gun through the accelerating waveguide and beam transport system to-
ward the bremsstrahlung target in clinical x-ray mode or exit window in clinical
electron mode.

(10) Quadrupole bending magnet provides 270◦ bending of the pulsed electron
pencil beam and this is the most common of several possible approaches to electron
beam bending in medical linacs exceeding 6 MeV in the final kinetic energy of the
electron. The 270◦ bending system is achromatic and provides electrons with a long
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exposure to the magnetic field. It also refocuses the electron spectral spread and di-
rectional spread, and provides a small focal spot provided that the bremsstrahlung
target is placed into the bending magnet focus. One drawback of the 270◦ bending
magnet compared to a 90◦ bending magnet is that the 270◦ bending magnet is sig-
nificantly bulkier, requiring more space and an increase in the height of the linac
isocenter.

(11) Electron beam transport system is used to transfer the pulsed elec-
tron pencil beam from the high-energy end of the accelerating waveguide to the
bremsstrahlung target where x rays are produced or to the beryllium exit window
where electron pencil beam exits the vacuum and proceeds in air toward the electron
beam scattering foil.

(12) Linac head contains all components that are used to produce clinical x-ray
beams and clinical electron beams for radiotherapy, such as bremsstrahlung target
and flattening filter, electron scattering foils, three types of collimator: primary, sec-
ondary (upper and lower jaws, and multi-leaf), dual ionization chambers, and a few
auxiliary devices, such as field size readout, field defining light, and range finder
helping in patient set up in preparation for radiation treatment.

(13) Motorized patient support assembly (“treatment couch” in short) is used to
bring the patient into proper position for radiation treatment using three translational
motions (height, transverse, and longitudinal) as well as rotational motion about the
vertical central beam axis.

(14) Circulator (also called isolator) is an important component in transmission
of microwave power from the RF generator to the accelerating waveguide. It is a
three-port passive device with peculiar RF transmission properties that can be illus-
trated as follows: RF entering at port 1 exits at port 2; RF entering at port 2 exits at
port 3; and RF entering at port 3 exits at port 1. Thus, connecting RF power from the
RF power generator to port 1, connecting port 2 to accelerating waveguide, and con-
necting port 3 to a microwave load (15) will transmit RF power without impediment
from the RF generator to the accelerating waveguide but will send the RF power
reflected from the accelerating waveguide directly into the RF load where it will be
fully absorbed. Since the cathodes of magnetrons and klystrons are very sensitive
to reflected RF power, we note that the circulator protects the RF generator from
adverse effects of the RF power reflected from the accelerating waveguide.

(15) RF load is connected to the circulator to absorb the RF power reflected from
the accelerating waveguide thereby protecting the RF power source from damage
that would be inflicted by reflected RF power. It is made of ferrite, a special ceramic
mixed with iron to give it magnetic properties useful in absorbing the RF power. To
dissipate the absorbed RF power the circulator is also connected to the water-cooling
system (8).
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MINOR COMPONENTS of a clinical linac are as follows:

(21) Heated cathode is a component of the diode-type and triode-type electron
gun. It is made of tungsten and heated to a high temperature for thermionic emission
of electrons. Typical voltage on the cathode is at −25 kV, pulsed in diode-type
electron guns and held at constant potential in triode-type electron guns.

(22) Grid is the extra electrode of the triode-type electron gun. The flow of elec-
trons in this type of gun is controlled with voltage difference between the cathode
(−25 kV) and the grid (±∼200 V) with respect to the cathode). When the grid is
more negative than the cathode, no electron current is flowing; when the grid is less
negative than the grid, the electron current is flowing.

(23) Anode of the diode-type and triode-type electron gun is perforated so that
electrons generated by the cathode can pass through on their way into the accelerat-
ing waveguide. The anode is kept at ground potential.

(24) Steering coil keeps the accelerated electron pencil beam as close as possible
to the axis of the cylindrical accelerating waveguide and steer the beam toward
the opening which connects the accelerating waveguide with the with the beam
transport system or directly onto the bremsstrahlung target in low-energy straight-
through linacs.

(25), (26), and (27) Steering coil: see (24).

(28) Ceramic window separates the evacuated accelerating waveguide from the
pressurized RF transmission waveguide. The window is transparent to microwaves
and made of strong dielectric materials, such as ceramic or quartz, to withstand the
pressure difference of ∼200 kPa.

(29) Focusing coil is used for focusing the accelerated electron pencil beam in or-
der to minimize the beam divergence and cross section. The beam divergence results
from a small radial component of the electric field in the accelerating waveguide as
well as from the repulsion among electrons in the pencil beam. Focusing solenoid
coils are coaxial with the accelerating waveguide.

(30) Focusing coil: see (29).

(31) Pulsed electron pencil beam originates in the heated cathode of the electron
gun, is accelerated in the accelerating waveguide, and enters the beam transport
system.

(32) Energy slits are placed into the bending magnet to remove from the pencil
beam the electrons that are not within ±5 % of the nominal electron beam energy.
The bending magnet separates electrons according to their energy by bending more
energetic electrons less and less energetic electrons more than electrons with nom-
inal energy. Energy slits pass electrons with energy within the ±5 % window of
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nominal energy and absorb electrons with higher and lower energy. The electrons
that do not pass through the window, of course, create unwanted bremsstrahlung ra-
diation in their interaction with the energy slit and contribute to the leakage radiation
produced by the linac.

(33) Removable bremsstrahlung thick target is used to produce clinical
bremsstrahlung x rays from the electron pencil beam. To ensure that no electrons
can traverse the bremsstrahlung target, the target thickness must be about 10 %
larger than the range of electrons in the target material for kinetic energy equal to
nominal kinetic energy of pencil beam electrons. It is made of (i) as low as practi-
cally possible atomic number material for optimum x-ray production in the forward
direction and (ii) as high mass density as possible to minimize the required target
thickness. It turns out that copper is a material that meets reasonably well both the
low atomic number (Z = 29) requirement and the high density (ρ = 8.9 g/cm3)
requirement and is now commonly used as target material in high energy clinical
linacs.

(34) Beryllium exit window is traversed by the electron pencil beam as it exits
the evacuated beam transport system on its way to the scattering foils and it is also
traversed by the forward-peaked bremsstrahlung x-ray beam before it passes through
the flattening filter. To affect as little as possible both the electron pencil beam as
well as the bremsstrahlung x-ray beam, the exit window is made of beryllium that
is a metal with the lowest atomic number (Z = 4) and excellent strength. At first
glance one may speculate that, with the low Z of 4, beryllium would also be an
excellent bremsstrahlung target material; however, beryllium has a low mass density
of 1.85 g/cm3 and this excludes it from candidacy for bremsstrahlung target.

(35) Primary collimator defines the maximum circular x-ray field size available
from the linac. The radius of this field is of the order of 30 cm at 100 cm from the
bremsstrahlung target.

(36) Flattening filter is used to produce a flat clinical beam from the primary
forward-peaked x-ray beam generated in the bremsstrahlung target. The choice of
material for flattening filter as far as atomic number Z is concerned is, similar to
bremsstrahlung targets, as low as possible. The problem again is the density of the
material because low Z materials usually also have low mass density and in order
to conserve space in the linac head one wishes to have a flattening filter of high
mass density to minimize its height. Copper again seems to be a good compromise
between the two contradictory requirements.

(37) Dose monitoring system of a medical linac is based on two independent
transmission ionization chambers permanently imbedded into the linac clinical x-
ray and electron beams. To avoid fluctuations in measuring signal with ambient
temperature, pressure, and humidity the two ionization chambers are also usually
permanently sealed with a given mass of air as the sensitive dose-measuring ma-
terial. For patient safety two ionization chambers are used, so that if the primary
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chamber fails to turn the beam off, the secondary chamber will do so with minimal
delay to ensure that the patient is not significantly overexposed to radiation.

(38) Secondary collimator—adjustable upper jaws consist of two indepen-
dent jaws that define radiation field widths from 0 to 40 cm at 100 cm from the
bremsstrahlung target. Note: the combination of the upper and lower set of jaws that
are perpendicular to each other defines the secondary collimator system and pro-
duces radiation fields from 0×0 to 40×40 cm2 at 100 cm from the bremsstrahlung
target.

(39) Secondary collimator—adjustable lower jaws consist of two independent
jaws that define radiation field lengths from 0 to 40 cm at 100 cm from the
bremsstrahlung target. Note: the combination of the upper and lower set of jaws that
are perpendicular to each other defines the secondary collimator system and pro-
duces radiation fields from 0×0 to 40×40 cm2 at 100 cm from the bremsstrahlung
target.

(40) Central axis of clinical x-ray beams as well as clinical electron beams. This
line also defines the rotation axis of the linac head.

(41) Linac isocenter is a point in the linac treatment room at which three axes
defined for an ideal clinical linac intersect. The three axes are: (i) Gantry rotation
axis, (ii) Collimator rotation axis coinciding with the clinical beam central axis (for
x-ray beams as well as for electron beams), and (iii) Couch rotation axis. Moreover,
the mechanical isocenter as well as the radiation isocenter are expected to coincide.

The practical clinical situation is much more complicated, since it is impossible
to manufacture, install, and maintain a clinical linac with an infinitesimally small
isocenter point. In addition, the mechanical and radiation isocenter do not necessar-
ily agree. Generally, the three axes do not intersect for all possible orientations of the
linac gantry, collimator, and couch because of the excessive weight of linac compo-
nents; rather, the three axes define a sphere in space that the three axes intersect for
all possible positions of the gantry, collimator, and couch. For general radiotherapy
the diameter of this sphere must be smaller than 2 mm and the center-of-mass of this
sphere is defined as the radiation isocenter. This stringent specification is difficult to
attain and even its verification is not a trivial process.

(42) Couch rotation axis defines the vertical axis in space about which the couch
(patient support assembly) rotates. For the linac gantry pointing vertically down or
vertically up, the couch rotation axis should coincide with the collimator rotation
axis as well as with the central axes of clinical x-ray beams and clinical electron
beams.

(43) Ceramic window: separates the klystron from the pressurized waveguide;
see (28).
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(b) Figure 14.8 depicts a schematic diagram of a typical medical linac and allows
us to answer the four questions as follows:

(1) Clinical linac depicted in Fig. 14.8 is most likely a linac providing two clinical
x-ray energies as well as several clinical electron beam energies in the range from
4 MeV to 20 MeV. We reach this conclusion based on the following features evident
on the schematic diagram:

(i) The electron pencil beam is transferred from the acceleration waveguide to
the bremsstrahlung target through a beam transport system. This feature is
used in high-energy linacs; “straight-through” low-energy linacs (4 MV and
6 MV) are much simpler (and therefore cheaper) incorporating a permanently
embedded thick target at the high-energy end of the acceleration waveguide
without employing a beam transport system with bending magnet and energy
slits and without offering a clinical electron beam mode.

(ii) The diagram shows two thick bremsstrahlung targets (33) with the thicker
target in the beam. We thus conclude that the linac is a high-energy machine
providing two clinical x-ray energies, most likely at low energy of 6 MV and
at high energy around 18 MV.

(iii) Since the bremsstrahlung targets are movable, we assume that an electron
clinical mode is also available on the linac. In electron beam mode both the
target and flattening filter are moved out of pencil beam’s path and a scatter-
ing foil is placed into the pencil electron beam to produce a clinically useful
large field electron beam.

(2) Of the two possible clinical modes the diagram represents the clinical x-ray
mode, since it shows a bremsstrahlung target in the path of the pulsed electron pencil
beam and it also shows a flattening filter on the central axis of the clinical beam.

(3) Of the two possible electron gun types (diode and triode) the diagram shows a
triode gun that incorporates a grid electrode for control of the flow of electrons from
the heated cathode to the grounded perforated anode.

(4) Of the two possible RF generator types (magnetron and klystron) the diagram
shows a klystron type RF generator, since it incorporates an RF driver indicating that
the generator has a separate RF source (RF driver) that sends a low-power signal for
amplification by the klystron.

(c) Order of magnitude for selected clinical linac parameters:

(1) Peak pencil beam current for clinical x-ray mode: IP ≈ 50 mA.
(2) Mean pencil beam current for clinical x-ray mode: ĪX ≈ 50 µA.
(3) Mean beam current for clinical electron mode: Īe ≈ 0.01ĪX.
(4) Duty cycle and pulse repetition rate: δ ≈ 10−3 and ρ = 100 s−1 = 100 pps,

respectively.
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(5) Peak modulator current and voltage: IP,mod ≈ 100 A and UP,mod ≈ 100 kV,
respectively.

(6) Radiofrequency of operation: standard linac at 2856 MHz, miniature linac at
∼104 MHz.

(7) Beam current pulse width: τ ≈ 2 µs.



AMain Attributes of Nuclides Presented
in This Book

Data given in Table A.1 can be used to determine the various decay energies for the
specific radioactive decay examples as well as for the nuclear activation examples
presented in this book. M stands for nuclear rest mass; M stands for atomic rest
mass. The data were obtained as follows:

(1) Data for atomic masses M were obtained from the NIST and are given in
unified atomic mass units u.

(2) Rest mass of the protonmp, neutronmn, electronme, and of the unified atomic
mass unit u are as follows:

mu = 1.672621637×10−27 kg = 1.007276467 u = 938.272013 MeV/c2

(A.1)

mn = 1.674927211×10−27 kg = 1.008664916 u = 939.565346 MeV/c2

(A.2)

me = 9.109382215×10−31 kg = 5.485799094×10−4 u

= 0.510998910 MeV/c2 (A.3)

1 u = 1.660538782×10−27 kg = 931.494028 MeV/c2 (A.4)

(3) For a given nuclide, its nuclear rest energy was determined by subtracting
the rest energy of all atomic orbital electrons M from the atomic rest energy
M (u)c2 as follows

Mc2 = M (u)c2 −Zmec
2 = M (u)×931.494028 MeV/u −Z×0.510999 MeV

(A.5)
The binding energy of orbital electrons to the nucleus is ignored in (A.5).

(4) The nuclear binding energy EB for a given nuclide was determined using the
mass deficit equation given in (T1.25) to get

EB = Zmpc
2 + (A−Z)mnc

2 −Mc2 (A.6)

with Mc2 given in (A.5) and the rest energy of proton, neutron, and electron
given in (A.1), (A.2), and (A.3) respectively.

