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Preface

Thismanual containsdetailed solutionsto al problemsin Digital Image Processing, 2nd
Edition. We also include a suggested set of guidelines for using the book, and discuss
the use of computer projects designed to promote a deeper understanding of the subject
matter. The notation used throughout this manua corresponds to the notation used in
the text.

The decision of what material to cover in a course rests with the instructor, and it de-
pends on the purpose of the course and the background of the students. We have found
that the course outlines suggested here can be covered comfortably in the time frames
indicated when the course is being taught in an electrical engineering or computer sci-
ence curriculum. In each case, no prior exposure to image processing is assumed. We
give suggested guidelines for one-semester courses at the senior and first-year graduate
levels. It is possible to cover most of the book in atwo-semester graduate sequence.

The book was completely revised in this edition, with the purpose not only of updating
the material, but just as important, making the book a better teaching aid. To this
end, the instructor will find the new organization to be much more flexible and better
illustrated. Although the book is self contained, we recommend use of the companion
web site, where the student will find detailed solutions to the problems marked with a
dtar in the text, review material, suggested projects, and images from the book. One of
the principa reasons for creating the web site was to free the instructor from having to
prepare materials and handouts beyond what is required to teach from the book.

Computer projects such as those described in the web site are an important part of
a course on image processing. These projects give the student hands-on experience
with algorithm implementation and reinforce the material covered in the classroom.
The projects suggested at the web site can be implemented on almost any reasonably-
equipped multi-user or personal computer having a hard copy output device.



1 Introduction

The purpose of this chapter isto present suggested guidelinesfor teaching materia from
this book at the senior and first-year graduate level. We also discuss use of the book
web site.  Although the book is totally self-contained, the web site offers, among other
things, complementary review material and computer projects that can be assigned in
conjunction with classroom work. Detailed solutions to al problems in the book aso
are included in the remaining chapters of this manual .

Teaching Features of the Book

Undergraduate programs that offer digital image processing typically limit coverage to
one semester. Graduate programs vary, and can include one or two semesters of the ma-
terial. In the following discussion we give genera guidelines for a one-semester senior
course, a one-semester graduate course, and a full-year course of study covering two
semesters. We assume a 15-week program per semester with three lectures per week.
In order to provide flexibility for exams and review sessions, the guidelines discussed
in the following sections are based on forty, 50-minute lectures per semester. The back-
ground assumed on the part of the student is senior-level preparation in mathematical
analysis, matrix theory, probability, and computer programming.

The suggested teaching guidelines are presented in terms of general objectives, and not
as time schedules. There is so much variety in the way image processing materia is
taught that it makes little sense to attempt a breakdown of the material by class period.
In particular, the organization of the present edition of the book is such that it makes it
much easier than before to adopt significantly different teaching strategies, depending
on course objectives and student background. For example, it is possible with the new
organization to offer a course that emphasizes spatia techniques and covers little or no
transform material. Thisis not something we recommend, but it is an option that often
isattractivein programsthat placelittle emphasis on the signal processing aspects of the
field and prefer to focus more on the implementation of spatial techniques.
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The companion web site
www.prenhall.com /gonzalezwoods
or

www.imageprocessingbook.com

isavaluable teaching aid, in the sense that it includes material that previously was cov-
ered in class. In particular, the review material on probability, matrices, vectors, and
linear systems, was prepared using the same notation as in the book, and is focused on
areas that are directly relevant to discussions in the text. This allows the instructor to
assign the material as independent reading, and spend no more than one total lecture pe-
riod reviewing those subjects. Another major feature is the set of solutionsto problems
marked with a star in the book. These solutions are quite detailed, and were prepared
with the idea of using them as teaching support. The on-line availability of projects
and digital images frees the instructor from having to prepare experiments, data, and
handouts for students. The fact that most of the images in the book are available for
downloading further enhances the value of the web site as a teaching resource.

One Semester Senior Course

A basic strategy in teaching a senior course isto focus on aspects of image processing in
which both the inputs and outputs of those processes areimages. In the scope of a senior
course, this usually means the material contained in Chapters 1 through 6. Depending
on instructor preferences, wavelets (Chapter 7) usually are beyond the scope of coverage
inatypical senior curriculum). However, we recommend covering at least some material
on image compression (Chapter 8) as outlined below.

We have found in more than two decades of teaching this material to seniorsin electrical
engineering, computer science, and other technical disciplines, that one of the keys to
success is to spend at least one lecture on motivation and the equivalent of one lecture
on review of background material, as the need arises. The motivational material is
provided in the numerous application areas discussed in Chapter 1. This chapter was
totally rewritten with this objective in mind. Some of this material can be covered in
class and the rest assigned as independent reading. Background review should cover
probability theory (of one random variable) before histogram processing (Section 3.3).
A brief review of vectors and matrices may be required later, depending on the material
covered. The review material included in the book web site was designed for just this
purpose.
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Chapter 2 should be covered in its entirety. Some of the material (such as parts of
Sections 2.1 and 2.3) can be assigned as independent reading, but a detailed explanation
of Sections 2.4 through 2.6 is time well spent.

Chapter 3 servestwo principal purposes. It coversimage enhancement (atopic of signif-
icant appeal to the beginning student) and it introduces a host of basic spatial processing
tools used throughout the book. For a senior course, we recommend coverage of Sec-
tions 3.2.1 through 3.2.2; Section 3.3.1; Section 3.4; Section 3.5; Section 3.6; Section
3.7.1, 3.7.2 (through Example 3.11), and 3.7.3. Section 3.8 can be assigned as indepen-
dent reading, depending on time.

Chapter 4 also discusses enhancement, but from a frequency-domain point of view. The
instructor has significant flexibility here. As mentioned earlier, it is possible to skip
the chapter altogether, but this will typically preclude meaningful coverage of other
areas based on the Fourier transform (such as filtering and restoration). The key in
covering the frequency domain is to get to the convolution theorem and thus develop
atie between the frequency and spatial domains. All this material is presented in very
readable form in Section 4.2. “Light” coverage of frequency-domain concepts can be
based on discussing all the material through this section and then selecting afew simple
filtering exampl es (say, low- and highpassfiltering using Butterworth filters, as discussed
in Sections 4.3.2 and 4.4.2). At the discretion of the instructor, additional material can
include full coverage of Sections 4.3 and 4.4. 1t is seldom possible to go beyond this
point in a senior course.

Chapter 5 can be covered as a continuation of Chapter 4. Section 5.1 makesthisan easy
approach. Then, itis possible give the student a“flavor” of what restoration is (and still
keep the discussion brief) by covering only Gaussian and impulse noisein Section 5.2.1,
and a couple of spatial filtersin Section 5.3. This latter section is a frequent source of
confusion to the student who, based on discussions earlier in the chapter, is expecting to
see a more objective approach. It is worthwhile to emphasize at this point that spatial
enhancement and restoration are the same thing when it comes to noise reduction by
spatia filtering. A good way to keep it brief and conclude coverage of restoration
is to jump at this point to inverse filtering (which follows directly from the model in
Section 5.1) and show the problems with this approach. Then, with a brief explanation
regarding the fact that much of restoration centers around the instabilities inherent in
inverse filtering, it is possible to introduce the “interactive” form of the Wiener filter in
Eq. (5.8-3) and conclude the chapter with Examples 5.12 and 5.13.

Chapter 6 on color image processing is a new feature of the book. Coverage of this
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chapter aso can be brief at the senior level by focusing on enough material to give the
student afoundation on the physics of color (Section 6.1), two basic color models (RGB
and CMY/CMY K), and then concluding with abrief coverage of pseudocolor processing
(Section 6.3).

We typically conclude a senior course by covering some of the basic aspects of image
compression (Chapter 8). Interest on thistopic hasincreased significantly as aresult of
the heavy use of images and graphics over the Internet, and students usually are easily
motivated by the topic. Minimum coverage of this material includes Sections 8.1.1 and
8.1.2, Section 8.2, and Section 8.4.1. In this limited scope, it is worthwhile spending
one-half of alecture period filling in any gaps that may arise by skipping earlier parts of
the chapter.

One Semester Graduate Course (No Background in DIP)

The main difference between a senior and a first-year graduate course in which neither
group has formal background in image processing is mostly in the scope of material
covered, in the sense that we simply go faster in a graduate course, and feel much freer
in assigning independent reading. 1n addition to the materia discussed in the previous
section, we add the following materia in a graduate course.

Coverage of histogram matching (Section 3.3.2) is added. Sections 4.3, 4.4, and 4.5
are covered in full. Section 4.6 is touched upon briefly regarding the fact that imple-
mentation of discrete Fourier transform techniques requires non-intuitive concepts such
as function padding. The separability of the Fourier transform should be covered, and
mention of the advantages of the FFT should be made. In Chapter 5 we add Sections 5.5
through 5.8. In Chapter 6 we add the HSI model (Section 6.3.2) , Section 6.4, and Sec-
tion 6.6. A nice introduction to wavelets (Chapter 7) can be achieved by a combination
of classroom discussions and independent reading. The minimum number of sectionsin
that chapter are 7.1, 7.2, 7.3, and 7.5, with appropriate (but brief) mention of the exis-
tence of fast wavelet transforms. Finally, in Chapter 8 we add coverage of Sections 8.3,
8.4.2, 8.5.1 (through Example 8.16), Section 8.5.2 (through Example 8.20) and Section
8.5.3.

If additional time is available, a natural topic to cover next is morphological image
processing (Chapter 9). The materia in this chapter begins a transition from methods
whose inputs and outputs are images to methods in which the inputs are images, but
the outputs are attributes about those images, in the sense defined in Section 1.1. We
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recommend coverage of Sections 9.1 through 9.4, and some of the algorithmsin Section
9.5.

One Semester Graduate Course (with Background in DIP)

Some programs have an undergraduate course in image processing as a prerequisite to
a graduate course on the subject. Inthiscase, it is possible to cover material from the
first eleven chapters of the book. Using the undergraduate guidelines described above,
we add the following material to form a teaching outline for a one semester graduate
course that has that undergraduate material as prerequisite. Given that students have the
appropriate background on the subject, independent reading assignments can be used to
control the schedule.

Coverage of histogram matching (Section 3.3.2) is added. Sections 4,3, 4.4, 4.5, and 4.6
are added. This strengthens the student’s background in frequency-domain concepts.
A more extensive coverage of Chapter 5 is possible by adding sections 5.2.3, 5.3.3,
54.3, 5.5, 5.6, and 5.8. In Chapter 6 we add full-color image processing (Sections 6.4
through 6.7). Chapters 7 and 8 are covered as in the previous section. As noted in the
previous section, Chapter 9 begins atransition from methods whose inputs and outputs
are images to methods in which the inputs are images, but the outputs are attributes
about those images. As a minimum, we recommend coverage of binary morphology:
Sections 9.1 through 9.4, and some of the agorithms in Section 9.5. Mention should
be made about possible extensions to gray-scale images, but coverage of this material
may not be possible, depending on the schedule. In Chapter 10, we recommend Sections
10.1,10.2.1 and 10.2.2, 10.3.1 through 10.3.4, 10.4, and 10.5. |In Chapter 11wetypically
cover Sections 11.1 through 11.4.

Two Semester Graduate Course (No Background in DIP)

Projects

A full-year graduate course consists of the material covered in the one semester under-
graduate course, the material outlined in the previous section, and Sections 12.1, 12.2,
12.3.1,and 12.3.2.

One of themost interesting aspects of a coursein digital image processing isthe pictorial
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nature of the subject. It has been our experience that students truly enjoy and benefit
from judicious use of computer projects to complement the material covered in class.
Since computer projects are in addition to course work and homework assignments, we
try to keep the formal project reporting asbrief aspossible. In order to facilitate grading,
we try to achieve uniformity in the way project reports are prepared. A useful report
format is as follows:

Page 1: Cover page.

- Project title

- Project number

- Course number

- Student’s name

- Date due

- Date handed in

- Abstract (not to exceed 1/2 page)

Page 2: One to two pages (max) of technical discussion.
Page 3 (or 4): Discussion of results. One to two pages (max).

Results: Image results (printed typically on alaser or inkjet printer). All images must
contain a number and title referred to in the discussion of results.

Appendix: Program listings, focused on any original code prepared by the student. For
brevity, functions and routines provided to the student are referred to by name, but the
code isnot included.

Layout: The entire report must be on a standard sheet size (e.g., 8.5 x 11 inches),
stapled with three or more staples on the left margin to form a booklet, or bound using
clear plastic standard binding products.

Project resources available in the book web site include a sample project, alist of sug-
gested projects from which the instructor can select, book and other images, and MAT-
LAB functions. Instructors who do not wish to use MATLAB will find additional soft-
ware suggestionsin the Support/Software section of the web site.



2 Problem Solutions

Problem 2.1

The diameter, x, of the retinal image corresponding to the dot is obtained from similar

triangles, asshownin Fig. P2.1. That is,
d/2) _ (x/2)

02  0.014
which givesz = 0.07d. From the discussion in Section 2.1.1, and taking some liberties

of interpretation, we can think of the fovea asasquare sensor array having on the order of
337,000 elements, which translates into an array of size 580 x 580 elements. Assuming
equal spacing between elements, this gives 580 elements and 579 spaces on aline 1.5
mm long. The size of each element and each space is then s = [(1.5mm)/1,159] =
1.3 x 10~ m. If the size (on the fovea) of theimaged dot isless than the size of asingle
resolution element, we assume that the dot will be invisible to the eye. In other words,
the eye will not detect adot if its diameter, d, is such that 0.07(d) < 1.3 x 107 m, or
d < 18.6 x 10~ m.

— Edge view of dot
/
1t Image of the dot on %2
the fi
an e fovea \i o+
d T T

“

02m

(14 mm instead of 17 mm because
the dot is close to the eye)

Figure P2.1
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Problem 2.2

Problem 2.3

Problem 2.4

Problem 2.5

Problem 2.6

Brightness adaptation.

A= c/v=2.998 x 108(m/s)/60(L/s) = 4.99 x 106m = 5000 Km.

(8) From the discussion on the electromagnetic spectrum in Section 2.2, the source of
the illumination required to see an object must have wavelength the same size or smaller
than the object. Because interest lies only on the boundary shape and not on other spec-
tral characteristics of the specimens, a single illumination source in the far ultraviolet
(wavelength of .001 microns or less) will be able to detect all objects. A far-ultraviolet
camera sensor would be needed to image the specimens. (b) No answer required since
the answer to (a) is affirmative.

From the geometry of Fig. 2.3, 7mm/35mm= z/500mm, or z = 100 mm. So the target
sizeis 100 mm on the side. We have atotal of 1024 elements per line, so the resolution
of 1 lineis 1024/100 = 10 elementsymm. For line pairs we divide by 2, giving an
answer of 5 Ip/mm.

One possible solution is to equip a monochrome camera with a mechanical device that
sequentially placesared, agreen, and ablue passfilter in front of thelens. The strongest
camera response determines the color. If all three responses are approximately equal,
the objectiswhite. A faster system would utilize three different cameras, each equipped
with an individual filter. The analysis would be then based on polling the response of
each camera. This system would be a little more expensive, but it would be faster and
more reliable. Note that both solutions assume that the field of view of the camera(s) is
such that it is completely filled by auniform color [i.e., the camera(s) is(are) focused on
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Problem 2.7 9

apart of the vehicle where only its color is seen. Otherwise further analysis would be
required to isolate the region of uniform color, which is all that is of interest in solving
this problem].

Theimagein question is given by
[l y) =iz, y)r(z,y)
= 255¢~[(@=20)*+(=v0)*](1 ()
_ 2556—[(I—I0)2+(y—yo)2]

A cross section of theimageis shown in Fig. P2.7(a). If the intensity is quantized using
m bits, then we have the situation shown in Fig. P2.7(b), where AG = (255 + 1)/2™.
Since an abrupt change of 8 gray levelsis assumed to be detectable by the eye, it follows
that AG = 8 = 256/2m, or m = 5. In other words, 32, or fewer, gray levels will
produce visible false contouring.

Intensity

2557 =

0 I
(X0, Vo)

(a)

Intensity

255+ J

Equally
: spaced
- subdivisions

(X, Ya)
(b)

Figure P2.7
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Problem 2.8

Problem 2.9

Problem 2.10

The use of two bits (m = 2) of intensity resolution produces four gray levelsin the range
0to 255. Oneway to subdividethisrangeisto let all levels between 0 and 63 be coded
as 63, all levels between 64 and 127 be coded as 127, and so on. The image resulting
from this type of subdivision is shown in Fig. P2.8. Of course, there are other ways to
subdivide the range [0, 255] into four bands.

Intensity
255
1917
12771
631
0
T
255
191 Image
quantized
127 into four
63 levels
Figure P2.8

(8) The total amount of data (including the start and stop bit) in an 8-bit, 1024 x 1024
image, is (1024)? x [8 + 2] bits. Thetotal time required to transmit this image over a
At 56K baud link is (1024)? x [8 + 2]/56000 = 187.25 sec or about 3.1 min. (b) At
750K this time goes down to about 14 sec.

The width-to-height ratio is 16/9 and the resolution in the vertical directionis 1125 lines
(or, what is the same thing, 1125 pixels in the vertical direction). It is given that the



Problem 2.11

Problem 2.12

Problem 2.13

Problem 2.11 11

resolution in the horizonta direction is in the 16/9 proportion, so the resolution in the
vertical directionis (1125) x (16/9) = 2000 pixelsper line. The system “paints” afull
1125 x 2000, 8-bit image every 1/30 sec for each of the red, green, and blue component
images. Thereare 7200 sec in two hours, so the total digital data generated in thistime
interval is (1125)(2000)(8)(30)(3)(7200) = 1.166 x 103 bits, or 1.458 x 10'2 bytes
(i.e., about 1.5 terrabytes). These figures show why image data compression (Chapter
8) is so important.

Let p and g beasshown in Fig. P2.11. Then, (a) S; and S are not 4-connected because
g isnot in the set Ny(p); (b) S and Sy are 8-connected because g isin the set Ns(p);
(c) Sy and Sy are m-connected because (i) ¢ isin Np(p), and (ii) the set Ny (p) N N4(q)
is empty.

E S] E Sz E
0/0 0 0 0:0 0 1 10
1ie 0o 1 0{0 1 0 01
| L 4 |
tio o 1 oi(1)1 0 0o
opo 1 1,(Mio o 0 0o

Figure P2.11

The solution to this problem consists of defining all possible neighborhood shapes to
go from a diagonal segment to a corresponding 4-connected segment, as shown in Fig.
P2.12. The algorithm then simply looks for the appropriate match every time a diagonal
segment is encountered in the boundary.

The solution to this problem is the same as for Problem 2.12 because converting from
an m-connected path to a 4-connected path simply involves detecting diagonal segments
and converting them to the appropriate 4-connected segment.
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Problem 2.14

Problem 2.15

— or
= or
— or
= or

Figure P2.12

A region R of an image is composed of a set of connected points in the image. The
boundary of aregion isthe set of points that have one or more neighbors that are not in
R. Because boundary points also are part of R, it follows that a point on the boundary
has at least one neighbor in R and &t least one neighbor not in R. (If the point in the
boundary did not have a neighbor in R, the point would be disconnected from R, which
violates the definition of pointsinaregion.) Sinceall pointsin R are part of a connected
component (see Section 2.5.2), al pointsin the boundary are also connected and a path
(entirely in R) exists between any two points on the boundary. Thusthe boundary forms
aclosed path.

(@ When V' = {0, 1}, 4-path does not exist between p and ¢ because it isimpossible to
get from p to ¢ by traveling along points that are both 4-adjacent and also have values
from V. Figure P2.15(&) shows this condition; it isnot possibleto get to g. The shortest
8-path is shown in Fig. P2.15(b); its length is 4. The length of the shortest m- path
(shown dashed) is 5. Both of these shortest paths are unique in this case. (b) One
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possibility for the shortest 4-path when V' = {1, 2} is shown in Fig. P2.15(c); its length
is6. It iseadly verified that another 4-path of the same length exists between p and q.
One possibility for the shortest 8-path (it is not unique) is shown in Fig. P2.15(d); its
lengthis4. Thelength of a shortest m-path (shown dashed) is6. Thispath isnot unique.

3 1 2 1 (p 3 1 2 1@
S
2 2 0 2 2 2 oA‘ 2
t t
12 1 1 1T 2 1 1
4 i
»1l—0—1 2 » 1= 0--»1 2
(a) (b)
301 2 1@ 3 =2=F1 (@
f d
2 2 0 2 2 2 0 2
f 4
1—2—1—1 =2 1 1
t +
@l 0 1 2 ®ml o0 1 2
(c) (d)

Figure P2.15

(8) A shortest 4-path between a point p with coordinates (z, y) and a point ¢ with coor-
dinates (s, t) isshown in Fig. P2.16, where the assumption is that all points along the
path are from V. The length of the segments of the path are |+ — s| and |y — ¢|, respec-
tively. Thetotal path length is |« — s| + |y — t|, which we recognize as the definition
of the D, distance, asgiven in Eq. (2.5-16). (Recall that this distance isindependent of
any pathsthat may exist between the points.) The D, distance obviously is equal to the
length of the shortest 4-path when the length of the path is |« — s| + |y — ¢|. Thisoc-
curs whenever we can get from p to ¢ by following a path whose e ements (1) are from
V, and (2) are arranged in such away that we can traverse the path from p to ¢ by mak-
ing turns in at most two directions (e.g., right and up). (b) The path may of may not be
unique, depending on V' and the values of the points along the way.
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Problem 2.17

Problem 2.18

q
(s:9)

Figure P2.16

(8) The Dy distance between p and ¢ (see Fig. P2.16) isdefined asmax (|z — s/, |y — t|).
Recall that the Dy distance (unlike the Euclidean distance) counts diagonal segmentsthe
same as horizonta and vertical segments, and, as in the case of the D, distance, isinde-
pendent of whether or not apath exists between p and q. Asin the previous problem, the
shortest 8-pathisequal to the Dy distance when the path lengthismax (| — s|, |y — t|).
This occurs when we can get from p to ¢ by following a path whose elements (1) are
from V, and (2) are arranged in such away that we can traverse the path from p to ¢ by
by traveling diagonally in only one direction and, whenever diagonal travel is not possi-
ble, by making turns in the horizontal or vertica (but not both) direction. (b) The path
may of may not be unique, depending on V' and the values of the points along the way.

With reference to Eq. (2.6-1), let H denote the neighborhood sum operator, let .S; and
S, denote two different small subimage areas of the samesize, and let S; .55 denctethe
corresponding pixel-by-pixel sum of the elementsin .S; and S, as explained in Section
2.5.4. Note that the size of the neighborhood (i.e., number of pixels) is not changed by
this pixel-by-pixel sum. The operator H computes the sum of pixel valuesis a given
neighborhood. Then, H(aS; + bS3) means. (1) multiplying the pixels in each of the
subimage areas by the constants shown, (2) adding the pixel-by-pixel valuesfrom S; and
S, (which produces a single subimage area), and (3) computing the sum of the values
of all the pixelsin that single subimage area. Let ap, and bp, denote two arbitrary (but



Problem 2.19

Problem 2.20

Problem 2.19 15

corresponding) pixelsfrom aS; 4+ bS>. Then we can write

H(aS, +0S;) = Z apy + bpa
p1€S1 and p2 €S2

= Z ap + Z bpa

P1ES1 P2ES>
= a E p1+0b E D2
pP1E€SL p2€S2

= aH(S)) +bH(Ss)

which, according to Eq. (2.6-1), indicatesthat H isalinear operator.

The median, ¢, of aset of numbersis such that half the valuesin the set are below ¢ and
the other half are above it. A simple example will suffice to show that Eg. (2.6-1) is vi-
olated by the median operator. Let 57 = {1,—2,3}, So = {4,5,6},anda = b = 1.
In this case H isthe median operator. We then have H(S; + S3) =median{5,3,9} =
5, where it is understood that S; + S; is the element-by-corresponding-element sum
of S; and S,. Next, we compute H(S;) = median{1,—-2,3} = 1 and H(S2) =
median{4, 5,6} = 5. Then, since H(aS; + bS2) # aH(S1) + bH(S2), it follows
that Eqg. (2.6-1) isviolated and the median is a nonlinear operator.

The geometry of the chips is shown in Fig. P2.20(a). From Fig. P2.20(b) and the

geometry in Fig. 2.3, we know that

A x 80
Ax —
:c A—2z

where Az isthe side dimension of the image (assumed sguare since the viewing screen
is square) impinging on the image plane, and the 80 mm refersto the size of the viewing
screen, as described in the problem statement. The most inexpensive solution will result
from using acameraof resolution 512 x 512. Based on theinformation in Fig. P2.20(a),
a CCD chip with this resolution will be of size (164) x (512) = 8 mm on each side.
Substituting Az = 8 mm in the above equation gives z = 9\ asthe relationship between
the distance z and the focal length of the lens, where a minus sign was ignored because
itisjust a coordinate inversion. If a25 mm lensis used, the front of the lens will have
to be located at approximately 225 mm from the viewing screen so that the size of the
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image of the screen projected onto the CCD image plane does not exceed the 8 mm size
of the CCD chip for the 512 x 512 camera. This value for z is reasonable, but it is
obvious that any of the other given lens sizes would work also; the camera would just
have to be positioned further away.

S 8 microns
-

P,

D = Receptor
e

()

L \
: : |-
T CCDh image—f
X plane
(by Figure P2.20

Assuming a 25 mm lens, the next issue is to determine if the smallest defect will be
imaged on, at least, a2 x 2 pixel area, as required by the specification. It is given that
the defectsare circul ar, with the smallest defect having a diameter of 0.8 mm. So, al that
needs to be done is to determine if the image of a circle of diameter 0.8 mm or greater
will, a least, be of size 2 x 2 pixels on the CCD imaging plane. This can be determined
by using the same model asin Fig. P2.20(b) with the 80 mm replaced by 0.8 mm. Using
A =25mmand z = 225 mm in the above equation yields Az = 100 x. In other words,
acircular defect of diameter 0.8 mmwill beimaged as a circle with adiameter of 100 p
on the CCD chip of a512 x 512 camera equipped with a 25 mm lens and which views
the defect at a distance of 225 mm.

If, in order for a CCD receptor to be activated, its area has to be excited in its entirety,
then, it can be seen from Fig. P2.20(a) that to guarantee that a 2 x 2 array of such
receptors will be activated, acircular area of diameter no lessthan (6)(8) = 48 i hasto
be imaged onto the CCD chip. The smallest defect isimaged as a circle with diameter
of 100 u, which iswell above the 48 1+ minimum requirement.

Thus, it is concluded that a CCD cameraof resolution 512 x 512 pixels, using a25 mm
lens and imaging the viewing screen at a distance of 225 mm, is sufficient to solve the
problem posed by the plant manager.
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Problem 3.1

Problem 3.2

(8) General form: s =T'(r) = Ae=K7* For the condition shown in the problem figure,
Ae=KLi = A/2. Solving for K yields
~KL3; = In(0.5)
K = 0.693/L3.
Then,

_ 0.693,.2

s=T(r) = Ae 8

(b) General form: s = T'(r) = B(1 — e—K”z). For the condition shown in the problem
figure, B(1 — e~ XL3) = B/2. Thesolution for K isthe sameasin (a), so

_0.693 .2

s=T(r)=B(l—¢ )

(c) General form: s = T'(r) = (D — C)(1 — e~ 57*) + C.

@ s =T(r) = Tgame-

(b) SeeFig. P3.2.

(c) We want the value of stobeOfor r < m, and s to be 1 for values of » > m. When
r=m, s = 1/2. But, because the values of r are integers, the behavior wewant is

0.0 whenr <m —1

s=T(r)=< 05 whenr =m

1.0 whenr > m + 1.
The question in the problem statement is to find the smallest value of E that will make
the threshold behave as in the equation above. When r = m, we see from (a) that
s = 0.5, regardiess of thevalue of E. If C isthe smallest positive number representable
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Problem 3.3

in the computer, and keeping in mind that s is positive, then any value of s less than
C'/2 will be called 0 by the computer. To find out the smallest value of E for which this
happens, simply solve the following equation for £, using the given value m = 128:
1
T+ /e —1E < Y/*
Because the function is symmetric about m, the resulting value of £ will yield s = 1
forr > m+ 1.

09+

0.8

07+

06+

0.5

0.4

03+

0.2

01

0 L | I | I | I
0 50 100 150 200 250 300 350 400 450 500

Figure P3.2

The transformations required to produce the individual bit planes are nothing more than
mappings of the truth table for eight binary variables. In this truth table, the values of
the 7th bit are O for byte values 0 to 127, and 1 for byte values 128 to 255, thus giving
the transformation mentioned in the problem statement. Note that the given transformed
values of either 0 or 255 simply indicate a binary image for the 7th bit plane. Any other
two val ues would have been equally valid, though less conventional.
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Continuing with the truth tabl e concept, the transformation required to produce an image
of the 6th bit plane outputs a 0 for byte valuesin therange [0, 63], a1 for bytevaluesin
the range [64, 127], a0 for byte values in the range [128, 191], and a 1 for byte values
in the range [192, 255]. Similarly, the transformation for the 5th bit plane alternates
between eight ranges of byte values, the transformation for the 4th bit plane alternates
between 16 ranges, and so on. Finally, the output of the transformation for the Oth bit
plane aternates between 0 and 255 depending as the byte values are even or odd. Thus,
this transformation alternates between 128 byte value ranges, which explains why an
image of the Oth bit planeisusually the busiest looking of all the bit plane images.

(8 The number of pixels having different gray level values would decrease, thus causing
the number of components in the histogram to decrease. Since the number of pixels
would not change, this would cause the height some of the remaining histogram peaks
toincreasein general. Typically, lessvariability in gray level valueswill reduce contrast.
(b) The most visible effect would be significant darkening of the image. For example,
dropping the highest bit would limit to 127 the brightest level in an 8-bit image. Since
the number of pixels would remain constant, the height of some of the histogram peaks
would increase. The genera shape of the histogram would now be taller and narrower,
with no histogram components being located past 127.

All that histogram equalization does is remap histogram components on the intensity
scale. To obtain auniform (flat) histogram would require in general that pixel intensities
be actually redistributed so that thereare L groups of n/ L pixelswith the same intensity,
where L is the number of allowed discrete intensity levels and n is the total number of
pixelsin the input image. The histogram equalization method has no provisions for this
type of (artificial) redistribution process.

Let n be the total number of pixelsand letn,., be the number of pixelsin the input image
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Problem 3.7

with intensity value ;. Then, the histogram equalization transformation is
k k
1
=T ‘:E:”' :_E:”"
Sk (rg) jzon /n - jzon :

Since every pixel (and no others) with value r; is mapped to vaue s, it follows that
ng, = n.,. A second passof histogram equalization would produce val ues vy, according
to the transformation

k
1
v =T(sg) = m Znsj.
7=0
But, Ns; = Nyp;, SO

k
1
v =T(s) = - anj = Sk
j=0

which shows that a second pass of histogram equalization would yield the same result
asthefirst pass. We have assumed negligible round-off errors.

The general histogram equalization transformation function is

T

s=T(r)= /pr(w) dw.

0

There are two important points to which the student must show awareness in answer-
ing this problem. Firgt, this equation assumes only positive values for . However, the
Gaussian density extends in general from —oo to co. Recognition of this fact isimpor-
tant. Once recognized, the student can approach this difficulty in severa ways. One
good answer is to make some assumption, such as the standard deviation being small
enough so that the area of the curve under p,.(r) for negative values of r is negligible.
Another isto scale up the values until the area under the negative tail is negligible. The
second major point isto recognize is that the transformation function itself,

w — M 2
s=T(r)= L /e_ 202 dw
o)

V2T

has no closed-form solution. Thisisthe cumulative distribution function of the Gaussian
density, which is either integrated numericaly, or its values are looked up in atable. A
third, less important point, that the student should address is the high-end values of r.
Again, the Gaussian PDF extends to +oco. One possibility here is to make the same
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assumption as above regarding the standard deviation. Another is to divide by alarge
enough value so that the area under the positive tail past that point is negligible (this
scaling reduces the standard deviation).

Another principal approach the student can take is to work with histograms, in which
case the transformation function would be in the form of a summation. The issue
of negative and high positive values must still be addressed, and the possible answers
suggested above regarding these issues still apply. The student needs to indicate that
the histogram is obtained by sampling the continuous function, so some mention should
be made regarding the number of samples (bits) used. The most likely answer is 8 bits,
in which case the student needs to address the scaling of the function so that the range
is [0, 255].

We are interested in just one example in order to satisfy the statement of the problem.
Consider the probability density function shown in Fig. P3.8(a). A plot of the trans-
formation T'(r) in Eq. (3.3-4) using this particular density function is shown in Fig.
P3.8(b). Because p,-(r) is a probability density function we know from the discussion
in Section 3.3.1 that the transformation T'(r) satisfies conditions (&) and (b) stated in
that section. However, we see from Fig. P3.8(b) that the inverse transformation from s
back to r is not single valued, as there are an infinite number of possible mappings from
s = 1/2 back to r. It is important to note that the reason the inverse transformation
function turned out not to be single valued isthe gap in p,.(r) intheinterval [1/4, 3/4].

(8) We need to show that the transformation function in Eq. (3.3-8) ismonotonic, single-
valued, and that its values are in the range [0, 1]. From Eq. (3.3-8),

k
s = T(ri) =Y pe(rj)
7=0

J

3|3
=l
I
“C)
\.H

k
Jj=0

Because dl the p,.(r;) are positive, it follows that T'(r,) is monotonic. Because all the
pr(r;) are finite, and the limit of summation is finite, it follows that T'(r;,) is of finite
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slope and thus us a single-valued function. Finally, since the sum of all the p,.(r;) is 1,
it followsthat 0 < 55, < 1.

(1)

i

2

0 1/4 12 3/4 1
(a)

172

0 1/4 12 3/4 1
(b)

Figure P3.8.

