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This statistics textbook is unique in its design and execution. It was
created to fill a growing but previously unmet need to provide today’s
students with a sophisticated grasp of the nature of statistical infor-
mation. It is a response to teachers who want their students to become
statistically literate citizens, not (often hopelessly) amateur statisti-
cians.

Over the years, statistical information has been liberated from the
dusty archives of government agencies and academic computing cen-
ters. Statistical information now plays a part in the discussions of a
broad range of topics—from national policies on health reform and
defense to treatments of life expectancies, marriage, abortion, educa-
tion, and sports. Statistics are regularly featured in newspapers, maga-
zines, radio shows, and television programs; they can even be spotted
on MTV and in cartoons. Statistics saturate our educational curricula,
as well. In elementary school classrooms and Ph.D. seminars, statistical
information has become a regular feature of instruction.

Despite this exposure, there is very little assurance that the audi-
ence for these materials is not only receptive to but knowledgeable
about what is offered. When people read about the results of a research
study, how can they assess whether the conclusions are valid? Do they
ask: How were the variables defined in this study? What statistical meth-
ods were used? What are “statistically significant” results? What are the
shortcomings of the reported results? These are some of the issues
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Preface

discussed in this book. It is clear that with an understanding of the
main ideas of statistics, engaged citizens can grasp what the professional
number crunchers have produced and evaluate the results.

This book grew out of a course designed by Gudmund R. Iversen
to meet the challenges created by this greater reliance on statistical
information. It was one of a series of courses designed at Swarthmore
College to fulfill the mission of a liberal arts college to educate its
students for the challenges of the twenty-first century. The idea was
that students should not become so involved with the intricacies of a
single discipline that they lose sight of the big picture. These courses
were intended to educate students to understand how the major ideas
of a field relate to the world. In many respects statistics seemed an ideal
subject for one such course. While statistics could be a mystifying, self-
aggrandized, and esoteric discipline, it could also be a key to under-
standing many other disciplines. The course, Stat 1: Statistical Think-
ing, was created to produce this understanding. The course proved to
be very popular, and each year it grew in size. Over time the lecture
notes for the course became more refined and extensive, and eventu-
ally the course material served as the basis for this book.

Formulas

As most statistics instructors are keenly aware, the teaching of statistics
has changed dramatically. The integration of the computer into edu-
cational settings and especially the easy availability of user-friendly sta-
tistical software have made the old ways of study—in particular, mem-
orization and manipulation of statistical formulas—no longer
necessary for the vast majority of students. To be true to our objectives
for this book, we have used no statistical formulas within the discourse
of each chapter. Although this may seem radical, we decided with de-
liberation and care to deemphasize formulas by handling them in spe-
cial sections at the ends of chapters.

Our experience is that statistical formulas are like an alien lan-
guage. If one understands the language, the formulas add immensely
to one’s understanding of statistics; if not, they are indecipherable. We
have seen too many students for whom the formulas became a barrier
to understanding and interest in statistics, and we strongly believe it is
possible to gain a deep understanding of statistical ideas without
them.



Exercises

It is difficult to learn statistics by just listening to lectures and reading
a textbook. Statistics is better learned by doing, so we provide a large
selection of exercises. Almost all the examples and exercises use real
data we have selected from books, journals and newspapers. These are
data used in actual research or published reports, and together they
illustrate how statistics is applied across a wide range of human activi-
ties.

The exercises are of three kinds: Review questions, which probe
understanding of the chapter’s central concepts; Interpretation ques-
tions, which require students to make sense of statistical information;
and Analysis questions, which require students to analyze data and cre-
ate their own solutions to problems. The Review questions serve as a
check for comprehension and provide a background for class discus-
sions. The Interpretation questions, which are verbal rather than quan-
titative, encourage comprehension and suggest applications to real-
world issues. The Analysis questions require students to become
familiar with the use of a statistical software package, either in work
groups of a few students or individually. Each of the exercises provides
potential topics for statistical reports.

Solutions to odd-numbered exercises are found at the back of the
book, along with statistical tables useful for working on various exer-
cises.
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You probably are reading this book because you think it is important
to know something about the subject of statistics. At the same time, you
may suspect that studying statistics won’t be the pleasantest task you
have ever undertaken. We have seen too many reluctant students to
think statistics courses are automatically crowd pleasers. We know some
of you would prefer to analyze a poem, sing a ballad, or dissect a frog.
But we think we have enough knowledge of student temperament to
speak to all of you, eager and less than eager.

Some of you recognize that knowing how statistics is used in solving
problems is critical in some parts of daily life; some of you may be
looking forward to the challenge of statistics as a mental sport; others
may see statistics as a means of solving mysteries that intrigue you. We
think statistics can be intellectually stimulating and even fun. Our goal
is not to introduce you to the inner sanctums of the profession of
statistics. As the title suggests, this book is designed to help you under-
stand statistics, to be comfortable with statistical language, and to know
how to evaluate statistical results. If you wish to pursue statistics, this
text will be just the beginning of a long and exciting road ahead.

To help you become oriented to the realm of statistics, we start
each chapter with a few practical problems appropriate to the chapter
content. We hope these problems will whet your appetite for the food
for thought that follows. Here are some problems to start off Chap-
ter 1.
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Chapter 1 » Statistics: Randomness and Regularity

1. Asa prospective college student, you look at Barron’s Profiles of Amer-
ican Colleges. Under Boston University, it indicates that the average
SAT Verbal score of applicants is 550; SAT Mathematics is 600.
What do these numbers mean? What is an average score? If your
score 1s below the average score, should you not apply to BU? It is
clear that you have to know something about statistics to select a
college that will select you.

2. Imagine that you are a new manager in a marketing department.
The statistical results of an advertising campaign are submitted to
you for your comments. Among other things, the report declares
certain results as “statistically significant.” How do you interpret the
report without exposing your ignorance of the terminology? Mak-
ing sense of statistics suddenly is important to you and your career.

In requiring car manufacturers to produce electric cars as a percentage of
their total output, to cut down on air pollution from travel by internal com-
bustion automobiles, California state laws are beginning a national trend.
Statistical information is crucial in creating the arguments that legislators
believe in and in testing the effectiveness of electric car use on the quality
of air. (Peter A. Simon, Phototake NYC.)



1.1 Statistics: What's in a Word?

3. Asa potential car buyer and a conscientious citizen, you would like
to do your part for ecological preservation of the planet. What does
the latest research indicate about the effects of consumer actions
on natural resources? Should you buy a car with a diesel engine or
purchase an electric car or maybe go all the way and ride a bicycle?
Should you not use aerosol sprays? Should you not use chemical
fertilizers on your lawn? Statistical studies presented in newspapers,
magazines, and consumer reports become crucial to your decision
making. What do all these studies really advise you to do about your
consumer habits?

4. As a newspaper reader, you see headlines such as “Eat raw yogurt
and live to be 100.” Are there statistics that support this claim? What
if you hate raw yogurt?

3

Statistics is a word with many meanings, some of them better defined
than others. The word statistics itself seems to have been coined by a
German named Hermann Conring when he used the term Statistik in
print in 1660. The first part of the word is an adaptation of the word
state (Staatin German), and the term was first used to name the practice
of states collecting information on births and deaths more than three
hundred years ago. To this day, statistics remains a mainstay of bureau-
cratic organizations at all levels of government worldwide. Global sta-
tistics have become of vital concern to many international organiza-
tions, such as multinational corporations, the United Nations, and
organizations concerned with such questions as population density, ec-
ological disasters, and the prevalence of disease.

Beyond its origins in state policy, the word statistics has two impor-
tant meanings. First, statistics can be thought of as numbers in one
form or another: average rainfall in Texas, weekly temperature in Ar-
izona, batting average of the Boston Red Sox, size of the national debt,
or price of coffee in Brazil. Modern society seems to have an insatiable
hunger for statistics, and in response to this need statisticians collect
more and more of them. “This is a country run on numbers,” said Janet
Norwood, then Commissioner of the Bureau of Labor Statistics, in her
presidential address to the American Statistical Association in 1989.
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Statistical numbers are known as data, and one simple meaning of
the word statistics is numerical data. In this text, we go beyond this
meaning. We are interested in how data are obtained and what is done
with the information data contain. In the end, we hope to show you
that with the help of statistics, information in data can be turned into
real knowledge.

In its singular meaning, statistics can be defined as a discipline of
study. You are taking a course in statistics, and your instructor may have
a graduate degree in statistics. Within their discipline, statisticians ex-
plore and invent ways to obtain data and ways to work with the infor-
mation contained in data in order to draw conclusions. They design
new applications of statistics from mathematical equations, and they
test theoretical models in practical settings.

By the end of this book, we hope that with the help of statistics you
will be able to appreciate how data can be turned into useable knowl-
edge that is more sophisticated than the numbers themselves. Unlike
chemistry, sociology, or psychology, which are disciplines that study
well-defined phenomena, statistics does not have its own empirical sub-
ject matter based on experiments or observations. Instead, statistics
provides a set of methods that are used by the chemists, sociologists,
and psychologists, among others.

Because statistics is used in so many disciplines, the results of statistical
analyses are all around us. Academic research journals, for example,
depend on statistical results. In many disciplines, whether or not an
article is published in a major journal depends heavily on whether or
not statistical methods have been correctly applied.



1.2 Knowing How Statistics is Used: Goals for the Reader

Even cartoons are statistics-saturated. (Reprinted with permission of the artist, Carol
Cable.)

Statistics is also heavily used outside the academic community. We
cannot read a newspaper or a weekly news magazine without being
exposed to articles based on statistics. Statistics is heavily used in in-
dustry, especially in research, quality control, and marketing. Statistics
also forms the bases of stories in other print media. In Playboy and
Cosmopolitan, Vanity Fairand The New Yorker, we read about percentages
of people who are unfaithful to their spouses, percentages of people
who contribute to charity, percentages of people who lose money on
Broadway flops. The programs available on television, the particular
anchor person we watch, and the kinds of advertisements we view de-
pend on statistics; only TV shows, anchor persons, and advertisements
with a high rating survive.

Opinion polls and surveys make use of statistics, and these days it
is hard to imagine an election without polls on what the voters think
about the issues and the candidates. The “image making” of presidents
and party platforms depends on voter feedback obtained by statistics.
Statistics also provide the basis for knowing who won an election and
by how much. Even more dramatic is the power of statistics to predict

5



6 Chapter 1 « Statistics: Randomness and Regularity

Are these people still on the air? That depends on the statistical results of
surveys constantly being made in the race to be number one in television
news broadcasting. (UPI/Bettmann; Corbi-Bettmann.)

with great accuracy the result of an election before the polls close or
even before the election takes place. The fact that candidates either
claim victory or admit defeat before all the votes are in and counted is
a tribute to the confidence people have in statistics.

Now that you’re thinking about statistics, the extent to which our
culture is statistically indebted is probably dawning on you. Two ex-
amples to tickle your imagination:



1.2 Knowing How Statistics is Used: Goals for the Reader

When flights are overbooked because more tickets were sold than
there are seats available, it is not an unfortunate oversight. The
airline is relying on statistical analyses that indicate how many “no-
shows” normally can be expected for any given flight. If they win,
the flight is fully booked. If they lose, they have to give out a few
free tickets.

Retirement communities depend on elaborate pricing schemes to
attract clientele. When condominium costs are set for a retirement
center, a factor in the estimate is the anticipated life expectancy of
the residents of the complex. The longer people live, the higher
the costs. Statistical analyses assist managers in setting competitive
and at the same time profitable fees.

Understanding what can go wrong

If as consumers we are to fully understand the extensive applications
of statistics, we need to know something about the rules and methods
that were applied to get the results we read about. A knowledge of
statistics helps us evaluate the results. It also helps us to be critical and
to be aware of some of the things that could have gone wrong along

7
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Predicting elections is not always easy! (UPl/Bettmann.)

the way from the time when the problem was first formulated to the
writing of the final report.

The following story about a famous statistical survey that failed is
part of statistical folklore by now. A highly respected magazine called
Literary Digest conducted a poll of the electorate before the 1936 Pres-
idential election. The burning question, of course, was who would be
the next President—the challenger, Governor Alf Landon of Kansas,
or the incumbent, President Franklin Delano Roosevelt. In order to
assess voter preferences, the magazine pollsters had sent out sample
ballots to a large number of people who were listed in telephone di-
rectories and car registries. (Telephones and cars were not as common
in 1936 as they are today, but the lists were easy to obtain.) Although
about 10 million sample ballots were sent out, not a very high per-
centage of people returned their ballots. Among those who did reply,
however, Alf Landon was the hands-down favorite. The magazine pre-
dicted a Landon victory.



1.3 Central lIdeas in Statistics

If readers had known something about statistics, they would have
been skeptical about the claim that Alf Landon would win the election.
As you might expect, polling people who owned telephones and au-
tomobiles during the middle of a great economic depression was not
a very good way to get an accurate assessment of the spectrum of voter
opinions. Furthermore, the low percentage of ballots that were re-
turned was suspect. As it was, the readers had to wait until after the
election to see how wrong the results of the poll were: Franklin Roose-
velt, not Alf Landon, was elected President. Most current usage of sta-
tistics is not as wrongheaded as it was in this example, but even today
we do not have to look far to find questionable uses of statistics, espe-
cially where choosing a correct sample is concerned. (Source: Jeffrey Wit-
mer, DATA Analysis: An Introduction. Englewood Cliffs, NJ: Prentice Hall, 1992,
p. 97.)

Understanding statistical terms

The results of statistical analyses do not help us much if we do not
understand the terms that are used. For example, a typical statistical
expression used to report findings is “statistically significant.” In re-
porting the percentage of voters that favor a candidate, the terms “sam-
pling error equals *3%” or “margin of error equals * 3%” might be
used. Two variables may have a “high correlation.” These are three
common statistical terms, and for people who know what they mean,
the terms are informative and useful. People who do not know the
meanings of the terms, however, may not understand what is being said
or come to erroneous conclusions about the findings.

Randomness and regularity: Twins in tension

When we cannot predict the outcome of an event, randomness is as-
sociated with the event. For example, when tossing a coin we cannot
tell whether the coin will land heads or tails. Similarly, when we take a
trip, we cannot tell whether we will have an accident or not.

At the same time, when we put random events together, they display
amazing regularities. Patterns and trends become evident, even when
we examine something as random as coin tosses. If you toss the same

9
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coin 100 times, you know it will land approximately 50 times heads and
50 times tails. Similarly, while a single car accident is a unique concur-
rence of several unlikely events, if you could examine all accidents, you
would find disturbing regularities among them. Year in and year out,
around 40,000 people in the United States die in car accidents. This is
an amazingly stable number despite the small probabilities surround-
ing a particular event. On a more personal level, each year when Mary
Gergen surveys her Introductory Psychology class of 100 students at her
campus, she finds that about 50% of them have been involved in au-
tomobile accidents in the past year. She has discovered that random
events make up a regular rate of accidents.

Using statistical analyses of seemingly random phenomena, we can
begin to make sense of the world. A basic knowledge of statistical ideas
helps put randomness into the perspective of regularity. Statistical ideas
help us realize the importance of randomness and regularity both in
how we observe and in how events actually occur in the world. Thus,
statistics can be seen as a search for regularities in randomness.

Randomness in regularity

But even the regularities display some randomness. If you toss the coin
another 100 times, you would almost never get exactly the same num-
ber of heads and tails as in the first 100 tosses. In one round of 100
tosses you might get 48 heads, and in the next 100 tosses you might
get 53 heads. This illustrates an important and central feature of sta-
tistics.

Whether we take a single new observation or a new set of many
observations, most of the time we do not get exactly the same re-
sult we did the first time.

This kind of variation happens not only with coin tosses but also
with surveys, experiments, and every other means of data collection. If
people in a survey are asked how they stand on an important issue of
the day, a certain percentage of the respondents will have a particular
opinion. If the same survey is done with a new sample of respondents,
a different percentage of respondents will have the opinion. The vari-
ation in the two percentages is attributed to the randomness that is
inherent in data. This way statistics becomes the study of the variation
in the data.
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With the mathematical theory that underlies statistics, we can find
how much randomness is attached to a percentage from a survey and
how much the percentage can be expected to vary from one repetition
of the survey to another. We can even tell if the difference between
two percentages is larger than can be explained by randomness alone.
These ideas are expanded on and discussed in much greater detail in
later chapters.

In regularities trends of change sometimes appear. The rate of car
accidents is going down with increased seatbelt use and airbag deploy-
ment. Statistics puts the single, random events into regularities, and
statistics reveals trends of change. If the numbers of accidents in sep-
arate periods (two patterns of regularities) differ by more than can be
explained by randomness alone, a change is occurring.

Two examples in the study of randomness and regularity

As an example of whether the difference between two numbers is a
result attributable to more than randomness, consider the introduction
of the polio vaccine in the 1950s. Polio was a dreaded disease that struck
in mysterious ways, often leaving its victims, many of them children,
paralyzed or dead. After many years of epidemics, a vaccine was finally
developed that scientists hoped would provide protection against the
disease. But it was not clear whether the vaccine would actually work
as the researchers hoped. Although laboratory and animal tests looked
promising, the only way to find out was to test the vaccine on humans.
Because polio was a rare disease, the vaccine had to be tried on a fairly
large number of children to see if it had any effect, so the researchers
decided to use a group of 200,000 children. They also decided to have
a control group of the same size, in which the children received a
placebo—a substitute that looked like the real vaccine—to see if the
vaccine had any effect.

After the children received their vaccine or placebo, the research-
ers watched and waited to see what the outcome would be after the
next “polio season.” In the control group, 138 children contracted the
disease. The researchers were not exactly sure what this number of
cases meant. There is a certain amount of randomness in that number.
If another group of 200,000 children had also received the placebo,
the same number of children would not have contracted polio. De-
pending on how large the random component was, perhaps 130 or
maybe 140 or some other number of children would have come down
with polio.

11
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In the group that received the vaccine, 56 children got polio, a
number that also has a random component. The important question
was whether 56 differed from 138 by more than could be explained by
randomness alone. If that were the case, then the researchers could be
confident that the vaccine had an effect. By methods explained in
Chapter 7, it turned out that the difference between 138 and 56 indeed
was larger than could be expected by randomness alone, and the vac-
cine was pronounced a success. In the years since then, the vaccine has
essentially eradicated polio in many countries. Renewed efforts by
health organizations around the world make it likely that even children
in lesser developed countries will not have to suffer from polio in the
near future. In an important sense, statistical reasoning provided sup-
port to the medical researchers who developed and tested this vaccine.

Another famous instance of randomness—or the lack of random-
ness, as is the case in this particular example—took place in the mili-
tary. During the war in Vietnam, the United States government insti-
tuted a draft lottery to get enough soldiers to fight in the war. The plan
was to assign a number between 1 and 366 randomly to each date in
the year. The military was then to draft young men in the order of the
numbers assigned to their birthdays. This method was designed to
equitably distribute the risk of entering this unpopular war; the possi-
bility of getting drafted was supposed to be determined randomly.

The draft lottery the first year assigned the number 1 to September
14 by the drawing of the appropriate ball from a large container of 366
Ping-Pong balls on which the dates were written. All eligible 18-year-
olds born on September 14 were drafted first. The men born on the
date assigned draft number 2 were drafted second, and so on. It was
known that not all the draft numbers were needed and that therefore
men born on dates receiving high draft numbers would probably never
serve in the military.

The lottery seemed as good a method as any to decide who would
get drafted. However, the day after the drawing, when all the dates and
their numbers were published, statisticians began to investigate the
data. After some looking and counting, the statisticians found certain
patterns. For example, we would expect that about half of the low draft
numbers—1 to 183 —would be assigned to dates in the first half of the
year, in the months January through June, and about half of them to
dates in the second half of the year, in the months July through De-
cember. Because of the randomness of the drawing, there would not
be exactly half the draft numbers in each half of the year, but it should
be close to half. As it turned out, 73 of the low draft numbers were
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Vietnam casualties were determined by a lottery. (FPG International.)

assigned to birthdays in the first half of the year, while 110 low numbers
were assigned to birthdays in the second half of the year. In other
words, if you had a birthday in the second half of the year, your chances
of having a low draft number and therefore being drafted were consid-
erably higher than if you had a birthday in the first half of the year.

In this case, where there should have been only a random differ-
ence, the difference between 73 and 110 was larger than what could
be expected by randomness alone. The absence of randomness has
been attributed to not stirring the Ping-Pong balls adequately before
they were selected. The Selective Service consulted statisticians before
they conducted the draft lottery the following year. (This was small
comfort to those born in the second half of the year whose birthdays
were overselected.)

Probability: What are the chances?

What this discussion of randomness says is that much of statistics is
based on the very important concept of probability. Probabilities provide
a building block for the third aspect of statistics, namely, how to draw

13
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conclusions from data. We may never be quite certain whether two
numbers differ by more than can be expected by randomness alone,
but we can find out whether the probability that they do is small or
not. From this basic idea emerges many interesting opportunities for
drawing important conclusions about the world around us. How this is
done is fleshed out in Chapter 5 and later chapters.

Variables: The names we give things

A second major building block in statistics is the concept of a variable.
The human characteristic of gender is a variable with two values, be-
cause a person is either female or male. Religious affiliation is a vari-
able, which in the western hemisphere might have the values Catholic,
Jewish, Muslim, Protestant, and other; in India the values might be
Hindu, Muslim, Buddhist, Sikh, and other. Other examples of variables
are miles per gallon for cars, with a range of values from 8 to 50, weight
of children in kilograms, with a scale from 10 to 70, dosage of a med-
ication, and so on. Usually researchers begin their projects by defining
the variables they are interested in and the possible values of the vari-
ables. We can think of the values of a variable as points stretched out
along a line that represents the variable itself (Figure 1.1).

Variables, values, and elements

The value of a variable always is a measure of a specific unit, often
thought of as an element. An element can be a person, a group of
people, a plot of land, a plant, an animal, or a country, as long as the
element is agreed on, obvious to the users, and does not change in the
middle of the analysis. Table 1.1 lists some examples of variables and
their values together with the element on which the variables usually
are measured. Thus, the gender variable is observed in a person as the
element. Number of children is a variable observed on a family as the
element. In the case of the family, the element is an aggregation of
single individuals.

Theoretical variables and empirical variables

The variables we have discussed so far are familiar to most of us as
everyday kinds of items and events. These variables are called empirical
variables because they deal with objects in the observable physical world
surrounding us. In addition to empirical variables, we also use variables
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Figure 1.1 Variables and their values

created by statisticians. These variables, which are mathematically de-
rived, are called theoretical variables. Several examples of theoretical var-
iables are introduced in later chapters. Four of these variables are
known as the z, #, chi-square (pronounced ki-square) and Fvariables.

Table 1.1 Variables, values, and elements

Variable Values of the variable Element
Gender Female, male Person
Attitude Oppose, neutral, favor Person
Unemployment Employed, not employed Person
Unemployment 0.0%, ... ,46%, . .. County
Yield of corn ...,56781b., ... Acre
Number of children 0,1,2,3, ... Family
Poverty level Severe, moderate, borderline, none Precinct

Placement in a race

Ist, 2nd, 3rd, . . .

Team

15
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Inflation is difficult to measure. (© 1996, USA Today. Reprinted with permission.)
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Constants

A constant is the opposite of a variable. Imagine that we survey all the
students in a statistics course and find the percentage who think it is
an interesting course. Assuming that nobody changes their mind, we
would find the same percentage if we repeated this little study. A num-
ber such as this percentage is a constant: it does not change when the
study is repeated. Obviously, it did not change because each time we
asked all the students in the course. In statistics we make use of a type
of constant called a parameter (Chapter 7 and later chapters).

17

A constant always
has one fixed
value.

Let’s take a closer look at some of the fields affected by statistics: gov-
ernment agencies, sciences, medicine, industry, even the law. In this
country, the federal government is the largest collector of data and
user of statistics through the Bureau of the Census and other federal
statistical offices like the Bureau of Labor Statistics. The federal statis-
tical system is well known for its excellence, although it has suffered
from budget cutbacks in recent years.

Two of the best-known activities of the federal statistical system are
the consumer price index and the unemployment figures. These re-
sults are published monthly and play a very important role in the eco-
nomic life of the nation. The consumer price index dates back to the
early 1900s. Many activities, such as labor contracts and Social Security
payments, are tied to its value at any given time. The unemployment
figures were developed during the Depression of the 1930s, when New
Deal reformers realized just how important it is to know how many
unemployed people there are in the United States. Both reports are
based on large sample surveys conducted according to complex statis-
tical principles.

Much of the data government agencies collect are analyzed in order
to create public policy on a variety of issues. For example, to determine
tax policies it is important to know how existing tax laws affect people
in various income categories and to be able to predict the impact of
changes. For a social welfare program to be successful, it is necessary
to know the conditions in society that create the need for the program
and to know in what ways the program affects the people for whom it
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was designed. The Head Start program for preschool children, for ex-
ample, has been the object of intense scrutiny as experts attempt to
determine if children who are enrolled in it enjoy long-term benefits.
For a farm subsidy program, it is necessary to know about the magni-
tudes of current agricultural production and try to determine the con-
sequences of the subsidies on future production.

People from most academic disciplines use statistics in their re-
search: biology, economics, and psychology are three disciplines with
such heavy usage that they have developed their own sets of statistical
methods: biometrics, econometrics, and psychometrics, respectively. In
the humanities, groups of historians, geographers, linguists, and clas-
sicists make use of statistics to draw conclusions as diverse as the num-
ber of deaths due to the Black Plague and the popularity of the French
language in the English-speaking world. This means that almost all
empirical academic research—reports, presentations at professional
meetings, journal articles, and books—is based on statistics in one way
or another. Academic research enriches the life of a society in manifold
ways, and statistics plays a unique role in this process. No other disci-
pline contributes so much across so many scientific fields.

A vivid example of the growing role of statistics in social life involves
the practice of law. Many lawyers have found themselves in new terri-
tory when confronted with statistical issues in addition to legal ones.
One major area where statistics has been required is in class action suits
concerned with discrimination based on age, gender, and race. Lawyers
must persuade judges and juries that differences in age, gender, or
race in any given setting are either by design or are random. Statisti-
cians have been challenged to act as expert witnesses to explain topics
such as “confidence intervals” and “significance levels” to juries and
judges. Without the expert testimony of statisticians, it would not be
possible to conduct these cases in the courtroom in a fair and rational
manner.

The field of medicine has been altered by the introduction of new
statistical ways of evaluating treatment effects. For example, in cost con-
tainment measures imposed by managed health care organizations,
physicians must follow the organizations’ guidelines for care in order
to be reimbursed. These guidelines are developed through careful sta-
tistical analyses of large numbers of medical practices and outcomes.
If the probability of a satisfactory result is the same for both an expen-
sive and a cheap intervention, the HMOs do not reimburse for the
more costly one. The use of statistical methods to bolster the medical
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guidelines of insurance companies has led to concerned arguments
from medical advocates that not enough attention is paid to the indi-
vidual patient. In the New Jersey legislature, for example, the policy of
allowing newborns and mothers only 24 hours of hospital coverage
after birth was overturned by a state law, even though 95% of all moth-
ers and infants had no serious complications. While the statistical meth-
ods are not themselves under scrutiny, the definition of “acceptable
risk” is in question.

Major corporations are also heavy users of statistics. For example,
to get a new drug approved by the Federal Drug Administration, a
pharmaceutical company must prove that the drug is safe. Companies
invest heavily in measuring the effectiveness of their new products
through experiments on animals and humans. As a result, such com-
panies employ large numbers of statisticians. They are responsible
for setting up experiments properly, analyzing the resulting data

19
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for the impact of the experiments, and checking the validity of mar-
keting claims to avoid lawsuits and costly retrenchments in drug de-
velopment.

Many industries use statistics in their quality-control operations.
Items rolling off a production line are not identical, partly because of
random variation and partly because things can go wrong in the pro-
duction processes. This variation can be studied using statistical meth-
ods that can help pinpoint what went wrong and where it went wrong.
Good quality-control programs ensure that consumers will be satisfied
with their purchases and not turn to competitors for their next pur-
chases. The American statistician Edward Deming was a leader in
the development of statistical methods for quality control. Ironically,
many of his methods were first adopted by companies outside the
United States, especially in Japan. One reason Japanese industry ex-
perienced such impressive growth after World War II is that its
business leaders took up Deming’s ideas early on. (Source: W. Edward
Deming, Out of the Crises, Cambridge, MA: MIT Center for Advanced Engineering
Study, 1986.)

The field of statistics is founded in mathematics. Today, independent
departments of statistics in leading universities train statisticians, but
statistics formerly was a part of mathematics departments. Statistical
reasoning rests firmly on mathematical foundations. As a result, it is
easy to find statistics texts that look like mathematics books with the-
orems and proofs. But it is possible to learn about statistics without
knowing all the mathematical underpinnings, and that is how we
present statistics in this book. Today most statistical analyses are done
on the computer, so it is more important to understand what goes into
and comes out of the computer than how the computer software com-
putes.

The emphasis here, as we have mentioned, is on learning the basic
statistical ideas—some of the specialized vocabulary, how data are col-
lected, displayed, and analyzed, what results mean, and when they
should and should not be used in everyday life—without getting
bogged down in formulas and technical discussions of how computa-



tions are made. For most people today, an understanding of statistical
ideas is critical to being a literate and well-rounded citizen; being able
to do competent statistical analysis on one’s own is part of a highly
professional career path.

There are other reasons for doing statistical analysis, such as for
the sheer fun of it or to get a “gut” feeling for the craft. For those who
wish to do analyses of statistical problems using traditional paper-and-
pencil techniques or the more advanced computer programs, the ex-
ercises at the end of each chapter contain many opportunities. The
exercises are divided into three parts. Those in the first part test your
general conceptual knowledge, those in the second test your abilities
to interpret data and apply statistical results to daily events, and those
in the third part require you to use formulas and mathematical tech-
niques. The formulas for various statistical calculations are available in
their full glory at the end of each chapter. In addition, statistical tables
for the theoretical variables are found at the back of the book.

1.6 Summary 2

1.1 What’s in a word?

Statistics was first coined as a word for state-related indicators. Later,
statistics came to mean a summary of individual data points. As a field
of study, statistics can be defined as a set of concepts, rules, and meth-
ods for (1) collecting data, (2) analyzing data, and (3) drawing conclu-
sions from data.

1.2 Knowing how statistics is used: Goals for the reader

Statistics does not have its own subject matter but is applied to data
from other fields of study. Because of the prevalence and power of
statistics in today’s society, we cannot avoid the consequences of these
analyses.

1.3 Central ideas in statistics

Randomness and regularity are two important statistical concepts. Ran-
domness is the mability to predict the outcome of a particular event.
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Regularity is the pattern we find when we collect data on many events.
Regularities themselves contain randomness. Statistics can be defined
as the search for regularities in the face of randomness. Trends of
change occur when the difference between two patterns of regularity
exceed the effects of randomness alone.

Probabilities provide the foundation for drawing conclusions from
our data. A probability is a number between 0 and 1 that tells us how
often an event happens. Statisticians judge whether numbers differ by
more than can be expected from randomness alone by using proba-
bilities.

A variable is defined as a characteristic or attribute, such as a per-
son’s age, that can take on two or more possible values (e.g.,
0 to 100+ years). The value of a variable always refers to a specific
element, such as a person, a group of people, a plot of land, a plant,
an animal, or a country. Many variables are familiar to most of us as
everyday items and events. These variables are called empirical varia-
bles. We also use variables created by statisticians, called theoretical
variables, which are mathematically derived. Four of these variables are
known as the z, #, chi-square, and Fvariables.

