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This statistics textbook is unique in its design and execution. It was 
created to fill a growing but previously unmet need to provide today's 
students with a sophisticated grasp of the nature of statistical infor­
mation. It is a response to teachers who want their students to become 
statistically literate citizens, not (often hopelessly) amateur statisti­
cians. 

Over the years, statistical information has been liberated from the 
dusty archives of government agencies and academic computing cen­
ters. Statistical information now plays a part in the discussions of a 
broad range of topics-from national policies on health reform and 
defense to treatments of life expectancies, marriage, abortion, educa­
tion, and sports. Statistics are regularly featured in newspapers, maga­
zines, radio shows, and television programs; they can even be spotted 
on MTV and in cartoons. Statistics saturate our educational curricula, 
as well. In elementary school classrooms and Ph.D. seminars, statistical 
information has become a regular feature of instruction. 

Despite this exposure, there is very little assurance that the audi­
ence for these materials is not only receptive to but knowledgeable 
about what is offered. When people read about the results of a research 
study, how can they assess whether the conclusions are valid? Do they 
ask: How were the variables defined in this study? What statistical meth­
ods were used? What are "statistically significant" results? What are the 
shortcomings of the reported results? These are some of the issues 

v 



vi Preface 

discussed in this book. It is clear that with an understanding of the 
main ideas of statistics, engaged citizens can grasp what the professional 
number crunchers have produced and evaluate the results. 

This book grew out of a course designed by Gudmund R. Iversen 
to meet the challenges created by this greater reliance on statistical 
information. It was one of a series of courses designed at Swarthmore 
College to fulfill the mission of a liberal arts college to educate its 
students for the challenges of the twenty-first century. The idea was 
that students should not become so involved with the intricacies of a 
single discipline that they lose sight of the big picture. These courses 
were intended to educate students to understand how the major ideas 
of a field relate to the world. In many respects statistics seemed an ideal 
subject for one such course. While statistics could be a mystifying, self­
aggrandized, and esoteric discipline, it could also be a key to under­
standing many other disciplines. The course, Stat 1: Statistical Think­
ing, was created to produce this understanding. The course proved to 
be very popular, and each year it grew in size. Over time the lecture 
notes for the course became more refined and extensive, and eventu­
ally the course material served as the basis for this book. 

Fonnulas 

As most statistics instructors are keenly aware, the teaching of statistics 
has changed dramatically. The integration of the computer into edu­
cational settings and especially the easy availability of user-friendly sta­
tistical software have made the old ways of study-in particular, mem­
orization and manipulation of statistical formulas-no longer 
necessary for the vast majority of students. To be true to our objectives 
for this book, we have used no statistical formulas within the discourse 
of each chapter. Although this may seem radical, we decided with de­
liberation and care to deemphasize formulas by handling them in spe­
cial sections at the ends of chapters. 

Our experience is that statistical formulas are like an alien lan­
guage. If one understands the language, the formulas add immensely 
to one's understanding of statistics; if not, they are indecipherable. We 
have seen too many students for whom the formulas became a barrier 
to understanding and interest in statistics, and we strongly believe it is 
possible to gain a deep understanding of statistical ideas without 
them. 



Exercises 

It is difficult to learn statistics by just listening to lectures and reading 
a textbook. Statistics is better learned by doing, so we provide a large 
selection of exercises. Almost all the examples and exercises use real 
data we have selected from books, journals and newspapers. These are 
data used in actual research or published reports, and together they 
illustrate how statistics is applied across a wide range of human activi­
ties. 

The exercises are of three kinds: Review questions, which probe 
understanding of the chapter's central concepts; Interpretation ques­
tions, which require students to make sense of statistical information; 
and Analysis questions, which require students to analyze data and cre­
ate their own solutions to problems. The Review questions serve as a 
check for comprehension and provide a background for class discus­
sions. The Interpretation questions, which are verbal rather than quan­
titative, encourage comprehension and suggest applications to real­
world issues. The Analysis questions require students to become 
familiar with the use of a statistical software package, either in work 
groups of a few students or individually. Each of the exercises provides 
potential topics for statistical reports. 

Solutions to odd-numbered exercises are found at the back of the 
book, along with statistical tables useful for working on various exer­
CIses. 
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You probably are reading this book because you think it is important 
to know something about the subject of statistics. At the same time, you 
may suspect that studying statistics won't be the pleasantest task you 
have ever undertaken. We have seen too many reluctant students to 
think statistics courses are automatically crowd pleasers. We know some 
of you would prefer to analyze a poem, sing a ballad, or dissect a frog. 
But we think we have enough knowledge of student temperament to 
speak to all of you, eager and less than eager. 

Some of you recognize that knowing how statistics is used in solving 
problems is critical in some parts of daily life; some of you may be 
looking forward to the challenge of statistics as a mental sport; others 
may see statistics as a means of solving mysteries that intrigue you. We 
think statistics can be intellectually stimulating and even fun. Our goal 
is not to introduce you to the inner sanctums of the profession of 
statistics. As the title suggests, this book is designed to help you under­
stand statistics, to be comfortable with statistical language, and to know 
how to evaluate statistical results. If you wish to pursue statistics, this 
text will be just the beginning of a long and exciting road ahead. 

To help you become oriented to the realm of statistics, we start 
each chapter with a few practical problems appropriate to the chapter 
content. We hope these problems will whet your appetite for the food 
for thought that follows. Here are some problems to start off Chap­
ter 1. 



2 Chapter 1 • Statistics: Randomness and Regularity 

1. As a prospective college student, you look at Barron's Profiles of Amer­
ican Colleges. Under Boston University, it indicates that the average 
SAT Verbal score of applicants is 550; SAT Mathematics is 600. 
What do these numbers mean? What is an average score? If your 
score is below the average score, should you not apply to BU? It is 
clear that you have to know something about statistics to select a 
college that will select you. 

2. Imagine that you are a new manager in a marketing department. 
The statistical results of an advertising campaign are submitted to 
you for your comments. Among other things, the report declares 
certain results as "statistically significant." How do you interpret the 
report without exposing your ignorance of the terminology? Mak­
ing sense of statistics suddenly is important to you and your career. 

In requiring car manufacturers to produce electric cars as a percentage of 
their total output, to cut down on air pollution from travel by internal com­
bustion automobiles, California state laws are beginning a national trend. 
Statistical information is crucial in creating the arguments that legislators 
believe in and in testing the effectiveness of electric car use on the quality 
of air. (Peter A. Simon, Phototake NYC.) 
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3. As a potential car buyer and a conscientious citizen, you would like 
to do your part for ecological preservation of the planet. What does 
the latest research indicate about the effects of consumer actions 
on natural resources? Should you buy a car with a diesel engine or 
purchase an electric car or maybe go all the way and ride a bicycle? 
Should you not use aerosol sprays? Should you not use chemical 
fertilizers on your lawn? Statistical studies presented in newspapers, 
magazines, and consumer reports become crucial to your decision 
making. What do all these studies really advise you to do about your 
consumer habits? 

4. As a newspaper reader, you see headlines such as "Eat raw yogurt 
and live to be 100." Are there statistics that support this claim? What 
if you hate raw yogurt? 

.. ~ : '. : ~ ... : . 1 . 1 ' .' ',~' . - -

Statistics is a word with many meanings, some of them better defined 
than others. The word statistics itself seems to have been coined by a 
German named Hermann Conring when he used the term Statistik in 
print in 1660. The first part of the word is an adaptation of the word 
state (Staat in German) , and the term was first used to name the practice 
of states collecting information on births and deaths more than three 
hundred years ago. To this day, statistics remains a mainstay of bureau­
cratic organizations at all levels of government worldwide. Global sta­
tistics have become of vital concern to many international organiza­
tions, such as multinational corporations, the United Nations, and 
organizations concerned with such questions as population density, ec­
ological disasters, and the prevalence of disease. 

Beyond its origins in state policy, the word statistics has two impor­
tant meanings. First, statistics can be thought of as numbers in one 
form or another: average rainfall in Texas, weekly temperature in Ar­
izona, batting average of the Boston Red Sox, size of the national debt, 
or price of coffee in Brazil. Modern society seems to have an insatiable 
hunger for statistics, and in response to this need statisticians collect 
more and more ofthem. "This is a country run on numbers," saidJanet 
Norwood, then Commissioner of the Bureau of Labor Statistics, in her 
presidential address to the American Statistical Association in 1989. 
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Statistics is a set 
of concepts, 
rules, and meth­
ods for (1) col­
lecting data, (2) 
analyzing data, 
and (3) drawing 
conclusions from 
data. 

Statistical numbers are known as data, and one simple meaning of 
the word statistics is numerical data. In this text, we go beyond this 
meaning. We are interested in how data are obtained and what is done 
with the information data contain. In the end, we hope to show you 
that with the help of statistics, information in data can be turned into 
real knowledge. 

The word statistics can be either singular, as in "statistics is a fun 
course," or plural, as in "these statistics indicate an upswing in the 
economy," but the word "data" is always plural. Datum, not data, is 
the singular form. (Contemporary English professors have re­
lented on this point. and 0 the once capital crim of saying "The 
data is impressive" has been reduced to a misdemeanor.) 

In its singular meaning, statistics can be defined as a discipline of 
study. You are taking a course in statistics, and your instructor may have 
a graduate degree in statistics. Within their discipline, statisticians ex­
plore and invent ways to obtain data and ways to work with the infor­
mation contained in data in order to draw conclusions. They design 
new applications of statistics from mathematical equations, and they 
test theoretical models in practical settings. 

By the end of this book, we hope that with the help of statistics you 
will be able to appreciate how data can be turned into useable knowl­
edge that is more sophisticated than the numbers themselves. Unlike 
chemistry, sociology, or psychology, which are disciplines that study 
well-defined phenomena, statistics does not have its own empirical sub­
ject matter based on experiments or observations. Instead, statistics 
provides a set of methods that are used by the chemists, sociologists, 
and psychologists, among others. 

Because statistics is used in so many disciplines, the results of statistical 
analyses are all around us. Academic research journals, for example, 
depend on statistical results. In many disciplines, whether or not an 
article is published in a major journal depends heavily on whether or 
not statistical methods have been correctly applied. 
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\ 
Even cartoons are statistics-saturated. (Reprinted with permission of the artist, Carol 
Cable.) 

Statistics is also heavily used outside the academic community. We 
cannot read a newspaper or a weekly news magazine without being 
exposed to articles based on statistics. Statistics is heavily used in in­
dustry, especially in research, quality control, and marketing. Statistics 
also forms the bases of stories in other print media. In Playboy and 
Cosmopolitan, Vanity Fair and The New Yorker, we read about percentages 
of people who are unfaithful to their spouses, percentages of people 
who contribute to charity, percentages of people who lose money on 
Broadway flops. The programs available on television, the particular 
anchor person we watch, and the kinds of advertisements we view de­
pend on statistics; only TV shows, anchor persons, and advertisements 
with a high rating survive. 

Opinion polls and surveys make use of statistics, and these days it 
is hard to imagine an election without polls on what the voters think 
about the issues and the candidates. The "image making" of presidents 
and party platforms depends on voter feedback obtained by statistics. 
Statistics also provide the basis for knowing who won an election and 
by how much. Even more dramatic is the power of statistics to predict 
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Are these people still on the air? That depends on the statistical results of 
surveys constantly being made in the race to be number one in television 
news broadcasting. (UPIlBettmann; Corbi-Bettmann.) 

with great accuracy the result of an election before the polls close or 
even before the election takes place. The fact that candidates either 
claim victory or admit defeat before all the votes are in and counted is 
a tribute to the confidence people have in statistics. 

Now that you're thinking about statistics, the extent to which our 
culture is statistically indebted is probably dawning on you. Two ex­
amples to tickle your imagination: 
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When flights are overbooked because more tickets were sold than 
there are seats available, it is not an unfortunate oversight. The 
airline is relying on statistical analyses that indicate how many "no­
shows" normally can be expected for any given flight. If they win, 
the flight is fully booked. If they lose, they have to give out a few 
free tickets. 

Retirement communities depend on elaborate pricing schemes to 
attract clientele. When condominium costs are set for a retirement 
center, a factor in the estimate is the anticipated life expectancy of 
the residents of the complex. The longer people live, the higher 
the costs. Statistical analyses assist managers in setting competitive 
and at the same time profitable fees. 

STOP AND PONDER 1 . 1 

"Stop and Ponder" signals exercises scattered throughout the text to 
encourage you to bring your own creativ juices to the process of 
understanding statistics. Instead of providing all the examples, ap­
plications, and incidentals, we invite you to add some to the mix. We 
think that if you take a moment to relate topics in the text to your 
own experiences, you will be better able to recognize how well you 
are comprehending the information, where trouble spots lie, and 
how you can tie together life outside the course with life within. This 
kind of activity lead to longer-lasting learning. 

The first exercise is to think of a few examples from your per­
sonal experience where tati tical analy es have been the basis for a 
deci ion that was either positive or negative, in your opinion. Also, 
try to come up with some reasons that the statistical results came out 
as they did. The cancellation of a recent TV show might be a good 
choice. 

Understanding what can go wrong 

If as consumers we are to fully understand the extensive applications 
of statistics, we need to know something about the rules and methods 
that were applied to get the results we read about. A knowledge of 
statistics helps us evaluate the results. It also helps us to be critical and 
to be aware of some of the things that could have gone wrong along 
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Predicting elections is not always easy! (UP/IBettmann.) 

the way from the time when the problem was first formulated to the 
writing of the final report. 

The following story about a famous statistical survey that failed is 
part of statistical folklore by now. A highly respected magazine called 
Literary Digest conducted a poll of the electorate before the 1936 Pres­
idential election. The burning question, of course, was who would be 
the next President-the challenger, Governor Alf Landon of Kansas, 
or the incumbent, President Franklin Delano Roosevelt. In order to 
assess voter preferences, the magazine pollsters had sent out sample 
ballots to a large number of people who were listed in telephone di­
rectories and car registries. (Telephones and cars were not as common 
in 1936 as they are today, but the lists were easy to obtain.) Although 
about 10 million sample ballots were sent out, not a very high per­
centage of people returned their ballots. Among those who did reply, 
however, Alf Landon was the hands-down favorite. The magazine pre­
dicted a Landon victory. 
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If readers had known something about statistics, they would have 
been skeptical about the claim that Alf Landon would win the election. 
As you might expect, polling people who owned telephones and au­
tomobiles during the middle of a great economic depression was not 
a very good way to get an accurate assessment of the spectrum of voter 
opinions. Furthermore, the low percentage of ballots that were re­
turned was suspect. As it was, the readers had to wait until after the 
election to see how wrong the results of the poll were: Franklin Roose­
velt, not Alf Landon, was elected President. Most current usage of sta­
tistics is not as wrongheaded as it was in this example, but even today 
we do not have to look far to find questionable uses of statistics, espe­
cially where choosing a correct sample is concerned. (Source: Jeffrey Wit­
mer, DATA Analysis: An Introduction. Englewood Cliffs, Nj" Prentice Hall, 1992, 
p.97.) 

Understanding statistical tenns 

The results of statistical analyses do not help us much if we do not 
understand the terms that are used. For example, a typical statistical 
expression used to report findings is "statistically significant." In re­
porting the percentage of voters that favor a candidate, the terms "sam­
pling error equals ± 3%" or "margin of error equals ± 3%" might be 
used. Two variables may have a "high correlation." These are three 
common statistical terms, and for people who know what they mean, 
the terms are informative and useful. People who do not know the 
meanings of the terms, however, may not understand what is being said 
or come to erroneous conclusions about the findings. 

Randomness and regularity: Twins in tension 

When we cannot predict the outcome of an event, randomness is as­
sociated with the event. For example, when tossing a coin we cannot 
tell whether the coin will land heads or tails. Similarly, when we take a 
trip, we cannot tell whether we will have an accident or not. 

At the same time, when we put random events together, they display 
amazing regularities. Patterns and trends become evident, even when 
we examine something as random as coin tosses. If you toss the same 
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coin 100 times, you know it will land approximately 50 times heads and 
50 times tails. Similarly, while a single car accident is a unique concur­
rence of several unlikely events, if you could examine all accidents, you 
would find disturbing regularities among them. Year in and year out, 
around 40,000 people in the United States die in car accidents. This is 
an amazingly stable number despite the small probabilities surround­
ing a particular event. On a more personal level, each year when Mary 
Gergen surveys her Introductory Psychology class of 100 students at her 
campus, she finds that about 50% of them have been involved in au­
tomobile accidents in the past year. She has discovered that random 
events make up a regular rate of accidents. 

Using statistical analyses of seemingly random phenomena, we can 
begin to make sense of the world. A basic knowledge of statistical ideas 
helps put randomness into the perspective of regularity. Statistical ideas 
help us realize the importance of randomness and regularity both in 
how we observe and in how events actually occur in the world. Thus, 
statistics can be seen as a search for regularities in randomness. 

Randomness in regularity 

But even the regularities display some randomness. If you toss the coin 
another 100 times, you would almost never get exactly the same num­
ber of heads and tails as in the first 100 tosses. In one round of 100 
tosses you might get 48 heads, and in the next 100 tosses you might 
get 53 heads. This illustrates an important and central feature of sta­
tistics. 

Whether we take a single new observation or a new set of many 
observations, most of the time we do not get exactly the same re­
sult we did the first time. 

This kind of variation happens not only with coin tosses but also 
with surveys, experiments, and every other means of data collection. If 
people in a survey are asked how they stand on an important issue of 
the day, a certain percentage of the respondents will have a particular 
opinion. If the same survey is done with a new sample of respondents, 
a different percentage of respondents will have the opinion. The vari­
ation in the two percentages is attributed to the randomness that is 
inherent in data. This way statistics becomes the study of the variation 
in the data. 
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With the mathematical theory that underlies statistics, we can find 
how much randomness is attached to a percentage from a survey and 
how much the percentage can be expected to vary from one repetition 
of the survey to another. We can even tell if the difference between 
two percentages is larger than can be explained by randomness alone. 
These ideas are expanded on and discussed in much greater detail in 
later chapters. 

In regularities trends of change sometimes appear. The rate of car 
accidents is going down with increased seatbelt use and airbag deploy­
ment. Statistics puts the single, random events into regularities, and 
statistics reveals trends of change. If the numbers of accidents in sep­
arate periods (two patterns ofregularities) differ by more than can be 
explained by randomness alone, a change is occurring. 

Two examples in the study of randomness and regularity 

As an example of whether the difference between two numbers is a 
result attributable to more than randomness, consider the introduction 
of the polio vaccine in the 1950s. Polio was a dreaded disease that struck 
in mysterious ways, often leaving its victims, many of them children, 
paralyzed or dead. Mter many years of epidemics, a vaccine was finally 
developed that scientists hoped would provide protection against the 
disease. But it was not clear whether the vaccine would actually work 
as the researchers hoped. Although laboratory and animal tests looked 
promising, the only way to find out was to test the vaccine on humans. 
Because polio was a rare disease, the vaccine had to be tried on a fairly 
large number of children to see if it had any effect, so the researchers 
decided to use a group of 200,000 children. They also decided to have 
a control group of the same size, in which the children received a 
placebo-a substitute that looked like the real vaccine-to see if the 
vaccine had any effect. 

Mter the children received their vaccine or placebo, the research­
ers watched and waited to see what the outcome would be after the 
next "polio season." In the control group, 138 children contracted the 
disease. The researchers were not exactly sure what this number of 
cases meant. There is a certain amount of randomness in that number. 
If another group of 200,000 children had also received the placebo, 
the same number of children would not have contracted polio. De­
pending on how large the random component was, perhaps 130 or 
maybe 140 or some other number of children would have come down 
with polio. 
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In the group that received the vaccine, 56 children got polio, a 
number that also has a random component. The important question 
was whether 56 differed from 138 by more than could be explained by 
randomness alone. If that were the case, then the researchers could be 
confident that the vaccine had an effect. By methods explained in 
Chapter 7, it turned out that the difference between 138 and 56 indeed 
was larger than could be expected by randomness alone, and the vac­
cine was pronounced a success. In the years since then, the vaccine has 
essentially eradicated polio in many countries. Renewed efforts by 
health organizations around the world make it likely that even children 
in lesser developed countries will not have to suffer from polio in the 
near future. In an important sense, statistical reasoning provided sup­
port to the medical researchers who developed and tested this vaccine. 

Another famous instance of randomness-or the lack of random­
ness, as is the case in this particular example-took place in the mili­
tary. During the war in Vietnam, the United States government insti­
tuted a draft lottery to get enough soldiers to fight in the war. The plan 
was to assign a number between 1 and 366 randomly to each date in 
the year. The military was then to draft young men in the order of the 
numbers assigned to their birthdays. This method was designed to 
equitably distribute the risk of entering this unpopular war; the possi­
bility of getting drafted was supposed to be determined randomly. 

The draft lottery the first year assigned the number 1 to September 
14 by the drawing of the appropriate ball from a large container of 366 
Ping-Pong balls on which the dates were written. All eligible 18-year­
olds born on September 14 were drafted first. The men born on the 
date assigned draft number 2 were drafted second, and so on. It was 
known that not all the draft numbers were needed and that therefore 
men born on dates receiving high draft numbers would probably never 
selVe in the military. 

The lottery seemed as good a method as any to decide who would 
get drafted. However, the day after the drawing, when all the dates and 
their numbers were published, statisticians began to investigate the 
data. Mter some looking and counting, the statisticians found certain 
patterns. For example, we would expect that about half of the low draft 
numbers-l to 183-would be assigned to dates in the first half of the 
year, in the months january through june, and about half of them to 
dates in the second half of the year, in the months july through De­
cember. Because of the randomness of the drawing, there would not 
be exactly half the draft numbers in each half of the year, but it should 
be close to half. As it turned out, 73 of the low draft numbers were 
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Vietnam casualties were determined by a lottery. (FPG International.) 

assigned to birthdays in the first half of the year, while 110 low numbers 
were assigned to birthdays in the second half of the year. In other 
words, if you had a birthday in the second half of the year, your chances 
of having a low draft number and therefore being drafted were consid­
erably higher than if you had a birthday in the first half of the year. 

In this case, where there should have been only a random differ­
ence, the difference between 73 and 110 was larger than what could 
be expected by randomness alone. The absence of randomness has 
been attributed to not stirring the Ping-Pong balls adequately before 
they were selected. The Selective Service consulted statisticians before 
they conducted the draft lottery the following year. (This was small 
comfort to those born in the second half of the year whose birthdays 
were overselected.) 

Probability: What are the chances? 

What this discussion of randomness says is that much of statistics is 
based on the very important concept of probability. Probabilities provide 
a building block for the third aspect of statistics, namely, how to draw 

A probability is a 
number between 
o and 1 that tells 
us how often a 
particular event 
will occur. 
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A variable is a 
characteristic, a 
trait, or an attri­
bute that can 
take on two or 
more possible 
values. 

conclusions from data. We may never be quite certain whether two 
numbers differ by more than can be expected by randomness alone, 
but we can find out whether the probability that they do is small or 
not. From this basic idea emerges many interesting opportunities for 
drawing important conclusions about the world around us. How this is 
done is fleshed out in Chapter 5 and later chapters. 

Variables: The names we give things 

A second major building block in statistics is the concept of a variable. 
The human characteristic of gender is a variable with two values, be­
cause a person is either female or male. Religious affiliation is a vari­
able, which in the western hemisphere might have the values Catholic, 
Jewish, Muslim, Protestant, and other; in India the values might be 
Hindu, Muslim, Buddhist, Sikh, and other. Other examples of variables 
are miles per gallon for cars, with a range of values from 8 to 50, weight 
of children in kilograms, with a scale from 10 to 70, dosage of a med­
ication, and so on. Usually researchers begin their projects by defining 
the variables they are interested in and the possible values of the vari­
ables. We can think of the values of a variable as points stretched out 
along a line that represents the variable itself (Figure l.1). 

Variables, values, and elements 

The value of a variable always is a measure of a specific unit, often 
thought of as an element. An element can be a person, a group of 
people, a plot of land, a plant, an animal, or a country, as long as the 
element is agreed on, obvious to the users, and does not change in the 
middle of the analysis. Table 1.1 lists some examples of variables and 
their values together with the element on which the variables usually 
are measured. Thus, the gender variable is observed in a person as the 
element. Number of children is a variable observed on a family as the 
element. In the case of the family, the element is an aggregation of 
sin2:le individuals. 

Theoretical variables and empirical variables 

The variables we have discussed so far are familiar to most of us as 
everyday kinds of items and events. These variables are called empirical 
variables because they deal with objects in the observable physical world 
surrounding us. In addition to empirical variables, we also use variables 
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I I 
Value Value Value Value Value 

,~------------------------~------------------------~/ 
Variable 

(a) Variable where the value are categories 

Female Male 
~~------------------------~r-------------------------~/ 

Gender 

(b) Variable where the values are ranked categories 

Strongly favor Favor Neutral Against trongly against 
~~------------------------~r-------------------------~/ 

Attitude 

(c) Variable with numerical value 

I I I I I I I I I I I 
13 14 15 16 17 18 19 20 2] 22 23 

~ .-
Age 

Figure 1.1 Variables and their values 

created by statisticians. These variables, which are mathematically de­
rived, are called theoretical variables. Several examples of theoretical var­
iables are introduced in later chapters. Four of these variables are 
known as the Z-, t-, chi-square (pronounced ki-square) and F-variables. 

Table 1.1 Variables, values, and elements 

Variable Values of the variable Element 

Gender Female, male Person 

Attitude Oppose, neutral, favor Person 

U nemploymen t Employed, not employed Person 

Unemployment 0.0%, ... ,4.6%, . County 

Yield of corn . . . ,5678 lb., . . . Acre 

Number of children 0,1,2,3, .. . Family 

Poverty level Severe, moderate, borderline, none Precinct 

Placement in a race 1st, 2nd, 3rd, . . . Team 
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The govemment's mattet basket 
The govemmenrs best-known Inflation gauge, the a look at inflation over the years, and how the CPI, often 
consumer prioe Index, was released Thursday. h showed referred to as the market basket survey, Is put together. 
inflation remained In check last year (story. 18). Here's 

The major groups 
To determi1e the CPI, the govemment records the prices of approximately 90,000 
dilferent hems eact1 month. Luxul}' boats and automobiles are the most expensive, 
food hems the least . among seven major groups. They are: 

Other goods 
and services 

# 

1970s 

Who does the work 
The Bureau of Labor Statistics has about 680 workers who survey prioes in as cities. Annual budget: about 
who compile the CPI and 360 part-time data collectors $35 million. 

HndforlhtllOnll everything from airfares and 
Surveyors must haircuts to the cost of college 
~ Work wfth store managers to tuftions - represen1 a sample 01 

guarantee the same hems are prioes of goods. and senrioes. 
priced from month to month. 

~ Be alerl to sales and regional Cnlnchlng till numbell 
price wars. ~ The bureau needs about 20 days 

~ Be aware of product upgrades to en1er numbers into fts 
that affect prioes. computers. About 90 people will 

check for inconsistencies. 
90,000"'l1li . 
~Surwyors contacI19,OOO stores, CIIlcling for lnoll 

supermarkets and hospftals. The ~ Then, 40 staff economists go 
90,000 hems measured - over their areas of speciafty, 

IooI<i1g for unexplained changes, 
such as discounts that might 
skew the survey. 

Going public 
~ Before the survey resufts are 

made public, the bureau informs 
the WMe House of the resuhs. 
The survey Is then released to 
news organizations across the 
USA. 

Inflation is difficult to measure. (© 1996, USA Today. Reprinted with permission.) 
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Constants 

A constant is the opposite of a variable. Imagine that we survey all the 
students in a statistics course and find the percentage who think it is 
an interesting course. Assuming that nobody changes their mind, we 
would find the same percentage if we repeated this little study. A num­
ber such as this percentage is a constant: it does not change when the 
study is repeated. Obviously, it did not change because each time we 
asked all the students in the course. In statistics we make use of a type 
of constant called a parameter (Chapter 7 and later chapters). 

Let's take a closer look at some of the fields affected by statistics: gov­
ernment agencies, sciences, medicine, industry, even the law. In this 
country, the federal government is the largest collector of data and 
user of statistics through the Bureau of the Census and other federal 
statistical offices like the Bureau of Labor Statistics. The federal statis­
tical system is well known for its excellence, although it has suffered 
from budget cutbacks in recent years. 

Two of the best-known activities of the federal statistical system are 
the consumer price index and the unemployment figures. These re­
sults are published monthly and playa very important role in the eco­
nomic life of the nation. The consumer price index dates back to the 
early 1900s. Many activities, such as labor contracts and Social Security 
payments, are tied to its value at any given time. The unemployment 
figures were developed during the Depression of the 1930s, when New 
Deal reformers realized just how important it is to know how many 
unemployed people there are in the United States. Both reports are 
based on large sample surveys conducted according to complex statis­
tical principles. 

Much of the data government agencies collect are analyzed in order 
to create public policy on a variety of issues. For example, to determine 
tax policies it is important to know how existing tax laws affect people 
in various income categories and to be able to predict the impact of 
changes. For a social welfare program to be successful, it is necessary 
to know the conditions in society that create the need for the program 
and to know in what ways the program affects the people for whom it 

A constant always 
has one fixed 
value. 
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was designed. The Head Start program for preschool children, for ex­
ample, has been the object of intense scrutiny as experts attempt to 
determine if children who are enrolled in it enjoy long-term benefits. 
For a farm subsidy program, it is necessary to know about the magni­
tudes of current agricultural production and try to determine the con­
sequences of the subsidies on future production. 

People from most academic disciplines use statistics in their re­
search: biology, economics, and psychology are three disciplines with 
such heavy usage that they have developed their own sets of statistical 
methods: biometrics, econometrics, and psychometrics, respectively. In 
the humanities, groups of historians, geographers, linguists, and clas­
sicists make use of statistics to draw conclusions as diverse as the num­
ber of deaths due to the Black Plague and the popularity of the French 
language in the English-speaking world. This means that almost all 
empirical academic research-reports, presentations at professional 
meetings,journal articles, and books-is based on statistics in one way 
or another. Academic research enriches the life of a society in manifold 
ways, and statistics plays a unique role in this process. No other disci­
pline contributes so much across so many scientific fields. 

A vivid example of the growing role of statistics in social life involves 
the practice of law. Many lawyers have found themselves in new terri­
tory when confronted with statistical issues in addition to legal ones. 
One major area where statistics has been required is in class action suits 
concerned with discrimination based on age, gender, and race. Lawyers 
must persuade judges and juries that differences in age, gender, or 
race in any given setting are either by design or are random. Statisti­
cians have been challenged to act as expert witnesses to explain topics 
such as "confidence intervals" and "significance levels" to juries and 
judges. Without the expert testimony of statisticians, it would not be 
possible to conduct these cases in the courtroom in a fair and rational 
manner. 

The field of medicine has been altered by the introduction of new 
statistical ways of evaluating treatment effects. For example, in cost con­
tainment measures imposed by managed health care organizations, 
physicians must follow the organizations' guidelines for care in order 
to be reimbursed. These guidelines are developed through careful sta­
tistical analyses of large numbers of medical practices and outcomes. 
If the probability of a satisfactory result is the same for both an expen­
sive and a cheap intervention, the HMOs do not reimburse for the 
more costly one. The use of statistical methods to bolster the medical 
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During the famous O. J. Simpson murder trial, which concluded in 
1995, much testimony was given regarding D A samples and how 
they were collected, analyzed, and identified. The public learned a 
great deal about statistical measurement from the witnesse who gave 
evidence about the blood samples taken from various surfaces. The 
crux of the matter was how probable it was that the D A sample 
collected matched the blood of the murder victims and the accused. 
Defen e attorneys opposed the condu ion of the prosecutors that 
the chances that the blood amples were not Simp on' were min­
uscule at best. 

In general, the process of DNA testing has been to look at a 
pattern of indicators in a DNA strand and to calculate the likelihood 
that the pattern could be shared by two individuals. Once this 
method of testing was made available, the public quickly came to 
appreciate its uses in many type of cases. In another trial, a man 
who was in prison for seven years on a rape conviction was released 
when his lawyer obtained evidence that the convict's DNA did not 
match the rapist'S. 

guidelines of insurance companies has led to concerned arguments 
from medical advocates that not enough attention is paid to the indi­
vidual patient. In the New Jersey legislature, for example, the policy of 
allowing newborns and mothers only 24 hours of hospital coverage 
after birth was overturned by a state law, even though 95% of all moth­
ers and infants had no serious complications. While the statistical meth­
ods are not themselves under scrutiny, the definition of "acceptable 
risk" is in question. 

Major corporations are also heavy users of statistics. For example, 
to get a new drug approved by the Federal Drug Administration, a 
pharmaceutical company must prove that the drug is safe. Companies 
invest heavily in measuring the effectiveness of their new products 
through experiments on animals and humans. As a result, such com­
panies employ large numbers of statisticians. They are responsible 
for setting up experiments properly, analyzing the resulting data 
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for the impact of the experiments, and checking the validity of mar­
keting claims to avoid lawsuits and costly retrenchments in drug de­
velopment. 

Many industries use statistics in their quality-control operations. 
Items rolling off a production line are not identical, partly because of 
random variation and partly because things can go wrong in the pro­
duction processes. This variation can be studied using statistical meth­
ods that can help pinpoint what went wrong and where it went wrong. 
Good quality-control programs ensure that consumers will be satisfied 
with their purchases and not turn to competitors for their next pur­
chases. The American statistician Edward Deming was a leader in 
the development of statistical methods for quality control. Ironically, 
many of his methods were first adopted by companies outside the 
United States, especially in Japan. One reason Japanese industry ex­
perienced such impressive growth after World War II is that its 
business leaders took up Deming's ideas early on. (Source: W. Edward 
Deming, Out of the Crises, Cambridge, MA: MIT Center for Advanced Engineering 
Study, 1986.) 

The field of statistics is founded in mathematics. Today, independent 
departments of statistics in leading universities train statisticians, but 
statistics formerly was a part of mathematics departments. Statistical 
reasoning rests firmly on mathematical foundations. As a result, it is 
easy to find statistics texts that look like mathematics books with the­
orems and proofs. But it is possible to learn about statistics without 
knowing all the mathematical underpinnings, and that is how we 
present statistics in this book. Today most statistical analyses are done 
on the computer, so it is more important to understand what goes into 
and comes out of the computer than how the computer software com­
putes. 

The emphasis here, as we have mentioned, is on learning the basic 
statistical ideas-some of the specialized vocabulary, how data are col­
lected, displayed, and analyzed, what results mean, and when they 
should and should not be used in everyday life-without getting 
bogged down in formulas and technical discussions of how computa-



tions are made. For most people today, an understanding of statistical 
ideas is critical to being a literate and well-rounded citizen; being able 
to do competent statistical analysis on one's own is part of a highly 
professional career path. 

There are other reasons for doing statistical analysis, such as for 
the sheer fun of it or to get a "gut" feeling for the craft. For those who 
wish to do analyses of statistical problems using traditional paper-and­
pencil techniques or the more advanced computer programs, the ex­
ercises at the end of each chapter contain many opportunities. The 
exercises are divided into three parts. Those in the first part test your 
general conceptual knowledge, those in the second test your abilities 
to interpret data and apply statistical results to daily events, and those 
in the third part require you to use formulas and mathematical tech­
niques. The formulas for various statistical calculations are available in 
their full glory at the end of each chapter. In addition, statistical tables 
for the theoretical variables are found at the back of the book. 

1.1 What's in a word? 

Statistics was first coined as a word for state-related indicators. Later, 
statistics came to mean a summary of individual data points. As a field 
of study, statistics can be defined as a set of concepts, rules, and meth­
ods for , (1) collecting data, (2) analyzing data, and (3) drawing conclu­
sions from data. 

1.2 Knowing how statistics is used: Goals for the reader 

Statistics does not have its own subject matter but is applied to data 
from other fields of study. Because of the prevalence and power of 
statistics in today's society, we cannot avoid the consequences of these 
analyses. 

1.3 Central ideas in statistics 

Randomness and regularity are two important statistical concepts. Ran­
domness is the inability to predict the outcome of a particular event. 

1 . 6 Sum mar y 21 
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Regularity is the pattern we find when we collect data on many events. 
Regularities themselves contain randomness. Statistics can be defined 
as the search for regularities in the face of randomness. Trends of 
change occur when the difference between two patterns of regularity 
exceed the effects of randomness alone. 

Probabilities provide the foundation for drawing conclusions from 
our data. A probability is a number between 0 and 1 that tells us how 
often an event happens. Statisticians judge whether numbers differ by 
more than can be expected from randomness alone by using proba­
bilities. 

A variable is defined as a characteristic or attribute, such as a per­
son's age, that can take on two or more possible values (e.g., 
o to 100+ years). The value of a variable always refers to a specific 
element, such as a person, a group of people, a plot of land, a plant, 
an animal, or a country. Many variables are familiar to most of us as 
everyday items and events. These variables are called empirical varia­
bles. We also use variables created by statisticians, called theoretical 
variables, which are mathematically derived. Four of these variables are 
known as the z-, t-, chi-square, and F-variables. 

The opposite of a variable is a constant. Constants are numerical 
values that do not change. In statistics a certain kind of constant is 
known as a parameter. 

1.4 Users of statistics 

Statistical methods are crucial to government agencies in the formu­
lation and evaluation of policies. They are also necessary for develop­
ment of knowledge in all fields of scientific scholarship. Statistical 
methods are also gaining in importance in professional fields, such as 
law and medicine, and in diverse business enterprises. 

1.5 Relationship of statistics to mathematics, pencils, and 
computers 

Statistics is founded in mathematics, but the thrust of this book is to 
acquaint you with basic statistical ideas, not to turn you into a statistical 
analyst. 
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REvIEw (ExERCISES 1.1-1.14) 

1.1 Why is the root of the word statistics derived from the word state? 

1.2 Why might statistics be called a "helper" science? 

1.3 a. Define randomness. 

b. Define regularity. 

c. What roles do randomness and regularities play in a statistical 
study? 

1.4 Give three examples from daily life of random events that con-
tain regularities. 

1.5 How does the notion of probability help a researcher decide if 
the data indicate a difference in the variables under study greater than 
random fluctuation? 

1.6 Define "trends of change" and give an example in which it might 
be found. 

Exercises 23 
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1. 7 a. Define the term variable. 

b. What is the difference between an empirical and a theoretical 
variable? 

c. What are the names of the four theoretical variables men­
tioned in this chapter? 

1.8 You are interested in studying hurricanes worldwide. Name five 
empirical variables you might want to use in such a study. 

1.9 Create a list of the values for each variable in Exercise 1.8. 

1.10 a. Which is the (more) correct sentence: "The data is interest­
ing" or 'The data are interesting"? 

b. Explain your choice. 

1.11 How is a constant different from a variable? 

1.12 Describe how the practices of law and medicine have been influ­
enced by statistics. 

1.13 Name two federal statistical systems that are central to national 
economic management. 

1.14 Describe a way in which statistical analyses lead to better manu­
facturing processes. 

INTERPlU:TATION (ExERCISES 1.15-1.18) 

1.15 Discuss the following: Whether or not an individual property 
owner on Cape Hatteras loses a roof during a hurricane seems to be a 
matter of chance, that is, a random event. Yet there seems to be some 
regularity in hurricanes hitting Cape Hatteras. How is property damage 
during a hurricane, such as roof losses, related to the notions of ran­
domness and regularity? 

1.16 Name one area of life described in this chapter in which deci­
sions based on statistical analyses have affected your own life. Briefly 
describe it. 

1.17 Sports broadcasting today depends heavily on computer-gener­
ated statistics, which can be calculated for everything from the amount 
of prize money won by each professional tennis player in a season's 



play to the total number of triple plays by a single player in the history 
of baseball. 

a. Why do you think televised sports coverage has become so 
statistically oriented in recent years? 

b. How do you think statistical orientation has affected viewer 
appreciation of sports? 

c. Do you think other aspects of culture, e.g., music, films, pol­
itics, amateur sports, have been (or will be) affected in the same 
way as professional sports, in terms of the "invasion" of com­
puter-generated statistics? Give several examples to support your 
claim. 

1.18 Comment on the following in light of the goal of most statisti­
cians to go beyond the actual data collected: "Our samples are like the 
shadows at the entrance to a cave we may not enter." 

ANALYSIS (ExERCISES 1.19 -1. 23) 

1.19 This exercise is intended to illustrate the notion of variation and 
randomness. Close your eyes and open this book to a random page. 
Place your finger on a random spot on the page and select the nearest 
complete sentence of text below your finger. 

a. How many words do you find in the chosen sentence? 

b. Select another sentence the same way and count the words 
in it. 

c. Why are the numbers of words in the two sentences not the 
same? 

d. If everyone in the class counted the lengths of two sentences, 
you could estimate the average length of the sentences in this 
book. How do you think this average would compare with the 
average length of sentences in Shakespeare's Hamlet? 

1.20 Tum on a water faucet until it just drips. Count the number of 
drips per 20-second interval for 5 minutes. Keep a record of the num­
ber of drips in each interval. Using your data, how would you describe 
the drips? That is, in what respect were they random and in what re­
spect were they regular? 

Exercises 25 
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Table 1.2 Infant and maternal mortality rates 1915-1945* (Exercise 1.21) 

Infant mortality rates Maternal mortality rates 

Year White Nonwhite White Nonwhite 

1915 98.6 181.2 6.0 10.6 

1920 82.1 131.7 7.6 12.8 

1925 68.3 1l0.8 6.0 11.6 

1930 60.1 99.9 6.1 11.7 

1935 51.9 83.2 5.3 9.5 

1940 43.2 73.8 3.2 7.7 

1945 35.6 57.0 1.7 4.5 

* The rates are all numbers of deaths in first year of life per 1,000 births. 
Source: Data compiled by U.S. Bureau of the Census. 

1.21 The following exercise is derived from the data in Table 1.2. 

a. Looking at the trends in infant mortality over the 30 years, 
what two major conclusions can you draw? 

b. Looking at the trends in maternal mortality rates over this 
period, what two major conclusions can you draw? 

c. Which set of data seems to be simpler to describe, infant mor­
tality rates or maternal mortality rates? 

d. What major conclusion do the data suggest about childbirth 
death and race? 

e. If there were problems with the accuracy of collection of these 
data, what might they be and which data are more likely to be 
inaccurate? 

1.22 Find an article in a newspaper or a news magazine that includes 
statistical information. 

a. Identify the variables used in the article. 

b. Determine what the values are for each variable. 

c. What readers would be particularly interested in the article? 

d. Does the article describe change of any kind? 



1.23 a. Would the article you selected in Exercise 1.22 have been 
more precise, interesting, or valuable if the variables had been 
reported differently? 

b. Are there ways in which you think the article could have been 
improved in light of the material presented in this chapter? 

Exercises 27 
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Q/Cow many people in Los Angeles were injected with AIDS lJy a sexual 

partner last year? How much garbage was recycled in New York City last year? 

What caused scurvy to attack seventeenth-century sailors on long voyages? 

Does class size affect school performance? Is the President doing a good job? 
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To answer these questions and an enormous number of other ones, 
information must be gathered. In these instances, we need to know 
many things, from sexual habits to recycling practices. At first glance 
it seems easy to get this information. One needs only to go out and ask 
people or do an experiment to see how things work. But then the 
quandaries begin: Who should do the asking-you, me, unemployed 
college students, retired executives? And who should be asked? Can we 
afford to ask everyone concerned with the problem? For the first ques­
tion, that would be the entire population of Los Angeles! Well, if not 
everyone, how about people who walk by a certain store at the mall on 
Saturday afternoon? Or those buying beer at the baseball stadium? Or 
do you think a presumably fairer way should be found? 

Once these issues are settled, what should be asked? Some of the 
topics suggest "delicate" phrasing, to say the least. Will we get a straight 
answer if we ask people how many sexual partners they have had? 
Should we expect one? Should we even ask? How many people will tell 
us what they think we want to hear or what they think will make them 
look good? Will it make a difference if the asker is perceived as a med­
ical worker, a police officer, a trash picker, or a bookie? What does 
"doing a good job" mean? Each of these questions deserves a thought­
ful answer. Yet no answer seems to be exactly the right one. 

A wise statistician says there are two kinds of data: good data and 
bad data. There are other ways of characterizing data, but this is as 
good a start as any. Good data are data that have been collected ac­
cording to sound and proper statistical principles. Bad data are data 
that have been collected in other ways. This chapter describes some of 
the solutions statisticians and others have come up with to improve the 
quality of the data collected. 

Data depend on many factors. {"Sally Forth" reprinted with special permission of 
King Features Syndicate.} 
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Data are collected in a variety of ways and in a multitude of settings. 
(At the moment, one author is drinking a sample of instant coffee 
provided by a company for a market survey.) At the most general level, 
collecting data involves measuring variables. Researchers ask people, 
for example, about their sleeping habits, count the number of dollars 
in gambling casino revenues, weigh how much trash is recycled, and 
give a plant a specific amount of water and measure how much it grows. 
Researchers weigh, measure, interrogate, and count their subjects in a 
multitude of ways. 

The first rule of data collection is clarity about what is being mea­
sured. In other words, the variable must have a well-thought-out defi­
nition. Sometimes this sounds simpler than it turns out to be. 

Suppose we are interested in family life and ask in a survey the 
following question: "How many children are in this family?" We may 
think we know what we want to find out, but there is no reason to 
expect that the person answering (commonly call the respondent) shares 
our view. We may rather thoughtlessly assume that a child is defined 
as a person who is under 18 years of age and who lives in a residence 

How many children are in this family? (Bruce Coleman, Inc.) 
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with his or her biological parents. But what if the household includes 
biological children over 18, stepchildren, foster children, adopted chil­
dren, or other young relatives? What about children who live elsewhere 
than with their biological parents? What if the parents are divorced 
and share custody of a child? The possibilities for confusion are many. 
If we, as the researchers, have not thought these issues through, we 
have no reason to expect the respondent to figure them out. If our 
ideas are muddled and the respondents' reports are inconsistent, our 
data will be extremely uneven in meaning. The lesson here is that be­
fore we can conduct a research, it is essential that we develop a clear, 
detailed definition of the variables. In the example, we must clarifY our 
definition of "child." 

OBSERVATIONAL DATA: PR08LEMS AND PO SIBILITIES 

Observational 
data are data col­
lected from ob­
servations of the 
world without 
manipulating or 
controlling it. 

There are two major approaches to data collection. One method is 
collecting data on the world as we observe it, for example, the average 
number of pounds of aluminum cans recycled in different cities. Ob­
servational data arise when we simply observe the world around us. 
Researchers collecting observational data try not to intervene in on­
going patterns of behavior. Counting how many people in Los Angeles 
were diagnosed with the AIDS virus is an example of gathering obser­
vational data. Tabulating the results from a political survey is another 
example. 

Observational studies are diverse. They examine the operations of 
local organizations and businesses, the behavior of humans and ani­
mals in their normal habitats, historical evidence found in libraries, 
interactions on the Internet, physiological, psychological, social, or en­
vironmental data, such as in blood samples, "inkblot" tests, stock mar­
ket price indicators, quality control studies, or level of carbon mon­
oxide pollution readings or any other phenomenon you can imagine! 
Statistics play an important role in all observational studies both in the 
planning of how the data should be collected and in the actual analysis 
of the data. 

Population versus sample 

Data are collected for the purpose of drawing conclusions from a col­
lection of elements. Social scientists collect data on people to gain an 
understanding of human behavior. Botanists collect data on plants to 
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gain an understanding of how they grow. Engineers collect data on ball 
bearings to make sure that they are of the right size for the engine for 
which they were made. All the elements we are interested in make up 
the population. All the inhabitants in Canada on January I, 2000, is an 
example of a population; so are all the champagne corks in Times 
Square on New Year's Eve. 

Sometimes we are able to collect data on all the elements in the 
population; in that case, we have conducted a census of the population, 
similar to the census conducted on the inhabitants of this country every 
ten years. In the harsh world of limited budgets, time constraints, and 
changing environmental conditions, however, it is usually impossible 
to conduct a census. Instead, we limit ourselves to collecting data on a 
sample of the elements in the population. 

A population consists of all the elements under tudy. 
A census is the proce's of collecting data on an entire population. 
A sample is a selected part of a population. 

Let us look at how samples are selected, what makes a sample good 
or bad, and why a good sample is better than a mediocre census. 

Selection of the sample: Making sure the pot is stirred 

A critical issue facing all statistical researchers is how a sample should 
be selected. A researcher wants to be certain that the conclusions drawn 
from the study'S sample can be applied to the larger population from 
which the sample was drawn. Without a "good" sample, this will not be 
the case. 

An analogy from cooking assists in explaining why getting a good 
sample is so important. When we taste a spoonful of soup that we have 
been cooking, we are interested not in how that particular spoonful 
tastes but in how the entire pot of soup tastes. If the pot has been stirred 
adequately, we need to taste only a spoonful to find out how the entire 
pot tastes. We get the taste of the full pot from a spoonful whether the 
pot is a small one in a family kitchen or a large one in a soup factory. 
This is also the case when we choose a sample from a population-a 
sample, in a sense, from a population that has been properly stirred. 
If the population has been properly stirred, a sample of 1,000 respon­
dents could tell us as much about a very large group, such as the 
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STOP AND PONDER 2 . 1 

There are many ways to collect observational data. What other ways 
can you think of? 

Mitch Reardoll, TOllY Stone Images. 

entire population of the country, as about the population of a town or 
rural county. 

We can apply this soup sample example to sample surveys. An opin­
ion poll before an election finds that 57% of the people in the sample 
favor a candidate. If the sample is properly selected, the percentage 
will be approximately the same as in the entire electorate. Similarly, in 
a quality-control study, a sample of light bulbs is inspected not to see 
if the particular bulbs burn as they should but to see whether the man­
ufacturing process is producing a general population oflightbulbs that 
function properly. The sample should be selected as a good indicator 
of the total production run and therefore a good indicator of the pro­
duction process itself. 

If a sample is not properly selected, misleading conclusions can be 
drawn about the "soup." If pollsters questioned only their families and 
friends, poor sample results would occur. If checkers inspected only 
the top layer of bulbs in "fragile" boxes and did not see that the bottom 
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layers were crushed by insufficient padding, for example, the sample 
would be misleading. Because of the importance of sample selection 
on the trustworthiness of the results, it is imperative that samples be 
selected according to proper statistical principles. The failure of the 
draft lottery in selecting soldiers during the Vietnam war, mentioned 
in Chapter 1, was an example of poor sample selection. 

Random sample: What is it? 

A proper statistical sample that can be used for generalizations to a 
larger population is called a random sample. Drawing names from a hat 
is the simplest example of choosing a random sample. The slips of 
paper are the elements that make up an entire population, and all have 
an equal chance of being drawn. In this way, it is possible for all groups 
in a population to be represented in a sample in approximately the 
same magnitudes as in the population. Thus, if there are 10,000 Serbs 
and 100,000 Croatians in Dubrovnik, then a random sample from the 
city would have approximately 10 Serbs for every 100 Croatians. 

Convenience sample: How to produce a "bad" sample 

Researchers are often tempted to study elements of a population that 
are easily at hand. For example, many studies reported in psychological 
journals use subjects who have been required to sign up for experi­
ments, often, introductory psychology students. Medical researchers 
and therapists often do studies on their own patients; market research­
ers study shoppers they can urge to cooperate. Samples that are easy 
and economical to acquire are known as convenience samples. While in 
some cases a convenience sample might be perfectly adequate for the 
research study design, this is usually not true. The extent to which one 
can generalize the results from the subjects in a convenience sample 
to others in the population is limited. 

The principle of random sampling casts into doubt the kinds of 
samples magazines get when they invite readers to fill out question­
naires and mail them back. Those who do not buy the magazine ob­
viously have no chance of being included in the survey. Those who 
return the questionnaire become a self-selected group, and the data 
collected from them cannot be used for generalizations to any popu­
lation larger than the group who returned the questionnaire; they 
aren't necessarily typical of even the population of the magazine's read­
ers. The data provide a fine description of those who took the time and 
effort to return the questionnaire, but that is all the data can tell us. 

A random sample 
is a sample 
drawn from a 
population in 
which every ele­
ment ha a 
known ( ome­
time equal) 
chance of being 
included in the 
ample. 
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How random are the numbers? (Patti Mcconville, The Image Bank.) 

The same kind of criticism applies to the conclusions reported in 
social surveys and self-help books. Shere Hite, a freelance writer who 
has become known as a specialist in women's love lives, has described 
the massive discontentment with marriage, sex, and husbands reported 
by thousands of women. Perhaps the most famous of her statistical 
claims was that 70% of women married more than five years have sex 
outside marriage. (Source: Shere Rite, The Hite Report: Women and Love: A 
Cultural Revolution in Progress, New York: Knopf, 1987, p. 360.) Evidently 
those were the results obtained from Hite's convenience sample. The 
argument here is not that there is no validity in this claim, but that the 
sample is not representative of the entire population of women in 
America because it was not randomly drawn. It is therefore incorrect 
to generalize to the population of all women married more than five 
years. 

Selecting proper samples 

Simple random sample When names or telephone numbers of a pop­
ulation are "put into a hat," well stirred, and drawn at random, the 
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result is a simple random sample. All the formulas at the ends of the 
chapters in this book are based on the use of simple random samples. 

One way to get a simple random sample is by using random com­
puter-generated dialing of telephones across a population. Unlisted 
numbers have the same chance as listed numbers to be included, an 
advantage over random selections from telephone directories. How­
ever, this system of collecting data means that business phones also get 
called. Thus, a person with a business phone and a home phone has 
twice the chance of being included in the sample as someone who has 
only a home phone. Telephone interviewing also leaves out the small 
percentage of people who do not have telephones, another well­
recognized drawback of telephone surveys. 

Other forms of sampling It is possible to draw samples that are more 
complicated than simple random samples. One sampling method in­
volves randomly selecting several small geographical areas drawn from 
voting unit lists and then personally interviewing a random selection 
of the people living in the areas. This is an efficient way to gather a 
sample. By interviewing several neighbors living in each geographic 
area, researchers avoid having to travel miles and miles from one dwell­
ing to the next. 

A common difficulty with any type of sampling procedure is that 
very few complete lists of everyone who belongs to a particular popu­
lation exist. There exists, for example, no complete list of cocaine 
addicts, petty criminals, husbands on their third marriage, or children 
with overbites. Even if these lists existed, they could never be consid­
ered complete; an individual could enter or leave a list even as it was 
being obtained. (Even a list of living U.S. ex-Presidents could change 
within a heartbeat.) There is also no central population register in this 
country. Although this is inconvenient for survey studies, it is consid­
ered a way to safeguard civil liberties. A list of people with social secur­
ity numbers does exist, but it is not available to anyone for sampling 
purposes. 

Selection of variables on which to collect observational data 

Researchers must ask themselves which variables should be measured 
in order to draw conclusions about their research questions. It is often 
difficult, if not impossible, using observational data alone to know 
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which variables have causal effects on other variables and which ones 
do not. Sometimes researchers who are observing various phenomena 
may attribute causal power to one variable and overlook a more influ­
ential variable. For example, electoral research has shown that there is 
a tendency for women to vote for the Democratic party and for men 
to vote for the Republican party. Does that mean that being a woman 
causes one to vote for the Democrats? More formally, is there a causal 
influence of the gender variable on the vote variable? Or are other 
variables involved? 

To the extent that a person's gender is defined by a certain pattern 
of chromosomes, it is hard to imagine that the chromosomes could 
in any way affect which lever a person would pull in a voting booth. 
Perhaps certain economic variables playa role. If women are less well 
paid than men, for example, and the Democratic party is more con­
cerned than the Republicans with this type of issue, no doubt women 
will be influenced to vote Democratic. Researchers may not notice that 
it is really the more economically disadvantaged-not women-who 
vote Democratic and the economically advantaged who vote Repub­
lican. 

It is much more difficult to disentangle effects like these in obser­
vational data than it is in experimental data. In properly obtained ex­
perimental data, the effects of other variables cancel out in the random 
assignment of subjects to experimental and control groups. Unfortu­
nately for statistical purity, experimental data cannot always be col­
lected because the requirements of the research designs would violate 
customs, laws, and sometimes ethical standards. (For example, ran­
domly assigning newborn infants to families to study child-rearing dif­
ferences would not be socially acceptable, and certainly no contem­
porary scientist would seriously entertain such an idea.) 

In a sense, it is never possible to decide the best way to identify 
causal variables. If, for example, income level is more important than 
gender in causing people to vote for a political party, one might ask 
what it is about income level that produces the behavior of interest. Is 
it fear of losing what one has, the ability to buy what one wants, pride 
in one's social position, or any of a number of other attributes that are 
associated with one's income level that might be influencing voting 
choices? In an important way, the selection of variables to be studied 
is a function of the researcher's interests and goals, who is paying for 
the research, and what utility, in general, some explanations of the 
results have over others. 
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ERR 0 R 8 AND "E R R 0 R 8" INC 0 L L EC TIN 

OBSERVATIONAL DATA 

Studying sampling techniques makes us aware of the many things that 
can go wrong with data from samples and how they skew the results. 
Just because 60% of a sample approves of the way in which the Presi­
dent handles the job, we cannot conclude that 60% of the entire pop­
ulation approves of the President. Any number of things may have gone 
wrong from the time it was first decided to do the survey to the time 
the final results were reported. Most surveys do go wrong in one way 
or another. 

To evaluate the results of a survey, we must know 

• whether the sample is a proper statistical sample of data. 

• the response rate. 

• the actual wording of the question being asked. 

• where the question was placed in the interview schedule. 

• who the interviewers were. 

Sampling error: The "error" that is not a mistake 

Some of the errors made in surveys are purely statistical, while others 
go beyond the statistical aspects of the study. The main statistical error 
is the so-called sampling error. This is not an error in the sense that 
something is wrong. It refers to the fact that if a study were to be done 
over again, the results would not be exactly the same. For example, 
instead of 60% approving of the President, 59% of the next sample­
or 62% or some other nearby percentage-might approve. 

But even though different samples yield different answers, most of 
the answers lie within a certain range of the true percentage in the 
population. For example, with many repeated samples of around 1,000 
respondents each, most sample percentages (95 of 100) lie within three 
percentage points of the true population percentage. Thus, the sam­
pling error equals plus or minus three percentage points (± 3%). 

This finding is only a reflection of the randomness that is inherently 
part of every study. Mter all, the percentages come from different sam-

The sampling 
error tells us how 
far from the true 
population value 
19 of 20 differ­
ent sample re-
ul ts wi II fall if 

many differen t 
samples have 
been selected. 
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(-3%) (+3%) 
Sampling error I Sampling error I 

___ 9_5_o_f_l_OO_s_am----.o,p,-le--'p'-e_rc_e_n_ta..:::.ge_s ____ Sample 
(6i%) (64%) percentage (58%) 

True 
population 
percentage 

Figure 2.1 Example of a true population percentage and a sampling error 
of±3% 

pIes, and there is very little reason to believe that the result from one 
sample will be identical to the result from another sample. Additionally, 
there is no reason to believe that the result from a particular sample is 
exactly equal to the result data that could have been obtained from the 
entire population. 

Figure 2.1 illustrates the point. It shows a computer-generated case 
where the true population percentage equals 61 %. Furthermore, the 
size of the sample is such that 95 out of 100 different samples will have 
a sample percentage that lies somewhere between 58% and 64%. In 
that case we say that we have a sampling error of ± 3%-64% is 3 
percentage points more (+) than 61 %, and 58% is 3 percentage points 
fewer (-). 

The example is based on a true population percentage of 61. In 
reality, we almost never know this number; indeed, the reason we did 
the survey in the first place was to get an idea of the population per­
centage. Still, from the sample we can compute how large the sampling 
error is. This remarkable result occurs because mathematical statisti­
cians have been able to derive formulas for the computation of sam­
pling errors. Some of these formulas are given in Chapters 6-13. 

The size of a sampling error depends on the way the sample was 
drawn and the number of observations in the sample. The larger the 
sample, the smaller the sampling error. If the sample equals the entire 
population, then the sample percentage is exactly equal to the popu­
lation percentage. If the study of an entire population is repeated be­
fore the population has changed, the result will be the same. In this 
case, the sampling error is zero. 

Any presentation of results from a sample survey should state the 
size of the sampling error, whether for percentages or averages or any­
thing else. The sampling error conveys a sense of how far away the 
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sample value possibly could be from the true population value. We 
return to the issue of sampling errors in Chapters 6 and 7 on estimation 
and hypothesis testing. 

Nonresponse error: Result of rude, rushed, and reticent 
respondents 

A different type of error that affects the results of a sample survey is 
the nonresponse error. It may be that in spite of several callbacks, nobody 
ever answered the phone at a selected telephone number. Or it may 
be that somebody answered the phone but refused to be interviewed. 
Mail surveys typically suffer from larger response errors than telephone 
surveys; it is easier to ignore a sealed envelope than a ringing tele­
phone. Also, the possibility of error in addressing an envelope is greater 
than dialing an unused telephone number. With follow-ups, a good 
telephone survey can have an 85-90% response rate, while a mail sur­
vey rarely reaches a 50% response rate. 

The percentage of people who refuse to participate in all types of 
surveys has been increasing. People may have become more reluctant 
to answer questions because they suspect that a survey is a thin disguise 
for selling a product or a service. Reputable survey organizations now 
often do not achieve more than a 60% response rate. 

High refusal rate is a big problem for researchers because usually 
not much is known about the people who were selected but did not 
participate in the survey. Many unanswerable questions arise. Is there 
anything about the nonrespondents that makes them different from 
people who did respond? Are they richer or poorer, more conservative 
or more liberal, more influential or less powerful than the respon­
dents? How much would their answers have affected the results of the 
study if they had responded? 

A worst-case scenario shows what the effect of nonresponse error 
can be. Suppose we plan a study with 1,200 potential respondents and 
obtain 1,000 interviews. This means that data on 200 people are miss­
ing. Of the 1,000 respondents we did interview, we find that 600 (or 
60%) are in favor of something while the rest are opposed. If we were 
to assume that all the missing 200 were also in favor, 800 out of 1,200 
were in favor, for a 67% rate. On the other hand, if all the missing 200 
were not in favor, 600 out of 1,200 were in favor, for a 50% rate. Thus, 
the observed sample percentage of 60% in favor could really have been 

The nonresponse 
elTor is the error 
in the results 
that occurs be­
cause not every­
one in the sam­
ple responded to 
the survey. 
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anywhere from 50% to 67% due to the nonresponse error alone. That 
could make a big difference to the outcome of our study. 

Some empirical evidence indicates that on most issues the nonre­
spondents are not very different from those who do respond. Ifwe have 
a high response rate to begin with, then we can assume that the non­
responders would have answered in the same percentages. But with a 
low response rate, such as 50%, the impact of nonresponse can be quite 
large. 

How do researchers deal with situations in which nobody answers 
the phone? It is tempting to substitute another phone number, but this 
changes things more than you might expect. In a telephone survey, 
substitution means that people who are seldom at home have much 
smaller chances of being included in the sample than people who are 
at home all the time. This violates the principle that everyone in the 
population should have a fixed chance of being included, and there is 
good reason to think that people who spend much of their time outside 
the home are different from those who are home most of the time. 
The only way to interview the people at numbers where there is no 
answer is to call back again later. But this takes time; it may take several 
days and several callbacks before an answer is obtained. 

The data from overnight polls, when there is no time for callbacks, 
are therefore not as good as the data from surveys where callbacks can 
be made. A poll report on people's attitudes right after an event takes 
place is interesting, but these polls suffer large nonresponse errors, 
and we should be wary of the results. Overnight polls taken right 
after Presidential campaign debates are good examples of this type of 
situation. 

STOP AND PONDER 2 . 2 

Can you think of an example in which political opinions held by 
those who are mo tIy at home could sway the results of a telephone 
survey if the opinions of those who ar eldom at home or never 
answer their phones are nol taken into account? 

Response errors 

The data that result from surveys can be infected with response errors that 
are escapable, if the researchers are careful. We discuss some (but not 
all) of them here. And even after all these issues have been addressed, 
all we know is what people surveyed actually tell the interviewer, not what they 
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actually do, or feel, or think. When we read in the newspaper that in 
a recent survey, 60% of the respondents approved of how the President 
currently does the job, then we should mentally qualifY the statement 
to read that 60% of those people surveyed and who answered this ques­
tion said to the interviewer on the occasion of the interview that they 
approved of the President's handling of the job. 

STOP AND PONDER 2 . 3 

Many of us have been involved in a market survey in a shopping 
center, on the telephone, or by mail. Can you recall instance when 
you tried to shorten or curtail an interview, answered in a careless 
manner, or tried to say what the interviewer wanted to hear, regard­
Ie s of how you might actually have felt? How would you rate yourself 
as a respondent? Should market re earchers depend on people like 
you when it comes to gathering good survey data? 

Wording of questions The wording of questions in surveys influences 
the answers people give. On a subtle level, questions frame the issue 
to which the respondents must give an answer. Sometimes questions 
confuse the respondent, leading to unintended outcomes. For exam­
ple, a 1992 survey done by the Roper organization found that a dis­
turbing 22% -1 in 5-of the respondents reported that they doubted 
that the Holocaust had happened. Mter the initial reaction to the sta­
tistical result, readers of the report turned their attention to the ques­
tion itself: "Does it seem possible or does it seem impossible to you that 
the Nazi extermination of the Jews never happened?" The question 
contains a double negative, a potential source of confusion to respon­
dents. A new survey was done two years later, and this time the wording 
of the question was "Does it seem possible to you that the Nazi exter­
mination of Jews never happened, or do you feel certain that it hap­
pened?" Worded this way, only 1 % of the respondents thought the 
Holocaust never happened, quite a change from the original 22% from 
the first survey. 

Despite wording changes, statisticians often raise the question of 
whether the respondent has any opinion on the issue in the first place 
or whether the wording gives the person an opinion by the word 
choices offered. If a couple asked you what name to give to their baby, 
you might be rather befuddled. But if the couple added, 'We are de­
bating three choices: Maria, Gertrude, or Maud," you might find that 
you have an opinion. In the Holocaust question, the possible choices 

Response errors 
are errors in the 
responses people 
give due to fac­
tors in the survey 
context, such as 
the formulation 
of the questions, 
the placement of 
the questions, 
and the effect of 
the interviewer 
on the respon­
dent. 



44 Chapter 2 • Collection of Data 

that the event never happened and being certain that it happened 
allow for only two options. People who had not thought about the issue 
or who otherwise were unopinionated were given no appropriate 
choice. The neutral position probably went underrepresented, and as 
this group was sorted into either of the two options, the two options 
were probably overrepresented. (Source: The New York Times,july 8,1994, 
p. AlO.) 

One way around the problem of response options creating opin­
ions is to ask a screening question first. The question "Do you have any 
opinion on the issue of whether the Holocaust happened?" might have 
been asked in the Holocaust poll. Those who answer no to the screen­
ing question are then not asked the next question about their opinion. 
In general, unless the actual questions are reported along with the 
results, it is difficult to assess the results of surveys that propose to 
measure people's attitudes. 

Placement of questions To add to the complexities of questionnaire 
design, the placement of a question in a survey can affect the responses. 
Early in the interview, the contact between the interviewer and the 
respondent is not well established. The respondent may be hesitant 
about expressing opinions. Well into an interview, the respondent may 
feel more comfortable with the interviewer and as a result speak more 
frankly and less formally. The respondent may make more prejudicial 
remarks and "politically incorrect" comments and may state personal 
opinions. By the end of the interview, the respondent may be experi­
encing fatigue or boredom. If the respondent wishes to terminate the 
session quickly, answers may be shorter, less precise, and more careless 
than answers given in the middle of the interview. Researchers try to 
accommodate respondents' comfort needs by asking fairly easy and 
impersonal questions at the beginning of an interview and more diffi­
cult and personal ones when rapport is higher. Questions on income, 
for example, are asked far along in most U.S. surveys. Closing questions 
are often short and simple. 

Respondents may also want to remain consistent from one area of 
questioning to another. If they support a particular point of view in 
one question, they may feel the necessity of supporting it in another 
one, despite a lack of commitment to what they are saying. For exam­
ple, someone who supports capital punishment in the answer to one 
question may be hesitant to declare herself or himself a pacifist when 
it comes to warfare. Throughout an interview, representing oneself 
positively is a constant need of the respondent, and surveyors try to 
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RESPONDENT BfAS. 

The ational Black Politics Study is a telephone survey of 1,204 M­
rican-American respondents. African-American interviewers were 
used to make respondents feel comfortable in answering questions. 
But, since this was a telephone survey, the respondents could not 
ee the interviewers. A political scientist, Lynn Sanders, studied the 

effect of the perceived race of the interviewer on respondenL'i' an­
swers to survey questions. In response to a question asking what race 
the interviewer was, 14% of the respondents said they thought the 
interviewer was white. 

The respondents were also asked if they agreed with the state­
ment "American society is fair to everyone." Of those who thought 
th interviewer was Mrican-American, 14% agreed. Of tho e who 
thought th interviewer was white, 31 % agreed. Source: Chance, vol. 8 
(J 995), no. 4, fl. 5.) 

STOP ANO PONDER 2 . 4 

The effects of the perceived race of the in terviewer on re pon­
dents' answers is clear. How many other undetected interviewer 
effects might have influenced surv y results? 

place questions to permit people to give opinions that they believe will 
reflect well on themselves. 

Interoiewer effect Respondents' answers are influenced by their per­
ceptions of who the interviewer is and what the interviewer believes. 
Survey designers often try to match interviewer and respondent as 
closely as possible on demographic features such as age, gender, and 
race. Especially with sensitive issues, such as attitudes toward other 
groups, ethical or legal behaviors, or sexual activities, talking to some­
one who may share one's views is preferable for both parties in the 
interview. 

The other method of data collection involves manipulating one or 
more variables in an experiment and measuring the results of the ma-
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Experimental 
data are data col­
lected on varia­
bles resulting 
from the manip­
ulation of sub­
jects in experi­
ments. 

A control group 
is a randomly se­
lected subset of 
the subjects in 
an experiment 
that is not ma­
nipulated. 

nipulations. For example, if we give one group of plants a fertilizer and 
another group no fertilizer, then we are manipulating the plants' soil 
content. We can then measure variables such as growth or vitality. An 
experiment is a way of studying causal relationships between variables. 
In an experiment, researchers try to control every relevant aspect of a 
situation, manipulate a small number of variables of interest, and then 
observe the results of the manipulations. 

An early example of an experiment occurred at the beginning of 
the 1600s when the British navy tried to discover the causes of scurvy, 
an illness characterized by swollen and bleeding gums and livid spots 
on the skin, which often attacked sailors on long voyages. The Admi­
ralty suspected that lack of citrus fruits might cause the disease. At the 
time this idea was suggested, four naval ships set out from England on 
a long journey. To investigate whether a lack of citrus fruit caused 
scurvy, the Admiralty arranged that on one of the ships each sailor 
would be given citrus juice to drink every day, while the sailors on the 
other three ships would not get citrus juice. 

Before the voyage was over, there were so many sailors sick with 
scurvy on the three 'Juiceless" ships that sailors who had received citrus 
juice had to be transferred to these ships to help sail them to harbor. 
This experiment was obviously successful in proving a point, even 
though the actual experimental plan could have been improved in 
various ways. 

Experimental group and control group 

In the scurvy example, the sailors who drank citrus juice formed the 
experimental group, and the sailors who were not given juice formed the 
so-called control group. An experimental group is a randomly selected 
subset of the subjects in an experiment that receives a particular treat­
ment that the control group does not receive. Almost all well-designed 
experiments (and some observational studies) have a control group 
and one or more experimental groups. 

The reason a control group is needed is that without one there 
would be no way of determining whether the manipulation or some 
other variable (or several variables in conjunction) had an effect. If the 
sailors on all four ships of the scurvy experiment had been given the 
citrus juice, the lack of scurvy could have been attributed, for example, 
to the exceptionally good rum rations or some other treatment the 
sailors received on the voyage. But the only difference between the 
experimental group and the control group was that one group drank 
juice and the other did not. Therefore, it is logical to conclude that it 
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was the citrus juice that kept the sailors from getting scurvy. This point 
is also illustrated in the experimental example in Chapter 1 of the 
testing of the polio vaccine in the 1950s; without the presence of a 
control group, there would not have been a baseline with which to 
compare the effect of the vaccine. 

Selecting the experimental and control groups 

Another issue in the setting up of an experiment is the question of who 
should be in the experimental group and who should be in the control 
group. The scurvy example is not a perfect experiment because we can 
think of alternative explanations for why the men on one ship did not 
get the disease. Perhaps there was something about the three ships 
themselves-but not the fourth-that produced scurvy. Although un­
likely, such a phenomenon was a possibility, so it would have been 
better if the decision of who should get and not get the citrus juice had 
been made randomly for each sailor, without regard to ship. By ran­
domly assigning the treatment, the effects of other variables related to 
the ships would have canceled each other out and not affected the 
results. 

One might wonder if volunteers could be used, rather than ran­
domly assigning people to the treatment and control groups. For ex­
ample, what if the sailors who liked citrus juice had been the experi­
mental group and those who preferred rum the control group? The 
problem with this method is absence of certainty that the men in both 
groups were equally healthy before the study began. If the subject as­
signment is random, then healthy and unhealthy sailors would be 
equally likely to be in each group. Health could then be eliminated as 
a cause of scurvy. 

The principle of random selection of subjects was one of the major 
contributions of the great English statistician Sir Ronald Fisher, who 
worked with agricultural experiments in the 1920s. It is a principle that 
has been followed in all good experiments ever since. 

Problems with experimenting on people 

In experiments on human beings, the goal is still to assign people ran­
domly to experimental and control groups, but this is difficult and 
sometimes even impossible to achieve. It is much less complicated to 
assign a potato plant to a poor dirt patch than a person to substandard 
living conditions. 
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Data should always be taken with a grain of salt. "Calvin and Hobbes" copyright 
1995 Watterson. Dist. by Universal Press Syndicate. Reprinted with permission. All rights 
reserved. 

Logistical issues We can all come up with reasons why it is more diffi­
cult to study people than potato plants. First and foremost, people have 
their own plans and interests and are not necessarily willing to oblige 
the research interests of the scientist. They may also have difficulty in 
meeting the conditions of the research, keeping appointments, follow­
ing directions, and fulfilling their part of the arrangement. We have 
already mentioned the problems with getting good data from people 
in telephone and personal interviews, and the same types oflimitations 
apply to experiments. 

Psychological issues In an experimental study, people are highly sen­
sitive to being studied. This makes them self-conscious, which can cre­
ate many constraints on their behaviors. One of the first times this 
effect was documented was in a series of investigations of worker pro­
ductivity at a General Electric factory from 1924 to 1933. In one inves­
tigation, a team of social scientists and company personnel studied the 
effects of various levels of illumination on the productivity of workers 
making light bulbs. The researchers increased the illumination level 
and found an increase in productivity. But strangely, when they re­
duced the lighting levels, productivity also increased. It seemed that no 
matter what the researchers did, the workers produced more. The 
workers seemed to respond to the attention of the researchers, not the 
light level. 

Over time, the phenomenon of workers responding to the atten­
tion of researchers and not specifically to the intended manipulation 
was called the Hawthorne effect, taken from the name of the factory 
where the lightbulb study was done. Precautions against such effects 
can be taken, for example, ensuring that the control group receives as 
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Many factors affect workers' productivity. (Michael Rosenfeld, Tony Stone Images.) 

much attention from the researchers as the experimental group. 
(Source: See, for example, Robert K Merton, Social Theory and Social Structure, 
New York: The Free Press, 1957, p. 66.) 

Ethical issues Ethical issues complicate the process of doing experi­
ments on people and animals. While certain ethical dilemmas are as­
sociated with collecting observational data, such as standing by as neg­
ative events occur, the experimenter who manipulates and controls 
events is more likely to face ethical dilemmas. Is it right, for example, 
to expose people to drug treatments where the outcomes cannot be 
predicted? Suppose people suffer from unexpected, negative side ef­
fects? Thinking of side effects might lead one to be conservative about 
testing and introducing new drugs. Yet, on the other hand, what if a 
new treatment is beneficial? How long should people with fatal diseases 
have to wait to try a new drug? How long can they wait? 

What about the absence of benefits from the treatments for the 
control group subjects who only received the placebo? In the polio 
vaccine experiment, many more children in the control group got po­
lio than in the treatment group. If the children in the control group 
had received the vaccine also, there is every reason to believe that as 
many as 100 more children would not have gotten polio. 
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A similar dilemma occurred for researchers in a study of the effects 
of aspirin on heart attacks. The design of the study allowed for one 
group of male doctors to take an aspirin a day to see if this treatment 
would cut down on their risk of heart attacks. Mter the experiment 
had run for about five years, fewer heart attacks were recorded in the 
treatment group taking aspirin than in the control group taking a pla­
cebo. The results were so clear that the experiment was stopped long 
before the planned termination, and people in the control group were 
encouraged to start taking aspirin. In other projects results are not so 
clear, and long-term side effects can nullifY short-term gains. This was 
the case with thalidomide, a drug that pregnant women took in the 
1950s to suppress miscarriages; mothers who took the drug delivered 
an unusually high number of babies with deformed limbs. 

Almost all research done in the United States, particularly research 
with health consequences, is screened by experts who specifically look 
for ethical problems. Imagine, for example, the possibility of testing a 
promising new drug to cure AIDS. If it is effective, people in the control 
group may risk death if they do not get the drug. However, ifit is found 
that the drug has side effects that result in a higher mortality rate two 
years after the test is begun, the control group may have escaped a 
lethal dose. What is the ethical thing to do? No easy answers can be 
given. Ethical issues must be constantly considered and reconsidered. 
Fortunately, most studies are less dramatic and the consequences are 
less severe. 

STOP AND PONDER 2 . 5 

Can you think of any recent research you have read about in which 
companies have been sued for treating customers in ways that have 
violated their rights? Have there been ethical dilemmas involved in 
these cases? Given the nature of the case, have the companies, in 
your opinion, been ethically responsible or not? 

Role of statistics in experimentation 

Most researchers who do experiments receive statistical advice. The 
contribution of statistics to the running of experiments centers on 
three practical issues: obtaining the proper number of observations to 
make it possible to find if there are any effects; planning the experi­
ment so that the standards for statistical analysis are met; creating a 
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method for studying the impact of several variables simultaneously in 
the most efficient way possible. 

How many obseroations? Statisticians can give advice on how many ob­
servations are needed to get results with the desired accuracy. More 
data are usually better than less data. But it costs more and takes a 
longer time to collect many observations as opposed to a few obser­
vations. A researcher may ask: Would it be enough to plant a new variety 
of corn on 10 plots of land or do I need data from 100 plots to 
discover if the new variety gives a higher yield? This question ex­
emplifies the general quandary for many cost-conscious, result­
oriented researchers. 

Plan of analysis: Be safe rather than sorry Statisticians often help re­
searchers set up a plan of statistical analysis. The best time to create 
this plan is before the data are collected. If the study is done without 
a careful plan of analysis, faults are built into the experiment that can­
not be corrected later. Often statisticians are called in to clean up the 
mess, and it is often too late. A researcher cannot supply missing data 
once the data are collected, so the statistical analysis is less helpful than 
it would have been had the data been appropriately collected in the 
first place. Often statisticians are able to expand a statistical plan as 
further questions become relevant to a researcher. Initial results may 
suggest new avenues of inquiry, and statisticians may offer additional 
suggestions once the preliminary data analyses are run. In today's com­
plex world of statistical analyses, even the most sophisticated research­
ers prefer to have statisticians at their sides when working up a major 
design for a study. 

Studying the impact of several variables at the same time Planning be­
comes particularly important when we want to study the effects of sev­
eral experimental variables on an outcome variable. One could do sev­
eral experiments, each using one variable. For example, if a sport 
psychologist wanted to study the effects of diet, exercise, and self-con­
fidence on bodily weight, he or she could do three experiments to study 
the effect of each variable separately. 

Sir Ronald Fisher developed a way to use all the variables at the 
same time in one experiment, thus reducing the randomness in the 
data and allowing for comparisons of the relative strengths of each 
variable. Thus, in the example, the sport psychologist can measure how 
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One of the many contributions to statistical meth­
ods by the great British statistician Ronald Fisher 
was his work on how to conduct experiments. He 
realized that when several variables influence an 
outcome variable, it is better to study the effects 
of all the variables taken together than it is to 
study the effect of each variable separately. One 
of the plans for experimen tation that Fisher came 

up with for studying several variables at the same time is known as a 
Latin-square design. 

During part of his life Fisher was a Fellow at Caius College, Cam­
bridge, England. As a memorial to Fisher, the college installed in its 
dining hall a stained glass window representing a Latin-square de­
sign. The window consists of a square about 3 feet by 3 feet. The 
square i divided into 7 rows and 7 columns giving a total of 49 small 
quares, or cells. Each of these cells is a square of colored glass in 

one of 7 different colors. The colors are laid out so that each color 
occurs only once in each row and once in each column. For example, 
yellow gla s i used for the cell that lies in row I and column 6, the 
cell in row 2 and column 2, the cell in row 3 and column 1, the cell 
in row 4 and column 3, the cell in row 5 and column 4, the cell in 
row 6 and column 7, and the cell in row 7 and column 5. 

The window represents three different variables, each with 7 dif­
ferent values. The rows de ignate one variable, the columns the ec­
ond variable, and the color the third variable. Thus, there are 
7 . 7 . 7 = 343 different combinations of value, the number of ob­
servations required for one observation for each combination ofval­
u . The window show that we need only the 49 combination of 
value shown in the window if we want to do a tudy with three var­
iables where each has 7 value. (Photo courtesy oj UPT/Bettmann.) 

STOP AND PONDER 2.6 

Can you create a stained glass window design that has properties 
similar to that de igned by Fi her as the Latin square? You may 
use different pattern of color, but u e yellow according to the 
Fisher window. Or try a similar type of design with a smaller num­
ber of rows and columns, for example, four. 



2.4 Experimental Data: Looking for the Causes of Outcomes 53 

relatively important diet, exercise, and self-confidence are in affecting 
a person's weight. 

This approach led to the development of a variety of multivariate 
statistical designs for analyzing experiments. In Chapter 13 we start a 
discussion of multivariate analyses, which are needed to find answers 
to the sport psychologist's queries. 

Putting it all together: Does class size affect school 
perfonnance? 

To conclude this discussion on experiments, let us look at an example 
of an actual experimental study. With this example, you can take on 
the role of the experimenter who must confront a series of difficulties 
in order to answer a question of interest. 

The example is an educational experiment that took place in Ten­
nessee, as reported in a news magazine. (Source: The Economist, August 
31, 1991, p. 23.) Here we use only the information given in the news 
story to see what we can conclude about this experiment. (If we wanted 
more information about the study, we would need to consult more 
detailed descriptions.) 

For a long time people have had the sense that smaller rather than 
larger classes result in better learning, but it is hard to find empirical 
evidence for this proposition. In the mid-1980s school officials in Ten­
nessee decided to perform an experiment to test whether class size 
affected school performance. The main design of the study was a simple 
one, concerned with the effect of one single variable, class size, with 
only two values, small and regular size. 

operational definitions Before the experiment could be performed, 
several important, nonstatistical issues had to be decided. Perhaps the 
most important one was to decide what was meant by a "small" class. 
In the study, the Tennessee officials decided that a class containing 
between 13 and 17 students would be called "small," and a class con­
sisting of 22 to 25 students would be thought of as "regular" class size. 
Also, the researchers had to decide what "improved performance" 
meant. They decided to measure performance with standardized edu­
cational tests. 

Thus, the researchers started the experiment with the research hy­
pothesis that elementary school students in small classes do better than 
students in regular classes and then made it specific: 5-year-olds starting 
in classes consisting of 13 to 17 students who stay in "small" classes for 
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four years will do better on standardized tests at the end of the four­
year period than students who spend the same time in classes consisting 
of 22 to 25 students. It was important to specify the four-year period to 
eliminate the students who would inevitably move into and out of the 
experimental classrooms during the course of the study. 

STOP ANO PONDER 2 . 7 

How would you feel if you lived in Tennessee and had a child who 
was put in a regular-size class instead of a small class? 

Selection of sample schools The next thing to be decided was which 
schools should be used for the experiment. The magazine story simply 
says that the study was done in 76 different elementary schools. There 
are many more than 76 elementary schools in Tennessee, and we can 
only hope that random selection was involved in choosing the schools. 
We also trust that students were placed randomly in small and regular 
classes. 

STOP AND PONDER 2 . 8 

Wby is it 0 important that the chool were chosen randomly and 
that students were randomly assigned to the two types of classes? 

Experimental design Now the researchers were faced with the question 
of what to do with all the 5-year-olds in 76 elementary schools across 
the state. They could have created only small classes in some schools 
and only regular classes in other schools. But then whatever differences 
found between small and large classes could have been due to other 
variables. For example, if all the children in a school in a university 
town were put in small classes and all the children in an inner-city 
school were put in regular-size classes and it was found that students 
in small classes did better, the difference could have been due not to 
class size but to the fact that children from more academic families 
tend to do better on standardized tests. Instead, within each school the 
children were randomly assigned to the different types of classes. In 
this way, possible effects of the backgrounds of the different students 
were canceled out and did not affect the overall test scores. 

Other variables also had to be taken into account. For example, 
teachers had to be randomly assigned, as well. It would not have been 
fair to put all the new teachers in larger classes and all the experienced 
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ones in small classes. Other physical variations, such as classroom re­
sources, also had to be balanced out so that neither group had an 
advantage over the other. 

Results Mter four years, it was found that students in the small classes 
were performing "significantly" better than the students in the regular­
size classes. (The term "significantly" is discussed in Chapters 6 and 7.) 
The test results showed that after only one year the students in small 
classes were 1.5 months ahead in reading and 2.5 months ahead in 
mathematics. The small-class advantage was also present after four 
years, when the experiment ended. 

Mter data have been collected from a study, whether experimental or 
observational, they are commonly entered into a computer file in typ­
ical spreadsheet form. This means that each column refers to a variable, 
such as gender. Each row refers to an element, for example, person, 
plant, animal, group, or whatever units we have collected data on. Such 
a table of data is often referred to as a data matrix or a data file. Table 
2.1 shows an example of a small data matrix for data from a sample 
survey. 

Table 2.1 Data matrix for a sample survey 

Person Age Gender Vote Attitude 

1 20 Female Democrat Neutral 

2 27 Female Democrat Against 

3 19 Male Republican Against 

4 38 Male Democrat Favor 

5 38 Male Republican Favor 

6 53 Female Democrat Favor 

7 24 Male Republican Favor 

8 41 Female Republican Against 

9 35 Female Democrat Neutral 

10 30 Male Republican Favor 
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For convenience in computer analyses of the data in the file, we 
often change the words in a data file to numbers. Each person is given 
an ID number as a name. The age variable is already measured using 
numbers, so no change is needed there. The gender variable has the 
two categories female and male, so female is replaced by the number 
0, male by the number 1. Any two numbers could be used, say - 17 for 
female and 23 for male, but for practical reasons, which are explained 
in Chapter 9, the numbers 0 and 1 are better to use. The values of the 
vote variable can similarly be changed to 0 or 1, and for the attitude 
variable we can use three ranked numbers, say 1, 2, and 3. 

The way the data matrix appears on a printout from the computer 
is shown in Table 2.2. While the table is easy to read, a typical national 
survey could have 1,000 respondents instead of the 10 shown here, and 
there could easily be 100 variables instead of just 4. With 1,000 rows 
and 100 columns, there would be 100,000 numbers in the data file. 
This would not be so easy to read! The information would all be there, 
but the trends and patterns in the data would be obscured. A re­
searcher could not extract what is of interest without simplification and 
condensation-analysis-of the data by statistical methods. 

Table 2.2 Data matrix for a sample survey 

Person Age Gender Vote Attitude 

1 20 0 0 2 

2 27 0 0 1 

3 19 1 1 1 

4 38 1 0 3 

5 38 1 1 3 

6 53 0 0 3 

7 24 1 1 3 

8 41 0 1 1 

9 35 0 0 2 
10 30 1 1 3 



2.1 Defining the variables 

The first step in proper data collection involves carefully specifying the 
variables to be studied. 

2.2 Observational data: Problems and possibilities 

Observational data are data collected through observations of the 
world, without manipulating or controlling it. 

A population consists of all the elements under study. A census is 
the process of collecting data on an entire population. A proper statis­
tical sample that can be used for generalizations to a population is 
called a random sample, a sample in which every element in the pop­
ulation has a known (often equal) chance of being selected for the 
sample. Drawing a sample "out of a hat" produces a simple random 
sample. 

In observational studies, it is often difficult to determine whether 
or not a variable is causally affected by another variable. The potential 
of other unknown variables to have a more direct impact on a variable 
than the one under study must be acknowledged in any observational 
study. 

2.3 Errors and "errors" in collecting observational data 

Sampling error tells us how far from the true population value 19 of 
20 different sample results will fall if many different samples had been 
selected. This variation in the results from one sample to another is 
due to the randomness of sample selections. The size of the sampling 
error depends on how many observations there are in the sample and 
how it was drawn. The larger the sample, the smaller the sampling error 
becomes. Sampling errors should always be reported. 

Nonresponse error is the error in the results that occurs when data 
are missing from the sample. Missing data may result from such causes 
as unwillingness of respondents to answer all queries and the inability 
to locate certain sample members. The effects of a worst-case scenario, 
in which all nonrespondents would have answered a survey question 
identically, could be enormous. Fortunately, studies have shown that 
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on most issues nonrespondents are not very different from those who 
do respond. 

Data collection response errors can be made by wording questions 
in ways that confuse respondents or suggest certain answers, byarrang­
ing questions in a non propitious order, and by using interviewers who 
bias respondents' answers, among other things. 

2.4 Experimental data: Looking for the causes of outcomes 

Data collection can also be done by manipulating one or more variables 
in an experiment and measuring the results of the manipulations. An 
experiment is a way of studying causal relationships between variables. 
In an experiment researchers try to control every relevant aspect of a 
situation, manipulate a small number of variables of interest, and then 
measure the results of the manipulations. Of critical importance to a 
good experimental design is the control group, a subgroup of subjects 
that is not manipulated but is in all other respects like the experimental 
group(s), which does receive the experimental manipulation. Experi­
mental objects are randomly assigned to treatment and control groups. 
One major reason for random assignment is so that the effects of ex­
traneous variables cancel out and do not affect the end results. 

It is often difficult to study people experimentally because they may 
resist the efforts of the scientist to manipulate and control them, they 
may become self-conscious, and/ or they may become bored or fatigued 
by the experimental situation. Subjects may also be manipulated in 
their behaviors by the nature of the experiment itself, in some cases 
becoming more cooperative than normal. Ethical dilemmas, such as 
weighing the pros and cons of giving or withholding treatment, are 
also important constraints on experiments. 

The contribution of statistics to the production of successful ex­
periments centers on three practical issues: obtaining the proper num­
ber of observations in order to get significant results, planning the 
experiment so that the standards for statistical analysis are met, and 
creating methods for studying simultaneously the impact of several var­
iables. 

2.5 Data matrix/Data file 

Mter the data have been collected in a study, whether experimental or 
observational, they are commonly entered into a computer file in typ-
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ical spreadsheet form. Such a collection of data is called a data matrix 
or a data file. 
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EXERCISES 

REvIEw (ExERCISES 2.1-2.22) 

2.1 A teen magazine wants to do a survey using college students to 
increase reader appeal for 17 -19-year-olds. Name several decisions the 
survey team should make about the definition of the target population 
before the sample is drawn. 

2.2 Define experimental group. 

2.3 Define control group. 

2.4 a. What is a random sample? 

b. Name three difficulties in creating a random sample. 

2.5 In what sense is the sampling error the best kind of error we can 
have in a statistical analysis? 

2.6 Select an example of sample data, census data, or other data 
from a journal or book. 

a. Does the author satisfactorily explain how the data were col­
lected? Explain. 



b. Is the population to which the findings are generalized well 
specified? Explain. 

2.7 The student council wishes to survey the senior class regarding 
graduation ceremonies. You volunteer to draw a sample of 10% of the 
seniors in your school. 

a. How would you arrange to draw the sample to assure random­
ness? 

b. What possible problems might you encounter in drawing the 
sample? 

c. What might be some possible impacts of these problems? 

d. How would you attempt to solve these problems? 

2.8 Several of your friends wish to help you complete the student 
council survey in Exercise 2.7. They volunteer to poll 12 friends each 
concerning the graduation ceremonies. This will then constitute a sam­
ple of 10% of the class. They also volunteer to buy the beverages if the 
class votes to have an all-night barbecue at a nearby lake. 

a. For what reasons do you decline your friends' offer of assist­
ance? 

b. If you yourself want the barbecue as well, what safeguards 
might you suggest to prevent your views from influencing your 
classmates? 

2.9 Explain whether a sampling error indicates a poor job of statis­
tical analysis. 

2.10 What factors are important in determining the size of the sam­
pling error? 

2.11 a. What is the true population value? 

b. Where is it supposed to be located? 

2.12 What is a response error? 

2.13 Make up a survey question that would have the same property 
of un acceptability as the following question: Have you stopped beating 
your dog yet? Why is your question a bad question? 

2.14 Construct a survey question that you would find acceptable if the 
goal were to establish the level of financial well-being of the respon­
dent. 
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2.15 A poll found that 56% of the respondents favored the Roe v. 
Wade Supreme Court decision of some years ago. The sampling error 
was reported to be ± 2%. 

a. What can you say about how the other 44% of the respon­
dents felt about Roe v. Wade? 

b. What are some other things you should know about how these 
data were collected before you can make anything of this poll? 

c. Show how to use the sampling error percentage and interpret 
the result. 

2.16 Would you permit your child to participate in an experiment 
with a medication, like the experiment with the polio vaccine, where 
it is not clear whether the medication will have bad side effects, have 
no effect at all, or be beneficial to all humans? Explain. 

2.17 Why is it difficult to interpret the results of an experiment that 
did not include a control group? 

2.18 a. Under what conditions would you volunteer for an experi­
mental study of toothpastes without knowing the possible side 
effects? 

b. Under what conditions would you volunteer for an experi­
mental study of a drug designed to alter mental states without 
knowing the possible side effects? Consider the well-being of 
other people as well as yourself. 

c. Do you think your answers are similar to those of most other 
people, some other people, or a few other people? Why? 

2.19 a. Is it possible to construct a survey question concerning favor­
able or unfavorable attitudes toward abortion that would appear 
to be totally value-neutral? Why? 

b. What major effects does the wording of questions have on the 
answers given? 

2.20 You are directing a housing survey in a conflict-ridden commu­
nity consisting of families of Korean, Pakistani, Filipino, Armenian, and 
Icelandic origins. 

a. What considerations might be important in your decisions 
about who should do the interviewing? 

b. Describe who you would hire, including any gender, age, eth­
nic, educational, or other distinctions. 



c. What biases would you accept, and which would you try to 
avoid? 

2.21 What is a data file? 

2.22 a. Do the columns in a data file usually refer to a variable or to 
an element? 

b. Do the rows in a data file usually refer to a variable or an 
element? 

INTERPRETATION (ExERCISES 2.23-2.36) 

2.23 The wise statistician declares: 'There are two kinds of data: Good 
data and bad data." The difference between good data and bad data 
depends on whether or not proper statistical principles were adhered 
to during the collection process. Given the difficulties in collecting 
good data, do you think the statistician should have said: 'There are 
two kinds of data: Bad data and worse data?" Explain. 

2.24 a. What are some circumstances under which you would be (or 
have been) unwilling to participate in a survey? 

b. What do you think the results of your refusal to participate 
might be on the outcome of the survey (assuming that there 
were others who refused for the same reasons you did)? 

c. In what ways might this affect the ways in which the survey 
helped or hindered those who commissioned the study? 

2.25 During the spring of 1991, 7-Eleven stores around the country 
conducted a poll in which customers who bought drinks could "vote" 
on an issue by choosing a beverage cup marked either Yes or No. Ac­
cording to the results of this poll, 50.9% of the respondents in the 
Philadelphia/Trenton area "voted" that they would marry for money, 
while nationally the percentage was 53.6. (Source: The Philadelphia In­
quirer, April 16, 1991, p. B3.) 

a. Did the results imply that people in Philadelphia and Trenton 
were less inclined to marry for money than the people in the 
rest of the country? 

b. What might explain the difference in percentages? 

2.26 In the local mall, customers of all shapes and sizes are being 
stopped by a group of interviewers of all shapes and sizes who are asking 
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the shoppers about their recent purchases of diet beverages and diet 
foods. 

a. What effects could the interaction of pollsters and respon­
dents have on the results of this poll? 

b. More generally, is it ever possible for surveys such as these to 
be done in a totally neutral and unbiased fashion? Explain. 

2.27 City planners are interested in the level of fire prevention aware­
ness among the volunteer firefighters of Delaware County. A survey of 
the Garden City firefighters contains a sampling error of ± 7%. 

a. Will it be helpful to the planners if a sample of the other 
firefighters of Delaware County-in the town of Media and the 
boroughs of Swarthmore and Rutledge-are included in the 
report? Why? 

b. If all the volunteer firefighters in the entire county were given 
the survey, would the sampling error be greater or smaller? Why? 

2.28 Suppose you want to ask students to rate how favorable their 
overall academic experience has been. 

a. Comment on the difficulties you might encounter in defining 
this variable. 

b. How might the difficulties result in the favoring of some types 
of educational institutions over others? (Hint: The results may 
favor small schools devoted almost entirely to undergraduate 
teaching.) 

2.29 Quoting a study on commercial matchmaking enterprises, "A 
matchmaker who uses video technology claims that 40% of her first­
time matches result in committed relationships." Given the informa­
tion, would you spend the money for this service if you were eager to 
get married soon? (Are there any problems with this claim in terms of 
the definition of the agency's success at matchmaking?) (Source: MaraB. 
Adelman and Aaron C. Ahuria, ''Mediated channels for mate seeking: A solution to 
involuntary singlehood?" Critical Studies in Mass Communication, vol. 8 (1991), 
pp. 273-289.) 

2.30 According to the National Institute on Alcohol Abuse and Al­
coholism, alcoholic fathers and sons are less creative than nonalcoholic 
fathers and sons. "Creative people may be alcoholic, but alcoholics are 
rarely creative, the head of the study concludes." How is the variable 
creative/noncreative redefined in the description of the outcome of 



this study, according to this news item? (Source: The Philadelphia Inquirer, 
October 17, 1993, p. FJ.) 

2.31 Surveys indicate that cheating in college is a serious problem. 
Yet it is not always possible to know who has cheated and who might 
be falsely accused. You are interested in studying the effects of cheating 
on college exams on physiological indicators of lying. As the professor 
of an introductory psychology class, it is possible for you on the mid­
term exam to arrange for half the students to receive answers to the 
multiple-choice test questions (apparently by mistake) in their answer 
booklets. You will be able to tell which students received the "cheater" 
booklets and which did not. Later, you will be able to secretly videotape 
the class as you confront them as a group with the cheating episode. 
You will be able to observe physiological indicators and check to see 
how the students who cheated react to your charges. Assuming that this 
study has scientific merit and can be conducted (from a logistical stand­
point), do you see any problems with going ahead with it? What are 
they? 

2.32 Researchers led by Dr. Arthur Kellermann of Emory University, 
Atlanta, compared people murdered in their homes to nonvictims of 
the same age, sex, race, and neighborhood. The homes of the 388 
murder victims were different from the homes of the nonvictims in 
several ways. The people who lived in the homes of the victims were 
more likely to have guns, especially loaded guns, to use illicit drugs, to 
have arrest records, and to have a history of domestic violence. The 
study reported that "gun ownership increased risk 2.7 times, regardless 
of other risks." 

a. What was the control group in this study? 

b. What was the most important factor in whether or not one 
would be murdered? 

c. Were there any significant variables that were not controlled 
for, according to this report, that might have been important in 
understanding factors that could lead to murder in the home? 

2.33 In a study of curriculum development in mathematics, research­
ers included a random selection of ten schools in the district. Among 
them was the Wallingford Elementary School, where teachers were 
asked to volunteer for a workshop that was to be conducted over the 
Thanksgiving vacation. Of the 38 eligible teachers, 14 agreed to go; 
from this group 9 names were chosen at random (the researchers had 

Exercises 65 



66 Chapter 2 • Collection of Data 

asked that the selection process be done "at random"). Despite the 
care in trying to pick a random sample, 8 of the 9 teachers selected 
were men, although 65% of the teaching staff were women. Mter the 
workshop, the teachers came back with glowing reports about the new 
mathematics program, especially how it challenged them to "really 
brush up on their own math skills." They strongly recommended that 
the program be instituted the following year. The researchers con­
cluded that teacher reception to the math program was very warm and 
recommended that the program be given a high priority in the follow­
ing year's budget. The research results were especially important be­
cause previous attempts to introduce new mathematics programs in 
these schools had not been very successful, due to teacher resistance 
and sometimes their lack of preparation in mathematics. 

a. Do you think the teacher sample for the research was a ran­
dom selection of the teachers in the district? 

b. What factors interfered with the sample being statistically 
ideal? 

c. Was it chance that led to so many men being selected from 
Wallingford? Explain. 

d. Do you think the new math program will be well received 
next year? Explain your answer. 

e. Do you think it is primarily laziness on the part of researchers 
that keeps samples from being randomly selected? Explain. 

2.34 A salesperson for the class ring company wants to do a survey at 
your high school to determine how much money the average student 
plans to spend on the class ring. The principal suggests that the ques­
tion be asked of the students at a pep rally for the championship game 
on Friday afternoon. As the nosy statistics student, you would like to 
put in your two-cents worth about this planned survey. 

a. What will you say about the data collection procedure? 

b. What consequences do you think it will have on the survey 
results if the principal's plan is carried out? 

2.35 Whenever we collect data and then begin to summarize them in 
graphs or tables, in numbers or in statements, we lose information. 
From the following statements, taken from various accounts in news­
papers and scientific reports, give an opinion on what important in­
formation has been lost. 



a. "In this sUlVey, students at the Illinois Institute of Technology 
were most likely to say they were 'unhappy.'" (The Philadelphia 
Inquirer, October 10, 1993, p. B5.) 

b. "According to the Alan Guttmacher Institute, more Catholic 
women seek abortions than women of any other faith." (The 
Philadelphia Inquirer, December 8, 1992.) 

ANALYSIS (ExERCISES 2.36-2.41) 

2.36 A hometown newspaper reports on the eve of a local election 
that a sUlVey of the electorate has found that Rainwater is leading Gold­
thorp in the city council race by 53% to 47%, with a sampling error of 
± 4%. The editor wants to know if she should begin the headline for 
tomorrow's paper "Rainwater Tromps Goldthorp. " What would you ad­
vise, and why? 

2.37 Following are questions from a sUlVey designed to gather data 
from moviegoers on the popularity of recent films shown at local the­
aters. List at least ten problems with these questions. 

Name _____________ Age __ _ 
Address Telephone _____ _ 
Salary ]obtitle ____________ _ 
Movieyousawtonight ________________ ___ 
Name of theater ___________________ _ 
How good was the movie? Very good Good Bad __ _ 
Rate the movie on a ten-point scale: 1 2 3 4 5 6 7 8 9 10 
How good was it compared to the last movie you saw? 1 2 3 4 5 
How did it compare to Some Like It Hot? 1 2 3 4 5 
What did you like best about the movie? __________ _ 
Was it the actors? yes no 
Did you buy popcorn? soda? ___ candy? __ _ 
What model car do you drive? ______________ _ 

2.38 Adoption is a very important personal and societal issue in the 
1990s. For the past decade, the social agencies in charge of arranging 
for adoptions have adhered to a policy goal of racial similarity in match­
ing parents and child. This policy stands in contrast to that of twenty 
years ago, which encouraged interracial adoptions. Social attitudes sur­
rounding the family form the base of both policies. Imagine that a 
social agency wants to develop a sUlVey to assess community attitudes 
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toward whether or not interracial adoptions should be resumed. With 
particular attention to the issue of interviewer-interviewee relationship, 
answer the following questions. 

a. How would you design a research study to address this ques­
tion in order to minimize racially motivated responses? 

b. How do you think racial similarities and differences (between 
interviewers and interviewees, for example) might playa role in 
influencing the responses to the study? 

c. Assuming adequate resources, authority, and time, how might 
this study best be carried out? 

2.39 Assume that, at an institution with which you have an affiliation, 
you are going to create a survey (either for yourself, your group, or 
your supervisor). You are interested in asking a few questions (perhaps 
no more than ten) to determine how satisfied the people in the insti­
tution are with a particular policy, boss, activity, or recent change that 
has affected them. 

a. Mter you determine the goal of your survey, consider how 
you would like to carry it out: personal interview, telephone, 
anonymous survey, voice mail or e-mail, and so on. 

b. Create a written mock-up of your research design, including 
the mode of delivery, the questions to be asked, and the way you 
would analyze the results. 

c. What dilemmas did you face in creating the design? How did 
you decide to handle them? What limitations do you think still 
exist in the design? 

d. If you had many resources, more authority, and much time, 
what might you do differently? 

2.40 Create a data matrix from the following information. A Boy 
Scout troop is on an overnight camping trip, and they begin talking 
about their families. Chris, age 9, has three brothers and three sisters, 
lives with his mother and father, and has a pet gerbil; Andy, age 10, 
has no brothers and sisters and lives with his mother and a dog; Carl, 
age 9, has a stepbrother, Sam, and lives with his father and stepmother 
and a cat also named Sam; Greg, age 10, has a sister, a stepsister, and 
a halfbrother, lives with his mom and dad and a dog named Rex; Alex, 
age 8, lives with his grandmother and grandfather; Paul, age 11, has 
four brothers and a stepsister and lives with his mother and stepfather 
and a fish named Wanda. 



a. What decisions did you make about creating variables for sib­
lings? For parental figures? For pets? How could you have made 
them differently? 

b. If you had a large number of Scouts to summarize, which 
variable choices for siblings, parental figures, and pets would you 
prefer? 

c. If you were interested only in issues of divorce, remarriage, 
and single parenthood, how would you design the data matrix? 

d. What data did you discard in creating your data matrix? Why 
did you discard it? 

e. Was there any information missing that you think would have 
been useful if you had wanted to study the likelihood that boys 
with no siblings and firstborn boys were more likely to belong 
to the Boy Scouts than other boys? 

2.41 In 1789, in Massachusetts, the average male at birth could be 
expected to live 34.5 years. The average female could expect to live to 
be 36.5 years old. In 1850, male life expectancy was 38.3 years and 
female life expectancy 40.5. In 1890, male life expectancy was 42.5 and 
female life expectancy was 46.6. In 1910, male life expectancy was 54.0 
and female life expectancy was 56.6. In 1930, the numbers were 59.3 
and 62.6 years. 

a. Create a data matrix and put the numbers in the proper rows 
and columns to make them understandable and ready for statis­
tical analysis. 

b. Name two findings that are evident from this data file. 
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Of/{at is the fastest growing group in the A merican work force today? Does 

taking a literature course reduce crime among convicted criminals? How old 

are women and men when they marry these days? 
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A gain in simplic­
ity involves a loss 
of information, 
and a good statis­
tician tries to 
strike a balance 
in the ten ion 
between these 
two competing 
concerns. 

In Chapter 2 we discussed ways of collecting data. Once the data are 
gathered, we must search them for the information they contain. The 
data are available in the data file, but with so many numbers there, we 
cannot comprehend them all. Some way or other we must extract in­
formation from the data and put it into usable form. This means we 
need to analyze the data by graphing, tabulating, and computing. 

Data analysis usually con ists of one or more of three activities: 

1. Make a graph of the data. 

2. Make a table of the data. 

3. Compute omething from the data. 

All three methods involve some degree of simplification. Comput­
ing an average, for example, simplifies a collection of numbers. If we 
compute an average age for ten girls, then the ten numbers are re­
duced to one. Similarly, graphs and tables involve simplifications and 
reductions of data. Simplifications make it much easier to understand 
and to extract information of new kinds from data. 

Data simplification has an important drawback. From simplified 
data we cannot recover the original observations. Thus, there is almost 
always a loss of some kind of information when we analyze the data. 

In analyzing statistical data, we are torn between two conflicting 
goals-to simplifY and to be complete. First, we want to simplifY a body 
of data enough to discover the patterns it contains. We want to high­
light important information and to suppress "noise." But at the same 
time, we do not want to lose interesting details. A football game can 
be summarized by the final score, but that datum does not describe 
how the game was played and won. This conflict between simplicity 
and loss of detailed information is often difficult to resolve. Fortu­
nately, practical considerations provide guidelines for producing useful 
forms of information. How we describe our data usually depends on 
what we have in mind for the analysis-where it will be seen, by whom, 
and for what purpose. In addition, we must satisfY our own judgment 
and those of our colleagues about what is the best statistical picture we 
can offer. 
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One way to analyze data is to graph them. A graph is extremely inform­
ative because a great deal of data can be summarized in it and under­
stood at a glance. To put a new twist on the old saying, a graph is worth 
a thousand numbers. 

Graphs are made for two main purposes: to help the researcher 
extract information from the data and to help communicate the infor­
mation to others. 

A graph is essentially a rhetorical device; it is a form of persuasion, 
first to the researcher and then to others. A graph is constructed to 
illustrate particular patterns found in data. Many other graphs could 
be drawn from a particular data file, but they rarely are. Only those 
graphs are produced that seem important to the analyst in order to 
understand and to communicate what the data mean. As with so many 
other statistical methods, it is possible (intentionally as well as uninten­
tionally) to misuse graphs in making an argument. We want you to be 
able to distinguish between a good graph and a bad graph. Knowing 
this difference may help protect you from making poor choices and 
drawing bad conclusions. 

Creating statistical graphs 

Statistical graphs have been in existence for more than two hundred 
years. But graphs were invented long after many other important math­
ematical discoveries. Relatively rare, at first, they were originally drawn 
by hand and were often extremely imprecise. Today, computer software 
has taken much of the drudgery and inaccuracies out of constructing 

Graphs can be very important. ("Calvin and Hobbes" copyright 1992 Watterson. 
Dist. by Universal Press Syndicate. Reprinted with permission. All rights reserved.) 
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One of the first graphs created-such a rarity. (Source: Edward R. Tufte, The 

Visual Display of Quantitative Infonnation, Cheshire, CT: Graphics Press, 1983.) 

graphs, and it is very seldom now that professional researchers draw a 
graph by hand. 

There are advantages and disadvantages to the computerization of 
graphic design. With computer software constructing graphs, many fac­
ets of the graphic form are automatically shaped by those who wrote 
the software, and researchers find it easy to rely on them. But if the 
computer program is not good, bad graphs result. What is meant by a 
"bad" graph is described in more detail throughout the chapter. 

Statistical graphs have become increasingly commonplace in the 
media. Graphs taken from computer screens are shown in newspapers, 
news magazines, and on television. As the media have become increas­
ingly saturated with graphic representations of information, consumers 
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have been required to be more knowledgeable about their construc­
tion. Graphic literacy is a must for the twenty-first-century adult. 

Types of graphs 

In Sections 3.2, 3.3, and 3.4 we discuss some of the more common types 
of graphs, and we introduce you to some of their respective advantages 
and disadvantages. In Section 3.5 we take up the principles that un­
derlie the construction of graphs. These principles can be used to judge 
whether a graph is good or bad. 

The simplest type of graph summarizes the data on one variable 
only, for example, gender, age, or IQ. Such a graph involves the data 
from only one column in the data file. More elaborate graphs sum­
marize data on two variables, from two data columns, for example, 
gender and age. Making graphs from data on three or more variables 
is more difficult but not impossible. 

Many graphs are used to show a count of the observations of each 
value of a variable. For example, a graph could illustrate how many 
rainy days and how many sunny days occurred last month. This graph 
would compare the two observed values (rain, sun) by showing which 
occurred more often and which was more unusual. Other graphs show 
values of variables measured on a scale. Age in years and income in 
thousands of dollars are simple variables of that kind. 

For the gender variable, the values are female and male. The only thing 
we can say about two observations on such a variable is that either they 
are the same or they are different. Such a variable is called a categorical 
variable. 

Graphing one categorical variable 

In analysis of data on one categorical variable, the first step usually 
consists of counting the observations of each value. As an example, we 
focus on data about 72 criminals convicted in the New Bedford District 
Court in Massachusetts. We want to know whether or not they were 
convicted of new crimes within from one to two and a half years after 
they had served their sentences. (Source: The New York Times, October 6, 
1993, p. BlO.) 

A categorical 
variable is a vari­
able where two 
observations are 
either the same 
or different. The 
ob ervations can­
not be ordered; 
one observation 
is not more of 
something than 
another ob erva­
tion. 
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(a) Pie chart 
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Figure 3.1 Pie chart and bar graphs for a variable (criminals) with two cat­
egories (whether or not they were convicted of new crimes within from one 
to two and a half years after they had served their sentences) 

When the observations for this group of criminals are counted, we 
find that 24 were convicted of new crimes and the remaining 48 were 
not, at the time the data were collected. Figure 3.1 shows a pie chart 
and two different bar graphs for the data on the 72 criminals. 

Pie chart The pie chart (Figure 3.1a) indicates that about one third 
of the convicts were convicted of new crimes and two thirds were not. 
While it may be hard to see that the pie is divided exactly into 1/3 and 
2/3 parts, it rapidly conveys that one group is about twice as large as 
the other. 

Pie charts are good for showing the relative sizes of groups. Several 
different groups can be represented and compared in a pie chart. Pie 
charts are particularly good for categorical variables because they do 
not order values. One piece of a pie can move to another location in 
the pie without changing the meaning of the chart. Also, nearby groups 
can be easily combined into larger units in a pie chart. 

Pie charts are not good for showing how many observations there 
are in each group. If 240 criminals were convicted of a new crime and 
480 criminals were not convicted, the pie would be divided the same 
way. Also, pie charts are not useful in representing a large number of 
groups: the "slices" become so tiny and so numerous that they lose their 
usual impact. 
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STOP AND PONDER 3 . 1 

Draw a pie chart composed of observation of a set of values from a 
categodcal variable with which you are familiar, for example, the 
number of phone calls you and several of your friend received in a 
day. Does the pie chart you create represent your variable in a con­
venient way or not? What would make the pie chart better or wor e? 

Bar graph The two bar graphs (Figure 3.1b and c) tell the same story 
about the criminals. The bar graph in Figure 3.1b-where the bars are 
the same width and the height of each bar represents the number of 
observations of the corresponding value of the variable-is the most 
common. But a bar graph like Figure 3.1c, where the bars are the same 
height and the width of each bar represents the number of observations 
of the corresponding value of the variable, can also be used. Note that 
in each of the bar graphs the bars start at the value of O. Sometimes 
this is not the case, and the bar graph then usually conveys a very 
different story (see Stop and Ponder 3.2). 

The bar graph in Figure 3.1 b is good for showing the number of 
observations of each value of the variable but not for showing the total 
number of observations; it is awkward to mentally place one bar on top 
of the other to visualize the total. The bar graph in Figure 3.lc is good 
for showing the total number of observations and the number of ob­
servations of the first category of the variable (criminals who committed 
new crimes) but not for showing the number of observations of the 
other category (criminals who did not commit new crimes). The more 
values of a categorical variable, the more complex and difficult a same­
height, different-width bar graph becomes. 

STOP AND PONDER 3 . 2 

How could a bar graph that did not start with zero on the vertical 
axi ' be used by a skillful politician who wants to exaggerate the tax 
increases proposed by a rival party? 

Graphing two categorical variables 

There is more to the story about the 72 criminals. Judge Robert Kane 
of New Bedford District Court in Massachusetts, with the encourage-
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ment of Professor Robert P. Waxler of the Dartmouth campus of the 
University of Massachusetts, gave some of the criminals found guilty in 
his court the choice of going to jail or taking a literature course taught 
by Professor Waxler. Professor G. Roger Jarjoura of Indiana University 
followed the 32 men who took the course and found that 6 were later 
convicted of new crimes. Among the 40 criminals who went to jail, 18 
were convicted of new crimes after release. (Source: The New York Times. 
October 6, 1993, p. BI0.) 

Now we know more about the 24 criminals who committed new 
crimes and the 48 who did not. We have data on a second categorical 
variable, namely, whether they took a literature course or went to jail. 
Figure 3.2 shows three different ways bar graphs can be used to tell the 
story about the two variables. 

In the graph in Figure 3.2a, the two bars represent the criminals 
who took the literature course and the criminals who went to jail. 
Each bar is divided into two groups, those who committed new 
crimes and those who did not. The bars clearly show that a much 
smaller group of literature-course takers committed new crimes, even 
though it is hard to read from the scale how many they were because 
that part of the bar does not start at zero. Among those who went 
to jail, about one half committed new crimes and the other half 
did not. 

In Figure 3.2b, the tops of the bars in Figure 3.2a have been moved 
to the horizontal axis. In this graph it is easier to see how many com­
mitted new crimes, since all four bars now start at zero. But in this 
graph it is harder to see the totals of criminals who took the course 
and criminals who went to jail. 

In Figure 3.2c, the total bars are of the same height and different 
widths. The widths of the bars represent the number of criminals 
who took the course and the number who went to jail. The 
vertical divisions of the bars show the proportions of each group 
who committed and did not commit new crimes. This is an 
unusual bar graph, but it contains more information than the other 
two. 

All three graphs show that fewer criminals who took the literature 
course committed new crimes than criminals who went to jail. While 
the results of this small study are intriguing, there are too many un­
answered questions to know whether or not giving literature courses 
to criminals is the way to reduce the number of crimes. Tuition is 
probably cheaper than prison stays, at any rate. 
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(a) Bars same width, different 
heights, stacked 
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Figure 3.2 Three types of bar graphs for two variables (criminals who did/ 
did not commit new crimes after either taking a literature course or serving 
ajail term) 

On certain variables we can measure the value of an observation on a 
scale; for example, we can measure the height of a plant with a ruler 
marked off in inches. The unit of measurement we use to measure the 
height of the plant is the inch. Similarly, using dollars we can measure 
the income of a household; using years we can measure how old a 
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A metric variable 
i a variable on 
which we can de­
termine whether 
one observation 
i different from 
another. We can 
also determine if 
one ob ervation 
is more (or less) 
of omething 
than another ob-
ervation and 

how much more 
(or Ie s) one ob­
servation is than 
another. 

person is. Measurable variables such as height, income, and age are 
called metric variables. A metric variable is not metric in the sense of the 
metric system but in the sense that its values can be numerically mea­
sured. 

Because meaningful numerical values of a metric variable can be 
collected, arithmetic operations can be performed on the values of the 
variable, something that cannot be done with categorical variables. The 
values of a metric variable can be added, subtracted, multiplied, and 
divided. 

Metric variables are sometimes known as interval or ratio variables. 
The distinction between interval and ratio need not concern us in this 
book. 

STOP AND PONDER 3 . 3 

Give an example of a metric variable and list some of the values of 
the variable. Why is the variable a metric variable? 

Graphing one metric variable 

How old are women when they marry? Following is a list of the ages of 
women who applied for a marriage license in one week, according to 
the local newspaper (note that not all were necessarily first marriages): 

30 27 56 40 30 26 31 24 23 25 29 33 29 22 33 29 46 25 
34 19 23 23 44 29 30 25 23 60 25 27 37 24 22 27 31 24 26 

What do these numbers tell us? It is easy to spot that the youngest 
woman is 19 years old, the oldest is 60 years old, and several seem to 
be in their twenties, but beyond that it is difficult to get much sense of 
the overall age of the 37 women. With a larger number of observations, 
it would be even more difficult to understand the data without further 
analysis. With a metric variable such as age, several different graphs can 
aid in understanding the data better. Four types of graphs are shown 
in Figure 3.3. 

Lineplot A small number of observations, as we have here, can be 
organized in a lineplot to get a better understanding of the data. In 
Figure 3.3a, a line represents the variable; the values of the variable 
label the line. Each observation is marked as a point above the line. 
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(a) Lineplot 
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Figure 3.3 Four types of graphs for a metric variable (female age at mar­
riage) 

60 

The lineplot clearly shows that most of the women were in their middle 
to late twenties and early thirties, with a scattering between 35 and 60. 

An advantage of a lineplot is that it shows directly how the obser­
vations distribute themselves across the variable. We can see where 
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many observations cluster and where few observations scatter; the pat­
tern of the ages is clear. And the original values of the variable are right 
there: none of the information contained in the original data has been 
lost, in spite of the simplification the graph offers. 

With a large number of different observations of the variable, the 
line plot gets messy. For example, a scale of hourly wages would have a 
large number of values, from the wage of a baby sitter who earns $5 an 
hour to the wage of a rock star who gets $500,000 an hour for perform­
ing. Similarly, a large total number of observations-say, the ages of 
brides in an entire year-would make a large and messy collection of 
points above the line. The lineplot would look more like an ant colony 
than a statistical aid. Larger data sets are better served with graphical 
methods other than lineplots. 

Boxplot Figure 3.3b is a boxplot of the female age at marriage data, 
drawn to the same scale as the lineplot. Boxplots are not common in 
the popular press, but they are making inroads in professional journals. 
They require a bit more work to understand and create than other 
graphs. 

The boxplot in Figure 3.3b shows a line that starts at 19, the age of 
the youngest bride. The line stops at a rectangular box, from which 
the plot takes its name. In the box is a vertical line. The line picks up 
again after the box and extends to 60, the age of the oldest bride. The 
boxplot is constructed to show one quarter of the observations (37 +-
4 = 9) as the line between the minimum value and the beginning of 
the box. Another quarter of the observations lie between the beginning 
of the box (at 24) and the vertical line in the box (at 27). Another 
quarter of the data lie between the line and the end of the box (at 32). 
The last quarter of the data lie from the end of the box to the largest 
observation (at 60). Thus, one half of the data lie in the range spanned 
by the box. 

Sometimes the line is not drawn all the way from the box to the 
smallest observation and/or all the way from the box to the largest 
observation. This is done when the smallest and/ or largest observation 
lies more than a certain multiple of the length of the box away from 
the box. In that case, one or more of the extreme observations are 
marked only as points. 

Boxplots are informative graphs. They show the two extreme values 
as well as the range of the middle values. In Figure 3.3b, the middle 
half of the brides are between 24 and 32 years old, and the other half 



3.3 Metric Variables : Plots and Histograms 83 

STOP AND PONDER 3 . 4 

What would a boxplot of the following data on the yields on thirteen 
of the nation 's biggest money market funds look like? 

Money market fund Yieltl (%) 

Vanguard MMR/Prime Port 5.69 

Schwab Value Advantage MF 5.66 

Dean Witter/Active As ets MT 5.59 

Fidelity Spartan MMF 5.50 

Fidelity Cash Reserves 5.45 

Dean Witter/Liquid Asset Fund 5.44 

Kemper MMF /Money Market Port 5.40 

Smith Barney ash Port/Class A 5.29 

Merrill Lynch Retirement Res. MF 5.28 

Merrill Lynch CMA Money Fund 5.26 

Merrill Lynch Ready Assets 5.18 

Dreyfu Liquid Assets 5.17 

Prudential MoneyMart As ets 5.16 

Source: Money Fund Repori, USA Today, Januaryl 26, 1995, 
1)·3B. 

How might seeing the data in a boxplot help you to asses in which 
fund you might wish to invest? 

are scattered over the rest of the age range-a good picture of the 
common ages at which women marry. 

Boxplots are particularly useful with data from several groups. A 
boxplot can be made for each group and compared with one another 
to see how the groups differ. A collection of box plots for rates ofviolent 
crime in seven regions of the country appears in Figure 3.19. How the 
center lines compare for the different regions is directly apparent, and 
so are longer boxes in some regions than others. With the boxplots it 
is easy to see which regions are most violent (by comparing the center 
lines), which are most diverse (by comparing the length of the boxes), 
and which are most likely to include some very peaceful or very violent 
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states (by comparing the locations of the lines on either side of the 
boxes). 

With a boxplot, the original data are lost and cannot be recovered 
from the plot. At the same time, a boxplot provides a powerful and 
simplified view of the data. 

Stem plot The third graph of the female age at marriage data is a slem­

plot (Figure 3.3c). As the name implies, the graph has a stem, which is 
drawn as a vertical line. From the stem, branches grow out on both 
sides. The branches at the left are the first age digits and the branches 
at the right are the second digits, listed as many times as needed for 
all the brides of that age. For clarity, each decade is shown in two parts; 
2, for example, stands for the ages 20-24,2+ stands for ages 25-29. 

In the stemplot in Figure 3.3c, the youngest bride is 19 years old, 
two brides are 22 years old, four brides are 23 years old, and so on. 
Note that the original data are saved in a stemplot. At the same time, 
the distribution of the observations across the range of values of the 
variable is clear. Most brides fall in the range 25-29 years of age, and 
in this group of women most were marrying before reaching 30. 

A stemplot does not work well for a large number of observations 
of a variable because each observation takes up a space in the graph. 
You can imagine the length of the branches if many observations were 
listed. 

STOP AND PONDER 3 . 5 

Draw a stemplot of the ages of twenty of your family members and 
friends. To the left of the stem, u e a 0 for age 0-9, 1 for ages 10-
19,2 for ages 20-29, and so forth. What does your stemplot tell you 
about the ways in which the ages of p ople you know are clustered? 

Histogram The histogram is the most commonly used graph to display 
the number of observations across a range of values of a metric variable. 
To create a histogram, the range of values is divided into intervals, 
usually but not always of the same length, and then the observations in 
each interval are shown in a rectangle whose area represents the num­
ber of observations. (When all the intervals have the same width, as in 
the histogram in Figure 3.3d, the height of the rectangle shows the 
number of observations. But it is still important to realize that it is the 
area of the rectangle that represents the number of observations.) 
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The term histogram seems to have been fir t used in print in 1895 by 
the great English statistician Karl Pearson and defined in a footnote. 
In a talk he gave to the Royal Society in London, Pearson refers to 
some data on valuation of house properties in England and Wales 
for the year 1885-1886: 

It will be observed that so far as the observation can be plot­
ted to the theoretical cwve, it leaves little to be de ired. The 
hi ·togram* shows, however, the amount of deviations at the ex­
tremes of the curve. Footnote: *Introduced by the writer in his 
lectures on statistics as a tenn for a common fonn of graphical 
repre entation, i.e., by columns marking as areas the frequency 
corresponding to the range of their base. (Source: K Pearson, 
"Contributions to the Mathematical Theory oj Evolution. II. Skewed Varia­
tions in Homogeneous Material, "Philosophical Transaction of the 
Royal Society of London (A) vol. 186 (I895), part l, p. 399.) 

Pearson give no explanation for why he u es this particular term. 
A modern scholarly interpretation of the word histogram come 

from comparative lingui t (and author' on) Eric lver en: 

Re: histogram, starting from the end, which pr ents an easier 
explanation, "gram," of cours ,refer to a picture or represen­
tation of omething, a in pictogram-a paint d image; tele­
gram-an image from far away; epigram-an image attached 
to something. You can ee that "gram" can denote eith r words 
or pictures, depending on the usage. But "hi t" is more inter­
esting, because of the various thing one might mistake it for, 
like "hi tory," in which the root is the Greek "historia," or "hi -
tology," the study of body tissue, in which the Latin root "hist" 
suggests connectivity or tis ue. But "histo" in "histogram" is 
Greek and mean mast or beam, and I should think the word 
became "histogram" simply because the column look lik 
masts on a hip or beams used in con truction. 
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In the histogram in Figure 3.3d, the greatest number of brides falls 
in the interval 25-30, since that rectangle is the largest. There are also 
quite a few brides in the intervals 20-25 and 30-35. The other brides 
distribute themselves fairly evenly and sparsely across the remaining 
age intervals. 

The histogram in Figure 3.3d looks very much like the stem plot in 
Figure 3.3c laid on its side. Each row in the stemplot corresponds to a 
rectangle in the histogram. Since a histogram shows the shape of a 
distribution, there is a gain in simplicity and we see a pattern that is 
not apparent in a list. But at the same time, a histogram loses infor­
mation. From a histogram the original observed values of the variable 
cannot be recovered as they can be from a stemplot. In a stemplot an 
original observation is represented by its actual value in the plot; in a 
histogram an observation is represented only by a part of a rectangle. 

A histogram is therefore useful in simplifying a large number of 
observations; each observation occupies only a small part of a rectangle. 
For example, a histogram of ten times as many brides, for a total 370 
brides, with 10 in the interval 15-20 years, 90 in the interval 20-25 
years, and so on, would look just like the histogram in Figure 3.3d. The 
difference would be that the frequencies on the vertical scale would be 
20, 40, 60, and so on instead of 2, 4, 6, and so on. Whereas it is hard 
to imagine a stemplot for as many as 370 observations, histograms dis­
play large data sets with ease. 

The main interest in histograms is their shapes, which can be quite 
varied. The histogram in Figure 3.3d is unimodal, so called because it 
has one peak. This shape tells us that there is one main group of ob­
servations. Histograms can also be symmetric; that is, the left half of the 
distribution is a mirror image of the right half. The histogram of brides' 
ages does not show a symmetric distribution since there is a longer tail 
of observations to the right than to the left. This histogram is skewed. 

Many variables, for example physical characteristics and test scores, 
often show both unimodal and symmetric distributions. A unimodal 
and symmetric histogram tells us that most of the observations are in 
the middle of the distribution of values and that fewer observations are 
very large or very small. Unlike in Lake Wobegon, most children are 
average, not above the average. "Averageness" is often an interesting 
characteristic of a variable, and it becomes apparent only in a graph 
such as a histogram. 

A bimodal histogram shows two peaks. To illustrate this shape, imag­
ine a histogram showing the distribution of income in a community 
that consists mainly of rich people and poor people, with not too many 
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people who have a middle-range income. The shape of the histogram 
would show the two peaks, telling us that this is a polarized community. 

A histogram can change shape, depending on how it is constructed 
and give a very different impression of the data. First, the number of 
intervals used on the horizontal axis to divide the variable into intervals 
affects the shape of the histogram. If the variable is divided into a large 
number of intervals, each interval will contain only a few observations, 
and the histogram will look ragged and uneven (Figure 3.4a). If all the 
observations are shown in one interval, then the histogram will simply 
consist of one big bar (Figure 3.4b) -not a very useful histogram. The 
histogram in Figure 3.3d lies somewhere between the two extremes and 
is more informative and attractive than the two in Figure 3.4. But we 
have to be on our guard: if a histogram has only a few intervals and 
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Figure 3.4 Histograms with too many and too few intervals (female age at 
marriage) 
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a unimodal shape, the graph may hide the fact that more intervals 
would have revealed a bimodal shape. 

Second, the shape of the histogram changes if the bars are tall and 
thin versus short and wide. The histograms in Figure 3.5 show the fe-
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Figure 3.5 Wide and tall histograms (female age at marriage) 
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male age at marriage divided into the same number of intervals. But 
the histogram in Figure 3.5a is short and wide, while the one in Figure 
3.5b is tall and thin. Because the differences in height of the rectangles 
in Figure 3.5a are so small, the differences between the number of 
observations in the intervals also appear small. The opposite percep­
tion holds for Figure 3.5b. 

No matter their shape, of course: the two histograms are identical; 
they tell exactly the same story about the age variable. But we should 
be wary of histograms in which the rectangles are tall and thin or short 
and wide. Their designers may be trying to create an impression of 
something that really is not present in the data. 

STOP AND PONDER 3 . 6 

Imagine drawing a histogram based on the following data on the 
population of Mexico from 1930 to 1990. The variable is the average 
number of children per woman over 12 years old at five-year inter­
vals, starting with 1930. 

5.0 4.8 4.6 4.6 4.6 4.6 4.5 4.5 4.5 4.0 3.4 2.8 2.5 
Source: Adapted Jrom Zavala de Cosio (1992) in Matthew C. Gutmann, "The meanings oj 
macho: Changing Mexiccln male identities, ~MascuJinities, vol. 2 (1994), p. 29. 

How might you draw the histogram if you wished to emphasize the 
differences between the high and the low numbers? How might you 
draw it if you wished to deempha ize the differences? Is either his­
togram skewed? [f so, in what way? 

Graphing two metric variables 

Statisticians often need to display data on two metric variables-the 
ages of brides and the ages of grooms, for example, or height and 
weight of individuals, age and income, SAT scores and grade point 
average, national literacy and gross domestic product. A common way 
to display data on two variables is a scatterplot. 