(b) From the discussion in Problem 3.8, it follows that if an image has missing gray
levels the histogram equalization transformation function given above will be constant
in the interval of the missing gray levels. Thus, in theory, the inverse mapping will
not be single-valued in the discrete case either. In practice, assuming that we wanted
to perform the inverse transformation, this is not important for the following reason:
Assume that no gray-level values exist in the open interval (a,b), so that r, isthe last
gray level before the empty gray-level band beginsand r, isthefirst gray level right after
the empty band ends. The corresponding mapped gray levels are s, and s,. The fact
that no gray levelsr existin interval (a, b)) means that no gray levels will exist between
sq and s, ether, and, therefore, there will be no levels s to map back to r in the bands
where the multi-valued inverse function would present problems. Thus, in practice, the
issue of the inverse not being single-valued is not an issue since it would not be needed.
Note that mapping back from s, and s; presents no problems, since T'(r,) and T'(r)
(and thustheir inverses) are different. A similar discussion appliesif there are more than
one band empty of gray levels.
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(c) If none of thegray levelsry, k =1,2,...,L — 1, are 0, then T'(rx) will be strictly
monotonic. Thisimpliesthat the inverse transformation will be of finite dope and this
will be single-valued.

First, we obtain the histogram equalization transformation:

T T

s=T(r)= /pr(w) dw = /(*Qw +2)dw = —12 + 2r.
0 0
Next we find . )
v=GE) = [ petw) duw= [ 2w =2
0 0
Finally,

2 =G (v) = /0.

But only positive gray levels are allowed, so z = /v. Then, we replace v with s, which
intun is —r2 + 2r, and we have

z2 = —r24+2r.

Thevalue of the histogram component corresponding to the kthintensity level in aneigh-
borhood is
Nk

pr(re) = n
fork=1,2,..., K — 1,wheren, isthe number of pixels having gray level valuery, n
isthe total number of pixelsin the neighborhood, and K isthe total number of possible
gray levels. Suppose that the neighborhood is moved one pixel to the right. This deletes
the leftmost column and introduces a new column on the right. The updated histogram
then becomes

1
P(re) = E[”k —nr, +ng,]

fork=0,1,..., K — 1, wheren, isthenumber of occurrences of level r; on theleft
column and nr, isthesimilar quantity on the right column. The preceding eguation can
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Problem 3.12

be written also as )
p;(rk‘) = p?"(rk‘) =+ E[an - nLk]

fork = 0,1,..., K — 1. The same concept applies to other modes of neighborhood
motion:

(1) = pe(ra) + b — )

fork=0,1,..., K — 1, where a; isthe number of pixelswith value r;. in the neighbor-
hood area deleted by the move, and b, is the corresponding number introduced by the
move.

The purpose of this simple problem is to make the student think of the meaning of his-
tograms and arrive at the conclusion that histograms carry no information about spatial
properties of images. Thus, the only time that the histogram of the images formed by
the operations shown in the problem statement can be determined in terms of the orig-
inal histograms is when one or both of the images is (are) constant. In (d) we have
the additional requirement that none of the pixels of g(x, y) can be 0. Assume for
convenience that the histograms are not normalized, so thet, for example, k¢ (r) isthe
number of pixelsin f(x, y) having gray level ri, assume that all the pixelsin g(x, y)
have constant value c. The pixels of both images are assumed to be positive. Finaly,
let u;, denote the gray levels of the pixels of the images formed by any of the arithmetic
operations given in the problem statement. Under the preceding set of conditions, the
histograms are determined as follows:

(8) Thehistogram hgm(us) of thesumisobtained by letting u,, = r,+c, and hgm(ug) =
hy(ry) for @l k. In other words, the values (height) of the components of hgm are the
same as the components of /¢, but their locations on the gray axis are shifted right by
an amount c.

(b) Similarly, the histogram At (uy) of the difference has the same components as i ¢
but their locations are moved left by an amount ¢ asaresult of the subtraction operation.

(c) Following the same reasoning, the values (heights) of the components of histogram
hprod(uy;) Of the product arethe same as h ¢, but their locations are at uy, = ¢ x . Note
that while the spacing between components of the resulting histograms in (a) and (b)
was not affected, the spacing between components of 7y0q(us) Will be spread out by an
amount c.
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(d) Finally, assuming that ¢ # 0, the components of hgy(uy) are the same as those of
hy, but their locations will be at u, = 71 /c. Thus, the spacing between components of
haiv(ug) will be compressed by an amount equal to 1/c.

The preceding solutions are applicable if image f(x, y) asois constant. In this case
the four histogramsjust discussed would each have only one component. Their location
would be affected as described (a) through (c).

Using 10 bits (with one bit being the sign bit) allows numbersin therange —511 to 511.

The process of repeated subtractions can be expressed as
K

dK(x7y) = a’(x7y) - Zb(x7y)
k=1
= a’(x7y) — K x b(x7y)

where K isthelargest value such that d (x, y) does not exceed —511 at any coordinates
(z,y), a which time the subtraction process stops. We know nothing about the images,
only that both have values ranging from 0 to 255. Therefore, all we can determine are
the maximum and minimum number of times that the subtraction can be carried out and
the possible range of gray-level valuesin each of these two situations.

Because it is given that g(x,y) has at least one pixel valued 255, the maximum value
that K can have before the subtraction exceeds —511 is 3. This condition occurs when,
at some pair of coordinates (s, t), a(s,t) = b(s,t) = 255. In this case, the possible
range of valuesin the differenceimageis-510to 255. The latter condition can occur if,
at some pair of coordinates (i, j), a(i, j) = 255 and b(¢, j) = 0.

The minimum value that K will haveis 2, which occurs when, at some pair of coordi-
nates, a(s,t) = 0 and b(s,t) = 255. In this case, the possible range of valuesin the
difference image again is —510 to 255. The latter condition can occur if, at some pair
of coordinates (i, j), a(i,j) = 255 and b(i, j) = 0.

Let g(x,y) denote the golden image, and let f(x,y) denote any input image acquired
during routine operation of the system. Change detection via subtraction is based on
computing the simple difference d(x,y) = g(x,y) — f(z,y). The resulting image
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d(x,y) can be used in two fundamental ways for change detection. One way is use a
pixel-by-pixel analysis. Inthiscasewesay that f(x,y) is”’close enough” to the golden
image if all the pixelsin d(z,y) fall within a specified threshold band [T, Tinaz)
where T,,,;,, is negative and T;,,,.. is positive. Usualy, the same value of threshold is
used for both negative and positive differences, in which case we have aband [T, T
in which all pixes of d(x,y) must fall in order for f(x,y) to be declared acceptable.
The second major approach is simply to sum all the pixelsin |d(x, y)| and compare the
sum against athreshold S. Note that the absolute val ue needs to be used to avoid errors
cancelling out. Thisisamuch cruder test, so wewill concentrate on the first approach.

There are three fundamental factors that need tight control for difference-based inspec-
tion to work: (1) proper registration, (2) controlled illumination, and (3) noise levels
that are low enough so that difference values are not affected appreciably by variations
due to noise. The first condition basically addresses the requirement that comparisons
be made between corresponding pixels. Two images can be identical, but if they are
displaced with respect to each other, comparing the differences between them makes
no sense. Often, special markings are manufactured into the product for mechanical or
image-based alignment

Controlled illumination (note that “illumination” is not limited to visible light) obviously
is important because changes in illumination can affect dramaticaly the values in a
difference image. One approach often used in conjunction with illumination control is
intensity scaling based on actual conditions. For example, the products could have one
or more small patches of atightly controlled color, and the intensity (and perhaps even
color) of each pixelsin the entire image would be modified based on the actua versus
expected intensity and/or color of the patchesin the image being processed.

Finally, the noise content of a difference image needs to be low enough so that it does
not materially affect comparisons between the golden and input images. Good signal
strength goes a long way toward reducing the effects of noise. Another (sometimes
complementary) approach is to implement image processing techniques (e.g., image
averaging) to reduce noise.

Obvioudly there are a number if variations of the basic themejust described. For exam-
ple, additional intelligencein theform of tests that are more sophisticated than pixel-by-
pixel threshold comparisons can be implemented. A technique often used in thisregard
is to subdivide the golden image into different regions and perform different (usually
more than one) testsin each of the regions, based on expected region content.
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(8 From Eq. (3.4-3), at any point (z,y),

1 & 1 & 1 &
9:?;91':?;}%+?;77i-
Then
1 & 1 &
B9} = ;E{fi} % ;E{m}-
But all the f; are the same image, so E{f;} = f. Also, it is given that the noise has
zeromean, 0 E{n;} = 0. Thus, it followsthat E{g} = f, which proves the validity of

Eq. (3.4-4).

(b) From (a),
I 1 &E 1 &E
g = _K Eﬁl gi = _K é - fz + 'K_ é - m

It is known from random-variable theory that the variance of the sum of uncorrelated
random variables isthe sum of the variances of those variables (Papoulis[1991]). Since
the elements of f are constant and the ), are uncorrelated, then

2 2 2
+o +...+0’17K]'

1
2 2
03 =05 + 2 loy, T o,

g KQ
Thefirst term on the right side is O because the elements of f are constants. The various
o, aresimply samples of the noise, which ishas variance ;. Thus, o7, = o7 and we
have % )
o2 2_ —g?

TR TR
which provesthe validity of Eq. (3.4-5).

With reference to Section 3.4.2, when ¢ = 1 (no averaging), we have
Wheni = K,

K
_ 1 , 1,
g(K):?lilgl and O—E(K) :?0—77'
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Problem 3.17

Problem 3.18

We want the ratio of o2 . to 02, to be /10, so

Guo _ 1 _ %9
O’%(l) 10 o3
from which we get K = 10. Since the images are generated at 30 frames/s, the station-

ary timerequired is 1/3 s.

(8) Consider a3 x 3 mask first. Since all the coefficients are 1 (we are ignoring the 1/9
scale factor), the net effect of the lowpass filter operationisto add all the gray levels of
pixels under the mask. Initially, it takes 8 additionsto produce the response of the mask.
However, when the mask moves one pixel location to the right, it picks up only one new
column. The new response can be computed as
Rnew = Rold - Cl + 03

where (' is the sum of pixels under the first column of the mask before it was moved,
and Cs is the similar sum in the column it picked up after it moved. This is the basic
box-filter or moving-average equation. For a3 x 3 mask it takes 2 additions to get Cs
(C1 was dready computed). To this we add one subtraction and one addition to get
Rnew. Thus, atotal of 4 arithmetic operations are needed to update the response after
one move. Thisisarecursive procedure for moving from left to right along one row of
the image. When we get to the end of arow, we move down one pixel (the nature of the
computation is the same) and continue the scan in the opposite direction.

For amask of sizen x n, (n — 1) additions are needed to obtain C5, plus the single
subtraction and addition needed to obtain Rney, Which gives atotal of (n + 1) arith-
metic operations after each move. A brute-force implementation would require n? — 1
additions after each move.

(b) The computational advantageis
2 _ —
_n’—-1_ (n+1)n 1):7171.
n+1 (n+1)

The plot of A asafunction of n isasimple linear function startingat A = 1 forn = 2.

One of the easiest waysto look at repeated applications of a spatial filter isto use super-
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position. Let f(x, y) and h(z, y) denote the image and the filter function, respectively.
Assuming square images of size N x N for convenience, we can express f(x, y) asthe
sum of at most V2 images, each of which has only one nonzero pixel (initially, we as-
sumethat N can be infinite). Then, the process of running h(x, y) over f(z, y) canbe
expressed as the foll owing convolution:

h(@,y) = f(z,y) = bz, y) = [fr(2,y) + fo(z,y) + - fn2 (2,9)] -

Suppose for illustrative purposes that f;(x, y) has value 1 a its center, while the other
pixels are valued O, as discussed above (see Fig. P3.18a). If h(x,y) isa3 x 3 mask of
1/9’s (Fig. P3.18b), then convolving h(x, y) with f;(z,y) will produce an image with a
3 x 3 array of 1/9’s at its center and 0’s el sewhere, as shown in Fig. P3.18(c). If h(z,y)
is now applied to this image, the resulting image will be as shown in Fig. P3.18(d).
Note that the sum of the nonzero pixelsin both Figs. P3.18(c) and (d) is the same, and
equal to the value of the original pixel. Thus, it isintuitively evident that successive
applications of h(x,y) will ”diffuse” the nonzero value of f;(x,y) (not an unexpected
result, because h(x,y) is ablurring filter). Since the sum remains constant, the values
of the nonzero elements will become smaller and smaller, as the number of applications
of the filter increases. The overall result is given by adding al the convolved f (z,y),
for k = 1,2,...,N2. The net effect of successive applications of the lowpass spatial
filter h(z,y) is thus seen to be more and more blurring, with the value of each pixel
“redistributed” among the others. The average value of the blurred image will be thus
be the same as the average value of f(x,y).

It is noted that every iteration of blurring further diffuses the values outwardly from the
gtarting point. Inthelimit, the valueswould get infinitely small, but, because the average
value remains constant, this would require an image of infinite spatial proportions. It is
at this junction that border conditions become important. Although it is not required
in the problem statement, it is instructive to discuss in class the effect of successive
applications of h(zx, y) to an image of finite proportions. The net effect isthat, since the
values cannot diffuse outward past the boundary of the image, the denominator in the
successive applications of averaging eventually overpowers the pixel values, driving the
image to zero in the limit. A simple example of thisis given in Fig. P3.18(e), which
showsan array of size1 x 7 that isblurred by successive applications of the 1 x 3 mask
h(y) = $[1,1, 1]. We see that, as long as the values of the blurred 1 can diffuse out, the
sum, .S, of the resulting pixelsis 1. However, when the boundary is met, an assumption
must be made regarding how mask operations on the border are treated. Here, we used
the commonly made assumption that pixel value immediately past the boundary are 0.
The mask operation does not go beyond the boundary, however. In this example, we
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see that the sum of the pixel values begins to decrease with successive applications of
the mask. In the limit, the term 1/(3)™ would overpower the sum of the pixel values,

yielding an array of 0’s.
[T
E X[ X E
m L X LX N
[T ]
(2) (b) (c) (d
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Figure P3.18

Problem 3.19

(@) There are n? points in an n x n median filter mask. Since n is odd, the median
value, ¢, is such that there are (n? — 1)/2 points with values less than or equa to ¢
and the same number with values greater than or equal to (. However, since the area
A (number of points) in the cluster is less than one half n2, and A and n are integers,
it follows that A is aways less than or equal to (n? — 1)/2. Thus, even in the extreme
case when all cluster points are encompassed by the filter mask, there are not enough
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points in the cluster for any of them to be equa to the value of the median (remember,
we are assuming that all cluster points are lighter or darker than the background points).
Therefore, if the center point in the mask is a cluster point, it will be set to the median
value, which is a background shade, and thus it will be “eliminated” from the cluster.
This conclusion obviously applies to the less extreme case when the number of cluster
points encompassed by the mask isless than the maximum size of the cluster.

(b) For the conclusion reached in (&) to hold, the number of points that we consider
cluster (object) points can never exceed (n? — 1) /2. Thus, two or more different clusters
cannot be in close enough proximity for the filter mask to encompass points from more
than one cluster at any mask position. It then follows that no two points from different
clusters can be closer than the diagona dimension of the mask minus one cell (which
can be occupied by apoint from one of the clusters). Assuming agrid spacing of 1 unit,
the minimum distance between any two points of different clusters then must greater
than v/2(n — 1). In other words, these points must be separated by at least the distance
spanned by n — 1 cells along the mask diagonal.

(@ Numerically sort the n? values. The medianis
¢ = [(n? +1)/2]-th largest value.

(b) Oncethe values have been sorted onetime, we simply delete the valuesin thetrailing
edge of the neighborhood and insert the values in the leading edge in the appropriate
locations in the sorted array.

(8 Themost extreme case is when the mask is paositioned on the center pixel of a3-pixel
gap, along athin segment, in which case a3 x 3 mask would encompass a completely
blank field. Since this is known to be the largest gap, the next (odd) mask size up is
guaranteed to encompass some of the pixelsin the segment. Thus, the smallest mask
that will do thejobisab x 5 averaging mask.

(b) The smallest average value produced by the mask iswhen it encompasses only two
pixels of the segment. This average value is a gray-scale value, not binary, like the rest
of the segment pixels. Denotethe smallest average value by Anin, and the binary values
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Problem 3.22

of pixelsin the thin ssgment by B. Clearly, Amin islessthan B. Then, setting the
binarizing threshold dlightly smaller than A, will create one binary pixd of value B
in the center of the mask.

From Fig. 3.35, the vertical bars are 5 pixels wide, 100 pixels high, and their separation
is20 pixels. The phenomenonin questionisrelated to the horizontal separation between
bars, so we can simplify the problem by considering a single scan line through the bars
intheimage. The key to answering this question lies in the fact that the distance (in
pixels) between the onset of one bar and the onset of the next one (say, toitsright) is 25
pixels. Consider the scan line shown in Fig. P3.22. Also shown is a cross section of a
25 x 25 mask. The response of the mask isthe average of the pixelsthat it encompasses.
We note that when the mask moves one pixel to theright, it loses on value of the vertical
bar on the left, but it picks up an identica one on the right, so the response doesn’t
change. In fact, the number of pixels belonging to the vertical bars and contained
within the mask does not change, regardiess of where the mask is located (aslong as it
is contained within the bars, and not near the edges of the set of bars). The fact that the
number of bar pixels under the mask does not change is due to the peculiar separation
between bars and the width of the lines in relation to the 25-pixel width of the mask
This constant response is the reason no white gaps is seen in the image shown in the
problem statement. Note that this constant response does not happen with the 23 x 23
or the 45 x 45 masks because they are not *’synchronized”” with the width of the bars and
their separation.

Mask response

Center of

. mask

25 pixcls — ]

5 20 5 20 5
Figure P3.22
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There are at most ¢2 points in the area for which we want to reduce the gray level of
each pixel to one-tenth its original value. Consider an averaging mask of sizen x n
encompassing the ¢ x ¢ neighborhood. The averaging mask has n? points of which we
are assuming that ¢? points are from the object and the rest from the background. Note
that this assumption implies separation between objects at |east the area of the mask all
around each object. The problem becomes intractable unless this assumption is made.
This condition was not given in the problem statement on purpose in order to force the
student to arrive at that conclusion. If theinstructor wishesto simplify the problem, this
should then be mentioned when the problem is assigned. A further simplification isto
tell the students that the gray level of the background isO.

Let B represent the gray level of background pixels, let a; denote the gray levels of
points inside the mask and o; the levels of the objects. In addition, let S, denote the
set of pointsin the averaging mask, S, the set of points in the object, and S, the set of
points in the mask that are not object points. Then, the response of the averaging mask
at any point on the image can be written as

1
R = EZal

a;€Sq
1
= 2 Dot >
07'€So aRp €Sy
1 |q? [
= 2|e Dot D w
0; €8, Lar €Sy
2
q°—= 1
— L0 L [ - )]

where () denotesthe average value of object points. Let the maximum expected average
value of object points be denoted by Q... Then we want the response of the mask at
any point on the object under this maximum condition to be less than one-tenth Q
or

max’

¢’ = 1 2 2 1=
ﬁQmax+ ﬁ [(n —dq )B] < 1_0Qmax

from which we get the requirement

n> |:1O(Qmax — B):| e
I (@max - 1OB)
for the minimum size of the averaging mask. Note that if the background gray-level is

0, we the minimum mask sizeisn < +/10q. If thiswas afact specified by theinstructor,
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Problem 3.24

Problem 3.25

or student made this assumption from the beginning, then this answer follows almost by
inspection.

The student should realize that both the Laplacian and the averaging process are linear
operations, so it makes no difference which oneis applied first.

The Laplacian operator is defined as

0%f  O*f
2 —_— —_—_— —_—
V= 927 T Oy?
for the unrotated coordinates and as
0%f  0*f
2
Vif= EZ) + Oy'2”

for rotated coordinates. It is given that

r=2a"cosf—y'sinf and y=2a'sinf + gy cosd
where 6 is the angle of rotation. We want to show that the right sides of the first two
equations are equal. We start with

of _ 90s 0f oy
ox'  Ox0x' Oy ox!
_ of of
= cos + By sin 6.

Taking the partial derivative of this expression again with respect to 2’ yields

82f782f 9 o [of\ . o [of . o’f .,
572 f@cos 9+8_x<8_y> s1n900s9+8—y <%> cos9s1n9+a—y2s1n 0.

Next, we compute

of _ oror oty
oy 0xdy = Oyoy

_ O . 9f

= e sin @ + Dy cos 6.

Taking the derivative of this expression again with respect to ¢’ gives
f 0 o, 0 (0f N IAW Pf
g7 @sm 0 — e <8_y> cosfsinf — 8_y <%> sin 6 cos 0 + a—yQCOS 0.

Adding the two expressions for the second derivatives yields

0*f | of _0*f 0%

Ox'? + 3@/2 T Oox2 + 33/2
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which provesthat the Laplacian operator is independent of rotation.

Unsharp masking is high-boost filtering [Eq. (3.7-11)] with A = 1. Figure P3.26 shows
the two possible solutions based on that equation. The left and right masks correspond
to the first and second line in the equation, respectively.

1 1 1 -1 |-1]-1

1 |-7] 1 -1 9 | -1

1|11 -1 -1 -1

Problem 3.26.

Consider the following equation:

fla,y) =VEf(z,y) = flzy) = [fle+Ly) + fl@—1y) + flz.y+1)
+f(z,y—1) = 4f(z,y)]
= 6f(z,y) —[fl@+ Ly + fla -1y + flz,y+1)
+f(z,y—1) + f(z,9)]
= 5{1l.2f(x,y)—
S+ Ly)+ S = Ly)+ fy +1)
+f(z,y — 1)+ f(z,y)}
= 5[L2f(z,y) - f(z,y)]
where f(z,y) denotes the average of f(x,y) in a predefined neighborhood that is cen-
tered a (z, y) and includes the center pixel and its four immediate neighbors. Treating

the constants in the last line of the above equation as proportionality factors, we may
write

fla,y) = V2 f(x,y) ~ f(,y) = Fz,y).
Theright side of this equation is recognized as the definition of unsharp masking given
in Eq. (3.7-7). Thus, it has been demonstrated that subtracting the Laplacian from an
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imageis proportiona to unsharp masking.

Problem 3.28
(8) From Problem 3.25,
of _of af .
5~ Be cosf + 3y sin 0
and
Of _ _0F 49498
oy 8xs né + 3y cosf
from which it follows that
a 2 2 2 2
AN (DFNT (95, (9f
ox! oy’ Oz dy
or 1/2 1/2
AN (N [(aryt, (ary?
oz’ oy’ |\ oz Jy
Thus, we see that the magnitude of the gradient is an isotropic operator.
(b) From Eq. (3.7-12), (3.7-14) and the preceding results,
_|of _|of
|Gm|‘3x‘ ¢ |‘3y ’
_|of | _|of of
|G| = o ‘ax s9+ays1n9
and 8f of
|Gy/|‘a—y/ ‘ ax 9+8_y(3089
Clearly, |G| + |Gy/| # |Ga| + |Gy|
Problem 3.29

Itisgiven that the range of illumination staysin the linear portion of the cameraresponse
range, but no values for the range are given. The fact that images stay in the linear
range simply says that images will not be saturated at the high end or be driven in the
low end to such an extent that the camera will not be able to respond, thus losing image
information irretrievably. The only way to establish a benchmark value for illumination
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is when the variable (daylight) illumination isnot present. Let fy(x, y) dencte animage
taken under artificial illumination only, with no moving objects (e.g., people or vehicles)
in the scene. This becomes the standard by which all other images will be normalized.
There are numerous ways to solve this problem, but the student must show awareness
that areas in the image likely to change due to moving objects should be excluded from
the illumination-correction approach.

One simple way is to select various representative subareas of fo(z,y) not likely to
be obscured by moving objects and compute their average intensities. We then select
the minimum and maximum of all the individual average values, denoted by, f,;, and
fmax- The objective then is to process any input image, f(z,y), so that its minimum
and maximum will be equal to f, ., and £, respectively. The easiest way to do this

iswith alinear transformation function of the form

Jou(z,y) = af (z,y) +b.
where fo isthe output image. It iseasily verified that the output image will have the
required minimum and maximum vaues if we choose

fmax — fmin
Q= ————
fmax - fmin

b= fminfmaX 7 fmaxfmin
fmax - fmin

where frax and fi,;, arethe maximum and minimum values of the input image.

and

Note that the key assumption behind this method isthat all images stay within the linear
operating range of the camera, thus saturation and other nonlinearities are not an issue.
Another implicit assumption is that moving objects comprise a relatively small areain
the field of view of the camera, otherwise these objects would overpower the scene and
the values obtained from f;(x, y) would not make a lot of sense. If the student selects
another automated approach (e.g., histogram equalization), he/she must discussthe same
or similar types of assumptions.
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Problem 4.1

By direct substitution of f(z) [Eq. (4.2-6)] into F'(u) [Eq. (4.2-5)]:

F(u)

M-1[M-1
Z F(T)ejQﬂrm/M] e—jQTrum/M
r=0
M—-1
F(T’) Z ejQﬂrm/Me—jQTrum/M
=0

r=0 r=

Sl

x=0
M—-1

wherethe third step follows from the orthogonality condition given in the problem state-
ment. Substitution of F'(u) into f(x) is handled in asimilar manner.

Problem 4.2

Thisisasimple problem to familiarize the student with just the manipulation of the 2-D
Fourier transform and itsinverse. The Fourier transformis linear iff:

) [alfl (ZE, y) + a2f2(x7 y)] = al% [fl (ZE, y)] + aQ% [fQ(x7 y)]
where al and a2 are arbitrary constants. From the definition of the 2-D transform,

& [alfl(x,y) + a2f2(x7y)] =

1 M—-1N-1

MN z z a1 f1(z,y) + azfo(z,y)]
=0 y=0

e—jQﬂ'(um/M + vy /N)

1 M—-1N-1

= T 2 2 @il y)eT /M /)
MN =0 y=0
1 M—-1N-1 '

T D O aafala,y)e M /)

MN =0 y=0

= wS[filz,y)] + aS[f2(z,y)]
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Problem 4.3

Problem 4.4

which proveslinearity. Theinverseisdone in the same way.

Theinverse DFT of aconstant A inthefrequency domainisan impulse of strength A in
the spatial domain. Convolving the impul se with the image copies (multiplies) the value
of the impulse at each pixel location in the image.

An important aspect of this problem is to recognize that the quantity (u? + v?) can
be replaced by the distance squared, D?(u,v). This reduces the problem to one vari-
able, which is notationally easier to manage. Rather than carry an award capital letter
throughout the development, we define w? £ D?(u,v) = (u? + v?). Then we proceed
asfollows:

H(w) =e /2"
The inverse Fourier transformis

h(z) = / H(w)e?*™ 2 dw

Cn2/952 i
_ / e~ W /20 e]27‘rwzdw
—oo

o0
_ / e—#[wz —j471'02wz] duw.
—00
We now make use of the identity
(2m)22202  (2m)22202
e 2 e 2 =1.

Inserting this identity in the preceding integral yields
h(Z) _ 6_32_‘”)22_5’ / e—#[wz—j4ﬂ02wz—(2ﬂ)2o4z2]dw

o0
_(2m)22252 1 s 2 12
e 2 e 27 [w—j2ma’s] dw.
— 00

Next we make the change of variable r = w — j270?2. Then, dr = dw and the above
integral becomes

hz) ==e~ a / e 22 dr.
Finally, we multiply and divide the right side of this equation by /27
(2m)2:2 2 1 oo 2
h(z) = V2moe™ " 2 [\/%0 /_OO e 27 dr] .
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The expression inside the brackets is recognized as a Gaussian probability density func-
tion, whoseintegral from —oo to oo is1. Then,

(27)22252
h(z) =V2moe™ 2 .
Going back to two spatial variablesgivesthefinal result:h(z, y) = 2o e 270" (@ +v%)

Problem 4.5

The spatial filter is obtained by taking the inverse Fourier transform of the frequency-
domain filter:

- [1 - I—Lp(uﬂv)]
T =S [Hip(u, 0)]
= 8(0) — V2rg e 2ot @ YY)

hhp(x7y) =

& @

Problem 4.6

(a) We note first that (—1)*+¥ = e/™(@+¥), Then,
1 M—-1N-1
iT(z+y) _ m(z+y) | ,—j2n(ux/M + vy/N)
3 [fapere] = LSS (e e y
=0 y=0
M—-1N-1
T 2 O [l
=0 y=0
e—jQﬂ(um/M + vy /N)
M—-1N-1

M N
Z Z f(z,y)e e~ i2m (alu—H]/M+ylv—F]/N)
N =0 y=0
F(u—M/2,v— N/2).

(b) Following the same format asin (a),
M-1N-1
S [f(x,y)ejQTr(ugm/M—&-vgy/M) _ MN Z Z [ e]27‘r(u0m/M+vgy/M)
=0 y=0
e—jQﬂ(um/M + vy/N)
M-1N-1

- NZZf:cy

=0 y=0
e—jQﬂ(m[u—uo]/M + y[v—vo]/N)

= F(u—wug,v—1p)
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Problem 4.7

Problem 4.8

Problem 4.9

Problem 4.10

Similarly,

g1 [F(u,v)e—jQW(umo/M tuvo/M) | — f(r— xo,y — yo)

The equally-spaced, vertical bars on the |eft, lower third of the image.

With reference to Eq. (4.4-1), al the highpass filtersin discussed in Section 4.4 can be
expressed a 1 minus the transfer function of lowpass filter (which we know do not have
an impulse at the origin). The inverse Fourier transform of 1 gives an impulse at the
origin in the highpass spatid filters.

The complex conjugate smply changes j to —j in the inverse transform, so the image
on theright isgiven by
M-1N-1
STHF*(u,v)] = Z Z F(u.v)e=2m(ue/M + vy/N)
=0 y=0
M-1N-1
= Z z F(u.v)e2m(u(=2)/M + v(=y)/N)
=0 y=0
which simply mirrors f(x, y) about the origin, thus producing the image on the right.

If H(u,v) isreal and symmetric, then
H(u,v) = H*(u,v) = H*(—u, —v) = H(—u, —v).

The filter in the spatial domain is
M—-1N-— '
h(z,y) =S [H(u,v)] = Z z H(u.v)ed?m(ua/M + vy/N)
x=0 y=0

Ju
Ju

<
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Then,
M—-1N-1
K (z,y) H*(u.v)e~i2m(ue/M + vy/N)
=0 y=0
M—-1N-1
Z H*(fu, 7v)ej27r(um/M + vy/N)
=0 y=0
M—-1N-1
H(u, v)eﬂﬂ(ur/M + vy/N)
=0 y=0
h(z,y) (real).
Similarly,
M—-1N-1
h(—x,—y) = H (u,v)e 72 (ua/M + vy/N)
=0 y=0
M—-1N-1

H(*U, 7v)ej27r(um/M + vy/N)

I
8
Il
o
<
]
o

T
=

_ H(u,v)ejQﬂ-(um/M + vy/N)

8
Il
=]
Il
=]

I
>
—~
&
& <

(symmetric).

Problem 4.11

Starting from Eq. (4.2-30), we easily find the expression for the definition of continuous
convolution in one dimension:

ﬂ@*gw)[%jﬂQanm&

The Fourier transform of this expression is

S[fw) g = [ [/f:)f<a>90ra)da]e-JQ”“fdx

_ /_Z @) [/_Z g(z — a)e—ﬂmdaz] da.

The term inside the inner bracketsis the Fourier transform of g(z — «). But,

S [yl = a)] = Glu)e 2w

S [f(x) * g(x)] /_OO £(@) [Glwe—727] da

G(u) /OO fa)e 2™ g
G(u)F(u).
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Problem 4.12

Problem 4.13

This proves that multiplication in the frequency domain is equal to convolution in the
spatial domain. The proof that multiplication in the spatial domain is equal to convolu-
tion in the spatial domain is donein similar way.

(& Thering in fact has adark center area as aresult of the highpass operation only (the
following image shows the result of highpass filtering only). However, the dark center
area is averaged out by the lowpass filter. The reason the final result looks so bright is
that the discontinuity (edge) on boundaries of the ring are much higher than anywhere
else in theimage, thus giving an averaged area whose gray level dominates.

(b) Filtering with the Fourier transform is alinear process. The order does not matter.

Figure P4.12

(8) One application of the filter gives:
G(u,v) = H(u,v)F(u,v)

= e_Dz(“’”)/QDSF(u, V).
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Similarly, K applications of the filter would give

GK(U, U) _ e—KDz(u,v)/QDgF(

u,v).

The inverse DFT of Gk (u,v) would give the image resulting from K passes of the
Gaussian filter. If K is “large enough,” the Gaussian LPF will become a notch pass
filter, passing only F'(0,0). We know that thisterm is equal to the average value of the
image. So, there is a value of K after which the result of repeated lowpass filtering
will ssimply produce a constant image. The value of all pixels on this image will be
equal to the average value of the original image. Note that the answer applies even as
K approaches infinity. In this case the filter will approach an impulse at the origin, and

this would still give us F'(0, 0) asthe result of filtering.

(b) To guarantee the result in (), K has to be chosen large enough so that the filter
becomes a notch pass filter (at the origin) for dl values of D(u,v). Keeping in mind
that increments of frequencies arein unit values, this means

1 if (u,v) =(0,0)

0 Otherwise.

Because v and v are integers, the conditions on the second line in this equation are
satisfied for all w > 1 and/or v > 1. Whenu = v =0, D(u,v) = 0,and Hk (u,v) = 1,
as desired.

Hie(u,v) = e—KDZ(u,v)/zD?) _

We want all values of the filter to be zero for all values of the distance from the origin
that are greater than O (i.e., for values of v and/or v greater than 0). However, the filter is
aGaussian function, so its value is aways greater than O for all finite values of D(u,v).
But, we are dealing with digital numbers, which will be designated as zero whenever
the value of the filter is less than % the smallest positive number representable in the
computer being used. Assume this number to be kmin (don’t confuse the meaning of this
k with K, which is the number of applications of the filter). So, values of K for which
for which the filter function is greater than 0.5 x knin Will suffice. That is, we want the
minimum value of K for which

e KD (w0)/2D5 < 5,

min

or
ln(0.5kmin)

 D2(u,v)/2D2
2D2 1n(0.5k pin )
D?(u,v)
As noted above, we want this equation for hold for al valuesof D?(u,v) > 0. Sincethe
exponential decreases as a function of increasing distance from the origin, we choose

K
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Problem 4.14

Problem 4.15

the smallest possible value of D?(u,v), whichis 1. Tisgivesthe result

K > —2DZ In(0.5k )
which gives a positive number because ki, << 1. This result guarantees that the
lowpass filter will act as a notch pass filter, leaving only the value of the transform at the
origin. Theimage will not change past thisvalue of K.