(5) For a given nuclide the binding energy per nucleon EB/A is calculated by
dividing the binding energy EB of (A.6) with the number of nucleons equal to
the atomic mass number A of a given nuclide.
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Table A.1 Main attributes of nuclides presented in this book (in the entry for half-life: a = year,
d = day, h = hour, min = minute, s = second)

Element and its
nuclides

Z A Atomic
mass M (u)

Nuclear rest
energyMc2

(MeV)

Binding
energy EB
(MeV)

EB
nucleon
( MeV

nucleon )
Half-life t1/2

Hydrogen H 1 1 1.007825 938.2720 – – Stable

Deuterium D 1 2 2.014102 1875.6130 2.2244 1.1122 Stable

Tritium T 1 3 3.016049 2808.9206 8.4821 2.8274 12.3 a

Helium He 2 3 3.016029 2808.3910 7.7184 2.5728 Stable

He 2 4 4.002603 3727.3788 28.2959 7.0740 Stable

He 2 5 5.012220 4667.8310 27.4091 5.4818 8×10−22 s

He 2 6 6.018889 5605.5372 29.2682 4.8780 0.801 s

Lithium Li 3 5 5.012540 4667.6181 26.3287 5.2657 10−21 s

Li 3 6 6.015123 5601.5182 31.9939 5.3323 Stable

Li 3 7 7.016004 6533.8328 39.2446 5.6064 Stable

Beryllium Be 4 7 7.016929 6534.1835 37.6006 5.3715 53 d

Be 4 8 8.005305 7454.8498 56.4996 7.0625 8.19×10−17 s

Be 4 9 9.012182 8392.7497 58.1651 6.4628 Stable

Be 4 12 12.026921 11200.9611 68.6497 5.7208 21.49 ms

Be 4 13 13.035691 12140.6243 68.5518 5.2732 2.7×10−21 s

Boron B 5 9 9.013329 8393.3071 56.3143 6.2571 8.5×10−19 s

B 5 10 10.012937 9324.4360 64.7508 6.4751 Stable

B 5 11 11.009305 10252.5469 76.2053 6.9278 Stable

Carbon C 6 11 11.011434 10254.0190 73.4398 6.6763 20.33 min

C 6 12 12.000000 11174.8623 92.1618 7.6802 Stable

C 6 13 13.003355 12109.4815 97.1080 7.4698 Stable

C 6 14 14.003242 13040.8703 105.2845 7.5203 5730 a

Nitrogen N 7 13 13.005739 12111.1912 94.1050 7.2388 10 min

N 7 14 14.003074 13040.2028 104.6587 7.4756 Stable

N 7 15 15.000109 13968.9350 115.4919 7.6995 Stable

N 7 17 17.008450 15839.6935 123.8646 7.2862 4.173 s

Oxygen O 8 15 15.003066 13971.1784 111.9551 7.4637 122.24 s

O 8 16 15.994915 14895.0798 127.6191 7.9762 Stable

O 8 17 16.999132 15830.5023 131.7624 7.7507 Stable

O 8 18 17.999160 16762.0221 139.8075 7.7671 Stable

Fluorine F 9 18 18.000938 16763.1673 137.3690 7.6316 1.83 h

F 9 19 18.998403 17692.3009 147.8013 7.7790 Stable

Neon Ne 10 20 19.992440 18617.7285 160.6451 8.0323 Stable

Aluminum Al 13 27 26.981539 25126.4995 224.9516 8.3315 Stable

Phosphorus P 15 30 29.978314 27916.9555 250.6049 8.3535 2.498 min

Chromium Cr 24 43 42.997710 40039.8461 330.4238 7.6843 21 ms
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Table A.1 (Continued)

Element and its
nuclides

Z A Atomic
mass M (u)

Nuclear rest
energyMc2

(MeV)

Binding
energy EB
(MeV)

EB
nucleon
( MeV

nucleon )
Half-life t1/2

Manganese Mn 25 44 44.006870 40979.3616 329.1803 7.4814 0.1 µs

Mn 25 45 44.994513 41899.3452 348.7621 7.7503 70 ns

Iron Fe 26 45 45.014560 41917.5078 329.3061 7.3179 0.35 µs

Cobalt Co 27 57 56.936291 53022.0207 498.2859 8.7419 271.736 d

Co 27 59 58.933200 54882.1269 517.3085 8.7679 Stable

Co 27 60 59.933822 55814.2003 524.8005 8.7467 5.26 a

Nickel Ni 28 60 59.930791 55810.8659 526.8415 8.7807 Stable

Ni 28 63 62.929669 58604.3058 552.0998 8.7635 100.17 a

Krypton Kr 36 82 81.913484 76283.5252 714.2732 8.7106 Stable

Kr 36 89 88.917632 82807.8494 766.9094 8.6170 3.15 min

Kr 36 91 90.923451 84676.2538 777.6357 8.5454 8.57 min

Kr 36 92 91.926156 85610.2731 783.1817 8.5129 1.84 s

Kr 36 94 93.934363 87480.9176 791.6680 8.4220 210 ms

Rubidium Rb 37 82 81.918209 76287.4155 709.0895 8.6474 1.2575 min

Rb 37 90 89.914802 83736.1973 776.8335 8.6315 2.633 min

Rb 37 96 95.934270 89343.2988 807.1242 8.4075 203 ms

Strontium Sr 38 90 89.907738 83729.1065 782.6310 8.6959 28.808 a

Sr 38 94 93.915361 87462.1839 807.8150 8.5938 1.255 min

Zirconium Zr 40 96 95.908273 89317.5477 828.9953 8.6354 Stable

Molybdenum Mo 42 95 94.905842 88382.7670 821.6240 8.6487 Stable

Mo 42 98 97.905408 91176.8409 846.2430 8.6351 Stable

Mo 42 99 98.907711 92110.4849 852.1677 8.6078 65.92 h

Mo 42 100 99.907478 93041.7604 860.4575 8.6046 Stable

Technetium Tc 43 99 98.906255 92108.6129 852.7430 8.6136 2.11×105 a

Cadmium Cd 48 113 112.904402 105145.2523 963.5555 8.5270 Stable

Cd 48 114 113.903359 106075.7748 972.5984 8.5316 Stable

Iodine I 53 125 124.904210 116320.4427 1056.6789 8.4534 59.407 d

I 53 127 126.904473 118183.6758 1072.5765 8.4455 Stable

I 53 131 130.906125 121911.1907 1103.3230 8.4223 8.02 h

Xenon Xe 54 131 130.905082 121909.7082 1103.5122 8.4238 Stable

Xe 54 140 139.921641 130308.7287 1160.7287 8.2909 13.6 s

Cesium Cs 55 137 136.907084 127500.0262 1149.2929 8.3890 30.2 a

Cs 55 138 137.911017 128435.1888 1153.7002 8.3602 33.42 min

Cs 55 142 141.924299 132173.5374 1173.6131 8.2649 1.689 s

Barium Ba 56 137 136.905821 127498.3387 1149.6870 8.3919 Stable

Ba 56 139 138.908841 129364.1457 1163.0154 8.3670 1.3861h

Ba 56 141 140.914412 131232.3218 1173.9700 8.3260 18.27 min

Ba 56 142 141.916454 132165.7185 1180.1387 8.3108 10.6 min

Ba 56 144 143.922951 134034.7607 1190.2273 8.2655 11.5 s
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Table A.1 (Continued)

Element and its
nuclides

Z A Atomic
mass M (u)

Nuclear rest
energyMc2

(MeV)

Binding
energy EB
(MeV)

EB
nucleon
( MeV

nucleon )
Half-life t1/2

Lanthanum La 57 139 138.906353 129361.3169 1164.5508 8.3781 Stable

Samarium Sm 62 152 151.919732 141480.6412 1253.1048 8.2441 Stable

Europium Eu 63 151 150.919850 140548.7460 1244.1412 8.2393 ≥1.7×1018 a

Eu 63 152 151.921745 141482.0053 1250.4474 8.2266 13.54 a

Eu 63 153 152.921230 142413.0196 1258.9984 8.2287 Stable

Gadolinium Gd 64 152 151.919791 141479.6741 1251.4852 8.2335 1.08×1014 a

Osmium Os 76 192 191.961479 178772.1354 1526.1178 7.9485 Stable

Iridium Ir 77 191 190.960591 177839.3032 1518.0913 7.9481 Stable

Ir 77 192 191.962602 178772.6704 1524.2894 7.9390 73.8 d

Ir 77 193 192.962924 179704.4644 1532.0607 7.9381 Stable

Platinum Pt 78 192 191.961035 178770.6998 1524.9667 7.9425 Stable

Gold Au 79 197 196.966552 183432.7980 1559.4019 7.9157 Stable

Au 79 198 197.968242 184365.8743 1565.8975 7.9090 2.695 d

Thallium Tl 81 208 207.982019 193692.6254 1632.2134 7.8472 3.05 min

Lead Pb 82 205 204.974482 190890.6040 1614.2387 7.8743 1.73×107 a

Pb 82 206 205.974465 191822.0821 1622.3258 7.8754 Stable

Pb 82 207 206.975881 192754.8952 1629.0781 7.8699 Stable

Pb 82 208 207.976636 193687.0925 1636.4462 7.8675 Stable

Pb 82 212 211.991898 197413.9072 1667.8998 7.8675 Stable

Bismuth Bi 83 209 208.980383 194621.5658 1640.2449 7.8481 Stable

Bi 83 212 211.991286 197426.2120 1654.3017 7.8033 1.01 h

Polonium Po 84 210 209.982873 195554.8683 1645.2144 7.8344 15.6 min

Po 84 211 210.986653 196489.8918 1649.7632 7.8188 0.516 s

Po 84 216 216.001915 201161.5783 1675.9036 7.7588 0.145 s

Po 84 218 218.008973 203031.1325 1685.4730 7.7315 3.167 min

Radon Rn 86 220 220.011394 204895.3622 1697.7946 7.7172 0.9267 min

Rn 86 222 222.017578 206764.1021 1708.1781 7.6945 3.8 d

Radium Ra 88 224 224.020212 208628.5302 1720.3014 7.6799 3.657 d

Ra 88 226 226.025403 210496.3452 1731.6097 7.6620 1602 a

Ra 88 228 228.031070 212364.6211 1742.4720 7.6424 5.739 a

Actinium Ac 89 228 228.031021 212364.0642 1741.7356 7.6392 6.139 h

Thorium Th 90 228 228.028741 212361.4305 1743.0760 7.6451 1.91286 a

Th 90 232 232.038050 216096.0679 1766.6924 7.6151 1.4×1016 a

Uranium U 92 233 233.039628 217028.0099 1771.7291 7.6040 1.6×106 a

U 92 235 235.043923 218894.9987 1783.8710 7.5909 0.7×109 a

U 92 236 236.045568 219828.0342 1790.4086 7.5865 2.3×107 a

U 92 238 238.050783 221695.8708 1801.6949 7.5701 4.5×109 a

U 92 239 239.054288 222630.6297 1806.5013 7.5586 23.5 min

U 92 240 240.056592 223564.2793 1812.4250 7.5518 14.11 h
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Table A.1 (Continued)

Element and its
nuclides

Z A Atomic
mass M (u)

Nuclear rest
energyMc2

(MeV)

Binding
energy EB
(MeV)

EB
nucleon
( MeV

nucleon )
Half-life t1/2

Neptunium Np 93 239 239.052913 222628.8379 1806.9998 7.5607 2.35 d

Plutonium Pu 94 239 239.052157 222627.6227 1806.9217 7.5603 24×103 a

Pu 94 240 240.053814 223560.6690 1813.4486 7.5560 6567.1 a

Pu 94 244 244.064204 227296.3238 1836.0554 7.5248 7.93×107 a

Curium Cm 96 248 248.072349 231028.8557 1859.1901 7.4967 0.35×106 a

Californium Cf 98 252 252.081626 234762.4513 1881.2693 7.4654 2.65 a

Cf 98 256 256.093440 238499.4321 1902.5499 7.4318 12.3 min

Fermium Fm 100 256 256.091767 238496.8517 1902.5436 7.4318 158 min
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A

a year (annum)
a acceleration; radius of atom; center to vertex distance for a hyper-

bola; specific activity; year (annum)
aeff effective specific activity
aH radius of hydrogen atom
amax maximum specific activity
aSF specific activity for spontaneous fission decay
aTF Thomas-Fermi atomic radius
atheor theoretical specific activity
a0 Bohr radius (0.5292 Å)
aα specific activity for alpha decay
A ampère (SI unit of current)
A vector function
A atomic mass number; number of nucleons in atomic nucleus
Å angstrom (unit of length or distance: 10−10 m)
AR Richardson constant in thermionic emission
A2(z) spatial spread of electron beam
A activity
AD daughter activity
AP parent activity
Asat saturation activity
ASF activity for spontaneous fission decay

B

b barn (unit of area: 10−24 cm2)
B boron atom
b impact parameter
bmax maximum impact parameter
bmin minimum impact parameter
Bcol atomic stopping number in collision stopping power
B build-up factor in broad beam attenuation
B magnetic field
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Brad parameter in radiation stopping power
Bq becquerel (SI unit of activity)
B(x) build-up factor in broad beam attenuation

C

c speed of light in vacuum (3×108 m/s)
cn speed of light in medium
C coulomb (unit of electric charge); carbon atom
C constant, shell correction constant
Cf form factor constant
C0 collision stopping power constant (0.3071 MeV cm2/mol)
Cn Bateman constants in Bateman equations
Ci curie (old unit of activity: 3.7×1010 s−1 = 3.7×1010 Bq)
CK K-shell correction for stopping power
CM nuclear mass correction factor
CR recoil correction factor in Čerenkov radiation
Cυ electric field correction factor
Cα−N constant in α particle scattering
Cλ Wien displacement constant in wavelength domain

(2.898×10−3 m K)
Cν Wien displacement constant in frequency domain

(5.880×1010 s−1/K)

D

d day, deuteron
d distance; spacing; diameter
D daughter nucleus
D dose
Dα−N distance of closest approach (between α particle and nucleus)
Deff effective characteristic scattering distance
Dα−N effective characteristic scattering distance of closest approach be-

tween α particle and nucleus
De−a effective characteristic scattering distance between electron and

atom
De−e effective characteristic scattering distance between the electron and

orbital electron
De−N effective characteristic scattering distance between electron and nu-

cleus
Dex exit dose
Ds surface dose

E

e electron charge (1.6×10−19 C)
e electron
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e− electron
e+ positron
eV electron volt (unit of energy: 1.6×10−19 J)
eφ work function
E energy
E electric field
Eab energy absorbed
Ēab mean energy absorbed
EB binding energy
EB(K) binding energy of K shell electron
Ecol energy lost through collisions
ECoul Coulomb barrier energy
Ei initial total energy of charged particle
Ein electric field for incident radiation
EK kinetic energy
E′

K kinetic energy of scattered (recoil) particle
(EK)0 initial kinetic energy of charged particle
(EK)crit critical kinetic energy
(EK)D recoil kinetic energy of daughter
(EK)f final kinetic energy
(EK)i initial kinetic energy
(EK)IC kinetic energy of conversion electron
(EK)max maximum kinetic energy
(EK)n kinetic energy of incident neutron
(EK)thr threshold kinetic energy
En allowed energy state (eigenvalue)
E0 rest energy, incident energy
Eout electric field for scattered radiation
Ep barrier potential
ER Rydberg energy
Erad energy radiated by charged particle
ESR radiation loss per revolution in synchrotron
Ethr threshold energy
EPN

thr threshold photon energy of photonuclear interaction
Etr energy transferred
Ētr average (mean) energy transferred
(Ez)0 amplitude of electric field in uniform waveguide
Ev photon energy; energy of neutrino
E′
ν scattered photon energy

ĒPP
tr mean energy transferred from photons to charged particles in pair

production
ĒC

tr mean energy transferred from photons to electrons in Compton ef-
fect

ĒPE
tr mean energy transferred from photons to electrons in photoelectric

effect (photoeffect )
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Eβ energy of beta particle
(Eβ)max maximum total energy of electron or positron in β decay
Eγ energy of gamma photon
(Eγ )thr threshold energy for pair production

F

f function; theoretical activity fraction; branching fraction in radioac-
tive decay

fm femtometer (10−15 m)
f̄ab total mean energy absorption fraction
f̄C mean fraction of energy transferred from photons to electrons in

