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Preface

BACKGROUND AND MOTIVATION

Electromyography (EMG) is a procedure for evaluating and recording the electrical activity produced 
by skeletal muscles. EMG has several clinical and prosthetic applications, which include the diagnosis 
of neuromuscular problems, biomechanical and motor control deficits, and other functional disorders. 
Moreover, it can be used as a control signal for interfacing with orthotic and/or prosthetic devices. This 
book aims at providing an updated overview of the recent developments in EMG from diverse aspects 
and various applications in clinical and experimental research. It will provide readers with a detailed 
introduction to EMG signal processing techniques and applications, while presenting several new results 
and explanation of existing algorithms.

INTENDED READERSHIP

This book brings the state-of-the-art of some of the most important current research related to EMG. The 
book is partly a textbook and partly a monograph. It is a textbook because it gives a detailed introduc-
tion to EMG techniques and applications. It is simultaneously a monograph because it presents several 
new results, concepts, and further developments. As a result of its twofold character, the book is likely 
to be of interest to undergraduate and postgraduate students. This book can also be used as handbook to 
engineers and scientists in the field of biomedical and biological engineering. One can read this book 
through sequentially, but it is not necessary since each chapter is essentially self-contained, with as few 
cross-references as possible.

As an editor and also an author in this field, I am honoured to be editing a book with such fascinating 
and exciting content, written by a selected group of gifted researchers. I would like to thank the authors, 
who have committed so much towards the publication of this work.

THE ORGANISATION OF CHAPTERS

The book is organized in four sections. In Section 1, “EMG Basics and Motor Unit Action Potentials,” 
basics of EMG and MUAP are dealt in detail. Chapters in this section combine hypothesis-driven 
experimentation with computer-based modelling and simulation to analyse MUAP functions and real 
EMG behaviours.
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Section 2, titled “EMG Signal Modeling and Signal Processing,” presents mathematical and analytical 
techniques for modelling EMG systems and provides insights on how these can be exploited further in 
real-world applications. Advances in applied mathematics have facilitated the extension and develop-
ment of analytical approaches and techniques, which are frequently supported by computer simulation, 
in order to tackle some challenging real problems in this research area.

Section 3, titled “EMG: Endurance, Stability, and Muscle Activities,” focuses on endurance, fatigue, 
and stability of EMG muscles and MUAPs. It proposes representation models that incorporate EMG 
signal processing techniques.

Finally, Section 4, titled “EMG for Prosthetic and HCI Applications,” presents methods and EMG 
systems and provides insights on how these can be exploited further in real-world applications. More-
over, real world applications that are employed to evaluate the effectiveness of the EMG-based systems 
are also presented in detail.

Below, an overview of the book chapters is presented.

Section 1: EMG Basics and Motor Unit Action Potentials

Chapter 1 is titled “Neural Control of Muscle.” In this chapter, Bawa and Kelvin Jones explain the ideas 
and concepts about how the central nervous system controls muscle contraction. The populations of motor 
units comprising a skeletal muscle have a diverse range of physiological and anatomical properties. The 
Size Principle of motor unit recruitment is a concept that proposes a simple strategy for exploiting the 
diversity of the motor unit population to produce graded force output. The Size Principle has a great deal 
of empirical support, but also faces criticism about the extent of generalization to all types and forms of 
movement. As the key principles of motor units are discussed, methods of measuring and methodology 
for analysing motor unit activity and whole muscle activities are introduced.

Chapter 2 is titled “New Advances in Single Fiber Electromyography.” In this chapter, Javier 
Rodriguez-Falces explains general perspective of EMG together with a description of the anatomical, 
physiological, and technical aspects that are involved in the recording of Single Fiber Action Potentials 
(SFAPs). First, a simulation model that relates analytically the Intracellular Action Potential (IAP) and 
SFAP mathematical expressions is described. Second, the most recent findings regarding the shape 
features of human SFAPs are outlined. Third, a description of how different types of needle electrodes 
affect the characteristics of the recorded potential is detailed. Fourth, an explanation of the most impor-
tant effects of filtering on the SFAP characteristics is provided. Finally, a description of the principles 
of jitter estimation together with the most important sources of errors are presented.

Chapter 3 is titled “Detection and Conditioning of EMG.” In this chapter, İmran Göker explains the 
monitoring of the electrical activity of skeletal muscles. The main components of the detection and 
conditioning of the EMG signals are explained in the sense of the biomedical instrumentation. At first, 
a brief description of EMG generation is introduced. Next, the hardware components of the general 
instrumentation system used in the acquisition of EMG signals, such as amplifier, filters, analog-to-
digital converter, are discussed in detail. Subsequently, different types of electrodes used in different 
EMG techniques are mentioned. Then, various EMG signals that can be detected and monitored via 
EMG systems are described, and their clinical importance is discussed in detail. Finally, different EMG 
techniques used in clinical studies and their purposes are highlighted.

Chapter 4 is titled “An Introduction to Signal Processing using MatLab and Microsoft Excel.” In this 
chapter, Daniel Robbins explains the fundamentals of biological signal analysis and processing, using 
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EMG signals to illustrate the process. The areas covered within the chapter include: frequency analysis 
using the Fast Fourier Transform, identifying noise within a signal, signal smoothing via Root Mean 
Square (RMS) processing, and signal filtering with both low-pass and high-pass filters. Guidelines for 
the application of the processes covered are included in conjunction with step-by-step examples using 
both MathWorks MatLab and Microsoft Excel software. Following the examples allows the reader to 
practice the processes described to promote and reinforce their learning.

Section 2: EMG Signal Modeling and Signal Processing

Chapter 5 is titled “Modeling the Human Elbow Joint Dynamics from Surface Electromyography.” In this 
chapter, Andrés Felipe Ruiz-Olaya describes an approximation for non-invasive biomechanical modelling 
of the elbow joint dynamics from electromyographic information. A case study presents results obtained 
aimed at deriving a relationship between the dynamic behaviour of the human elbow joint and surface 
Electromyography (sEMG) information in postural control. A set of experiments were carried out to 
measure bioelectrical (sEMG) and biomechanics information from human elbow joint, during postural 
control (i.e. isometric contractions) and correlate them with mechanical impedance at elbow joint. 
Estimates of elbow impedance were obtained by applying torque perturbations to the forearm. Results 
demonstrate that it is possible to estimate human joint dynamics from sEMG. The obtained results can 
contribute to the field of human motor control and also to its application in robotics and other engineer-
ing applications through the definition, specification, and characterization of properties associated with 
the human upper limb and strategies used by people to command it.

Chapter 6 is titled “Arm Swing during Human Gait Studied by EMG of Upper Limb Muscles.” In 
this chapter, Kuhtz-Buschbeck, Frendel, and Jing explain the research conducted on arm swing during 
human gait for upper limb muscles. Initially, Electromyography (EMG) was performed with normal 
subjects to describe patterns of arm and shoulder muscle activity in different gait conditions. These 
included normal forward walking, walking with immobilized arms, backward walking, power walking 
with accentuated arm swing, running, and load carriage. Complementary kinematic data are presented, 
too. Rhythmic muscle activity persists to some extent when both arms are immobilized during walking. 
Forward and backward walking involve dissimilar patterns of muscle activity, although the limb move-
ments are very similar in both conditions. Likewise, power walking and running are characterized by 
different curves of EMG activity. Unimanual load carriage during walking affects muscle activities of 
both the loaded and the non-loaded arm. Research on normal arm swing provides a basis for clinical 
investigations of gait disorders.

Chapter 7 is titled “Using In Vivo Subject-Specific Musculotendon Parameters to Investigate Volun-
tary Movement Changes after Stroke: An EMG-Driven Model of Elbow Joint.” In this chapter, Hujing 
Hu and Le Li explain the feasibility of using ultrasonography to measure the musculotendon parameters 
of elbow muscles. These parameters help to build a subject-specific EMG-driven model, which could 
predict the individual muscle force and elbow voluntary movement trajectory using the input of EMG 
signal without any trajectory fitting procedure involved. The results demonstrate the feasibility of using 
EMG-driven neuromusculoskeletal modeling with ultrasound-measured data for prediction of voluntary 
elbow movement for both unimpaired subjects and persons after stroke.

Chapter 8 is titled “Study and Interpretation of Neuromuscular Patterns in Golf.” In this chapter, 
Sérgio Marta et al. report the golf swing EMG studies using amplitude, timing parameters, and ap-
proaches to neuromuscular patterns recognition through EMG. The golf swing is a dynamic multi-joint 
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movement. During each swing, phase different activation levels occur; the combination of each muscle 
in amplitude provides an increased club head speed for the ball to travel to the hole. The timing when 
the maximum peak of each muscle occurs can be an important factor to understand the injury-related 
mechanics and to prescribe strength programs. Most muscle studies describe their maximum activation 
level during the forward swing and acceleration phases, providing a controlled antigravity movement 
and acceleration of the club. The initial contraction time corresponds to the onset that can be used to 
describe the organization of the neuromuscular patterns during a task. This time parameter was used in 
golf to relate injuries to skilled or less-skilled golfers. The way to retrieve these time parameters may 
be reached through new approaches, but no gold standard algorithm definition has been found yet. To 
better understand the neuromuscular patterns, new algorithms based on the dynamical systems theory 
are now used.

Section 3: EMG: Endurance, Stability, and Muscle Activities

Chapter 9 is titled “Assessing Joint Stability from Eigenvalues Obtained from Multi-Channel EMG: 
A Spine Example.” In this chapter, Ikeda and McGill explain the role of EMG signals to assess joint 
stability. Low back pain assessment and treatment interventions often involve the concepts of stability 
and/or joint stiffness. Using muscle activation and lumbar spine posture to calculate segmental stiffness 
and potential energy of the spine, eigenvalues can be linked to quantitative stability. It was reasoned 
that if a relationship exists between eigenvalues and individual muscles, then this approach could guide 
customized clinical intervention for people with defined spine instability.

Chapter 10 is titled “Endurance Time Prediction using Electromyography.” In this chapter, Sébastien 
Boyas and Arnaud Guével present the methodology used to predict Tlim from early changes in EMG 
signal and the factors that may influence its feasibility and reliability. It will also present the possible 
uses and benefits of the Tlim prediction. The purpose of endurance time (Tlim) prediction is to deter-
mine the exertion time of a fatiguing muscle contraction before it occurs. Tlim prediction would then 
allow the evaluation of muscle capacities while limiting fatigue and deleterious effects associated with 
exhaustive exercises. Fatigue is a progressive phenomenon whose manifestations can be observed from 
the beginning of the exercise using Electromyography (EMG). Studies have reported significant rela-
tionships between Tlim and changes in EMG signal suggesting that Tlim could be predicted from early 
EMG changes recorded during the first half of the fatiguing contraction. However, some methodological 
factors can influence the reliability of the relationships between Tlim and EMG changes.

Chapter 11 is titled “EMG Activation Pattern during Voluntary Bending and Donning Safety Shoes.” 
In this chapter, P. K. Nag, Varsha Chorsiya, and Anjali Nag present a research study conducted on occu-
pational health and safety at workplaces. Posture control is a well-coordinated interplay of sensory-motor 
system and forms the basis of voluntary movements. The daily activities and occupational task involves 
voluntary bending in different directions, which, if beyond the limit of stability, can cause slips, trips, 
and falls. Further, these accidents are common in industries where workers have to wear safety shoes to 
protect their feet from hazards of the work environment. The study elucidates the muscular activation 
patterns in light of Electromyographic (EMG) findings for voluntary bending within limits of stability 
and with donning of safety shoes. The present findings have implication regarding the viability of muscle 
adaptability as a putative postural control in preventing postural instability and avoiding injuries.

Chapter 12 is titled “Tongue Movement Estimation Based on Suprahyoid Muscle Activity.” In this 
chapter, Makoto Sasaki introduces a novel method for tongue movement estimation based on analysis of 
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surface Electromyography (EMG) signals from the suprahyoid muscles, which usually function to open 
the mouth and to control the hyoid position. The motor function of the tongue often remains intact even 
in cases of severe movement paralysis. Therefore, tongue movements offer great potential for the design 
of highly efficient human-machine interfaces for alternative communication and control.

Section 4: EMG for Prosthetic and HCI Applications

Chapter 13 is titled “Design of Myocontrolled Neuroprosthesis: Tricks and Pitfalls.” In this chapter, 
Ambrosini, Ferrante, and Pedrocchi explain myocontrolled neuroprosthesis: tricks and pitfalls. Recent 
studies suggest that the therapeutic effects of Functional Electrical Stimulation (FES) are maximized 
when the patterned electrical stimulation is delivered in close synchrony with the attempted voluntary 
movement. FES systems that modulate stimulation parameters based on the residual volitional muscle 
activity assure this combination. However, the development of such a system might be not trivial both 
from hardware and a software point of view. This chapter provides an extensive overview of devices 
and filtering solutions proposed in the literature to estimate the residual volitional EMG signal in the 
presence of electrical stimulation. Different control strategies to modulate FES parameters as well as 
the results of the first studies involving neurological patients are also presented. This chapter provides 
some guidelines to help people who want to design innovative myocontrolled neuroprostheses and might 
favor the spread of these solutions in clinical environments.

Chapter 14 is titled “Design and Development of EMG Conditioning System for Hand Gesture 
Recognition using Principal Component Analysis.” In this chapter, P. Geethanjal presents design and 
development of surface Electromyogram (EMG) signal detection and conditioning system along with 
the issues of gratuitous spurious signals such as power line interference, artefacts, etc., which make 
signals plausible. In order to construe the recognition of hand gestures from EMG signals, time domain 
features were extracted. The extracted features were diminished using the Principal Component Analysis 
(PCA) to alleviate the burden of the classifier. The chapter discusses the motion control of a prosthetic 
hand through continuous EMG acquisition, classification, and the actuation of the DC drive using a 
TMS2407eZdsp digital signal controller.

Chapter 15 is titled “Relationship between Anthropometric Variables and Features of Electromy-
ography Signal for Human-Computer Interface.” In this chapter, Phinyomark, Quaine, and Laurillau 
explain the relationships between robust features extracted from actions associated with surface EMG 
signals and 12 related anthropometric variables. Muscle-Computer Interfaces (MCIs) based on surface 
Electromyography (EMG) pattern recognition have been developed based on 2 consecutive components: 
feature extraction and classification algorithms. Many features and classifiers are proposed and evalu-
ated, which yield the high classification accuracy and the high number of discriminated motions under a 
single-session experimental condition. However, there are many limitations to use MCIs in the real-world 
contexts, such as the robustness over time, noise, or low-level EMG activities. Although the selection 
of the suitable robust features can solve such problems, EMG pattern recognition has to design and 
train for a particular individual user to reach high accuracy. Due to different body compositions across 
users, a feasibility to use anthropometric variables to calibrate EMG recognition system automatically/
semi-automatically is proposed. The strong and significant associations presented in this chapter could 
benefit further design of the MCIs based on EMG pattern recognition.

Ganesh R. Naik 
University of Technology Sydney (UTS), Australia



Section 1

EMG Basics and Motor Unit 
Action Potentials



1

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  1

DOI: 10.4018/978-1-4666-6090-8.ch001

Neural Control of Muscle

ABSTRACT

The purpose of this chapter is to introduce the reader to the development of ideas and concepts about 
the manner in which the central nervous system controls muscle contraction. The motor unit, the quan-
tum of muscle contraction, is fundamental to concepts of the neural control of muscle and will be the 
focus of discussion. The population of motor units comprising a skeletal muscle have a diverse range of 
physiological and anatomical properties. The Size Principle of motor unit recruitment is a concept that 
proposes a simple strategy for exploiting the diversity of the motor unit population to produce graded 
force output. The Size Principle has a great deal of empirical support, but also faces criticism about 
the extent of generalization to all types and forms of movement. As the key principles of motor units are 
discussed, methods of measuring and methodology for analysing motor unit activity and whole muscle 
activities are introduced.

INTRODUCTION

The central nervous system receives inputs via 
many sensory pathways. This information is 
integrated, perceived and leads to an output; 
which for the purposes of this chapter is via the 
musculoskeletal system. The motor actions gener-
ated by the output of the musculoskeletal system 
range from simple reflexes to complex voluntary 
movements. In his 1904 address to the British 
Association for the Advancement of Science, 
Sherrington defined a few terms including the 

“neurone” and “final common path.” The term 
“final common path” alluded to the idea that all 
reflex and descending motor commands converge 
on to the motoneurons whose axons provide the 
final link between neural and muscle tissue that 
leads to movement. With respect to the differences 
between reflexive and voluntary movements, it 
is difficult to separate different levels of control 
of the muscle (Prochazka et al., 2000). Here we 
will use the classical terminology for voluntary 
(willed) and reflex activities (automatic and gen-
erally resistant to conscious will).

Parveen Bawa
Simon Fraser University, Canada

Kelvin E. Jones
University of Alberta, Canada
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BACKGROUND

Muscle and Its Motoneuron Pool

Skeletal muscle is composed of thousands of 
muscle fibres; each fibre a multi-nucleated cell. 
In this chapter we will concern ourselves with 
muscles of the limbs, which generally have a 
simpler structure; motoneurons innervating them 
lie in the spinal cord of vertebrates. The geometry 
of muscle fiber orientation relative to the long axis 
of the muscle and tendon varies in limb muscles. 
Muscle fibres can lie in parallel to the long axis 
of the muscle; all active fibres contract together 
with the force vector along the principal axis. 
A typical example of a parallel geometry is the 
biceps brachii (Loeb & Gans, 1986). In pennate 
(or pinnate) muscles, fibres attach to the tendon 
at an angle, called the angle of pennation. The 
force exerted along the line of action is less than 
if the fibres contracted along the main axis of the 
muscle. The directions of contraction of muscle 
fibres in different regions of large muscles are 
important for interpreting motor unit recruit-
ment data (Staudenmann et al., 2009). Most of 
the muscles are multifunctional and their muscle 
fibres contribute different amounts of force in 
various directions (Jones et al., 1993; Ter Haar 
Romeny et al., 1984).

Motoneurons

The contraction of a muscle is controlled by a 
pool of alpha motoneurons1 in the spinal cord. 
The morphology and electrophysiology of moto-
neurons within a pool vary over a wide range. The 
physiology of each motoneuron is well matched 
to the properties of the muscle fibres it innervates 
(Henneman, 1985; Henneman & Mendell, 1981; 
Kernell et al., 1999). The cell body, also referred 
to as the soma or perikaryon, and dendrites of a 
limb motoneuron lie in the ventral horn of the spi-
nal cord. A long myelinated axon exits the spinal 

cord through the ventral spinal root and travels 
to the muscle where it enters the muscle, divides 
into branches and terminals that make synaptic 
connections with muscle fibres. In a healthy 
adult, each muscle fibre receives input from a 
single motoneuron. A single motoneuron with 
all its muscle fibres is what Sherrington defined 
as the motor unit in 1925. All the muscle fibres 
innervated by the same motoneuron, the muscle 
unit (Burke, 1981), are of a uniform fibre type; 
and the number of muscle fibres connected to one 
motoneuron is the innervation ratio. Innervation 
ratio has been shown to be as high as 2000 in the 
cat gastrocnemius muscle which means that an 
action potential in the motoneuron results in 2000 
synchronous muscle fiber action potentials in a 
large motor unit. This is an example of a system 
with high amplification.

Motoneurons that innervate limb muscles are 
typically in a resting inactive state until synaptic 
inputs excite them to an active state; this process 
is called recruitment. The number of motoneurons 
active at any time is associated with the force 
requirements, more motoneurons are recruited 
when more force is required. When a motoneuron 
is recruited to an active state for a long period, 
action potentials are generated at rates ranging 
roughly from 5- 30 impulses/s depending on the 
muscle and the force level. The time between 
action potentials, called the interspike interval 
(ISI), is not constant. The distribution of ISIs for 
an active motoneuron is unimodal with a variance 
resulting from various sources of probabilistic 
noise and electrophysiological properties (Jones 
& Bawa, 1997; Matthews, 1996). Motoneurons 
that are active simultaneously generate action 
potentials that are mostly independent of action 
potentials of other motoneurons. There is some 
level of synchronization of motorneuron action 
potentials in limb muscles that likely result from 
common input sources (Keen et al., 2012; Mo-
chizuki et al., 2005).
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Structure and Activation 
of Muscle Fibres

For many years, anatomists and physiologists 
recognized that skeletal muscles differed in ap-
pearance and speed of contraction to electrical 
stimulation. Muscles that appeared red in colour 
were associated with slower contractions com-
pared to muscles that appeared white. Currently, 
mammalian muscle fibres are categorized into 
different types based on contractile protein ex-
pression (i.e. myosin heavy chain isoforms) and 
metabolic enzymes, from oxidative to glycolytic. 
There are four major fiber types based on myosin 
composition, though not all types are expressed in 
all species (Schiaffino and Reggiani, 2011). Three 
muscle fibre types are generally recognized in hu-
man limb muscles: slow oxidative (SO) or Type 
1, fast-oxidative-glycolytic (FOG) or Type 2A, 
and fast glycolytic (FG) or Type 2X. The muscles 
of the body develop with different proportions of 
the major fiber types and these proportions are 
modified by activity and hormonal influences. 
The soleus muscle in the lower leg contains a 
high percentage of type 1 muscle fibres while its 
synergist medial gastrocnemius contains a much 
higher percentage of type 2 fibres (Johnson et 
al., 1973). In humans there are no muscles which 
contain either all Type 1 fibres, or all Type 2; 
each muscle is mixed. However, muscle fibres 
comprising a motor unit are of the same type.

The two main proteins responsible for con-
traction of a muscle fibre are myosin and actin. 
Molecules of myosin form the thick filaments and 
those of actin form the thin filaments. At one end 
of each myosin molecule is a mobile head which, 
under resting conditions, is not attached to thin 
filament. A thin filament has regularly spaced 
sites on it where the mobile heads of the thick 
filament can attach when Ca++ and ATP are avail-
able. Sufficient depolarisation (~ 50 mV) of the 
cell membrane releases Ca++ from sacroplasmic 
reticulum (SR) which allows the thick filament to 

“walk along” the surrounding thin filaments by 
attaching and detaching its mobile heads to the 
binding sites on the thin filaments. The mobile head 
of myosin attached to actin is called a cross bridge. 
The attached cross bridges are the sources of force 
output. Each cross bridge acts like a small spring; 
the net force is produced by the number of attached 
cross bridges. The movement of the thick filaments 
past the thin filaments shortens the contractile 
part (the active part) of the muscle fibre which in 
turn pulls on the passive parts such as the muscle 
tendon. If the tendon is fixed to a rigid device, the 
tendon is moderately stretched and the contrac-
tion is defined as isometric. When the tendon is 
free to move or lightly loaded, the contraction 
is non-isometric. Note that the term contraction 
does not mean shortening of the muscle; it applies 
to the active sliding of thick and thin filaments 
past each other in the presence of Ca++ and ATP 
molecules. For the whole muscle, the action of the 
contracting muscle depends on the load attached 
to the tendon. If the load is infinite, that is, the 
tendon is attached to a rigid frame, the muscle is 
said to be contracting isometrically. Shortening 
or concentric contraction occurs when load on the 
tendon is less than the maximum force the muscle 
can develop. When a person lifts something light 
with their hand, biceps brachii muscle contracts 
and shortens. Active lengthening, also known as 
an eccentric contraction, refers to the context when 
the muscle is contracting but is being lengthened 
(the load is larger than the force being produced 
by the muscle).

Electrical Activity of a Muscle 
Fibre and Motor Unit

Each terminal branch of a motoneuron makes a 
synapse with a muscle fibre of the motor unit at a 
region called the neuromuscular junction (NMJ). 
On the motoneuron side of this junction, the nerve 
terminal contains vesicles of acetylcholine (ACh) 
that will be released in response to the action 
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potential that was initiated in the spinal cord and 
conducted along the axon to the terminal. In the 
muscle fiber this region is also referred to as the 
end-plate region, which is distinguished by the 
high density of ACh receptors. The sequence of 
events from the arrival of the action potential in the 
motoneuron terminal to contraction of the muscle 
fibers is schematically illustrated in Figure 1.

Under normal conditions, when a motoneuron 
discharges an action potential, each terminal is 
depolarised by the action potential (Figure 1A) 
resulting in an influx of calcium from the extra-
cellular medium into the terminal which causes 
the release of hundreds of ACh vesicles, each 
of which contains thousands of ACh molecules. 
The ACh molecules diffuse across a small gap in 
the NMJ and bind to nicotinic ACh receptors on 
the muscle fibre. When two molecules of ACh 
bind to an ACh receptor, the receptor changes its 
configuration creating a temporary pore (open for 
1-2 ms) that permits the flux of Na+ and K+ ions 
along their electrochemical gradients, through 
the same pore. The flux of Na+ ions inward is 
greater than K+ ions going out, resulting in a net 
depolarization, or excitation of the muscle fibre, 
called the end-plate potential (EPP). The end-plate 
potential generated by ionic flux through the ACh 
receptor/pore complex can have a peak potential up 
to 70 mV, which is large enough to open voltage 
gated Na+ channels that in turn produce an action 
potential in the muscle fibre (Figure. 1B). This 
action potential is conducted along the membrane 
of the muscle fibre away from the NMJ towards 
the two ends of the muscle fibre. Depolarization 
of the muscle membrane by the action potential 
triggers the release of calcium from sarcoplasmic 
reticulum, which results in a transient increase in 
Ca++ concentration inside the muscle fibre (Figure 
1C). The increased Ca++ inside the muscle inter-
acts with proteins on the thin filaments that then 
permit the penultimate interaction of the actin 
and myosin leading to the transient mechanical 
contraction of the muscle fibre (Figure 1D). There 

is a high degree of synchrony across all terminals 
of a motoneuron and therefore near synchronous 
generation of action potentials in all the muscle 
fibres of the motor unit. This results in summation 
of the mechanical contraction of individual muscle 
fibers and generation of the motor unit twitch. The 
conventional measures of the motor unit twitch 
include the peak magnitude, the time from the 
onset of increasing tension to the peak value, i.e. 
the contraction time (CT), and the interval of time 
from the peak tension until the tension decreases 
to half the peak value, i.e. half-relaxation time. 
There is a strong positive correlation between CT 
and the half-relaxation time of a motor unit twitch 
that is associated with the dynamics of different 
muscle fiber types.

Motor Unit Classification

R.E. Burke (1981) classified motor units into 
three types (Figure. 2): S (slow, fatigue resistant), 
FR (fast contracting and resistant to fatigue), FF 
(fast, fatigable). S motor units innervate SO type 
muscle fibres, FR motor units innervate FOG type 
muscle fibres and FF motor units innervate FG 
type muscle fibres. (It should be remembered that 
motor units classification is for convenience since 
motor unit properties form a continuum). S motor 
units have small innervations ratios, generate small 
forces but fatigue less. At the other extreme, FF 
motor units have very high innervations ratios, 
generate large forces, but fatigue quickly. Muscle 
fibres belonging to one motor unit are scattered 
over a large cross section and length of the muscle 
(Bodine-Fowler et al., 1990; Monti et al., 2001; 
Vieira et al., 2011). In the cat, conduction velocity 
of alpha motor axons ranges from 50 to 110 meters/
sec and that of muscle fibres ranges from 2-5 m/s. 
The slow CV of muscle fibres is due to large the 
capacitance of muscle membrane (Adrian, 1976).

Since a range of motor units properties ex-
ist for one muscle, the question arose on how 
the central nervous system utilized motor units 
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with heterogeneous speeds and force generating 
capabilities. This question has been addressed 
for simple muscles by many researchers and their 
findings are generalized to understand and raise 
questions about the contraction of more complex 
muscles. The following sections will present some 
Methods and Results before discussing the past 
literature and proposing future directions.

STUDIES ON MOTOR UNITS

In order to reach the most accurate possible conclu-
sions in research, correct methods for recording 
and data analysis are imperative. Measurement 
of muscle output typically involves electrical 

activity and force, though complementary mea-
sures of mechanical activity and length changes 
are becoming increasingly common. Since the 
properties of transducers used for measurement 
are of prime importance, the basic methods for 
recording and data analysis of motor units and 
whole muscle are reviewed.

Equipment

Population Activity

To record the electrical activity of the muscle or 
single motor units, different types of electrodes 
are used. The simplest recording is the population 
activity recorded with two surface EMG electrodes 

Figure 1. Steps in the production of muscle fibre twitch. (A) Action potential travelling down the ter-
minal branch of the motoneuron depolarises the presynaptic terminal at the neuromuscular junction. 
This releases ACh from the presynaptic terminal. (B) Binding of ACh to the receptors at the end plate 
region of the NMJ results in EPP which leads to an action potential in the muscle fibre. (C) The action 
potential releases Ca++ from sarcoplasmic reticulum (SR), Ca++ concentration reaches a peak within 3-4 
ms, subsequently it is pumped back into SR by an ATP dependent pump. (D) Ca++ enables the formation 
of cross bridges between the thick and thin filaments. Making and breaking of cross bridges results in 
sliding of filaments past each other eliciting a mechanical response called muscle fibre twitch. Twitch 
is the profile of the force that is produced by one action potential in the muscle fibre
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as shown in Figure 3A for differential recording. 
Differential amplification eliminates the noise 
signal common to both electrodes thus maximiz-
ing the signal to noise ratio. The recording area 
of the electrode used depends on the size of the 
muscle; most commercial ones vary in size from 
4-10 mm in diameter. Surface EMG electrodes are 
available in single-use disposable and re-usable 
configurations. Re-usable Ag/AgCl electrodes 
require a conducting gel placed between the 
surface of the electrode and thoroughly cleaned 
skin overlying the muscle of interest. The two 
electrodes are taped approximately 2 diameters 
apart, or roughly 2-3 cm between the centres of 
the two electrodes in line with the direction of the 
muscle fibres (De Luca et al., 2012). With surface 
electrodes cross-talk between muscles is a common 
problem; electrodes placed over one muscle can 
easily pick up activity of distant muscles (De Luca 
et al., 2012). Under such conditions, intramuscular 
EMG electrodes may be employed. These are also 

available commercially but can be made easily in 
the laboratory. Two flexible insulated stainless 
wires, 75-100 µm in diameter, are inserted in a 
25- 27 gauge hypodermic needle. Insulation is 
removed for 3-4 mm at both ends of the insulated 
wires; the ends of the wires near the tip of the 
needles are bent into a hook as illustrated in Fig-
ure 3B. Following insertion into the muscle, the 
needle is gently withdrawn while the bared wires 
remain within the muscle. The other ends of the 
surface or intramuscular electrodes are connected 
to preamplifiers. The commercially available 
preamplifiers make available variable gains and 
filters (De Luca et al., 2010). For population EMG, 
a gain of about 1000 is generally used, but this 
depends on the data acquisition system used. For 
example, if your data acquisition system allows 
± 10 V input, set the gain to use as much of that 
range as possible without exceeding the limits. 
Besides the preamplifier, additional conditioning 
amplifiers may be used to adjust gain. Filtering at 

Figure 2. The figure illustrates three motor units with different innervation ratios. The muscle fibres of 
the three motor units are interspersed rather than congregating together in clumps. The green motoneu-
ron innervates the greatest number of muscle fibres, and is a schematic representation of an FF motor 
unit. Whereas the blue motoneuron and its smaller number of innervated muscle fibres represents an S 
type motor unit
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band pass of 20Hz – 5KHz should be available; 
the lower limit of frequency (20-30 Hz) minimizes 
movement artifact. The cables and wires should 
be stabilised (wrapped and taped around the limb) 
to eliminate any movement of the wires carrying 
signal from the muscle to the preamplifier. Stability 
of electrodes and wires between the muscle and 
the preamplifiers cannot be over emphasized. One 
of the main requirements of a preamplifier is its 
input resistant (20-50 MΩ). For any amplifier, the 
internal noise should be very low (1-2 µV). Bat-
tery operated preamplifiers have a lower internal 
noise. If you are going to use the same preampli-
fiers for surface EMG, intramuscular EMG and 
motor unit activity, it is better to have gain of the 
order of x2000 and filters in the range 20 Hz – 10 
KHz available at the first stage of EMG and MU 
recordings. Population EMG, which represents 
activity of all active muscle fibres, has a much 
higher power at lower frequencies, and negligible 
power above 1KHz. Therefore, a higher cut off 
frequency at 1 KHz serves the purpose. On the 
other hand, single motor unit potentials have a 
higher frequency spectrum. In order to differentiate 
one motor unit potential from the other, 100 Hz is 
better suited for the lower frequency cut off and 
10 KHz for the high frequency cut off.

Motor unit recording is done using intramus-
cular electrodes with very small recording surface 
area, which means high input resistance. Depend-
ing on the experimental protocol, various types 
of MU electrodes have been used. Properties of 
some these electrodes are discussed in Merletti 
and Farina (2009). For very low threshold motor 
units (recorded at minimal forces), researchers 
have used surface EMG electrodes; such record-
ing can be stable for hours (Matthews, 1996). 
The other extreme is the recording of very high 
threshold motor units (when almost all MUs are 
active). Bigland-Ritchie’s group used tungsten 
microelectrodes, which are also used to record 
from single axons and cortical neurons, to record 
discharge rates of the fast units (Bellemare et al., 
1983). Under low to moderate forces, bipolar 

electrodes shown in Figures 3B and 3C are used. 
Hook electrodes with insulated stainless steel wires 
(20-50 µm diameter) are one option for stable 
recording, especially when movement is involved. 
At the recording end of the hook electrode, just 
the transverse surface of the wire is exposed for 
recording. For a wire of 50 µm diameter, the re-
cording area would then be 0.002 mm2. However, 
once in place, these electrodes cannot be advanced 
deeper into the muscle to sample additional motor 
units. But the electrodes can be slowly withdrawn 
to sample more superficial units. If one wants 
to sample a number of motor units during one 
experimental session, needles with embedded 
wires (termed needle electrodes) are more suit-
able (Figure 3C). Bipolar or monopolar needle 
electrodes are available commercially but are a 
bit heavy. Lighter ones can be made in the labo-
ratory (Bawa and Tatton, 1979). Small recording 
area of the recording wires presents a very high 
resistance and is able to detect very small currents. 
With a bipolar recording, the electrodes are able 
to record currents from active muscle fibres in 
the immediate vicinity of the tips of electrodes. 
Since the innervation ratio of larger MUs is high, 
one expects motor unit potentials to be of greater 
amplitude for large compared to small motor units. 
However, the size of an intramuscularly recorded 
MU spike does not necessarily represent the size 
of the motor unit (Henneman et al., 1976). The 
tip of the microelectrode samples currents only 
from a few muscle fibres in its vicinity; it may be 
closest to a muscle fibre of a small motor unit, and 
relatively far from muscle fibres of a large motor 
unit. Under these conditions a larger spike will be 
observed for a smaller motor unit. Furthermore, 
the MU spike recorded by the microelectrode does 
not look like an intracellular action potential of a 
muscle fibre or an axon. The shape and duration 
depend on how muscle fibres of a MU are dis-
tributed around the tip of the electrode. Relative 
sizes and shapes of two MU spikes recorded tell 
us nothing about the properties of the MUs, the 
only information we can derive is on the num-
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ber of units that are active around the tip of the 
electrode and about their relative firing times. In 
order to determine the size of the motor unit, the 
spike-triggered averaging technique may be used 
to extract associated motor unit action potential 
(MUAP) from surface EMG and/or twitch force 
from the AC force record as described below 
(Stein et al., 1972). If force can be recorded, then 
extraction of twitch force is preferred.

During voluntary contraction, auditory and 
visual feedback is often provided so that partici-

pants can maintain a constant firing rate. If audi-
tory feedback of the discharge of a single MU is 
essential to the experimental design, additional 
equipment may be needed. When more than two 
MUs are firing, participants will have difficulty 
maintaining the firing rate of the third unit while 
the first two are also firing in the background. In 
this case, an analog window discriminator may be 
used to detect a target motor unit in real-time and 
provide isolated feedback. Alternatively, this can 
be done with real-time processors and software 

Figure 3. Electrode types. A: Surface EMG electrodes are pasted on cleaned skin overlying the muscle of 
interest. Wires from the electrodes are connected to two inputs of a preamplifier for differential record-
ing. B: An intramuscular hook electrode. For population EMG recording, 3-5 mm of the wire is bared 
of its insulation. For single MU recording, no insulation is removed; under these conditions the bare 
transverse surface of the insulated wires record electrical activity of a few muscle fibres in their vicinity. 
C: Intramuscular electrodes for motor unit recording. These electrodes are available commercially, or 
can be custom made in the laboratory
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available from some commercial neurophysiol-
ogy vendors.

Force recording can be done with commercially 
available transducers or a custom-built system. 
Signal conditioning of these data depends on which 
aspect of the muscle contraction is of interest. 
The magnitude of steady-state force generated by 
a muscle, or DC force, uses low pass filtering at 
100 Hz (band pass DC-100 Hz). If the measured 
force is to be used for spike-triggered averaging 
of twitch profiles, a low pass at 500 Hz is more 
appropriate (Calancie & Bawa, 1986). If twitch 
profiles are to be extracted, the signal is high pass 
filtered at 0.1 Hz to provide a record of AC force 
(Figure. 4 and Figure 5).

Data acquisition and analysis systems can 
be bought or custom built. Before investing in 
a system, check how limited or how expandable 
the system is. If you are interested in a system 
which comes with electrodes, preamplifiers, data 
acquisition and analysis boards, it may be very 
convenient for immediate use, but in the future 
it might limit you to expand the experimental 
protocols used in the laboratory. There are other 
systems available, which are also ready for imme-
diate use, but give you the flexibility of choosing 
electrodes, preamplifiers, additional amplifiers 
and filters. It also depends on whether you want 
a mobile wireless system, or use a desktop that 
will stay in one room.

Procedures

Once we have the equipment to record EMG, MU 
activity, force, along with the data acquisition 
system, we are ready to do experiments.

Procedures to Test Voluntary 
Recruitment of Motor Units

Figure 4 illustrates the set up used to record MUs 
from human first dorsal interosseous muscle, 
which abducts the index finger (Milner-Brown 
et al., 1973a). EMG is recorded with two small 

surface EMG electrodes, one placed on the belly 
of the muscle and the second near the tendon (in 
a larger muscle both electrodes are placed on 
the belly of the muscle). The hand is stabilized 
to isolate force measurement from only the in-
dex finger. Once the hand is secured, a needle 
electrode is inserted in the muscle; the other end 
of the wires from the needle are connected to a 
preamplifier (gain x1000-2000; band pass filter 
100Hz – 10 KHz). Both the subject and the ex-
perimenter should be able to hear the output of 
the preamplifier on an audio amplifier. Figure 
5 illustrates schematically a sequence of events 
for measuring recruitment and DC force in three 
MUs. At stage 1, the participant is relaxed, no 
MU is active. At time 2, the participant is asked 
to slowly increase the force of abduction against 
the force transducer until the first clear MU spike 
is observed and heard (red solid vertical lines in-
dicate spikes). The DC force at stage 3 indicates 
the recruitment threshold of the first MU. The 
participant is then asked to discharge the MU at 
the lowest possible tonic rate (e.g. <10 impulses/s, 
generally 5-6 imp/s). It is very important that the 
subject holds the DC force steady during this pe-
riod and does not make sudden changes in force; 
sharp changes in force affect the filtered AC force 
and will preclude extracting the twitch profile 
of the unit. Once enough spikes are collected to 
extract a twitch (1-2 minutes between times 3 
and 4 results in >350 spikes), the participant is 
verbally instructed to slowly increase their force 
until a new MU starts to discharge, at time 5. The 
firing rate of the first recruited motor unit will 
usually increase as the DC force level increases. 
The level of DC force at point 5 is the recruitment 
threshold of the second MU. The participant is 
then asked to maintain the discharge of this unit 
at a low firing rate with a steady DC force level, 
to collect sufficient data for twitch extraction, 
prior to increasing the force to recruit the third 
MU. Three to five motor units can be monitored 
from one position of the needle electrode as long 
as each of the units can be discriminated and 
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auditory feedback of discharge rate is available 
to the participant. If it is not possible to discern 
individual MUs, move the electrode slightly and 
repeat the above procedure. One expects to record 
new MUs in the new position, but the probability 
of recording from some of the same units is not 
ruled out; one is collecting a statistical sample of 
MUs from the muscle. To prevent the problem 
of aliasing, data acquisition should be done at 
appropriate rates; 20KHz would be typical for 
MU spikes. Aliasing of the intramuscular needle 
EMG for MU recording alters the size and shape 
of spikes, which in turn causes problems for dis-
crimination of different MUs. This experimental 
protocol will provide data that can be used to infer 
the relationship between the recruitment threshold 

and twitch amplitude during voluntary isometric 
muscle contractions.

Phasic Recruitment During H-Reflex 
and Cortical Stimulation

In the above discussion we have dealt with tonic 
EMG and MU activities. Tonic activity means 
prolonged continuous activity at least one second 
in duration. Phasic activity refers to short duration 
signal such as a muscle twitch, EMG or motor unit 
response to a single stimulus. For tonic activity 
one can assess the average activity of the signal 
over time. For phasic activity, the average has to 
be obtained from the summation of successive 
individual responses. Study of recruitment order 

Figure 4. FDI recording. This is a classic set up to study recruitment order of MUs during abduction 
of the index finger in human subjects. The whole hand and forearm are stabilised to prevent movement. 
The index finger is held against a force transducer, the rest of the hand and fingers are prevented from 
contributing force to the transducer with appropriate stops. Isometric force, surface EMG and single 
motor units are recorded at different levels of effort
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of MUs with Ia input is easily done in the soleus 
muscle in the leg or flexor carpi radialis (FCR) 
muscle in the forearm. In adults, it is possible to 
elicit H-reflexes in these two muscles without 
much interference from large M-waves. With 
transcranial magnetic stimulation (TMS), the 
stimulus threshold to recruit MUs is much lower 
in FCR than in soleus as the density of cortico-
motoneuronal connections is much higher in the 
forearm motoneurons compared to soleus moto-
neurons. Here, we will describe the procedures to 
study the recruitment order of FCR MUs during 
voluntary isometric versus involuntary phasic 
excitation as illustrated in Figure 6.

Participants are asked to voluntarily recruit 
two MUs similar to the procedures outlined above 
for abduction of the index finger. We assume that 
during slow voluntary isometric contractions the 
recruitment of units is orderly and follows the size 
principle. The procedure works best when the two 

MUs have clearly different voluntary recruitment 
thresholds. Therefore, the relative recruitment 
thresholds should be verified three or four times 
with slow changes in voluntary isometric force. 
The participant is then asked to maintain a rela-
tively constant voluntary force near recruitment 
threshold for the lower threshold MU. A phasic 
excitation to the motoneuron pool is produced by 
stimulation: either H-reflex input by stimulating 
the peripheral nerve, or Transcranial Magnetic 
Stimulation (TMS) applied over the appropri-
ate area of the primary motor cortex (Bawa and 
Lemon, 1993; Calancie and Bawa 1985). The 
strength of the stimulus should be adjusted so 
that the lower threshold unit responds to seven or 
eight stimuli out of every ten, then 50-100 stimuli 
of fixed intensity are given and the responses 
recorded. The probability of response of each 
MU to phasic stimuli is measured from their peri 
stimulus time histograms (PSTHs). If the MU 

Figure 5. The three panels above illustrate, from bottom to top: MU spikes, DC and AC force. Note that 
the recorded MU spike amplitude is not necessarily related to the actual MU size, it is used to distinguish 
the three MUs. When extracting the twitch profile using spike triggered averaging (STA), the MU firing 
rate should be maintained at the lowest possible rhythmic firing rate. For example, between time points 
3 and 4, the participant maintains a constant DC force and low discharge rate for the red MU, while the 
simultaneously measured AC force data are used for STA. This procedure is repeated for the remaining 
two motor units between time points 5-6 and 7-8
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with the lower voluntary threshold has a greater 
response probability compared to the second 
higher threshold MU, then the inference is that 
the two units have the same order of recruitment 
to voluntary and phasic involuntary excitation.

Analysis

Population EMG

SEMG can be used for several purposes, and it is 
always a good idea to record it even if one does 
not see an immediate need for it. SEMG can be 
used to provide feedback to participants to en-
able them to maintain a steady contraction level. 
For this use, the filtered SEMG signal from the 
preamplifier, is further low pass filtered (5 – 10 
Hz) and is visually displayed in front of the sub-
ject on a computer screen or an oscilloscope. If 
SEMG is going to be used together with spike 
triggered averaging to generate a MUAP, the 
preamplifier filters should be set at 30 Hz – 10 
KHz. The higher cut off frequency of 10 KHz 
provides a better differentiation of single motor 
unit potentials (MUAPs)

To assess the response of a muscle to phasic 
stimulation using SEMG, a minimum of 75-100 
stimuli are typically needed. Multiple stimuli are 
required because the responses of the motoneurons 
are probabilistic and vary from trial-to-trial. The 
response of the motoneurons to a phasic excitatory 
stimulus will result in short-term synchronization, 
which is detected as peaks in the SEMG signal (e.g. 
H-reflexes). With strong synchronous excitation, 
the trials are averaged with respect to the stimulus 
at time zero and the magnitude of the response 
measured from the peaks (e.g. peak-to-peak am-
plitude). Clear repetitive responses are rare and 
hence summation of successive responses can lead 
to error. To measure the response to the phasic 
stimulus at different levels of background SEMG 
activity, the signal should be rectified. Rectifica-
tion is also necessary when phasic responses are 
spread out in time and shapes vary among succes-

sive responses. Some of the examples are: motor 
evoked potentials (MEPs), cutaneous reflexes, and 
stretch reflexes (Figure 7). The SEMG is rectified 
before averaging, making sure to eliminate any DC 
bias or offset introduced by electronic hardware 
used for rectification. After rectification, the re-
sponses are averaged and quantified by measuring 
the area (Figure 7). When quantifying rectified 
SEMG by measuring the area, the background 
must be subtracted to estimate the magnitude of the 
evoked response. To obtain an accurate estimate 
of background SEMG, averaging is performed 
on data acquired 50-100 ms prior to the stimulus 
as well as times after the stimulus at the latency 
of the evoked response. The average background 
also helps to obtain values of onset and offset 
of the evoked activity (Figure7, Manning et al., 
2012). Mean and standard deviation (SD) of the 
background are measured and a horizontal cursor 
is placed at Mean + 3SD as indicated in Figure 
7. Intersection of this horizontal cursor with the 
evoked peak will give you the values of the onset 
and termination of the averaged evoked response. 
The magnitude of the response is measured above 
the horizontal cursor and between the onset and 
termination of the response.

Spike Sorting and Analysis

Once spikes have been recorded, we can determine 
the firing characteristics of each of the recorded 
MUs, and compute the response of each unit to 
phasic stimuli. Several discernible MU spikes 
are recorded by one electrode; spikes from any 
one MU have the same shape and size, but it is 
different from spike profiles of the other MUs 
discharging simultaneously. Different profiles 
help to separate spikes belonging to different 
MUs. An example is shown in Figure 8 where 
two motor units were recorded in a human hand 
muscle. The smaller spike has been separated and 
its TTL pulses transferred to channel A while the 
TTL pulses corresponding to the larger spike have 
been transferred to channel B. There are several 
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spike sorting algorithms available, or one can use 
a window discriminator to convert the spike into 
a TTL pulse; all data are analysed using these 
TTL pulses as point events in time. If there were 
a stimulus being applied to study responses of 
MUs, the time of stimuli would have been placed 
as TTL pulses on another channel.

First order interval histogram (INTH) provides 
information on the mean discharge rate of the motor 
unit and on the variability of inter spike interval 
(ISI). The histogram is constructed by binning all 
available intervals in the spike train of interest. 
A peri stimulus time histogram (PSTH) provides 

information on the effect of the stimulus on mo-
toneuron discharge. The histogram is constructed 
between the TTL pulses of the stimulus and those 
of the MU of interest. For a tonically firing MU, 
the histogram will have random events before the 
stimulus, the spikes will then accumulate during a 
restricted response time period after the stimulus. 
There will be MUs which are not active tonically 
and respond only phasically to the stimulus; their 
PSTHs will show zero background activity, and a 
peak will be observed at the time of the response. 
In a PSTH of a phasically responding MU, an 
occasional spike outside the response time may 

Figure 6. Stimulation to produce involuntary phasic excitation of MUs in wrist flexor muscles. Electrical 
stimulation of Ia afferents in the median nerve at the elbow produces an H-reflex in FCR. Stimulation of 
the forearm area of the contralateral motor cortex, with a transcranial magnetic stimulator, generates 
an MEP in the wrist muscles
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be observed; it results from synaptic noise. Note: 
There are non-synaptic sources of noise which can 
be mistaken for spikes, for example, noise from 
cell phones, capacitive discharges, spikes from 
dying muscle fibres, etc. With experience one 
can distinguish MU spikes from noise.

Spike Triggered Averaging Technique

STA technique is used to average out very small 
signals time locked to a stimulus from a large 
time varying signal. For example, if we have data 
for SEMG and a MU spike from a contracting 
muscle, we can obtain an estimate of the size 
of the whole MU from SEMG. Convert the MU 
spike train to its TTL train, this TTL is used as 
a stimulus for averaging of correlated MUAP or 
twitch force from the corresponding population 
activity. Trigger the computer with TTLs of spike 
train and average unrectified SEMG. Depending 

on the size of the MU and the background activ-
ity of the active muscle, you will need anywhere 
from 100 – 1000 triggers. Make your averaging 
window around 50 ms wide, 25 ms before and 
25 ms after the trigger at time zero. The average 
will give you MUAP. To average twitch force, 
you need the TTL train of a MU and AC force 
when the motor unit is discharging at the lowest 
possible tonic rate (Fig. 5). For averaging, you 
need a window about 400 ms wide, 50 ms before 
and 350 ms after the TTL trigger, and 100 – 200 
triggers to obtain a clean twitch profile, less for 
larger motor units (Calancie & Bawa 1986; Stein 
et al., 1972).

Behaviour of a Population 
of Motor Units

The description given above deals with 2-5 simul-
taneously recorded MU spikes in order to come 

Figure 7. Rectification of signal, measurement of response onset and area. This is an example of stretch 
reflexes recorded from human wrist flexors with surface EMG electrodes. The wrist was stretched with 
a torque motor, 20 trials were recorded. SEMG was amplified x1000, band pass filtered 30 Hz – 3KHz. 
DC bias was removed, the signal was rectified, and the 20 trials were averaged. The average is shown 
in the figure. Mean background was computed for 100 ms before the stimulus (time zero), the horizontal 
cursor (HC) was placed at Mean + 3SD. The vertical cursors C1 and C2 intersected the HC at 29 ms 
and 104 ms which give the onset and termination times of the reflex response. Area of the response lies 
between C1, C2 and HC
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to conclusions about spike times and recruitment 
order. Such recordings tell us nothing about 
muscle fibre distribution for any one motor unit, 
concentration of MU types in different parts of the 
muscle and about the architecture of the muscle. 
More complex EMG array recording electrodes 
and decomposition techniques, both intracellular 
and surface recordings, have revealed relative 
firing behaviours of multiple motor units. For 
details of these techniques refer to publications by 
De Luca, Farina, McGill, Merletti, Stålberg and 
Stashuk, a few references are provided here (De 
Luca et al., 2006; McGill et al., 2005; Merletti & 
Farina, 2009; Parsaei et al., 2010; Stålberg et al. 
1995; Vieira et al., 2011).

Results

Initial experiments which established the orderly 
recruitment of motor units were done on hind 
limb muscles of the cat; stretch of muscles ex-
cited Ia afferents which synaptically excited the 
homonymous and heteronymous motoneuron 
pools (Henneman 1985; Henneman et al., 1974; 
Henneman and Mendell 1981; Henneman et al., 
1965). In these reduced preparations, reflex ac-
tivity was recorded either from ventral roots or 
motor units within the muscle. Human experiments 
expanded our understanding of MU recruitment 
when synaptic inputs to motoneurons occurred 
during voluntary and reflex contractions under 
more physiological conditions.

Figure 8. A recording of motor unit signals is shown. The two motor units (A and B) recorded simulta-
neously with the same electrode are separated into two trains of TTL pulses. The separation is based 
on their shapes and sizes as shown at the bottom on an expanded time scale. Time bar = 1 sec for the 
recorded MU signal. For each spike profile, time bar = 2 ms
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Recruitment During 
Voluntary Contractions

Orderly recruitment, from small to large motor 
units, was first demonstrated in humans by Stein’s 
group (Milner-Brown et al.,1973). Employing the 
STA technique to extract twitch profiles of motor 
units, these researchers showed that MUs with 
small twitch forces were recruited at lower force 
thresholds while stronger MUs were recruited at 
higher voluntary forces. These results for slow 
isometric voluntary contractions have been shown 
to be true for a large number of human muscles, see 
Calancie and Bawa (1990) for detailed references. 
For very fast voluntary contractions Grimby and 
Hannerz (1968) suggested a flexible recruitment 
order which was later refuted by careful studies 
carried out by Desmedt and Godaux (1977). 
Similar observations of orderly recruitment have 
been reported during non-isometric contractions. 
During functional tasks carried out by the FDI 
muscle, Jones et al. (1994) demonstrated that the 
order of recruitment was the same irrespective of 
the task performed by the subject.

One of the major exceptions to the size principle 
were reported from those muscles which have 
been defined anatomically as distinct muscles but 
functionally they are not. For example, sartorius, 
which is defined as a single muscle, consists of 
three functionally distinct subgroups of MUs 
(Hoffer et al., 1987). The authors suggested 
orderly recruitment within each subgroup. Such 
subgrouping and orderly recruitment within each 
subgroup was clearly demonstrated by Riek and 
Bawa (1992) for the extensor digitorum commu-
nis (EDC) in humans. When EDC acts as a wrist 
extensor, size-ordered recruitment occurs within 
the whole motoneuron pool. For extension of the 
fingers, EDC motoneuron pool is divided into sub-
pools, and orderly recruitment takes place within 
each subgroup of MUs. These studies should not 
automatically imply that every muscle which is 
multifunctional has subgrouping of MUs for each 
task. Jones et al. (1993) tested the recruitment order 
of MUs in flexor carpi ulnaris (FCU) muscle while 

subjects contracted the muscle during isometric 
and non-isometric wrist flexion, ulnar deviation 
and co-contraction. They reported that the same 
motor units contributed to each of the four tasks, 
and the order of recruitment was the same for all 
tasks. FCU motoneuron pool, therefore, is not 
fractionated into subgroups as originally suggested 
by Denny-Brown (1949).

Another exception to the size principle, which 
was accepted for a long period, was recruitment 
during lengthening contractions (Nardone et al. 
1989). Bawa and Jones (1999) reinterpreted the 
data published by Nardone et al. (1989) and came 
to alternative conclusions. Orderly recruitment of 
MUs during lengthening contractions was later 
demonstrated in the upper limb (Søgaard et al. 
1996; Stotz and Bawa 2001) and in lower limb 
muscles (Pasquet et al. 2006) in human subjects.

Recruitment and Rate Coding

Increase in force is produced by two mechanisms, 
recruitment of additional MUs and rate coding. 
When a motoneuron pool is excited at a level 
where it just discharges one MU, any additional 
excitation increases the firing rate of the first 
recruited unit while another unit is recruited. 
The change in firing rate is called rate coding. 
Recruitment and rate coding go hand in hand to 
increase muscle force smoothly (De Luca and 
Erim, 1994; Milner-Brown et al., 1973b; Monster 
and Chan, 1977; Tanji and Kato, 1973). In small 
hand muscles, recruitment of most of the MUs 
takes place at low forces, further increase in force 
occurs by rate coding. When Kukulka and Clam-
man (1981) compared activation of the small hand 
muscle adductor pollicis with the larger proximal 
muscle biceps brachii, they reported that the vast 
majority of MUs in the adductor pollicis were re-
cruited at forces <30% MVC (maximum voluntary 
contraction) while in biceps brachii, recruitment 
occurred over 0-90% of MVC. Thus rate coding 
is important for large muscles at all force levels 
while recruitment is important for small muscles 
at lower force levels. At higher force levels, small 
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muscles increase force mostly by rate coding. 
Because of this recruitment pattern, MUs with 
distinct spike profiles are difficult to record in 
small muscles; too many MUs become active at 
quite low levels of force and the potentials start 
to interfere with each other. Irrespective of the 
muscle, when a unit is just recruited, it fires at a 
low rate, thereafter it increases to a maximum rate. 
The maximum tonic rates in humans vary for slow 
and fast muscles; in slow soleus the highest tonic 
rates are around 15 imp/s, while for faster muscles 
firing rates in the range 30-60 have been reported 
(Bellemare et al.,1981; De Luca and Erim, 1994; 
Grimby et al. 1981; Kukulka and Clamman, 1981; 
Person and Kudina, 1972). During extremely fast 
contractions, instantaneous firing rates can easily 
exceed 100 imp/s, but the motoneuron fires only 
2-3 spikes at high rates before it slows down 
(Bawa and Calancie, 1983; Desmedt, 1981; Tanji 
and Kato, 1972).

Recruitment During Reflexes 
and Transcranial Stimulation

The test of recruitment order during voluntary 
contractions involves tonic synaptic inputs to the 
motoneuron pool and the experimenter records 
hundreds of successive spikes of a MU. Noise 
in the neurons varies the instantaneous rate, but 
one deals with an average firing rate in impulses/s 
(imp/s). On the other hand when we deal with 
recruitment in response to a single stimulus, every 
response is affected by noise. Single response is 
probabilistic, noise might increase or decrease 
the probability of MU firing; one might come to 
wrong conclusions by observing 1-2 responses. 
One needs to average the response by applying the 
stimulus multiple times. The average is measured 
by constructing PSTHs for each MU. One of the 
main precautions to take in measuring response 
probability is the background firing rate of the 
motor unit; the response probability decreases 
with increase in background firing rate (Jones and 
Bawa, 1999). With tendon taps applied to the first 
and second dorsal interosseous muscles, Buller et 

al. (1980) showed that MUs which were recruited 
first during voluntary contractions, were also the 
ones which responded with higher probability 
to tendon taps. The same is true for electrically 
elicited H-reflex in the soleus; MUs recorded first 
with voluntary effort were also the first ones to 
respond to Ia input from soleus muscle (Desmedt 
and Godaux, 1978). The stretch of upper limb 
muscles activate at least two clear reflex pathways, 
one spinal and the other transcortical. Surface 
EMG response consists of a short latency peak 
M1 (25-55 ms), and a longer latency peak M2 
(55 – 100 ms) (Manning et al., 2012; Matthews 
1991). Recruitment of motor units is more com-
plex with stretch reflexes. For the wrist extensors 
and flexors, the transcortical reflex pathway has a 
much higher gain. In a detailed study of motor unit 
firing patterns during M1 and M2, Calancie and 
Bawa (1985) first recorded the voluntary recruit-
ment order of 2-3 motor units and then observed 
their responses with stretch reflexes. The authors 
concluded that a motor unit that is recruited first 
during voluntary contraction is also the one that is 
recruited first during the stretch reflex response. 
When the stretch was small or the unit was not 
facilitated, it preferred to fire during M2 period. If 
the amplitude of stretch was increased, or the MU 
was made to fire tonically, the unit now responded 
at M1 time. Since the M1 reflex pathway has a 
lower gain, either the motoneuron excitability 
had to be increased or the synaptic input had to 
increase for the motoneuron to respond during 
M1 period. Size ordered recruitment order has 
also been reported during transcranial electrical 
stimulation (Calancie et al., 1987) and transcranial 
magnetic stimulation (Bawa and Lemon, 1993; 
Hess et al. 1987).

Preferential Recruitment of 
Motor Units and Explanations 
of Controversial Results

Though the orderly recruitment pattern of motor 
units from small to large is quite well established, 
there are studies which still believe in preferential 
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recruitment of larger motor units. Clear and re-
peated observations of selective recruitment are 
missing. However, there are examples in which 
very strict order of recruitment breaks down. With 
prolonged firing, motoneurons tend to fatigue, 
their firing thresholds increase. A small increase 
in synaptic input does not maintain firing of these 
motoneurons but is capable of recruiting new 
motoneurons. After a while, when the originally 
fatigued motoneurons recover after rest, the substi-
tuting motoneurons drop out to maintain a constant 
level of motoneuron activity. This phenomenon of 
substitution of fatigued motoneurons by freshly 
recruited motoneurons, and resumption of firing 
of the original motoneurons is called rotation. 
Rotation occurs among motoneurons which are 
quite close in thresholds (Manning et al., 2010; 
Westgaard and De Luca 1999). Another condition 
in which recruitment order might weaken is during 
pain. When experimental pain is induced, firing 
rates of lower threshold units decrease, while 
higher threshold units are recruited to maintain 
force (Tucker et al., 2009). There does not appear 
to be a clear pattern of derecruitment or recruit-
ment in their data.

DISCUSSION

According to Henneman’s size principle, the cen-
tral nervous system employs a simple strategy to 
recruit motor units of a muscle or a task group. 
With experimental support from reduced prepa-
rations, he argued on theoretical grounds that if 
CNS had to pick the most appropriate motor units 
for every task, the computations involved and the 
time taken to pick just the right type and right 
number of MUs would make the CNS very inef-
ficient (Henneman et al., 1974). Similarly, using 
information theory, Senn et al. (1997) provided a 
strong support for the size principle. They argued 
that size ordered, “non-selective” recruitment 
requires minimal neuronal hardware for compu-
tation of motor output. The rate of information 

transmission between the motoneurons and the 
muscle is maximized and the error between the 
command signal to the motoneurons and the force 
output is minimized.

To explain the size-ordered recruitment, 
the simplest model is to consider the somata of 
motoneurons of a pool to be spheres of different 
diameters. The smallest sphere has the highest in-
put resistance (IR) and IR decreases with increase 
in diameter of the sphere [considering resistance 
per unit area (specific resistance) to be the same 
for each motoneuron]. If the same magnitude of 
synaptic current arrives at every motoneuron, the 
smallest motoneuron would depolarize the most, 
and this depolarization would decrease with in-
creasing size of the motoneuron (De Luca & Erim, 
1994). Consequently, the small motoneuron would 
require the least amount of synaptic current to reach 
threshold for firing and the larger motoneurons 
would require more current to start discharging. 
However, the above assumed uniform membrane 
properties of motoneurons and uniform synaptic 
currents are not universally true; additional ob-
servations with non-uniform properties have also 
been reported. For spindle Ia afferents, it has been 
shown that every afferent gives synaptic input to 
each homonymous motoneuron, but the input is 
not uniformly distributed according to motoneuron 
size. Each afferent makes strongest connections 
with the motoneurons which are located near its 
entry zone in the spinal cord (Henneman, 1985; 
Henneman and Mendell, 1981). Yet, the overall 
effect of Ia afferent input is to recruit small mo-
toneurons first. Further, it has been reported that 
small motoneurons have higher specific resistance, 
an observation which would further increase the 
IR of smaller motoneurons, and hence increase 
the probability of them firing with lower currents 
(Burke et al., 1982). The spike generating region 
and mechanism may also vary such that the smaller 
motoneurons fire easily (Gustaffson & Pinter, 
1985). Besides variation in intrinsic properties 
of motoneurons, there is also non-uniformity of 
synaptic inputs. For example, for homonymous 
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Ia synaptic inputs to motoneurons, Heckman and 
Binder (1988) demonstrated larger synaptic cur-
rents to small motoneurons, which again favours 
the size principle. On the other hand, there are 
inputs which do not favour the size principle. 
Some inhibitory inputs are stronger onto small 
motoneurons and under such conditions one might 
expect the larger MUs to fire without including the 
small ones (Powers and Binder, 2001). No such 
observations have been made in behaving, normal 
animals or humans. It has been proposed that the 
non-uniformity of synaptic inputs does not neces-
sarily imply preferential recruitment of large units, 
but it determines gain of the input-output curve 
of the motoneuron pool (Kernell and Hultborn, 
1990). When there is a stronger inhibitory synap-
tic input to the small motoneurons, or a stronger 
excitatory input of the larger motoneurons, the 
slope of the gain curve increases which makes it 
easier for the larger MUs to participate in force 
production (Burke, 1981; Heckman & Binder, 
1988). Participation of larger MUs occurs also 
during fast synaptic inputs. Synaptic current, with 
higher rate of rise, recruits extra larger MUs which 
fire 1-2 spikes; these extra spikes enhance the 
rate of rise of force at the start of the contraction 
(Smith et al., 1995).

All carefully done experiments to date have 
shown motor units to be recruited according 
Henneman’s size principle, the small MUs re-
cruited before larger ones. The most important 
point we want to make here is that size is not a 
perfect determinant in a normal animal or hu-
man subjects due to the presence of noise in the 
neuromuscular system. Small deviations, from 
perfect size relationship cannot be interpreted 
as exceptions to the size principle. An exception 
would imply that a small subgroup of larger MUs 
is recruited preferentially for each particular task 
without necessarily activating S type units. There 
are no experiments which have unequivocally 
shown such results. Furthermore, a contraction 
where larger units are recruited before small ones 
would be imprecise (Senn et al. 1997). A common 

exception brought forward is the derecruitment 
of small motor units with electrical stimulation 
of cutaneous nerves in a reduced cat preparation 
(Kanda et al., 1977); however, this was later shown 
not to be true (Clarke et al. 1993). Other cases in 
which the size principle weakens is during pain and 
fatigue (rotation). This is not surprising. One of 
the fundamental advantages of orderly recruitment 
by size is that it allows precision of movement or 
contraction. Size principle is not very robust after 
reinnervation of a muscle after injury (Gordon et 
al. 2004). Death of motoneurons during ageing 
is accompanied by reinnervation of the orphaned 
muscle fibres, increase in motor unit sizes and 
molecular changes in muscle proteins (Chan et 
al. 2001). During conditions of fatigue, intense 
pain, reinnervation or ageing, we surely do not 
expect great precision of movement.

CONCLUSION

There are two points that we would like to make on 
motor unit studies: first, on order of recruitment, 
and second, on the questions still unresolved that 
can be handled by new technologies.

Recruitment of motoneurons according to 
Henneman’s size principle seems to be a simpli-
fied strategy used by the central nervous system in 
order to produce force fast and with most precision. 
The precision is further enabled by rate coding. 
Selective recruitment of larger motor units has 
not been observed. The slowing of firing rates of 
already firing MUs and recruitment of additional, 
slightly higher threshold MUs with pain stimulus 
does not imply selective recruitment of large mo-
tor units. Similarly, rotation among motor units 
does not indicate a breakdown of size principle. 
During pain, fatigue or clinical injury, sufficient 
force output rather than extreme precision of force 
output become more relevant.

The second point we want to make is with re-
gard to the future studies. In this Chapter we have 
described motor unit techniques which were based 
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on 1-2 intramuscular electrodes from which one 
can deduce discharge behaviour of few simultane-
ously firing motor units. Recruitment order at the 
level spinal cord translates into similar recruitment 
order in terms of force only for small muscles 
with parallel fibres. How does recruitment order 
related to force output in muscles with complex 
architectures, for example, human soleus (Agur 
et al. 2003; Sinha et al., 2011) or gastrocnemius 
muscles (Martin et al. 2001;Vieira et al. 2012). 
Monti et al. (2001) have described a variety of 
sophisticated muscle fibre distributions in various 
muscles which would affect the force output of 
each motor unit differently. In order to understand 
the interaction of various motor units in a complex 
muscle (muscle fibre distribution with respect 
to orientation, in-parallel or in-series placement 
with fibres of other motor units, placement of a 
muscle unit within the muscle), more sophisticated 
electrode configurations are needed. Even though 
the multi-electrode arrays are relatively new; they 
can provide information about the distribution of 
small versus large motor units within a muscle. 
Models of muscle contraction that include recruit-
ment and rate coding, muscle fibre distribution, 
angle of pennation, types of muscle fibres, and 
other architectural and cellular characteristics 
can be challenging but can help us understand 
the contribution of each factor in cases where 
experimental data are not possible (Fuglevand et 
al,. 1993 ; Röhrle et al., 2012). The non-invasive, 
multi-array SEMG electrodes can be very useful 
to investigate how muscles develop during child-
hood, change during ageing, and what happens 
during various neuromuscular diseases.
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KEY TERMS AND DEFINITIONS

Acquisition Rate: The sampling rate at which 
the computer acquires the physiological signal. 
The rate (Hz) is inverse of sampling interval (sec). 
It should be at least twice the highest frequency 
contained in the signal being sampled.

Action Potential (AP): The rapid change in 
membrane potential of a neuron or muscle fibre. 
Compound action potential (CAP) is the potential 
generated by the superposition of more than one 
AP. It is almost impossible to exactly superimpose 
two APs, therefore a CAP is longer in duration 
than a single AP.

Electromyography (EMG): The technique 
used to record and study population activity, for 
both surface (SEMG) and intramuscular (IEMG) 
recordings. Though invasive, intramuscular re-
cording has been more accurate.

Firing Rate, Expressed As Impulses/s 
(imp/s): The number of action potentials generated 
in one second; many publications use Hz rather 
than imp/s. We will retain Hz when referring to 
data in the frequency domain. Instantaneous firing 
rate between two spikes is the inverse of interval 
between the two spikes. If the interval between 
two spikes is t sec, the instantaneous firing rate 
is 1/t imp/s.

Motor Unit (MU) Activity as Measured: 
Comprises the spikes or potentials recorded with 
intramuscular micro electrodes. The electrode 
samples the activity of a few muscle fibres of 

each MU which are located in the vicinity of its 
tip. Thus a MU spike is a CAP.

Motor Unit Action Potential (MUAP): 
Generated by the whole motor unit, during al-
most synchronous firing all muscles fibres of 
MU, cannot be recorded. Since the onset times 
of APs in muscles fibres of a MU vary, the dura-
tion of MUAP is much longer than a typical AP, 
MUAP is a CAP. The representative motor unit 
potential (MUP) can be recorded with surface 
EMG electrodes during weak contractions, or is 
often extracted from SEMG by spike triggered 
averaging (STA) technique.

Single Fibre Action Potential (SFAP): The 
extracellular action potential generated by a single 
muscle fibre.

Spike Triggered Averaging: This procedure 
is used to extract a small signal time locked to a 
spike, from a large time varying signal which is 
produced by a number of other spikes which occur 
randomly with respect to the spike in question.

TTL or Transistor-Transistor-Logic Pulse: 
Will be use for a brief (100 µs) pulse, 4-5 V in 
amplitude. It is an event which can be used as a 
stimulus, or for spike train analysis.

ENDNOTES

1  Motoneuron will be used throughout rather 
than alpha motorneuron
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Chapter  2

New Advances in Single 
Fiber Electromyography

ABSTRACT

The aim of this chapter is to present a general perspective of SFEMG together with a description of the 
anatomical, physiological, and technical aspects that are involved in the recording of single fibre action 
potentials (SFAPs). First, a simulation model that relates analytically the intracellular action potential 
(IAP) and SFAP mathematical expressions is described. Second, the most recent findings regarding 
the shape features of human SFAPs are outlined. Third, a description of how different types of needle 
electrodes affect the characteristics of the recorded potential is detailed. Fourth, an explanation of the 
most important effects of filtering on the SFAP characteristics is provided. Finally, a description of the 
principles of jitter estimation together with the most important sources of errors is presented.

1. INTRODUCTION

The advent of single fibre electromyography 
(SFEMG) allowed investigators to record po-
tentials produced by single muscle fibres (i.e., 
the so-called SFAPs). Characterization of the 
shape peculiarities of the SFAP (i.e., the SFAP 
morphologic features) is essential as it enables 
to extract information about the characteristics 
of human intracellular action potentials (IAPs). 
This is highly valuable as knowledge about the 

characteristics of human IAPs is still incomplete 
(Rodriguez-Falces et al., 2012a, 2012b).

Over the years, SFEMG has been developed 
to study the microphysiology of the motor unit, 
such as the propagation velocity of individual 
muscle fibres (Stålberg, 1966), the distribution of 
muscle fibres within individual motor units (Sand-
ers & Stålberg, 1996), and, most remarkably, the 
neuromuscular jitter (Stålberg & Trontelj, 1979). 
Nowadays, estimation of the neuromuscular jitter 
is the most reliable test to evaluate the function-
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ing of neuromuscular transmission in vivo and 
SFEMG has become a useful technique for the 
diagnosis of a great variety of neuromuscular 
disorders.

Buchthal was the first to analyze extensively the 
characteristics of extracellular potentials produced 
by the activation of human skeletal muscle fibres 
(Buchthal & Pinelli, 1953; Buchthal et al., 1954a, 
1954b). However, the large recording surface of 
the electrodes he used prevented him to record 
electrical activity from individual muscle fibres. 
It was not until the advent of SFEMG, promoted 
by Ekstedt (1964) and Stålberg (1966), that the 
identification of SFAPs was possible. Therefore, 
the feature that makes the SFEMG technique 
unique is its high selectivity, which is provided 
by the small recording surface of the single-fiber 
(SF) electrode, approximately 25 μm in diameter 
(Stålberg & Trontelj, 1979). This selectivity is 
further enhanced by using a high-pass filter with 
a typical cut-off frequency of 500 Hz.

As established by Ekstedt (1964), the con-
ditions for recording an SFAP in a voluntarily 
activated muscle are:

1.  That the fibre is close to the electrode, and
2.  That the other fibres of the motor unit that 

have coincident action potentials are remote 
enough from the electrode to make their 
contribution small.

Based on these conditions, Ekstedt (1964) 
established the criteria to select true SFAPs:

1.  Have a clean and smooth biphasic spike and
2.  Present identical shape at consecutive dis-

charges when the recording system has a 
time resolution of 10 μs (these days much 
shorter acquisition times are possible).

In the context of clinical neurophysiology stud-
ies, the most appreciated feature of SFAPs is the 

fact that they show a constant shape at consecutive 
discharges (Ekstedt, 1964) and so they are ideal 
“time events” with which to estimate jitter. The 
study of the pure morphologic features of SFAPs 
has received little attention from investigators. 
There are several reasons for the relative lack of 
research in this direction:

1.  The extremely high sensitivity of the SFAP 
characteristics to minor changes in the posi-
tion of the electrode,

2.  The difficulty to establish when, and to 
what extent, the time-course of an SFAP is 
contaminated by distant electrical activity 
from the same motor unit, and

3.  Other technical problems related to SFEMG 
(inappropriate filter settings, contribution 
from the needle cannula, baseline fluctua-
tion, physical noise, etc) (Dumitru et al., 
1994).

The objective of this chapter is manifold. First, 
we will present a simulation model that relates 
mathematically the IAP and SFAP functions 
and use this model to address both the “forward 
problem” (analyze the influence of the IAP pa-
rameters on the morphology of the SFAP) and 
the “inverse problem” (obtain information of the 
IAP using some quantitative and morphological 
characteristics of the SFAP). Secondly, we will 
report some of the most relevant findings regarding 
the characteristics of human SFAPs. Afterwards, 
we will describe the main characteristics of single-
fibre and concentric needle electrodes in relation 
to the recorded potentials. In addition, we will 
show the most important effects of filtering on 
SFAPs with special emphasis in the distortion 
introduced in the shape of the SFAPs. Finally, 
we will present the principles of jitter estimation 
together with the most important errors associated 
with this estimation.
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2. PHYSIOLOGICAL BASIS 
OF THE FORMATION OF THE 
INTRACELLULAR ACTION 
POTENTIAL (IAP)

Skeletal striated muscle is made up of individual 
components known as myocytes, or “muscle cells,” 
sometimes colloquially referred to a “muscle fi-
bres.” Striated muscle fibres range from 10 to 90 
μm in diameter (Lieber, 2010). These elongated, 
cylindrical cells contain actin and myosin fila-
ments repeated as “sarcomere,” the basic func-
tional unit of the muscle fibre and responsible for 
skeletal muscle’s striated appearance and forming 

the basic machinery necessary for muscle contrac-
tion. Muscle contraction is generated by almost 
synchronous activation of several groups of muscle 
fibres, each group governed by a single moto-
neuron through its axon (Lieber, 2010). Figure 1 
shows a portion of a muscle fibre synapsing with 
one of the terminal branches of the motoneuron 
at the neuromuscular junction (NMJ).

Three membrane potentials participate in the 
activation of the muscle fibre: namely, the resting 
membrane potential, the end plate potential, and 
the action potential. The membrane potential at 
rest is approximately -80 mV. When acetylcholine 
binds to the receptors at the neuromuscular junc-

Figure 1. (a) Schematic representation of a portion of muscle fibre in which two excitation sources [IAP(x)] 
are propagating with velocity v from the neuromuscular junction to the fibre ends. The polarization of 
the fibre membrane is represented by several layers of negative signs. The transmembrane ionic electric 
current, Im(z), is also indicated. (b) Spatial profile of the intracellular action potential (IAP) with its 
depolarization and repolarization phases are shown in the lower figure



31

New Advances in Single Fiber Electromyography
 

tion, depolarization of the membrane potential 
occurs. This depolarization (normally called the 
end plate potential) reaches its maximum at the 
neuromuscular junction and decays exponentially 
away from it. The end plate potential is large 
enough to open voltage-gated Na+ channels and 
initiates an action potential which travels away 
from the neuromuscular junction in both direc-
tions towards the tendons. In the present chapter 
this action potential is referred to as IAP. The ions 
involved in producing the IAP in the muscle fibre 
are the same as those for a typical axon, namely, 
sodium (Na+) and potassium (K+). However, the 
repolarization phase of the muscle IAP is different 
from that of axonal IAP. After repolarization, the 
axonal IAP is followed by a slight hyperpolariza-
tion while the muscle IAP has a delayed depolari-
sation [see Figure 3]. In this chapter we will deal 
only with the IAP and not the resting membrane 
potential or the end plate potential.

The plasma membrane of muscle fibre has the 
well-known property of actively maintaining a 
nearly constant potential difference between the 
intracellular and extracellular space. This voltage 
is normally referred to as the resting potential 
and has a value of about -80 mV [Figure 1]. The 
negative sign indicates that the interior is more 

negative than the exterior (negative polarization). 
To illustrate this, in Figure 1 the polarization of 
the fibre membrane is represented by a number 
of layers of negative signs. As can be seen in this 
figure, when the fibre is at rest, the number of 
negative layers remains unchanged. A few mil-
liseconds after the fibre activation, an IAP profile, 
or wave of excitation, exists at each side of the 
neuromuscular junction. In the representation of 
Figure 1 it can be seen that, along the spatial profile 
of the IAP, the number of negative-signed layers 
changes progressively with axial distance (the x-
axis in Figure 1). This is consistent with the fact 
that the IAP profile has gradual depolarization and 
repolarization transitions, as shown in Figure 1.

3. GENERATION OF THE SINGLE 
FIBRE ACTION POTENTIAL (SFAP)

The propagation of the IAPs generated at the 
neuromuscular junction along the muscle fibre 
produces an electrical potential in the extracellular 
medium, the so-called single fibre action potential 
(SFAP), that can be recorded by an intramuscular 
electrode (Figure 2) (Plonsey, 1974).

Figure 2. Schematic representation of the neuromuscular junction (NMJ) where the intracellular action 
potential (IAP) is generated. The IAP travels with propagation velocity v. Due to volume conduction, 
currents arising from the propagating IAP can be recorded with a single fibre electrode to produce a 
SFAP. Thus a SFAP is a recorded representation of an IAP
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If we assume that the shape of the IAP and 
the propagation velocity are approximately the 
same along the fibre, which is a reasonable as-
sumption based on the observation of Buchthal et 
al., (1954) and Burke, (1981), the skeletal muscle 
fibre of finite length can be modeled as a linear 
and time-shift invariant system. This assumption 
is critical as it allows to express the SFAP as a 
convolution of the input signal (i.e. the real IAP) 
and impulse response (IR) of the corresponding 
system (The IR of a system is the output of the 
system when the input signal is the elementary 
delta function, see below for details) (Nandedkar 
& Stalberg 1983; Dimitrov & Dimitrova, 1998):

IAP t t e t( ) = −−96 903  

where C is a coefficient of proportionality that 
depends on the tissue conductivity (with a typical 
value of 0.01 s·m-1) and d is the fibre diameter 
(in mm). The input signal is the second temporal 
derivative of the intracellular action potential, 
∂2IAP(t)/∂t. The justification for this is as follows. 
During an IAP the membrane potential changes 
as a result of the exchange of sodium and potas-

sium ions between the inner and outer sides of 
the fibre membrane. The transmembrane ionic 
electric current, known to be proportional to 
∂2IAP(x)/∂x2 (Clark & Plonsey, 1966), governs 
the exchange of these ions. Each of these ions 
carries a certain charge of current and therefore 
can be considered as a monopole of current. As 
a result, each infinitesimal portion of the muscle 
fibre affected by the IAP produces an electrical 
field equivalent to that generated by a lumped 
monopole of current. However, the IAP func-
tion is not a lumped (point) source, but a source 
distributed along the spatial extent of the fibre. 
Thus, the portion of the fibre affected by the IAP 
can be represented as a sequence of monopoles 
distributed equidistantly along its spatial profile 
(Rodriguez-Falces et al., 2011a). At a given posi-
tion along the fibre, the strength and sign of each 
monopole is determined by the magnitude and 
sign of the function ∂2IAP(x)/∂x2, respectively, 
at this position (Dimitrova & Dimitrov, 2006).

One of the most used analytical functions for 
IAP(t) is (Nandedkar and Stalberg 1983):

An impulse response of a system provides the 
output of the system to a brief impulse (a delta 

Figure 3. (a) Time course of an IAP divided into the depolarization and repolarization phases. The time 
between the point of steepest rise (TA) in the depolarization portion and the point of steepest decay (TB) 
in the falling portion is the depolarization-to-repolarization time (DRT). (b) Typical example of a tri-
phasic SFAP. The amplitude of the positive and negative phases (V1 and V2, respectively), peak-to-peak 
amplitude (Vpp), and negative phase duration (NPD) are shown. (c) Typical example of a biphasic SFAP. 
Note that the declining negative phase has a slope-discontinuity point
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function). In time domain, the impulse response 
describes the properties of the system. For ex-
ample, if one considers an action potential to be 
an impulse to the muscle, the resulting twitch force 
is the impulse response. Mathematical determina-
tion of the impulse response allows one to identify 
the parameters involved the producing the time 
dependent output. Moreover, once the impulse 
response has been determined, it is possible to 
convolve a more complex input function to the 
system to obtain the output.

In (1), the impulse response (IR) is computed as:

v m s d/ . .( ) = + ⋅ −( )3 7 0 05 55  

In (3) the IR is calculated as the potential (at a 
detection point) by two current monopoles propa-
gating along the fibre in opposite directions from 
the neuromuscular junction towards the fibre ends 
(Dimitrov & Dimitrova, 2006). Specifically, in (3) 
the first and second terms represent the potentials 
produced by the monopoles propagating right-
wards and leftwards, respectively. Note that the 
longitudinal position of the origin of coordinates 
(xj, i.e. the geometric centre of the fibre) does not 
necessarily coincide with the longitudinal position 
of the neuromuscular junction (xNMJ). The impulse 
response includes all the variables of the system:

Figure 4. Top row - simulation of the effects of changes in the IAP spike duration (DRT) (a) on the SFAP 
profile (b). A and B are the points of steepest rise and decay, respectively, along the IAP profile. The 
depolarization-to-repolarization times (DRTs) of the IAPs are indicated in the top right corner of (a). 
Bottom row - Simulation of the effects of changes in the IAP rising phase duration (Tdep) (c) on the SFAP 
profile (d). The Tdep values corresponding to the different IAPs are indicated in the top right corner of (a)
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• Anatomical properties of the fibre: right 
semilength, L1 (in mm), left semilength, L2 
(in mm), and fibre diameter, d.

• Longitudinal position of the neuromuscu-
lar junction position, xNMJ (in mm).

• Physiological properties of the fibre: prop-
agation velocity, v (in m/s).

• Detection conditions: fibre-to-electrode 
distance, r (in mm), longitudinal position 
of the electrode in respect to the coordinate 
origin, x0 (in mm).

• Duration properties: t1 and t2 represent 
the time (in ms) elapsed between the on-
set of IAP at the NMJ and its extinction at 
the right and left fibre-tendon junctions, 
respectively.

In (3), the propagation velocity (in m/s) and 
fibre diameter (in μm) are assumed to have a 
linear relationship (Nandedkar & Stalberg 1983) 
given by:

     v (m / s)= 3.7 + 0.05 (d - 55)

In (3), the radial distance (r) is calculated as:

( ) ( )2 2

0 0j j
r z z y y= − + −

where (x0, y0) and (xj, yj) are the coordinates of 
the electrode and the muscle fibre geometric 
centre, respectively. From (5), it is clear that the 
radial distance is the minimum distance from the 
electrode to a certain fibre (calculated within the 
muscle cross section x = x0, as shown in Figure 2).

Before advancing to subsequent sections it 
is essential to emphasize the impact of radial 
distance on the relationship between the IAP and 
the SFAP functions. As shown in (3), the SFAP 
can be obtained as a convolution of the second 
derivative of IAP with IR. However, in close 
proximity to the fibre (i.e., radial distances shorter 
than approximately 0.2 mm), the SFAP can be 
considered proportional to the second derivative 
of IAP (Clark & Plonsey, 1966). This is explained 

by the fact that, for such small radial distances, the 
impulse response is very narrow, with its shape 
approximating to a delta function. The shape 
similarity between the SFAP and the IAP second 
derivative can be appreciated in Figure 6.

4. THE FORWARD PROBLEM: 
INFLUENCE OF THE EXCITATION 
AND SYSTEM PARAMETERS 
ON SFAP CHARACTERISTICS

The convolutional model described above is widely 
used and appreciated for its simplicity and compu-
tational efficiency. Perhaps the most remarkable 
advantage of this model is that it affords the possi-
bility of making independent changes in excitation 
and impulse response functions. This allows the 
separation of the variables related to the system 
(represented in the impulse response) from those 
related to the source of excitation (i.e. the IAP). 
This flexibility enables study of the influence of 
the model’s parameters on the waveform of the 
potential, providing insight into the relationships 
between the physiological and structural properties 
of the fibre and the characteristics of the potential. 
Thus, the proposed SFAP model is adequate to 
address the so-called “forward problem,” that is, 
how specific mechanism and phenomena influ-
ence the recorded potentials. In the following, we 
will first introduce the most important parameters 
of the IAP and SFAP time-courses and then we 
will show the influence of the IAP and system 
parameters on the morphology of the SFAP.

4.1 Descriptions of IAP and SFAP

Intracellular Action Potential: It is necessary to 
emphasize that only Ludin (1973) recorded IAPs 
from human muscle fibres (intercostal muscle). 
Thus, knowledge about the characteristics of 
human IAPs is still incomplete. Nevertheless, 
a number of analytical expressions have been 
proposed over the years to model the time-
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course of a mammalian IAP. Let us consider the 
IAP approximation proposed by Dimitrov and 
Dimitrova (1998) [Figure 3]. The rising phase 
models the depolarization process produced by 
the activation of the fibre. The point of steepest 
rise (A) along this phase occurs at TA [Figure 3]. 
The falling portion of the IAP represents the re-
polarization process occurring at the membrane 
of the cell after the depolarization. The point of 
steepest decay (B) of the repolarization portion 
occurs at TB [Figure 3].The time interval between 
the points of steepest rise and decay of the IAP 
spike (TA and TB, respectively) will be referred to 
as depolarization-to-repolarization time (DRT). 
The DRT is normally taken as an estimation of 
the duration of IAP spike (Rodriguez-Falces et 
al., 2011a).

Single Fibre Action Potential: There is no 
unanimous consensus among scientists about 
the morphologic characteristics of human SFAPs 
(Dumitru, 1994; Rodriguez-Falces et al., 2012a, 
2012b). Some researchers defend the contention 
that an SFAP recorded with an SFEMG electrode 
in optimal position (radial distance below 300 μm) 
is a roughly biphasic (positive-negative) spike 
[Figure 3] (Stålberg & Trontelj, 1979), whereas 
others alleged that it is not unusual to record SFAPs 
with three distinct phases (positive-negative-
positive), i.e. with a terminal (positive) phase 
(Rodriguez-Falces et al., 2012a, 2012b) [Figure 
3]. The filter settings chosen to record the SFAP 

have a deep impact on the characteristics of the 
SFAP third phase (Dumitru, 1994), as it will be 
shown in next sections.

Studies dealing with SFAP analysis have been 
mainly interested in extracting quantitative infor-
mation relative to certain parameters of the SFAP 
main spike. This includes the amplitudes of the first 
positive phase (V1) and second negative phase (V2), 
peak-to-peak voltage (Vpp), peak-to-peak duration 
(rise-time) and overall SFAP duration (Ekstedt, 
1964; Miller-Larson, 1985; Piotrkiewicz et al., 
1987). Recent studies have expanded the interest 
to other parameters, such as the ratio between V1 
and V2 (the so-called peak-to-peak ratio, PPR) and 
the negative phase duration (NPD) (Rodriguez 
et al., 2011b; Rodriguez-Falces et al., 2012a, 
2012b, 2012c). Moreover, recent works have 
drawn attention to some morphologic features of 
the SFAP time-course that had been traditionally 
overlooked, such as the slope discontinuity point 
(Rodriguez-Falces et al., 2012b).

4.2 Effects of the IAP Parameters 
on the SFAP Characteristics

Characteristics of SFAPs are strongly dependent 
on the shape of the IAP that propagates along the 
muscle fibre. Thus, any change in the IAP shape 
should translate, to some degree, into alterations of 
the SFAP waveform. It is well known that the IAP 
characteristics are very sensitive to neuromuscular 

Figure 5. (a) Effect on the SFAP of changes in the longitudinal position of the electrode (x0) relative to 
the neuromuscular junction. (b) Examples of three SFAPs simulated at three different fibre-to-electrode 
distances (r). (c) Examples of three SFAPs simulated with three different values of fibre diameter (d)



36

New Advances in Single Fiber Electromyography
 

disorders, such as muscle dystrophy, myopathy and 
myasthenia gravis (Stålberg & Trontelj, 1979). 
Thus, it is of interest to elucidate how changes 
in the IAP properties affect the characteristics of 
the detected SFAP. In the following we will show 
the effects on the SFAP characteristics resulting 
from changes in the IAP spike duration and IAP 
depolarization phase.