(8 The spatial averageis
o(r,) = 1 @y + )+ S+ Ly)+ o~ Ly)+ f.y - 1)].
From Eq. (4.6-2),
Gu,v) =

[ejQTrv/N+ej27'ru/M+e—j27'ru/M+e—j27rv/N F(U,U)

mq;IH

= (u, v)F(u,v),
where
H(u,v) = % [cos(2mu/M) + cos(2mv/N)]

is the filter transfer function in the frequency domain.

(b) To see that this is a lowpass filter, it helps to express the preceding equation in the
form of our familiar centered functions:
H(u,v) = % [cos(2m[u — M /2)/M) + cos(2m[v — N/2]/N)].

Consider onevariablefor convenience. AsurangesfromOto M, thevalue of cos(27[u—
M/2)/M) starts at —1, peaks at 1 when u = M /2 (the center of the filter) and then de-
creasesto —1 againwhenu = M. Thus, we seethat theamplitude of the filter decreases
as afunction of distance from the origin of the centered filter, which is the characteris-
tic of alowpass filter. A similar argument is easily carried out when considering both
variables simultaneoudly.

The problem statement gives the form of the difference in the z-direction. A similar
expression gives the difference in the y-direction. The filtered function in the spatial
domain thenis:

g(xay) = f(xay) *f($+1,y) +f(:c,y) 7f(x7y+ 1)
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From Eq. (4.6-2),
Glu,v) = Flu,v) — F(u,0)e?>™ /M 4 F(u,v) — F(u,v)ed2 /N
— [1 _ ejQ”“/M]F(u, v) + [1 . 63'2779/1\/]1;(“7 v)
= H(u,v)F(u,v),
where H (u, v) isthefilter function:
R T ——

(b) To see that thisis a highpass filter, it helps to express the filter function in the form
of our familiar centered functions:

H(u,v) = —2j [sin(ﬂ[u — M/2]/M)ei™/™ 4 sin(rlv — N/2] /N)em/N} .
Consider one varigble for convenience. As u ranges from 0 to M, H(u,v) starts at
its maximum (complex) value of 25 for v = 0 and decreases from there. When u =
M /2 (the center of the shifted function), A similar argument is easily carried out when
considering both variablessimultaneously.. Thevalueof H (u,v) startsincreasing again
and achieves the maximum value of 25 again when v = M. Thus, this filter has a
value of 0 athe origin and increases with increasing distance from the origin. This
is the characteristic of a highpass filter. A similar argument is easily carried out when
considering both variables simultaneoudly.

(8 The key for the student to be able to solve the problem is to treat the number of
applications (denoted by K) of the highpass filter as 1 minus K applications of the
corresponding lowpass filter, so that

HK(Uﬂv) = HK(“: U)F(U,U)
_ [1 _ e—KDz(u,v)/QDS} H(u,v)
where the Gaussian lowpass filter is from Problem 4.13. Students who start directly

with the expression of the Gaussian highpass filter |1 — e=52°(wv)/2D5 | and attempt
to raise it to the Kth power will run into a dead end.

The solution to this problem parallels the solution to Problem 4.13. Here, however,
the filter will approach a notch filter that will take out (0, 0) and thus will produce an
image with zero average values (this implies negative pixels). So, there is a value of
K after which the result of repeated highpass filtering will smply produce a constant
image.
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Problem 4.17

(b) The problem isto determine the value of K for which

0 if (u,v) =(0,0)

1 Otherwise,

Because v and v are integers, the conditions on the second line in this equation are
satisfied for al w > 1 and/or v > 1. Whenu = v =0, D(u,v) =0, and Hg (u,v) = 0,
as desired.

Hyc(u,v) =1 — e—KD2(u,v)/2D§ _

We want all values of the filter to be 1 for al values of the distance from the origin that
are greater than O (i.e., for values of « and/or v greater than 0). For H k (u, v) to become
1, the exponential term has to become O for values of « and/or v greater than 0. Thisis
the same requirement as in Problem 4.13, so the solution of that problem applies here as
well.

() Express filtering as convolution to reduce all processes to the spatial domain. Then,
the filtered image is given by

9(z,y) = h(z,y) * f(z,y)
where h is the spatial filter (inverse Fourier transform of the frequency-domain filter)
and f isthe input image. Histogram processing this result yields
g'(xy) = T lg(z,y)]
= T [Mx,y) = f(z,9)],
where T' denotes the histogram equalization transformation. 1f we histogram-equalize
first, then
g9(z,y) =T [f(z,y)]
and
9/(z,y) = h(z,y) =T [f(z,y)].
In general, T" is a nonlinear function determined by the nature of the pixels in the im-
age from which it is computed. Thus, in generd, T [h(z,y) * f(z,y)] # h(z,y) *
T [f(z,y)] and the order does matter.

(b) Asindicated in Section 4.4, highpass filtering severely diminishes the contrast of
an image. Although high-frequency emphasis helps some, the improvement is usually
not dramatic (see Fig. 4.30). Thus, if an image is histogram equaized firdt, the gain
in contrast improvement will essentialy be lost in the filtering process. Therefore, the
procedure in general isto filter first and histogram-equalize the image after that.
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The answer isno. The Fourier transform isalinear process, while the square and square
roots involved in computing the gradient are nonlinear operations. The Fourier trans-
form could be used to compute the derivatives (as differences—see Prob.4.15), but the
squares, square root, or absol ute values must be computed directly inthe spatial domain.

The equation corresponding to the mask in Fig. 4.27(f) isEq. (3.7-4):
9(@,y) =[fle+1Ly)+ fla— Ly + flz,y+1) + fz,y = 1)] — 4f(z,y).
Asin Problem 4.15,
G(u,v) = H(u,v)F(u,v)

where

H(u,v) = [eﬂ”“/M + e I2mU/M  o32m0/N y o=j2mu/N _ g

= 2[cos(2mu/M) + cos(2mv/N) — 2].

Shifting the filter to the center of the frequency rectangle gives

H(u,v) = 2[cos(2w [u — M/2) /M) + cos(2w [v — N/2] /N) — 2].
When (u,v) = (M/2,N/2) (the center of the shifted filter). For values away from

the center values of H (u, v) decrease, but this is as expected [see Fig. 4.27(8)] for this
particular formulation of the Laplacian.

From Eq. (4.4-3), the transfer function of a Butterworth highpass filter is

1
H(u,v) = —————-.
Dq
1+ [D(u,v):|
We want the filter to have avalue of v; when D(u,v) = 0, and approach ~, for high
values of D(u, v). The preceding equation is easily modified to accomplish this:

(e — L) '

2n
Dqg
1+ [D(u,v):|
The value of n controls the sharpness of the transition between v, and ;.

H(U,U) :7L+
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Problem 4.21

Problem 4.22

Problem 4.23

Problem 4.24

Recall that the reason for padding isto establish a’buffer” between the periods that are
implicitinthe DFT. Imagine theimage on the left being duplicated infinitely many times
to cover the zy-plane. The result would be a checkerboard, with each square being in
the checkerboard being the image (and the black extensions). Now imagine doing the
same thing to the image on the right. The results would be indistinguishable. Thus,
either form of padding accomplishes the same separation between images, as desired.

(8) Padding an image with zeros increases its size, but not its gray-level content. Thus,
the average gray-level of the padded image is lower than that of the original image.
This implies that (0, 0) in the spectrum of the padded image is less than F'(0,0) in
the original image (recall that F'(0, 0) isthe average value of the corresponding image).
Thus, we can visualize F'(0, 0) being lower in the spectrum on the right, with all values
away from the origin being lower too, and covering a narrower range of values. That’s
the reason the overall contrast is lower in the picture on the right.

(b) Padding an image with 0’s introduces significant discontinuities at the borders of the
origina images. This process introduces strong horizontal and vertical edges, where
the image ends abruptly and then continues with O values. These sharp transitions
correspond to the strength of the spectrum aong the horizontal and vertical axes of the
spectrum.

Asin problem 4.9, taking the complex conjugate of an image mirrors it in the spatial
domain. Thus, we would expect the result to be a mirror image (about both axes) of
Fig. 4.41(e).

(@ and (b) See Figs. P4.24(a) and (b). (c) and (d) See Figs. P4.24(c) and (d).
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Figures P4.24(a) and (b)

Figures P4.24(c) and (d)

Problem 4.25

Because M = 2", we can write Eqgs. (4.6-47) and (4.6-48) respectively as
1
m(n) = EMTL
and
a(n) = Mn.
Proof by induction begins by showing that both equations hold for n = 1:

1
m(l) = 5(2)(1) =1 and a(l)=(2)(1) =2.
We know these results to be correct from the discussion in Section 4.6.6. Next, we
assume that the equations hold for n. Then, we are required to prove that they also are

truefor n + 1. From Eq. (4.6-45),
m(n +1) =2m(n) +2".
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Problem 4.26

Problem 4.27

Substituting m(n) from above,

m(n+1)

Therefore, Eq. (4.6-47) isvalid for al n.

From Eq. (4.6-46),
a(n + 1) = 2a(n) + 2"+
Substituting the above expression for a(n) yieds
a(n+1) 2Mn + 2"
2(2"n) + 2"t
2" (n 4 1)

which completes the proof.

Consider asingle star modeled as an impulse §(x — xo, ¥ — yo). Then,

f(x7y) = K(S(IE —Xo,Y — ZJO)
from which

2(x,y) In f(z,y) = K +Iné(x — z0,y — o)

= K 48z — 20,y —90)

Taking the Fourier transform of both sidesyields

SIK']+ S [6 (z — 20,y — o)

8(0,0) 4 e~ 2m(uzotvo),

From this result, it is evident that the contribution of illumination is an impulse a the
origin of the frequency plane. A notch filter that attenuates only this component will
take care of the problem. Extension of this development to multiple impulses (stars) is
straightforward. The filter will be the same.

Sz(z,y)]

The problem can be solved by carrying out the following steps:
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Perform a median filtering operation.

Follow (1) by high-frequency emphasis.

Histogram-equalize this result.

Compute the average gray level, K. Add the quantity (K — Kj) to all pixels.

Perform the transformations shown in Fig. P4.27, where r is the input gray level,
and R, GG, and B are fed into an RGB color monitor.

%

Output

* * = [nput
]1 ]2
Figure P4.27






5 Problem Solutions

Problem 5.1

The solutions to (@), (b), and (c) are shown in Fig. P5.1, from left to right:

Figure P5.1

Problem 5.2

The solutions to (@), (b), and (c) are shown in Fig. P5.2, from |eft to right:

Figure PS.2
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Problem 5.3
The solutions to (@), (b), and (c) are shown in Fig. P5.3, from |eft to right:
Figure P5.3
Problem 5.4
The solutions to (@), (b), and (c) are shown in Fig. P5.4, from |eft to right:
Figure P5.4
Problem 5.5

The solutions to (@), (b), and (c) are shown in Fig. P5.5, from left to right:



Problem 5.6

Problem 5.7

Problem 5.6

Figure PS.5

The solutions to (@), (b), and (c) are shown in Fig. P5.6, from |eft to right:

Figure PS5.6

The solutions to (@), (b), and (c) are shown in Fig. P5.7, from |eft to right:

Figure PS.7

57
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Problem 5.8
The solutions to (@), (b), and (c) are shown in Fig. P5.8, from left to right:
Figure P5.8
Problem 5.9
The solutions to (@), (b), and (c) are shown in Fig. P5.9, from left to right:
Figure P5.9
Problem 5.10

(@ The key to this problem is that the geometric mean is zero whenever any pixd is
zero. Draw aprofile of an ideal edge with afew points valued O and afew points valued
1. The geometric mean will give only values of 0 and 1, wheresas the arithmetic mean
will give intermediate values (blur).

(b) Black is 0, so the geometric mean will return values of 0 aslong as at |east one pixel
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in the window is black. Since the center of the mask can be outside the original black
area when this happens, the figure will be thickened.

The key to understanding the behavior of the contra-harmonic filter isto think of the pix-
elsin the neighborhood surrounding a noise impulse as being constant, with the impulse
noise point being in the center of the neighborhood. For the noise spike to be visible,
its value must be considerably larger than the value of its neighbors. Also keep in mind
that the power in the numerator is 1 plus the power in the denominator.

(a) By definition, pepper noise is a low vaue (really 0). It is most visible when sur-
rounded by light values. Then center pixel (the pepper noise), will have little influence
in the sums. If the area spanned by the filter is approximately constant, the ratio will
approach the value of the pixels in the neighborhood—thus reducing the effect of the
low-value pixel. For example, here are some values of the filter for adark point of value
lina3 x 3 region with pixels of value 100: For Q = 0.5, filter = 98.78; for @ = 1,
filter = 99.88, for Q = 2, filter = 99.99; and for () = 5, filter = 100.00.

(b) The reverse happens when the center point is large and its neighbors are small. The
center pixel will now be the largest. However, the exponent is now negative, so the small
numberswill dominate the result. The numerator can then be thought of a constant raised
to the power @@ + 1 and the denominator as a the same constant raised to the power Q.
That constant is the value of the pixels in the neighborhood. So the ratio is just that
value.

(c) When the wrong polarity is used the large numbers in the case of the salt noise will
be raised to a positive power, thus the noise will overpower the result. For salt noise
theimage will become very light. The opposite istrue for pepper noise—the image will
become dark.

(d) When @ = —1, the vaue of the numerator becomes equal to the number of pixelsin
the neighborhood (m x n). The value of the denominator become sum values, each of
which is 1 over the value of a pixel in the neighborhood. Thisisthe same asthe average
of 1/A, where A isthe image average.

(e) In aconstant area, the filter returns the value of the pixels in the area, independently
of the value of Q.
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Problem 5.12
A bandpass filter is obtained by subtracting the corresponding bandreject filter from 1:
Hpp(u,v) =1 — Hye(u,v).
Then:
(a) Ideal bandpass filter:
0 if D(u,v) < Dy — %
Hipp(u,v) = 1 if Dy — & < D(u,v) < Dy + %¥.
0 D(u,v)> Do+ %
(b) Butterworth bandpass filter:
1
Hepp(u,v) = 1-— RS
1+ [D2(u,;;)—D§}
[ D(u,v)W :|2n
D2 (u,v)—D3
- 2n "
D(u,v)W
L+ [Dz(u,v)—Dg:|
(c) Gaussian bandpass filter:
[ Zpeaspt]”
Hepp(u,v) = 1—|1—e ()
~3[Zpeaspt]”
— e (w,0)
Problem 5.13
A notch pass filter is obtained by subtracting the corresponding notch reject filter from
1
Hpp(u,v) =1 — Hy(u,v).
Then:

(&) 1deal notch pass filter:

1 ifD < DgorD <D
Hmp(u,v){ 1(u,v) < Dy 2 (u,v) < o

0 otherwise
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(b) Butterworth notch passfilter:

1
HBnp(u,U) = 1-—

__oi 1"
L+ [Dl (u,v) D2 (u,v)

D2 n
D1 (w,v) Dz (w,v)

D2 i
1+ [Dl (u,v)g)z (u,v):|

(c) Gaussian notch passfilter:
Hemp(u,v) =

1 [ D1<u¢v>D2<u‘,v>]
e’ 0

Problem 5.14

We proceed as follows:
Fuo) =[] spermetisay

= // Asin(ugx 4 voy)e 2=+ gg dy.
Using the exponential definition of the sine function:
: 1 1 —j0
s1n9:2—j(eJ —e’ )
gives us
—i4

F(u,v) _ j //oo [e]’(uom+v0y) o e—j(ugm+v0y):| e—I2m(uz +vy) g, dy

_ 7‘;A |://OO ejQTr(uom/QTr+’L)[)y/277)e—j277(um+’Uy)dx dy] _

% |://OO e—92m(woz/2m + voy/27) o —j2m (uz + vY) (4. dy] .

These are the Fourier transforms of the functions
1 % ej27'r(ugm/27'r+voy/27r)
and
% e—jQﬂ(uom/2ﬂ+v0y/2ﬂ)
respectively. The Fourier transform of the 1 gives an impulse at the origin, and the
exponentia s shift the origin of the impulse, as discussed in Section 4.6.1. Thus,

F(u,v):%A [6 (uf;—;,vf;}—;> 76(u+;—;,v+;}—;>}.
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Problem 5.15

Problem 5.16

From Eq. (5.4-19)

9 1

0" = 2+ D@11 zz{[g(’Y) —wn(y)] - [ - wn}’

where “y” indicates terms affected by the summations. Letting K = 1/(2a+1)(2b+1),
taking the partia derivative of o2 with respect to w and setting the result equal to zero
gives

o2 _ _ —
S0 = KD 2[9() —wn(y) =g+ [-n(v) +7] =0

= KDY Y —g(n() +9()m +wi’ () — wn(y)i+
an(y) — g7 — win(y) + wi’
= 0
= G+ 7+ wn? — Wi + G — g7 — Wi+ Wi =0
= —g+g+w (P -7) =0
where, for example, we used the fact that

1 —_—
Ca+1)(2b+1) > 9tnly) =gm.
Solving for w gives us
_9n—agn
W= =-m.
772 7ﬁ2
Finally, inserting the variables = and y,
wia.y) — SE 0@ y) ~ Gy, y)
’ (

n*(z,y) =7 (2, y)
which agrees with Eq. (5.4-21).

From Eqg. (5.5-13),

sw) = [[HaOhia—ay - p)dads.
Itisgiventhat f(x,y) = 6(z — a), s0 f(«o,3) = 6(a — a). Then, using the impulse
response given in the problem statement,

9(z,y) = //_OO §(a — a)e~l@=e’’+@=97] 4o 4
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= //OO 6(a — a)e_[(m_a)z] e~ l=87] 4q ag

= /Oo 6(a — a)e‘[(f—a)z] da /Oo o~ lw=5)] g
— e_[(’f—a)z] /00 e—[(y—ﬁ)z] g

where we used the fact that the integral of the impulse is nonzero only when o = a.

Next, we note that
/ e~ lw=56)7] B = / o~ 1B-v)7] g

which isin the form of a constant times a Gaussian density with variance 02 = 1/2 or
standard deviation o = 1/+/2. In other words,

6% = | far(1/2) l

1 o[
V2 (12)"

Theintegral from minusto plusinfinity of the quantity inside the bracketsis 1, so

g(z,y) = Vre[e=’]

which isablurred version of the original image.

Because the motion in the z- and y-directions are independent (motion isin the vertical
(x) direction only at first, and then switching to motion only in the horizontal (y) direc-
tion) this problem can be solved in two steps. Thefirst step isidentical to the analysis
that resulted in Eq. (5.6-10), which gives the blurring function due to vertical motion
only:

g Jmua

T
Hiy(u,v) = 7r_u1a sin(mua)

)

where we are representing linear motion by the equation x(¢t) = at/T7.The function
H; (u,v) would give us ablurred image in the verticd direction. That blurred imageis
the image that would then start moving in the horizontal direction and to which horizon-
tal blurring would be applied. This is nothing more than applying a second filter with
transfer function

T . —JTu
Hy(u,v) = W—ij sin(rub)e=Imu0
where we assumed the form yo (t) = bt/ 1% for motion in the y-direction. Therefore, the

overall blurring transfer function is given by the product of these two functions:

VT,

H(u,v) = oy o)

sin(mua) sin(mub)e I (va=ub)
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Problem 5.18

Problem 5.19

and the overall blurred image is

g(x,y) =S [H(u,v) F(u, v)]
where F'(u, v) isthe Fourier transform of the input image.

Following the procedure in Section 5.6.3,

T
H(u,v) = / e~ I2muro(t) gt
T
—]271'u (1/2)at ]dt

e—]ﬂ'uat dt

T

I
%Hc\

[cos(muat®) — jsin(ruat®)] dt

= 1/ m [ \/’/TUGT *]S \/mmT ]
2 x
x) = 1/%/0 cost?dt
2 T
= \/j/ sin t2dt.
m™Jo

These are Fresnel cosine and sineintegrals. They can be found, for example, the Hand-
book of Mathematical Functions, by Abramowitz, or other similar reference.

where

A basic approach for restoring a rotationally blurred image is to convert the image from
rectangular to polar coordinates. The blur will then appear as one-dimensional uniform
motion blur along the #-axis. Any of the techniques discussed in this chapter for han-
dling uniform blur aong one dimension can then be applied to the problem. The image
is then converted back to rectangular coordinates after restoration. The mathematical
solution is simple. For any pixel with rectangular coordinates (x, ) we generate a cor-
responding pixel with polar coordinates (r, 9), where

N
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and
6 =tan—! (%) .

A display of the resulting image would shown an image that is blurred along the #-axis
and would, in addition, appear distorted due to the coordinate conversion. Since the
extent of the rotational blur is known (it is given as 7 /8 radians), we can use the same
solution we used for uniform linear motion (Section 5.6.3), withx = 6 andy = r
to obtain the transfer function. Any of the methods in Sections 5.7 through 5.9 then
become applicable.

Measure the average value of the background. Set all pixels in the image, except the
cross hairs, to that gray level. Denote the Fourier transform of this image by G(u, v).
Since the characteristics of the cross hairs are given with a high degree of accuracy,
we can construct an image of the background (of the same size) using the background
gray levels determined previously. We then construct a model of the cross hairs in the
correct location (determined from he given image) using the provided dimensions and
gray level of the crosshairs. Denote by F'(u, v) the Fourier transform of this new image
. Theratio G(u,v)/F(u,v) isan estimate of the blurring function H (u, v). Inthelikely
event of vanishing valuesin F'(u, v), we can construct aradially-limited filter using the
method discussed in connection with Fig. 5.27. Becauseweknow F'(u,v) and G (u, v),
and an estimate of H(u,v), we can aso refine our estimate of the blurring function
by substituting G and H in Eq. (5.8-3) and adjusting K to get as close as possibleto a
good result for F'(u, v) [the result can be evaluated visually by taking theinverse Fourier
transform]. The resulting filter in either case can then be used to deblur theimage of the
heart, if desired.

The key to solving this problem isto recognize that the given function
2

rT — 0’2 2 2
_ —r</20
h(r) s
wherer? = x%+142, isthe Laplacian (second derivative with respect to r) of the function
ho(r) = e~ /2",

That is, V*[ho(r)] is equa to the given function. Then we know from Eq, (4.4-7) that,
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Problem 5.22

Problem 5.23

for afunction f(x,y),

& [VQf(x,y)] = —(u® + v} F(u,v).
Thus, we have reduced the problem to finding the Fourier transform of e=""/29° 'which
is in the form of a Gaussian function. From Table 4.1, we note from the Gaussian
transform pair that the Fourier transform of a function of the form = (=" +v%)/27 js

3 [e—(m2+y2)/202} — Vorge 2 (@ Hy?)

Therefore, the Fourier transform of the given degradation functionis

7"270'2 —r2/202 2
H(u,v) = S e =9 [V ho(r)]

)
= —(u*+v*)F(u,v)
- /2’/'1'0'(u2+02)6_2ﬂ202(m2+y2)-

Thisisasimple plugin problem. Itspurposeisto gain familiarity with the variousterms
of the Wiener filter. From Eqg. (5.8-3),

1 |H (u, v)|*
Hy (u,v) =
wlw) lH(u,v) |H (u,v)]> + K
where
|H(u,0)" = H*(u,v)H(u,v)
= 2m02(u? + v?)2e (@)
Then,

/27rc7(u2 + 02)6—277202(12—&-342)
2102 (u? 4 v2)2e— 477 (v 4+ K

HW(u7v) - l[

Thisasoisasimple plugin problem, whose purpose isthe same as the previous problem.
From Eqg. (5.9-4)
H*(u,v)
|H (u,v)* + 7| Pu,v)|?
V2ro(u? 4 v?)e=2m7 0" (@ +v?)
2m02(u? 4 v2)2e=47202(32+9?) 4 4 | P(u, v)|?

where P(u, v) isthe Fourier transform of the Laplacian operator [Eq. (5.9-5)]. Thisis
asfar aswe can reasonably carry thisproblem. It isworthwhile pointing out to students

Heo(u,v) =
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that a closed expression for the transform of the Laplacian operator was obtained in
Problem 4.19. However, substituting that solution for P(u, v) herewould only increase
the number of termsin the filter and would not aid at al in simplifying the expression.

Because the system is assumed linear and position invariant, it follows that Eq. (5.5-17)
holds. Furthermore, we can use superposition and obtain the response of the system
first to F'(u, v) and thento N(u,v). The sum of the two individual responses gives the
complete response. First, using only F'(u, v),
G1(u,v) = H(u,v)F(u,v)
and
|G (u,0)|* = [H (u, 0)|* | F(u, 0)[
Then, using only N (u, v),
Gao(u,v) = N(u,v)
and
|G (u,0)[* = [N (u, v)[*
so that
Glu,0)[F = [Gi(u,0)* + |G (u,v)|*
| H (u, 0)* | (u,0)* + [N (u,0)|*

(&) It is given that
~ 2
Fu,o)| = |R(wv) [Gluv).

From Problem 5.24,

‘F(u, v)‘2

= R0 [|H () [P, 0) + N (u,0) P
N 2
Forcing ‘F(u,v)‘ to equal | F(u,v)| gives

|F(u,v)|? ]1/2_
(u,v)]?

B = o PP + N
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(b)
F(u,v) R(u,v)G(u,v)
r 7 9 1/2
_IF(wv) 1 60
H (u, )" [F(u, 0)” + [N (u, )|
- 1/2
. Glu,v)
5 U,V
| H o) + G
and, because | F(u,v)|* = Sy (u,v) and | N (u,v)|* = S, (u,v),
1/2
(u,v) ! G(u,v)
’ 2 Sy (u,v) rE
[ H (u,v)|” + 5Ha
Problem 5.26
One possible solution: (1) Average images to reduce noise. (2) obtain blurred image of
a bright, single star to simulate an impulse (the star should be as small as possible in
the field of view of the telescope to smulate an impulse as closely as possible. (3) The
Fourier transform of this image will give H (u,v). (4) Use a Wiener filter and vary K
until the sharpest image possible is obtained.
Problem 5.27

The basic idea behind this problem is to use the camera and representative coins to
model the degradation process and then utilize the results in an inverse filter operation.

The principal steps are as follows:

1. Select coins as close as possible in size and content as the lost coins. Select a back-
ground that approximates the texture and brightness of the photos of the lost coins.

2. Set up the museum photographic camera in a geometry as close as possible to give
images that resemble the images of the lost coins (this includes paying attention to
illumination). Obtain afew test photos. To simplify experimentation, obtain a TV
camera capable of giving imagesthat resemble the test photos. This can be done by
connecting the camera to an image processing system and generating digital images,

which will be used in the experiment.

3. Obtain sets of images of each coin with different lens settings. The resulting images
should approximate the aspect angle, size (in relation to the area occupied by the

background), and blur of the photos of the lost coins.
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4. The lens setting for each image in (3) is a model of the blurring process for the
corresponding image of a lost coin. For each such setting, remove the coin and
background and replace them with a small, bright dot on a uniform background,
or other mechanism to approximate an impulse of light. Digitize the impulse. Its
Fourier transform isthe transfer function of the blurring process.

5. Digitize each (blurred) photo of alost coin, and obtain its Fourier transform. At this
point, we have H (u,v) and G(u, v) for each coin.

6. Obtain an approximation to F'(u,v) by using a Wiener filter. Equation (5.8-3) is
particularly attractive because it gives an additional degree of freedom (K) for ex-
perimenting.

7. Theinverse Fourier transform of each approximate F'(u, v) givesthe restored image.
In general, several experimental passes of these basic steps with various different
settings and parameters are required to obtain acceptable results in a problem such
asthis.

Using triangular regions means three tiepoints, so we can solve the following set of
linear equations for six coefficients:

¥ = cr+eytc

/

Y = cax+c5Yy+cs
to implement spatia transformations. We also solve the following equation for three
coefficients
v(2',y') =ax’ + by + ¢
to implement gray level interpolation.
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Problem 6.1

Problem 6.2

From the figure, x = 0.43 and y = 0.4. Sincex +y + z = 1, it followsthat z = 0.17.
These are the trichromatic coefficients. We are interested in tristimulus values X, Y/,
and Z, which are related to the trichromatic coefficients by Egs. (6.1-1) through (6.1-3).
We note however, that al the tristimulus coefficients are divided by the same constant,
so thelr percentages rel ative to the trichromatic coefficients are the same as those of the
coefficients. Thus, theanswer is X = 0.43,Y = 0.40, and Z = 0.17.

Denote by ¢ the given color, and let its coordinates be denoted by (¢, o). The distance
betweencand ¢; is
1/2
d(e.cr) = (w0 = 22)* + (w0 —92)°]
Similarly the distance between ¢; and ¢,
1/2
d(er,e) = |1 =) + (0~ w2)°]
The percentage p; of ¢; incis
d(c1,c2) —d(c,c1)
d(Cl, CQ)
The percentage p2 of ¢y issSmply po = 100 — p;. In the preceding equation we see,
for example, that when ¢ = ¢;, then d(c,c1) = 0 and it follows that p; = 100%
and p, = 0%. Similarly, when d(c,¢;) = d(ey,c0), it follows that p; = 0% and
p2 = 100%. Valuesin between are easily seen to follow from these simple relations.

P11 = x 100.
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Problem 6.3

Consider Fig. P6.3, in which ¢;, c2, and c3 are the given vertices of the color triangle
and c is an arbitrary color point contained within the triangle or on its boundary. The
key to solving this problem is to realize that any color on the border of the triangle is
made up of proportions from the two vertices defining the line segment that contains the
point. The contribution to a point on the line by the color vertex opposite thislineis 0%

The line segment connecting points c3 and c is shown extended (dashed segment) until
it intersects the line segment connecting c¢; and c;. The point of intersection is denoted
co- Because we have the values of ¢; and c¢,, if we knew ¢, we could compute the
percentages of ¢; and ¢, contained in ¢y by using the method described in Problem 6.2.
Denote the ratio of the content of ¢; and ¢, in ¢y be denoted by R;,. 1f we now add
color c3 to ¢y, we know from Problem 6.2 that the point will start to move toward c3
along the line shown. For any position of a point along this line we could determine the
percentage of ¢ and ¢y, again, by using the method described in Problem 6.2. What is
important to keep in mind that the ratio R, will remain the same for any point along
the segment connecting c3 and ¢y. The color of the points along thislineis different for
each position, but the ratio of ¢; to ¢, will remain constant.

So, if we can obtain ¢y, we can then determine the ratio R;», and the percentage of
c3, incolor c¢. The point ¢y is not difficult to obtain. Let y = a;ox + b1y be the
straight line containing points c; and cz, and y = as.x + bs. the line containing c3 and
c. The intersection of these two lines gives the coordinates of ¢,. The lines can be
determined uniquely because we know the coordinates of the two point pairs needed to
determinethe line coefficients. Solving for theintersection in terms of these coordinates
is straightforward, but tedious. Our interest here is in the fundamental method, not the
mechanics of manipulating simple equations so we don not give the details.

At this juncture we have the percentage of c3 and the ratio between ¢; and c,. Let the
percentages of these three colors composing ¢ be denoted by p4, p2, and ps respectively.
Since we know that p; + p = 100 — p3, and that p; /p2 = R12, we can solvefor p; and
p. Finally, note that this problem could have been solved the same way by intersecting
one of the other two sides of the triangle. Going to another side would be necessary, for
example, if the line we used in the preceding discussion had an infinite lope. A simple
test to determineif the color of ¢ isequal to any of the vertices should be the first stepin
the procedure; in this case no additional calculations would be required.
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y (Green)

x (Red)
Figure P6.3

Use color filters sharply tuned to the wavelengths of the colors of the three objects.
Thus, with a specific filter in place, only the objects whose color corresponds to that
wavelength will produce a predominant response on the monochrome camera. A mo-
torized filter wheel can be used to control filter position from a computer. 1f one of the
colors is white, then the response of the three filters will be approximately equa and
high. If one of the colorsis black, the response of the three filters will be approximately
equal and low.

At the center point we have
1 1 1 1 . 1
§R+§B+G:§(R+G+B)+§G:mldgray+§G
which looks to aviewer like pure green with a boot in intensity due to the additive gray
component.

For the image given, the maximum intensity and saturation requirement means that the
RGB component values are 0 or 1. We can create the following table with 0 and 255
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representing black and white, respectively:

Table P6.6
Color R G B MonoR MonoG MonoB
Black 0 0 0 0 0 0
Red 1 0 0 255 0 0
Yellow 1 1 0 255 255 0
Green 0 1 0 0 255 0
Cyan 0 1 1 0 255 255
Blue 0 0 1 0 0 255
Magenta 1 0 1 255 0 255
White 1 1 1 255 255 255
Gray 05 05 05 128 128 128

Thus, we get the monochrome displays shown in Fig. P6.6.

Figure P6.6

Problem 6.7

There are 28 = 256 possible values in each 8-hit image. For a color to be gray, all RGB
components have to be equal, so there are 256 shades of gray.

Problem 6.8

(@ All pixel valuesin the Red image are 255. In the Green image, the first column is
all 0’s; the second column all 1’s; and so on until the last column, which is composed of
all 255’s. In the Blue image, the first row is all 255°s; the second row all 254’s, and so
on until the last row which is composed of al 0’s.



Problem 6.9 75

(b) Let the axis numbering be the same as in Fig. 6.7. Then: (0,0,0) = white,
(1,1,1,) = black, (1,0,0) = cyan, (1,1,0) = blue, (1,0,1) = green, (0,1,1) =
red, (0,0,1) = yellow, (0,1,0) = magenta

(c) The onesthat do not contain the black or white point are fully saturated. The others
decrease in saturation from the corners toward the black or white point.