The opposite of a variable is a constant. Constants are numerical
values that do not change. In statistics a certain kind of constant is
known as a parameter.

1.4 Users of statistics

Statistical methods are crucial to government agencies in the formu-
lation and evaluation of policies. They are also necessary for develop-
ment of knowledge in all fields of scientific scholarship. Statistical
methods are also gaining in importance in professional fields, such as
law and medicine, and in diverse business enterprises.

1.5 Relationship of statistics to mathematics, pencils, and
computers

Statistics is founded in mathematics, but the thrust of this book is to
acquaint you with basic statistical ideas, not to turn you into a statistical
analyst.
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Gani, J. (ed.). The Making of Statisticians. New York: Springer-Verlag,
1982. Sixteen statisticians tell why and how they became statisticians.

Gonick, Larry, and Woollcott Smith. The Cartoon Guide to Statistics. New
York: HarperPerennials, 1993. If ordinary textbooks do not appeal.

Huff, Darrell. How to Lie with Statistics. New York: W. W. Norton, 1954.
A classic book on possible misuses of statistics.

Peters, William S. Counting for Something: Statistical Principles and Person-
alities. New York: Springer-Verlag, 1987. Teaches statistics in a historical
context.

Tufte, Edward R. Data Analysis for Politics and Policy. Englewood Cliffs,
NJ: Prentice-Hall, 1974. Chapters 1 and 2 give good introductions to
various statistical issues.

REVIEW (EXERCISES 1.1-1.14)

1.1  Why is the root of the word statistics derived from the word state?
1.2 Why might statistics be called a “helper” science?

1.3 a. Define randomness.
b. Define regularity.

c. What roles do randomness and regularities play in a statistical
study?

1.4  Give three examples from daily life of random events that con-
tain regularities.

1.5 How does the notion of probability help a researcher decide if
the data indicate a difference in the variables under study greater than
random fluctuation?

1.6  Define “trends of change” and give an example in which it might
be found.
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1.7 a. Define the term variable.

b. What is the difference between an empirical and a theoretical
variable?

¢. What are the names of the four theoretical variables men-
tioned in this chapter?

1.8  You are interested in studying hurricanes worldwide. Name five
empirical variables you might want to use in such a study.

1.9 Create a list of the values for each variable in Exercise 1.8.

1.10 a. Which is the (more) correct sentence: “The data is interest-
ing” or “The data are interesting”?

b. Explain your choice.
1.11 How is a constant different from a variable?

1.12 Describe how the practices of law and medicine have been influ-
enced by statistics.

1.13 Name two federal statistical systems that are central to national
economic management.

1.14 Describe a way in which statistical analyses lead to better manu-
facturing processes.

INTERPRETATION (EXERCISES 1.15-1.18)

1.15 Discuss the following: Whether or not an individual property
owner on Cape Hatteras loses a roof during a hurricane seems to be a
matter of chance, that is, a random event. Yet there seems to be some
regularity in hurricanes hitting Cape Hatteras. How is property damage
during a hurricane, such as roof losses, related to the notions of ran-
domness and regularity?

1.16 Name one area of life described in this chapter in which deci-
sions based on statistical analyses have affected your own life. Briefly
describe it.

1.17 Sports broadcasting today depends heavily on computer-gener-
ated statistics, which can be calculated for everything from the amount
of prize money won by each professional tennis player in a season’s



play to the total number of triple plays by a single player in the history
of baseball.

a. Why do you think televised sports coverage has become so
statistically oriented in recent years?

b. How do you think statistical orientation has affected viewer
appreciation of sports?

c. Do you think other aspects of culture, e.g., music, films, pol-
itics, amateur sports, have been (or will be) affected in the same
way as professional sports, in terms of the “invasion” of com-
puter-generated statistics? Give several examples to support your
claim.

1.18 Comment on the following in light of the goal of most statisti-
cians to go beyond the actual data collected: “Our samples are like the
shadows at the entrance to a cave we may not enter.”

ANALYSIS (EXERCISES 1.19-1.23)

1.19 This exercise is intended to illustrate the notion of variation and
randomness. Close your eyes and open this book to a random page.
Place your finger on a random spot on the page and select the nearest
complete sentence of text below your finger.

a. How many words do you find in the chosen sentence?

b. Select another sentence the same way and count the words
in it.

c. Why are the numbers of words in the two sentences not the
same?

d. If everyone in the class counted the lengths of two sentences,
you could estimate the average length of the sentences in this
book. How do you think this average would compare with the
average length of sentences in Shakespeare’s Hamlef?

1.20 Turn on a water faucet until it just drips. Count the number of
drips per 20-second interval for 5 minutes. Keep a record of the num-
ber of drips in each interval. Using your data, how would you describe
the drips? That is, in what respect were they random and in what re-
spect were they regular?

Exercises
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Table 1.2 Infant and maternal mortality rates 1915-1945% (Exercise 1.21)

Infant mortality rates Maternal mortality rates
Year White Nonwhite Whate Nonwhite
1915 98.6 181.2 6.0 10.6
1920 82.1 131.7 7.6 12.8
1925 68.3 110.8 6.0 11.6
1930 60.1 99.9 6.1 11.7
1935 51.9 83.2 5.3 9.5
1940 43.2 73.8 3.2 7.7
1945 35.6 57.0 1.7 4.5

*The rates are all numbers of deaths in first year of life per 1,000 births.
Source: Data compiled by U.S. Bureau of the Census.

1.21

1.22

The following exercise is derived from the data in Table 1.2.

a. Looking at the trends in infant mortality over the 30 years,
what two major conclusions can you draw?

b. Looking at the trends in maternal mortality rates over this
period, what two major conclusions can you draw?

¢. Which set of data seems to be simpler to describe, infant mor-
tality rates or maternal mortality rates?

d. What major conclusion do the data suggest about childbirth
death and race?

e. If there were problems with the accuracy of collection of these
data, what might they be and which data are more likely to be
inaccurate?

Find an article in a newspaper or a news magazine that includes

statistical information.

a. Identify the variables used in the article.

b. Determine what the values are for each variable.

¢. What readers would be particularly interested in the article?
d. Does the article describe change of any kind?
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1.23 a. Would the article you selected in Exercise 1.22 have been
more precise, interesting, or valuable if the variables had been
reported differently?

b. Are there ways in which you think the article could have been
improved in light of the material presented in this chapter?
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G. R. Iversen et al., Statistics
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@%w many people in Los Angeles were infected with AIDS by a sexual
partner last year? How much garbage was recycled in New York City last year?
What caused scurvy to attack seventeenth-century sailors on long voyages?

Does class size affect school performance? Is the President doing a good job?
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To answer these questions and an enormous number of other ones,
information must be gathered. In these instances, we need to know
many things, from sexual habits to recycling practices. At first glance
it seems easy to get this information. One needs only to go out and ask
people or do an experiment to see how things work. But then the
quandaries begin: Who should do the asking—you, me, unemployed
college students, retired executives? And who should be asked? Can we
afford to ask everyone concerned with the problem? For the first ques-
tion, that would be the entire population of Los Angeles! Well, if not
everyone, how about people who walk by a certain store at the mall on
Saturday afternoon? Or those buying beer at the baseball stadium? Or
do you think a presumably fairer way should be found?

Once these issues are settled, what should be asked? Some of the
topics suggest “delicate” phrasing, to say the least. Will we get a straight
answer if we ask people how many sexual partners they have had?
Should we expect one? Should we even ask? How many people will tell
us what they think we want to hear or what they think will make them
look good? Will it make a difference if the asker is perceived as a med-
ical worker, a police officer, a trash picker, or a bookie? What does
“doing a good job” mean? Each of these questions deserves a thought-
ful answer. Yet no answer seems to be exactly the right one.

A wise statistician says there are two kinds of data: good data and
bad data. There are other ways of characterizing data, but this is as
good a start as any. Good data are data that have been collected ac-
cording to sound and proper statistical principles. Bad data are data
that have been collected in other ways. This chapter describes some of
the solutions statisticians and others have come up with to improve the
quality of the data collected.

Data depend on many factors. (“Sally Forth” reprinted with special permission of
King Features Syndicate.)



2.1 Defining the Variables

K]

Data are collected in a variety of ways and in a multitude of settings.
(At the moment, one author is drinking a sample of instant coffee
provided by a company for a market survey.) At the most general level,
collecting data involves measuring variables. Researchers ask people,
for example, about their sleeping habits, count the number of dollars
in gambling casino revenues, weigh how much trash is recycled, and
give a plant a specific amount of water and measure how much it grows.
Researchers weigh, measure, interrogate, and count their subjects in a
multitude of ways.

The first rule of data collection is clarity about what is being mea-
sured. In other words, the variable must have a well-thought-out defi-
nition. Sometimes this sounds simpler than it turns out to be.

Suppose we are interested in family life and ask in a survey the
following question: “How many children are in this family?” We may
think we know what we want to find out, but there is no reason to
expect that the person answering (commonly call the respondent) shares
our view. We may rather thoughtlessly assume that a child is defined
as a person who is under 18 years of age and who lives in a residence

How many children are in this family? (Bruce Coleman, Inc.)
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with his or her biological parents. But what if the household includes
biological children over 18, stepchildren, foster children, adopted chil-
dren, or other young relatives? What about children who live elsewhere
than with their biological parents? What if the parents are divorced
and share custody of a child? The possibilities for confusion are many.
If we, as the researchers, have not thought these issues through, we
have no reason to expect the respondent to figure them out. If our
ideas are muddled and the respondents’ reports are inconsistent, our
data will be extremely uneven in meaning. The lesson here is that be-
fore we can conduct a research, it is essential that we develop a clear,
detailed definition of the variables. In the example, we must clarify our
definition of “child.”

There are two major approaches to data collection. One method is
collecting data on the world as we observe it, for example, the average
number of pounds of aluminum cans recycled in different cities. Ob-
servational data arise when we simply observe the world around us.
Researchers collecting observational data try not to intervene in on-
going patterns of behavior. Counting how many people in Los Angeles
were diagnosed with the AIDS virus is an example of gathering obser-
vational data. Tabulating the results from a political survey is another
example.

Observational studies are diverse. They examine the operations of
local organizations and businesses, the behavior of humans and ani-
mals in their normal habitats, historical evidence found in libraries,
interactions on the Internet, physiological, psychological, social, or en-
vironmental data, such as in blood samples, “inkblot” tests, stock mar-
ket price indicators, quality control studies, or level of carbon mon-
oxide pollution readings or any other phenomenon you can imagine!
Statistics play an important role in all observational studies both in the
planning of how the data should be collected and in the actual analysis
of the data.

Population versus sample

Data are collected for the purpose of drawing conclusions from a col-
lection of elements. Social scientists collect data on people to gain an
understanding of human behavior. Botanists collect data on plants to
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gain an understanding of how they grow. Engineers collect data on ball
bearings to make sure that they are of the right size for the engine for
which they were made. All the elements we are interested in make up
the population. All the inhabitants in Canada on January 1, 2000, is an
example of a population; so are all the champagne corks in Times
Square on New Year’s Eve.

Sometimes we are able to collect data on all the elements in the
population; in that case, we have conducted a census of the population,
similar to the census conducted on the inhabitants of this country every
ten years. In the harsh world of limited budgets, time constraints, and
changing environmental conditions, however, it is usually impossible
to conduct a census. Instead, we limit ourselves to collecting data on a
sample of the elements in the population.

A population consists of all the elements under study.
A census is the process of collecting data on an entire population.
A sample is a selected part of a population.

Let us look at how samples are selected, what makes a sample good
or bad, and why a good sample is better than a mediocre census.

Selection of the sample: Making sure the pot is stirred

A critical issue facing all statistical researchers is how a sample should
be selected. A researcher wants to be certain that the conclusions drawn
from the study’s sample can be applied to the larger population from
which the sample was drawn. Without a “good” sample, this will not be
the case.

An analogy from cooking assists in explaining why getting a good
sample is so important. When we taste a spoonful of soup that we have
been cooking, we are interested not in how that particular spoonful
tastes but in how the entire pot of soup tastes. If the pot has been stirred
adequately, we need to taste only a spoonful to find out how the entire
pot tastes. We get the taste of the full pot from a spoonful whether the
pot is a small one in a family kitchen or a large one in a soup factory.
This is also the case when we choose a sample from a population—a
sample, in a sense, from a population that has been properly stirred.
If the population has been properly stirred, a sample of 1,000 respon-
dents could tell us as much about a very large group, such as the
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entire population of the country, as about the population of a town or
rural county.

We can apply this soup sample example to sample surveys. An opin-
ion poll before an election finds that 57% of the people in the sample
favor a candidate. If the sample is properly selected, the percentage
will be approximately the same as in the entire electorate. Similarly, in
a quality-control study, a sample of light bulbs is inspected not to see
if the particular bulbs burn as they should but to see whether the man-
ufacturing process is producing a general population of lightbulbs that
function properly. The sample should be selected as a good indicator
of the total production run and therefore a good indicator of the pro-
duction process itself.

If a sample is not properly selected, misleading conclusions can be
drawn about the “soup.” If pollsters questioned only their families and
friends, poor sample results would occur. If checkers inspected only
the top layer of bulbs in “fragile” boxes and did not see that the bottom
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layers were crushed by insufficient padding, for example, the sample
would be misleading. Because of the importance of sample selection
on the trustworthiness of the results, it is imperative that samples be
selected according to proper statistical principles. The failure of the
draft lottery in selecting soldiers during the Vietnam war, mentioned
in Chapter 1, was an example of poor sample selection.

Random sample: What is it?

A proper statistical sample that can be used for generalizations to a
larger population is called a random sample. Drawing names from a hat
is the simplest example of choosing a random sample. The slips of
paper are the elements that make up an entire population, and all have
an equal chance of being drawn. In this way, it is possible for all groups
in a population to be represented in a sample in approximately the
same magnitudes as in the population. Thus, if there are 10,000 Serbs
and 100,000 Croatians in Dubrovnik, then a random sample from the
city would have approximately 10 Serbs for every 100 Croatians.

Convenience sample: How to produce a “bad” sample

Researchers are often tempted to study elements of a population that
are easily at hand. For example, many studies reported in psychological
journals use subjects who have been required to sign up for experi-
ments, often, introductory psychology students. Medical researchers
and therapists often do studies on their own patients; market research-
ers study shoppers they can urge to cooperate. Samples that are easy
and economical to acquire are known as convenience samples. While in
some cases a convenience sample might be perfectly adequate for the
research study design, this is usually not true. The extent to which one
can generalize the results from the subjects in a convenience sample
to others in the population is limited.

The principle of random sampling casts into doubt the kinds of
samples magazines get when they invite readers to fill out question-
naires and mail them back. Those who do not buy the magazine ob-
viously have no chance of being included in the survey. Those who
return the questionnaire become a self-selected group, and the data
collected from them cannot be used for generalizations to any popu-
lation larger than the group who returned the questionnaire; they
aren’t necessarily typical of even the population of the magazine’s read-
ers. The data provide a fine description of those who took the time and
effort to return the questionnaire, but that is all the data can tell us.
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How random are the numbers? (Patti Mcconville, The Image Bank.)

The same kind of criticism applies to the conclusions reported in
social surveys and self-help books. Shere Hite, a freelance writer who
has become known as a specialist in women’s love lives, has described
the massive discontentment with marriage, sex, and husbands reported
by thousands of women. Perhaps the most famous of her statistical
claims was that 70% of women married more than five years have sex
outside marriage. (Source: Shere Hite, The Hite Report: Women and Love: A
Cultural Revolution in Progress, New York: Knopf, 1987, p. 360.) Evidently
those were the results obtained from Hite’s convenience sample. The
argument here is not that there is no validity in this claim, but that the
sample is not representative of the entire population of women in
America because it was not randomly drawn. It is therefore incorrect
to generalize to the population of all women married more than five
years.

Selecting proper samples

Simple random sample When names or telephone numbers of a pop-
ulation are “put into a hat,” well stirred, and drawn at random, the
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result is a simple random sample. All the formulas at the ends of the
chapters in this book are based on the use of simple random samples.

One way to get a simple random sample is by using random com-
puter-generated dialing of telephones across a population. Unlisted
numbers have the same chance as listed numbers to be included, an
advantage over random selections from telephone directories. How-
ever, this system of collecting data means that business phones also get
called. Thus, a person with a business phone and a home phone has
twice the chance of being included in the sample as someone who has
only a home phone. Telephone interviewing also leaves out the small
percentage of people who do not have telephones, another well-
recognized drawback of telephone surveys.

Other forms of sampling 1t is possible to draw samples that are more
complicated than simple random samples. One sampling method in-
volves randomly selecting several small geographical areas drawn from
voting unit lists and then personally interviewing a random selection
of the people living in the areas. This is an efficient way to gather a
sample. By interviewing several neighbors living in each geographic
area, researchers avoid having to travel miles and miles from one dwell-
ing to the next.

A common difficulty with any type of sampling procedure is that
very few complete lists of everyone who belongs to a particular popu-
lation exist. There exists, for example, no complete list of cocaine
addicts, petty criminals, husbands on their third marriage, or children
with overbites. Even if these lists existed, they could never be consid-
ered complete; an individual could enter or leave a list even as it was
being obtained. (Even a list of living U.S. ex-Presidents could change
within a heartbeat.) There is also no central population register in this
country. Although this is inconvenient for survey studies, it is consid-
ered a way to safeguard civil liberties. A list of people with social secur-
ity numbers does exist, but it is not available to anyone for sampling
purposes.

Selection of variables on which to collect observational data

Researchers must ask themselves which variables should be measured
in order to draw conclusions about their research questions. It is often
difficult, if not impossible, using observational data alone to know
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which variables have causal effects on other variables and which ones
do not. Sometimes researchers who are observing various phenomena
may attribute causal power to one variable and overlook a more influ-
ential variable. For example, electoral research has shown that there is
a tendency for women to vote for the Democratic party and for men
to vote for the Republican party. Does that mean that being a woman
causes one to vote for the Democrats? More formally, is there a causal
influence of the gender variable on the vote variable? Or are other
variables involved?

To the extent that a person’s gender is defined by a certain pattern
of chromosomes, it is hard to imagine that the chromosomes could
in any way affect which lever a person would pull in a voting booth.
Perhaps certain economic variables play a role. If women are less well
paid than men, for example, and the Democratic party is more con-
cerned than the Republicans with this type of issue, no doubt women
will be influenced to vote Democratic. Researchers may not notice that
it is really the more economically disadvantaged—not women—who
vote Democratic and the economically advantaged who vote Repub-
lican.

It is much more difficult to disentangle effects like these in obser-
vational data than it is in experimental data. In properly obtained ex-
perimental data, the effects of other variables cancel out in the random
assignment of subjects to experimental and control groups. Unfortu-
nately for statistical purity, experimental data cannot always be col-
lected because the requirements of the research designs would violate
customs, laws, and sometimes ethical standards. (For example, ran-
domly assigning newborn infants to families to study child-rearing dif-
ferences would not be socially acceptable, and certainly no contem-
porary scientist would seriously entertain such an idea.)

In a sense, it is never possible to decide the best way to identify
causal variables. If, for example, income level is more important than
gender in causing people to vote for a political party, one might ask
what it is about income level that produces the behavior of interest. Is
it fear of losing what one has, the ability to buy what one wants, pride
in one’s social position, or any of a number of other attributes that are
associated with one’s income level that might be influencing voting
choices? In an important way, the selection of variables to be studied
is a function of the researcher’s interests and goals, who is paying for
the research, and what utility, in general, some explanations of the
results have over others.
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Studying sampling techniques makes us aware of the many things that
can go wrong with data from samples and how they skew the results.
Just because 60% of a sample approves of the way in which the Presi-
dent handles the job, we cannot conclude that 60% of the entire pop-
ulation approves of the President. Any number of things may have gone
wrong from the time it was first decided to do the survey to the time
the final results were reported. Most surveys do go wrong in one way
or another.
To evaluate the results of a survey, we must know

whether the sample is a proper statistical sample of data.

the response rate.

the actual wording of the question being asked.

where the question was placed in the interview schedule.

who the interviewers were.

Sampling error: The “error” that is not a mistake

Some of the errors made in surveys are purely statistical, while others
go beyond the statistical aspects of the study. The main statistical error
is the so-called sampling error. This is not an error in the sense that
something is wrong. It refers to the fact that if a study were to be done
over again, the results would not be exactly the same. For example,
instead of 60% approving of the President, 59% of the next sample —
or 62% or some other nearby percentage—might approve.

But even though different samples yield different answers, most of
the answers lie within a certain range of the true percentage in the
population. For example, with many repeated samples of around 1,000
respondents each, most sample percentages (95 of 100) lie within three
percentage points of the true population percentage. Thus, the sam-
pling error equals plus or minus three percentage points (*3%).

This finding is only a reflection of the randomness that is inherently
part of every study. After all, the percentages come from different sam-
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(—3%) (+3%)

. Sampling error =~ Sampling error

95 of 100 sample percentages k Sample

(58%) (61%) (64%) ~ Pereentase
True
population
percentage

Figure 2.1 Example of a true population percentage and a sampling error
of *3%

ples, and there is very little reason to believe that the result from one
sample will be identical to the result from another sample. Additionally,
there is no reason to believe that the result from a particular sample is
exactly equal to the result data that could have been obtained from the
entire population.

Figure 2.1 illustrates the point. It shows a computer-generated case
where the true population percentage equals 61%. Furthermore, the
size of the sample is such that 95 out of 100 different samples will have
a sample percentage that lies somewhere between 58% and 64%. In
that case we say that we have a sampling error of *3%—64% is 3
percentage points more (+) than 61%, and 58% is 3 percentage points
fewer (—).

The example is based on a true population percentage of 61. In
reality, we almost never know this number; indeed, the reason we did
the survey in the first place was to get an idea of the population per-
centage. Still, from the sample we can compute how large the sampling
error is. This remarkable result occurs because mathematical statisti-
cians have been able to derive formulas for the computation of sam-
pling errors. Some of these formulas are given in Chapters 6—-13.

The size of a sampling error depends on the way the sample was
drawn and the number of observations in the sample. The larger the
sample, the smaller the sampling error. If the sample equals the entire
population, then the sample percentage is exactly equal to the popu-
lation percentage. If the study of an entire population is repeated be-
fore the population has changed, the result will be the same. In this
case, the sampling error is zero.

Any presentation of results from a sample survey should state the
size of the sampling error, whether for percentages or averages or any-
thing else. The sampling error conveys a sense of how far away the
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sample value possibly could be from the true population value. We
return to the issue of sampling errors in Chapters 6 and 7 on estimation
and hypothesis testing.

Nonresponse error: Result of rude, rushed, and reticent
respondents

A different type of error that affects the results of a sample survey is
the nonresponse error. It may be that in spite of several callbacks, nobody
ever answered the phone at a selected telephone number. Or it may
be that somebody answered the phone but refused to be interviewed.
Mail surveys typically suffer from larger response errors than telephone
surveys; it is easier to ignore a sealed envelope than a ringing tele-
phone. Also, the possibility of error in addressing an envelope is greater
than dialing an unused telephone number. With follow-ups, a good
telephone survey can have an 85-90% response rate, while a mail sur-
vey rarely reaches a 50% response rate.

The percentage of people who refuse to participate in all types of
surveys has been increasing. People may have become more reluctant
to answer questions because they suspect that a survey is a thin disguise
for selling a product or a service. Reputable survey organizations now
often do not achieve more than a 60% response rate.

High refusal rate is a big problem for researchers because usually
not much is known about the people who were selected but did not
participate in the survey. Many unanswerable questions arise. Is there
anything about the nonrespondents that makes them different from
people who did respond? Are they richer or poorer, more conservative
or more liberal, more influential or less powerful than the respon-
dents? How much would their answers have affected the results of the
study if they had responded?

A worst-case scenario shows what the effect of nonresponse error
can be. Suppose we plan a study with 1,200 potential respondents and
obtain 1,000 interviews. This means that data on 200 people are miss-
ing. Of the 1,000 respondents we did interview, we find that 600 (or
60%) are in favor of something while the rest are opposed. If we were
to assume that all the missing 200 were also in favor, 800 out of 1,200
were in favor, for a 67% rate. On the other hand, if all the missing 200
were not in favor, 600 out of 1,200 were in favor, for a 50% rate. Thus,
the observed sample percentage of 60% in favor could really have been
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anywhere from 50% to 67% due to the nonresponse error alone. That
could make a big difference to the outcome of our study.

Some empirical evidence indicates that on most issues the nonre-
spondents are not very different from those who do respond. If we have
a high response rate to begin with, then we can assume that the non-
responders would have answered in the same percentages. But with a
low response rate, such as 50%, the impact of nonresponse can be quite
large.

How do researchers deal with situations in which nobody answers
the phone? It is tempting to substitute another phone number, but this
changes things more than you might expect. In a telephone survey,
substitution means that people who are seldom at home have much
smaller chances of being included in the sample than people who are
at home all the time. This violates the principle that everyone in the
population should have a fixed chance of being included, and there is
good reason to think that people who spend much of their time outside
the home are different from those who are home most of the time.
The only way to interview the people at numbers where there is no
answer is to call back again later. But this takes time; it may take several
days and several callbacks before an answer is obtained.

The data from overnight polls, when there is no time for callbacks,
are therefore not as good as the data from surveys where callbacks can
be made. A poll report on people’s attitudes right after an event takes
place is interesting, but these polls suffer large nonresponse errors,
and we should be wary of the results. Overnight polls taken right
after Presidential campaign debates are good examples of this type of
situation.

Rt‘.‘ip()ll.‘i(’ €rrors

The data that result from surveys can be infected with response errors that
are escapable, if the researchers are careful. We discuss some (but not
all) of them here. And even after all these issues have been addressed,
all we know is what people surveyed actually tell the interviewer, not what they
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actually do, or feel, or think. When we read in the newspaper that in
arecent survey, 60% of the respondents approved of how the President
currently does the job, then we should mentally qualify the statement
to read that 60% of those people surveyed and who answered this ques-
tion said to the interviewer on the occasion of the interview that they
approved of the President’s handling of the job.

Wording of questions The wording of questions in surveys influences
the answers people give. On a subtle level, questions frame the issue
to which the respondents must give an answer. Sometimes questions
confuse the respondent, leading to unintended outcomes. For exam-
ple, a 1992 survey done by the Roper organization found that a dis-
turbing 22% —1 in 5— of the respondents reported that they doubted
that the Holocaust had happened. After the initial reaction to the sta-
tistical result, readers of the report turned their attention to the ques-
tion itself: “Does it seem possible or does it seem impossible to you that
the Nazi extermination of the Jews never happened?” The question
contains a double negative, a potential source of confusion to respon-
dents. A new survey was done two years later, and this time the wording
of the question was “Does it seem possible to you that the Nazi exter-
mination of Jews never happened, or do you feel certain that it hap-
pened?” Worded this way, only 1% of the respondents thought the
Holocaust never happened, quite a change from the original 22% from
the first survey.

Despite wording changes, statisticians often raise the question of
whether the respondent has any opinion on the issue in the first place
or whether the wording gives the person an opinion by the word
choices offered. If a couple asked you what name to give to their baby,
you might be rather befuddled. But if the couple added, “We are de-
bating three choices: Maria, Gertrude, or Maud,” you might find that
you have an opinion. In the Holocaust question, the possible choices
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that the event never happened and being certain that it happened
allow for only two options. People who had not thought about the issue
or who otherwise were unopinionated were given no appropriate
choice. The neutral position probably went underrepresented, and as
this group was sorted into either of the two options, the two options
were probably overrepresented. (Source: The New York Times, July 8, 1994,
. A0,

One way around the problem of response options creating opin-
ions is to ask a screening question first. The question “Do you have any
opinion on the issue of whether the Holocaust happened?” might have
been asked in the Holocaust poll. Those who answer no to the screen-
ing question are then not asked the next question about their opinion.
In general, unless the actual questions are reported along with the
results, it is difficult to assess the results of surveys that propose to
measure people’s attitudes.

Placement of questions To add to the complexities of questionnaire
design, the placement of a question in a survey can affect the responses.
Early in the interview, the contact between the interviewer and the
respondent is not well established. The respondent may be hesitant
about expressing opinions. Well into an interview, the respondent may
feel more comfortable with the interviewer and as a result speak more
frankly and less formally. The respondent may make more prejudicial
remarks and “politically incorrect” comments and may state personal
opinions. By the end of the interview, the respondent may be experi-
encing fatigue or boredom. If the respondent wishes to terminate the
session quickly, answers may be shorter, less precise, and more careless
than answers given in the middle of the interview. Researchers try to
accommodate respondents’ comfort needs by asking fairly easy and
impersonal questions at the beginning of an interview and more diffi-
cult and personal ones when rapport is higher. Questions on income,
for example, are asked far along in most U.S. surveys. Closing questions
are often short and simple.

Respondents may also want to remain consistent from one area of
questioning to another. If they support a particular point of view in
one question, they may feel the necessity of supporting it in another
one, despite a lack of commitment to what they are saying. For exam-
ple, someone who supports capital punishment in the answer to one
question may be hesitant to declare herself or himself a pacifist when
it comes to warfare. Throughout an interview, representing oneself
positively is a constant need of the respondent, and surveyors try to
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place questions to permit people to give opinions that they believe will
reflect well on themselves.

Interviewer effect Respondents’ answers are influenced by their per-
ceptions of who the interviewer is and what the interviewer believes.
Survey designers often try to match interviewer and respondent as
closely as possible on demographic features such as age, gender, and
race. Especially with sensitive issues, such as attitudes toward other
groups, ethical or legal behaviors, or sexual activities, talking to some-
one who may share one’s views is preferable for both parties in the
interview.

The other method of data collection involves manipulating one or
more variables in an experiment and measuring the results of the ma-
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nipulations. For example, if we give one group of plants a fertilizer and
another group no fertilizer, then we are manipulating the plants’ soil
content. We can then measure variables such as growth or vitality. An
experiment is a way of studying causal relationships between variables.
In an experiment, researchers try to control every relevant aspect of a
situation, manipulate a small number of variables of interest, and then
observe the results of the manipulations.

An early example of an experiment occurred at the beginning of
the 1600s when the British navy tried to discover the causes of scurvy,
an illness characterized by swollen and bleeding gums and livid spots
on the skin, which often attacked sailors on long voyages. The Admi-
ralty suspected that lack of citrus fruits might cause the disease. At the
time this idea was suggested, four naval ships set out from England on
a long journey. To investigate whether a lack of citrus fruit caused
scurvy, the Admiralty arranged that on one of the ships each sailor
would be given citrus juice to drink every day, while the sailors on the
other three ships would not get citrus juice.

Before the voyage was over, there were so many sailors sick with
scurvy on the three “juiceless” ships that sailors who had received citrus
juice had to be transferred to these ships to help sail them to harbor.
This experiment was obviously successful in proving a point, even
though the actual experimental plan could have been improved in
various ways.

Experimental group and control group

In the scurvy example, the sailors who drank citrus juice formed the
experimental group, and the sailors who were not given juice formed the
so-called control group. An experimental group is a randomly selected
subset of the subjects in an experiment that receives a particular treat-
ment that the control group does not receive. Almost all well-designed
experiments (and some observational studies) have a control group
and one or more experimental groups.

