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Preface

The first time I heard about image reconstruction was twenty years ago I
came to the University of Utah as a post-doctoral fellow in the Department
of Radiology. Dr. Grant Gullberg and Dr. Rolf Clackdoyle gave many lec-
tures on image reconstruction and I took notes. Even today I still go back
to those notes from time to time. I benefit from those notes significantly.
This book is complied together with parts of those notes and some current
research papers with most mathematical proofs removed. I am grateful to
Dr. Gullberg and Dr. Clackdoyle for introducing me to the wonderful world
of image reconstruction. I appreciate Dr. Michel Defrise, Dr. Ge Wang, and
Dr. Guang-Hong Chen for their helpful suggestions. I also like to thank my
colleagues in the department and in other institutions. I would especially like
to thank Kathy Gullberg and Jacob Piatt for proof-reading the drafts.

This tutorial text introduces the classical and modern image reconstruc-
tion technologies to the general audience. It covers the topics in two-
dimensional (2D) parallel-beam and fan-beam imaging, three-dimensional
(3D) parallel ray, parallel plane, and cone-beam imaging. Both analytical
and iterative methods are presented. The applications in X-ray CT, SPECT
(single photon emission computed tomography), PET (positron emission
tomography), and MRI (magnetic resonance imaging) are also discussed.
Contemporary research results in exact ROI (region-of-interest) reconstruc-
tion with truncated projections, Katsevich’s cone-beam filtered backprojec-
tion algorithm, and reconstruction with highly undersampled data with
l0-minimization are also included in this book.

This book is written in an easy-to-read style, which lets the diagrams do
the most talking. The readers who intend to get into medical image recon-
struction will gain the general knowledge of the field in a painless way. I hope
you enjoy reading it as much as I enjoy writing (and drawing) it. The first
time reader can skip the more challenging materials marked by the “∗” sign
without interrupting the flow of this book.

Gengsheng Lawrence Zeng
Salt Lake City

August 2009





Contents

1 Basic Principles of Tomography · · · · · · · · · · · · · · · · · · · · · · 1
1.1 Tomography · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 1

1.2 Projection · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 3

1.3 Image Reconstruction· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 6

1.4 Backprojection· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 8
∗1.5 Mathematical Expressions · · · · · · · · · · · · · · · · · · · · · · · · · · 10

1.5.1 Projection · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 10

1.5.2 Backprojection· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 11

1.5.3 The Dirac δ-function · · · · · · · · · · · · · · · · · · · · · · · · · 12

1.6 Worked Examples · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 14

1.7 Summary· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 17

Problems· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 18

References · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 19

2 Parallel-Beam Image Reconstruction · · · · · · · · · · · · · · · · · · 21
2.1 Fourier Transform · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 21

2.2 Central Slice Theorem · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 22

2.3 Reconstruction Algorithms · · · · · · · · · · · · · · · · · · · · · · · · · · 25

2.3.1 Method 1· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 25

2.3.2 Method 2· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 26

2.3.3 Method 3· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 27

2.3.4 Method 4· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 28

∗ The first time reader can skip the more challenging materials marked by the “∗”
sign without interrupting the flow of this book.



x Contents

2.3.5 Method 5· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 28

2.4 A Computer Simulation · · · · · · · · · · · · · · · · · · · · · · · · · · · · 30
∗2.5 ROI Reconstruction with Truncated Projections · · · · · · · · · · 31
∗2.6 Mathematical Expressions · · · · · · · · · · · · · · · · · · · · · · · · · · 36

2.6.1 The Fourier Transform and Convolution · · · · · · · · · · · 36

2.6.2 The Hilbert Transform and the Finite Hilbert

Transform · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 36

2.6.3 Proof of the Central Slice Theorem · · · · · · · · · · · · · · · 39

2.6.4 Derivation of the Filtered Backprojection

Algorithm · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 40

2.6.5 Expression of the Convolution Backprojection

Algorithm · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41

2.6.6 Expression of the Radon Inversion Formula · · · · · · · · · 41

2.6.7 Derivation of the Backprojection-then-Filtering

Algorithm · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 41

2.7 Worked Examples · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 42

2.8 Summary· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 45

Problems· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 46

References · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 46

3 Fan-Beam Image Reconstruction· · · · · · · · · · · · · · · · · · · · · · 49

3.1 Fan-Beam Geometry and Point Spread Function · · · · · · · · · · 49

3.2 Parallel-Beam to Fan-Beam Algorithm Conversion · · · · · · · · · 52

3.3 Short Scan· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 54
∗3.4 Mathematical Expressions · · · · · · · · · · · · · · · · · · · · · · · · · · 56

3.4.1 Derivation of a Filtered Backprojection Fan-Beam

Algorithm · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 57

3.4.2 A Fan-Beam Algorithm Using the Derivative and the

Hilbert Transform · · · · · · · · · · · · · · · · · · · · · · · · · · · 58

3.5 Worked Examples · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 60

3.6 Summary· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 63

Problems· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 64

References · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 65



Contents xi

4 Transmission and Emission Tomography · · · · · · · · · · · · · · · 67

4.1 X-Ray Computed Tomography · · · · · · · · · · · · · · · · · · · · · · · 67

4.2 Positron Emission Tomography and Single Photon Emission

Computed Tomography · · · · · · · · · · · · · · · · · · · · · · · · · · · · 71

4.3 Attenuation Correction for Emission Tomography · · · · · · · · · 75
∗4.4 Mathematical Expressions · · · · · · · · · · · · · · · · · · · · · · · · · · 79

4.5 Worked Examples · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 81

4.6 Summary· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 83

Problems· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 83

References · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 84

5 3D Image Reconstruction · · · · · · · · · · · · · · · · · · · · · · · · · · · · 87

5.1 Parallel Line-Integral Data · · · · · · · · · · · · · · · · · · · · · · · · · · 87

5.1.1 Backprojection-then-Filtering · · · · · · · · · · · · · · · · · · · 90

5.1.2 Filtered Backprojection · · · · · · · · · · · · · · · · · · · · · · · 91

5.2 Parallel Plane-Integral Data · · · · · · · · · · · · · · · · · · · · · · · · · 92

5.3 Cone-Beam Data · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 94

5.3.1 Feldkamp’s Algorithm · · · · · · · · · · · · · · · · · · · · · · · · 95

5.3.2 Grangeat’s Algorithm · · · · · · · · · · · · · · · · · · · · · · · · · 96

5.3.3 Katsevich’s Algorithm · · · · · · · · · · · · · · · · · · · · · · · · 97
∗5.4 Mathematical Expressions · · · · · · · · · · · · · · · · · · · · · · · · · · 101

5.4.1 Backprojection-then-Filtering for Parallel

Line-Integral Data · · · · · · · · · · · · · · · · · · · · · · · · · · · 102

5.4.2 Filtered Backprojection Algorithm for Parallel

Line-Integral Data · · · · · · · · · · · · · · · · · · · · · · · · · · · 103

5.4.3 3D Radon Inversion Formula· · · · · · · · · · · · · · · · · · · · 104

5.4.4 3D Backprojection-then-Filtering Algorithm for

Radon Data · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 104

5.4.5 Feldkamp’s Algorithm · · · · · · · · · · · · · · · · · · · · · · · · 105

5.4.6 Tuy’s Relationship · · · · · · · · · · · · · · · · · · · · · · · · · · · 106

5.4.7 Grangeat’s Relationship · · · · · · · · · · · · · · · · · · · · · · · 108

5.4.8 Katsevich’s Algorithm · · · · · · · · · · · · · · · · · · · · · · · · 111

5.5 Worked Examples · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 117



xii Contents

5.6 Summary· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 119

Problems· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 120

References · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 121

6 Iterative Reconstruction· · · · · · · · · · · · · · · · · · · · · · · · · · · · · 125

6.1 Solving a System of Linear Equations · · · · · · · · · · · · · · · · · · 125

6.2 Algebraic Reconstruction Technique · · · · · · · · · · · · · · · · · · · 130

6.3 Gradient Descent Algorithms · · · · · · · · · · · · · · · · · · · · · · · · 131

6.4 Maximum-Likelihood Expectation-Maximization

Algorithms · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 134

6.5 Ordered-Subset Expectation-Maximization Algorithm · · · · · · 135

6.6 Noise Handling · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 136

6.6.1 Analytical Methods — Windowing · · · · · · · · · · · · · · · · 136

6.6.2 Iterative Methods — Stopping Early · · · · · · · · · · · · · · 137

6.6.3 Iterative Methods — Choosing Pixels · · · · · · · · · · · · · · 138

6.6.4 Iterative Methods — Accurate Modeling· · · · · · · · · · · · 140

6.7 Noise Modeling as a Likelihood Function · · · · · · · · · · · · · · · · 141

6.8 Including Prior Knowledge · · · · · · · · · · · · · · · · · · · · · · · · · 143
∗6.9 Mathematical Expressions · · · · · · · · · · · · · · · · · · · · · · · · · · 145

6.9.1 ART · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 145

6.9.2 Conjugate Gradient Algorithm · · · · · · · · · · · · · · · · · · 146

6.9.3 ML-EM · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 148

6.9.4 OS-EM · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 151

6.9.5 Green’s One-Step Late Algorithm · · · · · · · · · · · · · · · · 151

6.9.6 Matched and Unmatched Projector/Backprojector

Pairs · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 151
∗6.10 Reconstruction Using Highly Undersampled Data

with l0 Minimization · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 153

6.11 Worked Examples· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 156

6.12 Summary · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 167

Problems· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 168

References · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 170



Contents xiii

7 MRI Reconstruction · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 175
7.1 The “M” · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 175

7.2 The “R” · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 177

7.3 The “I” · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 180

7.3.1 To Obtain z-Information—Slice Selection · · · · · · · · · · 180

7.3.2 To Obtain x-Information— Frequency Encoding · · · · · 182

7.3.3 To Obtain y-Information— Phase Encoding· · · · · · · · · 183
∗7.4 Mathematical Expressions · · · · · · · · · · · · · · · · · · · · · · · · · · 185

7.5 Worked Examples · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 188

7.6 Summary· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 190

Problems· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 191

References · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 192

Index · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · 193





1 Basic Principles of Tomography

This is an introductory chapter, which presents the fundamental concepts
in tomography. It first defines what the tomography is, and shows how a
tomographic image can obtained from its measurements using two simple
examples. The concept of projection is then explained. Next, the filtered back-
projection image reconstruction method is introduced using a point source
example. Finally, the concept of backprojection is discussed.

1.1 Tomography

The Greek word tomos means a section, a slice, or a cut. Tomography is the
process of imaging a cross section. For example, if you are given a watermelon
and would like to see inside, the easiest way to do so is to cut it open (see
Figure 1.1). Clearly, this approach to obtain a cross-section image is not a

Fig. 1.1. Cutting open to see what is inside.
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good idea in medicine. Nobody wants to be cut open in order to see what is
inside.

Let us look at another example. You are visiting a small park, which is
closed for maintenance. You walk around the park and take a few pictures
of it. After you get home, you can use your pictures to make a map of the
park. To make your life easier, let us assume that there are two large trees in
the park, and you take two pictures from the east and the south, as shown
in Figure 1.2 Left. Using these two pictures, you can map out where these
two trees are, as shown in Figure 1.2 Right. This can be done by positioning
the pictures at the original orientations at which the pictures were taken,
drawing a line from each tree, and finding the intersections. If you have
enough pictures, it is not hard to find out where the trees are.

Fig. 1.2. Reconstruct a map from two pictures.

Tomography is a mathematical problem. Let us do a fun mathematical
exercise here. We have a 2×2 matrix. We do not tell you what it is yet. Here
are the hints: The sum of the first row is 5, the sum of the second row is 4,
the sum of the first column is 7, and the sum of the second column is 2 (see
Figure 1.3). Now, you figure out what this 2× 2 matrix is.

You can solve this puzzle by setting up a system of linear equations with
the matrix entries as unknowns:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

x1 + x2 = 5,

x3 + x4 = 4,

x1 + x3 = 7,

x2 + x4 = 2.

(1.1.1)

Solving these equations, you will get
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Fig. 1.3. A 2× 2 matrix puzzle.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x1 = 3,

x2 = 2,

x3 = 4,

x4 = 0.

(1.1.2)

Congratulations! You have just mathematically solved a tomography prob-
lem. Usually, a tomography problem is solved mathematically, hence the term
CT(computed tomography). The row sum or column sum in this example can
be generalized as a ray sum, a line integral , or a projection. The procedure to
produce a tomographic image from projections is called image reconstruction.

What if the tomography problem gets more complicated? If there are
many more trees in the park, taking only two pictures may not provide us
enough information to map out the park. If the matrix size is larger than
2 × 2, the row sum and column sum alone do not form enough equations to
solve for the matrix entries.

We need more views! For the matrix identification case, we need to sum
the matrix diagonally at various angles. In turn, more sophisticated mathe-
matics is required to solve the tomography problem.

1.2 Projection

In order to understand the concept of projection (ray sum, line integral, or
Radon transform), we will present more examples here.

In the first example, the object is a uniform disc on the x-y plane, the



4 1 Basic Principles of Tomography

center of the disc is at the origin, and the (linear) density of the disc is ρ

(see Figure 1.4). The projection (i.e., the line integral) of this object can be
calculated as the chord length t times the linear density ρ. That is

p(s) =

{
ρt = 2ρ

√
R2 − s2, |s| < R,

0, |s| � R.
(1.2.1)

Fig. 1.4. The line integral across the disc is the length of a chord times the density.

In this particular example, the projection p(s) is the same for any view
angle θ, which is the orientation of the detector.

If the object is more complicated, the projection p(s, θ) is angle θ depen-
dent (see Figure 1.5).

In the next example we use a point source on the y-axis to further illustrate
the angle θ dependency of the projection p(s, θ) (see Figure 1.6). Here we
pay attention to the location s of the spike on the 1D detector, which can be
evaluated as

s = r sin θ. (1.2.2)

This is a sine function with respect to θ. If you display this point source
projection data set p(s, θ) in the s-θ coordinate system (see Figure 1.6 Right),
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Fig. 1.5. The projections are usually different at a different view-angle.

you will see the trajectory of a sine wave. Because of this observation, people
refer to the projection data set as a sinogram.

Fig. 1.6. A sinogram is a representation of the projections on the s-θ plane.

The fourth example is a discrete object of a 2× 2 matrix, similar to that
in Figure 1.3. The detector is also discrete with 4 detector bins (see Figure
1.7). Each matrix element represents a uniform pixel, and xi (i = 1, 2, 3, 4) is
the linear density in the ith pixel. Here we would like to find the line-integral
p(s, θ) of the matrix at a view angle θ. The quantity aij (i = 1, 2, 3, 4, and
j = 1, 2, 3, 4) is the segment length of the path towards the detector bin i

within the pixel j, and aij = 0 if the jth pixel is not on the path to the ith
detector bin. The projection p(i, θ) is calculated as

p(i, θ) = ai1x1 + ai2x2 + ai3x3 + ai4x4, i = 1, 2, 3, 4. (1.2.3)
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Fig. 1.7. The projections are weighted by the line-length within each pixel.

1.3 Image Reconstruction

In this section, we illustrate the common image reconstruction strategy by
considering a point source. Let us consider an empty two-dimensional (2D)
plane with an x-y coordinate system, and we place a small dot with a value,
say one, somewhere on this plane and not necessarily at the origin (see Figure
1.8). We now imagine that there is a detector (e.g., a camera) rotating around
the origin, acquiring images of projections. At a particular angle θ, we denote
the projection as p(s, θ), where s is the coordinate on the detector.

Fig. 1.8. Projection of a point source object.
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The projection p(s, θ) is formed by drawing a line across the x-y plane,
orthogonal to the detector, and meeting on the detector at location s. Then
we evaluate the line integral along this line, and the integral value is p(s, θ).
In our example, if the line does not touch the point source, p(s, θ) is zero. If
the line passes through the point source, p(s, θ) is one.

Now we are going to reconstruct the image using the projections p(s, θ).
Our strategy is similar to that in the tree-map example in Section 1.1, where
we drew a line from each tree on the detector and found the location of the
intersections. In image reconstruction, we not only need to find the location
but also the intensity value of the object of interest.

As shown in Figure 1.9 (a), a number of projections are taken from the
point source at various view angles. We attempt to reconstruct the point
source image in the following manner.

When you look at the projections p(s, θ) at one view θ, you see a spike of
intensity one. This spike is the sum of all activity along the projection path.
To reconstruct the image, you must re-distribute the activity in the spike
back to its original path. The problem is that you do not know where you
need to put more activity along the path and where you put less. Before you
give up, you decide to put equal amounts of activity everywhere along the
path, and the amount is the magnitude of the projection spike [see Figure
1.9 (b)]. If you do that for few more angles, you will have the situation as
shown in Figure 1.9 (c). Due to the superposition effect, there will be a tall
spike in the x-y plane at the location of the point source.

What you have just done is a standard mathematical procedure called
backprojection. If you backproject from all angles from 0◦ to 360◦ you will
produce an image similar to the one shown in Figure 1.9 (d).

After backprojection, the image is still not quite the same as the orig-
inal image but rather is a blurred version of it. To eliminate the blurring,
we introduce negative “wings” around the spike in the projections before
backprojection [see Figure 1.9 (e)]. The procedure of adding negative wings
around the spike is called filtering. The use of the negative wings results in a
clear image [see Figure 1.9 (f)]. This image reconstruction algorithm is very
common and is referred to as a Filtered Backprojection (FBP) algorithm.

In this section, we use a point source to illustrate the usefulness of filtering
and backprojection with many views in image reconstruction. We must point
out that if the object is a point source, we only need two views to reconstruct
the image, just like the map making example in Section 1.1.
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Fig. 1.9. Reconstruction of a point source image by backprojecting unfiltered and
filtered data.

1.4 Backprojection

One must first define projection before backprojection can be defined. We
must make it clear that backprojection is not the inverse of projection. Back-
projection alone is not sufficient to reconstruct an image. After you backpro-
ject the data, you do not get the original image back. We will illustrate this
point by a simple discrete 2× 2 problem below (see Figure 1.10).

The original image is defined by x1 = 3, x2 = 2, x3 = 4, and x4 = 0.
The associated projections are p(1, 0◦) = 7, p(2, 0◦) = 2, p(1, 270◦) = 5, and
p(2, 270◦) = 4. The projections are formed one view at a time (see Figure
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Fig. 1.10. View-by-view projection.

1.10). The backprojected image is also formed one view at a time. The final
backprojected image is the summation of the backprojections from all views,
as shown in Figure 1.11. Please note that the backprojected image is different
from the original image.

Fig. 1.11. View-by-view backprojection, then sum all backprojected images.
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Even though the backprojected image is not the original image, they are
closely related.Their relationshipwill be further discussed in the next chapter.

∗1.5 Mathematical Expressions

In every chapter we dedicate a section especially to mathematical expres-
sions. These mathematical expressions help the advanced readers to better
grasp the main concepts which are discussed in the chapter. Mathematical
expressions of projection and backprojection for 2D parallel-beam imaging
are presented in this section. The Dirac δ function has an important role in
analytic algorithm development; its definition and some properties are also
covered in this section.

1.5.1 Projection

Let f(x, y) be a density function in the x-y plane. The projection (ray sum,
line integral, or Radon transform) p(s, θ) has many equivalent expressions
such as

p(s, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − s)dxdy, (1.5.1)

p(s, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x · θ − s)dxdy, (1.5.2)

p(s, θ) =
∫ ∞

−∞
f(s cos θ − t sin θ, s sin θ + t cos θ)dt, (1.5.3)

p(s, θ) =
∫ ∞

−∞
f(sθ + tθ⊥)dt, (1.5.4)

p(s, θ) =
∫ ∞

−∞
fθ(s, t)dt, (1.5.5)

where x = (x, y), θ = (cos θ, sin θ), θ⊥ = (− sin θ, cos θ), δ is the Dirac
delta function, and fθ is the function f rotated by θ clockwise. We assume
that the detector rotates counter-clockwise around the object or that the
object rotates clockwise while the detector stays still. The coordinate system
is shown in Figure 1.12.
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Fig. 1.12. Coordinate system for 2D parallel-beam imaging.

1.5.2 Backprojection

Backprojection is the adjoint of projection. Here “adjoint” is a mathematical
term. It refers to the conjugate transpose in linear algebra. For a real matrix
A, its adjoint is simply the transposed matrix AT. In the discrete case as in
Section 1.4, the projection is

P = AX, (1.5.6)

where X represents an image, but in a column form. For example, the 2× 2
image is expressed as (see Figures 1.3 or 1.10)

X = [x1, x2, x3, x4]T. (1.5.7)

The column matrix P represents the projections. If we use the example
in Figure 1.10,

P = [p(1, 0◦), p(2, 0◦), p(1, 270◦), p(2, 270◦)]T = [7, 2, 5, 4]T. (1.5.8)

The matrix A is the projection operator. Its entries aij are defined in
Figure 1.7. Using the example of Figure 1.10, the backprojection of P can be
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calculated using matrix multiplication as

B = ATP =

⎡
⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

⎤
⎥⎥⎥⎥⎦

T ⎡
⎢⎢⎢⎢⎣

7

2

5

4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

1 0 1 0

0 1 1 0

1 0 0 1

0 1 0 1

⎤
⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

7

2

5

4

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

12

7

11

6

⎤
⎥⎥⎥⎥⎦ ,

(1.5.9)

which is the same as the result obtained “graphically” in Figure 1.11.
For the continuous case, the backprojection image b(x, y) can be expressed

in the following equivalent ways:

b(x, y) =
∫ π

0

p(s, θ)
∣∣
s=x cos θ+y sin θ

dθ, (1.5.10)

b(x, y) =
∫ π

0

p(s, θ)
∣∣
s=x·θdθ, (1.5.11)

b(x, y) =
∫ π

0

p(x · θ, θ)dθ, (1.5.12)

b(x, y) =
1
2

∫ 2π

0

p(x cos θ + y sin θ, θ)dθ. (1.5.13)

1.5.3 The Dirac δ-function

The Dirac δ-function is not a regular function that maps a value in the domain
to a value in the range. The Dirac δ-function is a generalized function or a
distribution function. The δ-function can be defined in many ways. Here,
we use a series of Gaussian functions to define the δ-function. Each of the
Gaussian functions (see Figure 1.13) has a unit area underneath its curve,
and as the parameter n gets larger, the curve gets narrower and taller (see
Figure 1.13): (n

π

)1/2

e−nx2
. (1.5.14)

Let f(x) be a smooth function that is differentiable everywhere with any
order and lim

x→∞xNf(x) = 0 for all N . Then the δ-function is defined implicitly
as

lim
n→∞

∫ ∞

−∞

(n

π

)1/2

e−nx2
f(x)dx =

∫ ∞

−∞
δ(x)f(x)dx = f(0). (1.5.15)
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Fig. 1.13. Using a train of Gaussian functions to define the δ-function.

The δ-function has some properties:∫ ∞
−∞

δ(x − a)f(x)dx =
∫ ∞

−∞
δ(x)f(x + a)dx = f(a), (1.5.16)∫ ∞

−∞
δ(ax)f(x)dx =

1
|a|f(0), (1.5.17)

∫ ∞
−∞

δ(n)(x)f(x)dx = (−1)nf (n)(0) [the nth order derivative],

(1.5.18)

δ(g(x))f(x) =
∑

n

1
|g′(λn)|δ(x− λn), (1.5.19)

where λn’s are the zeros of g(x).
In 2D and 3D cases, δ(x) = δ(x)δ(y) and δ(x) = δ(x)δ(y)δ(z), respec-

tively. In the last property, |g′| will be replaced by |grad(g)| =√(
g

x

)2

+
(

g

y

)2

and |grad(g)| =

√(
g

x

)2

+
(

g

y

)2

+
(

g

z

)2

, respec-

tively, in 2D and 3D.
In 2D imaging, we use a 2D δ-function δ(x − x0) to represent a point

source at location x = x0. The Radon transform of f(x) = δ(x − x0) =
δ(x− x0)δ(y − y0) is given as

p(s, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x)δ(x · θ − s)dx, (1.5.20)

p(s, θ) =
∫ ∞

−∞

∫ ∞

−∞
δ(x− x0)δ(y − y0)δ(x cos θ + y sin θ − s)dxdy,

(1.5.21)
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p(s, θ) =
∫ ∞

−∞
δ(y − y0)

[∫ ∞

−∞
δ(x− x0)δ(x cos θ + y sin θ − s)dx

]
dy,

(1.5.22)

p(s, θ) =
∫ ∞

−∞
δ(y − y0)δ(x0 cos θ + y sin θ − s)dy, (1.5.23)

p(s, θ) = δ(x0 cos θ + y0 sin θ − s). (1.5.24)

which is a sinogram similar to that shown in Figure 1.6.

1.6 Worked Examples

Example 1 If you see two separate trees on both views, can you uniquely
reconstruct the map of trees (see Figure 1.14)? If not, you may need to take
more pictures. If you are only allowed to take one more picture, at which
direction should you take the picture?

Fig. 1.14. Two trees can be seen on both views.

Solution

Both of the following two situations can satisfy the two views:

Fig. 1.15. Two potential solutions for the mapping problem.
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If we take another picture at 45◦, we are able to solve the ambiguity.

Example 2 Find the projections of a uniform disc. The center of the
disc is not at the center of detector rotation.

Solution

We already know that if the center of the disc is at the center of detector
rotation, the projection can be evaluated as

p(s) =

{
ρt = 2ρ

√
R2 − s2, |s| < R;

0, |s| � R.
(1.6.1)

Without loss of generality, we now assume that the center of the disc is
on the positive x-axis with the coordinates (r, 0).

Fig. 1.16. Imaging of an off-centered disc.

For this new setup, we need to shift the projection data on the s-axis.
The shifting distance is r cos θ. That is

p(s) =

{
2ρ
√

R2 − (s− r cos θ)2, |s− r cos θ| < R;

0, |s− r cos θ| � R.
(1.6.2)

Example 3∗ Show that the parallel-beam data redundancy condition
is p(s, θ) = p(−s, θ + π).

Proof

Using the projection definition in Section 1.5, we have

p(−s, θ + π) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos(θ + π) + y sin(θ + π)− (−s))dxdy

=
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(−x cos θ − y sin θ + s)dxdy
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=
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(−(x cos θ + y sin θ − s))dxdy

=
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − s)dxdy

= p(s, θ). (1.6.3)

(The δ function is an even function.)

Example 4∗ Show that the point spread function of the projection/
backprojection operator is 1/r, where r =

∥∥x− x0

∥∥ and the point source
object is f(x) = δ(x− x0).

Proof

Using the definition of the backprojection, we have

b(x) =
∫ π

0

p(x · θ, θ)dθ =
∫ π

0

∫ ∞

−∞
f((x · θ)θ + tθ⊥)dtdθ. (1.6.4)

We realize that the line integral
∫ ∞

−∞
f((x ·θ)θ + tθ⊥)dt is along the line

that passes through the point x and in the direction of θ⊥ (see Figure 1.17),
we have ∫ ∞

−∞
f((x · θ)θ + tθ⊥)dt =

∫ ∞

−∞
f(x− t̂θ⊥)dt̂. (1.6.5)

Fig. 1.17. The line integral is performed on a line passing through the backprojec-
tion point.

Therefore the projection/backprojection image can be obtained as

b(x) =
∫ π

0

∫ ∞

−∞
f(x− t̂θ⊥)dt̂dθ. (1.6.6)
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Let x̂ = t̂θ⊥ with ‖x̂‖ =
∣∣t̂∣∣, dx̂ =

∣∣t̂∣∣dt̂dθ. The above expression becomes

b(x) =
∫ ∞

−∞

∫ ∞

−∞

f(x− x̂)
‖x̂‖ dx̂. (1.6.7)

Let f(x) = δ(x − x0). The point spread function of the projection/
backprojection operator is

b(x) =
∫ ∞

−∞

∫ ∞

−∞

δ(x− x0 − x̂)
‖x̂‖ dx̂ =

1
‖x− x0‖ =

1
r
. (1.6.8)

Example 5∗ Evaluate
∫ ∞

−∞
δ(e2(x−3)(x+4) − 1)f(x)dx.

Solution

Let
g(x) = e2(x−3)(x+4) − 1. (1.6.9)

Solving g(x) = e2(x−3)(x+4) − 1 = 0, we obtain the zeros of g(x) as

λ1 = 3 and λ2 = −4. (1.6.10)

The derivative of g(x) is

g′(x) = 2[(x− 3) + (x + 4)]e2(x−3)(x+4) = 2(2x + 1)e2(x−3)(x+4). (1.6.11)

Thus, at the two zeros of g(x), we have

g′(3) = 14 and g′(−4) = −14. (1.6.12)

We have ∫ ∞

−∞
δ(e2(x−3)(x+4) − 1)f(x)dx

=
∫ ∞

−∞

δ(x− 3)
|14| f(x)dx +

∫ ∞

−∞

δ(x + 4)
|14| f(x)dx

=
f(3) + f(−4)

14
. (1.6.13)

1.7 Summary

• Tomography is a process of taking projection data and converting the
data into cross-section images. Projection data from multiple views are
required.
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• A projection is a line integral (or ray-sum, Radon transform) of an
object. Projection data are acquired with detectors. Objects overlap on
the detectors.

• Backprojection is a superposition procedure and it sums the data from all
projection views. Backprojection evenly distributes the projection domain
data back along the same lines from which the line-integrals were formed.

• Image reconstruction is a mathematical procedure that dissolves the over-
lapping effect in the projection data and creates a non-overlapped image
of the original image. A mathematical procedure is called an algorithm.

• Dirac’s δ-function usually acts as a point source in algorithm development.
• The readers are expected to understand two main concepts in this chapter:

projection and backprojection.

Problems

Problem 1.1 If a 2D object is a point source, it is sufficient to use the
projection data from two different detector views to obtain an exact re-
construction. Let us consider a 2D object that consists of three point
sources which are not on a same straight line (i.e., they are not co-linear).
Determine the smallest number of detector views so that sufficient pro-
jection data are available to obtain an exact reconstruction.

Problem 1.2 It is known that the Radon transform of a shifted point source
δ(x− x0, y− y0) is δ(x0 cos θ + y0 sin θ− s). This result can be extended
to a general object f(x, y). If p(s, θ) is the Radon transform of the
un-shifted object f(x, y), determine the Radon transform of the shifted
object f(x− x0, y − y0).