Compton effect
(f̄C)max maximum energy transfer fraction in Compton effect
fE Rydberg energy correction factor for finite nuclear mass
fi fraction of decay constant, branching ratio
fn fraction of spontaneous fission (SF) decay competing with α decay
f̄n mean number of neutrons produced by each spontaneous fission de-

cay
fP ratio of power radiated to power supplied
f̄PE mean fraction of energy transferred from photon to electrons in pho-

toelectric effect
f̄PP mean fraction of energy transferred from photons to charged parti-

cles in pair production
fr Bohr radius correction factor for finite nuclear mass
f̄R mean energy transfer fraction in Rayleigh scattering
frecoil nuclear recoil correction factor
fspin spin correction factor
fυ Bohr velocity correction factor for finite nuclear mass
f̄tr total mean energy transfer fraction
f (x) function of independent variable x
f (β) velocity function
F force
F fluorine atom
Fcoul Coulomb force
F(K) form factor
F(x,Z) atomic form factor
F(x,H) atomic form factor of hydrogen
FKN Klein-Nishina form factor
FL Lorentz force
Fn neutron kerma factor
F+ stopping power function for positrons
F− stopping power function for electrons
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G

g gram (unit of mass: 10−3 kg)
ḡ mean radiation fraction
ḡA mean in-flight radiation fraction
ḡB mean bremsstrahlung fraction
ḡi mean impulse ionization fraction
G granddaughter nucleus
G Newtonian gravitational constant
Gy gray (SI unit of kerma and dose: 1 J/kg)

H

h Planck constant (6.626×10−34 J s); hour
H hydrogen atom
H equivalent dose; Hamiltonian operator
Hz unit of frequency (s−1)
Hμ muonic hydrogen
H̄ antihydrogen
1H protium (hydrogen atom with one proton and one electron)
� reduced Planck constant (h/2π )

I

I iodine atom
I electric current; mean ionization/excitation potential; beam inten-

sity; radiation intensity
I0 initial photon beam intensity

J

j current density; quantum number in spin-orbit interaction; specific
ionization

J joule (SI unit of energy)
J (x) Bessel function (of first kind)

K

k wave number, free space wave number, Boltzmann constant
(0.8617×10−4 eV K−1); effective neutron multiplication factor in
fission chain reaction

kg wave guide wave number (propagation coefficient)
kg kilogram (SI unit of mass)
k(Kα) wave number for Kα transition
kVp kilovolt peak (in x-ray tubes)
k∗ ratio σP/σD in neutron activation
ki initial wave vector
kj final wave vector
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K n= 1 allowed shell (orbit) in an atom; Kelvin temperature
K kerma; capture constant for electron in disk-loaded waveguide
Kcol collision kerma
Krad radiation kerma
Kα characteristic electronic transition from L shell to K shell

L

l length
L n= 2 allowed shell (orbit) in an atom
L angular momentum; restriced stopping power
L angular momentum vector; distance vector
� orbital quantum number; distance; path length

M

m meter (SI unit of length or distance)
m mass; magnetic quantum number; decay factor in parent-daughter-

granddaughter decay; activation factor in nuclear activation; integer
in Bragg relationship; mean number of elastic scattering interactions
of neutron in moderator

me electron rest mass (0.5110 MeV/c2)
me− electron rest mass (0.5110 MeV/c2)
me+ positron rest mass (0.5110 MeV/c2)
m� magnetic quantum number
mn neutron rest mass (939.6 MeV/c2)
m0 rest mass of particle
mp proton rest mass (938.3 MeV/c2)
mα rest mass of α particle
m(υ) relativistic mass m at velocity υ
m∗ modified activation factor
M n= 3 allowed shell (orbit) in an atom
Mif matrix element
M mass of heavy nucleus
MeV mega eletronvolt (unit of energy: 106 eV)
MHz megahertz (unit of frequency: 106 Hz)
Mu muonium
MU monitor unit (in linacs)
MV megavoltage (in linacs)
M(Z,A) nuclear mass in atomic mass units
M(Z,A) atomic mass in atomic mass units

N

n neutron
nm nanometer (unit of length or distance: 10−9 m)
n principal quantum number
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n� number of atoms per volume
N n= 4 allowed shell (orbit) in an atom; nitrogen; number of neutrons

in nucleus
NPP nuclear pair production
N(x) Neumann function (Bessel function of second kind)
N number of radioactive nuclei; number of experiments in central limit

theorem; number or mono-energetic electrons in medium
N number of photons
Na number of atoms
NA Avogadro number (6.022×1023 atom/mol)
Ne number of electrons per volume; electron density
Nt/m number of specific nuclei per unit mass of tissue

O

O oxygen
OER oxygen enhancement ratio

P

p proton
p momentum
pe electron momentum
pν photon momentum
pi initial particle momentum vector
pf final particle momentum vector
P parent nucleus phosphorus atom
P power; probability
Pa Pascal (SI unit of pressure)
PE photoelectric
Pj probability for photoelectric effect, if it occurs, to occur in the j

subshell
PP pair production
P(x) probability density function
P(ε,Z) pair production function
Ps positronium
PK fraction of photoelectric interactions that occur in the K-shell
PRuth probability of Rutherford scattering

Q

q charge
Q charge; nuclear reaction energy; Q value
Q̄ expectation (mean) value of physical quantity Q
[Q] operator associated with the physical quantity Q
QEC decay energy (Q value) for electron capture
QIC decay energy (Q value) for internal conversion
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Qα decay energy (Q value) for alpha decay
Qβ decay energy (Q value) for beta decay

R

r radius vector; separation between two interacting particles
rad old unit of absorbed dose (100 erg/g); radian
rem old unit of equivalent dose
re classical electron radius (2.818 fm)
rn radius of the n-th allowed Bohr orbit
r̄ average electron radius
R Rayleigh scattering; roentgen (unit of exposure: 2.58×10−4 C/kgair)
RBE relative biological effectiveness
R radial wave function; radius (of nucleus); reaction rate; distance of

closest approach
R̄ mean range
RCSDA continuous slowing down approximation range
RH Rydberg constant for hydrogen (109678 cm−1)
Rmax maximum penetration depth
R0 nuclear radius constant (1.25 fm)
Rα−N distance between the α particle and nucleus in a non-direct hit col-

lision
R∞ Rydberg constant assuming an infinite nuclear mass (109 737 cm−1)
R50 depth of the 50 % percentage depth dose in water for electron beam

S

s second (unit of time)
s spin quantum number
sr steradian
S mass stopping power
S Poynting vector
S̄ mean total mass stopping power
Scol mass collision stopping power
S̄col mean collision stopping power
Sin Poynting vector of incident radiation
S̄in mean Poynting vector of incident radiation
Sout Poynting vector of scattered radiation
S̄out mean Poynting vector of scattered radiation
Srad mass radiation stopping power
Stot total mass stopping power
Sv sievert (SI unit of equivalent dose)
S(x,Z) incoherent scattering function

T

t triton
t time; thickness of absorber in mass scattering power
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tmax characteristic time in nuclear decay series or nuclear activation
t1/2 half-life
(t1/2)eff effective half-life
T temperature; linear scattering power; temporal function; period of

linac pulse; barrier transmission factor
Tα Gamow potential barrier transmission factor
T/ρ mass scattering power
Torr old unit of pressure (1 Torr ≈ 1 mm Hg)
TE transverse electric mode
TM transverse magnetic mode
TP triplet production

U

u unified atomic mass constant (931.5 MeV/c2)
u particle velocity after collision; EM field density
U uranium atom
U applied potential
UC Coulomb potential energy
U(z) barrier potential

V

υ velocity
υthr threshold velocity in Čerenkov effect
υen velocity of energy flow
υgr group velocity
υn velocity of electron in n-th allowed orbit
υpart particle velocity
υph phase velocity
υα velocity of α particle
V volt (unit of potential difference)
V volume; potential energy
VTF(r) Thomas-Fermi potential
VFNS potential energy for finite nuclear size
VYuk Yukawa potential
V volume

W

wC relative weight of Compton interaction
wPE relative weight of photoelectric interaction
wPP relative weight of pair production interaction
wR radiation weighting factor; relative weight of Rayleigh interaction
wC relative weight of Compton effect
wPE relative weight of photoelectric effect
wPP relative weight of pair production
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W transmitted particle in weak interaction; tungsten (wolfram) atom
Wel electric energy stored per unit length
Wif transition (reaction) rate
Wmag magnetic energy stored per unit length

X

x momentum transfer variable (x = sin(θ/2)/λ); normalized time
x = t/t1/2; horizontal axis (abscissa) in Cartesian coordinate sys-
tem; coordinate in Cartesian coordinate system; time normalized to
half-life of parent nuclide

xf particle final position
xmn zero of Bessel function
xi particle initial position
x0 target thickness
x̄ mean free path
(xD)max maximum normalized characteristic time of the daughter
x1/10 tenth value layer
x1/2 half-value layer
A
ZX nucleus with symbol X, atomic mass number A, and atomic num-

ber Z
X exposure
X0 target thickness; radiation length
X̄PE(j) mean fluorescence emission energy

Y

y vertical axis (ordinate) in Cartesian coordinate system; coordinate
in 3-dimensional Cartesian coordinate system

ymn zero of first derivative of Bessel function
Y radiation yield; activation yield
yP activity normalized to initial parent activity in nuclear series decay;

normalized parent activity
(yD)max maximum normalized daughter activity
YD radioactivation yield of the daughter
Y [(EK)0,Z] radiation yield

Z

z atomic number of the projectile; depth in phantom; axis in 3-
dimensional Cartesian coordinate system (applicate axis)

zmax depth of dose maximum
Z atomic number; number of protons in atomic nucleus; number of

electrons in atom
Zeff effective atomic number
Zo transmitted particle in weak interaction
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α

α fine structure constant (1/137); ratio σP/σD; nucleus of helium atom
(alpha particle)

αIC internal conversion factor

β

β normalized particle velocity (υ/c)
β+ beta plus particle (positron)
β− beta minus particle (electron)
β0 incident energy of electron entering waveguide

γ

γ photon originating in a nuclear transition; ratio of total to rest energy of
a particle; ratio of total to rest mass of a particle; Lorentz factor

δ

δ polarization (density effect) correction for stopping power; delta particle
(electron)

Δ energy threshold for restricted stopping power

ε

ε eccentricity of hyperbola; normalized photon energy; Planck energy
ε∗ ratio λ∗

D/λD
εo electric constant (8.85×10−12 A s/(V m)); electric permittivity of vac-

uum

θ

θ scattering angle for a single scattering event; scattering angle of photon;
scattering angle of projectile in projectile/target collision;

θcer Čerenkov characteristic angle
θmax characteristic angle in bremsstrahlung production; maximum scattering

angle
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θmin minimum scattering angle
θR characteristic angle for Rayleigh scattering
Θ scattering angle for multiple scattering
θ2 mean square of scattering angle
θ̄2 square of mean scattering angle√
Θ2 root mean square scattering angle

η

η pair production parameter; maximum energy transfer fraction in nu-
clear collision; energy boundary between hard and soft collision; flu-
orescence efficiency

η(EK) energy transfer fraction
ηβ correction factor for β decay

κ

κ linear attenuation coefficient for pair production
aκ atomic attenuation coefficient for pair production
κ/ρ mass attenuation coefficient for pair production

λ

λ wavelength; separation constant; decay constant; de Broglie wavelength
of particle

λC Compton wavelength
(λ)c cut-off wavelength in uniform wave guide
λD decay constant of daughter nuclide
λ∗

D modified decay constant
λmin Duane-Hunt short wavelength cut-off
λP decay constant of parent nuclide
Λ separation constant; mean free path of neutrons

μ

μ linear attenuation coefficient; reduced mass
μab linear energy absorption coefficient
μeff effective attenuation coefficient
μH reduced mass of hydrogen atom
μm mass attenuation coefficient
μ0 magnetic constant (4π×10−7 V s/(A m)); magnetic permeability of

vacuum
μtr linear energy transfer coefficient
μ/ρ mass attenuation coefficient
(μab/ρ) mass energy absorption coefficient
(μtr/ρ) mass energy transfer coefficient
aμ atomic attenuation coefficient
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eμ electronic attenuation coefficient
µm unit of length or distance (10−6 m)

ν

ν frequency
νeq photon frequency at which the atomic cross sections for Rayleigh scat-

tering and Compton scattering are equal
νe electronic neutrino
νcyc cyclotron frequency
νorb orbital frequency
νtrans transition frequency
νμ muonic neutrino

ξ

ξ ratio between daughter and parent nuclide activities at time t ; Thomas-
Fermi atomic radius constant; absorption edge parameter in photoelec-
tric effect

π

π pi meson (pion)
π+ positive pi meson (pion)
π− negative pi meson (pion)∏
i product of components i

ρ

ρ mass density; energy density
ρ(Ef) density of final states

σ

σ cross section; linear attenuation coefficient; standard deviation
σrad cross section for emission of bremsstrahlung
σC Compton linear cross section (attenuation coefficient)
σKN

C Klein-Nishina cross section for Compton effect
aσC atomic attenuation coefficient (cross section) for Compton effect
aσR atomic attenuation coefficient (cross section) for Rayleigh scattering
aσTh atomic attenuation coefficient (cross section) for Thomson scattering
eσTh Thomson electronic attenuation coefficient
eσC electronic attenuation coefficient for Compton effect
σD daughter cross section in particle radioactivation
σP parent cross section in particle radioactivation
σPN cross section for photonuclear interaction
σMott cross section for Mott scattering
σR Rayleigh cross section (linear attenuation coefficient)
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σRuth cross section for Rutherford scattering
σTh Thomson cross section (linear attenuation coefficient)
aσ atomic cross section (in cm2/atom)
eσ electronic cross section (in cm2/electron)
Σ macroscopic cross section of absorbing medium for neutrons∑
i sum of components i

τ

τ linear attenuation coefficient for photoelectric effect; normalized elec-
tron kinetic energy; mean (average) life; pulse width in linac pulse

aτ atomic attenuation coefficient for photoelectric effect
τ/ρ mass attenuation coefficient for photoelectric effect

φ

φ angle between radius vector and axis of symmetry on a hyperbola; recoil
angle of the target in projectile/target collision; neutron recoil angle in
elastic scattering on nucleus; recoil angle of the electron in Compton
scattering

ϕ particle fluence
ϕ̇ particle fluence rate

χ

χ homogeneity factor; energy independent momentum transfer function

ψ

ψ wavefunction (eigenfunction) depending on spatial coordinates; energy
fluence; polarization angle

Ψ wavefunction depending on spatial and temporal coordinates

ω

ω fluorescence yield; angular frequency
ωc cutoff angular frequency of waveguide
ωcyc cyclotron frequency
ωK fluorescence yield for K-shell transition
Ω solid angle



DElectronic Databases of Interest in Nuclear
Physics and Medical Physics

(1) Atomic Weights and Isotopic Compositions

Web Database Developers: J.S. Coursey, D.J. Schwab, J.J. Tsai, and
R.A. Dragoset

Atomic weights are available for elements 1 through 112, 114, and 116, and
isotopic compositions or abundances are given where appropriate.

http://www.nist.gov/pml/data/comp.cfm

(2) Bibliography of Photon Attenuation Measurements

Data compiler: J.H. Hubbell; Web Database Developers: J.S. Coursey,
J. Hwang, and D.S. Zucker

This bibliography contains papers (1907–1995) reporting absolute measure-
ments of photon (XUV, x-ray, gamma-ray, bremsstrahlung) total interaction
cross sections or attenuation coefficients for the elements and some com-
pounds used in a variety of medical, industrial, defense, and scientific appli-
cations. The energy range covered is from 10 eV to 13.5 GeV.

http://www.nist.gov/pml/data/photon_cs/index.cfm

(3) Elemental Data Index and Periodic Table of Elements

Web Database Developers: M.A. Zucker, A.R. Kishore, R. Sukumar, and
R.A. Dragoset