In the IAP series shown in Figure 4 there is a 
progressive broadening of the spike at the expense 
of a slowing of the IAP repolarization phase (the 
IAP depolarization phase is maintained constant). 
The effect of such widening on the corresponding 
SFAPs is an increase in the duration of the negative 
phase [i.e., the parameter NPD increases, Figure 
4]. In the SFAPs of Figure 4 it is noteworthy that 
the rising phase varies only slightly, because this 
portion of the SFAP is essentially determined by 
the IAP rising phase (which is the same for the 
five IAPs simulated). Note also that the amplitude 
of the third phase of SFAPs (V3) decreases as the 
NPD increases (the IAP spike becomes wider).

Figure 4 shows one set of IAPs with rising 
phases of different duration (i.e., different values 
of Tdep), but identical values of spike duration (i.e., 
same values of DRT). As can be seen, a slowing 
of the IAP rising phase brings about a decrease of 
the SFAP amplitude [Figure 4]. This is so because, 
for short radial distances, the SFAP main spikes 
is essentially produced by the IAP rising phase.

Sodium and potassium ions are released during 
each IAP and accumulate in both the interstitial 
space and within the transverse tubular system 
during contraction. The accumulation of K+ ions 
in the interstitial space has received the attention 
of investigators as the extracellular concentration 
of these ions can rise up to 2–3 times as compared 
to the resting values (Sejersted & Sjogaard, 2000). 
Specifically, values of up to 15mM have been found 
in the interstitial medium following a sustained 
maximum voluntary contraction in humans. Ex-
perimental in vitro studies have provided evidence 
that increases in K+ concentration bring about a 
reduction in muscle fiber conduction velocity, a 

Figure 6. (a) Superimposed representation of the time-courses of the IAP and its corresponding SFAP. 
(b) Detail of the time course of an IAP together with its first two temporal derivatives. A and B are the 
points of steepest rise and decay, respectively, along the IAP profile. The depolarization-to-repolarization 
time (DRT), defined within the IAP profile, equals the negative phase duration (NPD), as measured in 
the IAP’s second derivative. Note that in (a) and (b) the SFAP and the IAP’s first and second derivatives 
have been normalized for the sake of clarity
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broadening of the action potential and a reduction 
in action potential amplitude (Juel, 1988). The 
effects of potassium accumulation on the SFAP 
characteristics have been addressed in several pub-
lications (Dimitrova & Dimitrov, 2002, Fortune 
& Lowery, 2009; Rodriguez-Falces et al., 2011a).

When the muscle is fully contracted, the space 
between the adjacent muscle fibers (interstitial 
space) reduces significantly and the fluid that 
occupied this space is forced into the veins and 
lymphatic vessels. When the contraction stops, the 
muscle returns to its resting state (baseline length 
and baseline volume) and also the interstitial space 
expands to its resting value. This allows the inter-
stitial space being filled with fresh blood plasma 
drawn from the arterial capillary bed. In these 
conditions, circulation is completely adequate 
to avoid the accumulation of “waste products” 
and, therefore, the onset of any disease process is 
avoided. The interstitial space and the exchange 
of oxygen and waste are functioning as they are 
supposed to. There are, however, several factors 
that can reduce the ability of the muscle to remove 
the waste products such as, muscle disease, reduced 
volume of the interstitial space, and squeezing of 
capillary beds and lymphatic vessels. These factors 
must be considered as they can noticeably affect 
the properties of the muscle conducting medium 
(and so parameters of the impulse response), 
thereby affecting the characteristics of SFAPs 
(Dimitrova & Dimitrov, 2006).

4.3 Effects of the System Parameters 
on SFAP Characteristics

One of the main interests of the electromyography 
(EMG) is to elucidate how the detection conditions 
(i.e., position of the recording electrode in respect 
to the active fibre) affect the characteristics of the 
recorded potential. This is a particularly important 
aspect in the context of single fibre electromy-
ography (SFEMG) given the high sensitivity of 
some SFAP features (such as the amplitude) to 
changes in the needle position. Specifically, for 
the electromyographer it would be valuable to 
know how far the needle is from the active fibre 
(i.e., the fibre-to-electrode distance) and whether 
or not the needle is in the proximity of the neu-
romuscular junction or fibre-tendon junction 
(i.e., the longitudinal distance). In addition to the 
spatial location of the needle, it is also important 
to have an approximate value of the size of the 
fibre (i.e., its diameter) as well as its conduction 
velocity. Accordingly, in the following we will 
analyse the effect of changes in r, x0 and d on the 
characteristics of the recorded SFAP.

For the sake of simplicity, the origin of coor-
dinates (geometric centre of the fibre) was chosen 
to coincide with the longitudinal position of the 
neuromuscular junction (i.e., xj = xNMJ = 0). We will 
assess the effect of each parameter on the SFAP 
features in isolation of each other. The default 
values used for the parameters of the muscle fibre, 
together with the ranges of variation considered in 
each of the simulations are summarized in Table 

Table 1. Parameter values of one muscle fibre of the biceps brachii in different simulations 

L1 (mm) L2 (mm) NMJ (mm) x0 (mm) r (mm) d (μm)

Varying x0 50 60 0 0 - 40 
(step of 10)

0.20 50

Varying r 50 60 0 20 0.1 - 0.3 
(step of 0.1)

50

Varying d 50 60 0 20 0.20 20 - 60 
(step of 20)
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1. The data shown in Table 1 represent real values 
that were obtained from a normal biceps brachii 
muscle (Lieber, 1992).

4.3.1 Effects of Varying the 
Electrode Longitudinal Distance

Figure 5shows 5 SFAPs simulated at different 
longitudinal distances along the muscle fibre, from 
the neuromuscular junction (x0 = 0 mm) to the 
fibre-tendon junction (x0 = 40 mm). These SFAPs 
were simulated assuming r =0.2 mm, and d =40 
µm. Note that, when the electrode is sufficiently far 
from the end-plate and from fibre-tendon junction 
(x0 = 10, 20, and 30 mm), the amplitude of SFAP 
is constant, and its waveform have three phases. 
However, if the electrode is just above the endplate 
(z0 = 0 mm) and/ or above the fibre-tendon junc-
tion (z0 = 40 mm), the SFAP amplitude changes 
significantly and the SFAP becomes biphasic.

4.3.2 Effects of Varying 
the Radial Distance

Figure 5shows 3 SFAPs simulated at different 
radial distances (assuming d =40 µm, and x0 = 20 
mm). As can be seen, SFAP amplitude exhibits 
an abrupt decline when the electrode is moved 
further away from the fibre. This is in agreement 
with Eq. (3), which predicts a decrement in the 
voltage of the EMG signal with increasing radial 
distance. In addition, it can be seen that, as the 
SFAP get smaller it also becomes longer.

4.3.3 Effects of Varying 
the Fibre Diameter

Figure 5 shows 3 SFAPs simulated with different 
fibre diameters (assuming r =0.2 mm, and x0 = 20 
mm). As can be seen, SFAP amplitude increases 
with increasing diameter. This could be easily 
predicted from Eq. (1), where d acts as a scaling 
factor. This figure also reveals that differences 

in the fibre diameter give rise to differences in 
the latencies (or delays) of the corresponding 
potentials. The explanation for this lies in the fact 
that changes in d not only has an influence on the 
SFAP amplitude, but also affects the propagation 
velocity of the IAP along the fibre, as established 
in (4). According to this equation, a high value 
of d (65 μm) will result in an IAP travelling at 
a high conduction velocity (v = 4.2 m/s), which 
explains why the recorded SFAP exhibits a short 
latency [approximately 4.7 ms, as shown in Fig-
ure 5. In contrast, a small fibre diameter (25 μm) 
will make the IAP propagate at a slower velocity 
(v = 2.2 m/s), thereby generating an SFAP with 
longer latency.

5. THE INVERSE PROBLEM: USING 
THE SFAP CHARACTERISTICS 
TO OBTAIN INFORMATION 
ABOUT THE IAP

In the previous section we have shown some 
examples of how the SFAP convolutional model 
can be used to address the “forward problem.” In 
the present section we will focus on the so-called 
“inverse problem,” i.e., how the extracellular po-
tentials provide information about the underlying 
mechanism and phenomena. When applied to our 
model, the inverse approach will be adopted to 
obtain information of the IAP using some quantita-
tive and morphological information of the SFAP.

5.1 Motivation for Applying 
the Inverse Approach to the 
SFAP Convolutional Model

Surprisingly, most of the available information 
of IAPs has been obtained from in vitro and in 
vivo experiments conducted of IAPs from rats 
(Albuquerque and Thesleff, 1968; Hanson, 1974; 
Akaike, 1978; Mcardle et al., 1985; Wallinga et 
al., 1985) and frogs (Hanson and Persson, 1971; 
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Radicheva et al., 1986). In fact, knowledge about 
the characteristics of human IAPs is still limited, 
as only one author has been able to record IAPs 
from human muscles (Ludin, 1973) and the ex-
periment was conducted under in vitro conditions. 
Some authors believe that the IAPs recorded under 
these special conditions should not be taken as 
representative of an IAP formed in the muscle 
fibre membrane surrounded by connective tissue 
(Wallinga et al., 1985; Van Veen et al., 1993). The 
main reason for this is the absence of protein in the 
artificial bathing medium in in vitro experiments 
(Hicks & McComas, 1989). From the above it fol-
lows that, to date, characterization of the human 
IAP is incomplete and so it is highly desirable to 
developed strategies to obtain information about 
the IAP characteristics by means of quantitative 
analysis of the corresponding SFAP, as shown next.

5.2 Limitations of the Inverse 
Approach in the SFAP 
Convolutional Model

Characteristics of single fibre action potentials 
(SFAPs) are strongly dependent on the shape of 
the intracellular potential that propagates along 
the muscle fibre (Clark & Plonsey, 1966, 1968; 
Plonsey, 1974; Fleisher, 1984; Dumitru, 1994). 
In fact, according to the core-conductor theory, 
in close proximity of the fibre, an SFAP can be 
assumed to be proportional to the IAP second de-
rivative. Thus, changes in the IAP characteristics 
(for example, because of a pathological process 
or muscle fatigue) should be reflected, to some 
extent, into alterations of the SFAP waveform. 
However, there is an important obstacle to infer-
ring data about IAP properties from the SFAP 
waveform: SFAP characteristics do not depend 
exclusively on the IAP profile but also on the 
distance from the needle to the fibre (i.e., the 
radial distance). Direct control of radial distance 
is not feasible with current technology (Albers 
et al., 1989; Van Veen et al., 1993). As a result, 

traditional parameters used in quantitative EMG, 
such as the peak-to-peak amplitude and peak-to-
peak interval, although useful for clinical diagnosis 
of neurogenic diseases and myopathic processes 
(Sonoo & Stålberg, 1993), are of limited use for 
gleaning information about the IAP shape since 
they vary significantly with positional changes 
of the electrode.

5.3 Procedures to Obtain Information 
of the IAP from the SFAP Waveform

From the foregoing, it is clear that we need to 
find a parameter of the SFAP waveform that: 1) is 
directly (or proportionally) related to some feature 
of the IAP waveform (preferably the Tdep or the 
DRT), and 2) does not depend on radial distance 
(at least for radial distances below 300 μm).

For the first condition to be fulfilled it would 
be highly desirable to relate the IAP and SFAP 
functions analytically, that is to determine a math-
ematical expression that links the IAP and SFAP 
waveforms. Specifically, it has been proposed 
that the SFAP approximately corresponds to the 
IAP second derivative (Plonsey, 1974) [Figure 
6]. Such assertion is based on two assumptions: 
1) the transmembrane current is proportional to 
the second derivative of the IAP, as predicted 
by the core-conductor theory [Figure 6] (Clark 
& Plonsey, 1966, 1968; Plonsey, 1974), and 2) 
in close proximity to the fibre, the SFAP can be 
considered proportional to the transmembrane 
current (Clark & Plonsey, 1966). Thus, the hy-
pothesis that the SFAP can be approximated by 
the second derivative of IAP can be true only for 
very short radial distances (approximately below 
200 μm), precisely the recording distances typical 
of SFEMG recordings.

Figure 6 shows the time course of an IAP, 
together with its first and second temporal deriva-
tives. As can be seen, the time interval between 
the inflection points of the IAP spike (i.e., the 
DRT) coincides with the time interval between 
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the zero crossings of the IAP second derivative 
(i.e., the NPD). Since the shape of an SFAP can 
be regarded as being proportional to that of the 
corresponding IAP’s second derivative, the NPD 
of a SFAP [Figure 6] should be approximately the 
same as the DRT of its corresponding IAP. In ad-
dition, recent publications have demonstrated, both 
by simulations and experimentally, that the SFAP 
NPD is largely unaffected by positional changes 
of the electrode (Rodriguez et al., 2011a). Thus, 
theoretical fundamentals predicts the equality 

of IAP DRT and SFAP NPD, and so the spike 
duration of human intracellular potentials can, in 
principle, be estimated by direct measurements 
of the SFAP waveform. IAP characteristics (and 
especially the spike duration) are very sensitive 
to neuromuscular disorders, such as muscle dys-
trophy, myopathy and myasthenia gravis (Stålberg 
& Trontelj, 1979). Therefore, NPD parameter, as 
calculated in the SFAP, offers great potential in 
assisting the diagnosis of muscular myopathy and 

Figure 7. Simulation of IAPs with short (a) and long (c) spike durations and their corresponding SFAPs (b 
and d, respectively). The points of steepest rise (A) and decay (B) of the IAP spike and the depolarization-
to-repolarization time (DRT) are indicated for both IAPs. Note that, for each SFAP, the duration of the 
negative phase (NPD) is very similar to the DRT of its corresponding IAP
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dystrophy and also as an indicator of the changes 
in the IAP profile during fatiguing protocol.

The duration of the IAP spike (i.e., its DRT) 
does not only determine the NPD of its corre-
sponding SFAP, but also influences significantly 
the shape characteristics of its final portion (i.e., 
the declining negative phase and terminal phase, 
see Figure 7). Specifically, a recent study has 
demonstrated that the shape of the declining 
negative phase of an SFAP is more dependent on 
the width of the corresponding IAP spike (i.e., 
its DRT) than on the specific outline of the IAP 
falling phase (Rodriguez-Falces et al., 2012c). 
The same study showed that characteristics of the 
SFAP third phase are more coupled to the specific 
profile (curvature) of the last part of the IAP fall-
ing phase (i.e., the transition phase, see Figure 3) 
than to the outline of its first part (i.e., the rapidly 
falling phase) or the IAP spike duration. It should 
be mentioned, however, that the curvature of the 
IAP transition phase is somewhat influenced by 
the IAP spike duration so long as narrow IAPs 
are normally associated with abrupt transitions 

[Figure 7], whereas broad IAPs generally have 
slow transitions [Figure 7].

As an example, an IAP with a short spike dura-
tion [say DRT = 0.5 ms, Figure 7] would result in 
a SFAP whose the declining negative phase has 
and approximately constant slope and whose third 
phase is relative large and well-defined [Figure 7]. 
On the contrary, an IAP with a long spike duration 
[say DRT = 1.0 ms, Figure 7] would give rise 
to an SFAP with an abrupt change in the slope 
of the declining negative phase (the so-called 
slope-discontinuity point) and with a very small 
amplitude and prolonged duration [Figure 7].

6. CHARACTERISTICS 
OF HUMAN SFAP

The advent of single fibre electromyography 
(SFEMG) allowed investigators to analyze the 
shape peculiarities of the potentials produced 
by single muscle fibres (SFAPs) (Ekstedt,1964; 
Stålberg, 1966, Stålberg & Trontelj, 1979). 

Figure 8. Representations of 2 sets of consecutive SFAPs (shown superimposed) recorded from the tibi-
alis anterior muscle using a single-fibre electrode. The three phases of an SFAP are indicated in (a), 
whereas the declining negative phase of an SFAP is depicted in (b). In both (a) and (b) it can be appre-
ciated an abrupt change in the slope of the declining negative phase, the so-called slope-discontinuity 
point (S-D point)
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Stålberg and colleagues were mainly interested 
in characterizing the fundamental aspects of the 
SFAP main spike, its dependence with radial 
distance, and its shape variability at consecutive 
discharges. As such, the definition of the SFAP 
provided in the successive editions of the “Single 
Fibre Electromyography” by Stålberg and Trontelj 
(1979) includes these three aspects: 1) the SFAP 
recorded with the SFEMG electrode in optimal 
position is a biphasic spike with a positive-
negative fast deflection and with a total duration 
of about one ms, 2) the SFAP shape is constant 
at consecutive discharges when the recording 
system has a resolution of 5 to 10 µs, and 3) the 
SFAP amplitude, which is positively correlated 
to the diameter of the muscle fibre, is extremely 
dependent on the recording distance. The radial 
attenuation of the AP amplitude is exponential 
(Gath & Stålberg, 1978).

Over the last 50 years, the above description 
of the SFAP has been relatively unchanged. This 
is not surprising in view of the fact that, in the 
context of clinical neurophysiology studies, the 
principal feature of the SFAP is not its wave-
form, but the fact that it shows a constant shape 
at consecutive discharges (Ekstedt, 1964). In 

fact, in the clinical environment, the SFAP has 
been used as an auxiliary or reference element 
to assess the time-varying transmission at the 
neuromuscular junction, i.e. the neuromuscular 
jitter (Stålberg & Trontelj, 1979). After the initial 
characterization of the SFAP provided by Stålberg 
and Trontelj (1979), and despite the availability 
of single fibre electrodes, only a few studies have 
made progress in analysing the morphological 
aspects of experimental SFAPs in human fibres 
(Gydikov, 1991; Dumitru et al., 1994). There are 
several reasons for the relative lack of research in 
this direction: (1) the extremely high sensitivity 
of the SFAP characteristics (amplitude and shape) 
to minor changes in the position and orientation 
of the electrode, (2) the difficulty to establish 
when (and to what extent) the time-course of an 
SFAP is contaminated by distant electrical ac-
tivity (Ekstedt, 1964; Dumitru et al., 1994), and 
(3) other technical problems related to SFEMG 
(physical noise, baseline fluctuation, background 
activity, etc).

Recent publications have revealed new mor-
phologic features of human SFAPs (Rodriguez-
Falces et al., 2012a, 2012b). Specifically, in SFAP 
recorded from the tibialis anterior muscle, the 

Figure 9. (a) Schematic representation of a single fibre electrode (top) and a concentric electrode (bottom) 
together with the dimensions of their recording surfaces. Muscle fibres are represented superimposed 
to give an indication or their size relative to the recording surface of the electrode. (b) Electrical field 
(isopotential lines) generated by a muscle fibre (middle). The large electrode shunts the isopotential 
lines at short radial distances. (c) Decline of recorded amplitude of SFAP with increasing distance for 
the single fibre and concentric electrodes
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descending portion of the negative phase does not 
decrease at a constant rate; rather it starts declining 
steeply up to a certain point, where it suddenly 
changes its slope and continue decreasing at a 
much lower rate (Figure 8). The faster and slower 
portions of the declining negative phase have been 
referred to as the chest and belly, respectively 
(Figure 8). So, a remarkable feature of human 
SFAPs is an abrupt change in the slope of the 
declining negative phase of the SFAP (Figure 8). 
Such a feature, referred to as slope-discontinuity 
point (S-D point), can appear at different heights 
relative to the negative peak and be more or less 
apparent.

7. CHARACTERISTICS OF 
SINGLE-FIBRE ELECTRODES

The feature that makes the SFEMG technique 
particularly useful is its high selectivity, which 
permits identification of true SFAPs, namely, 
potentials produced by a single fibre close to the 
recording site of the electrode with no or negligible 
contamination from distant interfering fibres. The 
high selectivity of SFEMG is a consequence of 
the small recording surface of the single fibre (SF) 

electrode. This recording area is much smaller 
as compared to that of concentric needle (CN) 
electrodes. In the following, we will present first 
the main important effects of needle electrodes 
on the recorded signal and compare afterwards 
the SF and CN in relation to the above effects.

7.1 Effects of Needle Electrodes 
on the Recorded Signal

When using needle electrodes to record the activity 
of muscle fibres, two distortion effects (shunting 
and wall effects) influence the characteristics 
(especially the amplitude) of the recorded po-
tentials. First, the electrical field generated by an 
active fibre is shunted by the metallic recording 
surface of the electrode, and an average value of 
the isopotential lines crossing the electrode sur-
face is recorded [Figure 9] (Stålberg & Trontelj, 
1979). The larger the recording surface of the 
electrode, the more isopotential lines are involved 
in the averaging, and hence, more marked is the 
shunting effect [Figure 9]. Thus, the averaging 
of the isopotential lines will be much greater for 
concentric than for single-fibre electrodes. In ad-
dition, this distortion effect is most pronounced 
at small recording distances because, for these 

Figure 10. Illustration of the slow and fast components of an SFAP (a) and its corresponding power 
spectrum density (b). In (b), the frequency response of a band-pass filter is shown with dashed-dotted line. 
The high-pass and low-pass cut-off frequencies of the filter (fHC and fLC, respectively) are also indicated
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distances, the isopotential lines have a smaller 
radius and the electrical field has a higher gradient. 
As the electrode is moved away from the fibre the 
distortion associated to the shunting effect gradu-
ally disappears. From the above, it follows that the 
shunting effect affects more markedly concentric 
electrodes at short radial distances. As a result, the 
characteristics of two SFAPs, one registered by a 
concentric electrode and the other by a single-fibre 
electrode, will be noticeable different if they are 
recorded in close proximity to the fibre, but will 
be very similar for longer radial distances [this 
can be appreciated in Figure 9].

The second distortion effect (the wall effect) 
consists of an inherent amplification of the re-
corded potential caused by the specific features 
of the needle electrodes (Ekstedt, 1964; Nand-
edkar & Stålberg, 1983). This amplification is 
due to the fact that SFAPs are not recorded in an 
unlimited volume conductor but at the boundary 
of a volume conductor and an insulator: namely, 
the surface of the mould in which the electrodes 
were embedded. The effect of introducing a large 
insulating boundary in the plane of the electrodes 
is to increase any voltage by a factor of two. The 
wall effect does not affect the SFAP radial decline 
and so it is not as critical as the shunting effect.

There is another important aspect to take into 
account when analyzing needle electrodes: how big 
is the recording surface of the electrode in relation 
to the size of the muscle fibre diameter (which 
ranges between 10 and 90 μm). This is important 
because if the recording surface and fibre radius 
are of comparable size then, the active pole of the 
electrode can only be in close physical proximity 
to one. On the contrary, a recording surface of, 
say, five times the size of a given fibre would be 
in close physical proximity to various fibres at 
the same time.

7.2 Comparison between the 
Potentials Recorded by Single Fibre 
and Concentric Needle Electrodes

Both SF and CN electrodes consists of an insulated 
metal wire inside a hollow stainless steel can-
nula (that serves as a reference). The metal wire 
exposes its end at a side port a few millimetres 
behind the tip [Figure 9] and is responsible for 
the detection of the electrical activity. The main 
difference between the SF and CN electrodes is 
in the area of their recording surfaces. A typical 
CN electrode has an oval recording surface with 
dimensions of 150 x 600 μm, whereas an ordinary 

Figure 11. Simulation of the changes introduced in the SFAP time-course after high-pass filtering with 
cut-off frequencies of 50 Hz and 200 Hz (a) and 500 Hz and 2000 Hz (b). Arrows indicate the extra 
artifactual phases (ringing) that arise in the SFAP when strong high-pass filtering is performed
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SF electrode has a circular recording surface with 
25 μm in diameter [Figure 9].

There are two principal differences between 
SF and CN electrodes. The shunting effect of the 
electrical field around the muscle fibre is larger 
for CN than for SF electrodes due to the larger 
recording surface of the first electrodes. This dif-
ference is most notable at short radial distances. 
Specifically, for radial distances below 150 μm, 
the amplitude of the recorded SFAP is significantly 
smaller for CN than for SF electrodes [Figure 9]. 
With increasing radial distances the distortion as-
sociated to the shunting effect is less marked and, 
in fact, at 300 μm the amplitude of the recorded 
SFAP is comparable for CN than for SF electrodes.

The other discrepancy between SF and CN 
electrodes is also motivated by the difference 
in their recording surfaces. The 25-μm x 25-μm 
recording surface of a SF electrode can only be in 
close physical proximity to one fibre, whereas the 
recording area of a CN electrode can be in close 
physical proximity to at least 5 fibres [Figure 9]. 
This constitutes a significant disadvantage for 
the larger electrode, since more SFAPs from a 
given motor unit will be recorded as a summa-
tion signal. In fact, the most critical problem for 
using CN electrodes for jitter studies is the fact 
that it is difficult to determine if a simple spike 
recorded by a CN electrode is a truly single SFAP 
or superimposed SFAPs from two or more fibres 
(Stålberg and Sanders 2009).

8. EFFECTS OF FILTER SETTINGS 
ON SFAP RECORDINGS

The high selectivity provided by SF electrodes 
can be further enhanced if the high-pass cut-off 
frequency of the filter of the electromyograph is 
raised (for example up to 500 Hz as in ordinary 
jitter studies). Increasing the high-pass cut-off 
frequency (fHC) of the filter on one hand attenuates 
the interference from remote active fibres (and 
reduces considerably the baseline fluctuation), 

but on the other eliminates some of the most 
important frequency content of the SFAP. In the 
following we will discuss in more detail the effects 
on the SFAP morphology of applying filtering of 
different characteristics.

8.1 Frequency Range of the 
Power Spectrum of the SFAP

Figure 10 shows the time-course of an SFAP (a) 
simulated at a radial distance of 0.1 mm (typical 
of SFEMG recordings) and its corresponding 
power spectrum density (b). As can be seen, the 
power spectrum of the SFAP occupies frequencies 
ranging from almost 0 Hz up to 5000 Hz and has 
its maximum at approximately 600-700 Hz. The 
SFAP time-course contains certain portions which 
varies rather slowly, namely the initial positive 
deflection, the declining negative phase, and the 
third phase [Figure 10]. Such slow components 
contribute mainly to the lower frequency content of 
the spectrum (below 500 Hz). The fastest portion 
of the SFAP is the rising phase and it gives rise 
to frequency components covering a much wider 
range of the spectrum (from the lowest to the high-
est frequencies) (Dimitrova & Dimitrov, 2006).

Filters implemented in commercial EMG 
equipment are normally of band-pass type [Figure 
10]. This means that the clinician must choose 
adequately both the high-pass cut-off frequency 
(fHC) and the low-pass cut-off frequency (fLC) of 
the filter before recording any signal. In SFEMG 
studies the recommendation is to use 10 kHz for 
the low-pass cut-off frequency (Stålberg & Sand-
ers 2009), which implies that the high frequency 
content of the spectrum is normally well preserved. 
However, any high-pass frequency chosen (differ-
ent from 0 Hz) will restrict the passage of most of 
the components of the signal below that frequency 
(in SFEMG studies, for example, the high-pass 
frequency is normally set to 500 Hz). This will 
bring about certain distortion of the time-course 
of the SFAP, as detailed next.
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8.2 Effects of Moderate High-
Pass Filtering on the SFAP

Different values of high-pass cut-off frequency 
will result in different degrees and types of distor-
tion of the SFAP waveform. When using small 
high-pass frequencies (below 200 Hz), the most 
apparent effect of filtering is the attenuation of 
the slow components of the SFAP time-course 
and, in particular, of the SFAP third phase, as can 
be seen in the collection of SFAPs of Figure 11. 
In addition to third phase attenuation, moderate 
high-pass filtering also introduces some distortion 
in the shape of the declining negative phase of 
the SFAP. In fact, for a fHC of 200 Hz, the belly of 
the declining negative phase is almost cancelled 
and, as a result, the slope-discontinuity point can 
hardly be recognized [Figure 11, thin grey line].

8.3 Effects of Strong High-
Pass Filtering on the SFAP

When strong high-pass filtering is performed 
(high-pass frequencies of 500 Hz and beyond), 
much of the low-frequency content of the spectrum 
is lost and, as a result, the deformation introduced 
in the SFAP shape becomes rather pronounced. 
In fact, for such strong high-pass filtering, extra 
(artifactual) phases arise in the time-course of 

the SFAP. This is the so-called “ringing” which 
is a highly undesirable phenomenon as these ex-
tra phases can sometimes be mistaken for small 
SFAPs. Even worse, as a result of this “ringing,” 
an artifactual positive phase appears just after the 
SFAP main spike [see arrow in Figure 11]. In the 
eyes of the unexpected observer, this positive phase 
could be mistaken for a real (physiological) phase 
of the SFAP and in fact, this is the reason why 
the SFAP has been wrongly considered by some 
as a triphasic waveform (Dumitru et al., 1994).

8.4 Benefits of High-Pass 
Filtering for SFEMG Studies

The idea of using high-pass filtering to select 
potentials from proximal sources and, at the same 
time, remove activity from distant fibres, was 
first introduced by Payan (1978) and is known 
as the “blanket principle.” The blanket principle 
was first applied to motor unit potentials (i.e., 
potentials that comprised the contribution from 
all fibres of the same motor unit) with the view of 
extracting the contribution from only the nearest 
fibres. Such idea is grounded on the observation 
that with progressively stronger high-pass filter-
ing, the shape of the signal successively reflects 
the fast-rising components—like the derivative 
of the signal—and so, after filtering, only the 

Figure 12. (a) Schematic representation of a SF electrode recording electrical activity from a single 
closest-main fibre (black circle) as well as from distant fibres from the same and different motor units. 
Distant fibres are responsible for the baseline fluctuation shown in (b) and (c). Simulation of the effects 
of applying high-pass filtering of different degrees on the baseline fluctuation
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contribution from most proximal fibres (well-
defined SFAPs) remains.

When applied to potentials produced, theoreti-
cally, by a single fibre, strong high-pass filtering 
(as that performed in SFEMG studies) has the 
effect of enhancing the spiky components of the 
SFAP (i.e., the SFAP main spike) while remov-
ing its low frequency content. The deformation 
induced in the SFAP waveform by such strong 
filtering is so severe that the most important 
morphologic features of the original SFAP are 
lost. This, however, is not a problem for SFEMG 
studies. For example, in fibre density estimation, 
where the main goal is to count the number of 
single muscle fibres from one motor unit that 
falls within the uptake area of the SF electrode, 
strong filtering is advantageous in two ways: first, 
it enhances the potentials from the nearest fibres, 
and second it has the positive effect of largely 
eliminating the contribution from distant fibres 
(also reduces background activity and baseline 
fluctuation). In jitter studies, the SFAP is used 
as an auxiliary or reference spike to assess the 
time-varying transmission at the neuromuscular 
junction and so the specific morphologic features 
of that reference spike are not relevant at all. What 

is really crucial for jitter studies is that the shape 
of this spike remains as unchanged as possible at 
consecutive discharges and such condition is best 
fulfilled by applying strong high-pass filtering to 
the SFAP.

As mentioned above, one of the main reasons 
for applying high-pass filtering while recording 
SFAPs is that it reduces activity from fibres from 
the same or different motor units (background 
activity), cannula potential, as well as interfer-
ences from other external sources. As a result, 
the so-called baseline fluctuation (or baseline 
drift) is largely attenuated. To illustrate this idea, 
Figure 12 shows a SF electrode recording activ-
ity from a single closest-main fibre (black circle 
within the uptake area) as well as from remote 
fibres from the same and different motor units. 
As can be seen in Figure 12, when potentials 
produced by distant activity add to the SFAP the 
slow components of this SFAP are significantly 
distorted (note that the SFAP third phase has an 
uneven return to the baseline and that the slope-
discontinuity point has practically disappeared) 
[see arrows in Figure 12]. It could be said that the 
distortion introduced in the SFAP is the result of 
baseline fluctuation produced by distant activity. 

Figure 13. (a) Typical scenario in jitter studies where the single-fibre (SF) electrode is recording activity 
mainly from two fibres of the same motor unit (fibre pair). (b) 25 superpositions of SFAPs (generated 
from a fibre pair) used to estimate jitter. The sweep is triggered on the triggering potential (and so the 
latency of this potential is constant). The variability in the latency of the slave potential, measured be-
tween points P1 and P2, represents jitter
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As shown in Figure 12, applying filtering with 
high-pass cut-off frequencies below 200 Hz does 
not remove completely the drift in the baseline. In 
fact, strong high-pass filtering (cut-off frequencies 
of 500 Hz and beyond) is necessary to eliminate 
completely the baseline fluctuation [Figure 12]. 
Note that the cancellation of the baseline drift is 
achieved at the expense of severely distorting the 
SFAP shape.

8.5 Drawbacks of High-Pass 
Filtering for SFEMG Studies

From the above it is clear that the final portion 
of the SFAP, due to its low frequency content, 
is much more sensitive to high-pass filtering as 
compared to the SFAP main spike. In addition, 
the SFAP final portion (declining negative phase 
and third phase) has long duration and small am-
plitude and so it is much more affected by slow 
components, such as potentials from the cannula 
or from distant fibres (Rodriguez-Falces et al., 
2012a). To make things worse, the frequency 
content corresponding to the declining negative 
phase and third phase of the SFAP largely overlaps 
with that of distant fibre potentials and cannula 
potential. As a result, in many EMG tests where 
moderate high-pass filtering is applied to reduce 
background activity and baseline fluctuation, 
the final portion of the SFAPs is systematically 
attenuated and distorted (Dumitru et al., 1994). 
For this reason, when SFAPs are collected for 
quantitative and/or morphological analysis the 
cut-off frequency should be kept around 2-5 Hz 
(Dumitru et al., 1994).

Recent simulation studies have attempted to 
elucidate the impact of distant-interfering fibres 
on the SFAP final portion (Rodriguez-Falces et 
al., 2012a). Additionally, an experimental study 
that recorded SFAPs with a very low high-pass 
cut-off frequency (2 Hz) has been conducted in 
order to analyze the true morphology of the SFAP 
final portion (Rodriguez-Falces et al., 2012b). As 
mentioned before, the most remarkable finding of 

these studies is that the majority of SFAPs recorded 
from slow human muscle fibres have a declining 
negative phase with a slope-discontinuity point 
and a slow return towards the baseline. This 
return may be artificially elongated due to the 
contamination from interfering potentials, but the 
slope-discontinuity point seems to be a feature 
inherent to human SFAPs that has been tradition-
ally overlooked. Future research is necessary to 
validate the observations reported in those studies.

9. JITTER ESTIMATION

Neuromuscular jitter is a phenomenon consisting 
in the time-varying transmission at the neuro-
muscular junction. Jitter is mainly caused by the 
variability in the characteristics of the end-plate 
potential at the neuromuscular junction. As a result 
of this variability, the time from the action poten-
tial in the nerve terminal to the action potential 
in the muscle fibre varies between consecutive 
discharges (Stålberg & Trontelj, 1979). In normal 
subjects, there are small changes in the size of 
the end plate potential (because the amount of 
acetylcholine released from the nerve terminal 
is rather stable) and so the variability in the time 
interval between the nerve action potential and the 
muscle action potential remains below a certain 
limit. Hence the jitter is small. Any disorder of 
neuromuscular transmission will increase the 
instability in the characteristics of the end-plate 
potential and this, in turn, will increase the vari-
ability in the time interval between the nerve and 
muscle action potentials.

Jitter is normally estimated taking as a refer-
ence two SFAPs (triggering and slave) recorded 
simultaneously from two fibres of a single motor 
unit (called fibre pair), as shown in Figure 13. 
Specifically, jitter is measured as the variability 
in the time interval between the triggering and 
slave potentials, termed as interpotential interval 
(IPI) variability [Figure 13] (Ekstedt et al., 1974; 
Stålberg et al., 1974; Stålberg & Trontelj, 1979). 
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Being a phenomenon of variability, jitter could be 
measured as the standard deviation of the inter-
potential interval, but because of the occasional 
occurrence of a gradual change in the mean IPI 
over time in one direction (i.e., a trend), jitter is 
normally obtained as the mean consecutive dif-
ference (MCD) of all the IPIs measured:

 
MCD

IPI IPI IPI IPI IPI IPI

n
n n

=

−( )+ −( )+ ⋅ ⋅ ⋅ + −( )
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−1 2 2 3 1
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where IPIi is the interpotential interval of the ith 
discharge, and n is the number of pairs measured. 
To better understand the benefits of using the 
MCD over the standard deviation, let us assume 
the following IPI values for five consecutive fibre 
pairs: 95, 75, 65, 55, and 35 μs. As can be readily 
seen, there is a decreasing trend in this sequence 
(typically caused by a concomitant change in the 
conduction velocity of the fibres). By applying 
the definition of MCD described in (6) we have:
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If we now compute the standard deviation 
corresponding to the above five IPIs we obtained 
22.3 μs. Thus, in the presence of a trend, the stan-
dard deviation provides an overestimation of the 
IPI variability as compared to the MCD index. 
Clearly, the MCD is a more reliable measure of 
jitter as it compensates for possible sources of 
IPI variability other than the neuromuscular jitter 
(such as changes in the conduction velocity of the 
fibres produced by the velocity recovery function).

The interpotential interval can be calculated 
using two approaches (algorithms): peak trigger 
and level trigger. In the former case, the IPI is 
measured between the negative peaks of the trig-
gering and slave potentials, whereas in the latter, 
the measurement of the IPI is made between a 
point in the steep rising phase of the triggering 

potential close to the baseline crossing and the 
corresponding point on the slave component [this 
is the algorithm shown in Figure 13].

The main requirements, essential for the reli-
able measurement of jitter and for the accurate 
interpretation of data are outlined next. First, use 
a SF electrode with a small recording surface (25 
μm in diameter). Second, select a high-pass cut-off 
frequency of 500 Hz in order to reduce the activity 
from fibres from the same or different motor units 
(background activity), cannula potential, as well as 
interferences from other external sources. Third, 
select SFAPs whose rise-time is shorter than 300 
μs and peak-to-peak amplitudes above 0.2 mV.

9.1 Errors in Jitter Estimation

As mentioned before, measurement of jitter is nor-
mally accomplished by estimating the variability 
in the time interval between the triggering and 
slave SFAPs (IPI variability). If we assume that 
the waveform of each of these SFAPs is exactly the 
same at consecutive discharges, then alterations in 
the IPI value would reflect only the time-varying 
transmission at the neuromuscular junction, i.e., 
the neuromuscular jitter. Any change in the shape 
of the triggering and slave SFAPs would result 
in additional variations of the IPI, which would 
alter the IPI variability produced by the end-plate 
transmission and therefore introduce false jitter. 
In fact, as demonstrated in a recent study, even 
the most spiky SFAPs exhibit a certain degree of 
shape variability at consecutive discharges (Ro-
driguez et al., 2011c). This is so mainly because 
of the interference from remote fibres of the same 
motor unit.

The contribution of distant fibres is not the 
only source responsible for the shape variability of 
SFEMG potentials. Indeed, clinicians are aware of 
the fact that technical problems related to SFEMG, 
such as background activity, needle movement and 
physical noise also compromise the stability of 
such potentials (Stålberg& Trontelj, 1979; Lange, 
1992; Daube & Rubin, 2009). SFEMG is extremely 
sensitive to small movement of the SF electrode. 
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The ability to hold the SF electrode motionless 
is the greatest challenge in SFEMG. Minor angu-
lation or rotation of the cannula often produces 
marked changes in the amplitude of the recorded 
SFAP. The second great technical challenge is 
to maintain low levels of muscle contraction, as 
excessive activation results in noise which may 
increase the baseline fluctuation and distort the 
SFAP of interest. The variability in the firing rate 
of SFAPs is also an issue in SFEMG as this vari-
ability affects the velocity recovery function of 
the muscle fibre. Finally, the shape of the IAP is 
not completely constant at consecutive discharges.

From the above it follows that there exists two 
sources of variability of the IPI that will give rise to 
two different components of jitter. The first source 
of IPI instability is the time-varying transmission 
at the neuromuscular junction, which will result in 
the so-called “neuromuscular” jitter. The second 
source of variation of the IPI resulted mainly from 
changes in the shape of the SFAPs caused by the 
technical problems encountered during acquisi-
tion of fibre pairs described above. This will give 
rise to the “technical” jitter. As a matter of fact, 
these two sources of IPI variability always coex-
ist during SFEMG studies and the key point is to 
assess how the technical IPI variability affects 
the neuromuscular IPI variability, with a view 
to determining to what extent the technical jitter 
distorts the neuromuscular jitter. Such analysis has 
been performed in a recent study (Rodriguez et al., 
2011c). Specifically, it was found that an increase 
of the technical IPI variability always results in an 
increase of the measured IPI variability, leading to 
an overestimation of the neuromuscular jitter. The 
artificial increase in the estimated jitter depends on 
the amount of neuromuscular jitter. Specifically, 
the impact of the technical IPI variability on the 
neuromuscular jitter becomes less important as 
the neuromuscular jitter increases. As an example, 
with voluntary activation and the peak trigger 
method, and for technical IPI variability values 
within 5 and 15 μs, the jitter overestimation was 
1.7–8.1, 0.3–5.6 and 0.1–3.5 μs, for neuromuscular 
jitters of 20, 40 and 60 μs, respectively.

It has been reported that different muscles have 
different upper limits for the normal jitter (Stålberg 
& Trontelj, 1979; Kimura, 1989). As an example, 
with voluntary activation, the reference jitter limits 
above which no more than 2 of 20 muscle fibre 
pairs are accepted as normal are 35, 44, 45, 45, 
54, 55, 55 and 60 μs for the biceps brachii, deltoid, 
frontalis, quadriceps, orbicularis oculi, orbicularis 
oris, extensor digitorum communis and tibialis 
anterior, respectively. Therefore, since the jitter 
distortion introduced by technical IPI variability 
is inversely proportional to the neuromuscular 
jitter, the impact of the technical IPI variability 
on the diagnosis of different disorders will be 
more important for the first four muscles above 
mentioned. The impact of technical IPI variability 
on the diagnosis will also depend on the sever-
ity and type of disorder considered. Because the 
jitter overestimation is always less than 8 μs, it 
is expected that the technical IPI variability may 
not have great consequences in cases of acute 
myasthenia gravis who typically have a lot of jit-
ter values well above the upper limits (Stålberg 
et al., 1974; Schwartz & Stålberg 1975; Sanders, 
1979, 1987). However, when the jitter is increased 
only slightly, as in mild clinical manifestations of 
myasthenia gravis, early stages of reinnervation 
(Hakelius & Stålberg 1974; Stålberg and Tron-
telj, 1979), myopathies and Duchene dystrophies 
(Stålberg, 1977), technical IPI variability might 
be an important issue as even one more abnormal 
jitter value may be important for the diagnosis

10. FUTURE RESEARCH 
DIRECTIONS

In the last decades, the research effort in SFEMG 
studies has been mainly concentrated on the re-
finement of the technique to assess neuromuscular 
jitter more accurately. In fact, the sensitivity of jitter 
measurements made by the SFEMG technique is 
extraordinarily high. However, SF electrodes are 
expensive and, in addition, concern has been raised 
against reusing any material for invasive medical 
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procedures, including EMG. The most inexpensive 
direct alternative is to use conventional concentric 
needle electrodes. However, when using these new 
electrodes for jitter estimation, precise criteria for 
acceptable signals should be established, with 
special emphasis in filter settings.

The simulation model that relates analytically 
the IAP and SFAP functions is based on the hy-
pothesis that the core-conductor theory is valid to 
accurately describe the generation of extracellular 
potentials. However, the core-conductor theory is 
grounded on two assumptions: the IAP is assumed 
to be distributed along the axis of the fibre and 
the influence of the extracellular potential field is 
neglected. In order to validate the assumptions of 
the core-conductor theory, it would be necessary 
to record, from the same muscle fibre, the IAP, the 
transmembrane current, and the SFAP and then 
relate their corresponding morphologic features 
as shown in the present chapter.

11. CONCLUSION

A general perspective of SFEMG has been 
presented together with a description of the 
anatomical, physiological, and technical aspects 
that are involved in the recording of SFAPs. This 
panoramic view comprises a simulation model that 
relates analytically the IAP and SFAP mathemati-
cal expressions, the most recent findings regarding 
the shape features of human SFAPs, a description 
of how different types of needle electrodes affects 
the characteristics of the recorded potential, an 
explanation of the most important effects of filter-
ing on the SFAP characteristics, and a description 
of the principles of jitter estimation together with 
the most important sources of errors.
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Filter Settings: Adjustments of the band-pass 
filter, normally integrated in commercial EMG 
equipment, which consists on selecting the cut-off 
frequencies for the high-pass and low-pass filter.

IAP Spike Duration: Time interval between 
the point of highest slope in the depolarization 
phases of the IAP and the point of highest slope 
in the repolarization phases of the IAP.

Intracellular Action Potential: Voltage 
measured inside the muscle fibre cell as a result 
of the transport of sodium and potassium ions 
through the membrane. In the present chapter, 
the intracellular action potential is assumed to 
be approximately the same as the trasmembrane 
potential which is initiated at the neuromuscular 
junction and travels in both directions along the 
muscle towards the tendons.

Jitter Estimation: Quantification of the 
neuromuscular jitter (normally provided in μs), 
a phenomenon consisting in the time-varying 
transmission at the neuromuscular junction.

SFAP Morphology: Shape characteristics 
of the SFAP, which includes, among others: the 
number of phases, the polarity of each of the 
phases, the duration of the phases, and the ratio 
between the amplitudes of phases.

SFAP Third Phase: Last (positive) phase of 
the SFAP generated by the repolarization phase 
of the transmembrane voltage.

Single Fibre Action Potential: Potential gen-
erated in the extracellular medium surrounding the 
fibre cell by the propagation of the transmembrane 
voltage along a single muscle fibre.

Single Fibre Electrodes: Needle electrode 
which consists of an insulated metal wire inside 
a hollow stainless steel cannula (that serves as a 
reference). Typical dimensions of a single fibre 
electrode are: needle diameter of 0.46 mm, needle 
length of 37 mm, circular leading-off surface of 
25-μm radius.
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Chapter  3

Detection and 
Conditioning of EMG

ABSTRACT

In this chapter, the monitoring of the electrical activity of skeletal muscles is depicted. The main compo-
nents of the detection and conditioning of the EMG signals is explained in the sense of the biomedical 
instrumentation. But, first, a brief description of EMG generation is introduced. The hardware components 
of the general instrumentation system used in the acquisition of EMG signal such as amplifier, filters, 
analog-to-digital converter are discussed in detail. Subsequently, different types of electrodes used in 
different EMG techniques are mentioned. Then, various EMG signals that can be detected and monitored 
via EMG systems are described and their clinical importance is discussed with detail. Finally, different 
EMG techniques used in clinical studies and their purposes are explained with detail.

INTRODUCTION

Electromyography (EMG) is an electrophysi-
ological technique for displaying and for assessing 
the electrical activity generated by the skeletal 
muscles. These signals are analyzed to find medical 
abnormalities in peripheral nervous system and 
muscles, or to study the biomechanics of human 
or animal movement. As a result, EMG is com-
monly used in either the diagnosis or differential 
diagnosis of neuromuscular disorders. As the 
knowledge in neurophysiology has increased, 
specific EMG methods have been developed in 

terms of the requirements of the clinical studies. 
With the advances in the hardware and software 
technology, various EMG systems, including some 
for electrophysiological methods such as Nerve 
Conductions Studies, have been manufactured. In 
this chapter, general principles of the instrumen-
tation in EMG systems will be described. Then, 
various EMG electrode types will be introduced. 
Afterwards, different EMG signals and their 
clinical implications will be explained. Finally, 
different EMG techniques including not only con-
ventional EMG used in routine examinations but 
also specific EMG techniques such as Single Fiber 
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EMG, Macro EMG, Scanning EMG, Quantitative 
EMG and Surface EMG will be depicted in details. 
The principles of these methods, the parameters 
measured by these methods, their applications, 
their purposes in clinical use will be discussed.

BACKGROUND

Movement in the living milieu is essential for 
many organisms in maintaining life. The mus-
culoskeletal system is responsible not only in 
achieving the movements including locomotion 
but also in the maintenance of the posture and in 
the establishment of the gestures and speech by 
means of the actuators referred as skeletal muscles 
(Pozzo, Farina, & Merletti 2004; Moritani, Stege-
man & Merletti 2004). In human beings, skeletal 
muscle has four functions which can be explained 
as follows.

1.  Production of body movement: In order 
to enable the organism to adapt rapidly to 
environmental changes, skeletal muscles 
have responsibilities for all locomotion 
including not only the movements playing 
role in displacement but also gestures and 
speech.

2.  Maintenance of Posture: In the presence of 
gravity, equilibrium of the body is ensured 
by means of some skeletal muscles.

3.  Stabilization of Joints: The joints such as 
shoulder and knee without complementary 
surface and hence with poor reinforcement 
can be stabilized with the help of the skeletal 
muscles

4.  Generation of Heat: The skeletal muscles 
constituting 40% of body mass produce heat 
during their contractions which has a vital 
importance in maintaining normal body 
temperature (Marieb, 1995; Tortora, 2009; 
Tortora, 2010).

These functions are controlled by electrical 
signals transmitted from the nervous system to 
muscle fibers that bring about skeletal muscle 
contraction. (Henneberg, 2000, 2006). During the 
contractions the conversion of the chemical energy 
and electrical energy into mechanical energy takes 
place by the cleavage of ATP molecules in order to 
establish the motor activity (Guyton, 2002). Hence 
mechanical force is generated as the output of the 
motor system (Cotterill, 2002). The process of 
contribution of additional motor units to produce 
force at a certain level is referred as motor unit 
recruitment and it occurs in an orderly sequence 
based on the size of the motor units (Preston & 
Shapiro, 2005). According to the Henneman’s Size 
Principles, as the contraction increases the small 
motor units are recruited first and then larger ones 
participate to this process (Loeb & Ghez, 2000).

Since it is not feasible in humans to insert force 
sensors in series on tendons, electrical activity of 
the muscles is used to assess muscle contraction 
(Pozzo, Farina, & Merletti 2004). These electrical 
activities are generated by the basic anatomical 
and functional unit of the skeletal muscle called 
as Motor Unit (MU). The concept of motor unit 
was first introduced by Sherington in 1925 (Burke, 
2001; Liddell & Sherington, 1925). A motor unit 
consists of a motoneuron in anterior horn of the 
spinal cord, and all the muscle fibers innervated 
by this motor neuron (Preston & Shapiro, 2005).

Motor unit is a functional and anatomical unit 
and its different components such as nerve and 
muscle tissue achieve the movement in coordina-
tion by using the bioelectrical activity. The number 
of motor units in a muscle varies from muscle to 
muscle. The number muscle fiber contained in 
a motor unit can also vary in various muscles in 
human body (e.g. gastrocnemius muscle of the 
leg serving in coarse movements possesses up to 
2000 muscle fibers per motor neuron whereas, 
extraocular muscles which generate fine-tuned 
movements may have three muscle fibers per 
motor neuron) (Cram & Kasman, 2001).
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The electrical activity generated individually 
by the muscle fibers is referred as Single Fiber 
Action Potential (SFAP). Some of these SFAPs 
are superimposed in terms of amplitude while 
propagation within the volume conductor (i.e. 
muscle tissue) and this form of electrical activity 
being recorded by means of various electrodes is 
defined as Motor Unit Action Potential (MUAP). 
However, MUAP being acquired depending on 
the characteristics of the recording electrode is 
limited with the muscle fibers located within the 
uptake area of the electrode. MUAP is expressed 
by parameters such as amplitude, duration, number 
of phases etc. These parameters will be described 
with details in the following sections. These are 
represented in Figure 1. (Henneberg, 2006; Ami-
noff, 1992; Diószeghy, 2002).

The process of studying the electrical activ-
ity of muscles is referred as Electromyography 
(EMG) (Weiss, 2004). Although it implies the 
assessment (or evaluation) of peripheral nerve and 
muscle through the needle electrodes, “EMG” or 

“Clinical EMG” is referred as the electrophysi-
ologic examination including nerve conductions 
studies (NCS) as well by clinicians (Katirji, 2007). 
EMG is used as a major electrodiagnostic tools to 
detect and to characterize the disorders affecting 
the motor unit including muscle fibers, neuro-
muscular junctions, peripheral nerves and anterior 
horn cells (Aminoff, 1992; Rubin, 2009). In this 
context, EMG is beneficial in the clinical evalu-
ation when the absolute localization of the lesion 
from where the symptoms originate is difficult to 
detect. Therefore, EMG is an auxiliary electro-
physiological tool in the differential diagnosis of 
the neurogenic, myopathic and neuromuscular 
junction disorders (Aminoff, 1992; Kimura, 2001; 
Mills, 2005; Oh, 2003).

EMG signals are acquired by means of EMG 
instruments. In conjunction with these instru-
ments, several EMG methods are used. Usually, 
conventional EMG is used in routine examina-
tions. Even though the methods used for specific 
purposes such as Single Fiber EMG, Macro EMG, 

Figure 1. Schematic representation of the motor unit and the motor unit action potential (MUAP)
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Scanning EMG and Surface EMG are performed 
with the same EMG instruments, special electrode 
types and software designed for these purposes 
are used.

ELECTRODES

The EMG signals are picked up through an elec-
trode which is the passive electrical interface be-
tween the subject1 and the equipment either during 
the voluntary contraction or at rest (Pozzo, Farina, 
& Merletti, 2004; Trontelj, Jabre & Mihelin, 2004). 
These EMG recordings can be performed either 
intramuscularly using various needle electrodes 
or by means of surface electrodes (see Figure 3).

Principles of Electrodes

Like other biopotential electrodes, the principles 
of the EMG electrodes are also based on the fact 
that the electrolytic solutions and tissues contain 
charged particles and ions. The biological signal 
detected by the EMG electrodes is generated 
by the transduction of the ionic current flowing 
through the body. This ionic current results in the 
electrical current being fed to the input stage of 
the EMG system by means of the electrodes. The 
generation of these ionic current yields from the 
reduction-oxidation at the interface between the 
electrode and the tissue in the double layer formed 
close to the electrode surface. This process can 
be represented by the following equations for the 
metal C forming the cathode and metal A form-
ing the anode:

C C nen→ ++ −  

A A mem− −→ +  

where n is the valence of cathode C and m is the 
valence of anode A (Neuman, 2010; Pozzo, Farina, 
& Merletti 2004).

As a result, a half-cell potential (E) takes place 
when a metal is in contact with an ionic solution 
which can be represented as below by the Nernst 
equation

E
RT
nF

a

a
=











ln 1

2

 

where R is the universal gas constant, T is the 
absolute temperature, n is the valence of the ion, 
and a1 and a2 are the activities of the ion on the 
two sides of the double layer (Neuman, 2010; 
Northtrope, 2002; Pozzo, Farina, & Merletti 2004; 
Togawa, Tamura, Öberg, 1997). The electrodes can 
be categorized into two categories such as polariz-
able and non-polarizable. Polarizability refers to 
the alteration of the half-cell potential due to the 
current passing through the membrane. It can be 
also called overvoltage and it is originated from 
the changes in charge distribution in the solution 
being in contact with the electrode. The electri-
cal model of the tissue-electrode interaction is 
shown in Figure 2. Vc is the common mode input 
voltage that appears simultaneously and in phase 
on each of the instrument’s inputs with respect 
to power ground. The common-mode rejection 
ratio (CMRR) is the rejection by the device of 
unwanted input signals common to both input 
leads, relative to the wanted difference signal. Vc 
and CMRR will be explained with detail in the 
following sections.

Perfectly polarizable electrodes demonstrate 
a capacitive behavior allowing a current flow 
between the electrode and electrolyte solution 
by changing the charge distribution in the elec-
trolyte (i.e. body fluid). These electrodes are 
manufactured from noble metals such as platinum. 
Polarizability leads to motion artifact ranging 
from DC up to 20 Hz due to the changes in ion 
concentrations at the skin-electrode interface if the 
electrode moves with respect to the electrolyte. 
This is a challenge in surface EMG electrodes. 
On the other hand, in perfectly non-polarizable 
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electrodes, current freely passes across the 
electrode-electrolyte interface without requiring 
energy. Therefore, non-polarizable electrodes 
(e. g. silver-silver chloride electrodes) are more 
suitable in surface EMG applications (Neuman, 
2010a; Pozzo, Farina, & Merletti 2004).

In addition to the challenges described in 
the previous paragraphs, several factors such as 
MU size, innervation ratio, temporal and spatial 
characteristics of the MUAP should be taken 
into the account while designing the electrodes. 
In that context, there exist several types of EMG 
electrodes. These are concentric needle electrode, 
monopolar electrode, single-fiber electrode, macro 
needle electrode and surface EMG electrode. 
The uptake areas of these electrodes differ from 
each other. The uptake area can be defined as the 
part of the MU where the bioelectrical activity 
recorded by the electrode. All of these electrodes 
are represented in Figure 3.

Concentric Needle Electrode (CNE)

The concentric needle electrode is used in the 
conventional needle EMG in clinical routine 
examinations. This electrode was first developed 
by Adrian and Bronk in 1929 (Henneberg, 2000; 
Trontelj, Jabre & Mihelin, 2004). It consists of a 
stainless-steel cannula and a wire made of nickel 
chrome or platinum. The diameters of this wire 
and the cannula measure 0.1-mm and 0.3-mm in 
diameter respectively. This wire is insulated with 
a resin layer. The beveled tip of the needle with a 
150-angle constitutes the active recording surface 
an oval shape in 150×600-μm dimensions. The 
impedance of this wire is approximately 50 kΩ 
(Kimura, 2001; Trontelj, Jabre & Mihelin, 2004). 
The uptake area of the concentric needle electrode 
is a semiglobe in 2.5-mm diameter. The MUAP 
duration is determined by muscle fibers within this 
area. The area under curve of the MUAP signal is 
determined by muscle fibers within the area with 
1-mm diameter. The fibers within the uptake area 

Figure 2. Electrical Model of the tissue-electrode interaction and preamplifier stage; VEMG1-; VEMG2: EMG 
signals; Zte1, Zte2: tissue-electrode impedances; Ehc1, Ehc2: Half-cell potentials; Ib: Amplifier input bias 
current; Iin1, Iin2: Amplifier input current noises; Vd: Differential input voltage; Gd: Differential gain; 
CMRR: Common mode rejection ratio; VCM: common mode input voltage [(V1+V2)/2)]
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with 0.5-mm diameter contribute to the amplitude 
of the EMG signal of interest (Trontelj, Jabre & 
Mihelin, 2004). All these parameters such ampli-
tude, duration, area etc. are illustrated in Figure 
1 and Figure 7. Concentric needle electrode is 
illustrated in Figure 3c.

Monopolar Needle Electrode (MNE)

The monopolar needle electrode- made of stainless 
steel- is an insulated needle which is coated with 
TeflonTM except at the distal 0.2 to 0.4 mm. It has 
a fine point. This point is obtained by sharpen-
ing the tip of the electrode to conical shape. This 
tip, which is not insulated, has a conductive area 
of 0.15- to 0.25-mm2 (Kimura, 2001; Oh, 2003; 
Trontelj, Jabre & Mihelin, 2004). The average 
diameter of the monopolar needle electrode with 
Teflon coating is 0.8-mm (Kimura, 2001; Oh, 
2003; Stålberg & Falck, 1997; Trontelj, Jabre & 
Mihelin, 2004). The length ranges from 12 mm to 
75 mm (Oh, 2003). The average impedance lies 

between 1.4 MΩ at 10 Hz to 6.6 kΩ at 10 kHz 
(Kimura, 2001).

In needle EMG studies, monopolar needle 
electrode may be used as the active electrode. A 
surface electrode or a second needle in the sub-
cutaneous tissue is used as a reference electrode. 
A separate surface electrode placed on the skin 
is used as the ground electrode (Chan, &. Hsu, 
1991; Kimura, 2001; Oh, 2003; Trontelj, Jabre 
& Mihelin, 2004).

Monopolar needle electrode is less painful, 
less expensive and more sensitive in identifying 
EMG signals such as fibrillation and positive sharp 
waves than the concentric needle electrode (Oh, 
2003). However, since it has a higher impedance, 
it is less stable and hence noisier (Kimura, 2001).

Monopolar needle electrode is also used as 
a stimulating electrode if the nerve trunk to be 
stimulated is located deep. It can also be used 
for intramuscular stimulation in activating only 
a single or a few motor units at a time (Oh, 2003; 
Trontelj, Jabre & Mihelin, 2004). Monopolar 
needle electrode is shown in Figure 3(d).

Figure 3. Schematic representation of the EMG electrodes in different types: (a) Surface EMG Electrode; 
(b) Macro EMG Electrode; (c) Concentric needle electrode; (d) Monopolar electrode; (e) Single fiber 
electrode
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Single Fiber Electrode (SFE)

Some clinical studies require recording from 
single muscle fibers, which necessitates a very 
selective electrode. (Kimura, 2001; Stålberg, 
Trontelji & Sanders, 2010). Since the diameter of 
the muscle fibers varies from 25 μm to 100 μm, 
SFE comprises a 25-μm platinum wire in diameter 
inside a cannula. The small recording surface of 
the platinum wire ensures selective recording of a 
single fiber action potential. An uptake area with 
300-μm radius is created. This wire is insulated 
from the cannula by an epoxy resin and its tip is 
bent toward the side of the cannula. The cannula 
is the reference electrode with 0.5- to 0.6-mm 

diameter (Kimura, 2001; Stålberg & Trontelji, 
1994;Trontelj, Jabre & Mihelin, 2004). Single-
fiber electrode is represented in Figure 3(e).

Macro Needle Electrode

Macro EMG electrode is an intramuscular needle 
electrode that is used to record the total electrical 
activity of all the muscle fibers belonging to same 
motor unit. It consists of a steel cannula and within 
a 25 micrometer platinum wire which bent in a 
side port which is used for recording a single fiber 
action potential in one channel to trigger the sweep 
of the second channel in which total activity of 
all muscle fibers from the same motor unit were 

Figure 4. Sources of interferences when the patient, the electrodes and the amplifier of the emg system 
are connected to each other (ipower: displacement current flowing through the patient due to the power 
lines. cpower: capacitance between the patient’s body and the power line; cbody: capacitance between pa-
tient’s body and earth; ic1, ic2: displacement currents flowing through the electrodes due to the power 
lines; cc1, cc2: capacitances between the power lines and the electrodes; zte1, zte2: contact impedances of 
the electrodes; zref: contact reference electrode; zin1, zin2: amplifier input impedance; iground: displace-
ment current flowing from the power lines toward the isolated ground. cground: capacitance between the 
power line and the isolated ground; vd: differential input voltage; vcm: common-mode input voltage; viso: 
isolation-mode voltage; ciso: capacitance of the isolation barrier
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recorded and averaged (Trontelj, Jabre & Mihelin, 
2004). The recording surface of the modified SFE 
is 7.5 mm from the tip of the electrode. Hence the 
recording surface is maintained as constant even 
if the needle is inserted into the deeper part of the 
MU. The cannula with a 0.55-mm-diameter and 
a 15-mm-exposed surface is used to record the 
electrical activity of the entire motor unit (Kimura, 
2001; Stålberg & Falck, 1997).

In the limb muscle, the muscle fibers are 
distributed over a cross-sectional area with 5- to 
10-mm diameter. The 15-mm recording area of 
the macro-EMG needle enables this electrode to 
perceive a motor unit over a cross-sectional area 
with 5- to 10-mm diameter (Smith, 2009). Macro 
needle electrode is illustrated in Figure 3(b).

Surface EMG Electrode

In contrast to the invasive intramuscular electrodes, 
surface electrodes do not penetrate the skin. They 
are fixed on the skin over the muscles of interest 
for the in vivo measurements of the EMG signals 
(Christe, 2009; Sawnhey, 2007). These electrodes 
are manufactured materials such as solid silver or 
gold, platinum, sintered silver and silver chloride, 
carbon, and sponge saturated with electrolyte gel 
or conductive hydrogel (Neuman, 2010). Surface 
electrodes have a large pick-up area.

They register electrical activity from a wider 
region depending on the size of the electrodes. 
They are non-selective. However, they record 
mass activity from a large proportion of a muscle, 
or from many muscles, depending on recording 
site (Kimura, 2001; Stålberg & Falck, 1997). 
Surface electrodes are usually used for monitoring 
voluntary muscle contraction during kinesiology 
studies and evoked compound nerve and muscle 
potentials (Kimura, 2001). Surface EMG electrode 
is shown in Figure 3(a).

GENERAL PRINCIPLES 
OF INSTRUMENTATION IN 
ELECTROMYOGRAPHY

Like other biopotentials, EMG signals should be 
also conditioned after the detection process via the 
convenient electrodes. Signal conditioning process 
includes amplification, filtering and converting 
into digital form. Therefore, the electrical activities 
can be monitored in a visible form that enables 
the clinicians to make any clinical interpretation. 
So the essential part of the EMG instruments is 
the biopotential readout circuits that establish the 
signal conditioning and the signal processing of 
the detected electric activities to display them in 
the readable form by the physicians. EMG signals 
are extremely small and require several stages of 
processing before they can be made understood 
and quantified (Aminoff, 1992; Nagel, 2006; Van 
Hoof & Puers, 2009). The instruments consist of 
preamplifiers, filters, circuits for noise reduction 
and connections to protect subjects from shocks 
(Pozzo, Farina & Merletti, 2004).

General Characteristics 
of EMG Signals

EMG signals recorded with concentric needle elec-
trode during voluntary contraction of particular 
muscle include different MUAPs which are firing 
with their own frequencies. These EMG signals 
have a frequency range lying between 10 Hz to 
10 kHz (Brown et al., 1999). The amplitudes of 
each MUAPs vary between 50 μV and 20 to 30 
mV. They have duration of 3 to 15 millisecods. 
These parameters may depend on the recording 
characteristics of the electrode of interest (Ami-
noff, 1992; Bryan, 1998; Oh, 2003).

General Structure of EMG Systems

The general structure of the modern electromy-
ography systems consist of input stage or ampli-
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fier stage, filters, analog-to-digital converters, 
computer systems with specific software used to 
process the acquired signals for different electro-
physiological applications and managing to stor-
age and displaying these processed data, output 
devices such as a loud speaker in conjunction 
with an audio amplifier, a display to monitor the 
signal of interest and a printer for the hard copies 
of the reports.

Like other biopotential amplifiers, while 
designing the EMG systems tissue-electrode 
interactions and interferences originating from 
the ambient environment should be taken into 

account. The general configuration of the EMG 
recording system is shown in Figure 5(a).

Tissue-Electrode Interactions

Tissue-electrode interface comprises contact im-
pedance with resistive and capacitive components 
ranging from 10 kΩ to 1 MΩ which is related with 
the type of electrode, the half-cell potential at this 
interface which can be as 200 mV, the intrinsic 
noise of the tissue-electrode interface due to the 
thermal noise across the contact impedance the 
electrode contact noise due to the ionic exchange 

Figure 5. (a) Block diagram of the EMG system (b) equivalent circuit for the isolation amplifier
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at the tissue-electrode interface and the source of 
EMG signals (Pozzo, Farina, & Merletti, 2004). 
An EMG signal below the intrinsic electrode noise 
is masked by this noise. Therefore, sincethe input 
stage plays role in the final quality of the detected 
EMG signal, the lower boundary of the meaning-
ful input range of an EMG amplifier should be 
determined by considering the intrinsic electrode 
noise (Pozzo, Farina, & Merletti, 2004).

Sources of Interferences and Noises

While operating, an EMG amplifier is usually 
exposed to noise leading to inferences that can 
considerably distort the quality of the signal of 
interest. Sources of interferences can be sum-
marized as power line cables, HF interferences, 
ripples in the power supply of the amplifier and 
internally and externally generated magnetic and 
electrical fields. While designing such systems, 
these sources of interferences should be taken into 
account and the design of the equipment should 
aim to reduce the effects of these interactions.

One of the sources of interference is the capaci-
tive coupling between the measurement cables 
connected to electrodes and the power line cables 
and the induced currents flowing through the body 
which can be expressed as follows:
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The resulting voltage is referred as differential 
input voltage Vd. Since this induced Vd voltage 

is differential, it cannot be attenuated through 
Common-Mode Rejection Ratio (CMRR). There-
fore, its effect can be reduced by minimizing the 
parasitic capacitances between power lines and 
measurements cables connected to the electrodes. 
This is achieved by making the connections be-
tween the electrodes and the input stage as short 
as possible and thus by placing the instrumenta-
tion amplifier circuit as close as possible to the 
electrodes. Besides, shielded cables with active 
guarding in which the shield is driven with a buffer 
possessing an input connected to common mode 
voltage is also an effective precaution.

Another source of interference takes place 
due to the common-mode voltage VCM as a result 
of the power lines interferences. This voltage 
reveals between the differential voltage and the 
earth through the reference impedance due to the 
imperfections in differential amplifiers (Brown 
et al., 1999; Pozzo, Farina, & Merletti, 2004). 
The relationship between the differential input 
voltage and the common-mode voltage is called 
potential divider effect and it can be described by 
the following equations:
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The minimization of the common mode volt-
age is expressed by Common Mode Rejection 
Ratio (CMRR). Hence the power line interference 
can be minimized theoretically with a CMMR as 
much as possible.
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High Frequency (HF) emissions emanating 
from the sources located in the vicinity of the EMG 
systems are other sources of interferences beside 
the high-frequency components of the signal of 
interest (van der Horst et al., 1998). This kind of 
interference can be eliminated by means of low-
pass filter in the signal conditioning process. Oc-
casionally, intrinsic rectifying effect of the input 
stage acting as an AM/FM demodulator may lead 
HF-induced interferences with the bandwidth of 
EMG signals. This can be prevented by inserting 
HF ceramic disc capacitor between the inputs and 
the reference (Grimbergen, Metting van Rijn & van 
der Horst, 1991; Pozzo, Farina, & Merletti, 2004).

Thermal noise (Johnson noise) is an intrinsic 
noise revealed at the tissue-electrode interface 
across the contact impedance. So, it is an electrical 
current resulting from the thermal movement of 
ions and electrons that generates a noise voltage. 
The magnitude of this noise can be expressed as 
follows;

V kTR f
thermal RMS,

= 4 ∆  

where k is the Boltzmann Constant (1.308×10-23 
J/K), T is absolute temperature, R is the value of 
the resistance in Ohms and ∆f is the bandwidth 
of the system in Hertz. The Johnson noise cannot 
be cannot be eliminated. But its magnitude should 

Figure 6. Characteristic parameters of the motor unit action potential (MUAP)
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be calculated in order to estimate the signals of 
interest.

Motion artifacts originate from two sources 
such as contact of electrode to tissue and connec-
tion cables between the electrodes and the input 
stage. The spectral range of this noise extends 
between DC and 20 Hz. It can be minimized by 
using high-pass filters with proper connection of 
cables (Lin et al., 1999; Pozzo, Farina, & Merletti, 
2004; Sörnmo & Laguna, 2005).

Input Stage of the Amplifier

EMG signals have amplitudes of the order of 
millivolts. So their voltage should be amplified 
to readable levels by the displays and to be stored 
in computers. Like other biopotential amplifiers, 
those used in EMG input stages must have gains 
of at least 1000 (Prutchi & Norris, 2005). The 
gain is computed as follows;

Gain dB linear gain
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The input stage of an EMG system comprises 
instrumentation amplifier (IA) and isolation ampli-
fier. The instrumentation amplifier which is also 
called preamplifier is used to match impedance and 
to realize the amplification and the conditioning 
of the biological signal acquired from the patient. 
On the other hand, the isolation amplifier is a 
safety device used to protect the patient from the 
line voltage (Nagel, 2006).

An electrode is connected to the pre-amplifier 
through cables and these cables are exposed to 
interference signals. But the interference occurs 
only on the input cables to the amplifier and it is 
not seen on the ground cable with “0” potential. 
In order to minimize noise, a differential ampli-
fier can be used which takes the difference of two 
inputs and that amplifies this difference. In the 
presence of noise interference, this noise can be 

cancelled out by this circuitry in symmetrical man-
ner. It is difficult to make a differential amplifier 
with perfect subtraction. As a result, due to this 
imperfection, a common-mode voltage VCM is cre-
ated on human body by the displacement current 
iD flowing through the impedance of reference 
electrode Zr and the magnitude of this voltage is 
given as follows;
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The Common Mode Rejection Ratio (CMRR) 
which is the capability to reject common-mode 
signals could measure the accuracy of subtrac-
tion in each amplifier (Pozzo, Farina, & Merletti 
2004; Prutchi & Norris, 2005). It is defined as 
the ratio between the gain of the common-mode 
signal (Nagel, 2006) and that of an equivalent 
differential signal and can be given as follows;
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where the differential gain Gd and the common-
mode gain GCM are as follows;
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In conclusion, the output voltage Vout of the 
instrumentation amplifier can be expressed as 
below;
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where Zin is the inner impedance of the instrumen-
tation amplifier. From this expression, it is obvious 
that as much as higher CMRR is preferable in the 
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design of such an amplifier (Brown et al., 1999; 
Pozzo, Farina, & Merletti, 2004).

Driven Right-Leg-Circuit

In order to reduce common-mode interference, a 
driven-right-leg circuit (DRL circuit) is added to 
the instrumentation amplifier of the EMG systems 
in the input stage (Winter & Webster, 1983). The 
patient’s body can also behave like an antenna 
picking up electromagnetic interference especially 
yielded from 50/60-Hz noise of the power lines 
which can obscure the EMG signals of interest. 
In many modern biopotential amplifiers, the right 

leg of the patient is connected to the auxiliary 
op-amp of the DRL circuit instead of grounding 
the patient directly. Hence the common-mode on 
the body is sensed by the two averaging resistors 
R3. Then, it is inverted, amplified and fed back 
to the right leg.

As a result, the negative feedback reduces the 
common-mode voltage. The patient’s displace-
ment current flows to the op-amp output circuit 
rather than to ground (Nagel, 2006; Neuman 
2010b, Pozzo, Farina, & Merletti, 2004). Also, 
electrical safety can be ensured by saturating 
auxiliary op-amp provided that a high voltage 
takes place between the patient and the ground 

Figure 7. (a) Configuration of macro electromyography (b) single fiber action potentials captured by 
the SFEMG electrode (c) potential captured by the outer cannula d) spike-triggered averaged signal 
(Macro MUAP)
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due to an electrical leakage (Neuman 2010b). 
DRL circuit is shown in Figure 5a.

Isolation Amplifier

In order to protect the patient from the possible 
dangerous currents and voltages originating from 
the non-biomedical equipments, safety standards 
mandate to isolate the electrodes and the front-end 
circuits from the rest of the equipment (Jennings 
et al., 1995; Metting van Rijn et al., 1993).

Different methods such as transformer isola-
tion, capacitor isolation, and opto-isolation are 
utilized in isolation amplifiers. A galvanic separa-
tion between the input side consisting of patient 
and input stage and the output side comprising 
all other equipments is established. Ideally, it is 
expected that no electric current will flow across 
this galvanic separation. On the other hand, an 
isolation-mode voltage may occur between the 
input common and output common across this 
barrier. That would imply that there is a leakage 
across the isolation barrier and this Isolation Mode 
Rejection Ratio (IMRR) is not finite. The output 
voltage Vout of the is isolation amplifier can be 
expressed as follows;
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where A is the amplifier gain, VD, VCM, and VISO are 
differential, common mode, and isolation voltages, 
respectively, CMRR is the common mode rejec-
tion ratio for the amplifier and ZG1, ZG2, RIN are the 
measurement electrode and reference electrode 
impedances and inner resistance of the isolation 
amplifier respectively. Transformer coupled am-
plifier is based on the inductive transmission of 
a carrier signal with amplitude modulated by the 
EMG signal. The signal is reconstructed at the 
output side by means of a synchronous demodu-
lator (Nagel, 2006). Another way of obtaining 

galvanic isolation is optical coupling the input 
side with the output side. This is achieved by us-
ing a single LED and photodiode combination. 
Since no resistive conductive path should exist 
between the input and output side, this system is 
supplied by transformer-isolated power supply 
(DC/DC converter) or a battery (Nagel, 2006; 
Pozzo, Farina & Merletti 2004). Isolation ampli-
fier is represented in Figure (5b).

Filtering

Another stage of signal conditioning in an EMG 
system is filtering. The input stage is followed 
by a band-pass filter in which all the frequencies 
below and above preset cutoff values are rejected. 
In EMG, the cutoff frequencies for band-pass filter 
are 5 Hz and 10 kHz respectively (Prutchi & Norris, 
2005); these values depend on the electrodes used 
and purpose of the recording. Half-cell potentials 
occurring at the electrode-tissue interface result 
in DC offsets. They could reduce the beneficial 
dynamic range of the signal. In addition, they could 
saturate the last stage of the amplifier. In order to 
remove these undesired DC offsets, a high-pass 
filter is required. Low-pass filter is required to 
remove the noise beyond the bandwidth leading 
a distortion in signal-to-noise ratio (SNR). The 
signal-to-noise ratio can be expressed in decibels 
(dB) as follows;
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where S is the amplitude of the signal and N of the 
noise (Pozzo, Farina, & Merletti, 2004; Sörnmo 
& Laguna, 2005).

Analogue-to-Digital (A/D) Conversion

After being conditioned by in the input stage, the 
signal of interest should be converted into digital 
form in order to process the EMG signals by the 
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computer of the EMG system for displaying and 
to store data (Jennings et al., 1995; Pozzo, Farina, 
& Merletti, 2004). The EMG signals acquired by 
the electrodes are time-varying analog signals usu-
ally in the form of voltage and these are converted 
into digital form by means of the circuitry called 
analogue-to-digital (A/D) converter (Christe, 
2009; Shawhney, 2007). A/D Converter can be 
either implemented internally in the EMG systems 
or connected externally as a data acquisition board 
(Pozzo, Farina, & Merletti, 2004). By virtue of 
the progress in digital technology in terms of both 
hardware and software makes digital processing 
more efficient and flexible compared to analog 
processing. Digital processing has numerous ad-
vantages. Even complex algorithms which are used 
for special techniques can be easily implemented. 
The accuracy depends only on the truncation 
errors. Since they involve software rather than 
hardware modification design parameters can be 
easily altered (Mainardi, Bianchi & Cerutti, 2006).

The processes followed during the A/D conver-
sion are sampling and quantization respectively. 
In sampling, the values of the EMG signal are 
acquired at uniformly spaced time intervals. These 
time intervals provide sampling frequency and 
they should be selected properly. Otherwise, the 
high frequencies are mistaken for low frequen-
cies. This phenomenon is known as aliasing. As 
a result the reconstructed signal is corrupted and 
differs in frequency and phase from the original 
waveform leading to the false representation of 
the information. In order to overcome this prob-
lem, the Nyquist theorem should be satisfied. 
This theorem states that the original signal can 
be fully reconstructed from its samples provided 
that the sampling frequency is at least twice the 
maximum frequency present in EMG fmax and this 
is expressed mathematically as below;

fs ≥ 2.fmax 

where fs is the sampling frequency (inverse sam-
pling interval) and fmax is the maximum frequency 

of the EMG signal in question (Jennings et al., 
1995; Mainardi, Bianchi & Cerutti, 2006; Pozzo, 
Farina, & Merletti 2004).

The process of converting the almost infinitely 
variable amplitude of an analog waveform to one 
of a finite series of discrete levels is called quan-
tization. Following the sampling, the sampled 
values are rounded to the nearest values among 
finite values. Thus the analog value of the sampled 
signal is expressed in terms of digital words or 
steps with limited resolution. A least-significant-
bit (LSB) is assigned to these sampled amplitudes. 
As expected, the original signal cannot be exactly 
reconstructed. Hence a quantization error takes 
place. This error can be minimized by dividing the 
difference between the minimum and maximum 
values of the signal by as many as possible levels 
(i.e. by reducing the step height) (Jennings et al., 
1995; Pozzo, Farina, & Merletti 2004).

Output Devices

It is obvious that it is usually required to monitor 
the acquired signal in order to make interpretations 
in clinical sense. EMG instrumentation systems 
are controlled by means of the computer systems 
and they have output devices such as display, 
loudspeaker and printer for this purpose (Brown 
et al., 1999).

The waveform of the acquired MUAPs can 
be monitored by means of a visual display. In the 
previous generations of EMG systems, cathode ray 
tube (CRT) oscilloscopes were utilized to display 
this waveform pattern. With recent technologies, 
Liquid Crystal Displays (LCDs) of computers 
are implemented into the EMG systems (Brown 
et al., 1999).

Acquired EMG signals have also distinct audi-
tory characteristics which clinicians sometimes 
utilize the auditory characteristics of these signals 
in different clinical states. After being conditioned 
these signals are fed to an audio-amplifier and 
then these are converted to audible signal via 
loudspeaker. Beside visually displayed waveforms 



73

Detection and Conditioning of EMG
 

of these signals, the clinicians usually assess the 
characteristic sounds of various EMG patterns 
associated with different clinical cases (Brown 
et al., 1999).

In order to attach to the patient reports and 
to epicrisis, the hard copy of the acquired EMG 
signals can be required. Furthermore, interpreta-
tions about the signs of the related EMG signals 
made by the physician can be printed through the 
associated printer (Brown et al., 1999).

Electrodiagnostic Examination 
Systems Associated 
with EMG Systems

Although EMG is mainly concerned with the 
monitoring of the neuromuscular electrical 
activities related with the muscle contraction, 
neurophysiology examination systems such as 
stimulators for nerve conduction studies and 
evoked potential systems are integrated with the 
modern EMG systems.

Stimulators in Nerve 
Conductions Studies

A nerve conduction study (NCS) is a test com-
monly used to assess the ability of electrical 
conduction of the motor and sensory nerves of 
the human body.

Motor nerve conduction studies are performed 
by electrical stimulation of a peripheral nerve with 
a single supramaximal stimulus and recording 
compound muscle action potential (CMAP) from 
a muscle supplied by this nerve with a surface 
EMG electrode. The summation of the action 
potentials stimulated by electrical impulses and 
being transferred across the neuromuscular junc-
tion and the time needed to propagate from the 
stimulation site to the recording site measured 
in milliseconds (i.e. latency) are recorded. The 
amplitude of the summated action potentials is 
measured in millivolts (mV) (Aminoff, 1992; 
Preston & Shapiro, 2005; Oh, 2003).

Sensory nerve conduction studies are per-
formed by electrical stimulation of a peripheral 
nerve and recording a compound nerve action 
potential (CNAP) from a purely sensory portion 
of the nerve, such as on a finger. Sensory laten-
cies are also on the scale of milliseconds. Sensory 
amplitudes are much smaller than the motor am-
plitudes, usually in the microvolt (μV) range. The 
sensory nerve conduction velocity is calculated 
based upon the latency and the distance between 
the stimulating and recording electrodes. Large-
diameter myelinated fibers can be stimulated with 
low-amplitude stimuli compared to small-diameter 
myelinated fibers (Aminoff, 1992; Oh, 2003, 
Preston & Shapiro, 2005).

The stimulus applied to the stimulating elec-
trodes on the skin surface induces a current of 
short duration of 0.04 to 1 milliseconds in the 
fluid surrounding a nerve bundle. The stimulating 
current depolarizes the nerve under the cathode 
and hyperpolarizes it under the anode. Increasing 
the current to obtain a repeatable and maximal 
recorded response assures that essentially every 
nerve fiber in the bundle discharges. Surface 
electrode stimulation requires 50-500 V to drive 
currents of 5-50 mA, depending on skin imped-
ance. The patients poorly tolerate the stimuli 
exceeding 1000 μsec. On the other hand, the rate 
of rise of the stimuli with less than 50 μsec is 
limited by tissue capacitances which prevent them 
to reach to effective amplitude. The stimulator 
equipment should also ensure control and timing 
of the stimuli for different types of measurements 
(Kimura, 2001).

Electrical stimulators are isolated from the in-
put stage of the EMG system for safety and artifact 
reduction. Hence, the stimulation circuits have no 
conductive path to other circuits except through 
the patient’s body in case that the stimulating and 
recording electrodes have been applied. This isola-
tion leads that stimulus current flow only in the 
loop provided by the two stimulating electrodes. 
If the stimulator circuit has any connection to 
the input stage of the amplifier, then the stimulus 
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current distributed in the body can divide into ad-
ditional paths, causing a large stimulus artifact, 
amplifier overload, or even spurious stimulation 
at non-targeted sites. Furthermore under condi-
tions of component failure, these additional paths 
might conduct hazardous levels of current. Even 
though battery-powered stimulators may use opti-
cal coupling of the control signal stimulus isola-
tion usually is achieved by magnetic coupling of 
energy to the stimulating circuits (Kimura, 2001).

EMG SIGNALS IN 
CLINICAL STUDIES

Neuromuscular disorders that result in the struc-
tural and functional impairments of the motor unit 
cause alterations in the waveform of the EMG 
signals. The characteristics of these abnormal 
waveforms may suggest particular pathological 
processes. These signals may exhibit normal 
spontaneous activity (End-plate Activity), normal 
voluntary activity (Normal Motor Unit Action 
Potentials), abnormal spontaneous activity such 
as Insertional Activity, Fibrillation Potentials, 
Myotonic Discharges, Complex Repetitive Dis-
charges, Fasciculation Potentials, Myokymic 
Discharges, Neuromyotonic Discharges, Cramp 
Potentials, Synkinesis or abnormal voluntary 
electrical activity (Abnormal Motor Unit Action 
Potentials) (Kimura, 2001; Rubin, 2009).

Normal Spontaneous Activity

In normal muscle fibers, spontaneous electric 
activity is observed only in end-plate region which 
are also called miniature end plate potentials 
(MEPPs). MEPPs are randomly generated in this 
region due to spontaneous release of individual 
quanta of acetylcholine. These are irregular posi-
tive potentials with 10- to 50 μV amplitude and 
with 1- to 3- millisecond duration. They have 
typical sound in the loudspeaker similar to seashell 
sound. MEPPs reflect the activity of motor end-

plates. Their amplitudes are so small and closely 
related to the positioning the needle electrode in 
muscle that they do not have any clinical relevance 
so far (Kimura, 2001; Rubin, 2009).

The action potentials of the individual muscle 
fibers recorded from the end-plate region as the 
brief spikes are called End-plate spikes. These 
are generated by the mechanical activation of a 
nerve terminal with a secondary discharge of a 
muscle fiber. These potentials are represented 
by the intermittent spikes with 100- to 200-μV 
amplitude and with 3-to 4-millisecond duration 
firing irregularly at 5 to 50 Hz (Kimura, 2001; 
Preston & Shapiro, 2005; Rubin, 2009).

Abnormal Spontaneous Activity

Although end-plate activities and brief injury po-
tentials occurring with the insertion of the needle 
can be recorded in a muscle at rest, no electrical 
activity is observed in a relaxed muscle. These 
abnormal spontaneous activities can be listed as 
increased insertional activity, fibrillation poten-
tials, positive sharp waves, complex repetitive 
discharge, myotonic discharge.

Increased Insertional Activity

Since this electrical discharge yields from the 
injured muscle fibers it is also referred as injury 
potential. Under normal conditions, insertion of 
a needle into muscle or repositioning of a needle 
within the muscle results in the mechanical depo-
larization of the muscle fiber and it leads to brief 
burst of electrical activity with a duration of a 
few hundred milliseconds. This activity indicates 
the number of muscle fibers depolarizing due to 
the mechanical irritation. They are observed as 
positive or negative high frequency spikes. This 
electrical activity stops after the cessation of the 
needle movement. Increase in the amplitude of 
the insertional activity may point out to the early 
sign of denervation originating from an acute 
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neurogenic such as early radiculopathy, mono-
neuropathy.

Decreased insertional activity may be revealed 
in cases where muscle fibers are unable to generate 
action potentials. This is observed in end-stage 
neuromuscular diseases in which the muscle is 
replaced by fat or connective tissue (Kimura, 
2001; Preston & Shapiro, 2005; Rubin, 2009).

Fibrillation Potentials

Fibrillation potentials originate from the sponta-
neously twitching of single muscle fibers when 
innervation is lost. They have amplitude ranging 
from 20 to 500 μV and duration lying between 
1 and 30 milliseconds. They have a regular fir-
ing pattern at rates of 0.5 to 15 Hz. They may be 
occasionally intermittent or irregular especially 
after an early denervating process like end-plate 
spikes. But their interspike interval longer than 70 
milliseconds distinguishes them from the end-plate 
spikes (Kimura, 2001; Rubin, 2009). They have 
biphasic or triphasic waveforms with initial nega-
tive deflection. They are related with denervated 
muscle fibers. They usually occur in neurogenic 
disorders such as neuropathies, radiculopathies 
or motor neuron disease. However, they can be 
observed also in some myopathic disorders such 
as inflammatory myopathies and dystrophies and 
occasionally in neuromuscular junction (NMJ) 
disorders (e.g. botulism) (Kimura, 2001; Mills, 
2005; Preston & Shapiro, 2005; Rubin, 2009).

Positive Sharp Waves

These are biphasic action potentials beginning 
with a positive deflection and then continuing 
with a negative phase and occur spontaneously 
after needle electrode movement. These are regular 
pattern at a firing frequency of 1 to 50 Hz in saw-
tooth appearance. The positive initial deflection 
is rapid (< 1 millisecond) and the amplitude can 
reach up to 1 mV. The negative phase has lon-
ger duration of 10 to 100 milliseconds and low 

amplitude (Preston & Shapiro, 2005). They may 
manifest active denervation. They can be seen in 
disorders such as radiculopahty and entrapment 
neuropathies (Kimura, 2001; Mills, 2005; Preston 
& Shapiro, 2005).

Complex Repetitive Discharge (CRD)

Complex repetitive discharges are the action po-
tentials with 50-μV- to 1-mV-amplitude, varying 
between 50 to 100 milliseconds in amplitude dis-
charging spontaneously in synchrony with regular 
and repetitive pattern at fast or slow rates ranging 
3 to 100 Hz. They start suddenly and continue with 
constant firing frequency and then stop abruptly. 
One muscle fiber initiates these discharges serv-
ing as a pacemaker then, the ephactic propagation 
of these action potentials along the muscle fibers 
located in the vicinity of the pacemaker fiber. 
These can be observed in myopathies including 
muscular dystrophy or polymyositis, in conditions 
with chronic denervation such as motor neuron 
disease, radiculopathy, chronic polyneuropathy, 
myxedema, and the Schwarz-Jampel syndrome 
(Kimura, 2001; Mills, 2005; Preston & Shapiro, 
2005; Rubin, 2009).