Problem 6.9

(&) For the image given, the maximum intensity and saturation requirement means that
the RGB component values are 0 or 1. We can create Table P6.9 using Eq. (6.2-1):

Table P6.9
Color R G B C M Y MonoC MonoM MonoY
Black 0 0 0 1 1 1 255 255 255
Red 1 0 0 0 1 1 0 255 255
Yellow 1 1 0 0 0 1 0 0 255
Green 0 1 0 1 0 1 255 0 255
Cyan 0 1 1 1 0 0 255 0 0
Blue 0 0 1 1 1 0 255 255 0
Magenta 1 0 1 0 1 0 0 255 0
White 1 1 1 0 0 0 0 0 0
Gray 05 05 05 05 05 05 128 128 128

Thus, we get the monochrome displays shown in Fig. P6.9(a).

(b) The resulting display is the complement of the starting RGB image. From left to
right, the color bars are (in accordance with Fig. 6.32) white, cyan, blue, magenta, red,
yellow, green, and black. The middle gray background is unchanged.

Figure P6.9
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Problem 6.10

Problem 6.11

Problem 6.12

Equation (6.2-1) reveal sthat each component of the CMY imageisafunction of asingle
component of the corresponding RGB image—C' isafunction of R, M of G,and Y of
B. For clarity, we will use a prime to denote the CMY components. From Eqg. (6.5-6),
we know that

S; — k?"i

fori = 1,2,3 (for the R, G, and B components). And from Eq. (6.2-1), we know
that the CMY components corresponding to the »; and s; (which we are denoting with
primes) are

7"1": 177"1'
and

si=1—s;
Thus,

ri=1—mr;
and

si=1l—s;=1—kri=1—-k(1—-1))

S0 that

(8 The purest green is 00FF00, which correspondsto cell (7, 18).

(b) The purest blue is 0000FF, which correspondsto cell (12, 13).

Using Egs. (6.2-2) through (6.2-4), we get theresults shown in Table P6.12. Notethat, in

accordance with Eq. (6.2-2), hueis undefined when R = G = Bsince ) = cos™! (2).

In addition, saturation is undefined when R = G = B = 0 since Eqg. (6.2-3) yields
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§=1—3mn0 _q_ %. Thus, we get the monochrome display shown in Fig. P6.12.

3.0
Table P6.12
Color R G B H S I MonoH MonoS Monol
Black 0 0 0 - 0 0 - - 0
Red 1 0 0 0 1 033 0 255 85
Yellow 1 1 0O 017 1 o0.67 43 255 170
Green 0 1 0O 033 1 033 85 255 85
Cyan 0 1 1 05 1 067 128 255 170
Blue 0 0 1 067 1 033 170 255 85
Magenta 1 0 1 083 1 067 213 255 170
White 1 1 1 - 0 1 - 0 255
Gray 05 05 05 - 0 05 - 0 128

Figure P6.12

With reference to the HSI color circle in Fig. 6.14(b), deep purpleis found at approxi-
mately 270°. To generate a color rectangle with the properties required in the problem
statement, we choose a fixed intensity 7, and maximum saturation (these are spectrum
colors, which are supposed to be fully saturated), S. The first column in the rectangle
uses these two values and a hue of 270°. The next column (and all subsequent columns)
would use the same values of [ and .S, but the hue would be decreased to 269°, and so
on all the way down to a hue of 0°, which correspondsto red. If theimageislimited to
8 hits, then we can only have 256 variations in hue in the range from 270° down to 0°,
which will require a different uniform spacing than one degree increments or, aterna-
tively, starting at a255° and proceed in increments of 1, but thiswould | eave out most of
the purple. If we have more than eight bits, then the increments can be smaller. Longer
strips a so can be made by duplicating column val ues.
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Problem 6.14

Problem 6.15

Problem 6.16

There are two important aspects to this problem. One is to approach it in HSI space
and the other is to use polar coordinates to create a hue image whaose values grow as a
function of angle. The center of the image isthe middle of whatever image areais used.
Then, for example, the values of the hue image along aradiuswhen the angleis 0° would
be dl 0’s. The angle then is incremented by, say, one degree, and al the values along
that radius would be 1’s, and so on. Values of the saturation image decrease linearly
in all radial directions from the origin. The intensity image is just a specified constant.
With these basics in mind it is not difficult to write a program that generates the desired
result.

The hue, saturation, and intensity images are shown in Fig. P6.15, from |eft to right.

Figure P6.15

(& It is given that the colors in Fig. 6.16(a) are primary spectrum colors. It aso is
given that the gray-level images in the problem statement are 8-bit images. The latter
condition means that hue (angle) can only be divided into a maximum number of 256
values. Since hue values are represented in the interval from 0° to 360° this means
that for an 8-hit image the increments between contiguous hue val ues are now 360/255.
Another way of looking at thisis that the entire [0, 360] hue scale is compressed to the
range [0, 255]. Thus, for example, yellow (the first primary color we encounter), which
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iS60° now becomes 43 (the closest integer) in the integer scale of the 8-bit image shown
in the problem statement. Similarly, green, which is 120° becomes 85 in this image.
From this we easily compute the values of the other two regions as being 170 and 213.
The region in the middle is pure white [equal proportions of red green and blue in Fig.
6.61(a)] soits hue by definitionis 0. Thisalso istrue of the black background.

(b) The colors are spectrum colors, so they are fully saturated. Therefore, the values
shown of 255 appliesto al circleregions. The region in the center of the color imageis
white, so its saturation is 0.

(c) The key to getting the values in this figure is to realize that the center portion of the
color image is white, which means equal intensities of fully saturated red, green, and
blue. Therefore, the value of both darker gray regionsin the intensity image have value
85 (i.e, the same value as the other corresponding region). Similarly, equal proportions
of the secondaries yellow, cyan, and magenta produce white, so the two lighter gray
regions have the same value (170) as the region shown in the figure. The center of the
imageiswhite, so itsvalue is 255.

() Because the infrared image which was used in place of the red component image has
very high gray-level values.

(b) The water appears as solid black (0) in the near infrared image [Fig. 6.27(d)].
Threshold the image with a threshold value dightly larger than 0. The result is shown
in Fig. P6.17. Itisclear that coloring all the black points in the desired shade of blue
presents no difficulties.

(c) Note that the predominant color of natura terrainisin various shades of red. We al-
ready know how to take out the water from (b). Thusamethod that actually removesthe
”background” of red and black would leave predominantly the other man-made struc-
tures, which appear mostly in a bluish light color. Remova of the red [and the black
if you do not want to use the method as in (b)] can be done by using the technique
discussed in Section 6.7.2.
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Problem 6.18

Problem 6.19

Figure P6.17

Using Eq. (6.2-3), we see that the basic problem is that many different colors have the
same saturation value. Thiswas demonstrated in Problem 6.12, where pure red, yellow,
green, cyan, blue, and magenta all had a saturation of 1. That is, aslong as any one of
the RGB componentsis 0, Eq. (6.2-3) yields a saturation of 1.

Consider RGB colors (1, 0, 0) and (0, 0.59, 0), which represent a red and a green.
The HSI triplets for these colors [per Eq. (6.4-2) through (6.4-4)] are (0, 1, 0.33) and
(0.33, 1, 0.2), respectively. Now, the complements of the beginning RGB values (see
Section 6.5.2) are (0, 1, 1) and (1, 0.41, 1), respectively; the corresponding colors are
cyan and magenta. Their HS| values [per Egs. (6.4-2) through (6.4-4)] are (0.5, 1, 0.66)
and (0.83, 0.48, 0.8), respectively. Thus, for the red, a starting saturation of 1 yielded
the cyan “complemented” saturation of 1, while for the green, a starting saturation of
1 yielded the magenta “complemented” saturation of 0.48. That is, the same starting
saturation resulted in two different “complemented” saturations. Saturation alone is not
enough information to compute the saturation of the complemented color.

The complement of acolor is the color opposite it on the color circle of Fig. 6.32. The
hue component isthe angle from red in a counterclockwise direction normalized by 360
degrees. For a color on the top half of the circle (i.e, 0 < H < 0.5), the hue of the
complementary color is H + 0.5. For a color on the bottom half of the circle (i.e., for
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0.5 < H < 1), the hue of the complement is H — 0.5.

The RGB transformations for a complement [from Fig. 6.33(b)] are:
S; = 1-— Ti
where i = 1,2,3 (for the R, GG, and B components). But from the definition of the

CMY spacein Eqg. (6.2-1), we know that the CMY components corresponding to r; and
s;, which we will denote using primes, are

ri=1—mr;
si=1-—s;.
Thus,
ri=1—r/
and
si=1l—s;,=1—-(1—-r)=1-(1-(1L—-7)))
so that

s=1-—r;

The RGB transformation should darken the highlights and lighten the shadow areas,
effectively compressing al values toward the midtones. The red, green, and blue com-
ponents should be transformed with the same mapping function so that the colors do not
change. The genera shape of the curve would be as shown in Fig. P6.21.

Figure P6.21



82

Chapter 6 Problem Solutions

Problem 6.22

Problem 6.23

Problem 6.24

Problem 6.25

Based on the discussion is Section 6.5.4 and with reference to the color wheel in Fig.
6.32, we can decrease the proportion of yellow by (1) decreasing yellow, (2) increasing
blue, (3) increasing cyan and magenta, or (4) decreasing red and green.

The L*a*b* components are computed using Egs. (6.5-9) through (6.5-12). Reference
whiteis R = G = B = 1. The computations are best done in a spreadsheet, as shown
in Table P6.23.

Table P6.23

X ¥y Z (X (Y. £4 v ogr pH
Color R G B X Y z Xe Y., z h Xw) h( Yw) h(zw) [X a b
Ref. 111 095 1.00 110 1 1 1 1 1 1 100 0 0
Black 0 0 0 0 [} 0 0 0 0 0.14 0.4 0.14 0 0 0
Red 1 0 0 059 029 ¢ 062 029 0 0.85 0.66 0.14 83 95 105
Yellow 1 T 0 0.77 090 007 0.81 090 006 093 0.96 040 92 -16 113
Green 0 1 0 018 061 007 019 061 006 057 085 040 51 -136 90
Cyan o 1t 1 036 071 1.09 038 071 1 0.73 0.89 1 68 -84 -22
Blue 0 0 1 018 G011 102 019 011 094 058 047 0.98 51 53 -1
Magenta 1 0 1 077 040 1.02 0.81 040 094 093 073 0.98 92 100 -49
White 1T 1 1 095 1.00 110 1 1 1 1 1 1 100 0 0

Gray 05 05 05 048 050 055 05 05 05 079 0.79 079 76 0 0

The conceptually simplest approach is to transform every input image to the HSI color
space, perform histogram specification per the discussion in Section 3.3.2 on the inten-
sity (/) component only (leaving H and S alone), and convert the resulting intensity
component with the original hue and saturation components back to the starting color
space.

(8 The boundary between red and green becomes thickened and yellow as a result of
blurring between the red and green primaries (recall that yellow is the color between
green and red in, for example, Fig. 6.14). The boundary between green and blue is
similarly blurred into a cyan color. Theresult is shown in Fig. P6.25.
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(b) Blurring has no effect in this case. Theintensity image is constant (at its maximum
value) because the pure colors are fully saturated.

This is a simple problem to encourage the student to think about the meaning of the
elementsin Eq. (6.7-2). When C = I, it followsthat C~! = I and Eq. (6.7-2) becomes
D(z,a) = [(z — a)l(z — a)] 2
But the term inside the brackets is recognized as the inner product of the vector (z — a)

with itself, which, by definition, is equal to the right side of Eq. (6.7-1).

Figure P6.25

(8 The cube is composed of 6 intersecting planesin RGB space. The genera equation
for such planesis
azp+bzg+czg+d=0

wherea, b, ¢, and d are parameters and the z’s are the components of any point (vector)
z in RGB space lying on the plane. If an RGB point z does not lie on the plane, and
its coordinates are substituted in the preceding equation, then equation will give either a
positive or a negative value; it will not yield zero. We say that z lies on the positive or
negative side of the plane, depending on whether the result is positive or negative. We
can change the positive side of a plane by multiplying its coefficients (except d) by —1.
Suppose that we test the point a given in the problem statement to see whether it is on
the positive or negative side each of the six planes composing the box, and change the
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Problem 6.28

Problem 6.29

coefficients of any plane for which theresult is negative. Then, a will lie on the positive
side of all planes composing the bounding box. In fact all points inside the bounding
box will yield positive values when their coordinates are substituted in the equations of
the planes. Points outside the box will give at least one negative or zero value. Thus,
the method consists of substituting an unknown color point in the equations of all six
planes. If all the results are positive, the point is inside the box; otherwise it is outside
the box. A flow diagram is asked for in the problem statement to make it ssimpler to
evaluate the student’s line of reasoning.

(b) If the box is lined up with the RGB coordinate axes, then the planes intersect the
RGB coordinate planes perpendicularly. The intersections of pairs of paralel planes
establish a range of values along each of the RGB axis that must be checked to see if
the if an unknown point lies inside the box or not. This can be done on an image per
image basis (i.e., the three component images of an RGB image), designating by 1 a
coordinate that is within its corresponding range and O otherwise. These will produce
three binary images which, when ANDed, will give al the points inside the box.

The sketch isan elongated € lipsoidal figure in which the length lined up with the R-axis
is 8 times longer that the other two dimensions. 1n other words, the figure looks like a
blimp aligned with the R-axis.

Set one of the three primary images to a constant value (say, 0), then consider the two
images shown in Fig. P6.29. If we formed an RGB composite image by letting the im-
age on the left be the red component and the image on the right the green component,
then the result would be an image with a green region on the left separated by a vertical
edge from ared region on the right. To compute the gradient of each component image
we take second-order partial derivatives. In this case, only the component of the deriv-
ative in the horizontal direction is nonzero. If we model the edge as aramp edge [Fig.
3.38(b)] then aprofile of the derivative image would appear asshown in Fig. P6.29. The
magnified view shows clearly that the derivatives of the two images are mirrors of each
other. Thus, if we computed the gradient vector of each image and added the results as
suggested in the problem statement, the components of the gradient would cancel out,
giving azero gradient for acolor image that has a clearly defined edge between two dif-
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ferent color regions. This ssimple example illustrates that the gradient vector of a color
image is not equivalent to the result of forming a color gradient vector from the sum of
the gradient vectors of the individual component images.

Figure P6.29
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Problem 7.1
Following the explanation in Example 7.1, the decoder is as shown in Fig. P7.1
Level j-1
approximation —¢
2* Upsampler
Interpolation
filter
Prediction
Level j -~ Level
p::giijcltjgn g \+_j > approximation
Figure P7.1

Problem 7.2

A mean approximation pyramid is formed by forming 2 x 2 block averages. Since the
starting image is of size4 x 4, J = 2, and f(z,y) is placed in level 2 of the mean
approximation pyramid. The level 1 approximation is (by taking 2 x 2 block averages

over f(x,y) and subsampling):
35 55
11.5 13.5

and the level 0 approximation is similarly [8.5]. The completed mean approximation

pyramidis
1 2 3 4
5 6 7 8 l3.5 5.5“8'5}'
9 10 11 12 || 11.5 135

13 14 15 16
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Since no interpolation filtering is specified, pixel replication is used in the generation of
the mean prediction residual pyramid levels. Level 0 of the prediction residual pyramid
isthe lowest resolution approximation, [8.5]. The level 2 prediction residual is obtained
by upsampling the level 1 approximation and subtracting it from the level 2 (original
image). Thus, we get

1 2 3 4 35 35 55 5.5
5 6 7 8 35 35 55 55
9 10 11 12 | | 115 11.5 135 135
13 14 15 16 115 115 135 135

—25 —15 —-25 -15
15 25 15 25
—25 —-15 —-25 —15
15 25 15 25

Similarly, the level 1 prediction residual is obtained by upsampling the level 0 approxi-
mation and subtracting it from the level 1 approximation to yield

35 5.5 85 85 | | =5 =3
115 135 85 85| | 3 5 |
The mean prediction residual pyramid is therefore

-25 —-15 =25 -15
1.5 2.5 1.5 2.5 -5 =3
—-25 —-15 =25 -—15 l

1.5 2.5 1.5 2.5

Problem 7.3

The number of elementsinaJ + 1 level pyramid isbounded by 4/3 (see Section 7.1.1):

227 11 L 1 <1122J
3

Tttt —| <
) 4 (4)
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for J > 0. We can generate Table P7.3:
Table P7.3

Problem 7.4

J Pyramid Elements Compression Ratio
0 1 1

1 5 5/4=1.25

2 21 21/16 = 1.3125
3 85 85/86 = 1.328
00 4/3 =1.33

89

All but the trivid case (J = 0) are expansions. The expansion factor is a function of

and bounded by 4/3 or 1.33.

(8 The QMF filters must satisfy Egs. (7.1-9) and (7.1-10). From Table 7.1, Gy(2)
Hy(z) and Hy(z) = Ho(—2),s0 Hi(—2) = Hy(z). Thus, beginning with Eq. (7.1-9),
Ho(=2)Go(2) + Hi(=2)G1(2) =
Ho(—2)Ho(z) — Ho(z)Ho(—2) =

0 =

Hj (2) — Hy(—2)

0
0

0.

Similarly, beginning with Eq. (7.1-10) and substituting for H1(z), Go(2), and G1(z)
fromrows 2, 3, and 4 of Table 7.1, we get

Hoy(2)Go(2) + H1(2)G1(2)

Hy(z)Ho(z) + Ho(—2)[—Ho(—2)]

2
2
2
which isthe design equation for the Hy(z) prototype filter in row 1 of the table.

(b) The orthonormal filter proof follows the QMF proof in (a). For Eg. (7.1-9), we get

Hy(=2)Go(2) + H1(2)G1(2
Gol(—2)1Go(2) + Gi[(—2) [z 2K Go(—27)

Go(—21)Go(z) — 2~ (=271 MGy ([ 271!

Go(—27")Go(2) — 27K Gy (=2 Go(—27"
THIGe(—271

Go(—2"NGo(2) — 2 2K 22K 1G (2)] Go(—2
Go(—2"")Go(2) = Go(2)Go(—=""

Similarly, beginning with Eq. (7.1-10),

)
]
)
)
)
)

o o o o o
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Problem 7.5

Problem 7.6

Ho(2)Go(2) + Hi(2)G1 (2

1(2)
Go(z71)Go(2) + G1(271)Gi(2) =
Go(27")Go(2) + [= (=27 ") 2K Go (=[] D=2 21 Go(—27)]

Go(z71)Go(2) + (=2 ) (=2~ KA Gy (=2)Go (—27)
Go(z ")Go(2) + Go(—2)Go(—27") =

which isthe design equation for the G (z) prototype filter in row 3 of the table.

I
NN N NN

To be biorthogonal, QMF filters must satisfy matrix Eq. (7.1-13). Letting

2
@7 Qet[H, (2)]
in that expression we can write
Go(z) = aHi(-2)
Gi(z) = —aHo(-2)

and see that the QMF filters in column 1 of Table 7.1 do satisfy it with « = 1. Thus,
QMF filters are biorthogonal. They are not orthonormal, however, since they do not
satisfy the requirements of column 3 in Table 7.1. For QMF filters, for instance,

Hl(z) = HQ(*Z) = *Gl(z)
but orthonormality (see column 3) requiresthat H;(z) = G1(z71).

Example 7.2 defines hq(n) forn = 0,1,2,...,7 to be about —0.01, 0.03, 0.03, —0.19,
—0.03, 0.63, 0.72, 0.23. Using Eq. (7.1-23) with 2K = 8, we can write
90(T—n) = ho(n)
gi(n) = (=1)"go(7—n).
Thus g (n) istime-reversed hy(n), or 0.23,0.72,0.63, —0.03,—0.19, 0.03, 0.03, —0.01.

In addtion, g;(n) is a time-reversed and modulated copy of go(n); that is, —0.01,
—0.03,0.03, 0.19, —0.03, —0.63, 0.72, —0.23.

To numerically prove the orthonormality of the filters, let m = 0 in Eq. (7.1-22):
{gi(n)g;(n)) = 6(i — j) withi, j = {0, 1}.

Iterating over ¢ and j we get
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dYoan) = Y ¢

z go(n)g1(n) = 0.
Subsgtitution of the filter coefficient val ues into these two equations yields:

S go(m)gi(n) = (0.23)(=0.01) + (0.72)(~0.03) + (0.63)(0.03) +

(—0.03)(0.19) + (—0.19)(—0.03) + (0.03)(—0.63) +
(0.03)(0.72) + (—0.01)(—0.23)

0
dogn) = D giln)

n

= (£0.23)2 +(0.72)% + (£.63) + (—0.03)? + (£0.19)% +
(0.03)2 4 (£0.03)% + (—0.01)?
= 1

Problem 7.7

Reconstruction is performed by reversing the decomposition process; that is, by replac-
ing the downsamplers with upsamplers and the analysis filters by their synthesis filter
counterparts, as shown in Fig. P7.7.

a(m,n)

Columns
(along n)

go(m) —

a"(mn) 2 g1(n) (along m)

Columns 6_ x(m,n)

d(m,n)

Columns

dP(m,n)

Columns

Figure P7.7
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Problem 7.8

Problem 7.9

The Haar transform matrix for V = 8 is

Hg =

Sl

(8 Equation (7.1-28) definesthe 2 x 2 Haar transformation matrix as

1
1
V2

0
2
0
0
0

1
1
V2 -
0
-2
0
0
0

oowoog»—»—
»I

1
Hy =

Then, using Eq. (7.1-24), we get

- (3|

T =

(b) First, compute

0 that

|

)
-3

a
c

)

7|

Solving this matrix equation yields

Thus,

H,' =

11
1 -1
-2 0
0 V2
0 0
-2 0
0 2
0 0

1 1
V21 -

1 1
1 -1

|
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Problem 7.10
(8 The basis is orthonormal and the coefficients are computed by the vector equivalent
of Eq. (7.2-5):
3
= 4 1
@0 = [ﬁ V3 } [2]
_ 2
n 2
3
= 4 1
“= [ﬁ V2 } l 2]
_ V2
2
g)l
V2 V2 R s | VR
PR RN I U RN e
V2 V2

(b) Thebasisishiorthonormal and the coefficients are computed by the vector equivalent
of Eq. (7.2-3):

Qyg =
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Yo+ 2 =

(c) The basisis overcomplete and the coefficients are computed by the vector equivalent

of Eq. (7.2-3):
3
- 1]
= 2
3
s A
23
=
3
-4 4;
B
n 3
g)l
3 3 0
2v3| | -1
*1+T [_\é +
- 1 03 o
IR T () eV
[ 3
- E )

Problem 7.11

As can be seen in Fig. P7.11, scaling function ¢, ,(x) cannot be written as a sum of
double resol ution copies of itself. Note the gap between o, ,(x) and ¢, ().
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Problem 7.12

0, o) =VZ 9(2%)

) 1/4 172 3/4 1

1

o 18 3/8 1

9, (¥) =2 g(2xc-1)

1

0 — L

Figure P7.11

Problem 7.12

Substituting j = 3 into Eq. (7.2-13) we get

Vi = Sz;;m{%,k(x)}

X
o 5/8 78 1

Span{23/2¢(23z — k)}
k

= Span{2v2p(8x — k)}.
k
Using the Haar scaling function in Eq. (7.2-14) we get the results shown in Fig. P7.12.

95 4%} =27 9(6%) @, (0 =2T g(Bx-1) 0, ,00 =207 ¢(Bx-2)
2 2 — 2z 1
0 [ 0
b e X x

o 18 1 0 1814 1

Figure P7.12

Qo 1/4 3i8 1

95
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Problem 7.13

From Eq. (7.2-19) we find that
Uss(e) = 22%(2% - 3)
= 2V2y(8x — 3)

and using the Haar wavel et function definition from Eq. (7.2-30), obtain the plot shown
inFig. P7.13.

To express 15 5 () as afunction of scaling functions, we employ Eq. (7.2-28) and the
Haar wavelet vector defined in Example 7.6—that is, h,(0) = 1/v/2 and hy(1) =
—1/4/2. Thus we get

Zhw )W2p(2z — n)

s0 that
Y8z —3) = Zf% (2[8z — 3] —n)

-1
- 75\/%(163; —6) + <%> V2p(16x — 7)

= ¢(16x —6) — p(16x — 7).
Then, since s 5 = 2v/2¢(8z — 3),

Uy = 2V2¢(8z—3)
= 2V2p(16z — 6) — 2v/2p(162 — 7).

Figure P7.13

Problem 7.14

Using Eq. (7.2-22),
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Vi = Vo Ws
= hheW oW,
= WweWyeW & Ws.
The scaling and wavelet functions are plotted in Fig. P7.14.

_ _ _ _ r  — -
M 'l 'J—|_|'|—||I
| | - |
B I 1
| I|_ _HI

SRR
— '_!'m L s
o
— I:J_I_I : / |
|—||—||—||,— /

Figure P7.14

Problem 7.15

With j, = 1 the gpproximation coefficients are ¢, (0) and ¢, (1):
1/2

c1(0) = /xQ\/ﬁdxg

0
1
a(l) = /xzx/ﬁdx = 7—\/5
24
/2

1
Therefore, the 1, approximation is

V2 V2

ﬂ%ﬁ,@(x) + o1 Y11 (),

which, when plotted, is identical to the V; approximation in Fig. 7.13(d). The last two
coefficients are d,(0) and d; (1), which are computed as in the example. Thus, the
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expansionis

V2 V2 -2 3v2

Y= ﬂ‘ﬂl,o(x) + T‘Pm(x) + T¢1,@(x) - gipl,l(x) + e

Problem 7.16

(@ SinceM =4, J = 2,and j, = 1, thesummationsin Egs. (7.3-5) through (7.3-7) are
performed over x = 0,1,2,3, j = 1, and & = 0, 1. Using Haar functions and assuming
that they are distributed over the range of the input sequence, we get

WoL0) = 2 [fOe10(0) + Fero() + FQero(2) + FB)p10(3)]
= 5 [0eB+ @R+ 30 + 0] - 57“5

Wo(l,1) = % [£(0)¢1.1(0) + F(D)py 1 (1) + F(2)p1.1(2) + FB)p11(3)]
— 0O+ @0 + D + 0] - 2

Wy(1,0) = %[f(0)¢1,0(0)+f(1)¢1,o(1)+f(2)1ﬁ170(2)+ F3)r0(3)]
= 3 [O0D + @D + (-3)0) + O©)0)] = %ﬁ

Wy(1,1) = %[f(O)%,l(O)+f(1)¢1,1(1)+f(2)w171(2)+ F3)41(3)]
= 100+ B0 + (3D + 0)—v3)] = 22

21
so that the DWT is {5v/2/2, —3v/2/2, —3v/2/2, —3/2/2}.
(b) Using Eq. (7.3-7),

f@) = =

§[Ww(1: 0)e1,0(x) + W (1,1)p; 1 (7) +

Ww(l, O)lpl,o(x) + Ww(l, 1)1#171(33)]
which, with z = 1, becomes

) = —[(5)(\/5)+(*3)(0)+(*3)(\/5)+(*3)(0)

= =1.

Problem 7.17

Intuitively, the continuous wavelet transform (CWT) calculates a “resemblance index”



Problem 7.18

Problem 7.19

Problem 7.20

Problem 7.18 99

between the signal and the wavel et at various scales and trandations. When theindex is
large, the resemblance is strong; else it isweak. Thus, if afunction is similar to itself
at different scales, the resemblance index will be similar at different scales. The CWT
coefficient values (the index) will have a characteristic pattern. As aresult, we can say
that the function whose CWT is shown is self-similar—like afractal signal.

(8 The scale and translation parameters are continuous, which leads to the overcom-
pleteness of the transform.

(b) The DWT is a better choice when we need a space saving representation that is
sufficient for reconstruction of the origina function or image. The CWT is often easier
to interpret because the built-in redundancy tends to reinforce traits of the function or
image. For example, see the self-similarity of Problem 7.18.

The filter bank isthe first bank in Fig. (7.17), as shown in Fig. P7.19:

Figure P7.19

The complexity is determined by the number of coefficients in the scaling and wavelet
vectors—that is, by n in Egs. (7.2-18) and (72-28). This defines the number of tapsin
filters hy, (—n), hy, (—n), hy (n), and by, (n).
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Problem 7.21

@ Input p(n) = {1,1,1,1,1,1,1,1} = ¢, c(n) for athree-scae wavelet transform
with Haar scaling and wavelet functions. Since wavelet transform coefficients measure
the similarity of the input to the basis functions, the resulting transform is
{th(07 0)7 Ww(07 0)7 Ww(L 0)7 Ww(L 1)7 Ww(27 0)7 Ww(27 1)7 Ww(27 2)
Wy(2,3)} = {2v2,0,0,0,0,0,0,0}
The W, (0, 0) term can be computed using Eq. (7.3-5) with jo = k& = 0.

(b) Using the same reasoning asin part (a), the transform is {0, 21/2,0, 0,0, 0,0,0}.

(c) For the given transform, W,(2,2) = B and &l other transform coefficients are 0.
Thus, theinput must be proportional to 1, , (). Theinput sequence must be of the form
{0,0,0,0,C,—C,0,0} for some C'. To determine C, use Eq. (7.3-6) to write

Wy(2,2) = %{f(oﬁ%g(o) + f(1)ahgo(1) + f(2)1h92(2) + f(3)1h22(3) +
F(d)hg o(4) + f(5)132(5) + f(6)122(6) + f(T)1eo(7)}
= %{(0)(0) +(0)(0) + (0)(0) + (0)(0) + (C)(2) + (=C)(-2) +

(0)(0) + (0)(0)}
1 4C
= o+t ="%= V2C.

Because this coefficient is known to have the value B, we havethat v/2C = B or

/5

2
=—20.
¢ 2

Thus, the input sequence is {0,0,0,0,v2B/2, —v/2B/2,0,0}. To check the result
substitute these valuesinto Eq. (7.3-6):

Wy(2,2) = %{(0)(0) +(0)(0) + (0)(0) + (0)(0) + (%B)@) +
(*?B)(ﬂ) +(0)(0) + (0)(0)}

1
= %{\/EB + \/§B}
B.

Problem 7.22

They are both multi-resolution representations that employ a single reduced-resolution
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approximation image and a series of “difference” images. For the FWT, these “differ-
ence” images are the transform detail coefficients; for the pyramid, they are the predic-
tion residuals.

To construct the approximation pyramid that correspondsto the transformin Fig. 7.8(a),
wewill usethe FW T~ 2-d synthesis bank of Fig. 7.22(c). First, placethe 64 x 64 ap-
proximation “coefficients” from Fig. 7.8(a) at the top of the pyramid being constructed.
Then use it, along with 64 x 64 horizontal, vertical, and diagonal detail coefficients
from the upper-left of Fig. 7.8(a), to drive the filter bank inputsin Fig. 7.22(c). The
output will be a128 x 128 approximation of the original image and should be used as
the next level of the approximation pyramid. The 128 x 128 approximation is then used
with the three 128 x 128 detail coefficient images in the upper 1/4 of the transform in
Fig. 7.8(a) to drive the synthesis filter bank in Fig. 7.22(c) a second time—producing
a 256 x 256 approximation that is placed as the next level of the approximation pyra-
mid. This processisthen repeated a third time to recover the 512 x 512 origina image,
which is placed at the bottom of the approximation pyramid. Thus, the approximation
pyramid would have 4 levels.

One pass through the FWT 2-d filter bank of Fig. 7.22(a) isal that is required (see Fig.
P7.23):

[21/2‘[;] IV W‘lz(?(;]o’ 0)

Each Rows

FINZ, IAZ) 2% Column  (along m)
Each Row Columns qu;( 0,0,0)
(along n) (W2, 147} 24 =[4i] 8
Wo(l, m,n) &— CElach Rows > [i_g]
olumn
= [ 2 ﬁ ] W\II./I(O 0,0) Ordered per
62 42 CINZ, N 24 =[_’3]’ Fig.7.22(b)
Each Rows
{142, 142} 2y Column
Each R Col
ach Row Columns W(p(O, 0.0)
(42,142} 24 5] ]
Each Rows
Column

Figure P7.23
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Problem 7.24

As can be seen in the sequence of images that are shown, the DWT is not shift in-
variant. If the input is shifted, the transform changes. Since all origina images in the
problem are 128 x 128, they become the W, (7, m,n) inputs for the FWT computa-
tion process. The filter bank of Fig. 7.22(a) can be used with j + 1 = 7. For asingle
scale transform, transform coefficients W, (6, m,n) and Wj}(ﬁ,m,n) fori = H,V,D
are generated. With Haar wavelets, the transformation process subdivides the imageinto
non-overlapping 2 x 2 blocks and computes 2-point averages and differences (per the
scaling and wavelet vectors). Thus, there are no horizontal, vertical, or diagonal detail
coefficientsin the first two transforms shown; the input images are constant in all 2 x 2
blocks (so dl differences are 0). If the original image is shifted by 1 pixel, detail coef-
ficients are generated since there are then 2 x 2 areas that are not constant. Thisisthe
case in the third transform shown.

Problem 7.25

Thetable is completed as shown in Fig. P7.25.
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Figure P7.25
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Thefunctions are determined using Egs. (7.2-18) and (7.2-28) with the Haar scaling and



Problem 7.26

Problem 7.27

wavel et vectors from Examples 7.5 and 7.6:

(8 The analysistreeis shown in Fig. P7.26(a):

¢(27)

p(22) + (22 — 1)
— o2z —1).

Problem 7.26

(b) The corresponding frequency spectrumis shown in Fig. P7.26(b):
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103

First use the entropy measure to ﬁnd the starting value for the input sequence, which is

E{f(n

}*Ejﬁ

n)In [f?(n)] = 2.7726.
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Then perform an iteration of the FWT and compute the entropy of the generated approx-
imation and detail coefficients. They are 2.0794 and 0, respectively. Since their sumis
less than the starting entropy of 2.7726, we will use the decomposition.