Elemental Data Index provides access to the holdings of NIST Physics Labo-
ratory online data organized by element. It is intended to simplify the process
of retrieving online scientific data for a specific element.

http://www.nist.gov/pml/data/edi.cfm

(4) Fundamental Physical Constants

The NIST Reference on Constants, Units, and Uncertainty.

www.physics.nist.gov/cuu/constants/

(5) Ground Levels and Ionization Energies for the Neutral Atoms

W.C. Martin, A. Musgrove, S. Kotochigova, and J.E. Sansonetti
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This table gives the principal ionization energies (in eV) for the neutral atoms
from hydrogen (Z = 1) through rutherfordium (Z = 104). The spectroscopy
notations for the electron configurations and term names for the ground lev-
els are also included.

http://www.nist.gov/pml/data/ion_energy.cfm

(6) International System of Units (SI)

The NIST Reference on Constants, Units, and Uncertainty

The SI system of units is founded on seven SI base units for seven base
quantities that are assumed to be mutually independent. The SI base units as
well as many examples of derived units are given.

www.physics.nist.gov/cuu/Units/units.html

(7) Periodic Table: Atomic Properties of the Elements

R.A. Dragoset, A. Musgrove, C.W. Clark, and W.C. Martin

A periodic table, containing NIST critically evaluated data on atomic prop-
erties of the elements was designed as a NIST handout for use at exhibitions
and trade shows. The publication of the handout coincided with NIST’s cen-
tennial celebration in 2001. One side of the handout (shown below) is avail-
able online in two formats (PDF & TIFF), and is suitable for high-resolution
color printing for desk or wall-chart display. [The other side of the handout
(available only in the PDF files) contains historical information.

http://www.nist.gov/pml/data/periodic.cfm

(8) Photon Cross Sections Database: XCOM

M.J. Berger, J.H. Hubbell, S.M. Seltzer, J.S. Coursey, and D.S. Zucker

A web database is provided which can be used to calculate photon cross
sections for scattering, photoelectric absorption and pair production, as well
as total attenuation coefficients, for any element, compound or mixture Z ≤
100 at energies from 1 keV to 100 GeV.

www.physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html

(9) Stopping-Power and Range Tables for Electrons, Protons, and Helium
Ions

M.J. Berger, J.S. Coursey, and M.A. Zucker

The databases ESTAR, PSTAR, and ASTAR calculate stopping-power and
range tables for electrons, protons, or helium ions, according to methods
described in ICRU Reports 37 and 49. Stopping-power and range tables can
be calculated for electrons in any user-specified material and for protons and
helium ions in 74 materials.

http://www.nist.gov/pml/data/star/index.cfm

http://www.nist.gov/pml/data/ion_energy.cfm
http://www.physics.nist.gov/cuu/Units/units.html
http://www.nist.gov/pml/data/periodic.cfm
http://www.physics.nist.gov/PhysRefData/Xcom/Text/XCOM.html
http://www.nist.gov/pml/data/star/index.cfm
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(10) Tables of X-Ray Mass Attenuation Coefficients and Mass Energy-
Absorption Coefficients from 1 keV to 20 MeV for Elements Z = 1 to
92 and 48 Additional Substances of Dosimetric Interest

J.H. Hubbell and S.M. Seltzer

Tables and graphs of the photon mass attenuation coefficient μ/ρ and the
mass energy-absorption coefficient μen/ρ are presented for all elements
from Z = 1 to Z = 92, and for 48 compounds and mixtures of radiologi-
cal interest.

http://www.nist.gov/pml/data/xraycoef/index.cfm

(11) X-Ray Form Factor, Attenuation, and Scattering Tables

C.T. Chantler, K. Olsen, R.A. Dragoset, A.R. Kishore, S.A. Kotochigova, and
D.S. Zucker

Detailed Tabulation of Atomic Form Factors, Photoelectric Absorption and
Scattering Cross Section, and Mass Attenuation Coefficients for Z from 1
to 92. The primary interactions of x-rays with isolated atoms from Z = 1
(hydrogen) to Z = 92 (uranium) are described and computed within a self-
consistent Dirac-Hartree-Fock framework. The results are provided over the
energy range from either 1 eV or 10 eV to 433 keV, depending on the atom.
Self-consistent values of the f 1 and f 2 components of the atomic scattering
factors are tabulated, together with the photoelectric attenuation coefficient
τ/ρ and the K-shell component τK/ρ, the scattering attenuation coefficient
σ/ρ (coh + inc), the mass attenuation coefficient μ/ρ, and the linear atten-
uation coefficient μ, as functions of energy and wavelength.

http://www.nist.gov/pml/data/ffast/index.cfm

(12) X-ray Transition Energies

R.D. Deslattes, E.G. Kessler Jr., P. Indelicato, L. de Billy, E. Lindroth, J. An-
ton, J.S. Coursey, D.J. Schwab, K. Olsen, and R.A. Dragoset

This X-ray transition table provides the energies and wavelengths for the K
and L transitions connecting energy levels having principal quantum num-
bers n = 1,2,3, and 4. The elements covered include Z = 10, neon to
Z = 100, fermium. There are two unique features of this database: (1) all
experimental values are on a scale consistent with the International Sys-
tem of measurement (the SI) and the numerical values are determined us-
ing constants from the Recommended Values of the Fundamental Physical
Constants: 1998 and (2) accurate theoretical estimates are included for all
transitions.

http://www.nist.gov/pml/data/xraytrans/index.cfm

http://www.nist.gov/pml/data/xraycoef/index.cfm
http://www.nist.gov/pml/data/ffast/index.cfm
http://www.nist.gov/pml/data/xraytrans/index.cfm
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(13) Fundamental Physical Constants

CODATA

CODATA, the Committee on Data for Science and Technology, is an in-
terdisciplinary scientific committee of the International Council for Science
(ICSU), which works to improve the quality, reliability, management and ac-
cessibility of data of importance to all fields of science and technology. The
CODATA committee was established in 1966 with its secretariat housed at
51, Boulevard de Montmorency, 75016 Paris, France. It provides scientists
and engineers with access to international data activities for increased aware-
ness, direct cooperation and new knowledge. The committee was established
to promote and encourage, on a world-wide basis, the compilation, evalua-
tion, and dissemination of reliable numerical data of importance to science
and technology.

www.codata.org

(14) Nuclear Energy Agency Data Bank

Organisation for Economic Cooperation and Development (OECD)

The nuclear energy agency data bank of the Organization for Economic Co-
operation and Development (OECD) maintains a nuclear database contain-
ing general information, evaluated nuclear reaction data, format manuals,
preprocessed reaction data, atomic masses, and computer codes.

www.nea.fr/html/databank/

(15) Mathematica

Wolfram MathWorld

Wolfram MathWorldTM is web’s most extensive mathematical resource, pro-
vided as a free service to the world’s mathematics and internet communities
as part of a commitment to education and educational outreach by Wolfram
Research, makers of Mathematica, an extensive technical and scientific soft-
ware. Assembled during the past decade by Eric W. Weisstein, MathWorld
emerged as a nexus of mathematical information in mathematics and educa-
tional communities. The technology behind MathWorld is heavily based on
Mathematica created by Stephen Wolfram.

mathworld.wolfram.com

(16) Nuclear Data

National Nuclear Data Center

National Nuclear Data Center (NNDC) of the Brookhaven National Labo-
ratory (BNL) in the USA developed a software product (NuDat 2) that al-
lows users to search and plot nuclear structure and nuclear decay data in-
teractively. The program provides an interface between web users and sev-
eral databases containing nuclear structure, nuclear decay and some neutron-
induced nuclear reaction information. Using NuDat 2, it is possible to search

http://www.codata.org
http://www.nea.fr/html/databank/
http://mathworld.wolfram.com
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for nuclear level properties (energy, half-life, spin-parity), gamma-ray infor-
mation (energy, intensity, multipolarity, coincidences), radiation information
following nuclear decay (energy, intensity, dose), and neutron-induced re-
action data from the BNL-325 book (thermal cross section and resonance
integral). The information provided by NuDat 2 can be seen in tables, level
schemes and an interactive chart of nuclei.

www.nndc.bnl.gov

(17) Nucleonica

European Commission: Joint Research Centre

Nucleonica is a new nuclear science web portal from the European Commis-
sion’s Joint Research Centre. The portal provides a customizable, integrated
environment and collaboration platform for the nuclear sciences using the
latest internet “Web 2.0” dynamic technology. It is aimed at professionals,
academics and students working with radionuclides in fields as diverse as
the life sciences, the earth sciences, and the more traditional disciplines such
as nuclear power, health physics and radiation protection, nuclear and radio-
chemistry, and astrophysics. It is also used as a knowledge management tool
to preserve nuclear knowledge built up over many decades by creating mod-
ern web-based versions of so-called legacy computer codes. Nucleonica also
publishes and distributes the Karlsruhe Nuklidkarte (Karlsruhe Chart of the
Nuclides).

www.nucleonica.net

http://www.nndc.bnl.gov
http://www.nucleonica.net
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Symbols
α alpha decay, 685
α decay, 748
α particle accelerator, 924
α particle scattering, 697
β+, 748
β particle energy spectra, 705
β− decay, 862
β+ decay, 727
β− beta decay, 685
β emission spectrum, 703
γ decay, 738
γ photon, 740
γ ray spectroscopy, 800

A
Absorption, 601
Absorption edge, 476, 481
Absorption edge parameter, 476
Absorption spectrum, 213
Accelerating electric field, 1042
Accelerating waveguide, 950, 951, 1086
Acceleration EM waveguide, 1024
Acceleration of electron, 942
Acceleration waveguide, 49, 942, 979, 999,

1008, 1015, 1028, 1030, 1077, 1081,
1092

Acceleration waveguide theory, 1008
Accelerator EM waveguide, 977
Accelerator-based neutron generator, 624
Acoustic waveguide, 944
Acoustic waves, 942
Actinide series, 632
Actinium series, 796, 802
Activation cross section, 938
Activation factor, 814, 819, 824, 841, 843, 849
Activation of iridium-191, 843
Activation of linac components, 1049
Activation of the daughter, 871
Activation reaction, 932
Activation time, 856, 879

Activity, 21, 638, 642
Activity of parent (Mo-99), 655
Activity of the daughter, 647, 649
Activity of the parent, 649
Activity ratio, 667
Adaptive radiotherapy (ART), 1077
Air-pressure system, 1082
Alpha decay, 694, 696, 737
Alpha decay line, 784
Alpha decay of radium-226, 101
Alpha decay tunneling, 98
Alpha particle, 18, 287, 360, 697
Alpha particle scattering, 120
Amorphous selenium, 1057
Ampère circuital law, 953
Ampère law, 108
Analog imaging techniques, 1046
Anatomic image, 931
Angular distribution of α particles, 122
Angular momentum, 311
Angular momentum of electron, 184
Annihilation, 727, 1051
Annihilation photon, 555
Annihilation quantum, 20, 496, 570, 576, 718,

727, 1051
Anthropogenic radionuclide, 803
Antihydrogen, 190, 203
Antineutrino, 705, 806
Arrhenius diagram, 93, 106
Arrhenius-type graph, 93
Artificial or induced radioactivity, 788, 798
Artificial radioactivity, 638, 788
Artificial radionuclide, 774
Atmospheric carbon, 796
Atomic attenuation coefficient, 388, 390, 394,

516, 532, 539, 559
Atomic cross section for Thomson scattering,

408
Atomic energy level, 187, 188, 210
Atomic energy level diagram, 181, 195, 197,

201, 202, 210, 213
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Atomic energy level diagram for hydrogen
atom, 207

Atomic energy level diagram for tungsten,
233, 240

Atomic energy levels of lead, 211
Atomic form factor, 442, 449, 459
Atomic form factor of hydrogen, 442, 445
Atomic mass, 30
Atomic mass data, 769
Atomic orbital electron, 695
Atomic polarization effects, 1049, 1051
Atomic radius, 33, 208, 222
Atomic rest energy, 932
Atomic rest energy MEu-151c

2 of Eu-151, 771
Atomic rest energy method, 697, 700, 715,

719, 721, 749, 752, 792, 909
Atomic shell vacancy, 226
Atomic stopping number, 315, 320, 324
Atomic structure, 24
Atomic volume, 208
Attenuation coefficient at absorption edge, 478
Attenuation of collimated neutron beam, 587
Attenuation of the neutron beam, 583
Auger effect, 228
Auger electron, 17, 226, 235, 237, 241, 380,

465, 520, 521, 556, 703, 704
Auger spectrometry, 1047
Average (mean) lifetime, 640

B
Backscattering, 410, 413
Bakelite, 548
Balmer, 214
Balmer line, 194, 196
Balmer photon, 195
Barrier penetration, 98
Barrier transmission coefficient, 102, 105
Basic Einstein relationship, 55
Basic physical quantities, 10
Bateman constants, 675
Bateman equation, 671, 675
Beam collimation system, 1082
Beam monitoring system, 1082
Beam quality, 379
Beam quality indices, 381
Beam quality specification, 381
Beam-forming component, 1079
Beam-forming components of medical linac,

1080
Becquerel (Bq), 638
Bell curve, 113
Beryllium exit window, 1083, 1096
Beryllium-9 target, 628
Bessel differential equation, 967

Bessel function, 991, 992
Bessel functions of the first kind, 967
Beta decay, 694, 703, 737
Beta decay category, 703
Beta minus decay, 694, 704, 708
Beta minus decay of Ir-192, 734
Beta particle, 17, 753
Beta plus (β+) decay, 694, 704, 717
Beta-delayed PE decay, 752
Betatron, 257, 380, 382, 978, 1029, 1044,

1046, 1049, 1050, 1061, 1075
Bethe equation, 314, 323, 332
Bhabha scattering, 118
Binary radiotherapy modality, 621
Binding effects of electrons, 448
Binding energy corrections, 449
Binding energy method, 273, 276, 499, 503,

504, 508, 622, 624, 629, 898, 927
Binding energy of the electron, 181, 183, 465
Binding energy per nucleon, 28, 30, 712, 770
Binding energy per nucleon for Eu-151, 772
Biological marker, 717
Bipartition angle, 475
Bismuth-212, 685
Blackbody emission, 41
Blackbody radiation, 36, 37
Blood irradiator, 738
Blood sugar concentration, 26
Blue shift, 68
Body composition activation analysis, 800
Bohr atom, 184, 188, 199, 201, 212
Bohr atomic model, 179
Bohr atomic theory, 215
Bohr orbit, 201
Bohr postulate, 187
Bohr radius, 87, 169, 209, 223, 449
Bohr radius constant, 4, 104, 187, 201, 443
Bohr theory, 190, 203, 216
Bohr theory for hydrogen atom, 189
Bohr theory of one-electron atom, 184
Bohr theory of one-electron atoms, 219
Boltzmann constant, 94
Born approximation, 168, 481
Born screening angle, 168, 174
Boron, 889
Boron neutron capture therapy, 582, 621, 885
Boron-10, 621, 909
Boron-11, 931
Boundary condition, 943, 945, 950, 954, 961
Boundary condition on electric field, 947
Boundary condition on magnetic field, 948
Brachytherapy, 582, 708, 731, 738, 799, 800,

879, 885, 891, 1046
Brackett, 214
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Bragg additivity rule, 317
Bragg angle, 76
Bragg diffraction, 75, 89
Bragg law, 88
Bragg peak, 327
Bragg reflection, 76, 77
Bragg relationship, 1047
Branching decay, 685
Branching fraction, 632, 685
Bremsstrahlung, 210, 249, 352, 566, 568, 574,