Myotonic Discharges

Myotonic discharges are spontaneous activities 
generated by the single muscle fibers in a pro-
longed fashion after external excitation. These 
are firing regularly with a firing rate of 20 to 150 
Hz and are characterized by waxing and waning 
pattern both in amplitude and frequency. They may 
have amplitudes ranging from 20 to 300 μV. They 
are typically observed in channelopathies such 
as dystrophia myotonica, congenital myotonias, 
proximal myotonic dystrophy, and hyperkalemic 
periodic paralysis and in several forms of myopa-
thies such as acid maltase deficiency, polymyositis, 
myotubular myopathy (Kimura, 2001; Mills, 2005; 
Rubin, 2009).
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Normal Voluntary Contractions 
(Normal MUAP)

Motor unit (MU) which is the basic functional 
unit of the skeletal muscle consists of the anterior 
horn cell, the motor neuron, the neuromuscular 
junction and the muscle fibers innervated by this 
motor neuron. It constitutes a bioelectric source 
located in a volume conductor consisting of other 
muscle fibers generating the Motor Unit Action 
Potential (MUAP) [8, 24, 50]. Motor Unit Action 
Potential is the sum of all the action potentials 
of the individual muscle fibers within the Mo-
tor Unit. In order to generate force in significant 
quantities, more than one motor unit should be 
activated. The process where additional motor 
units are contributed to generate a muscle con-
traction at certain level is referred as motor unit 
recruitment (Kimura, 2001; Milner-Brown, Stein 
& Yemm, 1973; Moritani, Stegeman & Merletti, 
2005 ;Preston & Shapiro, 2005).

Motor Unit Action Potential is assessed by 
means of its recorded configuration. This configu-
ration is characterized by its amplitude, duration, 
number of turns, number of phases, area under 
curve and rise time. All these characteristics are 
demonstrated in Figure 6. These are determined by 
technical, physiological and pathological factors. 
Technical factors can be listed as the type of needle 
electrode used for recording, the area of exposed 
surface of the active leads of the electrode, the 
characteristics of the metal recording surfaces, and 
the electric characteristics of the cables, preampli-
fier, and amplifier. Physiological factors affecting 
the configuration are age, the muscle under the 
investigation, the location of the needle electrode 
within the muscle, the degree of activation of the 
muscle (minimal voluntary contraction, maximal 
voluntary contraction, reflex activation, or elec-
tric stimulation), the temperature of the muscle. 
The pathological factors play roles according to 
the anatomical and histological changes during 
the loss or the remodeling of the motor unit (e.g. 
reinnervation in neurogenic disorders). These 

anatomical and histologic changes take place in 
innervation ratio which implies number of muscle 
fibers in the motor unit, fiber density indicating 
number of muscle fibers in a unit cross-sectional 
area, the distance of the needle tip from the muscle 
fibers and from the end plate region, and the direc-
tion of the axis of the muscle fiber (Rubin, 2009).

The duration of a Motor Unit Action Potential 
can be defined as the time between the onset of the 
initial deflection from the baseline and the end of 
the return to the baseline. It reflects the number 
of muscle fibers being detected by the needle 
electrode. The duration for a normal motor unit 
action potential varies from 3 to 15 milliseconds 
(Dumitru, King & Rogers, 1999; Henneberg, 
2006; Oh, 2003; Rubin, 2009).

The amplitude of a Motor Unit Action Potential 
is the voltage measured from peak to peak of the 
main spike of the signal. It depends on the size 
and on the density of the muscle fibers within 
the uptake area of the needle electrode and the 
synchrony of firing. The value of the amplitude 
ranges from 300 μV to 3 mV in healthy subjects. 
It varies with muscle, muscle temperature and 
the patient’s age (Dumitru, King & Rogers, 1999; 
Dumitru, 2000; Henneberg, 2006).

The rise time is the duration of the between 
the initial negative peak and the subsequent posi-
tive peak. It is the function of the distance of the 
muscle fibers from the electrodes. If the electrode 
is located in the vicinity of the muscle fiber, the 
measured rise time of a single fiber action potential 
is between 100 and 300 µs. As the needle electrode 
moves away from the muscle fiber, the rise time 
will increase, on contrary, the amplitude and the 
duration of the motor unit may decrease (Dumitru, 
King & Rogers, 1999; Oh, 2003; Rubin, 2009).

A phase can be defined as the portion of a 
waveform between the deflection from the base-
line and the return to the baseline. A motor unit 
action potential can have a monophasic, biphasic 
or triphasic configuration or it may have multiple 
phases. If a motor unit action potential has more 
than four phases, it is called polyphasic potential. 
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The percentage of the polyphasic motor unit 
action potentials should not be more than 15% 
of all normal potentials. These configurations 
vary according to the synchrony of firing of the 
muscle fibers within the uptake area of the needle 
electrode. Number of phases is a measure of 
complexity and the misalignment of the muscle 
fibers of the motor unit under investigation. In 
neurogenic diseases, polyphasic motor unit ac-
tion potentials yield from the slow conduction of 
the new nerve sprouts in the reinnervated muscle 
fibers. In myopathic cases, the polyphasic motor 
unit action potentials are due to the variation in 
muscle fiber size (Henneberg, 2006 ; Rubin, 2009).

Turns are the serrated potentials indicating 
the directional changes in amplitude without 
crossing the baseline. These are the indicators 
of desynchronization among discharging muscle 
fibers (Dumitru, King & Rogers, 1999; Henneberg, 
2006; Oh, 2003).

Abnormal Motor Unit Potentials

Abnormal Motor Unit Action Potentials can be 
summarized as fasciculation potentials, doublets 
(multiplets), myokymic discharges, neuromyo-
tonic discharges, cramps and rest tremor.

Fasciculation Potentials

Fasciculation potentials are spontaneously firing 
involuntary motor unit action potentials with ir-
regular pattern generated by a group of muscle 
fibers belonging to a part of a motor unit (Bryan, 
1998; Kimura, 2001; Preston & Shapiro, 2005; 
Rubin, 2009). Since they can be either observed as 
a benign phenomenon such as eyelid twitching or 
be accompanied to a neurogenic disorder such as 
radiculopathies, polyneuropathies and entrapment 
neuropathies, peripheral nerve hyperexcitability 
syndrome they can be considered nonspecific 
in terms of clinical significance (Kimura, 2001; 
Rubin, 2009). They are firing with repetitive pat-
terns very slowly less than 1 to 2 Hz with irregular 

intervals in the order of several seconds. They may 
be also observed after the administration of the 
anticholinesterase medications or a depolarizing 
neuromuscular blocker (Mills, 2005; Preston & 
Shapiro, 2005; Rubin, 2009).

Doublets (Multiplets)

These are recurring firing of the same motor unit 
action potential in semirhythmic pattern two or 
more times at short intervals such as 10 to 30 
milliseconds. They can be observed in hyperven-
tilation, hypocalcemia or hyperexcitable nerve 
syndromes (Kimura, 2001; Preston & Shapiro, 
2005; Rubin, 2009). The doublets recorded during 
voluntary contraction are considered as physi-
ological MUAPs (Kudina and Andrieva, 2013). 
On the other hand, if they are recorded during the 
resting state of the muscle, they can be regarded 
as the sign of hyperexcitablity such as hyperven-
tilation, hypercalcemia and some peripheral nerve 
diseases (Kimura 2001).

Myokymic Discharges

These are the groups of spontaneously firing 
complex motor unit action potentials consisting 
of two to ten potentials in a recurring burst pattern 
(Kimura, 2001; Preston & Shapiro, 2005 Rubin, 
2009]. Each burst which has a regular pattern at 
0.1 to 10 seconds being followed by a silent period 
has a firing frequency ranging from 5 to 60 Hz and 
they are not affected by the voluntary contraction 
(Aminoff, 1992; Kimura, 2001; Rubin, 2009). 
These discharges can be seen in patients with a 
prior history of radiotherapy due to the radiation-
induced nerve damage which is also referred as 
radioation-induced plexopathy (Aminoff, 1992; 
Kimura, 2001; Preston & Shapiro, 2005). Also 
these may be observed in radiation myelopathy, 
radiculopathy, entrapment neuropathy, spinal cord 
lesions associated with demyelination and gold 
intoxication, acute inflammatory polyradiculo-
neuropathy and multiple sclerosis (Preston & 
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Shapiro, 2005). Myokimic discharges occur in 
facial muscles in the presence of brainstem lesions 
associated with multiple sclerosis, neoplasms such 
as pontine gliomas and vascular diseases and in 
15% of the patients with Guillain-Barré syndrome 
(Aminoff, 1992; Preston & Shapiro, 2005). Myo-
kymic burst of the peripheral can be aggravated 
in hypocalcemia induced by hyperventilation or 
with the use of acid-citrate-dextrose being an anti-
coagulant which is given during plasma exchange 
(Kimura, 2001; Preston & Shapiro, 2005).

Neuromyotonic Discharges

These discharges are long continuous sponta-
neously occurring motor unit action potentials 
with shorter bursts. Their firing frequencies vary 
between 100 and 300 Hz (Kimura, 2001; Rubin, 
2009). They result from the neuromyotomia 
being peripheral nerve hyperexciatbility which 
is also referred as Isaac’s syndrome as well as 
pseudomyotonia, neurotonia, normocalcemic 
tetany (Kimura, 2001; Preston & Shapiro, 2005). 
It can appear also in Morvan’s syndrome which 
is a autoimmune anti-voltage gated potassium 
nerve axon channelopathy (Mills, 2005; Preston 
& Shapiro, 2005). Neuromyotonic discharges may 
accompany to generalized stiffness, hyperhidrosis 
and delayed muscle relaxation after contraction. 
They may be seen in chronic neuropathic disease 
especially in old poliomyelitis and adult spinal 
muscular atrophy (Preston & Shapiro, 2005).

Cramp Discharges

These are involuntary and sometimes irregularly 
firing motor unit action potentials at higher fre-
quencies lying between 200 and 300 Hz identified 
by the quick recruitment related with a painful 
muscle cramp (Kimura, 2001; Preston & Shapiro, 
2005; Rubin, 2009).

Cramp discharges may be seen healthy indi-
viduals in the form of benign nocturnal cramps or 
post-exercise cramps. On the other hand, they can 

be detected in chronic disorders such as chronic 
radiculopathies, peripheral neuropathy, motor 
neuron disorders, in metabolic or electrolyte 
disturbances such as salt depletion, pregnancy, 
hypothyroidism, uremia in dialysis or in peripheral 
nerve hyperexcitability syndromes such as cramp 
fasciculation syndrome (Preston & Shapiro, 2005; 
Rubin, 2009).

ELECTROMYOGRAPHY 
(EMG) TECHNIQUES

Conventional Electromyography

Conventional Electromyography is the commonly 
EMG technique applied in clinical routine study 
for the examination of the neuromuscular disor-
ders. It is usually performed by using concentric 
needle electrode to record either spontaneous 
or voluntary electrical activities. This electrode 
is inserted into the motor unit territory for this 
purpose (Stålberg & Falck, 1997; Trontelj, Jabre 
& Mihelin, 2004). These potentials are the sum 
of the single fiber action potentials generated by 
the muscle fibers located within the uptake area of 
the concentric needle electrode (Stålberg & Falck, 
1997). Various parameters of EMG signals such 
as amplitude, duration, number of phases, rise 
time being utilized in the differential diagnosis 
of neuromuscular diseases are monitored by this 
technique (Henneberg, 2006; Kimura, 2001; Oh, 
2003; Stålberg & Falck, 1997).

Single Fiber Electromyography 
(SFEMG)

In order to examine single muscle fibers rather 
than activities from the motor unit, motor end-
plates, terminal axon branches a selective re-
cording method is used (Stålberg & Trontelji, 
1994). Single fiber EMG with an uptake area of 
300 μm-radius is utilized for this purpose as a 
selective method (Kimura, 2001). Since it has a 
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small recording surface, the active electrode of 
the SFEMG electrode has higher impedance than 
a concentric needle electrode. Impedance values 
are on the order of several megaohms at 1 kHz for 
platinum needle. Therefore, amplifier should have 
higher input impedance of 100 MΩ to maintain 
a higher signal-to-noise ratio. As a result, the 
common mode rejection ratio (CMRR) greater 
than 200 is maintained (Kimura, 2001; Stålberg 
& Trontelji, 1994).

The single-fiber potential recorded through 
this technique is a biphasic spike with a rise-time 
varying between 75 μsec to 200 μsec. It has a total 
duration which is approximately 1 millisecond 
(Kimura, 2001). Despite it varies between 200 
μV and 20 mV, the peak-to-peak amplitude usu-
ally remains within the 1 to 7 millivolts (Kimura, 
2001; Stålberg & Trontelji, 1994; Trontelj, Jabre 
& Mihelin, 2004). The frequency spectrum ranges 
from 100 Hz to 10 kHz with a peak at 1.61±0.30 
kHz (Kimura, 2001).

Several physiological and morphological pa-
rameters such as fiber density (FD), jitter, blocking 
and duration can be measured and quantified by 
means of Single-Fiber Electromyography

The degree of packing of muscle fibers within 
the uptake area of single fiber electrode is de-
scribed by fiber density (FD). Therefore, it can be 
defined as the average number density of single 
fiber action potentials firing almost synchronously 
within this area (Harper, 2009; Kimura, 2001; 
Trontelj, Jabre & Mihelin, 2004). In measuring 
fiber density, the needle is adjusted until a single 
fiber action potential with a 500-μs rise time is 
detected. The number of the time-locked single 
fiber action potentials being time-locked to the 
triggered potential with amplitudes greater than 
200μV is counted. This procedure is repeated 
for 30 separate triggered potentials to calculate 
the mean fiber density for the muscle of interest. 
The mean fiber density varies between 1.3 and 
1.8. By definition the lowest mean fiber density 
can be accepted as 1 (Harper, 2009; Kimura, 
2001; Stålberg & Trontelji, 1994; Trontelj, Jabre 

& Mihelin, 2004). Fiber density is used to detect 
slight changes in motor unit topography after 
collateral sprouting due to the reinnervation in 
neuropathies (Stålberg & Falck, 1997; Stålberg 
& Trontelji, 1994).

Jitter is the measure of the latency variability 
of muscle fiber action potentials within the same 
motor unit. Therefore, the variability in rise time 
of the end plate potential is reflected by this 
parameter. It provides a sensitive indicator for 
the defects of neuromuscular transmission. Jitter 
is increased in neuromuscular junction diseases 
beside the disorders associated with denervation 
and reinnervation (Chaudry & Crawford, 1999; 
Harper, 2009; Kimura, 2001; Padua et al., 1999).

Blocking is a measure demonstrating the inter-
mittent loss of a regularly firing single fiber action 
potential within a motor unit. Hence, the failure 
of the end plate potential of reaching threshold 
in disorders with neuromuscular transmission. 
Blocking can be in disorders associated with 
denervation and reinnervation of muscle, and in 
neuropathies associated with impulse blocking in 
the nerve terminal (Harper, 2009; Kimura, 2001).

Duration represents the time between single 
fiber action potentials within recording distance of 
the electrode. This reflects differences in conduc-
tion time along the terminal axonal branch and 
muscle fiber. It is increased in neurogenic disease 
and in some chronic myopathies (Harper, 2009).

Single fiber EMG is the most sensitive tech-
nique in the diagnosis of the abnormalities of 
neuromuscular transmission (Spaans et al., 2003). 
Fiber density is used for the detection of the 
alteration in motor unit topography such as rein-
nervation in some neuromuscular disorders such 
anterior horn cell. Jitter and blocking are the used 
to investigate the disturbance is neuromuscular 
transmission. These are used or the diagnosis of 
the disorders concerning neuromuscular disor-
ders such as Myasthenia Gravis, Lambert-Eaton 
Myasthenic Syndrome and Botulism (Stålberg & 
Falck, 1997; Stålberg & Trontelji,1994; Padua et 
al., 1999; Weinberg et al., 1999).
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Macro Electromyography 
(Macro EMG)

Macro Motor Unit Action Potential arises from 
almost all muscle fibers within the same motor 
unit. The special technique used for this purpose 
is called Macro Electromyography (Smith, 2009). 
This technique was first described and applied by 
Stålberg (Stålberg, 1986). In macro electromyogra-
phy, two channels are used for recording. Activity 
acquired from the 15-mm bare shaft is recorded 
through the first channel with respect to a surface 
electrode used as reference. Activity acquired by 
the 25-μm wire electrode which is also a single 
fiber EMG signal is recorded with respect to the 
shaft through the second channel. The activity 
coming from this second channel is used as trigger 
and the activity from the first channel is average 
for 60 to 80 milliseconds after being recorded. In 
case of reinnervation followed by denervation in 
neurogenic diseases, the amplitude of the macro 
motor unit potentials are increased. In subacute 
myopathies, this amplitude may be decreased 
(Kimura, 2001; Smith, 2009; Stålberg & Falck, 
1997). Macro Electromyography and the resulting 
signals are schematized in Figure 7.

Scanning Electromyography

Scanning EMG is an experimental technique en-
abling to study the spatial and temporal properties 
of a motor unit electrical activity to examine the 
topography of a motor unit (Aminoff, 1992; Stål-
berg & Falck, 1997; Stålberg & Trontelji, 1994). 
The electric activity of the motor unit can be il-
lustrated as a electrophysiological cross-sectional 
map (Stalberg et al., 1986a; Stalberg, 1986b; 
Stalberg 1987). In this technique, a concentric 
needle electrode and a single fiber electrode are 
used. The single fiber electrode is inserted into 
the muscle in a fashion that a single fiber action 
potential is detected and recorded. This activity 
is used to trigger the sweep created by motor unit 
territory synchronous with the detected single 

fiber action potential. Then, the concentric needle 
electrode is inserted close to this single fiber 
electrode and pulled upward mechanically until 
no electric is detected (Smith, 2009). Scanning 
Electromyography is illustrated schematized in 
Figure 8a.

Beside the parameters monitored with conven-
tional needle electromyography such as amplitude 
and duration, additional parameters which also 
variation of shape of the motor unit action potential 
is illustrated are introduced with this technique. 
These are length of motor unit cross-section, frac-
tions of motor unit, silent periods, polyphasic and 
complex portions of motor unit action potentials 
maximum duration and the maximum amplitude 
(Stålberg & Antoni, 1980; Stålberg & Dioszeghy 
1991). The length of motor unit cross-section can 
be defined as the distance between the first and 
the last electrical activity recorded by the con-
centric needle electrode. The fractions of motor 
unit action potentials are the one or more separate 
area taking place with different latencies. They 
represent the groups of muscle fibers being in-
nervated by different intramuscular axonal branch 
of the parent anterior horn cell. The silent periods 
representing the fat or connective tissues due to 
the proliferation are sections with electrical activi-
ties with less than 50-μV peak-to-peak amplitude 
along the upward movement of the concentric 
needle electrode during the recording process. 
The polyphasic and complex portions of motor 
unit action potential which can be detected only 
by chance via conventional electromyography can 
be presented during the upward movement of the 
recording electrode. Furthermore, the maximum 
amplitude and the maximum duration within the 
motor unit territory can be measured by virtue 
of this technique (Diozeghy, 2002; Stålberg & 
Antoni, 1980; Stålberg & Dioszeghy 1991).

Scanning electromyography is an experimental 
technique rather than being used in clinical routine 
studies. It has been used in several researches 
concerning the motor unit territory. It was first 
used to investigate the motor unit organization 
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by building electrophysiological cross-section of 
the motor unit (Stålberg &Antoni, 1980). Then, it 
was used to reveal that EMG changes in muscular 
dystrophies due to the loss of muscle fiber and 
neurogenic component of the regeneration and 
in macro motor unit potential (Hilton-Brown 
& Stålberg, 1983a; Hilton-Brown & Stålberg, 
1983b). Scanning electromyography was also 
used to study mandibular motor system and length 
of cross-section of masseter was found less than 
large muscles. As a result, the fact that muscle 
performing fine movements have smaller motor 
unit territory and less muscle fibers (Stalberg & 
Eriksson, 1987). It was also used to study the 
rearrangement of the muscle fibers in abnormal 
muscles (Stålberg & Dioszeghy, 1991) and the 
structure of the human quadriceps muscle (Goot-
zen, Vingerhoest & Stegeman, 1992). In recent 
study, scanning electromyography was used to 
reveal to preponderance of the large motor units 
with normal structure in juvenile myoclonic epi-
lepsy patients. In this study, a concentric needle 
electrode was used as triggering electrode instead 
of a single fiber electrode by setting the cut-off 
frequency of the low-pass filter to 2 kHz (Ertaş 

et al., 2000; Göker et al., 2009; Göker et al., 
2010). Afterwards, the data obtained from this 
clinical study were used to classify by utilizing 
Feed-Forward Neural Networks, Support Vec-
tor Machines, Decision Trees, and Naïve Bayes 
methods (Göker et al., 2012).

Scanning EMG can be used for the character-
ization of the motor unit fractions to investigate the 
motor end-plate topography and branching pattern 
of the axon innervating the motor unit (Navallas & 
Stalberg, 2009). The electrophysiological cross-
section obtained by scanning electromyography 
is shown in Figure 8b.

Quantitative Electromyography

Since subjective or semi-quantitative analysis of 
motor unit action potential activity is fast, efficient 
and accurate in reasonable degree if the findings 
are assessed by experienced electromyographers, 
inexperienced clinicians are prone to errors espe-
cially in differential diagnosis of the neuromus-
cular diseases. In quantitative electromyography, 
numerical values can be derived from the precise 
measurements of the motor unit action potentials. 

Figure 8. (a) Configuration of scanning EMG (b) motor unit territory acquired by scanning EMG
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It results in normative data which enables the ex-
aminers to compare with data obtained from the 
patients with suspected neuromuscular diseases. 
Reproducible results which can be compared at 
different time, by different clinicians, in different 
laboratories can be obtained. Furthermore, quan-
titative electromyography ensures to evaluate the 
prognosis of neuromuscular diseases (Kimura, 
2001; Smith, 2009).

Most commonly used quantitative methods can 
be listed as Interference Pattern Analysis (IPA), 
Decomposition, Power Spectrum Analysis (PSA), 
Turn-Amplitude Analysis (TAA) and Motor Unit 
Number Estimation (MUNE).

Interference Pattern Analysis (IPA)

Motor unit action potentials can be distinguished 
and measured individually at minimal level of 
muscle contractions. As the level of force increased 
toward the maximal voluntary contraction, since 
the number and the firing rates of active motor unit 
increase number of spikes and amplitude in the 
electromyography signal is also increased becom-
ing difficult to identify individual motor unit action 
potentials. The observed electromyography signal 
in which individual motor unit action potentials 
are superimposed resulting in a complex pattern 
due to the summation and cancellation of these 
motor unit action potential components is referred 
as interference pattern (Fuglsang-Frederiksen, 
2000; Nandedkar & Sanders, 1990).

Concentric needle electrode is inserted into an 
area of the muscle where motor unit action poten-
tials have short rise times. Test can be performed 
at different at fixed or variable percentages of 
maximum voluntary contractions or at the fixed 
forces of 2 to 5 kilograms. The measurement is 
made at 20 to 30 distinct sites. After the measure-
ment, the number of turns is measured. Turns are 
defined as the change in signal direction at least 
50μV and they indirectly represent the number of 
active motor unit action potentials the proportion 
of polyphasic motor unit action potentials and the 

motor unit action potential firing rate. Amplitude is 
measured as the potential difference between suc-
cessive turns. Cumulative amplitude is computed 
by summing amplitude of turns over a certain time 
interval. Mean amplitude is calculated by dividing 
the cumulative amplitude for a fixed time interval 
by the number of turns. By dividing the number 
of turns by the mean amplitude Turn/Amplitude 
(T/A) ratio is obtained (Fuglsang-Frederiksen, 
2000; Nandedkar & Sanders, 1990).

Interference pattern analysis is beneficial in 
evaluating the recruitment of the motor units in 
order with respect to the size of the motor units. 
By inspection the fullness of the interference 
pattern reflects the number and firing rates of 
the component motor units and the amplitude 
of the interference pattern signals. Quantitavely, 
the spike density and the average amplitude of 
the summated response in interference pattern 
depend on number of motor neurons capable of 
discharging, firing frequency of each motor unit, 
waveform of individual potentials (Kimura, 2001).

In myopathic disorders, the interference pat-
tern may have a full appearance with decreased 
amplitude at maximum voluntary contraction due 
to the loss of fibers. In neurogenic cases, the firing 
frequency at maximum voluntary contraction will 
be reduced despite the number of the recruited 
motor unit action potential is normal if the lesion 
is in the upper levels. On the other hand, if the le-
sion is at the level of peripheral nerve, there will a 
loss of motor unit action potential at the maximum 
voluntary contraction with normal firing frequen-
cies (Finsterer, 2001; Fuglsang-Frederiksen, 2000; 
Nandedkar & Sanders, 1990).

Decomposition

The EMG signal recorded during the contraction is 
composed of the motor unit action potential trains 
(MUAPTs). Finally, the orderly-recruited motor 
units according to Henneman’s size principle gen-
erate interference pattern at maximum voluntary 
contraction (Ganong, 2001; Smith, 2009)(Joynt 
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et al., 1991). Decomposition is a technique using 
pattern recognition methods in order to separate 
this interference pattern into MUAPTs (McGill 
et al., 1985)(McGill, 2002)(Stashuk,1999). The 
information obtained by means of this technique 
is used in the diagnosis of the neuromuscular 
disorders, in the evaluation of the muscle function 
and to investigate how motor units are controlled 
by motor neurons to generate force (De Luca & 
Contessa, 2012).

Turn-Amplitude Analysis (TAA)

Turns and Amplitude analysis is based on compar-
ing the number of turns per unit time (T/S) with 
the amplitude of the activity between the turns 
(A/T). In myopathies, since the number muscle 
fibers contributing to motor unit action potential 
decreases and amplitude per turn will be decreased. 
In contrary, the turns per second decreases and 
the amplitude per turn increases due to the rein-
nervation resulted from the collateral sprouting. 
These parameters can be represented graphically 
in a scatter plot. Hence the need of controlling 
the force is discarded (Arabadzhiev et al., 2008, 
Diόszeghy et al., 1996; Farrugia & Kenet, 2005; 
Smith, 2009).

Power Spectrum Analysis (PSA)

In this technique, interference pattern is decom-
posed into sinusoidal-waves of different phases 
which are harmonically related, frequency and 
amplitude. This is achieved by means of analysis 
methods such as analogue octave-band filtering 
(early PSA) or Fast Fourier transformation (FFT) 
using anti-aliasing filters and a Hanning window 
(Finsterer, 2001). Afterwards, the power spec-
trum of these harmonics is computed. Median 
and mean frequency values can be calculated for 
the interference pattern in question (Fuglsang-
Frederiksen, 2000).

The highest peak observed during the maximal 
voluntary contraction ranges from 100 to 200 Hz 

in normal subjects [Kimura, 2001]. The power 
spectrum shifts to higher frequencies in myopathic 
cases where as power is higher in lower frequen-
cies in neuropathies (Fuglsang-Frederiksen, 2000; 
Fuglsang-Frederiksen, 2006; Kimura, 2001; 
Smith, 2009).

Motor Unit Number Estimate (MUNE)

Motor unit number reflects the number of motor 
neurons or motor axons in any disease involving 
injury or death. The estimation of motor unit 
number was first proposed by McComas et al. 
on in 1971 in order to detect the denervation in 
patients with normal electromyographic interfer-
ence pattern.

Recruitment of successive motor units is es-
tablished by the gradual intensity of the electrical 
stimulation to the nerve. Finally, all muscles in-
nervated by a peripheral nerve are activated by the 
supramaximal stimulation of this nerve (Kimura, 
2001). Motor unit number is estimated by compar-
ing average motor unit parameter with the cor-
responding parameter of whole muscle (Arasaki 
et al., 1997; McComas, 1971; McComas, 1995).

Consequently, a compound muscle action po-
tential (CMAP) which is also referred as M-Wave 
is obtained (McComas, 1991). Motor unit number 
estimate (MUNE) is computed by dividing the 
CMAP by the average value of single motor unit 
potentials (SMUPs) (Daube, 2006; Shefner, 2001).

FUTURE RESEARCH DIRECTIONS

Nowadays, electromyography is commonly used 
not only in clinical routine examinations as an 
auxiliary tool for the diagnosis and differential 
diagnosis of the neuromuscular diseases, but in 
scientific researches concerning several disci-
plines such as neurophysiology, kinesiology, sport 
medicine, ergonomics.

It is obvious that as the technological innova-
tions take place in computer technology in terms 
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of hardware and software, these developments will 
be reflected to the instrumentation implemented 
into EMG systems. Developments in the material 
science will be utilized in the improvement of 
the electrode technologies to minimize the noise 
and interferences. In addition, the developments 
in microelectronics will enable to manufacture 
signal conditioning systems in EMG instruments 
which are influenced as less as possible from the 
interferences. The assessment of the acquired 
electrophysiological data will be more efficient 
and faster with the innovations in software 
technology adapted to the most commonly used 
electromyography techniques.

The signal processing technology used in elec-
tromyography will be improved by virtue of the 
implementation of new mathematical algorithms 
in parallel to the development of software tech-
nologies. This may result in the improvements in 
surface electromyography.

The developments in surface electromyography 
will make its use more effective in the fields in 
which it is used to acquire signals such as gait 
analysis, biomechanics, ergonomics. The improve-
ments in surface EMG methods will also lead the 
effective use of EMG controlled prostheses.

The surface EMG electrode supported by 
microelectronics and RF systems that can be 
implemented into Wireless Body Area Networks 
(WBAN). Therefore, this can found application 
fields in aerospace technologies, sport technolo-
gies, sport medicine and even in military tech-
nologies.

CONCLUSION

Electromyography is used commonly in clinical 
routine as an auxiliary tool in the differential 
diagnosis of the neuromuscular diseases. In this 
chapter, the signal detection, signal acquisition 
and signal conditioning in electromyography 
have been explained not only in technical sense 
but also from the medical point of view. First, 

how the electrical activity is generated by neu-
romuscular system has been briefly explained. 
Then, different types of electrodes used to detect 
and to acquire these activities and their principles 
have been introduced. Afterwards, the principles 
of biomedical instrumentation used for the signal 
conditioning such as amplification, filtering and 
analogue-to-digital conversion in electromyogra-
phy have been described. Finally, different specific 
electromyography techniques have been depicted 
beside the conventional needle electromyography 
have been depicted.
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KEY TERMS AND DEFINITIONS

Biomedical Instrumentation: The field of 
Biomedical Engineering focused on the engineer-
ing principles of medical instruments such as 
Biopotential Amplifiers (e.g. Electromyography), 
Medical Imaging Systems etc. Since it is concerned 
with the measurement of all the variables in the 
body for the diagnostic and therapeutic purposes, 
biomedical instrumentation is the subdivision of 
biomedical engineering mainly focused on how 
to acquire physiological signal from the living 
organisms.

Concentric Needle Electrode (CNE): A 
bipolar EMG electrode used in detecting and 
acquiring electrical activity of skeletal muscle 
via intramuscular measurements. It consists of 
two electrodes: one of them is the active electrode 

located at the center of CNE and the other is the 
cannula functioning as a reference electrode. 
The signals acquired by both electrodes are fed 
to the front-end of the EMG instrument in order 
to detect the time-varying amplitude of the EMG 
signal under the investigation.

Conventional Electromyography: The most 
commonly used EMG technique in clinical routine 
for the diagnosis of the neuromuscular diseases. 
It is performed by means of the concentric needle 
electrode. The time-varying signal pattern of the 
Motor Unit Action Potential is monitored during 
the application of this technique.

Macro Electromyography: An electrophysi-
ological technique used for the registration of 
macro motor unit potentials which arises from the 
entire motor unit using a cannula with relatively 
larger surface to capture the electrical activity from 
the majority of the muscle fibers within the motor 
unit territory and a single-fiber electrode to detect 
a triggering single muscle fiber action potential 
in order to average the same motor unit potential.

Motor Unit: The basic anatomical and func-
tional unit of the skeletal muscle consisting of an 
anterior horn cell, its axon, the neuromuscular 
junctions, and the muscle fibers innervated by 
the motor neuron.

Motor Unit Action Potential: Spikes of 
electrical activity recorded during an EMG that 
is correlated with the number of the contributing 
motor units activated during the voluntary muscle 
contraction.

Quantitative Electromyography (QEMG): 
Electrophysiological techniques used in clinical 
routine to characterize motor unit action poten-
tial waveforms using statistical and probabilistic 
techniques that allow for greater objectivity and 
reproducibility via the normative data in support-
ing the diagnostic process.

Scanning Electromyography: An experimen-
tal electrophysiological technique used to build-up 
the electrophysiological cross-section of the motor 
unit territory by means of the temporal and spatial 
characteristics of the motor unit.
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Single-Fiber Electromyography: Single-
fiber electromyography (SFEMG) is a selective 
EMG recording technique enabling the detection 
of action potentials generated by a single muscle 
fiber. The selectivity of the technique results from 
the small recording surface (25 µm in diameter) 
exposed at a port on the side of the electrode which 
provides a 300-μm uptake area. The selectivity 
of the recording is further improved by using a 
high pass filter with a 500- Hz cut-off frequency.

Surface Electromyography: A non-invasive 
electrophysiological technique in which electrodes 
are placed on the skin overlying the muscle of inter-
est to detect the electrical activity of this muscle.

ENDNOTES

1  Although EMG signals are usually acquired 
from the patients for diagnostic purposes, 
they can be also acquired from healthy 
individuals in researches concerning sport 
medicine, biomechanics, ergonomics, bio-
medical engineering. Therefore, the term 
“subject” will be preferred throughout this 
chapter instead of “patient.”
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An Introduction to EMG 
Signal Processing Using 

MatLab and Microsoft Excel

ABSTRACT

This chapter provides the reader with an introduction to the fundamentals of biological signal analy-
sis and processing, using EMG signals to illustrate the process. The areas covered within the chapter 
include: frequency analysis using the Fast Fourier Transform, identifying noise within a signal, signal 
smoothing via root mean square (RMS) processing and signal filtering with both low-pass and high-pass 
filters. Guidelines for the application of the processes covered are included in conjunction with step by 
step examples using both MathWorks MatLab and Microsoft Excel software. Following the examples 
therefore allows the reader to practice the processes described to promote and reinforce their learning.

INTRODUCTION

In the previous chapter the basis for the myoelec-
trical signal was introduced. Now that the source 
of the signal has been covered, this chapter will 
introduce the reader to the basic concepts of signal 
processing i.e. what to do with the signal once it 
has been obtained. One unfortunate but unavoid-
able fact with regards to acquisition of biological 
electrical signals is that pure signals are very 
rarely, if ever, obtained. Typically in addition to 
the biological signals there will also be additional 

signals or noise from other biological signals e.g. 
from the heart, from other electrical equipment 
in the vicinity or from moving wires during data 
collection. The combination of additional signals 
corrupts the desired biological signal resulting in a 
‘noisy’ signal. The process of removing this noise 
is known as signal processing and is essentially 
a series of mathematical steps which attempt to 
strip away the noise and leave only the biologi-
cal signal. Signal processing is a vast area, far 
too large to cover in one book chapter; therefore 
this chapter will focus on analogue signal filters 

Daniel Robbins
University of Bedfordshire, UK
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with examples applied to electromyographic 
signals (EMG). Once the maximum amount of 
noise possible has been removed the signal can be 
quantified, for example by its amplitude, power, 
or time to peak events. In addition to signal filters 
the Fast Fourier Transform (FFT) for display-
ing the frequency content of the signal will be 
considered, including details of how to apply the 
FFT and which signal types are suitable for FFT.

Working through the chapter content will 
provide an appreciation for the basics of signal 
processing whilst providing both the opportunity 
to complete analyses, without expensive software, 
and the foundation knowledge required to under-
stand more complex procedures.

Introduction to Signal Parameters

Before beginning with signal processing it is im-
portant to establish a foundation with the language 
used to describe signals themselves. The simplest 
way to achieve an understanding in this area is 
to consider a simple sin wave (see figure one). A 

sin wave can be described a periodic graph, in as 
much as it has a distinct pattern that continuously 
repeats. The distance from the baseline to the apex 
of a peak, or the lowest point of a trough, is known 
as the amplitude, this should not be confused with 
the displacement or peak to peak amplitude which 
is a measure of the distance between the apex of a 
peak to lowest point of a trough (see figure one).

The distance from the start to the end of section 
of a graph is defined as the point when the graph 
travels away from the zero line until it returns 
to from the zero line. The period or wavelength 
is generally measured in milliseconds (msec). 
The amount of times a wavelength occurs within 
one second is the frequency of the signal and is 
measured in Hertz (Hz). This relationship can 
be defined two ways; depending on whether you 
know the frequency value or the time value. If 
you know the frequency of the wavelength, the 
time period can be calculated via:

T
F

=
1  

Figure 1. Parameters of signals
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If you know the time period of the wavelength, 
the frequency can be calculated via:

F
T

=
1  

where: T = the time period of one wavelength and 
F = the frequency of the signal.

Therefore longer time periods result in lower 
frequencies and higher frequencies result in lower 
time periods. As the waveforms are essentially 
rotating about zero, this relationship can also be 
described by the angular frequency. The angular 
frequency (ω) is a measure of rotation rates and 
can be described by the following equations:

ù
T

F= =�
ð

ð
2

2  

The angular frequency is used for filter design 
in signal processing and will be covered in more 
detail later in the chapter.

Starting Signal Processing

Before any type of filtering can be applied to the 
signal, the signal itself must be viewed. A key 
characteristic of the raw myoelectrical signal is 
that the signal is centred about zero i.e. there are 
equal and opposite amounts of values above and 
below the zero line creating a symmetrical graph 
in the vertical plane. Prior to any other action, 
signal symmetry about zero must be confirmed. 
Often data acquisition equipment or local electri-
cal equipment can create signal changes which 
interfere with the biological signal and create what 
is known as zero offset. Zero offset is simply a 
graph which is not centred on the zero line i.e. the 
middle of the graph is slightly above or below the 
zero line. Any zero offset will create issues when 
filters are applied leading to inaccurate results. 
The simplest way to check for zero offset, other 
than to view it on a graph… is to calculate the 

average value for the signal. A symmetrical signal 
which is truly centred on the zero line will have 
an average of zero. If the average of the signal is 
not zero the simplest correction is to subtract the 
average value from each data point in the signal 
(Haykin & Liu, 2009). This will correct any zero 
offset while maintaining the signal symmetry.

One issue that can affect this process is the 
presence of low frequency noise. Often hardware 
design will prevent the range of signal frequencies 
recorded to actually start at zero. The actual range 
available will depend on the equipment, but is 
likely to be something like 20-500 Hz or 10-1000 
Hz. The majority of the EMG signal frequency 
concentration is between 20-200 Hz, with minor 
contributions potentially extending up to 1000 Hz 
(Winter, 2005). Therefore, very low frequencies 
e.g. 1-5 Hz in the signal is likely to be noise, and 
as such will need to be removed. The presence 
of low frequencies can be displayed in frequency 
spectrums, or potentially by simply plotting the 
raw signal. Once the presence of low frequencies 
is confirmed, filters to remove the frequencies 
must be applied.

When considering analogue filters there are 
two distinct categories:

1.  High-pass filters, these are filters which 
attenuate low frequencies and retains high 
frequencies.

and

2.  Low-pass filters, these are filters which 
attenuate high frequencies and retains low 
frequencies.

If there are abnormal low frequencies pres-
ent then a high-pass filter should be applied, this 
will both attenuate low frequencies and correct 
any zero offset. The process for designing and 
applying filters will be reviewed in more detail 
later in the chapter.
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To summarise, the first stage of EMG process-
ing is to establish if there is any zero offset and if 
low frequencies are present. If only zero offset is 
present, the signal mean should be subtracted from 
each data point. If low frequencies are present a 
high-pass filter should be applied.

Signal Frequency Analysis

Before filters can be designed the frequency con-
tent of the signal must be considered. One approach 
to analyse the frequency of a signal is to use a 
Fourier analysis. A Fourier analysis is a process 
to determine the range of frequencies present in 
a signal – but not the time at which they occur. 
To consider the time-frequency relationship the 
short term Fourier transform (SHFT) or wavelet 
analysis would need to be employed; however 
these are outside the scope of this chapter.

Typically the FFT is used to analyse frequency 
content of signals and as such is available in a wide 
variety of computer packages. However, there are 
some rules which must be followed for an FFT 
analysis to provide accurate data.

1.  The data should come from periodic, station-
ary signals. In EMG terms this means that 
the signal should come from an isometric and 
isotonic contraction. Dynamic contractions 
should be analysed via other techniques such 
as wavelet analysis.

2.  The data collection should have complied to 
the Nyquist theorem, which states that the 
data collection sampling frequency should 
be at least twice the highest frequency 
component of that being analysed (Prutchi 
& Norris, 2005).

3.  The signal analysed should have a length 
that is equal to a power of two e.g. 256, 512, 
1024, 2048,4096, 8192 etc. If the sampling 
frequency of the data acquisition equipment 
is 2000 Hz, this would equate to 0.5 and 2.9 
seconds of muscle contractions respectively. 

If the signal length is not a power of two the 
signal can be padded with zeros to reach an 
appropriate length.

Note that of the three rules above, rules one 
and two both apply to the data collection and as 
such should be addressed during protocol design. 
Rule three is a post processing issue, and therefore 
can be addressed during data analysis.

The underlying mathematical principles are 
complex, for a detailed analysis see Chu & George 
(2010) or for a fun and simpler explanation see 
review by the Transnational College of LEX 
(2006). For the sake of simplicity this book will 
address the process of how to apply the FFT, not 
the mathematical principles of how it works. The 
easiest way to view the process is to first view the 
MatLab code for the process.

MatLab Code for Completing 
Frequency Analysis

N.B. the following code is a MatLab command; if 
the line starts with ‘%’ this is a note. When using 
MatLab a ‘%’ informs the software that the fol-
lowing text is programmer notes/comments and 
not part of the programme commands. Providing 
the user names data files correctly, the following 
code could copied word for word to recreate the 
outputs displayed.

raw=xlsread(‘raw.xls’)

% This command loads the raw data from an 
Excel file and creates a variable called ‘raw’

Fs = 2000;

% This command saves the sampling frequency 
of the data acquisition.

nfft=2^(nextpow2(length(raw))); 
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% An important aspect of FFT analysis is to 
keep the dataset in a quantity which is an exact

% power of two. The line of code above identi-
fies the maximum length the dataset can be

% before the length exceeds an exact power of 
2. This value is saved as ‘nfft’.

fft1=fft(raw,nfft);

% This command will perform the Fourier 
analysis on the raw data, truncating the dataset and

% if at the nfft value identified above if the 
raw signal is longer than this value.

fft_HalfLengthValue=ceil((nfft+1)/2);

% Frequency analysis only uses the first half 
of the values produced by an FFT analysis. This

% function counts the number of unique data 
points i.e. the first half and saves the count as 
variable ‘fft_HalfLengthValue’.

fft_HalfLength=fft1(1:fft_HalfLength-

Value);

% This command half’s the size of fft1 and 
saves the result as ‘fft_HalfLength’.

mag =abs(fft_HalfLength);

% The FFT function calculation outputs com-
plex numbers, this converts to real numbers

power=mag.^2;

% While this is not always used for EMG 
studies, it is typical to square each data point and 
report the values as the signal power.

fscale=(fs/2)/length(power);

% This calculates the increments for the x axis 
of the output graph

frqscale=(0:fscale:((fs/2)-fscale));

% Calculates the range for the axis

FFTpowerSpec=[frqscale’ power];

% This command produces a two column array 
which can be used to calculate median

% frequency or to plot the frequency spectrum
Plot(frqscale, power)
% This command plots the frequency spectrum
It is important to note that the above code is 

designed to analyse a complete individual signal 
i.e. one contraction. If the signal being analysed 
is a portion of a signal, as opposed to a complete 
signal, there is a risk that the signal portion may 
not represent the periodic nature of the signal. To 
account for this technique known as ‘windowing’ 
is applied to adjust the signal. There are many 
different types of ‘windows that can be applied, 
such as a Hanning, Hamming, Welch or Blackman, 
for a review of FFT windows see (Kester, 2005).

In addition to producing a frequency spectrum, 
it is sometimes useful to calculate the median 
frequency. This has the advantage of providing 
a singular value for comparison across protocol 
stages, including calculation of confidence inter-
vals and variance of obtained results which can 
be used during scientific reporting of findings. 
The median frequency is essentially based on 
a calculated value of half of the area under the 
frequency spectrum graph. The MatLab code to 
achieve this, based on the values obtained in the 
previous code, is as follows.

MatLab Code for Calculation 
of Median Frequency

Cumulative_Power= cumsum(power);

% This command calculates the cumulative sum-
mation of all the elements in the power previously 
calculated.
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Half_cumulative_power= sum(power)/2;

% This command produces a single value for 
half of the summation of all elements the calcu-
lated power

[MINvalue index] = 

min(abs(Cumulative_Power - Half_cumu-

lative_power));                               

% This creates a reference for the smallest dif-
ference between the cumulative summation of the 
power and the half cumulative power. The smallest 
difference represents the median frequency.

medfreq=frqscale(index)                                 

% This command will use the above reference 
and the scale calculated in the previous code to 
display the median frequency in the workspace 
area.

Calculating Frequency 
Content in Excel

The frequency content can also be calculated in 
Microsoft Excel, though there is less opportunity 
for automation during the process. To complete 
the analysis the following steps will need to be 
completed:

1.  Save the raw signal to column A
2.  At the opt of column B use the count function 

to determine how many data points there are 
e.g. =COUNT(A1:A1024). Alternatively 
simply look and note the amount of cells 
with numbers in.

3.  Ensure the signal length is a power of 2 – if 
not pad with zeros to the next power of 2 
signal length value, e.g. 512, 1024, 2048, 
4096 etc.

4.  Using the data analysis menu, select Fourier 
analysis

a.  Select all the raw signal data in column 
A

b.  Select the output range to be column 
C

5.  The Fourier analysis outputs complex num-
bers, convert these to an amplitude value in 
column D using the IMABS function e.g. 
=IMABS(C1)

6.  In column E take the square of the amplitude 
in column D e.g. =D1^2, this represents the 
power of the signal.

7.  In column F calculate the cumulative power 
e.g. F1=E1, F2=F1+E2, F3=F2+E3 etc.

8.  In column G calculate the frequency scale 
by cumulatively adding the result of the 
sampling frequency divided by the total 
number of data points in the raw signal e.g. 
G1=1000/4096, G2=G1+(1000/4096), 
G3=G2+(1000/4096) etc.

9.  As only half the values are used, the cell 
where the frequency scale is equal to half 
of the sampling frequency can be used to 
identify the maximum power in the frequency 
spectrum. For example, if the data was col-
lected with a sample frequency of 1000 Hz, 
the formula =INDEX(F2:F1024,MATCH(5
00,G2:G1024)) would identify the maximum 
power in the frequency spectrum.

10.  The median frequency is the frequency at 
which half of the maximum cumulative 
power is obtained. This can be automatically 
located using the VLOOKUP function e.g. 
=VLOOKUP(H2,F2:G1024,2).

You can plot the data using either the amplitude 
(column D) or the power (column E) against the 
frequency scale (column B). Remember not plot 
the data past half the sampling frequency.

To summarise, the frequency spectrum will 
provide information about the weight of the 
frequency components. This provides two key 
benefits:
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1.  Both high and low-pass filters require pa-
rameters, such as cut-off frequency, to be 
selected. The frequency spectrum provides 
one source of information to base this selec-
tion on.

2.  The median frequency, this can be used for 
estimation of physiological changes such 
as fatigue if the median frequency changes 
during the course of a contraction (De Luca, 
1984) or following some sort of intervention.

Once the frequency spectrum has been analysed 
and potential cut off values have been identified 
the high-pass filters can be applied to the raw 
signal. Identification of the actual cut-off is a 
long debated issue, attempt to produce a quantifi-
able method to establish the cut-off value, such 
as residual analysis (Winter, 2005), the Jackson 
knee-method (Jackson, 1979) and the autocorrela-
tion method (Challis, 1999) have been suggested, 
although no one technique has been found to be 
optimal. The above process could then be repeated 
following the application of different filter cut off 
selections to ensure the appropriate frequencies 
have been removed.

Removing Zero Offset

Prior to signal smoothing or filtering to remove 
signal corruption, the signal should be free from 
any zero offset. Recall that to remove any zero 
offset the signal mean is subtracted from each 
point in the signal. Not all acquired signals will 
have a zero offset, therefore it is important to 
plot the data and check whether offset correction 
is required. While attempting to correct a zero 
offset when it does not exist will not change the 
signal (as the signal mean will be zero), it will 
unnecessarily increase the amount of processing 
being completed.

To complete this process in MatLab you will 
need to input the following commands:

raw=xlsread(‘raw data.xls’);

% This command loads the raw data from an 
Excel file and creates a variable called ‘raw’

signal_mean=mean(raw);

% This command calculates the signal mean

signal_offset_corrected=raw-signal_

mean;

% This command subtracts the mean from each 
point in the original signal.

To complete the process in excel you need to 
complete the following:

1.  Enter the raw signal in column A
2.  Enter the following formula in row B

a.  B1=A1-mean(A1:A4096)
b.  B2=A2-mean(A1:A4096)
c.  B3=A3-mean(A1:A4096) etc. for the 

duration of the signal.

N.B this example presumes the raw signal is 
contained in cells A1:A4096

Once this process has been applied the next 
stage of processing can be applied. Potentially, 
the signal may not require further filtering. Me-
ticulous care during set up in areas shielded for 
signal corruption from electrical devices can yield 
signals that do not require much filtering. However, 
frequently further filtering will be required. The 
following sections provide an overview of filter 
structure and implementation.

Designing Filters

Recall that when considering signal filters there 
are two key classifications, the first is low pass 
filters which retain signal frequencies below the 
filter cut-off frequency and attenuate frequencies 
above the filter cut off frequency. The second 
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classification is high-pass filters which are filters 
which retain signal frequencies above the filter 
cut off frequency and attenuate frequencies below 
the filter cut off frequency. As high-pass filtering 
is applied prior to low-pass filters they will be 
addressed first.

The basic structure for filters is as follows:

X a X a X a X b X b X
nT nT nT T nT T nT T nT T
1

0 1 2 2 1
1

2 2
1= + + + +

− − − −
� � � �  

X  = Raw signal  

X 1  = Filtered signal 

nT  = nth sample 

nT-T = n-1th sample 

nT-2T = n-2th sample 

a b
0 2
…,  = filter coefficients. 

In order to implement the above filter, the coef-
ficients are required. The summed coefficients of 
a filter total one. Therefore the coefficients effec-
tively weight each section of the filter and adjust 
the values to remove unwanted frequencies. The 
coefficients can either be obtained online, from a 
textbook, or calculated. In order to calculate the 
coefficients for filters there are some parameters 
which need to be established first. These include:

1.  The sampling frequency during signal 
acquisition?

2.  The desired cut off frequency?
3.  The number of bi-directional passes will the 

filter make?

The first two of these parameters are fairly 
intuitive, the frequency of which the data was 
obtained and the desired point at which filtering 
should start. The third parameter is less obvious, 

what is a ‘bi-directional pass’ and why would 
this be completed more than one time? Simply 
put, a bi-directional pass is where the direction 
of the filter is reversed and applied to the filtered 
producing a second filtered signal. Adapting the 
above equation results in the following equation:

X a X a X a X b X b X
nT nT nT T nT T nT T nT T
2

0
1

1
1

2
1

2 1
2

2 2
2= + + + ++ + + +� � � �  

X  = Raw signal  

X 1  = First filtered signal 

X 2  = Second filtered signal 

nT  = nth sample 

nT+T = n+1th sample 

nT+2T = n+2th sample 

a b
0 2
…,  = filter coefficients 

The purpose of this process is twofold. Firstly 
filters introduce a delay in the signal. By revers-
ing the filter and reapplying the filter, this lag is 
corrected therefore removing any errors in time 
to events/changes within the signal.

Secondly, the frequency at which the filter 
begins to attenuate the signal is not one specific 
frequency. The attenuation of frequencies by the 
filter increases over a range, this transition range 
is known as the ‘roll-off’. Increasing the number of 
bidirectional passes reduces the transition range. 
An ideal filter would not change the signal at all 
before the cut off frequency, and immediately 
start to filter signals above the cut off frequency; 
unfortunately this is not the case. The effectiveness 
of signal filter performance resulting from vary-
ing parameters, such as the order, is outside the 
scope of this chapter, for a review see (Robertson 
& Dowling, 2003).
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To calculate the filter coefficients the first 
stage is an adjustment to the cut off frequency:

f Adjusted f f
c s hp

= −� / 2  

Where fs = the sampling frequency, and fhp = 
the cut off of the high-pass filter.

The angular frequency is then calculated:

ù tan f Adjusted f
c c s
= ( )( )� ð /  

The angular frequency is adjusted for the 
number of bidirectional passes:

ù Adjusted ù
c c

x n= √ −( )( )/
/(
2 1
1 2  

Where n = the number of passes the filter 
makes over the data e.g. one bi-directional pass 
equates to n = 2.

For the coefficients the calculations are as 
follows:

K ù
cAdjusted

=��2  

K
ù Adjustedc2 2�� ��=

 

a
K

K K0
2

1 2
1

=
+ +( )

�
� �

a a
1 0

2= − a a
2 0=�  

b K a b a a a b
1 2 0 2 0 1 2 1

1 1 2 1= − −( ) = − + + +( )/ ²  

For a detailed review of high pass filter coef-
ficient design see (Murphy & Robertson, 1994). 
Once the coefficients have been calculated, the 
filter can be applied to the signal.

MatLab Code for Applying a High-
Pass Filter With a 40 Hz Cut-Off

When using MatLab the coefficients are auto-
matically calculated. However, MatLab uses a 
normalised cut-off frequency. Therefore prior to 
inputting the signal parameters the cut-off fre-
quency must be converted to normalised frequency 
using the following command:

Fnorm = 40/(1024/2);

% Where 40 = the desired cut-off frequency 
and 1024 = the sampling frequency.

[b,a]=butter(2,Fnorm,’high’); 

signal_hp = filtfilt(b,a, signal_off-

set_corrected);

% The ‘butter’ command applies a high-pass 
2nd order Butterworth filter, representing one pass 
over the signal. The ‘filtfilt’ command doubles 
the order producing a 4th order filter with a 40 Hz 
cut off frequency. The ‘signal_offset_corrected’ 
variable is obtained from the removing zero-offset 
correction section previously applied.

Excel Formulae for Applying a High-
Pass Filter with a 40 Hz Cut-Off

To complete the process in excel the coefficients 
must first be calculated. For an overview of how 
to do this see table one.

After the coefficients have been calculated 
the filter can then be applied in excel. Table 1 
represents a section of an excel spread sheet below 
that displayed in Table 2. Note the addition of 
the dollar sign ‘$’ in the cells. The ‘$’ fixes the 
cells that the formulae refers to, this allows the 
formula to be copied to additional cells without 
changing the cells the formula refers to. Note that 
the number of passes equals two, which is one in 
each direction or one bi-directional pass.
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In Table 3 the filter is applied twice, achiev-
ing a bidirectional pass over the data resulting in 
zero-lag filter out put. Obviously a genuine signal 
would be much longer; however the basic process 
and Excel structure is essentially displayed. To 
create a useable spread sheet all that is needed 
is to extend the middle of the above table by 
increasing the number of cells with the formula 
included i.e. rows 20-23.

It should be noted that sometimes the high-
pass filter does not always completely remove 

a zero offset to the signal. In the case that this 
occurs, all that is needed to correct the signal is 
to simply subtract the mean of the total filtered 
signal from each data point within the filtered 
signal (as previously detailed in ‘removing zero 
offset’). This process will remove the zero offset 
and produce a signal that is symmetric about 
zero (see figure one). When developing a signal 
processing algorithm it is paramount to continu-
ously check on the effect on the signal. While 
there are certain rules which must be followed, 
e.g. rectifying before applying a low-pass filter, 
there are also processes which can be applied at 
different times during the algorithm. For example 
the signal mean can be subtracted before or after 
the high-pass filter is applied, provided it is ap-
plied before rectification. It is only by plotting 
the signal that the appropropriate next stage can 
be identified. An example of ‘noisy’ data filtered 
using the above techniques in Microsoft Excel is 
shown in figure two

Root Mean Square

The RMS of a signal is a technique of taking a 
portion of a signal, known as a linear envelope 
or window and converting all the signal values, 
both positive and negative, into a positive value 
representative of the signal power. The window 
length should be based on the speed of the move-
ment and the length of the signal. Small windows 
will allow detection of rapid changes in EMG, yet 
will not result in much smoothing or the original 
EMG signal. Larger windows result in increased 
smoothing of the signal, but with the cost of loss of 
the original signal trends. Another approach is to 
combine the benefits of small and large windows 
by overlapping the windows i.e. including data 
points in more than one window which moves 
along the signal from start to finish.

To obtain the RMS the values within the 
window the square root of the averaged, squared 
values is calculated using the following equation:

Table 1. Calculating high pass filter coefficients 
in Excel 

A B

1 Sample 
frequency

1024

2 Cut off 
frequency

40

3 Number of 
passes

2

4

5 Adjusted cut off =B1/2-B2

6 Éc = (TAN((B5*PI())/B1))

7 Éc Adjusted =B6/(SQRT(2^(1/(2*B3))-1))

8

9 K =2*B7

10 K
2 =B7^2

11 a
0 =B10/(1+B9+B10)

12 a
1 =-2*B11

13 a
2 =B11

14 b
1 =-(1/B10-1)*(2*B11)

15 b
2 =1-(B11+B12+B13+B14)
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RMS
Sumof data pointswithinwindow

Lengthof window
=





� � � � �
� �
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To complete this process in MatLab you will 
need to input the following commands:

signal_windows=buffer(signal_hp,128);

% This command takes the original signal and 
creates an array of the signal with 128 data points 
in each column. Presuming the sampling frequency 
was 1024 Hz this would equate to windows ap-
proximately 12.5 msec long. To convert this into 

a window four times as long overlapping by 75%, 
the command would change to:

 signal_windows=buffer(signal_

hp,512,384);

% NB There is no fixed rules for the size of the 
window or the amount of overlap, often parameter 
selection comes from plotting various window size 
and overlaps and establishing which best reflects 
the original signal.

RMS=zeros(1,length(signal_win-

dows(1,:)));

Table 2. Applying a low-pass filter in Excel (forwards direction) 

A B

18 Raw Signal =A18

19 Raw Signal =A19

20 Raw Signal =A20*b$12+A19*b$13+A18* b$14+B19* b$15+B18* b$16

21 Raw Signal =A21*b$12+A20*b$13+A19* b$14+B20* b$15+B19* b$16

22 Raw Signal =A22*b$12+A21*b$13+A20* b$14+B21* b$15+B20* b$16

23 Raw Signal =A23*b$12+A22*b$13+A21* b$14+B22* b$15+B21* b$16

24 Raw Signal =A24* b$12+A23*b$13+A22* b$14+B23* b$15+B22* b$16

25 Raw Signal =A25* b$12+A24*b$13+A23* b$14+B24* b$15+B23* b$16

Table 3.  

C

18 =B18*b$12+B19* b$13+B20* b$14+C19* b$15+C20* b$16

19 =B19*b$12+B20* b$13+B21* b$14+C20* b$15+C21* b$16

20 =B20*b$12+B21* b$13+B22* b$14+C21* b$15+C22* b$16

21 =B21*b$12+B22* b$13+B23* b$14+C22* b$15+C23* b$16

22 =B22*b$12+B23* b$13+B24* b$14+C23* b$15+C24* b$16

23 =B23*b$12+B24* b$13+B25* b$14+C24* b$15+C25* b$16

24 =B24

25 =B25
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% This command pre-allocates an array for 
the RMS values to be stored in. This is not an 
essential stage, but it is good practice to do so.

for i=1:length(signal_windows(1,:)) 

     RMS(i)= sqrt(mean(signal_

windows(:,i).^2)); 

     end

% This command works along the array cre-
ated by the ‘buffer’ command and calculates the 
RMS. The results are stored in the pre-allocated 
array created by the ‘zeros’ command.

To calculate the RMS without overlap in excel 
you need to complete the following:

1.  Enter the raw signal in column A
2.  Enter the following formula in row B

a.  B1=SQRT(mean(A1:A128)^2)
b.  B9= SQRT(mean(A9:A136)^2)
c.  B3= SQRT(mean(A17:A144)^2) etc. 

for the duration of the signal.

With overlap column B changes to:

a.  B1=SQRT(mean(A1:A512)^2)
b.  B9= SQRT(mean(A128:A640)^2)
c.  B3= SQRT(mean(A256:A768)^2) etc. for 

the duration of the signal.

The RMS offers a form of signal processing 
which is easy to implement. However, if the signal 
contains noise that is corrupting the signal the RMS 
will not be able to remove the noise. Therefore in 
this instance further processing will be required. 
Recall that thus far the processing completed 
has removed any zero offset and attenuated low 
frequency noise components of the signal. The 
next stage is to deal with any high frequency noise 
components in the signal. Low-pass filters do not 
work effectively with signals symmetrical about 
the mean. Therefore before low-pass filters can 
be applied the signal must go through a process 
called rectification.

Rectification

Rectification is the process by which all the values 
below zero are removed. There are two techniques 
to achieve this aim.

Figure 2. 
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1.  Half Wave Rectification: This approach the 
values that equal less than zero are simply 
deleted. While this is very simple, it effec-
tively halves the energy within the signal as 
half of the values are removed.

2.  Full Wave Rectification: This approach 
takes each value, multiplies it by itself, then 
takes the square root of the answer i.e. takes 
the absolute value for each data point. This 
effectively changes all the negative values 
to positive values therefore creating twice as 
many positive values and therefore producing 
a signal with the same amount of energy as 
the original signal.

Rectifying Signals in MatLab

To complete full wave rectification in MatLab you 
will simply need to input the following command:

rectified_signal=signal_offset_cor-

rected.^2;

Rectifying Signals in Microsoft Excel

1.  Enter the raw signal in column A
2.  Enter the following formula in row B

a.  B1=A1^2
b.  B9= A2^2
c.  B3= A3^2 etc. for the duration of the 

signal.

Low-Pass Filters

Two commonly applied low-pass filters are the 
Butterworth filter and the critically damped filter, 
which are both based on the same equation as 
the high pass filter, though the coefficients are 
calculated differently.

First the correction factor for the number of 
bidirectional passes is required:

For a Butterworth filter this is: 

C number of passes= −( )� ( / � � )
.

2 11
0 25

For a critically damped filter: 

C x number of passes= −( )� ( /( � � � � ))
.

2 11 2
0 5

 

Next the angular frequency of the coefficients:
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where:

fc = the cut off frequency 

fs = the sampling frequency 

The final difference between Butterworth 
and critically damped filter coefficients is the 
parameter ‘K’.

For a Butterworth filter this is: K ù
c

=√� 2  

For a critically damped filter: K ù
c

=��2  

To calculate the coefficients:
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MatLab Code for Applying a Low-
Pass Filter with a 5.5 Hz Cut-Off

To apply a low-pass filter in MatLab the follow 
code can be used:

lpcutoff=5.5/(1024/2); 

[b,a]=butter(2,lpcutoff,’low’); 

signal_lp = filtfilt(b,a, signal_hp);

% Applies the low-pass Butterworth filter, 
representing one bidirectional pass over the signal. 
The process doubles the order producing a 4th 
order filter. The variable ’signal_hp’ is obtained 
from the signal high-pass filtered in the section 
‘MatLab code for applying a high-pass filter with 
a 40 Hz cut-off’.

Excel Formulae for Applying a High-
Pass Filter with a 5.5 Hz Cut-Off

The formulae to calculate these coefficients in 
Excel are displayed in the table three.

CONCLUSION

In summary this chapter has provided an insight in 
to the fundamental principles of filtering raw EMG 
signals using analogue filters and plotting both the 
filtered signals and the frequency spectrum. Often 
the use of ‘black box’ software prevents the user 
from truly understanding the underlying process 
completed when applying filters mathematical 
operations to biological signals. Without an ap-
preciation of the mechanisms of the processes 
applied it is difficult to know when and how to 
accurately apply each stage of the filtering process. 
By working through this chapter and creating 
examples in Excel and MatLab the reader will be 
able to not only appreciate how the filters work, 
but will be able to create their own resources to 
process signals obtained in research and practice.

The filtering process previously described us-
ing was generated using MatLab 2013a with the 
signal processing toolbox. A combined recap of 
the code is displayed below with the results plot-
ted in figure three.

MatLab Code for Signal Filtering

raw=xlsread(‘RMS’);

% This command loads the raw data from an Excel 
file and creates a variable called ‘raw’

signal_mean=mean(raw);

% This command calculates the signal mean

signal_offset_corrected=raw-signal_

mean;

% This command subtracts the mean from each 
point in the original signal.

Fnorm = 40/(2000/2);

% Where 40 = the desired cut-off frequency 
and 1024 = the sampling frequency.

[b,a]=butter(2,Fnorm,’high’); 

signal_hp = filtfilt(b,a, signal_off-

set_corrected);

% The ‘butter’ command applies a high-pass 
2nd order Butterworth filter, representing one pass 
over the signal. The ‘filtfilt’ command doubles the 
order producing a 4th order filter with a 40 Hz 
cut off frequency. The ‘signal_offset_corrected’ 
variable is obtained from the removing zero-offset 
correction section previously applied.

signal_windows=buffer(signal_hp,128);

% This command takes the original signal and 
creates an array of the signal with 128 data points 
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in each column. Presuming the sampling frequency 
was 1024 Hz this would equate to windows ap-
proximately 12.5 msec long. To convert this into 
a window four times as long overlapping by 75%, 
the command would change to:

signal_windows=buffer(signal_offset_

corrected,512,384);

% NB There is no fixed rules for the size of the 
window or the amount of overlap, often parameter 
selection comes from plotting various window size 

and overlaps and establishing which best reflects 
the original signal.

RMS=zeros(1,length(signal_win-

dows(1,:)));

% This command pre-allocates an array for 
the RMS values to be stored in. This is not an 
essential stage, but it is good practice to do so.

for i=1:length(signal_windows(1,:)) 

     RMS(i)= sqrt(mean(signal_

Table 4. Low-pass filter coefficients 

A B C

1 Sample frequency 1024

2 Cut off frequency 5.5

3 Number of passes 2

4

5 Butterworth Critically damped

6 Correction factor = (2^(1/B3)-1)^0.25 = (2^(1/(2*B3))-1)^0.5

7 Éc = (TAN((B2*PI())/B1))/B6 = (TAN((B2*PI())/B1))/C6

8

9 K =SQRT(2)*B7 =2*C7

10 K
2 =B7^2 =C7^2

11 K
3 =(2*B12)/B10 =(2*C12)/C10

12 a
0 =B10/(1+B9+B10) =C10/(1+C9+C10)

13 a
1 =2*B12 =2*C12

14 a
2 =B12 =C12

15 b
1 =(-2*B12+B11) =(-2*C12+C11)

16 b
2 =1-(2*B12)-B11 =1-(2*C12)-C11
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windows(:,i).^2)); 

end 

rectified_signal=signal_hp.^2; 

lpcutoff=4/(2000/2); 

[b,a]=butter(2,lpcutoff,’low’); 

signal_lp = filtfilt(b,a, rectified_

signal);

% Applies the low-pass Butterworth filter, 
representing one bidirectional pass over the signal. 
The process doubles the order producing a 4th 
order filter. The variable ’signal_hp’ is obtained 
from the signal high-pass filtered in the section 
‘MatLab code for applying a high-pass filter with 
a 40 Hz cut-off’.

n=length(raw);

% Calculate the amount of data points in the 
signal

siglength=n/2000; 

Xincrement=siglength/n; 

Xscale=(0:Xincrement:siglength-Xin-

crement);

% Calculates the duration of the signal and the 
increment for the X axis

RMSn=length(RMS);

% Calculate the amount of data points in the 
signal

rmsXincrement=siglength/RMSn; 

rmsXscale=(0:rmsXincrement:siglength-

rmsXincrement);

% Plotting the data, the following code plots 
the data as seen in figure two

subplot (4,1,1), plot (Xscale,raw) 

title (‘Raw Data’, ‘FontWeight’, 

‘bold’) 

axis tight 

xlabel(‘Time in seconds’) 

ylabel(‘Amplitude in Millivolts’) 

subplot (4,1,2), plot (Xscale,signal_

hp) 

title (‘High-pass 40 Hz Cut Off’, 

‘FontWeight’, ‘bold’) 

Figure 3.
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axis tight 

xlabel(‘Time in seconds’) 

ylabel(‘Amplitude in Millivolts’) 

subplot (4,1,3), plot (rmsXscale,RMS) 

title (‘RMS’, ‘FontWeight’, ‘bold’) 

axis tight 

xlabel(‘Time in seconds’) 

ylabel(‘Amplitude in Millivolts’) 

subplot(4,1,4) 

plot(Xscale,signal_lp) 

title (‘Low-pass 4 Hz Cut Off’, 

‘FontWeight’, ‘bold’) 

axis tight 

xlabel(‘Time in seconds’) 

ylabel(‘Amplitude in Millivolts’)

REFERENCES

Challis, J. (1999). A procedure for the automatic 
determination of filter cutoff frequency for the 
processing of biomechanical data. Journal of 
Applied Biomechanics, 15(3), 303–317.

Chu, E., & George, A. (2010). Inside the FFT black 
box, serial and parrallel fast Fourier transform 
algorithms. Boca Raton, FL: CRC Press.

De Luca, C. J. (1984). Myoelectrical manifesta-
tions of localized muscular fatigue in humans. 
Critical Reviews in Biomedical Engineering, 
11(4), 251–279. PMID:6391814

Haykin, S., & Liu, R. (2009). Handbook on array 
processing and sensor netorks. Hoboken, NJ: John 
Wiley and Sons,Inc.

Jackson, K. M. (1979). Fitting of mathematical 
functions to biomechanical data. IEEE Transac-
tions on Bio-Medical Engineering, BME-26(2), 
122–124. doi:10.1109/TBME.1979.326551 
PMID:761932

Kester, W. (2005). The data conversion handbook. 
Norwood, MA: Analog Devices, Inc.

Murphy, S., & Robertson, D. G. E. (1994). Con-
struction of a high-pass digital filter from a low-
pass digital filter. Journal of Applied Biomechanics 
Biomechanics, 10, 374–381.

Prutchi, D., & Norris, M. (2005). Design and 
development of medical electronic instrumenta-
tion. Hobkoken, NJ: John Wiley and Sons,Inc. 
doi:10.1002/0471681849

Robertson, D. G. E., & Dowling, J. J. (2003). 
Design and responses of Butterworth and criti-
cally damped digital filters. Journal of Electro-
myography and Kinesiology: Official Journal of 
the International Society of Electrophysiological 
Kinesiology, 13(6), 569–573. doi:10.1016/S1050-
6411(03)00080-4 PMID:14573371

Transnational College of LEX. (2006). Who is 
Fourier? A mathematical adventure. Language 
Research Foundation.

Winter, D. (2005). Biomechanics and motor con-
trol of human movement (3rd ed.). Hoboken, NJ: 
John Wiley and Sons,Inc.

ADDITIONAL READING

Palaniappan, R. (2010). Biological Signal Analy-
sis. BookBoon.

Transnational College of LEX. (2006). Who is 
Fourier? A Mathematical adventure. Language 
Research Foundation.

Winter, D. (2005). Biomechanics and Motor 
Control of Human Movement (Third Edit.). John 
Wiley and Sons,Inc.

KEY TERMS AND DEFINITIONS

Amplitude: The amount of voltage between 
zero voltage and the signal peak.

http://www.ncbi.nlm.nih.gov/pubmed/6391814
http://dx.doi.org/10.1109/TBME.1979.326551
http://www.ncbi.nlm.nih.gov/pubmed/761932
http://dx.doi.org/10.1002/0471681849
http://dx.doi.org/10.1016/S1050-6411(03)00080-4
http://dx.doi.org/10.1016/S1050-6411(03)00080-4
http://www.ncbi.nlm.nih.gov/pubmed/14573371


112

An Introduction to EMG Signal Processing Using MatLab and Microsoft Excel
 

Filter: A tool used to remove noise from a 
signal.

Frequency: The amount of times a repetitive 
signal pattern occurs.

Hertz: The amount of signal cycles/repetitions 
in one second.

Noise: Values from other sources being incor-
porated in to the acquired signal e.g. from nearby 
electrical equipment.

Period/Wavelength: The length of time taken 
for a signal to complete one cycle.

Rectification: The process of changing a signal 
from one with both positive and negative value to 
a signal with only positive values.

Roll-Off: The transition between an inactive 
and an active filter.

Signal: Values which represent physiological 
changes, e.g. the amount of muscle activity.

Window: A portion of the signal being anal-
ysed or a series of weighted values used to adjust 
a portion, or envelope, of a signal.

Zero Offset: The difference between the mean 
signal value and zero.



Section 2

EMG Signal Modeling and Signal 
Processing



114

Copyright © 2014, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  5

Modeling the Human Elbow 
Joint Dynamics from Surface 

Electromyography

ABSTRACT

Biomechanical modelling and analysis of human motion are main topics of interest for a number of 
disciplines, ranging from biomechanics to human movement science. There exist various experimental 
and theoretical techniques developed to model the biomechanics and human motor system. A classic 
way to characterize a system is done by perturbation analysis, through applying an external perturba-
tion and the observation of changes in the dynamic of system. In literature, human joint dynamics has 
been studied mainly in relation to external perturbations. However, those perturbations interact with the 
natural human motor behaviour. This chapter describes an approximation for non-invasive biomechanical 
modelling of the elbow joint dynamics from electromyographic information. A case study presents results 
obtained aimed at deriving a relationship between the dynamic behaviour of the human elbow joint and 
Surface Electromyography (SEMG) information in postural control. A set of experiments were carried 
out to measure bioelectrical (SEMG) and biomechanics information from human elbow joint, during 
postural control (i.e. isometric contractions) and correlate them with mechanical impedance at elbow 
joint. Estimates of elbow impedance were obtained by applying torque perturbations to the forearm. 
The results demonstrate that it is possible to estimate human joint dynamics from SEMG. The obtained 
results can contribute to the field of human motor control and also to its application in robotics and 
other engineering applications through the definition, specification and characterization of properties 
associated with the human upper limb and strategies used by people to command it.

Andrés Felipe Ruiz-Olaya
Antonio Nariño University, Colombia
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INTRODUCTION

It is well known phenomena that human skeletal 
muscle has elastic-like and viscous-like proper-
ties, which change widely with the level of muscle 
activation. Also, the human neuromuscular control 
system has highly developed self-adaptive proper-
ties. The dynamic response of a limb is largely 
insensitive to external forces in a wide range. It 
also appears that adaptive compensation for ex-
ternal changes occurs very rapidly in relation to 
the dominant dynamics of the limb/joint system 
and the dynamic behavior may include a feedback 
and a feedforward component (van der Helm et 
al., 2002). In literature, numerous studies have 
modeled the dynamic behavior of human body 
segments and joints as mechanical impedance 
(Dolan et al., 1993; Tsuji et al., 1995). Mechanical 
impedance in this context may be defined as the 
dynamic relationship between forces and position 
variations, and can be characterized by its stiff-
ness, viscosity and inertia (which are functions 
of the muscle condition).

Measurement and understanding of these 
dynamics is important in several areas such as 
rehabilitation engineering, biomechanics, basic 
motor control research, bionics, humanoid robot-
ics, among others (Tanaka et al., 2007). This un-
derstanding about the human limb/joint dynamics 
permits to develop bio-inspired control strategies 
to be implemented in new devices, such as pros-
theses and orthoses and to explore new therapies 
in disabled people by pathologies and disorders 
affecting the human motor system.

Human joints dynamics may be approximate 
as mechanical impedance (Dolan, 1993). Modula-
tion of mechanical impedance provides the basis 
for several theories in human motor control such 
as the α-model and λ-model equilibrium point 
theories, the virtual trajectory theory, and dynamic 
interaction in manipulation, (Hogan, 1985). The 
general finding is that increasing joint impedance, 
both through co-contraction and reflex modula-
tion, stabilises the limb to external force fields.

Quantification of the mechanical impedance of 
the human joints and the muscle-skeletal system 
has a long history (Kearney & Hunter, 1990). 
The mechanical impedance of a system is best 
described by its transfer function, which can have 
been estimated using continuous perturbations. In 
fact, in literature human joint dynamics has been 
studied mainly in relation to external perturbations 
(Acosta et al., 2000; Franklin et al., 2003; Xu & 
Hollerbach, 1999); however, such perturbations 
interact with the natural behaviour of the motor 
control system and disturb the task under study 
(Kirsch et al., 1994). It will be beneficial to 
estimate such mechanical impedance in a non-
invasive way; in this context, electromyography 
may provide such non-invasive way. Recently, 
researchers have been studying the relationship 
between the Surface Electromyography (SEMG) 
and torque produced about a joint, as a means of 
non-invasively estimating the joint/musculoskel-
etal dynamics (Bru & Amarantini, 2008; Clancy 
et al., 2012).

This chapter describes a biomechanical mod-
elling technique from EMG data to estimate the 
elbow joint dynamics. A detailed Case Study 
shows a set of experiments carried out to correlates 
SEMG to elbow joint dynamics, i.e. mechanical 
impedance. In those experiments, joint posture 
was disturbed by applying an external torque 
about the joint, and the resulting change in joint 
angle was measured along the EMG of muscles 
involved in joint movement. Specifically, EMG 
signals were measured from human agonist and 
antagonistic muscles at elbow joint level. Later, 
it was used a mathematical model to correlates 
SEMG signals to mechanical impedance. The 
elbow joint dynamic system was approximated 
with a second-order model. The elbow joint system 
is of much higher order; however, we were inter-
ested in the modulation of stiffness and damping 
using EMG data and not in their exact values. 
A direct estimate of stiffness and damping were 
required to quantify the magnitude of impedance 
modulation and to correlates EMG and imped-
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ance. The methods applied in the present study 
cannot distinguish between the contributions of 
intrinsic muscle properties and spinal reflexes to 
the overall joint impedance.

BACKGROUND

Electromyography basically consists of the acqui-
sition, record and analysis of the electric activity 
generated in nerves and muscles, through the 
utilisation of surface electrodes, thin-wire elec-
trodes or implanted electrodes (De Luca, 2003). 
SEMG is a technique to measure muscle activity 
noninvasively using surface electrodes placed on 
the skin overlying the muscle. In literature, there 
are a lot of works to determine the scope of SEMG 
utility, its benefits and risks, and the extent to which 
SEMG techniques vary, and to assess SEMG’s 
strengths and weaknesses for specific clinical 
and research applications (Kleissen et al., 1998).

Measurements extracted from SEMG pro-
vide valuable information about the physiology 
and muscle activation patterns. The information 
obtained from EMG reflects the forces that will 
be generated by the muscles and the intervention 
timing of motor commands (De Luca, 1997). For 
instance, a number of studies have investigated the 
relationship between surface electromyography 
(EMG) and torque exerted about a human joint. 
The relation of surface EMG to torque makes 
EMG an attractive alternative to direct muscle 
tension measurements, necessary in many physi-
cal assessments.

The dependence of the recorded EMG signal 
and muscle tension on mutual physiological fac-
tors inspires on-going research work to develop 
mathematical models relating EMG to torque 
and joint dynamics. The experimental studies 
have explored both linear and nonlinear models 
to achieve better accuracy. Some researchers have 
even built complex models that describe the details 
of muscles, however little or no improvement is 
seen in doing so.

Modelling of the complex relationship between 
muscular activity and biomechanics parameters 
like torque and joint dynamics have been ap-
proached in two different methods; a priori 
(morphological) and a posteriori (black box) type 
of modelling techniques. The morphological 
modelling technique involves designing a model 
based on the physical characteristics of the system. 
The parameters are flexible and well adapted to 
the system itself. The drawback of this method 
is the large number of parameters that result in a 
high level of complexity. Additionally, it requires 
a thorough understanding of the system structure, 
while most of the times, the system is unknown 
and it is considered as a black box.

The black box type of modelling is referred to 
as system identification, and it is used to obtain 
a relationship between inputs and outputs, rather 
than determining the structure of the system. 
System identification is a study of the dynamics 
and physical behaviour of systems under external 
disturbances. Specifically, it is a set of standard-
ized guides on building system mathematical 
models based on observations made on system 
reactions. The external data that can be manipu-
lated and measured by the user are referred to as 
inputs and others as disturbances, even though 
most of the time their difference does not affect 
the modelling process. The measured/observed 
response of the system is referred to as its output 
(Ljung, 1999). Although this modelling technique 
is more practical than the first one, the results 
require careful interpretation and validation with 
the physical concepts.

MODULATION OF MECHANICAL 
IMPEDANCE IN HUMAN JOINTS

Several works on human motor control have 
demonstrated that when humans are subjected 
to a force field that systematically disturbs arm 
motion they are able to recover their original 
kinematic patterns, (Shadmehr & Mussa-Ivaldi, 
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1994). This is accomplished by the adaptation 
of torques at their joints to compensate for the 
perturbing forces, (Debicki & Gribble, 2004). 
When the perturbation force is abruptly removed, 
they exhibit error due to adaptation. Thus, there 
is a basic compensation and learning mechanism 
that exploits the viscoelastic properties of the 
neuromuscular system. The learning process is 
implicated in the development of internal models 
in the cerebellum, (Kawato, 1999).

There are different theories about the neural 
control of human motion that have proposed dif-
ferent types of control models to understand the 
behaviour of the motor system, (Tsuji et al., 1995; 
Kawato, 1999). Several hypotheses suggested 
separating adaptation into two components: (1) 
a peripheral adaptation involving gain settings 
and dynamic control of the peripheral postural 
control system, and (2) a central prediction of 
input characteristics and a prefitting command 
signals for compensation.

The Central Nervous System (CNS) avoids 
the kind of complex computation involved in 

motor control through the viscoelastic proper-
ties of neuro-muscular system, the muscles and 
the reflex loops. This viscoelasticity is able to 
generate restitution forces against external per-
turbations and may be considered as a control 
gain in the peripheral feedback. Humans can tune 
viscoelasticity by regulating the level of muscle 
co-contraction and the reflex gain. Control of the 
mechanical impedance (i.e. joint stiffness, viscos-
ity and inertia) of the neuromuscular system is a 
form of adaptive behaviour that the CNS uses to 
accommodate perturbations from the environment, 
(Hogan, 1984).

In the human motor control field, to quantify 
mechanical impedance, small-amplitude random 
perturbations (zero mean) can be applied about the 
flexion-extension rotation axis at specific muscle 
contraction levels, such as showed in Figure 1, 
where an external disturbance (τ) is applied to 
elbow joint and a restoring force is generated. 
The relation between small displacements (θ) of 
joint system and the external torque (τ) associated 
with such displacements can be represented by a 

Figure 1. Small-amplitude random perturbations to quantify the dynamic behaviour of the human elbow 
joint. An external torque disturbance (τ) generated small displacements (θ)
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linear transfer function which is usually named 
the mechanical impedance Z.

Under external perturbations, the intrinsic me-
chanical response of muscle is immediate. On the 
other hand, reflex responses and other responses 
that act by way of changes in muscle activation 
can only produce force after some delay with 
respect to the movements that trigger them. Us-
ing a simple linear control system, it is explained 
here how the components of the control system 
influence the mechanical impedance. The model 
is nonlinear and varies depending on factors such 
as torque bias and posture. Thus, in order to fit 
the data to a second-order linear model must be 
specified an operating point. The operating point 
consists of constant posture, constant force and 
non-fatiguing contractions for a particular task. 
Parameters in the model change as the operat-
ing point changes. Reflex gain also increases in 
parallel with muscle activation provided that the 
contraction is well below maximal. The linear 
model for the human elbow joint can be defined 
by the linear equation in 1.

τ
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where δ represents the operating point of the 
system. Equation (1) is useless when the operat-
ing point vary in a considerable way. For a more 
exact model, it could be required to account for 
the contribution of passive structures at the joint, 
while maintaining the simplicity of the model such 
as showed in figure 2, where Ks and Bs denote the 
stiffness and viscosity of soft tissues (skin, fat, 
fibrous tissues, etc.).

The visco-elastic properties of the human 
arm and joints vary in a wide range, (Zhang and 
Rymer, 1997; Stroeve, 1999). The relationship 
between the neural input to a muscle and its sub-
sequent mechanical behaviour is highly complex. 
For a given neural input the contractile force of 
a muscle depends on the length of the muscle, 
its velocity of shortening, the type of muscle, its 
state of fatigue, and its history of exercise (or of 

Figure 2. Contribution of passive structures and elbow joint dynamics to the overall joint impedance. 
Ks and Bs denote the stiffness and viscosity of soft tissues.
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electrical stimulation) amongst others. However, 
one fundamental observation is that the neural 
input to a muscle simultaneously determines 
the force and the stiffness of the muscle, i.e. its 
resistance to stretch.

ELECTROMYOGRAPHY FOR 
MODELLING THE HUMAN 
MOTOR SYSTEM

The contraction of muscle fibers generates elec-
trical activity that can be measured by electrodes 
affixed to the skin surface on top of the muscle 
group. The recorded spikes of electrical activity 

are referred to as the electromyography signal or 
“raw” EMG. The surface EMG signal recorded 
using surface electrodes that monitor the activity 
of multiple muscle fibers can be well modelled 
as a zero-mean time-varying stochastic process. 
Motor units are the smallest functional muscle 
group. It is observed that the standard deviation 
of the raw EMG signal is monotonically related 
to the number of the activated motor units and 
the rate of their activation. This standard devia-
tion is used to approximate the magnitude of the 
muscular electrical activity referred to as EMG 
amplitude (Clancy & Hogan, 1997).

A number of studies have investigated the 
relationship between surface electromyography 

Table 1. Factors that influence surface EMG (from Farina et al., 2004) 

Factors That Influence the Surface EMG

Nonphysiological

Anatomic      • Shape of the volume conductor 
     • Thickness of the subcutaneous tissue layers 
     • Tissue inhomogeneities 
     • Distribution of the motor unit territories in the muscle 
     • Size of the motor unit territories 
     • Distribution and number of fibers in the motor unit territories 
     • Length of the fibers 
     • Spread of the endplates and tendon junctions within the motor units 
     • Spread of the innervation zones and tendon regions among motor units 
     • Presence of more than one pinnation angle

Detection System      • Skin-electrode contact (impedance, noise) 
     • Spatial filter for signal detection 
     • Interelectrode distance 
     • Electrode size and shape 
     • Inclination of the detection system relative to muscle fiber orientation 
     • Location of the electrodes over the muscle

Geometrical      • Muscle fiber shortening 
     • Shift of the muscle relative to the detection system

Physical      • Conductivities of the tissues 
     • Amount of crosstalk from nearby muscles

Physiological

Fiber membrane properties      • Average muscle fiber conduction velocity 
     • Distribution of motor unit conduction velocities 
     • Distribution of conduction velocities of the fibers within the motor units 
     • Shape of the intracellular action potentials

Motor unit properties      • Number of recruited motor units 
     • Distribution of motor unit discharge rates 
     • Statistics and coefficient of variation for discharge rate 
     • Motor unit synchronization
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(EMG) and torque exerted about a joint (Bru 
& Amarantini, 2008; Clancy at al., 2012). The 
relation of surface EMG to torque makes EMG 
an attractive alternative to direct muscle tension 
measurements, necessary in many physical as-
sessments. However, the complexity of the EMG 
signal origin has been a barrier for developing a 
quantitative description of this relation. Inter-
pretation of SEMG information is not easy to be 
accomplished due to some difficulties. First of 
all, SEMG signals are time-varying and highly 
nonlinear. Secondly, in literature it is identified that 
EMG signal are affected by noises, such as ECG 
crosstalk, electromagnetic induction from power 
lines, and arm and cable movements (artifacts). 
Third, there are other factors such as proximal 
muscle interference, physiological conditions 
(e.g. fatigue), and skin impedance, among oth-
ers. Finally, the activity level of each muscle for 
a certain motion is different between each person.

Furthermore, the SEMG signal is complicated 
to use since properties of muscles, the control 
scheme of the peripheral nervous system, and the 
characteristics of instrumentation used to detect 
the SEMG signal affect them. SEMG provides 
information on the “quality” of contraction, i.e., 
whether it is continuous, phasic, or clonic, and 
also the ability to compare the timing of activity 
of several muscles. These activities or events are 
usually dynamic and impossible to view because 
they occur too quickly or are due to the activity 
of a group of muscles.

De Luca categorized the factors that effect 
EMG signal and force into three groups: causative, 
intermediate and deterministic factors (De Luca, 
1997). The causative factors are the basis of EMG 
signal and they are both intrinsic and extrinsic. 
The extrinsic factors are related to the electrode 
structure and its placement on the skin overlying 
the muscle. Such instances include the electrode 
configuration, location, and the orientation of 
detection surfaces relative to the muscle fibers. 
On the other hand, the intrinsic causative factors 
are related to the physiological, anatomical and 

biochemical character of EMG signals. These 
factors can not be controlled, but their knowledge 
and understanding help with the accuracy of EMG 
interpretation.

Table 1 represents a summary of the known 
effects to EMG interpretation. The presence of 
subcutaneous fatty tissues becomes a significant 
factor, because the loss of the high frequency 
components reduces the spectrum of the EMG 
signal. Besides the stability of the position of the 
electrodes and the stability of the Motor Unit fir-
ing rate, the issue of crosstalk is always present. 
Crosstalk is defined as the interference pattern 
recorded from a distant muscle when the electrodes 
are intended to monitor another muscle.

In literature, researchers have been studying the 
relationship between the SEMG and torque pro-
duced about a joint, as a means of non-invasively 
estimating musculoskeletal load and the dynamics 
of joints (Clancy et al., 2012). In this context, it is 
estimated EMG amplitude from the EMG wave-
form, and then it is developed an EMG-torque 
model that include mains characteristics. Using 
advanced methods for estimating EMG amplitude 
have been shown to provide better EMG-torque 
estimates.

The most common technique of detection for 
EMG amplitude is the rectification process fol-
lowed by a smoothing step. The recorded EMG 
signal may be described as the product of a zero-
mean stochastic process with the time-varying 
EMG intensity. Therefore the intensity of the 
EMG signal (EMG amplitude) can be obtained 
by proper rectification and smoothing. The early 
researchers in the field studied and utilized non-
linear analog circuits, such as a full wave recti-
fier and a low pass filter made of simple passive 
components (resistors and capacitors), to detect 
the signal. This method eventually led to the use 
of the statistical moving average mean absolute 
value (MAV) and the moving average root mean 
square (RMS), equations 3 and 4, respectively.