Problem 1.3 Use the definition of the δ function to prove that the following
two definitions of the Radon transform are equivalent:

p(s, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − s)dxdy,

p(s, θ) =
∫ ∞

−∞
f(s cos θ − t sin θ, s sin θ + t cos θ)dt.

Problem 1.4 The backprojection in the Cartesian coordinate system is
defined as

b(x, y) =
∫ π

0

p(x cos θ + y sin θ, θ)dθ.

Give an equivalent expression bpolar(r, ϕ) of the backprojection in the
polar coordinate system.
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2 Parallel-Beam Image Reconstruction

This chapter introduces the central slice theorem, which is the function of
tomography. This theorem relates the 2D image with its 1D projections in the
Fourier domain. From this theorem, many image reconstruction algorithms
are derived. Among these algorithms, the filtered backprojection (FBP)
algorithm is the most popular one, which consists of a ramp-filtering step
and a backprojection step. The filtering can be implemented as a multipli-
cation in the Fourier domain or as a convolution in the spatial domain. A
recent hot topic of region-of-interest (ROI) reconstruction with truncated
projections is included in this chapter.

2.1 Fourier Transform

The concept of the Fourier transform is based on the fact that it is possible
to form a function p(s) as a weighted summation of a series of sine and cosine
terms of various frequencies, ω, with a weighting function P (ω). You can use
a prism to decompose the sunlight into a spectrum of different colors; you can
also re-produce the original light by recombining the spectrum of different
colors (see Figure 2.1).

Fig. 2.1. The white light can be decomposed into color lights, which can be con-
verted back the original white light.
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The weighting function P (ω) for each frequency ω is called the Fourier
transform of p(s). One can easily use mathematical formulas to find P (ω)
from p(s) and to recover p(s) from P (ω). If you know one function (either
p(s) or P (ω)), you know the other. In this pair, one function is denoted by a
lower case letter with a variable s, and the other function is denoted by an
upper case letter with a variable ω.

A Fourier transform pair p(s) and P (ω) is shown in Figure 2.2, where P (ω)
is the Fourier transform of p(s). The function P (ω) tells us that the triangle
function p(s) has rich low frequency components because the central lobe has
a large amplitude. As the frequency gets higher (that is, as |ω| gets larger),
the amplitude of the lobes becomes smaller. We also see some notches in
P (ω); those notched frequencies are not in the triangle function p(s). Using
the Fourier transform can help us understand some hidden mathematical
relationships, which are not easy to see without the Fourier transform.

Fig. 2.2. A Fourier transform pair.

One can also find the Fourier transform for a function with two or more
variables. We will denote the Fourier transform of the function f(x, y) as
F (ωx, ωy), where ωx is the frequency in the x direction and ωy is the frequency
in the y direction.

2.2 Central Slice Theorem

Central slice theorem is the foundation of tomography. It has other names:
projection slice theorem and Fourier slice theorem. The central slice theorem
in two-dimensions (2D) states that the 1D Fourier transform P (ω) of the
projection p(s) of a 2D function f(x, y) is equal to a slice (i.e., a 1D profile)
through the origin of the 2D Fourier transform F (ωx, ωy) of that function
which is parallel to the detector (see Figure 2.3).
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Fig. 2.3. Illustration of the 2D central slice theorem.

If we rotate the detector around the object at least for 180◦, the corre-
sponding “central slice” in the 2D Fourier transform F (ωx, ωy) will rotate
synchronously and will cover the entire 2D Fourier space, that is, the ωx-
ωy plane (see Figure 2.4). In other words, by rotating the detector 180◦,
the entire 2D Fourier transform F (ωx, ωy) is “measured.” Once F (ωx, ωy)
is available, the original 2D function f(x, y) can be readily obtained by a
mathematical procedure called the 2D inverse Fourier transform.

Fig. 2.4. Each view adds a line in the Fourier space. The 2D inverse Fourier trans-
form reconstructs the original image.

Backprojecting projection data at one view are equivalent to adding a
“central slice” of F (ωx, ωy) in the ωx-ωy plane (i.e., the Fourier space). Back-
projection over 180◦ fully reconstructs the 2D Fourier transform F (ωx, ωy).
Due to the property of the Fourier pair, the original function f(x, y) can be
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readily found from F (ωx, ωy).
In Chapter 1, we learned that backprojection alone does not get you

the original image back; instead, a blurred image is obtained. Is there a
contradiction here? No. Let us take another look of the ωx-ωy plane in Figure
2.4. After we add the “central slices” to the ωx-ωy plane, we see higher density
of the “central slices” at the origin of the ωx-ωy plane and lower density at
the regions away from the origin. The central region of the Fourier space
represents low frequencies. Over-weighting with low frequency components
blurs the image.

To counter this blurring effect, we must compensate for the non-uniformity
in the Fourier space. The non-uniform density in the Fourier space is propor-
tional to

1√
ω2

x + ω2
y

.

There are two ways to do the compensation.
One way is to multiply the ωx-ωy space Fourier “image” by

√
ω2

x + ω2
y,

and the resultant Fourier space “image” is F (ωx, ωy). The 2D inverse Fourier
transform of F (ωx, ωy) gives the exact original image f(x, y).

The other way is to multiply the 1D Fourier transform P (ω, θ) of the
projection data by |ω|. We then take the 1D inverse Fourier transform of
|ω|P (ω, θ). After this special treatment (i.e., filtering) of the projection data,
the treated (i.e., filtered) projection data are backprojected and the exact
original image f(x, y) is obtained. Note that in the previous discussion (see
Figure 2.3) we ignored the second variable in P (ω, θ) and p(s, θ) on purpose
to allow the reader to pay attention to the first variable.

Fig. 2.5. The 1D ramp filter transfer function.

These two methods (i.e., multiplying the Fourier transformed backpro-

jected image by
√

ω2
x + ω2

y; multiplying the Fourier transformed projections
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by |ω|) will be further discussed later in this book. The second method, which
is referred to as the filtered backprojection (FBP) algorithm, is more popu-
lar than the first. The function |ω| is called the ramp filter in tomography,
named after its appearance (see Figure 2.5). It is the second method that
added negative “wings” around the spikes in the projections in Chapter 1.

2.3 Reconstruction Algorithms

Backprojection accomplishes most of the work in image reconstruction; it
converts the projection data at various views into an image, which is almost
what we wanted except for the blurring effect. The blurring effect is caused

by the 1/|ω| non-uniform weighting, with |ω| =
√

ω2
x + ω2

y, in the 2D Fourier

space (i.e., the ωx-ωy plane). Compensation for this 1/|ω| function can be
realized by filtering the projection data p(s, θ) or equivalently, its 1D Fourier
transform P (ω, θ) with a ramp-filter |ω|. If the filtered projection data are
backprojected, the exact image can be obtained.

2.3.1 Method 1

Precisely, this filtered backprojection (FBP) algorithm can be implemented
according to the steps shown in Figure 2.6, in which the ramp filtering is
implemented as:

(1) Find the 1D Fourier transform of p(s, θ) with respect to the first
variable s, obtaining P (ω, θ).

(2) Multiply P (ω, θ) with a ramp filter |ω|, obtaining Q(ω, θ).
(3) Find the 1D inverse Fourier transform of Q(ω, θ) with respect to the

first variable ω, obtaining q(s, θ).

Fig. 2.6. The procedure of the filtered backprojection (FBP) algorithm.
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2.3.2 Method 2

There are more ways than one to do ramp filtering. In fact, we can per-
form ramp filtering without using the Fourier transform at all. According to
Fourier transform theory, multiplication in one domain (say, the ω domain)
corresponds to convolution in the other domain (say, the s domain) (see
Figure 2.7).

Fig. 2.7. An important property of Fourier transform: multiplication in one domain
is equivalent to convolution in the other domain.

Thus Steps (1), (2), and (3) in Method 1 are equivalent to a mathematical
procedure called convolution. The ramp-filtered data q(s, θ) can be obtained
by convolution as

q(s, θ) = p(s, θ) ∗ h(s), (2.3.1)

where “∗” denotes the convolution operation, which is an integral with respect
to the variable s. Here h(s) is the convolution kernel and is the 1D inverse
Fourier transform of H(ω) = |ω|.

Here we give an example of convolution so that you can understand what
convolution can do for you. If the convolution kernel h(s) is not symmetric,
you first flip it left-right, making it h(−s). Second, you imagine that your
function p(s) can be decomposed into vertical spikes (or Dirac delta func-
tions). Third, replace each spike by h(−s), that is, the s = 0 position of
h(−s) is at the spike’s position and scale h(−s) by the amplitude (which can
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be negative) of the spike. Finally, sum up all the shifted and scaled versions
of h(−s), obtaining q(s) (see Figure 2.8).

Fig. 2.8. An illustration of the procedure of convolution.

2.3.3 Method 3

There is a third way to implement ramp filtering. Let us factor the ramp
filter into two parts:

H(ω) = |ω| = i 2πω × 1
i 2π

sgn(ω), (2.3.2)

where , i =
√−1 and

sgn(ω) =

⎧⎪⎪⎨
⎪⎪⎩

1, ω > 0,

0, ω = 0,

−1, ω < 0.

(2.3.3)

Here we will use two properties of the Fourier transform.
Fact 1: Multiplication by i2πω in the Fourier domain (i.e., the ω domain)

corresponds to the derivative with respect to s in the spatial domain (i.e.,
the s domain).
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Fact 2: The inverse Fourier transform of −i sgn(ω) is 1/(πs). Convolution
with 1/(πs) is called the Hilbert transform.

Using the relationship shown in Figure 2.7, the ramp-filtering can be
realized as

q(s, θ) =
dp(s, θ)

ds
∗ −1

2π2s
, (2.3.4)

which is a combination of the derivative and the Hilbert transform.

2.3.4 Method 4

If we switch the order of ramp-filtering and backprojection, we can get
another way to reconstruct the image— backprojection then filtering . After
backprojection, we get a blurred image b(x, y), which is two-dimensional. We
need to apply a 2D ramp filter to it. One way to do it is as follows:

(1) Find the 2D Fourier transform of b(x, y), obtaining B(ωx, ωy).

(2) Multiply B(ωx, ωy) with a ramp filter |ω| =
√

ω2
x + ω2

y, obtaining

F (ωx, ωy).
(3) Find the 2D inverse Fourier transform of F (ωx, ωy), obtaining f(x, y).

2.3.5 Method 5

Method 3 consists of three components: the derivative, the Hilbert trans-
form, and the backprojection. If we switch the order, we obtain yet another
reconstruction algorithm:

(1) Find the derivative of the projection data p(s, θ) with respect to s,

obtaining
dp(s, θ)

ds
.

(2) Backproject
dp(s, θ)

ds
over 180◦

(3) Perform the line-by-line Hilbert transform, in the direction parallel to
the detector at the 90◦ position.

You must have noticed that we are playing the order changing game to
create more and more reconstruction algorithms. We simply change the order
of ramp-filtering and backprojection, or change of the order of the perform-
ing derivative, the Hilbert transform, and the backprojection. If we keep
playing this game, we can make a list of some possible image reconstruction
algorithms (see Figure 2.9). Each algorithm has its advantages and disadvan-
tages.

The table in Figure 2.9 does not exhaust all possibilities. For example, the



2.3 Reconstruction Algorithms 29

Hilbert transform can be implemented as convolution in the spatial domain
or as multiplication in the Fourier domain. The Hilbert transform has another
form, which is not convolution but is an integral over a finite interval. The
finite Hilbert transform has an important application in handling truncated
projection data.

You may see that the backprojection is used in all algorithms. This does
not have to be the case. You do not have to use a spatial domain backpro-
jector in a reconstruction algorithm. You can use the central slice theorem
by assigning the Fourier domain projection data P (ω, θ) at the proper ωx-
ωy locations. This is the Fourier domain implementation of the backprojec-
tion. However, this Fourier domain backprojection has limited applications
because large interpolation errors could be introduced in polar coordinate
(ω, θ) system to Cartesian (ωx-ωy) system transformation.

Fig. 2.9. A list of parallel-beam analytical image reconstruction algorithms.
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2.4 A Computer Simulation

In Figure 2.10, we show an example of the filtered backprojection algorithm
in action. The original image f(x, y) is shown in the lower right corner; it
consists of a large disc and four small discs. The projection data p(s, θ) are
generated analytically using computer software. The projections of the two
outer small discs trace two sine curves in the sinogram, which is an s-θ
coordinate display of the projection data.

Fig. 2.10. An FBP algorithm in action: filtering and view-by-view backprojection.

After applying the ramp-filter to p(s, θ), the filtered data q(s, θ) looks
sharper because the ramp-filter, which is a high-pass filter, suppresses the low-
frequency components and enhances the high-frequency components. One can
see the darker edges around the projection of the discs. These darker edges
are the negative “wings” that we discussed in Chapter 1.

The image labeled (A) is the backprojection of q(s, θ) at the first angle.
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The filtered data q(s, θ) at the first angle are simply copied across the entire
image. This action is sometimes described as evenly distribution of a value
along the projection path. Progressing through images (A) to (G), as data
from more and more angles are backprojected, the image takes shape and
gets closer and closer to the original image. Remember that backprojection
consists of two actions: smear back and superposition. The image is recon-
structed when the backprojection is performed over 180◦. The backprojection
can also be performed over 360◦ (then divide the image value by 2), because
the data are redundant by observing the fact that p(s, θ) = p(−s, θ + π) and
q(s, θ) = q(−s, θ + π).

∗2.5 ROI Reconstruction with Truncated Projections

The situation of the region-of-interest (ROI) reconstruction with truncated
projections is illustrated in Figure 2.11, where the detector is not large
enough to cover the entire object, but is large enough to cover the ROI.
In tomographic theory, this ROI reconstruction problem is called the interior
problem. Only the circular FOV (field-of-view) is fully measured. For a gen-
eral interior problem, only an approximate solution can be obtained. Exact
reconstructions exist only for some special cases.

Fig. 2.11. The detector is only large enough to cover the ROI, but not large enough
to cover the entire object.

One solvable ROI reconstruction problem is shown in Figure 2.12, and the
reconstruction is provided by the “derivative-backprojection-Hilbert trans-
form” algorithm. The ROI is the dark shaded smaller region within the cir-
cular field-of-view (FOV). Both the derivative operation and the backprojec-
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Fig. 2.12. The derivative-backprojection-Hilbert transform algorithm is able to
exactly reconstruct the ROI.

tion operation are local. That is, they only use the locally available data to
find the results. After the derivative and backprojection, the data within the
FOV are exact.

The next step in the reconstruction algorithm is to perform the line-by-line
1D Hilbert transform along the direction indicated as the vertical direction
in Figure 2.12. The usual Hilbert transform is in the form of convolution
with a convolution kernel 1

/
s that does not vanish. Therefore, the Hilbert

transform requires data along the entire filtering line.
Thanks to a finite inverse Hilbert transform formula, we are able to per-

form the inverse Hilbert transform with finite data. If a function f(s) is
non-zero on the interval [a, b] and if the Hilbert transform of f(s) is g(s),
then the finite inverse Hilbert transform formula only needs g(s) on [a, b] to
recover f(s).

Using this finite inverse Hilbert transform formula, we are now able to
evaluate the 1D inverse Hilbert transform along the filtering line to recon-
struct the image, because the required exact data are available in the FOV.
This finite inverse Hilbert transform formula is not in the form of convolution;
therefore, it is not efficient to perform this step using the Fourier transform
methods.

It has been shown that an exact ROI reconstruction can be obtained for
a less restricted case shown in Figure 2.13. For this case, the ROI has the
same size as the FOV. Here, only one end of the filtering line is required to
be outside the object. The proof of exact reconstruction for this case is based
on analytic continuation. The drawback of this method is that we have not
found a closed-form formula to reconstruct the ROI image.

An immediate extension of this analytic continuation method can be
applied to the general interior problem, where a small region of the image
within the FOV is exactly known in advance (see Figure 2.14). The known
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Fig. 2.13. The measured data are sufficient to exactly reconstruct the FOV. A part
of the FOV is outside the object.

region in the image can be very small.

Fig. 2.14. If a small region in the FOV is known, the FOV can be exactly recon-
structed.

We now explain what we mean by analytic continuation. The analytic
continuation is a subject in a mathematical branch called complex analysis,
which studies functions with complex variables.

If x is a real variable, h(x) = 2x + i (3 + 5x), with i =
√−1, is not a

function with a complex variable. However, h(z) = 2z, with z = x + i y and
both x and y are real, is a function with a complex variable and is defined in
a region (called domain) in the complex plane.

A complex function h(z) is said to be analytic in a complex region R,
if and only if the function h(z) is differentiable at every point in R. If a
complex function is analytic on a region R, it is infinitely differentiable in
R. Therefore, you can have a power expansion of an analytic function h(z)
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anywhere in R. You can imagine that an analytic function is very smooth.
Let h1(z) and h2(z) be analytic functions in regions R1 and R2, respec-

tively, and suppose that the intersection R1 ∩ R2 is not empty and that
h1(z) = h2(z) on R1 ∩ R2. Then h2(z) is called an analytic continuation of
h1(z) to R2, and vice versa. Moreover, the analytic continuation of h1(z) to
R2 is unique. This uniqueness of analytic continuation is a rather amazing
and extremely powerful statement. If a complex function h(z) is analytic in a
region R, knowing the value of h(z) in a very small sub-region of R uniquely
determines the value of the function h(z) at every other point in R.

If our 2D image f(x, y) is known in a small region Ωknown, we can some-
how determine the image f(x, y) in a larger region Ω . Note that f(x, y) is not
an analytic function. We do not perform analytic continuation on f(x, y).

First, we draw a line, say, the x-axis, passing through the small region
Ωknown, as shown in Figure 2.15. Without loss of generality, we only consider
the image values on one line: y = 0. We can do the same for other lines that
pass through the known region Ωknown.

It is given that the image f(x, 0) is known when −r � x � r. In the
following, we are going define a function h(x), convert it into a complex
function h(z), and apply analytic continuation to h(z) so that the image
f(x, 0) can be estimated in a larger interval (−1, 1).

Fig. 2.15. The known image values on [−r, r] together with the truncated projec-
tions can be used to determine image values in (−1, 1).

In this particular imaging problem, the detector is smaller than the object.
Projection data are only available for −1 � s � 1. We can use the FBP
algorithm to reconstruct the image as
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f(x, 0) =
1
4π

∫ 2π

0

dθ

∫ ∞

−∞

1
s− x cos θ

p(s, θ)
s

ds. (2.5.1)

This expression can be written in two terms, the first term with measured
data and the second term with unmeasured data:

f(x, 0) =
1
4π

∫ 2π

0

dθ

∫ 1

−1

1
s− x cos θ

p(s, θ)
s

ds

+
1
4π

∫ 2π

0

dθ

∫
|s|>1

1
s− x cos θ

p(s, θ)
s

ds. (2.5.2)

The first term can be evaluated using the measured data on [−1, 1] and
it contains the sharp edges of the image f . However, the second term is very
smooth (almost a constant) but cannot be evaluated because the data are
not available. Let us denote the second term as h(x). We have

h(x) =
1
4π

∫ 2π

0

dθ

∫
|s|>1

1
s− x cos θ

p(s, θ)
s

ds, |x| < 1. (2.5.3)

In the above expression, |x| < 1 and |s| > 1make 1
/
(s−x cos θ) differentiable

of any order. We further assume that p
/

s is absolutely integrable, which
is usually satisfied in practice. We claim that if we replace the real variable
x by a complex variable z, h(z) is an analytic function within |z| < 1.

The analytic function h(z) is known on [−r, r], because h(x) can also be
expressed as

h(x) = f(x, 0)− 1
4π

∫ 2π

0

dθ

∫ 1

−1

1
s− x cos θ

p(s, θ)
s

ds, (2.5.4)

f(x, 0) is given on [−r, r], and the second term in the above expression can
be evaluated with the measured data. By using analytic continuation, h(z)
is uniquely determined in |z| < 1. Thus, h(x) is determined in (−1, 1). Once
h(x) is found, the image value in (−1, 1) can be obtained as

f(x, 0) =
1
4π

∫ 2π

0

dθ

∫ 1

−1

1
s− x cos θ

p(s, θ)
s

ds + h(x), |x| < 1. (2.5.5)

In the above discussion, we know that we should have enough data to
determine the image in region Ω . However, doing analytic continuation is
easier said than done. Mathematically, the right way to do analytic con-
tinuation is by doing Taylor expansions, but this approach is not practical.
Currently iterative approaches are used for this purpose.

Another practical problem is the stability issue. In some cases we can
prove mathematically that the limited data can uniquely determine an image,
but the image reconstruction method can be extremely ill-conditioned and
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unstable. The limited angle imaging problem could be such an ill-conditioned
problem. In a limited angle imaging problem, the ROI does not have full 180◦

angular measurements. It may only have, for example, 10◦ angular measure-
ments.

∗2.6 Mathematical Expressions

This section presents the mathematical expressions of the 1D Fourier trans-
form pair, the Hilbert transform pair, and two versions of the inverse finite
Hilbert transform. The proof of the central slice theorem is given. This sec-
tion also derives the filtered backprojection and backprojection-then-filtering
algorithms. The spatial domain filtering methods, such as the convolution
backprojection algorithm and the Radon inversion formula, are also included.

2.6.1 The Fourier Transform and Convolution

The 1D Fourier transform is defined as:

P (ω) =
∫ ∞

−∞
p(s)e−2πisωds, (2.6.1)

and the 1D inverse Fourier transform is

p(s) =
∫ ∞

−∞
P (ω)e2πisωdω. (2.6.2)

The convolution of two functions f and g is defined as

(f ∗ g)(t) =
∫ ∞

−∞
f(τ)g(t− τ)dτ =

∫ ∞

−∞
f(t− τ)g(τ)dτ . (2.6.3)

If we denote the Fourier transform operator as F, the convolution theorem
can be stated as

F(f ∗ g) = F(f)× F(g). (2.6.4)

2.6.2 The Hilbert Transform and the Finite Hilbert Transform

The Hilbert transform is less well known than the Fourier transform. Unlike
the Fourier transform that converts a real function into a complex function,
the Hilbert transform converts a real function into another real function.
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In this section, we use H to denote the Hilbert transform operator. If you
apply the Hilbert transform twice, you get the original function back, except
for a sign change, that is

H(Hf) = H2f = −f. (2.6.5)

In other words, the inverse Hilbert transform is the negative value of the
Hilbert transform.

A real function and its Hilbert transform are orthogonal. If g = H f , then∫ ∞

−∞
f(t)g(t)dt = 0. (2.6.6)

For example, the Hilbert transform of cos(t) is sin(t). The Hilbert transform
of sin(t) is − cos(t).

The Hilbert transform can be defined in the Fourier domain. Let the
Fourier transform of a real function f(t) be F (ω), the Hilbert transform of
f(t) be g(t), and the Fourier transform of g(t) be G(ω), then

G(ω) = i sgn(ω)F (ω), (2.6.7)

with i =
√−1 and sgn(ω) being the signum:

sgn(ω) =

⎧⎪⎪⎨
⎪⎪⎩

1, ω > 0,

0, ω = 0,

−1, ω < 0.

(2.6.8)

Since the magnitude of −i sgn(ω) is, the Hilbert transform is an application
of an all-pass filter with a ±90◦ phase shift.

Equivalently, the Hilbert transform can also be expressed as convolution
with the convolution kernel

h(t) =
1
πt

, (2.6.9)

as
g(t) = h(t) ∗ f(t) = p.v.

∫ ∞

−∞
f(τ)

1
π(t− τ)

dτ, (2.6.10)

where “p.v.” means principle value.
We have already seen that the ramp filter can be decomposed into the

Hilbert transform and the derivative. It does not matter whether you perform
the derivative first and then perform the Hilbert transform or you perform
the Hilbert transform first and then perform the derivative. In fact, we have

H(f ′(t)) =
d(H(f(t)))

dt
. (2.6.11)

One can also change the order of the Hilbert transform and the 180◦ back-
projection. To understand this property better, we will use the central slice
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theorem and think in the Fourier domain. Let us consider the backprojection
problem

b(x, y) =
∫ π/2

−π/2

Hp(s, θ)
∣∣∣
s=x cos θ+y sin θ

dθ, (2.6.12)

where the Hilbert transform is with respect to the variable s. Let the Fourier
transform of p(s, θ) be P (ω, θ). The central slice theorem applied to this
particular problem is shown in Figure 2.16, where P (ω, θ) is multiplied by
either i or −i before putting it in the 2D Fourier domain.

Fig. 2.16. Backprojection of Hp(s, θ) over (−π/2,π/2) is equivalent to backpro-
jection of p(s, θ) over (−π/2, π/2) then multiply i in the left half (ωx, ωy) plane and
multiply −i in the right half (ωx, ωy) plane.

An equivalent way to do this backprojection is to backproject p(s, θ),
then multiply the entire left half (ωx, ωy) plane by i and multiply the entire
right half (ωx, ωy) plane by −i . This multiplication action can be achieved
by performing line-by-line 1D Hilbert transform in the x-direction. Thus, we
have

Hx

∫ π/2

−π/2

p(s, θ)
∣∣∣
s=x cos θ+y sin θ

dθ =
∫ π/2

−π/2

Hsp(s, θ)
∣∣∣
s=x cos θ+y sin θ

dθ.

(2.6.13)
In the following, we will briefly introduce the concept of the finite Hilbert

transform, which plays an important role in the region-of-interest (ROI)
reconstruction with truncated projection data.
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Without loss of generality, we assume that a real function f(t) is sup-
ported in (−1, 1), that is, f(t) = 0 if |t| � 1. Then, the Hilbert transform of
f(t) is given as

g(t) = p.v.

∫ 1

−1

f(τ)
1

π(t− τ)
dτ. (2.6.14)

Even though f(t) is supported in a finite interval, g(t) may not have a finite
support. There are some formulas that are able to recover f(t) using g(t)
only on [−1, 1]. For example,

f(t) =
1
π

√
t− 1
t + 1

p.v.

∫ 1

−1

√
τ + 1
τ − 1

g(τ)
t− τ

dτ, (2.6.15)

or

f(t) =
1

π
√

1− t2

∫ 1

−1

f(τ)dτ +
1
π

p.v.

∫ √
1− τ2

τ − t
g(τ)dτ. (2.6.16)

2.6.3 Proof of the Central Slice Theorem

The central slice theorem is given as

P (ω, θ) = F (ω cos θ, ω sin θ). (2.6.17)

Proof

We start with the definition of the 1D Fourier transform:

P (ω) =
∫ ∞

−∞
p(s)e−2πisωds, (2.6.18)

then use the definition of p(s, θ) (see Section 1.5), obtaining

P (ω, θ) =
∫ ∞

−∞

[∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − s)dxdy

]
e−2πisωds.

(2.6.19)
Changing the order of integrals yields

P (ω, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)

[∫ ∞

−∞
δ(x cos θ + y sin θ − s)e−2πisωds

]
dxdy.

(2.6.20)
Using the property of the δ function, the inner integral over s can be readily
obtained, and we have

P (ω, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πi (x cos θ+y sin θ)ωdxdy, (2.6.21)
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that is,

P (ω, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−2πi (xu+yv)

∣∣∣
u=ω cos θ,v=ω sin θ

dxdy. (2.6.22)

Finally, using the definition of the 2D Fourier transform yields

P (ω, θ) = F (ωx, ωy)
∣∣
ωx=ω cos θ, ωy=ω sin θ

. (2.6.23)

In the polar coordinate system, the central slice theorem can be expressed as

P (ω, θ) = Fpolar(ω, θ). (2.6.24)

2.6.4 Derivation of the Filtered Backprojection Algorithm

We start with the 2D inverse Fourier transform in polar coordinates

f(x, y) =
∫ 2π

0

∫ ∞

0

Fpolar(ω, θ)e2πi ω(x cos θ+y sin θ)ωdωdθ (2.6.25)

Because Fpolar(ω, θ) = Fpolar(−ω, θ + π), we have

f(x, y) =
∫ π

0

∫ ∞

−∞
Fpolar(ω, θ) |ω|e2πi ω(x cos θ+y sin θ)dωdθ. (2.6.26)

By using the central slice theorem, we can replace F by P :

f(x, y) =
∫ π

0

∫ ∞

−∞
P (ω, θ) |ω|e2πi ω(x cos θ+y sin θ)dωdθ. (2.6.27)

We recognize that |ω| is the ramp filter. Let Q(ω, θ) = |ω|P (ω, θ); then

f(x, y) =
∫ π

0

∫ ∞

−∞
Q(ω, θ)e2πi ω(x cos θ+y sin θ)dωdθ. (2.6.28)

Using the definition of the 1D inverse Fourier transform and denoting the
inverse Fourier transform of Q as q, we have

f(x, y) =
∫ π

0

q(x cos θ + y sin θ, θ)dθ, (2.6.29)

or

f(x, y) =
∫ π

0

q(s, θ)
∣∣∣
s=x cos θ+y sin θ

dθ. (2.6.30)

This is the backprojection of q(s, θ) (see Section 1.5).
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2.6.5 Expression of the Convolution Backprojection Algorithm

Let the convolution kernel h(s) be the inverse Fourier transform of the ramp

filter |ω|; that is, h(s) =
∫ ∞

−∞
|ω|e2πi ωsds. It is readily obtained from Section

2.6.4 that

f(x, y) =
∫ π

0

[h(s) ∗ p(s, θ)]
∣∣∣
s=x cos θ+y sin θ

dθ

=
∫ π

0

∫ ∞

−∞
h(x cos θ + y sin θ − s)p(s, θ)dsdθ. (2.6.31)

2.6.6 Expression of the Radon Inversion Formula

The DHB (derivative, Hilbert transform, backprojection) algorithm is also
referred to as the Radon inversion formula, which can be obtained by fac-
toring the ramp filter |ω| into the derivative part and the Hilbert transform
part:

|ω| = (2πi ω)×
{

1
2π

[−i sgn(ω)]
}

(2.6.32)

The inverse Fourier transform of −i sgn(ω) is 1/(πs) and the inverse
Fourier transform of 2πi ω is the derivative operator. Thus,

q(s, θ) =
p(s, θ)

s
∗ 1

2π2s
, (2.6.33)

and

f(x, y) =
∫ π

0

∫ ∞

−∞

p(s, θ)
s

1
2π2(x cos θ + y sin θ − s)

dsdθ. (2.6.34)

2.6.7 Derivation of the Backprojection-then-Filtering Algorithm

Let us first look at the backprojection b(x, y) of the original data p(s, θ)
(without filtering). The definition of the backprojection is

b(x, y) =
∫ π

0

p(s, θ)
∣∣∣
s=x cos θ+y sin θ

dθ. (2.6.35)
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Using the definition of the inverse Fourier transform, p(s, θ) can be repre-
sented with its Fourier transform:

b(x, y) =
∫ π

0

[∫ ∞

−∞
P (ω, θ)e2πi ω(x cos θ+y sin θ)dω

]
dθ. (2.6.36)

Using the central slice theorem, we can replace P by F :

b(x, y) =
∫ π

0

[∫ ∞

−∞
Fpolar(ω, θ)e2πi ω(x cos θ+y sin θ)dω

]
dθ, (2.6.37)

or

b(x, y) =
∫ π

0

∫ ∞

−∞

Fpolar(ω, θ)
|ω| e2πi ω(x cos θ+y sin θ) |ω|dωdθ. (2.6.38)

This is the 2D inverse Fourier transform in polar coordinates. If we take the
2D Fourier transform (in the polar coordinate system) on both sides of the
above equation, we have

Bpolar(ω, θ) =
Fpolar(ω, θ)

|ω| , (2.6.39)

or in the Cartesian system,

B(ωx, ωy) =
F (ωx, ωy)√

ω2
x + ω2

y

; (2.6.40)

that is
F (ωx, ωy) =

√
ω2

x + ω2
yB(ωx, ωy). (2.6.41)

The backprojection-then-filtering algorithm follows immediately.