928, 1048, 1049, 1053, 1056, 1060,
1069, 1078, 1086

Bremsstrahlung beam, 384
Bremsstrahlung characteristic angle, 250
Bremsstrahlung cross section, 307
Bremsstrahlung intensity, 250
Bremsstrahlung loss, 171, 1070
Bremsstrahlung photon, 380
Bremsstrahlung production, 242, 254
Bremsstrahlung radiation, 246, 350, 377
Bremsstrahlung radiation loss, 1066
Bremsstrahlung spectrum, 380
Bremsstrahlung target, 1082
Bremsstrahlung x ray, 20, 377
Brillouin diagram, 1027
Brillouin zone, 1026
Broad beam geometry, 398
Broglie wavelength, 77
Brookhaven National Laboratory, 760, 938,

1065
Buildup factor, 398

C
Cadmium-113, 909
Californium, 632
Cancer diagnosis, 718
Capture condition, 1028, 1031, 1035
Capture constant of the electron, 1033
Capture reaction, 799
Carbon, 562, 903
Carbon dating, 795
Carbon dioxide, 797
Carbon ion, 360
Carbon nanotube, 1057
Carbon-11, 718, 721, 800, 931
Carbon-14, 795, 796, 801
Carrier-free radionuclide, 834
Categories of nuclear decay, 694
Cathode ray, 1053, 1058
Center C of the hyperbola, 129
Center-of-Mass (CM) frame, 281
Center-of-mass coordinate system, 630
Center-of-mass system, 490
Central axis, 1097

Central potential, 442
Ceramic window, 1095
Čerenkov angle, 259, 262
Čerenkov radiation, 258, 262, 1051
Cesium-137, 712, 737, 742, 775, 854
Chadwick nuclear reaction, 274
Chain reaction, 892, 901
Characteristic activation time, 857
Characteristic angle, 168, 169, 248, 254
Characteristic bremsstrahlung angle, 254
Characteristic energy, 269
Characteristic (fluorescence) photon, 235, 465,

520
Characteristic (fluorescence) radiation, 226
Characteristic (fluorescence) x rays, 20
Characteristic line, 216
Characteristic normalized time, 827
Characteristic photons, 210
Characteristic radiation, 241, 1048, 1060
Characteristic scattering distance, 165
Characteristic scattering distance for

electron–atom scattering, 168
Characteristic scattering distance for Moller

scattering, 167
Characteristic scattering distance for Mott

scattering, 167
Characteristic scattering distance for

Rutherford scattering, 167
Characteristic time, 647, 649, 651, 655, 656,

663, 877
Characteristic x ray, 380, 408, 703, 1049
Characteristic x-ray lines, 216, 218
Characteristic x-ray photons, 1056
Charge distribution of nuclei, 119
Charged particle activation, 931, 936
Charged particle Coulomb interaction, 227
Chart of nuclides, 759, 763, 780, 798
Chemical reaction, 901
Chemical separation of elements, 767
Chornobyl, Ukraine, 906
Circular accelerator, 1044, 1049, 1061
Circular electron accelerator, 1051
Circular uniform EM waveguide, 962
Circular waveguide, 951, 962
Circulator, 1094
Classical electron radius, 4
Classical Larmor expression, 179, 246
Classical particle, 66
Classical radius of the electron, 172
Classification diagram of particle accelerators,

1044
Classification of radiation, 14
Clinical beam, 1077
Clinical beam forming system, 1077
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Clinical electron beam, 1080, 1090
Clinical linac, 942
Clinical linear accelerator, 1035, 1075
Clinical neutron beam, 628
Clinical x-ray beam, 1080, 1090
Co-60 activation–decay, 868
Coaxial cable, 942
Cobalt teletherapy machine, 1014
Cobalt-60, 712, 737, 775, 835, 837, 854, 885
Cobalt-60 gamma source, 1014
Cobalt-60 teletherapy machine, 6, 382, 738,

1075
Coincidence detection, 718
Cold cathode, 1052, 1057
Cold neutron, 582
Collector plate, 220
Collision loss, 350, 380, 1051
Collision stopping power, 314, 319, 938
Collision stopping power constant, 315, 320,

332
Collision stopping power of water for proton,

321
Commissioning of nuclear reactor, 901
Complementarity principle, 88
Complete x-ray spectrum, 381
Composite decay curve, 682
Compound nucleus, 790, 896
Compton atomic attenuation coefficient, 535
Compton atomic cross section, 534
Compton cross section, 481
Compton differential atomic cross section, 449
Compton effect, 395, 419, 429, 431, 436, 513,

520, 523, 540, 544, 557, 562, 1050
Compton electronic cross section, 441, 448,

534
Compton electronic energy transfer cross

section, 441
Compton equation, 408
Compton graph, 439, 528, 542, 547, 560, 564
Compton interaction, 562
Compton Klein-Nishina coefficient, 535
Compton mean energy transfer fraction, 547
Compton recoil electron, 17
Compton scattering, 155, 227, 409, 416, 438,

516, 526, 532, 553, 568, 576
Compton scattering theory, 445
Compton wavelength, 4, 261, 408
Compton wavelength of electron, 410
Compton wavelength of proton, 410
Compton wavelength shift equation, 259
Computed radiography, 1057
Conditions for particle acceleration, 976
Conservation of angular momentum, 130, 144,

311

Conservation of atomic number, 897
Conservation of charge, 488
Conservation of energy, 120, 153, 204, 260,

269, 276, 281, 289, 409, 472, 494, 514,
699, 729

Conservation of energy in Compton effect, 425
Conservation of kinetic energy, 271, 289, 593
Conservation of momentum, 153, 260, 268,

270, 281, 284, 288, 430, 435, 488, 495,
497, 593, 729, 740, 913

Conservation of total energy, 259, 284, 430,
435, 475, 487, 496, 794, 913

Constant potential x-ray tube, 1087
Constituents of nuclides, 24
Control console, 1055
Control rod, 901, 909
Control unit, 1090, 1091
Conversion electron, 741
Coolant, 906
Coolidge tubes, 106
Coolidge x-ray tube, 1057, 1075
Core of transmission waveguide, 1024
Corpuscular nature, 88
Correction factor, 189
Correction factor for β decay, 708
Cosmic neutron, 582
Cosmic ray, 796
Cosmic x-ray source, 1048
Cosmogenic isotope of hydrogen, 801
Cosmogenic production of C-14, 801
Cosmogenic radionuclide, 795, 803
Coster-Kronig electron, 17, 226, 237
Coulomb barrier, 100, 279
Coulomb barrier constant, 280
Coulomb barrier energy, 277
Coulomb collision, 311, 380
Coulomb elastic scattering, 165
Coulomb electric field, 300
Coulomb electrostatic attraction, 178
Coulomb force, 129, 178, 279, 311
Coulomb interaction, 118, 119, 301, 309, 310,

377, 437, 555, 582, 935, 936, 1049,
1050

Coulomb law, 243
Coulomb nuclear excitation, 303
Coulomb point-source potential, 168
Coulomb potential, 99, 120
Coulomb potential energy, 100
Coulomb scattering, 118, 140, 166
Coulomb shielding, 149
Count rate, 798
Critical kinetic energy, 343, 347
Critical mass, 901
Crookes tube, 1051
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Crookes x-ray tube, 1052, 1075
Cross section, 388, 390, 601
Cross section for neutrons, 606
Cross section of a nuclear reaction, 805
Cross sections for Rutherford scattering, 145
Crystal diffraction experiment, 1053
CSDA range, 356, 360, 935
Curie (Ci), 639
Curl vector operator, 954
Curve of stability, 760, 766
Cutoff angle, 149, 171
Cutoff frequency, 952, 980, 984, 987, 994,

1008, 1010
Cutoff frequency of the waveguide, 942, 980,

987
CyberKnife, 1076
Cyclic accelerator, 256, 978, 1043
Cyclic electron accelerator, 1076
Cyclic particle accelerator, 1061, 1062
Cyclotron, 628, 718, 924, 931, 978, 1029,

1044, 1061, 1071, 1075
Cyclotron angular frequency, 64
Cyclotron frequency, 1072, 1074
Cyclotron target, 935

D
D-d reaction, 624
D-t fusion, 624
Dating of organic, 795
Daughter D, 642, 646
Daughter nucleus D, 640
Davisson-Germer experiment, 74, 75
De Broglie particle–wave hypothesis, 81
De Broglie wavelength, 69, 74, 76, 77, 79, 83,

119
De Broglie wavelength for electron, 79
Decay constant, 633, 639, 640, 642, 663, 682,

685
Decay constant of U-238, 747
Decay energy, 694, 700
Decay energy of neutron, 710
Decay energy Qα , 792
Decay energy Qα(P), 697
Decay energy Qβ , 704
Decay energy Qβ+ , 719, 721, 733
Decay energy Qβ+ (Q value of decay), 717
Decay energy Qβ− , 708, 712, 714, 732
Decay energy Qγ , 738
Decay energy Qdecay, 732
Decay energy QEC, 727, 733
Decay energy QIC, 742
Decay energy QNE, 755
Decay energy QPE, 749
Decay energy QPE(

5
3Li), 752

Decay factor, 663, 667, 814
Decay of the daughter, 871
Decay paths available in the Chart of Nuclides,

785
Decay rate of U-238, 747
Decay scheme for polonium-210, 788
Decay scheme of cesium-137, 742
Decay scheme of radon-222, 700
Decay series: P → D → G, 659
Decommissioning of nuclear reactor, 901
Decontamination of highly radioactive waste,

1050
Deferred dismantling, 905
Delayed energy release, 900
Delayed neutron, 890, 900
Delta ray electron, 17
Delta ray electron threshold energy, 372
Density correction, 314
Density effect parameter, 336
Depleted uranium, 768, 894, 922
Depletion model, 811, 814, 818, 820, 835, 843,

844, 849, 854
Depletion model of neutron activation, 810
Depletion of the parent, 871
Depletion–activation factor, 849, 852
Depletion–activation model, 828, 844, 849
Depth dose distribution, 385
Depth of dose maximum, 583
Derived physical constants, 4
Determination of electron charge, 1054
Deuterium, 18, 190, 191, 194, 203, 903
Deuteron, 18, 319, 322, 324, 325, 360, 585,

628, 630
Deuteron accelerator, 923
Deuteron-triton, 624
Diagnostic energy range, 381
Diagnostic radiology, 1045
Diagram for lead, 210
Dielectric medium, 945
Differential Klein-Nishina electronic cross

section, 415
Differential scattering cross section, 402
Differential wave equation, 950
Diffraction grating, 88, 214
Diffraction pattern, 75, 1047
Diffraction phenomena, 1047
Digital imaging, 1057
Digital imaging cassette, 1057
Digital radiography, 1057
Dipolar transitions, 229
Direct-hit collision, 121, 131, 144, 312
Direct-hit elastic collision, 135
Directly ionizing radiation, 17, 18
Dirichlet boundary condition, 967, 979, 983
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Dirichlet-type boundary condition, 956, 963,
1015

Discovery of electron, 1053
Discovery of induced radioactivity, 790
Discovery of natural transmutation, 789
Discovery of radium and polonium, 788
Discovery of the electron, 122
Discovery of the neutron, 789
Discovery of the positron, 789
Discovery of x rays, 976, 1045, 1052
Discrete characteristic photon, 704
Disintegration (decay) energy, 695
Disk-loaded dispersion relationship, 1027
Disk-loaded waveguide, 1023, 1027
Dispersion diagram, 1025
Dispersion relationship, 966, 980, 987, 991,

1009, 1011
Dispersion relationship for an EM waveguide,

942
Distance of closest approach, 100, 103, 120,

131, 134, 137, 140, 143, 146, 149
Distribution of ejection angles, 472
Divergence vector operator, 953
Doppler equation, 67
Doppler shifts, 67
Dose, 21, 601, 611
Dose build-up, 583
Dose deposition by neutrons, 612
Dose deposition in water, 21
Dose monitoring system, 1083, 1096
Doubly ionized lithium, 197
Drip line, 759, 761
Duane-Hunt law, 377, 380
Duty cycle, 1086

E
Eccentricity of the hyperbola, 129, 137, 141
Eccentricity of the hyperbolic trajectory, 131
Effective activation target thickness, 935
Effective half-life, 633
Effective linear attenuation coefficient, 398
Effective mass of a two-body system, 190
Effective threshold energy, 277
Efficiency for x-ray production, 1089
Eigenfunction, 81, 957, 965
Eigenvalue, 958, 965
Eigenvalue equation, 967
Eigenvalue problem, 965
Ejection angle of the photoelectron, 472
Elastic collision, 290, 294, 377, 490, 614
Elastic scattering, 119, 301, 589, 598
Elastic scattering interaction, 598
Elastic scattering of neutron, 583, 592
Electric field amplitude, 1033

Electric field correction factor, 243
Electromagnetic (EM) force, 11
Electromagnetic (EM) waveguide, 950, 987,

999, 1014
Electromagnetic force constant, 12
Electromagnetic radiation pressure, 111
Electromagnetic spectrum, 41
Electromagnetic waveguide, 943
Electromagnetic waves in free space, 946
Electron, 695, 1052
Electron acceleration, 1009
Electron accelerator, 923
Electron affinity, 208
Electron arc therapy, 1077
Electron beam transport system, 1082, 1094
Electron capture, 227, 704, 727
Electron capture (EC) decay, 694
Electron charge, 89
Electron cones, 1085
Electron configuration of atoms, 208
Electron density, 320
Electron gun, 1030, 1035, 1076, 1086, 1090,

1092
Electron in ground state of hydrogen, 443
Electron injection velocity, 1028
Electron momentum, 65
Electron orbital velocity, 187, 188
Electron–atom, 165
Electron–nucleus scattering, 153
Electron-positron pair, 483, 486
Electronegativity, 208
Electronic antineutrino, 695
Electronic attenuation coefficient, 516
Electronic binding effects, 449
Electronic brachytherapy, 1059
Electronic Compton attenuation coefficient,

519
Electronic configuration of tungsten, 231
Electronic cross section for Thomson

scattering, 402
Electronic neutrino, 695
Electronic pair production, 483, 516, 553, 557,

574
Electronic transition, 194, 218, 226, 555
Electronic transitions to K shell in lead, 211
Electronic triplet production attenuation

coefficient, 519
Electronic vacancy, 226, 235, 554
Electrostatic accelerator, 978, 1042
EM waveguide, 961, 992, 1001
Emission of bremsstrahlung radiation, 1069
Emission of synchrotron radiation, 1070
Emission spectrum, 213
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Endothermic nuclear reaction, 275, 500, 631,
793

Endothermic reaction, 272, 490, 926, 933
Energetic heavy charged particle, 799
Energy absorbed, 571, 578
Energy level diagram, 180
Energy level diagram for tungsten, 238
Energy loss per unit path length, 304
Energy quantization, 34, 41
Energy radiated from the annihilation in flight,

486
Energy released per fission, 899
Energy slits, 1095
Energy transfer, 152
Energy transfer fraction, 270, 289, 595
Energy transfer from charged particle to

medium, 300
Energy transfer from energetic heavy charged

particles (CP) to a medium, 309
Energy transferred, 577
Enriched deuterium, 191
Enriched uranium, 894
Enrichment of natural uranium, 768
Entombment, 905
Equilibria in parent-daughter activities, 666
Equivalent circular transmission waveguide,