Because the detail entropy is 0, no further decomposition of the detail is warranted.
Thus, we perform another FWT iteration on the approximation to see if it should be
decomposed again. This process is then repeated until no further decompositions are
caled for. Theresulting optimal tree is shown in Fig. P7.27:

2.7726

R

2.0794 0

7N\

1.3863 0

7N\

0.6931 0
7N\
0 0

Figure P7.27
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Problem 8.1

Problem 8.2

(& A histogram equalized image (in theory) has a gray level distribution which is uni-
form. That is, all gray levelsare equally probable. Eg. (8.1-4) thus becomes

2" —1

Lug= 5= 3 ()

k=0
where 1/2n isthe probability of occurrenceof any gray level. Sinceall levelsareequally

probable, thereis no advantage to assigning any particular gray level fewer bits than any
other. Thus, we assign each the fewest possible bits required to cover the 2n levels.

This, of courseisn bitsand L,., becomesn bits aso:
2" -1

1
Loy = 323 ()

k=0

1
= Z@)n

= n.

(b) Since interpixel redundancy is associated with the spatial arrangement of the gray
levelsin theimage, it is possible for a histogram equalized image to contain a high level
of interpixel redundancy - or none at all.

(&) A singleline of raw data contains n; = 2™ bits. The maximum run length would be
2™ and thus require n bits for representation. The starting coordinate of each run also
requires n bits since it may be arbitrarily located within the 2" pixel line. Since arun
length of O can not occur and the run-length pair (0, 0) is used to signal the start of each
new line - an additional 2n bits are required per line. Thus, the total number of bits
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required to code any scan lineis
ny = 2n4 Ngyg (n+n)
= 2n (14 Naug)

where N, isthe average number of run-length pairs on aline. To achieve some level
of compression, C'r must be greater than 1. So,

Crn = L2
n2
2/’1
- 1
2 (L + Navg)

and
n—1

Nowy < ~1.

(b) For n = 10, Nqvg must be less than 50.2 run-length pairs per line.

Problem 8.3
Table P8.3 showsthe data, its 6-bit code, the IGS sum for each step, the actua 1GS 3-bit
code and its equivalent decoded val ue, the error between the decoded IGS value and the
input values, and the squared error.
Table P8.3
Data 6-bit Code Sum 1GSCode Decoded|GS Error Sg. Error
000000
12 001100 001100 001 8 4 16
12 001100 010000 010 16 -4 16
13 001101 001101 001 8 5 25
13 001101 010010 010 16 -3 9
10 001010 001100 001 8 2 4
13 001101 010001 010 16 -3 9
57 111001 111001 111 56 1 1
54 110110 110111 110 48 6 36
Problem 8.4

The average square error isthe sum of the last column of the table in Problem 8.3 divided
by 8, the number of data points. This computation yields 116/8 or 14.5. The rms error
isthen 3.81, the squareroot of 14.5. The squared signal value (i.e., 6400) is obtained by
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Problem 8.6

Problem 8.7
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summing the sguares of column 5 of the table. The rms signal-to-noise ratio is then
, /6400

SNRpms = 16 — 7.43

(a) For the first value of the table (i.e., 0110), substitution into Eq. (8.2-1) gives:
hi=b3 Db ®by=00100=1
he=b3 Db ®by=00100=1

hy = by = 0
hi=by®b @by=10100=0
hs = by = 1
he = by = 1
hy = by = 0.

Thus, the encoded value is 1100110. The remaining values of Table 8.2 are treated
similarly. The resulting code words are 0011001, 1110000, and 1111111, respectively.

(b) For 1100111, construct the following three bit odd parity word:
ca=h@hsdhsehr=1600101=1
co=ho@hs®he®bhr=1600101=1
ct=hi®hsPheDhy =00101d1=1

A parity word of 111, indicatesthat bit 7 isin error. The correctly decoded binary value

iS01102. In asimilar manner, the parity words for 1100110 and 1100010 are 000 and

101, respectively. The decoded values are identical and are 0110.

The conversion factors are computed using the logarithmic relationship

log, z = logy, x.

log, a
Thus, 1 Hartley = 3.3219 bitsand 1 nat = 1.4427 bits.

Let the set of source symbolsbe {a1, as, ..., a,} with probabilities
z=[P(a1),P(az),.... P(ap)]" .
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Then, using Eqg. (8.3-3) and the fact that the sum of all P (a;) is1, we get
q q
logg—H(z) = > P(a;)logg+ Y P(a;)logP (a;)
1=1 1=1
q
= ZP(ai)long (a;).
1=1
Using the log relationship from Problem 8.6, this becomes
q
= 1ogeZP(ai) IngP (a;).
1=1
Then, multiplying theinequality lnx <z — 1by-1togetlnl/z > 1 — x and applying
it to thislast result,
1
logg—H(z) > 1ogeZP a;) [ — m]
q 1 q
> lo - =
> loge g p g
> loge[l—1]
> 0
so that
logq > H (z).
Therefore, H (z) is dways less than, or equa to, logq. Furthermore, in view of the
equality condition (x = 1) forln1/x > 1 — x, which was introduced at only one point
in the above derivation, we will have strict equality if and only if P(a;) = 1/q for @l i.
Problem 8.8

The source symbol probabilities are taken directly from z and are P(a = 0) = 0.75 and
P(a = 1) = 0.25. Likewise, the elements of Q are the forward transition probabilities
P(b = 0la = 0) = 2/3, P(b = 0la = 1) = 1/10, P(b = 1ja = 0) = 1/3, and
P(b = 1la = 1) = 9/10. The matrix multiplication of Eq. (8.3-6) yields the output

probabilities
2 L 3 21
— — 1 4 _ 4
v=Qz= |7 Y 1= .|
3 10 4 40

Thus, P(b = 0) = 21/40 and P(b = 1) = 19/40. The conditional input probabilities
are computed using Bayes’ formula
P(b|a;) P (a;)
P(a;lbg) = —————=
(a’J| k) P(bk)
Thus, P(a = 0/b = 0) = 20/21, P(a = Ob = 1) = 10/19, P(a = 1|b = 0) = 1/21,
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and P(a = 1|b=1) = 9/19. Finally, the joint probabilities are computed using
P(aj,b) = P (a;) P(bkla;)

which yields P(a = 0,b = 0) = 1/2, P(a = 0,b = 1) = 1/4, P(a = 1,b = 0) =

1/40,and P(a = 1,b = 1) = 9/40.

(a) Substituting the given values of p,s and p,. into the binary entropy function derived
in the example, the average information or entropy of the sourceis 0.811 bits/symbol.

(b) The equivocation or average entropy of the source given that the output has been
observed (using Eq. 8.3-9) is 0.75 hits/symbol. Thus, the decrease in uncertainty is
0.061 bits/symbol.

(c) It is the mutual information I(z,v) of the system and is less than the capacity of
the channel, which is, in accordance with the equation derived in the example, 0.0817
bits/symbol.

(8) The proof proceeds by substituting the elements of Q into Eq. (8.3-13) and simpli-
fying. The source probabilities are |eft as variables during the simplification.
C = max,|[]|[z,V]
J K j
= max, ) > P(a;)qlog ﬁm
= maxg | Y P (@) g log s By
+ et P (a2 are o
i -
= Inaxy, P(al) (( ﬁ)logmlLﬁ)+ﬁlogT)(lLﬁ)+O>
(a2) (0+ Blog promfir=s; + (1= 8) log 5 )|
= max, | al) ((1 0)log 57— P(a ) + Blog 2P(a1)>
) (ﬁlOg QP(a ) +(1—p)log p(a2)>}
= maxg [P (a1) (1 - 8)log P (a1) + Slog 2P (a1))
— P(az) (Blog 2P (az) + (1 — ) log P (az2))]
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Problem 8.11

Problem 8.12

= max, [—P(a;) ((1 —8)log P(ay)+ Blog2+ Blog P (ay))
— P(az) (Blog2 + Blog P (az) + (1 — B)log P (az))]
maxy, [—P (a1) (log P (a1) 4+ Blog2) — P (az2) (Blog2 + log P (as2))]
= max, [—P(a;)log P (a;) — P (az)log P (az) — P (ay) Blog2)
— P(a2) Blog2].

Noting that the first two terms of this sum are the entropy of the source and factoring out
the common factor in the last two terms, we get

C = max [H (z) — (P (a1) + P (a2)) Blog 2] .
Since the sum of the source probabilities is 1 and the maximum entropy of a binary
sourceisalso 1 with both symbols equally probable, this reduces to

C=1-4

(b) Substituting 0.5 into the above equation, the capacity of the erasure channdl is 0.5.
Subgtituting 0.125 into the equation for the capacity of aBSC givenin Section 8.3.2, we
find that its capacity is 0.456. Thus, the binary erasure channel with a higher probability
of error has alarger capacity to transfer information.

(& The plot isshown in Fig. P8.11.
(b) Dmax IS g

(c) If wewish to code the sourcein this example so that the maximum average encoding-
decoding distortion D is 0.7502, we first evaluate R(D) for D = 0.75 o%. Since
R(0.7502) = 0.21, we know that at least 0.21 code bits per source symbol must be
used to achieve the fidelity objective. Thus, thisis the maximum possible information
compression under this criterion.

(&) There are two unique codes.

(b) The codes are: (1) O, 11, 10 and (2) 1, 00, 01. The codes are complements of one
another. They are constructed by following the Huffman procedure for three symbol s of
arbitrary probability.
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Figure P8.11

(& The entropy is computed using Eq. (8.3-3) and is 2.6508 bits/symboal.

(b) The specific binary codes assigned to each gray level may vary depending upon
the arbitrary selection of 1s and Os assigned at each step of the coding algorithm. The
number of bits used for each gray level, however, should be the same for all versions
congtructed. The construction of Code 2 in Table 8.1 proceeds as follows:

Step 1: Arrange according to symbol probabilities from left to right, as shown in Fig.
P8.13(a).

Step 2: Assign code words based on the ordered probabilitiesfrom right to | eft, as shown
inFig. P8.13(b).

Step 3: The codes associated with each gray level areread at the left of the diagram.

(¢) - (f) The remaining codes and their average lengths, which are computed using (8.1-
4), are shown in Table P8.13. Note that two Huffman shift codes are listed, one of
which is the best. In generating these codes, the sum of probabilities 4 - 7 were used
as the probability of the shift up symbol. The sum is 0.19, which is equivalent to the
probability of symbol ro. Thus, the two codes shown differ by the ordering of r, and
the shift symbol during the Huffman coding process.
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Problem 8.14

Table P8.13

Tk pr (ry) Bi-code  2-bit Shift H.Shiftl H.Shift2 Huffman
rog =10 0.19 CoCo 10 11 000 11
r1=1/7 0.25 Co 00 01 01 01
ro =2/7 0.21 C1 01 10 10 10
rs =3/7 0.16 CoC1 1100 001 001 001
ry =4/7 0.08 C1C0 1101 00001 1101 0001
rs =5/7 0.06 Cc1C1 1110 00010 1110 00001
re =6/7 0.03 C0C0CO 111100 00011 11000 000001
rr=1 0.02 C0C0C1 111101 000001 11001 000000
Length 3.18 2.8 2.75 2.78 2.7

The entropy of the source is H = 2.65 from Eq. (8.3-3) and the probabilities from
column 2.

The arithmetic decoding process is the reverse of the encoding procedure. Start by
dividing the [0, 1) interval according to the symbol probabilities. Thisis shownin Table
P8.14. The decoder immediately knows the message 0.23355 begins with an “€”, since
the coded message lies in the interva [0.2, 0.5). This makes it clear that the second
symboal is an “a’, which narrows the interval to [0.2, 0.26). To further see this, divide
theinterval [0.2, 0.5) according to the symbol probabilities. Proceeding like this, which
is the same procedure used to code the message, we get “eaii!”.

Table P8.14
Symbol  Probability  Range
a 0.2 [0.0,0.2)
e 0.3 [0.2,0.5)

i 0.1 [0.5, 0.6)
0.2 [0.6, 0.8)
0.1 [0.8, 0.9)
0.1 [0.9, 1.0)

- c o
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Figure P8.13
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Problem 8.15

Problem 8.16

Assume that the first 256 codes in the starting dictionary are the ASCII codes. If you
assume 7-bit ASCII, the first 128 locations are dl that are needed. In either case, the
ASCII &’ corresponds to location 97. The coding proceeds as shown in Table P8.15.
Table P8.15
Recognized Character Output Dict. Address Dict. Entry

a
a a 97 256 aa
a a

aa a 256 257 aaa
a a

aa a

aaa a 257 258 aasa
a a

aa a

aaa a

aasa a 258 259 aaasa
a 97

Theinput to the LZW decoding algorithm for the example in Example 8.12 is
39 39 126 126 256 258 260 259 257 126

The starting dictionary, to be consistent with the coding itself, contains 512 locations-
with the first 256 corresponding to gray level values 0 through 255. The decoding algo-
rithm begins by getting the first encoded val ue, outputting the corresponding value from
the dictionary, and setting the ”’recognized sequence” to the first value. For each addi-
tional encoded value, we (1) output the dictionary entry for the pixel valueg(s), (2) add a
new dictionary entry whose content is the ”’recognized sequence” plus the first element
of the encoded value being processed, and (3) set the ”’recognized sequence” to the en-
coded value being processed. For the encoded output in Example 8.12, the sequence of
operationsis as shown in Table P3.16.

Note, for example, in row 5 of the table that the new dictionary entry for location 259
is 126-39, the concatenation of the currently recognized sequence, 126, and the first
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element of the encoded value being processed-the 39 from the 39-39 entry in dictionary
location 256. The output is then read from the third column of thetableto yield

39 39 126 126

39 39 126 126

39 39 126 126

39 39 126 126

where it is assumed that the decoder knows or is given the size of the image that was
recieved. Note that the dictionary is generated as the decoding is carried out.

Table P8.16
Recognized Encoded Vaue Pixels Dict. Address Dict. Entry
39 39
39 39 39 256 39-39
39 126 126 257 39-126
126 126 126 258 126-126
126 256 39-39 259 126-39
256 258 126-126 260 39-39-126
258 260 39-39-126 261 126-126-39
260 259 126-39 262 39-39-126-126
259 257 39-126 263 126-39-39
257 126 126 264 39-126-126
Problem 8.17
(8 Using Eq. (8.4-3), form Table P8.17.
Table P8.17
Binary Gray Code Binary Gray Code

0000 0000 1000 1100

0001 0001 1001 1101

0010 0011 1010 1111

0011 0010 1011 1110

0100 0110 1100 1010

0101 0111 1101 1011

0110 0101 1110 1001

0111 0100 1111 1000
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Problem 8.18

Problem 8.19

Problem 8.20

(b) The procedure is to work from the most significant bit to the least significant bit
using the equations:
Am—1 = Gm—1

a; =g, Dajy1 0<i<m—2.
The decoded binary value is thus 0101100111010.

(&) Using the procedure described in Section 8.4.3, the decoded line is

(W10l w w w W W W 00000010 W W W W W W]
where W denotes four white pixels-i.e.,, 1111.

(b) - (c) Establish the convention that sub-blocks are included in the code string from
left to right. Then, using bracketsto clarify the decomposition steps, we get

1[[W 1001 W W W W W W] [00000010 W W W W W W] ]
1[1[W 1001 W W] [W W W W]][ 1[00000010 W W][W W W W1]]
1[1[1[[W 2001] [W W]][0]][1[1[[00000010] [W W]][0]]]
1[1[1[1[W][1001]][O]][O]][1[1[1[000C] [0010]][0O]][O]]]
1[1[1[1[0][11001]J[O]]J[O]][1[1[1[10000] [10010]][O]][O]]]

Thus, the encoded string is 111101100100111100001001000, which requires 27 bits.
The first encoding required 28 bits.

(8 The motivation is clear from Fig. 8.17. The transition at ¢ must somehow be tied
to a particular transition on the previous line. Note that there is a closer white to black
transition on the previous line to the right of ¢, but how would the decoder know to use
it instead of the one to the left. Both are less than ec. The first similar transition past e
establishes the convention to make this decision.

(b) An aternate solution would be to include a special code which skips transitions on
the previous line until you get to the closest one.

(8) Substituting p;,, = 0 into Eq. (8.5-12) and evaluating it to form the elements of R
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and r, we get

(b) First form the inverse of R,

1 1 —p
R'=———— .
| 1

Then, perform the matrix multiplication of Eg. (8.5-8):
2 1— 2
04:11_11':72 7 5 p( p) -7 .
o2 (1 —p?) 0 0
Thus, a; = pand ay = 0.
(c) The variance is computed using Eq. (8.5-11):

O'EZO'Q*OLTI':[p 0] [;]02(1;)2).

The derivation proceeds by substituting the uniform probability function into Egs. (8.5-
20) - (8.5-22) and solving the resulting simultaneous equationswith I = 4. Eq. (8.5-21)
yields

50:O
s1=5 (t1 +t2)
S92 = OQ.

Substituting these values into the integral s defined by Eqg. (8.5-20), we get two equations.
Thefirstis (assuming s; < A)

/Sl (s—t1)p(s)ds=0

S0

1

1 [ttt 52 3 (t1 + o)

ﬂ/o (S*fl)dS—E*fls 0 =0
(fl -+ f2)2 — 44 (tl -+ tQ) =0

(t1 +t2) (t2 —3t1) =0
t; = —ty and ty = 3t4.
The first of these relations does not make sense since both ¢; and ¢, must be positive.
The second relationship isavalid one. The second integral yields (noting that s; isless
than A so theintegral from A to co is 0 by the definition of p(s))
1 4 52

— (s —tg)ds = — —tas
2A Syt +t2) ’ 2

% (t1 +t2)
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Problem 8.22

Problem 8.23

Problem 8.24

4A% — 8Aty — (ty +t2) — 4ty (ty + t2) = 0.
Substituting 2 = 3t; from the first integral simplification into this result, we get
8t —6At; + A% =0
[t1 — 2] (8t —24) =0
ti=4andt; = 4.

Back substituting these values of ¢;, we find the corresponding ¢, and s; values:
ty=3 ands; = Afort; =4
to=34ands; =4 fort; = 4.

Sinces; = Aisnot area solution (the second integral equation would then be eval uated

from A to A, yielding O or no equation), the solution is given by the second. That is,

[N

SQ:O S1 = So = OO

Following the procedure in the flow chart of Fig. 8.37, the proper codeis
0001 010 1 0011000011 0001

where the spaces have been inserted for readability alone. The coding mode sequenceis
pass, vertica (1 |eft), vertical (directly below), horizonta (distances 3 and 4), and pass.

(& - (b) Following the procedure outlined in Section 8.6.2, we obtain the results shown
in Table P8.23.

Since the T1 transfer rate is 1.544 Mbit/sec, a 6 second transfer will provide
(1.544 x 10°%)(6 sec) = 9.264 x 10° bits

of data. Theinitial approximation of the X-ray must contain no more than this number

of bits. The required compression ratio isthus
4096 x 4096 x 12

= = 21.
" 9.264 x 106 7
The JPEG transform coding approach of Section 6.6 can achieve this level of compres-

sion and provide reasonably good reconstructions. At the X-ray encoder, the X-ray can
be JPEG compressed using a normalization array that yields about a 25:1 compression.
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Whileit is being transmitted over the T1 line to the remote viewing station, the encoder
can decode the compressed JPEG data and identify the “differences” between the result-
ing X-ray approximation and the original X-ray image. Since we wish to transmit these
“differences” over a span of 1 minute with refinements every 5 - 6 seconds, there can be
no more than
60 see to 60 see = 10 to 12 refinements.

If we assume that 12 refinements are made and that each refinement corresponds to
the “differences” between one of the 12 bits in the original X-ray and the JPEG recon-
structed approximation, then the compression that must be obtained per bit (to allow a6

second average transfer time for each bit) is
4096 x 4096 x 1

Cr = =1.81
9.264 x 106
where, as before, the bottom of the fraction is the number of bitsthat can be transmitted

over aT1linein 6 seconds. Thus, the “difference” datafor each bit must be compressed
by afactor just lessthan 2. One simpleway to generate the “differenceinformation” isto
XOR the actual X-ray with the reconstructed JPEG approximation. The resulting binary
image will contain a1 in every bit position at which the approximation differs from the
origina. If the XOR result is transmitted one hit at a time beginning with the MSB
and ending with the LSB, and each bit is compressed by an average factor of 1.81:1,
we will achieve the performance that is required in the problem statement. To achieve
an average error-free bit-plane compression of 1.81:1 (see Section 6.4), the XOR data
can be Gray coded, run-length coded, and finally variable-length coded. A conceptual
block diagram for both the encoder and decoder are given below. Note that the decoder
computes the bit refinements by X ORing the decoded XOR data with the reconstructed
JPEG approximation.

Table P8.23
DC Coefficient Difference  Two’s Complement Value  Code
-7 1..1001 00000
-6 1..1010 00001
-5 1..1011 00010
-4 1..1100 00011
4 0...0100 00100
5 0...0101 00101
6 0..0110 00110
7 0..0111 00111
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Problem 8.25

JPEG
Xeray — Encoder T1 Compressed
MUX Trransmitter] —  Data Out
[
JPEG _ _ _|contor | _ _
Decoder | Sequencer
|
Bit
L Selector Variabl
MUX 1-bit || Gray _Run—length_ Laer:;t:
XOR Coder Coder Coder
1
Bit |
Selector
ek Encoder
Compressed JPEG
Data In Decoder | | Frame Display | X-ray
MUX Buffer Generator to Display
|
| _|
Control/ 12-bit
Sequencer XOR D
- ecoder
|
|
i Zero Pad
| | {ZT]Z’::? _Run-length_ Gray | | e::da
Decoder Decoder Decoder Position Bit]
Figure P8.24

To demonstrate the equivalence of the lifting based approach and the traditional FNT
filter bank method, we simply derive general expressions for one of the odd and even
outputs of the lifting algorithm of Eq. (8.6-2). For example, the Y (0) output of step 4

of the algorithm can be written as

Y4 (0) =

where the subscripts on the Y’s have been added to identify the step of the lifting al-
gorithm from which the value is generated. Continuing this substitution pattern from

Ya (0) + 6 [Ya (—1) + Ys (

D]

X(0)+ 81 (1) + Y1 ()] +6[Y3(—1) + Y3 (1)]

earlier steps of the algorithm until Y, (0) isafunction of X’sonly, we get
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Y (0) = [1+42a8+2ad+ 6aBv6+ 276 X (0)
+[B+36v6+ 6] X (1)
+[aB + 404675 + abd +76) X (2)

+
+[Br0] X
+[aﬁ75]
+[ﬁ+3676+6] (1)
+[aﬁ+4aﬁy6+a6+’y6] (—2)
+[Br0] X
+ B8] X (f )-

Thus, we can form the lowpass analysis filter coefficients shown in Table P8.25-1.
Table P8.25-1

Coefficient Index Expression Vaue
+4 afvé /K 0.026748757
+3 Bv6/ K -0.016864118
+2 (aB +4apyd + ad +~6) /K -0.07822326
+1 (B+38v6+06) /K 0.26686411
0 (14208 4 2a6 + 6afv6 +2v6) /K 0.60294901

Here, the coefficient expressions are taken directly from our expansion of Y (0) and the
divison by K is in accordance with step 6 of Eg. (8.6-2). The coefficient values in
column 3 are determined by substituting the values of «, 3, ~, ¢, and K from the text
into the expressions of column 2. A similar derivation beginning with
Y3 (1) =Y1 (1) + 7 [¥2(0) + Y2 (2)]
yieds
Y(1) = [a+3apy+ X (0)
14264 X (1)
a+3aly+ 6 X (2)

+[aBy) X (-2)
from which we can obtain the highpass analysisfilter coefficients shown in Table P8.25-
2
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Table P8.25-2

Coefficient Index Expression Value
-2 —K (af7) -0.091271762
-1 —K (67) 0.057543525
0 —K (o +3apy+06) 0591271766
1 —K (14+2087) -1.115087053
2 —K (o +3apy+6) 0591271766
3 —K (67) 0.057543525
4 —K (af7) -0.091271762

Problem 8.26

From Eq. (8.6-5) and the problem statement, we get that
Popp = Mo =8
€L =€ +2—2=¢ =8.
Subsgtituting these values into Eq. (8.6-4), we find that for the 2L I. subband
Agpy, = 287078 [1 - %] = 1.00390625.

Here, we have assumed an 8-bit image so that R, = 8. Likewise, using Egs. (8.6-5),
(8.6-4), and Fig. 8.46 (to find the analysis gain bits for each subband), we get
Aoy =208FD78 14 55| =4.015625
Nopp = ANgpg = 26+D78 [1+ £] = 2.0078125

Argg = 207278 1+ £] = 4.015625
Ay = Arpy = 28TD78 [1+ F] = 2.0078125.

Problem 8.27

The appropriate MPEG decoder is shown in Fig. P8.27.

Variable
Encoded Length Run-length Inverse Inverse Image
Block Decoder Decoder Quantizer DCT P Block
Encoded Variable
Motion —— Length
Vector D:Ec?der Motion Estimator
and Compensator

Figure P8.27
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Problem 9.1

(8 Converting a rectangular to a hexagonal grid basically requires that even and odd
lines be displaced horizontally with respect to each other by one-half the horizontal
distance between adjacent pixels (see the figure in the problem statement). Since in
a rectangular grid there are no pixel values defined at the new locations, a rule must
be specified for their creation. A simple approach is to double the image resolution in
both dimensions by interpolation (see Section 2.4.5). Then, the appropriate 6-connected
points are picked out of the expanded array. The resolution of the new imagewill be the
same asthe original (but the former will be dightly blurred dueto interpolation). Figure
P9.1(a) illustrates this approach. The black points are the original pixels and the white
points are the new points created by interpolation. The squares are the image points
picked for the hexagonal grid arrangement.

(b) Rotations in a 6-neighbor arrangement are invariant to rotationsin 60° increments.

(c) Yes. Ambiguities arise when there is more than one path that can be followed from
one 6-connected pixel to another. Figure P9.1(c) shows an example, in which the 6-
connected points of interest are in black.

B o B o [ o [ o [ o O | O || O

¢ O] o [0 o [0 o [0 e [9 O N----- A O O
o e o ® o e o e o e

o] o [ o [6] o [6] o [o] o O ] n O O

o e o ® o e o e o e

e ] ¢ ] o [0 o [0 e [9 O 0 n O O
o e o e o e o e o e

o o B o [¢ o [ o [¢] o O ] O | O

Figure P9.1
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Problem 9.2

(& The answer is shown shaded in Fig. P9.2.

(b) With reference to the sets shown in the problem statement, the answers are, from | eft
to right,
(AnBNC)—(BN(C);
(ANBNCYU(ANC)U(ANB);and
{BN(AUC)}U{(ANC)-[(AnC)Nn(BNCO)]}.

(ANByu(duB)f

Figure P9.2

Problem 9.3

With reference to the discussion in Section 2.5.2, m-connectivity is used to avoid multi-
ple paths that are inherent in 8-connectivity. In one-pixel-thick, fully connected bound-

aries, these multiple paths manifest themselves in the four basic patterns shown in Fig.
P9.3.

The solution to the problem is to use the hit-or-miss transform to detect the patterns
and then to change the center pixel to 0, thus eliminating the multiple paths. A basic
sequence of morphological steps to accomplish thisis asfollows:

X, = A®B!
Vi = ANX¢
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X; = eB
Y = Y1NnX;g
X3 = Y,®B®
Y3 = YaNnXg
X, = Ys®B*
Y, = Y3nXj

where A is the input image containing the boundary.

(b) Only one passisrequired. Application of the hit-or-misstransform using a given B®
finds al instances of occurrence of the pattern described by that structuring element.

(c) The order does matter. For example, consider the sequence of points shown in Fig.
P9.3(c). and assume that we are traveling from left to right. If B! is applied first,
point a will be deleted and point b will remain after application of all other structuring
elements.. If, on the other hand, B3 is applied first, point b will be deleted and point a
will remain. Thus, we would end up with different (but of course, acceptable) m-paths.

0 . X X . 0 0 0 X X 0 0
. . 0 0 . . 0 . . . . 0
X 0 0 0 0 X X . 0 0 . X
B! B? @) B3 B4
Ve h

Figure P9.3

See Fig. P9.4. Keep in mind that erosion is the set described by the origin of the
structuring element, such that the structuring element is contained within the set being
eroded.



126 Chapter 9 Problem Solutions

Problem 9.5

Problem 9.6

\Origin of B

}
(]

A

Figure P9.4

(8) Erosion is set intersection. The intersection of two convex sets is convex also. See
Fig. P9.5 for solutions to parts (b) through (d). Keep in mind that the digital setsin
question are the larger black dots. The lines are shown for convenience in visualizing
what the continuous sets would be. In (b) the result of dilation isnot convex because the
center point is not in the set. In (c) we see that the lower right point is not connected to
the others. In (d), it isclear that the two inner points are not in the set.

R R T

Figure P9.5

Refer to Fig. P9.6. The center of each structuring element is shown as a black dot.
Solution (a) was obtained by eroding the original set (shown dashed) with the structuring
element shown (note that the origin is at the bottom, right). Solution (b) was obtained
by eroding the original set with the tall rectangular structuring element shown. Solution
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(c) was obtained by first eroding the image shown down to two vertical lines using the
rectangular structuring element; this result was then dilated with the circular structuring
element. Solution (d) was obtained by first dilating the original set with the large disk
shown. Then dilated image was then eroded with a disk of half the diameter of the disk
used for dilation.

@\ '@

@

Figure P9.6

Problem 9.7

The solutions to (a) through (d) are shown from top to bottom in Fig. P9.7.

Problem 9.8

(8 The dilated image will grow without bound. (b) A one-element set (i.e., aone-pixel
image).

Problem 9.9

(8 Theimage will erodeto oneelement. (b) The smallest set that containsthe structuring
element.
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Problem 9.10

Problem 9.11

(A4eBY (4eBYHYo B
A
(488 “4eBHyep’| |
- 1
[
—
A
(49 B (4eB )R i
| I___:i
I
i
A i
A4e B [
A

Figure P9.7

The approach isto prove that

{xEZQ‘(é)IOA7é®} ={zreZ’|r=a+b forac Aandbe B}.
The elements of (B), are of theform = — b for b € B. The condition (B), N A # 0
implies that for someb € B, x —b € A,orz —b = a for somea € A (notein the

preceding equation that = = a4 b). Conversely, if x = a+bforsomea € Aandb € B,
thenz —b=aorz —be A, whichimpliesthat (B), N A # 0.

(@ Supposethat z € A@® B. Then, for somea € Aandb € B, x = a + b. Thus,
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x € (A), and, therefore, x € |J (A), . On the other hand, supposethat z € |J (4), .
beB beB
Then, for someb € B, z € (A),. However, x € (A4), impliesthat there existsana € A

suchthat = = a + b. But, from the definition of dilation given in the problem statement,
acAbe Bjandx =a+bimplythatz € A® B.

(b) Supposethat =z € |J (A),. Then, for someb € B, x € (A),. However, z € (A),
beB
impliesthat thereexistsana € A suchthat x = a+b. But, if x = a+bfor somea € A

andb € B,thenz—b=aorxz—b e A, whichimpliesthat z € [(l?)mnA;é (B|. Now,

suppose that = € [(é)m NA# VJ}. The condition (B), N A # @ implies that for some
beB,x—beAozx—b=af(i.e,z=a+0b)forsomea € A. But, if x =a + bfor

somea € Aandb € B, thenx € (A), and, therefore, z € |J (A),.
beB

The proof, which consists of proving that

{reZ’|z+bec A foreverybe B} ={x € Z°|(B), CA},
follows directly from the definition of trandation because the set (B), has elements of
thefoomz +bforb € B. Thatis, z + b € A for every b € B impliesthat (B), C A.
Conversdly, (B), C Aimpliesthat all ementsof (B), arecontainedin A, or z+b € A
forevery b € B.

(@) Let x € Ao B. Then, from the definition of erosion given in the problem statement,
foreveryb € B,z +be A. But,x + b € Aimpliesthat z € (A)_, . Thus, for every

be B,z € (A)_,,whichimpliesthatz € (1) (A)_s. Supposenowthatz € () (A)_;.
beB beB
Then, forevery b € B,z € (A)_,. Thus, forevery b € B, x + b € A which, fromthe

definition of erosion, meansthat x € A © B.

(b) Supposethat x € A© B = () (A)_p. Then, foreveryb € B, x € (A)_,, or
beB
x+b e A But, asshownin Problem 912, z + b € A for every b € B implies that

(B), C A sothatz € Ao B={x € Z%|(B), C A }.Smilaly, (B), C Aimplies
that all elements of (B), are containedin A, or z + b € Aforeveryb € Bor, asin
@,z +0bec Aimpliesthat z € (A)_,. Thus, if forevery b € B, x € (4)_,, then
z€ N (A)_p.

beB
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Problem 9.14

Problem 9.15

Starting with the definition of closing,
(AeB)" = [(A@B)o B*
= (AeB)aB
(A°oB)@® B
= A% B.

(8) Erosion of aset A by B isdefined as the set of al values of trandates, z, of B such
that (B), iscontained in A. If the origin of B is contained in B, then the set of points
describing the erosion is smply all the possible locations of the origin of B such that
(B), iscontained in A. Then it follows from this interpretation (and the definition of
erosion) that erosion of A by B isasubset of A. Similarly, dilation of aset C' by B is
the set of all locations of the origin of 33 such that the intersection of C' and (B), isnot
empty. If theoriginof Biscontainedin B, thisimpliesthat C' isasubset of thedilation
of C' by B. Now, from Eq. (9.3-1), weknow that Ao B = (A© B)® B. Let C denote
the erosion of A by B. It was aready established that C is a subset of A. From the
preceding discussion, we know also that C'is a subset of the dilation of C' by B. But C'
isasubset of A, sotheopening of A by B (the erosion of A by B followed by a dilation
of the result) isa subset of A.

(b) From Eq. (9.3-3),
CoB=|J{(B):(B). cC}
and
DoB=| J{(B).|(B). C D}.

Therefore, if C C D, itfollowsthat C o B C Do B.



Problem 9.16

Problem 9.16 131

(c) From (a), (A o B) o B C (A o B). From the definition of opening,
(AoB)oB = {(AoB)oB}®B
= {[(AoB)¢BloB}&B
{(AcoB)eB} @B
(AeoB)e B
Ao B.