A scatterplot consists of two axes, a horizontal axis and a vertical 
axis. The horizontal axis (the mathematical x-axis) is used for one vari­
able (e.g., age of grooms), and the vertical axis (the mathematical ~ 
axis) is used for the other variable (e.g., age of brides). A pair of ob­
servations on the two variables is shown as a point in the graph. For 
example, if a groom is 37 years old and the bride is 30 years old, a point 
is drawn in the graph where an imaginary vertical line from point 37 
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Figure 3.6 Scatterplot showing ages of brides and grooms 

• 

60 70 

of the x-axis intersects an imaginary horizontal line from point 30 on 
the y-axis. 

Figure 3.6 is a scatterplot of data on the ages of the 37 couples. 
(Note that 37 points do not appear in the graph because the ages of 
the brides and grooms in some couples were the same; those couples 
are represented by a single point.) Looking at the original data, it is 
difficult to see patterns in them beyond the tendency for older grooms 
and older brides to marry. When the ages are displayed as points in a 
scatterplot, the relationship of the two variables is clearer. The points 
start in the lower left corner of the scatterplot and continue roughly 
to the upper right corner: by and large, younger grooms marry younger 
brides and older grooms marry older brides. The path of the points 
from the lower left corner to the upper right corner has, in mathe­
matical terms, a positive slope; it indicates a positive relationship be­
tween the two variables. The points also show that in some couples the 
groom is older than the bride and in other couples the bride is older 
than the groom. 

In a scatterplot, no numerical information is lost and simplification 
of the data is gained. A scatterplot is easy to create and to interpret. 
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STOP AND PONDER 3 . 7 

How would you picture a scatterplot of the variables on years of 
marriage and number of serious quarrels per year for the 24 couples 
below? 

Years married Quarrels Yean married Qua17'els 

5 10 10 5 

2 20 15 3 
4 16 13 4 

1 15 20 2 
3 9 16 4 

6 6 25 1 
5 8 22 3 
8 5 14 3 
3 10 15 4 

7 7 19 3 

3 8 17 3 

9 6 20 2 

What conclusions might you draw about the nature of married Hfe? 
What missing information might prevent you from making gener­
alizations from the data about the road to marital bli s? 

Time series plot 

Variables often consist of data that have been collected over a period 
of time. The consumer price index for the last forty years is a variable 
with time series data, as are value of annual imports from Japan since 
World War II, average length ofa baseball game since 1940, or average 
length of a skirt hem since 1932. Graphs of time series data are special 
scatterplots. Time as a variable is plotted along the horizontal axis, the 
other variable along the vertical axis. The points do not look as scat­
tered as they do in the age at marriage scatterplot because time values 
on the horizontal axis are usually evenly spaced. Also, only one value 
of the variable on the vertical axis is plotted for each value on the 
horizontal axis. 

Using the data file in Table 3.1, the scatterplot in Figure 3.7 shows 
the height in inches jumped by the male Olympic gold medalists in the 
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Table 3.1 Gold-medal-winning male Olympic high jumps 1900-1936 

Year Height ofjump (inches) 

1900 74.8 

1904 71.0 

1908 75.0 

1912 76.0 

1920 76.2 

1924 78.0 

1928 76.4 

1932 77.6 

1936 79.9 

high jump competition in the years from 1900 to World War II. In the 
data file, the two columns of numbers show that we are dealing with 
two variables. It is evident from the table that the heights increased, 
and this is clearly illustrated in the figure. A new Olympic record was 
set each time except for the years 1904 and 1932; the line dips as it 
connects 1900 with 1904 and again as it connects 1928 and 1932. The 
line then extends upward after each of these years. (Imagine contin­
uing the graph to the present. Not only would the year axis have to be 

80.----------------------=-. 

~ 

i3 78 
"5 
.S 
-;:, 76 

~ 
'--' '0 74 ... 
..c 
b.Q 
'v 72 
l: 

70+-~--.-~--.---~-.--~~ 

1900 1910 1920 
Year 

1930 1940 

Figure 3.7 Time series graph showing gold-medal-winning male Olympic 
high jumps 1900-1936 
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extended, so would the winning jumps axis: champion jumpers now 
think nothing of 8-foot-96-inch-jumps.) 

As with many other graphs, it is possible to change the shape of a 
time series plot and give entirely different impressions of the data. 
Figure 3.7 seems to indicate considerable change in the heights of 
winning jumps from one Olympic games to another. But note that the 
vertical scale starts at 70, not at 0, and extends only 10 inches. There 
is a reason for starting at 70. Imagine extending the vertical line down­
ward to 0 while keeping the graphed line where it is and maintaining 
the scale of the I-inch intervals. The differences from one year to the 
next would not seem as large as they do in Figure 3.7, but the graph 
would be too deep for practical purposes. It would be eight times the 
depth of Figure 3.7, and the bottom seven eighths would be empty! 

If the graph is kept the same size as Figure 3.7 and the vertical axis 
marked with a scale from 0 to 80 inches instead of from 70 to 80 inches, 
the immediate visual impact is much different (Figure 3.8). The lines 
connecting the points do not go up and down quite as steeply as they 
do in Figure 3.7. Figure 3.8 shows a general increase in the height of 
the jumps, but the change from one Olympics to another seems much 
less dramatic. 

Obviously, we should examine a time series plot carefully, imagin­
ing what it would look like with changes such as the ones discussed 

80 ..... .---e 
~ 

..... 
70 

~ 60 
.c 
u 
g 50 
0. 

§ 40 . ...., .... 
~ 30 
.c 
b.O 
'v 20 
:I: 

10 

0 
1900 1910 1920 1930 1940 

Year 

Figure 3.8 Redrawn time series graph showing gold-medal-winning male 
Olympic high jumps 1900-1936 
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here, before we draw conclusions about the data. In general, the time 
series graph has the major advantages and disadvantages of scatter­
plots: numerical information is retained and data are simplified, but 
the shape of the graph can be misleading. 

STOP AND PONDER 3 . 8 

Rate your mood states, with 0 being extremely negative and 7 being 
extremely positive. for each day of this week, starting with Monday. 
Then create a graph in which you place the days on the horizontal 
or x-axis and your rating on the ~axis. You have just produced a 
time series plot! By comparing your ratings, you can get a better 
picture of the entire week. You probably did not use the entire range 
of number. The usual finding for this kind of scale is that the upper 
end of the scale is used more than the lower end. (See Exercise 3.33.) 

Maps can represent not only geographical features, such as rivers and 
mountains, but also statistical information. For example, in a map of 
the United States the states can be colored according to some variable, 
such as Presidential election voting patterns. Figure 3.9 shows a map 
in which the states are colored by the magnitudes of their divorce rates. 

STOP AND PONDER 3 . 9 

What does the map in Figure 3.9 tell us about variations in divorce 
rates across the country? To what extent does using a map to display 
these data create false impressions about the nature of the data? That 
is, is this map a good or a bad representation of the data? What could 
orne of the reasons be for variations in divorce rates across the coun­

try? Can you think of other cases in which you have seen a map such 
as this do a good job representing the data? Under what conditions 
could maps be an excellent way of presenting data? 

Maps can be useful in identifying conditions in which viewers are 
interested. (Maps on the weather channel are a case in point!) If you 
were considering moving to California, you would be interested in 
knowing where the air pollution is greatest, for example. Maps also 
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o Information not available 
o Less than 4 

4-6 
o More than 6 

Figure 3.9 Map showing the distribution of divorce rates in the United 
States (per 1,000 people) (Source: Adaptedfrom a map based on data from the Na­
tional Center for Health Statistics by PaulO. Pugliese in Time, December 6, 1993, p. 23.) 

help in studying regional trends, such as the prevalence of certain in­
sects in one area of the country rather than in another. 

The approximately 3,000 counties of the United States could be 
outlined and colored to show cancer rates (the number of reported 
cancer patients in each county divided by the population of the 
county). The categories low, medium, and high cancer rate could be 
established and the counties colored in three shades of a color accord­
ing to their level of cancer rate. Such a map would show regional pat­
terns. 

Useful as maps are, they can be misleading in a major way. It is the 
geographical area that is shaded, and geographical areas vary a great 
deal in size. A small eastern county with a high cancer rate will not 
show up on a map as much as a large western county with a low cancer 
rate. A high cancer rate in a geographically small county in New Jersey 
affects many people, whereas a low cancer rate in a large county in 
Nevada affects only a few. 
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This chapter introduces you to a range of standard statistical graphs. 
Most of them were made using statistical software on a computer. With 
a click of the mouse, graphs that used to take a long time to design 
can now be almost instantaneously created and revised. Graph makers 
can experiment with multiple forms, many of which are unfamiliar to 
the public. Each form may be useful in revealing some facet of the data 
and suppressing others. But each new breakthrough in visual imagery 
also produces new pitfalls. To evaluate a graph, we have to have some 
idea of what constitutes a "good" graph. 

An excellent introduction to "good" and "bad" graphs is found in 
Edward R. Tufte's book The Visual Display of Quantitative Information 
(Cheshire, CT: Graphics Press, 1983). Tufte, an expert in the field of 
visual displays of data, uses the term graphical excellence to describe a 
"good" graph. In his view, an excellent graph is one in which complex 
ideas are communicated with clarity, precision, and efficiency (page 
51). 

Graphical excellence is that which gives to the viewer 

the greatest number of ideas 

in the shortest time 

with the least ink 

in the smallest space. 

"The least ink": Is the simplest graph best? 

Figures 3.10 and 3.11 show the same data on the relationship between 
the size of the U.S. population and a price index for 20-year intervals 
in the nineteenth century, but Figure 3.11 uses less ink than does Fig­
ure 3.10; it does away with parts of the graph in Figure 3.10 that are 
not necessary to convey the information in the data. It uses the dates 
as points, rather than dates plus points. (Even the points in Figure 3.10 
are redundant; they don' t need to be marked with with a dot and an 
open square.) It removes the parentheses around the years. And, since 



3.5 Graphing: Standards for Excellence 97 

60 

50 
0(1800) 

>< 
QJ 

'" .S 40 
0(1820) 

QJ 
u 

'J:: 
p.. 

0(1840) 0(1880) 30 
0(1860) (1900)0 

20 
0 20 40 60 80 

Total population (millions) 

Figure 3.10 Scatterplot of population and price index 1800-1900 (Source: 
U.S. Bureau of the Census, Historical Statistics of the United States, Colonial Times to 
1970, Bicentennial Edition, Part 1 (Washington, D.C.: U.S. Bureau of the Census, 1975). 
Population: Series A57-72, pp. 11-12; consumer price index: Series E135-166, p. 211.) 

the title states that the data apply to the nineteenth century, it aban­
dons the first two digits in the years (the sequence of the years makes 
it quite clear that the upper left '00 refers to the year 1800 and the 
lower right '00 refers to 1900). Thus, Figure 3.11 is a better graph than 
Figure 3.10, at least for Tufte! 

Do the histograms on age of brides in Figure 3.4 use too much ink? 
Yes, according to Tufte. The height of each rectangle is indicated by 
the length of the left side of the rectangle, the length of the right side, 

60~------------------------~ 

'00 
50 

] 
d '20 
.~ 40 
u 

'J:: 
p.. 

30 '40 
'60 

'80 
'00 

20+-~--'---~~--~--r-~--~ 

o 20 40 60 80 

Total population (millions) 

Figure 3.11 Simplified scatterplot of the data in Figure 3.10 (Source: U.S. Bu­
reau of the Census, Historical Statistics of the United States, Colonial Times to 1970, Bi­
centennial Edition, Part 1 (Washington, D.C.: U.S. Bureau of the Census, 1975). Popula­
tion: Series A57-72, pp. 11-12; consumer price index: Series E135-166, p. 211.) 
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the location of the top line, and the shading-for redundant clues. 
Assuming that Tufte would subscribe to the rectangle idea at all, he 
would probably argue that the shading does not add anything to the 
graphs. No shading would certainly cut down on ink, but it would also 
make the graphs less clear. The shading makes the rectangles stand 
out against the background. Without shading, the inside and outside 
of a rectangle would have the same color, and the point of the graphs­
that the shapes of the two histograms are different-would be less 
obvious. The extra ink makes the figure readable. 

"Cbartjunk": A new name for garbage 

Graphs sometimes include features that have nothing to do with the 
data presented in the graph-features that the graph maker includes 
in an attempt to make the graph more attractive or interesting. Tufte 
refers to unnecessary features as "char~unk." Char~unk includes 
shadings on rectangles, grids on scatterplots, figurative symbols to 
represent quantities, and illustrations that decorate the margins or the 
graph itself. Tufte's view is based on the premise that "less is more" 
in proper graph design. We mayor may not agree; one viewer's chart­
junk may be what makes the graph comprehensible to another viewer. 
A graph that is attractive to the eye, displays a touch of humor, or stirs 
a reaction such as curiosity or dismay may not suit strict statistical stan­
dards of simplicity and order, but it might attract the viewer's eye. 

Data density 

The purpose of a graph is to transmit information to the viewer. Figure 
3.8 on winning Olympic high jumps shows 9 jumps and the years of 9 
Olympic games, for a total of 18 numbers. The graph itself is fairly 
large, so it has only a few numbers per square inch. The more numbers 
per square inch in a graph, the higher the data density and the more 
informative the graph. 

An example of a graph with high data density is the daily national 
weather map in the newspaper. The map shows the outline of each of 
the 50 states, temperature, barometric pressure, and precipitation. An­
other example of graphs with high data densities are the graphs in 
Consumer Reports on repair records of cars. 
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STOP AND PONDER 3 . 10 

Follow Tufte's advice and eliminate orne of the ink in the accom­
panying graph. Which parts of the graph are not necessary? Which 
ones eem to serve an important function in conveying the data at 
hand? Imagine defending your actions to Tufte. 

Operating with higher pay 
How much higher tht' average doctor' pay is than the 
average worker's pay in four countrie : 

USA Germany Canada Great Britain 

Source: Graph IJy Marcy E. Mullins from data oj Stuart Altman, USA Today, 
November 13, 1993, p. 1. 

"Revelation of the complex" 

Tufte concludes his book by discussing a famous graph showing how 
Napoleon's army suffered a grand defeat in Russia in 1812 (page 40; 
Figure 3.12 reproduces the graph): 

[This] is the classic [graph] of Charles Joseph Minard (1781-
1870), the French engineer, which shows the terrible fate of Na­
poleon's army in Russia .... Seeming to defY the pen of the his­
torian by its brutal eloquence, this combination of data, map and 
time series, drawn in 1861, portrays the devastating losses suf­
fered in Napoleon's Russian campaign of 1812. Beginning at the 
left on the Polish-Russian border near the Niemen River, the 
thick band shows the size of the army (422,000 men) as it in-
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vaded Russia in June 1812. The width of the band [invasion is 
gray, retreat is black] indicates the size of the army at each place 
on the map. . . . The crossing of the Berezina River was a disas­
ter, and the army finally struggled back into Poland with only 
10,000 men remaining. . . . Six variables are plotted, the size of 
the army, its location on a two-dimensional surface, direction of 
the army's movement, and temperature on various dates during 
the retreat from Moscow. 

It may well be the best statistical graphic ever drawn. 

,- 3.6 . 

Tables are another way to summarize data in compact form. Usually 
tables are composed of numbers organized in rows and columns. Ta­
bles often show how many or what percentage of observations fall in 
different categories, for example, children of different ages in an ed­
ucational study. 

Tables are used for two broad purposes. One purpose is to support 
arguments in accompanying text; the other is to organize data. Tables 
in newspapers, journal articles, and books are usually of the first kind, 
and tables presented by official statistical agencies such as the Bureau 
of the Census are usually of the second kind. A table for the purpose 
of supporting an argument must make a point. A table that simply 
presents data must be easy to read and interpret. 

Table 3.2 contains the same data as those in Figure 3.1 on the 
criminals who did and did not commit new crimes. The visual experi­
ence the table provides is very different from that of the corresponding 
graphs. When we examine Figure 3.1 and Table 3.2 together, it is much 
easier to compare the numbers of people in the different categories in 

Table 3.2 Number of criminals convicted of new crimes and not 
convicted of new crimes within from one to two and a half years after 
they had served their sentences 

Convicted of new crimes 

Not convicted of new crimes 

Total 

24 
48 

72 
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the graphs than in the table. The different sizes of the two pie slices or 
bars immediately convey the differences in the two categories. In the 
table, the numbers have to be first read and then mentally compared. 
To see how many more criminals not convicted of new crimes there 
are than criminals reconvicted, we have either to subtract 48 from 24 
or to divide 48 by 24. 

What the table does show very directly are the actual frequencies. 
The table states how many criminals were convicted of new crimes, 
while in the graph we have to draw a mental line from the top of the 
bar left to the vertical axis. And depending on how detailed the num­
bers are on the axis and how good our eyesight is, we still might have 
difficulty judging whether the number is 24 or 26. Thus, if exact num­
bers are important, a table is better than a graph. For a quick impres­
sion of the data, a graph is better than a table. 

A table always has a title and rows and columns are clearly headed. 
Totals for rows and columns should be included, where appropriate. 
The totals provide a context for the details in the columns and rows. 
If the table contains only one collection of numbers, as in Table 3.2, 
the numbers should run vertically. The table could be arranged with 
the numbers running horizontally, but it is not as easy to get a sense 
of the total frequency. Even though the total is given and we do not 
have to do any addition ourselves, we are accustomed to seeing num­
bers that are added arranged in a column. It is also easier to compare 
numbers arranged in a column than numbers arranged in a row. The 
differences between two numbers are more apparent when the num­
bers are stacked. 

In her book Plain Figures, Myra Chapman (in collaboration with 
Basil Mahon; London: Her Majesty's Stationery Office, 1986) gives an 
instructive example of how a table can be improved by rearrangement 
(Tables 3.3 and 3.4). The data are from England and Wales. 

Table 3.3 is typical of statistical summaries. It shows data on two 
variables for students who had finished compulsory education. One 
variable is time, running in seven academically annual increments from 
1973 to 1980. The other variable is destination of pupils after compul­
sory school was over, that is, what each group of students did after 
finishing school. The numbers are all percentages except for those in 
the last row, which are total numbers of pupils in thousands. For ex­
ample, the 1973-1974 column shows what percentages of 701,000 pu­
pils ended up in the five different destination categories. The per­
centages in each column add up to 100%, except perhaps for 
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Table 3.3 Destination of pupils attaining the statutory school-leaving age 

School year 

Destination (%) '73-'74 '74-'75 '75-'76 '76-'77 '77- '78 

Staying on at school 25.9 26.1 27.5 28.3 

In full-time or 
nonadvanced further education 9.7 11.5 13.6 13.6 

In employment 
with part-time day study 17.4 16.4 12.1 10.2 
with no day study 44.1 41.7 38.0 37.7 

Unemployed 3.0 4.2 8.8 10.1 

Total pupils (= 100%; thousands) 701 723 744 746 

rounding-off errors in the computations of the percentages, but these 
totals are missing in the table. (The percentages across the rows do not 
and should not add up to 100%.) 

The main purpose of Table 3.3 is to show how the percentages for 
the various categories changed over time. Among other difficulties in 
clarity of presentation, the table requires comparison of percentages 
across rows rather than down columns to see what happens from one 
year to the next. 

Table 3.4 Table 3.3 transposed and simplified 

Destination 

In employment 
In full-time 

With no With part-time Staying on or non advanced 

27.6 

14.1 

14.1 
34.4 

10.0 

773 

School year day study day study at school further education Unemployed 

1973-1974 44 17 26 10 3 

1974-1975 42 16 26 12 4 

1975-1976 38 12 28 14 9 

1976-1977 38 10 28 14 10 

1977-1978 34 14 28 14 10 

1978-1979 39 12 27 14 8 

1979-1980 39 12 28 14 7 

'78-'79 '79-'80 

27.4 27.8 

14.3 14.1 

12.1 12.2 
38.7 38.7 

7.5 7.2 

801 814 

Total pupils 

Percent Thousands 

100 701 

100 720 

101 740 

100 750 

100 770 

100 800 

100 810 
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In Table 3.4, the data are rearranged to assist the viewer in under­
standing the changes in the percentages over time. Perhaps the most 
striking improvement is simplification: all the percentages have been 
rounded to two figures without decimals. This removes 35 numbers 
from the table, together with 35 periods. (The principle of less ink in 
a graph also seems to hold for a table.) The percentages are now not 
completely accurate, but for the purpose of this table, complete accu­
racy is not important. The total numbers of pupils themselves have 
been rounded; the purpose of the table is to show the trends of change 
in pupils' destinations, not the precise numbers of pupils for each des­
tination. 

Another large difference between the two tables is the order of the 
destination categories. In Table 3.3, the category "Staying on at school" 
comes first, in Table 3.4 the category "In employment with no day 
study." The reason for rearranging the categories is to put the higher 
numbers in the upper left corner of the table and the lower numbers 
(more or less) in the lower right corner. The reason for such an ar­
rangement is ease in comparing numbers, particularly the ones in the 
same column. Table 3.4 also shows that the percentages in each row 
add up to 100%. 

3.1 Graphs: Picturing data 

A graph is an extremely informative way of analyzing data because an 
entire data set can be summarized in a graph and understood in one 
glance. Graphs help the investigator to extract important findings from 
the data and help to communicate these findings to others. 

3.2 Categorical variables: Pie charts and bar graphs 

A categorical variable is a variable where two observations are either 
the same or different. The major graphs used to display categorical 
variables are the pie graph and the bar graph. The pie graph is easy to 
understand if there are not too many categories, but the number of 
observations in each category is usually lost. The bar graph is easy to 



read, but the details of different categories are difficult to observe if 
the bars are composed of different groups. 

3.3 Metric variables: Plots and histograms 

A metric variable requires a unit of measurement that assesses how 
much bigger or smaller one value is than another. Lineplots, box plots, 
stem plots, and histograms can be used to display single metric varia­
bles. The lineplot displays a small data set along one continuous line; 
the original values of the variable appear in the plot. 

The stemplot is well suited for a small data set; it is less useful for 
data sets with a small range of numbers. Boxplots show the two extreme 
values and the range of the middle values of a variable. Boxplots are 
helpful in comparing data from several groups on the same variable. 
The histogram indicates by the areas of its rectangles the relative num­
bers of observations of each value for the variable. A unimodal histo­
gram has one peak while a bimodal histogram has two peaks. A histo­
gram is useful for showing a large number of observations. A drawback 
of a histogram is that the original values of the observations are lost. 

Graphs often used to plot two metric variables at a time are the 
scatterplot and the time series plot. A scatterplot has two axes on which 
each point-composed of the observed values of two variables-can 
be graphed for each element. Scatterplots show patterns of relation­
ships between the two variables. Time series scatterplots show time val­
ues, which are usually evenly spaced, on the horizontal axis and another 
variable on the vertical axis. 

Bar graphs and time series graphs can be made for several variables. 
While multiple-variable graphs allow the comparison of a large amount 
of information, they can be difficult to read if they contain too many 
different variables. 

3.4 Creating maps from data 

Maps colored or shaded in symbolic ways convey statistical data 
and/ or help in the generation of hypotheses regarding regional 
trends. Maps can be misleading because shaded areas represent land 
masses, not population densities. 

3.7 Sum mar y 105 
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3.5 Graphing: Standards for excellence 

Edward Tufte, an expert in the field of visual displays of data, uses the 
term graphical excellence to describe a "good" graph. In his view, a 
good graph communicates complex ideas with clarity, precision, and 
efficiency. Tufte argues that the purpose of graphics is to create a "rev­
elation of the complex." 

3.6 Tables: Turning can be timely 

Tables consisting of numbers organized in rows and columns summa­
rize data in a compact form. The manner in which tables are con­
structed can strongly influence the way in which the data are inter­
preted by the viewer. 

Cleveland, William S. Elements of Graphing Data. New York: Chapman & 
Hall, 1993. Contains many interesting graphs. 

Monmonier, M. How to Lie with Maps. Chicago: University of Chicago 
Press, 1991. How not to use maps. 

Tufte, Edward. The Visual Display of Quantitative Information. Cheshire, 
CT: Graphics Press, 1983. A classic on how to display data in graphs, 
with good historical background. 

Wainer, Howard. "How to display data badly." The American Statistician, 
vol. 38, no. 2 (May 1984), pp. 137-l47. Entertaining article on how 
not to display data. 

Witmer, Jeffrey. DATA Analysis: An Introduction. Englewood Cliffs, NJ: 
Prentice Hall, 1992. Interesting graphs of different data sets. 

REvIEw (ExERCISES 3.1-3.15) 

3.1 What are the two conflicting goals in analyzing statistical data? 

3.2 a. When are pie charts useful in displaying data? 

b. What is a major disadvantage of pie charts? 
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Figure 3.13 U.S. troops stationed on ships around the world,June 30, 
1993 (Exercise 3.5) (Source: Data of the U.S. Department of Defense.) 

3.3 a. What is a lineplot? 

b. What is an advantage of using a lineplot to display data? 

c. What is a limitation of a lineplot? 

3.4 a. What is a stemplot? 

b. Why do you think it is called a stemplot? 

c. What is an advantage of using a stemplot to display data? 

d. What is a limitation of a stemplot? 

3.5 Figure 3.13 is a bar graph ofthe number of u.s. troops stationed 
on ships around the world in 1993. 

a. Copy the histogram and indicate the following parts: A. Hor­
izontal axis. B. Vertical axis. C. Variable being measured. D. 
Number of troops in Europe. 

b. How is the number of observations for each area of the world 
displayed in the graph? 

c. What would be incorrect about indicating the different num­
bers of troops with figures of sailors instead of bars? 

d. What are some conclusions that can be drawn from the in­
formation provided in this histogram? 
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e. Are there any aspects of this histogram that are confusing or 
that could use further clarification in order to be comprehended 
more easily? 

3.6 In a histogram is it the base, the height, or the area of a bar that 
corresponds to the number of obseIVations that fall into each inteIVal? 

3.7 Why is the histogram one of the best graphs for very large sam­
ples? 

3.8 When a histogram has two high points, or peaks, what is the 
name of the shape of the distribution? 

3.9 Would the distribution of heights of 100 boys in the eleventh 
grade have a unimodal or a bimodal distribution? 

3.10 What five numbers in data are necessary to display the data in a 
boxplot? 

3.11 What is a skewed distribution? 

3.12 What type of data is a scatterplot useful for? 

3.13 Figure 3.14 shows total U.S. population and consumer price in­
dex for the nineteenth century. 

a. Without reviewing the text, interpret this graph in your own 
words. 

b. Why is the graph useful? 

c. How would it be easy, with this kind of figure, to convince 
someone of a strong relationship between the two variables? 
(Hint: Two scales are used on the vertical axes.) 

3.14 What are the key characteristics graphical excellence in a statis­
tical graph? 

3.15 What are the major characteristics of a well-produced statistical 
table? 

INTERPRETATION (ExERCISES 3.16- 3.33) 

3.16 Discuss the statement "A single graph is better than a thousand 
words." 

3.17 In what respects are graphs a type of persuasion? 

3.18 Figure 3.15 is a pie chart showing the number of crime victims 
per 1,000 population for different income groups. 
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Figure 3.14 Total U.S. population and consumer price index at six census 
years in the nineteenth century (Exercise 3.13) (Source: U.S. Bureau of the Cen­
sus, Historical Statistics of the United States, Colonial Times to 1970, Bicentennial Edition, 
Part 1 (Washington, D.C.: U.S. Bureau of the Census, 1975). Population: Series A57-72, 
pp. 11-12; consumer price index: Series E135-166, p. 211.) 

Figure 3.15 Number of crime victims per 1,000 population for different in­
come groups (thousands of dollars) (Exercise 3.18) 
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Figure 3.16 Success rates of matchmaking services (Exercise 3.19) (Source: 
Mara B. Adelman, and Aaron C. Ahuvia, "Mediated channels for mate seeking: A solution 
to involuntary singlehood?" Critical Studies in Mass Communication, vol. 8 (1991), pp. 
273-289.) 

a. What conclusions would you draw about crime victims and 
income levels? 

b. What questions are unanswerable because a pie chart is used 
for displaying the data? 

c. What would be a better graph for analyzing these data? Why? 

3.19 Figure 3.16 is a lineplot for success rates reported for match­
making services, with success being defined as "long-term romantic 
relationship" resulting from arrangements made by the agency. 

a. What is one advantage of using a lineplot to display these 
data? 

b. When is a lineplot a poor method for displaying data? 

c. What conclusion might you draw from Figure 3.16 about in­
vesting in a matchmaking service if you were eager to find a long­
term romantic relationship? 

d. Because there is such a wide range of percentages of success 
rates, what more might a potential customer want to know about 
matchmaking services that is not presented in Figure 3.16? 

3.20 Figure 3.17 is a double stemplot of marriage ages of 37 couples 
listed in the Sunday issue of a local newspaper. 

a. What patterns in the data does the stemplot help us observe? 

b. Do you find any aspects of the stemplot disadvantageous in 
terms of visual appeal or convenience? 

c. Would any details of the data not presented in the figure be 
useful to know? 

3.21 Find a statistical graph in a newspaper, news weekly, or scientific 
journal, for example, and copy the graph. 

a. Describe what the graph tells you about the data it displays. 
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Figure 3.17 Marriage ages of 37 couples (Exercise 3.20) (Source: The Phila­
delphia Inquirer, September 10, 1995, p. MD12-d.) 

b. Discuss the quality of the graph in terms of principles of 
graphical excellence. 

c. Could the graph be redrawn in anyway to improve it? Explain. 

d. Can you think of a way in which information available in the 
data matrix might have been suppressed in order to produce the 
graph in the figure? 

e. Can you suggest another type of graph that could have been 
made from the original data matrix? Or is this the only graph 
the data matrix would allow? 

3.22 Figure 3.18 compares the heights of several defense secretaries 
with national defense spending. 

a. What does the graph tell us? 

b. Does the graph meet the criteria for a good graph? Explain. 
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Figure 3.18 Heights of Secretaries of Defense 1973-1989 (Exercise 3.22) 
(Source: Data provided by the Secretaries; adapted from the graph in The Economist, Feb­
ruary 11, 1989, p. 20.) 
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Figure 3.19 Violent crime rates in the 48 contiguous United States in 1986 
(per 1,000 population) (Exercise 3.23) (Source: F.B.I. Uniform Crime Reportfor 
the United States) 
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Figure 3.20 Life expectancy in the United States 1900-1950 (Exercise 
3.24) (Source: U.S. Bureau of the Census.) 

3.23 Figure 3.19 shows a boxplot of the violent crime rate in each of 
seven regions in the United States. 

a. From the graph, how do the regions differ in crime rates? 

b. Does the graph meet the criteria for a good graph? Explain. 

3.24 Figure 3.20 shows the life expectancy for men and women at ten­
year intervals in the first half of the twentieth century. 

a. Why are the differences between men and women as large as 
they are? 

b. How might such a graph be used politically by certain interest 
groups? 

c. Redraw the graph to meet criteria of good graph making. 

3.25 Compare Figures 3.7 and 3.8 on winning Olympic high jumps. 

a. Which do you think is the better graph? 

b. What did you take into account in your answer to part a? 

Exercises 113 



114 Chapter 3· Description of Data : Graphs and Tables 
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Figure 3.21 Two bar graphs showing the same data (Exercise 3.26) (Source: 
Data from Workforce 2000, produced by the Hudson Institute, 1987.) 
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Figure 3.22 Life span of paper currency (Exercise 3.30) (Source: Data of u.s. 
Bureau of Engraving and Printing, adapted from the graph by Marty Baumann in USA 
Today, August 19, 1991, p. 1.) 

3.26 The two bar graphs on growth in the workforce for a given time 
period in Figure 3.21 display the same data, yet they look quite different 
from one another. 

a. Why is it possible to say that the two bar graphs display the 
same data? 

b. What effect on the casual reader might each graph have? 

c. How would you redraw these bar graphs if you were trying to 
be as neutral as possible? (Draw or describe your changes.) 

3.27 Explain whether stemplots can be used for categorical and met­
ric variables. 

3.28 Explain whether boxplots can be used for categorical and metric 
variables. 

3.29 Compare the strengths and weakness of stemplots and boxplots. 

3.30 Money actually wears out, and Figure 3.22 shows how long the 
average life span is for paper currency of different denominations. 
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Table 3.5 Data for Exercise 3.31 

Percent of 
Fat calories Sodium 

Dish (number of cups) Calories (grams) from fat (milligrams) 

Egg roll (l roll) 190 11 52 463 

Moo shu pork (4 pancakes) 1,228 64 47 2,593 

Kung pao chicken (5) 1,620 76 42 2,608 

Sweet and sour pork (4) 1,613 71 39 818 

Beefwith broccoli (4) 1,175 46 35 3,146 

General Tso's chicken (5) 1,597 59 33 3,148 

Orange (crispy) beef (4) 1,766 66 33 3,135 

Hot and sour soup (1) 112 4 32 1,088 

House 10 mein (5) 1,059 36 31 3,460 

House fried rice (4) 1,484 50 30 2,682 

Chicken chow mein (5) 1,005 32 28 2,446 

Hunan tofu (4) 907 28 27 2,316 

Shrimp in garlic sauce (3) 945 27 25 2,951 

Stir-fried vegetables (4) 746 19 22 2,153 
Szechuan shrimp (4) 927 19 18 2,457 

Source: Data from Center for Science in the Public Interest, tabulated fly the Philadelphia 
Inquirer, September 2,1993, pageD1. 

a. What type of average do you think the figure refers to? Give 
reasons for your answer. 

b. Does the graph meet Tufte's criteria for graphical excellence? 

c. Redraw the graph another way and explain why your graph 
may be better. 

3.31 Table 3.5 shows the fat content of several Chinese foods. 

a. Comment on how the sentence "Dishes are ranked from worst 
(highest percent of calories from fat) to best (lowest percent)" 
could be misleading to someone who wanted to order a Chinese 
meal and eat the "best" food possible. (What, if anything, is prob­
lematic about this table?) 
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Figure 3.23 Worth of 20 Cezannes, 16 Renoirs, and 15 Matisses in the 
Barnes Foundation Collection 1976-1993 (Exercise 3.32) (Source: Robin Du­
thy, "The boom for Barnes," Connoisseur's World, 1994, p. 108.) 

b. How could you reorganize this table for another purpose 
than showing fat content? Redesign the table and state the al­
ternative purpose. 

3.32 Figure 3.23 was copied from a report on the value of Cezanne. 
Matisse, and Renoir paintings held by the Barnes Foundation in Phil­
adelphia, produced by a consultant at Art Market Research in London. 

a. How would you describe the monetary history of this collec­
tion in the last fifteen years? 

b. Overall, what would you say the trend in the values of the 
paintings has been over the years as shown in the graph? 

c. How else could the graph have been drawn to show more 
detailed information about the collection? 

d. Are there any ways in which the graph could have been made 
more helpful to a reader who wanted to quickly scan it and not 
read the accompanying article? 
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Figure 3.24 Retrospective accounting of pleasantness of week (Exercise 
3.33) (Source: Jessica McFarlane, Carol Lynn Martin, and Tannis MacBeth Williams, 
"Mood fluctuations, women versus men and menstrual versus other cycles, " Psychology of 
Women Quarterly, vol. 12 (1988), p. 214.) 

3.33 Figure 3.24 is a time series graph that charts a subject's mood 
ratings for a week as the subject remembered them later. 

a. According to the data in the graph, what were the best and 
worst days in the week for the subject, in terms of mood? 

b. How are the differences among the mood levels for different 
days in the week emphasized in the graph? 

c. What would be the effect of including 0-3 on the mood rat­
ing axis? 

d. Why do you think 5 on a 7-point scale is called neutral instead 
of 4, which is the middle of a 7-point scale? 

e. The authors of the article from which this graph is taken su­
perimposed another time series graph over it showing how the 
subject rated mood at the time each day in the week. (Thus, the 
time series graph can be used to present two different variables 
over the same time period.) The line for the concurrent report 
of moods was flatter than the retrospective one. That is, the con­
current report indicated that weekends were not so wonderful 
and Sundays and Wednesdays were not so bad. Why do you think 
the retrospective report differed from the concurrent one? 



ANALYSIS (ExERCISES 3.34-3.54) 

3.34 A sample of socioeconomic scale scores follows: 

42 35 48 26 52 47 
29 65 42 51 47 35 

a. What could we expect to learn about this sample from a his­
togram of these data? 

b. Use an appropriately small number of intervals and make a 
histogram of the data. 

c. What do you conclude about the variable on the basis of what 
the histogram shows? 

d. What information is missing about these data that would help 
you to make better sense of it? 

3.35 How people choose to spend their time can reveal a great deal 
about our society. In an extensive time-use study, it was found that 
during weekdays employed men spend 8.1 hours on work-related ac­
tivities, 1.0 hours doing housework, 9.9 hours on personal care such as 
eating, sleeping, and grooming, 1.2 hours traveling, and 3.8 hours in 
free-time activities such as sports and television viewing. For employed 
women the corresponding figures were 6.5, 3.4,9.8,1.1, and 3.2 hours, 
and for homemakers the figures were 0.0,7.8,10.3,0.7, and 5.2 hours. 
These values are all means. (Source:] P. Robinson, How Americans Use Time: 
A Social-Psychological Analysis of Everyday Behavior, New York: Praeger, 1977, 
p.90.) 

a. Display these data graphically. Use two different types of 
graphs and discuss which type displays the data better. 

b. What information do your graphs convey about the time use 
of each of the three groups of people? 

3.36 The signers of the Declaration of Independence were a select 
group of people, and we are interested in whether they lived longer 
than the average man did in this period. For example, George Wythe 
was 50 years old when he signed. Having reached 50, Wythe could have 
been expected to live another 21 years, but he lived 30 more years. He 
therefore lived 9 years longer than he was expected to. The differences 
for all the signers follow: 
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24 -3 -24 2 -4 -19 21 16 -4 7 -11 -1 
8 9 -6 -14 -6 2 -4 -18 14 -8 13 1 

-4 22 -9 -1 13 -14 -6 1 -16 -1 -1 9 
-4 19 -6 -12 -13 -1 13 4 -3 13 -14 
29 4 -9 -4 -6 -12 -13 -19 -14 -19 11 

7 9 -19 21 -9 -4 -28 -14 -21 -18 -7 

A negative difference means that the person fell short of living his life 
expectancy at his age of signing by that many years. (Source: U.S. Bureau 
of the Census, Bicentennial Statistics. Qy,oted in Pocket Data Book, USA 1976, 
Washington, DC: U.S. Government Printing Office, 1976, p. 370.) 

a. Make a table and a histogram showing the distribution of this 
variable. 

b. What do you conclude about the longevity of the signers on 
the basis of the shape of the histogram? 

3.37 Down syndrome is a genetic disorder that shows up in some 
newborn babies. The following datafile shows the age of the mothers 
of Down syndrome children at birth of the children and the number 
of children with Down syndrome born in Sweden in 1971. 

Age of mother 15-19 20-24 25-29 30-34 35-39 40-44 45-49 

Number of babies 18 87 96 72 73 73 19 
Source: E. B. Hook, and A. Lindsjo, ''Down syndrome in live births fly single-year maternal age 
interval in a Swedish Study, " American Journal of Human Genetics, vol. 30 (1978), pp. 
10-27, as reported in C. J Geyer, "Constrained maximum likelihood exemplified fly isotonic 
convex logistic regression, "Journal of the American Statistical Association, vol. 86 
(1991), pp. 717-724. 

a. Make a histogram of the data. 

b. What information does the histogram convey about the dis­
tribution of the number of babies with Down's syndrome across 
the ages of the mothers? 

c. The fewest number of babies with Down syndrome are born 
when mothers are very young or very old. Does that mean that 
a woman should have babies when she is either very young or 
very old? 



d. What additional data, if any, do you need to recommend the 
age at which a woman ought to have children to lower the risk 
of Down syndrome? 

3.38 The calorie values of sixteen different snack foods are as follows: 

110 120 120 164 430 192 175 236 
429 318 249 281 160 147 210 120 

Source: USDA data and manufacturer's data in an advertisement in The New York Times 
Magazine, April 20, 1990, p. 20. 

a. Make a histogram of the data, using 50 as the width of each 
bar. 

b. Make a stem plot of the data, using two digits on the left side 
of the line. 

c. Make a boxplot of the data. 

d. What are some of the strengths and weaknesses of each 
graph? 

e. Which graph do you prefer? Give your reasons. 

3.39 The band uniform hat is being changed at the high school. The 
band leader has used a tape measure to collect the head circumference 
of each of the 150 band members. The band president has asked ev­
eryone to order a hat in size small, medium, or large. The hat store 
sells hats in ten sizes (from ~ to 8i). 

a. Describe in general how you would organize the data for max­
imal effectiveness in buying the hats. 

b. What errors have the band leader and the band president 
made in measuring the band members for hats? 

3.40 Select a question you would like to have answered. Example: 
What were the most popular CDs being sold in the music stores last 
week: country/western, rap, rock, heavy metal, ballads? 

a. Find data to answer your question. 

b. Create a graph that best illustrates your data. 

3.41 Draw a stemplot that illustrates the amount of money you spent 
for each of 20 items you purchased in the last month. 
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3.42 a. Draw a histogram representing your estimate of the average 
number of days each month of the year the temperature drops 
below the freezing point (use either 32 DF or 0 DC) in your 
present community. 

b. Describe the shape of the histogram. 

3.43 Write down the names of twenty friends and relatives, along with 
the number of years you have known each one and the number of 
intense arguments you have had with each one. 

a. Make a scatterplot showing the data on the two variables. 

b. Does there seem to be any relationship between the two var­
iables in your sample? 

c. What problems do you see in this analysis? 

d. What type of data might be better for studying the variables? 

3.44 a. Draw a bar graph with horizontal bars going to the left for 
men and to the right for women using the following informa­
tion. The median incomes in a sample of full-time workers with 
four or more years of college are as follows: White men earned 
$42,000; white women earned $29,000; Asian American men 
earned $37,000; Asian American women earned $29,000. (Source: 
u.s. Census data for 1990.) You may drop the OOOs for the purpose 
of the graph. 

b. What major conclusions can you draw from your graph? 

3.45 According to a survey of 60,000 households by the U.S. Bureau 
of the Census in October 1990, the age distribution in percentages of 
5,644,000 full-time college students in four-year colleges that year was 
as follows: 

Age 15-17 18-19 20-21 22-24 25-29 30-34 35-39 40-44 45-59 

% 1.9 34.7 34.1 16.6 6.4 2.7 1.8 1.2 0.6 
Source: The Chronicle of Higher Education, vol. XXXIX, no. 1 (August 26, 1992), p. 
11. 

a. Make a histogram of this age distribution. Note that the in­
tervals will be of different lengths. This means you will have to 
adjust the heights of the rectangles so that the area of each rec­
tangle shows the magnitude of the corresponding percentage. 
Also, for any age group the age starts at the lower limit and goes 



up to but does not include the lower limit of the next older 
group. For example, 20-21 years means an interval that starts at 
20 and goes up to 22. 

b. What does the shape of the histogram convey about the age 
distribution of college students? 

c. Does the shape of the distribution surprise you? Why or why 
not? 

3.46 Swordfish absorb mercury in their bodies, and it is thought that 
a mercury concentration of more than 1.00 ppm (parts per million) is 
not good for human consumption. In a sample of 28 swordfish the 
following concentrations of mercury in ppm were found: 

0.07 0.24 0.39 0.54 0.61 0.72 0.81 0.82 0.84 0.91 
0.95 0.98 1.02 1.08 1.14 1.20 1.20 1.26 1.29 1.31 
1.37 lAO 1.44 1.58 1.62 1.68 1.85 2.10 
Source: Larry Lee and R G. Krutchkoff, "Mean and variance 
of partially-truncated distributions, "Biometrics, vol. 36 
(1980), pp. 531-536. 

a. Make a stemplot of the data, using the first two digits as the 
stem. 

b. Describe the shape of the distribution of mercury concentra­
tion. 
c. The reason many of the swordfish were found to have a con­
centration of more than 1.00 ppm is that not all swordfish are 
tested before they are brought to the market. Does it seem as if 
the overall, average level of mercury concentration is larger than 
1.00? 

3.47 Most people seem to drive above the speed limit on interstate 
highways. The chances of getting a speeding ticket may therefore 
mainly depend on how many police officers are out on patrol. The 
states differ in their numbers of state police officers, and one way to 
measure police coverage is to look at the number of miles of interstate 
highways per police officer in each state. This number ranges from a 
low of 0.1 mile per officer in Delaware to 7.0 miles per officer in Wy­
oming. Thus, if every officer in Delaware were out on the road, there 
would be one officer every tenth of a mile, while in Wyoming there 
would be one officer every seven miles. 
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Figure 3.25 is a stemplot for the 48 continental states showing the 
number of miles per state police officer, with miles to the left of the 
stem and tenths of miles to the right. 

a. Describe the shape of the distribution shown in the stemplot. 

b. Construct a boxplot from the stemplot. 

c. What are the advantages and disadvantages of the stemplot 
compared to the boxplot for these data? 

3.48 Discuss how the graph in Figure 3.26 on rescue missions in na­
tional parks meets Tufte's criteria for graphical excellence. 

3.49 When criminal attacks are committed, in the great majority of 
cases the attacker and the victim are ofthe same race. In 1991, accord­
ing to the FBI, 85% of black victims were attacked by blacks, 75% of 
white victims were attacked by whites, 8% of black victims were attacked 
by whites, 17% of white victims were attacked by blacks, and the rest 
were the result of other combinations of victims and attackers. 

a. Draw two pie charts, one for black victims and one for white 
victims. 

b. Imagine a pie chart that combines these data. In what respect 
might a single pie chart be somewhat misleading (that is, what 
would a single pie chart assume)? 

3.50 Create a data set for yourself that could be displayed to good 
advantage in a pie chart. 

a. Draw the chart. 

b. Summarize the findings presented in the chart. 

c. Are there any problems with the pie chart as you have de­
signed it? 

3.51 Create a data set for yourself that could be displayed to good 
advantage in a stemplot. 

a. Draw the stemplot. 

b. Summarize the findings presented in the stemplot. 

c. Are there any problems with the stem plot as you have de­
signed it? 
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Figure 3.25 Miles per state police officer, 48 contiguous states (Exercise 
3.47) (Source: Autoweek, July 9, 1990, p. 37.) 
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Figure 3.26 Search and rescue operations per million visits to the 367 na­
tional park system areas (Exercise 3.48) (Source: Data of National Park Service; 
adapted from the graph in The New York Times, March 25, 1993, p. Al8,) 
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Table 3.6 Data for Exercise 3.53 

Type of event 

Country Total deaths Transportation Natural Homicide 

Austria 75.2 34.8 29.7 1.6 
France 77.8 23.8 31.0 0.9 
Italy 47.2 22.8 19.2 1.1 
Netherlands 40.3 17.8 18.2 0.7 

Norway 48.4 17.3 25.1 0.7 
United States 60.6 23.4 15.8 10.0 

Source: Social Indicators III, U.S. Census Bureau, December 1980, p.252, reprinted in 
Howard Wainer, "Talntlar Presentation," Chance, vol. 6 (1993), no. 3, p. 53. 

Other 

9.1 

22.1 
4.1 

3.6 

5.3 
11.4 

3.52 As in Exercise 1.20, turn on a water faucet until it just drips. 
Count the number of drips per 20-second interval for 3 minutes. Keep 
a record of the number of drips in each interval. 

a. Draw a graph illustrating your data. 

b. Would you say the drips were randomly or regularly distrib­
uted over the 3-minute period? In what respects were they ran­
dom, and in what respects were they regular? 

3.53 Table 3.6 is an abbreviated version of a table of death rates from 
various causes in selected countries in the mid-1970s per 100,000 pop­
ulation. Redo this table so that it is more readable, and justify your 
changes. 

3.54 a. Make a graph of your choice for the following data. When 
pollsters interviewed 1,000 adults employed by private sector 
companies about issues of privacy, 61 % said their employers re­
spected after-hours privacy ''very well," 29% said "somewhat 
well," 8% "not very well," and 3% "not well at all." 

b. Make a graph of your choice for the following data: Respon­
dents believed employers had the right to verify information pro­
vided by job applicants to various degrees. Eight in 10 thought 
it appropriate for employers to check on ajob applicant'S claims 
regarding educational background and criminal record; tests for 



nicotine use away from work were opposed by 93%; 69% ob­
jected to urine tests for alcohol use; 69% thought psychological 
tests for attitudes and social preferences were inappropriate; 
59% opposed using blood samples to test for AIDs virus. (Source: 
"u.s. workers are concerned about privacy on the job, survey finds, "The Phil­
adelphia Inquirer, August 23, 1994, p. F6.) 
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As noted in Chapter 2, the original observations in a data file contain 
all the information there is in a set of data, but it is almost impossible 
simply to look at a data file and extract the information. All the infor­
mation is there, but it is hidden by the randomness in the data. 

Chapter 3 discussed the use of graphs and tables to organize data. 
Graphs and tables often need to be augmented by summary statistics­
new numbers computed from the data. From the values on one or 
several variables we can compute a few new numbers that represent 
the variables, thus summarizing the data into just a few values. 

This chapter is concerned with two problems. 

1. How to summarize many observations of a variable into a single 
number that gives us a central tendency, or average value. Is it 
possible to find a single value that illustrates what all the observa­
tions are like? 

2. How to summarize how different the values of a variable are from 
one another. Are the observations much alike or are they very dif­
ferent? That is, is there much variation in the data? 

As with graphical representations (Chapter 2), computing summary 
numbers has one major advantage and one major disadvantage: 

Advantage: A summary number gives a great simplification of the 
data. 

Disadvantage: Any simplification means a loss of information. 

Before the 1960 Presidential election, the Survey Research Center 
at the Institute for Social Research at The University of Michigan asked 
people in a survey who they intended to vote for. Of the 1,396 respon­
dents who planned to vote, 634 planned to vote for John Kennedy. 
Thus, of the total number of respondents who intended to vote, 45% 
planned to vote for Kennedy (who did win in a very close election later 
that year). The representation of 634 of 1396 separate answers by a 
single percentage is an enormous simplification of the original data. 
At the same time, however, the values of the original variable are ir­
recoverably lost. If we know only a single number, we cannot recover 
the original data, and many different data sets could yield the same 
average value. 
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As with visual representations of data, summary computations of 
data need to strike a balance between gain in simplicity and the loss of 
information. Doing so is not always easy and requires knowledge about 
the strengths and weaknesses of the most commonly used summary 
numbers. 

The most common number computed from data is an average or central 
value of some kind. Most of us were introduced to the notion of aver­
ages in elementary school. Today, we read about the average salary of 
MBAs, average house prices, Dow Jones average stock prices, average 
homicide rates, and so on. But how aware are we of the various forms 
of averaging possible to us, or how simply calculating a particular av­
erage can create false impressions? 

There are many kinds of averages, not just one. To explore this 
variety, take a close look at the following sentence: 

The average person in this country today is a woman who has 2.1 
children and lives in a house worth $80,000. 

Three common kinds of average are referred to in that sentence. 
Can you distinguish how the three differ? 

Mode: The hostess with the mostes' 

The gender variable has two values, man and woman; in this country, 
there are more women than men. The statement that the average per­
son in this country is a woman uses a statistical average called the mode. 

The mode is commonly used to describe categorical variables, es­
pecially those with many values such as religion, race, or social class. 
One might find, for example, that within a particular neighborhood 
the modal religion is Muslim, the modal race is Asian, and the modal 
social class is "upper middle." 

The mode can be used for other types of variables as well. Figure 
4.1 shows a histogram of the age at marriage for 37 women, the same 
women in the graphs in Figure 3.3. The major peak in the histogram 
in Figure 4.1 occurs in the age range from 25 to 30 years. We take the 
midpoint in that range, 27.5 years, as the modal value of age at mar­
riage. 

An average is a 
single number 
computed from 
the observed val­
ues of a variable. 

The mode for a 
variable is the 
value that occurs 
most often. 
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Figure 4.1 Modal value of the age variable: Midpoint of the tallest rec­
tangle 

Sometimes a variable has two values that occur most frequently. 
Thus it has two modes and what is called bimodal distribution. When a 
variable has two modes, the observations of it often consist of a mix of 
data from two groups of elements. A histogram of the heights of stu­
dents in a statistics class would be bimodal, for example, when the class 
contains a mix of men and women. 

The mode tells us that there are more of that value than of any of 
the other values of the variable but not whether there are many more 
of this value or only a few more. If there are 100 people in a group, 
the modal gender value would be woman if there were 51 women (and 
49 men) or 99 women (and 1 man). The two cases are very different, 
but the mode does not distinguish between them. Thus, the mode may 
at times mask more information than it reveals. 

For a metric variable the mode does not make use of all the actual, 
observed values of the variable. In addition, by choosing different 
widths of the intervals in a histogram, as shown in Chapter 3, different 
modes can be obtained depending on how the histogram is drawn. 
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MODE 

For centuries cholars doubted that William Shakespeare actually 
wrote the many wonderful plays and poems attributed to him. Doubt 
arose in part because Shakespeare, the historical figure, was thought 
to be too provincial, illiterate, and unknown to have accomplished 
such remarkable feats. No one during his lifetime referred to him 
as an author, and he left not one personal letter, manu cript, 
or literary record when he died. Indeed, these clues lead to well­
grounded suspicions that the real William Shakespeare wa<; omeone 
else. Other authors, more famous, better educated, and better doc­
umented, were aid to have written these classics, among them Fran­
cis Bacon, John Donne, Christopher Marlowe, Walter Raleigh, Ed­
mund Spenser, and even Queen Elizabeth I her elf. 

Some expert stati tical sleuthing has helped to giv Shake pare 
his due. The method used depended on the application ofthe mode. 

For three years, a Shakespeare Clinic composed of Claremont 
College undergraduates used statistical analyses to ee which of 58 
contemporary author had writing styles that most clo ely matched 
that of works attributed to Shake peare. Block of the 58 author ' 
writing were selected and divided into 500-word pas age '. ounts of 
everal variables were made in the blocks. For example, the students 

explored the occurrence of 52 key words, looking for the modal 
uses for each of the authors. Using various statistical strategies, they 
created profile' of authors. When all was finished, 

None of the te ted poems of 27 claimants passed the modal 
te t. Thomas Heywood, the closest author test, was 2.2 standard 
errors distant from Shakespeare. By this measure, . . . were 
Heywood actually Shakespeare, poem as different as the one 
he wrote under his own name would have occurred Ie s than 
5% of the time. John Donne, the most distant claimant tested, 
was 36.9 tandard errors distant from Shakespeare. 

Pretty strong evidence that Shakespeare wrote Shakespeare's versel 
(Source: Wa'rd Elliot and Robert Valenza, "Who Was Shakespeare?" Chance, vol. 
4 (1991), pp. 8-14.) 
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Themedian 
value of a vari­
able is the value 
of the variable 
that divides the 
observations into 
two equal groups 
o that half the 

ob ervations are 
mailer than the 

median and half 
are larger than 
the median. 

Advantages of the mode: The mode for a variable is easy to find from 
a graph or a table of the data. For categorical variables, it is typically 
the best way to describe the average value. For a variable with a 
bimodal distribution and few observations in the middle of the 
range, the two modes tell us more than a single value located some­
where in the middle of the variable where there are not very many 
observations. The mode requires very little actual computation, 
since the value can be seen directly from a bar graph. 

Disadvantages of the mode: The mode is not used often, and many 
statistical computer software programs do not even calculate the 
mode. The modal value of a variable does not convey much about 
the entire data set, and conversely, the information in the data set 
is not well used by finding only the mode. 

STOP AND PONDER 4 . 1 

Think about any job you have had in which you were paid weekly. 
Which day of the week were you paid? IT you created a bar graph of 
the days in the week for 52 weeks of pay, which would be the modal 
day on which you were paid? Is this why TGIF is such a popular 
phrase? 

Median: Counting to the middle 

Our "average" woman lives in a house valued at $80,000. "Average" 
house prices and many other economic variables are most often de­
scribed by the median value. Because price is a metric variable and has 
higher and lower values, unlike a categorical value such as religion, the 
values can be ranked from lowest to highest. The middle value of the 
variable in the ranking, is the median value. When the median house 
price is $80,000, half the houses in the data cost less than this value 
and the other half cost more than this value. 

The median is found by arranging the observations by size, from 
smallest to the largest, then counting halfway through them to the 
middle. For a very small data set it makes a difference whether the total 
number of observations is even or odd, but for larger data sets this 
distinction is not important. It is also possible to find the median from 
data in a table or a histogram that does not show the original obser­
vations. 
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It does not matter for the median how much more or how much 
less the other houses in the example cost. For example, suppose the 
data set includes two other houses besides the one that costs $80,000-
a house that costs $79,000 and one that costs $500,000. The median 
price for the three houses is $80,000, even though one house costs only 
$1,000 less than the median and the other costs $420,000 more. All 
that matters for the median is that it is the middle number of the 
data set. 

Finding the median Imagine a family with five children, ages 17, 14, 
12, 9, and 5 years. The data set is an odd number of observations, 
already arranged by size. The middle number is the third observation; 
two observations are less than and two observations larger than this 
value. Thus, the median age of the five children is 12 years. (Formula 
4.1 at the end of the chapter shows how to find the median in an odd 
number of observations.) 

Suppose this family has twins who are 5 years old, for a total of six 
children, ages 17, 14, 12, 9,5 and 5 years. This data set contains no 
actual observed value that divides the data into two equal parts. But for 
any age between 9 and 12 years, three children are older and three 
children are younger. By convention, the midpoint between the two 
middle values is the median. The midpoint between 12 and 9 is 10.5, 
and that is the median age of the six children. (Formula 4.2 shows how 
to find the median in an even number of observations.) 

Median and other percentiles The median is also known as the 50th 
percentile, since 50% of the observations are smaller than the median. 
The 25th percentile is the value of a variable such that 25% of our 
observations are smaller than this value. In the example on the brides' 
ages, the 25th percentile equals 24 years, the 50th percentile or median 
equals 27 years, and the 75th percentile equals 32 years. 

STOP AND PONDER 4 . 2 

You have collected a group of recipe for chicken curry. The number 
of ingredients varies from one recipe to another: 12, 16, 8,9,15,10, 
11,14,20,12,18. Determine the median number of ingredients in 
the typical chicken curry recipe. Is there a modal number? Which 
dish would you like to make? 
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Median from a stem plot Medians are particularly simple to find from 
data arranged in a stemplot. In the stemplot, the values of the variable 
are already arranged by size from the smallest to the largest, and the 
median or any other percentile is found by simply counting up to the 
desired number. Refer to the stem plot of the brides' ages in Figure 
3.3. With 37 observations, the median age is the age of the 19th bride 
when the ages are arranged from youngest to oldest; 18 brides are 
younger and 18 are older. Starting from the bottom and counting from 
youngest to oldest, the 19th bride is 27 years old; 27 is the median age 
of this group. 

Median from a histogram Can the median be found from a histogram, 
without the original observations? The answer is a modified yes, if we 
are willing to assume that the observations are evenly distributed within 
the middle interval. In the histogram in Figure 4.1, the total number 
of brides can be computed by adding the values represented by the 
height of the rectangles: 37 brides were observed. So the median age 
is the age of the 19th-oldest bride. The histogram shows that 10 brides 
are included in the first two age intervals; nine more are needed. Since 
the next interval (25-30) includes 13 brides, the median must lie 
within that interval. Assuming that the 13 brides in that interval are 
evenly distributed across the ages, the 9th bride is found by going 
9/13 into the interval. The interval is 5 years wide; 9/13 of that 
is 5(9/13) = 3.5. Adding 3.5 to the lower value of 25, the median 
is 25.0 + 3.5 = 28.5. 

This median can also be shown in a histogram. Figure 4.2 repeats 
the histogram in Figure 4.1 on the ages of the brides. Chapter 3 em­
phasized that the area of a rectangle indicates how many observations 
the bar represents. So to find the median, the total area shown in the 
histogram is divided into two equal parts. The dashed line in Figure 
4.2 is the median: the area in the histogram to the left of the dotted 
line represents 18.5 units, and the area to the right also represents 18.5 
units. The value of the variable at the dashed line-the median value­
is 28.5 years. The estimated value of the median at 28.5 years is not 
quite the true median of 27 years because of our assumption that the 
observations in the middle interval are distributed evenly; the brides 
in the range from 25 to 30 years are not, in fact, distributed evenly 
within the interval. 

Use of the median The median is used most often when a histogram 
of the data shows a skewed distribution. House prices typically show a 
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55 

Figure 4.2 Median value of the age variable: Midpoint of the total area of 
the bars of the histogram. 

skewed distribution. Most house prices fall in a middle range, but usu­
ally a few houses are expensive. Thus, the histogram has a "tail" on the 
right side. 

The histogram in Figure 4.2 shows that the two oldest brides skew 
the data. The median is useful for these data because the median is 
not much affected by a few extreme scores. The median would be the 
same value whether the two oldest brides were 30, 40, 50, or 60 years 
old. 

Advantages of the median: The median gives a good indication of the 
midpoint of a set of observations, particularly if the histogram 
shows a skewed distribution. The median requires little computa­
tion. The observations need only be ranked from the smallest to 
the largest, and the median is simply found by counting up to the 
middle observation. The median is not sensitive to extreme obser­
vations, and this can be an advantage for certain purposes. 
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The meaD' the 
value of the vari­
able obtained 
when the values 
of all the obser­
vations are 
added and the 
sum is divided by 
the number of 
observations. 

Disadvantages of the median: Aside from the middle value, the median 
does not make use of the actual values of the other observations. 
Thus, it does not make use of all the information in the data. The 
median is not sensitive to extreme observations, and this can be a 
disadvantage for certain purposes. 

Mean: Balancing the seesaw 

When we say that the average American family has 2.1 children, we are 
saying that the mean number of children per family in the United States 
equals 2.1. The mean is the most commonly used type of average. Just 
like the median, the mean gives a value of the variable somewhere in 
the middle of the observed data. The difference is that the mean is a 
value of the variable that can be viewed as the center of gravity of the 
data. If we placed the observations on a seesaw according to their val­
ues, the seesaw would balance right at the mean. For the age data on 
the 37 brides, the mean works out to be 30.0 years (Figure 4.3). Ifwe 
imagine that each bride weighs the same and stands on a horizontal 
seesaw at her particular value, the seesaw will balance at 30.0. 

To find the value of the mean, the values of all the observations 
are added and then the sum is divided by the number of observations. 
This statement is written mathematically in Formula 4.3 at the end of 
the chapter. Finding the mean according to Formula 4.3 is the same 
as finding the value where the seesaw will balance, that is, the center 
of gravity of the distribution of the data. 

The mean is commonly used for metric variables to find a central 
value of the observations in a set of data. As with other averages, a good 
deal of information is lost when the original data are replaced with the 
mean, but the exact value of each observation is used to find the mean. 
If any data points are changed, then the mean changes. This is not 
necessarily the case with either the median or the mode. 

Figure 4.3 illustrates an important weakness of the mean. The two 
oldest brides have a large effect on the mean because they are so far 
away from the mean. If they step off the seesaw, the balance point 
moves from 30.0 years down to 28.4 years. Those two brides cause the 
mean to be larger than the median for these data. If two of the brides 
close to the mean age step off the seesaw, the effect on the balance 
point is very small. 

Because the mean is so sensitive to isolated extreme observations, 
we prefer not to use the mean when a data set has extreme observa­
tions. The mean works well with roughly equal numbers of small ob-
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Figure 4.3 Mean value of the age variable: Center of gravity of the histo­
gram 

servations and large observations; the small observations balance the 
large observations. When the distribution of the data is skewed, as in 
Figure 4.3, we prefer to use the median to the mean because the me­
dian is not sensitive to extreme observations. To decide between the 
mean and the median for a set of data, first compute both. If they are 
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Computing the mean is not always easy. "Calvin and Hobbes" copyright 1995 Wat­
terson. Dist. by Universal Press Syndicate. Reprinted with permission. All rights reserved. 
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approximately equal to each other, then use the mean. If they are very 
different, use the median. 

The mean is the most frequently used average value, and because 
it is so common, it has its own symbol: X, read as "x bar." An x is used 
because it is the most common symbol for a variable, and the bar sym­
bolizes the mean. The mean for a variable denoted by some other 
letter, for example by y, is denoted similarly: y. 

Advantages of the mean: The strength of the mean is that it uses the 
numerical value of each observation, implying that it uses more of 
the information in the data than do the mode or the median. As 
shown in later chapters, conclusions about data can more easily be 
drawn from the mean than from either the mode or the median. 

Disadvantages of the mean: Since the mean makes use of the actual, 
numerical value of each observation, it can be cumbersome to com­
pute. The mean is sensitive to extreme observations. This can be 
particularly bad if there is an error in the measurement of an ob­
servation and that is the reason the observation is extreme in the 
first place. 

Mode, Median, or Mean? 

We should get into the habit of asking ourselves which kind of average 
is being used in a data analysis and whether it is the right kind. Occa­
sionally people use the wrong type of average on purpose to create an 
impression from the data that may not be fully warranted. When a 
distribution is skewed with many small observations and only a few large 
observations (the distribution of household income is an example), 
then the mean will be larger than the median. Anyone who wanted to 
summarize this distribution with as large a value as possible would then 
use the mean, even though the median would be a more appropriate 
choice of average. 

This kind of twisting is particularly tempting in comparing two or 
more groups. Suppose a headline says that men make more money 
than women. What is the implication of such a sentence? That every 
man makes more money than all the women? Of course not. The head­
line probably comes from a comparison of averages for the two groups. 
If so, then it ought to say so. Maybe the median income is higher for 
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men than women; or maybe the mean income for men is higher. Thus, 
how groups differ is related to the particular statistical method used to 
compare them. 

STOP AND PONDER 4 . 3 

Imagine that you are working for the Department of Transportation 
in your state and you wish to inform the governor of the average 
amount offederal aid the state has received for 26 highway projects. 
One new highway received the large t amount of aid ($22 million), 
while the other 25 projects received between $200,000 and $1 mil­
lion each. The median amount was $250,000, the mean was 
$1,000,000, and the mode was $200,000. How would you choose to 
represent the average amount of money received by the state per 
highway project? What would be the drawbacks of any average you 
compute? 

Usually, an average is a useful way of summarizing data, but sometimes 
an average can be misleading. There is an old joke about the statistician 
who puts her head into the oven and her feet into the refrigerator and 
says, "On average, I feel just fine." In the computation of the statisti­
cian's "average," two extreme temperature values, the heat in the oven 
and the coolness in the refrigerator, cancel out to produce a comfort­
able average temperature. Thus, any average masks the extreme values 
in a set of data, and extreme values are sometimes of particular interest. 
The mean household income in a community may be a comfortable 
$100,000 a year, but if this mean is computed from the incomes of 200 
extremely poor families and 20 extremely rich families, it does not 
represent the incomes of any of them. Sometimes we need to go be­
yond averages to summarize data. 

Imagine two different data sets that have the same average value 
but are still very different. In one data set, the observations are all close 
to each other, while in the other data set the observations are spread 
out. No average-mode, mean or median-would catch this crucial 
difference. In this case, the spread of the data needs to be taken into 
account. 
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The range is the 
difference be­
tween the value 
of the largest ob­
servation and the 
value of the 
smallest observa­
tion. 

Range: Lassoing the two extreme values 

One easy way to measure the spread of a set of data is to find the range, 
which is simply the difference between the values of the largest and the 
smallest observations: 

range = value of largest observation - value of smallest observation 

For the data on the brides' ages, 

range = 60 years - 19 years = 41 years 

The range is easy to compute, and it can often be a very useful 
number to know. An average value and the range of a data set tell us 
quite a lot about the values of the observed variable. This is particularly 
true if the data include no extreme observations. One drawback is that 
the range is sensitive to extreme observations. If the two largest obser­
vation, 56 and 60 years, are dropped, then the largest observation is 46 
years and the new range is 46 - 19 = 27. A mere 2 observations out 
of 37 added 50% to the range! Dropping some of the extreme obser­
vations and finding the range of the remaining values is indeed a sta­
tistical strategy-as long as the number of observations to drop is 
agreed on. 

STOP AND PONDER 4 . 4 

College handbooks that list the characteristics of various schools of­
ten list the interquartile range of the incoming clas es' SAT scores 
for verbal and mathematical te ts. At Swarthmore College, for ex­
ample, for a recent entering class the interquartile range was 
690 - 580 = 110 for the verbal test and 720 - 630 = 90 for the 
mathematics test. (This range is helpful in showing not only that the 
median score is quite high but that most students at the school had 
score of 580 or better on their verbal SATs, 630 or better on the 
math test.) At a less elective private university nearby, the median 
core was 530 verbal and 597 mathematics, the interquartile range 

was 579 - 483 = 96 for verbal and 653 - 552 = 101 for math. 
Where would a median core in the verbal SAT at the university place 
you in terms of the Swarthmore SAT quartile divisions? 

When the smallest 25% and the largest 25% of the data are 
dropped, the range is the middle half of the observations. This is the 
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so-called interquartile range. Both the full range and the interquartile 
range are well illustrated in a boxplot. In Figure 3.3, a boxplot for the 
ages of the brides, the interquartile range covers the length of the box, 
so the interquartile range is 32 years - 24 years = 8 years. 

Standard deviation: The crucial deviant 

The standard deviation is the most commonly used statistic designed 
to show how the observations on a variable differ from one another. 
The standard deviation describes how far away the observations are from 
the mean (Figure 4.4). The farther from the mean, and therefore from 
each other, the observations are, the larger is the standard deviation. 
If we know, for example, that the standard deviation equals 6.9 heart­
beats, then we know that a typical observation lies 6.9 beats away from 
the mean and that it is either larger or smaller than the mean. The 
smallest value for the standard deviation is 0.00, the value for a set of 
observations that are all alike. But no variation in the data is rare in­
deed. More common are distributions that are somewhat dispersed. 
There is no limit to how large the standard deviation can be. 

The standard deviation is typically denoted by the letter s. Standard 
deviation is a somewhat strange name; how can something at the same 
time be both a standard and a deviation? The name will become clearer 
as you learn more about the standard deviation. 

Comparing data spreads Histograms for the four following data sets are 
shown in Figure 4.5. 

(a) 6 6 6 6 6 6 6 
(b) 5 5 6 6 6 7 7 
(c) 3 3 4 6 8 9 9 
(d) 3 3 3 6 9 9 9 

Observations 

_X __ X_X __ X __ X_X_X_X_X_XI __ X_X_X __ X_X __ X __ X __ X-+) Variable 

_ ) Standard 
+-------/-------+ deviation 

Mean 

Figure 4.4 Mean as center and standard deviation as spread in data 

The standard 
deviation is an 
average distance 
from the mean 
of the observa­
tions in a data 
set. 



144 C hap t e r 4 • 0 esc rip t ion 0 fDa t a: Com put i n g Sum mar y S tat i s tic s 

(a) 

7 
>.6 
~ 5 
v 
&4 
~ 3 
~ 2 

(c) 

7 
>.6 
u ~ c: :> 

~ 4 
8"3 
~ 2 

x= 6.0 s= 0.00 

3456789 
Variable 

x == 6.0,5 = 2.71 

Variable 

(b) 

(d) 

7 
>.6 
~ 5 
~ 4 
0" 
9-J 3 
~ 2 

x == 6.0, s == 0.82 
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Figure 4.5 Histograms of four data sets with the same mean and different 
standard deviations 

The histograms show that the farther the data are from the mean X, 
the larger is the standard deviation s. 

STOP AND PONDER 4.5 

Think of some instance from ordinary life where the standard de­
viation for a set of ob ervations would be quite small. Consider other 
instances where the standard deviation for a set of observations 
would be quite large. (Your mind may wander as far as the race track 
or the grocery store.) 

In Figure 4.5a, all the observations are equal to the common value 
of 6, and since they are all equal, the standard deviation for those 
numbers is 0.00. In Figure 4.5b, the observations are somewhat spaced 
out between 5 and 7, and the standard deviation increases to 0.82. In 
Figure 4.5c, the observations are spaced out farther, and the standard 
deviation is 2.71. In Figure 4.5d, most of the observations are located 



4 . 2 Va r i e t y: Mea sur i n 9 the S pic e 0 f L i f e 145 

at two extremes, and the standard deviation is 3.00. The four data sets 
all have the same mean, and if we knew only the mean, then we could 
not tell the four examples apart. But there are differences between the 
data sets in the spread of the observations around the mean and the 
variation in the ranges of the data; thus, they have different standard 
deviations. 

Average distnnce to the mean: Dissecting the numbers The standard de­
viation s is found by computing the square root of the average squared 
deviation of the observations from the mean. To see how it works, let 
us apply the computation one step at a time to the data set for Figure 
4.4b-a variable with observations 5, 5, 6, 6, 6, 7, and 7. How do we 
arrive at a standard deviation of 0.82 for these data? As we know, the 
mean of the observations equals 6. The definition asks for the devia­
tions of the observations from the mean. The deviation (distance) from 
the first observation to the mean is 5 - 6 = -1, the second is 5 -
6 = -1, the third is 6 - 6 = 0, the fourth is 6 - 6 = 0, the fifth is 
6 - 6 = 0, the sixth is 7 - 6 = 1, and the seventh is 7 - 6 = 1. These 
are the numbers in the second column of Table 4.1. 

Next we need the squares of the deviations, and they are shown in 
the third column of the table: 1, 1,0,0,0, 1, and 1. Their sum equals 
4. We then average the sum and arrive at 0.67. Finally, the standard 

Table 4.1 Computation of the standard deviation s as the square root of 
the average squared deviation from the mean 

Observation Deviation from mean Deviation squared 

5 5-6=-1 (-1)2 = 1 

5 5-6=-1 (-1)2 = 1 

6 6-6=0 02 = 0 

6 6-6=0 02 = 0 

6 6-6=0 02 = 0 

7 7-6=1 12 = 1 

7 7-6=1 12 = 1 

Sum 0 4 

Average 0 ~ = 0.67 

Square root s = .j 0.67 = 0.82 
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deviation s equals the square root of this average, or 0.82. Formulas 4.4 
and 4.5 at the end of the chapter show the computation of the standard 
deviation. 

The deviations from the mean in the second column of Table 4.1 
range in value from -1 to 1. The standard deviation s = 0.82 is some­
where in the middle of these distance. It is smaller than the largest 
deviation of 1, and it is larger than the smallest deviation of O. Thus, a 
value of 0.82 does not seem unreasonable for an average deviation. 

The reason we first square the distances to the mean is to get rid 
of the minus signs. The unit of the squares is the square of the unit of 
the original observations. For example, if the original numbers were 
dollars, then the squares would have the unit (dollar)2. (Dollar)2 would 
also be the unit of the average square 0.67. But it is hard to interpret 
such a number: What is a square dollar? By taking the square root at 
the end, the unit is restored to its original form. 

We have not addressed the minor fact that while there are 7 ob­
servations in the figure and table, we divide by 6 to get the average 
square. This is not a mistake. It is simply better to divide by one less 
than the number of observations than it is to divide by the number of 

;~~:~:"' .... ~. - 1 • -, • " "!--:- ,_ --. . -.. , ~ .. 
~<~ ... ::..-::., ~.,:.' ••• ,.' • • ,::~, :",,! :~. •• • - ; '. ~ 

The mean of the original deviations in Table 4.1 is 0 because the 
sum of the deviations equals 0; negative deviations always cancel out 
positive deviations. Thus, the mean of the original deviations does 
not tell us anything. You can check this out yourself by looking at 
any example on the previous pages. We could, perhaps, take the 
absolute values of all the deviations and find the mean of those num­
bers. That way we also get rid of the minus sign for some of the 
deviations. The sum of the absolute values is 4, and the mean of the 
absolute values is 4/7 = 0.57. The mean absolute deviation is typi­
cally less than the standard deviation. 

Because the standard deviation is u eful for estimation and 
hypothesis testing, statisticians usually prefer to use the standard 
deviation instead of the mean deviation. However, as a quick, low­
calculation alternative to the tandard deviation, the mean absolute 
deviation is fine . It is an easy "guesstimate" of the differences among 
the scores. 
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observations itself. This issue is discussed in more detail in Chapter 7 
on using s- for estimation. 

Most of the time, we stay away from lengthy interpretations and 
simply think of the standard deviation as a number that conveys how 
different, on average, a set of observations are from each other. If the 
standard deviation is small, then the observations are much alike. If 
the standard deviation is large, then the observations are different from 
each other. 

Subtracting and adding standard deviations to the mean The standard 
deviation can be put to use for another interesting interpretation. Fig­
ure 4.6 shows a histogram for 27 values of the number of human heart­
beats per 30 seconds. The mean pulse rate equals 34.4 heartbeats and 
the standard deviation equals 6.9 heartbeats. As expected, the mean 
value falls in the middle of the histogram, since this is the value where 
the histogram would balance. 

8 

r==-

6 

---
-

~ 

2 ........--

- n Pulse rate 
21 24 27 30 33 36 39 42 45 48 51 

1 1 1 1 1 
x - 2s x-s x = 34.4 x+s x+ 2s 
= 20.6 = 27.5 = 41.3 = 48.2 

Figure 4.6 Pulse rate per 30 seconds, with mean and standard deviation 
(x == 34.4) (Source: Data collected/rom Students in Statistics 1: Statistical Thinking, 
Swarthmore College, spring 1995.) 
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The variance is 
the square of the 
standard devia­
tion and is a 
measure of varia­
bility. 

The standard deviation added to the mean is 34.4 + 6.9 = 41.3, 
and this value is shown on the line below the histogram. The line also 
shows the mean plus two standard deviations, or 34.4 + 2(6.9) = 

48.2. Similarly, the mean minus one standard deviation is 34.4 -
6.9 = 27.5, and the mean minus two standard deviations is 34.4 -
2(6.9) = 20.6. The graph shows that the interval from the mean minus 
two standard deviations to the mean plus two standard deviations, in 
this case from 20.6 to 48.2, contains almost all the data. Only 1 of the 
27 observations lies outside this range. The mean plus and minus one 
standard deviation, here from 27.5 to 41.3, contains about two thirds 
of the data. For most unimodal and reasonably symmetric distributions, 
we can expect the same kinds of results. Thus, if we know the values of 
the mean and the standard deviation, we can almost recreate the his­
togram. It follows that the range of the observations is often approxi­
mately equal to four standard deviations. Finding the range and divid­
ing by 4 results in an estimate of the standard deviation. This little rule 
can often provide a quick sense of the size of the standard deviation. 

STOP AND PONDER 4 . 6 

You know that the length of the ice fishing season on Lake Milles 
Lacs has ranged between 25 days and 73 days for the past 50 years. 
Estimate the standard deviation of the days of the ice fishing season. 
Most years it would be fairly afe to estimate that you would spend 
how many days in the ice hut if you wanted to fish every day? You 
may give a range of the possible number of days. 

Variance: Squaring the standard deviation For mathematical reasons, 
statisticians sometimes prefer to use the variance instead of the standard 
deviation as a way of measuring the difference in a set of observations. 
The variance is the square of the standard deviation, 52. In the example 
with the ages of the brides, the standard deviation is 9.0 years, and the 
square of this number, the variance, is 81.0: 

s2 = (9.0 years)2 = 81.0 years2 

The variance does not tell us anything more than the standard devia­
tion. Also, the variance is harder to interpret because the unit of the 
variance is the square of the unit of the variable we are working with; 
the standard deviation as well as the mean are in the same unit as the 
variable itself. What are 81 square years? 
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One of the major principles underlying statistical analyses is that if we 
measure something over again, we usually get a different result. In the 
female age at marriage data, one bride was 19 years old, another bride 
was 22, and so on. When we look at all the observed values of the 
variable, we find that most of the observations are different from each 
other. The standard deviation tells us how different the observations 
are from each other. 

The 37 women in the data on the brides represent one sample, 
with a mean of 30.0 years. Suppose we selected another random sample 
of 37 brides and observed their ages. Doing the study over again would 
yield another value of the mean number of years. Repeating the study 
many times would yield many different values of the mean. Thus, just 
as individual observations in a study are usually different, sample means 
are usually different across different samples. 

How different from each other are the means in repeated studies? 
Are they as different or less different from each other as the individual 
observations are? 

STOP AND PONDER 4 . 7 

Can you answer this question before we answer it for you? What is 
your guess? 

One way to answer the question is to find the standard deviation of all 
the means. The means are simply a string of numbers, just as the orig­
inal 37 observations were a string of numbers, so finding the standard 
deviation of a set of means from different samples for the same variable 
is almost no different from finding the standard deviation of a set of 
observations on a variable. The only difference is that to find the stan­
dard deviation of the means, we have to first compute the mean in 
each sample. Thus, sometimes we work with a standard deviation for a 
set of observations in a sample, and sometimes we work with a standard 
deviation for a set of numbers that have been computed from the ob­
servations in a sample, like a mean. To distinguish between the two 
kinds of standard deviations, the one for a set of observations is called 
a standard deviation and the one for a set of means a standard error. By 
implication, standard error can also be computed for a set of medians 
or a set of standard deviations! 

The standard 
error of the 
mean i th tan­
dard d viation of 
mean from 
many differ n t 
ampl . 
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STOP AND PONDER 4 . 8 

Why is it not surprising that the standard error of the mean is smaller 
aero large samples than across small samples? 

The standard error of the means is smaller than the standard de­
viations of the observations; that is, the means do not vary as much 
among themselves as the values of the variable itself do. This is not 
surprising. A particular sample contains some large and some small 
observations that tend to cancel out, when we compute the mean, leav­
ing a mean somewhere near the middle. The same thing happens in 
each sample, so the sample means cannot differ among themselves as 
much as the values of the variable do. And the larger the samples, the 
less variation from one sample mean to another, making the standard 
error of the mean even smaller. 

The biggest difference between standard deviation and standard 
error is that finding a standard deviation requires data from only one 
sample, while finding a standard error requires data from many sam­
ples. However, it is often possible to estimate the value of a standard 
error from the data in just one sample (see Formula 4.6 at the end of 
the chapter). The standard error of the mean in a large number of 
samples of 37 brides can be estimated to be equal to 1.5 years. The 
standard deviation of the variable in the example is 9.0 years. Obviously, 
the standard error of the mean is considerably smaller than the stan­
dard deviation of the observations. 

The standard error of the mean is a very useful number. For one 
thing, two standard errors of the mean equals 3.0 years. Plus and minus 
two standard errors of the mean gives us an interval of length 6.0 years. 
If we did have many samples and many sample means, most of those 
means would therefore lie within an interval that is 6.0 years long. 

Different variables generally have different means and standard devi­
ations. Values of one variable cannot statistically be compared with 
values of another variable when the means and standard deviations are 
different. In the age at marriage example, the bride's ages have a mean 
of 30.0 years and a standard deviation of 9.0 years, while the groom's 
ages have a mean of 32.4 years and a standard deviation of 11.1 years. 
In the youngest couple in this group, the groom is 17 years old and 
the bride is 19. 
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Which brides and grooms are most typical in today's world of weddings? 
Statistical techniques help us to identify them. (Source: Kaluznyfrhatcher, Tony 
Stone Images; Telegraph Colour Library, FPG International; Bruce Stoddard, FP6 Inter­
national.) 

How do we compare the two ages for this couple? The groom is 
obviously younger than the bride, but is he a younger groom than the 
bride is as a bride? Who is the more statistically unconventional, bride 
or groom? How does this couple stack up against the other brides and 
grooms? One handy solution is to change both bride's and groom's 
ages to a common scale: we convert raw scores to standard scores (For­
mula 4.7). The bride's and groom's ages-raw scores-are changed 
into scores that tell how far from the mean the raw scores fall, in stan-

A standard score 
equals the value 
of an observation 
minus the mean, 
and this differ­
ence divided by 
the standard de­
viation. 
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dard deviation units. Using standard scores, any value of one variable 
can be compared with any value of another variable because we know 
the relative position of any score from the mean. 

In converting the age data into standard scores, the goal is to con­
struct a new scale of standard scores to replace the old scale of raw 
scores. For the bride who is 19 years old, the raw score is 19, the mean 
of the sample is 30, and the standard deviation is 9.0. The standard 
score is 

19.0 - 30.0 ---- = -1.22 
9.0 

Similarly, the groom at 17 years old has a standard score of (17 -
32.4)/11.1 = -1.39. Through the means and standard deviation, we 
find that this groom is farther away from the male mean than the bride 
is from the female mean. The groom's age at marriage is more unusual 
than his bride's. 

Figure 4.7 shows the brides' ages converted to standard scores. In 
this example, the mean plus one standard deviation equals 39 on the 
original scale, and the standard score for that value becomes 1.00. The 
mean plus two standard deviations equals 48 on the age scale, and the 
standard score for that value becomes 2.00. The mean minus one stan­
dard deviation equals 21, and that corresponds to -1.00 on the stan­
dard score variable. The mean minus two standard deviations is 12, and 
that corresponds to -2.00 on the standard score variable. 

Most standard scores for any variable range in values from about 
-2.00 to -2.00. If the standard score for an observation is larger than 
+ 2.00 or smaller than -2.00, the value of the observation is unusually 
large or small observation. Unusual values help in drawing conclusions 
from samples and applying them to the real world from which the 
samples were drawn. Standard scores are often known as t-values. 

x = 30.0 s = 9.0 
12 21 30 39 48 Age 

1 1 1 1 1 Standard 
-2.00 -1.00 0.00 1.00 2.00 score 

Figure 4.7 Conversion of brides' ages to standard scores 
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Replacing the data with a graph 

The purpose of making graphs, creating tables, and computing sum­
mary numbers is to understand data better. Each of these techniques 
simplifies data and brings out patterns that are not directly obvious 
from the data themselves. At the same time, some of the detail in the 
original data is lost. We close this chapter with some thoughts on the 
conflict between gain in simplicity and loss of information. 

Look at Figure 4.8. The data in the box are death rates per 100,000 
men in 30 different countries for a liver disease called cirrhosis. What 
can we learn from the 30 values of the variable? Beyond the smallest 
value, 1.5, and the largest value, 50.1, it is hard to see how the values 
distribute themselves. 

When we replace the data at the left by the histogram at the right, 
it is much easier to understand the data. The 30 observations have been 
simplified to six rectangles in a histogram. The histogram shows a uni­
modal and skewed distribution, with more than half of the data lying 
between 10 and 30. 

At the same time information about the data-the values of the 
individual observations-has been lost. For example, the histogram 
shows that one observation occurs somewhere between 50 and 60, but 

Data Hi togram 
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28.9 3.2 50.1 6.2 8.8 15.0 ~ 
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15.6 10.0 5.6 1.5 33.9 8.3 Death rate 

Figure 4.8 Data on cirrhosis deaths per 100,000 men in selected countries 
simplified to a histogram (Source: Ann Cronin, "The Tipplers and the Temperate: 
Drinking Around the World," The New York Times, January 1, 1995, p. E4.) 

50 60 
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it does not specify what that value is. Histograms also destroy the ability 
to know when something occurred. For example, if we collected data 
on the price of a quart of milk at the end of every month, we would 
lose the ordering of the observations by putting them into a histogram. 
The histogram would only show the number of times the price fell in 
a particular interval. 

Replacing the data with a summary value 

Figure 4.9 shows the data on cirrhosis death rates reduced to a single 
number, the mean. The mean death rate of 19.2 conveys an immediate 
overview of the magnitudes of the death rates; it is the center of the 
data. It is much easier to understand a single number like 19.2 than it 
is to comprehend 30 different values of variable. Knowing the mean, 
we immediately know where the center of the data is located. 

Still, a considerable amount of information is lost in reducing 30 
observations to the value of the mean, and the original data cannot be 
reconstructed from the mean. Balancing the loss of information and 
the gain in simplicity that take place in computing the mean depends 
on the purposes for the data. The data were collected in the first place 
because the researchers had certain questions about this disease. 

Data Summary value 

27.0 23.9 41.6 33.1 40.6 18.8 

13.7 28.9 13.2 14.5 27.0 34.8 

28.9 3.2 50.1 6.2 8.8 15.0 ) Mean == 19.2 

7.2 5.1 16.7 13.7 19.1 ILl 

15.6 10.0 5.6 1.5 33.9 8.3 

Figure 4.9 Data on cirrhosis deaths per 100,000 men in selected countries 
simplified to a mean (Source: Ann Cronin, "The Tipplers and the Temperate: Drinking 
Around the World," The New York Times, January 1, 1995, p. E4.) 
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A school board is looking into raising real estate taxes in order to have 
more money for the schools the following year. Before taxes can be 
raised, the board needs information on the taxes paid in their school 
district as well as in surrounding districts. Board members could ask 
the town offices to provide them with tax figures for the preceding 
years and examine page after page of figures giving the property as­
sessments and the taxes for each tax payer. But instead they get from 
county records summaries of the things they are interested in, such as 
the average property values, average assessments, and average taxes 
each unit pays. Table 4.2 shows a small excerpt of the data for their 
own district. 

Table 4.2 Sales prices, tax assessments, and taxes for a few residential sales 
in Swarthmore, PA, in 1995 

Address Sales price Assessment Taxes 

520 Cedar $335,000 $ 6,400 $4,752 

326 Cornell 220,000 3,300 2,700 

9 Cresson 183,750 6,500 5,260 

609 Elm 237,000 6,000 4,620 

60 Forest 246,000 6,000 4,456 

9 Guernsey 370,000 9,500 7,055 

624 North Chester 249,000 5,000 3,849 

513 Ogden 290,500 7,000 5,774 

310 Park 195,000 4,200 2,800 

529 Rutgers 176,000 5,600 4,696 

633 Strath Haven 272,500 8,000 6,001 

621 University 265,000 6,300 5,132 

10 Wellesley 340,000 10,000 7,501 

Mean $259,981 $ 6,446 $4,969 

Median 249,000 6,300 4,752 

Standard deviation 61,086 1,890 1,420 

Interquartile range 105,250 2,200 1,735 

Source: We are grateful to David Welsh, D. Patrick Welsh Realtors, who obtained these data for 
us from the Office of Registry of Deeds, Delaware County, PA. 
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SUMMARY 

In addition to the real estate data on sales prices, tax assessments, 
and taxes paid, Table 4.2 also shows some summary data. What do these 
summary numbers tell us about the three variables now that we have 
come to the end of this chapter on the computation of summaries? 

The mean and the median convey that the average house in the 
list costs around $250,000. Since the mean is larger than the median, 
the list must contain a few very expensive houses that pull the mean 
above the median. How the assessed values of the houses correspond 
to the sales prices cannot be determined from the four summary num­
bers at the bottom of the table. For that we have to turn to the statistical 
methods discussed in Chapter 10. But, again, the median is larger than 
the mean, so some houses must have particularly large assessments that 
pull the mean up. 

The taxes for these houses run almost $5,000, on the average, with 
the mean higher than the median. Thus, on the average, the taxes are 
about 1/50th of the sales prices. This may be a useful figure for the 
school board members to know when they compare these figures with 
similar figures from other parts of the school district and try to deter­
mine how the taxes could be raised. 

The magnitudes of the means and the medians indicate that the 
three distributions are skewed, but the standard deviations still can be 
used to get some sense of the variations in the prices, assessments and 
taxes. Subtracting one standard deviation from each of the means 
shows that not many of the houses sold for less than $200,000 and that 
not many house owners pay less than about $3,500 in real estate taxes. 
Going up one standard deviation shows that more expensive houses 
sell for $320,000 and up, and the owners pay about $6,500 and up in 
taxes. 

Using the statistical methods from this chapter and similar data 
from other communities in the school district, the school board can 
now begin to get a sense of the tax base in the district and whether 
taxes can be increased, perhaps by reassessing properties that have 
been sold at high prices. 

To find patterns in a set of data, the observed numerical values can be 
summarized. As with graphs and tables, a summary number greatly 
simplifies the data, while at the same time information is lost. 



4.1 Averages: Let us count the ways 

The three most common averages are mode, median, and mean. The 
mode is equal to the value of a variable that occurs most often. A bi­
modal distribution has two values that occur most often. It is essential 
to use a mode when describing categorical variables. 

The median value is the value of the variable that divides the ob­
servations into two equal groups in such a way that half the observations 
are smaller than the median and half are larger than the median. The 
median, is the most common average used when a histogram of the 
data shows a skewed distribution. This is because the median is not 
greatly affected by extreme scores that are isolated from the majority 
of the values. The median is also the 50th percentile. 

The mean-an average value of a variable that takes into account 
all the actual observed values-is the most commonly used type of 
average. The mean is found by adding up all the observations and 
dividing this sum by the number of observations. The symbol for mean 
is x. If the mean and the median are approximately equal, the mean is 
the preferred average. If they are very different, then the median is 
preferred. For skewed data, the median gives a more realistic sense of 
where the middle of the data is located. 

4.2 Variety: Measuring the spice of life 

In addition to knowing about the central value of a set of data, it is 
important to understand how spread out the data are. One way to 
measure the spread is to find the range, the difference between the 
values of the largest and the smallest observations. One drawback ef 
the range is that it is very sensitive to extreme observations. Occasion­
ally we drop the smallest 25% and the largest 25% of the data and find 
the range of the remaining values. This range of the middle 50% of 
the data is the interquartile range. 

The standard deviation 5 is the square root of the average squared 
deviation from the mean. It describes how far, on average, an obser­
vation is located from the mean. It is the most frequently used and 
most statistically sophisticated way of measuring the spread of data. 
Usually, about two thirds of the observations are within one standard 
deviation on either side of the mean, and almost all the observations 
are within two standard deviations of the mean. The square of the 
standard deviation is known as the variance, and it is denoted 52. 
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4.3 Standard error of the means 

The standard error of the mean is the standard deviation of a large set 
of means from many different samples. The standard error of the 
means is smaller than the standard deviations of the observations them­
selves because the means do not vary as much as the individual ob­
served values of the variable. 

4.4 Standard scores: Comparing apples and oranges 

All observations on a variable can be converted to standard scores. A 
standard score equals an observation minus the mean, and the differ­
ence divided by the standard deviation. Its function is to judge how 
large an observation is in relation to the mean and standard deviation 
of all the observations. Most standard scores lie between - 2 and + 2; 
standard scores outside that range are unusual. 

4.5 Gain in simplicity, loss of information 

Simplifying information in a graph or a summary number means a gain 
in comprehensibility, but the detail of the original data is lost. 

4.6 Real estate data: Out-of-sight prices 

Concepts from the chapter are used to solve a real-life problem. 

Weisberg, Herbert F. Central Tendency and Variability (Sage University 
Paper Series on Quantitative Applications in the Social Sciences, no. 
07-083). Newbury Park, CA: Sage, 1992. This book discusses different 
ways of computing measures of central tendency and variation. 

Witmer, Jeffrey. DATA Analysis: An Introduction. Englewood Cliffs, NJ: 
Prentice Hall, 1992. This book gives many different quantities com­
puted from the data. 



A variable is denoted by x, and the number n of observed values of this 
variable are denoted. 

The observations are then ranked from the smallest to the largest. To 
show that we have ranked the observations, we put parentheses around 
the subscripts, so that x(l) is the smallest observation, X(2) is the second 
smallest, and x(n) is the largest observation. With this notation, the 
ranked observations are denoted 

MEDIAN 

When n is an odd number, then the median is found as the middle 
observation in the listing of the ranked observations. In symbols this 
can be written 

median = X«n+l)/2) ( 4.1) 

For example, if a data set has n = 11 observations, then (n + 1) /2 = 

(11 + 1) /2 = 12/2 = 6, and the median is equal to the sixth largest 
observation, X(6)' Five observations are smaller than the median and 
five observations are larger than the median; the median is the value 
of the middle observation. 

When n is an even number, the median is found by calculating the 
midpoint between the two middle observations; 

d' x(n/2) + x(n/2 + 1) me Ian = 2 (4.2) 

If a data set has n = 12 observations, then the median becomes 

X(l2/2) + X(l2/2 + 1) = X(6) + x(7) 

2 2 
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This is the midpoint between the sixth and the seventh observation. 
Half the observations are smaller than this number and the other half 
is larger. 

The mean x is the sum of the observations divided by number of ob­
servations: 

(4.3) 
n n 

where the symbol LX (L is the Greek capital letter sigma) stands for 
the sum of all the observed values of the X variable. 

STANDARD DEVIATION AND VARIANCE 

The standard deviation is the distance from the mean of a typical ob­
servation in a data set. To find the standard deviation 5, the variance 
s- is found and then the square root of the variance. The variance is 
found by subtracting the mean from each observation, squaring each 
difference, adding the squares, and dividing the sum by n - 1: 

Observation Difference Square 
-

(Xl - x)2 Xl Xl - X 
- (0X2 - X)2 oX2 oX2 - X 
-

(X3 - X)2 X3 X3 - X 

-
(Xn - X)2 Xn Xn - X 

Sum 0 L(X - X)2 

The sum of the differences themselves is always equal to 0, and making 
certain that this sum equals zero provides a check that the differences 
have been computed correctly. The variance s- is found by dividing the 
sum of the squared differences by n - 1: 

s2 = _L...:....< x_-_x)c-2 

n - 1 
< 4.4) 



The variance is an average squared difference from the mean. The 
reason for dividing by n - 1 instead of n is discussed in Chapter 6 on 
estimation. 

The standard deviation s is found as the (positive) square root of 
the variance, that is, 

s=H (4.5) 

The three steps in computing the standard deviation are cumbersome, 
and any rounding error in the mean is introduced in every square 
computed. But even though there are other formulas for the compu­
tation of the variance that are easier and more exact, this is the defi­
nitional formula. Using it with a calculator or a computer makes the 
procedure less taxing. 

STANDARD ERROR OF THE MEANS 

The standard error of the means of two or more data sets can be found 
from a single random sample of n observations from a large population. 
The standard deviation s of the sample is found first, and the standard 
error of the mean s.e. (x) is found by dividing the standard deviation s 
by the square root of the number of observations n: 

_ s 
s.e.(x) = .In (4.6) 

Sometimes the standard error of the mean is denoted by the symbol 
s(x) • 

STANDARD SCORES 

A standard score for an observation is found by subtracting the mean 
from the value of an observation and dividing the difference by the 
standard deviation: 

-x-x 
standard score = -­

s 
(4.7) 
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REvIEw (ExERCISES 4.1-4.30) 

4.1 What are the two major goals for summarizing data discussed in 
this chapter? 

4.2 a. Why does too much information in the data make it difficult 
to understand a data file? 

b. What is the major drawback with summarizing a data set? 

4.3 Define mode, median, and mean. 

4.4 Give an example of a situation in which each type of average 
(mode, median, mean) would be preferable over the other two types. 

4.5 Give an example of a variable where you would expect to find a 
bimodal distribution of the data. 

4.6 Find a newspaper article that makes use of an average of some 
type to make its point. 

a. Describe the kind of average the journalist uses. 

b. Describe what the journalist tries to achieve by using this av­
erage. 

c. Does the journalist use the proper type of average? 

4.7 You are interested in getting a clear picture of the economic well­
being of your community. 

a. Discuss whether it would be better to take the mean or the 
median average of the incomes of the people in your community 
and why. 

b. Can you imagine a situation where a mode or modes might be 
a fairer way of describing a group's income level than either me­
dian or mean? Describe such a situation, if you can envision one. 

4.8 Explain this statement: It is better to summarize skewed data with 
the median than the mean. 

4.9 Create an example in which a summary statistic would greatly 
enhance understanding of a variable that has many values (e.g., num­
ber of words per page in this book). 

4.10 a. Define range. 
b. Name one positive quality about the range. 



c. Is the range a measure of central tendency or variability? 
Why? 

d. Are you at home with the range? 

4.11 a. To what factor in a distribution of scores is the range insen­
sitive? 

b. To what aspect of the data is the range extremely sensitive? 

4.12 a. The farther apart the observations tend to be from the mean, 
the [greater, smaller] the standard deviation is. Choose the cor­
rect adjective and explain the statement. 

4.13 What letter of the alphabet do we use to designate the standard 
deviation? 

4.14 Shaquille takes 6 trials of 5 shots of free throws. These are his 
scores: 5, 5, 5, 5, 5, 5. 

a. What is the standard deviation of his shots? 

b. Why? 

4.15 For most unimodal and reasonably symmetric distributions, what 
proportion of the data would you expect to find within one standard 
deviation on either side of the mean? 

4.16 Almost all of the data in a unimodal and reasonably symmetric 
distribution is found within how many standard deviation units on ei­
ther side of the mean? 

4.17 What is the result of squaring the standard deviation? 

4.18 a. A handy rule suggests that the range of most distributions can 
be estimated as approximately how many times the standard de­
viation? 

b. On the other hand, the standard deviation can be figured 
roughly as how many parts of the range? 

4.19 Suppose several people are evaluating different pizzas on a scale 
from 0 to 10, with 10 being the best. Why might you prefer to purchase 
a pizza that has a high mean score and low standard deviation? 

4.20 What is the standard error of the mean? 

4.21 Why is the standard error of the mean smaller than the standard 
deviation of the observations in a sample? 
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4.22 What information is needed to estimate the standard error of 
the mean? 

4.23 a. Explain why it is often useful to change raw scores to standard 
scores. 

b. Give an example from your own experiences where it would 
have been helpful to be able to do this. 

4.24 What is the method for changing a raw score to a standard score? 

4.25 Normally, standard scores range between what two numbers? 

4.26 If a fortune teller told you that your standard score on an IQ 
test was + 15.55, would you immediately go out and celebrate your 
genius? Or would you decide the fortune teller was using hallucino­
genic tea leaves? Explain. 

4.27 Standard scores are often called ___ -values. (See pun in Ex-
ercise 4.26.) 

4.28 If you were defending the practice of changing raw scores to 
standard scores to a coworker, what would you say the greatest advan­
tage of standard scores over raw scores is? 

4.29 What does the following statement mean? The standard devia­
tion measures the randomness of the data. 

4.30 What is the difference between a standard deviation and a stand­
ard error? 

INTERPRETATION (ExERCISES 4.31-4.52) 

4.31 The observations of a variable have a standard deviation equal 
to zero. What does that tell you about the observations? 

4.32 Until 1992, members of Congress could write checks against 
their accounts in an internal bank without incurring penalties for writ­
ing checks for amounts larger than the balances in their accounts. 
Newspapers published the number of overdrawn checks for each mem­
ber of the House of Representatives. The median number of overdrawn 
checks was 3 and the mean number of checks was 47. What do these 
two numbers tell you about the distribution of the number of over­
drawn checks? 

4.33 A newspaper story on typical Americans reported the household 
income in 1989 to be $35,225. (Source: The New York Times,july 26, 1992, 



p. E5.) Why is this figure probably the median and not the mean house­
hold income? 

4.34 The same story as in Exercise 4.33 reported that the typical 
American person is a woman who weighs 144 pounds, lives in a house 
with 2.6 bedrooms, watches television 28 hours and 13 minutes each 
week, and has a household income of $35,225. 

a. Which of these characteristics is a mode? 

b. Which characteristic is a median? 

c. Which characteristic is a mean? 

4.35 A newspaper article claims that the average woman has 2.1 chil­
dren. "How is that possible?" your 100year-old brother asks. "Babies 
don't come in parts." What would you tell him? 

4.36 The modal value of the gender variable is female. Name one 
strength and one limitation to the mode as a summary statistic. 

4.37 Name a chief strength of the median as a summary statistic. 

4.38 If the median score of students acceptable to Slippery Rock State 
is 550 on the verbal SAT, and your friend has a score of 500, should 
you tell your friend to not bother applying to Slippery Rock State, or 
should you first look for more information? Explain your answer. 

4.39 A survey of workers indicated that in productivity, on a scale of 
1 to 100, U.S. workers were rated 100, French workers 95, West German 
workers 89, japanese workers 77, and British workers 75. The headlines 
indicated that American workers topped the French, Germans, Japa­
nese, and British. Later in the article, economic indicators were re­
ported on the productivity of the groups. "In 1990, each full-time U.S. 
worker produced $49,600, compared with $44,200 for West German 
workers, $38,200 for Japanese workers, and $37,100 for British work­
ers." The study excluded statistics about workers in government, edu­
cation, health, and real estate. (Source: Alex Dominquez, "Study says US workers 
are the world's top producers," The Philadelphia Inquirer, October 14, 1992, 
p. D-l.) 

a. The headline says, "U.S. workers are the world's top produc­
ers." In what respects is this headline accurate, and in what re­
spects is it misleading? 

b. Did you find any error or omission in the report? (There is 
at least one.) How would you correct it, if you were the business 
page editor? 
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c. Why do you suppose workers in government, education, 
health, and real estate were excluded from the study? Could you 
make any assertions about the effects of excluding these workers 
on the results? 

4.40 How would you describe the differences in the way two distri­
butions of scores are arranged where the numbers of scores are equal, 
the means are equal, and the standard deviation of one distribution is 
twice as large as that of the other? 

4.41 The Atlanta Braves commit a mean of 1.3 errors a game. The 
standard deviation of the number of errors for games over the entire 
season is 1.0. The Philadelphia Phillies have a mean of 2.0 errors a 
game. Their standard deviation is 0.3. Which of the following state­
ments would you feel confident about making and why? 

1) The Braves play more errorless ball than the Phillies. 

2) The Phillies are more consistent in making errors than the 
Braves. 

3) The Braves sometimes play very sloppily and sometimes very 
well. 

4) The Phillies seldom play errorless ball. 

4.42 You read in the newspaper that at small four-year colleges, stu­
dents under the age of 24 drink, on average, 7.0 alcoholic drinks a 
week, versus 4.6 drinks at campuses with over 20,000 students. Assume 
that the standard deviation for each sample was 2.0, and discuss the 
following, using your knowledge about standard deviations. 

a. At small schools, about 66% of the students reported drinking 
between and drinks a week. 

b. At large schools, about 66% ofthe students reported drinking 
between and drinks a week. 

c. If a student says she drinks 6 drinks a week, can you predict 
with confidence that she attends a small college? 

d. How would you describe the drinking behavior of the 33% 
of the students at the large schools not described in part b? How 
would you describe the drinking behavior of the 33% of the 
students at the small schools not described in part a? 

e. Are there many students who do not drink at all on these 
campuses? 



4.43 You are told that your child has a standard score of + 1.80 in 
reading and + 2.00 in mathematics. You are also told that your child 
has a standard score of 0.00 in musical understanding. 

a. What are the chances that your child is achieving at a fairly 
high level in academic work, assuming that the class includes a 
broad cross section of children? 

b. Should the music score confirm your suspicions that your 
family is not very musically inclined or not? What does the mu­
sical understanding score mean? 

4.44 From data on the first 19 modem Olympic summer games, the 
mean for the winning distances in the men's long jump equals 308 
inches, the median equals 310 inches, and the standard deviation 
equals 19 inches. What do these three numbers tell you about the orig­
inal data? 

4.45 One year, the modal temperature in Hibbing, Minnesota, was 
32 degrees Fahrenheit (0 degrees Celsius). In Duluth, Minnesota, that 
year, there was a bimodal distribution of 33 degrees and 61 degrees 
Fahrenheit. What can we say about the difference in temperature in 
Hibbing and Duluth from these data? 

4.46 You are applying for a sales job with an encyclopedia company. 
The recruiter explains to you that the field is very lucrative; in fact, the 
previous year, the top salesperson of 50 salespeople earned a million 
dollars, and the mean salary for all the salespeople was $35,000. 

a. Are you convinced you too can be a successful salesperson in 
this company? 

b. What more information would you like to have? 

4.47 The recruiter from the encyclopedia company in Exercise 4.46 
senses that you would like more information. She tells you that, in fact, 
not all the salespeople are great successes, and that the range of salaries 
was between $5,000 and $1,000,000. Does this information satisfy your 
curiosity about the salary prospects at the company? Explain what other 
information you might want. 

4.48 The accountant from the encyclopedia company in Exercise 4.46 
tells you that the interquartile range of salaries for the salespeople is 
from $10,000 to $30,000. 

a. How would you use this information in deciding whether or 
not to take the sales position? 
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b. Why was the mean salary so much higher than the interquar­
tile range? 

c. Can you hazard a guess about what the median salary might 
be? 

4.49 You receive the following information about three areas of town 
in which condominiums are being built. You are interested in buying 
a condo to live in and from which you will receive an assured return 
on your investment when you sell. 

Rose Valley: Mean price increase for all condominiums resold last 
year was $7,000, with a standard deviation of $4,000. 

Garden City: Mean price increase for all condominiums resold last 
year was $5,000, with a standard deviation of $1,000. 

Media: Mean price increase for all condominiums resold last year 
was $6,000, with a standard deviation of $800. 

a. In which area will you be most certain of making a profit? In 
which area will you be least certain? 

b. In which area will you make the most money, if all goes well? 

4.50 Standby travelers are waiting at La Guardia to catch various New 
York-to-Boston flights and New York-to-Washington flights. The mean 
waiting time for all standby passengers is 1 hour. For the Boston pas­
sengers, the standard deviation is 30 minutes. For the Washington pas­
sengers, the standard deviation is 10 minutes. How would you describe 
to a nonstatistical friend what these facts mean in terms of the transit 
of passengers and their moods at the ticket counter? 

4.51 During the baseball strike of 1994, reports revealed that the 
mean salary of the players was approximately $1,200,000 and the me­
dian salary was $500,000. What do these numbers tell you about the 
distribution of salaries for baseball players? 

4.52 Consider the mean income in two different states. Suppose a 
person moves from one state to the other. How can it be that as the 
result of this move the mean income increases in both states? 



ANALYSIS (ExERCISES 4.53-4.72) 

4.53 Go to the Springer Web site (htt: / /www.springer-ny.com/sup­
plements/iversen/) to find files relating to this book. Open the data 
file called Baseball Individual Scores. 

a. For each column, find the mean, median, standard deviation, 
and range. 

b. Obtain a histogram for each variable, using statistical soft­
ware. 

c. On the basis of the histograms, for which variables is the mean 
the better measure of central tendency and for which variables 
is the median the better measure? 

d. Why is the range approximately equal to 4 times the standard 
deviation for only some of the variables? 

4.54 Exercise 3.36 gives data on the longevity of the signers of the 
Declaration of Independence. 

a. From looking at the data, do you think the signers as a group 
lived a longer or a shorter time than they were expected to? 

b. The mean of the observations equals - 1.8 years. What does 
the mean tell you about the how long the signers lived? 

c. The standard deviation equals 13.2 years. How large is the 
range in these data compared to the standard deviation? 

d. How many observations lie more than two standard devia­
tions away from the mean? 

e. What can you say about these men? 

f. Judging from the histogram of all the data, would you expect 
the median to be very different from the mean? Explain. 

g. These observations are found as the difference between how 
long a man actually lived and how long he was expected to live 
after signing the Declaration. Would there be any reason to an­
alyze the ratio of those numbers instead? Explain. 

4.55 Exercise 3.34 gives a sample of values of socioeconomic scores. 
Another group of people have the following values of the same variable: 
55, 36, 70, 66, 75, and 49. You are interested in how long the two groups 
can expect to exist; you think that the more homogeneous a group is 
the longer the members will remain a group. 
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a. Explain how to measure the homogeneity of each group. 

b. Compute the measure of homogeneity for each group. 

c. Compute a comparison of the groups. Is there a great differ­
ence between the groups? Explain. 

4.56 Refer to the socioeconomic scores given in Exercise 3.34 and 
Exercise 4.55. 

a. Find the medians for the two sets of data. 

b. What do the medians tell you about the two groups? 

c. What is the combined median for all 18 observations? 

d. How many observations in each of the two samples are 
smaller than the combined median and how many are larger? 

e. What do the answers to part d tell you about how different 
the two groups are? 

4.57 As a rule for good nutrition, no more than 30 percent of our 
daily calorie intake should come from fat. In a group of frozen choc­
olate desserts, the mean percentage of the calories that come from the 
fat equals 18.9, with a standard deviation s equal to 9.2. For comparison, 
the data also include information on regular chocolate ice cream, in 
which 39 percent of the calories come from fat. (Source: "Low-fat frozen 
desserts: Better for you than ice cream?" Consumer Reports, vol. 57, no. 8 (August 
1992), pp. 483-487.) 

a. Change the percentage for the chocolate ice cream to a stan­
dard score. 

b. Does chocolate ice cream seem different from the other des­
serts? 

4.58 The calorie values of 16 different snack foods follow (you made 
graphs for these data in Exercise 3.38). 

110 120 120 164 430 192 175 236 
429 318 249 281 160 147 210 120 

(Source: ASDA data and manufacturer's data shown as an advertisement in The New York 
Times Magazine, April 20, 1990, p. 20.) 

a. Find the mean and the median of the data. 

b. Which of these two averages seems more appropriate for 
these data? 

c. Find the range for the observations. 



d. Use the range to find an estimate of the standard deviation 
of the data. 

4.59 In the school year 1995-1996, the members ofthe Department 
of Mathematics and Statistics at Swarthmore College had the following 
numbers of children: Eugene 2, Don 0, Gudmund 4, Helene 0, Charles 
2, Aimee 0, Stephen 2, Michael 0, Janet O. 

a. Draw a histogram illustrating these findings. 

b. What was the modal number of children? 

c. What is the mode for men and the mode for women? 

d. What do these modes tell you? 

4.60 To find the average numbers of pages in the textbooks for his 
courses, Clark first listed the books by course as follows: Biology 657, 
189; History 348, 237, 181; English 104, 201, 298, 87; Math 302, 99; 
Psychology 607, 139. 

4.61 

a. Organize the items in the list so that it is possible to find a 
median by "eyeballing" the numbers. 

b. Find the mean of the pages. 

c. Compare the two scores. What accounts for the discrepancy 
between the scores? Which one would you think is the fairer 
answer, given Clark's question? 

According to the U.S. Bureau of the Census, the following were 
the number of medical schools in the country in each year between 
1915 and 1945. 

1915 1916 1917 1918 1919 1920 1921 1922 1923 

96 95 96 90 85 85 83 81 80 

1924 1925 1926 1927 1928 1929 1930 1931 1932 

79 80 79 80 80 76 76 76 76 

1933 1934 1935 1936 1937 1938 1939 1940 1941 

77 77 77 77 77 77 77 77 77 

1942 1943 1944 1945 

77 76 77 77 
Source: Historical Statistics of the United States 1789-1945, p. 50. 
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a. Draw a stemplot illustrating the data. 

b. Compute the mode, median, and mean number of medical 
schools over the years. 

c. What special insight that the others do not reveal does each 
summary statistic give? 

d. Is there anything about these data that surprises you? 

d. How would you account for the trends historically? (Addi­
tional information: the number of medical school graduates 
went from 3,500 in 1915 to 4,000 in 1925 to 4,500 in 1930 and 
leveled off at slightly more than 5,000 from 1930 to 1945. The 
number of physicians rose from approximately 143,000 in 1915 
to approximately 181,000 in 1945.) 

4.62 Recall the hourly wage you made in each job you have had over 
your entire life. Calculate the range. 

4.63 Draw a histogram of Shaquille's free throws in Exercise 4.14. 
(You will waste some paper on this exercise!) What does the histogram 
tell you? 

4.64 The following data come from a sample of high school students' 
reports of smoking cigarettes and marijuana and drinking alcohol. To 
simplify the task, first draw a histogram of each distribution. 

Number of days smoked cigarettes during month: 0 0 30 29 30 0 0 
10 0 30 29 30 0 0 0 0 0 1 30 28 10 0 0 0 30 30 29 0 0 30 0 0 30 0 0 
1003030 

Number of days smoked marijuana during month: 0 0 0 0 0 0 1 0 
00012210030020010010010040000011 

Number of days used alcohol during month: 0 1 0 5 0 4 0 0 3 0 0 
22000100400300200012001001030 

a. Estimate (or calculate) the mean of each distribution. 

b. Which distribution will have the highest standard deviation? 

c. Which distribution will have the smallest standard deviation? 

d. Would it be possible to estimate a standard deviation that 
would be appropriate for each distribution knowing what you 
do about the percentage of the distribution within one standard 
deviation of the mean? 



4.65 Refer to the information in Exercise 4.64. 

a. What percentages of high school students in this sample 
smoked cigarettes, smoked marijuana, or drank alcohol at least 
once in the past month? 

b. How do your findings agree with the following results of a 
survey of a sample of all U.S. students: 46% had drunk alcohol 
at least once; 24% had smoked cigarettes; 11 % had used mari­
juana at least once. (Source: "Teen-age drug use high, "The New York 
Times, September 20, 1992, p. 33.) 

4.66 Refer to the data on mercury concentrations in swordfish in Ex­
ercise 3.46. 

a. Find the mean concentration of mercury in the sample of 28 
swordfish. 

b. Find the standard deviation of the mercury concentration. 

c. How many of the swordfish have a mercury concentration 
within plus or minus two standard deviations from the mean? 

d. Why is it that the mean concentration is larger than 1.00 
when those swordfish that are tested and found to have a con­
centration larger than 1.00 are not even brought to the market? 

4.67 A small company employs 9 people who earn the following 
hourly wages: 

$6.50 $6.20 $6.50 $7.00 $10.00 $10.00 $11.00 $15.00 $21.00 

a. How large is the median wage? 

b. How large is the mean wage? 

c. It was decided that the four lowest wages should each be in­
creased by $4.00 per hour. What is the median wage of the new 
wages? 

d. What is the mean wage of the new wages? 

e. Why do the median wage and the mean wage not change by 
the same amount when the low wages are increased? 

4.68 The observed values of one variable are 1,3,3,3,3,3,3, and 5. 
The observed values of the another variable are 2, 2, 2, 2, 4, 4, 4, 
and 4. 

a. Make histograms of the data on the two variables. 
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b. From the histograms, does it appear that the two variables 
have the same or different means? 

c. From the histograms, does it appear that the two variables 
have the same or different standard deviations? 

d. Find the means and standard deviations for the two sets of 
data. 

e. What do you learn about the two data sets from the results in 
part d? 

4.69 Refer to Exercise 10.34 for data on the percentage of calories 
that come from the fat in ten different ice creams as well as a score 
measuring the flavor of the ice creams as determined by a group of 
testers. 

a. Find the mean and the standard deviation for the percentage 
of calories from fat variable. 

b. How many of the observations lie in the range from the mean 
minus two standard deviations to the mean plus two standard 
deviations? 

c. Find the mean and standard deviation for the flavor variable. 

d. How many of the flavor observations lie in the range from 
the mean minus one standard deviation to the mean plus one 
standard deviation? 

4.70 a. Find the standard deviation of the data in Figure 4.6. 

b. What does the data tell you when you know both the mean 
and the standard deviation? 

4.71 Find the median ages at time of marriage for the data in Exercise 
3.20. What do the two medians tell you? 

4.72 Following are the results of two well-known tests of physical 
strength taken by 10 college swimmers. 

Test Adam Bob Emil Juan Sam Lou Ken Paul Mike Lee 

A 

B 

20 
31 

23 
39 

24 
39 

18 

29 
17 

28 
16 

31 

25 
40 

24 
30 

21 
31 

19 

30 

a. On which test did each person do better? To answer this ques­
tion it is necessary to convert the raw scores to standard scores. 
The mean of test A for the national sample is 20 and the standard 



deviation is 2; the mean of test B for the national sample is 35 
and the standard deviation is 3. 

b. If you were the coach and wanted your team to feel good 
about themselves, which test would you prefer to use? 

c. Which team member seems to be the weakest? 

d. Which team member seems to be the strongest? 

e. Which team member(s) seem most inconsistent from one test 
to the other? 

f. Which team member(s) seem most consistent from one test 
to the other? 
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Of/{,at is the probability that all four children in a family are girls? What is 

the chance that there will be two no-hitter baseball games in the same day? 

What is the likelihood that the lucky number in the daily double will be 71? 

How certain can LiblJy's parents be that she will be accepted at Carleton Col­

lege? What is the probability that the mean number of children in a family is 

2.0 or less in a sample that comes from a population where the mean equals 

4.0 children? If a voting population is split evenly between two parties, what 

is the probability of a sample percentage of 55% or more voting for one of the 

two candidates? 
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A probability is a 
number between 
zero and one 
that tells us how 
often an event 
happens. 

Questions about probability occur regularly in everyday conversations 
as well as in statistics classes. In this chapter we discuss what statisticians 
mean by the term probability and how we use it in statistical analyses. 
From the questions on page 177, you can see that the word probability 
has to do with the chance, or likelihood, or degree of certainty that 
some event will happen, and that the term is used well beyond the 
scope of statistics. 

A probability is simply a number. More specifically, it is a number 
between zero and one that describes how often an event happens. An 
event with a small probability (near zero) happens seldom, while an 
event with a large probability (near one) happens often. For example, 
the probability of two no-hitter baseball games on the same day is small; 
the probability that at least one hurricane will hit the United States 
somewhere during a year is large, since more than one such storm 
occurs in most years. 

The idea of probability goes back a long time. References to chance 
and probability are even found in the Old Testament: "And Saul said, 
Cast lots between me and Jonathan my son. And Jonathan was taken" 
(Samuel 1 :42). About a thousand years ago, legend has it that the Nor­
wegian king (Olav the Holy) and the Swedish king threw a pair of dice 
to determine the ownership of a disputed piece of land. 

There were sporadic writings on chance and probability up until 
the 1600s. At that time, interest in probability was stimulated when 
gentlemen gamblers tried to determine what the payoffs should be in 
certain card and dice games. Because events with small probabilities 
do not occur very often, the gamblers thought these events should have 
high payoffs. On the other hand, events with large probabilities should 
have smaller payoffs because these events happen frequently. Also, the 
probabilities-and thereby the payoffs-ought to be such that the win­
nings were fair, meaning that people putting on the games should 
neither go broke nor make excessive profits. Problems of these kinds 
were presented to mathematicians of the time, and they began to de­
velop probability theory as we know it today. 

Today, statistical interest in probabilities is somewhat different 
from that of gamblers. To stress a basic notion of statistics, if we mea­
sure something several times, a different result will occur most of the 
times. For example, the measure of the length of one leaf on a tree is 
a certain number of inches, and the measure of the length of another 
leaf on the same tree is a different value. This is because of the ran­
domness in the variable (the length of a leaf). Similarly, the percentage 
of people in favor of the current president's policies in one sample is 
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Probabilities can be used for many purposes. (Source: Peanuts® reprinted by per­
mission of United Feature Syndicate, Inc.) 

different from the percentage of people who favor them in another 
sample. This too is because of the randomness we experience from the 
random drawing of the people in one sample to the next. 

Variability between measurements of the same variable raises the 
question of how often a specific result would occur if the measurement 
were repeated many times over, regardless of whether we measure a 
single object (a leaf) or a whole sample of objects (people). The ques­
tion can be answered by probabilities, which are designed to show how 
often something happens over a long series of observations. For ex­
ample, if we draw many, many samples of voters, and in three quarters 
of the samples the percentage of people in favor of the president's 
action is larger than 60%, then we can say that the probability that the 
observed sample percentage is larger than 60% equals 0.75: in 75 out 
of 100 samples, the percentage approving of the president is 60% or 
more. The other 25 samples would have a sample percentage less than 
60%. For the leaf example, the probability may equal 0.10 that the leaf 
length is more than 2.34 inches: in only 1 of 10 measurements is the 
leaf longer than 2.34 inches; 9 of the 10 leaves are shorter than 2.34 
inches. 

Probability statements are made throughout this book: the proba­
bility is 0.023 that a sample mean of a variable is larger than a certain 
value, the probability is 0.15 that the sample standard deviation is less 
than 5.67, and so on. In Chapter 4, in the age at marriage example, 
the mean age of the brides is 30.0 years and the mean age of the grooms 
is 32.3 years, for a difference of 2.3 years. The probability of getting a 
mean difference of 2.3 or more in a sample coming from two popu­
lations where the means are the same is only 0.002. That is, in only 2 
of 1,000 different samples coming from populations where the brides 
and grooms are the same age would the mean for the grooms be 2.3 
or more years larger than the mean for the brides. 

5.1 Probability 179 
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Such probabilities tell us on the basis of sample data how often 
these kinds of results would occur if the study were repeated for many 
different samples. Probabilities are useful for applying to the real world 
findings on an observed sample. 

So far we have established that a probability is a number between zero 
and one. How do we find these numbers? 

Using equally likely events 

The early method of finding probabilities came from card and dice 
games. If a die (one of a pair of dice, for noncrapshooting readers) 
has six sides and all sides are equally likely to show when the die is 
tossed, then the probability of anyone side showing is 1/6. Similarly, 
if a deck of cards has 52 cards and 13 of them are clubs, then the 
probability that a randomly chosen card is a club equals 13/52 or 
1/4. 

This way of thinking about probabilities suggests that if there is a 
specific number n of possible outcomes when an experiment is per­
formed and a subset k of them is considered favorable, then the prob­
ability of a favorable outcome is kin. For the die, k = 1 for one side 
and n = 6 for the sides for the probability 1/6. For a deck of cards, 
k = 13 clubs and n = 52 cards, so the probability of drawing a club (or 
a card from one of the other three suits) becomes 13/52 = 1/4 = 
0.25. 

This system for finding probabilities works for cards or dice because 
the possible number of outcomes is known and, because of their sym­
metry, all are equally likely. However, often it is not known whether all 
possible outcomes are equally likely (for example, all the horses in a 
race are not equally likely to win). Sometimes the possible outcomes 
are not known (for example, the number of gamblers choosing num­
bers in a football pool). Under such conditions, the "equally likely" way 
of finding a probability is impossible. 

Using relative frequency 

In the second and most common way of finding simple probabilities, 
the probability of an event occurring is based on the proportion of 
times an event actually occurs in a great number of cases. Take child-
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Poker players' paradise-a royal flush and a full house. What is the proba­
bility of drawing either hand? Of drawing both? (Source: First Image West, Inc.) 

The probability that a woman having an abortion is Catholic is not 
the same as the probability that a Catholic woman will have an abor­
tion. Excerpt from a letter to the editor from Charles F. McLaughlin 
of Philadelphia to The Philadelphia Inquirer, December 8, 1992: 

I am writing in response to a statement on Catholic women in 
Victoria A. Brownworth' · Commentary Page article. She stated: 
"According to the Alan Guttmacher Institute, more Catholic 
women eek abortion than women of any other faith." 

That tatement misleads. It tends to leav one with the im­
pression that, as individual , a Catholic woman i more likely 
than a woman of any other faith to 'eek or have an abortion , 
which i not true . The Roman atholic church ha ' more mem­
ber. than any other religiou denomination in the United 
States. Catholic women outnumber women in the next large t 
denomination by more than 2 to 1. In numbers, it may be tru 

that Catholic worn n eek more abortion than women of an­
oth r faith. However, it is unlikely that a atholic woman i 
more likely than a woman of another faith to eek an abortion. 
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birth as an example. Each birth results in one or more babies who are 
either boys or girls. Whether the two possibilities are equally likely is 
not known. 

Over many years of record keeping, the proportion of girls among 
newborn children was found to equal 0.49. The proportion is found 
by dividing the number of girl babies by the total number of babies 
born. A probabilist (a person who studies probabilities) would say that 
as the number of births approaches infinity (by this is meant a very 
large number of observations), the observed proportion of girls ap­
proaches the true value of the probability of a girl. 

In this example, a probability is a long-run proportion, the result 
of investigating a large number of events over the long run. The exact 
numerical value of such a probability never is identified, but many 
observations bring the estimate close to the actual value. The problem 
with the long-run way of finding probabilities is that, as the famous 
economist Lord Keynes said, "in the long run we will all be dead." No 
statistician can hope to stay around long enough to find the true values 
of a probability. Instead, the statistician relies on the observed propor­
tion as an estimate of the true probability. 

Tossing a penny can be used to illustrate long-run probability. A 
variation is spinning the coin instead of tossing it. Stand a penny on 
its edge and support it with a finger on the top. Use your other hand 
to give the penny a good spin with the snap of a finger. Is the penny 
likely to how heads and tails about the same number of times as if 
it were tossed? 

To answer this question, we tried spinning pennies for a while 
in one of our statistics classes. There were 25 people in the class, and 
each person spun a penny 10 times, for a total of 250 spins. Of these, 
97 showed heads and 153 showed tail . Thus, the proportion of 
heads was 97/250 = 0.396 (or 39.6%) instead of about 0.5 if the two 
sides were equally likely. 

Did tbe true probability still equal 0.5, and was the result within 
the range of po sible results expected from the randomness of coin 
spinning alone? This question is answered in Exercise 7.58. 
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Using subjective probabilities 

Even the relative frequency approach to finding probabilities-does not 
always work. What is the probability that Mr. Kaye will arrive safely at 
his destination after taking a planned trip tomorrow? Only one specific 
trip is occurring tomorrow, a unique event. He cannot take the trip and 
then roll back time and take the trip again and again and again to see 
how many times he arrives safely out of the total number of times he 
takes the trip. When there is no measurement that can be repeated, 
there is no way to find an observed proportion of how many times a 
specific event occurs. But it is still useful to think in terms of probabil­
ities. Mr. Kaye cannot be certain that he will arrive safely, but from what 
he knows of travels like these, he judges the probability of a safe arrival 
to be large enough that he should take the trip. 

Probability for a unique event is called subjective probability. In the 
example, personal probability is simply an expression of the uncer­
tainty Mr. Kaye feels about traveling, based on all the information avail­
able at the time. We can all have different values of the probability for 
a safe arrival, so there is no right or wrong value of a personal proba­
bility. That makes personal probabilities subjective. 

STOP ANO PONDER 5 . 1 

Which method of finding a probability would be most uitable for 
the following problems? 

Method 
a. Equally likely events 
b. Relative frequency 
c. Subjective probabilities 

Problems 
1. A 10-year-old commuter airline will continue to hav an accident-

free record. 
2. The poker player will draw an ace from the d ck. 
3. The snowfall in March in Minneapoli will exceed 5 inches. 
4. It will rain at the picnic tomorrow. 
5. A family with 6 children includes twins, triplets, quadruplets, 

quintuplets, or sextuplets. 
6. A probability problem that has been of special interest to you 

lately. 
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Personal or subjective probabilities form the basis for what is known 
as Bayesian statistical inference, which we do not pursue in this text. 
This book most often uses the long-run proportion as a probability. 

Probabilities are simply numbers, and as numbers they can be added 
to each other, subtracted from each other, and multiplied and divided 
by each other. Computations can help us find the probabilities of more 
complicated events from the probabilities of simpler events. 

For example, the probability that a randomly chosen new baby is a 
girl is 0.49. Given the probability for that simple event, what is the 
probability of having a boy? Subtracting 0.49 from 1.00 yields 0.51, and 
that is the probability of a boy, since girl and boy are the only two 
possible outcomes of a birth. A more complex problem that the simple 
probability helps solve is, What is the probability that there are 3 girls 
and 1 boy in a family with 4 children? That is, how often are the chil­
dren in families with 4 children composed of 3 girls and 1 boy? 

One way to find this out would be to actually locate many, many 
families with 4 children and count how many of them have 3 girls and 
1 boy and how many do not. We would find that about 0.24 (or 24 out 
of 100) of them have 3 girls and 1 boy. But this empirical method to 
find a long-run proportion would be costly and time consuming-and 
unnecessary. Instead, we can use the rules for how to multiply and add 
probabilities to compute the answer from the original female birth 
probability of 0.49. The answer to the question is also 0.24, and the 
computations are shown in Section 5.4 in the subsection on binomial 
distribution. 

Adding probabilities 

When we want to find the probability of one event or another event 
that both cannot happen at the same time, then we simply add the 
probabilities for the two events. For example, to find the probability 
that a family of 4 children has 3 girls or4 girls, we assume that particular 
family cannot have both 3 and 4 girls at the same time, so we add the 
two probabilities. The probability of 3 girls is 0.24 and the probability 
of 4 girls is 0.06, so the probability of 3 or 4 girls is 0.24 + 0.06 = 
0.30. If we want to find the probability that something is either large 
or small-for example, that a sample mean is smaller than 5.6 or larger 
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than 17.8-since both of these events cannot happen at the same time, 
we add the probability that the mean is smaller than 5.6 and the prob­
ability that the mean is larger than 17.8. 

Multiplying probabilities 

To find the probability of one event and another event happening at 
the same time, we multiply the probabilities of the two events. The prob­
ability of both events happening at the same time is smaller than the 
probabilities of either of the two events happening by itself; two specific 
events happening at the same time occurs less often than either of them 
happening alone. This piece of common sense is borne out mathe­
matically: multiplying two numbers that are each less than one yields 
a product that is less than either one of them. For example, 0.3 times 
0.4 equals 0.12, and 0.12 is smaller than either 0.3 or 0.4. 

Returning to the family of 4 children, what is the probability that 
a family had a girl, then a boy, then a boy, and finally a girl? Just mul­
tiply the probabilities for each child: 0.49 * 0.51 * 0.51 * 0.49 = 

0.062. Thus, only 62 out of 1,000 families with 4 children would have 
a girl, a boy, a boy, and a girl, from oldest to youngest. 

In many situations probabilities cannot be multiplied directly. So­
called conditional probabilities have to be taken into account when the 
multiplication is done. 