1008
Equivalent dose, 21
Equivalent incident kinetic energy, 360
Equivalent one-body problem, 190
Equivalent uniform waveguide, 1025
Error function, 115
Europium-152, 712, 835, 838, 854
Excited hydrogen atom, 195
Excited states, 180
Exothermic reaction, 272, 490, 926, 933
Expectation value, 85
Expectation value of particle position, 86
Exponential laws of radioactivity, 638
Exposure, 21
Exposure time, 1060
External beam radiotherapy, 582, 708, 738,

774, 799, 854, 885
Extreme relativistic case, 494
Extreme relativistic region, 78

F
Fano corrections, 314
Fano shell correction, 316
Far field component of the electric field, 246
Faraday law of induction, 108, 953
Fast neutron, 582, 630, 890, 896
Fast neutron beam, 583
Fast neutron from d-t reaction, 582

Fast neutron region, 612
FDG, 718
Fertile nuclide, 890
Field contraction, 243
Field emission, 106, 107, 1057
Field expansion, 243
Filament, 1058
Fine structure constant, 4
Finite mass of the nucleus, 190
Finite nuclear mass, 187, 188, 197
Finite size of the nucleus, 184
First Brillouin zone, 1026
First derivative of Bessel functions, 991
First excited state of mercury atom, 220
First pass band, 1027
Fissile nucleus, 890
Fissile radionuclide, 890
Fission, 29, 30, 589, 592, 602, 632, 638, 888,

890, 896, 1050
Fission fragment, 893, 896
Fission of U-235, 921
Fission of uranium-235, 896
Fission product, 800, 891, 893
Fission product nuclei, 695
Fission Q value, 898
Fission reaction, 597
Fission-based nuclear power, 903
Fissionable nucleus, 892
Flattening filter, 383, 1079, 1083, 1096
Fluorescence, 789
Fluorescence yield, 226, 235
Fluorescing material, 789
Fluorine-18, 718, 721, 800
Focal spot, 1060
Focusing coil, 1095
Food irradiator, 1046
Forces in nature, 11
Form factor constant, 444
Forward scattering, 413
Forward transformation, 43
Fowler-Nordheim equation, 106
Fractional energy transfer, 268
Franck-Hertz apparatus, 220
Franck-Hertz experiment, 219
Free electron, 83, 404, 406, 429, 450, 465
Free (extra-nuclear) neutron, 583
Free neutron, 796
Free particle, 81
Free space propagation coefficient, 965, 982
Free space wave number, 958, 965, 974, 982
Fuel elements, 905
Fuel loading, 904
Fukushima Daiichi, Japan, 906
Full-width-at-half-maximum (FWHM), 115
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Functional image, 931
Fundamental force, 11
Fundamental forces in nature, 11
Fundamental particles, 13
Fusion, 29, 30, 624, 890

G
Gamma decay, 694, 737
Gamma emission, 651
Gamma emission (GE) decay, 694
Gamma emitter, 737
Gamma ray, 20, 738, 774
Gamma ray photon, 708
GammaKnife, 6, 1076
Gamow formula, 103
Gamow potential barrier, 102
Gas pressure system, 1093
Gauss law for electricity, 108, 953
Gauss law for magnetism, 108
Gauss law of magnetism, 953
Gauss-Ostrogradski divergence theorem, 108
Gaussian distribution, 112, 122
Geiger-Marsden scattering experiment, 122
General EM boundary conditions, 949
General form of daughter activity, 663
Generator, 718
Glucose metabolism, 718
Gold-198, 835, 838
Gold-198 seeds, 879
Gradient vector operator, 953
Granddaughter G, 646
Granddaughter radionuclide Tc-99, 651
Graphs of vector momenta, 473
Gravitational force, 11
Gravitational force constant, 12
Grid, 1095
Ground state energy level, 180
Ground state energy of the hydrogen atom, 200
Ground state of Co-60, 862
Ground state of hydrogen, 178
Ground state of mercury atom, 220
Ground state wave function of hydrogen, 445
Group velocity, 942, 951, 980, 985, 987, 992,

1009, 1019, 1027
Group velocity in uniform waveguide, 1014

H
Hadron, 582
Half value layer, 539
Half-life, 640, 642, 682
Half-life for SF decay of U-238, 747
Half-life of Mo-99, 655
Half-value layer (HVL), 382, 388, 391, 395
Hard collision stopping power, 304

Hard collisions, 304, 365
Hard electron-electron collision, 574
Hard or direct collision, 301
Hartree approximation, 212, 216, 744
Hartree radius, 209
Hartree theory of multi-electron atoms, 215
Head-on collision, 100, 103, 120, 121, 134,

146, 149, 594
Head-on (direct) elastic collision, 283
Head-on (direct hit) elastic collision, 293
Head-on elastic collision, 282, 284, 293
Heated cathode, 1095
Heated filament, 376
Heavy charged particle, 17, 300
Heavy charged particle accelerator, 800
Heavy hydrogen, 191
Heavy water, 191
Heisenberg uncertainty principle, 87, 168
Heliocentric Copernican planetary system, 33
Helion, 18
Helium-4, 752
Helmholtz equation, 958, 982
Helmholtz partial differential equation, 965
Heterogeneous photon beam, 393
HEU fission technique, 922
HEU for non-military purpose, 922
High gamma ray energy, 774
High pass filter, 952
High specific activity, 774
High Z targets, 378
High-energy electron accelerator, 928
High-energy electron linear accelerators, 800
High-energy linac, 1079
High-energy radiotherapy, 1049
High-energy x ray, 799
Highly enriched uranium, 768
Highly enriched uranium-235 (HEU) target,

921
Hollow circles, 238
Hot cathode, 1057
Hubbell’s method, 445
Humphreys, 214
Hydrogen, 194, 195, 201, 213, 442, 445, 606
Hydrogen atom, 87, 178, 187, 195, 199, 223,

268
Hydrogen atom in ground state, 206, 223
Hydrogen ground state wave function, 222
Hyperbolic trajectory, 140, 144

I
IC decay, 742
IC electron, 742
Ideal equilibrium, 819, 824, 833, 843
Image guided radiotherapy (IGRT), 1077
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Image quality, 1046
Image receptor, 1055
Imaging in nuclear medicine, 914
Imaging physics, 21
Imaging x-ray tube, 1061
Immediate dismantling, 905
Impact parameter, 128, 131, 132, 137, 140,

144, 168, 301, 312
In-flight annihilation, 302, 486, 494, 496, 555,

566, 575
In-vivo body composition measurement, 800
Incoherent scattering, 455
Incoherent scattering function, 442, 445, 449
Incoherent scattering function of hydrogen,

445
Independently decaying radionuclides in a

sample, 682
Indirectly ionizing photon radiation, 20
Indirectly ionizing radiation, 18, 19, 582, 585
Indistinguishable colliding particles, 370
Induced fission, 800
Inelastic collision, 269, 301, 304, 377
Inelastic scattering, 409, 589, 592
Inertial frame, 45
Infinite mass of the nucleus, 187
Infinite nuclear mass, 188
Initial condition, 943, 964
Injection system, 1081, 1086
Intense neutron emitter, 632
Intensity modulated arc therapy (IMAT), 1077
Intensity modulated radiotherapy (IMRT),

1077
Intensity of bremsstrahlung, 245
Intensity of bremsstrahlung radiation, 248
Interaction mechanism, 567, 573
Interaction probability, 806
Intermediate charged particles, 300
Intermediate compound nucleus, 272
Internal conversion electron, 17, 737, 741
Internal conversion factor, 742
Internal conversion (IC), 227, 704, 737, 741
Internal conversion (IC) decay, 694
International Atomic Energy Agency, 760, 904
International nuclear and radiological event

scale (INES), 906
Invariant, 275, 490, 630, 793, 933
Invariant for the Joliot-Curie nuclear reaction,

794
Inverse Chadwick reaction, 275
Inverse Compton effect, 409, 434
Inverse Compton scattering, 431
Inverse Galilean transformation, 283
Inverse Lorentz transformation, 44, 285
Inverse square law, 583

Inverse transformation, 43
Iodine-131, 712, 800
Ionic radius, 209
Ionization chamber, 1077
Ionization potential, 180
Ionization potential of atom, 208
Ionization potential of mercury atom, 220
Ionization stopping power, 304
Ionizing radiation, 16, 21, 398, 1014, 1046
Iridium source, 731
Iridium-192, 731, 737, 835, 838, 886
Island of nuclides, 759
Isobar, 763
Isobar line, 785
Isocenter, 1077
Isomer, 740, 764
Isomeric radionuclide, 764
Isomeric transition, 739
Isotone, 763
Isotone line, 784
Isotope, 763, 767
Isotope line, 784
Isotope separation, 768
Isotopic composition, 767
IUPAC notation, 215, 237, 240
IUPAC x-ray notation, 229

J
Johns, HE and Cunningham, JR, 368, 372, 549

K
K absorption edge, 211, 522
K shell, 183
K shell binding energy, 212
K shell electron, 744
K shell of tungsten, 235
K shell vacancy, 233
K-shell absorption edge, 481
K-shell binding energy, 468, 476, 560
K-shell electron, 474
K-shell electron in lead, 468
K-shell vacancy migration, 241
Karlsruhe Chart of Nuclides, 763
Karlsruhe Nuclide Chart, 760
Karlsruher Nuklidkarte, 763
Kepler-Newton planetary model, 178
Kerma, 21, 601, 603, 606, 611, 619
Kerma factor, 605
Kinetic energy method, 273
Kinetic energy of the scattered electron, 156,

158, 161, 162
Klein-Gordon equation, 82
Klein-Nishina coefficients, 534
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Klein-Nishina differential atomic cross
section, 449

Klein-Nishina differential electronic cross
section, 419, 424

Klein-Nishina electronic Compton energy
transfer coefficient, 440

Klein-Nishina form factor, 415, 449
Klein-Nishina (KN) equations, 424, 448, 449
Klein-Nishina total electronic cross section,

438
Klystron, 951, 1034, 1050

L
Laboratory coordinate system, 630
Laplacian operator, 956, 963, 971, 1002
Large specific air-kerma rate constant, 774
Larmor equation, 1065
Larmor law, 178, 1063
Larmor relationship, 246, 256, 257, 1050
Latent image, 1057
Leakage radiation, 386, 1050
Least squares fit to measured data, 391, 642
Least squares theory, 218
Length contraction, 46, 49
Liénard equation, 1065
Light charged particle, 17, 300, 306, 1048
Linac, 800, 1079
Linac head, 1080, 1094
Linac isocenter, 1097
Linear accelerator, 376, 383, 738, 979, 1046,

1049, 1061, 1090
Linear accelerator (linac), 49, 54, 942, 950,

977, 978, 999, 1008, 1014, 1028, 1044,
1050, 1066, 1075, 1086

Linear attenuation coefficient, 388, 390, 394,
516, 532

Linear attenuation coefficient for pair
production, 484

Linear energy absorption coefficient, 394
Linear energy transfer coefficient, 394
Linear partial differential equation of the

second order, 981, 1002
Linear stopping power, 304, 327
Lithium borate, 25
Lithium-5, 752
Long half-life, 774
Loosely bound electron, 467
Lorentz contraction, 242
Lorentz factor, 44, 47, 51, 52, 54, 56, 59, 61,

66, 67, 70, 84, 249, 251, 257, 290,
1066, 1074

Lorentz field expansion, 244
Lorentz force, 61, 64, 1071
Lorentz transformation, 43, 44, 46, 69

Low cost, 774
Low safety hazard, 774
Low Z target, 378, 385
Lowest cutoff frequency, 987, 994
Lowest Lyman-type emission line, 203
Lowest TEmn cutoff frequency, 980
Lowest TMmn cutoff frequency, 980
Lucite, 318
Lyman, 214
Lyman series of muonic hydrogen, 201
Lyman spectral series, 200

M
Macroscopic cross section, 585, 604
Macroscopic cross section of hydrogen, 607
Macroscopic cross section of oxygen, 607
Magic number, 760, 765
Magnetic bremsstrahlung, 256, 1063
Magnetron, 951, 1034, 1050
Major accidents in nuclear power plants, 906
Major modes of radioactive decay, 694
Making the reactor critical, 904
Man-made (artificial) radionuclide, 788
Manganese, 533
Map of nuclides, 759
Mass attenuation coefficient, 388, 390, 394,

476, 516, 523, 524, 532, 534, 539, 548,
559

Mass collision stopping power, 305, 323, 327,
330, 332, 335, 340, 344, 348, 350, 364,
375

Mass defect, 28
Mass deficit, 28
Mass energy absorption coefficient, 394, 532,

534, 538, 539, 548, 559
Mass energy transfer, 440
Mass energy transfer coefficient, 394, 532,

534, 538, 539, 548, 559, 605
Mass radiation stopping power, 305, 306, 344,

348, 350
Mass scattering power, 174
Mass stopping power, 303, 304, 319
Massless particle, 52
Materialization, 483, 486
Maximum activity, 858
Maximum attainable specific activity, 842,

848, 850, 879, 917
Maximum Čerenkov angle, 262
Maximum cutoff angle, 169
Maximum daughter activity, 849
Maximum energy transfer, 284, 290
Maximum energy transfer fraction, 288, 290,

293, 595
Maximum momentum transfer, 284, 313
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Maximum scattering angle, 151, 174, 440
Maximum specific activity, 835, 843, 846
Maximum specific ionization, 327
Maxwell equations, 88, 107, 945, 950, 1002,

1019
Mean atomic mass, 26, 767
Mean bremsstrahlung fraction, 561, 566
Mean energy absorbed, 538, 539, 548, 562
Mean energy absorbed in carbon, 566
Mean energy absorbed in lead absorber, 532
Mean energy density, 1019
Mean energy radiated, 548
Mean energy required to produce an ion pair,

327
Mean energy transfer for individual effect i,

530
Mean energy transfer fraction, 438, 520, 527,

544, 559, 592, 596, 612, 614
Mean energy transfer fraction for Compton

effect, 536
Mean energy transfer fraction for Compton

scattering, 534
Mean energy transfer fraction for individual

effect i, 530
Mean energy transfer fraction for pair

production, 534, 536
Mean energy transfer fraction for photoelectric

effect, 534, 535, 546
Mean energy transfer fraction for Rayleigh

scattering, 534, 536
Mean energy transfer fraction in Compton

effect, 528
Mean energy transfer fraction in photoelectric

effect, 528
Mean energy transfer fraction in Rayleigh

scattering, 528
Mean energy transfer in pair production, 484
Mean energy transferred, 562, 605, 614
Mean energy transferred to charged particles,

537, 539
Mean energy transferred to electrons, 559
Mean fluorescence emission energies, 521
Mean free path (MFP), 388, 393, 395
Mean free path of neutron, 585
Mean in-flight annihilation fraction, 561, 566
Mean ionization/excitation potential, 312, 324,

344, 368
Mean ionization/excitation potential of water,

320
Mean lifetime, 642
Mean lifetime of the pion, 48
Mean mass collision stopping power, 364
Mean molecular mass, 27
Mean number of elastic collisions, 600

Mean Poynting vector, 110, 111
Mean radiation fraction, 533, 561, 566
Mean rate of energy loss, 173
Mean rest energy, 26
Mean square scattering angle, 149, 174
Mean stopping power, 363
Mean transfer fraction for Compton effect, 564
Mean weighted energy transfer fraction for

individual effect i, 530
Measurement of blood glucose, 26
Medical linac, 1075, 1077, 1079, 1090, 1093
Medical physics, 1045
Megavoltage photon beam, 583
Megavoltage radiotherapy, 1014, 1044, 1075,