But, the only way that (Ao B) o B C (Ao B)and (Ao B)o B D (Ao B) can hold
isif (Ao B)o B = (Ao B). Thenext to last step in the preceding sequence follows
from the fact that the closing of a set by another contains the original set [thisis from
Problem 9.16(a)].

ol

1)

(@) From Problem 9.14, (A e B)° = A¢o B, and, from Problem 9.15(a), it follows that
(Ae B)° = A°0 B C A°.

Taking the complement of both sides of this equation reverses theinclusion sign and we

havethat A C (A e B), asdesired.

(b) From Problem 9.16(b), if D¢ C C*, then D¢ o B C € o B wherewe used D¢, C°,
and B instead of C, D, and B. From Problem 9.15, (C' e B) = C¢oBand (D e B)® =
D¢ o B. Therefore, if D¢ C C° then (D e B)° C (C e B)°. Taking complements
reversestheinclusion, so we have that if C' C D, then (C' e B) C (D e B), asdesired.

(c) Starting with the result of Problem 9.15,
(AeB)eB =

where the third step follows from Problem 9.15(c) and the fourth step follows from
Problem 9.14.
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Problem 9.17

The solution is shown in Fig. P9.17. Although the images shown could be sketched
by hand, they were done in MATLAB The size of the origina is 647 x 624 pixels.
A disk structuring element of radius 11 was used. This structuring element was just
large enough to encompass all noise e ements, as given in the problem statement. The
images shown in Fig. P9.17 are: (a) erosion of the original, (b) dilation of the result, (c)
another dilation, and finally (d) an erosion. The main points we are looking for from
the student’s answer are:  The first erosion (leftmost image) should take out al noise
elements that do not touch the rectangle, should increase the size of the noise elements
completely contai ned within the rectangle, and should decrease the size of the rectangle.
If worked by hand, the student may or may not realize that some ”imperfections” are |l eft
along the boundary of the object. We do not consider this an important issue because
it is scale-dependent, and nothing is said in the problem statement about this. The first
dilation (next image) should shrink the noi se components that were increased in erosion,
should increase the size of the rectangle, and should round the corners. Thenext dilation
should eiminate the internal noi se components completely and further increase the size
of therectangle. Thefinal erosion (last image on the right) should then decrease the size
of the rectangle. The rounded corners in the final answer are an important point that
should be recognized by the student.

(@ Figure P9.17
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Problem 9.19

Problem 9.20
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It was possible to reconstruct the three large squares to their original size because they
were not completely eroded and the geometry of the objects and structuring el ement
was the same (i.e., they were squares). This also would have been true if the objects
and structuring elements were rectangular. However, a complete reconstruction, for
instance, by dilating a rectangle that was partially eroded by a circle, would not be
possible.

(8) Select a one-pixel border around the image of the T, assuming that the resulting
subimage is odd, let the origin be located at the horizontal/vertica midpoint of this
subimage (if the dimensions were even, we could just as easily select any other point).
The resulting of applying the hit-or-miss transform would be a single point where the
two T’swere in perfect registration. The location of the point would be the same as the
origin of the structuring element.

(b) The hit-or-miss transform and (normalized) correlation are similar in the sense that
they produce their maximum value at the location of a perfect match, and also in the
mechanics of sliding the template (structuring element) past al locations in the image.
Major differences are the lack of a complex conjugate in the hit-or-miss transform, and
the fact that this transform produced a single nonzero binary value in this case, as op-
posed to the multiple nonzero values produced by correlation of the two images.

The key difference between the Lake and the other two featuresis that the former forms
aclosed contour. Assuming that the shapes are processed one a atime, basic two-step
approach for differentiating between the three shapesis as follows:

Step 1. Apply an end-point detector to the object until convergence is achieved. If the
result is not the empty set, the object isalLake. OtherwiseitisaBay or aLine

Step 2. There are numerous ways to differentiate between alake and aline. One of the
simplest is to determine aline joining the two end points of the object. If the AND of
the object and this line contains only two points, the figure is a Bay. Otherwiseiit is
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Problem 9.21

Problem 9.22

aline segment. There are pathologica cases in which this test will fail, and additional
“intelligence” needs to be built into the process, but these pathological cases become
less probable with increasing resol ution of the thinned figures.

(&) The entire image would be filled with 1’s. (b) The background would be filled with
I’s. (c) SeeFig. P9.21.

- Figure P9.21

(8 With reference to the example shown in Fig. P9.22(a), the boundary that results
from using the structuring element in Fig. 9.15(c) generally forms an 8-connected path
(leftmost figure), whereas the boundary resulting from the structuring element in Fig.
9.13(b) forms a 4-connected path (rightmost figure).

(b) Using a3 x 3 structuring element of all 1’s would introduce corner pixels into seg-
ments characterized by diagonally-connected pixels. For example, square (2,2) in Fig.
9.15(e) would be a1 instead of a 0. That value of 1 would carry al the way to the final
result in Fig. 9.15(i). There would be other 1’s introduced that would turn Fig. 9.15(i)
into a much more distorted object.

Figure P9.22(a)
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If spheres are all owed to touch, we can make the simplifying assumption that no spheres
touch it in such away that they create “pockets” of black points surrounded by al white
or surrounded by all white and part of the boundary of theimage. This situation requires
additional preprocessing, as discussed below.  With these simplification in mind, the
problem reduces first to determining which points are background (black) points. To
do this, we pick a black point on the boundary of the image and find all black points
connected to it using aconnected component algorithm (Section 9.5.3). These connected
components are labels with a value different from 1 or 0. The remaining black points
are interior to spheres. We can fill all spheres with white by applying the region filling
algorithm until all interior black points have been turned into white points. The aert
student will redlize that if the interior points are already known, they can all be turned
simply into white points thus filling the spheres without having to do region filling as a
separate procedure.

If the spheres are allowed to touch in arbitrary ways, a way must be found to separate
them because they could create ”’pockets” of black points surrounded by al white or
surrounded by al white and part of the boundary of the image. The simplest approach
is to separate the spheres by preprocessing. One way to do this is to erode the white
components of the image by one pass of a 3 x 3 mask, effectively creating a black
border around the spheres, thus “separating” them. This approach works in this case
because the objects are spherical, thus having small areas of contact. To handle the
case of spheres touching the border of the image, we simply set all border point to
black. We then proceed to find al background points To do this, we pick a point on the
boundary of the image (which we know is black due to preprocessing) and find all black
points connected to it using a connected component agorithm (Section 9.5.3). These
connected components are labels with a value different from 1 or 0. The remaining
black points are interior to spheres. We can fill all spheres with white by applying the
region filling agorithm until all such interior black points have been turned into white
points. The alert student will realize that if the interior points are aready known, they
can al be turned simply into white points thus filling the spheres without having to do
region filling as a separate procedure.

Note that the erosion of white areas makes the black areas interior to the spheres grow,
so the possibility exists that such an area near the border of a sphere could grow into the
background. Thisissue introduces further complications that the student may not have
the tools to solve yet. We recommend making the assumption that the interior black
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Problem 9.24

Problem 9.25

Problem 9.26

areas are small and near the center. Recognition of the potential problem by the student
should be sufficient.

Denote the original image by A. Create an image of the same size as the original,
but consisting of al 0’s, call it B. Choose an arbitrary point labeled 1 in A, call it
p1, and apply the agorithm. When the algorithm converges, a connected component
has been detected. Label and copy into B the set of al pointsin A belonging to the
connected components just found, set those pointsto 0in A and call the modified image
A;. Choose an arbitrary point labeled 1in A, call it po, and repeat the procedure just
given. If there are K connected components in the origina image, this procedure will
result in an image consisting of all 0’s after K applications of the procedure just given.
Image B will contain K labeled connected components.

(8 Equation (9.6-1) requires that the (z, y) used in the computation of dilation must
satisfy the condition (x,y) € Dy. Interms of the intervals given in the problem state-
ment, this means that « and y must be in the closed interval * € [B,1, B;2| and
y € [By1, Bys]. Itisrequired also that (s — z),(t —y) € Dy, which means that
(s —x) € [Fy1, Fpo] and (t — y) € [Fy1, Fy2]. Sincethevalid range of z isthe interval
[B.1, Bys), thevalid range of (s—x) is[s— By, s — Baa]. But, sincez must also satisfy
the condition (s — z) € [F,1, Fy2], itfollowsthat F,; < s — B,y and F 2 > s — Bya,
which finadly yields F;; + B,1 < s < F,o + B,o. Following the same analysis for ¢
yidds Fy1 + By1n < t < Fy» + By. Since dilation is a function of (s, ), these two
inequalities establish the domain of (f @ b)(s, t) in the st-plane.

(b) Following asimilar procedureyieldsthefollowing intervalsfor sand ¢: Fi;1 — By <
s < Fyo — By and F;; — By1 <t < Fys — Bys. Sinceerosion isafunction of (s, t),
these two inequalities establish the domain of (f © b)(s, t) in the st-plane.

(8 The noise spikes are of the general form shown in Fig. P9.26(a), with other possi-
bilities in between. The amplitude is irrelevant in this case; only the shape of the noise
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spikes is of interest. To remove these spikes we perform an opening with a cylindri-
cal structuring element of radius greater than R.,.x, a shown in Fig. P9.26(b) (see Fig.
9.30 for an explanation of the process). Note that the shape of the structuring element is
matched to the known shape of the noise spikes.

(b) The basic solution is the same as in (&), but now we have to take into account the
various possible overlapping geometries shown in Fig. P9.26(c). A structuring el ement
liketheoneused in (8) but with radius dightly larger than 4 Ry, Will dothejob. Notein
(@ and (b) that other parts of the image would be affected by this approach. The bigger
Ruax, the bigger the structuring element that would be needed and, consequently, the
greater the effect on the image as awhole.

['1 av Aw‘(
A H 4. ,—\
| | \ \ \ \
2R 2R (a) 2R

2R

«— Structuring —
element

(b)

Basic
geometries QOOQ

4R f

Profiles

Figure P9.26

() Color theimage border pixelsthe same color as the particles (white). Call theresult-
ing set of border pixels B. Apply the connected component algorithm. All connected
componentsthat contain elementsfrom B are particlesthat have merged with the border
of the image.
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Problem 9.28

(b) Itisgiven that all particles are of the same size (thisis done to simplify the problem;
more general analysis requires tools from Chapter 11). Determine the area (number of
pixels) of asingle particle; denote theareaby R. Eliminate from the image the particles
that were merged with the border of the image. Apply the connected component algo-
rithm. Count the number of pixelsin each component. A component isthen designated
as asingle particle if the number of pixelsis lessthan or equa to R + ¢, wheree isa
small quantity added to account for variations in size due to noise.

(c) Subtract from the image single particles and the particles that have merged with the
border, and the remaining particles are overlapping particles.

Asgiven in the problem statement, interest lies on deviations from the round in theinner
and outer boundaries of the washers. It also is stated that we can ignore errors due to
digitizing and positioning. This meansthat the imaging system has enough resol ution so
that artifacts will not be introduced as aresult of digitization. The mechanical accuracy
similarly tells us that no appreciable errors will be introduced as a result of positioning.
Thisisimportant if we want to do matching without having to register the images.

The first step in the solution is the specification of an illumination approach. Because
we areinterested in boundary defects, the method of choiceisabacklighting system that
will produce a binary image. We are assured from the problem statement that the illu-
mination system has enough resolution so that we can ignore defects due to digitizing.

The next step is to specify a comparison scheme. The simplest way to match binary
images is to AND one image with the complement of the other. Here, we match the
input binary image with the complement of the golden image (this is more efficient than
computing the complement of each input image and comparing it to the golden image).
If theimages areidentical (and perfectly registered) the result of the AND operation will
be al 0’s. Otherwise, there will be 1’sin the areas where the two images do not match.
Note that this requires that the images be of the same size and be registered, thus the
assumption of the mechanical accuracy given in the problem statement.

As noted, differences in the images will appear as regions of 1’s in the AND image.
These we group into regions (connected components) by using the agorithm given in
Section 9.5.3. Once all connected components have been extracted, we can compare
them against specified criteria for acceptance or rejection of a given washer. The sim-
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plest criterion isto set alimit on the number and size (number of pixels) of connected
components. The most stringent criterion is O connected components.  This means a
perfect match. The next level for relaxing” acceptance is one connected component
with of size 1, and so on. More sophisticated criteria might involve measures like the
shape of connected components and the relative locations with respect to each other.
These types of descriptors are studied in Chapter 11.
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Problem 10.1

Problem 10.2

The masks would have the coefficients shown in Fig. P10.1. Each mask would yield
avalue of 0 when centered on a pixel of an unbroken 3-pixel segment oriented in the
direction favored by that mask. Conversely, the response would be a +2 when a mask
is centered on a one-pixel gap in a 3-pixel segment oriented in the direction favored by
that mask.

0 0 0 0 1 0 0 0 1 1 0 0

|2 1 02,0 02,0 0| 210

0 0 0 0 1 0 1 0 0 0 0 1

Horizontal Vertical +45 —45
Figure P10.1

The key to solving this problem is to find all end points of line segments in the image.
End points are those points on aline which have only one 8-neighbor valued 1. Once all
end points have been found, the Dg distance between al pairs of such end points gives
the lengths of the various gaps. We choose the smallest distance between end points
of every pair of segments and any such distance less than or equal to L satisfies the
statement of the problem. Thisis arudimentary solution, and numerous embellishments
can be added to build intelligence into the process. For example, it is possible for end
points of different, but closely adjacent, linesto belessthan L pixelsapart, and heuristic
tests that attempt to sort out things like this are quite useful. Although the problem
statement does not call for any such tests, they are normally needed in practice and it is
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Problem 10.3

Problem 10.4

worthwhile to bring thisup in classif this particular problem is assigned as a homework
assignment.

(& The lines were thicker than the width of the line detector masks. Thus, when, for
example, a mask was centered on the line it saw” a constant area and gave a response
of 0.

(b) Viaconnectivity anaysis.

It is given that the location of the edge relative to the size of the mask is such that image
border effects can be ignored. Assume that » isodd and keep in mind that an ideal step
edge transition takes place between adjacent pixels. Then, the average is O until the
center of the mask is (n — 1)/2 pixels or more to the left of the edge. The average is
1 when the center of the mask is further away than (n — 1)/2 pixelsto theright of the
edge. When transitioning into the edge, (say from left to right) the average picks up one
column of the mask for every pixd that it movesto theright, so the value of the average
growsasn/n?,2n/n?, ..., (n—1)n/n? n?/n? or1/n,2/n,...,(n —1)/n,1. This
isasimple linear growth with slope equal to 1/n. Figure P10.4 shows a plot of the
origina profile and what the profile would look like after smoothing. Thus, we get a
ramp edge, as expected.

(n-1)2
\ pixels |

~— Smoothed edge

Direction of mask —
movement

0 | (m-1)2 | N\

ol Location of step edge
pixels

Figure P10.4
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Problem 10.5

The gradient and L aplacian (first and second derivatives) are shown in Fig. P10.5.
Figure P10.5

Problem 10.6
(&) Inspection of the Sobel masks shows that G, = 0 for edges oriented vertically and
G, = 0 for edges oriented horizontally. Therefore, it follows in this case that , for
vertical edges, Vf = | /G = |G, |, and similarly for horizontal edges.
(b) The same argument applies to the Prewitt masks.

Problem 10.7

Consider first the Sobel masks of Figs. 10.8 and 10.9. The easiest way to prove that
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Problem 10.8

these masks give isotropic results for edge segments oriented at multiples of 45° isto
obtain the mask responses for the four general edge segments shown in Fig. P10.7,
which are oriented at increments of 45°. The objective is to show that the responses
of the Sobdl masks are indistinguishable for these four edges. That this is the case is
evident from Table P10.1, which shows the response of each Sobel mask to the four
genera edge segments. We see that in each case the response of the mask that matches
the edge direction is (4da — 4b), and the response of the corresponding orthogonal mask
is 0. The response of the remaining two masks is either (3a — 3b) or (3b — 3a). The
sign difference is not significant because the gradient is computed by either squaring or
taking the absolute value of the mask responses. The same line of reasoning applies to
the Prewitt masks.

Table P10.7
Edge Horizontal Vertical +45° —45°
direction  Sobel (G,) Sobel (G,) Sobel (G45) Sobel (G_45)
Horizontal 4a —4b 0 3a — 3b 3b— 3a
Vertical 0 4a — 4b 3a —3b 3a —3b
+45° 3a —3b 3a — 3b 4a — 4b 0
—45° 3b — 3a 3a — 3b 0 4a — 4b

b b b b a a b b | a a a a

a a a b a a b a a b a a
a a a b a a a a | a b | b a
Horizontal Vertical +45° —45
Figure P10.7

With reference to Fig. P10.8, consider first the 3 x 3 smoothing mask mentioned in the
problem statement, aswell asthe general subimage areashown in the figure. Recall that
value e is replaced by the response of the 3 x 3 mask when its center is at that location.
Ignoring the 1/9 scale factor, the response of the mask when centered at that location is

(@a+b+ctd+e+f+g+h+i).

The idea with the one-dimensional mask is the same: We replace the value of apixd by
the response of the mask when it is centered on that pixel. With thisin mind, the mask
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[1 1 1] would yield the following responses when centered at the pixelswith values b, e,
and /1, respectively: (a +b+c¢), (d+e+ f),and (g + h + 7). Next, we pass the mask
1
1
1
through these results. When this mask is centered at the pixel with value e, its response
will be[(a+b+c) + (d+e+ f) + (9 +h+1)], which is the same as the result produced

by the 3 x 3 smoothing mask.

Returning now to problem at hand, when the G, Sobel mask is centered at the pixel with
valuee, itsresponseis G, = (g+2h +1) — (a+2b+c). If we pass the one-dimensional
differencing mask
-1
0

1
through the image, its response when its center is at the pixels with values d, e, and f,

respectively, would be:(g — a) , (h —b), and (i — ¢). Next we apply the smoothing mask
[1 2 1] to these results. When the mask is centered at the pixel with value e, its response
wouldbe[(g—a) +2(h—b) + (i —c)] whichis[(g+2h+1%) — (a+2b+c)]. Thisisthe
same as the response of the 3 x 3 Sobel mask for G,,. The process to show equivalence
for G, isbasically the same. Note, however, that the directions of the one-dimensional
masks would be reversed in the sense that the differencing mask would be a column
mask and the smoothing mask would be a row mask.

1 1 1 a b | c
1] d | e [

1 1 1 g h ]
Smoothing mask Subimage area under
(scaled by 1/9). the mask at any one

lime.

Figure P10.8
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Problem 10.9

The solution is shown in Fig. P10.9 (negative numbers are shown underlined).
Edge direction
E NE N NW W SW S SE
Gradient direction
N NW W SwW S SE E NE
Compass gradient operators

111 110 101 011 111 110 101 011
000 101 101 101 000 101 101 101
111 011 101 110 111 011 101 110

Figure P10.9

Problem 10.10

(& The solution is shown in Fig. P10.10(a). The numbers in brackets are values of
Gz, Gy]. (b) The solution is shown in Fig. P10.10(b). The angle was not computed
for the trivial casesin which G, = G, = 0.. The histogram follows directly from this
table. (c) The solution is shown in Fig. P10.10(c).

Problem 10.11
(8 With referenceto Eq. (10.1-17), we need to prove that

T2 2 2
/ [T 40 ] e 2.2dr =0.
o

Expanding this equation resultsin the expression

rT—0o _ 2 1 _ 22
) e 22dr = — r2e 22 dr
g ag
— 00

— 00
oo
I
—= [ ez ar.
g
—0o0

Recall from the definition of the Gaussian density that

17 .
—_— e 22dr =1
V2ro? /
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and, from the definition of the variance of a Gaussian random variabl e that

2
252 dr.

o0
/ r2e”
— 00

Thus, it follows from the preceding equations that
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Figure P10.10

0se that we convolve an image f wit . Using the convolution theorem, this
b) Supposeth lvean image f with V2A. Using th |ution th hi
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Problem 10.12

is the same as multiplying the Fourier transform of f by the Fourier transform of V?h.
The average val ue of the convol ution can be obtained by eval uating the Fourier transform
of this product at the origin of the frequency plane [see Eq. (4.2-22)]. But, it was shown
in (a) that the average value of V1 is zero, which means that its Fourier transform is
zero at the origin. From this it follows that the value of the product of the two Fourier
transforms is also zero, thus proving that the average value of the convolution of f with
V2h iszero.

(c) Yes. Consider Eq. (10.1-14), expressed as

VA f(x,y) = 4f(@,y) = [f(z + Ly) + flz = Ly) + flz,y +1) + fz,y = ).
Asin (b), we evaluate the average value of a spatial expression by looking at the value
of its Fourier transform at the origin. Here, it follows from Eq. (4.6-2) that, if F'(u,v)
denotes the Fourier transform of f(z,y), then the transforms of dl the terms inside
the brackets in the above equation are F'(u,v) multiplied by appropriate exponential
terms. However, the exponential terms have value 1 at the origin, so the net result is
4F(0,0) — 4F(0,0) = 0, thus proving that the Laplacian obtained by convolving an
image with the operator shown in Fig. 10.13 (which implements Eqg. (10.1-14)] has an
average value of zero. The same zero result is obtained for Eq. (10.1-15).

(8) Figure 10.15(g) was obtained from Fig. 10.15(h) which is a binary image, and thus
consists of sets of connected components of 1°s (see Section 2.5.2 regarding connected
components). The boundary of each connected component forms a closed path (Prob-
lem 2.14). The contours in Fig. 10.15(g) were obtained by noting transitions of the
boundaries of the connected components with the background, and thus form closed

paths.

(b) The answer is yes for functions that meet certain mild conditions, and if the zero
crossing method is based on rotational operators like the LoG function. Geometrical
properties of zero crossings in general are explained in some detail in the paper ”On
Edge Detection,” by V. Torreand T. Poggio, /EEE Trans. Pattern Analysis and Machine
Intell., vol. 8, no. 2, pp. 147-163. Looking up this paper and becoming familiar with
the mathematical underpinnings of edge detection is an excellent reading assignment for
graduate students.
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Problem 10.13

(8 Point 1 has coordinates x = 0 and y = 0. Substituting into Eq. (10.2-3) yields
p =0, which, inaplot of pvs. 8,isastraight line.

(b) Only the origin (0, 0) would yield this result.

(c) At 0 = +90°, it follows from Eq. (10.2-3) that = - (0) + v - (1) = p, ory = p. At
0=-90°2-(0)4+y-(—1) = p,or —y = p. Thusthereflective adjacency.

Problem 10.14

(8) Express z:cosf + ysinf = p intheform z = —(cot 0)x + p/ sin 0. Equating terms
with the dlope-intercept form, y = ax + b, givesa = and —(cot§) and b = p/ sin 6.
Thisgives § = cot~!(a) and p = bsin #. Once obtained from a and b of a given ling,
the parameters ¢ and p completely specify the normal representation of that line,

(b) 6 = cot=1(2) = 26.6° and p = (1) sin@ = 0.45.
Problem 10.15

Thisproblem isanatural for the Hough transform, which is set up asfollows: The 6 axis
is divided into six subdivisions, corresponding to the six specified directions and their
error bands. For example (since the angle directions specified in the problem statement
are with respect to the horizontal) the first band for angle 6 extends from —30° to —20°,
corresponding to the —25° direction and its £5° band. The p axis extends from p =
—V/D to p = +v/D, where D is the largest distance between opposite corners of the
image, properly calibrated to fit the particular imaging set up used. The subdivisionsin
the p axis are chosen finely enough to resolve the minimum expected distance between
tracks that may be paralel, but have different origins, thus satisfying the last condition
of the problem statement.

Set up in thisway, the Hough transform can be used as a filter” to categorize al points
in a given image into groups of pointsin the six specified directions. Each group isthen
processed further to determine if its points satisfy the criteriafor a valid track: (1) each
group must have at least 100 points; and (2) it cannot have more than three gaps, each of
which cannot be more than 10 pixels long (see Problem 10.2 on the estimation of gaps
of agiven length).
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Problem 10.16

(8 The paths are shown in Fig. P10.16. These paths are as follows:

1:(1,1)(1,2) — (2,1)(2,2) — (3,1)(3,2)

2:(L1)(1,2) = (2,1)(2,2) = (3,2)(2,2) — (3,2)(3,3)
3:(1,1)(1,2) — (2,2)(1,2) — (2,2)(2,3) — (3,2)(3,3)
4:(1,1)(1,2) — (2,2)(1,2) — (2,2)(2,3) — (2,2)(3,2) — (3,1)(3,2)
5:(1,2)(1,3) — (2,2)(2,3) — (3,2)(3,3)

6:(1,2)(1,3) — (2,2)(2,3) — (2,2)(3,2) — (3,1)(3,2

7:(1,2)(1,3) — (1,2)(2,2) — (2,1)(2,2) — (3,1)(3,2

8:(1,2)(1,3) — (1,2)(2,2) — (2,1)(2,2) — (3,2)(2,2) — (3,2)(3,3)

(b) From Fig. 10.24 and (a), we see that the optimum path is path 6. Its cost isc =
24+04+14+1=4.

1234 87 65
Ld L4 [
(L) (1,2) (1.3)
Ld L4 [
@n @2 23
L] L L]
@3.0) (3.2) (3.3
1 746 2835

Figure P10.16

Problem 10.17

From Eq. (10.2-6), ¢(p, q) = H —[f(p) — f(g)]. Inthiscase H = 8. Assumethat p isto
theright astheimageistraversed from left to right. The possible paths are shownin Fig.
P10.17(a). The costs are detailed in Fig. P10.17(b). The graph (with the minimum-cost
path shown dashed) is shown in Fig. P10.17(c). Finally, the edge corresponding to the
minimum-cost path is shown in Fig. P10.17(d).
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Figure P10.17

(8 The number of boundary points between black and white regions is much larger in
the image on theright. When the images are blurred, the boundary pointswill give rise
to alarger number of different values for the image on the right, so the histograms of the
two blurred images will be different.

(b) To handle border effects, we surround the image with a border of 0’s. We assume
that the image is of size N x N (the fact that the image is square is evident from the
right image in the problem statement). Blurring is implemented by a3 x 3 mask whose
coefficients are 1/9. Figure P10.18 shows the different types of values that the blurred
left image (see problem statement) will have. These values are summarized in Table
P10.18-1. Itis easily verified that the sum of the numbers on the left column of the
tableis N2.
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Table P10.18-1
No. of Points Value

N(&-1) 0
2 2/9
N -2 3/9
4 4/9
3N -8 6/9

(N-2)(F-2) 1

A histogram is easily constructed from the entries in this table. A similar (tedious, but

not difficult) procedure yields the results shown in Table P10.18-2 for the checkerboard
image.

Table P10.18-2
No. of Points Value
A 14N +98 0

28 2/9
14N — 224 3/9
128 4/9
98 5/9
16N — 256 6/9

N 16N 4128 1

| N72 pixels | N2 pixels |
00 0 -0 0 0 O0---000

049 69 --- 69 4929 0:---0 0|0

669 1 -+ 1 69390---000

N pixels

669 1 -+ 1 6/9390---00/0

049 6/9 -+ 69 49 29 0---0 00

—60 Q-0 0 00000
Border of 0's

Figure P10.18

Problem 10.19

The gray level profile of one row of the image is shown in Fig. P10.19(a), and the
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histogram of the image is shown in Fig. P10.19(b). The gray level profile of one
row in the wedge image is shown in Fig. P10.19(c), and its histogram is shown in
Fig. P10.19(d). The gray level profile of arow in the product image is shown in Fig.
P10.19(e). The histogram of the product is shown in Fig. P10.19(f).

Gray level Probability
A
L‘ r
121
L.
Il | }v
0 N2l N-1 Gray level
() (b)
Gray level Probabhility
A
Kl
1N
1 | v
0 N2-1 N-1 7 Gray level K
(©) (d
Gray level Probability
A
KL e e e
. KN
SN N
L k- A~
“2N-1)
Il 4 v
0 N2-1 N-1 ; KV-2) A Graylevel X, _KN KL
(e) C2N-1) ® s 2(N-1)
Figure P10.19

Problem 10.20

(@ A; = Ay and 01 = 02 = o, which makes the two modes identical. If the number
of samplesis not large, convergence to avaue at or near the mid point between the two
means also requires that a clear valley exist between the two modes. We can guarantee
this by assuming that o << (m; + m2)/2.

(b) That this condition cannot happen if A2 # 0. Thisis easily established by starting
the algorithm with an initial value less than m. Even if the right mode associated with
mg iISmuch smaller in size (e.g., A1 >> A2 and o, >> o3) the average vaue of the
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Problem 10.21

Problem 10.22

region to theleft of the starting threshold will be smaller than the average of theregionto
the right because the modes are symmetrical about their mean, and the mode associated
with mo will bias the datato the right. Thus, the next iterative step will bring the value
of the threshold closer to m, and eventually to the right of it. Thisanalysis assumesthat
enough points are available in order to avoid pathological casesin which the algorithm
can get ”stuck” due to insufficient data that truly represents the shapes assumed in the
problem statement.

() o2 >> oy. Thiswill ”draw” the threshold toward m. during iteration.

The illumination function is a bell-shaped surface with its center at (500, 500). The
value of illumination at this point is 1, and it decreases radialy from there. Draw a
series of concentric circles about point (500,500) so that the value of i(x,y) at each
circle is 0.1 less than the circle before. Any two points within these two circles do
no differ by more than 10% in illumination. Segment (threshold) the region between
adjacent circles. If the distance between circlesis greater than 10 pixels, thenwe aretold
that the segmentation will be correct. That is, proper segmentation of areas greater than
10 x 10 pixelsis guaranteed in the problem statement, as long as illumination between
any two points does not differ by more than 10%. Regions of 10 x 10 pixels will fit
between concentric circles that are more than 10 pixels apart. If the distance between
circles is less than 10 pixels, then the segmentation is not guaranteed to be perfect.
But, there is nothing that can be done about that because changes in illumination are
determined by the illumination function, which is given.

From the figure in the problem statement,

0 z<1
pi(z) =9 22-1% 1<2<3
0 z>3
and
0 z2<0
pa(2) =3 —1z+1 0<z<2 .

0 z>2
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The optimum threshold isthe value z = T for which Pip;(T) = Pep2(T). Inthiscase
P=P,0
L Lp 1 Ly,
_ 2 2 2
fromwhichweget 7" = 1.5.

Problem 10.23

Keeping the same sense of directions as in Problem 10.22, let p,(z) be the probability
density function given in the problem statement. The key in solving the problem is to
recognize that the direction of the tail” of the Rayleigh function can be reversed as

follows: ,
2(—z+4c)e~(z=Fa)7/d z<c

zZ>c
Then, the optimum threshold, 7", is found by solving the following equation for T":

Pipi(T) = Popa(T).
Subsgtituting the density functions into these equationsyields
Plg(fT +o)emCTH/d = PQ%(T — ) (T-@)?*/d
which must be solved for T to find the optimum threshold. With the exception of some
possible additional reformatting (like taking the natural log), thisisasfar aswe normally
expect students to carry this problem. However, it isimportant for the student to state
that the solution isvalid only intherangea < T < c.

pi(z) =

o

Problem 10.24

From Eq. (10.3-10),
Pip1(T) = Papa(T).
Taking theln of both sides yields
InP; +1np(T) =In Py + lnps(T).
But

T 1 _£T_;&2Lﬁ
= e 91
n@ ==

and

1 _<T—u22>2

pel) = s

2

1 T— i) 1 T — piy)?

In Py +In _Tom)l g _T—p)

V2moq 207 V2moo 20%

0 it follows that
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Problem 10.25

Problem 10.26
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T — 2 T _ 2
Py oy~ TB gy g Do)
207 2035

Pl g1 1 1
I+ I = o (12 =2 T i) 55 (12 = 2T+ 43) = 0

oo Py 2 f 1 1 ,Ul Ly 112 AN
In T | — — —= L _ 2 2 Py

o1Ps 202 202 02 202 202

From this expression we get

AT? + BT +C =0
with
(0f — 03)

2(”3#1 -

A

B 0%#2)

and
o2Py

O =022 — 0212 + 20262 In '
O1Hy — O] + 20703 1P

If 01 = 09 = 0, then A = 0in Eq. (10.3-12) and we have to solve the equation

BT+C=0
with
B =20%(jy — p1p)
and
20,2 P
C =o?(u2 — p?) + 20* 1nF
2
Substituting and cancelling terms gives
P
20y — o) T — (p1y + o) (p11 — piz) +20° th: =0
or )
T Hq +ILL2 o h’lﬁ
2 =y Po

The simplest solution is to use the given means and standard deviations to form two
Gaussian probability density functions, and then to use the optimum thresholding ap-
proach discussed in Section 10.3.5 (in particular, see Egs. (10.3-11) through (10.3-13).
The probabilities P, and P, can be estimated by visua analysis of the images (i.e., by
determining the relative areas of the image occupied by objects and background). It is
clear by looking at the image that the probability of occurrence of abject pointsisless
than that of background points. Alternatively, an automatic estimate can be obtained by
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thresholding the image into points with values greater than 200 and less than 110 (see
problem statement). Using the given parameters, the results would be good estimates of
the relative probability of occurrence of object and background points due to the separa-
tion between means, and the relatively tight standard deviations. A more sophisticated
approach isto use the Chow-Kaneko procedure discussed in Section 10.3.5.

Problem 10.27

Let m; and m4 denote the mean gray level of objects and background, respectively, and
let 01 and o, denote the corresponding standard deviations (see the problem statement
for specific values). Wenotethat +20, about the mean background level givesarange of
gray level values from 80 to 140, and that +20; about the mean intensity of the objects
gives arange of 120 to 280, so areasonabl e separation exists between the two gray level
populations. Choosing m; = 200 as the seed value is quite adequate. Regions are
then grown by appending to a seed any point that is 8-connected to any point previously
appended to that seed, and whose gray level ism; + 20 .

Problem 10.28

The region splitting is shown in Fig. P10.28(a). The corresponding quadtree is shown
in Fig. P10.28(b).