In 1993, before the International Olympic Committee had decided 
where to hold the summer Olympic games in the year 2000, book­
makers in London gave odds on where they thought the games would 
be held. The bookmakers thought that some cities had a higher prob­
ability of getting the games than other cities, and they offered odds 
against where they thought the games would be held: 

Sydney, Australia 4 to 9 

Beijing, Ching 5 to 2 

Manchester, England 

Berlin, Germany 

Istanbul, Turkey 

Brasilia, Brazil 

10 to 3 

16 to 1 

66 to 1 

200 to 1 

Odds against an 
event are ex­
pressed in a ratio 
of whole num­
bers showing 
how often an 
event fails to take 
place versus how 
often it does take 
place. 
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These numbers look just like the odds for a horse race. Since in 
odds against an event occurring the number of times the event does 
not occur is always given first, it is clear that the bookmakers felt that 
Sydney had a pretty good chance of being the Olympic site and that 
Brasilia was a long shot. 

Odds rather than probabilities are commonly used when money is 
being wagered on an outcome. The odds of 200 to 1 on Brasilia tell us 
that if we had paid a bookmaker $1 and Brasilia actually got the games, 
then we would have received the dollar back plus an additional $200. 
The odds therefore describe how much money we have to pay the 
bookmaker and how much money we get back if we win. 

Odds are given in whole numbers, like 4 to 9, for ease in expression. 
Odds of 4 to 9 are the same as odds of 2 to 4.5, but decimal numbers 
are cumbersome. This means that odds take some getting used to be­
fore they can be compared. 

STOP AND PONDER 5 . 2 

In the list of Olympic sites odds, whlch are better, the odds for Bei­
jing or the odds for Manchester? 

Brasilia as a long shot in the race for the Olympic games shows that 
the bookmakers thought Brasilia had a very small probability of getting 
the games. Odds of 200 to 1 translate into a probability for Brasilia 
getting the Olympic games ofl/(200 + 1) = 1/201 = 0.005. Sydney's 
odds of 4 to 9 mean that if we paid the bookmaker $9 and Sydney got 
the games, then we got our $9 back plus another $4. We would not 
have received much money because the bookmakers thought that be­
cause Sydney had such a large probability of getting the games, many 
people would pick Sydney as the winner. 

The probability of Sydney getting the games, in the eyes of the 
London bookmakers, was 9/(4 + 9) = 9/13 = 0.69. The probability 
of Beijing getting the games was 0.29, Manchester 0.24, Berlin 0.06, 
Istanbul 0.015, and Brasilia 0.005. Formulas 5.1, 5.2, and 5.3 at the end 
of the chapter take us from odds to probabilities and back to odds 
again. Rather than giving the odds against each of the cities, the book­
makers could have given the odds in favor of each city. 

On September 23, 1993, the International Olympic Committee 
awarded Sydney the summer Olympic games in the year 2000. The 
bookies were content. 
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Often there is an easy way and a hard way to find something out. For 
example, a hard way to find the distance from New Orleans to Chicago 
would be to drive the distance and measure the miles. An easy way 
would be to look in the back of a road atlas where cities and distances 
are listed. Statisticians have an easy way to find the probabilities for 
complex events once certain probabilities for simple events are known. 

Probabilities for simple events can be used to compute probabilities 
of more complex events when it is too difficult to find the probabilities 
of the complex events directly. In the example family with 4 children, 
the simple probability is the probability of .49 that a randomly chosen 
baby is a girl. The simple event is the birth, resulting in a boy or a girl. 
The complex event is the occurrence of 3 girls and 1 boy in the family. 

By creating preformulated solutions to various problems of prob­
ability, statisticians save themselves a great deal of time and trouble. 
Two examples of these energy-saving opportunities are the binomial 
distribution and the Poisson distribution (Poisson was the French 
mathematician who introduced the method). 

Binomial distribution 

Imagine that you would like to know the probability of a coin landing 
heads twice in a row. Do you have to sit in a room all day tossing coins 
to find the probability of tossing heads twice in a row? Maybe not, if 
you know that (1) the probability of tossing heads once is 0.5; (2) there 
are only two options (heads or tails); (3) each toss is independent of 
the other. To find the probability of tossing heads twice in a row, you 
multiply 0.5 times 0.5 to get 0.25. Thus, there is a 25% chance of tossing 
heads twice in two tosses. This you can do without a calculator, a day 
tossing coins, or high-level mathematics. 

Consider the more difficult problem of calculating the probability 
of a family with 4 children having 3 girls and 1 boy from the simple 
probability of 0.49, the probability that a baby is a girl. Mathematicians 
realized as long as 300 years ago that it does not matter whether the 
probabilities being sought are for girls or boys, heads or tails, or dead 
or alive goldfish. From the correct probability for a simple event, for­
mulas, printed tables, and now computer software have been created 
that help us find the correct probability for more complicated events. 
The most common of these formulas is called the formula for binomial 
distribution, and it charts the distribution of numbers of successes (such 
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What is the probability that all of these randomly selected babies are girls? (Source: Penny Gentieu, Tony 
Stone Images.) 

as a girl birth) in n trials (baby births). By using this formula with paper 
and pencil, computer software, or printed tables and plugging in the 
simple event information, the probability of any given outcome can be 
obtained. Formula 5.4 at the end of the chapter is the formula for 
binomial distribution. 

A variable that has only two possible values, such as the gender of 
a newborn child, forms the basis for binomial distribution. (The word 
binomial means "two numbers or names.") Suppose we know the prob­
ability for one of the two values. For example, for the gender variable 
the probability of a newborn child being a girl is 0.49; the probability 
of the child being a boy is therefore 0.5l. The two probabilities must 
add up to l.00, since the child must be either a boy or a girl. 

The next step in creating the binomial distribution consists of mak­
ing several independent observations of the base variable, gender of 
child. If a family has 4 children, then a certain number of them are 
girls and 4 minus that number are boys. This is a new variable: number 
of girls among 4 children. This variable has the possible values 0, 1,2, 
3, or 4. Such a variable is known as a binomial variable. A binomial 
variable indicates the number of occurrences of one of the two values 
under study. 

The next step is to find the probability for each value of the bino­
mial variable (number of girls) in families with 4 children. The prob­
abilities can be computed using Formula 5.4, and they are shown in 
Table 5.l. Such a collection of values of the binomial variable and their 
corresponding probabilities is known as a binomial distribution. 

Let us look at a family with 3 girls and 1 boy as an example. One 
order in which the children could have been born is the 3 girls first 
and then the boy. The sequence can be represented GGGB, where G 
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Table 5.1 Binomial probabilities for the number of girls in a family of 4 
children 

Number of girls o 1 2 3 4 Total 

Probability 0.07 0.26 0.37 0.24 0.06 1.00 

stands for girl and B for boy. The probability that the first child was a 
girl equals 0.49. The probability that the second child was a girl equals 
0.49. The probability that the first and the second children are girls is 
therefore the product of 0.49 * 0.49. Generalizing from here, the prob­
ability that the first child is a girl and the second is a girl and the third 
is a girl and the fourth is a boy is 0.49 * Q.49 * 0.49 * 0.51 = 0.06. This 
is the probability that a family will have three girls and a boy in exactly 
that order of births. 

A family can have three girls and a boy in four different orders: 

3 girls and 1 boy 

GGGB 
GGBG 
GBGG 
BGGG 

Probability 

0.49 * 0.49 * 0.49 * 0.51 = 0.06 

0.49 * 0.49 * 0.51 * 0.49 = 0.06 

0.49 * 0.51 * 0.49 * 0.49 = 0.06 

0.51 * 0.49 * 0.49 * 0.49 = 0.06 

Sum = 0.24 

Each of these possible sequences has a probability of 0.06. Adding the 
probabilities results in the overall probability 0.24 of three girls and 
a boy. 

It can be tricky to find the number of possible sequences when the 
sample is larger than 4, but the first term in Formula 5.4, given at the 
end of the chapter, makes it easier. And published tables of binomial 
probabilities as well as computer programs for finding binomial prob­
abilities eliminate doing the computations altogether. 

The binomial distribution is used only for a small sample, such as 
the 4 children in the example family. If the product of the sample size 
and the original probability is larger than about 5, then there are sim­
pler ways of analyzing the data. (In the example family, 4(0.49) = 

1.96, which obviously is less than 5.) To find probabilities in a sample 
of 1,200 respondents, with 720 people in favor of a proposition and 
480 against, a better method is the so-called normal approximation to the 
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binomial distribution, discussed in Chapters 6 and 7. As long as the basic 
probability is around 0.5, as is the case in the example family, this 
approximation can be used even with samples of as few as 10 or 15 or 
so observations. 

Poisson distribution 

On June 3, 1990, the sports pages were full of discussions of the unlikely 
phenomenon that had happened the day before: two no-hit baseball 
games had been pitched, one by Mark Langston and Michael Witt to­
gether for the California Angels and the other by Randy Johnson for 
the Seattle Mariners. No-hitters do not occur often in baseball, so even 
one gets considerable press. Two no-hitters on the same day had not 
occurred since 1898. 

To find just how unlikely this event was, the Poisson distribution 
can be used. Simeon Denis Poisson was particularly intrigued by prob­
lems with small probabilities and potentially many occasions that the 
event could occur. Poisson developed his approach with data on the 
number of Pruss ian army soldiers killed by horse kicks in the days when 
the cavalry rode horses instead of tanks. His work was published in 
1837. 

A no-hitter is a dichotomous situation. Any baseball game is either 
a no-hitter or it is not, so there are only two possibilities. But unlike 
the probability of a baby being a girl, the probability of a no-hitter is 
very small, a no-hitter is very unlikely, especially given the potentially 
large number of times (every game) a no-hitter could occur. The Pois­
son variable here is the number of no-hitters in a day; possible values 
of the variable are 0, 1, 2, 3, and so on. 

In such a case, when the occurrence of an event has a small prob­
ability and many possibilities, the probabilities of the different values 
of the Poisson variable can be calculated with Formula 5.7, the formula 
for the Poisson distribution, at the end of the chapter. (The Poisson 
distribution is mathematically derived from the formula for the bino­
mial distribution, but if you examine it, you will see why some people 
think it is not as intuitively obvious as the binomial formula.) Poisson 
probabilities can be computed from the formula or they can be looked 
up in tables. It is also possible to program a computer to find the 
probabilities. 

Data on no-hitters starting with the year 1900, the year both the 
American and National Leagues as we know them came into being, 
show an average 1.9 no-hitter games pitched every year. Let us say that 
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Table 5.2 Poisson probabilities for the number of baseball no-hitters 
occurring in one day 

Number of no-hitters 0 1 2 Total 

Probability 0.989234 0.010708 0.000058 1.000000 

the baseball season lasts 180 days. An average of 1.9/180 = 0.0108 no­
hitters, then, were pitched every day. Applying the Poisson formula to 
that number yields the probability of 0, 1, 2, ... no-hitters being 
pitched any day (Table 5.2). There is no upper bound on the number 
of no-hitters that could be observed beyond the number of games 
played on a given day. 

Based on 1.9 no-hitters a year and 180 days of playing, in most 
games there is at least one hit, since the probability of a no-hitter is 
0.989234. At the same time, the probability of two no-hitters on one 
day is 5.8 in 100,000, or 1 in 17,241. In 100 years, baseball is played a 
total of 18,000 days, so a day with two no-hitters can be expected about 
once every 100 years. The first one occurred almost on schedule, 90 
years after records began to be kept; there may be quite a wait for the 
next one. 

Cy Young. This famous pitcher threw a no-hitter on May 5, 1904. (Source: 
UP/IBettmann.) 
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Hypergeometric distribution 

A third statistical distribution, the so-called hyper geometric distribution, 
can be used in the analysis of two categorical variables when the sam­
ples are very small; see Chapter 9. Formula 5.10 shows how to find 
probabilities for the different values of the hypergeometric variable. 
The distribution is used in Section 5.6 in the example about the fair 
workplace. 

Displaying probabilities in graphs and tables 

We can do many of the same things with probabilities as with observed 
data. We can display probabilities in graphs and tables and we can use 
the probabilities for computations of quantities such as means and 
standard deviations. 

Any kind of graph that can be produced for frequencies can also 
be produced for probabilities: pie charts, boxplots, and so on. 

Figure 5.1 shows a histogram of the binomial probabilities for the 
number of girls in a family with 4 children. A histogram of data on 
many, many families with 4 children and different numbers of girls 
would look exactly the same. Computing the probabilities using the 
binomial distribution saves much time and effort that otherwise would 
have to go into data collection. 

It is worth repeating that it is not the height but the area of each 
of the rectangles in Figure 5.1 that shows the corresponding probabil-
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Figure 5.1 Binomial probabilities for number of girls in families with 4 
children 
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ity. Since the base of each rectangle has length 1.0, the area of any 
rectangle is shown on the vertical scale. Also notice that the total area 
of all five rectangles in the graph equals the sum of the probabilities, 
which is 1.00. 

Computations with probabilities 

We do computations with probabilities to summarize a probability dis­
tribution just as we can do computations to summarize a frequency 
distribution. To find the mean number of girls from the distribution 
in Figure 5.1, we find the point on the horizontal scale at which the 
probability distribution balances. With observed data, we add the values 
of the variable and divide the sum by the number of observations. In 
this case, all possible values 0, 1,2,3, and 4 are present, and each value 
is accompanied by a probability or how often the value occurs. We then 
act as if the value of 0 had been observed 0.07 times, the value of 1 had 
been observed 0.26 times, and so on. Instead of adding 0 a total of 0.07 
times, we multiply the value of 0 by 0.07 to get the contribution of that 
value to the mean and similarly for the other values of the variable: 

mean = p., = 0(0.07) + 1 (0.26) + 2(0.37) + 3(0.24) + 4(0.06) = 1.96 

The u with the tail is the Greek letter J.t (mu), and it is used to 
distinguish a mean found from probabilities from the empirical mean 
x found from actual data. The number 1.96 tells us that in a very large 
number of families with 4 children, the mean number of girls would 
equal 1.96. Computing the mean from the original probability 0.49 of 
a girl and using of the binomial distribution eliminates spending time 
and money collecting from a large number of families. The mean for 
the binomial distribution can also be found with Formula 5.5 at the 
end of the chapter. The mean ofthe Poisson distribution can be found 
with Formula 5.8. 

We can also find a standard deviation for the variable, and it is 
denoted by the Greek letter (J (sigma) to distinguish it from the stand­
ard deviation s computed from observed data. For this probability dis­
tribution, the standard deviation of the number of girls variable is 
(J = 1.00. The mean plus and minus two standard deviations equals 
1.96 ± 2(1.00) = - 0.04 to 3.96. This range of values takes in just 
about all the values of the variable and almost all the total probability 
of one. The standard deviation for the binomial distribution can be 
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found with Formula 5.6 at the end of the chapter. The standard devi­
ation for the Poisson distribution can be found with Formula 5.9. 

Much of the data gathered for statistical analysis come from contin­
uous variables, for which between any two values are other values. Ex­
amples of continuous variables include distance, dollar amount, 
weight, and time. 

Four theoretical variables are useful in determining certain prob­
abilities. They are known as the standard normal z variable, the t vari­
able, the chi-square variable, and the Fvariable. Each has its own special 
distribution. Just as we compute a mean and a standard deviation from 
the data in a sample, we can compute a similar value of one of these 
four variables from a sample. Thus, a z or a t or a chi-square or an F is 
no different from any other sample statistic. As we see in later chapters, 
the values we compute of these four variables are useful for generaliz­
ing from the information in our sample to the larger population from 
which the sample came. 

Standard normal distribution: The bell curve 

There is nothing "normal" about the standard normal distribution, but 
perhaps this word is used in English to maintain a neutral stance be­
tween its German name (Gauss distribution) and its French name 
(DeMoivre distribution). Figure 5.2 shows a normal distribution, or bell 
curve. This distribution, the most easily recognized and aesthetically 
pleasing one, is famous for its shape, which resembles a bell in a bell 
tower. Among its characteristics is its symmetry, with equal areas under 
the curve on both sides of the midpoint. 

One way to think of the normal or z-variable is to imagine a large 
number of observations of a variable, each written on a piece of paper 
that is put into a barrel. Each value is called a z-score. (Use of the letter 
z does not have special significance.) Most of the values of the z-variable 
are in the range from - 2.00 to 2.00; more specifically, 95% of the z­
values lie between -1.96 and 1.96. Very few of the values of z are 
smaller than - 3.00 or larger than 3.00. 

The mean of the z-values equals 0.00, and their standard deviation 
equals 1.00. (These numbers are arrived at using some fancy mathe-
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matics, but the mean and standard deviation can still be imagined as 
computed from a large number of observations, as discussed in Chapter 
4.) A normal variable with mean 0 and standard deviation 1 is said to 
have the standard normal distribution. 

A histogram might give a better sense of the distribution of these 
values. The range of values can be divided into small intervals and the 
number of z-scores in each interval represented by a rectangle whose 
area equals the proportion of observations that fall in the interval. But 
the histogram is messy. When the intervals are very small, the rectangles 
are very narrow, and the vertical lines for the rectangles are very close 
to each other. To clean up the graph, the vertical sides of the rectangles 
could be eliminated, leaving only the tops of the rectangles, which 
would look almost like a smooth curve, as shown in Figure 5.2. 

A bell curve describes many phenomena in the real world, for ex­
ample, height and weight. It also describes psychological test scores of 
many kinds; the curve has become a focus of contention regarding 
whether it measures the distribution of intelligence test scores for dif­
ferent ethnic groups. 
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Just as the total area of the rectangles in a histogram can be said 
to equal 1, so can the total area under the bell curve; the area of each 
thin rectangle is the proportion of z-values in the corresponding inter­
val, and these proportions add up to 1. We see from Figure 5.2 that 
the shape of distribution is unimodal and symmetric around the value 
O. Because of this symmetry, the area under the curve to the right of 0 
equals 0.5 and the area to the left of 0 also equals 0.5. 

Because of the design of the curve, the probability equals 0.95 that 
a randomly chosen value of z lies between -1.96 and 1.96. Because the 
curve is symmetric, the probability equals 0.025 that a randomly chosen 
value of z is equal to or larger than 1.96. It is also true that the proba­
bility equals 0.025 that a randomly chosen value of z is equal to or 
smaller than -1.96. This distribution has been extensively studied, and 
tables have been created to show various areas under the curve. The 
tables are useful for calculating probabilities from z-scores. One such 
table (Statistical Table 1) is shown at the end of the book. There also 
exists an equation that describes the curve. 

The main use of the standard normal distribution is in finding the 
probability of any particular z-value and more extreme values. For ex­
ample, suppose z = 2.34. Does that value belong to an unusual set of 
values or not? From looking at Statistical Table 2, the probability of z 
being equal to or larger than 2.34 is p = 0.0096. Only 96 of 10,000 
z-values are larger than 2.34. Since this probability is very small, the 
observed value of z belongs to an unusual-even far out-group of 
z-values. Unusual z-values are discussed further in Chapter 7 on hy­
pothesis testing. 

The klistribution 

Around 1900, statisticians began to suspect that the standard normal 
distribution was not always the correct distribution to use for finding 
probabilities. William Gosset, a chemist who worked for Guinness Brew­
eries in Dublin, Ireland, with a minor in mathematics, was one of these 
curious people. He decided to examine empirically whether the stan­
dard normal distribution was always the correct one to use in problems 
of probability. 

Rather bizarrely, Gosset started his explorations by obtaining data 
on the height and left middle finger length of 3,000 criminals. From 
each of the two data sets (height and finger length), he selected sam­
ples of four observations of each variable, which gave him two groups 
of 750 different samples. For each sample he computed a value he 



5 . 5 Pro b a b iii t Y Dis t rib uti 0 nsf 0 r Dis ere t e Va ria b I e s 197 

called t. Then he made two histograms to see what the distribution 
looked like for all the t-values in each sample. How close did they match 
the standard normal distribution? 

Gosset found that the shapes of his two histograms were close but 
not identical to the shape of the normal distribution. He called the 
new distribution the t-distrilnttion, and the values he computed are still 
known as t-values. When he published his results, he signed his paper 
with the pseudonym "Student" because his employers did not like their 
people to publish papers for fear of giving away secrets about how to 
brew beer. Thus, the t-distribution is sometimes known as Student's t. 

Later, Fisher did mathematically what Gosset had done empirically; 
he derived the mathematical function for the curves that display the 
t-distributions. Today this is by far the most common distribution 
in use. 

Degrees of freedom: Different distributions for different degrees There is a 
whole family of t-distributions, and each member of the family is a little 
different from the other members. Envision not just one but a whole 
collection of barrels, each full of slips of paper with t-values on them. 
To distinguish between the t-distributions, they are numbered 1, 2, 
3, . . . and the numbers are known as degrees of freedom, abbreviated 
dJ. or df. In dealing with the t-distribution with 10 degrees of freedom, 
we go to the barrel marked 10. 

The statistical equivalent for the barrels is a table for probabilities 
for t-values. When statisticians use the Hable (Statistical Table 2), they 
go to the row labeled 10 degrees of freedom. The size of the sample 
partly determines which t-distribution they use, and readers of results 
are always told how many degrees of freedom were used in an analysis, 
since that is not an easy number to determine. 

It is possible to find the graph of each t-distribution based on the 
idea of a histogram with small intervals described for the z-variable. 
The graph in Figure 5.3 shows the t-distribution for 10 degrees of free­
dom. The total area under the curve equals 1.00,just as for the normal 
distribution. The distribution is unimodal, and it is symmetric around 
the value t = O. This sounds just like the description of the normal 
distribution, and it is hard to see any difference between Figures 5.2 
and 5.3. But there are some differences. 

The normal and the tdistribution One way to see the difference between 
the normal distribution and a t-distribution is to put the two curves 
together in one figure (Figure 5.4). The two curves have the same basic 
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Figure 5.3 Graph of the t-distribution with 10 degrees of freedom 

3 

shape, but the normal distribution is higher in the middle and the 
t-distribution does not converge with the horizontal axis as quickly 
as the normal distribution. The differences indicate that the 
t-values are less concentrated around the mean than are the normal z­
scores. 

For example, the probability that z is larger than 2.5 equals 0.0062, 
while the probability that t, for 10 degrees of freedom, is larger than 
2.5 equals 0.0152. In other words, only 62 of a thousand z-values are 
larger than 2.5, while 152 of a thousand t-values are larger than 2.5. 
Also, with 10 degrees of freedom, 95% of the t-values lie in the interval 
from - 2.23 to 2.23. This means that we go farther away from the mid­
point to take in 95% of all the t-values than we do in the case of the 
normal distribution. Recall that in the normal distribution, 95% of the 
values lie between - 1.96 and 1.96. 

As the number of degrees of freedom gets larger, the curve for the 
t-distribution gets closer to the curve for the normal distribution. Mter 
30 degrees of freedom it is very difficult to tell the two CUlVes apart, 
and by 50 degrees of freedom the two are almost identical. This is the 
reason why statistical tables for the t-distribution go up to only about 
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Figure 5.4 Standard normal distribution and t-distribution with 10 degrees 
of freedom 

100 degrees offreedom; after that the table for the normal distribution 
can be used. 

Chi-square distribution 

The chi-sq~are variable is named for the Greek letter X (chi, pro­
nounced ki). (Chapter 9 explains its place in statistical work.) The chi­
square distribution, like the t-distribution, is also a family of distribu­
tions, not just a single distribution. Again, think of many barrels full of 
slips of paper, this time with chi-square values written on them. The 
chi-square distributions are numbered 1, 2, 3, ... , and these num­
bers are also known as degrees of freedom. Thus, in dealing with the 
chi-square distribution with 3 degrees of freedom, we go to the barrel 
marked 3 degrees of freedom-in the chi-square statistical table (Sta­
tistical Table 3), the row marked 3 degrees of freedom. 

Just as with the standard normal distribution and the t-distribution, 
it is possible to graph each chi-square distribution based on the idea 
of a histogram with small intervals. The graph in Figure 5.5 shows the 
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chi-square distribution for 3 degrees of freedom. The total area under 
the curve equals 1, just as it does for the normal and t-distributions. 
But the shape of the chi-square distribution looks very different from 
those of the t- and z-distributions. This is because the chi-square variable 
has no negative values; the graph starts at O. The distribution is skewed 
(that is, asymmetrical), and most of the values of this variable are less 
than 8 or so. Only 5% of the chi-square values are larger than 7.82. 
Another way of saying this is that the probability equals 0.05 that a 
randomly chosen value of chi-square with 3 degrees of freedom is equal 
to or larger than 7.82. The mean of the chi-square values equals 3, the 
same as the degrees of freedom. 

We use a chi-square distribution the same way we use the normal 
or a t-distribution. If a statistical problem requires us to compute a value 
of chi-square (with a certain number of degrees of freedom) from our 
data, then we use the chi-square distribution to find the probability of 
getting that or a larger value of chi-square. If the probability is small, 
then the value of chi-square is unusual; this means an unusual sample 
result. The result enables us to draw conclusions about our data and 
the larger population from which the sample was taken. This idea is 
pursued further in Chapter 7 on hypothesis testing. 
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Ji!distribution 

The family of F-distributions is named in honor of the great English 
statistician Sir Ronald Fisher. Again, imagine a whole collection of bar­
rels full of numbered slips. Each barrel represents an F-distribution and 
is marked by a pair of numbers, for example 4 and 40. This barrel 
represents the F-distribution with 4 and 40 degrees of freedom. A fairly 
detailed F-table would have information on as many as 1,000 different 
F-distributions. 

Figure 5.6 shows the graph for the F-distribution with 4 and 40 
degrees of freedom. The graph shows that, like the chi-square variable, 
the values of the F-variable are not negative, and the values of F for 
most F-distributions tend to lie in the range from 0 to about 5. With 
small numbers of degrees of freedom, the values of F are somewhat 
larger. For this particular F-distribution, most of the values of the 
F-variable seem to be less than 3. 

According to the table of F-distributions (Statistical Table 4), 5% 
of F-values are larger than 2.45 and only 1 % is larger than 3.51. Thus, 
the probability equals 0.05 that a randomly chosen value of F with 4 
and 40 degrees of freedom is larger than 2.45. When we compute a 
value of F on 4 and 40 degrees of freedom from data and find it to be 
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Figure 5.6 F-distribution with 4 and 40 degrees of freedom 
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larger than 2.45 (or maybe even larger than 3.51), then we have found 
an unusual F-value. 

Need for nonnally distributed data 

Everything we have said about these four theoretical statistical variables 
can be studied mathematically. The three variables t, chi-square, and F 
are all derived from the normal variable z, so every time a t-, chi-square, 
or F-variable is used, certain assumptions are made that the observed 
data follow normal distributions. For data that do not follow normal 
distributions, it is sometimes inappropriate to use any of these three 
distributions. 

USING PROBABILITIES TO CHECK ON ASSUMPTIONS 

Is it a fair coin? 

Any probability is based on certain assumptions being true. If you tell 
me you have a coin in your hand and ask me for the probability that 
it will come up tails when tossed in the air, I would say that the prob­
ability is one half. I say this because I assume that your coin is a regu­
lation U.S. Mint coin. But it could be a fake coin with both sides show­
ing heads, and then the probability of tails would be zero. 

Assume that you are a magician practicing coin tricks, and I do not 
know whether you hold a genuine coin or a fake coin. If you do not 
want to show me your coin, I could check my assumption that your 
coin is a fair coin by collecting data on the coin. Suppose you toss the 
coin 10 times and it comes up heads each time. The data consist of 10 
heads, and I can now find the probability of these data using my as­
sumption that you have a fair coin. Under the assumption of a fair 
coin, the probability of 10 heads and 0 tails can be found from the 
binomial distribution. The probability is equal to (1/2) 10 = 
1/1,024 = 0.001; only 1 in 1,024 times can we expect a fair coin to 
come up heads 10 times in 10 tosses. Under the assumption of a fake 
coin with heads on both sides, the probability of 10 heads in 10 tosses 
simply equals 1 because the coin would always land heads up when 
tossed. 

Now there are two possibilities: 

1. The assumption of a fair coin is correct, and the observed data have 
a very small probability of 0.001. 
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2. The assumption of a fair coin is incorrect, and the probability of the 
data is higher than 0.001. 

One of these possibilities is true, even though I do not know which one 
it is. The first possibility is based on the assumption of a fair coin, and 
I computed the probability of the observed data using that assumption. 
In this possibility, the probability of the data is very small. The other 
possibility is that I do not think the observed data have that small a 
probability; after all, I observed the tosses of the coin, and it didn't 
seem to me that anything unusual actually took place. These are the 
data that did occur, and events that actually occur do not usually have 
small probabilities. 

Now I must choose between the two explanations for what hap­
pened. I run the risk of choosing the wrong explanation, since I will 
never know which of the two explanations is the correct one. But be­
cause the probability of the data is so small for the first possibility, I 
choose the second possibility, where the probability of the observed 
data is higher. Indeed, events that have large probabilities occur much 
more often than events that have small probabilities. Having made the 
choice, I can now to say something about the coin based on the ob­
served data: The coin is not fair! 

To summarize, first we make certain assumptions about the world 
under study. Then data are collected and the probability of obtaining 
the data based on the assumptions is computed. Finally, if this proba­
bility is very small, say less than 0.05, the conclusion is that the assump­
tions must have been wrong in the first place. In the case of the coin, 
there is strong evidence that the assumption of a fair coin is incorrect. 

This line of reasoning is very important to the basic rules of sci­
entific investigations, and it is used in Chapter 7 on hypothesis testing 
and elsewhere. 

Is it a fair workplace? 

Consider another example where certain assumptions are made and 
then the probability of the observed data based on that assumption is 
computed. You work in a group of 10 people at an office; 5 of the 
employees are men and 5 are women. A committee of 4 employees is 
to be formed to study certain issues related to gender in the office 
environment. Some people assume that the management wants to have 
as many women on the committee as possible. The employees want the 
selection of people to the committee to be random. Management says 
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they will choose the committee randomly, but when the committee is 
announced, its members are 4 women and 0 men. Did management 
really choose this committee randomly or did some other selection 
criterion influence the choices? 

The possible explanations for what is going on are similar to the 
explanations for the coin toss: 

1. The assumption of random selection of committee members is cor­
rect, and the observed data have a very small probability of 0.02. 

2. Management used some other way of making the committee as­
signment, and the probability of the data is higher than 0.02. 

Using the assumption that the assignment to the committee was truly 
random, you follow the general principle and compute the probability 
of getting the observed data or more extreme data. If this probability 
is small, you will have reason to doubt management's claim. 

The data cannot be any more extreme, since all 4 committee mem­
bers are women. If the claim by management of randomness is true, 
then the probability of getting the observed data can be computed to 
equal 0.02 (see Figure 5.7). This probability is very small, and it tells 
you that it is very unlikely that 4 women could be chosen if the selection 
was random. This kind of committee would occur very seldom if many 
committees were created at random; only 2 out of 100 committees 
would have this particular configuration. The fact of such an unlikely 
committee makes you question the assumption ofrandom assignment 
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Figure 5.7 Probability distribution for number of women in a randomly 
selected committee of 4 
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to the committee. As with the coin example, you choose the second 
possibility, based on the small probability of the data under the as­
sumption of random assignment. You go back to management and tell 
them the data are such that the employees do not believe the commit­
tee was selected randomly. 

In addition to the probability of 4 women and 0 men, Figure 5.7 
also shows the probabilities of 3 women and 1 man (0.24), 2 women 
and 2 men (0.48), 1 woman and 3 men (0.24), and 0 women and 4 
men (0.02). The computations are shown at the end of the chapter as 
Formula 5.1. The actual observed value of number of women is 4, and 
the probability of this value is shaded in the graph. Such a shaded area 
is known as a tail probability, since it occurs in one of the tails of the 
distribution. 

Is it an evenly split electorate? 

Following is a larger and perhaps more realistic example of using prob­
abilities to check assumptions. Before an election, we do a survey and 
ask people how they would vote if the election were held today. We 
find that 650 people would vote for the Democratic candidate and 550 
would vote for the Republican candidate. We want to use the data to 
predict how the entire electorate will split between the two candidates. 

First, we assume that the electorate is evenly split between the two 
parties: the probability equals 0.5 that a randomly chosen person plans 
to vote for either party. Using that assumption, we compute the prob­
ability of getting 650 or more Democrats in a sample of 1,200. We need 
the probability of 650 or more because the probability of any specific 
number of Democrats is very small. By computing the probability of 
650 or more, we can find out whether 650 belongs to a set of values 
that all have small probabilities or to a set of values that could occur 
quite often. 

To find the probability of 650 or more, assuming a probability of 
0.5 that a person is a Democrat, we could use the binomial distribution. 
But that would be a great deal of work because we would have to use 
the binomial formula to find the probability of 650, of 651, of 652, and 
so on. Instead, we use the standard normal distribution to find the 
probability (discussed in greater detail in Chapter 7). Based on the 
assumption of an even split in the electorate, then 650 out of 1,200 can 
be translated to a z-value of the standard normal variable equal to 2.89. 
The probability that z is equal to or larger than 2.89 is 0.002, which 
means that the probability of 650 or more Democrats in 1,200 is also 
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equal to 0.002. Thus, assuming an evenly divided electorate, we would 
get 650 or more Democrats in a sample of 1,200 votes in only 2 of 1 ,000 
different samples. 

Such a probability is known as the p-value for data. The p-value is 
shown as the shaded part under the curve in Figure 5.8. If the electorate 
is evenly split, then the p-value for our data is a small 0.002. This may 
mean some unusual data in the one sample, or it may mean that our 
basic assumption of an evenly split electorate is not correct. We prefer 
to think that the small p-value indicates that the assumption of an 
evenly split electorate is not correct. Thus, the sample tells us that the 
electorate is not evenly split and that the Democratic candidate would 
win if the election were held today. 

This kind of conclusion is typical of conclusions of statistical anal­
yses. First an assumption is made about the population from which the 
data were generated. Then a limited amount of data are collected and 
certain computations made on them. Depending on the results of the 
computations, the decision is made about whether the original as-
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sumption is correct or incorrect. With only limited data, some uncer­
tainty about whether the conclusion is correct or not remains. 

We are constantly faced with choices and decisions to be made, and in 
some very informal ways, we make most of our decisions on the basis 
of probabilities. When we need to travel a long distance, we are faced 
with the decision whether or not to fly. Airplanes crash from time to 
time, so there is a small probability the plane we take will crash with 
possible loss of lives. We could, of course, not go and avoid the chance 
of a crash. But the probability of a crash is so small that people do fly 
every day and do get to their destinations. We have to evaluate the 
probability of a crash against the benefit of getting where we want to 
go. This balance between risks and benefits forms the basis for a process 
known as decision analysis. 

Decisions in the face of uncertainty are made on the group as well 
as the personal level. On the group level, decisions are made on setting 
public policy in the face of uncertainties about outcomes of new plans 
and laws. Because of the health risks from pollution in the air, should 
a community close down all sources of pollution such as cars and fac­
tories to eliminate pollution? Most do not seem willing to; they avoid 
this choice because the closings would also have other and perhaps less 
desirable consequences. Should a bridge be closed if there is a small 
probability that it will collapse? A closed bridge will send the traffic on 
detours and perhaps increase the chances of traffic accidents on 
smaller roads. 

Scientists and statisticians often combine forces to develop forms 
of decision analysis based on probabilities. Decision analysis was used 
to form the decision to evacuate Americans from Lebanon in a time 
of trouble there; it was used to lift an embargo on the sale of advanced 
computers to the former Soviet Union; it was used in the Star Wars 
project. 

How can we measure the amount of uncertainty? If the probability 
of an event equals 1, then the event is certain to happen all the time. 
With the probability of, say, 0.95, the event is somewhat less certain to 
happen; when the probability is that high, the event happens often but 
no longer always. Similarly, a probability of 0.05 means that the event 
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will almost certainly not happen. The most uncertainty occurs when 
the probability of an event equals 0.5. The event happens and does not 
happen equally often, and it is impossible to predict what will happen 
next time. One way to measure the uncertainty in a situation is to create 
the product P(l - P). When the probability is 0 or 1 then there is no 
uncertainty, and the product equals O. The product has its largest value 
of 0.25 when p = 0.5, the probability of most uncertainty. 

Many of the probabilities that form the basis of daily decisions are 
not well known. We know that the probability of an airplane crash is 
small, but we do not know what the probability is. An engineer would 
have difficulty giving an exact probability that other engineers would 
agree on of a bridge collapse. When we are deeply in love and decide 
to get married, we do so with the sense that the probability of the 
marriage succeeding is very high. If we knew that the probability was 
0.6, we might decide not to go ahead with the wedding. Of course, 
recent divorce data suggest that many people have an unrealistic sense 
of the probability of a successful marriage, while others may go ahead 
anyway, even when they know the exact probability. 

Even when we know a probability, it is sometimes hard to compre­
hend what such a number means. What can we make of a statement 
that the probability of dying from drinking a can of soft drink with 
saccharin every day equals 0.00001? It helps to change that to 1 person 
in 100,000, but even that is hard to comprehend fully. Sometimes it is 
easier to understand small probabilities when they are compared with 
other probabilities. If we read that the average cigarette habit is 100 
times as dangerous as drinking a diet soft drink, then it is a bit easier 
to understand the risks involved. 

Some evidence indicates that people have excessive reactions to 
small probabilities. In the late 1980s, isolated cases of terrorism, in 
which tourists were killed, occurred in Europe; the reports had a 
great impact on tourism at the time. The number of acts of terrorism 
did not exceed the number of other kinds of individual accidents that 
normally take tourists lives, such as traffic accidents, suicides, heart 
attacks, drownings, and food poisonings. Still, tourism rates were 
greatly reduced that year, which suggests that many people perceived 
the probabilities of terrorism acts as high enough to cancel their travel 
plans. 

Making decisions can be troublesome in part because probabilities 
are not static. Our personal probabilities of uncertain events are con­
stantly upgraded in the face of new evidence. Our probability that it 
will rain next weekend firms up increasingly as we follow the weather 
developments during the week; after watching the forecast on TV Sat-



Psych I . have long been &scinateci with personal probabili*ies 
and have tned to assess some of the factors that cause people per­
sonal probablliti to differ from those of the statistician. In one 
study women were shown a variety of nightgowns and aslc.ed which 
one of them they would be most likely to buy. The gowns were ran­
domly reordered for each subject so that they were constandy seen 
in different orders. The researchers assumed that the most beautiful 
nightgown would have the highest probability for selection and the 
least attractive gown the lowest probability for selection. The results 
of the study indicated that, in general, the nightgown seen first re­
ceived the highest rating. regardless of which gown it was. The sec­
ond most preferred gown was the one seen last. The subjects were 
not aware that the order in which the gowns were presented affected 
their choices. (Source: R. E. Nisbett, E. Borgida, R. Crandall, and H. R«d. 
·Popular induction: Infl1T'mlltion is not necessarily infrmnative, .. in J. S. Carroll and 

J. W. Payne (eds.), Cognition and Social Behavior, Hillsdale, NJ: Lawrma 
Erlbaum, 1976.) 

In other studies, the effects of stereotypes were clearly shown. 
Subjects were told that a panel of psychologists gave the following 
description of a person drawn at random from a sample of 70 en­
gineers and 30 lawyers: john is a 39-year-old man. He is married 
and has two children. He is active in local politics. The hobby that 
he most enjoys is a rare book coUection. He is competitive, argu­
mentative, and articulate." The subjects were asked: What is the 
probability thatJohn i a lawyer rather than an engineer? Note that 
according to the numbers in the sample, the probabilities were 0.7 
engineer and 0.3 lawyers; the chances were 7 in 10 that a randomly 
chosen person was an engineer and 3 in 10 that he was a lawyer. But 
95% of the subjects chose lawyer over engineer. They tended to 
ignore the base rate of engineers to lawyers and over emphasize the 
information that seemed to fit cultural stereotypes of what lawyers 
are like. (Source: D. Kahneman and A. Tversky, "On the psychology oj prediction, .. 
Psychological Review, vol. 80 (1973), pp. 237-251.) 

There are other reasons people rely on personal probabilities 
over statistical probabilities: the concreteness of an event-for ex­
ample, developing a belief that you will acquire a rare disease be­
cau e omeone you know has it; the strong opinions of a close 
friend-"There's no future in majoring in mortuary science"; one's 
own personal experience -"r don't care what the statistics say, 
smoking does not harm me"; or the word of authorities-"Marijuana 
causes senility." 
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urday night, our probability for rain the next day will be quite close to 
either zero or one. 

The way in which people upgrade probabilities in the face of new 
information is often inconsistent with the mathematical theory for up­
grading probabilities. People tend to be more conservative in their 
assessment of probabilities than they should be and do not move their 
probabilities quickly enough toward 0 or 1. If the probability of an 
event is 0.5 and new information is obtained, statisticians may recal­
culate the probability as 0.9. But when people are asked about the new 
probability, most will have changed their personal probability less. The 
many reasons for this conservatism include reluctance to change one's 
mind or to understand events in radically new ways. Other influential 
factors also affect how people use or misuse information in making 
decisions (see the box on page 209). 

A probability is a number between 0 and 1 that tells us how like event 
will happen. 

5.1 How to find probabilities 

There are three major ways of finding the numerical values of proba­
bilities: equally likely events, relative frequency, and personal assess­
ment. When events are equally likely, the probability of a desired out­
come is found by dividing the number of favorable outcomes by the 
total number of outcomes. When records or an event have been kept 
over long periods of time or with very large samples, the proportion of 
times an event occurs is a good estimate of the probability of the event. 
For unique events, the probability is a personal evaluation of the like­
lihood of the event occurring, based on all available information. 

5.2 Rules for computations with probabilities 

As numbers, probabilities can be added and subtracted, as well as mul­
tiplied and divided. Such computations can help in finding the prob­
abilities of more complicated events from the probabilities of simpler 
events. The probability of one event or another event, when both 
events cannot both occur at the same time, is the sum of the probabil­
ities of the two events. The probability of one event and another event 



happening is the product of the probabilities of the two events, when 
the two events are independent of each other. 

5.3 Odds: The opposite of probabilities 

Odds express in whole numbers how many times an event fails to occur 
versus the number of times it occurs. Odds of 5 to 1 means that the 
event does not occur in 5 of 6 trials and does occur in 1 of 6. 

5.4 Probability distributions for discrete variables 

The binomial distribution finds the probability that one of two events 
occurs a certain number of times in a total of n trials; the binomial 
distribution is convenient to use only for small samples. For an event 
with a small probability and many possibilities, such as a no-hitter base­
ball game, the Poisson distribution is more useful than the binomial 
distribution for finding the probability. The Poisson distribution can 
be regarded as a specialized case of the binomial distribution. 

5.5 Probability distributions for continuous variables 

Four theoretical variables that can be used to find probabilities are the 
standard normal z, the t, the chi-square, and the F. Each variable has 
its own distribution and thus its own characteristically curved shape 
when graphed. 

The standard normal curve is bell-shaped, with 50% of the obser­
vations on either side of the midpoint. The mean of the standard nor­
mal observations is set to 0 and the standard deviation to 1. 95% of the 
area under the curve is located between -1.96 and 1.96. Sample scores 
can be converted to special z-scores. From tables of the standard normal 
variable we can find probabilities that z-scores are larger or smaller than 
certain values. 

The t-distributions, sometimes known as Student's t, are similar but 
not identical in shape to the normal distribution. They are the most 
commonly used statistical distributions. The number of degrees of free­
dom and indirectly the number of observations determine which of the 
t-distributions to use. 

The distributions of the chi-square are skewed, with values starting 
at o. The F-distributions are also skewed, with values starting at o. The 
F-distribution depends on a pair of degrees of freedom. 

5.8 Sum mar y 211 
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By definition, the three variables t, chi-square, and Fare all derived 
from the normal variable. To use these statistical variables, the data 
should be normally distributed. 

5.6 Using probabilities to check on asswnptions 

A p-value is the probability of obtaining the observed data or more 
extreme data, given some basic assumptions about the data. 

5.7 Decision analysis: Using probabilities to make decisions 

Scientists and statisticians often combine forces to develop forms of 
decision analysis based on probabilities. 

The way in which people upgrade personal probabilities in the face 
of new information is often inconsistent with mathematical theory. 

Chernoff, Herman. "Decision Theory." In William H. Kruskal and Ju­
dith M. Tanur (eds.), International Encyclopedia of STATISTICS. New 
York: The Free Press, 1978. Brief discussion of how statistics can be 
used to help decision making. 

Fairley, William B., and Frederick Mosteller. Statistics and Public Policy. 
Reading, MA, 1977, "People v. Collins. The Supreme Court of Califor­
nia" and "A conversation about Collins." Interesting uses of probabilities 
to determine guilt or innocence. 

Huff, Darrell, and Irving Geis. How to Take a Chance. New York: W. W. 
Norton, 1959. 

Snell, F. Laurie. Introduction to Probability, New York: Random House, 
1984. 

ODDSANDPROBAB~ 

If we are given odds of a to b of an event happening, then the proba­
bility p of the event happening is 



b 
P=a+b 

This equation can also be written 

b/a odds 
P = 1 + bl a = 1 + odds 

(5.1) 

(5.2) 

It is also possible to go the other way, from probabilities to odds. Ifwe 
solve the equation above for the odds bl a, we find 

b _P_ 
a 1 + P 

(5.3) 

In the Olympics site example in Section 5.3, the probability of Sydney 
getting the 2000 summer games was 0.692: 

b 0.692 
1 - 0.692 = 2.25 a 

This means that the odds are 1 to 2.25, the same as odds of 4 to 9 when 
converted to whole integers. Odds are given as "against the event hap­
pening (a)" to "for the event happening (b)." Thus, the probability for 
the event happening is p = bl (a + b), and the probability against the 
event happening is al(a + b). 

BINOMIAL PROBABD...ITIES 

The two values of the dichotomous variable are often called success 
and failure. Let 'Tr be the probability of success and 1 - 'Tr the proba­
bility of failure. In a sample of n observations, the number of successes 
is x and the number of failures is therefore n - x. The probability of 
x successes and n - x failures, the mean number of successes, and the 
standard deviation of the number of successes are 

P(xsuccessesin ntrials) = (:)77""(1 - 7T)n-x 

n! = 77""(1 - 7T)n-x (5.4) 
x!(n - x)! 

mean of x = JL = n7T (5.5) 

Formulas 213 
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standard deviation of x = a = .J n1T(l - 7T) (5.6) 

where the exclamation mark meanS a long (factorial) multiplication: 

n! = n(n - l)(n - 2) ... (3)(2) (1) 

The parentheses enclosing n over x is the binomial coefficient known 
as "n choose x," and it tells us in how many ways we can choose x objects 
from a group of n objects. 

As an example, let n = 4, x = 3 and 1T = 0.49. The probability of 
3 successes and 1 failure is 

( 4)0.493(1 - 0.49)4 - 3 = 4! 0.493(1 - 0.49)4-3 
3 3! (4 - 3)! 

= (4) (3) (2) (1) (0.49)3(0.51) = 4(0.49) 3(0.51) 
(3) (2) (1) (1) 

= 0.24 

The mean and standard deviation are 

mean J.L = 4(0.49) = 1.96 girls per family 

standard deviation a = .J 4(0.49) (l - 0.49) = 1.00 girls per family 

POISSON PROBABll.ITIES 

Let the mean number of occurrences be denoted J-L. The probability 
of the event occurring x times is then found from the expression 

(5.7) 

The mean and standard deviation of the number of occurrences are 

mean = J.L (5.8) 

standard deviation a = -Jij, (5.9) 

If the phone rings on the average 2.1 times an hour, what is the prob­
ability that there will be 5 phone calls in an hour? We substitute J-L = 

2.1 in the formula for the Poisson probabilities and find 



Table ~.g Cender and committee selection 

Females Males Total 

Selected 4 0 4 
Not selected 1 5 6 

Total 5 5 10 

e- 2.12.P 
P(5) = 5! = 0.042 

In only about 4 of 100 hours will there be as many as five phone calls. 
The standard deviation ofthe number of calls is (J = J2l = 1.45 calls. 

The data in the example about fairness in the workplace in Section 5.6 
can be displayed as shown in Table 5.3. Each of the 10 people belongs 
in one of the four cells in the table. The two sets of totals are fixed, 
since we know the distribution of the gender variable and how many 
people are to be selected for the committee. The four numbers inside 
the table are random and would not necessarily be the same if another 
committee were formed. 

Generalized data are shown in Table 5.4. The total of all the objects 
is n, b of one kind and r of the other kind. From the n objects, mare 
randomly chosen and are not replaced after they have been chosen. 
The probability of getting x of one kind is 

Table 5.4 Selecting x objects from b objects of Type 1 and m - x objects 
from n - b objects of Type 2 

Selected 
Not selected 

Total 

Type 1 

x 
b - x 

b 

Type 2 

m-x 
n-b-m+x 

n-b 

Total 

m 
n- m 

n 

Formulas 215 
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(:)(:=!) 
P(x) ~ (:) 

(5.10) 

The two numbers with their parentheses are a binomial coefficient, 
computed same as explained for binomial probabilities (Formula 5.4). 
For the committee example: 

(~) (~) (5)(1) (5) (24) 
P( 4) = (10) = (10) (9) (8) (7) = 5040 = 0.02 

4 (4)(3)(2)(1) 

MEAN AND VARIANCE FROM PROBABILnY DISTRIBUTIONS 

When a discrete random variable can take on the values Xl' X2' . • • , 

X k with probabilities p(x1), p(x2 ), ••• ,P(xk), the mean JL and the var­
iance d2 can be computed as follows: 

REvIEw (ExERCISES 5.1-5.29) 

5.1 What are some synonyms for probability that we use in daily life? 

5.2 Find an example of the use of probabilities in a newspaper article 
and describe how the probabilities are used. 

5.3 How would you define probability according to this text? 

5.4 Probabilities can range in values from what number to what 
number? 

5.5 What is the meaning of the basic formula kin for finding the 
value of a probability? 

5.6 Describe a method for arriving at the conclusion that the prob-
ability of drawing a heart from a deck of cards is 0.25. 



5.7 If you knew that the probability of a student getting expelled 
from school for cheating was 0.12, how would you find out what the 
probability of not getting expelled for cheating would be? 

5.9 When the Ilreal?? prohability of an event is not known, th@n the 
probability can be estimated. Describe a method for estimating the 
probability of an event. 

5.9 a. When you tell one friend that the probability of your going 
to the holiday dance with a particularly engaging new friend is 
0.90, what kind of probability are you giving? 

b. What kind of event are you giving a probability for? 

5.10 a. What is the difference between probabilities and odds? 

b. How are they related to one another? 

c. Why are odds preferred over probabilities in daily betting 
events? 

5.11 A variable with two values, such as heads or tails for the outcome 
of a coin toss, forms the basis of a binomial distribution. What does the 
word binomial mean? 

5.12 In a binomial distribution, what do the probabilities of the dif­
ferent values of the binomial variable add up to? 

5.13 Revisit the family that has 4 children. 

a. If you multiply by 4 the probability of a birth resulting in a 
girl, what does the product tell you? 

b. Which Greek letter designates this product? 

5.14 a. When do statisticians use a Poisson distribution to find par­
ticular probabilities? 

b. Describe a situation in which you would think using a Poisson 
distribution of probabilities would be a good idea. 

5.15 It is possible to find the standard deviation of a variable from 
the probability distribution of the variable. What Greek letter desig­
nates such a standard deviation? 

5.16 What is a major difference between the binomial and the Poisson 
distribution? 

5.17 a. Name the four major continuous theoretical variables used 
in statistics. 

Exercises 217 
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0, Which of the~e variables is mmt commonly used? 
5.18 a. Name three important characteristics of the standard normal 

distribution. 

b. What value is given for the total area under the curve of the 
standard normal distribution? 

c. What is the mean of the z-variable of the standard normal 
distribution? 

d. What is the mode of the standard normal variable? 

e. What is an evenly balanced distribution called? 

f. Most of the values of the z-scores of a standard normal variable 
are found between which two values? 

5.19 a. Name the distribution developed by a brew master. 

b. What was his pseudonym, and why did he use one? 

5.20 We have a family of t-distributions, a family of chi-square distri­
butions, and a family of F-distributions. 

a. How do we distinguish between the members of a particular 
family of distributions (use t-distributions as an example)? 

b. When do the distributions in a family begin to look very sim­
ilar to one another? 

5.21 When you use a statistical table to look up the probability for a 
chi-square value, what must you know in addition to the value of the 
chi-square? 

5.22 a. In a chi-square distribution with 2 degrees of freedom, what 
is the total area under the curve equal to? 

b. In a chi-square distribution with 3 degrees of freedom, does 
the total area under the curve change? 

5.23 a. If someone told you they found a chi-square value for a given 
problem equal to -11.11, would your reaction be? 

b. If the chi-square value was 11.11, would you be impressed at 
its size? Why or why not? 

5.24 a. What does F stand for in the F-distribution? 

b. Except for very low degrees of freedom, what generally is the 
range of F-values? 

5.25 In a sample of voters, 700 people indicate that they are going to 
vote for a Republican candidate. Assuming an even split in the elec-



torate, the p-value for these data is 0.002. Should you conclude that 
the voters are split 50/50 between the two parties or not? 

5.26 If an economist indicates that she works in the area of decision 
analysis, what kinds of problems might she study? 

5.27 "Statistics means never having to say you're certain" may be both 
funny and true; can you explain why? 

5.28 In Section 5.3 on odds, probabilities are given for the possibili­
ties of various cities getting the Olympic games in the year 2000. What 
kind of probabilities are they? That is, are they probabilities based on 
equally likely outcomes, probabilities based on long-run proportions, 
or personal probabilities? Explain. 

5.29 Give an example of a probability based on equally likely out­
comes, one based on a long-run proportion, and one based on personal 
opinions. 

INTERPRETATION (ExERCISES 5.30-5.52) 

5.30 When a political analyst says, "I believe the probability is 0.6 that 
the President will be reelected next year," what type of probability is it 
and what does the analyst mean by the statement? 

5.31 At the stock car races, your friend tells you the odds for three 
racers on which you are interested in betting: Trudi 3 to 2, Andy 8 to 
2, and Rod 20 to 1. If you want a "sure thing," who would you bet on? 
If you want to make a "big killing" and don't care if you lose small, how 
would you bet? Explain your strategies. 

5.32 Suppose 32% of the adult males in the United States own at least 
one gun. It can then be shown that the probability equals 0.0015 that 
in a sample of 300 adult males, 120 of them or more own guns. 

a. How could you find the probability of 0.0015? 

b. What is such a probability called? 

5.33 a. Give an example of an event with a probability near zero. 

b. Give an example of an event with a probability near 1. 

5.34 A research report indicates that the probability equals 0.61 that 
a pregnant teenager who has an abortion has talked about the situation 
with both her parents. What would you say this probability statement 
means? 
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5.35 Explain why it is possible to use the binomial distribution to 
figure out how many girls or boys might be expected in families of 
various sizes, once one knows that boys are born 51 % of the time, and 
why it is not necessary to go out and actually sample a large number of 
families of various sizes to collect the data. 

5.36 a. The following indicates the calculation done to estimate the 
probability of having three girls and a boy in a family: 
p(GGGB) = 0.49 * 0.49 * 0.49 * 0.51 = 0.06. Explain the rea­
soning behind this formula as though you were talking to a 
friend who is not taking statistics. 

b. What would the formula be to calculate the probability of 
having a family with 4 boys? 

5.37 To estimate the number of U.S. families with 4 sons and no 
daughters, which would be more accurate: using a binomial distribu­
tion or sampling 100 families drawn at random from a national survey? 
Why? 

5.38 If you have a very large sample ofrespondents, how do you find 
the binomial probabilities if you do not wish to do the computations 
yourself? 

5.39 The mean number of girls in families of 4 is equal to 1.96. This 
mean is derived from adding the possible values of girls in a family of 
4, from 0 to 4, which have been multiplied by the probability of each 
of them. Explain how you would go about finding the mean number 
of girls in families with 3 children. 

5.40 In the 1992 Presidential campaign, incumbent President Bush, 
in his efforts to discredit the pro-ecology stance of vice-presidential 
candidate Gore, stated in his last campaigning days, "If we aren't care­
ful, we'll be up to our necks in owls, without any jobs for the people." 
How would you describe Bush's complaint in terms of decision analysis? 

5.41 How would you convince a sixth-grade class that the probability 
of their breaking a bone in the next six years is 0.0009? A psychology 
class of undergraduates that the probability of their being in an auto­
mobile accident in the next year is 0.50? A BMW owner that the chances 
of the car being carjacked are 0.00001 worldwide? 

5.42 According to the text, "the probability that z is larger than 2.5 
equals 0.0062, while the probability that t, for 10 degrees of freedom, 
is larger than 2.5 equals 0.0152." 



a. For which variable is more likely one would find an amount 
larger than 2.5? 

b. Why is there a difference between the z and the t in this re­
gard? 

c. What would make the difference between the two statistics 
very small? 

5.43 If a statistician indicated that the probability of getting a partic­
ular chi-square or larger was 0.46, what would you say about the event 
measured by this chi-square? 

5.44 a. In what way does the chi-square distribution look different 
from the t-distribution? Explain. 

b. What would be a very rare value of a chi-square variable with 
3 degrees of freedom? 

c. What other distribution looks similar to the chi-square distri­
bution? 

5.45 A social club has 52 old members and 7 new members. A sup­
posedly random drawing results in 5 new members and no old mem­
bers selected to do party clean-up. (The statistics major said that the 
probability of such an outcome was 0.000004.) 

a. Would you suspect that something was not fair about the 
drawing? Explain. 
b. As a new member, how would you defend your argument to 
the club officers? Fill in the table to clarify your argument. 

Old member New member Total 

Chosen 

Not chosen 

Total 

5.46 a. If you assume that the members of your campus organization 
would be equally divided as to whether or not they wished to 
participate in the annual blood drive, so that the probability of 
a person participating is 0.5, and later you discover that 10 out 
of the 100 members gave blood, what do you conclude about 
your original probability? 
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b. What two conclusions might you want to draw from your data 
about your earlier hunch regarding support for the blood drive? 

c. What is the statistical decision rule that could help you decide 
which of the two conclusions to draw? 

5.47 Say that the probability that you may get hit by lightning while 
playing golf in Minnesota in the summertime is 0.00002. 

a. What is an easier way of making this statistic meaningful to 
people? 

b. Why do you think this is so? 

5.48 For your vacation, you are trying to decide whether to fly to 
Egypt to see the pyramids on a cruise down the Nile or to fly to Miami 
to explore the Florida Keys in a rental car. In each locale tourists have, 
at times, been endangered by unfriendly locals. 

a. What are some probabilities you might want to take into ac­
count when making your decision? 

b. How might you calculate which you might prefer doing? 

c. How important would recent historical events be to you in 
making your choice? 

5.49 You are interested in contributing to one charity this year. You 
want to select one that does research that could have an impact on the 
largest number of victims. 

a. How would you make a choice among a fund for breast cancer 
research, an AIDS research fund, the March of Dimes for Crip­
pled Children, or the American Heart Association? 

b. In what respect do advertising campaigns create the potential 
for poor decision making on the part of charitable donors? 

5.50 In 20 consecutive baseball World Series, the team that had more 
stolen bases during the regular season won the championship 13 times 
and lost 7 times. If you use 0.5 as the probability of either team winning 
the World Series any given year, then the probability of winning 13 or 
more times out of 20 equals 0.13. What can you say about the assump­
tion that the probability of winning the World Series is an even 50/50 
based on the data on stolen bases? 

5.51 In the example in Chapter 4 on the age of brides, the mean age 
of the grooms is 32.3 years and the mean age of the brides is 30.0 years, 
for a difference of 2.3 years. By changing 2.3 years to a value of the 



t-variable, you find that, if there is no difference in mean age between 
brides and grooms in the population of all couples getting married, 
then the probability of getting a sample difference of 2.3 years or more 
equals 0.002. From the magnitude of this p-value, what do you con­
clude about the assumption of no difference in mean ages in the pop­
ulation of all couples? 

5.52 The U.S. Postal Service claims that 83% ofletters mailed in New 
York City are delivered overnight. A person checked this out by mailing 
10 letters to himself, and 4 of them arrived the next day. Using a prob­
ability of 0.83 for overnight delivery and 10 cases, the binomial distri­
bution gives a probability of 0.0027 of 4 or fewer overnight deliveries. 
(Source: Daniel Seligman, "Ask Mr. Statistics," Fortune Magazine, July 24, 1995, 
pp. 170-171.) 

a. How do you interpret the p-value of 0.0027? 

b. What reservations might you have about this value? 

ANALYSIS (ExERCISES 5.53-5.79) 

5.53 a. What is the probability that a single die when rolled will come 
up 6? 

b. What is the probability that a single die when rolled will come 
up I? 

c. What is the probability that a single die when rolled will come 
up either 1 or 6? 

5.54 If you know that the probability of any student getting a B on 
the psychology final is 13% and the probability of getting an A is 5%, 
what is the probability of a student getting either an A or a B on the 
exam? 

b. In an English literature course, the probability of any student 
getting a B on the final is 20% and the probability of getting an 
A is 10%. What is the probability of a student getting a B in 
psychology and a B in English literature? 

c. What is the probability of a student getting either an A or a 
B in both subjects? 

e. What is the probability of a student being a straight A student? 

5.55 f. Can you think of a practical limitation to this exercise? One 
of four poker players, named Chris, has been closely watching 
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the cards for a game being dealt face up on the table. In this 
game, 16 cards have been dealt, and the last 4 are about to be 
dealt face down. On the table two aces are showing, one in each 
of two hands. 

a. What is the probability that one ace will be dealt in the last 
round of cards? 

b. What is the probability that two aces will be dealt in the last 
round of cards? 

5.56 Suppose you know the probability of the Joneses having twins 
when LorettaJones gives birth next month, and you know the proba­
bility of Lizzie Smith giving birth to triplets. 

a. How would you calculate the probability of either Jones twins 
or Smith triplets? 

b. How would you calculate the probability of both Jones twins 
and Smith triplets? 

5.57 Mars, Inc., the company that makes M&Ms, claims that they use 
the following distribution of colors: 

Brown 

30% 

Red 

20% 

Yellow 

20% 

Green 

10% 

Orange 

10% 

Blue 

10% 

a. Buy a small bag of plain M&Ms (not the peanut kind). 

b. Count the M&Ms of each color. 

c. Record your frequencies in a table. 

Total 

100% 

d. Take the total number ofM&Ms and multiply it by the various 
percentages above. Record the results in a table. This table is 
the expected frequencies; your original table was the observed fre­
quencies. Find the expected frequencies to 1 decimal of accu­
racy. 

e. The observed frequencies should not deviate too much from 
the expected frequencies. One way to measure how much they 
deviate is to compute for each color a fraction in which the nu­
merator is the square of the difference between the observed 
and expected frequencies and the denominator is the expected 
frequency of M&Ms. Find the sum of the six fractions. This sum 
is a value of the chi-square variable with 5 degrees of freedom, 



and it would be surprising if your value lies outside the range 
from 1 to 10. 

f. Find the p-value of your data, which is the probability of the 
deviation you observed and more extreme deviations of the ob­
served from the expected frequencies. Was your bag unusual? 

g. Eat the M&Ms. 

5.58 The following data are 50 observations of the chi-square variable 
with 1 degree of freedom: 

1.76 1.64 0.38 0.48 0.01 1.90 0.32 0.01 1.92 1.56 
0.57 0.73 0.60 0.01 6.86 0.17 1.09 1.01 0.02 0.15 
0.09 0.10 0.60 0.38 2.04 0.07 0.95 1.52 0.06 4.21 
0.05 0.08 0.25 0.15 0.36 1.84 0.23 0.00 2.19 1.57 
1.28 0.30 0.73 0.19 0.07 0.01 0.47 0.91 0.92 0.05 

a. Use intervals of length 1.00 and make a histogram showing 
the distribution of these observations. 

b. Describe the shape of the distribution. (Note that the chi­
square distribution has a different shape for different degrees of 
freedom.) 

c. How many observations are larger than 3.84 in this sample of 
chi-square values? 

d. According to Statistical Tables of the chi-square distribution, 
what percentage of the values can be expected to be larger than 
3.84 with chi-squares with 1 degree of freedom? 

e. How do the answers to parts c and d compare? 

f. Add the five values in the first column in the table above, then 
add the five values in the second column, and so on, until you 
have found ten sums. These sums are now ten observations from 
the chi-square distribution with 5 degrees of freedom. 

g. Use intervals of length 2.00 and make a histogram showing 
the distribution of these ten new observations. 

h. Describe the shape of the distribution and compare it with 
the distribution in part a. 

i. Use the table of the chi-square distribution to find the value 
of chi-square with 5 degrees offreedom such that only 0.05 (5%) 
of the observations are larger than this value. 

j. Are there any values that large in our sample of ten values? 
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5.59 a. Collect the M&M chi-squares (Exercise 5.58) from the other 
students and make a histogram of the chi-squares for the entire 
class of students. 

b. According to the theoretical chi-square distribution with 5 
degrees of freedom, half of the values are larger than 4.35 and 
one tenth are larger than 9.24. How do these numbers compare 
with the chi-squares observed by the class? 

5.60 Use the binomial distribution to find the following probabilities: 

a. In 10 tosses of a fair coin, what is the probability of getting 8 
heads? 9 heads? 10 heads? 

b. What is the probability of getting 8 or more heads? 

5.61 A psychologist observes small groups and classifies each group 
as either competitive or cooperative. She assumes that the probability 
is 0.5 for each of the two classifications, and she classifies 7 groups as 
competitive and 1 as cooperative. 

a. What is the probability of getting 7 or more competitive 
groups? 

b. Do you think this probability is so small that it is a mistake to 
use 0.5 as the probability for competitive? 

5.62 Use a statistical software program or a statistical table to find the 
following probabilities. 

a. z is equal to or larger than 2.34. 

b. ton 17 degrees of freedom is equal to or larger than 2.34. 

c. ton 17 degrees of freedom is equal to or smaller than - 2.34. 

d. ton 17 degrees of freedom is equal to or smaller than - 2.34 
or equal to or larger than 2.34. 

5.63 Use a statistical software program or a statistical table to find the 
following probabilities. 

a. chi-square on 2 degrees of freedom is equal to or larger than 
6.78. 

b. chi-square on 20 degrees of freedom is equal to or larger than 
27.8. 

5.64 Use a statistical software program or a statistical table to find the 
probability that F on 2 and 46 degrees of freedom is equal to or larger 
than 3.45. 



5.65 The Bureau of the Census reports that in 1989 the median family 
income was $35,225. 

a. What is the probability that a randomly chosen family had an 
income larger than $35,225? 

b. What is the probability that in a sample of 10 families all 10 
had incomes larger than $35,225? 

c. Why is the median rather than the mean family income more 
informative in a problem of this kind? 

5.66 The Bureau of the Census reports that in 1990 the median age 
was 32.7 years. 

a. What is the probability that a randomly chosen person was 
younger than 32.7 years? 

b. What is the probability that in a group of 5 people 4 of them 
were younger than 32.7 years? 

c. What is the probability that in this group 4 or more of them 
were younger than 32.7 years? 

5.67 A Gallup Poll in February 1991 found that on any given day, 33% 
of Americans read a book for pleasure. (Source: The New York Times, July 
26, 1992, p. E5.) What is the probability that all four people at a bridge 
table had read a book the day before? 

5.68 If, in a family of 4 children, the probability of having 4 girls is 
0.06, what is the probability of having fewer than 4 girls? 

5.69 a. If you know that the probability of one event is 0.25 and that 
of another independent event is 0.08, how do you find out the 
probability of both occurring at the same time? 

b. This answer is smaller than each probability alone. Can you 
explain why? 

c. Could you apply this reasoning to the probability of thunder 
and lightning occurring together? Why or why not? 

5.70 Once we have found a z-score (recall that we find a standard 
score z by subtracting the mean of a distribution from the raw score 
and divide by the standard deviation), we can use the standard normal 
distribution to figure out how unusual (or usual) the z-score is. If we 
had the following z-scores on a geometry test, how would you interpret 
them in terms of how usual or unusual they are? 
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a. z = 0.22 

b. z = 2.50 

c. z = -1.96 

d. z = -0.013 

5.71 Among car owners in Germany, the probability of owning a 
Porsche is 0.07 and the probability of owning a Mercedes is 0.29. 

a. What is the probability of owning one Porsche or one Mer­
cedes? 

b. What is the probability of owning one Porsche and one Mer­
cedes (assuming that ownership of the two cars are independent 
events)? 

c. What is the probability of owning neither type of car? 

5.72 In Bob's first-year law school class, the probability of a student 
having a GPA of 3.8 or more is 0.15. The probability of a student having 
a GPA of 2.5 to 3.8 is 0.80. What is the probability of a student having 
a GPA that is not 2.5 to 3.8? 

5.73 Robin wants to leave for spring vacation on Thursday, but she 
does not want to cut mathematics or physics class on Friday. According 
to ancient lore, the probability that the mathematics teacher will cancel 
a class is 0.05; the probability that the physics teacher will cancel a class 
is 0.10. What is the probability that Robin's wish-that both classes be 
canceled on the same day-will come true? 

5.74 In a continuous probability distribution, the resulting smooth 
curve outlines an area beneath it. This area under the curve becomes 
a probability. How large is the total area under the curve? 

5.75 In a normal distribution, 95% of the z-scores can be found be­
tween - 1.96 and 1.96. 

a. What percentage can be found below -1.96 and above 
+ 1.96? 

b. What percentage can be found only below -1.96? 

c. What percentage can be found between -1.96 and O? 

5.76 In the t-distribution with 10 degrees of freedom, find a range of 
t-values that includes 95% of the distribution of the scores. 

5.77 Looking at the information in Exercise 5.46, can you show how 



the probability of 0.000004 that only the new members were chosen 
for dean-up duty was computed? 

5.78 The National Highway Traffic Safety Administration reports 
from past data that among 100,000 licensed drivers, about 6 females 
are involved in alcohol-related fatal crashes in a year. 

a. In a city of 100,000 licensed drivers, use the Poisson distri­
bution to show that the probability equals 0.002 that no female 
will be involved in an alcohol-related fatal crash in a year. 

b. What is the probability that one or more women will die in 
an alcohol-related crash during the same period? 

5.79 In a binomial variable, n = 6 and 7T = 0.4. 

a. Use the probabilities from Statistical Table 3 (binomial dis­
tribution) to make a histogram of the probability distribution. 

b. Use the binomial probabilities to compute the mean J..L. 

c. Compare this value with the value you get from J..L = n7T. 

d. Does it look as if the probability distribution might balance 
at the mean value? 
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ESTIMA tON 

QS)/ Gallup poll surveying consumers in the United States, Germany, and 

Japanfound that 55% of American consumers believe that U.S. products are 

of very high quality, compared with 26 % of German consumers and 17 % of 

Japanese consumers. "The sampling error is plus or minus 3 percentage 

points, " according to the Associated Press news report. What does this plus or 

minus 3 percentage points contribute to the meaning of this report? (Source: 

The Philadelphia Inquirer, Oct. 2, 1991, p. G7.) 
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Statistical infer­
ence is the pro­
ce by which 
conclu ions are 
drawn from sam­
pI data about 
values of the pa­
rameters in the 
population. It 
con i ts of two 
parts: estimation 
and hypothesis 
testing. 

Survey results and other statistical reports are often presented in 
newspapers and magazines and on television news. Statistical stud­
ies show, among many varied results, what percentages of Mrican 
Americans in a sample prefer "Mrican American" to "Black" as a 
name for their race (26%; 1989 telephone poll taken by Yankelovich 
Partners, Inc., for Time/CNN); what percentage of white Ameri­
cans say they do not have enough money to buy food (13%; 1989 
Gallup poll); what the mean age of female gymnasts equals (12.3 
years; G. E. Theintz, et aI., "Evidence for a reduction of growth 
potential in adolescent female gymnasts," Journal of Pediatrics, vol. 
122 (1993), pp. 306-313); what percentage of their time people 
spend sleeping (30.9; The New York Times, Tuesday, September 6,1995, 
p. C6). 

While the results of particular studies are interesting in them­
selves, researchers go beyond the sample data to draw conclusions 
about the underlying population from which the sample came. They 
ask what the results would have been if they had done a complete 
census on all the elements (people, plants, etc.), in the population: 
if the Gallup Poll surveyors could have asked all Americans, what 
percentage would have thought that American products were of a 
high quality? The sample percentages tell us how only a few hun­
dred people in the sample answered the interviewers' question about 
quality. At times there is no well-defined population to survey, but re­
searchers still want to better understand the world that generated the 
data. 

Going beyond the actual data is the part of statistics known as sta­
tistical inference, which is composed of estimation and hypothesis testing. In 
this chapter we discuss parameter estimation, and in the next chapter 
we present hypothesis testing. These methods are then used in the 
subsequent chapters. 

Researchers use a sample instead of a population for pragmatic 
reasons: it would cost too much money and take too much time to 
collect data on an entire population, even if it were possible to do so. 
Researchers satisfy themselves with the data from a sample, even 
though the information from a sample is not complete and the re­
ported results from the sample are not exactly equal to the true results 
in the entire population. To compensate for the inexact sample results, 
researchers calculate the sampling error, a number constructed such 
that 19 of 20 sample results will lie within plus or minus the sampling 
error of the true population values. 
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"Calvin and Hobbes" copyright 1993 Watterson. Dist. by Universal Press Syndicate. Re­
printed with permission. All rights reserved. 

Statistic is the singular form of the word statistics. Common examples 
of a sample statistic include the sample mean X, the sample percentage 
P, and the sample standard deviation s. A sample statistic is typically 
denoted by one of the 26 Roman letters used in English. Because a 
statistic is computed from a sample of data, the value of the statistic 
can always be found. 

A similar piece of information about a population is known as a 
population parameter. Population parameters are denoted by Greek let­
ters. For example, the population mean is denoted by the Greek lower­
case mu (/-L) , the population percentage by capital pi (IT), the popu­
lation standard deviation by lower-case sigma (a). 

These ideas are illustrated in Figure 6.1, a graphic representation 
of a population, a sample, the parameters of the population, and the 
statistics from the sample. The population is represented by the large 
oval at the left. The elements of the population could be people, coun­
ties, plants, pigs, light bulbs, or anything else. From the population we 
draw a random subset of elements as a sample, and the sample is shown 
as the small oval at the right. Because the sample is a random sample, 
it is a fair representation of the population. 

It is worth noting that there are two kinds of populations: finite 
and infinite. The finite population is an actual, large, delimited collec­
tion of elements. For example, the 100 million or so people who voted 
in the last presidential election is the population of all voters. The 
infinite population is a hypothetical collection of elements, such as all 
the lightbulbs that have been made and will be made by a certain ma­
chine, or all the tosses that could be made with a certain coin to test 

A sample statistic 
i a number com­
puted from the 
data in a sample. 

A population 
parameter is a 
number that in 
principle could 
be computed 
from data for the 
entire popula­
tion. 
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Population 

fL 

Unknown 
parameters 

(J 

II 

Mean 

Standard 
deviation 

Percentage 

Sample 
(random subset) 

x 
Known s statistics 

P 

Figure 6.1 Population and sample with unknown population parameters 
and known sample statistics 

the probability of heads or tails. All the bulbs the machine could make 
or all the tosses that could be made with a coin are impossible to ac­
tually count. 

STOP AND PONDER 6 . 1 

Think of some different populations you can identify in the world. 
What practical problems would be involved in drawing a sample of 
each one? What are the difficulties these problems pose for the sur­
veyor? How do these problems interfere with finding out informa­
tion about a population? 
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POINT E8llMATION 

Imagine that you are studying how many traffic tickets the average 
American collects in a lifetime. Consider the advantages and disadvan­
tages of reporting the results in the following ways: "10" or "a range of 
values between 8 and 12." These two results represent two different 
approaches to estimating a population parameter. The simplest is a 
point estimate. In the example, the result of 10 tickets is a point estimate. 
If a sample survey finds that 58% of the respondents are in favor of 
raising taxes on gasoline, the percentage can be used as a point esti­
mate of the percentage of people in the population who are in favor 
of such a tax increase. Similarly, for the population mean, the value of 
the sample mean can be used as the point estimate. It seems reasonable 
to use the sample statistic as the point estimate of the population pa­
rameter, even though we do not yet know how good this estimate is. 

What is a "good" point estimate? 

Because a particular numerical estimate from a sample is never exactly 
equal to the true population parameter value, it does not make sense 
to ask if a particular numerical value is a good estimate or not. What 
can be asked is if the method for computing the estimate is a good one 
or not. 

To determine whether a method is a good method or not, the 
results of the same study repeated many times over are compared. Let's 
do a thought experiment. Suppose we do many sample surveys and 
find a sample percentage from each. Assume that these are perfect 
samples and the only kind of error present is the sampling error. The 
following numbers, for example, represent the percentages of people 
in each of 10 surveys of 500 observations who are in favor of raising 
gasoline taxes: 

58.0 57.8 61.0 59.4 55.8 63.2 59.0 60.6 57.4 58.6 

The percentages are all different from one other, even though all the 
samples came from the same population with one fixed-although 
unknown-percentage. This is because of the randomness ofthe draw­
ing of the samples, a phenomenon that occurs in polls taken just before 
major elections. Several different survey organizations take sample sur­
veys asking how people intend to vote, and the reported percentages 

A point estimate 
is a single num­
ber that serves as 
an estimate of a 
parameter. 
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of votes the candidates can expect to receive in the general election 
differ from one survey to the next. Most of the differences between the 
reported percentages can be explained by the variation and random­
ness inherent in drawing random samples, assuming that they are all 
well-designed surveys. 

A good estimating method can be defined as one where the mean 
of the estimates from infinitely many samples equals the actual popu­
lation parameter. The mean of these 10 estimates equals 59.1. The 10 
different percentages were actually found by letting a computer draw 
10 random samples from a population where the true percentage was 
known to equal 60%. If the computer had drawn many more than 10 
samples, the mean of the many sample percentages would have equaled 
the true value of 60%. We therefore say that the sample percentage is 
an unbiased estimate of the population percentage. Each result may not 
be right, but the average of results across many repetitions of the study 
are right. If the mean of many sample statistics across many repeated 
samples is not equal to the true population value, then the estimate is 
biased. 

Criteria for a good point estimate: 

1. When the mean of a sample stati tic from a large number of 
different random samples equal the true population parame­
ter, then the sample statistic is an unbia ed e timate of the pa­
rameter. 

2. Across many repeated sample , the e timales hould nol be 
very far from the true parameter value. 

The smallest sample value in the example is 55.8, a little more than 
4 points fewer than the true value of 60.0. The largest sample value is 
3.2 points greater than the true value. The standard deviation of the 
10 percentages is approximately equal to the standard error of the 
percentages, in the example equal to 2.1 %. This means that on the 
average, a sample percentage is 2.1 % away from the mean of the 10 
values. So the sample percentage in the example is a good estimate of 
the population percentage because (1) on the average across many 
samples the sample percentage is equal to the population percentage 
and (2) the sample percentages from many different samples are all 
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close to the population percentage (how close usually depends on the 
number of observations in a sample). 

It can be shown that any other way of estimating the population 
percentage from sample data gives worse results with larger sampling 
errors. Thus, even if the result is not good, this is as good as it gets. 
Similarly, it is possible to show that the sample mean is a good estimate 
of the population mean and is better than the sample median as an 
estimate of the population mean. 

A strategic use of the point estimate: How many tanks did the 
Germans have? 

Sometimes it is not clear how sample data should be used to estimate 
a population parameter. Statistical theory can be used to derive possible 
formulas for the computation of the point estimate. An unusual ex­
ample is the method the Allies used to estimate the production of tanks 
in Germany in World War II. 

Fot many strategic reasons, the total number of tanks produced in 
Germany during World War II was of great interest to the Allies. The 
Germans were methodical in their production of tanks, and they num­
bered the tanks consecutively starting with 1. As the war went on, the 
Allies captured enemy tanks and recorded the production numbers. 
How did they use the numbers of the captured tanks to estimate the 
total number of tanks? The population parameter consisted of an un­
known number N, the total number of tanks produced, and the data 
consisted of the production numbers of the captured tanks. 

A German World War II tank. Sometimes statisticians prove their worth un­
derfire. (Source: Culver Pictures.) 
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I TERY-Al 

An interval 
estimate, called a 
confidence inter­
nal, is a range of 
values that serves 
as an estimate of 
a parameter. 

Imagine that we are the Allied statisticians addressing the problem. 
The total number of tanks produced has to be equal to or larger than 
the largest number recorded. To find out how much larger, we could 
find the mean number of the captured tanks; by definition the mean 
is somewhere in the middle of all the production numbers. Therefore, 
doubling the sample mean produces an estimate of the total number, 
particularly assuming that the captured tanks represent a random sam­
ple of all the tanks. One drawback of this formula for the estimation 
of N is that there is no guarantee that 2 times the mean is a number 
larger than the largest captured number. 

Another formula we could use for the point estimate of N is to 
multiply the largest observed number by the factor 1 + 1/ n, where n 
is the number of captured tanks. For example, if we have 10 captured 
tank numbers and the largest of them is 50, then an estimate of the 
total number of tanks is (1 + 1/10)50 = 55. That is, we think the ac­
tual number of tanks produced is a little larger than the largest number 
we observed in the sample. 

Variations of this method of estimation were actually used during 
the war, and German records found after the war showed that the 
Allied estimates were close to the actual number of tanks produced. 
The records also showed that the statistical estimates were much closer 
to the true value than intelligence estimates obtained in other ways. 
The statisticians did better than the spies! 

STOP AND PONDER 6 . 2 

What assumptions about warfare and the deployment and capture 
of tanks are made in this problem as it is presented here? 

The second approach to estimating a parameter is an intelVal estimate. 
"A range of values between 8 and 12" is an interval estimate. The state­
ment that the backing for an increase in gasoline taxes is estimated to 
be between 52% and 64% is more informative than the statement that 
it is estimated to equal 58%. 

For most population parameters, estimation intervals are found in 
the following way. First researchers find a sample statistic, for example, 
a mean or a proportion. Then the sampling error is computed from 
the data, and finally the sampling error is added and subtracted around 
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the sample statistic. These three steps yield an interval known as a con­
fidence interval-an interval that the statistician is confident contains 
the true population parameter value. A confidence interval for a popu­
lation parameter is found by subtracting and adding sampling error to 
a sample statistic: 

statistic - sampling error to statistic + sampling error 

As an example, take a look at the sample survey at the beginning 
of the chapter. The percentage of people who believe U.S. products 
are of high quality in that sample equals 55% and the sampling error 
equals ± 3%. The confidence interval for the unknown population per­
centage therefore is 

55 - 3 = 52 to 55 + 3 = 58 

Hopefully, this interval contains the unknown population percent­
age. Formula 6.1 at the end of the chapter can be used to find the 
confidence interval. Formula 6.2, a simplified version, works well in 
many cases. 

Let's do another thought experiment. If another sample were 
drawn, it would yield a somewhat different sample percentage and a 
different confidence interval. Hopefully, this interval also contains the 
population percentage. With many different samples with different per­
centages and confidence intervals, we would still expect that the inter­
vals would contain the parameter. 

The reason for the name confidence interval is that statisticians have 
a certain degree of confidence that the interval actually contains the 
true and fixed value of the unknown parameter. The thinking goes as 
follows: If we collect many different samples, we can set up a confidence 
interval for each one. The confidence intervals are constructed wide 
enough that 95% of them contain the true population percentage, and 
5% do not contain the true population percentage. The value 95% is 
known as the confidence level. This is a commonly used value, but other 
confidence levels can also be used. 

What about the first confidence interval, from 52 to 58? Does that 
interval contain the unknown population percentage? For a particular 
interval, we will never know the answer to this question. Saying that we 
are 95% confident that the interval from 52 to 58 contains the un­
known population percentage is saying that we do not know absolutely 
about this particular interval. What we do know is that across many 
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A 95% confi­
dence interval is 
constructed ac­
cording to a 
method such 
that 95% of all 
the confidence 
intervals contain 
the true value of 
the population 
parameter and 
5% of all inter­
vals do not con­
tain the true 
value of the pa­
rameter. 

repeated samples, 95% of them will give confidence intervals that con­
tain the true parameter value. 

Figure 6.2 illustrates this point. It shows the confidence intervals 
for each of the 10 gasoline tax samples. The interval of the first sample 
is from 54 to 62, the interval of the second from 53.7 to 61.9, and so 
on. The center points for the lines differ because the sample percent­
ages differ. 

Since these data were created by a computer, the true population 
percentage is known-it was set equal to 60-and is illustrated by the 
vertical line at 60. All 10 confidence intervals contain the true popu­
lation percentage. With 100 instead of only 10 samples, 5 of the con­
fidence intervals would be expected not to contain the value of 60, and 
95 of the intervals would contain 60. This means: 

In most settings, researchers collect data from only one sample. 
Whether the confidence interval from a single sample contains the true 
value of the parameter is not known. They hope that the interval is one 
of the great majority of possible intervals that do contain the parame­
ter. But it could be one of the few flukey ones that do not contain the 
parameter. 

The reason we have to express ourselves in such a roundabout fash­
ion is that the value of the population parameter is a fixed but unknown 
number. The interval we construct from our sample is not fixed; it is a 
random interval in the sense that if we did the study over again, we 
would get a somewhat different interval. Thus, the intervals vary from 
sample to sample, and not all intervals contain the true parameter 
value. A confidence interval is like throwing out a net to capture the 

Percent 
51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 6 8 

I I I I I I I I I I I I I I I I t I 

Figure 6.2 Confidence intervals from 10 different samples, all containing 
the true value of 60 
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Remember, a probability tells us how often something occurs. Con­
sequently, we cannot say that there is a 0.95 probability that the par­
ticular interval from 52 to 58 contains the unknown percentage of 
the population who think U.S. products are of high quality. The 
implication is that if we look at this interval 100 time , we would 
expect the interval to contain the true parameter value 95 times and 
not contain the parameter 5 times. 

But that, of course, makes no sense. Suppose the actual param­
eter value equals 57. Then the interval from 52 to 58 capture the 
parameter all the time, not ju t 95% of the time. Similarly, uppose 
th true value equals 50. Then the interval from 52 to 58 never cap­
lures the true value, no matter how many time we look. 

Probabilities cannot be used to say how often a particular confi­
dence interval contains the value of the unknown parameter. A par­
ticular interval always contains the true value or it nevercontains the 
true value. Probability is used to refer to how many confidence inter­
vals contain the unknown parameter value acro many repeated 
samples. 

unknown parameter; not all intervals land in such a way that they catch 
the parameter. 

STOP AND PONDER 6 . 3 

Why might a sample, taken with care and presumably random, be 
the 1 in 20 (5%) in which the confidence interval does not contain 
the true parameter? 

Length of confidence interval 

STOP AND PONDER 6 . 4 

What might the connection be between the number of ob ervations 
in a sample and the length of a confidence interval? Can you give 
an example that clarifies this relationship? 
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1. The length of a confidence interva1 depends on the number of 
observations in the sample. Large samples produce shorter 
confidence interva1s and small samples produce longer inter­
vals. 

2. The length of a confidence interval depends on the confi­
dence level. Low confidence levels (say 90%) produce shorter 
intervals and high confidence levels (say 99%) produce longer 
intervals. 

A shorter confidence interval conveys more about the population 
parameter than a longer one. If you tell me that a confidence interval 
for an unknown population percentage goes from 0% to 100%, then 
you have essentially not told me anything: obviously it has to be some­
where between 0 and 100. If you tell me that the confidence interval 
goes from 30% to 70%, then I know something about the unknown 
parameter value. And if you tell me that the confidence interval goes 
from 49% to 52%, then you have told me a great deal about the value 
of the parameter. 

I~ MY OPI~\ot{ T~E A~5WE/< 15 ~U:VE f'\. BuT T~~ 
M~RG\~ Of ~~~of<. IS PLUS ora M\~us TWo. II 

Reprinted with permission of the artist, Carol Cable. 
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Effect of sample size an canfidence interoal One way of getting a short 
confidence interval is to have a large sample with many observations. 
With a larger sample comes more information, and with more infor­
mation the interval is smaller. With large samples, the sample statistics 
are clustered more closely around a central value than they are with 
small sample. Mathematically, in formulas for sampling errors, the 
number of observations in the sample typically occurs in a denomina­
tor, and the larger a denominator the smaller the fraction. 

Figure 6.3 shows confidence intervals for six samples of different 
sizes. It supposes that the sample percentage P equals 60% in each of 
the samples, and the intervals are computed using the formulas at the 
end of the chapter. The figure clearly shows that the larger the sample 
is the shorter the interval is. Also clear is that the lengths of the intervals 
do not decrease as fast as the numbers of observations in the samples 
increase: if the size of the sample is doubled, the corresponding interval 
is not half as long. Cutting the length of a confidence interval in half 
requires four times as many observations. But increasing the number 
of observations can be expensive; beyond a certain number it is not 
worth increasing the size of the sample. This is the reason most na­
tionwide surveys ask 1,200 or so respondents for answers. The sample 
is large enough to get a 3% sampling error for a population percentage. 

Effect of canfidence level an canfidence interoal Another way to get a short 
confidence interval is to use a lower confidence level. Most often a 95% 

50 52 54 56 58 
I I I I I 

Percent 
60 

I 
62 

I 
64 

I 
66 68 

I I 

n=lOO --------------------------------------------
n=200 ------------------------------­

n = 400 ----------------------

n = 800 ---------------

n = 1,600 ----------­

n = 3,200 -------

70 
I 

Figure 6.3 Confidence intervals for an unknown population percentage 
based on a sample percentage of 60 for samples with different numbers of 
observations. 
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confidence level is used. However, a 90% confidence level could be 
used. Its confidence interval is shorter than that of a 95% confidence 
level. But 90% confidence levels are not as desirable as 95% ones. With 
90% confidence levels, only 90% of the confidence intervals from re­
peated studies contain the true value of the population parameter, and 
10% of the intervals do not contain the true value. 

Look at the difference between a 95% and a 90% confidence in­
terval in a sample of 1,200 respondents. Suppose 60% of the people in 
the sample approve of the President's performance in office. The 95% 
confidence interval goes from 57.2 to 62.8, since the sampling error 
equals ±2.8. Hopefully, this interval is one of the many intervals that 
contain the true population value. Similarly, the 90% confidence in­
terval goes from 57.7 to 62.3, with the sampling error in this case equal 
to ± 2.3. The length of the first interval is 5.6, while the length of the 
second interval is 4.6. If it is important that the interval contains the 
true value, the slightly longer confidence interval is more likely to con­
tain it. 

Using confidence interoals When the Associated Press reported that 
among a total of 3,500 people polled in three different Gallup sur­
veys in three different countries, 55% of American consumers, 26% 
of German consumers, and 17% of Japanese consumers thought 
U.S. goods were of very high quality, it reported a sampling error of 
plus or minus 3. A sampling error of plus or minus 3 conveys that 
in 95 of 100 repeated samples, the sample percentage lay within 3 
percentage points of the true population percentage. Of course the 
true value was not known. (Source: The Philadelphia Inquirer, October 2,1991 
p. C-7.) 

Taking the reported percentage and then adding and subtracting 
3 gives the 95 percent confidence interval for each consumer group. 
Thus, between 52% and 58% of Americans, 23% and 29% of Germans, 
and 14% and 20% of Japanese consumers thought U.S. products were 
of very high quality. Hopefully these confidence intervals actually con­
tain the true population percentages. 

The news article did not report that the confidence level was 95%, 
but it is commonly understood that reported sampling errors are based 
on a 95% confidence level if nothing else is said. All good surveys 
should report sampling errors and make it possible for the reader to 
construct confidence intervals. 
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STOP AND PONDER 6 . 5 

Would you say that there are "real" difference between the views of 
the American, German, and Japanese consumer about the quality 
of American products? If 49% of Mexican polled had rated the 
quality of American products as "very high," would you say they were 
mor sk ptical of American products than the Americans? 

Confidence intervals for differences 

A confidence interval for the difference between two parameters can 
also be created to study whether or not two groups are different or 
whether a group has changed over time, for example, whether or not 
a difference exists between the attitude of Republican and Democratic 
senators to the child welfare bill. 

Difference between two proportions In February 1989 a telephone poll 
of 503 African Americans was taken by Yankelovich Partners, Inc., for 
Time/CNN, asking, "Which would you prefer as a name for your race, 
'Black' or 'African American'?" In this poll, 26% of the respondents 
said they preferred "African American." The survey was repeated in 
February 1994; 53% of the respondents said they preferred "African 
American." Had there actually been a change in opinions in the five 
years between the two surveys? What does an inspection of the confi­
dence intervals for these two studies suggest? 

In the five-year period from 1989 to 1994, the percentage changed 
from 26 to 53, a difference of 27 percentage points. Can the difference 
of 27 percentage points simply be ascribed to the randomness that 
always exists when we compare two numbers, or is the difference be­
tween the two numbers larger than can be explained by randomness 
alone? Would the difference in the percentages be as large if we com­
pared data on the populations of all African Americans in 1989 and 
1994? One way to answer that question is to use the sample data and 
construct a confidence interval for the difference between the two per­
centages in the populations. 

The difference between the two sample percentages has a sampling 
error of :±: 9%, so the 95% confidence interval for the difference be­
tween the two percentages in the population goes from 27 - 9 = 18 
to 27 + 9 = 36. The striking feature of the interval from 18 to 36 as 
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an estimate of the true difference is that it does not contain 0. If a 
difference is 0, then two percentages are equal and there is no differ­
ence in what people like to be called. But the inteIVal does not contain 
0, so we conclude that this is not a possible value for the true difference. 
Rather, there seems to be somewhere between 18 and 36% more peo­
ple who would prefer to be called Mrican Americans. Based on the 
sample, there seems to have been a change in this five-year period in 
what Mrican Americans like to be called. Formula 6.4 at the end of the 
chapter shows how to compute a confidence inteIVal for the difference 
between two population percentages. 

STOP AND PONDER 6 . 6 

Can you construct a problem similar to this in which you could not 
be certain if there had been a significant change over the five-year 
inteIVa1? 

Difference between two means In one of our classes, we asked the stu­
dents to count their pulse for a minute. The mean rate for the men 
was 71.6 heartbeats and the mean for the women was 64.0 heartbeats 
for a difference of 7.6 heartbeats per minute. The difference between 
the two means shows how much faster the heartbeat is for one gender 
than the heartbeat for the other gender. Is the difference simply due 
to the random difference between any two sample means, or is it larger 
than can be explained by randomness alone? 

The question can be answered by constructing a confidence inter­
val for the difference between the two population means. If the con­
fidence inteIVal contains the value 0, then it may be that the obseIVed 
difference between the two sample means is due to randomness alone. 
On the other hand, if the confidence inteIVal does not contain the 
value 0, then evidence that the obseIVed difference is larger than can 
be explained by randomness alone. 

A 95% confidence inteIVal for the difference between the two pop­
ulation means goes from - 1.8 to 17.0 heartbeats. This inteIVal includes 
the value 0. Therefore, the difference between the two population 
means may be equal to 0, and the difference between the two sample 
means can possibly be explained by randomness alone. The necessary 
computations are shown in Formula 6.5. 



Statistical inference is used to draw conclusions from sample data about 
the values of population parameters. It consists of two parts: estimation 
and hypothesis testing. 

6.1 Sample statistic and population parameter 

A sample statistic is a number computed from a sample, for example 
the sample mean X, the sample percentage P, the sample standard de­
viation s. Because a sample statistic is computed from a sample of data, 
its value can always be computed. A population parameter is a number 
computed from a population, for example the population mean j.L, the 
population percentage IT, the population standard deviation (j. Popu­
lation parameter values are almost never known, so the avail­
able information in the sample data is used to estimate parameter 
values. 

A finite population is an actual, large collection of elements, such 
as all the voters in a particular election. In an infinite population there 
is no limit to the number of elements. All possible coin tosses that could 
be made with one coin is an example of an infinite population. 

6.2 Point estimation 

A point estimate is a single number that serves as the estimate of the 
parameter. 

A sample statistic is an unbiased estimate of a population parameter 
if, when a great many different random samples are drawn from the 
same population and the statistic is computed from each sample, the 
mean of the statistics equals the true population parameter. If the mean 
of many sample statistics across many repeated samples is not equal to 
the true population value, then the estimate is biased. Whether or not 
a particular statistic is biased or unbiased can usually be established 
mathematically. 

In estimating a population mean, we prefer the sample mean to 
the sample median or other averages, because in most cases the sample 
means from many samples cluster more closely around the population 
mean than other estimates do. 

6 . 4 Sum mar y 247 

UIIMARY 
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6.3 Interval estimation: More room to be correct 

An interval estimate is a range of values that serves as the estimate of 
the parameter. An interval is more informative than a single value, but 
the construction and interpretation of such an interval are also more 
difficult. Most intervals for the estimation of population parameters 
are found by (1) calculating a sample statistic, such as a mean; (2) 
computing the sampling error; (3) adding and subtracting the sam­
pling error from the sample statistic. Such an interval is called a con­
fidence interval for the population parameter. 

Confidence levels describe what percentage of intervals from many 
different samples contain the unknown population parameter. A 95% 
confidence level indicates that 95% of the intervals in many samples 
contain the true value of the population parameter and 5% of all in­
tervals do not contain the true value of the parameter. Whether the 
particular interval under study is one of the many intervals that contain 
the parameter value or one of the few that do not contain the popu­
lation parameter is never known. 

Shorter confidence intervals are more informative than longer 
ones. A short confidence interval can be obtained by having a large 
sample or by using a lower confidence level. When a survey has about 
1,200 respondents, the sampling error for a percentage equals i: 3%, 
which implies that in 95 of 100 different samples, the sample percent­
age lies within 3% of the true population percentage. News reports 
commonly use a sampling error that gives a 95% confidence level. 

It is possible to construct a confidence interval for differences be­
tween two parameters, such as two percentages or two means, to study 
whether the two parameters could possibly be equal. 

Burkholder, Donald L. "Point estimation." In William H. Kruskal and 
Judith M. Tanur (eds.), International Encyclopedia of STATISTICS. New 
York: The Free Press, 1978. More on how to estimate the value of a 
parameter by a single number. 

Pfanzagl, J. "Confidence intervals and regions." In William H. Kruskal 
and Judith M. Tanur (eds.), International Encyclopedia of STATISTICS. 
New York: The Free Press, 1978. More on how to estimate values of 
parameters. 



CONFIDENCE INTERVAL FOR A POPUlATION PERCENTAGE 

The simple random sample consists of n observations from a large pop­
ulation, and the sample percentage equals P. We want a 95% confi­
dence interval for the population percentage II. This interval goes from 

to P + 1.96J P(lO: - P) (6.1) 

The number 1.96 comes from the normal distribution. This is the value 
of the variable z such that 2.5% of the z-values are smaller than -1.96 
and 2.5% of the z-values are larger than 1.96. This means that 95% of 
the z-values lie between -1.96 and 1.96, making the interval a 95% 
confidence interval. For another level of confidence interval, the cor­
responding value of z is found from a table of the normal distribution 
(Statistical Table 1). 

A quick approximation for a 95% confidence interval involves using 
P = 50 and rounding the 1.96 to 2: 

100 
P--

In 
to 

100 
P+-

In 
(6.2) 

This is a slightly conservative confidence interval in the sense that most 
of the time it is a bit longer than the interval found by Formula 6.1. 
But it is much easier to compute, and the intervals from the two for­
mulas are usually not very different. Formula 6.2 shows that with a 
sample of 900 observations, the error equals 100/ 30 = 3.3. For a sam­
ple of 1,600 observations, the error is 2.5, and so on. For the error to 
equal 3, a sample of 1,111 observations is needed. Errors around 3 are 
commonly used, and this is the reason most samples have about 1,200 
respondents. 

CONFIDENCE INTERVAL FOR A POPUlATION MEAN 

The sample has n independent observations of a variable that follows 
the normal distribution, the sample mean is denoted x, and the sample 
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standard deviation is denoted s. The confidence interval for the pop­
ulation mean then is 

_ s 
x - t*-

In 
to 

_ s 
x + t*-

In 
n - 1 d.f. (6.3) 

Here t* is a value of the t-variable, and it is found in Statistical Table 2 
of the t-distribution for n - 1 degrees of freedom. For a 95% confi­
dence interval, the value of t is found such that 95% of all t-values lie 
between - t and + t*. 

In the unusual case where the population standard deviation u is 
known, then u is used instead of the sample standard deviation s. This 
also means using a value z* from the normal distribution instead of the 
value t* from the t-distribution. In this case the confidence interval for 
the population mean is 

_ (T 

x - z*-
In 

to 
_ (T 

x + z*-
In 

For a 95% confidence interval, z* = 1.96. 

CONFIDENCE INTERVAL FOR A DIFFERENCE BE'IWEEN 'IWO 

PERCENTAGES 

In one sample are nl observations, in another ~ observations. The 
percentage in the first sample is PI and in the second sample it is P2• 

The 95% confidence interval for the difference between the two pop­
ulation percentages ill and il2 is 

(6.4) 

to 

CONFIDENCE INTERVAL FOR A DIFFERENCE BE'IWEEN 'IWO MEANS 

In one sample are nl observations with mean Xl and standard deviation 
SI. In another sample are ~ observations with mean x2 and standard 



deviation S2' First an average value of the two standard deviations is 
found according to the expression 

The confidence interval for the difference between the two population 
means J.Ll and J.L2 is 

to (6.5) 

We find t* from the table of the t-distribution with n1 + ~ - 2 degrees 
of freedom such that the probability equals 0.95 of the t-variable falling 
between - t* and - t*. 
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EXERCISES 

REvIEw (ExERCISES 6.1-6.21) 

6.1 What is the goal of statistical inference? 

6.2 If the mean is computed from a sample, what is the number 
called? 

6.3 If the mean is known for a population, what is the number 
called? 

6.4 What kind of data do statisticians use Roman letters for and what 
do they use Greek letters for? 

6.5 How are J.L, II, and a different from X, P, and s in terms of defin-
ing quantities of various groups? 

6.6 a. What is a point estimate of a parameter? 

b. What is an interval estimate of a parameter? 

c. Name an advantage and a disadvantage of each of these meth­
ods of estimating a parameter. 

6.7 What does it mean to have an unbiased statistical estimate? 

6.8 Explain a confidence interval for a population parameter. 
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6.9 The mean of a sample is 10. The sampling error is ±2. 

a. How is the confidence interval for the population mean cal­
culated? 

b. If you calculate the confidence inteIVal in this case, how do 
you interpret the resulting inteIVal? 

6.10 Suppose you have a large number of samples drawn from a pop­
ulation, and you calculate a confidence inteIVal for the population 
mean from each of the samples. What are the chances that a randomly 
chosen inteIVal does not contain the population parameter? 

6.11 Describe the two ways to make a confidence inteIVal shorter. 

6.12 a. Give three major reasons for sUIVey designers to use samples 
instead of populations when they are interested in a national 
opinion on a new product. 

b. Name one major drawback involved in using a sample instead 
of a population. 

6.13 How does using sample data help in learning about a popula­
tion? 

6.14 How does a point estimate differ from an inteIVal estimate of a 
parameter? 

6.15 If you take 20 random samples from the same population, you 
can compute 20 means and medians. You can also compute the stan­
dard deviation of the 20 means as well as the standard deviation of the 
20 medians. 

a. Which standard deviation will be smaller, the one for the 
means or the one for the medians? 

b. Why is the statistic with the smaller standard deviation a bet­
ter choice for estimating the population mean? 

6.16 Why do you think a confidence level is called by this name? 

6.17 "The value of a population parameter forever remains un­
known." Should statisticians not even try to learn about population 
parameters? Explain. 

6.1S a. Why is it so important that a sample be drawn randomly from 
a population? 

b. What happens if a sample is not drawn randomly? 



c. How might a nonrandom sample affect efforts to estimate 
population parameters? 

6.19 a. In the example of Allies trying to estimate how many German 
tanks had been produced, list at least two assumptions that were 
necessary regarding the sample of the captured tanks. 

b. Can you think of any ways in which the estimates might have 
been either too small or too large had these assumptions proved 
false? 

6.20 Why do many national surveys contain about 1,200 respondents 
and not 500 or 2,000 or some other number? 

6.21 Before a local election in Dogpatch, the editor of the town news­
paper took a survey of the resident voters about their choice for town 
dogcatcher. A whopping 89% said they planned to vote for Abner 
Yokum, and 11 % said they would write in names of their relatives. What 
confidence level should the editor use to be precise in reporting the 
results of the survey? 

INTERPRETATION (ExERCISES 6.22-6.35) 

6.22 A survey of voters in the 1960 presidential election with John 
Kennedy running against Richard Nixon showed that 47% of 469 
women and 53% of 429 men voted for Kennedy. The difference equals 
6%, and a confidence interval for the true difference between the two 
percentages goes from -3% to 15%. (Source: The data were made available 
l7y the Inter-university Consortium for Political Research. The data for the Survey Re­
search Center 1960 American NationalElection Study were originally collected l7y Angus 
Campbell, Philip Converse, Warren Miller, and Donald Stokes. Neither the original 
collectors of the data nor the Consortium bear any responsibility for the analysis and 
interpretations presented here.) 

a. What is the meaning of the statement 'We are 95% confident 
that the true difference lies between - 3 and 15%"? 

b. What is particularly interesting about this interval? 

6.23 A 1990 Roper Organization poll of 3,000 randomly selected 
women found that 58% of the respondents endorsed the statement 
"Most men think only their own opinions about the world are impor­
tant." The margin of error was ± 2%. (Source: Delwin D. Cahoon and Ed M. 
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Edmonds, "Comments concerning increased female negativism toward males, " Con­
temporary Social Psychology, vol. 15 (1991), no. 2, p. 53.) 

a. What can you say about the other 42% of the respondents? 

b. What else do you need to know about the way in which these 
data were collected before you can draw conclusions about these 
results? 

c. How should you use the margin of error to interpret the re­
sult? 

6.24 In a study of babies born to mothers with HIV who took a pla­
cebo as subjects in a control group in a drug study, 40 of 154 (26%) 
of the babies were born with HIV. (Source: The New York Times, Felmtary 
21,1994, p. Al.) A 95% confidence interval for the percentage of babies 
born with HIV goes from 19% to 33%. 

a. How do you interpret this confidence interval? 

b. How large is the sampling error in this study? 

6.25 A study that asked Americans how well they liked their jobs in­
dicated that between 70% and 75% (given a confidence interval of plus 
or minus 2.5) of those who had worked at the same job for more than 
ten years enjoyed it very much. Given these results, explain whether it 
is true that the actual population percentage for all such American 
workers who enjoy their job is located between 70% and 75%. 

6.26 In a 1989 Gallup Poll, 13% of the white Americans surveyed 
reported that there were times during the last year when they did not 
have enough money to buy food. Among Mrican Americans the same 
percentage was 33%. The difference between the two percentages is 
20%. 

a. Do you think that the confidence interval for the difference 
between the two percentages in this study would be large enough 
to be able to argue that there is no difference between the two 
corresponding population percentages? 

b. How large would the sampling error for the difference be­
tween the two percentages have to be to conclude that there 
may be no difference between the two population percentages? 

6.27 In each of the following, determine whether the item is associ­
ated with samples or populations. Explain your answers. 



a. A random drawing of 1/10th of the student body taken to 
study the preferences of the students for lunch menus in the 
dining hall 

b. All clarinet players in the band are polled about their pref­
erence for section leader. 

c. All those who voted in the last election, to find out the Pres­
ident's popularity among voters 

d. All recorded civil war deaths among troops, to find out which 
side lost more soldiers in the war 

6.28 In a study of 22 female gymnasts, the mean age was 12.3 years 
and the standard error of the mean was 0.2 years. This gives a 95% 
confidence interval for the population mean age of from 11.9 years to 
12.7 years. (Source: G. E. Theintz, H. Howard, U. Weiss, and P. C. Sizonenko, 
''Evidence for a reduction of growth potential in adolescent female gymnasts, " The 

Journal of Pediatrics, vol. 122 (1993), pp. 306-313.) How do you interpret 
this confidence interval? 

6.29 In a sample of 205 people from the South, 70 people (34%) 
classified themselves as professionals, and in a sample of 151 people 
from the non-South, 62% said they were professionals. The difference 
between the two percentages of professionals is 62% - 34% = 28%. 
The computation of a 95% confidence interval for the population 
difference in the percentage of professionals in the non-South and 
the South results in the interval from 18 to 38. (Source: Adapted from 
J C. McKinney and L. B. Borque, "Further comments on 'The changing South ': 
A response to Sly and Weller," American Sociological Review, vol. 37 (1972), 
p.236.) 

a. How do you interpret this confidence interval? 

b. Does it seem possible that the percentages of professionals in 
the two parts of the country are equal in the two underlying 
populations? 

6.30 Take a look at the winners and losers in the first 24 football 
Super Bowls. Among the 24 winners, 7 of them (29%) played in the 
Super Bowl the following year. Among the 24 losers, 4 of them (17%) 
played in the Super Bowl the following year. The difference between 
these two percentages is 29% - 17% = 12%. To see if the difference 
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could have occurred by chance alone, a 95% confidence interval is 
found for the difference of from -12 to 36. 

a. How do you interpret this interval? 

b. Even though more of the winners than losers played next 
year, could it be that there really is no difference between the 
winners and losers when it comes to playing next year? Explain. 

6.31 In a study of baldness, 55% of a sample of bald men had suffered 
heart attacks, and 43% of a sample of men who still had hair on their 
heads had suffered heart attacks. (Source: The New York Times, Felnuary 
14, 1993, pp. A1 and C12.) This results in a difference between the two 
percentages of 55 - 43 = 12. A 95% confidence interval for the dif­
ference between the corresponding population percentages goes from 
6 to 18. 

a. How do you interpret this interval? 

b. From this interval, does it seem as if the two population per­
centages could be equal? 

6.32 In a sample of college male seniors, the mean height is 71 inches 
and the standard deviation is 2.1 inches. (Source: The New York Times, 
July 26, 1992, p. E5.) A 95% confidence interval for the corresponding 
mean height in the population from which these data came goes from 
70.4 inches to 71.6 inches. The mean height of American men equals 
69.1 inches. 

a. How do you interpret this confidence interval? 

b. What does the confidence interval tell you about the height 
of college seniors as opposed to all men? 

6.33 In a study of the speed of flow in artificial heart valves, the mean 
flow in a sample of valves is 5.96. The corresponding 95% confidence 
interval for the mean flow in the population of heart valves goes from 
5.22 to 6.70. 

a. How do you interpret this confidence interval? 

b. The manufacturer wants to guarantee that the valves have a 
mean flow of at least 5.00. Does it seem as if the manufacturer 
can provide this guarantee? 

6.34 In a sample of 49 employees, the mean number of days lost to 
illness per year was 7.0 days. A 95% confidence interval for the popu-



lation mean goes from 6.3 days to 7.7 days. According to national fig­
ures, the mean number of days lost to illness equals 5.1 days. 

a. How do you interpret this confidence interval? 

b. Does it seem as if this sample comes from a population where 
the mean number of days lost to illness is less than or equal to 
or more than 5.1 days? 

6.35 The sample of swordfish reported in Exercises 3.46 and 4.66 has 
a mean mercury concentration of 1.09 ppm, and a 95% confidence 
interval for the population mean concentration goes from 0.90 ppm 
to 1.28 ppm. 

a. How do you interpret this confidence interval? 

b. Does it seem as if the mercury concentration could satisfy the 
legal limit of no more than 1.00 ppm? 

ANALYSIS (ExERClSFS 6.36-6.52) 

6.36 Give point estimates of the two corresponding population per­
centages for the following sample results: In a sample of 682 married 
couples, 30% of the women and 23% of the men answered "yes" to the 
following question: "Has the thought of getting a divorce from your 
husband/wife ever crossed your mind?" (Source: Joan Huber and Glenna 
Spitze, Sex Stratification, Children, Housework, and Jobs, New York: Academic 
Press, 1983, p. 98.) 

6.37 In general, how is a confidence interval for a population param­
eter found? 

6.38 a. Use computer software to generate 10 different samples of 50 
observations from a population of normally distributed values 
with mean 0 and standard deviation 1. Record the 10 different 
sample means. 

b. Find the standard deviation of the 10 means. This can be used 
as the standard error of the means. 

c. Multiply the standard error by 1.96 and calculate a 95% con­
fidence interval for each of the 10 means. 

d. Display the confidence intervals in a graph similar to Figure 
6.3. 

e. How many of the confidence intervals contain the population 
mean? 
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6.39 Right after the Republican party convention in 1992, four dif­
ferent polls reported on the support for President George Bush. The 
CNN/ USA Today poll found that 42% :±: 4% would vote for Bush, the 
Newsweek poll found 39 :±: 4, the Los Angeles Times reported 41 :±: 3, and 
the Washington Post reported 40 :±: 4. 

a. Why are you not surprised that the four polls gave four dif­
ferent percentages? 

b. Why was the sampling error only:±: 3 in one of the polls and 
:±: 4 in the other polls? 

c. Construct 95% confidence intervals for the unknown popu­
lation percentage from each of the polls and display the confi­
dence intervals in a graph to make them easy to compare. 

d. Assume that none of the four intervals are unusual and that 
they all contain the true population percentage. What is the 
range of possible values for the population percentage? 

e. Approximately how many people were interviewed in each of 
the polls? 

f. Combine the results from the four polls and show that the 
Bush votes make up 40% of those interviewed with a sampling 
error of :±: 2. 

g. Construct a 95% confidence interval from the numbers in 
part f. 

h. How does the confidence interval obtained in part f compare 
to the interval obtained in part d? 

6.40 According to the Census Bureau, the mean number of bedrooms 
in housing units in this country was J.L = 2.6 in 1990. The standard 
deviation was a = 0.9 bedrooms. In a survey of 100 housing units in a 
Chicago suburb the mean number of bedrooms was 3.1. 

a. Find a 95% confidence interval for the population mean 
number of bedrooms in this community. 

b. Does it seem as if this suburb has more bedrooms than the 
country as a whole? 

6.41 In a sample of 49 employees of a large business firm, the mean 
number of days in a year lost to illness by the employees was 7.0 with 
a standard deviation of 2.5 days. 



a. Find a 95% confidence interval for the mean number of days 
lost to illness for the entire company. 

b. How do you interpret this interval? 

6.42 In 1989, in answer to the question ''Which of two career paths 
would you choose, (1) one that would enable you to schedule your own 
full-time work hours and give more attention to your family but with 
slower career advancement or (2) one with rigid work hours that per­
mit less attention to your family but faster career advancement?" 74% 
of men and 82% of women chose option 1. (Source: Juliet B. Schor, The 
Overworked American: The Unexpected Decline of Leisure, New York: Basic 
Books, 1991, p. 148.) Suppose the sampling error for the percentages was 
plus or minus 3. 

a. Find the confidence interval for the population percentage 
of men who chose option 1. 

b. Find the confidence interval for the population percentage 
of women who chose option 1. 

c. From these two confidence intervals, does it seem possible 
that the two population percentages are equal? 

d. Does it look as if either the men or the women who chose 
option 1 are actually in the minority in the overall population? 
Explain. 

6.43 In a study of 21 swimmers, the mean age was 12.3 years and the 
standard error of the mean was 0.3 year. (Source: G. E. Theintz, H. Howard, 
U. Weiss, and P. C. Sizonenko, ''Evidence for a reduction of growth potential in ado­
lescent female gymnasts," Journal of Pediatrics, vol. 122 (1993), no. 2, pp. 306-
313.) 

a. Find a 95% confidence interval for the population mean age 
of the swimmers. 

b. What does this interval tell you about the age of the swimmers 
from which this sample was taken? 

6.44 Several older patients were complaining of postherpetic neural­
gia. The mean amount of time after diagnosis before the treatment 
started for 6 men was 30.5 months and for 12 women was 37.9 weeks. 
The difference in waiting time was therefore 7.4 months. The standard 
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deviation for the men was 17.5 months and for the women was 30.8 
months. (Source: P. R. Layman, E. Agyras, and C. J Glynn, "Iontophoresis of vin­
cristine versus saline in post-herpetic neuralgia: A controlled trial," Pain, vol. 25 
(1986), pp. 165-170. Reported in W W Piegorsch, "Complementary log regression 
for generalized linear models, "The American Statistician, vol. 46 (1992), pp. 94-
99.) 

a. Show that the pooled standard deviation equals 27.4 
months. 

b. Find a 95% confidence interval for the difference between 
the two underlying population means. 

c. Is no difference between the two population means possible? 

6.45 In 1989, the National Center for Health Statistics asked youths 
aged from 12 to 18 years who smoked what brand of cigarettes they 
bought. Of the 41 Mrican Americans in the study, 61 % smoked New­
port cigarettes; 5% of the 807 whites smoked Newports. This results in 
a difference between the two percentages of 61 - 5 = 56. 

a. Show that a 95% confidence interval for the difference be­
tween the two corresponding population percentages goes from 
41 to 71. 

b. How do you interpret this confidence interval? 

c. Does it seem as if the two population percentages are equal 
to or different from each other? 

6.46 Use the same method the Allies used to estimate German tank 
production during World War II to estimate the production of an imag­
inary new fighter plane in World War II. Each plane has a number 
indicating its place in the production line. Suppose the highest number 
on any plane shot down is 100. The sample of planes is 20. How many 
planes should you estimate have been produced? 

6.47 In a study of 531 large companies by the Wyatt Company, 61 % 
of the business managers surveyed indicated that they expected im­
proved customer service as a result of downsizing, but only 33% of them 
concluded that better customer service actually occurred as the result 
of staff reductions. (Source: R. Reich, "Companies are cutting their hearts out, " 
The New York Times Magazine, December 19, 1993, p. 54.) 



a. Using the quick approximation formula (Formula 6.2), find 
confidence intervals for the two corresponding population per­
centages. 

b. What conclusion might you draw about downsizing from this 
information? 

6.48 A sample of 117 late adolescents were given a scale on which to 
rate their attachment to their mothers and fathers. The fathers of 71 
of the adolescents were alcoholics. The mean attachment rating of 
these adolescents to their fathers was 78, with a standard deviation of 
25. The mean attachment of the children of nonalcoholic fathers to 
their fathers was 91, with a standard deviation of22. (Source: Timothy Cavell 
et al., ''Perceptions of attachment and the adjustment of adolescents with alcoholic 
fathers, "Journal of Family Psychology, vol. 7 (1993), pp. 204-212.) 

a. Find a confidence interval for the population means for each 
group. 

b. Would you agree that adolescents with alcoholic fathers are 
less attached to their fathers than adolescent children of non­
alcoholic fathers are attached to theirs? 

6.49 In a Gallup poll of 502 respondents, 56% said they were "morn­
ing" people; 44% of the respondents said they were "night owls." (Source: 
USA Today, December 13, 1993, p. 1A.) Using the quick approximation 
formula (Formula 6.2), find confidence intervals for the percent­
ages in parts a, b, and c (read cautiously). Then go on to parts d, e, 
andf. 

a. Of the morning people, 53% believed that morning people 
have more energy than most people, while among the night 
owls, 39% believed that morning people have more energy than 
most people. 

b. Of the morning people, 45% thought that morning people 
exercise more than most people, while 37% of the night 
owls believed that morning people exercise more than most peo­
ple. 

c. Of the morning people, 74% believed that morning people 
led active lives, while 64% of the night owls thought that morn­
ing people led active lives. 
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Table 6.1 Data for Exercise 6.50 

Men Women 

Scale Mean Standard deviation Mean Standard deviation 

Marital satisfaction 31.6 8.7 30.0 9.8 
Idealistic distortion 16.7 5.1 14.0 5.5 

Source: Blaine J Flowers and David H. Olson, "ENRICH material satisfaction scale: A brief 
research and clinical tool, "Journal of Family Psychology, vol. 7 (1993), pp. 176-185. 

d. When you look at the three sets of confidence intervals, does 
it seem as if the morning people and the night owls differed in 
how they perceived the morning people? Describe your findings. 

e. The report indicates that Quaker Oatmeal sponsored the 
study, and the margin of error was 4.4%. How does this margin 
of error compare with your results? 

f. Would using the 4.4% margin of error instead of your own 
calculations change your answers to part e? 

6.50 Research on marital satisfaction was carried out with a sample 
of2,1l2 couples using two scales, a marital satisfaction scale to rate how 
happy each person was with the marriage and an idealistic distortion 
scale, which rates the tendency of the person to evaluate marriage in 
an unrealistically positive way. The results are given in Table 6.1. To 
answer the questions, construct confidence intervals for the differences 
between the means. 

a. Does it seem as if men are more satisfied in marriage than 
women? 

b. Would you agree that men have a more distorted view about 
marriage than women? 

6.51 In Chapter 5 we report on the results from one of our introduc­
tory statistics classes where 25 students spun pennies 10 times each and 
counted the number of heads. The mean number of heads was y = 
3.96 and the standard deviation was 1.74, so the standard error of the 
mean was 1.74/.J25 = 0.35. 

a. Use these data to calculate a 95% confidence interval for the 
population mean number of heads in 10 trials. 



b. What does this confidence interval tell you about the possi­
bility that spinning a penny produces heads and tails with equal 
probabilities, such that we would expect 5 heads and 5 tails in 
10 spins? 

6.52 The 25 students in Exercise 6.51 spun pennies a total of 250 
times. They observed 97 heads and 153 tails, so the proportion of heads 
equals 97/250 = 0.39. Find a 95% confidence interval for the proba­
bility of getting heads when you spin a penny. 
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DRAWING C 

f{2Z)o French people know more about geography than other people? Do Ameri­

cans know less? 
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In 1988 (July 28) The New York Times carried a story on people's 
knowledge of geography. The article described a study commissioned 
by The National Geographic Society and carried out by the Gallup 
Organization in which the researchers asked a large number of people 
in random samples from different countries to identify 16 locations (13 
countries, Central America, the Persian Gulf, and the Pacific Ocean) 
on a world map. The researchers added up the number of correct 
identifications (from 0 to 16) each person made. 

The mean numbers of correctly identified locations for samples 
from four countries were 

United States 6.9 
Mexico 8.2 
Great Britain 9.0 
France 9.2 

On the average, the French respondents were able to identify a larger 
number of spots on the map than the respondents in the other three 
countries. The newspaper article goes on to say, "To be considered 
statistically significant, differences in scores among all adults must be 
at least six-tenths of a point apart." What does the term "statistically 
significant" mean? 

The difference between the means for France and Great Britain is 
only 0.2 locations. This small difference hardly seems worth mention­
ing, and it is in fact not large enough to meet the 0.6 criterion of 
statistical significance. On the other hand, the difference between the 
means for Great Britain and the United States is 2.1 locations, large 
enough to be statistically significant. This is because 2.1 is larger than 
0.6. The differences between the means for Mexico and Great Britain 
and Mexico and France are large enough to be statistically significant 
as well. 

While these differences among samples may be interesting, we want 
more from this study than the sample means for the different countries. 
We want to make general conclusions about whether the means for all 
the adults in these countries are different, not just the sample means; 
we want to know if the population means in various countries are dif­
ferent. Ifwe can conclude that the population means for two countries 
are different, then we can say that the difference between the sample 
means is statistically significant. 

One approach to the problem would be to use the ideas in Chapter 
6 and estimate the population means to see if they are different. In this 
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chapter we follow another approach called hypothesis testing. In both 
cases we are interested in population parameters, such as percentages, 
differences between percentages, means, and differences between 
means. But in hypothesis testing we focus on a particular value and 
wonder if the parameter could be equal to this value. In the geography 
example, the parameters are population means, and to illustrate the 
topics in this chapter, we pursue the question of whether the popula­
tion mean in Mexico is equal to the population mean in the United 
States. We want to find out whether the difference between two pop­
ulation means equals the value zero, even though we observe a differ­
ence of 1.3 between the sample means. The difference in the samples 
could be due to randomness only. 

To begin hypothesis testing we ask a question: Is the difference between 
the population means in Mexico and the United States equal to zero 
or not? The difference between the two sample means is 8.2 - 6.9 = 

1.3. Thus, on the average, the respondents in Mexico were able to 
identify 1.3 more spots on the map than were the respondents in the 
United States. Even if there truly were no difference between the peo­
ple in the two countries, we would not expect the two sample means 
to be equal. There would be some sampling variation in the two dif­
ferent random samples, but this variation might not be large enough 
to explain the observed difference of 1.3 spots. 

Null hypothesis 

To see if the observed difference of 1.3 is larger than the sampling 
variation, we examine what would happen to the sample means if the 
two population means were equal, that is, whether the difference be­
tween the two means equals zero. In statistics such a question is known 
as a null hypothesis. The null hypothesis is always expressed in terms of 
one or more parameters, and it states that the parameter(s) are equal 
to some specific value. In this example, the null hypothesis asks 
whether the difference between the two population means equals zero. 

In the more formal language of statistics we write the null hypoth­
esis as an equality. Let the population mean in Mexico be denoted fJ'M 
and the population mean in the United States be denoted /Lus. (Re-

In estimation we 
try to find what 
value a parame­
ter might have. 
In hypothesis 
testing we try to 
find out whether 
a parameter i 
equal to a partic­
ular value of spe­
cial interest. 
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member that the Greek J.L denotes population mean.) The statistical 
equality for the null hypothesis in the geography example is 

Ho: ILM - ILus = 0 

The letter H stands for hypothesis, and the subscript 0 identifies it as 
a null hypothesis. The reason for the word null is that the hypothesis 
states that there is no difference or no change or no relationships be­
tween the variables. 

A statistical null hypothesis asks whether a parameter equals a par­
ticular value. Formally the null hypothesis is written 

~): parameter = value 

Even though the null hypothesis states that the difference between 
the two population means equals zero, the statement is not necessarily 
true. It is simply a way of asking the question whether the difference 
between the two population means equals zero. Most data are collected 
to show that groups are different; the two countries would be shown 
to be different if the null hypothesis were wrong. The question posed 
by the null hypothesis is answered on the basis of the sample data. 

It is important to emphasize that a null hypothesis is always a ques­
tion about population parameters and therefore contains Greek letters. 
It would make no sense for a null hypothesis to be about a sample 
statistic, say the sample mean x or the difference between two sample 
means, because we know the sample statistics and can tell whether they 
are different or not simply by looking at them. In the example, the 
difference between the two sample means equals 1.3, which obviously 
is different from zero. But that is not necessarily the difference between 
the population means, and that is why we ask about the values of the 
population means. 

Alternative hypothesis 

The logical alternative to a null hypothesis of no difference is a hy­
pothesis that there is a difference between two parameters-an alter­
native hypothesis. In the example, the alternative hypothesis states that 
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the difference between the two population means is different from 
zero: 

Thus, if the answer to the question posed in the null hypothesis is no, 
the alternative hypothesis is true. If the two means are not equal, then 
they must be different; the no in the null hypothesis and the no in the 
answer to the null hypothesis cancel each other out. If the evidence in 
the sample data leads to answering no to the question posed in the 
null hypothesis, then we reject the null hypothesis in favor of the alter­
native hypothesis. 

Errors in answering the question 

The question expressed in the null hypothesis is a yes/no question. Is 
the difference between the population means in Mexico and the 
United States equal to zero? Either it is or it isn't, yes or no. The answer 
to the question is determined by the information in the sample data. 
But since the amount of available information in sample data is limited 
because it comes only from a sample, not the entire population, the 
answer may not be correct. 

Hypothesis testing is like a jury decision on the question of whether 
the defendant is guilty or not. If the defendant is truly innocent but 
our verdict is guilty, then we have made an error. On the other hand, 
if the defendant is truly guilty but our verdict is not guilty, then we 
have made another type of error. 

There are two possibilities for the question posed in the null hy­
pothesis. 

1. The difference betw en the two population mean equal zero, 
and the COITect answer is therefore Yes. 

2. The difference between the two population means is different 
from zero, and the correct answer i therefore No. 

If the null hypothesis is true If the null hypothesis is true and the dif­
ference between the two population means really equals zero, then the 
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The type I error 
(alpha error) in 
hypothesis test­
ing is rejection 
of a null hypoth­
esis that is true. 

The type II error 
(beta error) in 
hypothesis test­
ing i failure to 
reject a null hy­
pothesis that is 
fal e. 

correct answer to the question the null hypothesis poses is yes. If we 
say yes, we have given the correct answer. But if we answer the question 
no, then we have made a mistake. We have made an alpha error or a 
type I error: we have said no to and rejected a null hypothesis that is 
true. 

If the null hypothesis is false If the null hypothesis is not true and the 
difference between the two country means is different from zero, then 
the correct answer to the question posed by the null hypothesis is no. 
If we answer yes and conclude that the difference between the two 
means equals zero, we have made another type of mistake, called the 
beta error or a type II error. 

STOP AND PONDER 7 . 1 

A man is on trial for murdering his wife. He is, in fact, guilty. The 
j ury find him innocent. The null hypothesis: A person is innoc~nt 
unle proven guilty beyond a shadow of a doubt What kind of error 
bas been made in tbi trial, a type I or a type II? Can you create a 
court case in which the reverse type of error is committed? Which 
of the two errors is our legal system more willing to allow? 

The question posed by the null hypothesis is answered on the basis of 
the sample data. If the data appear to support the null hypothesis, the 
hypothesis is not rejected. The null hypothesis is rejected if the data 
are inconsistent with it. For example, if the null hypothesis states that 
the difference between two population means is equal to zero and the 
difference between the two sample means is very different from zero, 
the null hypothesis is rejected. 

The way we decide if the sample is inconsistent with the null hy­
pothesis is to ask if we could expect to get the data we got if the null 
hypothesis were true. If the population means in Mexico and the 
United States are equal, could we expect a difference between the two 
sample means as large as the observed difference of 1.3? Or, put the 
other way around, because the null hypothesis states that the difference 
between the two population means equals zero, the difference between 
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the two sample means should be close to zero if the null hypothesis is 
true. 

How often would we get a difference between sample means of 1.3 
or more if the samples come from populations where the difference 
between the population means is zero? If the difference between the 
population means is zero, does a difference between sample means of 
1.3 belong to an unusual set of differences between sample means? In 
other words, what is the probability of getting a difference between two 
sample means of 1.3 or more from populations where the difference 
between the mean equals zero? 

Probability: The p-value 

To determine whether the sample difference of 1.3 locations belongs 
to an unusual set of data, we compute the probability of getting a sam­
ple difference equal to 1.3 or more when the population difference is 
zero. Such a probability is known as a p-value. When the p-value is so 
small that it does not seem possible to get the data we got if the null 
hypothesis were true, we reject the null hypothesis. The smaller the p­
value, the more evidence against the null hypothesis. But what do we 
mean by "small"? Probabilities are numbers on a scale from 0 to 1, so 
a small probability is some number close to O. The famous British stat­
istician Ronald Fisher, came up with the standard that 1 in 20 was small. 
This translates to 0.05, and since his time a probability of .05 or smaller 
has been considered small. Fisher did not have any profound reasons 
for deciding that 0.05 is small, but his idea caught on. 

How small we want the p-value to be before we decide to reject the 
null hypothesis should in principle be decided on the basis of the con­
sequences of making the mistake of rejecting a true null hypothesis. 
However, such consequences are often hard to determine. 

When Fisher settled on 0.05, he considered the probability of get­
ting a sample statistic either larger or smaller than the parameter value 
in the null hypothesis. This means that half of the significance level 
probability (0.025) is on the left side of the parameter value and the 
other half (0.025) is on the right side of the parameter value. 

If the p-value is the probability of the observed sample statistic or 
more extreme ones, then the p-value is one-sided, and the criterion for 
smallness is 0.025. This is the case when the p-value is determined by 
using a value of the z-variable or a value of t-variable. Sometimes people 
report two-sided p-values and sometimes they report one-sided p-values. 

The p.vaIue is 
the probability of 
getting the ob­
served data or 
more extreme 
data when the 
null hypothesis is 
true . 
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When a null 
hypothesis i 
rejected, the 
sample result is 
statistically 
significant. 

People sometimes erroneously think that t~va1ues have something to 
do with probabilitie that the null hypothesis is right or wrong, but 
this cannot be. When we tos a coin it lands heads up sometimes and 
tails up sometimes, and we can therefore talk about the probability 
of the coin landing either head or tails. Such a probability tells us 
how often heads or tail happen when the coin is to 'sed many times. 

But we cannot talk about the probability that a particular null 
hypothesis is right or wrong. A null hypothesis i not sometimes righ t 
and ometime wrong. A null hypothesis i either right or it is wrong, 
and it i always one of the two. 