Moving Average Mean Absolute Value:
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Moving Average Root Mean Square:  
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where in both expressions n is the number of 
samples in each smoothing window of the moving 
average filter; and xi is the signal being smoothed 
in the time-domain.

There are many applications where is useful 
to quantify the tension exerted by the muscle 
group during several activities, however direct 
measurements are unnatural, invasive, expensive, 
and they may also not be possible presently. The 
assumption of torque being related to the nervous 
excitation of the individual muscle or the muscle 
group, relates torque to the magnitude of electrical 
muscle activity (EMG signal). A relation between 
EMG and torque simplifies the situation, because 
EMG is readily obtained by either surface or wire 
electrodes depending upon whether the muscle 
group or individual muscle measurements are 
needed. Although many studies have made a great 
impact in the EMG field, there is no consensus on 
a standardized set of models that relate a specific 
muscle (muscle group) to tension (torque).

The development of a general prediction model 
has been less successful, perhaps due to varia-
tions in muscle composition. However, different 
procedures used to record and to analyze EMG 
also need to be considered when determining 
the relationship between muscular forces and the 
EMG signal. Several investigators have agreed that 
it is required to incorporate the control strategy 
for the muscles being investigated, including: the 
force generation rate, joint angle, muscle length, 
and muscular coactivation. It is also determined 
that changes in recording procedures, including 

variations in electrode placement, recording con-
figuration and limb position, significantly alter 
the EMG-torque relationship.

CASE STUDY: FEASIBILITY OF 
ESTIMATING HUMAN ELBOW JOINT 
DYNAMICS FROM MYOELECTRIC 
DATA IN POSTURAL CONTROL

The protocol and experiments were designed to 
identify and characterise the human elbow joint 
dynamics in terms of mechanical impedance dur-
ing a postural task. Moreover, it was obtained the 
EMG activation patterns in the adaptation process 
under dynamic conditions (torque perturbations).

Apparatus and 
Experimental Protocol

Four healthy adult volunteers (mean age 28 ± 3, 
mean height 1.73 ± 0.04 m) were instrumented 
with surface EMG electrodes following the SE-
NIAM recommendations (http://www.seniam.
org). Two upper arm muscles were measured: 
the flexor (biceps brachii) and extensor (triceps 
brachii long head) muscles involved in the elbow 
joint movement. An experimental platform de-
scribed in (Ruiz et al., 2008), was coupled to the 
upper limb of the subject. This platform permits 
to apply mechanical perturbations at elbow joint 
while simultaneously it is acquired bioelectric 
and biomechanical signals. Figure 3 show the 
experimental platform coupled to the upper limb 
of one subject.

Subjects produced constant-posture, non-
fatiguing, force-varying contractions about the 
elbow while torque and biceps/triceps EMG were 
recorded. At one specific time instant, the ex-
perimental platform applied unexpectedly random 
torque perturbations on the forearm. Subjects were 
instructed to maintain the forearm posture while 
resisting external perturbations. In this case the 

http://www.seniam.org
http://www.seniam.org
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elbow joint does not move, i.e. a fixed position is 
being maintained, then the setpoint of the velocity 
feedback is zero and the setpoint of the position 
feedback is the equilibrium position. The feedback 
damping and stiffness will act to restore the joint 
to this state. Five repetitions were chosen for each 
experimental session and data were sampled at 
1 kHz for biomechanical variables (kinetics and 
kinematics) and for the SEMG. In last trial, it 
were measured the SEMG of muscles to obtain 
the MVC (maximum voluntary contraction).

Data Analysis

Acquired signals were rectified, averaged, and 
smoothed. The kinematics and kinetics data were 
filtered through a four-pole Butterworth filter 
with a cut-off frequency of 10 Hz. Surface EMG 
signals were normalized respect to the MVC 
and were rectified and the envelope of the EMG 
signals extracted using a low pass filter with a 
cut-off frequency of 10 Hz. It was used a 5th 
order Butterworth filter for this propose. EMG 

amplitude estimation was accomplished using its 
RMS magnitude:

RMS
n

x
i

i

n

=
=
∑1 2

1

 (5)

where xi is the voltage value in the i-sample and 
n is the number of samples of the segment. The 
recorded data set was subdivided into smaller data 
sets. Moreover, individual “windows” overlap in 
time. Whole data set was separated in windows 
of 1024-samples length. There was overlapping 
of 128 samples with the adjacent windows. For 
each window, the elbow joint parameters, i.e. the 
mechanical impedance was estimated. Windows 
were overlapped to identify time trends and varia-
tions of impedance parameters. Figure 4 shows 
the recorded signals in an experimental section 
for one subject.

EMG to Elbow Joint 
Dynamics Relationship

For experimental conditions that involve quasi-
static and postural tasks, parameters are function 
of the EMG amplitude estimations(ŝ , ŝ )

E F
. Lin-

ear second-order equation that relates EMG 
amplitude and angular displacement with chang-
es of generated torque in joint can be modelled 
as:

∆ = ⋅∆ + ⋅ + ⋅τ θ θ θI B�� �(ŝ , ŝ ) K(ŝ , ŝ )
E F E F

∆ ∆  
(6)

where ŝ
E

 is the estimation of the EMG amplitude 
of extensor muscles, ŝ

F
 is the estimation of the 

EMG amplitude of flexor muscles, ∆θ  is the 
variation of angular displacement in the joint, 
∆τ  is the variation of generated torque in the 
joint, K(ŝ , ŝ )

E F
 is the stiffness function, B(ŝ , ŝ )

E F
 

Figure 3. Experimental platform for characteriza-
tion of mechanical impedance at elbow joint level
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is the viscosity function and I is the inertial pa-
rameter.

As have been showed in literature, during an 
isometric contraction in which a subject voluntarily 
increases or decreases the joint torque by changing 
muscle activation, joint viscoelasticity has been 
shown to increase in parallel with joint torque, 
(Zhang and Rymer, 1997). Figure 5 shows values 
reported in literature related to joint viscoelasticity.

Thus, to evaluate joint viscoelasticity during 
the postural (isometric condition) experiments 
carried out, it was used previous studies which 
had suggested a linear relation between surface 

EMG activity and joint torque and joint stiffness, 
(Osu et al., 2004). They defined a parameter called 
IMCJ (index of muscle co-contraction around the 
joint). The IMCJ was defined as the summation of 
the absolute values of agonistic and antagonistic 
muscle torques around the joint and computed 
from the linear relation between surface EMG 
and joint torque. IMCJ around elbow joint can 
be expressed as the equation 3, (Osu and Gomi 
1999; Osu et al., 2004). sF1 and sE1 are the surface 
EMG activity of the elbow monoarticular flexor 
and extensor, respectively, and sF2 and sE2 denote 

Figure 4. Recorded signals of one subject that correspond to torque (top, left), angular displacement 
(top, right), filtered-rectified EMG biceps brachii (bottom, left) and filtered-rectified EMG triceps bra-
chii (bottom, right)



124

Modeling the Human Elbow Joint Dynamics from Surface Electromyography
 

surface EMG activity of bi-articular flexor and 
extensor, respectively.

IMCJ = a1sF1 + a2sE1 + a3sF2 + a4sE2 (7)

In literature, human arm visco-elastic param-
eters are function of the muscular activation. For 
experimental conditions that involve isometric, 
quasi-static and postural tasks, it was validate the 
stiffness and viscosity parameters modelled as 
linear functions of the EMG amplitude estimations 
(ŝ , ŝ )
E F

. Thus, it could be defined relations in 
equations 8 and 9.

B(ŝ , ŝ ) b ŝ b ŝ
E F E F

= ⋅ + ⋅
e f

 (8)

K(ŝ , ŝ ) k ŝ ŝ
E F E F

= ⋅ + ⋅
e f

k  (9)

Thus, as presented in equation 6, there is a 
second-order relationship involving EMG infor-
mation in the visco-elastic parameters. Starting 
from equation 6, it were used ∆θ and ∆τ  to 
estimate K, B and I. Next, it were used the EMG 
amplitude calculated as well as K and B values 
to correlates the information, using linear least 
squares.

Results

Figure 6 presents the estimation of K and B respec-
tively, for all four subjects. Such parameters were 
obtained after calculating individual parameters 
of the overlapped windows.

Estimated values in Figure 6, there are ap-
proximately constant parameters. Variations 
arise from the torque modulation generated by 
subjects in order to maintain the postural task. It 
were obtained magnitudes in the range of 2.5 a 
4.7 N.m.s/rad for viscosity and 5.3 a 13.1 N.m/
rad for stiffness parameters. Those values are in 
the range found in literature.

FUTURE RESEARCH DIRECTIONS

In order to obtain more accurate models of the 
joint dynamics, it is required to include the non-
linearities and reflexes involved (soft tissues, 
muscular spindles, etc.).

The methods described in case study cannot 
distinguish between the contributions of intrinsic 
muscle properties and spinal reflexes to the overall 
joint impedance. It is required to implement experi-
mental methods to identify those contributions.

Figure 5. Magnitudes of elbow joint viscoelasticity in function of torque for isometric contractions. 
Adapted from (Zhang and Rymer, 1997)
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A future research direction relates to identify 
joint dynamics in execution of movement. SEMG 
may provide valuable information to reach this 
purpose.

CONCLUSION

The mechanical impedance of a system is best 
described by its transfer function, which can only 
be estimated using perturbations. However, those 
perturbations interact with the natural behaviour 
of the system being analyzed. In biomechanical 
modelling, it is useful to obtain a non-invasive 
technique for modelling purposes. This chapter 
presented the electromyography for biomechanical 
modelling of human elbow joint. A Case Study 
described a specific study to obtain the modu-
lation and prediction of stiffness and damping 
using EMG data. Experiments carried out aimed 
to approximate the behavioural characteristics 
of the human elbow joint system by some math-
ematical expression. The compact and simple 
model presented in the Case Study was enough 
to characterize the main factors relating articular 
dynamics with muscular activation. In this ap-
proach, a second-order, linear model described the 
relationship between joint dynamics and position 

well, provided that the position input was limited 
to small perturbations around a fixed mean posi-
tion. The parameters of the second-order model 
varied strongly with the mean position, the level 
of background contraction, and the size of the 
perturbations.

The results presented in this chapter provide 
information to the field of human motor control 
and also to its application in robotics and other 
engineering applications. Thus, through the char-
acterisation of mechanical properties associated 
with the human joints as well as strategies used 
by human beings to command it, exist a direct 
application to control devices based on EMG in a 
biologically inspired way, i.e. biomimetic control.
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Arm Swing during Human 
Gait Studied by EMG of 

Upper Limb Muscles

ABSTRACT

Arm swing during human gait has both passive and active components. The chapter presents a study 
conducted with normal subjects using electromyography (EMG) to describe patterns of arm and shoul-
der muscle activity in different gait conditions. These included normal forward walking, walking with 
immobilized arms, backward walking, power walking with accentuated arm swing, running, and load 
carriage. Complementary kinematic data are presented, too. Rhythmic muscle activity persists to some 
extent when both arms are immobilized during walking. Forward and backward walking involve dissimilar 
patterns of muscle activity, although the limb movements are very similar in both conditions. Likewise, 
power walking and running are characterized by different curves of EMG activity. Unimanual load car-
riage during walking affects muscle activities of both the loaded and the non-loaded arm. Research on 
normal arm swing provides a basis for clinical investigations of gait disorders.

INTRODUCTION

Arm swing is a typical, though not obligatory, 
feature of normal human gait. Since arm swing has 
no direct function for propulsion, it is unclear why 
this movement occurs (Meyns, Bruijn, & Duysens 

2013); suggested reasons include improvement of 
stability, reduction of energy consumption, neuro-
nal coupling of upper and lower limbs, and pas-
sive induction of arm swing by trunk movements, 
gravity, and inertia. Compared to the extensive 
research on leg muscle activity, EMG of upper 
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limb muscles during walking has received little 
attention. This study characterizes the activity of 
arm and shoulder muscles during different modes 
of human gait in healthy volunteers. We aimed to 
gain insight into neurophysiological mechanisms 
of gait (leg-arm coupling, adaptation of motor 
synergies to changing conditions) and to provide 
physiological EMG data, which might be useful 
for studies in patients with gait disorders, e.g. in 
Parkinson’s disease.

The frequency of arm swing and the phase 
coupling between upper and lower limbs depend 
on the walking velocity (Wagenaar & van Em-
merik, 2000). During slow walking (<0.8 m/s), 
both arms tend to swing back and forth together 
rather than alternately, at twice the stride frequency 
of the legs. During normal and fast walking and 
running, both arms swing in alternation and in 
phase with the contralateral legs, so the left arm 
swings forward along with the right leg and vice 
versa (Webb, Tuttle, & Baksh, 1994).

In their seminal EMG study, Ballesteros, 
Buchthal, and Rosenfalck (1965) concluded that 
swinging the arm from back to forth (forward arm 
swing) during walking is actuated by contractions 
of internal rotators of the upper arm (latissimus 
dorsi), while the posterior part of the deltoid 
muscle and the teres major are responsible for 
backswing. Others argued that forward arm swing 
is a passive movement (Hinrichs, 1990; Hogue, 
1969). Possibly due to methodical limitations, the 
aforementioned studies found no EMG activity 
of upper arm muscles (triceps, biceps) during 
walking, whereas recent research detected such 
activity (Ivanenko, Cappellini, Poppele, & Lac-
quaniti, 2008; Kuhtz-Buschbeck & Jing, 2012). 
In brief, it has been shown that arm swing is not 
an entirely passive pendular movement, but the 
extent to which upper limb muscles actively drive 
arm swing during walking and running is not yet 
completely understood.

This chapter presents novel EMG data to 
characterize the activity of shoulder and arm 
muscles in normal subjects during various gait 
conditions. Activity of one paravertebral trunk 

muscle (erector spinae) was recorded, too. First, 
normal forward walking (control condition) is 
described together with corresponding kinematic 
data of arm swing. In line with the concept that 
arm and leg muscle activations are coupled by 
a central motor program (Dietz, 2002; Nielsen, 
2003), it was then hypothesized that some EMG 
activity of upper limb muscles would persist when 
both arms are immobilized during walking. We 
also examined whether deliberate suppression 
of persisting EMG signals is possible. Next, we 
compare EMG data of forward and backward 
walking. Although the limb movement trajec-
tories are remarkably similar in both conditions 
(Thorstensson, 1986), we expected dissimilar 
patterns of upper limb muscle activity. Reciprocal 
arm swing was deliberately accentuated during 
power walking, which is a popular alternative to 
Nordic pole walking. Here it was hypothesized 
that rhythmical shoulder and upper arm muscle 
activations would increase above control values. 
However, since the basic biomechanical features 
of walking are preserved during power walking, 
we anticipated no major change in the activation 
profile of the erector spinae muscle. By contrast, 
we expected the EMG curves of both, upper limb 
and paravertebral muscles, to differ between 
walking and running. Furthermore we studied the 
EMG during treadmill walking with unimanual 
and bimanual load carriage (10% body weight). 
Here we anticipated differences between uni- and 
bimanual carriage and a possible involvement of 
the non-loaded arm during unilateral load carriage.

Taken together, the current EMG data have 
been collected in twenty normal subjects to outline 
the profiles of arm and shoulder muscle activity 
for different modes of gait on a treadmill (forward 
walking, walking with immobilized arms, back-
ward walking, power walking, running, load car-
riage). The current data complement two previous 
related studies, which had been performed in the 
same laboratory, but with other subjects and other 
gait conditions (Kuhtz-Buschbeck, Brockmann, 
Gilster, Koch, & Stolze, 2008; Kuhtz-Buschbeck 
& Jing, 2012).
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BACKGROUND

The following short review will first discuss pas-
sive and active components of arm swing during 
human gait. Then the pertinent neuronal circuitry 
of the spinal cord will be outlined, including central 
pattern generators (CPGs) that generate rhythmic 
muscle activity during locomotion. Possible ben-
efits of natural arm swing are then weighed against 
the metabolic cost of this rhythmical movement. 
Finally, particular gait conditions such as walk-
ing backwards, load carriage, power walking and 
running will be discussed.

Arm swing: active or passive movement? Pas-
sive dynamics facilitate normal arm swing during 
human walking. The trunk does not move forward 
with constant speed, but with small cyclic changes 
superimposed upon a steady baseline velocity 
(Murray, 1967). The suspension points of the 
arms (glenohumeral joints) undergo horizontal 
and vertical accelerations during each step cycle, 
which induce passive pendular arm movements 
(Jackson, Joseph, & Wyard 1978, 1983a, 1983b). 
Elastic and frictional resistive forces develop as 
the swinging arms approach the turning points 
of their excursions (Kubo, Wagenaar, Saltzman, 
& Holt, 2004). It has recently been proposed 
that the arms act as passive mass dampers that 
diminish head and torso rotations during walk-
ing and running (Pontzer, Holloway, Raichlen, 
& Lieberman, 2009). According to this passive 
arm swing hypothesis, the swinging of the arms 
is indirectly powered by movements of the lower 
body rather than actively driven by shortening 
contractions of shoulder muscles. To demonstrate 
passive dynamics, Collins, Adamczyk and Kuo 
(2009) attached artificial arms made of rope to 
a yoke, which was placed on the shoulders of a 
person, who then walked with his real arms tied to 
his body. The artificial arms started to oscillate in 
a movement similar to natural arm swing. More-
over, these researchers constructed a mechanical 
walking model consisting of two curved feet, two 
straight legs and a pelvis to which two straight 
free-swinging arms were attached to. Masses of 

the limbs were based on anthropometric data. The 
stance foot rolled along the floor, which had a slight 
downward inclination, thus providing the model 
with energy. Different modes of fully passive arm 
swing were observed with this mechanical walk-
ing model, including a reciprocal mode similar to 
natural arm swing of human walking.

However, arm swing during human gait has also 
active components. Already the first analysis of 
the angular momentum of the upper limbs showed 
that arm swing is not merely a passive pendular 
motion (Elftman, 1939). Ballesteros et al. (1965) 
later found rhythmical activity of arm and shoul-
der muscles during forward walking, illustrating 
their seminal study with selected original EMG 
recordings. Subsequent studies largely agree that 
backward arm swing is supported by contractions 
of shoulder extensor muscles (Hinrichs, 1990; 
Hogue, 1969; Jackson et al., 1978; Kuhtz-Bus-
chbeck & Jing, 2012). Yet, there is no consensus 
regarding both the contribution of shoulder flexor 
muscles to arm swing and the activity of upper 
arm muscles during this movement. Early EMG 
research was based on selected data of single steps, 
but averaged data of many step cycles describe the 
temporal pattern and amount of muscle activity 
more accurately (Frigo & Crenna, 2009). In the 
current study, EMG data of ~50 step cycles per 
subject and condition were averaged, amplitude-
normalized and time-normalized. Individual EMG 
curves are shown to illustrate inter-subject vari-
ability. Complementary kinematic recordings help 
to distinguish between shortening muscle contrac-
tions, which drive a movement, and lengthening 
contractions, which may resist passively induced 
motions (Faulkner, 2003).

Functional organization of motor output: Walk-
ing and running involve simultaneous contractions 
of many muscles, and hence coordinated motor 
neuronal activity in the spinal cord. To illustrate 
this, EMG signals of specific muscles can be 
mapped onto spinal cord segments according to 
the locations of the respective motor neuron pools 
(Chiovetto, 2011). Leg muscle activity during hu-
man walking is associated with a cranio-caudal 
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migration of motor neuronal activity within the 
lumbosacral spinal cord, which mirrors changes of 
kinetic energy due to motion of the center of body 
mass (Cappellini, Ivanenko, Dominici, Poppele, 
& Lacquaniti, 2010). Simultaneous EMG record-
ings at various levels of the trunk during human 
gait showed that long paravertebral muscles are 
sequentially activated by a motor command, which 
propagates along the spinal cord in cranio-caudal 
direction (Ceccato, de Sèze, Azevedo, & Cazalets, 
2009). In this present study we monitored EMG 

signals of muscles innervated by cervical segments 
(e.g. trapezius, deltoideus) and lumbar segments 
(erector spinae) of the spinal cord to allow detec-
tion of a possible similar temporal sequence of 
muscle activations.

Central motor program: Central pattern genera-
tors of locomotion (CPGs) are neuronal networks 
in the spinal cord (Figure. 1), which can generate 
the rhythmic muscle activity necessary for walk-
ing without higher brain centers and even without 
sensory feedback (Grillner, 1981). The existence 

Figure 1. Simplified diagram of the neuronal circuitry. Central pattern generators (CPG, circles) are 
groups of neurons in the spinal cord (dotted rectangle), which generate alternating activity of flexor 
and extensor muscles during locomotion. The respective motoneurons (F, E) of a CPG inhibit each 
other reciprocally via interneurons. Each limb has an own CPG. Horizontal arrows indicate that the 
CPGs of the same girdle are connected to ensure alternating movements of the left and right limbs. 
Long propriospinal connections (vertical arrow) couple the CPGs of the arms and legs. The influence 
of the legs on the arms is probably stronger than vice versa (grey shade in vertical arrow). The spinal 
circuitry is influenced by descending input from higher centers (e.g. brainstem, mesencephalon, cortex) 
and by afferent feedback



133

Arm Swing during Human Gait Studied by EMG
 

of such CPGs has been demonstrated with spinal 
animal preparations; walking recovers consider-
ably after complete transection of the spinal cord 
in rats and cats. Most likely each limb has its own 
CPG. These pattern generators are connected via 
propriospinal neuronal pathways to ensure smooth 
inter-limb coordination. In a trotting animal the 
left and right limbs of the same girdle move in 
strict alternation, with a phase shift of half a step 
cycle. Diagonal limbs move in synchrony: the 
right hindlimb in phase with the left forelimb and 
the left hindlimb in phase with the right forelimb. 
The same phase coupling between legs and arms 
is typical for normal and fast human walking and 
also for running. There is evidence that also hu-
mans possess a spinal rhythm-generating network 
for arm and leg movements during locomotion, 
which depends, however, much more on intact 
supraspinal control than in animals (Grillner, 
2011; Nielsen, 2003). Step-related EMG activity 
of leg muscles has been observed in patients with 
complete spinal cord lesions during treadmill train-
ing with body-weight support (Wirz, Colombo, 
& Dietz, 2001), although functional recovery of 
gait is hitherto not possible after such injuries.

Cyclic movements of the arms have been shown 
to influence leg muscle activity (and vice versa), 
indicating that CPGs of the upper and lower limbs 
are coupled via propriospinal pathways in humans 
as well (Zehr & Duysens, 2004). Concerning arm 
swing, Ballesteros et al. (1965) found that some 
step-related shoulder muscle activity persists 
when subjects walk with both arms loosely tied to 
the trunk (their Figure. 10A). To replicate and to 
extend their finding, we examined tight and loose 
immobilization of the arms during treadmill walk-
ing. Persistent rhythmical EMG signals of upper 
limb muscles would indicate that leg movements 
“automatically” trigger upper limb muscle activity 
in such conditions. We also asked the subjects to 
suppress residual muscle activity with the help 
of visual EMG feedback. A moderate or strong 
coupling between leg and arm muscle activations 
would impede such suppression, whereas a weak 
coupling would make suppression easy.

Benefits of arm swing during gait: The 
metabolic costs of natural arm swing are low, 
because the associated muscle contractions are 
weak (Kuhtz-Buschbeck & Jing, 2012). Arm 
swing and shoulder rotation in the transverse 
plane counteract the angular momentum that is 
imparted by the swinging legs during walking 
and running (Collins, Adamczyk, & Kuo, 2009; 
Hamner, Seth, & Delp, 2010; Hinrichs, 1990). 
Thus, body rotation about the vertical axis (axial 
twist) is reduced, and trunk and head are stabi-
lized. Moreover, arm swing can improve lateral 
balance during walking and running (Arellano & 
Kram, 2011; Ortega, Fehlman, & Farley, 2008). 
Although it is simple to walk with the hands in 
the pockets or clasped behind the trunk, walking 
without natural arm swing is less efficient. Maxi-
mum walking speed was found to be reduced when 
both arms are strapped to the body (Eke-Okoro, 
Gregoric, & Larsson, 1997). Here, velocity is 
gained mainly by increasing the step frequency 
(cadence), whereas the step length increases less 
than it would normally. Restriction of arm swing at 
a given gait velocity augments energy expenditure 
during walking by 5-10% (Collins et al., 2009; 
Ortega et al., 2008; Umberger, 2008). The whole-
body angular momentum about the vertical axis 
increases in this situation (Collins et al., 2009), 
as does the free vertical moment between the foot 
and the ground (Li, Wang, Crompton, & Gunther, 
2001; Park, 2008). Umberger (2008) found that the 
foot exerts higher external rotation moments onto 
the surface of a force plate in the second half of 
the stance phase when subjects walk without arm 
swing (his Figure. 2). This may augment energy 
expenditure, because additional contractions of 
leg and trunk muscles are probably necessary to 
counteract these ground reaction moments (Col-
lins et al., 2009; Ortega et al., 2008). Therefore we 
expected paravertebral muscle activity to increase 
when subjects walked with immobilized arms in 
the present experiments.

Walking backwards: By time-reversing other-
wise invariant kinematic patterns, healthy adults 
can instantly change from forward to backward 
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walking. Leg movements during forward and 
backward walking are strikingly similar; the 
feet travel along nearly the same path, though 
in reversed direction (Thorstensson, 1986; his 
Figure. 1). A kinematic study of arm movements 
shows that elbow joint excursions and shoulder 
joint extension are nearly identical in both con-
ditions, while (anterior) flexion of the shoulder 
is somewhat reduced during backward walking 
(Kuhtz-Buschbeck et al., 2008; their Figure. 2). 
Even though the kinematic templates are preserved 
across gait reversal, this does not necessarily in-
dicate that the EMG patterns are invariant, too. 
Leg muscles activations of forward and backward 
walking are known to differ considerably (Grasso, 
Bianchi, & Lacquaniti, 1998). We have addressed 
this issue for the upper limbs in the present study.

Power walking and running: The current data 
characterize EMG patterns of both, power walk-
ing and running, and compare those with normal 
forward walking. Arm swing is deliberately 
emphasized during power walking. By compari-
son with Nordic walking, no poles are required. 
During power walking both arms are briskly 
moved back and forth (not side to side) close to 
the body (Meakin, 2003). The elbows maintain 
an angle of about ninety degrees. At the end of 
forward arm swing, the elbow is about level with 
the breastbone; at the end of backswing, the hand 
is near the hip. The head is kept up with the chin 
parallel to the ground and the eyes look straight 
ahead. The posture is kept upright with enhanced 
tension of abdominal and gluteal muscles. Since 
especially backward arm swing is accentuated 
during power walking, we expected enhanced 
activity of shoulder extensors in this gait condition. 
Up to now only one study has compared power 
walking with normal walking (Cho, Kim, & Kim, 
2006). The step length was enlarged, shoulder joint 
excursions were bigger, the elbows more flexed, 
and especially ankle extensors (gastocnemius, 
soleus) and elbow flexors (biceps brachii) were 
more active in the former condition. However, 
muscle activation patterns are not evident from 
that study (no EMG curves are shown).

Walking in general (i.e. also power walking) 
involves an inverted pendulum mechanism, where 
the center of mass of the body (COM) vaults 
over the supporting leg during the stance phase 
(Lacquaniti, Ivanenko, & Zago, 2012). The COM 
trajectory curves upward during stance to reach 
maximum height in the middle of this phase. Short 
double stance phases (= double support phases), 
where both feet are in contact with the ground, are 
characteristic for walking. By contrast, running is 
a bouncing gait in which the forward movement 
of the COM slows down and the COM trajectory 
is curved downward in the first half of the stance 
phase (Hamner & Delp, 2013), because the sup-
porting leg acts as a spring that is loaded. In the 
second half of the stance phase (of running) the 
COM is accelerated upward and forward. At the 
switch from walking to running, ground reaction 
forces increase, the stance phase shortens, and 
stance and swing phases are separated by a float 
phase, in which there is no contact with the ground 
(Nicola & Jewison, 2012). No double stance 
phases exist during running. In line with these 
biomechanical differences between walking and 
running, we expected divergent EMG profiles of 
upper limb and paravertebral muscles.

Load carriage: Grocery bags, buckets, brief-
cases or other items are often carried with one or 
both hands during walking. One previous study 
examined the effects of loading on upper limb 
kinematics and deltoid muscle activity (Donker, 
Mulder, Nienhuis, & Duysens; 2002). The move-
ment amplitude of the loaded arm during walking 
decreased when a 1.8 kg mass was attached to the 
wrist, while EMG signals of the deltoid muscle 
increased. In the present experiments we let the 
subjects carry a heavier load of 10% of their 
respective body weights (BW). This is typical 
for carrying school bags by hand (Brackley & 
Stevenson, 2004) and also for carrying tasks dur-
ing agricultural work (Gillette, Stevermer, Miller, 
Meardon, & Schwab, 2010). The load was carried 
either unilaterally by one hand or bilaterally and 
evenly allocated to both hands (2 x 5% BW). Ef-
fects on the different arm and shoulder muscles 
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are described. Moreover, it is examined whether 
unimanual load carriage influences the EMG 
activity on the contralateral (non-loaded) side.

GAIT CONDITION - DEPENDENT 
PATTERNS OF MUSCLE ACTIVITY

Method: EMG of Upper Limb 
Muscles During Human Gait

Twenty healthy volunteers (10 men, 10 women) 
participated in the experiments. Their mean age 
was 26.2 ± 7.6 years (±SD), mean body height 
178 ± 8 cm, weight 70.7 ± 11.4 kg and body mass 
index 22.3 ± 2.4 kg/m2. Approval from the local 
ethics committee had been obtained and all par-
ticipants gave informed consent. They wore tank 
tops, sweatpants (with pockets) and their personal 
running shoes. Experiments were performed on a 
treadmill with a belt surface of 170 cm in length 
and 44 cm in width (Woodway®, Germany). The 
different gait conditions were trained extensively 
during an initial practice phase of ~60 min. They 
comprised of:

1.  Normal walking with natural unrestricted 
arm swing at a treadmill velocity of 6 km/h.

2-3.  Bound condition (6 km/h) without and 
with feedback of the EMG signal: Walking 
with both arms immobilized by a brace 
and Velcro® straps that attached the up-
per arms, forearms and hands to the trunk 
(medi Arm fix® shoulder immobilization 
support, Bayreuth, Germany). The subjects 
were asked to keep both arms comfortably 
relaxed. A safety line connected them to an 
emergency stop switch. This condition was 
initially practiced without feedback of the 
EMG signals, and later performed with and 
without such feedback (see below).

4-6.  Pocket conditions (6 km/h): Treadmill walk-
ing with loosely restricted arm movements. 
The left, right or both hands were put into 
trousers pockets.

7.  Backward walking (4 km/h) on the treadmill, 
with unrestricted arm swing. This task was 
perceived as difficult, so a low treadmill 
velocity was chosen for safety reasons. Slow 
forward walking (4 km/h) served as control 
condition.

8.  Power walking (6 km/h): Demonstrations, 
detailed instructions (Meakin, 2003), and 
short video clips were used to teach this 
walking style with accentuated arm swing. 
It was practiced until performance appeared 
to be smooth.

9.  Slow running at 6 km/h (jogging) with free 
arm swing.

10-12.  Load carriage (6 km/h): The volunteers 
walked forward while carrying a load (dumb-
bell, 10% of body weight) in the left hand, 
the right hand or with two smaller loads in 
both hands (2 x 5% of body weight).

Subsequent to the initial practice phase, self-
adhering Ag-AgCl electrodes (Arbo®H124SG, 
Germany) were attached to the abraded skin above 
seven muscles on the right side of the body, with 
an inter-electrode distance of 2.5 cm. A bipolar 
surface EMG system was used (EMG MyoSystem 
1400L, Noraxon, Scottsdale, AZ). The following 
muscles were studied (Figure. 2): upper trapezius 
(TRAP), electrodes on the middle of a line between 
C7 spinous process and acromion. Anterior deltoid 
(AD): electrodes ~ 4 cm anterior to acromion, on 
line to thumb. Posterior deltoid (PD): electrodes 
~ 4 cm behind angle of acromion, on line to little 
finger. Biceps brachii (BIC): electrodes on line 
between acromion and fossa cubiti at ~1/3 from 
the fossa. Triceps brachii (TRI): electrodes on long 
head of the muscle, ~ 3 cm medial to central part 
of a line connecting the acromion and olecranon. 
Latissimus dorsi (LD): electrodes ~ 4 cm caudal 
of inferior scapular angle (arms hanging), oriented 
parallel to the muscle fibers. Lumbar erector spinae 
(ES): electrodes were placed ~3 cm lateral of the 
spinous process of vertebra L3.

After the EMG electrodes had been placed in 
line with published guidelines (Hermens, Freriks, 
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Disselhorst-Klug, & Rau, 2000), three static maxi-
mum voluntary contractions (MVC; duration ~ 3 
s) were performed by each muscle of interest. AD, 
PD and LD were tested by flexion/extension of 
the shoulder against a fixed resistance, with the 
elbow extended. TRAP was tested by abduction 
of the extended arm in the frontal plane. TRI 
and BIC were contracted with the elbow flexed 
by ~90°. To test the ES, subjects lay in the prone 
position and extended the trunk (lordosis) against 
external resistance. For later normalization of 
the EMG signals obtained during gait, the data 
of each muscle were amplitude-normalized to 
the highest activity level (mean amplitude for 
0.3 s) found in this set of maximum voluntary 
contractions (Burden, 2010; Konrad, Schmitz, & 
Denner, 2001). The aforementioned 12 gait trials 
(conditions) were then performed by each subject 
in randomized order. To allow for comparison of 
the various conditions, treadmill velocity was kept 
constant at 6 km/h, except during backward gait 
(4 km/h). Each trial lasted for one minute, but the 
Bound condition trials were extended by another 
~2 minutes. After the first minute without EMG 
feedback, the subjects watched their own EMG 
signals on a monitor while walking with immo-
bilized arms. We explained those signals to the 
volunteers and encouraged them to repress residual 
activity of arm and shoulder muscles with the help 
of this feedback. They had not been informed in 
advance about this additional task to ensure natural 
performance during the initial minute of the Bound 
condition, e.g. without premature explorations of 
suppression strategies or other distortions. Stance 
and swing phases were detected with an optical 
sensor system (virtual footswitch) working at a 
frequency of 1000 Hz and having an accuracy 
of 1 cm (Microgate Optogait®, Bolzano, Italy), 
which was mounted on the treadmill. All gait tri-
als were filmed with a digital video camera. The 
experiments lasted for approximately 3 hours per 
volunteer (total duration).

EMG signals were recorded at a bandwidth 
of 10-500 Hz, A/D converted at 1000 Hz (12 bit 

resolution) and stored together with synchronized 
footswitch and video data for later offline analysis. 
Appropriate software (Noraxon® MyoResearch 
XP, Master Edition 1.07) was used for digital 
filtering (FIR bandpass 20 - 250 Hz), full-wave 
rectification and smoothing (root mean square, 
window 50 ms). EMG signals of each muscle were 
amplitude-normalized (% MVC, see above). Data 
of ~50 step cycles per gait condition and subject 
were averaged to obtain individual EMG profiles, 
which are shown to demonstrate between-subject 
variability. As time axis, the step cycle of the 
right leg (ipsilateral to the EMG electrodes) was 
normalized from 0% (footstrike, onset of stance) 
to 100% (end of swing phase). Mean amplitudes 
of the rectified normalized EMG signals over the 
entire step cycle were calculated for each subject 
and condition to obtain average levels of muscle 
activity.

Analysis of the inter-subject variability of these 
activity levels indicated non-normal distribution 
for several muscles and conditions (Kolmogorov-
Smirnov tests). Group data are therefore illustrated 
as median EMG curves of the 20 subjects with 
quartiles (whiskers: 25%, 75%). Non-parametric 
analyses of variance and Wilcoxon tests were cal-
culated to detect significant differences in muscle 
activity between conditions, e.g. AD Normal vs. 
AD Bound. Tables with statistical results are 
provided as supplementary data (appendix).

EMG curves are arranged from top to bottom in 
figures, according to the segmental innervation of 
the muscles by the spinal cord: TRAP (segments 
C2-C4), AD and PD (C5-C6), BIC (C5-C7), TRI 
(C6-C8), LD (C6-C8) and ES (L3), see Schünke, 
Schulte, Schumacher, Voll, and Wesker (2010). To 
establish relationships between muscle activity and 
movements, video recordings (lateral view) and 
footswitch signals were examined together with 
synchronized EMG data in slow motion. Further-
more we draw on kinematic data of shoulder and 
elbow movements during human gait, which had 
been collected earlier (Kuhtz-Buschbeck et al., 
2008). Lengthening (eccentric) and shortening 
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(concentric) muscle contractions are described as 
defined by Faulkner (2003). During a lengthen-
ing contraction the muscle elongates while under 
tension, because the contractile muscular force is 
weaker than an opposing force.

Results: Muscle Activity during 
Normal Forward Walking

During walking and running the anterior reversal 
of the (right) arm swing takes place at ~50% of 
the step cycle of the ipsilateral leg (see Figuress. 

2, 3), coinciding with the onset of the contralateral 
stance phase (i.e. left footstrike). The posterior 
reversal falls together with the onset of the ipsi-
lateral stance phase (right footstrike, 0% of the 
step cycle). A typical arm swing movement for 
a gait velocity of 6 km/h is shown in Figure. 2A 
(for details see Kuhtz-Buschbeck et al., 2008). 
The amplitude (= wrist displacement) is ~40 cm 
in anterior-posterior direction; excursions of the 
shoulder cover an angle of ~35˚; elbow flexion 
reaches ~135˚ and elbow extension ~170˚. Rota-
tion of both shoulders in the transverse plane, 

Figure 2. a. Typical arm swing excursion at a gait velocity of 6 km/h (adapted from Kuhtz-Buschbeck et 
al., 2008). b. EMG electrodes on muscles: TRAP, trapezius, pars descendens; AD, anterior deltoid; PD, 
posterior deltoid; BIC, biceps brachii; TRI, long biarticular head of triceps brachii; LD, latissimus dorsi; 
ES, lumbar erector spinae. c. Periods of muscle activity during forward walking (6 km/h) with natural 
arm swing. Data are based on median EMG profiles of the 20 participants. Thick bars (TRAP, PD, LD, 
ES) indicate that the median EMG activity of exceeds 4% MVC. Thin bars denote weaker EMG activity, 
i.e. >2% MVC for TRAP, PD, LD, ES, >1.5% MVC for TRI and >0.75% MVC for AD. Activity of the BIC 
(not shown) was irregular and very weak. Concomitant arm movements are depicted above; arrowheads 
denote movement direction. The time axis indicates a normalized step cycle of the right leg (0-100%)
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about the vertical axis of the body, amounts to 
~10˚. Positions of the EMG electrodes (Figure. 
2B) and periods of muscle activity in relation to 
arm swing kinematics (Figure. 2C) are shown. 
Individual curves and median EMG profiles of 
the twenty subjects are illustrated in Figure. 3 (left 
and middle panels) for normal walking.

The upper TRAP exhibited biphasic activity 
with a first peak at ~40% (late stance phase) and 
a second peak at ~85% of the step cycle (swing 
phase). This muscle abducts the arms so that they 
clear the side of the trunk and swing approximately 
parallel to the sagittal plane (Hogue, 1969). The 
TRAP may also control shoulder inclination in the 
frontal plane, which changes in a single oscilla-
tion per gait cycle (Ceccato et al., 2009). Rather 
weak shortening AD contractions (<1% MVC) 
supported the forward arm swing during the stance 
phase (at ~45%), and slight lengthening AD con-
tractions opposed shoulder extension in the swing 
phase (at ~80%). Extensor (PD) activity was about 
three times higher than AD activity. PD and LD 
signals reached peaks at 50% of the step cycle, i.e. 
at heelstrike of the contralateral (left) foot. These 
contractions decelerated the forward arm swing 
and initiated the reversal to backswing; both PD 
and LD retract the upper arm. TRI contractions 
prevented excessive passive elbow flexion when 
the forward swing reached its anterior turning 
point. Backward arm swing was supported by 
shortening PD and LD contractions at the end of 
the step cycle (at ~90%), which then continued 
as lengthening contractions, opposing forward 
swing during the early stance phase (~0-20%). ES 
activity reached distinctive peaks in the middle and 
at the end of the step cycle as reported by others 
(Anders et al., 2007). The lumbar ES stabilizes the 
pelvic girdle when the body weight is transferred 
from one leg onto the other leg. Its activity has 
been shown to be synchronized to an anterior 
pelvic tilt that occurs at each footstrike (Ceccato 
et al., 2009). Muscle activity was weak in rela-
tion to maximum voluntary contractions, which 
confirms that normal arm swing is facilitated by 

passive dynamics (Collins et al., 2009). Median 
EMG activity levels (group data) were ~7% (ES), 
~3.5% (TRAP), ~2.5% (PD, LD), ~1.3% (TRI), 
and <1% MVC (AD, BIC); see Table 1 (appendix) 
for details. BIC activity was irregular.

Shoulder and elbow extensor activity (LD, PD, 
TRI) was clearly (about threefold) stronger than 
flexor (AD, BIC) activity, and the EMG signals 
of extensor muscles exhibited definite peaks of 
activation. Compatible with this difference, Hin-
richs (1990) postulated that backward arm swing 
is supported by extensor muscle activity (PD, LD), 
whereas forward arm swing is primarily passive, 
analogous to a child on a swing that is pushed 
from one direction. Accordingly, recent research 
found enhanced extensor activity (TRI, LD) when 
the arms were deliberately held still, parallel to 
the trunk, during walking (Kuhtz-Buschbeck & 
Jing, 2012). Especially the biarticular long head 
of the TRI contracted phasically, indicating that 
enhanced shoulder and elbow extensor activity is 
necessary to prevent passively induced forward 
arm swing. Lengthening contractions of extensor 
muscles (PD, LD, TRI) decelerate forward arm 
swing, which seems to be mostly passive, and initi-
ate the reversal to backswing in the middle of the 
normal walking cycle. Interestingly, Barthelemy 
and Nielsen (2010) found that inhibition of the 
motor cortex by paired-pulse transcranial magnetic 
stimulation partly suppresses PD activity around 
the anterior turning point of the arm swing move-
ment during treadmill walking. This indicates a 
corticospinal control of the deltoid muscle at that 
time, which may facilitate the combination of an 
“automatic” forward arm swing with voluntary 
goal-directed movements (e.g. pointing, reaching).

A passive arm swing hypothesis for upper 
body movement during human walking and run-
ning has been put forward, where the forces are 
derived from the legs and transmitted via the 
trunk to act through the shoulders on the arms 
(Pontzer et al., 2009). According to this model, 
deltoid muscle contractions do not drive the arm 
swing. Instead, anterior and posterior portions of 
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the deltoid (AD, PD) serve as spring-like elements 
that co-contract simultaneously to stabilize the 
shoulder and to prevent excessive passive arm 
movements. We found frequent co-contractions 
of AD and PD, but extensor (PD) activity was 
clearly stronger. Inter-subject variability of AD 
activity was high (Figure. 3, left panel), possibly 
reflecting differences in walking styles (Weiss 
& St. Pierre, 1983). Moreover, shortening PD 
and LD contractions initiated and later actively 
completed the backward arm swing (Figure. 2C), 
which is not entirely in line with a passive arm 
swing model. Combined EMG and kinetic data 
(joint moments and torques) would be required 
to resolve this issue.

A cranio-caudal propagation of the EMG activ-
ity along the various portions of the erector spinae 
muscle during normal human walking has been 
described in a recent study (Ceccato et al., 2009). 
It corresponds to a descending “motor wave” that 
sequentially activates the different segments of the 
spinal cord (Falgairolle, de Sèze, Juvin, Morin, 
& Cazalets, 2006). Accordantly, the present data 
of normal walking (Figure. 3, left panel) show 
that the onset of TRAP activity (innervation by 
segments C3-C4) at ~30% is closely followed by 
PD and LD (C5-C8) activation onsets, whereas 
the steep rise of lumbar ES activity (L3) starts 
later, at ~40% of the step cycle. However, the 
variability and fluctuations of the EMG curves 
impede precise definitions of the onset times. The 
maxima of PD, LD, ES signals all coincided at 
contralateral footstrike (50%).

Muscle Activity during Gait 
with Restricted Arm Swing

Bound condition: Median EMG activities of the 
AD, PD and TRI decreased below control values 
when subjects walked with both arms immobilized 
by a brace (see Table 1 in appendix). Nevertheless 
rhythmical activity with a temporal pattern similar 
to normal walking was still present (Figure. 3, right 
panel), especially in the TRAP, PD, LD and ES. 

Since the brace prevented retraction and inward 
rotation of the upper arm, the phasic PD and LD 
activations could not produce movements. When 
visual feedback of the EMG signals was provided, 
many subjects were astonished about their ongo-
ing rhythmic shoulder muscle activity (TRAP, 
PD, LD). Despite the feedback, they could not 
entirely suppress the EMG signals, as illustrated 
in Figure. 4 with data of a female volunteer. She 
managed to minimize TRAP activity by lowering 
the right shoulder, and could also reduce EMG 
signals of PD and LD. However, AD and TRI be-
came more active during this attempt. Altogether, 
rhythmical EMG activity in the Bound condition 
was natural, while its suppression was difficult 
and ineffective. This coupling of lower and upper 
limb muscle activations supports the view that 
both are part of a centrally determined motor 
program (Balter & Zehr, 2007; Dietz & Michel, 
2009; Zehr & Duysens, 2004). Leg movements 
during human walking “automatically” activate 
shoulder muscles.

Restricting arm movements during walking 
has adverse effects, because arm swing normally 
counterbalances the angular momentum of the 
swinging legs and thereby helps to control the 
twisting motion of the trunk about its vertical 
axis (Hinrichs, 1990). Elftman (1939) stated “it 
is therefore possible for the legs to go through 
the movements necessary for walking, without 
imparting marked rotation to the body as a 
whole” (p. 531). EMG activities of LD and ES 
increased significantly (see Table 1 in appendix) 
in the Bound condition of the present study. Con-
gruently, Callaghan, Patla, and McGill (1999) 
found that trunk muscle activity (LD, ES, oblique 
abdominal muscles) and compressive loading of 
lower back intervertebral joints are augmented 
when arm swing during walking is restricted by 
crossing the arms over the abdomen. Although 
normal arm swing itself requires some muscle 
contractions, more energy-consuming techniques 
of gait stabilization (like enhanced trunk muscle 
activity) are needed without this movement, so 



140

Arm Swing during Human Gait Studied by EMG
 

Figure 3. Normal walking and Bound condition. a. Limb movements of a stance phase during normal 
walking (left series of pictures) and walking with both arms immobilized by a brace (right picture series). 
Note the upward “bobbing” movement of head and trunk during stance. b. EMG curves with normalized 
amplitudes (%MVC) are shown in relation to a time-normalized gait cycle of the right leg (0-100%). Left 
panel (blue lines): Individual curves of normal walking. Right panel (black lines): Individual curves of 
the Bound condition. Each line shows the EMG activity of one subject, based on averaged data of ~50 
step cycles. Middle panel: Group results, i.e. median EMG profiles of the 20 subjects during normal 
walking (blue broken line) and walking with immobilized arms (Bound condition, black solid line). The 
thin error bars denote quartiles (25%, 75%) for Bound condition
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that the metabolic cost of walking increases (Col-
lins et al., 2009; Ortega et al., 2008). Not only 
trunk muscles, but probably also leg muscles are 
involved, as the knee joint moment during stance 
is known to increase when subjects walk without 
arm swing (Umberger, 2008). Hence EMG of leg 
muscles in this condition may be an interesting 
topic for further research.

Pocket conditions: Ballesteros et al. (1965) 
demonstrated ongoing shoulder muscle activity in 
subjects who walked along a walkway with their 
arms loosely tied to the trunk. We could repro-
duce this result in subjects who walked with both 
hands in the pockets (not illustrated for the sake 
of brevity). When only one hand was put in the 
pocket, while the contralateral arm could swing 

free, EMG signals of both sides changed (Table 
2 in appendix). On the constrained (pocket) side, 
deltoid muscle activity decreased, while BIC, LD 
and ES signals increased above control values of 
normal walking. On the contralateral side, TRI 
activity of the free swinging right arm increased 
~15% above control values. In accordance, a ki-
nematic study found a noticeable increase of the 
non-constrained arm swing amplitude during gait 
with unilateral arm constraint (Ford, Wagenaar, 
& Newell, 2007).

Figure 4. Remaining EMG activity in the Bound condition. Data of normal walking (control condi-
tion), walking with immobilized arms (without EMG feedback), and gait with immobilized arms plus 
EMG feedback are shown. Signals of TRAP, PD, and LD could be repressed, but AD and TRI activity 
increased in the latter condition. Raw unfiltered EMG data of one representative subject (note cable 
movement artefacts in BIC curves during normal walking). Stance (black bars) and swing (sw) phases 
are indicated below
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Figure 5. Backward walking. a. Limb movements during backward walking. Stance and swing phases of 
the right leg are indicated by arrows. b. EMG curves. Left panel: Group results, i.e. median EMG profiles 
of the 20 subjects during normal walking (blue broken line) and backward walking (black solid line) 
at a treadmill velocity of 4 km/h. Error bars denote quartiles (25%, 75%) for walking backwards. Right 
panel: Individual EMG curves of the 20 participants during backward walking. Otherwise as in Figure. 3
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Muscle Activity during 
Backward Gait

Obvious differences between the EMG patterns of 
forward and backward gait were found (Figure. 5). 
AD and BIC, both almost inactive during forward 
walking, showed distinct peaks of activity at the 
end of the stance phase during backward walking, 
which coincided with the posterior (in relation to 
the body, i.e. dorsal) turnaround of arm swing. 
These contractions may initiate reversal from 
shoulder extension to flexion; the BIC furthermore 
limits elbow extension. Typical features of forward 
walking, such as the sharp peak EMG signals of 
PD, LD and ES at ~50% of the step cycle, were 
missing during backward walking. Instead, these 
muscles showed smooth profiles of activity in the 
stance phase (~10-40%) and in the swing phase of 
the ipsilateral leg. No cranio-caudal sequence of 
the muscle activation onsets (i.e. TRAP first, ES 
last) was evident during backward walking. The 
median level of the EMG activity changed, too. 
All investigated muscles except the TRAP were 
significantly (p<0.01) more active during back-
ward than forward walking (Table 3, appendix).

Despite similar movement trajectories of 
forward and backward gait, reversal of the move-
ment direction hence entails apparent changes 
of the EMG patterns of upper limb muscles. 
In accordance to the above others found diver-
gent leg muscle synergies (Thorstensson, 1986; 
Grasso et al., 1998). Nevertheless a sequential 
activation of paravertebral muscles may occur 
in both conditions (De Sèze, Falgairolle, Viel, 
Assaiante, & Cazalets, 2008). In six out of nine 
subjects, these researchers found that the ES was 
activated with a cranio-caudal progression (from 
C7 to L4) of EMG activity during both forward 
and backward walking. Moreover, the dissimilar 
EMG profiles of forward and backward walking 
can be reconstructed as a weighted combination 
of a few underlying basic activation patterns, 
whose timing and weight change as a function of 

the walking direction, but whose waveforms are 
largely preserved (Lacquaniti et al., 2012).

Muscle Activity during 
Power Walking

Data of normal walking and power walking are 
contrasted in Figure 6. All investigated muscles 
were significantly (p<0.01) more active in the 
latter condition (see Table 4 in appendix). Exag-
gerated arm swing was associated with nearly 
continuous TRAP activity during the entire step 
cycle, in contrast to the biphasic pattern of nor-
mal walking. Maximal PD activity was reached 
somewhat later than during normal walking, i.e. at 
~55% of the step cycle, just after heelstrike of the 
contralateral foot. This PD contraction probably 
implemented powerful backward arm swing by 
shoulder extension, assisted by TRI activity. BIC 
and TRI were active together in the second half 
of the step cycle (50-100%) to probably stabilize 
the elbow joint. The reversal from backward to 
forward arm swing at the end of the step cycle 
was associated with AD and BIC contractions; 
the latter prevented excessive elbow extension. 
Minimum AD, PD, BIC and TRI signals were 
found during midstance (~30% of the step cycle), 
suggesting that forward arm swing is mostly pas-
sive at that time.

A high inter-subject variability of power walk-
ing performance is evident from the individual 
EMG curves, especially of the TRAP, AD, PD 
and TRI (Figure. 6, right panel). The volunteers 
had not been familiar with this walking technique 
prior to the experiments. They were instructed 
carefully and they practiced thoroughly prior 
to the EMG recordings. Nevertheless a uniform 
and stereotyped performance was obviously not 
reached. Future work could combine longer re-
peated training with kinematic and EMG analyses. 
The EMG profiles of LD and ES were very similar 
during normal walking and power walking, as basic 
biomechanical features are shared by both modes 
of gait (curvature of COM trajectory during stance, 
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Figure 6. Power walking. a. Limb movements during power walking with accentuation of arm swing. 
Stance and swing phase of the right leg are indicated. b. EMG curves. Left panel: Group results, i.e. 
median EMG profiles of the 20 subjects during normal walking (blue broken line) and power walking 
(black solid line). Treadmill velocity was 6 km/h. Error bars denote quartiles for power walking (25%, 
75%). Right panel: Individual EMG curves of the 20 participants during power walking. Otherwise as 
in Figure. 3
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Figure 7. Running. a. Movements during slow running (6 km/h). Stance and swing phase of the right 
leg are indicated. Note the downward “bobbing” of the head during mid-stance. White asterisk denotes 
the short float phase, where there is no ground contact. b. EMG curves. Left panel: Group results, i.e. 
median EMG profiles of the 20 subjects during normal walking (blue broken line) and running (black 
solid line). Error bars denote quartiles (25%, 75%) for running. Right panel: Individual EMG curves of 
the 20 participants during running. Otherwise as in Figure. 3
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inverted pendulum mechanism). Conversely, the 
LD and ES activation profiles differ markedly 
between walking and running (see below).

Muscle Activity during Running

Compared to walking, the shoulders are more 
extended (upper arm retraction) and the elbows 
more flexed during running, and the anterior-
posterior amplitude of arm swing is diminished 
(see kinematic data in Kuhtz-Buschbeck et al., 
2008). Figure 7 shows EMG curves of both gait 
conditions, recorded at a treadmill speed of 6 
km/h. All examined muscles were significantly 
more active (p<0.001) during running than during 
walking (Table 4, appendix). The two peaks of 
TRAP activity were shifted towards the onset of 
the step cycle during running, occurring just after 
ground contact of each foot, i.e. at ~5% and 55% 
of the step cycle. Likewise, ankle extensor activity 
is known to shift from the second to the first half 
of the stance phase at the transition from walk-
ing to running (Cappellini, Ivanenko, Poppele, & 
Lacquaniti, 2006). AD, PD and BIC profiles all 
had two peaks during running, one in the early 
stance phase and another one in the early swing 
phase. The first peak had not been present during 
walking. Sharp peaks of LD activity in the middle 
of the step cycle, which are typical for walking, 
were not found during running. Instead, LD ac-
tivity started in the early stance phase of running 
and continued into the swing phase (until ~60%). 
Hence a sustained lengthening LD contraction 
opposes forward arm swing during running and 
implements the reversal to backward arm swing 
in the middle of the step cycle. An analogous role 
of the LD has been described for quadrupedal 
walking in monkeys, where the main function of 
this muscle is to slow down the swinging forelimb 
in preparation for touchdown of the hand (Larson 
& Stern, 2007). Timing and amplitude of lumbar 
ES activity differed between walking and running, 
too. This muscle showed (rather variable) EMG 
activity in the swing phase of running and not a 

clear peak at ~50% of the step cycle as during walk-
ing. Previous research of Thorstensson, Carlson, 
Zomlefer, and Nilsson (1982) found evidence that 
the lumbar ES controls trunk movements mainly 
in the sagittal plane during running, whereas it 
restricts mostly movements in the frontal plane 
during walking.

In summary, the EMG patterns of walking and 
running are dissimilar. Enhanced muscle activity 
(TRAP, AD, PD, BIC) in the early stance phase 
of the ipsilateral leg is characteristic for running. 
Forward movement of the COM (center of body 
mass) decelerates and the COM approaches the 
ground at that time (Hamner & Delp, 2013). The 
function of the supporting leg as a spring, which 
stores elastic energy, explains the analogous 
temporal shift of leg muscle activity towards the 
onset of the stance phase (Cappellini et al., 2006; 
Ivanenko et al., 2008). Activation peaks of LD and 
ES during phases of double stance, in which both 
feet contact the ground, are typical for walking, 
but not for running. As in walking, the arm swing 
during running is known to counterbalance the 
vertical angular momentum of the legs (Hamner 
& Delp, 2013), but the patterns of muscle activity 
needed to accomplish this function are different.

Muscle Activity during Load Carriage

The results of are displayed as median EMG 
curves of the twenty subjects for the three load 
conditions together with control data of normal 
walking without load (Figure. 8). Numerical values 
are listed in Table 5 (appendix). Bimanual load 
carriage (Figure. 8) increased the EMG activity 
of all investigated muscles above control values 
(p<0.01). Phasic EMG signals were obvious, 
but the arm swing excursions were reduced. BIC 
activity reached a pronounced peak in the swing 
phase (at ~40%) in this condition. Unimanual load 
carriage with the right hand augmented the EMG 
signals of most ipsilateral muscles (TRAP, AD, 
PD, BIC, TRI) more than bimanual load carriage 
(see Table 5). The increases of TRAP, AD, and 
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TRI activities were most pronounced (more than 
threefold). However, activity of the ipsilateral ES, 
i.e. a paravertebral muscle, was reduced during 
unimanual load carriage.

The non-loaded side was affected by unilateral 
load carriage. When the load was carried with the 

left hand (Figure. 8contralateral muscle activity 
increased; especially the EMG signals of the 
right TRAP, AD and ES were higher (Table 5). 
In accordance with the above, other researchers 
found an increased movement amplitude of the 
non-loaded free arm during walking, which may 

Figure 8. Load carriage. a. Allocation of loads during unimanual carriage and bilateral carriage. White 
ellipsoids indicate straining of lumbar ES muscle(s) in each condition. Yellow dots denote positions of 
EMG electrodes (always on right side). b. Limb movements (stance phase) during unilateral carriage. 
Swinging of the loaded arm is diminished, swinging of the non-loaded arm is pronounced (white asterisk). 
c. Bimanual load carriage. d. Median EMG curves (group result of 20 subjects) of the four conditions, 
superimposed at the same scale for direct comparison. Blue lines with error bars (quartiles 25%, 75%) 
are curves of normal walking without load. Green lines: Right hand (ipsilateral to EMG electrodes) 
carries the load. Red lines: Left hand carries load. Yellow lines: Bimanual carriage. Treadmill velocity 
was always 6 km/h
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compensate for the reduced movements of the 
loaded arm (Donker et al., 2002). With more EMG 
leads (which were not available), it would have 
been possible to measure ipsi- and contralateral 
effects of unilateral load carriage simultaneously. 
Resultant asymmetries of lower extremity ki-
nematics and ground reaction forces have been 
published elsewhere (Zhang, Ye, & Wang, 2010).

FUTURE RESEARCH DIRECTIONS

We studied the EMG patterns of (only) seven 
muscles due to technical limitations. Further 
research may include more muscles and also 
provide complementary kinematic data for the 
different gait conditions. Hof, Elzinga, Grimmius, 
and Halbertsma (2002) found that average EMG 
profiles of leg muscles vary in a predictable way 
with gait velocity, but this relationship has not yet 
been established in detail for upper limb muscles. 
Gait patterns and arm-leg coordination are some-
what different between treadmill and overground 
locomotion (Carpinella, Crenna, Rabuffetti, & 
Ferrarin, 2010; Stolze et al., 1997). The impact 
of these differences on upper limb EMG patterns 
is not yet known and may be a topic of further re-
search. A considerable inter-individual variability 
of the arm and shoulder muscle EMG curves is 
evident from the current data. Individual styles of 
walking and running most likely shape the muscle 
activation patterns. Some people swing their arms 
nearly directly forward and back (parallel to gait 
direction), others swing them with some crossover 
in front of the chest, elbow flexion can vary etc. 
Asymmetrical behaviour of the lower limbs and 
side differences of arm swing occur during normal 
gait of able-bodied subjects (Kuhtz-Buschbeck 
et al., 2008; Sadeghi, Allard, Prince, & Labelle, 
2000). How such individual features and asym-
metries of gait influence the EMG activity is not 
known precisely, so that further study is warranted.

Explaining inter-individual differences may be 
one topic. On the other hand, it is also interesting 

to identify basic patterns of muscle activity, which 
remain stable across subjects and gait conditions. 
Recent research has used component analyses to 
reconstruct the EMG profiles of a large set of 
muscles as a weighted combination of a few (i.e. 
four to five) basic underlying activation patterns 
(for review see Lacquaniti et al., 2012). Each of 
these patterns is timed at different periods of the 
gait cycle and weighted according to its relative 
contribution to the overall EMG profile. Timing 
and weighting of the basic patterns vary between 
gait conditions, which results in different EMG 
curves, but the waveforms of the patterns stay 
nearly constant. This approach has been mostly 
applied to EMG data of trunk and leg muscles, 
but it will certainly be relevant for upper limb 
muscles as well.

It is often assumed that if one moves the arms 
quickly and with power, the legs will also move 
more quickly and powerfully. If this was true, then 
significant correlations should exist between EMG 
signals of arm and leg muscles e.g. during power 
walking and running, which may be an issue of 
further research. For recumbent stepping it has 
been shown that rhythmic arm movements can 
enhance and shape the muscle activity of the legs 
(Ferris, Huang, & Kao, 2006). Possible influences 
of the arms on the legs are also interesting because 
rhythmic arm movements could be included in the 
rehabilitation of walking after neurological inju-
ries (Klimstra, Thomas, Stoloff, Ferris, & Zehr, 
2009). A recent study of stroke patients found 
that arm movements (performed on a treadmill 
with sliding handles) affect the kinematic and 
EMG patterns of the legs (Stevenson, de Serres, 
& Lamontagne, 2010). Potential benefits of such 
gait rehabilitation protocols are a point of current 
clinical research.

Reduced arm swing during walking, which is 
often asymmetrical, is a typical feature of Par-
kinson’s disease. Quantitative evaluation of arm 
swing might be useful for early and differential 
diagnosis, and for tracking of disease progression 
(Lewek, Poole, Johnson, Halawa, & Huang, 2010). 
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The reduction of the arm excursion is related to 
abnormal activation of shoulder muscles (Bu-
chthal & Fernandez-Ballesteros, 1965). These 
authors found a spectrum of EMG abnormalities 
that ranged from wrongly timed non-rhythmical 
muscle activity to continuous rhythmical activ-
ity, which had no relation to the gait cycle. The 
posterior deltoid muscle was most often involved. 
A recent kinematic study of the influence of the 
basal ganglia on upper limb locomotor synergies 
evaluated arm and leg movements during gait in 
Parkinson’s disease patients under four conditions, 
namely (i) no treatment (baseline), (ii) therapeu-
tic stimulation of the subthalamic nucleus, (iii) 
L-DOPA medication, and (iv) a combination of 
both treatments (Crenna et al., 2008). Interest-
ingly, gait-related movements of the arms and legs 
showed different susceptibility to the therapeutic 
interventions. Leg movements (thigh excursion, 
step length) improved significantly more than 
arm swing, which remained small. This disparity 
may be related to different supraspinal influences 
on CPGs of upper and lower limb movements. 
Direct corticospinal control dominates arm and 
hand movements, whereas phylogenetically older 
pathways involving brainstem relay stations influ-
ence leg movements (Crenna et al., 2008; Chastan 
et al., 2009). Future EMG studies might confirm 
this concept, further elucidate the influence of 
the basal ganglia on locomotor synergies, and 
possibly help to optimize treatment of the gait 
disorder in Parkinson’s disease. Control data of 
normal subjects provide a basis for such studies.

CONCLUSION

During normal and fast walking, both arms swing 
in alternation and in phase with the contralateral 
legs. We performed EMG recordings from upper 
limb muscles with healthy volunteers during differ-
ent gait conditions on a treadmill. Free arm swing 
during normal forward walking is not an entirely 
passive movement; it is associated with rhythmi-

cal shortening and lengthening contractions of 
upper limb muscles. Lengthening contractions 
of elbow and shoulder extensor muscles curtail 
the forward arm swing and initiate the reversal of 
this movement in the middle of the step cycle, at 
the onset of the stance phase of the contralateral 
leg. Shortening contractions of these muscles 
then support the backward arm swing. Shoulder 
and elbow flexor muscles are generally less active 
than extensor muscles. The overall EMG activity 
of upper limb muscles during normal walking 
(at 6 km/h) with unrestricted arm swing is low 
(< 5% MVC) compared to maximum voluntary 
contractions. Passive dynamics make reciprocal 
arm swing easy.

Spinal locomotor pattern generators and neu-
ronal pathways that couple hindlimb and forelimb 
movements have been demonstrated earlier in 
quadrupedal animals. We found that some phasic 
EMG activity of the posterior deltoid and of other 
muscles persists when both arms are immobilized 
with a brace during human walking. It is not 
possible to completely suppress this remaining 
rhythmic activity, even when biofeedback of the 
EMG signals is provided. This supports the con-
cept that the leg movements of human walking 
automatically trigger simultaneous activity of arm 
and shoulder muscles.

Forward and backward walking are associ-
ated with different patterns of upper limb EMG 
activity, although both modes of gait have similar 
kinematic features. Likewise, the transition from 
walking to running induces pronounced changes 
of the EMG curves. Compared to normal walk-
ing, power walking with deliberate accentuation 
of arm swing is characterized by strong increases 
in the activities of the trapezius, biceps brachii, 
and of the anterior portion of the deltoid muscle. 
Unimanual load carriage during walking increases 
the muscle activities in both arms, i.e. the loaded 
and the non-loaded arm. Paravertebral muscle 
activity (erector spinae) on the side of the load is, 
however, reduced.
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Studies of physiological EMG patterns in 
healthy volunteers provide a basis for research 
in patients with gait disorders that are associated 
with reduced and/or altered arm swing.

REFERENCES

Anders, C., Wagner, H., Puta, C., Grassme, R., 
Petrovitch, A., & Scholle, H. C. (2007). Trunk 
muscle activation patterns during walking at 
different speeds. Journal of Electromyography 
and Kinesiology, 17(2), 245–252. doi:10.1016/j.
jelekin.2006.01.002 PMID:16517182

Arellano, C. J., & Kram, R. (2011). The effects 
of step width and arm swing on energetic cost 
and lateral balance during running. Journal of 
Biomechanics, 44(7), 1291–1295. doi:10.1016/j.
jbiomech.2011.01.002 PMID:21316058

Ballesteros, M. L. F., Buchthal, F., & Rosen-
falck, P. (1965). The pattern of muscular activ-
ity during the arm swing of natural walking. 
Acta Physiologica Scandinavica, 63, 296–
310. doi:10.1111/j.1748-1716.1965.tb04069.x 
PMID:14329151

Balter, J. E., & Zehr, E. P. (2007). Neural cou-
pling between the arms and legs during rhythmic 
locomotor-like cycling movement. Journal of 
Neurophysiology, 97(2), 1809–1818. doi:10.1152/
jn.01038.2006 PMID:17065245

Barthelemy, D., & Nielsen, J. B. (2010). Cortico-
spinal contribution to arm muscle activity during 
human walking. The Journal of Physiology, 588(6), 
967–979. doi:10.1113/jphysiol.2009.185520 
PMID:20123782

Brackley, H. M., & Stevenson, J. M. (2004). 
Are children’s backpack weight limits enough? 
A critical review of the relevant literature. 
Spine, 29(19), 2184–2190. doi:10.1097/01.
brs.0000141183.20124.a9 PMID:15454714

Buchthal, F., & Fernandez-Ballesteros, M. L. 
(1965). Electromyographic study of the muscles 
of the upper arm and shoulder during walking in 
patients with Parkinson’s disease. Brain, 88, 875–
896. doi:10.1093/brain/88.5.875 PMID:5864465

Burden, A. (2010). How should we normalize 
electromyograms obtained from healthy partici-
pants? What we have learned from over 25 years 
of research. Journal of Electromyography and 
Kinesiology, 20(6), 1023–1035. doi:10.1016/j.
jelekin.2010.07.004 PMID:20702112

Callaghan, J. P., Patla, A. E., & McGill, S. 
M. (1999). Low back three-dimensional joint 
forces, kinematics, and kinetics during walking. 
Clinical Biomechanics (Bristol, Avon), 14(3), 
203–216. doi:10.1016/S0268-0033(98)00069-2 
PMID:10619108

Cappellini, G., Ivanenko, Y. P., Dominici, N., Pop-
pele, R. E., & Lacquaniti, F. (2010). Migration of 
motor pool activity in the spinal cord reflects body 
mechanics in human locomotion. Journal of Neu-
rophysiology, 104(6), 3064–3073. doi:10.1152/
jn.00318.2010 PMID:20881204

Cappellini, G., Ivanenko, Y. P., Poppele, R. E., & 
Lacquaniti, F. (2006). Motor patterns in human 
walking and running. Journal of Neurophysiology, 
95(6), 3426–3437. doi:10.1152/jn.00081.2006 
PMID:16554517

Carpinella, I., Crenna, P., Rabuffetti, M., & Fer-
rarin, M. (2010). Coordination between upper- and 
lower-limb movements is different during over-
ground and treadmill walking. European Journal of 
Applied Physiology, 108(1), 71–82. doi:10.1007/
s00421-009-1168-5 PMID:19756711

Ceccato, J. C., de Sèze, M., Azevedo, C., & Ca-
zalets, J. R. (2009). Comparison of trunk activity 
during gait initiation and walking in humans. 
PLoS ONE, 4(12), e8193. doi:10.1371/journal.
pone.0008193 PMID:19997606

http://dx.doi.org/10.1016/j.jelekin.2006.01.002
http://dx.doi.org/10.1016/j.jelekin.2006.01.002
http://www.ncbi.nlm.nih.gov/pubmed/16517182
http://dx.doi.org/10.1016/j.jbiomech.2011.01.002
http://dx.doi.org/10.1016/j.jbiomech.2011.01.002
http://www.ncbi.nlm.nih.gov/pubmed/21316058
http://dx.doi.org/10.1111/j.1748-1716.1965.tb04069.x
http://www.ncbi.nlm.nih.gov/pubmed/14329151
http://dx.doi.org/10.1152/jn.01038.2006
http://dx.doi.org/10.1152/jn.01038.2006
http://www.ncbi.nlm.nih.gov/pubmed/17065245
http://dx.doi.org/10.1113/jphysiol.2009.185520
http://www.ncbi.nlm.nih.gov/pubmed/20123782
http://dx.doi.org/10.1097/01.brs.0000141183.20124.a9
http://dx.doi.org/10.1097/01.brs.0000141183.20124.a9
http://www.ncbi.nlm.nih.gov/pubmed/15454714
http://dx.doi.org/10.1093/brain/88.5.875
http://www.ncbi.nlm.nih.gov/pubmed/5864465
http://dx.doi.org/10.1016/j.jelekin.2010.07.004
http://dx.doi.org/10.1016/j.jelekin.2010.07.004
http://www.ncbi.nlm.nih.gov/pubmed/20702112
http://dx.doi.org/10.1016/S0268-0033(98)00069-2
http://www.ncbi.nlm.nih.gov/pubmed/10619108
http://dx.doi.org/10.1152/jn.00318.2010
http://dx.doi.org/10.1152/jn.00318.2010
http://www.ncbi.nlm.nih.gov/pubmed/20881204
http://dx.doi.org/10.1152/jn.00081.2006
http://www.ncbi.nlm.nih.gov/pubmed/16554517
http://dx.doi.org/10.1007/s00421-009-1168-5
http://dx.doi.org/10.1007/s00421-009-1168-5
http://www.ncbi.nlm.nih.gov/pubmed/19756711
http://dx.doi.org/10.1371/journal.pone.0008193
http://dx.doi.org/10.1371/journal.pone.0008193
http://www.ncbi.nlm.nih.gov/pubmed/19997606


151

Arm Swing during Human Gait Studied by EMG
 

Chastan, N., Westby, G. W. M., Yelnik, J., Bardinet, 
E., Do, M. C., Agid, Y., & Welter, M. L. (2009). 
Effects of nigral stimulation on locomotion and 
postural stability in patients with Parkinson’s 
disease. Brain, 132(1), 172–184. doi:10.1093/
brain/awn294 PMID:19001482

Chiovetto, E. (2011). The motor system plays 
the violin: a musical metaphor inferred from the 
oscillatory activity of the α-motoneuron pools 
during locomotion. Journal of Neurophysiology, 
105(4), 1429–1431. doi:10.1152/jn.01119.2010 
PMID:21273310

Cho, K. K., Kim, Y. S., & Kim, E. J. (2006). The 
comparative analysis of kinematic and EMG on 
power walking and normal gait. Korean Journal 
of Sport Biomechanics, 16(2), 85–95. doi:10.5103/
KJSB.2006.16.2.085

Collins, S. H., Adamczyk, P. G., & Kuo, A. 
D. (2009). Dynamic arm swinging in human 
walking. Proceedings. Biological Sciences, 
276, 3679–3688. doi:10.1098/rspb.2009.0664 
PMID:19640879

Crenna, P., Carpinella, I., Lopiano, L., Marzegan, 
A., Rabuffetti, M., & Rizzone, M. et al. (2008). 
Influence of basal ganglia on upper limb locomotor 
synergies. Evidence from deep brain stimulation 
and L-DOPA treatment in Parkinson’s disease. 
Brain, 131(12), 3410–3420. doi:10.1093/brain/
awn272 PMID:18952669

De Séze, M., Falgairolle, M., Viel, S., Assaiante, 
C., & Cazalets, J. R. (2008). Sequential activation 
of axial muscles during different forms of rhythmic 
behavior in man. Experimental Brain Research, 
185(2), 237–247. doi:10.1007/s00221-007-1146-
2 PMID:17940760

Dietz, V. (2002). Do human bipeds use quadrupe-
dal coordination? Trends in Neurosciences, 25(9), 
462–467. doi:10.1016/S0166-2236(02)02229-4 
PMID:12183207

Dietz, V., & Michel, J. (2009). Human bipeds use 
quadrupedal coordination during locomotion. An-
nals of the New York Academy of Sciences, 1164, 
97–103. doi:10.1111/j.1749-6632.2008.03710.x 
PMID:19645886

Donker, S. F., Mulder, T., Nienhuis, B., & Duy-
sens, J. (2002). Adaptation in arm movements 
for added mass to wrist or ankle during walk-
ing. Experimental Brain Research, 145, 26–31. 
doi:10.1007/s00221-002-1145-2

Eke-Okoro, S. T., Gregoric, M., & Larsson, L. E. 
(1997). Alterations in gait resulting from deliber-
ate changes of arm-swing amplitude and phase. 
Clinical Biomechanics (Bristol, Avon), 12(7-8), 
516–521. doi:10.1016/S0268-0033(97)00050-8 
PMID:11415762

Elftman, H. (1939). The function of the arms in 
walking. Human Biology, 11(4), 529–535.

Falgairolle, M., de Sèze, M., Juvin, L., Morin, D., 
& Cazalets, J. R. (2006). Coordinated network 
functioning in the spinal cord: an evolutionary per-
spective. Journal of Physiology, Paris, 100(5-6), 
304–316. doi:10.1016/j.jphysparis.2007.05.003 
PMID:17658245

Faulkner, J. A. (2003). Terminology for contrac-
tions of muscles during shortening, while isomet-
ric, and during lengthening. Journal of Applied 
Physiology, 95(2), 455–459. PMID:12851415

Ferris, D. P., Huang, H. J., & Kao, P. C. (2006). 
Moving the arms to activate the legs. Exer-
cise and Sport Sciences Reviews, 34(3), 113–
120. doi:10.1249/00003677-200607000-00005 
PMID:16829738

Ford, M. P., Wagenaar, R. C., & Newell, 
K. M. (2007). Arm constraint and walk-
ing in healthy adults. Gait & Posture, 26(1), 
135–141. doi:10.1016/j.gaitpost.2006.08.008 
PMID:16997561

http://dx.doi.org/10.1093/brain/awn294
http://dx.doi.org/10.1093/brain/awn294
http://www.ncbi.nlm.nih.gov/pubmed/19001482
http://dx.doi.org/10.1152/jn.01119.2010
http://www.ncbi.nlm.nih.gov/pubmed/21273310
http://dx.doi.org/10.5103/KJSB.2006.16.2.085
http://dx.doi.org/10.5103/KJSB.2006.16.2.085
http://dx.doi.org/10.1098/rspb.2009.0664
http://www.ncbi.nlm.nih.gov/pubmed/19640879
http://dx.doi.org/10.1093/brain/awn272
http://dx.doi.org/10.1093/brain/awn272
http://www.ncbi.nlm.nih.gov/pubmed/18952669
http://dx.doi.org/10.1007/s00221-007-1146-2
http://dx.doi.org/10.1007/s00221-007-1146-2
http://www.ncbi.nlm.nih.gov/pubmed/17940760
http://dx.doi.org/10.1016/S0166-2236(02)02229-4
http://www.ncbi.nlm.nih.gov/pubmed/12183207
http://dx.doi.org/10.1111/j.1749-6632.2008.03710.x
http://www.ncbi.nlm.nih.gov/pubmed/19645886
http://dx.doi.org/10.1007/s00221-002-1145-2
http://dx.doi.org/10.1016/S0268-0033(97)00050-8
http://www.ncbi.nlm.nih.gov/pubmed/11415762
http://dx.doi.org/10.1016/j.jphysparis.2007.05.003
http://www.ncbi.nlm.nih.gov/pubmed/17658245
http://www.ncbi.nlm.nih.gov/pubmed/12851415
http://dx.doi.org/10.1249/00003677-200607000-00005
http://www.ncbi.nlm.nih.gov/pubmed/16829738
http://dx.doi.org/10.1016/j.gaitpost.2006.08.008
http://www.ncbi.nlm.nih.gov/pubmed/16997561


152

Arm Swing during Human Gait Studied by EMG
 

Frigo, C., & Crenna, P. (2009). Multichannel 
SEMG in clinical gait analysis: A review and 
state-of-the-art. Clinical Biomechanics (Bristol, 
Avon), 24(3), 236–245. doi:10.1016/j.clinbio-
mech.2008.07.012 PMID:18995937

Gillette, J. C., Stevermer, C. A., Miller, R. H., 
Meardon, S. A., & Schwab, C. V. (2010). The 
effects of age and type of carrying task on 
lower extremity kinematics. Ergonomics, 53(3), 
355–364. doi:10.1080/00140130903402234 
PMID:20191410

Grasso, R., Bianchi, L., & Lacquaniti, F. (1998). 
Motor patterns for human gait: backward versus 
forward locomotion. Journal of Neurophysiology, 
80(4), 1868–1885. PMID:9772246

Grillner, S. (1981). Control of locomotion in 
bipeds, tetrapods, and fish. In V. Brooks (Ed.), 
Handbook of physiology-the nervous system II 
(pp. 1179–1236). Baltimore: Waverly Press.

Grillner, S. (2011). Neuroscience. Human locomo-
tor circuits conform. Science, 334(6058), 912–913. 
doi:10.1126/science.1214778 PMID:22096178

Hamner, S. R., & Delp, S. L. (2013). Muscle contri-
butions to fore-aft and vertical body mass center ac-
celerations over a range of running speeds. Journal 
of Biomechanics, 46(4), 780–787. doi:10.1016/j.
jbiomech.2012.11.024 PMID:23246045

Hamner, S. R., Seth, A., & Delp, S. L. (2010). 
Muscle contributions to propulsion and support 
during running. Journal of Biomechanics, 43(14), 
2709–2716. doi:10.1016/j.jbiomech.2010.06.025 
PMID:20691972

Hermens, H. J., Freriks, B., Disselhorst-Klug, C., 
& Rau, G. (2000). Development of recommenda-
tions for SEMG sensors and sensor placement 
procedures. Journal of Electromyography and 
Kinesiology, 10(5), 361–374. doi:10.1016/S1050-
6411(00)00027-4 PMID:11018445

Hinrichs, R. N. (1990). Whole body movement: 
Coordination of arms and legs in walking and 
running. In J. M. Winters, & S. L. Y. Woo (Eds.), 
Multiple muscle systems: Biomechanics and move-
ment organization (pp. 694–705). New York: 
Springer. doi:10.1007/978-1-4613-9030-5_45

Hof, A. L., Elzinga, H., Grimmius, W., & Halberts-
ma, J. P. (2002). Speed dependence of averaged 
EMG profiles in walking. Gait & Posture, 16(1), 
78–86. doi:10.1016/S0966-6362(01)00206-5 
PMID:12127190

Hogue, R. E. (1969). Upper-extremity muscular 
activity at different cadences and inclines during 
normal gait. Physical Therapy, 49(9), 963–972. 
PMID:5802700

Ivanenko, Y. P., Cappellini, G., Poppele, R. E., & 
Lacquaniti, F. (2008). Spatiotemporal organization 
of alpha-motoneuron activity in the human spinal 
cord during different gaits and gait transitions. The 
European Journal of Neuroscience, 27(12), 3351–
3368. doi:10.1111/j.1460-9568.2008.06289.x 
PMID:18598271

Jackson, K. M., Joseph, J., & Wyard, S. J. (1978). 
A mathematical model of arm swing during human 
locomotion. Journal of Biomechanics, 11(6-7), 
277–289. doi:10.1016/0021-9290(78)90061-1 
PMID:711777

Jackson, K. M., Joseph, J., & Wyard, S. J. (1983a). 
The upper limbs during human walking. Part 
I: Sagittal movement. Electromyography and 
Clinical Neurophysiology, 23(6), 425–434. 
PMID:6641598

Jackson, K. M., Joseph, J., & Wyard, S. J. (1983b). 
The upper limbs during human walking. Part 2: 
Function. Electromyography and Clinical Neu-
rophysiology, 23(6), 435–446. PMID:6641599

http://dx.doi.org/10.1016/j.clinbiomech.2008.07.012
http://dx.doi.org/10.1016/j.clinbiomech.2008.07.012
http://www.ncbi.nlm.nih.gov/pubmed/18995937
http://dx.doi.org/10.1080/00140130903402234
http://www.ncbi.nlm.nih.gov/pubmed/20191410
http://www.ncbi.nlm.nih.gov/pubmed/9772246
http://dx.doi.org/10.1126/science.1214778
http://www.ncbi.nlm.nih.gov/pubmed/22096178
http://dx.doi.org/10.1016/j.jbiomech.2012.11.024
http://dx.doi.org/10.1016/j.jbiomech.2012.11.024
http://www.ncbi.nlm.nih.gov/pubmed/23246045
http://dx.doi.org/10.1016/j.jbiomech.2010.06.025
http://www.ncbi.nlm.nih.gov/pubmed/20691972
http://dx.doi.org/10.1016/S1050-6411(00)00027-4
http://dx.doi.org/10.1016/S1050-6411(00)00027-4
http://www.ncbi.nlm.nih.gov/pubmed/11018445
http://dx.doi.org/10.1007/978-1-4613-9030-5_45
http://dx.doi.org/10.1016/S0966-6362(01)00206-5
http://www.ncbi.nlm.nih.gov/pubmed/12127190
http://www.ncbi.nlm.nih.gov/pubmed/5802700
http://dx.doi.org/10.1111/j.1460-9568.2008.06289.x
http://www.ncbi.nlm.nih.gov/pubmed/18598271
http://dx.doi.org/10.1016/0021-9290(78)90061-1
http://www.ncbi.nlm.nih.gov/pubmed/711777
http://www.ncbi.nlm.nih.gov/pubmed/6641598
http://www.ncbi.nlm.nih.gov/pubmed/6641599


153

Arm Swing during Human Gait Studied by EMG
 

Klimstra, M. D., Thomas, E., Stoloff, R. H., Fer-
ris, D. P., & Zehr E. P. (2009) Neuromechanical 
considerations for incorporating rhythmic arm 
movement in the rehabilitation of walking. Chaos 
19(2), 026102 1-14.

Konrad, P., Schmitz, K., & Denner, A. (2001). 
Neuromuscular evaluation of trunk-training 
exercises. Journal of Athletic Training, 36(2), 
109–118. PMID:12937449

Kubo, M., Wagenaar, R. C., Saltzman, E., & 
Holt, K. G. (2004). Biomechanical mechanism 
for transitions in phase and frequency of arm and 
leg swing during walking. Biological Cybernetics, 
91(2), 91–98. doi:10.1007/s00422-004-0503-5 
PMID:15351887

Kuhtz-Buschbeck, J. P., Brockmann, K., Gilster, 
R., Koch, A., & Stolze, H. (2008). Asymmetry 
of arm-swing not related to handedness. Gait 
& Posture, 27(3), 447–454. doi:10.1016/j.gait-
post.2007.05.011 PMID:17616462

Kuhtz-Buschbeck, J. P., & Jing, B. (2012). 
Activity of upper limb muscles during human 
walking. Journal of Electromyography and 
Kinesiology, 22(2), 199–206. doi:10.1016/j.jele-
kin.2011.08.014 PMID:21945656

Lacquaniti, F., Ivanenko, Y. P., & Zago, M. 
(2012). Patterned control of human locomo-
tion. The Journal of Physiology, 590(10), 
2189–2199. doi:10.1113/jphysiol.2011.215137 
PMID:22411012

Larson, S. G., & Stern, J. T. (2007). Humeral 
retractor EMG during quadrupedal walking in 
primates. The Journal of Experimental Biology, 
210(7), 1204–1215. doi:10.1242/jeb.002337 
PMID:17371919

Lewek, M. D., Poole, R., Johnson, J., Halawa, 
O., & Huang, X. (2010). Arm swing magnitude 
and asymmetry during gait in the early stages 
of Parkinson’s disease. Gait & Posture, 31(2), 
256–260. doi:10.1016/j.gaitpost.2009.10.013 
PMID:19945285

Li, Y., Wang, W., Crompton, R. H., & Gunther, M. 
M. (2001). Free vertical moments and transverse 
forces in human walking and their role in relation 
to arm-swing. The Journal of Experimental Biol-
ogy, 204(1), 47–58. PMID:11104710

Meakin, J. (2003). The beginner’s guide to power 
walking. Hauppauge, NY: Barron’s Educational 
Series.

Meyns, P., Bruijn, S. M., & Duysens, J. (2013). 
(in press). The how and why of arm swing dur-
ing human walking. Gait & Posture; Epub ahead 
of print. doi:10.1016/j.gaitpost.2013.02.006 
PMID:23489950

Murray, M. P. (1967). Gait as a total pattern of 
movement. American Journal of Physical Medi-
cine, 46(1), 290–333. PMID:5336886

Nicola, T. L., & Jewison, D. J. (2012). The 
anatomy and biomechanics of running. Clinics in 
Sports Medicine, 31(2), 187–201. doi:10.1016/j.
csm.2011.10.001 PMID:22341011

Nielsen, J. B. (2003). How we walk: Cen-
tral control of muscle activity during hu-
man walking. The Neuroscientist, 9(3), 195–
204. doi:10.1177/1073858403009003012 
PMID:15065815

Ortega, J. D., Fehlman, L. A., & Farley, C. T. 
(2008). Effects of aging and arm swing on the meta-
bolic cost of stability in human walking. Journal of 
Biomechanics, 41(16), 3303–3308. doi:10.1016/j.
jbiomech.2008.06.039 PMID:18814873

http://www.ncbi.nlm.nih.gov/pubmed/12937449
http://dx.doi.org/10.1007/s00422-004-0503-5
http://www.ncbi.nlm.nih.gov/pubmed/15351887
http://dx.doi.org/10.1016/j.gaitpost.2007.05.011
http://dx.doi.org/10.1016/j.gaitpost.2007.05.011
http://www.ncbi.nlm.nih.gov/pubmed/17616462
http://dx.doi.org/10.1016/j.jelekin.2011.08.014
http://dx.doi.org/10.1016/j.jelekin.2011.08.014
http://www.ncbi.nlm.nih.gov/pubmed/21945656
http://dx.doi.org/10.1113/jphysiol.2011.215137
http://www.ncbi.nlm.nih.gov/pubmed/22411012
http://dx.doi.org/10.1242/jeb.002337
http://www.ncbi.nlm.nih.gov/pubmed/17371919
http://dx.doi.org/10.1016/j.gaitpost.2009.10.013
http://www.ncbi.nlm.nih.gov/pubmed/19945285
http://www.ncbi.nlm.nih.gov/pubmed/11104710
http://dx.doi.org/10.1016/j.gaitpost.2013.02.006
http://www.ncbi.nlm.nih.gov/pubmed/23489950
http://www.ncbi.nlm.nih.gov/pubmed/5336886
http://dx.doi.org/10.1016/j.csm.2011.10.001
http://dx.doi.org/10.1016/j.csm.2011.10.001
http://www.ncbi.nlm.nih.gov/pubmed/22341011
http://dx.doi.org/10.1177/1073858403009003012
http://www.ncbi.nlm.nih.gov/pubmed/15065815
http://dx.doi.org/10.1016/j.jbiomech.2008.06.039
http://dx.doi.org/10.1016/j.jbiomech.2008.06.039
http://www.ncbi.nlm.nih.gov/pubmed/18814873


154

Arm Swing during Human Gait Studied by EMG
 

Park, J. (2008). Synthesis of natural arm swing 
motion in human bipedal walking. Journal of 
Biomechanics, 41(7), 1417–1426. doi:10.1016/j.
jbiomech.2008.02.031 PMID:18417138

Pontzer, H., Holloway, J. H., Raichlen, D. A., & 
Lieberman, D. E. (2009). Control and function of 
arm swing in human walking and running. The 
Journal of Experimental Biology, 212(4), 523–
534. doi:10.1242/jeb.024927 PMID:19181900

Sadeghi, H., Allard, P., Prince, F., & Labelle, H. 
(2000). Symmetry and limb dominance in able-
bodied gait: A review. Gait & Posture, 12(1), 
34–45. doi:10.1016/S0966-6362(00)00070-9 
PMID:10996295

Schünke, M., Schulte, E., Schumacher, U., Voll, 
M., & Wesker, K. (2007). Allgemeine Anatomie 
und Bewegungssystem. Prometheus. Lernatlas 
der Anatomie. Stuttgart, Germany: Georg Thieme 
Verlag.