2.7 Worked Examples

Example 1 Write a short Matlab program to illustrate the importance of
using sufficient view angles in a tomography problem. The Matlab function
“phantom” generates a mathematical Shepp-Logan phantom. The function
“radon” generates the projection data, that is, the Radon transform of the
phantom. The function “iradon” performs the filtered backprojection recon-
struction.

Solution

The Matlab code:
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P = phantom(128); %Generate the Shepp-Logan phantom in a 128x128
array

angle = linspace(0,179,180); %Sampling angles
R = radon(P, angle); %Generate the Radon transform over 180◦

I1 = iradon(R, angle); %Inverse Radon transform, i.e., FBP recon-
struction

I2 = iradon(R, angle,linear,none); %Backprojection without ramp-
filtering

subplot(1,3,1), imshow(P), title(Original)
subplot(1,3,2), imshow(I1), title(Filtered backprojection)
subplot(1,3,3), imshow(I2,[]), title(Unfiltered backprojection)

We get the following results (see Figure 2.17).

Fig. 2.17. The true image and the reconstructed images with the Matlab function
“iradon.”

If we change the line angle = linspace(0,179,180) to
angle = linspace(0,179,10)
angle = linspace(0,179,20)
angle = linspace(0,179,40)
angle = linspace(0,179,80)

respectively, we get the following results (see Figure 2.18).

Fig. 2.18. Insufficient views cause artifacts.

Example 2 Run a simple Matlab code to show the noise effect. Apply
three different window functions to the ramp filter to control noise.

Solution

The Matlab code:
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P = phantom(128);
angle = linspace(0,179,180);
R = radon(P,angle);
R = 1e12*imnoise(1e-12*R,Poisson); %Add Poisson Noise

I1 = iradon(R,angle,Ram-Lak);
subplot(1,3,1), imshow(I1,[]), title(w/ Ram-Lak filter)

I1 = iradon(R,angle,Cosine);
subplot(1,3,2), imshow(I1,[]), title(w/ Cosine filter)

I1 = iradon(R,angle,Hann);
subplot(1,3,3), imshow(I1,[]), title(w/ Hann filter)

The FBP reconstruction results with different window functions are shown
in Figure 2.19.

Fig. 2.19. Using different window functions to control noise.

Example 3* Find the discrete “Ramachandran-Lakshminarayanan”
convolver, which is the inverse Fourier transform of the ramp filter. The

cut-off frequency of the ramp filter is ω =
1
2
.

Solution

Let us first use the inverse Fourier transform to find the continuous version
of the convolver h(s):

h(s) =
∫ 1/2

−1/2

|ω|e2πi ωsdω =
1
2

sin(πs)
πs

− 1
4

⎛
⎝sin(

πs

2
)

πs

2

⎞
⎠

2

. (2.7.1)

To convert it to the discrete form, let s = n (integer) and we have

h(n) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
4
, n = 0

0, n even
−1

n2π2
, n odd

(2.7.2)

The continuous and discrete convolvers are displayed in Figure 2.20.
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Fig. 2.20. The continuous and sampled “Ramachandran-Lakshminarayanan” con-
volution kernels.

2.8 Summary

• The Fourier transform is a useful tool to express a function in the fre-
quency domain. The inverse Fourier transform brings the frequency rep-
resentation back to the original spatial domain expression.

• In the Fourier domain, the projection data and the original image are
clearly related. This relationship is stated in the popular central slice
theorem. The 1D Fourier transform of the projection data at one view is
one line in the 2D Fourier transform of the original image. Once we have
a sufficient number of projection view angles, their corresponding lines
will cover the 2D Fourier plane.

• The backprojection pattern in the 2D Fourier domain indicates that the
sampling density is proportional to 1/|ω|. Therefore, the backprojection
itself can only provide a blurred reconstruction. An exact reconstruction
requires a combination of ramp-filtering and backprojection.

• The most popular image reconstruction algorithm is the FBP (Filtered
Backprojection) algorithm. The ramp-filtering can be implemented as
multiplication in the frequency domain or as convolution in the spatial
domain.

• One has the freedom to switch the order of ramp-filtering and backpro-
jection.

• Ramp-filtering can be further decomposed to the Hilbert transform and
the derivative operation. Therefore, we have even more ways to recon-
struct the image.
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• Under certain conditions, the region-of-interest (ROI) can be exactly
reconstructed with truncated projection data.

• The readers are expected to understand two main concepts in this chapter:
the central slice theorem and the FBP algorithm.

Problems

Problem 2.1 Let a 2D object be defined as

f(x, y) = cos(2πx) + cos(2πy).

Find its 2D Fourier transform F (ωx, ωy). Determine the Radon trans-
form of this object f(x, y) using the central slice theorem.

Problem 2.2 Let f1(x, y) and f2(x, y) be two 2D functions, and their
Radon transforms are p1(s, θ) and p2(s, θ), respectively. If f(x, y) is the
2D convolution of f1(x, y) and f2(x, y), use the central slice theorem to
prove that the Radon transform of f(x, y) is the convolution of p1(s, θ)
and p2(s, θ) with respect to variable s.

Problem 2.3 Let the Radon transform of a 2D object f(x, y) be p(s, θ), the
2D Fourier transform of f(x, y) be F (ωx, ωy), and the 1D Fourier trans-
form of p(s, θ) with respect to the first variable s be P (ω, θ). What is the
physical meaning of the value F (0, 0)? What is the physical meaning of

the value P (0, θ)? Is it possible that
∫ ∞

−∞
g(s, 0◦)ds �=

∫ ∞

−∞
g(s, 90◦)ds?

Problem 2.4 Prove that the Hilbert transform of the function

f(t) =

{√
1− t2, |t| < 1

0, |t| � 1

is

g(t) =

{
t, |t| < 1

t−√t2 − 1sgn(t). |t| � 1
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3 Fan-Beam Image Reconstruction

The image reconstruction algorithms discussed in Chapter 2 are for parallel-
beam imaging. If the data acquisition system produces projections that are
not along parallel lines, the image reconstruction algorithms presented in
Chapter 2 cannot be applied directly. This chapter uses the flat detector and
curved detector fan-beam imaging geometries to illustrate how a parallel-
beam reconstruction algorithm can be converted to user’s imaging geometry
for image reconstruction.

3.1 Fan-Beam Geometry and Point Spread Function

The fan-beam imaging geometry is common in X-ray CT, where the fan-
beam focal point is the X-ray source. A fan-beam imaging geometry and a
parallel-beam imaging geometry are compared in Figure 3.1.

Fig. 3.1. Comparison of the parallel-beam and the fan-beam imaging geometries.
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For the parallel-beam geometry, we have a central slice theorem to derive
reconstruction algorithms. We do not have an equivalent theorem for the fan-
beam geometry. We will use a different strategy— converting the fan-beam
imaging situation into the parallel-beam imaging situation and modifying the
parallel-beam algorithms for fan-beam use.

In Chapter 2, when we discussed parallel-beam imaging problems, it was
not mentioned, but we always assumed that the detector rotates around at a
constant speed and has a uniform angular interval when data are taken. We
make the same assumption here for the fan-beam.

For the parallel-beam imaging geometry, this assumption results in a shift-
invariant point spread function (PSF) for projection/backprojection. In other
words, if you put a point source in the x-y plane (it does not matter where
you put it), calculate the projections, and perform the backprojection, then
you will always get the same star-like pattern (see Figure 3.2). This pattern
is called the point spread function (PSF) of the projection/backprojection
operation.

Fig. 3.2. The projection/backprojection PSF is shift invariant.

In the parallel-beam case, when you find the backprojection at the point
(x, y), you draw a line through this point and perpendicular to each detector.
This line meets the detector at a point, say, s∗. Then add the value p(s∗, θ)
to the location (x, y).

In the fan-beam case, when you find the backprojection at the point (x, y),
you draw a line through this point and each focal-point location. This line
has an angle, say, γ∗, with respect to the central ray of the detector. Then
add the value g(γ∗, β) to the location (x, y).

It can be shown that if the fan-beam focal-point trajectory is a complete
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circle, the PSF is shift-invariant (that is, the pattern does not change when
the location of the point-source changes) and has the same PSF pattern as
that for the parallel-beam case (see Figure 3.3).

Fig. 3.3. The fan-beam 360◦ full-scan PSF is the same as that for the parallel-beam
scan.

This observation is important. It implies that if you project and backpro-
ject an image, you will get the same blurred version of that image, regardless
of the use of parallel-beam or fan-beam geometry.

If the original image is f(x, y) and if the backprojection of the projection

data is b(x, y), then the PSF can be shown to be 1/r, where r =
√

x2 + y2.

Then f(x, y) and b(x, y) are related by

b(x, y) = f(x, y) ∗ ∗1
r

(3.1.1)

where “∗∗” denotes 2D convolution. The Fourier transform of b is B, and
the Fourier transform of f is F . Thus the above relationship in the Fourier
domain becomes

B(ωx, ωy) = F (ωx, ωy)× 1√
ω2

x + ω2
y

, (3.1.2)

because the 2D Fourier transform of 1
/√

x2 + y2 is 1
/√

ω2
x + ω2

y.

We already know that if a 2D ramp filter is applied to the backpro-
jected image b(x, y), the original image f(x, y) can be obtained. The same
technique can be used for the fan-beam backprojected image b(x, y). The
backprojection-then-filtering algorithm is the same for the parallel-beam and

fan-beam imaging geometries. If we apply the 2D ramp filter
√

ω2
x + ω2

y to

both sides of the above Fourier domain relationship, the Fourier transform
F (ωx, ωy) of the original image f(x, y) is readily obtained:

F (ωx, ωy) = B(ωx, ωy)×
√

ω2
x + ω2

y. (3.1.3)
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Finally, the original image f(x, y) is found by taking the 2D inverse Fourier
transform.

3.2 Parallel-Beam to Fan-Beam Algorithm Conversion

If you want to reconstruct the image by a filter-then-backproject (i.e., filtered
backprojection) algorithm, a different strategy must be used.

A straightforward approach would be to rebin every fan-beam ray into a
parallel-beam ray. For each fan-beam ray-sum g(γ, β), we can find a parallel-
beam ray-sum p(s, θ) that has the same orientation as the fan-beam ray with
the relations (see Figure 3.4)

θ = γ + β, (3.2.1)

and
s = D sin γ, (3.2.2)

where D is the focal length. We then assign

p(s, θ) = g(γ, β). (3.2.3)

Fig. 3.4. A fan-beam ray can be represented using the parallel-beam geometry
parameters.

After rebinning the fan-beam data into the parallel-beam format, we then
use a parallel-beam image reconstruction algorithm to reconstruct the image.
However, this rebinning approach is not preferred because rebinning requires
data interpolation when changing coordinates. Data interpolation introduces
errors. The idea of rebinning is feasible, but the results may not be accurate
enough.
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However, the idea above is not totally useless. Let us do it in a slightly
different way. We start out with a parallel-beam image reconstruction
algorithm, which is a mathematical expression. On the left-hand-side of the
expression is the reconstructed image f(x, y). One the right-hand-side is an
integral expression that contains the projection p(s, θ) and some other factors
associated with s and θ (see Figure 3.5).

Next, we replace the parallel-beam projection p(s, θ) by its equivalent fan-
beam counterpart g(γ, β) on the right-hand-side. Of course, this substitution
is possible only if the conditions θ = γ+β and s = D sinγ are satisfied. These
two relations are easier to see in Figure 3.4, which is derived from Figure 3.1.

In order to satisfy these two conditions, we stick them into the right-hand-
side of the expression. This procedure is nothing but changing the variables
in the integral, where the variables s and θ are changed into γ and β.

As a reminder, in calculus, when you change the variables in an integral,
you need a Jacobian factor, which is a determinant calculated with some
partial derivatives. This Jacobian is a function of γ and β.

After substituting the parallel-beam data p(s, θ) with fan-beam data g(γ,
β), changing variables s and θ to γ and β, and inserting a Jacobian J(γ, β),
a new fan-beam image reconstruction algorithm is born (see Figure 3.5)!

Fig. 3.5. The procedure to change a parallel-beam algorithm into a fan-beam
algorithm.
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The method outlined in Figure 3.5 is generic. We have a long list of
parallel-beam image reconstruction algorithms. They can all be converted
into fan-beam algorithms in this way, and accordingly, we also have a long
list of fan-beam algorithms. We must point out that after changing the vari-
ables, a convolution operation (with respect to variable s) may not turn into
a convolution (with respect to variable γ) automatically, and some math-
ematical manipulation is needed to turn it into a convolution form. Like
parallel-beam algorithms, the fan-beam algorithms include combinations of
ramp filtering and backprojection or combinations of the derivative, Hilbert
transform, and backprojection.

Researchers treat the flat detector fan-beam and curved detector fan-
beam differently in reconstruction algorithm development. In a flat detector,
the data points are sampled with equal distance Δs intervals, while in a
curved detector, the data points are sampled with equal angle Δγ intervals
(see Figure 3.6). A fan-beam algorithm can be converted from one geometry
to the other with proper weighting adjustments.

Fig. 3.6. Flat and curved detector fan-beam geometries.

3.3 Short Scan

In parallel-beam imaging, when the detector rotates 2π (i.e., 360◦), each
projection ray is measured twice, and the redundant data are related by

p(s, θ) = p(−s, θ + π); (3.3.1)

the redundant data are acquired by the two face-to-face detectors (see Figure
3.7). Therefore, it is sufficient to acquire data over an angular range of π.
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Fig. 3.7. Face-to-face parallel-beam detectors measure the same line integrals.

Likewise, when the fan-beam detector rotates 2π, each projection ray is
also measured twice, and the redundant data are related by (see Figure 3.8)

g(γ, β) = g(−γ, β + 2γ + π). (3.3.2)

Fig. 3.8. Every ray is measured twice in a fan-beam 360◦ full scan.

Due to data redundancy, we can use a smaller angular (β) range than 2π
for fan-beam data acquisition, hence the term short scan. The minimal range
of β is determined by how the data are acquired. This required range can be
less than π (see Figure 3.9 Left), equal to π (see Figure 3.9 Middle), or larger
than π (see Figure 3.9 Right). The criterion is that we need at least 180◦

angular coverage for each point in the object in which we are interested.
We need to be cautious that in a fan-beam short scan, some rays are

measured once, and other rays are measured twice. Even for the case that the
angular range of β is less than π, there are still rays that are measured twice.
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Fig. 3.9. Fan-beam minimum scan angle depends on the location of the object.

In fact, any ray that intersects the measured focal point trajectory twice
is measured twice (see Figure 3.10). We require that any ray which passes
through the object should be measured at least once. Proper weighting should
be used in image reconstruction if data are redundant. For example, if a ray is
measured twice, the sum of the weighting factors for these two measurements
should be unity. For a fan-beam short-scan, the projection/backprojection
PSF is no longer shift-invariant.

Fig. 3.10. For a fan-beam short scan, some rays are measured once and some rays
are measured twice.

∗3.4 Mathematical Expressions

This section presents the derivation steps for the filtered backprojection
algorithm for the curved fan-beam detector. The ramp-filter used in the fil-
tering step is formulated as a convolution. In this algorithm, the fan-beam



∗3.4 Mathematical Expressions 57

backprojector contains a distance dependent weighting factor, which causes
non-uniform resolution throughout the reconstructed image when a window
function is applied to the ramp-filter in practice. In order to overcome this
problem, the ramp-filter can be replaced by a derivative operation and the
Hilbert transform. The derivation of the fan-beam algorithm using the deriva-
tive and the Hilbert transform is given in this section.

3.4.1 Derivation of a Filtered Backprojection Fan-Beam
Algorithm

We begin with the parallel-beam filtered backprojection algorithm (see Sec-
tion 2.6.5), using polar coordinates (r, ϕ) instead of Cartesian coordinates
(x, y). Then x = r cosϕ, y = r sin ϕ, and x cos θ + y sin θ = r cos(θ − ϕ). We
have

f(r, ϕ) =
1
2

∫ 2π

0

∫ ∞

−∞
p(s, θ)h(r cos(θ − ϕ)− s)dsdθ. (3.4.1)

Changing variables θ = γ + β and s = D sin γ with the Jacobian D cos γ
yields

f(r, ϕ) =
1
2

∫ 2π

0

∫ π/2

−π/2

g(γ, β)h(r cos(β + γ − ϕ)−D sin γ)D cos γdγdβ.

(3.4.2)
This is a fan-beam reconstruction algorithm, but the inner integral over γ

is not yet in the convolution form. Convolution is much more efficient than a
general integral in implementation. In the following, we are going to convert
the integral over γ to a convolution with respect to γ.

For a given reconstruction point (r, ϕ), we define D′ and γ′ as in Figure
3.11, then r cos(β + γ − ϕ)−D sinγ = D′ sin(γ′ − γ), and

f(r, ϕ) =
1
2

∫ 2π

0

∫ π/2

−π/2

g(γ, β)h(D′ sin(γ′ − γ))D cos γdγdβ. (3.4.3)

Now, we prove a special property of the ramp filter

h(D′ sin γ) =
(

γ

D′ sin γ

)2

h(γ), (3.4.4)

which will be used in the very last step the derivation of the fan-beam formula.

Using the definition of the ramp filter kernel h(t) =
∫ ∞

−∞
|ω|ei 2πωtdω, we
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have

h(D′ sin γ) =
∫ ∞

−∞
|ω|ei 2πωD′ sin γdω

=
(

γ

D′ sin γ

)2 ∫ ∞

−∞

∣∣∣∣ωD′
sin γ

γ

∣∣∣∣ ei 2πω D′ sin γ
γ γd

(
ωD′

sin γ

γ

)

=
(

γ

D′ sin γ

)2 ∫ ∞

−∞
|ω̂|ei 2πω̂γdω̂

=
(

γ

D′ sin γ

)2

h(γ). (3.4.5)

If we denote hfan(γ) =
D

2

(
γ

sinγ

)2

h(γ), then the fan-beam convolution

backprojection algorithm is obtained as

f(r, ϕ) =
∫ 2π

0

1
(D′)2

∫ π/2

−π/2

(cos γ)g(γ, β)hfan(γ′ − γ)dγdβ. (3.4.6)

Fig. 3.11. The reconstruction point (r,ϕ) defines the angle γ′ and distance D′.

3.4.2 A Fan-Beam Algorithm Using the Derivative and the
Hilbert Transform

The general idea of decomposition of the ramp filter into the derivative and
the Hilbert transform can be applied to fan-beam image reconstruction. A
derivative-Hilbert transform-backprojection algorithm can be obtained by
doing a coordinate transformation on the Radon inversion formula (see Sec-
tion 2.6.6) as follows. Noo, Defrise, Kudo, Clackdoyle, Pan, Chen, Wang,
You and many others have contributed significantly in developing algorithms
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using the derivative and the Hilbert transform. We first re-write the Radon
inversion formula (see Section 2.6.6) in the polar coordinate system, that is,
f(r, ϕ) can be reconstructed as

f(r, ϕ) =
1
2

∫ 2π

0

∫ ∞

−∞

p(s, θ)
s

1
2π2(r cos(θ − ϕ)− s)

dsdθ. (3.4.7)

Changing variables from (s, θ) to (γ, β) and using
p

s
=

1
D cos γ

g

γ
, we

have

f(r, ϕ) =
1
2

∫ 2π

0

∫ π/2

−π/2

1
D cos γ

g(γ, β)
γ

1
2π2D′ sin(γ′ − γ)

D cos γdγdβ

=
∫ 2π

0

1
4π2D′

∫ π/2

−π/2

g(γ, β)
γ

1
sin(γ′ − γ)

dγdβ, (3.4.8)

where D′ is the distance from the reconstruction point to the focal point at
angle β. This D′ factor is not desirable in a reconstruction algorithm. A small
D′ can make the algorithm unstable; this spatially variant factor also costs
some computation time. In a 2π scan, each ray is measured twice. If proper
weighting is chosen for the redundant measurements, this D′ factor can be
eliminated.

Let us introduce a weighting function w in the above DHB (derivative,
Hilbert transform, backprojection) algorithm:

f(r, ϕ) =
1

4π2

∫ 2π

0

w(γ′, β, r, ϕ)
D′

∫ π/2

−π/2

g(γ, β)
γ

1
sin(γ′ − γ)

dγdβ. (3.4.9)

If we use ĝ to denote the result of the derivative and Hilbert transform of
the fan-beam data:

ĝ(γ′, β) =
∫ π/2

−π/2

g(γ, β)
γ

1
sin(γ′ − γ)

dγ, (3.4.10)

then

f(r, ϕ) =
1

4π2

∫ 2π

0

w(γ′, β, r, ϕ)
D′

ĝ(γ′, β)dβ. (3.4.11)

It can be shown that ĝ/D′ has the same redundancy property as the
original fan-beam data g (see Figure 3.8). Therefore, it is required that the
weighting function satisfy the condition

w(γ′, β, r, ϕ) + w(γ′c, βc, r, ϕ) = 2, (3.4.12)

with γ′c = −γ′ and βc = β + 2γ′ + π. If we define w(γ′, β, r, ϕ) =
D′

D cos γ′
,

then the above condition is satisfied because D′+D′c = 2D cos γ′ (see Figure



60 3 Fan-Beam Image Reconstruction

3.12). Finally,

f(r, ϕ) =
1
2

{
1

4π2

∫ 2π

0

[
w(γ′, β, r, ϕ)

D′
+

w(γ′c, βc, r, ϕ)
D′c

]
ĝ(γ′, β)dβ

}

=
1

4π2D

∫ 2π

0

1
cos γ′

ĝ(γ′, β)dβ. (3.4.13)

This result can be derived without introducing a weighting function w
(see Ref. [14]).

Fig. 3.12. Proper weighting can make the distance dependent factor disappear
from the backprojector in a 360◦ full scan.

3.5 Worked Examples

Example 1 Does the following fan-beam geometry acquire sufficient
projection data for image reconstruction? The fan-beam focal-point trajec-
tory consists of three disjoint arcs as shown in Figure 3.13.

Solution

Yes. If you draw any line through the circular object, this line will intersect
the focal-point trajectory at least once.

Example 2 On the γ-β plane (similar to the sinogram for the parallel-
beam projections), identify the double measurements for a fan-beam 2π scan.
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Fig. 3.13. A three-piece fan-beam focal-point trajectory.

Solution

From Figure 3.14, we can readily find the fan-beam data redundancy
conditions for

g(γ1, β1) = g(γ2, β2) (3.5.1)

as
γ2 = −γ1 (3.5.2)

and
β2 = β1 + 2γ1 + π. (3.5.3)

Fig. 3.14. A redundant measurement in a fan-beam scan.

Using these conditions, the fan-bean data redundancy is depicted on the
γ-β plane in Figure 3.15, where every vertical line corresponds to a redundant
slant line.

Example 3∗ Derive a filtered backprojection algorithm for the flat-
detector fan-beam geometry.

Solution

We begin with the parallel-beam filtered backprojection algorithm, using
polar coordinates (r, ϕ) instead of Cartesian coordinates (x, y). Then x =
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Fig. 3.15. In the γ-β plane representation of the fan-bean data, each vertical line
of measurements is the same as the slant line of measurements with the same index
number 1©, 2©, 3©, or 4©.

r cosϕ, y = r sin ϕ, and x cos θ + y sin θ = r cos(θ − ϕ). We have

f(r, ϕ) =
1
2

∫ 2π

0

∫ ∞

−∞
p(s, θ)h(r cos(θ − ϕ)− s)dsdθ. (3.5.4)

For the flat-detector fan-beam projection g(t, β) = p(s, θ) if the fan-

beam and parallel-beam variables are related by θ = β + tan−1 t

D
and

s = D
t√

D2 + t2
. Changing the parallel-beam variables to the fan-beam vari-

ables with the Jacobian
D3

(D2 + t2)
3
2

yields

f(r, ϕ) =
1
2

∫ 2π

0

∫ ∞

−∞
g(t, β)h

(
(t̂− t)

UD√
D2 + t2

)
D3

(D2 + t2)
3
2
dtdβ, (3.5.5)

where we have used r cos(θ − ϕ)− s = (t̂− t)
UD√

D2 + t2
with

U =
D + r sin(β − ϕ)

D
(3.5.6)

and

t̂ =
Dr cos(β − ϕ)

D + r sin(β − ϕ)
(3.5.7)

(see Figure 3.16).
This is a fan-beam reconstruction algorithm, but the inner integral over t

is not yet in the convolution form. Using a special property of the ramp filter

h(at) =
1
a2

h(t) yields

f(r, ϕ) =
1
2

∫ 2π

0

1
U2

∫ ∞

−∞

D√
D2 + t2

g(t, β)h(t̂− t)dtdβ. (3.5.8)



3.6 Summary 63

Fig. 3.16. Notation for flat detector fan-beam imaging geometry.

This is a fan-beam convolution backprojection algorithm, where
D√

D2 + t2
is the cosine pre-weighting factor, the integral over t is the ramp-

filter convolution, and 1/U2 is the distance-dependent weighting factor in the
backprojection.

Note: The relationship h(at) =
1
a2

h(t) does not hold for a windowed

ramp filter. Therefore, the fan-beam algorithm derived above does not have
uniform resolution in the reconstructed image in practice when a window
function is applied to the ramp filter.

3.6 Summary

• The fan-beam geometry is popular in X-ray CT imaging.
• The fan-beam image reconstruction algorithms can be derived from their

parallel-beam counterparts via changing of variables.
• There are two types of fan-beam detectors, that is, the flat detectors and

curved detectors. Each detector type has its own image reconstruction
algorithm.

• If the fan-beam focal-point trajectory is a full circle, it is called full-
scan. If the trajectory is a partial circle, it is called short-scan. Even for a
short-scan, some of the fan-beam rays are measured twice. The redundant
measurements need proper weighting during image reconstruction.

• For some fan-beam image reconstruction algorithms, the backprojector
contains a distance dependent weighting factor. When a window function
is applied to the ramp-filter, this factor is not properly treated by the
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window function and the resultant fan-beam FBP is no longer exact in
the sense that the reconstructed image has non-uniform resolution. For
the same reason, the Parker short-scan method (not discussed in this
book) is inexact.

• The modern derivative and Hilbert transform based algorithms are able
to weigh the short-scan redundant data in a correct way.

• In this chapter, the readers are expected to understand how a fan-beam
algorithm can be obtained from a parallel-beam algorithm.

Problems

Problem 3.1 The data redundancy condition for the curved detector fan-
beam imaging geometry is

g(γ, β) = g(−γ, β + 2γ + π).

What is the data redundancy condition for the flat detector fan-beam
geometry?

Problem 3.2 In Chapter 3, we assume that the X-ray source (i.e., the fan-
beam focal point) rotates around the object in a circular orbit. If the
focal point orbit is not circular, then the focal length D is a function of
the rotation angle β. Extend a fan-beam image reconstruction algorithm
developed in this chapter to the situation that the focal point orbit is
non-circular.

Problem 3.3 The method of developing an image reconstruction algorithm
discussed in this chapter is not restricted to the fan-beam imaging ge-
ometry. For example, we can consider a variable focal length fan-beam
imaging geometry, where the focal length D can be a function of t, which
is the coordinate of the detection bin as shown in the figure below. Ex-
tend a fan-beam image reconstruction algorithm in this chapter to this
variable focal length fan-beam imaging geometry.
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4 Transmission and Emission Tomography

This book considers real imaging systems in this chapter. If the radiation
source is outside the patient, the imaging system acquires transmission data.
If the radiation sources are inside the patient, the imaging system acquires
the emission data. For transmission scans, the image to be obtained is a map
(or distribution) of the attenuation coefficients inside the patient. For the
emission scans, the image to be obtained is the distribution of the injected
isotopes within the patient. Even for emission scans, an additional transmis-
sion scan is sometimes required in order to compensate for the attenuation
effect of the emission photons. Some attenuation compensation methods for
emission imaging are discussed in this chapter.

4.1 X-Ray Computed Tomography

In this chapter, we relate transmission and emission tomography measure-
ments to line-integral data so that the reconstruction algorithms mentioned
in the previous chapters can be used to reconstruct practical data in medical
imaging.

X-ray CT (computed tomography) uses transmission measurements to
estimate a cross-sectional image within the patient body. X-rays have very
high energy, and they are able to penetrate the patient body. However, not
every X-ray can make it through the patient’s body. Some X-rays get scat-
tered within the body, and their energy gets weakened. During X-ray scatter-
ing, an X-ray photon interacts with an electron within the patient, transfers
part of its energy to that electron, and dislodges the electron (see Figure 4.1).
The X-ray is then bounced to a new direction with decreased energy.

Some other X-rays completely disappear within the body, converting their
energy to the tissues in the body, for example, via the photoelectric conver-
sion. The photoelectric effect is a process in which the X-ray photon energy
is completely absorbed by an atom within the patient. The absorbed energy
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ejects an electron from the atom (see Figure 4.2).

Fig. 4.1. Schematic representation of Compton scattering. The incident photon
transfers part of its energy to an electron and is scattered in a new direction.

Fig. 4.2. Schematic representation of the photoelectric effect. The incident photon
transfers all its energy to an electron and disappears.