Let' ay your name is David. We cannot say that the probability 
is 0.04 that your name i David. That impli s that when we a k you 
100 time what your name i " you 'ay David 4 time ' and omething 
el e the other 96 time. Thi i imilar to a king if a null hypothesis 
i true or not. 

In lead p-value refer to probabilitie about data. The p-valu 
tells how often data of a certain kind occur in many different ample 
from a certain population. Suppose you are in a clas of 10 students 
and 2 of them are named David. Let a sample consist of one tudent 
and the data be the name of that tudent. The f~va1ue for the name 
David i 0.2 becau e thi name will come up 20% of the time if many 
ampl are selected. 

When data lead to rejection of a null hypothesis, then the empirical 
results are statistically significant. Put another way, the empirical result 
is statistically significant if the p-value is small. 

In the geography example, the null hypothesis states that the mean 
number of correctly identified geographical locations is the same for 
people in Mexico and people in the United States. The observed dif­
ference between the two sample means equals 1.3 locations. The reason 
this difference is statistically significant is that the probability of such a 
sample difference or a larger difference in populations where the two 
means are equal is less than 0.025. For a difference between sample 
means of 0.6 the p-value is exactly equal to 0.025. 
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Mechanics of hypothesis testing 

To find the frvalue from the data, statistical theory specifies that we 
change the observed difference between the two sample means-1 .3 
locations on the world map-to a standard score. The standard score 
for a difference between two sample means is a value of the statistical 
t-variable. For these data the observed difference between the two sam­
ple means X M - X us = 1.3 becomes t = 4.25. Because there were about 
1,600 observations from the United States and about 1,200 from Mex­
ico, the degrees of freedom are so large that the value of t can be 
regarded as equivalent to a value of the standard normal z-variable. 
(The t-variable and degrees of freedom are discussed in Chapter 5.) 

Changing the scale from one variable (x M - x us) to another vari­
able (t) is about the same as converting a temperature from Fahrenheit 
to Celsius degrees. The value of t is found from the sample means, the 
sample standard deviations, and the number of observations in the 
samples by using Formula 7.2 at the end of the chapter, either with 
pencil and paper or using statistical software on a computer. 

The procedure for changing the value of the difference between 
two sample means to a value of the t-variable is shown in Figure 7.1. 
The figure shows the correspondence between the two scales such that 
a difference of 0 locations corresponds to t = 0.00 and the observed 
difference = 1.3 locations corresponds to t = 4.25. The probability that 
t is equal to or larger than 4.25 is then equal to the probability that 
observed difference between the sample means is equal to or larger 
than 1.3. 

Any standard score beyond + 2 or - 2 is unusually large, so 4.25 is 
an unusually large positive value of t. The probability that the differ­
ence between the sample means is 1.3 or larger cannot be found di-

Observed 
H difference 

_______ --t-0 _____ --+ ___ --+ ___ Difference between 
o 0 1.0 1 3 sample means 

p-value 
= 0.00001 

--------*-------------*---- t-variable 
0.0 4.25 

Figure 7.1 Correspondence between a difference between two sample 
means and the value of the t-variable 



274 C hap t e r 7 • 0 raw in g Con c Ius ion s: H y pot h e sis T est i n g 

reedy, but the probability that t equals 4.25 or more can. The proba­
bility that the statistical variable t is equal to or larger than any value 
can always be found. Many statistical computer software packages can 
find probabilities for t directly, or extensive published statistical tables 
can be used to find probabilities for t. 

For this example, the probability that t is equal to or larger than 
4.25 for a sample of more than 2,000 observations is as small as 0.00001. 
Therefore, the probability that the difference between the sample 
means is equal to or larger than 1.3 is also equal to 0.00001, if the 
difference between the two population means is zero. In other words, 
if 100,000 samples from populations with equal means were drawn, 
then only 1 of the samples would have a difference between the sample 
means of 1.3 or more; that is, this large a difference between the sample 
means would be very unusual if the population means were equal. 

As discussed in Chapter 5, the t-variable depends on how large the 
sample is, and the same value of t has different probabilities depending 
on the number of observations in the sample. But rather than talking 
about the number of observations, statisticians talk about the number 
of degrees of freedom (d.f. or dO. 

In the case of the difference between two sample means, the num­
ber of degrees of freedom for t equals the total number of observations 
minus 2. In the example, the number of observations is so large (2,800) 
that we can use the standard normal z-variable instead of the t-value. 

To reject or not to reject the null hypothesis 

On the basis of the assumption that the two population means are 
equal, the probability of getting a difference between the two sample 
means of 1.3 or more equals 0.00001, or 1 in 100,000. Thus, the ob­
served sample difference of 1.3 belongs to a collection of means that 
are very unlikely and have a very small probability of occurring if the 
population means are equal. 

There are two ways of explaining what has happened. Either the 
null hypothesis is true and the observed data are unlikely and do not 
occur very often, or the data are likely and the assumption that the 
population means are equal is wrong. (This is the same type of discus­
sion as the one on probabilities in Chapter 5, which was on hypothesis 
testing as well, even though the term was not used there.) Because the 
probability of the large difference between the sample means is as small 
as 0.00001 if the population means are equal, we choose the second 
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alternative. We decide that the assumption that led to the small prob­
ability-that the two population means are equal-is wrong. We reject 
the null hypothesis that the difference between the two population 
means is zero, and we conclude that zero is therefore not the true value 
of the difference between the two population parameters. Thus, on the 
basis of the data in the sample we are able to draw a conclusion about 
particular values of the parameters and thereby what the populations 
are like. 

The analysis in this example can be reported in the following way 
in the technical jargon: To test Ho: /-LM - /-Lus = 0, a sample of nl = 
1,200 observations from Mexico and a sample of ~ = 1,600 observa­
tions from the United States were collected. 

YM - Yus = 1.3 (t = 4.25 on 2,800 d.f., P = 0.00001) 

In plain English: To test the null hypothesis that the difference between 
the population means in Mexico and the United States equals zero, 
samples of 1,200 observations from Mexico and 1,600 observations 
from the United States were collected. The difference between the 
sample means was 1.3, or a t-value of 4.25 with a very large number of 
degrees of freedom. The probability of a difference between the sam­
ple means of 1.3 or more from populations where the means are equal 
is 1 in 100,000. 

STOP AND PONDER 7 . 2 

Translate this technical statement into English: To test Ho: J..L = 
5.0, collect a sample of 22 observations and find x = 3.5 (t = 
- 2.50 on 21 d.f., P = 0.01). 

Causal effect: A step too far 

Without additional knowledge, we cannot go the extra step and say 
that the cultural differences in countries caused the difference in ability 
to recognize locations on a world map. That is a much stronger state­
ment than claiming statistical significance, and we do not have enough 
evidence to support such a statement. Perhaps a knowledge of other 
factors such as educational curricula would help us understand the 
observed difference between Mexico and the United States better. 
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A little statistical theory and a game on the computer 

The p-value for the Mexican-American difference in means is 0.0000l. 
In other words, in only 1 of 100,000 samples from the two populations, 
assuming the same mean, would the difference between the sample 
means be equal to or larger than the observed difference of 1.3. But 
the study did not have 100,000 samples; it had only one sample. The 
idea of 100,000 different samples seems a bit overwhelming, anyway. 

The right software can generate many different samples from two 
populations with the same mean. We actually did that; we selected an­
other 99 pairs of samples, and for each pair we computed the differ­
ence between the means. Thus, we have 99 sample differences between 
means from populations with the same mean and the one observed 
difference. Figure 7.2 is a histogram of the sample differences. (The 
samples were chosen from populations with normal distributions, 
means equal to 8.0, and standard deviations of 6.0.). 

The histogram shows the one observed difference between sample 
means at the far right, and it shows that the other differences range 
from about - 0.5 to 0.5. They cluster around 0, which is not surprising, 
since they were drawn from populations in which the means were 
known to be equal. The striking feature of the histogram is that the 
difference between the means from the actual samples is all on its own 
at 1.3. None of the other differences from the computer samples are 
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anywhere close to 1.3. Ifwe had used data from 100,000 samples instead 
of only 100, we would have had a few more extreme sample differences. 
But even with 100 samples, it is very clear that the observed sample 
difference between means is very unusual. Another way to say that it is 
very unusual is to say that it has a very small jrvalue. 

With a small jrvalue, it helps to visualize a histogram like the one 
in Figure 7.2. It is a reminder of the implication of a small jrvalue, and 
it shows what is meant by an unusual sample. In the histogram, the 
difference of 1.3 does not belong with the collection of other sample 
differences. If that is the case, then we must conclude that the observed 
sample difference did not come from populations where the means are 
equal the way the other samples did. Thus, the Mexican and the United 
States populations from which the samples were drawn have different 
means, and based on the information in the sample data, we reject the 
null hypothesis. 

Figure 7.3 illustrates the statistical theory that underlies the geog­
raphy example. Figure 7.3a is the case where the null hypothesis is true. 

(a) Null hypothe'is true 
(2.5% of observed 
differences less than • 
-0.6 and 2.5% larger 
than 0.6) 

-0.6 0 0.6 1.4 

The one observed 
sample value = 1.3 
is lInli lIal. 

I , I , 

YM - Jus 

(b) Null hypo"'~" ral~; true £ 
difference equals some other ---.,........-,---r'. L,-L,...,. ....... ~ .................. .,-L-,,--r--.-T"""T--r--r-,......., 

value, ror example 1.0 O.I.O r Y.I/ - Ju~ 

The one obs rved 
sample value = 1.3 
i not unusual. 

Figure 7.3 Distribution of a sample statistic from many different samples 
when the null hypothesis is true (a) and when it is false (b) 
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The parameter (population mean, population percentage difference 
between population means-here difference between 2 population 
means) is equal to the value we specified in the null hypothesis (the 
two population means are equal). Ifwe now draw many different sam­
ples, then the corresponding sample statistic (sample mean, percent­
age, or whatever) clusters around the value of the population param­
eter. Figure 7.3a shows how the observed sample statistics cluster 
around the parameter value. Because of the variation from one sample 
to the next, the results from one sample to the next are not equal. Note 
how far the observed sample statistic is from the other sample results 
in Figure 7.3a. 

Figure 7.3b shows the other possibility, that the population param­
eter is equal to some other value instead of the null hypothesis value. 
Again, the results from many different samples cluster around the true 
parameter value, and the value of the observed sample statistic falls 
among the results from the other samples. 

In any actual investigation we have only one sample. Also, we do 
not know whether the null hypothesis is correct or not. The question 
is whether our one sample result belongs to the collection of results in 
Figure 7.3a or to the collection of results in Figure 7.3b.lfwe can tell 
from which collection it comes, then we can conclude whether the null 
hypothesis is true or not. What we do is to assume that it comes from 
the collection in Figure 7.3a and find the p-value for the sample results. 
Any sample result from the collection of results in Figure 7.3b would 
have a very small p-value, and based on this very small p-value we would 
correctly reject the null hypothesis. If the observed value belongs to 
the histogram in Figure 7.3a, then it is a very unusual value and has a 
very small p-value. But if it belongs to the histogram in Figure 7.3b, 
there is nothing unusual about it. Thus, hypothesis testing is answering 
the question of what group of sample statistics the one observed value 
belongs to, and the decision is based on the magnitude of the p-value. 

STOP ANO PONDER 7.3 

A newspaper story claims that Australians drink more beer than 
Americans and supports the claim with one piece of information: in 
the month of December, Australians drank 2 liters of beer per per­
son, willIe Americans drank 1.7 liters of beer. What questions might 
you want answered before you agreed that Aussies are bigger beer 
drinkers than Yanks? 
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Before statistical software was readily available for the computation of 
p-values, hypothesis testing was often done with a slightly different 
method. Instead of computing a p-value after the data have been col­
lected, a small probability is chosen before data are collected and used 
to determine a range of values for the sample data based on which the 
null hypothesis would be rejected. Such a probability is known as the 
significance level of the test, and 0.05 is the commonly used value. With 
a significance level of 0.05, null hypotheses that are true are errone­
ously rejected 5 times out of 100 times, commonly accepted as a rea­
sonable risk. 

Figure 7.4 illustrates how the significance level is used in the ge­
ography example. The null hypothesis specifies that the difference be­
tween the two population means is equal to 0.00. This value is marked 
off in the middle of the horizontal line in the figure. To test the hy­
pothesis, the difference between two sample means is computed. This 
computed value of the difference between the two sample means falls 
somewhere along the horizontal line labeled "Sample statistic." 

If the null hypothesis is true When the null hypothesis is really true, the 
sample statistic usually falls close to the value specified in the null hy­
pothesis. If the difference between the two population means is zero, 
then the difference between the two sample means is close to zero. But 
occasionally the random drawing of the sample produces a sample sta­
tistic that is quite far away from the population value. Using the proper 
formulas, two values of the sample statistic can be found such that 2.5% 
(0.025) of the possible sample statistics are larger than one value and 

a/2 
= 0.025 

I 

-0.6 
Unlikely 
values 
of sample 
statistic: 

Reject 
null 
hypothesis 

Value of parameter 
in null hypothesis 

0.00 
Likely values of sample statistic: 

Do not reject null hypothesis 

I 

0.6 

a/2 
= 0.025 

Unlikely 
values 
of sample 
statistic: 

Reject 
null 
hypothesis 

, Sa~p!e 
statIstIC 

Figure 7.4 Hypothesis testing for the difference between two means with 
0.05 significance level 

The significance 
level a (alpha) 
of a test is the 
probability of 
getting data that 
will lead to rejec­
tion of a null hy­
pothesi that is 
really true. 
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For a two-sided 
test, the critical 
values of a sam­
ple statistic are 
two values cho­
'en such that 
only 5% of the 
sample tatistics 
from different 
sample will ex­
ceed the e values 
in either direc­
tion, when the 
null hypoth is is 
true. 

another 2.5% are smaller than the other value. These are the extreme 
and unlikely values of the sample statistic. (Note in the figure that the 
significance level of 5% (0.05) is split into two parts, one on the left 
side and one on the right side of the midpoint.) In the geography 
example, anything more extreme than plus and minus 0.6 leads to a 
rejection of the null hypothesis, according to computations made for 
this example. A difference between the sample means of -0.6 or less 
would occur only 2.5% of the time and a difference of the sample 
means of 0.6 or more would only occur 2.5% of the time, if the null 
hypothesis is true. The two scores +0.6 and -0.6 are called the critical 
values. 

If the null hypothesis is false If the difference between the two popula­
tion means for Mexico and the United States is not equal to zero, then 
the null hypothesis is false. In that case the extreme values of the sam­
ple statistic are not so unlikely, and they will occur more often. So, if 
one of these extreme values of the sample statistic is observed, then we 
conclude that the null hypothesis is false and should be rejected. The 
observed difference between Mexico and the United States equals a 
whopping 1.3, greatly surpassing 0.6; the observed difference is statis­
tically significant, and the null hypothesis of equal means is rejected. 
We conclude that knowledge of geography on this test is greater in 
Mexico than in the United States. 

Smaller significance levels If we use a significance level smaller than 
0.05, for example 0.01, then the two critical values move farther away 
from each other and are larger than ±0.6. With a significance level of 
0.01, the critical values are ±0.79. With an observed difference of 1.3, 
we would still reject the null hypothesis at that level of significance. 
Indeed, for any critical values that are less than the observed difference 
1.3, we would reject the null hypothesis. This means we could reject 
the null hypothesis for a significance level considerably smaller than 
0.05. The smallest value of the significance level for which we would 
reject the null hypothesis is known as the (two-sided) p-value for these 
data. 

Two-sided and one-sided tests of significance The alternative hypothesis 
states that the difference between the population means in Mexico and 
the United States is different from zero. Different from zero can mean 
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either smaller than zero or larger than zero. For this reason it is called 
a two-sided alternative. 

Sometimes a one-sided alternative hypothesis is useful. Suppose we 
have additional knowledge about how people study geography in the 
two countries and how they score on tests identifying locations on a 
world map. Suppose we know that Mexicans, on average, do not do 
worse than people in the United States on these tests. Then Mexicans 
either do as well or do better. With this additional knowledge, the 
alternative hypothesis can be restated 

Since we know the difference cannot be negative, the only alternative 
to it being zero is that it is positive. 

This alternative hypothesis determines a new rejection region for 
the null hypothesis: a large positive difference between the sample 
means. Any negative difference is due to sampling variations and can 
be ignored. How large does the difference between the sample means 
have to be before we reject the null hypothesis? 

Because the entire significance level of 0.05 is now on the right side 
of 0, we reject the null hypothesis if the computed value of t is larger 
than 1.64. This t-score corresponds to a difference between the sample 
means of 0.5. Thus, any difference between the sample means of the 
two countries that is larger than 0.5 is significant. With a two-sided test, 
a positive or negative difference of more than 0.6 is needed to reject 
the null hypothesis. 

Two-sided and one-sided tests are illustrated in Figure 7.5. The 
figure shows when the null hypothesis with a two-sided alternative 
hypothesis is rejected and when the null hypothesis with a one-sided 
alternative hypothesis is rejected. In both cases the significance level 
equals 0.05. 

Surveys and polls are constantly probing to find out how many of us 
feel one way or another, do this or that, or know one thing or another. 
Newspapers reported that 22% of executives in 1995 feared they might 
be fired, compared to 6% in 1993; that 61 % of teenagers who have 
abortions tell both parents; that 60% of college seniors do not know 
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Two-sided test 

af2 = 0.025 af2 = 0.025 
------~06----------~0-------------0~~-------yM-ym 

Reject Do not reject Reject 

-1.96 o 1.96 

One-sided test 
a = 0.05 

--------------------0~---------Or5-----------yM-ym 

Do not reject Reject 

o 1.64 

Figure 7.5 Rejection regions for two-sided and one-sided tests of signifi­
cance 

when Columbus landed in the Americas. Just before elections, the polls 
tell us in detail where the candidates stand with the electorate and how 
many percentage points one candidate is ahead of the other. 

For a political candidate, the 50% mark is especially important in 
a two-person race. The candidate will win the election with more than 
50% of the votes and lose with less than 50% of the votes. A poll before 
the election can give the candidate a good sense of how the campaign 
is going. To do this, the statistical expert for the candidate can test the 
null hypothesis that the percentage of supporters equals 50: More for­
mally this can be written 

Ho: 'IT = 0.50 

where 7T is the proportion of the population supporting the candidate. 
(We are all used to the letter 'IT' standing for the number 3.14 ... , 
so using it here for a number between 0 and 1 is somewhat confusing. 
But we want to stay with the convention that parameters are denoted 
by Greek letters, and no other Greek letter lends itself as well to denote 
a probability or population proportion.) 
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The null hypothesis can be written using the corresponding per­
centage, found by multiplying the proportion by 100. Ifwe denote the 
percentage of the population supporting the candidate by n (capital 
pi), then the null hypothesis is written 

Ho: n = 50% 

The computations are easier with percentages than with proportions, 
and percentages are almost always used in reporting data on categorical 
variables. 

To test this null hypothesis, the first step is determining how large 
the sample should be. The larger the sample, the closer the sample 
percentage will be to the population percentage. A sample of around 
1,200 respondents is often used in election and other polls reported 
in the news media. 

Let us see what happens if the null hypothesis of an evenly split 
electorate is true. With a sample of 1,200 respondents, we can calculate 
that in 95% of all samples, the sample proportions will fall between 
0.47 and 0.53, or the sample percentages between 47% and 53%, when 
the null hypothesis is true. These are the two critical values for testing 
the null hypothesis. Once we know these values, they do not have to 
be calculated again for this sample size. A sampling error of +3% or 
-3% is often used in important polls, as you may have noticed from 
newspapers or TV. 

If the observed sample value falls outside the range from 47 to 53, 
then we reject the null hypothesis with a 0.05 significance level. For 
example, if in the sample 55% of the voters declared they will vote for 
the candidate, then we can be quite confident that the voters are not 
evenly split but favor the candidate: the observed percentage is larger 
than the critical value of 53%. 

We can also take the actual sample percentage of 55% and compute 
a p-value for that percentage. If the p-value is small enough, then we 
reject the null hypothesis. For a sample percentage of 55, 1,200 obser­
vations in the sample, and a null hypothesis that the population per­
centage equals 50, the p-value is a small 0.0008. Thus, if the population 
percentage truly equals 50, then only 8 of 10,000 different samples 
would give us a sample percentage of 55 or larger. The p-value is found 
by first computing a value of the z-variable for the sample percentage 
(Formula 7.4), then using statistical software or Statistical Table 1 to 
find the proper p-value. 
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Notice how much more informative it is to say that the null hy­
pothesis was rejected because the p-value equals 0.0008 than to say that 
it was rejected using a 0 .05 significance level. The p-value approach is 
much more common now than the significance level approach because 
modern statistical software routinely gives us exact p-values. 

STOP AND PONDER 7 . 4 

Look in a newspaper for stories on election or popularity polls for 
political candidate or office holders. Check to see if there are a 
many as 1,000 respondents in the sample. If not, how many ar 
there? How doe the reporter present the results of the poll? Is th 
tory correct, balanced, and reflective of the proper statistical un­

certainty as you interpret it? If not, what are some of the problems? 

The null hypothesis that the proportions from two different popula­
tions are equal is stated 

where 7Tl is the proportion in the first population and 7T2 is the corre­
sponding proportion in the second population. Again, it is not that the 
two proportions are necessarily in fact equal. But if we can show with 
the data that the null hypothesis can be rejected, then we have been 
able to show that the two proportions are different. 

To test this null hypothesis, we collect a sample of observations 
from each population and compute the two sample proportions PI and 
P2. If the difference between the two sample proportions is large, then 
we reject the null hypothesis of equal population proportions. How 
large the difference between the two sample proportions has to be to 
reject the null hypothesis depends mainly on how large the two sam­
ples are. 

As an example, look at the study in Chapter 3 that deals with crim­
inals who did or did not take a literature class. Among those who took 
the class, 6 of 32 were convicted of new crimes for a proportion of 
6/ 32 = 0.19. Among those who did not take the class, 18 of 40 were 
convicted of new crimes for a proportion of 18/40 = 0.45. The ob-
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served difference between the two sample proportions is 0.45 -
0.19 = 0.26. Is this difference large enough to reject the null hypoth­
esis, or is the observed difference simply due to the randomness of the 
samples? 

Testing the null hypothesis 

With a proportion from samples this large, we first change the observed 
difference between the two proportions to a value of the statistical z­
variable (Formula 7.5). We then use a table of the z-distribution, also 
known as the normal distribution (Statistical Table 1), or appropriate 
statistical software to find the corresponding p-value. If the p-value is 
small, say, less than 0.025, we reject the null hypothesis of equal pop­
ulation proportions. 

The observed difference of 0.26 between the two sample propor­
tions gives z = 2.35. The probability of finding z equal to or larger than 
2.35 equals 0.009, or 9 in 1,000. This means that if the null hypothesis 
is true and the two population proportions are equal, then the prob­
ability is also 0.009 of finding an observed difference between two sam­
ple proportions of 0.26 or more. This probability is so small that it is 
overwhelming evidence against the null hypothesis. We reject the null 
hypothesis and conclude that there is a statistically significant differ­
ence in the proportion of those convicted of new crimes who took the 
literature course and those who did not. 

Estimating the difference 

Since we reject the null hypothesis, the difference between the two 
proportions is not equal to zero. How large is the difference? The best 
estimate for the difference between the two true population propor­
tions is the observed difference 0.26. 

We could also construct a confidence interval for the true differ­
ence. For an observed difference of 0.26, a 95% confidence interval is 
0.06 to 0.46. Because the number of observations is small in the two 
samples, the interval is long. As researchers, we hope this interval is 
one of the many intervals that contain the true difference between the 
two population proportions and not one of the flukey few intervals that 
does not contain it. As we expected, since we have already rejected the 
null hypothesis that the true difference is equal to 0, the confidence 
interval does not contain the value O. 
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In preceding chapters, the variables z and t have been used at dif­
ferent times as tandard scores in place of raw scores. One of the 
most difficult questions beginning statistics students struggle with is 
When do we use which one of the theoretical statistical variables? So 
far, we have primarily used the ~variable for hypothesis tests involv­
ing means and the z-variable for tests involving proportions. 

For hypothesis tests involving one or two means, the ~variable 
is used. For statistical tests involving one or two proportions 
from large samples, the .z-variable is used. 

In later chapters we u e the chi-square variable and the F-variable. 
Each of these variables i used to find the p-value for the observed 
data in certain contexts. 

It i pos ible to figure out mathematically which variables to use, 
but such derivations go well beyond the scope of this book. We the 
author are therefore left in the uncomfortable position of simply 
stating for each type of problem which variable to use. Many times 
tati tical software is written in such a way that the computer picks 

the correct variable and the user does not think about it. The im­
portant question i whether we correctly interpret the p-values cal­
culated from the analysis. 

Testing hypotheses and creating confidence intervals are both methods 
for drawing conclusions about parameter values, and thereby the real 
world, from the information in a sample. With hypothesis testing, we 
focus on a particular value of a parameter and ask if the parameter 
could possibly be equal to that value. For example, could the popula­
tion mean for an IQ test be 100? With confidence intervals, we estimate 
the true value of the parameter. For example, we find a confidence 
interval of 102 to 107 for the population mean. 

As we mentioned in Section 7.5 on proportion differences in a 
population, the confidence interval ranges from a lower value L to an 
upper value U, and hopefully this interval contains the true value of 
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the parameter. If the value of the parameter specified in the null hy­
pothesis lies somewhere between Land U, then we do not reject the 
null hypothesis. If the value lies somewhere outside the interval, then 
we reject the null hypothesis. 

In many ways confidence intervals are more informative than tests 
of hypotheses. Confidence intervals give us a range of possible values 
of the parameter, while a test focuses only on one possible value. For 
example, if the population parameter is not 100, we are not clear what 
it might be. Sometimes the one value is a very crucial and interesting 
value, as when we test to see if a difference between two means equals 
zero. But even when we reject the null hypothesis and conclude that 
the difference is not equal to zero, the question that immediately arises 
is how large the difference then is. Such a question is answered by a 
confidence interval. 

Even though confidence intervals may be more desirable, hypoth­
esis tests are commonly used in most fields. The main reason for this 
is that statistical software packages do not automatically compute con­
fidence intervals. 

The importance of statistical significance has been stressed in this chap­
ter. But sometimes a statistically significant finding should be regarded 
as trivial. 

It is important to realize that a statistically significant result is not 
necessarily a substantively significant result. With large samples, for 
example, most results are statistically significant. The substantive sig­
nificance of a result can be determined only in the context of what we 
are studying. 
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STOP ANO PONOER 7 . 5 

You read the following in a research journal of sports psychology: 

In a sample of 75 medalists, a statistically significant difference 
was found between the scores on the uneven bars of Olympic 
team members who began their competitive training by the 
age of 7 and the scores of those who began after 7 years of age 
(P = 0.017). 

What does this entence tell you about the gymnasts' scores-and 
what does it not tell you? How could using the phrase "statistically 
significant" disgui e weak distinctions between groups for the statis­
tically naive reader? 

(Source: Gudmund Iversen.) 

The null hypothesis specifies that the parameter equals a particular 
value. In the geography example we ask whether the mean number of 
correctly identified locations on the map is the same in Mexico and 
the United States. If the difference between the true population means 
really equals 0.1 locations, the null hypothesis is false, since the differ­
ence is not equal to O. The correct answer to the question posed in the 
null hypothesis is no, and the null hypothesis should be rejected. If the 
sample is very large, the null hypothesis will be rejected. 
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However, a difference of 0.1 is not very different from O. A geog­
rapher might say that the difference between the two numbers is so 
small that it is geographically uninteresting and meaningless. Thus, 
even though a difference of 0.1 is statistically significant, substantively 
it is not significant. Ifwe focus only on the statistical significance in this 
case and not on the substantive significance, our analysis of the data is 
incomplete. 

To gain some experience in putting all these ideas together, take a 
look at two simplified research examples using hypothesis-testing prin­
ciples. 

These examples are designed to show how the material from this 
chapter can be applied to other "real world" situations. The analyses 
also serve as a warning that any information reported to be found in 
one sample, or in comparing two or more samples, needs to be care­
fully scrutinized. 

Psychology experiment on cooperation and competition 

A psychologist is studying how effective a particular task is in getting 
small groups to cooperate in their work strategies. The psychologist 
observes each group at work on the task through a one-way mirror and 
rates it as either cooperative or competitive at the end of the task. Mter 
observing 8 groups, the psychologist classifies 7 of them as cooperative. 
Could this result occur by chance alone, or did something about the 
design of the task make them cooperative? 

Let 1T be the probability that a group is cooperative. If chance alone 
determines the outcome, then this probability equals 0.5. (The results 
of the study are equivalent to tossing a coin and observing 7 tails in 8 
tosses.) The psychologist wonders if cooperation occurred more often 
than by chance and sets up the null hypothesis 

Ho: 1T = 0.5 

To decide whether the null hypothesis should be rejected or not, 
the psychologist needs to find the p-value for the observed data. The 
observed data consist of 7 cooperative groups, and to find the p-value, 
the psychologist needs to find the probability of the observed data and 
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p-value = 0.031 + 0.004 
= 0.035 

1234 5 6~8 

Number of cooperative groups ~ 
Ob erved data 

o 

Figure 7.6 Binomial example of hypothesis testing (n = 8 observations; 
probability 7T = 0.5) 

more extreme data: given that 7T = 0.5, what is the probability of get­
ting 7 or 8 cooperative groups? 

This is a small sample. Therefore, the probability of any number 
of cooperative groups can be found from the binomial distribution with 
n = 8 trials and 7T = 0.5. This binomial probability can be found from 
statistical software tables or printed tables of the binomial distribution, 
or it can be computed from the formula for the binomial distribution 
(Formula 5.4) . The probabilities for 7 and for 8 cooperative groups are 
shown in Figure 7.6. The jrvalue for the data equals 0.035. If the groups 
are equally likely to become cooperative or competitive, then in 35 of 
1,000 samples of 8 groups, 7 or 8 cooperative groups would occur by 
chance alone. This probability is larger than the standard 0.025 for a 
two-sided test, and it does not give any overwhelming evidence against 
the null hypothesis. Chance alone may still determine how a group 
turns out. 

If the psychologist doubled the number of groups to 16 and found 
14 cooperative groups, the jrvalue would be a small 0.002. Only in 2 of 
1,000 different samples would 14 or more cooperative groups occur 
just by chance alone-very strong evidence against the null hypothesis 
that chance rather than the task design determines whether a group 
becomes cooperative or not. 

Community study of blue-collar workers 

Suppose that 60% of the work force in a community consisted of blue­
collar workers in 1990. With the decline of manufacturing jobs in the 



United States, the city labor commissioner wanted to know if there had 
been a change in the percentage of blue-collar workers in the city. 

Let II be the population percentage of blue-collar workers. The 
null hypothesis is 

Ho: n = 60% 

This null hypothesis says that there has been no change in the per­
centage of blue-collar workers. 

To test the null hypothesis, the city selected a random sample of 
400 people in the work force, which included 215 blue-collar workers. 
The percentage of the sample that is blue collar is therefore P = 

215/400 = 53.75%. This sample percentage is somewhat smaller than 
the percentage in the null hypothesis, but the city does not know 
whether 53.75% is much smaller than 60% or not. It may be that the 
true population value is still 60% and that 53.75 represents a random 
variation around 60. 

To find the p-value for the observed percentage, the value of the 
percentage is changed to a value of the normal z-variable according to 
Formula 7.4: z = - 2.55. The normal distribution table (Statistical Ta­
ble 1) indicates the probability of z being equal to or less than -2.55 
equals 0.005. This tells us that only 5 of 1,000 values of z are smaller 
than -2.55. Thus, the observed percentage of 53.75 belongs to an un­
likely set of percentages, since a percentage of 53.75 or smaller would 
occur in only 5 of 1,000 different samples when the population per­
centage equals 60. The city thinks the sample is not particularly unusual 
and therefore rejects the null hypothesis, concluding that the percent­
age of blue-collar workers is less than 60%. 

When we make an estimate of a parameter, we try to find out what its 
actual value is. When we do hypothesis testing, on the other hand, we 
ask of the data whether or not the parameter could possibly be equal 
to a particular value of interest to us because of the problem we are 
studying. 

7.1 The hypothesis as a question 

A null hypothesis states that the parameter is equal to some specific value. 
Often the null hypothesis states that there has been no change in the 
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value of a parameter, that there is no difference between two param­
eters, or that two variables are not related. The logical alternative to a 
null hypothesis is the alternative hypothesis. The alternative hypothesis 
states that the parameter has changed value, that a difference between 
two parameters exists, or that two variables are related. 

To test the null hypothesis, we first assume that it is true. Then we 
analyze the data to see if they support the null hypothesis or not. If the 
evidence in the sample data allows us to question the null hypothesis, 
then we reject the null hypothesis. 

Errors can be made by making wrong conclusions about the null 
hypothesis: The alpha error (type I) is made when the null hypothesis 
is true and judged false. The beta error (type II) is made when the null 
hypothesis is false but judged true. 

7.2 How to answer the question posed by the null hypothesis 

The p-value is the probability of getting the observed data or more 
extreme data when the null hypothesis is true, that is, when the param­
eter equals the value specified in the null hypothesis. A p-value refers 
to how often we can expect to get data of a certain kind from numerous 
different samples from a population. It does not refer to how likely it 
is that a null hypothesis is true. The null hypothesis either is or is not 
true. If the p-value is very small (typically less than 0.05 or 0.025), the 
null hypothesis is rejected. 

An alternative hypothesis can be two-sided or one-sided. For a two­
sided alternative hypothesis, we reject the null hypothesis if the sample 
statistic is much larger or much smaller than the population value spec­
ified in the null hypothesis. For a one-sided alternative hypothesis that 
states that the parameter is larger than the value in the null hypothesis, 
we reject for large values of the sample statistic. For a one-sided alter­
native hypothesis that states that the parameter is smaller than the value 
in the null hypothesis, we reject for small value of the sample statistic. 

When a null hypothesis is rejected, the sample result is statistically 
significant. 

Sample scores should be translated to standard scores (such as t­

or z-scores) in order to find p-values. Standard scores greater than +2 
or -2 are unusually large and are associated with very small p-values. 

7.3 Significance level 

The significance level is often denoted by the Greek alpha (a). The 
critical values of a sample statistic are values chosen such that only 5% 



of the sample statistics from different samples will exceed these values 
when the null hypothesis is true. 

7.4 Testing a population proportion 

In testing population proportions, the null hypothesis states that the 
population proportion (7T) is equal to a particular value, such as .50. 
With a large sample (1,200),95% of all samples fall within 3% points 
of the true population percentage. If the observed sample value falls 
outside the critical value range (+ 3 to - 3), the null hypothesis is re­
jected. 

7.5 Difference between two population proportions 

The null hypothesis for the difference between two population pro­
portions is that of no difference. If the difference between the sample 
statistics is found to be statistically significant, the null hypothesis is 
rejected. 

To estimate the size of the difference between two population pro­
portions, once the null hypothesis is rejected, a 95% confidence inter­
val can be established. 

7.6 Testing hypotheses versus 
constructing confidence intervals 

Testing hypotheses and constructing confidence intervals are both use­
ful methods for drawing conclusions about population parameters. Hy­
pothesis testing asks whether a parameter could be equal to a specific 
value or not. A confidence interval gives an interval within which the 
parameter is assumed to be. Hypothesis testing is more frequently done 
because of the design of much statistical software. 

7.7 Statistical versus substantive significance 

With large samples, a result can be statistically significant but for all 
intents and purposes not substantively significant. 

7.8 Applications: When to reject the null hypothesis 

Two applications illustrate the use of hypothesis testing methods: a 
small-sample psychology experiment, which uses the binomial distri-
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FORMULAS 

bution table (Statistical Table 5), and a larger-sample study of the pro­
portion of blue-collar workers in a city population. 

Henkel, Ramon E. Tests of Significance (Sage University Paper Series on 
Quantitative Applications in the Social Sciences, series no. 07-004). Bev­
erly Hills, CA: Sage, 1976. 

Mohr, Lawrence B. Understanding Significance Testing (Sage University 
Paper Series on Quantitative Applications in the Social Sciences, series 
no. 07-073). Newbury Park, CA: Sage, 1990. 

TEsTING A SINGLE MEAN 

The null hypothesis asks whether the population mean J.t is equal to a 
particular numerical value J.to: 

A sample consists of n observations with mean Xi and standard deviation 
s. To test the null hypothesis, the sample mean is changed to a value 
of the statistical t-value by the formula 

-

t=x-J.Lo 
s/Jn 

d.f. = n - 1 (7.1) 

Using this observed value of t, the corresponding p-value can be found 
with statistical software or in statistical tables. If the p-value is small, 
then the null hypothesis is rejected. 

Consider the null hypothesis Ho: J.t = 4.0. The data in a sample of 
n = 12 observations with mean Xi = 2.0 and standard deviation s = 
1.54 yield 

t = 2.0 - 4.0 = - 4.50 
1.54/JT2 

d.f. = 12 - 1 = 11 



Using the p-value approach, the probability that t is less than the ob­
served -4.50 equals 0.0005. Using a 5% significance level and the t­
table (Statistical Table 2), for 11 degrees of freedom the probability is 
0.05 that t < -2.20 or t> 2.20. The null hypothesis is rejected because 
of a more extreme t = -4.50. 

TEsTING THE DIFFERENCE BE'IWEEN TWO MEANS 

Two populations have means f-t1 and f-t2' respectively. The null hypoth­
esis states that the two means are equal: 

To test the null hypothesis sample data are collected from the two 
populations, one sample with n1 observations, mean )1' and standard 
deviation S1' the second sample with ~ observations, mean )2' and stan­
dard deviation S2' 

From these quantities the following t-statistic is computed: 

- -

t = Yl - Y2 
s.jl/n1 + l/~ 

d.f. = n1 + ~ - 2 (7.2) 

If the computed value of t is larger than the critical value of t found in 
the t-table (Statistical Table 2), the null hypothesis is rejected. (It is 
more informative to use the p-value approach and find the probability 
of the observed or more extreme values of t.) 

To compute t, we first need to find the standard deviation s in the 
denominator of t. This is done by first computing the variance s2, a 
weighted average of the variances in the two samples. It is known as 
the pooled variance for the two samples, and it is found from the ex­
pressIOn 

s2 = (nl - l)sY + (~ - l)~ 
nl+~-2 

(7.3) 

Note that the computations involve the two sample variances and 
not the sample standard deviations. This computation is based on the 
assumption that variances in the two populations from which the sam­
ples were drawn are equal. If the population variances are equal, then 
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the two sample variances are estimates of the same quantity, and the 
two estimates may as well be combined. The pooled variance is such a 
combined estimate. If the two population variances are not thought to 
be equal, then the computations need to be modified. 

The square root of the pooled variance is the pooled standard de­
viation s, and it is used together with the two sample means and the 
two sample sizes to compute the observed value of the t-variable. 

In the geography example, we know the two sample means in the 
numerator for any two countries, but we do not know the pooled s or 
the sample sizes, so we cannot compute t. But we do know that for 
France and Great Britain the value of t will be small because the dif­
ference of 0.2 locations on the world map is not statistically significant. 
For Mexico and the United States, t will be large, since the difference 
of 1.3 locations is statistically significant. Typically, values of t larger 
than about 2.00 are considered large and statistically significant, results 
and values less than about 2.00 are small and are not statistically sig­
nificant. 

A shortcut method for finding the t-value for equal variances does 
not require finding the pooled s. Using subscripts 1 and 2 for the two 
samples, an approximate value for t can be found from the expression 

- -
t = YI - Y2 

.J {§,/ nl + Sf/ ~ 
d .f. = nl + ~ - 2 

In the denominator under the square root sign, the variance of the 
second sample is divided by the number of observations in the first 
sample, and the variance in the second sample is divided by the number 
of observations in the second sample. For almost all purposes this sec­
ond method is as good as the first. 

The t-test for comparing two means for paired data is given in Chap­
ter 12. 

TEsTING A POPULATION PROPORTION 

The null hypothesis states that the population proportion 7T is equal to 
a particular value 7To: 

We change the sample proportion p to a value of the statistical z-variable 
according to the formula 



(7.4) 

where n is the size of the sample. 
As an example, suppose a sample of n = 1,000 observations has an 

observed sample proportion of P = 0.60. We want to test the null hy­
pothesis 

Ho: 7T = 0.50 

This gives the following value of z: 

0.60 - 0.50 
z = ~;::::::::::::==::=:::::::::::::::::::: = 6.32 

0.50(1 - 0.50) 

1,000 

The probability of getting a z-value of 6.32 or more is less than 0.0001. 
Thus, the probability of getting a sample proportion of 0.60 or more 
in a sample of 1,000 from a population where the proportion equals 
0.50 is so small that we reject the null hypothesis and conclude that 
the sample could not have come from such a population. The popu­
lation proportion must be larger than 0.50. 

TEsTING THE DIFFERENCE BETWEEN TWO PROPORTIONS 

The null hypothesis states that the proportions in two populations are 
equal: 

To test the null hypothesis, we change the difference between the two 
observed proportions in the two samples, PI - /J2, to a z-score according 
to the formula 

(7.5) 

where nI and nz are the numbers of observations in the two samples. 
For the example with the criminals, in one group 6 people of a 

sample of 32 were convicted of new crimes while in another group 18 
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people of a sample of 40 were convicted of new crimes. This gives 
PI = 6/32 = 0.19 and P2 = 18/40 = 0.45. Also, 

(0.45 - 0.19) - (0) 
z = = 2.35 J0.45(1.00 - 0.45) + 0.19(1.00 - 0.19) 

40 32 

The p-value for z = 2.35 equals 0.0094, so we reject the null hypothesis 
of equal proportions in the underlying population of criminals. 

This approach can also work with a minor variation. If the null 
hypothesis is true and the two population proportions really are equal, 
then this common value could be estimated by combining the data 
from the two samples. The total number of people convicted of new 
crimes is the overall proportion 

= 6 + 18 = 24 = 0 
P 32 + 40 72 .33 

We can use this common value of p in the formula for z instead of the 
two separate values: 

(0.45 - 0.19) - (0) 
z = -;::::~~==~::::::::=~=======::::::;=~ JO.33(1.00 - 0.33) + 0.33(1.00 - 0.33) 

40 32 

0.45 - 0.19 

JO.33(1.00 - 0.33)J-l2 + to 
= 2.33 

The p-value is 0.0099, and the same conclusion is reached; the null 
hypothesis of equal proportions in the populations is rejected. 

This expression looks amazingly like the expression for t for the 
difference between two means; the difference between the two means 
is in the numerator, the s in the denominator is replaced by the square 
root of the product of p and 1 - p, and the square root of the sum of 
the two inverse frequencies is the same. 



Comparing two proportions can also be done as the study of the 
relationship between two categorical variables in a contingency table 
with 2 rows and 2 columns. This approach is discussed in Chapter 9. 

REvIEw (ExERCISES 7.1-7.24) 

7.1 What does statistical significance mean? 

7.2 a. When we do hypothesis testing with a set of data, what are we 
trying to find out about a particular parameter? 

b. Give one example of a null hypothesis. 

7.3 a. What is a null hypothesis? 

b. How is a null hypothesis different from an alternative hy­
pothesis? 

c. Write the symbol for each one. 

7.4 a. What is the difference between an alpha error and a beta 
error? 

b. Create a mnemonic device for remembering which is which. 
(A mnemonic device is a memory aid-a clever saying, story, 
song, visual image, association or whatever that helps you cor­
rectly remember something.) For example, the alpha error is 
made when the null hypothesis is accurate; the beta error is 
made when the null hypothesis is bad. You can do better! 

7.5 In general, if the sample mean is very different from the popu­
lation mean as stipulated in the null hypothesis, is the null hypothesis 
rejected or not rejected? 

7.6 a. What is a standard score? 

b. What is the typical range of values for t when the null hy­
pothesis is true? 

c. How are standard scores used in hypothesis testing? 

d. If you were given a t-value for a sample mean, how would you 
find the probability of obtaining that value or a more extreme 
value, given the null hypothesis? What two ways can be used to 
answer this question? 
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7.7 a. What does a jrvalue tell us? 

b. Why do we reject a null hypothesis when the corresponding 
jrvalue is small? 

c. What is the difference between a significance level and a jr 
value? 

7.8 If the null hypothesis that the population mean is 4 is falsely re­
jected in a study, what type of error has is been made? 

7.9 a. What is the most commonly used significance level? 

b. What does it mean in everyday language? 

7.10 If the null hypothesis is true, then most sample statistics will have 
values that are [close to; far from] the value of the parameter specified 
in the null hypothesis. 

7.11 a. Significance level is often denoted by what Greek letter? 

b. How is that letter spelled in English? 

7.12 a. What is the meaning of the statement "The critical values in 
this study are +2.3 and +2.3"? 

b. If in your results you find a standard score of - 3.0, what can 
you conclude? 

c. If the significance level were changed so that it was smaller 
than 0.05-for example, O.OI-what would happen to the crit­
ical values? 

d. Do you think your conclusion in part b would be altered with 
the change in significance level? 

7.13 a. Write the formal null hypothesis for this statistical test: ''The 
null hypothesis states that the proportion of those in the popu­
lation supporting the president is equal to 0.50." 

b. Write the formal statement for this statistical test: ''The null 
hypothesis states that the percentage of those in the population 
supporting the president is equal to 50%." 

7.14 Produce a formal statement for the null hypothesis that could 
be used with this statement: ''There is no difference between the pro­
portion of the Democrats and the proportion of the Republicans who 
support the latest tax reform bill." 



7.15 What factors are important in determining how large a differ­
ence between two sample proportions from two populations must be 
to reject the null hypothesis that the population proportions are equal? 

7.16 You have worked very hard to initiate a new method of training 
workers in their jobs because you believe it will make them more sat­
isfied with their work. A study is done to compare the old method and 
your new one. Which result will you hope for: that the data support 
the null hypothesis or the alternative hypothesis? Explain your feelings. 

7.17 We have given half the first-grade classes a 20-minute recess be­
tween reading and numbers and the other half a 20-minute workbook 
exercise at their desks. We are testing the idea that the outdoor play 
will increase the scores of the children on their numbers worksheets. 

a. What is the null hypothesis in this study? 

b. What is the alternative hypothesis? 

7.18 You believe that there is less air pollution in Chicago this year 
than last because of the various changes in automobile design, gasoline 
additives, emission control laws, and so on. Your garage mechanic dis­
agrees with you, believing that there is really no change in the air qual­
ity despite all these efforts. You agree to a test of your competing ideas. 
How would you state the null hypothesis? 

7.19 The mean salary for the top salary grade in the school system in 
a suburban township was $43,000 in 1985. In 1995, a sample of teach­
ers' salaries at this level indicated a mean of $53,000. 

a. What is the null hypothesis regarding the top grade of teach­
ers' salaries in this system if you want to see if there really has 
been an increase in salaries? 

b. Do you think anything has happened to the population mean 
of this variable in the past decade? Explain your answer. 

7.20 According to statistical rules of thumb, which of the following p­
values would lead to a rejection of the null hypothesis? Which ones 
would not? Which might be borderline? 

p = 0.50 p = 0.25 p = 0.001 p = 0.10 p = 0.05 p = 0.025 

7.21 What does a p-value of 0.50 mean in everyday language? 
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7.22 Is it easier or harder to obtain statistically significant results with 
a small sample than it is with a large sample? 

7.23 What are the main differences between a one-tailed and a two­
tailed test? 

7.24 If you do not reject a null hypothesis, have you proven the null 
hypothesis to be true? 

INTERPRETATION (ExERCISES 7.25-7.43) 

7.25 On a jar of strawberry jam it says, among other things, "net 
weight 18 oz." 

a. Explain whether this implies that if you carefully weighed the 
jam, it would weigh exactly 18 oz. 

b. Explain whether the weight of the jam in another jar would 
be the same as the weight of the jam in the first jar. 

c. How could you design a study and analyze the resulting data 
to see if the manufacturer has a right to the claim on the jar 
about the net weight? 

7.26 Data on the height of American adult males came from results 
of physical examinations reported to the National Center for Health 
Statistics in the period from 1976 to 1980. From these data the mean 
height of American males equals 69.1 inches. (Source: The New York 
Times, july 26, 1992, p. E5.) In a sample of 50 male college seniors, we 
find a mean height of 71 inches and a standard deviation of 2.1 inches. 
These data give t = 6.40 on 49 degrees of freedom (P < 0.0001). 

a. What is the null hypothesis for the data on the college seniors 
if we want to find out if college students are different from the 
general population? 

b. What can we say about the mean height in the population 
from which this sample came? (Do we reject or not reject the 
null hypothesis?) 

7.27 According to a Gallup poll, the national percentage of people 
who own a gun is 53%. (Source: The New York Times,july 26, 1992, p. E5.) 
To see if gun ownership is equally prevalent in a middle-size town in 
the Midwest, a survey of 300 respondents finds that 45% of them owned 



a gun. A test of the null hypothesis that the population percentage in 
this town equals the national percentage gives z = 2.78 with a p-value 
of 0.003. 

a. Why can we conclude that the gun-owning percentage in this 
town is not equal to the national percentage? 

b. The difference between the survey percentage and the na­
tional percentage is statistically significant, but is the difference 
large enough to be substantively interesting? 

7.28 A telephone survey report testing hypotheses concerning shav­
ing habits is based on interviews with 200 people who were willing to 
spend 20 minutes on the phone with the interviewer. The fact that 70% 
of the people called hung up or refused to finish the interview is ig­
nored by the market research group in its report. The conclusions of 
this study are flawed because of the biases in the sample. Why is it 
important to have a properly drawn sample in order to test hypotheses? 

7.29 Why is the null hypothesis called null? 

7.30 When statisticians reject a null hypothesis, can they ever be ab­
solutely certain that they made the correct decision? Explain your an­
swer. 

7.31 a. Explain what it means when a statistical report indicates that 
the p-value is 0.025. 

b. What are the possible practical consequences of rejecting the 
null hypothesis? 

7.32 Why was it necessary in the geography study described in the 
chapter to change the difference between the two sample means to a 
t-score to find the probability of getting such a difference or larger in 
a sample, assuming the population means to be equal? 

7.33 In a study of taste preferences, a random sample of 200 cola 
drinkers rated their taste satisfaction with two major colas. The null 
hypothesis stated that there was no difference between consumer pref-
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erence for one cola over another. Cola A's mean rating was 5.0 on a 7-
point scale for goodness of taste; Cola B's mean rating was 4.6. 

a. The jrvalue equals 0.001; why is the null hypothesis rejected? 

b. What does the rejection of the null hypothesis tell us about 
the chances that the conclusion drawn from this survey was 
wrong? 

c. Do you think the cola companies will find the result substan­
tively interesting? 

7.34 Government reports indicate that pharmaceutical companies' 
profits have gone from 62.8% of every dollar spent on prescriptions in 
1986 to 69.0% in 1992. If the report indicated that a change of 3% was 
statistically significant, what could you say about the profit margins of 
drug companies in this 6-year period? (Source: Adapted from a report by Ste­
phen Schondelmeyer, economist, Health Care Financing Administration, Office of Tech­
nology Assessment, U.S. Government, 1992.) 

7.35 The famous statistician Ronald Fisher established as the most 
appropriate (maximum) level at which to judge if a jrvalue is small 
enough to reject the null hypothesis. Recall what this statement means 
in everyday language, and then give your opinion as to why Fisher 
might have selected 0.05 and not 0.20 or 0.0001 or some other 
threshold. 

7.36 a. If a sample is relatively small (for example 50 observations) 
and the null hypothesis is not rejected because the jrvalue is 
0.10, what can we change in another similar study to increase 
the chances that the null hypothesis will be rejected? 

b. Can we argue that wealthier researchers are able to reject 
their null hypotheses more easily than poor ones? 

c. Is it always desirable to reject the null hypothesis? 

7.37 Does rejecting a null hypothesis (having a statistically significant 
result) mean that you have discovered an exciting new fact about the 
world, or can results be statistically significant yet substantially trivial or 
meaningless? Discuss, for example in terms of evaluating advertising 
and marketing claims. 

7.38 In 1987 Diane and George Weiss promised the 112 students 
graduating from Belmont Elementary School in Philadelphia that they 



would pay the college expenses for those students who graduated from 
high school and went on to college. Six years later, 45 percent of the 
group graduated from high school. As a comparison, in the 1986 Bel­
mont class 28 percent graduated from high school six years later. The 
newspaper report from which this is taken goes on to say that the dif­
ference in the two percentages is statistically significant. (Source: The 
Philadelphia Inquirer,June 25, 1993, pp. AI, AlB.) 

a. What is the null hypothesis used in this story? 

b. What statistical test was used to establish the statistical signif­
icance? 

c. What does the newspaper tell us when it says that the result 
is statistically significant? 

7.39 In a study of the speed of blood flow in artificial heart valves is 
the following statement: 

Ho: jJ., = 5.0, x = 5.96, t = 2.59 (47 d.f.) , P = 0.0049 

a. Translate this statement into English. 

b. What does the statement tell us about this type of heart valve? 

7.40 The FBI reports that nationally 55% of all homicides were the 
result of gunshot wounds. In a recent sample taken in one community, 
66% of all homicides were the result of gunshot wounds. What three 
possible conclusions can you draw about the percentage from this 
community compared to the national percentage? What additional in­
formation would you need to begin to choose one conclusion over 
another? 

7.41 In a study of depression among recently married Mexican im­
migrant women in California, the following statement compares de­
pressed women with nondepressed women in the sample: 

Perceived discrimination (x = 17.3 vs. x = 11.4), t (df 136) = 

- 3.7, P < 0.001, ... and concern about starting a family in this 
country (x = 16.3 vs. x = 12.0), t (df 117) = - 2.5, P < 0.05, were 
identified as important factors in placing this group of immigrant 
women at risk for the development of depressive disorders. 
(Adapted from Salgado de Snyder and V. Nelly, ''Factors associated with accul-
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turative stress and depressive symptomatology among married Mexican immi­
grant women, "Psychology of Women Quarterly, vol. 11 (1987), pp. 475-
488.) 

a. Translate this statement into English. 

b. What does the statement tell you about depression in this 
group of women? 

7.42 A grocery store has recently added automatic bank withdrawal 
as a form of payment at the check-out counters. A study comparing 
average amount spent per customer six months prior to the changeover 
and in December, one month after the changeover, indicated a statis­
tically significant increase in purchases. Can the store manager be told 
with confidence that the new bank system has caused this increase? 
Explain your answer. 

7.43 A national survey of 900 voters finds that 47% of them support 
the president in his recent foreign policy decisions. According to the 
general rule of thumb used for surveys, does this strongly suggest that 
the president's actions have not been supported by the majority of the 
voters? Why or why not? 

ANALYSIS (EXERCISES 7.44-7.59) 

7.44 Standard scores can be useful when we want to determine from 
which of several possible populations a particular sample comes. In this 
exercise we work with ten samples from each of two different popula­
tions. While we hardly ever have several samples when we work with 
actual data, the exercise illustrates an important use of standard scores. 
The means of these samples are as follows: 

Population A: 6l.2 62.6 40.1 51.7 38.0 59.8 47.6 47.7 56.3 35.0 
Population B: 83.0 93.7 82.1 72.4 92.3 68.7 76.5 88.4 79.6 63.3 

The means from population A have a mean value of 50.0, and the 
standard deviation of the means equals 10.0. The means from popu­
lation B have a mean of80.0, and the standard deviations of the means 
also is equal to 10.0. 

a. Change all the means of the samples from population A to 
standard scores. 



b. Change all the means of the samples from population B to 
standard scores. 

c. A twenty-first sample has a mean equal to 75.0. What is the 
value of the standard score for this sample mean if the sample 
really came from population A? What is the value of the standard 
score for this sample mean if the sample really came from pop­
ulation B? 

d. On the basis of on your answers to parts a-c, do you think 
the new sample belongs to the set of possible samples from pop­
ulation A or the set of possible samples from population B? Why 
do you think the new sample comes from population A or B? 

7.45 In a sample of 12 families, the mean number of children per 
family equals 2.0. In a certain country the mean number of children 
per family equals 1.4 children. You want to know whether the sample 
could have come from that country. 

a. Suppose you took a large number of different samples from 
this country. Explain why the sample means would not all be 
equal to 1.4, but the mean of all the sample means would equal 
the population mean 1.4. 

b. The standard deviation of all the sample means (standard 
error) is found to equal 0.5. Find the standard score for your 
particular sample. 

c. Is the standard score unusually large, or could your sample 
be one of the possible samples from that population? Explain. 

7.46 In a sample survey of 50 respondents, the proportion of voters 
favoring a political candidate is found to equal 0.38. You want to know 
whether the corresponding proportion in the population of all voters 
equals 0.50. If the proportion equals 0.50 in the population, then the 
mean of the sample proportions from a large number of different sam­
ples would equal 0.50. The standard deviation (standard error) of these 
sample proportions would equal 0.071. 

a. Find the standard score for the sample proportion. 

b. Is the standard score for the sample unusually large, or could 
the sample belong to the set of possible samples that could have 
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come from a population in which the proportion favoring this 
candidate equals 0.50? Explain. 

7.47 The mean number of days of work or school lost by a person to 
illness is 5.1 per year, according to the National Center for Health 
Statistics. In a small business firm with 49 employees, the mean number 
of days lost to illness was 7.0 with a standard deviation of 2.5 days. The 
firm owner wonders if the employees are sick more often than should 
be expected. 

a. What is the null hypothesis the owner examines? 

b. Use the reported data as data from a random sample and 
find the p-value for the observed mean number of days. 

c. What can the owner conclude from the test of the null hy­
pothesis? 

7.48 It is thought that 64% of adult Americans drink alcohoL In a 
random sample of 25 college students, 19 say they drink alcohol of one 
kind or another. The dean of students wants to study whether more 
college students drink alcohol than in the adult population at large. 

a. What is the null hypothesis the dean uses? 

b. With the null hypothesis, find the p-value for the observed 
number of drinkers in the sample. 

c. What does the dean conclude on the basis of the p-value? 

d. If the p-value is large and the dean does not reject the null 
hypothesis, has the dean proven that the percentage of drinkers 
among the students is actually equal to the national percentage? 

e. Use the sample data to construct a 95% confidence interval 
for the population percentage of drinkers, and explain whether 
the interval contains the value 64% or not. 

7.49 According to the Census Bureau, 73.2% of workers 16 years or 
older drive alone in their cars to work. Mter instituting a car pool 
program, a city finds in a survey of 300 workers that 67% of them drive 
alone. The city manager wants to see if the city percentage of workers 
driving alone is less than the national percentage. 



a. What is the city manager's null hypothesis? 

b. Use the data from the survey to test the null hypothesis. Is 
there a statistically significant reduction in the percentage of 
workers who drive alone? 

c. Is the reduction in the percentage who drive alone of any 
substantive magnitude? 

7.50 Refer to the list of national sample means of correctly identified 
geographical locations at the beginning of this chapter. Compare the 
differences between the means of each pair of nations, as was done 
with Mexico and the United States in the chapter. Using the knowledge 
you gained from the chapter concerning comparisons between two 
means, decide among which countries significant differences in geo­
graphic knowledge exist. The comparisons are as follows: United States 
and Mexico; United States and Great Britain; United States and France; 
Mexico and Great Britain; Mexico and France; Great Britain and 
France. 

7.51 A random sample from Detroit includes 103 Baptists and 87 
Methodists. (Source: H. Schuman, "The religious factor in Detroit: Review, replica­
tion and reanalysis," American Sociological Review, vol. 36 (1971), pp. 30-48.) 
While there clearly are more Baptists than Methodists in the sample, 
can you conclude from the data that there are more Baptists than Meth­
odists in the population from which the sample was drawn at the time 
of the study? Set up the proper null hypothesis and use the data to test 
the null hypothesis. 

7.52 The sample of 28 swordfish in Exercise 4.66 has a mean mercury 
concentration of 1.09 ppm and a standard deviation of 0.48 ppm. Since 
swordfish is not supposed to be eaten when the concentration of mer­
cury is larger than 1.00 ppm, you want to test to see if the mean con­
centration in the population of swordfish could be equal to 1.00. 

a. Test the null hypothesis. 

b. What can you conclude about the population mean of mer­
cury concentration in swordfish? 

7.53 Faculty parking lots are usually filled with a motley collection of 
cars, and it may not be surprising that the make of each car partly is a 
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Table 7.1 Data for 
Exercise 7.56 

Qy,ality Number of 
control rejected 
groups scarves 

1 17 
2 14 

3 12 
4 18 
5 21 
6 20 

reflection of the owner's attitudes toward a variety of issues. In one 
survey, faculty members were asked what kind of cars they drove and 
how they voted in the previous presidential election. According to the 
report on the survey, among professors who drove Saabs, 98% of them 
voted for the Democratic candidate. Similarly, among professors who 
drove Volvos, 80% of them voted for the Democratic candidate. (Source: 
The Ladd-Lipset Survey, The Chronicle of Higher Education, April 5, 1976, p. 
18.) The report does not include the number of Saab and Volvo owners 
in the survey; assume 50 Saab owners and 200 Volvo owners. Test the 
null hypothesis that the percentages Saab and Volvo owners voting 
Democratic are equal in the population of all owners of these two Swed­
ish cars. 

7.54 NCAA collected data on graduation rates of athletes in Division 
I in the mid 1980s. Among 2,332 men they found that 1,343 had not 
graduated from college, and among 959 women they found that 441 
had not graduated. Use these data to test the null hypothesis that the 
proportions of graduation rates for men and women are equal. 

7.55 Among the first 200 riders of the Mile High Terrifying Trojans 
Roller Coaster ride at the local amusement part were 134 men. Do 
more men than women in general ride roller coasters, or can the ob­
served data be attributed to chance alone? 

7.56 To be statistically significant, differences in the number of flaws 
among sample subgroups of imported silk scarves must be at least 2.1. 
Each of the groups in Table 7.1 reported the number of flaws detected 
in groups of imported silk scarves. 

a. Assuming that the scarves are randomly flawed, are some 
groups more accurate than others in detecting flaws? 

b. Which of the groups are significantly different from one an­
other? 

7.57 In Exercise 4.59 is a list of the number of children of faculty 
members in a mathematics and statistics department. Of the 10 chil­
dren, 3 are girls and 7 are boys. Do a statistical test to see if mathe­
maticians and statisticians in general have an equal number of boys 
and girls. 



7.58 Students in one of our introductory statistics class spun pennies 
a total of 250 times. They obseIVed 97 heads and 153 tails. Test the null 
hypothesis that the probability equals 0.5 that a penny lands heads up 
when it is spun. 

7.59 In a random sample of college students, 16 of 36 men said they 
read nutritional labels when they bought food, and 28 of 36 women 
said they read labels. (Source: Data used by permission of Jasa Porciello, Swarth­
more College.) Test the null hypothesis that the percentages offemale and 
male college students who read nutritional labels are the same. 
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~ ecology club of the university plans to put increased funding into re­

freshments and entertainment at meetings in hopes of attracting dues-paying 

members. As a club member, you are in charge of determining whether an in­

crease in entertainment and refreshment expenditures actually does increase 

income from dues. Is there a relationship between these two variables: expendi­

tures and dues? 

A local store is asked to purchase advertising in the school yearbook. They 

want to know if advertising in the yearbook increases business with students. 

As business manager, you are asked to respond to this query. 

The football team has been asked whether they would like to play on Astro­

turf or keep the grass. Their response hinges on the injury rates for grass ver­

sus Astroturf surfaces. If you were to advise the team, how would you answer 

this question? 
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Turning to more global issues, has there been any change in the percent-

age of women in the labor force over the last decades? Do people of different 

races smoke different brands of cigarettes? Do fewer or more pregnant women 

with AIDs who take AZT pass on the virus to their babies? Do places with 

different mean annual temperatures have different rates of breast cancer? Does 

the number of executions affect the homicide rate? 

In previous chapters, we have looked at ways in which statistical meth­
ods are used to collect, summarize, and draw conclusions from data on 
a single variable at a time. Now we analyze the data on two or more 
variables at the same time; that is, we study relationships between var­
iables. Most sciences have as a goal establishing relationships between 
variables, and statistics plays in important role in this task. In this chap­
ter we suggest the scope of concerns for statistical analysis. A good deal 
of the rest of the book expands on the study of relationships between 
variables. 

When we study two variables, we examined whether certain values 
on one variable correspond to certain values on the other variable. For 
example, does increasing the entertainment budget bring in more 
dues? Does advertising in the yearbook increase business income? Are 
the number and severity of injuries in football related to the type of 
playing surface? When we do find patterns in data like these, we say 
there is a statistical relationship between the variables. 

Data for the study of two variables come from the two major sources 
we discussed in Chapter 2: experiments and observations. The conclu­
sions we reach about the nature of the statistical relationships from 
these two types of data are often very different. 

Suppose a biologist is interested in how the amount of light affects 
the growth of a certain type of plant. To answer this question, she sets 
up an experiment. She selects plants that are similar in every possible 
way, and she maintains identical conditions for them all, except for the 
amount of light they receive. Mter the plants in the different light 
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Why would it be difficult to assess the effect of light on these plants? (Source: 
Hans ReinhardiOkapia, Photo Researchers.) 

conditions mature, she measures their growth. In this case, the data 
for each plant consist of observations on two variables: amount of 
light and growth of plant. The biologist records the data from the 
variables in two columns (reading down) of numbers in a data file. 
One column contains the amount of light each plant was exposed to 
and the other column contains the growth of each plant. Each row 
(reading across) contains the data on amount of light and growth for 
a specific plant. 

A political scientist is interested in whether a person's age is related 
to how the person votes. To answer this question, the political scientist 
uses observational data. He constructs a survey in which the pollsters 
ask for the respondent's age and who the respondent voted for in the 
last election. As in the example with the plants, the political scientist 
records the data in a data file consisting of two columns. One column 
lists the data on the age variable and the other lists the data on the 
vote variable. A particular row consists of the age and vote of an indi­
vidual respondent. 

Now that the data in these two examples are collected, they can be 
analyzed. 
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Interest in voting preferences has sparked great interest in survey research. 
(Source: Rob Crandall, Stock Boston.) 

The major task in the analysis of data on two variables is to address 
four critical questions. These questions provide a framework for how 
we go about the analysis of statistical relationships. The analysis of data 
on more than two variables usually involves getting answers to these 
four questions as well. 

Q]lestion 1. Is there a relationship between the variables in these data? First 
we try to establish whether there is a pattern of relationship in the 
observed data. When we find a relationship between variables, then we 
go on with the remaining questions. 

QJtestion 2. If so, how strong is the relationship between the variables? If a 
relationship in the data exists, we try to establish how much of a rela­
tionship there is. Relationships between variables may be strong or 
weak. 

Q}lestion 3. Is there a relationship in the population, not just in the sample? 
In other words, how well we can generalize from the observed to the 
real world? The relationship between two variables in sample data from 
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an observational study or an experiment may be interesting, but is usu­
ally even more interesting if we can establish the same relationship of 
the variables in the larger population from which the sample data 
came. In a political poll, it is one thing to find that two variables are 
related in a survey of a few hundred respondents and another thing to 
find that the two variables are related in the entire electorate. 

Sometimes the third question is rephrased; we ask instead whether 
the results could have occurred by chance alone or whether some sys­
tematic effect produced the results. If we discover that the results may 
well have occurred by chance alone, then we usually conclude that the 
variables are not related in the population from which the sample was 
taken. 

Q!lestion 4. Is the relationship a causal relationship? This, of course, is 
the hardest question to answer. But it is often also the most important 
question, and, particularly with observational data, it is the question to 
which statistics contributes least. With observational data, the question 
often remains unanswered because we cannot know whether an ob­
served relationship between two variables is caused by other variables 
not included in the analysis, as in the ice cream and children's accident 
example in the next paragraph. With experimental data, the situation 
is often different. In an experiment planned according to proper sta­
tistical principles, we are often able to eliminate the effects of other 
variables through the control we have over the variables, thus enabling 
ourselves to establish causality. 

Many variables can have a statistical relationship but no causal re­
lationship. For example, suppose we have data for each month of the 
year on how much ice cream was consumed and how many children 
were injured in traffic accidents. In months with a high consumption 
of ice cream, many children are hurt in car accidents, while in months 
with lower ice cream consumption, fewer accidents occur. Based on 
such a pattern, we can conclude that the two variables, ice cream con­
sumption and number of accidents, are statistically related, but we can­
not conclude that the relationship is causal. Our finding that in months 
with a high consumption of ice cream many children get hurt in car 
accidents does not mean that it is ice cream consumption that causes 
children to be hurt in accidents, or that being hurt in accidents causes 
children to eat ice cream. Such a relationship is known as a spurious 
relationship, and it can be explained away if we introduce other varia­
bles, for example, temperature. Children eat more ice cream in warmer 
months, and those are also the months when they are on vacation and 

An observed rela­
tionship between 
two variables that 
can be explained 
away by a third 
variable is known 
as a spurious 
relationship. 
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A delightful example of a spurious relation hip was the 
obselVed relationship between the number of storks 
and the birthrate in Danish counties. In counties with 
a large number of storks the birthrate was high, and in 
counties with fewer storks the birthrate was low. Even 
though there is a statistical relationship between the two 
variables, a causal relationship cannot be established­
but the statistical relationship may be a reason why the 

myth that stork bring babies became so commonplace. (Source: Slock 

Montage. fllc.) 

running around more and when more people are on the road in cars. 
While this example is clearly one of a noncausal relationship, in many 
other situations it is not so obvious whether two variables are causally 
or only statistically related. 

The relationship between children's ice cream consumption and children's 
accident rates is spurious. (Source: First Image West. Inc.) 
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Table 8.1 Data matrix with observations on two variables for 10 individuals 

Activity 
Person Gender preference 

1 M W 

2 F W 

3 M S 

4 F S 

5 F S 

6 M W 

7 F W 

8 M S 

9 M W 

10 F S 

Table 8.1 shows a small part of the data in Exercise 9.41 as an 
example of how we try to answer the four questions. The table is a data 
file that describes whether men and women select work or social life 
as their preferred activity. Each row refers to a person, and each col­
umn refers to a variable. Each person is given a number instead of a 
name, as well as a gender designation (F for female and M for male) 
and an activity preference (W for work and S for social life ). Using the 
data in the table, we shall try to answer each of the four data analysis 
questions. 

Question 1. Relationship between the variables? 

Is there a relationship between the two variables gender and activity 
preference in the data matrix in Table 8.1? Do certain values of the 
gender variable correspond with certain values of the activity prefer­
ence variable? Just by looking at the data, we can detect a pattern of 
sorts. The F's tend to go with the S's, and the M's tend to go with the 
W's. That is, females tend to prefer social life while males tend to prefer 
work. 

As with most data, we need to simplify and summarize the gender / 
activity data before the correspondences are clear. As discussed in 
Chapter 3, we can make a graph or a table or compute a statistic. Here 
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Table 8.3 Data of 
Table 8.2 with 
different strengths 

(a) Strength = 0.20 

2 31 5 
3 2 5 

5 5 10 

(b) Strength = 0.60 

1 41 5 
4 1 5 

5 5 10 

(c) Strength = 1.00 

o 51 5 
5 0 5 

5 5 10 

Table 8.2 Distribution of 10 people on the two variables gender and 
activity 

Gender 

Female Male Total 

Work 2 3 5 
Activity 

Social life 3 2 5 

Total 5 5 10 

it is convenient to arrange the data in a table with two rows and two 
columns (Table 8.2). From the table we can see clearly that certain 
values on one variable correspond with certain values on the other 
variable. Women tend to prefer social life to work, and men tend to 
prefer work to social life. From this pattern, we conclude that there is 
a relationship between the two variables in this data set. 

Question 2. Strength of the relationship? 

Is the relationship between gender and activity strong or weak? The 
relationship appears to have some strength: more people fall on the 
diagonal from the lower left of the table to the upper right than on 
the other diagonal. Of course, the relationship would have been 
stronger if all 5 social life preferences had come from the women and 
all 5 men had preferred work. Then the female column would have 
been 0 and 5 and the male column 5 and 0 (Table 8.3c). The relation­
ship would not have been as strong if the female column had been 1 
and 4 and the male column had been 4 and 1 (Table 8.3b). 

Later chapters discuss computing various coefficients that tell us 
the strength of a relationship between variables. Such a coefficient is a 
statistic that can have possible values ranging from 0 to 1. When the 
coefficient is 0, there is no relationship between the variables. When 
the coefficient is 1, the relationship has maximum strength. For the 
data in Table 8.2, the coefficient of the strength of the relationship is 
0.20. Similarly, Table 8.3b has a coefficient of strength equal to 0.60, 
and Table 8.3c has a coefficient of strength of 1.00. On a scale from 0 
to 1, the observed value of the statistic at 0.20 indicates that the rela­
tionship between the two variables is a weak one. 



8.1 Four Questions about Two Variables 321 

Question 3. Relationship in the population? 

Could the data have occurred by chance alone? If the relationship is 
not simply a chance event, then we can generalize from the sample 
and conclude that there is a relationship in the population from which 
the sample was drawn. 

Imagine Table 8.2, enlarged and drawn on a dart board, with its 
two rows and two columns. For the sake of simplicity we keep the same 
number of men and women as well as the same number of work and 
social life preferences. Then we randomly throw 10 darts at the table. 
Could we possibly get results similar to the pattern in our data due to 
some lucky throws, or does the data in Table 8.2 contain something 
more than randomness? If we find something more than randomness 
in the data, then we conclude that there is a relationship between the 
two variables not only in the sample but also in the population from 
which the sample was drawn. 

To answer the question of whether the gender/activity data could 
have occurred by chance alone, we set up a null hypothesis that there 
is no relationship between the two variables. Then we see if the data 
lead us to reject the hypothesis or not. We do not necessarily believe 
that the two variables are unrelated; indeed, we want to show that two 
variables are related. 

We test the null hypothesis of no relationship by computing the 
p-value for the observed data. If the p-value is small, then we can reject 
the null hypothesis. But the p-value for the data in Table 8.2 is too large 
for us to reject the null hypothesis; hence, the data may have occurred 
by chance. We cannot reject the null hypothesis of no relationship in 
the population in this example-not very surprising because the sam­
ple is so small. If the sample were larger (1,000 or even 100), we would 
be much more likely to reject the null hypothesis. 

Question 4. Causal relationship? 

Does a person's gender in any way determine how the person prefers 
to spend time? From the available data on the two variables alone we 
cannot answer that question. We would need data on other relevant 
variables-and even then we might not be able to determine whether 
the relationship between gender and activity is causal or a byproduct 
of the effects of other variables. 

If the null hy­
pothesis of no re­
lationship can be 
rejected, then we 
conclude that 
there really is a 
relationship be­
tween the varia­
bles. 
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Two variables do 
not have to be 
causally related 
to predict the 
values of one 
from the values 
of the other. 

STOP AND PONDER 8 . 1 

You are given the following statistical information. 

a. The strength of the relationship between smoking (or not) and 
getting lung cancer (or not) is 0.53. 

h. The strength of the relationship between the amount of alcohol 
pregnant women drink and the birthweight of babies is 0.34 
(women who drink more alcohol have smaller babies). 

c. The strength of the relationship between the age of taxpayers 
and the size of the tax bills is 0.32 (older taxpayers have higher 
bills) . 

How would you answer question 4 about causality on the basis of the 
information in each statement? What else would you like to know to 
an wer the question more confidently? 

The existence of a relationship between two variables in data is closely 
connected with prediction. Suppose we know that a person in the sample 
is a woman. On the basis of the information in Table 8.2, can we predict 
how this woman prefers to spend time? Knowing that the person is a 
woman means that we use only the information about the 5 people in 
the female column in the table instead of all ten people in the entire 
table. Two thirds of the women prefer social life, so we predict that our 
woman prefers social life. If we made the same prediction for all 5 
women, we would not be correct every time, but we would make the 
correct prediction more often than the wrong prediction. Indeed, we 
would be right 3 times and wrong 2 times out of 5. The same procedure 
could be used to predict the preferences of the men in the sample. 
Predicting that a man prefers work, we would be right 3 times out 
of5. 

The presence of a relationship between two variables means that 
we can use information on the value of one variable for an individual 
to help us predict the value of the other variable. In the gender/ activity 
example, if we know the gender, we can predict how a person likes to 
spend time. We will not always make the right prediction, but the 
stronger the relationship between two variables, the better our predic-



8.3 Independent and Dependent Variables 323 

tion will be. Thus, the strength of the relationship indicates the degree 
to which we can predict from one variable to the other. 

STOP AND PONDER 8 . 2 

Why can you predict the value of a variable if you know the value of 
a related variable, even if the two variables are not causally related? 
Why would it be possible to predict childhood car accident rates on 
the basis of ice cream sales? Do you think it would be possible to 
predict the rate of city apartment fires from sales of suburban snow 
blower? 

" . 8 . 3 INDEPENDENT AND DEPENDENT VARJABLES 

Something about the two variables in the gender/ activity example is 
asymmetric. If there is a causal influence of one variable on another, 
we would say that it is the gender variable that affects the activity vari­
able. Similarly, we would say that light affects growth in the experi­
mental study on plants. We do not think that the activity a person 
prefers in any way affects the person's gender. Nor do we think that 
plant growth determines the amount of light the plant gets in the ex­
perimental setting. 

For both of these examples, one variable comes before the other 
in time. People are born a certain sex and years later express an activity 
preference. A plant is first exposed to light, then it grows. When we 
study the relationship between two variables such as these, we know 
that one variable usually comes first and may causally affect the other 
variable. We call the variable that comes first the independent variable, 
and the variable that is influenced the dependent variable. The indepen­
dent variable is also known as the explanatory variable, and the depen­
dent variable is known as the response variable. We can show this scheme 
using an arrow pointing from the independent to the dependent vari­
able: 

independent variable ~ dependent variable 

Sometimes, for the sake of simplicity, the independent, explanatory 
variable is denoted by the letter X and the dependent, response variable 
by the letter Y; 

X~y 
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A generic independent variable can be called the x:.variable, and a 
generic dependent variable the Y-variable. (As a memory aid, think of 
the one-legged Yas a pushover when influenced by the sturdy Xl) 

STOP AND PONDER 8 . 3 

In the following pair , which variable is the independent (or x) vari­
able and which i the dependent (or y) variable? 

a. Lightening bolt-thunder clap 

b. Amount of sales tax-amount of cost of goods 

c. Rate of popcorn sale in movies-rate of trash bag use 

d. Rate of electrical output-number of hot days 

e. Timing of commercial breaks-water consumption in town 

The nature of the two variables determines what type of data analysis 
we use. Different statistical methods have been developed for different 
types of variables. 

The independent variable and the dependent variable can be any 
of three types: 

1. Categorical: The values are nonnumerical categories; example: for 
the gender variable, the values are female and male. 

2. Rank: The values are ordered; examples: for an attitude variable, 
the values are opposed, neutral, in favor; for placement in a race, 
the values are first, second, and third. 

3. Metric: Meaningful numerical values can be manipulated mathe­
matically (added, multiplied); examples: income, weight, age. 

The independent variable can be of one type and the dependent vari­
able of another. Combining the independent and the dependent var­
iables yields nine possible pairs of variables (3 X 3), which can occur 



8.4 Different Types of Variables: Categorical, Rank, Metric 325 

Table 8.4 Possible pairs of variable types 

Independent variable x 
Categorical Rank 

Metric D (Chapter 12) 

Dependent variable y Rank E (Chapter 11) 
- -- -- -- ---- -- ------- ------ , 

A (Chapter 9) 
, , , , Categorical 

in a relationship between two variables (Table 8.4). In the table, the 
independent variable X runs horizontally and the dependent variable 
Y runs vertically. From left to right, the variables go from the simpler 
categorical to the more complex metric variables. The dependent var­
iables move up in complexity from categorical to metric. 

The example with gender and activity preference belongs in the 
lower left corner of the table (A), since both variables are categorical; 
this relationship is examined in Chapter 9. The example with light and 
growth of plants belongs in the upper right corner of the table (B), 
since both variables are metric; this relationship is examined in Chap­
ter 10. A study measuring the literacy rate in a country and comparing 
it to the type of government of the country would belong in the lower 
right corner of the table (C). This is because the independent vari­
able-literacy rate-is a metric variable, and the dependent vari­
able-type of government-is a categorical variable; the relationship 
is mentioned in Chapter 10. A study of the effects of three different 
types of teaching methods (categorical independent variable) on 
school performance (metric dependent variable) would go in the up­
per left corner; this kind of relationship, considered in Chapter 12, is 
quite common. 

Relationships involving rank variables do not occur very often, and 
the only one we consider here is one with two rank variables (E). An 
example is the ranking of baseball teams in two different years; this 
relationship is considered in Chapter 11. If a rank variable and a metric 
variable are combined in a study, then we usually treat them as two 
metric variables. Similarly, we usually treat a rank variable and a cate­
gorical variable as two categorical variables, even though we have to 
give up some information. (Note that it is always possible to change a 
metric variable to a rank or categorical variable but not the reverse. 
For example, an income scale, which is metric, can be converted to 

Metric 
, , 

B (Chapter 10) , , , 
------------------- -- -- ----

C (Chapter 10) 
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poor, average, and rich, a rank variable. But poor, average, and rich 
cannot be converted to a metric scale unless the exact income infor­
mation on which to base the conversion is available.) 

In considering the relationship between two variables, we need to 
locate the cell in this table to which the study belongs because different 
statistical analysis methods have been developed for the different com­
binations of variables in the table. Data on two metric variables are 
much more informative than data on two categorical variables, and 
many statistical procedures can be performed on them that other var­
iables cannot support. When rank and categorical data cannot be 
avoided, appropriate procedures extract as much information as pos­
sible from them. 

STOP AND PONDER 8 . 4 

Data have been collected on the following pairs of variables. Where 
in Table .4 would you put them? 

a. Average temperature in degree and relative cleanliness in pub­
lic areas in major European citi 

b. Ethnic group identification and social class for people in Kuala 
Lampur 

c. Average speed of trains in Japan between Kobe and Kyoto and 
average price of ticket per kilometer 

8 . 5 _~_________ _ _ ____ _ ___ _ _ _ ____ _ __ ~ 

Question 4 asks whether the independent variable causes the depen­
dent variable. Causality is a difficult concept, and philosophers have 
struggled with its meaning for centuries. We do not solve the problem 
of causality here, nor does statistics alone establish whether one vari­
able causally determines another. But statistical methods offer a per­
spective on this complex problem, and in Chapter 14 we discuss in 
detail some of the paths we can follow to establish whether variables 
are causally related. 

As we have noted, finding a relationship between two variables in 
a statistical analysis is not the same as proving that the variables are 
causally related. We may surmise that to the extent to which a per­
son's gender is determined by certain chromosomes in the genes, it 
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is unlikely that the biological components of a person determine how 
the person prefers to spend time. It is even harder to imagine that the 
amount of ice cream consumed in a month causally determines the 
number of children injured in car accidents that month. We could 
guess that the relationship between literacy and type of government is 
more than statistical, and we could be pretty sure of a causal relation­
ship between light and the growth of plants. 

Role of other variables 

Our speculations about the chapter examples are not founded in any 
statistical methods; they are simply commonsense observations based 
on what we know about the variables in everyday life. Two variables 
seem not to be causally related when we presume that other variables 
account for the observed relationship. Thus, in trying to determine if 
two variables are causally related, we first ask whether other variables 
could have produced the observed relationship. With gender and ac­
tivity preference, we ask if something about how we are socialized is at 
work. For the example of ice cream consumption and car accidents, 
temperature may explain the observed relationship; when the temper­
ature is higher in the summer, children are not in school and may be 
more prone to be involved in car accidents, and they also eat more ice 
cream. 

The ice cream and car accident example is illustrated in Figure 8.1. 
The figure shows the causal effect of temperature as arrows from tem­
perature to the other two variables. The data on ice cream consump­
tion and number of injuries in car accidents show that those two vari-

Temperature 

Ice cream 
consumption 

Observed 
relationship 

Number of 
children's 
injuries in 
car accidents 

Figure 8.1 Observed spurious relationship between two variables caused by 
an underlying third variable 
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abIes are statistically related, but the relationship is spurious because 
we know it is not a causal relationship. If temperature data were in­
cluded in the example, we could then use multivariate statistical meth­
ods to show that the relationship of ice cream consumption and car 
accidents is spurious. These methods are discussed in Chapter 13. 

Role of time 

One requirement for a causal relationship between two variables is that 
the independent variable occurs before the dependent variable in time. 
Light is directed at the plants, and then the plants grow. Additionally, 
an independent variable causes a dependent variable when a change 
in the independent variable produces a change in the dependent vari­
able. If we change the length of time the light is left on and the plant 
grows accordingly, we reason that the light causes plant growth. If, on 
the other hand, the relationship is spurious, that is, noncausal, we do 
not expect a change in one variable to produce a change in the other. 
We recognize the absurdity of the notion of, for example, a change in 
ice cream consumption causing a change in car accidents. 

This difference between causal and noncausal relationships high­
lights a contrast between experimental and observational data. With 
experimental data it is possible to cancel out effects of other variables 
and to manipulate the independent variable to see if effects are pro­
duced on the dependent variable. With observational data we do not 
have the freedom to make manipulations. It is therefore easier to es­
tablish causality between variables based on experimental data than to 
establish causality based on observational data. With observational data, 
we are always struggling with the effects of other variables. 

A famous claim for the existence of a causal relationship based on 
observational data is the statement that appears on packs of cigarettes 
and in cigarette advertising. In various forms, the statement warns that 
smoking may cause a variety of health problems. Had an experimental 
study been done, researchers would have randomly assigned newborns 
to become smokers or nonsmokers. Years later, they would have ex­
amined the health patterns in the two groups. Since such a study was 
not possible, the Surgeon General did the next best thing and asked 
statisticians to examine observational health data on smokers and non­
smokers. Based on the available evidence, most people now accept that 
there is a causal link between smoking and health problems. 
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Despite the number of studies published on the effects of smoking, no ex­
act experimental study can be done to isolate causal factors such as whether 
or not smoking causes lung cancer. (Source: 1989, Comstock.) 

Multiple causal factors 

In everyday life, understanding causality is complicated by the fact that 
several variables, not just a single variable, usually determine a depen­
dent variable. A person's salary, for example, is affected by the job 
description, how much training is needed, how much experience the 
person has, how talented the person is, and realistically, sometimes the 
person's gender and race. When we consider the effect of a single 



330 Chapter 8· Relationships Between Variables 

variable, we should not expect it to be the only cause of the dependent 
variable. 

Finally, even if two variables are causally related, the relationship 
may not hold in every case. For example, not all smokers develop health 
problems, and the health problems of smokers are not all caused by 
smoking; the relationship holds only for some people. To more fully 
understand smokers' health problems, other independent variables in 
addition to smoking must be considered. 

This chapter discusses relationships between two variables. Data come 
from two major sources: experiments and observations. 

8.1 Four questions about two variables 

Once data are gathered on two variables, four questions may be asked 
of the variables: 

Question 1. Is there a relationship between the variables in the 
data? 

Question 2. If so, how strong is the relationship between the vari­
ables? 

Question 3. Is there a relationship in the population, not just in 
the sample? 

Question 4. Is the observed relationship a causal relationship? 

To answer question 1, we look at the patterns in the sample data. 
If there is a relationship in the sample data, we ask question 2. To 
answer question 2, we compute a coefficient that measures the strength 
of the relationship. A strong relationship is indicated by a value nearer 
1 and a weak relationship by a value nearer O. To answer question 3, 
we set up a null hypothesis that there is no relationship between the 
two variables and see if we can reject that hypothesis or not. The p­
value for the observed data is computed, and if the p-value is small then 
we reject the null hypothesis. 



Answering question 4 on causality is often difficult. A statistical re­
lationship-even a very strong one-can exist between two variables 
without a causal relationship. It is easier to establish causality for ex­
perimental data than for observational data because the effects of other 
variables can be controlled for in an experiment. 

8.2 Prediction: From one variable to another 

Even if two variables are not causally related, we can predict the value 
of one variable for an individual observation if we know the value of 
the other. The strength of the relationship indicates the degree to 
which we are able to predict from one variable to the other. 

8.3 Independent and dependent variables 

In the study of relationships between variables, variables are often 
called independent variables and dependent variables. In a causal re­
lationship between variables, the causal variable is the independent 
variable and the variable that is influenced by the independent variable 
is the dependent variable. Independent variables usually occur in time 
before dependent variables. (But not all variables that precede in time 
are independent variables.) A generic independent variable is labeled 
an X-variable and a generic dependent variable is labeled a Y-variable. 

8.4 Different types of variables: Categorical, rank, or metric 

Both the independent and the dependent variable can be one of three 
types. Categorical variables are those where the values are two or more 
categories, such as female and male. Rank variables are those where 
the values are ranked from lower to higher, such as the outcome of a 
race. Metric variables are those where the values are meaningful num­
bers that can be manipulated mathematically (added, multiplied). Ex­
amples are income, weight, and age. Different statistical methods have 
been developed to analyze different types of pairs of variables. 

8.5 Return to the question of causality 

To judge if an independent variable is causally related to a dependent 
variable (once a relationship established between the two variables is 
established in the population), we (1) think about the problem in 
terms of everyday logic to see if the possibility makes sense in the world 
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as we know it; (2) note whether the independent variable has preceded 
the dependent variable in time; (3) if feasible, alter the independent 
variable and observe whether the dependent variable is also affected 
(that is, do an experiment), and (4) accept that even if the indepen­
dent variable has a causal impact on the dependent variable, other 
important variables that are not part of the current research program 
may affect the dependent variable. 

Davis, James A. The Logic of Causal Order (Sage University Paper Series 
on Quantitative Applications in the Social Sciences, series no. 07-055). 
Beverly Hills, CA: Sage, 1985. A small paperback book on causality. 

Liebetrau, Albert M. Measures of Association (Sage University Paper Se­
ries on Quantitative Applications in the Social Sciences, series no. 07-
032). Beverly Hills, CA: Sage, 1983. An introduction to different ways 
of measuring the strength of a relationship between two variables. 

Simon, Herbert A. "Causation." In William H. Kruskal and Judith M. 
Tanur (eds.), International Encyclopedia of Statistics. New York: The Free 
Press, 1978. A leading expert's view of the connection between causality 
and statistics. 

EXERCISES 

REvIEw (ExERCISES 8.1-8.23) 

8.1 Describe in other words what is meant by a "statistical relation­
ship" between two variables. 

8.2 What are the four questions a researcher asks of the data col­
lected in a study on two variables? 

8.3 In answer to question 1, if no relationship exists between two 
variables in sample data, what can you conclude about the population 
from which the sample was drawn? 

8.4 Why is it important whether or not a relationship in the sample 
is strong or weak? 

8.5 Paraphrase question 3, "Is there a relationship in the popula-
tion?" 



8.6 Why is it easier to establish causality with experimental data 
rather than observational data? 

8.7 What is a spurious relationship between two variables? 

8.8 Historically, a relationship has been found between the length 
of women's skirts and the strength of the economy: the shorter the 
shirts, the stronger the economy. Is this a causal or a spurious relation­
ship? 

8.9 Statisticians try to resolve spurious relationships by bringing into 
the analysis other variables that may have a causal relationship with the 
variable in question. 

a. What are the major reasons that statistically literate people 
like you might think a relationship between two variables was 
spurious? 

b. Why, for example, do we think the relationship between ice 
cream consumption and childhood car accidents is spurious? 

c. How could a mistake be made in judging whether a relation­
ship is spurious or not? 

d. Can you think of any historical circumstances where a rela­
tionship that was causal was presumed to be spurious or vice 
versa? 

8.10 Discuss whether or not you think the following relationships are 
causal or spurious. If you are undecided, discuss why. 

a. Simmons and Blyth (1987) found early-maturing girls to have 
the following problems: body image disturbances, lower aca­
demic success, and conduct problems in school. 

b. Increasing the number of policemen on the street increases 
the number of crimes committed. 

c. High school students who smoke marijuana regularly get 
lower marks in school than those who do not smoke it regularly. 

8.11 Researchers compute a coefficient to determine the strength of 
a relationship between two variables. Give two values of such a coeffi­
cient that would indicate a strong or a weak relationship. 

8.12 If you were told that the strength of the relationship between 
two different forms of a test was 0.96, what could you say about these 
two tests? 
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8.13 If a researcher is able to reject the null hypothesis, what can the 
researcher conclude about the relationship between the two variables? 

8.14 What size p-value leads to rejection of the null hypothesis? 

8.15 True or false: If you cannot prove causal relationships in your 
data, you cannot make predictions of values on the dependent variable 
from values of the independent variable. Defend your answer. 

8.16 a. What is an independent variable? 

b. What is a dependent variable? 

c. Which letters are used to designate each? 

d. How are you going to remember this? 

8.17 In a study of the relationship between two variables, what factors 
would help you decide which variable is the independent and which is 
the dependent variable? 

8.18 Why is it so difficult to use observational data to establish that a 
relationship between two variables is causal? 

8.19 In studying the relationship between two variables, why does it 
matter what kind of variables-categorical, rank, or metric-one is 
working with? 

8.20 Name the type of variable-categorical, rank, or metric-for 
each of the following. 

a. Religion 

b. NFL standings 

c. Height 

d. Placement of horses in the Kentucky Derby 

e. Winners of the bronze, silver, and gold medals in the luge 

f. Olympic team membership 

g. Days of the week 

h. Age 

8.21 a. Give an example of a study in which the independent variable 
is categorical and the dependent variable is metric. 

b. Give an example of a study in which both variables are metric. 

c. Give an example of a study in which both variables are rank 
variables. 



8.22 If a study includes one metric variable and one rank variable, 
how could you analyze the relationship between the two? 

8.23 What is the general name of the methods used to analyze three 
or more variables? 

INTERPRETATION (ExERCISES 8.24-8.33) 

8.24 According to National Opinion Research Center surveys done 
in 1972 and 1991, the tendency to be satisfied with one's job is related 
to the years one has worked at it-the longer the happier. Table 8.5 
shows the relationship between work satisfaction and years on the job 
for two different groups of 270 workers 

a. Which part of the table shows the strongest statistical rela­
tionship? Explain your answer. 

b. What is the difference between finding relationships that ap­
ply only to the sample and finding relationships that apply to 
the population from which the sample is drawn? 

c. How might it happen that you would find a relationship be­
tween two variables in a sample but not in the corresponding 
population? 

8.25 Explain the following statement: "Finding a relationship be­
tween two variables in a statistical analysis is not the same as proving 
that the variables are causally related." 

8.26 Why is one variable usually called "independent" and the other 
"dependent" in the study of the relationship between two variables? 

8.27 On what grounds might statisticians who are employed by to­
bacco companies argue that it has not been proven that cigarette smok­
ing is hazardous to your health? 

Table 8.5 Data for Exercise 8.24 

(a) Years on the Job (b) 

Under 10 Over 10 Total Under 10 

Happy 50 100 150 Happy 70 

Unhappy 100 20 120 Unhappy 80 

Total 150 120 270 Total 150 
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Years on the Job 

Over 10 Total 

80 150 

40 120 

120 270 



336 Chapter 8· Relationships Between Variables 

8.28 How could it be proved that chewing tobacco causes various 
forms of cancers in people who chew it? Why has it not been done? 

8.29 What are major ways to establish causality once a relationship 
between two variables is known? 

8.30 A metric variable can be converted to a rank variable but not 
vice versa. Why not? Give an example to illustrate your reasoning. 

8.31 It has been observed that women who smoke have smaller babies 
at birth than women who do not smoke. Can you conclude that smok­
ing causes babies to have low birth weights? Discuss. 

8.32 In the box on storks and birthrate, it was possible to predict with 
a fair amount of accuracy the birthrate for a county from the number 
of storks in the county. Describe why it is not necessary to understand 
the cause of a variable in order to predict the value of the variable. 

8.33 a. Explain the steps by which survey researchers concluded that 
in Beijing, 74% of women said they were happy with their bodies 
as opposed to 84% of women in Tokyo, who said they were un­
happy with their bodies. (Source: Newsweek, February 12, 1996, p. 41.) 

b. These researchers suggested that the cause of this difference 
was the introduction in Japan of "racy" western lingerie adver­
tising. Comment on whether you think this is a spurious or a 
causal relationship. 

ANALYSIS (ExERCISES 8.34-8.40) 

8.34 In this exercise, one variable is enrollment in a special program 
for juvenile offenders and the other variable is contact with the police. 
If we know that a person was enrolled in this program, can we predict 
whether the person had further police contact? Table 8.6 displays the 
data for lOO juvenile offenders. 

a. Suppose you were introduced to one of these juveniles, and 
you were not told whether or not this person had been enrolled 
in the special program. Looking at Table 8.5, why would your 
best prediction be that this person has not had any further con­
tact with the police? 

b. If you were to predict no further police contact for each of 
the 100 juveniles, for how many of them would you make the 
wrong prediction? 



Table 8.6 Data for Exercise 8.34 

Enrolled in juvenile 
offender program 

Yes No Total 

Further police No 37 20 57 
contact Yes 13 30 43 

Total 50 50 100 

Source: T. Hirschi and M. J Hindelang, "Intelligence and delinquency: A revisionist review, " 
American Sociological Review, vol. 42 (1977), p. 575. 

c. If you were told that a person had been enrolled in the special 
program, why would your best prediction be that this person has 
had no further contact with the police? 

d. If you were to predict no further contact for each of the 50 
juveniles enrolled in the special program, how many times would 
you make the wrong prediction? 

e. Now suppose you were told that a juvenile had not been en­
rolled in the special program. Would your best prediction be 
that the person did or did not have any further contact with the 
police? 

f. If you were to predict further contact for each of the 50 ju­
veniles not enrolled, how many times would you make the wrong 
prediction? 

g. Why is the sum of the numbers in answer to parts d and f the 
total number of wrong predictions the enrollment status for the 
people is known? 

h. Explain how ability to predict is improved and 10 fewer wrong 
predictions made when enrollment status in the special program 
is known. 

i. Explain why the ratio 10/43 = 0.23 measures improvement in 
prediction on a scale from zero to one. 

8.35 Of 665 male patients admitted to hospitals in New England for 
a first heart attack, 214 of them had (vertex) baldness. In another 
group of 772 patients admitted for noncardiac conditions, 175 had the 
same kind of baldness. (Source: The New York Times. Felnuary 14, 1993, pp. 
AI, CI2.) 
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a. Show the data in a table. 

b. What percentage of those admitted for a first heart attack 
were bald? 

c. What percentage of those admitted for noncardiac conditions 
were bald? 

d. What does the difference between the two percentages tell 
you? 

e. Why are we more interested in comparing the percentage of 
bald men who had heart attacks with the percentage of non bald 
men who had heart attacks than we are in comparing the per­
centage who were bald among those who had heart attacks with 
the percentage who were bald among those who did not have 
heart attacks? That is, should we compare the percentages in the 
two columns in the table or should we compare the percentages 
for the two rows? 

f. Even though the percentages in part d can be computed from 
the given numbers, why could the percentages not be very mean­
ingful? 

g. What do the numbers tell you about whether baldness causes 
heart attacks? 

8.36 People in a random sample from the Detroit metropolitan area 
were asked to choose or not choose the following statement: ''Work is 
important and gives a feeling of achievement." In a study of the rela­
tionship between religious affiliation (Baptist or Methodist) and 
whether or not people chose the statement, Table 8.7 emerged. 

a. What is the independent and what is the dependent variable 
in this study? 

Table 8.7 Data for Exercise 8.36 

Religious affiliation 

Baptist Methodist Total 

Statement Chose 36 51 87 
Did not choose 67 36 103 

Total 103 87 190 

Saurce: H. Schuman, "The religious factor in Detroit: Review, replication and reanalysis, " 
American Sociological Review, vol. 36 (1971), pp. 30-48. 



Table S.S Data for Exercise 8.37 

Race 

Black White Total 

Marlboro 4 576 580 

Newport 25 45 70 
Brand 

Kool 4 5 9 

Other 12 181 193 

Total 45 807 852 

Source: Teenage Attitudes and Practices Survey, 1989, fly the National Center for Health 
Statistics, as reported in Chance, vol. 5 (1992), nos. 1-2, p. 27. 

b. Does there seem to be a relationship between the two varia­
bles in these data? 

c. Does the relationship between the two variables seem strong 
or weak? 

d. What does the table indicate about the difference between 
Baptists and Methodists in Detroit at that time? 

8.37 In Exercise 6.45, you looked at who among young smokers 
smoke the Newport brand. Here we include two other brands popular 
among young smokers. Table 8.8 includes the three brands that were 
reported by more than 10% of the two groups of smokers. 

a. What do you see in this table, without making any further 
computations? 

b. Change the numbers in each column to percentages that add 
to 100% in each column. What differences do you see between 
blacks and whites? 

c. Does the table show a strong or a weak relationship between 
the variables? 

d. What do you think the three brands are so attractive to young 
smokers? 

8.38 Table 8.9 is a data matrix taken from a study of child caretakers 
reported in dollars per hour. 

a. How could you rearrange the data so that it would be easier 
to detect group differences in the amount paid for caretakers? 
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Table 8.9 Data for Exercise 8.38 

Baby Caretaker Cost per hour (dollars) 

I Relative $4.90 

2 Nanny $7.00 

3 Relative $5.00 

4 Day care center $6.60 

5 Private home $5.35 

6 Nanny $7.50 

7 Private home $5.50 

8 Day care center $6.75 

9 Relative $5.25 

10 Private home $5.15 

11 Nanny $7.55 

12 Day care center $6.67 

13 Relative $5.10 

14 Private home $5.35 

15 Nanny $7.40 

16 Day care center $6.75 

Source: Sandra L. Hofferth, Urban Institute. 

b. Does there seem to be a relationship between the two varia­
bles caretaker and dollars per hour? 

c. If you think there is a relationship, do you think it is strong? 

d. Do you think the results are just a fluke of the data, or do 
you think there might be a relationship in the population as 
well? 

e. How well can you predict from the type of caretaker the 
amount of pay received? 

f. Which is the independent and which the dependent variable? 

8.39 In this exercise, one variable is year (1960 to 1995), and the 
other variable is percent of mothers with children under 6 in the labor 
force (Table S.lO). From the data for a particular year, can you predict 
whether or not a mother with a child under 6 is in the labor force? 



Table 8.10 Data for Exercise 8.39 

1960 1965 1970 1975 1980 1985 

In labor force 20 25 32 38 47 
At home 80 75 68 62 53 

Source: Bureau of Labor Statistics. 

a. Suppose you were introduced to one of these mothers and 
you were not told whether or not she was in the labor force. 
Looking at the table, why would your best prediction be that this 
person had not been in the labor force? 

b. If you were to predict that each mother had stayed at home, 
for what percentage of them would you make the wrong predic­
tion, assuming the same number of women in each five-year 
period? 

c. If you were told that a mother had had a child under 6 in 
1960, why would your best prediction be that this woman had 
stayed at home? 

d. If you were to predict that all the mothers in the 1970 sample 
had stayed at home, how many wrong predictions would you 
make? 

e. Now suppose you were told that a mother had a child under 
6 in 1995. With that knowledge, would your best prediction be 
that she did or did not work outside the home? 

f. If you were to predict work outside the home for each of the 
mothers in 1995, how many times would you make the wrong 
prediction? 

g. Explain how you improve your ability to predict and make 
fewer wrong predictions when you know the year in which the 
mothers had young children. 

52 
48 

h. Does it appear that a shift in the proportion of mothers of 
young children in the labor force is occurring? What is your 
evidence? 

i. Is the relationship between year and percentage in labor force 
a causal relationship? 
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1990 1995 

58 58 

42 42 
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Table 8.11 Data for Exercise 8.40 

Tone of speaker's comment 

Negative Nonnegative Total 

Tone of Negative 444 181 625 
response Nonnegative 435 679 1114 

Total 879 860 1739 

Source: V. L. Walsh et al., "Impact of message valence, focus, expressive style, and gender on 
communication patterns among maritaUy distressed couples, "Journal of Family Psychology, 
vol. 7 (1993), pp. 163-175. 

8.40 The data in Table 8.11 are taken from a study of communication 
patterns among unhappily married couples. The question of concern: 
When one partner says something either negative or nonnegative to 
the other, what type of response is given, a negative or a nonnegative 
one? One variable, tone of speaker's comment, has values coded as 
negative or nonnegative, and the other variable, tone of response, also 
has values coded as negative or nonnegative. These data summarize 
1739 comments from 52 couples. 

a. Suppose you selected one of the speaker's comments and did 
not know whether or not it was negative. What would your best 
prediction be as to what type of response it was? 

b. If you were to predict that every response was nonnegative, 
for how many responses would you make the wrong predic­
tion? 

c. If you were told that a person had made a negative comment, 
why would your best prediction be that the response was nega­
tive? 

d. If you were to predict a negative response for all the negative 
comments, how many times would you make the wrong predic­
tion? 

e. Now suppose you were told that a comment was nonnegative. 
Would your best prediction be that the response was negative or 
nonnegative? 

f. If you were to predict nonnegative for each of response to a 
nonnegative comment, how many times would you make the 
wrong prediction? 



g. Why would the sum of the numbers in answer to parts d and 
f tell you the total number of wrong predictions when you know 
the type of comment made? 

h. What do these data suggest about how to have pleasant and 
unpleasant conversations with a significant other? 

i. Can you think of any difficulties in generalizing about the 
conversations of these maritally distressed couples on the basis 
of these data? 

j. Can you think of any potential difficulty in generalizing these 
results to conversations among college students taking a statistics 
course? 
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CHI-SQUARE ANALYSIS FOR 

TWO CATEGORICAL VARIABLES 

f{!Z)o people in different countries view strangers the same way? In surveys in 

several European countries, people were asked the following question: "Gener­

ally speaking, would you say that most people can be trusted or that you can­

not be too careful in dealing with people?" 
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A contingency 
table is a table of 
frequencies 
showing the dis­
tribution of data 
on two categori­
cal variables. 

Let us compare two of the countries, Denmark and France (Table 9.1). 
Table 9.1 is called a contingency table. The table shows how the people 
in the poll were distributed on the two categorical variables country 
and attitude toward people. Note that this contingency table has two 
rows and two columns (as well as a row and a column labeled total), 
because each of the two variables has two values (categories). The coun­
try variable has the two values Denmark and France, and the attitude 
variable has the two values trust and suspicion. Of course, it is possi­
ble for categorical variables to have more than two categories, or val­
ues. With four countries the table would have four columns and two 
rows. 

A contingency table shows frequencies, that is, the number of ele­
ments in the various categories. Analyzing the data in a contingency 
table takes several steps. First we can consider each variable separately. 
For the country variable, in Table 9.1, we see that there are 985 Danes 
and 969 French people. For the attitude variable, 831 people think 
most people can be trusted, and 1123 say that you cannot be too care­
ful. Then, to figure out whether the countries are different, we consi­
der the two variables together. We find that there are 625 Danes 
who think most people can be trusted and a little more than half 
that number who think you cannot be too careful. Among the French, 
206 feel people can be trusted and 763 feel you cannot be too care­
ful. Thus, the majority of the Danes are trusting and the majority 
of the French are suspicious. By skimming the table this way, we 
have already learned something about how the people in this sample 
felt. Perhaps there truly are differences between the Danes and the 
French. 

Table 9.1 Country and attitude toward people 

Country 

Denmark France Total 
Attitude Trust 625 206 831 
toward 

Suspicion 360 763 1,123 people 
Total 985 969 1,954 

Source: Jacques-Rene Rabier, Helen Riffault, and Rimald Inglehart, Euro-barometer 25: 
Holiday Travel and Environmental Problems, April 1986, Ann Arbor, MI: Inter­
University Consortium for Political and Social Research, 1988. Codebook p. 10. 
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STOP AND PONDER 9.1 

Give an example of two cat gorical variable that might be related 
and et up a contingency table for the two variables. Why are your 
variable categorical variables? 

ANALYSIS OF THE DATA: ARE THERE 

TRUSTWORTHY DIFFERENCES IN ATTITUDE? 

What should be the independent and what should be the dependent 
variable in this analysis? At least for all the native-born people in the 
sample, it is clear that country came first in time, and then people 
developed their attitudes about trust. Thus, we select country as the 
independent and attitude as the dependent variable. 

Note that Table 9.1 is set up with the independent variable country 
running horizontally across the table and the dependent variable atti­
tude running vertically down the side. Displaying the independent vari­
able horizontally and the dependent variable vertically is a common 
way of setting up contingency tables. This way is also consistent with 
the way we display data for other types of variables in later chapters as 
well as Chapter 3. 

STOP AND PONDER 9 . 2 

A local chapter of Phi Beta Kappa i intere ted in bringing a speaker 
to campus. The selection committee narrows the choices to two 
speakers: one i a professor of romance languages whose specialty i 
the poetry of courtly love, and the other cholar's topic i Lacanian 
psychoanalysis and the politics of pain. Unable to decide, the com­
mittee asks the entire chapter to vote on their preference. Among 
the more senior member of the chapter, 14 vote for the poetry 
lecture and 7 for the Lacanian one. Among the more junior mem­
bers, 10 vote for the Lacanian lecture and 5 for the poetry of courtly 
love. 

Set up a contingency table that repre ents the e re ults. What 
doe the tabl tell you about the relation hip between the two vari­
ables? 
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This rule is not ironclad. If the independent variable has only a few 
categories and the dependent variable has many categories, the varia­
bles can be reversed, with the independent variable running vertically 
and the dependent variable running horizontally. The table is set up 
this way to take up less space on the page, since the table has fewer 
rows than columns. 

Bar graphs 

Three~imensivnal The data in Table 9.1 can be displayed in graphs of 
various kinds, and as you recall from Chapter 3, it is often easier to see 
patterns in data in a graph than in a table. One possible graph expands 
on the idea of a bar graph. Since we are dealing with two variables, 
instead of a bar we use a rectangular prism to show the number of 
observations for each value of the variables (Figure 9.1). 

The graph is harder to draw than a bar graph for one variable, and 
it is also harder to read. The largest frequency is usually shown at the 
back of the graph so that it doesn't "block the view" of the other fre­
quencies. Here that prism represents the 763 French who say people 
cannot be trusted. From the graph we learn that among the Danes 
there are more trusting people, and among the French there are more 
suspicious people. We see that the smallest group is the French who 
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Figure 9.1 Three-dimensional bar graph of data in Table 9.1 
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say most people can be trusted, the next smallest is the Danes who feel 
one cannot be too careful, and the third is the Danes who say people 
can be trusted. In a three-dimensional graph, it is hard to see exactly 
what the frequencies are equal to, but relative sizes are clear. 

Bars same width, different heights Data of this kind can also be displayed 
in regular bar graphs. We can either stack the bars for each country or 
place them side by side (Figure 9.2). The bars in both graphs of Figure 
9.2 have the same base but are of different heights, showing at a glance 
that the numbers of Danes and French are not equal. Among the Danes 
there are more trusting people, and among the French there are more 
careful people. There is a scale at the left of each graph, but it is hard 
to read accurately how many people are in each category. For Figure 
9.2a it is hard to see how many respondents say that people can be 
trusted because the bottom bases of the bars do not start at zero. For 
Figure 9.2b it is hard to see the total number of respondents for each 
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Figure 9.2 Two-dimensional bar graphs of data in Table 9.1: Bars same 
width, different heights 
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country because both sets of bars start at zero. The advantages and 
drawbacks of various graph forms, as noted in Chapter 3, are found in 
these graphs. 

Bars different widths, same height The same data can be graphed so 
that the heights of the bars are the same but the bases are different 
(Figure 9.3). The area of each bar shows the percentage of observations 
in each group, but frequencies could be used instead. Again, the graph 
shows slightly more Danish respondents than French. Among the 
Danes, about twice as many respondents feel that most people can be 
trusted. Among the French, a large majority feel that you cannot be 
too careful in dealing with people. The construction of the bar graphs 
is discussed in the formula section at the end of the chapter. 
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Figure 9.3 Bar graph of data in Table 9.1: Bars same height, different 
widths 
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The choice among the three graphs is not obvious. The simplicity 
of Figure 9.3 is appealing to some experienced viewers, but perhaps 
less so to those unused to such forms of presentation. 

STOP AND PONDER 9 . 3 

Figures 9.1, 9.2, and 9.3 are three different repre entation of the 
data on countries and trust. If you were selecting one of them for 
use in a textbook or business report, which would you most prefer 
to use and least prefer to use? Why did you make the e selections? 

Summary computations with categorical vari.ables 

Contingency tables are used to study the relationship among categor­
ical variables, and we ask the data in contingency tables the four ques­
tions discussed in Chapter 8. (1) We want to know whether there is a 
relationship in these data between the nationality of those polled and 
how they expressed their attitudes toward trusting others. (2) We want 
to know how strong the relationship is between the two variables. Is 
there just a slight tendency for one nationality to be more trusting or 
is there a strong tendency? (3) We want to know if the results of the 
poll apply to the real world of all people in the two countries as well 
as those in the sample. If we find that there is a relationship between 
these two variables in the larger population, then we have learned 
something about the way people feel and about human behavior more 
generally. (4) Finally, could the relationship be causal? 

Refer for a moment to Table 9.1. The three numbers in parenthe­
ses below the table are part of the statistical analysis of the data; they 
describe various aspects of the relationship between the two variables. 
We discuss how to interpret these numbers in the next several pages. 
And at the end of the chapter, we explain how the numbers are found 
and give the formulas for finding them. 

The first question we ask is whether a relationship exists between na­
tionality and attitude-that is, do certain values of one variable tend 
to occur more often with certain values of the other variable? In other 
words, are the Danes different from the French in their attitudes? 
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A quick look at Table 9.1 shows that among the Danes in this sam­
ple a majority believe people can be trusted, while among the French 
a majority feel they cannot be too careful. Note that more observations 
in the table fall on the diagonal from the upper left corner to the lower 
right corner than fallon the other diagonal. This pattern of frequen­
cies indicates that the two variables in these data are related. The 
graphs in Figures 9.1,9.2, and 9.3 also show that the two variables are 
related. 

A common way to determine whether two variables are related is 
to change the frequencies to percentages and then compare the per­
centages. It is easier to compare 64% to 21 % than 625 of 985 to 206 
of 969. 

Percentages are always computed within the values of the indepen­
dent variable. Thus, we first find the percentages of Danes who feel 
trusting and who feel the need to be careful, and then we do the same 
for the French. Table 9.2 shows the results. 

A table of percentages should show the total 100% for each group 
in the independent variable to guide the reader toward the direction 
in which the percentages were computed. In Table 9.2, 100% is given 
at the foot to show that the columns add to 100. Also given is the total 
number of observations in parentheses (n) for each group, making it 
possible to recover the actual frequencies from the percentages. 

The two columns of percentages show that the attitudes for the 
Danes and the French in this sample are different. From the fact that 
the two columns are different we conclude that a relationship does 
indeed exist between country and attitude in these data. 

We can express the results of the analysis of this table two ways. We 
can focus on the values of the independent variable country and say 
that there is a difference between the two countries. Or we can focus on 

Table 9.2 Percentage distributions of attitude for two countries 

Country 

Denmark France 
Attitude Trust 64 21 
toward 

Suspicion 36 79 people 
Total lOO 100 

(n) (985) (969) 
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the variables themselves and say that there is a statistical relationship 
between country and attitude. Sometimes it is tempting to express the 
results as differences between the groups defined by the independent 
variable, but it is more consistent with the remaining chapters to speak 
of relationships between the variables. 

The second question we ask is how strong the relationship is between 
country and trust. Strength of a statistical relationship is measured by 
a coefficient that ranges in possible values from 0 to 1. When the co­
efficient equals 0, there is no relationship between the variables; the 
percentages in the two columns are equal, indicating no difference in 
attitudes. When the coefficient of strength equals 1, the relationship 
between the variable is of maximum strength: all the Danes would feel 
people can be trusted, and all the French would feel they cannot be 
too careful; the attitudes of the two countries could not be any more 
different. A coefficient in the range from 0.00 to 0.30 or so is thought 
to indicate a weak relationship, the range from about 0.30 to 0.70 to 
show moderate strength, and the range from 0.70 or so to 1.00 to show 
a strong relationship. 

STOP AND PONDER 9 . 4 

By just looking at the data in Table 9.1, what value of the coefficient 
would you guess these data give? 

Phi in the sample 

For a contingency table such as Table 9.1, composed of two rows and 
two columns of observational data, the coefficient we compute is called 
phi (Formula 9.1 at the end of the chapter). Phi in Table 9.2 equals 
0.43. A relationship definitely exists in these data since the two columns 
of percentages are different. With phi equal to 0.43, we conclude that 
the relationship is moderately strong. A moderately strong relationship 
means that country may have some effect on how people feel about 
trusting others but that other variables beyond country also determine 
a person's attitude. 

Ifphi were equal to 0.00, the table would look like Table 9.3a. When 
phi was equal to 0.43, 625 Danes thought most people could be trusted; 
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if phi were 0.00, 419 Danes would have that attitude. Thus, 625 -
419 = 206 more Danes actually felt that way compared to the data if 
phi were equal to 0.00. The same is true with the French sample: 206 
more French felt you cannot be too careful in the actual data than in 
the table where phi equals 0.00. Those 412 people determine an ob­
served phi of 0.43. 

Table 9.3b is a table of the data if phi were equal to 1.00. All the 
Danes would have felt that people can be trusted and all the French 
would have felt that you cannot be too careful. For phi to equal 1.00, 
985 Danes would have to feel that people can be trusted, an additional 
360 Danes to the 625 who actually felt that way. 

Table 9.3c shows the connection between the number of Danes 
who felt people can be trusted and the value of phi. As we increase the 

Table 9.3 Hypothetical tables with different values of phi 

(a) phi = 0.00 
Country 

Denmark France Total 
Attitude Trust 419 412 831 
toward 
people Suspicion 566 557 1,123 

Total 985 969 1,954 

(b) phi = 1.00 
Country 

Denmark France Total 
Attitude Trust 985 0 985 
toward 
people Suspicion 0 969 969 

Total 985 969 1,954 

(c) Correspondence between observations and phi 

Number of trusting Danes 

419 625 985 
I 

0.00 0.43 1.00 

Values of phi 
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number of Danes feeling that way from 419 to 625 to 985, the value of 
phi increases from 0.00 to 0.43 to 1.00. The observed value of phi at 
0.43 is about four tenths of the way from the minimum of 0 to the 
maximum of 1, just as the number 625 is about four tenths of the way 
from the minimum of 419 toward the maximum of 985. 

Many other coefficients have been developed for the measurement 
of the strength of the relationship between two categorical variables 
when each variable has two categories, but phi is the most commonly 
used. For a larger table with more than two rows and/or two columns, 
phi cannot be used, and we choose from among a variety of other 
coefficients. 

Phi in the population 

Since we do not have data on the attitudes of all the people in Denmark 
and France, we do not know how strong the relationship is in the total 
population in the two countries. But we can use the sample value of 
phi equal to 0.43 as an estimate of the strength of the relationship 
between nationality and feeling of trust in the two countries. 

The third question we ask is whether there is a relationship between 
nationality and attitude toward people in the populations of the two 
countries. Are the variables related not only in the sample of 1954 
people but also among all Danes and French? In round numbers, that's 
about 60 million people. 

Setting up the null hypothesis 

Ifwe knew how each citizen in the two countries felt, we could fill in a 
contingency table with two rows and two columns for all 60 million 
people. Then, to find out if there were a relationship between the two 
variables in that table, we could simply compare the percentage distri­
butions. If the two columns of percentages were different, then the 
table would show that the two variables are related in the population 
of all Danes and French, and we could compute phi to see how strong 
the relationship was. 

But this is a statistical pipe dream. We could never collect all the 
data needed to construct a population table. The limits are too many, 
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and it would be too costly to ask everyone how they felt. Besides, we 
would have no reason to believe that everyone would answer the ques­
tion or, even if they answered, that they told the truth. We can, how­
ever, extrapolate the information obtained from the sample to the real 
world. 

The extrapolation from the sample to the population of Danes and 
French is done through statistical hypothesis testing. As you recall from 
Chapter 7, we begin with a nonobvious step. We set up the null hy­
pothesis that the two variables are not related in the population of all 
Danes and French, and then we see whether the data provide evidence 
to reject the null hypothesis. Ifwe can reject the null hypothesis, then 
we have found evidence that the two variables are related. This is in 
several ways a backward way of doing things, but it is the best we can 
do. 

Whether we reject the null hypothesis or not depends on two fac­
tors: (1) the strength of the relationship in the sample (phi) and (2) 
the number of observations in the sample (n). In data from any sample, 
both factors playa role. If we have a very large sample, then even a 
small value of phi is large enough to reject the null hypothesis. With a 
small sample, we need a large value of phi to reject the null hypothesis; 
with a low value of phi and a small sample, we may not be able to reject 
the null hypothesis. However, that would not necessarily mean that the 
null hypothesis is true. It might be that the null hypothesis is false, but 
we do not have enough evidence to support the fact. 

The strength of the relationship phi between the two variables 
country and trust in the sample is equal to 0.43, and there are 1,954 
observations in the sample. This combination of strength and sample 
size contains more than enough evidence to reject the null hypothesis. 
We therefore conclude that a relationship does exist between country 
and trust in the real world of all Danes and French. 

Testing the null hypothesis 

To reach the decision to reject the null hypothesis, we use the method 
described in previous chapters. We first assume that the null hypothesis 
is true; we assume that in the hypothetical table of all people in the 
two countries there is no relationship between the two variables and 
that phi in the table would equal O. Then we ask whether a phi of 0.43 
or larger from a sample is possible by chance. 

Another way to consider the same question is to ask: If we drew 
many samples of Danes and French, and assumed that the variables are 
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not related, how often would phi be of the magnitude of 0.43 or larger? 
More formally, we calculate the probability of getting a phi equal to or 
larger than 0.43 in a sample from a population where there is no re­
lationship between the two variables. This probability indicates whether 
a value of phi of 0.43 belongs to an unusual set of phis or not, and it 
is the p-value for our data. The p-value for the sample is given in pa­
rentheses in Table 9.1 as less than 0.0001, or less than 1 in 10,000. 

A p-value that size is very small, to say the least, and it tells us that 
it is almost impossible to draw a random sample of 1,954 people from 
a population where there is no relationship and get a phi of 0.43 or 
more. Fewer than 1 in 10,000 samples would have a phi of 0.43 or more 
if we sampled many times from a population in which there is no re­
lationship between the two variables. 

We can interpret this p-value two ways. Either the null hypothesis 
is true and a random sample with phi as large as 0.43 is extremely 
unusual, or there is a relationship in the population and a phi of 
around 0.43 is not surprising. Because the p-value is so small, we have 
overwhelming evidence against the null hypothesis. We think our sam­
ple is not particularly unusual, and therefore we conclude that our 
sample came from a population where the two variables are related, 
and we reject the null hypothesis of no relationship. 

From chi-square to p-value 

How do we find the p-value? Unfortunately, there is no statistical table 
in which we could look up the p-value for a sample of 1,954 people 
and phi equal to 0.43. We could construct a population where we know 
that the variables are unrelated, and then we could actually draw many 
different samples from this population and see how many of these sam­
ples have a phi of 0.43 or more. That would give us the probability of 
obtaining a phi of 0.43 or more. A computer could be programmed to 
do this for us, but it would still be cumbersome. Instead, we find the 
p-value by transforming our phi to a value of one of the theoretical 
statistical variables introduced in Chapter 5. 

Look back at the data in Table 9.1. Below the table it says that chi­
square equals 355.78 with 1 dJ. The size of the sample and the value 
of phi have been used together to compute a value of the chi-square 
variable. As discussed earlier, this computation is a simple translation 
from one variable to another, not unlike the translation of Fahrenheit 
to Celsius degrees. In other chapters we have translated data into values 
of the z- or the t-variable; here we use the chi-square variable. Such a 
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0.00 0.43 1.00 
-t------- -t-- - -------+--phi 

p < 0.0001 
-=-'I'-:-------~f_.£............:..:.::.:..::..=.....------ chi-square = "j' phi2 

0.00 355.78 

Figure 9.4 Transforming phi to a value of chi-square to find the p-value for 
phi 

change of values does not change the value of our results; one variable 
is simply more convenient to use than another. At the end of the chap­
ter is the formula for computing the chi-square from the number of 
observations in the sample and the value of phi (Formula 9.3); the 
translation from phi to chi-square is illustrated in Figure 9.4. The figure 
shows how the probability of phi equal to or larger than 0.43 in a 
sample of 1,954 people is equal to the probability of chi-square on 1 
dJ. equal to or larger than 355.78. 

In describing her views on chi-square, one of our students, Maura 
McDermott, said this in a paper: "A chi-square is a mysterious thing, a 
bit like baking soda to an amateur cook; we don't quite know what it 
does, but we know that we need it!" Chi-square is actually not all that 
mysterious. It is much like any other variable we measure. Just as we 
step on the bathroom scale to find how much we weigh, we put our 
data table on the chi-square scale to find how much our data weigh. 
Chi-square might be less mysterious if we took the time to go through 
all the underlying mathematical derivations, but the derivations would 
not make us better statisticians. 

After we have found the value of chi-square we can use statistical 
software on a computer to find the p-value, or we can find the corre­
sponding p-value in a statistical table for the chi-square distribution. 
But a table for the chi-square distribution does not go as far as 355.78, 
so we found the p-value using a statistical software program. 

With a p-value less than 1 in lO,OOO, a phi of 0.43 or more is almost 
impossible in samples that come from a population where there is no 
relationship between the two variables. About the only possible expla­
nation for a phi this large is that the sample came from a population 
where there is a relationship between the variables. We reject the null 
hypothesis because of the small p-value and demonstrate that country 
and attitude toward people are related in the larger population. 
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Degrees of freedom for chi-square analysis 

To find the p-value, we need more than the value of chi-square alone. 
The probability depends not only on how large the value is for chi­
square, it also depends on the number of rows and columns in the 
contingency table. The size of the table is measured using what is called 
degrees of freedom (dJ., or d£). Table 9.1 has two rows and two col­
umns, translating to 1 dJ. 

To understand why a table with two rows and two columns has 1 
d.f., imagine removing the four cell frequencies from Table 9.1 and 
keeping the row totals and the column totals. The table then looks like 
Table 9.4. How many of the four missing frequencies would we have 
to know to complete the table? Four numbers are missing in the table, 
but we need to know only one of them. We can find the other three 
by subtraction from the totals. For example, if we know that there are 
625 trusting Danes in the sample, we can fill in the frequency in the 
upper left comer of the table. To find the frequency of suspicious 
Danes, we subtract the number of missing Danes from the total: 
985 - 625 = 360 suspicious Danes. By similar subtractions we find the 
French frequencies to complete the table. 

Since we need to know only one of the missing frequencies to find 
the others, the table and thereby chi-square for the table is said to have 
1 degree of freedom. In general, the number of degrees of freedom 
for a particular contingency table is the product of the number of rows 
minus 1 and the number of columns minus 1: 

degrees of freedom = (number of rows - 1) (number of columns - 1) 

With two rows and two columns, 

d.f. = (2 - 1)(2 - 1) = 1 

Table 9.4 Table 9.1 without cell entries 

Country 

Denmark France Total 
Attitude Trust 831 
toward 

Suspicion people 1,123 

Total 985 969 1,954 
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QUESTION 4. CAUSAL RELATIONSHIP? 

The fourth and final question we are interested in is whether the re­
lationship between country and attitude toward people is a causal re­
lationship. Is country a variable that causally affects whether or not 
people trust others? More specifically, does being Danish cause a per­
son to be trusting and being French cause a person to be suspicious? 
As we know, this question is much harder in general to answer than 
the other three questions, and in the country/attitude example, we can 
do very little statistically to answer it. Even though we have found a 
statistical relationship, we have no evidence that the relationship is 
causal. Particularly with observational data from a poll or a survey, other 
variables may be affecting the outcome. Thus, there may be some other 
variable that causes or helps cause the Danes to be more trusting than 
the French. 

STOP AND PONDER 9 . 5 

What other variables do you think might help explain the difference 
in attitude pattern between Danish and French people? 

LARGER TABLES: A BANQUET OF POSSIBILITIES 

When one or both categorical variables have more than two categories, 
the contingency table has more than two columns or rows. A table 
showing the attitude toward people of people in four countries would 
have two rows and four columns (Table 9.5). 

With a larger table, we still compare columns of percentages to 
establish whether a relationship exists in the data between the two var­
iables. But other aspects of the analysis change when the table gets 
larger. For one thing, phi can no longer be used to check how strong 
the relationship is; phi is designed for tables with only two rows and 
two columns. One commonly used coefficient for larger tables is called 
Cramer's V. V is a generalization of phi, and if we use the formula for 
Von a table with two rows and two columns, V gives the same result as 
we get for phi. Formula 9.2 shows how to compute V. Like phi, it ranges 
in values from 0 to 1. 

We still must find chi-square for a larger table to see ifwe can reject 
the null hypothesis of no relationship in the larger population. For­
mula 9.4 shows how to find chi-squares for any contingency table. Fi­
nally, the degrees of freedom are larger than 1 because the table has 
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Table 9.5 Country and attitude toward people 

Country 

Denmark France Netherlands West Germany Total 
Attitude Trust 625 206 468 393 1,692 
toward 

Suspicion 360 763 463 513 2,099 people 
Total 985 969 931 906 3,791 

(V= 0.32, chi-square = 367.94,3 dJ., P < 0.0001) 

Source: Jacques-Rene Rabier, Helen Riffault, and &mald Inglehart, Euro-barometer 25: Holiday Travel and 
Environmental Problems, April 1986, Ann Arbor, Mich.: Interuniversity Consortium for Political and Social Research, 
1988. Codebook p. 10. 

more than two columns. To find the number of degrees offreedom, 
we adopt the formula we used for two-row, two-column tables: dJ. = 

(number of rows - 1) (number of columns - 1). In a table with three 
rows and four columns, the degrees of freedom equal (3 - 1) X 
(4 - 1) = (2) (3) = 6: we need to know six of the numbers in the cells 
as well as the totals to be able to fill in the other six numbers. 

Chi-square is computed on the basis of the idea that the row and 
column totals in a contingency table are fixed. With fixed totals, we 
need to know all the frequencies in the table except the ones in the 
last row and the last column to be able to finish the table (Figure 9.5). 
If we know all the frequencies except the ones in the last row and 
column, we can then find those by subtraction of the other frequencies 
from the corresponding totals. 

T 

0 

t 

a 

1 

T 0 t a 1 s 

Figure 9.5 Finding degrees of freedom 
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Table 9.6 Percentage distributions within the four countries 

Country 

Denmark France Netherlands West Germany 
Attitude Trust 64 21 50 43 
toward 
people Suspicion 36 79 50 57 

Total lOO 100 lOO lOO 

(n) (985) (969) (931) (906) 

Mter we find V; chi-square, and degrees of freedom, we again find 
the p-value for the table in order to make a conclusion about the re­
lationship between the two variables in the real world. 

Table 9.5 shows the data from The Netherlands and West Germany 
in addition to the data from Denmark and France. There are four 
columns for the independent variables and two rows for the dependent 
variable, making a 2 X 4 contingency table. Let us analyze the data 
using the four questions about the relationship between variables. 

Question 1. Relationship between the variables? 

To get a better sense of the existence of a relationship between country 
and trust and to see the differences between the countries better, we 
change the frequencies to percentages, as we did with the 2 X 2 con­
tingency table. Since country is the independent variable, we change 
the frequencies for each country to percentages, as shown in Table 9.6. 
From the percentages it is clear that the samples in the four countries 
differ in attitude. Denmark has the highest percentage of people who 
said that most people can be trusted, while France has the lowest per­
centage. 

Question 2. Strength of the relationship? 

To find the strength of the relationship between country and attitude 
toward people, we compute a Cramer's V coefficient. Vis equal to 0.32 
for these data, a moderately weak relationship on a scale from 0 to 1. 
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STOP AND PONDER 9 . 6 

You are interested in the trength of a relationship between the 
choice of public or private chool and the religious affiliation of the 
parents of college-age tudents. Parents are categorized as Catholics, 
Jews, Protestants, or other. 

How would you set up a contingency table for this problem? 
What coefficient would be a good indicator of the strength of the 
relation hip? What coefficient would you use if the religious affilia­
tion were simply Catholic and other? 

Question 3. Relationship in the populations? 