The reason a control group is needed is that without one there
would be no way of determining whether the manipulation or some
other variable (or several variables in conjunction) had an effect. If the
sailors on all four ships of the scurvy experiment had been given the
citrus juice, the lack of scurvy could have been attributed, for example,
to the exceptionally good rum rations or some other treatment the
sailors received on the voyage. But the only difference between the
experimental group and the control group was that one group drank
juice and the other did not. Therefore, it is logical to conclude that it
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was the citrus juice that kept the sailors from getting scurvy. This point
is also illustrated in the experimental example in Chapter 1 of the
testing of the polio vaccine in the 1950s; without the presence of a
control group, there would not have been a baseline with which to
compare the effect of the vaccine.

Selecting the experimental and control groups

Another issue in the setting up of an experiment is the question of who
should be in the experimental group and who should be in the control
group. The scurvy example is not a perfect experiment because we can
think of alternative explanations for why the men on one ship did not
get the disease. Perhaps there was something about the three ships
themselves—but not the fourth—that produced scurvy. Although un-
likely, such a phenomenon was a possibility, so it would have been
better if the decision of who should get and not get the citrus juice had
been made randomly for each sailor, without regard to ship. By ran-
domly assigning the treatment, the effects of other variables related to
the ships would have canceled each other out and not affected the
results.

One might wonder if volunteers could be used, rather than ran-
domly assigning people to the treatment and control groups. For ex-
ample, what if the sailors who liked citrus juice had been the experi-
mental group and those who preferred rum the control group? The
problem with this method is absence of certainty that the men in both
groups were equally healthy before the study began. If the subject as-
signment is random, then healthy and unhealthy sailors would be
equally likely to be in each group. Health could then be eliminated as
a cause of scurvy.

The principle of random selection of subjects was one of the major
contributions of the great English statistician Sir Ronald Fisher, who
worked with agricultural experiments in the 1920s. It is a principle that
has been followed in all good experiments ever since.

Problems with experimenting on people

In experiments on human beings, the goal is still to assign people ran-
domly to experimental and control groups, but this is difficult and
sometimes even impossible to achieve. It is much less complicated to
assign a potato plant to a poor dirt patch than a person to substandard
living conditions.

a7
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Data should always be taken with a grain of salt. “Calvin and Hobbes” copyright
1995 Watterson. Dist. by Universal Press Syndicate. Reprinted with permission. All rights
reserved.

Logistical issues We can all come up with reasons why it is more diffi-
cult to study people than potato plants. First and foremost, people have
their own plans and interests and are not necessarily willing to oblige
the research interests of the scientist. They may also have difficulty in
meeting the conditions of the research, keeping appointments, follow-
ing directions, and fulfilling their part of the arrangement. We have
already mentioned the problems with getting good data from people
in telephone and personal interviews, and the same types of limitations
apply to experiments.

Psychological issues In an experimental study, people are highly sen-
sitive to being studied. This makes them self-conscious, which can cre-
ate many constraints on their behaviors. One of the first times this
effect was documented was in a series of investigations of worker pro-
ductivity at a General Electric factory from 1924 to 1933. In one inves-
tigation, a team of social scientists and company personnel studied the
effects of various levels of illumination on the productivity of workers
making light bulbs. The researchers increased the illumination level
and found an increase in productivity. But strangely, when they re-
duced the lighting levels, productivity also increased. It seemed that no
matter what the researchers did, the workers produced more. The
workers seemed to respond to the attention of the researchers, not the
light level.

Over time, the phenomenon of workers responding to the atten-
tion of researchers and not specifically to the intended manipulation
was called the Hawthorne effect, taken from the name of the factory
where the lightbulb study was done. Precautions against such effects
can be taken, for example, ensuring that the control group receives as
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Many factors affect workers’ productivity. (Michael Rosenfeld, Tony Stone Images.)

much attention from the researchers as the experimental group.
(Source: See, for example, Robert K. Merton, Social Theory and Social Structure,
New York: The Free Press, 1957, p. 66.)

Ethical issues Ethical issues complicate the process of doing experi-
ments on people and animals. While certain ethical dilemmas are as-
sociated with collecting observational data, such as standing by as neg-
ative events occur, the experimenter who manipulates and controls
events is more likely to face ethical dilemmas. Is it right, for example,
to expose people to drug treatments where the outcomes cannot be
predicted? Suppose people suffer from unexpected, negative side ef-
fects? Thinking of side effects might lead one to be conservative about
testing and introducing new drugs. Yet, on the other hand, what if a
new treatment is beneficial? How long should people with fatal diseases
have to wait to try a new drug? How long can they wait?

What about the absence of benefits from the treatments for the
control group subjects who only received the placebo? In the polio
vaccine experiment, many more children in the control group got po-
lio than in the treatment group. If the children in the control group
had received the vaccine also, there is every reason to believe that as
many as 100 more children would not have gotten polio.
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A similar dilemma occurred for researchers in a study of the effects
of aspirin on heart attacks. The design of the study allowed for one
group of male doctors to take an aspirin a day to see if this treatment
would cut down on their risk of heart attacks. After the experiment
had run for about five years, fewer heart attacks were recorded in the
treatment group taking aspirin than in the control group taking a pla-
cebo. The results were so clear that the experiment was stopped long
before the planned termination, and people in the control group were
encouraged to start taking aspirin. In other projects results are not so
clear, and long-term side effects can nullify short-term gains. This was
the case with thalidomide, a drug that pregnant women took in the
1950s to suppress miscarriages; mothers who took the drug delivered
an unusually high number of babies with deformed limbs.

Almost all research done in the United States, particularly research
with health consequences, is screened by experts who specifically look
for ethical problems. Imagine, for example, the possibility of testing a
promising new drug to cure AIDS. If it is effective, people in the control
group may risk death if they do not get the drug. However, if it is found
that the drug has side effects that result in a higher mortality rate two
years after the test is begun, the control group may have escaped a
lethal dose. What is the ethical thing to do? No easy answers can be
given. Ethical issues must be constantly considered and reconsidered.
Fortunately, most studies are less dramatic and the consequences are
less severe.

Role of statistics in experimentation

Most researchers who do experiments receive statistical advice. The
contribution of statistics to the running of experiments centers on
three practical issues: obtaining the proper number of observations to
make it possible to find if there are any effects; planning the experi-
ment so that the standards for statistical analysis are met; creating a
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method for studying the impact of several variables simultaneously in
the most efficient way possible.

How many observations? Statisticians can give advice on how many ob-
servations are needed to get results with the desired accuracy. More
data are usually better than less data. But it costs more and takes a
longer time to collect many observations as opposed to a few obser-
vations. A researcher may ask: Would it be enough to plant a new variety
of corn on 10 plots of land or do I need data from 100 plots to
discover if the new variety gives a higher yield? This question ex-
emplifies the general quandary for many cost-conscious, result-
oriented researchers.

Plan of analysis: Be safe rather than sorry Statisticians often help re-
searchers set up a plan of statistical analysis. The best time to create
this plan is before the data are collected. If the study is done without
a careful plan of analysis, faults are built into the experiment that can-
not be corrected later. Often statisticians are called in to clean up the
mess, and it is often too late. A researcher cannot supply missing data
once the data are collected, so the statistical analysis is less helpful than
it would have been had the data been appropriately collected in the
first place. Often statisticians are able to expand a statistical plan as
further questions become relevant to a researcher. Initial results may
suggest new avenues of inquiry, and statisticians may offer additional
suggestions once the preliminary data analyses are run. In today’s com-
plex world of statistical analyses, even the most sophisticated research-
ers prefer to have statisticians at their sides when working up a major
design for a study.

Studying the impact of several variables at the same time Planning be-
comes particularly important when we want to study the effects of sev-
eral experimental variables on an outcome variable. One could do sev-
eral experiments, each using one variable. For example, if a sport
psychologist wanted to study the effects of diet, exercise, and self-con-
fidence on bodily weight, he or she could do three experiments to study
the effect of each variable separately.

Sir Ronald Fisher developed a way to use all the variables at the
same time in one experiment, thus reducing the randomness in the
data and allowing for comparisons of the relative strengths of each
variable. Thus, in the example, the sport psychologist can measure how
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relatively important diet, exercise, and self-confidence are in affecting
a person’s weight.

This approach led to the development of a variety of multivariate
statistical designs for analyzing experiments. In Chapter 13 we start a
discussion of multivariate analyses, which are needed to find answers
to the sport psychologist’s queries.

Putting it all together: Does class size affect school
performance?

To conclude this discussion on experiments, let us look at an example
of an actual experimental study. With this example, you can take on
the role of the experimenter who must confront a series of difficulties
in order to answer a question of interest.

The example is an educational experiment that took place in Ten-
nessee, as reported in a news magazine. (Source: The Economist, August
31, 1991, p. 23.) Here we use only the information given in the news
story to see what we can conclude about this experiment. (If we wanted
more information about the study, we would need to consult more
detailed descriptions.)

For along time people have had the sense that smaller rather than
larger classes result in better learning, but it is hard to find empirical
evidence for this proposition. In the mid-1980s school officials in Ten-
nessee decided to perform an experiment to test whether class size
affected school performance. The main design of the study was a simple
one, concerned with the effect of one single variable, class size, with
only two values, small and regular size.

Operational definitions Before the experiment could be performed,
several important, nonstatistical issues had to be decided. Perhaps the
most important one was to decide what was meant by a “small” class.
In the study, the Tennessee officials decided that a class containing
between 13 and 17 students would be called “small,” and a class con-
sisting of 22 to 25 students would be thought of as “regular” class size.
Also, the researchers had to decide what “improved performance”
meant. They decided to measure performance with standardized edu-
cational tests.

Thus, the researchers started the experiment with the research hy-
pothesis that elementary school students in small classes do better than
students in regular classes and then made it specific: 5-year-olds starting
in classes consisting of 13 to 17 students who stay in “small” classes for
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four years will do better on standardized tests at the end of the four-
year period than students who spend the same time in classes consisting
of 22 to 25 students. It was important to specify the four-year period to
eliminate the students who would inevitably move into and out of the
experimental classrooms during the course of the study.

SETR0SP UEAUINSDE RO N DEE LIRS 20050

|
How would you feel if you lived in Tennessee and had a child who
was put in a regular-size class instead of a small class?

Selection of sample schools The next thing to be decided was which
schools should be used for the experiment. The magazine story simply
says that the study was done in 76 different elementary schools. There
are many more than 76 elementary schools in Tennessee, and we can
only hope that random selection was involved in choosing the schools.
We also trust that students were placed randomly in small and regular
classes.

SETDAPLSAINCDL CR DN DDER 2 8

Why is it so important that the schools were chosen randomly and
that students were randomly assigned to the two types of classes?

Experimental design Now the researchers were faced with the question
of what to do with all the 5-year-olds in 76 elementary schools across
the state. They could have created only small classes in some schools
and only regular classes in other schools. But then whatever differences
found between small and large classes could have been due to other
variables. For example, if all the children in a school in a university
town were put in small classes and all the children in an inner-city
school were put in regular-size classes and it was found that students
in small classes did better, the difference could have been due not to
class size but to the fact that children from more academic families
tend to do better on standardized tests. Instead, within each school the
children were randomly assigned to the different types of classes. In
this way, possible effects of the backgrounds of the different students
were canceled out and did not affect the overall test scores.

Other variables also had to be taken into account. For example,
teachers had to be randomly assigned, as well. It would not have been
fair to put all the new teachers in larger classes and all the experienced
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ones in small classes. Other physical variations, such as classroom re-
sources, also had to be balanced out so that neither group had an
advantage over the other.

Results  After four years, it was found that students in the small classes
were performing “significantly” better than the students in the regular-
size classes. (The term “significantly” is discussed in Chapters 6 and 7.)
The test results showed that after only one year the students in small
classes were 1.5 months ahead in reading and 2.5 months ahead in
mathematics. The small-class advantage was also present after four
years, when the experiment ended.
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After data have been collected from a study, whether experimental or
observational, they are commonly entered into a computer file in typ-
ical spreadsheet form. This means that each column refers to a variable,
such as gender. Each row refers to an element, for example, person,
plant, animal, group, or whatever units we have collected data on. Such
a table of data is often referred to as a data matrix or a data file. Table
2.1 shows an example of a small data matrix for data from a sample
survey.

Table 2.1 Data matrix for a sample survey

Person Age Gender Vote Attitude
1 20 Female Democrat Neutral
2 27 Female Democrat Against
3 19 Male Republican Against
4 38 Male Democrat Favor
5 38 Male Republican Favor
6 53 Female Democrat Favor
7 24 Male Republican Favor
8 41 Female Republican Against
9 35 Female Democrat Neutral

10 30 Male Republican Favor
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For convenience in computer analyses of the data in the file, we
often change the words in a data file to numbers. Each person is given
an ID number as a name. The age variable is already measured using
numbers, so no change is needed there. The gender variable has the
two categories female and male, so female is replaced by the number
0, male by the number 1. Any two numbers could be used, say — 17 for
female and 23 for male, but for practical reasons, which are explained
in Chapter 9, the numbers 0 and 1 are better to use. The values of the
vote variable can similarly be changed to 0 or 1, and for the attitude
variable we can use three ranked numbers, say 1, 2, and 3.

The way the data matrix appears on a printout from the computer
is shown in Table 2.2. While the table is easy to read, a typical national
survey could have 1,000 respondents instead of the 10 shown here, and
there could easily be 100 variables instead of just 4. With 1,000 rows
and 100 columns, there would be 100,000 numbers in the data file.
This would not be so easy to read! The information would all be there,
but the trends and patterns in the data would be obscured. A re-
searcher could not extract what is of interest without simplification and
condensation—analysis—of the data by statistical methods.

Table 2.2 Data matrix for a sample survey

Person Age Gender Vote Attitude
1 20 0 0 2
2 27 0 0 1
3 19 1 1 1
4 38 1 0 3
5 38 1 1 3
6 53 0 0 3
7 24 1 1 3
8 41 0 1 1
9 35 0 0 2

10 30 1 1 3




2.1 Defining the variables

The first step in proper data collection involves carefully specifying the
variables to be studied.

2.2 Observational data: Problems and possibilities

Observational data are data collected through observations of the
world, without manipulating or controlling it.

A population consists of all the elements under study. A census is
the process of collecting data on an entire population. A proper statis-
tical sample that can be used for generalizations to a population is
called a random sample, a sample in which every element in the pop-
ulation has a known (often equal) chance of being selected for the
sample. Drawing a sample “out of a hat” produces a simple random
sample.

In observational studies, it is often difficult to determine whether
or not a variable is causally affected by another variable. The potential
of other unknown variables to have a more direct impact on a variable
than the one under study must be acknowledged in any observational
study.

2.3 Errors and “errors” in collecting observational data

Sampling error tells us how far from the true population value 19 of
20 different sample results will fall if many different samples had been
selected. This variation in the results from one sample to another is
due to the randomness of sample selections. The size of the sampling
error depends on how many observations there are in the sample and
how it was drawn. The larger the sample, the smaller the sampling error
becomes. Sampling errors should always be reported.

Nonresponse error is the error in the results that occurs when data
are missing from the sample. Missing data may result from such causes
as unwillingness of respondents to answer all queries and the inability
to locate certain sample members. The effects of a worst-case scenario,
in which all nonrespondents would have answered a survey question
identically, could be enormous. Fortunately, studies have shown that

2.6 Summary
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on most issues nonrespondents are not very different from those who
do respond.

Data collection response errors can be made by wording questions
in ways that confuse respondents or suggest certain answers, by arrang-
ing questions in a nonpropitious order, and by using interviewers who
bias respondents’ answers, among other things.

2.4 Experimental data: Looking for the causes of outcomes

Data collection can also be done by manipulating one or more variables
in an experiment and measuring the results of the manipulations. An
experiment is a way of studying causal relationships between variables.
In an experiment researchers try to control every relevant aspect of a
situation, manipulate a small number of variables of interest, and then
measure the results of the manipulations. Of critical importance to a
good experimental design is the control group, a subgroup of subjects
that is not manipulated but is in all other respects like the experimental
group(s), which does receive the experimental manipulation. Experi-
mental objects are randomly assigned to treatment and control groups.
One major reason for random assignment is so that the effects of ex-
traneous variables cancel out and do not affect the end results.

It is often difficult to study people experimentally because they may
resist the efforts of the scientist to manipulate and control them, they
may become self-conscious, and/or they may become bored or fatigued
by the experimental situation. Subjects may also be manipulated in
their behaviors by the nature of the experiment itself, in some cases
becoming more cooperative than normal. Ethical dilemmas, such as
weighing the pros and cons of giving or withholding treatment, are
also important constraints on experiments.

The contribution of statistics to the production of successful ex-
periments centers on three practical issues: obtaining the proper num-
ber of observations in order to get significant results, planning the
experiment so that the standards for statistical analysis are met, and
creating methods for studying simultaneously the impact of several var-
iables.

2.5 Data matrix/Data file

After the data have been collected in a study, whether experimental or
observational, they are commonly entered into a computer file in typ-
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REVIEW (EXERCISES 2.1-2.22)

2.1 A teen magazine wants to do a survey using college students to
increase reader appeal for 17-19-year-olds. Name several decisions the
survey team should make about the definition of the target population
before the sample is drawn.

2.2 Define experimental group.
2.3 Define control group.

2.4 a. Whatis a random sample?

b. Name three difficulties in creating a random sample.

2.5  In what sense is the sampling error the best kind of error we can
have in a statistical analysis?

2.6 Select an example of sample data, census data, or other data
from a journal or book.

a. Does the author satisfactorily explain how the data were col-
lected? Explain.



b. Is the population to which the findings are generalized well
specified? Explain.

2.7  The student council wishes to survey the senior class regarding
graduation ceremonies. You volunteer to draw a sample of 10% of the
seniors in your school.

a. How would you arrange to draw the sample to assure random-
ness?

b. What possible problems might you encounter in drawing the
sample?

c. What might be some possible impacts of these problems?

d. How would you attempt to solve these problems?

2.8  Several of your friends wish to help you complete the student
council survey in Exercise 2.7. They volunteer to poll 12 friends each
concerning the graduation ceremonies. This will then constitute a sam-
ple of 10% of the class. They also volunteer to buy the beverages if the
class votes to have an all-night barbecue at a nearby lake.

a. For what reasons do you decline your friends’ offer of assist-
ance?

b. If you yourself want the barbecue as well, what safeguards
might you suggest to prevent your views from influencing your
classmates?

2.9  Explain whether a sampling error indicates a poor job of statis-
tical analysis.

2.10 What factors are important in determining the size of the sam-
pling error?
2.11 a. What is the true population value?

b. Where is it supposed to be located?

2.12 What is a response error?

2.13 Make up a survey question that would have the same property
of unacceptability as the following question: Have you stopped beating
your dog yet? Why is your question a bad question?

2.14 Construct a survey question that you would find acceptable if the
goal were to establish the level of financial well-being of the respon-
dent.

Exercises
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2.15 A poll found that 56% of the respondents favored the Roe v.
Wade Supreme Court decision of some years ago. The sampling error
was reported to be *2%.

a. What can you say about how the other 44% of the respon-
dents felt about Roe v. Wade?

b. What are some other things you should know about how these
data were collected before you can make anything of this poll?

c. Show how to use the sampling error percentage and interpret
the result.

2.16 Would you permit your child to participate in an experiment
with a medication, like the experiment with the polio vaccine, where
it is not clear whether the medication will have bad side effects, have
no effect at all, or be beneficial to all humans? Explain.

2.17 Why is it difficult to interpret the results of an experiment that
did not include a control group?

2.18 a. Under what conditions would you volunteer for an experi-
mental study of toothpastes without knowing the possible side
effects?

b. Under what conditions would you volunteer for an experi-
mental study of a drug designed to alter mental states without
knowing the possible side effects? Consider the well-being of
other people as well as yourself.

¢. Do you think your answers are similar to those of most other
people, some other people, or a few other people? Why?

2.19 a. Isit possible to construct a survey question concerning favor-
able or unfavorable attitudes toward abortion that would appear
to be totally value-neutral? Why?

b. What major effects does the wording of questions have on the
answers given?

2.20 You are directing a housing survey in a conflict-ridden commu-
nity consisting of families of Korean, Pakistani, Filipino, Armenian, and
Icelandic origins.

a. What considerations might be important in your decisions
about who should do the interviewing?

b. Describe who you would hire, including any gender, age, eth-
nic, educational, or other distinctions.



c. What biases would you accept, and which would you try to
avoid?

2.21 Whatis a data file?

2.22 a. Do the columns in a data file usually refer to a variable or to
an element?

b. Do the rows in a data file usually refer to a variable or an
element?

INTERPRETATION (EXERCISES 2.23-2.36)

2.23 The wise statistician declares: “There are two kinds of data: Good
data and bad data.” The difference between good data and bad data
depends on whether or not proper statistical principles were adhered
to during the collection process. Given the difficulties in collecting
good data, do you think the statistician should have said: “There are
two kinds of data: Bad data and worse data?” Explain.

2.24 a. What are some circumstances under which you would be (or
have been) unwilling to participate in a survey?

b. What do you think the results of your refusal to participate
might be on the outcome of the survey (assuming that there
were others who refused for the same reasons you did)?

c. In what ways might this affect the ways in which the survey
helped or hindered those who commissioned the study?

2.25 During the spring of 1991, 7-Eleven stores around the country
conducted a poll in which customers who bought drinks could “vote”
on an issue by choosing a beverage cup marked either Yes or No. Ac-
cording to the results of this poll, 50.9% of the respondents in the
Philadelphia/Trenton area “voted” that they would marry for money,
while nationally the percentage was 53.6. (Source: The Philadelphia In-
quirer, April 16, 1991, p. B3.)

a. Did the results imply that people in Philadelphia and Trenton

were less inclined to marry for money than the people in the

rest of the country?

b. What might explain the difference in percentages?

2.26 In the local mall, customers of all shapes and sizes are being
stopped by a group of interviewers of all shapes and sizes who are asking
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the shoppers about their recent purchases of diet beverages and diet
foods.

a. What effects could the interaction of pollsters and respon-
dents have on the results of this poll?

b. More generally, is it ever possible for surveys such as these to
be done in a totally neutral and unbiased fashion? Explain.

2.27 City planners are interested in the level of fire prevention aware-
ness among the volunteer firefighters of Delaware County. A survey of
the Garden City firefighters contains a sampling error of =7%.

a. Will it be helpful to the planners if a sample of the other
firefighters of Delaware County—in the town of Media and the
boroughs of Swarthmore and Rutledge—are included in the
report? Why?

b. Ifall the volunteer firefighters in the entire county were given
the survey, would the sampling error be greater or smaller? Why?

2.28 Suppose you want to ask students to rate how favorable their
overall academic experience has been.

a. Comment on the difficulties you might encounter in defining
this variable.

b. How might the difficulties result in the favoring of some types
of educational institutions over others? (Hint: The results may
favor small schools devoted almost entirely to undergraduate
teaching.)

2.29 Quoting a study on commercial matchmaking enterprises, “A
matchmaker who uses video technology claims that 40% of her first-
time matches result in committed relationships.” Given the informa-
tion, would you spend the money for this service if you were eager to
get married soon? (Are there any problems with this claim in terms of
the definition of the agency’s success at matchmaking?) (Source: Mara B.
Adelman and Aaron C. Ahuria, “Mediated channels for mate seeking: A solution fo
involuntary singlehood?” Critical Studies in Mass Communication, vol. 8 (1991),

pp. 273-289.)

2.30 According to the National Institute on Alcohol Abuse and Al-
coholism, alcoholic fathers and sons are less creative than nonalcoholic
fathers and sons. “Creative people may be alcoholic, but alcoholics are
rarely creative, the head of the study concludes.” How is the variable
creative/noncreative redefined in the description of the outcome of



this study, according to this news item? (Source: The Philadelphia Inquirer,
October 17, 1993, p. F1.)

2.31 Surveys indicate that cheating in college is a serious problem.
Yet it is not always possible to know who has cheated and who might
be falsely accused. You are interested in studying the effects of cheating
on college exams on physiological indicators of lying. As the professor
of an introductory psychology class, it is possible for you on the mid-
term exam to arrange for half the students to receive answers to the
multiple-choice test questions (apparently by mistake) in their answer
booklets. You will be able to tell which students received the “cheater”
booklets and which did not. Later, you will be able to secretly videotape
the class as you confront them as a group with the cheating episode.
You will be able to observe physiological indicators and check to see
how the students who cheated react to your charges. Assuming that this
study has scientific merit and can be conducted (from a logistical stand-
point), do you see any problems with going ahead with it? What are
they?

2.32 Researchers led by Dr. Arthur Kellermann of Emory University,
Atlanta, compared people murdered in their homes to nonvictims of
the same age, sex, race, and neighborhood. The homes of the 388
murder victims were different from the homes of the nonvictims in
several ways. The people who lived in the homes of the victims were
more likely to have guns, especially loaded guns, to use illicit drugs, to
have arrest records, and to have a history of domestic violence. The
study reported that “gun ownership increased risk 2.7 times, regardless
of other risks.”

a. What was the control group in this study?

b. What was the most important factor in whether or not one
would be murdered?

c. Were there any significant variables that were not controlled
for, according to this report, that might have been important in
understanding factors that could lead to murder in the home?

2.33 In a study of curriculum development in mathematics, research-
ers included a random selection of ten schools in the district. Among
them was the Wallingford Elementary School, where teachers were
asked to volunteer for a workshop that was to be conducted over the
Thanksgiving vacation. Of the 38 eligible teachers, 14 agreed to go;
from this group 9 names were chosen at random (the researchers had
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asked that the selection process be done “at random”). Despite the
care in trying to pick a random sample, 8 of the 9 teachers selected
were men, although 65% of the teaching staff were women. After the
workshop, the teachers came back with glowing reports about the new
mathematics program, especially how it challenged them to “really
brush up on their own math skills.” They strongly recommended that
the program be instituted the following year. The researchers con-
cluded that teacher reception to the math program was very warm and
recommended that the program be given a high priority in the follow-
ing year’s budget. The research results were especially important be-
cause previous attempts to introduce new mathematics programs in
these schools had not been very successful, due to teacher resistance
and sometimes their lack of preparation in mathematics.

a. Do you think the teacher sample for the research was a ran-
dom selection of the teachers in the district?

b. What factors interfered with the sample being statistically
ideal?

c. Was it chance that led to so many men being selected from
Wallingford? Explain.

d. Do you think the new math program will be well received
next year? Explain your answer.

e. Do you think it is primarily laziness on the part of researchers
that keeps samples from being randomly selected? Explain.

2.34 A salesperson for the class ring company wants to do a survey at
your high school to determine how much money the average student
plans to spend on the class ring. The principal suggests that the ques-
tion be asked of the students at a pep rally for the championship game
on Friday afternoon. As the nosy statistics student, you would like to
put in your two-cents worth about this planned survey.

a. What will you say about the data collection procedure?

b. What consequences do you think it will have on the survey
results if the principal’s plan is carried out?

2.35 Whenever we collect data and then begin to summarize them in
graphs or tables, in numbers or in statements, we lose information.
From the following statements, taken from various accounts in news-
papers and scientific reports, give an opinion on what important in-
formation has been lost.



a. “In this survey, students at the Illinois Institute of Technology
were most likely to say they were ‘unhappy.’” (The Philadelphia
Inquirer, October 10, 1993, p. B3.)

b. “According to the Alan Guttmacher Institute, more Catholic
women seek abortions than women of any other faith.” (The
Philadelphia Inquirer, December 8, 1992.)

ANALYSIS (EXERCISES 2.36-2.41)

2.36 A hometown newspaper reports on the eve of a local election
that a survey of the electorate has found that Rainwater is leading Gold-
thorp in the city council race by 53% to 47%, with a sampling error of
*4%. The editor wants to know if she should begin the headline for
tomorrow’s paper “Rainwater Tromps Goldthorp.” What would you ad-
vise, and why?

2.37 Following are questions from a survey designed to gather data
from moviegoers on the popularity of recent films shown at local the-
aters. List at least ten problems with these questions.

Name Age
Address Telephone
Salary Job title

Movie you saw tonight
Name of theater
How good was the movie? Very good Good Bad

Rate the movie on a ten-pointscale:1 2 3 4 5 6 7 8 9 10
How good was it compared to the last movieyousaw? 1 2 3 4 5
How did it compare to Some Like It Hot? 1 2 3 4 5

What did you like best about the movie?
Was it the actors? yes no
Did you buy popcorn? soda?
What model car do you drive?

candy?

2.38 Adoption is a very important personal and societal issue in the
1990s. For the past decade, the social agencies in charge of arranging
for adoptions have adhered to a policy goal of racial similarity in match-
ing parents and child. This policy stands in contrast to that of twenty
years ago, which encouraged interracial adoptions. Social attitudes sur-
rounding the family form the base of both policies. Imagine that a
social agency wants to develop a survey to assess community attitudes

Exercises
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toward whether or not interracial adoptions should be resumed. With
particular attention to the issue of interviewer-interviewee relationship,
answer the following questions.

a. How would you design a research study to address this ques-
tion in order to minimize racially motivated responses?

b. How do you think racial similarities and differences (between
interviewers and interviewees, for example) might play a role in
influencing the responses to the study?

c. Assuming adequate resources, authority, and time, how might
this study best be carried out?

2.39 Assume that, at an institution with which you have an affiliation,
you are going to create a survey (either for yourself, your group, or
your supervisor). You are interested in asking a few questions (perhaps
no more than ten) to determine how satisfied the people in the inst-
tution are with a particular policy, boss, activity, or recent change that
has affected them.

a. After you determine the goal of your survey, consider how
you would like to carry it out: personal interview, telephone,
anonymous survey, voice mail or e-mail, and so on.

b. Create a written mock-up of your research design, including
the mode of delivery, the questions to be asked, and the way you
would analyze the results.

c. What dilemmas did you face in creating the design? How did
you decide to handle them? What limitations do you think still
exist in the design?

d. If you had many resources, more authority, and much time,
what might you do differently?

2.40 Create a data matrix from the following information. A Boy
Scout troop is on an overnight camping trip, and they begin talking
about their families. Chris, age 9, has three brothers and three sisters,
lives with his mother and father, and has a pet gerbil; Andy, age 10,
has no brothers and sisters and lives with his mother and a dog; Carl,
age 9, has a stepbrother, Sam, and lives with his father and stepmother
and a cat also named Sam; Greg, age 10, has a sister, a stepsister, and
a halfbrother, lives with his mom and dad and a dog named Rex; Alex,
age 8, lives with his grandmother and grandfather; Paul, age 11, has
four brothers and a stepsister and lives with his mother and stepfather
and a fish named Wanda.
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a. What decisions did you make about creating variables for sib-
lings? For parental figures? For pets? How could you have made
them differently?

b. If you had a large number of Scouts to summarize, which
variable choices for siblings, parental figures, and pets would you
prefer?

c. If you were interested only in issues of divorce, remarriage,
and single parenthood, how would you design the data matrix?

d. What data did you discard in creating your data matrix? Why
did you discard it?

e. Was there any information missing that you think would have
been useful if you had wanted to study the likelihood that boys
with no siblings and firstborn boys were more likely to belong
to the Boy Scouts than other boys?

2.41 1In 1789, in Massachusetts, the average male at birth could be
expected to live 34.5 years. The average female could expect to live to
be 36.5 years old. In 1850, male life expectancy was 38.3 years and
female life expectancy 40.5. In 1890, male life expectancy was 42.5 and
female life expectancy was 46.6. In 1910, male life expectancy was 54.0
and female life expectancy was 56.6. In 1930, the numbers were 59.3
and 62.6 years.

a. Create a data matrix and put the numbers in the proper rows
and columns to make them understandable and ready for statis-
tical analysis.

b. Name two findings that are evident from this data file.
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%at is the fastest growing group in the American work force today? Does
taking a literature course reduce crime among convicted criminals? How old

are women and men when they marry these days?
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In Chapter 2 we discussed ways of collecting data. Once the data are
gathered, we must search them for the information they contain. The
data are available in the data file, but with so many numbers there, we
cannot comprehend them all. Some way or other we must extract in-
formation from the data and put it into usable form. This means we
need to analyze the data by graphing, tabulating, and computing.