Energy deposition within the body can damage DNA if the X-ray dose
is too large. Let the X-ray intensity before entering the patient be I0, and
the intensity departing the patient be Id; I0 and Id follow the Beer’s law (see
Figure 4.3):

Fig. 4.3. The X-ray intensity is reduced after going through the object.

Id

I0
= exp(−p), (4.1.1)

where p is the line integral of the linear attenuation coefficients along the
path of the X-rays. A line integral of the attenuation coefficients is obtained
by

p = ln
(

I0

Id

)
, (4.1.2)
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which is supplied to the image reconstruction algorithm for image reconstruc-
tion.

The goal of X-ray CT is to obtain a cross-section image of various atten-
uation coefficients within the body. A typical X-ray CT image is shown in
Figure 4.4. The attenuation coefficient (commonly denoted by notation μ)
is a property of a material; it is the logarithm of the input/output intensity
ratio per unit length. Bones have higher μ values, and soft tissue has lower
μ values. The attenuation coefficient of a material varies with the incoming
X-ray energy; it becomes smaller when the X-ray energy gets higher.

Fig. 4.4. An X-ray CT image.

The first-generation CT, which is no longer in use, had one small detector
(see Figure 4.5). The X-ray source and the detector have two motions: linear
translation and rotation. The X-ray source sends out a narrow pencil beam to
obtain parallel-beam projections. The scanning time was rather long (about
25 minutes).

Fig. 4.5. In the first-generation CT, the X-ray tube and the detector translate and
rotate.

The second-generation CT used narrow fan-beam geometry, consisting of
12 detectors (see Figure 4.6). Like the first-generation CT, it has two motions:
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linear translation and rotation. Due to the fan-beam geometry, the scan time
was shortened to about 1 minute.

Fig. 4.6. The second-generation CT uses narrow fan-beam X-rays. The X-ray tube
and the detector translate across the FOV and rotate around the object.

The third-generation CT uses wide fan-beam geometry, consisting of
approximately 1 000 detectors (see Figure 4.7). No linear translation motion
is necessary, and the scanning time was further reduced to about 0.5 seconds.
The third-generation CT is currently very popular in medical imaging.

Fig. 4.7. The third-generation CT uses wide fan-beam X-rays. The X-ray tube and
the detector rotate around the object; they do not translate anymore.

The fourth-generation CT has a stationary ring detector. The X-ray source
rotates around the subject (see Figure 4.8). This scanning method forms a
very fast fan-beam imaging geometry; however, it is impossible to collimate
the X-rays on the detector, which causes this geometry to suffer from high
rates of scattering.

Modern CT can perform helical scans, which is implemented as translating
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Fig. 4.8. In the fourth-generation CT, the ring detector does not rotate. The X-ray
source rotates around the object.

the patient bed in the axial direction as the X-ray source and the detectors
rotate. The modern CT has a 2D multi-row detector, and it acquires cone-
beam data (see Figure 4.9). Image reconstruction methods for the cone-beam
geometry will be covered in the next chapter.

Fig. 4.9. The modern CT can perform cone-beam helix scans with a 2D detector.
Some systems have multiple X-ray sources and 2D detectors. The helix orbit is
implemented by translating the patient bed while the source and detector rotate.

4.2 Positron Emission Tomography and Single Photon
Emission Computed Tomography

In the last section, transmission imaging was discussed. In transmission imag-
ing, the radiation source is placed outside the patient body. The radiation
rays (either X-rays or γ-rays) enter the patient from outside, pass through the
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patient body, exit the patient, and finally get detected by a detector outside.
This section will change the subject to emission imaging, where the radi-

ation sources are inside the patient body. Radiation is generated inside the
patient body, emitted from within, and detected by a detector after it escapes
from the patient body.

Radioactive atoms with a short half-life are generated in a cyclotron or
a nuclear reactor. Radiopharmaceuticals are then made and injected into a
patient (in a peripheral arm vein) to trace disease processes. The patient
can also inhale or ingest the radiotracer. Radiopharmaceuticals are carrier
molecules with a preference for a certain tissue or disease process. The
radioactive substance redistributes itself within the body after the injec-
tion. The goal of emission tomography is to obtain a distribution map of the
radioactive substance.

Unstable atoms emit gamma rays as they decay. Gamma cameras are
used to detect the emitted gamma photons (see Figure 4.10). The cameras
detect one photon at a time. These measurements approximate the ray-sums
or line-integrals. Unlike the transmission data, we do not need to take the
logarithm. SPECT (single photon emission computed tomography) is based
on this imaging principle.

Fig. 4.10. Preparation for a nuclear medicine emission scan.

Some isotopes, for example, O-15, C-11, N-13, and F-18, emit positrons
(positive electrons) during radioactive decay. A positron exists in nature only
for a very short time before it collides with an electron. When the positron
interacts with an electron, their masses are annihilated, creating two gamma
photons of 511 keV each. These photons are emitted 180◦ apart. A spe-
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cial gamma camera is used to detect this pair of photons, using coincidence
detection technology. Like SPECT, the measurements approximate ray-sums
or line-integrals; no logarithm is necessary to convert the data. This is the
principle of PET (positron emission tomography) imaging (see Figure 4.11).

Fig. 4.11. Principle of PET imaging.

The imaging geometry for SPECT (single photon emission computed
tomography) is determined by its collimator, which is made of lead septa
to permit gamma-rays oriented in certain directions to pass through and
stop gamma-rays with other directions. If a parallel-beam or a fan-beam
collimator is used, then the data are acquired in the same corresponding
form (see Figure 4.12). Similarly, if a cone-beam or a pinhole collimator is
used, the imaging geometry is cone-beam (see Figure 4.13). Convergent beam
geometries magnify the object so that an image larger than the object can
be obtained on the detector.

Fig. 4.12. SPECT uses collimators to selected incoming projection ray geometry.

In PET, each measured event determines a line. The imaging geometry
is made by sorting or grouping the events according to some desired rules.
For example, we can group them into parallel sets (see three different sets in
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Fig. 4.13. SPECT Collimators can be parallel, convergent, or divergent. They
produce different sizes of images.

Figure 4.14). We can also store each event by itself as the list mode.

Fig. 4.14. PET data can be grouped into parallel sets.

A typical SPECT image and a PET image are shown in Figure 4.15. When
comparing X-ray CT, PET, and SPECT, we observe that X-ray CT has the
best resolution and is least noisy, and SPECT has the worst resolution and
most noise. Image quality is directly proportional to the photon counts.
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Fig. 4.15. SPECT cardiac images and a PET torso image. The PET image is
displayed in the inverse gray scale.

4.3 Attenuation Correction for Emission Tomography

In emission tomography, the gamma-ray photons are emitted from within
the patient’s body. Not all the photons are able to escape from the patient
body; thus they are attenuated when they propagate. The attenuation follows
Beer’s law, which we have seen in Section 4.1.

In PET, two detectors are required to measure one event with coincidence
detection. An event is valid if two detectors simultaneously detect a 511 keV
photon. Let us consider the situation depicted in Figure 4.16, where the
photons are emitted at an arbitrary location in a non-uniform medium. The
photons that reach Detector 1 are attenuated by Path L1 with an attenuation
factor determined by Beer’s law. We symbolically represent this attenuation

factor as exp
(
−
∫

L1

μ

)
. Similarly, the attenuation factor for Path L2 is

exp
(
−
∫

L2

μ

)
. The attenuation factor is a number between 0 and 1, and

can be treated as a probability. The probability that a pair of photons will
be detected by both detectors is the product of the probabilities that each
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photon is detected; that is,

exp
(
−
∫

L1

μ

)
× exp

(
−
∫

L2

μ

)
= exp

(
−
∫

L1+L2

μ

)
= exp

(
−
∫

L

μ

)
.

(4.3.1)

Fig. 4.16. The attenuation of the PET projection is the effect of the total length
L = L1 + L2.

Therefore, the overall attenuation factor is determined by the entire path
L, regardless of where the location of the gamma source is along this path.

To do an attenuation correction for PET data, a transmission measure-
ment is required with an external transmission (either X-ray or gamma-
ray) source. This transmission measurement gives the attenuation factor

exp
(
−
∫

L

μ

)
.

The attenuation-corrected line-integral or ray-sum of PET data is
obtained as

p(s, θ) = exp

(∫
L(s,θ)

μ

)
× [emission measurement of the path L(s, θ)],

(4.3.2)
where the reciprocal of the attenuation factor is used to compensate for the
attenuation effect. Note that there is no need to reconstruct the attenuation
map for PET data attenuation correction.

Attenuation correction for SPECT data is much more complicated than
this, because an event in SPECT is single photon detection (see Figure 4.17).
On the same imaging path, the emission source at a different location has a
different attenuation factor. This makes SPECT attenuation correction very
difficult. We still do not know how to compensate for the attenuation by
processing the projections as done for PET. However, the attenuation effect
can be corrected during image reconstruction.
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Fig. 4.17. In SPECT the attenuation is a mixed effect of all lengths.

In SPECT, if the attenuator is uniform (i.e., μ = constant within the body
boundary), the filtered backprojection (FBP) image reconstruction algorithm
is similar to that for the regular unattenuated data. The attenuation corrected
FBP algorithm, developed by Tretiak and Metz, consists of three steps:

(1) Pre-scale the measured projection p(s, θ) by eμd(s,θ), where the defini-
tion of distance d(s, θ) is given in Figure 4.18. We denote this scaled projection
as p̂(s, θ).

(2) Filter the pre-scaled data with a notched ramp filter (see Figure 4.19).
(3) Backproject the data with an exponential weighting factor e−μt, where

t is defined in Figure 4.20 and is dependent on the location of the reconstruc-
tion point as well as the backprojection angle θ.

Fig. 4.18. The distance d(s, θ) is from the boundary of the uniform attenuator to
the central line parallel to the detector. A central line is a line passing through the
center of rotation.

Similar to the μ = 0 case, the notched ramp filtering can be decomposed
into a derivative and a notched Hilbert transform. In the spatial domain, the
Hilbert transform is a convolution with a convolution kernel 1/s. The notched
Hilbert transform, on the other hand, is a convolution with a convolution
kernel (cosμs)/s.
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Fig. 4.19. The notched ramp-filter transfer function for image reconstruction in
the case of a uniformly attenuated Radon transform. A transfer function is a filter
expression given in the Fourier domain, and its inverse Fourier transform is the
convolution kernel.

Fig. 4.20. The distance t is from the reconstruction point to the central line parallel
to the detector.

In the Fourier domain, the notched Hilbert filter function is shown on the
left-hand-side of the graphic equation in Figure 4.21. The cosine function can
be decomposed as cos(μs) = (ei μs + e−i μs)/2. The Fourier transform has a
property that multiplication by ei μs in the s domain corresponds to shifting
by μ/(2π) in the ω domain (i.e., the Fourier domain). Therefore, the Fourier
transform of (cosμs)/s is the combination of two shifted versions (one shifted
to the left by μ/(2π) and the other one shifted to the right by μ/(2π)) of the
Fourier transform of 1/s (see Figure 4.21).

If μ is non-uniform, an FBP-type algorithm exists but is rather sophisti-
cated and will be briefly discussed in the next section.
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Fig. 4.21. A notched Hilbert transform transfer function can be decomposed as
two shifted Hilbert transform transfer functions.

∗4.4 Mathematical Expressions

Now we give the mathematical expression of the FBP algorithm for SPECT
with uniform attenuation correction. This algorithm has been outlined in
Section 4.3. After the pre-scaling step, the scaled projection p̂(s, θ) can be
related to the original image f(x, y) as

p̂(s, θ) =
∫ ∞

−∞
eμtf(sθ + tθ⊥)dt. (4.4.1)

You can refer to Section 1.5 for notation definitions. The following gives
an FBP algorithm using the derivative and the notched Hilbert transform:

f(x, y) =
1

4π2

∫ 2π

0

e−μ(−x sin θ+y cos θ)

∫ ∞

−∞

cos(μ(s− x cos θ − y sin θ))
s− x cos θ − y sin θ

× p̂(s, θ)
s

dsdθ. (4.4.2)

There are many other ways to reconstruct SPECT data with uniform
attenuation corrections. We can still play the game of switching the order
of filtering and backprojection. For example, we can first take the derivative
then backproject. This results in an intermediate image f̂(x, y) that is closely
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related to the original image f(x, y):

f̂(x, y) = f(x, y) ∗ cosh(μx)
x

, (4.4.3)

which is a 1D convolution (i.e., line-by-line convolution in the x-direction).
The deconvolution of this expression to solve for f(x, y) is not an easy task,

because the function
cosh(μx)

x
tends to infinity as x goes to infinity. It is

impossible to find a function u(x) such that

δ(x) = u(x) ∗ cosh(μx)
x

(4.4.4)

for −∞ < x < +∞. However, it is possible to find such a function u(x)
to make the above expression hold in a small interval, say, (−1, 1). Outside

this small interval, u(x) ∗ cosh(μx)
x

is undefined. This “second best” solution

is useful in image reconstruction because our objects are always supported
in a small finite region. Unfortunately, we do not yet have a closed-form

expression for such a function u(x), and f̂(x, y) = f(x, y) ∗ cosh(μx)
x

can

only be deconvolved numerically.
The advantage of this derivative-then-backprojection algorithm is its abil-

ity to exactly reconstruct a region-of-interest with truncated data.
In SPECT imaging with a non-uniform attenuator μ(x, y), if attenuation

correction is required, a transmission scan should be performed in addition to
the emission scan. The transmission projections are used to reconstruct the
attenuation map μ(x, y). The following is a reconstruction algorithm that can
correct for the non-uniform attenuation. Despite its frightening appearance,
it is merely an FBP algorithm:

f(x, y) =
1

4π2
Re

{ ∫ 2π

0 q

[
eaθ(q,t)−g(q,θ)

∫ ∞

−∞

(egp)(l, θ)
q − l

dl

]∣∣∣∣
q=s

dθ

}
,

(4.4.5)

where Re means taking the real part, p(s, θ) is the measured attenuated pro-

jection, s = x cos θ+y sin θ, t=−x sin θ+y cos θ, aθ(s, t)=
∫ ∞

t

μ(sθ+ τθ⊥)dτ ,

g(s, θ) =
1
2
[(R + iHR)μ](l, θ), i =

√−1, R is the Radon transform opera-

tor, and H is the Hilbert transform operator with respect to variable l. This
algorithm was independently developed by Novikov and Natterer.
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4.5 Worked Examples

Example 1 In radiology, do the X-ray CT scanners provide images of the
distribution of the linear attenuation coefficients within the patient body?

Answer

Not quite. The reconstructed linear attenuation coefficients μ are con-
verted to the so-called CT numbers, defined as

CT Number h = 1000× μ− μwater

μwater
. (4.5.1)

The CT numbers are in Hounsfield units (HU). For water, h = 0 HU. For
air, h = −1000 HU. For bone, h = 1000 HU.

Example 2 Is there a central slice theorem for the exponential Radon
transform?

Answer

In 1988 Inouye derived a complex central slice theorem to relate the uni-
formly attenuated projections to the object in the Fourier domain. He used a
concept of “imaginary” frequency, which was attenuation coefficient. Let the
exponential Radon transform be

p̂(s, θ) =
∫ ∞

−∞
eμtf(sθ + tθ⊥)dt. (4.5.2)

Let the 1D Fourier transform of p̂(s, θ) with respect to s be Pμ(ω, θ)
and the 2D Fourier transform of the original object be F (ωx, ωy). Inouye’s
complex central slice theorem is expressed as follows:

Pμ(ω, θ) = F (ω cos(θ + ν), ω cos(θ + ν)) (4.5.3)

where ν =
i
2

ln
ω − μ

2π
ω +

μ

2π

is an imaginary frequency.

Example 3 In Figure 4.19, the frequency components below μ/(2π) are
discarded during image reconstruction. How do the low frequency components
of the image get reconstructed?

Answer

We will use Bellini’s result to answer this question. Let the attenuation-
free Radon transform be

p(s, θ) =
∫ ∞

−∞
f(sθsθ⊥)dt (4.5.4)
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and the exponential Radon transform be

p̂(s, θ) =
∫ ∞

−∞
eμtf(sθsθ⊥)dt. (4.5.5)

The exponential Radon transform is the attenuated projection scaled by the
factor eμd(s,θ).

Then we take the 2D Fourier transform of p(s, θ) and p̂(s, θ), and obtain
P (ω, k) and P̂ (ω, k), respectively. Bellini’s relationship is given as

P (ω, k) =

⎛
⎜⎜⎝ ω2√

ω2 +
( μ

2π

)2

+
μ

2π

⎞
⎟⎟⎠

k

(4.5.6)

×P̂

(√
ω2 +

( μ

2π

)2

, k

)
for ω � 0 and k � 0.

This relationship implies that the frequency ω has been shifted to√
ω2 + (μ/(2π))2. The attenuation procedure during data generation

actually shifts the “frequency.” The lowest frequency in the image corre-
sponds to the frequency at μ/(2π) in the projections. Therefore, all frequency
components are preserved.

Example 4 Consider a 2D PET imaging problem shown in Figure 4.22,
where the object consists of two compartments R1 and R2. The radionuclide
concentration is ρ1 in R1 and ρ2 in R2. The attenuation coefficient μ is the
same for both compartments. Calculate the PET coincident measurement p
and the attenuation corrected measurement pc.

Fig. 4.22. Concentrations are different in the two compartments.

Solutions

The coincidence measurement is

p = (L1ρ1 + L2ρ2)e−μ(L1+L2). (4.5.7)

The attenuation corrected measurement is

pc = L1ρ1 + L2ρ2. (4.5.8)
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4.6 Summary

• The working principle for X-ray CT measurement is Beer’s law. One needs
to take the logarithm to convert the CT measurements into line-integrals.

• PET and SPECT measure line-integrals directly. However, these mea-
surements suffer from photon attenuation within the patient.

• Attenuation correction for PET can be achieved by the pre-scaling
method. The scaling factor is obtained by transmission measurements.

• Attenuation correction for SPECT is difficult and cannot be done by
pre-scaling. Attenuation correction is a built-in feature in SPECT recon-
struction algorithms. FBP algorithms exist for uniform attenuator and
for non-uniform attenuator as well. However, the FBP algorithm for the
non-uniform attenuator is very complicated to implement.

• The readers are expected to understand the differences between transmis-
sion and emission tomography, and understand the different attenuation
effects in PET and SPECT.

Problems

Problem 4.1 The line-integral data p from transmission tomography can

be obtained by p = ln
N0

N
, where N0 and N are the numbers of the pho-

tons entering and leaving the patient body, respectively. The noise char-
acteristics of the photon numbers are Poisson distributed. In practice,
the entering number N0 is very large and can be treated as a constant.
Prove that the mean value (i.e., the expected value) and the variance of
the line-integral p can be approximated as p and 1/N , respectively.

Problem 4.2 The object to be imaged is a 2D uniform disc with a radius
R. The linear attenuation coefficient of the disc is a constant μ and its
radioactivity line density is a constant ρ. The center of the disc is at the
center of the detector rotation. Find the expressions of the attenuated
projection data p(s, θ) for SPECT and PET cases, respectively.

Problem 4.3 Prove that the inverse Fourier transform of the transfer func-
tion Hμ(ω) of the filter shown in Figure 4.19 is the convolution kernel
cos(μs)

s
.
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5 3D Image Reconstruction

This chapter is focused on 3D tomographic imaging. In 3D, we will con-
sider the parallel line-integral projections, parallel plane-integral projections,
and cone-beam line-integral projections, separately. For the 3D parallel line-
integral projections and parallel plane-integral projections, there exist the
central slice theorems, from which the image reconstruction algorithms can
be derived. However, for the cone-beam projections the situation is differ-
ent; there is no central slice theorem for cone-beam. We have to somehow
establish a relationship between the cone-beam projections and the 3D image
itself. Since the cone-beam image reconstruction is an active research area,
this chapter spends a significant effort on discussing cone-beam reconstruc-
tion algorithms, among which the Katsevich algorithm is the latest and the
best one.

5.1 Parallel Line-Integral Data

In many cases, 3D image reconstruction can be decomposed into a series of
slice-by-slice 2D image reconstructions if the projection rays can be divided
into groups, where each group contains only those rays that are confined
within a transaxial slice (see Figure 5.1 Left).

Fig. 5.1. The measurement rays can be in the planes perpendicular to the axial
direction and can also be in the slant planes.
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In other cases, the projection rays run through transaxial slices, where
the slice-by-slice 2D reconstruction approach does not work (see of Figures
5.1 Middle and Right).

The foundation for 2D parallel-beam image reconstruction is the central
slice theorem (see Section 2.2). The central slice theorem in 3D states that
the 2D Fourier transform P (ωu, ωv, θ) of the projection p(u, v, θ) of a 3D
function f(x, y, z) is equal to a slice through the origin of the 3D Fourier
transform F (ωx, ωy, ωz) of that function which is parallel to the detector (see
Figure 5.2). Here, θ is the normal direction of the u-v plane and the ωu-ωv

plane. The direction θ represents a group of rays that are parallel to θ.

Fig. 5.2. The central slice theorem for the 3D line-integral projections.

Based on this central slice theorem, we can determine some specific tra-
jectories of θ so that we are able to fill up the (ωx, ωy, ωz) Fourier space. One
such option is shown in Figure 5.3, where the trajectory of θ is a great circle.
A great circle is a circle with unit radius that lies on the surface of the unit
sphere (see Figure 5.4). Each unit vector θ on the great circle corresponds
to a measured P (ωu, ωv, θ) plane in the (ωx, ωy, ωz) Fourier space. After the
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unit vector θ completes the great circle, the measured P (ωu, ωv, θ) planes fill
up the entire (ωx, ωy, ωz) Fourier space. In fact, due to symmetry, if the unit
vector θ completes half of the great circle, a complete data set is obtained.

Fig. 5.3. One measuring direction gives a measured plane in the Fourier space. A
great circle trajectory provides full Fourier space measurements.

Fig. 5.4. A great circle is a unit circle on the unit sphere.

The above example can be generalized, as stated in Orlov’s condition: A
complete data set can be obtained if every great circle intersects the trajectory
of the unit vector θ, which is the direction of the parallel rays. The trajectory
can be curves on the sphere and can also be regions on the sphere. Some
examples of the θ trajectories (shaded area) are shown in Figure 5.5, where
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the first three satisfy Orlov’s condition, and the last two do not.

Fig. 5.5. The directional vector trajectories are illustrated as curves or shaded
areas on the unit sphere. The trajectories on the top row satisfy Orlov’s condition;
the trajectories on the bottom row do not satisfy the condition.

The image reconstruction algorithm depends on the trajectory of the
direction vector θ geometry. The basic algorithm development can follow
the guidelines below.

5.1.1 Backprojection-then-Filtering

If the data are sufficiently measured, the 3D image can be exactly recon-
structed. Like 2D image reconstruction, one can reconstruct an image either
by performing the backprojection first or by performing the backprojection
last. If the backprojection is performed first, the algorithm is a backprojection-
then-filtering algorithm, and it is described in the following steps.

(1) Use an arbitrary point source and find the 3D projection/backproject-
ion PSF h (defined in Figure 3.2). If the original image is f(x, y, z) and the
backprojected image is b(x, y, z), then

b = f ∗ ∗ ∗ h, (5.1.1)

where “∗ ∗ ∗” denotes the 3D convolution. For example, if the trajectory of
the directional vector θ is the full unit sphere as shown in the leftmost case
in the first row of Figure 5.5, the PSF is

h(x, y, z) =
1

x2 + y2 + z2
=

1
r2

, (5.1.2)
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where r is the distance to the point source. In 2D, this projection/backproject-
ion PSF is 1/r. This implies that in 3D the PSF is sharper than that in 2D
because the PSF falls off at a faster rate as r increases.

(2) Take the 3D Fourier transform of the relationship b = f ∗ ∗ ∗ h and
obtain

B(ωx, ωy, ωz) = F (ωx, ωy, ωz)H(ωx, ωy, ωz). (5.1.3)

After this Fourier transform, b, f , and h become B, F , and H , respec-
tively, and convolution becomes multiplication. If we again use the example
in the leftmost case in the upper row of Figure 5.5, the transfer function H
is

H(ωx, ωy, ωz) =
π√

ω2
x + ω2

y + ω2
z

. (5.1.4)

Thus, a 3D ramp-filter

1
H(ωx, ωy, ωz)

=

√
ω2

x + ω2
y + ω2

z

π
(5.1.5)

can be used for image reconstruction in this case.
Solve for F as

F (ωx, ωy, ωz) = B(ωx, ωy, ωz)

√
ω2

x + ω2
y + ω2

z

π
. (5.1.6)

Finally, the image f(x, y, z) is obtained by taking the 3D inverse Fourier
transform of F .

In general, 3D line-integral data are measured with heavy redundancy.
Therefore, the image reconstruction algorithm is not unique because you can
always weigh redundant data differently.

5.1.2 Filtered Backprojection

In a filtered backprojection algorithm, the projection p(u, v, θ) is first filtered
by a 2D filter (or a 2D convolution), obtaining q(u, v, θ). A backprojection
of the filtered data q(u, v, θ) gives the reconstruction of the image f(x, y, z).

Due to data redundancy, the 2D filter is not unique. The filter is usually
different depending on different data orientation θ. One way to obtain a
Fourier-domain filter is through the central slice theorem.

In Section 5.1.1 above, we had a projection/backprojection PSF h(x, y, z)
and its Fourier transform H(ωx, ωy, ωz). If we let

G(ωx, ωy, ωz) = 1/H(ωx, ωy, ωz),

then G is the Fourier domain filter in the backprojection-then-filtering algo-
rithm. The Fourier domain 2D filter for projection p(u, v, θ) can be selected
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as the central slice of G(ωx, ωy, ωz) with the normal direction θ (see Figure
5.2). Note that the filter in general depends on the direction θ.

5.2 Parallel Plane-Integral Data

In 3D, the parallel plane-integral p(s, θ) of an object f(x, y, z) is referred to
as the Radon transform (see Figure 5.6). In 2D, the Radon transform is the
parallel line-integral p(s, θ) of f(x, y). In a general n-D space, the (n− 1)-D
hyperplane-integral of an n-D function f is called the Radon transform. On
the other hand, 1D integral of the object is called the line-integral, ray-sum,
X-ray transform, or ray transform. In 2D, the Radon transform and the X-ray
transform are the same thing.

Fig. 5.6. In 3D, the plane integral of an object is the Radon transform.

Unlike the line-integral data, the plane-integral data are not popular in
medical imaging. Nevertheless, Radon transform in 3D is still worthwhile to
investigate because it has a simple and nice inversion and can be used to
solve other related imaging problems.

To study the Radon transform in 3D, we imagine a 1D detector that
is able to measure plane-integrals p(s, θ) with the planes orthogonal to the
detector. The detector is along the direction θ. The central slice theorem
for the Radon transform in 3D states that the 1D Fourier transform P (ω, θ)
of the projection p(s, θ) of a 3D function f(x, y, z) is equal to a 1D profile
through the origin of the 3D Fourier transform F (ωx, ωy, ωz) of that function
which is parallel to the detector (see Figure 5.7). Here, θ is the direction of
the 1D detector and the 1D profile in the (ωx, ωy, ωz) space.

We observe from Figure 5.7 that each detector position only measures the
frequency components along one line in the (ωx, ωy, ωz) space. The direction
θ must go through a half unit-sphere to get enough measurements for image
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reconstruction. After the data are acquired, the image reconstruction algo-
rithm is simple and is in the form of filtered backprojection. This form is also
referred to as the Radon inversion formula.

Fig. 5.7. The central slice theorem for the 3D Radon transform.

In order to reconstruct the image, first take the second order derivative
of p(s, θ) with respect to variable s. This step is called filtering. Then back-
project the filtered data to the 3D image array. You will not find an image
reconstruction algorithm simpler than this.

The 3D backprojector in the 3D Radon inversion formula backprojects
a point into a 2D plane. There is a trick to perform the 3D backprojection
with the Radon data. This trick is to perform the 3D backprojection in two
steps, and each step is a 2D backprojection. In the first step, a point is
backprojected into a line [see Figure 5.8 (a)]. All data points along a line are
backprojected into a set of parallel lines, and these lines are in a 2D plane.

Fig. 5.8. 3D Radon backprojection is implemented as two steps: a point to a line,
then a line to a plane.



94 5 3D Image Reconstruction

In the second step, each line is backprojected into a 2D plane [see Figure 5.8
(b)]. The backprojection directions in these two steps are orthogonal to each
other.

5.3 Cone-Beam Data

Cone-beam image reconstruction is considerably more complex than that
of parallel line-integral and parallel plane-integral data. There is no equiv-
alent central slice theorem known to us. Cone-beam imaging geometry (see
the two lower figures in Figure 4.13) is extremely popular, for example, in
X-ray CT and in pinhole SPECT; we will spend some effort to talk about its
reconstruction methods.

First, we have a cone-beam data-sufficiency condition (known as Tuy’s
condition): Every plane that intersects the object of interest must contain a
cone-beam focal point. This condition is very similar to the fan-beam data
sufficiency condition: Every line that intersects the object of interest must
contain a fan-beam focal point.

In Figure 5.9, the circular cone-beam focal-point orbit does not satisfy
Tuy’s condition. If we draw a plane cutting through the object above (or
below) the orbit plane and parallel to the orbit plane, this plane will never
intersect the circular orbit. The helical and circle-and-lines orbits shown in

Fig. 5.9. The circular orbit does not satisfy Tuy’s conditions. The circle-and-lines
and the helix orbits satisfy the conditions.
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Figure 5.9 satisfy Tuy’s condition, and they can be used to acquire cone-beam
projections for exact image reconstruction. Modern CT uses helical orbit to
acquire projection data (see Figure 4.8).

5.3.1 Feldkamp’s Algorithm

Feldkamp’s cone-beam algorithm is dedicated to the circular focal point tra-
jectory. It is a filtered backprojection algorithm and is easy to use. Because
the circular trajectory does not satisfy Tuy’s condition, Feldkamp’s algorithm
can only provide approximate reconstructions. Artifacts can appear especially
at locations away from the orbit plane. Artifacts include reduction in activity
in the regions away from the orbit plane, cross-talk between adjacent slices,
and undershoots.

Feldkamp’s algorithm is practical and robust. Cone angle, as defined in
Figure 5.10, is an important parameter in cone-beam imaging. If the cone
angle is small, say less than 10◦, this algorithm gives fairly good images. At
the orbit plane, this algorithm is exact. This algorithm also gives an exact
reconstruction if the object is constant in the axial direction (e.g., a tall
cylinder).

Fig. 5.10. The coordinate system for Feldkamp’s cone-beam algorithm.