To see if we can generalize the finding ofthe relationship in the sample 
of 3,791 respondents to the population of all adults in the four coun­
tries, we again compute chi-square and find the corresponding p-value. 
If the p-value is small, then we can reject the null hypothesis that these 
data were generated by chance alone. Here, the value of chi-square 
equals 367.94 with 3 degrees of freedom, which is a very large chi­
square for only 3 degrees of freedom. We now use computer software 
or a table for the chi-square variable to find a p-value ofless than 0.0001: 
if there is no relationship between the two variables in the four coun­
tries, then the probability of getting a Vof 0.32 or larger is less than 1 
in 10,000. Thus, if we drew many different samples from a population 
in which there were no relationship between the two variables, for 
fewer than 1 of 10,000 different samples would we find a Vof 0.32 or 
more. 

Since the p-value is so small, we have overwhelming evidence for 
the argument that these data were not produced by chance alone. 
Thus, we reject the null hypothesis of no relationship in the popula­
tion, and we conclude that the relationship does exist in the larger 
population of the adults in the four countries. We do not know if all 
the countries are different from each other or whether only some of 
the countries differ from others; finding out would take additional 
analyses. 

Question 4. Causal relationship? 

The last question is whether living in a particular country causes people 
to be more or less trusting. As we repeatedly emphasize, statistical meth-
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ods cannot be used to answer the question if we have data on only two 
variables. We can predict, however, that more Danes than French are 
trusting. We might speculate that trust is more likely to develop where 
people are fewer and more similar in customs, but we cannot back up 
the speculation statistically. 

A contingency table is a table of frequencies that shows how the data 
are distributed for all combinations of values of two categorical varia­
bles. 

9.1 Analysis of the data: Are there trustworthy differences in 
attitude? 

In a contingency table, the independent variable usually runs horizon­
tally across the table and the dependent variable vertically down the 
side. It is often useful to display these data in a graph because patterns 
in the data are easier to see in a graph than in a contingency table. 
Contingency tables are useful for studying relationships between cate­
gorical variables. 

9.2 Question 1. Relationship between the variables? 

To find out if a relationship exists between the variables in the observed 
data, we compare the percentages in the columns of the contingency 
table. If the percentage distributions are different, we conclude that a 
relationship exists between the variables in the data. 

9.3 Question 2. Strength of the relationship? 

The strength of a relationship is measured by a coefficient that is cal­
culated from the data. This coefficient ranges in value between 0 and 
1. A coefficient near 0 indicates a weak relationship, and a coefficient 
near 1 shows a strong relationship. 

A commonly used coefficient for the strength of the relationship 
in a table with two rows and two columns is called phi. A commonly 
used coefficient for tables with more than two rows and/or two col­
umns is called V. 



9.4 Question 3. Relationship in the population? 

To find whether there is a relationship between the variables in the 
population from which the sample came, we extrapolate from what we 
know about the sample to the population through statistical hypothesis 
testing. The first step is to set up the null hypothesis that the two var­
iables are not related in the entire population. Whether we reject the 
null hypothesis or not depends on two factors: (1) how strong the 
relationship is in the sample (phi or V), and (2) how many observations 
there are in the sample (n). If the sample is very large, a small value of 
phi or V is enough to reject the null hypothesis. If the sample has only 
a few observations, a large value of phi or Vis needed to reject the null 
hypothesis. 

To find the p-value for a particular sample, it is necessary to trans­
form the phi or V coefficient to a value of the chi-square variable. The 
size of the sample and the value of phi or V are used to compute a 
value of the chi-square variable. 

To find the p-value associated with a chi-square value, it is necessary 
to know the degrees of freedom of the contingency table. The degrees 
of freedom equal (number of rows - 1) (number of columns - 1). 

9.5 Question 4. Causal relationship? 

Whether or not there is a causal relationship between two variables is 
impossible to answer given data on only two variables. A statistical re­
lationship does not provide evidence that the relationship is causal. 

Reynolds, H. T. Analysis of Nominal Data, 2nd ed. (Sage University Paper 
Series on Quantitative Applications in the Social Sciences, series no. 
07-007). Beverly Hills, CA: Sage, 1984. Chi-square tests and measures 
of association for categorical variables. 

BAR GRAPH WITH BARS OF DIFFERENT WIDTHS 

Figure 9.3 is a bar graph of a 2 X 2 contingency table where the bars 
are of different widths and the area of each rectangle is proportional 

Formulas 365 

FORMULAS 
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(a; c) S e:d)S 
Figure 9.6 Construction of a bar graph where the bars are the same height 
and different widths in a square with sides S 

to the frequency for that category. Such a graph can be drawn for any 
frequency table for two variables. Figure 9.6 illustrates how such a graph 
is drawn for a 2 X 2 table. 

The graph is based on the frequencies in the contingency table to 
its right. The letters a, b, c, and d represent the number of observations 
in each cell. The total for the entire table is denoted by n. From this 
table we want to make a graph consisting of a square whose area is 
proportional to the total frequency n. Each side of the square has 
length S. The sides of the square can be measured in inches, centi­
meters, or any other unit. 

Next we divide the square into two vertical bars, each representing 
a column of the table. There are a + c observations in the first column, 
and the proportion of observations in that column equals (a + c) / n. 
We divide the base of the square using the same proportion. The left 
bar has width [(a + c) / n] S and the right bar has width [( b + d) / n] S. 
The sum of these two widths is S, as it should be. 

Now we divide each of the columns in the graph by the data in the 
corresponding columns in the table. The top category in the first col­
umn of the table contains the proportion a/ (a + c) of the total num­
ber of observations in the column, a + c, so we make the height of the 
top rectangle equal to [a/ (a + c)] S and the height of the bottom rect­
angle equal to [c/ (a + c)] S. Similarly, we divide the second column 
into the proper proportions, as shown in the figure. 



Table 9.7 Contingency table with letters for the frequencies 

a 

c 

Total a+c 

b 

d 

b + d 

Total 

a+b 

c + d 

n 

The area of the entire square with sides Sis S2. The area of each 
of the four rectangles is a fraction of this total, and the fraction cor­
responds to the proportion of observations in the corresponding cell 
of the table. For example, the area of the lower right rectangle is 
(d/ n) S2, and the proportion of observations in the corresponding cell 
of the table equals d/ n. 

The total area does not have to be a square. It can be a rectangle 
with base B and height H. The base and height are divided using the 
same proportions as described for S. 

Phi is used to measure the strength of the relationship between two 
categorical variables on a scale between 0 and 1 when each of the 
variables has two values (categories). When we replace the observed 
frequencies by the letters a, b, e, d, and n, the contingency table looks 
like Table 9.7. 

To see if there is a relationship between the two variables, we con­
vert the frequencies to percentages and compare the two columns of 
percentages. In the country/attitude example, no relationship exists 
between the two variables if the proportions of trusting people in Den­
mark and France are equal. This can be written 

a b 

a+c b+d 

a( b + tf) = b( a + c) 

ad-bc=O 

The product ad is the product of the two frequencies on one di­
agonal in the table, and be is the product of the frequencies on the 
other diagonal. When there is no relationship between the two varia­
bles, the two products are equal. The more different the two products 
are, the stronger is the relationship. 

Formulas 367 
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Phi can then be computed from the difference between the two 
products on the diagonals according to the following formula: 

ad - be 
phi = -;:::;:==:;::==~===::::;:==::;:: 

.J (a + b) (e + d) (a + e) (b + d) 
(9.1) 

The denominator is included to make certain phi never becomes larger 
than its maximum value of 1.00. The numbers in Table 9.1 give a phi 
of 

625 * 763 - 206 * 360 
--;::;::;;:::::::::;=::::;::;=;:::;::::::=;::::::; = 0.43 
.J831 * 1,123 * 985 * 969 

If phi is negative, we usually disregard the negative sign and report 
the positive value. This is because the sign of phi changes if we inter­
change the two columns (or the two rows) in the table. Since the var­
iables are categorical, we can make this change without changing the 
meaning of the table. 

CRAMER's V 

Vis used to measure the strength of the relationship on a scale between 
o and 1 between two or more categorical variables when at least one of 
them has more than two values. V is found from the formula 

V= J n(L~ 1) (9.2) 

where n is the number of observations in the table and L is the smaller 
of the number of rows and columns in the table. For the data in Table 
9.5, with two rows and four columns, L is the smaller of 2 and 4, so 
L = 2: 

V= 
367.94 

----=0.31 
3,791(2 - 1) 

V is a generalization of phi, and it becomes phi if it is used for a 
table with 2 rows and 2 columns. 

Cm-SQUARE 

2 X 2 table For a table with two rows and two columns, chi-square 
(X2) can be found from the following formula: 



Table 9.8 Expected frequencies 

Country 

Denmark France 

Trust 
(831) (985) 

= 418.90 
(831) (969) 

= 412.10 Attitude 1,954 1,954 
toward 
people Suspicion 

(1,123) (985) 
= 566.10 

(1,123) (969) 
= 556.90 

1,954 1,954 

Total 985 969 

X2 = n(phi)2 

n(ad - bC)2 

(a + b)(c + d)(a + c)(b + d) 

= 1,954(625 * 763 - 206 * 360)2 = 355.78 
831 * 1,123 * 985 * 969 

1 d.f. (9.3) 

Larger tables For larger tables we use another way to find chi-square 
based on the so-called expected frequencies. This method can be illus­
trated using a 2 X 2 table. A table with expected frequencies has the 
same row and column totals as the original table, but phi for the new 
table equals 0.00. Chi-square measures how much the obseIVed fre­
quencies differ from the expected frequencies. 

The expected frequency for a particular cell in the table is found 
from the expression 

d f row total * column total 
expecte requency = table total 

For the data in Table 9.1, we get the expected frequencies shown in 
Table 9.8. The expected frequencies are the same frequencies as in 
Table 9.3a. 

Note that because the row and column totals are the same as in the 
original table, it is necessary to compute only one of the expected fre­
quencies by multiplying row and column totals and dividing by the 
table total. The other three expected frequencies can be found by sub­
traction using the totals. This is the reason the corresponding chi­
square has 1 degree of freedom. 

Chi-square is then found by comparing the obseIVed with the ex­
pected frequencies to see how far away the obseIVed table is from a 
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Total 

831 

1,123 

1,954 
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table without any relationship. We compute chi-square according to 
the following expression: 

X2 = 2: (obs - exp)2 
exp 

(625 - 418.9)2 (206 - 412.1)2 = + -'-------'-
418.9 412.1 

(360 - 566.1)2 (763 - 556.9)2 + + -'------'-
566.1 556.9 

= 355.78 1 d.f. (9.4) 

For tables with more rows and columns the procedure is the same. 
First we find all the expected frequencies, and then we compute chi­
square using Formula 9.4. There are, of course, more than four terms 
in the sum. 

Chi-square as an approximation We use the chi-square value to find the 
p-value for our data. But the chi-square method only provides us with 
an approximately true p-value. Particularly if the p-value only borders 
on being significant, an approximation is worrisome. The more obser­
vations in the data table, the better the approximation becomes. One 
way to see if we can use chi-square to find the p-value is to look at the 
magnitudes of the expected frequencies. In a 2 X 2 table all the ex­
pected frequencies should be larger than 5. For tables with more rows 
and columns, this requirement is not as important. 

EXERCISES 

REvIEw (ExERCISES 9.1-9.8) 

9.1 Find a report of a survey in a newspaper, news magazine, or other 
source, and construct a contingency table showing the relationship be­
tween two categorical variables used in the survey. Use the table to 
discuss the relationship between the two variables. 

9.2 a. When can you use phi to measure the strength of a relation­
ship between two variables? When can you not use phi? 

b. What is an example of a small value of phi? What does a small 
value of phi tell you about the relationship between two cate­
gorical variables? 



c. What does a small p-value tell you about the relationship be­
tween two variables? 

d. Discuss in some detail how it is possible to have a low value 
of phi and still get a small p-value. 

9.3 Describe a contingency table. 

9.4 a. Which axis (horizontal or vertical) is used for the indepen­
dent variable? 

b. Which axis is used for the dependent variable? 

c. Is this arrangement of independent and dependent variables 
a statistical "law" that can never be broken? Explain your answer. 

9.5 What is the name of the statistic we compute to measure the 
strength of the relationship between the variables in a contingency 
table with two values for each of the two variables? 

9.6 a. When we compute chi-square, what is the name of the statis­
tical term used to measure the size (number of rows and col­
umns) ofthe table? What is a common abbreviation of this term? 

b. How do you find the magnitude of this quantity? 

9.7 If you find a statistical relationship between two variables from 
a large chi-square, can you be almost certain that the relationship is 
causal? Explain. 

9.8 A contingency table includes row and column totals for each 
variable. 

a. When you add the rows or the columns, what can you say 
about the sums? 

b. Why is this a useful check on the construction of the contin­
gency table? 

INTERPRETATION (ExERCISES 9.9-9.27) 

9.9 In the fall of 1986, the House of Representatives voted on 
whether to give aid to the Nicaraguan contras (a proposal favored by 
President Reagan). They also voted on a general spending bill. A no 
vote was seen as support for President Reagan's policies, and a yes vote 
was seen as opposition to the President's policies. Leaving out those 
members who did not vote gives Table 9.9 (page 372). 

a. Is there a relationship between the two votes in these data? 

b. How strong is the relationship in these data? 
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Table 9.9 Data for Exercise 9.9 

Spending bill 

Yes No Total 

Yes 42 167 209 
Aid to contras 

No 156 33 189 

Total 198 200 398 

(phi = 0.62, chi-square = 156.75, 1 d.f., P = 0.000) 

Source: Kenneth Janda and Philip A. Schrodt, Crosstabs: Student Workbook for 
American Government, Boston: Houghton Mifflin, 1987. Data disk. 

c. Could the relationship in the sample have occurred by chance 
alone? 

d. Is the relationship causal? 

9.10 In a 1950 study of the relationship between location of residence 
in the South and non-South parts of the country and occupation as 
professionals or farmers, frequencies were found in a sample of survey 
respondents as shown in Table 9.10. 

a. Is there a relationship between location and occupation in 
these data? 

b. How strong is the relationship? 

Table 9.10 Data for Exercise 9.10 

Location 

South Non-South Total 

Professional 70 93 163 
Occupation 

Farmers 135 58 193 

Total 205 151 356 

(phi = 0.27, chi-square = 26.38, 1 d.f., P = 0.0000) 

Source: Adapted from J C. McKinney and L. B. Barque, "Further comments on 'The changing 
South ': A response to Sly and Weller, " American Sociological Review, vol. 37 (1972), 
p.236. 



Table 9.11 Data for Exercise 9.11 

Outcome 

Winner Loser Total 

Play 8 7 15 
Next year 

Not play 22 23 45 

Total 30 30 60 

(phi == 0.04, chi-square == 0.089, 1 d.f., p-value == 0.76) 

c. Is there a relationship between the two variables in the larger 
population from which these data came? 

d. Is the relationship causal? 

9.11 In the first 30 Super Bowls, 60 teams played, half of them as 
winners and the other half as losers. Of the winning teams, 8 played in 
the Super Bowl the following year, and of the losers 7 played in the 
Super Bowl the following year. These data can be arranged as in Table 
9.11. Report on the relationship between the two variables. 

Table 9.12 Data for Exercise 9.12 (page 374) 

Region of birth 

New Middle North South South 
England Atlantic Central Atlantic Central 

New England 306 11 2 2 0 

Middle Atlantic 18 806 8 14 1 
Region of North Central 30 127 1,180 39 55 
residence 

South Atlantic 2 11 5 717 8 

South Central 1 5 23 76 790 

Mountain and 
Pacific 8 13 24 3 2 

Total 365 973 1,242 851 856 

(V == 0.85, chi-square == 15,733, 25 d.f., P < 0.0001) 
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Mountain 
and 

Pacific Total 

0 321 

0 847 

2 1,433 

0 743 

0 895 

72 122 

74 4,361 

Source: U.S. Bureau of the Census, Historical Statistics of the United States: Colonial Times to 1957, Washington, DC, 
1960, Series C 15-24, pp. 42, 44. 
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9.12 Table 9.12 (page 373) shows data from 1880. The United States 
is divided into six regions. The columns show regions of birth, while 
the rows show regions of current residence. The data come from the 
1880 census, but we have divided the census figures by 10,000 and treat 
the data as if they were from a sample of 4,361 people in a population 
of about 43 million people. The resulting 6 X 6 contingency table is 
also what sociologists call a mobility table; it shows how many people 
moved from their region of birth to their current region. The numbers 
are read, "306 people who were born in New England still live in New 
England; 18 people who were born in New England now live in a mid­
dle Atlantic state"; and so on. 

a. Report on the relationship between the two variables. 

b. What were the major patterns of geographic mobility in the 
late 1800s (compare the frequencies above the main diagonal of 
the table with the frequencies below the diagonal)? 

9.13 Does the amount of education vary from one group to another? 
In a random sample of988 people we find the educational attainments 
for Asians, Hispanics, and whites shown in Table 9.13. 

a. Is there a relationship in this table between the two variables? 

b. How strong is the relationship? 

c. Is there a statistically significant difference in educational at­
tainment between the three groups? 

d. Is this a causal relationship? 

Table 9.13 Data for Exercise 9.13 

Group 

Asian Hispanic White Total 

High school or less 24 98 419 541 

Education Some or complete college 27 34 310 371 

Professional or graduate 9 6 61 76 

Total 60 138 790 988 

(V= 0.11, chi-square = 23.26,4 d.f., P = 0.0001) 

Source: Column percentages equal those found fly the U.S. Bureau of the Census, as reported in The Chronicle of Higher 
Education, vol. XXXIX, no. 1, August 26, 1992, p. 12. 
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Table 9.14 Data for Exercise 9.14 

Group 

White Black Hispanics Total 

Intact family 2,583 526 292 3,401 

Situation 
Mother only 297 239 75 611 

Step family 317 107 25 449 

Other 175 106 34 315 

Total 3,372 978 426 4,776 

Source: L. L. Wu and B. C. Martinson, ''Family structure and the risk of a premarital birth, " American Sociological 
Review, vol. 58 (1993), p. 217. 

9.14 One of the questions in the National Survey of Families and 
Households asks women what their family situation was at the time they 
were 14 years old. Part of the data for three groups of women are 
displayed in Table 9.14. For these data, Vequal to 0.16 and chi-square 
on 6 degrees of freedom is equal to 255.29 with a p-value less than 
0.0001. 

a. What do these numbers tell you about the relationship be­
tween the two variables? 

b. Typical values of the chi-square variable with 6 degrees of 
freedom range from 0 to as much as 15. How do you reconcile 
the enormous value of chi-square here with the low value of V? 

9.15 The reported frequencies in the study linking baldness and heart 
attacks in Exercise 8.35 are arranged in Table 9.15. 

Table 9.15 Data for Exercise 9.15 

Baldness 

Yes No Total 

Yes 214 451 665 
Heart attack 

No 175 597 772 

Total 389 1,048 1,437 

(phi = 0.11, chi-square = 16.37, 1 d.f., P = 0.0001) 

Source: The New York Times, February 14, 1993, pp. AI, C12. 
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Table 9.16 Data for Exercise 9.17 

Religious affiliation 

Protestant 

Ranked first 62% 
Statement 

Not ranked first 38 

Total 100% 

(n) (165) 

Catholic 

50% 

50 

100% 

(145) 

a. What is the independent variable? Explain your choice. 

b. What do these results tell you about the relationship between 
the two variables? 

9.16 For Table 8.6 in Exercise 8.36, which shows data on religious 
affiliation and choice of a statement about the importance of work, phi 
equals 0.24, chi-square equals 10.64 on (1 d.f.), and p equals 0.0011. 
What can you conclude about the relationship between the two varia­
bles based on these computed numbers? 

9.17 In the same study that provided the data for Exercise 9.16, the 
sociologist also looked at a difference between Catholics and Protes­
tants. The respondents in the study were asked to rank a set of state­
ments, one of which was 'Work is important." Table 9.16 shows the 
percentages in the two religious groups who ranked this statement first. 

a. Is there a relationship between religious affiliation and rank­
ing in these data? 

b. Does the relationship seem strong? (It may help to convert 
the percentages to frequencies and complete the usual 2 X 2 
table.) 

c. These data can be analyzed either by using a test for the dif­
ference between two percentages or by using chi-square on a 
table with two rows and two columns. Either way, the p-value is 
equal to 0.013. What can you say about the difference between 
Protestants and Catholics in Detroit at the time of this study? 

9.18 The United States has long been a country of volunteer orga­
nizations, and two sociologists were interested in whether there was any 
change in the number of volunteer organizations to which people be-



Table 9.17 Data for Exercise 9.1S 

Year 

1955 1962 Total 

0 1,523 1,012 2,535 

Number of 1 476 390 S66 

organizations 2 214 195 419 

3 95 106 201 

4+ 71 71 l42 

Total 2,379 1,774 4,163 

Source: H. H. Hyman and C. R. Wright, "Trends in voluntary association memberships of 
American adults: Replication based on secondary analysis of national sample surveys, " 
American Sociological Review, vol. 36 (1971), pp. 191-206. 

longed from the middle 1950s into the early 1960s. Table 9.l7 shows 
the number of volunteer organizations people reported they belonged 
to in surveys at two different times. The mean number of organizations 
people belonged to in 1955 was 0.64 and in 1962 it was 0.80, so there 
had been an increase in the number of organizations people belonged 
to. Strictly speaking, the number of organizations is a metric variable, 
and the study of these two variables belongs in Chapter 12. Here, as a 
starter, we analyze these data as a contingency table with five rows and 
two columns. The table yields the following results: chi-square = 
25.44 on 4 d.f., P = 0.00004, and V = O.OS. What can you conclude 
about the relationship between the two variables? 

9.19 In a study in Baltimore around 1970, children at different levels 
of their education were asked about their views of social stratification 
in the United States. In answer to the question "Do all kids in America 
have the same chance to grow up and get the good things in life?" the 
sociologists reported the results in Table 9.18 (page 378). 

a. What are a couple of striking things about how the children 
answered the question? (You may want to change the frequen­
cies to percentages before answering this question.) 

b. What do the statistical computations tell you about the rela­
tionship between level of education and the children's views of 
social stratification? 

9.20 Exercise 8.36 is based on a table showing data on the two varia­
bles race and brand of cigarettes smoked. For those data, chi-square = 
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Table 9.18 Data for Exercise 9.19 (page 377) 

Education 

Elementary Junior high Senior high 
school school school 

Yes 207 110 67 
Answer No 496 327 234 

Do not know 330 79 34 

Total 1,033 516 335 

(chi-square = 99.94,4 d.f., P < 0.0001, V= 0.16) 

Total 

384 
1,057 

443 

1,884 

Source: R C. Simmons and M. Rnsenberg, "Functions of childrens' perceptions of the stratification system, " American 
Sociological Review, vol. 36 (1971), pp. 235-249. 

181.93 on 3 d.f., P < 0.0001, and V = 0.46. What do these numbers tell 
you about the relationship between the two variables? 

9.21 Judge Robert Kane of New Bedford District Court in Massachu­
setts, with the encouragement of Professor Robert P. Waxler at the 
Dartmouth campus of the University of Massachusetts, gave some peo­
ple found guilty in his court the choice of going to jail or taking a 
literature course taught by Professor Waxler. Professor G. Roger Jar­
joura, Indiana University, followed 32 men who took the class and 
found that 6 were convicted of new crimes, while among 40 other men 
with similar backgrounds 18 were convicted of new crimes. (Source: The 
New York Times, October 6, 1993, p. BlO.) 

a. Display these data in a contingency table with two rows and 
two columns. 

b. For these data, phi = 0.28, chi-square = 5.51 on 1 degree of 
freedom, and p = 0.019. What do these numbers tell you about 
the relationship between participation in the literature course 
and recidivism? 

c. Does it seem appropriate to apply the statistical methods in 
part b to data of this kind? 

9.22 About 100,000 patients each year in this country are candidates 
for either heart bypass surgery or a procedure called angioplasty, where 
balloons are inserted into the arteries to clear blockages. A comparison 



Table 9.19 Data for Exercise 9.22 

(a) Treatment 

Angioplasty Bypass Total 

Further Yes 122 24 146 
surgery No 74 172 246 

Total 196 196 392 

(phi = 0.52, chi-square = 104.82, p-value < 0.0001) 

(b) Treatment 

Angioplasty Bypass Total 

Additional Yes 29 39 68 
attack No 167 157 324 

Total 196 196 392 

(phi = 0.07, chi-square = 1.78, p-value = 0.18) 

(c) Treatment 

Angioplasty Bypass Total 

Flow Yes 110 67 177 
restored No 86 129 215 

Total 196 196 392 

(phi = 0.22, chi-square = 19.05, p-value = 0.00001) 

of the two procedures was done in a study on 392 patients followed for 
3 years. (Source: "Study finds angjoplasty as good as heart bypass, "The New York 
Times, November 11, 1993. p. A19.) Assuming that half the patients were 
treated by angioplasty and half by bypass operations, we can construct 
Tables 9.19a, b, and c from the percentages given in the newspaper 
article. Table a shows how many patients in the two groups needed 
further surgery, Table b shows whether the patients had additional 
heart attacks, and Table c shows whether the blood flow had been 
completely restored. 
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Table 9.20 Data for Exercise 9.23 

Delinquent 

Yes No Total 

Yes 1 5 6 

No 8 2 10 

Total 9 7 16 

Source: A. M. Weindling, F. N. Bamford, and R. A. Whittall, "Health of juvenile 
delinquents, "British Medicaljournal, vol. 292 (1986), p. 447. 

a. Why does it make sense to keep the sign of phi and report 
that the first and the third table have positive phis while the 
second table has a negative phi? 

b. What can you conclude about the relationships between the 
variables in each of the three tables? 

c. What do you conclude about the two procedures based on 
these data? 

9.23 Among a group of boys with bad vision, some used glasses and 
some did not, and some were delinquents while others were not. Table 
9.20 shows the number of boys in each category. For these data, phi 
equals 0.62, chi-square on 1 d.f. equals to 6.11, and p equals 0.013. 
(These frequencies are so small that the appropriateness of chi-square 
is questionable, but the so-called Fisher's exact test gives approximately 
the same result, so we stay with chi-square for these data.) What do the 
data tell you about juvenile delinquency and the use of glasses? 

9.24 Does cranberry juice cut down on urinary infections in older 
women? In a study at the Boston Women's Hospital, half of a group of 
153 women drank a glass of cranberry juice each day for six months, 
while the other half drank a placebo drink with the same color and 
flavor. At the end of the six months, the bacteria that cause infections 
was present in the urine of 15% of the cranberry juice drinkers and in 
the urine of 28% of the placebo drinkers. (Source: Discover Magazine, 
August 1994, p. 13.) For these data, phi equals 0.16, chi-square on 
1 d.f. equals 3.96, and p equals 0.047. 

a. Display these data in 2 X 2 table. 

b. Discuss the results. 



Table 9.21 Data for Exercise 9.26 

Differences between parties 

Very important None Total 

Stevenson 86 234 320 
Who will win 

Eisenhower 79 340 419 

Total 165 574 739 

Source: Data utilized in this exercise made available l!y the Inter-University Consortium for 
Political and Social Research, data originally collected l!y Angus Campbell, Gerald CuTin, and 
Warren Miller. Neither the original collectors of the data nor the Consortium bear any 
responsibility for the analyses or interpretations presented here. 

9.25 Each year the American Statistical Association honors some of 
its members by electing them Fellows of the organization. In 1994, of 
the 77 nominated men 36 were elected Fellows, while of the 20 nom­
inated women 13 were elected Fellows. (Source: Daniel L. Solomon, "Turning 
women into Fellows- Continued, " Newsletter, Caucus for Women in Statistics, vol. 
4 (1977), no. 4, p. 11.) 

a. Display these data in a 2 X 2 contingency table. 

b. For these data, phi equals 0.17 and chi-square equals 2.12 on 
1 degree of freedom for a p-value of 0.15. What do these results 
tell you about the relationship between gender and election? 

9.26 It is 1952. Adlai Stevenson is the Presidential nominee of the 
Democratic party and Dwight Eisenhower is the nominee of the Re­
publican party. In a survey before the election is held, the respondents 
are asked, among other things, whether they think there are differ­
ences between the two parties and who they think will win the election. 
Responses of people who say there are very importance differences or 
no differences between the two parties are shown in Table 9.21. For 
these data phi equals 0.10, chi-square equals 6.73 on 1 d.f., and pequals 
0.01. What do you conclude about how people saw the two major par­
ties and people'S expectations of how the election would turn out? 

9.27 A random sample of 72 college students were asked whether they 
read nutritional labels when they buy food. The interviewer also re­
corded the gender of each student (Table 9.22, page 382). For these 
data, phi equals 0.48 and chi-square on 1 degree of freedom equals 
8.48. What can you conclude about the relationship between gender 
and nutritional label reading? 
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Table 9.22 Data for Exercise 9.27 (page 381) 

Gender 

Female Male Total 

Yes 16 28 44 
Read labels 

No 20 8 28 

Total 36 36 72 

Source: Data used lry permission of Jasa Porciello, Swarthmore College. 

ANALYSIS (ExERCISES 9.28-9.59) 

9.28 It was thought that taking the drug AZT would reduce the 
chances that HIV-positive pregnant women would pass on the virus to 
their children. In a study performed at several medical centers in the 
United States and France, some HIV-positive mothers-to-be were given 
AZT and others were given a placebo. The results for 364 newborn 
babies are shown in Table 9.23. 

a. Is there a relationship between the treatment and the result 
in these data? 

b. How strong is the relationship? 

c. Show that chi-square (1 degree of freedom) for these data 
equals 27.95 (P < 0.0001). 

d. What can you conclude about the relationship between the 
treatment and the outcome? 

Table 9.23 Data for Exercise 9.28 

Treatment of mothers 

AZT Placebo Total 
Condition HIV positive 13 40 53 

of 
HIV negative 197 114 311 newborns 
Total 210 154 364 

Source: The New York Times, February 21, 1994, p. A1. 



e. These are actually preliminary results. Would you stop the 
experiment at the time these data became available, or would 
you let the study run until more babies were born? 

9.29 In 1969 the United States reinstituted the draft lottery. The pur­
pose of the lottery was to determine a young man's eligibility for the 
military draft by a random mechanism. Each day of the year was as­
signed a supposedly random integer between 1 and 366 as the draft 
number for that day. For example, September 14 was assigned draft 
number 1 in the lottery that year. Each man was then assigned the draft 
number that corresponded to his birthday. Induction into the armed 
forces was done by calling men of draft age in order of their lottery 
number, starting with the number 1. The probability of receiving a low 
draft number should not have depended on what time of year a person 
is born but in the 1969 lottery it did. Serious questions were raised 
about the randomness of the first draft lottery because among the low 
draft numbers (1-183), 73 were assigned to birthdays in the first half 
of the year and 110 to birthdays in the second half of the year. For the 
high draft numbers the pattern was reversed. Table 9.24 shows the 
relationship between birthdays and draft numbers. 

a. What should the contingency table have looked like for a 
completely random lottery? 

b. From the table, does the 1969 lottery seem random? 

c. Set up the expression for chi-square for these data. 
d. We find that chi-square (1 d.f.) equals 14.16 (P < 0.0001). 
What do you conclude about the lottery? Could the lottery have 
been random? 

9.30 In the 1976 Republican convention in Kansas City, then-Presi­
dent Gerald R. Ford received a plurality of delegate votes from the 

Table 9.24 Data for Exercise 9.29 

January-June 

Draft 1-183 73 
number 186-366 109 

Total 182 

Birthday by months 

July - December 

no 
74 

184 

Total 

183 

183 

366 
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following states: AL, CO, DE, FL, HI, IL, 10, KS, KY, MD, MA, MI, MN, 
MS, NH, NJ, NY, ND, OH, OR, PA, RI, vr, WV and WI. Then-Governor 
Ronald Reagan won a plurality from the remaining states. 

a. Set up a contingency table showing how the states east and 
west of the Mississippi River voted for Ford and Reagan. 

b. What is the independent variable in the table? The depen­
dent variable? 

c. Determine whether a relationship exists between the two var­
iables in these data. 

d. How strong is the relationship between the two variables? 

e. Find the expected frequencies. 

f. How strong is the relationship between the two variables in 
the table containing the expected frequencies? 

g. Find chi-square. Is it large enough to prompt you to think 
that the difference between the voting patterns east and west of 
the Mississippi did not occur by chance alone? 

h. Comment on the implications of your answers to parts 0-9 
for the Republican party in the late 1970s. 

9.31 A continuing debate involves whether relationship exists be­
tween IQ and crime. One study reports that 24.3% of 486 white males 
with low IQs committed two or more delinquent acts. Similarly, 9.4% 
of 1,053 white males with high IQs, 37.6% of 702 black males with low 
IQs, and 23.3% of 266 black males with high IQs committed two or 
more delinquent acts. (Source: T. Hirschi and M. J Hindelang, "Intelligence and 
delinquency: A Revisionist review, "American Sociological Review, vol. 42 (1977), 
p.575. 

a. Arrange these data in a 2 X 2 table. 

b. Is there relationship between the two variables? 

c. How strong is the relationship? 

d. Assuming that the data come from a proper random sample, 
could there be a relationship in the populations from which 
these data came? 

e. Comment on whether intelligence affects crime or not. 

9.32 It is often thought that juvenile offenders should receive special, 
personalized treatment to stop them from committing criminal acts. 
Of a group of 100 young offenders, half were randomly assigned to a 



Table 9.25 Data for Exercise 9.32 

Special treatment 

Yes No Total 
Further No 37 20 56 
criminal 

Yes 13 30 43 acts 
Total 50 50 100 

Source: T. Hirschi and M. J Hindelang, ''Intelligence and delinquency: A revisionist review, " 
American Sociological Review, vol. 42 (1977), p. 575. 

special treatment while the other half were not and were used as a 
control group. Mter four years, the results in Table 9.25 were obtained. 

a. How strong is the relationship between the two variables? 

b. Is there any reason to believe that the program would have 
any effect in the population from which these data came? 

9.33 Is there a difference in religious affiliation between North Amer­
ica and South America? A sample of 500 respondents from North 
America consisted of 190 Catholics, 10 Jews, 120 Protestants, and 180 
other. A sample of 450 respondents from South America consisted of 
310 Catholics, 10 Jews, 30 Protestants, and 100 other. 

a. Set up a contingency table for these data. 

b. Change the distribution of religious affiliation within each 
region to percentages. 

c. Does a relationship exist between the two variables in these 
data? 

d. How strong is the relationship between the two variables? 

e. Is the relationship stronger, the same, or weaker than you 
thought it would be? 

f. On the basis of the sample data, can you conclude that a re­
lationship exists in the population from which the data came? 

g. The number of Jews in the data is very small. Leave out the 
Jewish category and redo the chi-square analysis. 

h. Compare the two chi-squares and describe how they differ. 

9.34 Two groups of people are to be compared on scores of a socio­
economic variable. In the first group, 80 people have values smaller 
than the overall median value and 40 people have values larger than 

Exercises 385 



386 Chapter 9· Chi-Square Analysis for Two Categorical Variables 

the median. In the second group, 10 observations are smaller and 50 
are larger than the overall median. 

a. Set up a 2 X 2 contingency table with groups 1 and 2 as one 
variable and smaller and larger than the median as the other 
variable. 

b. Why is it not surprising that the two rows have the same num­
ber of observations? 

c. Is there a difference between the groups on socioeconomic 
values? 

d. How strong is the relationship between the two variables? 

e. Can you conclude that there is a difference between the two 
groups in the populations from which these data came? 

9.35 The data on religious affiliation and party vote from a random 
sample of registered voters are set up in Table 9.26. 

a. From looking at the table and comparing the columns, is 
there a relationship between the two variables in these data? 

b. Does the relationship seem to be strong or weak? 

c. Find the value of chi-square and discuss whether there is a 
relationship between the two variables in the population. 

d. Find V. 

9.36 A study was done some years ago on the relationship between 
taking aspirin and having heart attacks. 22,071 doctors participated in 
this study. Among the 10,037 doctors who took an aspirin a day, 104 
had a heart attack during the time period of the study. Among the 
10,034 doctors who took a placebo, 189 had a heart attack. 

Table 9.26 Data for Exercise 9.35 

Religious affiliation 

Catholic Jewish Protestant Other Total 
Democrat 575 75 275 90 1,015 

Party vote Republican 325 25 325 110 785 
None 150 10 120 50 330 

Total 1,150 110 720 250 2,130 



Table 9.27 Data for Exercise 9.37 

Gender 

Female Male Total 

Professor 9 63 72 

Associate 
27 20 47 Rank professor 

Assistant 
32 30 62 

professor 

Total 68 113 181 

Source: Swarthmore College Bulletin, 1995-1996. 

a. Arrange these data effectively in a table. 

b. How strong is the relationship between the two variables? 

c. Based on what you know about issues that arise in data col­
lection, do these results mean that everyone should take an as­
pirin a day? 

9.37 At a small liberal arts college in eastern Pennsylvania, the faculty 
is distributed for gender and rank as shown in Table 9.27. 

a. Is there a relationship between gender and rank in the data? 

b. How strong is the relationship? 

c. Could the data have occurred by chance alone? 

d. How do you explain the pattern in the data? 

9.38 Medical malpractice claims have become increasingly common. 
Table 9.28 shows how 567 obstetrical-gynecological claims are distrib-

Table 9.28 Data for Exercise 9.38 

Medical school 

English-speaking Non-English-speaking Total 

Board Yes 443 42 485 
certification No 50 32 82 

Total 493 74 567 

Source: Bruce Cooil, "Using medical malpractice data to predict the frequency of claims: A study 
of Poisson process models with random effects, " Journal of the American Statistical 
Association, vol. 86 (1991), p. 286. 
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Table 9.29 Data for Exercise 9.39 

Country 

Soviet Union East Germany United States Total 

Men 41 15 23 79 
Gender 

Women 14 22 13 49 

Total 55 37 36 128 

Source: Information Please Almanac, 1992. 

uted on two variables: whether the doctor was board certified and 
whether the doctor was trained in a foreign, non-English-speaking med­
ical school. What does the table tell you about medical claims? 

9.39 The last Olympic Games before the fall of the communist re­
gimes in Europe was held in 1988. Much had been made of how the 
communist countries stressed sports and the role of women in sports. 
Table 9.29 shows the number of gold medals by gender for the three 
countries that received the largest number of gold medals that year. 

a. Is there a relationship between country and gender in these 
data? 
b. How strong is the relationship? 

c. Could the relationship have occurred by chance alone? 

d. What does the table tell us about sports and gender in these 
countries at that time? 

9.40 In a study of how Americans spend their time, people were asked 
what activity they liked most. Table 9.30 shows the number of employed 

Table 9.30 Data for Exercise 9.40 

Gender 

Men Women Total 

Preferred Work 64 37 101 
activity Social life 27 33 60 

Total 91 70 161 

(phi = 0.18) 

Source:John P. Robinson, How Americans Use Time, New York: Praeger, 1972, p. 122. 



men and women with high school or less education who mentioned 
work or social life as their preferred activity. Is there a significant gen­
der difference in these data? 

9.41 From the study of how Americans spend their time described in 
Exercise 9.40, Table 9.31 shows the number of employed men and 
women with high school or less education who mentioned watching 
television or participating in social life as their preferred activity. What 
do these data tell you about the relationship between gender and pre­
ferred activity? 

9.42 NCAA collected data on graduation rates of athletes in Division 
I in the mid-1980s. Among 2,332 men, 1,343 had not graduated from 
college, and among 959 women, 441 had not graduated. (Source: The 
Chronicle of Higher Education, July 10, 1991, p. A30.) 

a. Set up a 2 X 2 contingency table with gender as the indepen­
dent variable and graduation as the dependent variable. 

b. Analyze the relationship between the two variables. 

9.43 How many degrees offreedom are there for a contingency table 
with three rows and four columns? 

9.44 A phi value of 0.69 has a p-value for a sample ofless than 0.0001. 
How would you explain the meaning of this statement to someone else 
in your class? (Try to think of two very different ways of interpreting 
the finding.) 

9.45 Set up the data in Exercise 7.53 in a 2 X 2 table and analyze the 
relationship between car ownership and presidential vote. (When you 
use the pooled percentage of Democrats, 209/250 = 83.6, the square 
root of the chi-square in this exercise equals the z in Exercise 7.53, and 
the two p-values are the same if you make the p-value for z into a two­
sided p-value.) 

Table 9.31 Data for Exercise 9.41 

Gender 

Men Women Total 

Preferred Watching TV 43 21 64 
activity Social life 27 33 60 

Total 70 54 124 
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Table 9.32 Data for Exercise 9.46 

States 

Northern Southern Total 

0 14 2 16 
Executions 

lor more 7 11 18 

Total 21 13 34 

Source: NAACP Legal Defense and Educational Fund, as reprinted in The New York Times, 
April 21, 1992, p. A14. 

9.46 In the spring of 1992, 34 states had executed prisoners in the 
last 15 years. A comparison of northern and southern states and 
whether or not the states had performed any executions in the last 15 
years is shown in Table 9.32. 

a. Analyze the relationship between the two variables. 

b. What are some other variables you might want to consider 
before you draw any conclusions about causality? 

9.47 Analyze the data in Exercise 8.37. 

9.48 Analyze the data in Exercise 8.40. 

9.49 During pregnancy, women may show toxemic signs through hy­
pertension or proteinuria or both. In a sample of English women, the 
data give the number of women in each of four categories. 

Hypertension 
and proteinuria 

28 

Proteinuria 
only 

82 

Hypertension 
only 

21 

Neither sign 

286 

Source: P. J Brown, J Stone, and C. Ord-Smith. "Toxaemic signs during pregnancy, " 
Applied Statistics, vol. 32 (1983), pp. 69-72. 

Total 

417 

a. Display these data in a contingency table with two rows and 
two columns. Make the first row women who showed hyperten­
sion and the second row women who did not show hypertension. 
Similarly, make the first column women who showed proteinuria 
and the second column women who did not show this sign. 

b. Analyze the relationship between hypertension and protein­
una. 



Table 9.33 Data for Exercise 9.50 

Never snores Snores every night Total 

Has heart disease 24 30 54 
Does not have 
heart disease 1,355 224 1,579 

Total 1,379 254 1,633 

Source: P. G. Norton and E. V. Dunn, "Snoring as a risk factor for disease: An epidemiological 
survey, "British MedicalJoumal, vol. 291 (1985), pp. 630-632. 

9.50 Snoring is not only unpleasant to listen to, it may also not be 
good for the people who snore. Table 9.33 shows part of the data ob­
tained in a survey. Analyze these data. 

9.51 Hodgkin's disease is a cancer of the lymph nodes. Table 9.34 
shows how patients were classified by histological type and response to 
treatment. Analyze these data. 

9.52 In 1994, the Church of England installed its first women priests 
after long disputes. Table 9.35 (page 392) shows the results of a vote 
on the issue in 1967, 27 years earlier. What do the data tell you about 
the vote in 1967? 

9.53 Are nonrespondents different from those who do respond in a 
survey? In a follow-up study of 293 young Mrican-American women in 
Philadelphia, the researcher was able to contact 95 of them. Table 9.36 
(page 392) shows how much education these women said they ex­
pected to get when they were first interviewed. 

Table 9.34 Data for Exercise 9.51 

Histolog;ical type 

Lymphocyte Nodular Mixed 
predominance sclerosis cellularity 

Positive 74 68 154 
&sponse to 

Partial 18 16 54 treatment 
None 12 12 58 

Total 104 96 266 

Source: B. W Hancock et al., Clinical Oncology, vol. 5 (1979), pp. 283-297. 
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Lymphocyte 
depletion Total 

18 314 
10 98 
44 126 

72 538 
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Table 9.35 Data for Exercise 9.52 

Voting body 

House of House of House of 
Bishops Clergy Laity Total 

Aye 1 14 45 60 

Vote No 8 96 207 311 

Abstain 8 20 52 80 

Total 17 130 304 451 

Source: The Daily Telegraph, July 4, 1967. 

Table 9.36 Data for Exercise 9.53 

Contacted 

Yes No Total 

Partial high school 2 4 6 

High school 17 32 49 

Expected College 32 60 92 
education Professional degree 8 15 23 

Technical/Trade school 34 87 121 

Do not know 2 0 2 

Total 95 198 293 

Source: Roberta R Iversen, Income and Employment Consequences for Mrican­
American Participants of a Family Planning Clinic: A Seven-Year Follow-Up, Doctoral 
dissertation, Bryn Mawr College, 1991. Dissertation Abstract Intemational5 2: 15 22A. 

Table 9.37 Data for Exercise 9.54 

Peiformance 

Top half Bottom half Total 

Letter 37 29 66 
Grade 

Pass/Fail 5 13 18 

Total 42 42 84 



Table 9.38 Data for Exercise 9.55 

Name 

A-K L-Z Total 
Letter 35 31 66 

Grade 
Pass/Fail 7 11 18 

Total 42 42 84 

a. Compare the percentages for the two groups to see if they 
are different. 

b. Consider the two groups as random samples and test the null 
hypothesis that they are not different. 

9.54 Some students elect at the beginning of a course to take a Pass/ 
Fail grade instead of a letter grade. We divided one of our introductory 
statistics classes into a top and a bottom half based on the performance 
of the students, and we counted in each group the students who had 
elected the Pass/Fail option (Table 9.37). Analyze the relationship be­
tween standing and type of grading. 

9.55 For the same class as in Exercise 9.54, we also divided the class 
into two halves based on the last names of the students (Table 9.38). 

a. Analyze the relationship between last name and type of grad­
ing. 

b. Comment on differences between the data and results here 
and in Exercise 9.54. 

Table 9.39 Data for Exercise 9.56 

Gender 

Male Female Total 
Natural science/Engineering 13 4 17 

Division Humanities 8 7 15 
Social sciences 7 8 15 

Total 22 28 50 

Source: Data used by permission of Heather Repenning, Swarthmore College. 
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9.56 In a random sample of students at Swarthmore College in the 
fall of 1995, the students were asked which division of the college their 
major was in. The interviewer also noted the gender of the students. 
The data are shown in Table 9.39. Analyze the relationship between 
the two variables. 

9.57 In a study of Alzheimer's disease among nuns of the Milwaukee 
convent of the School Sisters of Notre Dame, the researchers also stud­
ied the writing styles of the nuns as expressed in statements the nuns 
made when they entered the convent as young women. Among nuns 
whose brains were checked for Alzheimer's disease after their deaths, 
the results in Table 9.40 were found. 

a. The paper reports that of the 10 nuns in whom Alzheimer's 
was confirmed by autopsy, 90% had shown low linguistic ability; 
among the nuns who died without developing the disease, 13% 
had shown low linguistic ability. What does this imply about the 
way the paper chose the independent and the dependent vari­
able? What would you choose for independent and dependent 
variable in this study? 

b. Analyze the relationship between the two variables. 

9.58 Ideally, statistical analyses are performed on properly collected 
random samples. However, to keep the data collection simple, observe 
any 20 or so students on two categorical variables (female/male, tall/ 
short, thin/not thin, etc.). 

a. Set up the contingency table for the data. 

b. Create a bar graph similar to Figure 9.1 for the data. 

c. Create a new table by changing the frequencies to percent­
ages. Note: It is possible to compute percentages in different 
ways, so take care that you follow the guidelines in the chapter 

Table 9.40 Data for Exercise 9.57 

Alzheimer's 
disease 

Yes 
No 

Total 

Low linguistic 
ability 

9 

2 

11 

Writing style 

High linguistic 
ability 

1 

13 

14 

Source: The Philadelphia Inquirer, February 21, 1995, p. Al. 

Total 

10 

15 

25 



(and refer to Table 9.2). Would you say that the magnitude of 
differences in the percentages from your data is very large or 
not? 

d. How strong is the relationship between the two variables? 

e. Is there a statistically significant relationship between the two 
variables? 

9.59 a. As a class project, find the median height of the students in 
the class. 

b. Construct a contingency table that shows the gender of each 
student and whether the student's height is above or below the 
median value. 

c. How strong is the relationship between gender and height? 

d. Is the relationship statistically significant? 
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REGRESSION AND 

CORRELATION FOR TWO 

METRIC VARIABLES 

f{!ZJ 0 foods with higher fat content contain more calories than foods with 

lower fat content? lVhat is the relationship between the weight of a car and the 

mileage it gets? How do robbery rates relate to larceny rates in the various 

states? Is there a relationship between cigarette consumption and cancer rates 

in different countries? How does the percentage of people with low education 

relate to the percentage of people with low income in different states? Is there a 

relationship between how tall parents are and how tall their children grow? 

Has there been any change in malignant melanoma cases in the last decades? 

How has the world record in the men's mile race changed since Roger 

Bannister broke the four-minute barrier in 1954? 
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Regression ana1y­
sis describes the 
way in which a 
dependent vari­
able is affected 
by a change in 
the values of one 
or more inde­
pendent varia­
bles. Correlation 
analysis describes 
bow strong the 
relationship i 
between metric 
variables. 

Questions about relationships between metric variables with well-de­
fined units of measurement, such as food calories and fat content, gas 
mileage and vehicle weight, are answered using the statistical methods 
know as regression analysis and correlation analysis. Regression and cor­
relation analyses represent two major and complementary aspects of 
the analysis of the relationship between metric variables. 

In statistics, regression is a more specialized term than it is in or­
dinary language. Normally we think of regression as going backward 
in ability or performance. Statistical regression received its name from 
an early study in which the method was used on the heights of parents 
and children (see the box). The study found a tendency for children 
to be more average in height than very short or very tall parents. This 
tendency toward the middle was labeled a regression effect. 

The term regression was coined by the famous British statistician Fran­
cis Galton in his late nineteenth-century study of the heights of chil­
dren and their parents. Galton found that tall parents tended to have 
tall children, as we would expect. But the children were not, on the 
average, quite as tall as their parents. The same thing was found for 
short parents: they tended to have short children, as we would ex­
pect, but on the average the children were taller than the parents. 
(This is just as well, because if children of tall parents were even 
taller than their parents and if children of short parents were even 
horter than their parents, we would all continue to grow more and 

more apart over the generations.) It was the tendency of the chil­
dren's heights to move toward the middle that made Galton call it 
a regression effect, and the methods he developed for the tudy of 
data on two metric variables became known as regression analysi . 

As instructors, we see the same regression phenomenon in our 
classes. Good students who get top scores on the midterm do well 
on the final examination but on the average not quite as well. Sim­
ilarly, tudents who do badly on the midterm on the average do 
better on the final. In sports the regression effect is a well-known 
phenomenon: the rookie who has an exceptionally good first season 
does not perform as well the second year. The' regressive" feature 
of regression analy i i not equally obvious, however, in every ca e 
where regression analysis is used. 
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Correlation analysis measures the strength of the relationship be­
tween metric variables. Two variables may have a high correlation or 
they may have a low correlation, depending on how strongly they are 
related, and the word correlation in statistics corresponds well with how 
the word is used in daily speech. 

STOP AND PONDER 10 . 1 

Give an example of two metric variables that may be related, and list 
some of the values of the variables. Why are your variables metric 
variables? 

In this chapter, we study regression analysis for two variables; this 
type of analysis is known as simple regression analysis. You may find that 
name ironic because at first glance there is nothing simple about it. 
But "simple" here is a way of denoting two variables instead of more 
than two. Simple regression analysis is as simple as regression analysis 
can get! Since Galton's days the methods have been extended to more 
than two variables, and we examine some of them in Chapter 13. 

Let's start with a dieter's dilemma. You are trying to diet but have 
a bad case of the "munchies." Standing in front of a vending machine, 

Food for thought for regression analysis. (Source: 1992, Comstock.) 
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Table 10.1 Calories and fat in snack foods 

Food Calories (kcal) Fat (g) 

Tortilla chips (15) 110 4 

Light potato chips (18) 120 6 

Cheese-flavored snacks (34) 120 6 

Doughnut (1) 164 8 

Apple pie (1/6 of 8-in. pie) 430 19 

Popcorn (3 cups) 192 11 

Ice cream (1/2 cup) 175 12 

Chocolate chip cookie (1 large) 236 12 

Cheese and crackers (2 oz. and 10 thin) 429 26 

Chicken wings (2) 318 21 

Bagel with cream cheese 249 11 

Peanut butter cups (2) 281 16 

Dry roasted peanuts (1 oz.) 160 14 

Chocolate bar (1 oz.) 147 9 

Cheese or peanut butter crackers (6) 210 9 

Granola bar(l) 120 5 

Source: ASDA data and manufacturer's data shown as an advertisement in The New York 
Times Magazine, April 20, 1990, p. 20. . 

you stare at the delectable choices: potato chips, pretzels, popcorn, 
candy bars. Fat and carbohydrates seem to beckon you as you ponder. 
Which snack will do your diet the least damage? Which have the least 
calories, those with high fat content or those with low? Does it make a 
difference? What you need to know is how calories increase or decrease 
with increasing fat content in the foods. Regression analysis gives you 
a way to find out. We tackle the problem of fat content and calories by 
first looking at the data we have (Table 10.1). To do a simple regression 
analysis (and correlation analysis), the data file must consist of two 
columns of numbers, one column for each variable. In addition, the 
data file should contain a column which makes it possible to identify 
each row. Each row in Table 10.1 contains data on one particular snack. 
Column 1 gives the name of the snack, column 2 gives the calories, 
and column 3 gives the fat content. 
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STOP AND PONDER 10 . 2 

Look at the calorie values in Table 10.1. Why is it that all the foods 
do not have the arne number of calories? Could it be because they 
have different fat content? If it is so, then we are interested in the 
variation in the calorie values. What can you compute from the data 
that will tell you how different the observations are from each other? 

From the data in Table 10.1, how well are we able to answer the 
question of how fat and calories are related? Just scanning the data, we 
see that foods with high fat content also seem to have a high number 
of calories, and foods with low fat content seem to have fewer calories; 
the two variables seem to be related. But to access the detailed infor­
mation the data contains-for example, whether one food that has 
twice as much fat as another also has twice as many calories as the 
other-we turn to regression and correlation analysis. 

We just answered this question when we observed that smaller values 
of the fat variable tend to correspond to smaller values of the calorie 
variable, and larger values of the fat variable tend to correspond to 
larger values of the calorie variable, indicating a relationship between 
the two variables. To get the details of the relationship, we need to 
analyze the data. As before, we can make a graph or a table and in 
addition compute a number or two from the data. 

Graphing the data in a scatterplot 

With two metric variables, we always start the analysis of the data with 
a graph. The purpose of the graph is to get a visual impression of the 
relationship between the variables. The graph is also used to see if the 
data are of a kind that permits us to use statistical correlation and 
regression methods. Not all data from two metric variables lend them­
selves to this kind of analysis, and a graph usually indicates whether we 
can proceed or not. 
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A scatterplot is a 
graph with a hor­
izontal axis for 
the independent 
variable and a 
vertical axis for 
the dependent 
variable. Each 
pair of observa­
tions is repre­
sented by a point 
in the graph. 
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Figure 10.1 Scatterplot of data in Table 10.1 (page 400) 

STOP AND PONDER 10 . 3 

On a scatterplot, which variable would be on the y-axis and which 
on the X'-axis, and when would it be unclear? 

a. Number of curve balls thrown and number of home runs hit off 
a pitcher 

h. Size of helmet and size of baseball glove 

c. Number of trikeouts at bat and yearly salary 

d. Number of stolen bases and number of games played 

The graph we make is a scatter-plot. The horizontal x-axis is used for 
the independent variable, and the vertical y-axis is used for the depen­
dent variable. For the data in Table 10.1, the x-axis is used for the fat 
content and the y-axis is used for the number of calories because we 
hypothesize that fat content (independent variable) affects calories 
(dependent variable). Looking at the data, tortilla chips have an x-value 
of 4 and a y-value of 1l0. We plot these two numbers (4, 1l0) in the 
graph as a point at the 4 and 110 coordinates. We also plot the other 
snacks as points in the graph, ending up with the scatterplot shown in 
Figure 10.1. 
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STOP AND PONDER 10 . 4 

Following are data on funding. in million of dollar • for public 
br adcasting from ub criber and b ine (not £ d ral gOY rn­
rnent and other ource) betwe n 19 3 and 1993. 

Year From subscribers From businesses 

110 

19 4 135 
19 5 225 175 
19 6 240 175 
19 7 275 195 
19 300 210 
19 9 320 240 
1990 340 260 
1991 370 290 
1992 390 300 
1993 395 300 

Source: Foundation for Public Broadcasting. 

a. Creat a catterplot from th data. 

b. Do there eern t b a relation hip b tween th two variable 
in the data? 

c. I it a n gativ or a po itiv relation hlp? 

d. What would ou exp ct th catterplol to 10 k like if th variabl 
have a trong relation hip? Do this r lation hip 
trong? 

e. What em t hay happened to Lh relation hip between th 
tw variabl at the end f thi P riod? Doe it ugge t that a 
ground- well of upp rt w already d veloping among big bu i­
ne ti r th 1995 Republican C ngre ' initiative to cutofffund 
for public broadcasting? 

Scatterplots are always made with the independent variable run­
ning horizontally and the dependent variable vertically-the same way 
we set up contingency tables for two categorical variables. Of course, 
there are times when it is not clear which is the independent and which 
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is the dependent variable. With height and weight on students in the 
class, for example, it is not obvious which affects which. The choice 
matters for regression analysis, but it does not matter for correlation 
analysis; correlation analysis yields the same result either way. 

Learning from the scatterplot 

The scatterplot in Figure 10.1 shows that the greater the fat content in 
a snack, the greater the number of calories. The pattern in the points 
in the graph is evidence for a solid yes answer to the question of 
whether there is a relationship between the two variables in the data. 
The graph lends support to the conclusion we drew on the basis of the 
data table alone. From the graph we are confident that the two variables 
are related. 

In addition, because the points scatter from the lower left to the 
upper right in the graph, the relationship between these two variables 
is positive: the more fat in a snack, the more calories. Some variables, such 
as the weight of a car and the gas mileage, have a negative relationship: 
the more the car weighs, the fewer miles per gallon. In a scatterplot with 
a negative relationship between the two variables, the points scatter 
from the upper left corner to the lower right corner. 

Most statistical software is designed to make scatterplots, and Figure 
10.1 was made by a computer after the data had been entered into a 
computer file. If the data do not contain too many observations, we 
can make scatterplots by hand. 

Linear relationships 

We continue the analysis with another question: In what way do the ~ 
values (calories) differ as the x-values (fat) increase or decrease? To 
find out whether there was a relationship between two categorical var­
iables, we took each value of the independent variable and found the 
corresponding percentage distribution of the dependent variable. 
Here, the dependent variable is a metric variable, so we find means 
instead of percentages. 

What we do for two metric variables is not very different from what 
we did for categorical variables. We choose values of the independent 
variable, fat content, and find the corresponding values of the depen­
dent calorie variable. For example, for fat values around 7.5 grams, the 
calories have a mean of about 150; for fat content around 15.0 grams, 
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the corresponding mean of the calories is about 250. Regression anal­
ysis is based on the fact that different values of the independent variable 
correspond to different values of the corresponding mean of the de­
pendent variable. With more data-enough to show several values of 
the calorie variable for each value of the fat variable-we could find 
the actual mean number of calories for each fat value. 

STOP AND PONDER 10 . 5 

Which of the catterplots em to lend them 1 t regre ion and 
corr lation analy is? D crib in a entenc what kind f relation hip 
each catt rplot h w . 

(a) (b) 

+ + 
+ 

+ + + 
+ 

+ + 
+ 

+ 
+ + 

+ + 
+ + + + + + 

+ + + 
+ 

(c) (d) 

+ + + + 
+ + + + 

+ + * + + + + + + + + 
+ + + + + + + + + 

+ + + 
+ + 

+ + + + 
+ + + + 
+ 

+ + + 

If the mean calorie values were different from one another for 
different values of the fat content, then we could establish that the two 
variables are related. In addition, if the points representing means in 
a scatterplot grouped around a straight line through the middle of the 
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The correlation 
coefficient r 
measure the 
trength of the 

relation hip b -
tween two m tri 
variable on a 
cale of - 1 to 0 

to 1. 

scatter, then we could do regression and correlation analysis on the 
data. We do not have enough data here to find such means, but the 
points for the data we have more or less group along a straight line, 
permitting us to continue. 

If the points in the scatterplot had grouped along what looked like 
a curve, then we could not continue with the analysis. If the points in 
the scatterplot had formed a cloud with no pattern, then the data might 
have been random with no relationship between the variables. 

When the data points are strung out along a line, we can compute a 
number that measures how strong the relationship is between the two 
variables. For two metric variables this computation creates a coeffi­
cient that is denoted r, and we call it simply the correlation coefficient, 
although it has many names. It can be called the linear correlation coef 
jicient, Pearson s correlation coefficient, in honor of the English statistician 
Karl Pearson who did important work with it, or the product-moment 
correlation coefficient, reflecting the way in which the numerical value of 
the coefficient is computed. 

Is r positive or negative? Large or small? 

The correlation coefficient rfor the fat/calorie data equals 0.91 (pro­
duced by Formula 10.1). What is much more important than the me­
chanics of the computation is the meaning of this number. The first 
thing we notice is that ris positive for these data. This means that small 
values of one variable correspond with small values of the other, and 
large values of one variable correspond with large values of the other. 
Thus, tortilla chips, which have a low fat value, also have a low calorie 
count; cheese and crackers have a high fat value and a high calorie 
count. The positive value for r corroborates the pattern in the scatter­
plot. 

The second thing we notice about r is its size. Obviously, 0.91 is 
almost equal to the maximum positive value of 1. This means a very 
strong relationship between the two variables. By most criteria, any 
value of r between - 0.75 and -1.00 represents a strong, negative re­
lationship, and any value between 0.75 and 1.00 represents a strong 
positive relationship. Similarly, r values between - 0.70 and - 0.30 as 
well as between 0.30 and 0.70 are considered moderate, and anything 
in the range from - 0.25 to 0.25 is considered weak. 
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These rules are merely "rules of thumb." People working in differ­
ent disciplines tend to find r's in different ranges, and high and low 
must be seen as relative to common values of r found in a field. A 
sociologist often considers an r of 0.50 quite high, while an economist 
may consider an r of 0.50 low. However, 0.91 is high and represents a 
very strong relationship by almost any account. 

Four different scatterplots: From strong to weak relationships 

Let us look at a few scatterplots to see how different scatter patterns 
lead to different values of r. Figure 10.2 shows four different scatter­
plots, each with 100 observations. The data were generated by a com-

(a) r = 0.82 
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In Figure 10.2a. the point marked with an arrow stands out from the 
others. It is isolated from the other points by a good bit of pace. 
Points that do not lie near other points in a scatterplot tend to have 
a disproportionately large impact on the correlation coefficient. 
When the isolated point in Figure 10.2a i included in the analysi , 
T = 0.B1B, to three decimals. When the point is not included in the 
computation, T = 0.B35 (these would u ually be reported as 0.B2 and 
0.B4). If even 5 of the 100 data points were outliers like thi one, the 
difference in T computed with them and without them would be 
ignificant. And points that are even further away from the other 

points can be even more influential in detennining the value of the 
correlation coefficient. 

These differences between correlation coefficients illu ·trate how 
ensitive the correlation coefficient is to observations that lie off the 

main trend in the data. Thi is a r ason we should always look at the 
scatterplot before computing r. By looking at the catterplotfirst, we 
can see whether there are questionable data points to worry about. 

puter and do not refer to anything in particular, so there are no labels 
or scales on the two axes. 

In Figure 10.2a, the points are quite clustered and close to each 
other, and we can see a definite straight-line trend in the pattern from 
the lower left corner to the upper right corner in the graph. The points 
are located in a regular fashion along the diagonal. The strength of 
the relationship between the two variables ought to be quite strong, 
and the correlation coefficient bears this out, with r = 0.82. 

In Figure 10.2b, the points are not as clustered as in Figure 10.2a. 
But we can still see a definite positive relationship in these data, and 
the scatterplot translates to a correlation coefficient requal to 0.59. In 
Figure 10.2c, the correlation coefficient decreases to 0.26, indicating a 
weaker relationship. With an rof this size, it is almost impossible to see 
a pattern in the points and whether there is any relationship between 
the two variables. In Figure 10.2d, the points are randomly scattered 
and there is almost no relationship between the two variables. 

Figure 10.2 illustrates positive relationships between two variables. 
It is also possible to generate data with negative values of r. In such a 
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scatterplot, the points would distribute themselves along the other di­
agonal, the one from the upper left corner to the lower right corner. 
In that case, large values of the »variable would have small values of 
the y-variable, and small values of the »variable would have large values 
of the y-variable. For example, if x represented the cost of a car and y 
the number of cars sold, the value of rwould be negative: costlier cars 
tend to be sold in fewer numbers than cheaper cars. 

Here are some other values of r to demonstrate magnitudes of cor­
relation. In a sample of cars, r = - 0.90 for weight and mileage; for 
horsepower and mileage, r = - 0.87. The correlation between the cost 
of several nuclear power stations and their electrical output is a sur­
prisingly low r = 0.47. The rs for the variables in Table 10.1 plus two 
more variables are shown in Table 10.2. 

In Table 10.2 there is a diagonal of 1.00 correlation coefficients. 
Each 1.00 represents the correlation of a variable with itself. The 
correlation of a variable with itself is always 1.00. Imagine a scatter­
plot with the same variable on both the horizontal and vertical axes. 
All the observations would lie along a 45-degree line, and all the 
points would be located directly on that line. The relationship be­
tween observations on a straight line has maximum strength and r = 

1.00. 
We already have the scatterplot for fat and calories (Figure 10.1), 

and for the other five correlation coefficients we can picture ap­
proximate scatterplots from knowing the rs. The smallest r-for 
sodium content and cholesterol-is equal to 0.41. In the scatterplot 
for these data, we would expect to see a general upward trend of the 
points but a fairly large scatter because the relationship is not very 
strong. 

Table 10.2 Correlations between the variables in Table 10.1 plus 
cholesterol and sodium 

Variable Calories Fat Cholesterol Sodium 

Calories 1.00 

Fat 0.91 1.00 

Cholesterol 0.62 0.69 1.00 

Sodium 0.73 0.59 0.41 1.00 
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The correlation between the cost of nuclear power stations and their electri­
cal output is a surprisingly low r = 0.47. (Source: 1992, Comstock.) 

STOP AND PONDER 10 . 6 

For the following relationship between two variable, would the cor­
relation be positive or negative? 

a. Popularity of a compact disc CD and the price of the CD 

h. Size of office and salary of occupant 

c. Price of a hamburger and number of hamburgers sold 

d. Outdoor temperature (between 40 and 0 degree Fahrenheit) 
and number of tickets sold at a wimming pool club 

Interpretation of r: An issue of inexactness 

We have described the correlation coefficient ras a number computed 
to measure the strength of the relationship between two metric varia­
bles; the values of r range from - 1 to + 1. However, it is hard to come 
up with an exact interpretation of r. We know that r = 0.91 indicates a 
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strong relationship between two variables, and an r of 0.41 represents 
a moderately strong relationship. But beyond the words strong or mod­
erately strong, what does the value of r mean? 

For an exact interpretation of the strength of the relationship be­
tween two metric variables, we look at the square of the correlation 
coefficient instead of the coefficient itself. For fat and calories, r2 = 
0.912 = 0.83; for sodium and cholesterol, r2 = 0.4J2 = 0.17; for horse­
power and mileage in a sample of cars, r2 = (- 0.87)2 = 0.76. These 
numbers, 0.83, 0.17, and 0.76, have a very specific interpretation, which 
we discuss later. 

QUESTION 2B. FORM OF THE RELATION 

Regression analysis is the other part of the analysis of two metric vari­
ables. Correlation and regression are equally important, and a com­
plete analysis of the relationship between two variables includes both. 

One of the basic ideas of statistics is that to understand the data 
better we replace them by one or more numbers computed from them. 
Let us illustrate this with a single variable first. If we scan the column 
of calorie values in Table 10.1, we see that they range from a low of 
about 100 calories for tortilla chips to a high of about 400 for apple 
pie. Because it is hard to comprehend all the calorie values at the same 
time, we replace the data by the mean for the variable. The mean equals 
216.3 calories, and for many purposes the mean can be used in place 
of the original data. 

What number can we compute to replace the observed data in two 
variables that will capture the relationship between the variables? The 
discussion of the scatterplot in Figure 10.1 implied that a line running 
through the middle of the points could represent all the points. We 
could use the line instead of all the data in discussing the relationship 
between the two variables. 

STOP AND PONDER 10 . 7 

In preparation for the discussion that follow What is the mathe­
matical equation for a line? What are the two numbers called that 
we need for such an equation? What does it mean to say that the 
steepnes of the line is measured by the "rise" over the "run"? 
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Figure 10.3 Scatterplot of fat content and calories with regression line 

A line through the middle of the points 

Figure 10.3 repeats the scatterplot of Figure 10.1, with the addition of 
a line running through the middle of the points. Such a line is known 
as the regression line. Ifwe erased the data points and kept just the line, 
we would still have a good idea of how fat content is related to calories. 
This line represents the data on two variables quite well,just as a mean 
represents the data on one variable quite well. 

Just as the points show a positive correlation, the line, running from 
the lower left to the upper right corner of the graph, has a positive 
slope: foods with low fat content have a low number of calories, and 
foods with high fat content have a high number of calories. The steeper 
the line, the more difference in the calories for a one-unit difference 
in the fat content. Steepness of a regression line is measured by its 
slope; if we knew the slope of the line in Figure 10.3, then we would 
know exactly how many calories difference there are for a one-unit 
difference in fat content. 

To find an approximate value of the slope of the line we could use 
a ruler and measure the "rise" over the "run" of the regression line. 
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We can also compute the slope from the observed data (Formulas 10.2 
and 10.3). The slope of the line equals 15.3 calories per gram. Thus, 
two snacks that differ in fat content by one gram will differ by 15.3 
calories, on the average. 

This point is illustrated in Figure 10.4. The figure shows two foods, 
A and B, and B has one more gram of fat than A has. Because the slope 
of the line equals 15.3, we see that on the average B has 15.3 calories 
more than A. The reason we say "on the average" is that the observed 
data points for the two foods do not lie exactly on the line. For two 
particular foods the difference in calories would be either more or less 
than 15.3 calories. But the mean difference in calories between many 
pairs of foods that differ by one gram would be 15.3. 

The line in Figure 10.3 has a y-intercept, that is, the point where it 
cuts through the y-axis when x equals O. Figure 10.3 shows the line 
extended to the left beyond the observed points, and the line cuts 
through the vertical axis where the fat content equals O. The intercept 

Calories 

Food B 

15.3 
calories 

L-_ __ ........... ___________ --t Fat content 

1---- 1 gram ----I 

Food A Food B 

Figure 10.4 Interpretation of the regression coefficient 15.3 calories per 
gram 
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for this line equals 36.1 calories. The full equation for this regression 
line is therefore 

calories = 36.1 + 15.3 fat content 

The equation for a regression line is called a regression equation. The 
equation for a regression line is written 

dependent variable = intercept + slope X independent variable 

-in symbols 

y=a+bx 

where a is the intercept of the line, b is the slope of the line. In Figure 
lOA, the slope 15.3 is the regression coefficient for the independent vari­
able, here fat content. The regression equation tells us much more 
than the two columns of numbers in Table 10.1. It summarizes the 
relationship between the two variables in a very compact form. 

STOP AND PONDER 10 . 8 

Frequently tudents are urged to continue their education so that 
they can earn more money when they have completed their chool­
ing. On way to analyze how much more one could make if one 
stayed in school extra years is to create a regres ion line that mea-
ures the relationship between years of chool and yearly salary. 

Let year of school be the x- or ind pendent variable on the 
horizontal axis. Let salary be the y- or dependent variable on the 
vertical axis. Could you draw a regression line to display the rela­
tion hip if you had data on education and income? The x-variable 
could tart at years of education and end at 20 years of education: 
annual alaries could range from what you think of as a low figure 
to what you think of a a high figure. 

How to find the regression line: The least squares principle 

The regression line is determined by its slope and intercept. Those two 
numbers are computed according to formulas given at the end of the 
chapter. Formula 10.2 shows how to compute the slope b, and Formula 
lOA shows how to compute the intercept a. Deriving these formulas 
requires more mathematics than we want to go into, but we can explain 
the principle that leads to the formulas. 
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If each of us took the scatterplot in Figure 10.1 and with a ruler 
drew a line running through the middle of the points, we would each 
draw a slightly different line. But all the lines would coincide more or 
less with the line drawn in Figure 10.3, which was drawn by the com­
puter software that did the analysis. The computer-drawn line has a 
feature that makes it special. The line is based on how far each data 
point is from the line. The vertical distance from each point in the 
scatterplot to the regression line can be found using a ruler to measure 
the distances or by numerically computing the distance for a more 
accurate result. Mter we find all the differences, we square each dis­
tance and add all the squares. For the snack food data, the sum of 
squared distances equals 27,182. This number gives us an overall mea­
sure of how far the points are from the line. 

If we try the same procedure for any other line, the number is 
always larger than 27,l82. No other line gives a smaller sum of squared 
distances. Thus, the line the computer software drew is the line that 
has the smallest possible sum of squared vertical distances between the 
points and the line. In the sense of least squares, this regression line is 
therefore the one that is closest to all the points and in that sense 
represents the points better than any other line. 

As an illustration, let us find a few of the distances and their squares. 
A granola bar, for example, has 5 grams of fat. When we substitute this 
value into the equation for the regression line, we get the number of 
calories predicted by the fat content of the granola bar: 

predicted calories = 36.1 + 15.3(5) = 112.4 

This is the value of calories we find on the regression line, meaning 
that the point with coordinates (5, 112.4) lies on the line. (You can 

KAO 10 /WRR/)W q 6AA~ 
Of fAT fl!.OlI\ TUe~OIN'~ 

ilLLDTIIIHIT fO/!. II\OI>IOA~'~ 

BUW4E&& DIN"eR ... 

1'0 O/ITE, rYE BORROWED 
1.'3'11 GRAms Of fAT, WHICH 
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Ill' IS'!. IIlTeREST IN trr/ 
WAI~T. THIC7HS liND REAR . 

"Cathy" copyright 1995 Cathy Guisewite. Reprinted with permission of Universal Press 
Syndicate. All rights reserved. 
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Sub tituting the 
value of the in­
dependent vari­
able into the 
equation for 
the regression 
line yields the 
predicted value 
of the depen­
dent variable. 

check this out for yourself by looking at the scatterplot and the line in 
Figure 10.3.) For more accuracy in the actual computation, we used 
more decimals for both the slope and the intercept. Since the granola 
bar actually has 120 calories, the vertical distance from the observed 
point to the point on the regression line is 120.0 - 112.4 = 7.6. The 
actual data point for a granola bar lies 7.6 calories above the estimated 
point on the regression line. The other vertical distances can be 
found in the same way. The points above the line will have positive 
distances and the points below the line will have negative distances. 
When we square these distances and add the squares, we get the sum 
27,182. 

The granola bar contributes 7.62 = 57.7 to this sum. That is not a 
large contribution, because the point for the granola bar lies close to 
the line. Some of the other points lie farther away, and the squares of 
these distances are larger numbers. 

If all of us agree to use the least squares method to find the line, 
then all of us will come up with the same line. If we use some other 
principle, we get different lines. For example, the line where the sum 
of the absolute values of the distances from the points to the line is the 
smallest is a different line. This is another example where statistical 
method, not just data, determines the outcome of an analysis. 

Predicting with regression analysis: From fat to calories 

You've just seen that the regression line can be used for prediction 
purposes. When we know how much fat there is in a food, we can use 
the regression line to predict the number of calories in the food. (We 
always predict from the independent to the dependent variable.) 

Because of this predictive feature of regression analysis, the regres­
sion equation is sometimes expressed this way: 

predicted calories = 36.1 + 15.3 fat content 

The word "predicted" on the left side stresses that only the predicted 
values, not the actual, observed values, of the dependent variable are 
on the left side. Another way this is sometimes done is to place a "hat" 
over the term on the left side of the equation: 

-------calories = 36.1 + 15.3 fat content 
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The hat symbol means "predicted." Also, sometimes y replaces the 
words for the dependent variable and x the words for the independent 
variable. Then the equation for the predicted value of y as a function 
of x can be written 

j = 36.1 + 15.3x 

In the snack example, the predicted value of the calorie variable 
for a granola bar with 5 grams of fat is 112.1 calories. The predicted 
values for some of the other foods are 

Tortilla chips 

Light potato chips 

Cheese-flavored snacks 

Doughnut 

Granola bar 

36.1 + 15.3(4) = 97.1 

36.1 + 15.3(6) = 127.6 

36.1 + 15.3(6) = 127.6 

36.1 + 15.3(8) = 158.1 

36.1 + 15.3(5) = 112.4 

In addition, we could use the regression equation to predict the 
number of calories in a new food with a known fat content. We would 
substitute the value of the fat variable into the regression equation and 
compute the predicted value. 

STOP AND PONDER 10 . 9 

You pick up a candy bar at the market. The label indicates that the 
bar has 3 gram of fat. E timate the number of calorie of the candy 
bar u ing the results from this example. 

Magnitudes of effects: Interpretation of 1'-square 

The number of calories in different snack foods is affected by many 
other variables in addition to fat content. The other variables, called 
the residual variable, and fat content together determine the calories in 
these foods (Figure 10.5). The two arrows indicate how we think the 
influence flows from the fat variable and the residual variable to the 
calorie variable, and the question marks next to the arrows show that 
the amount of influence of the fat variable and the residual variable is 
not known. Can we measure the effects on calories of the fat variable 
and the residual variable? 

The residual 
variable is the 
combined net 
effect on the 
dependent varia­
bles of all 
variables other 
than the inde­
pendent variable. 
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Independent variable 
(fat content) 

Residual variable 
(all other variables) 

Dependent variable 
(calories) 

Figure 10.5 Effect of fat content and residual variable on calories 

First, imagine that no variables affect the calories in snack foods; 
then all snack foods would have exactly the same number of calories. 
The fat content would not make any difference, and no other variable 
would make any difference. For this thought experiment, assume that 

Table 10.3 Observed values of calories and fat if no variables affect the 
calorie variable 

Food Fat(g) Common calorie value 

Tortilla chips (15) 4 216.3 

Light potato chips (18) 6 216.3 

Cheese flavored snacks (34) 6 216.3 

Doughnut (1) 8 216.3 

Apple pie (1/6 of 8-in. pie) 19 216.3 

Popcorn (3 cups) 11 216.3 

Ice cream (1/2 cup) 12 216.3 

Chocolate chip cookie (1 large) 12 216.3 

Cheese and crackers (2 oz. and 10 thin) 26 216.3 

Chicken wings (2) 21 216.3 

Bagel with cream cheese 11 216.3 

Peanut butter cups (2) 16 216.3 

Dry roasted peanuts (1 oz.) 14 216.3 

Chocolate bar (1 oz.) 9 216.3 

Cheese, peanut butter and crackers (6) 9 216.3 

Granola bar (1) 5 216.3 
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this common number of calories would be the overall mean of the 
observed calorie values, or 216.3 calories. All the calorie values would 
be 216.3, as shown in Table 10.3. 

In a scatterplot of the fat content and the values in the last column 
of Table 10.3, all the points lie on a horizontal line (Figure 10.6). But 
of course the observed data do not lie on a horizontal line. They are 
scattered, as Figure 10.6 also shows. This means that the variation in 
the values of the dependent variable calories shows that the number 
of calories is affected by other variables. How do we measure how much 
variation there is? How much of the variation is associated with the 
independent variable fat content and how much is associated with the 
residual variable? 

The observed number of calories of a peanut butter cup, for ex­
ample, is not on the horizontal line but at 281. The independent vari­
able and the residual variable together pushed the calories of a peanut 
butter cup up from 216.3 to where we find them at 281, a total of 64.7 
calories. So 64.7 is the combined effect of the fat content and the 
residual variable. Similarly, the combined effect on dry-roasted peanuts 
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Figure 10.6 Effects of independent and residual variables 
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The effect of the 
residual variable 
is the vertical dis­
tance from an 
ob erved point 
to the regression 
line. 

is - 56.3, because the observed calorie point is below the horizontal 
line. We can find the combined effect for all the different foods the 
same way. 

Next, we want to summarize all these effects in a single number. 
For various historical and mathematical reasons, we square each effect 
(observation minus overall mean) and add the squares. For the foods 
this sum is 159,060; it is known as the total sum of squares. 

The total sum of squares measures the effect of both the indepen­
dent variable and the residual variable on the values of the depen­
dent variable. It is found as 

urn (ob ervation minu overall mean)2 

Now we want to find out how much of the total sum of squares is 
due to the effect of the independent variable (fat) and how much is 
due to the effect of the residual variable (everything else). Suppose 
that the residual variable has no effect on the calories and that the 
calories are affected only by the fat content. Then all the points in the 
scatterplot would lie directly on the regression line. But according to 
Figure 10.3, that is not where the data lie. The points are scattered 
around the regression line, so the residual variable must be pushing 
the points off the regression line. 

The difference between the observed data point and its corre­
sponding position on the regression line is the effect of the residual 
variable. We can find each of those differences. To summarize their 
magnitudes, we square each of them and add the squares. This sum 
represents the effect of the residual variable, and it is known as the 
residual sum of squares, sometimes called the error sum of squares. For 
the snack foods example, the residual sum of squares equals 27,182. A 
small residual sum of squares in comparison to the total sum of squares 
results when the points lie close to the line. Similarly, a large residual 
sum of squares results when at least some of the points lie quite far 
away from the regression line. 

Since the combined effect of the independent variable and residual 
variable equals 159,060 and the effect of the residual variable alone is 
27,182, the effect of the independent variable is the difference 
159,060 - 27,183 = 131,878. This sum of squares is also known as the 
regression sum of squares. Formula 10.5 at the end of the chapter shows 
how to compute the different sums of squares. 
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Table 10.4 Sums of squares and proportions for the snack data 

Source 

Fat content 
Residual 

Total 

Sum of squares 

131,878 

27,182 

159,060 

Proportion 

0.83 

0.17 

1.00 

Sums of squares are often displayed in a table like Table lOA. In 
the table is a row for each variable and a row for column totals. The 
first column shows the name of the variable, and the second column 
shows the magnitude of the effect of each variable as measured by the 
appropriate sum of squares. To make it easier to see how large the 
effects are compared to each other, the third column shows each sum 
of squares as a proportion of the total sum of squares. To find the 
proportions, we divide each individual sum of squares by the total sum 
of squares. Here, the independent variable contributes 0.829, or 83%, 
of the effect and the residual variable contributes the remaining 0.171, 
or 17%. Thus, the effect of the fat content on the dependent variable 
calories is much larger than the effect of the residual variable. 

The proportion of the effect due to the independent variable, here 
0.83, is always equal to the square ofthe correlation coefficient between 
the independent variable and the dependent variable (shown in For­
mula 10.6). In Section 10.2, we found the correlation coefficient r be­
tween fat content and calories to be 0.91, so r squared is r2 = 0.9J2 = 
0.83, the proportion of the effect attributed to the fat variable in Table 
1O.4! Using regression analysis, we have been able to show how impor­
tant the fat content of foods is compared to other influences in deter­
mining calories and that the closer the points are to the regression 
line, the smaller the residual sum of squares and the larger the corre­
lation coefficient. 

All this means that when we come across a correlation coefficient, 
we should immediately square it. The square tells us what proportion 
of the total effect on the dependent variable comes from the indepen­
dent variable. One minus r-square is the proportion of the total effect 
that comes from the residual variable. Sometimes the results are dis­
appointing. Suppose we get a middle-range value of r equal to 0.50. 
The square of 0.50 is 0.25, meaning that the independent variable is 
associated with only a quarter, not half, of the effect on the dependent 
variable. 
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In a report of the snack foods analysis, we might write a sentence 
such as ''The fat content variable explains 83% of the variation in cal­
ories," or "83% of the variation in the calorie variable is due to the fat 
variable." Instead of the terms explains or is due to we could also use a 
term like accounts Jor. All these terms are widely used to mean the same 
thing. 

Correlation and/ or regression? The more the merrier 

What can we conclude from a very high correlation between two vari­
ables when we know nothing about the regression line? We tend to be 
impressed by large correlation coefficients and conclude that we have 
learned something important about the two variables. Similarly, what 
are we to think if we are told the regression line, but we are not told 
what the correlation coefficient equals? The larger the slope and the 
steeper the line, the more important the independent variable may 
seem. But knowing only the correlation or the regression is not enough 
to analyze two variables properly. We should know both. 

In the example with fat and calories, the correlation coefficient is 
equal to a high 0.91. The difficulty in interpreting this correlation co­
efficient is that this value of the correlation coefficient can be the same 
for many different data sets that have very different regression lines. 
Suppose the regression line had the equation 

calories = 248 + 1.1 fat content 

instead of the equation we found (calories = 36 + 15.3 fat content). 
With the new regression line, we are no longer so impressed by the 
large correlation coefficient of 0.91. The high value of r tells us that 
the points are closely clustered around the line, but because of the 
small slope of 1.1, the line is almost horizontal. 

Let us pick two foods, one with a low 7.5 grams of fat and another 
with a high 22.5 grams of fat. By substituting these numbers into the 
equation for the line, we find that the predicted number of calories 
for the first food is 256 and for the second food is 273. The difference 
between 256 and 273 calories is only 17 calories, a very small and un­
interesting difference in calories. Even though one food has three 
times the amount of fat as the other, they hardly differ in calories. From 
a nutritional point of view, the result is inconsequential in spite of the 
fact that there is the very strong relationship between the two variables, 
as shown by the correlation coefficient (Figure 10.7). This example 
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helps illustrate that it is not enough to know the correlation coefficient; 
we need to know the regression line also. 

Figure 10.7 shows two scatterplots in which the two data sets have 
the same fairly high correlation coefficient. In graph a, the line is quite 
steep, and in graph b the line is almost horizontal. Ifwe knew only the 
correlation coefficient, we could not distinguish between the two data 
sets, in spite of their obvious differences. 

The reverse occurs when we know the regression line but not the 
correlation coefficient: we know how steep the line is, but we do not 
know how close the data points are to the line. If the points scatter 
widely around the line, the correlation coefficient is small and the line 
conveys less than it does when the points are close to the line. Figure 
10.8 shows scatterplots of two different data sets with the same regres­
sion line and different correlation coefficients. 
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Figure 10.8 Scatterplots for two data sets with the same regression line and 
different correlation coefficients 
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Most statistical computer programs give the correlation coefficient 
or its square when we do regression analysis, but they do not give the 
regression line when we do correlation analysis. In one particular sit­
uation, research reports give correlation coefficient but not the re­
gression line. This occurs when it is not clear which variable should be 
the independent variable and which should be the dependent variable. 
For example, in studying verbal and mathematics test scores, the choice 
of independent and dependent variable is not obvious. Therefore, only 
the correlation coefficient would be reported. 

Regression analysis for data on change 

So far we have been careful to interpret the regression coefficient 
(slope) b by saying that if two observations differ by one unit on the 
independent variable, then they will differ on the average by b units on 
the dependent variable. In the snack food example, b equals 15.3; if 
two snack foods differ by 1 gram of fat, they differ by an average of 15.3 
calories. We have data on different foods, so the interpretation of b has 
to be in terms of different foods. The data do not permit us to conclude 
that if the fat content of a snack food increases by 1 gram, then the 
calories would increase on an average by 15.3. For this interpretation 
we need data on change of fat and calories for a particular food. 

When we do have data on change, we can interpret the regression 
coefficient b in terms of change. For example, when the pediatrician 
measures the weight of a baby at each office visit, then we can do a 
regression analysis of the data and conclude that the baby's weight 
increased by so many ounces per month. 

In another example, The Philadelphia Inquirer reported (April 7, 
1993, p. A2) on a story in the Journal of the American Medical Association 
about the association of reduction of lead in the blood of children with 
an increase in scores on a "cognitive index" scale. The lead level was 
measured in milligrams per deciliter of blood, and the cognitive index 
was derived from standardized intelligence tests. From the data in the 
article it is possible to conclude that the regression equation for the 
two variables can be expressed as 

cognitive index = 90 - 0.33 lead content 

The negative value of the regression coefficient - 0.33 indicates that if 
lead content goes up, then the cognitive index goes down; if the lead 
content goes down, then the cognitive index goes up. Specifically, the 



426 Chapter 10 • Regression and Correlation for Two Metric Variables 

coefficient shows that if the lead content in the blood is reduced by 1 
milligram per deciliter of blood, then the cognitive index goes up on 
the average 0.33 points-or, as the newspaper report says, if the lead 
content goes down 3 milligrams, then the cognitive index goes up by 
1 point. When public policy is directed at creating social change, a 
regression analysis of this sort is often appropriate. 

It is one thing to find that there is a relationship between fat content 
and calories in a sample of snack foods, and it is another thing to find 
that there is a relationship between the two variables in the population 
of all snack foods. Because we do not have population data, we use 
sample data to make generalizations about the population. This is done 
in two ways: by constructing a confidence interval for the population 
regression coefficient f3 and by setting up and testing a null hypothesis 
of no relationship. For purposes of the argument, let us treat our sam­
ple of snack foods as a randomly selected sample of all snack foods. 

Confidence interval approach 

In Chapter 6 we use confidence intervals to estimate the value of an 
unknown population parameter. Here, we first find the observed re­
gression coefficient and then add and subtract a sampling error term 
to the regression coefficient. In the snack food example, the sample 
regression coefficient is 15.3 calories per gram, and we compute that 
the sampling error equals 4.0. The 95% confidence interval for the 
population slope f3 therefore is 15.3 - 4.0 = 11.3 calories per gram to 
15.3 + 4.0 = 19.3 calories per gram. Hopefully, the interval from 11.3 
to 19.3 is one of the 95% of all intervals that contain the population 
regression coefficient f3 and not one of the few intervals that do not 
contain f3. Formula 10.7 shows how to compute the confidence interval. 

The most noticeable feature of this interval is that it does not con­
tain the value O. We take that to mean that 0 is not a possible value of 
the population regression coefficient. Since 0 is not a possible value of 
the slope f3, we conclude that f3 must be different from O. If the slope 
is not 0 for the line in the population, there must be a relationship 
between the two variables-fat content and calories-in the popula­
tion of all snack foods, not just in the sample. 
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Hypothesis testing using t 

The hypothesis testing approach in Chapter 7 is based on the null 
hypothesis that there is no relationship between the two variables. To 
test the null hypothesis we use either the observed sample regression 
coefficient b or the observed sample correlation coefficient r. They both 
transform to the same value of the statistical t-variable. From the re­
sulting value of t, we can find the p-value for our data and then make 
a decision about the null hypothesis. The p-value is the probability of 
getting the sample data or more extreme data from a population where 
there is no relationship between the variables. 

Figure 10.9 illustrates the process. Here, b = 15.3 calories per gram, 
and this value of b corresponds to t = 8.24 with n - 2 = 14 degrees of 
freedom (Formula 10.8). Similarly, r = 0.91 also corresponds to t = 

8.24 (Formula 10.9). From the computer output or from a table of the 
t-distribution, we find that the probability of getting a value of t equal 
to or larger than 8.24 is less than 0.0001. Thus, if we have a population 
where there is no relationship between the two variables, fewer than 1 
in 10,000 different samples will have a value of t of 8.24 or larger. This 
means that the observed sample relationship or stronger is almost im­
possible by chance alone. Because the p-value is so small, we reject the 
null hypothesis of no relationship. The small p-value conveys that if 
there is no relationship in the population of all the data, a sample can 
almost never have a slope of 15.3 or larger or a correlation coefficient 
of 0.91 or larger. 
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Figure 10.9 Changing the regression coefficient b and the correlation coef­
ficient r to their values of t 
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Table 10.5 

Source 

Fat content 

Residual 

Total 

Hypothesis testing using F 

In addition to finding a value of the t-variable from either the slope b 
or the correlation coefficient T, there is a third way of testing a hypoth­
esis. Two different ways is already one more than we need, but the third 
way can be used to generalize, and it is included here in anticipation 
of Chapters 12 and 13. 

The third approach is based on Table 10.4. Adding three more 
columns to that table (Table 10.5) enables us to compute a value of 
the statistical F-variable, introduced in Chapter 5 with the z-, t-, and chi­
square variables. The value of F can be used to judge the null hypoth­
eSIS. 

The column headed "Mean square" is obtained by dividing each 
sum of squares by its corresponding degrees of freedom. Since the 
regression sum of squares has only 1 degree of freedom, the regression 
mean square is also equal to 131,878. The residual mean square (RMS) 
is 27,182/14, which equals 1941.6. Then, the regression mean square 
is divided by the residual mean square (131,878/1941.6), giving an F 
of 67.90 with 1 and 14 degrees of freedom. Finally, the probability of 
getting an F of 67.90 or more by chance is less than 0.0001, and the 
null hypothesis is rejected. 

The p-value is the probability of getting a value of the F-variable 
larger or equal to 67.90 in sample data from a population where there 
is no relationship between the variables. We know that t = 8.24, and 
we now find that the p-value for F equals the probability that t is less 
than - 8.24 plus the probability that t is larger than 8.24. Thus, the p­
value for Fis the same as a two-sided p-value for the t-variable. 

Testing the null hypothesis using F 

Sum of Degrees of Mean 
squares Proportion freedom square F-ratio p-value 

131,878 0.829 1 131,878.0 67.90 0.0000 

27,182 0.171 14 1,941.6 

159,060 1.000 15 
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With observational data, we usually cannot choose the range of values 
we observe of any particular variable. We ask people how old they are 
and we record their answers. With experiments, however, we often have 
a choice of values to use for an independent variable. Sometimes this 
choice affects the results of the analysis. 

Let us illustrate the point with a small example using the following 
two sets of data. We want to study the relationship of Yl and Xl and 
the relationship of Y2 and X2. 

Data set 1 Data set 2 

Xl Yl X2 Y2 

1 3 1 3 

1 7 1 7 
3 7 15 31 

3 11 15 35 

First we make a scatterplot and draw the regression lines for each data 
set (Figure 10.10). The two lines have the same slopes and the same 
intercepts, but the line in the graph for data set 2 is longer. The points 
in both graphs are all the same distance away from the line-one unit 
either above or below the line. 

When we look at the two lines, in graph b the points seem closer 
to the long line than the points in graph a to the short line. As in a 
perception experiment, things look different even though they are the 
same. This apparent difference is reflected in the two correlation co­
efficients: in graph b with the longer line, r = 0.99, while in graph a 
with the shorter line, r = 0.71. This means that the correlation coeffi­
cient measures not only how close the points are to the regression line 
but how spread out the x and y values are. 

There is also a difference in the p-values in the two data sets. The 
short line is not significantly different from 0 since t is equal to 1.41 
and the p-value is a large 0.15. The longer line, however, is significantly 
different from 0 since t is a large 9.90 and the p-value is a small 0.005. 

This means that we have to be skeptical about the meaning of sta­
tistical significance and the amount of correlation between two varia­
bles. Significance and a large value of r can always occur if we have 
control over the values of the independent variable x and choose values 
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Figure 10.10 Difference in correlation and significance for the same slope 
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that are spread out. But this usually happens only with experiments 
where we are free to choose the values of the independent variable. In 
an observational study, we have to use the values of the independent 
variable that the sample provides. 

10.6 I 

So far we have used regression and correlation with metric variables. 
However, there are situations where it would be handy to use correla­
tion and regression with other types of variables. In this section, we use 
them in problems involving one categorical variable and one metric 
variable. 

Categorical independent variable with two values and metric 
dependent variable 

If you are looking for a new place to live, climate is important in your 
choice. Choosing a location can be difficult, however, if you rely only 
on yearly mean temperatures, because different regions have different 
ranges of temperatures in summers and winters. This problem can be 
studied with the use of correlation and regression. 

Suppose you want to be near an ocean, on either the east or west 
coast of the United States, and you would like a warm climate. To begin 
the analysis, let the range of temperature be equal to the difference 
between the mean temperatures inJuly and January. For example, the 
mean temperature in Philadelphia in July is 76 degrees and inJanuary 
it is 32 degrees. You really feel the change in the seasons, and the range 
in temperature is 76 - 32 = 44 degrees. In San Diego the same num­
bers are 70 and 55, so there the range is only 15 degrees. You want to 
find out whether the range is generally different for coastal cities on 
the East Coast and the West Coast. 

The independent variable region has two values, East Coast and 
West Coast. This is a categorical variable. The dependent variable is 
range, and it is a metric variable. Since the region variable has only two 
values, the analysis can be done by defining a dummy variable for region. 
The two numerical values for a dummy variable can be anything, but 
we commonly use 0 and 1. This scheme works only when the original 
categorical variable has two categories. If the categorical variable has 
more than two categories, we have to turn to other methods. 
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A dmnmy variable is a variable with only two numerical values, and 
it is used to represent a categorical variable with two categories. 
One value of the dummy variable is assigned to all the observa­
tions in the first category of the categorical variable, and the other 
value of the dummy variable is assigned to all the observations in 
the second category. 

All the dummy variable really does is to identify the two categories. 
For computing purposes, the use of the dummy variable makes the 
categorical variable region into a variable with the two numerical values 
o and 1. Here we assign cities on the West Coast a value of 0 on the 
dummy variable and cities on the East Coast a value of 1. The scatter­
plot of the dummy variable for region and the range variable are shown 
in Figure 10.11. If we now ask the computer software to do a regression 
analysis for these variables, it produces the regression line shown in 
the figure. The computer software does not know that the dummy 

45.0 

\5.0 * 
I 

0.00 
West Coast 

Region 

1.00 
East Coast 

Figure 10.11 Categorical independent variable and metric dependent vari­
able (Source: Data Desk SMSAjile.) 
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variable is a categorical variable. The software simply computes all the 
quantities we need for a regression analysis. 

In the scatterplot, the temperature ranges in six cities on the East 
Coast vary from about 39 to 44 degrees, while on the West Coast tem­
perature ranges in five cities vary from about 15 to 24 degrees. Since 
the ranges on the West Coast are smaller than those on the East Coast, 
the regression line has a positive slope. Ifwe had assigned 0 to the East 
Coast cities and 1 to the West Coast cities, the points in the scatterplot 
would have been reversed and the regression line would have had a 
negative slope. 

The regression equation for these data is 

range = 17.6 + 24.7 region 

The intercept is simply the mean of the ranges of temperature for the 
West Coast cities, since these cities have the value 0 on the dummy 
variable region; that mean equals 17.6. When region equals 1 and we 
substitute that value into the equation for the regression line, we get a 
predicted range of 42.3, the mean of the temperature ' ranges for the 
East Coast cities. The slope of 24.7 is the difference between the means 
of the East Coast and the West Coast cities. 

The fact that the slope of the regression line is different from zero 
indicates a relationship between region and range of temperature for 
these data. The strength of the relationship is measured by r = 0.98. 
To test the null hypothesis that there is no relationship between the 
two variables in the population of all cities, we change the correlation 
coefficient r or the regression coefficient b to a t-value. For these data, 
t = 13.30 on 9 degrees of freedom. Using statistical software, we find 
a significant t-value and a p-value less than 0.0001. Statistical Table 2 
for the t-distribution goes only to t = 4.30 on 9 degrees of freedom, 
and that corresponds to a p-value of 0.001. Since the observed t-value 
is much larger than 4.30, the p-value for the data must be much less 
than 0.001. 

The small p-value is overwhelming evidence for the fact that the 
range in temperature from summer to winter is larger for East Coast 
cities than for West Coast cities. Less than one in 10,000 samples would 
produce this or more extreme data if there were no difference between 
the cities on the two coasts. Thus, there is evidence for the fact that 
the seasons vary more on the East Coast than on the West Coast. Ifwe 
had studied this problem using the methods developed in Chapters 7 



434 Chapter 10· Regression and Correlation for Two Metric Variables 

and 11 for the difference between two means, the results would have 
been identical, with the same value of t and the same frvalue. 

Categorical dependent variable with two values and metric 
independent variable 

This problem is the reverse of the temperature range/region problem. 
In this example, the dependent variable (national origin of cars) is a 
categorical variable with two categories, and the independent variable 
(drive ratio) is a metric variable. When we use a dummy variable for 
the dependent variable, a scatterplot of the data looks something like 
the plot in Figure 10.12. The dependent variable, national origin, has 
the two values foreign and domestic. 

In this case the scatterplot of the data is so nonlinear that we cannot 
fit a straight line through the points. The reason is that all the points 
in the scatterplot are located along two horizontal lines, one line for 

Foreign 1 • •• • •• • •••• • 

o.s 

0.6 

0.4 

0.2 

Domestic 0 +--........ ---,-......----.... -------,---,-----.---,---..-----.---
2.5 3.0 3.5 4.0 

Drive ratio 

Figure 10.12 Categorical dependent variable and metric independent vari­
able 



y = 0 and the other for y = 1. Instead of a line, we fit an S-shaped curve 
to the data, as shown in the graph. This type of analysis is called logistic 
regression. The curve starts at the points in the upper right part of the 
graph and follows these points for a while, then rapidly scoots down to 
pick up the points in the lower left part of the graph. The curve has 
much smaller residuals than would any straight line through the points. 

The dummy variable represents the national origin of a car, with 1 
for foreign and 0 for domestic. Any value between 0 and 1 is interpreted 
as the probability that a car is foreign. Thus, if we know that a car has 
a drive ratio of 3.5, we locate that value on the horizontal axis and go 
up to the curve and over to the vertical axis to find the value 0.87. This 
number is the estimated probability that a car with a drive ratio of 3.5 
is a foreign car. 

Statistical methods to help us answer this question exist, and we con­
sider those methods in Chapter 13. The methods are based on bringing 
in other variables and finding out if they can explain the observed 
relationship between the original two variables. At this point, intuitively 
it may make sense that fat influences calories, but we cannot tell statis­
tically. Even though the relationship may not be causal, we can still use 
the results of the analysis and predict calories if we knew the fat con­
tents in a new variable. 

Correlation and regression are the two complementary methods for 
analyzing the relationship between two metric variables. Correlation 
describes the extent to which the two variables are related. Regression 
analysis describes the way in which a dependent variable is affected by 
one or more independent variables. Simple regression refers to re­
gression analysis with one independent variable. 

10.1 Question 1. Relationship between the variables? 

For a visual impression of whether there is a relationship between the 
variables, the data can be displayed in a scatterplot. The scatterplot is 
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used to see if the data are suitable for correlation and regression anal­
yses. Scatterplots are made with the independent variable running hor­
izontally and the dependent variable running vertically. If the data 
points seem to scatter along a line from the lower left to the upper 
right in the graph, there is a positive relationship between these two 
variables. In a scatterplot with a negative relationship between the two 
variables, the points start in the upper left corner and fall along a line 
to the lower right corner. If the points in the scatterplot seem to be 
randomly distributed, there is very little or no relationship between the 
variables. 

10.2 Question 2a. Strength of the relationship? 

If there is a relationship between the» and the ~variable, we can find 
out in what way the y values differ as the x values increase or decrease. 
The statistic that measures how strong the relationship is between two 
metric variables is the correlation coefficient r. The value of r always 
lies somewhere between - 1 and + 1. When the value of r is close to 
+ 1 or -1, there is a very strong relationship between the two variables. 
When r equals 0, there is no relationship between the two variables. 
When r is positive, the values of the variables increase and decrease 
together; when r is negative, the values of one variable increase as the 
other values decrease. 

10.3 Question 2b. Form of the relationship? 

In regression analysis, a regression line represents the relationship be­
tween the two variables. This line is drawn through the middle of the 
data points in a scatterplot. The slope of the line measures how steep 
the line is. The larger the slope of the line, the more difference there 
is in the dependent variable for each unit difference in the indepen­
dent variable. The intercept of the regression line is the point on the 
vertical axis, when the independent variable equals 0, where the re­
gression line cuts through that axis. The regression line is determined 
by the slope and intercept of the line: an estimated value of the de­
pendent variable equals the intercept value plus the value of the slope 
times the value of the independent variable. The regression line is found 
by the least squares principle. 



A regression equation can be used to predict the value of the de­
pendent variable from a value of the independent variable. The pre­
dicted values of the dependent variable are estimates of the actual 
values. 

The combined effect of all independent variables other than the 
selected independent variable is known as the residual variable. The 
total sum of squares measures the effect of all variables on the depen­
dent variable. It is found as the sum of (observation - mean)2 for all 
the observations of the dependent variable. The residual sum of 
squares measures the effect of all variables other than the independent 
variable on the dependent variable. It is found as the sum of (obser­
vation - estimated value) 2 for all the observations of the dependent 
variable. The regression sum of squares measures the effect of the in­
dependent variable on the dependent variable. It is found as the sum 
of (estimated value - mean) 2 for all values of the dependent variable. 
The total sum of squares equals the regression sum of squares plus the 
residual sum of squares. The proportion of the effect on the variation 
in the values of the dependent variable that is due to the independent 
variable is always equal to the square of the correlation coefficient be­
tween the independent variable and the dependent variable. 

To learn about the relationship between two variables, it is impor­
tant to know the results of both the correlation and the regression 
analysis. A correlation coefficient can be high, but the regression line 
almost flat and therefore usually uninteresting. A regression line may 
be steep, but the points scattered far from the line making the corre­
lation low. 

To predicting changes in a variable, the regression coefficient b 
must be computed on data measured over time. It is harder to predict 
change if data observed over time are not available. 

10.4 Question 3. Relationship in the population? 

To find if there is a relationship between the two variables in the pop­
ulation from which the sample data came, we generalize from the sam­
ple data by constructing a confidence interval for the population re­
gression coefficient f3 or by testing a null hypothesis of no relationship. 
To find the p-value for the data, we change the regression coefficient 
b or the correlation coefficient r to a value of the t variable. It is also 
possible to use the data to compute a value ofthe F-variable and thereby 
find the p-value. 

10 .8 Summary 437 
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10.5 A word of warning: What you measure is what you get 

We must be cautious in interpreting statistical significance and the size 
of correlation coefficients between two variables. Statistical significance 
can more easily be obtained from large samples, and a large value of r 
can more easily be obtained if the values of the independent variable 
are spread out. 

10.6 How to be smart using dummy variables 

Simple correlation and regression analyses can be used with a metric 
variable and a categorical variable that has two categories. A dummy 
variable represents the values of the categorical variable, and most of­
ten the values 0 and 1 are used for the dummy variable. When the 
dependent variable is a categorical variable, we can fit an S-shaped 
curve to the data. This method of analysis is called logistic regression. 

10.7 Question 4. Causal relationship? 

From the data on only two variables we cannot tell if the relationship 
is causal, but we can still predict values of the dependent variable if we 
know the values of the independent variable. 

ADDITIONAL READINGS 
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The data for n observations on two variables x and y can be expressed 
using these symbols: 

x Y 

Xi Yi 

CORRElATION COEFFICIENT AND REGRESSION COEFFICIENT 

(SLOPE) 

The correlation coefficient r is found by the expression 

.J [n~xT - (~x;)2] [n~xT - (~x;)2] 

The slope b of the regression line is found by the expression 

b = ~(Xi - x) (Yi - Y) = n~x;Yi - ~X~Yi 
~(Xi - X) 2 n~xT - (~xy 

(10.1) 

(10.2) 

The left-hand formulas for rand b are sometimes used to define r 
and b. They are not easy to use for calculations because the mean must 
be subtracted from each of the observations. The right-hand formulas 
are quicker to use when doing the calculations without a computer. 

Notice that the numerators for rand b are the same, and the de­
nominators are almost the same. It follows from the formulas for the 
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correlation coefficient r and the regression coefficient b that the two 
are related according to the expression 

(10.3) 

where the s's are the standard deviations of the two variables x and y. 

INTERCEPT 

The intercept a for the regression line is found by the expression 

a=y-bx (10.4) 

As an example of a regression analysis, consider the following data 
on x and y. According to Formulas 10.1 and 10.2 for the correlation 
coefficient and the regression coefficient, we need to multiply x and y 
and add the products, to square the x-values and add the squares, to 
square the ~values and add the squares, as well as to add x and add y. 
These computations are best set up in a table: 

x y x2 xy i 
1 3 1 3 9 

2 2 4 4 4 

3 5 9 15 25 

4 6 16 24 36 

Total 10 16 30 46 74 

With these numbers, 

b= 
(4)(46) - (10)(16) = 184 - 160 = 24 = 1.20 

(4) (30) - 102 120 - 100 20 

16 (10) a = "4 - 1.20 "4 = 4.0 - 1.20(2.5) = 4.0 - 3.0 = 1.0 

(4)(46) - (10)(16) 184 - 160 
r = -;J:;;=[ (;:;:4 );::;(;:30;:;:) =-=1;::;0::;;::;2]::;:[ (:;::;:4;:::)(~7 4:;::)=-=;::16~2] J [120 - 100] [296 - 256] 

24 = ~ = 0.85 
J [20] [40] 28.28 



SUMS OF SQUARES 

The various sums of squares are found as follows: 

total sum of squares (TSS) = L(Yi - ji)2 

regression sum of squares (RegrSS) = L(a + bXi - ji)2 (10.5) 

residual sum of squares (RSS) = L(Yi - a - bXi)2 

r = RegrSS 
TSS 

CONFIDENCE INTERVAL FOR THE POPUlATION REGRESSION 

COEFFICIENT P 
The interval is 

to 

(10.6) 

(10.7) 

Here, b is the observed regression coefficient, t* is the (1 - a/2) value 
of t with n - 2 degrees of freedom from the Hable, and Sb is the stan­
dard error of b. The standard error of b is most often found by having 
statistical software, but it can be computed from the expression 

HYPOTHESIS TESTING 

From the value of the regression coefficient b, 

b 15.3 
t= - = - = 8.24 

Sb 1.85 
(10.8) 

for our example with fat content and calories. The same value of t is 
found from the correlation coefficient r according to the formula 

r 0.910 
t = = = 8.24 J1 -r2 J1 -0.829 

n - 2 16 - 2 

(10.9) 
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EXERCISES 

REvIEw (ExERCISES 10.1-10.31) 

10.1 How do you define the correlation between two variables? 

10.2 The word regression usually refers to a movement backward. 
What movement does regression refer to in statistical analysis? 

10.3 What do we mean by the term "simple" regression analysis? 

lOA a. What did Francis Galton find in his study of short and tall 
parents and children? 

b. What effect does this study illustrate? 

10.5 a. Give an example of two variables for which you would use 
correlation and regression analysis. 

b. What two statistics are first computed in regression? 

10.6 What is the purpose of creating a scatterplot? 

10.7 a. In a scatterplot, which variable is measured on the x-axis and 
which on the y-axis? 

b. You want to plot data on the number of TV antismoking 
commercials watched and rate of quitting smoking among high 
school TV viewers. Which variable would you put on the x-axis? 

c. What is X'-axis variable called? 

d. What does a scatterplot look like that shows a positive rela­
tionship between two variables? 

10.8 Suppose you made a scatterplot for the rates of illiteracy within 
city blocks and the rates of drug-related crime. 

a. How would you expect the scatterplot to look? 

b. In which direction would the points seem to scatter, upward 
or downward from the x-axis? 

c. What would this directional flow of data points mean to the 
statistically acute observer? 

10.9 A look at a scatterplot indicates that there are 3 points (out of 
100) that are far away from the main clusters of points. What impact, 
if any, would there be on the correlation coefficient if these three 
points were removed? 



10.10 a. What are some names for the correlation coefficient r? 

b. What are the largest and smallest possible values of r? 

c. Which is stronger, a correlation of + 1.00 or - 1.00? Explain 
your answer. 

d. How is the correlation coefficient rdifferent from phi or V? 

10.11 In Table 10.2, the correlation coefficients on the diagonal of 
the table are all equal to 1.00. Why is this? 

10.12 a. How strong is the relationship between two variables when 
the correlation coefficient r falls between 0.75 and 1.00? 

b. How strong is the relationship between two variables when 
the correlation coefficient r falls between - 0.70 to - 0.30? 

c. How strong is the relationship between two variables when 
the correlation coefficient r falls between 0 and 0.25? 

10.13 If you could design a better society than the present one, what 
would be the desired correlation coefficient between the following var­
iables? Give a numerical value as well as a verbal description. 

a. Level of income and level of taxes 

b. Number of years of education and amount of illiteracy 

c. Height of a person and size of pay check 

10.14 a. Name the line that runs through the middle of the points 
of a scatterplot. 

b. What does the line convey about the two variables? 

c. If the line has a positive slope, from where to where on the 
scatterplot does the line run? 

d. If the line has a negative slope, from where to where on the 
scatterplot does the line run? 

e. What does a line with a negative slope convey about the 
correlation between the two variables? 

f. What does the steepness of the line indicate? 

10.15 The y-intercept of the regression line is the spot where the line 
cuts through the y-axis when x equals O. 

a. What is the y-intercept for the fat/calorie examples? 

b. Explain this value so that a dieter might understand it. 
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10.16 The regression line found by the least squares method is the 
line that is closest to all the points in the scatterplot. What does the 
term least squares refer to? 

10.17 The regression line and the regression equation can be used 
to predict a value of the dependent y-variable from the independent ~ 
variable. What symbol do we use to designate a predicted value of the 
dependent variable? 

10.18 What are some of the variables that might go into the residual 
variable in the study of the effect of fat content on calories? 

10.19 The total sum of squares can be seen as composed of two parts. 

a. What are the two parts? 

b. How are the two parts calculated? 

10.20 Write down the regression equation for the fat/calorie prob­
lem. Describe each part of the equation and the use of the equation 
for understanding the relationship between fat content and calories. 

10.21 If all the points in a scatterplot were found directly on the re­
gression line, what conclusions could you draw about 

a. the effect of the independent variable on the dependent 
variable? 

b. the effect of the residual variable on the dependent variable? 

c. the correlation coefficient between the ~ and the y-variable? 

10.22 Give an example of two variables where you would want to find 
out whether or not the intercept of the regression line equals zero. 

10.23 a. Compare the merits of regression and correlation analyses. 

b. What does each one do that is special in an analysis of two 
metric variables? 

10.24 What is the connection between r and the proportion of the 
variation of the dependent variable due to the independent variable? 

10.25 "The more the merrier" can mean that the more people there 
are at a party, the merrier the party is. Is the relationship between the 
size of the party and the merriment positive or negative? 

10.26 a. What does the Greek letter f3 stand for in regression? 

b. When is it used? 



10.27 Name two methods that can be used in regression analysis to 
decide whether the relationship between two variables in a sample is 
statistically significant. 

10.28 What two theoretical statistical variables are useful in finding 
the p-value that indicates whether an observed sample relationship is 
statistically significant? 

10.29 a. What effect does extending the values ofthe X'-variable in an 
experiment have on the size of the correlation coefficient? 

b. Does this have any effect on the p-value for the correlation 
coefficient? 

10.30 a. What is a dummy variable? 

b. When is a dummy variable used? 

c. Give an example of how you might use a dummy variable in 
studying the differences between golf scores on windy and calm 
days. 

10.31 a. When do we use the method known as logistic regression? 

b. Create a problem using a dummy variable for which this type 
of approach would be helpful. 

INTERPRETATION (ExERCISES 10.32-10.48) 

10.32 You have data on crime rates for each of the 48 contiguous 
states, and you would like to know whether different types of crimes 
are related. When you do a regression analysis of larceny rates as de­
pendent variable on robbery rates as independent variable, you find 

larceny = 2,682 + 1.49 robbery (t = 2.05 with 46 d.f., P = 0.023) 
(Source: Bureau of the Census, Statistical Abstracts of the United States: 1995, 115th ed., 

Washington, D.C., 1995.) 

a. What conclusion can you draw about the relationship be­
tween larceny and robbery from this analysis? 

b. What are some of the conclusions you cannot draw about 
the relationship from this analysis? 

10.33 Another way to consider the draft data in Exercise 9.29 is to let 
the independent variable x be equal to 1 for January, 2 for February, 
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up to 12 for December. Let the dependent variable y be the mean of 
the draft numbers for each month. 

a. If you make a scatterplot of the data points (x, y) for the 12 
months and perform a regression analysis, what values would 
you expect to get for the intercept, the regression coefficient 
for x, and the correlation coefficient for a lottery that was truly 
random? 

b. What do you conclude about the draft lottery when the anal­
ysis gives the following results? 

mean draft number = 230 - 7.1 month (r = - 0.87) 

c. The value of t for the correlation coefficient equals - 5.50. 
Could this value have occurred by chance alone? 

10.34 Sometimes it seems that the better things taste, the worse they 
are for us. Table 10.6 shows some data on different types of chocolate 
frozen yogurts. The first column of numbers shows the percentage of 
the calories in the yogurts that come from the fat in the yogurts, and 
the second shows the rating of the flavor of the yogurts determined by 
a panel of trained tasters on a scale from 0 to 100. A regression analysis 

Table 10.6 Data for Exercise 10.34 

Percent calories 
Brand fromjat Flavor rating 

Breyers 24 85 

Honey Hill Farms 33 85 

Elan 21 80 

Crowley Silver Premium 20 78 

Edy's/Dreyer Inspirations 25 74 

Haagen-Dazs 21 71 
Kemps 20 65 

Lucerne 23 63 

Yoplait Soft 20 61 

Albertsons 12 51 

Source: "Low-fat frozen desserts: Better for you than ice cream?" Consumer Reports, vol. 57, 
no. 8 (August 1992), pp. 483-487. 



of flavor as the dependent variables and the percentage of calories from 
fat as the independent variable gives the following result: 

flavor = 37 + 1.6 (percentage of calories from fat) 

(r = 0.74, t = 3.11,8 dJ., P = 0.0073) 

a. Make a scatterplot of these data. 

b. Draw in the regression line. 

c. What do you conclude about the relationship between the 
two variables? 

d. Why might we prefer to eat the desserts that lie above the 
regression line rather than the ones that lie below the line? 

10.35 Is there any difference in cost between chocolate and vanilla 
frozen desserts? In data collected by Consumer Reports, the mean cost 
per serving of the chocolate desserts studied equals 29.4 cents, and for 
the vanilla desserts the mean cost equals 30.4 cents. (Source: ''Low-fatfrozen 
desserts: Better for you than ice cream?" Consumer Reports, vol. 57, no. 8 (August 
1992), pp. 483-487.) To see if the difference between the two means is 
statistically significant, you introduce a dummy variable for the type of 
dessert and do a regression analysis. You give all the chocolate desserts 
the value of 1 on the dummy variable type and all the vanilla desserts 
the value of 0 on the same dummy variable. A regression analysis with 
cost as the dependent variable and type as the independent variable 
gives the result 

cost = 29.4 + 1.0 type 

a. How could you have found the intercept and slope of this 
analysis directly from the two means? 

b. The slope b = 1.0, and this value of b translates t = 0.18 on 
42 dJ. Is there a statistically significant effect of type on cost? 

10.36 Many factors affect poverty, and education may be one of them. 
One way to study the relationship between those two variables would 
be to collect data from individuals on the amount of education they 
have and the size of their income. In this exercise, the data are not on 
individuals but on states. From the Census Bureau we find the per­
centage of the adult population in each state that has a ninth-grade 
education or less and the percentage of the population with income 
below the official poverty level. 
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Regressing the percentage below the poverty level on the percent­
age with ninth-grade education or less for the 50 states and the District 
of Columbia gives 

percent poor = 4.6 + 0.8 percent low education 

(r = 0.70, t = 6.72 on 49 d.f., P < 0.0001) 

a. What does the value 0.8 of the regression coefficient tell us? 

b. What is the probability of a correlation coefficient of 0.70 
or more by chance alone in a sample of 51 observations from 
a population where the correlation coefficient equals O.OO? 

c. The scatterplot of these data is shown in Figure 10.13. Why 
are some of the points above the regression line and some be­
low the line? 

d. The states with the largest negative residuals are New Jersey, 
Connecticut, Hawaii, Rhode Island, and Virginia. What might 
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Figure 10.13 Scatterplot of people below poverty level and people with 
ninth-grade education or less (Exercise 10.36) (Source: 1990 U.S. Census data 
reported in The Chronicle of Higher Education, vol. 34, no. 1 (August 26, 1992), p. 4.) 



some of the reasons be that these states lie below the regression 
line? 

e. The states with the largest positive residuals are Mississippi, 
Louisiana, New Mexico, Montana, and Utah. What might some 
of the reasons be that these states lie above the regression line? 

10.37 When we regress the percentage of the population below the 
poverty level on the percentage of the population with at least a college 
degree, using the state as the unit, 

percent poor = 26.9 - 0.7 percent college or more 

(r = - 0.62, t = - 5.54 on 48 d.£., P < 0.0001) 

a. Why is it not surprising that the regression coefficient for 
the college variable is negative? 

b. Could this relationship have occurred by chance alone? 

c. Is the relationship between the two variables causal? 

d. Why does it make sense to leave out Washington, D.C., in 
analyzing these two variables? 

10.38 Many people who finish high school do not go on to college. 
Here we look at the percentage of people 18 to 24 years old who were 
enrolled in college each year from 1980 to 1990. (Source: Data from annual 
Census Bureau surveys of 60, 000 households as reported in The Chronicle of Higher 
Education, vol. XXXIX, no. 1 (August 26, 1992), p. 12.) We look separately at 
blacks, Hispanics, and whites. To simplify the analysis we code 1980 as 
the value 0, 1981 as 1, and so on, up to 1990 as 10. When we do a 
regression analysis with the yearly percentages enrolled in college as 
the dependent variable and years from 0 to 10 as the independent 
variable, we get these three regression lines: 

Blacks: percent = 26.5 + 0.42 year 

Hispanics: percent = 29.9 - 0.08 year 

Whites: percent = 31.1 + 0.75 year 

r = 0.71 

r= -0.22 

r = 0.97 

a. Draw the three regression lines on one graph. 

b. What is the meaning of the coefficient 0.42 for blacks? 

c. The college enrollment percentages of which of the three 
groups increased fastest from year to year in this period? 
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d. Describe the three lines and how they differ from each 
other. 

e. Why do you think the line for Hispanics has a negative slope 
and shows a declining percentage of 18- to 24-year-old Hispan­
ics attending college across the decade of the 1980s? 

10.39 In a regression problem, Sam discovers that for every unit of 
change in the independent variable X, on the average there is a change 
of 10.2 for the dependent variable Y1. Anne discovers that for every 
unit change in the independent variable, on the average there is a 
change of 4.2 for another dependent variable Y2. 

a. In a figure showing these data, which regression line slope 
is steeper? 

b. Do all of the units of the dependent variable increase by 
10.2 with a unit change in the independent variable? 

c. Do you think there is a relationship between the two depen­
dent variables YI and Y2? 

10.40 A well-known statistician collected and analyzed data on the 
height (in inches) of fathers and their children. (Source: Class data, intro­
ductory statistics course, Swarthmore College, 1992.) She found the following 
results: 

offspring height = 1.52 + 0.75 father height 

(r = 0.59, r2 == 0.34, t == 2.90, P == 0.0051, n == 18) 

a. What do the results of the statistical analysis tell you about 
the relationship between the two variables? 

b. The 95% confidence interval for the population regression 
coefficient is 0.20 to 1.30. What is the interpretation of this 
interval? 

10.41 The effects of chemicals on animals is often studied by giving 
increasingly larger doses to groups of animals and seeing how many 
animals respond in each group. The data in Table 10.7 show how many 
test animals responded to different dose rates in a study of the effect 
of dieldrin (a white crystalline insecticide C12HsC160). 

a. How does increasing the dose seem to affect the proportion 
of mice responding to dieldrin? 



Table 10.7 Data for Exercise 10.41 

Dose rate Proportion Number of 
(ppm) responding animals 

0.00 0.11 156 

1.25 0.18 60 

2.50 0.43 58 

5.00 0.73 60 

Source: A. 1. T. Walker, E. Thorpe, and D. E. Stevenson, "The toxicology of dieldrin (HEDD): 
1. Long-term oral toxicity studies in mice, "Food and Cosmetics Toxicology, vol. 11 (1972), 
pp. 415-432. 

b. In a regression analysis of the proportion responding to the 
dose rate (without taking into account the number of animals 
in each group), 

proportion responding = 0.08 + 0.13 dose rate 

(t = 9.24, P = 0.006) 

What do these numbers tell you about the relationship between 
the two variables? 

c. What do these numbers not tell you about the relationship 
between the two variables? 

10.42 Figure 10.14 (page 452) shows a scatterplot of the number of 
incidences of malignant melanoma cases reported in Connecticut per 
10,000 inhabitants from 1936 to 1972. Melanomas are skin tumors con­
taining dark pigment and may be cancerous. A regression analysis of 
the data results in the regression line shown on the graph. The equa­
tion for this line is 

incidences = - 2,l27 + 1.1 year (r = 0.963) 

(The reason for the large negative value of the intercept is that the 
independent variable year has such large values, ranging from 1936 to 
1972, and the line has to be extended a long way down to the left before 
we find the actual y-intercept.) The regression analysis also results in 
Table 10.8 (page 452). 
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Figure 10.14 Number of incidences of melanoma in Connecticut 1936-
1972 (Exercise 10.42, page 451) Sou~ce: A. Houghton. E. W. Muenster, and M. V. 
Viola, "Increased incidence of malignant melanoma after peaks of sunspot activity, " The 
Lancet, April 8, 1978, pp. 759-760, as reported in D. F. Andrews and A. M. Herzberg, 
Data: A Collection of Problems from Many Fields for the Student and Research Worker, 
New York: Springer-Verlag, 1985, p. 201. 

Table 10.8 Data for Exercise 10.42 (page 451) 

Sum oJ Degrees oj Mean 
Source squares Jreedom square F-ratio ~value 

Year 5131 1 5131.0 453 0.0000 

Residual 396 35 11.3 

Total 5527 36 

Source: A. Houghton, E. W. Meunster, and M. V Viola, "Increased incidence of malignant 
melanoma afterpeaks of sunspot activity, "The Lancet, April 8, 1978. pp. 759-760, as 
reported in D. F. Andrews and A. M. Herzberg, Data: A Collection of Problems from 
Many Fields for the Student and Research Worker, New York: springer-Verlag, 1985, 
p.201. 



a. Describe the regularities in the scatterplot and what they 
suggest about possible further analyses of these data. 

b. What does the equation for the regression line tell you about 
the relationship between the two variables? 

c. What do the numbers in the table tell you about the rela­
tionship between the two variables? 

10.43 The British runner Roger Bannister made history in 1954 when 
he became the first person to run 1 mile in less than 4 minutes at a 
track meet. Since that time, new world records in the mile race for men 
have been set more than a dozen times up through 1993, when Nou­
reddine Morceli from Algeria ran the mile about 15 seconds faster than 
Bannister, at a time of 3: 44.39. A scatterplot of the record time as the 
dependent variable and the year the record was set as the independent 
variable shows a remarkably straight-lined relationship. The correlation 
between the two variables r = - 0.968. To make the results of the re­
gression analysis easier to work with, we first subtract 3 minutes from 
all the records and 1900 from all the years. Morceli's numbers become 
44.39 for the time and 93 for the year. With these changes, the equation 
for the regression line is 

record = 70.07 - 0.3468 year 

a. Based on this regression analysis, how much would you ex­
pect the record to change in a 10-year period? 
b. How much would you expect the record to change in a 39-
year period compared to the actual change of 15 seconds? 

c. How much faster or slower did Morceli run compared to 
what you predict his time to be? 

d. What do you predict the world record in the mile will be in 
the year 2000? 

10.44 The annual college guide from U.S. News and World Report has 
a wealth of data on a large number of colleges and universities. The 
meaning of the rankings is debatable, but schools do like to be ranked 
high. Look at the dozen top-ranked national universities (excluding 
California Institute of Technology) and how much they spend on each 
student in a year in Table 10.9 (page 454). The spending figure comes 
from dividing the annual budget by the number of students, and it is 
higher than tuition and fees because the schools subsidize students 
from other incomes. 
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Table 10.9 Data for Exercise 10.44 (page 455) 

Spending per student per year 
University Rank (thousands of dollars) 

Harvard 1 36 

Princeton 2 28 

Yale 3 39 

MIT 4 33 

Stanford 5 36 

Duke 6 26 

Dartmouth 7 30 

Chicago 8 37 

Cornell 9 21 

Columbia 10 31 

Brown 11 20 

Northwestern 12 25 

Source: Americas Best Colleges 1994 College Guide, U.S. News and World Report, pp. 20-
21. 

In a scatterplot of these data, some schools lie above the regression 
line and some lie below it. A regression analysis of rank on spending 
gives a line with the equation 

rank = 17 - 0.34 spending r= -0.60 

The relationship is negative because highest-ranked Harvard has the 
lowest numerical rank and is therefore located at the bottom of the 
scatterplot, and Northwestern with rank 12 is located at the top. 

a. What is the implication for a school if its data point is located 
below the regression line? 

b. Do the schools located below the regression line have any­
thing in common? 

c. What is the average difference in rank between two schools 
that differ by $3,000 in spending per student per year? 



10.45 In a 1907 study of 16 steamships ranging in tonnage from 192 
to 3,246 tons and in crew size from 5 to 32 men, the following results 
occur when crew size is regressed on tonnage: 

crew size = 9.5 + 0.00062 tonnage 

(r = 0.87, t = 6.79 on 14 dJ., P < 0.0001) 

(Source: R Floud, An Introduction to Quantitative Methods for Historians, Lon­
don: Methuen, 1973, Table 4.1.) 

a. What do the numbers tell you about the relationship be­
tween the two variables? 

b. On the average, how large is the difference in crew size for 
two ships that differ in tonnage by 1,000 tons? 

c. What is the estimated number of crew members for the 
smallest ship, and what is the estimated number of crew mem­
bers for the largest ship? 

10.46 The New York Times once commissioned a laboratory to analyze 
a dozen slices of pizza from different stores in New York City for calories 
and fat content. The slices ranged in weight from 5.25 to 10.5 ounces, 
in calories from 366 to 613, and in fat from 11 to 25 grams. (Source: The 
New York Times, September 14, 1995; p. e1.) A regression analysis of calories 
on grams of fat yields the following results: 

calories = 280 + 13.4 grams off at r = 0.78 

(t = 4.01 on 10 d.f., P = 0.0012) 

a. What do these numbers tell you about the relationship be­
tween the two variables? 

b. Suppose you had divided the calories and fat for each slice 
by the weight of the slice. How do you think that would effect 
the analysis? 

10,47 Mean academic salaries vary across disciplines from agriculture 
at $36,900 to library science at $23,600 (1984 figures from a study of 
25 fields). (Source: M. Bellas, and B. F. &skin, "On comparable worth," Academe, 
vol. 80 (1989), no. 5, pp. 83-85.) Women faculty members are unevenly 
represented in the fields, from 94% in nursing to about 5% in engi-
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neering. In a regression analysis of mean salary as the dependent vari­
able and percentage of women as the independent variable, 

mean salary = 34,300 - 120 percent women r = -0.829 

(t = -7.10 on 23 d.f., P < 0.0001) 

a. Make a graph of the regression line. 

b. What do the results of the analysis tell you about the rela­
tionship between these two variables? 

c. What other variables might explain this relationship? 

d. The scatterplot of the data shows that mathematics, sociol­
ogy and anthropology, music, journalism, English, foreign lan­
guages, and drama lie noticeably below the regression line. So­
cial work, nursing, life sciences, agriculture, and engineering 
lie noticeably above the regression line. What might explain 
these patterns? 

10.48 At the end of Chapter 4 are some data on death rates in selected 
countries for the liver ailment known as cirrhosis. For the same coun­
tries we also have yearly consumption of pure alcohol in quarts per 
capita, since excessive alcohol is supposed to be harmful to the liver. 
The yearly alcohol consumption in the countries ranges from a high 
of 13.3 quarts per capita in Luxembourg to a low of 1.0 quart in Israel. 
The United States is in the middle at 7.2 quarts. A regression analysis 
of these data gives the equation for the regression line 

cirrhosis deaths = 2.1 + 2.09 quarts of alcohol r = 0.45 

(t = 2.67 on 28 dJ., P = 0.006) 

What do the results of the regression analysis tell you about alcohol 
consumption and cirrhosis deaths? 

ANALYSIS (ExERCISE'S 10.49-10.74) 

10.49 Go to the Springer Web site (http://www.springer-ny.com/sup­
plements/iversen/) to find files relating to this book. Open the data 
file called Baseball Team Scores. Column 1 shows the number of games 
each team won during the season and column 3 the mean number of 
runs scored per game. 



a. How strong is the relationship between the two variables? 

b. Is the relationship statistically significant or could it have 
occurred by chance alone? 

c. Do a regression analysis to see how the number of runs 
scored (independent variable) affects the number of wins (de­
pendent variable). 

d. If a team could score one more run per game, how many 
more games would the team expect to win? 

10.50 The road distance from one city to another is usually longer 
than the direct distance. In a sample of English cities the regression 
equation for these distances was 

road distance = 7 + 1.17 direct distance 

(Source: Neville Hunt, '~ tale of six cities, " Teaching Statistics, vol. 16, (1994) no. 
1, pp. 5-8.) What does the equation tell you about the direct distance 
versus the road distance in England? 