Stephenson, J. L., De Serres, S. J., & Lamon-
tagne, A. (2010). The effect of arm movements 
on the lower limb during gait after a stroke. Gait 
& Posture, 31(1), 109–115. doi:10.1016/j.gait-
post.2009.09.008 PMID:19854654

Stolze, H., Kuhtz-Buschbeck, J. P., Mondwurf, 
C., Boczek-Funcke, A., Jöhnk, K., Deuschl, G., 
& Illert, M. (1997). Gait analysis during tread-
mill and overground locomotion in children and 
adults. Electroencephalography and Clinical 
Neurophysiology, 105(6), 490–497. doi:10.1016/
S0924-980X(97)00055-6 PMID:9448652

Thorstensson, A. (1986). How is the normal 
locomotor program modified to produce back-
ward walking? Experimental Brain Research, 
61(3), 664–668. doi:10.1007/BF00237595 
PMID:3956625

Thorstensson, A., Carlson, H., Zomlefer, M. R., & 
Nilsson, J. (1982). Lumbar back muscle activity 
in relation to trunk movements during locomotion 
in man. Acta Physiologica Scandinavica, 116(1), 
13–20. doi:10.1111/j.1748-1716.1982.tb10593.x 
PMID:7158389

Umberger, B. R. (2008). Effects of suppressing arm 
swing on kinematics, kinetics, and energetics of 
human walking. Journal of Biomechanics, 41(11), 
2575–2580. doi:10.1016/j.jbiomech.2008.05.024 
PMID:18621376

Wagenaar, R. C., & van Emmerik, R. E. (2000). 
Resonant frequencies of arms and legs identify 
different walking patterns. Journal of Biome-
chanics, 33(7), 853–861. doi:10.1016/S0021-
9290(00)00020-8 PMID:10831760

Webb, D., Tuttle, R. H., & Baksh, M. (1994). Pen-
dular activity of human upper limbs during slow 
and normal walking. American Journal of Physi-
cal Anthropology, 93(4), 477–489. doi:10.1002/
ajpa.1330930407 PMID:8048469

Weiss, P. L., & St Pierre, D. (1983). Upper and 
lower extremity EMG correlations during normal 
human gait. Archives of Physical Medicine and 
Rehabilitation, 64(1), 11–15. PMID:6849627

Wirz, M., Colombo, G., & Dietz, V. (2001). 
Long term effects of locomotor training in spinal 
humans. Journal of Neurology, Neurosurgery, 
and Psychiatry, 71(1), 93–96. doi:10.1136/
jnnp.71.1.93 PMID:11413270

Zehr, E. P., & Duysens, J. (2004). Regula-
tion of arm and leg movement during hu-
man locomotion. The Neuroscientist, 10(4), 
347–361. doi:10.1177/1073858404264680 
PMID:15271262

http://dx.doi.org/10.1016/j.jbiomech.2008.02.031
http://dx.doi.org/10.1016/j.jbiomech.2008.02.031
http://www.ncbi.nlm.nih.gov/pubmed/18417138
http://dx.doi.org/10.1242/jeb.024927
http://www.ncbi.nlm.nih.gov/pubmed/19181900
http://dx.doi.org/10.1016/S0966-6362(00)00070-9
http://www.ncbi.nlm.nih.gov/pubmed/10996295
http://dx.doi.org/10.1016/j.gaitpost.2009.09.008
http://dx.doi.org/10.1016/j.gaitpost.2009.09.008
http://www.ncbi.nlm.nih.gov/pubmed/19854654
http://dx.doi.org/10.1016/S0924-980X(97)00055-6
http://dx.doi.org/10.1016/S0924-980X(97)00055-6
http://www.ncbi.nlm.nih.gov/pubmed/9448652
http://dx.doi.org/10.1007/BF00237595
http://www.ncbi.nlm.nih.gov/pubmed/3956625
http://dx.doi.org/10.1111/j.1748-1716.1982.tb10593.x
http://www.ncbi.nlm.nih.gov/pubmed/7158389
http://dx.doi.org/10.1016/j.jbiomech.2008.05.024
http://www.ncbi.nlm.nih.gov/pubmed/18621376
http://dx.doi.org/10.1016/S0021-9290(00)00020-8
http://dx.doi.org/10.1016/S0021-9290(00)00020-8
http://www.ncbi.nlm.nih.gov/pubmed/10831760
http://dx.doi.org/10.1002/ajpa.1330930407
http://dx.doi.org/10.1002/ajpa.1330930407
http://www.ncbi.nlm.nih.gov/pubmed/8048469
http://www.ncbi.nlm.nih.gov/pubmed/6849627
http://dx.doi.org/10.1136/jnnp.71.1.93
http://dx.doi.org/10.1136/jnnp.71.1.93
http://www.ncbi.nlm.nih.gov/pubmed/11413270
http://dx.doi.org/10.1177/1073858404264680
http://www.ncbi.nlm.nih.gov/pubmed/15271262


155

Arm Swing during Human Gait Studied by EMG
 

Zhang, X. A., Ye, M., & Wang, C. T. (2010). 
Effect of unilateral load carriage on postures 
and gait symmetry in ground reaction force 
during walking. Computer Methods in Biome-
chanics and Biomedical Engineering, 13(3), 
339–344. doi:10.1080/10255840903213445 
PMID:20521188

KEY TERMS AND DEFINITIONS

Angular Momentum: A vector quantity, 
which represents the product of a body’s rota-
tional inertia and rotational velocity. The angular 
momentum of a group of particles is the sum of 
the angular momentum of each particle. Often 
the angular momentum of a group of particles 
(e.g. human body) about their center of mass is 
calculated.

Center of Mass (COM) of the Body: The 
center of mass is the balance point of an object’s 
mass (here human body); the distribution of the 
mass is balanced around the COM. A person’s cen-
ter of mass is slightly below his/her belly button.

Central Pattern Generator (CPG) for Lo-
comotion: Neuronal network in the spinal cord 
that by itself can generate the rhythmic motor 
neuronal activity, which is necessary to activate the 
muscles so that stepping movements are elicited. 
Each limb has an own CPG.

Double Stance Phase (=Double Support 
Phase): Time interval in which the stance phases 
of the left and the right leg overlap, so that both 
feet are in contact with the ground. The double 
stance phase is a typical feature of walking; it 
does not exist in running.

Inter-Limb Coupling: Stereotyped co-ordi-
nation of upper and lower limb movements during 
locomotion. It ensures alternate movements of 
the right and left legs during walking, while the 
arms swing out of phase with the ipsilateral legs.

Maximum Voluntary Contraction (MVC): 
Maximum isometric (or nearly isometric) con-
traction of a muscle. Such contractions are used 
to normalize EMG amplitudes, which are then 
expressed as a percentage (%MVC) of the EMG 
signal during the MVC.

Propriospinal Pathways: Neuronal pathways 
within the spinal cord, which connect different 
centers (e.g. CPGs) of the spinal cord.

Step Cycle: Time interval between ground 
contact of one foot (footstrike) until the next 
ground contact of the same foot. The step cycle 
consists of a stance and a swing phase.
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APPENDIX

Tables (Supplementary Data)

Table 1. Median EMG amplitudes during normal forward walking and walking with immobilized arms 
(Bound condition) at a treadmill velocity of 6 km/h 

Normal forward walking Bound condition

Median Percentiles Median Percentiles

Muscles 25% 75% 25% 75%

TRAP 3.41 1.95 4.51 3.11 2.26 4.36

% Change 100% - 9%

AD 0.70 0.50 0.89 0.48 ** 0.39 0.68

% Change 100% - 31%

PD 2.50 1.64 3.34 1.04 ** 0.75 1.32

% Change 100% - 58%

BIC 0.64 0.47 0.78 0.63 0.54 0.76

% Change 100% - 2%

TRI 1.29 0.95 1.84 1.17 * 0.86 1.31

% Change 100% - 10%

LD 2.79 2.25 4.88 4.02 * 2.95 5.23

% Change 100% + 44%

ES 7.08 5.61 8.61 8.00 ** 6.16 10.19

% Change 100% + 13%

Amplitude values of normalized EMG activity over the entire step cycle (unit % MVC) are given as median data of the 20 subjects, with 
percentiles describing inter-individual variability (quartiles, 25%, 75%). % Change: Values of normal walking (baseline) have been set to 
100% to illustrate relative changes in Bound condition. *p<0.05, ** p<0.01 (Wilcoxon tests): Significant differences between Bound and 
Normal condition.
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Table 2. Median EMG amplitude values during walking with the hands in the pockets (Pocket conditions) 
at a treadmill velocity of 6 km/h 

Normal 
gait

Left hand in pocket Right hand in pocket Both hands in pockets

Median Percentiles Median Percentiles Median Percentiles

Muscles 25% 75% 25% 75% 25% 75%

TRAP 3.41 3.84 2.44 5.00 3.85 2.26 4.95 3.58 2.48 5.04

% Change 100% +13% +13% +5%

AD 0.70 0.83 0.55 0.99 0.50 ** 0.40 0.65 0.56 ** 0.40 0.74

% Change 100% +19% -28% -20%

PD 2.50 2.57 2.04 3.04 1.67 ** 1.09 2.54 2.15 * 1.24 2.79

% Change 100% +3% -33% -14%

BIC 0.64 0.62 0.46 0.83 0.70 * 0.55 0.87 0.78 ** 0.59 0.98

% Change 100% -4% +10% +21%

TRI 1.29 1.52 * 1.03 1.92 1.54 1.16 1.82 1.77 1.25 2.21

% Change 100% +18% +19% +37%

LD 2.79 2.65 1.80 3.92 3.72 ** 3.06 4.90 4.71 ** 3.21 5.57

% Change 100% -5% +34% +69%

ES 7.08 7.74 5.25 8.31 7.91 * 5.41 8.64 7.73 ** 5.61 9.09

% Change 100% +9% +12% +9%

Amplitude values of normalized EMG activity over the entire step cycle (unit %MVC) are given as median data of 20 subjects with 
percentiles (quartiles, 25%, 75%). %Change: Data of normal walking (baseline) have been set to 100% to illustrate the relative changes that 
occur in Pocket conditions. *p<0.05, ** p<0.01 (Wilcoxon tests): Significant differences between Normal and Pocket conditions.
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Table 3. Median EMG amplitudes of forward walking and backward walking (at 4 km/h) 

Normal forward walking Backward walking

Median Percentiles Median Percentiles

Muscles 25% 75% 25% 75%

TRAP 2.97 1.47 3.79 2.77 2.12 4.17

% Change 100% - 7%

AD 0.72 0.53 1.08 1.17 ** 1.01 1.64

% Change 100% + 62%

PD 1.71 1.08 2.41 3.19 ** 2.25 4.45

% Change 100% + 87%

BIC 0.56 0.43 0.70 0.76 ** 0.59 0.95

% Change 100% + 35%

TRI 1.05 0.77 1.36 1.84 ** 1.49 2.82

% Change 100% + 74%

LD 1.72 1.38 3.07 3.04 ** 2.81 4.44

% Change 100% + 77%

ES 5.16 4.27 7.25 7.50 ** 4.91 9.98

% Change 100% + 45%

Amplitude values of normalized EMG activity over the entire step cycle (unit %MVC) are given as median data of 20 subjects with 
percentiles (quartiles, 25%, 75%). %Change: Data of normal walking (control condition) have been set to 100% to illustrate relative changes 
during backward walking. ** p<0.01 (Wilcoxon tests): Significant differences between forward and backward walking
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Table 4. Median EMG amplitudes for normal walking, power walking, and running at a treadmill veloc-
ity of 6 km/h 

Normal walking Power walking Running

Median Median Percentiles Median Percentiles

Muscles 25% 75% 25% 75%

TRAP 3.41 9.51 * 5.53 11.38 # 6.72 * 5.63 8.29

% Change 100% +179% +97%

AD 0.70 2.99 * 1.66 5.02 # # 1.26 * 1.01 1.59

% Change 100% +330% +80%

PD 2.50 5.88 * 4.25 9.17 5.54 * 3.65 7.94

% Change 100% +136% +122%

BIC 0.64 2.31 * 1.44 3.39 2.38 * 1.37 3.29

% Change 100% +261% +272%

TRI 1.29 2.97 * 1.73 4.85 2.45 * 1.86 3.70

% Change 100% +131% +90%

LD 2.79 5.28 * 3.59 7.09 # 6.51 * 5.45 8.46

% Change 100% +89% +133%

ES 7.08 10.80 * 8.13 14.49 13.29 * 7.84 14.44

% Change 100% +53% +88%

Median amplitude values of the normalized EMG activity over the entire step cycle (unit % MVC) and relative changes of the amplitudes, 
compared to normal walking (see footnote of Table 1).

* Compared to normal walking (baseline), all EMG amplitudes were significantly (Wilcoxon tests, p<0.001) increased during power 
walking, and also significantly increased during running.

# p< 0.05, # # p < 0.01 (Wilcoxon tests): Significant differences between power walking and running.
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Table 5. Median EMG amplitudes during walking with unimanual and bimanual carriage of a load 
(treadmill velocity 6 km/h) 

Normal 
gait

Load in left hand Load in right hand Load in both hands

Median Percentiles Median Percentiles Median Percentiles

Muscles 25% 75% 25% 75% 25% 75%

TRAP 3.41 5.13 ** 4.51 7.67 11.06 ** 7.16 16.2 # 8.41 ** 5.61 10.8

% Change 100% +50% +224% +147%

AD 0.70 1.13 ** 0.81 1.48 2.44 ** 1.34 5.78 # 1.72 ** 1.04 3.14

% Change 100% +62% +250% +147%

PD 2.50 2.92 ** 2.02 4.06 6.37 ** 3.66 10.5 # 4.81 ** 3.25 6.75

% Change 100% +17% +155% +93%

BIC 0.64 0.67 * 0.52 0.85 1.95 ** 1.41 2.84 # 1.26 ** 0.75 2.50

% Change 100% +5% +205% +97%

TRI 1.29 1.70 ** 1.13 2.37 4.37 ** 2.63 6.36 # 3.42 ** 2.64 5.28

% Change 100% +32% +239% +165%

LD 2.79 3.45 * 2.55 5.32 2.80 1.79 5.09 # 4.13 ** 2.47 5.54

% Change 100% +24% +1% +48%

ES 7.08 12.0 ** 9.56 14.2 5.68 * 4.20 7.73 # 8.40 ** 6.57 9.48

% Change 100% +69% -20% +19%

Median amplitude values of normalized EMG activity over the entire step cycle (unit % MVC); group data of the 20 subjects. Relative 
changes (%) as compared to normal gait without load (baseline, 100%) are indicated (see footnote of Table 1).

* p<0.05, ** p<0.01 (Wilcoxon tests): Significant differences between load carriage condition and normal walking without any load. The 
loads (dumbbells) amounted to 10% of the body weight during unimanual carriage, and 2 x 5%, allocated to both hands, during bimanual 
carriage.

# p< 0.05 (Wilcoxon tests): Significant differences between bimanual load carriage and unimanual load carriage with the right hand.
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Using in Vivo Subject-Specific 
Musculotendon Parameters to 

Investigate Voluntary Movement 
Changes after Stroke:

An EMG-Driven Model of Elbow Joint

ABSTRACT

Neuromusculoskeletal modeling provides insights into the muscular system which are not always ob-
tained through experiment or observation alone. One of the major challenges in neuromusculoskeletal 
modeling is to accurately estimate the musculotendon parameters on a subject-specific basis. The latest 
medical imaging techniques such as ultrasound for the estimation of musculotendon parameters would 
provide an alternative method to obtain the muscle architecture parameters noninvasively. In this chapter, 
the feasibility of using ultrasonography to measure the musculotendon parameters of elbow muscles is 
validated. These parameters help to build a subject-specific EMG-driven model, which could predict 
the individual muscle force and elbow voluntary movement trajectory using the input of EMG signal 
without any trajectory fitting procedure involved. The results demonstrate the feasibility of using EMG-
driven neuromusculoskeletal modeling with ultrasound-measured data for prediction of voluntary elbow 
movement for both unimpaired subjects and persons after stroke.
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INTRODUCTION

Stroke: A Public Disease

The term ‘stroke’, or cerebro-vascular accident, 
refers to the neurological symptoms and signs, 
usually focal and acute, which result from diseases 
involving blood vessels. Stroke occurs when the 
blood supply to a part of the brain is cut off, 
and the brain cells in that part cannot function. 
Hemiparesis, partial weakness of the contralateral 
side of the body because of an injury to one side 
of the brain, commonly occurs after the onset 
of stroke. Strokes are either occlusive (due to 
occlusion of a blood vessel supplying the brain) 
or hemorraghic (due to bleeding from a vessel). 
On average, occlusive strokes account for about 
80% and hemorrhagic strokes for about 20% of all 
strokes (Westcott, 2000). There is a large popula-
tion of humans that suffer from stroke. Stroke is 
one of the leading medical problems, mostly in 
elderly subjects (Popovic & Sinkjaer, 2000). In the 
U.S, there are approximately 730,000 new cases 
each year and an estimated 4 million survivors 
(Carr, 2003).

Therefore, there is a need to help stroke survi-
vors to evaluate the disabilities and to regain their 
independence through rehabilitation as much as 
possible and, in addition, to reduce the burden of 
care on institutions and families.

Rationale and Scope of the Study

Cerebrovascular accident, or stroke, can cause sig-
nificant impairment of neural or motor functions 
in survivors. Subsequent to these impairments, 
morphological changes in the architecture of 
the paretic muscles often occur, which affect the 
muscles’ functions. Previous studies have revealed 
a reduction in muscle volume, a shortening of 
muscle fiber, and a reduction in the number of 
motor units in the paretic muscles in people after 
stroke (Halar et al., 1978; Becher et al., 1998; 
Metoki et al., 2003). These muscle deformations 
are highly related to syndromes of paretic muscles, 

such as muscle weakness, spasticity, contracture, 
etc (Patten et al., 2004; McCrea et al., 2002; Chae 
et al., 2002). Evaluating muscle structural varia-
tions in people after stroke is clinically important 
for both diagnosis and rehabilitation treatment.

Stroke rehabilitation often includes muscle 
strengthening, resistance training, constrained-
induced therapy and robotic-assisted therapy. 
These are applied to counteract the muscle changes 
and the affected functions after stroke (Dean & 
Shepherd, 1997; Lum et al., 2004; Fasoli et al., 
2003). In order to evaluate muscle impairment 
after stroke and the efficiency of different stroke 
rehabilitation programs, kinematics analysis and 
clinical scales have been used to evaluate neuro-
muscular changes and functional outcomes after 
interventions (Ju et al., 2002). Often, kinematics 
evaluations have focused on the results of motor 
execution (Yeh et al., 2004), while the clinical 
experiences of the examiners usually determined 
how clinical scales such as the Modified Ashworth 
Scale (MAS) were used (Pizzi et al., 2005; Bohan-
non & Smith, 1987). However, these evaluations 
do not reveal the specific changes at the level of 
muscle structure. Studies on skeletal muscle have 
shown that the moment across the joint gener-
ated by the associated muscle is highly related 
to the muscle’s architectural parameters, such 
as the cross-sectional area, moment arm and the 
muscle’s force–length behaviour (Huijing & Baan, 
1992; Naici, 1999). Therefore, a technique that 
can measure these muscle architectural changes 
after the onset of stroke may help to evaluate the 
functional improvement of the affected muscle 
after an intervention program, and to enhance the 
understanding of the mechanism underlying the 
rehabilitation treatment.

BACKGROUND

Muscle Mechanics

It is known that, at constant levels of excitation, 
the amount of force generated isometrically is 
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a function of the length of the muscle under in-
vestigation (Gordon et al., 1966; Vredenbergt & 
Rau, 1973). Muscles that operate on the ascend-
ing limb of the force-length relationship typically 
function in stretch-shortening cycle contractions, 
and muscles that operate on the descending limb 
typically function in shorten-stretch cycle contrac-
tions (McMahon, 1984). Fundamental theories 
behind the force-length relationship are sliding 
filament (Gordon et al., 1966) and cross-bridge 
theories (Huxley, 1957). Gordon assumed that 
the length changes in sarcomeres, fibers, and 
muscles are accomplished by relative sliding of 
the essentially inextensible myofilaments, actin 
and myosin, within a sarcomere. Huxley suggested 
that the relative sliding of actin and myosin is 
caused by independent force generators, i.e. the 
cross bridges.

Previously, most investigations were performed 
on single in vitro muscle fiber and in situ muscle 
of amphibians and small mammals (Gossman et 
al., 1982). There are still questions that how the 
classic force-length relationship (Gordon et al., 
1966) is transferred to in vivo human muscle. 
The lack of this information is due to the diffi-
culty of isolating individual muscles (Leedham 
& Dowling, 1995). Leedham and Dowling used 
electrical stimulation to isolate the torque-angle 
and force-length relationships of the biceps 
brachii, and found only the torque-angle had the 
classic inverted “U” pattern, but the force-length 
relationship displayed a monotonically increasing 
pattern in biceps brachii. Possible reasons could 
be that limitations of the elbow joint restrict the 
range of motion, which constrains the force-
length relationship of in vivo biceps brachii to the 
ascending segment of the classic relationship of 
Gordon et al., (1966). These findings supported 
those of Lieber et al., (1990) and Murray et al., 
(2000) about the force-length relationship of the 
biceps brachii.

Zuurbier and Huijing (1995) used mean sar-
comere length-force relations of intact rat fibers, 
multiplied by the number of sarcomeres in series, 
thought to be more appropriate for describing the 

length-force relation of mammalian fiber and 
muscle (Zuurbier & Huijing, 1995). They pro-
vided this model to dispute the classic results by 
Gordon et al., (1966) that may have resulted in an 
overestimate of force at mean sarcomere lengths 
below, and an underestimate above optimum 
sarcomere lengths.

Neuromusculoskeletal Modeling

Neuromusculoskeletal (NMS) modeling (Figure 
1) provides insights into the muscular system 
which are not always obtained through experi-
ment or observation alone. (Buchanan et al., 2005; 
Gonzalez et al., 1996; Holzbaur et al., 2005; Li & 
Tong, 2011). However, the challenge is how to get 
the information accurately with this method. Koo 
et al., (2002) found that in order to enhance the 
accuracy and reliability of the model in evaluat-
ing muscle functions, accuracy and completeness 
of musculotendon parameters used in the model 
are important. Sensitivity and validation studies 
also have shown that the estimated values of the 
musculotendon parameters have significant effects 
on the simulation results (Huijing & Baan, 1992; 
Lieber et al., 1992; Murray et al., 2000).

Computational modeling and simulation of the 
NMS system provides both qualitative and quan-
titative insights into human movements (Pandy, 
2001). In the past decades, computational model-
ing of the NMS system has been applied in many 
aspects. This modeling approach can provide more 
information on why and how the chain reaction 
of the NMS system occurs in order to produce all 
forms of functions. With the development of the 
computing technology and simulation resources 
available today, more complex and realistic models 
have been developed for studying human move-
ment and other applications.

The NMS model can be defined as a set of 
equations which describe the dynamics of a neu-
romusculoskeletal system during generation of a 
function. The model is an idealized mathematical 
representation of the body, comprising the bones, 
muscles, joints, and passive structures in vary-
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ing degrees of complexity. The motor unit of the 
muscle fiber obtains the command from the ner-
vous system and triggers the activation dynamics 
with muscle fiber contraction. The musculotendon 
force depends not only on the activation, but also 
on the architectural and biomechanical properties 
of the tendon and muscle fibers (Huijing & Baan, 
1992). Various types of musculoskeletal models 
have been developed for human lower extremities 
(Neptune et al., 1998 and 2000; Anderson et al., 
2001) and upper extremities (Giat et al., 1994; 
Maurel & Thalman, 1998; Murray et al., 2000; 
Koo et al., 2002). Incorporated with dynamic 
analysis, this systematic approach to studying 
human movement can provide more accurate 
estimation and proper evaluation (Pandy, 2001).

Cadaveric-Scaled Parameters

Some of the previous modeling efforts directly 
applied cadaveric-scaled parameters to predict 
muscle force or joint trajectory (Chang et al., 
1999; Giat et al., 1994). Cadaver data are lim-
ited in their usefulness because cadaver muscles 
undergo shrinking and could degrade during the 
course of storage. Such physiological changes 
could affect the measurement results. In addition, 
the fixed position of a cadaver limits investigation 
of dynamic changes in muscle architectures with 
a joint position, and these changes may have im-
portant implications in muscle function (Fukunaga 
et al., 1997; Maganaris et al., 1998). Moreover, 
most cadaver studies of muscle architecture were 
mainly conducted on subjects without impairment 
or disability.

Figure 1. A schematic diagram of the neuromusculoskeletal system (modified from Martini, 1995)
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Musculotendon parameters can be regarded 
as anatomical or biomechanical properties that 
describe a skeletal muscle’s force generating 
characteristics. Sensitivity studies have shown that 
selections of neuromusculoskeletal parameters 
have great effects on the modeling of NMS system 
(Lemay & Crago, 1996; Gonzalez et al., 1997). For 
example, when muscle does constant activation, 
its moment arm, physiological cross-section area 
(PCSA), and its operating range (how much and 
what portion of the isometric force-length curve 
the muscles uses during joint rotation) are the key 
factors that determine the maximum moment-
generating capacity as a function of joint position 
(Huijing & Baan, 1992; Maganaris, 2004).

Ultrasonography of 
Musculotendon Parameter

Ultrasound technology has been applied in many 
aspects for measuring the musculoskeletal param-
eters in vivo. Accuracy of the ultrasound method 
in measuring muscle architecture features has 
also been demonstrated to show good agreement 
with direct anatomical measurement on cadaver 
(Narici et al., 1996; Martin et al., 2001). The 
pennation angle and muscle fascicle length are 
two architectural variables readily measured by 
using ultrasound imaging previously (Herbert et 
al., 1995; Maganaris et al., 2004; Kawakami et 
al., 1993; Hodges et al., 2003; Chleboun et al., 
2001; Gao et al., 2009).

Recently, the feasibility of using ultrasonog-
raphy to measure the musculotendon parameters 
of elbow muscles is validated (Li et al., 2007a). 
Ultrasound imaging technology has the advan-
tages of being less expensive, relatively easier to 
incorporate with other instruments such as dyna-
mometer, and feasible to test limb movements in a 
larger space. In addition, the measurement error of 
ultrasound imaging technology has been verified 
in comparison with direct anatomical measure-
ments on specimens, with ultrasonography hav-
ing a mean error of 7% for pennation angle and 

3.2% for fascicle length (Chardon et al., 2010). 
Thus, incorporating ultrasound-measured muscle 
architectural parameters in isometric contraction 
modeling for healthy subjects can be a good 
choice to collect the musculotendon parameters 
for the patients.

MAIN FOCUS OF THE CHAPTER

Model Structure

An EMG-driven model was built through com-
bining the in vivo ultrasound measured musculo-
tendon parameters to predict the joint trajectory 
(Figure 2). At first, a subject-specific isometric 
contraction model of the elbow joint was built, 
which incorporated an anthropometrically scaled 
geometrical model, a Hill-type musculotendon 
model. The isometric contraction model also 
included an optimization process and the model 
could be used to obtain muscle parameters and 
to evaluate the muscle properties in persons after 
stroke. In details, a subject-scaled geometrical 
model was used to calculate muscle moment 
arms (MA) and musculotendon lengths (lmt) (Li 
et al., 2007b). These parameters were then used 
in the isometric contraction model and voluntary 
elbow flexion model (Figure 2). The ultrasound 
technique was employed to measure the penna-
tion angle (α) at different joint angles and muscle 
optimal length (lmo) of each prime elbow flexor 
and extensor, and these parameters were then 
inputted into the isometric contraction model to 
reduce the number of unknown parameters to be 
optimized. The optimizations were conducted to 
allow changes of individual maximum isometric 
muscle force by minimizing the root mean square 
difference between the predicted and measured 
isometric torque–angle curves. The tendon slack 
length (lto) and the maxi- mum muscle stress 
(δm) from the isometric contraction modeling 
together with the pennation angle and muscle 
optimal length of each muscle were then used 
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in the voluntary modeling. The voluntary elbow 
flexion model was an EMG driven model, which 
relied on normalized EMG and the initial elbow 
joint position and velocity as inputs, to predict 
voluntary elbow flexion trajectory.

Experiment Protocol

Firstly, ultrasound technique was employed to 
measure the muscle optimal length and pennation 
angle of each prime elbow flexors (Biceps Brachii, 
Brachialis, Brachioradialis) and extensors (Three 
heads of Triceps brachii), and these architectural 
parameters were inputted into the model to re-
duce the number of unknown parameters to be 
optimized. The optimizations were conducted to 
allow changes of individual maximum isometric 
muscle force by minimizing the root mean square 
difference between the predicted and measured 
isometric torque-angle curves. The results showed 
that the prediction of joint torque fits quite well 
with the measured one. Then the voluntary move-
ment control strategy was investigated through 
an EMG-driven musculoskeletal model, which 
could predict the individual muscle force and 
elbow voluntary movement trajectory using the 
input of EMG signal without any trajectory fitting 
procedure involved.

Then, the some patients who suffered from 
stroke were recruited in the modeling test. The 
selection criteria for the persons after stroke 
included:

1.  hemiparesis resulting from a single unilateral 
lesion of the brain with the duration of stroke 
more than 2 years;

2.  presence of spasticity with a modified 
Ashworth score (MAS) larger than one at 
the affected elbow joint;

3.  sufficient passive range of motion (>90°) at 
the affected elbow joint;

4.  adequate mental capacity to attempt the 
elbow flexion movement as instructed;

5.  no surgical procedure done on the upper 
limb of the affected side; and

6.  absence of significant medical complications.

Experimental setup is shown in Figure 3. Dur-
ing the test, the subject sat on a height-adjusted 
chair with the upper arm in vertical position. The 
shoulder was orientated at 0° of flexion, 5° of 
abduction, and neutral rotation. The forearm was 
in a supinated position. Angular displacement of 
the elbow joint was monitored by a flexible elec-
trogoniometer, which was attached on the median 
side of the arm when the forearm was in a fully 

Figure 2. Modeling structure and corresponding experiment protocol with modeling parameters
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supinated position. Surface EMG signals of the 
elbow prime flexors and prime elbow extensors 
and fine wire EMG from brachialis (BRA) muscles 
were recorded simultaneously. The voluntary 
elbow movement was under four testing condi-
tions. These comprised voluntary elbow flexion 
with and without 1.13 kg sand pad strapped over 
the wrist and voluntary elbow extension with and 
without load condition. Prior to the test, the subject 
was instructed to be completely relaxed with his/
her forearm in a fully extended position (i.e. 0°) 
for the test. The subject was then instructed to 
flex the elbow in his/her nature speed to a nearly 
full-flexed position (i.e. around 110°), hold 3-5 
second, and then extended the elbow to original 
full extension position. Before the voluntary 
movement simulation, modeling parameters was 
obtained from an isometric contraction experiment 
combing ultrasound measurement and optimiza-
tion calculation.

Finally, these measured pennation angle, esti-
mated optimal muscle length, tendon slack length 
and maximum muscle stress were applied in this 
voluntary model for estimation of elbow trajectory.

Geometrical and 
Musculotendon Modeling

A generic interactive graphics-based model of 
the upper limb and its associated prime elbow 
flexors (LHB, SHB, BRA, BRD) and extensors 
(MHT, LatHT, LngHT) were developed using 
a musculo- skeletal modeling package (SIMM, 
MusculoGraphics, USA)

In the geometric model, the elbow joint was 
defined as a uniaxial hinge joint with its axis 
passing through the centers of the capitulum and 
trochlear sulcus (Figure 4). Each body segment was 
composed of graphical polyhedra that described 
the bone surfaces. Muscles were modeled as line 
segments connected from origin to insertion area 

Figure 3. Experiment setup. A dynamometer was used to measure and provide torque feedback, which 
was shown on a computer monitor to the subject being tested. A B-mode ultrasound probe was used to 
obtain a two-dimensional image of the muscle (Left). Surface and fine wire EMG electrodes were at-
tached on the corresponding muscles. A qualified physician was inserting a pair of fine wire electrodes 
into the brachialis (Right)



168

Using in Vivo Subject-Specific Musculotendon Parameters
 

with intermediate points that allowed the muscle 
to wrap around bones and joints. Musculotendon 
length (lmt) was determined by computing the sum 
of the lengths of the line segments on the muscle 
path, and moment arm (MA) was computed as 
the partial derivative of the musculotendon length 
(∂lmt) with respect to the joint angle (∂θ). The 
generic geometric model was scaled to specific-
subject models based on the segment ratio from 
the upper arm and fore- arm in SIMMs general 
model and of each subject. The model-generated 
lmt and MA were then used in the musculoten-
don model to estimate the maximum isometric 
muscle stresses.

In a Hill-type musculotendon model, muscle 
dynamics could be described by a lumped-
parameter model, which accounts for the force– 
length–velocity properties of the muscle and the 
elastic properties of the tendon (Figure 5). The 

force generated by each musculotendon unit (Ft) 
can be represented by the following equations:

Ft=Fm * cosα= Fz [fa(l)f(v)a(t)+fp(l)] cosα  
(1)

Fz= PCSA * δm (2)

where fa(l) is the contractile element’s force–
length relationship, fp(l) is the parallel passive 
elastic muscle force (Giat et al., 1994), a(t) is the 
activation level, f(v) is the force–velocity rela-
tionship, and a is the pennation angle. Equations 
1 and 2 describe the relationship between the 
force produced by the musculotendon unit and the 
related Fz. During maximum isometric voluntary 
flexion (MIVF) of the elbow joint, it is assumed 
that all the elbow flexors are fully activated (i.e., 
a(t) = 1) and their contraction velocities equal 
zero (i.e., f(v) = 1).

Figure 4. Geometric model for prime elbow flexors and wrap objects. Wrap1: a cylindrical-shaped object 
simulating the humeroulnar joint; wrap2: a spherical-shaped object for a glenohumeral joint; LHB: 
long head of biceps brachii; SHB: short head of brachii brachi; BRA: brachialis; BRD: brachioradialis
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The relationship between the length of the 
musculotendon unit, muscle fascicle and tendon 
can be stated in Equation 3. Tendon length (lt) 
was calculated by subtracting muscle fascicle 
length (lm) from lmt, taking pennation angle (a) 
into account

lt = lmt -lm cosα  (3)

During MIVF, the torque generated by the 
elbow could be estimated from the summation 
of each muscle’s contribution, considering MA 
of each muscle

T (θ) = Fi MAi
i

( ) ( )θ θ
=
∑ ×
1

4

Fi MAi
i

( ) ( )θ θ
=
∑ ×
1

4

 (4)

where Fi(θ) is the tendon force and MAi(θ) is the 
moment arm of prime elbow flexor i (i.e., 1=SHB, 
2=LHB, 3 = BRA, 4 = BRD) at positionθ.

EMG-Activation Conversion 
and Linkage Dynamics

EMG to activation level conversion used the linear 
envelope method. Linear envelope processing can 
be regarded as an EMG processing scheme that 
converts the raw EMG signals to a linear envelope 
profile that mimics the muscle tension waveform 
during dynamic changes of isometric tension. 
The linear envelope profile was obtained by full-
wave rectification of the band-pass filtered EMG 

Figure 5. Schematic figure of Hill-type musculotendon model, consisting of a contractile element, a 
parallel passive elastic element, and a series elastic element, where Fm is muscle force and Ft is tendon 
force. (b) Simplified structure of a musculotendon actuator, where lmt is muscle–tendon length, lt is ten-
don length, lm is muscle fascicle length, and α  is pennation angle
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Figure 6. The normalized moving average EMG for the prime elbow flexors (BIC, BRA, BRD) and 
extensors (MHT, LatHT, LngHT) of one unimpaired subject(a) and one hemiparetic subject (b) during 
voluntary elbow flexion. The measured flexion trajectory is also plotted on the same figure
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signals (10–500 Hz for surface EMG, 10–1000 
Hz for fine-wire EMG), followed by forward and 
backward low-pass filtering using a second-order 
Butterworth filter with a cut-off frequency of 3 
Hz and then normalized by the corresponding 
MIVF/E EMG.

The linkage dynamics of the EMG-driven 
model described the flexion of the elbow joint 
in the sagittal plane. The voluntary flex- ion test 
was assumed to be a single degree of freedom 
movement and the upper extremity was treated as 
consisting of two rigid bodies — the upper arm 
and the forearm, the latter including the hand. 
The test configuration was the shoulder orientated 
at 0° flex- ion, 5° abduction, and neutral axial 

rotation. The forearm in a supinated position 
and the hand in a loosely grasped position, with 
no relative movement at the wrist was involved 
throughout the entire movement. The flexion 
movement of the elbow joint was modeled as a 
frictionless hinge joint rotation of the ulna with 
respect to the humerus, with the axis of rotation 
passing through the centers of the capitellum and 
trochlear sulcus (Koo & Mak, 2005). The carry-
ing angle of the elbow joint was assumed to be 
unchanged as the forearm flexed and extended 
around the elbow joint.

For each subject, the segment mass, moment 
of inertia, and location of the center of gravity 
of the forearm with respect to the flexion axis 

Figure 7. Typical result of comparison of the measured (bold) and predicted (thin) voluntary elbow 
flexion trajectories of one unimpaired subject (a) and one hemiparetic subject (b)
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were estimated using the formulas suggested by 
Winter (1990) and Dempster (1955).Then the an-
gular displacement signals were low-pass filtered 
with a cut-off frequency of 10 Hz. The filtered 
EMG signals were rectified and normalized by 
the peak EMG amplitude measured during the 
MIVF/E tests.

Solutions and Recommendations

Typical linear envelope EMG profiles of the prime 
elbow flexors and extensors during voluntary 
elbow flexion were shown in Figure 6 for one 
control subject and one hemiparetic subject. The 
EMG profiles as well as the level of activation 
of each muscle group were phase-specific. It 
appeared that the flexion movement was mainly 
actuated by the BIC and BRA while the activa-
tion of BRD was relatively low. Coactivation of 
the three heads of triceps brachii was found to 
be minimal in the group of unimpaired subjects. 
However, the activation level of lateral head of 
triceps brachii in the hemiparetic group was in-
creased in the elbow flexion movement and became 
comparable with the activation of BIC and BRA, 
which might indicate the muscle cocontraction in 
the paretic muscle.

Figure 7 shows the typical results of measured 
and predicted joint trajectories for the voluntary 
elbow flexion for one unimpaired subject (Figure 
7). In the unimpaired group, the root mean square 
(RMS) error between the measured and predicted 
joint trajectory was 20.1° ± 6.0° (Mean±SD, 
n=4). It seemed that the elbow flexion trajectories 
predicted by the EMG-driven model matched well 
with the measured trajectory. For one hemiparetic 
subject, the RMS error between the measured and 
predict trajectory was 34.1 ± 26.4° (Mean±SD, 
n=4). The general shape of the predicted trajec-
tories followed the measured one well (Figure 7). 
But it seemed that the predicted elbow flexion tra-
jectory ascend a little bit faster than the measured 
trajectory. It appeared that the RMS error of the 
hemiparetic group was larger as compare to the 

results from the unimpaired group, although the 
difference was not statistically significant which 
might due to the smaller sample size.

By comparing the RMS error in the cadaveric 
data with the subject specific data, the result shows 
that the RMS error from the use of subject-specific 
data was significantly smaller than that from using 
the literature data. And the experimental trials were 
better than using cadaver data from the literature, 
with the significant effects clearly observable in 
the hemiparetic group data.

Based on ultrasound measured parameters 
and isometric contraction modeling results, an 
EMG driven model of human elbow for both the 
unimpaired subjects and persons after stroke has 
been built. This completed forward dynamics Hill-
type model could predict the individual muscle 
force and elbow trajectory with the input of EMG 
signal. Importantly, our modeling approach needs 
not do any trajectory fitting procedure.

Forward dynamics model could predict forces 
within individual muscle elements, ligaments, 
and other soft tissues crossing joints and loads 
on the joint surfaces. In the last decade, EMG-
driven modeling approach has been one promising 
trend of biomechanical modeling using forward 
dynamics (Benoit & Dowling, 2006; Manal et al., 
2002; Buchanan, 2004). This technique develops 
computational musculoskeletal model which in-
cludes both agonists and antagonists of the joint 
and takes the following knowledge into account: 
the excitation-activation relationship of muscle, 
the nonlinear musculotendon properties, and the 
dynamics of the joint. The models which were 
developed for voluntary elbow flexion-extension 
movement in unimpaired subjects were discussed 
and compared with this study in the following 
paragraphs.

Manal and Buchanan (2005) proposed a de-
tailed model of upper limbs to simulate the human 
arm and help to understand how muscle activation 
patterns changed in response to injury. They ap-
plied a Hill-type model and muscle forces of the 
prime elbow flexors and extensors were estimated 
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from EMG. However, the tuning of their virtual 
arm to subject-specific model needs the training 
of the subject to control the virtual arm and the 
prediction results were different on highly-trained 
and control subjects. This limitation decreases the 
meaningful explanation of the results.

Benoit and Dowling (2006) measured the acti-
vation level of the biceps brachii to represent the 
whole elbow flexors during stretch-shorting cycle 
to predict the torque of the elbow. Although the 
simplified model could still estimate the torque, 
the model needs extra modeling parameters from 
previous literature based on experimental trial 
data (Benoit & Dowling, 2006). They found a 
decreased M-wave which indicates decreased 
biceps brachii activation under voluntary condi-
tions. This finding is different from our isometric 
EMG data and the conclusion from van Zuylen 
(1988). The discrepancy might indicate the elbow 
flexor activation patterns are different in static 
and dynamic conditions.

FUTURE RESEARCH DIRECTIONS

In current studies, there is no subject-specific 
parameter in the simulation to take into account 
the effects of the inherent muscle property changes 
after the onset of stroke, such as the spasticity, 
which could be due to changes in muscle ac-
tivation and in muscle stiffness (Becher et al., 
1998). It was found that inherent muscle and 
joint properties are modified by alterations and 
immobilization induced after stroke and these in 
turn might change the parameters related to the 
moment of inertia (Yeh et al., 2004). According 
to the concept of mechanical impedance, the 
internal characteristics of a musculoarticular sys-
tem are expressed by inertial, elastic and viscous 
parameters (Winters & Stark, 1988). However, 
such information for spastic muscle is lacking in 
the literature. Therefore, future study is needed 
to quantitatively measure the inherent properties 
of the moment of inertia in spastic muscle, which 

could be helpful in the biomechanical modeling 
of persons after stroke to evaluate the effects of 
spasticity on the model.

CONCLUSION

An EMG-driven model was built through 
combining the in vivo ultrasound-measured 
musculotendon parameters to predict the joint 
trajectory during voluntary flexion and extension. 
The voluntary movement control strategy was 
investigated through an EMG-driven musculosk-
eletal model, which could predict the individual 
muscle force and elbow voluntary movement 
trajectory using the input of EMG signal without 
any trajectory fitting procedure involved. Our 
findings demonstrated the feasibility of using 
EMG-driven neuromusculoskeletal modeling 
with ultrasound-measured data for prediction of 
voluntary elbow movement for both unimpaired 
subjects and persons after stroke. In addition, the 
results revealed that the prediction of voluntary 
flexion in the hemiparetic group using ultrasound 
measured parameters was better than that of using 
the cadaver data from literature.
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Study and Interpretation of 
Neuromuscular Patterns in Golf

ABSTRACT

This chapter reports the golf swing EMG studies using amplitude, timing parameters and approaches to 
neuromuscular patterns recognition through EMG. The golf swing is a dynamic multi-joint movement. 
During each swing phase different activation levels occur, the combination of each muscle in amplitude 
provides an increased club head speed for the ball to travel to the hole. The timing when the maximum 
peak of each muscle occurs can be an important factor to understand the injury related mechanics and 
to prescribe strength programs. Most muscle studies describe their maximum activation level during 
the forward swing and acceleration phases, providing a controlled antigravity movement and accelera-
tion of the club. The initial contraction time corresponds to the onset that can be used to describe the 
organization of the neuromuscular patterns during a task. This time parameter was used in golf to relate 
injuries to skilled or less skilled golfers. The way to retrieve this time parameter may be reached through 
new approaches but no gold standard algorithm definition has been found yet. To better understand the 
neuromuscular patterns new algorithms based on the dynamical systems theory are now used.
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INTRODUCTION

Golf is a sport accessible to all ages and levels of 
physical condition. The number of golf courses and 
players has increased and golf has become a popu-
lar sport all over the world in the last fifty years. 
The recreational player tends to be older because 
practice demands time and the high performance 
and skill are not age limited. The golf swing is 
the most complex and predominant technique of 
the game and is associated to the majority of golf 
related injuries (Cabri, Sousa, Kots, & Barreiros, 
2009). The injury rate varies between amateurs 
and professionals and is associated to the increased 
hours of play per day with a prevalence of nearly 
88% (Theriault & Lanchance, 1998). The golf 
player’s characteristics are poorly known and 
present potential for injuries (McHardy, Pollard, 
& Luo, 2006), either through lack of structured 
exercise programs and practice, specific morpho-
logical and functional properties, or through the 
nature of the sports activity. Nevertheless, health 
benefits and golf practice-related risks have not 
been fully explored and there is still controversy 
in the literature (Cabri et al., 2009).

The application of EMG in golf can describe 
how the Nervous Central System organizes 
the neuromuscular patterns during a dynamic 
movement. The amplitude parameter is the most 
studied one (Bechler, Jobe, Pink, Perry, & Ruwe, 
1995; Bulbulian, Ball, & Seaman, 2001; Cole & 
Grimshaw, 2008a; Farber, Smith, Kvitne, Mohr, 
& Shin, 2009; Glazebrook, Curwin, Islam, Kozey, 
& Stanish, 1994; Jobe, Moynes, & Antonelli, 
1986; Jobe, Perry, & Pink, 1989; Kao, Pink, 
Jobe, & Perry, 1995; Marta, Silva, Vaz, Bruno, 
Pezarat-Correia, 2013; Pink, Jobe, & Perry, 1990; 
Pink, Perry, & Jobe, 1993; Watkins, Uppal, Perry, 
Pink, & Dinsay, 1996). This parameter describes 
the muscle activation levels during each phase 
and was the most used to study the golf swing. 
The temporal parameter retrieves the instant of 
muscle activation related to the impact of the ball 
(Cole & Grimshaw, 2008b; Horton, Lindsay, & 

Macintosh, 2001; Silva, Marta, Vaz, Fernandes, 
Castro, & Pezarat-Correia, 2013).

These parameters are used to set new physical 
condition and rehabilitation programs for coaches 
and physical therapists but there is still a lack of 
field studies on this topic and more should be 
carried out.

The objective of this chapter is to report stud-
ies and share EMG data by presenting different 
approaches concerning the use of EMG in sport 
sciences and the importance of its physiological 
meaning, specifically during the golf swing.

BACKGROUND

The first study of EMG in golf dates from 1948 
(Slater-Hammel, 1948). From then on not many 
studies have been done, though they have been 
more frequent in the last five years. Most of 
these studies focused on the intensity levels of 
the trunk muscles (Bulbulian et al., 2001; Cole & 
Grimshaw, 2008a,b; Horton et al., 2001; Marta et 
al., 2013; Pink et al., 1993; Watkins et al., 1996) 
and shoulders (Jobe et al., 1986, 1989; Kao et 
al., 1995; Pink et al., 1990;). Only one study cen-
tered its attention on the lower limbs (Bechler et 
al.,1995) and two studies evaluated the forearm 
muscles (Farber et al., 2009; Glazebrook et al., 
1994), respectively. Five studies were literature 
reviews in EMG patterns: two dedicated specifi-
cally to EMG in golf (Marta et al., 2012; McHardy 
& Pollard, 2005a); two retrieving the upper limb 
(Escamilla & Andrews, 2009) and one on the 
shoulder muscles (Moynes, Perry, Antonelli, & 
Jobe, 1986). Besides these previous studies three 
epidemiology reports (Cabri et al., 2009; Kim, 
Millet, Warner, & Jobe, 2004; McHardy & Pol-
lard, 2005b) presented data about the injury and 
muscle activity patterns in golfers.

In general the studies dedicated their attention 
to professional golfers. Recent literature is more 
aware of the possible differences between profes-
sional and recreational players. Another point of 
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interest in golf research is golfers’ injuries, i.e. 
low back pain related (Horton et al., 2001; Cole 
& Grimshaw, 2008a,b) and medial epicondylitis 
(Glazebrook et al., 1994). The majority of the 
studies concentrate on the male players but two 
studies (Jobe et al., 1989; Pink et al., 1990) analyze 
differences between women golfers.

The EMG golf studies divided the golf swing 
according to the geometric position of the club 
in five phases: (Bechler et al., 1995; Farber et al., 
2009; Jobe et al., 1989; Kao et al., 1995; Marta 
et al., 2013; Pink et al., 1990, 1993; Watkins et 
al., 1996;):

1.  Backswing: From address to top of swing 
(A-B);

2.  Forward Swing: From the top of swing to 
horizontal positioning of the golf club (early 
part of downswing) (B-C);

3.  Acceleration: From horizontal club posi-
tion to ball impact (late part of downswing) 
(C-D);

4.  Early Follow-Through: from impact to a 
horizontal club positioning (D-E);

5.  Late Follow-Through: From horizontal club 
position to completion of the swing (E-F).

This chapter focuses its attention on un-
derstanding the neuromuscular information to 

improve the golfers’ physical conditioning and 
preventing injury mechanisms by retrieving the 
available literature concerning the golf swing 
through electromyography (EMG).

EMG AMPLITUDE PARAMETERS IN 
GOLF SWING: STATE OF THE ART

The identification of neuromuscular patterns 
through EMG recording can provide important 
information for different study fields such as 
performance, injury prevention, management 
of muscle conditioning, skill improvement, mo-
tor control and learning. The muscle activation 
(intensity and timing) can be extracted from the 
EMG profile and is used to identify changes in 
muscle coordination (Hug, 2011). The EMG 
muscles activation could be studied by the mean 
of the intensity in the different swing phases. 
The changes in motor unit action potentials are 
detected through EMG and then normalized us-
ing an isometric maximal voluntary contraction 
(MVC) task, originally called Manual Muscle 
Test (MMT), to compare different subjects and 
studies. However, a few limitations are related 
to the inter-individual variability (Hug, 2011), 
heterogeneity in the golfers, and lack of informa-

Figure 1. Golf swing phases
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tion about previously used EMG methods (Marta 
et al., 2012).

Neuromuscular activity studies about golf 
focused in several parts of the body. In order to 
analyze the amplitude parameters the body seg-
ments were divided into four subheads:

1.  Shoulder;
2.  Forearm;
3.  Trunk;
4.  Lower Limbs

To compare amplitude studies all EMG data 
was converted to a new scale of muscular levels. 
Therefore, each (+) corresponds to approximately 
20% MMT/MVC.

Shoulder

The activity of the shoulder muscles was reported 
in four studies (Jobe et al., 1986, 1989; Kim et al., 
2004; Pink et al., 1990;). The EMG shoulder stud-
ies were performed with fine wire methodology 
and described that participants were right-handed 
male professional golfers (handicap <5). How-
ever, Jobe et al., (1989) compared the men and 
women’s neuromuscular patterns but no significant 
differences were found, as similar firing patterns 
and amplitudes were found. Despite that, women 
tended to have slightly more activity during the 
backswing and forward swing phase, while men 
tended to have it in the other phases. This fact is 
related to men being stronger than women and 
having longer arms, thereby increasing the club 
speed, particularly during the acceleration phase.

Table 1 summarizes the electromyographic 
studies performed in the shoulder muscles during 
the golf swing.

During the backswing the right supraspinatus 
muscle reached its peak with significant levels of 
activity above 40% (Jobe et al., 1986, 1989; Pink 
et al., 1990) - contributing to the rotation to the 
right of the shoulder girdle, and the abduction 

flexion and external rotation of the arm. The left 
subscapularis registered high values of activity 
(40-80% MVC) during all the phases involved in 
the continuous internal rotation of the arm and 
specially to stabilize the shoulder but no signifi-
cant differences were found between phases. In 
the forward swing and acceleration phases the 
shoulder muscles exhibited their activation peak. 
In these phases the club head speed increases to 
transmit velocity to the ball. The pectoralis major, 
subscapularis and latissimus dorsi muscles from 
both sides had high levels of activity, which ex-
ceeded 40% MVC (Jobe et al., 1986, 1989; Pink 
et al., 1990) during these phases. Thus, they 
increased the anti-clock rotation of the shoulder 
girdle, scapular rotation and it can be related to 
the left shoulder injury (Kim et al., 2004). During 
the early follow-through phase the left infraspi-
natus, right subscapularis and pectoralis major 
developed significant high activity levels (above 
60% MVC) as they continued the action, as in 
the previous phase. In the late follow-through 
phase the left and right subscapularis, left and 
right pectoralis major, right latissimus dorsi, left 
supraspinatus, left infraspinatus, left subscapularis 
and the pectoralis major decreased their levels of 
activity reporting 40 – 60% MVC to decelerate 
and stop the movement.

All studies showed minimum to low levels 
of activation of the deltoids (below 20% MVC), 
bilaterally during the golf swing (Jobe et al., 1986, 
1989; Pink et al., 1990), which can be related to 
limited elevation of the arm. Nevertheless, the 
right anterior deltoid is the most active portion 
during the forward swing phase and appears to be 
assisting the flexing and rising of the arm. This 
muscle is considered the arm prime mover and can 
function independently to perform the golf swing 
when adequately strengthened (Jobe et al., 1986).

The scapular muscles are responsible for the 
dynamic stability of the glenohumeral joint (ro-
tation and protraction in the right arm) and play 
an important role in positioning and stabilizing 
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the humerus in the athlete’s shoulder (Blevins, 
1997; Kao et al., 1995), especially if repeated 
movements are performed with great amplitude 
and velocity. These muscles must synchronically 
fire to provide intermuscular coordination and 
protect the glenohumeral complex with specific 
roles for different muscles and these neuromus-
cular patterns are related with overuse injuries of 
the professional golfers (Cabri et al., 2009). Only 
one study (Kao et al., 1995) described the scapular 
muscle patterns on normalized EMG values with 

fine wire methodology but no statistical informa-
tion was provided.

Table 2 summarizes the electromyographic 
studies performed in the scapular muscles during 
the golf swing.

In the backswing, in right-handed golfers, the 
right trapezius muscle presented its highest activity 
level, above 40% MVC, particularly in the trapezius 
lower portion, to elevate the arm. The left upper and 
lower serratus anterior showed medium activity 
levels (above 20%) allowing the protraction and 
abduction of the scapula on this side. The forward 

Table 1. Activation levels of the shoulder muscles in EMG studies from both sides 

Legend: SU – Supraspinatus; IS – Infraspinatus; SS – Subscapularis; LD – Latissimus Dorsi; PM – 
Pectoralis Major; DL – Deltoid; AD – Anterior Deltoid; MD – Middle Deltoid; PD – Posterior Deltoid; BS 
– Backswing; FS – Forward Swing; ACC – Acceleration; EFT – Early Follow-Through; LFT – Late Follow-
Through; FT – Follow-Through; + corresponds to 20% MMT/MVC
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swing and acceleration phases were the most ac-
tive. The right serratus anterior muscle, mainly 
the upper portion, was the most active especially 
during the acceleration phase, with values higher 
than 60% MVC, probably due to scapula abduction.
The left serratus anterior muscles decreased their 
activity (below 20% MVC) in the forward swing 
but increased it in the acceleration phase (above 
20% MVC). The left levator scapular attained 
its peak during the acceleration phase with high 
levels of activity (above 60% MVC) to help the 
scapular elevation, retraction, and stabilization 
of the arm. The rhomboids muscles reached their 
peak during the forward swing phase with values 
above 40% MVC, and have firing patterns similar 
to the levator scapulae muscle. The left trapezius 
also reached its peak with levels of activity above 
40% EMG. Therefore, the left scapular adductors 
were the most active muscles during these phases, 
indicating a major role in stabilization to assist 
control of the scapula rotation and protraction 
of the left arm. During the follow-through phase 
the right serratus anterior maintained high levels 

of activity (above 40% MVC) and decreased to 
medium levels (above 20% MVC) in the late 
follow-through phase. The right rhomboids and 
right trapezius exhibited medium levels of activ-
ity (above 20% MVC) to adduct and stabilize the 
scapula in the first part of the follow-through 
phase. The left levator scapulae, left rhomboid, 
left trapezius and left serratus anterior showed 
medium levels of activity (above 20% MVC) to 
stabilize the scapula and to support the activation 
of the shoulder muscles.

The described consistent tonic activity sug-
gests that the muscles with a scapula stabilizing 
function assume the primary role during the golf 
swing and can lead to fatigue and, consequently, 
to injury, especially on the right side. The rhom-
boid and levator scapulae are end-range muscles 
being easily injured with a lower intermuscular 
coordination. The golf swing does not require 
high levels of muscular activity from the gleno-
humeral muscles, so the success of this movement 
depends mostly on the balance of these muscles, 
i.e. neuromuscular synchrony.

Table 2. Activation levels of the scapular muscles in EMG studies from both sides 

Legend: LS – Levator Scapulae RH – Rhomboid; UT – Upper Trapezius; MT – Middle Trapezius; LT – Lower Trapezius; USA – Upper 
Serratus Anterior; LSA – Lower Serratus Anterior; BS – Backswing; FS – Forward Swing; ACC – Acceleration; EFT – Early Follow-
Through; LFT – Late Follow-Through; + corresponds to 20% MMT/MVC
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Forearm

The only two studies (Faber et al., 2009; Glaze-
brook et al., 1994) that investigated the forearm 
were reported on right-handed male groups divided 
by handicap or injury (medial epicondylitis). 
Farber et al., (2009) compared the EMG of the 
forearm between professional and amateur golfers, 
while Glazebrook et al., (1994) compared an injury 
between handicaps. The EMG methodological 
differences were the fine wire and surface for 
Farber el al. (2009) and Glazebrook et al., (1994), 
respectively. Both articles reported that the for-
ward swing and acceleration phases presented the 
highest levels of muscle activity in the forearm.

Table 3 summarizes the electromyographic 
studies performed in the forearm muscles during 
the golf swing.

In the backswing phase the right extensor 
carpi radialis brevis showed high levels of activity 
(above 40% MVC) in both groups to extend the 
wrist. The amateur group had also activated (above 
20% MVC) the right pronator teres and the right 
flexor carpi ulnaris, which can be related to poor 
mechanics in this phase. The left extensor carpi 
radialis and left pronator teres had medium levels 
of activity (above 20% MVC) in both groups to 
extend the left wrist. The left flexors showed no 
significant differences between groups but the 
professionals exhibited higher levels of activity 
in the flexor carpi ulnaris and lower levels of 
activity in the flexor carpi radialis. During the 
forward swing and acceleration phases the muscles 
reached their maximum level of activity. Farber et 
al. (2009) reported high EMG activity, exceeding 
100% MVC, as in the flexor carpi ulnaris muscle of 
the right forearm during the forward swing phase. 
This high level of activation is probably related 
to the wrist flexion and ulnar deviation presented 
during impact that concludes the proximal to distal 
kinetic chain developed during the downswing. 
Higher levels of activity in the extensor carpi 
radialis brevis were also reported in amateur 

golfers during all swing phases, except during 
the takeaway. The right pronator teres muscle 
presented a higher level of activity during the 
acceleration phase in professionals (profession-
als - 88% MVC; amateurs - 36% MVC). On the 
left side, amateur golfers showed higher muscle 
activity in the pronator teres during the forward 
swing phase (professionals - 57% MVC; amateurs 
- 121% MVC). After comparing professional to 
amateur golfers, significant differences occurred 
in the pronator teres muscle during the forward 
swing and acceleration phases for the right and left 
sides, respectively. These high levels of activity of 
the pronator muscle in amateurs could be associ-
ated with the development of medial epicondylitis 
in the right arm (especially at impact) and to a 
superior technique of the professional golfers in 
the left arm. This technical difference occurs as 
a protective mechanism – the professional golfer 
pulls the golf club through the swing arc by using 
the lead arm – but it can also increase the risk 
of medial epicondylitis on this side. The follow-
through phases were less demanding and with 
no significant differences between groups. Still, 
higher levels of activity were exhibited by all the 
studied muscles (above 20% MVC), especially in 
the early follow-through phase.

Glazebrook et al., (1994) compared asymptom-
atic and symptomatic golfers and their handicaps 
but by retrieving instants of the swing, except 
in the so called “swing phase,” which made it 
difficult to compare. The right wrist posterior 
muscles reached their peak activity at 60% MVC 
in the contact phase while the right wrist anterior 
muscles demonstrated moderate activity during 
the first two phases but increased to 91% MVC 
at contact (referred by the authors as ‘‘the flexor 
burst’’). The symptomatic golfers showed higher 
levels of activity with significant differences in the 
asymptomatic players during address, backswing 
and downswing phases, but no significant dif-
ferences were located between handicap groups.
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Trunk

The trunk is the most EMG studied body part in 
golf with five articles focusing on the muscles’ 
amplitude parameters (Bulbulian et al., 2001; Cole 
& Grimshaw, 2008a; Marta et al., 2013; Pink et 
al., 1993;Watkins et al., 1996). The most studied 
groups were the right-handed professional golfers, 
yet two articles investigated the recreational golfers 
(Bulbulian et al., 2001; Cole & Grimshaw, 2008a) 
and one had one female participant (Bulbulian et 
al., 2001). Trunk muscles have a high muscular 
solicitation during trunk rotation by both the 
professional and the recreational golfers.

Table 4 summarizes the electromyographic 
studies performed in the trunk muscles during 
the golf swing.

During the backswing phase the trunk rotates to 
the right and hyperextends with moderate levels of 
activity in the external oblique and erector spinae 
(above 20% MVC) in both sides. The downswing 
phase intends to drive power to the ball (Watkins 
et al., 1996) to achieve the desired distance. Com-
monly designated as ‘‘controlled fall’’ of the club, 
it increases the velocity of the club head with the 
trunk rotation and transfers kinetic energy to the 
ball (Pink et al., 1993). The trunk muscle activity 
increases during the forward swing and the ac-
celeration phase, mainly in the right erector spinae 

Table 3. Activation levels of the forearm muscles in EMG studies from both sides 

Legend: ASYG – Asymptomatic group; SYG – Symptomatic Group; AMF – Anterior Muscles of the Forearm; PMF – Posterior 
Muscles of the Forearm; Prof – Professionals; Amt – Amateurs; ECRB – Extensor Carpi Radialis Brevis; PT – Pronator Teres; FCR – 
Flexor Carpi Radialis; FCU – Flexor Carpi Ulnaris; BS – Backswing; FS – Forward Swing; ACC – Acceleration; EFT – Early Follow-
Through; LFT – Late Follow- Through; + corresponds to 20% MMT/MVC
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and oblique abdominal muscles with values above 
40% MVC (Marta et al., 2013; Pink et al., 1993; 
Watkins et al., 1996). Therefore, the counterac-
tion of gravity depends on the back muscles while 
the trunk rotation relies on the external oblique 
muscles. The balance of the intermuscular coordi-
nation between these muscles might be associated 
with injuries, due to high levels of activity in the 
erector spinae muscle and overuse syndrome in 
amateurs’ and professional golfers, respectively. 
In the early and late follow-through phases the 
levels of activation were maintained (above 20% 
MVC) and decreased (below 20% MVC) for the 
erector spinae and external oblique.

Trunk injuries, especially low back pain (LBP), 
represent the most common musculoskeletal com-
plaint during all swing phases, mainly at the end 
of the backswing (Cabri et al., 2009). The golf 
swing overuse practices may increase pain in the 
low back area in symptomatic subjects (Horton et 

al., 2001). LBP is the most common musculoskel-
etal injury in golfers but little is known about the 
specificmechanisms responsible for it (Lindsay & 
Horton, 2002). Additionally, it is unclear if golf 
practice is causing, aggravating or inducing high 
skilled golfers. It is commonly accepted that low 
muscular coordination and low endurance could 
symbolize a significant risk factor to the occur-
rence of LBP, especially low resistance to fatigue 
of the abdominal and back muscles (Lindsay & 
Horton, 2002). Researchers found that, when 
comparing the control group with LBP golfers, 
important differences were presented in spine 
movement (Lindsay, Horton, & Vandervoot, 2000) 
and in the intensity and timing in trunk muscles 
EMG activation, i.e. lumbar erector spinae and 
abdominal oblique muscles (Cole & Grimshaw, 
2008a,b; Horton et al., 2001). Those differences 
were obvious especially during the backswing and 
downswing in the erector spinae recruitment in 

Table 4. Activation levels of the trunk muscles in EMG studies from both sides 

Legend: ES – Erector Spinae; AO – Abdominal Oblique; URA – Upper Rectus Abdominis; LRA – Lower Rectus Abdominis; 
RA – Rectus Abdominis; EO – External Oblique; BS – Backswing; FS – Forward Swing; ACC – Acceleration; EFT – Early 
Follow-Through; LFT – Late Follow-Through; + corresponds up to 20% MMT/MVC.
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the beginning of the backswing, as was observed 
by Cole and Grimshaw (2008a,b), and were in-
terpreted as a lumbar spine stabilizer. The higher 
external oblique activity can contribute to spinal 
instability by changing muscles coordination pat-
terns (Marta et al., 2013; Pink et al., 1993; Watkins 
et al., 1996;). Grimshaw and Burden (2000) applied 
a conditioning program and coach intervention 
during a three-month period of training. Results 
showed a lesser level of activity from the left 
erector spinae muscle during the downswing. 
So, it was suggested in this case study that an 
improved technique modification and physical 
conditioning are related with low back pain, but 
no data were retrieved from the external oblique 
and shoulder muscles. The deep spine and pelvis 
muscles stabilizers must be studied with fire wire 
EMG and are considered to be operational previ-
ous to rapid movements of the upper and lower 
limbs (Marshall & Murphy, 2003), but no data 
were found concerning the iliopsoas, transversus 
abdominis and multifidus muscles that suppos-
edly play an important role in lumbar dynamics. 
The difficulty to obtain data on these deep fascia 
muscles is due to its localization and to the high-
speed movement.

The trunk clockwise rotation during the back-
swing stretches the trunk muscles, thus facilitating 
their action in the forward swing phase (Pink et 
al., 1993), but accumulates kinetic energy. The 
final stage of the stretches, i.e. the end of the 
backswing and start of forward swing, is men-
tioned as the moment when pain complaints are 
reported especially due to over-rotation (Cabri 
et al., 2009). This move is usually accomplished 
by high level golfers and is believed to maximize 
ball distance by generating high club head speed, 
but probably origins abnormal load in the lumbar 
spine and rises the injuries risk. Bulbulian et al., 
(2001) stated that a shorter backswing showed 
lower abdominal and lumbar muscles activation 
levels; however, a higher activation occurs in the 
latissimus dorsi and pectoralis major, during the 
downswing. So, during a task, the body had to 

find a new balance in the swing mechanics to 
accomplish its goal. Results showed that during 
a shorter backswing, no significant differences 
were found in the club head velocity or stroke 
accuracy. This backswing changes suggest that 
less spinal rotation occurs but they increased the 
muscle activity on the shoulder muscles. The re-
lationship between the EMG activity patterns and 
the X-factor magnitude has not been studied yet.

Lower Limbs

The foot/ankle is the third most injured area in 
golfer players (McHardy et al., 2006) but only one 
study (Bechler et al., 1995) was done focusing on 
the EMG activity in the hip and knee joints but 
by using fire wire EMG. Other studies (Marta et 
al., 2013; Watkins et al., 1996;) focused on the 
gluteus maximus with surface electromyography 
but were mostly heeded on trunk muscle activation.

Table 5 summarizes the electromyographic 
studies performed in the lower limb muscles dur-
ing the golf swing.

In the backswing the right gluteus medius, 
right semimembranosus, right vastus lateralis 
and left and right biceps femoris showed medium 
levels of activity, above 20% MVC, as the body 
weight is located on that side. During the forward 
swing and acceleration phases, the right lower 
limb demonstrated higher muscle activity when 
compared to the left one, especially in the forward 
swing phase. The right gluteus maximus showed 
moderate to high activity levels (40-100% MVC) 
in the forward swing phase and the left gluteus 
maximus presented moderate to high levels in 
the acceleration phase (above 40% MVC) being 
the most active muscle in the lower limb and 
contributing to pelvis rotate. The weight transfer 
from right to left (in right-handed golfers) is very 
clear in the transition from the forward swing to 
acceleration of the EMG muscle activity. The right 
biceps femoral and semimembranosus muscles 
also showed high activation levels (above 40% 
MVC) during the forward swing and acceleration 
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phases. The left adductor magnus peaked during 
forward swing (above 60% MVC), increasing 
the pelvic rotation by pulling back the left hip. 
The left vastus lateralis muscle reached its peak 
(above 80% MVC) during the forward swing 
phase and maintained its activity levels (above 
40%) during the follow up phases. This muscle 
contributes to stabilize the left knee and helps 
the pelvis rotation by providing a fulcrum. The 
follow-through phases were less active than the 
later phases. Nevertheless, the left hamstrings, left 
vastus lateralis, right upper gluteus maximus and 
left gluteus medius muscles showed activity levels 

above 20% MVC to extend the hip and knee and 
stabilize the pelvis. The lower limbs muscles had 
high activity levels but further studies are needed, 
especially in the leg.

EMG ONSET: DIFFICULTIES, 
BARRIERS, AND 
PHYSIOLOGICAL MEANING

The study of EMG timing parameters provides 
information about activation time and muscle 
sequence contraction. The most known variable is 

Table 5. Activation levels of the lower limbs muscles in EMG studies from both sides 

Legend: ADM – Adductor Magnus; UGM – Upper Gluteus Maximus; LGM – Lower Gluteus Maximus; GMED – Gluteus 
Medius; BF – Biceps Femoris; SM – Semimembranosus; VL – Vastus Lateralis; GM – Gluteus Maximus; BS – Backswing; FS – 
Forward Swing; ACC – Acceleration; EFT – Early Follow-Through; LFT – Late Follow-Through; + corresponds to 20% MMT/
MVC
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the onset, which can be defined as the beginning 
of the action potential of the motor units (Solnik, 
Rider, Steinweg, DeVita, & Hortobágyi, 2010). 
The study of the onset muscle activity can inform 
us on how the Central Nervous System (CNS) 
controls a set of muscles while performing a task. 
The study of muscle activation time – onset - is 
of major importance. The onset muscle activity 
can present information concerning the muscles 
temporal organization and coordination during a 
motor skill (De Luca, 1997) such as the golf swing.

The golf swing is a complex motor skill and 
associates power and precision synchronization. 
The increased speed of the distal segments is 
supported by the energy transferred from the core 
muscles, especially in explosive and accurate 
motor skills (Hirashima, Kadota, Sakurai, Kudo, 
& Ohtsuki, 2002). So the motor program of the 
central nervous system output will depend on 
specific sequence, intensity and activation time 
of the used muscles. For instance, in complex 
motor abilities the reaction time of abdominal 
muscles is crucial and tends to increase in subjects 
with low back pain due to postural organization 
(Hodges, 2001).

A wide variety of approaches has been used to 
detect EMG muscle onset but there is no standard-
ized method and its application is usually done in 
motor skills with isometric contraction (Farina & 
Merletti, 2000) normally reported to present better 
reproducibility (Lee, Jung, & Kim, 2011). The 
dynamic and complex skills are characterized by 
EMG signals with higher level of instability and 
less reliability. So, the onset determination in those 
tasks is more demanding in terms of the involved 
methods. This is probably the reason why only 
two papers (Cole and Grimshaw, 2008b; Horton 
et al., 2001) studied the onset of muscle activity 
in the golf swing.

Cole and Grimshaw (2008b) and Horton et al., 
(2001) compared abdominal muscle activation 
in subjects with and without chronic low back 
pain. Horton et al., (2001) studied the abdominal 
muscle activation of professional golfers in five 

maximal shots before and after a typical 50 min 
practice session. The external oblique and rectus 
abdominis muscles of both sides (lead and trail) 
showed similar activity levels in both groups. Only 
one significant difference was reported between 
groups: injured golfers exhibited EMG onset times 
in the lead external oblique occurring significantly 
later during the backswing. The control group 
activated its lead external oblique 17 ms (before 
practice) and 42 ms (after practice) after the start 
of the backswing. The chronic low back pain group 
activated the same muscle 56 ms (before practice) 
and 67 ms (after practice) after the beginning of the 
backswing. Cole and Grimshaw (2008b) compared 
trunk and abdominal muscles timing parameters in 
golfers with and without low back pain. The used 
threshold algorithm was calculated through the 
average baseline activity when it exceeded one SD 
during a 50 ms window for both onset and offset 
parameters. The muscle activation pattern of the 
golfer with low back pain showed statistical differ-
ences in the ES muscle just prior to the initiation 
of the backswing. This difference is explained 
by the hypothesis of the poor functioning of the 
deeper spinal stabilization muscles. Silva et al., 
(2013) described timing parameters on the trunk 
muscles by comparing club types. The maximum 
activation tends to occur simultaneously during 
the forward swing and acceleration phases for the 
rectus abdominis, erector spinae, internal oblique 
and external oblique muscles. The onset tends to 
occur simultaneously during the backswing, but 
no differences were reported between club types.

Onset detection can be performed with visual 
inspection or detection algorithms (Vaisman, 
Zariffa, & Popovic, 2010). Visual inspection (VI) 
is highly time-consuming and depends on the 
researcher’s expertise, so it can be considered a 
subjective process (Jöllenbeck, 2000). Conversely, 
the lack of a goldstandard measurement used 
for algorithms validation leads to using visual 
inspection to confirm threshold algorithms. Pre-
vious literature generally organized the detection 
algorithms into threshold algorithms (Allison, 
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2003; Hodges & Bui, 1996; Jöllenbeck, 2000; 
Van Boxtel, Geraats, Van de Berg-Lenssen, & 
Brunia, 1993) and statistically optimized algo-
rithms (Micera, Sabatini, & Dario, 1998; Staude, 
Flachenecker, & Wolf, 2001), such as maximum 
likelihood, wavelet transform (Vannozzi, Con-
forto, & D’Alessio, 2010) and Teager-Kaiser 
energy operator (Li, Zhou, & Aruin, 2007; Solnik, 
DeVita, Rider, Long, & Hortobágyi, 2008; Solnik 
et al., 2010).

The onset algorithm detection precision is 
influenced by background activity level, signal-to- 
noise ratio activity (Hodges & Bui, 1996; Staude 
et al., 2001) and onset rate of signal amplitude 
(Allison, 2003). Hug (2011) states that, generally, 
used threshold algorithms variation is: 1, 2, and 
3 SD or between 15 to 25% of maximum activity 
peak. Other threshold algorithm approaches have 
considered the use of the signal voltage/intensity 
by exceeding the upper limit of the confidence 
interval during a stationary number of samples 
(Van Boxter et al., 1993).

Hodges and Bui (1996) have reported onset 
detection algorithms combined with different 
background activity levels of diverse variables, 
such as low pass filters (10, 50, 500 Hz), sampling 
windows (10, 25, 50 ms) and standard deviations 
(1, 2, 3 SD). The results showed that the most 
accurate combinations for low pass filter, sample 
window and SD were: 50 Hz / 25 ms / 3 SD and 
50 Hz / 50 ms / 1 SD. Consequently, it’s clear 
that smoothing is an important issue that can in-
terfere with the use of onset detection algorithms. 
Although excessive smoothing may facilitate 
information losses and inaccurate identification, 
insufficient smoothing is normally associated with 
a delay on onset detection (Hodges & Bui, 1996).

Besides onset detection in dynamic tasks, the 
meaning of the signal and relation with its task are 
not well described in literature. As a result, several 
authors have explained the movement analysis 
through descriptive and qualitative approaches 
(Hirashima et al., 2002; McGill, Chaimberg, Frost, 
& Fenwick, 2010; Silva et al., 2013). Figure 2 

shows the external oblique EMG muscle activ-
ity during the swing phases. Two methods were 
used for onset detection by differing the threshold 
determination. The trial method consisted in de-
termination of the threshold by using the mean 
EMG activity for 1000 ms before the 500 ms prior 
to the start of the backswing. In the MVC method, 
threshold was determined by the baseline activity 
between two MVC. From restriction to different 
mechanical actions of the swing phases, the onset 
search had to start before the backswing and the 
downswing. Two activation instants were found: 
the first before the downswing and the second be-
fore the backswing. Obviously, in this example the 
baseline had a very favorable signal to noise-ratio. 
In the erector spinae muscle the baseline was very 
high due to the trunk flexion during the address 
but a peak occurs immediately before impact. Then 
the timing parameters studies should regard the 
physiological meaning in dynamic tasks, trying to 
explain how the CNS recruits muscles to achieve 
a certain mechanical output.

For complex dynamic motor tasks, such as 
golf swing, the nature of EMG signals is quite 
different from those registered during isometric 
contractions. Apart from the used method, when 
studying temporal parameters of EMG signals in 
dynamic tasks we should be able to identify and 
describe the physiological phenomenon and its 
interpretation.

Solutions and Recommendations

To collect EMG signal the electrodes placement 
must be correct and well described in papers, 
especially in small muscles, so comparison be-
tween studies may represent new approaches. 
Data collection procedures must be well planned 
to diminish the time spent during the task and in 
signal processing. EMG signal should be task re-
lated and normalized through isometric maximus 
voluntary contraction with specific exercises. In 
dynamic tasks, such as golf swing, more compli-
cations can happen: time consumption to prepare 
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the participant for the task, difficulty to retrive a 
huge amount of muscles at the same time, and use 
of kinematic points needed to divide the swing 
phases. Nevertheless, an organized plan and a good 
laboratory group can work against adversities and 
retrieve the EMG signal sooner.

FUTURE RESEARCH DIRECTIONS

In future studies the activation patterns of lower 
limb and the distal portion of upper limb should 
be characterized because those regions are injury 
related and there is a lack of EMG research per-
formed with those muscle groups.

The club kinematic and club head velocity 
differs according to the used club type, so dif-
ferences in muscular activity patterns can occur.

Studies must investigate the amateur’s level 
golfers and special group population (i.e. different 
handicap) since some differences can be found 
between skilled and less skilled golfers, as the 
latter ones are in a larger number.

Most studies have focused their attention on 
male golfers, but some differences can occur in 

female golfers since they show differences in 
muscle profile and strength capacity, mainly in 
upper limb muscles, and they have a different 
body composition (i.e. more body fat).

Studies should relate the kinematic with EMG 
(e.g. the X-factor with EMG activity patterns of 
the trunk muscles) in order to understand their 
connection to injuries.

There is a lack of research on EMG timing 
parameters during the golf swing and this kind 
of approach is important to characterize how the 
central nervous system controls the temporal 
organization and coordination during the swing 
and how it adapts to different constraints. For this 
research topic an objective and uniform defini-
tion of criteria for timing parameters definition 
is necessary.

Muscle synergies extraction on EMG signals 
has been being used in sports science and reha-
bilitation field (Hug, Turpin, Couturier, & Dorel, 
2011; Hug, Turpin, Guével, & Dorel, 2010; Turpin, 
Guével, Durand, & Hug, 2011). This technique 
allows a better understanding on how Central 
Nervous System controls a lot of muscles at the 
same time (Safavynia, Torres-Oviedo, & Ting, 

Figure 2. Onset detection using two methods during a golf swing
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2011), i.e., it gives insights about motor program. 
Thus, studying how such muscle synergies differ in 
golfer’s handicap or different club use might give 
interesting information to trainers and therapists. 
Future studies should also encompass this kind 
of analyses.

CONCLUSION

This chapter is aimed to describe the EMG mus-
cular activity of a golf swing in different body 
regions. The intensity parameters were the first to 
be studied and more have followed. However, they 
focused specially on trunk and shoulders. There-
fore, distal regions must be studied, especially the 
lower limbs. Additionally, some studies have been 
completed to report frequent injuries in golfers, 
mainly the low back pain. The timing parameters 
studies could allow additional information about 
musculoskeletal injuries in golf, and they can 
be used to describe differences between special 
groups. New approaches have been presented 
and discussed to understand how time parameters 
determination should contribute, in the future, 
to the research about neuromuscular function in 
golf. However, no goldstandard algorithm defini-
tion has consensus in the scientific community. 
Consequently, there is need for further studies on 
golfers’ injury mechanisms, and on prescription 
of training programs and rehabilitation in order 
to understand such a complex motor task as the 
golf swing.
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KEY TERMS AND DEFINITIONS

Club: The object used by golfers to hit the ball.
Lead: The left side (upper or lower limb) on 

a right-handed golfer.
Low Back Pain: The most frequent golf injury 

located in the posterior and low trunk.
Muscle Synergies: Low-dimensional modules 

formed by muscles activated in synchrony.
Offset: The time that corresponds to the final 

contraction of the muscle.
Onset: The time that corresponds to initial 

contraction of the muscle.
Phases: The division of a task into parts to 

better describe the swing, which normally is 
divided in five.

Swing: A multi-dynamic and complex move-
ment used in golf in order to hit the ball.

Threshold: Value used to calculate limits to 
start the onset or offset, generally, by using per-
centage or standard deviation.

Trail: The right side (upper or lower limb) on 
a right-handed golfer.
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Assessing Joint Stability 
from Eigenvalues Obtained 
from Multi-Channel EMG:

A Spine Example

ABSTRACT

Electromyographic (EMG) signals have many uses. This chapter addresses the role of EMG signals to 
assess joint stability. Low back pain assessment and treatment interventions often involve the concepts 
of stability and/or joint stiffness. Using muscle activation and lumbar spine posture to calculate seg-
mental stiffness and potential energy of the spine, eigenvalues can be linked to quantitative stability. It 
is reasoned that if a relationship exists between eigenvalues and individual muscles, then this approach 
can guide customized clinical intervention for people with defined spine instability.

INTRODUCTION

EMG can be used to obtain force and stiffness 
estimates from which stability of joints can be 
estimated. Using the lumbar spine as an example, 
EMG from the trunk muscles can be used to 
calculate joint stiffness, which is recognized as 
universally enhancing stability and the ability to 
withstand a perturbation. The flexible column 
does not have sufficient stiffness to support the 

weight of the upper body without buckling un-
less muscles are activated and stiffened around 
the column (Lucas & Bresler, 1961). Perturbed 
muscle activation patterns leading to instability 
have been shown to be both a cause and conse-
quence of low back pain. Addressing the perturbed 
patterns with corrective exercise appears, at least 
in some patients, to reduce or eliminate their pain 
immediately. Insufficient stability is thought to 
allow micro movements in the spine motion seg-
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ments resulting in painful stress concentrations 
of innervated tissues (McGill, 2007). Further 
understanding of quantitative spine stability 
could potentially assist in clinical interventions 
of individuals with spine instability.

Some investigations of spine stability use a 
potential energy approach to evaluate the eigenval-
ues (EV) derived from the segmental stiffness and 
potential energy of the spinal column and joints. 
However, it is unknown whether specific muscles 
can be represented by specific EVs, obtained 
from EMG, such that their evaluation could guide 
clinical approaches to modify muscle activation/
stiffness and thus the stability state of the joint. 
This chapter will examine this and establish a 
theoretical framework for understanding the links 
between posture and muscle activity, which results 
in force and ultimately spine load and stability/
stiffness. It was hypothesized that:

1.  Individual muscles affect specific EVs, but 
no one muscle can be associated with one 
EV level

2.  Specific muscles do affect specific planes 
of stability/stiffness

3.  EVs are affected by posture
4.  Overactivating muscles by increasing muscle 

activation to 100% maximum voluntary 
contraction (MVC) negatively affects the 
EVs

5.  The relationship between muscles and 
specific EVs obtained during simulation 
remains with real subjects performing loaded 
tasks.

The hypotheses were evaluated in two stages. 
First, synthetic muscle activation levels enabled a 
sensitivity analysis of the variables that affect the 
EVs. Second, the sensitivity analysis was repeated 
with actual muscle activation and spine posture 
data obtained from a carrying task.

BACKGROUND

Quantifying joint stability, particularly that of 
the spine, involves the interpretation of stiffness 
enhancing the ability to survive a perturbation. 
Some investigations using this potential energy 
based approach evaluate the EVs derived from 
the segmental stiffness and potential energy of 
the column and joints. Thus, stability was defined 
as the ability of the spinal column to withstand 
perturbation while resisting buckling behavior. 
Joint stiffness is recognized as universally en-
hancing stability and is the second derivative of 
potential energy. EVs, when positive, indicate a 
sufficiently stiff state to prevent unstable behavior 
in the elastic spinal column. The number of EVs 
corresponds to the degrees of freedom (in this 
study, the number of spinal levels, multiplied by 
the three rotational orthopedic axes of each joint 
– i.e. six lumbar levels by three axes of flexion/
extension, lateral bend and twist renders 18 EVs). 
Beyond indicating whether a stable state is pres-
ent or not, this study attempted to probe the EVs 
for any additional information content, including 
whether specific muscles are better reflected in 
specific EVs. If this is true, then the value of the 
EVs for a given patient could provide clues when 
choosing optimal muscle based interventions.

Anders Bergmark (1989) pioneered the poten-
tial energy approach to assess spine stability with 
joint stiffness and 40 muscle stiffness coefficients 
to calculate energy minima from total joint stiff-
ness. Bergmark simplified the potential energy 
approach conceptually by using the analogy of a 
ball rolling on a surface. The ball seeks a state of 
minimum potential energy by rolling and eventu-
ally coming to rest in the bottom of a local “bowl.” 
The steeper the sides of the bowl, the greater the 
external perturbation is required to influence 
the ball out of the bowl and therefore, it is more 
stable. The system is potentially unstable if the 
perturbation is large enough to cause the ball to 
roll out of the bowl and into the next “energy well” 
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or local bowl. In the case of the spinal system, 
the slope of the bowl sides represents the joint 
and muscle stiffness, which offers resistance to 
the applied force. The width of the flatter region 
at the bottom of the bowl represents joint laxity 
(McGill, 2007).

While the previous example illustrates the 
relationships between the potential energy state of 
a system and its stability, it needs expanding for 
relevance to a musculoskeletal system of joints. 
The potential energy of a joint system is a function 
of the elastic energy in the muscles, modeled as 
linear springs and the elastic energy in the passive 
tissues, modeled as torsional springs, which is 
challenged by the work performed by an external 
load or perturbation. Examples of this modeling 
approach include the lumbar spine models of 
Stokes and Gardner-Morse (Stokes & Gardner-
Morse, 2001) and Cholewicki and McGill (1996). 
The second partial derivatives of the potential 
energy of the system is calculated for each joint 
(6 lumbar) and axis (3, flexion/extension, lateral 
bend and axial twist) combination and arranged 
into an 18x18 Hessian matrix. Global stability 
could be calculated as the determinant of the 
Hessian matrix, where the system is considered 
stable if the determinant is positive and unstable 
if the determinant is negative (Howarth, Allison, 
Grenier, Cholewicki, & McGill, 2004). Gardner-
Morse et al. (2006) have suggested that a second 
way to calculate stability is to diagonalize the 
Hessian matrix to determine the 18 EVs, using 
the lowest EV as the stability index under the as-
sumption that the spine will buckle at the point 
of lowest potential energy. The EVs represent the 
degree of curvature of the surface, from the previ-
ous bowl analogy, at each joint/axis combination. 
Howarth et al. (2004) suggested that examining the 
determinant and lowest EV methods together may 
provide more information than simply whether 
the system is stable or not.

MAIN FOCUS OF THE CHAPTER

Methods

The analysis of stability was performed using an 
EMG-assisted anatomically detailed spine model. 
A brief description of the model is provided here, 
with a flow chart of the steps shown in figure 1, 
although the interested reader may refer elsewhere 
for a detailed description (Cholewicki, McGill, 
& Norman, 1995; Cholewicki & McGill, 1994, 
1996; Grenier & McGill, 2007; McGill & Nor-
man, 1986; McGill, 1992).

This model consisted of three interdependent 
models: (1) a 3-dimensional linked segment model, 
(2) a ‘lumbar spine model’ and (3) a ‘distribution-
moment muscle model’ (D-M muscle model). 
The lumbar spine model incorporated the 3-di-
mensional anatomy and segmental movement 
according to the subject movement. Five lumbar 
vertebrae were joined with non-linear elastic ele-
ments representing rotational motion between a 
rigid pelvis/sacrum and a rigid ribcage. Muscles 
and tendons were modeled with linear stiffness 
elements. Eleven bilateral muscle groups were 
divided into 59 muscle fascicles, for a total of 118 
muscle fascicles. Muscle lengths and velocities 
from the lumbar spine model were input to the 
D-M muscle model together with the normalized 
muscle activation profiles of seven electrode sites 
per body side to calculate individual muscle force 
and stiffness profiles. They were then used to 
calculate the L4/L5 muscle forces and moments.

EMG was used to drive estimation of muscle 
force. Muscle force can be calculated using the 
equation

Fm = G[(EMG/EMGm)1/1.3(P0)(Ω)(δ) + Fpec]  
(1)

where: 
Fm = Muscle force (N)
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G = Gain factor, calculated through an EMG-
Assisted optimization routine

EMG = EMG amplitude
EMGm = MVC EMG amplitude
P0 = Maximum isometric force (N)
Ω = Coefficient for velocity variation
δ = Coefficient for length variation
Fpec = Force due to the passive elastic component
(McGill & Norman, 1986).

Muscle force was then used to estimate muscle 
stiffness using the equation

km = (q)(Fm/Lm)  (2)

where: 
km = Muscle stiffness (N/m)
q = Coefficient fitting the relationship between 

muscle force and stiffness
Fm = Muscle force (N)
Lm = Muscle length (m)
(Brown & McGill, 2005).

The muscle force and muscle stiffness profiles 
were then used to calculate the potential energy of 
the muscles, which was in turn used to calculate 
the stability/stiffness of the spine.

