

Digital Image Processing
Second Edition

Instructor’s Manual

Rafael C. Gonzalez
Richard E. Woods

Prentice Hall

Upper Saddle River, NJ 07458

www.prenhall.com/gonzalezwoods

or

www.imageprocessingbook.com

ii

Revision history

10 9 8 7 6 5 4 3 2 1

Copyright c°1992­2002 by Rafael C. Gonzalez and Richard E. Woods

Preface
This manual contains detailed solutions to all problems in Digital Image Processing, 2nd

Edition. We also include a suggested set of guidelines for using the book, and discuss

the use of computer projects designed to promote a deeper understanding of the subject

matter. The notation used throughout this manual corresponds to the notation used in

the text.

The decision of what material to cover in a course rests with the instructor, and it de­

pends on the purpose of the course and the background of the students. We have found

that the course outlines suggested here can be covered comfortably in the time frames

indicated when the course is being taught in an electrical engineering or computer sci­

ence curriculum. In each case, no prior exposure to image processing is assumed. We

give suggested guidelines for one­semester courses at the senior and first­year graduate

levels. It is possible to cover most of the book in a two­semester graduate sequence.

The book was completely revised in this edition, with the purpose not only of updating

the material, but just as important, making the book a better teaching aid. To this

end, the instructor will find the new organization to be much more flexible and better

illustrated. Although the book is self contained, we recommend use of the companion

web site, where the student will find detailed solutions to the problems marked with a

star in the text, review material, suggested projects, and images from the book. One of

the principal reasons for creating the web site was to free the instructor from having to

prepare materials and handouts beyond what is required to teach from the book.

Computer projects such as those described in the web site are an important part of

a course on image processing. These projects give the student hands­on experience

with algorithm implementation and reinforce the material covered in the classroom.

The projects suggested at the web site can be implemented on almost any reasonably­

equipped multi­user or personal computer having a hard copy output device.

1 Introduction

The purpose of this chapter is to present suggested guidelines for teaching material from

this book at the senior and first­year graduate level. We also discuss use of the book

web site. Although the book is totally self­contained, the web site offers, among other

things, complementary review material and computer projects that can be assigned in

conjunction with classroom work. Detailed solutions to all problems in the book also

are included in the remaining chapters of this manual.

Teaching Features of the Book

Undergraduate programs that offer digital image processing typically limit coverage to

one semester. Graduate programs vary, and can include one or two semesters of the ma­

terial. In the following discussion we give general guidelines for a one­semester senior

course, a one­semester graduate course, and a full­year course of study covering two

semesters. We assume a 15­week program per semester with three lectures per week.

In order to provide flexibility for exams and review sessions, the guidelines discussed

in the following sections are based on forty, 50­minute lectures per semester. The back­

ground assumed on the part of the student is senior­level preparation in mathematical

analysis, matrix theory, probability, and computer programming.

The suggested teaching guidelines are presented in terms of general objectives, and not

as time schedules. There is so much variety in the way image processing material is

taught that it makes little sense to attempt a breakdown of the material by class period.

In particular, the organization of the present edition of the book is such that it makes it

much easier than before to adopt significantly different teaching strategies, depending

on course objectives and student background. For example, it is possible with the new

organization to offer a course that emphasizes spatial techniques and covers little or no

transform material. This is not something we recommend, but it is an option that often

is attractive in programs that place little emphasis on the signal processing aspects of the

field and prefer to focus more on the implementation of spatial techniques.

2 Chapter 1 Introduction

The companion web site

www:prenhall:com=gonzalezwoods

or

www:imageprocessingbook:com

is a valuable teaching aid, in the sense that it includes material that previously was cov­

ered in class. In particular, the review material on probability, matrices, vectors, and

linear systems, was prepared using the same notation as in the book, and is focused on

areas that are directly relevant to discussions in the text. This allows the instructor to

assign the material as independent reading, and spend no more than one total lecture pe­

riod reviewing those subjects. Another major feature is the set of solutions to problems

marked with a star in the book. These solutions are quite detailed, and were prepared

with the idea of using them as teaching support. The on­line availability of projects

and digital images frees the instructor from having to prepare experiments, data, and

handouts for students. The fact that most of the images in the book are available for

downloading further enhances the value of the web site as a teaching resource.

One Semester Senior Course

A basic strategy in teaching a senior course is to focus on aspects of image processing in

which both the inputs and outputs of those processes are images. In the scope of a senior

course, this usually means the material contained in Chapters 1 through 6. Depending

on instructor preferences, wavelets (Chapter 7) usually are beyond the scope of coverage

in a typical senior curriculum). However, we recommend covering at least some material

on image compression (Chapter 8) as outlined below.

We have found in more than two decades of teaching this material to seniors in electrical

engineering, computer science, and other technical disciplines, that one of the keys to

success is to spend at least one lecture on motivation and the equivalent of one lecture

on review of background material, as the need arises. The motivational material is

provided in the numerous application areas discussed in Chapter 1. This chapter was

totally rewritten with this objective in mind. Some of this material can be covered in

class and the rest assigned as independent reading. Background review should cover

probability theory (of one random variable) before histogram processing (Section 3.3).

A brief review of vectors and matrices may be required later, depending on the material

covered. The review material included in the book web site was designed for just this

purpose.

One Semester Senior Course 3

Chapter 2 should be covered in its entirety. Some of the material (such as parts of

Sections 2.1 and 2.3) can be assigned as independent reading, but a detailed explanation

of Sections 2.4 through 2.6 is time well spent.

Chapter 3 serves two principal purposes. It covers image enhancement (a topic of signif­

icant appeal to the beginning student) and it introduces a host of basic spatial processing

tools used throughout the book. For a senior course, we recommend coverage of Sec­

tions 3.2.1 through 3.2.2; Section 3.3.1; Section 3.4; Section 3.5; Section 3.6; Section

3.7.1, 3.7.2 (through Example 3.11), and 3.7.3. Section 3.8 can be assigned as indepen­

dent reading, depending on time.

Chapter 4 also discusses enhancement, but from a frequency­domain point of view. The

instructor has significant flexibility here. As mentioned earlier, it is possible to skip

the chapter altogether, but this will typically preclude meaningful coverage of other

areas based on the Fourier transform (such as filtering and restoration). The key in

covering the frequency domain is to get to the convolution theorem and thus develop

a tie between the frequency and spatial domains. All this material is presented in very

readable form in Section 4.2. “Light” coverage of frequency­domain concepts can be

based on discussing all the material through this section and then selecting a few simple

filtering examples (say, low­ and highpass filtering using Butterworth filters, as discussed

in Sections 4.3.2 and 4.4.2). At the discretion of the instructor, additional material can

include full coverage of Sections 4.3 and 4.4. It is seldom possible to go beyond this

point in a senior course.

Chapter 5 can be covered as a continuation of Chapter 4. Section 5.1 makes this an easy

approach. Then, it is possible give the student a “flavor” of what restoration is (and still

keep the discussion brief) by covering only Gaussian and impulse noise in Section 5.2.1,

and a couple of spatial filters in Section 5.3. This latter section is a frequent source of

confusion to the student who, based on discussions earlier in the chapter, is expecting to

see a more objective approach. It is worthwhile to emphasize at this point that spatial

enhancement and restoration are the same thing when it comes to noise reduction by

spatial filtering. A good way to keep it brief and conclude coverage of restoration

is to jump at this point to inverse filtering (which follows directly from the model in

Section 5.1) and show the problems with this approach. Then, with a brief explanation

regarding the fact that much of restoration centers around the instabilities inherent in

inverse filtering, it is possible to introduce the “interactive” form of the Wiener filter in

Eq. (5.8­3) and conclude the chapter with Examples 5.12 and 5.13.

Chapter 6 on color image processing is a new feature of the book. Coverage of this

4 Chapter 1 Introduction

chapter also can be brief at the senior level by focusing on enough material to give the

student a foundation on the physics of color (Section 6.1), two basic color models (RGB

and CMY/CMYK), and then concluding with a brief coverage of pseudocolor processing

(Section 6.3).

We typically conclude a senior course by covering some of the basic aspects of image

compression (Chapter 8). Interest on this topic has increased significantly as a result of

the heavy use of images and graphics over the Internet, and students usually are easily

motivated by the topic. Minimum coverage of this material includes Sections 8.1.1 and

8.1.2, Section 8.2, and Section 8.4.1. In this limited scope, it is worthwhile spending

one­half of a lecture period filling in any gaps that may arise by skipping earlier parts of

the chapter.

One Semester Graduate Course (No Background in DIP)

The main difference between a senior and a first­year graduate course in which neither

group has formal background in image processing is mostly in the scope of material

covered, in the sense that we simply go faster in a graduate course, and feel much freer

in assigning independent reading. In addition to the material discussed in the previous

section, we add the following material in a graduate course.

Coverage of histogram matching (Section 3.3.2) is added. Sections 4.3, 4.4, and 4.5

are covered in full. Section 4.6 is touched upon briefly regarding the fact that imple­

mentation of discrete Fourier transform techniques requires non­intuitive concepts such

as function padding. The separability of the Fourier transform should be covered, and

mention of the advantages of the FFT should be made. In Chapter 5 we add Sections 5.5

through 5.8. In Chapter 6 we add the HSI model (Section 6.3.2) , Section 6.4, and Sec­

tion 6.6. A nice introduction to wavelets (Chapter 7) can be achieved by a combination

of classroom discussions and independent reading. The minimum number of sections in

that chapter are 7.1, 7.2, 7.3, and 7.5, with appropriate (but brief) mention of the exis­

tence of fast wavelet transforms. Finally, in Chapter 8 we add coverage of Sections 8.3,

8.4.2, 8.5.1 (through Example 8.16), Section 8.5.2 (through Example 8.20) and Section

8.5.3.

If additional time is available, a natural topic to cover next is morphological image

processing (Chapter 9). The material in this chapter begins a transition from methods

whose inputs and outputs are images to methods in which the inputs are images, but

the outputs are attributes about those images, in the sense defined in Section 1.1. We

One Semester Graduate Course (with Background in DIP) 5

recommend coverage of Sections 9.1 through 9.4, and some of the algorithms in Section

9.5.

One Semester Graduate Course (with Background in DIP)

Some programs have an undergraduate course in image processing as a prerequisite to

a graduate course on the subject. In this case, it is possible to cover material from the

first eleven chapters of the book. Using the undergraduate guidelines described above,

we add the following material to form a teaching outline for a one semester graduate

course that has that undergraduate material as prerequisite. Given that students have the

appropriate background on the subject, independent reading assignments can be used to

control the schedule.

Coverage of histogram matching (Section 3.3.2) is added. Sections 4,3, 4.4, 4.5, and 4.6

are added. This strengthens the student’s background in frequency­domain concepts.

A more extensive coverage of Chapter 5 is possible by adding sections 5.2.3, 5.3.3,

5.4.3, 5.5, 5.6, and 5.8. In Chapter 6 we add full­color image processing (Sections 6.4

through 6.7). Chapters 7 and 8 are covered as in the previous section. As noted in the

previous section, Chapter 9 begins a transition from methods whose inputs and outputs

are images to methods in which the inputs are images, but the outputs are attributes

about those images. As a minimum, we recommend coverage of binary morphology:

Sections 9.1 through 9.4, and some of the algorithms in Section 9.5. Mention should

be made about possible extensions to gray­scale images, but coverage of this material

may not be possible, depending on the schedule. In Chapter 10, we recommend Sections

10.1, 10.2.1 and 10.2.2, 10.3.1 through 10.3.4, 10.4, and 10.5. In Chapter 11we typically

cover Sections 11.1 through 11.4.

Two Semester Graduate Course (No Background in DIP)

A full­year graduate course consists of the material covered in the one semester under­

graduate course, the material outlined in the previous section, and Sections 12.1, 12.2,

12.3.1, and 12.3.2.

Projects

One of the most interesting aspects of a course in digital image processing is the pictorial

6 Chapter 1 Introduction

nature of the subject. It has been our experience that students truly enjoy and benefit

from judicious use of computer projects to complement the material covered in class.

Since computer projects are in addition to course work and homework assignments, we

try to keep the formal project reporting as brief as possible. In order to facilitate grading,

we try to achieve uniformity in the way project reports are prepared. A useful report

format is as follows:

Page 1: Cover page.

¢ Project title

¢ Project number

¢ Course number

¢ Student’s name

¢ Date due

¢ Date handed in

¢ Abstract (not to exceed 1/2 page)

Page 2: One to two pages (max) of technical discussion.

Page 3 (or 4): Discussion of results. One to two pages (max).

Results: Image results (printed typically on a laser or inkjet printer). All images must

contain a number and title referred to in the discussion of results.

Appendix: Program listings, focused on any original code prepared by the student. For

brevity, functions and routines provided to the student are referred to by name, but the

code is not included.

Layout: The entire report must be on a standard sheet size (e.g., 8:5 £ 11 inches),

stapled with three or more staples on the left margin to form a booklet, or bound using

clear plastic standard binding products.

Project resources available in the book web site include a sample project, a list of sug­

gested projects from which the instructor can select, book and other images, and MAT­

LAB functions. Instructors who do not wish to use MATLAB will find additional soft­

ware suggestions in the Support/Software section of the web site.

2 Problem Solutions

Problem 2.1

The diameter, x, of the retinal image corresponding to the dot is obtained from similar

triangles, as shown in Fig. P2.1. That is,
(d=2)

0:2
=

(x=2)

0:014
which gives x = 0:07d. From the discussion in Section 2.1.1, and taking some liberties

of interpretation, we can think of the fovea as a square sensor array having on the order of

337,000 elements, which translates into an array of size 580 £ 580 elements. Assuming

equal spacing between elements, this gives 580 elements and 579 spaces on a line 1.5

mm long. The size of each element and each space is then s = [(1:5mm)=1; 159] =

1:3£10¡6 m. If the size (on the fovea) of the imaged dot is less than the size of a single

resolution element, we assume that the dot will be invisible to the eye. In other words,

the eye will not detect a dot if its diameter, d, is such that 0:07(d) < 1:3 £ 10¡6 m, or

d < 18:6 £ 10¡6 m.

Figure P2.1

8 Chapter 2 Problem Solutions

Problem 2.2

Brightness adaptation.

Problem 2.3

¸ = c=v = 2:998 £ 108(m/s)=60(1/s) = 4:99 £ 106m = 5000 Km.

Problem 2.4

(a) From the discussion on the electromagnetic spectrum in Section 2.2, the source of

the illumination required to see an object must have wavelength the same size or smaller

than the object. Because interest lies only on the boundary shape and not on other spec­

tral characteristics of the specimens, a single illumination source in the far ultraviolet

(wavelength of .001 microns or less) will be able to detect all objects. A far­ultraviolet

camera sensor would be needed to image the specimens. (b) No answer required since

the answer to (a) is affirmative.

Problem 2.5

From the geometry of Fig. 2.3, 7mm=35mm= z=500mm, or z = 100 mm. So the target

size is 100 mm on the side. We have a total of 1024 elements per line, so the resolution

of 1 line is 1024=100 = 10 elements/mm. For line pairs we divide by 2, giving an

answer of 5 lp/mm.

Problem 2.6

One possible solution is to equip a monochrome camera with a mechanical device that

sequentially places a red, a green, and a blue pass filter in front of the lens. The strongest

camera response determines the color. If all three responses are approximately equal,

the object is white. A faster system would utilize three different cameras, each equipped

with an individual filter. The analysis would be then based on polling the response of

each camera. This system would be a little more expensive, but it would be faster and

more reliable. Note that both solutions assume that the field of view of the camera(s) is

such that it is completely filled by a uniform color [i.e., the camera(s) is(are) focused on

Problem 2.7 9

a part of the vehicle where only its color is seen. Otherwise further analysis would be

required to isolate the region of uniform color, which is all that is of interest in solving

this problem].

Problem 2.7

The image in question is given by

f(x; y) = i(x; y)r(x; y)

= 255e¡[(x¡x0)
2+(y¡y0)

2](1:0)

= 255e¡[(x¡x0)
2+(y¡y0)

2]

A cross section of the image is shown in Fig. P2.7(a). If the intensity is quantized using

m bits, then we have the situation shown in Fig. P2.7(b), where 4G = (255 + 1)=2m.

Since an abrupt change of 8 gray levels is assumed to be detectable by the eye, it follows

that 4G = 8 = 256=2m, or m = 5. In other words, 32, or fewer, gray levels will

produce visible false contouring.

Figure P2.7

10 Chapter 2 Problem Solutions

Problem 2.8

The use of two bits (m = 2) of intensity resolution produces four gray levels in the range

0 to 255. One way to subdivide this range is to let all levels between 0 and 63 be coded

as 63, all levels between 64 and 127 be coded as 127, and so on. The image resulting

from this type of subdivision is shown in Fig. P2.8. Of course, there are other ways to

subdivide the range [0; 255] into four bands.

Figure P2.8

Problem 2.9

(a) The total amount of data (including the start and stop bit) in an 8­bit, 1024 £ 1024

image, is (1024)2 £ [8 + 2] bits. The total time required to transmit this image over a

At 56K baud link is (1024)2 £ [8 + 2]=56000 = 187:25 sec or about 3.1 min. (b) At

750K this time goes down to about 14 sec.

Problem 2.10

The width­to­height ratio is 16/9 and the resolution in the vertical direction is 1125 lines

(or, what is the same thing, 1125 pixels in the vertical direction). It is given that the

Problem 2.11 11

resolution in the horizontal direction is in the 16/9 proportion, so the resolution in the

vertical direction is (1125)£ (16=9) = 2000 pixels per line. The system “paints” a full

1125 £ 2000, 8­bit image every 1/30 sec for each of the red, green, and blue component

images. There are 7200 sec in two hours, so the total digital data generated in this time

interval is (1125)(2000)(8)(30)(3)(7200) = 1:166 £ 1013 bits, or 1:458 £ 1012 bytes

(i.e., about 1.5 terrabytes). These figures show why image data compression (Chapter

8) is so important.

Problem 2.11

Let p and q be as shown in Fig. P2.11. Then, (a) S1 and S2 are not 4­connected because

q is not in the set N4(p); (b) S1 and S2 are 8­connected because q is in the set N8(p);

(c) S1 and S2 are m­connected because (i) q is in ND(p), and (ii) the set N4(p) \ N4(q)

is empty.

Figure P2.11

Problem 2.12

The solution to this problem consists of defining all possible neighborhood shapes to

go from a diagonal segment to a corresponding 4­connected segment, as shown in Fig.

P2.12. The algorithm then simply looks for the appropriate match every time a diagonal

segment is encountered in the boundary.

Problem 2.13

The solution to this problem is the same as for Problem 2.12 because converting from

an m­connected path to a 4­connected path simply involves detecting diagonal segments

and converting them to the appropriate 4­connected segment.

12 Chapter 2 Problem Solutions

Figure P2.12

Problem 2.14

A region R of an image is composed of a set of connected points in the image. The

boundary of a region is the set of points that have one or more neighbors that are not in

R. Because boundary points also are part of R, it follows that a point on the boundary

has at least one neighbor in R and at least one neighbor not in R. (If the point in the

boundary did not have a neighbor in R, the point would be disconnected from R, which

violates the definition of points in a region.) Since all points in R are part of a connected

component (see Section 2.5.2), all points in the boundary are also connected and a path

(entirely in R) exists between any two points on the boundary. Thus the boundary forms

a closed path.

Problem 2.15

(a) When V = f0; 1g, 4­path does not exist between p and q because it is impossible to

get from p to q by traveling along points that are both 4­adjacent and also have values

from V . Figure P2.15(a) shows this condition; it is not possible to get to q. The shortest

8­path is shown in Fig. P2.15(b); its length is 4. The length of the shortest m­ path

(shown dashed) is 5. Both of these shortest paths are unique in this case. (b) One

Problem 2.16 13

possibility for the shortest 4­path when V = f1; 2g is shown in Fig. P2.15(c); its length

is 6. It is easily verified that another 4­path of the same length exists between p and q.

One possibility for the shortest 8­path (it is not unique) is shown in Fig. P2.15(d); its

length is 4. The length of a shortest m­path (shown dashed) is 6. This path is not unique.

Figure P2.15

Problem 2.16

(a) A shortest 4­path between a point p with coordinates (x; y) and a point q with coor­

dinates (s; t) is shown in Fig. P2.16, where the assumption is that all points along the

path are from V . The length of the segments of the path are jx ¡ sj and jy ¡ tj, respec­

tively. The total path length is jx ¡ sj + jy ¡ tj, which we recognize as the definition

of the D4 distance, as given in Eq. (2.5­16). (Recall that this distance is independent of

any paths that may exist between the points.) The D4 distance obviously is equal to the

length of the shortest 4­path when the length of the path is jx ¡ sj + jy ¡ tj. This oc­

curs whenever we can get from p to q by following a path whose elements (1) are from

V; and (2) are arranged in such a way that we can traverse the path from p to q by mak­

ing turns in at most two directions (e.g., right and up). (b) The path may of may not be

unique, depending on V and the values of the points along the way.

14 Chapter 2 Problem Solutions

Figure P2.16

Problem 2.17

(a) The D8 distance between p and q (see Fig. P2.16) is defined as max (jx ¡ sj ; jy ¡ tj).
Recall that the D8 distance (unlike the Euclidean distance) counts diagonal segments the

same as horizontal and vertical segments, and, as in the case of the D4 distance, is inde­

pendent of whether or not a path exists between p and q. As in the previous problem, the

shortest 8­path is equal to the D8 distance when the path length is max (jx ¡ sj ; jy ¡ tj).
This occurs when we can get from p to q by following a path whose elements (1) are

from V , and (2) are arranged in such a way that we can traverse the path from p to q by

by traveling diagonally in only one direction and, whenever diagonal travel is not possi­

ble, by making turns in the horizontal or vertical (but not both) direction. (b) The path

may of may not be unique, depending on V and the values of the points along the way.

Problem 2.18

With reference to Eq. (2.6­1), let H denote the neighborhood sum operator, let S1 and

S2 denote two different small subimage areas of the same size, and let S1+S2 denote the

corresponding pixel­by­pixel sum of the elements in S1 and S2, as explained in Section

2.5.4. Note that the size of the neighborhood (i.e., number of pixels) is not changed by

this pixel­by­pixel sum. The operator H computes the sum of pixel values is a given

neighborhood. Then, H(aS1 + bS2) means: (1) multiplying the pixels in each of the

subimage areas by the constants shown, (2) adding the pixel­by­pixel values from S1 and

S2 (which produces a single subimage area), and (3) computing the sum of the values

of all the pixels in that single subimage area. Let ap1 and bp2 denote two arbitrary (but

Problem 2.19 15

corresponding) pixels from aS1 + bS2. Then we can write

H(aS1 + bS2) =
X

p12S1 and p22S2

ap1 + bp2

=
X

p12S1

ap1 +
X

p22S2

bp2

= a
X

p12S1

p1 + b
X

p22S2

p2

= aH(S1) + bH(S2)

which, according to Eq. (2.6­1), indicates that H is a linear operator.

Problem 2.19

The median, ³, of a set of numbers is such that half the values in the set are below ³ and

the other half are above it. A simple example will suffice to show that Eq. (2.6­1) is vi­

olated by the median operator. Let S1 = f1;¡2; 3g, S2 = f4; 5; 6g, and a = b = 1.

In this case H is the median operator. We then have H(S1 + S2) =medianf5; 3; 9g =

5, where it is understood that S1 + S2 is the element­by­corresponding­element sum

of S1 and S2. Next, we compute H(S1) = medianf1; ¡2; 3g = 1 and H(S2) =

medianf4; 5; 6g = 5. Then, since H(aS1 + bS2) 6= aH(S1) + bH(S2), it follows

that Eq. (2.6­1) is violated and the median is a nonlinear operator.

Problem 2.20

The geometry of the chips is shown in Fig. P2.20(a). From Fig. P2.20(b) and the

geometry in Fig. 2.3, we know that

¢x =
¸ £ 80

¸ ¡ z
where ¢x is the side dimension of the image (assumed square since the viewing screen

is square) impinging on the image plane, and the 80 mm refers to the size of the viewing

screen, as described in the problem statement. The most inexpensive solution will result

from using a camera of resolution 512£512. Based on the information in Fig. P2.20(a),

a CCD chip with this resolution will be of size (16¹) £ (512) = 8 mm on each side.

Substituting ¢x = 8 mm in the above equation gives z = 9¸ as the relationship between

the distance z and the focal length of the lens, where a minus sign was ignored because

it is just a coordinate inversion. If a 25 mm lens is used, the front of the lens will have

to be located at approximately 225 mm from the viewing screen so that the size of the

16 Chapter 2 Problem Solutions

image of the screen projected onto the CCD image plane does not exceed the 8 mm size

of the CCD chip for the 512 £ 512 camera. This value for z is reasonable, but it is

obvious that any of the other given lens sizes would work also; the camera would just

have to be positioned further away.

Figure P2.20

Assuming a 25 mm lens, the next issue is to determine if the smallest defect will be

imaged on, at least, a 2 £ 2 pixel area, as required by the specification. It is given that

the defects are circular, with the smallest defect having a diameter of 0.8 mm. So, all that

needs to be done is to determine if the image of a circle of diameter 0.8 mm or greater

will, at least, be of size 2 £ 2 pixels on the CCD imaging plane. This can be determined

by using the same model as in Fig. P2.20(b) with the 80 mm replaced by 0.8 mm. Using

¸ = 25 mm and z = 225 mm in the above equation yields ¢x = 100 ¹. In other words,

a circular defect of diameter 0.8 mm will be imaged as a circle with a diameter of 100 ¹

on the CCD chip of a 512 £ 512 camera equipped with a 25 mm lens and which views

the defect at a distance of 225 mm.

If, in order for a CCD receptor to be activated, its area has to be excited in its entirety,

then, it can be seen from Fig. P2.20(a) that to guarantee that a 2 £ 2 array of such

receptors will be activated, a circular area of diameter no less than (6)(8) = 48 ¹ has to

be imaged onto the CCD chip. The smallest defect is imaged as a circle with diameter

of 100 ¹, which is well above the 48 ¹ minimum requirement.

Thus, it is concluded that a CCD camera of resolution 512 £ 512 pixels, using a 25 mm

lens and imaging the viewing screen at a distance of 225 mm, is sufficient to solve the

problem posed by the plant manager.

3 Problem Solutions

Problem 3.1

(a) General form: s = T (r) = Ae¡Kr2

. For the condition shown in the problem figure,

Ae¡KL2
0 = A=2. Solving for K yields

¡KL2
0 = ln(0:5)

K = 0:693=L2
0:

Then,

s = T (r) = Ae
¡ 0:693

L2
0

r2

:

(b) General form: s = T (r) = B(1 ¡ e¡Kr2

). For the condition shown in the problem

figure, B(1 ¡ e¡KL2
0) = B=2. The solution for K is the same as in (a), so

s = T (r) = B(1 ¡ e
¡ 0:693

L2
0

r2

)

(c) General form: s = T (r) = (D ¡ C)(1 ¡ e¡Kr2

) + C.

Problem 3.2

(a) s = T (r) = 1
1+(m=r)E .

(b) See Fig. P3.2.

(c) We want the value of s to be 0 for r < m, and s to be 1 for values of r > m. When

r = m, s = 1=2. But, because the values of r are integers, the behavior we want is

s = T (r) =

8
><
>:

0:0 when r · m ¡ 1

0:5 when r = m

1:0 when r ¸ m + 1:

The question in the problem statement is to find the smallest value of E that will make

the threshold behave as in the equation above. When r = m, we see from (a) that

s = 0:5, regardless of the value of E. If C is the smallest positive number representable

18 Chapter 3 Problem Solutions

in the computer, and keeping in mind that s is positive, then any value of s less than

C=2 will be called 0 by the computer. To find out the smallest value of E for which this

happens, simply solve the following equation for E, using the given value m = 128:
1

1 + [m=(m ¡ 1)]E
< C=2:

Because the function is symmetric about m, the resulting value of E will yield s = 1

for r ¸ m + 1.

Figure P3.2

Problem 3.3

The transformations required to produce the individual bit planes are nothing more than

mappings of the truth table for eight binary variables. In this truth table, the values of

the 7th bit are 0 for byte values 0 to 127, and 1 for byte values 128 to 255, thus giving

the transformation mentioned in the problem statement. Note that the given transformed

values of either 0 or 255 simply indicate a binary image for the 7th bit plane. Any other

two values would have been equally valid, though less conventional.

Problem 3.4 19

Continuing with the truth table concept, the transformation required to produce an image

of the 6th bit plane outputs a 0 for byte values in the range [0, 63], a 1 for byte values in

the range [64, 127], a 0 for byte values in the range [128, 191], and a 1 for byte values

in the range [192, 255]. Similarly, the transformation for the 5th bit plane alternates

between eight ranges of byte values, the transformation for the 4th bit plane alternates

between 16 ranges, and so on. Finally, the output of the transformation for the 0th bit

plane alternates between 0 and 255 depending as the byte values are even or odd. Thus,

this transformation alternates between 128 byte value ranges, which explains why an

image of the 0th bit plane is usually the busiest looking of all the bit plane images.

Problem 3.4

(a) The number of pixels having different gray level values would decrease, thus causing

the number of components in the histogram to decrease. Since the number of pixels

would not change, this would cause the height some of the remaining histogram peaks

to increase in general. Typically, less variability in gray level values will reduce contrast.

(b) The most visible effect would be significant darkening of the image. For example,

dropping the highest bit would limit to 127 the brightest level in an 8­bit image. Since

the number of pixels would remain constant, the height of some of the histogram peaks

would increase. The general shape of the histogram would now be taller and narrower,

with no histogram components being located past 127.

Problem 3.5

All that histogram equalization does is remap histogram components on the intensity

scale. To obtain a uniform (flat) histogram would require in general that pixel intensities

be actually redistributed so that there are L groups of n=L pixels with the same intensity,

where L is the number of allowed discrete intensity levels and n is the total number of

pixels in the input image. The histogram equalization method has no provisions for this

type of (artificial) redistribution process.

Problem 3.6

Let n be the total number of pixels and let nrj be the number of pixels in the input image

20 Chapter 3 Problem Solutions

with intensity value rj . Then, the histogram equalization transformation is

sk = T (rk) =
kX

j=0

nrj
=n =

1

n

kX

j=0

nrj
:

Since every pixel (and no others) with value rk is mapped to value sk, it follows that

nsk
= nrk

. A second pass of histogram equalization would produce values vk according

to the transformation

vk = T (sk) =
1

n

kX

j=0

nsj
:

But, nsj = nrj , so

vk = T (sk) =
1

n

kX

j=0

nrj = sk

which shows that a second pass of histogram equalization would yield the same result

as the first pass. We have assumed negligible round­off errors.

Problem 3.7

The general histogram equalization transformation function is

s = T (r) =

rZ

0

pr(w) dw:

There are two important points to which the student must show awareness in answer­

ing this problem. First, this equation assumes only positive values for r. However, the

Gaussian density extends in general from ¡1 to 1. Recognition of this fact is impor­

tant. Once recognized, the student can approach this difficulty in several ways. One

good answer is to make some assumption, such as the standard deviation being small

enough so that the area of the curve under pr(r) for negative values of r is negligible.

Another is to scale up the values until the area under the negative tail is negligible. The

second major point is to recognize is that the transformation function itself,

s = T (r) =
1p
2¼¾

rZ

0

e¡ (w¡m)2

2¾2 dw

has no closed­form solution. This is the cumulative distribution function of the Gaussian

density, which is either integrated numerically, or its values are looked up in a table. A

third, less important point, that the student should address is the high­end values of r.

Again, the Gaussian PDF extends to +1. One possibility here is to make the same

Problem 3.8 21

assumption as above regarding the standard deviation. Another is to divide by a large

enough value so that the area under the positive tail past that point is negligible (this

scaling reduces the standard deviation).

Another principal approach the student can take is to work with histograms, in which

case the transformation function would be in the form of a summation. The issue

of negative and high positive values must still be addressed, and the possible answers

suggested above regarding these issues still apply. The student needs to indicate that

the histogram is obtained by sampling the continuous function, so some mention should

be made regarding the number of samples (bits) used. The most likely answer is 8 bits,

in which case the student needs to address the scaling of the function so that the range

is [0; 255].

Problem 3.8

We are interested in just one example in order to satisfy the statement of the problem.

Consider the probability density function shown in Fig. P3.8(a). A plot of the trans­

formation T (r) in Eq. (3.3­4) using this particular density function is shown in Fig.

P3.8(b). Because pr(r) is a probability density function we know from the discussion

in Section 3.3.1 that the transformation T (r) satisfies conditions (a) and (b) stated in

that section. However, we see from Fig. P3.8(b) that the inverse transformation from s

back to r is not single valued, as there are an infinite number of possible mappings from

s = 1=2 back to r. It is important to note that the reason the inverse transformation

function turned out not to be single valued is the gap in pr(r) in the interval [1=4; 3=4].

Problem 3.9

(a) We need to show that the transformation function in Eq. (3.3­8) is monotonic, single­

valued, and that its values are in the range [0, 1]. From Eq. (3.3­8),

sk = T (rk) =
kX

j=0

pr(rj)

=
kX

j=0

nj

n
k = 0; 1; : : : ; L ¡ 1:

Because all the pr(rj) are positive, it follows that T (rk) is monotonic. Because all the

pr(rj) are finite, and the limit of summation is finite, it follows that T (rk) is of finite

22 Chapter 3 Problem Solutions

slope and thus us a single­valued function. Finally, since the sum of all the pr(rj) is 1,

it follows that 0 · sk · 1:

Figure P3.8.

(b) From the discussion in Problem 3.8, it follows that if an image has missing gray

levels the histogram equalization transformation function given above will be constant

in the interval of the missing gray levels. Thus, in theory, the inverse mapping will

not be single­valued in the discrete case either. In practice, assuming that we wanted

to perform the inverse transformation, this is not important for the following reason:

Assume that no gray­level values exist in the open interval (a; b), so that ra is the last

gray level before the empty gray­level band begins and rb is the first gray level right after

the empty band ends. The corresponding mapped gray levels are sa and sb. The fact

that no gray levels r exist in interval (a; b) means that no gray levels will exist between

sa and sb either, and, therefore, there will be no levels s to map back to r in the bands

where the multi­valued inverse function would present problems. Thus, in practice, the

issue of the inverse not being single­valued is not an issue since it would not be needed.

Note that mapping back from sa and sb presents no problems, since T (ra) and T (rb)

(and thus their inverses) are different. A similar discussion applies if there are more than

one band empty of gray levels.

Problem 3.10 23

(c) If none of the gray levels rk; k = 1; 2; : : : ; L ¡ 1; are 0, then T (rk) will be strictly

monotonic. This implies that the inverse transformation will be of finite slope and this

will be single­valued.

Problem 3.10

First, we obtain the histogram equalization transformation:

s = T (r) =

rZ

0

pr(w) dw =

rZ

0

(¡2w + 2) dw = ¡r2 + 2r:

Next we find

v = G(z) =

zZ

0

pz(w) dw =

zZ

0

2w dw = z2:

Finally,

z = G¡1(v) = §p
v:

But only positive gray levels are allowed, so z =
p

v. Then, we replace v with s, which

in turn is ¡r2 + 2r, and we have

z =
p

¡r2 + 2r:

Problem 3.11

The value of the histogram component corresponding to the kth intensity level in a neigh­

borhood is

pr(rk) =
nk

n

for k = 1; 2; : : : ;K ¡ 1;where nk is the number of pixels having gray level value rk, n

is the total number of pixels in the neighborhood, and K is the total number of possible

gray levels. Suppose that the neighborhood is moved one pixel to the right. This deletes

the leftmost column and introduces a new column on the right. The updated histogram

then becomes

p0
r(rk) =

1

n
[nk ¡ nLk + nRk]

for k = 0; 1; : : : ;K ¡ 1, where nLk
is the number of occurrences of level rk on the left

column and nRk is the similar quantity on the right column. The preceding equation can

24 Chapter 3 Problem Solutions

be written also as

p0
r(rk) = pr(rk) +

1

n
[nRk

¡ nLk
]

for k = 0; 1; : : : ; K ¡ 1: The same concept applies to other modes of neighborhood

motion:

p0
r(rk) = pr(rk) +

1

n
[bk ¡ ak]

for k = 0; 1; : : : ;K ¡1, where ak is the number of pixels with value rk in the neighbor­

hood area deleted by the move, and bk is the corresponding number introduced by the

move.