10.51 For a random sample of American cities, road distance/direct 
distance data are shown in Table 10.10. 

a. Find the regression equation for the data. 

b. Why might you expect the intercept of the regression line 
to be equal to O? 

c. Can you reject the null hypothesis that the population in­
tercept equals O? 

d. Can you explain why the patterns of roads and distances in 
the United States make the two distances almost equal for some 
pairs of cities and very different for other pairs of cities? 

Table 10.10 Data for Exercise 10.51 

Atlanta 
Cheyenne 

Fargo 
Los Angeles 

Oklahoma City 

Cheyenne 

1,482, 1,235 

Fargo 

1,394, 1,105 

780,553 

Source: Road Atlas, Boston: Rand McNally, 1991. 

Los Angeles 

2,121, 1,940 
1,l24,894 

1,808, 1,430 

Oklahoma City 

833, 765 
694,560 

870, 782 
1,339, 1,205 
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St. Louis 

565, 476 
942, 790 
850,647 

1,836, 1,590 
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10.52 We hear much about the increasing number of divorces in the 
United States. One way to examine this phenomenon is to compare 
the number of divorces with the number of marriages, since people 
must marry before they can divorce. The following data show the num­
ber of marriages and divorces in thousands for 1890 and every fifth 
year up to 1980. The year variable has been recoded to 1 for 1890, 2 
for 1895, and up to 19 for 1980 to make it easier to enter the data in 
a computer. 

Year 1 2 3 4 5 6 7 8 9 10 

Marriages 570 620 709 842 948 1,008 1,274 1,188 1,127 1,327 

Divorces 33 40 56 68 83 104 170 175 196 218 

Year 11 12 13 14 15 16 17 18 19 

Marriages 1,596 1,613 1,667 1,531 1,523 1,800 2,159 2,153 2,413 

Divorces 264 485 385 377 393 479 708 1,036 1,182 

Source: National Center for Health Statistics, Public Health Service, in The World Almanac 
1986, p. 779. 

a. Show the data on marriages and divorces in a scatterplot. 

b. Comment on the shape of the scatterplot. Would it make 
sense to do correlation and regression analyses on these data? 

For the more mathematically inclined, take the logarithm of each 
observation. Construct a new column in the computer file consisting 
of the logarithms of the marriage data and another new column con­
sisting of the logarithms of the divorce data. 

c. Show the two logarithmic variables in a scatterplot. 

d. Comment on the shape of this scatterplot. 

e. Divide the divorces by the marriages for each year and plot 
this ratio against the time variable. 

f. What does this scatterplot tell us? 

10.53 On the Springer Web site (http://www.springer-ny.com/sup­
plements/iversen/), the data file called Baseball Team Scores contains 



data on all 28 baseball teams for the 1996 season. The columns contain 
data on the following variables. 

1. Number of games the team won 

2. Team earned-run average (measure of pitching) 

3. Mean number of runs scored per game 

4. Total number of stolen bases 

5. Total number of home runs 

6. Team batting average 

What matters in the end is how many games a team wins during a 
season, so make the variable in column 1 the dependent variable. 

a. Correlate variable 1 with each of the other variables and find 
the importance of the other variables in determining the num­
ber of wins. 

b. Regress variable 1 as dependent variable with each of the 
other variables as independent variables and find how much 
an increase in one unit affects the number of winning games. 

10.54 Following are data on percentage of people literate and per 
capita income for a sample of 20 countries. The countries are Mghan­
istan, Boliva, Cambodia, Chile, Cuba, Ecuador, Ghana, Guyana, Ivory 
Coast, North Korea, Mali, Malawi, Nepal, Pakistan, Philippines, Sene­
gal, South Mrica, Tanzania, Uganda, and Yemen. 

Country 1 

Percent literate 6 
Per capita income 61 

Country 11 

Percent literate 10 

Per capita income 46 

2 3 4 5 6 7 8 9 10 

43 50 87 80 71 30 77 9 77 
165 125 645 398 208 289 311 246 86 

12 13 14 15 16 17 18 19 20 

6 6 22 80 6 46 11 30 6 

72 73 107 246 158 600 174 92 66 

Source: Arthur S. Banks, Cross-Polity Time Series Date, CamUridge, MA: MIT Press, 1971, 
pp. 237-255, 269-282. 
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a. How are the two variables related? 

b. How much do two countries differ in literacy percentage 
(dependent variable) if per capita income (independent vari­
able) differs by $100? 

c. How much do two countries differ in per capita income (de­
pendent variable) if their literacy rates (independent variable) 
differ by 10%? 

10.55 On the Springer Web site (http://www.springer-ny.com/sup­
plements/iversen/), the data file called Baseball Individual Scores con­
tains data on 480 baseball players from both leagues for the 1996 sea­
son. The columns contain data on the following variables: 

1. 

2. 

3. 

4. 

5. 

6. 

Number of times at bat 

Number of runs scored 

Number of hits 

Number of home runs 

Number of runs batted in 

Batting average 
a. For which of these variables should you use the mean and 
for which variables should you use the median as the measure 
of central tendency? 

b. Study the relationships between some of these variables. 

10.56 In a discussion of the relationship between population growth 
and the acceleration of cereal production in a textbook written in 1858 
is the following passage: 

The change in the quantity of the several kinds of foods is given 
in the following passage from a recent work of much ability, by 
which it is shown, that the supply has grown twice more rapidly 
than population; and that, therefore, the Malthusian theory finds 
small support in the course of events in France: . . . For the ce­
reals, our agricultural statistics give the . . . figures [in Table 
10.11]. (Source: H. C. Carey, Principles of Social Science, vol. 2, Philadel­
phia: Lippincott, 1858, p. 54.) 

a. Regress quantity on population. 

b. Use the results from the analysis and comment on the quo­
tation. 



Table 10.11 Data for Exercise 10.56 

Qy,antity 
Population (millions of 

Year (millions) hectoliters) 

1760 21 94.5 

1784 24 115.8 

1813 30 132.4 

1840 34 182.5 

Source: H. C. Carey, Principles of Social Science, vol. 2, Philadelphia: Lippincott, 1858, 
p.54. 

c. Regress population on year, and regress quantity on year. 

d. Construct a new variable 

ratio = quantity/population 

and regress ratio on year. 

e. What do the analyses in parts c and d tell you? 

10.57 From data on the Calabrian Mafia in Table 10.12, it is possible 
to study whether Mafia groups (coscas) choose their leaders such that 

Table 10.12 Data for Exercise 10.57 

Cosca name Mean age of members Age of chief 

Cataldi-Marafioti 37 42 

Nirta-Romeo 40 67 

Ursino:Jerino 34 53 

Ruga 31 29 

D'Agostino 39 54 

Mazzaferro 32 38 

Aquino-Scali 33 36 

Cordi 35 29 

Macri 39 43 

Source: Pino Arlacchi, Mafia Business, London: Verso, 1986, p. 132. Brought to our 
attention by Matthew Werner. 
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the age of the leader is related to the mean age of the members of the 
cosca. Analyze the relationship between the two variables. 

10.58 Draw a scatterplot, using for data the amount of money you 
spent on 10 gifts you recently gave to people from whom you had 
received a gift. Follow the example for Fred, who gave a gift that cost 
$10 and received a gift that cost $5. 

Name Amount spent on person's gift Amount person spent on me 

Fred $10 $5 

You may use any exchanges you wish, factual or fictitious. Analyze the 
relationship between the two variables. 

10.59 From a regression analysis, the predicted success in college at 
a state university as measured by grade point average is found from the 
equation 

college GPA = 0.6 + 0.74 (high school GPA) 

a. Using your own high school CPA, calculate what grade point 
average you might expect if you were attending this college. 

b. Now estimate what CPA you might have in your current cir­
cumstances. Change the regression equation so that it better 
fits your particular case. 

c. What does the new equation look like? 

d. Does the regression equation fit every person? Why not? 

e. An admissions officer is looking at the high school record 
of Elmer Ebert, who has a high school CPA of 1.9. People can­
not graduate from the university with a CPA lower than 2.0. 
What do you predict will happen to Elmer if he is allowed to 
enroll? 

f. If Elmer and all other applicants with low CPA's are not ad­
mitted to the college, how might the regression equation 
change? 

10.60 To develop a table of sums of squares, the following data about 
the effect of attending training camp on scoring percentages of bas­
ketball players were written down (Table 10.13). Training camp is a 
dummy variable with 0 for not attending and 1 for attending. 



Table 10.13 Data for Exercise 10.60 

Source Sums of ????? 

Training camp 

Residual variable 

Total 

90,999 

??????? 

115,189 

Proportion 

???? 
0.21 

???? 

a. Some items were inadvertently smudged by a careless coffee 
drinker. Repair the table for your untidy friend. 

b. Find the correlation coefficient rbetween the training camp 
variable and the performance variable for the basketball 
players. 

c. Did the training camp seem to have any effect on perform­
ance? 

10.61 Livers from 4 female and 4 male rats were given oleic acid. The 
data in Table 10.14 show the uptake and the amount incorporated into 
keotone bodies. 

a. Make a scatterplot of the data with uptake as the indepen­
dent variable and amount incorporated as the dependent vari­
able; use a different symbol for female and male rats. 

Table 10.14 Data for Exercise 10.61 

Uptake Incorporated Gender 

29.3 1.82 Female 

25.5 0.84 Female 

26.3 1.09 Female 

31.0 1.45 Female 

20.6 1.56 Male 

17.9 0.93 Male 

23.6 1.54 Male 

25.4 1.76 Male 

Source: C. Soler-Agilaga and M. Heimberg, "Comparison of metabolism of free fatty acid by 
isolated perfused livers from male and female rats, "Journal of Lipid Research, vol. 17 
(1976), pp. 605-615. 
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b. Describe in words the relationship between uptake and 
amount incorporated for each gender. 

c. Find the regression line for each gender. 

d. How does the relationship differ in the two sets of observa­
tions? 

e. Suppose the uptake or both a female and a male rat is the 
value 25. How different are the predicted values of the depen­
dent variable for the two rats? 

f. Does there seem to be a significant difference in amount 
incorporated between female and male rats? 

10.62 If you had measured your height at each birthday since baby­
hood and made a scatterplot of the data, the points would not lie along 
a straight line. But growth data over a shorter period of time sometimes 
can be analyzed using linear regression. The table shows age and height 
data for the son of the Count de Montebeillard from 1762 to 1789. 

Age (years) 3 4 5 6 7 8 9 

Height (centimeters) 98.8 105.2 111.7 117.8 124.3 130.8 137.0 

Source: R. E. Scammon, "The first seriatim study of human growth," American Joumal of 
Physical Anthropology, vol. 10 (1927), pp. 329-336, as reported in R. L. Sandland and 
C. A. McGilchrist, "Stochastic growth curve analysis, "Biometrics, vol. 35 (1979), pp. 255-
271. 

a. Make a scatterplot of the data. 

b. Do the data display a linear pattern? 

c. Find the equation for the regression line. 

d. How do you interpret the value of the regression coefficient 
for this example? 

e. Find how much the count's son grew each year by subtract­
ing the height each year from the height the next year, and 
find the mean growth per year. 

f. Explain the connection between the regression coefficient 
and the mean growth per year. 

10.63 In a sample of ten states, the values for the percentage of the 
state population that receive Medicaid benefits as well as the number 
of hospital beds per 100,000 population are shown in Table 10.15. 

a. Why do the numbers of hospital beds per 100,000 popula­
tion vary from state to state, from a high in North Dakota of 
507 to a low in Utah of only 255)? 



Table 10.15 Data for Exercise 10.63 

Number of hospital beds 
Percentage receiving per 100,000 

State Medicaid benefits population 

Arkansas 11.3 430 
Florida 8.0 392 
Indiana 6.3 382 
Maine 10.8 335 
Mississippi 16.8 457 
New Hampshire 4.0 290 
North Dakota 7.7 507 
Rhode Island 11.7 319 
Utah 6.3 255 
Wisconsin 8.0 342 

Source: Medicaid data: U.S. Department of Commerce, Bureau of the Census and the Health 
Care Financing Administration, Form-2082. Hospital bed data: American Association of 
Retired Persons, Reforming the Health Care System: State Profiles 1990, Washington 
D. c.: AARP, 1991. These data are reprinted in the report Medicaid Hospital Payment 
Congressional Report, The Prospective Payment Assessment Commission, C-91-02, October 
1, 1991, pp. 27 and 39. 

b. Make a scatterplot of the data with percentage receiving 
Medicaid benefits as the independent variable and number of 
beds per 100,000 population as the dependent variable. Label 
the points with the names of the states. 

c. Comment on patterns you see in the data. 

d. Analyze the relationship between the two variables. 

10.64 The deterrent effect of the death penalty is a widely discussed 
question. Table 10.16 (page 465) shows the number of people exe­
cuted for homicides and the homicide rate in this country for each 
year in the decade starting in 1950. What do these numbers add to the 
discussion of the deterrent effect of capital punishment? 

10.65 In a study conducted through the National Toxicology Pro­
gram, about 100 female mice were given ethylene glycol, and then their 
litters were observed. Four different dosages were used, and the data 
in Table 10.17 show the mean number of offspring for each group of 
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Table 10.16 Data for Exercise 10.64 (page 465) 

Number of Homicide 
Year executions rate 

1950 68 5.3 

1951 87 4.9 

1952 71 5.2 

1953 51 4.8 

1954 71 4.8 

1955 65 4.5 

1956 52 4.6 

1957 54 4.5 

1958 41 4.5 

1959 41 4.6 

Source: W C. Bailey and R D. Peterson, ''Murder and capital punishment: A rrwnthly time­
series analysis of execution publicity, "American Sociological Review, vol. 54 (1989), 
p.740. 

mice receiving a particular dosage together with the percentage of the 
offspring with malformations and the mean fetal weights. 

a. Make three scatterplots of dose as the independent variable 
and each of the other three variables as dependent variables. 

Table 10.17 Data for Exercise 10.65 

Percentage of Mean 
animals with fetal 

Dose (g/kg) Mean litter size malformations weight (g) 

0.00 1l.90 0.3 0.972 

0.75 1l.50 9.3 0.877 

l.50 10.40 39.0 0.764 

3.00 9.83 57.0 0.704 

Source: C. J Price, C. A. Kimmel, R W Tyl, and M. C. Man; "The developmental toxicity of 
ethylene glycol in rats and mice, "Toxicological Applications in Pharmacology, vol. 81 
(1985), pp. 113-127, in P. J Catalonao and L. M. Ryan, "Bivariate latent variable models 
for clustered discrete and continuous outcomes, "Journal of the American Statistical 
Association, vol. 87 (1992), pp. 651-668. 



b. What do the scatterplots show? 

c. Analyze the relationship between dosage and each of the 
other three variables using regression and correlation analyses. 

d. Can you compare the three regression coefficients to see for 
which of the three dependent variables dosage is more impor­
tant? 

e. Both litter size and weight are means of about 25 observa­
tions each. What effect do you think it would have had on the 
analyses if you had used the original individual data instead of 
the means for each dose? 

10.66 For their Medicaid inpatient hospital payments, states can ei­
ther use a retrospective cost-based payment method or they can use a 
prospective payment system. Table 10.18 shows the percentage of the 
states that use a form of prospective payment methodology at four 
different times. Analyze the relationship between the two variables. 

10.67 In a study of body fat percentage and age the following data 
were found. Analyze the data. 

Age 

Percent fat 

Age 
Percent fat 

23 23 

9.5 27.9 

53 53 

34.7 42.0 

27 27 39 41 45 

7.8 17.8 31.4 25.9 27.4 

54 56 57 58 58 

29.1 32.5 30.3 33.0 33.8 

49 

25.2 

60 

41.1 

50 

31.1 

61 

34.5 

Source: R B. Mazeness, W. W. Peppler, and M. Gibbons, "Total body composition by dual­
photon (l53Gd) absorptiometry, " American Journal of Clinical Nutrition, vol. 40 (1984), 
pp. 834-839. 

10.68 The data in Table 10.19 (page 468) show the number of bird 
species in isolated areas of paramo vegetation in the northern Andes 
and the altitude of the areas in thousands of feet. The data here include 
only areas with an altitude less than 5,000 feet. Analyze the data to see 
if the number of species is related to the altitude of the regions. 

10.69 Below Table 10.19 on page 468 are data on mean annual tem­
perature and mortality rate from breast cancer in some regions of Great 
Britain, Norway, and Sweden. 
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Table 10.18 Data 
for Exercise 10.66 

Year Percent 

1977 14 

1981 32 

1985 84 

1991 92 

Source: Medicaid 
Hospital Payment 
Congressional Report, 
The Prospective Payment 
Assessment Commission, 
C-91-02. October 1, 1991, 
p.44. 
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Table 10.19 Data for Exercise 10.68 (page 467) 

Number Altitude 
Area of species (thousands of feet) 

Chiles 36 4.1 

Las Papas-Cocunuco 30 3.8 

Sumapaz 37 3.5 

Parmillo 11 1.5 

Pamplona 11 2.3 

Cachira 13 2.4 

Tama 17 2.0 

Batallon 13 2.2 

Merida 29 4.9 

Perija 4 2.5 

Cende 15 1.8 

Source: F. Vuilleumier, "Insular biogeography in continental regions: l. The northern Andes of 
South America, "American Naturalist, vol. 104 (1970), pp. 373-388. 

Region 1 2 3 4 5 6 7 8 

Temperature 51.3 49.9 50.0 49.2 48.5 47.8 47.3 45.1 

Mortality 102.5 104.5 100.4 95.9 87.0 95.0 88.6 89.2 

Region 9 10 11 12 13 14 15 16 

Temperature 46.3 42.1 44.2 43.5 42.3 40.2 31.8 34.0 

Mortality 78.9 84.6 81.7 72.2 65.1 68.1 67.3 52.5 

Source: A. J Lea, ''New observations on distribution of neoplasms of female breast in certain 
European countries, "British MedicalJournal, vol. 1 (1965), pp. 448-490. 

a. Analyze the data. 

b. Could this be a causal relationship, or can you think of other 
variables that might explain why the two variables are related? 

10.70 Table 10.20 (page 469) shows a decade of crime rates per 
100,000 population in California and the yearly population in the state. 

a. Why does using the Year column or the Population column, 
as the independent variable make little difference? 



Table 10.20 Data for Exercise 10.70 

Year Homicide Rape Robbery Assault Total 

1983 10.5 48.2 342.3 374.6 775.6 

1984 10.5 45.7 328.3 379.9 764.4 

1985 10.7 43.0 331.1 388.2 773.0 

1986 11.4 45.3 346.0 526.1 928.7 

1987 10.7 44.2 304.4 568.5 927.8 

1988 10.5 41.9 307.2 574.0 933.6 

1989 11.0 41.6 335.1 599.5 987.2 

1990 12.1 43.0 380.5 619.8 1,055.4 

1991 12.6 42.2 408.2 616.7 1,079.7 

1992 12.5 40.7 418.1 632.5 1,103.8 

Source: Califurnia Department of Justice, as reported in The Economist, March 19, 1994, p. 31. 

b. Plot the assault rate versus year and describe the pattern 
you see. 

c. How do you explain the pattern in the scatterplot? 

d. Do a regression analysis of rape on year and report on the 
results. 

e. Do a regression analysis of homicide on year and report on 
the results. 

f. Do a regression analysis of robbery on year and report on 
the results. 

10.71 Collect data on two metric variables, analyze the data, and write 
a report on your findings. 

10.72 The table shows two measurements, in millimeters, on a sample 
of 161ittleneck clams from Garrison Bay, Washington. 

Clam 

Length 
Width 

1 

530 

494 

2 

517 

477 

3 

505 

471 

4 

512 

413 

5 

487 

407 

6 

481 

427 

7 

485 

408 

8 

479 

430 
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Population 
(millions) 

25.1 

25.6 

26.1 

26.7 

27.4 

28.1 

28.8 

29.6 

30.6 

31.3 
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Clam 9 10 11 12 13 14 15 16 

Length 452 468 459 449 472 471 455 394 

Width 395 417 394 397 402 401 385 338 

Source: D. F. Andrews and A. M. Herzberg, Data: A Collection of Problems from Many 
Fields for the Student and Research Worker, New Yom: Springer-Verlag, 1985, p. 336. 

a. In a study of the relationship between the two variables, 
which, if any, of the two variables should be used as the inde­
pendent variable and which as the dependent variable? 

b. Make a scatterplot of the data. 

c. How strong is the relationship between the two variables? 

d. One point in the scatterplot is isolated from the others. 
Compute the strength of the relationship without that point. 

e. Does the point in the lower left corner have much of an 
impact on the strength of the relationship? 

10.73 Each week the local newspaper publishes the names and ages 
of people who have applied for marriage licenses at the county court 
house. Here are the ages for grooms and brides one week, written as 
(groom age, bride age): 

(37, 30) (30, 27) (65, 56) (45, 40) (32, 30) (28, 26) (45, 31) (29, 24) 
(26, 23) (28, 25) (42, 29) (36, 33) (32, 29) (24, 22) (32, 33) (21, 29) 
(37, 46) (28, 25) (33, 34) (17, 19) (21, 23) (24, 23) (49, 44) (28, 29) 
(30, 30) (24, 25) (22, 23) (68, 60) (25, 25) (32, 27) (42, 37) (24, 24) 

(24, 22) (28, 27) (36, 31) (23, 24) (30, 26) 
Source: The Philadelphia Inquirer, September 10, 1995, p. MD 12-d. 

a. If each groom and bride were the same age, what would be 
the slope and intercept for the regression line through the 
points? 

b. If each groom were, say, 5 years older than his bride, what 
would be the slope and intercept for the regression line 
through the points? 

c. If each groom were, say, 10% older than his bride, what 
would be the slope and intercept for the regression line 
through the points? 

d. Find the regression line for the actual ages. 



e. From the regression line, what can you conclude about the 
age patterns of these brides and grooms? 

f. What does the scatterplot tell you about the data that you do 
not learn from the way the data are presented in Exercise 3.20? 

10.74 This exercise explores the idea that an independent variable x 
is associated with a certain part of the variation in a dependent variable 
y. Suppose you have the following data: 

x:1234 
y:3256 

a. Show that the total variation in the y-values equals 10.0. 

b. The regression line has the equation y = 1.0 + 1.2x. Find 
the predicted values of y, and show that the variation in those 
values equals 7.2. 

c. Find the four residual values and show that the variation in 
the residual values equals 2.8. 

d. What proportion of the total variation in y is associated with 
x and what proportion is associated with the residual variable? 

e. How large is the correlation between x and y? 
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AN OVA' ANALY 

VARIANCE FOR A CATEGORICAL 

AND A METRIC VARIABLE 

C2S!tccording to many suroeys, one of the major social concerns of people to­

day is crime. Consequently, much discussion is focused on crime in political 

debates, in daily news reports, and among neighbors and friends, and it is 

hard to get a balanced sense of the importance of this issue. Are crime rates 

alarmingly high, or do we have less to worry about than we think? 

We might ask many questions about crime. One is whether the crime rates 

are different in different regions of the country. Is it "safer" to live in one re­

gion versus another? Another question is whether the number of crimes has 

been increasing. 
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In this chapter we focus on one particular kind of crime-violent 
crime: murder, forcible rape, robbery, and aggravated violent crime. 
We address the question of whether the chances of being a victim of 
violent crime are the same from one part of the country to another. 
Then, if we do find that the number of violent crimes is not the same 
in different parts of the country, where are the high and low incidences 
of violent crime? These questions are more than theoretical. Insult and 
injury are at stake. 

To answer these questions, we need data on the number of violent 
crimes in each geographical area for a specific time period. But it is 
not easy to find out how many violent crimes occurred in Pennsylvania 
last year. The police count the violent crimes that are reported, but 
there is every reason to believe that many violent crimes go unreported 
for one reason or the other. Another approach to getting data on vi­
olent crimes is to ask people in sample surveys whether they have been 
victims of violent crimes, but such surveys suffer from the same errors 
all surveys suffer from. (You may recall that we discussed some of these 
problems in Chapter 2 on the collection of data.) We probably get 
more accurate data by asking people in a proper statistical sample 
about violent crimes than by relying on data reported to the police. 
(Sexual crimes, for example, tend to be underreported to the police.) 

Nonetheless, the analysis in this chapter is based on the number of 
violent crimes reported by the FBI in their Unified Crime Reports for 
each of the contiguous 48 states for the years 1986 and 1992. Since the 
states vary a great deal in population size and therefore in the number 
of violent crimes, we use the violent crime rate, how many violent crimes 
there were in the state for each 100,000 population. For example, in 
Pennsylvania the violent crime rate was 359 violent crimes per 100,000 
inhabitants in 1986. We group the states in seven regions-New En­
gland, Mid-Atlantic, Midwest, South, Southwest, Rocky Mountains, and 
Pacific Coast-to see how different parts of the country compare in 
their rates of crime. Table 11.1 (pages 476-477) shows the violent 
crime rate for each state in these regions. 

We're going to study whether the seven regions differ in their vi­
olent crime rates based on the data from the states in each region. 
Note that although we have chosen to examine regional differences 
using state data, we could have chosen other geographical areas 
for the units in the analysis. For example, we could have used violent 
crime rates in each of the 3,000 or so counties instead. While it is not 
clear whether it is better to use state instead of county data, one reason 
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for using state data is that it keeps the number of observations man­
ageable. 

The dependent variable in the analysis is the violent crime rate, 
which is a metric variable (its numbers increase in meaningful inter­
vals). Region is the independent variable, and it is a categorical vari­
able. Each region can be named by a number, but if South is equal to 
6, we do not assume it is twice as great as New England at 3, even if we 
are southerners. Since we are studying the effect of region on violent 
crime rate, we are studying the effect of a categorical independent 
variable on a metric dependent variable. 

The special case when the categorical independent variable has 
only two categories is studied in Chapter 7 as a t-test for the difference 
between two means. It is also studied in Chapter 10 when the indepen­
dent variable is a dummy variable. In this case the independent variable 
has seven categories, so the t-test, for two variables, is not appropriate. 

STOP AND - PONDER 11 . 1 

We want to know whether unemployment rates differ by region of 
the country. How is this problem similar to the one we are discussing 
about violent crime rate? Name the variable and their types (cat­
egorical, metric) for this problem. 

Can you invent another, similar problem using different varia­
bles? 

COMPARING THE MEAN I 

When we study the effect of one (or more) categorical independent 
variables on a metric dependent variable, we use a statistical method 
known as analysis of variance, often abbreviated anova (pronounced 
d-no' -Vd). Analysis of variance is closely related to regression analysis 
(Chapter 10), although this may not seem obvious at first glance. 
Both can be considered as special cases of a more general statistical 
model. 

Analysis of variance was originally developed in the 1920s for the 
analysis of agricultural data, and it is a very commonly used statistical 
tool in many different disciplines. In particular, it is often used for the 

Analysis of 
variance is a sta­
tistical method 
used for the 
comparison of 
the means of a 
dependent vari­
able across dif­
ferent groups. 
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Table 11.1 Violent crimes in the contiguous 48 states in 1986 

Crime rate 
per 100,000 

State population Region 

Maine 147 

New Hampshire 140 

Vermont 149 

Massachusetts 557 
New England 

Rhode Island 336 

Connecticut 426 

New York 986 

New Jersey 572 Mid-Atlantic 

Pennsylvania 359 

Ohio 423 

Indiana 308 

Illinois 800 

Michigan 804 

Wisconsin 258 

Minnesota 285 

Iowa 235 
Midwest 

Nebraska 263 

Missouri 578 

North Dakota 51 

South Dakota 125 

Kansas 369 

Delaware 427 

Maryland 833 South 
Virginia 306 

Source: F.B.I Uniform Grime Report for the United States. 

analysis of experimental data in fields such as psychology, biology, en­
gineering, and medicine. With experiments we often think of the in­
dependent variable as the treatment variable and the dependent vari­
able as the response variable. In an agricultural experiment the 
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Table ILl Violent crimes in the contiguous 48 states in 1986 (continued) 

Crime rate 
per 100,000 

State population Region 

West Virginia 164 

North Carolina 476 

South Carolina 675 

Georgia 588 

Florida 1,036 

Kentucky 334 South 

Tennessee 540 

Alabama 558 

Mississippi 274 

Arkansas 395 

Louisiana 758 

Oklahoma 436 

Texas 659 

Arizona 658 
Southwest 

New Mexico 726 

Wyoming 293 

Colorado 524 

Montana 157 

Idaho 222 
Rocky Mountains 

Utah 267 

Nevada 719 

Washington 437 

Oregon 550 Pacific Coast 

California 920 

treatment variable might consist of different types of fertilizers used on 
a field of com and the response variable the yield from the different 
fertilizers. As we see in our example, analysis of variance can also be 
used on observational data. 
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QUESTION 1. RELATIONSHIP 

BETWEEN VIOLENT CRIME RATE AND REGION? 

Scatterplot 

The first question we ask is if there is a relationship between the two 
variables in these data; that is, are there differences between the 
regions? We answer the first question the same way we did for corre­
lation and regression analyses. To see if the regions differ in their vi­
olent crime rates, we first display the data in a scatterplot, with region 
as the independent variable on the horizontal axis and violent crime 
rate as the dependent variable on the vertical axis. The scatterplot is 
shown in Figure 11.1; each dot in the figure represents one of the 48 
continental states, and the states are grouped by regions. 

The main difference between analysis of variance and regression 
analysis is that in analysis of variance the independent variable along 
the horizontal axis is a categorical variable, while in regression the 

1,000 • • • 
• • 

750 • • • Q,) • .... • ~ ... 
Q,) 

• S • • • ·c • u • .... 500 • t: 
Q,) • • • * • '0 

:> • • • I * i 
250 • 

• • • • • 
Mid- Midwest New Pacific Rocky South Southwest 
Atlantic England Coast Mountains 

Region 

Figure 11.1 Scatterplot of crime rates 
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independent variable on the horizontal axis is metric. With a categor­
ical variable, we can place the categories (or values) of the variable on 
the axis anywhere we want and in any order we want. Here the values 
(regions) are simply placed alphabetically along the horizontal axis. If 
we had used another system of arranging the regions, for example from 
northeast to southwest, the data points would have made a different 
pattern. Thus, since the pattern of points is arbitrary, it makes no sense 
to draw a line through these points as we do in regression analysis. 
With a metric variable, the placement of the values on the axis is de­
termined from low to high values, and there is only one way to display 
the points and draw a line through the points. In the end, this differ­
ence between the arbitrary placement of the values of the categorical 
independent variable and the fixed placement of the values of a metric 
independent variable on the horizontal axis of a scatterplot is the cru­
cial difference between analysis of variance and regression analysis. 

Even a quick look at the scatterplot tells us that there are consid­
erable differences in the violent crime rates from one region to the 
next. Also, within each region the states differ considerably from one 
another. The figure shows that the New England states overall have a 
lower level of violent crimes, while in the Mid-Atlantic and the Pacific 
Coast states the violent crime rates generally seem higher. These dif­
ferences indicate a relationship between region and violent crime rate, 
at least in these data. If all seven regions had violent crime rates of the 
same magnitudes, then there would not be a relationship between re­
gion and violent crime rate in these data. 

Boxplot: A simpler view of the data 

To get a better sense of the differences in rates from one region to the 
next, we need to simplify the data displayed in the scatterplot. The 48 
dots in the scatterplot tell the whole story about these data, but there 
are too many to show the relationship between the two variables clearly. 
Simplification can be done in various ways, and one is to make a box­
plot of the data in each region, in which we replace the data for the 
individual states in a particular region by five numbers: the median, 
the 25th and 75th percentiles, and the minimum and maximum violent 
crime rates. These boxplots are shown in Figure 11.2. 

The use of boxplots reduces the data in each region to five values. 
Since there are seven regions, the original data of 48 observations is 
reduced to 35 numbers. That is not much of a reduction, but at least 
the data are displayed the same way for each region. If there had been 
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Figure 11.2 Boxplots of the violent crime rate data in Figure 11.1 

more observations within the groups, the reduction would have been 
larger. Boxplots make it much easier to compare the regions. Because 
the boxplots for the regions are next to each other, we can easily com­
pare the differences in the regions. 

What does a comparison of the boxplots reveal about violent crime 
rates based on the data? First we compare the medians in the different 
regions, since they represent the central values. When we scan across 
the lines in the middle of the boxes representing the medians, we see 
that the states in the Southwest, Mid-Atlantic, and Pacific Coast regions 
of the country have the highest medians, so they have the highest av­
erage violent crime rates. The New England states have the lowest av­
erage violent crime rates, followed closely by the Rocky Mountain 
states. 

Another feature of these boxplots is that the boxes have different 
heights. For example, the boxes for the Southwest and the Rocky 
Mountain states are shorter than the boxes for the other regions. This 
shows that the violent crime rates in the states in those regions are 
more alike than the rates in other regions. 
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The boxplots show more graphically than the scatterplot that the 
regions differ in their violent crime rates and that there is a relationship 
between the two variables. But we also want to find how strong the 
relationship is between the two variables, and we want to know whether 
the relationship could have occurred by chance or not. To answer these 
questions we need to dig deeper-using an analysis of variance. 

Formal analysis of variance is based not on medians but on the 
means within each group of observations. This is mainly because the 
means lend themselves better to a mathematical analysis of the differ­
ences between the groups. 

The name analysis of variance in some ways is a misleading one for 
what we are doing. A more appropriate name would be analysis of 
means: we are concerned with whether the means of the dependent 
variable (violent crime rate) differ across the groups defined by the 
independent variable (region). Thus, we are interested in the means, 
but we will be using variances to find out if the means differ in any 
interesting way. 

The first step in answering the second question is to calculate the 
mean violent crime rate for each region and an overall mean for all 
the states combined. These means are shown in Figure 11.3, the same 
scatterplot as in Figure 11.1 with the addition of a horizontal line across 
the points showing the overall mean violent crime rate for all the states 
(y = 460) and a zigzag line connecting the means of the violent crime 
rates of the seven regions. (Since the crime rate is the dependent, or 
~variable, we use the letter y to designate this mean.) Note that the 
means range from a low of about 292 for New England to a high of 
about 639 for the Mid-Atlantic states. 

Region variable 

Analysis of variance of the data is based on the notion that the violent 
crime rate in a particular state is determined by two factors, the region 
the state is located in and the combined effect of everything else. These 
two factors completely determine the violent crime rate in a particular 
state. (Logically, it cannot be otherwise.) 

One way to understand what this means is to think about how each 
state acquires its violent crime rate. First, imagine that all the states 
started with a crime rate of the same value. The best estimate of a 
common crime rate would be the overall mean derived from the ob-
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Figure 11.3 Scatterplot of crime rates with overall and region means 

served data from each of the 48 states, the value denoted y in Figure 
11.3. Numerically, y equals 460 for these data. Thus, all the states would 
have a violent crime rate of 460 if no variables had any effect. 

Next, imagine that each state is influenced by the effect of being 
in a particular region. This influence changes each state 's crime rate 
from the common overall mean to a common value for each region. 
It has to be a common value, because all the states in a given region 
would be affected the same way. The best estimate of that common 
value is the observed mean in that region. For example, the three Mid­
Atlantic states of New York, New Jersey, and Pennsylvania would all have 
crime rates of 639, the mean of the three observed state rates 986,572, 
and 359. The similar values for the other regions would be the means 
connected by the zigzag line in Figure 11.3. 

Thus, the effect of the region variable for each state can be found 
to equal the difference between the region mean and the overall mean. 
For example, the region variable moves Pennsylvania from the overall 
mean of 460 to the regional mean of 639, for a difference of 639 -
460 = 179. Region has the same effect on the other two Mid-Atlantic 
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states. When we find this difference for every state and add the squares 
of these distances, we get a sum equal to 662,641. This sum is the effect 
of the region variable, and we call it the region sum of squares. 

The independent variable (here region) sum of squares is found 
as 

sum (group mean - overaU mean) 2 

across all the ob ervations. 

Residual variable 

But the violent crime rates in all the states in a region do not have the 
same value. Other variables act together to shift the crime rate for a 
given state away from the region mean to the observed value for that 
state. The net effect of the other variables is called the residual variable, 
just as in regression analysis. For example, Pennsylvania has a rate of 
359, while the mean for the region it is in equals 639. Thus, the residual 
variable moved the rate from 639, where it would have been without 
the residual variable, down to 359, the observed state value. The effect 
of the residual variable is the difference between the observed value 
for a state and mean for the region the state is in. 

Next, we calculate a single, overall number summarizing how large 
these differences are. Because some of them are negative and some are 
positive and the mean difference is zero, the mean of the differences 
is not of much help. But if we square each difference and add the 
squares for the states in a particular region, then we have a measure of 
the effect of the residual variable in the region. We do the same in the 
other regions and add the squares for all the states to get the effect of 
the residual variable for all the states. This sum of squares is known as 
the residual sum of squares, and in this example it equals 2,145,613. 
Thus, for these data, the magnitude of the effect on the violent crime 
rates by the residual variable-the combined effect of all variables ex­
cept for region-is equal to 2,145,613. 

The residual variable is sometimes known as the error variable. Error 
here does not mean there is something wrong with the variable. Much 
of the original work in analysis of variance was done with data resulting 
from several attempts to measure the same quantity. It was assumed 
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that a true value existed and that the extent to which a particular ob­
served value was not equal to the true value was due to errors in the 
measurement. It is the error term that now is often called the effect of 
the residual variable. 

The re idual variable, also known as the error variable and some­
time called the "everything else" variable in this text, is the name 
given to the combined effect on the dependent variable of all vari­
able other than the independent variable. 

The residual sum of squares is found as 

sum(ob ervation - group mean) 2 

aero s all the observations. 

Effect of both region and residual variables: Total sum 
of squares 

The states do not all have the same violent crime rate because each 
state has been affected by both the region and the residual variables. 
Thus, the difference between the violent crime rate for a particular 
state and the overall mean value of 460 measures the magnitude of 
both the effect of the region variable and the effect of the residual 
variable. Pennsylvania, for example, has a state violent crime rate of 
359. The difference between Pennsylvania's rate and the overall or 
grand mean is 359 - 460, or -101. Thus, the combined effect of re­
gion and residual variables on the violent crime rate in Pennsylvania 
equals -101. Using this procedure for each state, we end up with 48 
differences. 

To summarize in one number the magnitude of the differences 
between the individual observation and the overall mean, we square 
each difference and add up all the squares. The sum of the squared 
differences is known as the total sum of squares. The total sum of 
squares for the violent crime rates equals 2,804,254. Thus, the magni­
tude of the combined effect of all variables that affect the violent crime 
rates is equal to 2,804,254. 
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The effect of both the independent variable and the residual vari­
able is the total sum of squares and is found as 

sum(ob ervation - overall meanF 

acros all the observations. 

Remarkably, the effect of both variables equals the sum of the ef­
fects we found earlier for each of the two variables. The effect of the 
region variable was 662,641, and the effect of the residual variable was 
2,145,613: 662,641 + 2,145,613 = 2,804,254. 

Measuring the strength of the relationship 

Table 11.2 shows the effects of the variables as measured by the sums 
of squares. Large numbers like these are hard to compare, so the third 
column of the table shows the proportion of the total that is contrib­
uted by each of the two separate effects. The proportions are found by 
dividing each of the two sums of squares by the total. The effect of the 
region variable is 662,641/2,804,254 = 0.24, or 24%, of the total effect. 
This proportion, 0.24, is known as R2. (This number is directly com­
parable to the squared correlation coefficient in regression analysis.) 

The region variable accounts for only about one quarter of the total 
effect on crime rates. The rest of the effect is that of the residual vari­
able. Looking at the scatterplot in Figure 11.1 or the boxplots in Figure 
11.2, it is not surprising that the residual variable has such a large effect. 
In each of the seven regions, the range of values is quite large and the 

Table 11.2 Effects ofregion and residual variables 

Source Sum of squares Proportion 

Region 662,641 0.24 

Residual 2,141,613 0.76 

Total 2,804,254 1.00 

R == 0.49 
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states vary a good deal from each other. Most of the variation comes 
from the residual variable. This means that for a fuller understanding 
of the crime rates, we would have to identify some of the other variables 
that make the residuals so large and bring them into the analysis as 
additional independent variables. We touch briefly on this kind of anal­
ysis in Chapter 13. The computation of R2 is shown in Formula 11.2 at 
the end of the chapter. 

The square root of R2 is, of course, R itself. Here, by taking the 
square root of 0.24, we find R equal to 0.49. This number measures 
the strength of the relationship between the independent and the de­
pendent variable. (This number is directly comparable to the correla­
tion coefficient r in regression analysis; the main difference is that in 
analysis of variance R cannot be negative.) An R ranges in possible 
values from 0 to 1. With a value of 0.48 we have a moderately strong 
relationship between the two variables region and violent crime rates. 

Explained amounts of variation 

It is often stated that the independent variable explains (produces, ac­
counts jar, even causes) a certain percentage of the variation in the de­
pendent variable. In the example, we can say that region explains 24% 
of the variation in the violent crime rates. What does this mean? 

If region and the residual variable had no effects on the crime rates, 
then all the states would have the same rate and there would be no 
variation in the rates from state to state. The best estimate of this com­
mon value would be the overally of 460, the number listed in the third 
column in Table 11.3. The last line of the table notes that when the 
values are equal, then there is no variation in them. 

When the region variable is permitted to affect the rates, then the 
rates in each region move from the overall mean of 460 to the mean 
of the region. Thus, if region were the only variable affecting the rates, 
then the observed data would look like the fourth column of the table. 
There we see that within each region the state rates are the same. The 
variation in these rates is produced by the region variable. As before, 
we measure the amount of variation of the numbers in a column by 
subtracting the overall mean from each term, squaring the differences, 
and adding the squares: the variation in the 48 rates produced by the 
region variable is equal to 662,641. 

In the final column are the data as they were observed, after the 
residual variable also produced its effect. The rates are even more dif­
ferent from each other than they were when affected by region only. 
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For the more mathematically inclined, let us take a closer look at 
the numbers in Table 11.2. How can we display the three sums of 
squares in a graph? We could show the figures in a pie graph divided 
into two slices, a larger one for the re idual variable and a smaller 
one for the region variable. We could also use bar graphs of different 
kinds. 

There is another way to display these numbers. All three are sums 
of square , but let us think of them simply as squares. Then we can 
draw on the thinking of the wise Greek mathematician who aid that 
when two quared numbers add up to a third quared number, the 
three numbers can be di played in a triangle with one 9O-degree 
angle. The length of the three sides in the triangle are the three 
numbers. 

The sum of two squares equaling the third square 

662,641 + 2,141 ,613 = 2,804,254 

can be written 

8142 + 1,4632 = 1,6742 

We draw a right triangle with the length of the hypotenuse equal to 
1,674 and the length of the two sides equal to 814 and 1,463. 

This triangle has orne nice features. For one thing, we have 
modified the effects of all the squaring we did. By using squares we 
empha ized large differences; the squares of large numbers get very 
large. Perhaps we really should not give that much weight to obser­
vation that are far away from the means. Square roots change the 
perspective on the effects. Now region, at 814, i clearly seen as about 
half as important as the residual, at 1,463. When we measure varia­
tion by sums of squares, we ee that about one quarter of the crime 
rate variation is associated with region. 

Another feature of the triangle can be een in the lower left 
corner with the angle marked () (theta). This i the angle formed by 
the hypotenuse and the ide representing the independent variable 
region. The trigonometric function cosine of an angle is defined as 
the length of the adjacent ide divided by the length of the hypote-

(Box continued on following page) 
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nuse. That means here that cos(8) = 814/1,674 = 0.49. With a co­
sine of 0.49, we can find from mathematical tables that the angle 
itself is 61 degrees. 

Remarkably, the cosine of the angle formed by the hypotenuse 
and the side for the independent variable equals the correlation 
coefficient Rbetween the independent and the dependent variable. 
As the size of the angle gets smaller, the cosine, and thereby R, be­
comes larger. When the angle is down to zero degrees and there i 
no residual effect, then the correlation coefficient becomes 1. Sim­
ilarly, when the angle approaches 90 degrees, then the correlation 
coefficient approaches zero. The cosine connection clarifies the re­
lationship of the correlation and the effects of the independent and 
the residual variables. 

Region = ..J662,641 = 814 

cos(9) = R = 0.49 

(9 = 6) degree ) 

Residual = ..J2,141,613 = 1.463 

Triangle representing urns of square 
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Table 11.3 Variations in violent crime rates under different assumptions 

Crime rate if no Crime rate if only 
variable had an effect region had an effect 

State Region (overall mean) (region mean) 

Maine 460 292 
New Hampshire 460 292 
Vermont 460 292 
Massachusetts 

New England 460 292 
Rhode Island 460 292 
Connecticut 460 292 

New York 460 639 
New Jersey Mid-Atlantic 460 639 
Pennsylvania 460 639 

Ohio 460 385 
Midwest 

Pacific Coast 
California 460 636 

Variation in the rates o 662,641 

R2 = 662,641/2,804,254 = 0.24 R = 0.49 

To find how much additional variation the residual variable produces, 
we subtract the overall mean from the rate for each state, square the 
differences, and add the squares, for a total variation of 2,804,254. The 
region variable accounts for 650,000 of the total. From the computa­
tion at the bottom of the table, region accounts for 0.24, or 24%, of 
the total variation in the crime rates for these 48 states. This is the 
quantity we call R2. The residual variable therefore explains the re­
maining 76% of the total variation in the rates. But because we don't 
know what it is about different regions that makes violent crime rates 
lower in some regions than in others-climate, poverty, social fac­
tors-perhaps "explaining" is too strong a word. We could say region 

Crime rate when both region 
and residual have effects 
(observed rate) 

147 
140 
140 
557 
336 
426 

986 
572 
359 

423 

920 

2,804,254 
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is associated with 24% of the variation in the rates and the residual 
variable is associated with the remaining 76% of the variation. 

The third question we ask in a statistical analysis is whether a relation­
ship exists between the two variables not just in the sample but in the 
entire population. But this question can be asked only if the data are 
from a sample of a larger population. In this example, the data are on 
all the 48 continental states; they are population data, not sample data. 
So for this example we phrase the question of statistical inference 
slightly differently: we ask whether the relationship between the region 
and the violent crime rate variables could have occurred by chance 
alone or whether the relationship really does exist. 

Events took place that produced the observed crime rates. Were 
they simply chance events or not? If only chance events led to all these 
crimes, then there would be only random variation in the rates from 
one region to the next. 

STOP AND PONDER 11 . 2 

Research often makes distinction among various categories of in­
dependent variables such as educational level, gender, age, race, 
residence, income, national background, region, and so on. Given 
the difficulty in determining why region makes a difference in de­
termining rates of violent crimes, why should we always be careful 
to explain difference based on demographic variables such as gen­
der. Why is it difficult to formulate a simple and straightforward 
independent variable? Why do people do it anyway? 

The null hypothesis 

The typical null hypothesis for the study of the relationship between 
two variables asks whether there is no relationship in the population. 
In analysis of variance, the null hypothesis is usually stated in terms of 
the means of the dependent variable for the various categories of the 
independent variable. In the example, that would be a statement that 
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the crime rates in the seven regions are equal. Formally, this null hy­
pothesis is written 

The logical alternative to seven things being equal is that at least 
some of them are different. Thus, if we reject the null hypothesis, we 
have shown that at least some of the means are different, even though 
we have not proven that all the means are necessarily different. 

The null hypothesis states that the independent and dependent 
variables are not related, which means that the relationship we found 
occurred by chance. To reject this hypothesis (or not), we must go 
back to the data and compare the magnitudes of the effects we found. 
If the effect of the independent variable (region, in this case) is large 
in comparison with the effect of the residual variable, then we reject 
the null hypothesis. If the effect of the independent variable is small 
in comparison with the effect of the residual variable, then we do not 
reject the null hypothesis. Another way of saying the same thing is that 
we reject the null hypothesis if R2 is large and do not reject it if R2 is 
small. What do we mean by large and small? 

Things get a bit more complicated, however, because the meaning 
of large and small depends not only on the numbers we compute but 
also on how many groups and how many observations we are working 
with. In general, the more groups and the more observations, the 
smaller R2 can be and still result in rejecting the null hypothesis. 

In the example, we are working with 7 groups of data and 48 ob­
servations all together. According to the rules of statistical reasoning 
(and a statistical table), with this many groups and this many observa­
tions we need an R2 at least as large as 0.28 to reject the null hypothesis. 

p-value from F 

To make a decision about the null hypothesis in our problem, we find 
the p-value for the observed data. We convert R2 into a value of one of 
the four standard statistical variables. In previous chapters, we have 
made conversions to z-scores, t-scores, and chi-square scores. In analysis 
of variance, we use the F-variable (Formula 11.5). After converting the 
value of R2 to the corresponding value of F, we use statistical software 
to find the p-value, or we look up the value in the table of the F-distri­
bution (Statistical Table 5 in the appendix). If our F is larger than the 
critical value of Fgiven in the table, then we reject the null hypothesis. 
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Table 11.4 

Source 

Region 

Residual 

Total 

We also can observe the p-value for this Fand thereby for the observed 
R2. If this p-value is small, say less than 0.05, then we reject the null 
hypothesis. Either way, the different sample means are extremely un­
likely to be as different as they are or more different simply because of 
chance alone. 

The computer output for the analysis of the violent crime data is 
shown in Table 11.4. This type of table is known as an analysis of vari­
ance table (and it is the same kind of table we get with a regression 
analysis; refer to Table 10.5). As we look closely at the construction of 
this table, we see how the F-statistic is produced from this array oflarge 
numbers. 

An analysis of variance table shows the numbers involved in find­
ing R and the F-value. The F-value comes from comparing the sizes 
or the effects of the independent and the residual variable while 
com pen ating for the different degr es of freedom. An analysis of 
variance table usually also contains the p-value for F. 

Some of the numbers in Table 11.4 come from Table 11.2, and 
some of them are new. The fourth column contains the degrees of 
freedom for the region and residual variables. In this example there 
are 7 regions, so the region variable has 6 degrees of freedom: the 
degrees of freedom for the independent variable is always one less than 
the number of categories of the variable. The total degrees of freedom 
is always one less than the number of observations, so with 48 obser­
vations there are 47 degrees of freedom (Formula 11.3). The number 
of degrees of freedom of the residual variable always is the number of 
observations minus the number of groups-in the example, 48 -
7 = 41. 

Analysis of variance table 

Sum of squares Proportion Degrees of freedom Mean square F-ratio p-value 

662,641 0.24 6 110,440 2.11 0.072 

2,141,613 0.76 41 52,234 

2,804,254 1.00 47 
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STOP AND PONDER 11 . 3 

An analysis of variance is done to determine if the quantity of anti­
depressants taken by a group of elderly people depend on in which 
of 5 nursing homes they reside. Each of the homes has 20 re idents. 
What are the degrees of freedom for the nursing hom independent 
variable and the residual variable? 

The value of F (Formula 11.5) amounts to a comparison of the 
effects of the independent and the residual variables. Instead of com­
paring the sums of squares, however, we divide each of them by their 
degrees of freedom to get a sum of squares per degree of freedom 
(Formula 11.4). This quantity is called a mean square, not because it is 
nasty, of course, but because it is a way of averaging the effects by the 
degrees of freedom. The table indicates that the mean square for the 
region variable equals 662,641/6 = 110,440. Similarly, we find that the 
residual mean square equals 2,145,613/41 = 52,234. The two mean 
squares still are two large and seemingly meaningless numbers, despite 
our efforts, but they are a step toward simplification. 

If the data represent only chance variations and there is no differ­
ence between the regions, then the underlying formal theory states that 
the two mean squares are about equal. We therefore compare the mean 
squares to see if they are about the same or not. We can subtract one 
from the other and see if the difference is approximately equal to zero, 
or we can divide one by the other and see if the ratio is approximately 
equal to one. 

We do the comparison by dividing the mean square for the inde­
pendent variable (region) by the mean square for the residual variable. 
In this case, the region's mean square is about twice as large as the 
residual's mean square. More exactly, the ratio is equal to 110,440/ 
52,234 = 2.11. This ratio is our observed value of the F-variable with 6 
and 41 degrees of freedom. 

The probability of getting a value of this F-variable equal to or larger 
than 2.11 by chance alone is only 0.072; that is, we expect an F this 
large or larger in 72 of 1,000 different samples if there truly is no 
relationship between the two variables and the data were produced by 
chance alone. Thus, the probability of getting the R2 of 0.24 or more 
for 7 groups and 48 observations by chance alone is marginally statis­
tically significant. The probability does not quite reach the magic sig­
nificance level of 0.05, but it comes close. 
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Now we begin to see why this kind of analysis is known as analysis 
of variance. The effects are computed as sums of squares. The numer­
ator in the computation of the variance is also a sum of squares. To 
find variance in Chapter 4, we divided the sum of squares by n - 1, 
the proper degrees of freedom. Similarly here, when we divide the 
sums of squares by their degrees of freedom to get the mean squares, 
we find variances. Thus, we actually compare the means by comparing 
variances when we find F. 

STOP AND PONDER 11 . 4 

The F-ratio in the nursing home example in Stop and Ponder 11.3 
equals 3.50, which is tatistically ignificant with p = 0.01. What does 
this suggest about the use of antidepressants in the nursing homes? 
'What can we not say, given only these statistical results? What s ems 
to be missing from the analysis that we would Uk to know? 

Going beyond the F-test: Making mean comparisons 

The result we have found so far, that the 7 regions differ in their mean 
violent crime rates with p = 0.072, is not very interesting. The null 
hypothesis states that the means are equal, and the alternative to ev­
erything being equal is that not everything is equal. But this can mean 
that one or some or all of the means are different from one another. 
We know from the value of F in our analysis of variance that the pop­
ulation means are not equal, but which of the population means are 
not equal? Is it safer on the Pacific Coast than in the Mid-Atlantic re­
gion? Is only the violent crime rate in the Great Lakes region different 
and that in the other 6 regions about the same? We should always ask 
these kinds of questions about an analysis of variance if we want to 
know which means are different from each other. 

If there were only two means in the analysis and a significant F (or 
t from the t-test for the difference between two means), we would know 
right away that all the means are different. We could do a similar com­
parison of all pairs of means to find out which of them are different. 
With 7 means there are 21 possible pairs to compare. If we did 21 
different, independent statistical tests, even if the means in all of them 
were equal, statistical theory says that with a 5% significance level, we 
would make a mistake 5% of the time and find 5% of the pairs statis­
tically significant even though they truly are not different. Since 5% of 
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Table 11.5 Mean violent crime rates and number of states in seven regions 

Mean number of 
Region violent crimes Number of states 

Mid-Atlantic 639 3 
Midwest 375 12 
New England 292 6 
Pacific Coast 636 3 
Rocky Mountains 364 6 
South 526 14 

Southwest 620 4 

Overall 460 48 

21 is 1.0, we could expect about one of the differences between means 
to be different just by chance alone. Here, not all the tests would be 
independent of each other, but we would still have the problem of 
what happens when we do many statistical tests. 

To show which of the means are different, we list the means and 
number of states in each region in Table 11.5. (The means are also 
shown in Figure 11.3.) It is still hard to tell which of the means are 
statistically different and which are not. Figure 11.4 gives a better sense 
of the regional differences in means. The figure makes it clear that the 
Mid-Atlantic, Pacific Coast, and Southwest are the three regions with 
the highest means, while the Midwest and the Rocky Mountains cluster 
lower, and New England has the lowest mean. 

Looking at a few comparisons among the regions, we note that the 
difference between the means for the Mid-Atlantic and New England 
regions equals 639 - 292 = 347. This difference converts to at-value 
of 2.14 on 41 degrees of freedom, and such a value is statistically sig­
nificant with p = 0.02. Similarly, if we continue to use the t-test for the 
comparison of two means, we find that the differences between the 
Pacific Coast region and New England, the difference between the 
Southwest and New England, and the difference between the South 
and New England all are statistically significant. These differences are 
a reflection of the fact that the overall F-value is at least marginally 
significant, since the p-value at 0.072 is close to the common cutoff 
of 0.05. 



496 Chapter 11 • Anova: Analysis of Variance for a Categorical and a Metric Variable 

11.5 
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Figure 11.4 Mean violent crime rates for 7 regions and overall mean for 48 
states 

There are statistical methods available to help us answer this question. 
They are based on bringing in other variables and finding out if they 
can explain the presence of the relationship. But at this point the an­
swer to the fourth question can only be speculative. It is certainly hard 
to imagine that a region per se can determine its violent crime rate. 
The differences between regions in violent crime rates can probably 
be explained by other variables, such as percentage of population living 
in urban areas, poverty level, and population density. Despite the fact 
that we cannot enumerate why the crime rates are different, we can 
still use this analysis for the prediction of which states will have higher 
and lower crime rates. 

Because it takes many steps to perform an analysis of variance, we 
briefly review them here before we introduce a new method of analysis. 
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Analysis of variance is part of the process of studying the association 
between a categorical independent variable and a metric dependent 
variable. In the example, we study the two variables violent crime 
rate and region. Other examples are the study of the relationship 
between religious affiliation and income and the study of the relation­
ship between different types of teaching methods and student 
learning. 

The analysis is based on the computations of how different the 
means of the dependent variable are for different categories of the 
independent variable, as well as how different the observations in 
each category are from each other. The conclusions we draw from the 
analysis are based on the magnitudes of various sums of squares. The 
typical output from a computer analysis is shown in Table 11.4 
(naturally, the looks of tables vary from one computer program to an­
other). 

We can draw several conclusions from an analysis of variance table. 
As long as the sum of squares for the categorical variable is different 
from zero, we know that there is a relationship between the two varia­
bles in the observed data. The larger that sum of squares is relative to 
the other sums of squares, the stronger is the relationship between the 
two variables. This is also reflected in the proportion obtained when 
we divide the categorical variable sum of squares by the total sum of 
squares. This proportion tells us how much of the variation in the val­
ues of the dependent variable is explained by the categorical variable, 
and it can be as small as 0 or as large as 1. 

The F-ratio and the p-value that goes with it tell us whether the 
group means of the dependent variable are significantly different from 
each other. If Fis large and therefore p is small, then we reject the null 
hypothesis of no differences and conclude that there is a relationship 
between the two variables in the population from which the data were 
sampled. By a small p we usually mean anything less than 0.05. Newer 
statistics software programs for the computer and some hand calcula­
tors give us the exact value of p. 

If we see F* or F**, with a footnote explaining that one asterisk 
means that p is less than 0.05 and two asterisks mean that p is less than 
0.01, a statistical table was used to find an approximate p-value. The 
shortcoming of statistical tables is that they are never detailed enough 
to provide the exact p-value; they state only that p is less than some 
value. Exact p-values are much more informative because then we know 
how much less than 0.05 or 0.01 the p-value is and how much evidence 
there is against the null hypothesis. 
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Matched pair 
ana1ysis is used 
when we have re­
peated a mea­
surement with 
two observations 
on each element 
in a study. 

The second question we raise in the introduction to this chapter is 
whether there has been any change in the crime rates over time. Per­
haps the most common example of data on change is before-and-after 
data. This name implies an initial measurement-say, of subjects on 
an attitude scale-then exposure of the subjects to some kind of stim­
ulus-say, a movie-then a measurement of the subjects again on the 
same attitude scale to see if there has been a change in their attitudes 
brought on by the stimulus. Because two paired observations belong 
to a particular individual, the data are called matched pair data. 

A Hest 

Table 11.6 shows matched pair data on violent crime rates of the 48 
continental states. The 1986 data from Table 11.1 are given, plus the 
violent crime rates six years later, in 1992. To see if there has been any 
change in the crime rates between 1986 and 1992, we can compare the 
mean scores for the two points in time. If we simply compare the two 
means without taking the pairing into account, the mean in 1992 minus 
the mean in 1986 equals 579 - 460 = 119, which translates to at-value 
of2.13 on 94 degrees offreedom and corresponds to a p-value of 0.04. 
This is not quite significant at a two-sided 5% level, since significance 
requires a one-sided p-value of 0.025 or smaller. In this case the inde­
pendent variable is time, and the residual variable is the effects of all 
other variables. 

One of these other variables is the state variable. For example, New 
York is a state with two high values, 986 and 1130, while Mississippi is 
a state with two low values, 274 and 418. They both have changed by 
114 crimes per 100,000 inhabitants; the change has been the same for 
both states. The difference in the values between the two states, one 
high and the other low, is included in the effect of the residual variable. 
The effect of the residual variable occurs in the denominator for the 
t-value, and the differences from one state to the next therefore deflate 
the value of t. 

To get around this problem, we look at the differences in rates at the 
two points in time. Mter all, we want to study change. Both New York 
and Mississippi end up with a difference score of 114, since they both 
have had the same change in crime rates. Now the data consist of one 
column of 48 difference scores. 
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Table 11.6 Violent crimes in the contiguous 48 states per 100,000 
population in 1986 and 1992 

Crime rate Crime rate 
State 1986 1992 Difference Region 

Maine 147 132 -15 
New Hampshire 140 126 -14 

Vermont 149 III -38 
Massachusetts 557 777 220 

New England 

Rhode Island 336 395 59 

Connecticut 426 494 68 

New York 986 1130 144 

New Jersey 572 630 58 Mid-Atlantic 

Pennsylvania 359 432 75 

Ohio 423 534 111 
Indiana 308 519 211 
Illinois 800 519 194 

Michigan 804 825 21 
Wisconsin 258 282 24 
Minnesota 285 346 61 

Iowa 235 281 46 
Midwest 

Nebraska 263 355 92 
Missouri 578 757 179 
North Dakota 51 89 227 
South Dakota 125 199 74 
Kansas 369 520 151 

Delaware 427 643 216 
Maryland 833 816 -17 

Virginia 306 386 80 
West Virginia 164 214 50 
North Carolina 476 703 227 

South 

South Carolina 675 976 301 
Georgia 588 764 176 
Florida 1,036 1,258 222 

Source: F.B.I. Uniform Grime Reports for the United States 

(Table continued on following page) 
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Table 11.6 Violent crimes in the contiguous 48 states per 100,000 
population in 1986 and 1992 (continued) 

Crime rate Crime rate 
State 1986 1992 Difference Region 

Kentucky 
334 546 212 

Tennessee 540 769 229 

Alabama 558 892 334 
South 

Mississippi 274 418 144 

Arkansas 395 588 193 

Louisiana 758 1,000 242 

Oklahoma 436 636 200 

Texas 659 838 179 

Arizona 658 701 43 
Southwest 

New Mexico 726 976 241 

Wyoming 293 329 36 

Colorado 524 610 86 

Montana 157 175 18 Rocky 
Idaho 222 298 76 Mountains 

Utah 267 306 39 

Nevada 719 770 51 

Washington 437 564 127 

Oregon 550 534 262 Pacific Coast 

California 920 1,161 241 

To see if there is any difference in these data, we find the mean of 
the differences. The mean of the differences equals 119, so there has 
been some change in the crime rates. To see if these differences could 
have occurred by chance alone, we set up a null hypothesis that the 
overall mean equals O. We can test this null hypothesis the same way 
we did a t-test for a single mean in Chapter 7. For these data, t = 

8.74 on 47 degrees of freedom. This corresponds to a p-value less than 
0.0001, and now we have overwhelming evidence against the null hy­
pothesis. The computation of t is shown in Formula 11.6. 
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The sign test: A simple yes or no 

Another and simpler approach to the question of whether there 
was a change over time is to apply a sign test-that is, to consider 
only whether the scores were more likely to increase or decrease, 
instead of asking how much they changed. The logic of such a 
situation is simple as well: if there were no true change, then 
there would be only random variation in the differences. In our 
example, each difference would be equally likely to be positive or 
negative. Thus, we would expect 24 negative and 24 positive differ­
ences. Instead, there are 4 negative differences and 44 positive differ­
ences. 

Now we call on the binomial distribution from Chapter 4 to study 
the sign of the differences and find the number of positive and negative 
differences. This problem is like tossing a coin 48 times and getting 4 
heads and 44 tails. With only random variation from 1986 to 1992, the 
probability equals 0.5 that a difference will be positive and 0.5 that a 
difference will be negative. Thus, we can use the binomial distribution 
to test the null hypothesis that the probability of a positive difference 
equals 0.5. To test this hypothesis, we find the probability of getting 44 
or more positive differences. 

Tables for the binomial distribution do not go as far as 48 obser­
vations, but we can find the p-value we need by computing a z-score. 
We find that z = 6.21, and that gives p less than 0.0001, overwhelming 
evidence also against the null hypothesis that there has been no 
change. 

The t-test for the paired data give a smaller p-value than the sign 
test using the binomial distribution and the normal approximation. 
But that is not surprising. The t-test uses the actual numerical values of 
the observed differences, which is much more information than 
whether a difference is positive or negative. The t-test also is based on 
the additional information that the original scores follow a normal 
distribution. The more of the information in the data we can use, the 
more significant are the results. 

One advantage of the sign test is that it is easier to use. It requires 
considerably fewer computations than the t-test, and for small sample 
sizes we can use tables for the binomial distribution directly. If we have 
any doubts about whether the data follow a normal distribution and 
whether we should use the paired t-test, then it is safer to use the sign 
test. 
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11.1 Analysis of variance: Comparing the mean-ings of things 

When we study the effect of one (or more) categorical, independent 
variables on a metric, dependent variable, we can use a statistical 
method known as analysis of variance or anova, as it is frequently called. 
This statistical procedure compares the means of the dependent vari­
able for each value of the independent variable(s). 

11.2 Question 1. Relationship between violent crime rate and 
region? 

We first make a scatterplot, with the independent variable along the 
horizontal axis and the dependent variable along the vertical axis. We 
can also create boxplots to further compare differences in the depen­
dent variable for groups of observations defined by the independent 
variable. 

11.3 Question 2. Strength of the relationship? 

Next, we find the mean of the dependent variable for the entire data 
set and separately for each value of the independent variable. As in 
regression analysis, it is assumed that the difference between an obser­
vation and the overall mean is composed of the effects of the indepen­
dent plus the residual variable. 

To find the overall effect of the independent variable, we subtract 
the overall mean from each group mean. Then we square all these 
differences, multiply the squares by the number of observations in the 
group, and add all the products. To find the overall effect of the resid­
ual variable, we find the difference between each observation and the 
mean of the group it belongs to. Next we square all these differences 
and add all the squares. This sum of squares is known as the residual 
sum of squares. To summarize in one number how large the differences 
are between the observed values and the overall mean, we square the 
differences between the means of the region and residual variables and 
add them up. The sum of squared differences is known as the total 
sum of squares. 

For an easier understanding of the sums of squares, we compute 
the proportion of the total effect that is contributed by the two separate 
effects. The proportion for the independent variable is found by divid-



ing the group sum of squares by the total sum of squares. This pro­
portion is known as R2, and it measures the proportion of the variation 
in the dependent variable that is associated with the independent vari­
able. This proportion is directly comparable to the squared correlation 
coefficient in regression analysis. 

The square root of R2 is R This number measures the strength of 
the relationship between the independent variable and the dependent 
variable. R ranges in possible values between 0 and 1, and it is directly 
comparable to the magnitude of the correlation coefficient r for the 
strength of the relationship between two metric variables in regression 
and correlation analysis. 

An analysis of variance tells us what percentage of the variation in 
the dependent variable is associated with the independent variable and 
what percentage with the residual variable. Sometimes words like ex­
plain, produce, account for, or cause are used instead of associated with. 

11.4 Question 3. Could the relationship have occurred by 
chance alone? 

We test the null hypothesis that the population means of the depen­
dent variable within each category of the independent variable are 
equal. If the effect of the independent variable is large compared to 
the residual variable, then we reject the null hypothesis. If the effect is 
small, then we do not reject the null hypothesis. 

To find the p-value for the test, R2 is converted into a value of the 
F-variable. Statistical software or tables can be used to find the p-value 
from F. The degrees of freedom for the independent variable equals 
the number of groups minus one, and the degrees of freedom for the 
residual variable equals the number of observations minus the number 
of groups. The independent variable and residual variable are both 
divided by their degrees of freedom, and the results are called mean 
squares. The mean square for the independent variable is divided by 
the mean square for the residual variable to find the F-ratio. Once we 
know there is a statistically significant difference between the means of 
the dependent variable in the various groups, then we would like to 
know which means are different from each other. 

11.5 Question 4. Causal relationship? 

Although we cannot ascertain from these data what causes crime rates 
to differ from one region to another, we can predict which states will 
have higher and lower crime rates. 

11.8 Summary 503 



504 Chapter 11· Anova : Analysis of Variance for a Categorical and a Metric Variable 

FORMULAS 

11.6 Analysis of variance: A bird's-eye review 

This section reviews the process of doing an analysis of variance. 

11.7 Matched pair analysis: Two observations per unit 

With matched pair data, we subtract one observation from the other 
to see if there has been any change. For statistical significance, we test 
the null hypothesis that the mean change in the population equals zero 
using the t-test for a single mean. For a quick test of the change, we 
can count the positive and negative differences and use the binomial 
distribution to see if the probability of a positive difference equals the 
probability of a negative difference. This sign test is also appropriate if 
our data do not follow a normal distribution. 

Iversen, Gudmund R., and Helmut Norpoth. Analysis of Variance, 2nd 
ed. (Sage University Paper Series on Quantitative Applications in the 
Social Sciences, series no. 07-001). Newbury Park, CA: Sage, 1987. Short 
introduction to analysis of variance. 

Toothaker, Larry E. Multiple Comparison Procedures (Sage University Pa­
per Series on Quantitative Applications in the Social Sciences, series 
no. 07-089) . Newbury Park, CA: Sage, 1993. How to compare means of 
some of the groups after the test of overall significance. 

ANALYSIS OF VARIANCE 

In the days when the computations for analysis of variance were done 
by hand or desk calculator, the data were laid out in a table with one 
column of observations for each group (Table 11.7). A particular ob­
servation is labeled with the two subscripts, one identifying the row and 
one identifying the column the observation is in. The computing for­
mulas for analysis of variance are typically written out for this kind of 
arrangement of the data. On the other hand, when the data are laid 
out in a computer file as in Table 11.1, with one column for each 
variable and one row for each unit, then one column lists the values of 



Table 11.7 Layout of data for analysis of variance 

Groop 
1 2 3 4 

Yll Y21 Ykl 

Y12 Y22 Yk2 

Y13 Y23 Yk3 

Mean 

Overall mean: y 

the dependent variable and another column identifies the group to 
which a particular observation belongs. In the following formulas, we 
use the first layout of the data, the layout shown in Table 11.8. For very 
small data sets, the formulas can be used directly; for larger data sets, 
analysis of variance is best done on a computer. 

The sums of squares are found from these expressions: 

categorical variable sum of squares = ~nlYi - y)2 

residual sum of squares = ~~(Yij - y;)2 (11.1) 

total sum of squares = ~~(Yij - y)2 

2 categorical variable sum of squares 
R=-~---------!.--

total sum of squares 
(11.2) 

Table 11.8 Analysis of variance table for one categorical variable 

Sum of Degrees of Mean 
Soorce squares freedom square F-ratio p-value 

Categorical variable CSS k-1 CMS F P 
Residual variable RSS n-k RMS 

Total TSS n-1 

Formulas 505 
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With k groups and n observations in the total sample, the various de­
grees of freedom are found from these expressions: 

categorical variable degrees of freedom = k - 1 

residual degrees of freedom = n - k (1l.3) 

total degrees of freedom = n - 1 

The mean squares are found by dividing the sums of squares by 
their degrees of freedom. 

categorical variable sum of squares 
categorical variable mean square = ----"'-----k---1---"'"---

residual sum of squares 
residual mean square = -------"--­

n-k 

Finally, the F-ratio is found by 

categorical variable mean square 
F = -~--------'--

residual mean square 

with k - 1 and n - k degrees of freedom. 

(1l.4) 

(1l.5 ) 

The computations are often summarized in an analysis of variance 
table (Table 11.8; C denotes categorical variable and R denotes residual 
variable). 

PAIRED DATA 

For the ith element, we first find the difference 

di = YBi - YAi 

where YBi is the first observation (before) and YAi is the second obser­
vation (after). Then we find the mean d and the standard deviation s 
of the d's. The corresponding value of the t-variable is found from the 
expression 

d 
t=--

s/ Fn 
n - 1 d.f. (1l.6) 



For the example, 

t = 118.47 = 8.74 
93.93/.[48 

Exercises 507 

47 d.f. 

EXERCISES 

REvIEw (ExERCISES 11.1-11.17) 

11.1 Think about the main example in the text on violent crime 
rates. 

a. How do we calculate the violent crime rate for a given state? 

b. Why do we prefer to work with violent crime ratesrather than 
number of violent crimes? 

c. Why do we divide the states into regions for the study of 
violent crimes rather than considering each state individually? 

11.2 a. Judging from Table 11.1, which five states have the highest 
rates of violent crimes? 

b. Which five states have the lowest violent crime rates? 

c. From Table 11.1 and other displays in the text, are some 
regions more crime ridden or crime free than other regions? 

11.3 Imagine that for each state we know the rate of violent crimes 
committed by women and the rate of violent crimes committed by men. 
We want to study the difference between the rates across all the states. 

a. Which is the independent and which is the dependent vari­
able? 

b. What types (categorical, rank, metric) of variables are we 
comparing? 

11.4 Analysis of variance, abbreviated anova, is a statistical method 
used to study what kind of data? 

11.5 Give an example of an interesting study in which the relation­
ship between two variables could be analyzed using analysis of variance. 

11.6 In the analysis of variance for the violent crime rate problem, 
what are the two factors that completely determine the violent crime 
rate in a given state? 
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11. 7 In the study of violen t crime rates, if both the region and the 
residual variable had no effect on the rates, how would the rates com­
pare across the states? 

11.8 Suppose we find the difference between the violent crime rate 
in each state and the overall mean violent crime rate for all the states, 
square all these differences, and add up all the squares. 

a. What is the name of the sum? 

b. How do we find the value of the residual variable for a par­
ticular state? 

c. What do we call the sum of the squares of all the residual 
terms? 

11.9 What do we call the question we ask to determine if there is a 
relationship between the categorical and the metric variable in the 
larger population from which a sample was drawn? 

11.10 a. Do we reject the null hypothesis in analysis of variance for a 
large or a small R2? 

b. In addition to the actual value of W, what determines 
whether the null hypothesis is rejected or not? 
c. In analysis of variance, to which statistical variable do we 
convert R2 in order to find the p-value for the data? 

11.11 a. If the independent variable has 6 values, which means that 
we are working with 6 groups, how many degrees of freedom 
does the independent variable have? 

b. How many degrees of freedom does the residual variable 
have if there are 50 observations in the sample, divided into 6 
groups? 

11.12 a. What is a mean square for a variable? 

b. How do we calculate a mean square? 

c. How do we compare the mean square of the independent 
variable with the mean square of the residual variable? 

d. What do we call the result of comparing the mean squares? 

11.13 a. Give an example of matched pairs data. 

b. Why might a researcher want to collect such data? 

11.14 What does a sign test do? 



11.15 a. Why is the residual variable jokingly called the uninteresting 
variable? 

b. Why is the residual variable somewhat misnamed when it is 
called the error variable? 

11.16 a. Why is a t-test generally preferred over a sign test? 

b. What is the advantage of a sign test? 

11.17 How can the analysis of paired data also be seen as a regression 
analysis where we study whether the regression line is a 45-degree line 
with intercept 0 and slope I? 

INTERPRETATION (ExERCISES 11.18-11.28) 

11.18 An analysis of variance of data on the per capita income in each 
of the 48 contiguous states for 1994, with the states grouped into 8 
regions, gives the results in Table 11.9. 

a. What is the independent variable and what is the dependent 
variable in this analysis? 

b. What conclusions can you draw from the results? 

c. What are some things you might want to know about regions 
and incomes that these results do not convey? 

11.19 In the Oakland Growth Study, the staff rated a group of high 
school girls on a good physique variable. For a sample of 35 middle­
class girls, the mean and standard deviation were 56.6 and 13.5, and 
for a sample of 43 working-class girls, the corresponding values were 
48.6 and 14.2. (Source: G. H. Elder, Jr., "Appearance and education in marriage 
mobility, " American Sociological Review, vol. 34 (1969), p. 524.) 

Table 11.9 Data for Exercise 11.18 

Sum of Degrees of Mean 
Source squares freedom square F-ratio p-value 

Region 195.0 7 27.86 5.33 0.0002 

Residual 209.1 40 5.23 

Total 404.1 47 

Source: Bureau of Census, Statistical Abstract of the United States: 1995 (115th edition), 
Washington, DC: u.s. Government Printing Office, 1995. 
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a. How large is the difference in good physique between the 
two groups of girls? 

b. The difference translates to F = 6.40 on 1 and 76 degrees 
of freedom (p = 0.013). Is there a significant difference be­
tween the two means? 

11.20 Is there any difference in the cost between chocolate and va­
nilla frozen desserts? In data collected by Consumer Reports, the mean 
cost per serving of chocolate desserts equals 29.4 cents, and the mean 
cost per serving of vanilla desserts equals 30.4 cents. To see if the dif­
ference between the two means is statistically significant, the t-test for 
the difference between two means gives t = 0.18 on 42 dJ. An analysis 
of variance with type of dessert as the independent variable and cost 
as the dependent variable givesF = 0.033 on 1 and 42 d.f. (Source: ''Low­
fatfroun desserts: Better for you than ice cream?" Consumer Reports, vol. 57, no. 8 
(August 1992), pp. 483-487.) 

a. Show numerically that in this case with a nominal variable 
with only two categories (chocolate and vanilla) t2 = F. 

b. Is the difference in cost between the two types of dessert 
statistically significant? 

11.21 Answer the following questions about Table 11.10 on the effects 
of region and residual on violent crime rates. 

a. Which is the independent variable? 

b. What is the residual variable composed of? 

c. Why does subtracting J(2 from 1.00 give the proportion of 
the variation in the dependent variable explained by the resid­
ual variable? 

d. If there were no effect of the region variable, what would 
the sum of squares for the independent variable be equal to? 

Table 11.10 Data for Exercise 11.21 

Variable Effect Proportion 

Independent (region) Independent sum of squares R2 

Residual (other) Residual sum of squares 1.00 - R2 

Total Total sum of squares 1.00 



Table 11.11 Data for Exercise 11.23 

Sum of Degrees of Mean 
Source squares freedom square F-ratio p-value 

High school 1,450 9 

Residual 9,000 91 

Total 10,450 100 

e. If there were no effect of the residual variable, what would 
the value be of R2? 

f. What would be the values of all the violent crime rates if 
there were no effect of the region and the residual variables? 

11.22 If the value of the F-variable exceeds the critical value ofF given 
in the statistical table, or if the p-value for this F is smaller than 0.05, 
what can you conclude about the relationship between a metric de­
pendent and a categorical independent variable? 

11.23 An analysis of variance of data on the mean GPA scores from 
a sample of seniors from 10 different high schools in Minneapolis gives 
the results in Table 11.11. Without making any further computations, 
what do the numbers tell you about the differences between the high 
schools in this study? 

11.24 The numbers of female and male piglets in litters concerns 
people who raise pigs. The data in Table 11.12 show the number of 
female and male pigs in 6 different litters. The difference between the 
mean number of females and the mean number of males results in 
t = - 0.29, 10 dJ., and p = 0.39. 

a. What is the null hypothesis being studied here? 

b. Can you conclude that there is a difference in the mean 
numbers of female and male piglets in the larger population 
from which these data came? 

c. What aspect of the data is not taken into account in this 
analysis? 

11.25 In their annual review of colleges and universities, U.S. News 
and World Report ranks graduate departments in a dozen fields. People 
are asked to assign a rank of from 1 to 5 in evaluating a particular 
department, and the ranks are then averaged to find a score for the 
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Table 11.12 Data 
for Exercise 11.24 

Litter Females Males 

1 

2 
3 

4 

5 

6 

4 

6 

5 

3 

4 

6 

Source: S. M. Free, Jr., 
"Response: The 
consultant's forum, " 
Biometrics, vol. 33 
(1977), no. 3, p. 561. 

5 

4 

5 

6 

4 

5 
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Table 11.13 Data for Exercise 11.25 

Degrees of Sum of Mean 
Source freedom squares Proportion square F-ratio p-value 

University 5 4.40 0.40 0.88 8.85 0.000002 
Residual 66 6.57 0.60 0.10 

Total 71 10.97 1.00 

department. For example, Stanford gets a score of 4.9 in biology ac­
cording to this procedure. Six universities appear on the list of all 12 
departments evaluated. The mean scores for the six universities across 
all 12 departments are as follows: Columbia 4.13, Harvard 4.55, Prince­
ton 4.44, Stanford 4.78, University of California at Berkeley 4.79, and 
University of Wisconsin at Madison 4.24. To see if there are significant 
differences between the schools, we perform a one-way analysis of var­
iance on the scores. The results are in Table 11.13. 

a. What does the table tell you about the differences in scores 
between the universities? 

b. What other analyses might you want to perform to assess how 
different the mean scores are from one school to the next? 

11.26 The Highway Loss Data Institute collects data on the number 
of insurance claims per insured vehicle for different car models. The 
data used here are from 1991-1993, and they are scored in such a way 
that 100 represents the mean number of claims for all models. With 
this scoring, the numbers range from a low of 44 insurance claims for 
the Chevrolet Suburban to 201 for the Hyundai Elantra; the number 
of insurance claims for Suburban is less than half the average for all 
cars, while the number of claims for Elantra is about double the average 
for all cars. Is there a difference in the number of claims between small, 
mid-size, and large cars? In a random sample of cars there is a mean 
of 155 claims for 5 small cars, 95 claims for 12 mid-size cars, and 60 
claims for 5 large cars. An analysis of variance for these cars using 
number of claims as the dependent variable and size as the indepen­
dent variable gives the results in Table 11.14. 

a. Use size on the horizontal axis and number of claims on the 
vertical axis and graph the three means. 



Table 11.14 Data for Exercise 11.26 

Degrees of Sum of Mean 
Source freedom squares Proportion square F-ratio Jrvalue 

Size 2 23,110 0.75 11,555 28.20 <0.0001 
Residual 19 7,786 0.25 410 

Total 21 30,897 1.00 

Source: Highway Loss Data Institute, as reported in Motor Trend, vol. 47, no. 1 Uanuary 
1995), p. 77. 

b. What does the analysis of variance tell you about the rela­
tionship between size of car and number of insurance claims? 

c. What might possibly explain these results? 

11.27 In a comparative study, people were sampled in several differ­
en t European countries on a wide variety of issues. One of the questions 
asked was "Altogether, you made how many holiday trips, each lasting 
four days or more, in 1985?" (Source:Jacques-ReneIlabier, Helen Riffault, and 
Ronald Inglehart, Euro-barometer 25: Holiday Travel and Environmental Prob­
lems, April 1986. ICPSR ed. Ann Arbor, MI.: Inter-University Consortium for Political 
and Social Research, 1988. Codebook p. 20.) The mean number of trips for 
Denmark was 1.06, for France 1.11, for Ireland 0.81, and for Portugal 
0.41. An analysis of variance to see if these means are significantly dif­
ferent gives F = 85.77 on 3 and 4,019 degrees of freedom and p < 
0.0001. 

a. What do the results tell you about the differences in number 
of vacation trips people in different countries took? 

b. What else might you want to know about these data to better 
understand the differences in numbers of vacation trips? 

11.28 In the study of Europeans cited in Exercise 11.27, people were 
also asked about the satisfaction they felt with the lives they were lead­
ing. Ranking very satisfied as 1, fairly satisfied as 2, not very satisfied as 
3, and not at all satisfied as 4, we find a mean satisfaction of 1.41 in 
Denmark, 2.16 in France, 1.65 in The Netherlands, and 1.88 in West 
Germany. The overall mean equals 1.77. An analysis of variance to study 
these country differences gives J(2 = 0.16 and F = 250 on 3 and 3,995 
degrees of freedom. What do the results tell you about the differences 
between the four countries? 
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ANALYSIS (ExERCISES 11.29-11.46) 

11.29 Is there difference in the mandible (lower jaw) lengths of pre­
historic female and male golden jackals (Canis aureus)? The following 
lengths, in millimeters, are from the jackal collection of the British 
Museum. 

Female 110 III 107 106 110 105 107 106 111 III 
Male 120 107 110 116 114 III 113 117 114 112 
Source: C. F. Higham, A. Kijngam, and B. F. J Manly, "An analysis of prehistoric canid 
remains from Thailand, "Journal of Archaeological Science, vol. 7 (1980), pp. 149-165. 

a. Find the mean lengths for the two groups. 

b. Do a t-test for the difference between the two means or an 
analysis of variance to see if the difference in the means is sta­
tistically significant. 

11.30 Go to the Springer Web site (http://www.springer-ny.com/sup­
plements/iversen) to find files relating to this book. The data file "Sing­
ers" contains data on heights of sopranos, altos, tenors, and basses in 
the New York Choral Society. (Source:] M. Chambers et at., Graphical Meth­
ods for Data Analysis, Boston: Duxbury, 1983. p. 350.) 

a. Are there differences in heights among the four groups of 
singers? 

b. Could the differences have occurred by chance alone? 

c. Does type of voice affect height, or could there be other 
variables involved? 

11.31 Table 11.15 shows the flavor quality of different vanilla frozen 
desserts measured on a scale from 0 to 100 by a panel of trained tasters. 

a. Make a scatterplot of the data. What does the scatterplot 
show you? 

b. Find the mean flavor quality for each group to see if there 
is any difference in flavor quality among the three types of 
desserts. 

c. Do an analysis of variance to find the strength of the rela­
tionship is between type of dessert and flavor quality and to see 
if the differences between the means are statistically significant. 

11.32 During the Cold War, the countries involved spent consider­
able amounts of money on national defense. Different countries make 



Table II.IS Data for Exercise 11.31 

Frozen yogurts Ice milks Frozen desserts 

87 83 33 
74 76 31 

70 76 31 

68 70 31 

68 58 27 
67 52 10 

64 50 

64 47 

63 
57 
54 

50 
48 

Source: "Low-fat frozen desserts: Better fur you than ice cream?" Consumer Reports, vol. 57, 
no. 8 (August 1992), pp. 483-487. 

different decisions about how to allocate their resources, and the final 
allocation each year is a reflection of a complex set of values. Here we 
want to compare resources allocated to education and defense by a few 
countries during the Cold War using a paired data approach (see Table 
11.16). 

a. How large is the difference between the two mean percent­
ages? 

b. Change the mean difference into a t-value. (As it happens, 
it makes very little difference whether the data in this exercise 
are analyzed using the paired method or not.) 

c. If these countries were a random sample of countries, what 
could you conclude from this value of the t-variable? 

11.33 Does more racial discrimination occur in northern or southern 
cities? To answer this question, each often northern cities are matched 
on similarities of racial composition, median income, and amounts and 
types of industries with a similar southern city. By matching cities on 
these variables, the possible effects of these variables on the results of 
the analysis are eliminated. Each city is then scored on a scale from 0 
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Table 11.16 Data for Exercise 11.32 

Education expenditures as Defense expenditures as 
Country per cent of national income 1969 per cent of GNP 1969 

Australia 4.0 3.6 
China (Taiwan) 3.8 8.8 

Hungary 4.4 3.5 

Korea, Republic of 3.8 4.0 

Norway 6.3 2.9 

Sudan 4.9 6.0 

United States 6.3 7.8 

Yugoslavia 5.1 5.4 

Source: U.S. Bureau of the Census, Statistical Abstract of the United States: 1972, 93rd 
ed. Washington, DC: U.S. Government Printing Office, 1972, pp. 809, 831. 

to 100 for racial discrimination. Discrimination is based on indices like 
amount of open housing legislation, integration of the schools, differ­
ences in incomes for racial groups, and differences in unemployment 
of racial groups. A high score indicates more discrimination. The dis­
crimination scores are shown in Table 11.17. (In this exercise it makes 
a large difference for the analysis whether the data are correctly ana­
lyzed using the paired method or incorrectly analyzed by just compar­
ing the means of the southern and the northern cities.) 

a. How do the different pairs of cities compare on this variable? 
(One way to compare them is to graph each pair of cities in a 
scatterplot with North/South as the independent variable and 
score as the dependent variable.) 

Table 11.17 Data for Exercise 11.33 

Southern 
Northern 

1 

72 
79 

2 

52 
68 

3 

59 
45 

4 

36 
45 

Pair of cities 

5 

67 
59 

6 

25 
38 

7 

80 
75 

8 

41 

56 

9 

62 
72 

10 

55 
60 



b. What does the mean of the differences tell you about the 
difference between cities in the two parts of the country? 

c. Is the mean difference statistically different from zero? 

11.34 Much discussion has taken place about the extent to which the 
population in this country shifted from the northern and eastern parts 
to the southern and western parts in the 1960s. The data in Table 11.18 
give the percentages of change in population in that period for a ran­
dom sample of standard metropolitan statistical areas (SMSAs) with 
populations of 200,000 or more. The SMSAs are classified by their cen­
sus regions. For these data the total sum of squares equals 12,738, and 
the residual sum of squares within the four groups of observations 
equals 8,822. 

a. Make a scatterplot of the data and include the four group 
means on the plot. 

b. Judging from the scatterplot, did the four groups of cities 
have the same growth? 

c. Find the F-value for these data. 

d. On the basis of F, is there a significant difference in the 
mean percentages of growth in the regions? 

Table 11.18 Data for Exercise 11.34 

Region 

West North Central Northeast South 

20.4 9.2 6.1 36.7 

32.1 21.4 5.2 24.0 

89.0 13.6 10.8 19.4 

41.2 22.4 -0.2 85.7 

39.0 15.2 7.6 40.0 

3.3 12.8 12.6 16.1 

32.4 4.7 8.8 

18.9 

14.4 

30.1 

Source: U.S. Bureau of the Census, Statistical Abstracts of the United States: 1972, 93rd. 
ed. Washington, DC: U.S. Government Printing Office, 1972, pp. 838-878. 
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11.35 The researchers cited studied a sample of 22 gymnasts and a 
sample of 21 swimmers. For each athlete they computed adult height 
predictions based on several observed variables. For the gymnasts, the 
mean height prediction was 5.48 cm/year, and for the swimmers, it was 
8.00 cm/year. The standard error of the mean for the gymnasts was 
0.32 cm/year and for the swimmers 0.50 cm/year. The researchers 
reported that the mean for the gymnasts was significantly lower than 
the mean for the swimmers, with p < 0.05. (Source: G. E. Theintz, H. How­
ard, U. Weiss, and P. C. Sizonenko, ''Evidence for a reduction of growth potential in 
adolescent female gymnasts, "The Journal of Pediatrics, vol. 122 (1993), no. 2, pp. 
306-313.) 

a. What is the independent variable in this study? 

b. What is the dependent variable in this study? 

c. Find the exact p-value for the difference between the two 
means. 

d. Why is the exact p-value more informative than the authors' 
statement that p < 0.05? 

11.36 A set of data shows the number of paid vacation days per year 
in several European countries, according to agreements between work­
ers and employers: Austria 25, Belgium 25, Denmark 25, Spain 32, 
Finland 30, France 30, Great Britain 20, Iceland 24, Ireland 18, Italy 
25, Norway 21, Netherlands 25, Portugal 30, Sweden 40, Switzerland 
23. (Source:Juliet B. Scor, The OveIWorked American: The Unexpected Decline 
of Leisure, New York: Basic Books, 1991, p. 82.) 

a. Make a boxplot of the data. 

b. Guess, estimate, or find the number of paid vacation work­
days for workers in the following countries in North America: 
United States, Canada, Mexico, Cuba, Haiti. Create a boxplot 
for North America similar to the one for Europe. 

c. What are some of the comparisons you can make from the 
two boxplots of the two groups of countries? 

11.37 Table 11.19 is an analysis of variance table from a study on 
climactic conditions and homicide rates. 

a. Fill in the blanks in the table. 

b. Does climate zone seem to have an effect on the dependent 
variable? Explain your answer. 



Table 11.19 Data for Exercise 11.37 

Degrees of Mean 
Source freedom Effect Proportion square F-ratio p-value 

Climate zone 7 88,866 0.002 

Residual 40 

Total 218,031 

c. How might you go further in determining which climate 
zones are different from each other and which are not different 
from each other? 

11.38 Table 11.20 shows data on times in minutes of relief of head­
aches for a standard and a new treatment. We want to see if there is a 
difference between the two treatments. An ordinary t-test for the dif­
ference between the two means results in a nonsignificant t = 1.15 with 

Table 11.20 Data for Exercise 11.38 

Standard New 
Person treatment treatment 

1 8.4 6.9 

2 7.7 6.8 

3 10.1 10.3 

4 9.6 9.4 

5 9.3 8.0 

6 9.1 8.8 

7 9.0 6.1 

8 7.7 7.4 

9 8.1 8.0 

10 5.3 5.1 

Mean 8.43 7.68 

Source: A. J Gross and v: A. Clark, Survival Distributions: Reliability Applications in the 
Biomedical Sciences, New York.·John Wiltry & Sons, 1975, p. 232. 
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Table 11.21 Data for Exercise 11.41 

Baby Caretaker Cost per hour 

1 Relative 4.90 

2 Nanny 7.00 

3 Relative 5.00 

4 Day care center 6.60 

5 Private home 5.35 

6 Nanny 7.50 

7 Private home 5.50 

8 Day care center 6.75 

9 Relative 5.25 

10 Private home 5.15 

11 Nanny 7.55 

12 Day care center 6.67 

13 Relative 5.10 

14 Private home 5.35 

15 Nanny 7.40 

15 Day care center 6.75 

Source: Sandra L. Hofferth, Urban Institute. 

18 d.f., P = 0.13. This value of tis based on the average of the standard 
deviations within the two groups. These standard deviations are heavily 
influenced by the extreme reactions of some of the people. In partic­
ular, the scores of persons 3 and 10 contribute heavily to the standard 
deviations because the scores are so different. One way around this 
problem is to use the paired aspect of the data and look at the differ­
ences in minutes between the standard and the new treatment. 

a. Find the difference in minutes between the standard and 
the new treatment for each person and the mean of the ten 
differences. 

b. How does the mean of the differences compare to the dif­
ference between the two means in the table? 

c. Find the value of t for the test of the null hypothesis that the 
population mean difference equals zero. 

d. Why is the value of t in this case based on only 9 degrees of 
freedom? 



e. What is the p-value for the new value of t and what do you 
conclude about the difference between the standard and the 
new treatment? 

11.39 a. Analyze the data in Exercise 11.38 using the sign test. 

b. How do the t-test and the sign test compare? 

11.40 a. Complete the table in Exercise 11.23. 

b. What can you now conclude about the relationship between 
the two variables? 

11.41 Table 11.21 summarizes data on the cost of child care. Use 
analysis of variance to see if the different types of caretakers charge 
different rates for child care. 

11.42 This is a famous data set collected by Charles Darwin. The data 
show in inches the heights of plants grown in 15 pairs. One member 
of each pair was cross-fertilized and the other was self-fertilized. Darwin 
was interested in whether there was any difference in heights between 
the two groups. 

Pair 1 2 3 4 5 6 7 8 

Cross-fertilized 23.5 12.0 21.0 22.0 19.1 21.5 22.1 20.4 

Self-fertilized 17.4 20.4 20.0 20.0 18.4 18.6 18.6 15.3 

Pair 9 10 11 12 13 14 15 

Cross-fertilized 18.3 21.6 23.3 21.0 22.1 23.0 12.0 

Self-fertilized 16.5 18.0 16.3 18.0 12.8 15.5 18.0 

Source: Charles Darwin, The Effect of Cross- and Self-fertilization in the Vegetable 
Kingdom, 2d ed., London:John Murray, 1876, p. 451. 

a. Find the difference in height for each pair and test the null 
hypothesis that the mean difference equals zero. 

b. Consider these data as two independent groups of observa­
tions and do an ordinary t-test for the difference between the 
two groups. 

c. How do the two analyses compare? 

11.43 Several societies were rated on two psychological variables, "de­
gree of oral socialization anxiety" and whether "oral explanations of 
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illness" were present or absent. The societies without oral explanations 
had the following anxiety scores: 

6 7 7 7 7 7 8 8 9 10 10 10 10 12 12 13 (y = 8.9, s = 2.14) 

The societies with oral explanations had the following anxiety scores: 

6 8 8 10 10 10 11 11 12 12 12 12 13 13 13 14 14 14 15 15 15 16 17 
(y = 12.2, s = 2.73) 

Source:] W. M. Whiting and I L. Child, Child Training and Personality, New Haven: 
Yale University Press, 1953, p. 156.) 

Analyze the data, using the observations as if they were metric data. 

11.44 Cork comes from the bark of the cork tree. Is there any differ­
ence in the weight of cork deposits on the north and the south sides 
of trees? Following are data in grams of cork deposits for 28 trees. Is 
there any difference in deposits between the two sides of the trees? 

Tree 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

North 72 60 56 41 32 30 39 42 37 33 32 63 54 47 

South 76 66 64 36 35 34 31 31 31 27 34 74 60 52 

Tree 15 16 17 18 19 20 21 22 23 24 25 26 27 28 

North 91 56 79 81 78 46 39 32 60 35 39 50 43 48 

South 99 47 70 68 67 37 34 30 67 48 39 37 39 57 

Source: C. R Rao, "Tests of significance in multivariate analysis, "Biometrica, vol. 35 
(1948), pp. 58-79. 

11.45 Is there a difference in how much time teachers spend in the 
classroom in lower and upper secondary schools? Table 11.22 shows 
number of hours per year spent teaching in a sample of countries. 

a. Analyze these data. 

b. Do we gain much by taking into account that these are 
paired data? 

11.46 Exercise 10.73 shows these data on ages for grooms and brides 
applying for marriage licenses in the form (groom age, bride age): 



Table 11.22 Data for Exercise 11.45 

Nation Lower secondary 

Germany 761 

Ireland 792 

Italy 612 

Norway 666 

Spain 900 

Sweden 576 

United States 1,042 

Mean 764 

Source: OECD, from The New York Times, May 28, 1995, p. E7. 

Upper secondary 

673 

792 

612 

627 

630 

528 

1,019 

697 

(37,30) (30,27) (65,56) (45,40) (32,30) (28,26) (45,31) (29,24) (26,23) 
(28,25) (42,29) (36,33) (32,29) (24,22) (32,33) (21,29) (37,46) (28,25) 
(33,34) (17,19) (21,23) (24,23) (49,44) (28,29) (30,30) (24,25) (22,23) 
(68,60) (25,25) (32,27) (42,37) (24,24) (24,22) (28,27) (36,31) (23,24) 

(30,26) 
Source: The Philadelphia Inquirer, September 10, 1995, p. MD-12d. 

a. Treat the data as paired data and determine if there is a 
significant difference in the ages of the brides and the grooms 
using the period t-test. 

b. Use the sign test on these data to see if there is a difference 
in the ages. 
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RANK METHODS FOR 

TWO RANK VARIABLES 

Off/;at makes some people more interested in political elections than others? 

Maybe it has something to do with how close they feel to a political party. 

How do the standings of baseball teams change over time? Do the good 

teams stay good season after season? These and other questions can often be 

answered using rank variables. 
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Most of the variables mentioned so far have been categorical or metric 
variables, and by now you are used to distinguishing between them. 
Have you ever wondered how you might measure variables such as class 
rank, runners in a race, or an attitude? These variables are neither 
categorical nor metric but rank variables. 

As the name implies, rank variables are variables that compare in­
dividual elements on some feature in terms of quantity (more and less). 
For example, voters can be very much interested, somewhat interested, 
or not very interested in the outcome of an election. Social class can 
be treated as a rank variable; people can be ordered as to whether they 
are upper, middle, or lower class. Social psychologists who study atti­
tudes use rank variables to assess the strength as well as the direction 
of people's opinions. Attitude variables might be ranked on a value 
scale consisting of strongly opposed, opposed, neutral, in favor, or 
strongly in favor. Not only can people be shown to have different atti­
tudes, but individuals or groups can be shown to have more strongly 
held attitudes than others, according to the value of the rank variable. 
For these rank variables we use words to describe the values of the 
variables. 

During the season we look in the sports pages for the standings of 
our favorite baseball team. The team may be in first place, second place, 
or some place farther down. In the annual Kentucky Derby race, horses 
are ranked as they cross the finish line. We know which horse won, 
which came in second, third, and so on down to the horse that came 
in last. Similarly, in a draft of athletes, professional sports teams rank 
the players, and the best players are chosen first. Another, more un­
usual example of a rank variable comes from China where local officials 
as early as the 1700s ranked the harvest each year on a scale from 1 to 
10, with 10 being the best. For these rank variables we use numbers as 
values. 

Sometimes we deliberately create rank data from metric data. Say 
the original scatterplot for two metric variables shows a nonlinear pat­
tern so that it does not make sense to try to fit a line to the data. A 
linear pattern might emerge when we change the data on the two var­
iables to rank variables. Then we can analyze the data using the rank 
method described in this chapter. 

Data on one rank variable and one metric variable can also be 
analyzed this way. If we want to compare the finishing positions of 
horses in the Kentucky Derby and their financial values, we could find 
how strongly the two variables are correlated by changing the financial 
values to rankings. 
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Rank variables are more complex than categorical variables. With 
rank variables, we order the values of the variable. Not only is one 
observation different from another observation on a rank variable, one 
observation is more or less than another observation. But notice that 
with a rank variable we do not know how much more or less one ob­
servation is from another. In a horse race we do not know whether the 
second horse was right behind the first horse or several lengths behind. 
For the attitude variable we do not know if the amount of difference 
between one person who agrees and another who is neutral is the same 
as the amount of difference between one person who is neutral and 
another who disagrees. 

Rank variables are sometimes known as ordinal variables because of 
the ordering of the values. Rank variables are not used as often as 
categorical variables or metric variables. 

STOP AND PONDER 12 . 1 

Give an example of a rank variable and list the values of thi variable. 
Why is your variable a rank variable? 

TWO RANK VARIABLES WITH WORD 

Why are some people interested in political elections while others are 
not? In a famous report on American politics, the authors wondered 
if interest had to do with how closely people identified with either 
of the major political parties. Table 12.1 shows the distribution 

Table 12.1 Party identification and interest in the 1956 presidential 
election 

Party identification 

Independent Weak Strong Total 

Very much 104 150 262 516 

Interest Somewhat 178 273 237 688 

Not much 133 228 125 486 

Total 415 651 624 1690 

Source: Angus Campbell, Philip E. Converse, Warren E. Miller, and Donald E. Stokes, The 
American Voter: An Abridgement, New York:John Wiley & Sons, 1964, p. 84. 

For two observa­
tions on a rank 
variable we can 
determine 
whether they are 
the same or dif­
ferent. In addi­
tion, we can de­
termine if one 
ob ervation is 
more (or less) 
than another ob­
servation. 
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of a sample of American people on these two variables at the time of 
the presidential election in 1956 when Adlai Stevenson ran as a Dem­
ocrat against the incumbent Republican Dwight Eisenhower. Stevenson 
had been governor of Illinois and had lost the presidential election 
four years earlier. Eisenhower had been president for four years and 
was a popular military figure from World War II. The country was at 
peace, after the Korean war, and the Beatles were about to hit the 
scene. What did the people think about the coming election? 

In the survey, people were asked if they identified themselves as a 
strong Democrat or Republican, weak Democrat or Republican, or in­
dependent and how interested (very much, somewhat, or not much 
interested) they were in the 1956 presidential election. In the table, 
party identification is the x- or independent variable, placed horizon­
tally, and interest is the y- or dependent variable and placed, vertically. 
Strong Democrats and strong Republicans are combined as strong 
identifiers, and weak Democrats and weak Republicans are combined 
as weak identifiers. 

Question 1. Relationship between identification and interest? 

By skimming the table from right to left, we see that from the strong 
identifiers to the weak identifiers to the independents there seems to 
be a decrease in the interest in the election. The decrease indicates a 
relationship between the two variables party identification and interest 
in these data. 

The data can, of course, be displayed in various graphs. Figure 12.1 
shows four ways of graphing the data. Figure 12.1a, a bar graph in which 
the bars have the same widths and different heights, shows that fewer 
people are independents than people who identifY with a political 
party. It also shows that more people with a weak identification are not 
much interested in the election compared to the other two identifi­
cation groups. Figure 12.1b, a bar graph in which the bars have differ­
ent widths and the same heights, shows that there are fewer independ­
ents than people with either weak or strong interest in the group and 
that of strong identifiers is a smaller percentage of people with not 
much interest in the election. Figure 12.1c is a series of circles; the area 
of each circle corresponds to the number of observations in the same 
cell of the table. In this graph it is harder to see the totals, but the sizes 
of the circles clearly show where there are many people and where 
there are only a few. Finally, Figure 12.1d shows the nine frequencies 
as prisms of varying heights corresponding to the number of observa-
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tions. In this graph, too, it is hard to see the totals, but it is simple to 
compare the frequencies within rows and within columns. 

Table 12.1 can be modified to display the data as percentages, as 
shown in Table 12.2. The three columns of percentages in Table 12.2 
and the graphs in Figure 12.1 all show a relationship between the two 
variables in the data. 

STOP AND PONDER 12 . 2 

In a study of sex-role identity and occupational attainment, 161 em­
ployed Asian-American women were given a psychological sex role 
inventory test. High, medium, and low masculinity scores were com­
pared with high or low scores on an occupational attainment vari­
able. Among the high masculine women (45),81 % scored high in 
occupational attainment and 19% scored low in attainment. Among 
the medium masculine women (45), the corresponding percentages 
were 71 and 29. Among the low masculine respondents, the corre­
sponding percentages were 51 and 49. (Source: Esther Ngan-Ling Chow, 
"The influence oj sex-role identity and occupational attainment on the psycholo[fical 
wellrbeing of Asian American women, "Psychology of Women Quarterly, vol. 11 
(1987), pp. 69- 81.) 

How might you illustrate the relationship between the two rank 
variables? How would you summarize the relationship between the 
two variables in everyday language? 

Question 2. Strength of the relationship? 

A commonly used measurement of strength for two rank variables is a 
coefficient called gamma. For the election interest data, gamma is equal 

Table 12.2 Percentage distributions of interest for each identification 
group 

Party identification 

Independent Weak Strong 
Very much 25% 23% 42% 

Interest Somewhat 43 42 38 

Not much 32 35 20 

Total 100% 100% 100% 
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Figure 12.2 Julia ranks higher than Paul on both variables. 

to 0.21. Like other coefficients for the strength of a relationship, the 
value of gamma lies between - 1 and 1. A gamma of 0.21 indicates a 
weak and positive relationship between the two variables in the data. 

As with other coefficients of strength, the meaning of gamma has 
to do with prediction. With rank variables, we try to predict how two 
individuals rank relative to each other on the dependent variable based 
on how they rank relative to each other on the independent variable. 

Suppose Julia is a strong identifier and is very much interested in 
the election. Suppose Paul is an independent and somewhat interested 
in the election. If the identification variable runs horizontally from left 
to right and the interest variable runs vertically from bottom to top, 
Julia ranks higher than Paul on the party identification variable because 
she is located to the right of Paul (Figure 12.2). At the same time, she 
also ranks higher than Paul on the interest variable because she is lo­
cated higher than Paul. 

Suppose we know only how Julia and Paul compare on the identi­
fier variable. Can we predict how they rank on the interest variable? 
Assuming that all the people are located in the ellipse from lower right 
to upper left in Figure 12.2, then Julia will rank higher on both variables 
than any other person except people who have the same value on one 
or both variables. Thus, if we know that Julia ranks higher on the in­
dependent variable, then we can predict without error that she will 
rank higher on the dependent variable as well. In this case of perfect 
prediction, gamma equals 1.00. 

The opposite extreme occurs when the observations are all located 
within an ellipse from the upper left corner the table to the lower right 
corner, illustrated in Figure 12.3. Here, Julia is a strong identifier and 
not very interested. Paul is an independent who is somewhat interested. 
Julia now ranks higher than Paul on the party identification variable 
since she is located farther to the right than Paul. But Paul ranks higher 
on the interest variable since he is above Julia. The same pattern will 

The coefficient 
gamma measures 
the strength of 
the relationship 
between two 
rank variables 
that have word 
as values of the 
variables. 
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Figure 12.3 Julia ranks higher on party identification, Paul ranks higher 
on interest. 

occur for any two people we match up for observations located in the 
ellipse from the upper left to the lower right unless they have the same 
value on one or both variables. If we know the ranking on the inde­
pendent variable, then we can predict perfectly the ranking on the 
dependent variable. In this case, gamma equals -1.00. 

Gamma is found by counting how many pairs of observations there 
are of each of the two kinds shown in Figures 12.2 and 12.3. Gamma 
tells us how much better we can predict the ran kings for two people 
on the dependent variable when we know how they compare on the 
independent variable than when we do not have this knowledge. With 
gamma equal to 0.21, knowing how they compare on the independent 
variable improves our prediction 21 % over not knowing how they com­
pare. A more detailed interpretation of gamma and directions for com­
puting it is shown in Formula 12.1 at the end of the chapter. 

Question 3. Relationship in the population? 

As usual, the null hypothesis states that there is no relationship between 
the two variables in the real world, and it is rejected if the p-value for 
the data is small. The p-value is the probability of getting a gamma of 
0.21 or larger in a sample that comes from a population where there 
is no relationship between the two variables. 

The p-value is found by first changing the observed value of gamma 
to a value of the standard normal variable z. For the example, z equals 
6.47. Using statistical software or tables, we find that the p-value for a z 
of this magnitude is less than 0.0001. The probability of data leading 
to a gamma of 0.21 or larger by chance alone is incredibly small; in 
fewer than 1 of 10,000 different samples from a population where there 
is no relationship between the two variables would gamma be 0.21 or 
larger. Such a small p-value is very strong evidence against the null 



12 .1 Two Rank Variables with Words as the' Values 533 

hypothesis, and we conclude that the two variables are related in the 
population of all adults. Formulas 12.2 and 12.3 show how to change 
gamma to a value of the z-variable. 

Question 4. Causal relationship? 

From the data alone we cannot determine whether the relationship is 
causal or not. Here, even which variable comes first is questionable. Do 
people who are strong party identifiers become interested in an elec­
tion because of their strong identification, or do people who are inter­
ested in elections come to identify strongly with one of the parties? 
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STOP AND PONDER 12 . 3 

The gamma for the relationship between two rank variables equals 
0.47. The corresponding p-valu i 0.15. What can you say about the 
relationship between the two variables in terms of prediction and 
statistical significance? 

RANKING NUMBERS AS VALUES: 

HOW ARE THE PHILLIES DOING? 

How do baseball teams compare with each other over time? Do the 
good teams remain good, or is there change over time? Here we study 
the change in standings of the six baseball teams in the Eastern Division 
of the National League, which includes our home team, after the 1987 
and 1992 seasons. Table 12.3 shows the standings of the teams at the 
beginning and end of the 5-year period. The two columns of ran kings 
show many changes in this period. To get a better understanding of 
the data, we do some statistical analyses. 

Question 1. Relationship in the data? 

Even though the variables are only rank variables, we can display the 
data in a scatterplot, with 1987 along one axis and 1992 along the other, 
because we have numbers for the values of the variables. In Figure 
12.4, each team appears as a point in the scatterplot. With only 

Table 12.3 Standings of the teams in the National League East after the 
1987 and 1992 seasons 

Standing 

Team 1987 1992 

Chicago Cubs 6 4 

Montreal Expos 3 2 
New York Mets 2 5 

Philadelphia Phillies 4 6 

Pittsburgh Pirates 5 1 

St. Louis Cardinals 1 3 



12.2 Ranking Numbers as Values : How Are the Phillies DOing? 535 

6 

5 • Mets 

g; 4 • Cubs 
0> 
~ 

3 

2 

1 

• Expos 

• Pirates 

2 3 456 

1987 

Figure 12.4 Scatterplot of team standings after the 1987 and 1992 seasons 

a few observations, it is often helpful to label them, in this case with 
the names of the teams. If a team had a high standing both years, the 
team would appear in the lower left corner of the graph; no team 
appears there. A team with a low standing both years would appear in 
the top right corner of the graph; our Phillies and the Cubs are near 
that corner. 

What would the scatterplot have looked like if there had been no 
change in standings? Each team would have had the same standing at 
the two points in time, so the 6 points would have been on the 45-
degree line drawn across the plot, in Figure 12.4 showing a very strong 
pattern in the data. But the observed points in the graph are scattered 
and show very little pattern. There doesn't seem to be much of any 
relationship between the two years. 

Question 2. Strength of the relationship? 

The strength of the relationship between two rank variables with num­
bers as values is measured by a coefficient called the rank order correlation 
coefficient, often denoted rs. The subscript "5" is in honor of the British 
psychologist and statistician Charles Spearman, who did pioneer work 
in this area in the early 1900s. For this reason the coefficient is some­
times called the Spearman rank correlation coefficient. 
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The rank order 
correlation coef­
ficient, often 
denoted r. for 
its originator, 
Charle Spear­
man, measures 
the strength of 
the relationship 
between two 
rank variable 
with numerical 
values. 

The rank correlation Ts is computed the same way the correlation 
coefficient T is computed for metric data. We use the numerical ranks 
as if they were metric data, so Ts is only a special case of T. To find Ts 

with statistical software, we simply select the two rank variables and ask 
for the ordinary correlation coefficient T. There is one small difference 
between the two coefficients. You can see from the formula at the end 
of the chapter that Ts is much easier to compute using paper and pencil 
than is T. This is because the values of both variables consist of the 
integers from 1 to whatever many observations we have, which simpli­
fies the formula for T and gives the formula for Ts' 

For the baseball data, Ts is equal to - 0.09, which on a scale from 
- 1 to 1 indicates a very weak relationship. If there had been no change 
and the points had been on the 45-degree line, then the Ts would have 
been equal to 1.00. If there had been a complete reversal in the stand­
ings, then the points would have been on a 45-degree line from the 
upper left part of the graph to the lower right part. In that case, Ts 

would have been equal to - 1.00. Formula 12.4 shows how to compute 
the Spearman rank order correlation coefficient. 

From the observed coefficient, we conclude that there has been 
change in the ran kings because the value of the coefficient is so far 
from 1. We also conclude that there is hardly any pattern in the change 
because the value is so close to O. If anything, since the coefficient is 
negative, the good teams in 1987 showed a small tendency to become 
the bad teams 5 years later, and the bad teams in 1987 improved during 
the 5 years. 

STOP AND PONDER 12 . 4 

How might being able to use Spearman's correlation coefficient be 
helpful if one were an avid racetrack gambler? 

Question 3. Did the relationship occur by chance? 

To see whether the changes in standings could have occurred by 
chance or not, we formulate a null hypothesis and then compute the 
p-value for the data. In this case, the null hypothesis states that the 
relationship between the two variables is due to chance alone. 

The p-value is found by first changing the value of Ts to the corre­
sponding value of one of the standard statistical variables. In this case 
we change to a t-variable with n - 2 = 6 - 2 = 4 degrees of freedom. 



We find that t is equal to - 0.17, and the probability of getting a value 
of t and thereby a value of rs equal to or larger than - 0.09 by chance 
alone equals 0.44: in 44 of 100 samples from a population where there 
is no relationship between the two variables would we get an rs of 
- 0.09 or a more negative value. This jrvalue is nowhere near signifi­
cant. Apparently whichever teams were good or bad in 1987 had very 
little to do with which teams were good or bad 5 years later. 

Question 4. Causal relationship? 

As usual, we cannot go directly from statistical correlation to causation, 
but here it certainly looks as if the low correlation was produced by 
chance and there was no causation involved. 

A rank variable is created when a group of elements is placed in order 
according to some comparison, such as size, quality, age, or speed. 
Rank variables can have words or numbers as values. A rank variable 
with words as values is ordered on a verbal sliding scale, such as very 
much, moderately, slightly, not at all. There are usually many obser­
vations with the same value. A rank variable with numbers as values is 
ordered on a numerical sliding scale, such as 1, 2, and so on up to 
however many observations are ranked. Rank variables are more in­
formative than categorical variables and less informative than metric 
variables, and they can therefore not be analyzed with methods de­
signed for the other two types of variables. 

12.1 Two rank variables with words as values 

A commonly used measure of the strength of the relationship between 
two rank variables with words as values is called gamma. Gamma mea­
sures the similarity of paired observations in terms of their relative 
ranks on the two variables. The null hypothesis of no relationship in 
the larger population is evaluated by converting gamma to a z-score 
and then finding the jrvalue. Finding correlations between rank vari­
ables allows us to predict the rank value of one variable from the rank 
value of another. A rank correlation does not imply that there is a 
causal relationship between the two variables. 

12.3 Summary 537 

12.3 
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FORMULAS 

12.2 Ranking numbers as values: How are the Phillies doing? 

When the observations are ranked by numbers, with one number for 
each observation (unless there are tied observations), the strength of 
the relationship is measured by the Spearman rank order correlation 
coefficient, often denoted rs. The null hypothesis of no relationship in 
the larger population is evaluated by converting the rs to a t-score and 
then finding the p-value. 

Clogg, Clifford C., and Edward S. Shihadeh. Statistical Models for Ordinal 
Variables (Sage Advanced Quantitative Techniques in the Social Sci­
ences, Volume 4). Thousand Oaks, CA: Sage, 1994. An advanced book 
on rank variables. 

Hildebrand, David K.,James D. Laing, and Howard Rosenthal. Analysis 
of Ordinal Data (Sage University Paper Series on Quantitative Applica­
tions in the Social Sciences, series no. 07-008). Beverly Hills, CA: Sage, 
1977. A brief introduction to the analysis of rank variables. 

Kendall, Maurice, and Jean Dickinson Gibbons. Rank Correlation Meth­
ods, 5th ed. New York: Oxford University Press, 1990. A classic book on 
the topic. 

GAMMA 

Gamma is based on pairing and comparing the ranks of the two ele­
ments on the variables. Using the political party identification/ election 
interest example, if we pair a strong identifier who is very much inter­
ested with a weak identifier who is somewhat interested, we find that 
the first person ranks higher than the second person on both variables; 
in a table the second person lies below and to the left of the first person. 
If all possible pairs are of this kind, then gamma equals 1.00. Ifwe pair 
an independent who is very much interested with a weak identifier who 
is not much interested, the first person ranks lower on the party vari­
able but higher on the interest variable; in a table, the second person 
lies below and to the right of the first person. If all possible pairs are 



of this kind, then gamma equals - 1.00. Gamma is based on the num­
ber of pairs of these two kinds. 

To find how many pairs there are of the first kind, where one per­
son ranks higher on both variables than another, we pair the 262 peo­
ple in Table 12.1 who are very interested with all the people who lie 
below and to the left in the table, or 262 times 178 + 273 + 133 + 
228 = 212,744 pairs. The people in each cell of the table can be paired 
with everyone below and to the left. Thus, the number of pairs where 
the ranking is the same on the two variables is 

Same rankings 
= sum of cell frequency times sum of frequencies below and to the left 
= 262(273 + 178 + 228 + 133) + 150(178 + 133) 

+ 237(228 + 133) + 273(133) = 394,256 

To pair people so that one person in the pair ranks higher on one 
variable and the other ranks higher on the second variable, we pick a 
cell in the table and look below and to the right. The number of pairs 
where the rankings are different on the two variables is found from the 
expreSSIOn. 

Different rankings 
= sum of cell frequency times sum of frequencies below and to the right 
= 104(273 + 237 + 228 + 125) + 150(237 + 125) 

+ 178(228 + 125) + 273(125) = 258,268 

Gamma is then defined as 

same rankings - different rankings 
gamma = (12.1) 

same rankings + different rankings 

For the example, 

394,256 - 258,268 135,988 
G - - - 021 

- 394,256 + 258,268 - 652,524 - . 

We can think about gamma this way. There is a total of 652,524 
possible pairs of people. For each pair, let us predict who ranks higher 
on the dependent variable. With no knowledge, this is like tossing a 
coin: we will be right half the time and wrong half the time. Half of 
652,524 is 326,262, and so we expect to make the wrong prediction 

Formulas 539 
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326,262 times. Now suppose we know which of the two people in a pair 
ranks higher on the independent variable. Let us predict that the same 
person also ranks higher on the dependent variable. But we know that 
there are 258,268 different rankings, so for 258,268 of the pairs this 
prediction is not true; we will make the wrong prediction 258,268 times. 
By knowing the ranking on the independent variable we have therefore 
improved our prediction for 326,262 - 258,268 = 67,994 pairs. Our 
improvement is 67,994/326,262 = 0.21, the same gamma computed 
by Formula 12.1. 

To test the null hypothesis that gamma equals zero in the popula­
tion, we compute the test statistic 

G 
z = --;==:::::::;=:::::::;===:=========: 

4(number ofrows + l)(columns + 1) 

9n(number of rows - 1) (columns - 1) 

(12.2) 

where n is the number of observations in the table. For the example, 

0.21 0.21 647 
z = ----;==4(::::3=+=1==)~(3=+===1)= = 0.0324 = . 

9(1690)(3 - 1)(3 - 1) 

This expression for z is only an approximation, and it works best 
for large tables with many observations. A more exact value of z can be 
found from the expression 

G 
z = --;";:;:1 =-=(;2;:;; 

0.21 

";1 - 0.212 

same rankings + different rankings 

n 

394,256 + 258,268 
1690 = 4.22 (12.3) 

The advantage of the first expression is that we can find z if we know 
gamma, the number of observations, and the size of the table. To com­
pute z from the second expression, we need to know gamma as well as 
the numbers of same and different rankings. The two values of z are 
somewhat different in this example, but both values of z have a p-value 
ofless than 0.0001, and we draw the same conclusion from both values 
of z. 

(You may wonder what would have happened if we had treated 
Table 12.1 as a contingency table with categorical variables and used a 



chi-square analysis to check for significance. We would have found a 
chi-square of 71.69 on 4 degrees of freedom, and that value of chi­
square would not have produced as small a p-value as that produced by 
the z-values computed by Formulas 12.2 and 12.3. The reason is that 
chi-square is not sensitive to the ordering of the rows and columns of 
the original table and therefore does not use all the available infor­
mation in the data. But even this value of chi-square is highly signifi­
cant, and we could have used chi-square if we had wanted only to es­
tablish significance.) 

SPEARMAN'S Ts 

The rank order correlation coefficient can be computed using the two 
sets of ranks as x and y in the formula for the ordinary correlation 
coefficient r (Formula 10.1). Since the two sets of values for the varia­
bles are simply the integers from 1 to n, the formula for r simplifies to 
Formula 12.4. 

We have the two sets of ranks. Now we find the difference between 
the two ranks for each element, and then we square each of the dif­
ferences. The computations are shown in Table 12.4. From this sum of 
squared differences, we find rs by the formula 

6Ldi r=l---.....:....-
s n(n2 - 1) 

(12.4) 

where the number 6 in the numerator is a constant always present in 
the formula and n is the number of pairs of ranks. 

For the example with the baseball teams we get the following result, 
based on the squared differences shown in Table 12.5. To see if we can 

Table 12.4 Computation of rs 

Rank on x Rank on Y Difference Squared difference 

Xl Yl dl=Xl-Yl dy 
X<.? Y2 t4=X<.?-Y2 d~ 

Xn Yn dn = Xn - Yn d2 n 

Sum Ldy 
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EXERCISES 

Table 12.5 Example computation of rs 

Squared 
Team 1987 1992 Difference difference 

Chicago 6 4 2 4 

Montreal 3 2 1 1 

New York 2 5 -3 9 

Philadelphia 4 6 -2 4 

Pittsburgh 5 1 4 16 

St. Louis 1 3 -2 4 

Sum 38 

6·38 
r = 1 -s 6(62 _ 1) = 1 - 1.09 = - 0.09 

reject the null hypothesis that the rank order correlation coefficient 
equals 0 in the population from which the sample was drawn, we com­
pute the following t-test statistic: 

rs ~ -0.09 ~ 
t = V n - 2 = v 6 - 2 = - 0.17 
~ ../1 - (-0.09)2 

(12.5) 

on n - 2 = 4 d.f. 
Then we use this value of t to find the p-value for the data. Here, 

p = 0.44, and we obviously do not reject the null hypothesis for a value 
of t this small. 

REvIEw (ExERCIsES 12.1-12.10) 

12.1 a. What is a rank variable? 

b. Give two examples of rank variables from your own life ex­
perience. 

12.2 Rank variables can have values that are in words or in numbers. 

a. Give an example of a rank variable using words, and give an 
example of a rank variable using numbers. 



b. What is usually the major difference between these two types 
of rank variables when it comes to the number of observations 
for each value of the variable? 

c. Does this difference show up in your examples? 

12.3 a. What is a gamma? 

b. How large and how small can the value of a gamma be? 

c. Name another statistic that has the same range of possible 
values. 

d. Looking at a table such as Tables 12.1 and 12.2, how can 
you tell whether the gamma will have a positive or a negative 
value? 

12.4 a. Give an example of two variables for which you would use 
gamma to measure the strength of the relationship between 
the variables. 

b. In general, how does one calculate gamma? 

c. What would a gamma of 0.75 say about your ability to predict 
the dependent variable from a knowledge of the independent 
variable? 

d. If the p-value for this gamma were very small, what could you 
say about the relationship of the two variables in the population 
from which the sample was drawn? 

e. What would you conclude about the null hypothesis of no 
relationship? 

12.5 In general, what steps are taken to find the p-value for a partic­
ular gamma? 

12.6 a. What is a rank order correlation coefficient? 

b. Why is the rank order correlation coefficient denoted rs? 
c. When should you use rs? 
d. What other statistic is rs most similar to? 

12.7 Give an example of two variables for which you would use rs to 
measure the strength of their relationship. 

12.8 a. What is the major difference between rank variables and cat­
egorical variables? 

b. Why is it said that rank variables carry more information 
than categorical variables? 
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c. How are rank variables different from metric variables? 

d. Why is it said that rank variables carry less information in 
them than metric variables? 

12.9 a. What kind of variable is class rank? 

b. Why is class rank a less sensitive gauge of academic perform­
ance for a group of students than grade point average? 

12.10 With data on two metric variable, such as annual sales and 
profits for the top 100 companies in the country, why do we sometimes 
change the figures to ranks and analyze the relationship between the 
two variables using the ranks instead of the original values? 

INTERPRETATION (ExERCISES 12.11-12.20) 

12.11 The Abbreviated Injury Scale attempts to measure the severity 
of motorcycle accidents. The values of the variable are (1) minor, (2) 
moderate, (3) severe, not life-threatening, (4) severe, life-threatening, 
survival probable, (5) critical, survival uncertain, (6) fatal, currently 
untreatable. (Source: Andrew A. Weiss, "The effects of helmet use on the severity of 
head injuries in motorcycle accidents, "Journal of the American Statistical Associ­
ation, vol. 417 (1992), p. 496) Explain whether this injury scale is a nom­
inal, ordinal, or metric variable. 

12.12 The 1984 summer Olympic Games were unusual because they 
were boycotted by several eastern European bloc countries. In this 
problem we study the number of medals won by countries that partic­
ipated in both the winter and the summer games that year to see if 
there was any relationship between the number of medals won in the 
summer and winter games. Since large countries often win many med­
als, we rank the countries on the number of medals they won. There 
were 12 countries that won medals in both the winter and summer 
games, so the data consist of two columns of ranks from 1 to 12. For 
these data, rs = 0.78 (t = 3.81 on 10 dJ. , P = 0.002). (Source: The World 
Almanac and Book of Facts, 1988, pp. 834, 837.) 

a. What does the positive rank correlation mean? 

b. Would a negative relationship between the two variables 
have been surprising? 

c. What do the numbers tell us about the relationship between 
the number of medals won in the winter and summer Olympic 
Games that year? 



Table 12.6 Data for Exercise 12.13 

Social class 

Lower Upper Lower Upper 
lower lower middle middle Total 

3+ 4 7 12 9 32 

Number 2 2 13 5 5 25 
of children 1 10 9 7 6 32 

0 4 6 7 4 21 

Total 20 35 31 24 110 

Source: Daniel R Miller and Guy E. Swanson, The Changing American Parent: A Study 
in the Detroit Area, New York: John Wiley & Sons, 1958, p. 205. 

12.13 In a study done in Detroit in the 1950s, the researchers re­
ported on bureaucratic (versus entrepreneurial) wives 39 years old or 
younger with family incomes larger than $6,000, and they found the 
following distribution of social class and number of children, displayed 
in Table 12.6. For this table gamma = 0.24 (z = 1.34, P = 0.09). What 
can you say about the relationship between social class and number of 
children for these types of mothers from this analysis? 

12.14 In Exercise 10.34, we study the relationship between flavor and 
percentage of calories from fat for different frozen chocolate yogurts. 
In a scatterplot for the two variables, the values for the Albertson yogurt 
are a good deal smaller than the values for the other yogurts. This data 
point could have a large effect on the analysis, and one way to lessen 
the impact of such a data point is to change the values of the two 
variables to ranks. In Table 12.7 are the rank values for the two varia­
bles. (Tied values share ranks, and that is the reason the ranks do not 
run consecutively from 1 to 10.) For the two variables, rs = 0.68 (t = 

2.62 on 10 d.f., P = 0.015). 

a. What can you conclude about the relationship between the 
two rank variables? 

b. How do these conclusions compare with the conclusions you 
drew from the analysis of the same data in Exercise 1O.34? 

c. What happens to the extreme data from the Albertsons yo­
gurt when you use rank variables? 
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Table 12.7 Data for Exercise 12.14 

Rank 

Percent calories 
Yogurt lJrand from fat Flavor 

Breyers 9.5 8 

Honey Hill Farms 9.5 lO 

Elan 8 5.5 
Crowley Silver Premium 7 3 

Edy's/Dreyer Inspirations 6 9 
Haagen-Dazs 5 5.5 

Kemps 4 3 

Lucerne 3 7 
Yoplait Soft 2 3 

Albertsons 1 1 

12.15 Researchers have found that the gamma value for the relation­
ship between amount of sunny weather and the sweetness of grapes is 
0.81. The sunnier the weather, the sweeter the grapes in a sample of 
grapes from Europe. 

a. What needs to be done if the researchers wish to argue that 
this finding applies to the population of grapes from which 
their sample was drawn? 

b. What do you think the outcome of this analysis would be? 

c. What is the null hypothesis being considered here? 

12.16 The probability that the value of a particular rs or more extreme 
value occurs by chance alone is 0.021. How would you explain what 
this means to a nonstatistical friend? 

12.17 When we rank in order of wins the 25 best college basketball 
teams in the nation in one season and then rank the same teams the 
following season, we find that the rs is 0.79. 

a. How would you interpret this result for your nonstatistical 
friend? Does it seem as if the winners stay on top from one 
season to another? 



b. If Ts were the same 0.79 with twice as many teams (50) being 
ranked over two seasons, would the p-value from hypothesis 
testing be greater, the same, or less? 

12.18 The newsmagazine The Economist (June 12, 1993, p. 62) ranked 
12 British regions on several variables. One variable was death rate. 
East Anglia had the lowest death rate and therefore ranked number 1, 
and Scotland had the highest death rate and therefore ranked number 
12. Another variable was housing costs. Northern Ireland had the least 
expensive housing costs and therefore ranked number 1, and Greater 
London, not surprisingly, had the highest housing costs and therefore 
ranked number 12. For these two rank variables, death rate and hous­
ing costs, Ts = - 0.76. 

a. What does the negative value of the correlation coefficient 
tell you about the two variables? 

b. Why do you think the relationship between the two variables 
is as strong as it is? 

c. To see if the pattern in the two sets of rankings could have 
occurred by chance alone, we change the correlation coeffi­
cient to a value of t (-3.70) and find p (0.0021). What is the 
null hypothesis, and what can you conclude about the null hy­
pothesis? 

d. Is the relationship between the two variables causal, or can 
you think of other variables that might explain the presence of 
the relationship? 

12.19 When you rank the ten largest cities in the country in 1980 and 
in 1985, you find that Ts = 0.95 for the two sets of ran kings. 

a. If each city grew by the same number of people during a 
certain time period, would that growth alter the rankings of the 
cities? 

b. If each city grew by the same percentage of people during 
a time period, would that growth alter the rankings of the cities? 

c. What can you say about the growth of the various cities when 
you know that Ts = 0.95 for the two sets of ran kings? 

d. To see if the two sets of rankings could have occurred at 
random, you change Ts to a value of the t-variable and get t = 

8.75 on 8 degrees offreedom, p = 0.00001. What can you con­
clude about the rankings? 
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12.20 The United Nations Development Program has developed un­
der the guidance of the Pakistani economist Mahboub ul Hag what 
they call the human development index (HDI). This index goes be­
yond the old gross national product (GNP) and provides a measure 
based on a combination of purchasing power, life expectancy, and lit­
eracy. On a list of 130 countries with population more than 1 million 
people, Niger has the lowest HDI rank (1) and Japan the highest HDI 
rank (130). Figure 12.5 shows a scatterplot of the ran kings of a random 
sample of 13 countries on the two variables DNP and HDI. 