The stability/stiffness of the spine was mea-
sured via the EVs at each of the six lumbar joints 
and three rotational axes, resulting in 18 EVs. 
The potential energy of the linear springs, or 
muscles (UL), was calculated from the individual 
muscle force, stiffness and length profiles, while 
the potential energy of the torsional springs, or 
passive tissues (UT), was calculated from the lum-
bar spine geometry and kinematics as the spine 
deviated from neutral elastic equilibrium. These 
potential energies were compared to the work (W) 
performed from a “perturbation” (V = UL + UT – 
W), where negative values indicated insufficient 
stiffness to reveal unstable behaviour. The second 
partial derivatives of V were arranged into an 18 
x 18 Hessian matrix that was symmetrical about 
the main diagonal. The Hessian matrix was then 

diagonalized to determine the associated 18 EVs. 
Further mathematical detail on the EV calculation 
can be found in Howarth et al. (2004). The three 
EVs (flexion/extension, lateral bend and axial 
twist) at the L4 lumbar level were used to represent 
the stability/stiffness of the system for this study, 
given that the greatest anatomical robustness was 
represented at this level. Typically in stability 
analysis, the smallest EV would indicate the first-
to-occur buckling mode and thus have the greatest 
influence on overall stability. However, the focus 
here was to see if specific muscles affect specific 
EVs, which if true, may assist clinical efforts.

To assess possible influence of individual 
muscles on EVs, the first stage of “sensitivity 
testing” was conducted using a muscle knockout 
approach. Muscle activity of all muscles was set 
to 50% MVC. One at a time, the muscles were 
systematically knocked out to 0% MVC. This was 
repeated for each lumbar spine posture that altered 
one spine angle axis in iterations of 10º each. Itera-
tions about the flexion axis ranged from -30º to 
50º, about the lateral bend axis from -30º to 30º 
and about the axial twist axis from -40º to 40º, for 
a total of 23 postures. These angles were chosen 
to represent the approximate reasonable lumbar 
spine range of motion. Using this approach, twelve 
special cases were tested, including all muscles 
active, followed by the removal of bilateral rectus 
abdominis (RA), external oblique (EO), internal 
oblique (IO), pars lumborum (Pars), iliocostalis 
lumborum (Ilio), longissimus (Long), quadratis 
lumborum (QL), latissimus dorsi (LD), multifidus 
(Mult), psoas major (Psoas) and transverse ab-
dominis (TrA). Finally, these twelve special cases 
were repeated, except the muscle was artificially 
activated to 100% MVC.

The EVs were calculated for each trial and 
the percent difference from the initial condition 
was calculated. To evaluate the effect of muscle, 
the initial condition was when all muscles were 
active to 50% MVC, while the neutral posture was 
the base initial condition to evaluate the effect of 
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posture. A difference of 10% or greater in the EV 
was considered to be the biologically significant 
threshold.

The second stage replaced the synthesized 
activation and lumbar spine posture with actual 
data collected from individuals performing a 
load-carrying task. The subjects were asked to 
walk while carrying a bucket with 15 kg in each 

hand. A linked segment model utilized foot con-
tact forces obtained from a force plate and 3D 
kinematic data obtained with a VICON motion 
capture system (Vicon Motion systems, Oxford, 
UK) to determine 3D lumbar spine angles and 
L4/L5 joint forces and moments, as described by 
Ikeda and McGill (2012).

Figure 1. Flow chart of the anatomically detailed spine model and steps required leading up to the sta-
bility analysis and the output of EVs. Abbreviations: D-M: Distribution-Moment
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Surface electromyography (EMG) was record-
ed using Ag-Ag/Cl (Covidien Meditrace, Mans-
field, USA) self-adhesive surface electrode pairs, 
spaced approximately 25 mm apart in a bipolar 
configuration. Twelve bilateral muscle locations 
were: rectus abdominis (RA), internal oblique 
(IO), external oblique (EO), latissimus dorsi (LD), 
upper erector spinae (UES) and lower erector spine 
(LES), after Grenier and McGill (2007). EMG 
signals were amplified using a Bortec amplifier 
(Bortec Biomedical, Calgary, Canada) and A/D 
converted using a 16-bit, 64-channel A/D converter 
at a sample rate of 2160 Hz. Two resting trials 
were conducted, one prone and one supine, fol-
lowed by a MVC for each muscle to normalize the 
amplitude. For the abdominal muscles (RA, EO 
and IO), each participant adopted a sit up posture 
at approximately 45 degrees of hip flexion and 
was manually braced by a research assistant. The 
participant was instructed to produce a maximal 
isometric flexor moment followed sequentially by 
a right and left lateral bend moment and a right and 
left twist moment. For the spine extensors (LES 
and UES) and LD muscles, a resisted maximum 
extension in the Biering-Sorensen position was 
performed for normalization (Biering-Sørensen, 
1984). The LD muscles were cued by instructing 
the participants to pull their shoulder blades back 
and down during extension. These contractions 
were performed according to established lab 
protocol (Grenier & McGill, 2007).

EMG was bandpass filtered from 30-500 Hz, 
full-wave rectified and low-pass filtered with a 
single-pass second order Butterworth filter at a 
cut-off frequency of 2.5 Hz to mimic the frequency 
response of torso muscle and enable muscle force 
prediction (Brereton & McGill, 1998). The zero 
bias from the resting trial was removed from all 
trials to account for bias. Finally, all trials were 
normalized to the maximum EMG amplitudes 
obtained during the MVC procedure and the 
signals were down sampled to 60 Hz to allow for 
syncing of the EMG and kinematic data. This 
was completed using custom LabView software 

(National Instruments Corporation, Austin, TX, 
USA).

Results

Altering muscle activation bilaterally resulted in 
the same effect on EVs in the right and left bend 
postures as well as the right and left twist postures. 
In other words, symmetric muscle intervention 
resulted in symmetric EV change. For this reason, 
only the degree of bend and twist, not the direction, 
was examined. The TrA muscle was also found to 
never result in a biologically significant change, 
therefore it was not discussed here. Also notable 
is the fact that the greatest anatomical detail is at 
the L4/L5 level such that results at this level are 
probably the most robust.

Hypothesis 1: Effect of Muscles 
on Eigenvalues and Hypothesis 
2: Effect of Specific Muscles on 
Plane of Stability/Stiffness

Although posture had interactions with muscles in 
their effect on EVs, it was clear that single muscles 
did affect multiple levels of spine stability/stiffness 
and stability/stiffness at one segmental level was 
affected by multiple muscles. For the L1F EV, the 
Mult muscle had the largest effect followed by the 
Pars, Ilio and Long muscles in their contribution. 
On average across all postures, when removed, 
the Mult muscle resulted in a 67.3% ± 6.5% 
(mean ± SD) change, the Pars muscle resulted in 
a 53.2% ± 8.5% change, the Ilio muscle resulted 
in a 31.7% ± 6.8% change and the Long muscle 
resulted in a 24.0% ± 6.2% change for the L1F 
EV. Similar results were found for the L1B and 
L1T EVs. The Mult, Pars, Ilio, Long and Psoas 
muscles were also the only muscles that affected 
the L2 level EVs. The Pars muscle was the only 
muscle that resulted in a biologically significant 
change for all postures for the L3F EV. The Mult, 
Ilio and IO muscles also resulted in biologically 
significant changes for most postures. For the 



209

Assessing Joint Stability from Eigenvalues Obtained from Multi-Channel EMG
 

L3B EV, when averaged across all postures, the 
Mult muscle resulted in an 11.5% ± 6.1% change 
in the L3B EV, while the Ilio muscle always had 
less than a 15% change in the EV. For the L3T 
EV, when averaged across all postures, the Pars 
muscle resulted in a 29.7% ± 6.3% change, while 
the Ilio muscle resulted in a 26.0% ± 5.6% change 
in the L3T EV. The Mult and QL muscles also 
caused biologically significant changes for most 
postures, with changes of 17.6% ± 7.7% and 13.9% 
± 4.2% in the L3T EV, respectively, when aver-
aged across all postures (average absolute values 
in table 3 for all EVs).

The Pars muscle was the only muscle that 
resulted in a biologically significant change for 
all postures when examining the L4F EV with a 
change in the EV of 30.9% ± 5.0% when averaged 
across all postures. The Mult and Long muscles 
were also biologically significant for most pos-
tures. When averaged across all postures, the 

Mult muscle had a change of 17.1% ± 6.9% and 
the Long muscle had a change of 12.9% ± 2.4% 
in the L4F EV. The IO and EO muscles became 
the most influential muscles for the L4B EV, 
while the Mult muscle no longer had a biologi-
cally significant effect. When averaged across all 
postures, the EO muscle resulted in a 38.8% ± 
10.6% change, while the IO muscle resulted in a 
40.3% ± 18.4% change in the L4B EV. The Ilio 
muscle caused a biologically significant effect 
for most postures, resulting in a 20.3% ± 10.2% 
change in the L4B EV when averaged across all 
postures. For the L4T EV, the muscle that had 
the largest biological significant effect varied 
between the EO, IO and Ilio muscles. For the 
L5F EV, the IO, Ilio, Pars and Long muscles all 
caused biological significance for the majority 
of postures. When averaged across all postures, 
the Ilio muscle had a 28.2% ± 11.2% change, the 
IO muscle caused a 20.8% ± 7.0% change, the 

Figure 2. Percent change in the L4 level EVs when reducing single muscle activation to 0% MVC while 
all other muscles remained active to 50% MVC for the neutral posture. Negative change represents 
a lower EV when a single muscle’s activity was reduced to 0% MVC. The thick black line highlights 
the point where changes were considered biologically significant (10% change). Abbreviations: RA: 
rectus abdominis; EO: external oblique; IO: internal oblique; Pars: pars lumborum; Ilio: iliocostalis 
lumborum; Long: longissimus; QL: quadratis lumborum; LD: latissimus dorsi; Mult: multifidus; TrA: 
transverse abdominis
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Long muscle had a 16.6% ± 7.7% change and the 
Pars muscle resulted in a 14.6% ± 6.0% change. 
The EO and RA muscles were the only other 
muscles that resulted in a biologically significant 
change. For the L5B EV, when averaged across 
all postures, the IO muscle resulted in a 30.2% 
± 14.1% change, the RA muscle resulted in a 
21.8% ± 9.2% change and the EO muscle caused 
a 13.8% ± 6.7% change. It was also noted for the 
L5B EV that the Mult muscle resulted in a 1.4% 
± 0.9% change when averaged across all postures. 
Finally, for the L5T EV, the abdominal muscles 
caused the greatest influence on the EV, but the 
LD muscle had a small influence resulting in less 
than a 13% change in the EV for the neutral and 
extension postures. The effect of the RA muscle 
was also small, with a change in the L5T EV 
of less than 15%. The EO muscle resulted in a 
biologically significant change for all postures, 
with an average of a 23.9% ± 10.3% change in the 

EV. The IO muscle resulted in a 26.4% ± 9.4% 
change when averaged across all postures. It was 
also noted for the L5T EV that the Mult muscle 
resulted in a 0.2% ± 0.2% change when averaged 
across all postures (average absolute values in 
Table 3 for all EVs).

In summary, the erector spinae muscles influ-
enced the upper lumbar level EVs (L1, L2 and 
L3 levels), more than the abdominal muscles, 
while the opposite occurred for the lower lumbar 
level EVs (L4 and L5 levels), than the erector 
spinae muscles. In addition, single muscles did 
affect multiple levels of spine stability/stiffness 
and stability/stiffness at one segmental level was 
influenced by multiple muscles.

Figure 3. Percent change in the L4 level EVs when comparing various postures to the neutral posture 
when all muscles were active to 50% MVC. Negative change represents a lower EV in the measured 
posture. The thick black line highlights the point where changes were considered biologically significant 
(10% change)
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Hypothesis 2: Effect of Specific 
Muscles on Plane of Stability/Stiffness

Muscles do appear to be related to specific planes 
of stability/stiffness. The L4 lumbar level will be 
discussed in detail because the L4 lumbar level 
contains the most anatomical robustness. In the 
neutral posture, the influence of muscles on the 
L4 lumbar level EVs depended on the axis of 
rotation (Figure 2). The Pars, Mult, Long and EO 
muscles had a biologically significant effect on the 
L4 flexion axis EV (L4F), with the Pars muscle 
having the largest influence (decreasing 32.1% 
when Pars was removed - see absolute values in 
Table 1). The IO and EO muscles had the great-
est influence on the lateral bend axis EV (L4B) 
(decreased 58.2% when IO was removed, while 
the EV decreased 41.6% when EO was removed 
- see absolute values in Table 1), followed by the 
Ilio, Pars and Psoas muscles (Figure 2). The IO, 
EO and Ilio muscles had a biologically significant 
effect for the twist EV (L4T) (decreased 26.9% 
when IO was removed, decreased 24.0% when EO 

was removed and decreased 22.2% when Ilio was 
removed - see absolute values in Table 1). At the 
upper lumbar levels (L1 to L3), the erector spinae 
and Mult muscles had the greatest influence on 
the EVs, while the abdominal muscles did not 
have a biologically significant effect (absolute 
values in Table 1). Similar trends were seen in 
all other postures.

In summary, the major findings regarding 
the plane of stability at the L4 lumbar level were 
that muscles preferentially influence different 
planes of stability/stiffness, assuming that a 10% 
change in the EV indicated biological significance. 
With most postures, the erector spinae and Mult 
muscles most influenced the flexion axis, while 
the abdominal muscles had the greatest influence 
on the bend axis and occasionally the twist axis.

Hypothesis 3: Effect of 
Posture on Eigenvalues

When determining if EVs were affected by posture, 
all postures were compared to the neutral posture 

Table 1. EV magnitudes (J/rad2) for the neutral posture. Abbreviations: RA: rectus abdominis; EO: 
external oblique; IO: internal oblique; Pars: pars lumborum; Ilio: iliocostalis lumborum; Long: longis-
simus; QL: quadratis lumborum; LD: latissimus dorsi; Mult: multifidus; TrA: transverse abdominis; F: 
flexion axis; B: bend axis; T: twist axis 

L1F L1B L1T L2F L2B L2T L3F L3B L3T L4F L4B L4T L5F L5B L5T

All 316.4 352.2 415.7 423.3 467.9 501.7 590.7 620.5 852.2 1075.3 2611.1 3581.7 4425.8 8036.5 9064.7

RA 332.4 355.3 424.0 434.8 468.9 503.5 536.0 598.8 862.0 1076.5 2605.3 3399.9 4069.8 5660.6 8183.0

EO 335.5 352.1 414.1 436.5 466.1 497.2 530.6 579.9 840.7 953.2 1523.6 2720.6 4346.6 6732.6 7625.6

IO 339.1 351.0 410.5 425.4 433.6 467.6 511.8 597.5 819.4 992.8 1091.9 2616.7 3562.8 4447.8 7349.0

Pars 136.0 263.8 307.0 344.4 346.0 409.0 442.3 470.2 626.2 729.8 2236.3 3529.6 3651.5 7971.2 9059.4

Ilio 200.1 244.5 308.0 320.2 385.0 419.9 466.9 605.7 618.9 980.9 1822.4 2786.0 3405.5 8043.7 8642.9

Long 232.4 306.4 312.8 372.4 380.7 430.4 555.3 604.9 786.4 937.8 2499.4 3396.3 3492.8 7988.0 8986.9

QL 289.3 348.5 388.2 415.4 450.6 473.5 572.7 605.5 719.9 991.9 2389.9 3498.2 4370.6 7912.2 8525.1

LD 327.6 353.2 413.5 423.8 466.2 495.2 574.5 624.6 830.8 1069.1 2358.4 3478.9 4385.5 7876.8 8142.3

Mult 87.3 204.7 343.0 388.4 413.1 441.6 460.4 573.0 748.5 818.5 2572.7 3569.5 4139.6 7948.1 9064.0

Psoas 301.2 318.4 372.3 415.5 435.9 449.8 531.7 609.6 758.8 1075.2 2249.7 3536.2 4426.6 8036.5 9060.5

TrA 316.3 348.3 415.5 420.2 463.4 498.4 587.9 620.1 845.5 1075.0 2600.3 3579.8 4425.3 8036.4 9064.6
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for the condition where all muscles were active to 
50% MVC. Similar to the previous comparisons, 
a change of 10% or greater between the neutral 
posture and posture of interest was considered 
biologically significant. A negative change indi-
cated that the EV for the posture being examined 
was smaller than that of the neutral posture and 
vice versa.

Postures that were close to neutral rarely 
resulted in a biologically significant change in 
the EVs. Sensitivity testing revealed that large 
posture changes were required to produce bio-
logical significance (Figure 3). For example, the 
largest EV changes were seen in the 50º flexion 
posture for the L4F EV (32.8% from 1080.6 J/
rad2 to 726.5 J/rad2), the 30º bend posture for the 
L4B EV (56.8% from 2628.7 J/rad2 to 1134.3 J/
rad2) and the 30º extension posture for the L4T 
EV (53.3% from 3596.5 J/rad2 to 1680.1 J/rad2). 
Similar results were found with all other EVs.

In summary, postures close to neutral resulted 
in little change in the EVs. The postures further 
from neutral resulted in decreased EVs, indicat-
ing less stability/stiffness. The lowest EVs were 
found in the 30º extension, 50º flexion and 30º 
bend postures.

Hypothesis 4: Effect of 100% 
Muscle Activation on Eigenvalues

Boosting muscle activity from 50% MVC to 100% 
MVC, in most cases, had little effect on the EVs. 
In the neutral posture, the IO muscle with the twist 
EV at the L4 lumbar level was the only muscle 
to meet the criterion for biological significance 
(Figure 4), illustrating the influence of the non-
linearity of the activation-stiffness relationship.

Hypothesis 5: Effect of 
Actual Data on EVs

The carrying task resulted in low levels of muscle 
activation (< 13% MVC), with average lumbar 
spine angles of 7.1º ± 1.9º flexion, 4.0º ± 2.2º 

left bend and 4.0º ± 2.9º right twist, therefore 
comparisons were made between the 10º flexion 
posture in simulation and the actual data. There 
were few biologically and statistically significant 
changes when comparing the 0% MVC condi-
tion to the actual EMG condition. However, 
when comparing the 100% MVC condition to 
the actual EMG condition, the erector spinae 
and Mult muscles influenced most EVs, while 
the abdominal muscles only influenced the L4 
and L5 level EVs. In most situations, the single 
muscles affected all planes of stability/stiffness, 
but the abdominal and Ilio muscles typically had 
a larger influence on the bend and twist axes than 
the flexion axis, while the erector spinae and Mult 
muscles typically had a greater influence on the 
flexion axis EVs. These results were similar to 
the results found using simulated muscle activity.

Discussion

The main objective of this study was to evaluate 
the EVs for information content. They appear to 
be more sensitive to muscle activation changes of 
lower %MVC than higher, which is consistent with 
the previously documented non-linear activation/
stiffness relationship described about the ankle 
joint (Hoffer & Andreassen, 1981) and the spine 
(Brown & McGill, 2005). Is the knowledge of an 
EV helpful for those working to modulate stability 
in a patient? The answer is a qualified yes. The 
first hypothesis, that specific muscles are linked 
with specific EVs, has qualified support in that 
the erector spinae muscles (especially the shorter 
Mult whose stiffness is highly sensitive to length 
change given its short length) affect the L1, L2 
and L3 level EVs, while the abdominal muscles 
were the most important at the L4 and L5 lumbar 
level. It was also important to note that the TrA 
muscle never resulted in a biologically significant 
change, and in the L4B, L4T and L5 level EVs, the 
Mult muscle did not cause a biologically signifi-
cant change. These broad results support the idea 
that activating all torso muscles via an abdominal 
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brace (a clinical term to describe activation of the 
abdominal muscles that are consciously contracted 
to various levels to reduce pain) has a broad 
influence on spine stability/stiffness. The brace 
activates the obliques and the erectors. This is in 
contrast with some clinical objectives to activate 
individual muscles, such as the TrA muscle, via 
the abdominal hollowing method. Richardson et 
al. (1992) suggested this as a clinical corrective 
exercise focusing on TrA, in an attempt to influ-
ence spine stability. Note that the TrA did not 
directly influence any EV, which is consistent with 
the findings of the quantitative stability analysis 
of Stokes et al. (2011), although it is linked with 
the generation of intra-abdominal pressure, which 
adds stiffness to the spine in a global sense. Thus 
it appears that clinicians are not offered any insight 
into specific muscle targets for intervention based 
on knowledge of the individual EVs, except that if 
an individual has LBP associated with instability 
in the lumbar spine, they will most likely benefit 

more from strengthening the torso muscles than 
focusing on strengthening the TrA and Mult 
muscles alone. These results agree with the results 
found by Grenier and McGill (2007) and Stanton 
and Kawchuk (2008).

The notion of the existence of “global” and 
“local” stability, which is popular among some 
clinical groups who do not quantify stability, is an 
interesting discussion topic. Quantifying stability 
via the EVs points out the concept that overall 
stability is influenced by the lowest EV. Thus ad-
dressing the location of the joint and mode most 
likely to experience unstable behavior would be 
the only way to enhance overall stability. Short 
muscles could do this acting to influence a single 
joint – these would be considered local stabiliz-
ers. Re-analysis would reveal the next lowest EV. 
Perhaps a larger muscle would have addressed 
both EVs. Thus the interaction of muscles clouds 
the practice of discussing stability in local and 
global terms.

Figure 4. Percent change in the L4 level EVs when increasing single muscle activation to 100% MVC 
while all other muscles remained active to 50% MVC for the neutral posture. Positive change represents 
a higher EV when a single muscle’s activity was increased to 100% MVC. The thick black line highlights 
the point where changes were considered biologically significant (10% change). Abbreviations: RA: 
rectus abdominis; EO: external oblique; IO: internal oblique; Pars: pars lumborum; Ilio: iliocostalis 
lumborum; Long: longissimus; QL: quadratis lumborum; LD: latissimus dorsi; Mult: multifidus; TrA: 
transverse abdominis
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Consistent with anatomical intuition, sagittal 
muscles influenced the flexion EV while lateral 
muscles influenced the lateral bend and twist 
EVs, supporting the second hypothesis. Posture 
was found to have a biologically significant effect 
on the EVs when compared to neutral, support-
ing the third hypothesis. A common approach to 
reduce low back pain is to reduce spine posture 
deviation, which enhances load tolerance in com-
pressive and shear modes, reduces passive tissue 
stress and avoids the bending necessary for disc 
herniation (McGill, 2007). The data presented 
here add to this general notion as postures fur-
ther from neutral resulted in larger decreases in 
stability/stiffness than those close to neutral, with 
the greatest compromise during extreme flexion, 
extension and bend.

It has been previously found that spine mechan-
ics and load carrying abilities are affected by the 
degree of lordosis. For example, there is a smaller 
moment arm for the extensor muscles (Tveit, 
Daggfeldt, Hetland, & Thorstensson, 1994) and 
a decreased tolerance to compression (Gunning, 
Callaghan, & McGill, 2001) with a more flexed 
posture. In addition, flexion angles over 75% 
of the full range resulted in significantly higher 
intradiscal pressure (Adams, McNally, Chinn, & 
Dolan, 1994). It has also been found that in flexed 
postures the load is transferred from muscles 
to passive tissue, increasing the likelihood of a 
disc herniation (McGill 1997). Further, McGill, 
Hughson, and Parks (2000) found that flexing 
the lumbar spine reduces the cosine of the Long 
and Ilio muscles, which diminishes the ability of 
these muscles to resist the anterior shear forces 
introduced during flexion. This implies that there 
would be a larger shear load when in flexed pos-
tures than neutral postures.

Extension of the lumbar spine also causes 
changes in spine mechanics. First, extended pos-
tures cause an articulation of the spinous processes 
that result in transmission of high compressive 
forces (Adams, Dolan, & Hutton, 1988). Further, 

due to the load-bearing apophyseal joints in exten-
sion, damage could occur at compressive loads as 
low as 500 N (Adams et al., 1994). These authors 
also found that the distribution of compressive 
stress is shifted from a peak in the anterior an-
nulus during neutral postures to a large peak in 
the posterior annulus. In addition, there is a 40% 
decrease in nucleus pressure when in extension 
than in neutral postures (Adams et al., 1994). It has 
also been found that degenerated discs in exten-
sion usually showed an increase in compressive 
stress in the posterior annulus, but occasionally 
decreased the compressive stress (Adams, May, 
Freeman, Morrison, & Dolan, 2000). Further, 
extended discs show a decrease in foramen area 
increasing the likelihood of nerve root compres-
sion (Inufusa et al. 1996), which is one source of 
pain in individuals with LBP. This implies that 
extended postures may be detrimental for most 
individuals, but beneficial for others.

Extremes of muscle activation form an interest-
ing situation. Increasing the muscle activation of 
single muscles from 50% MVC to 100% MVC did 
not have a major effect on most EVs, but when 
there was an effect, there was an increase in the EV, 
thus hypothesis 4 was refuted. Brown and McGill 
(2005) found that the contribution to stability of 
an individual muscle peaks at a critical force level, 
after which it may even be detrimental to stability. 
Here, force runs ahead of concomitant stiffness, 
actually causing a buckled spine. Fortunately, this 
behavior was not observed in the “live” portion of 
this study. Simulating increased activation from 
50% MVC to 100% MVC may have been over this 
critical force level for most muscles. However, 
force was not evaluated here, thus no comment 
on risk could be made.

The results from the actual data and simulated 
data in the 10º flexion posture were similar, sup-
porting hypothesis 5. Due to the low levels of 
muscle activation with the actual data set, it is 
not surprising that reducing the muscle activity to 
0% MVC did not have a biologically significant 
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effect on most EVs. When there was a biologically 
significant change between actual EMG and 0% 
MVC, it was most often seen in the L4 and L5 
EVs, indicating that these EVs are most sensitive, 
as would be expected given the anatomical robust-
ness of the model at the L4 and L5 lumbar levels. 
The results also imply that activating all muscles 
to 50% MVC does not have a large influence on 
the interpretation of which EVs and muscles are 
linked. Although this study only tested one posture 
with actual EMG, it is not anticipated that there 
would be a large difference between the theoretical 
and actual data sets in different postures.

Limitations

There are a number of limitations for interpreting 
the data of this study. The choice of a 10% change 
in the EV as the criterion value for biological 
significance, although arbitrary, had several 
implications. Modulating muscle activity from 
a clinical perspective during daily activity is im-
precise. However, changes smaller than 10% are 
probably difficult for an individual to perceive. 
Further, 10% appeared to be a natural cut-off point 
when reviewing the data. Thus, one could argue 
that the choice of change could be 8% or 15%, 
but the overall conclusions would be unaffected. 
Even so, as the 18 EVs are nonlinear, any single 
criterion would be influenced by their magnitude. 
A larger EV indicates a higher stable state, but 
not “how much” higher. Furthermore, changing 
activation levels of a single muscle would upset 
static moment equilibrium. Since the exercise 
conducted here was to assess single muscles on 
their role to influence EVs, this could not have 
been done had other muscle activation values been 
altered to achieve moment equilibrium.

Summary

This study provides evidence that increasing the 
activation of the abdominal wall and ensuring a 
more neutral spine posture results in an increase 

in stiffness and by default stability. Thus, EVs 
appear to give insight into variables that influ-
ence stability/stiffness. However, the analysis 
conducted here of altering individual muscle 
activation levels suggests that the magnitude of 
individual EVs do not indicate the “amount” of 
change in stability/stiffness, nor does it appear 
that specific EVs reveal unique information about 
specific muscles. Thus, this approach does not ap-
pear to have potential to assist clinical decisions 
regarding muscle activation patterns to address 
specific modes of spine instability.

FUTURE RESEARCH DIRECTIONS

Future directions could involve further investiga-
tion into the information content of the individual 
EVs. In addition, it is important to determine if 
specific muscles have an effect on other aspects of 
spinal stability. For example, it was found that the 
TrA muscle does not affect any individual EV, but 
if it has a large effect on intra-abdominal pressure, 
the global stability may be affected. Therefore, 
it would also be beneficial to research the effect 
of individual muscles on global spine stability.

This EMG-assisted model of the spine only 
takes into account the torso muscles. However, 
clinical observations have shown that hip motion 
and muscle activity appears to be related to the 
spine. Further development of the model to include 
the interaction between the lumbar spine and hip 
would enhance the understanding of spine forces, 
moments and stability and the relationship between 
the hip and spine. In a more generic sense, the 
role of EVs throughout a multi-articular linkage 
may prove to render more information.

CONCLUSION

The approach of assessing joint stability with 
EVs does not appear to have potential to assist 
clinical decisions regarding muscle activation 
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patterns, at least with the spine example tested 
here. In terms of adding insight into spine muscle 
function, the approach did provide insight into 
the role of shorter muscles. In clinical terms for 
a spine specific context, the broad results support 
the idea that activating all torso muscles via an 
abdominal brace influences stability/stiffness. 
Thus, the EMG signal, appropriately processed 
to render EVs, appears to be useful in providing 
global insight into joint stability analysis.
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KEY TERMS AND DEFINITIONS

Abdominal Brace: The technique of activating 
all the torso muscles to create a guy wire support 
system for the spine.

Eigenvalue (EV): A measure of spine stability, 
derived from the segmental stiffness and potential 
energy of the spinal column and joints.

EMG-Assisted Model: A mathematical model 
using electromyographic activity to drive the 
calculation of muscle forces and therefore joint 
moments and loads.

Sensitivity Analysis: A technique to deter-
mine the impact of an independent variable on 
a dependent variable, accomplished through 
systematically changing the values of the inde-
pendent variable.

Spine Posture: The angle between the posi-
tion of the bottom of the thoracic spine and top 
of the lumbar spine (T12/L1) level relative to the 
position of the pelvis.

Stability: The ability to withstand a perturba-
tion by returning to its pre-perturbed state.
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Endurance Time Prediction 
using Electromyography

ABSTRACT

The purpose of endurance time (Tlim) prediction is to determine the exertion time of a fatiguing muscle 
contraction before it occurs. Tlim prediction would then allow the evaluation of muscle capacities while 
limiting fatigue and deleterious effects associated with exhaustive exercises. Fatigue is a progressive 
phenomenon which manifestations can be observed since the beginning of the exercise using electro-
myography (EMG). Studies have reported significant relationships between Tlim and changes in EMG 
signal suggesting that Tlim could be predicted from early EMG changes recorded during the first half 
of the fatiguing contraction. However some methodological factors can influence the reliability of the 
relationships between Tlim and EMG changes. The aim of this chapter is to present the methodology 
used to predict Tlim from early changes in EMG signal and the factors that may influence its feasibility 
and reliability. It will also present the possible uses and benefits of the Tlim prediction.

INTRODUCTION

Neuromuscular fatigue is a very complex phenom-
enon (Boyas & Guevel, 2011b). This phenomenon 
is progressive (Bigland-Ritchie, 1981) and induces 
changes in the electromyographic (EMG) signal 
(De Luca, 1984). Moreover, it has been illustrated 
that changes in the EMG signal occur before any 
mechanical manifestations of muscle fatigue 
(Lindstrom, Kadefors, & Petersen, 1977). This 

suggests that EMG changes could provide use-
ful information about the early manifestations of 
neuromuscular fatigue. The endurance time (Tlim) 
can be defined as the maximal duration during 
which an individual can sustain the required level 
of force. Several studies have reported significant 
relationships between Tlim and indicators char-
acterizing the changes in the EMG signal (e.g. 
Dolan, Mannion, & Adams, 1995; Hagberg, 1981; 
Hagberg & Kvarnstrom, 1984; Mannion & Dolan, 
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1994, 1996; van Dieen, Oude Vrielink, Housheer, 
Lotters, & Toussaint, 1993). However, few studies 
have investigated the possibility of predicting the 
Tlim using the early changes in the EMG signal 
(Bouillard, Frere, Hug, & Guevel, 2012; Boyas & 
Guevel, 2011a; Boyas, Maisetti, & Guevel, 2009; 
Dolan et al., 1995; Maisetti, Guevel, Legros, & 
Hogrel, 2002a; Mannion & Dolan, 1994; Merletti 
& Roy, 1996; van Dieen, Heijblom, & Bunkens, 
1998). This may be due to the fact that some factors 
influence the feasibility and reliability of the Tlim 
prediction such as the experimental conditions 
(contraction intensity (Boyas & Guevel, 2011a) 
and/or number of muscles involved (Boyas et 
al., 2009)) and physiological phenomena (puta-
tive compensations between muscles (Kouzaki, 
Shinohara, Masani, Kanehisa, & Fukunaga, 2002) 
and/or non-homogenous distribution of EMG 
activity within a muscle (Zijdewind, Kernell, & 
Kukulka, 1995)). However, this domain of research 
is relevant due to the multiple uses and benefits it 
can provide to clinical and sport fields.

The objectives of this chapter are i) to describe 
the methodology used to predict the endurance 
time of a muscle contraction using EMG; ii) to 
present the studies that have investigated endur-
ance prediction during isometric and dynamic 
conditions and discuss the factors that may influ-
ence the feasibility and reliability of the endurance 
time prediction; iii) to depict the possible benefits 
of the endurance time prediction. The main stud-
ies in the field of endurance time prediction are 
presented in table 1.

BACKGROUND

Tlim Prediction Methodology

The study of relationships between the changes 
in the EMG signal and the Tlim of a muscle con-
traction requires the continuous recording of the 
EMG signal emanating from the muscles involved 
in the fatiguing contraction, from the beginning 

to the end of the contraction (Tlim). Then, EMG 
parameters classically used to characterize the 
changes in neuromuscular function, such as the 
Root Mean Square (RMS), the Mean Power Fre-
quency (MPF), the Median Frequency (MF) and 
the frequency bands (i.e. power of the signal in 
a given energy band - FB) are calculated. These 
EMG parameters are calculated as follow:
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In this equation, P is the Power Spectral Density 
(PSD), M the number of samples of this PSD.

What is called frequency bands (FB) in this 
chapter represent the relative power of the signal 
in a given energy band that is determined by the 
researcher (e.g. between 6 and 30 Hz). Conse-
quently, it is a percentage of the total power of 
the signal that is 100%.

Merletti et al. (1991) have illustrated the evolu-
tion of the EMG parameters during a submaxi-
mal contraction (figure 1). The changes in these 
parameters during time are then characterized 
thank to mathematical models which provides 
indicators illustrating their evolution. Afterwards, 
relationships between the Tlim and the indica-
tors representing the changes in EMG signal 
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Table 1. Studies that have investigated EMG signal-Tlim relationships and Tlim prediction 

Authors Year Subjects 
number

Investigated 
muscles

Contraction 
intensity

Average Tlim Tested 
EMG 

parameters

Indicators 
used

Main results

Hagberg 
et al.

1981 9 Forearm 
flexors

15 to 50% 
MVC

20 seconds to 
more than 15 

minutes

RMS, MPF Time constant 
and slope

EMG changes 
related to Tlim

Habgerg 
and 

Kvarnström

1984 10 Arm abductors 
(injured and 

sound)

Arm weight 207 s and 347 s RMS, MPF Time constant EMG changes 
related to Tlim

Badier et al. 1993 3 Thumb 
adductors, 

leg extensors, 
respiratory 

muscles

20 to 80% 
MVC

15 to 36 s at 
80%

FB 10-50 
Hz / FB 

80-400 Hz, 
MPF

Time constant EMG changes 
related to Tlim

van Dieen 
et al.

1993 9 Trunk 
extensors

25 and 40% 
MVC

711 s at 25%, 
463 s at 40%

RA-EMG, 
MPF, MDF

Time constant EMG changes 
related to Tlim

Mannion 
and Dolan

1994 24 Trunk 
extensors

Body weight 
≈ 50% MVC

139 s MDF Slope Tlim prediction 
possible since 

50% Tlim

Dolan et al. 1995 9 Trunk 
extensors

60% MVC 91 s FB 5-30 
Hz, MDF

Slope Tlim prediction 
possible since 

50% Tlim

Mannion 
and Dolan

1996 10 Leg extensors 20 to 60% 
MVC

78 s MDF Slope EMG changes 
related to Tlim

Merletti and 
Roy

1996 6 Ankle 
dorsiflexors

50 to 80% 
MVC

20-32 s at 80%, 
40-55 s at 70%, 
62-79 s at 60%, 

84-140 s at 
50%

MDF, 
APCV

Slope Tlim prediction 
possible since 
25-45% Tlim

van Dieen 
et al.

1998 5 Trunk 
extensors

25, 50 and 
75% MVC

606 s at 25%, 
144 s at 50%, 
54 s at 75%

MPF Slope Tlim prediction 
possible since 

50% Tlim

Maisetti 
et al.

2002 14 Leg extensors 50% MVC 78,8 s RMS, 
MDF, 
MPF, 

APCV, FB 
6-30 Hz

Slope and 
area ratio

Tlim prediction 
possible since 
20 - 40% Tlim

Boyas et al. 2009 18 Trunk flexors, 
hip flexors, 

leg extensors, 
ankle flexors

50% MVC 315.4 s for 
hikers, 224.7 s 

for controls

RMS, MPF Slope and 
area ratio

No correlations 
between EMG 
changes and 

Tlim

Boyas and 
Guével

2011 15 Leg extensors 20 and 50% 
MVC

79.6 to 316.8 s RMS, 
MPF, 

FB 6-30 
Hz

Slope and 
area ratio

Tlim prediction 
possible since 

50% Tlim

Bouillard 
et al.

2012 30 Index abductor 35 and 50% 
MVC

144.6 and 
63.0 s

RMS, 
MPF, 

FB 6-30 
Hz, 

Wavelet

Slope and 
area ratio

Tlim prediction 
possible since 

35% Tlim

MPF: Mean Power Frequency. FB: power in the frequency band. RA-EMG: Rectified-Average EMG. APCV: Action Potential 
Conduction Velocity.
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can be tested using linear regressions. In case of 
significant relationships, Tlim prediction can be 
evaluated from the correlations obtained between 
the changes in EMG signal calculated during time 
periods inferior to the Tlim. Three indicators have 
been used to characterize the changes in EMG 
signal parameters during time. These indicators 
are the time constant of the exponential model, 
the absolute slope of the linear regression and the 
area ratio index.

Time Constant of the 
Exponential Model

The time constant (τ) is an index characterizing 
the evolution speed of an EMG signal parameter:

y = ae-bτ + c 

In this equation, a is the change from initial 
value (a + c), and b = 1/τ, τ is the time constant. 
Here, The decrement a from the initial value (a 
+ c) to the asymptotic value c could describe the 

overall amount of decrease of y but would provide 
no information about the time course or the rate 
of such decrease (Merletti et al., 1991). Several 
studies show that the changes in the EMG signal 
characterized by the time constant are related to 
the Tlim (Hagberg, 1981; Hagberg & Kvarnstrom, 
1984; van Dieen et al., 1993). However, this in-
dicator presents certain drawbacks relatively to 
the prediction of the Tlim (Merletti et al., 1991; 
Merletti & Roy, 1996). According to Merletti et 
al. (1991) the time constant gives intelligence on 
the evolution speed of a parameter, but does not 
give any quantitative information on the changes 
in the EMG parameter. More, the calculation of 
this index requires a time period equal or greater 
to the Tlim in order to characterize the changes in 
EMG parameter. Consequently, the time constant 
is not adapted to the prediction of the Tlim which 
objective is to estimate the Tlim from the early 
changes in EMG signal recorded at the beginning 
of the exercise in order to avoid the performance 
of exhaustive contractions.

Figure 1. Changes in EMG parameters with time during a sustained contraction of the tibialis anterior 
at 80% of maximal contraction. MVC: maximal voluntary contraction, ARV: averaged rectified value, 
RMS: root mean square, MNF: mean power frequency, MDF: median frequency. From Merletti et al. 
(Merletti, Lo Conte, & Orizio, 1991)
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Slope of the Linear Regression

The linear regression is a model classically used 
to describe the changes in the EMG signal. The 
slope of this model constitutes an indicator allow-
ing the characterization of the changes in EMG 
parameters:

y = ax + b 

In this equation, a is the slope of the linear 
regression and b is the y-intercept. This indicator 
presents the advantage of being independent of 
the duration of the contraction. So, it is possible to 
determine the slope of the linear regression since 
the first seconds of the test and adjust its value as 
the contraction goes on. However, the validity of 
the linear regression as model representing the 
kinetic of the EMG parameters depends on the 
linearity of their evolution (Merletti et al., 1991). 
Consequently, the slope of the linear regression 
would not be a reliable indicator of the changes 
in EMG parameters if their evolutions are too 
different from the linear model.

Area Ratio Index

The third indicator aiming at characterizing the 
changes in EMG parameters is the area ratio in-
dex (figure 2). This index has been suggested by 
Merletti et al. (1991) after these authors described 
and discussed the relevance of the different re-
gressive models.

The area ratio index is calculated as B/(A+B) 
where A is the area beneath the EMG parameter-
time relationship and (A+B) is the sum of the 
area beneath and above the EMG parameter 
time course delimited by a signal reference value 
(Y0). Area ratio index = 1–A/R, where R is the 
reference rectangle defined as the product of Y0 
by the total duration (figure 2). So, a decreasing 
pattern, as the power spectrum shifts towards a 
lower frequency, would result in a positive area 
ratio index of less than 1. For an increasing pattern, 
the area ratio index would be negative. This index 
is dimensionless and is not affected by fluctua-
tions in the values in the experiment except for 
Y0 which defines the reference area.

The advantage of the area ratio index is that 
this index is not regressive, meaning that it is 
not calculated from a predetermined model or 

Figure 2. Illustration of the different areas considered in the calculation of the area ratio index for the 
MPF parameter. Here, the Y0 value was calculated for the first two seconds of the signal. From Maisetti 
et al., (Maisetti, Guevel, et al., 2002a)
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shape. Moreover, it can be calculated early and 
continuously during the contraction (Merletti et 
al., 1991). Finally, the area ratio index can be 
used to quantify a parameter during a contraction, 
but also as time-dependent variable illustrating 
the evolution of fatigue. However, the area ratio 
index is influenced by the value of Y0 which is 
determined by the investigator. Usually, this value 
is the mean of the values recorded during the first 
two seconds of the contraction.

MAIN FOCUS OF THE CHAPTER

Possible Use and Benefits 
of the Tlim Prediction

The endurance time of a muscle contraction is 
dependent of physiological and psychological 
factors as motivation and pain tolerance (De 
Luca, 1997; Enoka & Stuart, 1992; Merletti & 
Roy, 1996). Then, Tlim prediction using EMG 
signal represents an objective methods to evaluate 
fatigue while limiting the influence of psychologi-
cal factors (Mannion & Dolan, 1994; Merletti & 
Roy, 1996). Evaluation of fatigue tests are often 
performed in the clinical, research and sport fields. 
For example, it is used to characterize fatigue 
characteristics of patients with myopathy and to 
assess changes of the muscle status. In the sport 
field, it is used to determine athletes abilities in 
the performance of a specific fatiguing task that 
is a factor in performance such as the ability to 
maintain the hiking position in dinghy sailing 
(Maisetti, Boyas, & Guevel, 2006).

The performance of submaximal contractions 
while predicting the Tlim would present several 
advantages for the clinical and sport fields. The 
first interest of this method would be to limit the 
influence of psychological factors involved in 
the maintenance of a contraction sustained until 
exhaustion. Indeed, these psychological factors 
cannot be manipulated by the investigator whereas 
they may influence the subjects’ ability to sustain 

the fatigue task during time, which alters the 
objectivity of the fatigue evaluation (Mannion & 
Dolan, 1996; Merletti & Roy, 1996; van Dieen et 
al., 1998). The use of the Tlim prediction would 
then allow improving the evaluation of the capaci-
ties of the subjects to resist to fatigue. The second 
interest would be to reduce the time of effort and 
so limit the deleterious risks associated with the 
performance of contractions performed until ex-
haustion. This is very important in the clinical field 
during the evaluation of functional capabilities of 
older adults or of patients with pathologies (Agre 
& Sliwa, 2000; Moore & Kowalske, 2000). Indeed, 
monitoring disease progression and studying the 
effect of programs of therapy or rehabilitation 
require an objective and precise method allowing 
clinicians to evaluate muscle capacities (Bouillard 
et al., 2012). In the field of sport training, limit-
ing the duration of fatigue trials would allow the 
evaluation of the ability to resist to fatigue while 
avoiding to exhaust the athletes, which could be 
very important in pre-competition period. It would 
be also useful to repeat fatigue tests, for example 
to determine the benefits of a training program. 
The Tlim prediction could also be used in the 
domain of the overtraining detection.

Establishment of Relationships 
between Changes in the 
EMG Signal and Tlim

The first studies in the field of endurance time 
prediction focused on establishing the relation-
ships between the Tlim and the changes in the 
EMG signal characterized by some indicators.

The precursor was Hagberg who led several 
studies in the 1980s (Hagberg, 1981; Hagberg & 
Kvarnstrom, 1984) (table 1). This author used the 
time constant of the exponential model to charac-
terize the changes in the EMG signal (Lindstrom 
et al., 1977; Merletti et al., 1991). Hagberg’s first 
study (Hagberg, 1981) involved the forearm flexor 
muscles during isometric contractions performed 
between 15 and 50% of the maximal voluntary con-
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traction (MVC). Results indicate that the changes 
in RMS and MPF characterized by the values of 
the time constant were correlated to the Tlim of 
the contraction. Hence, the shorter the contraction 
time is, the lower the time constant and the faster 
the EMG parameters changes are. The same author 
also worked on the shoulder muscles (trapezius 
and supraspinatus) of patients with myofascial 
shoulder pain (Hagberg & Kvarnstrom, 1984). 
In this study, the load was the weight of the arm. 
Authors reported significant relationships between 
the Tlim and the time constant illustrating the 
MPF decrease and the RMS increase occurring 
during fatigue. Another interesting finding was 
that these relationships were not dependant of 
the characteristics of the tested muscles (sound 
or pathologic) which is encouraging for the ap-
plication of this method with both healthy and 
non-healthy individuals.

Van Dieen et al. (1993) have also established 
significant relationships between Tlim and the 
time constant of some EMG parameters (e.g. 
MPF, MF) during isometric contractions of the 
trunk extensors between 25 and 40% MVC (table 
1). Authors added that the reliability of these 
relationships depends on the consideration of the 
electrical activity of the most fatigable muscles 
involved in the contraction (i.e. those with the 
highest percentage of fast twitch fibers). Badier 
et al., (1993) focused on the fatigue of skeletal 
(adductor pollicis, vastus lateralis and vastus 
medialis) and respiratory (diaphragm and rectus 
abdominis) muscles during isometric contrac-
tions performed between 20 and 80% MVC. 
These authors used the power of the signal in 
two frequency bands (80-400 and 10-50 Hz) as 
EMG parameters. Their results indicate that the 
reliability of the relationships between Tlim and 
changes in EMG signal varied according to the 
function and so to the fatigability of the tested 
muscle, which is in accordance with the work 
of van Dieen (van Dieen et al., 1993). Finally, 
Mannion et al., (Mannion & Dolan, 1994) asked 
participants to perform isometric trunk extensions 

against gravity by placing their trunk horizontally 
which was estimated to be equivalent to a 50% 
MVC contraction. Authors reported that the linear 
model was more appropriate than the exponential 
model to characterize the changes in MF. More, 
the logarithm of the maximal slope characterizing 
the changes in MF was significantly correlated to 
the logarithm of the Tlim (r = -0.69, p˂0.001). The 
maximal slope, associated with the most reliable 
relationships, was obtained for the most fatigable 
vertebral muscle.

In conclusion, we can state that the first pre-
requisite of Tlim prediction using EMG, which 
is that relationships exist between Tlim and the 
changes in EMG signal, is validated by the lit-
erature. Moreover, another prerequisite has been 
answered by the study of Maisetti et al., (2002b) 
which reported that the prior knowledge of the 
duration of a fatiguing contraction (until exhaus-
tion vs. shorter duration) did not influence the 
changes in EMG signal. So, the next part will 
present the studies that have worked on the Tlim 
prediction, i.e. that have used the early changes in 
the EMG signal to estimated the Tlim of fatiguing 
contractions. It will also deal with the factors that 
may influence Tlim prediction.

Use of the Early Changes in 
EMG Signal to Predict Tlim

The findings of significant EMG signal-Tlim 
relationships enabled several authors to study 
the possibility of using the early changes in EMG 
parameters to predict the endurance time of a 
muscle contraction (Bouillard et al., 2012; Boyas 
& Guevel, 2011a; Boyas et al., 2009; Dolan et al., 
1995; Maisetti, Guevel, et al., 2002a; Mannion & 
Dolan, 1994; Merletti & Roy, 1996; van Dieen 
et al., 1998).

First, Mannion and Dolan (Mannion & Dolan, 
1994) worked on isometric trunk extensions. 
The load was determined by the weight of the 
upper body that subjects had to sustain until 
exhaustion. Authors showed that the maximal 
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slope of the linear regression characterizing the 
evolution of the MF determined over submaximal 
contraction duration allowed to predict the Tlim. 
Indeed, the logarithm of the maximal MF slope 
was significantly correlated to the logarithm of 
the Tlim when the slope was calculated over the 
first 60 seconds (45% Tlim) of the contraction (r 
= -0.83, r2 = 0.58) or the first half (50% Tlim) of 
the fatigue test (r2 = 0.69). The work led by van 
Dieen et al. (1998) on the same muscle groups 
also indicated that the prediction of the Tlim is 
possible using the changes in MPF illustrated by 
the slope of the linear regression and measured 
over the first half of the fatigue test (50% Tlim) 
for intensities between 25 and 75% MVC (table 1). 
However, in this study, the contraction intensity 
influenced the period of time necessary to the pre-
diction of the Tlim. Tlim prediction was possible 
after 60 or 30s for the contractions performed at 
50 and 75% MVC, but not when considering the 
contractions performed at 25% MVC, for which 
a longer time period was required. Moreover, the 
Tlim prediction was more reliable (r ˃ 0.85, r2 ˃ 
0.72) for the most active muscles reinforcing the 
importance of the most solicited/fatigable muscle 
in the relationships between Tlim and EMG. Al-
ways focusing on isometric trunk extensions (at 
60% MVC), Dolan et al. (1995) reported that the 
slope of the linear regression characterizing the 
changes in the power of the signal present in the 
5-30 Hz energy band, calculated over the first 46 s 
of the contraction (50% Tlim), allowed to predict 
Tlim (r = 0.52, r2 = 0.27). These authors used the 
slope of the linear regression to characterize the 
changes in the frequency energy bands.

On distal muscles, Merletti and Roy (1996) 
showed that the slope of the changes in MF 
calculated over the first 30 seconds (i.e. 25 and 
45% Tlim for contractions at 50 and 60% MVC, 
respectively) permitted to predict Tlim (r ˃ 0.85, 
r2 ˃ 0.74) of isometric foot flexions performed 
until exhaustion. These authors explained that 
a 30 s period appears to be a good compromise 
between a time period too short which could 

lead to estimation errors of the slope and of the 
Tlim, and a too long time period that would not 
be submaximal for high-intensity contractions. 
Considering isometric leg extensors, Maisetti et 
al. (2002a) indicated that only the early changes 
in the power of the 6-30 Hz energy band charac-
terized by the area ratio index allowed a reliable 
prediction of the Tlim (r = 0.82, r2 = 0.67). The 
prediction was then possible after contraction 
durations of 15 to 30 s, so approximately 20 to 
40% Tlim. On the same muscles and for the same 
contraction mode, Boyas et al. (2011a) indicated 
that Tlim can be predicted (r = 0.83, r2 = 0.69) 
using the EMG changes in the FB 6-30Hz char-
acterized by the area ratio and monitored over a 
period of time shorter than 50% Tlim (table 1). 
These relationships are illustrated in figure 3. 
They also found greater relationships with the 
muscle for which EMG parameters evolved the 
most. These authors revealed that the associated 
error in Tlim prediction was 14.7 ± 8.1% of Tlim, 
i.e. 11.7 ± 8.4s for a mean Tlim of 79.6 ± 28.4 s. 
More recently, Bouillard et al. (2012), using the 
area ratio and the slope of the linear regression 
reported significant relationships between Tlim 
and the early changes in the MPF of the EMG 
signal during isometric contractions of the first 
dorsal interosseous. These authors found greater 
coefficients of determination at 50% MVC (r2 = 
0.56) than at 35% MVC (r2 = 0.22) using the early 
changes in EMG signal monitored for duration 
equal or lower than 50% Tlim. The error associ-
ated with the Tlim prediction was 36.2 ± 38.0% 
of Tlim (42.4 ± 34.4 s) for the 35% MVC task and 
21.6 ± 15.0% of Tlim (12.6 ± 9.2 s) for the 50% 
MVC task compared with the real Tlim duration.

To our knowledge, only one study investigated 
Tlim prediction using EMG signal during a multi-
joint task (Boyas et al., 2009). However, this study 
indicated that Tlim prediction was not possible in 
these specific conditions. This is probably due to 
the fact that the studied task involved numerous 
muscles crossing several joints which may lead to 
some variability in the contribution of synergist 
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muscles impairing the Tlim prediction based on 
a single-muscle method.

All the aforementioned studies involved iso-
metric contractions. To our knowledge, only three 
studies focused on the EMG signal-Tlim relation-
ships during dynamic contractions (Hagberg, 
1981; Kankaanpaa, Taimela, Webber, Airaksinen, 
& Hanninen, 1997; Maisetti, 2002). First, Hag-
berg (1981) reported significant relationships 
between the Tlim and the changes in RMS and 
MPF characterized by the time constant during 
isoinertial contractions of arm flexors. However, 
this author did not fully exploit these results to 
test the Tlim prediction. Considering trunk exten-
sions, Kanaanpaa et al. (1997) indicated that the 
MPF and MF normalized slopes from paraspinal 
muscles were related to the Tlim. The slopes of 
these parameters calculated over submaximal du-
rations (60 and 90 s) were significantly correlated 
to the Tlim (0.62 ˂ r ˂ 0.89 for the MPF, and 0.63 
˂ r ˂ 0.86 for the MF). However, authors did not 
mention the Tlim of the contraction, and so we 
cannot determine which percentage of the Tlim 
was associated with the submaximal calculation 
periods (60 and 90 s). Maisetti (2002) studied 
the fatigue of the leg extensors during repeated 
isokinetic contractions. Results indicated the 
early changes (after 40% Tlim) in RMS and MPF 
illustrated with the area ratio index allowed the 
prediction of the Tlim of these contractions (r2 ˂ 
0.5). This low determination coefficients may be 
due to the inter-individual differences in terms of 
quantity of work produced during leg extensions 
and the influence of methodological factors on 
EMG signal. However, the fact that the results 
were found for the rectus femoris confirms the 
importance of studying this muscle during leg 
extensions.

These studies show that Tlim prediction is 
possible and that some factors influence the fea-
sibility and reliability of the prediction such as the 
complexity of the task, the muscles monitored and 
the exercise intensity. Moreover, only few studies 
presented the Tlim prediction error that remains 

relatively high and may restrain the use of this 
method. These questions will be discussed in the 
following part.

Solutions and Recommendations

The number of studies about Tlim prediction is 
limited and some points relative to the optimal 
experimental conditions that would optimize the 
Tlim prediction have to be specified.

First, the complexity of the task (i.e. involving 
one or several joints) and the number of synergist 
muscles that can contribute to the task have to be 
considered. About that, Boyas et al. (2009) clearly 
demonstrated that the Tlim prediction method pre-
sented in this chapter is not adapted to multi-joint 
tasks. Indeed, as the number of joints increases the 
number of muscles increases similarly. This raises 
the number of possible combinations offered to 
the neuromuscular system to produce a specific 
amount of force (Prilutsky, 2000). The presence 
of compensations across synergist muscles can 
also happen during mono-articular tasks. Indeed, 
alternating recruitment of different synergists has 
been reported during an isometric task performed 
until exhaustion (Kouzaki, Shinohara, Masani, 
& Fukunaga, 2004; Kouzaki et al., 2002). These 
findings were obtained during contractions per-
formed at low intensities. On the other hand, high 
exercise intensity also seems to limit the ability 
of the nervous system to modulate the muscle 
activity between synergists (Ebenbichler et al., 
1998; Kouzaki et al., 2002; Sirin & Patla, 1987).

So, the contraction intensity is the second 
factor to consider in the field of Tlim prediction. 
Tlim prediction has been mainly illustrated dur-
ing contractions performed at exercise intensi-
ties higher or equal to 50% MVC (Bouillard et 
al., 2012; Boyas & Guevel, 2011a; Dolan et al., 
1995; Maisetti, Guevel, et al., 2002a; Mannion & 
Dolan, 1996; Merletti & Roy, 1996; van Dieen et 
al., 1998). Only three studies investigated Tlim 
prediction at lower exercise intensities (Bouillard 
et al., 2012; Boyas & Guevel, 2011a; van Dieen 
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et al., 1998). These studies reported that the reli-
ability of the Tlim prediction increased when 
contraction intensity increased. Several factors 
may, at least partly, explain the higher accuracy 
of Tlim prediction with higher exercise intensi-
ties. First of all, one can suppose that the more 
the failure of the fatigue test would be of central 
origin, the less the ability to predict Tlim using 
early changes in sEMG parameters, as suggested 
by Dolan et al. (1995). The fact that it has been 
shown that the influence of central fatigue on 
force production is be inversely proportional to 
exercise intensity (Kent-Braun, 1999; Schillings, 
Hoefsloot, Stegeman, & Zwarts, 2003; Smith, 
Martin, Gandevia, & Taylor, 2007) supports the 
idea that Tlim prediction should be performed 
for contraction at medium to high intensities. 
Afterwards, a higher contraction intensity would 
be associated with a shorter exercise time, which 
would limit the contribution of the psychological 
factors in the performance (Dolan et al., 1995). 
One can also imagine that it is easier for a sub-
ject to perceive the time where she is not able to 
sustain the required force level when the intensity 
is high. For low intensities, pain tolerance and 
psychological factors have more influence on 
the Tlim. Finally, as mentioned earlier, when the 
contraction intensity increases, the modulation of 
the activity between muscles decreases (Kouzaki 
et al., 2002; Mullany, O’Malley, St Clair Gibson, 
& Vaughan, 2002). Considering the method used 
to predict Tlim (i.e., using EMG changes of each 
muscle individually), we can suppose that any 
modulation of the distribution of activity between 
the synergists may impair the accuracy of the 
prediction.

Third, numerous articles in the literature speci-
fied that Tlim prediction was more reliable when 
considering the EMG activity of the muscle which 
displayed the greatest EMG signal changes, often 
described as the most fatigable muscle studies 
(Boyas & Guevel, 2011a; Maisetti, Guevel, Iach-
kine, Legros, & Brisswalter, 2002; Mannion & 

Dolan, 1996; van Dieen et al., 1998). This makes 
sense as this same muscle represents the limiting 
factor of the muscle contraction. So, when the 
most fatigable muscle gets exhausted, it becomes 
very difficult for the subject to sustain the con-
traction. However, this muscle is not necessarily 
the same for all the individuals, especially if they 
have different characteristics. This requires that 
investigators make sure to record the main syner-
gist muscles involved in the task and then focus 
on the one with the greatest EMG signal changes.

Fourth, few indicators allowing the character-
ization of EMG signal changes have been used to 
predict Tlim. The slope of the linear regression 
was used to predict the Tlim for different muscle 
groups (Bouillard et al., 2012; Dolan et al., 1995; 
Mannion & Dolan, 1994; Merletti & Roy, 1996; 
van Dieen et al., 1998). However, the reliability 
of this indicator depends on the linearity of the 
EMG changes (Merletti et al., 1991). Other studies 
obtained better results using the area ratio index, a 
regression-free index not influenced by the shape 
of the changes in the EMG signal (Bouillard et al., 
2012; Boyas & Guevel, 2011a; Maisetti, Guevel, 
et al., 2002a). However, this may depends on the 
muscle group tested. So, we think that it is better 
to work on Tlim prediction using the slope and 
the area ratio index. Considering the drawbacks 
of the time constant about the calculation time, 
this indicator is not relevant for Tlim prediction.

Fifth, several EMG parameters have been 
tested in the Tlim prediction field. Studies have 
reported that Tlim prediction was possible and/
or more reliable with frequency parameters (i.e. 
MPF, MF, FB) (Boyas & Guevel, 2011a; Dolan 
et al., 1995; Maisetti, Guevel, et al., 2002a; van 
Dieen et al., 1998). This could be due to the fact 
that these parameters particularly illustrate periph-
eral fatigue phenomena which are the ones that 
mostly contribute to fatigue during high-intensity 
contractions. Consequently, we suggest the use of 
the frequency band parameter as this parameter 
characterizes the motor unit recruitment modality 
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and the changes in their discharge rate. Moreover, 
the changes in this parameter are close to those 
of the MF (Allison & Fujiwara, 2002) and seem 
to be related to the muscle typological profile 
and their fatigability, which is very important in 
the field of Tlim prediction (Badier et al., 1993; 
Komi & Tesch, 1979; Mannion & Dolan, 1996).

FUTURE RESEARCH DIRECTIONS

The prediction of the endurance time from non-
exhausting exercise is important for subjects 
who cannot or don’t want to achieve exhausting 
muscular tasks. The literature on this topic reveals 
that Tlim prediction using electromyography is 
possible when respecting some conditions. How-
ever, as illustrated by the latest studies of Boyas 
et al. (Boyas & Guevel, 2011a) and Bouillard et 
al. (Bouillard et al., 2012) the reliability remains 
sometimes moderate and future investigations 
could try to study other fatigue indices, such as 
changes in the force variability that occur during 
sustained isometric contraction (Keen, Yue, & 
Enoka, 1994) or a multifactorial model using, 
for instance, mechanical and EMG parameters, to 
predict Tlim (Rudroff, Christou, Poston, Bojsen-
Moller, & Enoka, 2007). Interesting information 
would also be gathered by studies on pathological 
individuals that may have altered fatigue resistance 
capabilities (e.g. after a stroke or a traumatic brain 
injury). It is also important to keep in mind that 
there are important psychological factors that may 
impact Tlim measurement.

CONCLUSION

In conclusion, literature has shown that Tlim 
prediction was possible for several muscle groups. 
However, some experimental factors have to be 
respected to optimize the reliability of the Tlim 
prediction. Tlim prediction should be investigated 

for simple mono-articular isometric contractions. 
The main muscles involved should be monitored, 
especially the one that is supposed to be the most 
fatigable. Contraction intensity should be equal 
or higher than 50% MVC. In terms of EMG pa-
rameters, frequency parameters (MPF, MF, FB) 
should be preferred to temporal parameters, but 
one can consider that monitoring one extra pa-
rameter, i.e. RMS, can be easily done and could 
be beneficial. Changes in these EMG parameters 
should be characterized with the area ratio and 
the slope of the linear regression. Tlim prediction 
may be improved using a multifactorial model 
combining EMG and mechanical parameters. Tlim 
prediction presents several interests in both clinical 
and sport fields. The first is to limit the influence 
of psychological factors in the characterization 
of fatigue abilities. The second is to reduce the 
time of effort and so limit the deleterious risks 
associated with the performance of contractions 
performed until exhaustion. All this is relevant for 
athletes and patients, especially those who are pre-
vented from performing exhaustive contractions 
but whom muscle capacities should be regularly 
monitored such as patients with neuromuscular 
degenerative pathologies.
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EarlyChanges in EMG Signal: Changes 
occurring in the EMG signal at the beginning of 
the contraction.

Electromyography (EMG): Technique for 
assessing the electrical activity of muscles.

EMG Parameter: Value calculated from the 
raw EMG signal that characterizes it in terms of 
amplitude or frequency.

Endurance Time (Tlim): Maximal duration 
during which an individual can sustain the required 
level of force.
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Indicator of EMG Changes: Mathematical 
model used to characterize the changes in the 
EMG signal in terms of amplitude and/or speed.

Neuromuscular Fatigue: Exercise-induced 
reduction in force production capacity.

Tlim Prediction: Technique aiming at deter-
mining the exertion time of a fatiguing muscle 
contraction before it occurs.
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Chapter  11

EMG Activation Pattern 
during Voluntary Bending 
and Donning Safety Shoes

ABSTRACT

Posture control is a well-coordinated interplay of sensory-motor system and forms the basis of voluntary 
movements. The daily activities and occupational task involves voluntary bending in different direc-
tions, which if falls beyond the limit of stability can cause slipping, tripping and falling. Further, these 
accidents are very common in industries where workers have to wear safety shoes to protect their feet 
from hazards of the work environment. The study elucidates the muscular activation patterns in light 
of electromyographic (EMG) findings for voluntary bending within limits of stability and with donning 
of safety shoes. The aim of this chapter is to potentially contribute to occupational health and safety at 
workplaces. The present findings have implications regarding the viability of muscle adaptability as a 
putative postural control in preventing postural instability and avoiding injuries.

INTRODUCTION

A well-functioning control of posture represents 
an essential prerequisite for the human being to 
successfully perform activities of daily living and 
occupational activity, including large body excur-
sion even to critical limits in different direction. 

The neuromuscular system responds according to 
the central nervous system (CNS) identifying and 
selectively focussing on the sensory inputs (visual, 
vestibular, proprioceptive) that provide function-
ality to the most reliable signals (Allum, Bloem, 
Carpenter, Hulliger, & Hadders-Algra, 1998). 
Muscle fatigue may decrease the reliability of the 
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proprioceptive signals (Allen & Proske, 2006) and 
therefore, the CNS might down-weigh these sen-
sory input and/or up-weigh proprioceptive signals 
of other muscles to control posture (Brumagne, 
Cordo, & Verschueren, 2004; Carver, Kiemel, & 
Jeka, 2006). Upright stance is inherently unstable 
with two-thirds of the body mass is distributed at 
two-thirds height above the ground (Gage, Winter, 
Frank, & Adkin, 2004; Winter, 1995), and fur-
ther, it becomes a challenging postural demand at 
critical limits of body excursion. Today, footwear 
(e.g., dress wear, safety/industrial shoe, athletic 
shoe) has become our basic requisite for safety, 
comfort and fashion, however, the footwear may 
influence postural instability and cause falls and 
accidents (Chang & Grönqvist, 2003; Hsiao & 
Simeonov, 2001). The dimensional and functional 
characteristics of footwear influence the interface 
between the locomotive system of the wearer and 
one’s physical environment (Wunderlich & Cava-
nagh, 2001), and accordingly induce adaptation in 
the motion of the joints of the lower extremities, 
change in the reaction force, and modification in 
the electrical activity of the muscles involved. 
Literature elucidates the biomedical perspective 
of barefoot versus shoe running with reference 

to mechanics, kinematics, kinetics, loading rates, 
and impact on the lower limbs (Lieberman et al., 
2010; Benno Nigg, 2009), however, the studies 
are scanty on the effects of footwear on muscle 
activity (Gage et al., 2004; Gollhofer & Komi, 
1987; BM Nigg & Wakeling, 2001; Wakeling, 
Pascual, & Nigg, 2002). With the understanding 
of potential implication of occupational health 
and safety at workplaces, the present contribution 
elucidates (a) the pattern of muscle activation of 
lower extremity and trunk muscles manifested in 
voluntary bending to critical limits of body stabil-
ity (anterior, posterior, left and right direction) and 
(b) the muscle activity of lower extremity, trunk 
and neck muscles in bipedal stance (barefoot as 
well as wearing shoes).

METHOD AND MATERIALS

A total of thirty-five volunteers, who were free 
from any neurological, orthopaedic, hearing or 
vestibular problem, participated in the study. In-
formed consent for participation in the study was 
obtained from each volunteer, as per the ethical 

Figure 1. Limits of stability in (a) forward, (b) backward, (c) right lateral bending and (d) left lateral 
bending
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guidelines of Indian Council of Medical Research 
(ICMR, 2000).

EMG Recording

For the research objectives indicated above, the 
experimental set up included a 16-channel Portable 
and Wi-Fi enabled EMG Machine (BTS Bioengi-
neering, Italy) for recording of electrical activity 
of muscles. Bilateral electromyographic record-
ing of lower extremity, trunk and neck muscles, 
[tibialis anterior (TA), medial gastrocnemius 
(GS), quadriceps (QUADS), biceps femoris (BF), 
trapezius upper fibers (TRAP), erector spinae (ES) 
and obliqus abdominis (ABD)] was undertaken, 
according to the European recommendations for 

Surface ElectroMyoGraphy (Hermens, Freriks, 
Disselhorst-Klug, & Rau, 2000). The EMG signals 
were acquired by surface electrodes (Swaromed, 
Ag/AgCl pre-gelled), placed on the respective 
muscles with a 20 mm inter-electrode distance. 
The electrode placements were done along the di-
rection of the muscle fibers. A reference electrode 
was placed on the dorsum of the right hand. Prior 
to electrode placement the skin was shaved and 
lightly abraded to decrease the skin impedance, 
below 5 kΩ.

The recorded EMG signals were A-D converted 
with 12-bit accuracy in ±5 V range and before 
sampling, the surface EMG signals were analogue 
high-pass and low-pass filtered at 10 Hz and 500 
Hz using Butterworth filter, in order to remove 
unwanted noise and movement artifacts. For rela-
tive reference of muscle activity of a given task, 
the maximum voluntary contractions (MVCs) 
were recorded which was used for EMG signal 
normalization, i.e., the RMS values of the EMG 
signals of trial conditions were expressed as the 
ratio of the activity level to that of the reference 
MVCs of the respective muscles. The EMG 
signals of muscles were captured by SMART 
capture software (BTS Bioengineering, Italy) and 
analyzed off-line using MYOLAB software (BTS 
Bioengineering, Italy).

Task Investigated

The experiments were conducted to gain insight 
about the patterns of muscle activations under 
intrinsic and extrinsic conditions, and its role in 
postural control. A human body usually moves as 
an inverted pendulum in cone of stability on mainly 
two fulcrum points at ankle and hip. The subject 
was asked to move voluntarily in four directions: 
anteriorly, posteriorly, right and left within their 
limits of stability (critical point), and to stay in 
each position for 60 seconds maintaining the knee 
extended; this was followed by a pre- and post-
neutral erect standing position of 15 seconds each. 

Figure 2. Range of excursion within the limit of 
stability during voluntary bending in anterio-
posterior, and right-left direction
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The limit of body excursion was the critical limit 
beyond which subject may not be able to main-
tain the position and is measured using a plumb 
line as depicted in Figure 1. Before the trial was 
initiated, the plumb line was set passing through 
the vertex of the tragus of the ear to anterior of 
medial malleolus in sagittal view and in frontal 
plane passing through glabella to midpoint of line 
joining both feet. The anterior and posterior limit 
was measured as the distance between plumb line 
and tragus of ear when the subject had attained 
his/her critical limit of stability in anterior and 
posterior direction respectively. The right and left 
limit was measured as the distance between plumb 
line and glabella when the subject attained his/her 
critical limit of stability in right and left direction 
respectively. Average excursion within limits of 
stability was calculated for all the volunteers in 
anterior/forward, posterior/backward, right and 
left lateral bending directions (Figure 2), with 
simultaneous capturing of the muscle activity.

The second experiment was undertaken to 
compare muscle activations between conditions 
of with and without donning of industrial safety 
shoes. The shoe acts as the medium for extrinsic 
perturbation, influenced by the dimensional, 
functional and design characteristics of the shoes. 
Prior to the testing, the volunteers underwent 
task familiarization and a 12 minutes warm-up 
consisting of 6 minutes of walking at their pre-
ferred gait speed and 6 minutes of non-stressful 
muscle stretching was performed. The subjects’ 
task consisted of maintaining an upright bilateral 
stance posture (barefoot and with industrial safety 
shoes), as immobile as possible, for duration of 
120 seconds of the EMG signal capture period. 
The subjects were instructed to (1) keep their 
body straight, (2) hang their arms loosely by their 
sides and (3) looking straight ahead in front at eye 
level. Between successive trials, the subjects were 
given a rest break of 10 minutes to regain stable 

conditions. Eight pairs of shoes were selected in 
the present study, as illustrated in Table 1.

RESULTS

The average physical characteristics of the volun-
teers were: age 31.5+11.4 years; BMI 19.8+2.6; 
spine length 57+7.1 cm; leg length 90+5.7 cm 
and foot length 27.1+1.5 cm respectively. The 
spine length was measured from the anatomical 
landmarks of C7 (the most prominent spinous 
process of cervical vertebra) to the mid-point of 
the line joining the dimples of Venus by placing a 
flexi curve along the mid-line of a spine (Miller, 
Mayer, Cox, & Gatchel, 1992). As per the first part 
of the experiment, as shown in Figure 2, the body 
excursion (internal perturbation) within limits of 
stability, keeping the knee extended in anterio-
posterior direction was 21+7 cm in anterior or 
forward direction and 15+5.3 cm in posterior or 
backward direction, respectively. The motion in 
frontal plane consisted of right and left lateral 
bending keeping the knee extended in medial-
lateral direction, with 20+5.6 cm in right lateral 
bending and 18+5.6 cm in left lateral bending 
respectively; that is, the body excursion was ~40% 
more in forward direction and about ~10% more 
in right lateral bending, as compared to backward 
direction and left lateral bending, respectively.

Muscle Activation in Maximal 
Anterio-Posterior Movement

The pattern of muscle activation of TA and GS, 
along the sagittal plane movement in anterio-pos-
terior direction is shown in Figure 3a. In forward- 
anterior excursion, the RMS EMG amplitude of 
GS muscle appeared to be more, as compared to 
the TA; however, the activations of left GS and 
left TA were higher, as compared to the muscles 
of the right side. A reverse pattern was noted in 
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Table 1. Industrial footwear used in the experimental study 
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Figure 3. Normalized EMG of muscles of ankle joint (TA and GS), hip joint (QUADS and BF) and trunk 
(ES and ABD) at limits of stability. Values are means±SEM. (R- right; L- left)
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backward - posterior excursion, where RMS EMG 
amplitude of TA surpassed the relative activation 
of GS, with higher levels of RMS amplitude be-
ing showed in both the muscles of the left side.

The RMS EMG of QUADS, as shown in Figure 
3b, showed dominance in forward bending, as 
compared to the BF, whereas a reverse pattern was 
observed in backward - posterior excursion. The 
EMG activity of the ES and ABD, as presented in 
Figure 3c, indicates that in forward bending, the 
ES manifested relatively greater RMS EMG, as 
compared to its antagonist abdominals. The pat-
tern of activity of the muscles had a reverse trend 
when movement direction changed from forward 
to backward excursion. Overall, the trunk muscles 
showed the maximum RMS amplitude in anterio-
posterior excursions, however, the normalized 
activation level of the muscles largely remained 
less than 15% of MVC.

Muscle Activation in Maximal 
Lateral Bending

The motion in the frontal plane, however, exhibited 
an asymmetric pattern of muscle activity during 
right and left lateral bending, with relatively higher 
RMS EMG amplitude of the TA, GS of the left 
side, as compared to the muscles of the right side 
(Figure 3a). In lateral bending either to right or 
left, the QUADS exceeded the relative level of 
activation of the BF. The latter exhibited more 
asymmetric behaviour, showing higher RMS 
EMG in the left muscle (Figure 3b).

With lateral bending to the right, the ES of 
the right side exhibited higher amplitude as com-
pared to left side; however, the level of activity 
was relatively less in relation to its antagonist 
abdominal of the same side (Figure 3c). Similarly, 
in left lateral bending, the EMG activity of the 
left ABD dominated over the left ES. The activa-
tion pattern of the trunk muscles is indicative of 
typical muscle synergy that might be responsible 
for spinal coupling, i.e., trunk axial rotation and 
lateral flexion are associated with each other.

Muscle Activity in Standing and 
Walking (Barefoot vs. Safety Shoe)

The RMS EMG amplitude of bilateral TA, GS, 
QUADS, BF, TRAPS and ES in barefoot standing 
and walking and with 8 pairs of industrial shoes 
(AS1, BS3, CC1, CCL CS1, NRH, OX1) are rep-
resented in Figures 4 through 9. While standing, 
the EMG activities of TA increased several fold 
with wearing shoes (e.g., BS3, CS1, GB1, NRH 
and OX1) as compared to barefoot standing, with 
bilateral difference in RMS EMG, as observed 
high activity in left TA in case of CS1 and NRH. 
The recruitment of GS remained very similar in 
barefoot and with shoes, in contrast to those of 
TA, however, high activity observed with CS1 for 
right GS and BS3 for left GS, respectively. The 
hip joint muscles, i.e., QUADS and BF showed 
nearly similar level of activity in case of most of 
the shoes, excepting ~2.5 times higher activation 
for the right BF for the shoes - AS1, CS1 and NRH. 
Also bilateral TRAP showed increased activity for 
AS1 and CS1. The left ES showed higher levels 
of activation for GB1 and CS1.

The repeated measure of MANOVA was 
applied to compare RMS EMG amplitudes of 
muscles in relation to barefoot standing and wear-
ing different types of shoes (Table 2), and the 
significant p values are marked as bold. Analysis 
yielded that bilateral activity of the muscles under 
study behaved differently with the types of shoes, 
in comparison to barefoot standing. The muscle 
load (right and left TA, right GS, right QUADS, 
right BF, right and left TRAP) during standing was 
distinctively high for the shoe code CS1, which 
is a high ankle type of shoe that weighs 1.2 Kg, 
with PVC sole and body, and steel toe cap. The 
shoe type, AS1 a low ankle shoe weighing ~1 
Kg, with single density PU sole, and body from 
black Barton leather with steel toe cap, exerted 
significant load on right BF, as well as right and 
left TRAP, during standing. Other shoe types 
(e.g., CCL - a low ankle shoe, weighing ~1 Kg, 
with single density PU sole, and body from CG 
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Figure 4. Normalized EMG amplitude of ankle and hip joint, and trunk muscles in standing barefoot 
and with industrial safety shoes. Values are means±SEM. (R- right; L- left)
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leather without steel toe cap; GB1 - a high ankle 
gum boot, weighing 2 Kg, with nitrile PVC sole, 
and body from PVC with steel toe cap) showed 
significant load on left QUADS.

During walking, however, the muscle loads 
with different types of shoes were not consistent 
to those observed during standing. The levels of 
activity of the muscles during walking were much 
higher than observed with barefoot walking. The 
bilateral TA and BF activities were about 2 to 4 
times higher with safety shoes, as compared to 
barefoot walking. The left GS showed 3 to 5 times 
more activity for OX1 and BS3 shoe respectively. 
Higher activation of right TRAP and ES were ob-
served with the safety shoes than the muscles of the 
counter side. The repeated measure of MANOVA 
compared RMS EMG amplitudes of muscles in 
relation to walking barefoot and wearing shoes, as 
given in Table 3. The shoe AS1 (low ankle shoe) 
manifested significantly high muscle load on right 
BF, as well as right and left TRAP during walking. 
The shoe code BS3, which is a high ankle type 
of shoe that weighs ~1.1 Kg, with double density 
PU sole, body of black barton leather, and fiber 
toe cap had significantly higher activation during 
walking for right and left TA, left GS, right and 
left QUADS, right and left BF. The shoe type, 
GB1 (high ankle gum boot) exerted significantly 
high load on right and left TA, left QUADS and 
left ES. The exertion of load during walking with 
NRH - a high ankle shoe, weighing ~1 Kg, with 
single density PU sole, and body of black Barton 
leather, with steel toe cap was significantly high 
in right and left TA, and right BF, and in case of 
OX1 - a high ankle shoe, weighing ~1.2 Kg, with 
double density PU sole, and body of Neoback 
leather, with steel toe cap, significantly high 
muscle load was observed in case of right TA, 
right and left GS and left QUADS.

Time Trend of MDF of EMG 
in Standing Barefoot and 
with Safety Shoes

Figure 10 illustrates the time trend of average 
MDF of EMG activity different muscles in rela-
tion to standing barefoot and with safety shoes. 
Among other shoes, two high ankle type of shoes 
(BS3, weighing 1.1 Kg, double density PU sole, 
body of black barton leather, and fiber toe cap; 
CS1, weighing 1.2 Kg, PVC sole and body, steel 
toe cap) were chosen in the analysis, taking into 
account of its overall higher dominance of RMS 
EMG amplitudes during standing and walking. 
The sampling period of recording being 120 sec 
from the start of stance position, this remains the 
limitation to observe MDF trend over a longer 
period. Irrespective of stance position, either 
barefoot or with safety shoes, the MDF tended to 
build- up over the sampling duration, indicating 
continual recruitment of motor units in maintaining 
the stance. The MDF values of tibialis anterior 
ranged between 120 to 175 Hz, gastrocnemius 
(130 to 190 Hz), quadriceps (110 to 200 Hz), bicep 
femoris (110 to 145 Hz), erector spinae (80 to 140 
Hz), and trapezius (60 to 150 Hz) respectively. A 
gradual plateau phase of the MDF values of BF 
was noted, and distinctively with CS1 safety shoe, 
indicating early attaining of the high level of MDF 
within the first min, followed by plateau phase. 
This might suggest of relatively more fatiguing 
trend of the BF during standing CS1 safety shoe.

DISCUSSION

The organization of the postural response with 
the muscle activation depends on the direction 
and intensity of external demand exerted on the 
body. The goal of our study was to investigate 
the pattern of activation exhibited in the bilateral 
group of muscles (ankle and hip joints, and trunk) 
during voluntary bending at the maximal anterio-
posterior, and lateral positions. Further, the study 
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Figure 5. Normalized EMG amplitude of ankle and hip joint, and trunk muscles in standing barefoot 
and with industrial safety shoes. Values are means±SEM. (R- right; L- left)
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compared the activation pattern of muscles dur-
ing standing and walking barefoot and donning 
industrial safety shoes. In industrial arena, the 
safety shoes are essential requisites as personal 
protective equipment. With reference to the design 
characteristics of the shoes that might act as the 
medium for extrinsic perturbation to the wearer, 
the relative muscle activation with the types of 
safety shoes were examined.

The experimentation, as illustrated in Figure 
1, yielded that the average body excursion of 
selected adult males ranged about 21 cm in ante-

rior or forward direction and 15 cm in posterior 
or backward direction in sagittal plane, and the 
lateral bending ranged about 20 cm to the right 
and 18 cm to the left from the mid-line, e.g., the 
excursion was ~40% more in forward direction and 
~10% more in right lateral bending. It was noted 
that 32 out of 35 volunteers were right dominant. 
The excursion limits in accordance with the opti-
mal muscle activation behaviour have utility for 
ergonomic designing of safe work station. The 
EMG activity of the muscles of lower limbs and 
trunk showed asymmetric behaviour in recruitment 

Table 2. Pairwise comparison (MANOVA) of RMS EMG in standing barefoot and with safety shoes (p 
values); statistically significant ones are marked as Bold 

Shoe codes

TA GS QUADS BF TRAP ES

Right Left Right Left Right Left Right Left Right Left Right Left

AS1 0.42 0.61 0.13 0.87 0.51 0.72 0.03 0.64 0.02 0.04 0.90 0.35

BS3 0.25 0.53 0.82 0.00 0.90 0.75 0.70 0.69 0.87 0.55 0.78 0.69

CC1 0.89 0.76 0.97 0.98 0.81 0.50 0.83 0.81 0.66 0.56 0.62 0.89

CCL 0.56 0.03 0.50 0.11 0.73 0.00 0.69 0.62 0.64 0.46 0.75 0.81

CS1 0.00 0.00 0.00 0.38 0.00 0.91 0.00 0.84 0.00 0.00 0.35 0.08

GB1 0.01 0.34 0.92 0.70 0.86 0.00 0.77 0.94 0.78 0.58 0.66 0.01

NRH 0.68 0.02 0.41 0.87 0.72 0.90 0.12 0.57 0.95 0.86 0.80 0.94

OX1 0.04 0.20 0.83 0.47 0.79 0.78 0.80 0.99 0.78 0.62 0.90 0.91

Table 3. Pairwise comparison (MANOVA) of RMS EMG in walking barefoot and with safety shoes (p 
values); statistically significant ones are marked as Bold 

Shoe 
codes

TA GS QUADS BF TRAP ES

Right Left Right Left Right Left Right Left Right Left Right Left

AS1 0.10 0.08 0.91 0.71 0.85 0.78 0.03 0.95 0.003 0.03 0.73 0.25

BS3 0.003 0.05 0.34 0.001 0.05 0.01 0.05 0.002 0.93 0.76 0.83 0.80

CC1 0.51 0.08 0.92 0.77 0.68 0.53 0.32 0.50 0.002 0.83 0.07 0.77

CCL 0.27 0.03 0.35 0.40 0.71 0.04 0.49 0.03 0.04 0.81 0.99 0.44

CS1 0.37 0.17 0.92 0.83 0.06 0.68 0.27 0.34 0.001 0.001 0.04 0.10

GB1 0.04 0.013 0.86 0.26 0.99 0.001 0.06 0.33 0.10 0.27 0.43 0.004

NRH 0.01 0.03 0.41 0.88 0.29 0.71 0.04 0.63 0.56 0.98 0.78 0.96

OX1 0.001 0.08 0.383 0.004 0.02 0.001 0.98 0.64 0.38 0.96 0.88 0.25
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Figure 6. Normalized EMG amplitude of ankle and hip joint, and trunk muscles in standing barefoot 
and with industrial safety shoes. Values are means±SEM. (R- right; L- left)
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and activation, suggesting the possible role of the 
side dominancy in postural control.

The spinal coupling has been defined as the 
motion in which rotation or translation of a body 
about or along one axis is consistently associ-
ated with simultaneous rotation or translation 
about another axis. Our results indicated that the 
activation pattern of the trunk muscles manifest 
typical synergy that might be responsible for 
spinal coupling, i.e., trunk axial rotation and as-
sociated lateral flexion. It can be viewed that a 
set of muscle synergies might be identified that 
coactivate muscle groups of the limbs and trunk 
during bipedal standing (Torres-Oviedo, 2007). 
The muscle synergy does not necessarily result 
into a specific strategy, but the postural responses 
are evidently triggered by sensory information and 
transformed to motor output via specific muscle 
synergies (Chvatal, Torres-Oviedo, Safavynia, 
& Ting, 2011). As presented in Figure 3, the ES 
manifested relatively greater EMG amplitude in 
forward bending, as compared to its antagonist 
abdominals, and the pattern reversed when the 
direction of movement changed from forward to 
backward bending. Also, the pattern of activation 
of TA and GS was characteristic along the sagit-
tal plane movement, with the EMG amplitude of 
GS appeared to be more than the TA in forward 
- anterior excursion; accordingly, a reverse was 
noted in backward - posterior excursion that EMG 
amplitude of TA surpassed the GS, with higher 
activation of both the muscles of the left side in 
comparison to the right side. Compared to the 
activation of BF, the QUADS showed dominance 
in forward bending and reverse was the case in 
backward - posterior excursion.

The lateral bending to the right exhibited higher 
activity of the right ES, however, the level of activ-
ity was relatively less in relation to its antagonist 
abdominal of the same side. In lateral bending to 
the left, the EMG activity of the left ABD domi-
nated over the left ES. In lateral bending either 
to right or left, the QUADS exceeded the level 
of activation of the BF. The observation might 

support that starting from the neutral position of a 
lumbar spine, the coupling of lateral flexion with 
rotation might be occurring in opposite directions, 
as evident from RMS EMG amplitudes of ABD 
and ES in frontal plane motion (Al-Eisa, Egan, 
Deluzio, & Wassersug, 2006).

The present study further revealed an efficient 
co-activation in agonist and antagonist muscles 
to adapt to the external load imposed through dif-
ferent types of safety shoes, with probable change 
in the person-shoe-ground interface. Nigg et al., 
(2003) showed specific changes in the intensity 
of muscle activation before heel strike in running 
shoes. Our study amply indicated that bilateral 
activity of the muscles under study behaved dif-
ferently with the types of shoes, in comparison to 
barefoot standing. The muscle loads imposed with 
donning different shoes were not consistent during 
standing or walking, suggesting that changes in 
activation are influenced the shoe characteristics, 
such as, weight, material construction as regard 
to footwear sole, toe, toe cap, ankle height, etc. 
With reference to eight pairs of safety shoes in-
vestigated, high ankle shoe (CS1, weighing 1.2 
Kg, PVC sole and body, and steel toe cap) resulted 
in significantly high muscle load (right and left 
TA, right GS, right QUADS, right BF, right and 
left TRAP) during standing.

Our results are consistent that the muscle 
activations during walking with shoes were 
manifold higher to that of barefoot walking. The 
bilateral TA and BF activities were about 2 to 4 
times higher with safety shoes, as compared to 
barefoot walking. Nigg et al., (2003) postulated 
that the proximal muscles would be less required 
than the distal ones, and found that the TA activ-
ity increased more than that of BF. The authors 
viewed that the body reacts to changes in input 
signal to adapt muscle activity to reduce vibration 
of the soft tissues. Among other shoes analyzed in 
the present study, walking with high ankle shoe 
(BS3 weighing 1.1 Kg, double density PU sole, 
black Barton leather body, fibre toe cap) caused 
significantly higher activation bilaterally to TA, 
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Figures 7. Normalized EMG amplitude of ankle and hip joint, and trunk muscles in walking barefoot 
and with industrial safety shoes. Values are means±SEM. (R- right; L- left)
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Figures 8. Normalized EMG amplitude of ankle and hip joint, and trunk muscles in walking barefoot 
and with industrial safety shoes. Values are means±SEM. (R- right; L- left)
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Figures 9. Normalized EMG amplitude of ankle and hip joint, and trunk muscles in walking barefoot 
and with industrial safety shoes. Values are means±SEM. (R- right; L- left)
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Figures 10. Time trend of MDF of EMG of (a) Tibialis anterior, (b) Gastrocnemius, (c) Quadriceps, and 
(d) Bicep femoris, e) Erector spinae and f) Trapezius during standing barefoot and with safety shoes 
(type: BS3 and CS1)
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BF, QUADS, and also GS. Other high ankle shoes, 
such as GB1 (gum boot), NRH and OX1 exerted 
significantly high load on the TA, QUADS, BF, 
GS, and also on ES, emphasizing that trunk and 
muscles of hip and ankle contributed in charac-
teristic manner to adapting the external demand 
arising from donning of different safety shoes.