Problem 3.12

The purpose of this simple problem is to make the student think of the meaning of his­

tograms and arrive at the conclusion that histograms carry no information about spatial

properties of images. Thus, the only time that the histogram of the images formed by

the operations shown in the problem statement can be determined in terms of the orig­

inal histograms is when one or both of the images is (are) constant. In (d) we have

the additional requirement that none of the pixels of g(x; y) can be 0. Assume for

convenience that the histograms are not normalized, so that, for example, hf (rk) is the

number of pixels in f(x; y) having gray level rk, assume that all the pixels in g(x; y)

have constant value c. The pixels of both images are assumed to be positive. Finally,

let uk denote the gray levels of the pixels of the images formed by any of the arithmetic

operations given in the problem statement. Under the preceding set of conditions, the

histograms are determined as follows:

(a) The histogram hsum(uk) of the sum is obtained by letting uk = rk+c; and hsum(uk) =

hf(rk) for all k. In other words, the values (height) of the components of hsum are the

same as the components of hf , but their locations on the gray axis are shifted right by

an amount c.

(b) Similarly, the histogram hdiff(uk) of the difference has the same components as hf

but their locations are moved left by an amount c as a result of the subtraction operation.

(c) Following the same reasoning, the values (heights) of the components of histogram

hprod(uk) of the product are the same as hf , but their locations are at uk = c£ rk. Note

that while the spacing between components of the resulting histograms in (a) and (b)

was not affected, the spacing between components of hprod(uk) will be spread out by an

amount c.

Problem 3.13 25

(d) Finally, assuming that c 6= 0, the components of hdiv(uk) are the same as those of

hf , but their locations will be at uk = rk=c. Thus, the spacing between components of

hdiv(uk) will be compressed by an amount equal to 1=c.

The preceding solutions are applicable if image f(x; y) also is constant. In this case

the four histograms just discussed would each have only one component. Their location

would be affected as described (a) through (c).

Problem 3.13

Using 10 bits (with one bit being the sign bit) allows numbers in the range ¡511 to 511.

The process of repeated subtractions can be expressed as

dK(x; y) = a(x; y) ¡
KX

k=1

b(x; y)

= a(x; y) ¡ K £ b(x; y)

where K is the largest value such that dK(x; y) does not exceed ¡511 at any coordinates

(x; y), at which time the subtraction process stops. We know nothing about the images,

only that both have values ranging from 0 to 255. Therefore, all we can determine are

the maximum and minimum number of times that the subtraction can be carried out and

the possible range of gray­level values in each of these two situations.

Because it is given that g(x; y) has at least one pixel valued 255, the maximum value

that K can have before the subtraction exceeds ¡511 is 3. This condition occurs when,

at some pair of coordinates (s; t), a(s; t) = b(s; t) = 255. In this case, the possible

range of values in the difference image is ­510 to 255. The latter condition can occur if,

at some pair of coordinates (i; j), a(i; j) = 255 and b(i; j) = 0.

The minimum value that K will have is 2, which occurs when, at some pair of coordi­

nates, a(s; t) = 0 and b(s; t) = 255. In this case, the possible range of values in the

difference image again is ¡510 to 255. The latter condition can occur if, at some pair

of coordinates (i; j), a(i; j) = 255 and b(i; j) = 0.

Problem 3.14

Let g(x; y) denote the golden image, and let f(x; y) denote any input image acquired

during routine operation of the system. Change detection via subtraction is based on

computing the simple difference d(x; y) = g(x; y) ¡ f(x; y). The resulting image

26 Chapter 3 Problem Solutions

d(x; y) can be used in two fundamental ways for change detection. One way is use a

pixel­by­pixel analysis. In this case we say that f(x; y) is ”close enough” to the golden

image if all the pixels in d(x; y) fall within a specified threshold band [Tmin; Tmax]

where Tmin is negative and Tmax is positive. Usually, the same value of threshold is

used for both negative and positive differences, in which case we have a band [¡T; T]

in which all pixels of d(x; y) must fall in order for f(x; y) to be declared acceptable.

The second major approach is simply to sum all the pixels in jd(x; y)j and compare the

sum against a threshold S. Note that the absolute value needs to be used to avoid errors

cancelling out. This is a much cruder test, so we will concentrate on the first approach.

There are three fundamental factors that need tight control for difference­based inspec­

tion to work: (1) proper registration, (2) controlled illumination, and (3) noise levels

that are low enough so that difference values are not affected appreciably by variations

due to noise. The first condition basically addresses the requirement that comparisons

be made between corresponding pixels. Two images can be identical, but if they are

displaced with respect to each other, comparing the differences between them makes

no sense. Often, special markings are manufactured into the product for mechanical or

image­based alignment

Controlled illumination (note that “illumination” is not limited to visible light) obviously

is important because changes in illumination can affect dramatically the values in a

difference image. One approach often used in conjunction with illumination control is

intensity scaling based on actual conditions. For example, the products could have one

or more small patches of a tightly controlled color, and the intensity (and perhaps even

color) of each pixels in the entire image would be modified based on the actual versus

expected intensity and/or color of the patches in the image being processed.

Finally, the noise content of a difference image needs to be low enough so that it does

not materially affect comparisons between the golden and input images. Good signal

strength goes a long way toward reducing the effects of noise. Another (sometimes

complementary) approach is to implement image processing techniques (e.g., image

averaging) to reduce noise.

Obviously there are a number if variations of the basic theme just described. For exam­

ple, additional intelligence in the form of tests that are more sophisticated than pixel­by­

pixel threshold comparisons can be implemented. A technique often used in this regard

is to subdivide the golden image into different regions and perform different (usually

more than one) tests in each of the regions, based on expected region content.

Problem 3.15 27

Problem 3.15

(a) From Eq. (3.4­3), at any point (x; y),

g =
1

K

KX

i=1

gi =
1

K

KX

i=1

fi +
1

K

KX

i=1

´i:

Then

Efgg =
1

K

KX

i=1

Effig +
1

K

KX

i=1

Ef´ig:

But all the fi are the same image, so Effig = f . Also, it is given that the noise has

zero mean, so Ef´ig = 0: Thus, it follows that Efgg = f , which proves the validity of

Eq. (3.4­4).

(b) From (a),

g =
1

K

KX

i=1

gi =
1

K

KX

i=1

fi +
1

K

KX

i=1

´i:

It is known from random­variable theory that the variance of the sum of uncorrelated

random variables is the sum of the variances of those variables (Papoulis [1991]). Since

the elements of f are constant and the ´i are uncorrelated, then

¾2
g = ¾2

f +
1

K2
[¾2

´1
+ ¾2

´2
+ ¢ ¢ ¢ + ¾2

´
K

]:

The first term on the right side is 0 because the elements of f are constants. The various

¾2
´i

are simply samples of the noise, which is has variance ¾2
´. Thus, ¾2

´i
= ¾2

´ and we

have

¾2
g =

K

K2
¾2

´ =
1

K
¾2

´

which proves the validity of Eq. (3.4­5).

Problem 3.16

With reference to Section 3.4.2, when i = 1 (no averaging), we have

g(1) = g1 and ¾2
g(1) = ¾2

´:

When i = K,

g(K) =
1

K

KX

i=1

gi and ¾2
g(K) =

1

K
¾2

´:

28 Chapter 3 Problem Solutions

We want the ratio of ¾2
g(K) to ¾2

g(1) to be 1/10, so

¾2
g(K)

¾2
g(1)

=
1

10
=

1
K

¾2
´

¾2
´

from which we get K = 10. Since the images are generated at 30 frames/s, the station­

ary time required is 1/3 s.

Problem 3.17

(a) Consider a 3 £ 3 mask first. Since all the coefficients are 1 (we are ignoring the 1/9

scale factor), the net effect of the lowpass filter operation is to add all the gray levels of

pixels under the mask. Initially, it takes 8 additions to produce the response of the mask.

However, when the mask moves one pixel location to the right, it picks up only one new

column. The new response can be computed as

Rnew = Rold ¡ C1 + C3

where C1 is the sum of pixels under the first column of the mask before it was moved,

and C3 is the similar sum in the column it picked up after it moved. This is the basic

box­filter or moving­average equation. For a 3 £ 3 mask it takes 2 additions to get C3

(C1 was already computed). To this we add one subtraction and one addition to get

Rnew. Thus, a total of 4 arithmetic operations are needed to update the response after

one move. This is a recursive procedure for moving from left to right along one row of

the image. When we get to the end of a row, we move down one pixel (the nature of the

computation is the same) and continue the scan in the opposite direction.

For a mask of size n £ n, (n ¡ 1) additions are needed to obtain C3, plus the single

subtraction and addition needed to obtain Rnew, which gives a total of (n + 1) arith­

metic operations after each move. A brute­force implementation would require n2 ¡ 1

additions after each move.

(b) The computational advantage is

A =
n2 ¡ 1

n + 1
=

(n + 1)(n ¡ 1)

(n + 1)
= n ¡ 1:

The plot of A as a function of n is a simple linear function starting at A = 1 for n = 2.

Problem 3.18

One of the easiest ways to look at repeated applications of a spatial filter is to use super­

Problem 3.17 29

position. Let f(x; y) and h(x; y) denote the image and the filter function, respectively.

Assuming square images of size N £ N for convenience, we can express f(x; y) as the

sum of at most N2 images, each of which has only one nonzero pixel (initially, we as­

sume that N can be infinite). Then, the process of running h(x; y) over f(x; y) can be

expressed as the following convolution:

h(x; y) ¤ f(x; y) = h(x; y) ¤ [f1(x; y) + f2(x; y) + ¢ ¢ ¢ fN2(x; y)] :

Suppose for illustrative purposes that fi(x; y) has value 1 at its center, while the other

pixels are valued 0, as discussed above (see Fig. P3.18a). If h(x; y) is a 3 £ 3 mask of

1/9’s (Fig. P3.18b), then convolving h(x; y) with fi(x; y) will produce an image with a

3 £ 3 array of 1/9’s at its center and 0’s elsewhere, as shown in Fig. P3.18(c). If h(x; y)

is now applied to this image, the resulting image will be as shown in Fig. P3.18(d).

Note that the sum of the nonzero pixels in both Figs. P3.18(c) and (d) is the same, and

equal to the value of the original pixel. Thus, it is intuitively evident that successive

applications of h(x; y) will ”diffuse” the nonzero value of fi(x; y) (not an unexpected

result, because h(x; y) is a blurring filter). Since the sum remains constant, the values

of the nonzero elements will become smaller and smaller, as the number of applications

of the filter increases. The overall result is given by adding all the convolved fk(x; y),

for k = 1; 2; :::;N2. The net effect of successive applications of the lowpass spatial

filter h(x; y) is thus seen to be more and more blurring, with the value of each pixel

”redistributed” among the others. The average value of the blurred image will be thus

be the same as the average value of f(x; y).

It is noted that every iteration of blurring further diffuses the values outwardly from the

starting point. In the limit, the values would get infinitely small, but, because the average

value remains constant, this would require an image of infinite spatial proportions. It is

at this junction that border conditions become important. Although it is not required

in the problem statement, it is instructive to discuss in class the effect of successive

applications of h(x; y) to an image of finite proportions. The net effect is that, since the

values cannot diffuse outward past the boundary of the image, the denominator in the

successive applications of averaging eventually overpowers the pixel values, driving the

image to zero in the limit. A simple example of this is given in Fig. P3.18(e), which

shows an array of size 1 £ 7 that is blurred by successive applications of the 1 £ 3 mask

h(y) = 1
3 [1; 1; 1]. We see that, as long as the values of the blurred 1 can diffuse out, the

sum, S, of the resulting pixels is 1. However, when the boundary is met, an assumption

must be made regarding how mask operations on the border are treated. Here, we used

the commonly made assumption that pixel value immediately past the boundary are 0.

The mask operation does not go beyond the boundary, however. In this example, we

30 Chapter 3 Problem Solutions

see that the sum of the pixel values begins to decrease with successive applications of

the mask. In the limit, the term 1=(3)n would overpower the sum of the pixel values,

yielding an array of 0’s.

Figure P3.18

Problem 3.19

(a) There are n2 points in an n £ n median filter mask. Since n is odd, the median

value, ³ , is such that there are (n2 ¡ 1)=2 points with values less than or equal to ³

and the same number with values greater than or equal to ³. However, since the area

A (number of points) in the cluster is less than one half n2, and A and n are integers,

it follows that A is always less than or equal to (n2 ¡ 1)=2. Thus, even in the extreme

case when all cluster points are encompassed by the filter mask, there are not enough

Problem 3.20 31

points in the cluster for any of them to be equal to the value of the median (remember,

we are assuming that all cluster points are lighter or darker than the background points).

Therefore, if the center point in the mask is a cluster point, it will be set to the median

value, which is a background shade, and thus it will be “eliminated” from the cluster.

This conclusion obviously applies to the less extreme case when the number of cluster

points encompassed by the mask is less than the maximum size of the cluster.

(b) For the conclusion reached in (a) to hold, the number of points that we consider

cluster (object) points can never exceed (n2 ¡1)=2. Thus, two or more different clusters

cannot be in close enough proximity for the filter mask to encompass points from more

than one cluster at any mask position. It then follows that no two points from different

clusters can be closer than the diagonal dimension of the mask minus one cell (which

can be occupied by a point from one of the clusters). Assuming a grid spacing of 1 unit,

the minimum distance between any two points of different clusters then must greater

than
p

2(n ¡ 1). In other words, these points must be separated by at least the distance

spanned by n ¡ 1 cells along the mask diagonal.

Problem 3.20

(a) Numerically sort the n2 values. The median is

³ = [(n2 + 1)=2]­th largest value.

(b) Once the values have been sorted one time, we simply delete the values in the trailing

edge of the neighborhood and insert the values in the leading edge in the appropriate

locations in the sorted array.

Problem 3.21

(a) The most extreme case is when the mask is positioned on the center pixel of a 3­pixel

gap, along a thin segment, in which case a 3 £ 3 mask would encompass a completely

blank field. Since this is known to be the largest gap, the next (odd) mask size up is

guaranteed to encompass some of the pixels in the segment. Thus, the smallest mask

that will do the job is a 5 £ 5 averaging mask.

(b) The smallest average value produced by the mask is when it encompasses only two

pixels of the segment. This average value is a gray­scale value, not binary, like the rest

of the segment pixels. Denote the smallest average value by Amin, and the binary values

32 Chapter 3 Problem Solutions

of pixels in the thin segment by B. Clearly, Amin is less than B. Then, setting the

binarizing threshold slightly smaller than Amin will create one binary pixel of value B

in the center of the mask.

Problem 3.22

From Fig. 3.35, the vertical bars are 5 pixels wide, 100 pixels high, and their separation

is 20 pixels. The phenomenon in question is related to the horizontal separation between

bars, so we can simplify the problem by considering a single scan line through the bars

in the image. The key to answering this question lies in the fact that the distance (in

pixels) between the onset of one bar and the onset of the next one (say, to its right) is 25

pixels. Consider the scan line shown in Fig. P3.22. Also shown is a cross section of a

25£25 mask. The response of the mask is the average of the pixels that it encompasses.

We note that when the mask moves one pixel to the right, it loses on value of the vertical

bar on the left, but it picks up an identical one on the right, so the response doesn’t

change. In fact, the number of pixels belonging to the vertical bars and contained

within the mask does not change, regardless of where the mask is located (as long as it

is contained within the bars, and not near the edges of the set of bars). The fact that the

number of bar pixels under the mask does not change is due to the peculiar separation

between bars and the width of the lines in relation to the 25­pixel width of the mask

This constant response is the reason no white gaps is seen in the image shown in the

problem statement. Note that this constant response does not happen with the 23 £ 23

or the 45£45 masks because they are not ”synchronized” with the width of the bars and

their separation.

Figure P3.22

Problem 3.22 33

Problem 3.23

There are at most q2 points in the area for which we want to reduce the gray level of

each pixel to one­tenth its original value. Consider an averaging mask of size n £ n

encompassing the q £ q neighborhood. The averaging mask has n2 points of which we

are assuming that q2 points are from the object and the rest from the background. Note

that this assumption implies separation between objects at least the area of the mask all

around each object. The problem becomes intractable unless this assumption is made.

This condition was not given in the problem statement on purpose in order to force the

student to arrive at that conclusion. If the instructor wishes to simplify the problem, this

should then be mentioned when the problem is assigned. A further simplification is to

tell the students that the gray level of the background is 0.

Let B represent the gray level of background pixels, let ai denote the gray levels of

points inside the mask and oi the levels of the objects. In addition, let Sa denote the

set of points in the averaging mask, So the set of points in the object, and Sb the set of

points in the mask that are not object points. Then, the response of the averaging mask

at any point on the image can be written as

R =
1

n2

X

ai2Sa

ai

=
1

n2

2
4 X

oj2So

oj +
X

ak2Sb

ak

3
5

=
1

n2

2
4q2

q2

X

oj2So

oj

3
5 +

1

n2

" X

ak2Sb

ak

#

=
q2

n2
Q +

1

n2

£
(n2 ¡ q2)B

¤

where Q denotes the average value of object points. Let the maximum expected average

value of object points be denoted by Qmax. Then we want the response of the mask at

any point on the object under this maximum condition to be less than one­tenth Qmax,

or
q2

n2
Qmax +

1

n2

£
(n2 ¡ q2)B

¤
<

1

10
Qmax

from which we get the requirement

n > q

·
10(Qmax ¡ B)

(Qmax ¡ 10B)

¸1=2

for the minimum size of the averaging mask. Note that if the background gray­level is

0, we the minimum mask size is n <
p

10q. If this was a fact specified by the instructor,

34 Chapter 3 Problem Solutions

or student made this assumption from the beginning, then this answer follows almost by

inspection.

Problem 3.24

The student should realize that both the Laplacian and the averaging process are linear

operations, so it makes no difference which one is applied first.

Problem 3.25

The Laplacian operator is defined as

r2f =
@2f

@x2
+

@2f

@y2

for the unrotated coordinates and as

r2f =
@2f

@x02 +
@2f

@y02 :

for rotated coordinates. It is given that

x = x0 cos µ ¡ y0 sin µ and y = x0 sin µ + y0 cos µ

where µ is the angle of rotation. We want to show that the right sides of the first two

equations are equal. We start with
@f

@x0 =
@f

@x

@x

@x0 +
@f

@y

@y

@x0

=
@f

@x
cos µ +

@f

@y
sin µ:

Taking the partial derivative of this expression again with respect to x0 yields

@2f

@x02 =
@2f

@x2
cos2 µ +

@

@x

µ
@f

@y

¶
sin µ cos µ +

@

@y

µ
@f

@x

¶
cos µ sin µ +

@2f

@y2
sin2 µ:

Next, we compute
@f

@y0 =
@f

@x

@x

@y0 +
@f

@y

@y

@y0

= ¡@f

@x
sin µ +

@f

@y
cos µ:

Taking the derivative of this expression again with respect to y0 gives

@2f

@y02 =
@2f

@x2
sin2 µ ¡ @

@x

µ
@f

@y

¶
cos µ sin µ ¡ @

@y

µ
@f

@x

¶
sin µ cos µ +

@2f

@y2
cos2 µ:

Adding the two expressions for the second derivatives yields

@2f

@x02 +
@2f

@y02 =
@2f

@x2
+

@2f

@y2

Problem 3.26 35

which proves that the Laplacian operator is independent of rotation.

Problem 3.26

Unsharp masking is high­boost filtering [Eq. (3.7­11)] with A = 1. Figure P3.26 shows

the two possible solutions based on that equation. The left and right masks correspond

to the first and second line in the equation, respectively.

Problem 3.26.

Problem 3.27

Consider the following equation:

f(x; y) ¡ r2f(x; y) = f(x; y) ¡ [f(x + 1; y) + f(x ¡ 1; y) + f(x; y + 1)

+f(x; y ¡ 1) ¡ 4f(x; y)]

= 6f(x; y) ¡ [f(x + 1; y) + f(x ¡ 1; y) + f(x; y + 1)

+f(x; y ¡ 1) + f(x; y)]

= 5 f1:2f(x; y)¡
1

5
[f(x + 1; y) + f(x ¡ 1; y) + f(x; y + 1)

+f(x; y ¡ 1) + f(x; y)]g
= 5

£
1:2f(x; y) ¡ f(x; y)

¤

where f(x; y) denotes the average of f(x; y) in a predefined neighborhood that is cen­

tered at (x; y) and includes the center pixel and its four immediate neighbors. Treating

the constants in the last line of the above equation as proportionality factors, we may

write

f(x; y) ¡ r2f(x; y) s f(x; y) ¡ f(x; y):

The right side of this equation is recognized as the definition of unsharp masking given

in Eq. (3.7­7). Thus, it has been demonstrated that subtracting the Laplacian from an

36 Chapter 3 Problem Solutions

image is proportional to unsharp masking.

Problem 3.28

(a) From Problem 3.25,

@f

@x0 =
@f

@x
cos µ +

@f

@y
sin µ

and

@f

@y0 = ¡@f

@x
sin µ +

@f

@y
cos µ

from which it follows thatµ
@f

@x0

¶2

+

µ
@f

@y0

¶2

=

µ
@f

@x

¶2

+

µ
@f

@y

¶2

or "µ
@f

@x0

¶2

+

µ
@f

@y0

¶2
#1=2

=

"µ
@f

@x

¶2

+

µ
@f

@y

¶2
#1=2

:

Thus, we see that the magnitude of the gradient is an isotropic operator.

(b) From Eq. (3.7­12), (3.7­14) and the preceding results,

jGxj =

¯̄
¯̄@f

@x

¯̄
¯̄ jGyj =

¯̄
¯̄@f

@y

¯̄
¯̄ ;

jGx0 j =

¯̄
¯̄ @f

@x0

¯̄
¯̄ =

¯̄
¯̄@f

@x
cos µ +

@f

@y
sin µ

¯̄
¯̄ ;

and

jGy0 j =

¯̄
¯̄ @f

@y0

¯̄
¯̄ =

¯̄
¯̄¡@f

@x
sin µ +

@f

@y
cos µ

¯̄
¯̄ :

Clearly, jGx0 j + jGy0 j 6= jGxj + jGyj.

Problem 3.29

It is given that the range of illumination stays in the linear portion of the camera response

range, but no values for the range are given. The fact that images stay in the linear

range simply says that images will not be saturated at the high end or be driven in the

low end to such an extent that the camera will not be able to respond, thus losing image

information irretrievably. The only way to establish a benchmark value for illumination

Problem 3.28 37

is when the variable (daylight) illumination is not present. Let f0(x; y) denote an image

taken under artificial illumination only, with no moving objects (e.g., people or vehicles)

in the scene. This becomes the standard by which all other images will be normalized.

There are numerous ways to solve this problem, but the student must show awareness

that areas in the image likely to change due to moving objects should be excluded from

the illumination­correction approach.

One simple way is to select various representative subareas of f0(x; y) not likely to

be obscured by moving objects and compute their average intensities. We then select

the minimum and maximum of all the individual average values, denoted by, fmin and

fmax. The objective then is to process any input image, f(x; y), so that its minimum

and maximum will be equal to fmin and fmax, respectively. The easiest way to do this

is with a linear transformation function of the form

fout(x; y) = af(x; y) + b:

where fout is the output image. It is easily verified that the output image will have the

required minimum and maximum values if we choose

a =
fmax ¡ fmin

fmax ¡ fmin

and

b =
fminfmax ¡ fmaxfmin

fmax ¡ fmin
where fmax and fmin are the maximum and minimum values of the input image.

Note that the key assumption behind this method is that all images stay within the linear

operating range of the camera, thus saturation and other nonlinearities are not an issue.

Another implicit assumption is that moving objects comprise a relatively small area in

the field of view of the camera, otherwise these objects would overpower the scene and

the values obtained from f0(x; y) would not make a lot of sense. If the student selects

another automated approach (e.g., histogram equalization), he/she must discuss the same

or similar types of assumptions.

4 Problem Solutions

Problem 4.1

By direct substitution of f(x) [Eq. (4.2­6)] into F (u) [Eq. (4.2­5)]:

F (u) =
1

M

M¡1X

x=0

"
M¡1X

r=0

F (r)ej2¼rx=M

#
e¡j2¼ux=M

=
1

M

M¡1X

r=0

F (r)
M¡1X

x=0

ej2¼rx=Me¡j2¼ux=M

=
1

M
F (u) [M]

= F (u)

where the third step follows from the orthogonality condition given in the problem state­

ment. Substitution of F (u) into f(x) is handled in a similar manner.

Problem 4.2

This is a simple problem to familiarize the student with just the manipulation of the 2­D

Fourier transform and its inverse. The Fourier transform is linear iff:

= [a1f1(x; y) + a2f2(x; y)] = a1= [f1(x; y)] + a2= [f2(x; y)]

where a1 and a2 are arbitrary constants. From the definition of the 2­D transform,

= [a1f1(x; y) + a2f2(x; y)] =
1

MN

M¡1X

x=0

N¡1X

y=0

[a1f1(x; y) + a2f2(x; y)]

e¡j2¼(ux=M + vy=N)

=
1

MN

M¡1X

x=0

N¡1X

y=0

a1f1(x; y)e¡j2¼(ux=M + vy=N)

+
1

MN

M¡1X

x=0

N¡1X

y=0

a2f2(x; y)e¡j2¼(ux=M + vy=N)

= a1= [f1(x; y)] + a2= [f2(x; y)]

40 Chapter 4 Problem Solutions

which proves linearity. The inverse is done in the same way.

Problem 4.3

The inverse DFT of a constant A in the frequency domain is an impulse of strength A in

the spatial domain. Convolving the impulse with the image copies (multiplies) the value

of the impulse at each pixel location in the image.

Problem 4.4

An important aspect of this problem is to recognize that the quantity (u2 + v2) can

be replaced by the distance squared, D2(u; v). This reduces the problem to one vari­

able, which is notationally easier to manage. Rather than carry an award capital letter

throughout the development, we define w2 , D2(u; v) = (u2 + v2). Then we proceed

as follows:

H(w) = e¡w2=2¾2

:

The inverse Fourier transform is

h(z) =

Z 1

¡1
H(w)ej2¼wzdw

=

Z 1

¡1
e¡w2=2¾2

ej2¼wzdw

=

Z 1

¡1
e¡ 1

2¾2 [w2¡j4¼¾2wz]dw:

We now make use of the identity

e¡ (2¼)2z2¾2

2 e
(2¼)2z2¾2

2 = 1:

Inserting this identity in the preceding integral yields

h(z) = e¡ (2¼)2z2¾2

2

Z 1

¡1
e¡ 1

2¾2 [w2¡j4¼¾2wz¡(2¼)2¾4z2]dw

= e¡ (2¼)2z2¾2

2

Z 1

¡1
e¡ 1

2¾2 [w ¡ j2¼¾2z]2dw:

Next we make the change of variable r = w ¡ j2¼¾2z. Then, dr = dw and the above

integral becomes

h(z) == e¡ (2¼)2z2¾2

2

Z 1

¡1
e¡ r2

2¾2 dr:

Finally, we multiply and divide the right side of this equation by
p

2¼¾:

h(z) =
p

2¼¾e¡ (2¼)2z2¾2

2

·
1p
2¼¾

Z 1

¡1
e¡ r2

2¾2 dr

¸
:

Problem 4.5 41

The expression inside the brackets is recognized as a Gaussian probability density func­

tion, whose integral from ¡1 to 1 is 1. Then,

h(z) =
p

2¼¾e¡ (2¼)2z2¾2

2 :

Going back to two spatial variables gives the final result:h(x; y) =
p

2¼¾ e¡2¼2¾2(x2+y2):

Problem 4.5

The spatial filter is obtained by taking the inverse Fourier transform of the frequency­

domain filter:

hhp(x; y) = =¡1 [1 ¡ Hlp(u; v)]

= =¡1 [1] ¡ =¡1 [Hlp(u; v)]

= ±(0) ¡
p

2¼¾ e¡2¼2¾2(x2+y2)

Problem 4.6

(a) We note first that (¡1)x+y = ej¼(x+y). Then,

=
h
f(x; y)ej¼(x+y)

i
=

1

MN

M¡1X

x=0

N¡1X

y=0

h
f(x; y)ej¼(x+y)

i
e¡j2¼(ux=M + vy=N)

=
1

MN

M¡1X

x=0

N¡1X

y=0

h
f(x; y)e¡j2¼(¡ xM

2M ¡ yN
2N)

i

e¡j2¼(ux=M + vy=N)

=
1

MN

M¡1X

x=0

N¡1X

y=0

f(x; y)e¡j2¼(x[u¡ M
2]=M+y[v¡ N

2]=N)

= F (u ¡ M=2; v ¡ N=2):

(b) Following the same format as in (a),

=
h
f(x; y)ej2¼(u0x=M + v0y=M)

i
=

1

MN

M¡1X

x=0

N¡1X

y=0

h
f(x; y)ej2¼(u0x=M + v0y=M)

i

e¡j2¼(ux=M + vy=N)

=
1

MN

M¡1X

x=0

N¡1X

y=0

f(x; y)

e¡j2¼(x[u¡u0]=M + y[v¡v0]=N)

= F (u ¡ u0; v ¡ v0)

42 Chapter 4 Problem Solutions

Similarly,

=¡1
h
F (u; v)e¡j2¼(ux0=M + vy0=M)

i
= f(x ¡ x0; y ¡ y0):

Problem 4.7

The equally­spaced, vertical bars on the left, lower third of the image.

Problem 4.8

With reference to Eq. (4.4­1), all the highpass filters in discussed in Section 4.4 can be

expressed a 1 minus the transfer function of lowpass filter (which we know do not have

an impulse at the origin). The inverse Fourier transform of 1 gives an impulse at the

origin in the highpass spatial filters.

Problem 4.9

The complex conjugate simply changes j to ¡j in the inverse transform, so the image

on the right is given by

=¡1 [F¤(u; v)] =
M¡1X

x=0

N¡1X

y=0

F (u:v)e¡j2¼(ux=M + vy=N)

=
M¡1X

x=0

N¡1X

y=0

F (u:v)ej2¼(u(¡x)=M + v(¡y)=N)

= f(¡x; ¡y)

which simply mirrors f(x; y) about the origin, thus producing the image on the right.

Problem 4.10

If H(u; v) is real and symmetric, then

H(u; v) = H¤(u; v) = H¤(¡u;¡v) = H(¡u; ¡v):

The filter in the spatial domain is

h(x; y) = =¡1 [H(u; v)] =
M¡1X

x=0

N¡1X

y=0

H(u:v)ej2¼(ux=M + vy=N):

Problem 4.11 43

Then,

h¤(x; y) =
M¡1X

x=0

N¡1X

y=0

H¤(u:v)e¡j2¼(ux=M + vy=N)

=
M¡1X

x=0

N¡1X

y=0

H¤(¡u;¡v)ej2¼(ux=M + vy=N)

=
M¡1X

x=0

N¡1X

y=0

H(u; v)ej2¼(ux=M + vy=N)

= h(x; y) (real).

Similarly,

h(¡x;¡y) =
M¡1X

x=0

N¡1X

y=0

H(u; v)e¡j2¼(ux=M + vy=N)

=
M¡1X

x=0

N¡1X

y=0

H(¡u;¡v)ej2¼(ux=M + vy=N)

=
M¡1X

x=0

N¡1X

y=0

H(u; v)ej2¼(ux=M + vy=N)

= h(x; y) (symmetric).

Problem 4.11

Starting from Eq. (4.2­30), we easily find the expression for the definition of continuous

convolution in one dimension:

f(x) ¤ g(x) =

Z 1

¡1
f(®)g(x ¡ ®)d®:

The Fourier transform of this expression is

= [f(x) ¤ g(x)] =

Z 1

¡1

·Z 1

¡1
f(®)g(x ¡ ®)d®

¸
e¡j2¼uxdx

=

Z 1

¡1
f(®)

·Z 1

¡1
g(x ¡ ®)e¡j2¼uxdx

¸
d®:

The term inside the inner brackets is the Fourier transform of g(x ¡ ®). But,

= [g(x ¡ ®)] = G(u)e¡j2¼u®

so

= [f(x) ¤ g(x)] =

Z 1

¡1
f(®)

£
G(u)e¡j2¼u®

¤
d®

= G(u)

Z 1

¡1
f(®)e¡j2¼u®d®

= G(u)F (u):

44 Chapter 4 Problem Solutions

This proves that multiplication in the frequency domain is equal to convolution in the

spatial domain. The proof that multiplication in the spatial domain is equal to convolu­

tion in the spatial domain is done in similar way.

Problem 4.12

(a) The ring in fact has a dark center area as a result of the highpass operation only (the

following image shows the result of highpass filtering only). However, the dark center

area is averaged out by the lowpass filter. The reason the final result looks so bright is

that the discontinuity (edge) on boundaries of the ring are much higher than anywhere

else in the image, thus giving an averaged area whose gray level dominates.

(b) Filtering with the Fourier transform is a linear process. The order does not matter.

Figure P4.12

Problem 4.13

(a) One application of the filter gives:

G(u; v) = H(u; v)F (u; v)

= e¡D2(u;v)=2D2
0F (u; v):

Problem 4.12 45

Similarly, K applications of the filter would give

GK(u; v) = e¡KD2(u;v)=2D2
0F (u; v):

The inverse DFT of GK(u; v) would give the image resulting from K passes of the

Gaussian filter. If K is “large enough,” the Gaussian LPF will become a notch pass

filter, passing only F (0; 0). We know that this term is equal to the average value of the

image. So, there is a value of K after which the result of repeated lowpass filtering

will simply produce a constant image. The value of all pixels on this image will be

equal to the average value of the original image. Note that the answer applies even as

K approaches infinity. In this case the filter will approach an impulse at the origin, and

this would still give us F (0; 0) as the result of filtering.

(b) To guarantee the result in (a), K has to be chosen large enough so that the filter

becomes a notch pass filter (at the origin) for all values of D(u; v). Keeping in mind

that increments of frequencies are in unit values, this means

HK(u; v) = e¡KD2(u;v)=2D2
0 =

(
1 if (u; v) = (0; 0)

0 Otherwise.
Because u and v are integers, the conditions on the second line in this equation are

satisfied for all u > 1 and/or v > 1. When u = v = 0, D(u; v) = 0, and HK(u; v) = 1,

as desired.

We want all values of the filter to be zero for all values of the distance from the origin

that are greater than 0 (i.e., for values of u and/or v greater than 0). However, the filter is

a Gaussian function, so its value is always greater than 0 for all finite values of D(u; v).

But, we are dealing with digital numbers, which will be designated as zero whenever

the value of the filter is less than 1
2 the smallest positive number representable in the

computer being used. Assume this number to be kmin (don’t confuse the meaning of this

k with K, which is the number of applications of the filter). So, values of K for which

for which the filter function is greater than 0:5 £ kmin will suffice. That is, we want the

minimum value of K for which

e¡KD2(u;v)=2D2
0 < 0:5kmin

or

K > ¡ ln(0:5kmin)

D2(u; v)=2D2
0

> ¡2D2
0 ln(0:5kmin)

D2(u; v)
:

As noted above, we want this equation for hold for all values of D2(u; v) > 0. Since the

exponential decreases as a function of increasing distance from the origin, we choose

46 Chapter 4 Problem Solutions

the smallest possible value of D2(u; v), which is 1. Tis gives the result

K > ¡2D2
0 ln(0:5kmin)

which gives a positive number because kmin << 1. This result guarantees that the

lowpass filter will act as a notch pass filter, leaving only the value of the transform at the

origin. The image will not change past this value of K .

Problem 4.14

(a) The spatial average is

g(x; y) =
1

4
[f(x; y + 1) + f(x + 1; y) + f(x ¡ 1; y) + f(x; y ¡ 1)] :

From Eq. (4.6­2),

G(u; v) =
1

4

h
ej2¼v=N + ej2¼u=M + e¡j2¼u=M + e¡j2¼v=N

i
F (u; v)

= H(u; v)F (u; v);

where

H(u; v) =
1

2
[cos(2¼u=M) + cos(2¼v=N)]

is the filter transfer function in the frequency domain.