12 

9 

6 

3 

a. Describe the pattern you see in the scatterplot. 

b. The correlation between the two sets of ran kings is 0.89 with 
a p-value of 0.00002. Do you think that the observed relation­
ship between the two sets of ran kings could have occurred by 
chance alone? 

c. If each country had the same ranking on the two variables, 
the points would lie on a 45-degree line in the scatterplot. What 

• Congo 

• Burkina Fas 
I I 
3 6 9 

Rank GNP 

• Panama 

12 

• niLed 
lale 

Figure 12.5 Random sample of 13 countries ranked on gross national 
product (GNP) and Human Development Index (HDI) (Source: The Econo­

mist, May 26, 1990, p. 81.) 



might the reason be that the United States lies below such a 
line and France lies above such a line? 

ANALYSIS (EXERCISES 12.21-12.34) 

12.21 In a national survey the respondents were asked, among other 
things, what their stance was on abortion and also how important they 
thought the abortion issue was (Table 12.8). 

a. Is there a relationship between stance and importance in 
these data? 

b. How strong is the relationship? 

c. Is there a relationship between the variables in the popula­
tion of all adult Americans? 

d. Is the relationship causal? 

12.22 The data in Table 12.9 show the rankings of revenues spent on 
advertising for various types of products in general magazines and na­
tional farm magazines for 1950 and 1970. In 1950 the country was 
adjusting to peacetime life after World War II; by 1970 that adjustment 
was over. The smaller the ranking number, the more money was spent 
advertising that product. 

a. From just looking at the data, has there been any change in 
the promotion of the products? 

b. How strong would the relationship between the two sets of 
rankings be if there were no change from 1950 to 1970? 

c. Make a scatterplot of the data and label teach type of prod­
uct on the graph. 

Table 12.8 Data for Exercise 12.21 

Abortion stance 

Anti Mixed Pro Total 

One of the most 85 167 89 341 
Importance Important 80 638 357 1075 

of issue 
Not very/not at all 56 583 366 1005 

Total 221 1388 812 2421 

Source: John Scott and Howard Schuman, "Attitude strength and social action in the abortion 
dispute, " American Sociological Review, vol. 53 (1988), p. 788. 
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Table 12.9 Data for Exercise 12.22 

Type of product &nk in 1950 &nk in 1970 

Apparel, footwear, etc. 3 6 

Automotive 2 2 

Alcoholic beverages 5 I 

Building materials 8 13 

Consumer services 11 4 

Food and food products 1 3 

Household equipment 4 11 

Household furnishings 6 9.5 
Industrial materials 7 8 

Insurance 13 12 

Radio, TV, etc. 12 9.5 
Smoking materials 9.5 5 
Travel 9.5 7 

Source: U.S. Bureau of the Census, Statistical Abstract of the United States: 1972, 93rd 
edition, Washington, DC: U.S. Government Printing Office, 1972, p. 759. 

d. What kind of patterns do you see in the plot, and how do 
the patterns relate to what you know about the period from 
1950 to 1970? 

e. How strong is the relationship between the two sets of 
rankings? 

f. Could this relationship have occurred by chance alone? 

12.23 Find data from the most recent winter and summer Olympic 
Games. 

a. Rank the countries that received medals in both sets of 
games by the total number of medals they received. 

b. Find the rank order correlation coefficient for the two sets 
of rankings. 

c. Is the value of Ts statistically different from O? 

d. How do the results of this analysis compare with the results 
in Exercise 12.12 on the summer games that were boycotted? 

12.24 From the data in Exercise 10.57 on the Calabrian Mafia, it is 
possible to study whether Mafia groups (coscas) choose their leaders 



such that the age of each leader is related to the mean age of the cosca. 
The data may not be linearly related, so we change the original ages 
to ranks. 

a. Change the two age variables to ranks. 

b. Analyze the relationship between the two rank variables. 

c. Compare the results of the analysis of these ranks with the 
results of the analysis of the original data in Exercise 10.57. 
What could account for the differences in the two sets of re­
sults? 

12.25 In Exercise 10.52 we study the relationship between number of 
divorces as the dependent variable and number of marriages as the 
independent variable over a span of 100 years. The scatterplot of the 
original data shows a strong nonlinear pattern, so we change the data 
to ranks by taking the logarithm of each observation. The data show 
the number of marriages and divorces in thousands for 1890 and every 
fifth year up to 1980. The year variable has been recorded to 1 for 
1890, 2 for 1895, and up to 19 for 1980 to make it easier to enter the 
data in a computer. 

Year 

Marriages 

Divorces 

Year 

Marriages 

Divorces 

Year 

Marriages 

Divorces 

1 

570 

33 

8 

1,188 

175 

15 

1,523 

393 

2 

620 

40 

9 

1,127 

196 

16 

1,800 

479 

3 

709 

56 

10 

1,327 

218 

17 

2,159 

708 

4 

842 

68 

11 

1,596 

264 

18 

2,153 

1036 

5 

948 

83 

12 

1,613 

485 

19 

2,413 

1182 

6 

1,008 

104 

13 

1,667 

385 

7 

1,274 

170 

14 

1,531 

377 

Source: National Center for Health Statistics, Public Health Service, in The World Almanac 
1986, p. 779. 

An alternative approach would be to rank the observations on each 
of the two variables and then study the relationship between the two 
sets of ranks. 
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a. Rank the observations on the two variables from 1 to 19. 

b. Make a scatterplot of the two sets of ranks. 

c. Comment on the shape of the scatterplot. 

d. Analyze the relationship between the two sets of ranks. 

12.26 In Exercise 10.54 we study data on literacy and per capita in­
come for a sample of 20 countries from among countries with per 
capita income less than $2,000. A scatterplot of the original data does 
not show a clear linear relationship between the two variables, so we 
rank each of the variables and then study the relationship between the 
two rank variables. The countries are Bangladesh, Botswana, Cambo­
dia, Chile, Cuba, Egypt, Ghana, Guyana, Ivory Coast, North Korea, 
Madagascar, Mauritania, Mozambique, Pakistan, Philippines, Sao 
Tome, South Mrica, Tanzania, Uganda, and Zaire. 

Country 

Percent literate 

Per capita income 

Country 

Percent literate 

Per capita income 

Country 

Percent literate 

Per capita income 

1 

25 
119 

8 

86 

457 

15 

88 
772 

2 3 4 

30 48 90 
544 100 1,950 

9 10 11 

24 99 53 
1,100 570 279 

16 

50 
300 

17 

98 
1,296 

18 

66 

240 

5 

96 
840 

12 

17 
466 

19 

25 
240 

6 

44 
686 

13 

14 
220 

20 

40 
127 

7 

30 
420 

14 

24 
280 

a. Rank the observations on the two variables from 1 to 20. 

b. Make a scatterplot of the two sets of ranks. 

c. Comment on the shape of the scatterplot. Would it make 
sense to do a correlation analysis of the relationship between 
the two sets of ranks? 

d. Find the correlation between the two sets of ranks. 

e. Is the rank correlation coefficient significantly different 
from zero? 

12.27 Table 12.10 shows data on the age of women and the proba­
bility of getting breast cancer. 



Table 12.10 Data for Exercise 12.27 

Age Probability of breast cancer 

Young (to age 39) 0.0005 

0.015 

0.024 

0.036 

0.042 

Young middle age (40-49) 

Older middle age (50-59) 

Old (60-69) 

Oldest (70-80) 

Source: National Cancer Institute, American Cancer Society, as reported in The Philadelphia 
Inquirer,January 18, 1993, p. D1. 

a. If young is ranked 1 and oldest is ranked 5, and the proba­
bilities are also ranked from 1 to 5, what is the value of the 
correlation coefficient measuring the strength of the relation­
ship between these variables? Describe the finding in a sen­
tence or two. 

b. What does the table suggest about the media description of 
an "epidemic of breast cancer" among women in America? 

c. Why might the number of breast cancer cases have gone up 
in this country in the last forty years without change in the 
probability of getting breast cancer at given age? 

12.28 A national study of eighth-grade achievement indicated that 
children differed in the scores according to socioeconomic status. The 
variables are socioeconomic status (high and low) and ability (high, 
middle/mixed, and low). The percentages data are shown in Table 
12.11. 

Table 12.11 Data for Exercise 12.28 

Socioeconomic status (SES) 

Low (%) High (%) 

High 13 39 

Ability Middle/mixed 50 47 

Low 37 14 

Total 100 100 

Source: u.s. Department of Education, National Center for Educational Statistics, National 
Education Longitudinal Study of 1988. 
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Table 12.12 Data 
for Exercise 12.29 

Hours per 
worker per 

Year year 

1200 1,620 

1300 1,440 

1400 2,300 

1500 3,200 

1600 1,980 

1700 

1800 3,300 

1900 1,900 

Source: Juliet B. Schor, 
The Overworked 
American: The 
Unexpected Decline of 
Leisure, New York: Basic 
Books, 1991, p. 45. 

a. Illustrate the data in a graph using circles (as in Figure 
12.1c) or a bar graph (as in Figure 12.1a or b). 

b. What can you conclude from the data about the relationship 
between the two variables? 

12.29 How much have people worked at productive labor (which 
does not include housework, unfortunately) over the centuries? Esti­
mates of the number of hours worked per year have been gathered by 
creative historians and demographers. Most of the data are gathered 
for British peasants and laborers in manufacturing. Some of the data 
is shown in Table 12.12. 

12.30 

a. Show the data in a scatterplot. 

b. What does the scatterplot tell you? 

c. Change the data to data on two rank variables 

d. If you wanted to know ifthere was a change in working hours 
over the centuries, what would be the null hypothesis and how 
would you go about testing the null hypothesis, using the rank 
data? 

e. Can you reject the null hypothesis? 

f. What other statistical method could you use to study the 
data? 

Collect data on two rank variables of your choice. 

a. Is there a relationship between the two variables? 

b. How strong is the relationship? 

c. Is there a relationship between the two variables in the pop­
ulation from which your sample was drawn? 

d. Is the relationship causal? 

12.31 The International Association for the Evaluation of Educa­
tional Achievement published a study in 1991 on the performance of 
twelfth- and thirteenth-grade students in different countries in the sci­
ences. The countries were ranked, and the data for biology and chem­
istry are shown in Table 12.13. 

a. Make a scatterplot of the data using biology and chemistry 
as the two variables, and label each point with the name of the 
country. 

b. Describe some of the patterns you see in the scatterplot, 
including, for example, countries that rank higher in chemistry 
than in biology. 



Table 12.13 Data for Exercise 12.31 

&nk 

Country Biology Chemistry 

Singapore 1 3 
Britain 2 2 
Hungary 3 5 
Poland 4 7 
Hong Kong 5 1 

Norway 6 8 

Finland 7 13 
Sweden 8 9 

Austria 9 6 

Japan 10 4 

Canada 11 12 

Italy 12 10 

United States 13 11 

Source: International Association for the Evaluation of Educational Achievement. 

c. How strong is the relationship between the two sets of 
rankings? 

d. Could this relationship have occurred by chance alone? 

e. Is the relationship causal? 

12.32 In a poll of statisticians working in government statistical or­
ganizations, international institutions, and other organizations that use 
international statistics, The Economist came up with a ranking of govern­
ment statistical offices in 10 countries. In the same article, the magazine 
presents data on the number of statisticians per 10,000 population and 
the government statistics budget per head in dollars. These data are 
shown in Table 12.14. 

a. Change the last two columns to rank values where the high­
est value has rank 1, the next highest rank 2, and so on. 

b. Is the quality of the statistics office related to the number of 
statisticians? 

c. Is the quality of the statistics office related to the amount of 
money spent? 
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Table 12.14 Data for Exercise 12.32 

Rank of Statisticians Government statistics lJudget 
Country statistical office per 10,000 (dollars per head) 

Canada 1 1.6 8.20 

Australia 2 2.0 9.00 

Holland 3 2.0 7.60 

France 4 1.7 6.00 

Britain 5 0.9 4.20 

Germany 6 1.9 8.00 

United States 7 0.6 8.80 

Italy 8 1.4 5.00 

Spain 9 1.2 4.20 

Belgium 10 1.3 3.60 

Source: The Economist, September 11, 1993, p. 65. 

12.33 Each week during the fall, college football teams are ranked 
both through the Associated Press by sports writers and through USA 
Today and CNN by coaches. The ratings change from week to week, 
and Table 12.15 shows how the ran kings changed at the end of Nov em­
ber 1994. These are the rankings for the top dozen teams after Texas 
A&M and Auburn were deleted from the AP list; the two teams were 
not included in the coaches' rankings because of penalties assessed by 
the NCAA. 

a. Make a scatterplot of the rankings. 

b. Comment on the pattern shown in the scatterplot. 

c. Compute the rank correlation to see how well the two sets 
of rankings agree. 

d. Could this arrangement of ran kings have occurred by 
chance alone? 

12.34 Much political tension was created as countries debated 
whether or not to join the European Common Market. In the 1960s 
Norway considered joining, and Table 12.16 shows the change of opin­
ions from 1965 to 1969 in a sample of 286 Norwegians who expressed 
their opinions at the two points in time. 

a. Analyze the relationship between the two variables repre­
sented by the two dates. 



Table 12.15 Data for Exercise 12.33 

Rank 

University Nov. 28 Nov. 21 

Nebraska 1 1 

Penn State 2 2 

Alabama 3 3 

Miami 4 4 

Colorado 5 5 

Florida 6 6 

Florida State 7 7 
Colorado State 8 10 

Kansas State 9 8 

Oregon 10 9 

Ohio State 11 11 

Utah 12 12 

Source: The New York Times, November 28, 1994, p. C2. 

b. What do you learn when you compare the 45 + 15 + 
23 = 83 people in the upper right triangle of the table with 
the 24 + 10 + 4 = 38 people in the lower left triangle of 
the table? 

Table 12.16 Data for Exercise 12.34 

1965 

Full Loose 
membership connection Stay out Total 

Full 100 45 15 160 
membership 

1969 Loose 24 35 23 82 
connection 

Stay out 4 10 30 44 

Total 128 90 68 286 

Source: Henry Valen and Willy Martinussen, Velgere og politiske frontlinjer (Voters and 
Political Front Lines), Oslo: Gyldendal NorskForlag, 1972, p. 214. 
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MULTIVARIATE ANALYSIS 

f?l>olitical scientists often find a relationship between people's gender and 

how they vote, but maybe it is not really gender that affects vote. Maybe there 

are other variables at work as well. In particular, in this chapter we examine 

income as a third categorical variable affecting vote. 

The number of calories in a snack food is determined by many different 

factors. In Chapter lOwe looked at the effect of fat content on calories, and 

now we wonder if cholesterol and sodium also affect calories. A multiple regres­

sion analysis can help answer this question. 

The commuting time to work differs for a commuter depending on which 

of two roads she takes. Her driving time also differs depending on whether it is 

rush hour or not. How does the choice of road and time of day affect her driv­

ing time? A two-way analysis of variance can help answer that question. 
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A multivariate 
statistical analysis 
examine the rel­
atiyc impact of 
tw r more 
indep nd nl 

variable n a 
dep nd nt 
variable. 

For most problems, the outcome, or dependent variable, is determined 
by the influences of more than a single independent variable. There­
fore, in the statistical analysis of a dependent variable, we often use 
more than one independent variable. When we analyze the relative 
impact of several independent variables, we are doing a multivariate 
statistical analysis. 

With several independent variables, we can always analyze the re­
lationship between each independent variable and the dependent vari­
able one at a time. In a study of voting preferences, we may look first 
at effect of age, then at gender, then race, and so on. But it is more 
efficient and more instructive to study the effects of all the independent 
variables together at the same time on the dependent variable. That 
way we can see the effect of a particular variable with other variables 
present in the analysis. 

In multivariate analyses, the influence of the residual variable on 
the dependent variable is reduced. This occurs because we take the 
effects of all the independent variables out of the residual variable at 
the same time instead of one at a time. 

In multivariate statistical analyses we want answers to the four ques­
tions about statistical relationships: Question 1, Does a particular vari­
able have an effect in the data? Question 2, How strong is the relation­
ship between the independent variables taken together and the 
dependent variable? Also, how large is the effect of each independent 
variable on the dependent variable? That way we can see which of the 
independent variables are more important and which are less impor­
tant. Often we also consider Question 3, Is the relationship between 
each independent variable and the dependent variable statistically sig­
nificant? 

Up to this point, with only one independent variable and one de­
pendent variable, we have not been able to do much with Question 4, 
Is the relationship between two variables causal? With multivariate anal­
ysis it is sometimes possible to determine whether a relationship be­
tween two variables is causal or not. Sometimes we find that a variable 
that at first seems to be related to the dependent variable actually has 
no effect when we bring in other variables and do a multivariate anal­
ysis. If a relationship between two variables disappears as a result of a 
multivariate analysis, then the original relationship was not a causal 
relationship. 

As always, the choice of statistical method is governed by the nature 
of the variables involved. Categorical variables require one type of anal­
ysis, while metric variables require another type. In this chapter we 
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consider three of the many multivariate analysis methods that statisti­
cians have developed. 

Dependent variable Independent variables Method 

Categorical Categorical Partial phis 

Metric Metric Multiple regression 

Metric Dummy Multiple regression 

Metric Two categorical Two-way analysis of variance 

First we consider the case where all the variables are categorical varia­
bles in order to illustrate what a partial phi coefficient is. Most multivariate 
methods have been developed for metric dependent variables, how­
ever, and we discuss them here. The independent variables can be 
either metric or categorical. For metric independent variables we do 
multiple regression analyses, extensions of the simple regression methods 
described in Chapter 10. Here we consider a case with three indepen­
dent variables, but it is possible to have more than three independent 
variables in one analysis. Multiple regression methods also work when 
so-called "dummy" variables are constructed to represent categorical 
variables; we can also do a multiple regression analysis with a combi­
nation of metric and dummy variables. Finally, when all the indepen­
dent variables are categorical variables, we usually shift from multiple 
regression analysis to analysis of variance. 

PARTIAL PHIS: THREE CATEGORICAL VARIABLE 

Table 13.1 shows an example of the relationship between the two cat­
egorical variables gender and vote. In answer to Question 2, the 
strength of the relationship between the two variables is measured by 
the coefficient phi = 0.21. Since phi is not 0, we know that the two 
variables in these data are related. 

Does this mean that there is a causal impact of gender on vote, or 
are other variables operating here so that what we see is not a causal 
relationship? For example, is income an underlying variable that de­
termines how men and women vote? The 205 women Democrats in 
the upper left cell of the table may be there because they are women 
and they are Democrats, but they also may all have a certain income. 
The same goes for the other three cells in the table. Maybe what we 
really have are four different income groups. Maybe we have 205 low-
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Table 13.1 Gender and vote 

Gender 

Women Men Total 

Democratic 205 118 323 
Vote 

Republican 167 230 397 

Total 372 348 720 

phi = 0.21 

income people, and they turn out to be Democratic women. Maybe 
the 167 people in the next highest income are Republican women­
and similarly for the other two groups. 

Control for a third variable: The neutralizing game 

To keep the example simple, let us define income as a variable with 
only the two values poor and rich. One way to examine the impact of 
income is to consider the relationship between gender and vote while 
we control for income. Is there then still a relationship between gender 
and vote? 

To control for income means that we keep income constant while 
we examine the relationship between gender and vote. Even though 
income is a variable and therefore has different values, we can keep a 
variable constant by looking only at the people who have a particular 
value of the variable. Thus, we look first at only the observations that 
have the value poor on the income variable, and then we look sepa­
rately at the observations that have the value rich. 

To control for a third variable in tudying the relation hip be­
tween two variable, the data are fir. t divided into ubgroup de­
fined by the control variable. Then we study the relation. hip b -
tw en the other two variable within each ubgroup of the control 
variabl . ,reating ubgroup of daLa acc rding to a third variabl 
mean · the arne a k eping thal third variabl on Lant. 

Phi is equal to 0.21 in the overall table (Table 13.1) that shows the 
relationship between gender and vote. Now we create two subtables for 
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Table 13.2 Relationship between gender and vote, controlling for income 

Income = Poor Income = Rich 

Women Men Total Women Men 

Democratic 153 24 177 Democratic 52 94 
Vote 

Republican 44 7 51 
Vote 

Republican 123 223 

Total 197 31 228 Total 175 317 

phi = 0.00 phi = 0.00 

Average phi for gender and vote, controlling for income, = 0.00 

gender and vote in Table 13.2, one for poor people and one for rich 
people. People cannot be put in different cells in the "poor" table be­
cause of income because everybody in the table is poor. The effect of 
income is therefore the same for them all. The same is also true for the 
"rich" table, where everybody is rich. 

Now that the effect of income has been controlled for, what can 
we conclude about the relationship between gender and vote? We find 
is that there is no relationship between gender and vote among the 
poor people, and there is similarly no relationship between the two 
variables among the rich people. In each of the two subtables, phi 
equals 0.00, which indicates no relationship between the variables in 
either table. Thus, when we divided up the data into income groups, 
the original relationship between the two variables within each group 
disappeared. Since the relationship between gender and vote disap­
peared, we conclude that the original relationship was not causal but 
SpUrIous. 

STOP AND PONDER 13 . 1 

an u think fane ampl with two variable wher th effi clof 
on n th oth r would di appear if you c ntroll d for a third vari­
able? 

Partial phi 

For each income group in Table 13.2 we computed a value of phi equal 
to 0.00. If the control variable has more than two values (e.g. poor, 

Total 

146 

346 

492 
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middle income, upper middle income, rich), then we make four sub­
tables and compute a separate phi for each of them. 

Because it is hard to interpret a large group of phi values, we sum­
marize the phis from the subtables by finding an average value. Such 
an average coefficient from a set of subgroups is known as a partial 
coefficient. In our example, the average of the two phis, which each equal 
0.00, is obviously 0.00. Thus, the partial phi for gender and vote when 
we control for income is 0.00. 

partial phi gives the strength of the relationship between two cat­
egorical variables when one or more other variablcs are controlled 
for. partial phi can be thought of as the avcrage , ithin-group 
phi for th two ariable ', wh r th group ' at" d fin d b th con­
trol variabl . 

The partial phi of 0.00 can also be called the average within-group 
phi for gender and vote when we control for income. This name applies 
because the people in the study are divided into income groups. We 
find phi for each group, and then we average the phis. A partial phi 
for the relationship between two variables, while controlling for a third 
variable, can be computed according to Formula 13.1. 

To summarize these findings: 

phi (gender and vote) = 0.21 
phi (gender and vote, controlling for income) = 0.00 

It is because the partial phi equals 0.00 that we say the relationship 
between gender and vote disappeared when we brought in income. 
The fact that the partial phi equals 0.00 is evidence that there is no 
causal relationship between gender and vote. Causal relationships do 
not disappear when we control for other variables. Therefore, the orig­
inal relationship between the two variables was spurious. 

We can also use income as an independent variable and study the 
relationship between income and vote, first alone and then controlling 
for gender. To study the relationship between income and vote, we 
first arrange the data in a table showing the frequencies for those two 
variables (Table 13.3); here phi is equal to 0.45 for income and vote. 
To control for gender, we create separate tables for the women and 
for the men (Table 13.4) . We find phi for each of the two tables, and 
then we average the two phis. The partial phi (or within-group phi) for 
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Table 13.3 Income and vote 

Income 

Poor Rich Total 

Democratic 177 146 323 
Vote 

Republican 51 346 397 

Total 228 492 720 

phi = 0.45 

income and vote, controlling for gender, is 0.40. This average is the 
weighted average of phi = 0.48 for the women and phi = 0.29 for the 
men. (The main reason the average is a little closer to the phi for 
women is that there are more women than men in the example.) 

The original phi for income and vote was 0.45. When we control 
for gender, the partial phi for income and vote stays at about the same 
level (0.40). Thus, income does not disappear; it remains an important 
variable, and there may be a causal relationship between income and 
vote. We say "may be" because there could be another control variable 
that would make the relationship disappear, indicating that the rela­
tionship is not causal after all. 

The different analyses are summarized in Figure 13.1. Figure 13.1a 
shows the strengths of the separate relationships between gender and 
vote and between income and vote, and Figure 13.1b shows what hap­
pens when we do a multivariate analysis. For the multivariate analysis 

Table 13.4 Relationship between income and vote, controlling for gender 

Gender = Women 

Poor Rich Total 

Democratic 153 52 205 Democratic 
Vote 

Republican 44 123 167 
Vote 

Republican 

Total 197 175 372 Total 

phi = 0.48 

Gender = Men 

Poor Rich Total 

24 94 U8 

7 223 230 

31 317 348 

phi = 0.29 

Average phi for gender and vote, controlling for income, = 0.40 
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(a) Two bivariate analyses (b) One multivariate analysis 

Gender _°_.2.:....1--+1 Vote Gender 

~ 
Vote 

~ Income _°_.4_5--+1 Vote Income 

Figure 13.1 Phis for two bivariate analyses and partial phis for one 
multivariate analysis 

each arrow shows phi for the corresponding variable in the presence of 
the other independent variable in the analysis. Thus, when gender is 
the only independent variable, then phi for the relationship with vote 
equals 0.21. But in the presence of income, the partial phi for gender 
and vote equals 0.00 and the relationship between the two variables 
disappears. Similarly, when income is the only independent variable, 
then the strength of the relationship with vote is 0.45, while in the 
presence of gender the strength becomes slightly reduced to 0.40. 

The reason the partial phi for gender and vote, controlling for 
income, is different from the original phi has to do with the relation­
ship between gender and income and the relationship between income 
and vote. In the two contingency tables in Table 13.2, we see in the 
first table that poor people tend to vote Democratic while rich people 
tend to vote Republican. In the second table we see that women tend 
to be poor and men tend to be rich. The possible causal mechanism 
at work here is therefore that gender influences income and then in­
come influences vote; The observed relationship between gender and 
vote is a byproduct of the effect of gender on income and then the 
effect of income on vote. The relationships between the three variables 
are shown in Figure 13.2. 

~Income~ 

Gender 1 Vote 
0.21 

Figure 13.2 Strengths of relationships (phi) between gender, income, and 
vote 
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MULTIPLE REGRESSION WITH METRIC VARIABLES 

With a metric dependent variable and several metric independent var­
iables, we can use a statistical method called multiple regression analysis 
to analyze the relationship between the dependent variable and all the 
independent variables at the same time. Multiple regression analysis is 
today the most commonly used method in multivariate statistics. Be­
cause it requires large numbers of computations, it was not used very 
much in the days before statistical software programs for computers 
were readily available. Statistical software makes it possible to perform 
a multiple regression almost instantly, enabling us to study complicated 
relationships that were previously undetected. But multiple regression 
analysis is easily misused by people who do not have enough statistical 
knowledge. Many things can go wrong in a multiple regression analysis, 
and when the analysis is not done properly, the results can be very 
misleading. 

Multiple regression has become very important for marketing, ad­
vertising, public relations, and many other research applications. For 
example, advertisers try to match the specific demographic character­
istics of their clients' products with the audience characteristics of the 
media used for promotion. If Jaguar owners are affluent, over 50, and 
predominantly white males, Playboy, Ebony, or Vogue may not be the 
magazines in which to advertise. Multiple regression analysis helps clar­
ifY the roles age, income, and race play in buying aJaguar, thus, influ­
encing choice of advertising strategy. 

As another example, research in the health professions benefits 
from regression analysis. Medical researchers use multiple regression 
analysis to pinpoint relevant characteristics in predicting disease rates, 
treatments, and recovery rates. Recent research has shown, for exam­
ple, that for certain breast cancers, if other variables are held constant, 
lumpectomies are as successful as mastectomies in predicting long-term 
recovery rates. 

Question 1. Relationship in the data? 

In Chapter lOwe studied the relationship of fat content to calories in 
several snack foods. For the same foods we also have the cholesterol 
content and sodium content, so here we use fat, cholesterol, and so­
dium as independent variables in a multiple regression analysis with 
calories as the dependent variable. With three variables, we should get 

Multiple regres­
sion i a tatisti­
cal method used 
for the tudy of 
the relation hip 
between 'evcral 
independent 
m tri variabl . 
and ne d p n­
d nt m tric 
variabl . 
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a better understanding of how calories are determined. Even though 
there are only a small number of observations, the example still illus­
trates issues that come up in multiple regression. 

First we examine the data to see if they are appropriate for multiple 
regression and if there are relationships in the data. Each of the in­
dependent variables should be related to the dependent variable, and 
the independent variables should not be related to each other. One 
good way to do this is to look at the scatterplot for each pair of variables. 
Fat content has a fairly strong and positive relationship with calories, 
while cholesterol and calories do not have a very strong relationship. 
The third independent variable, sodium, has a positive relationship 
with calories, but it is weaker than the one for fat content. All three 
relationships show appropriately linear relationships, so we can go 
ahead with the regression analysis. Fat content is related to both cho­
lesterol and sodium, and that may create some difficulties. (The name 
independent variables can be misleading, since the variables are related 
among themselves.) 

Question 2b. Form of the relationship? Partial regression 
coefficients 

When we do a multiple regression analysis to see how the three varia­
bles fat, cholesterol and sodium together determine calories, we find 
the equation 

calories = 21.3 + 12.6 fat - 0.11 cholesterol + 0.18 sodium 

The equation tells us the way in which each of the three variables is 
related to the dependent variable when the other two variables are also 
included in the analysis. The first term, 21.3, is the intercept, and it 
indicates that we would expect a food with no fat, no cholesterol, and 
no sodium to have 21.3 calories. However, this imaginary food with all 
zero values lies outside the ranges of values for the other data, so in 
that sense 21.3 is a meaningless number. We need this number, how­
ever, to get the correct level of calories when we substitute actual values, 
for the three independent variables. 

The remaining three numbers in the equation are partial regression 
coefficients; they tell something about the effect of the particular variable 
when the other two variables are also present in the analysis and con­
trolled for. The partial regression coefficient 12.6 for the fat variable 
tells us that when we control for cholesterol and sodium, two foods that 
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differ by one gram of fat will differ by 12.6 calories. Another way to say 
this is that when two foods have the same cholesterol and sodium con­
tent and differ by one gram of fat, then they differ on the average by 
12.6 calories. We keep cholesterol and sodium constant by requiring 
the foods to have the same values on these two variables, and then we 
see what happens when the foods differ by one gram of fat. Since the 
coefficient 12.6 is positive, we know that the food with the higher fat 
content will also have a higher calorie count. 

One way to convince ourselves that the two foods will differ by 12.6 
calories is to work out the numbers. Suppose the two foods both have 
100 milligrams of cholesterol and 300 milligrams of sodium, but one 
has 11 grams of fat and the other has 10 grams of fat. The predicted 
numbers of calories for the two foods are 

calories food 1 = 21.3 + 12.6(11) - 0.11(100) + 0.18(300) = 202.9 

calories food 2 = 21.3 + 12.6(10) - 0.11(100) + 0.18(300) = 190.3 

Difference = 12.6 

The predicted calorie count of the first food is 202.9 and of the second 
food is 190.3. The difference between the two foods of one gram of fat 
translates into a difference of 12.6 calories. The same result occurs for 
any other values of cholesterol and sodium. 

Following is another way to think of the partial regression coeffi­
cient 12.6. To control for both cholesterol and sodium we divide the 
data into subgroups in such a way that within each group all the ob­
servations have the same values of cholesterol and of sodium. Then we 
make a scatterplot of calories against fat content in each group and do 
a regression analysis. That will give us a regression coefficient for fat 
for each group. When we average all the coefficients, the value of the 
average is 12.6. 

Similarly, the partial regression coefficient - 0.11 indicates the ef­
fect of cholesterol when we control for fat and sodium. Two foods with 
the same amount of fat and sodium that differ by one milligram of 
cholesterol will, on the average, differ by 0.11 calorie. This coefficient 
is negative, so the food with more cholesterol will have fewer calories. 
Finally, the partial regression coefficient 0.18 indicates the effect of 
sodium when we control for fat and cholesterol. When two foods have 
the same fat and cholesterol and they differ by one milligram of so­
dium, then the one with more sodium will, on the average, have 0.18 
additional calorie. 
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partial repeBon coefficient is th efficient for a variabl 
when we control for th oth rind pendent variabl and k p 
them con tant. It i Lh av rag . within-group regre . . ion coeffi-
i 'nt wh 'n th group ar defin d b th value of the oth rind'­

p nd nt aria 1 in lh anal i ' . 

Comparing regression coefficients The magnitudes of the three partial 
regression coefficients 12.6, - 0.11, and 0.18 are very different, but it 
is not possible to compare them and conclude anything about which 
variables are more important than the others. The coefficients have 
different units; comparing the three coefficients is like comparing ap­
ples and oranges. There are 12.6 calories per fat unit, - 0.11 calorie 
per cholesterol unit, and 0.18 calorie per sodium unit. Because of the 
different units, we do not know what the differences are in their mag­
nitude. 

Changing regression coefficients Figure 13.3 shows how the regression 
coefficients for the three variables change when we do a multiple re­
gression analysis including all three variables compared to a simple 
regression analysis for each variable. The coefficient for fat goes down 
some, the coefficient for cholesterol almost vanishes, and the coeffi­
cient for sodium goes down. This shows that in the presence of the two 
other variables fat and sodium, cholesterol is almost not associated with 
calories. In addition, the figure shows the proportion of variation ex­
plained in each of the analyses (we return to this point in the subsec­
tion on the multiple correlation coefficient). 

The reason the coefficients change is that the three independent 
variables fat, cholesterol, and sodium are correlated among themselves. 
We saw this correlation in the scatterplots for the independent variables 

(a) Three bivariate analyses 

Fat ~ Calories (r2 = 0.82) 

Cholesterol ~ Calories (r2 = 0.38) 

Sodium ~ Calories (r2 = 0.53) 

(b) One multivariate analysis 

Fat~ 

Ch I -0.11 . 2 
o esterol ) Calones (R = 0.89) 

SOdium~ 
Figure 13.3 Regression coefficients for three bivariate analyses and partial 
regression coefficients for one multivariate regression analysis 
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in Figure 13.3. In calculating the strength of these relationships, we 
find these three correlation coefficients: 

r for fat and cholesterol = 0.69 

r for fat and sodium = 0.59 

rfor cholesterol and sodium = 0.41 

Whenever we introduce a variable that is correlated with the vari­
able(s) already included in the analysis, the regression coefficients 
change. No variable has a single, unique value of the coefficient; the 
coefficient varies with whatever other variables we use. This phenom­
enon is called collinearity between the independent variables. We try to 
avoid collinearity, but it is often not possible to do so. One exception 
occurs in experimental situations where we can often choose the values 
of the independent variables in order to study the dependent variable. 
When we have a choice, we choose values so that the independent 
variables are not correlated. 

Question 2a. Strength of the relationships? Partial correlation 
coefficients 

Just as a partial regression coefficient tells about the effect of a partic­
ular variable when other variables are present, a partial correlation coef 
ficient tells the strength of the relationship between two variables when 
we control for other variables. We can control for one or several other 
variables. The partial correlation coefficient for the relationship be­
tween two variables while controlling for a third variable can be com­
puted according to Formula 13.1. 

For the snack data, r = 0.91 for the strength of the relationship 
between calories and fat. When we control for cholesterol and sodium, 
we find that the partial correlation coefficient for calories and fat 
equals 0.82. Similarly, for calories and cholesterol r = 0.62, and when 
we control for the other two variables, the correlation slips to - 0.05. 
Finally, for calories and sodium r = 0.73, and after controlling for the 
other two variables, the correlation equals 0.58. The relationship of 
calories to cholesterol almost disappears when we control for fat and 
sodium, and therefore it looks as it the relationship between calories 
and cholesterol was a spurious one. This is the same result the regres­
sion coefficients produced. 

ColHnearity 
exi ts when two 
or more of the 
independent 
vaIiabl . are cor­
r tat damon 
th m tv . 
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Question 2a. Strength of the overall relationship? Multiple 
correlation coefficient 

Was it worth doing a multiple regression analysis for the snack food 
data? How well do the three variables fat, cholesterol and sodium to­
gether determine calories? These questions can be answered by looking 
at the so-called multiple correlation coefficient R 

A multiple regression analysis gives a partial regression coefficient 
for each of the independent variables. These coefficients can be put 
together with the variables to form an equation, as we saw on page 568. 
For all the snack foods 

calories = 21.3 + 12.6 fat - 0.11 cholesterol + 0.18 sodium 

This equation looks impressive, but how well does it work for an actual 
snack food, such as one lowly, plain doughnut? When we plug in the 
values of fat, cholesterol, and sodium for the doughnut and multiply 
everything, is the result the right value for the calories in one dough­
nut? For a plain doughnut, fat = 8, cholesterol = 25, and sodium = 
210. We put these numbers into the regression equation and get the 
predicted value 

21.3 + (12.6)(8) - (0.11) (25) + (0.18)(210) = 156.7 calories 

But checking the calorie variable in Table 10.1, we see that a plain 
doughnut has 164 calories, not 156.7 calories, so we did not get exactly 
the right value. However, we came quite close. We can do the same 
computations for each of the other foods in the data file to get the 
predicted number of calories from the regression equation. The closer 
the predicted calorie values are to the actual values, the better our 
analysis is. 

One way to examine how close the predicted values are to the actual 
values is to make a scatterplot of the two sets of numbers, shown in 
Figure 13.4. For each food we plot the actual and the predicted calories 
as a point. If the predicted value is equal to the actual, observed value, 
then the corresponding point will lie on the 45-degree line drawn on 
the graph. The greater the difference between the two numbers, the 
farther away from this line the point will fall. 

The graph shows that most of the points cluster around the 45-
degree line, with a couple of outliers. One of the outliers is the apple 
pie point at the right of the graph; it falls some distance below the line, 



1 3 . 2 M u I tip I eRe g res s ion wit h Met ric V a ria b I e s 573 

+ 

400 

'" + pple pic Q) 
·c 

G 
"0 . 00 
~ 
<.J :a 
Q) Dry-r ... + c.. 

2 0 

200 300 400 

Actual calories 

Figure 13.4 Scatterplot of predicted and actual calorie values of snack 
foods 

indicating a predicted calorie value quite a bit lower than the actual 
calorie value. Thus, apple pie has more calories than can be predicted 
by its fat content, cholesterol, and sodium. The equation does not work 
particularly well in estimating what the calories should be for apple pie, 
implying that we need data on one or more additional independent 
variables (perhaps the culprit is sugar or cinnamon). In general, how­
ever, the results from the regression equation are pretty impressive: 
most of the predicted values are quite close to the observed values. 

To measure how well the predicted values correspond to the ob­
served values, we use the correlation coefficient for two metric variables 
introduced in Chapter 10. Recall that if the predicted values are equal 
to the observed values and the points fall on the 45-degree line, then 
the correlation coefficient would be equal to 1.00; the more scattered 
the points, the smaller the correlation coefficient. For the data in Fig­
ure 13.4, the correlation coefficient equals a high 0.94. This is the 
correlation between the observed and the predicted values of the de­
pendent variable. Because the predicted values were computed from 
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the three independent variables, we say that we have found the corre­
lation between the observed dependent variable (calories) on the one 
hand and the combined effect of all the independent variables (fat, 
cholesterol, sodium) on the other hand. Because this is such a special 
correlation coefficient, it has its own name and its own symbol. It is 
known as the multiple correlation coefficient, and it is denoted by the cap­
ital letter R (Recall that an ordinary correlation coefficient between 
any two variables is denoted by lower-case r.) 

The multiple correlation coefficient R measure the trength of 
the relation. hip between the ob. erved value of the dependent 
\'ariabl and th predict d valli . of th d p nd III \'ariabl om-
put d from th r> . ion quarioo. Valu f R rang from 0 to 1. 

The square of the multiple correlation coefficient R2 is equal to 
0.89, and it means that the three independent variables together ex­
plain 89% of the variation in the calorie values. The residual variable 
explains the remaining 11 %. Another way to say this is that the amount 
of variation in the predicted calorie values is 89% of the variation in 
the observed calorie values. The reason the observed values differ more 
among themselves is that they also contain the effects of the residual 
variable. 

The explained part of the variation in calories is shown in Figure 
13.3. The figure shows that fat alone explains 82% of the variation in 
calories, cholesterol alone explains 38%, and sodium alone explains 
53%. The three variables together explain more of the variation than 
does anyone of the three variables alone, but the improvements in 
prediction are not large. For example, analyzed separately, fat explains 
82% of the variation, and we would expect the other two variables to 
add another 7% to get the overall 89%. But the separately analyzed 
values for cholesterol and sodium are much larger than 7%, and the 
total of the three separately analyzed values 82%, 38%, and 53% far 
exceeds 100%. The reason we cannot add the separate percentages for 
the three variables to find their total impact is that the three variables 
are correlated among themselves, that is, they are collinear. 

Question 3. Relationship in the population? 

When we have data on only a sample of observations and want to draw 
conclusions about the population from which the sample was drawn, 
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we have to do some form of statistical inference. As we did in earlier 
chapters, either we do hypothesis testing or we construct confidence 
intervals. Of the two, hypothesis testing is the more commonly used 
method with multiple regression analysis, and we do it for both the 
overall R and for the regression coefficient for each variable. 

Hypothesis testing/or the overall R The null hypothesis that the multiple 
correlation coefficient R equals 0 in the population says that the in­
dependent variables taken together have no effect on the dependent 
variable. It is a bit hard to imagine that we know so little about the 
variables that we chose independent variables that together have no 
effect on the dependent variable. This null hypothesis of no effect is 
therefore usually not very interesting, and it is usually rejected. 

In the snack food example, the sample R is equal to 0.94. Using 
hypothesis testing, we now ask if a value of R that large or larger is 
possible in a sample from a population where the multiple correlation 
coefficient is O. That is, is it true in the snack foods population that fat, 
cholesterol, and sodium have no effect on calories? We answer this 
question by finding the p-value for R = 0.94. 

We need one of the four standard statistical variables to find the p­
value. In the case of R, we use the F-variable. With 16 observations and 
3 independent variables in the analysis, the R of 0.94 gives F = 31.3, 
with 3 and 12 degrees of freedom. (The formula for F together with 
the degrees offreedom is Formula 13.2 at the end of the chapter.) The 
probability that this F is 31.3 or larger is a very small 0.000006; if we 
took a million different samples from a population where the multiple 
regression coefficient equaled 0, only 6 samples would give an RofO.94 
or larger by chance alone. This is strong evidence against the null hy­
pothesis of no effects of the independent variables, and we reject the 
null hypothesis. 

Hypothesis testing/or each variable The value for R is highly significant, 
but it does not tell us whether all three independent variables have a 
statistically significant effect or whether only some or maybe only one of 
them have an effect. To find out, we do a separate hypothesis test for 
each variable. 

Does fat content seem to be related to calories in the population 
of snack foods? The partial regression coefficient for the fat content 
variable of snack foods equals 12.6. Could the same coefficient for the 
population data equal O? With this question as the null hypothesis, we 
change 12.6 to a value of the statistical t-variable; the statistical software 
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gives t = 4.98 with 12 degrees of freedom. The probability of getting 
this value or a larger value of t equals 0.00016. Thus, only in 16 of 
100,000 samples from a population where the coefficient for fat con­
tent equals 0 would we get a regression coefficient of 12.6 or larger. A 
regression coefficient of 12.6 or more from a population where the 
corresponding coefficient equals 0 is therefore very unlikely, so we re­
ject the null hypothesis and conclude that the fat content variable is 
related to the calories in the population. Since the population regres­
sion coefficient is different from 0, we can estimate the coefficient and 
find that 95% confidence interval for the partial population regression 
coefficient is 7.1 to 18.1. 

Similarly, the cholesterol variable has a partial regression coeffi­
cient equal to - 0.11. If we go through the same procedures as for the 
fat variable, we find that the p-value for the cholesterol coefficient 
equals 0.44. This p-value is so large that we do not reject the null hy­
pothesis of no effect. The corresponding coefficient in the population 
could well be equal to 0, and we conclude that cholesterol may not be 
related to the calories. Finally, for the sodium variable, a partial re­
gression coefficient of 0.18 translates to t = 2.46. This value of t has a 
p-value of 0.015, small enough to reject the null hypothesis and con­
clude that the sodium variable does seem to be related to the calories 
in snack foods. 

Fortunately, all these computations can be done on a computer 
with the proper statistical software. We give no formulas for how to 
perform these computations by hand; it's just too much work! 

We often leave nonsignificant variables in a multiple regression out 
of the analysis to keep the analysis as simple as possible. Leaving out 
the cholesterol variable, the remaining two variables, fat and sodium, 
produce almost the same value of R Thus, it is no loss to study calories 
as dependent on fat and sodium only. 

According to published figures from the college administration, for 
the 1994-1995 school year the female full professors at Swarthmore 
College had a mean salary of $71,100 while the corresponding figure 
for the male full professors was $76,300. That is a difference of $5,200, 
and it raises the question of whether the college discriminates between 
men and women in paying its professors. The two means certainly are 
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different. But before we jump to conclusions, let's control for other 
variables in our study of gender and salary. 

The snack foods example involved only metric variables. Here we 
wish to combine metric with categorical independent variables, as we 
did in Chapter 10. Instead of studying the relationship between gender 
and salary by comparing the two means, we study the data using a 
dummy variable for gender. Just as we did in Chapter 10, we assign a 
value of 0 to each woman and a value of 1 to each man. A scatterplot 
of the data then looks like Figure 13.5. Salary is shown on the vertical 
axis in units of$I,OOO, and gender, with the two values 0 and 1, is shown 
on the horizontal axis. We do not know the actual pattern in the scat­
terplot because the college does not release individual salary figures. 

The scatterplot shows the women's salaries as the points at the left 
and the men's salaries as the points at the right. The figure also shows 
the regression line through these points. The line cuts through the 
vertical salary scale at 71.1. This is the intercept of the regression line, 
and it equals the mean salary of the women. The slope of the line is 
the regression coefficient for gender. The slope equals 5.2, which is 
the difference in mean salaries between the men and the women. 
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Figure 13.5 Scatterplot for salary and gender 
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When there are only two sets of points, as here, the regression line 
always goes through the means of the dependent variable for the two 
groups. 

The difference in salaries shows that a relationship exists between 
the two variables gender and salary. Does this mean that the college 
discriminates in the salaries it pays? We won't know until we have found 
out whether other relevant variables have been controlled for. 

Nothing in statistical theory guides us in the choice of control var­
iables. The choice has to come from what we know about the subject 
we are studying and the availability of data. One possible control vari­
able here is age. Maybe the men are older and therefore make more 
money because they have worked longer. Thus, to find the effect of 
gender when controlling for age, we should do a multiple regression 
analysis with salary as the dependent variable and both gender and age 
as independent variables. Of course, this analysis will also give us the 
effect of age when we control for gender. 

Suppose we had data on individual faculty salaries as well as on age 
and gender and that a multiple regression analysis gave the following 
result: 

salary = 40 + 0.0 gender + 0.5 age 

The most striking feature of this result is that the partial regression 
coefficient for gender, when we control for age, equals 0.0. Before we 
controlled for age, the regression coefficient for gender was 5.2. Be­
cause the coefficient now is 0.0, the effect of gender on salary disap­
pears, there is no difference in the salaries of a man and a woman of 
the same age. 

To comprehend controlling for age, we could divide the data into 
age groups (a1l40-year-olds, all 41-year-olds, all 42-year-olds, and so on) 
and make scatterplot gender and salary for each age group. Figure 13.6 
shows a few of these scatterplots. Since we are looking at only a specific 
age group in each scatterplot, the number of observations in each scat­
terplot is smaller than the number of observations for the entire data 
set. However the data points are distributed in each scatterplot, age 
has nothing to do with it because all the people are of the same age. 

For each scatterplot the regression line goes through the mean 
salaries for women and men. In each group the regression line is ap­
proximately horizontal, with a slope of 0.00, meaning that there is no 
relationship between gender and salary in the group. The average of 
the slopes in all the age groups equals O. This is the partial regression 
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Figure 13.6 Scatterplot of salary and gender for a few age groups 

coefficient for gender when we control for age. Since the average slope 
is 0, the average line is horizontal, and there is no difference in salary 
between men and women when we control for age. Sometimes it can 
be helpful to think of a partial regression coefficient as the average 
within-group regression coefficient, as we do for the partial phi. 

Luckily, we do not have to actually divide the data into groups when 
we want to compute a partial regression coefficient. One reason we are 
lucky is that if the sample of observations is small to start with, then 
there would not be enough observations in each group to do an ade­
quate analysis. Conversely, if the amount of data is large to start with, 
even small groups would be too cumbersome to handle. The procedure 
we describe here can be converted into mathematical equations and 
formulas derived for the computation of the partial regression coeffi-
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cients. These formulas are cumbersome when there are many variables, 
but when they are programmed in a statistical software package, they 
are easy to use. 

Another way to illustrate what is going on here is a scatterplot for 
age and salary with different symbols for the points for men and women 
(Figure 13.7). Within each group we can regress salary on age. To make 
the point, we have simplified the data so that all the women are younger 
than all the men. One way to control for age is to pick a man and a 
woman with the same age. Suppose we pick the overall mean age. The 
predicted salary for both the man and the woman would be the same 
if we extend both regression lines. We get the same predicted salary 
because the equations for the two lines in the figure are identical, with 
the same intercept and the same slope. The only difference is that the 
line for women is located below and to the left of the line for men. 

The simple explanation for the original difference in salaries in 
this example is that on the average the men are older than the women 
and consequently make more money than the women. But sometimes 
it is not so easy to identify appropriate control variables or we realize 
too late which control variable we should have used. If we collect data 
from a sample survey and do not collect data on the variable we later 
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would like to use as a control variable, it is difficult or even impossible 
to later go back to the respondents and collect the additional data. 
Thus, in planning to collect data, it is very important to think through 
the analysis as clearly as we can before we collect the data to make 
certain we collect data on all the control variables we plan to use in the 
analysis. 

As you can see, dummy variables are useful in multiple regression 
analyses because they make it possible to analyze both metric and cat­
egorical variables as independent variables. The categorical variable we 
have looked at has only two categories, but of course many categorical 
variables, have more than two categories. Religious preference, for ex­
ample, might have the four categories Catholic, Jew, Protestant, and 
other. For more than one category we use more than one dummy vari­
able. Good statistical software programs construct dummy variables 
automatically. 

Imagine the following situation involving a woman driving to work. 
Sally Jones can take either Main Street or High Street to go to work, 
and she also has the choice of driving during rush hour or not. She 
wants to know how she can get to work most rapidly. Stated as a statis­
tical problem, the two independent variables for this problem are route 
and time of day, while the dependent variable is length of time it takes 
to drive from home to work. Is one route better than another? Is one 
time of day better than the other? Or is one route perhaps better at 
one time of day and the other route better at another time of day? One 
way to study the effect of route and time of day on the length of the 
commute would be to drive each of the two routes at different times 
of day for a few days and measure how long each trip takes. 

Route and time of day are both categorical variables, each with two 
values. Route has the values Main Street and High Street; time has the 
values rush hour and nonrush hour. Length of time it takes to drive to 
work is a metric variable, measured in minutes. When the independent 
variables are categorical and the dependent variable is metric, we can 
introduce dummy variables for the categorical variables and do a mul­
tiple regression analysis. However, we often instead do a two-wayanal­
ysis of variance. In Chapter 12 we discussed analysis of variance with 
only one independent variable. Here the problem requires a two-way 
analysis of variance because there are two independent variables that 

Two-way analysis 
of variance i 
analy i of th 
effect of two 
categ ri al inde- ' 
p ndent 
variabl on a 
metric d p n­
dent variabl . 
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Table 13.5 Mean driving time for different routes and times of day 

Route 

Main Street High Street Mean 

Rush hour 25 min. 21 min. 23 min. 
Time oJday 

Nonrush hour 19 min. 15 min. 17 min. 

Mean 22 min. 18 min. 20 min. 

both affect the dependent variable. With three independent categori­
cal variables we would use a three-way analysis of variance, and so on. 

To gather the data for her experiment, Ms. Jones randomly chose 
different routes and different times of day for her drive to work for the 
next four weeks. This schedule gave her 5 different trips for each of 
the possible combinations of drives. The raw data consist of traveling 
times for a total of 20 trips. (Having the same number of observations 
for each combination of the variables makes the two-way analysis much 
easier. We do not take up the case of unequal numbers of observations 
in this text). 

The mean lengths of time the drives took are shown in Table 13.5. 
The table shows that the overall mean was 20 minutes for the drive to 
work. The mean for the trips along Main Street is 22 minutes, so that 
route took 2 minutes more than the overall mean. The trips along High 
Street had a mean of 18 minutes, so that route took 2 minutes less than 
the overall mean. Similarly, rush hour added 3 minutes to the drive for 
a mean of 23 minutes, and during nonrush hour it took 3 minutes less 
for a mean of 17 minutes for the drive. 

One-way analysis with time of day only 

Studying the relationship between time of day and how long it takes to 
drive to work is studying the relationship between a categorical inde­
pendent variable and a metric dependent variable. From Chapter 11 
we know that this requires a one-way analysis of variance. Table 13.6 
shows the results of this analysis. The sum of squares for time equals 
180.00 and the total sum of squares equals 315.98. That gives an 
R2 = 180.00/ 315.98 = 0.57. Thus, time of day explains 57% of the vari­
ation in driving time. The square root of this number gives R = 0.75. 
Thus, we have a fairly strong relationship between the two variables. 
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Table 13.6 One-way analysis of variance table for time of day 

Degrees of 
Source freedom Sum of squares Mean square F-ratio p-value 

Time of day 1 180.00 180.00 23.87 0.00012 

Residual 18 135.98 7.554 

Total 19 315.98 

R2 = 180/315.98 = 0.57 and R = 0.75 

We know that it takes 3 minutes more to drive during rush hour 
and 3 minutes less to drive during nonrush hour. But we do not know 
whether these differences are statistically significant. Perhaps the dif­
ferences are simply random variations. The F-ratio is equal to 23.87, 
and the p-value for this F equals a small 0.00012. Only 12 in 100,000 
times would an F-value of this magnitude or larger occur if there were 
no difference in driving time. This means that the data are very unlikely 
if the null hypothesis of no difference is true, and we therefore reject 
the null hypothesis. The difference in driving time between the two 
times of day is statistically significant. 

One-way analysis with route only 

To study the relationship between route and how long it takes to drive 
to work, we also do a one-way analysis of variance. Table 13.7 shows the 
results of this analysis: R2 = 0.25 and R = 0.50. Thus, route explains 
25% of the variation in driving time, and there is a moderately strong 
relationship between the two variables. 

Similarly, we know it takes 2 minutes more to drive Main Street and 
2 minutes less to drive High Street. But we do not know whether these 
differences are statistically significant. Perhaps the differences are sim­
ply random variations. The F-ratio is equal to 6.10, and the p-value for 
this F equals a small 0.024. This is not quite as significant as for the 
time-of-day variable, but the data are still very unlikely if the null hy­
pothesis of no difference between the two streets is true. We therefore 
reject this null hypothesis also. Thus, the difference in driving time 
between the two streets is statistically significant. 
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Table 13.7 One-way analysis of variance table for route 

Source Degrees of freedom Sum of squares Mean square F-ratio p-value 

Route 1 80.00 80.00 6.lO 0.024 

Residual 18 235.98 13.110 

Total 19 315.98 

R2 = 80.0/315.98 = 0.25 and R = 0.50 

Two-way analysis with time of day and route 

Instead of two one-way analyses, we can do one two-way analysis of the 
driving times. This is just like doing a multiple regression with two 
independent variables instead of two separate simple regressions each 
with only one independent variable. A two-way analysis that includes 
both time of day and route as independent variables reduces the effect 
of the residual variable. In the one-way analysis with time of day as the 
independent variable, route was one of the variables included in the 
residual variable. Similarly, in a one-way analysis with route as the in­
dependent variable, time of day was one of the variables included in 
the residual variable. With a two-way analysis of variance, both of the 
independent variables are brought out of the residual variable at the 
same time. 

We can list the means of the driving times in a more organized 
fashion: 

Overall: Mean length of time = 20 min. 

Rows: Effect of rush hour = 23 min. - 20 min. = 3 min. 
Effect of nonrush hour = 17 min. - 20 min. = - 3 min. 

Columns: Effect of Main Street = 22 min. - 20 min. = 2 min. 
Effect of High Street = 18 min. - 20 min. = - 2 min. 

These differences are the effects on the driving time for each value of 
the two independent variables. They are also known as the row and the 
column effects for the two categorical variables. For example, rush 
hour is the first row in Table 13.5, and the effect of driving during rush 
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hour is 3 minutes: driving to work at that time takes 3 minutes longer 
than the mean length of time for all the trips. Because the driving time 
is different at rush hour and nonrush hour, the time variable has an 
effect on the data. Similarly, because the driving time is different along 
the two streets, route has an effect as welL 

If we know the overall mean, the two row effects, and the two col­
umn effects, we can find the means in the remaining four cells in Table 
13.5. These computations are shown in Table 13.8. For example, 
driving during rush hour along Main Street takes 20 + 3 + 2 = 

25 minutes. This is because the mean driving time is 20 minutes, and 
then it takes 3 minutes more to drive at rush hour and 2 minutes more 
to drive Main Street for a total of 25 minutes. The same type of com­
putations work for the other three cells as well. 

Furthermore, if we take the mean of the two cells in the first row 
in the table, the + 2 and - 2 for Main and High Streets cancel out and 
give a mean of20 + 3 = 23 minutes for rush hour. Ifwe take the mean 
of the two cells in the column for Main Street, we see that the + 3 and 
- 3 cancel out and the Main 'Street route takes 20 + 2 = 22 minutes. 
The same type of computations can be made for the row for nonrush 
hour and the column for High Street. 

The means can also be shown in a figure. In Figure 13.8, the two 
streets are on the horizontal axis and the four cell means are shown as 
small squares. To keep track of the means, the two rush-hour points 
are connected by one line, and the two nonrush-hour points by another 
line. Of course, the two times of day could have been marked off on 
the horizontal axis and the two means for each street connected by 
lines. The advantage of doing the graph the way it is done is that each 
mean point in the graph corresponds directly with the placement of 
the mean in Table 13.5. 

Table 13.8 Mean driving times for different routes and different times of 
day found from the overall mean and the row and column effects 

Route 

Main Street High Street 

Rush hour 20 + 3 + 2 = 25 min. 20 + 3 - 2 = 21 min. 
Time of day 

Nonrush hour 20 - 3 + 2 = 19 min. 20 - 3 - 2 = 15 min. 

Mean 20 + 2 = 22 min. 20 - 2 = 18 min. 

Mean 

20 + 3 = 23 min. 

20 - 3 = 17 min. 

20 min. 
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Figure 13.8 Mean driving times for the two routes and two times of day 

The striking feature of the graph is that the two lines are parallel. 
There is no obvious reason for that; after all, the graph only shows the 
magnitudes of four means. If we connect the two pairs with lines, we 
have little reason to expect the lines to be parallel. In fact, sometimes 
the lines are parallel and sometimes they are not. We give a brief dis­
cussion of what nonparallel lines mean in the subsection in the second 
study with interaction effects. 

The residual variable The various driving times and the means are 
shown in Table 13.9. We already know that the drives at rush hour 
along Main Street have a mean of 25 minutes, but we see from the data 
that each drive did not take exactly 25 minutes. The reason the obser­
vations are different from each other within each cell of Table 13.9 is 
that other variables besides street and time of day affect the driving 
time. Some days, for example, Ms. Jones got stuck behind a school bus, 
while other days the path was clear. 

As we know, the combined effect of all these other variables is 
known as the residual variable. In the example, the first trip took 26 
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Table 13.9 Driving times for 20 different trips 

Route 

Main Street High Street Mean 

26.0 18.8 

24.2 20.0 

26.5 22.7 
Rush hour 23 min. 

24.1 22.3 

24.2 21.2 

Time of day 
(mean = 25) (mean = 21) 

19.9 17.4 

16.7 17.3 

Nonrush hour 
20.7 12.7 

17 min. 
20.5 15.6 

17.2 12.0 

(mean = 19) (mean = 15) 

Mean 22 min. 18 min. 20 min. 

minutes instead of the mean of 25 minutes, so the residual variable 
added another minute to the trip. The effect of the residual variable 
on a particular trip is the difference between that observation time and 
the mean time in the cell. Thus, the effects of the residual variable on 
the other trips along Main Street at rush hour were - 0.8, 1.5, - 0.9 
and - 0.8 minutes. Similarly, we can find the effect of the residual vari­
able for each of the other trips Sally Jones took. 

Qp,estion 1. Are there any relationships in the data? We already know 
from the analyses of each of the two independent variables that it makes 
a difference whether Ms. Jones travels during rush hour or not and 
that it makes a difference which route she takes. We can therefore 
proceed with the next questions. 

Qp,estion 2. How strong are the relationships? From Table 13.6, R?- = 

0.57 and R = 0.75 for the relationship between time of day and length 
of travel time. Similarly, from Table 13.7, R2 = 0.25 and R = 0.50 for 
the relationship between route and length of travel time. In addition 
to the strengths of the relationships of each independent variable and 
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the dependent variable, we can also find the strength of the relation­
ship between the combined effect of the independent variables and 
the dependent variable. This is what in regression analysis gave the 
multiple correlation coefficient. 

We have already found the sums of squares for the time-of-day vari­
able (180.00) and the route variable (80.00). The combined effect of 
the two independent variables becomes 180.00 + 80.00 = 260.00. The 
two independent variables account for 260.00/313.98 = 82% of the 
variation in the driving times, while the residual variable accounts for 
the remaining 18% of the variation. Since R2 = 0.82, the multiple cor­
relation coefficient for the effect of both independent variables is 
R = 0.91. Thus, the two variables together have a strong relationship 
with the driving time. 

The difference between the total sum of squares and the combined 
effect of the two independent variables equals 55.98, and that is the 
effect of the residual variable in the two-way analysis. If we had com­
puted each of the residuals and squared them, that sum would also be 
equal to 55.98. It is not surprising that the residual sum of squares for 
the two-way analysis is smaller than either of the residual sums of 
squares for the one-way analyses. The residual variable now does not 
contain the effect of either of the two independent variables. These 
sums of squares are shown in Table 13.10. 

QJlestioo 3. Are the relationships statistically significant? As in multiple 
regression, we can test to see whether the two independent variables 
together have a significant effect, and we can do separate tests for each 
of the variables. 

Table 13.10 Two-way analysis of variance table for time of day and route 

Degrees of 
Source freedom Sum of squares Mean square F-ratio p-value 

Time of day 1 180.00 180.00 54.66 0.000001 

Route 1 80.00 80.00 24.29 0.00012 

Residual 17 55.98 3.293 

Total 19 315.98 
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For both variables, R2 = 0.82, and that translates to a value of the 
F-variable of 39.48 with 2 and 17 degrees of freedom. The p-value for 
this F equals 0.0000004; that is, only 4 in 1 million values of F are that 
large or larger if there is no relationship between the two independent 
variables and the dependent variable. The p-value shows that R2 would 
almost never equal 0.82 or more if no relationship exists. Thus, we 
reject the null hypothesis. 

The separate test for each variable is shown in Table 13.10. The 
residual sum of squares has lost one degree of freedom compared with 
the two earlier ones, but the net effect is still that the residual mean 
square now is smaller than either separate residual mean square in 
Tables 13.6 and 13.7. Therefore, the values of F are larger now in the 
two-way analysis than they were in the two one-way analyses. Larger 
values of F produce smaller p-values. The p-value for time of day went 
from 0.00012 to 0.00000l, and the p-value for route went down from 
0.024 to 0.00012. Both variables have a statistically significant relation­
ship to driving time, and the p-values from the two-way analysis are 
smaller than those in the one-way analyses. 

A second study with interaction effects 

The following year Sally Jones repeated her study. The new mean driv­
ing times are shown in Table 13.11. It still takes 3 minutes more than 
the mean to drive during rush hour and 3 minutes less during nonrush 
hour, and Main Street still takes 2 minutes more while High Street takes 
2 minutes less than the overall mean. The row and column effects are 
unchanged. 

Table 13.11 Mean driving time for different routes and times of day 
a year later 

Route 

Main Street High Street Mean 

Rush hour 26 min. 20 min. 23 min. 
Time afday 

Nonrush hour 18 min. 16 min. 17 min. 

Mean 22 min. 18 min. 20 min. 
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But something has happened to the two routes and the two times 
of day compared to the earlier data. The difference lies in the four cell 
means. Driving Main Street during the rush hour now takes 26 minutes 
instead of the 25 minutes it took a year ago. Similarly, both High Street 
during rush hour and Main Street during nonrush hour take a minute 
less than they used to, while High Street during nonrush hour takes a 
minute more. Graphing the four cell means gives the picture shown in 
Figure 13.9. 

The striking difference between Figure 13.9 and Figure 13.8 is that 
in Figure 13.8 the lines for the two times of day are parallel and in 
Figure 13.9 they are not parallel. In Figure 13.8 with parallel lines, the 
difference in driving time between rush hour and nonrush hour is the 
same 6 minutes for both Main Street and High Street. In Figure 13.9, 
the two lines indicate an 8-minute difference between the two times of 
day for Main Street and only a 4-minute difference for High Street. 
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Figure 13.9 Mean driving times for the two routes and two times of day a 
year later 
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The combined effect of driving along Main Street during rush hour is 
now more than the sum of the separate effects of Main Street and rush 
hour. The particular combination of street and time of day adds an­
other minute to the driving time. Such an additional effect is known 
as an interaction effect. The two variables act together to produce an 
additional effect on the dependent variable over and beyond their two 
separate effects. 

In Figure 13.9, three variables affect driving time. As before, there 
is the route variable and the time of day variable, but now there is also 
the route/time of day interaction variable. The sum of squares for the 
interaction variable is found to equal 20.00, and it is displayed with the 
other sums of squares in Table 13.12. The interaction variable explains 
20.00/335.98 = 6% of the total variation in the driving times. Thus, 
the relationship between the interaction variable and driving time is 
not very strong, with R = 0.24. Formula 13.3 shows how to compute 
the various sums of squares needed for a two-way analysis of variance. 
Formula 13.4 shows how to find the appropriate degrees of freedom 
for each sum of squares. 

Do each of the three variables have statistically significant relation­
ships with driving time for the new data? Table 13.12 answers this ques­
tion. All three variables have small p-values, and this means they all 
have a statistically significant relationship to driving time. The inter­
action variable has only a barely significant effect at the usual 5% level, 
while the other two variables have highly significant effects. 

Table 13.12 Two-way analysis of variance of driving time for time of day, 
route, and time of day/route interaction 

Degrees of Sum of 
Source freedom squares Mean square F-ratio p-value 

Time of day 1 180.00 180.00 54.66 0.000001 

Route 1 80.00 80.00 24.29 0.00012 

Time of day/route 
interaction 1 20.00 20.00 5.72 0.03 

Residual 16 55.98 3.499 

Total 19 335.98 

An interaction 
effect occur 
when two varia­
bles act together 
to produce an 
additional £feet 
on th' d p n­
dent variabl 
bond lh urn 
f lh ir two 
parat ffi cts. 
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HING CAU ALiTY 

Decisions about what constitutes a causal relationship depend on both 
a significant statistical result and the consensus of researchers and oth­
ers involved with the problem. Most actual dependent variables we 
study using statistical methods are affected by several other variables 
and must be analyzed with multivariate statistical methods. A major 
feature of multivariate methods is that they enable us to see the effect 
of a particular independent variable in the presence of other indepen­
dent variables. If a relationship found using an independent variable 
alone disappears in the presence of additional independent variables, 
the original relationship cannot have been causal. On the other hand, 
if a relationship does not disappear when we control for other variables, 
we still cannot consider the relationship causal because we can never 
control for every possible other variable; we do not have data on all 
other possible variables. Thus, proving causality remains an elusive task 
even using multivariate statistical methods. 

STOP AND PONDER 13.2 

rudy by Yale p ychiaul' profe r K 1 Pru t, as r ported in a 
n w paper articl (Marc cllOgol, "A father' hand, ri The Philadelphia In­
quirer, May 31 1995. p. H-1) ugg that if fath r involv d in 
child car during their children fir t 'ix month 
will have b tter core on intellectual and motor d I pm nt te 
in fourth grad . Profe or Pruett rudi d infan and th ir famili -
including a follow-up with the familie 1 ear later- La t t th 
childr n acru vemen . Pruett implie that father inv I m nt in 
th fir l ix month of hildren live causes th m to p rform better 
in cho 1 and n th playground. 

What riti i m of thi re ult can au give, ba d on our knowl­
dge of multipl r gr ion analy i two-wayanaly i a variance, and 

th pr blem of cau ality? an you giv altemati e explanation for 
th re ul of thi rudy? What oth r information would be critical 
in as ing th r u]ts? If Pruett had ugg ted thal early father in­

Ivement w re carr lated with lat r developmental advantag , 
would it have taken car of lh major obj ction you might ha e to 
thi claim? 
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13.6 . 
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Multivariate analysis is used to analyse the effects of several indepen­
dent variables on a dependent variable in one procedure. As a result 
of the analysis, the independent variables can often be ranked in terms 
of their relative impact on the dependent variable. 

In multivariate analysis it is sometimes possible to determine if a 
relationship between two variables is not causal. If a relationship be­
tween two variables disappears as a result of a multivariate analysis, then 
we presume it was not a causal relationship. 

13.1 Partial phis: Three categorical variables 

The strength of the relationship between two categorical variables is 
measured by the coefficient phi (Chapter 9). For each subgroup of a 
variable that is held constant it is also possible to compute a phi for an 
independent categorical variable and a dependent variable categorical 
variable. Each phi describes the strength of the relationship of an in­
dependent variable and the dependent variable for the observations 
that have a particular value of the control variable. 

Controlling for a variable means taking away its influence in the 
study of the effect of other independent variables on the dependent 
variable. When we control for the effect of a variable we say that we are 
keeping the controlled variable constant. We keep a variable constant 
by dividing the data up into subgroups according to the values of that 
variable. 

An average coefficient calculated from a set of phi coefficients from 
subgroups of the control variable is known as a partial coefficient. The 
partial coefficient expresses the overall strength of the relationship be­
tween two variables once the effect of a third (or more) variable has 
been controlled for. 

13.2 Multiple regression with metric variables 

For metric variables, multivariate analyses are done by computing par­
tial regression and partial correlation coefficients. These coefficients 
are comparable to the regression and correlation coefficients discussed 
for two variables in Chapter 10. 

The partial regression coefficients of two or more independent 
metric variables can be calculated while holding all but one of the 
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independent variables constant at a time. The partial coefficients can 
be combined into one multiple regression equation to estimate the 
combined effect of the independent variables on the dependent vari­
able. 

The values of partial coefficients can change depending on which 
variables are included in the analysis. The change in the values of par­
tial coefficients happens when the independent variables are corre­
lated with each other as well as with the dependent variable. Colline­
arity is the name given to the correlation of independent variables 
among themselves. 

The strength of the relationship between the predicted values and 
the actual values of the dependent variable in a multiple regression 
analysis is measured by the multiple correlation coefficient R R2 gives 
the amount of variation explained by all the independent variables 
together. 

To find if the results of a multiple regression analysis are statistically 
significant, that is, if the sample results can be applied to the popula­
tion from which the sample was drawn, hypothesis testing methods 
rather than confidence levels are usually used. The usual null hypoth­
esis is that the multiple correlation coefficient in the population is O. 
By converting the sample multiple correlation coefficient R to a value 
of an F-variable with the proper degrees of freedom, we can use statis­
tical tables or software to find the p-value for the observed data. The p­
value is the probability of finding the observed value of R or a larger 
value of Rin a sample from a population where the multiple correlation 
coefficient equals o. 

In a multiple regression analysis, hypothesis testing can also be 
done separately on the regression coefficient for each of the indepen­
dent variables. 

13.3 Multiple regression with a dummy variable 

Categorical independent variables can be used in regression analysis 
by converting the categorical variables to dummy variables. Two nu­
merical values, often 0 and 1, are assigned to the values of a categorical 
variable. For example, for gender, man could equal 0 and woman 1. 

13.4 Two-way analysis of variance 

To study the effects of two independent categorical variables on a met­
ric dependent variable, the statistical method called two-way analysis of 
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variance can be used. One reason a two-way analysis of variance is su­
perior to two one-way analyses of variance is that it can take into ac­
count the possible joint effect of the two categorical variables beyond 
their separate effects. The joint effect of the two independent variables 
on the dependent variable is called the interaction effect. By taking 
into account several independent variables and their interactions 
simultaneously, the effect of the residual variable is reduced, making 
it easier to establish statistical significance. 

13.5 Establishing causality 

Proving causality means testing all possible variables that might have 
an effect on a dependent variable. Since this is not possible, claiming 
a causal relationship is always a tentative decision, based on the knowl­
edge of and the accessibility of relevant variables. 

Achen, Christopher. Interpreting and Using Regression (Sage University 
Paper Series on Quantitative Applications in the Social Sciences, series 
no. 07-029). Beverly Hills, CA: Sage, 1982. Uses of multiple regression. 

Asher, Herbert. Causal Modeling, 2nd ed. (Sage University Paper Series 
on Quantitative Applications in the Social Sciences, series no. 07-003). 
Beverly Hills, CA: Sage, 1983. Using regression to examine possible 
causal models. 

Berry, William D., and Stanley Feldman. Multiple Regression in Practice 
(Sage University Paper Series on Quantitative Applications in the Social 
Sciences, series no. 07-050). Newbury Park, CA: Sage, 1985. Uses of 
multiple regression. 

Bray, James H., and Scott E. Maxwell. Multivariate Analysis of Variance 
(Sage University Paper Series on Quantitative Applications in the Social 
Sciences, series no. 07-054). Beverly Hills, CA: Sage, 1985. Introduction 
to multivariate analysis of variance. 

Fox,John. Regression Diagnostics (Sage University Paper Series on Quan­
titative Applications in the Social Sciences, series no. 07-079). Newbury 
Park, CA: Sage, 1991. Using the data to see if they violate any of the 
underlying assumptions for the use of regression analysis. 
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FORMULAS 

Knoke, David, and Peter J. Burke. Log-Linear Models (Sage University 
Paper Series on Quantitative Applications in the Social Sciences, series 
no. 07-020). Beverly Hills, CA: Sage, 1980. Introduction to the multi­
variate analysis of categorical variables. 

Wildt, Albert R, and Olli T. Ahtola. Analysis of Covariance (Sage Univer­
sity Paper Series on Quantitative Applications in the Social Sciences, 
series no. 07-012). Beverly Hills, CA: Sage, 1978. Regression analysis 
with both categorical and metric independent variables. 

PARTIAL r (OR pm) 

For three variables denoted xl, x2 and x3, the partial correlation co­
efficient of xl and x2 while controlling for x3 (denoted r12,3) is found 
from the three pairwise correlation coefficients r12, r13, and r23 accord­
ing to the expression 

(13.1) 

The same formula works substituting phis for the r's. 

F-TEST FOR MULTIPLE CORRELATION COEFFICIENT 

To test the null hypothesis that R equals 0 in the population, based on 
k independent variables and n observations 

R2 n-k-1 
F=------

1 - R2 k 
d.f. = k, n - k - 1 (13.2) 

From the computed value of F, statistical software or tables of the F­
distributions can be used to find the corresponding p-value. 

TwO-WAY ANALYSIS OF VARIANCE 

Table 13.13 shows how the data can be displayed for a two-way analysis 
of variance when the numerical values of the dependent variable are 
replaced by symbols. A typical observation is denoted y with the three 



Table 13.13 Numerical observations replaced by symbols 

Route 

Main Street High Street Mean 

Y111 Yl2l 

Yll2 Y122 

Rush hour Y113 Y123 -
Y1. 

Y114 Y124 

Yll5 Y125 

Time of day 
(mean = Yll) (mean = Y12) 

Y2ll Y221 

Y212 Y222 

Nonrush hour Y213 Y223 -
12· 

Y214 Y224 

Y215 Y225 
(mean = Y21) (mean = Y22) 

Mean - - -
Y·1 Y·2 Y 

subscripts i, j, and k. The i subscript indicates which row the observation 
is located in, the j subscript indicates the column, and the k subscript 
indicates which observation is under examination at in a particular cell. 
The overall mean has no subscript. The mean of the data in a row is 
denoted by y-bar with subscripts i and a dot, and the mean of the data 
in a column is denoted by y-bar with subscripts dot and j. 

The various sums of squares are found the following way: 

Row variable sum of squares = ~ni' (Yi' - Y) 2 

Column variable sum of squares = '2:n'j(Yj - y)2 

Interaction variable sum of squares = '2:'2:nij(Yij - Yi' - Y.j + y)2 (13.3) 

Residual variable sum of squares = '2:'2:'2:(Yijk - Yij)2 

Total sum of squares = '2:'2:'2:(Yijk - y)2 

The n's refer to the number of observations in the various rows, col­
umns, and cells. These formulas can be used directly for very small data 

Formulas 597 
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Table 13.14 Data 
for a two-way analysis 
of variance set up in 
a computer file 

Y Row Column 

Ylll 1 1 

Y112 1 1 

Y113 1 1 

Y1I4 1 1 

Y1I5 1 1 

YI21 1 2 
Y122 1 2 
Y123 1 2 
Y124 1 2 
Y125 1 2 
Y211 2 1 

Y212 2 1 

Y213 2 1 

Y214 2 1 

Y215 2 1 

Y221 2 2 
Y222 2 2 
Y223 2 2 
Y224 2 2 
Y225 2 2 

EXERCISES 

sets; otherwise, a two-way analysis of variance is best done on a com­
puter. 

With r rows, c columns, and m observations in each cell, the various 
degrees of freedom are found from the expressions 

Row variable degrees of freedom = r - 1 

Column ~ariable degrees of freedom = e - 1 

Interaction variable degrees of freedom = (r - 1) (e - 1) 

Residual variable degrees of freedom = rem - re 

Total degrees of freedom = rem - 1 

(13.4) 

The mean squares are found by dividing the sums of squares by 
their corresponding degrees of freedom. The F-ratios are found by 
dividing each mean square by the residual mean square. All these num­
bers are typically displayed in an analysis of variance table like the one 
in Table 13.12. 

When the analysis is done on a computer, the data are typically set 
up in the computer file as shown in Table 13.14. For each observed 
value of the dependent variable y, we enter the row and the column 
the observation is located in. The software program takes care of the 
construction of the interaction variable. 

REvIEw (ExERCISES 13.1-13.17) 

13.1 a. How does a multivariate statistical analysis differ from a 
single-variable statistical analysis? 

b. Why is one multivariate statistical analysis often more useful 
than several single-variable analyses? 

13.2 If a relationship between two variables disappears as the result 
of a multivariate analysis, what can you presume about the relationship? 

13.3 What is meant by eontrollingfor a variable in an analysis? 

13.4 If a phi for a relationship between two variables such as gender 
and vote was 0.32, and after controlling for a third variable it became 
0.00, what would you conclude about the two variables? 



13.5 a. What is a partial phi coefficient? 

b. If the control variable has four values, e.g., high, medium, 
low, none, how do you find the partial phi coefficient for the 
relationship between the two independent variables? 

c. If there are many more highs than the other values in the 
sample, does this affect the partial phi? 

13.6 When can you use a multiple regression analysis? 

13.7 If independent variables in a data set are correlated, is 
said to exist between them. 

13.8 If a regression line passing through the data points of two 
groups in a scatterplot is horizontal, what can you say about the effect 
of being in one of the groups as opposed to the other on the dependent 
variable (for example, the effect of gender on visual accuracy)? 

13.9 a. What is a dummy variable? 

b. Give an example from the chapter or one of your own 
construction. 

c. Why is it useful to create a dummy variable? 

d. What is the important restriction on its use? 

13.10 a. Define and describe what a correlation called R must be. 

b. What does R2 tell us? 

c. What does 1 - J(!. tell us? 

13.11 In order to discover whether a finding from a sample is appli­
cable to an entire population, what must you do? 

13.12 a. How would you explain a two-way analysis of variance to a 
nonstatistical friend? 

b. Give an example of an imaginary study using a two-way anal­
ysis of variance. 

c. In what respect is a two-way analysis of variance better than 
two one-way analyses of variances? 

13.13 What is the residual variable as defined for a two-way analysis 
of variance? 

13.14 Suggest a problem where more than a two-way analysis ofvari­
ance would be appropriate-for example, one with three independent 
variables. 
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13.15 a. What does interaction effect mean in a two-way analysis of 
variance? 

b. Give an example of an interaction effect. 

13.16 a. Why has multiple regression analysis become popular in re­
cent years? 

b. Why is it said that this procedure can be "dangerous"? 

13.17 Why is it so difficult to determine whether or not an indepen­
dent variable is a causal variable, even if a multivariate analysis with 
several important independent variables is done? 

INTERPRETATION (ExERCISES 13.18-13.37) 

13.18 When we regress larceny rates on robbery rates for the 48 con­
tiguous states we find 

larceny = 2682 + 1.49 robbery (t = 2.05 with 46 d.f., P = 0.023) 

To study whether this relationship could be causal, we want to control 
for the per capita state income. When we regress larceny rates on rob­
bery rates and per capita income, we find 

larceny = 3880 + 2.23 robbery - 0.06 income 
(t = 2.75, (t = -l.86, 

P = 0.004) 45 d.f., 

P = 0.035) 

(Source: Bureau of the Census, Statistical Abstracts of the United States: 1995, 115th ed., 
Washington, D.G., 1995.) 

a. In principle, how do we find the coefficient 2.03 for larceny 
when we control for income? 

b. What does this second analysis tell us about the relationship 
between larceny and robbery rates? 

13.19 In Exercise 9.9, we studied the relationship between two votes 
in the House of Representatives, and phi was equal to 0.62. When we 
analyze the same data controlling for a third variable, political party, 
we find that the partial phi for the two votes equals 0.26. 



a. How do we go about controlling for political party? 

b. How do we find the partial phi? 

c. What does the value 0.26 of the partial phi tell us about the 
original relationship between the two votes? 

13.20 Age-adjusted melanoma rates from the Connecticut Tumor 
Registry indicate an increase in melanoma incidences from 1936 to 
1972, and the rates also seem to vary with the relative number of sun­
spots each year. Melanoma incidences are measured as the number of 
cases per 10,000 population, and the range of the values is 8 to 46. The 
time variable is rescored for each year with 1936 as 1, 1937 as 2, and 
so on up to 1972 as 37. The sunspot variable ranges in values from 5 
to 190. Various regression analyses give the following results: 

melanoma incidences = 26.0 + 0.03 sunspots 

melanoma incidences = 7.1 + 1.10 time 

melanoma incidences = 6.2 + 0.02 sunspots + 1.10 time 

r = 0.13 

r = 0.96 

R = 0.97 
(Source: A. Houghton, E. W Munster, and M. V. Viola, "Increased incidence of malignant 
melanoma after peaks of sunspot activity, "The Lancet, April 8, 1978, pp. 759-760, as 
reported in D. F. Andrews and A. M. Herzberg, Data: A Collection of Problems from 
Many Fields for the Student and Research Worker, New York: Springer-Verlag, 1985, 
p.201.) 

a. Describe the relationship between melanoma incidences 
and sunspots. 

b. Describe the relationship between melanoma incidences 
and time. 

c. Describe the relationship between melanoma incidences 
and both sunspots and time. 

d. What is the advantage of doing a multivariate analysis of 
these data? 

13.21 Members of Congress are some of the few people who can de­
termine their own salaries. However, voting for increases may be dis­
approved of by the electorate, and evidence indicates that the closer 
the next election is, the less likely a member is to vote for a pay increase. 
In a roll calion a pay increase in 1991, senators were classified by 
whether they voted for or against the pay increase, whether they were 
running for reelection at the next general election in 1992 (not all 
senators are up for election at the same time), and their party. These 
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are all categorical variables with two categories, so we can find phis and 
partial phis for the study of the relationship between them: 

phi (running again, vote) = 0.37 

phi (running again, vote I controlling for party) = 0.37 

The vote was such that senators running for reelection tended to vote 
against the pay increase. (Source: Roll call as reported in The New York Times, 
July 19, 1991, p. A13.) What do the two values of phi tell you? 

13.22 The study of the quality of wines has a long history and is based 
on much subjective judgment. Professor OrIey Ashenfelter, a Princeton 
economist, studied the relationship between auction prices of wines as 
a measure of wine quality, the winter rainfall from October through 
March in millimeters, the mean temperature in centigrade degrees 
during the growing season April through September, and the rainfall 
during the harvest period August and September for each of several 
years. A regression analysis for Bordeaux wines produced the following 
result: 

quality = -12.1 + 0.0012 winter rain 
+ 0.62 temperature - 0.004 harvest rain 

(Source: Article in The New York Times, March 4, 1990, pp. AI, A22. This work was done 
for wines up through 1989, and according to the equation the Bordeaux wines of 1989 should 
be of an excellent quality. This wine was still too young to be judged at that time, and it is 
thought that one test of this analysis will be how well the wines of 1989 actually turn out to be 
when they reach maturity.) 

a. What are some of the things this equation tells you about 
how the quality of Bordeaux wines relates to the temperature 
and the rainfall variables? 

b. What are some of the things this equation does not tell you 
about the relationships between these variables? 

13.23 A two-way analysis of variance to find whether the raters ofthe 
flavor found any differences between chocolate and vanilla desserts as 
well as between the three types-ice milk, frozen yogurt, and frozen 
dessert-gives the results in Table 13.15. What do you conclude about 
the flavors of the desserts from these results? 

13.24 In Exercises 10.36 and 10.37 we looked separately at how the 
percentage of people below the poverty level is related to the percent­
age of people with a ninth-grade or less education and to the percent-



Table 13.15 Data for Exercise 13.23 

Sum of Degrees of Mean 
Source squares freedom square F-ratio p-value 

Type 9,248 2 4,624 31.81 0.0000 

Chocolate/vanilla 14 1 14 0.10 0.75 

Interaction 477 2 238 1.64 0.21 

Total 5,524 38 145 

Total 16,613 43 

Source: "Low-fat frozen desserts: Better for you than ice cream?" Consumer Reports, vol. 57, 
no. 8 (August 1992), pp. 483-487. 

age of people with college or more education, using data on the 50 
states: 

and 

percent poor = 4.6 + 0.8 percent low education 
(r = 0.70, t = 6.72 on 49 d.f., p-value < 0.0001) 

percent poor = 26.9 - 0.7 percent college or more 
(r = - 0.62, t = - 5.54 on 48 d.f., P < 0.0001) 

When both of the education variables are analyzed at the same time 
in a multiple regression, the following results occur: 

percent poor = 14.6 + 0.6 percent ninth grade - 0.4 percent college 
(t = 4.41, (t = -3.02, R = 0.75 
P = 0.0001) P = 0.002) 

(Source: 1990 U.S. Census data. Reported in The Chronicle of Higher Education, vol. 34, 
no. 1 (August 26, 1992), p. 4.) 

a. Why are the regression coefficients in this analysis different 
from the corresponding coefficients in Exercises 10.36 and 
1O.37? 

b. Does the improvement in the correlation from each of the 
simple regressions to this multiple regression seem to be large 
enough to make a multivariate analysis worthwhile? (We are 
looking for your intuitive sense, not a statistical answer.) 
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c. What other variables might you want to use to understand 
better what determines the percentages of poor people in the 
various states? 

13.25 The scatterplot in Figure 13.10 shows data on an independent 
and a dependent variable for a sample of students from all four class 
years. The data points are labeled "fr" for freshman, "so" for sopho­
more, '~r" for junior, and "sr" for senior. For each question, explain 
your answer in some detail. 

a. When you do a regression analysis of the dependent on the 
independent variable, will the regression coefficient be positive 
or negative? 

b. Will the corresponding correlation coefficient be positive or 
negative? 

c. Will the same partial correlation coefficient be small, me­
dium, or large? 

jf. 
Jf 

SO 
SO 

SO 
SO 

SO 

ff 
ff fr 

ff ff 

Independent variable 

Figure 13.10 Data for Exercise 13.25 

jf 
jf 

Sf 

Sf 

Sf 

Sf 
Sf 

Sf 



d. When you study the relationship between the independent 
and the dependent variable and control for class year, will the 
partial regression coefficient for the independent variable be 
positive or negative? 

e. Will the corresponding partial correlation coefficient be 
positive or negative? 

f. Will the same correlation coefficient be small, medium, or 
large? 

13.26 According to the Bulletin of the American Association of University 
Professors (vol. 79, no. 2 (Marchi April 1993) , p. 71) the mean salary for 
the 7 female full professors at Swarthmore College was $63,700 while 
the same mean for the 59 male full professors was $70,900 for the 
school year 1991-1992. Ifwe change gender to a dummy variable with 
o for women and 1 for men, the regression line from regressing income 
on gender would have the equation 

income = 63.7 + 7.2 gender 

From this equation and the means themselves, it looks as if the college 
has different pay scales for its female and male professors. But before 
we accept that explanation for the difference between the two means, 
we need to control for other variables that may be relevant. Suppose 
we control for age of the professors in a multiple regression analysis, 
and suppose the coefficient for gender equals 0.0 in the analysis of 
income on both gender and age. 

a. Explain in some detail to your intelligent but nonstatistical 
friend what it means to control for a third variable and how we 
found the value 0.0 for the partial regression coefficient for 
gender while controlling for age. 

b. What do we learn from the fact that the regression coeffi­
cient for gender changed from 7.2 in the simple regression 
analysis to 0.0 in the multiple regression analysis? 

13.27 A statistical relationship has been found between the days of 
the week and the number of childhood accidents in Nashville, Ten­
nessee. 

a. Name a variable you think would cancel out this relationship 
if it were used as a control variable. Explain your reasoning. 

b. What might this analysis indicate about the causal effect of 
day of the week on the dependent variable? 
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13.28 Look at a regression analysis of how the cost of textbooks is 
related to the number of pages in the book and the number of copies 
printed, and answer the following questions. 

cost of textbook = 30 + 0.05 total pages - 0.0001 copies printed 

a. What does the 30 stand for? 

b. What are the two numbers 0.05 and 0.0001 called? 

c. Explain what 0.05 and 0.0001 indicate about the cost of a 
book in terms of the size of the book and how many copies are 
printed. 

d. If you did a separate simple regression analysis of the cost 
of textbooks on the number of pages, would you find the same 
coefficient 0.05 as in the multiple analysis? 

13.29 Why is it said that trying to compare the magnitudes of partial 
regression coefficients in an analysis is like comparing apples and 
oranges? (You may wish to use the example about gas mileage to ex­
plain your answer.) 

13.30 Full-time faculty members on the five regional campuses of a 
large university charge the administration with discrimination because 
their salaries are $10,000 less, on the average, than those of the full­
time faculty on the main campus. 

a. Working for the board of managers as a statistical consultan t, 
what are three variables you might wish to study in order to 
decide whether region alone accounts for the difference in 
salary? 

b. What hunches do you have about the outcome of such a 
study? Do you think the difference might be explained by other 
variables? 

c. Do you think it would make a difference if you did bivariate 
instead of multivariate analyses? 

d. Which analysis would you recommend? Why? 

13.31 How do we know what variables to control for when we wish to 
study the nature of the statistical relationship between two variables, 
for example, between region and salary, as in Exercise 13.30? 



13.32 For an R of 0.84, you obtain an F equal to 22.20 with 4 and 15 
degrees of freedom. The probability of finding an F this large or larger 
is very small (p < 0.0001). 

a. Should you reject the null hypothesis of no effect? 

b. What does this finding strongly suggest about the popula­
tion from which the sample data were drawn? 

13.33 If a multiple regression analysis with three independent varia­
bles (e.g., fat, protein, sodium) has an overall R that is significantly 
different from 0, does that mean that each individual variable also has 
a significant effect? Explain your answer. 

13.34 For a two-way analysis of variance, the differences between 
the observations and the mean in the cell were found to be the fol­
lowing: 

- 1.5 2.0 - 0.5 0.0 - 2.0 1.0 1.0 

Why are not all the observations in a cell equal to the cell mean, such 
that these differences would all equal O.O? 

13.35 In a comparison of six European cars, a car magazine had sev­
eral people evaluate several aspects, such as engine, gearbox, quietness, 
seats, and so on. All the evaluations were done on a scale from 0 to 10, 
and the scores were averaged to find the mean. For example, the Alfa 
Romeo 164L received a mean score of 9.4 for its engine. Each car had 
21 mean scores, and they are shown in Figure 13.11. How do these cars 
differ among themselves? Is any car better than the others? Is any car 
worse than the others? 

a. Describe some of the patterns you see in the figure. 

b. The Mercedes has the highest overall mean at 8.32, and the 
VW has the lowest at 8.05. An analysis of variance gives the 
results in Table 13.16. What can you conclude about the dif­
ferences between the cars? 

c. These data are like paired data in that there is one obser­
vation for each car on each feature and the features are not 
scored on the same scale. For example, the mean score for body 
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Figure 13.11 Data for Exercise 13.35 (Source: "European influence," Road and 
Track, August 1991, pp. 64-84.) 

Table 13.16 Data for Exercise 13.35b 

Degrees of Mean 
Source freedom Sum of squares Proportion square F-ratio p-value 

Car 5 140 0.03 28.05 0.85 0.52 

Residual 120 3977 0.97 33.14 

Total 125 4117 1.00 

Table 13.17 Data for Exercise 13.35c 

Degrees of Sum of Mean 
Source freedom squares Proportion square F-ratio p-value 

Car 5 140 0.03 28.05 0.86 0.51 

Feature 20 712 0.17 35.60 1.09 

Residual 100 3265 0.80 32.65 

Total 125 4117 1.00 



structure is 8.67, while the mean score for engine is 7.71. These 
differences are included in the residual degrees of freedom and 
sums of squares in Table 13.16 and should be removed. Because 
there are six observations, not just two, for each feature, you 
cannot look at differences the way you do for paired data. But 
you can do a two-way analysis of variance without interaction 
for the results in Table 13.17. Why does removing the variation 
due to the difference in features from the residual variable not 
seem to have any effect for the cars? 

13.36 In an analysis of sulfur dioxide as the dependent variable and 
annual mean temperature and population size in thousands as inde­
pendent variables for a sample of 41 cities, using government data, 

sulfur dioxide = 91.7 - 1.3 temperature + 0.02 population size R = 0.64 

For the temperature coefficient - 1.3, t = - 3.23 on 38 d.f. and p = 
0.0013. For the population size variable 0.02, t = 3.74 on 38 d.f. and 
p = 0.0003. What do these numbers tell you? 

13.37 Using the manufacturers' data on a sample of 1996 model cars, 
you find that when you regress city mileage on the weight of the car 
(measured in thousands of pounds) and on the horsepower separately 
and together, 

city mpg = 40.5 - 6.27 weight 

city mpg = 29.2 - 0.05 horsepower 

city mpg = 40.4 - 6.23 weight - 0.0004 horsepower 

(r2 = 0.77) 

(r2 = 0.56) 

(R2 = 0.77) 

What do these results tell you about the relationship between city mile­
age and the weight and horsepower of cars? 

ANALYSIS (ExERCISES 13.38-13.47) 

13.38 In Exercise 9.42 we found that phi = 0.10 for the relationship 
between gender and college graduation for athletes in Division I 
schools. In the same study, phi = 0.22 for the relationship between 
race and graduation, and phi = 0.14 for the relationship between race 
and gender. 
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Table 13.19 Data 
for Exercise 13.40 

y X D 

1 1 0 

1 2 0 

1 3 0 

3 5 1 

3 6 1 

3 7 1 

Table 13.18 Data for Exercise 13.39 

Flavor 

Chocolate Vanilla Overall 

Frozen yogurt 71.3 54.1 67.3 
Type Ice milk 55.2 64.0 61.1 

Frozen dessert 31.0 25.5 27.3 

Overall 60.4 55.5 57.4 

Source: "Low-fat frozen desserts: Better for you than ice cream?" Consumer Reports, vol. 57, 
no. 8 (August 1992), pp. 483-487. 

a. Find the partial phi for the relationship between gender and 
graduation, controlling for race. 

b. Find the partial phi for the relationship between race and 
graduation, controlling for gender. 

c. What do these phis and partial phis tell you about the rela­
tionship among the three variables? 

13.39 The results in Exercise 13.23 do not give the full story on how 
the various desserts tasted. One additional step in the analysis consists 
oflooking at the mean flavor score for each group (Table 13.18). 

a. Show the six cell means in the table in a graph similar to 
Figure 13.10. 

b. How does the graph add to what we learn from Table 13.15 
for Exercise 13.23? 

13.40 The data matrix in Table 13.19 shows data on a dependent 
metric variable 1', an independent metric variable X, and an indepen­
dent dummy variable D for a categorical variable with two categories. 

a. Make a scatterplot of Y versus X (A regression analysis of Y 
versus X results in a line with equation Y = 0.3 + O.4X) 

b. What does it mean to study the relationship between Yand 
X and control for the variable D? 

c. For these data, find the numerical value for the regression 
coefficient ~ when you do a multiple regression analysis of Y 



on both X and D and the analysis results in the regression equa­
tion 

y= 1.0 + ~x+ 2.0D 

d. What does the value of the regression coefficient for X tell 
you about the relationship between Yand X when you control 
for D versus when you do not control for D? 

13.41 In a multiple regression analysis of salary on four independent 
variables, 

salary = 30,000 + 2,500 years of college + 400 years of service 
- 5,000 hourly/salaried (1,0) + 1,500 man/woman (1,0) 

a. For two salaried men with 10 years of service, one of whom 
had 3 years of college and the other 4 years of college, what 
would you expect the difference in salaries to be? 

b. What would you expect the difference to be if the two people 
were women instead of men? 

c. Which seems to be more important for the salary, years of 
college or years of service? 

13.42 Men and women raters were asked to rate scholarly papers on 
a scale from 1 (best) to 5 (worst).John T. McKay was cited as the author 
ofa third of the papers, Joan T. McKay as the author of another third, 
and]. T. McKay as the author of the remaining papers. The papers 
withJohn cited as the author received mean ratings of 1.9 by the male 
reviewers and 2.3 by the female reviewers, the papers with Joan cited 
as the author received mean ratings of 3.0 by both sets of reviewers, 
and the papers with J. T. cited as the author received mean ratings of 
2.7 by the male and 2.6 by the female reviewers. (Source: Qy,oted in L. 
Billard, ''A different path into print, " Academe: Bulletin of the American Asso­
ciation of University Professors, vol. 79, no. 3 (May!]une 1993), pp. 28-29,jrom 
M. A. Paludi and W. D. Bauer, "Goldberg revisited: What's in an author's name, " 
Sex Roles, 9 (1983), 287-390.) 

a. Why should you use a two-way analysis of variance for this 
problem? 

b. Display the means in a table like Table 13.5. 
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c. Do the means provide evidence of an interaction effect for 
gender of rater and gender of author? 

d. Is there any observed difference in the mean ratings given 
by female and male raters? 

e. Is there any observed difference in the mean ratings given 
to papers withJohn,Joan, and]. T. cited as author? 

(There is not enough information in the Academe article to perform 
tests of statistical significance in this exercise.) 

13.43 In Exercise 10.61, we did a separate analysis for each gender 
on uptake and incorporated amounts of oleic acid for female and male 
rats. Here we do one multivariate analysis of the data. Livers from 4 
female and 4 male rats were given oleic acid. Table 13.20 shows the 
uptake and the amount incorporated into keotone bodies. 

a. Change the gender variable to a dummy variable with 0 for 
the female rats and 1 for the male rats. 

b. Do a multivariate analysis for amount incorporated with up­
take and gender as the two independent variables. 

c. How does the coefficient for uptake compare with the two 
separate coefficients in Exercise 10.61? 

d. Substitute 0 for gender and find the separate regression line 
for the female rats. Substitute 1 for gender and find the sepa­
rate regression line for the male rats. 

Table 13.20 Data for Exercise 13.43 

Uptake Incorporated Gender 

29.3 1.82 Female 

25.5 0.84 Female 

26.3 1.09 Female 

31.0 1.45 Female 

20.6 1.56 Male 

17.9 0.93 Male 

23.6 1.54 Male 

25.4 1.76 Male 



Table 13.21 Data for Exercise 13.44 

Protein source 

Beef Cereal 
Low 90,76,90,64,86,51, 107,95,97,80,98, 

Protein 72,90,95,78 74,74,67,89,58 
amount 

High 73, 102, 118, 104, 81, 98,74,56,111,95, 
107,100,87,117,111 88,82,77,86,92 

Source: Gearge W Snedecar and William C. Cochran, Statistical Methods, 6th edition, Ames: 
Iowa University Press, 1967, p. 347. 

e. How do these two lines compare with the two original re­
gression lines in Exercise 10.61? 

f. How large is the vertical distance between the two lines in 
part d? 

g. Why can the distance between the two lines be interpreted 
as the effect of gender when we control for uptake? 

13.44 You are interested in whether protein source (beef or cereal) 
and protein amount (low or high) have effects on weight gain in rats. 
Analyze the data in Table 13.21 showing weight gains of four groups 
of rats with ten rats in each group. 

13.45 In a statistical study, law professor David Baldus and statistics 
professor George Woodworth analyzed data from 2,475 cases before 
the courts in the state of Georgia. Among the variables they considered 
were the race of victim and defendant together with whether or not 
the death penalty was given (Table 13.22). 

a. Construct a table that shows the relationship between the 
race of the defendant and the race of the victim. 

b. How strong is the relationship between the race of the de­
fendant and the race of the victim? 

c. Controlling for whether the death sentence was given or not, 
find the strength of the relationship between the race of the 
defendant and the race of the victim. 

d. What do the answers to parts band c together tell you? 

e. What other analyses of these data might be of interest? 
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Table 13.22 Data for Exercise 13.45 

(a) Black defendant (b) White defendant 
Race of victim Race of victim 

Black White Total Black White Total 

Death Yes 18 50 68 Death Yes 2 58 60 
sentence No l420 178 1598 sentence No 62 687 749 

Total 1,438 228 1,666 Total 64 745 809 

Source: Chance, vol. 1, no. 1, p. 7, 1988. 

13.46 In Exercise 11.48 we compared the number of hours teachers 
spend teaching in lower and upper secondary schools. Now we also 
include the primary level (Table 13.23). Analyze the data using a two­

way analysis of variance (without interaction). 

13.47 Table 13.24 shows the data on the Chinese foods from Table 
3.5. Analyze the Chinese food data and compare the results with the 
multivariate analyses of the snack food data in Section 13.2. 

Table 13.23 Data for Exercise 13.46 

Nation Primary Lower secondary Upper secondary Mean 

Germany 790 761 673 741 
Ireland 951 792 792 845 
Italy 748 612 612 657 
Norway 749 666 627 681 
Spain 900 900 630 810 
Sweden 624 576 528 576 
United States 1093 1042 1019 1051 

Mean 836 764 697 766 

Source: OECD, from The New York Times May 28, 1995, p. E7. 
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Table 13.24 Data for Exercise 13.47 

Percent 
calories Sodium 

Dish (number of cups) Calories Fat (grams) from fat (milligrams) 

Egg roll (1 roll) 190 11 52 463 

Moo shu pork (4) 1,228 64 47 2,593 

Kung Pao chicken (5) 1,620 76 42 2,608 

Sweet and sour pork (4) 1,613 71 39 818 

Beef with broccoli (4) 1,175 46 35 3,146 

General Tso's chicken (5) 1,597 59 33 3,148 

Orange (crispy) beef (4) 1,766 66 33 3,135 

Hot and sour soup (1) 112 4 32 1,088 

House 10 mein (5) 1,059 36 31 3,460 

House fried rice (4) 1,484 50 30 2,682 

Chicken chow me in (5) 1,005 32 28 2,446 

Hunan tofu (4) 907 28 27 2,316 

Shrimp in garlic sauce (3) 945 27 25 2,951 

Stir-fried vegetables (4) 746 19 22 2,153 

Szechuan shrimp (4) 927 19 18 2,457 

Source: Center for Science in the Public Interest, as given in The Philadelphia Inquirer, 
September 2, 1993, p. F7. 
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TATISTICS IN 

EVERYDAY LIFE 

Often, when we are blazing a trail through the woods in unfamiliar 
territory, we get so caught up in cutting through the surrounding bram­
bles that we lose track of the bigger forest in which we are (possibly) 
lost. Now that we have arrived at a clearing and have survived the chal­
lenge of finding our way, we can take stock of what we have accom­
plished and look forward to future prospects. 

In this chapter we have two major purposes. First we retrace our 
steps so that you can see how far you have come on the path to statistical 
literacy. Each chapter is a stepping stone to the next ones in terms of 
the skills and understandings acquired; you cannot read a statistics 
book backward, as you might a book of poetry. In Section 14.1, we 
review the statistical knowledge you have accumulated. These touch­
stones are here to mark your progress from what may have been a form 
of social illiteracy, in this case statistical, to a higher level of sophisti­
cation. Unlike many introductory textbook writers with grandiose 
dreams, we hope you've gained an appreciation for the work statisti­
cians do, but we do not expect you to become an ersatz expert in the 
field. The second portion of the chapter is designed to remind you of 
some of the problems inherent in developing research designs and how 
statistics can be used and abused in public forums. 
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Much of the work statisticians do focuses on whether one variable af­
fects another. We frame the discussion of this focus in terms of four 
questions: 

• 

• 

• 

• 

Question 1. Is there a relationship between the variables in the 
data? 

Question 2. How strong is the relationship between the variables? 

Question 3. Is there a relationship in the population? 

Question 4. Is the observed relationship a causal relationship? 
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Throughout the book, we develop skills necessary to answer these ques­
tions in a variety of situations. To lay the groundwork for answering 
the questions, the first half of the book points out many critical facets 
of the statistical numbers game. The second half of the book combines 
these concepts in various ways to illustrate several critical forms of data 
analysis. 

In Chapter 1, statistics is defined as the search for regularity in 
the face of randomness. Later chapters are anticipated by descriptions 
of the three parts of statistical work: data collection, data analysis, 
and making inferences from data. The important concept of a variable 
and its values measured on some set of elements is introduced, and 
the chapter ends with a discussion of the kinds of people who use 
statistics. 

The focus of Chapter 2 is data collection. The critical nature of 
getting a "good" sample is emphasized, and the notion of sampling 
error was introduced. Learning more than you wanted to about scurvy, 
you are presented with distinctions between observational and experi­
mental research. The data matrix and data file are also described. 

Displaying data in visual form is the central theme of Chapter 3. 
Throughout the text, we suggest that data be visualized before being 
analyzed. Tufte's requirements for graphical excellence-less is 
more-were introduced. 

In Chapter 4 data analysis is introduced via measures of central 
tendency-mean, median, and mode-and measures of variability, 
primarily the standard deviation and variance. Familiarity with the stan­
dard error of the mean and standard scores paves the way for various 
forms of more complex data analysis. The tension between losing in­
formation and gaining simplicity in data analyses is explicitly con­
fronted. 

Chapter 5 covers probabilities. The crucial standard, normal, or 
bell-shaped curve is introduced, along with its unique properties con­
cerning the proportion of the total area found under the curve within 
each standard deviation segment. These and similar curves form the 
basis of evaluating the significance of the collected statistics. Brief men­
tion is made of the four major theoretical variables used later in the 
book: z, t, chi-square, and F. What a p-value means and how people 
make decisions about data based on how large the probability of an 
event occurring by chance might be set the stage for hypothesis testing. 

Chapter 6, on drawing conclusions, distinguishes sample statistics 
from population parameters and the way in which we estimate param­
eters from sample statistics. Both the point and interval methods of 
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estimating parameters are discussed. The notion of the confidence in­
terval sets up ways of judging how good an estimate of a parameter is. 

Chapter 7 explores in greater detail how hypothesis testing meth­
ods are used to draw conclusions about population parameters from 
sample data. Topics discussed include the reasoning behind testing 
null hypotheses; the types of errors that can be made in deciding 
whether or not to reject the null hypothesis; how to find and use the 
p-value; how to find the proper degrees of freedom. These skills are 
applied to problems using the t-test or z-scores. Doing hypotheses test­
ing is compared with developing confidence intervals. In hypothesis 
testing we ask if the parameter could possibly be equal to a particular 
value; with confidence intervals we estimate the actual value of the 
parameter by getting a range of values that we hope contain the true 
value of the parameter. 

Chapter 8 emphasizes how we proceed to answer the four critical 
questions about statistical relationships. For question 1, we look at the 
patterns in the sample data. Ifwe find a relationship, then we ask ques­
tion 2. To answer question 2, we calculate the strength of the relation­
ship between the variables. To answer question 3, we set up a null 
hypothesis that there is no relationship between the variables and test 
the hypothesis to see if we can reject it or not. It is usually difficult to 
answer question 4 about causal relationships. A relationship (even a 
strong one) can exist between two variables without any causal con­
nection between the two variables. However, even if two variables are 
not causally related, it is possible to predict values of one variable if we 
know the values of the other. The strength of the relationship tells us 
the degree to which we are able to predict from one variable to the 
other, even though it tells us little or nothing about causality. 

In Chapter 9 the analysis of categorical variables using contingency 
tables and chi-square analysis is discussed. Ways of answering the four 
questions are demonstrated with various examples. Whether there is a 
relationship between variables in the "real world" requires hypothesis 
testing. To find the p-value for a sample, we transform the phi or V 
coefficient (a statistic used to assess the strength of the relationship 
between the variables) to a value of the chi-square variable. To find the 
p-value associated with a chi-square, we need to know the degrees of 
freedom associated with the contingency table. 

Correlation and regression analysis for metric variables are ex­
plored in Chapter 10. A scatterplot indicates whether there is a positive 
or negative relationship between the variables, and a correlation co­
efficient measures the strength of the relationship. Correlation coeffi-
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cients range between - 1 and + 1. Correlation coefficients tell us how 
well we can predict, but they are not used for assessing causation be­
tween two variables. A regression analysis involves drawing a line 
through the middle of the data points on the scatterplot. The slope of 
the line tells us how much one variable changes with the other variable. 
Regression equations produced by the slope and the intercept of the 
line can be used to predict the value of the dependent variable from a 
value of the independent variable. Regression analysis can be used to 
study the relationship between a categorical and a metric variable by 
constructing a dummy variable (e.g., 0, 1) for the categorical variable. 

In Chapter 11, analysis of variance, or anova, is introduced as a 
method of studying the effect of a categorical independent variable on 
a metric dependent variable. If the effect of the independent variable 
on the dependent variable is large relative to residual effects, then we 
can reject the null hypothesis of no relationship. A value of an F-vari­
able must be calculated, with its degrees of freedom, to find the jrvalue. 
Once we have found a statistically significant relationship, then we ex­
amine which means of the dependent variables are significantly 
different from one another, if there are more than two. The simple 
sign test is useful for the study of differences in paired data. 

Special methods for analyzing rank variables are highlighted in 
Chapter 12. Gamma, a statistic measuring the strength of relationship 
between two rank variables with words as rank labels, is introduced. As 
with other analyses, the relationship between the variables is tested 
using a null hypothesis of no relationship. The jrvalue is found by con­
verting gamma to z and using the tables for the normal bell curve. 
When the variables have numerical ranks, the strength of the relation­
ship is measured by the Spearman rank order correlation coefficient. 
This coefficient is similar to the Pearson correlation coefficient for 
metric variables. The statistical significance of the Spearman Ts is eval­
uated by converting it to a t-score and then finding the jrvalue. (As 
usual, correlations does not imply causation.) 

Chapter 13 gives a brief introduction to multivariate analysis, which 
is used to analyze the effects of several independent variables on a 
dependent variable in a single procedure. The independent variables 
can often be ranked in terms of impact on the dependent variable. In 
multivariate analysis, if a relationship between two variables disappears 
as a result of holding a third variable constant, then we presume that 
the original relationship was not a causal relationship. An average co­
efficient from a set of subgroups defined by the control variable(s) is 
known as a partial coefficient. The partial coefficient expresses the 
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overall relationship between two variables once the effect of a third or 
more variables has been taken out. Regression equations can be cre­
ated by combining the partial regression coefficients from each vari­
able in the analysis. If the independent variables are well-chosen, mul­
tiple regression is very powerful in predicting real-world outcomes of 
the dependent variable. 

Chapter 13 also reviews two-way analysis of variance, where two cat­
egorical variables are simultaneously evaluated for their independent 
and interactive effects on a metric dependent variable. As with multi­
variate regression analysis, the two-way anova improves the accuracy of 
the results over the one-way analysis by simultaneously comparing the 
variables with each other and thereby decreasing the effects of the 
residual variable. 

Issues of causation are discussed throughout the last six chapters. 
The safest statement to make about causation is a negative one: it is 
easier to show that something is not or may not be causal than that 
something is. Any presumed causal variable is always vulnerable to be­
ing challenged by a new control variable. 

APPROACH I G NUMBER WITH CARE 

Familiarity with statistical methods helps us evaluate and understand 
the results of a statistical analysis. Being statistically literate also helps 
us to know when to be skeptical about statistical claims. When we read 
that the unemployment percentage of the month is 6.7%, that women 
make $7,000 dollars in income less than men, or that Saggitarians have 
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more fun, we should be cautious about accepting these numbers as 
facts. We have learned enough to realize that many limitations, over­
sights, and errors can accumulate along the way to a final statistically 
based claim and that the results of a statistical study most likely are not 
equal to the exact, true values that would have been obtained in a 
statistically perfect world. 

We can characterize why an observed value of a sample statistic is 
not equal to the true value of the population parameter in a formal 
way: 

observed value = true value + non statistical mistakes + randomness 

The observed value on the left side of the equation may be a per­
centage, a difference between two means, or any other value computed 
from the data. On the right side of the equation are three items that 
control the observed value outcome. The true value is the parameter 
of our statistical dreams, an imaginary score that is unaffected by ran­
domness and mistakes. The factors of nonstatistical mistakes and ran­
domness are very different in character. Because statistics originated 
as a mathematical science that deals primarily with formulas and 
equations, non statistical mistakes have traditionally been viewed 
as outside the realm of problems with which a statistician must deal. 
It had been assumed that these are the concerns of people who work 
with methodological issues within a particular discipline. Psychologists, 
for example, have always been more interested than statisticians in 
how the race, gender, or age of an experimenter might affect the 
responses of a subject. Today, concerns about data collection are no 
longer outside the realm of the statistician's world. In today's quest for 
number-crunching, statisticians cannot avoid some of these "nonsta­
tistical" issues when they get involved with practical applications of their 
formulas and equations. Statisticians cannot bury their heads in the 
sand and let others wrestle with the prickly cacti in the methodology 
field. 

Randomness, on the other hand, is an expected impediment to the 
true value that statisticians endure with the knowledge that there is no 
way to avoid it. Randomness is a part of the statistical world, with a 
degree of mathematical respectability that other mistakes do not have. 
And statisticians, as you realize, have built elaborate defenses and cau­
tions against the inevitability of randomness. 
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By now it is clear that the results of any statistical analysis are based on 
(1) the data collected and (2) the statistical method used (Figure 14.1). 
This may be the most important message of this book. 

Suppose we see a headline in the newspaper which says that women 
make $7,000 less in income than men. This is the result of a statistical 
analysis. Where did the result come from? The $7,000 difference is not 
an objective fact of life that just exists out there; it is not a description 
of the world the way it really is just because we saw the fact in print. 
The result is based on the particular data that were collected and the 
particular methods that were used to analyze the data. With other data 
and other methods, a different result might have occurred. 

To understand a statistical result, we first need to know how the 
data were collected. Did the data come from a random sample of all 
adults, or did they come, say, from all tax returns filed with the Internal 
Revenue Service a certain year? Each separate mode of collection 
would influence the results. Besides knowing where the data came 
from, we need to know what was actually measured for each individual 
in the study. Do the income figures consist of earned income from 
jobs, or do they include interest and dividends from bonds and stocks 
as well? Some very wealthy people do not earn any of their income; 
would they be excluded from the analysis? 

When we know who was studied and how the income figures were 
determined, we need to know how the data were analyzed and there­
fore exactly what the result means. Does every man make $7,000 more 
than every woman? This cannot be the case because we know that in­
comes vary a great deal for both men and women. Maybe the $7,000 

Data 

Re ults 

Figure 14.1 Factors influencing the results of a statistical study 
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Data 
1. Sample 
2. Measurement 

Results 

Statistical method 
1. Choice of statistic 
2. Inference 

Figure 14.2 Detailed factors influencing the results of a statistical study 

difference is a difference between an average income for men and an 
average income for women. If that is so, did the average refer to the 
mean or the median or perhaps some other average? Whatever average 
was used, the researchers would have obtained another value for the 
difference if they had used another type of average; the difference be­
tween the mean income for men and the mean income for women is 
not the same as the difference between the corresponding medians. 

We also need to know if the difference is statistically significant. 
The amount of $7,000 sounds large and meaningful, but we cannot 
really tell how important it is until we know the results of a test of 
statistical inference of one kind or another. Perhaps it is a chance dif­
ference caused by randomness. 

With this background we can flesh out the boxes in Figure 14.1 as 
shown in Figure 14.2. This figure is a framework for examining any 
statistical results we are exposed to; we can use the figure to frame 
questions about a result before we accept it. The figure encourages us 
to question the source of the data and how the variables were mea­
sured. It also makes us question the statistical method that was used. 
What statistics were computed from the data, were there any controls 
for other variables, and would the result be statistically significant using 
different statistical tests? 

The figure can also be used to examine what might have gone 
wrong in a study that would have led to a questionable result. Because 
statistical results depend on both the data and the method, the results 
will be wrong if something is wrong with either the data or the method 
or both. If serious mistakes are made in the data collection or the 
method of analysis, then the results should not be accepted. 
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14.4 
--- --- ----- --- -- - - - --- - . ----- -- -- ---- --- ----

Statistics is a field in which many abuses are possible. Things can go 
wrong in every step, from the formulation of the original ideas for the 
problem to the printing of the final report. Most mistakes and misuses 
of statistics are not intentional, but results can be purposely skewed, 
using questionable methods. 

Dangers in the collection of data 

Collecting data is a two-step process. The first step consists of selecting 
the elements on which to measure our variables. This may mean a 
sample of elements from a larger population, or it may mean the entire 
population itself. The task consists of identifying the people who will 
be asked questions in a surveyor the elements that will be used in an 
experiment. Of course, the elements do not have to be people. We may 
be studying any type of unit, for example, animals, plots of land, light 
bulbs, baseball games, or countries. 

The second step is to actually collect the data. Sometimes we collect 
data on a specific group, and we want our results to apply only to that 
group. Having data on everyone in that group eliminates the selection 
process of the study and the problems that selection entails. If, for 
example, the owners of the National Football League want to find out 
how much each of the players is paid, they can make a list of all the 
players and their salaries in a given time period. The problem of in­
ference from sample to population is irrelevant; the data are the pop­
ulation, and instead of statistics the owners have parameters. 

Things change if we want the results to apply to elements beyond 
the elements on which we have collected data. If we want to generalize 
to a larger population using confidence intervals and/or hypothesis 
testing, then it is imperative that we select elements using proper sta­
tistical procedures. For experiments, this means random allocation of 
subjects to treatment and control groups. For surveys, this means draw­
ing a sample randomly. 

Even with a proper random sample, the results apply to the sample 
and only through the use of statistical inference to the population from 
which the sample was drawn. This fact can impose serious limits on 
studies. Suppose a pharmaceutical company sends sample products 
only to doctors who are stockholders in the company and later surveys 
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a sample of these doctors to see how many prefer the company prod­
ucts to competitors' products. The company should not claim that 
"76% of doctors in a survey prefer our products" without including 
information about the very specific population from which they drew 
their sample. The results do not apply to the population of all doctors, 
and the reporting should not imply that they do. 

We believe that researchers are aware of the need for randomness, 
but achieving it is another matter. In many studies, the condition 
of randomness is almost never truly satisfied. A majority of psycholog­
ical studies, for example, rely on college students for their research 
results. (Critics have suggested that modern psychology should be 
called the psychology of the college sophomore.) Are college students 
a random sample of the adult population or even the adolescent pop­
ulation? Not likely. Yet they are convenient, literate, cooperative, and 
interested subjects, and it is a great temptation to overlook the possible 
biases that can occur by using them. Due to pressures on scholars to 
publish as speedily and efficiently as possible, researchers may not be 
willing to pay the costs for a truly random sample of experimental 
subjects. 

Psychology is not the only field where subjects are recruited on the 
basis of their convenience or cooperation. Much of the research in 
medicine depends on the availability of patients in various hospitals 
connected with research facilities. Healthy people, people treated with 
unconventional health practices, or sick people who do not get medical 
attention are not included in the research plan. Thus, significant con­
trol groups are often not included in the research design. As a result, 
doctors do not know how often people with various medical conditions 
may be self-curing without medical treatment or can live with various 
conditions without medical intervention. The question of whether 
medical intervention may impede as well as extend life satisfaction and 
longevity is just beginning to be asked. In the case of prostate cancer, 
for example, the answer seems to be that often it is better to leave it 
alone than to do surgery. Yet until medical research plans are created 
that pay more attention to the drawing of random samples, these im­
portant questions cannot be answered. 

Despite the desirability of random sampling, from time to time we 
authors have applied hypothesis testing to data that we did not think 
were obtained from a random sample from some specific, underlying 
population. In those cases the null hypothesis states that the pattern 
in the data were created by chance alone, not that some parameter has 
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a given value. When such a null hypothesis is rejected, the conclusion 
is that some factor(s) other than chance are at work. This can be a 
helpful finding, even when a sample is imperfect. 

Special problems of survey research 

Surveys are also subject to serious problems of data collection. It is 
often very difficult and expensive to draw proper random samples. One 
difficulty is to properly define the population. Suppose you want to 
interview teenage mothers in Philadelphia. This sounds like a well­
defined group, but how do you create a list of all the young women 
belonging to this group as a population from which the sample could 
be drawn? Drawing a sample can also pose problems even if one pop­
ulation is known. If you watch the market research surveyors the next 
time they appear in your local mall, you will be able to see that they 
cannot persuade everyone who passes to participate. They may also 
avoid approaching shoppers who look harried, disheveled, or hostile. 
Statisticians can often help overcome this problem by compensating 
for underrepresented and overrepresented groups in a survey. Recent 
suggestions for improving the national census involved adjustments of 
the enumerations to compensate for the undercounting that occurs in 
certain areas and for certain types of people. The details of this precise 
operation are beyond the scope of the chapter, but it is comforting to 
know that surveys with problematic samples can be improved with care­
ful manipulations of the data. 

While many studies rely on data from a sample that is not collected 
in the proper random fashion , researchers usually do not intentionally 
set out to mislead the public. There are often just too many obstacles 
standing in the way of obtaining a random sample of respondents. 
Telephone surveys, relied on as the primary source of data collection 
by most survey groups today, must contend with the fact that millions 
of people do not have telephones. No amount of random dialing 
will find this last group, which composes about 6% of the total popu­
lation. 

Context of the suroey The data collection situation itself can have prob­
lems. In interview studies, for example, differences in responses have 
been found depending on whether the interviewer seems to be similar 
or different from the respondent in such aspects as gender, ethnicity, 
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and personal preferences. We know that who asks the question, and in 
what tone of voice also affects the answer people give. A smoker who 
knows that the surveyor also smokes will be freer to admit how much 
she enjoys smoking than if her questioner does not smoke, especially 
if he is a militant ex-smoker. The place of the interview is also impor­
tant. Respondents may be more willing to talk at length when they are 
in a comfortable and private setting and less so in shopping malls or 
on the telephone or on the street. Contextual effects cannot be over­
come totally and must be accepted as a facet of the data collection 
process. 

What is the questioo and when was it asked? Survey and experimental 
questions always have some effect on the respondent. Question for­
mulation and placement influence the results. A smoker who is asked, 
"How much would you say you enjoy smoking?" might answer more 
positively than one who is asked, 'Would you say you like or dislike 
smoking?" 

Questionnaires that assume the sample is informed about the sub­
ject get more definite answers than those that assume a lack of knowl­
edge. Yet the data gathered might lack validity. For example, in an­
swering the question "How do you think the U.S. Congress should react 
to the latest UN peace-keeping missions in the Middle East?" respon­
dents may feel forced to "fake" knowledge in a manner that would not 
occur if they were first told about the UN missions or were allowed to 
save face by saying they knew nothing of the situation. In terms of 
question placement, questions that ask about religious affiliation early 
in the interview format may create more religiously influenced re­
sponses than the same questions asked later. A study of college students 
asking about social life and religious beliefs indicated that when the 
subjects were first asked to specify their religious affiliation, they were 
much more conservative about their views than when they were asked 
later. (Source: W. W. Charters and T. M. Newcomb, "Some attitudinal effects of 
experimentally increased salience of a membership group, " in E. Maccoby, T. Newcomb, 
and E. Hartley (Eds.), Readings in Social Psychology, 3rd ed., New York: Holt, 
Rinehart & Winston, 1958.) When a question intentionally leads respon­
dents in a certain direction, then it is incorrect to analyze the answers 
statistically as if the question were expressed in a neutral fashion. (Of 
course, we might ask what a truly neutral question is.) These types of 
issues are more psychological and sociological than statistical, but they 
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are relevant when we try to understand the results of the statistical 
analysis of the data. 

»hat are the variables selected for analysis? To conduct a survey, the 
researchers must decide what questions to ask. The decisions depend 
to a great extent on the theoretical orientation of the study as well as 
other factors, such as the historical background of the study - the ques­
tions that have been asked before and in general the work of other 
researchers-what do other research groups do, the equipment that 
is available to test the hypotheses, and the traditions of the particular 
field. In creating statistical analyses for company annual reports, for 
example, comparison of quarterly sales results, operating profits, and 
market share, as well as comparisons with other companies, are typically 
made. However, these analyses do not typically assess such variables as 
what percentage of the products are new, how quickly a product has 
gone from research to development, or how long it takes to complete 
a business transaction. But today these variables are the lifeblood of a 
successful organization and perhaps should be measured and included 
in the report. Innovative companies such as Minnesota Mining and 
Manufacturing have made such variables a part of their stockholders' 
reports, part of their company's mission, and an important gauge of 
their company's success. 

How are results coded and stored? Problems do not stop with the asking. 
Once a question is answered, the words are coded in a category system 
designed by the researcher. The researcher might rank a response such 
as "I like to smoke about as much as the next person" as a 4 on a scale 
from 1 to 7 yet not know precisely what the respondent meant by the 
remark. Even if the respondent herself scores her smoking pleasure as 
a 4, the researcher still doesn't really know how the respondent feels 
about her smoking enjoyment or how to compare her 4 with another 
person's 4. To make matters worse, coded answers can be recorded 
erroneously by the data entry person creating the computer data file. 
What if this type of error happens 10% of the time? Fortunately, survey 
researchers recheck data entries on a fairly regular basis to try to catch 
these errors. 

In addition, the answers people give tell us only what they answered, 
not necessarily what they do. A study that asked about toothbrushing 
habits found that on the basis of what people said they did, the tooth­
paste consumption in this country should have been three times larger 
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"PC and Pixel." 1996, Washington Post Writers Group. Reprinted with permission. 

than the amount of toothpaste that is actually sold. The bottom line is 
that people exaggerate in order to make the most of the research sit­
uation, whatever that may mean to them. 

Misuses of analysis methods 

In Chapter 3 several possible problems in the creation of graphic dis­
plays were introduced. We saw, for example, that tables can be mis­
leading when the rows and columns are not chosen properly or when 
the numbers in the tables have too many decimal places. Statistical 
graphs can have too much useless information-chart junk-that ob­
scures the major messages of the data. Bar graphs with moving base­
lines can be misleading and hard to read. Bars in odd shapes, such as 
human figures or oil drums, may have the proper relative heights but 
incorrect areas and be misleading indeed. 

Computations must be done with correct quantities. As you recall, 
skewed distributions-such as income distributions-are best repre­
sented by medians, and it is a misuse of statistical methods to use 
means. Yet means are very often used because the public's conception 
of an average does not discriminate among mean, median, and mode, 
and statisticians can produce more sophisticated statistical results when 
the mean is used. 

In general, the results of a statistical analysis depend on the data 
that goes into the computations (which we have already discussed at 
length) and the statistical methods used to analyze them. For example, 
in regression analysis the strength of the relationship between two var­
iables is found using least squares methods. If absolute values instead 
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of squares are used, a different number results. Thus, the statistical 
method as well as data itself contributes to conclusions. 

Here a word about computer programs is in order. Because of the 
extremely helpful simplifying capacities of statistical computer pack­
ages, the computer will analyze any data it is given, right or wrong. 
There is no checks-and-balances mechanism to intervene between the 
automatic processing of the program and the user and suggest caution 
or warn of possible misuse of the data, so results can be computed that 
bear little resemblance to the actual information that exists in the data. 
One such "disaster" occurred when the research assistant of author 
Gergen incorrectly entered into the first nine columns of a data file 
the social security numbers of the subjects-totally false information 
for the first nine variables that gave wrong values to each of the sub­
sequent variables because they were out of place. The computer had 
no trouble crunching the numbers, although a careful reader was dis­
turbed to discover a reported mean age of 50, with a standard deviation 
of 15, for a college-age sample. To adapt a familiar computer saying, 
Wrong data in, wrong results out! 

Most standard statistical computer packages use formulas that as­
sume the data have been collected as simple random samples. Yet data 
for large, national studies are often collected using more complicated 
sampling methods and should not be analyzed using standard software 
packages. 

Misuses of statistical inference 

Both hypothesis testing and confidence intervals take into account that 
conclusions are sometimes wrong. As you recall, statistical conventions 
accept wrong conclusions 5 times or less out of 100 (P < 0.05) when 
we deal with correct null hypotheses. Strictly speaking, these errors are 
not misuses of statistics, but it is important to realize that we are wrong 
from time to time. The difference between statistics and some other 
forms of mathematics is that in statistics we expect to be wrong some­
times, and the method itself makes it possible to state how often we are 
wrong if we repeat the study many times over. Unlike other disciplines, 
statistics does not try to perfect itself: Statistics means never having to 
say you're certain. 

For example, a p-value of 0.05 admits that conclusions can be 
wrong 5 times in 100. In an analysis of 100 hypotheses in which all the 
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null hypotheses are correct, if 5 results are found to be significant 
(and the null hypotheses are rejected) then these results are due to 
chance alone. Of course, we cannot be definite about this either, 
because we do not know whether a particular null hypothesis is correct 
or not. There is no position from which we can snatch off the veil 
of uncertainty surrounding the hidden body called Truth. Even 
though we know how often we are wrong, we do not know when we are 
wrong. 

Misinterpretation of numbers 

The Mercedes-Benz company advertises that 97% of all their cars reg­
istered over the last 15 years are still in operation, and that this is more 
than any other comparable car make sold during that time period. How 
do we interpret 97%? 

A number tells a story just like a sentence of words. As with any 
story, we interpret the number in a context that makes sense to us. 
What is the story the car maker wants us to hear from this percentage? 
They want us to think that this is a high percentage and that most of 
the cars they have sold are still being driven, reflecting well on the 
quality and desirability of owning their cars. In the end, they want us 
to buy their cars. The advertisement does not say all this, but this is the 
story they want us to develop. 

From a statistical point of view things may not be quite as simple. 
First of all, how does the company get information of this kind? Each 
state has a motor vehicle registration office, and the company would 
have to contact all 50 offices for information on how many of their cars 
made in this 15-year period are registered in each state. Since the com­
pany knows how many cars it sold in the same time period, it can then 
find the percentage of cars sold that are still registered. Since the re­
cords are computerized, they would presumably be as accurate as the 
data entered into the computer. Yet the collection and retrieval process 
within each state is unique. It may not be so simple to get the registra­
tion information from each state or to combine the available data to 
create the summary statistic. 

Second, how can 97% of the cars sold in a 15-year period still be 
in operation? It makes a large difference when these cars were sold. If 
only a few cars were sold in the first 10 years and many more cars were 
sold within the last 5 years, then it would not be very surprising that 
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most of the cars were still on the road. If there had been a steady growth 
in the number of cars sold each year, then many of the cars would still 
be relatively new and most of them would still be driveable. If an av­
erage car is driven 12,000 miles a year and can be expected to last until 
it reaches 100,000 miles, then the average life of a car is about 8 years. 

Thus, without knowing more about the sales pattern over the 15-
year period, it is not at all clear how we should interpret this advertising 
claim. And claims like this one appear over and over again: we are told 
a few numbers with the intention of leading us to certain conclusions. 
But when we think critically about how good the numbers are and what 
alternative explanations might be, then what the numbers are telling 
us is no longer clear. 