Feldkamp’s cone-beam algorithm (see Section 5.4) is nothing but a mod-
ified fan-beam FBP algorithm (see Section 3.4.1). It consists of the following
steps:
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(1) Pre-scale the projections by a cosine function cosα (see Figure 5.10
for angle α).

(2) Row-by-row ramp filter the pre-scaled data.
(3) Cone-beam backproject the filtered data with a weighting function of

the distance from the reconstruction point to the focal point.

5.3.2 Grangeat’s Algorithm

Feldkamp’s algorithm converts the cone-beam image reconstruction problem
to the fan-beam image reconstruction problem; Grangeat’s algorithm, on the
other hand, converts it to the 3D Radon inversion problem (see Section 5.2).
Feldkamp’s algorithm is derived for the circular orbit; Grangeat’s algorithm
can be applied to any orbit. If the orbit satisfies Tuy’s condition, Grangeat’s
algorithm can provide an exact reconstruction.

Grangeat’s method first tries to convert cone-beam ray-sums to plane-
integrals, by calculating the line-integrals on the cone-beam detector (see
Figure 5.11).

Fig. 5.11. Integration along a line on the cone-beam detector gives a weighted
plane integral of the object.

We observe that the line-integral on the detector plane gives a weighted
plane-integral of the object with a special non-uniform weighting function
1/r. Here r is the distance to the cone-beam focal point. We must remove
this 1/r weighting before we can obtain a regular un-weighted plane-integral.

From Figure 5.12 we observe that the angular differential dα multiplied by
the distance r equals the tangential differential dt: rdα = dt. If we perform
the angular derivative on the 1/r weighted plane-integral, we will cancel out
this 1/r weighting factor by the factor r, obtaining the derivative of the
un-weighted plane-integral with respect to variable t, which is in the normal
direction of the plane, that is
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(
1
r

weighted plane integral
)

α
=

(Radon transform)
t

. (5.3.1)

Fig. 5.12. The differential dt in the tangent direction is equal to the angular dif-
ferential dα times the distance r.

Recall that the Radon inversion formula is the second order derivative of
the plane-integral with respect to t, followed by the 3D Radon backprojection.
Therefore, a cone-beam image reconstruction algorithm can be implemented
as follows:

(1) Form all possible (all orientations and all locations) line-integrals on
each detector plane (see Figure 5.11), obtaining 1/r weighted plane-integrals.

(2) Perform the angular derivative on results from (1).
(3) Rebin the results from (2) to the (s, θ) Radon space (see Figure 5.6).
(4) Take the derivative of the results of (3) with respect to t, in the normal

direction of the plane.
(5) Perform the 3D Radon backprojection (see Figure 5.8).
We now expand on Step (3). For a practical focal point orbit, the (s, θ)

Radon space is not uniformly sampled. Data redundancy must be properly
weighted. For example, if the value at a particular Radon space location
(s, θ) is measured 3 times, then after rebinning this value needs to be divided
by 3.

Grangeat’s algorithm is not a filtered backprojection algorithm, and it
requires data rebinning, which can introduce large interpolation errors.

5.3.3 Katsevich’s Algorithm

Katsevich’s cone-beam algorithm was initially developed for the helical orbit
cone-beam geometry and was later extended to more general orbits. Katse-
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vich’s algorithm is in the form of FBP, and the filtering can be made shift-
invariant. By shift-invariant we mean that the filter is independent of the
reconstruction location.

Using a helical orbit (see Figure 5.9), Tuy’s data sufficiency condition is
satisfied. The main issue in developing an efficient cone-beam FBP algorithm
is to properly normalize the redundant data. Katsevich uses two restrictions
to handle this issue.

It can be shown that for any point (x, y, z) within the volume surrounded
by the helix, there is a unique line segment that passes through the point
(x, y, z) where both endpoints touch two different points on the helix and are
separated by less than one pitch, say, at sb and st shown in Figure 5.13. This
particular line segment is referred to as the π-segment (or π-line). The first
restriction is the use of the cone-beam measurements that are measured only
from the helix orbit between sb and st.

Fig. 5.13. For any point (x, y, z) inside the helix there is one and only one π-
segment.

The second restriction is the filtering direction, which handles the normal-
ization of redundant data. In order to visualize the data-redundancy problem,
let us look at three cone-beam image reconstruction problems: (1) Data are
sufficient and not redundant; (2) Data are insufficient; (3) Data are sufficient
but redundant.

(1) The scanning cone-beam focal-point orbit is an arc (i.e., an incom-
plete circle). The point to be reconstructed is in the orbit plane and on the
line that connects the two end-points of the arc. The line connecting the
arc’s endpoints is the π-segment of the reconstruction point. For our spe-
cial case that the object is only a point, the cone-beam measurement of this
point at one focal-point position can provide a set of plane integrals of the
object. Those planes all contain the line that connects the focal point and
the reconstruction point. After the focal point goes through the entire arc,
all plane integrals are obtained. Recall the central slice theorem for the 3D
Radon transform; an exact reconstruction requires that the planar integrals
of the object are available for all directions θ, which is indicated in Figure
5.14 Top.

The unit vector θ traces a circle (let us call it a θ-circle) in a plane that
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is perpendicular to the orbit plane, and the line connecting the focal point
and the reconstruction point is normal to this plane. Thus, every focal point
on the arc orbit corresponds to a θ-circle. Let the focal point travel through
the entire arch, then the corresponding θ-circles form a complete unit sphere,
which we can call a θ sphere (see Figure 5.14 Bottom).

Fig. 5.14. Top: At one focal point position, the directional vectors trace a unit cir-
cle. A directional vector represents a measured plane integral. The plane containing
this unit circle is perpendicular to the line that connects the reconstruction point
and the focal point. Bottom: When the focal point travels through the entire arc,
the directional vectors trace a full unit sphere.

(2) If the same arc orbit as in (1) is used and the object to be reconstructed
is a point above the orbit plane, then the data are insufficient. When we draw
the θ-circle for each focal point position, the θ-circle is not in a vertical plane,
but in a plane that has a slant angle. If we let the focal point travel through
the entire arc, the corresponding θ-circles do not form a complete unit sphere
anymore— both the Arctic Circle and the Antarctic Circle are missing (see
Figure 5.15).

(3) Now we consider a helical orbit with the reconstruction point inside.
We determine the π-segment for the reconstruction point and find the
π-segment endpoints. The segment of the helical orbit between the π-segment
endpoints are shown in Figure 5.16.

In Figure 5.16, the θ sphere is fully measured. In fact, it is over measured.
The small triangle-like regions near the North and South Pole are measured
3 times. Let us look at this situation in another way. Draw a plane passing
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Fig. 5.15. If the reconstruction point is above the orbit plane, the unit sphere is
not completely covered by the all the directional vectors.

Fig. 5.16. For the helical orbit, the unit sphere is completely measured. At the
North Pole and South Pole area, a small region is covered (i.e., measured) three
times.

through the reconstruction point. In most cases, the plane will intersect the
piece of helix orbit at one point. However, there is a small chance that the
plane can intersect the piece of helix at three points (see a side view of the
helix in Figure 5.17).

If a plane intersects the orbit three times, we must normalize the data by
assigning a proper weight to each measurement. The sum of the weights must
be 1. Common knowledge teaches us that we should use all available data,
and weigh the redundant measurement by the inverse of its noise variance.
However, in order to derive a shift-invariant FBP algorithm, we need to do
something against common sense. In Katsevich’s algorithm, a measurement
is weighted by either +1 or −1. If a plane is measured once, we must make
sure that it is weighted by +1. If a plane is measured 3 times, we need to
make sure that two of them are weighted by +1 and the third one of them is
weighted by −1. In other words, we keep one and throw the other two away.
Ouch! Further discussion about the weighting and filtering will be given in
the next section.

In Katsevich’s algorithm, the normalization issue is taken care of by select-
ing a proper filtering direction. Here, filtering means performing the Hilbert
transform. After the filtering direction and the normalization issues have been
taken care of, Katsevich’s algorithm is implemented with the following steps:
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Fig. 5.17. The π-segment defines a section of helix. A cutting plane is a plane
passing through the reconstruction point. The cutting plane either intersects the
section of helix once or three times.

(1) Take the derivative of the cone-beam data with respect to the orbit
parameter along the helix orbit.

(2) Perform the Hilbert transform along the directions that have been
carefully selected.

(3) Perform a cone-beam backprojection with a weighting function, simi-
lar to the backprojection in Feldkamp’s algorithm.

Some later versions of the algorithm have replaced the derivative with
respect to the orbit parameters by partial derivative with respect to the
detector coordinates.

∗5.4 Mathematical Expressions

Some 3D image reconstruction algorithms are presented here without proofs.
For the 3D parallel line-integral projections, we have a backprojection-then-
filtering algorithm and filtered backprojection algorithms, which are not
unique. For the parallel plane-integral projections (i.e., the Radon trans-
form), we also have a backprojection-then-filtering algorithm and a filtered
backprojection algorithm which is the Radon inversion formula.

For cone-beam projections, Feldkamp’s circular orbit algorithm and the
Katsevich’s helical orbit algorithm are highlighted, because they are in the
form of convolution and cone-beam backprojection. Tuy’s relation and
Grangeat’s relation are also discussed in this section.
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5.4.1 Backprojection-then-Filtering for Parallel Line-Integral
Data

For this type of algorithm, the projections are backprojected to the
image domain first, obtaining b(x, y, z). Then, the 3D Fourier transform is
applied on b(x, y, z), obtaining B(ωx, ωy, ωz). Next, a Fourier domain filter
G(ωx, ωy, ωz) is used to multiply B(ωx, ωy, ωz), obtaining F (ωx, ωy, ωz) =
B(ωx, ωy, ωz)G(ωx, ωy, ωz). Finally, the 3D inverse Fourier transform is
applied to F (ωx, ωy, ωz) to obtain the reconstructed image f(x, y, z). Here,
the filter transfer function G(ωx, ωy, ωz) is imaging geometry dependent.
Some of the imaging geometries are shown in Figure 5.5, where the θ trajec-
tories are displayed as shaded regions. Let Ω denote the occupied region by
the θ trajectories on the unit sphere.

When Ω = Ω4π is 4π, that is, Ω4π is the entire unit sphere, G is a ramp-
filter:

G(ωx, ωy, ωz) =

√
ω2

x + ω2
y + ω2

z

π
. (5.4.1)

If Ω is not the full sphere, this ramp filter will be modified by the geometry
of Ω . Then the general form of G is

G(ωx, ωy, ωz) =

√
ω2

x + ω2
y + ω2

z

D(θ)
, (5.4.2)

where D(θ) is half of the arc length of the intersection of a great circle with
Ω . The normal direction of the great circle in the Fourier domain is θ, where
θ is the direction from the origin to the point (ωx, ωy, ωz).

When Ω = Ωψ is the region shown in Figure 5.18, D(θ) is the arc length
γ, which is orientation θ dependent. Using the geometry, we have γ = π if

θ � ψ, and we have sin
γ

2
=

sin ψ

sin θ
if θ > ψ.

Fig. 5.18. The definition of the Ωψ and the arc length γ, which is a part of a great
circle.
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5.4.2 Filtered Backprojection Algorithm for Parallel
Line-Integral Data

In a filtered backprojection algorithm, we need to find a 2D filter transfer
function for each orientation θ ∈ Ω . If Ω = Ω4π, this filter is a ramp filter

Q(ωu, ωv) =

√
ω2

u + ω2
v

π
, (5.4.3)

which is the same for all orientations θ ∈ Ω .
If Ω is not the full sphere Ω4π, this ramp filter Q(ωu, ωv)becomes ori-

entation θ dependent as Qθ(ωu, ωv) (note: a subscript is added) and can
be obtained by selecting the “central slice” of G(ωx, ωy, ωz) with the normal
direction θ. Here, the u-axis and v-axis are defined by unit vectors θu and θv,
respectively. The three vectors, θ, θu and θv form an orthogonal system in
3D, where θ represents the direction of a group of parallel lines perpendicular
to a detector, θu and θv are on the detector plane, and θu is also in the x-y
plane of the global (x, y, z) system in 3D.

If we consider the case of Ω = Ωψ shown in Figure 5.18, Qθ(ωu, ωv) has
two expressions in two separate regions (see Figure 5.19):

Fig. 5.19. The 2D filter transfer function Q for the imaging geometry Ωψ.

Qθ(ωu, ωv) =

√
ω2

u + ω2
v

π
(5.4.4)

if

0 �
√

ω2
u + ω2

v cos2 θ �
√

ω2
u + ω2

v sin ψ; (5.4.5)

Qθ(ωu, ωv) =

√
ω2

u + ω2
v

2 sin−1

( √
ω2

u + ω2
v sin ψ√

ω2
u + ω2

v cos2 θ

) (5.4.6)
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if √
ω2

u + ω2
v sin ψ <

√
ω2

u + ω2
v cos2 θ �

√
ω2

u + ω2
v. (5.4.7)

5.4.3 3D Radon Inversion Formula

The 3D Radon inversion formula (filtered backprojection algorithm) can only
be applied to 3D plane integral data:

f(x, y, z) =
−1
8π2

∫∫
4π

2
p(s, θ)

s2
|s=x·θ sin θdθdφ, (5.4.8)

where θ = (sin θ cosφ, sin θ sin φ, cos θ) and x = (x, y, z). The coordinate
systems are shown in Figure 5.20. If we backproject over a 2π solid angle,

the factor
−1
8π2

should be replaced by
−1
4π2

.

Fig. 5.20. The coordinate system for the 3D Radon inversion formula.

5.4.4 3D Backprojection-then-Filtering Algorithm for Radon
Data

Let the backprojected image be

b(x, y, z) =
∫∫
2π

p(s, θ)|s=x·θ sin θdθdφ. (5.4.9)

For the 3D Radon case, the Fourier transform of the projection/

backprojection PSF is
1

(ω2
x + ω2

y + ω2
z)

. Therefore, the Fourier transform of

the image f(x, y, z) can be obtained as

F (ωx, ωy, ωz) = B(ωx, ωy, ωz)× (ω2
x + ω2

y + ω2
z). (5.4.10)
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In the spatial domain, the backprojection-then-filtering algorithm for Radon
data can be expressed as

f(x, y, z) = Δb(x, y, z) =
2
b(x, y, z)

x2
+

2
b(x, y, z)

y2
+

2
b(x, y, z)

z2
(5.4.11)

where Δ is the Laplacian operator.

5.4.5 Feldkamp’s Algorithm

First let us write down the fan-beam FBP reconstruction algorithm for the
flat detector and express the image in polar coordinates (see Figure 5.21):

f(r, ϕ) =
1
2

∫ 2π

0

D

D − s

∫ ∞

−∞

D√
D2 + l2

g(l, β)h(l′ − l)dldβ, (5.4.12)

where h(l) is the convolution kernel of the ramp filter, D is the focal length,
g(l, β) is the fan-beam projection, l is the linear coordinate on the detector,

s = r sin(ϕ−β), and l′ =
Dr cos(ϕ− β)

D − r sin(ϕ − β)
. In this formula,

D√
D2 + l2

is the

cosine of the incidence angle. When this algorithm is implemented, we first
multiply the projections by this cosine function. Then we apply the ramp-
filter to the pre-scaled data. Finally, we perform the fan-beam backprojection
with a distance dependent weighting D

/
(D−s), where s is the distance from

the reconstruction point to the virtual detector, which is placed at the center
of rotation for convenience.

Fig. 5.21. The coordinate system for the flat-detector fan-beam imaging geometry.

Feldkamp’s algorithm is almost the same as this fan-beam algorithm,
except that the backprojection is a cone-beam backprojection. The ramp-
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filtering is performed in the row-by-row fashion. There is no filtering per-
formed in the axial direction. Let the axial direction be the z direction (see
Figure 5.22); then

f(r, ϕ, z) =
1
2

∫ 2π

0

D

D − s

∫ ∞

−∞

D√
D2 + l2 + ẑ2

g(l, ẑ, β)h(l′−l)dldβ. (5.4.13)

In this formula, g(l, ẑ, β) is the cone-beam projection, D
/√

D2 + l2 + ẑ2 is
the cosine of the incidence angle, and ẑ and l′ are defined in Figure 5.22.

Fig. 5.22. The coordinate system for Feldkamp’s cone-beam algorithm.

5.4.6 Tuy’s Relationship

Tuy published a paper in 1983. In this paper, he established a relationship
between the cone-beam data and the original image, which plays a similar
role to the central slice theorem. Let us derive this relationship in the section.

The object to be imaged is f . Let the cone-beam focal point trajectory
be denoted by a vector Φ and let α be a unit vector, indicating the direction
of a projection ray. Therefore, the cone-beam data can be express by the
following expression

g(Φ, α) =
∫ ∞

0

f(Φ + tα)dt, ‖α‖ = 1. (5.4.14)

We now replace the unit vector α by a general 3D vector x, and the above
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2D projection becomes an extended 3D function:

g(Φ, x) =
∫ ∞

0

f(Φ + tx)dt. (5.4.15)

Taking the 3D Fourier transform of this function with respect to x and using
notation β as the frequency domain variable, we have

G(Φ, β) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(Φ, x)e−2πi x·βdx

=
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

f(Φ + tx)e−2πi x·βdtdx. (5.4.16)

Let y = Φ + tx; dy = |t|3 dx. The above expression becomes

G(Φ, β) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

f(y)e−
2πi

t (y−Φ)·β 1

|t|3 dtdy. (5.4.17)

Let s =
1
t
; ds = − 1

t2
dt. We then have

G(Φ, β) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

0

f(y)e−2πi s(y−Φ)·β |s|3 1
s2

dyds,

(5.4.18)

G(Φ, β) =
∫ ∞

0

(∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(y)e−2πi y·(sβ)dy

)
|s| e2πi s(Φ·β)ds.

(5.4.19)

Recognizing that the inner triple integral is the 3D Fourier transform of f ,
that is

F (sβ) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(y)e−2πi y·(sβ)dy, (5.4.20)

we have
G(Φ, β) =

∫ ∞

0

F (sβ) |s| e2πi s(Φ·β)ds. (5.4.21)

Next, we change the limit from [0,∞) to (−∞,∞) and obtain

G(Φ, β) =
∫ ∞

−∞
F (sβ) |s| e2πi s(Φ·β)ds +

∫ ∞
−∞

F (sβ)
i s
i

e2πi s(Φ·β)ds.

(5.4.22)

Using 3D Radon transform’s central slice theorem F (sβ) is the Fourier trans-
form of the plane integral of the original image f in the direction β. The factor
|s| is the ramp-filter in the Fourier domain, and the factor (i s) corresponds
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to the derivative in the spatial domain. Each of the two terms at the right-
hand-side of Eq. (5.4.22) is in the form of an inverse Fourier transform, which
is, in fact, a convolution. Therefore,

G(Φ, β) = pβ(t) ∗ h(t)− i pβ(t) ∗ δ′(t) (5.4.23)

where i =
√−1, t = Φ · β, h(t) is the ramp-filter convolution kernel

h(t) =
∫ ∞

−∞
|s|e2πi stds, (5.4.24)

and the Radon transform of the original image f is defined as

pβ(t) =
∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
f(x)δ(x · β − t)dx. (5.4.25)

The left-hand-side of Eq. (5.2.23) is related to the cone-beam projections,
and the right-hand-side is related to the plane integral of the original image.

Tuy’s algorithm is stated as

f(x) =
1

2πi

∫∫
4π

1∣∣Φ′(λ) · β∣∣ G(Φ(λ), β)
λ

dβ (5.4.26)

with Φ(λ) · β = x · β. In fact, the factor (2πi ) in Tuy’s algorithm does not

make the reconstruction f(x) imaginary. Because the combination of the first
term in Eq. (5.2.23) above and the factor

∣∣Φ′(λ) · β∣∣ is odd in β, the real

part in
∫∫
4π

1∣∣Φ′(λ) · β∣∣ G(Φ(λ), β)
λ

dβ will vanish. Thus, Tuy’s algorithm

will reconstruct a real image.

5.4.7 Grangeat’s Relationship

Grangeat established a relationship between the derivative of Radon data and
the derivative of the line-integrals of the data on the flat cone-beam detection
plane.

In the following, we only consider a fixed focal point position Φ. We
arbitrarily select a straight line on the detector and sum up the cone-beam
projections along this line. Let us set up a coordinate system on the detector
plane (see Figure 5.23). The u-axis is along the integral line on the detector
and the v-axis is orthogonal to the u-axis. We denote the cone-beam pro-
jection data on the u-v coordinate system as g(u, v). If we use the object f
with the spherical system, then the projection g(u, v) can be expressed as
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Fig. 5.23. A line is drawn on the detector. The cone-beam data are summed on
this line as s(v).

(see Figure 5.24)

g(u, v) =
∫ ∞

−∞
f(β, θ, r)dr, (5.4.27)

where u and θ are related as

u =
√

D2 + v2 tan θ. (5.4.28)

Fig. 5.24. The forming of cone-beam projection.

As in Feldkamp’s algorithm, the cone-beam data are pre-scaled by a cosine
function D

/√
D2 + u2 + v2. Thus, the data summation along the u-axis is
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actually

s(v) =
∫ ∞

−∞
g(u, v)

D√
D2 + u2 + v2

du

=
∫ ∞

−∞

∫ ∞

−∞
f(β, θ, r)

D√
D2 + u2 + v2

drdu. (5.4.29)

We now change the variable u to variable θ, using u =
√

D2 + v2 tan θ,

cos θ =
√

D2 + v2

√
D2 + u2 + v2

, and
du

dθ
=
√

D2 + v2

cos2 θ
, and we obtain

s(v) =
∫ ∞

−∞

∫ π/2

−π/2

f(β, θ, r)
D√

D2 + u2 + v2

√
D2 + v2

cos2 θ
drdθ

=
∫ ∞
−∞

∫ π/2

−π/2

f(β, θ, r)
D

cos θ
drdθ. (5.4.30)

We would like to relate this s(v) to Radon transform of f :

pβ(t) =
∫ ∞

−∞

∫ π/2

−π/2

f(β, θ, r)rdrdθ, (5.4.31)

where the parameter t is defined in Figure 5.23. We will now make this
connection with the idea presented in Section 5.3.2, from which we know
that (see Figure 5.25)

f

β
= R

f

t
= r cos θ

f

t
. (5.4.32)

Using this relationship, we have

pβ(t)
t

=
∫ ∞

−∞

∫ π/2

−π/2 t
f(β, θ, r)rdrdθ

=
∫ ∞

−∞

∫ π/2

−π/2

1
r cos θ β

f(β, θ, r)rdrdθ

=
1
D

∫ ∞

−∞

∫ π/2

−π/2

D

cos θ β
f(β, θ, r)drdθ

=
1
D

s(v)
β

. (5.4.33)

Finally, we will replace the partial derivative with respect to β with the
partial derivative with respect to v. From Figure 5.25, we see that

v = D tan β and
dv

dβ
=

D

cos2 β
. (5.4.34)
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Fig. 5.25. The direction of t is the tangent direction.

The Grangeat’s relationship is obtained as

pβ(t)
t

=
1
D

s(v)
β

=
1
D

s(v)
v

v

β

=
1
D

s(v)
v

D

cos2 β

=
s′(v)
cos2 β

. (5.4.35)

5.4.8 Katsevich’s Algorithm

We denote the helix focal-point by a vector

a(s) =
(

R cos s, R sin s,
h

2π
s

)
, s ∈ Iπ(x) (5.4.36)

where R is the radius, h is the helix pitch, x = (x, y, z) is the reconstruction
point, s is the orbit parameter, and Iπ(x) = [sb, st], which is determined by
the π-segment of the point x.

The cone-beam projection is represented in a local coordinate system as
g(θ, a), where θ is a function of the local coordinate system (α, β) (see Figure
5.26) with a parameter γ and is defined as

θ(γ) = (cos γ)α + (sin γ)β, −π
2

< γ <
π

2
. (5.4.37)

The unit vector α is defined as the direction from the focal point to
the reconstruction point. The unit vector β is the filtering direction on the
detector plane (see Figure 5.27). Generally speaking, filtering can be any kind
of processing on the data. In Katsevich’s formula, when we say “filtering” we
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Fig. 5.26. The coordinate system for Katsevich’s helical orbit cone-beam algo-
rithm.

specifically mean the Hilbert transform. Vectors α and β are orthogonal to
each other. Katsevich’s formula is given as follows:

f(x) =
−1
2π2

∫
Iπ(x)

1∥∥x− a(s)
∥∥
∫ π/2

−π/2

g(θ(γ), a(q))
q

∣∣∣∣
q=s

1
sin γ

dγds,

(5.4.38)
where the integral over γ is the Hilbert transform and the integral over s is
the cone-beam backprojection. Katsevich derived this nice and clean formula
because he thought of a trick to assign the weights for redundant plane-
integrals by selecting a special filtering direction β. It can be shown that his
assignment of β makes the weight +1 for a plane that is measured once and
makes the weight +1 or −1 for a plane that is measured three times (two of
them get a +1 and one of them gets a −1). The solution of β is not unique.
Different selections of the filtering direction give different algorithms.

Fig. 5.27. The κ-plane contains the reconstruction point and 3 uniformly spaced
points on the helix within the section governed by the π-segment.
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Here is one way to find a special filtering direction β. Let us define a κ-
plane as follows. The focal point location is a(s). A point in the field-of-view
x is to be reconstructed. We then find an angle ψ in (−π,π) such that the
four points x, a(s), a(s+ψ), and a(s+2ψ) are in one plane (see Figure 5.27).
This plane exists but is not unique. The angle ψ with the smallest magnitude
|ψ| that can construct this plane will be chosen, and the corresponding plane
that contains these four points is referred to as a κ-plane κ(s, ψ).

The intersection of a κ-plane κ(s, ψ) with the detector is called a κ-line.
The filtering direction β is along the κ-line. If you let the point x vary, you
will get a bunch of these κ-planes κ(s, ψ), and you will get a bunch of κ-lines
on one detector (see Figure 5.28).

Fig. 5.28. The κ-lines on the flat cone-beam detector. Each line corresponds to a
fixed angle ψ. Each reconstruction point associates with one and only one κ-line.

On a flat detector, the κ-lines are straight lines. Let us assign a u-w
coordinate system to the detector plane as indicated in Figure 5.28 with the
w axis being the helix axis (i.e., the z-axis). The κ-lines can be described by
the u-w relation for a fixed ψ:

w =
Dh

2πR

(
ψ +

ψ

tan ψ

u

D

)
, (5.4.39)

where R is the radius of the helix, h is the pitch of the helix, and D is the
distance between the detector plane and the focal point. There are many line
depicted in Figure 5.28, and each line corresponds to a fixed ψ value.

If a curved detector is used, the κ-lines are no longer straight lines on the
detector but are curves. For a fixed ψ, the α-w relationship is given as

w =
Dh

2πR

(
ψ cosα +

ψ

tan ψ
sin α

)
, (5.4.40)

where the angle α is defined in Figure 5.29. We can plot the curved κ-lines
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using this relationship for a set of ψ values to obtain a counter part of Figure
5.28 for the curved detector (see Figure 5.30).

Fig. 5.29. The coordinate system for a curved-detector cone-beam geometry.

Fig. 5.30. The κ-curves on the curved cone-beam detector. Each curve corresponds
to a fixed angle ψ. Each reconstruction point associates with one and only one κ-
curve.

Finally, we will explain a little more on the curved-detector implementa-
tion of Katsevich’s algorithm, which is given again below:

f(x) =
−1
2π2

∫
Iπ(x)

1
‖x− a(s)‖

∫ π/2

−π/2

g(θ(γ), a(q))
q

∣∣∣∣
q=s

1
sin γ

dγds.

(5.4.41)
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Step 1: We take the derivative at a constant direction θ with respect to

the orbit parameter s, that is, to evaluate
g(θ, a(s))

s
.

In practice, the projection data are sampled at discrete focal-point
locations with a discrete detector. The derivative will be implemented as a
finite difference using pairs of consecutive projections at focal point locations
a(sk) and a(sk+1). When evaluating the difference, the pair of projection
rays g(θ, a(sk)) and g(θ, a(sk+1)) must have the same (global) direction θ
and the same w coordinate on the detector, as illustrated in Figure 5.31.

Fig. 5.31. Two neighboring detector views are required to implement the derivative
with respect to the orbit parameter s as the difference. When taking the finite
difference, the two rays must be parallel and have the same w coordinate.

In the detector α-w coordinates, g(θ, a(sk)) and g(θ, a(sk+1)) will have
different α values. If you let us abuse the notation a little and use the detector
coordinate system, we let

g

(
α− Δs

2
, w, a(sk)

)
= g(θ, a(sk)) (5.4.42)

and

g

(
α +

Δs

2
, w, a(sk+1)

)
= g(θ, a(sk+1)), (5.4.43)

then we approximate the derivative as

g
(
α, w, a

(
sk+ 1

2

))
s

≈
g

(
α +

Δs

2
, w, a

(
sk+ 1

2

))
− g

(
α− Δs

2
, w, a (sk)

)
Δs

, (5.4.44)

where Δs = sk+1 − sk.
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Step 2: The result of Step 1 is weighed by the cosine function
D√

D2 + w2
,

obtaining

D√
D2 + w2

×
g
(
α, w, a

(
sk+ 1

2

))
s

. (5.4.45)

This scaling is also called the length-correction weighting. This is a point-by-
point scaling on the detector.

Step 3: To prepare for Hilbert transform operation, we rebin the κ-curves
to horizontal lines, mapping the α-w detector representation to α-ψ repre-
sentation (see Figure 5.32). In other words, we move each data point on the

α-w detector up or down according to w =
Dh

2πR

(
ψ cosα +

ψ

tan ψ
sinα

)
so

that the κ-curves become horizontal lines.

Fig. 5.32. Rebin the κ-curves into horizontally parallel lines.

Step 4: After rebinning, the regular line-by-line 1D Hilbert transform is
performed.

Step 5: This step is the inverse of Step 3. It rebins the filtered (i.e., Hilbert
transformed) data back to the original detector α-w coordinates with curved
κ-lines (see Figure 5.33).

Fig. 5.33. Rebin the parallel lines back to κ-curves.

Step 6: We weigh the data on the curved detector plane by a cosine
function cos α, for all different α locations. The angle α is defined in Figure
5.29.
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Step 7: This is the final step, and it performs the ray-by-ray 3D cone-beam

backprojection with the weighting factor
1

‖x− a(s)‖ using a helix orbit. This

step is similar to the backprojection in the Feldkamp algorithm, where a
circular orbit is used.