(b) To see that this is a lowpass filter, it helps to express the preceding equation in the

form of our familiar centered functions:

H(u; v) =
1

2
[cos(2¼[u ¡ M=2)=M) + cos(2¼[v ¡ N=2]=N)] :

Consider one variable for convenience. As u ranges from 0 to M , the value of cos(2¼[u¡
M=2)=M) starts at ¡1, peaks at 1 when u = M=2 (the center of the filter) and then de­

creases to ¡1 again when u = M . Thus, we see that the amplitude of the filter decreases

as a function of distance from the origin of the centered filter, which is the characteris­

tic of a lowpass filter. A similar argument is easily carried out when considering both

variables simultaneously.

Problem 4.15

The problem statement gives the form of the difference in the x­direction. A similar

expression gives the difference in the y­direction. The filtered function in the spatial

domain then is:

g(x; y) = f(x; y) ¡ f(x + 1; y) + f(x; y) ¡ f(x; y + 1):

Problem 4.16 47

From Eq. (4.6­2),

G(u; v) = F (u; v) ¡ F (u; v)ej2¼u=M + F (u; v) ¡ F (u; v)ej2¼v=N

= [1 ¡ ej2¼u=M]F (u; v) + [1 ¡ ej2¼v=N]F (u; v)

= H(u; v)F (u; v);

where H(u; v) is the filter function:

H(u; v) = ¡2j
h
sin(¼u=M)ej¼u=M + sin(¼v=N)ej¼v=N

i
:

(b) To see that this is a highpass filter, it helps to express the filter function in the form

of our familiar centered functions:

H(u; v) = ¡2j
h
sin(¼[u ¡ M=2]=M)ej¼u=M + sin(¼[v ¡ N=2]=N)ej¼v=N

i
:

Consider one variable for convenience. As u ranges from 0 to M , H(u; v) starts at

its maximum (complex) value of 2j for u = 0 and decreases from there. When u =

M=2 (the center of the shifted function), A similar argument is easily carried out when

considering both variables simultaneously.. The value of H(u; v) starts increasing again

and achieves the maximum value of 2j again when u = M . Thus, this filter has a

value of 0 a the origin and increases with increasing distance from the origin. This

is the characteristic of a highpass filter. A similar argument is easily carried out when

considering both variables simultaneously.

Problem 4.16

(a) The key for the student to be able to solve the problem is to treat the number of

applications (denoted by K) of the highpass filter as 1 minus K applications of the

corresponding lowpass filter, so that

HK(u; v) = HK(u; v)F (u; v)

=
h
1 ¡ e¡KD2(u;v)=2D2

0

i
H(u; v)

where the Gaussian lowpass filter is from Problem 4.13. Students who start directly

with the expression of the Gaussian highpass filter
h
1 ¡ e¡KD2(u;v)=2D2

0

i
and attempt

to raise it to the Kth power will run into a dead end.

The solution to this problem parallels the solution to Problem 4.13. Here, however,

the filter will approach a notch filter that will take out F (0; 0) and thus will produce an

image with zero average values (this implies negative pixels). So, there is a value of

K after which the result of repeated highpass filtering will simply produce a constant

image.

48 Chapter 4 Problem Solutions

(b) The problem is to determine the value of K for which

HK(u; v) = 1 ¡ e¡KD2(u;v)=2D2
0 =

(
0 if (u; v) = (0; 0)

1 Otherwise.
Because u and v are integers, the conditions on the second line in this equation are

satisfied for all u > 1 and/or v > 1. When u = v = 0, D(u; v) = 0, and HK(u; v) = 0,

as desired.

We want all values of the filter to be 1 for all values of the distance from the origin that

are greater than 0 (i.e., for values of u and/or v greater than 0). For HK(u; v) to become

1, the exponential term has to become 0 for values of u and/or v greater than 0. This is

the same requirement as in Problem 4.13, so the solution of that problem applies here as

well.

Problem 4.17

(a) Express filtering as convolution to reduce all processes to the spatial domain. Then,

the filtered image is given by

g(x; y) = h(x; y) ¤ f(x; y)

where h is the spatial filter (inverse Fourier transform of the frequency­domain filter)

and f is the input image. Histogram processing this result yields

g0(x; y) = T [g(x; y)]

= T [h(x; y) ¤ f(x; y)] ;

where T denotes the histogram equalization transformation. If we histogram­equalize

first, then

g(x; y) = T [f(x; y)]

and

g0(x; y) = h(x; y) ¤ T [f(x; y)] :

In general, T is a nonlinear function determined by the nature of the pixels in the im­

age from which it is computed. Thus, in general, T [h(x; y) ¤ f(x; y)] 6= h(x; y) ¤
T [f(x; y)] and the order does matter.

(b) As indicated in Section 4.4, highpass filtering severely diminishes the contrast of

an image. Although high­frequency emphasis helps some, the improvement is usually

not dramatic (see Fig. 4.30). Thus, if an image is histogram equalized first, the gain

in contrast improvement will essentially be lost in the filtering process. Therefore, the

procedure in general is to filter first and histogram­equalize the image after that.

Problem 4.18 49

Problem 4.18

The answer is no. The Fourier transform is a linear process, while the square and square

roots involved in computing the gradient are nonlinear operations. The Fourier trans­

form could be used to compute the derivatives (as differences—see Prob.4.15), but the

squares, square root, or absolute values must be computed directly in the spatial domain.

Problem 4.19

The equation corresponding to the mask in Fig. 4.27(f) is Eq. (3.7­4):

g(x; y) = [f(x + 1; y) + f(x ¡ 1; y) + f(x; y + 1) + f(x; y ¡ 1)] ¡ 4f(x; y):

As in Problem 4.15,

G(u; v) = H(u; v)F (u; v)

where

H(u; v) =
h
ej2¼u=M + e¡j2¼u=M + ej2¼v=N + e¡j2¼v=N ¡ 4

i

= 2 [cos(2¼u=M) + cos(2¼v=N) ¡ 2] :

Shifting the filter to the center of the frequency rectangle gives

H(u; v) = 2 [cos(2¼ [u ¡ M=2] =M) + cos(2¼ [v ¡ N=2] =N) ¡ 2] :

When (u; v) = (M=2;N=2) (the center of the shifted filter). For values away from

the center values of H(u; v) decrease, but this is as expected [see Fig. 4.27(a)] for this

particular formulation of the Laplacian.

Problem 4.20

From Eq. (4.4­3), the transfer function of a Butterworth highpass filter is

H(u; v) =
1

1 +
h

D0

D(u;v)

i2n
:

We want the filter to have a value of °L when D(u; v) = 0, and approach °H for high

values of D(u; v). The preceding equation is easily modified to accomplish this:

H(u; v) = °L +
(°H ¡ °L)

1 +
h

D0

D(u;v)

i2n :

The value of n controls the sharpness of the transition between °L and °H .

50 Chapter 4 Problem Solutions

Problem 4.21

Recall that the reason for padding is to establish a ”buffer” between the periods that are

implicit in the DFT. Imagine the image on the left being duplicated infinitely many times

to cover the xy­plane. The result would be a checkerboard, with each square being in

the checkerboard being the image (and the black extensions). Now imagine doing the

same thing to the image on the right. The results would be indistinguishable. Thus,

either form of padding accomplishes the same separation between images, as desired.

Problem 4.22

(a) Padding an image with zeros increases its size, but not its gray­level content. Thus,

the average gray­level of the padded image is lower than that of the original image.

This implies that F (0; 0) in the spectrum of the padded image is less than F (0; 0) in

the original image (recall that F (0; 0) is the average value of the corresponding image).

Thus, we can visualize F (0; 0) being lower in the spectrum on the right, with all values

away from the origin being lower too, and covering a narrower range of values. That’s

the reason the overall contrast is lower in the picture on the right.

(b) Padding an image with 0’s introduces significant discontinuities at the borders of the

original images. This process introduces strong horizontal and vertical edges, where

the image ends abruptly and then continues with 0 values. These sharp transitions

correspond to the strength of the spectrum along the horizontal and vertical axes of the

spectrum.

Problem 4.23

As in problem 4.9, taking the complex conjugate of an image mirrors it in the spatial

domain. Thus, we would expect the result to be a mirror image (about both axes) of

Fig. 4.41(e).

Problem 4.24

(a) and (b) See Figs. P4.24(a) and (b). (c) and (d) See Figs. P4.24(c) and (d).

Problem 4.25 51

Figures P4.24(a) and (b)

Figures P4.24(c) and (d)

Problem 4.25

Because M = 2n, we can write Eqs. (4.6­47) and (4.6­48) respectively as

m(n) =
1

2
Mn

and

a(n) = Mn:

Proof by induction begins by showing that both equations hold for n = 1:

m(1) =
1

2
(2)(1) = 1 and a(1) = (2)(1) = 2:

We know these results to be correct from the discussion in Section 4.6.6. Next, we

assume that the equations hold for n. Then, we are required to prove that they also are

true for n + 1. From Eq. (4.6­45),

m(n + 1) = 2m(n) + 2n:

52 Chapter 4 Problem Solutions

Substituting m(n) from above,

m(n + 1) = 2

µ
1

2
Mn

¶
+ 2n

= 2

µ
1

2
2nn

¶
+ 2n

= 2n(n + 1)

=
1

2

¡
2n+1

¢
(n + 1):

Therefore, Eq. (4.6­47) is valid for all n.

From Eq. (4.6­46),

a(n + 1) = 2a(n) + 2n+1:

Substituting the above expression for a(n) yields

a(n + 1) = 2Mn + 2n+1

= 2(2nn) + 2n+1

= 2n+1(n + 1)

which completes the proof.

Problem 4.26

Consider a single star modeled as an impulse ±(x ¡ x0; y ¡ y0). Then,

f(x; y) = K±(x ¡ x0; y ¡ y0)

from which

z(x; y) = ln f(x; y) = lnK + ln ±(x ¡ x0; y ¡ y0)

= K0 + ±0(x ¡ x0; y ¡ y0):

Taking the Fourier transform of both sides yields

= [z(x; y)] = = [K0] + =
£
±0(x ¡ x0; y ¡ y0)

¤

= ±(0; 0) + e¡2¼(ux0+vy0):

From this result, it is evident that the contribution of illumination is an impulse at the

origin of the frequency plane. A notch filter that attenuates only this component will

take care of the problem. Extension of this development to multiple impulses (stars) is

straightforward. The filter will be the same.

Problem 4.27

The problem can be solved by carrying out the following steps:

Problem 4.26 53

1. Perform a median filtering operation.

2. Follow (1) by high­frequency emphasis.

3. Histogram­equalize this result.

4. Compute the average gray level, K0. Add the quantity (K ¡ K0) to all pixels.

5. Perform the transformations shown in Fig. P4.27, where r is the input gray level,
and R, G, and B are fed into an RGB color monitor.

Figure P4.27

5 Problem Solutions

Problem 5.1

The solutions to (a), (b), and (c) are shown in Fig. P5.1, from left to right:

Figure P5.1

Problem 5.2

The solutions to (a), (b), and (c) are shown in Fig. P5.2, from left to right:

Figure P5.2

56 Chapter 5 Problem Solutions

Problem 5.3

The solutions to (a), (b), and (c) are shown in Fig. P5.3, from left to right:

Figure P5.3

Problem 5.4

The solutions to (a), (b), and (c) are shown in Fig. P5.4, from left to right:

Figure P5.4

Problem 5.5

The solutions to (a), (b), and (c) are shown in Fig. P5.5, from left to right:

Problem 5.6 57

Figure P5.5

Problem 5.6

The solutions to (a), (b), and (c) are shown in Fig. P5.6, from left to right:

Figure P5.6

Problem 5.7

The solutions to (a), (b), and (c) are shown in Fig. P5.7, from left to right:

Figure P5.7

58 Chapter 5 Problem Solutions

Problem 5.8

The solutions to (a), (b), and (c) are shown in Fig. P5.8, from left to right:

Figure P5.8

Problem 5.9

The solutions to (a), (b), and (c) are shown in Fig. P5.9, from left to right:

Figure P5.9

Problem 5.10

(a) The key to this problem is that the geometric mean is zero whenever any pixel is

zero. Draw a profile of an ideal edge with a few points valued 0 and a few points valued

1. The geometric mean will give only values of 0 and 1, whereas the arithmetic mean

will give intermediate values (blur).

(b) Black is 0, so the geometric mean will return values of 0 as long as at least one pixel

Problem 5.11 59

in the window is black. Since the center of the mask can be outside the original black

area when this happens, the figure will be thickened.

Problem 5.11

The key to understanding the behavior of the contra­harmonic filter is to think of the pix­

els in the neighborhood surrounding a noise impulse as being constant, with the impulse

noise point being in the center of the neighborhood. For the noise spike to be visible,

its value must be considerably larger than the value of its neighbors. Also keep in mind

that the power in the numerator is 1 plus the power in the denominator.

(a) By definition, pepper noise is a low value (really 0). It is most visible when sur­

rounded by light values. Then center pixel (the pepper noise), will have little influence

in the sums. If the area spanned by the filter is approximately constant, the ratio will

approach the value of the pixels in the neighborhood—thus reducing the effect of the

low­value pixel. For example, here are some values of the filter for a dark point of value

1 in a 3 £ 3 region with pixels of value 100: For Q = 0:5, filter = 98:78; for Q = 1,

filter = 99:88, for Q = 2, filter = 99:99; and for Q = 5, filter = 100:00.

(b) The reverse happens when the center point is large and its neighbors are small. The

center pixel will now be the largest. However, the exponent is now negative, so the small

numbers will dominate the result. The numerator can then be thought of a constant raised

to the power Q + 1 and the denominator as a the same constant raised to the power Q.

That constant is the value of the pixels in the neighborhood. So the ratio is just that

value.

(c) When the wrong polarity is used the large numbers in the case of the salt noise will

be raised to a positive power, thus the noise will overpower the result. For salt noise

the image will become very light. The opposite is true for pepper noise—the image will

become dark.

(d) When Q = ¡1, the value of the numerator becomes equal to the number of pixels in

the neighborhood (m £ n). The value of the denominator become sum values, each of

which is 1 over the value of a pixel in the neighborhood. This is the same as the average

of 1=A, where A is the image average.

(e) In a constant area, the filter returns the value of the pixels in the area, independently

of the value of Q.

60 Chapter 5 Problem Solutions

Problem 5.12

A bandpass filter is obtained by subtracting the corresponding bandreject filter from 1:

Hbp(u; v) = 1 ¡ Hbr(u; v):

Then:

(a) Ideal bandpass filter:

HIbp(u; v) =

8
><
>:

0 if D(u; v) < D0 ¡ W
2

1 if D0 ¡ W
2 · D(u; v) · D0 + W

2 :

0 D(u; v) > D0 + W
2

(b) Butterworth bandpass filter:

HBbp(u; v) = 1 ¡ 1

1 +
h

D(u;v)W
D2(u;v)¡D2

0

i2n

=

h
D(u;v)W

D2(u;v)¡D2
0

i2n

1 +
h

D(u;v)W
D2(u;v)¡D2

0

i2n :

(c) Gaussian bandpass filter:

HGbp(u; v) = 1 ¡
"
1 ¡ e

¡ 1
2

·
D2(u;v)¡D2

0
D(u;v)W

¸2#

= e
¡ 1

2

·
D2(u;v)¡D2

0
D(u;v)W

¸2

:

Problem 5.13

A notch pass filter is obtained by subtracting the corresponding notch reject filter from

1:

Hnp(u; v) = 1 ¡ Hnr(u; v):

Then:

(a) Ideal notch pass filter:

HInp(u; v) =

(
1 if D1(u; v) · D0 or D2(u; v) · D0

0 otherwise
:

Problem 5.14 61

(b) Butterworth notch pass filter:

HBnp(u; v) = 1 ¡ 1

1 +
h

D2
0

D1(u;v)D2(u;v)

in

=

h
D2

0

D1(u;v)D2 (u;v)

in

1 +
h

D2
0

D1(u;v)D2(u;v)

in :

(c) Gaussian notch pass filter:

HGnp(u; v) = 1 ¡
"
1 ¡ e

¡ 1
2

·
D1(u;v)D2(u;v)

D2
0

¸#

= e
¡ 1

2

·
D1(u;v)D2(u;v)

D2
0

¸

:

Problem 5.14

We proceed as follows:

F (u; v) =

ZZ 1

¡1
f(x; y)e¡j2¼(ux + vy)dx dy

=

ZZ 1

¡1
A sin(u0x + v0y)e¡j2¼(ux + vy)dx dy:

Using the exponential definition of the sine function:

sin µ =
1

2j

¡
ejµ ¡ e¡jµ

¢

gives us

F (u; v) =
¡jA

2

ZZ 1

¡1

h
ej(u0x + v0y) ¡ e¡j(u0x + v0y)

i
e¡j2¼(ux + vy)dxdy

=
¡jA

2

·ZZ 1

¡1
ej2¼(u0x=2¼ + v0y=2¼)e¡j2¼(ux + vy)dxdy

¸
¡

jA

2

·ZZ 1

¡1
e¡j2¼(u0x=2¼ + v0y=2¼)e¡j2¼(ux + vy)dx dy

¸
:

These are the Fourier transforms of the functions

1 £ ej2¼(u0x=2¼ + v0y=2¼)

and

1 £ e¡j2¼(u0x=2¼ + v0y=2¼)

respectively. The Fourier transform of the 1 gives an impulse at the origin, and the

exponentials shift the origin of the impulse, as discussed in Section 4.6.1. Thus,

F (u; v) =
¡jA

2

h
±
³
u ¡ u0

2¼
; v ¡ v0

2¼

´
¡ ±

³
u +

u0

2¼
; v +

v0

2¼

´i
:

62 Chapter 5 Problem Solutions

Problem 5.15

From Eq. (5.4­19)

¾2 =
1

(2a + 1) (2b + 1)

XX
f[g(°) ¡ w´(°)] ¡ [g ¡ w´]g2

where “°” indicates terms affected by the summations. Letting K = 1=(2a+1)(2b+1),

taking the partial derivative of ¾2 with respect to w and setting the result equal to zero

gives
@¾2

@w
= K

XX
2 [g(°) ¡ w´(°) ¡ g + w´] [¡´(°) + ´] = 0

= K
XX

¡g(°)´(°) + g(°)´ + w´2(°) ¡ w´(°)´ +

g´(°) ¡ g´ ¡ w´´(°) + w´2

= 0

= ¡g´ + g´ + w´2 ¡ w´2 + g´ ¡ g´ ¡ w´2 + w´2 = 0

= ¡g´ + g´ + w
³
´2 ¡ ´2

´
= 0

where, for example, we used the fact that
1

(2a + 1) (2b + 1)

XX
g(°)´(°) = g´:

Solving for w gives us

w =
g´ ¡ g´

´2 ¡ ´2
:

Finally, inserting the variables x and y,

w(x; y) =
g(x; y)´(x; y) ¡ g(x; y)´(x; y)

´2(x; y) ¡ ´2(x; y)
which agrees with Eq. (5.4­21).

Problem 5.16

From Eq. (5.5­13),

g(x; y) =

ZZ 1

¡1
f(®; ¯)h(x ¡ ®; y ¡ ¯) d® d¯:

It is given that f(x; y) = ±(x ¡ a); so f(®;¯) = ±(® ¡ a): Then, using the impulse

response given in the problem statement,

g(x; y) =

ZZ 1

¡1
±(® ¡ a)e¡[(x¡®)2+(y¡¯)2] d® d¯

Problem 5.17 63

=

ZZ 1

¡1
±(® ¡ a)e¡[(x¡®)2] e¡[(y¡¯)2] d® d¯

=

Z 1

¡1
±(® ¡ a)e¡[(x¡®)2] d®

Z 1

¡1
e¡[(y¡¯)2] d¯

= e¡[(x¡a)2]
Z 1

¡1
e¡[(y¡¯)2] d¯

where we used the fact that the integral of the impulse is nonzero only when ® = a:

Next, we note that Z 1

¡1
e¡[(y¡¯)2] d¯ =

Z 1

¡1
e¡[(¯¡y)2] d¯

which is in the form of a constant times a Gaussian density with variance ¾2 = 1=2 or

standard deviation ¾ = 1=
p

2. In other words,

e¡[(¯¡y)2] =
p

2¼(1=2)

"
1p

2¼(1=2)
e

¡(1=2)

·
(¯¡y)2

(1=2)

¸ #
:

The integral from minus to plus infinity of the quantity inside the brackets is 1, so

g(x; y) =
p

¼e¡[(x¡a)2]

which is a blurred version of the original image.

Problem 5.17

Because the motion in the x­ and y­directions are independent (motion is in the vertical

(x) direction only at first, and then switching to motion only in the horizontal (y) direc­

tion) this problem can be solved in two steps. The first step is identical to the analysis

that resulted in Eq. (5.6­10), which gives the blurring function due to vertical motion

only:

H1(u; v) =
T1

¼ua
sin(¼ua)e¡j¼ua;

where we are representing linear motion by the equation x0(t) = at=T1:The function

H1(u; v) would give us a blurred image in the vertical direction. That blurred image is

the image that would then start moving in the horizontal direction and to which horizon­

tal blurring would be applied. This is nothing more than applying a second filter with

transfer function

H2(u; v) =
T2

¼ub
sin(¼ub)e¡j¼ub

where we assumed the form y0(t) = bt=T2 for motion in the y­direction. Therefore, the

overall blurring transfer function is given by the product of these two functions:

H(u; v) =
T1T2

(¼ua)(¼ub)
sin(¼ua) sin(¼ub)e¡j¼(ua¡ub);

64 Chapter 5 Problem Solutions

and the overall blurred image is

g(x; y) = =¡1 [H(u; v)F (u; v)]

where F (u; v) is the Fourier transform of the input image.

Problem 5.18

Following the procedure in Section 5.6.3,

H(u; v) =

Z T

0

e¡j2¼ux0(t)dt

=

Z T

0

e¡j2¼u[(1=2)at2]dt

=

Z T

0

e¡j¼uat2dt

=

Z T

0

£
cos(¼uat2) ¡ j sin(¼uat2)

¤
dt

=

r
T 2

2¼uaT 2

£
C(

p
¼uaT) ¡ jS(

p
¼uaT)

¤

where

C(x) =

r
2¼

T

Z x

0

cos t2dt

and

S(x) =

r
2

¼

Z x

0

sin t2dt:

These are Fresnel cosine and sine integrals. They can be found, for example, the Hand­

book of Mathematical Functions, by Abramowitz, or other similar reference.

Problem 5.19

A basic approach for restoring a rotationally blurred image is to convert the image from

rectangular to polar coordinates. The blur will then appear as one­dimensional uniform

motion blur along the µ­axis. Any of the techniques discussed in this chapter for han­

dling uniform blur along one dimension can then be applied to the problem. The image

is then converted back to rectangular coordinates after restoration. The mathematical

solution is simple. For any pixel with rectangular coordinates (x; y) we generate a cor­

responding pixel with polar coordinates (r; µ), where

r =
p

x2 + y2

Problem 5.20 65

and

µ = tan¡1
³y

x

´
:

A display of the resulting image would shown an image that is blurred along the µ­axis

and would, in addition, appear distorted due to the coordinate conversion. Since the

extent of the rotational blur is known (it is given as ¼=8 radians), we can use the same

solution we used for uniform linear motion (Section 5.6.3), with x = µ and y = r

to obtain the transfer function. Any of the methods in Sections 5.7 through 5.9 then

become applicable.

Problem 5.20

Measure the average value of the background. Set all pixels in the image, except the

cross hairs, to that gray level. Denote the Fourier transform of this image by G(u; v).

Since the characteristics of the cross hairs are given with a high degree of accuracy,

we can construct an image of the background (of the same size) using the background

gray levels determined previously. We then construct a model of the cross hairs in the

correct location (determined from he given image) using the provided dimensions and

gray level of the crosshairs. Denote by F (u; v) the Fourier transform of this new image

. The ratio G(u; v)=F (u; v) is an estimate of the blurring function H(u; v). In the likely

event of vanishing values in F (u; v), we can construct a radially­limited filter using the

method discussed in connection with Fig. 5.27. Because we know F (u; v) and G(u; v),

and an estimate of H(u; v), we can also refine our estimate of the blurring function

by substituting G and H in Eq. (5.8­3) and adjusting K to get as close as possible to a

good result for F (u; v) [the result can be evaluated visually by taking the inverse Fourier

transform]. The resulting filter in either case can then be used to deblur the image of the

heart, if desired.

Problem 5.21

The key to solving this problem is to recognize that the given function

h(r) =
r2 ¡ ¾2

¾4
e¡r2=2¾2

where r2 = x2+y2, is the Laplacian (second derivative with respect to r) of the function

h0(r) = e¡r2=2¾2

:

That is, r2[h0(r)] is equal to the given function. Then we know from Eq. (4.4­7) that,

66 Chapter 5 Problem Solutions

for a function f(x; y),

= £r2f(x; y)
¤

= ¡(u2 + v2)F (u; v):

Thus, we have reduced the problem to finding the Fourier transform of e¡r2=2¾2

, which

is in the form of a Gaussian function. From Table 4.1, we note from the Gaussian

transform pair that the Fourier transform of a function of the form e¡(x2+y2)=2¾2

is

=
h
e¡(x2+y2)=2¾2

i
=

p
2¼¾e¡2¼2¾2(x2+y2):

Therefore, the Fourier transform of the given degradation function is

H(u; v) = =
·
r2 ¡ ¾2

¾4
e¡r2=2¾2

¸
= =

£
r2h0(r)

¤

= ¡(u2 + v2)F (u; v)

= ¡
p

2¼¾(u2 + v2)e¡2¼2¾2(x2+y2):

Problem 5.22

This is a simple plugin problem. Its purpose is to gain familiarity with the various terms

of the Wiener filter. From Eq. (5.8­3),

HW (u; v) =

"
1

H(u; v)

jH(u; v)j2

jH(u; v)j2 + K

#

where

jH(u; v)j2 = H¤(u; v)H(u; v)

= 2¼¾2(u2 + v2)2e¡4¼2¾2(x2+y2):

Then,

HW (u; v) = ¡
" p

2¼¾(u2 + v2)e¡2¼2¾2(x2+y2)

£
2¼¾2(u2 + v2)2e¡4¼2¾2(x2+y2)

¤
+ K

#
:

Problem 5.23

This also is a simple plugin problem, whose purpose is the same as the previous problem.

From Eq. (5.9­4)

HC(u; v) =
H¤(u; v)

jH(u; v)j2 + ° jP (u; v)j2

= ¡
p

2¼¾(u2 + v2)e¡2¼2¾2(x2+y2)

2¼¾2(u2 + v2)2e¡4¼2¾2(x2+y2) + ° jP (u; v)j2
where P (u; v) is the Fourier transform of the Laplacian operator [Eq. (5.9­5)]. This is

as far as we can reasonably carry this problem. It is worthwhile pointing out to students

Problem 5.24 67

that a closed expression for the transform of the Laplacian operator was obtained in

Problem 4.19. However, substituting that solution for P (u; v) here would only increase

the number of terms in the filter and would not aid at all in simplifying the expression.

Problem 5.24

Because the system is assumed linear and position invariant, it follows that Eq. (5.5­17)

holds. Furthermore, we can use superposition and obtain the response of the system

first to F (u; v) and then to N(u; v). The sum of the two individual responses gives the

complete response. First, using only F (u; v),

G1(u; v) = H(u; v)F (u; v)

and

jG1(u; v)j2 = jH(u; v)j2 jF (u; v)j2 :

Then, using only N(u; v),

G2(u; v) = N(u; v)

and

jG2(u; v)j2 = jN(u; v)j2

so that

jG(u; v)j2 = jG1(u; v)j2 + jG2(u; v)j2

= jH(u; v)j2 jF (u; v)j2 + jN(u; v)j2 :

Problem 5.25

(a) It is given that ¯̄
¯F̂ (u; v)

¯̄
¯
2

= jR(u; v)j2 jG(u; v)j2 :

From Problem 5.24,¯̄
¯F̂ (u; v)

¯̄
¯
2

= jR(u; v)j2
h
jH(u; v)j2 jF (u; v)j2 + jN(u; v)j2

i
:

Forcing
¯̄
¯F̂ (u; v)

¯̄
¯
2

to equal jF (u; v)j2 gives

R(u; v) =

"
jF (u; v)j2

jH(u; v)j2 jF (u; v)j2 + jN(u; v)j2

#1=2

:

68 Chapter 5 Problem Solutions

(b)

F̂ (u; v) = R(u; v)G(u; v)

=

"
jF (u; v)j2

jH(u; v)j2 jF (u; v)j2 + jN(u; v)j2

#1=2

G(u; v)

=

2
4 1

jH(u; v)j2 + jN(u;v)j2
jF (u;v)j2

3
5

1=2

G(u; v)

and, because jF (u; v)j2 = Sf (u; v) and jN(u; v)j2 = S´(u; v);

F̂ (u; v) =

2
4 1

jH(u; v)j2 + S´(u;v)
Sf (u;v)

3
5

1=2

G(u; v):

Problem 5.26

One possible solution: (1) Average images to reduce noise. (2) obtain blurred image of

a bright, single star to simulate an impulse (the star should be as small as possible in

the field of view of the telescope to simulate an impulse as closely as possible. (3) The

Fourier transform of this image will give H(u; v). (4) Use a Wiener filter and vary K

until the sharpest image possible is obtained.

Problem 5.27

The basic idea behind this problem is to use the camera and representative coins to

model the degradation process and then utilize the results in an inverse filter operation.

The principal steps are as follows:

1. Select coins as close as possible in size and content as the lost coins. Select a back­
ground that approximates the texture and brightness of the photos of the lost coins.

2. Set up the museum photographic camera in a geometry as close as possible to give
images that resemble the images of the lost coins (this includes paying attention to
illumination). Obtain a few test photos. To simplify experimentation, obtain a TV
camera capable of giving images that resemble the test photos. This can be done by
connecting the camera to an image processing system and generating digital images,
which will be used in the experiment.

3. Obtain sets of images of each coin with different lens settings. The resulting images
should approximate the aspect angle, size (in relation to the area occupied by the
background), and blur of the photos of the lost coins.

Problem 5.28 69

4. The lens setting for each image in (3) is a model of the blurring process for the
corresponding image of a lost coin. For each such setting, remove the coin and
background and replace them with a small, bright dot on a uniform background,
or other mechanism to approximate an impulse of light. Digitize the impulse. Its
Fourier transform is the transfer function of the blurring process.

5. Digitize each (blurred) photo of a lost coin, and obtain its Fourier transform. At this
point, we have H(u; v) and G(u; v) for each coin.

6. Obtain an approximation to F (u; v) by using a Wiener filter. Equation (5.8­3) is
particularly attractive because it gives an additional degree of freedom (K) for ex­
perimenting.

7. The inverse Fourier transform of each approximate F (u; v) gives the restored image.
In general, several experimental passes of these basic steps with various different
settings and parameters are required to obtain acceptable results in a problem such
as this.

Problem 5.28

Using triangular regions means three tiepoints, so we can solve the following set of

linear equations for six coefficients:

x0 = c1x + c2y + c3

y0 = c4x + c5y + c6

to implement spatial transformations. We also solve the following equation for three

coefficients

v(x0; y0) = ax0 + by0 + c

to implement gray level interpolation.

6 Problem Solutions

Problem 6.1

From the figure, x = 0:43 and y = 0:4. Since x + y + z = 1, it follows that z = 0:17.

These are the trichromatic coefficients. We are interested in tristimulus values X , Y ,

and Z, which are related to the trichromatic coefficients by Eqs. (6.1­1) through (6.1­3).

We note however, that all the tristimulus coefficients are divided by the same constant,

so their percentages relative to the trichromatic coefficients are the same as those of the

coefficients. Thus, the answer is X = 0:43, Y = 0:40; and Z = 0:17.

Problem 6.2

Denote by c the given color, and let its coordinates be denoted by (x0; y0). The distance

between c and c1 is

d(c; c1) =
h
(x0 ¡ x1)

2 + (y0 ¡ y1)
2
i1=2

:

Similarly the distance between c1 and c2

d(c1; c2) =
h
(x1 ¡ x2)

2 + (y1 ¡ y2)
2
i1=2

:

The percentage p1 of c1 in c is

p1 =
d(c1; c2) ¡ d(c; c1)

d(c1; c2)
£ 100:

The percentage p2 of c2 is simply p2 = 100 ¡ p1. In the preceding equation we see,

for example, that when c = c1, then d(c; c1) = 0 and it follows that p1 = 100%

and p2 = 0%. Similarly, when d(c; c1) = d(c1; c2); it follows that p1 = 0% and

p2 = 100%. Values in between are easily seen to follow from these simple relations.

72 Chapter 6 Problem Solutions

Problem 6.3

Consider Fig. P6.3, in which c1, c2, and c3 are the given vertices of the color triangle

and c is an arbitrary color point contained within the triangle or on its boundary. The

key to solving this problem is to realize that any color on the border of the triangle is

made up of proportions from the two vertices defining the line segment that contains the

point. The contribution to a point on the line by the color vertex opposite this line is 0%

.

The line segment connecting points c3 and c is shown extended (dashed segment) until

it intersects the line segment connecting c1 and c2. The point of intersection is denoted

c0. Because we have the values of c1 and c2, if we knew c0, we could compute the

percentages of c1 and c2 contained in c0 by using the method described in Problem 6.2.

Denote the ratio of the content of c1 and c2 in c0 be denoted by R12. If we now add

color c3 to c0, we know from Problem 6.2 that the point will start to move toward c3

along the line shown. For any position of a point along this line we could determine the

percentage of c3 and c0, again, by using the method described in Problem 6.2. What is

important to keep in mind that the ratio R12 will remain the same for any point along

the segment connecting c3 and c0. The color of the points along this line is different for

each position, but the ratio of c1 to c2 will remain constant.

So, if we can obtain c0, we can then determine the ratio R12, and the percentage of

c3, in color c. The point c0 is not difficult to obtain. Let y = a12x + b12 be the

straight line containing points c1 and c2, and y = a3cx + b3c the line containing c3 and

c. The intersection of these two lines gives the coordinates of c0. The lines can be

determined uniquely because we know the coordinates of the two point pairs needed to

determine the line coefficients. Solving for the intersection in terms of these coordinates

is straightforward, but tedious. Our interest here is in the fundamental method, not the

mechanics of manipulating simple equations so we don not give the details.

At this juncture we have the percentage of c3 and the ratio between c1 and c2. Let the

percentages of these three colors composing c be denoted by p1, p2, and p3 respectively.

Since we know that p1 +p2 = 100¡p3, and that p1=p2 = R12, we can solve for p1 and

p2. Finally, note that this problem could have been solved the same way by intersecting

one of the other two sides of the triangle. Going to another side would be necessary, for

example, if the line we used in the preceding discussion had an infinite slope. A simple

test to determine if the color of c is equal to any of the vertices should be the first step in

the procedure; in this case no additional calculations would be required.

Problem 6.4 73

Figure P6.3

Problem 6.4

Use color filters sharply tuned to the wavelengths of the colors of the three objects.

Thus, with a specific filter in place, only the objects whose color corresponds to that

wavelength will produce a predominant response on the monochrome camera. A mo­

torized filter wheel can be used to control filter position from a computer. If one of the

colors is white, then the response of the three filters will be approximately equal and

high. If one of the colors is black, the response of the three filters will be approximately

equal and low.

Problem 6.5

At the center point we have
1

2
R +

1

2
B + G =

1

2
(R + G + B) +

1

2
G = midgray +

1

2
G

which looks to a viewer like pure green with a boot in intensity due to the additive gray

component.

Problem 6.6

For the image given, the maximum intensity and saturation requirement means that the

RGB component values are 0 or 1. We can create the following table with 0 and 255

74 Chapter 6 Problem Solutions

representing black and white, respectively:

Table P6.6

Color R G B Mono R Mono G Mono B

Black 0 0 0 0 0 0

Red 1 0 0 255 0 0

Yellow 1 1 0 255 255 0

Green 0 1 0 0 255 0

Cyan 0 1 1 0 255 255

Blue 0 0 1 0 0 255

Magenta 1 0 1 255 0 255

White 1 1 1 255 255 255

Gray 0.5 0.5 0.5 128 128 128

Thus, we get the monochrome displays shown in Fig. P6.6.