Problem 10.29

(@) The elements of T'[n] are the coordinates of points in the image below the plane
g(x,y) = n, where n is an integer that represents a given step in the execution of the
agorithm. Since n never decreases, the set of dementsin T'[n — 1] isa subset of the d-
ementsin 7T'[n]. In addition, we note that all the pointsbelow the plane g(x, y) =n — 1
are aso below the plane g(z, y) = n, so the elements of T'[n] are never replaced. Sim-
ilarly, C,,(M;) isformed by theintersection of C(M;) and T'[n], where C(M;) (whose
elements never change) is the set of coordinates of a// pointsin the catchment basin as-
sociated with regional minimum A£;. Since the elements of C'(M;) never change, and
the elements of T'[n] are never replaced, it followsthat the lementsin C,, (M;) are never
replaced either. In addition, we seethat C;,_1(M;) C C,,(M;).

(b) This part of the problem is answered by the same argument asin (a). Since (1) n
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aways increases; (2) the elements of neither C,,(M;) nor T'[n] are ever replaced; and
@) Tn— 1] C Tn]and C,,—1(M;) C C,, (M), it follows that the number of elements
of both C,,(M;) and T'[n] either increases or remains the same.

R R
R R R R
R R R R
R R
R R | R R
R R
R R R R
R R R R
R R
(@)
CRD
&) &
EROROEDRD EOROEDR)D
& ey EDEDEDED
EROEOROR) ROROROERD
EOROEOR)
(b)
Figure P10.28

Problem 10.30

Using the terminology of the watershed algorithm, a break in a boundary between two
catchment basins would cause water between the two basins to merge. However, the
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heart of the algorithm is to build a dam higher than the highest gray level in the image
any time a break in such boundaries occurs. Since the entire topography is enclosed by
such adam, dams are built any time there is a break that causes water to merge between
two regions, and segmentation boundaries are precisely the tops of the dams, it follows
that the watershed algorithm always produces closed boundaries between regions.

The first step in the application of the watershed segmentation algorithm is to build a
dam of height max + 1 to prevent the rising water from running off the ends of the
function, as shown in Fig. P10.31(b). For an image function we would build a box of
height max + 1 around its border. The agorithm isinitialized by setting C[1] = T'1].
Inthiscase, T'[1] = {¢(2)}, asshownin Fig. P10.31(c) (note the water level). Thereis
only one connected component in thiscase: Q[1] = {¢1} = {9(2)}.

Next, we let n = 2 and, as shown in Fig. P10.31(d), T[2] = {g(2),9(14)} and
Q[2] = {q1;92}, where, for clarity, different connected components are separated by
semicolons. We start construction of C'[2] by considering each connected component in
Q[2]. When ¢ = ¢y, theterm ¢ N C'[1] isequal to {g(2) }, so condition 2 is satisfied and,
therefore, C'[2] = {g(2)}. When ¢ = g2, ¢ N C[1] = § (the empty set) so condition
1is satisfied and we incorporate g in C[2], which then becomes C[2] = {¢(2); g(14)}
where, as above, different connected components are separated by semicolons.

When n = 3 [Fig. P10.31(e)], T'[3] = {2,3,10,11,13,14} and Q[3] = {q1; ¢2;q3} =
{2, 3;10, 11; 13, 14} where, in order to ssimplify the notation we let k& denote g(k). Pro-
ceeding as above, ¢; N C[2] = {2} satisfies condition 2, so ¢, isincorporated into the
new set to yield C[3] = {2,3;14}. Similarly, - N C[2] = 0 satisfies condition 1 and
C[3] = {2,3;10,11;14}. Finaly, g3 N C[2] = {14} satisfies condition 2 and C[3] =
{2,3;10,11; 13, 14}. Itis easily verified that C[4] = C[3] = {2,3;10,11;13,14}.

When n = 5 [Fig. P10.31(f)], we have, T[5] = {2,3,5,6,10,11,12,13,14} and
Q5] = {q1; 92593} = {2, 3;5,6; 10,11, 12,13, 14} (note the merging of two previously
distinct connected components). Isis easily verified that ¢; N C[4] satisfies condition 2
and that ¢, N C[4] satisfied condition 1. Proceeding with these two connected compo-
nents exactly as aboveyields C[5] = {2, 3;5, 6; 10, 11; 13, 14} up to this point. Things
get more interesting when we consider gs. Now, g3 N C[4] = {10, 11; 13,14} which,
since it contains two connected components of C'[4] satisfies condition 3. As mentioned
previously, thisis an indication that water from two different basins has merged and a
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Problem 10.32

dam must be built to prevent this. Dam building is nothing more than separating g3 into
the two original connected components. In this particular case, this is accomplished by
the dam shown in Fig. P10.31(g), sothat now g3 = {qs1; ¢s2} = {10, 11; 13, 14}. Then,
g31 NC[4] and g3 N C'[4] each satisfy condition 2 and we havethefinal result for n = 5,
C[5] = {2,3;5,6;10, 11; 13; 14}.

Continuing in the manner just explained yields the final segmentation result shown in
Fig. P10.31(h), where the ”edges” are visible (from the top) just above the water line. A
final post-processing step would remove the outer dam wallsto yield the inner edges of
interest.

With reference to Egs. (10.6-4) and (10.6-3), we see that comparing the negative ADI
against a positive, rather than a negative, threshold would yield the image negative of
the positive ADI. Theresult isshownin theleft of Fig. P10.32. The image on theright
is the positive ADI from Fig. 10.49(b). We have included it here for convenience in
making the comparison.

Figure P10.32
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Problem 10.33

Problem 10.34

(8) True, assuming that the threshold is not set larger than all the differences encountered
as the object moves. The easiest way to see this is to draw a smple reference image,
such as the white rectangle on ablack background. Let that rectangle be the object that
moves. Since the absolute ADI image value at any location is the absolute difference
between the reference and the new image, it is easy to see that as the object enters areas
that are background in the reference image, the absolute difference will change from
zero to nonzero at the new area occupied by the moving object. Thus, as long as the
object moves the dimension of the absolute ADI will grow.

(b) True. The positive ADI is stationary and egual to the dimensions of the moving
obj ect because the differences between the reference and the moving object never exceed
thethreshold in areasthat are background in the reference image (assuming as Eq. (10.6-
3) that the background has lower values than the object).

(c) True. From Eg. (10.6-4), we see that difference between the background and the
object will always be negative (assuming asin Eq. (10.6-4) that the gray levelsin the ob-
ject exceed the value of the background). Assuming a so that the differences are more
negative than the threshold, we see for the same reason asin (a) that al new background
areas occupied by the moving object will have nonzero counts, thus increasing the di-
mension of the nonzero entries in the negative ADI (keep in mind that the valuesin this
image are counts).

Consider first the fact that motion in the x-direction is zero. When al components
of an image are stationary, g..(t,a1) is a constant, and its Fourier transform yields an
impulse at the origin. Therefore, Fig. 10.53 would now consists of a single impulse at
the origin. The other two peaks shown in the figure would no longer be present. To
handle the motion in the positive y-direction and its change opposite direction, recall
that the Fourier transform is a linear process, so we can use superposition to obtain a
solution. The first part of motion is in the positive y-direction at 1 pixel/frame. This
is the same as in Example 10.2, so the peaks corresponding to this part of the motion
are the same as the ones shown in Fig. 10.54. The reversal of motion is instantaneous,
so the 33rd frame would show the object traveling in exactly the opposite direction. To
handle this, we simply change as t0 —as in Eq. (10.6-7). Based on the discussion in
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connection with Eq. (10.6-5), all this change would do is produce peaks at frequencies
u = —agvy and K + agve. From Example 10.21 we know that the value of as is 4.
From the problem statement, we know that v = 1 and K = 32. Thus, we have two
new peaks added to Fig. 10.54: one at v = —4 and the other a v = 36. As noted
above, the origina peaks correspond to the motion in the positive y-direction given in
the problem statement, which is the same as in Example 10.21. Note that the frame
count was restarted from 0 to 31 with the change in direction.

Problem 10.35

(& It is given that 10% of the image area in the horizonta direction is occupied by a
bullet that is 2.5 cm long. Since the imaging device is square (256 x 256 elements) the
cameralooks at an areathat is 25 cm x 25 cm, assuming no optical distortions. Thus,
the distance between pixelsis 25/256=0.098 cm/pixel. The maximum speed of the bullet
is 1000 m/sec = 100,000 cm/sec. At this speed, the bullet will travel 100,000/0.98 =
1.02 x 108 pixels/sec. It isrequired that the bullet not travel more than one pixel during
exposure. That is, (1.02 x 10° pixels/sec) x K sec < 1pixd. So, K < 9.8 x 1077 sec.

b) The frame rate must be fast enough to capture at least two images of the bullet in
successive frames so that the speed can be computed. If the frame rate is set so that
the bullet cannot travel a distance longer (between successive frames) than one half the
width of the image, then we have the cases shown in Fig. P10.35. In cases A and E
we get two shots of the entire bullet in frames ¢, and t3 and ¢; and ¢, respectively.
In the other cases we get partid bullets. Although these cases could be handled with
some processing (e.g., by determining size, leading and trailing edges, and so forth) it is
possible to guarantee that at |east two complete shots of every bullet will be available by
setting the frame rate so that a bullet cannot travel more than one half the width of the
frame, minusthelength of the bullet. The length of the bullet in pixelsis (2.5 cm)/(0.098
cm/pixel) = 26 pixels. One half of the image frameis 128 pixd s, so the maximum travel
distance allowed is 102 pixels. Sincethe bullet travels at amaximum speed of 1.02 x 10°
pixels/sec, the minimum frame rateis 1.02 x 10°/102 = 10* frames /sec.

(¢) In aflashing situation with a reflective object, the images will tend to be dark, with
the object shining brightly. The techniques discussed in Section 10.6.1 would then be
quite adequate.

(d) First we haveto determineif apartial or whole image of the bullet has been obtained.
After the pixels corresponding to the object have been identified using motion segmen-



164  Chapter 10 Problem Solutions

tation, we determine if the object runsinto the left boundary (seethe solution to Problem
9.27) regarding amethod for determining if a binary object runsinto the boundary of an
image). If it does, we look at the next two frames, with the assurance that a complete
image of the bullet has been obtained in each because of the frame rate in (b). If the
object does not run into the left boundary, we are similarly assured of two full shotsin
two of the three frames. We then compute the centroid of the object in each image and
count the number of pixels between the centroids. Since the distance between pixels and
the time between frames are known, computation of the speed is a trivial problem. The
principal uncertainty in this approach is how well the object is segmented. However,
since the images are of the same object in basically the same geometry, consistency of
segmentation between frames can be expected.

A= A = A =

B H B = B =
c | c - c | <
D |= D = D =
E |= E = E =

Figure P10.35
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Problem 11.1

Problem 11.2

Problem 11.3

(& The key to this problem is to recognize that the value of every element in a chain
code is relative to the value of its predecessor. The code for a boundary that is traced
in a consistent manner (e.g., clockwise) is a unique circular set of numbers. Starting
at different locations in this set does not change the structure of the circular sequence.
Selecting the smallest integer asthe starting point simply identifies the same point in the
sequence. Evenif the starting point is not unique, this method would still give a unique
sequence. For example, the sequence 101010 has three possible starting points, but they
all yield the same smallest integer 010101.

(b) Code: 11076765543322. The starting point is 0, yielding the sequence
07676554332211.

(&) The first difference only counts the number of directions that separate adjacent el-
ements of the code. Since the counting process is independent of direction, the first
difference isindependent of boundary rotation. (It isworthwhile to point out to students
that the assumption here is that rotation does not change the code itself).

(b) Code: 0101030303323232212111. Difference: 3131331313031313031300. (Note
that the code was treated as a circular sequence, so the first element of the difference is
the transition between the last and first element of the code, as explained in the text).

(8 The rubber-band approach forces the polygon to have vertices at every inflection
of the cell wall. That is, the locations of the vertices are fixed by the structure of the
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inner and outer walls. Since the vertices are joined by straight lines, this produces the
minimum-perimeter polygon for any given wall configuration.

(b) If acorner of acell iscentered at apixel on the boundary, and the cell is such that the
rubber band is tightened on the opposite corner, we would have a situation as shown in
Fig. P11.3. Assuming that the cell isof size d x d, the maximum difference between the
pixel and the boundary in that cell is v/2d. If cells are centered on pixels, the maximum
differenceis (v/2d) /2.

Pixcl\

Figure P11.3

Problem 11.4

(& The resulting polygon would contain all the boundary pixels.

(b) Actually, in both cases the resulting polygon would contain all the boundary pixels.

Problem 11.5

(& The solution isshown in Fig. P11.5(b). (b) The solutionis shown in Fig. P11.5(c).
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@ = tangent angle (deg)

270 |-

180 -

90 |-

(2)

Problem 11.6

o (deg)
20 » 180 270

©
Figure P11.5

(8 From Fig. P11.6(a), we see that the distance from the origin to the triangle is given

by
r(6)

cos(120° — 0)
cos(180° — 0)
cos(240° — 0)
cos(300° — 0)

cos(360° — 0)

Dy
cos 6
Dy

0° <6 <60°

60° < 6 < 120°

D
o 120° < 0 < 180°

D
0 180° < 0 < 240°

D
0 240° < 6 < 300°

D
0 300° < 0 < 360°

where D, isthe perpendicul ar distance from the origin to one of the sides of thetriangle,
and D = D/ cos(60°) = 2D,. Once the coordinates of the vertices of the triangle are
given, determining the equation of each straight lineisa simple problem, and D, (which
is the samefor the three straight lines) follows from elementary geometry.
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(b) From Fig. P11.6(b),

) = QCljsHA 0°<f<gp
= Tewpor—g =~ FS0<W”
- WAgoo) 90° < 6 < (180° — ¢)
- Wzooa) (180° — ) < 0 < 180°
= —————— 180°<0<180°+¢

2 cos(f — 180°)
A

L I8P+ <0< 270°
deos2ros—p) e s0<210

A
- 2 2P <h<270°
2 cos(6 — 270) SO<l e

B
- 270° £ p < 0 < 360°.
2 cos(360° — ) tesb<
where o = tan~'(A/B).

(c) The equation of the ellipse in Fig. P11.6(c) is
xQ y2
pol + =i 1.
We areinterested in the distance from the origin to an arbitrary point (z, y) onthedlipse.

In polar coordinates,

x =rcosf
and
y =rsinf
where is the distance from the origin to (z, y):
=2 1.

Subsgtituting into the equation of the ellipse we obtain
r2cos?@® r?sin?d
a2 b2 =1
from which we obtain the desired resullt:

r(0) =

1

(=) (%)

When b = a, we have the familiar equation of acircle, r(0) = a, or 22 + y* = a*.

1/2°

Plots of the three signatures just derived are shown in Fig. P11.6(d)-(f).
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b r(#)
(6)
A
o0 s DL
X
D,
L L L L L L
0 60 120 180 240 300 360 0B
(a) (b)
¥y
42 )
P r(@)
0 2 2
4 - S AR+ (B2
B T/ A2)"+ (B]2)
L L L L L
S 0 % 9 180 270 360 0@
180-¢ 180+¢ 270+¢
(©) (0) (d)
»
“W
b, ,,,,,,,
0 90 180 270 3607 O (dep)
(e) 13}

Figure P11.6

Problem 11.7

The solutions are shown in Fig. P11.7.
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Problem 11.8

Problem 11.9

Problem 11.10

Figure P11.7

(@ Inthe first case, N(p) = 5, S(p) = 1,p2 - ps-ps = 0, and p4 - p6 - p8 = 0, O
Eq. (11.1-1) is satisfied and p is flagged for deletion. In the second case, N(p) = 1,
so Eqg. (11.1-1) isviolated and p is left unchanged. In the third case p2 - p4 - p6 = 1
and p4 - p6 - p8 = 1, so0 conditions (c) and (d) of Eq. (11.1-1) are violated and p is
left unchanged. In the forth case S(p) = 2, so condition (b) is violated and p is left
unchanged.

(b) Inthefirst case p2 - p6 - p8 = 1 so condition (d’) in Eqg. (11.1-3) isviolated and p is
left unchanged. In the second case N (p) = 1 so p isleft unchanged. In the third case
(c’) and (d") are violated and p is |eft unchanged. In the fourth case S(p) = 2 and p is
left unchanged.

(@ Theresultis shown in Fig. 11.9(b). (b) The result isshown in Fig. 11.9(c).

(a) (b) ©
Figure P11.9

(& The number of symbols in the first difference is equal to the number of segment
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Problem 11.12

Problem 11.13

Problem 11.14
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primitives in the boundary, so the shape order is 12.

(b) Starting at the top |eft corner,
Chaincode: 000332123211
Difference: 300303311330
Shapeno.: 003033113303

With reference to the discussion in Section 4.6.1, the DFT can be real only if the data
seguence is conjugate symmetric. Only contours that are symmetric with respect to the
origin have this property. The axis system of Fig. 11.13 would have to be set up so that
this condition is satisfied for symmetric figures. This can be accomplished by placing
the origin at the center of gravity of the contour.

The mean is sufficient.

Two dlipses with different, say, major axes, have signatures with the same mean and
third statistical moment descriptors (both due to symmetry) but different second moment
(due to spread).

This problem can be solved by using two descriptors. holes and the convex deficiency
(see Section 9.5.4 regarding the convex hull and convex deficiency of aset). The deci-
sion making process can be summarized in the form of a simple decision, asfollows: If
the character hastwo holes, itisan 8. If it hasoneholeitisaOora9. Othewise, itis
aloran X. To differentiate between 0 and 9 we compute the convex deficiently. The
presence of a”significant” deficiency (say, having an area greater than 20% of the area
of arectangle that encloses the character) signifies a 9; otherwise we classify the char-
acter asa0. Wefollow asimilar procedure to separate a1 from an X. The presence of
aconvex deficiency with four components whose centroids are located approximately in
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Problem 11.15

Problem 11.16

Problem 11.17

the North, East, West, and East quadrants of the character indicates that the character is
an X. Otherwise we say that the character isal. Thisisthe basic approach. Imple-
mentation of thistechnique in areal character recognition environment has to take into
account other factors such as multiple ”small”” components in the convex deficiency due
to noise, differences in orientation, open loops, and the like. However, the material in
Chapters 3, 9 and 11 provide a solid base from which to formulate sol utions.

We can use the position operator P: ”2m pixelsto theright and 2m pixelsbelow.” Other
possibilities are P: ”2m pixelsto theright,” and P: ”’2m pixels below.” The first choice
is better in terms of retaining the flavor” of a checkerboard.

(& Theimageis

01 01O
1 01 01
01 01 0.
101 01
01 01O

Let z; = 0 and z; = 1. Since there are only two gray levels the matrix A is of order
2 x 2. Element a1 isthe number of pixelsvalued 0 located one pixel to theright of a0.
By inspection, a;; = 0. Similarly, a1, = 10, ay; = 10, and a5 = 0. Thetotal number
of pixels satisfying the predicate P is 20, so

1
C= 0 /2 .
1/2 0
(b)In this case, a11 isthe number of 0’s two pixels to the right of a pixel valued 0. By
inspection, a;; = 8. Similarly, a;2 = 0, as; = 0, and a2 = 7. The number of pixels

satisfying P is15, so
C_ 8/15 0 '
0 7/15

When assigning this problem, the Instructor may wish to point the student to the review
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of matrices and vectors in the book web site.

From Eqg. (11.4-6),
y=A(x—my).
Then,
my, = Fly}=F{A(x—my)}

= A[E{x} - E{my}]

= A[my — my]

= 0.
This establishes the validity of Eq. (11.4-7).

To provethevalidity of Eq. (11.4-8), we start with the definition of the covariance matrix
givenin Eqg. (11.4-3):
Cy = B{(y —my)(y —my)"}.
Since my, = 0, it follows that
Cy = E{yyT}
= B{{A(x—my)|[A(x —my)|"}
= AF{(x—my)(x —my) AT
= AC,AT.
Showing the validity of Eq. (11.4-9) isalittle more complicated. We start by noting that
covariance matrices are real and symmetric. From basic matrix algebra, it is known that
areal symmetric matrix of order n has n linearly independent eigenvectors (which are
easily orthonormalized by, say, the Gram-Schmidt procedure). The rows of matrix A
are the orthonormal eigenvectors of C,. Then,
C.AT = Cxler, ea,...e,]
= [Cxe1, Cxey,...Cye,]
= [Ae1,A2€2,..., \ney]
= A™D
where use was made of the definition of an eigenvector (i.e., Cxe; = \;e;) and D isa
diagonal matrix composed of the eigenvalues of Cx:
M 0 - 0
0 Ao --- 0

0 0 - A\,
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Problem 11.18

Problem 11.19

Problem 11.20

Problem Solutions

Premultiplying both sides of the preceding equation by matrix a gives
AC,AT = AA'D
= D
where we used the fact that ATA = AA” = T because the rows of A are orthonormal
vectors. Thus, since, Cy; = ACxAT, we have shown that C, is a diagonal matrix
which is produced by diagonalizing matrix Cx using atransformation matrix composed
of its eigenvectors. The eigenvalues of C,, are seen to be the same as the eigenvalues
of Cx. (Recall that the eigenvalues of a diagonal matrix are its diagona terms). The

fact that Cye; = De; = \;e; shows that the eigenvectors of C, are equa to the
eigenvectors of Cy.

The mean sguare error, given by Eq. (11.4-12), is the sum of the eigenval ues whose
corresponding eigenvectors are not used in the transformation. In this particular case,

the four smallest elgenval ues are applicable (see Table 11.5), so the mean square error is
6

ems = »_Aj = 280.

j=3
The maximum error occurswhen K = 0in Eq. (11.4-12) which thenisthe sumof all the
eigenvalues, or 4421 in this case. Thus, the error incurred by using the two el genvectors

corresponding to the largest eigenvaluesis only 6.3 % of the total possible error.

This problem is similar to the previous one. The covariance matrix is of order 4096 x
4096 because the images are of size 64 x 64. It isgiven that the covariance matrix isthe
identity matrix, so all its 4096 eigenvalues are equal to 1. From Eq. (11.4-12), the mean
square error is

4096 2048
Cms = Z )\j — Z )\1
j=1 i=1
= 2048.

When the boundary is symmetric about the both the major and minor axes and both axes
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intersect at the centroid of the boundary.

Problem 11.21

A solution using the relationship ”’connected to,” is shown in Fig. P11.21.
1
AR
/ Ve \
/ / e \

0"3 / / /
1 1“{' / /

Figure P11.21

Problem 11.22

We can compute ameasure of texture using the expression

1
R(z,y) = R T e}

where o%(z,y) is the gray-level variance computed in a neighborhood of (z,y). The
size of the neighborhood must be sufficiently large so as to contain enough samples to
have a stable estimate of the mean and variance. Neighborhoods of size7 x 7or 9 x 9
generally are appropriate for alow-noise case such as this.

Since the variance of normal wafers is known to be 400, we can obtain a normal value
for R(z,y) by using o = 400 in the above equation. An abnormal region will have
avariance of about (50)2 = 2,500 or higher, yielding a larger value of R(z,y). The
procedure then is to compute R(x,y) at every point (z,y) and label that point as 0 if
itisnormal and 1 if it isnot. At the end of this procedure we look for clusters of 1’s
using, for example, connected components (see Section 9.5.3 regarding computation of
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connected components) . If the area (number of pixels) of any connected component
exceeds 400 pixels, then we classify the sample as defective.

Problem 11.23

This problem has four mgjor parts. (1) Detecting individual bottles in an image; (2)
finding the top each bottle; (3) finding the neck and shoulder of each bottle; and (4)
determining the level of the liquid in the region between the neck and the shoul der.

(1) Finding individual bottles. Note that the background in the sample image is much
darker than the bottles. We assume that this is true in all images. Then, a ssmple way
to find individual bottlesisto find vertical black stripes in the image having a width de-
termined by the average separation between bottles, a number that is easily computable
from images representative of the actual setup during operation. We can find these
stripesin various ways. One way is to smooth the image to reduce the effects of noise
(we assumethat, say, a3 x 3 or 5 x 5 averaging mask is sufficient). Then, we run ahor-
izontal scan line through the middle of the image. The low vaues in the scan line will
correspond to the black or nearly black background. Each bottle will produce a sig-
nificant rise and fall of gray level in the scan line for the width of the bottle. Bottles
that arefully in the field of view of the camerawill have a predetermined average width.
Bottles that are only partially in the field of view will have narrower profiles, and can
be eliminated from further analysis (but we need to make sure that the trailing incom-
plete bottles are analyzed in the next image; presumably, the leading partial bottle was
already processed.).

(2) Finding the top of each bottle. Once the |location of each (complete or nearly com-
plete) bottle is determined, we again can use the contrast between the bottles and the
background to find the top of the bottle. One possible approach isto compute a gradi-
ent image (sensitive only to horizontal edges) and ook for a horizontal line near the top
of the gradient image. An easier method is to run a vertical scan line through the cen-
ter of the locations found in the previous step. The first magjor transition in gray level
(from the top of the image) in the scan line will give agood indication of the location of
the top of a bottle.

(3) Finding the neck and shoulder of a bottle. In the absence of other information, we
assume that all bottles are of the same size, as shown in the sample image. Then, once
we now where the top of abottle is, the location of the neck and shoulder are known to
be at afixed distance from the bottle top.
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(4) Determining the level of the liquid. The area defined by the bottom of the neck and
thetop of the shoulder isthe only areathat needsto be examined to determine acceptable
vs. unacceptable fill level in a given bottle. In fact, As shown in the sample image, an
areaof abottlethat isvoid of liquid appears quite bright in an image, so we have various
options. We could run a single vertical scan line again, but note that the bottles have
areas of reflection that could confuse this approach. This computation is at the core
of what this system is designed to do, so a more reliable method should be used. One
approach isto threshold the area spanning a rectangl e defined by the bottom of the neck,
the shoulder, and sides of the bottle. Then, we count the number of white pixels above
the midpoint of thisrectangle. If this number is greater than a pre-established value, we
know that enough liquid is missing and declare the bottle improperly filled. A dightly
more sophisticated technique would be to actually find the level of the liquid. This
would consist of looking for a horizontal edge in the region within the bottle defined by
the sides of the bottle, the bottom of the neck, and a line passing midway between the
shoulder and the bottom of the neck. A gradient/edge-linking approach, as described in
Sections 10.1 and 10.2 would be suitable. Note however, that if no edge is found, the
region is either filled (dark values in the region) or completely void of liquid (white, or
near white valuesin theregion). A computation to resol ve these two possible conditions
hasto follow if the system fails to find an edge.

Problem 11.24

The key specification of the desired system isthat it be able to detect individual bubbles.
No specific sizes are given. We assume that bubbles are nearly round, as shown in the
test image. One solution consists of (1) segmenting the image; (2) post-processing the
result; (3) finding the bubbles and bubble clusters, and determining bubbles that merged
with the boundary of the image; (4) detecting groups of touching bubbles; (5) counting
individual bubbles; and (6) determining the ratio of the area occupied by all bubbles to
the total image area.

(1) Segmenting the image. \We assume that the sample image is truly representative of
the class of images that the system will encounter. The image shown in the problem
statement is typical of images that can be segmented by a global threshold. As shown
by the histogram in Fig. P11.24, the gray level of the objects of interest is high on the
gray scale. A simple adaptive threshold method for data that isthat high onthe scaleis
to choose a threshold equal to the mean plus a multiple of the standard deviation. We
chose athreshold equal to m + 2o, which, for the image in the problem statement, was
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195. The segmented result is shown on the right of Fig. P11.24. Obvioudly thisis
not the only approach we could take, but thisis a smple method that adapts to overall
changesin intensity.

(2) Post-processing. As shown in the segmented image of Fig. P11.24, many of the
bubbles appear as broken disks, or disks with interior black components. These are
mostly due either to reflection (as in Fig. 9.16) or actual voids within a bubble. We
could attempt to build a procedure to repair and/or fill the bubbles (asin Problem 9.23).
However, this can turn into a computationally expensive process that is not warranted
unless stringent measurement standards arerequired, afact not mentioned inthe problem
statement. An alternative is to calculate, on the average (as determined from a set of
sample images), the percentage of bubble areas that are filled with black or have black
”bays” which makes their black areas merge with the background. Then, once the
dimensions of each bubble (or bubble cluster) have been established, a correction factor
based on area would be applied.

(3) Finding the bubbles. Refer to the solution to Problem 9.27. The solution is based
on connected components, which also yields all bubbles and bubble clusters.

(4) In order to detect bubble clusters we make use of shape analysis. For each con-
nected component, we find the eigen axes (see Section 11.4) and the standard deviation
of the data aong these axes (square root of the eigenvalues of the covariance matrix).
One simple solution is to compute the ratio of the large to the small variance of each
connected component along the eigen axes. A single, uniformly-filled, perfectly round
bubble will have aratio of 1. Deviations from 1 indicate el ongations about one of the
axes. We look for eliptical shapes as being formed by clusters of bubbles. A threshold
to classify bubbles as single vs. clusters has to be determined experimentally. Note that
single pixels or pixel streaks one pixel wide have a standard deviation of zero, so they
must be processed separately. We have the option of considering connected components
that consist of only one pixd to be either noise, or the smallest detectable bubble. No
information is given in the problem statement about this. In theory, it is possible for a
cluster to be formed such that its shape would be symmetrical about both axes, in which
case the system would classify the cluster as a single bubble. Resolution of conflicts
such as this would require additional processing. However, there is no evidence in the
sample image to suggest that thisin fact is a problem. Bubble clusters tend to appear
as elliptical shapes. In cases where the ratio of the standard deviationsis close to the
threshold value, we could add additional processing to reduce the chances of making a
mistake.
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(5) Counting individual bubbles. A bubble that does not merge with the border of the
image or isnot a cluster, is by definition a single bubble. Thus, counting these bubbles
is simply counting the connected components that have not been tagged as clusters or
merged with the boundary of the image.

(6) Ratio of the areas. This ratio is simply the number of pixelsin al the connected
components plus the correction factors mentioned in (2), divided by the total number of
pixelsin theimage.

The problem also asks for the size of the smallest bubble the system can detect. If, as
mentioned in (4), we elect to call a one-pixel connected component a bubble, then the
smallest bubbl e dimension detectable isthe physical size of one pixd. From the problem
statement, 700 pixels cover 7 cm, so the dimension of one pixel is 10 mm.

Figure P11.24
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Problem 12.1

(& By inspection, the mean vectors of the three classes are, approximately, m; =
(1.5,0.3)T, my = (4.3,1.3)7, and m3 = (5.5,2.1)T for the classes Iris setosa, ver-
sicolor, and virginica, respectively. The decision functions are of the form given in Eq.
(12.2-5). Substituting the above values of mean vectors gives:

1

di(x) = x'm; — Emlel = 1.521 +0.322 — 1.2
1

dy(x) = x'my— EmQTmQ =4.3x; + 1.3z, — 10.1
1

ds(x) = x'mgz— §m3Tm3 =5.5x1 +2.1x9 — 17.3

(b) The decision boundaries are given by the equations

dlg(X) = dl(X) — dQ(X) = 72.8%1 — 1.0.%2 +89=0
dlg(X) = d; (X) — dg(X) =—4.0x; —1.829+16.1 =0
d23(X) = dQ(X) — dg(X) = 71.2.%1 — 08%2 +72=0

A plot of these boundariesis shown in Fig. P12.1.

Figure P12.1
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Problem 12.2

Problem 12.3
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From the definition of the Euclidean distance,

Dj(x) =[x —my]| = [(x — m,)"( )

Since D;(x) is non-negative, choosing the smallest D;(x) is the same as choosing the
smallest D?(x), where

Dj(x)

x —my||* = (x — m;)" (x — m;)

T

= X X-— 2mej + mJij

1
= xI'x—-2 <mej — Em]TmJ)

We notethat theterm x”'x isindependent of j (that is, it isaconstant with respectto j in
D3(x), j = 1,2,...). Thus, choosing the minimum of D?(x) is equivalent to choosing

i T 1..T
the maximum of (x"m; — $m7'm;).

The equation of the decision boundary between a pair of mean vectorsis

() = x" (m; — m;) — 5 (m{m; — m7m,)
The midpoint between m; andm; is(m; +m;)/2 (seeFig. P12.3) . First, we show that
this point is on the boundary by substituting it for x in the above equation and showing

that theresult isequal to O:

1 1 1
E(szmz - mfm]) - E(mlel — mfmj) = E(mlel — mJTmJ)
1
= 0

Next, we show that the vector (m; — m;) is perpendicular to the hyperplane boundary.
There are severa ways to do this. Perhaps the easiest is to show that (m; — m;) isin
the same direction as the unit normal to the hyperplane. For a hyperplane with equation

W1x1 + WaTo + ... Wy Ty + Wy = 0, the unit normal is
Wo

u=
[[woll

where w, = (w1, ws,...,w,)T. Comparing the above equation for d;;(x) with the
general equation of ahyperplane just given, we seethat w, = (m; — m;) and w,, 1 =
—(m{ m; —m} my;)/2 . Thus, the unit normal of our decision boundary is

(m; —m;)

B [[m; — ij
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which isin the same direction as the vector (m; — m;). This concludes the proof.

1
§(m|+ mj)

Origin

Figure P12.3

Problem 12.4

The solution is shown in Fig. P12.4, where the z’s are treated as voltages and the Y’s

denote impedances. From basic circuit theory, the currents, I°s, are the products of the
voltages times the impedances.

x, X4 X5 X,1=1
Y,.=m Y.,=m Y, =m 1 T
1 1 2 2 = — =
; ] ] ; ] ] i in in ng.n+l T 9 mjmj
YIJI Y Tia T Lin Y Iin+1
+1 n+1 n
- = _ 1 T
IJ = Z Ijk ZYJka = ijkxk -3 mjmj
k=1 k=1 k=1
—me 1 me
- i it

To maximum
selector

Figure P12.4
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Problem 12.5

Problem 12.6

Assume that the mask is of size J x K. For any value of displacement (s, t), we can
expressthe area of theimage under the mask, aswell asthe mask w(z, y), in vector form
by letting the first row of the subimage under the mask represent the first K elements of
acolumn vector a, the elements of next row the next K elementsof a, and so on. At the
end of the procedure we subtract the average value of the gray levels in the subimage
from every element of a. The vector a isof size (J x K) x 1. A similar approach
yields avector, b, of the same size, for the mask w(zx, y) minus its average. This vector
does not change as (s, t) varies because the coefficients of the mask are fixed. With this
congtruction in mind, we see that the numerator of Eq. (xx.3-8) is simply the vector
inner-product a”b. Similarly, the first term in the denominator is the norm squared of
a, denoted a”a = ||a]|*, while the second term has a similar interpretation for b. The
correlation coefficient then becomes

a’b
7(57 t) = 1/2
|(aTa)(bb)]
When a = b (a perfect match), v(s, ) = ||al|> /||a]| |a]| = 1, which is the maximum
value obtainable by the above expression. Similarly, the minimum value occurs when
a = —b, inwhich case v(s,t) = —1. Thus, although the vector a variesin general for

every value of (s, t), thevaluesof v(s,t) aredl intherange [-1, 1].