Several indicators of muscle fatigue, e.g., 
increase in EMG signal amplitude expressed as 
RMS EMG, downward shifts in mean and median 
frequency, and upper frequency limit, decrease in 
zero crossings, increase in tremor in the frequency 
domain and physiological response, decrease in 
force generating capacity and subjective response 
have been described. Researchers have viewed that 
the median frequency of EMG (MDF) derived 
from Fast Fourier Transform on epochs of EMG 
data, is a more reproducible measure of muscle 
fatigue than the mean frequency (Al-Mulla, 
Sepulveda, & Colley, 2011; Oskoei & Hu, 2008; 
Phinyomark, Limsakul, & Phukpattaranont, 2009) 
As shown in Figure 6, the MDF values of muscles 
tended to build-up over the sampling duration, 
indicating recruitment of motor units during 
stance, either barefoot or with safety shoes. The 
MDF values of ankle joint (TA and GS) varied 
between 120 to 190 Hz, hip joint (quadriceps and 
bicep femoris) between 110 to 200 Hz, and trunk 
(erector spinae and trapezius) between 60 to 150 
Hz), respectively. The gradual plateau phase of the 
MDF values of BF might suggest the ensuing trend 
of fatigue during standing with CS1 safety shoe.

In the overall analysis of the present study, the 
voluntary bending movements to the critical limit 
of stability exhibited characteristic behaviour in 
muscle activation. The trunk muscles (erector 
spinae and obliqus abdominis) manifested typical 
synergy for spinal coupling, i.e., trunk axial rota-
tion and lateral flexion. During anterior-posterior 
movement in the sagittal plane, the muscles of 
the left ankle joints (TA and GS) had relatively 
higher activation in comparison to the right side. 
At the hip joint, the quadriceps showed dominance 
in activation in forward and lateral bending. As 

an extrinsic variable, the shoe characteristics 
(industrial safety shoes) exerted extra demand 
on the muscles and joints in maintaining stance 
or during walking. The extent of muscle loading 
and fatigue due to the characteristics of shoes has 
the potential to influence the synchrony of the 
sensory-motor system. Our analysis with eight pair 
of shoes indicated that the design characteristics 
significantly modified muscle activation and fa-
tigue (Wakeling, et al., 2003). Among other shoes, 
high ankle shoes (namely, BS3 and CS1) caused 
higher dominance of muscle activation during 
standing and walking, which in turn might alter 
the postural control and cause body instability.

CONCLUSION

Intrinsic and extrinsic mechanisms for sensory-
motor integration are pivotal to postural control. 
The present findings emphasize on the muscular 
co-activation during voluntary bending in anterio-
posterior and lateral direction to the critical points 
of stability. Data on excursion limits, optimized 
over a larger sample size, have essential utility in 
the ergonomics of workplace design. The study 
further highlights that the shoe characteristics 
(industrial safety shoes), as extrinsic factors, 
exert demand differently on the muscles either in 
maintaining stance or during walking. The extent 
of muscle loading and fatigue has the potential 
to affect the synchrony of the sensory-motor 
system that makes industrial safety shoes as the 
cause for slips, trips and falls. The features like 
heavy weight, steel toe cap, and shoes with high 
ankle had distinctive influence on the pattern 
of muscular recruitment and loading, attribut-
ing to movement restriction and discomforts of 
the wearer. The study findings have implication 
regarding the viability of muscle adaptability as 
a putative postural control in preventing postural 
instability and avoiding injuries.
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Electromyography: Closely associated with 
the generation of force by a muscle, is the genera-
tion of an electrical signal that can be observed 
by placing electrodes on the skin surface to detect 
underlying electrical activity displaying the as-
sociated waveform on a computer monitor. This 
process is called electromyography (EMG) and 
the waveform is the electromyogram.

Industrial Safety Shoes: Occupational Safety 
and Health Administration (OSHA) defines and 
describes safety shoes in their regulations as the 
most common type of foot “Personal Protective 
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plane within stability limits and keeping both the 
feet fix to the ground.
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Based on Suprahyoid 

Muscle Activity

ABSTRACT

The motor function of the tongue often remains intact even in cases of severe movement paralysis. Therefore, 
tongue movements offer great potential for the design of highly efficient human-machine interfaces for 
alternative communication and control. This chapter introduces a novel method for tongue movement 
estimation based on analysis of surface electromyography (EMG) signals from the suprahyoid muscles, 
which usually function to open the mouth and to control the hyoid position.

1. INTRODUCTION

To support independent living of people with 
severe quadriplegia caused by cervical cord 
injury or muscular dystrophy, it is important to 
understand one’s intention from biological signals 
that can be measured noninvasively. Electroen-
cephalography (Wolpaw et al., 2002; Scherer et 
al., 2004), head movement (Harwin et al., 1990; 
Nguyen et al., 2004), jaw movement (Jacobs et 
al., 1997; Niikawa et al., 2006), eye movement 
(LaCourse et al., 1990; Duchowski, 2002), voice 
(Clark et al., 1977; Simpson et al., 2002), and 
breathing have all been used for the communi-
cation of intentions by people with severe dis-

abilities. Each intention-communication method 
entails benefits and shortcomings. For example, 
although the social expectations for implementing 
electroencephalography are high, its use requires 
high levels of concentration over long periods in 
real-life environments, where a person receives 
various external stimuli. Although voluntary 
movements of the head and jaw can readily express 
one’s intentions, they might not be applicable to a 
person with cervical cord injury because of insuf-
ficient cervical stability. Furthermore, although 
intention communication by eye movement or 
voice is effective under environments in which 
external disturbances are removed or controlled to 
the greatest extent possible, precise isolation and 
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extraction of these signals is difficult when, for 
example, one is driving an electric wheelchair in 
an urban setting. Examining many methods of in-
tention communication including those described 
above, we must develop them and improve their 
precision to prepare several alternatives that are 
readily applicable and which are convenient for 
individuals with various disabilities.

Against this background, intentional tongue 
movement is attracting attention in recent years. 
The motor function of the tongue often remains 
intact even in cases of severe movement paralysis. 
Therefore, tongue movements offer great potential 
for the design of novel highly efficient human-
machine interfaces for alternative communication 
and control. Numerous approaches for deriving 
control signals from intentional tongue motions 
have been proposed: detection of the tongue 
position via measurement of magnetic fields 
of a permanent magnet attached to the tongue 
(Sonoda, 1974; Huo et al., 2008), detection of 
lingual proximity by light-emitting diodes and 
photodiodes placed on an artificial palate plate 
(Wrench et al., 1998; Saponas et al., 2009), mea-
surement of the tongue force applied to a force 
sensor array mounted on an artificial palate plate 
(Ichinose et al., 2003; Terashima et al., 2010), 
and direct tongue manipulation of a joystick or 
switch inserted into the oral cavity (Niikawa et 
al., 2006). However, such methods require the 
insertion of a measuring instrument into the oral 
cavity, which entails certain risks and discomfort 
to the patient such as increased psychological 
stress, oral health problems, obstruction of speak-
ing and drinking, battery fluid leakage, electric 
shock, and suffocation by accidental ingestion. 
Therefore, we have been developing a novel 
intention-communication method based on surface 
electromyography (EMG) signals (Sasaki et al., 
2012a, 2012b, 2013a, 2013b).

Today, EMG signals are used widely for pat-
tern recognition of human motions such as hand 
motions (Englehart et al., 2001, 2003; Zecca et 

al., 2002; Kiguchi et al., 2008; Naik, et al., 2010). 
The same approach is applicable to the estimation 
of tongue movements without inserting a measur-
ing instrument into the oral cavity. Tongue mo-
tions result from contractions of lingual muscles. 
However, the detection of the EMG activities of 
the lingual muscles requires the installation of 
surface electrodes or needle electrodes within the 
oral cavity, which can entail severe difficulties 
for the practical application of such approaches. 
For that reason, we have specifically examined 
surface EMG signals that are observable at the 
underside of the jaw. Such electromyograms in-
clude signal components related to the activity of 
the suprahyoid muscles, the function of which is 
to open the mouth and to control the position of 
the hyoid (base of the tongue) when the tongue 
moves. This chapter introduces a novel method 
for tongue movement estimation based on the 
analysis of EMG signals from suprahyoid muscles.

2. TONGUE MOVEMENT 
MECHANISM

Tongue movements are produced by the coor-
dinated actions of the lingual muscles, which 
include the intrinsic muscles of the tongue (su-
perior longitudinal muscle of tongue, inferior 
longitudinal muscle of tongue, transverse muscle 
of the tongue, vertical muscle of tongue) and 
extrinsic muscles of the tongue (genioglossus 
muscle, styloglossus muscle, hyoglossus muscle, 
palatoglossus muscle) (Figure 1) (Ide et al., 2004). 
The intrinsic muscles of the tongue control the 
tongue shape and the direction of tongue tip, and 
the extrinsic muscles of the tongue control the 
tongue position in anterior direction and move 
the tongue downward and backward. Detection 
of the EMG activities of the lingual muscles 
requires the installation of surface electrodes or 
needle electrodes within the oral cavity. For that 
reason, we decided to examine the EMG signals 
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of the suprahyoid muscles specifically (digastric 
muscle, stylohyoid muscle, mylohyoid muscle, 
and geniohyoid muscle), which are observable at 
the underside of the jaw. The primary function of 
the suprahyoid muscles is to open the mouth or to 
initiate swallowing movements. However, some 
of these muscles also support the hyoid (base 
of the tongue) during tongue movement and the 
EMG signals measured at the underside of the jaw 
change when the tongue position changes. That 
fact is useful for estimation of tongue movements 
from the EMG signals. The mylohyoid muscle 
supports the hyoid when the tongue moves later-
ally. The geniohyoid muscle supports the hyoid 
when the tongue moves in anterior direction. The 
hyoid is supported by the stylohyoid muscle when 
the tongue is crimped to the palate. Coordinated 
voluntary tongue movements cause contractions 
of the suprahyoid muscles that can be detected in 
the surface EMG and which are useful as control 
commands for assistive devices.

3. FEASIBILITY STUDY OF TONGUE 
MOVEMENT ESTIMATION

This section presents a description of the possibil-
ity of estimating tongue movement using EMG 
signals of the suprahyoid muscles. The effects of 
multi-channel electrode configuration and physi-
ological movements such as swallowing on the 
precision of estimation are evaluated.

3.1. Estimation Algorithm

An algorithm for tongue movement estimation 
using EMG signals of the suprahyoid muscles 
is presented in Figure 2. For measuring EMG 
signals, a multi-channel electrode with nine detec-
tion electrodes was attached to the underside of 
the jaw. An indifferent electrode and a detection 
electrode were also attached to each earlobe. EMG 
signals between a detection electrode at earlobe 

and each detection electrode at the underside of 
the jaw were measured using bipolar leads. The 
potential differences between every two signals 
for all combinations (9C2) of EMG signals were 
calculated. By obtaining several EMG signals 
with different distances between electrodes, we 
can use for the estimation of tongue movement 
both the signals generated by nearby muscles 
(crosstalk components) and the signal with which 
crosstalk components were removed. Our configu-
ration using a multi-channel electrode to measure 
muscle activities over the whole underside of the 
jaw obviates the need for professional knowledge 
and skill at electrode positioning. Furthermore, 
our configuration uses far fewer electrodes and 
bio-amplifiers than are generally used for bipolar 
leads. When we place nine electrodes at equal 
intervals, 36 (= 9C2) channels of EMG signals 
are provided using nine bio-amplifiers. In con-
trast, using the general bipolar leads, four times 
as many bio-amplifiers are necessary to obtain 
similar information.

The hierarchical neural network used for pat-
tern recognition of the tongue movement has three 
layers: input, middle, and output. Its inputs are 
the root mean square (RMS) of EMG signals of 
all 36 signals, which are features extracted with 
particular attention devoted to amplitude as

RMS EMG=
=
∑1 2

1n i

n

 (1)

where n is the smoothing number of signals. The 
outputs and teaching signals of neural network are 
information related to voluntary tongue movement, 
and movement identification signals such as swal-
lowing, yawning, and mouth opening, which cause 
misrecognition. The weights of the connections 
among all neurons in the network were learned 
using the backpropagation learning algorithm to 
connect tongue movements with muscle activity 
of the whole underside of the jaw. Then those 
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voluntary tongue movements which are useful for 
intention communication were extracted.

3.2. Measurement Conditions

By inserting connectors of nine disposable elec-
trodes (SMP-300; Mets Inc.) into a thin transparent 
sheet with nine holes 20 mm distant from each 
other, a multi-channel triangular electrode was 
prepared for the measurement of EMG signals 
of the suprahyoid muscles. By connecting lead 
electrodes (BR-331S; Nihon Kohden Corp.) to dis-
posable electrodes, EMG signals were measured 
through a bio-amplifier (NB6101HS; Nabtesco 
Corp.) of gain 1,950. The cut-off frequencies of 
the bio-amplifier were 2.3 Hz for the high-pass 
filter and 320 Hz for the low-pass filter.

Although obtaining teaching signals for tongue 
positioning and contact force without inserting 
measuring instruments into the oral cavity is our 
ultimate purpose, as the first step of evaluating 
possibility of estimating tongue movement, we 
decided to measure tongue movement directly 
because that simplified our data processing. An 
upper jaw mouthpiece equipped with six thin-film 
force sensors (flexiforce; Nitta Corp.) 0.2 mm 
thick, with ϕ 9.5 mm of the force-sensitive part 
was produced to detect the tongue position and 
contact force, as depicted in Figure 3.

Teaching signals of swallowing, yawning, and 
mouth opening were defined as voltage signals to 
identify each action. Push-button switches were 
produced to output DC 5 V synchronized signals 
corresponding to those actions. In addition, the 
EMG signals of the suprahyoid muscles and 

Figure 1. Lingual muscles and hyoid muscles. (©2012, IEEE. Used with permission)
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teaching signals were measured simultaneously 
at a sampling frequency of 2,000 Hz through an 
analog-to-digital converter (AIO-163202FX-
USB; Contec Co. Ltd.).

The subjects of this experiment were three 
healthy men with normal tongue function (22.3 ± 
0.6 years old, 169.3 ± 5.1 cm, 66.0 ± 7.9 kg, mean 
± SD). They were examined using a multi-channel 
electrode and a mouthpiece carrying sensors for 
the upper jaw.

Each subject pushed the three positions of 
“right,” “left,” and “front,” as depicted in Figure 
3 with the tongue tip for one second in sequence. 
They repeated these voluntary activities four times. 
Subjects were asked to perform intentional activi-
ties of saliva swallowing, yawning, and mouth 
opening while operating the push button switch 
to output identification signal of DC 5 V using a 
finger. They repeated these voluntary activities 
four times.

Among the four sets of measurement data, one 
set was used for learning neural networks. The rest 
were used for tongue movement estimation. The 
input to the neural network was the features related 
to the amplitude extracted from EMG signals by 
the root mean square (RMS). The smoothening 
number n was set to 200.

The output signals of the neural network 
were the estimated contact force of tongue when 
pushed to the right, left, and front sensors and the 
estimated identification signals corresponding to 

swallowing, yawning, and mouth opening. For 
this study, two indices were adopted to evaluate 
the estimation precision. One is the correlation 
coefficient. The other is the root mean square 
(RMS) error. The closer to unity the correlation 
coefficient is and the closer to 0% the RMS error 
is, the better the precision of estimation is.

3.3. Results and Discussion

3.3.1. Effects of Electrode Configuration

When estimation precision is almost equal, the 
use of fewer electrodes is desired in order to re-
duce the burden of the wearer and the number of 
calculation steps. In addition, when the number 
of electrodes is limited, it is necessary to find 
optimal configuration of electrodes to obtain more 
features related to tongue movements. Therefore, 
we evaluated the precision of estimation for the 
configurations portrayed in Figure 4.

Of these multi-channel triangular electrode 
configurations from (a)-(d), (a) comprises nine 
electrodes (Tri-9), (b) eight electrodes (Tri-8), 
(c) six electrodes (Tri-6), and (d) four electrodes 
(Tri-4). Of those, (e) is a multi-channel rectangular 
electrode configuration with six electrodes (Rec-
6); (f) is one with four electrodes (Rec-4). They 
are to be compared with Tri-6 and Tri-4. The pair 
of Rec-6 and Tri-6 and that of Rec-4 and Tri-4 
have equal numbers of electrodes, but they have 

Figure 2. Tongue position and contact force estimation algorithm. (©2012, IEEE. Used with permission)
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different geometries of positioning. Therefore, 
these pairs play an important role in examination 
of the effects of electrode positioning.

An example of estimating tongue movements 
from the electrode configuration Tri-9 is presented 
in Figure 5. In addition, the overall values of pre-
cision of estimating voluntary tongue movement 
for these three positions of right, left, and front 
are depicted in Figure 6. These reveal that the 
greater the number of electrodes in multi-channel 
electrodes, the greater the correlation coefficient 
and the smaller the RMS error. The coefficient 
of correlation is greater than 0.9, with RMS er-
rors smaller than 10% for Tri-9, Tri-8, and Tri-6. 
These imply high precision of estimating voluntary 
tongue movement. In all these configurations, 
electrodes are arranged in a triangular shape. 
Results of t-tests for the pair of Tri-6 and Rec-6 
(six electrodes) and the pair of Tri-4 and Rec-4 
(four electrodes) show a significant advantage of 
triangular positioning over rectangular position-
ing for the precision of estimation (*: p<0.05). 
Therefore, when the electrodes are fewer, they 
should be distributed over the whole underside 
of the jaw to detect crosstalk actively.

Because the usual function of suprahyoid 
muscles is to open the mouth and to control the 
hyoid position, false estimates can occur, as pre-
sented in Figure 7, during physiological motions 
such as swallowing, yawning, and mouth opening 
in neural networks that have learned to recognize 
voluntary tongue movement. For that reason, we 
added EMG signals of the suprahyoid muscles 
during swallowing, yawning, and mouth open-
ing in learning procedures of neural networks to 
remove these false signals. By performing mask 
processing in estimation of voluntary tongue 
movement, the estimation error by swallowing, 
yawning, and mouth opening was reduced.

Results of mask processing for a series of 
movements of swallowing, yawning, and mouth 
opening are presented in Figure 8 for electrode 
configurations of Tri-9, Tri-8, and Tri-6. We 
applied multiple comparison of Tukey-Kramer 
test at each comparison, assigning a “*” mark in 
figures when a statistically significant difference 
was found (p < 0.05). For Tri-6, the estimation 
error after mask processing is significantly greater 
than that of other electrode configurations, yield-
ing insufficient reduction of estimation error. In 

Figure 3. Upper jaw mouthpiece equipped with six thin-film force sensors. (©2012, IEEE. Used with 
permission)
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contrast, error reduction of 95% or more was 
obtained for Tri-9, with the greatest number of 
electrodes. Tri-9 showed a low RMS error of less 
than 1% for voluntary tongue movement after 
mask processing.

These results confirmed the possibility of 
precise extraction of only the signal of voluntary 
tongue movement from EMG signals of the su-
prahyoid muscles obtainable from the underside 
of the jaw.

4. ADVANCED ESTIMATION 
METHOD OF TONGUE MOVEMENT

The previous section presented confirmation of 
the feasibility of tongue movement estimation. To 
develop a safe and practical estimation method, 
we used tongue movement identification signals 
created artificially from the summation of RMS 
signals as teaching signals of the neural network 
instead of measurement data obtained from force 
sensors on the upper jaw mouthpiece. Tongue 

Figure 4. Multi-channel electrodes configurations. (©2012, IEEE. Used with permission)
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movements will be identifiable solely from the 
EMG signals of the suprahyoid muscles. This 
section introduces an advanced tongue movement 
estimation method based on principal component 
analysis (PCA) and artificial neural networks. 
Then the estimation precision and speed of this 
method are evaluated.

The EMG signal processing is explained below 
(Figure 9). The EMG signals of 36-channels were 
calculated using the method described in a previ-
ous section. To extract the feature quantities, the 
root mean square (RMS) of all 36 signals were 
calculated using the equation. The smoothening 
numbers n were set sequentially to 100, 300 and 
500.

In doing so, we composed a feature quantity 
Y(t) = [RMS100, RMS300, RMS500]

t. Y(t) is 108-di-
mensional quantity (36 channels × 3 values for 
n). The 108-dimensional feature quantity Y(t) 
was reduced to a new, 10-dimensional quantity 
Z(t) using PCA. The input signals to the neural 
network were determined from the last three 
sequential samples F(t) = [Z(t), Z(t-1), Z(t-2)]

t. Thereby, the tendency of time change of the 
feature vectors was examined. Signals used for 
teaching the neural network on the identifying 
tongue movements were generated by summation 
of RMS signals from all 32 channels and thresh-
old processing. Tongue movements were linked 
with the feature vector F(t) by adjustment of the 
connection weights of the neurons in the network 
via using a backpropagation learning algorithm. 
The output signals from the neural network were 
binarized using threshold processing. Finally, the 
tongue movement was determined by application 
of the majority rule among k recent estimations.

The subjects of this experiment were five adult 
men with normal tongue function (21.8 ± 0.8 
years old, 169.0 ± 4.8 cm, 63.0 ± 7.0 kg, mean 
± SD). The EMG signals of suprahyoid muscles 
were measured for three voluntary tongue move-
ments. Subjects were asked to push the tongue in 
the mouth cavity sequentially to the right, the left, 
and the front side. Apart from the voluntary tongue 
movements, the participants were also asked to 
perform one action of saliva swallowing. These 

Figure 5. Examples of tongue movement estimation using Tri-9 electrode configuration. (©2012, IEEE. 
Used with permission)
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four measurements constituted one set of opera-
tions. Each subject was asked to perform eight 
sets of tasks. Each action needed to be completed 
within one second. Subjects were asked to rest for 
one second before they started the next action. 
The EMG signals of the suprahyoid muscles were 
digitalized at sampling frequency of 2,000 Hz.

Four of these eight sets of data were used for the 
neural network learning processes. The remaining 
four sets were used for estimation of the tongue 
movements. The estimation precision was tested 
for the frame shift periods d of 0.5, 2.5, 5.0, 10, 

and 25 ms. The numbers of votes for majority rule 
of k were 1, 5, 10, 20, and 50.

Additionally, we explored how Y(t) influences 
the accuracy of the tongue movement estimation 
algorithm. For that purpose, we studied the es-
timation accuracy of the proposed algorithm for 
four values of Y(t), namely: Y(t) = RMS100, Y(t) 
= RMS300, Y(t) = RMS500, Y(t) = [RMS100, RMS300, 
RMS500] 

t.
The following two indices were used to evalu-

ate the precision and speed of estimation of the 
developed algorithm.

Figure 6. Effects of electrode configurations on estimation precision. (©2012, IEEE. Used with permission)
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1.  Rate of correct identification of movement 
(Rate of correct identification RCI)

R Number of  correct identifications
Total number of  identCI

=
iifications

×100[%]  

(2)

2.  Time from the start of the movement until 
the identification (Response time tr)

The average rates of correct identification and 
response times for all five subjects are presented 
respectively in Figures 10(a) and 10(b). Figure 11 
presents the estimation results using the proposed 
algorithm for conditions A, B, and C in Figure 
10. The increased frame shift period d and the 
increased number of votes for the majority rule 
of k indicate that the rate of correct identification 
was improved. As shown in the same figure, the 
initial rates of correct identification of 33.8% in 

(C) (d = 0.5, k = 1.5), were improved to 98.8% 
in (A) (d = 25, k = 50). However, the response 
time increased from 0.04 s to 0.69 s, suggesting 
a tradeoff relation.

The effect of the frame shift period d was 
discussed previously by Kelvin et al., (2003). 
Our experiments also confirmed the estimation 
accuracy can be improved by choosing a long shift 
period. Although an increased number of votes 
for rule of majority k prolongs the response time 
from the start of movement to the completion of 
the estimation, it stabilizes the output signal and 
improves the estimation accuracy (Figure 10).

Table 1 presents a relation between feature 
quantity Y(t) and accuracy of estimation (frame 
shift period d is 25 ms, and the quantities of votes 
for majority rule of k is 50). Results also show that 
the accuracy of estimation for RMS500 is higher 
than the accuracy of the procedure when Y(t) = 
RMS100 or Y(t) = RMS300 was used, which suggests 

Figure 7. Mask processing to remove false estimates caused by movements of swallowing, yawning, and 
mouth opening. (©2012, IEEE. Used with permission)
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a trend by which a greater number of samplings 
engenders a higher accuracy of estimation. In addi-
tion, estimation by all three RMSs Y(t) = [RMS100, 
RMS300, RMS500]

t provided the best accuracy of 
estimation, with an identification rate of 98.8 ± 
2.8% and response time of 0.67 ± 0.09 s.

RMS processing has the same effect as that of 
a low pass filter, where the degree of smoothening 
was determined by the number of samples n. By 
defining numerous signal components as feature 

quantities of the EMG signals, we can attain high 
accuracy of estimation of the tongue motions.

Results showed that the initially obtained 
108-dimensional feature quantity included signal 
components that do not contribute to the accuracy 
of estimation but which unnecessarily increase 
the amount of calculations. Therefore, to reduce 
the number of the feature quantity and to ignore 
the components that do not contribute to the es-
timation accuracy, we applied PCA to the input 
signal of the neural network. Although the average 

Figure 8. Reduction effect of estimation error by mask processing. (©2012, IEEE. Used with permission)
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response time for estimation of the tongue move-
ments is greater than the response time of some 
other human motions (which is approximately 
0.2 s), the accuracy and the speed of recognition 
of the tongue movements are sufficient for most 
cases of control of assistive devices by people with 
severe disabilities. In our future work, we intend 
to examine the response time and the accuracy 
of user’s commands derived by the procedure 
presented herein in tasks for tongue control of 
assistive devices.

5. CONCLUSION

This chapter introduced a novel estimation method 
for voluntary tongue movements based on surface 
EMG signals. Although many studies using EMG 
signals to estimate movements of hands, legs, etc. 
have been reported to date, research estimating 
the tongue movement, as we have done, has never 
been reported. The main reasons are the following.

1.  The relation between the muscle activity 
and the generated movement is complicated 
compared to that of a hand, a leg, etc.

2.  Measurement of EMG signals of the lingual 
muscles, which control the position and di-
rection of tongue tip, require the installation 
of surface electrodes or needle electrodes 
within the oral cavity, which might cause 
severe problems for a subject.

3.  It has remained unknown whether tongue 
movement can be estimated from EMG sig-
nals of suprahyoid muscles, which function 
to open the mouth and to control the hyoid 
position (base of the tongue) or not.

4.  EMG signals of the suprahyoid muscles are 
observed not only during voluntary move-
ments but also during physiological move-
ments related to swallowing or yawning. 
Therefore, it is necessary to isolate them 
and extract only those voluntary movements 
which are associated with intentional com-
munication from EMG signals precisely.

Against these problems, this session demon-
strated for the first time that the proposed method 
enables the precise estimation of the tongue 
movements and that it can identify the voluntary 
movement and the physiological movement re-
spectively with identification rate greater than 
98%. However, the following examinations are 
necessary for reduction of the calculation time 
and for an increase in the number of tongue move-
ments that are classifiable as necessary to control 
assistive devices such as intention-communication 
devices and electric wheelchairs.

1.  Selection of optimal feature quantities in 
the time or frequency domain (Zecca et al., 
2002; Oseki, 2007)

2.  Evaluation of estimation ability using other 
methods such as Bayesian pattern classi-

Figure 9. Advanced tongue movement estimation algorithm. (©2013, IEEE. Used with permission)
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Figure 10. Tongue movement estimation results (A: d = 25 ms, k = 50; B: d = 1.0 ms, k = 20; C: d = 
0.5 ms, k = 10). (©2013, IEEE. Used with permission)
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fiers, Support vector machines (Graupe et 
al., 1982; Corinna et al., 1995; Huang et al., 
2005; Shenoy, et al., 2008)

3.  Optimization of the electrode configurations 
and the number of electrodes (Lal et al., 
2004; Shibanoki et al., 2009)

We are sure that the support of the independent 
living of persons with movement disabilities and 
elderly people is realizable in the future from 
development of studies of this area. We fervently 

hope that the contents introduced in this chapter 
can contribute to the further development of this 
effort.
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ABSTRACT

Recent studies suggest that the therapeutic effects of Functional Electrical Stimulation (FES) are maxi-
mized when the patterned electrical stimulation is delivered in close synchrony with the attempted vol-
untary movement. FES systems that modulate stimulation parameters based on the residual volitional 
muscle activity would assure this combination. However, the development of such a system might be not 
trivial, both from a hardware and a software point of view. This chapter provides an extensive overview 
of devices and filtering solutions proposed in the literature to estimate the residual volitional EMG sig-
nal in the presence of electrical stimulation. Different control strategies to modulate FES parameters 
as well as the results of the first studies involving neurological patients are also presented. This chapter 
provides some guidelines to help people who want to design innovative myocontrolled neuroprostheses 
and might favor the spread of these solutions in clinical environments.

INTRODUCTION

Functional Electrical Stimulation (FES) consists of 
the electrical stimulation of an intact lower motor 
neuron to activate paralyzed or paretic muscles in 
a precise sequence so as to directly accomplish 

or support functional tasks (Meo & Post, 1962). 
Functional tasks may include standing, walking, 
or cycling, upper limb activities, such as grasping 
or reaching, and control of respiration and blad-
der function. With the term neuroprosthesis we 
refer to a system or a device that provides FES. 
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FES systems have been covering a wide range of 
assistive and therapeutic applications in neuro-
rehabilitation for the last forty years (Sheffler & 
Chae, 2007); they have been used to restore or 
replace impaired or lost motor functions in people 
affected by many neurological disorders, such as 
Spinal Cord Injury (SCI) (Gater, 2011), stroke 
(Ambrosini, 2012; Ambrosini, 2011a; Ferrante, 
2008; Pomeroy, 2006; Popović, 2009), multiple 
sclerosis (Barrett, 2009), or cerebral palsy (Cau-
raugh, 2010; Trevisi, 2011).

When the muscles are not completely para-
lyzed it is possible to use the neural information 
extracted from the EMG signals of the paretic 
limb to control the timing and the intensity of the 
stimulation (Jiang, 2010). Such a control scheme 
seems to be a promising solution from a clinical 
prospective since it involves the physiological 
neural pathway in the recovery of the impaired 
motor functions. In support of this hypothesis, 
recent neurophysiological studies (Barsi, 2008; 
Iftime-Nielsen, 2012; Rushton, 2003; Gandolla, 
2012) suggested that the use of electrical stimula-
tion co-incidentally with the voluntary drive en-
hances the plasticity of the central nervous system 
(CNS), so as to improve motor relearning. First 
evidences about the efficacy of myocontrolled 
FES in improving upper limb motor performance 
have been shown in post-stroke patients (Fujiwara 
et al., 2009; Shindo et al., 2011). However, a full 
demonstration of the superiority of this approach 
compared to a more conventional use of FES 
is still missing, as well as a system ready to be 
transferred in clinical settings.

To design a control system that modulates 
FES parameters based on the residual volitional 
activation of the stimulated muscle, technological 
challenges, both from a software and a hardware 
point of view, need to be addressed. Indeed, when 
a muscle contraction is generated by two differ-
ent activation sources, volitional and electrical 
stimulation, the overall EMG signal is due to the 
combination of these two components and the 

estimate of the volitional component might not 
be trivial.

This chapter focuses on FES systems that use 
the residual volitional EMG signal of the stimu-
lated muscle to module the stimulation parameters. 
An extensive overview of the hardware and soft-
ware solutions to estimate the volitional EMG in 
the presence of electrical stimulation, as well as the 
correspondent control strategies for FES are pre-
sented. Guidelines to support people who want to 
design innovative myocontrolled neuroprostheses 
are also provided. The Background section sum-
marizes the neurophysiological principle and the 
therapeutic effects of FES both at peripheral and 
central level. The neurophysiological hypotheses 
that advocate the use of FES co-incidentally with 
the voluntary drive are also presented. The chapter 
is organized into five sections that guide the reader 
in the critical development of myocontrolled neu-
roprosthetic devices. The first section describes 
the characteristics of volitional and FES-induced 
EMG signals. The following section provides an 
overview of the current available hardware systems 
for EMG recording. The third section reviews 
digital signal processing methods for the estimate 
of the volitional EMG signal in the presence of 
FES-evoked EMG. The fourth section reviews the 
use of the volitional EMG as a control signal for 
modulating FES parameters. The final section of 
the chapter presents the results of early studies that 
tested myocontrolled neuroprostheses on people 
with neurological impairments. In closing, future 
and emerging research directions are presented.

BACKGROUND

When electrical pulses are delivered to the pe-
ripheral nervous tissue, repetitive depolarization 
of motor axons beneath the stimulation electrodes 
occurs and a muscle contraction is produced 
by signals travelling from the stimulation site 
to the neuromuscular junction. In this sense, 
FES substitutes for the normal voluntary drive 
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travelling along the anterior corticospinal tract. 
Since the threshold for eliciting a nerve fiber ac-
tion potential is 100 to 1000 times less than the 
threshold for muscle fiber excitation (Mortimer, 
2011), FES usually excites nervous fibers instead 
of muscular fibers, stimulating either the nerve 
directly or the motor point of the nerve proximal 
to the neuromuscular junction. For this reason, 
the clinical application of FES is presently lim-
ited to neurological injuries with lower motor 
neurons still functional from the anterior horns 
of the spinal cord to the neuromuscular junction. 
In the same way the motor axons are elicited 
during FES, sensory fibers are also depolarized, 
and the signals travelling back to the spinal cord 
can contribute to the electrically evoked muscle 
contraction through the synaptic recruitment of 
the motor neuron. Thus, FES-induced muscle 
contractions can be generated by a combination 
of a peripheral (depolarization of the motor axons) 
and central (depolarization of the sensory axons) 
recruitment (Bergquist, 2011).

Electrical stimulation can be delivered through 
transcutaneous (surface) electrodes placed over the 
muscle belly, or through implanted (percutaneous, 
epimysial, epineural, intraneural, and cuff) elec-
trodes. Surface electrodes are commonly preferred 
to implanted electrodes, especially for therapeutic 
applications (Benton, 1981) due to their minimal 
invasiveness and the ease of donning and doffing. 
For this reason, this chapter is focused on the use 
of surface electrodes for FES.

FES systems can be either voltage- or current-
controlled. Voltage-controlled stimulators do not 
lead to dangerous high values of current density, 
in case that a partial detachment of surface elec-
trodes occurs. However, the motor unit recruitment 
induced by voltage-controlled stimulators is less 
reliable than the one induced by current-controlled 
stimulators. Indeed, current-controlled stimulators 
are not affected by impedance variations due to 
electrode–skin interface changes and thus they are 
usually preferred in clinical applications.

FES is usually delivered as trains of current 
pulses, either monophasic or biphasic (see Figure 
1). Biphasic pulses are preferred since they balance 
the charge delivered to the nerves. Among biphasic 
pulses, symmetrical (as the one shown in Figure 
1) and unsymmetrical waveforms exist. Current 
pulses are characterized by three parameters: the 
pulse amplitude (A), the pulse width (PW), and 
the stimulation frequency. The strength of the 
resultant muscle contraction can be controlled 
by modulating these parameters. The product 
between the pulse amplitude and the pulse width 
defines the charge delivered by each pulse and 
determines the number of muscle fibers that are 
recruited (spatial summation): greater muscle 
force generation is accomplished by increasing 
either the pulse duration or the amplitude so as 
to activate fibers with a higher activation thresh-
old (both smaller fibers and fibers at a greater 
distance from the stimulation electrodes). On the 
other hand, temporal summation is determined by 
the rate at which current pulses are applied to the 
muscle. The minimum stimulation frequency that 
generates a fused muscle response is about 12.5 
Hz. Higher frequencies produce higher forces 
but result in an early onset of muscular fatigue 
(Sheffler & Chae, 2007). Usually, when electrical 
stimulation is provided through surface electrodes 
attached to the skin near the motor point, the 
stimulation frequency is fixed at a value ranging 
between 20 and 30 Hz, while the current pulses 
have a duration between 100 to 500 μs and an 
amplitude between 10 and 125 mA.

The major limitation of FES applications is 
the rapid onset of muscular fatigue, which is due 
to the differences between physiological and 
FES-induced muscle contractions. First of all, 
FES induces a non-selective, spatially fixed, and 
temporally synchronous activation of the elicited 
fibers compared to the asynchronous activation 
that characterizes physiological muscle contrac-
tions. Synchronous activation of muscle fibers 
during conventional stimulation requires a higher 
stimulation frequency to achieve a smooth muscle 
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contraction thus causing the muscle to fatigue 
more quickly (Bickel, 2011). Another possible 
explanation for the quick onset of muscular fa-
tigue is related to the recruitment order of the 
fibers. Skeletal muscle contains “fast” and “slow” 
muscle fibers that are distinguished on the basis 
of contraction kinetics into types I and II muscle 
fibers. Slow-twitch, oxidative type I fibers generate 
lower forces but are fatigue resistant; fast-twitch 
glycolytic type II fibers generate higher forces but 
fatigue more rapidly. During volitional muscle 
contractions, the motor unit recruitment order 
follows Henneman’s size principle: small size 
motor units (type I fibers) are recruited earlier 
than large size motor units (type II fibers) based 
on CNS drive. Conversely, during FES-induced 
contractions, two main factors affect the recruit-
ment order:

• The size of the motor neuron and of the 
motor neuron branches, which is related to 
the excitability threshold (motor units with 
larger fibers are innervated by larger axons, 
which have a lower excitability threshold 
(Zajac & Faden, 1985))

• The location and orientation of the mo-
tor neuron branches in the electric field 
(Knaflitz, 1990).

Although a complete knowledge of the mo-
tor unit recruitment during FES-induced muscle 
contractions is still missing, it can be reasonably 
assumed that the artificial recruitment order turns 
out to be less efficient both in terms of force pro-
duction and fatigue onset, than the natural one.

Clinical evidence demonstrates that FES in-
duces peripheral benefits, such as the increase in 
muscle strength, changes in muscle length, bulk, 
type, and function, prevention and reversal of 
osteoporosis, enhancement of cardiorespiratory 
fitness, improvement in tissue oxygenation and 
peripheral hemodynamic function, reduction of 
spasticity, and increase in the range of motion 
(Gater, 2011; Glinsky, 2007; Popović, 2009).

When FES is applied on post-stroke patients, 
its efficacy in improving the ability to move vol-
untarily the affected limb and to use it in everyday 
life activities has been shown both for the upper 
(de Kroon & IJzerman, 2008; Popovic, 2004) and 
lower limb (Ambrosini, 2011a; Bogataj, 1995; 
Yan, 2005). Clinical evidence suggests that FES 
plays a major role in enhancing motor relearning 
after stroke (Sheffler & Chae, 2007), mainly if 
combined with goal-oriented repetitive move-
ment therapy thanks to the combination of two 
motor learning principles in one protocol, i.e. 
repetition and sensorimotor integration (Krakauer, 
2006). FES-induced afferent-efferent stimulation 
together with cutaneous and proprioceptive inputs 

Figure 1. Current pulse waveforms (A: pulse amplitude; PW: pulse width; IPI: inter-pulse interval; T: 
stimulation period, i.e. the inverse of the stimulation frequency)
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might increase activity in the spinal and cortical 
circuits that control the movements, facilitating 
the physiological reorganization occurring in the 
intact tissues adjacent to the brain lesion after 
stroke. Recent studies on central motor neuro-
plasticity have been conducted to investigate 
whether FES-induced motor recovery is related 
to changes in cortical activation or excitability. 
A dose-response relationship between FES de-
livered to the quadriceps muscle of the dominant 
limb and brain activation in sensory and motor 
regions contralateral to the stimulation side has 
been observed on a group of 10 healthy subjects 
(Smith, 2003). A recent fMRI study involving 12 
healthy volunteers observed that a significantly 
greater number of voxels were activated during 
active and FES-induced ankle dorsi-flexion move-
ments compared to passive ones in contralateral 
primary motor, primary sensory and secondary 
somatosensory areas, as well as in supplemen-
tary motor and cingulate motor areas, bilateral 
premotor areas and cerebellum (Francis, 2009). 
Comparing active and FES-induced movements, 
the authors observed a greater activation in brain 
areas responsible for motor planning, execution 
and visual-motor coordination when movements 
were performed voluntarily, whereas they showed 
a greater activation in bilateral secondary somato-
sensory areas and insula when movements were 
induced by FES, resulting from increased sensory 
integration, but also probably due to a nociceptive 
component of FES.

Recent neurophysiological studies advocated 
the use of FES co-incidentally with the voluntary 
drive to enhance the benefic effects of FES on the 
motor relearning process. In a study involving 25 
healthy volunteers the effects of three training 
paradigms (passive FES of the finger flexors and 
extensors, voluntary movement with sensory stim-
ulation, and FES-augmented voluntary activation) 
were compared in terms of cortical excitability 
(Barsi, 2008). The input-output relationship be-
tween transcranial magnetic stimulation intensity 
and the motor evoked potentials was investigated. 

A significant increase in the magnitude of the mo-
tor evoked potentials was observed only during 
FES-augmented voluntary movements, suggest-
ing an increased cortical excitability due to the 
cumulative effects of FES and voluntary activa-
tion. The authors concluded that the combination 
of voluntary effort and FES might have a greater 
potential to induce plasticity in the motor cortex 
and might represent a more effective training in 
the motor neuro-rehabilitation field.

In a more recent study (Iftime-Nielsen, 2012), 
fMRI cortical activity induced by FES combined 
with voluntary effort was compared to that pro-
duced when FES and voluntary activity were 
performed alone on a group of 17 healthy volun-
teers. FES plus voluntary effort revealed a greater 
cerebellar activity compared with FES alone and 
a reduced bilateral activity in the secondary so-
matosensory areas compared to voluntary effort 
alone. When a voluntary movement is present, 
the cerebellum predicts the sensory consequences 
of the movement and the reduced activity in the 
somatosensory areas might reflect a better match 
between the internal model and the actual sensory 
feedback due to the combination of FES and vol-
untary drive. The coactivation between the motor 
control regions and the sensory-feedback areas 
might be crucial in motor recovery at brain level.

It has been recently investigated the differential 
effect of FES applied with or without the volitional 
contribution of the subject in a 2x2 factorial design, 
with volitional intention (with the levels volitional 
and passive) and FES (with the levels present and 
absent) as factors (Gandolla, 2012). Right ankle 
dorsi-flexion was selected as motor task. The 
interaction contrast allowed to identify regions 
where the FES augmented proprioception – in the 
context of volitional intent – produced a higher 
activation than FES augmented proprioception in 
the absence of volitional movement. The authors 
demonstrated that the positive interaction was seen 
in both primary motor cortex (M1) and primary 
somatosensory cortex (S1); in other words, the 
effect of augmented proprioception depends on 
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volitional movement in both M1 and S1. The in-
teraction mechanism between FES and voluntary 
effort could be therefore the mechanism by which 
FES leads to a clinically meaningful carryover 
effect in neurological patients.

Not only cortical but also spinal mechanisms 
might be involved in the potential positive effect 
of FES-augmented voluntary movements on 
motor recovery. It has been hypothesized that 
FES-mediated antidromic impulses, combined 
with coincident voluntary effort through a dam-
aged pyramidal motor system, could provide an 
artificial means to synchronize pre-synaptic and 
post-synaptic activity in the affected population 
of the anterior horn cells, helping to promote 
restorative synaptic modifications at the spinal 
level (Rushton, 2003).

The results of these neurophysiological studies 
make interesting from a clinical prospective the 
development of myocontrolled neuroprosthesis 
that can assure the combination between the 
intended voluntary movement and the delivery 
of FES. Naturally, these systems require that the 
muscle to retrain is not completely paralyzed. 
Two different approaches have been proposed in 
the literature:

• The residual volitional EMG signal of the 
affected muscle can be detected and used 
to trigger the onset of a predetermined 
stimulation sequence applied in an open-
loop modality to the same muscle used 
for control (Cauraugh, 2000; Kimberley, 
2004; Saxena, 1995);

• The residual volitional EMG signal of the 
affected muscle can be detected and used 
to continuously control FES applied in a 
closed-loop modality to the same muscle 
used for control. Stimulation parameters, 
such as current amplitude and pulse width, 
are usually modulated (Fujiwara, 2009; 
Thorsen, 2001; Yeom & Chang, 2010).

Note that from the previous list we have ex-
cluded some studies which proposed to control 
FES based on the EMG signal of a muscle differ-
ent from the stimulated one (such as Chen, 2010; 
Graupe & Kohn, 1987). Indeed, this approach does 
not guarantee the synchronization between FES-
mediated activity and the voluntary motor drive.

Concerning the first approach, to trigger FES 
based on the residual volitional EMG signal of the 
stimulated muscle, advanced technological solu-
tions are not needed since the EMG signal is mea-
sured only before the delivery of FES. When a vo-
litional activation of the target muscle is detected, 
FES is delivered in an open-loop modality and the 
EMG signal is not measured anymore. Therefore, 
over the last 20 years different EMG-trigger FES 
systems have been developed and promising re-
sults have been achieved on neurological patients. 
EMG-triggered FES has been shown to improve 
wrist and finger extension movements in chronic 
post-stroke patients (Cauraugh, 2000). A 3-week 
home treatment of EMG-trigger FES applied on 
the extensors muscles of the impaired forearm 
significantly improved hand functions in chronic 
stroke patients (Kimberley, 2004). Improvements 
in the motor performance were also associated 
with an increased index of cortical intensity in 
the ipsilateral somatosensory cortex. A review 
investigating the variety of ways that can be used to 
apply FES to the hemiparetic upper extremity after 
stroke concluded that EMG-triggered FES may be 
more effective than non-triggered FES solutions 
(de Kroon, 2005). However, a recent systematic 
review to assess whether EMG-triggered FES 
applied to the extensor muscles of the forearm 
improves hand function after stroke was carried 
out and the authors did not find any statistically 
significant differences in the motor performance 
improvements between EMG-trigger FES and 
usual care (Meilink, 2008).

It is important to highlight that, EMG-trigger 
FES systems provide a predetermined stimula-
tion sequence when the volitional EMG signal 
overcomes a certain threshold but the volitional 
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involvement of the patient in the exercise is not 
monitored anymore after the beginning of the 
stimulation phase. Therefore, the synchroniza-
tion between the patterned electrical stimulation 
and the attempted voluntary movement might 
be assumed but not proved. To actually assure 
this synchronization, an on-line control of the 
volitional activity of the stimulated muscle is 
required. To design systems that continuously 
modulate stimulation parameters based on the 
residual volitional EMG signal, technological 
challenges need to be tackled, as described in the 
following sections.

MYOCONTROLLED 
NEUROPROSTHESIS: A 
TECHNOLOGICAL CHALLENGE

Characterization of Volitional 
and FES-Induced EMG Signal

During hybrid muscle activation, i.e. a muscle 
contraction generated by two different excita-
tion sources, volitional and electrically induced 
(Langzam, 2006), the overall myoelectric signal is 
due to the combination of these two components.

A typical muscle response to electrical stimu-
lation includes the stimulation artifact and the 
M-wave. The stimulation artifact is due to the 
electric field generated in the tissue and the skin 
by the stimulation current. The artifact waveform 
is a spike followed by a decay composed of one 
or more exponential curves whose amplitude and 
time constant values are affected by the stimulator 
output characteristics, the inter-electrode imped-
ance, and the relative geometry of stimulation 
and recording electrodes (Knaflitz & Merletti, 
1988). The initial spike lasts about 3 ms and has an 
amplitude from one to three orders of magnitude 
greater than the M-wave. The decay, considerably 
smaller in amplitude with respect to the initial 
spike, lasts for a longer time interval and can be 
more or less superimposed with the M-wave, 

depending on the distance of the detection point 
from the innervation zone (Mandrile, 2003). The 
M-wave represents the compound action potential 
due to the synchronous firing of the electrically 
elicited muscle fibers. It depends on many factors, 
such as the stimulation parameters, the position 
of both stimulation and recording electrodes, the 
properties of the muscle, the fatigue, the contrac-
tion level of the muscle, etc. (Merletti, 1992). The 
M-wave is usually in the range of some millivolts, 
starts few milliseconds after the electrical pulse 
and its main activity is concluded within the first 
20 ms of the inter-pulse period. However, the 
M-wave can spread over most of the inter-pulse 
period, mainly at high stimulation intensities and 
frequencies.

Besides the M-wave, due to the orthodromic 
efferent volley, the electrically evoked motor 
response might be characterized by two other 
components: the H-reflex and the F-wave. The 
H-reflex is determined by the orthodromic sensory 
volley, that can recruit the motor neuron in the 
spinal cord, provoking a second muscle response 
visible on the EMG signal after the M-wave. To 
evoke the H-reflex, sensory fibers need to be 
depolarized and this requires a proper placement 
of the stimulation electrodes and a specific setting 
of the stimulation parameters (usually lower pulse 
amplitude and longer pulse duration are needed 
to preferentially recruit sensory axons (Bergquist, 
2011)). The F-wave is a small, second compound 
action potential due to the antidromic efferent 
stimulus. This stimulus reaches the motor neuron, 
a small portion of the motor neuron backfires and 
orthodromic signal travels back down the nerve 
towards the muscle, evoking the F-wave. Strong 
electrical pulses are needed to evoke the F-wave.

Due to the asynchronous activation of the motor 
units during voluntary contractions, the volitional 
EMG is a stochastic signal, with an approximately 
Gaussian probability density function (Merletti, 
1992) and an amplitude of at least one magnitude 
lower than the M-wave. During a hybrid muscle 
activation, the volitional EMG signal is usually 
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more visible in the second half of the inter-pulse 
period, when the main phase of the M-wave is 
concluded.

Figure 2 depicts an example of a typical EMG 
signal acquired during a hybrid muscle activation: 
the three main components, i.e. the stimulation 
artifact, the M-wave, and the volitional EMG, are 
shown. The stimulation frequency was set at 20 
Hz, as it can be noticed by an inter-pulse period 
of 50 ms.

Figure 3 shows the overall EMG signal acquired 
during isometric and anisometric contractions. 
Each panel reports 20 consecutive inter-pulse 
periods measured during four different conditions: 
FES-induced isometric and anisometric contrac-
tions with no volitional contribution (panel (A) 
and (C), respectively); FES-induced and volitional 
isometric and anisometric contractions (panel (B) 
and (D), respectively). During short isometric 
contractions with fixed stimulation parameters 
(pulse amplitude of 18 mA and duration of 300 
μs in the example shown in the figure), the M-
wave can be considered as a quasi-deterministic 

signal; indeed, low variations in the shape of the 
M-wave can be noticed in panels (A) and (B). On 
the other hand, during intermittent anisometric 
contractions (60° of elbow flex/extension) the 
shape of the M-wave changes, even in short term, 
due to the modifications of the relative position 
between the stimulation electrodes and the muscle 
fibers (Merletti, 1992). Indeed, panels (C) and 
(D) highlight higher variations in the shape of 
the M-wave compared to panels (A) and (B). 
The volitional EMG signal is represented by the 
low-amplitude pseudorandom noise that can be 
noticed mainly over the tail of the M-wave in both 
panels (B) and (D).

Devices for EMG Recordings 
during Electrical Stimulation

To acquire an EMG signal during FES, standard 
recording and stimulation electrodes are typically 
used. In most cases, the detection of the EMG 
signal from a single muscle requires to use up 
to five electrodes: two stimulation electrodes 

Figure 2. Example of a raw EMG signal acquired during a hybrid muscle activation (both volitional 
and FES-induced)
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and three recording electrodes, two placed over 
the target muscle and one reference electrode. 
Surface self-adhesive electrodes (such as PALS® 
Platinum, Axelgaard) are placed over the muscle 
belly to deliver the stimulation. Different sizes of 
stimulation electrodes can be used depending on 
the target muscle. A size of about 50 x 50 mm is 
usually used for the stimulation of the arm muscles 
(e.g., the biceps or the triceps muscle), while 50 
x 90 mm electrodes are usually attached over 
the thigh muscles (e.g., the quadriceps and the 
hamstrings muscles); rounded electrodes with a 
diameter of about 25 mm can be used for smaller 
muscles, such as the forearm or the face muscles. 
EMG signals are usually recorded using Ag/AgCl 
pre-gelled self-adhesive electrodes. A typical 

contact size of 30 x 20 mm is used for both arm 
and leg muscles with an inter-electrode distance 
of about 3 cm following SENIAM indications 
(Hermens, 2000). The recording electrodes are 
usually placed between the stimulation electrodes 
and the reference EMG electrode is commonly 
placed away from the detection site.

Standard amplification units for EMG record-
ings cannot be used in the presence of electrical 
stimulation. Indeed, EMG recordings during 
hybrid muscle activation are problematic as 
large measurement artifacts occur. The stimula-
tion artifact is the result of a potential difference 
developed by the stimulation current between the 
EMG recording electrodes. Indeed, this potential 
difference is a differential signal that can not be re-

Figure 3. Raw EMG signals acquired during four different conditions: FES-induced isometric and an-
isometric contractions with no volitional contribution (panel (A) and (C), respectively); FES-induced 
and volitional isometric and anisometric contractions (panel (B) and (D), respectively). In panels (C-
D) a movement of about 60° of elbow flex/extension is shown. Each panel represents 20 consecutive 
inter-pulse periods
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jected from the differential amplifier. As described 
in the previous section the stimulation artifact is 
characterized by an initial spike lasting about 3 
ms with an amplitude of one to three orders of 
magnitudes greater than the M-wave. Thus, this 
spike can drive the amplifier of a standard EMG 
circuit into saturation or even damage the amplifier.

Several studies in literature faced the problem 
of the suppression of the stimulation artifact and 
three main categories of solutions, here summa-
rized in Figure 4, have been proposed. In all the 
flow diagrams reported in Figure 4, the reference 
EMG electrode is not shown for the sake of clarity. 
However, a reference electrode is always connected 
to a single reference generator (driven-right-leg 
system) to reduce the common mode disturbances 
at the measurement electrodes. The third solution, 
unlike the first two, uses only a single couple of 
electrodes for both stimulating and recording the 
EMG signal. In all the solutions, the cables can 
be equipped with active shielding, commonly 
used to reduce the effects of external noise and 
electrostatic interferences as well as effects of 
parasitic capacitances of the shielded cables. In 
the case of active shielding, the outer conductor 
(shielding) is driven at the average potential of 
the input terminals by using a buffer amplifier. 
Using active shielding, external interferences are 
suppressed through the low output impedance of 
the unity gain amplifier (Shalaby, 2011). Each 
cable has its own active shielding.

In the first type of solutions (Figure 4 - A), a 
switch (Knaflitz & Merletti, 1988; Minzly, 1993; 
Yeom & Chang, 2010) or a sample-hold circuit 
(Howson & Heule, 1980; H. Yeom & Chang, 
2010) can be applied to disconnect the electrodes 
from the input of the conditioning circuit when 
the stimulation pulse is delivered. In this solution 
the switch or the sample and hold circuit must 
by synchronized to the stimulation signal. The 
blanking window starts with the stimulation pulse 
and has a width varying between 5 and 20 ms. 
If a long blanking window is used the acquired 
signal does not include the initial bigger part of 

the M-wave widely used in literature as a fatigue 
indicator (Merletti, 1990). Some commercial 
EMG amplifiers such as the NeuroLogTM System 
by Digitimer, UK, are now available and can 
measure hybrid muscle activations because they 
offer a mute input for suppression or reduction 
of overload artifact signals. These commercial 
devices are EMG amplifiers that can be triggered 
and/or enabled from an external signal.

The second type of solutions does not require 
a blanking window or a synchronization with the 
stimulation pulse. A first example of device be-
longing to this category was proposed by Thorsen: 
the artifact suppression was achieved by using a 
fast recovery instrumentation amplifier (recovery 
time of about 1 ms after the stimulation artifact) 
and a nonlinear feedback loop for automatic com-
pensation of changes in DC-offset mostly due to 
movement artifacts (Thorsen, 1999a). This EMG 
amplifier was specifically designed for EMG 
signals having an amplitude lower than 0.5 mV 
and a frequency range comprised between 20 and 
500 Hz, stimulation artifacts having an amplitude 
lower than 3 V, a duration lower than 1 ms, and 
a repetition rate of about 20 Hz. The circuit was 
able to recover from a DC-offset change within the 
range of ±0.1 V in less than 0.1 s. Given all these 
assumptions on the input signals, it was reported 
that this specific circuit was not robust enough; 
for instance, it was not sufficient for a complete 
rejection of the artifact when the recording elec-
trodes were relatively close to the stimulation 
electrodes (Frigo, 2000). A more robust approach 
that still does not rely on the use of a blanking 
window and a synchronization with the stimula-
tion pulse is schematically represented in Figure 
4 - B. It consists of using a high resolution ADC 
to convert the signal from analog to digital soon 
after a first differential instrumentation amplifier 
with a very low gain. This amplifier does not 
require any blanking and is usually characterized 
by a very fast recovery from stimulation artifacts. 
Hence, both M-wave and volitional EMG during 
stimulation can be measured. However, digital 
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Figure 4. Three different solutions to measure the EMG signals during a hybrid muscle activation
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filter algorithms must be implemented at the PC 
side to process the EMG signal. Nowadays, some 
commercial devices belonging to this category are 
available (e.g., the EMG/EEG amplifier Porti by 
Twente Medical Systems International (TMSI), 
characterized by a recovery time of less than 5 ms). 
This commercial solution robustly overcomes the 
problem of artifact suppression and can be widely 
applied in clinical settings.

When separate stimulation and recordings 
electrodes are used, the relative placement of 
the electrodes can affect the capability of the 
system to suppress the stimulation artifact and 
the electrically induced contribution (M-wave). 
Different relative placements of the recording 
electrodes with respect to the stimulation elec-
trodes were evaluated (Frigo, 2000). The authors 
observed that when the recording electrodes are 
placed within the stimulation electrodes with an 
orientation of 90° with respect to the line of the 
stimulation electrodes, the signal to noise ratio 
was higher, thanks to the higher common mode 
component of the stimulation artifact that can be 
more easily rejected by the differential amplifiers. 
Thus, when separate stimulation and recording 
electrodes are used, a placement of the record-
ing electrodes perpendicular to the muscle fiber 
direction, as shown in Figure 4, panels (A) and 
(B), should be preferred to the one proposed by 
SENIAM (Hermens, 2000), whether the objective 
is to acquire the volitional component of a hybrid 
muscle activation.

More recently, direct measurement of the EMG 
signals from stimulation electrodes have been also 
proposed (Muraoka, 2002; Shalaby, 2011). This 
approach simplifies electrodes placement (Figure 
4 - C); indeed, only 3 electrodes, instead of 5, are 
needed for one EMG/stimulation channel, making 
this solution particularly interesting for small target 
muscles. However, when stimulation electrodes 
are used to record the EMG signal, another mea-
surement artifact is introduced and needs to be 
eliminated. Indeed, when the electrical pulse is 

delivered, an asymmetrical charge remains under 
the electrodes and ad-hoc hardware solutions are 
required to quickly eliminate this electric charge. 
A second artifact is caused by the discharging 
process; this artifact is even larger when big elec-
trodes are used. Therefore, this solution requires a 
blanking circuit to avoid both the stimulation and 
the discharging artifacts (Figure 4 - C). A muting 
period longer than in the first approach (Figure 
4 - A) is needed and, thus, an initial consistent 
part of the M-wave cannot be acquired. Both the 
blanking and the charge elimination circuits must 
be synchronous to the stimulation pulse.

The first device applying electrical stimulation 
via the EMG electrodes was designed by Kamono 
and colleagues for gait assistance (Kamono, 2002). 
They used a voltage-controlled stimulator working 
at 15 Hz, and a microcontroller (μC) to switch the 
electrodes between the stimulation circuit and the 
EMG amplifier. A similar device was developed 
by Muraoka and colleagues; their device pro-
vided a good EMG signal for the second half of 
the stimulation period at a stimulation frequency 
of 20 Hz (Muraoka, 2002). Both these solutions 
were tested only on low stimulation frequencies 
and moderate intensities being the target muscles 
the ankle dorsi-flexor (Kamono, 2002) or up-
per limb muscles (Muraoka, 2002). In addition, 
Muraoka used a band pass filtering in the output 
stage in the range of 330-460 Hz, thus filtering 
out most of the volitional EMG information that 
typically has a bandwidth comprised between 30 
and 500 Hz with a peak around 120 Hz (De Luca 
& Knaflitz, 1992).

Recently, Shalaby and colleagues developed 
a more robust device that can be used during 
4-channel FES-induced cycling training (Shalaby, 
2011). This device was compatible with a com-
mercial 8-channel current-controlled stimulator 
(RehastimTM, Hasomed GmbH, Germany). Their 
novel device overcame the limitation of the previ-
ous devices in two main aspects: it could be used 
for higher stimulation intensities and it estimated 
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the volitional EMG component using a band pass 
filter in the range of 100-330 Hz. Their device 
included photo-MOS switches having very low 
on-resistance and capable to control voltage load 
up to 250 V. These switches protected the input 
circuit of the EMG pre-amplifier from any dam-
age due to the electrical stimulation pulses and 
permitted a fast discharge process. The authors 
used a muting period of 30 ms for each stimulation 
period but they suggested that if smaller electrodes 
were used, less charge would be accumulated on 
the electrodes and thus shorter muting period 
could be used.

As a general recommendation, the devices that 
assure the highest flexibility in acquiring the EMG 
signal during hybrid muscle contractions are those 
belonging to the second category (Figure 4 - B). 
Indeed, they allow to measure both the M-wave and 
the volitional EMG so as to develop sophisticated 
control systems for FES. Besides the importance 
of the acquisition of the volitional EMG, that has 
been already mentioned in the Background, the 
acquisition of the M-wave might be interesting 
to assess the muscular fatigue induced by FES. It 
is generally accepted that the duration of the M-
wave increases during sustained stimulation, and 
consequently characteristic spectral frequencies 
(mean and median frequency) decrease (Farina, 
2004). On the other hand, the possibility to use the 
same electrodes for both stimulating and recording 
the EMG signal (Figure 4 - C) is very interesting 
for future clinical applications since it facilitates 
and shortens the donning procedure.

Filtering Techniques to 
Extract the Volitional EMG

Different solutions have been proposed over the 
last 15 years for removal of electrically induced 
components so as to estimate the volitional EMG 
signal during hybrid muscle activations.

Many solutions applied on the raw EMG signal 
a blocking window, that starts at the beginning of 
each stimulation pulse: the signal is zeroed for the 

first 20 ms (Frigo, 2000; Thorsen, 2001) or 25 ms 
(Langzam, 2006; Muraoka, 2002) of each inter-
pulse period to remove the stimulation artifact 
and the main part of the M-wave. The volitional 
EMG can then be estimated from the remaining 
part of the inter-pulse period. However, since the 
M-wave spreads over the most of the inter-pulse 
period, the use of a blocking window is not enough 
to completely eliminate the electrically evoked 
muscle response. Furthermore, it can be easily 
realized that high stimulation frequencies, above 
40 Hz, can not be used.

Frigo and colleagues proposed to use a “comb” 
filter for estimating the volitional EMG compo-
nent (Frigo, 2000). This filter is a finite impulse 
response filter characterized by the following 
equation:

EMG n
EMG n EMG n N

v

r r( ) = ( )− −( )�

2
 

(1)

where EMG n
v ( ) is the estimated volitional EMG, 

EMG n
r ( )  is the raw EMG signal, N is the num-

ber of samples of each inter-pulse period, and 2  
is a scale factor required to keep the same power 
in the signal before and after filtering.

This filter is based on the assumption that 
the volitional EMG is a stochastic signal and the 
M-wave is a time-invariant deterministic signal 
with no variations occurring between two inter-
pulse periods.

The authors applied the comb filter both alone 
and in combination with a blocking window of 
20 ms and concluded that a better performance 
was achieved when a blocking window was used 
before the application of the comb filter. However, 
it is important to highlight that the assumption 
of time-invariance of the M-wave is not valid, 
mainly during anisometric contractions or when 
the stimulation intensity (both pulse amplitude 
and duration) changes.
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Other authors have proposed to use a high-pass 
filter with a cut-off frequency between 100 to 330 
Hz (Muraoka, 2002; Schauer, 2004; Thorsen, 
2001) after the application of a blocking window. 
Indeed, about 20 to 30 ms after the stimulation 
pulse, only electrically induced muscle response 
with a low frequency content (tail of the M-wave) 
superposes the volitional EMG signal. However, it 
is important to highlight that the most of the spec-
tral energy of the EMG signal is located between 
30 and 300 Hz with a peak around 120 Hz (De 
Luca & Knaflitz, 1992). Thus, only high-frequency 
components of the volitional EMG signal are taken 
into account when such a high-pass filter is used.

Based on the assumption that the volitional 
EMG is a band-limited Gaussian signal and 
considering the time-variance of the M-wave, an 
adaptive linear prediction filter has been proposed 
for M-wave removal (Sennels, 1997). The filtering 
idea is to predict the current inter-pulse period 
(M+1) as a linear combination of M foregoing 
inter-pulse periods. If the prediction is good 
enough, subtracting the predicted inter-pulse pe-
riod from the current one leaves a residual signal 
where the M-wave has been removed. The output 
of the filter is computed as:

EMG n EMG n b EMG n jN
v r

j

M

j r( ) = ( )− −( )
=
∑
1

 

(2)

where EMG n
v ( )  is the volitional EMG esti-

mated by the filter, EMG n
r ( )  is the raw EMG 

signal, M is the number of previous inter-pulse 
periods used for prediction, N is the number of 
samples of each inter-pulse period, and bj are the 
filter coefficients.

The optimal filter coefficients are calculated 
with a common least square algorithm where the 
output energy of the current inter-pulse period is 
minimized with respect to the filter coefficients. 
Each time a new inter-pulse period is acquired, 

the optimal filter coefficients are updated and the 
output of the filter is computed. Thus, the filter 
adapts to the signal variations at a rate equal to 
the stimulation frequency.

The authors evaluated the performance of the 
filter using three different numbers of forego-
ing inter-pulses periods for prediction, both on 
simulated and real data. They concluded that 6 
foregoing inter-pulses periods are enough to re-
move completely the electrically evoked muscle 
response.

Starting from the same filtering idea of Sennels 
and colleagues, in a more recent work a Gram-
Schmidt prediction error filter was proposed 
(Yeom, 2004). This solution is particularly inter-
esting for real-time processing on field program-
mable gate array (FPGA).

A method based on the Singular Value Decom-
position (SVD) has been also proposed to eliminate 
the M-wave (Tabernig & Acevedo, 2008). After 
eliminating the stimulation artifact by means of a 
blanking process, the authors considered the raw 
EMG signal as a sum of the volitional EMG, the 
M-wave and the measurement noise. An N x M 
input matrix can be created: each column corre-
sponds to the raw EMG signal acquired during an 
inter-pulse period, M is the number of inter-pulse 
periods considered, and N the number of sample 
for each inter-pulse period, with N ≥□M. Based 
on the assumptions that the energy of the M-wave 
is larger than the energy of the volitional EMG, 
and that the M-wave and the volitional EMG are 
orthogonal with respect to the measurement noise, 
the singular values (SV) of the input matrix can 
be easily separated. The first two SVs can be con-
sidered as associated to the M-wave and the last 
four to the volitional EMG and the noise. Since 
the subspaces associated with the volitional EMG, 
the M-wave and the noise are orthogonal, it is 
possible to eliminate the M-wave projecting the 
raw EMG signal (input matrix) on the volitional 
EMG subspace. The algorithm demonstrated to 
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be robust in estimating the volitional EMG from 
real signals.

As a general guideline, most authors agreed 
on the application of a blocking window on the 
raw EMG signal to remove the main part of the 
stimulation artifact and the M-wave and then using 
an appropriate filtering solution for eliminating 
the residual electrically induced components 
(Frigo, 2000; Langzam, 2006). The blocking 
window should last about 20 ms starting from the 
stimulation pulse. The volitional EMG signal is 
then available only in the remaining part of the 
inter-pulse period. However, being the signal to 
noise ratio higher in the second half of the inter-
pulse period, a more complete removal of all the 
electrically induced components can be assured.

Concerning the filtering solution to apply 
after the blocking window, we suggest to use a 
method that does not rely on the assumption of 
time-invariance of the M-wave. Indeed, as we have 
seen in Figure 3, this assumption is not valid even 
in short term during anisometric contractions, that 
characterized real-life movements. Among the 
aforementioned solutions, two different approach-
es belonging to this category can be identified: 
a high-pass filter and an adaptive filter. Indeed, 
the method based on SVD can be considered 
adaptive if the input matrix is updated every M 
inter-pulse periods. To identify the best method 
to extract the volitional EMG, we conducted a 
study to compare the performance of these two 
approaches. A non-causal digital high-pass filter 
(Butterworth 2nd order, cut-off frequency of 200 
Hz) was compared with a slightly modified version 
of the adaptive linear prediction filter proposed 
by Sennels and colleagues (1996). In particular, 
the M-wave was predicted as described in equa-
tion (2) and 6 foregoing inter-pulse periods were 
used for prediction as suggested by the authors, 
but, unlike Sennels and colleagues, we applied a 
blocking window of 20 ms before predicting the 
M-wave. The Cholesky decomposition was used 
to solve the least square algorithm so as to reduce 

the computational cost and assure a real-time 
calculation. EMG signals acquired on a group of 
10 healthy volunteers and 8 neurological patients 
during dynamic hybrid muscle activations of the 
biceps muscle were used for comparison. The 
results of the study demonstrated the superior-
ity of the adaptive filter: different intensities of 
stimulation and variable stimulation did not affect 
the output of both filters, but only the adaptive 
filter was able to significantly distinguish a weak 
volitional activation from the residual noise. The 
results of this work have been recently submitted to 
the Journal of Electromyography and Kinesiology.

In conclusion, for on-line estimate of the 
volitional EMG component during dynamic hy-
brid muscle contractions, we suggest to use the 
processing scheme represented in Figure 5: first, 
a blocking window of at least 20 ms should be 
applied on the raw EMG signal, then the adap-
tive filter described by equation (2) should be 
used. This filter estimates the quasi-deterministic 
electrically induced components starting from 6 
foregoing inter-pulse periods and subtracts them 
from the actual EMG signal to obtain the voli-
tional contribution. To control the stimulation 
intensity a single value per each inter-pulse period 
is required. Thus, the volitional EMG signal is 
rectified and the mean value over the inter-pulse 
period is computed (Thorsen, 2001).

Figure 6 shows an example of the proposed 
processing scheme applied on a representative 
inter-pulse period. Panel (A) depicts the raw EMG 
signal and the applied blocking window. The 
blocking window lasts 20 ms that corresponds to 
half of the inter-pulse period, being the stimula-
tion frequency set at 25 Hz in the example. Panel 
(B) reports the volitional EMG (black solid line), 
the rectified volitional EMG (grey solid line) and 
the averaged rectified EMG (gray dashed line).
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Control Strategies for 
Myocontrolled Neuroprostheses

Once the volitional EMG component is reliably 
estimated, it can be used to continuously control 
the stimulation intensity.

Control schemes for providing a stimulation 
intensity proportional to the residual volitional 
EMG have been proposed to support arm/hand 
functions (Ambrosini, 2011b; Fujiwara, 2009; 
Shindo, 2011; Thorsen, 2006; Thorsen, 2001) 
and ankle dorsi-flexion (Kamono, 2001; Yeom 
& Chang, 2010). In nearly all the reported cases 

Figure 5. Processing scheme of the raw EMG signal to estimate a low volitional component from dynamic 
hybrid muscle activations
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a single stimulation channel has been tested. The 
stimulation intensity was modulated in terms of 
pulse width (Ambrosini, 2011b; Kamono, 2001), 
current amplitude (Fujiwara, 2009; Shindo, 2011; 
Thorsen, 2006; Thorsen, 2001), and voltage am-
plitude (Yeom & Chang, 2010).

Figure 7 shows the principle of the EMG-based 
proportional controller for FES. In the example, 
the residual voluntary wrist extension is aug-
mented by FES. The raw EMG signal is processed 

with one of the method described in the previous 
section and the volitional EMG component, 
EMG

v
 in the figure, is estimated. Then, a low-

pass filter is usually applied on the volitional EMG 
(EMG

vf
 in the figure is the filtered volitional 

EMG). The cut-off frequency of the filter must 
be carefully chosen to obtain a good compromise 
between smooth stimulation and acceptable delay 
between the patient’s muscular activation and the 
stimulation response. The gain of the propor-

Figure 6. Example of the suggested processing scheme applied on a representative inter-pulse period 
during dynamic hybrid muscle activations

Figure 7 The principle of the EMG-based proportional controller for FES
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tional controller is defined by the saturation func-
tion shown in Figure 7, where EMG

vfmax
 is the 

maximal residual filtered volitional EMG that the 
patient is able to generate and EMG

vfmin
 is the 

baseline level of the filtered volitional EMG when 
the muscle is at rest. Usually, the value of 
EMG

vfmin
 is computed at the maximal stimulation 

intensity with the subject who is supposed to be 
relaxed. Indeed, the higher is the stimulation in-
tensity, the higher is the electrically induced 
muscle response and thus the higher are the po-
tential residual components that remain on the 
estimated volitional EMG. The maximum stimu-
lation intensity, Q

max
, is defined as the level of 

stimulation required to achieve a desired func-
tional movement that the patient can not accom-
plish by using only his own residual muscle activ-
ity. The minimum stimulation intensity, Q

min
, 

represents the threshold of the motor unit recruit-
ment curve above which a muscle contraction can 
be observed.

When patients are not able to generate smooth 
volitional contractions, an EMG-based propor-
tional controller is not applicable due to risk of 
oscillation. For weak muscles, an on/off-control 
or a simple finite state control might be preferred 
(Sennels, 1997). Thus, to enlarge the number of 
subjects who could benefit from the system, we 
have recently proposed a double threshold control 
strategy. This approach can be seen as a compro-
mise between EMG-triggered and EMG-propor-
tional stimulation. The controller is characterized 
by a piece-wise linear input-output relationship, 
as shown in Figure 8: when the value of voli-
tional EMG exceeds the upper threshold (ON ), 
the stimulation intensity (Q  in the figure) ramps 
up with slope K  until the maximal stimulation 
intensity, Q

max
; this stimulation level is kept 

constant until the muscle relaxes and the voli-
tional EMG drops below the lower threshold (
OFF ); when this occurs, the stimulation inten-
sity is reduced with slope −K  till the minimum 

Figure 8 The principle of the EMG-based double threshold controller for FES
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value, Q
min

. A calibration procedure to set ap-
propriate values for the two thresholds is needed.

Both the presented solutions represent the most 
promising method to retrain the physiological neu-
ral pathway. Indeed, a physiologically appropriate 
control loop is provided to continually respond 
and enhance the volitional control of the affected 
muscle. This concept is aimed at reinforcing the 
natural control of the muscle activation. Fur-
thermore, these myocontrolled neuroprostheses 
are able to maintain an active involvement of the 
patient during the exercise, thus facilitating the 
motor relearning process (Ferrante, 2011).

These myocontrolled neuroprostheses have 
also some potential limitations. Albeit controlled 
in a natural way, the subject has to be able to 
change the volitional muscle activity and also to 
relax the muscle when the stimulation is present. 
This can be still an unnatural task for the user. In 
particular, the relaxation of a stimulated muscle 
has shown to be difficult and requires special at-
tention (Sennels, 1997). Furthermore, the level 
of the volitional EMG activation can be reduced 
in the presence of FES. This EMG reduction can 
be explained by the collision of antidromic and 
orthodromic motor impulse and the increased 
recurrent inhibition with increased stimulation 
intensity via the Renshaw cells (Taylor & Chap-
pell, 2004; Yeom & Chang, 2010). Therefore, it 
might be possible that patients are not be able to 
generate adequate EMG amplitude or activation 
patterns to control the movement. This limitation 
might be solved through novel non-linear, non-
proportional control or/and through a setting of 
control parameters more specific to the needs and 
abilities of each individual.

First Studies on 
Neurological Patients

While many clinical studies investigating the ef-
ficacy of EMG-trigger FES systems exist, only 
few clinical applications of neuroprostheses that 

continuously modulate the stimulation intensity 
based on the residual volitional activation can be 
recorded. However, the technological advance-
ments, both from a hardware and a software point 
of view, described in the previous sections, pave the 
way for assessing the effectiveness of this prom-
ising solution in the neuro-rehabilitation field.

First tests on neurological patients have been 
performed by the group of Thorsen (Thorsen, 
1999b, 2001, 2006). All these studies were focused 
on the recovery of the hand functions, particularly 
grasping and wrist extension, and used a specifi-
cally designed device for both EMG recording 
and stimulation characterized by a fast recovery 
instrumentation amplifier for artifact suppression, 
as previously described (Thorsen, 1999a). Stimula-
tion pulses with a current amplitude proportional to 
the residual volitional EMG signal were delivered. 
In the first study (Thorsen, 1999b), the EMG of 
the wrist extensors (extensor carpi radialis muscle) 
was used to control the thumb flexion. Three 
people with SCI performed some functional tasks 
with and without the device to assess its feasibility. 
A more extensive evaluation of the device was 
performed in a second study (Thorsen, 2001), 
where seven individuals with physical disabilities 
(six tetraplegia, one stroke) were involved. The 
residual volitional activity of the paretic wrist 
extensor was used to control the stimulation of 
the wrist extension (i.e., the stimulated muscle 
is the same used for control) in five people with 
SCI and the stimulation of the thumb flexion in 
the last two participants (one SCI, one stroke). 
The performances in tracking a trapezoidal target 
with and without the myocontrolled FES system 
were compared. Two subjects also carried out 
consecutive trials to evaluate the learning process. 
Three out of five people with a SCI, who had a 
weak volitional activation of the wrist extensors 
muscle, improved the tracking performance when 
using FES to control the wrist extension. The 
two subjects who preserved the highest natural 
contraction of the wrist extensors produced no 
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additional force when FES was applied. Thus, the 
authors concluded that subjects with a low residual 
natural force are good candidates for the device. 
One individual with an incomplete SCI tested the 
device to enhance thumb flexion over six training 
sessions; the authors observed a reduction of the 
tracking error thanks to a learning effect and an 
increase in the maximal augmented thumb force. 
Concerning the stroke patient, he showed some 
difficulties in controlling the thumb flexion but 
indicated the possibility of a carry-over effect after 
the first training session. In the last study of this 
set (Thorsen, 2006), the authors assessed again 
the possibility to use the residual EMG signal of 
the wrist extensors muscle to directly control the 
electrical stimulation of the extrinsic finger and 
thumb flexors. Five people with incomplete SCI 
tested the device during tasks involving three 
everyday objects (a videocassette, a bottle, and 
a pen). Without the device, none of the subjects 
were able to grasp any objects, but when myo-
controlled FES was used all of the subject com-
pleted the required tasks. From the results of all 
these studies, it is possible to conclude that this 
control strategy is easy to be understood and no 
training is needed for the subjects to achieve an 
immediate improvement in motor performance. 
However, it is important to highlight that in most 
of the mentioned applications a stimulation site 
closed to the muscle used for EMG recordings was 
chosen. This is completely different from a motor 
control prospective than using the same muscle 
for both stimulation and EMG recordings: it is 
not the natural control of the affected muscle to 
be reinforced. The system proposed by the group 
of Thorsen might be more useful as an assistive 
device to improve the performance in activities 
of daily living, thus increasing independence and 
quality of life (e.g., for people with SCI), than as 
a treatment for enhancing motor relearning (e.g., 
for stroke patients).

Two more recent studies (Fujiwara, 2009; 
Shindo, 2011) evaluated the effectiveness of 
EMG-controlled FES in improving hand functions 

in post-stroke patients. In both studies, the device 
developed by Muraoka and colleagues (2002) was 
used to stimulate the extensor digitorum commu-
nis: as previously described, this device allows to 
use the same electrodes for both stimulation and 
EMG recordings and provides a voltage ampli-
tude proportional to the residual volitional EMG. 
In the first study (Fujiwara, 2009), 20 chronic 
stroke patients were involved in a 3-week train-
ing. Upper extremity motor function, spasticity, 
and functional scores were assessed before and 
after training. Furthermore, neurophysiological 
outcome measures, such as EMG activities, recip-
rocal inhibition with a H-reflex conditioning-test 
paradigm, and intracortical inhibition with a paired 
magnetic stimulation method, were also assessed. 
After training upper extremity motor function, 
spasticity, and functional scores significantly 
improved. EMG recordings showed a reduction 
in the co-contraction of the antagonist muscle 
(flexors). A partial restoration of the reciprocal 
inhibition was also observed. Finally, a change 
of intracortical circuitry in the motor cortex 
was assessed with the paired pulse paradigm: it 
was demonstrated that the paretic hemisphere 
short intracortical inhibition was reduced after 
intervention. This disinhibition of intracortical 
interneurons is supposed to play an important role 
in motor learning, reorganization and recovery 
after brain lesion. The authors concluded that 
EMG-controlled FES training increased cortico-
spinal excitability, that resulted in motor function 
improvements. In another study (Shindo, 2011), 
the same training was assessed in a randomized 
controlled trial involving 24 post-acute stroke 
patients. Patients were randomly assigned to two 
groups, a control group, who performed 3-week 
of conventional training, and an experimental 
group, who underwent myocontrolled FES-
induced training. Compared to the control group, 
the experimental group exhibited a significantly 
greater improvement in the upper extremity motor 
function after training. To summarize, these two 
studies provide some evidence that a myocon-
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trolled FES-induced training might improve hand 
functions in patients with moderate to severe hand 
impairment both during early rehabilitation and 
chronic stage. Further investigations are actually 
needed to confirm these results; furthermore, 
the conventional use of FES should be compared 
with the use of EMG-controlled FES in order to 
evaluate the superiority of the latter approach.

All the aforementioned studies used a propor-
tional control strategy to modulate the stimulation 
intensity. In a study recently submitted to the 
Journal of Electromyography and Kinesiology, 
we evaluated the feasibility of the EMG-based 
double threshold controller described in the 
previous section. The residual volitional EMG 
signal of the biceps muscle was used to control 
the elbow flexion, modulating the value of pulse 
width. Three people with an incomplete SCI were 
asked to flex the elbow while tracking a trapezoidal 
target with and without myocontrolled FES. All 
participants easily understood how to control the 
stimulation in a single session and improved their 
ability in reaching and maintaining a pre-defined 
level of elbow flexion when FES was added to the 
volitional effort. However, further investigations 
are needed to evaluate the efficacy of this method 
both for assistive and a rehabilitative purposes.

FUTURE RESEARCH DIRECTIONS

Once a clear neuropathological rationale is stated, 
to develop a neuro-rehabilitation treatment, the 
following key elements need to be fully addressed: 
1) safe technology; 2) easy-to-use procedures; 
3) outcome evidences. The latter two elements 
are still to be achieved to complete the clinical 
translation of myocontrolled neuroprostheses.

The current status of the bioengineering re-
search applied to the design and development of 
myocontrolled neuroprostheses has achieved ap-
plicable solutions ready to be applied into clinical 
settings. The hardware components are now all 
available as commercial certificated devices and 

proper signal processing and control strategies 
for FES have been designed and positively tested, 
as detailed in the chapter. However, to leave the 
research laboratories and reach the clinical set-
tings, further technological improvements are 
needed: the procedures for settings the control-
ler parameters should become faster, simpler, 
and independent of the operator. A compact and 
robust device, that does not require the use of an 
external computer for control and can exploit the 
same electrodes both for stimulation and EMG 
recordings, is also needed. These improvements 
are even more important to make this technology 
suitable for a home environment.

The next challenge is to define clear direc-
tions in the translation of the technology into the 
clinical practice. In our view, two are the main 
target populations who could mostly benefit of 
the use of myocontrolled neuroprostheses. On 
one hand, neurological patients, and, among all, 
people affected by muscle weakness and poor 
motor control, such as stroke survivors and people 
affected by multiple sclerosis. On the other hand, 
elderly people, to promote active ageing and to 
assure a longer period of healthy living. Differ-
ent motor tasks could benefit of the combined 
volitional and FES-induced control, either for the 
upper and lower limbs. The possibility to combine 
more than one stimulation channel should be also 
assured in order to support more functional motor 
tasks. Treatments could be based on an intensive 
training during hospitalization but also continu-
ous long term training at home. Adjustments to 
the hardware and software are then required to fit 
the specific requirements even if the core of the 
technology is common.

Another promising prospective for the near 
future might be the possibility to combine myo-
controlled neuroprostheses with external (robotic) 
actuators in order to take advantages from the 
strength of each technology, overcoming the 
performances of each single approach (Moreno, 
2011). The addition of FES to an exoskeleton 
system can take advantage of the muscle power 
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generation, reducing the power demand of the 
exoskeleton and allowing less powerful joint 
actuators, leading to a less heavy and power-
demanding system. Also, the combination of FES 
and exoskeleton technologies can delay the onset 
of muscular fatigue induced by FES, thus prolong-
ing the duration of the training and the consequent 
benefits, and can maximize the involvement of 
the patient in the exercise, thus enhancing motor 
learning. This combination might represent an 
interesting solution both from an assistive and a 
rehabilitative point of view.

Finally, EMG-controlled FES systems might 
also become an important tool to deeper inves-
tigate into the spinal and cortical mechanisms 
underlying the recovery of motor functions after 
a damage of the CNS.

CONCLUSION

In this chapter we have presented the most impor-
tant elements to be considered to design a myo-
controlled neuroprosthesis, intended as a device 
to produce a functional task thanks to the hybrid 
synchronous activation of the muscle. The com-
bination of volitional residual muscle activations 
with FES-induced contractions requires specific 
hardware, which are now commercially available, 
and specific processing for real-time estimate of 
the volitional component and the consequent con-
trol of the stimulation parameters. As described, 
different approaches have been proposed in the 
literature and the most promising ones have been 
here compared to provide an overall evaluation and 
guidelines to identify the best solution. As usually 
happens, the best solution can be partially driven 
by the application itself, so detailed comments on 
the obtained results have been provided more than 
just a final solution.

From the neurophysiological point of view the 
combination of volitional control and FES-induced 
contraction is extremely promising since it allows 
to close the loop between intention, action, sen-

sory afferents and also subject reward, assuring 
task completion thanks to the amplification of the 
muscle contraction as provided by the artificial 
control. This loop is crucial to facilitate the best 
relearning process in neuro-rehabilitation, assur-
ing the involvement of the subject into the exercises 
both from a cognitive and motivational point of 
view as well as from a physical neuromuscular 
point of view. At the same time, this loop could 
play a very important role also in the training of 
elderly people, where, even if the overall status is 
still healthy, a general functional decline involves 
the global neuromotor control function.

To conclude, it is noteworthy to spend a few 
words commenting the relevance of the use of 
myocontrolled neuroprostheses into the develop-
ment of sustainable and personalized health care 
systems. Indeed, the possibility to have automatic 
system able to adapt on the single end-user and 
to allow the person to exercises without a one-
to-one therapist assistance or even in a remote 
situation with a maximal safety and a promising 
re-learning outcome are crucial ingredients in 
view of the next societal challenges, such as the 
reduction of the hospitalization costs, the active 
ageing and the independent living.
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Chapter  14

Design and Development 
of EMG Conditioning 

System and Hand Gesture 
Recognition Based on Principal 
Component Analysis Feature 

Reduction Technique

ABSTRACT

This chapter discusses design and development of a surface Electromyogram (EMG) signal detection and 
conditioning system along with the issues of gratuitous spurious signals such as power line interference, 
artifacts, etc., which make signals plausible. In order to construe the recognition of hand gestures from 
EMG signals, Time Domain (TD) and well as Autoregressive (AR) coefficients features are extracted. 
The extracted features are diminished using the Principal Component Analysis (PCA) to alleviate the 
burden of the classifier. A four-channel continuous EMG signal conditioning system is developed and 
EMG signals are acquired from 10 able-bodied subjects to classify the 6 unique movements of hand 
and wrist. The reduced statistical TD and AR features are used to classify the signal patterns through 
k Nearest Neighbour (kNN) as well as Neural Network (NN) classifier. Further, EMG signals acquired 
from a transradial amputee using 8-channel systems for the 6 amenable motions are also classified. 
Statistical Analysis of Variance (ANOVA) results on classification performance of able-bodied subject 
divulge that the performance TD-PCA features are more significant than the AR-PCA features. Further, 
no significant difference in the performance of NN classifier and kNN classifier is construed with TD 
reduced features. Since the average classification error of kNN classifier with TD features is found to 
be less, kNN classifier is implemented in off-line using the TMS2407eZdsp digital signal controller to 
study the actuation of three low-power DC drives in the identification of intended motion with an able-
bodied subject.
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VIT University, India
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INTRODUCTION

Analysis of muscular activity such as force de-
veloped for a specific movement, evaluation of 
fatigue, type of movement etc., can be divulged 
from Electromyogram (EMG) signals. EMG 
signals are electrical signals that are generated 
in all living beings, in particular human beings 
and are obtained from body movement through 
the contraction and relaxation of skeletal muscles. 
These EMG signals are utilized for exploratory or 
diagnostic purposes when the technology is incho-
ate. However, with the advancement of technol-
ogy, EMG signals have found to be of paramount 
importance in different fields of applications such 
as rehabilitation medicine, ergonomics, sports 
and space medicine and neurophysiology. In 
order to divulge the information effectively from 
EMG signals in different fields of application, 
it is necessary to detect and condition the EMG 
signals for further processing. EMG signals are 
generated during contraction of muscles and can 
be detected either invasively or non invasively. De-
tection of EMG signals by inserting the electrodes 
in the muscles are known as intramuscular EMG. 
Surface EMG (sEMG) signals are obtained by 
fixing electrode over the skin surface. The sEMG 
is widely used method in research as it is simple 
and non-invasive. However, the procurement of 
the EMG signal acquisition system is still a prob-
lem especially in electrophysiological research 
which involves EMG. Due to the advancement 
in technology, it is possible to fabricate portable 
EMG signal conditioning system at an affordable 
cost. One of the problems with the recording of 
physiological signals is various sources of noises. 
The noises include both high frequency and low 
frequency components. In addition, the power line 
noise from the EMG system has been the focus of 
researchers for some time. Further, proper ground-
ing and electrical shielding are suggested by the 
researchers to rectify the power line interference 
problem. The low frequency noises are generated 

due to electrode polarization and electrode cable 
artifacts.