Figure P6.6

Problem 6.7

There are 28 = 256 possible values in each 8­bit image. For a color to be gray, all RGB

components have to be equal, so there are 256 shades of gray.

Problem 6.8

(a) All pixel values in the Red image are 255. In the Green image, the first column is

all 0’s; the second column all 1’s; and so on until the last column, which is composed of

all 255’s. In the Blue image, the first row is all 255’s; the second row all 254’s, and so

on until the last row which is composed of all 0’s.

Problem 6.9 75

(b) Let the axis numbering be the same as in Fig. 6.7. Then: (0; 0; 0) = white,

(1; 1; 1;) = black, (1; 0; 0) = cyan, (1; 1; 0) = blue, (1; 0; 1) = green, (0; 1; 1) =

red, (0; 0; 1) = yellow, (0; 1; 0) = magenta.

(c) The ones that do not contain the black or white point are fully saturated. The others

decrease in saturation from the corners toward the black or white point.

Problem 6.9

(a) For the image given, the maximum intensity and saturation requirement means that

the RGB component values are 0 or 1. We can create Table P6.9 using Eq. (6.2­1):

Table P6.9

Color R G B C M Y Mono C Mono M Mono Y

Black 0 0 0 1 1 1 255 255 255

Red 1 0 0 0 1 1 0 255 255

Yellow 1 1 0 0 0 1 0 0 255

Green 0 1 0 1 0 1 255 0 255

Cyan 0 1 1 1 0 0 255 0 0

Blue 0 0 1 1 1 0 255 255 0

Magenta 1 0 1 0 1 0 0 255 0

White 1 1 1 0 0 0 0 0 0

Gray 0.5 0.5 0.5 0.5 0.5 0.5 128 128 128

Thus, we get the monochrome displays shown in Fig. P6.9(a).

(b) The resulting display is the complement of the starting RGB image. From left to

right, the color bars are (in accordance with Fig. 6.32) white, cyan, blue, magenta, red,

yellow, green, and black. The middle gray background is unchanged.

Figure P6.9

76 Chapter 6 Problem Solutions

Problem 6.10

Equation (6.2­1) reveals that each component of the CMY image is a function of a single

component of the corresponding RGB image—C is a function of R, M of G, and Y of

B. For clarity, we will use a prime to denote the CMY components. From Eq. (6.5­6),

we know that

si = kri

for i = 1; 2; 3 (for the R, G, and B components). And from Eq. (6.2­1), we know

that the CMY components corresponding to the ri and si (which we are denoting with

primes) are

ri¶= 1 ¡ ri

and

si¶= 1 ¡ si:

Thus,

ri = 1 ¡ ri¶

and

si¶= 1 ¡ si = 1 ¡ kri = 1 ¡ k (1 ¡ ri¶)

so that

si¶= kri¶+ (1 ¡ k) :

Problem 6.11

(a) The purest green is 00FF00, which corresponds to cell (7, 18).

(b) The purest blue is 0000FF, which corresponds to cell (12, 13).

Problem 6.12

Using Eqs. (6.2­2) through (6.2­4), we get the results shown in Table P6.12. Note that, in

accordance with Eq. (6.2­2), hue is undefined when R = G = B since µ = cos¡1
¡

0
0

¢
.

In addition, saturation is undefined when R = G = B = 0 since Eq. (6.2­3) yields

Problem 6.13 77

S = 1 ¡ 3min(0)
3¢0 = 1 ¡ 0

0 . Thus, we get the monochrome display shown in Fig. P6.12.

Table P6.12

Color R G B H S I Mono H Mono S Mono I

Black 0 0 0 – 0 0 – – 0

Red 1 0 0 0 1 0.33 0 255 85

Yellow 1 1 0 0.17 1 0.67 43 255 170

Green 0 1 0 0.33 1 0.33 85 255 85

Cyan 0 1 1 0.5 1 0.67 128 255 170

Blue 0 0 1 0.67 1 0.33 170 255 85

Magenta 1 0 1 0.83 1 0.67 213 255 170

White 1 1 1 – 0 1 – 0 255

Gray 0.5 0.5 0.5 – 0 0.5 – 0 128

Figure P6.12

Problem 6.13

With reference to the HSI color circle in Fig. 6.14(b), deep purple is found at approxi­

mately 270±: To generate a color rectangle with the properties required in the problem

statement, we choose a fixed intensity I, and maximum saturation (these are spectrum

colors, which are supposed to be fully saturated), S. The first column in the rectangle

uses these two values and a hue of 270±. The next column (and all subsequent columns)

would use the same values of I and S, but the hue would be decreased to 269±, and so

on all the way down to a hue of 0±, which corresponds to red. If the image is limited to

8 bits, then we can only have 256 variations in hue in the range from 270± down to 0±,

which will require a different uniform spacing than one degree increments or, alterna­

tively, starting at a 255± and proceed in increments of 1, but this would leave out most of

the purple. If we have more than eight bits, then the increments can be smaller. Longer

strips also can be made by duplicating column values.

78 Chapter 6 Problem Solutions

Problem 6.14

There are two important aspects to this problem. One is to approach it in HSI space

and the other is to use polar coordinates to create a hue image whose values grow as a

function of angle. The center of the image is the middle of whatever image area is used.

Then, for example, the values of the hue image along a radius when the angle is 0± would

be all 0’s. The angle then is incremented by, say, one degree, and all the values along

that radius would be 1’s, and so on. Values of the saturation image decrease linearly

in all radial directions from the origin. The intensity image is just a specified constant.

With these basics in mind it is not difficult to write a program that generates the desired

result.

Problem 6.15

The hue, saturation, and intensity images are shown in Fig. P6.15, from left to right.

Figure P6.15

Problem 6.16

(a) It is given that the colors in Fig. 6.16(a) are primary spectrum colors. It also is

given that the gray­level images in the problem statement are 8­bit images. The latter

condition means that hue (angle) can only be divided into a maximum number of 256

values. Since hue values are represented in the interval from 0± to 360± this means

that for an 8­bit image the increments between contiguous hue values are now 360=255.

Another way of looking at this is that the entire [0, 360] hue scale is compressed to the

range [0, 255]. Thus, for example, yellow (the first primary color we encounter), which

Problem 6.17 79

is 60± now becomes 43 (the closest integer) in the integer scale of the 8­bit image shown

in the problem statement. Similarly, green, which is 120± becomes 85 in this image.

From this we easily compute the values of the other two regions as being 170 and 213.

The region in the middle is pure white [equal proportions of red green and blue in Fig.

6.61(a)] so its hue by definition is 0. This also is true of the black background.

(b) The colors are spectrum colors, so they are fully saturated. Therefore, the values

shown of 255 applies to all circle regions. The region in the center of the color image is

white, so its saturation is 0.

(c) The key to getting the values in this figure is to realize that the center portion of the

color image is white, which means equal intensities of fully saturated red, green, and

blue. Therefore, the value of both darker gray regions in the intensity image have value

85 (i.e., the same value as the other corresponding region). Similarly, equal proportions

of the secondaries yellow, cyan, and magenta produce white, so the two lighter gray

regions have the same value (170) as the region shown in the figure. The center of the

image is white, so its value is 255.

Problem 6.17

(a) Because the infrared image which was used in place of the red component image has

very high gray­level values.

(b) The water appears as solid black (0) in the near infrared image [Fig. 6.27(d)].

Threshold the image with a threshold value slightly larger than 0. The result is shown

in Fig. P6.17. It is clear that coloring all the black points in the desired shade of blue

presents no difficulties.

(c) Note that the predominant color of natural terrain is in various shades of red. We al­

ready know how to take out the water from (b). Thus a method that actually removes the

”background” of red and black would leave predominantly the other man­made struc­

tures, which appear mostly in a bluish light color. Removal of the red [and the black

if you do not want to use the method as in (b)] can be done by using the technique

discussed in Section 6.7.2.

80 Chapter 6 Problem Solutions

Figure P6.17

Problem 6.18

Using Eq. (6.2­3), we see that the basic problem is that many different colors have the

same saturation value. This was demonstrated in Problem 6.12, where pure red, yellow,

green, cyan, blue, and magenta all had a saturation of 1. That is, as long as any one of

the RGB components is 0, Eq. (6.2­3) yields a saturation of 1.

Consider RGB colors (1, 0, 0) and (0, 0.59, 0), which represent a red and a green.

The HSI triplets for these colors [per Eq. (6.4­2) through (6.4­4)] are (0, 1, 0.33) and

(0.33, 1, 0.2), respectively. Now, the complements of the beginning RGB values (see

Section 6.5.2) are (0, 1, 1) and (1, 0.41, 1), respectively; the corresponding colors are

cyan and magenta. Their HSI values [per Eqs. (6.4­2) through (6.4­4)] are (0.5, 1, 0.66)

and (0.83, 0.48, 0.8), respectively. Thus, for the red, a starting saturation of 1 yielded

the cyan “complemented” saturation of 1, while for the green, a starting saturation of

1 yielded the magenta “complemented” saturation of 0.48. That is, the same starting

saturation resulted in two different “complemented” saturations. Saturation alone is not

enough information to compute the saturation of the complemented color.

Problem 6.19

The complement of a color is the color opposite it on the color circle of Fig. 6.32. The

hue component is the angle from red in a counterclockwise direction normalized by 360

degrees. For a color on the top half of the circle (i.e., 0 · H · 0:5), the hue of the

complementary color is H + 0:5. For a color on the bottom half of the circle (i.e., for

Problem 6.20 81

0:5 · H · 1), the hue of the complement is H ¡ 0:5.

Problem 6.20

The RGB transformations for a complement [from Fig. 6.33(b)] are:

si = 1 ¡ ri

where i = 1; 2; 3 (for the R, G, and B components). But from the definition of the

CMY space in Eq. (6.2­1), we know that the CMY components corresponding to ri and

si, which we will denote using primes, are

ri¶= 1 ¡ ri

si¶= 1 ¡ si:

Thus,

ri = 1 ¡ ri¶

and

si¶= 1 ¡ si = 1 ¡ (1 ¡ ri) = 1 ¡ (1 ¡ (1 ¡ ri¶))

so that

s¶= 1 ¡ ri¶:

Problem 6.21

The RGB transformation should darken the highlights and lighten the shadow areas,

effectively compressing all values toward the midtones. The red, green, and blue com­

ponents should be transformed with the same mapping function so that the colors do not

change. The general shape of the curve would be as shown in Fig. P6.21.

Figure P6.21

82 Chapter 6 Problem Solutions

Problem 6.22

Based on the discussion is Section 6.5.4 and with reference to the color wheel in Fig.

6.32, we can decrease the proportion of yellow by (1) decreasing yellow, (2) increasing

blue, (3) increasing cyan and magenta, or (4) decreasing red and green.

Problem 6.23

The L¤a¤b¤ components are computed using Eqs. (6.5­9) through (6.5­12). Reference

white is R = G = B = 1. The computations are best done in a spreadsheet, as shown

in Table P6.23.

Problem 6.24

The conceptually simplest approach is to transform every input image to the HSI color

space, perform histogram specification per the discussion in Section 3.3.2 on the inten­

sity (I) component only (leaving H and S alone), and convert the resulting intensity

component with the original hue and saturation components back to the starting color

space.

Problem 6.25

(a) The boundary between red and green becomes thickened and yellow as a result of

blurring between the red and green primaries (recall that yellow is the color between

green and red in, for example, Fig. 6.14). The boundary between green and blue is

similarly blurred into a cyan color. The result is shown in Fig. P6.25.

Problem 6.26 83

(b) Blurring has no effect in this case. The intensity image is constant (at its maximum

value) because the pure colors are fully saturated.

Problem 6.26

This is a simple problem to encourage the student to think about the meaning of the

elements in Eq. (6.7­2). When C = I, it follows that C¡1 = I and Eq. (6.7­2) becomes

D(z;a) =
£
(z ¡ a)T (z ¡ a)

¤1=2
:

But the term inside the brackets is recognized as the inner product of the vector (z ¡ a)

with itself, which, by definition, is equal to the right side of Eq. (6.7­1).

Figure P6.25

Problem 6.27

(a) The cube is composed of 6 intersecting planes in RGB space. The general equation

for such planes is

a zR + b zG + c zB + d = 0

where a, b, c, and d are parameters and the z’s are the components of any point (vector)

z in RGB space lying on the plane. If an RGB point z does not lie on the plane, and

its coordinates are substituted in the preceding equation, then equation will give either a

positive or a negative value; it will not yield zero. We say that z lies on the positive or

negative side of the plane, depending on whether the result is positive or negative. We

can change the positive side of a plane by multiplying its coefficients (except d) by ¡1.

Suppose that we test the point a given in the problem statement to see whether it is on

the positive or negative side each of the six planes composing the box, and change the

84 Chapter 6 Problem Solutions

coefficients of any plane for which the result is negative. Then, a will lie on the positive

side of all planes composing the bounding box. In fact all points inside the bounding

box will yield positive values when their coordinates are substituted in the equations of

the planes. Points outside the box will give at least one negative or zero value. Thus,

the method consists of substituting an unknown color point in the equations of all six

planes. If all the results are positive, the point is inside the box; otherwise it is outside

the box. A flow diagram is asked for in the problem statement to make it simpler to

evaluate the student’s line of reasoning.

(b) If the box is lined up with the RGB coordinate axes, then the planes intersect the

RGB coordinate planes perpendicularly. The intersections of pairs of parallel planes

establish a range of values along each of the RGB axis that must be checked to see if

the if an unknown point lies inside the box or not. This can be done on an image per

image basis (i.e., the three component images of an RGB image), designating by 1 a

coordinate that is within its corresponding range and 0 otherwise. These will produce

three binary images which, when ANDed, will give all the points inside the box.

Problem 6.28

The sketch is an elongated ellipsoidal figure in which the length lined up with the R­axis

is 8 times longer that the other two dimensions. In other words, the figure looks like a

blimp aligned with the R­axis.

Problem 6.29

Set one of the three primary images to a constant value (say, 0), then consider the two

images shown in Fig. P6.29. If we formed an RGB composite image by letting the im­

age on the left be the red component and the image on the right the green component,

then the result would be an image with a green region on the left separated by a vertical

edge from a red region on the right. To compute the gradient of each component image

we take second­order partial derivatives. In this case, only the component of the deriv­

ative in the horizontal direction is nonzero. If we model the edge as a ramp edge [Fig.

3.38(b)] then a profile of the derivative image would appear as shown in Fig. P6.29. The

magnified view shows clearly that the derivatives of the two images are mirrors of each

other. Thus, if we computed the gradient vector of each image and added the results as

suggested in the problem statement, the components of the gradient would cancel out,

giving a zero gradient for a color image that has a clearly defined edge between two dif­

Problem 6.28 85

ferent color regions. This simple example illustrates that the gradient vector of a color

image is not equivalent to the result of forming a color gradient vector from the sum of

the gradient vectors of the individual component images.

Figure P6.29

7 Problem Solutions

Problem 7.1

Following the explanation in Example 7.1, the decoder is as shown in Fig. P7.1

Figure P7.1

Problem 7.2

A mean approximation pyramid is formed by forming 2 £ 2 block averages. Since the

starting image is of size 4 £ 4, J = 2, and f(x; y) is placed in level 2 of the mean

approximation pyramid. The level 1 approximation is (by taking 2 £ 2 block averages

over f(x; y) and subsampling):
"

3:5 5:5

11:5 13:5

#

and the level 0 approximation is similarly [8.5]. The completed mean approximation

pyramid is 2
66664

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

3
77775

"
3:5 5:5

11:5 13:5

#h
8:5

i
:

88 Chapter 7 Problem Solutions

Since no interpolation filtering is specified, pixel replication is used in the generation of

the mean prediction residual pyramid levels. Level 0 of the prediction residual pyramid

is the lowest resolution approximation, [8.5]. The level 2 prediction residual is obtained

by upsampling the level 1 approximation and subtracting it from the level 2 (original

image). Thus, we get

2
66664

1 2 3 4

5 6 7 8

9 10 11 12

13 14 15 16

3
77775

¡

2
66664

3:5 3:5 5:5 5:5

3:5 3:5 5:5 5:5

11:5 11:5 13:5 13:5

11:5 11:5 13:5 13:5

3
77775

=

2
66664

¡2:5 ¡1:5 ¡2:5 ¡1:5

1:5 2:5 1:5 2:5

¡2:5 ¡1:5 ¡2:5 ¡1:5

1:5 2:5 1:5 2:5

:

3
77775

Similarly, the level 1 prediction residual is obtained by upsampling the level 0 approxi­

mation and subtracting it from the level 1 approximation to yield

"
3:5 5:5

11:5 13:5

#
¡

"
8:5 8:5

8:5 8:5

#
=

"
¡5 ¡3

3 5

#
:

The mean prediction residual pyramid is therefore

2
66664

¡2:5 ¡1:5 ¡2:5 ¡1:5

1:5 2:5 1:5 2:5

¡2:5 ¡1:5 ¡2:5 ¡1:5

1:5 2:5 1:5 2:5

3
77775

"
¡5 ¡3

3 5

#
[8:5] :

Problem 7.3

The number of elements in a J + 1 level pyramid is bounded by 4/3 (see Section 7.1.1):

22J

"
1 +

1

(4)1
+

1

(4)2
+ ¢ ¢ ¢ +

1

(4)J

#
· 4

3
22J

Problem 7.4 89

for J > 0. We can generate Table P7.3:

Table P7.3

J Pyramid Elements Compression Ratio

0 1 1

1 5 5=4 = 1:25

2 21 21=16 = 1:3125

3 85 85=86 = 1:328
...

1 4=3 = 1:33

All but the trivial case (J = 0) are expansions. The expansion factor is a function of

and bounded by 4/3 or 1.33.

Problem 7.4

(a) The QMF filters must satisfy Eqs. (7.1­9) and (7.1­10). From Table 7.1, G0(z) =

H0(z) and H1(z) = H0(¡z), so H1(¡z) = H0(z). Thus, beginning with Eq. (7.1­9),

H0(¡z)G0(z) + H1(¡z)G1(z) = 0

H0(¡z)H0(z) ¡ H0(z)H0(¡z) = 0

0 = 0:

Similarly, beginning with Eq. (7.1­10) and substituting for H1(z), G0(z), and G1(z)

from rows 2, 3, and 4 of Table 7.1, we get

H0(z)G0(z) + H1(z)G1(z) = 2

H0(z)H0(z) + H0(¡z)[¡H0(¡z)] = 2

H2
0 (z) ¡ H2

0 (¡z) = 2

which is the design equation for the H0(z) prototype filter in row 1 of the table.

(b) The orthonormal filter proof follows the QMF proof in (a). For Eq. (7.1­9), we get

H0(¡z)G0(z) + H1(z)G1(z) = 0

G0[(¡z)¡1]G0(z) + G1[(¡z)¡1][¡z¡2K+1G0(¡z¡1)] = 0

G0(¡z¡1)G0(z) ¡ z¡2K+1G1(¡z¡1)G0(¡z¡1) = 0

G0(¡z¡1)G0(z) ¡ z¡2K+1[¡(¡z¡1)¡2K+1G0(¡[¡z¡1]¡1)]G0(¡z¡1) = 0

G0(¡z¡1)G0(z) ¡ z¡2K+1[z2K¡1G0(z)]G0(¡z¡1) = 0

G0(¡z¡1)G0(z) ¡ G0(z)G0(¡z¡1) = 0:

Similarly, beginning with Eq. (7.1­10),

90 Chapter 7 Problem Solutions

H0(z)G0(z) + H1(z)G1(z) = 2

G0(z
¡1)G0(z) + G1(z

¡1)G1(z) = 2

G0(z
¡1)G0(z) + [¡(¡z¡1)¡2K+1G0(¡[¡z¡1]¡1)][¡z¡2K+1G0(¡z¡1)] = 2

G0(z
¡1)G0(z) + (¡z¡2K+1)(¡z¡[¡2K+1])G0(¡z)G0(¡z¡1) = 2

G0(z
¡1)G0(z) + G0(¡z)G0(¡z¡1) = 2

which is the design equation for the G0(z) prototype filter in row 3 of the table.

Problem 7.5

To be biorthogonal, QMF filters must satisfy matrix Eq. (7.1­13). Letting

® =
2

det[Hm(z)]

in that expression we can write

G0(z) = ®H1(¡z)

G1(z) = ¡®H0(¡z)

and see that the QMF filters in column 1 of Table 7.1 do satisfy it with ® = 1. Thus,

QMF filters are biorthogonal. They are not orthonormal, however, since they do not

satisfy the requirements of column 3 in Table 7.1. For QMF filters, for instance,

H1(z) = H0(¡z) = ¡G1(z)

but orthonormality (see column 3) requires that H1(z) = G1(z
¡1).

Problem 7.6

Example 7.2 defines h0(n) for n = 0; 1; 2; : : : ; 7 to be about ¡0:01, 0:03, 0:03, ¡0:19,

¡0:03, 0:63, 0:72, 0:23. Using Eq. (7.1­23) with 2K = 8, we can write

g0(7 ¡ n) = h0(n)

g1(n) = (¡1)ng0(7 ¡ n):

Thus g0(n) is time­reversed h0(n), or 0:23, 0:72, 0:63, ¡0:03,¡0:19, 0:03, 0:03, ¡0:01.

In addtion, g1(n) is a time­reversed and modulated copy of g0(n); that is, ¡0:01,

¡0:03,0:03, 0:19, ¡0:03, ¡0:63, 0:72, ¡0:23.

To numerically prove the orthonormality of the filters, let m = 0 in Eq. (7.1­22):

hgi(n)gj(n)i = ±(i ¡ j) with i; j = f0; 1g:

Iterating over i and j we get

Problem 7.7 91

X

n

g2
0(n) =

X

n

g2
1(n)

= 1
X

n

g0(n)g1(n) = 0:

Substitution of the filter coefficient values into these two equations yields:
X

n

g0(n)g1(n) = (0:23)(¡0:01) + (0:72)(¡0:03) + (0:63)(0:03) +

(¡0:03)(0:19) + (¡0:19)(¡0:03) + (0:03)(¡0:63) +

(0:03)(0:72) + (¡0:01)(¡0:23)

= 0
X

n

g2
0(n) =

X

n

g2
1(n)

= (§0:23)2 + (0:72)2 + (§:63)2 + (¡0:03)2 + (§0:19)2 +

(0:03)2 + (§0:03)2 + (¡0:01)2

= 1:

Problem 7.7

Reconstruction is performed by reversing the decomposition process; that is, by replac­

ing the downsamplers with upsamplers and the analysis filters by their synthesis filter

counterparts, as shown in Fig. P7.7.

Figure P7.7

92 Chapter 7 Problem Solutions

Problem 7.8

The Haar transform matrix for N = 8 is

H8 =
1p
8

2
666666666666664

1 1 1 1 1 1 1 1

1 1 1 1 ¡1 ¡1 ¡1 ¡1p
2

p
2 ¡

p
2 ¡

p
2 0 0 0 0

0 0 0 0
p

2
p

2 ¡
p

2 ¡
p

2

2 ¡2 0 0 0 0 0 0

0 0 2 ¡2 0 0 0 0

0 0 0 0 2 ¡2 0 0

0 0 0 0 0 0 2 ¡2

3
777777777777775

Problem 7.9

(a) Equation (7.1­28) defines the 2 £ 2 Haar transformation matrix as

H2 =
1p
2

"
1 1

1 ¡1

#
:

Then, using Eq. (7.1­24), we get

T = HFH =

µ
1p
2

¶2
"

1 1

1 ¡1

#"
3 ¡1

6 2

#"
1 1

1 ¡1

#

=

"
5 4

¡3 0

#
:

(b) First, compute

H¡1
2 =

"
a b

c d

#

so that "
a b

c d

#
1p
2

"
1 1

1 ¡1

#
=

"
1 0

0 1

#
:

Solving this matrix equation yields

H¡1
2 =

1p
2

"
1 1

1 ¡1

#

= H2:

Thus,

Problem 7.10 93

F = H¡1TH¡1

=

µ
1p
2

¶2
"

1 1

1 ¡1

"
5 4

¡3 0

#"
1 1

1 ¡1

#

=

"
3 ¡1

6 2

#
:

Problem 7.10

(a) The basis is orthonormal and the coefficients are computed by the vector equivalent

of Eq. (7.2­5):

®0 =
h

1p
2

1p
2

i "
3

2

#

=
5
p

2

2

®1 =
h

1p
2

¡ 1p
2

i"
3

2

#

=

p
2

2
so,

5
p

2

2
'0 +

p
2

2
'1 =

5
p

2

2

"
1p
2

1p
2

#
+

p
2

2

"
1p
2

¡ 1p
2

#

=

"
3

2

#
:

(b) The basis is biorthonormal and the coefficients are computed by the vector equivalent

of Eq. (7.2­3):

®0 =
h

1 ¡1
i "

3

2

#

= 1

®1 =
h

0 1
i "

3

2

#

= 2

so,

94 Chapter 7 Problem Solutions

'0 + 2'1 =

"
1

0

#
+ 2

"
1

1

#

=

"
3

2

#
:

(c) The basis is overcomplete and the coefficients are computed by the vector equivalent

of Eq. (7.2­3):

®0 =
h

2
3

0
i "

3

2

#

= 2

®1 =
h

¡1
3

p
3

3

i"
3

2

#

= ¡1 +
2
p

3

3

®2 =
h

¡1
3 ¡

p
3

3

i "
3

2

#

= ¡1 ¡ 2
p

3

3
so,

2'0 +

"
¡1 +

2
p

3

3

#
'1 +

"
¡1 ¡ 2

p
3

3

#
'2 = 2

"
1

0

#
+

"
¡1 +

2
p

3

3

"
¡ 1

2p
3

2

#
+

"
¡1 ¡ 2

p
3

3

"
¡1

2

¡
p

3
2

#

=

"
3

2

#
:

Problem 7.11

As can be seen in Fig. P7.11, scaling function '0;0(x) cannot be written as a sum of

double resolution copies of itself. Note the gap between '1;0(x) and '1;1(x).

Problem 7.12 95

Figure P7.11

Problem 7.12

Substituting j = 3 into Eq. (7.2­13) we get

V3 = Span
k

f'3;k(x)g

= Span
k

f23=2'(23x ¡ k)g

= Span
k

f2
p

2'(8x ¡ k)g:

Using the Haar scaling function in Eq. (7.2­14) we get the results shown in Fig. P7.12.

Figure P7.12

96 Chapter 7 Problem Solutions

Problem 7.13

From Eq. (7.2­19) we find that

Ã3;3(x) = 23=2Ã(23x ¡ 3)

= 2
p

2Ã(8x ¡ 3)

and using the Haar wavelet function definition from Eq. (7.2­30), obtain the plot shown

in Fig. P7.13.

To express Ã3;3(x) as a function of scaling functions, we employ Eq. (7.2­28) and the

Haar wavelet vector defined in Example 7.6—that is, hÃ(0) = 1=
p

2 and hÃ(1) =

¡1=
p

2. Thus we get

Ã(x) =
X

n

hÃ(n)
p

2'(2x ¡ n)

so that

Ã(8x ¡ 3) =
X

n

hÃ(n)
p

2'(2[8x ¡ 3] ¡ n)

=
1p
2

p
2'(16x ¡ 6) +

µ¡1p
2

¶ p
2'(16x ¡ 7)

= '(16x ¡ 6) ¡ '(16x ¡ 7):

Then, since Ã3;3 = 2
p

2Ã(8x ¡ 3),

Ã3;3 = 2
p

2Ã(8x ¡ 3)

= 2
p

2'(16x ¡ 6) ¡ 2
p

2'(16x ¡ 7):

Figure P7.13

Problem 7.14

Using Eq. (7.2­22),

Problem 7.15 97

V3 = V2 © W2

= V1 © W1 © W2

= V0 © W0 © W1 © W2:

The scaling and wavelet functions are plotted in Fig. P7.14.

Figure P7.14

Problem 7.15

With j0 = 1 the approximation coefficients are c1(0) and c1(1):

c1(0) =

1=2Z

0

x2
p

2dx =

p
2

24

c1(1) =

1Z

1=2

x2
p

2dx =
7
p

2

24
:

Therefore, the V1 approximation is
p

2

24
'1;0(x) +

7
p

2

24
'1;1 (x) ;

which, when plotted, is identical to the V1 approximation in Fig. 7.13(d). The last two

coefficients are d1(0) and d1(1), which are computed as in the example. Thus, the

98 Chapter 7 Problem Solutions

expansion is

y =

p
2

24
'1;0(x) +

7
p

2

24
'1;1(x) +

"
¡

p
2

32
Ã1;0(x) ¡ 3

p
2

32
Ã1;1(x)

#
+ ¢ ¢ ¢

Problem 7.16

(a) Since M = 4, J = 2, and j0 = 1, the summations in Eqs. (7.3­5) through (7.3­7) are

performed over x = 0; 1; 2; 3, j = 1, and k = 0; 1. Using Haar functions and assuming

that they are distributed over the range of the input sequence, we get

W'(1; 0) =
1

2

£
f(0)'1;0(0) + f(1)'1;0(1) + f(2)'1;0(2) + f(3)'1;0(3)

¤

=
1

2

h
(1)(

p
2) + (4)(

p
2) + (¡3)(0) + (0)(0)

i
=

5
p

2

2

W'(1; 1) =
1

2

£
f(0)'1;1(0) + f(1)'1;1(1) + f(2)'1;1(2) + f(3)'1;1(3)

¤

=
1

2

h
(1)(0) + (4)(0) + (¡3)(

p
2) + (0)(

p
2)

i
=

¡3
p

2

2

WÃ(1; 0) =
1

2

£
f(0)Ã1;0(0) + f(1)Ã1;0(1) + f(2)Ã1;0(2) + f(3)Ã1;0(3)

¤

=
1

2

h
(1)(

p
2) + (4)(¡

p
2) + (¡3)(0) + (0)(0)

i
=

¡3
p

2

2

WÃ(1; 1) =
1

2

£
f(0)Ã1;1(0) + f(1)Ã1;1(1) + f(2)Ã1;1(2) + f(3)Ã1;1(3)

¤

=
1

2

h
(1)(0) + (4)(0) + (¡3)(

p
2) + (0)(¡

p
2)

i
=

¡3
p

2

2
so that the DWT is f5

p
2=2;¡3

p
2=2; ¡3

p
2=2; ¡3

p
2=2g:

(b) Using Eq. (7.3­7),

f(x) =
1

2
[W'(1; 0)'1;0(x) + W'(1; 1)'1;1(x) +

WÃ(1; 0)Ã1;0(x) + WÃ(1; 1)Ã1;1(x)]

which, with x = 1, becomes

f(1) =

p
2

4

h
(5)(

p
2) + (¡3)(0) + (¡3)(

p
2) + (¡3)(0)

i

=
2(

p
2)2

4
= 1:

Problem 7.17

Intuitively, the continuous wavelet transform (CWT) calculates a “resemblance index”

Problem 7.18 99

between the signal and the wavelet at various scales and translations. When the index is

large, the resemblance is strong; else it is weak. Thus, if a function is similar to itself

at different scales, the resemblance index will be similar at different scales. The CWT

coefficient values (the index) will have a characteristic pattern. As a result, we can say

that the function whose CWT is shown is self­similar—like a fractal signal.

Problem 7.18

(a) The scale and translation parameters are continuous, which leads to the overcom­

pleteness of the transform.

(b) The DWT is a better choice when we need a space saving representation that is

sufficient for reconstruction of the original function or image. The CWT is often easier

to interpret because the built­in redundancy tends to reinforce traits of the function or

image. For example, see the self­similarity of Problem 7.18.

Problem 7.19

The filter bank is the first bank in Fig. (7.17), as shown in Fig. P7.19:

Figure P7.19

Problem 7.20

The complexity is determined by the number of coefficients in the scaling and wavelet

vectors—that is, by n in Eqs. (7.2­18) and (72­28). This defines the number of taps in

filters hÃ (¡n), h' (¡n), hÃ (n), and h' (n).

100 Chapter 7 Problem Solutions

Problem 7.21

(a) Input '(n) = f1; 1; 1; 1; 1; 1; 1; 1g = '0;0(n) for a three­scale wavelet transform

with Haar scaling and wavelet functions. Since wavelet transform coefficients measure

the similarity of the input to the basis functions, the resulting transform is

fW'(0; 0); WÃ(0; 0); WÃ(1; 0); WÃ(1; 1); WÃ(2; 0); WÃ(2; 1); WÃ(2; 2)

WÃ(2; 3)g = f2
p

2; 0; 0; 0; 0; 0; 0; 0g
The W'(0; 0) term can be computed using Eq. (7.3­5) with j0 = k = 0.

(b) Using the same reasoning as in part (a), the transform is f0; 2
p

2; 0; 0; 0; 0; 0; 0g.

(c) For the given transform, WÃ(2; 2) = B and all other transform coefficients are 0.

Thus, the input must be proportional to Ã2;2(x). The input sequence must be of the form

f0; 0; 0; 0; C;¡C; 0; 0g for some C. To determine C, use Eq. (7.3­6) to write

WÃ(2; 2) =
1p
8
ff(0)Ã2;2(0) + f(1)Ã2;2(1) + f(2)Ã2;2(2) + f(3)Ã2;2(3) +

f(4)Ã2;2(4) + f(5)Ã2;2(5) + f(6)Ã2;2(6) + f(7)Ã2;2(7)g

=
1p
8
f(0)(0) + (0)(0) + (0)(0) + (0)(0) + (C)(2) + (¡C)(¡2) +

(0)(0) + (0)(0)g

=
1p
8
f2C + 2Cg =

4Cp
8

=
p

2C:

Because this coefficient is known to have the value B, we have that
p

2C = B or

C =

p
2

2
B:

Thus, the input sequence is f0; 0; 0; 0;
p

2B=2;¡
p

2B=2; 0; 0g. To check the result

substitute these values into Eq. (7.3­6):

WÃ(2; 2) =
1p
8
f(0)(0) + (0)(0) + (0)(0) + (0)(0) + (

p
2

2
B)(2) +

(¡
p

2

2
B)(¡2) + (0)(0) + (0)(0)g

=
1p
8
f
p

2B +
p

2Bg

= B:

Problem 7.22

They are both multi­resolution representations that employ a single reduced­resolution

Problem 7.23 101

approximation image and a series of “difference” images. For the FWT, these “differ­

ence” images are the transform detail coefficients; for the pyramid, they are the predic­

tion residuals.

To construct the approximation pyramid that corresponds to the transform in Fig. 7.8(a),

we will use the FWT¡1 2­d synthesis bank of Fig. 7.22(c). First, place the 64 £ 64 ap­

proximation “coefficients” from Fig. 7.8(a) at the top of the pyramid being constructed.

Then use it, along with 64 £ 64 horizontal, vertical, and diagonal detail coefficients

from the upper­left of Fig. 7.8(a), to drive the filter bank inputs in Fig. 7.22(c). The

output will be a 128 £ 128 approximation of the original image and should be used as

the next level of the approximation pyramid. The 128 £ 128 approximation is then used

with the three 128 £ 128 detail coefficient images in the upper 1/4 of the transform in

Fig. 7.8(a) to drive the synthesis filter bank in Fig. 7.22(c) a second time—producing

a 256 £ 256 approximation that is placed as the next level of the approximation pyra­

mid. This process is then repeated a third time to recover the 512 £ 512 original image,

which is placed at the bottom of the approximation pyramid. Thus, the approximation

pyramid would have 4 levels.

Problem 7.23

One pass through the FWT 2­d filter bank of Fig. 7.22(a) is all that is required (see Fig.

P7.23):

Figure P7.23

102 Chapter 7 Problem Solutions

Problem 7.24

As can be seen in the sequence of images that are shown, the DWT is not shift in­

variant. If the input is shifted, the transform changes. Since all original images in the

problem are 128 £ 128, they become the W'(7;m;n) inputs for the FWT computa­

tion process. The filter bank of Fig. 7.22(a) can be used with j + 1 = 7. For a single

scale transform, transform coefficients W'(6;m;n) and W i
Ã(6;m;n) for i = H;V; D

are generated. With Haar wavelets, the transformation process subdivides the image into

non­overlapping 2 £ 2 blocks and computes 2­point averages and differences (per the

scaling and wavelet vectors). Thus, there are no horizontal, vertical, or diagonal detail

coefficients in the first two transforms shown; the input images are constant in all 2 £ 2

blocks (so all differences are 0). If the original image is shifted by 1 pixel, detail coef­

ficients are generated since there are then 2 £ 2 areas that are not constant. This is the

case in the third transform shown.