All three methods involve some degree of simplification. Comput-
ing an average, for example, simplifies a collection of numbers. If we
compute an average age for ten girls, then the ten numbers are re-
duced to one. Similarly, graphs and tables involve simplifications and
reductions of data. Simplifications make it much easier to understand
and to extract information of new kinds from data.

Data simplification has an important drawback. From simplified
data we cannot recover the original observations. Thus, there is almost
always a loss of some kind of information when we analyze the data.

In analyzing statistical data, we are torn between two conflicting
goals—to simplify and to be complete. First, we want to simplify a body
of data enough to discover the patterns it contains. We want to high-
light important information and to suppress “noise.” But at the same
time, we do not want to lose interesting details. A football game can
be summarized by the final score, but that datum does not describe
how the game was played and won. This conflict between simplicity
and loss of detailed information is often difficult to resolve. Fortu-
nately, practical considerations provide guidelines for producing useful
forms of information. How we describe our data usually depends on
what we have in mind for the analysis—where it will be seen, by whom,
and for what purpose. In addition, we must satisfy our own judgment
and those of our colleagues about what is the best statistical picture we
can offer.
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I

One way to analyze data is to graph them. A graph is extremely inform-
ative because a great deal of data can be summarized in it and under-
stood at a glance. To put a new twist on the old saying, a graph is worth
a thousand numbers.

Graphs are made for two main purposes: to help the researcher
extract information from the data and to help communicate the infor-
mation to others.

A graph is essentially a rhetorical device; it is a form of persuasion,
first to the researcher and then to others. A graph is constructed to
illustrate particular patterns found in data. Many other graphs could
be drawn from a particular data file, but they rarely are. Only those
graphs are produced that seem important to the analyst in order to
understand and to communicate what the data mean. As with so many
other statistical methods, it is possible (intentionally as well as uninten-
tionally) to misuse graphs in making an argument. We want you to be
able to distinguish between a good graph and a bad graph. Knowing
this difference may help protect you from making poor choices and
drawing bad conclusions.

Creating statistical graphs

Statistical graphs have been in existence for more than two hundred
years. But graphs were invented long after many other important math-
ematical discoveries. Relatively rare, at first, they were originally drawn
by hand and were often extremely imprecise. Today, computer software
has taken much of the drudgery and inaccuracies out of constructing

Graphs can be very important. (“Calvin and Hobbes” copyright 1992 Watterson.
Dist. by Universal Press Syndicate. Reprinted with permission. All rights reserved.)
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One of the first graphs created—such a rarity. (Source: Edward R. Tufte, The
Visual Display of Quantitative Information, Cheshire, CT: Graphics Press, 1983.)

graphs, and it is very seldom now that professional researchers draw a
graph by hand.

There are advantages and disadvantages to the computerization of
graphic design. With computer software constructing graphs, many fac-
ets of the graphic form are automatically shaped by those who wrote
the software, and researchers find it easy to rely on them. But if the
computer program is not good, bad graphs result. What is meant by a
“bad” graph is described in more detail throughout the chapter.

Statistical graphs have become increasingly commonplace in the
media. Graphs taken from computer screens are shown in newspapers,
news magazines, and on television. As the media have become increas-
ingly saturated with graphic representations of information, consumers
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have been required to be more knowledgeable about their construc-
tion. Graphic literacy is a must for the twenty-first-century adult.

Types of graphs

In Sections 3.2, 3.3, and 3.4 we discuss some of the more common types
of graphs, and we introduce you to some of their respective advantages
and disadvantages. In Section 3.5 we take up the principles that un-
derlie the construction of graphs. These principles can be used to judge
whether a graph is good or bad.

The simplest type of graph summarizes the data on one variable
only, for example, gender, age, or IQ. Such a graph involves the data
from only one column in the data file. More elaborate graphs sum-
marize data on two variables, from two data columns, for example,
gender and age. Making graphs from data on three or more variables
is more difficult but not impossible.

Many graphs are used to show a count of the observations of each
value of a variable. For example, a graph could illustrate how many
rainy days and how many sunny days occurred last month. This graph
would compare the two observed values (rain, sun) by showing which
occurred more often and which was more unusual. Other graphs show
values of variables measured on a scale. Age in years and income in
thousands of dollars are simple variables of that kind.

15

For the gender variable, the values are female and male. The only thing
we can say about two observations on such a variable is that either they
are the same or they are different. Such a variable is called a categorical
variable.

Graphing one categorical variable

In analysis of data on one categorical variable, the first step usually
consists of counting the observations of each value. As an example, we
focus on data about 72 criminals convicted in the New Bedford District
Court in Massachusetts. We want to know whether or not they were
convicted of new crimes within from one to two and a half years after
they had served their sentences. (Source: The New York Times, October 6,
1993, p. B10.)
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(a) Pie chart (b) Bar graph: Bars same (c) Bar graph: Bars same
width, different height, different
heights widths

Figure 3.1 Pie chart and bar graphs for a variable (criminals) with two cat-
egories (whether or not they were convicted of new crimes within from one
to two and a half years after they had served their sentences)

When the observations for this group of criminals are counted, we
find that 24 were convicted of new crimes and the remaining 48 were
not, at the time the data were collected. Figure 3.1 shows a pie chart
and two different bar graphs for the data on the 72 criminals.

Pie chart The pie chart (Figure 3.1a) indicates that about one third
of the convicts were convicted of new crimes and two thirds were not.
While it may be hard to see that the pie is divided exactly into 1/3 and
2/3 parts, it rapidly conveys that one group is about twice as large as
the other.

Pie charts are good for showing the relative sizes of groups. Several
different groups can be represented and compared in a pie chart. Pie
charts are particularly good for categorical variables because they do
not order values. One piece of a pie can move to another location in
the pie without changing the meaning of the chart. Also, nearby groups
can be easily combined into larger units in a pie chart.

Pie charts are not good for showing how many observations there
are in each group. If 240 criminals were convicted of a new crime and
480 criminals were not convicted, the pie would be divided the same
way. Also, pie charts are not useful in representing a large number of
groups: the “slices” become so tiny and so numerous that they lose their
usual impact.
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Bar graph The two bar graphs (Figure 3.1b and c) tell the same story
about the criminals. The bar graph in Figure 3.1b—where the bars are
the same width and the height of each bar represents the number of
observations of the corresponding value of the variable—is the most
common. But a bar graph like Figure 3.1c, where the bars are the same
height and the width of each bar represents the number of observations
of the corresponding value of the variable, can also be used. Note that
in each of the bar graphs the bars start at the value of 0. Sometimes
this is not the case, and the bar graph then usually conveys a very
different story (see Stop and Ponder 3.2).

The bar graph in Figure 3.1b is good for showing the number of
observations of each value of the variable but not for showing the total
number of observations; it is awkward to mentally place one bar on top
of the other to visualize the total. The bar graph in Figure 3.1c is good
for showing the total number of observations and the number of ob-
servations of the first category of the variable (criminals who committed
new crimes) but not for showing the number of observations of the
other category (criminals who did not commit new crimes). The more
values of a categorical variable, the more complex and difficult a same-
height, different-width bar graph becomes.

SSTL0NP AGNEDE VRGO ENED UV ESRITS 2

How could a bar graph that did not start with zero on the vertical
axis be used by a skillful politician who wants to exaggerate the tax
| increases proposed by a rival party? ‘

Graphing two categorical variables

There is more to the story about the 72 criminals. Judge Robert Kane
of New Bedford District Court in Massachusetts, with the encourage-

n
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ment of Professor Robert P. Waxler of the Dartmouth campus of the
University of Massachusetts, gave some of the criminals found guilty in
his court the choice of going to jail or taking a literature course taught
by Professor Waxler. Professor G. Roger Jarjoura of Indiana University
followed the 32 men who took the course and found that 6 were later
convicted of new crimes. Among the 40 criminals who went to jail, 18
were convicted of new crimes after release. (Source: The New York Times.
October 6, 1993, p. B10.)

Now we know more about the 24 criminals who committed new
crimes and the 48 who did not. We have data on a second categorical
variable, namely, whether they took a literature course or went to jail.
Figure 3.2 shows three different ways bar graphs can be used to tell the
story about the two variables.

In the graph in Figure 3.2a, the two bars represent the criminals
who took the literature course and the criminals who went to jail.
Each bar is divided into two groups, those who committed new
crimes and those who did not. The bars clearly show that a much
smaller group of literature-course takers committed new crimes, even
though it is hard to read from the scale how many they were because
that part of the bar does not start at zero. Among those who went
to jail, about one half committed new crimes and the other half
did not.

In Figure 3.2b, the tops of the bars in Figure 3.2a have been moved
to the horizontal axis. In this graph it is easier to see how many com-
mitted new crimes, since all four bars now start at zero. But in this
graph it is harder to see the totals of criminals who took the course
and criminals who went to jail.

In Figure 3.2¢, the total bars are of the same height and different
widths. The widths of the bars represent the number of criminals
who took the course and the number who went to jail. The
vertical divisions of the bars show the proportions of each group
who committed and did not commit new crimes. This is an
unusual bar graph, but it contains more information than the other
two.

All three graphs show that fewer criminals who took the literature
course committed new crimes than criminals who went to jail. While
the results of this small study are intriguing, there are too many un-
answered questions to know whether or not giving literature courses
to criminals is the way to reduce the number of crimes. Tuition is
probably cheaper than prison stays, at any rate.
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(a) Bars same width, different (b) Bars same width, different
heights, stacked heights, next to each other

Figure 3.2 Three types of bar graphs for two variables (criminals who did/
did not commit new crimes after either taking a literature course or serving
a jail term)

On certain variables we can measure the value of an observation on a
scale; for example, we can measure the height of a plant with a ruler
marked off in inches. The unit of measurement we use to measure the
height of the plant is the inch. Similarly, using dollars we can measure
the income of a household; using years we can measure how old a
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person is. Measurable variables such as height, income, and age are
called metric variables. A metric variable is not metric in the sense of the
metric system but in the sense that its values can be numerically mea-
sured.

Because meaningful numerical values of a metric variable can be
collected, arithmetic operations can be performed on the values of the
variable, something that cannot be done with categorical variables. The
values of a metric variable can be added, subtracted, multiplied, and
divided.

Metric variables are sometimes known as interval or ratio variables.
The distinction between interval and ratio need not concern us in this
book.

SET0AP A NED R OEN D EER R 3 S

| Give an example of a metric variable and list some of the values of
the variable. Why is the variable a metric variable?

Graphing one metric variable

How old are women when they marry? Following is a list of the ages of
women who applied for a marriage license in one week, according to
the local newspaper (note that not all were necessarily first marriages):

30 27 56 40 30 26 31 24 23 25 29 33 29 22 33 29 46 25
34 19 23 23 44 29 30 25 23 60 25 27 37 24 22 27 31 24 26

What do these numbers tell us? It is easy to spot that the youngest
woman is 19 years old, the oldest is 60 years old, and several seem to
be in their twenties, but beyond that it is difficult to get much sense of
the overall age of the 37 women. With a larger number of observations,
it would be even more difficult to understand the data without further
analysis. With a metric variable such as age, several different graphs can
aid in understanding the data better. Four types of graphs are shown
in Figure 3.3.

Lineplot A small number of observations, as we have here, can be
organized in a lineplot to get a better understanding of the data. In
Figure 3.3a, a line represents the variable; the values of the variable
label the line. Each observation is marked as a point above the line.
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Figure 3.3 Four types of graphs for a metric variable (female age at mar-
riage)

The lineplot clearly shows that most of the women were in their middle
to late twenties and early thirties, with a scattering between 35 and 60.

An advantage of a lineplot is that it shows directly how the obser-
vations distribute themselves across the variable. We can see where
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many observations cluster and where few observations scatter; the pat-
tern of the ages is clear. And the original values of the variable are right
there: none of the information contained in the original data has been
lost, in spite of the simplification the graph offers.

With a large number of different observations of the variable, the
lineplot gets messy. For example, a scale of hourly wages would have a
large number of values, from the wage of a baby sitter who earns $5 an
hour to the wage of a rock star who gets $500,000 an hour for perform-
ing. Similarly, a large total number of observations—say, the ages of
brides in an entire year—would make a large and messy collection of
points above the line. The lineplot would look more like an ant colony
than a statistical aid. Larger data sets are better served with graphical
methods other than lineplots.

Boxplot Figure 3.3b is a boxplot of the female age at marriage data,
drawn to the same scale as the lineplot. Boxplots are not common in
the popular press, but they are making inroads in professional journals.
They require a bit more work to understand and create than other
graphs.

The boxplot in Figure 3.3b shows a line that starts at 19, the age of
the youngest bride. The line stops at a rectangular box, from which
the plot takes its name. In the box is a vertical line. The line picks up
again after the box and extends to 60, the age of the oldest bride. The
boxplot is constructed to show one quarter of the observations (37 —+
4 =~ 9) as the line between the minimum value and the beginning of
the box. Another quarter of the observations lie between the beginning
of the box (at 24) and the vertical line in the box (at 27). Another
quarter of the data lie between the line and the end of the box (at 32).
The last quarter of the data lie from the end of the box to the largest
observation (at 60). Thus, one half of the data lie in the range spanned
by the box.

Sometimes the line is not drawn all the way from the box to the
smallest observation and/or all the way from the box to the largest
observation. This is done when the smallest and/ or largest observation
lies more than a certain multiple of the length of the box away from
the box. In that case, one or more of the extreme observations are
marked only as points.

Boxplots are informative graphs. They show the two extreme values
as well as the range of the middle values. In Figure 3.3b, the middle
half of the brides are between 24 and 32 years old, and the other half
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are scattered over the rest of the age range—a good picture of the
common ages at which women marry.

Boxplots are particularly useful with data from several groups. A
boxplot can be made for each group and compared with one another
to see how the groups differ. A collection of boxplots for rates of violent
crime in seven regions of the country appears in Figure 3.19. How the
center lines compare for the different regions is directly apparent, and
so are longer boxes in some regions than others. With the boxplots it
is easy to see which regions are most violent (by comparing the center
lines), which are most diverse (by comparing the length of the boxes),
and which are most likely to include some very peaceful or very violent

83
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states (by comparing the locations of the lines on either side of the
boxes).

With a boxplot, the original data are lost and cannot be recovered
from the plot. At the same time, a boxplot provides a powerful and
simplified view of the data.

Stemplot The third graph of the female age at marriage data is a stem-
plot (Figure 3.3c). As the name implies, the graph has a stem, which is
drawn as a vertical line. From the stem, branches grow out on both
sides. The branches at the left are the first age digits and the branches
at the right are the second digits, listed as many times as needed for
all the brides of that age. For clarity, each decade is shown in two parts;
2, for example, stands for the ages 20-24, 2+ stands for ages 25-29.

In the stemplot in Figure 3.3c, the youngest bride is 19 years old,
two brides are 22 years old, four brides are 23 years old, and so on.
Note that the original data are saved in a stemplot. At the same time,
the distribution of the observations across the range of values of the
variable is clear. Most brides fall in the range 25-29 years of age, and
in this group of women most were marrying before reaching 30.

A stemplot does not work well for a large number of observations
of a variable because each observation takes up a space in the graph.
You can imagine the length of the branches if many observations were
listed.

Histogram The histogram is the most commonly used graph to display
the number of observations across a range of values of a metric variable.
To create a histogram, the range of values is divided into intervals,
usually but not always of the same length, and then the observations in
each interval are shown in a rectangle whose area represents the num-
ber of observations. (When all the intervals have the same width, as in
the histogram in Figure 3.3d, the height of the rectangle shows the
number of observations. But it is still important to realize that it is the
area of the rectangle that represents the number of observations.)
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In the histogram in Figure 3.3d, the greatest number of brides falls
in the interval 25-30, since that rectangle is the largest. There are also
quite a few brides in the intervals 20-25 and 30-35. The other brides
distribute themselves fairly evenly and sparsely across the remaining
age intervals.

The histogram in Figure 3.3d looks very much like the stemplot in
Figure 3.3c laid on its side. Each row in the stemplot corresponds to a
rectangle in the histogram. Since a histogram shows the shape of a
distribution, there is a gain in simplicity and we see a pattern that is
not apparent in a list. But at the same time, a histogram loses infor-
mation. From a histogram the original observed values of the variable
cannot be recovered as they can be from a stemplot. In a stemplot an
original observation is represented by its actual value in the plot; in a
histogram an observation is represented only by a part of a rectangle.

A histogram is therefore useful in simplifying a large number of
observations; each observation occupies only a small part of a rectangle.
For example, a histogram of ten times as many brides, for a total 370
brides, with 10 in the interval 15-20 years, 90 in the interval 20-25
years, and so on, would look just like the histogram in Figure 3.3d. The
difference would be that the frequencies on the vertical scale would be
20, 40, 60, and so on instead of 2, 4, 6, and so on. Whereas it is hard
to imagine a stemplot for as many as 370 observations, histograms dis-
play large data sets with ease.

The main interest in histograms is their shapes, which can be quite
varied. The histogram in Figure 3.3d is unimodal, so called because it
has one peak. This shape tells us that there is one main group of ob-
servations. Histograms can also be symmetric; that is, the left half of the
distribution is a mirror image of the right half. The histogram of brides’
ages does not show a symmetric distribution since there is a longer tail
of observations to the right than to the left. This histogram is skewed.

Many variables, for example physical characteristics and test scores,
often show both unimodal and symmetric distributions. A unimodal
and symmetric histogram tells us that most of the observations are in
the middle of the distribution of values and that fewer observations are
very large or very small. Unlike in Lake Wobegon, most children are
average, not above the average. “Averageness” is often an interesting
characteristic of a variable, and it becomes apparent only in a graph
such as a histogram.

A bimodal histogram shows two peaks. To illustrate this shape, imag-
ine a histogram showing the distribution of income in a community
that consists mainly of rich people and poor people, with not too many
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people who have a middle-range income. The shape of the histogram
would show the two peaks, telling us that this is a polarized community.

A histogram can change shape, depending on how it is constructed
and give a very different impression of the data. First, the number of
intervals used on the horizontal axis to divide the variable into intervals
affects the shape of the histogram. If the variable is divided into a large
number of intervals, each interval will contain only a few observations,
and the histogram will look ragged and uneven (Figure 3.4a). If all the
observations are shown in one interval, then the histogram will simply
consist of one big bar (Figure 3.4b) —not a very useful histogram. The
histogram in Figure 3.3d lies somewhere between the two extremes and
is more informative and attractive than the two in Figure 3.4. But we
have to be on our guard: if a histogram has only a few intervals and

Figure 3.4 Histograms with too many and too few intervals (female age at
marriage)

87



88 Chapter 3 » Description of Data: Graphs and Tables

a unimodal shape, the graph may hide the fact that more intervals
would have revealed a bimodal shape.

Second, the shape of the histogram changes if the bars are tall and
thin versus short and wide. The histograms in Figure 3.5 show the fe-

Figure 3.5 Wide and tall histograms (female age at marriage)
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male age at marriage divided into the same number of intervals. But
the histogram in Figure 3.5a is short and wide, while the one in Figure
3.5b is tall and thin. Because the differences in height of the rectangles
in Figure 3.5a are so small, the differences between the number of
observations in the intervals also appear small. The opposite percep-
tion holds for Figure 3.5b.

No matter their shape, of course: the two histograms are identical;
they tell exactly the same story about the age variable. But we should
be wary of histograms in which the rectangles are tall and thin or short
and wide. Their designers may be trying to create an impression of
something that really is not present in the data.

Graphing two metric variables

Statisticians often need to display data on two metric variables—the
ages of brides and the ages of grooms, for example, or height and
weight of individuals, age and income, SAT scores and grade point
average, national literacy and gross domestic product. A common way
to display data on two variables is a scatterplot.

A scatterplot consists of two axes, a horizontal axis and a vertical
axis. The horizontal axis (the mathematical x-axis) is used for one vari-
able (e.g., age of grooms), and the vertical axis (the mathematical y-
axis) is used for the other variable (e.g., age of brides). A pair of ob-
servations on the two variables is shown as a point in the graph. For
example, if a groom is 37 years old and the bride is 30 years old, a point
is drawn in the graph where an imaginary vertical line from point 37
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Figure 3.6 Scatterplot showing ages of brides and grooms

of the x-axis intersects an imaginary horizontal line from point 30 on
the yaxis.

Figure 3.6 is a scatterplot of data on the ages of the 37 couples.
(Note that 37 points do not appear in the graph because the ages of
the brides and grooms in some couples were the same; those couples
are represented by a single point.) Looking at the original data, it is
difficult to see patterns in them beyond the tendency for older grooms
and older brides to marry. When the ages are displayed as points in a
scatterplot, the relationship of the two variables is clearer. The points
start in the lower left corner of the scatterplot and continue roughly
to the upper right corner: by and large, younger grooms marry younger
brides and older grooms marry older brides. The path of the points
from the lower left corner to the upper right corner has, in mathe-
matical terms, a positive slope; it indicates a positive relationship be-
tween the two variables. The points also show that in some couples the
groom is older than the bride and in other couples the bride is older
than the groom.

In a scatterplot, no numerical information is lost and simplification
of the data is gained. A scatterplot is easy to create and to interpret.
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Time series plot

Variables often consist of data that have been collected over a period
of time. The consumer price index for the last forty years is a variable
with time series data, as are value of annual imports from Japan since
World War II, average length of a baseball game since 1940, or average
length of a skirt hem since 1932. Graphs of time series data are special
scatterplots. Time as a variable is plotted along the horizontal axis, the
other variable along the vertical axis. The points do not look as scat-
tered as they do in the age at marriage scatterplot because time values
on the horizontal axis are usually evenly spaced. Also, only one value
of the variable on the vertical axis is plotted for each value on the
horizontal axis.

Using the data file in Table 3.1, the scatterplot in Figure 3.7 shows
the height in inches jumped by the male Olympic gold medalists in the
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Table 3.1 Gold-medal-winning male Olympic high jumps 1900-1936

Year Height of jump (inches)
1900 74.8
1904 71.0
1908 75.0
1912 76.0
1920 76.2
1924 78.0
1928 76.4
1932 71.6
1936 79.9

high jump competition in the years from 1900 to World War II. In the
data file, the two columns of numbers show that we are dealing with
two variables. It is evident from the table that the heights increased,
and this is clearly illustrated in the figure. A new Olympic record was
set each time except for the years 1904 and 1932; the line dips as it
connects 1900 with 1904 and again as it connects 1928 and 1932. The
line then extends upward after each of these years. (Imagine contin-
uing the graph to the present. Not only would the year axis have to be

Figure 3.7 Time series graph showing gold-medal-winning male Olympic
high jumps 1900-1936
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extended, so would the winning jumps axis: champion jumpers now
think nothing of 8-foot—96-inch—jumps.)

As with many other graphs, it is possible to change the shape of a
time series plot and give entirely different impressions of the data.
Figure 3.7 seems to indicate considerable change in the heights of
winning jumps from one Olympic games to another. But note that the
vertical scale starts at 70, not at 0, and extends only 10 inches. There
is a reason for starting at 70. Imagine extending the vertical line down-
ward to 0 while keeping the graphed line where it is and maintaining
the scale of the l-inch intervals. The differences from one year to the
next would not seem as large as they do in Figure 3.7, but the graph
would be too deep for practical purposes. It would be eight times the
depth of Figure 3.7, and the bottom seven eighths would be empty!

If the graph is kept the same size as Figure 3.7 and the vertical axis
marked with a scale from 0 to 80 inches instead of from 70 to 80 inches,
the immediate visual impact is much different (Figure 3.8). The lines
connecting the points do not go up and down quite as steeply as they
do in Figure 3.7. Figure 3.8 shows a general increase in the height of
the jumps, but the change from one Olympics to another seems much
less dramatic.

Obviously, we should examine a time series plot carefully, imagin-
ing what it would look like with changes such as the ones discussed

Figure 3.8 Redrawn time series graph showing gold-medal-winning male
Olympic high jumps 1900-1936

3
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here, before we draw conclusions about the data. In general, the time
series graph has the major advantages and disadvantages of scatter-
plots: numerical information is retained and data are simplified, but
the shape of the graph can be misleading.

Maps can represent not only geographical features, such as rivers and
mountains, but also statistical information. For example, in a map of
the United States the states can be colored according to some variable,
such as Presidential election voting patterns. Figure 3.9 shows a map
in which the states are colored by the magnitudes of their divorce rates.

Maps can be useful in identifying conditions in which viewers are
interested. (Maps on the weather channel are a case in point!) If you
were considering moving to California, you would be interested in
knowing where the air pollution is greatest, for example. Maps also



3.4 Creating Maps from Data

Figure 3.9 Map showing the distribution of divorce rates in the United
States (per 1,000 people) (Source: Adapted from a map based on data from the Na-
tional Center for Health Statistics by Paul O. Pugliese in Time, December 6, 1993, p. 23.)

help in studying regional trends, such as the prevalence of certain in-
sects in one area of the country rather than in another.

The approximately 3,000 counties of the United States could be
outlined and colored to show cancer rates (the number of reported
cancer patients in each county divided by the population of the
county). The categories low, medium, and high cancer rate could be
established and the counties colored in three shades of a color accord-
ing to their level of cancer rate. Such a map would show regional pat-
terns.

Useful as maps are, they can be misleading in a major way. It is the
geographical area that is shaded, and geographical areas vary a great
deal in size. A small eastern county with a high cancer rate will not
show up on a map as much as a large western county with a low cancer
rate. A high cancer rate in a geographically small county in New Jersey
affects many people, whereas a low cancer rate in a large county in
Nevada affects only a few.

95



96

Chapter 3 » Description of Data: Graphs and Tables

This chapter introduces you to a range of standard statistical graphs.
Most of them were made using statistical software on a computer. With
a click of the mouse, graphs that used to take a long time to design
can now be almost instantaneously created and revised. Graph makers
can experiment with multiple forms, many of which are unfamiliar to
the public. Each form may be useful in revealing some facet of the data
and suppressing others. But each new breakthrough in visual imagery
also produces new pitfalls. To evaluate a graph, we have to have some
idea of what constitutes a “good” graph.

An excellent introduction to “good” and “bad” graphs is found in
Edward R. Tufte’s book The Visual Display of Quantitative Information
(Cheshire, CT: Graphics Press, 1983). Tufte, an expert in the field of
visual displays of data, uses the term graphical excellence to describe a
“good” graph. In his view, an excellent graph is one in which complex

ideas are communicated with clarity, precision, and efficiency (page
51).

“The least ink”: Is the simplest graph best?

Figures 3.10 and 3.11 show the same data on the relationship between
the size of the U.S. population and a price index for 20-year intervals
in the nineteenth century, but Figure 3.11 uses less ink than does Fig-
ure 3.10; it does away with parts of the graph in Figure 3.10 that are
not necessary to convey the information in the data. It uses the dates
as points, rather than dates plus points. (Even the points in Figure 3.10
are redundant; they don’t need to be marked with with a dot and an
open square.) It removes the parentheses around the years. And, since



3.5 Graphing: Standards for Excellence

60
| =(1800)
. 50
L
& 0(1820)
= 40
=
&
30 a(1840) a(1880)
20 T T T T T
0 20 40 60 80

Total population (millions)

Figure 3.10 Scatterplot of population and price index 1800-1900 (Source:
U.S. Bureau of the Census, Historical Statistics of the United States, Colonial Times to

1970, Bicentennial Edition, Part 1 (Washington, D.C.: U.S. Bureau of the Census, 1975).
Population: Series A57-72, pp. 11-12; consumer price index: Series E135-166, p. 211.)

the title states that the data apply to the nineteenth century, it aban-
dons the first two digits in the years (the sequence of the years makes
it quite clear that the upper left *00 refers to the year 1800 and the
lower right *00 refers to 1900). Thus, Figure 3.11 is a better graph than
Figure 3.10, at least for Tufte!

Do the histograms on age of brides in Figure 3.4 use too much ink?
Yes, according to Tufte. The height of each rectangle is indicated by
the length of the left side of the rectangle, the length of the right side,
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Figure 3.11 Simplified scatterplot of the data in Figure 3.10 (Source: U.S. Bu-
reau of the Census, Historical Statistics of the United States, Colonial Times to 1970, Bi-
centennial Edition, Part 1 (Washington, D.C.: U.S. Bureau of the Census, 1975). Popula-
tion: Series A57-72, pp. 11-12; consumer price index: Series E135-166, p. 211.)
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the location of the top line, and the shading—for redundant clues.
Assuming that Tufte would subscribe to the rectangle idea at all, he
would probably argue that the shading does not add anything to the
graphs. No shading would certainly cut down on ink, but it would also
make the graphs less clear. The shading makes the rectangles stand
out against the background. Without shading, the inside and outside
of arectangle would have the same color, and the point of the graphs—
that the shapes of the two histograms are different—would be less
obvious. The extra ink makes the figure readable.

“Chartjunk”: A new name for garbage

Graphs sometimes include features that have nothing to do with the
data presented in the graph—features that the graph maker includes
in an attempt to make the graph more attractive or interesting. Tufte
refers to unnecessary features as “chartjunk.” Chartjunk includes
shadings on rectangles, grids on scatterplots, figurative symbols to
represent quantities, and illustrations that decorate the margins or the
graph itself. Tufte’s view is based on the premise that “less is more”
in proper graph design. We may or may not agree; one viewer’s chart-
junk may be what makes the graph comprehensible to another viewer.
A graph that is attractive to the eye, displays a touch of humor, or stirs
a reaction such as curiosity or dismay may not suit strict statistical stan-
dards of simplicity and order, but it might attract the viewer’s eye.

Data density

The purpose of a graph is to transmit information to the viewer. Figure
3.8 on winning Olympic high jumps shows 9 jumps and the years of 9
Olympic games, for a total of 18 numbers. The graph itself is fairly
large, so it has only a few numbers per square inch. The more numbers
per square inch in a graph, the higher the data density and the more
informative the graph.

An example of a graph with high data density is the daily national
weather map in the newspaper. The map shows the outline of each of
the 50 states, temperature, barometric pressure, and precipitation. An-
other example of graphs with high data densities are the graphs in
Consumer Reports on repair records of cars.
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“Revelation of the complex”

Tufte concludes his book by discussing a famous graph showing how
Napoleon’s army suffered a grand defeat in Russia in 1812 (page 40;

Figure 3.12 reproduces the graph):

[This] is the classic [graph] of Charles Joseph Minard (1781-
1870), the French engineer, which shows the terrible fate of Na-
poleon’s army in Russia. . . . Seeming to defy the pen of the his-
torian by its brutal eloquence, this combination of data, map and
time series, drawn in 1861, portrays the devastating losses suf-
fered in Napoleon’s Russian campaign of 1812. Beginning at the
left on the Polish-Russian border near the Niemen River, the
thick band shows the size of the army (422,000 men) as it in-
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vaded Russia in June 1812. The width of the band [invasion is
gray, retreat is black] indicates the size of the army at each place
on the map. . . . The crossing of the Berezina River was a disas-
ter, and the army finally struggled back into Poland with only
10,000 men remaining. . . . Six variables are plotted, the size of
the army, its location on a two-dimensional surface, direction of
the army’s movement, and temperature on various dates during
the retreat from Moscow.
It may well be the best statistical graphic ever drawn.