1089
Megavoltage radiotherapy energy range, 381
Megavoltage x rays, 1049
Megavoltage x-ray machines, 383
Metastable decay, 708
Metastable excited state, 704
Metastable state, 739
Metastable state of Co-60m, 862
Microbeam radiotherapy, 1065
Microscopic neutron cross section, 585
Microtron, 923, 978, 1029, 1044, 1049, 1050,

1061, 1075
Microwave power source, 1034
Microwave power transmission, 961
Microwaves, 942
Miniature waveguide, 1033, 1076
Miniature x-ray tube, 1059
Minimum Čerenkov angle, 262
Minimum cutoff angle, 168
Minimum electric field amplitude, 1034, 1035
Minimum excitation potential, 180
Minimum injection kinetic energy, 1035
Minimum scattering angle, 151, 168, 174
Mo-99 production, 924
Mode of radiation, 21
Moderation, 597
Moderator, 597
Moderator of nuclear reactor, 901
Modified activation factor, 824, 843
Modified decay constant, 813, 824, 865
Modulation of the phase velocity, 1030
Molecular imaging, 718
Molière scattering, 118
Møller scattering, 118, 165
Molybdenum, 768, 1060
Molybdenum target, 921
Molybdenum-99, 651, 737, 800, 835, 838,

887, 914, 925
Molybdenum-technetium (Mo-Tc) generator,

801
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Momentum, 82
Momentum conservation, 193, 467, 701, 910
Momentum of the emitted photon, 181
Momentum of the incident electron, 156
Momentum of the scattered electron, 158
Momentum transfer, 128, 152, 310
Momentum transfer in coherent photon

scattering, 455
Momentum transfer variable, 442, 445, 449,

456, 459
Mono-energetic gamma source, 393
Mono-energetic x rays, 1047
Mono-energetic x-ray source, 1047
Monochromatic neutrons, 75
Monte Carlo technique, 1046
Moseley equation, 216
Moseley law, 215
Motorized patient support assembly, 1094
Mott elastic scattering, 161
Mott scattering, 118, 152, 165
Multi-electron atom, 212, 216
Multileaf collimator (MLC), 1079, 1084
Multiple Compton scattering, 410
Multiple Rutherford interactions, 124
Multiple scattering, 149
Muon, 188
Muonic atom, 201
Muonic hydrogen, 188, 190, 203
Muonic hydrogen atom, 201
Muonic transition, 202
Muonium, 189, 190, 203

N
Narrow beam geometry, 390, 398
Narrow photon beam, 539
Natural radioactivity, 638, 696, 788, 1046
Naturally occurring radionuclides, 698, 788,

795
NE decay, 755
Negative pions, 300
Neon ion, 360
Neptunium series, 796
Neptunium-237, 797
Net energy transferred, 571, 577
Neumann boundary condition, 967
Neumann functions, 967
Neumann-type boundary condition, 956, 963,

983
Neutrino, 705, 727, 753, 790
Neutron, 695
Neutron absorption, 602
Neutron activation, 602, 731, 805, 810, 813,

818, 824, 883, 888, 915, 936
Neutron activation analysis, 632, 799

Neutron activation cross section, 819
Neutron activation of cobalt-59, 863
Neutron activation of Ir-191, 846
Neutron activation of Mo-98, 915, 921
Neutron activation target, 916
Neutron bombardment, 799, 890
Neutron capture, 583, 589, 592, 602, 612, 615,

621, 806, 883, 884, 909
Neutron decay, 711
Neutron dosimetry, 582, 611
Neutron drip line, 761
Neutron elastic scattering, 592
Neutron emission (NE) decay, 694, 755, 891
Neutron emitting radionuclide, 624
Neutron factor, 634, 746
Neutron fluence, 585, 601, 606
Neutron fluence rate, 585
Neutron flux density, 585
Neutron generator, 978, 1029
Neutron interaction, 601
Neutron kerma factor, 605
Neutron kerma factor of water, 610
Neutron multiplication, 892
Neutron radiography, 632
Neutron scattering, 595, 601
Neutron slowing down process, 598
Neutron source, 591
Neutron yield, 624
Neutron yield of U-238, 748
Neutron-induced fission, 892
Neutron-rich, 694
Neutron-rich nucleus, 755
Neutron-rich radioactive nucleus, 704
Neutron-rich radionuclide, 761
New kind of ray, 1052
Newton second law in relativistic form, 61
Nitrogen-13, 718, 721, 800
Nominal accelerating potential (NAP), 382
Non-elastic scattering, 589
Non-relativistic electron, 74
Non-uniform cavities, 1030
Normal probability distribution, 112
Normalization constant, 85
Normalized activation time, 814, 819
Normalized daughter activity, 819
Normalized number of daughter nuclei, 814
Normalized number of parent nuclei, 814, 819
Nuclear activation, 799, 805, 829, 835, 849,

871, 890
Nuclear activation analysis, 799
Nuclear activation with proton, 931
Nuclear activation–decay series in production

of cobalt-60, 863
Nuclear binding energy, 30, 755, 770, 932
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Nuclear binding energy method, 698, 700, 749,
752, 792, 909

Nuclear binding energy of Eu-151, 771
Nuclear chain reaction, 892, 901
Nuclear Compton effect, 409, 513
Nuclear Compton scattering, 513
Nuclear de-excitation energy, 741
Nuclear decay, 731
Nuclear decay mode, 694
Nuclear disintegration, 639
Nuclear fission, 499, 788, 890
Nuclear fission reactor, 591
Nuclear fission target, 916
Nuclear force, 589
Nuclear imaging, 708
Nuclear medicine, 799, 914, 1046
Nuclear medicine imaging, 582, 738, 800, 885
Nuclear models, 31
Nuclear pair production, 395, 483, 516, 520,

532, 540, 544, 553, 557, 570
Nuclear photoelectric effect, 499
Nuclear potential barrier, 104
Nuclear power, 903
Nuclear power accident, 905
Nuclear power plant, 904
Nuclear probe, 119
Nuclear radius, 33, 77, 119, 120
Nuclear radius constant, 99, 174
Nuclear reaction, 277, 490, 500, 503, 611, 615,

628, 719, 883, 901, 1049
Nuclear reactor, 16, 597, 624, 731, 799, 800,

806, 809, 824, 835, 843, 854, 870, 879,
891, 892, 901, 915, 921

Nuclear reactor core, 905
Nuclear recoil correction factor, 158
Nuclear rest energy, 30, 932
Nuclear rest energy method, 698, 700, 715,

719, 721, 749, 752, 753, 755, 792, 909
Nuclear rest energy of Eu-151, 771
Nuclear stability, 696
Nuclear structure, 27
Nuclear transformation, 639, 694, 697
Nuclear transmutation, 639
Nucleon emission decay, 767
Nuclide Tc-99, 662
Numerical integration, 352, 357
Numerical summation, 352

O
Oil-drop experiment, 1053
One-electron atom, 179, 184, 190, 194, 199,

203, 216
One-electron structure, 183
Open circles, 785

Operating license, 904
Optical fiber, 942
Optical prism, 214
Optical signals, 943
Optical waveguide, 943
Opting out of nuclear power, 905
Orbital electron radius, 188
Orbital shell vacancies, 704
Organic carbon, 801
Origin of radiation, 20
Orthovoltage x rays, 1049
Orthovoltage x-ray machine, 1044
Osmium-192, 731
Outer focus of the hyperbola, 129, 138
Oxygen, 606
Oxygen-15, 718, 721, 800

P
Pair production, 476, 486, 494, 526, 562, 564,

570, 1050
Pairing of nucleons, 766
Parameters of pair production, 487
Parent depletion model, 871
Parent depletion–daughter activation, 824, 843
Parent depletion–daughter activation model,

811, 828, 871
Parent depletion–daughter activation model of

neutron activation, 810
Parent nucleus P, 640
Parent P, 646
Partial decay constant, 633, 685, 748
Partial differential equations of the second

order, 952
Partial differential wave equation, 950
Particle, 695
Particle acceleration, 1042, 1050
Particle accelerator, 591, 925, 976
Particle counter, 145, 147
Particle scattering, 128, 148
Particle-wave duality, 69, 76
Particles released in nuclear decays, 695
Partition of energy, 740
Paschen, 214
Pass band, 1026
PE decay, 752
Penetration of the nucleus, 301
Percentage depth dose (PDD), 22, 382
Periodic table of elements, 182, 208, 215, 761
Permeability, 945
Permittivity, 945
PET imaging, 717, 718
PET scanning, 726
Pfund, 214
Phase modulation, 1030
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Phase of the wave, 968
Phase velocity, 942, 951, 979, 980, 985, 987,

992, 1009, 1024
Phase velocity modulation, 1035
Phosphorescence, 789
Phosphorus-30, 798
Photo-fission, 499, 923
Photoactivation, 799, 801
Photocathode, 92
Photodetector, 1057
Photodisintegration, 395, 499, 512, 557, 801,

923, 925
Photoelectric atomic cross section, 480
Photoelectric effect, 206, 227, 395, 465, 476,

516, 520, 523, 524, 532, 535, 540, 544,
553, 557, 562, 576, 1050

Photoelectric experiment, 89
Photoelectric linear attenuation coefficient, 483
Photoelectric mass attenuation coefficient, 476,

483
Photoelectric (PE) interaction, 468, 471
Photoelectric work function, 92, 94
Photoelectron, 17, 89, 91, 206, 240, 468, 471,

479, 521, 570
Photoelectron current, 90
Photographic plate, 214, 789
Photon beam attenuation, 390
Photon beam spectrum, 923
Photon capture, 801
Photon energy, 40
Photon energy fluence, 606
Photon momentum, 41, 182
Photon rest energy, 182
Photon wavelength, 40
Photoneutron source, 592
Photonuclear decay, 503
Photonuclear (PN) reaction, 395, 499, 503,

507, 512, 553, 557, 592, 801, 925
Phototransmutation, 801
Planck constant, 90
Planck law, 36, 37, 77, 182, 210
Planck-Einstein quantum hypothesis, 80, 81
Platinum-192, 731
Plutonium-239, 893
Point source, 1060
Polarization angle, 403
Polarization vector, 403
Polonium, 638
Polonium-210, 788, 798
Polonium-212, 685
Polonium-218, 700
Positron, 570, 575, 585, 695, 721, 790
Positron annihilation, 227, 486, 555, 570
Positron emission, 727

Positron emission tomography, 6, 717, 800,
1049, 1051

Positron emitter, 931
Positron emitting radionuclide, 717, 718
Positronium, 188, 190, 199
Positronium reduced mass, 200
Potassium-40, 802
Potential barrier, 106, 697
Potential barrier wall, 101
Potential energy, 107
Potential energy operator, 80
Power generation mode, 904
Poynting theorem, 110
Poynting vector, 110, 245, 402, 1016, 1019
Practical specific activity, 884
Pre-criticality, 904
Primary atomic shell vacancy, 226
Primary collimator, 1083, 1085, 1096
Primordial nuclides, 802
Primordial radionuclides, 795
Principal quantum number, 212
Principle of complementarity, 88
Probability distribution, 112
Probability for Auger effect, 229, 235
Probability for photoelectric effect, 521
Probability of neutron capture reaction, 808
Probability of the photoelectric effect, 476
Production of a radionuclide, 810
Production of artificial radionuclide, 798
Production of bremsstrahlung, 555
Production of clinical electron beam, 1080
Production of clinical x-ray beam, 1080
Production of cobalt-60, 861, 885
Production of iridium-192, 885
Production of lithium-7, 885
Production of molybdenum-99, 885, 925
Production of positron emitting radionuclides,

1062
Production of radionuclides, 1062
Production of the daughter, 871
Production of x rays, 1048
Projected life of a nuclear power plant, 904
Prompt energy release, 900
Prompt neutron, 890
Propagation coefficient, 959
Propagation mode of a waveguide, 942
Protium, 18, 33, 190, 191, 194, 903
Proton, 18, 628, 630, 632, 695
Proton accelerator, 923
Proton activation, 805
Proton drip line, 761
Proton emission (PE) decay, 694, 748, 752
Proton momentum, 65
Proton rich, 694
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Proton to neutron transformation, 727
Proton-activated radionuclide, 800
Proton-rich nucleus, 719
Proton-rich nuclide, 748
Proton-rich radioactive nucleus, 704
Proton-rich radionuclide, 718, 728, 761
Pulse repetition rate, 1086
Pulse sequence, 1087
Pulsed electron pencil beam, 1095
Pulsed modulator, 1092
Pulsed operation, 1086

Q
QPE decay energy, 753
Quadrupole bending magnet, 1093
Quantization, 34
Quantization of angular momentum, 187
Quantization of atomic energy levels, 219
Quantum operators, 82
Quantum physics, 88
Quantum uncertainty, 85
Quantum uncertainty in position, 86
Q value, 272, 277, 500, 612, 615, 621, 624,

628, 629, 635, 793, 889, 932
Q value calculation, 909
Q value for decay, 708, 721
Q value for EC decay, 727
Q value for PE decay, 750
Q value for the Joliot-Curie nuclear reaction,

788
Q value of α decay, 697
Q value of a nuclear reaction, 925
Q value of radioactive decay, 694
Q value of the Joliot-Curie nuclear reaction,

792

R
Radiation dosimetry, 1046
Radiation fraction, 539
Radiation length, 171, 174
Radiation loss, 350, 568, 570, 574, 1051, 1065,

1067
Radiation measurement, 20
Radiation oncology, 1045
Radiation pressure, 112
Radiation source, 712, 731, 774, 921
Radiation stopping power, 304, 306, 308, 319,

357
Radiation survey, 904
Radiation yield, 350, 365
Radioactivation dynamics, 832
Radioactivation yield, 819, 832, 854, 879
Radioactive contamination, 905

Radioactive decay, 639, 640, 646, 694, 703,
727, 746, 766

Radioactive decay chain, 671
Radioactive decay modes, 773
Radioactive decay series, 646, 675, 813
Radioactive neutron source, 592
Radioactive nuclear decay, 694
Radioactive series, 655
Radioactive transformation, 646
Radioactive waste, 922
Radioactivity, 638
Radiocarbon dating, 797
Radiofrequency (RF) mode, 1029
Radiofrequency (RF) power generating

system, 1081
Radiofrequency wave, 951
Radiogenic progeny, 802
Radiographic film, 1056
Radionuclide, 798
Radionuclide generator, 915
Radionuclide in ground state, 764
Radionuclide Mo-99, 662
Radionuclide Mo-99 decay, 655
Radionuclide P, 642
Radionuclide sources, 582, 799
Radionuclide Tc-99m, 655, 662
Radionuclide Tc-99m generator, 925
Radiotherapy, 891, 1042, 1060, 1062, 1065,

1075, 1077, 1087
Radiotherapy physics, 21
Radiotherapy x-ray tube, 1061
Radium, 638, 1046
Radium-226, 700, 737, 774, 802, 854
Radius, 189
Radius of Bohr orbit, 184
Radius of hydrogen atom, 223
Radius of orbit, 187
Radius of the gold nucleus, 120
Radon-222, 700, 737, 802
Range of charged particle, 356
Rate of energy loss, 304
Ratio of “tissue-phantom ratios” (TPR20,10),

382
Rayleigh (coherent) scattering, 441
Rayleigh differential atomic cross section, 459
Rayleigh scattering, 395, 456, 476, 516, 520,