This EMG signal normally comprises two 
states i.e., (i) A transient state emanating from a 
burst of fibers (ii) A steady state during constantly 
maintained contractions in the muscle. Hudgins, 
Parker, and Scott, (1993) were the first to consider 
the information content in a transient signal that 
comes with the onset of a contraction. The main 
weakness in using a transient state in EMG control 
is that contractions should be initiated from rest 
and precludes switching from class to class in an 
effective or intuitive manner. Englehart, Hudgins, 
and Parker (2003) have shown that steady state data 
is classified more accurately than transient state. 
Hargrove, Losier, Englehart, and Hudgins (2007) 
have shown real-time performance of a clinically-
supported classifier with transient and steady 
state is always better than that of either transient 
or steady state alone. The process of identifying 
the intended limb motion from stored digitized 
EMG data consists of three stages: feature extrac-
tion, feature reduction and classification. Several 
techniques such as time domain (TD) statistical 
features (Hudgins, Parker, & Scott, 1993), auto 
regressions (AR) coefficients (Huang, Liu, Liu, 
& Wong, 2003), frequency domain techniques 
(Yazama, Mitsukura, Fukumi, & Akamatsu, 2003), 
time-scale techniques (Englehart, Hudgins, & 
Parker, 2001; Chu, Moon, & Mun, 2005), spectral 
components (Du & Vuskovic, 2004) etc. have 
so far been utilized for feature extraction. These 
extracted features are used in a classifier, such as, 
artificial neural network (NN) (Hudgins, Parker, 
& Scott, 1993), fuzzy logic (Ajiboye & Weir, 
2005), Neuro-fuzzy (Kiguchi, Iwami, Yasuda, 
Watanabe, & Fukuda, 2003), kNN (Geethanjali, 
Ray & Shanmuganathan, 2009), state vector ma-
chine (Naik, Kumar, & Jayadeva, 2010) etc. to 
classify the intention hidden in the EMG.

One of the intricacies in the development 
of EMG controlled prosthetic hand is the clas-
sification of copious amount of features. The 
classification of larger number of features will 
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procrastinate the control and also onus to the 
classifier. In order to alleviate the computational 
complexity of such a system, feature reduction 
techniques such as principal component analysis 
(PCA) (Hudgins, Parker, & Scott, 1993), inte-
gral component analysis, and genetic algorithm 
(Kwon, Lee, Shin, Jang, &Hong, 1998), mutual 
components (Khushaba & Kodagoda, 2012) are 
considered to overcome the limitations of EMG 
controlled prosthetic hand. This chapter focuses 
on the influence of principal component analysis 
in classification of TD statistical features and AR 
coefficients with the neural network as well as the 
k nearest neighbour classifiers.

The objective of this chapter is to fathom the 
issues in the detection of surface Electromyogram 
(EMG) signals and conditioning to enable the 
researchers to build their low-cost reliable EMG 
signal conditioning system. This chapter also 
demonstrates the hand gesture recognition and 
actuation of prosthetic DC drives from EMG 
signals of able-bodied subject in off-line. Time 
domain features extracted from EMG signals for 
the purpose of recognition are studied with PCA 
to understand the influence of feature reduction 
in classifying the intended motion. Similarly the 
performance of the 8-channel amputee EMG data 
is studied and the results are discussed.

EMG SIGNAL CONDITIONING 
SYSTEM

Varying accuracy in the classification techniques 
may be due to signal conditioning along with 

the physiological condition of the subject. Most 
researchers have used commercially available 
signal acquisition systems for the benefit of high 
signal-to-noise ratio and applied advanced signal 
processing techniques to show classification re-
sults with good accuracy (Ajiboye & Weir, 2005). 
For actual use by the researchers, it is desirable 
that the EMG signal conditioning system should 
be simple in design, reliable and affordable.

After detecting the signals from a specific 
muscle location, EMG signal is usually sent to 
a high quality amplifiers with variable gains to 
improve the quality of the EMG signal measure-
ment. EMG signal conditioning depends on the 
characteristics of the amplification process which 
may have several stages. The most important stage 
of conditioning is the pre-amplification, i.e., the 
first stage of amplification, which is close to 
the signal. Pre-amplification is the differential 
amplification which enabled the measurement of 
EMG signals of low noise and high signal fidelity. 
After pre-amplification, it is possible to measure 
effective bandwidth of the signal with preferred 
frequency ranges with variable second stage of 
amplification for discretizaton. High-pass filter-
ing remove movement artifacts typically of 10Hz 
and low pass filtering remove high-frequency 
components to avoid signal aliasing. Power-line 
noise components can be removed by using notch 
filter. But the use of notch filtering leads to the loss 
of important EMG signal information, as EMG 
has large information at these and neighbouring 
frequencies. So, notch filtering is not preferred 
in general.

Figure 1. Block diagram of EMG signal conditioning system
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There are several important properties to be 
considered at each stage during the design of signal 
conditioning system for EMG signal acquisition. 
With the advent of modern technology, presently, 
there are many signal acquisition systems in par-
ticular for EMG signals that are commercially 
developed based on requirements. For the purpose 
of research work, the development of the EMG 
signal conditioning system is discussed.

This EMG data conditioning system comprises 
protection circuit, instrumentation amplifier, 
high pass filter for offset rejection, variable gain 
amplifier and band-pass filter as shown in Figure 
1. The function of each stage is discussed in the 
subsequent subsections.

Protection Circuit

The protection circuit protects the user and the 
sensitive electronic circuit without any distortion 

of the input signals. Figure 2 shows the protection 
circuit developed in Multisim software.

The initial stage is to subdue the high frequency 
radio signals, in the range of several hundred 
kHz that may enter the amplifier system through 
electrode cables. A RC suppression circuit with 
suitable values of R and C, is used to subdue the 
high frequency radio signals. The second stage 
consists of a clamping diode section which is a pair 
of matched NPN and PNP transistors (Engin, et 
al., 2007). Transistors begin to conduct at voltages 
exceeding ±≈0.58 V. With a voltage above this 
level the transistors act as open circuits pulling 
all harmful currents down to the ground.

The protection circuit was simulated to verify 
the operation and found that it passes all the 
signals undistorted for amplitude <≈550 mV 
and frequency <≈150 kHz. Since the EMG 
signals of importance are less than 100 mV and 
in the frequency range of 0 to 1 kHz, the above 
mentioned circuit clearly meets the EMG data 

Figure 2. Protection Circuit
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acquisition system requirements. This protection 
circuit is employed in the conditioning of EMG 
signals without any distortion as well as protect-
ing the circuitry from the electrostatic discharge 
and maintains the comfort level of the subjects. 
The output of this stage is fed to the input of the 
pre-amplifier stage.

Pre-Amplification

Generally a differential amplifier is considered for 
pre-amplification depending on design require-
ments. It has the ability to eliminate the potentially 
much greater spurious signal from the power 
line sources. Differential amplifier subtracts the 
signals detected at two sites and then amplifies 
the difference.

A suitable operational amplifier for this type 
of low-signal system is the instrumentation ampli-
fier. The instrumentation amplifier for this type 
of application should have high common mode 
rejection ratio (CMRR), very high input imped-
ance and low output impedance making it less 

sensitive to noise. Based on these requirements 
instrumentation amplifiers may be chosen.

High Pass Filter

The high pass filter is connected after the pre-
amplifier to prevent DC voltage offsets caused by 
skin impedance and chemical reaction between 
the skin and the electrode gel. Some electrode 
materials such as gold or silver are polarizable. 
This means that electric charge can accumulate 
on the surface of the electrode and build up a 
relatively large DC voltage. In this EMG condition-
ing system, a simple RC high pass filter circuit is 
used to overcome this problem. Since the usable 
energy of the EMG signal is dominant in the 
range of 20-500Hz, a cutoff frequency nearer to 
10 Hz may be selected because it will not reject 
the necessary information of the EMG signals.

Figure 3. Four channel EMG conditioning system
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Variable Gain Amplifier

The amplitude level of signal from the high pass 
filter is not sufficient enough for storing the EMG 
signals through data acquisition system. Thus the 
output from the high pass filter passes through 
the variable gain amplifier whose gain may be 
varied from 6 to 100 using high input impedance 
operational amplifiers.

Band Pass Filter

The final stage of the EMG signal conditioning 
system is the band pass filter which is a combina-
tion of low pass and high pass filter. The cutoff 
frequency of the filter may be 10-500Hz as most 
of the information is contained within this range.

A single-channel EMG conditioning circuit 
design can be extended to multichannel system. 
Figure 3 shows indigenously developed four chan-
nel EMG conditioning system in the laboratory.

EMG DATA ACQUISITION SYSTEM

The design of different blocks of single-channel 
EMG signal conditioning has been discussed in 
previous section. After experimental verification, 
conditioned signals are sent to analog to digital 
conversion process for further processing. This 
acquisition system may consist of multichannel 
A/D converters for multichannel systems.

The EMG signal quality is affected during 
A/D conversion process due to sampling and 
quantization. The sampling frequency should be 
chosen such that no information is lost during 
reconstruction. The sampling frequency need to be 
at least two times the signal frequency within the 
bandwidth. In case of multichannel A/D converter, 
the acquisition is not simultaneous but is shifted 
from channel to channel this must be accounted.

Further, the quantization is the process of ex-
pressing the analog value in terms of digital value. 
The amplitude of each sample is approximated due 
to a fixed number of bits available for quantifying 

Figure 4. Four channel EMG signals for six movements of hand from able-bodied subject
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the sample. This will add an additive noise in the 
signal. The quantization noise can be reduced 
by selection high precision A/D converter. The 
selection of A/D converter should also consider 
the gain and noise of the system along with a 
maximum output voltage of the system.

EXPERIMENTATION

In this work, four-channel EMG data correspond-
ing to six different limb motions are obtained by 
using surface electrodes. To acquire the EMG 
signals, disc electrodes (Ag/Agcl) are placed at 
flexor digitorum superficialis, supinator, extensor 
digitorum communis and extensor indicis with 
a conductive paste on the surface of the skin for 
able-bodied subject. The EMG signal is acquired 
at a sample rate of 1000 Hz through DS1104 
control board and dSPACE® software. The subject 
performed the following motions i.e., hand open 
(HO), hand close (HC), wrist flexion (WF), wrist 
extension (WE), ulnar deviation (UD) and radial 
deviation (RD) for 8 trials. Each motion continued 

for 5 seconds. Figure 4 shows the EMG signals of 
an able-bodied subject from the indigenous system.

Similarly for a transradial amputee having 
shorter forearm, 8 channels Motion Lab acqui-
sition (MA-300-XII) system is used for EMG 
signal acquisition due to difficulty in identifying 
the musculature. The signals are acquired with 
elbow resting on the table as shown in Figure 5.

Six classes of wrist and hand motions amenable 
and comfortable for the amputee are identified 
and performed in a sequential order i.e., hand 
supination, wrist flexion (WF), wrist extension 
(WE), radial deviation (RD), hand close (HC) and 
hand open (HO). Amputee subject is encouraged 
to move the phantom limb in a repeatable fashion 
to the best of his ability. Eight trials of data are 
collected. During all trials, subjects initiated the 
contraction from the hand supination. In each trial 
all motions are performed in sequential order and 
held for 5 sec, producing (5×6=30) 30 seconds 
of recording for all six motions. These signals 
are obtained from the forearm of the subject 
with a brief rest period of about 60 sec between 
each trial and without any report of fatigue from 

Figure 5. EMG signals acquisition from transradial amputee
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the subject. These EMG signals are sampled at 
a frequency of 4 kHz and acquired in DATAQ 
(DI-720) to store it on a personal computer (PC) 
for further processing. Figure 6 shows the EMG 
signals acquired from the transradial amputee for 
six motions.

FEATURE EXTRACTION

From the EMG data, different information can be 
gathered by extracting different types of features. 
In this chapter, four time domain statistical fea-
tures such as mean absolute value (MAV), zero 
crossings (ZC), slope sign changes (SSC) and 
waveform length (WL) as well as fourth order auto 
regressions (AR) coefficients are extracted using 
a rectangular windowing technique to identify the 
intended motions.

Two different feature vectors are obtained us-
ing TD statistical features and AR coefficients. 
From the signal the MAV and WL are calculated 
as in (1) and (2). ZC occurs when both (3) and (5) 
are satisfied. SSC occurs when conditions (4)-(6) 
are satisfied.
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Figure 6. Eight channel EMG signals for six movements of hand from transradial amputee
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Auto regression models individual EMG 
signals as a linear autoregressive time series as 
given below.
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Where,
L: Length of the sample
yi: i

th sample of signal
ε: Threshold
ci: Autoregressive coefficient

p: AR model order
ek: residual white noise

Features are computed from the EMG data 
stored in a personal computer using equations 
(1)-(7) from a segment (window), where a fea-
ture vector is engendered from each segment. 
Window size and increment in window size is 
chosen, considering the real-time constraint of 
the myoelectric hand control system which should 
be within 300 ms (Hudgins, B., Parker, P.A., & 
Scott, R.N., 1993). For real time EMG control, all 
processes including the generation to control must 
be completed within 300 ms. Therefore, analysis 
is performed on 256 ms window in all cases with 
a window increment of (overlap) 128 ms. A total 
of 234 time domain statistical feature vectors as 
well as 234 AR coefficient vector is obtained for 
six motions of hand and wrist for one trial of data. 
If four features were extracted on each channel 
per segment, the resulting feature vector will be 
of 16 features i.e., number of features/coefficients 
× number of channels for able-bodied subject and 
32 features for the transradial amputee.

Table 1. Performance of classifiers with reduced TD statistical feature vector and AR feature vector 

Subjects kNN-TD kNN-AR NN-TD NN-AR

Subject 1 89.3 60.9 86.8 61.8

Subject 2 83.6 50.7 82.7 55.9

Subject 3 78.3 52.7 78.3 68.2

Subject 4 84.8 58.5 83.9 59.7

Subject 5 89 56 87.9 69.4

Subject 6 83.2 60.7 70.2 64.2

Subject 7 87.2 55.6 71.3 63.9

Subject 8 79 66.5 77.4 73.4

Subject 9 81.2 61.3 82.7 53.8

Subject 10 87.2 67.9 86.3 65.1

Mean 84.3 59.1 80.8 63.5

SD 3.9 5.5 6.3 6.0
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FEATURE REDUCTION

The objective of feature reduction is to consider 
the optimal features which contribute to effec-
tive classification for the purpose of reduction 
of burden to the classifier. Optimal features can 
be derived using feature selection and feature 
projection techniques. Feature selection methods 
may identify a best subset of features from the 
extracted feature set. However, this method does 
not utilize the class discrimination information 
that the discarded features carry.

On the other hand, feature projection method, 
project the complete feature set into smaller set 
without much loss of information. The most widely 
used feature projection technique is principal 
component analysis.

Principal Component Analysis

Principal component analysis is a linear transfor-
mation technique that transmutes p-dimension 
feature vector X into q-dimension vector Z with 
an objective of abating the redundancy of features. 

Table 2. Confusion matrix of transradial amputee in recognition of different motions 

Classifier Motions HC HO WF WE UD RD Sensitivity Specificity

kNN-TD HC 70 3 20 0 0 7 0.70 0.92

HO 6 75 1 0 14 4 0.75 0.971

WF 18 4.5 50.5 1 18.5 7.5 0.505 0.943

WE 3.5 2 1 82 6 5.5 0.82 0.978

UD 2 4.5 6 0 82.5 5 0.825 0.92

RD 10.5 0.5 0.5 10 1.5 77 0.77 0.942

kNN-AR HC 62.5 3 15.5 7 1 11 0.625 0.861

HO 9.5 76.5 3 5 2 4 0.765 0.984

WF 33 1.5 35 3.5 19 8 0.35 0.914

WE 14 0 14.5 58.5 9 4 0.585 0.947

UD 1 3 2 1.5 92.5 1 0.925 0.934

RD 12 0.5 9 9.5 2 67 0.67 0.944

NN-TD HC 62 8 28.5 0 0.5 1 0.62 0.951

HO 2.5 81.5 1.5 0 13.5 1 0.815 0.964

WF 9 4.5 64.5 1 16.5 4.5 0.645 0.909

WE 2.5 0.5 0 86 6.5 4.5 0.86 0.979

UD 1.5 1.5 14 0 82 1 0.82 0.922

RD 9 3.5 1.5 9.5 2 74.5 0.745 0.976

NN-AR HC 58.5 6.5 21.5 5.5 3.5 4.5 0.585 0.908

HO 3.5 76.5 1.5 4 14.5 0 0.765 0.976

WF 27 2.5 41 5.5 21.5 2.5 0.41 0.9

WE 3 1 2 80.5 10 3.5 0.805 0.962

UD 1.5 1 0.5 1.5 91.5 4 0.915 0.892

RD 11 1 24.5 2.5 4.5 56.5 0.565 0.971
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There are various ways of computing principal 
components. The simplest method of computation 
is identifications of projections with largest vari-
ance. Projections are obtained from the covariance 
matrix C of feature vector X. The eigenvalues of 
covariance matrix C represent the variance in the 
eigen-directions of feature space. The eigenvec-
tor corresponding to the largest eigenvalue have 
the strongest correlation with the feature set. The 
eigenvectors of the covariance matrix are referred 
as principal components of feature set. Having 
performed computation of eigenvector, the com-
ponents are ranked with eigenvalue. A subset of 
the largest principal components may be chosen 
to obtain a reduced feature set. Unlike feature 

selection method, principal component analysis 
may be considered as unsupervised.

To abate feature input of the classifier, 16 fea-
tures for each pattern are reduced to 4 features for 
able-bodied subjects using principal component 
analysis (PCA). PCA extracts the predominant 
data from the normalized input feature sets. From 
the normalized feature sets, the covariance matrix 
is calculated and from which eigenvalues and 
eigenvector are computed as mentioned above. 
A reduced feature set is obtained by multiplying 
the eigenvector corresponding to the four largest 
eigenvalue to the normalized feature set. However, 
for transradial amputee, 32 features are reduced 
to 8 features using PCA.

Figure 7. NN and kNN classification error for able-bodied subjects with reduced TD and reduced AR 
feature vector

Table 3. Logic table for motor actuation using classifier signal 

Class of Motion Motor 1 Motor 2 Motor 3

Hand close Forward Off Off

Hand open Reverse Off Off

Wrist flexion Off Forward Off

Wrist extension Off Reverse On

Ulnar deviation Off Off Forward

Radial deviation Off Off Reverse
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CLASSIFICATION

The classification performance is studied with 
transmuted statistical TD features and AR coef-
ficients to identify the user’s intention. Here two 
different types of simple classifiers are used. One 
is the neural network (NN) classifier, and the other 
is the k nearest neighbour (kNN) classifier. In this 
classification, the multichannel EMG data for 
segment of size 256 is transformed 4 features in 
able-bodied subjects and 8 in transradial amputee. 
A total of 39 patterns of size 39Χ4 is obtained for 
each class from every trial in able-bodied subjects 
and 39Χ8 for transradial amputee. Three trials of 
the transmuted feature vectors 234Χ4 for every 
classes are used for training the NN and as a refer-
ence data set in the kNN technique for able-bodied 
and 234Χ8 for transradial amputee.

Neural Network Classifier

Two different multilayer neural networks are built 
for PCA reduced TD statistical data and PCA 
reduced AR coefficients. Since feature vector 
16 has been reduced to 4 using PCA, the neural 
network is composed of 5 input neurons including 

threshold and six output neurons for able-bodied 
subject. The neural network is built using WEKA 
software with default parameters. Similarly NN 
has been built with 9 input neurons for the tran-
sradial amputee. The classification was divided 
into two stages: the training stage and the testing 
stage. Three trials of all six motions out of 8 trials 
have been considered in training. During testing, 
the remaining five trials of six motions are used.

k Nearest Neighbour Classifier

Three trials of four channel reduced feature vectors 
are amalgamated to form reduced feature vector 
space. The transmuted reference vector space 
contains 702 reduced feature vector. In this vector 
space, the classification is carried out by measuring 
Euclidean distance between new reduced feature 
vector containing all the transmuted features to 
that of reference vectors. The distance of unknown 
test sample to the k nearest neighbor determines 
its class by obtaining a majority vote from k. With 
an arbitrary value of k, the performance of the 
classifier is studied. The best class is represented 
by majority voting amongst k nearest neighbor 
using MATLAB. The best result is obtained with 

Figure 8. Pattern recognition performance of transradial amputee
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k chosen as 9 in both the statistical reduced data 
and reduced AR coefficients.

RESULTS AND DISCUSSION

The classification performance of kNN classifier 
and NN classifier with the reduced statistical data 
and reduced AR coefficients is shown in Table 1 
for able-bodied subjects. The confusion matrix 
of transradial amputee for different hand motions 
with sensitivity and specficity is shown in Table 
2.The average percentage classification errors 
obtained from classifier for the reduced two dif-
ferent types of feature vector is shown in Figure 
7 for ten able-bodied subjects. Figure 8 shows 
the average classification error in percentage for 
different methods of recognition of hand motions 
in transradial amputee.

In both the classifier it has been observed that 
the rate of classification error is more in the tran-
sient region. This may be due to the fact that the 
change of motions could not be performed exactly 
after every 5 seconds by the subject. From Figure 
8 the average percentage classification error is 
less for TD features. Further, kNN classifier with 
reduced time domain statistical performs better 
than NN classifier. But the performance of the 

transradial amputee is different from able-bodied 
subjects and it is difficult to generalize the results 
with respect to one amputee. Also kNN do not 
require any training and classification efficiency 
is more compared to NN classifier.

The statistical analysis of variance (ANOVA) 
test was performed on classification accuracy 
and it was found that the TD-reduced features 
(p<0.05) significantly outperforms AR features in 
both the classifiers. The p-value of NN with kNN 
is >0.05 with TD reduced features and divulged 
no significant difference .

Considering the efficiency of reduced TD 
statistical data with kNN and NN classifier, TD 
statistical data with kNN classifier may be con-
sidered to be a better choice for classification of 
continuous EMG signals to actuate the prosthetic 
drive. In the inchoate of development of prosthetic 
hand, the authors implemented the kNN classifier 
for actuation of three DC motors to manifest six 
motions of the hand.

DC MOTOR ACTUATION

The control signal obtained from the classifier is 
applied to actuate the drives through three bidi-
rectional drivers as shown in Figure 9. All the six 

Figure 9. Block diagram of interfacing motor with a personal computer



317

Design and Development of EMG Conditioning System
 

motions are thus realized to perform the intended 
limb motions by driving three DC motors in both 
the direction. Logic table for actuation of the drive 
is shown in Table 3.

FUTURE RESEARCH DIRECTIONS

The surface EMG signals based pattern recogni-
tion has been of great interest to researchers for 
several years. Many pattern recognition algorithms 
have been developed with different combination 
of feature extraction, feature reduction and clas-
sification for prosthetic hand control. These pat-
tern recognition strategies have been developed 
for single degree of control. However, obtaining 
simultaneous control of multiple movements with 
EMG signals is one of the challenging tasks. An-
other direction of research is the identification of 
individual and combined finger control of surface 
EMG signals with less number of electrodes. Fur-
ther, the development of robust classifier which 
is capable of classifying motions for practical 
prostheses is crucial.

Further, few researchers have shown that hand 
area of motor cortex stimulation enables move-
ment of fingers to provide dexterity in prosthetics. 
But these are more invasive. Recently researchers 
have been attempting to use the peripheral nervous 
system in controlling prosthetics due to the less in-
vasiveness compared to brain computer interface.

CONCLUSION

This chapter elucidates the method of detection 
and conditioning of surface EMG signals along 
with the actuation of prosthetic drive in off-line 
with DSP controller. At first, the design of an 
EMG signal conditioning system based on vari-
ous factors that influence the detection of sEMG 
signals are explained. In experimental studies, four 
channel EMG signals are acquired with reduced 

noise and the interference effect from able-bodied 
subject through surface electrodes. Also EMG 
signals are acquired from a transradial amputee 
using the 8 channel acquisition system. From the 
acquired EMG signals, the intended motions are 
identified through TD statistical features and AR 
coefficients. These features are reduced using a 
feature reduction technique through PCA. These 
reduced features are used in the classifiers to 
identify the user’s intention. It is evident from the 
results that TD features outperform AR features in 
both the classifiers. Also the Performance analysis 
shows kNN classifier is better at classifying the 
EMG signal in identifying the user’s intention than 
the NN classifier with TD statistical features. But 
kNN classifier requires more memory for clas-
sification compared to NN classifiers for storing 
the reference data. This may be suitable for less 
number of degrees of freedom.
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ABSTRACT

Muscle-computer interfaces (MCIs) based on surface electromyography (EMG) pattern recognition have 
been developed based on two consecutive components: feature extraction and classification algorithms. 
Many features and classifiers are proposed and evaluated, which yield the high classification accuracy 
and the high number of discriminated motions under a single-session experimental condition. However, 
there are many limitations to use MCIs in the real-world contexts, such as the robustness over time, 
noise, or low-level EMG activities. Although the selection of the suitable robust features can solve such 
problems, EMG pattern recognition has to design and train for a particular individual user to reach high 
accuracy. Due to different body compositions across users, a feasibility to use anthropometric variables 
to calibrate EMG recognition system automatically/semi-automatically is proposed. This chapter presents 
the relationships between robust features extracted from actions associated with surface EMG signals 
and twelve related anthropometric variables. The strong and significant associations presented in this 
chapter could benefit a further design of the MCIs based on EMG pattern recognition.
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INTRODUCTION

Surface electromyography (EMG) signals are 
measured by surface electrodes that are placed on 
the target muscles. During muscle contractions, 
a compound of the whole motor unit action po-
tentials (MUAPs) occurred in the muscles. These 
MUAPs are the useful information for numerous 
fields, e.g. rehabilitation engineering, biomechan-
ics, ergonomics, and human-computer interfaces 
(HCIs) (Merletti & Parker, 2004). Surface EMG 
signals can also be used in a medical decision sup-
port system, e.g. the diagnosis of neuromuscular 
disorders (Subasi, 2012, 2013). In this chapter, we 
focus on the development of the HCIs based on 
surface EMG signals, as called “muscle-computer 
interfaces or MCIs” (Saponas, Tan, Morris, & 
Balakrishnan, 2008). These interfaces can widely 
use in controlling many external devices, e.g. 
prosthetic limbs, electric-power wheelchairs, 
interactive surfaces, a virtual computer mouse 
or keyboard, a portable music player, and in-car 
electronic equipment (e.g. Barreto, Scargle, & 
Adjouadi, 2000; Benko, Saponas, Morris, & Tan, 
2009; Khushaba, Kodagoda, Liu, & Dissanay-
ake, 2013; Saponas et al., 2009; Shenoy, Miller, 
Crawford, & Rao, 2008; Wei, Hu, & Zhang, 2011; 
Yang, Lin, Lin, & Lee, 2013).

MCIs generally consist of three main modules, 
as shown in Figure. 1. The first module com-
poses of two sub-modules: surface EMG signal 
acquisition (hardware) and data pre-processing 
(software). In the data acquisition sub-module, 
surface EMG signals are firstly amplified with an 
amplifier due to small EMG amplitude, and may 
be filtered by hardware filters, i.e., notch, high pass 
and/or low pass filters. Then, continuous surface 
EMG signals are sampled using an analog-to-
digital converter. In case of no hardware filters, the 
raw EMG data can be filtered by software filters, 
before the EMG data go to the next module, the 
pattern recognition module. Different patterns of 
surface EMG signals are classified and matched to 
the control commands in this module. The second 

module can be divided into three sub-modules: 
feature extraction, dimensionality reduction, and 
classification algorithms. All sub-modules are 
in the software part. The pre-processed surface 
EMG data from the first module are segmented 
into small time slot length using an adjacent or 
an overlapped windowing technique, and then 
some features are extracted in order to emphasize 
the relevant structures in the EMG signals and 
remove noises/irrelevant parts. A feature vector 
is formed and can be sent directly to a classifier, 
or the dimension of a feature vector is reduced 
by the dimensionality reduction technique before 
sending it to the classifier. The classifier maps 
the extracted features (the representative of the 
actions associated with surface EMG signals) to 
the target classes (the control commands for an 
external device). After the control commands were 
generated based on the mathematical functions in 
the second module, the third module is a control 
system, which serves as an interface between the 
software and hardware. In other words, an output 
command is converted from a digital code to an 
analog signal for controlling an external device. 
In this chapter, we focus on the second module, 
particularly the extraction of EMG features.

Nearly all previous studies on MCIs based on 
EMG pattern recognition concentrate on improv-
ing recognition rate together with increasing the 
number of discriminated motions. Currently, the 
recognition rate is more than 90% in discriminating 
4-12 finger, wrist, hand, and forearm motions. It 
should be noted that the recognition rate or the 
classification accuracy is calculated as a ratio of 
the number of correct classifications to the total 
number of classifications. More details about many 
previous studies on MCIs based on EMG pattern 
recognition concentrate on improving recognition 
rate can be found in additional readings in the 
Additional Reading Section. However, the high 
recognition rates reported are usually based in 
single-session experiments conducted in research 
laboratories (Tkach, Huang, & Kuiken, 2010). 
On the other hand, in clinics when the context 
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of the real-world requirements have been given 
attention, there are many issues that have to find 
the solutions, e.g. the robustness against a variety 
of noises (Boostani & Moradi, 2003; Zardoshti-
Kermani, Wheeler, Badie, & Hashemi, 1995), the 
robustness over time–between sessions (Oskouei, 
Paulin, & Carman, 2013; Sensinger, Lock, & 
Kuiken, 2009) and between days (Boschmann, 
Kaufmann, Platzner, & Winkler, 2010; Zhang et 
al., 2008)–due to EMG electrode location shift 
(Young, Hargrove, & Kuiken, 2011, 2012), muscle 
fatigue, and/or variation in muscle contraction 
effort (Tkach et al., 2010), or the robustness in 
limb position variations (Chen, Geng, & Li, 2011; 
Fougner et al., 2011; Jiang, Muceli, Graimann, & 
Farina, 2013).

Among such issues, the problem of the cross-
user classification is far from being a practical one 
(Cannan & Hu, 2011; Saponas et al., 2008). The 
proposed systems in the literature were trained 
and tested independently on the EMG signals 
from each user. In other words, EMG-based MCIs 

have to design and create for each user. Based 
on a preliminary study of Saponas et al., (2008), 
when the classifier is trained on the data from all 
subjects in the database except the testing sub-
ject, the classification accuracy computed from 
the testing subject data is about 50%, reducing 
from about 95% using the independent training 
and testing system. It should be noted that their 
system classifies five single-finger motions based 
on three time-domain and frequency-domain fea-
tures extracted from eight EMG channels placed 
around the upper forearm (Saponas et al., 2008). 
Moreover, based on our preliminary experiments, 
the selection of the robust EMG features is not 
an efficient solution to reduce the variability of 
surface EMG signals between users, like other 
previous mentioned problems.

This is due to the different compositions of 
the body across users, which result in the dif-
ferent muscle types with varying architecture 
characteristics. This factor prevents the develop-
ment of standard MCIs that are compatible with 

Figure 1. Three main modules of MCIs: the surface EMG acquisition and pre-processing, the pattern 
recognition, and the control system



324

The Relationship between Anthropometric Variables
 

almost any user, and MCIs based on EMG pattern 
recognition have never really reached the general 
population. Being able to solve this problem, in 
our previous work (Phinyomark et al., 2013a) 
a feasibility to use anthropometric variables, a 
measurable characteristic of the human body, to 
calibrate the EMG pattern recognition systems is 
presented. The anthropometric variables are used 
to compensate for discrepancies between user 
body compositions (Cannan & Hu, 2011), which 
are based on the relationship between the EMG 
signal, muscle force, and muscle size consisting 
of cross-sectional area and length (Hof, Pronk, 
& van Best, 1987; Marras & Sommerich, 1991; 
see our preliminary work–Phinyomark et al., 
2013a–for more details about this relationship). 
They can automatically or semi-automatically 
calibrate a system. As a result of the proposed 
technique, EMG-based MCIs that require little or 
no user-specific training EMG data are possible. 
It is important to note that it is easy to measure 
anthropometric variables, and some variables can 
be measured directly together with surface EMG 
signals via an armband device (Cannan & Hu, 
2011; Saponas et al., 2008). It is also possible to 
obtain estimated anthropometric variables from 
the anthropometric table, which can be found in 
many sources including academic books (e.g. De 
Leva, 1996; Winter, 1990). It means that there is 
no need to measure all anthropometric variables 
and may need only a few simple variables, i.e., 
gender, age, body mass, or standing height. How-
ever, at the beginning all anthropometric variables 
proposed in this chapter are measured directly 
from the volunteers.

For simple MCI systems that use a threshold-
ing technique, a maximum voluntary contraction 
(MVC) can be used as an additional input to 
calibrate and adapt the classification system from 
one user to another user. In order to use MVC nor-
malization technique, it is important that the linear 
relationship between force generated and EMG 
level should be held for the muscle of interest up 

to the maximum force/EMG level (Bolgla & Uhl, 
2007; Vera-Garcia, Moreside, & McGill, 2010). 
Although the linear relationship has been found 
in many previous works (e.g. Kamavuako, Farina, 
Yoshida, & Jensen, 2009; Woods & Bigland-
Ritchie, 1983), several researchers have found a 
non-linear relationship between force generated 
and EMG muscle activity (e.g. Lawrence & De 
Luca, 1983; Woods & Bigland-Ritchie, 1983). 
The relationship is more complicated in case of a 
dynamic muscle contraction, i.e., a muscle is free 
to change length and a joint is free to move (Oatis, 
2008). Several anthropometric variables have been 
found to have a strong relationship with the MVC 
and several maximum force/EMG measurement 
techniques, such as hand circumference has the 
strong correlation with the maximal grip strength 
(MGS) and can be used to predict the MGS using 
a simple regression equation in the study of Li, 
Hewson, Duchene, & Hogrel (2010), or in the 
study of Marras & David (2001) several linear 
regression equations developed from five of the 
fifteen anthropometric variables are used to pre-
dict the EMC (Expected Maximum Contraction) 
of trunk muscles.

However, for advanced MCI systems, fea-
tures extracted from surface EMG signals are 
the important stage, and only the MVC, related 
with only muscle force, is not enough to be used 
alone. Other additional useful information is 
needed, which should have strong relationships 
with many EMG features, extracted not only force 
level information but also other useful informa-
tion such as complexity and frequency. So some 
additional inputs should be used to calibrate the 
machine learning and pattern recognition instead 
of the simple thresholding technique. Forearm cir-
cumference is an anthropometric variable that has 
already been proposed to be used as a calibrating 
variable in an EMG recognition system in previ-
ous works (Anakwe, Huntley, & Mceachan, 2007; 
Cannan & Hu, 2011). However, the relationship 
between EMG and forearm circumference is not 
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strong enough, therefore further anthropometric 
variables were evaluated their relationships with 
surface EMG features in this chapter. All relation-
ships between EMG features and anthropometric 
variables that are strong and significant could 
benefit a further design of the EMG-based MCIs. 
It could semi-automatically/automatically adapt 
the setting of the EMG recognition systems to a 
wider population. It can be used in two different 
ways: 1) a normalized value for EMG features, and 
2) a weighting factor for a classifier. Moreover, 
wearable and wireless EMG devices are already 
commercially available, e.g. MYO (see www.thal-
mic.com/myo/) and has been developed rapidly, 
so using anthropometric variables to calibrate the 
EMG recognition system would become more 
practical and important in the near future.

EMG FEATURE EXTRACTION

Definition of Feature Extraction

Feature extraction is a technique to transform 
raw EMG signals into a reduced representation 
set of features as called “a feature vector.” A 
transformation is usually based on mathematical 
functions, which highlights relevant structures in 
surface EMG signals and rejects irrelevant parts. 
If the extracted features are carefully selected, the 
feature vector will contain effective and relevant 
information drawn from the whole set of raw EMG 
data, which can be used to represent the desired 
actions. Training an EMG classifier on raw EMG 
signal patterns requires high computational cost 
and their testing classification performances are 
very poor (Phinyomark, Phukpattaranont, & Lim-
sakul, 2012e). Therefore, the extraction of EMG 
features is very important step in EMG-based 
gesture recognition. It is noted in the literature 
that the success of the EMG pattern recognition 
systems almost entirely depends on the choice of 

features (Kendall et al., 2012; Hudgins, Parker, 
& Scott, 1993).

EMG feature extraction can be computed in 
three domains: 1) time domain, 2) frequency do-
main, and 3) time-frequency or time-scale domain 
(Boostani & Moradi, 2003). Time domain features 
are widely used in EMG pattern recognition due 
to the low complexity and computational cost, 
which can be implemented and computed using 
a simple hardware processor, i.e., a mobile device 
or a microprocessor (Hudgins et al, 1993; Kundu, 
Mazumder, & Bhaumik, 2011). Moreover, time 
domain features can be successfully used as a 
dimensionality reduction technique for time-
frequency/time-scale features, i.e., the coefficients 
of short-time Fourier transform, discrete wavelet 
transform, and wavelet packet transform (Phin-
yomark, Nuidod, Phukpattaranont, & Limsakul, 
2012b). Hence, in this chapter, features in time 
domain are mainly focused, and time-frequency/
time-scale features are not considered. A number 
of frequency domain features are considered to be 
used in developing the robust MCI systems and 
to provide additional information.

Computation of EMG 
Feature Extraction

A basic idea about the computation of EMG 
feature extraction is illustrated in Figure. 2. Fol-
lowing is a brief description of all robust EMG 
features, which were investigated and discussed 
in the present chapter. In each, x

i
 is the i

th
 

sample of surface EMG signal amplitude and L  
is the length of the analysis window for comput-
ing the features.

Willison Amplitude (WAMP) is a number of 
times resulting from the difference between two 
consecutive EMG amplitudes in a time segment 
becomes more than a predefined threshold thr . 
In other words, WAMP is a number of times that 
the length of the EMG waveform in a time seg-

http://www.thalmic.com/myo/
http://www.thalmic.com/myo/
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ment exceeds a predefined threshold thr , which 
can be expressed as

WAMP = −( )
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Myopulse Percentage Rate (MYOP) is an 
average number of times that the absolute value 

of EMG amplitude, i.e., myopulse output, exceeds 
a predefined threshold  thr , and the calculation is 
defined as
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Figure 2. An example of EMG feature extraction procedure in time domain
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Slope Sign Change (SSC) or the number of 
turns (NT) is a number of times that the slope of 
the EMG waveform changes sign. This method 
uses three consecutive EMG signal amplitudes 
to detect the EMG waveform slope, which is 
calculated as

SSC = −( )× −( )
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Zero Crossing (ZC) is a number of times that 
the EMG waveform crosses the zero amplitude 
axes. Several works used this value without imple-
menting threshold condition (Boostani & Moradi, 
2003; Zardoshti-Kermani et al., 1995). However, 
a predefined threshold thr  should be included in 
the ZC computation to reduce the effect of noise 
(Hudgins et al., 1993). ZC can be defined as

ZC sgn
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A suitable predefined threshold to reduce 
noise is dependent on a system gain value and a 
background noise level. We can roughly estimate 
a predefined threshold if we know both values 
(Hudgins et al, 1993). For example, assuming a 
system gain of 1000 and a background noise of 4 
μV peak to peak, the threshold can be calculated 
to be ± 2 mV. It is normally chosen between 50 
μV and 100 mV (Philipson & Larsson, 1988). 
However, to obtain a high quality feature space, 
the suitable threshold could be defined based on 
taking some offline trial-and-error classifications.

Detrended Fluctuation Analysis (DFA) is a 
modified root mean square analysis of a random 

walk (Peng, Havlin, Stanley, & Goldberger, 1995). 
A slope of the line relating the logarithm of the 
RMS fluctuation of the profiles y Fk n( )  to the 

logarithm of the predefined box size n( )  is used 

as a feature value ±( ) . This value indicates the 
presence of the power law (fractal) scaling, as can 
be expressed as

± =
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Based on our previous work (Phinyomark, 
Phukpattaranont, Limsakul, & Phothisonothai, 
2011d), the minimum box size n

min
 is set at four, 

the maximum box size n
max

 is set at one-tenth of 
the signal length, and the box size increment is 
based on a power of two. A least-square fit, which 
is applied to the profiles y

k
, is the quadratic 

polynomial fit.
Higuchi method (HG) is another fractal dimen-

sion estimator (Higuchi, 1988), which performs 
well in the classification of surface EMG signals 
and the simulated signals (Arjunan & Kumar, 
2010; Esteller, Vachtsevanos, Echauz, & Litt, 
2001). For = …1 2, , ,k , a negative slope of the 
line relating the logarithm of the length of the 
curve L

mk( )  to the logarithm of the discrete time 

interval between points k( )  is used as a feature 

value D( ) . Based on the finding of Phothisonothai 
and Nakagawa (2007), the maximum time inter-
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val k
max

 is set at 128. This value is from the re-
lationship L k

k
Dα , which can be given by
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Integrated EMG (IEMG) is a summation of 
the absolute value of the EMG signal amplitude 
over the time segment, which can be expressed as

IEMG =
=
∑�
i

L

i
x

1

 (7)

Waveform Length (WL) is a cumulative 
length of the EMG waveform over the time seg-
ment. It is the IEMG of the EMG wavelength. A 
number of previous studies call this feature as the 
“wavelength,” which provides simple waveform 
complexity information. It can be calculated by

WL = −
=

−

+∑
i

L

i i
x x

1

1

1
 (8)

Maximum Fractal Length (MFL) is proposed 
as a feature, which can measure EMG signal pat-
terns at low level muscle contraction (Arjunan, 
2008). It is defined as the average fractal length of 
the signal measured at the smallest scale from the 
HG method in Eq. (6). If the smallest scale is set 
at one, MFL can be defined as the modification 
of the WL using a logarithm function as follows

MFL log= −
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x x  (9)

Mean Absolute Value (MAV) is an average of 
the absolute value of the EMG signal amplitude. 
There are many ways to call this feature, e.g. 
averaged absolute value, average rectified value, 
integral of absolute value, integrated absolute 
value, and the first order of the v-Order feature. 
It can be given by

MAV =
=
∑
1

1L
x

i

L

i
 (10)

Difference Absolute Mean Value (DAMV) is 
an average of the absolute value of the difference 
between the adjacent EMG amplitudes over the 
time segment (Kim, Choi, Moon, & Mun, 2011; 
Park & Lee, 1998; Yu, Jeong, Hong, & Lee, 2012). 
It can be seen as the MAV of the EMG wavelength 
and sometimes is called as the “Average Amplitude 
Change (AAC)” (Fougner, 2007). It is given by

DAMV = −
=

−

+∑
1

1

1

1L
x x

i

L

i i
 (11)

Variance of EMG (VAR) is an average of the 
square value of the EMG signal amplitude. This 
is due to a mean value of surface EMG signals is 
close to zero, in which the equation is defined as

VAR =
− =
∑

1
1 1

2

L
x

i

L

i
 (12)

Root Mean Square (RMS) is a square root 
of the average of the square of the EMG signal 
amplitude values. In other words, it has a similar 
value to the standard deviation of EMG signal 
amplitude. It can be defined as the modification 
of the VAR using a square root function as follows

RMS =
=
∑
1

1

2

L
x

i

L

i
 (13)
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Difference Absolute Standard Deviation Value 
(DASDV) is a square root of the average of the 
square of the difference between the adjacent EMG 
amplitudes over the time segment. It is the RMS 
of the EMG wavelength, as can be formulated as

DASDV =
−

−( )
=

−

+∑
1
1 1

1

1

2

L
x x

i

L

i i
 (14)

Approximation Entropy (ApEn) and Sample 
Entropy (SampEn) are techniques used to quan-
tify the unpredictability of fluctuations in EMG 
signal amplitudes over the time segment (Zhao et 
al., 2006a, 2006b). They provide the waveform 
similarity or complexity information. SampEn is 
developed from ApEn to avoid the bias caused by 
self-matching. Both methods use two input pa-
rameters: m  and r , where m  is the pattern length 
and r  is the criterion of similarity (Zhang & 
Zhou, 2012). The basic idea is about the estima-
tion of the conditional probability that the patterns 
of the EMG signal amplitude, which are similar 
to each other within a predefined tolerance r , 
will remain similar for the next comparison point 
(Richman & Moorman, 2000).

Mean Frequency (MNF) is an average fre-
quency, which is calculated as a sum of the product 
of the EMG power spectrum and the frequency 
divided by a total sum of the EMG power spec-
trum. There are other ways to call this feature, 
such as central frequency and the spectral center 
of gravity. It can be defined as

MNF =
= =
∑ ∑
j

M

j j
j

M

j
f P P
1 1

/  (15)

where fi is the frequency of the spectrum at a 
frequency bin j , Pj  is the EMG power spectrum 
at a frequency bin j , and M  is the length of 
whole frequency bin.

Median Frequency (MDF) is a frequency at 
which the EMG power spectrum is divided into 
two areas with an equal total power, as can be 
expressed as

j
j

j MDF
j

j
j

P P P
= = =
∑ ∑ ∑= =
1 1

1
2

MDF M M

�
�  (16)

Experimental Data for 
Extracting EMG Features

All features are computed from the EMG data, 
which are recorded from 20 subjects (10 males and 
10 females). The subjects were asked to perform 
8 motions consisting of forearm pronation (FP), 
forearm supination (FS), wrist flexion (WF), wrist 
extension (WE), wrist radial deviation (WR), wrist 
ulnar deviation (WU), hand open (HO), and hand 
close (HC), and maintain for 2 s. Each motion was 
repeated 15 trails per day for four separate days. 
EMG data were measured from 4 forearm muscles 
and an upper arm muscle: extensor carpi radialis 
longus (ECRL), extensor carpi ulnaris (ECU), 
extensor digitorum communis (EDC), flexor carpi 
radialis (FCR), and biceps brachii (BB). More 
details about data acquisition and experiments can 
be found in Phinyomark et al., (2011d).

To briefly explain the relationship between 
actions associated with surface EMG signals and 
EMG features, the amplitude shape of surface 
EMG signals acquired from all the muscles and 
motions from a trial in time domain is shown in 
Figure. 3, together with one extracted feature: 
MAV. It is clearly shown in the figure that the 
EMG amplitude shapes from all muscles are 
significantly different according to the direction 
of the eight motions. For instance, we can observe 
that the EMG magnitudes of WE are very high 
in two extensor muscles, i.e., ECRL and ECU. 
These two muscles are the corresponding muscles 
to produce wrist extension, i.e., high contraction 
level. On the other hand, the EMG magnitudes of 
WF are low in both extensor muscles but are very 
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high in the flexor muscle or FCR. As we know 
that the MAV feature is used to estimate the EMG 
amplitude/magnitude level, so MAV features of 
WE extracted from ECRL and ECU are higher 
than the other muscles. In the same way, the MAV 
feature of WF extracted from FCR is relatively 
higher than the other muscles.

ANTHROPOMETRIC VARIABLES

Definition of Anthropometric 
Variables

Anthropometry is a measurement of the dimen-
sions of the different parts of human body. There 
are two types of measurement: 1) static dimension 
and 2) dynamic dimension. In order to use anthro-
pometric variables to calibrate the EMG-based 
MCI systems, only static dimensions are consid-
ered. There are many anthropometric variables, 
e.g. overhead reach height and breadth, shoulder 
circumference and length, and waist front and back 
length. However, only twelve related variables are 
chosen for the experiments in this chapter.

Computation of 
Anthropometric Variables

Following is a brief description of all anthropo-
metric variables, which were investigated and 
discussed for this chapter.

Body mass is measured in kilograms (kg). It 
is defined as a subject’s weight or mass, which 
can be measured by the balance type scales. A 
subject stands on the center of the scale platform.

Stature or standing height is measured in cen-
timeters (cm). It is defined as the distance from 
the bottom of the feet to the top of the head of 
a subject, which can be measured by a stadiom-
eter. A subject stands erect on the center of the 
base plate with heels together, and head in the 
Frankfort plane.

BMI or body mass index is a roughly estima-
tion of human body fat based a subject’s weight 
and height in kilograms/meters2 (kg/m2). It can 
be defined as

BMI
body mass

stature
=
( )2

 (17)

Figure 3. An example of surface EMG signals in time domain from the first trail in the first day of subject 
1 (5 muscles and 8 motions with a rest state) and the extracted MAV features
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The remaining anthropometric variables are 
measured in centimeters (cm), as shown in Figure. 
4, using a tape for biceps and forearm circumfer-
ences, a sliding or small bone caliper for hand 
breadth and length, a wide sliding torso caliper for 
elbow-hand grip length, elbow-fingertip length, 
shoulder-elbow length and bi-deltoid breadth, and 
a measuring block with tape measure for forward 
grip reach. The specific locations are defined as 
the following.

Biceps circumference is a linear distance 
around the upper arm when subject stands. The 
upper arm is extended forward horizontally and the 
elbow is flexed about 90º (the arm is abducted). 
It is measured at the level of the drawn biceps 
point landmark, which is the point of maximum 
quiet inspiration.

Forearm circumference is a linear distance 
around the lower arm with the same posture as 
measured the biceps circumference. It is usually 
measured at the level of maximum forearm cir-
cumference.

For hand breadth, subject sits with right hand 
flats on a table and the fingers are together and 
straight. Hand breadth is measured from meta-
carpalphalangeal joint II to metacarpalphalangeal 
joint V.

Hand length is measured from the wrist land-
mark to dactylion with the same posture as the 
hand breadth.

Elbow-hand grip length is measured from the 
posterior tip of the olecranon process to the center 
of grip during holding a pencil. It can be called 
as the elbow to center of grip.

Elbow-fingertip length is measured from the 
posterior tip of the olecranon process to dactylion.

Shoulder-elbow length is measured from the 
right acromion landmark to the inferior tip of the 
olecranon process of the right elbow.

Forward grip reach or functional reach is mea-
sured from the back wall to the tip of the thumb.

Bi-deltoid breadth is measured across the body 
at the level of the deltoid landmarks.

Experimental Anthropometric Data

It should be noted that the anthropometric variables 
are measured in the same day for all twenty sub-
jects from the right arm of the subject using the 
standard instruments (Centurion Kit, Rosscraft). 
Due to the significant difference of muscle size 
and force between male and female subjects, 
anthropometric variables have usually been in-
vestigated and discussed by gender: male and 
female (Anakwe et al., 2007; Holzbaur, Murray, 
Gold, & Delp, 2007). In our experiments, the 
difference of anthropometric variables between 
male and female subjects is statistically significant 
at p� .< 0 01  for 8 parameters (body weight, stature, 
biceps circumference, forearm circumference, 
hand breadth, hand length, elbow-fingertip length, 
and forward grip reach) and significant at p� .< 0 10  
for the remainders (BMI, elbow-hand grip length, 
shoulder-elbow length, and bi-deltoid breadth). 
In addition, to avoid the effect of ages we used 
the subjects from the same age, around 21 years 
old (no significant difference, p = 0 458. ). Twelve 
anthropometric variables from 10 males and 10 
females are reported respectively in Table 1 and 
Table 2.

STATISTICAL ANALYSIS

Correlation analysis is used as an evaluating func-
tion in the study. It measures a relationship between 
two parameters and provides a statistic known as 
the correlation r  coefficient. This coefficient 
shows the degree of a linear relationship between 
two measured variables. Correlation coefficients 
can interpret as the weak or low correlation when 
r � .≤ 0 35 , the modest or moderate correlation 
when 0 35 0 67. .< ≤r , and the strong or high 
correlation when 0 67 1. < ≤r  (Taylor, 1990). 
Actually, the r  value contains both a magnitude 
and a direction (positive and negative) of the re-
lationship. However, in our experiment only the 
magnitude of correlation coefficient (the absolute 
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Figure 4. Anthropometric measurements: stature, forward grip reach, biceps circumference, forearm 
circumference, hand breadth, hand length, shoulder-elbow length, elbow-hand grip length, elbow-fingertip 
length, and bi-deltoid breadth
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value of average r  coefficient) is used. Moreover, 
due to a small number of subjects n  (less than 
20), the significant level is set at p� .< 0 05  and is 
tested using t-test, as can be defined by

t r
n

r
=

−
−

�
2

1 2
 (18)

It should be noted that degrees of freedom for 
entering the t-distribution is defined as n − 2 . 

Table 1. Twelve anthropometric variables of 10 male subjects (M1-M10) with the mean and the standard 
deviation (SD) of each variable 

    Subjects 
    Variables

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10 Mean SD

    Body weight 49.0 62.0 65.0 74.0 73.0 58.0 57.0 55.0 63.0 54.0 61.0 8.1

    Stature 166.5 170.0 173.0 177.0 172.0 170.0 170.0 167.5 167.0 164.0 169.7 3.7

    BMI 17.7 21.5 21.7 23.6 24.7 20.1 19.7 19.6 22.6 20.1 21.1 2.1

    Biceps circumference 23.1 26.2 27.5 32.6 32.4 30.7 26.1 23.6 26.7 25.6 27.5 3.4

    Forearm circumference 22.5 22.4 25.2 29.1 28.2 26.8 23.4 23.1 24.3 22.7 24.8 2.5

    Hand breadth 7.4 7.2 8.4 9.1 8.9 12.6 11.7 7.5 7.8 7.6 8.8 1.9

    Hand length 17.2 17.8 15.5 18.2 18.9 19.1 19.3 17.4 18.3 17.1 17.9 1.1

    Elbow-hand grip length 34.4 35.1 37.6 39.3 39.7 33.9 33.8 36.0 38.5 38.4 36.7 2.3

    Elbow-fingertip length 46.8 49.7 52.2 52.2 52.6 46.2 46.2 47.2 50.0 49.7 49.3 2.5

    Shoulder-elbow length 37.7 33.6 36.9 37.8 38.2 35.7 38.4 35.4 38.3 36.6 36.9 1.6

    Forward grip reach 75.6 74.5 80.7 89.0 80.4 74.3 75.7 72.6 83.5 78.1 78.4 5.0

    Bi-deltoid breadth 39.3 46.4 44.6 54.7 47.3 37.4 30.4 42.1 45.9 47.4 43.6 6.7

Table 2. Twelve anthropometric variables of 10 female subjects (F1-F10) with the mean and the SD of 
each variable 

    Subjects 
    Variables

    F1     F2     F3     F4     F5     F6     F7     F8     F9     F10 Mean SD

    Body weight 47.0 45.0 53.0 46.0 54.0 45.0 43.0 56.0 50.0 49.0 48.8 4.4

    Stature 150.0 160.0 156.0 155.0 160.0 146.0 159.0 163.0 167.0 162.0 157.8 6.3

    BMI 20.9 17.6 21.8 19.1 21.1 21.1 17.0 21.1 17.9 18.7 19.6 1.8

    Biceps circumference 24.4 19.8 27.6 24.2 24.8 25.5 22.6 24.9 22.3 21.5 23.8 2.2

    Forearm circumference 21.6 19.1 22.9 21.5 22.2 21.9 19.7 22.7 20.6 20.9 21.3 1.2

    Hand breadth 7.4 6.4 7.3 7.5 6.9 6.6 6.9 8.1 7.4 7.2 7.2 0.5

    Hand length 15.6 16.7 16.8 16.6 16.4 14.7 16.1 15.2 17.1 17.2 16.2 0.8

    Elbow-hand grip length 32.8 35.0 34.8 34.6 34.4 32.6 34.3 35.2 38.4 36.2 34.8 1.6

    Elbow-fingertip length 43.3 46.8 46.4 46.4 46.2 39.1 46.2 47.1 49.0 47.7 45.8 2.8

    Shoulder-elbow length 34.9 35.3 36.1 35.8 33.1 34.2 33.0 37.1 37.8 36.0 35.3 1.6

    Forward grip reach 65.1 72.0 60.8 68.1 75.7 65.2 70.2 63.3 74.4 70.6 68.5 4.9

    Bi-deltoid breadth 41.9 36.8 43.4 41.2 41.0 37.8 36.9 37.0 37.2 38.7 39.2 2.5
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Only the combinations between EMG features 
extracted from a muscle and anthropometric 
variables that have the strong and significant cor-
relations in at least 4 motions are considered for 
the next stage.

RELATIONSHIP BETWEEN 
EMG FEATURE AND 
ANTHROPOMETRIC VARIABLE

To reach the high potential of EMG-based MCIs 
in the context of real-world requirements, the 
proposed anthropometric variables have been 
investigated the relationship with robust EMG 
features, which are divided into 4 groups as follows:

1.  Noise Tolerance: WAMP, MYOP, SSC, and 
ZC;

2.  Low-Level and High-Level Surface EMG 
Signals: DFA, HG, MFL, DAMV, DASDV, 
WL, VAR, IEMG, MAV, and RMS;

3.  Fluctuating EMG Signals Over Time: 
SampEn and ApEn;

4.  Muscle Fatigue: MNF and MDF.

It should be noted that the relationship between 
anthropometric variables and the Hudgins’ time 
domain feature set, i.e. SSC, ZC, WL, MAV and 
mean absolute value slope, is presented and dis-
cussed in detail in our previous study (Phinyomark 
et al., 2013b).

Feature Set 1: Noise Tolerance

Noise is one of the major problems in the analysis 
of surface EMG signals. Zardoshti-Kermani et 
al., (1995) proposed that the robustness of EMG 
features is one of the three major properties for 
evaluating high-quality features. In their study, the 
definition of robustness is limited to the tolerance 
of noise. Artificial white noise at different noise 
levels was used to evaluate the robustness of fea-
tures. The cluster separability of feature spaces 

should be preserved as much as possible in a noisy 
environment. This property is important because 
both biological and environmental resources can 
generate noise and artifact. It is difficult to record 
only a pure signal component without noise. For 
this reason, noise removal or noise reduction 
is an important step before performing feature 
extraction in most of MCI systems. Many noise 
removal tools have been proposed, e.g. notch fil-
ter, band pass filter, adaptive filter, and wavelet 
filter (Jindapetch, Chewae, & Phukpattaranont, 
2012; Phinyomark, Phukpattaranont, & Limsakul, 
2011c). Unfortunately, there are not any filters 
that can remove one hundred percent of noise. 
Sometimes it removes some important parts of 
real EMG signals (De Luca, Gilmore, Kuznetsov, 
& Roy, 2010; Li, Li, Yu, & Geng, 2011). So EMG 
features that have high tolerance for biological and 
environmental noises should increase the ability 
of EMG-based gesture recognition.

Noises contaminated in surface EMG signal 
can be categorized into four major types: 1) 
ambient noise, 2) motion artifact, 3) the inherent 
instability of surface EMG signals, and 4) the in-
herence in electronic components in the detection 
and recording equipment (De Luca, 2002; Reaz, 
Hussain, & Mohd-Yasin, 2006). The first three 
types have a specific band of frequencies, but 
the last noise type has a broaden frequency band 
and falls in a usable energy band of surface EMG 
signals. In the literature, four noisy EMG signals 
that consist of baseline noise, movement artifact, 
power-line interference, and random noise, i.e., 
white Gaussian noise, have been simulated and 
used to develop robust EMG methods (Phinyo-
mark, Phukpattaranont, & Limsakul, 2012f). 
First two simulated noises, i.e., baseline noise 
and movement artifact have a narrow frequency 
band below 20 Hz, which ranges outside the EMG 
energy band. We can use a high-pass filter at a 
cut-off frequency of 20 Hz to remove these kinds 
of noise (De Luca et al., 2010). On the other hand, 
power-line interference (50/60 Hz) and random 
noise (0-1000 Hz) have a frequency band in a 
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range of usable EMG energy band (20-500 Hz), 
therefore such noises can be only reduced to a 
predictable level or cannot be entirely removed.

In our previous works (Phinyomark, Limsakul, 
& Phukpattaranont, 2008, 2009), nine time domain 
and frequency domain features: RMS, WL, ZC, 
SSC, WAMP, HIST, AR, MDF, and MNF, were 
evaluated the robust performance based on two 
noise types: 50-Hz interference and white Gauss-
ian noise, at different signal-to-noise ratios (0-20 
dB SNRs). The experimental results showed that, 
on average WAMP is the most robust feature, fol-
lowed by ZC and SSC features. These features are 
in the same feature group, together with MYOP, 
which compute in time domain and provide 
frequency information (Phinyomark, Phukpatta-
ranont, & Limsakul, 2012c). All features in this 
group have a threshold parameter, which can be 
used to avoid some noises (Hudgins et al., 1993). 
In addition, the distribution of feature spaces in 
this group is similar to each other, particularly for 
WAMP and ZC.

From Table 3, all four features extracted from 
the BB muscle have a strong relationship with the 
bi-deltoid breadth for female subjects. For male 
subjects, there are two relationships: 1) WAMP 

and MYOP from the ECU muscle and bi-deltoid 
breadth, and 2) ZC from the BB muscle and biceps 
circumference. All relationships share the motions 
of FP and WF.

Although the SSC feature has a higher average 
r  value than other three features for female 

subjects, it does not have a strong relationship 
with any anthropometric variables for male sub-
jects. SSC and ZC are the members of the Hudgins’ 
time domain feature set (Hudgins et al., 1993) and 
their classification performances are not influ-
enced by the variation in muscle contraction effort 
(Tkach et al., 2010). Other features in Hudgins’ 
time domain feature set are MAV, WL, and mean 
absolute value slope. Chan et al., (2000) re-
evaluated the classification performance of the 
Hudgins’ feature set using fuzzy approach. The 
SSC feature does not improve classification per-
formance and in some subjects the classification 
accuracy decreases. So SSC is not recommended 
for developing robust MCI system.

Based on the similar distribution of feature 
spaces of ZC and WAMP (Phinyomark et al., 
2012c), one of them should be selected in order 
to avoid the information redundancy in an EMG 
feature vector. The selection depends on the choice 

Table 3. Correlation coefficients r  between anthropometric variables and EMG features (WAMP, 
MYOP, SSC, and ZC) in cases of strong and significant relationships (at least 4 movements for a muscle) 
based on 10 males and/or 10 females 

   Feature    Gender    Anthropometric variable    Muscle 
position

   Movements
Average r  min- max( )

   WAMP    Male    Bi-deltoid breadth    ECU    FP, WE, WF, WU, HC    0.75 (0.72-0.78)

   Female    Bi-deltoid breadth    BB    FP, FS, WF, WR    0.72 (0.69-0.77)

   MYOP    Male    Bi-deltoid breadth    ECU    FP, WE, WF, WU, HC    0.77 (0.76-0.77)

   Female    Bi-deltoid breadth    BB    FP, WF, WR, WU    0.72 (0.68-0.81)

   SSC    Female    Bi-deltoid breadth    BB    FP, FS, WF, WU, HC    0.80 (0.70-0.86)

   ZC    Male    Biceps circumference    BB    FP, FS, WF, HO    0.76 (0.69-0.85)

   Female    Bi-deltoid breadth    BB    FP, FS, WF, WU, HC    0.77 (0.70-0.84)
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of the system. If the automatically calibrated sys-
tem is preferred, the ZC feature is recommended. 
On the other hand, if the semi-automatically 
calibrated system is acceptable, WAMP is a suit-
able feature. WAMP and MYOP have the same 
associations with the anthropometric variables, 
whereas WAMP is the most robust feature against 
noises. Moreover, WAMP has higher classifica-
tion accuracy than other three features in the 
classification of upper-limb motions based on a 
robust linear discriminant analysis (LDA) classi-
fier with and without periodic retraining scheme 
(Phinyomark et al., 2011a, in press b). WAMP is 
also successful in the classification of lower-limb 
exercise activities for the elderly (Phinyomark et 
al., 2012a) and in the estimation of muscle force 
levels (Kamavuako et al., 2013).

Feature Set 2: Low-Level and 
High-Level Surface EMG Signals

If the low-noise EMG signals are obtained from 
an EMG recording system with/without noise 
removal algorithms, the next challenge in EMG-
based gesture recognition is about weak measured 
EMG signals. Simple MCI systems use the po-
tential of a large difference between a high EMG 
magnitude at strong muscle contractions and a 
very low magnitude (close to zero) at the rest of 
the contractions. EMG amplitude estimators, i.e., 
RMS and MAV are sufficient enough for classi-
fying the proposed activities (Clancy & Hogan, 
1999). However, such systems often offer a few 
control schemes with a single speed of actuation 
based on a few EMG channels. To increase the 
number of control commands, a variety of mo-
tions and EMG channels have been proposed 
for the recognition system. In that case, it is not 
possible to get only strong EMG signals. Weak or 
low-level EMG signals (low SNR signals) must be 
measured. There are two cases: 1) a weak EMG 
signal is measured from a major corresponding 
muscle when a user performs a low force motion 
or a little movement (Arjunan, 2008) and 2) a 

weak EMG signal is measured from a minor cor-
responding muscle when a user performs a high 
force motion or a strong movement (Phinyomark, 
Phukpattaranont, & Limsakul, 2012d).

To deal with the analysis of low-level EMG 
signals, a fractal analysis is used. Fractals refer 
to signal patterns, which exhibit self-similarity, 
that have fractal dimension. Fractal dimension 
of surface EMG signals is found under differ-
ent types and levels of muscle contraction using 
several fractal methods, e.g. box-counting method 
(Gupta, Suryanarayanan, & Reddy, 1997), cor-
relation dimension method (Hu, Wang, & Ren, 
2005), critical exponent analysis (Phinyomark, 
Phothisonothai, Phukpattaranont, & Limsakul, 
2011b), and Katz method (Gitter & Czerniecki, 
1995). Based on the finding in previous studies, 
a fractal dimension of EMG signals depends on 
the level of muscle contraction during strong or 
high level activities (Gupta et al., 1997; Hu et al., 
2005). For the low level of muscle contraction, 
fractal dimension does not change with change in 
the level of muscle contraction. It is a measure of 
the size and complexity of the muscles (Arjunan, 
2008).

In our previous work (Phinyomark et al., 
2012d), a fractal dimension estimator DFA was 
examined the performance in the classification 
of low-level EMG signal patterns compared 
with another fractal estimator HG (Arjunan & 
Kumar, 2010). The experimental results showed 
that, DFA has better cluster separability than HG 
(Phinyomark et al., 2011d), as well as classifica-
tion performance (Phinyomark et al., 2012d). On 
the other hand, features based on a magnitude 
detector provide better performance in the clas-
sification of high-level EMG signal patterns than 
fractal features. So a combination of fractal and 
magnitude features is recommended (Arjunan & 
Kumar, 2011).

The past several years, magnitude features 
extracted from the first-order difference of EMG 
time series, i.e., MFL, DAMV, DASDV, and WL, 
present higher accuracy than magnitude features 
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extracted from the original time series, i.e., VAR, 
IEMG, MAV, and RMS (Brzostowski & Zieba, 
2011; Kim et al., 2011; Kim, Jeong, Lee, & Song, 
2012; Yu et al., 2012). In addition, the distribution 
of feature spaces in both groups is similar to each 
other for some motions and muscles.

Features in Table 4 can be divided into three 
feature groups based on the explanation above. 
Due to a large difference of feature spaces of the 
fractal features compared to the magnitude fea-
tures, anthropometric variables that have strong 
associations with fractal features are different to 
other magnitude features. DFA computed from 
the FCR muscle has a strong relationship with 
the stature and elbow-fingertip length for female 
subjects. On the other hand, HG computed from 
the EDC muscle has a strong relationship with 
the BMI for male subjects. Both DFA and HG 
features estimate the fractal dimension of surface 
EMG signals, so the selection of fractal features 
is dependent on the gender of target users. On 
average DFA is more accurate than HG about 
2%-5% (Phinyomark et al., 2012d).

For magnitude features, strong associations 
are found only with the bi-deltoid breadth. For 
female subjects, only features extracted from the 
BB muscle have a strong relationship with the 
variable. All relationships share the motions of FP, 
FS, and WR. For male subjects, two muscles have 
the strong relationships: ECU and BB muscles. 
Although feature space distribution of features 
extracted from the original and the first-order dif-
ference of EMG signals is similar to each other for 
some motions and muscles, the best feature from 
each group is usually selected in many previous 
studies to be a member of an optimal multiple 
feature set based on the feature selection scheme 
(Phinyomark et al., 2013b).

For the first-order differencing magnitude 
features, MFL outperforms others, followed re-
spectively by DAMV, DASDV, and WL, based 
on many state-of-the-art classifiers, i.e., the LDA, 
the quadratic discriminant analysis (QDA), the 
artificial neural network (ANN), the k-nearest 

neighbor (k-NN), and the maximum likelihood 
estimation (MLE), with and without the periodic 
retraining scheme (Arjunan & Kumar, 2010; Kim 
et al., 2011; Phinyomark et al., 2013b; Yu et al., 
2012). Although WL performs the best in accuracy, 
stability, and computation load among the single 
features in several previous studies (Oskoei & Hu, 
2008; Phinyomark et al., 2010), it is because of 
its popularity and other first-order differencing 
features were not included in the evaluating stud-
ies. In total, MFL is recommended to be used as a 
representative feature in this group instead of WL.

For the original magnitude features, all features 
have the same relationship with the anthropometric 
variable. Due to its similarity of IEMG to MAV 
and its similarity of VAR to RMS, the IEMG 
and VAR features should be excluded, because 
in comparison IEMG and VAR result in weaker 
performance in classification than MAV and RMS 
(Oskoei & Hu, 2008; Phinyomark et al., 2012c). 
For MAV and RMS, both features are close 
together in the success rate of classification, as 
well as the computational cost. The selection of 
MAV and RMS should be based on the probability 
density function (PDF) of the measured EMG 
signals. If the EMG PDF is close to the Gaussian 
density, an optimal EMG amplitude estimator 
is RMS (Hogan & Mann, 1980) based on both 
theoretically and experimentally. On the other 
hand, if the EMG PDF is close to the Laplacian 
density, an optimal EMG amplitude estimator is 
MAV (Clancy & Hogan, 1999). Moreover, MAV 
and RMS performance in the estimation of muscle 
force is similar to the performance of WAMP and 
WL features (Kamavuako et al., 2013).

Feature Set 3: Fluctuating 
EMG Signals over Time

Multifunction EMG pattern recognition systems 
that allow high recognition rate in research 
laboratories are usually based in single-session 
experiments. Most of related works collected EMG 
data only from a single day. A next major problem 
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is about the fluctuation of surface EMG signals 
over time. It is widely known that EMG signals 
measured in one day are relatively different from 
the EMG signals measured in another day, even 
on the same muscle and also same subject (Jain 
et al., 2012; Kaufmann, Englehart, & Platzner, 
2010). This can be due to many factors, such as 
the EMG electrode location shift, the variation 
in muscle contraction effort, or change in the ar-
chitecture characteristics of the subject (Saponas 

et al., 2010; Tkach et al., 2010). So it is possible 
that features extracted from the initial training data 
(one day) and the present testing data (another day) 
are significant difference, which will degrade the 
performance of the pattern matching algorithms. 
In order to implement the MCIs based on EMG 
pattern recognition in clinics, the robustness over 
time of the system (i.e., feature extraction and 
classification algorithm) is very important.

Table 4. Correlation coefficients r  between anthropometric variables and EMG features (DFA, HG, 
MFL, DAMV, DASDV, WL, VAR, IEMG, MAV, and RMS) in cases of strong and significant relationships 
(at least 4 movements for a muscle) based on 10 males and/or 10 females 

   Feature    Gender    Anthropometric variable    Muscle 
position

   Movements
Average r  

min- max( )

   DFA    Female    Stature    FCR    FP, WF, WR, WU, HO    0.74 (0.67-0.83)

   Female    Elbow-fingertip length    FCR    WF, WU, HO, HC    0.73 (0.68-0.79)

   HG    Male    BMI    EDC    FP, WU, HO, HC    0.72 (0.67-0.81)

   MFL    Male    Bi-deltoid breadth    ECU    FP, WE, WF, WU, HC    0.75 (0.70-0.78)

   Both    Bi-deltoid breadth    BB    WE, WR, WU, HC    0.69 (0.68-0.69)

   Female    Bi-deltoid breadth    BB    FP, FS, WF, WR, WU, HC    0.76 (0.70-0.78)

   DAMV    Male    Bi-deltoid breadth    ECU    FP, WE, WF, WU, HC    0.72 (0.67-0.75)

   Male    Bi-deltoid breadth    BB    WE, WR, WU, HC    0.69 (0.68-0.70)

   Female    Bi-deltoid breadth    BB    FP, FS, WR, HC    0.73 (0.68-0.78)

   DASDV    Male    Bi-deltoid breadth    ECU    FP, WE, WF, WU    0.72 (0.67-0.75)

   Male    Bi-deltoid breadth    BB    WE, WR, WU, HC    0.70 (0.70-0.71)

   Female    Bi-deltoid breadth    BB    FP, FS, WF, WR    0.72 (0.67-0.75)

   WL    Male    Bi-deltoid breadth    BB    WE, WR, WU, HC    0.69 (0.68-0.70)

   Female    Bi-deltoid breadth    BB    FP, FS, WF, WR, HC    0.75 (0.72-0.83)

   VAR    Male    Bi-deltoid breadth    ECU    FP, WE, WF, HC    0.71 (0.68-0.76)

   IEMG    Male    Bi-deltoid breadth    ECU    FP, WE, WF, WU, HC    0.77 (0.73-0.82)

   MAV    Male    Bi-deltoid breadth    ECU    FP, WE, WF, WU, HC    0.77 (0.73-0.82)

   RMS    Male    Bi-deltoid breadth    ECU    FP, WE, WF, WU, HC    0.76 (0.71-0.82)



339

The Relationship between Anthropometric Variables
 

In the literature, however, this problem has 
rarely been evaluated. Sensinger et al., (2009) and 
Jain et al., (2012) found that the performance of 
the EMG pattern recognition systems can degrade 
within hours after initial classifier training. Zhang 
et al., (2007) studied the effect of the number of 
days used as the training data sets. They found that 
if the data used for training the classifier decrease, 
the classification accuracy also decreases based 
on EMG signals recorded from five different days. 
Kaufmann et al., (2010) evaluated the performance 
of five state-of-the-art classifiers: support vector 
machine (SVM), decision tree (DT), the ANN, 
k-NN, and LDA, in the classification of surface 
EMG signals recorded from 21 days. They also 
found that the performance of the EMG pattern 
recognition systems degrades with increasing 
time difference between initial classifier training 
and testing data for all studied classifiers (about 
8%-15%), except the LDA (about 3.6%) using the 
Hudgins’ time domain feature set.

Using the same EMG data recorded during 21 
days, fifty state-of-the-art EMG features in time 
domain and frequency domain were evaluated 
in one of our previous works (Phinyomark et 
al., 2013b). Among the single features, SampEn 
performed the highest classification accuracy 
(93.37%) by training the LDA classifier using 
EMG from only the first day without any retrain-
ing classifier again, followed by ApEn (84.68%) 
and MFL (82.07%). The EMG data were recorded 
from four surface EMG channels on the forearm 
for 21 days with 5-6 trials per day, and in each 
trial 11 wrist and finger motions were performed 
(Kaufmann et al., 2010).

SampEn and ApEn features extracted from 
the FCR muscle have a strong relationship with 
the forward grip reach for female subjects. Both 
relationships share the four motions of FP, FS, 
HO, and HC. In addition to the robustness over 
time, SampEn can use to detect the onset of EMG 
activity while suppressing spurious background 
spikes (Zhang & Zhou, 2012).

Feature Set 4: Muscle Fatigue

Muscle fatigue is generally resulted when a user 
performs the repetitive proposed motions for a 
long time and cannot produce the certain level of 
force with the muscle (De Luca, 1984). Gener-
ally, muscle fatigue results in an increase in EMG 
signal amplitude and a downward shift of EMG 
frequency spectrum (Cifrek, Medved, Tonković, 
& Ostojić, 2009). However, Tkach et al., (2010) 
reported that the effect of muscle fatigue on the 
classification performance of eleven time domain 
features (i.e., WAMP, ZC, SSC, WL, VAR, MAV, 
v-Order, log-Detector, EMG histogram, autore-
gressive coefficients, and cepstrum coefficients) 
is very weak. On the other hand, for frequency 
domain features, MNF and MDF have been hailed 
so far as the gold standard for the muscle fatigue 
detection with surface EMG signals (Al-Mulla, 
Sepulveda, & Colley, 2011).

The experimental results showed that MDF 
does not have a strong relationship with any an-
thropometric variables, whereas MNF extracted 
from the FCR muscle of female subjects has a 
strong relationship with the hand length for four 
motions: FS, WU, HO, and HC at the average 
correlation coefficient |r| of 0.76 (in range of 0.71-
0.87). Further, MNF performs better performance 
in the classification of upper-limb motions than 
MDF and other frequency domain features, i.e., 
peak frequency, frequency ratio, power spectrum 
ratio, and the variance of central frequency (Phin-
yomark et al., 2012c, 2013b). The modified MNF 
can also be used to estimate muscle force like 
time domain features (Phinyomark et al., 2012g; 
Thongpanja, Phinyomark, Phukpattaranont, & 
Limsakul, 2013). If EMG frequency information 
is needed in developing EMG-based MCIs, the 
MNF feature is recommended to be used as an 
optimal frequency domain feature for both the 
classification of actions-based EMG signal and 
the assessment of muscle fatigue during actions.
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SEMI-AUTOMATIC AND AUTOMATIC 
CALIBRATION SYSTEMS

As mentioned in the Introduction section, we 
can use the anthropometric variables to calibrate 
the systems in two different ways: a weighting 
factor for a classifier and a normalizing value 
for EMG features. Both ways can be used for 
adapting the system automatically. However, the 
difference between semi-automatic and automatic 
calibration systems is about the way to measure 
anthropometric variables. From twelve proposed 
anthropometric variables, only two variables: 
forearm and biceps circumferences can measure 
directly from an EMG measuring armband device, 
which is composed of surface EMG electrodes 
and the circumference measurement (Cannan & 
Hu, 2011). They can be used as calibrated inputs 
for an automatic calibration system. On the other 
hand, the remaining variables cannot measure di-
rectly from the EMG measuring armband device. 
These variables need to be measured manually, so 
they can be used as calibrated inputs for a semi-
automatic calibration system. From the experi-
ments, 7 out of the 12 proposed variables have 
strong relationships with EMG features, which 
can be divided into two groups: 1) the bi-deltoid 
breadth, stature, elbow-fingertip length, BMI, 
forward grip reach, and hand length for a semi-
automatic calibration system, and 2) the biceps 
circumference for an automatic calibration system.

Among the seven variables, the bi-deltoid 
breadth has more associations with EMG features 
than other variables. It can be used to calibrate 
many robust EMG features consisting of WAMP, 
MFL, MAV, and RMS. The use of a feature vector 
of WAMP, MFL, and MAV/RMS would result 
in the high classification accuracy under robust 
conditions such as noisy environment, variation in 
muscle contraction effort, and low-and-high-level 
muscle contractions. For instance, using this EMG 
multiple feature set produced 89.97±7.34% accu-
racy when classified the EMG data recorded from 
21 days without the retraining classifier scheme 
(Kaufmann et al., 2010) and only the bi-deltoid 
breadth variable is used to calibrate the recogni-
tion system. However, if the system is not limited 
by a low processor, the multiple robust feature 
sets with respect to all studied robust conditions, 
which consisted of some robust features: WAMP, 
MFL, MAV/RMS, DFA, SampEn, and MNF, 
would result in high classification accuracy and 
could be used across users by calibrating with the 
correspond anthropometric variables. Hence, in 
future works, the stability of the possible multiple 
feature sets with respect to several studied robust 
conditions should be evaluated their performance 
together with the development of calibration 
techniques using the correspond anthropometric 
variables.

On the other hand, only a combination of the 
ZC and the biceps circumference has a strong 
relationship, which can be used for an automatic 

Table 5. Correlation coefficients r  between anthropometric variables and EMG features (SampEn, 
ApEn) in cases of strong and significant relationships (at least 4 movements for a muscle) based on 10 
males and/or 10 females 

    Feature     Gender     Anthropometric 
variable

    Muscle 
position

    Movements
Average r  

min- max( )

    SampEn     Female     Forward grip reach     FCR     FP, FS, WU, HO, HC     0.75 (0.69-0.86)

    ApEn     Female     Forward grip reach     FCR     FP, FS, HO, HC     0.76 (0.67-0.89)
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calibration system. However, due to a rapid in-
creased number of EMG wearable devices and a 
success of classifying motions associated with 
surface EMG recorded from the armband, new 
EMG features and other useful motions/muscles 
should be evaluated their associations with fore-
arm and biceps circumferences in future studies. 
In addition to both the circumferences, hand 
circumference may be a useful anthropometric 
variable, because it is possible to record surface 
EMG signals using electrode sensor ring around 
the hand. This variable was also found that it 
has a strong relationship with the maximal grip 
strength and can use to create a simple model to 
predict the maximal grip strength (Li et al., 2010). 
In order to explore the potential use of automatic 
calibration systems, a review of the EMG pattern 
recognition using electrode arm bands is presented 
in the following sub-section.

EMG Sensor Arm Bands

To measure wrist and finger actions associated 
with surface EMG signals, traditionally, multiple 
surface electrodes need to be placed right above all 
the corresponding muscles. However, it is difficult 
to identify the exact position of the muscles (Ken-
dall et al., 2012; Vigreux, Cnockaert, & Pertuzon, 
1979). Because users typically have no detailed 
knowledge of human anatomy hence the EMG 
system is limited to only medical applications, 
and several muscles are closely together so it is 
not possible to acquire EMG from some specific 
single muscles. Moreover, the placing electrodes 
in this way require more time consuming. Errors 
in electrode placement degrade the classification 
accuracy of EMG-based MCIs (Tkach et al., 2010; 
Young et al., 2011, 2012).

Recent studies have designed and developed 
multichannel sensor rings/armbands to solve this 
problem. In this way, end-users will not have exper-
tise and time to work on the electrode placement. It 
can be clearly seen from a recent commercial EMG 
sensor armband (i.e., MYO armband, see www.

getmyo.com). The MYO armband is composed 
of a large amount of small active electrodes in a 
form of sensor ring and can transfer the EMG data 
over a wireless network, which is feasible for use 
outside the laboratory. This device is easy to set up 
and configure by a user, and provides an always-
available and highly personalized input interface 
with is a low cost (inexpensive). It could be like 
a watch, wristband, jewelry, or concealed beneath 
clothing in the near future, which is unobtrusive. 
Many wireless EMG systems have also become 
commercially available, such as ZeroWire EMG 
(see www.aurion.it), BTS FREEEMG 100RT/300 
(see www.btsbioengineering.com), Wave Plus 
EMG (see www.cometasystems.com), and MYON 
320 (see www.myon-prophysics.ch).

There are two useful positions on the forearm 
that have been proposed in related works on EMG 
pattern recognition:

1.  Lower forearm positions, i.e., around the 
wrist (Rhee, You, & Shin, 2011; Tang, Liu, 
Lv, & Sun, 2012; You, Rhee, & Shin, 2010, 
2011);

2.  Upper forearm positions, i.e., below the 
elbow (Andews, Morin, & McLean, 2009; 
Benko et al., 2009; Du, Lin, Shyu, & Chen, 
2010; Du, Shyu, & Hu, 2006; Khushaba & 
Kodagoda, 2012; Khushaba et al., 2013; 
Mogk & Keir, 2003; Saponas et al., 2008; 
Shyu, Chen, Tatn, & Hu, 2002; Smith, 
Huberdeau, Tenore, & Thakor, 2009; Smith 
et al., 2008; Tenore et al, 2007, 2009).

For the placement of the EMG electrodes 
around the forearm, there are two possible ways:

1.  An adapted scheme, i.e., the distances be-
tween every two channels of electrodes are 
changed and dependent on the forearm sizes 
of the users (Andews et al., 2009; Benko et 
al., 2009; Saponas et al., 2008; Tang et al., 
2012);

http://www.getmyo.com
http://www.getmyo.com
http://www.aurion.it
http://www.btsbioengineering.com
http://www.cometasystems.com
http://www.myon-prophysics.ch


342

The Relationship between Anthropometric Variables
 

2.  A fixed scheme, i.e., the distances between 
every two channels of electrodes are fixed, 
except one pair of electrodes in which the 
distance is varied depending on forearm 
circumference, e.g. one pair across the ulnar 
border (Du et al., 2006, 2010; Mogk & Keir, 
2003; Shyu et al., 2002; Smith et al., 2008, 
2009). In this scheme, however, there is no 
guarantee that electrodes are placed over the 
same muscles in all users.

For lower forearm positions, the EMG elec-
trodes are designed to place on one side of the 
forearm: anterior forearm or posterior forearm, as 
a half wristband. In You et al., (2010, 2011) and 
Rhee et al., (2011), four EMG channels are placed 
on the anterior side of the forearm (flexor muscles). 
The recognition system is used to classify all five 
single finger motions and three multi-finger mo-
tions (index-middle fingers, middle-ring fingers, 
and hand close) and provides the average accuracy 
of about 95%-97%. On the other hand, Tang et 
al., (2012) used six EMG channels placed on the 
posterior side of the forearm (extensor muscles) 
instead of the anterior forearm to recognize three 
single finger motions (thumb, index finger, middle 
finger), and eight multi-finger motions. The suc-
cess recognition rate is higher than 89%. Tang et 
al., (2012) mentioned that six channels are enough 
to cover the circumference of the posterior side 
and cover all useful extensor muscles: extensor 
digitorum, extensor pollicis longus and brevis, 
extensor indicis, and extensor digiti minimi.

For upper forearm positions, the EMG elec-
trodes are designed to place on both sides of the 
forearm. The number of EMG channels placed in 
a narrow uniform band/ring, which is proposed 
in the literature, is seven sensors (Du et al., 2006, 
2010; Mogk & Keir, 2003; Shyu et al., 2002) and 
eight sensors (Andrews et al., 2009; Khushaba & 
Kodagoda, 2012; Khushaba et al., 2013; Saponas 
et al., 2008; Smith et al., 2009). When multiple 
sets of sensors were placed around the forearm, 
reasonable EMG signals with useful information 

could be acquired from the armband even the 
sensors are only approximately placed (Saponas 
et al., 2008). The landmark sensor armband is 
placed below the elbow in several conditions, e.g. 
approximately one third of the distance from the 
proximal end of a line from medial epicondyle 
to the distal head of the radius (Andrews et al., 
2009; Mogk & Keir, 2003), or approximately two 
inches or five centimeters below the elbow (Du 
et al., 2006, 2010; Shyu et al., 2002; Smith et al., 
2009). For the landmark of the starting electrode 
pair, there are several ways, such as placing just 
superior to the ulna (Andrews et al., 2009) or over 
the flexor carpi radialis (Mogk & Keir, 2003). On 
average, the proposed systems achieve more than 
90%-95% accuracy.

Tenore et al., (2009, 2007) reported that there 
is no statistically significant difference (p < 0.05) 
in the classification accuracy using 32 electrodes 
placed on upper and lower forearm (6 sensor rings) 
and 19 electrodes placed on only upper forearm 
(3 sensor rings). The accuracy in classifying ten 
single flexed and extended finger motions is 
greater than 90% even in a transradial amputee. It 
means that the multi-channel sensor ring may be a 
kind of redundant sensor. Mogk and Keir (2003) 
found that the EMG signal amplitudes between 
adjacent electrode pairs (3 cm apart) share 40% 
common signal (or crosstalk), and the common 
signal is reduced to about 10% at 6 cm spacing 
and 2.5% at 9 cm, while only 2% common signal 
or crosstalk is found between flexor and exten-
sor electrode pairs. On the other hand, we could 
place a similar sensor band on the other forearm 
to provide even more input possibilities (Saponas 
et al., 2008).

CONCLUSION AND FUTURE WORKS

This chapter presents the relationships between 
robust EMG features and twelve related anthro-
pometric variables for MCIs. In feature extraction 
view point, the robust EMG feature is recom-
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mended for each feature set 1-4, which is based 
on robust conditions in the context of real-world 
requirements. It can be summarized, as the fol-
lowing:

1.  WAMP is the most robust feature against 
a variety of noises, i.e., random noise and 
power-line interference, followed by ZC. 
WAMP is also an optimal feature to estimate 
muscle force. It has a strong relationship 
with bi-deltoid breadth.

2.  DFA, a fractal (complexity) feature, is the 
suitable feature for the classification of low-
level EMG signals, and MFL and MAV/
RMS are the optimal magnitude features 
for the classification of high-level EMG 
signals. DFA has a strong relationship with 
the stature and the elbow-fingertip length 
variables, whereas MFL and MAV/RMS 
have strong relationships with bi-deltoid 
breadth.

3.  SampEn is the most robust feature for the 
variability of the muscle contraction over 
time. It is not only reliable for long-term 
usage but also for noise tolerance, i.e., spuri-
ous background spikes. SampEn has a strong 
relationship with forward grip reach.

4.  MNF is used as a standard muscle fatigue 
detector. It is reliable for a noisy environment 
and can provide additional information in 
frequency domain. It has a strong relation-
ship with hand length.

The optimal robust features mentioned above 
have strong relationships with several experi-
mental anthropometric variables, i.e., biceps cir-
cumference, bi-deltoid breadth, standing height, 
elbow-fingertip length, forward grip reach, and 
hand length. These variables can be used to 
calibrate the MCI systems in two ways. The first 
way is a manual calibrated input system or a semi-
automatic calibration, which can be implemented 
using all anthropometric variables. In this way, the 
system can develop using many robust features, 

for instance, a robust multiple EMG feature set 
may consist of WAMP, DFA, MFL, MAV/RMS, 
SampEn, and MNF, and each feature can be cali-
brated by its related anthropometric variables. The 
second way is as an auto-calibration system. Based 
on this condition, forearm and bicep circumfer-
ences are two out of twelve variables that can be 
measured directly from wearable EMG device and 
used automatically to adapt the recognition system. 
However, in our experiments (eight upper-limb 
motions and five muscle positions) only the ZC 
feature has a strong and significant relationship 
with the biceps circumference. In future works, 
new features and/or other motions and muscles 
should be evaluated their associations with an-
thropometric variables.

In addition to the measured anthropometric 
data, we mentioned in the Introduction Section that 
it is possible to get the estimated anthropometric 
data from the published anthropometric tables. So 
in future works the estimated anthropometric data 
should be evaluated their relationships with EMG 
features too. If there are the strong and significant 
relationships between them, it means that we can 
add the anthropometric tables into the classifica-
tion system and use this information to calibrate 
the system without measuring the anthropomet-
ric variables directly from the user. Further, the 
calibration techniques using the anthropometric 
variables: a weighting factor for a classifier and/
or a normalizing value for EMG features should 
be developed and evaluated in future works. A 
simple idea for using anthropometric variables 
as a normalizing value for EMG features can be 
found in our preliminary study (Phinyomark et 
al., 2013a).
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Multifunction Myoelectric Control: An 
advanced technique concerned with the prepro-
cessing, feature extraction, dimensionality reduc-
tion, and pattern classification of myoelectric (or 
EMG) signals to control external devices with 
many functions.

Muscle-Computer Interface: An interface 
between users based on EMG signals via muscles 
and computers.
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