Tables are another way to summarize data in compact form. Usually
tables are composed of numbers organized in rows and columns. Ta-
bles often show how many or what percentage of observations fall in
different categories, for example, children of different ages in an ed-
ucational study.

Tables are used for two broad purposes. One purpose is to support
arguments in accompanying text; the other is to organize data. Tables
in newspapers, journal articles, and books are usually of the first kind,
and tables presented by official statistical agencies such as the Bureau
of the Census are usually of the second kind. A table for the purpose
of supporting an argument must make a point. A table that simply
presents data must be easy to read and interpret.

Table 3.2 contains the same data as those in Figure 3.1 on the
criminals who did and did not commit new crimes. The visual experi-
ence the table provides is very different from that of the corresponding
graphs. When we examine Figure 3.1 and Table 3.2 together, itis much
easier to compare the numbers of people in the different categories in

Table 3.2 Number of criminals convicted of new crimes and not
convicted of new crimes within from one to two and a half years after
they had served their sentences

Convicted of new crimes 24

Not convicted of new crimes 48

Total 72
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the graphs than in the table. The different sizes of the two pie slices or
bars immediately convey the differences in the two categories. In the
table, the numbers have to be first read and then mentally compared.
To see how many more criminals not convicted of new crimes there
are than criminals reconvicted, we have either to subtract 48 from 24
or to divide 48 by 24.

What the table does show very directly are the actual frequencies.
The table states how many criminals were convicted of new crimes,
while in the graph we have to draw a mental line from the top of the
bar left to the vertical axis. And depending on how detailed the num-
bers are on the axis and how good our eyesight is, we still might have
difficulty judging whether the number is 24 or 26. Thus, if exact num-
bers are important, a table is better than a graph. For a quick impres-
sion of the data, a graph is better than a table.

A table always has a title and rows and columns are clearly headed.
Totals for rows and columns should be included, where appropriate.
The totals provide a context for the details in the columns and rows.
If the table contains only one collection of numbers, as in Table 3.2,
the numbers should run vertically. The table could be arranged with
the numbers running horizontally, but it is not as easy to get a sense
of the total frequency. Even though the total is given and we do not
have to do any addition ourselves, we are accustomed to seeing num-
bers that are added arranged in a column. It is also easier to compare
numbers arranged in a column than numbers arranged in a row. The
differences between two numbers are more apparent when the num-
bers are stacked.

In her book Plain Figures, Myra Chapman (in collaboration with
Basil Mahon; London: Her Majesty’s Stationery Office, 1986) gives an
instructive example of how a table can be improved by rearrangement
(Tables 3.3 and 3.4). The data are from England and Wales.

Table 3.3 is typical of statistical summaries. It shows data on two
variables for students who had finished compulsory education. One
variable is time, running in seven academically annual increments from
1973 to 1980. The other variable is destination of pupils after compul-
sory school was over, that is, what each group of students did after
finishing school. The numbers are all percentages except for those in
the last row, which are total numbers of pupils in thousands. For ex-
ample, the 1973-1974 column shows what percentages of 701,000 pu-
pils ended up in the five different destination categories. The per-
centages in each column add up to 100%, except perhaps for
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Table 3.3 Destination of pupils attaining the statutory school-leaving age

School year
Destination (%) 7374 74="75 °75-°76 0 '76-"77  C77-"78  U78-°79  '79-80

Staying on at school 25.9 26.1 275 28.3 27.6 274 27.8
In full-time or
nonadvanced further education 9.7 11.5 13.6 13.6 14.1 14.3 14.1
In employment

with part-time day study 174 16.4 12.1 10.2 14.1 12.1 12.2

with no day study 44.1 41.7 38.0 37.7 34.4 38.7 38.7
Unemployed 3.0 4.2 8.8 10.1 10.0 7.5 7.2

Total pupils (=100%; thousands) 701 723 744 746 773 801 814

rounding-off errors in the computations of the percentages, but these
totals are missing in the table. (The percentages across the rows do not
and should not add up to 100%.)

The main purpose of Table 3.3 is to show how the percentages for
the various categories changed over time. Among other difficulties in
clarity of presentation, the table requires comparison of percentages
across rows rather than down columns to see what happens from one
year to the next.

Table 3.4 Table 3.3 transposed and simplified

Destination
In employment In full-time .
With no ~ With part-time ~ Staying on  or nonadvanced Total pupls
School year  day study day study at school  further education Unemployed  Percent Thousands
1973-1974 44 17 26 10 3 100 701
1974-1975 42 16 26 12 4 100 720
1975-1976 38 12 28 14 9 101 740
1976-1977 38 10 28 14 10 100 750
1977-1978 34 14 28 14 10 100 770
1978-1979 39 12 27 14 8 100 800

1979-1980 39 12 28 14 7 100 810
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In Table 3.4, the data are rearranged to assist the viewer in under-
standing the changes in the percentages over time. Perhaps the most
striking improvement is simplification: all the percentages have been
rounded to two figures without decimals. This removes 35 numbers
from the table, together with 35 periods. (The principle of less ink in
a graph also seems to hold for a table.) The percentages are now not
completely accurate, but for the purpose of this table, complete accu-
racy is not important. The total numbers of pupils themselves have
been rounded; the purpose of the table is to show the trends of change
in pupils’ destinations, not the precise numbers of pupils for each des-
tination.

Another large difference between the two tables is the order of the
destination categories. In Table 3.3, the category “Staying on at school”
comes first, in Table 3.4 the category “In employment with no day
study.” The reason for rearranging the categories is to put the higher
numbers in the upper left corner of the table and the lower numbers
(more or less) in the lower right corner. The reason for such an ar-
rangement is ease in comparing numbers, particularly the ones in the
same column. Table 3.4 also shows that the percentages in each row
add up to 100%.

3.1 Graphs: Picturing data

A graph is an extremely informative way of analyzing data because an
entire data set can be summarized in a graph and understood in one
glance. Graphs help the investigator to extract important findings from
the data and help to communicate these findings to others.

3.2 Categorical variables: Pie charts and bar graphs

A categorical variable is a variable where two observations are either
the same or different. The major graphs used to display categorical
variables are the pie graph and the bar graph. The pie graph is easy to
understand if there are not too many categories, but the number of
observations in each category is usually lost. The bar graph is easy to



read, but the details of different categories are difficult to observe if
the bars are composed of different groups.

3.3 Metric variables: Plots and histograms

A metric variable requires a unit of measurement that assesses how
much bigger or smaller one value is than another. Lineplots, box plots,
stemplots, and histograms can be used to display single metric varia-
bles. The lineplot displays a small data set along one continuous line;
the original values of the variable appear in the plot.

The stemplot is well suited for a small data set; it is less useful for
data sets with a small range of numbers. Boxplots show the two extreme
values and the range of the middle values of a variable. Boxplots are
helpful in comparing data from several groups on the same variable.
The histogram indicates by the areas of its rectangles the relative num-
bers of observations of each value for the variable. A unimodal histo-
gram has one peak while a bimodal histogram has two peaks. A histo-
gram is useful for showing a large number of observations. A drawback
of a histogram is that the original values of the observations are lost.

Graphs often used to plot two metric variables at a time are the
scatterplot and the time series plot. A scatterplot has two axes on which
each point—composed of the observed values of two variables—can
be graphed for each element. Scatterplots show patterns of relation-
ships between the two variables. Time series scatterplots show time val-
ues, which are usually evenly spaced, on the horizontal axis and another
variable on the vertical axis.

Bar graphs and time series graphs can be made for several variables.
While multiple-variable graphs allow the comparison of a large amount
of information, they can be difficult to read if they contain too many
different variables.

3.4 Creating maps from data

Maps colored or shaded in symbolic ways convey statistical data
and/or help in the generation of hypotheses regarding regional
trends. Maps can be misleading because shaded areas represent land
masses, not population densities.

3.7 Summary

105



106

Chapter 3 « Description of Data: Graphs and Tables

3.5 Graphing: Standards for excellence

Edward Tufte, an expert in the field of visual displays of data, uses the
term graphical excellence to describe a “good” graph. In his view, a
good graph communicates complex ideas with clarity, precision, and
efficiency. Tufte argues that the purpose of graphics is to create a “rev-
elation of the complex.”

3.6 Tables: Turning can be timely

Tables consisting of numbers organized in rows and columns summa-
rize data in a compact form. The manner in which tables are con-
structed can strongly influence the way in which the data are inter-
preted by the viewer.

Cleveland, William S. Elements of Graphing Data. New York: Chapman &
Hall, 1993. Contains many interesting graphs.

Monmonier, M. How to Lie with Maps. Chicago: University of Chicago
Press, 1991. How not to use maps.

Tufte, Edward. The Visual Display of Quantitative Information. Cheshire,
CT: Graphics Press, 1983. A classic on how to display data in graphs,
with good historical background.

Wainer, Howard. “How to display data badly.” The American Statistician,
vol. 38, no. 2 (May 1984), pp. 137-147. Entertaining article on how
not to display data.

Witmer, Jeffrey. DATA Analysis: An Introduction. Englewood Cliffs, NJ:
Prentice Hall, 1992. Interesting graphs of different data sets.

REVIEW (EXERCISES 3.1-3.15)
3.1 What are the two conflicting goals in analyzing statistical data?

3.2 a. When are pie charts useful in displaying data?
b. What is a major disadvantage of pie charts?



Figure 3.13 U.S. troops stationed on ships around the world, June 30,
1993 (Exercise 3.5) (Source: Data of the U.S. Department of Defense.)

3.3 a. Whatis a lineplot?
b. What is an advantage of using a lineplot to display data?

o

What is a limitation of a lineplot?

3.4 . What is a stemplot?

a

b. Why do you think it is called a stemplot?

c. What is an advantage of using a stemplot to display data?
d

. What is a limitation of a stemplot?

3.5  Figure 3.13 is a bar graph of the number of U.S. troops stationed
on ships around the world in 1993.

a. Copy the histogram and indicate the following parts: A. Hor-
izontal axis. B. Vertical axis. C. Variable being measured. D.
Number of troops in Europe.

b. How is the number of observations for each area of the world
displayed in the graph?

c. What would be incorrect about indicating the different num-
bers of troops with figures of sailors instead of bars?

d. What are some conclusions that can be drawn from the in-
formation provided in this histogram?

Exercises
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e. Are there any aspects of this histogram that are confusing or
that could use further clarification in order to be comprehended
more easily?

3.6 In ahistogram is it the base, the height, or the area of a bar that
corresponds to the number of observations that fall into each interval?

3.7 Why is the histogram one of the best graphs for very large sam-
ples?

3.8 When a histogram has two high points, or peaks, what is the
name of the shape of the distribution?

3.9 Would the distribution of heights of 100 boys in the eleventh
grade have a unimodal or a bimodal distribution?

3.10 What five numbers in data are necessary to display the data in a
boxplot?

3.11 What is a skewed distribution?

3.12 What type of data is a scatterplot useful for?

3.13 Figure 3.14 shows total U.S. population and consumer price in-
dex for the nineteenth century.

a. Without reviewing the text, interpret this graph in your own
words.

b. Why is the graph useful?

¢. How would it be easy, with this kind of figure, to convince
someone of a strong relationship between the two variables?
(Hint: Two scales are used on the vertical axes.)

3.14 What are the key characteristics graphical excellence in a statis-
tical graph?

3.15 What are the major characteristics of a well-produced statistical
table?

INTERPRETATION (EXERCISES 3.16-3.33)

3.16 Discuss the statement “A single graph is better than a thousand
words.”

3.17 In what respects are graphs a type of persuasion?

3.18 Figure 3.15 is a pie chart showing the number of crime victims
per 1,000 population for different income groups.
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Figure 3.14 Total U.S. population and consumer price index at six census
years in the nineteenth century (Exercise 3.13) (Source: U.S. Bureau of the Cen-
sus, Historical Statistics of the United States, Colonial Times to 1970, Bicentennial Edition,
Part 1 (Washington, D.C.: U.S. Bureau of the Census, 1975). Population: Series A57-72,
pp. 11-12; consumer price index: Series E135-166, p. 211.)

Figure 3.15 Number of crime victims per 1,000 population for different in-
come groups (thousands of dollars) (Exercise 3.18)
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Figure 3.16 Success rates of matchmaking services (Exercise 3.19) (Source:
Mara B. Adelman, and Aaron C. Ahuvia, “Mediated channels for mate seeking: A solution
to involuntary singlehood?” Critical Studies in Mass Communication, vol. 8 (1991), pp.
273-289.)

a. What conclusions would you draw about crime victims and
income levels?

b. What questions are unanswerable because a pie chart is used
for displaying the data?

c. What would be a better graph for analyzing these data? Why?

3.19 Figure 3.16 is a lineplot for success rates reported for match-
making services, with success being defined as “long-term romantic
relationship” resulting from arrangements made by the agency.

a. What is one advantage of using a lineplot to display these
data?

b. When is a lineplot a poor method for displaying data?

c. What conclusion might you draw from Figure 3.16 about in-
vesting in a matchmaking service if you were eager to find a long-
term romantic relationship?

d. Because there is such a wide range of percentages of success
rates, what more might a potential customer want to know about
matchmaking services that is not presented in Figure 3.16?

3.20 Figure 3.17 is a double stemplot of marriage ages of 37 couples
listed in the Sunday issue of a local newspaper.

a. What patterns in the data does the stemplot help us observe?

b. Do you find any aspects of the stemplot disadvantageous in
terms of visual appeal or convenience?

c. Would any details of the data not presented in the figure be
useful to know?

3.21 Find a statistical graph in a newspaper, news weekly, or scientific
journal, for example, and copy the graph.

a. Describe what the graph tells you about the data it displays.
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Figure 3.17 Marriage ages of 37 couples (Exercise 3.20) (Source: The Phila-
delphia Inquirer, September 10, 1995, p. MDI2-d.)

b. Discuss the quality of the graph in terms of principles of
graphical excellence.

c. Could the graph be redrawn in any way to improve it? Explain.

d. Can you think of a way in which information available in the
data matrix might have been suppressed in order to produce the
graph in the figure?

e. Can you suggest another type of graph that could have been
made from the original data matrix? Or is this the only graph
the data matrix would allow?

3.22 Figure 3.18 compares the heights of several defense secretaries
with national defense spending.

a. What does the graph tell us?
b. Does the graph meet the criteria for a good graph? Explain.

Exercises
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Figure 3.18 Heights of Secretaries of Defense 1973-1989 (Exercise 3.22)
(Source: Data provided by the Secretaries; adapted from the graph in The Economist, Feb-
ruary 11, 1989, p. 20.)
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Figure 3.19 Violent crime rates in the 48 contiguous United States in 1986
(per 1,000 population) (Exercise 3.23) (Source: F.B.I. Uniform Crime Report for
the United States)



Figure 3.20 Life expectancy in the United States 1900-1950 (Exercise
3.24) (Source: U.S. Bureau of the Census.)

3.23 Figure 3.19 shows a boxplot of the violent crime rate in each of
seven regions in the United States.

a. From the graph, how do the regions differ in crime rates?

b. Does the graph meet the criteria for a good graph? Explain.
3.24 Figure 3.20 shows the life expectancy for men and women at ten-
year intervals in the first half of the twentieth century.

a. Why are the differences between men and women as large as
they are?

b. How might such a graph be used politically by certain interest

groups?

c. Redraw the graph to meet criteria of good graph making.
3.25 Compare Figures 3.7 and 3.8 on winning Olympic high jumps.

a. Which do you think is the better graph?

b. What did you take into account in your answer to part a?

Exercises
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Figure 3.21 Two bar graphs showing the same data (Exercise 3.26) (Source:
Data from Workforce 2000, produced by the Hudson Institute, 1987.)



Figure 3.22 Life span of paper currency (Exercise 3.30) (Source: Data of U.S.
Bureau of Engraving and Printing, adapted from the graph by Marty Baumann in USA
Today, August 19, 1991, p. 1.)

3.26 The two bar graphs on growth in the workforce for a given time
period in Figure 3.21 display the same data, yet they look quite different
from one another.

a. Why is it possible to say that the two bar graphs display the
same data?

b. What effect on the casual reader might each graph have?

c. How would you redraw these bar graphs if you were trying to
be as neutral as possible? (Draw or describe your changes.)

3.27 Explain whether stemplots can be used for categorical and met-
ric variables.

3.28 Explain whether boxplots can be used for categorical and metric
variables.

3.29 Compare the strengths and weakness of stemplots and boxplots.

3.30 Money actually wears out, and Figure 3.22 shows how long the
average life span is for paper currency of different denominations.

Exercises
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Table 3.5 Data for Exercise 3.31

Percent of
Fat calories Sodium
Dish (number of cups) Calories  (grams)  from fat (malligrams)
Egg roll (1 roll) 190 11 52 463
Moo shu pork (4 pancakes) 1,228 64 47 2,593
Kung pao chicken (5) 1,620 76 42 2,608
Sweet and sour pork (4) 1,613 71 39 818
Beef with broccoli (4) 1,175 46 35 3,146
General Tso’s chicken (5) 1,597 59 33 3,148
Orange (crispy) beef (4) 1,766 66 33 3,135
Hot and sour soup (1) 112 4 32 1,088
House lo mein (5) 1,059 36 31 3,460
House fried rice (4) 1,484 50 30 2,682
Chicken chow mein (5) 1,005 32 28 2,446
Hunan tofu (4) 907 28 27 2,316
Shrimp in garlic sauce (3) 945 27 25 2,951
Stir-fried vegetables (4) 746 19 22 2,153
Szechuan shrimp (4) 927 19 18 2,457

Source: Data from Center for Science in the Public Interest, tabulated by the Philadelphia
Inquirer, September 2, 1993, page D1.

a. What type of average do you think the figure refers to? Give
reasons for your answer.

b. Does the graph meet Tufte’s criteria for graphical excellence?

c. Redraw the graph another way and explain why your graph
may be better.

3.31 Table 3.5 shows the fat content of several Chinese foods.

a. Comment on how the sentence “Dishes are ranked from worst
(highest percent of calories from fat) to best (lowest percent)”
could be misleading to someone who wanted to order a Chinese
meal and eat the “best” food possible. (What, if anything, is prob-
lematic about this table?)



Figure 3.23 Worth of 20 Cézannes, 16 Renoirs, and 15 Matisses in the
Barnes Foundation Collection 1976-1993 (Exercise 3.32) (Source: Robin Du-
thy, “The boom for Barnes,” Connoisseur’s World, 1994, p. 108.)

b. How could you reorganize this table for another purpose
than showing fat content? Redesign the table and state the al-
ternative purpose.

3.32 Figure 3.23 was copied from a report on the value of Cézanne.
Matisse, and Renoir paintings held by the Barnes Foundation in Phil-
adelphia, produced by a consultant at Art Market Research in London.

a. How would you describe the monetary history of this collec-
tion in the last fifteen years?

b. Overall, what would you say the trend in the values of the
paintings has been over the years as shown in the graph?

c. How else could the graph have been drawn to show more
detailed information about the collection?

d. Are there any ways in which the graph could have been made
more helpful to a reader who wanted to quickly scan it and not
read the accompanying article?

Exercises
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Figure 3.24 Retrospective accounting of pleasantness of week (Exercise
3.33) (Source: Jessica McFarlane, Carol Lynn Martin, and Tannis MacBeth Williams,
“Mood fluctuations, women versus men and menstrual versus other cycles,” Psychology of
Women Quarterly, vol. 12 (1988), p. 214.)

3.33 TFigure 3.24 is a time series graph that charts a subject’s mood
ratings for a week as the subject remembered them later.

a. According to the data in the graph, what were the best and
worst days in the week for the subject, in terms of mood?

b. How are the differences among the mood levels for different
days in the week emphasized in the graph?

c. What would be the effect of including 0-3 on the mood rat-
ing axis?

d. Why do you think 5 on a 7-point scale is called neutral instead
of 4, which is the middle of a 7-point scale?

e. The authors of the article from which this graph is taken su-
perimposed another time series graph over it showing how the
subject rated mood at the time each day in the week. (Thus, the
time series graph can be used to present two different variables
over the same time period.) The line for the concurrent report
of moods was flatter than the retrospective one. That is, the con-
current report indicated that weekends were not so wonderful
and Sundays and Wednesdays were not so bad. Why do you think
the retrospective report differed from the concurrent one?



ANALYSIS (EXERCISES 3.34-3.54)

3.34 A sample of socioeconomic scale scores follows:

42 35 48 26 52 47
29 65 42 51 47 35

a. What could we expect to learn about this sample from a his-
togram of these data?

b. Use an appropriately small number of intervals and make a
histogram of the data.

c. What do you conclude about the variable on the basis of what
the histogram shows?

d. What information is missing about these data that would help
you to make better sense of it?

3.35 How people choose to spend their time can reveal a great deal
about our society. In an extensive time-use study, it was found that
during weekdays employed men spend 8.1 hours on work-related ac-
tivities, 1.0 hours doing housework, 9.9 hours on personal care such as
eating, sleeping, and grooming, 1.2 hours traveling, and 3.8 hours in
free-time activities such as sports and television viewing. For employed
women the corresponding figures were 6.5, 3.4, 9.8, 1.1, and 3.2 hours,
and for homemakers the figures were 0.0, 7.8, 10.3, 0.7, and 5.2 hours.
These values are all means. (Source: J. P. Robinson, How Americans Use Time:
A Social-Psychological Analysis of Everyday Behavior, New York: Praeger, 1977,

. 90.)

a. Display these data graphically. Use two different types of
graphs and discuss which type displays the data better.

b. What information do your graphs convey about the time use
of each of the three groups of people?

3.36 The signers of the Declaration of Independence were a select
group of people, and we are interested in whether they lived longer
than the average man did in this period. For example, George Wythe
was 50 years old when he signed. Having reached 50, Wythe could have
been expected to live another 21 years, but he lived 30 more years. He
therefore lived 9 years longer than he was expected to. The differences
for all the signers follow:

Exercises
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24 -3 —-24 2 -4 —-19 21 16 -4 7 -11 -1
8 9 -6 —-14 -6 2 -4 -—18 14 -8 13

-4 22 -9 -1 13 -14 -6 1 -16 -1 -1

-4 19 -6 —-12 -13 -1 13 4 -3 13 -14

29 4 -9 -4 -6 -—-12 -13 -19 —-14 -19 11
7 9 —-19 21 -9 -4 -28 —14 -21 -18 -7

A negative difference means that the person fell short of living his life
expectancy at his age of signing by that many years. (Source: U.S. Bureau
of the Census, Bicentennial Statistics. Quoted in Pocket Data Book, USA 1976,
Washington, DC: U.S. Government Printing Office, 1976, p. 370.)

a. Make a table and a histogram showing the distribution of this
variable.

b. What do you conclude about the longevity of the signers on
the basis of the shape of the histogram?

3.37 Down syndrome is a genetic disorder that shows up in some
newborn babies. The following datafile shows the age of the mothers
of Down syndrome children at birth of the children and the number
of children with Down syndrome born in Sweden in 1971.

Age of mother 15-19 20-24 25-29 30-34 35-39 40-44 45-49

Number of babies 18 87 96 72 73 73 19

Source: E. B. Hook, and A. Lindsjo, “Down syndrome in live births by single-year maternal age
interval in a Swedish Study,” American Journal of Human Genetics, vol. 30 (1978), pp.
10-27, as reported in C. J. Geyer, “Constrained maximum likelihood exemplified by isotonic
convex logistic regression,” Journal of the American Statistical Association, vol. 86
(1991), pp. 717-724.

a. Make a histogram of the data.

b. What information does the histogram convey about the dis-
tribution of the number of babies with Down’s syndrome across
the ages of the mothers?

c. The fewest number of babies with Down syndrome are born
when mothers are very young or very old. Does that mean that
a woman should have babies when she is either very young or
very old?



d. What additional data, if any, do you need to recommend the
age at which a woman ought to have children to lower the risk
of Down syndrome?

3.38 The calorie values of sixteen different snack foods are as follows:

110 120 120 164 430 192 175 236
429 318 249 281 160 147 210 120

Source: USDA data and manufacturer’s data in an advertisement in The New York Times
Magazine, April 20, 1990, p. 20.

a. Make a histogram of the data, using 50 as the width of each
bar.

b. Make a stemplot of the data, using two digits on the left side
of the line.

c. Make a boxplot of the data.

d. What are some of the strengths and weaknesses of each
graph?

e. Which graph do you prefer? Give your reasons.

3.39 The band uniform hat is being changed at the high school. The
band leader has used a tape measure to collect the head circumference
of each of the 150 band members. The band president has asked ev-
eryone to order a hat in size small, medium, or large. The hat store
sells hats in ten sizes (from 6£ to 81).

a. Describe in general how you would organize the data for max-
imal effectiveness in buying the hats.

b. What errors have the band leader and the band president
made in measuring the band members for hats?

3.40 Select a question you would like to have answered. Example:
What were the most popular CDs being sold in the music stores last
week: country/western, rap, rock, heavy metal, ballads?

a. Find data to answer your question.

b. Create a graph that best illustrates your data.

3.41 Draw a stemplot that illustrates the amount of money you spent
for each of 20 items you purchased in the last month.

1F4
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342 a. Draw a histogram representing your estimate of the average
number of days each month of the year the temperature drops
below the freezing point (use either 32 °F or 0 °C) in your
present community.

b. Describe the shape of the histogram.

3.43 Write down the names of twenty friends and relatives, along with
the number of years you have known each one and the number of
intense arguments you have had with each one.

a. Make a scatterplot showing the data on the two variables.

b. Does there seem to be any relationship between the two var-
iables in your sample?

¢. What problems do you see in this analysis?
d. What type of data might be better for studying the variables?

3.44 a. Draw a bar graph with horizontal bars going to the left for
men and to the right for women using the following informa-
tion. The median incomes in a sample of full-time workers with
four or more years of college are as follows: White men earned
$42,000; white women earned $29,000; Asian American men
earned $37,000; Asian American women earned $29,000. (Source:
U.S. Census data for 1990.) You may drop the 000s for the purpose
of the graph.

b. What major conclusions can you draw from your graph?

3.45 According to a survey of 60,000 households by the U.S. Bureau
of the Census in October 1990, the age distribution in percentages of
5,644,000 full-time college students in four-year colleges that year was
as follows:

Age 15-17 18-19 20-21 22-24 25-29 30-34 35-39 40-44 45-59

% 1.9 34.7 341 166 6.4 2.7 1.8 1.2 0.6

Souree: The Chronicle of Higher Education, vol. XXXIX, no. 1 (August 26, 1992), p.
11.

a. Make a histogram of this age distribution. Note that the in-
tervals will be of different lengths. This means you will have to
adjust the heights of the rectangles so that the area of each rec-
tangle shows the magnitude of the corresponding percentage.
Also, for any age group the age starts at the lower limit and goes



up to but does not include the lower limit of the next older
group. For example, 20-21 years means an interval that starts at
20 and goes up to 22.

b. What does the shape of the histogram convey about the age
distribution of college students?

c. Does the shape of the distribution surprise you? Why or why
not?

3.46 Swordfish absorb mercury in their bodies, and it is thought that
a mercury concentration of more than 1.00 ppm (parts per million) is
not good for human consumption. In a sample of 28 swordfish the
following concentrations of mercury in ppm were found:

0.07 0.24 0.39 0.54 0.61 0.72 0.81 0.82 0.84 0.91
0.95 0.98 1.02 1.08 1.14 1.20 1.20 1.26 1.29 1.31
1.37 1.40 1.44 1.58 1.62 1.68 1.85 2.10

Source: Larry Lee and R. G. Krutchkoff, “Mean and variance
of partially-truncated distributions,” Biometrics, vol. 36
(1980), pp. 531-536.

a. Make a stemplot of the data, using the first two digits as the
stem.

b. Describe the shape of the distribution of mercury concentra-
tion.

c. The reason many of the swordfish were found to have a con-
centration of more than 1.00 ppm is that not all swordfish are
tested before they are brought to the market. Does it seem as if

the overall, average level of mercury concentration is larger than
1.00?

3.47 Most people seem to drive above the speed limit on interstate
highways. The chances of getting a speeding ticket may therefore
mainly depend on how many police officers are out on patrol. The
states differ in their numbers of state police officers, and one way to
measure police coverage is to look at the number of miles of interstate
highways per police officer in each state. This number ranges from a
low of 0.1 mile per officer in Delaware to 7.0 miles per officer in Wy-
oming. Thus, if every officer in Delaware were out on the road, there
would be one officer every tenth of a mile, while in Wyoming there
would be one officer every seven miles.
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Figure 3.25 is a stemplot for the 48 continental states showing the
number of miles per state police officer, with miles to the left of the
stem and tenths of miles to the right.

a. Describe the shape of the distribution shown in the stemplot.
b. Construct a boxplot from the stemplot.

c. What are the advantages and disadvantages of the stemplot
compared to the boxplot for these data?

3.48 Discuss how the graph in Figure 3.26 on rescue missions in na-
tional parks meets Tufte’s criteria for graphical excellence.

3.49 When criminal attacks are committed, in the great majority of
cases the attacker and the victim are of the same race. In 1991, accord-
ing to the FBI, 85% of black victims were attacked by blacks, 75% of
white victims were attacked by whites, 8% of black victims were attacked
by whites, 17% of white victims were attacked by blacks, and the rest
were the result of other combinations of victims and attackers.

a. Draw two pie charts, one for black victims and one for white

victims.

b. Imagine a pie chart that combines these data. In what respect

might a single pie chart be somewhat misleading (that is, what

would a single pie chart assume)?

3.50 Create a data set for yourself that could be displayed to good
advantage in a pie chart.

a. Draw the chart.
b. Summarize the findings presented in the chart.

c. Are there any problems with the pie chart as you have de-
signed it?

3.51 Create a data set for yourself that could be displayed to good
advantage in a stemplot.

a. Draw the stemplot.
b. Summarize the findings presented in the stemplot.

c. Are there any problems with the stemplot as you have de-
signed it?
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Figure 3.25 Miles per state police officer, 48 contiguous states (Exercise
3.47) (Source: Autoweek, July 9, 1990, p. 37.)

Figure 3.26 Search and rescue operations per million visits to the 367 na-
tional park system areas (Exercise 3.48) (Source: Data of National Park Service;
adapted from the graph in The New York Times, March 25, 1993, p. Al8.)
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Table 3.6 Data for Exercise 3.53

Type of event
Country Total deaths  Transportation ~ Natural — Homicide  Other
Austria 75.2 34.8 29.7 1.6 9.1
France 77.8 23.8 31.0 0.9 22.1
Italy 472 22.8 19.2 1.1 4.1
Netherlands 40.3 17.8 18.2 0.7 3.6
Norway 48.4 17.3 25.1 0.7 5.3
United States 60.6 23.4 15.8 10.0 11.4

Source: Social Indicators 11, U.S. Census Bureau, December 1980, p.252, reprinted in
Howard Wainer, “Tabular Presentation,” Chance, vol. 6 (1993), no. 3, p. 53.

3.52 As in Exercise 1.20, turn on a water faucet until it just drips.
Count the number of drips per 20-second interval for 3 minutes. Keep
a record of the number of drips in each interval.

3.53

a. Draw a graph illustrating your data.

b. Would you say the drips were randomly or regularly distrib-
uted over the 3-minute period? In what respects were they ran-
dom, and in what respects were they regular?

Table 3.6 is an abbreviated version of a table of death rates from

various causes in selected countries in the mid-1970s per 100,000 pop-
ulation. Redo this table so that it is more readable, and justify your
changes.