The solution to the first part of this problem is based on being able to extract connected
components (see Chapters 2 and 11) and then determining whether a connected com-
ponent is convex or not (see Chapter 11). Once all connected components have been
extracted we perform a convexity check on each and rgject the ones that are not convex.
All that is left after thisis to determine if the remaining blobs are complete or incom-
plete. To do this, the region consisting of the extreme rows and columns of the imageis
declared aregion of 1’s. Then if the pixel-by-pixel AND of this region with a particu-
lar blob yields at least oneresult that isa 1, it follows that the actual boundary touches
that blob, and the blaob is called incomplete. When only a single pixel in a blob yields
an AND of 1 we have a marginal result in which only one pixel in a blob touches the
boundary. We can arbitrarily declare the blob incomplete or not. From the point of view
of implementation, it is much simpler to have a procedure that calls a blob incomplete
whenever the AND operation yields one or more results valued 1.



Problem 12.7

Problem 12.7 185

After the blobs have been screened using the method just discussed, they need to be
classified into one of the three classes given in the problem statement. We perform the
classification problem based on vectors of theformx = (1, 22)7, where x; and x» are,
respectively, the lengths of the major and minor axis of an elliptical blaob, the only type
left after screening. Alternatively, we could use the eigen axes for the same purpose.
(See Section 11.2.1 on obtaining the major axes or the end of Section 11.4 regarding the
eigen axes.) The mean vector of each class needed to implement a minimum distance
classifier isreally giveninthe problem statement asthe average length of each of the two
axesfor each class of blob. 1f* they were not given, they could be obtained by measuring
thelength of the axesfor complete ellipses that have been classified apriori asbelonging
to each of thethree classes. The given set of elipses would thus constitute a training set,
and learning would simply consist of computing the principal axesfor all ellipses of one
class and then obtaining the average. This would be repeated for each class. A block
diagram outlining the solution to this problem is straightforward.

(@ Since it is given that the pattern classes are governed by Gaussian densities, only
knowledge of the mean vector and covariance matrix of each class are required to specify
the Bayes classifier. Substituting the given patterns into Egs. (12.2-22) and (12.2-23)

yields
1
m =
! 1
o [ 5
? 5
(1 0 B
Co =y |TE
and
10 _
=l [7C

Since C; = C, = I, the decision functions are the same as for a minimum distance
classifier:
T 1 T
di(x) =x"m; — §m1 m; = 1.0z; + 1.0z, — 1.0
and

1
do(x) = x'my — Emng =5.0x1 + 5.022 — 25.0
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The Bayes decision boundary is given by the equation d(x) = d;(x) — d2(x) = 0, or
d(x) = —4.0z; — 4.0z, +24.0 =0
(b) A plot of the boundary is shown in Fig. P12.7.
)
/
+6\ d(x)
=0
/— X
N
Figure P12.7
Problem 12.8
(& AsinPrablem 12.7,
e — 0
! 0
e — 0
! 0
1110 10
C, == . C7l=2 . |Ci|=0.25
T2 l 0 1] ! lo 1 Gl
1 0 111 0
Cy =2 ; Cyl=< ; |Ca| =4.00
? l 0 1 2 7200 1 Gl

Since the covariance matrices are not equal, it follows from Eq. (12.2-26) that

di(x) = féln(0.25) - % {XT l 3 2 ] x}

1
= —5mn(0.25) - (z7 + 23)

1 1 05 0
dy(x) = 751H(4.00) -3 {XT l 0 05 ] x}

1 1
—5 In(4.00) - Z(x% +22)

and
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where the term In P(w;) was not included because it is the same for both decision
functionsin this case. The equation of the Bayes decision boundary is

d(x) = dy (x) — dy(x) = 1.39 — %(xf +a2) = 0.

(b) A plot of the boundary is shown in Fig. P12.8.

N
N

Figure P12.8

Problem 12.9

The basic mechanics are the same as in Problem 12.6, but we have the additional re-
quirement of computing covariance matrices from the training patterns of each class.

Problem 12.10

From basic probability theory,
p(e) = ple/x)p(x).

For any pattern belonging to class w;, p()(c:/x) = p(w;/x). Therefore,

p(e) = plw;/x)p(x).
Substituting into this equation theformLTIap(wj/x) = p(x/w;)p(w;)/p(x) gives

p(e) = 3" p(x/w;)p(w;).
Since the argument of the summationxis positive, p(c) is maximized by maximizing
p(x/w;)p(w;) for each j. That is, if for each x we compute p(x/w;)p(w;) for j =
1,2, ..., W, and use the largest value each time as the basis for selecting the class from

which x came, then p(c) will be maximized. Since p(e) = 1 — p(c), the probability of
error is minimized by this procedure.
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(a) For classw; welet y(1) = (0,0,0,1)T, y(2) = (1,0,0,1)T, y(3) = (1,0, 1,1)T,
y(4) = (1,1,0,1)T. Similarly, for classws, y(5) = (0,0,1,1)T, y(6) = (0,1,1,1)T,
y(7) = (0,1,0, )T, y(8) = (1,1,1,1)T. Then, using ¢ = 1 and
w(l) = (-1,-2,-2,0)"
it follows from Egs. (12.2-34) through (12.2-36) that:
w(1)Ty(1) =0, w(2) =w(l)+y(1)=(-1,-2,-2, )%
w(2)Ty(2) =0, w(3) =w(2) +y(2) = (0,-2,-2,2)";
w(3)Ty(3) =0, w(4) =w(3)+y(3) = (1,-2,-1,3)";
w(4)Ty(4) =2, w(5) =w(4) = (1,-2,-1,3)";
w(5)Ty(5) =2, w(6) =w(5) —y(5) = (-1,-2,-2,2)";
w(6)'y(6) =-2,  w(7)=w(6)=(-1,-2,-2,2)";
w(7)Ty(7) =0, w(8) =w(7) —y(7) = (1,-3,-2,1)";
w(8)Ty(8) = -3, w(9) =w(8) =(1,-3,-2,1)T.
Since a complete iteration through all patterns without an error was not achieved, the

patterns are recycled by letting y (9) = y (1), y(10) = y(2), and so on, which gives

w(9)"y(9) =1, w(10) = w(9) = (1,-3,-2,1)";
w(10)Ty(10) = 2, w(11) = w(10) = (1,-3,-2,1)T;
w(11)Ty(11) = 0, w(12) = w(11) + y(11) = (2, -3, —1,2)7;
w(12)Ty(12) = 1, w(13) = w(12) = (2,-3,-1,2)T;
w(13)Ty(13) = 1, w(14) = w(13) — y(13) = (2, -3, -2, 1)7;
w(14)Ty(14) = -4,  w(15) = w(14) = (2,-3,-2,1)7;
w(15)Ty(15) = -2,  w(16) = w(15) = (2,—3,—2,1)7;
w(16)Ty(16) = —2,  w(17) = w(16) = (2, -3, f2, 7.

Again, since acomplete iteration over all patterns without an error was not achieved, the

patterns are recycled by letting y (17) = y (1), y(18) = y(2), and so on, which gives:
w1 Ty(17) =1, w(18)=w(17) = (2,-3,-2,1)T;
w(18)Ty(18) =3, w(19) =w(18) = (2,-3,-2,1)T;
w(19)Ty(19) =1, w(20) =w(19) = (2,-3,-2,1)7;
w(20)Ty(20) =0, w(21) =w(20) +y(20) = (3,-2,-2,2)7;
w(21)Ty(21) = w(22) = w(21) —y(21) = (3,-2,-3,1)T.

It is easily verified that no more corrections take place after this step, so w(22)
(3,-2,-3,1)T isasolution weight vector.

(b) The decision surface is given by the equation

wly =3y — 2y —3ys +1 =10
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A section of this surface is shown schematically in Fig. P12.11. The positive side of the
surface faces the origin.

Figure P12.11

Problem 12.12

We start by taking the partial derivative of J with respect to w:

oJ 1

8_w = B} [ySgn(WT}’) - Y]
where, by definition, sgn(wly) = 1if wly > 0, and sgn(wly) = —1 otherwise.
Substituting the partia derivativeinto the general expression given in the problem state-

ment gives

Cc
wik+1) = wik) + 5 {y(k) — y(ksen [wlk)"y ()] }
where y (k) isthetraining pattern being considered at the kth iterative step. Substituting
the definition of the sgn function into thisresult yields

wk+1)=w(k)+c { 0 if w(l)" y(k)

y(k) otherwise
wherec > 0 and w(1) isarbitrary. This expression agrees with the formulation givenin
the problem statement.

Problem 12.13

Let the training set of patterns be denoted by y1,yo,...,yn. Itisassumed that the
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training patterns of class wo have been multiplied by —1. If the classes are linearly
separable, we want to prove that the perceptron training algorithm yields a solution
weight vector, w*, with the property

wly, > T,
where T, isanonnegative threshold. With this notation, the Perceptron algorithm (with
c=1)isexpressed asw(k + 1) = w(k) if wT'(k)yi(k) > To or w(k +1) = w(k) +
yi(k) otherwise.

Suppose that we retain only the values of & for which a correction takes place (these are
really the only indices of interest). Then, re-adapting the index notation, we may write
w(k+ 1) = w(k) +yi(k)
and
wh (k)yi(k) < To
With these simplifications in mind, the proof of convergence is as follows: From the
above equation,
w(k+1)=w(l)+yi(1) +yi(2) +-- +yi(k)
Taking the inner product of the solution weight vector with both sides of this equation
gives
wl(k+D)w* =wl (L)w* +y] ()W +y! (2)w" + - +y7 (k)w"

Eachtermy? (j)w*, j = 1,2, ..., k, islessthan Ty, so

wl(k+ 1)w* > wh (1)w* + kT
Using the Cauchy-Schwartz inequality, ||al|* ||b]|* > (a'b)?, resultsin

[wT(k + 1)w*]” < [w?(k + D] [w*]”

or . )
2 > (Wl (k+1)w*]

[k + 1) e
|

Another line of reasoning leads to a contradiction regarding ||w” (k + 1)||2 . From
above,

lw (i + DI = Iwi)I” +2w" G)ya() + lya ()

or
Iw(i + D2 = W) = 2w G)ya(d) + ly: ()1
Let Q = max|ly:(j)][%. Then, since w” (j)y <>< T,
Iw(i + DI~ [w()? < 270+ Q

Adding these inequalitiesfor j = 1,2, ..., k yields
lw(i +DI” < lw(1)|* + 270 + Q] k
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Thisinequality establishes abound on ||w(j + 1)||°2 that conflicts for sufficiently large

k with the bound established by our earlier inequality. In fact, £ can be no larger than

km,» Which isasolution to the equation
(Wl (k+1)w* + kaO]2

[lw

This equation says that k., is finite, thus proving that the perceptron training algorithm

convergesin afinite number of stepsto asolution weight vector w* if the patterns of the

training set are linearly separable.

= [lw(D)II* + [2T0 + Q] km

Note: The special case with T, = 0 is proved in aslightly different manner. Under this
condition we have
w!(k+1w* > w' (L)w* + ka
where
a = min [y] (j)w’]
Since, by hypothesis, w* is a solution weight vector, we know that [y” (j)w*| > 0.
Also, sincew? (j)y;(j) < (T = 0),
Iw(i + DI* = w(i)I* Iy ()II?
< Q.
The rest of the proof remains the same. The bound on the number of steps is the value
of k,, that satisfies the following equation:

T * 2
W Ww ;’W] — W + Qh

IN

[[w=
Problem 12.14

The single decision function that implements a minimum distance classifier for two

classesisof theform

Tm; — mJTmJ-).
Thus, for aparticular pattern vector x, when d;;(x) > 0, x isassigned to classw; and,
when d;;(x) < 0, x isassigned to classw,. Values of x for which d;;(x) = 0 are on
the boundary (hyperplane) separating the two classes. By letting w = (m; — m;) and

Wyt = —3(m 'm; — m? m;), we can expressthe above decision function in the form

i) = X" (m; — my) — 3 (m

d(x) = wi'x — wpy1.
Thisis recognized as alinear decision function in n dimensions, which is implemented
by asingle layer neural network with coefficients

wg = (Mix — M) k=1,2,....n
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and

0 =wy11 = fﬁ(miTml- - m]ij).

Problem 12.15

The approach to solving this problem is basically the same asin Problem 12.14. The
idea is to combine the decision functions in the form of a hyperplane and then equate
coefficients. For equal covariance matrices, the decision function for two pattern classes
is obtained Eq. (12.2-27):

dij(x) = di(x)—dj(x) =InP(w;) —InP(w;)+ xT'C™Y(m,; — m;)

*%(mz‘ —m;)"C™ (m; — my).
Asin Problem 12.14, thisis recognized as alinear decision function of the form
d(x) =wlx —wp1
which isimplemented by a single layer perceptron with coefficients
Wy = Vg k=1,2,....,n
and
0 = w11 = In P(w;) — In P(w;) + x"C™(m; — m,)
wherethe v, are e ements of the vector

v=C7(m; - my).
Problem 12.16

(@ When P(w;) = P(w;) and C = 1.

(b) No. The minimum distance classifier implements a decision function that is the
perpendicular bisector of the line joining the two means. If the probability densities are
known, the Bayes classifier is guaranteed to implement an optimum decision function
in the minimum average loss sense. The generalized delta rule for training a neural
network says nothing about these two criteria, so it cannot be expected to yield the
decision functionsin Problems 12.14 or 12.15.

Problem 12.17

The classes and boundary needed to separate them are shown in Fig. P12.17(a). The
boundary of minimum complexity in this case is a triangle, but it would be so tight



Problem 12.18 193

in this arrangement that even small perturbations in the position of the patterns could
result in classification errors. Thus, we use a network with the capability to implement
4 surfaces (lines) in 2D. The network, shown in Fig. P12.17(b), is an extension of the
concepts discussed in the text in connection with Fig. 12.22. In this case, the output
node acts like an AND gate with 4 inputs. The output node outputs a 1 (high) when
the outputs of the preceding 4 nodes are all high simultaneously. This corresponds to a
pattern being on the + side of all 4 linesand, therefore, belonging to classw;. Any other
combination yieldsa 0 (low) output, indicating class wo; .

(b)
Figure P12.17

Problem 12.18

All that is needed isto generate for each classtraining vectorsof theformx = (1, :cg)T,
where z; isthe length of the mgjor axisand x5 isthelength of the minor axis of the blobs
comprising the training set. These vectors would then be used to train a neural network
using, for example, the generalized deltarule. (Since the patternsarein 2D, it is useful
to point out to students that the neural network could be designed by inspection in the
sense that the classes could be plotted, the decision boundary of minimum complexity
obtained, and then its coefficients used to specify the neura network. In this case the
classes are far apart with respect to their spread, so most likely a single layer network
implementing alinear decision function could do the job.)

Problem 12.19

This problem, although it is a simple exercise in differentiation, is intended to help the
student fix in mind the notation used in the derivation of the generalize deltarule. From
Eq. (12.2-50), with 6y = 1,
1
hi(l;) = .
i03) — [ wsOn+0;

1+e
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Problem 12.20

Since, from Eq. (12.2-48),
Nk
Ij = ZkaOk
k=1

1
hily) = T var
Teking the partial derivative of this expression with respect to I; gives

it follows that

Oh: (I e~ +0;]
W) = af}f) _ —
j [1 + e~ i+ 0.7]]
From Eq. (12.2-49)
1

0; = h;(I;) = T oL 70,

Itiseasily shown that
e~ i +0;]
0;(1-0;) =

[1 d+e—li+ 9.7']] 2

R(I;) = O0;(1 = 0y)
This compl etes the proof.

The first part of Eq. (12.3-3) is proved by noting that the degree of similarity, k, is non-
negative, so D(A, B) = 1/k > 0. Similarly, the second part follows from the fact that
k isinfinite when (and only when) the shapes are identical.

To provethe third part we use the definition of D to write
D(A,C) <max[D(A, B),D(B,C)]

L [ L
kac - kab7 kbc

kqe > min [kqp, K]
where k;; is the degree of similarity between shape ¢ and shape j. Recall from the de-
finition that % is the largest order for which the shape numbers of shape i and shape j
dtill coincide. AsFig. 12.24(b) illustrates, this is the point at which the figures ”sepa-
rate” as we move further down the tree (note that & increases as we move further down
the tree). We prove that k.. > min[kqy, ko] by contradiction. For k,. < min[kqp, ko)
to hold, shape A has to separate from shape C' before (1) shape A separates from shape
B, and (2) before shape B separates from shape C', otherwise k,p, < kg OF kye < kqge,
which automatically violates the condition k,. < min[ka, ksc]. But, if (1) hasto hold,

or, equivalently,
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then Fig. P12.20 shows the only way that A can separate from C' before separating from
B. This, however, violates (2), which means that the condition k.. < min[kap, ko)
is violated (we can aso see this in the figure by noting that k.. = ki, which, since
kpe < kqp, violates the condition). We use a similar argument to show that if (2)
holds then (1) is violated. Thus, we conclude that it is impossible for the condition
kae < min[kgp, ke to hold, thus proving that k.. > min[kqs, kb.] Or, equivaently, that
D(A,C) <max[D(A, B), D(B,C)].

ko= Ky — — — RABC

O AB oC
“TUA
A B

Figure P12.20

Q@ = 0 impliesthat max(|4|,|B|) = M. Supposethat |A| > |B|. Then, it must follow
that |A| = M and, therefore, that M/ > |B|. But M is obtained by matching A and B,
so it must be bounded by M < min(|A], | B|). Since we have stipulated that |A| > | B],
the condition M < min(|A|,|B|) implies M < |B|. But this contradicts the above
result, so the only way for max(|A|,|B|) = M to holdisif |A| = |B|. This, inturn,
impliesthat A and B must beidentical strings (A = B) because |A| = | B| = M means
that al symbols of A and B match. The converse result that if A = B then @ = 0
follows directly from the definition of Q.

(8) An automaton capable of accepting only strings of the form ab™a > 1, shown in Fig.
P12.22, is given by
Af = (Q7 E, 67 qo, F)7
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with
Q = {9,91,92, %9},
¥ = {a,b},
mappings
6(q0,a) = Am},
6(q1,0) = {a1, ¢},
6(q2,0) = {ags}
and

F = {q3}.
For compl eteness we write
6(q0,b) = 6(q1,a) = 6(q2,b) = 6(q3,a) = 6(gs, b) = 6(qp, @) = 6(qp,b) = {a},
corresponding to the null state.

(b) To obtain the corresponding grammar we use the procedure discussed in Section
12.3.3 under the heading Automata as string recognizers: 1. If q; isin §(g;, c), there
isaproduction X; — X, in P; 2. If astatein F'isin §(g;, ¢), there is a production
X; — cin P Normally, null state transitions are not included in the generation of
productions. Using the resultsin (a) we obtain the grammar G = (N, X, P, X;), with
N = {Xy, X1, X2}, ¥ = {a, b}, and productions P = {X; — aX1, X1 — bX;,
X1 — bXo, X9 — a}.

Figure P12.22

Problem 12.23

The patterns are of the form shown in the solution to Problem 11.2. (This problem is
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not starred, so a solution in not included in the book web site. If the problem was not
assigned, it might be a good idea to give the solution in class). A possible expansive
tree grammar is G = (N,X, P,r, S), with N = {5, X, Xo,..., Xs}, ¥ = {0,1},
r(0) = {0, 1,2}, r(1) = {0, 1, 2}, and the productions shown in Fig. P12.23:

S—=1 X,—0 X,—0 X,—0
N | /N /N
X, X, X, X, S X, X
X34>1‘ X44>1‘ X54>(|) X5_>0
X, X; X,
X34>1 X64>}
Xl

Figure P12.23

Problem 12.24

For the sample set R™ = {aba, abba, abbba} it is easily shown that, for & = 1 and 2,
h(\, RT, k) = 0, thenull set. Sinceqy = h()\, R, k) ispart of the inference procedure,
we need to choose & large enough so that i(A, R, k) is not the null set. The shortest
string in R has three symbols, so k& = 3 is the smallest value that can accomplish
this. For this value of k, atrial run will show that one more string needs to be added
to R™ in order for the inference procedure to discover iterative regularity in symbol b.
The sample string set then becomes R = {aba, abba, abbba, abbbba}. Recalling that
Wz, RT,k) = {w]|zwin RT, |w| < k} we proceed asfollows:

z=2X, h(\RT,3) ={w|lwinR",|w| <3}
= {aba}
= qo;

z=a, h(a,RT,3) ={wlawin R |w| <3}
— {ba, bba}
=a1;
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z = ab, h(ab,R*,3) ={w|abwin R, |w| <3}
= {a, ba, bba'}
= q2;

z = aba, h(aba, RT,3) = {w|abawin R, |w| < 3}
={\}
= {3;

z = abb, h(abb, R,3) = {w|abbwin RT,|w| <3}
= {a, ba, bba'}
= q2;

z = abba, h(abba, RT,3) = {w|abbawin RT,|w| <3}
={\}
= {3;

z = abbb, h(abbb, R™,3) = {w |abbbwin RT,|w| < 3}
={a,ba}
= q4;

z = abbba, h(abbba, R™,3) = {w |abbbawin RT,|w| < 3}
={\}
= {3;

2= abbbb,  h(abbbb, R*,3) = {w|abbbbwin R*, |w| < 3}
= {a}
= (s;

z = abbbba, h(abbbba, R*,3) = {w|abbbbawin R, |w| <3}
={\}

= g3;

Other strings z in X* = (a, b)* yidd strings zw that do not belong to R, giving rise
to another state, denoted ¢y, which corresponds to the condition that & is the null set.
Therefore, the states are o = {aba}, ¢ = {ba,bba}, ¢2 = {a,ba,bba}, g3 = {\},
91 = {a,ba}, and g5 = {a}, which givesthe set Q = {qo, q1, 92,43, ¢4, 05, 90 }-

The next step is to obtain the mappings. We start by recalling that, in genera, ¢ =
h(\, RT, k). Also, in generd,
8(g,¢) = {¢'inQ|q" = h(ze, R*, k), with g =h(z, R+,k)}.

Inour case, qo = h(\, RT, 3) and, therefore,
6((]07&) = h()‘a7R+7 3) = h(a7 R+73) = {ql} =q
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and

8(g0, b) = h(\b, RT,3) = h(b, R*,3) = {q0} = o,
where we have omitted the curly brackets for clarity in notation since the set contains
only one element. Similarly, ¢; = h(a, R™,3), and

8(qr,a) = h(aa, RT,3) = h(a, R",3) = qq,
8(q1,b) = h(ab,R",3) = qo.
Continuing in this manner gives gz = h(ab, R™, 3) = h(abb, RT, 3),
6(¢q2,a) = h(aba, R",3) = h(abba, R",3) = ¢3,
8(g2,b) = h(abb, R, 3) = go,

and, also,
8(q2, b) = h(abbb, R ,3) = qu.
Next, g3 = h(aba, R*,3) = h(abba, RT,3) = h(abbba, R*,3) = h(abbbba, RT,3),
from which we obtain
8(gs,a) = h(abaa, R",3) = h(abbaa, RT,3)
= h(abbbaa, R",3) = h(abbbbaa, R",3)

= qp
5(¢g3,b) = h(abab, R*,3) = h(abbab, R",3)
= h(abbbab, RT,3) = h(abbbbab, R*,3)
= dp;
For the following state, q4 = h(abbb, R, 3),
8(qu,a) = h(abbba, R*,3) = gs,
8(qa;b) = h(abbbb, R*,3) = ¢s.
Findly, for the last tate, g5 = h(abbbb, R, 3), and
6(gs,a) = h(abbbba, R*,3) = g3,
8(gs,b) = h(abbbbb, R*,3) = gy.

We complete the elements of the automaton by recalling that F' = {¢|¢ginQ, Aing} =
gs. Wealso includetwo remaining mappingsthat yield thenull set: 6(qg, a) = 6(qg,b) =

dp-

Summarizing, the state mappings are:
6(g0,a) = q1,0(qo,b) = qp;
6(qr,a) = qo,6(q1,b) = go;
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6(g2,a) = q3,0(q2,b) = {q2,q4};
(g, @) = qp,6(q3,b) = qo;
6(qa,a) = g3,6(qa,b) = gs;
6(gs,a) = q3,06(g5,b) = qo;
6(qp,a) = q9,6(q0,b) = o

A diagram of the automaton is shown in Fig. P12.24. The iterative regularity on b is ev-
ident in state ¢». Thisautomaton is not as elegant asits counterpart in Problem 12.22(a).
Thisis not unexpected because nothing in the inference procedure deal s with state min-
imization. Note, however, that the automaton accepts only strings of the form ab™a,
b > 1, as desired. The minimization aspects of a design generally follow inference and
are based on one of several standard methods (see, for example, Gonzalez and Thoma-
son [1978]). In this particular example, even visual inspection revealsthat states ¢, and
g5 are redundant.

Figure P12.24

Consider the automaton related to Fig. 12.30, and the tree shown in Fig. 12.31(b). The
explanation is simplified by moving up the tree one level at atime, starting at the lowest
level. In this case the lowest level isin theinnermost branch labeled with a’s. We start at
itsfrontier node and assign state X to that node by virtue of f,. The next level contains
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an a along that same branch, but its offspring now has been labeled X;. Assignment
fo agan indicates an assignment of X;. We move up the tree in this manner. The
assignments along all the single branches of a’s are X ’s, while those aong the single
branches of b’s are X»’s. This continues until the automaton gets to the bottom of the
single branch of a’s at the center of the tree. This particular a now has three offspring
labeled X; and three labeled X5, which causes f,, to assign state S to that a. Asthe
automaton moves up one more level, it encounters another a. Since its offspring is S,
f. assigns state S to it and moves up another level. It is evident that the automaton will
end in state S when the last (root) node is processed. Since S isin F, the automaton in
fact has accepted the tree in Fig. 12.31(b).

Problem 12.26

There are various possibl e approachesto this problem, and our students have shown over
the years a tendency to surprise us with new and novel approaches to problems of this
type. We give here a set of guidelines that should be satisfied by most practical solu-
tions, and also offer suggestions for specific solutions to various parts of the problem.
Depending on the level of maturity of the class, some of these may be offered as ’hints”
when the problem is assigned.

Since speed and cost are essentia system specifications, we conceptualize a binary ap-
proach in which image acquisition, preprocessing, and segmentation are combined into
one basic operation. This approach leads us to global thresholding as the method of
choice. In this particular case this is possible because we can solve the inspection prob-
lem by concentrating on the white parts of the flag (stars and white stripes). Asdiscussed
in Section 10.3.2, uniform illumination is essential, especially when global thresholding
is used for segmentation. The student should mention something about uniform illumi-
nation, or compensation for nonuniform illumination. A discussion by the student of
color filtering to improve contrast between white and (red/blue/background) parts of an
imageisaplusin the design.

The first step is to specify the size of the viewing area, and the resolution required to
detect the smallest components of interest, in this case the stars. Since the images are
moving and the exact location of each flag is not known, it is necessary to specify afield
of view that will guarantee that every image will contain at least one complete flag. In
addition, the frame rate must be fast enough so that no flags are missed. The first part of
the problem is easy to solve. The field of view has to be wide enough to encompass an
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area dightly greater across than two flags plus the maximum separation between them.
Thus, thewidth, 1V, of the viewing areamust be at least W = 2(5) 4 2.05 = 12.1in. If
we use astandard CCD camera of resolution 640 x 480 elementsand view anarea 12.8
in. wide, thiswill give us asampling rate of approximately 50 pixels/inch, or 250 pixels
across asingleflag. Visual inspection of atypical flag will show that the blue portion of
aflag occupies about 0.4 times the length of the flag, which in this case gives us about
100 pixels per line in the blue area. There is a maximum of six stars per line, and the
blue space between them is approximately 1.5 times the width of a star, so the number
of pixelsacrossastar is100/([1 + 1.5] x 6) ~ 6 pixels/star.

The next two problems are to determine the shutter speed and the frame rate. Since
the number of pixels across each object of interest is only 6, we fix the blur at less
than one pixel. Following the approach used in the solution of Problem 10.35, we first
determine the distance between pixels as (12.8in)/640 pixels = 0.02in/pixel. The
maximum speed of the flagsis 21in/sec. At this speed, the flagstravel 21/0.02 = 1,050
pixels/'sec. We are requiring that a flag not travel more than one pixel during exposure;
that is (1,050 pixels/sec) x Tsec < 1pixel. So, T < 9.52 x 10~* sec is the shutter
speed needed.

The frame rate must be fast enough to capture an image of every flag that passes the
inspection point. Sinceit takesaflag (21 in/sec)/(12.8in) ~ 0.6 sec to cross the entire
field of view we take aframe every 0.3 sec in order to guarantee that every image will
contain a whole flag, and that no flag will be missed. We assume that the camera is
computer controlled to fire from a clock signal. We also make the standard assumption
that it takes 1/30sec ~ 330 x 10~ sec to read a captured image into a frame buffer.
Therefore, thetotal time needed to acquireanimageis (330+9.5) x 10~* ~ 340 x 10~*
sec. Subtracting this quantity from the 0.3 sec frame rate |eaves us with about 0.27 sec
to do al the processing required for inspection, and to output an appropriate signal to
some other part of the manufacturing process.

Since a global thresholding function can be incorporated in most digitizers as part of
the data acquisition process, no additional time is needed to generate a binary image.
That is, we assume that the digitizer outputs the image in binary form. The next step is
to isolate the data corresponding to a complete flag. Given the imaging geometry and
frame rate discussed above, four basi c binary image configurations are expected: (1) part
of aflag on the left of the image, followed by a whole flag, followed by another partial
flag; (2) one entire flag touching the left border, followed by a second entire flag, and
then a gap before the right border; (3) the opposite of (2); and (4) two entire flags, with



Problem 12.26 203

neither flag touching the boundary of the image. Cases (2), (3), and (4) are not likely to
occur with any significant frequency, but we will check for each of these conditions. As
will be seen below, Cases (2) and (3) can be handled the same as Case (1), but, given the
tight bounds on processing time, the output each time Case (4) occurs will be to reject
both flags.

To handle Case (1) we haveto identify awhole flag lying between two partial flags. One
of the quickest waysto do thisisto run awindow aslong as the image vertically, but nar-
row in the horizontal direction, say, corresponding to 0.35in. (based on the window size
/2 of [12.8 — 12.1]), which is approximately (0.35)(640)/12.8 ~ 17 pixelswide. This
window is used look for a significant gap between a high count of 1’s, and it is narrow
enough to detect Case (4). For Case (1), this approach will produce high counts starting
on the left of theimage, then drop to very few counts (corresponding to the background)
for about two inches, pick up again asthe center (wholeflag) is encountered, go likethis
for about five inches, drop again for about two inches as the next gap is encountered,
then pick up again until the right border is encountered. The 1’s between the two inner
gaps correspond to a complete flag and are processed further by the methods discussed
below; the other 1’s are ignored. (A more elegant and potentially more rugged way is
to determine all connected components first, and then look for vertical gaps, but time
and cost are fundamental here). Cases (2) and (3) are handled in a similar manner with
dightly different logic, being careful to isolate the data corresponding to an entire flag
(i.e., the flag with a gap on each side). Case (4) corresponds to a gap-data-gap-data-gap
sequence, but, as mentioned above, it is likely that time and cost constraints would dic-
tate rejecting both flags as a more economical approach than increasing the complexity
of the system to handle this special case. Note that this approach to extracting 1’s is
based on the assumption that the background is not excessively noisy. In other words,
theimaging set up must be such that the background is reliably segmented as black, with
acceptable noise.

With reference to Fig. 1.23, the preceding discussion has carried us through the seg-
mentation stage. The approach followed here for description, recognition, and the use
of knowledge, is twofold. For the stars we use connected component analysis. For the
stripes we use signature analysis. The system knows the coordinates of two vertical
lines which contain the whole flag between them. First, we do a connected components
analysis on the left half of the region (to save time) and filter out all components smaller
and larger than the expected size of stars, say (to give some flexibility), all components
lessthan 9 (3 x 3) pixels and larger than 64 (8 x 8) pixels. The simplest test a this
point is to count the number of remaining connected components (which we assume to
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be stars). If the number is 50 we continue with the next test on the stripes. If the number
is less than 50 we reject the flag. Of course, the logic can be made much more compli-
cated than this. For instance, it could include aregularity analysisin which the relative
locations of the components are analyzed. There are likely to be as many answers here
as there are studentsin the class, but the key objective should be to base the analysis on
arugged method such as connected component analysis.

To analyze the stripes, we assume that the flags are printed on white stock material.
Thus, ”dropping a stripe” means creating a white stripe twice as wide as normal. This
is a simple defect detectable by running a vertical scan line in an area guaranteed to
contain stripes, and then looking at the gray-level signature for the number of pulses of
theright height and duration. The fact that the datais binary helpsin thisregard, but the
scan line should be preprocessed to bridge small gaps due to noise before it is analyzed.
In spite of the £15° variation in direction, a region, say, 1in. to the right of the blue
region isindependent enough of the rotational variation in terms of showing only stripes
along a scan linerun vertically in that region.

It isimportant that any answer to this problem show awareness of the limitsin available
computation time. Since no mention is made in the problem statement about available
processors, it is not possible to establish with absolute certainty if a solution will meet
the requirements or not. However, the student should be expected to address this issue.
The guidelines given in the preceding solution are among the fastest ways to solve the
problem. A solution aong these lines, and a mention that multiple systems may be
required if a single system cannot meet the specifications, is an acceptable solution to
the problem.
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