523, 525, 532, 535, 540, 544, 553, 557,
577

Rayleigh-Jeans law, 35
Reaction rate, 806
Reaction rate of neutron, 585
Reaction threshold, 507
Recoil angle of the target, 270
Recoil (Compton) electron kinetic energy, 155
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Recoil correction factor, 162
Recoil energy, 132
Recoil energy of the gold nucleus, 157
Recoil kinetic energy of the nucleus, 162
Recoil momentum, 132
Recoil momentum of the nucleus, 157
Recoil nucleus kinetic energy, 155
Recombination process, 204
Rectangular EM waveguide, 991
Rectangular uniform EM waveguide, 954
Rectangular waveguide, 951, 956
Rectilinear acceleration, 1066
Recurrence equation, 598
Red shift, 68
Reduced de Broglie wavelength, 78
Reduced mass, 186, 190, 199, 203
Reduced mass of hydrogen, 199
Relative permeability, 945
Relative permittivity, 945
Relative weight for individual effect i, 530
Relative weight of photon interaction i, 527
Relativistic acceleration, 64
Relativistic Doppler effect, 1013
Relativistic electron, 75
Relativistic expression for total energy, 182
Relativistic force, 61
Relativistic invariant, 933
Relativistic invariant method, 499, 503, 504,

508
Relativistic Larmor expression, 246
Relativistic Larmor relationship, 249
Relativistic mass, 46, 52, 56
Relativistic momentum, 58
Relativistic particle, 66
Relativistic particle momentum, 257
Relativistic relations, 50
Removable bremsstrahlung thick target, 1096
Removal of the spent nuclear fuel, 905
Rest energy, 53
Rest energy method, 273, 276, 499, 503, 504,

508, 622, 624, 629, 635, 898, 927
Rest mass, 46, 56
Restricted collision stopping power, 367
Restricted stopping power, 373
Retarding potential, 89, 91
RF driver, 1008, 1092
RF load, 1094
RF power generation system, 1092
RF system, 1090
Richardson constant, 93, 94, 106
Richardson-Dushman equation, 93, 94, 106
Root-mean-square atomic radius, 223
Root-mean-square radius, 209
Root-mean-square scattering angle, 151, 174

Roots of a Bessel function, 995
Rubidium-82, 718, 721, 800
Rules used in scientific publishing, 7
Rutherford atomic model, 127
Rutherford cross-section, 149
Rutherford differential cross section, 124
Rutherford elastic scattering, 137
Rutherford model, 127
Rutherford nuclear model, 126
Rutherford nuclear model of the atom, 122
Rutherford scattering, 118, 132, 134, 143, 145,

149, 158, 165, 310
Rutherford–Bohr atom, 89, 192
Rutherford-Bohr atomic model, 33, 178, 185,

213, 215, 697
Rutherford-Bohr model, 219
Rutherford-Bohr theory, 178
Rydberg constant, 4, 198
Rydberg constant for hydrogen, 199
Rydberg constant of positronium, 200
Rydberg energy, 4, 187, 201, 204, 216, 219

S
S band, 1076, 1093
Safe disposal of the contaminated material,

905
Saturation model, 811, 814, 818, 820, 829,

835, 844, 849, 854, 871, 879, 936
Saturation model of neutron activation, 810
Saturation specific activity, 879
Scattered photon energy fraction, 429, 436
Scattering, 601
Scattering angle, 128, 140, 403, 408
Scattering angle of the projectile, 270
Scattering experiment, 145, 148
Scattering foil, 1085
Schematic diagram for decay, 720
Schematic diagram for thermionic emission,

107
Schematic diagram of a Coulomb collision,

311
Schematic diagram of a medical linear

accelerator (linac), 1081
Schematic diagram of a photonuclear reaction,

500
Schematic diagram of a two-particle collision,

273
Schematic diagram of an elastic collision, 593
Schematic diagram of an x-ray tube, 1055
Schematic diagram of EM waveguide, 979
Schematic diagram of the collision, 270
Schematic diagram of the Compton

photonuclear reaction, 514
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Schematic diagram of the photoelectric effect,
465

Schematic diagram of the photonuclear
reaction, 506

Schematic diagram of the positron in-flight
annihilation process, 499

Schematic diagram of Thomson scattering, 404
Schematic diagrams of various cyclic

accelerators, 1064
Schematic representation of a typical medical

linac head, 1086
Schematic representation of the scattering

process, 288
Schematic representation of the Schottky

barrier, 96
Schödinger equation, 82
Schottky barrier, 95
Schottky effect, 95, 98, 106
Schottky equation, 95
Schrödinger equation, 83, 443
Schrödinger wave equation, 80
Screening constant, 212, 218
Secondary charged particle, 582
Secondary collimator, 1097
Secondary collimator system, 1083
Secondary radionuclide, 795, 802
Secular equilibrium, 669, 802, 812, 832
Segrè chart, 763, 780, 798
Sensitive scattering area, 146
Separation constant, 965
Separation distance, 99
Separation of variables, 958, 965
Shell correction, 314
Shell vacancy, 554, 557
Shielding against leakage radiation, 1082
Short-range force, 11
Side scattering, 413, 433
Simple Monte Carlo history, 567, 573
Single scattering, 149
Singly ionized helium ion, 204
Sketch of the dispersion hyperbolic

relationship, 986
Sketch of the incoherent scattering function,

448
Sketch of the linac pulse sequence, 1088
Skin depth, 961
Skin effect, 961
Soft collision stopping power, 304
Soft collisions, 304
Soft or distant collision, 301
Soft tissue elemental composition, 611
Solid black circle, 785
Solid circle, 238
Solid curves, 237

Source diameter, 886
Source of microwave power, 951
Source of x rays, 376, 1055
Source-skin distance, 1077
Spallation, 589, 592, 602
Spatial wave function, 83
Special modes of EM fields, 955
Special relativity, 52, 82
Special theory of relativity, 43
Specific activity, 634, 638, 712, 795, 834, 879,

920
Specific activity of cesium-137, 780
Specific activity of cobalt-60, 779
Specific activity of europium-152, 780
Specific activity of radium-226, 779
Specific activity of U-238, 747
Specific charge of positive hydrogen ion, 1054
Specific charge of the electron, 1053
Specific ionization, 326
Spectral distribution, 391
Spectral energy density, 35, 37
Spectroscopic notation, 229
Spectrum of hydrogen, 213
Spontaneous fission, 632, 634, 699, 746, 761,

892
Spontaneous fission drip line, 761
Spontaneous fission neutron source, 592
Spontaneous fission (SF), 694, 748
Spontaneous nuclear decay, 639
Spontaneous radioactive decay, 696
Stable isotopes of lead, 769
Stable nuclear configuration, 766
Stable nuclide, 764, 798
Standard atomic weight, 767
Standard atomic weight of europium, 770
Standard molecular weight, 27
Standard Newton second law, 61
Steering coil, 1095
Stereotactic external beam irradiation, 1077
Stereotactic radiosurgery, 1076, 1077
Stokes-Kelvin curl theorem, 108
Stop band, 1026
Stopping material, 343, 347
Stopping medium, 323
Stopping power, 303, 347
Stopping power constant for light CP, 335
Stopping power data of lead, 351
Stopping power function of electron, 336
Stopping power functions, 340
Storage of long-lived radioactive waste, 923
Storage ring, 256, 1047, 1050, 1063, 1066
Strip line, 942
Strong force, 11
Strong interaction, 582
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Subcritical mass, 901
Super Coster-Kronig electron, 226, 237
Super-critical mass, 901
Superficial x rays, 1049
Surface photoelectric experiment, 89, 91
Synchrotron, 257, 978, 1029, 1044, 1050,

1061, 1075
Synchrotron light source, 1063
Synchrotron radiation, 20, 256, 257, 1063,

1066, 1069
Synchrotron radiation loss, 1066

T
Target cooling, 381
Target thickness, 932
TE mode, 952, 962, 971, 989
TE11 mode, 1015
Technetium generators, 738
Technetium-99m, 651, 914, 921
Teleradium machine, 775
Teletherapy machine, 775, 800
Teletherapy source, 774, 854, 886
TEM modes, 971
Tenth-value layer (TVL), 388, 395
Terra incognita, 761
Thalium-208, 685
Theoretical specific activity, 835, 837, 884,

886, 888
Theory of waveguide, 942, 1008
Therapeutic radiology, 1045
Thermal neutron, 76, 582, 615, 799, 890, 896,

910
Thermal neutron cross section, 621, 810
Thermal neutron region, 612
Thermalization, 597, 903
Thermion, 17
Thermionic electron emission, 1052
Thermionic emission, 92, 94, 106, 107, 1057,

1095
Thermionic work function, 93
Thermionically, 220
Thermoluminescence dosimetry (TLD), 25
Thick target, 377, 807, 936, 1083
Thick target bremsstrahlung, 378, 384
Thick tungsten target, 383
Thin target, 377, 807, 1087
Thin tungsten target, 383
Thomas-Fermi atomic model, 168, 773
Thomas-Fermi atomic radius, 169
Thomas-Fermi radius, 209
Thompson scattering, 415
Thomson atomic model, 697
Thomson classical cross section, 4
Thomson classical scattering, 403

Thomson classical theory, 408
Thomson differential cross section, 449
Thomson differential electronic cross section,

459
Thomson differential scattering cross section,

417
Thomson electronic cross section, 441, 481
Thomson low energy limit, 535
Thomson model, 126
Thomson model of the atom, 126
Thomson “plum pudding” model, 126
Thomson “plum pudding” model of the atom,

122
Thomson scattering, 395, 450, 451
Thomson total atomic cross section, 406
Thorium series, 796, 802
Thorium-232, 797, 802
Three Mile Island (TMI), USA, 906
Threshold energy, 275, 624, 630
Threshold energy for electronic pair

production, 490
Threshold energy for nuclear pair production,

490
Threshold energy for the PN reaction, 499
Threshold energy for triplet production, 440
Threshold energy of a photonuclear reaction,

504
Threshold for nuclear pair production, 483
Threshold for PN reaction, 508
Threshold for the photonuclear reaction, 502
Threshold kinetic energy, 275, 277, 490, 629,

631, 793, 926, 932
Threshold kinetic energy of projectile, 493
Threshold total energy, 490
Tightly bound electron, 467, 478
Time dilation, 46
Time of collapse, 200
Time of collapse of the Bohr orbit, 199
Time of orbit collapse, 179
TM mode, 952, 962, 971
TM01 mode, 1015
Tomotherapy, 1076
Total body dose to the patient, 914
Total body irradiation, 1077
Total decay constant, 685
Total decay constant of U-238, 748
Total energy, 53, 54, 56, 82
Total energy conservation, 466, 701, 910
Total energy level of the electron in orbit, 187
Total mass stopping power, 305, 350, 365
Total mean energy absorption fraction, 532
Total mean energy transfer fraction, 534, 537,

539
Total skin electron irradiation, 1077
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Total stopping power, 319
Transcendental equation, 858
Transient equilibrium, 669, 812, 832
Translational research, 976
Transmission coefficient, 102
Transmission EM waveguides, 1016
Transmission ionization chamber, 1077
Transmission line, 942
Transmission of high frequency waves, 942
Transmission of microwave power, 970, 979,

987, 999, 1023
Transmission of microwaves, 951
Transmission of RF power, 950, 952
Transmission waveguide, 999, 1008
Transmitting antenna, 951
Transmutation, 1049
Transuranic element, 632
Transverse electric (TE), 961
Transverse electric (TE) mode, 968, 1000
Transverse electromagnetic mode, 961
Transverse electromagnetic (TEM) mode,

1000
Transverse magnetic (TM) mode, 961, 968,

1000, 1025
Treatment head, 1080
Treatment planning, 1046
Triode-type electron gun, 1095
Triplet production, 227, 438, 483, 516, 520,

532, 540, 544, 557, 574
Tritium, 18, 190, 801
Tritium unit, 801
Triton, 18, 360
Tumor control probability (TCP), 621
Tungsten, 1058, 1060
Tunneling, 101, 752
Tunneling of alpha particles, 101
Tunneling of particles, 697
Two-body problem, 190
Two-particle elastic collision, 592
Two-proton emission (2PE) decay, 749
Two-quantum annihilation of the positron, 494
Type of radiation, 21
Typical linac head, 1085

U
U-235 fission, 896
Ultra-cold neutron, 582
Ultra-relativistic electron, 432, 438
Uncertainty in momentum, 87
Uncertainty principle, 87
Uncontrolled fission, 901
Uniform circular electromagnetic (EM)

waveguide, 991

Uniform circular EM waveguide, 966, 977,
1008, 1015

Uniform electromagnetic (EM) waveguide,
1023

Uniform EM waveguide, 954, 961, 980, 1009,
1019

Uniform rectangular EM waveguide, 970, 1019
Uniform waveguide, 942, 950, 968
Unit of activity, 638
Unit of neutron fluence, 586
Unit of neutron fluence rate, 586
Unit of specific activity, 638
Units of momentum, 60
Unpolarized beam, 403
Unrestricted collision stopping power, 371
Unrestricted mass collision stopping power,

373
Unrestricted stopping power, 368
Uranium, 700
Uranium ore, 894
Uranium series, 796, 802
Uranium tailings, 894
Uranium-233, 893
Uranium-235, 797, 802, 894
Uranium-238, 746, 797, 802
Uranium-238 / radium-226 decay chain, 790

V
Vacancies in absorber atom, 520
Vacancy, 240
Vacuum system, 1093
Vacuum-pumping system, 1082
Value, 490
Value of decay, 704
Van de Graaff accelerator, 978, 1044
Van de Graaff generator, 1029, 1075
Van der Waals radius, 209
Vector diagrams for PE interaction, 471, 474
Vector function, 953
Vector identity, 954
Vector Laplacian operator, 953
Velocity, 189
Velocity function, 332
Velocity modulation of the RF wave, 1030
Velocity of energy flow, 1014, 1019
Vertex of the hyperbola, 143
Vertex of the hyperbolic trajectory, 130
Volume element, 567, 573
Voxel, 567, 573

W
Water phantom, 567, 573
Water-cooling system, 1082, 1093
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Wave equation, 44, 88, 950, 955, 961, 971,
981, 1002

Wave equation for the free electron, 83
Wave function, 80, 83, 85, 223
Wave guide, 376
Wave nature, 88
Wave number, 83, 197
Wave vector, 111
Waveguide, 49, 942, 945, 961, 990, 1019,

1048, 1050, 1066
Waveguide core, 995, 1000
Waveguide core material, 942
Waveguide geometry, 945
Waveguide propagation coefficient, 966, 1011
Waveguide wall material, 942
Waveguide wave number, 959, 966
Wavelength shift, 410
Weak force, 11
Weapons-grade HEU, 922
Weizsäcker binding energy, 31
White spectrum, 215
Wien displacement constant, 39
Wien displacement law, 37
Work function, 37, 89, 91, 92, 94, 106

X
X band microwave frequency, 998
X-band, 1076
X-ray absorption spectrometry, 1047
X-ray astronomy, 1045
X-ray crystallography, 1045
X-ray fluorescence spectrometry, 1047
X-ray generator, 1055
X-ray imaging, 1060
X-ray intensity spectra, 377
X-ray machine, 376, 978, 1046, 1049, 1086
X-ray photoelectron spectrometry, 1047
X-ray production, 379, 1087
X-ray spectroscopy, 1045
X-ray spectrum, 1049
X-ray system, 1055
X-ray target, 376, 379, 383
X-ray tube, 1029, 1055, 1057
X-ray yield, 379, 380

Y
Young experiment, 88

Z
Zero (root) of the Bessel function, 969, 1010
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