3.54

a. Make a graph of your choice for the following data. When
pollsters interviewed 1,000 adults employed by private sector
companies about issues of privacy, 61% said their employers re-
spected after-hours privacy “very well,” 29% said “somewhat
well,” 8% “not very well,” and 3% “not well at all.”

b. Make a graph of your choice for the following data: Respon-
dents believed employers had the right to verify information pro-
vided by job applicants to various degrees. Eight in 10 thought
it appropriate for employers to check on a job applicant’s claims
regarding educational background and criminal record; tests for



nicotine use away from work were opposed by 93%; 69% ob-
jected to urine tests for alcohol use; 69% thought psychological
tests for attitudes and social preferences were inappropriate;
59% opposed using blood samples to test for AIDs virus. (Source:
“U.S. workers are concerned about privacy on the job, survey finds,” The Phil-
adelphia Inquirer, August 23, 1994, p. F6.)
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@id Shakespeare write Shakespeare? How many children does the average
American family have? Do men make more money than women? How many
times per minute does the “normal” heart beat? How old are brides and
grooms at the time they marry? How many men die of cirrhosis per year? Is it

Seasible to raise taxes in a community to provide more money for schools?
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As noted in Chapter 2, the original observations in a data file contain
all the information there is in a set of data, but it is almost impossible
simply to look at a data file and extract the information. All the infor-
mation is there, but it is hidden by the randomness in the data.

Chapter 3 discussed the use of graphs and tables to organize data.
Graphs and tables often need to be augmented by summary statistics—
new numbers computed from the data. From the values on one or
several variables we can compute a few new numbers that represent
the variables, thus summarizing the data into just a few values.

This chapter is concerned with two problems.

1. How to summarize many observations of a variable into a single
number that gives us a central tendency, or average value. Is it
possible to find a single value that illustrates what all the observa-
tions are like?

2. How to summarize how different the values of a variable are from
one another. Are the observations much alike or are they very dif-
ferent? That 1s, is there much variation in the data?

As with graphical representations (Chapter 2), computing summary
numbers has one major advantage and one major disadvantage:

Advantage: A summary number gives a great simplification of the
data.

Disadvantage: Any simplification means a loss of information.

Before the 1960 Presidential election, the Survey Research Center
at the Institute for Social Research at The University of Michigan asked
people in a survey who they intended to vote for. Of the 1,396 respon-
dents who planned to vote, 634 planned to vote for John Kennedy.
Thus, of the total number of respondents who intended to vote, 45%
planned to vote for Kennedy (who did win in a very close election later
that year). The representation of 634 of 1396 separate answers by a
single percentage is an enormous simplification of the original data.
At the same time, however, the values of the original variable are ir-
recoverably lost. If we know only a single number, we cannot recover
the original data, and many different data sets could yield the same
average value.
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As with visual representations of data, summary computations of
data need to strike a balance between gain in simplicity and the loss of
information. Doing so is not always easy and requires knowledge about
the strengths and weaknesses of the most commonly used summary
numbers.

The most common number computed from data is an average or central
value of some kind. Most of us were introduced to the notion of aver-

ages in elementary school. Today, we read about the average salary of
MBAs, average house prices, Dow Jones average stock prices, average
homicide rates, and so on. But how aware are we of the various forms
of averaging possible to us, or how simply calculating a particular av-
erage can create false impressions?

There are many kinds of averages, not just one. To explore this
variety, take a close look at the following sentence:

The average person in this country today is a woman who has 2.1
children and lives in a house worth $80,000.

Three common kinds of average are referred to in that sentence.
Can you distinguish how the three differ?

Mode: The hostess with the mostes’

The gender variable has two values, man and woman; in this country,
there are more women than men. The statement that the average per-
son in this country is a woman uses a statistical average called the mode.

The mode is commonly used to describe categorical variables, es-
pecially those with many values such as religion, race, or social class.
One might find, for example, that within a particular neighborhood
the modal religion is Muslim, the modal race is Asian, and the modal
social class is “upper middle.”

The mode can be used for other types of variables as well. Figure
4.1 shows a histogram of the age at marriage for 37 women, the same
women in the graphs in Figure 3.3. The major peak in the histogram
in Figure 4.1 occurs in the age range from 25 to 30 years. We take the
midpoint in that range, 27.5 years, as the modal value of age at mar-
riage.

'The mode for a

variable is the
value that occurs
most often.
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Figure 4.1 Modal value of the age variable: Midpoint of the tallest rec-
tangle

Sometimes a variable has two values that occur most frequently.
Thus it has two modes and what is called &imodal distribution. When a
variable has two modes, the observations of it often consist of a mix of
data from two groups of elements. A histogram of the heights of stu-
dents in a statistics class would be bimodal, for example, when the class
contains a mix of men and women.

The mode tells us that there are more of that value than of any of
the other values of the variable but not whether there are many more
of this value or only a few more. If there are 100 people in a group,
the modal gender value would be woman if there were 51 women (and
49 men) or 99 women (and 1 man). The two cases are very different,
but the mode does not distinguish between them. Thus, the mode may
at times mask more information than it reveals.

For a metric variable the mode does not make use of all the actual,
observed values of the variable. In addition, by choosing different
widths of the intervals in a histogram, as shown in Chapter 3, different
modes can be obtained depending on how the histogram is drawn.
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Advantages of the mode: The mode for a variable is easy to find from
a graph or a table of the data. For categorical variables, it is typically
the best way to describe the average value. For a variable with a
bimodal distribution and few observations in the middle of the
range, the two modes tell us more than a single value located some-
where in the middle of the variable where there are not very many
observations. The mode requires very little actual computation,
since the value can be seen directly from a bar graph.

Disadvantages of the mode: The mode is not used often, and many
statistical computer software programs do not even calculate the
mode. The modal value of a variable does not convey much about
the entire data set, and conversely, the information in the data set
is not well used by finding only the mode.

Median: Counting to the middle

Our “average” woman lives in a house valued at $80,000. “Average”
house prices and many other economic variables are most often de-
scribed by the median value. Because price is a metric variable and has
higher and lower values, unlike a categorical value such as religion, the
values can be ranked from lowest to highest. The middle value of the
variable in the ranking, is the median value. When the median house
price is $80,000, half the houses in the data cost less than this value
and the other half cost more than this value.

The median is found by arranging the observations by size, from
smallest to the largest, then counting halfway through them to the
middle. For a very small data set it makes a difference whether the total
number of observations is even or odd, but for larger data sets this
distinction is not important. It is also possible to find the median from
data in a table or a histogram that does not show the original obser-
vations.
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It does not matter for the median how much more or how much
less the other houses in the example cost. For example, suppose the
data set includes two other houses besides the one that costs $80,000—
a house that costs $79,000 and one that costs $500,000. The median
price for the three houses is $80,000, even though one house costs only
$1,000 less than the median and the other costs $420,000 more. All
that matters for the median is that it is the middle number of the
data set.

Finding the median Imagine a family with five children, ages 17, 14,
12, 9, and b years. The data set is an odd number of observations,
already arranged by size. The middle number is the third observation;
two observations are less than and two observations larger than this
value. Thus, the median age of the five children is 12 years. (Formula
4.1 at the end of the chapter shows how to find the median in an odd
number of observations.)

Suppose this family has twins who are 5 years old, for a total of six
children, ages 17, 14, 12, 9, 5 and 5 years. This data set contains no
actual observed value that divides the data into two equal parts. But for
any age between 9 and 12 years, three children are older and three
children are younger. By convention, the midpoint between the two
middle values is the median. The midpoint between 12 and 9 is 10.5,
and that is the median age of the six children. (Formula 4.2 shows how
to find the median in an even number of observations.)

Median and other percentiles The median is also known as the 50th
percentile, since 50% of the observations are smaller than the median.
The 25th percentile is the value of a variable such that 25% of our
observations are smaller than this value. In the example on the brides’
ages, the 25th percentile equals 24 years, the 50th percentile or median
equals 27 years, and the 75th percentile equals 32 years.
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Median from a stemplot Medians are particularly simple to find from
data arranged in a stemplot. In the stemplot, the values of the variable
are already arranged by size from the smallest to the largest, and the
median or any other percentile is found by simply counting up to the
desired number. Refer to the stemplot of the brides’ ages in Figure
3.3. With 37 observations, the median age is the age of the 19th bride
when the ages are arranged from youngest to oldest; 18 brides are
younger and 18 are older. Starting from the bottom and counting from
youngest to oldest, the 19th bride is 27 years old; 27 is the median age
of this group.

Median from a histogram Can the median be found from a histogram,
without the original observations? The answer is a modified yes, if we
are willing to assume that the observations are evenly distributed within
the middle interval. In the histogram in Figure 4.1, the total number
of brides can be computed by adding the values represented by the
height of the rectangles: 37 brides were observed. So the median age
is the age of the 19th-oldest bride. The histogram shows that 10 brides
are included in the first two age intervals; nine more are needed. Since
the next interval (25-30) includes 13 brides, the median must lie
within that interval. Assuming that the 13 brides in that interval are
evenly distributed across the ages, the 9th bride is found by going
9/13 into the interval. The interval is 5 years wide; 9/13 of that
is 5(9/13) = 3.5. Adding 3.5 to the lower value of 25, the median
is 25.0 + 3.5 = 28.5.

This median can also be shown in a histogram. Figure 4.2 repeats
the histogram in Figure 4.1 on the ages of the brides. Chapter 3 em-
phasized that the area of a rectangle indicates how many observations
the bar represents. So to find the median, the total area shown in the
histogram is divided into two equal parts. The dashed line in Figure
4.2 is the median: the area in the histogram to the left of the dotted
line represents 18.5 units, and the area to the right also represents 18.5
units. The value of the variable at the dashed line—the median value —
is 28.5 years. The estimated value of the median at 28.5 years is not
quite the true median of 27 years because of our assumption that the
observations in the middle interval are distributed evenly; the brides
in the range from 25 to 30 years are not, in fact, distributed evenly
within the interval.

Use of the median The median is used most often when a histogram
of the data shows a skewed distribution. House prices typically show a
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Figure 4.2 Median value of the age variable: Midpoint of the total area of
the bars of the histogram.

skewed distribution. Most house prices fall in a middle range, but usu-
ally a few houses are expensive. Thus, the histogram has a “tail” on the
right side.

The histogram in Figure 4.2 shows that the two oldest brides skew
the data. The median is useful for these data because the median is
not much affected by a few extreme scores. The median would be the
same value whether the two oldest brides were 30, 40, 50, or 60 years
old.

Advantages of the median: The median gives a good indication of the
midpoint of a set of observations, particularly if the histogram
shows a skewed distribution. The median requires little computa-
tion. The observations need only be ranked from the smallest to
the largest, and the median is simply found by counting up to the
middle observation. The median is not sensitive to extreme obser-
vations, and this can be an advantage for certain purposes.
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Disadvantages of the median: Aside from the middle value, the median
does not make use of the actual values of the other observations.
Thus, it does not make use of all the information in the data. The
median is not sensitive to extreme observations, and this can be a
disadvantage for certain purposes.

Mean: Balancing the seesaw

When we say that the average American family has 2.1 children, we are
saying that the mean number of children per family in the United States
equals 2.1. The mean is the most commonly used type of average. Just
like the median, the mean gives a value of the variable somewhere in
the middle of the observed data. The difference is that the mean is a
value of the variable that can be viewed as the center of gravity of the
data. If we placed the observations on a seesaw according to their val-
ues, the seesaw would balance right at the mean. For the age data on
the 37 brides, the mean works out to be 30.0 years (Figure 4.3). If we
imagine that each bride weighs the same and stands on a horizontal
seesaw at her particular value, the seesaw will balance at 30.0.

To find the value of the mean, the values of all the observations
are added and then the sum is divided by the number of observations.
This statement is written mathematically in Formula 4.3 at the end of
the chapter. Finding the mean according to Formula 4.3 is the same
as finding the value where the seesaw will balance, that is, the center
of gravity of the distribution of the data.

The mean is commonly used for metric variables to find a central
value of the observations in a set of data. As with other averages, a good
deal of information is lost when the original data are replaced with the
mean, but the exact value of each observation is used to find the mean.
If any data points are changed, then the mean changes. This is not
necessarily the case with either the median or the mode.

Figure 4.3 illustrates an important weakness of the mean. The two
oldest brides have a large effect on the mean because they are so far
away from the mean. If they step off the seesaw, the balance point
moves from 30.0 years down to 28.4 years. Those two brides cause the
mean to be larger than the median for these data. If two of the brides
close to the mean age step off the seesaw, the effect on the balance
point is very small.

Because the mean is so sensitive to isolated extreme observations,
we prefer not to use the mean when a data set has extreme observa-
tions. The mean works well with roughly equal numbers of small ob-
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Figure 4.3 Mean value of the age variable: Center of gravity of the histo-
gram

servations and large observations; the small observations balance the
large observations. When the distribution of the data is skewed, as in
Figure 4.3, we prefer to use the median to the mean because the me-
dian is not sensitive to extreme observations. To decide between the
mean and the median for a set of data, first compute both. If they are

Computing the mean is not always easy. “Calvin and Hobbes” copyright 1995 War-
terson. Dist. by Universal Press Syndicate. Reprinted with permission. All rights reserved.
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approximately equal to each other, then use the mean. If they are very
different, use the median.

The mean is the most frequently used average value, and because
it is so common, it has its own symbol: x, read as “x bar.” An x is used
because it is the most common symbol for a variable, and the bar sym-
bolizes the mean. The mean for a variable denoted by some other
letter, for example by y, is denoted similarly: y.

Advantages of the mean: The strength of the mean is that it uses the
numerical value of each observation, implying that it uses more of
the information in the data than do the mode or the median. As
shown in later chapters, conclusions about data can more easily be
drawn from the mean than from either the mode or the median.

Disadvantages of the mean: Since the mean makes use of the actual,
numerical value of each observation, it can be cumbersome to com-
pute. The mean is sensitive to extreme observations. This can be
particularly bad if there is an error in the measurement of an ob-
servation and that is the reason the observation is extreme in the
first place.

Mode, Median, or Mean?

We should get into the habit of asking ourselves which kind of average
is being used in a data analysis and whether it is the right kind. Occa-
sionally people use the wrong type of average on purpose to create an
impression from the data that may not be fully warranted. When a
distribution is skewed with many small observations and only a few large
observations (the distribution of household income is an example),
then the mean will be larger than the median. Anyone who wanted to
summarize this distribution with as large a value as possible would then
use the mean, even though the median would be a more appropriate
choice of average.

This kind of twisting is particularly tempting in comparing two or
more groups. Suppose a headline says that men make more money
than women. What is the implication of such a sentence? That every
man makes more money than all the women? Of course not. The head-
line probably comes from a comparison of averages for the two groups.
If so, then it ought to say so. Maybe the median income is higher for
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men than women; or maybe the mean income for men is higher. Thus,
how groups differ is related to the particular statistical method used to
compare them.

M

Usually, an average is a useful way of summarizing data, but sometimes
an average can be misleading. There is an old joke about the statistician
who puts her head into the oven and her feet into the refrigerator and
says, “On average, I feel just fine.” In the computation of the statisti-
cian’s “average,” two extreme temperature values, the heat in the oven
and the coolness in the refrigerator, cancel out to produce a comfort-
able average temperature. Thus, any average masks the extreme values
in a set of data, and extreme values are sometimes of particular interest.
The mean household income in a community may be a comfortable
$100,000 a year, but if this mean is computed from the incomes of 200
extremely poor families and 20 extremely rich families, it does not
represent the incomes of any of them. Sometimes we need to go be-
yond averages to summarize data.

Imagine two different data sets that have the same average value
but are still very different. In one data set, the observations are all close
to each other, while in the other data set the observations are spread
out. No average—mode, mean or median—would catch this crucial
difference. In this case, the spread of the data needs to be taken into
account.
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Range: Lassoing the two extreme values

One easy way to measure the spread of a set of data is to find the range,
which is simply the difference between the values of the largest and the
smallest observations:

range = value of largest observation — value of smallest observation
For the data on the brides’ ages,
range = 60 years — 19 years = 41 years

The range is easy to compute, and it can often be a very useful
number to know. An average value and the range of a data set tell us
quite a lot about the values of the observed variable. This is particularly
true if the data include no extreme observations. One drawback is that
the range is sensitive to extreme observations. If the two largest obser-
vation, 56 and 60 years, are dropped, then the largest observation is 46
years and the new range is 46 — 19 = 27. A mere 2 observations out
of 37 added 50% to the range! Dropping some of the extreme obser-
vations and finding the range of the remaining values is indeed a sta-
tistical strategy—as long as the number of observations to drop is
agreed on.

When the smallest 25% and the largest 25% of the data are
dropped, the range is the middle half of the observations. This is the
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so-called interquartile range. Both the full range and the interquartile
range are well illustrated in a boxplot. In Figure 3.3, a boxplot for the
ages of the brides, the interquartile range covers the length of the box,
so the interquartile range is 32 years — 24 years = 8 years.

Standard deviation: The crucial deviant

The standard deviation is the most commonly used statistic designed
to show how the observations on a variable differ from one another.
The standard deviation describes how far away the observations are from
the mean (Figure 4.4). The farther from the mean, and therefore from
each other, the observations are, the larger is the standard deviation.
If we know, for example, that the standard deviation equals 6.9 heart-
beats, then we know that a typical observation lies 6.9 beats away from
the mean and that it is either larger or smaller than the mean. The
smallest value for the standard deviation is 0.00, the value for a set of
observations that are all alike. But no variation in the data is rare in-
deed. More common are distributions that are somewhat dispersed.
There is no limit to how large the standard deviation can be.

The standard deviation is typically denoted by the letter s. Standard
deviation is a somewhat strange name; how can something at the same
time be both a standard and a deviation? The name will become clearer
as you learn more about the standard deviation.

Comparing data spreads Histograms for the four following data sets are
shown in Figure 4.5.

(@) 6666666
b)) 5566677
(c) 3346899
(d) 33369909

Observations
X XX X X XXXX X_ X X X X X X X .
Y Variable
< , Standard
l deviation
Mean

Figure 4.4 Mean as center and standard deviation as spread in data
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Figure 4.5 Histograms of four data sets with the same mean and different
standard deviations

The histograms show that the farther the data are from the mean x,
the larger is the standard deviation s.

In Figure 4.5a, all the observations are equal to the common value
of 6, and since they are all equal, the standard deviation for those
numbers is 0.00. In Figure 4.5b, the observations are somewhat spaced
out between 5 and 7, and the standard deviation increases to 0.82. In
Figure 4.5¢, the observations are spaced out farther, and the standard
deviation is 2.71. In Figure 4.5d, most of the observations are located
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at two extremes, and the standard deviation is 3.00. The four data sets
all have the same mean, and if we knew only the mean, then we could
not tell the four examples apart. But there are differences between the
data sets in the spread of the observations around the mean and the
variation in the ranges of the data; thus, they have different standard
deviations.

Average distance to the mean: Dissecting the numbers The standard de-
viation sis found by computing the square root of the average squared
deviation of the observations from the mean. To see how it works, let
us apply the computation one step at a time to the data set for Figure
4.4b—a variable with observations 5, 5, 6, 6, 6, 7, and 7. How do we
arrive at a standard deviation of 0.82 for these data? As we know, the
mean of the observations equals 6. The definition asks for the devia-
tions of the observations from the mean. The deviation (distance) from
the first observation to the mean is 5 — 6 = —1, the second is 5 —
6 = —1, the third is 6 — 6 = 0, the fourth is 6 — 6 = 0, the fifth is
6 — 6 = 0, the sixthis 7 — 6 = 1, and the seventh is 7 — 6 = 1. These
are the numbers in the second column of Table 4.1.

Next we need the squares of the deviations, and they are shown in
the third column of the table: 1, 1, 0, 0, 0, 1, and 1. Their sum equals
4. We then average the sum and arrive at 0.67. Finally, the standard

Table 4.1 Computation of the standard deviation s as the square root of
the average squared deviation from the mean

Observation Deviation from mean Deviation squared
b 5—-6=-1 (-1)2=1
5 5-6=-1 (—1)2=1
6 6-6=0 02=0
6 6-6=0 02=0
6 6-6=0 02=0
7 7-6=1 12=1
7 7-6=1 12=1
Sum 0 4
Average 0 ¢ =10.67

Square root s = 4/0.67 = 0.82
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deviation s equals the square root of this average, or 0.82. Formulas 4.4
and 4.5 at the end of the chapter show the computation of the standard
deviation.

The deviations from the mean in the second column of Table 4.1
range in value from —1 to 1. The standard deviation s = 0.82 is some-
where in the middle of these distance. It is smaller than the largest
deviation of 1, and it is larger than the smallest deviation of 0. Thus, a
value of 0.82 does not seem unreasonable for an average deviation.

The reason we first square the distances to the mean is to get rid
of the minus signs. The unit of the squares is the square of the unit of
the original observations. For example, if the original numbers were
dollars, then the squares would have the unit (dollar)?. (Dollar)?would
also be the unit of the average square 0.67. But it is hard to interpret
such a number: What is a square dollar? By taking the square root at
the end, the unit is restored to its original form.

We have not addressed the minor fact that while there are 7 ob-
servations in the figure and table, we divide by 6 to get the average
square. This is not a mistake. It is simply better to divide by one less
than the number of observations than it is to divide by the number of
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observations itself. This issue is discussed in more detail in Chapter 7
on using §* for estimation.

Most of the time, we stay away from lengthy interpretations and
simply think of the standard deviation as a number that conveys how
different, on average, a set of observations are from each other. If the
standard deviation is small, then the observations are much alike. If
the standard deviation is large, then the observations are different from
each other.

Subtracting and adding standard deviations to the mean The standard
deviation can be put to use for another interesting interpretation. Fig-
ure 4.6 shows a histogram for 27 values of the number of human heart-
beats per 30 seconds. The mean pulse rate equals 34.4 heartbeats and
the standard deviation equals 6.9 heartbeats. As expected, the mean
value falls in the middle of the histogram, since this is the value where
the histogram would balance.

Figure 4.6 Pulse rate per 30 seconds, with mean and standard deviation
(x = 84.4) (Source: Data collected from Students in Statistics 1: Statistical Thinking,
Swarthmore College, spring 1995.)
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The standard deviation added to the mean is 34.4 + 6.9 = 41.3,
and this value is shown on the line below the histogram. The line also
shows the mean plus two standard deviations, or 34.4 + 2(6.9) =
48.2. Similarly, the mean minus one standard deviation is 34.4 —
6.9 = 27.5, and the mean minus two standard deviations is 34.4 —
2(6.9) = 20.6. The graph shows that the interval from the mean minus
two standard deviations to the mean plus two standard deviations, in
this case from 20.6 to 48.2, contains almost all the data. Only 1 of the
27 observations lies outside this range. The mean plus and minus one
standard deviation, here from 27.5 to 41.3, contains about two thirds
of the data. For most unimodal and reasonably symmetric distributions,
we can expect the same kinds of results. Thus, if we know the values of
the mean and the standard deviation, we can almost recreate the his-
togram. It follows that the range of the observations is often approxi-
mately equal to four standard deviations. Finding the range and divid-
ing by 4 results in an estimate of the standard deviation. This little rule
can often provide a quick sense of the size of the standard deviation.

Variance: Squaring the standard deviation For mathematical reasons,
statisticians sometimes prefer to use the varianceinstead of the standard
deviation as a way of measuring the difference in a set of observations.
The variance is the square of the standard deviation, . In the example
with the ages of the brides, the standard deviation is 9.0 years, and the
square of this number, the variance, is 81.0:

$2 = (9.0 years)? = 81.0 years?

The variance does not tell us anything more than the standard devia-
tion. Also, the variance is harder to interpret because the unit of the
variance is the square of the unit of the variable we are working with;
the standard deviation as well as the mean are in the same unit as the
variable itself. What are 81 square years?
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One of the major principles underlying statistical analyses is that if we
measure something over again, we usually get a different result. In the
female age at marriage data, one bride was 19 years old, another bride
was 22, and so on. When we look at all the observed values of the
variable, we find that most of the observations are different from each
other. The standard deviation tells us how different the observations
are from each other.

The 37 women in the data on the brides represent one sample,
with a mean of 30.0 years. Suppose we selected another random sample
of 37 brides and observed their ages. Doing the study over again would
yield another value of the mean number of years. Repeating the study
many times would yield many different values of the mean. Thus, just
as individual observations in a study are usually different, sample means
are usually different across different samples. '

How different from each other are the means in repeated studies?
Are they as different or less different from each other as the individual
observations are?

SETE0NR S AENS D PREDENLEDLE R 4T

Can you answer this question before we answer it for you? What is
i your guess?

One way to answer the question is to find the standard deviation of all
the means. The means are simply a string of numbers, just as the orig-
inal 37 observations were a string of numbers, so finding the standard
deviation of a set of means from different samples for the same variable
is almost no different from finding the standard deviation of a set of
observations on a variable. The only difference is that to find the stan-
dard deviation of the means, we have to first compute the mean in
each sample. Thus, sometimes we work with a standard deviation for a
set of observations in a sample, and sometimes we work with a standard
deviation for a set of numbers that have been computed from the ob-
servations in a sample, like a mean. To distinguish between the two
kinds of standard deviations, the one for a set of observations is called
a standard deviation and the one for a set of means a standard error. By
implication, standard error can also be computed for a set of medians
or a set of standard deviations!
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Why is it not surprising that the standard error of the mean is smaller
across large samples than across small samples?

The standard error of the means is smaller than the standard de-
viations of the observations; that is, the means do not vary as much
among themselves as the values of the variable itself do. This is not
surprising. A particular sample contains some large and some small
observations that tend to cancel out, when we compute the mean, leav-
ing a mean somewhere near the middle. The same thing happens in
each sample, so the sample means cannot differ among themselves as
much as the values of the variable do. And the larger the samples, the
less variation from one sample mean to another, making the standard
error of the mean even smaller.

The biggest difference between standard deviation and standard
error is that finding a standard deviation requires data from only one
sample, while finding a standard error requires data from many sam-
ples. However, it is often possible to estimate the value of a standard
error from the data in just one sample (see Formula 4.6 at the end of
the chapter). The standard error of the mean in a large number of
samples of 37 brides can be estimated to be equal to 1.5 years. The
standard deviation of the variable in the example is 9.0 years. Obviously,
the standard error of the mean is considerably smaller than the stan-
dard deviation of the observations.

The standard error of the mean is a very useful number. For one
thing, two standard errors of the mean equals 3.0 years. Plus and minus
two standard errors of the mean gives us an interval of length 6.0 years.
If we did have many samples and many sample means, most of those
means would therefore lie within an interval that is 6.0 years long.

Different variables generally have different means and standard devi-
ations. Values of one variable cannot statistically be compared with
values of another variable when the means and standard deviations are
different. In the age at marriage example, the bride’s ages have a mean
of 30.0 years and a standard deviation of 9.0 years, while the groom’s
ages have a mean of 32.4 years and a standard deviation of 11.1 years.
In the youngest couple in this group, the groom is 17 years old and
the bride is 19.
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Which brides and grooms are most typical in today’s world of weddings?
Statistical techniques help us to identify them. (Source: Kaluzny/Thatcher, Tony
Stone Images; Telegraph Colour Library, FPG International; Bruce Stoddard, FP6 Inter-
national.)

How do we compare the two ages for this couple? The groom is
obviously younger than the bride, but is he a younger groom than the
bride is as a bride? Who is the more statistically unconventional, bride
or groom? How does this couple stack up against the other brides and
grooms? One handy solution is to change both bride’s and groom’s
ages to a common scale: we convert raw scores to standard scores (For-
mula 4.7). The bride’s and groom’s ages—raw scores—are changed
into scores that tell how far from the mean the raw scores fall, in stan-
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dard deviation units. Using standard scores, any value of one variable
can be compared with any value of another variable because we know
the relative position of any score from the mean.

In converting the age data into standard scores, the goal is to con-
struct a new scale of standard scores to replace the old scale of raw
scores. For the bride who is 19 years old, the raw score is 19, the mean
of the sample is 30, and the standard deviation is 9.0. The standard
score is

19.0 — 30.0

90 = —1.22
Similarly, the groom at 17 years old has a standard score of (17 —
32.4)/11.1 = —1.39. Through the means and standard deviation, we
find that this groom is farther away from the male mean than the bride
is from the female mean. The groom’s age at marriage is more unusual
than his bride’s.

Figure 4.7 shows the brides’ ages converted to standard scores. In
this example, the mean plus one standard deviation equals 39 on the
original scale, and the standard score for that value becomes 1.00. The
mean plus two standard deviations equals 48 on the age scale, and the
standard score for that value becomes 2.00. The mean minus one stan-
dard deviation equals 21, and that corresponds to —1.00 on the stan-
dard score variable. The mean minus two standard deviations is 12, and
that corresponds to —2.00 on the standard score variable.

Most standard scores for any variable range in values from about
—2.00 to —2.00. If the standard score for an observation is larger than
+2.00 or smaller than —2.00, the value of the observation is unusually
large or small observation. Unusual values help in drawing conclusions
from samples and applying them to the real world from which the
samples were drawn. Standard scores are often known as #values.

x = 300 §=9.0

12 21 30 39 48 Age
l l l l Jv Standard
—2.00 —1.00 0.00 1.00 2.00 score

Figure 4.7 Conversion of brides’ ages to standard scores



4.5 Gain in Simplicity, Loss of Information

153

Replacing the data with a graph

The purpose of making graphs, creating tables, and computing sum-
mary numbers is to understand data better. Each of these techniques
simplifies data and brings out patterns that are not directly obvious
from the data themselves. At the same time, some of the detail in the
original data is lost. We close this chapter with some thoughts on the
conflict between gain in simplicity and loss of information.

Look at Figure 4.8. The data in the box are death rates per 100,000
men in 30 different countries for a liver disease called cirrhosis. What
can we learn from the 30 values of the variable? Beyond the smallest
value, 1.5, and the largest value, 50.1, it is hard to see how the values
distribute themselves.

When we replace the data at the left by the histogram at the right,
itis much easier to understand the data. The 30 observations have been
simplified to six rectangles in a histogram. The histogram shows a uni-
modal and skewed distribution, with more than half of the data lying
between 10 and 30.

At the same time information about the data—the values of the
individual observations—has been lost. For example, the histogram
shows that one observation occurs somewhere between 50 and 60, but

Data

270 239 416 331 406 188

137 289 132 145 270 348

28.9 3.2 501 6.2 88 15.0

7.2 51 167 137 19.1 11.1

156  10.0 5.6 1.5 339 8.3

Figure 4.8 Data on cirrhosis deaths per 100,000 men in selected countries
simplified to a histogram (Source: Ann Cronin, “The Tipplers and the Temperate:
Drinking Around the World,” The New York Times, January 1, 1995, p. E4.)
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it does not specify what that value is. Histograms also destroy the ability
to know when something occurred. For example, if we collected data
on the price of a quart of milk at the end of every month, we would
lose the ordering of the observations by putting them into a histogram.
The histogram would only show the number of times the price fell in
a particular interval.

Replacing the data with a summary value

Figure 4.9 shows the data on cirrhosis death rates reduced to a single
number, the mean. The mean death rate of 19.2 conveys an immediate
overview of the magnitudes of the death rates; it is the center of the
data. It is much easier to understand a single number like 19.2 than it
is to comprehend 30 different values of variable. Knowing the mean,
we immediately know where the center of the data is located.