5.5 Worked Examples

Example 1 A SPECT camera is mounted with a parallel-beam collimator
which has a 30◦ tilt angle as shown in Figure 5.34. The camera rotates around
the patient to collect projections. Does this imaging geometry satisfy Orlov’s
condition?

Fig. 5.34. The SPECT detector is tilted.

Solution

No. If we draw the trajectory of the projection direction θ on a unit
sphere, we see that the trajectory is a small circle (see Figure 5.35). This
does not satisfy Orlov’s condition.

Fig. 5.35. Orlov’s condition is not met.
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Example 2 State the central slice theorem with a mathematical
expression for the 3D line-integral projections and for the 3D plane-integral
projections.

Solution

(1) 3D plane integral data
Let θ = (sin θ cosφ, sin θ sinφ, cos θ); then the central slice theorem for

the 3D Radon transform (i.e., plane-integral projections) is

P (ω, θ) = F (ω sin θ cosφ, ω sin θ sin φ, ω cos θ), (5.5.1)

where P (ω, θ) is the 1D Fourier transform of the plane integrals p(s, θ) with
respect to s, and F (ωx, ωy, ωz) is the 3D Fourier transform of the object
f(x, y, z).

(2) 3D line integral data
For the 3D line-integral projections, we need a coordinate system on the

detector plane which is perpendicular to θ. Let

θu = (− sin φ, cosφ, 0) and θv = (− cos θ cosφ,− cos θ sin φ, sin θ), (5.5.2)

then θ, θu, and θv form an orthogonal system, θu is in the direction of the
u-axis, and θv is in the direction of the v-axis. Thus, the central slice theorem
can be stated as

P (ωu, ωv, θ)
= F (−ωu sinφ− ωv cos θ cosφ, ωu cosφ− ωv cos θ sinφ, ωv sin θ)
= F (ωuθu + ωvθv), (5.5.3)

where P (ωu, ωv, θ) is the 2D Fourier transform of the line integrals p(u, v, θ)
with respect to u and v.

Example 3 Run Feldkamp’s algorithm and observe the reconstruction
artifacts by varying the cone-angle.

Solution

We programmed Feldkamp’s algorithm and did a set of computer simula-
tions using a circular focal-point orbit and a Defrise phantom, which consists
of five flat uniform ellipsoids (see Figure 5.36). Six different cone angles (2◦,
4◦, 8◦, 16◦, 32◦, and 64◦) were used in the simulations. The central sagittal
view for each simulation is displayed in Figure 5.37. It is observed that for
large cone angles, Feldkamp’s algorithm introduces severe artifacts, especially
in the regions away from the central plane (i.e., the orbit plane). The images
are quite good for small cone angles.
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Fig. 5.36. A Defrise phantom is used in computer simulations.

Fig. 5.37. Computer simulation results with Feldkamp’s algorithm using different
cone angles.

5.6 Summary

• In 3D, the parallel line integrals are referred to as the ray transform, and
the parallel plane integrals are referred to as the Radon transform.

• For the Radon projection data, we require that all directions in a 2π solid
angle should be measured.

• For the Radon projection data, the image reconstruction algorithm (i.e.,
the Radon inversion formula) is very simple — a second order derivative
followed by Radon backprojection. Of course, one can switch the order of
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derivative and backprojection. If the backprojection is performed first, it
should be followed by a Laplacian operator, which is a summation of the
second order partial derivative with respect to x, y, and z, respectively.

• An efficient way to perform Radon backprojection is to do it in two steps
and each step is a series of 2D backprojections.

• For the ray transform data, we require that Orlov’s data sufficiency condi-
tion be satisfied. The ray directions trace a trajectory on the unit sphere.
If every great circle intersects this trajectory, Orlov’s condition is met.

• The image reconstruction algorithm for the ray transform depends on
the ray direction trajectory. Due to data redundancy, the reconstruction
algorithm is not unique. One can either do filtering first or backprojection
first.

• Feldkamp et al. developed a simple and robust FBP algorithm for cone-
beam circular orbit imaging. Even though this algorithm is a modification
of a fan-beam’s FBP algorithm and is not exact, it has wide applications
in many fields. The reconstruction errors are not significant if the cone-
angle is small enough.

• One can use Tuy’s condition to verify if the cone-beam imaging geom-
etry is able to provide sufficient projections. Non-planar orbits, such as
the helix orbit or the circle-and-line orbit, are required to satisfy Tuy’s
condition. Tuy developed a relationship between the cone-beam data and
the original image; he also developed a cone-beam inversion formula, but
it is difficult to use.

• Grangeat’s relationship is that the angular derivative of the cone-beam
weighted planar integral equals to the derivative of the Radon planar
integral. In Grangeat’s cone-beam image reconstruction algorithm, the
image is reconstructed using the Radon inversion formula. A drawback of
Grangeat’s cone-beam reconstruction method is the rebinning from the
cone-beam data to Radon data. The rebinning step can cause large errors.

• Katsevich’s cone-beam image reconstruction algorithm is truly an FBP
algorithm with shift-invariant filtering and cone-beam backprojection.
One drawback of Katsevich’s algorithm is its difficulty in selection of
filtering directions. Another drawback is that cone-beam projection data
are not fully used.

• The readers are expected to understand the Radon inversion formula and
Feldkamp’s cone-beam image reconstruction algorithm in this chapter.

Problems

Problem 5.1 Calculate the 3D parallel line-integrals p(u, v, θ) and parallel
plane-integrals p(s, θ) of a uniform ball, in which the line density and
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area density are both 1. The center of the ball is at the origin of the
coordinate system, and the radius of the uniform ball is R.

Problem 5.2 A cone-beam focal point orbit is a circle with two lines as
shown. The radius of the circular orbit is R. The object to be imaged
is a ball of radius r. Determine the length of the linear orbits so that
Tuy’s condition can be satisfied.

Problem 5.3 Prove that Feldkamp’s algorithm can give an exact recon-
struction for the object f(x, y, z) that is constant in the axial direction
(i.e., the z direction). In other words, for any given point (x0, y0), the
function f(x0, y0, z) does not vary with variable z.
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6 Iterative Reconstruction

Previous chapters deal with analytic image reconstruction algorithms. This
chapter, on the other hand, introduces iterative image reconstruction algo-
rithms. Due to high speed computers, iterative algorithms get more and more
attention in medical image reconstruction. This chapter describes the imag-
ing problem as a system of linear equations, and reconstructs an image by
minimizing an objective function. Many algorithms are available to solve the
system of linear equations or to minimize an objective function. The objec-
tive function can be set up by using the likelihood function, and can also
include the prior knowledge about the image. The likelihood function mod-
els the noise distribution in the projection measurements. The ML-EM algo-
rithm or OS-EM algorithm is the most popular iterative image reconstruction
algorithm in emission tomography, and this chapter has devoted significant
efforts to it. Many strategies for noise control are discussed. This chapter
also presents a recent research hot spot— image reconstruction with highly
undersampled data, which is often referred to as compressed sensing and is,
in fact, nothing but another application of Bayesian image reconstruction.

6.1 Solving a System of Linear Equations

Instead of using an analytical algorithm to reconstruct an image, image
reconstruction can also be obtained by solving a system of linear equations.
In doing so, the image is first discretized into pixels or voxels (volumetric
pixels) as illustrated in Figure 6.1.

Here, the image pixels xj(j = 1, 2, . . .) are labeled in a 1D sequential
order, as are all projections pi(i = 1, 2, . . .). For the simple example in Figure
6.1, we can relate the image pixels and the projections using a system of
linear equations:
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Fig. 6.1. An example with 9 unknowns and 9 measurements.
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⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1 + x2 + x3 = p1,

x4 + x5 + x6 = p2,

x7 + x8 + x9 = p3,

x3 + x6 + x9 = p4,

x2 + x5 + x8 = p5,

x1 + x4 + x7 = p6,

2(
√

2− 1)x4 + (2−√2)x7 + 2(
√

2− 1)x8 = p7,√
2x1 +

√
2x5 +

√
2x9 = p8,

2(
√

2− 1)x2 + (2−√2)x3 + 2(
√

2− 1)x6 = p9.

(6.1.1)

This system can be re-written in the matrix form as

AX = P, (6.1.2)

where X = [x1, x2, . . . , x9]T, P = [p1, p2, . . . , p9]T, and A is the coefficient
matrix of the system. The element aij in A represents the weight of the
contribution of the jth pixel xj to the ith projection pi. In this example, the
contribution is the segment length of the projection ray within the pixel. If
the inverse matrix A−1 of A exists, the reconstructed image is given by

X = A−1P. (6.1.3)

Line-length is not the only way to model the “distribution.” Some imaging
physics (e.g., attenuation and point spread function) can also be included as
well.

For a practical imaging problem, the matrix A is not square. In this case
a generalized inverse of the matrix can be used. For example, we can find a
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least-squares solution:

X = (ATA)−1ATP, if the system is over-determined; (6.1.4)
X = AT(AAT)−1P, if the system is under-determined. (6.1.5)

A generalized inverse can be obtained via a least-squares minimization.
In the case that the system is over-determined (i.e., the number of projection
rays is greater than the number of image pixels), we let

χ2 = ‖AX − P‖2 = (AX − P )T(AX − P )
= XTATAX − 2XTATP − PTP. (6.1.6)

and set the partial derivatives (i.e., gradient) to zero:

0 = ∇χ2 = 2ATAX − 2ATP. (6.1.7)

Re-arranging the terms, we have

ATAX = ATP (6.1.8)

which is a set of normal equations, because (AX-P) is orthogonal (i.e., nor-
mal) to the rows of A : AT(AX − P ) = 0. Solving the normal equations
immediately yields a generalized solution

X = (ATA)−1ATP. (6.1.9)

On the other hand, in the case that the system is under-determined (i.e.,
the number of image pixels is greater than the number of projection rays), the
system will have infinite number of solutions for AX = P , assuming that the
system is consistent. In this case we would like to choose the minimum norm
solution. Therefore, we use the method of Lagrange multipliers to minimize
‖X‖2 subject to AX = P . We thus set up a Lagrange function

L = ‖X‖2 + Λ(AX − P ) (6.1.10)

with a diagonal matrix Λ=diag {λ1, λ2, . . . , λm} containing the Lagrange
multipliers λ1, λ2, . . ., λm and m being the number of projection rays.

Setting the partial derivatives (i.e., gradient) of the Lagrange function to
zero yields

0 = 2X + ATΛ and AX = P. (6.1.11)

Pre-multiplying with matrix A, 0 = 2X + AT Λ becomes

0 = 2AX + AATΛ. (6.1.12)

Solving for Λ and using AX = P , we have

Λ = −2(AAT)−1AX = −2(AAT)−1P. (6.1.13)
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Finally, solving for X from 0 = 2X + ATΛ gives

X = −1
2
ATΛ = AT(AAT)−1P. (6.1.14)

Even if the matrix A is square, its inverse A−1 may not exist. When A
is not full rank, A−1 does not exist. In fact, the matrix A for the example
in Figure 6.1 is not full rank. One can easily check that the sum of the
rows 1, 2, and 3 is the same as the sum of the rows 4, 5, and 6. If the
matrix A is not full rank, we cannot even calculate (AAT)−1 or (ATA)−1. In
about all applications, the matrix A is not full rank and not square either,
and the projections are not consistent due to noise. If the matrix A is rank
deficient, you could use the singular value decomposition (SVD) to find a
pseudo inverse.

The singular value decomposition (SVD) technique is a powerful and sta-
ble method to find a generalized inverse and diagnose the system condition.
Now we use SVD to find the least-squares solution for AX = P as follows.

Assume that matrix A has m rows and n columns, and is denoted as
Am×n. Using SVD, the matrix Am×n can be decomposed into

Am×n = Um×mΣV T
n×n, (6.1.15)

where

V TV = In×n, (6.1.16)
UTU = Im×m, (6.1.17)

Σm×n =

[
diag{σi} 0

0 0

]
(6.1.18)

with the singular values arranged in the descending order:

σ1 � σ2 � . . . � σi � . . . � 0. (6.1.19)

A generalized inverse (or, pseudo-inverse) is defined as

A+ = V Σ+UT (6.1.20)

where

Σ+
n×m =

[
Dr 0

0 0

]
, (6.1.21)

and the diagonal matrix Dr with a cut-off index r is defined as

Dr = diag

{
1
σ1

,
1
σ2

, . . . ,
1
σr

, 0, . . . , 0
}

. (6.1.22)

The reconstructed image is given as

X = A+P = V Σ+UTP. (6.1.23)
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In the SVD method, the user selects the cut-off index r. If a very small
r is chosen, the resultant reconstructed image only contains low frequency
components. If a very large r is chosen, the resultant reconstructed image
will contain high frequency components and the image is noisy as well.

More often than not, the matrix A is too large to store in the computer;
it can only be generated one row at a time when this row is used in solving
the system of equations. Not every method that is able to solve a system
of linear equations can be used here. For example, the methods based on
diagonalizing the matrix A or transforming matrix A into an upper triangle
matrix are not applicable. Any methods that modify the matrix A cannot
be used. We can only use methods that use matrix A and its transposed
matrix AT. Therefore, iterative methods that only use A and AT (but do not
modify them) make sense in finding an approximate solution to our imaging
problem.

An analytic reconstruction can be thought of as an “open loop” system,
while an iterative algorithm can be thought of as a “closed loop” system.
Each loop, referred to as an iteration, usually consists of a projection op-
eration, a comparison of the projected data with the measured data, and a
backprojection operation. The backprojection maps the data discrepancies
from the projection space to the image space. The backprojected discrepan-
cies will be used to modify the currently estimated image at each iteration
(see Figure 6.2).

Fig. 6.2. A general procedure of an iterative image reconstruction algorithm.
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6.2 Algebraic Reconstruction Technique

The main idea of the ART (algebraic reconstruction technique) algorithm
(which is also known as the Kaczmarz method) is to make the estimated
image satisfy one equation at a time as illustrated in Figure 6.3, where 3
lines — L1, L2, and L3 —represent 3 equations, and their intersection is the
solution. In this example, the image only consists of 2 pixels.

Fig. 6.3. The ART algorithm tries to satisfy each equation at each update.

In Figure 6.3, x0 is the initial guess of the solution. The first step is to
project this point x0 perpendicularly onto L1, obtaining x1. Next, project x1

perpendicularly onto L2 to obtain x2, and so on, projecting each point onto
a line (which is one equation) one at a time. Eventually, the algorithm will
converge to the solution of the system of equations (see Figure 6.3 Upper). If
the equations are not consistent, the algorithm will bounce around and never
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converge (see Figure 6.3 Lower). One iteration is defined as the procedure of
going through all the equations once.

The ART algorithm is executed one projection ray at a time, and the
image is updated after each ray is considered. Symbolically, the algorithm
can be written as

xnext

= xcurrent −Backprojectray

{
Projectray(xcurrent)−Measurementray

Normalization Factor

}
.

(6.2.1)

6.3 Gradient Descent Algorithms

First an objective function χ2 is formed based on the system of imaging
equations:

χ2 = ‖AX − P‖2 , (6.3.1)

which is a quadratic function (see Figure 6.4). Due to the noise, the equations
are inconsistent. Thus the minimum value of the objective function χ2 usually
has a non-zero, positive value.

Fig. 6.4. A quadratic objective function.

The strategy of gradient descent algorithms is to evaluate the gradient
of the objective function χ2 and use the gradient information to find the
minimum of the objective function. The gradient in 1D is the derivative of
the function. A positive gradient means an upward direction, and a negative
gradient means a downward direction. The gradient descent algorithms take
the opposite direction of the direction that is indicated by the gradient and
use a small enough step size so that the algorithms can find the minimum



132 6 Iterative Reconstruction

(see Figure 6.5). The general form of a gradient descent algorithm looks like

xnext = xcurrent − acurrentΔ(xcurrent), (6.3.2)

where Δ is the gradient of the objective function χ2 at xcurrent and contains

Fig. 6.5. The opposite direction of the gradient is the downhill direction.

both projection and backprojection at all rays. In fact,

Δ = ∇‖AX − P‖2 = 2AT(AX − P ), (6.3.3)

where ∇ is the notation for the gradient operator, the projection AX is the
multiplication of X by matrix A, and the backprojection is multiplication
by matrix AT. The data discrepancy is (AX – P ). The algorithm converges
when AX = P and X does not change any more.

If the system is inconsistent, the algorithm converges when AT(AX−P ) =
0. In our notation, X and x are the same thing. If the system is under-
determined, this least-squares problem does not have a unique solution, and
the objective function χ2 has a long valley (see Figure 6.6). The solution
will depend upon the initial solution. If the initial solution is zero (that is,
x0 = 0), then the algorithm will converge to a minimum norm solution.

Due to noise, we seldom ever have AX = P at convergence. Instead,
we get a very noisy image when the iteration number is large. We apply an
iterative reconstruction algorithm to noisy data generated with the phantom
in Figure 2.10. As shown in Figure 6.7, at the early iterations, the images
only contain low frequency components; at higher iterations, high frequency
components are recovered and noise comes into effect, too.
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Fig. 6.6. For a degenerated system, the iterative algorithm solution depends on
the initial value.

Fig. 6.7. The image gets noisier as the iteration number gets larger.
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The gradient direction is easy to compute in a practical imaging problem
using Δ = ∇‖AX − P‖2 = 2AT(AX − P ), but the negative gradient direc-
tion may not be the optimal direction to use in finding the optimum image.
Let us look at the contour lines of a typical objective function χ2 in Figure
6.8, where the contour lines are ellipses. The gradient direction at any point
is perpendicular to the tangent of the ellipse. The searching directions of two
consequential steps, ucurrent and unext, are orthogonal to each other (that
is, ucurrent · unext = 0). The searching path is zigzagging and not optimal.

Fig. 6.8. The negative gradient direction may not be the most efficient way to find
the function’s minimum.

A better searching direction is to use the concept of conjugate directions.
The conjugate directions are defined by ucurrent ·(ATA)unext = 0 (see Figure
6.9). The shape of the objective function χ2 is characterized by (ATA). When
we use the conjugate directions, we actually first deform the contour lines into
circles then find the orthogonal directions. The conjugate directions make the
algorithm converge faster.

Fig. 6.9. The conjugate gradient direction is more effective than the gradient di-
rection.

6.4 Maximum-Likelihood Expectation-Maximization
Algorithms

We do not have to use a least-squares objective function. There are many
different ways to set up an objective function. If we use the Poisson noise
model or simply use the non-negativity constraint, we will get a special objec-
tive function. By minimizing that special objective function, a multiplicative
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updating algorithm known as the ML-EM (maximum-likelihood expectation-
maximization) algorithm is derived and can be symbolically expressed as

xnext = xcurrent

Backproject

{
Measurement

Project (xcurrent)

}
Backproject {1} ,

where 1 is a vector with elements of 1’s. The size of the vector is that of the
projection data vector. In this algorithm, the data discrepancy is calculated
as a ratio instead of a difference. The distinguishing feature of this algorithm
is its non-negativity. If the initial image x0 does not contain any negative
pixels or voxels, the image values will never become negative.

Now let us explain the name of this algorithm: ML-EM. The objective
function of this algorithm can be a likelihood function, which is the joint
probability density function of Poisson random variables. We are looking for
a solution (i.e., the reconstructed image) that can maximize this likelihood
function. Therefore, this is a Maximum Likelihood (ML) algorithm.

When we try to maximize or minimize a function (e.g., an objective func-
tion or a likelihood function), we usually take the partial derivatives with
respect to all of its unknowns (i.e., the pixel or voxel values), set these deriva-
tives to zero, and solve for the unknowns. It turns out that our Poisson likeli-
hood function is too complicated for us to optimize. We take the expectation
value (or the statistical mean value) of the likelihood function. This is the
“E” step, and it simplifies the problem significantly. We then find the max-
imum of the expected likelihood function. This is the “M” step. Therefore,
we have the name “EM,” the Expectation-Maximization.

This ML-EM algorithm is also called the Richardson-Lucy algorithm or
Lucy-Richardson algorithm, because Richardson and Lucy developed this
algorithm for image deblurring applications in 1972 and 1974. There are many
EM algorithms in different fields of research. The usual ML-EM algorithm is
derived and used particularly for the emission data reconstruction. We also
have transmission-data ML-EM algorithms, too, but they are not as popular.

6.5 Ordered-Subset Expectation-Maximization
Algorithm

In ART, the image is updated after each projection ray is considered. On
the other hand, in gradient descent methods and in the ML-EM algorithm,
the image is updated only when all projection rays are considered. One way
to speed up the convergence rate of an iterative algorithm is to make more
frequent image updates.
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In an OS-EM (ordered-subset expectation-maximization) algorithm, the
projection views are grouped in different sets (called subsets), the algorithm
goes through the subsets in a specified order, and the image is updated after
each subset is considered. Figure 6.10 shows an example of how the projection
views are divided into subsets. There are many strategies for dividing the
views into subsets.

Fig. 6.10. The total 16 projection views are divided in to 4 subsets.

Increasing the number of subsets accelerates the convergence rate but
may increase the noise as well. Roughly speaking, if you have N subsets, you
may accelerate the ML-EM algorithm about N times. Modest acceleration
of approximately 10 times is possible with very little increase in noise.

6.6 Noise Handling

Nowadays, many people choose an iterative image reconstruction algorithm
over an analytical algorithm simply because the iterative algorithm can pro-
vide images containing less noise with the same or better resolution. We will
investigate how the analytical and iterative algorithms handle the noise in
this section.

6.6.1 Analytical Methods— Windowing

In an analytical algorithm, noise regulation is achieved via the application
of a window function when the projection data are filtered. The filter in an
image reconstruction algorithm is always a high-pass filter (e.g., the ramp
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filter) in which the high-frequency components are enhanced more than the
low-frequency components. In order to suppress the high-frequency noise,
a window function is always applied to the ramp filter (see Figure 6.11).
Basically, the noise regulation strategy in an analytical algorithm is to control
the bandwidth. Thus, both high frequency noise and high frequency signal
are discarded.

Fig. 6.11. Application of a window function to the ramp filter.

6.6.2 Iterative Methods— Stopping Early

There are many ways to control the noise in an iterative algorithm. We can
first consider a rough noise propagation model of a linear iterative algorithm:

Errorimage = λn(ω)× Errordata, (6.6.1)

where Error image is the error magnitude in the reconstructed image,
Errordata is the error magnitude in the projections, and λn(ω) is the algo-
rithm transfer function which depends on the frequency ω and the iteration
number n.

We can compare an iterative reconstruction algorithm with an SVD
matrix pseudo-inverse solution. You may imagine that λn(ω) contains the
information of both the singular values and singular vectors of the imag-
ing matrix A. The frequency components are in the singular vectors. As the
iteration number n increases, more singular vectors join λn(ω). The iteration
number is somehow related to the cut-off index in an SVD pseudo inversion
expression. With a larger iteration number n, λn(ω) contains components
with higher frequencies. In some linear algorithms, this relationship can be
simplified to

Errorimage = κ× Errordata, (6.6.2)

where κ is similar to the condition number of matrix A, and κ is defined as
the ratio of the largest singular value σ1 over the cut-off singular value σn.
This simplification is reasonable because the “worst” noise influence comes
from the frequency components (i.e., the singular vector) corresponding to
the current smallest singular value σn. In the SVD pseudo inverse method,
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the reconstructed image is a sum of many terms. Each term is a product of a
component (i.e., the singular vector) and the reciprocal of its corresponding
singular value 1/σ. The largest gain comes from 1/σn, which corresponds to
a singular vector with very high frequencies.

In your mind, you can imagine that λn(ω) is a windowed ramp filter (see
Figure 6.11). The width of the window increases as the iteration number
increases. We immediately see that one way to control noise is to control the
iteration number.

This analogy between an iterative reconstruction and an SVD pseudo
inverse is not mathematically correct, but it is a way of showing the similarity
of these two approaches. This analogy can give us some insight of an iterative
algorithm.

Stopping early is the simplest way to regulate the noise. However,
iterative algorithms do not have a uniform convergence rate throughout the
image. After an iterative algorithm is stopped, the resultant image will have
non-uniform resolution. If you would like your reconstructed image to have
uniform resolution, one remedy is to over-iterate (i.e., not to stop early) and
then apply a post filter to suppress the noise.

6.6.3 Iterative Methods— Choosing Pixels

The second way to reduce image noise is to reduce the errors in the data. This
approach of regularization is a unique feature for the iterative algorithm. The
errors between the projections P and the model AX, Errordata, consist of two
parts: deterministic errors and random errors. The deterministic errors are
generated from the non-ideal system model AX. First of all, discretizing the
continuous object into pixels (or voxels) may cause errors. One must consider
the trade-offs when deciding pixel size. Smaller pixels give a more accurate
model but increase the number of unknowns to be solved. Larger pixels make
the image model less accurate, but fewer unknowns can make the inverse
problem more stable.

Using non-overlapping uniform pixels or voxels to model an image is not
an ideal approach because this image model contains a lot of discontinuity
in the image and introduces too many artificial high-frequency components
into the image. Some people have tried to use overlapping non-uniform pixels
(or voxels) such as blobs (see Figure 6.12), which results in improved image
quality. This gives a more realistic band-limited image model.

One drawback of using blobs as image voxels is the increased computa-
tional complexity. An alternative approach has been investigated to achieve
the same effect but with better computational efficiency. This strategy uses
the traditional non-overlapping voxels in the image, but a low-pass filter is
applied to the backprojected image. The kernel function of the low-pass filter
is chosen as the 3D “profile” of the blobs. In other words, the backprojected
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Fig. 6.12. Using overlapping blobs to replace the traditional voxels can better
model the image.

image is three-dimensionally convolved with the blob (see Figure 6.13).

Fig. 6.13. An alternative approach to get the blob effect.

To make the inverse problem more stable, as a rule of thumb, we would
select the pixel size larger than the detector bin size; this makes the number
of image pixels smaller than the number of detector bins (see Figure 6.14).
In practice, it is advantageous to choose a large array size (with a small bin
dimension) on the detector during data acquisition. This makes a big differ-
ence in noise control in an iterative algorithm, especially when the system
resolution is modeled in the projector/backprojector. A balanced selection of
the detector bin size is half the size of the image pixel. If the image size is
256 × 256 × 256 and there is no option on the scanner to acquire 512 × 512
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projections, you can acquire data using the 256 × 256 mode and interpolate
the data into 512 × 512 arrays during iterative image reconstruction.

Fig. 6.14. It is advantageous to use a detector bin size that is smaller than the
image pixel size.

6.6.4 Iterative Methods— Accurate Modeling

Modeling the system’s point spread function (see Figure 6.15) and patient
induced attenuation and scattering in the matrix A will significantly reduce
the deterministic errors between the projections P and the model AX. If you
are not ready to model the imaging physics in matrix A, you still have a choice
of line-length weighting or area weighting of the image path within the pixel
to be used in calculating the elements in matrix A (see Figure 6.16). The
freedom to model the imaging system with various geometries and physics
effects is the main advantage of using an iterative reconstruction algorithm.
We are able to control the errors between the projection data and the model
to some degree; we can at least control the deterministic part of them with
good system modeling. Smaller data modeling errors result in smaller errors
in the image. With reduced data modeling error, we can increase the iteration
number to get better image resolution with the same or reduced image noise.

Fig. 6.15. Modeling the system distance-dependent resolution and sensitivity in
the projector.
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Fig. 6.16. Area weighting is a better model than the line-length weighting but has
a higher computation cost.

There is a fourth way to control the noise in an iterative algorithm: the
random part. We can model the noise distribution in the objective function.
Section 6.7 will be dedicated to this topic.

The fifth way is to use the prior knowledge about the image that we are
looking for in addition to using the projection data alone. This topic will be
covered in Section 6.8.

6.7 Noise Modeling as a Likelihood Function

In order for the noise model to work, we must have redundant measure-
ments, otherwise the noise model has no effect on the solution. In Figure 6.17,
there are two lines, L1 and L2, representing two independent measurements
described by two independent linear equations. These measurements can be
noisy or noiseless. The solution is the intersection of these two lines, regard-
less of the presence of noise or if you trust L1 more or L2 more. Due to noise,
this intersection may not be the true solution at all. There is nothing we can
do to improve upon the solution if we only have two measurements.

What if we have three measurements L1, L2, and L3 (see Figure 6.18)?
Because of noise influence the three lines do not intersect at one point. How
should we pick a reasonable solution? A wise decision would depend on the
noisiness of each measurement. We should trust the measurement with less
noise more, and trust measurement with more noise less.

If we use the variance σ2 to characterize the noisiness of a measurement,
we can assign a weighting factor 1

/
σ2 to that measurement. Thus we can use

a variance-based weighting scheme to select a solution. Our old least-squares
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Fig. 6.17. Two lines intersect at one point, which is the solution of the correspond-
ing two equations.

Fig. 6.18. If the system has redundant measurements and is not consistent, one can
use the noisiness to weight each measurement and find an approximate solution. In
this example, we assume that L3 is noisier than L1, and L2 is less noisy than L1.

objective function

χ2 = ‖AX − P‖2 = (AX − P )T(AX − P ) (6.7.1)

becomes a weighted least-squares objective function

χ2
W = (AX − P )TW (AX − P ), (6.7.2)

where W is a diagonal matrix W = diag

{
1
σ2

1

,
1
σ2

2

, . . . ,
1

σ2
N

}
, and N is the

number of projections.
This weighted, least-squares objective function can also be obtained

through the likelihood function by assuming Gaussian noise in the projec-
tions. The ith projection measurement pi is a Gaussian random variable
whose mean value is μi =

∑
j

aijxj = AiX and variance is σ2
i . Here, Ai is
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the ith row of the matrix A. The Gaussian distribution density function gives

Prob(pi) =
1√
2πσi

exp
(
− (AiX − pi)2

2σ2
i

)
. (6.7.3)

We assume that all projections are statistically independent. The like-
lihood function is the joint probability density function by considering all
projections together:

Prob(P ) =
∏

i

1√
2πσi

exp
(
− (AiX − pi)2

2σ2
i

)
. (6.7.4)

Our goal is to find an image X that maximizes the above likelihood func-
tion, hence the term “maximum likelihood solution.” Taking the logarithm
of the likelihood function, we have

ln(Prob(P )) = −1
2

∑
i

(AiX − pi)2

σ2
i

+
∑

i

ln
(

1√
2πσi

)
. (6.7.5)

The second term in the above equation is a constant. Therefore, maximizing
the likelihood function is equivalent to minimizing the following weighted
least-squares objective function

χ2
W =

∑
i

(AiX − pi)2

σ2
i

= (AX − P )TW (AX − P ). (6.7.6)

If the data noise is not Gaussian, the above approach of setting up a like-
lihood function and an objective function still applies. However, the resultant
objective function is different.