Problem 7.25

The table is completed as shown in Fig. P7.25.

Figure P7.25

The functions are determined using Eqs. (7.2­18) and (7.2­28) with the Haar scaling and

Problem 7.26 103

wavelet vectors from Examples 7.5 and 7.6:

'(x) = '(2x) + '(2x ¡ 1)

Ã(x) = '(2x) ¡ '(2x ¡ 1):

Problem 7.26

(a) The analysis tree is shown in Fig. P7.26(a):

(b) The corresponding frequency spectrum is shown in Fig. P7.26(b):

Figure P7.26

Problem 7.27

First use the entropy measure to find the starting value for the input sequence, which is

Eff(n)g =
7X

n=0

f2(n) ln
£
f2(n)

¤
= 2:7726:

104 Chapter 7 Problem Solutions

Then perform an iteration of the FWT and compute the entropy of the generated approx­

imation and detail coefficients. They are 2.0794 and 0, respectively. Since their sum is

less than the starting entropy of 2.7726, we will use the decomposition.

Because the detail entropy is 0, no further decomposition of the detail is warranted.

Thus, we perform another FWT iteration on the approximation to see if it should be

decomposed again. This process is then repeated until no further decompositions are

called for. The resulting optimal tree is shown in Fig. P7.27:

Figure P7.27

8 Problem Solutions

Problem 8.1

(a) A histogram equalized image (in theory) has a gray level distribution which is uni­

form. That is, all gray levels are equally probable. Eq. (8.1­4) thus becomes

Lavg =
1

2n

2n¡1X

k=0

(rk)

where 1=2n is the probability of occurrence of any gray level. Since all levels are equally

probable, there is no advantage to assigning any particular gray level fewer bits than any

other. Thus, we assign each the fewest possible bits required to cover the 2n levels.

This, of course is n bits and Lavg becomes n bits also:

Lavg =
1

2n

2n¡1X

k=0

(n)

=
1

2n
(2n)n

= n:

(b) Since interpixel redundancy is associated with the spatial arrangement of the gray

levels in the image, it is possible for a histogram equalized image to contain a high level

of interpixel redundancy ­ or none at all.

Problem 8.2

(a) A single line of raw data contains n1 = 2n bits. The maximum run length would be

2n and thus require n bits for representation. The starting coordinate of each run also

requires n bits since it may be arbitrarily located within the 2n pixel line. Since a run

length of 0 can not occur and the run­length pair (0; 0) is used to signal the start of each

new line ­ an additional 2n bits are required per line. Thus, the total number of bits

106 Chapter 8 Problem Solutions

required to code any scan line is

n2 = 2n + Navg (n + n)

= 2n (1 + Navg)

where Navg is the average number of run­length pairs on a line. To achieve some level

of compression, CR must be greater than 1. So,

CR =
n1

n2

=
2n

2n (1 + Navg)
> 1

and

Navg <
2n¡1

n
¡ 1:

(b) For n = 10, Navg must be less than 50.2 run­length pairs per line.

Problem 8.3

Table P8.3 shows the data, its 6­bit code, the IGS sum for each step, the actual IGS 3­bit

code and its equivalent decoded value, the error between the decoded IGS value and the

input values, and the squared error.

Table P8.3

Data 6­bit Code Sum IGS Code Decoded IGS Error Sq. Error

000000

12 001100 001100 001 8 4 16

12 001100 010000 010 16 ­4 16

13 001101 001101 001 8 5 25

13 001101 010010 010 16 ­3 9

10 001010 001100 001 8 2 4

13 001101 010001 010 16 ­3 9

57 111001 111001 111 56 1 1

54 110110 110111 110 48 6 36

Problem 8.4

The average square error is the sum of the last column of the table in Problem 8.3 divided

by 8, the number of data points. This computation yields 116/8 or 14.5. The rms error

is then 3.81, the square root of 14.5. The squared signal value (i.e., 6400) is obtained by

Problem 8.5 107

summing the squares of column 5 of the table. The rms signal­to­noise ratio is then

SNRrms =
2

r
6400

116
= 7:43

Problem 8.5

(a) For the first value of the table (i.e., 0110), substitution into Eq. (8.2­1) gives:

h1 = b3 © b2 © b0 = 0 © 1 © 0 = 1

h2 = b3 © b1 © b0 = 0 © 1 © 0 = 1

h3 = b3 = 0

h4 = b2 © b1 © b0 = 1 © 1 © 0 = 0

h5 = b2 = 1

h6 = b1 = 1

h7 = b0 = 0:

Thus, the encoded value is 1100110. The remaining values of Table 8.2 are treated

similarly. The resulting code words are 0011001, 1110000, and 1111111, respectively.

(b) For 1100111, construct the following three bit odd parity word:

c1 = h1 © h3 © h5 © h7 = 1 © 0 © 1 © 1 = 1

c2 = h2 © h3 © h6 © h7 = 1 © 0 © 1 © 1 = 1

c4 = h4 © h5 © h6 © h7 = 0 © 1 © 1 © 1 = 1:

A parity word of 1112 indicates that bit 7 is in error. The correctly decoded binary value

is 01102. In a similar manner, the parity words for 1100110 and 1100010 are 000 and

101, respectively. The decoded values are identical and are 0110.

Problem 8.6

The conversion factors are computed using the logarithmic relationship

loga x =
1

logb a
logb x:

Thus, 1 Hartley = 3.3219 bits and 1 nat = 1.4427 bits.

Problem 8.7

Let the set of source symbols be fa1; a2; :::; aqg with probabilities

z = [P (a1) ; P (a2) ; :::; P (aq)]
T :

108 Chapter 8 Problem Solutions

Then, using Eq. (8.3­3) and the fact that the sum of all P (ai) is 1, we get

log q ¡ H (z) =

qX

i=1

P (ai) log q +

qX

i=1

P (ai) log P (ai)

=

qX

i=1

P (ai) log qP (ai) :

Using the log relationship from Problem 8.6, this becomes

= log e

qX

i=1

P (ai) ln qP (ai) :

Then, multiplying the inequality lnx · x ¡ 1 by ­1 to get ln1=x ¸ 1 ¡ x and applying

it to this last result,

log q ¡ H (z) ¸ log e

qX

i=1

P (ai)

·
1 ¡ 1

qP (ai)

¸

¸ log e

"
qX

i=1

P (ai) ¡ 1

q

qX

i=1

P (ai)

P (ai)

#

¸ log e [1 ¡ 1]

¸ 0

so that

log q ¸ H (z) :

Therefore, H (z) is always less than, or equal to, log q. Furthermore, in view of the

equality condition (x = 1) for ln 1=x ¸ 1 ¡ x, which was introduced at only one point

in the above derivation, we will have strict equality if and only if P (ai) = 1=q for all i.

Problem 8.8

The source symbol probabilities are taken directly from z and are P (a = 0) = 0:75 and

P (a = 1) = 0:25. Likewise, the elements of Q are the forward transition probabilities

P (b = 0ja = 0) = 2=3, P (b = 0ja = 1) = 1=10, P (b = 1ja = 0) = 1=3, and

P (b = 1ja = 1) = 9=10. The matrix multiplication of Eq. (8.3­6) yields the output

probabilities

v = Qz =

"
2
3

1
10

1
3

9
10

#"
3
4
1
4

#
=

"
21
40
19
40

#
:

Thus, P (b = 0) = 21=40 and P (b = 1) = 19=40. The conditional input probabilities

are computed using Bayes’ formula

P (ajjbk) =
P (bkjaj)P (aj)

P (bk)
:

Thus, P (a = 0jb = 0) = 20=21, P (a = 0jb = 1) = 10=19, P (a = 1jb = 0) = 1=21,

Problem 8.9 109

and P (a = 1jb = 1) = 9=19. Finally, the joint probabilities are computed using

P (aj; bk) = P (aj)P (bkjaj)

which yields P (a = 0; b = 0) = 1=2, P (a = 0; b = 1) = 1=4, P (a = 1; b = 0) =

1=40, and P (a = 1; b = 1) = 9=40.

Problem 8.9

(a) Substituting the given values of pbs and pe into the binary entropy function derived

in the example, the average information or entropy of the source is 0.811 bits/symbol.

(b) The equivocation or average entropy of the source given that the output has been

observed (using Eq. 8.3­9) is 0.75 bits/symbol. Thus, the decrease in uncertainty is

0.061 bits/symbol.

(c) It is the mutual information I(z;v) of the system and is less than the capacity of

the channel, which is, in accordance with the equation derived in the example, 0.0817

bits/symbol.

Problem 8.10

(a) The proof proceeds by substituting the elements of Q into Eq. (8.3­13) and simpli­

fying. The source probabilities are left as variables during the simplification.

C = maxz [I [z;v]]

= maxz

PJ
j=1

PK
k=1 P (aj) qkj log qkjP

J
i=1 P (aj)qki

= maxz

hP3
k=1 P (a1) qk1 log qk1P 2

i=1 P (aj)qki

+
P3

k=1 P (a2) qk2 log qk2P2
i=1 P (aj)qki

i

= maxz

h
P (a1)

³
(1 ¡ ¯) log 1¡¯

P (a1)(1¡¯) + ¯ log ¯
P (a1)(1¡¯) + 0

´

+ P (a2)
³
0 + ¯ log ¯

P (a2)(1¡¯)
+ (1 ¡ ¯) log 1¡¯

P (a2)(1¡¯)

´i

= maxz

h
P (a1)

³
(1 ¡ ¯) log 1

P (a1)
+ ¯ log 1

2P (a1)

´

+ P (a2)
³
¯ log 1

2P (a2)
+ (1 ¡ ¯) log 1

P (a2)

´i

= maxz [¡P (a1) ((1 ¡ ¯) log P (a1) + ¯ log 2P (a1))

¡ P (a2) (¯ log 2P (a2) + (1 ¡ ¯) log P (a2))]

110 Chapter 8 Problem Solutions

= maxz [¡P (a1) ((1 ¡ ¯) log P (a1) + ¯ log 2 + ¯ log P (a1))

¡ P (a2) (¯ log 2 + ¯ log P (a2) + (1 ¡ ¯) log P (a2))]

= maxz [¡P (a1) (log P (a1) + ¯ log 2) ¡ P (a2) (¯ log 2 + log P (a2))]

= maxz [¡P (a1) log P (a1) ¡ P (a2) log P (a2) ¡ P (a1)¯ log 2)

¡ P (a2)¯ log 2] :

Noting that the first two terms of this sum are the entropy of the source and factoring out

the common factor in the last two terms, we get

C = max
z

[H (z) ¡ (P (a1) + P (a2))¯ log 2] :

Since the sum of the source probabilities is 1 and the maximum entropy of a binary

source is also 1 with both symbols equally probable, this reduces to

C = 1 ¡ ¯:

(b) Substituting 0.5 into the above equation, the capacity of the erasure channel is 0.5.

Substituting 0.125 into the equation for the capacity of a BSC given in Section 8.3.2, we

find that its capacity is 0.456. Thus, the binary erasure channel with a higher probability

of error has a larger capacity to transfer information.

Problem 8.11

(a) The plot is shown in Fig. P8.11.

(b) Dmax is ¾2.

(c) If we wish to code the source in this example so that the maximum average encoding­

decoding distortion D is 0:75¾2, we first evaluate R(D) for D = 0:75 ¾2. Since

R(0:75¾2) = 0:21, we know that at least 0.21 code bits per source symbol must be

used to achieve the fidelity objective. Thus, this is the maximum possible information

compression under this criterion.

Problem 8.12

(a) There are two unique codes.

(b) The codes are: (1) 0, 11, 10 and (2) 1, 00, 01. The codes are complements of one

another. They are constructed by following the Huffman procedure for three symbols of

arbitrary probability.

Problem 8.13 111

Figure P8.11

Problem 8.13

(a) The entropy is computed using Eq. (8.3­3) and is 2.6508 bits/symbol.

(b) The specific binary codes assigned to each gray level may vary depending upon

the arbitrary selection of 1s and 0s assigned at each step of the coding algorithm. The

number of bits used for each gray level, however, should be the same for all versions

constructed. The construction of Code 2 in Table 8.1 proceeds as follows:

Step 1: Arrange according to symbol probabilities from left to right, as shown in Fig.

P8.13(a).

Step 2: Assign code words based on the ordered probabilities from right to left, as shown

in Fig. P8.13(b).

Step 3: The codes associated with each gray level are read at the left of the diagram.

(c) ­ (f) The remaining codes and their average lengths, which are computed using (8.1­

4), are shown in Table P8.13. Note that two Huffman shift codes are listed, one of

which is the best. In generating these codes, the sum of probabilities 4 ­ 7 were used

as the probability of the shift up symbol. The sum is 0.19, which is equivalent to the

probability of symbol r0. Thus, the two codes shown differ by the ordering of r0 and

the shift symbol during the Huffman coding process.

112 Chapter 8 Problem Solutions

Table P8.13

rk pr (rk) B1­code 2­bit Shift H. Shift 1 H. Shift 2 Huffman

r0 = 0 0:19 C0C0 10 11 000 11

r1 = 1=7 0:25 C0 00 01 01 01

r2 = 2=7 0:21 C1 01 10 10 10

r3 = 3=7 0:16 C0C1 1100 001 001 001

r4 = 4=7 0:08 C1C0 1101 00001 1101 0001

r5 = 5=7 0:06 C1C1 1110 00010 1110 00001

r6 = 6=7 0:03 C0C0C0 111100 00011 11000 000001

r7 = 1 0:02 C0C0C1 111101 000001 11001 000000

Length 3:18 2:8 2:75 2:78 2:7

The entropy of the source is H = 2:65 from Eq. (8.3­3) and the probabilities from

column 2.

Problem 8.14

The arithmetic decoding process is the reverse of the encoding procedure. Start by

dividing the [0, 1) interval according to the symbol probabilities. This is shown in Table

P8.14. The decoder immediately knows the message 0.23355 begins with an “e”, since

the coded message lies in the interval [0.2, 0.5). This makes it clear that the second

symbol is an “a”, which narrows the interval to [0.2, 0.26). To further see this, divide

the interval [0.2, 0.5) according to the symbol probabilities. Proceeding like this, which

is the same procedure used to code the message, we get “eaii!”.

Table P8.14

Symbol Probability Range

a 0.2 [0.0, 0.2)

e 0.3 [0.2, 0.5)

i 0.1 [0.5, 0.6)

o 0.2 [0.6, 0.8)

u 0.1 [0.8, 0.9)

! 0.1 [0.9, 1.0)

Problem 8.14 113

Figure P8.13

114 Chapter 8 Problem Solutions

Problem 8.15

Assume that the first 256 codes in the starting dictionary are the ASCII codes. If you

assume 7­bit ASCII, the first 128 locations are all that are needed. In either case, the

ASCII ”a” corresponds to location 97. The coding proceeds as shown in Table P8.15.

Table P8.15

Recognized Character Output Dict. Address Dict. Entry

a

a a 97 256 aa

a a

aa a 256 257 aaa

a a

aa a

aaa a 257 258 aaaa

a a

aa a

aaa a

aaaa a 258 259 aaaaa

a 97

Problem 8.16

The input to the LZW decoding algorithm for the example in Example 8.12 is

39 39 126 126 256 258 260 259 257 126

The starting dictionary, to be consistent with the coding itself, contains 512 locations–

with the first 256 corresponding to gray level values 0 through 255. The decoding algo­

rithm begins by getting the first encoded value, outputting the corresponding value from

the dictionary, and setting the ”recognized sequence” to the first value. For each addi­

tional encoded value, we (1) output the dictionary entry for the pixel value(s), (2) add a

new dictionary entry whose content is the ”recognized sequence” plus the first element

of the encoded value being processed, and (3) set the ”recognized sequence” to the en­

coded value being processed. For the encoded output in Example 8.12, the sequence of

operations is as shown in Table P8.16.

Note, for example, in row 5 of the table that the new dictionary entry for location 259

is 126­39, the concatenation of the currently recognized sequence, 126, and the first

Problem 8.17 115

element of the encoded value being processed–the 39 from the 39­39 entry in dictionary

location 256. The output is then read from the third column of the table to yield

39 39 126 126

39 39 126 126

39 39 126 126

39 39 126 126

where it is assumed that the decoder knows or is given the size of the image that was

recieved. Note that the dictionary is generated as the decoding is carried out.

Table P8.16

Recognized Encoded Value Pixels Dict. Address Dict. Entry

39 39

39 39 39 256 39­39

39 126 126 257 39­126

126 126 126 258 126­126

126 256 39­39 259 126­39

256 258 126­126 260 39­39­126

258 260 39­39­126 261 126­126­39

260 259 126­39 262 39­39­126­126

259 257 39­126 263 126­39­39

257 126 126 264 39­126­126

Problem 8.17

(a) Using Eq. (8.4­3), form Table P8.17.

Table P8.17

Binary Gray Code Binary Gray Code

0000 0000 1000 1100

0001 0001 1001 1101

0010 0011 1010 1111

0011 0010 1011 1110

0100 0110 1100 1010

0101 0111 1101 1011

0110 0101 1110 1001

0111 0100 1111 1000

116 Chapter 8 Problem Solutions

(b) The procedure is to work from the most significant bit to the least significant bit

using the equations:
am¡1 = gm¡1

ai = gi © ai+1 0 · i · m ¡ 2:
The decoded binary value is thus 0101100111010.

Problem 8.18

(a) Using the procedure described in Section 8.4.3, the decoded line is

[W 1001 W W W W W W 0000 0010 W W W W W W]

where W denotes four white pixels ­ i.e., 1111.

(b) ­ (c) Establish the convention that sub­blocks are included in the code string from

left to right. Then, using brackets to clarify the decomposition steps, we get

1 [[W 1001 W W W W W W] [0000 0010 W W W W W W]]

1 [1 [W 1001 W W] [W W W W]] [1 [0000 0010 W W] [W W W W]]]

1 [1 [1 [[W 1001] [W W]] [0]] [1 [1 [[0000 0010] [W W]] [0]]]

1 [1 [1 [1 [W] [1001]] [0]] [0]] [1 [1 [1 [0000] [0010]] [0]] [0]]]

1 [1 [1 [1 [0] [11001]] [0]] [0]] [1 [1 [1 [10000] [10010]] [0]] [0]]]

Thus, the encoded string is 111101100100111100001001000, which requires 27 bits.

The first encoding required 28 bits.

Problem 8.19

(a) The motivation is clear from Fig. 8.17. The transition at c must somehow be tied

to a particular transition on the previous line. Note that there is a closer white to black

transition on the previous line to the right of c, but how would the decoder know to use

it instead of the one to the left. Both are less than ec. The first similar transition past e

establishes the convention to make this decision.

(b) An alternate solution would be to include a special code which skips transitions on

the previous line until you get to the closest one.

Problem 8.20

(a) Substituting ½h = 0 into Eq. (8.5­12) and evaluating it to form the elements of R

Problem 8.21 117

and r, we get

R = ¾2

"
1 ½

½ 1

#
and r = ¾2

"
½

½2

#
:

(b) First form the inverse of R,

R¡1 =
1

¾2 (1 ¡ ½2)

"
1 ¡½

¡½ 1

#
:

Then, perform the matrix multiplication of Eq. (8.5­8):

® = R¡1r =
¾2

¾2 (1 ¡ ½2)

"
½

¡
1 ¡ ½2

¢

0

#
=

"
½

0

#
:

Thus, ®1 = ½ and ®2 = 0.

(c) The variance is computed using Eq. (8.5­11):

¾2
e = ¾2 ¡ ®T r =

h
½ 0

i "
½

½2

#
= ¾2

¡
1 ¡ ½2

¢
:

Problem 8.21

The derivation proceeds by substituting the uniform probability function into Eqs. (8.5­

20) ­ (8.5­22) and solving the resulting simultaneous equations with L = 4. Eq. (8.5­21)

yields
s0 = 0

s1 = 1
2

(t1 + t2)

s2 = 1:
Substituting these values into the integrals defined by Eq. (8.5­20), we get two equations.

The first is (assuming s1 · A)Z s1

s0

(s ¡ t1) p (s) ds = 0

1

2A

Z 1
2 (t1+t2)

0

(s ¡ t1) ds =
s2

2
¡ t1s

¯̄
¯̄
¯

1
2 (t1 + t2)

0
= 0

(t1 + t2)
2 ¡ 4t1 (t1 + t2) = 0

(t1 + t2) (t2 ¡ 3t1) = 0

t1 = ¡t2 and t2 = 3t1:
The first of these relations does not make sense since both t1 and t2 must be positive.

The second relationship is a valid one. The second integral yields (noting that s1 is less

than A so the integral from A to 1 is 0 by the definition of p(s))

1

2A

Z A

1
2 (t1+t2)

(s ¡ t2) ds =
s2

2
¡ t2s

¯̄
¯̄
¯

A
1
2 (t1 + t2)

= 0

118 Chapter 8 Problem Solutions

4A2 ¡ 8At2 ¡ (t1 + t2)
2 ¡ 4t2 (t1 + t2) = 0:

Substituting t2 = 3t1 from the first integral simplification into this result, we get

8t21 ¡ 6At1 + A2 = 0£
t1 ¡ A

2

¤
(8t1 ¡ 2A) = 0

t1 = A
2 and t1 = A

4 :

Back substituting these values of t1, we find the corresponding t2 and s1 values:

t2 = 3A
2 and s1 = A for t1 = A

2

t2 = 3A
4

and s1 = A
2

for t1 = A
4
:

Since s1 = A is not a real solution (the second integral equation would then be evaluated

from A to A, yielding 0 or no equation), the solution is given by the second. That is,

s0 = 0 s1 = A
2 s2 = 1

t1 = A
4

t2 = 3A
4

Problem 8.22

Following the procedure in the flow chart of Fig. 8.37, the proper code is

0001 010 1 0011000011 0001

where the spaces have been inserted for readability alone. The coding mode sequence is

pass, vertical (1 left), vertical (directly below), horizontal (distances 3 and 4), and pass.

Problem 8.23

(a) ­ (b) Following the procedure outlined in Section 8.6.2, we obtain the results shown

in Table P8.23.

Problem 8.24

Since the T1 transfer rate is 1.544 Mbit/sec, a 6 second transfer will provide

(1:544 £ 106)(6 sec) = 9:264 £ 106 bits

of data. The initial approximation of the X­ray must contain no more than this number

of bits. The required compression ratio is thus

CR =
4096 £ 4096 £ 12

9:264 £ 106
= 21:73

The JPEG transform coding approach of Section 6.6 can achieve this level of compres­

sion and provide reasonably good reconstructions. At the X­ray encoder, the X­ray can

be JPEG compressed using a normalization array that yields about a 25:1 compression.

Problem 8.22 119

While it is being transmitted over the T1 line to the remote viewing station, the encoder

can decode the compressed JPEG data and identify the “differences” between the result­

ing X­ray approximation and the original X­ray image. Since we wish to transmit these

“differences” over a span of 1 minute with refinements every 5 ­ 6 seconds, there can be

no more than
60 sec

6
to

60 sec
5

= 10 to 12 refinements.

If we assume that 12 refinements are made and that each refinement corresponds to

the “differences” between one of the 12 bits in the original X­ray and the JPEG recon­

structed approximation, then the compression that must be obtained per bit (to allow a 6

second average transfer time for each bit) is

CR =
4096 £ 4096 £ 1

9:264 £ 106
= 1:81

where, as before, the bottom of the fraction is the number of bits that can be transmitted

over a T1 line in 6 seconds. Thus, the “difference” data for each bit must be compressed

by a factor just less than 2. One simple way to generate the “difference information” is to

XOR the actual X­ray with the reconstructed JPEG approximation. The resulting binary

image will contain a 1 in every bit position at which the approximation differs from the

original. If the XOR result is transmitted one bit at a time beginning with the MSB

and ending with the LSB, and each bit is compressed by an average factor of 1.81:1,

we will achieve the performance that is required in the problem statement. To achieve

an average error­free bit­plane compression of 1.81:1 (see Section 6.4), the XOR data

can be Gray coded, run­length coded, and finally variable­length coded. A conceptual

block diagram for both the encoder and decoder are given below. Note that the decoder

computes the bit refinements by XORing the decoded XOR data with the reconstructed

JPEG approximation.

Table P8.23

DC Coefficient Difference Two’s Complement Value Code

­7 1...1001 00000

­6 1...1010 00001

­5 1...1011 00010

­4 1...1100 00011

4 0...0100 00100

5 0...0101 00101

6 0...0110 00110

7 0...0111 00111

120 Chapter 8 Problem Solutions

Figure P8.24

Problem 8.25

To demonstrate the equivalence of the lifting based approach and the traditional FWT

filter bank method, we simply derive general expressions for one of the odd and even

outputs of the lifting algorithm of Eq. (8.6­2). For example, the Y (0) output of step 4

of the algorithm can be written as

Y4 (0) = Y2 (0) + ± [Y3 (¡1) + Y3 (1)]

= X (0) + ¯ [Y1 (¡1) + Y1 (1)] + ± [Y3 (¡1) + Y3 (1)]

where the subscripts on the Y ’s have been added to identify the step of the lifting al­

gorithm from which the value is generated. Continuing this substitution pattern from

earlier steps of the algorithm until Y4 (0) is a function of X’s only, we get

Problem 8.25 121

Y (0) = [1 + 2®¯ + 2®± + 6®¯°± + 2°±]X (0)

+ [¯ + 3¯°± + ±] X (1)

+ [®¯ + 4®¯°± + ®± + °±]X (2)

+ [¯°±] X (3)

+ [®¯°±] X (4)

+ [¯ + 3¯°± + ±] X (¡1)

+ [®¯ + 4®¯°± + ®± + °±]X (¡2)

+ [¯°±] X (¡3)

+ [®¯°±] X (¡4) :

Thus, we can form the lowpass analysis filter coefficients shown in Table P8.25­1.

Table P8.25­1

Coefficient Index Expression Value

§4 ®¯°±=K 0.026748757

§3 ¯°±=K ­0.016864118

§2 (®¯ + 4®¯°± + ®± + °±) =K ­0.07822326

§1 (¯ + 3¯°± + ±) =K 0.26686411

0 (1 + 2®¯ + 2®± + 6®¯°± + 2°±) =K 0.60294901

Here, the coefficient expressions are taken directly from our expansion of Y (0) and the

division by K is in accordance with step 6 of Eq. (8.6­2). The coefficient values in

column 3 are determined by substituting the values of ®, ¯, °, ±, and K from the text

into the expressions of column 2. A similar derivation beginning with

Y3 (1) = Y1 (1) + ° [Y2 (0) + Y2 (2)]

yields

Y (1) = [® + 3®¯° + ±]X (0)

+ [1 + 2¯°] X (1)

+ [® + 3®¯° + ±]X (2)

+ [¯°] X (3)

+ [®¯°]X (4)

+ [¯°] X (¡1)

+ [®¯°]X (¡2)

from which we can obtain the highpass analysis filter coefficients shown in Table P8.25­

2

122 Chapter 8 Problem Solutions

Table P8.25­2

Coefficient Index Expression Value

­2 ¡K (®¯°) ­0.091271762

­1 ¡K (¯°) 0.057543525

0 ¡K (® + 3®¯° + ±) 0.591271766

1 ¡K (1 + 2¯°) ­1.115087053

2 ¡K (® + 3®¯° + ±) 0.591271766

3 ¡K (¯°) 0.057543525

4 ¡K (®¯°) ­0.091271762

Problem 8.26

From Eq. (8.6­5) and the problem statement, we get that

¹2LL = ¹0 = 8

²2LL = ²0 + 2 ¡ 2 = ²0 = 8:

Substituting these values into Eq. (8.6­4), we find that for the 2LL subband

¢2LL = 2(8+0)¡8

·
1 +

8

211

¸
= 1:00390625:

Here, we have assumed an 8­bit image so that Rb = 8. Likewise, using Eqs. (8.6­5),

(8.6­4), and Fig. 8.46 (to find the analysis gain bits for each subband), we get

¢2HH = 2(8+2)¡8
£
1 + 8

211

¤
= 4:015625

¢2HL = ¢2LH = 2(8+1)¡8
£
1 + 8

211

¤
= 2:0078125

¢1HH = 2(8+2)¡8
£
1 + 8

211

¤
= 4:015625

¢1HL = ¢1LH = 2(8+1)¡8
£
1 + 8

211

¤
= 2:0078125:

Problem 8.27

The appropriate MPEG decoder is shown in Fig. P8.27.

Figure P8.27

9 Problem Solutions

Problem 9.1

(a) Converting a rectangular to a hexagonal grid basically requires that even and odd

lines be displaced horizontally with respect to each other by one­half the horizontal

distance between adjacent pixels (see the figure in the problem statement). Since in

a rectangular grid there are no pixel values defined at the new locations, a rule must

be specified for their creation. A simple approach is to double the image resolution in

both dimensions by interpolation (see Section 2.4.5). Then, the appropriate 6­connected

points are picked out of the expanded array. The resolution of the new image will be the

same as the original (but the former will be slightly blurred due to interpolation). Figure

P9.1(a) illustrates this approach. The black points are the original pixels and the white

points are the new points created by interpolation. The squares are the image points

picked for the hexagonal grid arrangement.

(b) Rotations in a 6­neighbor arrangement are invariant to rotations in 60± increments.

(c) Yes. Ambiguities arise when there is more than one path that can be followed from

one 6­connected pixel to another. Figure P9.1(c) shows an example, in which the 6­

connected points of interest are in black.

Figure P9.1

124 Chapter 9 Problem Solutions

Problem 9.2

(a) The answer is shown shaded in Fig. P9.2.

(b) With reference to the sets shown in the problem statement, the answers are, from left

to right,

(A \ B \ C) ¡ (B \ C);

(A \ B \ C) [(A \ C) [(A \ B); and

fB \ (A [C)cg [f(A \ C) ¡ [(A \ C) \ (B \ C)]g :

Figure P9.2

Problem 9.3

With reference to the discussion in Section 2.5.2, m­connectivity is used to avoid multi­

ple paths that are inherent in 8­connectivity. In one­pixel­thick, fully connected bound­

aries, these multiple paths manifest themselves in the four basic patterns shown in Fig.

P9.3.

The solution to the problem is to use the hit­or­miss transform to detect the patterns

and then to change the center pixel to 0, thus eliminating the multiple paths. A basic

sequence of morphological steps to accomplish this is as follows:

X1 = A ~ B1

Y1 = A \ Xc
1

Problem 9.4 125

X2 = Y1 ~ B2

Y2 = Y1 \ Xc
2

X3 = Y2 ~ B3

Y3 = Y2 \ Xc
3

X4 = Y3 ~ B4

Y4 = Y3 \ Xc
4

where A is the input image containing the boundary.

(b) Only one pass is required. Application of the hit­or­miss transform using a given Bi

finds all instances of occurrence of the pattern described by that structuring element.

(c) The order does matter. For example, consider the sequence of points shown in Fig.

P9.3(c). and assume that we are traveling from left to right. If B1 is applied first,

point a will be deleted and point b will remain after application of all other structuring

elements.. If, on the other hand, B3 is applied first, point b will be deleted and point a

will remain. Thus, we would end up with different (but of course, acceptable) m­paths.

Figure P9.3

Problem 9.4

See Fig. P9.4. Keep in mind that erosion is the set described by the origin of the

structuring element, such that the structuring element is contained within the set being

eroded.

126 Chapter 9 Problem Solutions

Figure P9.4

Problem 9.5

(a) Erosion is set intersection. The intersection of two convex sets is convex also. See

Fig. P9.5 for solutions to parts (b) through (d). Keep in mind that the digital sets in

question are the larger black dots. The lines are shown for convenience in visualizing

what the continuous sets would be. In (b) the result of dilation is not convex because the

center point is not in the set. In (c) we see that the lower right point is not connected to

the others. In (d), it is clear that the two inner points are not in the set.

Figure P9.5

Problem 9.6

Refer to Fig. P9.6. The center of each structuring element is shown as a black dot.

Solution (a) was obtained by eroding the original set (shown dashed) with the structuring

element shown (note that the origin is at the bottom, right). Solution (b) was obtained

by eroding the original set with the tall rectangular structuring element shown. Solution

Problem 9.7 127

(c) was obtained by first eroding the image shown down to two vertical lines using the

rectangular structuring element; this result was then dilated with the circular structuring

element. Solution (d) was obtained by first dilating the original set with the large disk

shown. Then dilated image was then eroded with a disk of half the diameter of the disk

used for dilation.

Figure P9.6

Problem 9.7

The solutions to (a) through (d) are shown from top to bottom in Fig. P9.7.

Problem 9.8

(a) The dilated image will grow without bound. (b) A one­element set (i.e., a one­pixel

image).

Problem 9.9

(a) The image will erode to one element. (b) The smallest set that contains the structuring

element.

128 Chapter 9 Problem Solutions

Figure P9.7

Problem 9.10

The approach is to prove thatn
x 2 Z2

¯̄
¯(B̂)x \ A 6= ;

o
´ ©

x 2 Z2 jx = a + b for a 2 A and b 2 B
ª

:

The elements of (B̂)x are of the form x ¡ b for b 2 B. The condition (B̂)x \ A 6= ;
implies that for some b 2 B, x ¡ b 2 A, or x ¡ b = a for some a 2 A (note in the

preceding equation that x = a+b). Conversely, if x = a+b for some a 2 A and b 2 B,

then x ¡ b = a or x ¡ b 2 A, which implies that (B̂)x \ A 6= ;.

Problem 9.11

(a) Suppose that x 2 A © B. Then, for some a 2 A and b 2 B, x = a + b. Thus,

Problem 9.12 129

x 2 (A)b and, therefore, x 2 S
b2B

(A)b : On the other hand, suppose that x 2 S
b2B

(A)b :

Then, for some b 2 B, x 2 (A)b. However, x 2 (A)b implies that there exists an a 2 A

such that x = a + b. But, from the definition of dilation given in the problem statement,

a 2 A, b 2 B, and x = a + b imply that x 2 A © B.

(b) Suppose that x 2 S
b2B

(A)b : Then, for some b 2 B, x 2 (A)b. However, x 2 (A)b

implies that there exists an a 2 A such that x = a+ b. But, if x = a+b for some a 2 A

and b 2 B, then x¡b = a or x¡b 2 A, which implies that x 2
h
(B̂)x \ A 6= ;

i
. Now,

suppose that x 2
h
(B̂)x \ A 6= ;

i
. The condition (B̂)x \ A 6= ; implies that for some

b 2 B, x ¡ b 2 A or x ¡ b = a (i.e., x = a + b) for some a 2 A. But, if x = a + b for

some a 2 A and b 2 B, then x 2 (A)b and, therefore, x 2 S
b2B

(A)b.

Problem 9.12

The proof, which consists of proving that
©
x 2 Z2 jx + b 2 A , for every b 2 B

ª
´

©
x 2 Z2 j (B)x µ A

ª
,

follows directly from the definition of translation because the set (B)x has elements of

the form x + b for b 2 B. That is, x + b 2 A for every b 2 B implies that (B)x µ A.

Conversely, (B)x µ A implies that all elements of (B)x are contained in A, or x+b 2 A

for every b 2 B.

Problem 9.13

(a) Let x 2 AÄ B. Then, from the definition of erosion given in the problem statement,

for every b 2 B, x + b 2 A. But, x + b 2 A implies that x 2 (A)¡b : Thus, for every

b 2 B, x 2 (A)¡b, which implies that x 2 T
b2B

(A)¡b. Suppose now that x 2 T
b2B

(A)¡b.

Then, for every b 2 B, x 2 (A)¡b. Thus, for every b 2 B, x + b 2 A which, from the

definition of erosion, means that x 2 A Ä B.

(b) Suppose that x 2 A Ä B =
T

b2B

(A)¡b. Then, for every b 2 B, x 2 (A)¡b, or

x + b 2 A. But, as shown in Problem 9.12, x + b 2 A for every b 2 B implies that

(B)x µ A, so that x 2 A Ä B =
©
x 2 Z2 j (B)x µ A

ª
: Similarly, (B)x µ A implies

that all elements of (B)x are contained in A, or x + b 2 A for every b 2 B or, as in

(a), x + b 2 A implies that x 2 (A)¡b. Thus, if for every b 2 B, x 2 (A)¡b, then

x 2 T
b2B

(A)¡b.