Still, a considerable amount of information is lost in reducing 30
observations to the value of the mean, and the original data cannot be
reconstructed from the mean. Balancing the loss of information and
the gain in simplicity that take place in computing the mean depends
on the purposes for the data. The data were collected in the first place
because the researchers had certain questions about this disease.

Data Summary value

270 239 416 331 40.6 188

13.7 289 132 145 270 3438

28.9 32 501 6.2 88 15.0 ——» Mean =192

7.2 51 167 137 191 11.1

156  10.0 5.6 1.5 339 8.3

Figure 4.9 Data on cirrhosis deaths per 100,000 men in selected countries
simplified to a mean (Source: Ann Cronin, “The Tipplers and the Temperate: Drinking
Around the World,” The New York Times, January 1, 1995, p. E4.)



4.6 Real Estate Data: Qut-of-Sight Prices

1585

A school board is looking into raising real estate taxes in order to have
more money for the schools the following year. Before taxes can be
raised, the board needs information on the taxes paid in their school
district as well as in surrounding districts. Board members could ask
the town offices to provide them with tax figures for the preceding
years and examine page after page of figures giving the property as-
sessments and the taxes for each tax payer. But instead they get from
county records summaries of the things they are interested in, such as
the average property values, average assessments, and average taxes
each unit pays. Table 4.2 shows a small excerpt of the data for their
own district.

Table 4.2 Sales prices, tax assessments, and taxes for a few residential sales
in Swarthmore, PA, in 1995

Address Sales price Assessment Taxes

520 Cedar $335,000 $ 6,400 $4,752
326 Cornell 220,000 3,300 2,700
9 Cresson 183,750 6,500 5,260
609 Elm 237,000 6,000 4,620
60 Forest 246,000 6,000 4,456
9 Guernsey 370,000 9,500 7,065
624 North Chester 249,000 5,000 3,849
513 Ogden 290,500 7,000 5,774
310 Park 195,000 4,200 2,800
529 Rutgers 176,000 5,600 4,696
633 Strath Haven 272,500 8,000 6,001
621 University 265,000 6,300 5,132
10 Wellesley 340,000 10,000 7,501
Mean $259,981 $ 6,446 $4,969
Median 249,000 6,300 4,752
Standard deviation 61,086 1,890 1,420
Interquartile range 105,250 2,200 1,735

Source: We are grateful to David Welsh, D. Patrick Welsh Realtors, who obtained these data for
us from the Office of Registry of Deeds, Delaware County, PA.



156 Chapter 4 « Description of Data: Computing Summary Statistics

In addition to the real estate data on sales prices, tax assessments,
and taxes paid, Table 4.2 also shows some summary data. What do these
summary numbers tell us about the three variables now that we have
come to the end of this chapter on the computation of summaries?

The mean and the median convey that the average house in the
list costs around $250,000. Since the mean is larger than the median,
the list must contain a few very expensive houses that pull the mean
above the median. How the assessed values of the houses correspond
to the sales prices cannot be determined from the four summary num-
bers at the bottom of the table. For that we have to turn to the statistical
methods discussed in Chapter 10. But, again, the median is larger than
the mean, so some houses must have particularly large assessments that
pull the mean up.

The taxes for these houses run almost $5,000, on the average, with
the mean higher than the median. Thus, on the average, the taxes are
about 1/50th of the sales prices. This may be a useful figure for the
school board members to know when they compare these figures with
similar figures from other parts of the school district and try to deter-
mine how the taxes could be raised.

The magnitudes of the means and the medians indicate that the
three distributions are skewed, but the standard deviations still can be
used to get some sense of the variations in the prices, assessments and
taxes. Subtracting one standard deviation from each of the means
shows that not many of the houses sold for less than $200,000 and that
not many house owners pay less than about $3,500 in real estate taxes.
Going up one standard deviation shows that more expensive houses
sell for $320,000 and up, and the owners pay about $6,500 and up in
taxes.

Using the statistical methods from this chapter and similar data
from other communities in the school district, the school board can
now begin to get a sense of the tax base in the district and whether
taxes can be increased, perhaps by reassessing properties that have
been sold at high prices.

To find patterns in a set of data, the observed numerical values can be
summarized. As with graphs and tables, a summary number greatly
simplifies the data, while at the same time information is lost.



4.1 Averages: Let us count the ways

The three most common averages are mode, median, and mean. The
mode is equal to the value of a variable that occurs most often. A bi-
modal distribution has two values that occur most often. It is essential
to use a mode when describing categorical variables.

The median value is the value of the variable that divides the ob-
servations into two equal groups in such a way that half the observations
are smaller than the median and half are larger than the median. The
median, is the most common average used when a histogram of the
data shows a skewed distribution. This is because the median is not
greatly affected by extreme scores that are isolated from the majority
of the values. The median is also the 50th percentile.

The mean—an average value of a variable that takes into account
all the actual observed values—is the most commonly used type of
average. The mean is found by adding up all the observations and
dividing this sum by the number of observations. The symbol for mean
is x. If the mean and the median are approximately equal, the mean is
the preferred average. If they are very different, then the median is
preferred. For skewed data, the median gives a more realistic sense of
where the middle of the data is located.

4.2 Variety: Measuring the spice of life

In addition to knowing about the central value of a set of data, it is
important to understand how spread out the data are. One way to
measure the spread is to find the range, the difference between the
values of the largest and the smallest observations. One drawback ef
the range is that it is very sensitive to extreme observations. Occasion-
ally we drop the smallest 25% and the largest 25% of the data and find
the range of the remaining values. This range of the middle 50% of
the data is the interquartile range.

The standard deviation s is the square root of the average squared
deviation from the mean. It describes how far, on average, an obser-
vation is located from the mean. It is the most frequently used and
most statistically sophisticated way of measuring the spread of data.
Usually, about two thirds of the observations are within one standard
deviation on either side of the mean, and almost all the observations
are within two standard deviations of the mean. The square of the
standard deviation is known as the variance, and it is denoted s2.

4.7 Summary

157
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4.3 Standard error of the means

The standard error of the mean is the standard deviation of a large set
of means from many different samples. The standard error of the
means is smaller than the standard deviations of the observations them-
selves because the means do not vary as much as the individual ob-
served values of the variable.

4.4 Standard scores: Comparing apples and oranges

All observations on a variable can be converted to standard scores. A
standard score equals an observation minus the mean, and the differ-
ence divided by the standard deviation. Its function is to judge how
large an observation is in relation to the mean and standard deviation
of all the observations. Most standard scores lie between —2 and + 2;
standard scores outside that range are unusual.

4.5 Gain in simplicity, loss of information

Simplifying information in a graph or a summary number means a gain
in comprehensibility, but the detail of the original data is lost.

4.6 Real estate data: Out-of-sight prices

Concepts from the chapter are used to solve a real-life problem.

Weisberg, Herbert F. Central Tendency and Variability (Sage University
Paper Series on Quantitative Applications in the Social Sciences, no.

07-083). Newbury Park, CA: Sage, 1992. This book discusses different
ways of computing measures of central tendency and variation.

Witmer, Jeffrey. DATA Analysis: An Introduction. Englewood Cliffs, NJ:
Prentice Hall, 1992. This book gives many different quantities com-
puted from the data.



A variable is denoted by x, and the number = of observed values of this
variable are denoted.

Xpy Xoy X3y « o« , X,

The observations are then ranked from the smallest to the largest. To
show that we have ranked the observations, we put parentheses around
the subscripts, so that x;,, is the smallest observation, x, is the second
smallest, and x,, is the largest observation. With this notation, the
ranked observations are denoted

X1y %2)» X3)> -+ - 5 X(n)

MEDIAN

When 7 is an odd number, then the median is found as the middle
observation in the listing of the ranked observations. In symbols this
can be written

median = X((,41)/9) (4.1)

For example, if a data set has n = 11 observations, then (n + 1)/2 =
(11 + 1)/2 = 12/2 = 6, and the median is equal to the sixth largest
observation, x,. Five observations are smaller than the median and
five observations are larger than the median; the median is the value
of the middle observation.

When 7 is an even number, the median is found by calculating the
midpoint between the two middle observations;

+
median = ﬁ%(m (4.2)

If a data set has n = 12 observations, then the median becomes

Xag/9) T Xazeen _ Xe T X
2 2

Formulas

FORMULAS
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This is the midpoint between the sixth and the seventh observation.
Half the observations are smaller than this number and the other half
is larger.

MEAN

The mean x is the sum of the observations divided by number of ob-
servations:

_ oyt )
pri B % _ 22 (4.3)

n n

where the symbol 2x (2 is the Greek capital letter sigma) stands for
the sum of all the observed values of the x variable.

STANDARD DEVIATION AND VARIANCE

The standard deviation is the distance from the mean of a typical ob-
servation in a data set. To find the standard deviation s, the variance
s* is found and then the square root of the variance. The variance is
found by subtracting the mean from each observation, squaring each
difference, adding the squares, and dividing the sum by » — 1:

Observation  Difference Square
% X — X (x, — x)2
% %—x (% x)?
x5 X3 — X (x5 — x)2
noF (R
Sum 0 Z(x—x)2?

The sum of the differences themselves is always equal to 0, and making
certain that this sum equals zero provides a check that the differences
have been computed correctly. The variance s is found by dividing the
sum of the squared differences by n — 1:

2(x — x)2

‘S‘2=
n—1

(4.4)



The variance is an average squared difference from the mean. The
reason for dividing by n — 1 instead of = is discussed in Chapter 6 on
estimation.

The standard deviation s is found as the (positive) square root of
the variance, that is,

s=482 (4.5)

The three steps in computing the standard deviation are cuambersome,
and any rounding error in the mean is introduced in every square
computed. But even though there are other formulas for the compu-
tation of the variance that are easier and more exact, this is the defi-
nitional formula. Using it with a calculator or a computer makes the
procedure less taxing.

STANDARD ERROR OF THE MEANS

The standard error of the means of two or more data sets can be found
from a single random sample of n observations from a large population.
The standard deviation s of the sample is found first, and the standard
error of the mean s.e.(x) is found by dividing the standard deviation s
by the square root of the number of observations n:

se. (%) = — (4.6)

Jn

Sometimes the standard error of the mean is denoted by the symbol
S .
)

STANDARD SCORES

A standard score for an observation is found by subtracting the mean
from the value of an observation and dividing the difference by the
standard deviation:

X—x

(4.7)

standard score =
s

Formulas
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REVIEW (EXERCISES 4.1-4.30)

4.1 What are the two major goals for summarizing data discussed in
this chapter?

4.2 a. Why does too much information in the data make it difficult
to understand a data file?

b. What is the major drawback with summarizing a data set?
4.3 Define mode, median, and mean.

4.4 Give an example of a situation in which each type of average
(mode, median, mean) would be preferable over the other two types.

4.5 Give an example of a variable where you would expect to find a
bimodal distribution of the data.

4.6 Find a newspaper article that makes use of an average of some
type to make its point.
a. Describe the kind of average the journalist uses.

b. Describe what the journalist tries to achieve by using this av-
erage.

c. Does the journalist use the proper type of average?
4.7 You are interested in getting a clear picture of the economic well-
being of your community.

a. Discuss whether it would be better to take the mean or the
median average of the incomes of the people in your community
and why.

b. Can you imagine a situation where a mode or modes might be
a fairer way of describing a group’s income level than either me-
dian or mean? Describe such a situation, if you can envision one.

4.8 Explain this statement: It is better to summarize skewed data with
the median than the mean.

4.9 Create an example in which a summary statistic would greatly
enhance understanding of a variable that has many values (e.g., num-
ber of words per page in this book).

4.10 a. Define range.

b. Name one positive quality about the range.



c. Is the range a measure of central tendency or variability?
Why?
d. Are you at home with the range?

4.11 a. To what factor in a distribution of scores is the range insen-
sitive?

b. To what aspect of the data is the range extremely sensitive?

4.12 a. The farther apart the observations tend to be from the mean,
the [greater, smaller] the standard deviation is. Choose the cor-
rect adjective and explain the statement.

4.13 What letter of the alphabet do we use to designate the standard
deviation?

4.14 Shaquille takes 6 trials of 5 shots of free throws. These are his
scores: 5, 5, 5,5, 5, b,

a. What is the standard deviation of his shots?
b. Why?

4.15 For most unimodal and reasonably symmetric distributions, what
proportion of the data would you expect to find within one standard
deviation on either side of the mean?

4.16 Almost all of the data in a unimodal and reasonably symmetric
distribution is found within how many standard deviation units on ei-
ther side of the mean?

4.17 What is the result of squaring the standard deviation?

4.18 a. Ahandy rule suggests that the range of most distributions can
be estimated as approximately how many times the standard de-
viation?

b. On the other hand, the standard deviation can be figured
roughly as how many parts of the range?

4.19 Suppose several people are evaluating different pizzas on a scale
from 0 to 10, with 10 being the best. Why might you prefer to purchase
a pizza that has a high mean score and low standard deviation?

4.20 What is the standard error of the mean?

4.21 Why is the standard error of the mean smaller than the standard
deviation of the observations in a sample?

Exercises
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4.22 What information is needed to estimate the standard error of
the mean?

4.23 a. Explain why it is often useful to change raw scores to standard
scores.
b. Give an example from your own experiences where it would
have been helpful to be able to do this.

4.24 Whatis the method for changing a raw score to a standard score?

4.25 Normally, standard scores range between what two numbers?

4.26 If a fortune teller told you that your standard score on an I1Q
test was +15.55, would you immediately go out and celebrate your
genius? Or would you decide the fortune teller was using hallucino-
genic tea leaves? Explain.

4.27 Standard scores are often called
ercise 4.26.)

~values. (See pun in Ex-

4.28 If you were defending the practice of changing raw scores to
standard scores to a coworker, what would you say the greatest advan-
tage of standard scores over raw scores is?

4.29 What does the following statement mean? The standard devia-
tion measures the randomness of the data.

4.30 What is the difference between a standard deviation and a stand-
ard error?

INTERPRETATION (EXERCISES 4.31-4.52)

4.31 The observations of a variable have a standard deviation equal
to zero. What does that tell you about the observations?

4.32 Until 1992, members of Congress could write checks against
their accounts in an internal bank without incurring penalties for writ-
ing checks for amounts larger than the balances in their accounts.
Newspapers published the number of overdrawn checks for each mem-
ber of the House of Representatives. The median number of overdrawn
checks was 3 and the mean number of checks was 47. What do these
two numbers tell you about the distribution of the number of over-
drawn checks?

4.33 A newspaper story on typical Americans reported the household
income in 1989 to be $35,225. (Source: The New York Times, July 26, 1992,



p. E5.) Why is this figure probably the median and not the mean house-
hold income?

4.34 The same story as in Exercise 4.33 reported that the typical
American person is a woman who weighs 144 pounds, lives in a house
with 2.6 bedrooms, watches television 28 hours and 13 minutes each
week, and has a household income of $35,225.

a. Which of these characteristics is a mode?
b. Which characteristic is a median?

c. Which characteristic is a mean?

4.35 A newspaper article claims that the average woman has 2.1 chil-
dren. “How is that possible?” your 10-year-old brother asks. “Babies
don’t come in parts.” What would you tell him?

4.36 The modal value of the gender variable is female. Name one
strength and one limitation to the mode as a summary statistic.

4.37 Name a chief strength of the median as a summary statistic.

4.38 If the median score of students acceptable to Slippery Rock State
is 550 on the verbal SAT, and your friend has a score of 500, should
you tell your friend to not bother applying to Slippery Rock State, or
should you first look for more information? Explain your answer.

4.39 A survey of workers indicated that in productivity, on a scale of
1 to 100, U.S. workers were rated 100, French workers 95, West German
workers 89, Japanese workers 77, and British workers 75. The headlines
indicated that American workers topped the French, Germans, Japa-
nese, and British. Later in the article, economic indicators were re-
ported on the productivity of the groups. “In 1990, each full-time U.S.
worker produced $49,600, compared with $44,200 for West German
workers, $38,200 for Japanese workers, and $37,100 for British work-
ers.” The study excluded statistics about workers in government, edu-
cation, health, and real estate. (Source: Alex Dominquez, “Study says US workers
are the world’s top producers,” The Philadelphia Inquirer, October 14, 1992,
p.D-1)

a. The headline says, “U.S. workers are the world’s top produc-

ers.” In what respects is this headline accurate, and in what re-

spects is it misleading?

b. Did you find any error or omission in the report? (There is

at least one.) How would you correct it, if you were the business

page editor?

Exercises
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c. Why do you suppose workers in government, education,
health, and real estate were excluded from the study? Gould you
make any assertions about the effects of excluding these workers
on the results?

4.40 How would you describe the differences in the way two distri-
butions of scores are arranged where the numbers of scores are equal,
the means are equal, and the standard deviation of one distribution is
twice as large as that of the other?

441 The Atlanta Braves commit a mean of 1.3 errors a game. The
standard deviation of the number of errors for games over the entire
season is 1.0. The Philadelphia Phillies have a mean of 2.0 errors a
game. Their standard deviation is 0.3. Which of the following state-
ments would you feel confident about making and why?

1) The Braves play more errorless ball than the Phillies.

2) The Phillies are more consistent in making errors than the
Braves.

3) The Braves sometimes play very sloppily and sometimes very
well.

4) The Phillies seldom play errorless ball.

4.42 You read in the newspaper that at small four-year colleges, stu-
dents under the age of 24 drink, on average, 7.0 alcoholic drinks a
week, versus 4.6 drinks at campuses with over 20,000 students. Assume
that the standard deviation for each sample was 2.0, and discuss the
following, using your knowledge about standard deviations.

a. Atsmall schools, about 66% of the students reported drinking
between and drinks a week.

b. Atlarge schools, about 66% of the students reported drinking
between and drinks a week.

c. If a student says she drinks 6 drinks a week, can you predict
with confidence that she attends a small college?

d. How would you describe the drinking behavior of the 33%
of the students at the large schools not described in part b?» How
would you describe the drinking behavior of the 33% of the
students at the small schools not described in part a?

e. Are there many students who do not drink at all on these
campuses?



4.43 You are told that your child has a standard score of +1.80 in
reading and +2.00 in mathematics. You are also told that your child
has a standard score of 0.00 in musical understanding.

a. What are the chances that your child is achieving at a fairly
high level in academic work, assuming that the class includes a
broad cross section of children?

b. Should the music score confirm your suspicions that your
family is not very musically inclined or not? What does the mu-
sical understanding score mean?

4.44 From data on the first 19 modern Olympic summer games, the
mean for the winning distances in the men’s long jump equals 308
inches, the median equals 310 inches, and the standard deviation
equals 19 inches. What do these three numbers tell you about the orig-
inal data?

4.45 One year, the modal temperature in Hibbing, Minnesota, was
32 degrees Fahrenheit (0 degrees Celsius). In Duluth, Minnesota, that
year, there was a bimodal distribution of 33 degrees and 61 degrees
Fahrenheit. What can we say about the difference in temperature in
Hibbing and Duluth from these data?

4.46 You are applying for a sales job with an encyclopedia company.
The recruiter explains to you that the field is very lucrative; in fact, the
previous year, the top salesperson of 50 salespeople earned a million
dollars, and the mean salary for all the salespeople was $35,000.

a. Are you convinced you too can be a successful salesperson in
this company?

b. What more information would you like to have?

4.47 The recruiter from the encyclopedia company in Exercise 4.46
senses that you would like more information. She tells you that, in fact,
not all the salespeople are great successes, and that the range of salaries
was between $5,000 and $1,000,000. Does this information satisfy your
curiosity about the salary prospects at the company? Explain what other
information you might want.

4.48 The accountant from the encyclopedia company in Exercise 4.46
tells you that the interquartile range of salaries for the salespeople is
from $10,000 to $30,000.

a. How would you use this information in deciding whether or
not to take the sales position?
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b. Why was the mean salary so much higher than the interquar-
tile range?

¢. Can you hazard a guess about what the median salary might
be?

4.49 You receive the following information about three areas of town
in which condominiums are being built. You are interested in buying
a condo to live in and from which you will receive an assured return
on your investment when you sell.

Rose Valley: Mean price increase for all condominiums resold last
year was $7,000, with a standard deviation of $4,000.

Garden City: Mean price increase for all condominiums resold last
year was $5,000, with a standard deviation of $1,000.

Media: Mean price increase for all condominiums resold last year
was $6,000, with a standard deviation of $800.

a. In which area will you be most certain of making a profit? In
which area will you be least certain?

b. In which area will you make the most money, if all goes well?

4.50 Standby travelers are waiting at La Guardia to catch various New
York-to-Boston flights and New York-to-Washington flights. The mean
waiting time for all standby passengers is 1 hour. For the Boston pas-
sengers, the standard deviation is 30 minutes. For the Washington pas-
sengers, the standard deviation is 10 minutes. How would you describe
to a nonstatistical friend what these facts mean in terms of the transit
of passengers and their moods at the ticket counter?

4.51 During the baseball strike of 1994, reports revealed that the
mean salary of the players was approximately $1,200,000 and the me-
dian salary was $500,000. What do these numbers tell you about the
distribution of salaries for baseball players?

4.52 Consider the mean income in two different states. Suppose a
person moves from one state to the other. How can it be that as the
result of this move the mean income increases in both states?



ANALYSIS (EXERCISES 4.53-4.72)

4.53 Go to the Springer Web site (htt://www.springer-ny.com/sup-
plements/iversen/) to find files relating to this book. Open the data
file called Baseball Individual Scores.

a. For each column, find the mean, median, standard deviation,
and range.

b. Obtain a histogram for each variable, using statistical soft-
ware.

c. On the basis of the histograms, for which variables is the mean
the better measure of central tendency and for which variables
is the median the better measure?

d. Why is the range approximately equal to 4 times the standard
deviation for only some of the variables?

4.54 Exercise 3.36 gives data on the longevity of the signers of the
Declaration of Independence.

a. From looking at the data, do you think the signers as a group
lived a longer or a shorter time than they were expected to?

b. The mean of the observations equals — 1.8 years. What does
the mean tell you about the how long the signers lived?

c. The standard deviation equals 13.2 years. How large is the
range in these data compared to the standard deviation?

d. How many observations lie more than two standard devia-
tions away from the mean?

e. What can you say about these men?

f. Judging from the histogram of all the data, would you expect
the median to be very different from the mean? Explain.

g. These observations are found as the difference between how
long a man actually lived and how long he was expected to live
after signing the Declaration. Would there be any reason to an-
alyze the ratio of those numbers instead? Explain.

4.55 Exercise 3.34 gives a sample of values of socioeconomic scores.
Another group of people have the following values of the same variable:
55, 36, 70, 66, 75, and 49. You are interested in how long the two groups
can expect to exist; you think that the more homogeneous a group is
the longer the members will remain a group.
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a. Explain how to measure the homogeneity of each group.
b. Compute the measure of homogeneity for each group.

c. Compute a comparison of the groups. Is there a great differ-
ence between the groups? Explain.

4.56 Refer to the socioeconomic scores given in Exercise 3.34 and
Exercise 4.55.

a. Find the medians for the two sets of data.
b. What do the medians tell you about the two groups?
c. What is the combined median for all 18 observations?

d. How many observations in each of the two samples are
smaller than the combined median and how many are larger?

e. What do the answers to part d tell you about how different
the two groups are?

4.57 As a rule for good nutrition, no more than 30 percent of our
daily calorie intake should come from fat. In a group of frozen choc-
olate desserts, the mean percentage of the calories that come from the
fat equals 18.9, with a standard deviation sequal to 9.2. For comparison,
the data also include information on regular chocolate ice cream, in
which 39 percent of the calories come from fat. (Source: “Low-fat frozen

desserts: Better for you than ice cream?” Consumer Reports, vol. 57, no. 8 (August
1992), pp. 483—-487.)

a. Change the percentage for the chocolate ice cream to a stan-
dard score.

b. Does chocolate ice cream seem different from the other des-
serts?

4.58 The calorie values of 16 different snack foods follow (you made
graphs for these data in Exercise 3.38).

110 120 120 164 430 192 175 236
429 318 249 281 160 147 210 120

(Source: ASDA data and manufacturer’s data shown as an advertisement in The New York
Times Magazine, April 20, 1990, p. 20.)

a. Find the mean and the median of the data.

b. Which of these two averages seems more appropriate for
these data?

c. Find the range for the observations.



d. Use the range to find an estimate of the standard deviation
of the data.

4.59 In the school year 1995-1996, the members of the Department
of Mathematics and Statistics at Swarthmore College had the following
numbers of children: Eugene 2, Don 0, Gudmund 4, Helene 0, Charles
2, Aimee 0, Stephen 2, Michael 0, Janet 0.

a. Draw a histogram illustrating these findings.

b. What was the modal number of children?

c. What is the mode for men and the mode for women?

d. What do these modes tell you?

4.60 To find the average numbers of pages in the textbooks for his
courses, Clark first listed the books by course as follows: Biology 657,
189; History 348, 237, 181; English 104, 201, 298, 87, Math 302, 99;
Psychology 607, 139.

a. Organize the items in the list so that it is possible to find a

median by “eyeballing” the numbers.

b. Find the mean of the pages.

c. Compare the two scores. What accounts for the discrepancy

between the scores? Which one would you think is the fairer
answer, given Clark’s question?

4.61 According to the U.S. Bureau of the Census, the following were

the number of medical schools in the country in each year between
1915 and 1945. '

1915 1916 1917 1918 1919 1920 1921 1922 1923

96 95 96 90 85 85 83 81 80

1924 1925 1926 1927 1928 1929 1930 1931 1932

79 80 79 80 80 76 76 76 76

1933 1934 1935 1936 1937 1938 1939 1940 1941
77 77 77 77 77 77 77 77 77

1942 1943 1944 1945

77 76 77 77
Source: Historical Statistics of the United States 1789-1945, p. 50.

Exercises

m
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a. Draw a stemplot illustrating the data.

b. Compute the mode, median, and mean number of medical
schools over the years.

c. What special insight that the others do not reveal does each
summary statistic give?

d. Is there anything about these data that surprises you?

d. How would you account for the trends historically? (Addi-
tional information: the number of medical school graduates
went from 3,500 in 1915 to 4,000 in 1925 to 4,500 in 1930 and
leveled off at slightly more than 5,000 from 1930 to 1945. The
number of physicians rose from approximately 143,000 in 1915
to approximately 181,000 in 1945.)

4.62 Recall the hourly wage you made in each job you have had over
your entire life. Calculate the range.

4.63 Draw a histogram of Shaquille’s free throws in Exercise 4.14.
(You will waste some paper on this exercise!) What does the histogram
tell you?

4.64 The following data come from a sample of high school students’

reports of smoking cigarettes and marijuana and drinking alcohol. To
simplify the task, first draw a histogram of each distribution.

Number of days smoked cigarettes during month: 0 0 30 29 30 0 0
1003029300000013028100003030290030003000
1003030

Number of days smoked marijuana during month: 00000010
00012210030020010010010040000011

Number of days used alcohol during month: 01050400300
22000100400300200012001001030

a. Estimate (or calculate) the mean of each distribution.
b. Which distribution will have the highest standard deviation?
c. Which distribution will have the smallest standard deviation?

d. Would it be possible to estimate a standard deviation that
would be appropriate for each distribution knowing what you
do about the percentage of the distribution within one standard
deviation of the mean?
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Refer to the information in Exercise 4.64.

a. What percentages of high school students in this sample
smoked cigarettes, smoked marijuana, or drank alcohol at least
once in the past month?

b. How do your findings agree with the following results of a
survey of a sample of all U.S. students: 46% had drunk alcohol
at least once; 24% had smoked cigarettes; 11% had used mari-

juana at least once. (Source: “Teen-age drug use high,” The New York

4.66

ercise

4.67

Times, September 20, 1992, p. 33.)

Refer to the data on mercury concentrations in swordfish in Ex-

3.46.

a. Find the mean concentration of mercury in the sample of 28
swordfish.

b. Find the standard deviation of the mercury concentration.

c. How many of the swordfish have a mercury concentration
within plus or minus two standard deviations from the mean?

d. Why is it that the mean concentration is larger than 1.00
when those swordfish that are tested and found to have a con-
centration larger than 1.00 are not even brought to the market?

A small company employs 9 people who earn the following

hourly wages:

4.68

$6.50 $6.20 $6.50 $7.00 $10.00 $10.00 $11.00 $15.00 $21.00

a. How large is the median wage?
b. How large is the mean wage?

c. It was decided that the four lowest wages should each be in-
creased by $4.00 per hour. What is the median wage of the new
wages?

d. What is the mean wage of the new wages?

e. Why do the median wage and the mean wage not change by
the same amount when the low wages are increased?

The observed values of one variable are 1, 3, 3, 3, 3, 3, 3, and 5.

The observed values of the another variable are 2, 2, 2, 2, 4, 4, 4,

and 4.

a. Make histograms of the data on the two variables.

Exercises
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b. From the histograms, does it appear that the two variables
have the same or different means?

c. From the histograms, does it appear that the two variables
have the same or different standard deviations?

d. Find the means and standard deviations for the two sets of
data.

e. What do you learn about the two data sets from the results in
part d?

4.69 Refer to Exercise 10.34 for data on the percentage of calories
that come from the fat in ten different ice creams as well as a score
measuring the flavor of the ice creams as determined by a group of
testers.

a. Find the mean and the standard deviation for the percentage
of calories from fat variable.

b. How many of the observations lie in the range from the mean
minus two standard deviations to the mean plus two standard
deviations?
c. Find the mean and standard deviation for the flavor variable.
d. How many of the flavor observations lie in the range from
the mean minus one standard deviation to the mean plus one
standard deviation?

4.70 a. Find the standard deviation of the data in Figure 4.6.
b. What does the data tell you when you know both the mean
and the standard deviation?

4.71 Find the median ages at time of marriage for the data in Exercise
3.20. What do the two medians tell you?

4.72 Following are the results of two well-known tests of physical
strength taken by 10 college swimmers.

Test Adam Bob Emil Juan Sam Lou Ken Paul Mike Lee

A 20 23 24 18 17 16 25 24 21 19
B 31 39 39 29 28 31 40 30 31 30

a. On which test did each person do better? To answer this ques-
tion it is necessary to convert the raw scores to standard scores.
The mean of test A for the national sample is 20 and the standard



deviation is 2; the mean of test B for the national sample is 35
and the standard deviation is 3.

b. If you were the coach and wanted your team to feel good
about themselves, which test would you prefer to use?

c. Which team member seems to be the weakest?
d. Which team member seems to be the strongest?

e. Which team member(s) seem most inconsistent from one test
to the other?

f. Which team member(s) seem most consistent from one test
to the other?

Exercises
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%at is the probability that all four children in a family are girls? What is
the chance that there will be two no-hitter baseball games in the same day?
What is the likelihood that the lucky number in the daily double will be 712
How certain can Libby’s parents be that she will be accepted at Carleton Col-
lege? What is the probability that the mean number of children in a family is
2.0 or less in a sample that comes from a population where the mean equals
4.0 children? If a voting population is split evenly between two parties, what
is the probability of a sample percentage of 55 % or more voting for one of the

two candidates?
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Questions about probability occur regularly in everyday conversations
as well as in statistics classes. In this chapter we discuss what statisticians
mean by the term probability and how we use it in statistical analyses.
From the questions on page 177, you can see that the word probability
has to do with the chance, or likelihood, or degree of certainty that
some event will happen, and that the term is used well beyond the
scope of statistics.

A probability is simply a number. More specifically, it is a number
between zero and one that describes how often an event happens. An
event with a small probability (near zero) happens seldom, while an
event with a large probability (near one) happens often. For example,
the probability of two no-hitter baseball games on the same day is small;
the probability that at least one hurricane will hit the United States
somewhere during a year is large, since more than one such storm
occurs in most years.