6.8 Including Prior Knowledge

We sometimes know more about the image that we are looking for— in
addition to the measurements. We can enforce this prior knowledge into the
image by adding an extra term to the objective function. This is normally
called a Bayesian method.

For example, if we know in advance that the image X is very smooth, we
can add a penalty term ‖∇X‖2 to suppress sharp jumps and encourage the
smoothness:

New Objective Function(X) = Old Objective Function(X) + β ‖∇X‖2 ,

(6.8.1)
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where β is a user specified controlling parameter. Using the squared norm
of the gradient ‖∇X‖2 as a penalty term can be generalized as using an
“energy” function U(X) as a penalty term. The energy function U(X) is
defined as:

U(X) =
∑
i,j

wijV (xi − xj), (6.8.2)

where the summation is over a neighborhood (clique), and V is a convex
function, which may or may not be quadratic (see Figure 6.19). If V is a
quadratic function, this energy function encourages smoothness and penalizes
jumps. If the function V increases more slowly than a quadratic function (say,
V increases linearly), then it can preserve edges and smooth out the noise.
How does the algorithm know which is the edge that you want to keep and
which is noise that you want to smooth out? Let us answer this question by
comparing a linear function |x| and a quadratic function x2. We assume that
the noise consists of small jumps, while the edges separate the large jumps.
When |x| is small, we have |x| > x2 and the linear function gives relatively
heavier penalty. Thus the noise is suppressed. When |x| is large, we have
|x| < x2 and the linear function gives a relatively much lighter penalty. Thus
the edges are preserved.

Fig. 6.19. The penalty function can have different function forms, depending on
the application.

Algorithms that include the prior information carry many names, such as
Bayesian methods or MAP (maximum a posteriori) algorithms.

The new objective function is, in fact, the conditional probability
Prob(X |P ). Bayes’ law states

Prob(X
∣∣P ) =

Prob(P
∣∣X)Prob(X)

Prob(P )
. (6.8.3)

Taking the logarithm yields

ln(Prob(X
∣∣P )) = ln(Prob(P

∣∣X)) + ln(Prob(X))− ln(Prob(P )) (6.8.4)

where the third term has nothing to do with our unknowns X and can be
eliminated from the objective function. The Bayesian objective function then
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becomes
L(X) = ln(Prob(P

∣∣X)) + ln(Prob(X)), (6.8.5)

or symbolically,

(Posterior Function) = (Likelihood Function) + β(Prior Function). (6.8.6)

The first term on the right-hand-side is the old objective function for a max-
imum likelihood algorithm, and the second term contains the prior infor-
mation term about the image X . This justifies our expression of the new
objective function at the beginning of this section.

∗6.9 Mathematical Expressions

This section gives the mathematical expressions for the ART algorithm, the
ML-EM algorithm, the OS-EM algorithm, Green’s one-step late algorithm,
and ML-TV algorithm. Computer implementation steps are given for the
conjugate gradient algorithm. The derivation of the ML-EM algorithm is
also presented.

6.9.1 ART

The ART algorithm is a row-action algorithm. It considers one ray-sum at a
time and can be expressed as

Xnext = Xcurrent − AiX
current − pi

‖Ai‖2
AT

i , (6.9.1)

where AiX performs the forward projection along the ith projection ray, pi

is the measured projection from the ith projection bin, ‖Ai‖2 =
∑

j

a2
ij is

the sum of the squared “contribution factors” along the ith ray, and cAT
i

backprojects the value c along the ith ray. If we re-write the above algorithm
in the following form

Xnext = Xcurrent −
(

AiX
current

‖Ai‖ − pi

‖Ai‖
)

AT
i

‖Ai‖ , (6.9.2)

the geometric meaning of this algorithm can be easily explained as in Figure
6.20.
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Fig. 6.20. An illustration of the ART algorithm.

There are many versions of the ART algorithms. The SIRT (Simultaneous
Iterative Reconstruction Technique) does not update the image ray by ray,
but update the image once per iteration. Another version is to update the
image angle by angle. Another version uses a relaxation (or damping) factor
to reduce the step-size and stabilize the algorithm. Still another version is
called the MART algorithm, in which updating is multiplicative, instead of
additive. One advantage of the MART algorithm is that the resultant image
is always non-negative provided the initial guess of the image is non-negative.

6.9.2 Conjugate Gradient Algorithm

This conjugate gradient (CG) algorithm solves the normal equations

ATAX = ATP. (6.9.3)

Let M = ATA and B = ATP . The normal equations become

MX = B. (6.9.4)

Matrix M is real, symmetric and positive definite (or semidefinite). The
implementation steps of the CG algorithm are given as follows.

Set up initial conditions

X(0) = 0, R0 = B, and Δ0 = R0. (6.9.5)
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These three image domain arrays are represented as three 1D column vectors.

Iterations (for n = 1, 2, 3, . . . do the following)

Update the step-size (a scalar) αn as a ratio of two scalars

αn =
(
RT

n−1Rn−1

) / (
ΔT

n−1MΔn−1

)
. (6.9.6)

Update the image with

X(n) = X(n−1) + αnΔn−1. (6.9.7)

Calculate the residual image

Rn = Rn−1 − αnMΔn−1. (6.9.8)

Calculate the factor (a scalar) βn used to find the searching direction

βn =
(
RT

n Rn

) / (
RT

n−1Rn−1

)
. (6.9.9)

Calculate the new searching direction for the next iteration

Δn = Rn + βnΔn−1. (6.9.10)

endfor

This CG algorithm has some properties:
(1) A Krylov subspace, κn, is expanding as the iteration number increases

κn =
〈
B, MB, M2B, . . . , Mn−1B

〉
=
〈
X(1), X(2), X(3), . . . , X(n)

〉
(6.9.11)

= 〈R0, R1, R2, . . . , Rn−1〉
= 〈Δ0, Δ1, Δ2, . . . ,Δn−1〉

where 〈R0, R1, R2, . . . , Rn−1〉 denotes a space spanned by R0, R1, R2, . . . ,
Rn−1.

(2) The residuals are orthogonal to each other, that is,

RT
nRj = 0, j < n. (6.9.12)

(3) The search directions are M -conjugate with each other, that is,

ΔT
nMΔj = 0, j < n. (6.9.13)

(4) At each iteration, X(n) minimizes the objective function over the
Krylov subspace κn. Therefore, if M is m×m, the algorithm converse in at
most m iterations.

What makes the iterative CG algorithm remarkable is the choice of the
search direction Δn−1, which has the special property that minimizing the
objective function over X(n) + 〈Δn−1〉 actually minimizes it over all of κn.
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6.9.3 ML-EM

The emission data ML-EM algorithm is the most popular iterative algorithm
in emission tomography and is expressed as

xnext
j =

xcurrent
j∑
i

aij

∑
i

aij
pi∑

ĵ

aiĵx
current
ĵ

, (6.9.14)

where the summation over ĵ is the projector identical to AiX in Section 6.9.1,
and the summations over i are the backprojectors. This algorithm compares
the measured projection pi with the forward projection of the current esti-
mate AiX as a ratio. This ratio is backprojected to the image domain. The
summation

∑
i

aij is the backprojection of constant 1 to the image domain.

The ratio of these two backprojected images determines a modification factor
to update the current estimate of the image.

The following is the derivation of the emission-projection ML-EM algo-
rithm. If p is a random variable with the Poisson distribution, then its prob-
ability mass function is given as

Prob(p
∣∣λ) = e−λ λp

p!
(6.9.15)

where λ is the expected value of this random variable. For an imaging problem
AX = P , the number of photons emitted from each image pixel is a Poisson
random variable, and each measurement pi can be treated as the summation
of these Poisson variables. We write

pi =
∑

j

cij , (6.9.16)

where cij is a Poisson random variable and

λij = E(cij) = aijxj . (6.9.17)

Note that X is not random.
We can set up the likelihood function as the joint probability mass func-

tion of all Poisson distributed random variables cij :

Prob =
∏
i,j

e−λij
λ

cij

ij

cij !
=
∏
i,j

e−aijxj
(aijxj)

cij

cij !
. (6.9.18)

Taking the logarithm of this likelihood function yields

ln(Prob) =
∑
i,j

(cij ln(aijxj)− aijxj)−
∑
i,j

ln(cij !). (6.9.19)
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The second summation term
∑
i,j

ln(cij !) does not contain the parameters xj to

be estimated; therefore, it can be discarded without changing the maximum-
likelihood problem. To find the maximum-likelihood solution of xj , we will
maximize the following objective function:

L =
∑
i,j

(
cij ln(aijxj)− aijxj

)
. (6.9.20)

The “E” Step

The above objective function contains random variables cij . The “E”
(expectation) step is to replace it by expected value using the measurement
pi and the current estimate of the parameters xj . That is, cij is replaced by

E(cij

∣∣pi, X
current) =

aijx
current
j∑

k

aikxcurrent
k

pi. (6.9.21)

Thus, after the “E” step, the objective function becomes

E(L
∣∣P, Xcurrent) =

∑
i,j

⎛
⎜⎜⎝ aijx

current
j∑

k

aikxcurrent
k

pi ln(aijxj)− aijxj

⎞
⎟⎟⎠. (6.9.22)

The “M” Step

To maximize the new objective function E(L
∣∣P, Xcurrent), we will take

the derivative of it with respect to estimation parameters xj and set the
derivatives to zero, that is,

E(L|P, Xcurrent)
xj

=
∑

i

⎛
⎜⎜⎝ aijx

current
j∑

k

aikxcurrent
k

pi
aij

aijxj
− aij

⎞
⎟⎟⎠

=
1
xj

∑
i

aijx
current
j∑

k

aikxcurrent
k

pi −
∑

i

aij (6.9.23)

= 0.

Solving for xj , we finally have the ML-EM algorithm:

xnext
j =

xcurrent
j∑
i

aij

∑
i

aij
pi∑

ĵ

aiĵx
current
ĵ

. (6.9.24)
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In fact, this multiplicative ML-EM algorithm can also be written in an
additive form so that it appears like a gradient descent algorithm as

Xnext = Xcurrent + ScurrentAT Λcurrent(P −AXcurrent) (6.9.25)

where the step size is

Scurrent = diag

⎧⎪⎪⎨
⎪⎪⎩

xcurrent
j∑
i

aij

⎫⎪⎪⎬
⎪⎪⎭ , (6.9.26)

and the noise variance weighting is

Λcurrent = diag

{
1/
∑

k

aikxcurrent
k

}
≈ diag

{
1
pi

}
. (6.9.27)

In reality, the measurement noise may not be exactly Gaussian distributed
or Poisson distributed. The author personally believes that it is not very
critical what the noise distribution is, while it is very important to know
the variance of the measurement noise, because it is the variance that is
used in measurement weighting. For example, in an imaging system, the
measurement pi is noisy and the noise variance is related to pi as

(Variance of pi) = sip̄i, (6.9.28)

where si can be a system scaling factor, pi may not be Poisson distributed,
and p̄i is the expected value of pi. Realizing that the imaging model is∑

k

aikxk = pi, (6.9.29)

we can modify the ML-EM algorithm and obtain a general image reconstruc-
tion algorithm as

xnext
j =

xcurrent
j∑
i

aij
1
si

∑
i

aij
pi

si

∑
ĵ

aiĵx
current
ĵ

. (6.9.30)

If we re-write this modified algorithm in the additive form, the noise variance
weighting is

Λcurrent = diag

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1(
si

∑
k

aikxcurrent
k

)
⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
≈ diag

{
1

(sipi)

}
. (6.9.31)
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6.9.4 OS-EM

With minor changes to the ML-EM algorithm, the ordered subset version of
it can be readily obtained as the OS-EM algorithm:

xnext
j =

xcurrent
j∑

i∈Sk

aij

∑
i∈Sk

aij
pi∑

ĵ

aiĵx
current
ĵ

, (6.9.32)

where Sk represents the kth subset of the projections.

6.9.5 Green’s One-Step Late Algorithm

The ML-EM algorithm can be changed into a MAP (green’s one-step late
algorithm, i.e., Bayesian) algorithm by adding a penalty term in the denom-
inator:

xnext
j =

xcurrent
j∑

i

aij + β
U(Xcurrent)

xcurrent
j

∑
i

aij
pi∑

ĵ

aiĵx
current
ĵ

, (6.9.33)

where U(X) is the energy function defined in Section 6.8, and β is a control
parameter. This is not a true MAP algorithm because the energy function U
is supposed to be evaluated using the next estimate Xnext, which is not yet
available, hence the term “one step late.”

6.9.6 Matched and Unmatched Projector/Backprojector Pairs

This topic is quite controversial. It is almost like a religion in which people
have their own opinions and carry out their practice accordingly. By projec-
tor/backprojector pair, we normally mean matrices A and AT as described
earlier in this chapter. If the backprojection matrix is the transpose of the
projection matrix, then this pair is called matched. Otherwise, the pair is
called unmatched.

In an analytic reconstruction algorithm, the image pixel is a point. The
image is not discretized. The projector, even not used in the reconstruction
algorithm, is an integral of the continuous image. Its matched backprojector
treats an image pixel as a point, too. Sometimes this backprojector is referred
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to as the pixel-driven backprojector. When implementing a pixel-driven back-
projector, we start with an image pixel location, and find the location on the
detector to get the backprojection value.

In an iterative reconstruction algorithm, the image pixel is no longer
a point, but an area. The projector draws a ray from each detector bin,
determines the contribution of each pixel according to overlap of this ray
with the pixel of interest. This projector is sometimes referred to as the ray-
driven projector. Its matched backprojector is the ray-driven backprojector.

We all agree that one should make the projector (i.e., the matrix A)
to model the imaging geometry and imaging physics as accurately as possi-
ble, significantly reducing the deterministic modeling errors. The question is
whether one is allowed to use unmatched projector/backprojector pairs. We
have seen many cases from the practical implementations. In some cases, the
unmatched pair gives better results than the matched pair, in terms of arti-
fact removal and speedup in computation time. In other cases, the unmatched
pair gives more artifacts than the matched pair. A common reason one would
use a backprojector other than AT is to save computation time. We need to
be cautioned that the solution can be different if an unmatched pair is used
to replace the matched pair in an iterative reconstruction algorithm.

First of all, one cannot just arbitrarily pick up a backprojector and use it
in an iterative algorithm. For example, one cannot use a fan-beam backpro-
jector to reconstruct a parallel-beam image. The minimum requirement of
choosing a backprojector is that the projection-then-backprojection operator
can only blur the image; it cannot cause image distortion in shape and other
motions such as rotation and translation. If a projector/backprojector pair
is applied to a point source, the result can only be a blurred point source at
the same location.

Second of all, we will investigate how a solution can be changed if a
different backprojector is used to solve the system AX=P . Let us consider a
modified Landweber iterative algorithm with a backprojector BT, where BT

may not be the same as AT, as

Xnext = Xcurrent + SBT(P −AXcurrent), (6.9.34)

where S = diag{s1, s2, . . . , sn} with positive diagonal elements controlling
the step size of each iteration for each unknown pixel xj . Let matrix T be

T = I − SBTA, (6.9.35)

with I being the identity matrix. Then this modified Landweber algorithm
has a general expression for each iteration as

X(k+1) = T k+1X(0) + (T k + . . . + T + I)SBTP, (6.9.36)

where k is the iteration index, X(k+1) means Xnext, X(k) means Xcurrent,
X(0) means the initial condition, and so on. This algorithm converges if and
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only if max
i
{∣∣λi

∣∣} < 1, i = 1, 2, . . ., n, where λi is the eigenvalue of the square

matrix T . If the eigenvalues of the matrix BTA are all positive then these
convergence conditions can be met by choosing small enough step sizes. After
the algorithm converges, the final solution is given by

X(∞) = (BTA)−1BTP, (6.9.37)

which has a strong dependency on the choice of the backprojector BT. Only
in a special case when A−1 and B−1 exist, the solution

X(∞) = A−1P (6.9.38)

is backprojector BT independent. If any one of the eigenvalues of the matrix
BTA is negative, the corresponding eigenvalue of matrix T will be greater
than 1 and the algorithm will diverge.

In general, when an unmatched projector/backprojector pair is used in
an iterative algorithm, the final solution and the intermediate solutions are
backprojector dependent. The matched pair solves the system

ATAX = ATP, (6.9.39)

while the unmatched pair solves a different system

BTAX = BTP. (6.9.40)

In order to speed up the convergence rate of the algorithm, some people
include the ramp filter in the backprojector. They treat the combined ramp
filter and the backprojector as a new backprojector. The new backprojector
first performs ramp filtering then backprojection.

The unmatched pair enforces a different weighting scheme and has a dif-
ferent noise effect than the original problem. The unmatched pair also has a
different sampling and data interpolation properties than the original prob-
lem. How much these differences can influence the reconstructed image is
problem dependent and the users should exercise their judgment to choose a
backprojector in their particular problem.

∗6.10 Reconstruction Using Highly Undersampled Data
with l 0 Minimization

It has been reported that it is possible to exactly reconstruct a 256 × 256
image with only 10 views. It seems magic to us, because more than 100 views
are normally required in such an imaging problem. Let us explore how they
do it. The setup is quite simple:
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min
X
‖ψX‖0 subject to AX = P (6.10.1)

where ‖•‖0 is the zero quasi-norm and ψ is a sparsifying transform. The
zero quasi-norm ‖•‖0 is easy to understand; it simply counts the non-zero
elements in a vector. For example, v = [3, 0, 0, 1, 7], in which there are 3
non-zero elements; therefore, ‖v‖0 = 3.

The trick of this method is to design the sparsifying transform ψ. This
transform can be anything as long as it transforms your regular image into
a sparse image in which most (say, 97%) pixels are zero.

If your regular image is a piecewise-constant image, you can use the ‖∇‖
(i.e., the magnitude of the gradient) as your sparsifying transform ψ (see
Figure 6.21).

Fig. 6.21. A sparsifying transform extracts some essential information from the
original image to produce a spars image.

A practical medical image is not a piecewise-constant image. If you take
the gradient, the resultant image is not very sparse. Thus, it is tricky to find
the sparsifying transform ψ for your application.

Another problem is that the l0-minimization is difficult to do. To be hon-
est, we do not have an effective way to find its minimum. We normally set
up an objective function using the l2-norm, which basically gives you a user-
friendly least-squares function such as

∑
i

v2
i , and we can perform many fun

things with it (e.g., taking a derivative). However, the l2-norm does not work
well when data are highly undersampled.

The l1-norm

{∑
i

|vi|
}

is a popular alternative. It does not perform as

well as the l0 quasi norm in selecting the optimum image, but it is better
than the l2-norm. On the other hand, it is not as user-friendly as the l2-norm
but is much better than the l0 quasi norm.

Let us illustrate the differences among the l2-norm, l1-norm, and
l0-quasinorm. A norm is a sort of measure of the distance or length. Let
us consider a point in the 2D x-y coordinate system with coordinates of (3,
4). We want to find its “distance” from the origin (0, 0). If we use the l2-
norm, the l2-distance is given as

√
32 + 42 = 5. If we use the l1-norm, the
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l1-distance is given as |3|+ |4| = 7. If we use the l0-quasinorm, the l0-distance
is given as 1+1=2.

Let us consider a different point in the 2D x-y coordinate system which
has coordinates of (0, 4). We want to find its “distance” from the origin (0, 0).
If we use the l2-norm, the l2-distance is given as

√
02 + 42 = 4. If we use the

l1-norm, the l1-distance is given as |0|+ |4| = 4. If we use the l0-quasinorm,
the l0-distance is given as 0+1=1.

Figure 6.22 shows the unit circles using the l2-norm, l1-norm, and l0-
quasinorm, respectively. Except for the l2-norm unit circle, the other two
unit circles do not look like circles at all. For a “measure” to be qualified as
a norm, it needs to satisfy a set of axioms. A quasi-norm is almost a norm
except that it does not satisfy an axiom called the triangle inequality.

In reality, the data are inconsistent due to random noise and deterministic
modeling errors. Thus, it is improper to use AX = P as a constraint in an
optimization problem. When using AX = P as a constraint does not make
any sense, it is still all right to use the Bayesian method to set up an objective
function as discussed in Section 6.8. All we have to do here is to replace the
energy function U(X) in Section 6.8 by a norm of a sparsifying transform
of the image X . If the derivative of this norm of the sparsifying transform
exists, we can use the one-step late algorithm introduced in Section 6.9.5 to
reconstruct the image.

Fig. 6.22. A unit circle is a trajectory of the points that have a distance 1 from
the origin. Left: l2-norm’s unit circle. Middle: l1-norm’s unit circle. Right: l0-
quasinorm’s unit circle.

You may have also heard of the total variation minimization. The TV
(total variation) norm of an image v(x, y) is the integral of the l1-norm of
the gradient ∇v(x, y), that is,

TV (v) =
∫∫

‖∇v(x, y)‖1 dxdy =
∫∫ √(

v

x

)2

+
(

v

y

)2

dxdy. (6.10.2)

Therefore, TV norm minimization is the same as the l1-norm minimization
of the gradient image, and it enforces a flat image with the gradient being
zero in most places. The resultant image tends to be piecewise constant. In
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practice, a small number ε is introduced to calculate the TV-norm as

TV (v) =
∫∫

‖∇v(x, y)‖1 dxdy =
∫∫ √(

v

x

)2

+
(

v

y

)2

+ ε2 dxdy.

(6.10.3)
so that the TV norm is differentiable. Using Green’s one-step-late method
presented in Section 6.9.5, a total variation regulated EM (TV-EM) algorithm
can be obtained as

xnext
j =

xcurrent
j∑

i

aij + β
TV (Xcurrent)

xcurrent
j

∑
i

aij
pi∑

ĵ

aiĵx
current
ĵ

. (6.10.4)

For a 2D image X , if we express each pixel with double indices as xk,l, then
the partial derivative in the above TV-EM algorithm can be given as

TV (X)
xk,l

=
xk,l − xk−1,l√

(xk,l − xk−1,l)2 + (xk−1,l+1 − xk−1,l)2 + ε2

+
xk,l − xk,l−1√

(xk+1,l−1 − xk,l−1)2 + (xk,l − xk,l−1)2 + ε2

− xk+1,l + xk,l+1 − 2xk,l√
(xk+1,l − xk,l)2 + (xk,l+1 − xk,l)2 + ε2

. (6.10.5)

In theory, the l0 quasi-norm is the best measure to promote the sparsity of
ψX and should be used. However, the optimization procedure is not tractable
for any lp norm with 0 � p < 1, because its associated objective function is
not convex any more. The closest norm that produces a convex objective
function is the l1 norm. Fortunately, the l1 norm minimization is nearly
optimal, in the sense that its solution is not far from the solution with the
much more complicated l0 quasi-norm minimization.

Reconstruction with highly-undersampled data is a Bayesian reconstruc-
tion problem. Performing the sparsifying transform ψX is one way to extract
the prior knowledge from the image X . If other prior information about the
image X is available, it should be included in the objective function as well.

6.11 Worked Examples

Example 1 For an arbitrary matrix A, its generalized inverse matrix A+

must satisfy the following four properties:

AA+A = A, (6.11.1)
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A+AA+ = A+, (6.11.2)
(A+A)∗ = A+A, (6.11.3)
(AA+)∗ = AA+. (6.11.4)

Here M∗ is the Hermitian transpose (also called conjugate transpose) of a
matrix M . For a real matrix, it is simply the transpose. In the following, we
assume that matrix A is real.

Please verify that if (ATA)−1 exits, then A+ = (ATA)−1AT is a gen-
eralized inverse matrix of A. Please also verify that if (AAT)−1 exits, then
A+ = AT(AAT)−1 is a generalized inverse matrix of A.

Proof

Case 1: If (ATA)−1 exits, A+ = (ATA)−1AT.
Property 1:

Left = AA+A = A
(
ATA

)−1
ATA = A

(
ATA

)−1 (
ATA

)
= A = Right

(6.11.5)
Property 2:

Left = A+AA+ =
(
ATA

)−1
ATA

(
ATA

)−1
AT

=
(
ATA

)−1 (
ATA

) (
ATA

)−1
AT

=
(
ATA

)−1
AT = A+ = Right (6.11.6)

Property 3:

Left =
(
A+A

)T =
((

ATA
)−1

ATA
)T

=
((

ATA
)−1 (

ATA
))T

= I

(6.11.7)

Right = A+A =
(
ATA

)−1
ATA =

(
ATA

)−1 (
ATA

)
= I (6.11.8)

Property 4:

Left =
(
AA+

)T =
(
A
(
ATA

)−1
AT
)T

= A
((

ATA
)−1
)T

AT

= A
((

ATA
)T)−1

AT = A
(
ATA

)−1
AT = AA+ = Right (6.11.9)

Case 2: If (AAT)−1 exits, A+ = AT(AAT)−1.
Property 1:

Left = AA+A = AAT
(
AAT

)−1
A =

(
AAT

) (
AAT

)−1
A = A = Right

(6.11.10)
Property 2:

Left = A+AA+ = AT
(
AAT

)−1
AAT

(
AAT

)−1

= AT
(
AAT

)−1 (
AAT

) (
AAT

)−1

= AT
(
AAT

)−1
= A+ = Right (6.11.11)
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Property 3:

Left =
(
A+A

)T
=
(
AT
(
AAT

)−1
A
)T

= AT
((

AAT
)−1
)T

A

= AT
((

AAT
)T)−1

A = AT
(
AAT

)−1
A = A+A = Right (6.11.12)

Property 4:

Left =
(
AA+

)T =
(
AAT

(
AAT

)−1
)T

=
((

AAT
) (

AAT
)−1
)T

= I (6.11.13)

Right = AA+ = AAT
(
TA
)−1

=
(
AAT

) (
ATA

)−1
= I (6.11.14)

Example 2 In Section 6.1, we used SVD to decompose matrix Am×n

into Am×n = Um×mΣV T
n×n and defined A+ = V Σ+UT (assuming σr > 0)

with Σ+
n×m =

[
Dr 0

0 0

]
and Dr = diag

{
1
σ1

,
1
σ2

, . . . ,
1
σr

, 0, . . . , 0
}

. Is A+ =

V Σ+UT a generalized inverse of matrix A according the four properties stated
in Example 1? Find the condition under which A+ = V Σ+UT is a generalized
inverse of matrix A.

Solution

Let us apply the first property to A+ =V Σ+UT and Am×n =Um×mΣV T
n×n:

AA+A = UΣV TV Σ+UTUΣV T = UΣ
(
V TV

)
Σ+
(
UTU

)
ΣV T

= UΣΣ+ΣV T. (6.11.15)

In order to have AA+A = A+, we must have

ΣΣ+Σ = Σ, (6.11.16)

which is equivalent to

diag{σ1, σ2, . . . , σr, . . . , σm}diag

{
1
σ1

,
1
σ1

, . . . ,
1
σr

, 0, . . . , 0
}

×diag{σ1, σ2, . . . , σr, . . . , σm}
= diag{σ1, σ2, . . . , σr, . . . , σm} (6.11.17)

or
σr+1 = . . . = σm = 0. (6.11.18)

Since
σ1 � σ2 � . . . � σi � . . . � 0, (6.11.19)
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Property 1 is equivalent to

σr+1 = 0 and σr > 0. (6.11.20)

Now let us look at Property 2:

A+AA+ = A+ (6.11.21)

which is equivalent to

diag

{
1
σ1

,
1
σ2

, . . . ,
1
σr

, 0, . . . , 0
}

= diag

{
1
σ1

,
1
σ2

, . . . ,
1
σr

, 0, . . . , 0
}

.

(6.11.22)

This property is always satisfied.
Property 3 (A+A)∗ = A+A and Property 4 (AA+)∗ = AA+both imply

that

diag{1, 1, . . . , 1, 0, . . . , 0} = diag{1, 1, . . . , 1, 0, . . . , 0}, (6.11.23)

which is always satisfied.
To summarize the above discussion, the condition under which A+ =

V Σ+UT is a generalized inverse of matrix A is

σr+1 = 0 and σr > 0. (6.11.24)

However, in practice, a cut-off index much smaller than this r is used to
obtain a stable solution.

Example 3 None of the following images match the measured projec-
tions. Which one is the best solution among the three solutions? (Compare
the χ2)

Fig. 6.23. Three images try to match the projections.

Solution

(1) χ2 = 02 + 02 + 12 + 12 = 2, (← Best)
(2) χ2 = 02 + 02 + 22 + 02 = 4,
(3) χ2 = 12 + 02 + 12 + 22 = 6.

Example 4 Find a least-squares reconstruction to the imaging problem
shown in Figure 6.24.
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Solution

The imaging matrix A for this problem AX = P is given as

A =

⎡
⎢⎢⎢⎢⎣

1 0 1 0

0 1 0 1

1 1 0 0

0 0 1 1

⎤
⎥⎥⎥⎥⎦ . (6.11.25)

Fig. 6.24. A 2× 2 image reconstruction problem.

The rank of A is 3. The system AX = P is also not consistent. Therefore,
there is no solution for this problem. We can use a singular value decom-
position (SVD) based method to find a pseudo solution. Using Matlab with
X=pinv(A) ∗ P , we get x1 = 2.25, x2 = 1.75, x3 = 1.75, and x4 = 1.25.

Example 5 Let A =

[
2 0

0 1

]
. Find the conjugate direction u1 of

u0 =

[
1

1

]
.

Solution

The conjugate direction is defined by this relationship: u0 · (ATA)u1 = 0,
where

ATA =

[
2 0

0 1

][
2 0

0 1

]
=

[
4 0

0 1

]
. (6.11.26)

We also know [
1

1

]
·
[

1

−1

]
= 0. (6.11.27)

Thus

[
4 0

0 1

]
u1 =

[
1

−1

]
, which leads to

u1 =

[
1/4 0

0 1

][
1

−1

]
=

[
1/4

−1

]
. (6.11.28)



6.11 Worked Examples 161

(If you want, you could normalize u1 and make it a unit vector.)
The matrix ATA defines a quadratic form, which is an ellipse in our case.

The point of this example is as follows: For any initial direction u0, draw
an ellipse specified by the quadratic form ATA such that u0 is a tangential
direction. If you travel along the conjugate direction u1, you will reach the
center of the ellipse (see Figure 6.25).

Fig. 6.25. Conjugate directions.