130 Chapter 9 Problem Solutions

Problem 9.14

Starting with the definition of closing,

(A ² B)c = [(A © B) Ä B]c

= (A © B)c © B̂

= (Ac Ä B̂) © B̂

= Ac ± B̂:

Problem 9.15

(a) Erosion of a set A by B is defined as the set of all values of translates, z, of B such

that (B)z is contained in A. If the origin of B is contained in B, then the set of points

describing the erosion is simply all the possible locations of the origin of B such that

(B)z is contained in A. Then it follows from this interpretation (and the definition of

erosion) that erosion of A by B is a subset of A. Similarly, dilation of a set C by B is

the set of all locations of the origin of B̂ such that the intersection of C and (B̂)z is not

empty. If the origin of B is contained in B, this implies that C is a subset of the dilation

of C by B. Now, from Eq. (9.3­1), we know that A± B = (AÄB)©B. Let C denote

the erosion of A by B. It was already established that C is a subset of A. From the

preceding discussion, we know also that C is a subset of the dilation of C by B. But C

is a subset of A, so the opening of A by B (the erosion of A by B followed by a dilation

of the result) is a subset of A.

(b) From Eq. (9.3­3),

C ± B =
[

f(B)z j(B)z µ C g

and

D ± B =
[

f(B)z j(B)z µ Dg :

Therefore, if C µ D, it follows that C ± B µ D ± B.

Problem 9.16 131

(c) From (a), (A ± B) ± B µ (A ± B). From the definition of opening,

(A ± B) ± B = f(A ± B) Ä Bg © B

= f[(A Ä B) © B] Ä Bg © B

= f(A Ä B) ² Bg © B

¶ (A Ä B) © B

¶ A ± B:

But, the only way that (A ± B) ± B µ (A ± B) and (A ± B) ± B ¶ (A ± B) can hold

is if (A ± B) ± B = (A ± B). The next to last step in the preceding sequence follows

from the fact that the closing of a set by another contains the original set [this is from

Problem 9.16(a)].

Problem 9.16

(a) From Problem 9.14, (A ² B)c = Ac ± B̂, and, from Problem 9.15(a), it follows that

(A ² B)c = Ac ± B̂ µ Ac:

Taking the complement of both sides of this equation reverses the inclusion sign and we

have that A µ (A ² B), as desired.

(b) From Problem 9.16(b), if Dc µ Cc, then Dc ± B̂ µ Cc ± B̂ where we used Dc, Cc,

and B̂ instead of C, D, and B. From Problem 9.15, (C ² B)c = Cc±B̂ and (D ² B)c =

Dc ± B̂. Therefore, if Dc µ Cc then (D ² B)c µ (C ² B)c. Taking complements

reverses the inclusion, so we have that if C µ D, then (C ² B) µ (D ² B), as desired.

(c) Starting with the result of Problem 9.15,

(A ² B) ² B =
n
(A ² B)c ± B̂

oc

=
n
(Ac ± B̂) ± B̂

oc

=
n
(Ac ± B̂)

oc

= f(A ² B)cgc

= (A ² B) :

where the third step follows from Problem 9.15(c) and the fourth step follows from

Problem 9.14.

132 Chapter 9 Problem Solutions

Problem 9.17

The solution is shown in Fig. P9.17. Although the images shown could be sketched

by hand, they were done in MATLAB The size of the original is 647 £ 624 pixels.

A disk structuring element of radius 11 was used. This structuring element was just

large enough to encompass all noise elements, as given in the problem statement. The

images shown in Fig. P9.17 are: (a) erosion of the original, (b) dilation of the result, (c)

another dilation, and finally (d) an erosion. The main points we are looking for from

the student’s answer are: The first erosion (leftmost image) should take out all noise

elements that do not touch the rectangle, should increase the size of the noise elements

completely contained within the rectangle, and should decrease the size of the rectangle.

If worked by hand, the student may or may not realize that some ”imperfections” are left

along the boundary of the object. We do not consider this an important issue because

it is scale­dependent, and nothing is said in the problem statement about this. The first

dilation (next image) should shrink the noise components that were increased in erosion,

should increase the size of the rectangle, and should round the corners. The next dilation

should eliminate the internal noise components completely and further increase the size

of the rectangle. The final erosion (last image on the right) should then decrease the size

of the rectangle. The rounded corners in the final answer are an important point that

should be recognized by the student.

Figure P9.17

Problem 9.18 133

Problem 9.18

It was possible to reconstruct the three large squares to their original size because they

were not completely eroded and the geometry of the objects and structuring element

was the same (i.e., they were squares). This also would have been true if the objects

and structuring elements were rectangular. However, a complete reconstruction, for

instance, by dilating a rectangle that was partially eroded by a circle, would not be

possible.

Problem 9.19

(a) Select a one­pixel border around the image of the T, assuming that the resulting

subimage is odd, let the origin be located at the horizontal/vertical midpoint of this

subimage (if the dimensions were even, we could just as easily select any other point).

The resulting of applying the hit­or­miss transform would be a single point where the

two T’s were in perfect registration. The location of the point would be the same as the

origin of the structuring element.

(b) The hit­or­miss transform and (normalized) correlation are similar in the sense that

they produce their maximum value at the location of a perfect match, and also in the

mechanics of sliding the template (structuring element) past all locations in the image.

Major differences are the lack of a complex conjugate in the hit­or­miss transform, and

the fact that this transform produced a single nonzero binary value in this case, as op­

posed to the multiple nonzero values produced by correlation of the two images.

Problem 9.20

The key difference between the Lake and the other two features is that the former forms

a closed contour. Assuming that the shapes are processed one at a time, basic two­step

approach for differentiating between the three shapes is as follows:

Step 1. Apply an end­point detector to the object until convergence is achieved. If the

result is not the empty set, the object is a Lake. Otherwise it is a Bay or a Line.

Step 2. There are numerous ways to differentiate between a lake and a line. One of the

simplest is to determine a line joining the two end points of the object. If the AND of

the object and this line contains only two points, the figure is a Bay. Otherwise it is

134 Chapter 9 Problem Solutions

a line segment. There are pathological cases in which this test will fail, and additional

”intelligence” needs to be built into the process, but these pathological cases become

less probable with increasing resolution of the thinned figures.

Problem 9.21

(a) The entire image would be filled with 1’s. (b) The background would be filled with

1’s. (c) See Fig. P9.21.

Figure P9.21

Problem 9.22

(a) With reference to the example shown in Fig. P9.22(a), the boundary that results

from using the structuring element in Fig. 9.15(c) generally forms an 8­connected path

(leftmost figure), whereas the boundary resulting from the structuring element in Fig.

9.13(b) forms a 4­connected path (rightmost figure).

(b) Using a 3 £ 3 structuring element of all 1’s would introduce corner pixels into seg­

ments characterized by diagonally­connected pixels. For example, square (2,2) in Fig.

9.15(e) would be a 1 instead of a 0. That value of 1 would carry all the way to the final

result in Fig. 9.15(i). There would be other 1’s introduced that would turn Fig. 9.15(i)

into a much more distorted object.

Figure P9.22(a)

Problem 9.21 135

Problem 9.23

If spheres are allowed to touch, we can make the simplifying assumption that no spheres

touch it in such a way that they create “pockets” of black points surrounded by all white

or surrounded by all white and part of the boundary of the image. This situation requires

additional preprocessing, as discussed below. With these simplification in mind, the

problem reduces first to determining which points are background (black) points. To

do this, we pick a black point on the boundary of the image and find all black points

connected to it using a connected component algorithm (Section 9.5.3). These connected

components are labels with a value different from 1 or 0. The remaining black points

are interior to spheres. We can fill all spheres with white by applying the region filling

algorithm until all interior black points have been turned into white points. The alert

student will realize that if the interior points are already known, they can all be turned

simply into white points thus filling the spheres without having to do region filling as a

separate procedure.

If the spheres are allowed to touch in arbitrary ways, a way must be found to separate

them because they could create ”pockets” of black points surrounded by all white or

surrounded by all white and part of the boundary of the image. The simplest approach

is to separate the spheres by preprocessing. One way to do this is to erode the white

components of the image by one pass of a 3 £ 3 mask, effectively creating a black

border around the spheres, thus ”separating” them. This approach works in this case

because the objects are spherical, thus having small areas of contact. To handle the

case of spheres touching the border of the image, we simply set all border point to

black. We then proceed to find all background points To do this, we pick a point on the

boundary of the image (which we know is black due to preprocessing) and find all black

points connected to it using a connected component algorithm (Section 9.5.3). These

connected components are labels with a value different from 1 or 0. The remaining

black points are interior to spheres. We can fill all spheres with white by applying the

region filling algorithm until all such interior black points have been turned into white

points. The alert student will realize that if the interior points are already known, they

can all be turned simply into white points thus filling the spheres without having to do

region filling as a separate procedure.

Note that the erosion of white areas makes the black areas interior to the spheres grow,

so the possibility exists that such an area near the border of a sphere could grow into the

background. This issue introduces further complications that the student may not have

the tools to solve yet. We recommend making the assumption that the interior black

136 Chapter 9 Problem Solutions

areas are small and near the center. Recognition of the potential problem by the student

should be sufficient.

Problem 9.24

Denote the original image by A. Create an image of the same size as the original,

but consisting of all 0’s, call it B. Choose an arbitrary point labeled 1 in A, call it

p1, and apply the algorithm. When the algorithm converges, a connected component

has been detected. Label and copy into B the set of all points in A belonging to the

connected components just found, set those points to 0 in A and call the modified image

A1. Choose an arbitrary point labeled 1 in A1, call it p2, and repeat the procedure just

given. If there are K connected components in the original image, this procedure will

result in an image consisting of all 0’s after K applications of the procedure just given.

Image B will contain K labeled connected components.

Problem 9.25

(a) Equation (9.6­1) requires that the (x; y) used in the computation of dilation must

satisfy the condition (x; y) 2 Db. In terms of the intervals given in the problem state­

ment, this means that x and y must be in the closed interval x 2 [Bx1;Bx2] and

y 2 [By1; By2]. It is required also that (s ¡ x); (t ¡ y) 2 Df , which means that

(s ¡ x) 2 [Fx1; Fx2] and (t ¡ y) 2 [Fy1; Fy2]. Since the valid range of x is the interval

[Bx1; Bx2], the valid range of (s¡x) is [s¡Bx1; s¡Bx2]. But, since x must also satisfy

the condition (s ¡ x) 2 [Fx1; Fx2], it follows that Fx1 · s ¡ Bx1 and Fx2 ¸ s ¡ Bx2,

which finally yields Fx1 + Bx1 · s · Fx2 + Bx2. Following the same analysis for t

yields Fy1 + By1 · t · Fy2 + By2. Since dilation is a function of (s; t), these two

inequalities establish the domain of (f © b)(s; t) in the st­plane.

(b) Following a similar procedure yields the following intervals for s and t: Fx1¡Bx1 ·
s · Fx2 ¡ Bx2 and Fy1 ¡ By1 · t · Fy2 ¡ By2. Since erosion is a function of (s; t),

these two inequalities establish the domain of (f ª b)(s; t) in the st­plane.

Problem 9.26

(a) The noise spikes are of the general form shown in Fig. P9.26(a), with other possi­

bilities in between. The amplitude is irrelevant in this case; only the shape of the noise

Problem 9.27 137

spikes is of interest. To remove these spikes we perform an opening with a cylindri­

cal structuring element of radius greater than Rmax, as shown in Fig. P9.26(b) (see Fig.

9.30 for an explanation of the process). Note that the shape of the structuring element is

matched to the known shape of the noise spikes.

(b) The basic solution is the same as in (a), but now we have to take into account the

various possible overlapping geometries shown in Fig. P9.26(c). A structuring element

like the one used in (a) but with radius slightly larger than 4Rmax will do the job. Note in

(a) and (b) that other parts of the image would be affected by this approach. The bigger

Rmax, the bigger the structuring element that would be needed and, consequently, the

greater the effect on the image as a whole.

Figure P9.26

Problem 9.27

(a) Color the image border pixels the same color as the particles (white). Call the result­

ing set of border pixels B. Apply the connected component algorithm. All connected

components that contain elements from B are particles that have merged with the border

of the image.

138 Chapter 9 Problem Solutions

(b) It is given that all particles are of the same size (this is done to simplify the problem;

more general analysis requires tools from Chapter 11). Determine the area (number of

pixels) of a single particle; denote the area by R. Eliminate from the image the particles

that were merged with the border of the image. Apply the connected component algo­

rithm. Count the number of pixels in each component. A component is then designated

as a single particle if the number of pixels is less than or equal to R + ", where " is a

small quantity added to account for variations in size due to noise.

(c) Subtract from the image single particles and the particles that have merged with the

border, and the remaining particles are overlapping particles.

Problem 9.28

As given in the problem statement, interest lies on deviations from the round in the inner

and outer boundaries of the washers. It also is stated that we can ignore errors due to

digitizing and positioning. This means that the imaging system has enough resolution so

that artifacts will not be introduced as a result of digitization. The mechanical accuracy

similarly tells us that no appreciable errors will be introduced as a result of positioning.

This is important if we want to do matching without having to register the images.

The first step in the solution is the specification of an illumination approach. Because

we are interested in boundary defects, the method of choice is a backlighting system that

will produce a binary image. We are assured from the problem statement that the illu­

mination system has enough resolution so that we can ignore defects due to digitizing.

The next step is to specify a comparison scheme. The simplest way to match binary

images is to AND one image with the complement of the other. Here, we match the

input binary image with the complement of the golden image (this is more efficient than

computing the complement of each input image and comparing it to the golden image).

If the images are identical (and perfectly registered) the result of the AND operation will

be all 0’s. Otherwise, there will be 1’s in the areas where the two images do not match.

Note that this requires that the images be of the same size and be registered, thus the

assumption of the mechanical accuracy given in the problem statement.

As noted, differences in the images will appear as regions of 1’s in the AND image.

These we group into regions (connected components) by using the algorithm given in

Section 9.5.3. Once all connected components have been extracted, we can compare

them against specified criteria for acceptance or rejection of a given washer. The sim­

Problem 9.28 139

plest criterion is to set a limit on the number and size (number of pixels) of connected

components. The most stringent criterion is 0 connected components. This means a

perfect match. The next level for ”relaxing” acceptance is one connected component

with of size 1, and so on. More sophisticated criteria might involve measures like the

shape of connected components and the relative locations with respect to each other.

These types of descriptors are studied in Chapter 11.

10 Problem Solutions

Problem 10.1

The masks would have the coefficients shown in Fig. P10.1. Each mask would yield

a value of 0 when centered on a pixel of an unbroken 3­pixel segment oriented in the

direction favored by that mask. Conversely, the response would be a +2 when a mask

is centered on a one­pixel gap in a 3­pixel segment oriented in the direction favored by

that mask.

Figure P10.1

Problem 10.2

The key to solving this problem is to find all end points of line segments in the image.

End points are those points on a line which have only one 8­neighbor valued 1. Once all

end points have been found, the D8 distance between all pairs of such end points gives

the lengths of the various gaps. We choose the smallest distance between end points

of every pair of segments and any such distance less than or equal to L satisfies the

statement of the problem. This is a rudimentary solution, and numerous embellishments

can be added to build intelligence into the process. For example, it is possible for end

points of different, but closely adjacent, lines to be less than L pixels apart, and heuristic

tests that attempt to sort out things like this are quite useful. Although the problem

statement does not call for any such tests, they are normally needed in practice and it is

142 Chapter 10 Problem Solutions

worthwhile to bring this up in class if this particular problem is assigned as a homework

assignment.

Problem 10.3

(a) The lines were thicker than the width of the line detector masks. Thus, when, for

example, a mask was centered on the line it ”saw” a constant area and gave a response

of 0.

(b) Via connectivity analysis.

Problem 10.4

It is given that the location of the edge relative to the size of the mask is such that image

border effects can be ignored. Assume that n is odd and keep in mind that an ideal step

edge transition takes place between adjacent pixels. Then, the average is 0 until the

center of the mask is (n ¡ 1)=2 pixels or more to the left of the edge. The average is

1 when the center of the mask is further away than (n ¡ 1)=2 pixels to the right of the

edge. When transitioning into the edge, (say from left to right) the average picks up one

column of the mask for every pixel that it moves to the right, so the value of the average

grows as n=n2; 2n=n2; : : : ; (n ¡ 1)n=n2; n2=n2, or 1=n; 2=n; : : : ; (n ¡ 1)=n; 1. This

is a simple linear growth with slope equal to 1=n. Figure P10.4 shows a plot of the

original profile and what the profile would look like after smoothing. Thus, we get a

ramp edge, as expected.

Figure P10.4

Problem 10.3 143

Problem 10.5

The gradient and Laplacian (first and second derivatives) are shown in Fig. P10.5.

Figure P10.5

Problem 10.6

(a) Inspection of the Sobel masks shows that Gx = 0 for edges oriented vertically and

Gy = 0 for edges oriented horizontally. Therefore, it follows in this case that , for

vertical edges, rf =
q

G2
y = jGyj ; and similarly for horizontal edges.

(b) The same argument applies to the Prewitt masks.

Problem 10.7

Consider first the Sobel masks of Figs. 10.8 and 10.9. The easiest way to prove that

144 Chapter 10 Problem Solutions

these masks give isotropic results for edge segments oriented at multiples of 45± is to

obtain the mask responses for the four general edge segments shown in Fig. P10.7,

which are oriented at increments of 45±. The objective is to show that the responses

of the Sobel masks are indistinguishable for these four edges. That this is the case is

evident from Table P10.1, which shows the response of each Sobel mask to the four

general edge segments. We see that in each case the response of the mask that matches

the edge direction is (4a ¡ 4b), and the response of the corresponding orthogonal mask

is 0. The response of the remaining two masks is either (3a ¡ 3b) or (3b ¡ 3a). The

sign difference is not significant because the gradient is computed by either squaring or

taking the absolute value of the mask responses. The same line of reasoning applies to

the Prewitt masks.

Table P10.7

Edge Horizontal Vertical +45± ¡45±

direction Sobel (Gx) Sobel (Gy) Sobel (G45) Sobel (G¡45)

Horizontal 4a ¡ 4b 0 3a ¡ 3b 3b ¡ 3a

Vertical 0 4a ¡ 4b 3a ¡ 3b 3a ¡ 3b

+45± 3a ¡ 3b 3a ¡ 3b 4a ¡ 4b 0

¡45± 3b ¡ 3a 3a ¡ 3b 0 4a ¡ 4b

Figure P10.7

Problem 10.8

With reference to Fig. P10.8, consider first the 3 £ 3 smoothing mask mentioned in the

problem statement, as well as the general subimage area shown in the figure. Recall that

value e is replaced by the response of the 3 £ 3 mask when its center is at that location.

Ignoring the 1/9 scale factor, the response of the mask when centered at that location is

(a + b + c + d + e + f + g + h + i).

The idea with the one­dimensional mask is the same: We replace the value of a pixel by

the response of the mask when it is centered on that pixel. With this in mind, the mask

Problem 10.8 145

[1 1 1] would yield the following responses when centered at the pixels with values b, e,

and h, respectively: (a + b + c), (d + e + f), and (g + h + i). Next, we pass the mask2
64

1

1

1

3
75

through these results. When this mask is centered at the pixel with value e, its response

will be [(a+b+c) + (d+e+f) + (g+h+ i)], which is the same as the result produced

by the 3 £ 3 smoothing mask.

Returning now to problem at hand, when the Gx Sobel mask is centered at the pixel with

value e, its response is Gx = (g+2h+i) ¡ (a+2b+c). If we pass the one­dimensional

differencing mask 2
64

¡1

0

1

3
75

through the image, its response when its center is at the pixels with values d, e, and f ,

respectively, would be:(g¡a) , (h¡b), and (i¡c). Next we apply the smoothing mask

[1 2 1] to these results. When the mask is centered at the pixel with value e, its response

would be [(g¡a) + 2(h¡b) + (i¡c)] which is [(g+2h+i) ¡ (a+2b+c)]. This is the

same as the response of the 3 £ 3 Sobel mask for Gx. The process to show equivalence

for Gy is basically the same. Note, however, that the directions of the one­dimensional

masks would be reversed in the sense that the differencing mask would be a column

mask and the smoothing mask would be a row mask.

Figure P10.8

146 Chapter 10 Problem Solutions

Problem 10.9

The solution is shown in Fig. P10.9 (negative numbers are shown underlined).

Edge direction

E NE N NW W SW S SE

Gradient direction

N NW W SW S SE E NE

Compass gradient operators

1 1 1 1 1 0 1 0 1 0 1 1 1 1 1 1 10 1 0 1 0 1 1

0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 0 1 1 0 1 1 0 1

1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0

Figure P10.9

Problem 10.10

(a) The solution is shown in Fig. P10.10(a). The numbers in brackets are values of

[Gx;Gy]. (b) The solution is shown in Fig. P10.10(b). The angle was not computed

for the trivial cases in which Gx = Gy = 0.. The histogram follows directly from this

table. (c) The solution is shown in Fig. P10.10(c).

Problem 10.11

(a) With reference to Eq. (10.1­17), we need to prove that
1Z

¡1

·
r2 ¡ ¾2

¾4

¸
e¡ r2

2¾2 dr = 0:

Expanding this equation results in the expression
1Z

¡1

·
r2 ¡ ¾2

¾4

¸
e¡ r2

2¾2 dr =
1

¾4

1Z

¡1

r2e¡ r2

2¾2 dr

¡ 1

¾2

1Z

¡1

e¡ r2

2¾2 dr:

Recall from the definition of the Gaussian density that

1p
2¼¾2

1Z

¡1

e¡ r2

2¾2 dr = 1

Problem 10.9 147

and, from the definition of the variance of a Gaussian random variable that

Var(r) = ¾2 =

1Z

¡1

r2e¡ r2

2¾2 dr:

Thus, it follows from the preceding equations that
1Z

¡1

·
r2 ¡ ¾2

¾4

¸
e¡ r2

2¾2 dr =

p
2¼¾2

¾4
¾2 ¡

p
2¼¾2

¾2
= 0:

Figure P10.10

(b) Suppose that we convolve an image f with r2h. Using the convolution theorem, this

148 Chapter 10 Problem Solutions

is the same as multiplying the Fourier transform of f by the Fourier transform of r2h.

The average value of the convolution can be obtained by evaluating the Fourier transform

of this product at the origin of the frequency plane [see Eq. (4.2­22)]. But, it was shown

in (a) that the average value of r2h is zero, which means that its Fourier transform is

zero at the origin. From this it follows that the value of the product of the two Fourier

transforms is also zero, thus proving that the average value of the convolution of f with

r2h is zero.

(c) Yes. Consider Eq. (10.1­14), expressed as

r2f(x; y) = 4f(x; y) ¡ [f(x + 1; y) + f(x ¡ 1; y) + f(x; y + 1) + f(x; y ¡ 1)]:

As in (b), we evaluate the average value of a spatial expression by looking at the value

of its Fourier transform at the origin. Here, it follows from Eq. (4.6­2) that, if F (u; v)

denotes the Fourier transform of f(x; y), then the transforms of all the terms inside

the brackets in the above equation are F (u; v) multiplied by appropriate exponential

terms. However, the exponential terms have value 1 at the origin, so the net result is

4F (0; 0) ¡ 4F (0; 0) = 0, thus proving that the Laplacian obtained by convolving an

image with the operator shown in Fig. 10.13 (which implements Eq. (10.1­14)] has an

average value of zero. The same zero result is obtained for Eq. (10.1­15).

Problem 10.12

(a) Figure 10.15(g) was obtained from Fig. 10.15(h) which is a binary image, and thus

consists of sets of connected components of 1’s (see Section 2.5.2 regarding connected

components). The boundary of each connected component forms a closed path (Prob­

lem 2.14). The contours in Fig. 10.15(g) were obtained by noting transitions of the

boundaries of the connected components with the background, and thus form closed

paths.

(b) The answer is yes for functions that meet certain mild conditions, and if the zero

crossing method is based on rotational operators like the LoG function. Geometrical

properties of zero crossings in general are explained in some detail in the paper ”On

Edge Detection,” by V. Torre and T. Poggio, IEEE Trans. Pattern Analysis and Machine

Intell., vol. 8, no. 2, pp. 147­163. Looking up this paper and becoming familiar with

the mathematical underpinnings of edge detection is an excellent reading assignment for

graduate students.

Problem 10.12 149

Problem 10.13

(a) Point 1 has coordinates x = 0 and y = 0. Substituting into Eq. (10.2­3) yields

½ = 0, which, in a plot of ½ vs. µ,is a straight line.

(b) Only the origin (0; 0) would yield this result.

(c) At µ = +90±, it follows from Eq. (10.2­3) that x ¢ (0) + y ¢ (1) = ½, or y = ½. At

µ = ¡ 90±, x ¢ (0) + y ¢ (¡1) = ½, or ¡y = ½. Thus the reflective adjacency.

Problem 10.14

(a) Express xcosµ + ysinµ = ½ in the form x = ¡(cot µ)x + ½= sin µ. Equating terms

with the slope­intercept form, y = ax + b, gives a = and ¡(cot µ) and b = ½= sin µ.

This gives µ = cot¡1(a) and ½ = b sin µ. Once obtained from a and b of a given line,

the parameters µ and ½ completely specify the normal representation of that line.

(b) µ = cot¡1(2) = 26:6± and ½ = (1) sin µ = 0:45:

Problem 10.15

This problem is a natural for the Hough transform, which is set up as follows: The µ axis

is divided into six subdivisions, corresponding to the six specified directions and their

error bands. For example (since the angle directions specified in the problem statement

are with respect to the horizontal) the first band for angle µ extends from ¡30± to ¡20±,

corresponding to the ¡25± direction and its §5± band. The ½ axis extends from ½ =

¡
p

D to ½ = +
p

D, where D is the largest distance between opposite corners of the

image, properly calibrated to fit the particular imaging set up used. The subdivisions in

the ½ axis are chosen finely enough to resolve the minimum expected distance between

tracks that may be parallel, but have different origins, thus satisfying the last condition

of the problem statement.

Set up in this way, the Hough transform can be used as a ”filter” to categorize all points

in a given image into groups of points in the six specified directions. Each group is then

processed further to determine if its points satisfy the criteria for a valid track: (1) each

group must have at least 100 points; and (2) it cannot have more than three gaps, each of

which cannot be more than 10 pixels long (see Problem 10.2 on the estimation of gaps

of a given length).

150 Chapter 10 Problem Solutions

Problem 10.16

(a) The paths are shown in Fig. P10.16. These paths are as follows:

1 : (1; 1)(1; 2) ! (2; 1)(2; 2) ! (3; 1)(3; 2)

2 : (1; 1)(1; 2) ! (2; 1)(2; 2) ! (3; 2)(2; 2) ! (3; 2)(3; 3)

3 : (1; 1)(1; 2) ! (2; 2)(1; 2) ! (2; 2)(2; 3) ! (3; 2)(3; 3)

4 : (1; 1)(1; 2) ! (2; 2)(1; 2) ! (2; 2)(2; 3) ! (2; 2)(3; 2) ! (3; 1)(3; 2)

5 : (1; 2)(1; 3) ! (2; 2)(2; 3) ! (3; 2)(3; 3)

6 : (1; 2)(1; 3) ! (2; 2)(2; 3) ! (2; 2)(3; 2) ! (3; 1)(3; 2)

7 : (1; 2)(1; 3) ! (1; 2)(2; 2) ! (2; 1)(2; 2) ! (3; 1)(3; 2)

8 : (1; 2)(1; 3) ! (1; 2)(2; 2) ! (2; 1)(2; 2) ! (3; 2)(2; 2) ! (3; 2)(3; 3)

(b) From Fig. 10.24 and (a), we see that the optimum path is path 6. Its cost is c =

2 + 0 + 1 + 1 = 4.

Figure P10.16

Problem 10.17

From Eq. (10.2­6), c(p; q) = H ¡ [f(p)¡f(q)]. In this case H = 8. Assume that p is to

the right as the image is traversed from left to right. The possible paths are shown in Fig.

P10.17(a). The costs are detailed in Fig. P10.17(b). The graph (with the minimum­cost

path shown dashed) is shown in Fig. P10.17(c). Finally, the edge corresponding to the

minimum­cost path is shown in Fig. P10.17(d).

Problem 10.18 151

Figure P10.17

Problem 10.18

(a) The number of boundary points between black and white regions is much larger in

the image on the right. When the images are blurred, the boundary points will give rise

to a larger number of different values for the image on the right, so the histograms of the

two blurred images will be different.

(b) To handle border effects, we surround the image with a border of 0’s. We assume

that the image is of size N £ N (the fact that the image is square is evident from the

right image in the problem statement). Blurring is implemented by a 3 £ 3 mask whose

coefficients are 1=9. Figure P10.18 shows the different types of values that the blurred

left image (see problem statement) will have. These values are summarized in Table

P10.18­1. It is easily verified that the sum of the numbers on the left column of the

table is N2.

152 Chapter 10 Problem Solutions

Table P10.18­1

No. of Points Value

N
¡

N
2

¡ 1
¢

0

2 2=9

N ¡ 2 3=9

4 4=9

3N ¡ 8 6=9

(N ¡ 2)
¡

N
2 ¡ 2

¢
1

A histogram is easily constructed from the entries in this table. A similar (tedious, but

not difficult) procedure yields the results shown in Table P10.18­2 for the checkerboard

image.

Table P10.18­2

No. of Points Value
N2

2
¡ 14N + 98 0

28 2=9

14N ¡ 224 3=9

128 4=9

98 5=9

16N ¡ 256 6=9
N2

2 ¡ 16N + 128 1

Figure P10.18

Problem 10.19

The gray level profile of one row of the image is shown in Fig. P10.19(a), and the

Problem 10.20 153

histogram of the image is shown in Fig. P10.19(b). The gray level profile of one

row in the wedge image is shown in Fig. P10.19(c), and its histogram is shown in

Fig. P10.19(d). The gray level profile of a row in the product image is shown in Fig.

P10.19(e). The histogram of the product is shown in Fig. P10.19(f).

Figure P10.19

Problem 10.20

(a) A1 = A2 and ¾1 = ¾2 = ¾, which makes the two modes identical. If the number

of samples is not large, convergence to a value at or near the mid point between the two

means also requires that a clear valley exist between the two modes. We can guarantee

this by assuming that ¾ << (m1 + m2)=2:

(b) That this condition cannot happen if A2 6= 0. This is easily established by starting

the algorithm with an initial value less than m1. Even if the right mode associated with

m2 is much smaller in size (e.g., A1 >> A2 and ¾1 >> ¾2) the average value of the

154 Chapter 10 Problem Solutions

region to the left of the starting threshold will be smaller than the average of the region to

the right because the modes are symmetrical about their mean, and the mode associated

with m2 will bias the data to the right. Thus, the next iterative step will bring the value

of the threshold closer to m1, and eventually to the right of it. This analysis assumes that

enough points are available in order to avoid pathological cases in which the algorithm

can get ”stuck” due to insufficient data that truly represents the shapes assumed in the

problem statement.

(c) ¾2 >> ¾1. This will ”draw” the threshold toward m2 during iteration.

Problem 10.21

The illumination function is a bell­shaped surface with its center at (500; 500). The

value of illumination at this point is 1, and it decreases radially from there. Draw a

series of concentric circles about point (500; 500) so that the value of i(x; y) at each

circle is 0.1 less than the circle before. Any two points within these two circles do

no differ by more than 10% in illumination. Segment (threshold) the region between

adjacent circles. If the distance between circles is greater than 10 pixels, then we are told

that the segmentation will be correct. That is, proper segmentation of areas greater than

10 £ 10 pixels is guaranteed in the problem statement, as long as illumination between

any two points does not differ by more than 10%. Regions of 10 £ 10 pixels will fit

between concentric circles that are more than 10 pixels apart. If the distance between

circles is less than 10 pixels, then the segmentation is not guaranteed to be perfect.

But, there is nothing that can be done about that because changes in illumination are

determined by the illumination function, which is given.

Problem 10.22

From the figure in the problem statement,

p1(z) =

8
><
>:

0 z < 1
1
2z ¡ 1

2 1 · z · 3

0 z > 3

and

p2(z) =

8
><
>:

0 z < 0

¡ 1
2
z + 1 0 · z · 2

0 z > 2

:

Problem 10.23 155

The optimum threshold is the value z = T for which P1p1(T) = P2p2(T). In this case

P1 = P2, so
1

2
T ¡ 1

2
= ¡1

2
T + 1

from which we get T = 1:5.

Problem 10.23

Keeping the same sense of directions as in Problem 10.22, let p2(z) be the probability

density function given in the problem statement. The key in solving the problem is to

recognize that the direction of the ”tail” of the Rayleigh function can be reversed as

follows:

p1(z) =

(
2
d
(¡z + c)e¡(¡z+c)2=d z · c

0 z > c
:

Then, the optimum threshold, T , is found by solving the following equation for T :

P1p1(T) = P2p2(T):

Substituting the density functions into these equations yields

P1
2

d
(¡T + c)e¡(¡T+c)2=d = P2

2

b
(T ¡ a)e¡(T¡a)2=d

which must be solved for T to find the optimum threshold. With the exception of some

possible additional reformatting (like taking the natural log), this is as far as we normally

expect students to carry this problem. However, it is important for the student to state

that the solution is valid only in the range a · T · c:

Problem 10.24

From Eq. (10.3­10),

P1p1(T) = P2p2(T):

Taking the ln of both sides yields

lnP1 + ln p1(T) = lnP2 + ln p2(T):

But

p1(T) =
1p

2¼¾1

e
¡ (T ¡¹1)2

2¾2
1

and

p2(T) =
1p

2¼¾2

e
¡ (T ¡¹2)2

2¾2
2

so it follows that

lnP1 + ln
1p

2¼¾1

¡ (T ¡ ¹1)
2

2¾2
1

= lnP2 + ln
1p

2¼¾2

¡ (T ¡ ¹2)
2

2¾2
2

156 Chapter 10 Problem Solutions

lnP1 ¡ ln¾1 ¡ (T ¡ ¹1)
2

2¾2
1

¡ lnP2 + ln¾2 +
(T ¡ ¹2)

2

2¾2
2

= 0

ln
P1

P2
+ ln

¾1

¾2
¡ 1

2¾2
1

(T 2 ¡ 2¹1T + ¹2
1) +

1

2¾2
2

(T 2 ¡ 2¹2T + ¹2
2) = 0

ln
¾2P1

¾1P2
+ T 2

µ
1

2¾2
2

¡ 1

2¾2
1

¶
+ T

µ
¹1

¾2
1

¡ ¹2

¾2
2

¶
+

µ
¹2

2

2¾2
2

¡ ¹2
1

2¾2
1

¶
= 0:

From this expression we get

AT 2 + BT + C = 0

with

A = (¾2
1 ¡ ¾2

2)

B = 2(¾2
2¹1 ¡ ¾2

1¹2)

and

C = ¾2
1¹

2
2 ¡ ¾2

2¹
2
1 + 2¾2

1¾
2
2 ln

¾2P1

¾1P2
:

Problem 10.25

If ¾1 = ¾2 = ¾, then A = 0 in Eq. (10.3­12) and we have to solve the equation

BT + C = 0

with

B = 2¾2(¹1 ¡ ¹2)

and

C = ¾2(¹2
2 ¡ ¹2

1) + 2¾4 ln
P1

P2
:

Substituting and cancelling terms gives

2(¹1 ¡ ¹2)T ¡ (¹1 + ¹2)(¹1 ¡ ¹2) + 2¾2 ln
P1

P2
= 0

or

T =
¹1 + ¹2

2
+

¾2

¹1 ¡ ¹2

ln
P1

P2
:

Problem 10.26

The simplest solution is to use the given means and standard deviations to form two

Gaussian probability density functions, and then to use the optimum thresholding ap­

proach discussed in Section 10.3.5 (in particular, see Eqs. (10.3­11) through (10.3­13).