The idea of probability goes back a long time. References to chance
and probability are even found in the Old Testament: “And Saul said,
Cast lots between me and Jonathan my son. And Jonathan was taken”
(Samuel 1:42). About a thousand years ago, legend has it that the Nor-
wegian king (Olav the Holy) and the Swedish king threw a pair of dice
to determine the ownership of a disputed piece of land.

There were sporadic writings on chance and probability up until
the 1600s. At that time, interest in probability was stimulated when
gentlemen gamblers tried to determine what the payoffs should be in
certain card and dice games. Because events with small probabilities
do not occur very often, the gamblers thought these events should have
high payoffs. On the other hand, events with large probabilities should
have smaller payoffs because these events happen frequently. Also, the
probabilities—and thereby the payoffs—ought to be such that the win-
nings were fair, meaning that people putting on the games should
neither go broke nor make excessive profits. Problems of these kinds
were presented to mathematicians of the time, and they began to de-
velop probability theory as we know it today.

Today, statistical interest in probabilities is somewhat different
from that of gamblers. To stress a basic notion of statistics, if we mea-
sure something several times, a different result will occur most of the
times. For example, the measure of the length of one leaf on a tree is
a certain number of inches, and the measure of the length of another
leaf on the same tree is a different value. This is because of the ran-
domness in the variable (the length of aleaf). Similarly, the percentage
of people in favor of the current president’s policies in one sample is



Probabilities can be used for many purposes. (Source: Peanuts® reprinted by per-
mission of United Feature Syndicate, Inc.)

different from the percentage of people who favor them in another
sample. This too is because of the randomness we experience from the
random drawing of the people in one sample to the next.

Variability between measurements of the same variable raises the
question of how often a specific result would occur if the measurement
were repeated many times over, regardless of whether we measure a
single object (a leaf) or a whole sample of objects (people). The ques-
tion can be answered by probabilities, which are designed to show how
often something happens over a long series of observations. For ex-
ample, if we draw many, many samples of voters, and in three quarters
of the samples the percentage of people in favor of the president’s
action is larger than 60%, then we can say that the probability that the
observed sample percentage is larger than 60% equals 0.75: in 75 out
of 100 samples, the percentage approving of the president is 60% or
more. The other 25 samples would have a sample percentage less than
60%. For the leaf example, the probability may equal 0.10 that the leaf
length is more than 2.34 inches: in only 1 of 10 measurements is the
leaf longer than 2.34 inches; 9 of the 10 leaves are shorter than 2.34
inches.

Probability statements are made throughout this book: the proba-
bility is 0.023 that a sample mean of a variable is larger than a certain
value, the probability is 0.15 that the sample standard deviation is less
than 5.67, and so on. In Chapter 4, in the age at marriage example,
the mean age of the brides is 30.0 years and the mean age of the grooms
is 32.3 years, for a difference of 2.3 years. The probability of getting a
mean difference of 2.3 or more in a sample coming from two popu-
lations where the means are the same is only 0.002. That is, in only 2
of 1,000 different samples coming from populations where the brides
and grooms are the same age would the mean for the grooms be 2.3
or more years larger than the mean for the brides.

5.1

Probability
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Such probabilities tell us on the basis of sample data how often
these kinds of results would occur if the study were repeated for many
different samples. Probabilities are useful for applying to the real world
findings on an observed sample.

So far we have established that a probability is a number between zero
and one. How do we find these numbers?

Using equally likely events

The early method of finding probabilities came from card and dice
games. If a die (one of a pair of dice, for noncrapshooting readers)
has six sides and all sides are equally likely to show when the die is
tossed, then the probability of any one side showing is 1/6. Similarly,
if a deck of cards has 52 cards and 13 of them are clubs, then the
probability that a randomly chosen card is a club equals 13/52 or
1/4.

This way of thinking about probabilities suggests that if there is a
specific number 7 of possible outcomes when an experiment is per-
formed and a subset k of them is considered favorable, then the prob-
ability of a favorable outcome is k/n. For the die, £ = 1 for one side
and n = 6 for the sides for the probability 1/6. For a deck of cards,
k = 13 clubs and n = 52 cards, so the probability of drawing a club (or
a card from one of the other three suits) becomes 13/52 = 1/4 =
0.25.

This system for finding probabilities works for cards or dice because
the possible number of outcomes is known and, because of their sym-
metry, all are equally likely. However, often it is not known whether all
possible outcomes are equally likely (for example, all the horses in a
race are not equally likely to win). Sometimes the possible outcomes
are not known (for example, the number of gamblers choosing num-
bers in a football pool). Under such conditions, the “equally likely” way
of finding a probability is impossible.

Using relative frequency

In the second and most common way of finding simple probabilities,
the probability of an event occurring is based on the proportion of
times an event actually occurs in a great number of cases. Take child-
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Poker players’ paradise—a royal flush and a full house. What is the proba-
bility of drawing either hand? Of drawing both? (Source: First Image West, Inc.)
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birth as an example. Each birth results in one or more babies who are
either boys or girls. Whether the two possibilities are equally likely is
not known.

Over many years of record keeping, the proportion of girls among
newborn children was found to equal 0.49. The proportion is found
by dividing the number of girl babies by the total number of babies
born. A probabilist (a person who studies probabilities) would say that
as the number of births approaches infinity (by this is meant a very
large number of observations), the observed proportion of girls ap-
proaches the true value of the probability of a girl.

In this example, a probability is a long-run proportion, the result
of investigating a large number of events over the long run. The exact
numerical value of such a probability never is identified, but many
observations bring the estimate close to the actual value. The problem
with the long-run way of finding probabilities is that, as the famous
economist Lord Keynes said, “in the long run we will all be dead.” No
statistician can hope to stay around long enough to find the true values
of a probability. Instead, the statistician relies on the observed propor-
tion as an estimate of the true probability.
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Using subjective probabilities

Even the relative frequency approach to finding probabilities-doés not
always work. What is the probability that Mr. Kaye will arrive safely at
his destination after taking a planned trip tomorrow? Only one specific
trip is occurring tomorrow, a unique event. He cannot take the trip and
then roll back time and take the trip again and again and again to see
how many times he arrives safely out of the total number of times he
takes the trip. When there is no measurement that can be repeated,
there is no way to find an observed proportion of how many times a
specific event occurs. But it is still useful to think in terms of probabil-
ities. Mr. Kaye cannot be certain that he will arrive safely, but from what
he knows of travels like these, he judges the probability of a safe arrival
to be large enough that he should take the trip.

Probability for a unique event is called subjective probability. In the
example, personal probability is simply an expression of the uncer-
tainty Mr. Kaye feels about traveling, based on all the information avail-
able at the time. We can all have different values of the probability for
a safe arrival, so there is no right or wrong value of a personal proba-
bility. That makes personal probabilities subjective.

183
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Personal or subjective probabilities form the basis for what is known
as Bayesian statistical inference, which we do not pursue in this text.
This book most often uses the long-run proportion as a probability.

Probabilities are simply numbers, and as numbers they can be added
to each other, subtracted from each other, and multiplied and divided
by each other. Computations can help us find the probabilities of more
complicated events from the probabilities of simpler events.

For example, the probability that a randomly chosen new baby is a
girl is 0.49. Given the probability for that simple event, what is the
probability of having a boy? Subtracting 0.49 from 1.00 yields 0.51, and
that is the probability of a boy, since girl and boy are the only two
possible outcomes of a birth. A more complex problem that the simple
probability helps solve is, What is the probability that there are 3 girls
and 1 boy in a family with 4 children? That is, how often are the chil-
dren in families with 4 children composed of 3 girls and 1 boy?

One way to find this out would be to actually locate many, many
families with 4 children and count how many of them have 3 girls and
1 boy and how many do not. We would find that about 0.24 (or 24 out
of 100) of them have 3 girls and 1 boy. But this empirical method to
find a long-run proportion would be costly and time consuming—and
unnecessary. Instead, we can use the rules for how to multiply and add
probabilities to compute the answer from the original female birth
probability of 0.49. The answer to the question is also 0.24, and the
computations are shown in Section 5.4 in the subsection on binomial
distribution.

Adding probabilities

When we want to find the probability of one event or another event
that both cannot happen at the same time, then we simply add the
probabilities for the two events. For example, to find the probability
that a family of 4 children has 3 girls or4 girls, we assume that particular
family cannot have both 3 and 4 girls at the same time, so we add the
two probabilities. The probability of 3 girls is 0.24 and the probability
of 4 girls is 0.06, so the probability of 3 or 4 girls is 0.24 + 0.06 =
0.30. If we want to find the probability that something is either large
or small—for example, that a sample mean is smaller than 5.6 or larger
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than 17.8—since both of these events cannot happen at the same time,
we add the probability that the mean is smaller than 5.6 and the prob-
ability that the mean is larger than 17.8.

Multiplying probabilities

To find the probability of one event and another event happening at
the same time, we multiply the probabilities of the two events. The prob-
ability of both events happening at the same time is smaller than the
probabilities of either of the two events happening by itself; two specific
events happening at the same time occurs less often than either of them
happening alone. This piece of common sense is borne out mathe-
matically: multiplying two numbers that are each less than one yields
a product that is less than either one of them. For example, 0.3 times
0.4 equals 0.12, and 0.12 is smaller than either 0.3 or 0.4.

Returning to the family of 4 children, what is the probability that
a family had a girl, then a boy, then a boy, and finally a girl? Just mul-
tiply the probabilities for each child: 0.49 % 0.51 * 0.51 * 0.49 =
0.062. Thus, only 62 out of 1,000 families with 4 children would have
a girl, a boy, a boy, and a girl, from oldest to youngest.

In many situations probabilities cannot be multiplied directly. So-
called conditional probabilities have to be taken into account when the
multiplication is done.
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In 1993, before the International Olympic Committee had decided
where to hold the summer Olympic games in the year 2000, book-
makers in London gave odds on where they thought the games would
be held. The bookmakers thought that some cities had a higher prob-
ability of getting the games than other cities, and they offered odds
against where they thought the games would be held:

Sydney, Australia 4t09
Beijing, Ching 5to2
Manchester, England 10to 3
Berlin, Germany 16to0 1
Istanbul, Turkey 66 to 1

Brasilia, Brazil 200 to 1
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These numbers look just like the odds for a horse race. Since in
odds against an event occurring the number of times the event does
not occur is always given first, it is clear that the bookmakers felt that
Sydney had a pretty good chance of being the Olympic site and that
Brasilia was a long shot.

Odds rather than probabilities are commonly used when money is
being wagered on an outcome. The odds of 200 to 1 on Brasilia tell us
that if we had paid a bookmaker $1 and Brasilia actually got the games,
then we would have received the dollar back plus an additional $200.
The odds therefore describe how much money we have to pay the
bookmaker and how much money we get back if we win.

Odds are given in whole numbers, like 4 to 9, for ease in expression.
Odds of 4 to 9 are the same as odds of 2 to 4.5, but decimal numbers
are cumbersome. This means that odds take some getting used to be-
fore they can be compared.
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In the list of Olympic sites odds, which are better, the odds for Bei-
jing or the odds for Manchester?

Brasilia as a long shot in the race for the Olympic games shows that
the bookmakers thought Brasilia had a very small probability of getting
the games. Odds of 200 to 1 translate into a probability for Brasilia
getting the Olympic games of 1/(200 + 1) = 1/201 = 0.005. Sydney’s
odds of 4 to 9 mean that if we paid the bookmaker $9 and Sydney got
the games, then we got our $9 back plus another $4. We would not
have received much money because the bookmakers thought that be-
cause Sydney had such a large probability of getting the games, many
people would pick Sydney as the winner.

The probability of Sydney getting the games, in the eyes of the
London bookmakers, was 9/(4 + 9) = 9/13 = 0.69. The probability
of Beijing getting the games was 0.29, Manchester 0.24, Berlin 0.06,
Istanbul 0.015, and Brasilia 0.005. Formulas 5.1, 5.2, and 5.3 at the end
of the chapter take us from odds to probabilities and back to odds
again. Rather than giving the odds against each of the cities, the book-
makers could have given the odds in favor of each city.

On September 23, 1993, the International Olympic Committee
awarded Sydney the summer Olympic games in the year 2000. The
bookies were content.
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Often there is an easy way and a hard way to find something out. For
example, a hard way to find the distance from New Orleans to Chicago
would be to drive the distance and measure the miles. An easy way
would be to look in the back of a road atlas where cities and distances
are listed. Statisticians have an easy way to find the probabilities for
complex events once certain probabilities for simple events are known.

Probabilities for simple events can be used to compute probabilities
of more complex events when it is too difficult to find the probabilities
of the complex events directly. In the example family with 4 children,
the simple probability is the probability of .49 that a randomly chosen
baby is a girl. The simple event is the birth, resulting in a boy or a girl.
The complex event is the occurrence of 3 girls and 1 boy in the family.

By creating preformulated solutions to various problems of prob-
ability, statisticians save themselves a great deal of time and trouble.
Two examples of these energy-saving opportunities are the binomial
distribution and the Poisson distribution (Poisson was the French
mathematician who introduced the method).

Binomial distribution

Imagine that you would like to know the probability of a coin landing
heads twice in a row. Do you have to sit in a room all day tossing coins
to find the probability of tossing heads twice in a row? Maybe not, if
you know that (1) the probability of tossing heads once is 0.5; (2) there
are only two options (heads or tails); (3) each toss is independent of
the other. To find the probability of tossing heads twice in a row, you
multiply 0.5 times 0.5 to get 0.25. Thus, there is a 25% chance of tossing
heads twice in two tosses. This you can do without a calculator, a day
tossing coins, or high-level mathematics.

Consider the more difficult problem of calculating the probability
of a family with 4 children having 3 girls and 1 boy from the simple
probability of 0.49, the probability that a baby is a girl. Mathematicians
realized as long as 300 years ago that it does not matter whether the
probabilities being sought are for girls or boys, heads or tails, or dead
or alive goldfish. From the correct probability for a simple event, for-
mulas, printed tables, and now computer software have been created
that help us find the correct probability for more complicated events.
The most common of these formulas is called the formula for binomial
distribution, and it charts the distribution of numbers of successes (such
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What is the probability that all of these randomly selected babies are girls? (Source: Penny Gentieu, Tony

Stone Images.)

as a girl birth) in » trials (baby births). By using this formula with paper
and pencil, computer software, or printed tables and plugging in the
simple event information, the probability of any given outcome can be
obtained. Formula 5.4 at the end of the chapter is the formula for
binomial distribution.

A variable that has only two possible values, such as the gender of
a newborn child, forms the basis for binomial distribution. (The word
binomial means “two numbers or names.”) Suppose we know the prob-
ability for one of the two values. For example, for the gender variable
the probability of a newborn child being a girl is 0.49; the probability
of the child being a boy is therefore 0.51. The two probabilities must
add up to 1.00, since the child must be either a boy or a girl.

The next step in creating the binomial distribution consists of mak-
ing several independent observations of the base variable, gender of
child. If a family has 4 children, then a certain number of them are
girls and 4 minus that number are boys. This is a new variable: number
of girls among 4 children. This variable has the possible values 0, 1, 2,
3, or 4. Such a variable is known as a binomial variable. A binomial
variable indicates the number of occurrences of one of the two values
under study.

The next step is to find the probability for each value of the bino-
mial variable (number of girls) in families with 4 children. The prob-
abilities can be computed using Formula 5.4, and they are shown in
Table 5.1. Such a collection of values of the binomial variable and their
corresponding probabilities is known as a binomial distribution.

Let us look at a family with 3 girls and 1 boy as an example. One
order in which the children could have been born is the 3 girls first
and then the boy. The sequence can be represented GGGB, where G
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Table 5.1 Binomial probabilities for the number of girls in a family of 4
children

Number of girls 0 1 2 3 4 Total
Probability 0.07 0.26 0.37 0.24 0.06 1.00

stands for girl and B for boy. The probability that the first child was a
girl equals 0.49. The probability that the second child was a girl equals
0.49. The probability that the first and the second children are girls is
therefore the product of 0.49 * 0.49. Generalizing from here, the prob-
ability that the first child is a girl and the second is a girl and the third
is a girl and the fourth is a boy is 0.49 * 0.49 * 0.49 = 0.51 = 0.06. This
is the probability that a family will have three girls and a boy in exactly
that order of births.
A family can have three girls and a boy in four different orders:

3 girls and 1 boy Probability

GGGB 0.49 * 0.49 * 0.49 = 0.51 = 0.06
GGBG 0.49 * 0.49 * 0.51 * 0.49 = 0.06
GBGG 0.49 * 0.51 * 0.49 * 0.49 = 0.06
BGGG 0.51 * 0.49 * 0.49 * 0.49 = 0.06

Sum = 0.24

Each of these possible sequences has a probability of 0.06. Adding the
probabilities results in the overall probability 0.24 of three girls and
a boy.

It can be tricky to find the number of possible sequences when the
sample is larger than 4, but the first term in Formula 5.4, given at the
end of the chapter, makes it easier. And published tables of binomial
probabilities as well as computer programs for finding binomial prob-
abilities eliminate doing the computations altogether.

The binomial distribution is used only for a small sample, such as
the 4 children in the example family. If the product of the sample size
and the original probability is larger than about 5, then there are sim-
pler ways of analyzing the data. (In the example family, 4(0.49) =
1.96, which obviously is less than 5.) To find probabilities in a sample
of 1,200 respondents, with 720 people in favor of a proposition and
480 against, a better method is the so-called normal approximation to the
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binomial distribution, discussed in Chapters 6 and 7. As long as the basic
probability is around 0.5, as is the case in the example family, this
approximation can be used even with samples of as few as 10 or 15 or
so observations.

Poisson distribution

On June 3, 1990, the sports pages were full of discussions of the unlikely
phenomenon that had happened the day before: two no-hit baseball
games had been pitched, one by Mark Langston and Michael Witt to-
gether for the California Angels and the other by Randy Johnson for
the Seattle Mariners. No-hitters do not occur often in baseball, so even
one gets considerable press. Two no-hitters on the same day had not
occurred since 1898.

To find just how unlikely this event was, the Poisson distribution
can be used. Siméon Denis Poisson was particularly intrigued by prob-
lems with small probabilities and potentially many occasions that the
event could occur. Poisson developed his approach with data on the
number of Prussian army soldiers killed by horse kicks in the days when
the cavalry rode horses instead of tanks. His work was published in
1837.

A no-hitter is a dichotomous situation. Any baseball game is either
a no-hitter or it is not, so there are only two possibilities. But unlike
the probability of a baby being a girl, the probability of a no-hitter is
very small, a no-hitter is very unlikely, especially given the potentially
large number of times (every game) a no-hitter could occur. The Pois-
son variable here is the number of no-hitters in a day; possible values
of the variable are 0, 1, 2, 3, and so on.

In such a case, when the occurrence of an event has a small prob-
ability and many possibilities, the probabilities of the different values
of the Poisson variable can be calculated with Formula 5.7, the formula
for the Poisson distribution, at the end of the chapter. (The Poisson
distribution is mathematically derived from the formula for the bino-
mial distribution, but if you examine it, you will see why some people
think it is not as intuitively obvious as the binomial formula.) Poisson
probabilities can be computed from the formula or they can be looked
up in tables. It is also possible to program a computer to find the
probabilities.

Data on no-hitters starting with the year 1900, the year both the
American and National Leagues as we know them came into being,
show an average 1.9 no-hitter games pitched every year. Let us say that
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Table 5.2 Poisson probabilities for the number of baseball no-hitters
occurring in one day

Number of no-hitters 0 1 2 C Total

Probability 0.989234  0.010708  0.000058 ...  1.000000

the baseball season lasts 180 days. An average of 1.9/180 = 0.0108 no-
hitters, then, were pitched every day. Applying the Poisson formula to
that number yields the probability of 0, 1, 2, . . . no-hitters being
pitched any day (Table 5.2). There is no upper bound on the number
of no-hitters that could be observed beyond the number of games
played on a given day.

Based on 1.9 no-hitters a year and 180 days of playing, in most
games there is at least one hit, since the probability of a no-hitter is
0.989234. At the same time, the probability of two no-hitters on one
day is 5.8 in 100,000, or 1 in 17,241. In 100 years, baseball is played a
total of 18,000 days, so a day with two no-hitters can be expected about
once every 100 years. The first one occurred almost on schedule, 90
years after records began to be kept; there may be quite a wait for the
next one.

Cy Young. This famous pitcher threw a no-hitter on May 5, 1904. (Source:
UPI/Bettmann.)
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Hypergeometric distribution

A third statistical distribution, the so-called Aypergeometric distribution,
can be used in the analysis of two categorical variables when the sam-
ples are very small; see Chapter 9. Formula 5.10 shows how to find
probabilities for the different values of the hypergeometric variable.
The distribution is used in Section 5.6 in the example about the fair
workplace.

Displaying probabilities in graphs and tables

We can do many of the same things with probabilities as with observed
data. We can display probabilities in graphs and tables and we can use
the probabilities for computations of quantities such as means and
standard deviations.

Any kind of graph that can be produced for frequencies can also
be produced for probabilities: pie charts, boxplots, and so on.

Figure 5.1 shows a histogram of the binomial probabilities for the
number of girls in a family with 4 children. A histogram of data on
many, many families with 4 children and different numbers of girls
would look exactly the same. Computing the probabilities using the
binomial distribution saves much time and effort that otherwise would
have to go into data collection.

It is worth repeating that it is not the height but the area of each
of the rectangles in Figure 5.1 that shows the corresponding probabil-

Number of girls

Figure 5.1 Binomial probabilities for number of girls in families with 4
children
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ity. Since the base of each rectangle has length 1.0, the area of any
rectangle is shown on the vertical scale. Also notice that the total area
of all five rectangles in the graph equals the sum of the probabilities,
which is 1.00.

Computations with probabilities

We do computations with probabilities to summarize a probability dis-
tribution just as we can do computations to summarize a frequency
distribution. To find the mean number of girls from the distribution
in Figure 5.1, we find the point on the horizontal scale at which the
probability distribution balances. With observed data, we add the values
of the variable and divide the sum by the number of observations. In
this case, all possible values 0, 1, 2, 3, and 4 are present, and each value
is accompanied by a probability or how often the value occurs. We then
act as if the value of 0 had been observed 0.07 times, the value of 1 had
been observed 0.26 times, and so on. Instead of adding 0 a total of 0.07
times, we multiply the value of 0 by 0.07 to get the contribution of that
value to the mean and similarly for the other values of the variable:

mean = p = 0(0.07) + 1(0.26) + 2(0.37) + 3(0.24) + 4(0.06) = 1.96

The u with the tail is the Greek letter g (mu), and it is used to
distinguish a mean found from probabilities from the empirical mean
x found from actual data. The number 1.96 tells us that in a very large
number of families with 4 children, the mean number of girls would
equal 1.96. Computing the mean from the original probability 0.49 of
a girl and using of the binomial distribution eliminates spending time
and money collecting from a large number of families. The mean for
the binomial distribution can also be found with Formula 5.5 at the
end of the chapter. The mean of the Poisson distribution can be found
with Formula 5.8.

We can also find a standard deviation for the variable, and it is
denoted by the Greek letter o (sigma) to distinguish it from the stand-
ard deviation s computed from observed data. For this probability dis-
tribution, the standard deviation of the number of girls variable is
o = 1.00. The mean plus and minus two standard deviations equals
1.96 = 2(1.00) = —0.04 to 3.96. This range of values takes in just
about all the values of the variable and almost all the total probability
of one. The standard deviation for the binomial distribution can be
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found with Formula 5.6 at the end of the chapter. The standard devi-
ation for the Poisson distribution can be found with Formula 5.9.

Much of the data gathered for statistical analysis come from contin-
uous variables, for which between any two values are other values. Ex-
amples of continuous variables include distance, dollar amount,
weight, and time.

Four theoretical variables are useful in determining certain prob-
abilities. They are known as the standard normal z variable, the ¢ vari-
able, the chi-square variable, and the Fvariable. Each has its own special
distribution. Just as we compute a mean and a standard deviation from
the data in a sample, we can compute a similar value of one of these
four variables from a sample. Thus, a z or a ¢ or a chi-square or an Fis
no different from any other sample statistic. As we see in later chapters,
the values we compute of these four variables are useful for generaliz-
ing from the information in our sample to the larger population from
which the sample came.

Standard normal distribution: The bell curve

There is nothing “normal” about the standard normal distribution, but
perhaps this word is used in English to maintain a neutral stance be-
tween its German name (Gauss distribution) and its French name
(DeMoivre distribution). Figure 5.2 shows a normal distribution, or bell
curve. This distribution, the most easily recognized and aesthetically
pleasing one, is famous for its shape, which resembles a bell in a bell
tower. Among its characteristics is its symmetry, with equal areas under
the curve on both sides of the midpoint.

One way to think of the normal or zvariable is to imagine a large
number of observations of a variable, each written on a piece of paper
that is put into a barrel. Each value is called a zscore. (Use of the letter
zdoes not have special significance.) Most of the values of the zvariable
are in the range from —2.00 to 2.00; more specifically, 95% of the =
values lie between —1.96 and 1.96. Very few of the values of z are
smaller than — 3.00 or larger than 3.00.

The mean of the zvalues equals 0.00, and their standard deviation
equals 1.00. (These numbers are arrived at using some fancy mathe-
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Figure 5.2 Distribution of the standard normal variable z

matics, but the mean and standard deviation can still be imagined as
computed from a large number of observations, as discussed in Chapter
4.) A normal variable with mean 0 and standard deviation 1 is said to
have the standard normal distribution.

A histogram might give a better sense of the distribution of these
values. The range of values can be divided into small intervals and the
number of zscores in each interval represented by a rectangle whose
area equals the proportion of observations that fall in the interval. But
the histogram is messy. When the intervals are very small, the rectangles
are very narrow, and the vertical lines for the rectangles are very close
to each other. To clean up the graph, the vertical sides of the rectangles
could be eliminated, leaving only the tops of the rectangles, which
would look almost like a smooth curve, as shown in Figure 5.2.

A bell curve describes many phenomena in the real world, for ex-
ample, height and weight. It also describes psychological test scores of
many kinds; the curve has become a focus of contention regarding
whether it measures the distribution of intelligence test scores for dif-
ferent ethnic groups.
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Just as the total area of the rectangles in a histogram can be said
to equal 1, so can the total area under the bell curve; the area of each
thin rectangle is the proportion of zvalues in the corresponding inter-
val, and these proportions add up to 1. We see from Figure 5.2 that
the shape of distribution is unimodal and symmetric around the value
0. Because of this symmetry, the area under the curve to the right of 0
equals 0.5 and the area to the left of 0 also equals 0.5.

Because of the design of the curve, the probability equals 0.95 that
a randomly chosen value of zlies between —1.96 and 1.96. Because the
curve is symmetric, the probability equals 0.025 that a randomly chosen
value of z is equal to or larger than 1.96. It is also true that the proba-
bility equals 0.025 that a randomly chosen value of z is equal to or
smaller than — 1.96. This distribution has been extensively studied, and
tables have been created to show various areas under the curve. The
tables are useful for calculating probabilities from zscores. One such
table (Statistical Table 1) is shown at the end of the book. There also
exists an equation that describes the curve.

The main use of the standard normal distribution is in finding the
probability of any particular zvalue and more extreme values. For ex-
ample, suppose z = 2.34. Does that value belong to an unusual set of
values or not? From looking at Statistical Table 2, the probability of z
being equal to or larger than 2.34 is p = 0.0096. Only 96 of 10,000
zvalues are larger than 2.34. Since this probability is very small, the
observed value of z belongs to an unusual—even far out—group of
zvalues. Unusual zvalues are discussed further in Chapter 7 on hy-
pothesis testing.

The tdistribution

Around 1900, statisticians began to suspect that the standard normal
distribution was not always the correct distribution to use for finding
probabilities. William Gosset, a chemist who worked for Guinness Brew-
eries in Dublin, Ireland, with a minor in mathematics, was one of these
curious people. He decided to examine empirically whether the stan-
dard normal distribution was always the correct one to use in problems
of probability.

Rather bizarrely, Gosset started his explorations by obtaining data
on the height and left middle finger length of 3,000 criminals. From
each of the two data sets (height and finger length), he selected sam-
ples of four observations of each variable, which gave him two groups
of 750 different samples. For each sample he computed a value he
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called ¢. Then he made two histograms to see what the distribution
looked like for all the tvalues in each sample. How close did they match
the standard normal distribution?

Gosset found that the shapes of his two histograms were close but
not identical to the shape of the normal distribution. He called the
new distribution the t-distribution, and the values he computed are still
known as #values. When he published his results, he signed his paper
with the pseudonym “Student” because his employers did not like their
people to publish papers for fear of giving away secrets about how to
brew beer. Thus, the #distribution is sometimes known as Student’s t.

Later, Fisher did mathematically what Gosset had done empirically;
he derived the mathematical function for the curves that display the
tdistributions. Today this is by far the most common distribution
in use.

Degrees of freedom: Different distributions for different degrees There is a
whole family of tdistributions, and each member of the family is a little
different from the other members. Envision not just one but a whole
collection of barrels, each full of slips of paper with #values on them.
To distinguish between the #distributions, they are numbered 1, 2,
3, . . . and the numbers are known as degrees of freedom, abbreviated
d.f. or df. In dealing with the #distribution with 10 degrees of freedom,
we go to the barrel marked 10.

The statistical equivalent for the barrels is a table for probabilities
for #values. When statisticians use the #table (Statistical Table 2), they
go to the row labeled 10 degrees of freedom. The size of the sample
partly determines which tdistribution they use, and readers of results
are always told how many degrees of freedom were used in an analysis,
since that is not an easy number to determine.

It is possible to find the graph of each #distribution based on the
idea of a histogram with small intervals described for the zvariable.
The graph in Figure 5.3 shows the #distribution for 10 degrees of free-
dom. The total area under the curve equals 1.00, just as for the normal
distribution. The distribution is unimodal, and it is symmetric around
the value ¢ = 0. This sounds just like the description of the normal
distribution, and it is hard to see any difference between Figures 5.2
and 5.3. But there are some differences.

The normal and the t-distribution One way to see the difference between
the normal distribution and a tdistribution is to put the two curves
together in one figure (Figure 5.4). The two curves have the same basic
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Figure 5.3 Graph of the #distribution with 10 degrees of freedom

shape, but the normal distribution is higher in the middle and the
tdistribution does not converge with the horizontal axis as quickly
as the normal distribution. The differences indicate that the
tvalues are less concentrated around the mean than are the normal z
scores.

For example, the probability that z is larger than 2.5 equals 0.0062,
while the probability that ¢, for 10 degrees of freedom, is larger than
2.5 equals 0.0152. In other words, only 62 of a thousand zvalues are
larger than 2.5, while 152 of a thousand #values are larger than 2.5.
Also, with 10 degrees of freedom, 95% of the #values lie in the interval
from —2.23 to 2.23. This means that we go farther away from the mid-
point to take in 95% of all the #values than we do in the case of the
normal distribution. Recall that in the normal distribution, 95% of the
values lie between —1.96 and 1.96.

As the number of degrees of freedom gets larger, the curve for the
tdistribution gets closer to the curve for the normal distribution. After
30 degrees of freedom it is very difficult to tell the two curves apart,
and by 50 degrees of freedom the two are almost identical. This is the
reason why statistical tables for the #distribution go up to only about
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Figure 5.4 Standard normal distribution and