Example 6 Compute one iteration of the ML-EM algorithm with the
initial image and projections given below:

Fig. 6.26. Initial image and projection data for Example 6.

Solution

Step 1: find the forward projections.

Step 2: find the ratios of given (i.e., measured) projections and the forward
projections of the current image.
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Step 3: backproject the ratios.

Step 4: backproject a constant 1 from all rays.

Step 5: find pixel-by-pixel ratio of the backprojected image obtained from
Step 3 and the backprojected image from Step 4.

Step 6: pixel-by-pixel update the current image (using point-by-point
multiplication, not matrix multiplication).

Example 7 Use a Bayesian method to find a stable solution of the
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system {
x1 + 0.01x2 = 1.2,

x1 + 0.001x2 = 1.
(6.11.29)

Solution

If we consider the potential measurement errors, the system of equations
can be written as {

x1 + 0.01x2 = 1.2 + δ1,

x1 + 0.001x2 = 1 + δ2.
(6.11.30)

The solution of this modified system is given by{
x1 = 0.978− 0.111δ1 + 1.11δ2,

x2 = 22.22 + 111.1δ1 − 111.1δ2.
(6.11.31)

It is seen that x2 is sensitive to measurement noise. Let us assume a
priori that “x1 and x2 are close” and solve this problem using the Bayesian
method. Here, a prior is a probability distribution representing knowledge or
belief about an unknown quantity a priori, that is, before any data have been
observed. First, we set up an objective function and use the prior knowledge
as a penalty term:

F (x1, x2) = (x1 + 0.01x2 − 1.2− δ1)2 + (x1 + 0.001x2 − 1− δ2)2

+β(x1 − x2)2. (6.11.32)

Note that β in this expression is not a Lagrange multiplier, but a pre-
assigned constant. To minimize F (x1, x2), we set F/ x1 = 0 and F/ x2 =
0. This results in a different problem:[

2 + β 0.011− β

0.011− β 0.012 + 0.0012 + β

][
x1

x2

]

=

[
(1.2 + δ1) + (1 + δ2)

(0.01)(1.2 + δ1) + (0.001)(1 + δ2)

]
. (6.11.33)

The solution of this system depends on the value of β, as well as the values
of δ1 and δ2. Some MAP solutions are listed in the following two tables:

Case 1: Noiseless (δ1 = δ2 = 0)

β 0 0.01 0.1 1 10 100

Condition # 50000 200 22 5.7 22 200

x1 0.978 1.094 1.094 1.094 1.094 1.094

x2 22.222 1.178 1.103 1.095 1.094 1.094
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Case 2: Noisy (δ1 = −δ2 = 0.2)

β 0 0.01 0.1 1 10 100

Condition # 50000 200 22 5.7 22 200

x1 0.733 1.094 1.095 1.095 1.095 1.095

x2 66.667 1.357 1.122 1.098 1.096 1.095

The system becomes more stable with an additional prior term in the ob-
jective function. The stability is reflected by much smaller condition numbers.
This example also tells us that using a prior changes the original problem.
Even for noiseless data, the MAP solutions may be different from the true
solution. When you plan to use the Bayesian method, be careful and be sure
that your prior knowledge is reasonable.

Example 8 Show that for the ML-EM algorithm at each iteration, the
total number of the counts of the forward projections is the same as the total
number of the counts of the original projection data:

∑
i

⎛
⎝∑

j

aijxj

⎞
⎠ =

∑
i

pi. (6.11.34)

Proof

∑
i

∑
j

aijxj

=
∑

i

∑
j

aij

⎛
⎜⎜⎝ xold

j∑
n

anj

∑
n

anj
pn∑

k

ankxold
k

⎞
⎟⎟⎠

=
∑

j

xold
j

∑
j

aij

∑
n

anj

∑
n

anj
pn∑

k

ankxold
k

[Change the order of summations.]

=
∑

j

xold
j

∑
n

anj
pn∑

k

ankxold
k

∵

⎡
⎣∑

j

aij =
∑

n

anj

⎤
⎦

=
∑

n

pn

∑
j

anjx
old
j

∑
k

ankxold
k

[Change the order of summations.]

=
∑

n

pn. (6.11.35)
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Example 9 Use a computer simulation to demonstrate that the reso-
lution recover rate is location dependent in the ML-EM algorithm.

Solution

A 2D computer-generated phantom shown in Figure 6.27 is used to gen-
erate projection data with and without Poisson noise. In data generation,
attenuation, system blurring, and photon scattering are not included. That
is, the projections are ideal line integrals of the object. The image size is
256 × 256, and 256 views uniformly distributed over 360◦ are used for pro-
jection data generation.

Fig. 6.27. The true image (a mathematical phantom).

The iterative ML-EM algorithm is used for image reconstruction. Two
reconstructed images are shown in Figure 6.28, one of which is obtained after
25 iterations, and the other is obtained after 250 iterations.

Fig. 6.28. Iterative ML-EM reconstructions.

After 250 iterations, the algorithm has almost converged, and the resolu-
tion throughout the image is uniform. When the algorithm is stopped early
at the 25th iteration, the resolution is not uniformly recovered. Higher reso-
lution can be observed at the edge of the object. The resolution recovery rate
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is slower at the center. The motivation of early stopping is to regulate the
noise. This is demonstrated with the noisy data reconstructions as shown in
Figure 6.29, where two images are displayed. One of the images is obtained
after 25 iterations and the other is obtained after 250 iterations.

Fig. 6.29. Iterative ML-EM reconstructions with the same noisy projection data.

The image with 250 iterations is noisier than that with 25 iterations. If we
apply a low-pass filter to the noisy image obtained with 250 iterations, the
image becomes less noisy and still maintains the uniform resolution through-
out the image (see Figure 6.30). Therefore, it is a good strategy to over-iterate
and then to apply a low-pass filter to control noise.

Fig. 6.30. Applying a low-pass filter to the image reconstructed with 250 iterations
of ML-EM results in uniform resolution and reduced noise.

On the other hand, if the projections are ideal line-integrals, the 2D
parallel-beam FPB algorithm can provide images with uniform resolution
(see Figure 6.31). However, if the imaging system has a spatially variant res-
olution and sensitivity, the current FBP algorithms are unable to model the
system accurately and cannot provide uniform resolution in their reconstruc-
tions.
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Fig. 6.31. Filtered backprojection reconstructions with noise-less and noisy data.

6.12 Summary

• The main difference between an analytic image reconstruction algorithm
and an iterative image reconstruction algorithm is in image modeling. In
an analytic algorithm, the image is assumed to be continuous, and each
image pixel is a point. The set of discrete pixels is for display purpose. We
can make those display points any way we want. However, in an iterative
algorithm, a pixel is an area, which is used to form the projections of the
current estimate of the image. The pixel model can significantly affect the
quality of the reconstructed image.

• Another difference between an analytic image reconstruction algorithm
and an iterative image reconstruction algorithm is that the analytic
algorithm tries to solve an integral equation, while the iterative algorithm
tries to solve a system of linear equations.

• A system of linear equations is easier to solve than an integral equation.
This allows the linear equations to model more realistic and more com-
plex imaging geometry and imaging physics. In other words, the iterative
algorithm can solve a more realistic imaging problem than an analytic
algorithm. As a result, the iterative algorithm usually provides a more
accurate reconstruction.

• Iterative algorithms are used to minimize an objective function. This
objective function can effectively incorporate the noise in the measure-
ment. Currently, analytic algorithms cannot model noise, and its noise
control is achieved by frequency windowing.

• The iterative ML-EM and OS-EM algorithms are most popular in emis-
sion tomography image reconstruction. They assume Poisson noise statis-
tics.

• Even though noise is modeled in the objective function, the reconstructed
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image is still noisy. There are five methods to control noise.
• The first method is to stop the iterative algorithm early, before it con-

verges. This simple method has a draw back that it may result in an image
with non-uniform resolution. One remedy is to iterate till convergence and
apply a post lowpass filter to suppress the noise.

• The second method is to replace the flat, non-overlapping pixels by
smooth, overlapping pixels to represent the image. The method can
remove the artificially introduced high frequency components by the flat,
non-overlapping pixels in the image. A drawback of using smooth, over-
lapping pixels is the increased computational complexity. One remedy is
to use the traditional flat, non-overlapping pixels and apply a lowpass
filter to backprojected images.

• The third method is to model more accurate imaging geometry and
physics in the projector/backprojector pair. The aim of this method is
to reduce the deterministic discrepancy between the projection model
and the measured data.

• The fourth method is to use the correct noise model to set up an objective
function. The author’s personal belief is that the noise model that is based
on the joint probability density function is not very critical. You can have
a wrong noise model (i.e., a wrong joint probability density function), but
you must have the accurate variance. The important part is to incorporate
a correct measurement noise variance to weigh the data. It is not as
important to worry about whether the noise is strictly Gaussian, strictly
Poisson, and so on.

• The fifth method is the use of prior knowledge. If the projection data do
not carry enough information about the object, due partially to insuf-
ficient measurements and partially to noise, prior knowledge about the
object can supplement more information about the object and make the
iterative algorithm more stable. Be careful that if the prior knowledge
is not really true, it can mislead the algorithm to converge to a wrong
image.

• The readers are expected to understand how the system of imaging equa-
tions is set up and how the iterative ML-EM algorithm works in this
chapter.

Problems

Problem 6.1 Some iterative algorithms, for example, the ART and OS-EM
algorithms, update the image very frequently. For those algorithms, the
processing order of the data subsets is important. In this problem, we
use the ART algorithm to graphically solve a system of linear equations
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{L1, L2, L3, L4} with two variables as shown in the figure below. The
initial estimated solution is X0. Solve the system with two different
orders: (a) L1 → L2 → L3 → L4 and (b) L1 → L3 → L2 → L4,
respectively. Compare their performance in terms of convergence rate.

Problem 6.2 The iterative ML-EM algorithm
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or the iterative OS-EM algorithm, has many modified versions. One of
the versions introduces a new parameter h:
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This parameter h usually takes a real value in the interval between 1
and 5. The purpose of using this parameter h is to increase the iteration
step size and make the algorithm converge faster. If the parameter h is
chosen in the interval between 0 and 1, it reduces the iteration step size.
Does this new algorithm satisfy the property of total count conservation
as studied in Worked Problem 8 in this chapter? If that property is not
satisfied any more, you can always scale the newly updated image with
a factor. Find this scaling factor so that the total count is conserved for
each iteration.

Problem 6.3 The modified algorithm discussed in Problem 6.2 above can
only be used in emission imaging applications, because the linear equa-
tions are weighted by Poisson variance of the emission measurements.
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One can develop a similar algorithm for the transmission measurements
to find the attenuation map of the object as:

μ
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where the measurements are modeled as Ni = N0e
−P

j aijμj . Here, we
do not take the logarithm and convert these non-linear equations into
linear equations. Instead, we go ahead and solve this system of non-
linear equations Ni = N0e

−P
j aijμj directly. Use the Taylor expansion

to convert this algorithm to its corresponding the additive updating form.
Discuss how the parameter h controls the iteration step size, how the
non-linear equations are weighted, and what the weighting quantity is.

Problem 6.4 We have learned that in an iterative image reconstruction
algorithm the projector should model the imaging system as accurately
as possible. For a set of practical data acquired from an actual imaging
system, there is a simple way to verify whethter the modeling in the
projector is accurate enough. This method is described as follows. Run
an iterative algorithm to reconstruct the image. After the algorithm is
converged, calculate and display the data discrepancy images at every
view. A discrepancy image is the difference between the projection of the
reconstructed image and the measured projection data, or is the ratio
of the projection of the reconstructed image to the measured projection
data. If the projector models the imaging system accurately, you do not
see the shadow of the object in the discrepancy images and you only see
the random noise in the discrepancy images. Verify this method with a
computer simulation.
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7 MRI Reconstruction

The MRI imaging physics is quite different from that of transmission or
emission imaging as we discussed in the previous chapters. This chapter first
introduces the imaging physics of MRI, showing how the MRI signals are
formed. We will see that the MRI signals are in the Fourier domain and the
image reconstruction is achieved via the inverse Fourier transform.

7.1 The “M”

MRI stands for magnetic resonance imaging. Its working principle is quite
different from that of emission and transmission tomography. MRI is an image
of “proton density” in a cross-section of the patient. The data in MRI can be
simplified as weighted plane integrals of the proton density function in that
plane with “frequency” dependent weighting functions.

In this chapter, we present a watered-down version of the MRI principle.
The goal of regular MRI is to get a picture of the distribution of hydrogen
atoms (H+) within the patient body.

The hydrogen atom is simply a proton that carries a positive charge and
is continuously spinning. A spinning charge generates a magnetic field around
it, as if it were a tiny magnet (see Figure 7.1). We call this tiny magnet a “μ

Fig. 7.1. A spinning proton acts like a tiny magnet.
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moment,” which is a vector. The orientation is important for a vector.
In the absence of a strong external magnetic field, the proton magnetic

moments μ are randomly oriented inside the body. Thus, the net magnetic
moment is zero 0 (see Figure 7.2).

Fig. 7.2. The net magnetic moment is zero without a strong external magnetic
field.

When a strong external magnetic field is applied, the net magnetic
moment is no longer zero. We denote this net magnetic moment as a vector
M (see Figure 7.3). We must point out that even in this case, not all μ are
pointing in the same direction. About half of them point in direction of the
magnetic field, and the other half point in the opposite direction. Therefore,
the magnitude of M is very small and is proportional to

γ�B0

2KT
(7.1.1)

where T is the absolute temperature of the patient (in ◦K), K is the Boltz-
man constant (8.62×10−11 MeV/◦K), � is the Plank constant (6.625 2×10−27

ergs), B0 is the magnetic field strength (in Tesla), and γ is an atom-dependent
constant (42.58 MHz/Tesla for H+) called the gyromagnetic ratio. We can
see that a stronger magnetic field helps generate a stronger signal.

Fig. 7.3. In the strong external magnetic field a small non-zero net magnetization
can be observed.

Another concept that we need to explain MRI physics is precession. Let
us take a look at a spinning toy top (or a gyroscope). Besides spinning, there
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is another motion: the spin axis rotates around the direction of gravity (an
external force). This motion of the spin axis rotating about the direction of
gravity is referred to as precession (see Figure 7.4). If the top does not spin,
precession will not happen; it just falls.

Fig. 7.4. A spinning toy top precesses about a vertical axis due to the gravity.

7.2 The “R”

We have a vector M , called net magnetic moment, which is spinning by itself.
Normally, the vector M points at the same direction of the external magnetic
field B0. If we somehow knock the vector M off balance, and M is not in the
direction of M anymore, then the vector M will precess about the direction
of B0 just as the toy top precesses about the direction of gravity (see Figure
7.5). The precession frequency is called the Larmor frequency and is given as

ω0 = γB0 (7.2.1)

where B0 is the external magnetic field strength, and γ is the gyromagnetic
ratio. For a proton, γ = 42.58 MHz/Tesla. If the MRI machine has a magnetic

Fig. 7.5. Protons precess at the Larmor frequency ω0.
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field of 1.5 Tesla, then the Larmor frequency is approximately 64 MHz, which
is close to the frequency range of an FM radio.

The MRI signal is nothing but this 64 MHz radio frequency electromag-
netic wave sent out from the patient body after the net magnetic moment
M is somehow knocked off balance. Thus, the MRI signal is also called the
RF (radio frequency) signal. The strength of the signal is proportional to the
proton density inside the patient.

To knock the net magnetic moment M off balance is not an easy task.
In order to move the vector M , we need to create a virtual situation so that
the vector M does not feel the existence of the external B0 field.

We will first put the vector M on a virtual rotating merry-go-round or a
rotating platform (see Figure 7.6), which is rotating at the Larmor frequency.
We will later find a way to create precession while the vector M is on that
rotating platform. The vector M now is currently standing on the rotating
platform upright and is spinning on its own axis; there is no motion relative
to the platform. Even if the vector M is not standing upright and it has a
non-zero angle with the vertical line, vector M will stay with that angle and
will not have any motion relative to the platform.

Fig. 7.6. The magnetization vector does not precess relative to the rotating plat-
form.

Next, we step on the rotating platform and apply a new magnetic field
B1, orthogonal to the main magnetic field B0. On the rotating platform,
the vector M does not feel the existence of the main field B0; it only feels
the push from the new field B1. Since M is not aligned with B1, it will
precess about the direction of B1 (see Figure 7.7) at a precession frequency
ω1 = γB1. Once M reaches the platform floor, we turn the new field B1 off.
Thus, the mission of knocking off M is accomplished. The B1 field is only
turned on very briefly; it is called a 90◦ RF pulse if it is turned off as M
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soon as touches the platform floor.
What is this B1 field anyway? The magnetic field B1 is applied on a

virtual rotating platform, which rotates at the Larmor frequency, say 64
MHz for a proton in a 1.5 Tesla MRI machine. Therefore, B1 is an alternating
electromagnetic RF field with the same frequency as the Larmor frequency.
Another term for the same frequency is the resonance frequency. The B1

RF signal is sent to the patient through an RF coil, which is basically an
antenna. The procedure of turning the B1 RF field on and knocking M off
balance is called RF excitation.

Fig. 7.7. On the rotating platform, the effect of the main field can be ignored. Only
the new B1 field is effective.

After RF excitation, we turn off B1. Now the net magnetic moment M

is not in the equilibrium state, but in the excited state. The vector M is
precessing about the main field direction B0, and RF signals that contain
the patient proton density information are emitted.

The excited state is unstable. After excitation, the vector M then goes
through the relaxation period and eventually returns to the original equilib-
rium state, where the vector M points to the B0 direction (see Figure 7.8).
In a Cartesian system, the B0 direction is the z-direction, and the “platform
floor” is the x-y plane.

The x and y components of the vector M make up the MRI signal. After
M relaxes back to its equilibrium position, both its x and y components are
zero; hence, no more signals can be detected. Another RF pulse excitation is
needed for further data acquisition. This procedure is repeated over and over
again until enough data are acquired for imaging.
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Fig. 7.8. Relaxation of the magnetization vector.

7.3 The “I”

The RF signal emitted by the patient as described in Section 7.2 cannot
be used to form an image because it is a combined signal from everywhere.
We need a way to code the location information. This is achieved by the
gradient coils. In the MRI machine, there are many coils. The main large
superconducting coil immersed in liquid helium is used to generate the strong
static B0 field. There are RF coils, which are used to emit RF pulses for
excitation and to receive RF imaging signals. There are other coils in the
machine to create gradients; they are x-gradient coils, y-gradient coils, and
z-gradient coils.

7.3.1 To Obtain z-Information— Slice Selection

The z-gradient coils are shown in Figure 7.9. The currents in the two coils are
running in the opposite directions and generate the local magnetic fields to
enhance and reduce the main field B0, respectively. The resultant magnetic
field is still pointing in the z-direction; however, the field strength is stronger
at locations with larger z values and is weaker at locations with smaller z
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values. These coils create a gradient of the magnetic field strength in the z

direction.

Fig. 7.9. The z-gradient coils create a non-uniform field in the z-direction.

This z-gradient makes a non-uniform magnetic field, which results in dif-
ferent Larmor frequencies ω for a different z position. The Larmor frequency
is ω0 only at one z-slice. We turn on and off the z-gradient and the B1 RF
pulse at the same time. The B1 RF pulse is at the frequency of ω0. According
to the resonance frequency principle, only one z-slice of the patient body is
affected by the RF pulse. That is, only the protons in this particular z-slice
get excited and send out the RF signal (see Figure 7.10).

Fig. 7.10. Slice selection is done by the z-gradient and the B1 field.
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7.3.2 To Obtain x-Information— Frequency Encoding

We use the x-gradient to provide the x-position information. When we are
ready to receive the RF signal from the patient, we turn on the x-gradient.
The x-gradient is generated by the x-gradient coils, and it makes the strength
of the main magnetic field vary in the x-direction. The principle of using x-
gradient to code x-position is illustrated in Figure 7.11. Using the relation
ω = γB, stronger magnetic field B gives the higher frequency. Thus, the
x-location can be determined by the received frequency.

Fig. 7.11. Stronger field produces higher frequency.

The x-gradient coils are depicted in Figure 7.12. We assume that the
x-direction is the direction from the patient’s right ear to left ear. The x-
gradient is turned on only when the RF signal is received, and this gradient
is also called the read-out gradient. Do not turn it on during slice selection.
When you turn two gradients on at the same time, they will combine and
form a gradient in the third direction.
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Fig. 7.12. The x-gradient coils generate a non-uniform magnetic field in the read-
out direction.

7.3.3 To Obtain y-Information— Phase Encoding

After slice selection and before RF signal read-out, we turn on the y-gradient
for a short time. Before a gradient is turned on, M at all locations precess
at the same frequency (i.e., same speed). However, when the y-gradient is
turned on, the field strength at a different y-position is different. As a result,
M at a different y-position precesses at a different Larmor frequency (e.g.,
precession at a faster rate for a position with a larger y value, see Figure
7.13). After the y-gradient is on for a short while, it is turned off. At this

Fig. 7.13. The y-gradient causes the phase displacement as a function of y location.
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moment, M at a different y position will arrive at a different phase (i.e.,
angle). This phase carries the information of the y position.

The y-gradient coils look exactly like the x-gradient coils, except for a
90˚ rotation. The effective gradient is confined to the gap between two pairs
of the coils (see Figure 7.14).

Fig. 7.14. The y-gradient coils make the magnetic field non-uniform in the y
direction.

The time diagram shown in Figure 7.15 summaries this basic MRI data
acquisition procedure. This procedure is repeated many times. At each time,
a different value of the y-gradient is used. The next section will show that the
acquired data is nothing but the 2D Fourier transform of the image f(x, y),
which is closely related to the proton density distribution inside the patient
body. A 2D inverse Fourier transform is used to reconstruct the image. A
typical MRI image is shown in Figure 7.16. There is a small negative pulse

Fig. 7.15. The timing diagram for an MRI pulse sequence.
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in front of the x-gradient readout pulse. The purpose of it is to create an
“echo” to make the strongest signal at the center.

Fig. 7.16. An MRI image of the head.

∗7.4 Mathematical Expressions

In this section, we assume that a slice selection has been done and M(x, y)
is a function of x and y. The vector M(x, y) can be decomposed into the
x-component Mx(x, y), the y-component My(x, y), and the z-component
Mz(x, y). We define a complex function f(x, y) as

f(x, y) = Mx(x, y) + i My(x, y). (7.4.1)

The goal of MRI is to obtain this function f(x, y) and display its magni-
tude |f(x, y)| as the final output for the radiologists to read.

Let us first consider the effect of the read-out (x) gradient. When the
x-gradient is turned on, the magnetic field strength is a function of x as

B(x) = B0 + xGx (7.4.2)

and the associated Larmor frequency is calculated as

ω(x) = γ(B0 + xGx). (7.4.3)

At read-out, the function f(x, y) will be encoded as

f(x, y) cos(2πω(x)t) = f(x, y) cos(2πγ(B0 + xGx)t), (7.4.4)
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where γB0 is the carrier frequency and has no contribution for image
reconstruction. In the MRI receiver there is a demodulator that can remove
this carrier frequency. After the removal of the carrier frequency, the leftover
baseband signal is given as

f(x, y) cos(2πγxGxt). (7.4.5)

Since the signal comes from the entire x-y plane, the received baseband
signal is the summation of the signals from each location (x, y):∫ ∞

−∞

∫ ∞

−∞
f(x, y) cos(2πγxGxt)dxdy. (7.4.6)

Second, let us consider the effect of the phase-encoding (y) gradient. When
the y-gradient is turned on for a period of time T , the magnetic field strength
is a function of y as

B(y) = B0 + yGy, (7.4.7)

and the associated Larmor frequency is calculated as

ω(y) = γ(B0 + yGy). (7.4.8)

After the period of T , the phase change is a function of y as

φ(y) = Tω(y) = γ B0 + γ yGyT. (7.4.9)

Recall that the function f(x, y) is complex with a magnitude and a phase
and can be expressed as

f(x, y) = |f(x, y)| ei ϕ(x,y). (7.4.10)

After a phase change of φ(y), f(x, y) becomes

|f(x, y)| ei ϕ(x,y)e−i φ(y) = f(x, y)e−i (γB0T+γyGyT ). (7.4.11)

We can ignore the first term γB0T in the exponential because it introduces
the same phase change to all y-positions and carries no information of the
image.

The function f(x, y) is now encoded by the phase changing factor as

f(x, y)e−i 2πγyGyT , (7.4.12)

which is the signal that we try to read out. Therefore, the read-out signal is∫ ∞

−∞

∫ ∞

−∞
[f(x, y)e−i 2πγyGyT ] cos(2πγxGxt)dxdy. (7.4.13)

The MRI machines use quadrature data acquisition, which has two out-
puts 90˚ out of phase. One output gives∫ ∞

−∞

∫ ∞

−∞
[f(x, y)e−i 2πγyGyT ] cos(2πγxGxt)dxdy, (7.4.14)
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and the other gives∫ ∞

−∞

∫ ∞

−∞
[f(x, y)e−i 2πγyGyT ] sin(2πγxGxt)dxdy. (7.4.15)

We can combine them into a complex signal, with one output as the real
part and the other output as the imaginary part,

signal(t) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i 2πγyGyT e−i 2πγxGxtdxdy. (7.4.16)

If we re-write it as

signalGy(t) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i 2π[x(γGxt)+y(γGyT )]dxdy, (7.4.17)

we immediately recognize it as the 2D Fourier transform of f(x, y):

F (kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i 2π[x(γGxt)+y(γGyT )]dxdy, (7.4.18)

with kx = γ Gxt and ky = γ GyT . When we sample the time signal over
time t, we get the samples of the x-direction frequencies, kx. When we repeat
the scan with a different value of Gy, we get the samples of the y-direction
frequencies, ky. For this reason, people often call the MRI signal space the k-
space (see Figure 7.17), which is the Fourier space. During data acquisition,
the k-space is filled out one line at a time according to kx = γ Gxt and
ky = γ GyT .

Fig. 7.17. The k-space.

Finally we will consider a polar k-space scanning strategy in which the x-
gradient and the y-gradient are turned on and off simultaneously (see Figure
7.18). In this case, we do not have the phase encoding step; we only have the
read-out gradient, which is determined by both the x and y gradients.

The signal read-out is given as

signalGx,Gy(t) = F (kx, ky) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)e−i 2π[x(γGxt)+y(γGyt)]dxdy,

(7.4.19)
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Fig. 7.18. The timing diagram for polar scanning.

with kx = γ Gxt and ky = γ Gyt. The ratio ky/kx = Gy/Gx tell us that each
RF excitation cycle measures a line in the k-space with a slope of Gy/Gx

(see Figure 7.19). For a different RF excitation, a new set of Gx and Gy is
used, and a new line in the k-space is obtained. Figure 7.19 reminds us of
the central slice theorem. We therefore can use the filtered backprojection
algorithm (see Section 2.3) to reconstruct this MRI image.

Fig. 7.19. The k-space sampling for the polar scan.

7.5 Worked Examples

Example 1 The vector M has three components: Mx, My, and Mz. Does

the magnitude
√

M2
x + M2

y + M2
z always remain constant?
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Answer

No. During relaxation, Mx and My relax to zero faster than Mz

relaxes back to its equilibrium maximum value. This makes the magnitude√
M2

x + M2
y + M2

z time varying.

Example 2 The received MRI signal is converted to a discrete signal
via an analog-to-digital converter (ADC). Does the sampling rate of the ADC
determine the image resolution?

Answer

No. The image resolution in MRI is determined by how far out the k-space
is sampled. The distance from the farthest sample in the k-space to the origin
(i.e., the DC point) gives the highest resolution in the image. The sampling
time-interval in the ADC determines the image field of view. If the sampling
rate of the ADC is not high enough, you will see image aliasing artifacts (for
example, the nose appears at the back of the head).

Example 3∗ Design a pulse sequence that gives a spiral k-space trajec-
tory.

Solution

In this case, the x- and y-gradients must be turned on simultaneously.

The generic expression for kx and ky are kx(t) = γ

∫ t

0

Gx(τ)dt, ky(t) =

γ

∫ t

0

Gy(τ)dt, respectively. On the other hand, a k-space spiral can be ex-

pressed as {
kx = α(t) cos(β(t)),

ky = α(t) sin(β(t)),
(7.5.1)

respectively, for some parameters α and β. Therefore, we can choose⎧⎪⎪⎨
⎪⎪⎩

Gx =
1
γ

d[α(t) cos(β(t))]
dt

,

Gy =
1
γ

d[α(t) sin(β(t))]
dt

.

(7.5.2)

The corresponding time diagram and the k-space trajectory are shown in
Figure 7.20. Its image reconstruction is normally performed by first regridding
the k-space samples on the spiral trajectory into regularly spaced Cartesian
coordinates then taking the 2D inverse Fourier transform to obtain the final
image.
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Fig. 7.20. The timing diagram and the k-space representation of a spiral scan.

7.6 Summary

• The working principle of MRI is quite different from that of transmission
and emission tomography. The MRI signal is in the form of radio waves
and is received by antennas (called coils).

• The “M” part: The patient must be positioned in a strong magnetic field,
so that the magnetic moments created by the proton spins have a chance
to line up.

• The “R” part: A resonant radio frequency signal is required to be emitted
towards the patient, so that the net magnetic moments can be tipped over
and do not align with the main magnetic field. When the net magnetic
moments precess about the direction of the main magnetic field, radio
frequency signals are sent out from the patient body.

• The “I” part: Gradient coils are turned on and off to encode the out-
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coming radio frequency signals, so that the signals can carry to position
information.

• The received MRI signal by the RF coils is in the Fourier domain (or
spatial frequency space, or k-space). The image is reconstructed by per-
forming a 2D inverse Fourier transform.

• The readers are expected to understand how the MRI signal is encoded
to carry position information and why the MRI signal in the k-space is
the 2D Fourier transform of the object.

Problems

Problem 7.1 During slice selection in the z direction, the slice thickness is
not zero, but is a positive value Δz. Therefore, the RF pulse that gener-
ates the alternative magnetic field B1 should have a proper bandwidth.
How is this bandwidth determined by the slice thickness Δz?

Problem 7.2 If you plan to reconstruct an MRI image with an iterative
algorithm, how do you handle the complex data? You may want to
process the real-part of the data and the imaginary part of the data
separately. How do you set up an objective function?

Problem 7.3 According to kx(t) = γ

∫ t

0

Gx(τ)dτ , ky(t) = γ

∫ t

0

Gy(τ)dτ

and the gradient waveforms given in the figure below, sketch the corre-
sponding k-space trajectory.
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