The probabilities P1 and P2 can be estimated by visual analysis of the images (i.e., by

determining the relative areas of the image occupied by objects and background). It is

clear by looking at the image that the probability of occurrence of object points is less

than that of background points. Alternatively, an automatic estimate can be obtained by

Problem 10.27 157

thresholding the image into points with values greater than 200 and less than 110 (see

problem statement). Using the given parameters, the results would be good estimates of

the relative probability of occurrence of object and background points due to the separa­

tion between means, and the relatively tight standard deviations. A more sophisticated

approach is to use the Chow­Kaneko procedure discussed in Section 10.3.5.

Problem 10.27

Let m1 and m2 denote the mean gray level of objects and background, respectively, and

let ¾1 and ¾2 denote the corresponding standard deviations (see the problem statement

for specific values). We note that §2¾2 about the mean background level gives a range of

gray level values from 80 to 140, and that §2¾1 about the mean intensity of the objects

gives a range of 120 to 280, so a reasonable separation exists between the two gray level

populations. Choosing m1 = 200 as the seed value is quite adequate. Regions are

then grown by appending to a seed any point that is 8­connected to any point previously

appended to that seed, and whose gray level is m1 § 2¾1.

Problem 10.28

The region splitting is shown in Fig. P10.28(a). The corresponding quadtree is shown

in Fig. P10.28(b).

Problem 10.29

(a) The elements of T [n] are the coordinates of points in the image below the plane

g(x; y) = n, where n is an integer that represents a given step in the execution of the

algorithm. Since n never decreases, the set of elements in T [n ¡ 1] is a subset of the el­

ements in T [n]. In addition, we note that all the points below the plane g(x; y) = n ¡ 1

are also below the plane g(x; y) = n, so the elements of T [n] are never replaced. Sim­

ilarly, Cn(Mi) is formed by the intersection of C(Mi) and T [n], where C(Mi) (whose

elements never change) is the set of coordinates of all points in the catchment basin as­

sociated with regional minimum Mi. Since the elements of C(Mi) never change, and

the elements of T [n] are never replaced, it follows that the elements in Cn(Mi) are never

replaced either. In addition, we see that Cn¡1(Mi) µ Cn(Mi):

(b) This part of the problem is answered by the same argument as in (a). Since (1) n

158 Chapter 10 Problem Solutions

always increases; (2) the elements of neither Cn(Mi) nor T [n] are ever replaced; and

(3) T [n ¡ 1] µ T [n] and Cn¡1(Mi) µ Cn(Mi), it follows that the number of elements

of both Cn(Mi) and T [n] either increases or remains the same.

Figure P10.28

Problem 10.30

Using the terminology of the watershed algorithm, a break in a boundary between two

catchment basins would cause water between the two basins to merge. However, the

Problem 10.31 159

heart of the algorithm is to build a dam higher than the highest gray level in the image

any time a break in such boundaries occurs. Since the entire topography is enclosed by

such a dam, dams are built any time there is a break that causes water to merge between

two regions, and segmentation boundaries are precisely the tops of the dams, it follows

that the watershed algorithm always produces closed boundaries between regions.

Problem 10.31

The first step in the application of the watershed segmentation algorithm is to build a

dam of height max + 1 to prevent the rising water from running off the ends of the

function, as shown in Fig. P10.31(b). For an image function we would build a box of

height max + 1 around its border. The algorithm is initialized by setting C[1] = T [1].

In this case, T [1] = fg(2)g, as shown in Fig. P10.31(c) (note the water level). There is

only one connected component in this case: Q[1] = fq1g = fg(2)g:

Next, we let n = 2 and, as shown in Fig. P10.31(d), T [2] = fg(2); g(14)g and

Q[2] = fq1; q2g, where, for clarity, different connected components are separated by

semicolons. We start construction of C[2] by considering each connected component in

Q[2]. When q = q1, the term q \C[1] is equal to fg(2)g, so condition 2 is satisfied and,

therefore, C[2] = fg(2)g. When q = q2, q \ C[1] = ; (the empty set) so condition

1 is satisfied and we incorporate q in C[2], which then becomes C[2] = fg(2); g(14)g
where, as above, different connected components are separated by semicolons.

When n = 3 [Fig. P10.31(e)], T [3] = f2; 3; 10; 11; 13; 14g and Q[3] = fq1; q2; q3g =

f2; 3; 10; 11; 13; 14g where, in order to simplify the notation we let k denote g(k). Pro­

ceeding as above, q1 \ C[2] = f2g satisfies condition 2, so q1 is incorporated into the

new set to yield C[3] = f2; 3; 14g. Similarly, q2 \ C[2] = ; satisfies condition 1 and

C[3] = f2; 3; 10; 11; 14g. Finally, q3 \ C[2] = f14g satisfies condition 2 and C[3] =

f2; 3; 10; 11; 13; 14g. It is easily verified that C[4] = C[3] = f2; 3; 10; 11; 13; 14g.

When n = 5 [Fig. P10.31(f)], we have, T [5] = f2; 3; 5; 6; 10; 11; 12; 13; 14g and

Q[5] = fq1; q2; q3g = f2; 3; 5; 6; 10; 11; 12; 13; 14g (note the merging of two previously

distinct connected components). Is is easily verified that q1 \ C[4] satisfies condition 2

and that q2 \ C[4] satisfied condition 1. Proceeding with these two connected compo­

nents exactly as above yields C[5] = f2; 3; 5; 6; 10; 11; 13; 14g up to this point. Things

get more interesting when we consider q3. Now, q3 \ C[4] = f10; 11; 13; 14g which,

since it contains two connected components of C[4] satisfies condition 3. As mentioned

previously, this is an indication that water from two different basins has merged and a

160 Chapter 10 Problem Solutions

dam must be built to prevent this. Dam building is nothing more than separating q3 into

the two original connected components. In this particular case, this is accomplished by

the dam shown in Fig. P10.31(g), so that now q3 = fq31; q32g = f10; 11; 13; 14g. Then,

q31 \C[4] and q32 \C[4] each satisfy condition 2 and we have the final result for n = 5,

C[5] = f2; 3; 5; 6; 10; 11; 13; 14g.

Continuing in the manner just explained yields the final segmentation result shown in

Fig. P10.31(h), where the ”edges” are visible (from the top) just above the water line. A

final post­processing step would remove the outer dam walls to yield the inner edges of

interest.

Problem 10.32

With reference to Eqs. (10.6­4) and (10.6­3), we see that comparing the negative ADI

against a positive, rather than a negative, threshold would yield the image negative of

the positive ADI. The result is shown in the left of Fig. P10.32. The image on the right

is the positive ADI from Fig. 10.49(b). We have included it here for convenience in

making the comparison.

Figure P10.32

Problem 10.32 161

Figure P10.31

162 Chapter 10 Problem Solutions

Problem 10.33

(a) True, assuming that the threshold is not set larger than all the differences encountered

as the object moves. The easiest way to see this is to draw a simple reference image,

such as the white rectangle on a black background. Let that rectangle be the object that

moves. Since the absolute ADI image value at any location is the absolute difference

between the reference and the new image, it is easy to see that as the object enters areas

that are background in the reference image, the absolute difference will change from

zero to nonzero at the new area occupied by the moving object. Thus, as long as the

object moves the dimension of the absolute ADI will grow.

(b) True. The positive ADI is stationary and equal to the dimensions of the moving

object because the differences between the reference and the moving object never exceed

the threshold in areas that are background in the reference image (assuming as Eq. (10.6­

3) that the background has lower values than the object).

(c) True. From Eq. (10.6­4), we see that difference between the background and the

object will always be negative (assuming as in Eq. (10.6­4) that the gray levels in the ob­

ject exceed the value of the background). Assuming also that the differences are more

negative than the threshold, we see for the same reason as in (a) that all new background

areas occupied by the moving object will have nonzero counts, thus increasing the di­

mension of the nonzero entries in the negative ADI (keep in mind that the values in this

image are counts).

Problem 10.34

Consider first the fact that motion in the x­direction is zero. When all components

of an image are stationary, gx(t; a1) is a constant, and its Fourier transform yields an

impulse at the origin. Therefore, Fig. 10.53 would now consists of a single impulse at

the origin. The other two peaks shown in the figure would no longer be present. To

handle the motion in the positive y­direction and its change opposite direction, recall

that the Fourier transform is a linear process, so we can use superposition to obtain a

solution. The first part of motion is in the positive y­direction at 1 pixel/frame. This

is the same as in Example 10.2, so the peaks corresponding to this part of the motion

are the same as the ones shown in Fig. 10.54. The reversal of motion is instantaneous,

so the 33rd frame would show the object traveling in exactly the opposite direction. To

handle this, we simply change a2 to ¡a2 in Eq. (10.6­7). Based on the discussion in

Problem 10.35 163

connection with Eq. (10.6­5), all this change would do is produce peaks at frequencies

u = ¡a2v2 and K + a2v2. From Example 10.21 we know that the value of a2 is 4.

From the problem statement, we know that v2 = 1 and K = 32. Thus, we have two

new peaks added to Fig. 10.54: one at u = ¡4 and the other at u = 36. As noted

above, the original peaks correspond to the motion in the positive y­direction given in

the problem statement, which is the same as in Example 10.21. Note that the frame

count was restarted from 0 to 31 with the change in direction.

Problem 10.35

(a) It is given that 10% of the image area in the horizontal direction is occupied by a

bullet that is 2.5 cm long. Since the imaging device is square (256 £ 256 elements) the

camera looks at an area that is 25 cm £ 25 cm, assuming no optical distortions. Thus,

the distance between pixels is 25/256=0.098 cm/pixel. The maximum speed of the bullet

is 1000 m/sec = 100,000 cm/sec. At this speed, the bullet will travel 100; 000=0:98 =

1:02 £ 106 pixels/sec. It is required that the bullet not travel more than one pixel during

exposure. That is, (1:02 £ 106 pixels/sec) £ K sec · 1 pixel. So, K · 9:8 £ 10¡7 sec.

b) The frame rate must be fast enough to capture at least two images of the bullet in

successive frames so that the speed can be computed. If the frame rate is set so that

the bullet cannot travel a distance longer (between successive frames) than one half the

width of the image, then we have the cases shown in Fig. P10.35. In cases A and E

we get two shots of the entire bullet in frames t2 and t3 and t1 and t2, respectively.

In the other cases we get partial bullets. Although these cases could be handled with

some processing (e.g., by determining size, leading and trailing edges, and so forth) it is

possible to guarantee that at least two complete shots of every bullet will be available by

setting the frame rate so that a bullet cannot travel more than one half the width of the

frame, minus the length of the bullet. The length of the bullet in pixels is (2.5 cm)/(0.098

cm/pixel) ¼ 26 pixels. One half of the image frame is 128 pixels, so the maximum travel

distance allowed is 102 pixels. Since the bullet travels at a maximum speed of 1:02£106

pixels/sec, the minimum frame rate is 1:02 £ 106=102 = 104 frames /sec.

(c) In a flashing situation with a reflective object, the images will tend to be dark, with

the object shining brightly. The techniques discussed in Section 10.6.1 would then be

quite adequate.

(d) First we have to determine if a partial or whole image of the bullet has been obtained.

After the pixels corresponding to the object have been identified using motion segmen­

164 Chapter 10 Problem Solutions

tation, we determine if the object runs into the left boundary (see the solution to Problem

9.27) regarding a method for determining if a binary object runs into the boundary of an

image). If it does, we look at the next two frames, with the assurance that a complete

image of the bullet has been obtained in each because of the frame rate in (b). If the

object does not run into the left boundary, we are similarly assured of two full shots in

two of the three frames. We then compute the centroid of the object in each image and

count the number of pixels between the centroids. Since the distance between pixels and

the time between frames are known, computation of the speed is a trivial problem. The

principal uncertainty in this approach is how well the object is segmented. However,

since the images are of the same object in basically the same geometry, consistency of

segmentation between frames can be expected.

Figure P10.35

11 Problem Solutions

Problem 11.1

(a) The key to this problem is to recognize that the value of every element in a chain

code is relative to the value of its predecessor. The code for a boundary that is traced

in a consistent manner (e.g., clockwise) is a unique circular set of numbers. Starting

at different locations in this set does not change the structure of the circular sequence.

Selecting the smallest integer as the starting point simply identifies the same point in the

sequence. Even if the starting point is not unique, this method would still give a unique

sequence. For example, the sequence 101010 has three possible starting points, but they

all yield the same smallest integer 010101.

(b) Code: 11076765543322. The starting point is 0, yielding the sequence

07676554332211:

Problem 11.2

(a) The first difference only counts the number of directions that separate adjacent el­

ements of the code. Since the counting process is independent of direction, the first

difference is independent of boundary rotation. (It is worthwhile to point out to students

that the assumption here is that rotation does not change the code itself).

(b) Code: 0101030303323232212111. Difference: 3131331313031313031300. (Note

that the code was treated as a circular sequence, so the first element of the difference is

the transition between the last and first element of the code, as explained in the text).

Problem 11.3

(a) The rubber­band approach forces the polygon to have vertices at every inflection

of the cell wall. That is, the locations of the vertices are fixed by the structure of the

166 Chapter 11 Problem Solutions

inner and outer walls. Since the vertices are joined by straight lines, this produces the

minimum­perimeter polygon for any given wall configuration.

(b) If a corner of a cell is centered at a pixel on the boundary, and the cell is such that the

rubber band is tightened on the opposite corner, we would have a situation as shown in

Fig. P11.3. Assuming that the cell is of size d£d, the maximum difference between the

pixel and the boundary in that cell is
p

2d. If cells are centered on pixels, the maximum

difference is (
p

2d)=2.

Figure P11.3

Problem 11.4

(a) The resulting polygon would contain all the boundary pixels.

(b) Actually, in both cases the resulting polygon would contain all the boundary pixels.

Problem 11.5

(a) The solution is shown in Fig. P11.5(b). (b) The solution is shown in Fig. P11.5(c).

Problem 11.6 167

Figure P11.5

Problem 11.6

(a) From Fig. P11.6(a), we see that the distance from the origin to the triangle is given

by

r(µ) =
D0

cos µ
0± · µ < 60±

=
D0

cos(120± ¡ µ)
60± · µ < 120±

=
D0

cos(180± ¡ µ)
120± · µ < 180±

=
D0

cos(240± ¡ µ)
180± · µ < 240±

=
D0

cos(300± ¡ µ)
240± · µ < 300±

=
D0

cos(360± ¡ µ)
300± · µ < 360±

where D0 is the perpendicular distance from the origin to one of the sides of the triangle,

and D = D0= cos(60±) = 2D0. Once the coordinates of the vertices of the triangle are

given, determining the equation of each straight line is a simple problem, and D0 (which

is the same for the three straight lines) follows from elementary geometry.

168 Chapter 11 Problem Solutions

(b) From Fig. P11.6(b),

r(µ) =
B

2 cos µ
0± · µ < '

=
A

2 cos(90± ¡ µ)
' · µ < 90±

=
A

2 cos(µ ¡ 90±)
90± · µ < (180± ¡ ')

=
B

2 cos(180± ¡ µ)
(180± ¡ ') · µ < 180±

=
B

2 cos(µ ¡ 180±)
180± · µ < 180± + '

=
A

2 cos(270± ¡ µ)
180± + ' · µ < 270±

=
A

2 cos(µ ¡ 270)
270± · µ < 270± + '

=
B

2 cos(360± ¡ µ)
270± + ' · µ < 360±:

where ' = tan¡1(A=B):

(c) The equation of the ellipse in Fig. P11.6(c) is
x2

a2
+

y2

b2
= 1:

We are interested in the distance from the origin to an arbitrary point (x; y) on the ellipse.

In polar coordinates,

x = r cos µ

and

y = r sin µ

where is the distance from the origin to (x; y):

r =
p

x2 + y2:

Substituting into the equation of the ellipse we obtain
r2 cos2 µ

a2
+

r2 sin2 µ

b2
= 1

from which we obtain the desired result:

r(µ) =
1

"µ
cos µ

a

¶2

+

µ
sin µ

b

¶2
#1=2

:

When b = a, we have the familiar equation of a circle, r(µ) = a, or x2 + y2 = a2.

Plots of the three signatures just derived are shown in Fig. P11.6(d)­(f).

Problem 11.7 169

Figure P11.6

Problem 11.7

The solutions are shown in Fig. P11.7.

170 Chapter 11 Problem Solutions

Figure P11.7

Problem 11.8

(a) In the first case, N(p) = 5, S(p) = 1, p2 ¢ p4 ¢ p6 = 0, and p4 ¢ p6 ¢ p8 = 0, so

Eq. (11.1­1) is satisfied and p is flagged for deletion. In the second case, N(p) = 1,

so Eq. (11.1­1) is violated and p is left unchanged. In the third case p2 ¢ p4 ¢ p6 = 1

and p4 ¢ p6 ¢ p8 = 1, so conditions (c) and (d) of Eq. (11.1­1) are violated and p is

left unchanged. In the forth case S(p) = 2, so condition (b) is violated and p is left

unchanged.

(b) In the first case p2 ¢ p6 ¢ p8 = 1 so condition (d’) in Eq. (11.1­3) is violated and p is

left unchanged. In the second case N(p) = 1 so p is left unchanged. In the third case

(c’) and (d’) are violated and p is left unchanged. In the fourth case S(p) = 2 and p is

left unchanged.

Problem 11.9

(a) The result is shown in Fig. 11.9(b). (b) The result is shown in Fig. 11.9(c).

Figure P11.9

Problem 11.10

(a) The number of symbols in the first difference is equal to the number of segment

Problem 11.11 171

primitives in the boundary, so the shape order is 12.

(b) Starting at the top left corner,

Chain code: 000332123211

Difference: 300303311330

Shape no.: 003033113303

Problem 11.11

With reference to the discussion in Section 4.6.1, the DFT can be real only if the data

sequence is conjugate symmetric. Only contours that are symmetric with respect to the

origin have this property. The axis system of Fig. 11.13 would have to be set up so that

this condition is satisfied for symmetric figures. This can be accomplished by placing

the origin at the center of gravity of the contour.

Problem 11.12

The mean is sufficient.

Problem 11.13

Two ellipses with different, say, major axes, have signatures with the same mean and

third statistical moment descriptors (both due to symmetry) but different second moment

(due to spread).

Problem 11.14

This problem can be solved by using two descriptors: holes and the convex deficiency

(see Section 9.5.4 regarding the convex hull and convex deficiency of a set). The deci­

sion making process can be summarized in the form of a simple decision, as follows: If

the character has two holes, it is an 8. If it has one hole it is a 0 or a 9. Otherwise, it is

a 1 or an X. To differentiate between 0 and 9 we compute the convex deficiently. The

presence of a ”significant” deficiency (say, having an area greater than 20% of the area

of a rectangle that encloses the character) signifies a 9; otherwise we classify the char­

acter as a 0. We follow a similar procedure to separate a 1 from an X. The presence of

a convex deficiency with four components whose centroids are located approximately in

172 Chapter 11 Problem Solutions

the North, East, West, and East quadrants of the character indicates that the character is

an X. Otherwise we say that the character is a 1. This is the basic approach. Imple­

mentation of this technique in a real character recognition environment has to take into

account other factors such as multiple ”small” components in the convex deficiency due

to noise, differences in orientation, open loops, and the like. However, the material in

Chapters 3, 9 and 11 provide a solid base from which to formulate solutions.

Problem 11.15

We can use the position operator P : ”2m pixels to the right and 2m pixels below.” Other

possibilities are P : ”2m pixels to the right,” and P : ”2m pixels below.” The first choice

is better in terms of retaining the ”flavor” of a checkerboard.

Problem 11.16

(a) The image is
0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

1 0 1 0 1

0 1 0 1 0

:

Let z1 = 0 and z2 = 1. Since there are only two gray levels the matrix A is of order

2 £ 2. Element a11 is the number of pixels valued 0 located one pixel to the right of a 0.

By inspection, a11 = 0. Similarly, a12 = 10, a21 = 10, and a22 = 0. The total number

of pixels satisfying the predicate P is 20, so

C =

"
0 1=2

1=2 0

#
:

(b)In this case, a11 is the number of 0’s two pixels to the right of a pixel valued 0. By

inspection, a11 = 8. Similarly, a12 = 0, a21 = 0, and a22 = 7. The number of pixels

satisfying P is 15, so

C =

"
8=15 0

0 7=15

#
:

Problem 11.17

When assigning this problem, the Instructor may wish to point the student to the review

Problem 11.15 173

of matrices and vectors in the book web site.

From Eq. (11.4­6),

y = A(x ¡ mx):

Then,

my = Efyg = EfA(x ¡ mx)g
= A[Efxg ¡ Efmxg]

= A[mx ¡ mx]

= 0:

This establishes the validity of Eq. (11.4­7).

To prove the validity of Eq. (11.4­8), we start with the definition of the covariance matrix

given in Eq. (11.4­3):

Cy = Ef(y ¡ my)(y ¡ my)T g:

Since my = 0, it follows that

Cy = EfyyTg
= Ef[A(x ¡ mx)][A(x ¡ mx)]T g
= AEf(x ¡ mx)(x ¡ mx)T gAT

= ACxA
T :

Showing the validity of Eq. (11.4­9) is a little more complicated. We start by noting that

covariance matrices are real and symmetric. From basic matrix algebra, it is known that

a real symmetric matrix of order n has n linearly independent eigenvectors (which are

easily orthonormalized by, say, the Gram­Schmidt procedure). The rows of matrix A

are the orthonormal eigenvectors of Cx. Then,

CxA
T = Cx[e1; e2; : : :en]

= [Cxe1;Cxe2; : : :Cxen]

= [¸1e1; ¸2e2; : : : ; ¸nen]

= ATD

where use was made of the definition of an eigenvector (i.e., Cxei = ¸iei) and D is a

diagonal matrix composed of the eigenvalues of Cx:

D =

2
66664

¸1 0 ¢ ¢ ¢ 0

0 ¸2 ¢ ¢ ¢ 0
...

...
. . .

...

0 0 ¢ ¢ ¢ ¸n

3
77775

:

174 Chapter 11 Problem Solutions

Premultiplying both sides of the preceding equation by matrix a gives

ACxA
T = AATD

= D

where we used the fact that ATA = AAT = I because the rows of A are orthonormal

vectors. Thus, since, Cy = ACxAT , we have shown that Cy is a diagonal matrix

which is produced by diagonalizing matrix Cx using a transformation matrix composed

of its eigenvectors. The eigenvalues of Cy are seen to be the same as the eigenvalues

of Cx. (Recall that the eigenvalues of a diagonal matrix are its diagonal terms). The

fact that Cyei = Dei = ¸iei shows that the eigenvectors of Cy are equal to the

eigenvectors of Cx.

Problem 11.18

The mean square error, given by Eq. (11.4­12), is the sum of the eigenvalues whose

corresponding eigenvectors are not used in the transformation. In this particular case,

the four smallest eigenvalues are applicable (see Table 11.5), so the mean square error is

ems =
6X

j=3

¸j = 280:

The maximum error occurs when K = 0 in Eq. (11.4­12) which then is the sum of all the

eigenvalues, or 4421 in this case. Thus, the error incurred by using the two eigenvectors

corresponding to the largest eigenvalues is only 6.3 % of the total possible error.

Problem 11.19

This problem is similar to the previous one. The covariance matrix is of order 4096 £
4096 because the images are of size 64 £ 64. It is given that the covariance matrix is the

identity matrix, so all its 4096 eigenvalues are equal to 1. From Eq. (11.4­12), the mean

square error is

ems =
4096X

j=1

¸j ¡
2048X

i=1

¸i

= 2048:

Problem 11.20

When the boundary is symmetric about the both the major and minor axes and both axes

Problem 11.21 175

intersect at the centroid of the boundary.

Problem 11.21

A solution using the relationship ”connected to,” is shown in Fig. P11.21.

Figure P11.21

Problem 11.22

We can compute a measure of texture using the expression

R(x; y) = 1 ¡ 1

1 + ¾2(x; y)

where ¾2(x; y) is the gray­level variance computed in a neighborhood of (x; y). The

size of the neighborhood must be sufficiently large so as to contain enough samples to

have a stable estimate of the mean and variance. Neighborhoods of size 7 £ 7 or 9 £ 9

generally are appropriate for a low­noise case such as this.

Since the variance of normal wafers is known to be 400, we can obtain a normal value

for R(x; y) by using ¾2 = 400 in the above equation. An abnormal region will have

a variance of about (50)2 = 2; 500 or higher, yielding a larger value of R(x; y). The

procedure then is to compute R(x; y) at every point (x; y) and label that point as 0 if

it is normal and 1 if it is not. At the end of this procedure we look for clusters of 1’s

using, for example, connected components (see Section 9.5.3 regarding computation of

176 Chapter 11 Problem Solutions

connected components) . If the area (number of pixels) of any connected component

exceeds 400 pixels, then we classify the sample as defective.

Problem 11.23

This problem has four major parts. (1) Detecting individual bottles in an image; (2)

finding the top each bottle; (3) finding the neck and shoulder of each bottle; and (4)

determining the level of the liquid in the region between the neck and the shoulder.

(1) Finding individual bottles. Note that the background in the sample image is much

darker than the bottles. We assume that this is true in all images. Then, a simple way

to find individual bottles is to find vertical black stripes in the image having a width de­

termined by the average separation between bottles, a number that is easily computable

from images representative of the actual setup during operation. We can find these

stripes in various ways. One way is to smooth the image to reduce the effects of noise

(we assume that, say, a 3 £ 3 or 5 £ 5 averaging mask is sufficient). Then, we run a hor­

izontal scan line through the middle of the image. The low values in the scan line will

correspond to the black or nearly black background. Each bottle will produce a sig­

nificant rise and fall of gray level in the scan line for the width of the bottle. Bottles

that are fully in the field of view of the camera will have a predetermined average width.

Bottles that are only partially in the field of view will have narrower profiles, and can

be eliminated from further analysis (but we need to make sure that the trailing incom­

plete bottles are analyzed in the next image; presumably, the leading partial bottle was

already processed.).

(2) Finding the top of each bottle. Once the location of each (complete or nearly com­

plete) bottle is determined, we again can use the contrast between the bottles and the

background to find the top of the bottle. One possible approach is to compute a gradi­

ent image (sensitive only to horizontal edges) and look for a horizontal line near the top

of the gradient image. An easier method is to run a vertical scan line through the cen­

ter of the locations found in the previous step. The first major transition in gray level

(from the top of the image) in the scan line will give a good indication of the location of

the top of a bottle.

(3) Finding the neck and shoulder of a bottle. In the absence of other information, we

assume that all bottles are of the same size, as shown in the sample image. Then, once

we now where the top of a bottle is, the location of the neck and shoulder are known to

be at a fixed distance from the bottle top.

Problem 11.24 177

(4) Determining the level of the liquid. The area defined by the bottom of the neck and

the top of the shoulder is the only area that needs to be examined to determine acceptable

vs. unacceptable fill level in a given bottle. In fact, As shown in the sample image, an

area of a bottle that is void of liquid appears quite bright in an image, so we have various

options. We could run a single vertical scan line again, but note that the bottles have

areas of reflection that could confuse this approach. This computation is at the core

of what this system is designed to do, so a more reliable method should be used. One

approach is to threshold the area spanning a rectangle defined by the bottom of the neck,

the shoulder, and sides of the bottle. Then, we count the number of white pixels above

the midpoint of this rectangle. If this number is greater than a pre­established value, we

know that enough liquid is missing and declare the bottle improperly filled. A slightly

more sophisticated technique would be to actually find the level of the liquid. This

would consist of looking for a horizontal edge in the region within the bottle defined by

the sides of the bottle, the bottom of the neck, and a line passing midway between the

shoulder and the bottom of the neck. A gradient/edge­linking approach, as described in

Sections 10.1 and 10.2 would be suitable. Note however, that if no edge is found, the

region is either filled (dark values in the region) or completely void of liquid (white, or

near white values in the region). A computation to resolve these two possible conditions

has to follow if the system fails to find an edge.

Problem 11.24

The key specification of the desired system is that it be able to detect individual bubbles.

No specific sizes are given. We assume that bubbles are nearly round, as shown in the

test image. One solution consists of (1) segmenting the image; (2) post­processing the

result; (3) finding the bubbles and bubble clusters, and determining bubbles that merged

with the boundary of the image; (4) detecting groups of touching bubbles; (5) counting

individual bubbles; and (6) determining the ratio of the area occupied by all bubbles to

the total image area.

(1) Segmenting the image. We assume that the sample image is truly representative of

the class of images that the system will encounter. The image shown in the problem

statement is typical of images that can be segmented by a global threshold. As shown

by the histogram in Fig. P11.24, the gray level of the objects of interest is high on the

gray scale. A simple adaptive threshold method for data that is that high on the scale is

to choose a threshold equal to the mean plus a multiple of the standard deviation. We

chose a threshold equal to m + 2¾, which, for the image in the problem statement, was

178 Chapter 11 Problem Solutions

195. The segmented result is shown on the right of Fig. P11.24. Obviously this is

not the only approach we could take, but this is a simple method that adapts to overall

changes in intensity.

(2) Post­processing. As shown in the segmented image of Fig. P11.24, many of the

bubbles appear as broken disks, or disks with interior black components. These are

mostly due either to reflection (as in Fig. 9.16) or actual voids within a bubble. We

could attempt to build a procedure to repair and/or fill the bubbles (as in Problem 9.23).

However, this can turn into a computationally expensive process that is not warranted

unless stringent measurement standards are required, a fact not mentioned in the problem

statement. An alternative is to calculate, on the average (as determined from a set of

sample images), the percentage of bubble areas that are filled with black or have black

”bays” which makes their black areas merge with the background. Then, once the

dimensions of each bubble (or bubble cluster) have been established, a correction factor

based on area would be applied.

(3) Finding the bubbles. Refer to the solution to Problem 9.27. The solution is based

on connected components, which also yields all bubbles and bubble clusters.

(4) In order to detect bubble clusters we make use of shape analysis. For each con­

nected component, we find the eigen axes (see Section 11.4) and the standard deviation

of the data along these axes (square root of the eigenvalues of the covariance matrix).

One simple solution is to compute the ratio of the large to the small variance of each

connected component along the eigen axes. A single, uniformly­filled, perfectly round

bubble will have a ratio of 1. Deviations from 1 indicate elongations about one of the

axes. We look for elliptical shapes as being formed by clusters of bubbles. A threshold

to classify bubbles as single vs. clusters has to be determined experimentally. Note that

single pixels or pixel streaks one pixel wide have a standard deviation of zero, so they

must be processed separately. We have the option of considering connected components

that consist of only one pixel to be either noise, or the smallest detectable bubble. No

information is given in the problem statement about this. In theory, it is possible for a

cluster to be formed such that its shape would be symmetrical about both axes, in which

case the system would classify the cluster as a single bubble. Resolution of conflicts

such as this would require additional processing. However, there is no evidence in the

sample image to suggest that this in fact is a problem. Bubble clusters tend to appear

as elliptical shapes. In cases where the ratio of the standard deviations is close to the

threshold value, we could add additional processing to reduce the chances of making a

mistake.

Problem 11.24 179

(5) Counting individual bubbles. A bubble that does not merge with the border of the

image or is not a cluster, is by definition a single bubble. Thus, counting these bubbles

is simply counting the connected components that have not been tagged as clusters or

merged with the boundary of the image.

(6) Ratio of the areas. This ratio is simply the number of pixels in all the connected

components plus the correction factors mentioned in (2), divided by the total number of

pixels in the image.

The problem also asks for the size of the smallest bubble the system can detect. If, as

mentioned in (4), we elect to call a one­pixel connected component a bubble, then the

smallest bubble dimension detectable is the physical size of one pixel. From the problem

statement, 700 pixels cover 7 cm, so the dimension of one pixel is 10 mm.

Figure P11.24

12 Problem Solutions

Problem 12.1

(a) By inspection, the mean vectors of the three classes are, approximately, m1 =

(1:5; 0:3)T , m2 = (4:3; 1:3)T , and m3 = (5:5; 2:1)T for the classes Iris setosa, ver­

sicolor, and virginica, respectively. The decision functions are of the form given in Eq.

(12.2­5). Substituting the above values of mean vectors gives:

d1(x) = xTm1 ¡ 1

2
mT

1 m1 = 1:5x1 + 0:3x2 ¡ 1:2

d2(x) = xTm2 ¡ 1

2
mT

2 m2 = 4:3x1 + 1:3x2 ¡ 10:1

d3(x) = xTm3 ¡ 1

2
mT

3 m3 = 5:5x1 + 2:1x2 ¡ 17:3

(b) The decision boundaries are given by the equations

d12(x) = d1(x) ¡ d2(x) = ¡2:8x1 ¡ 1:0x2 + 8:9 = 0

d13(x) = d1(x) ¡ d3(x) = ¡4:0x1 ¡ 1:8x2 + 16:1 = 0

d23(x) = d2(x) ¡ d3(x) = ¡1:2x1 ¡ 0:8x2 + 7:2 = 0

A plot of these boundaries is shown in Fig. P12.1.

Figure P12.1

182 Chapter 12 Problem Solutions

Problem 12.2

From the definition of the Euclidean distance,

Dj(x) = kx ¡ mjk =
£
(x ¡ mj)

T (x ¡ mj)
¤1=2

Since Dj(x) is non­negative, choosing the smallest Dj(x) is the same as choosing the

smallest D2
j (x), where

D2
j (x) = kx ¡ mjk2 = (x ¡ mj)

T (x ¡ mj)

= xTx ¡ 2xTmj + mT
j mj

= xTx ¡ 2

µ
xT mj ¡ 1

2
mT

j mj

¶

We note that the term xTx is independent of j (that is, it is a constant with respect to j in

D2
j (x), j = 1; 2; :::). Thus, choosing the minimum of D2

j (x) is equivalent to choosing

the maximum of
¡
xTmj ¡ 1

2m
T
j mj

¢
.

Problem 12.3

The equation of the decision boundary between a pair of mean vectors is

dij(x) = xT (mi ¡ mj) ¡ 1

2
(mT

i mi ¡ mT
j mj)

The midpoint between mi and mj is (mi +mj)=2 (see Fig. P12.3) . First, we show that

this point is on the boundary by substituting it for x in the above equation and showing

that the result is equal to 0:
1

2
(mT

i mi ¡ mT
j mj) ¡ 1

2
(mT

i mi ¡ mT
j mj) =

1

2
(mT

i mi ¡ mT
j mj)

¡1

2
(mT

i mi ¡ mT
j mj)

= 0

Next, we show that the vector (mi ¡ mj) is perpendicular to the hyperplane boundary.

There are several ways to do this. Perhaps the easiest is to show that (mi ¡ mj) is in

the same direction as the unit normal to the hyperplane. For a hyperplane with equation

w1x1 + w2x2 + :::wnxn + wn+1 = 0, the unit normal is

u =
wo

kwok
where wo = (w1; w2; :::; wn)T . Comparing the above equation for dij(x) with the

general equation of a hyperplane just given, we see that wo = (mi ¡ mj) and wn+1 =

¡(mT
i mi ¡ mT

j mj)=2 . Thus, the unit normal of our decision boundary is

u =
(mi ¡ mj)

kmi ¡ mjk

Problem 12.4 183

which is in the same direction as the vector (mi ¡ mj). This concludes the proof.

Figure P12.3

Problem 12.4

The solution is shown in Fig. P12.4, where the x’s are treated as voltages and the Y ’s

denote impedances. From basic circuit theory, the currents, I’s, are the products of the

voltages times the impedances.

Figure P12.4

184 Chapter 12 Problem Solutions

Problem 12.5

Assume that the mask is of size J £ K . For any value of displacement (s; t), we can

express the area of the image under the mask, as well as the mask w(x; y), in vector form

by letting the first row of the subimage under the mask represent the first K elements of

a column vector a, the elements of next row the next K elements of a, and so on. At the

end of the procedure we subtract the average value of the gray levels in the subimage

from every element of a. The vector a is of size (J £ K) £ 1. A similar approach

yields a vector, b, of the same size, for the mask w(x; y) minus its average. This vector

does not change as (s; t) varies because the coefficients of the mask are fixed. With this

construction in mind, we see that the numerator of Eq. (xx.3­8) is simply the vector

inner­product aTb. Similarly, the first term in the denominator is the norm squared of

a, denoted aTa = kak2, while the second term has a similar interpretation for b. The

correlation coefficient then becomes

°(s; t) =
aT b

h
(aTa)(bT b)

i1=2

When a = b (a perfect match), °(s; t) = kak2 = kakkak = 1, which is the maximum

value obtainable by the above expression. Similarly, the minimum value occurs when

a = ¡b, in which case °(s; t) = ¡1. Thus, although the vector a varies in general for

every value of (s; t), the values of °(s; t) are all in the range [¡1; 1].

Problem 12.6

The solution to the first part of this problem is based on being able to extract connected

components (see Chapters 2 and 11) and then determining whether a connected com­

ponent is convex or not (see Chapter 11). Once all connected components have been

extracted we perform a convexity check on each and reject the ones that are not convex.

All that is left after this is to determine if the remaining blobs are complete or incom­

plete. To do this, the region consisting of the extreme rows and columns of the image is

declared a region of 1’s. Then if the pixel­by­pixel AND of this region with a particu­

lar blob yields at least one result that is a 1, it follows that the actual boundary touches

that blob, and the blob is called incomplete. When only a single pixel in a blob yields

an AND of 1 we have a marginal result in which only one pixel in a blob touches the

boundary. We can arbitrarily declare the blob incomplete or not. From the point of view

of implementation, it is much simpler to have a procedure that calls a blob incomplete

whenever the AND operation yields one or more results valued 1.

Problem 12.7 185

After the blobs have been screened using the method just discussed, they need to be

classified into one of the three classes given in the problem statement. We perform the

classification problem based on vectors of the form x = (x1; x2)T , where x1 and x2 are,

respectively, the lengths of the major and minor axis of an elliptical blob, the only type

left after screening. Alternatively, we could use the eigen axes for the same purpose.

(See Section 11.2.1 on obtaining the major axes or the end of Section 11.4 regarding the

eigen axes.) The mean vector of each class needed to implement a minimum distance

classifier is really given in the problem statement as the average length of each of the two

axes for each class of blob. If‘ they were not given, they could be obtained by measuring

the length of the axes for complete ellipses that have been classified a priori as belonging

to each of the three classes. The given set of ellipses would thus constitute a training set,

and learning would simply consist of computing the principal axes for all ellipses of one

class and then obtaining the average. This would be repeated for each class. A block

diagram outlining the solution to this problem is straightforward.

Problem 12.7

(a) Since it is given that the pattern classes are governed by Gaussian densities, only

knowledge of the mean vector and covariance matrix of each class are required to specify

the Bayes classifier. Substituting the given patterns into Eqs. (12.2­22) and (12.2­23)

yields

m1 =

"
1

1

#

m2 =

"
5

5

#

C1 =

"
1 0

0 1

#
= C¡1

1

and

C2 =

"
1 0

0 1

#
= C¡1

2

Since C1 = C2 = I, the decision functions are the same as for a minimum distance

classifier:

d1(x) = xTm1 ¡ 1

2
mT

1 m1 = 1:0x1 + 1:0x2 ¡ 1:0

and

d2(x) = xTm2 ¡ 1

2
mT

2 m2 = 5:0x1 + 5:0x2 ¡ 25:0

186 Chapter 12 Problem Solutions

The Bayes decision boundary is given by the equation d(x) = d1(x) ¡ d2(x) = 0, or

d(x) = ¡4:0x1 ¡ 4:0x2 + 24:0 = 0

(b) A plot of the boundary is shown in Fig. P12.7.

Figure P12.7

Problem 12.8

(a) As in Problem 12.7,

m1 =

"
0

0

#

m1 =

"
0

0

#

C1 =
1

2

"
1 0

0 1

#
; C¡1

1 = 2

"
1 0

0 1

#
; jC1j = 0:25

and

C2 = 2

"
1 0

0 1

#
; C¡1

2 =
1

2

"
1 0

0 1

#
; jC2j = 4:00

Since the covariance matrices are not equal, it follows from Eq. (12.2­26) that

d1(x) = ¡1

2
ln(0:25) ¡ 1

2

(
xT

"
2 0

0 2

#
x

)

= ¡1

2
ln(0:25) ¡ (x2

1 + x2
2)

and

d2(x) = ¡1

2
ln(4:00) ¡ 1

2

(
xT

"
0:5 0

0 0:5

#
x

)

= ¡1

2
ln(4:00) ¡ 1

4
(x2

1 + x2
2)

Problem 12.9 187

where the term ln P (!j) was not included because it is the same for both decision

functions in this case. The equation of the Bayes decision boundary is

d(x) = d1(x) ¡ d2(x) = 1:39 ¡ 3

4
(x2

1 + x2
2) = 0:

(b) A plot of the boundary is shown in Fig. P12.8.

Figure P12.8

Problem 12.9

The basic mechanics are the same as in Problem 12.6, but we have the additional re­

quirement of computing covariance matrices from the training patterns of each class.

Problem 12.10

From basic probability theory,

p(c) =
X

x

p(c=x)p(x):

For any pattern belonging to class !j , p(c=x) = p(!j=x). Therefore,

p(c) =
X

x

p(!j=x)p(x):

Substituting into this equation the formula p(!j=x) = p(x=!j)p(!j)=p(x) gives

p(c) =
X

x

p(x=!j)p(!j):

Since the argument of the summation is positive, p(c) is maximized by maximizing

p(x=!j)p(!j) for each j. That is, if for each x we compute p(x=!j)p(!j) for j =

1; 2; :::;W , and use the largest value each time as the basis for selecting the class from

which x came, then p(c) will be maximized. Since p(e) = 1 ¡ p(c), the probability of

error is minimized by this procedure.

188 Chapter 12 Problem Solutions

Problem 12.11

(a) For class !1 we let y(1) = (0; 0; 0; 1)T , y(2) = (1; 0; 0; 1)T , y(3) = (1; 0; 1; 1)T ,

y(4) = (1; 1; 0; 1)T . Similarly, for class !2, y(5) = (0; 0; 1; 1)T , y(6) = (0; 1; 1; 1)T ,

y(7) = (0; 1; 0; 1)T , y(8) = (1; 1; 1; 1)T . Then, using c = 1 and

w(1) = (¡1; ¡2;¡2; 0)T

it follows from Eqs. (12.2­34) through (12.2­36) that:

w(1)Ty(1) = 0; w(2) = w(1) + y(1) = (¡1; ¡2;¡2; 1)T ;

w(2)Ty(2) = 0; w(3) = w(2) + y(2) = (0;¡2; ¡2; 2)T ;

w(3)Ty(3) = 0; w(4) = w(3) + y(3) = (1;¡2; ¡1; 3)T ;

w(4)Ty(4) = 2; w(5) = w(4) = (1; ¡2;¡1; 3)T ;

w(5)Ty(5) = 2; w(6) = w(5) ¡ y(5) = (¡1; ¡2;¡2; 2)T ;

w(6)Ty(6) = ¡2; w(7) = w(6) = (¡1;¡2; ¡2; 2)T ;

w(7)Ty(7) = 0; w(8) = w(7) ¡ y(7) = (1;¡3; ¡2; 1)T ;

w(8)Ty(8) = ¡3; w(9) = w(8) = (1; ¡3;¡2; 1)T :

Since a complete iteration through all patterns without an error was not achieved, the

patterns are recycled by letting y(9) = y(1), y(10) = y(2), and so on, which gives

w(9)Ty(9) = 1; w(10) = w(9) = (1;¡3; ¡2; 1)T ;

w(10)Ty(10) = 2; w(11) = w(10) = (1;¡3;¡2; 1)T ;

w(11)Ty(11) = 0; w(12) = w(11) + y(11) = (2;¡3; ¡1; 2)T ;

w(12)Ty(12) = 1; w(13) = w(12) = (2;¡3;¡1; 2)T ;

w(13)Ty(13) = 1; w(14) = w(13) ¡ y(13) = (2;¡3; ¡2; 1)T ;

w(14)Ty(14) = ¡4; w(15) = w(14) = (2;¡3;¡2; 1)T ;

w(15)Ty(15) = ¡2; w(16) = w(15) = (2;¡3;¡2; 1)T ;

w(16)Ty(16) = ¡2; w(17) = w(16) = (2;¡3;¡2; 1)T :

Again, since a complete iteration over all patterns without an error was not achieved, the

patterns are recycled by letting y(17) = y(1), y(18) = y(2), and so on, which gives:

w(17)Ty(17) = 1; w(18) = w(17) = (2;¡3; ¡2; 1)T ;

w(18)Ty(18) = 3; w(19) = w(18) = (2;¡3; ¡2; 1)T ;

w(19)Ty(19) = 1; w(20) = w(19) = (2;¡3; ¡2; 1)T ;

w(20)Ty(20) = 0; w(21) = w(20) + y(20) = (3;¡2;¡2; 2)T ;

w(21)Ty(21) = 0; w(22) = w(21) ¡ y(21) = (3;¡2;¡3; 1)T :

It is easily verified that no more corrections take place after this step, so w(22) =

(3;¡2;¡3; 1)T is a solution weight vector.

(b) The decision surface is given by the equation

wTy = 3y1 ¡ 2y2 ¡ 3y3 + 1 = 0

Problem 12.12 189

A section of this surface is shown schematically in Fig. P12.11. The positive side of the

surface faces the origin.

Figure P12.11

Problem 12.12

We start by taking the partial derivative of J with respect to w:
@J

@w
=

1

2

£
ysgn(wTy) ¡ y

¤

where, by definition, sgn(wTy) = 1 if wTy > 0, and sgn(wTy) = ¡1 otherwise.

Substituting the partial derivative into the general expression given in the problem state­

ment gives

w(k + 1) = w(k) +
c

2

n
y(k) ¡ y(k)sgn

h
w(k)Ty(k)

io

where y(k) is the training pattern being considered at the kth iterative step. Substituting

the definition of the sgn function into this result yields

w(k + 1) = w(k) + c

(
0 if w(k)Ty(k)

y(k) otherwise

where c > 0 and w(1) is arbitrary. This expression agrees with the formulation given in

the problem statement.

Problem 12.13

Let the training set of patterns be denoted by y1;y2; : : : ;yN . It is assumed that the

190 Chapter 12 Problem Solutions

training patterns of class !2 have been multiplied by ¡1. If the classes are linearly

separable, we want to prove that the perceptron training algorithm yields a solution

weight vector, w¤, with the property

w¤T yi ¸ T0

where T0 is a nonnegative threshold. With this notation, the Perceptron algorithm (with

c = 1) is expressed as w(k + 1) = w(k) if wT (k)yi(k) ¸ T0 or w(k + 1) = w(k) +

yi(k) otherwise.

Suppose that we retain only the values of k for which a correction takes place (these are

really the only indices of interest). Then, re­adapting the index notation, we may write

w(k + 1) = w(k) + yi(k)

and

wT (k)yi(k) · T0

With these simplifications in mind, the proof of convergence is as follows: From the

above equation,

w(k + 1) = w(1) + yi(1) + yi(2) + ¢ ¢ ¢ + yi(k)

Taking the inner product of the solution weight vector with both sides of this equation

gives

wT (k + 1)w¤ = wT (1)w¤ + yT
i (1)w¤ + yT

i (2)w¤ + ¢ ¢ ¢ + yT
i (k)w¤

Each term yT
i (j)w¤, j = 1; 2; :::; k, is less than T0, so

wT (k + 1)w¤ ¸ wT (1)w¤ + kT0

Using the Cauchy­Schwartz inequality, kak2 kbk2 ¸ (aTb)2, results in
£
wT (k + 1)w¤¤2 ·

°°wT (k + 1)
°°2 kw¤k2

or
°°wT (k + 1)

°°2 ¸
£
wT (k + 1)w¤¤2

kw¤k2 :

Another line of reasoning leads to a contradiction regarding
°°wT (k + 1)

°°2
. From

above,

kw(j + 1)k2 = kw(j)k2 + 2wT (j)yi(j) + kyi(j)k2

or

kw(j + 1)k2 ¡ kw(j)k2 = 2wT (j)yi(j) + kyi(j)k2

Let Q = max
i

jjyi(j)jj2. Then, since wT (j)yi(j) · T0,

kw(j + 1)k2 ¡ kw(j)k2 · 2T0 + Q

Adding these inequalities for j = 1; 2; : : : ; k yields

kw(j + 1)k2 · kw(1)k2 + [2T0 + Q] k

Problem 12.14 191

This inequality establishes a bound on kw(j + 1)k22 that conflicts for sufficiently large

k with the bound established by our earlier inequality. In fact, k can be no larger than

km, which is a solution to the equation£
wT (k + 1)w¤ + kmT0

¤2

kw¤k2 = kw(1)k2 + [2T0 + Q]km

This equation says that km is finite, thus proving that the perceptron training algorithm

converges in a finite number of steps to a solution weight vector w¤ if the patterns of the

training set are linearly separable.

Note: The special case with T0 = 0 is proved in a slightly different manner. Under this

condition we have

wT (k + 1)w¤ ¸ wT (1)w¤ + ka

where

a = min
i

£
yT

i (j)w¤¤

Since, by hypothesis, w¤ is a solution weight vector, we know that
£
yT

i (j)w¤¤ ¸ 0.

Also, since wT (j)yi(j) · (T = 0),

kw(j + 1)k2 ¡ kw(j)k2 · kyi(j)k2

· Q:

The rest of the proof remains the same. The bound on the number of steps is the value

of km that satisfies the following equation:£
wT (1)w¤ + kma

¤2

kw¤k2 = kw(1)k2 + Qkm

Problem 12.14

The single decision function that implements a minimum distance classifier for two

classes is of the form

dij(x) = xT (mi ¡ mj) ¡ 1

2
(mT

i mi ¡ mT
j mj):

Thus, for a particular pattern vector x, when dij(x) > 0, x is assigned to class !1 and,

when dij(x) < 0, x is assigned to class !2. Values of x for which dij(x) = 0 are on

the boundary (hyperplane) separating the two classes. By letting w = (mi ¡ mj) and

wn+1 = ¡ 1
2(mT

i mi ¡mT
j mj), we can express the above decision function in the form

d(x) = wTx ¡ wn+1:

This is recognized as a linear decision function in n dimensions, which is implemented

by a single layer neural network with coefficients

wk = (mik ¡ mjk) k = 1; 2; : : : ; n

192 Chapter 12 Problem Solutions

and

µ = wn+1 = ¡1

2
(mT

i mi ¡ mT
j mj):

Problem 12.15

The approach to solving this problem is basically the same as in Problem 12.14. The

idea is to combine the decision functions in the form of a hyperplane and then equate

coefficients. For equal covariance matrices, the decision function for two pattern classes

is obtained Eq. (12.2­27):

dij(x) = di(x) ¡ dj(x) = lnP (!i) ¡ lnP (!j) + xTC¡1(mi ¡ mj)

¡1

2
(mi ¡ mj)

TC¡1(mi ¡ mj):

As in Problem 12.14, this is recognized as a linear decision function of the form

d(x) = wTx ¡ wn+1

which is implemented by a single layer perceptron with coefficients

wk = vk k = 1; 2; : : : ; n

and

µ = wn+1 = lnP (!i) ¡ lnP (!j) + xTC¡1(mi ¡ mj)

where the vk are elements of the vector

v = C¡1(mi ¡ mj):

Problem 12.16

(a) When P (!i) = P (!j) and C = I.

(b) No. The minimum distance classifier implements a decision function that is the

perpendicular bisector of the line joining the two means. If the probability densities are

known, the Bayes classifier is guaranteed to implement an optimum decision function

in the minimum average loss sense. The generalized delta rule for training a neural

network says nothing about these two criteria, so it cannot be expected to yield the

decision functions in Problems 12.14 or 12.15.

Problem 12.17

The classes and boundary needed to separate them are shown in Fig. P12.17(a). The

boundary of minimum complexity in this case is a triangle, but it would be so tight

Problem 12.18 193

in this arrangement that even small perturbations in the position of the patterns could

result in classification errors. Thus, we use a network with the capability to implement

4 surfaces (lines) in 2D. The network, shown in Fig. P12.17(b), is an extension of the

concepts discussed in the text in connection with Fig. 12.22. In this case, the output

node acts like an AND gate with 4 inputs. The output node outputs a 1 (high) when

the outputs of the preceding 4 nodes are all high simultaneously. This corresponds to a

pattern being on the + side of all 4 lines and, therefore, belonging to class !1. Any other

combination yields a 0 (low) output, indicating class !21.

Figure P12.17

Problem 12.18

All that is needed is to generate for each class training vectors of the form x = (x1; x2)
T ,

where x1 is the length of the major axis and x2 is the length of the minor axis of the blobs

comprising the training set. These vectors would then be used to train a neural network

using, for example, the generalized delta rule. (Since the patterns are in 2D, it is useful

to point out to students that the neural network could be designed by inspection in the

sense that the classes could be plotted, the decision boundary of minimum complexity

obtained, and then its coefficients used to specify the neural network. In this case the

classes are far apart with respect to their spread, so most likely a single layer network

implementing a linear decision function could do the job.)

Problem 12.19

This problem, although it is a simple exercise in differentiation, is intended to help the

student fix in mind the notation used in the derivation of the generalize delta rule. From

Eq. (12.2­50), with µ0 = 1;

hj(Ij) =
1

1 + e
¡

hPNK
k=1 wjkOk+µj

i :

194 Chapter 12 Problem Solutions

Since, from Eq. (12.2­48),

Ij =
NKX

k=1

wjkOk

it follows that

hj(Ij) =
1

1 + e¡[Ij + µj]
:

Taking the partial derivative of this expression with respect to Ij gives

h0
j(Ij) =

@hj(Ij)

@Ij
=

e¡[Ij + µj]

£
1 + e¡[Ij + µj]

¤2
:

From Eq. (12.2­49)

Oj = hj(Ij) =
1

1 + e¡[Ij + µj]
:

It is easily shown that

Oj(1 ¡ Oj) =
e¡[Ij + µj]

£
1 + e¡[Ij + µj]

¤2
so

h0
j(Ij) = Oj(1 ¡ Oj)

This completes the proof.

Problem 12.20

The first part of Eq. (12.3­3) is proved by noting that the degree of similarity, k, is non­

negative, so D(A;B) = 1=k ¸ 0. Similarly, the second part follows from the fact that

k is infinite when (and only when) the shapes are identical.

To prove the third part we use the definition of D to write

D(A;C) · max [D(A;B);D(B;C)]

as
1

kac
· max

·
1

kab
;

1

kbc

¸

or, equivalently,

kac ¸ min [kab; kbc]

where kij is the degree of similarity between shape i and shape j. Recall from the de­

finition that k is the largest order for which the shape numbers of shape i and shape j

still coincide. As Fig. 12.24(b) illustrates, this is the point at which the figures ”sepa­

rate” as we move further down the tree (note that k increases as we move further down

the tree). We prove that kac ¸ min[kab; kbc] by contradiction. For kac · min[kab; kbc]

to hold, shape A has to separate from shape C before (1) shape A separates from shape

B; and (2) before shape B separates from shape C, otherwise kab · kac or kbc · kac,

which automatically violates the condition kac < min[kab; kbc]. But, if (1) has to hold,

Problem 12.21 195

then Fig. P12.20 shows the only way that A can separate from C before separating from

B. This, however, violates (2), which means that the condition kac < min[kab; kbc]

is violated (we can also see this in the figure by noting that kac = kbc which, since

kbc < kab, violates the condition). We use a similar argument to show that if (2)

holds then (1) is violated. Thus, we conclude that it is impossible for the condition

kac < min[kab; kbc] to hold, thus proving that kac ¸ min[kab; kbc] or, equivalently, that

D(A; C) · max[D(A;B);D(B; C)].

Figure P12.20

Problem 12.21

Q = 0 implies that max(jAj ; jBj) = M . Suppose that jAj > jBj. Then, it must follow

that jAj = M and, therefore, that M > jBj. But M is obtained by matching A and B,

so it must be bounded by M · min(jAj ; jBj). Since we have stipulated that jAj > jBj,
the condition M · min(jAj ; jBj) implies M · jBj. But this contradicts the above

result, so the only way for max(jAj ; jBj) = M to hold is if jAj = jBj. This, in turn,

implies that A and B must be identical strings (A ´ B) because jAj = jBj = M means

that all symbols of A and B match. The converse result that if A ´ B then Q = 0

follows directly from the definition of Q.

Problem 12.22

(a) An automaton capable of accepting only strings of the form abna ¸ 1, shown in Fig.

P12.22, is given by

Af = (Q;§; ±; q0; F);

196 Chapter 12 Problem Solutions

with

Q = fq0; q1; q2; q3; q;g;

§ = fa; bg;

mappings

±(q0; a) = fq1g;

±(q1; b) = fq1; q2g;

±(q2; a) = fq3g
and

F = fq3g:
For completeness we write

±(q0; b) = ±(q1; a) = ±(q2; b) = ±(q3; a) = ±(q3; b) = ±(q;; a) = ±(q;; b) = fq;g;

corresponding to the null state.

(b) To obtain the corresponding grammar we use the procedure discussed in Section

12.3.3 under the heading Automata as string recognizers: 1. If qj is in ±(qi; c), there

is a production Xi ¡! Xj in P ; 2. If a state in F is in ±(qi; c), there is a production

Xi ¡! c in P. Normally, null state transitions are not included in the generation of

productions. Using the results in (a) we obtain the grammar G = (N; §; P;X0), with

N = fX0;X1;X2g, § = fa; bg, and productions P = fX0 ¡! aX1; X1 ¡! bX1;

X1 ¡! bX2; X2 ¡! ag.

Figure P12.22

Problem 12.23

The patterns are of the form shown in the solution to Problem 11.2. (This problem is

Problem 12.24 197

not starred, so a solution in not included in the book web site. If the problem was not

assigned, it might be a good idea to give the solution in class). A possible expansive

tree grammar is G = (N;§; P; r; S), with N = fS;X1; X2; :::;X6g, § = f0; 1g,

r(0) = f0; 1; 2}, r(1) = f0; 1; 2g, and the productions shown in Fig. P12.23:

Figure P12.23

Problem 12.24

For the sample set R+ = faba; abba; abbbag it is easily shown that, for k = 1 and 2,

h(¸;R+; k) = ;, the null set. Since q0 = h(¸;R+; k) is part of the inference procedure,

we need to choose k large enough so that h(¸;R+; k) is not the null set. The shortest

string in R+ has three symbols, so k = 3 is the smallest value that can accomplish

this. For this value of k, a trial run will show that one more string needs to be added

to R+ in order for the inference procedure to discover iterative regularity in symbol b.

The sample string set then becomes R+ = faba; abba; abbba; abbbbag. Recalling that

h(z;R+; k) = fw jzw inR+; jwj · kg we proceed as follows:

z = ¸; h(¸; R+; 3) = fw j¸w inR+; jwj · 3g
= fabag
= q0;

z = a; h(a; R+; 3) = fw jaw inR+; jwj · 3g
= fba; bbag
= q1;

198 Chapter 12 Problem Solutions

z = ab; h(ab;R+; 3) = fw jabw inR+; jwj · 3g
= fa; ba; bbag
= q2;

z = aba; h(aba;R+; 3) = fw jabaw inR+; jwj · 3g
= f¸g
= q3;

z = abb; h(abb;R+; 3) = fw jabbw inR+; jwj · 3g
= fa; ba; bbag
= q2;

z = abba; h(abba;R+; 3) = fw jabbaw inR+; jwj · 3g
= f¸g
= q3;

z = abbb; h(abbb;R+; 3) = fw jabbbw inR+; jwj · 3g
= fa; bag
= q4;

z = abbba; h(abbba;R+; 3) = fw jabbbaw inR+; jwj · 3g
= f¸g
= q3;

z = abbbb; h(abbbb;R+; 3) = fw jabbbbw inR+; jwj · 3g
= fag
= q5;

z = abbbba; h(abbbba;R+; 3) = fw jabbbbaw inR+; jwj · 3g
= f¸g
= q3;

Other strings z in §¤ = (a; b)¤ yield strings zw that do not belong to R+, giving rise

to another state, denoted q;, which corresponds to the condition that h is the null set.

Therefore, the states are q0 = fabag, q1 = fba; bbag, q2 = fa; ba; bbag, q3 = f¸g,

q4 = fa; bag, and q5 = fag, which gives the set Q = fq0; q1; q2; q3; q4; q5; q;g.

The next step is to obtain the mappings. We start by recalling that, in general, q0 =

h(¸;R+; k). Also, in general,

±(q; c) = fq0 inQ
¯̄
q0 = h(zc;R+; k); with q = h(z;R+; k)g:

In our case, q0 = h(¸; R+; 3) and, therefore,

±(q0; a) = h(¸a;R+; 3) = h(a; R+; 3) = fq1g = q1

Problem 12.24 199

and

±(q0; b) = h(¸b; R+; 3) = h(b;R+; 3) = fq;g = q;;

where we have omitted the curly brackets for clarity in notation since the set contains

only one element. Similarly, q1 = h(a;R+; 3), and

±(q1; a) = h(aa;R+; 3) = h(a;R+; 3) = q;;

±(q1; b) = h(ab;R+; 3) = q2:

Continuing in this manner gives q2 = h(ab; R+; 3) = h(abb;R+; 3),

±(q2; a) = h(aba; R+; 3) = h(abba; R+; 3) = q3;

±(q2; b) = h(abb; R+; 3) = q2;

and, also,

±(q2; b) = h(abbb;R+; 3) = q4:

Next, q3 = h(aba;R+; 3) = h(abba; R+; 3) = h(abbba;R+; 3) = h(abbbba;R+; 3),

from which we obtain

±(q3; a) = h(abaa; R+; 3) = h(abbaa; R+; 3)

= h(abbbaa;R+; 3) = h(abbbbaa;R+; 3)

= q;

±(q3; b) = h(abab; R+; 3) = h(abbab;R+; 3)

= h(abbbab;R+; 3) = h(abbbbab; R+; 3)

= q;;

For the following state, q4 = h(abbb;R+; 3);

±(q4; a) = h(abbba; R+; 3) = q3;

±(q4; b) = h(abbbb; R+; 3) = q5:

Finally, for the last state, q5 = h(abbbb;R+; 3), and

±(q5; a) = h(abbbba; R+; 3) = q3;

±(q5; b) = h(abbbbb;R+; 3) = q;:

We complete the elements of the automaton by recalling that F = fq jq inQ; ¸ in qg =

q3. We also include two remaining mappings that yield the null set: ±(q;; a) = ±(q;; b) =

q;.

Summarizing, the state mappings are:

±(q0; a) = q1; ±(q0; b) = q;;

±(q1; a) = q;; ±(q1; b) = q2;

200 Chapter 12 Problem Solutions

±(q2; a) = q3; ±(q2; b) = fq2; q4g;

±(q3; a) = q;; ±(q3; b) = q;;

±(q4; a) = q3; ±(q4; b) = q5;

±(q5; a) = q3; ±(q5; b) = q;;

±(q;; a) = q;; ±(q;; b) = q;:

A diagram of the automaton is shown in Fig. P12.24. The iterative regularity on b is ev­

ident in state q2. This automaton is not as elegant as its counterpart in Problem 12.22(a).

This is not unexpected because nothing in the inference procedure deals with state min­

imization. Note, however, that the automaton accepts only strings of the form abna,

b ¸ 1, as desired. The minimization aspects of a design generally follow inference and

are based on one of several standard methods (see, for example, Gonzalez and Thoma­

son [1978]). In this particular example, even visual inspection reveals that states q4 and

q5 are redundant.

Figure P12.24

Problem 12.25

Consider the automaton related to Fig. 12.30, and the tree shown in Fig. 12.31(b). The

explanation is simplified by moving up the tree one level at a time, starting at the lowest

level. In this case the lowest level is in the innermost branch labeled with a’s. We start at

its frontier node and assign state X1 to that node by virtue of fa. The next level contains

Problem 12.26 201

an a along that same branch, but its offspring now has been labeled X1. Assignment

fa again indicates an assignment of X1. We move up the tree in this manner. The

assignments along all the single branches of a’s are X1’s, while those along the single

branches of b’s are X2’s. This continues until the automaton gets to the bottom of the

single branch of a’s at the center of the tree. This particular a now has three offspring

labeled X1 and three labeled X2, which causes fa to assign state S to that a. As the

automaton moves up one more level, it encounters another a. Since its offspring is S,

fa assigns state S to it and moves up another level. It is evident that the automaton will

end in state S when the last (root) node is processed. Since S is in F , the automaton in

fact has accepted the tree in Fig. 12.31(b).

Problem 12.26

There are various possible approaches to this problem, and our students have shown over

the years a tendency to surprise us with new and novel approaches to problems of this

type. We give here a set of guidelines that should be satisfied by most practical solu­

tions, and also offer suggestions for specific solutions to various parts of the problem.

Depending on the level of maturity of the class, some of these may be offered as ”hints”

when the problem is assigned.

Since speed and cost are essential system specifications, we conceptualize a binary ap­

proach in which image acquisition, preprocessing, and segmentation are combined into

one basic operation. This approach leads us to global thresholding as the method of

choice. In this particular case this is possible because we can solve the inspection prob­

lem by concentrating on the white parts of the flag (stars and white stripes). As discussed

in Section 10.3.2, uniform illumination is essential, especially when global thresholding

is used for segmentation. The student should mention something about uniform illumi­

nation, or compensation for nonuniform illumination. A discussion by the student of

color filtering to improve contrast between white and (red/blue/background) parts of an

image is a plus in the design.

The first step is to specify the size of the viewing area, and the resolution required to

detect the smallest components of interest, in this case the stars. Since the images are

moving and the exact location of each flag is not known, it is necessary to specify a field

of view that will guarantee that every image will contain at least one complete flag. In

addition, the frame rate must be fast enough so that no flags are missed. The first part of

the problem is easy to solve. The field of view has to be wide enough to encompass an

202 Chapter 12 Problem Solutions

area slightly greater across than two flags plus the maximum separation between them.

Thus, the width, W , of the viewing area must be at least W = 2(5) + 2:05 = 12:1in. If

we use a standard CCD camera of resolution 640 £ 480 elements and view an area 12:8

in. wide, this will give us a sampling rate of approximately 50 pixels/inch, or 250 pixels

across a single flag. Visual inspection of a typical flag will show that the blue portion of

a flag occupies about 0:4 times the length of the flag, which in this case gives us about

100 pixels per line in the blue area. There is a maximum of six stars per line, and the

blue space between them is approximately 1.5 times the width of a star, so the number

of pixels across a star is 100=([1 + 1:5] £ 6) ' 6 pixels/star.

The next two problems are to determine the shutter speed and the frame rate. Since

the number of pixels across each object of interest is only 6, we fix the blur at less

than one pixel. Following the approach used in the solution of Problem 10.35, we first

determine the distance between pixels as (12:8 in)=640 pixels = 0:02 in=pixel. The

maximum speed of the flags is 21in/sec. At this speed, the flags travel 21=0:02 = 1; 050

pixels/sec. We are requiring that a flag not travel more than one pixel during exposure;

that is (1; 050 pixels=sec) £ T sec · 1pixel. So, T · 9:52 £ 10¡4 sec is the shutter

speed needed.

The frame rate must be fast enough to capture an image of every flag that passes the

inspection point. Since it takes a flag (21 in=sec)=(12:8 in) ' 0:6 sec to cross the entire

field of view we take a frame every 0.3 sec in order to guarantee that every image will

contain a whole flag, and that no flag will be missed. We assume that the camera is

computer controlled to fire from a clock signal. We also make the standard assumption

that it takes 1=30 sec ' 330 £ 10¡4 sec to read a captured image into a frame buffer.

Therefore, the total time needed to acquire an image is (330+9:5)£10¡4 ' 340£10¡4

sec. Subtracting this quantity from the 0.3 sec frame rate leaves us with about 0.27 sec

to do all the processing required for inspection, and to output an appropriate signal to

some other part of the manufacturing process.

Since a global thresholding function can be incorporated in most digitizers as part of

the data acquisition process, no additional time is needed to generate a binary image.

That is, we assume that the digitizer outputs the image in binary form. The next step is

to isolate the data corresponding to a complete flag. Given the imaging geometry and

frame rate discussed above, four basic binary image configurations are expected: (1) part

of a flag on the left of the image, followed by a whole flag, followed by another partial

flag; (2) one entire flag touching the left border, followed by a second entire flag, and

then a gap before the right border; (3) the opposite of (2); and (4) two entire flags, with

Problem 12.26 203

neither flag touching the boundary of the image. Cases (2), (3), and (4) are not likely to

occur with any significant frequency, but we will check for each of these conditions. As

will be seen below, Cases (2) and (3) can be handled the same as Case (1), but, given the

tight bounds on processing time, the output each time Case (4) occurs will be to reject

both flags.

To handle Case (1) we have to identify a whole flag lying between two partial flags. One

of the quickest ways to do this is to run a window as long as the image vertically, but nar­

row in the horizontal direction, say, corresponding to 0.35 in. (based on the window size

1/2 of [12:8 ¡ 12:1]), which is approximately (0:35)(640)=12:8 ' 17 pixels wide. This

window is used look for a significant gap between a high count of 1’s, and it is narrow

enough to detect Case (4). For Case (1), this approach will produce high counts starting

on the left of the image, then drop to very few counts (corresponding to the background)

for about two inches, pick up again as the center (whole flag) is encountered, go like this

for about five inches, drop again for about two inches as the next gap is encountered,

then pick up again until the right border is encountered. The 1’s between the two inner

gaps correspond to a complete flag and are processed further by the methods discussed

below; the other 1’s are ignored. (A more elegant and potentially more rugged way is

to determine all connected components first, and then look for vertical gaps, but time

and cost are fundamental here). Cases (2) and (3) are handled in a similar manner with

slightly different logic, being careful to isolate the data corresponding to an entire flag

(i.e., the flag with a gap on each side). Case (4) corresponds to a gap­data­gap­data­gap

sequence, but, as mentioned above, it is likely that time and cost constraints would dic­

tate rejecting both flags as a more economical approach than increasing the complexity

of the system to handle this special case. Note that this approach to extracting 1’s is

based on the assumption that the background is not excessively noisy. In other words,

the imaging set up must be such that the background is reliably segmented as black, with

acceptable noise.

With reference to Fig. 1.23, the preceding discussion has carried us through the seg­

mentation stage. The approach followed here for description, recognition, and the use

of knowledge, is twofold. For the stars we use connected component analysis. For the

stripes we use signature analysis. The system knows the coordinates of two vertical

lines which contain the whole flag between them. First, we do a connected components

analysis on the left half of the region (to save time) and filter out all components smaller

and larger than the expected size of stars, say (to give some flexibility), all components

less than 9 (3 £ 3) pixels and larger than 64 (8 £ 8) pixels. The simplest test at this

point is to count the number of remaining connected components (which we assume to

204 Chapter 12 Problem Solutions

be stars). If the number is 50 we continue with the next test on the stripes. If the number

is less than 50 we reject the flag. Of course, the logic can be made much more compli­

cated than this. For instance, it could include a regularity analysis in which the relative

locations of the components are analyzed. There are likely to be as many answers here

as there are students in the class, but the key objective should be to base the analysis on

a rugged method such as connected component analysis.

To analyze the stripes, we assume that the flags are printed on white stock material.

Thus, ”dropping a stripe” means creating a white stripe twice as wide as normal. This

is a simple defect detectable by running a vertical scan line in an area guaranteed to

contain stripes, and then looking at the gray­level signature for the number of pulses of

the right height and duration. The fact that the data is binary helps in this regard, but the

scan line should be preprocessed to bridge small gaps due to noise before it is analyzed.

In spite of the §15± variation in direction, a region, say, 1in. to the right of the blue

region is independent enough of the rotational variation in terms of showing only stripes

along a scan line run vertically in that region.

It is important that any answer to this problem show awareness of the limits in available

computation time. Since no mention is made in the problem statement about available

processors, it is not possible to establish with absolute certainty if a solution will meet

the requirements or not. However, the student should be expected to address this issue.

The guidelines given in the preceding solution are among the fastest ways to solve the

problem. A solution along these lines, and a mention that multiple systems may be

required if a single system cannot meet the specifications, is an acceptable solution to

the problem.

	1. Introduction
	2. Digital Image Fundamentals
	3. Image Enhancement in the Spatial Domain
	4. Image Enhancement in the Frequency Domain
	5. Image Restoration
	6. Color Image Processing
	7. Wavelets and Multi-resolution Processing
	8. Image Compression
	9. Morphological Image Processing
	10. Image Segmentation
	11. Representation and Description
	12. Object Recognition