TATISTICS AND BIG BROTHER 

Going beyond skepticism to a perhaps graver social concern, statistical 
knowledge has the power to regulate lives. A significant drawback of 
having a strong and unified system of statistical collection is that people 
can be easily put under surveillance by the government and private 
business interests. Big Brother can become a reality with the help of 
integrated and elaborate statistical networks. Historically, statistical 
analysis has been used by the elite to monitor citizens for the benefit 
of the state, especially for purposes of taxation and conscription. For 
Christians, the New Testament version of the birth of Jesus begins with 
a story of statistics: Joseph is required to go to Bethlehem to be enrolled 
for the census in the house of David. 

Traditionally, citizens in liberal democracies have been reluctant 
to allow governments centralized power to ascertain the status of in­
dividuals. Organizations such as the American Civil Liberties Union 
are dedicated to the preservation of individual rights against intrusive 
interests of the majority. In recent years this sensitivity seems to have 
weakened as people become accustomed to constant monitoring­
from bank teller machines that take one 's picture without permission, 
telephone companies that keep extremely detailed information on per­
sonal calls, stores that track customers' movements with hidden cam­
eras and one-way mirrors, and school records that give test perform­
ance profiles from kindergarten to graduate school to talk show hosts 
who elicit intimate and traumatic details of the personal lives of their 
guests before millions of viewers. 
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While statistics themselves are modest servants of intelligent users, 
they can become instruments of oppression when used by powerful 
leaders of important groups. Among these are government agencies 
such as the police and tax agencies, corporations, and insurers. Medical 
records, aptitude tests, and other inventories of personal skills, person­
ality traits, character assessments, and interests are forms of statistical 
measurement that can be stored and used in a variety of ways. Recog­
nition codes for security systems, such as fingerprints, retinal images, 
and voice patterns, are based on statistical evaluations and can be 
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stored and retrieved to track one's mobility. The type and frequency 
of long-distance calls one makes create a profile that alerts a statistically 
based system that will automatically cancel a credit card if the profile 
is violated. Criminal checks, including the analysis of blood, hair, se­
men, and skin, depend on statistical inputs and become part of per­
manent, accessible records. A governmental suggestion to do back­
ground checks on all airplane passengers in order to create terrorist 
profiles from statistical compilations of data is being raised as a way to 
combat sabotage. There is no end to the possibilities for intervention 
and surveillance of private lives, once statistically sophisticated mea­
sures are initiated. 

Part of the task of being an educated consumer of statistical 
information is to ask what the boundaries should be on the collection, 
storage, and promulgation of statistical information. Who should be 
able to find out what, and under what circumstances? And when and 
how should people be safeguarded against the excesses of a comput­
erized age, in which statistics can be used to regulate and control our 
lives. 

ENDING ON THE UPBEAT 

Bemoaning the dangers to society if statistical information is used to 
threaten personal freedom does not change anything. Knowing as 
much about the power and limits of statistics as we citizens can helps. 
Thus, we understand that we live in a seemingly random and chaotic 
world, but there are regularities in all that randomness, and statistical 
methods can be used to explore the regularities. We also know that we 
should be critical of the quality of the data used in statistical analyses, 
and that the results of any statistical analysis are influenced by the qual­
ity of the data as well as the particular methods used to analyze the 
data. 

We appreciate how statistically informed inferences can be much 
more comprehensive, logically consistent, and rigorously undogmatic 
in allowing conclusions than are the results of personal experience, 
focus group commentary, informal surveys, or personal logic (includ­
ing drawing conclusions on the basis of analogies, common sense, or 
principles of authority-based knowledge). While each of these forms of 
rhetoric has an important place in the advancement of persuasive ar-
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guments, each is flawed in ways that statistical methods and inferences 
are not. 

Statistical methods have made it possible to tap public opinion and 
help set public policy for the direction the country takes. Statistics has 
played an enormous role in the development of the many goods and 
services we purchase. New model cars, for example, do not break down 
nearly as often as earlier ones did because they are better made, thanks 
to the sophisticated statistical quality control that now exists. Statistics 
has had a great influence on the practice of medicine and the availa­
bility of pharmaceutical drugs to fight diseases. From glancing through 
the interpretation and analysis exercises at the end of each chapter we 
can see that statistics is used in a very wide field of applications. In 
short, any situation in which empirical data are collected has a need 
for statistical methods. Statistics is so integral to the well-being of society 
that it is impossible to imagine how we would function in a world 
without it. 

We leave you with a hope and conviction that you now are better 
able to make sound decisions about the value of the ever-increasing 
amount of statistical information you encounter. We think this is an 
important part of the education of a person who is entering a new 
millennium. 
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EXERCISES 

14.1 Find a statistical study reported in a newspaper, news magazine, 
journal, or book and comment on it in light of some of the points in 
this chapter. 

14.2 What are some of the major problems with the collection of data 
that cannot be easily overcome, even with careful and conscientious 
planning? 

14.3 a. Statistics has been described as an essential element in a well­
functioning state. Give a historical example. 

b. Are there ways in which statistics may contribute to a reduction 
in the level of social personal "goods"? Give a historical example. 

14.4 a. Why is it so crucial that people be literate in understanding 
statistical reports such as those found in newspapers and maga­
zines? 

b. Give an example from your daily life when a poor understand­
ing of statistical findings led to negative outcomes for people. 

14.5 Describe an instance where you believe advertisers or other me­
dia producers intentionally created untrustworthy statistical results. 

14.6 Examine the statistical reports and graphics that have been used 
to demonstrate a national, regional, or local trend of significance to 
the citizens of the area. Experiment with changing the character of 
these findings so as to significantly alter the meaning of the data for 
readers. If possible, do it in more than one way. Write a report showing 
how certain perspectives aiming for certain outcomes were privileged 
by the published data and how alterations in the presentations or in 
the statistical methods, data collection, and so on could have affected 
these outcomes. 

14.7 Create a research proposal involving an issue of some impor­
tance to yourself. (If it is possible within the limits of your course, 
actually collect some data, or generate a data set based on imaginary 
subjects. This exercise will also enhance the "hands-on" feeling that 
comes from working with "real" numbers.) Develop a rationale for why 
this is an important issue to study, hypotheses, and ways to test your 
hypotheses. Describe how you would select your sample, develop your 



research instruments, create the proper setting for your research, and 
consider the ethical and social issues surrounding your endeavor. De­
scribe how you would collect your data, how you would organize it, how 
you might present graphic representations of it, and how you would 
analyze the data statistically. 

Stat's all, folks! 
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Alte rnative hypothesis: Possible values of a parameter other than the 
one specified in the null hypothesis. 

Analysis o f variance: Statistical method for the analysis of the relation· 
ship between onc or more categorical independem variables and 
a metric dependent vAriable. 

Analysis of variance table: Table showing sums of squares, degrees of 
freedom, mean squares, f:ratios, and p-values. 

Average absolute deviatio n: Mean of the absolute values of the differ­
ences between the observation and the mean. 

Bar graph: Graph in which bars show the number of obsetvations for 
each value of the variable. 

Bino mial d istribution: Theoretical distribution for a dichotomy giving 
the probability of x OUlcomes of onc kind and n - x outcomes of 
the other kind. 

Box plo l: Plot showing the largest observation, the 75th and 25th per­
centile values defining a box, the 50th percentile value as a line 
through the box, and the smallest observation. 

Categorical V'ariable: Variable where twO values are different from each 
other. The values cannot be ordered, and we cannot say that one 
value is more of something than another value. 

Census: Process of collecting data on an entire population. 
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Central value: Single value of the variable used to represent all the 
observations. 

Chargunk: Extra elements of a graph that carry no information. 
Chi-square di tribution: Theoretical distribution used to make infer­

ence from sample data. 
Confidence int rval: Interval that hopefully contains the value of the 

population parameter. 
Constant: Quantity that takes on only one value, usually a parameter. 
Contingency table: Table of frequencies for two categorical variables. 
Control group: Randomly selected subset of elements in an experiment 

that are not manipulated in the way the experimental group is. 
Control variable: Additional variable brought in to see if two variables 

could be related causally. 
Correlation coefficiem r. Measure of the strength of the relationship 

between two metric variables. 
Critical value: One or more predetermined values of a sample statistic 

used to reject the null hypothesis if the observed statistic is more 
extreme than the predetermined value. 

Cram r's V: See v. 

Data analysis: Simplifying the data through graphs, tables, and com­
putations. 

Data file (data matrix): Table of data in which a column contains ob­
servations on a variable and a row contains observations on an 
element. 

Data density: Number of observations per square inch in a graph. 
Degree of freedom: Smallest number of observations needed to find 

all the observations. 
Dependent variable: Variable that is influenced by one of more inde­

pendent variables. 
Dumm variable: Variable with only two values, usually 0 and 1; used 

for categorical variables. 

Element: Unit on which we measure a variable. 
Error of type I: Error that comes from rejecting a true null hypothesis. 
Error of type II: Error that comes from not rejecting a false null hy-

pothesis. 
E timation: Trying to find the value of a parameter. 
Expected frequency: Frequency in each cell of a contingency table 

computed so that there is no relationship between the two cate­
gorical variables. 



Experimental data: Data collected when we control the values of some 
of the variables. 

Experimental design: Branch of statistical theory dealing with how to 
plan experiments and analyze the data from such experiments. 

F-di tribution: Theoretical distribution used to make inference from 
sample data. 

Fiftieth p rc ntile: Value of the variable that divides the data in two 
equal groups; all the observations in one group are less than this 
value and all the observations in the other group are larger than 
this value. 

Frequ ney distribution: Set of pairs in which the first entry is a value 
of the variable and the other is the number of observations with 
that value, often shown as a histogram. 

Gamma: Measure of association between two rank variables used when 
there are many observations of the same values of the variables. 

raphical excellence: Giving the viewer of a graph the greatest number 
of ideas in the shortest time with the least ink in the smallest space; 
communicating complex ideas in a graph with clarity, precision, 
and efficiency. 

Group urn of quare: Sum of squares measuring the effect of an in­
dependent variable in analysis of variance. 

Hisrogram: Graph showing the distribution of a metric variable in rec­
tangles whose areas represent the frequencies of the values. 

Hypothesis te ting: Trying to find out if a parameter has a specific 
value. 

Independent variable: Variable that precedes and is thought to influ­
ence the dependent variable. 

Inference: Generalizations about populations made from sample data. 
Intercept: Predicted value of a dependent variable when the indepen­

dent variable(s) equals zero. 
Interaction effect: Joint effect of two independent variables over and 

beyond their separate effects. 
Interquartile range: 75th percentile value of a variable minus the 25th 

percentile value. 
Interval e timate: See Confid nce imervai. 
Interval variable: See M tric variable. 

Lin plot: Line marked with values of a variable and each observation 
marked as a point above the line. 
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Logi tic regre sion: Regression analysis with a categorical variable as a 
dependent variable. 

Mean: Value of a variable when we add up all observations and divide 
the sum by the number of observations. 

Measure of a ociation: Number that measures on a scale from - 1 to 
+ 1 the strength of the relationship between two variables. 

Median: Value of a variable that divides all the observations into halves: 
one-half of the observations is smaller than this value, and the 
other half is larger. 

M lric variable: Variable with a unit of measurement; we can say how 
much more or less one value is than another value. 

Mode: Value of a variable that occurs most often. 
Multiple correlation coefficient R Correlation coefficient that mea­

sures the strength of the relationship between the observed and 
predicted values of a dependent variable. 

Multivariat anal i: Study of a dependent variable affected by two or 
more independent variables. 

Nominal variable: See Categorical variabl 
Nonr spon rror: Error that results when not everyone in the sample 

responded to parts or all of the survey. 
Normal di tribution: Particular unimodal, symmetrical theoretical dis­

tribution used extensively in the theory of statistics. 
Null hypothe i : Statement about the value of a parameter. 

Observational data: Data collected from observing the world as it is. 
Odds: Ratio of numbers in which the numerator is the number oftimes 

an event fails to take place and the denominator is the number of 
times the event does take place. 

One- oided (one-tailed) te t: Test where the null hypothesis is rejected 
when the sample statistic differs from the population parameter 
in one specific direction. 

p-value: Probability of observing the sample statistic or a more extreme 
sample statistic. 

Param t r: Constant such as a mean, variance, or regression coefficient 
characterizing one or more variables in a population; usually des­
ignated by a Greek letter. 

Partial co [ficiem: Coefficient measuring the relationship between two 
variables, controlling for one or more other variables. 



P r emil : Value of a variable that divides Ll}e observations into two 
groups so that a certain percentage of observations are smaller 
than this value . 

Phi: Measure of the strength of the relationship between two nominal 
variables, each with only two values. 

Pi graph: Circle graph showing the distribution ofa variable in "slices" 
sized according to the number of observations of each value. 

Poin t e. timate: Single numerical value as the estimate of a population 
parameter. 

Poi on di 'tribution: Theoretical distribution showing the probabilities 
for the number of occurrences of unlikely events. 

Population: Collection of all elements under study. 
Predi ted value: Value of the dependent variable predicted by the in­

dependent variable; in regression analysis, a point on the regres­
sion line. 

Probability: Long-run proportion of times that an event occurs. 

Random sample: Sample selected so that every element has a known 
(sometimes equal) probability of being included in the sample. 

Range: Difference between the largest and the smallest observation. 
Rank rder correlation: Coefficient used to measure the strength of 

the relationship between two rank variables using ranking num­
bers as their values. 

Rank variabl : Variable where the values are ordered, but we cannot 
measure how much more one value is than another. 

Ratio vari bl : See M tri ariabl. 
Regr s ion analy i : Statistical method for the analysis of relationships 

among metric variables. 
R gr ion 0 ffici nt: Slope of the regression line; shows how differ­

ent on the average are two values of the dependent variable when 
they differ by one unit on the independent variable . 

Regr s ion lin : Line summarizing the relationship between two metric 
variables. 

Regr ion urn of quare : Sum of squares measuring the effect of the 
independent variable. 

Re idllaI: Vertical distance from an observed point to a predicted point; 
measures the effect on the dependent variable of all variables 
other than the independent variable(s). 

Re idual mean quare: Variance of the residuals. 
Re idllal sum of quares: Sum of squares measuring the effect of the 

residual variable. 
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Re idual variable: Combined effect on the dependent variable of all 
variables other than the independent variable(s); the "everything 
else" variable. 

Respons error: Error in response resulting from something such as 
the formulation of the question, the placement of the question, 
on the effect of the interviewer on the respondent. 

Sample: Set of elements selected from a population . 
ampling error: How far from the true population value 19 of 20 dif­

ferent sample results will fall if many different samples were se­
lected. 

Scatterplot: Graph showing observations on two metric variables as 
points, one for each pair of observations. 

ign test: Test to see if there has been any change in a variable mea­
sured twice. 

Significance level: Predetermined probability of rejecting a null hy­
pothesis that is really true. 

Simple random sample: Sample collected in such a way that every el­
ement in the population has the same chance of being selected. 

Spurious relationship: Observed relationship between two variables 
that are not causally related. 

Standard d viation: Average distance of the observations from the 
mean; found as the square root of the variance, measured with the 
same unit as the variable itself. 

Standard error: Standard deviation of a statistic computed from many 
different samples. 

Standard s ore: Score obtained for an observation by subtracting the 
mean and dividing this difference by the standard deviation. 

tandard normal variable: Variable that has the normal distribu­
tion and where the mean equals 0 and the standard deviation 
equals 1. 

Stati tic: Number such as a mean, variance, or correlation coefficient 
computed from the observations in a sample. 

Statistical significance: When the sample result is such that the null 
hypothesis is rejected. 

Statistics: Set of concepts, rules, and methods for collecting, analyzing, 
and drawing conclusions from data; the search for regularities in 
the face of randomness. 

Stemplor.; Plot showing the larger part of an observation on the left 
side of a line and the smallest integer on the right side of the line. 



Table: Array for one or more variables showing frequencies, percent­
ages, or probabilities of the various observations of the variable(s). 

l-disuibulion: Unimodal, symmetrical theoretical distribution for the t­
variable, related to the normal distribution. 

olal urn of squares: Sum of squares measuring the effect of all vari­
ables. 

Two-wayanal sis of varianc : Study of the relationship between a metric 
dependent variable and two categorical independent variables. 

Tw()- ided (two-tailed) t t: Test in which the null hypothesis is rejected 
when the sample statistic is either much smaller or much larger 
than the value of the population parameter specified in the null 
hypothesis. 

Unbiased estimate: Estimate for which the mean of the sample esti­
mates from many samples equals the population parameter. 

\!: Statistic measuring the strength of the relationship between two cat­
egorical variables when one or both variables have three or more 
values. 

Values: Categories we assign to a given variable. 
Variable: Characteristic, trait, or attribute that can take on two or more 

values. 
Variance: Average squared deviation of the observations from the 

mean, measured with the square of the unit of the variable itself; 
the square of the standard deviation. 

Variation: Amount by which a set of observed values of a metric variable 
differ from each other. 
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0.00 

Statistical Table la Values of % for tail probabilities from 0.50 
to 0.01 

~ OJiO 0.40 0.25 0-15 0.10 0.05 0.. 0.010 0.005 0.001 0.0001 

& 0.00 0.25 0.67 1.04 1.2 1.64 1.96 2.33 2.58 :3.09 3.72 



Table 1 b Tail probabilities for values of % 

: .IHI .HI .U~ .113 .M .(lil .llIi .lIi 

IJ.(I 0.50 0 0.4960 0.4920 0.4761 0.4721 
0.1 0.4602 0.4-62 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4247 
0.2 0.4207 0.41 0.4 129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3 59 
11.3 0.3 21 O. 7 3 0.3745 0.3707 0.366 0.3632 0.3594 0.3557 0.3520 0.34 3 
11.-1 0.3446 0.340 0.3372 0.3336 0.3300 0.3264 0.322 0.3 192 0.3156 0.3121 
II.:; 0.3085 0.3050 0.3015 0.29 1 0.2946 0.29 12 0.2 77 0.2 43 0.2 10 0.2776 

0.11 0.274.~ 0.2709 0.2676 0.2643 0.2611 0.257 0.2546 0.2514 0._ 3 0.2451 
fl.i 0.2420 0.23 9 0.235 0.2327 0.2296 0.226 0.2236 0.2206 0.2177 0.214 
U. 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.194 0.1922 0.1 94 0.1 67 
II.Y 0.141 0.1 14 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611 
1.1) 0.15 7 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379 

1.I 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.12 0 0.1210 0.1190 0.1170 
1.:1 
1.:\ 

1.·1 
1.5 

0.1131 0.1112 0.1093 0.1075 0.1056 0.103 0.1020 0.1003 0.09 5 
O. 51 0.0934 0.091 0.0901 0.0 5 0.086 0.0 53 0.083 0.0 23 
0.0793 0.077 0.0764 0.0749 0.0735 0.0721 0.0708 0.0694 0.0 I 
0.0655 0.0643 O. 630 0.061 0.060 0.0594 0.05 2 0.0571 0.0559 

1.6 0.054 0.0537 0.0526 0.0516 0.0505 0.0495 0.04 5 0.0475 0.0465 0.0455 
1.7 0.0446 0.0436 0.0427 0.041 0.0409 0.040 1 0.0392 0.0 4 0.0375 0.0367 
I. 0.0359 0.0351 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.030 I 0.0294 
1.9 0.02 7 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.02 0.0239 0.0233 
2.U 0.022 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.01 0.01 3 

2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.015 0.OJ54 0.01 0 0.0146 0.0143 
2.2 0.0139 0.0136 0.0132 O. 129 0.012- 0.0122 0.0119 0.0116 0.0113 0.0110 
2.:\ 0.0107 0.0104 0.0102 O. 099 0.0096 0.0094 O. I 0.00 7 0.00 4 
2. I 0.00 2 0.00 0 0.007 0.0075 0.0073 0.0071 0.0069 0.0066 0.0064 
2.5 0.0062 0.0060 0.0059 0.0057 0.0055 O. 54 O. 52 O. 49 O. 48 

2.1; 0.0047 0.0045 0.0044 0.0043 0.0041 0.004 O. 39 0.003 0.0037 0.0036 
2. i 0.0035 0.0034 0.0033 0.0032 O.003l 0.0030 0.0029 0.002 0.0027 0.0026 
2.1'1 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.002 1 0.0020 0.0019 
2.!1 0.0 19 0.001 0.001 0.0017 0.0016 0.0016 0.0015 O. 15 O. 14 O. 14 
:\'II 0.0013 0.0013 0.0013 0.0012 0.0012 0.001i 0.0011 0.0011 0.0010 0.0010 

:u 0.0010 0.0 0.0009 0.0 0.0008 0.000 0.000 0.000 0.0007 0.0007 
:t~ 0.0007 0.0007 0.0006 0.0 6 0.0006 0.0006 0.0 
:U 0.0005 0.0005 0.0005 0.0004 O. 04 O. 4 0.0 
3. I 0.0 3 0.0003 0.0003 0.0003 0.0003 0.0003 0.0 
3.3 O. 02 0.0002 0.0002 0.0 2 O. 02 0.0002 

0.0005 0.0005 0.0005 
0.0004 0.0004 0.0003 
0.0003 0.0003 0.0002 
0.0002 0.0002 0.0002 

:W 0.0002 0.0002 0.0001 0.0001 0.0001 0.000 1 O. 01 0.0 I 0.000) 0.0001 
3.7 0.000 1 0.0001 0.0001 O. 0.0001 O. 0.000 ) 0.0 01 0.000 1 0.0001 
:t 0.000) 0.0001 0.00(11 O. I 0.0001 0.000 1 0.0001 0.0001 0.000 1 0.0001 
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Statistical Table 2 Values of t for tail probabilities from 0.50 
to 0.001 

D gr c Prnbabilil)' 
ffrccdom 0.5U OAO 0.25 o.r, (I.JI) 0.05 0.()25 O.UW Cl.O05 (1.001 

O. 0.32 1.00 1.96 3.0 6.31 12.71 31. 2 
2 0.00 0.29 O. 2 1.39 1. 2.92 4.30 6.96 9.92 
3 0.00 0.2 0.76 1.25 1.64 2.35 3.1 4.54 5. 4 10.21 
4 0.00 0.27 0.74 1.19 1.53 2.13 2.7 3,75 4.60 7,17 
5 0.00 0.27 0.73 1.16 1.4 2.02 2.57 3.36 4.03 5. 9 

fi 
7 
N 

9 
10 

II 
12 
13 
11 
15 

16 
17 
1 
19 
20 

21 
22 
23 

26 
27 
2 

29 
30 

:~2 

34 
:~6 

3 
JQ 

0.00 0.26 0.72 1.1 3 1.44 
0.00 0.26 0.71 1.12 1.41 
0.00 0.26 0.71 1.1 .1 1.40 
0.00 0.26 0.70 1.l0 1.3 
0.00 0.26 0.70 1.09 1.37 

0.00 0.26 0.70 
0.00 0.26 0.70 
0.00 0.26 0.69 
0.00 0.26 0.69 
0.00 0.26 0.69 

0.00 0.26 0.69 
0.00 0.26 0.69 
0.00 0.26 0.69 
0.00 0.26 0.69 
0.00 0.26 0.69 

0.00 0.26 0.69 
0.00 0.26 0.69 
0.00 0.26 0.69 
0.0 0.26 0.68 
0.00 0.26 O. 

0.00 0.26 O. 
0.00 0.26 0,68 
O. 0.26 O. 
0.00 0.26 
0.00 0.26 

0.00 0.26 0.68 
0.00 0.26 O. 
O. 0.26 O. 
O. 0.26 O. 
0.00 0.26 O. 

1.09 1.36 1. 0 
1.36 1.7 
1.35 1.77 
1.35 1.76 

1.07 1.34 1.75 

1.07 1.34 1.75 

1.07 1.33 I. 74 
1.07 1.33 1.73 
1.07 1.33 1.73 
1.06 1.33 1. 72 

1.06 1.32 I. 72 
1.06 1.32 1.72 
1.06 1.32 1. 71 
1.06 1.32 1.71 
1.06 1.32 1.71 

1.06 1.31 1.71 
1.06 1.3l 1.70 
1.06 1.3 I 1.70 
1.06 l.31 1.70 
1.05 1.31 1.70 

1.05 1.30 l.69 
1.05 1.30 1.69 
1.05 1.3 1.69 
1.0 1.30 1.69 
1.05 1.30 1.68 

2.45 
2.36 
2.31 
2.26 
2.23 

2.20 
2. 1 
2.16 
2.14 
2.13 

2.12 
2. 11 
2.10 
2.09 
2.09 

2.0 
2.07 
2.07 
2.06 
2.06 

2.06 
2.05 
2.05 
2.05 
2.04 

2.04 
2.03 
2.03 
2.02 
2.02 

3.14 3.71 
3.00 3.50 
2.90 3.36 
2. 2 3.25 
2.76 3.17 

2.72 
2. 
2.65 
2.62 
2.60 

2.5 
2.57 
2.55 
2.54 
2.53 

2.52 
2.51 
2.50 
2.49 
2.49 

2.48 
2.47 
2.47 
2,46 
2.46 

2.45 
2.44 
2,43 
2.43 
2.42 

3.11 
3.05 
3.01 
2.9 
2.95 

2.92 
2.90 
2. 

2.83 
2.82 
2. 1 
2. 
2.79 

2.78 
2.77 
2.76 
2.76 
2.75 

2.74 
2.73 
2.72 
2.71 
2.70 

5.21 
4.7 
4.50 
4.30 
4.14 

4.02 
3.93 
3. 5 
3.79 
3.73 

3.69 
3.65 
3.61 
3.5 
3.55 

3.53 
3.50 
3.4 
3.47 
3.45 

3.43 
3.42 
3.41 
3,40 
3.39 

3.37 
3.35 
3.33 
3.32 
3.31 
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Statistical Table 2 Values of t for tail probabilities from 0.50 
to 0.001 (continued) 

DCh'TCCS Probabilil\ 
01 freedom (1.5(1 (1 .. 1() 0.25 0. 15 0.1Il 0.05 0.025 O.OIC) 0.005 1l.0OI 

12 0.00 0.25 O. 1.05 1.30 I. 2.02 2.42 2.70 3.30 
4-1 0.00 0.25 0.68 1.05 1.30 2.02 2.4 1 2.69 3.29 
46 0.00 0.25 O .• 1.05 1.30 2.02 2.41 2.69 3.2 
18 0.00 0.25 O. 1.05 1.30 2.01 2.41 2. 3.27 
50 0.00 0.25 1.05 1.30 2.01 2.40 2. 3.26 

55 0.00 0.25 1.05 1.30 L.67 2.00 2.40 2.67 3.25 
fill 0.00 0.25 1.05 1.30 1.67 2.00 2.39 2.66 3.23 
65 O. 0.25 1.04 1.29 1.67 2.00 2.39 2.65 3.22 
7(J 0.00 0.25 0.68 1.04 1.29 1.67 1.99 2.3 2.65 3.21 
75 0.00 0.25 0.68 1.04 1.29 1.67 1.99 2.3 2.64 3.20 

0 0.00 0.25 O. 1.04 1.29 1.66 1.99 2.37 2.64 3.20 
91l 0.00 0.25 0.68 1.04 1.29 1.66 1.99 2.37 2.63 3.1 

100 0.00 0.25 O. 1.04 1.29 1.66 1.9 2.36 2.63 3.17 
2(10 0.00 0.25 O. 1.04 1.29 1.65 1.97 2.35 2.60 3. 13 
500 0.00 0.25 0.67 1.04 1.2 1.65 1.96 2.33 2.59 3.11 

InlinilY 0.00 0.25 0.67 1.04 1.2 1.64 1.96 2.33 2.5 3.09 
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0.00 
'!<)uare 

Statistical Table 3 Values of chi-square for tail probabilities 
from 0.50 to 0.001 

negrl"{' Probabilil) 
orln'edom 0.50 0.10 0.25 0.1:; (UII 0.05 O.!125 O.OlO 0.005 0.001 

0.45 0.71 1.32 2.07 2.71 3.84 5.02 6.63 7. 
1.39 I. 3 2.77 3.79 4.61 5.99 7.3 .21 
2.37 2.95 4.1 J 5.32 6.25 7. 1 9.35 11.34 
3.36 4.04 5.39 6.74 7.7 9.49 11.1 4 13.2 

5 4.35 5.13 6.63 .12 9.24 11.07 12. 3 15.09 16.75 20. 2 

6 5.35 6.21 7. 4 9.45 10.64 12.59 14,45 16. 1 1 .55 22.46 
7 6.35 7.2 9.04 10.75 12.02 14.07 16.0 1 18.4 20.2 24.32 
R 7.34 .35 10.22 12.03 13.36 15.51 17.53 20.09 21.95 26. 12 
!l 8.34 9.4 1 11 .39 13.29 14. 16.92 19.02 21.67 23.59 27. 

10 9.34 10.47 12.55 14."3 15.99 1 .31 20.4 23.21 25.1 9 29.59 

II 10.34 11.53 13.70 15.77 17.2 19. 2 1.92 24.72 26.76 31.2 
12 11.34 12.5 14. 5 16.99 1 .55 21.03 23.34 26.22 2 .30 32.9 1 
I:l 12.34 13.64 15.9 18.20 19. I 22.36 24.74 27.69 29.82 34.53 
1 t 13.34 14.69 17.12 19.41 21.06 23. 26. 12 29.14 31.32 .12 
15 14.34 15.73 1 .25 20.60 22.31 25.00 27.49 30.5 32.80 37.70 

16 15.34 16.7 19.37 21.79 23.51 26.30 2. 5 32.00 34.27 39.25 
17 16.34 17.82 20.49 22.9 24.77 27.59 30.19 33.41 35.72 40.79 

17.34 18. 7 21.60 24. 16 25.99 2. 7 31.53 34. I 37. 16 42.3 1 
III 1 .34 1 .91 22.72 25.33 27.20 30. 14 32. 5 36. 19 .5 43. 2 
20 19.34 20.95 23. 3 26.50 2,41 31.41 34. 17 37.57 40.00 45.31 

21 20.34 21.99 24.93 27.66 29.62 32.67 3 .93 41.40 46. 0 
22 21.34 23.03 26.04 2. 2 30. I 33.92 40.29 42. 0 4 .27 
2:l 22.34 24.07 27. 14 29.98 32.0 1 35.17 1.64 44. 1 49.73 
21 23.34 25.1128.24 31.l3 33.20 36.42 39.3642.9 45.5651.1 
25 24.34 26.14 29.34 32.2 34.3 37.65 40.65 4.3 1 46.93 52.62 

26 25.34 27.1 3M3 3,43 35.56 3. 9 41.92 45.64 4 .29 54.05 
27 26.34 2 .21 31.53 34.57 36.74 40.11 43. 19 46. 49.64 55,4 
28 27.34 29.25 32.62 35.71 37.92 4 1.34 44.46 4.2 50.9 56. 9 
29 2 .34 0.2 33.71 36. 5 39.09 42.56 45.72 49.59 52.34 5.30 
!lO 29.34 3 1.32 34. 0 37.99 40.26 43.77 46.9 :-0.89 53.67 59.70 

32 31.34 33.3 36.97 40.26 42.5 46. 19 49.4 53,49 56.33 62.49 
3t 33.34 35.44 39.1 42.5 1 44.90 4.60 -1.97 58.96 65.25 
36 35.34 37.50 41.30 44.76 47.2 1 51.00 54.44 61.5 67.99 
3M 37.34 39.56 43.46 47.0 1 49.51 53.3 56.90 64.1 70.70 
10 39.34 41.62 45.62 49.24 51.81 55.76 59.34 63.69 66.77 73.40 



Statistical Table 3 Values of chi-square for tail probabilities 
from 0.50 to 0.001 (continued) 

Ocgr (., Probabilit\ 
01 Cll'('dum fl.50 O. J() 11.25 11.15 U.IO U.U5 0.U25 11.0 ((J U.005 (1.1111) 

12 41.34 43.68 47.77 51.47 54.09 66.2 1 69.34 76.0 

41 43.34 45.73 49.91 53.70 56.37 .71 71. 9 7 .75 

41; 45.34 7.79 52.06 55.92 5 .64 62. 3 66.62 71.20 1.40 

IN 47.34 49. 4 54.20 5 .14 60.91 65.17 69.02 73.68 4.0-1 

511 49.33 1. 9 56.33 60.35 63.17 67.50 71.42 76.15 6.66 

For values of chi-square with more degrees of freedom than this 
table shows, use the fact that the quantity 

chi-square - JdI. 
=z 

.J2 dJ. 

approximately follows the standard normal distribution. 
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Statistical Table 4 Values of Ffor tail probabilities from 0.10 
to 0.001 

Denominator freedom for the num ralor 

cLio 

2 

5 

7 

Probilbilil) 

0 .100 

0.050 
11.U2;) 

lI.n III 
(Will 

11.100 
(l.O:'1I 

U.02:' 
0.0 III 
(1.0111 

11.1011 
o.usn 
I/.o~n 

0.010 
n.oo 1 

(J.WI) 

0.050 

0 .025 

(LOIO 
(UlOI 

(UOO 
O.O~() 

IJ.U25 
11.010 
O.(){II 

0.100 

IJ.U50 
(J.(125 

1I.0W 

0.001 

1).100 

U.U51/ 

0.025 

U. IU 

0.001 

39.6 
161.45 

647.79 

4,052.2 

405,2 4 

.53 
18.51 
3 .5 1 

9 .50 

99 .50 

5.54 

10.13 

17.44 

34.12 

167.03 

4.54 

7.7 1 

12.22 

21.20 
74.14 

4.06 

6.61 

10.01 
16.26 
47.1 

3.7 
5.99 

. J 
13.75 

35.5 1 

3.59 

5.59 

.07 

12.25 

29.25 

49.50 
199.50 

799.50 
4,999.5 

500, 0 

9.00 
19.00 

39.00 

99.00 
999.00 

5.46 

9.55 
16.04 

30. 2 

1 .50 

4.32 

6.94 

10.65 

1 .00 
61.25 

3.7 

5.7 
8,43 

13.27 

37.12 

3.46 

5.14 
7.26 

10.92 

27.00 

3.26 

4.74 

6.54 

9.55 

21.69 

53.59 
215.71 

64.16 
5,403.4 

540,379 

9.16 

19.16 
39.17 
99.17 

999.17 

5.39 

9.2 

15.44 

29.46 
141.11 

4.19 

6.59 
9.9 

16.69 
56.1 

3.62 
5.41 

7.76 

12.06 
33.20 

3.2 
4.76 

6.60 
9.7 

23.70 

3.07 

4.35 

5. 9 
8,45 

1 .77 

55. 3 
224.5 

.5 

5,624.6 

562,5 0 

9.24 
19.25 

39.25 

99.25 
999.25 

5.34 
9.12 

15.10 

2 .71 
137.10 

4.11 

6.39 

9.60 
15.9 
53.44 

3.52 
5.19 

7.39 

11.39 

3 1.09 

3.1 

4.53 
6.23 

9.15 
21.92 

2.96 

4.12 

5.52 

7.85 
17.20 

57.24 
230.16 

921. 5 
5,763.6 

576,405 

9.29 

19.30 
39.30 

99.30 
999.30 

5.31 

9.01 
]4. 

2 .24 
134.5 

4.05 

6.26 
9.36 

15.52 
51.71 

3.45 

5.05 
7.15 

10.97 

29.75 

3.11 

4.39 
5.99 

.75 

20. 0 

2. 
3.97 

5.29 

7.46 

16.21 

233.99 

937.11 
5,59.0 
• 5,937 

9.33 

19.33 
39.33 

99.33 
999.33 

5.2 

.94 
14.73 

27.91 

132. 5 

4.01 

6.16 
9.20 

15.21 
50.53 

3.40 
4.95 

6.9 

10.67 
2 . 3 

3.05 

4.2 
5. 2 

.47 

20.03 

2. 3 
3. 7 
5.12 

7.19 

15.52 

236.77 

94 .22 
5,92 .4 

592, 73 

9.35 
19.35 

39.36 
99.36 

999.36 

5.27 

8. 9 
14.62 

27.67 

131.5 

3.9 
6.09 

9.07 

14.9 
49.66 

3.37 
4. 

6. 5 
10,46 

2 .16 

3.01 
4.21 

5.70 
.26 

19.46 

2.7 

3.79 

4.99 

6.99 
15.02 

_3 . 

956.66 
·,9 1.1 

59 ,144 

9.37 
19.37 

39.37 
99.37 

999.37 

5.25 

. 5 
14.54 

27.49 

130.65 

3.9-

6.04 

.9 

1<1. 0 
49.00 

3.34 
4. 2 
6.76 

10.29 

27.65 

2.9 
4.15 

5.60 
.10 

19.03 

2.75 

3.73 

4.90 

6. 4 
14.63 

2<10.54 

963.2 

6,022.5 

602,2 

9.3 
19.3 

39.39 
99.39 

999.39 

5.24 

. I 
14.47 

27.35 
129. 6 

3.94 
6.00 

.90 
14.66 
4 ,47 

3.32 
4.77 

6.68 

10.16 
27.24 

2.96 
4.10 

5.52 
7.9 

I .6 

2.72 

3. 
4.82 

6.72 

14.33 



10 

60.19 
241. 

968.63 
6,055. 

605,621 

9.39 
19.'10 
39.40 

99.40 
999.40 

5.23 

.79 

14.42 
27.23 

129.25 

3.92 

5.96 

.4 
14.55 

4 .05 

3.30 
4.74 

6.62 
10.05 

26.92 

2.94 

4.06 

5.'16 
7. 7 

I AI 

2.70 

3.64 
4.76 
6.62 

14.0 

12 

60.71 
243.91 

976.71 
6,106.3 

610, 

9041 
19.41 
39.41 

99.42 

999.42 

5.22 

.74 

14.34 
27.05 

12 .32 

3.90 

5.91 

.75 
14.37 
47.41 

3.27 
4. 

6.52 

9. 9 
26.42 

2.90 
4.00 

5.37 

7.72 
17.99 

2.67 
3.57 

4.67 

6.47 
13.71 

15 

61.22 
245.95 

9 4. 7 
6,157.3 

615,764 

9.42 
19.43 

39.43 

9 .43 
999.43 

5.20 

.70 

14.25 
26. 7 

127.37 

3. 7 
5. 6 

.66 
14.20 
46.76 

3.24 
4.62 

6.43 

9.72 
25.91 

2. 7 
3.94 

5.27 

7.56 

17.56 

2.63 

3.51 
4.57 

6.31 
13.32 

Degree of freedom for the numeralor 

20 

61.74 

24 .01 

993.10 
6,20 .7 

620,90 

9.44 
19.45 
39.45 

99.45 
999.45 

5.18 

.66 
14.17 

26.69 
126.42 

3. 4 

5. 0 
.56 

14.02 
46.10 

3.2J 

4.56 

6.3 

9.55 
25.39 

2. 4 
3. 7 
5. 17 

7.'10 
17. 12 

2.59 
3.44 
4.47 

6.16 
12.93 

30 

62.26 
250.10 

1,001.4 
6,260.6 

626,099 

9.46 
19.46 

39.46 

99.47 
999.47 

5.17 

.62 

14.0 
26.50 

L5.45 

3. 2 
5.75 

8.46 
1 . 

45.43 

.17 

4.50 

6.23 

9.3 
24.87 

2. 0 
3. 1 
5.07 

7.23 
16.67 

2.56 

3.3 
4.36 
5.99 

12.53 

40 

62.53 
251.14 

1,005.6 
6,2 6. 

62 ,712 

9.47 
19.47 

39.47 

99.'17 
999.47 

5. 16 

.59 

14.04 
26.41 

IA.96 

3. 0 
5.72 

.41 

13.75 

45. 

3. 1 
4.46 

6.1 

9.29 
24.60 

2.7 

3.77 

5.0 1 

7.14 
16.44 

2.54 
3.34 

4.31 
5.91 

12.33 

50 

62.69 

251.77 
1,00 .1 

6,302.5 
630,2 5 

9.47 

1904 
39. 

99. 
999. 

5.15 

.5 
14.01 
26.35 

124.66 

3.0 

5.70 

.3 
13.69 
44. 

3.15 
4.44 

6.14 

9.24 

24.44 

2.77 

3.75 

4.9 
7.09 

16.31 

2.52 
3.32 
4.2 

5. 6 
12.20 
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62.90 
252.62 
I ,OLl.5 

6,323.6 
632,390 

999.49 

5.15 

.56 
13.97 
26.2 

124.27 

3.7 

5. 
.34 

13.61 
44.61 

3.13 

4.42 

6.1 

9.17 

24.22 

2.75 

3.73 

4.94 
7.02 

16.12 

2.51 

3.29 
.23 

5.79 
12.04 

120 

63.06 
253.25 

1,0 14.0 

6,339.4 
633,972 

9.4 

19.49 

39.49 
99.49 

9 ,49 

5.14 

.55 
13.95 

26.22 

123.97 

3.7 

5.66 
.31 

13.56 
44,40 

3. 12 

4.40 

6.07 

9.11 
24.06 

2.74 

3.70 
4.90 

6.97 
15.9 

2.49 
3.27 

4.20 

5.74 

11.91 

1000 

63.30 

254.19 
1,0\7. 

6,362.7 
636,301 

9.49 

19.49 
39.50 

99.50 
.50 

5.13 

.53 
13.9\ 

26.14 

123.53 

3.76 

5.63 
.26 

13.47 

44.09 

3.11 

4.37 

6.02 

9.03 
23. 2 

2.72 

3.67 
4. 6 
6.9 

15.77 

2.47 

3.23 

4.15 

5.66 
11.72 
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Denornin tor 

(1.1. 

C) 

W 

II 

12 

14 

Probabilit\ 

0.1110 
1I.1l511 
IU)25 

(LOIO 

0.001 

0.1011 

1l.0SIl 

0.112:1 
0.0111 
(U)1l1 

(J.lnn 

II.O~,O 

O.02} 

IUlIO 

(1.1)11 I 

II. lUll 

1I.1l:;" 
II.U:!5 

Il.O III 

O.UUI 

luno 
(1.Il51l 

11.1'25 

O.tllll 
(1.1101 

II.Wn 
(J.W,,, 

0.025 

O.UIO 
lUlU I 

(1.1011 

1l.05n 
(1.025 

Il.UW 

11.1101 

Statistical Table 4 Values of F for tail probabilities from 0.10 
to 0.001 (continued) 

3.46 
5.32 
7.57 

11.26 
25.41 

3.36 
5.12 
7.21 

10.56 
22. 6 

3.29 
4.96 
6.94 

10.04 
21.04 

3.23 
4. 
6.72 

9.65 
19.69 

3. 1 
4.75 
6.55 
9.33 

1 .64 

3.14 

4.67 
6.41 
9.07 

17. 2 

3.10 
4.60 
6.30 
.6 

17.14 

3. 11 
4.46 
6.06 

.65 
1 .49 

3.01 
4.26 
5.71 

.02 
16.39 

2.92 
4. 10 

5.46 
7.56 

14.91 

2. 6 
3.9 
5.26 
7.21 

13. 1 

2. 1 
3. 9 
5. 10 
6.93 

12.97 

2.76 

3.81 
4.97 
6.70 

12.3 1 

2.73 
3.74 
4. 6 
6.5 1 

11.7 

2.92 
4.07 
5.42 
7.59 

15. 3 

2. 1 
3. 6 
5.0 
6.9 

13.90 

2.73 
3.71 
4. 3 
6.55 

12.55 

2.66 
3.59 
4.63 
6.22 

11.56 

2.61 
3,49 

4.47 
5.95 

10. 0 

2.56 

3.41 

4.35 
5.74 

10.2 1 

2.52 
3.34 
4.24 
5.56 
9.73 

2. 1 
3. 
5.05 
7.01 

14.39 

2.6 
3.63 
4.72 
6.42 

12.56 

2.61 
3.4 
4.47 
5.99 

11.2 

2.54 
3. 6 
4.2 
5.67 

10.35 

2.4 
3.26 
4. 12 
5.41 
9.63 

2.43 

3. 1 
4.00 
5.21 
9.07 

2.39 
3. 11 
3.9 
5.04 

.62 

2.73 
3. 9 
4. 2 
6.63 

13.4 

2.61 

3.4 
4.4 
6.06 

11.71 

2.52 
3.33 
4.24 
5.64 

LOA 

2.45 
3.20 
4.04 
5.32 

.5 

2.39 
3.11 
3. 9 
5.0 
.9 

2.35 
3.03 
3.77 
4.86 

.35 

2.31 
2.9 
3.66 
4.69 
7.92 

2.67 
3. 
4.65 
6.37 

12. 6 

2.55 
3.37 
4.32 
5. 0 

11.13 

2.46 
3.22 
4.07 
5.39 

9.93 

2.39 
3.09 
3. 
5.07 
9.05 

2.33 
3.0 
3.73 
4.2 
.38 

2.28 
2.92 
3.60 
4.62 
7. 6 

2.24 
2. 5 
3.50 
4.46 
7.44 

7 

2.62 
3.50 
4.53 
6.1 

12.40 

2.51 
3.29 
4.20 
5.61 

10.70 

2.41 
3.14 
3.95 
5.20 
9.52 

2.34 
3.01 
3.76 
4. 9 

.66 

2.2 
2.91 
3.61 
4.64 

.00 

2.23 

2. 3 
3.48 
4.44 
7.49 

2.19 
2.76 
3.3 
4.2 
7.0 

2.59 
3.44 
4.43 
6.03 

12.05 

2.47 
3.23 
4.10 
5,47 

10.37 

2.3 
3.07 
3.85 
5.06 
9.20 

2.30 
2.95 
3.66 
4.74 

.35 

2.24 
2. 5 
3.51 
4.50 
7.71 

2.20 

2.77 
3.39 
4.30 
7.21 

2.15 
2.70 
3.29 

2.56 
3.39 

.36 
5.91 

11.77 

2.44 
3.1 
4.03 
5.35 

10.11 

2.35 
3.02 
3.7 
4.94 

.96 

2.27 
2.90 
3.59 
4.63 

.12 

2.2 1 
2. 0 
3.44 
4.39 
7.4 

2.16 

2.71 
3.31 
4. 19 
6.9 

2.12 
2.65 
3.21 



10 

2.54 
3.35 

4. 0 
5. 1 

11.54 

2.42 

3.14 
3. 6 
5.26 

9. 9 

2.32 

2.9 

3.72 

4. 5 
.75 

2.25 

2. 5 
3.53 
4.54 

7.92 

2. 19 
2.75 

3.37 

4 .. 0 

7.29 

2. 14 

2.67 

3.25 

4.10 
6.80 

2.10 

2.60 
3.15 

3.94 
6,40 

12 

2.50 

3.2 

4.20 

5.67 

1l.l9 

2.3 

3.07 

3. 7 
5.11 
9.57 

2.2 

2. 1 
3.62 

4.7 1 
,45 

2.21 

2.7 

3.43 
4.40 

7.63 

2. 15 

2.69 

3.28 

4.16 

7.00 

2.10 

2.60 
3. 15 

3. 6 
6.52 

2.05 
2.53 

.05 

3.80 

6.1 

15 

2,46 

3.22 
4.10 

5.52 

10. 4 

2.34 

3.01 

3.77 

4. 6 
9.24 

2.24 

2. 5 
3.52 

4.56 

8.13 

2.17 

2.72 
3.33 
4.25 

7.32 

2.10 
2.62 
3.1 

4.01 

6.71 

2.05 
2.53 
3.0~ 

3. 2 
6.23 

2.01 

2.46 
2.95 
3.66 

2!1 

2.42 

3.15 

4.00 

5. 6 
lOA 

2.30 

2.94 

3.67 

4. 1 
.90 

2.20 

2.77 

3.42 
4,4J 

7. 0 

2.12 
2.65 

3.23 

4.10 

7.01 

2.06 
2.54 

3.07 
3. 6 
6.40 

2.01 
2,46 

2.95 

3.66 

5.93 

1.96 

2.39 

2. 4 
3.51 

5.56 

:In 

2.3 

3.08 

.9 

5.20 
lO.11 

2.25 
2. 6 

3.56 

4.65 

.55 

2.16 

2.70 

3.31 
4.25 

7.47 

2.0 

2.57 
3.12 
3.94 
6.68 

2.01 
2,47 

2.96 

3.70 

6.09 

1.96 
2.3 

2.4 

3.51 

5.63 

1.9 1 

2.31 

2.73 
3.35 
5.25 

-tn 

2.36 

3.04 
3. 4 

5.12 

9.92 

2.23 

2. 3 
3.51 
4.57 

.37 

2.13 

2.66 

3.26 

4.17 

7.30 

2.05 

2.53 

3.06 
3. 6 
6.52 

1.99 
2,43 

2.91 

3.62 

5.93 

1.93 
2.34 

2.7 

3.43 
5,47 

I. 9 
2.27 

2.67 

3.27 
5.10 

2.35 

3.02 

3. I 
5.07 
.0 

2.22 

2. 0 
3.47 

4.52 

.26 

2.12 

2.64 
3.22 

4.12 

7.19 

2.04 

2.51 

3.03 
3.81 
6,42 

1.97 
2,40 
_. 7 

3.57 

5. 

1.92 
2.31 

2.74 

5.37 

1.87 
2.24 
2.64 
3.22 

5.00 
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2.33 

2.99 

3.76 

5.00 
9.65 

2.20 

2.77 

.43 

4.45 

.11 

2.10 

2.60 
3.1 

4.05 

7.05 

2.02 

2.47 

2.9 

3.74 

6.2 

l.9~ 

2.37 

2. 2 

3.50 

5.70 

1. 9 
2.2 
2.70 

3.31 

5.24 

1.85 

2.21 

2.59 

3.15 

4. 7 

12() 

2.32 

2.97 

3.73 

4.95 

9.53 

2.18 

2.75 
3.39 
4,40 

.00 

2.0 
2.5 
3.14 

4. 

6.94 

2.00 
2.45 

2.94 

3.69 

6.1 

1.93 
2.34 

2.79 
3,45 

5.59 

1.8 
2.25 
2.66 
3.25 

5.14 

1.83 

2.1 

2.55 
3.09 
4.77 

11100 

2.30 

2.93 

3. 

4. 7 

9.36 

2.16 

2.71 
3.34 

4.32 

7. 4 

2.06 

2.54 

3.09 
3.92 

6.7 

\.9 
2.41 

2.9 

3.61 

6.02 

1.91 
2.30 
2.73 

3.37 

5.44 

1.85 

2.21 

2.60 

3.1 

4.99 

l. 0 
2.14 

2.50 

3.02 

4.62 
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Denominalor 

d.f. 

15 

16 

17 

18 

19 

20 

21 

Probabilil)' 

0.100 

0.050 

0.025 
0.010 

0.001 

0. 100 

O.OSO 
()'()25 

().OlO 

0.001 

(J.lOO 
(l.050 

0.025 

0 .010 
(l.OOI 

0.100 

0.050 

0.025 
0 .010 

0.001 

0. 100 
O.OSO 
0.025 
(J.()I0 

0.001 

0.100 

0.050 

0.025 
O.()lO 

0.001 

O.lOO 
0.050 
0.025 

0.010 

1l.00l 

3.07 

4.54 

6.20 

8.68 
16.59 

3.05 
4.49 
6.12 
8.53 

16.12 

3.03 
4.45 
6.04 
8.40 

15.72 

3.0] 

4.41 

5.98 

8.29 
]5.38 

2.99 
4.38 
5.92 
8.18 

15.08 

2.97 

4.35 
5.87 
8.10 

14.82 

2.96 

4.32 
5.83 
8.02 

14.59 

Statistical Table 4 Values of F for tail probabilities from 0.10 
to 0.001 (ccmtinued) 

2 

2.70 

3.68 
4.77 
6.36 

11.34 

2.67 
3.63 

4.69 
6.23 

10.97 

2.64 
3.59 
4.62 
6.11 

10.66 

2.62 

3.55 
4.56 
6.0 1 

10.39 

2.61 

3.52 
4.51 
5.93 

10.16 

2.59 
3.49 

4.46 
5. 5 
9.95 

2.57 

3.47 

4.42 

5.78 
9.77 

3 

2.49 

3.29 
4.15 
5.42 

9.34 

2.46 
3.24 

4.08 

5.29 
9.01 

2.44 
3.20 

4.01 
5.18 

8.73 

2.42 

3.16 
3.95 
5.09 

8.49 

2.40 
3.13 
3.90 

5.01 
8.28 

2.38 
3.10 
3.86 
4.94 
8.10 

2.36 
3.07 
3.82 

4.87 

7.94 

Degrees of freedom for the numeralor 

4 

2.36 
3.06 
3.80 

4.89 
8.25 

2.33 

3.01 
3.73 
4.77 
7.94 

2.31 
2.96 
3.66 
4.67 
7.68 

2.29 

2.93 

3.61 

4.58 
7.46 

2.27 

2.90 

3.56 
4.50 

7.27 

2.25 

2.87 
3.51 
4.43 
7.10 

2.23 

2.84 

3.48 
4.37 
6.95 

5 

2.27 

2.90 
3.58 

4.56 
7.57 

2.24 
2.85 
3.50 

4.44 

7.27 

2.22 

2.8 1 
3.44 

4.34 
7.02 

2.20 

2.77 
3.38 

4.25 
6.81 

2.18 
2.74 

3.33 
4.17 

6.62 

2.16 
2.71 

3.29 
4.10 

6.46 

2.14 
2.68 
3.25 
4.04 
6.32 

6 

2.21 
2.79 

3.41 

4.32 
7.09 

2.18 

2.74 
3.34 

4.20 

6.80 

2.15 

2.70 

3.28 
4.10 
6.56 

2.13 

2.66 
3.22 

4.01 
6.35 

2.11 
2.63 
3.17 
3.94 

6.18 

2.09 

2.60 

3.13 
3.87 
6.02 

2.08 
2.57 
3.09 

3.81 
5.88 

7 

2.16 
2.71 

3.29 
4.14 

6.74 

2.13 

2.66 

3.22 
4.03 

6.46 

2.10 
2.61 

3.16 
3.93 

6.22 

2.08 

2.58 

3.10 

3.84 
6.02 

2.06 
2.54 
3.05 
3.77 
5.85 

2.04 
2.51 

3.01 

3.70 
5.69 

2.02 
2.49 
2.97 

3.64 
5.56 

2.12 
2.64 

3.20 

4.00 

6.47 

2.09 

2.59 
3.12 

3.89 

6.19 

2.06 

2.55 

3.06 
3.79 

5.96 

2.04 

2.51 
3.01 

3.71 
5.76 

2.02 

2.48 
2.96 

3.63 

5.59 

2.00 
2.45 

2.91 

3.56 

5.44 

1.98 
2.42 
2. 7 
3.51 
5.31 

9 

2.09 
2.59 

3.12 
3.89 

6.26 

2.06 

2.51 
3.05 
3.78 
5.98 

2.03 
2.49 

2.98 

3.68 
5.75 

2.00 

2.46 

2.93 

3.60 
5.56 

1.98 
2.42 

2.88 
3.52 

5.39 

1.96 
2.39 

2.84 

3.46 

5.24 

1.95 

2.37 

2.80 

3.40 
5.11 



2.06 

2.54 

3.06 
3. 0 
6.0 

2.03 

2.49 
2.99 

3.69 

5. I 

2.00 
2.45 
2.92 

3.59 

5.5 

1.9 

2.41 
2. 7 
3.51 

5.3 

1.96 
2.3 

2. 2 
3.43 
5.22 

1.94 

2.35 

2.77 
3. 7 
5.0 

1.92 
2.32 

2.73 
3.31 

4.95 

12 

2.02 

2.4 
2.96 
3.67 

5.81 

1.99 

2.42 

2.9 

3.55 

5.55 

1.96 
2.3 

2. 2 
3.46 

5.32 

1. 3 
2.34 
2.77 

3.37 
5.13 

I. I 
2.31 
2.72 

3.30 

4.97 

2. 

3.23 
4.82 

1. 7 

2.25 

2.64 
3. 17 

4.70 

15 

1.97 

2.40 
2. 6 
3.52 

5.54 

1.94 

2.35 

2.79 

3.41 

5.27 

1.91 
2.31 

2.72 

3.31 
5.05 

1.89 

2.27 

2.67 
3.23 
4. 7 

l. 6 
2.23 
2.62 
3.15 

4.70 

1. 4 

2.20 
2.57 

3.09 

4.56 

l. 3 
2.1 

2.53 
3.03 
4.44 

Degree of freedom for lh 

20 

1.92 

2.33 
2.76 

3. 7 
5.25 

I. 9 
2.2 

2. 
3.26 

4.99 

1. 6 
2.23 
2.62 
3.16 
4.7 

I. 4 
2.19 

2.56 

3.0 
4.59 

1.81 

2.16 
2.51 
3.00 

4.43 

1.79 

2. 12 
2.46 
2. 4 
4.29 

1.7 

2.10 

2.42 
2. 
4. 17 

30 

2.25 

2.64 
3.21 
4.95 

I. 4 
2.19 

2.57 
3.10 

4.70 

I. ] 

2. 15 

2.50 

3.00 
4.4 

1.7 

2.11 

2.44 

2.92 

4.30 

1.76 

2.07 
2.39 
2. 
4.14 

1.74 

2.04 
2.35 
2.7 

4.00 

1.72 

2.01 

2.31 
2.72 

3. 

40 

2.59 

3.13 
4.0 

1.1 

2.15 

2.51 
3.02 

4.54 

1.78 
2.10 

2.44 
2.92 

4.33 

1.75 

2.06 

2.38 

2.84 

4.15 

1.73 

2.03 
2.33 

2.76 

3.99 

1.71 

1.99 
2.29 
2.69 

3. 6 

1.69 
1.96 

2.25 

2.64 
3.74 

50 

1.83 
2.1 

2.55 

3.0 
4.70 

1.79 

2.12 
2.47 

2.97 

4.45 

1.76 
2.0 

2.41 

2. 7 
4.24 

1.74 

2.04 

2.35 

2.78 

4.06 

1.71 

2.00 
2.30 
2.71 

3.0 

1.69 
1.97 

2.25 
2.64 
3.77 

1.67 

1.94 

2.21 
2.5 
3.64 
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75 

1. 0 
2.14 

2.50 

3.01 
4.57 

1.77 

2.09 

2.42 
2.90 

4.32 

1.74 
2.04 
2.35 
2. 0 
4.11 

1. 7 1 

2.00 

2.30 
2.71 

3.93 

1.69 

1.96 
2.24 
2.64 

3.7 

1.66 
1.93 

2.20 
2.57 

3.64 

1.64 
1.90 
2.16 
2.51 

3.52 

12() 

1.79 

2.1 1 

2.46 

2.96 
4.47 

1.75 

2.06 

2.3 
2. 4 

4.23 

1.72 

2.01 

2.32 

2.75 
4.02 

1.69 

1.97 

2.26 

2.66 
3. 4 

1.67 

1.93 
2.20 
2.5 

3. 

1.64 
1. 

2.16 
2.52 
3.54 

1.62 
I. 7 
2.11 

2.46 
3.42 

1000 

1.76 
2.07 

2.40 

2. 
4.33 

1.72 

2.02 

2.32 
2.76 

4.0 

1.69 
1.97 

2.26 
2.66 

3. 7 

1.66 

1.92 

2.20 
2.5 
3.69 

1.64 

I. 
2.14 
2.50 

3.53 

1.61 
1.85 
1.09 

2.43 

3.40 

1.59 
I. 2 
2.05 
2.37 

3.28 
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D nominator 

cl.l. 

!H 

27 

Proh.lhilil\ 

O.IOU 
0.0:;0 

U.025 
0.(111) 

0.1101 

1I.100 

11.050 
IUI25 
11.11 III 

11.1101 

II. \(111. 

/I.II:;1l 

11.112:' 
11.11111 

1l.IlIII 

1l.lIlo 
1l.1I:;1I 

11.112:' 
0.0l/) 

0.001 

1l.11l1l 

/I.Il~)1l 

IJ.02~) 

lUll/) 

/l.IJlII 

/l.1II/l 

1l./l:;11 

1I.1l2~, 

11.11 III 
11.1101 

II. lOti 

Il.051l 
o.02~, 

11.11111 

1l.llol 

Statistical Table 4 Values of Ffor tail probabilities from 0.10 
to 0.001 (continued) 

2.95 
4.30 
5.7 
7.95 

14.3 

2.94 
4.2 
5.75 
7. 

14.20 

2.93 
4.26 
5.72 
7.82 

14.03 

2.92 
4.24 
5.69 
7.77 

13. 

2.91 
4.23 
5.66 
7.72 

13.74 

2. 
4.21 
5.63 
7. 

13.61 

2. 9 
4.20 
5.61 
7.64 

13.50 

2 

2. 6 
3.44 
4.3 
5.72 
9.61 

2.55 
3.42 
4.35 
5.66 
9.47 

2.54 
3.4 
4. 2 
5.61 
9.34 

2.53 
3.39 
4.29 

5.57 
9.22 

2.52 
3.37 
4.27 
5.53 
9 .12 

2.~ I 

3.35 
4.24 
5.49 

9.02 

2.50 
3.34 
4.22 
5.45 

.93 

2.35 
3.05 
3.7 
4. 2 
7. 

2. 4 
3.03 
3.75 
4.76 
7.67 

2.33 
3.01 
3.72 
4.72 
7.55 

2.32 
2.99 
3.69 
4. 
7.45 

2.31 

2.98 
3.67 
4.()oj 

7.36 

2.30 
2.96 

3.65 
4.60 

7.27 

2.29 
2.95 
3.63 
4.57 
7.19 

Degrees 0 fr edom for the num rator 

2.22 
2. 2 
3.44 

4.31 
6. 1 

2.21 
2. 0 
3.41 
4.26 

6.70 

2.19 
2.7 
3.3 
4.22 

6.59 

2.18 
2.76 
3.35 
4.1 

6.49 

2.17 
2.74 
3.33 
4.14 
6.41 

2.17 

2.73 

3.31 
4.11 

6.33 

2.1 
2.71 
3.29 

4.07 
6.25 

2.13 
2.66 
3.22 
3.99 
6.19 

2.11 
2.64 
3.1 
3.94 

6.0 

2. 10 

2.62 

3.15 
3.90 
5.9 

2.09 
2.6 
3.13 
.. 5 
5. 9 

2.0 

2.59 
3.10 
3. 2 
5. 0 

2.07 
2.57 
3.08 

3.7 
5.73 

2.06 
2.56 
3.06 
3.75 
5.66 

Ii 

2.06 
2.55 
3.05 
3.76 

5.76 

2.05 

2.53 
3.02 
3.71 

5.65 

2.04 
2.51 
2.99 
3.67 
5.55 

2.02 
2.49 
2.97 
3.63 
5.46 

2.01 
2.47 

2.94 
3.59 
5.3 

2.00 
2.46 
2.92 
3.56 

5.31 

2.00 
2.45 
2.90 
3.53 
5.24 

7 

2.01 
2.46 
2.93 
3.59 
5.44 

1.99 
2.44 
2.90 
3.54 
5.33 

1.9 
2.42 

2. 7 
3.50 
5.23 

1.97 
2.40 
2. 5 
3.'16 
5. 15 

1.96 
2.39 
2. 2 
3.42 
5.07 

1.95 
2.37 
2. 0 
3.39 
5.00 

1.94 
2.36 
2.78 

3.36 
4.93 

1.97 
2.40 
2. 4 
3.45 
5.19 

I. 5 
2.37 
2. I 

3.41 
5.09 

1.94 
2.36 
2.7 

3.36 
4.99 

1.93 
2.34 

2.75 

3.32 
4.91 

1.92 
2.32 
2.73 
3.29 
4. 3 

1.91 

2.31 
2.71 

3.26 
4.76 

1.90 
2.29 

2.69 
3.23 
4.69 

1.93 
2.3 
2.76 
3.35 
4.99 

1.92 

2.32 
2.73 

3.30 
4. 9 

1.91 

2.30 
2.70 

.26 
4. 0 

I. 9 
2.28 
2.68 

3.22 
4.7 1 

1.8 
2.27 
2.65 
3.1S 
4.64 

1.87 

2.25 

2.63 
3.15 
4.57 

I. 7 
2.24 

2.6\ 

3. 12 
4.50 



1.90 

2.30 

2.70 

3.26 
4. 3 

1. 9 
2.27 

2.67 

3.21 

4.73 

1. 
2.25 

2.64 

3. 17 
4.64 

J. 7 

2.24 

2.61 

3.13 
4.56 

I. 6 
2.22 

2. 9 
3.09 
4.4 

1. 5 

2.20 
2.57 

3.06 
4.41 

1. 4 
2.19 

2.55 

3.03 

4.35 

12 

1. 6 
2.23 

2.60 

3.12 

4.5 

1.8'1 
2.20 

2.57 

3.07 

4. 

I. 3 
2.1 
2.54 

3.03 
4.39 

1. 2 
2.16 
2.51 

2.99 
4.31 

I. I 
2.15 

2.4 
2.96 

4.24 

J. 0 
2. 13 
2.47 

2.93 
4.17 

1.7 
2. 12 

2.45 
2.90 
4.11 

III 

1.81 

2.15 

2.50 

2.9 
4.33 

I. 0 
2.13 
2.47 

2.93 

4.23 

1.7 

2.11 
2.44 

2. 9 
4.14 

1.77 
2.09 

2.41 

2.85 
4.06 

1.76 

2.07 

2.3 
2. J 
3.99 

1.75 
2.06 

2.36 

2.7 
3.92 

1.74 
2.04 

2.34 

2.75 
3. 6 

2U 

\.76 
2.07 

2.39 

2. 3 

4.6 

1.74 

2.05 

2.3 
2.7 

3.96 

1.73 

2.03 

2.33 
2.74 

3. 7 

1.72 
2.01 

2.30 
2.70 
3.79 

1.71 
1.99 

2.2 
2.66 

3.72 

1.70 

1.97 

2.25 
2.63 

3. 6 

1.6 

1.96 

2.23 
2. 
3.60 

:\0 

1.70 

\.9 
2.27 

2.67 

3.7 

1.69 

1.96 

2.24 

2.62 
3. 

l.67 
1.94 

2.21 
2.5 

3.59 

1.66 
1.92 

2.1 
2.54 

3.52 

1.65 

1.90 

2.16 

2.50 

3.44 

1.64 

1. 

2.13 

2.47 
3.3 

1.63 
I. 7 
2.11 
2.44 

3.32 

numeralor 

-to 

1.67 

1.94 
2.2 1 

2.5 

3.63 

1.66 

1.91 

2.1 

2.54 

.53 

1.64 

I. 9 
2.15 

2.49 

3.45 

1.63 

I. 7 
2.12 

2.45 
3.37 

1.61 
1. 

2.09 
2.42 

3.30 

1.60 

1.84 
_.07 

2. 

3.23 

1.59 

I. 2 
2.05 
2.35 

3.18 

51l 

1.65 
1.91 
2.17 

2.53 

3.54 

1.64 

1. 

2.14 
2.4 
3.44 

1.62 

1. 6 
2.11 
2.44 

3.36 

1.61 

I. 4 
2.0 
2.40 
3.2 

1.59 

1. 2 
2.05 

2.36 
3.21 

1.58 

I. 1 
2.03 

2.33 
3.14 

1.57 
1.79 

2.01 
2.30 

3.09 
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1.63 
l. 7 
2.12 

2.46 

3041 

1.61 

1. 4 

2.0 

2.41 
3.32 

1.59 
I. 2 

2.05 
2.37 

3.23 

1.5 

I. 0 
2.02 

2.33 
3.15 

1.57 

1.7 
2.00 
2.29 

3.0 

1.55 
1.76 
1.97 

2.26 
3.02 

1.54 
1.75 
1.95 
2.23 
2.96 

1211 

1.60 
1. 
2.0 

2.40 

3.32 

1.59 

1.81 

2.04 

2.35 
3.22 

1.57 
1.79 

2.01 

2.31 
3.14 

1.56 
1.77 
1.9 

2.27 

.06 

1.54 

1.75 

1.95 
2.23 

2.99 

1.53 

1.73 
1.93 

2.20 
2.92 

1. 2 
1.71 

1.91 
2.17 

2. 6 

woo 

1.57 

1.79 
2.01 

2.32 

3. 17 

1.55 

1.76 

1.98 
2.27 

3.0 

1.54 
1.74 

1.94 

2.22 
2.99 

1.52 

1.72 
1.91 

2.1 
2.91 

1.51 

1.70 
1. 9 

2.14 

2. 4 

2.11 
2.7 

1.4 
1.6 

J. 4 
2.0 

2.72 



662 Statistical Tables 

Denominator 

d.1. 

30 

35 

-Ill 

:ill 

o 

Probabilil~ 

O.lOlI 

0.050 

0.025 

0.010 

0.001 

O.ICl() 

O.05C1 
0.025 
0.010 
o.()() I 

(J. IOU 

C).050 

0.fl25 
fl.()10 

O.l){)l 

o.lon 
0.050 
0.1125 
(I.OIU 

(J.OOI 

n. \1)0 

11.1150 
n.n25 
0.010 
OJ)() I 

0. 100 

().Il:ln 

0.025 
0.010 
0.001 

0.1110 

0.050 
0.025 

0.010 

0.001 

Statistical Table 4 Values of Ffor tail probabilities from 0.10 
to 0.001 (continued) 

2.9 
4.1 

5.59 

7.60 

13.39 

2. 

4.17 

5.57 

7.56 

13.29 

2.85 
4.12 
5,48 

7.42 

12.90 

2.84 

4.0 

5.42 

7.31 

12.61 

2. 1 
4.03 

5.34 

7.17 

12.22 

2.79 

4.00 
5.29 
7.0 

11.97 

2.77 

3.96 

5.22 

6.96 

11.67 

2.50 

3.33 

4.20 

5.42 

.5 
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Statistical Table 4 Values of F for tail probabilities from 0.10 
to 0.001 (rontinued) 

Denominator Degree of freedom for the numemLOr 

cU. Pruhahilil) 2 3 .. :; 6 

0.1 2.76 2.36 2.14 2.00 1.91 
0.0"0 3.94 3.09 2.70 2.46 2.3 1 2. IH 2 .10 2.03 UJ7 

100 0.02- 5.1 3. 3 3.25 2.92 2.70 2.54 2.42 2.32 2.24 
0.0 J() 6.90 4. 2 3. 3.51 3.21 2. 9 2. 2 2.69 .59 
0.001 11.50 7.4] 5. 6 5.02 4,4 4.11 3.83 3.61 3.44 

C) . 100 2.73 2.33 2. 11 1.97 I. 1.80 1.7 1.70 1.66 
O.O5() 3. 9 3.04 2.65 2.42 2.26 2.14- 2.06 1.9 1.93 

20!) (W25 5.10 3.76 3. 1 2. 5 2 .63 2.47 2.35 2.26 2.1 

0.0111 6.76 4.71 3. 3,41 3.11 2.9 2.73 2.60 2.50 
0.001 11.15 7.15 5.63 4.81 4.29 3.92 3.65 3.43 3.26 

1). 1011 2.71 2.31 2.09 1.95 1. 5 1.7 1.72 1.68 1.64 
O.OSO 3. 5 3 .00 2.61 2.3 2 .22 2.11 2.02 1.9- 1. 9 

1,000 0.025 5.04 3.70 3.13 2 . 0 2.5 2.42 2.30 2.20 2. 13 
0.010 6.66 4.63 3. 0 3.34 3.04 2. 2 2.66 2.53 2.43 
0.001 10.89 6.96 5.46 4.65 4. 14 3 .7 3.51 3.30 3.13 
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Degre f freedom for the numerator 

\(J 1:1 15 2(1 30 J(1 5(1 75 12fl 

1.66 1.61 1.56 1.49 1.42 1.3 1.35 1.32 
1.93 1. 5 1.77 I. 1.57 1.52 1.4 1.42 
2.1 2.08 1.97 1.85 1.71 1.64 1.59 l.52 1.46 1.36 
2.50 2.37 2.22 2.07 1. 1. 0 1.74 1.65 1.57 1.45 
3.30 3.07 2. 4 2.59 2.32 2.17 2.0 1.94 I. 3 1.64 

1.63 1.- 1.52 1.'16 1.3 1.34 l.SI 1.27 1.23 1.L6 
1. 1.0 1.72 1.62 L.52 1.46 1.41 1.35 1.30 1.21 
2.11 2.0J 1.9 1.7 1. 1.56 1.51 1.44 1.37 1.25 
2.4 1 2.27 2.13 1.97 1.79 J.69 1.63 1.53 1,45 1.30 
3.12 2.90 2.67 2.42 2.15 2.00 1.9 1.76 1.64 1.43 

1.61 1.55 1.49 1.43 1.35 1.30 1.27 1.23 1.1 1.0 
1. 4 1.76 1. 1.5 1.47 1.41 1.36 1.30 1.24 1.11 
2.06 1.96 1. 5 1.72 1.5 1.50 1,45 1.36 1.29 1.13 
2.34 2.20 2.06 1.90 1.72 1.61 1.54 1.44 1.35 1.l6 
2 .. 2.77 2.54 2.30 2.02 I. 7 1.77 1.62 1.49 1.22 
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Statistical Table 5 Binomial distribution 

The probability f x ucce 
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Statistical Table 5 Binomial distribution (continued) 
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Statistical Table 5 Binomial distribution (continued) 
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Statistical Table 5 Binomial distribution (continued) 
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Statistical Table 5 Binomial distribution (continued) 
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1.1 Early statistical activities centered around state governments col­
lecting demographic data on their citizens, and statistics was thought 
of as "matters of state." 

1.3 a. Randomness occurs when the value of the next observation 
cannot be predicted accurately. 

b. The patterns found with many observations. 

c. Statistics looks through the variability and obtains regularities. 

1.5 Probabilities show how often various results occur when a study 
is repeated. Assuming randomness only, an observed difference may 
have a small probability of occurring. 

1.7 a. A characteristic that can take on different values. 

b. Empirical variables have observed data, while theoretical var­
iables are constructed so that they follow certain distributions. 

1.9 January 1 ,January 2, ... ; Florida, Texas, ... ; 100 mph, 101 
mph, ... ; $10 million, $11 million, ... ; 0, 1, 2, ... . 

1.11 A constant does not change its value when observed several 
times. 

1.13 The Census Bureau and the Bureau of Labor Statistics. 
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1.15 We never know whether a particular property will be destroyed 
because of the randomness of the storm. Yet, for a storm of a certain 
strength, the financial losses are about the same, showing the regularity 
in the phenomenon. 

1.17 a. Computers have made it possible to keep track of a great 
variety of statistical results. 

b. Easier for viewers to make comparisons. 

c. Surveys have made it possible to measure the popularity of 
music, films, politicians, and so on. In turn, the surveys have a 
great impact on what will occur in the future. 

1.19 Student project. d. Shakespeare may have used longer sentences. 

1.21 a. Infant mortality has gone down over time. Whites and non­
whites have different levels of infant mortality. 

b. Same as for infant mortality. 

c. The maternal mortality rates since the numerical values are 
smaller. 

d. A death must be reported before it can become part of a 
table. The further back in time, the fewer deaths were reported. 

e. Older data may be more inaccurate. Birth data may be more 
inaccurate, as not all births are reported. 

1.23 Student project. 

I ----------------------------------------------------------------------' 
2.1 Should the population of students include students in two-year 
and four-year colleges? Should part-time students be included? Should 
both female and male students be included? 

2.3 The elements that are not exposed to the experimental treat­
ment and that are measured on the response variable. 

2.5 It can be controlled, and most of the time we can find how large 
it is. 

2.7 a. Assign to each student a number and use a table of random 
numbers to chose the required number of students. From a list 
of all students use a random start and select every kth student. 
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b. The population list may not be complete. There could be 
refusals to respond or wrong answers. 

c. Biased results. 

d. Spend time and energy seeking out and getting cooperation 
from those selected and asking the questions as well as possible. 

2.9 No. Sampling error cannot be avoided. It refers to how much 
variability there would be in the results if the study is repeated many 
times. 

2.11 a. The value we would get from data on the entire population. 

b. Applies to the entire population. 

2.13 Student project. 

2.15 a. They did not say they favored the decision. They have no 
opinion or are opposed or do not know about the decision. 

b. Is it a proper random sample? How many people answered 
the question? How was the question formulated? Where in the 
questionnaire was the question located? 

c. In 19 out of 20 repetitions of this study, the sample percent­
age lies within 2 percentage points of the true population value. 
If this sample is one of the 19, then the true population per­
centage lies between 54% and 58%. 

2.17 The response could have been created by the stimulus or some 
other factor. 

2.19 a. Impossible. 

b. It could lead the respondents to answer in ways that may not 
represent how they feel. 

2.21 A table that displays the data collected for a study. 

2.23 Given the many problems with data collection, it may be better 
to think of bad and worse data. 

2.25 a. No. We cannot generalize from these data. Among those who 
chose to participate in this survey, the Philadelphia/Trenton 
participants had a lower percentage than observed nationally. 
b. The sample is not a random sample. It is self-selected. 
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2.27 a. The survey results apply only to firefighters in one part of the 
county, and the results cannot be generalized to the entire 
county. 

b. Zero. 

2.29 Other services may have higher percentages. On what basis was 
the percentage computed and what types of people does it apply to? 

2.31 Experimenting on people without their consent is always trou­
blesome. 

2.33 a. Not a random sample. 

b. Asking for volunteers makes the sample nonrandom. 

c. No. The women did not volunteer as much. 

d. May be well received by the men. 

e. Lack of statistical knowledge. 

2.35 a. The actual numbers. 

b. Same. 

2.37 Salary for what time period? Quality of the movie may not fit a 
three-point scale. Two questions on how good the movie was. Com­
pared to what movie? May not have seen Some Like It Hot. Repeat ques­
tion about what we like best. Imprecise car question: sedan versus 

TableA.l Gender and life expectancy table for Exercise 2.41a 

Year Gender Life expectancy 

1789 m 34.5 

1789 f 36.5 

1850 m 38.3 

1850 f 40.5 

1890 m 42.5 

1890 f 46.0 

1910 m 54.0 

1910 f 56.6 

1930 m 59.3 

1930 f 62.6 
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station wagon or other type, year? Does not say which direction the 
scales run. 

2.39 Student project. 

2.41 a. Table A. I. 

b. Life expectancy has increased. Women have higher life ex­
pectancies than men through the entire period. 

CHAPTER 3 DESCRIPTION OF DATA GRAPHS AND TABLE 

3.1 Gain in simplicity versus loss of information. 

3.3 a. A line representing the variable with its scale and each obser­
vation marked with a symbol, such as x or *. 

b. Shows where there are clusters of observations and where 
there are only a few observations. 

c. Not good for many observations. 

3.5 a. A. Names of the geographical areas. B. Frequency figures. 
C. Geographical area. D. About 17,000. 

b. As areas of the bars. 

e. The areas, and not the heights, of the sailors have to represent 
the frequencies. Hard to read from such a graph how many sail­
ors are in each area. 

d. Most of the troops are in Europe and East Asia/Pacific; only 
a few are in the Western Hemisphere, Mrica, and South Asia. 

e. The names of the regions are confusing and could be speci­
fied in greater detail. 

3.7 By using the proper vertical scale, the bars do not have to be 
very large even if they represent many observations. 

3.9 Unimodal. 

3.11 One half of the histogram is not a mirror image of the other. 

3.13 a. The population went up and the price index went down from 
the beginning to the end of the century. 

b. It shows how the two variables behave over a century. 

e. We could show a scatterplot for the two variables. 
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3.15 The same as for a graph. Decimals can be dropped. The rows 
and columns should be arranged so that the larger numbers are toward 
the upper left corner of the table. Numbers to be compared should be 
arranged in columns. 

3.17 A good graph conveys a message about the data from the person 
who made the graph. 

3.19 a. No loss of information. The original observations can be re­
covered. 

b. When the sample is large. 

c. Not many large scores and not many successes. 

d. Information on other variables, such as age and gender. 

3.21 Student project. 

3.23 a. The medians show how the regions differ. The lengths of the 
boxes show the variation in rates across the regions. 

b. Yes. The graph gives a clear and precise view of the data. 

3.25 a. Figure 3.8 is more true to the data with the scale starting at 0 
inches. Easier to read the exact inches for each year in Figure 
3.7. 
b. In what way is the graph true to the data? How easy is it to 
read the graph? 

3.27 Stemplots cannot be used for categorical variables since there 
are no numeric observations. 

3.29 Stemplots are good for small samples, and boxplots are good for 
large samples. Boxplots show five specific numbers that can be com­
pared across several groups of data. A stemplot gives only an overall 
sense of the center and spread of the data. Stemplots show the original 
data. The original data cannot be recovered from a boxplot. 

3.31 a. "Best" may refer to taste and have little to do with fat. 

b. The foods could be ranked by any of the other variables. 

3.33 a. Saturday is best, Sunday and Wednesday are worst. 

b. They stretch the vertical scale and do not include the origin. 

c. The days would look more alike. 
d. Hard to know since we know very little about the scale. 

e. Things may not seem so bad when looking back. 
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Figure A.l Graphs for Exercise 3.35a 

3.35 a. Figure A.I . 

b. Among employed men and women the personal and work 
time take up most of their time, with some time left over for free 
time and housework. Homemakers spend most of their time on 
personal time, with housework and free time as the next two 
categories. 

c. Personal time is approximately the same for all three groups. 
Employed women work not quite as long as employed men and 
spend more time on housework. 

3.37 a. Figure A.2. 

b. Unimodal and almost symmetric. 

c. There may be other considerations about when to have chil­
dren. 

d. The total number of mothers in each age group. 
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Figure A.2 Histogram for Exercise 3.37a 

3.39 a. A bar graph for small, medium, and large will show how many 
there are of each size. 

b. How the 10 sizes relate to the three values small, medium, 
and large. 

3.41 Student project. 

3.43 Student project. 

3.45 a. Figure A.3. 
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Figure A.3 Histogram for Exercise 3.45a 
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Figure A.4 Boxplot for Exercise 3.47b 

b. The skewed shape shows most of the observations between 
18 and 25 years. 

c. The number of older students is surprising. 

3.47 a. Very skewed, with many more small observations than large 
ones. 

b. Figure A.4. 

c. The boxplot is simpler and easier to read but does not carry 
as much information. The boxplot shows the 25th, 50th, and 
75th percentiles and the smallest and largest observations. 

3.49 a. Figure A.5. 

b. The numbers of black and white victims are not known. 

3.51 Student project. 
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Figure A.5 Pie charts for Exercise 3.49a 
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Table A.2 New version of Table 3.6 for Exercise 3.53 

Type of event France Austria United States Norway Italy Netherlands 

Transportation 24 35 23 17 23 18 

Natural 31 30 16 25 19 18 

Homicide 1 2 10 1 1 1 

Other 22 9 11 5 4 4 

Total 78 75 61 48 47 40 

3.53 Table A.2. Table 3.6 is transposed to compare causes. Countries 
are arranged by death rate instead of alphabetically. No decimals for 
ease of comparisons. 

4.1 Gain in simplicity and little loss of information. 

4.3 The mode is the value of the variable that occurs most often. 
The median is the value of the variable that divides the observations in 
two groups so that half the observations are smaller than this value and 
the other half is larger than this value. The mean is the center of gravity 
of the histogram of the data. 

4.5 Height of students in a class, with one mode mainly determined 
by the women and the other by the men. 

4.7 a. Most income distributions are skewed, and the median is a 
better summary for such distributions. 

b. If that were the income for the majority. 

4.9 Student project. 

4.11 a. Any observation other than the largest and the smallest. 

b. The largest and smallest observations. 

4.13 s. 

4.15 About two thirds. 
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4.17 The variance. 

4.19 A high mean score tells us that the pizza was evaluated to be 
good. A small standard deviation tells us that most of the scores are 
close to each other and therefore high. 

4.21 A sample has some small and some large observations and their 
effects on the mean will cancel out. Therefore the mean will not vary 
as much across different samples as the observations themselves vary. 

4.23 a. To see whether an observation is unusual or not. Raw scores 
on different variables can be compared by changing to standard 
scores. 

b. Student example. 

4.25 From - 2 to + 2. 

4.27 t(ea)-values. 

4.29 The observations in a sample are different because of the ran­
domness of the data, and the standard deviation measures how differ­
ent the observations are. 

4.31 The observations are equal without any variation. 

4.33 Income distributions are usually skewed, and the median is bet­
ter for skewed distributions. 

4.35 The mean does not have to be equal to any observed value. 

4.37 Divides the data into two equal halves. 

4.39 a. Accurate according to the production figures, misleading be­
cause the headline does not mention the exclusion of certain 
types of workers. 

b. The rating scale does not say what is high and what is low. 

c. It may be harder to measure how much those people pro­
duce. Difficult to say how the countries would compare for those 
types of workers. 

4.41 a. The mean for the Braves is less than the mean for the Phillies. 

b. The standard deviation for the Phillies is smaller, and they 
make about the same number of errors in each game. The range 
of errors for the Braves is larger. 
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c. The Braves have a large standard deviation. 

d. With a mean of 2.0 and a standard deviation of 0.3, there can 
not be many observations equal to O. 

4.43 a. Good. The scores in both academic subjects are high. 

b. Yes. The score indicates average music understanding. 

4.45 Duluth had warmer weather than Hibbing. 

4.47 No. You would need the median, the interquartile range, and 
possibly a histogram showing the distribution of incomes. 

4.49 a. Media has a high mean and a small standard deviation such 
that all the increases are large. Rose Valley has a large standard 
deviation such that there is greater variability in the increases. 

b. Two standard deviations above the mean equals $15,000 in 
Rose Valley, and that is about the largest increase anywhere. 

4.51 Very skewed, with only a few players making a very large salary. 

4.53 a. Table A.3. 

b. Figure A.6. 

c. Mean for batting percentage; median for the others. 

d. Some of the distributions are skewed, some have outlier ob­
servations. 

4.55 a. Use the standard deviation. 

b. The group in Exercise 3.34 has s = 10.9, and the new group 
has s = 14.6. 

TableA.3 Statistics for Exercise 4.53a 

Standard 
Variable Mean Median deviation Range 

Batting percentage 0.262 0.264 0.039 0.228 

Number of times at bat 319 290 180 665 

Number of runs 47.3 36.5 33.1 140 

Number of hits 87.6 76.0 55.6 224 

Number of home runs lOA 6.0 11.0 52 

Number of runs batted in 44.8 35.0 34.5 150 
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Figure A.6 Frequency histograms for Exercise 4.53b 

c. 14.6/ 10.9 = 1.3; one standard deviation is 30% larger than 
the other. 

4.57 a. 2.18. 

h. The standard score is unusually large, and chocolate ice 
cream is different from the other desserts. 

4.59 a. Figure A. 7. 

f1li 

110 

600 700 

200 

130 150 



686 Answers to Odd-Numbered Exercises 
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Figure A. 7 Histogram for Exercise 4.59a 

b. 1. 

c. 0 for the men, 1 for the women. 

4.61 a. Figure A.8. 

b. Mode 77, median 77, mean 80.4. 

c. The mode gives the most common value, the median gives 
the value such that half of the observations are smaller than this 
value and half are larger. The mean gives the center of gravity 
in the distribution. 

d. The number of medical schools went down in this period. 

e. Schools grew in number of students. 

4.63 Figure A.g. All five scores have the same value-5. 

4.65 a. 48% smoked cigarettes, 32% smoked marijuana, and 38% 
drank alcohol at least once in the past month. 

b. The numbers do not seem to agree. 

9 0566 

00001355 

7 6666677777777777799 

Figure A.8 Stemplot for Exercise 4.61a 
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Figure A.9 Histogram for Exercise 4.63 

4.67 a. $10.00. 

b. $10.36. 

c. $10.50. 

d. $12.13. 

e. The median is not affected by changes in magnitudes as long 
as observations remain above or below (or equal) the median. 
The mean is affected by numerical changes in any of the obser­
vations. 

4.69 a. Mean 21.9, standard deviation 5.2. 

b. Nine. 

c. Mean equals 71.3, standard deviation 11.2. 

d. Seven. 

4.71 Brides 27 years, grooms 30 years. The grooms are on the average 
three years older than the brides. 

5.1 Likelihood, odds, chances. 

5.3 A number between 0 and 1 that describes how often an event 
occurs. With probability 0 the event never occurs and with 1 the event 
always occurs. 
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5.5 If an experiment has n different and equally likely outcomes and 
we want the probability of k of them occurring, then kin is the proba­
bility. 

5.7 1.00 - 0.12 = 0.88. 

5.9 a. A subjective, personal probability. 

b. The event is unique and occurs only once. 

5.11 The two possibilities. 

5.13 a. The average (expected) number of girls in families with 4 
children. 

b. fJ-. 

5.15 (J'. 

5.17 a. The normal, t-, chi-square, and F-variables. 

b. The t-variable. 

5.19 a. The t-distribution. 

b. Mr. Gosset used the pseudonym Student because his 
employer did not permit employees to write scientific papers. 

5.21 The degrees of freedom. 

5.23 a. No chi-square variable has a negative value. 

b. Need to know the number of degrees of freedom first. 

5.25 Since getting the sample data or more extreme data is so unlikely 
if the electorate is evenly split, we conclude that the electorate is not 
evenly split. 

5.27 The statement takes off on a similar statement about love, and 
a statistician almost never finds a probability of anything being equal 
to 1. 

5.29 Student project. 

5.31 Trudi is the surest thing, and Rod is the big killing. 

5.33 Student project. 

5.35 There are two outcomes with constant probabilities and nob­
served independent events. 
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5.37 It is better to use the binomial distribution. Many samples of 100 
families with 4 children would yield the correct answer. The data from 
a single sample have a sampling error attached. 

5.39 Find the probabilities of 0, 1, 2, and 3 girls to find the mean. 
Same answer as J.L = np = 3 * 0.49 = 1.47. 

5.41 9 of 1,000 children would break a bone; half the undergraduates 
would be involved in an accident; 1 in 100,000 BMWs would be car­
jacked. 

5.43 These data belong to a set of data that have a high probability, 
so there is nothing unusual about the data. 

5.45 a. The probability of getting all new members in the clean-up 
crew is very, very small if the drawing were truly random. Since 
the crew consists of all new members, it is hard to imagine that 
the drawing was random. 

b. Table A.4. It seems strange that nobody was chosen from the 
old members, while almost all the new members were chosen. 

5.47 a. 2 among 100,000 people would be hit by lightning. 

b. It is easier to understand a frequency such as 2 in 100,000 
than a very small number such as 0.00002. 

5.49 a. Assess which charity has the greatest probability of having an 
impact. 

b. They are not always entirely objective. 

5.51 

5.53 

The data could have come from populations with equal means. 

TableA.4 Distribution for Exercise 5A5b 

Member 

Old New Total 

Member 
Chosen 0 5 5 

Not chosen 52 2 54 

Total 52 7 59 
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5.55 a. 3i. 
b (..2..) ( 1) - --L - 1 

• 36 35 - 1260 - 630· 

5.57 Student project. 

5.59 Student project. 

5.61 a. (7 + 1)/256 = 0.03!. 

b. It is so small that 0.5 may not be the correct probability. 

5.63 a. 0.034. 

b. 0.114. 

5.65 a. 0.5. 

b. 0.510 = 1J24 = O.OO!. 

c. The income distribution is skewed, and the mean would be 
unrepresentably large. 

5.67 0.334 = 0.012. 

5.69 a. (0.25) (0.08) = 0.02. 

b. Intuitively it seems that two things happening at the same 
time ought to have a smaller probability than only one or the 
other happening. 

c. Thunder and lightning are not independent events, and the 
probabilities cannot simply be multiplied. 

5.71 a. 0.07 + 0.29 = 0.36. 

b. (0.07) (0.29) = 0.02. 

c. (1 - 0.07) (l - 0.29) = 0.66. 

5.73 (0.05) (0.10) = 0.005. 

5.75 a. 2.5% + 2.5% = 5.0%. 

b.2.5%. 

c. 47.5%. 

5.77 The probability that a new member is chosen first is i2. The 
probability that the next person is new is fI-. The remaining probabili­
ties become to, ~, and is. The product of these probabilities gives the 
overall probability that all five are new members. 
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5.79 a. Figure A.10. 
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b. JL = 0(0.05) + 1 (0.19) + 2(0.31) + 3(0.28) + 4(0.14) + 
5(0.04) + 6(0.001) = 2.42. 

c. 6(0.40) = 2.40. 

d. Yes. 

6.1 To learn about values of parameters in a population. 

6.3 Parameter. 

6.5 The sample mean, percentage, and standard deviation are sta­
tistics; the population mean, percentage, and standard deviation are 
parameters. 

6.7 From many different samples from the same population, com­
pute a statistic from each sample, and the mean of these statistics equals 
the population parameter. 
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6.9 a. 10 - 2 = 8 to 10 + 2 = 12. 

b. This is one of many possible confidence intervals from dif­
ferent samples, and hopefully it is one of the 95% of all confi­
dence intervals that contain the true population mean. 

6.11 A large sample, a low degree of confidence. 

6.13 We can generalize from the data in the sample to the entire 
population without having to measure every element in the population. 

6.15 a. The standard deviation of the sample means (the standard 
error of the means) will be smaller than the standard deviation 
of the sample medians (the standard error of the medians). 

b. A small standard deviation tells us that the observations are 
not very different from each other and that they are all close to 
the mean. When an estimate has a small standard deviation 
(standard error), then each statistic is close to the value of the 
population parameter. 

6.17 Because we cannot find the parameter value, we use sample data 
to estimate the parameter. 

6.19 a. The tanks must be distributed randomly to the various battle­
fields and captured randomly. 
b. If the latest batch of tanks were sent to a particular front and 
many tanks were captured there, the estimate would be too high. 
Similarly, if older tanks were sent to a particular front and not 
many tanks were captured there, the estimate would be too low. 

6.21 A high degree of confidence for the interval. 

6.23 a. They could be opposed or not have any opinion. 

b. Whether the sample was drawn in a proper way, how many 
people responded to the survey, whether the questioning was 
done over the telephone or face to face, how the question was 
formulated, where in the interview the question was placed, etc. 

c. The confidence interval goes from 56% - 2% = 54% to 
56% + 2% = 58%. This interval is constructed according to a 
method such that with many samples and therefore many inter­
vals, 95% of these intervals would contain the true population 
percentage and 5% of the intervals would not. We do not know 
if this particular interval is one of the many or one of the flukey 
few. 
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6.25 Not true. Hopefully, the inteIVal from 70 to 75 is one of the many 
intervals that contain the population percentage, but it may be one of 
the few that do not contain the true value. 

6.27 a. A sample of students. 

b. A population of clarinet players. 

c. A population of voters. 

d. A sample of war deaths. 

6.29 a. The confidence interval from 18 to 38 is constructed accord­
ing to a method such that if we had many different inteIVals from 
different samples, then 95% of all these intervals would contain 
the true difference and 5% of the inteIVals would not contain 
the difference. We do not know whether this particular inteIVal 
is one of the few or one of the many. 

b. Since the confidence inteIVal for the difference does not con­
tain 0, it does not seem as if the two percentages are equal in 
the population. 

6.31 a. This interval from 6 to 18 is constructed according to a 
method such that if we had many inteIVals from many different 
samples, then 95% of all the inteIVals would contain the true 
difference and 5% of the inteIVals would not. Whether this par­
ticular inteIVal is one of the many or one of the few, we do not 
know. 

b. Since the inteIVal does not contain the value 0, it does not 
look as if the difference could be 0 and that the two percentages 
could be equal. 

6.33 a. This inteIVal from 5.22 to 6.70 is constructed according to a 
method such that if we had many inteIVals from many different 
samples, then 95% of all the intervals would contain the true 
difference and 5% of the inteIVals would not. Whether this par­
ticular inteIVal is one of the many or one of the few, we do not 
know. 

b. Since the confidence inteIVal goes from 5.22 to 6.70, the 
claim of a mean flow of at least 5.00 seems justified. 

6.35 a. This interval from 0.90 to 1.28 is constructed according to a 
method such that if we had many inteIVals from many different 
samples, then 95% of all the intervals would contain the true 
difference and 5% of the inteIVals would not. Whether this par-
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ticular interval is one of the many or one of the few, we do not 
know. 

b. It could be that these data come from a population where 
the mean equals 1.00 ppm, since that value is included within 
the confidence interval. 

6.37 Most confidence intervals are found by computing the sampling 
error and finding the sample statistic plus and minus the sampling 
error. 

6.39 a. Each poll represents a different sample. It is not surprising 
that different samples give different results. 

b. The samples did not have the same number of observations. 

c. 38 to 46, 35 to 43, 38 to 44, 36 to 44; Figure A.ll. 

d. 38 to 43. 

e. Since the sampling error is approximately equal to 100/.[n, 
there are about 600 people in the polls with a 4% sampling error 
and 1,100 people in the poll with a 3% sampling error. 

f. The total Bush vote becomes (0.42) (600) + (0.39) (600) + 
(0.41) (1,100) + (0.40)(600) = 1,170. The total number in the 
four polls becomes approximately 2,900. His percentage be­
comes 1,170/2,900 = 40 and with sampling error of 
100/ ../2,900 = 2. 

g. 38 to 42. 

h. It compares well, and the differences may well result from 
rounding errors. 

Percentage 
34 36 38 40 42 44 46 48 

I i I I i I I 

--------- CNN/ USA Today 

Newsweek 

Los Angeles Times 

Washington Post 

Figure A.II Confidence intervals for Exercise 6.39c 
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6.41 a. 7.0 ± (2.01)(2.5/j.!9) = 6.3 to 7.7. 

b. This interval from 6.3 days to 7.7 days is constructed accord­
ing to a method such that if we had many intervals from many 
different samples, then 95% of all the intervals would contain 
the population mean number of days and 5% of the intervals 
would not. Whether this particular interval is one of the many 
or one of the few, we do not know. 

6.43 a. 12.3 ± (2.086)(0.3) = 11.7 years to 12.9 years. 

b. We are 95% confident that the population mean lies between 
11.7 years and 12.9 years. 

6.45 a. 56 ± 1.96 
61 * 39 5 * 95 

41 + 807 = 56 ± 15 = 41 to 71. 

b. This interval is constructed according to a method such that 
ifwe had many intervals from many different samples, then 95% 
of all the intervals would contain the population value of the 
difference between the two percentages and 5% of the intervals 
would not contain the population difference. 

c. The interval does not contain 0, and it seems as if the two 
percentages are different in the populations of young smokers. 

6.47 a. 61 ± 1001.J531 = 57 to 65. 33 ± 1001.J531 = 29 to 37. 

b. The number of companies that expected improved customer 
service is larger than the number that found this to have been 
the case. 

6.49 a. 0.56 * 502 = 281 "morning people" and 0.44 * 502 = 221 
"night owls." 

b. 53 ± 1001 .J281 = 53 ± 6.0 = 57.0 to 59.0; 
39 ± 1001.J221 = 39 ± 6.7 = 32.3 to 45.7. 

c. 45 ± 6.0 = 39.0 to 51.0; 37 ± 6.7 = 30.3 to 43.7. 

d. 74 ± 6.0 = 68.0 to 80.0; 64 ± 6.7 = 57.3 to 70.3. 

e. In b the confidence intervals do not overlap, indicating that 
the two groups are different; in c and d the intervals overlap, 
indicating that the two groups do overlap. 

f. When we use a sample size of 502 the sampling error becomes 
4.4. 

g. Using 4.4 makes a difference in d. 
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6.51 a. 3.96 ± 2.064(0.35) = 3.96 ± 0.72 = 3.24 to 4.68. 

b. The interval does not contain the value 5, which implies that 
5 is not a possible value of the mean number of heads when 
spinning a coin 10 times. 

CHAPTER 7 HYPOTHESIS TESTING 

7.1 The sample data lead to rejection of a null hypothesis. 

7.3 a. Whether a parameter is equal to a particular value. 

b. The alternative hypothesis asks whether the parameter is 
equal to all possible values not specified in the null hypothesis. 

e. Ho and Ha. 

7.5 We reject a null hypothesis when the sample statistic is very dif­
ferent from the value of the parameter specified in the null hypothesis. 

7.7 a. The probability of getting the observed data or more extreme 
data from a population when the null hypothesis is true. 

b. The data belong to a very unlikely set of data coming from 
the population where the null hypothesis is true. Since we do 
not believe the data are particularly unlikely, the only explana­
tion is that the data come from another population. Thus, we 
reject the null hypothesis. 

e. A significance level is a small probability chosen by us before 
we look at the data. A p-value is computed from the data. 

7.9 a. 0.05. 

b. Among all the true hypotheses tested, 5% of them will erro­
neously be rejected. 

7.11 a. ll'. 

b. Alpha. 

7.13 a. Ho: 'TT = 0.5. 

b. Ho: n = 50%. 

7.15 The significance level and the sizes of the two samples. 

7.17 a. There is no difference in the population mean scores for the 
two groups. 
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b. The mean score for the outdoor group is larger than the 
mean score for the indoor group. 

7.19 a. The population mean salary in 1995 equals $43,000-a hy­
pothesis stating that there has been no change. 

b. Because of inflation and possible salary raises, the mean salary 
in 1995 may be higher than in 1985. 

7.21 The probability of getting our data or more extreme data is 0.50, 
given the null hypothesis. 

7.23 In a one-tailed test the alternative states that the parameter is 
larger (smaller) than a given value. In a two-tailed test the alternative 
hypothesis states that the parameter is different from a given value. 

7.25 a. Not every jar could weigh exactly 18 oz. 

b. The weight of the next jar would be different. 

c. Buy a random sample of jars and find the mean weight to use 
in a test of the null hypothesis that the population mean equals 
18 oz. 

7.27 a. Because of the small P.value. 

b. The difference between the national value of 53% and the 
sample value of 45% is not very large. 

7.29 The null hypothesis often states that there is no difference or 
there has been no change. 

7.31 a. The probability is 0.025 of getting our data or more extreme 
data from a population where the parameter has the value spec­
ified in the null hypothesis. 

b. Because the P.value is so small, we reject the null hypothesis. 

7.33 a. We reject the null hypothesis of equal mean goodness be­
cause we do not believe our data belong to such an unusual set 
of possible data. 

b. It could be that the null hypothesis is correct and that we got 
some very unusual data in our particular sample. The probability 
of the observed data or more extreme data equals 0.001. 

c. A difference of 0.4 point on a 7-point scale may not be very 
interesting. 
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7.35 When the null hypothesis is true, then 5% of the samples will be 
so extreme that we reject the null hypothesis. 5% equals 1 in 20, a small 
number according to Fisher. 

7.37 A result can be statistically significant and at the same time sub­
stantively very trivial. 

7.39 a. Is the population mean speed equal to 5.0? A sample has 
mean speed of 5.96. This translates to a t-value of 2.49 with 47 
degrees of freedom. We get this or a larger value of t only 49 out 
of 10,000 times in samples from a population where the mean 
equals 5.0. 

b. We do not think our sample came from that population, and 
we reject the null hypothesis. The population mean is larger 
than 5.0. 

7.41 a. The difference between the two perceived discrimination 
means 17.3 and 11.4 is statistically significant. The probability of 
getting this observed difference or more from a population 
where the means are equal is less than 0.001. The difference 
between the mean concerns about starting a new family is statis­
tically significant, with p-value less than 0.05. 

b. The women who had experienced discrimination had higher 
depression scores. 

7.43 We could test the null hypothesis that the percentage of support 
for the president is 50, and we might not be able to reject it. 

7.45 a. They vary around 1.4 because of the random variation from 
one sample to the next. 

b. t = (2.0 - 1.4) 10.5 = 1.2. 

c. It is not unusually large, and our sample could have come 
from a population where the mean equals 1.4. 

7.47 a. Ho: J.L = 5.1 days. 

b. t = (7.0 - 5.1)/(2.5/J49) = 5.32 with 48 d.f., P < 0.001. 

c. It is very unlikely to get a sample mean of 7.0 or more if the 
population mean equals 5.1; reject the null hypothesis. The 
workers are sick more often. 

7.49 a. Ho: n = 73.2%. 

b. z = (67 - 73.2)1.J67 * 33/300 = 2.18 and p = 0.015. This 
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p-value is so small that we reject the null hypothesis. Significantly 
fewer city employees drive alone. 

c. The reduction does not seem very large. 

7.51 Ho: 7T = 0.5, where 7T is the probability that a randomly chosen 
person is a Baptist. z = (103 - 0.5 * 190)/yf190 * 0.5 * (1 - 0.5) = 
1.l6. Since z < 1.96, we cannot reject the null hypothesis. The number 
of Baptists and Methodists in the population may be the same. 

7.53 z = (98 - 80)/.J98 * 2/50 + 80 * 20/200 = 6.74, P < 
0.0001. Reject the null hypothesis. Since the null hypothesis states that 
the two percentages are equal in the population, an estimate of this 
common value is the total number of Democrats divided by the total 
number of car owners, 209/250 = 83.6%. When we use this common 
percentage in the denominator, then z = 3.07 with P = 0.001. 

7.55 Ho: II = 50%. z = (134 - 200 * 0.5)/yf200 * 0.5 * (1 - 0.5) = 
4.81, P < 0.001; reject the null hypothesis. More men ride the roller 
coaster. 

7.57 The binomial distribution with 7T = 0.5 and n = 10 gives p = 

(120 + 45 + 10 + 1)/1,024 = 176/1,024 = 0.17. We cannot reject 
the null hypothesis that 7T = 0.5, and it may be that the probability is 
the same for girls and boys. 

7.59 z = 77.8 - 44.4 = - 2.91 
.J 61.1 (100 - 61.1) .J i6 + i6 

with P = 0.0018. Reject the null hypothesis; there is a difference be­
tween female and male college students. 

_ ___ _ _ • _ __ __ __ ____ ____ _ _ __ _ _ _ _ _. J 

8.1 Values of one variable correspond to certain values of the other 
variable. 

8.3 There may be no relationship between the two variables in the 
population from which the data came. 

8.5 Is the relationship statistically significant? 
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8.7 When it is not causal and can be explained away by one or more 
other variables. 

8.9 a. Could the relationship have been produced by another vari­
able? 

b. We know enough about the two variables to conclude that 
temperature could be another variable producing the observed 
relationship. 

c. It might be hard to identify other variables that might have 
produced the observed relationship. 

d. Historically there have been many relationships that were 
thought to be causal. For example, witches produced illnesses. 

8.11 0.17 indicates a weak relationship, 0.87 indicates a strong rela­
tionship. 

8.13 The relationship exists not only in the sample but also in the 
population from which the sample came. 

8.15 False. We can always predict from one variable to another with­
out the variables necessarily being causally related. 

8.17 The best would be knowing that one variable actually causes an­
other. Often the independent variable is the one that comes first in 
time. 

8.19 There are different statistical methods for different types ofvar­
iables, and we need to determine the variable types before choosing 
the proper method. 

8.21 a. X is continent and Y is country GDP. 

b. Mean number of runs per game and number of games won 
in a season for baseball teams. 

c. Ranking of the Big Ten football teams one week and the next 
week. 

8.23 Multivariate statistical methods. 

8.25 A relationship can be spurious or causal. The data on the two 
variables alone cannot be used to determine whether the relationship 
is spurious or causal. 

8.27 With observational data it is very difficult to prove causality, and 
it can be done only if all other possible variables are brought in to see 
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what happens to the observed relationship. All other possible variables 
can never be considered. 

8.29 Other variables must be brought in to see if they can account 
for the observed relationship. 

8.31 Smoking and size of baby may be a spurious or a causal relation­
ship. Without information on other variables, or running an experi­
ment, you cannot conclude what type of relationship it is. There may 
be other variables that make women smoke and also make them have 
smaller babies. 

8.33 a. They must have asked women questions about how the 
women felt about their bodies. The conflicting percentages may 
have something to do with the formulations of the questions. 

b. It may be spurious. It would be hard to prove that the rela­
tionship was causal. 

8.35 a. Table A.5. 

b. 214 of 665 is 32%. 

c. 175 of 772 is 23%. 

d. 32 - 23 = 9 tells what percentage more were bald. 

e. Baldness is the independent variable, and we compare per­
centages for categories of the independent variable. 

f. The people are self-selected, since only those with heart at­
tacks came to the hospital. It would have been preferable to 
follow one group of bald men and another group that were not 
bald and see how many in each group had heart attacks. 

g. Nothing. 

8.37 a. The choices of brands is different. 

TableA.5 Distribution for Exercise 8.35a 

Bald 

Yes No Total 

Ailment 
Heart 214 451 665 

Other 175 597 772 

Total 389 1048 1437 
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TableA.6 Percentage distributions for Exercise 8.37b 

Race 

Black White Total 

Marlboro 9 71 68 

Brand 
Newport 56 6 8 

Kool 9 1 1 
Other 27 22 24 

Total 101 100 101 

b. Table A.6. Most blacks prefer Newports, most whites prefer 
Marlboros. 

c. The percentages are very different, indicating a fairly strong 
relationship. 

d. The choices may have something to do with how the brands 
are advertised. 

8.39 a. There are more higher percentages in the at home row. 

b. We would make the wrong prediction for the last three years, 
for 52%, 58%, and 58%. 

c. Most women stayed at home that year. 

d.32%. 

e. She is in the labor force. 

f. 42% of the time. 

g. For each year we could make a more accurate prediction. 

h. There has been an increase of mothers in the labor force 
over this time. 

i. We cannot tell about causality from these data alone. 

CHI SQUARE ANALYSIS FOR TWO 

9.1 Student project. 

9.3 A table with rows and columns used to display frequencies. 
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9.5 Phi. 

9.7 The size of chi-square has nothing to do with causality. It is only 
used to find the p-value. 

9.9 a. Yes. The two columns are different. 

b. 0.62, moderate. 

c. No, the null hypothesis is rejected because of the small p­
value. 

d. Maybe. 

9.11 The relationship is very weak. It could have been produced by 
chance alone. 

9.13 a. Yes. The column percentages are different. 

b. Weak. 

c. Yes, small p-value. 

d. We cannot tell about causality from these data alone. 

9.15 a. Baldness, since it comes first in time. 

b. A relationship exists in these data, but it is weak. The null 
hypothesis of no relationship in the population is rejected. We 
cannot tell about causality. 

9.17 a. Yes. The column percentages are different. 

b. The relationship seems weak. 
c. Statistically significant. 

9.19 a. There are more and more no answers with increased school­
ing. More children have an opinion with increased schooling. 

b. There is a weak but statistically very significant relationship. 

9.21 a. Table A.7. 

Table A.7 Distribution for Exercise 9.21a 

Sentence 

Course Jail Total 

New crimes 
Yes 6 18 24 
No 26 22 48 

Total 32 40 72 
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TableA.8 Distribution for Exercise 9.25a 

Gender 

Men Women Total 

Elected 
Yes 36 13 49 

No 41 7 48 

Total 77 20 97 

b. There is a weak but statistically significant relationship. 

c. It is not clear that the sample is a proper random sample. 

9.23 Most delinquent boys do not wear glasses and most nondelin­
quent boys wear glasses, so there is relationship between the two vari­
ables in these data. It is moderately strong, and we reject the null hy­
pothesis of no relationship in the population of all boys. 

9.25 a. Table A.8. 

b. There is a relationship in these data. It is weak and not sta­
tistically significant. You cannot conclude anything about cau­
sality. 

9.27 There is a relationship in these data. It is moderately strong and 
statistically significant. A p-value would determine how significant it is. 
From these data alone you cannot conclude anything about causality. 

9.29 a. Table A.9. 

b. The two columns are different, and there is a relationship in 
these data. 

. 366(73 * 74 - 109 * 110)2 
c. ChI-square = ---'--------~ 

183 * 183 * 182 * 184 

Table A.9 Distribution for Exercise 9.29a 

Birthday 

January-June July - December 

Draft number 
1-183 91 92 

186-366 91 92 

Total 182 184 

Total 

183 

183 

366 
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TableA.lO Distribution for Exercise 9.31a 

IQ 

Low High Total 

Crimes 
0, 1 806 1158 1964 

2+ 382 161 543 

Total 1188 1319 2507 

d. Reject the null hypothesis that chance alone produced the 
observed table. The lottery does not seem random. 

9.31 a. Table A.I0. 

b. Yes. The columns of percentages will not be the same. 

c. Phi = 0.24. 

d. Chi-square = 146.59 on I d.f. and p < 0.0001. Reject the null 
hypothesis of no relationship in the population. 

e. Among the low IQ men there are more with 2 or more crimes 
than among the high IQ men. We do not know from these data 
alone whether the relationship is causal. 

9.33 a, b. Table A.II. 

c. Yes. The two percentage distributions are different. 

d. V= 0.33. 

e. Student project. 

TableA.ll Frequencies and percentages for Exercise 9.33a, b 

Location 

N.A. S.A. Total N.A. S.A. 

Catholic 190 310 500 38% 69% 

Religion Jew 10 10 20 2 2 
Protestant 120 30 150 24 7 
Other 180 100 280 36 22 

Total 500 450 950 100% 100% 
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f. Chi-square = 103.31 on 3 d.f. and p < 0.0001. Reject the 
null hypothesis of no relationship in the population. 

g. Chi-square = 103.27 on 2 dJ. and p < 0.0001. Still reject the 
null hypothesis. 

h. The difference between the two chi-squares equals 0.04 and 
1 d.f. 

9.35 a. Yes. It looks as if the percentage columns would be different. 

b. Weak. 

c. Chi-square = 82.07 on 3 d.f. and p < 0.0001. Reject the null 
hypothesis of no relationship between the variables in the pop­
ulation of all registered voters. 

d. V= 0.14. 

9.37 a. Yes. 

b. V= 0.34. 

c. Chi-square = 17.64 on 2 d.f. and p = 0.0001. Reject the null 
hypothesis that these data could have occurred by chance alone. 

d. There are more women in the lower ranks because there are 
now more women working as college faculty and they have not 
reached the top rank yet. 

9.39 a. Yes. 

b. V= 0.30. 
c. Chi-square = 11.69 on 2 d.f. and p = 0.003. The relation­
ship could not have occurred by chance alone. 

d. Proportionally, East Germany's women got the most medals 
and the Soviet Union's women got the fewest medals. 

9.41 There is a relationship in these data. Phi = 0.21. Chi-square = 
4.63 on 1 d.f. and p = 0.031. The relationship is statistically significant. 

9.43 (3 - 1)(4 - 1) = 6 d.f. 

9.45 Table A.12. Phi = 0.19. Chi-square = 9.45 on 1 d.f. and p = 

0.002. 

9.47 There is a relationship. V = 0.46. Chi-square = 181.97 on 1 d.f. 
and p < 0.0001. Reject the null hypothesis of no relationship. You can­
not tell about causality from these data alone. 

9.49 a. Table A.13. 
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Table A.12 Distribution for Exercise 9.45 

Car 

Saab Volvo Total 

Vote 
Democrat 49 160 209 

Republican 1 40 41 

Total 50 200 250 

TableA.13 Distribution for Exercise 9.49a 

Proteinuria 

Yes No Total 

Hypertension 
Yes 28 21 49 

No 82 286 368 

Total 110 307 417 

b. There is a relationship in these data. Phi = 0.25. Chi-square 
= 27.06 on 1 dJ. and p < 0.0001. Reject the null hypothesis of 
no relationship in the population. 

9.51 There is a relationship in these data. V = 0.26. Chi-square = 
75.89 on 6 d.f. and p < 0.0001. Reject the null hypothesis of no rela­
tionship in the larger population. 

9.53 a. They are different. 

b. Chi-square = 5.61 on 5 d.f. and p = 0.35. V = 0.14. The re­
lationship is weak and not significant. 

9.55 a. There is a relationship in these data. Phi = 0.12. Chi-square 
= 1.31 on 1 d.f. with P = 0.29. 

b. Here there should be no difference because of the alphabetic 
division. 

9.57 The percentages are reported for the rows. This implies that 
whether or not the nuns developed Alzheimer's disease is the inde­
pendent variable. Since their linguistic ability was measured first, it 
makes sense to use linguistic ability as the independent variable. 
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b. There is a relationship in these data. Phi = 0.76. Chi­
square = 14.31 on 1 d.f. with P = 0.0002. The null hypothesis is 
rejected. You cannot tell about causality. 

9.59 Student project. 

CHAPTER 10 REGRESSION AND CORRELATION FOR 

TWO METRIC VARIABLES 

10.1 A measure of strength of the relationship between two metric 
variables, indicating how close the points in the scatterplot are to the 
regression line. 

10.3 One independent variable. 

10.5 a. Student project. 

b. Slope and intercept. 

10.7 a . The independent variable along the x-axis and the depen­
den t variable along the y-axis. 

b. Number of commercials. 

c. The independent variable. 

d. The points fall in a scatter from the lower left corner to the 
upper right corner of the graph. 

10.9 Isolated points have a large impact. The correlation coefficient 
would increase. 

10.11 All the points fall on a (45-degree) line. 

10.13 a. + 1, if one believes that wealthier people should pay more 
tax. 

b. - 1. As education goes up, illiteracy should go down. 

c. O. There should be no correlation. (There may be a positive 
correlation in our society.) 

10.15 a. 36.1 calories. 

b. This is an extrapolation from the observed data. If the re­
lationship follows the same line, then a food with no fat is pre­
dicted to have 36.1 calories. 

10.17 y. 
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10.19 a. The regression sum of squares and the residual sum of 
squares. 

b. The regression sum of squares is found by squaring the dis­
tance from the regression line to the mean line for each ob­
servation and adding the squares. The residual sum of squares 
is found by squaring the distance from the observed point to 
the regression line for each observation and adding the 
squares. 

10.21 a. All the effect on the dependent variable comes from the 
independent variable. 

b. No effect. 

c. Plus or minus one. 

10.23 a, b. Regression gives the form of the relationship, while cor­
relation gives the strength of the relationship. Both are needed. 

10.25 Positive. 

10.27 Use the regression or the correlation coefficient. 

10.29 a. The correlation coefficient becomes larger, given that ev­
erything else stays the same. 

b. A larger correlation coefficient gives a smaller p-value. 

10.31 a. When the dependent variable is a dummy variable and the 
independent variable is a metric variable. 

b. Purchase of a Chevrolet or a Cadillac as a function of in­
come. 

10.33 a. A horizontal with an intercept of 183 and slope of O. The 
correlation coefficient is expected to equal O. 

b. The line has a negative slope, meaning that early months 
have a larger mean draft number and late months have a 
smaller mean draft number. The correlation is strong between 
the two variables. 

c. A t-value of that magnitude has a small p-value. Reject the 
null hypothesis that the relationship between the variables is 
due to chance only. 
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10.35 a. The intercept equals the mean of the chocolate desserts. 
The slope equals the difference between the two means. 

b. No, t is too small to be statistically significant. 

10.37 a. The more people who have been to college and therefore 
have higher incomes, the fewer poor people there would be. 

b. No. The p-value is so small that we reject the null hypothesis 
that the relationship occurred by chance alone. 

c. We cannot tell from these data. 

d. Washington, D.C., is unusual because as the nation's capital 
it has many people with college degrees working for the gov­
ernment, while at the same time it has many poor people. 

10.39 a. Sam's line will be steeper. 

b. Only for Sam's data. 

c. Yes, it would seem so. It may depend on the correlation co­
efficients between Yl and X and between 1'2 and X 

10.41 a. The higher the dose, the more animals responded. 

b. With a one-unit increase in dosage, the proportion respond­
ing increases by 0.13. The relationship is statistically significant. 
Reject the null hypothesis that the two variables are not related 
in the larger population. 

c. You do not know the strength of the relationship, and you 
do not know about causality. 

10.43 a. A decrease of 3.47 seconds. 

b. A decrease of 13.525 seconds. 

c. His time was 3:44.39 - 3:43.82 = 0.57 seconds slower than 
predicted. 

d. 76.07 - 0.3468 * 93 = 43.82 or 3:43.82 minutes. 

10.45 a. There is a strong positive relationship. Two ships that differ 
by one ton will on the average differ by 0.00062 crew members. 
The relationship is statistically significant, and there is every 
reason to think that the relationship is causal. 

b. 6.2 crew members. 

c. When tonnage = 192, predicted crew size becomes 10.7 
men. When tonnage = 3246, predicted crew size equals 29.7 
men. 
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Figure A.12 Scatterplot and regression line for Exercise l0.47a 

10.47 a. Figure A.12. 

b. It is negative, strong, and statistically significant. 

c. Faculty ranks, not all schools may have faculty in all the pro­
fessions, etc. 

d. The points above the line represent more service-oriented 
professions, while the professions below the line are more ac­
ademically oriented professions. 

10.49 a. r = 0.40. 

b. t = 2.23 on 26 d.f. and p = 0.017. Significant. 

c. Number of wins = 45.8 + 7.0 mean number of runs. 

d. One more run per game can be expected to produce 7 more 
wins, on the average. 

10.51 a. Road distance = 72.6 + 1.11 direct distance. 

b. If the distances are the same, the points will lie on a line 
with slope 1 through the origin. 

c. t = 1.40 on 13 dJ., so P = 0.09. You cannot reject the null 
hypothesis that the intercept equals O. 
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d. The United States has many east-west and north-south roads, 
while roads in England tend to connect cities more directly. 

10.53 a, b. 
Regression Correlation 
number of wins = 118 - 8.15 ERA 
number of wins = 45.8 + 6.98 number runs 
number of wins = 71.2 + 0.056 number of home runs 
number of wins = -16 + 360 batting average 

-0.54 
0.40 
0.22 
0.46 

Improving (lowering) the ERA by one run would add 8.5 more wins. 
Scoring one more run per game would lead to 7 more wins. Scoring 
100 more home runs in the season would lead to 5.6 more wins. Im­
proving the batting average by 0.1 would lead to 36 more wins. 

10.55 a. Mean for batting percentage; median for the others. 

b. number of hits = - 9.0 + 0.30 number of times 
at bat r = 0.98 

number of runs = - 2.2 + 0.57 number of hits r = 0.95 
number of runs = - 7.1 + 0.17 number of times at 

bat r = 0.93 
number of home runs = - 2.7 + 0.29 number of 

runs batted in r = 0.91 
number of home runs = - 21.1 + 120.1 batting per-

centage r = 0.42 

These are the regression equations for the four highest and the lowest 
correlation coefficient. 

10.57 The scatterplot looks linear, with a positive relationship. A re­
gression analysis gives 

age of chief = - 51.2 + 2.7 mean age of members 

For two groups where the mean ages of the members differ by one 
year, on the average the ages of the chiefs differ by 2.7 years. The 
strength of the relationship is r = 0.70. A test for the null hypothesis 
that the relationship occurred by chance alone gives t = 
2.62 on 7 d.f. and p = 0.03. This p-value is borderline significant, 
mainly because the sample is small. 

10.59 a. Student project. 

b. Student project. 
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Figure A.13 Scatterplots and regression lines for Exercise lO.61a 

c. Student project. 

d. Gives an approximate fit for every person. 

32.5 

e. The predicted graduating GPA is 0.6 + 0.74 * 1.9 = 2.0; it 
looks as if Elmer will make it. 

f. The equation would stay the same, and the correlation would 
be weaker. 

10.61 a. Figure A.13. 

b. Both relationships are positive. The male relationship has a 
smaller slope than the female relationship. The correlations 
seems to be about the same. 

c. Female: incorporated = - 2.70 + 0.14 uptake 
Male: incorporated = - 0.67 + 0.10 uptake 

d. The line for the female rats is steeper than the line for the 
male rats, and the line for the females therefore has a smaller 
intercept than the line for the male rats. 

e. The predicted values are - 2.70 + 0.14 * 25 = 0.80 and 
- 0.67 + 0.10 * 25 = 1.83, so the difference becomes 1.83 -
0.80 = 1.03. 
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f. Even though the means are not very different, for a fixed 
uptake the male rats have a higher incorporated value. 

10.63 a. Because the states have different numbers of hospital beds 
and for a variety of other reasons, Medicaid percentages differ 
from one state to the next. 
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b .. Figure A.l4. 

c. The three southern states plus Indiana and North Dakota 
have more hospital beds per population than can be explained 
by the percentage of the population receiving Medicaid assist­
ance. The states with fewer beds are all in the northern part of 
the country. North Dakota has the largest residual and is there­
fore the most unusual state. 

d. Beds perl 00,000 population = 286 + 9.4 percent receiving 
Medicaid, r = 0.44, t = 1.38 on 8 d.f., and p-value = 0.10. Two 
states that differ by one percentage point of people receiving 
Medicaid differ on the average by 9.4 hospital beds per 100,000 
population. The relationship is moderately strong. The p-value 
is so large that the relationship may have occurred by chance 
alone. 
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Figure A.14 Scatterplot for Exercise lO.63b 
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Figure A.I5 Scatterplot of three variables versus dosage. 

10.65 a. Figure A.15. 

b. As the dosage goes up, the litter size goes down, the per­
centage malformed goes up, and the fetal weight goes down. 

c. litter size = 11.85 - 0.75 dose r = - 0.96 P = 0.02 
percent malformed = 0.3 + 19.9 dose r = 0.97 P = 0.02 
fetal weight = 0.95 - 0.09 dose r = - 0.96 P = 0.02 

The relationships are all strong and statistically significant. 

d. No. They are measured in different units. 

e. Each of the three analyses are based on four observations. 
With the individual data there would have been about 100 ob­
servations in each analysis. There would have been variation 
around each of the mean points, and the effect of the residual 
variable would have been larger. But with larger samples, the 
p-values might be smaller. 

10.67 The scatterplot shows a linear, positive relationship. 

percent fat = 3.2 + 0.55 age r = 0.79 

This gives t = 5.19 on 16 dJ. and p = 0.0001, so the relationship is 
statistically significant. You do not know if the relationship is causal. 

10.69 a. The scatterplot shows a relationship. 

mortality = - 21.8 + 2.4 temperature r = 0.87 
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This gives t = 6.76 on 14 dJ. and p < 0.0001. The relationship is sig­
nificant. 

b. From these data alone we can only guess about causality. 

10.71 Student project. 

10.73 a. Slope 1 and intercept O. 

b. Slope 1 and intercept 5. 

c. Slope 1.1 and intercept O. 

d. Groom = -1.6 + 1.13 bride. 

e. The grooms tend to be older than the brides, particularly in 
older couples. 

f. In the scatterplot each couple can be identified, while two 
stemplots show the two distributions separately. 

CHAPTER 11 ANALY IS OF VARIANCE FOR A CATEGORICAL 

D A METRIC VARIABLE 

11.1 a. Divide the number of reported crimes by the population 
size. 

b. Larger states would have more crimes just because the states 
are larger. 

c. We could look at individual states and ask if they differ from 
other states, but then there would be no independent variable 
to explain why the assaults differ. We think region has an effect 
on crimes, so we make region the independent variable. 

11.3 a. Gender is the independent variable and crime rate is the 
dependent variable. 

b. Categorical and metric. 

11.5 Student project. 

11.7 The rates would all be the same in each state. 

11.9 Question 3. 

11.11 a. Five. 

b. 50 - 6 = 44. 
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11.13 Student project. 

11.15 a. The one variable we are interested in is pulled out as the 
independent variable. All other variables are combined into the 
residual variable. 

b. When an element is measured, the difference between the 
observed value and the true value becomes the error in the 
measurement. 

11.17 If there is no difference within each pair, then the two values 
are alike. Plotting such a point, it will lie on the 45-degree line through 
the origin. 

11.19 a. 56.6 - 48.6 = 8.0. 

b. Yes. 

11.21 a. Region. 

b. All independent variables other than region. 

c. If R2 is the proportion explained by the independent vari­
able, then 1 - R2 is the proportion explained by the residual 
variable. 

d. The total sum of squares. 

e. R2 = 1.00. 

f. They would all be equal. 

11.23 There is a weak relationship between the variables. 

11.25 a. The strength of the relationship between university and 
score is R = .J 0.40 = 0.63. There are significant differences be­
tween the universities. 

b. Which universities are different from others and which are 
not? 

11.27 a. There is a relationship between the country variable and 
number of trips in these data. The relationship is statistically 
highly significant. 

b. The strength of the relationship. 

11.29 a. 109.6 mm for the females and 113.4 mm for the males. 

b. 109.6 - 113.4 = - 4.8 gives t = - 3.484 on 18 dJ. with 
p = 0.0013 (TableAI4). 



718 An s w e r s toO d d - N u m b ere d Ex ere i s e s 

Table A.14 Analysis of variance for Exercise 11. 49b 

Degrees 
of 

Source Sum of squares freedom Mean square F-ratio p-value 

Gender 115.2 1 115.2 12.14 0.0026 

Residual 170.8 18 9.489 

Total 286.0 19 

Note that (- 3.484)2 = 12.14 since we have Fon 1 and something degrees offreedom. 
This means that the P.value for F equals the probability that t < - 3.484 or t > 3.484. 

11.31 a. Figure A.16. From the scatterplot we see that there is little 
or no difference between the frozen yogurts and the ice milks, 
while the frozen desserts do not have as much flavor. 

b. 64.2, 64.0, 27.2. 
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Figure A.I6 Graph for Exercise 11.31a 
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c. R = .J 6364/9395 = 0.82, for a strong relationship. F = 

3182.1/126.3 = 25.20 on 2 and 24 dJ., which gives p = 
0.000001. We reject the null hypothesis of equal means. 

11.33 a. When a southern city has a low/high score, the correspond­
ing northern city is also low/high. 

b. On the average, the northern city is 4.8 points higher than 
the corresponding southern city. 

c. For a paired test, t = 1.47 on 9 d.f. and p = 0.09. The mean 
difference is not statistically different from zero. 

11.35 a. Type of sport. 

b. Height prediction. 

c. t = (5.48 - 8.00)/J (0.322 + 0.502) = - 4.24 on 41 d.f. 
and p = 0.00006. 

d. The exact value of p tells us that the results are very signifi­
cant. If we know only that p < 0.05, then p can be anything less 
than 0.05. If P is close to that value, then the result is only 
borderline significant. If p is much smaller than that value, then 
the result is very significant. 

11.37 a. Table A.15. 

b. The strength of the relationship is R = .J0.41 = 0.64. Be­
cause of the small p-value the relationship is statistically signif­
icant, and there is a difference between zones. 
c. We can make pairwise comparisons of the zones to see which 
ones are different from each other. 

11.39 a. There are 9 positive differences and 1 negative difference. 
U sing the binomial distribution with sample size n = 10 and 

TableA.15 Analysis of variance for Exercise 1l.37a 

Degrees 
of 

Source freedom Effect Proportion Mean square F-ratio p-value 

Climate zone 7 88,866 0.41 12,695 3.93 0.002 

Residual 40 129,165 0.59 3,229 

Total 47 218,031 1.00 
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probability 71' = 0.5, P = (10 + 1)/1024 = 0.001. This p-value 
is so small that we reject the null hypothesis that 71' = 0.5. Thus, 
positive and negative differences are not equally likely. 

b. They both give statistically significant results, and the p-value 
for the sign test is here smaller than the jrvalue for the [-test. 
There may be a question of whether the differences are distrib­
uted normally enough for the [-test. 

11.41 The four means are 6.69 for center, 5.34 for home, 7.36 for 
nanny, and 5.06 for relative. Because the means are different, there is 
a relationship between cost and type of care for these data. R = 0.99, 
and the relationship is very strong. We reject the null hypothesis that 
all four population means are equal because F = 173.96 on 3 and 12 
d.f. and p < 0.0001. 

11.43 A [-test for the difference between the two means gives [= 

4.02 on 37 d.f. and p = 0.0001. There is a statistically significant differ­
ence between the groups. 

11.45 a. The mean of the differences is 67. Testing the null hypoth­
esis of 0 mean gives [ = 1.87 on 6 d.f. and p = 0.055, borderline 
significant. 

b. As unpaired data t = 0.78 on 12 d.f. and p = 0.34. 

CHAPTER 12 METHODS FOR TWO RA K VARIABLES 

12.1 a. A variable where the values can be ranked from more to less, 
but we cannot tell how much more or less one value is from 
another. 

b. Student project. 

12.3 a. A coefficient that measures the strength of the relationship 
between two rank variables with words for the values. 

b. -1 to + 1. 

c. rs. 
d. Most observations lie on the main diagonal of the table from 
the lower left to the upper right, and gamma will be positive. 

12.5 Gamma needs to be changed to z. Use Statistical Table 1 or 
statistical software to find the jrvalue. 
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12.7 Student project. 

12.9 a. Rank variable. 

b. With class rank we know only that one student is better than 
another. With GPA we know how much better one student is 
than another when performance is measured by grades. 
(Grades themselves may be a rank variable, even though it is 
treated as a metric variable for the computation of a grade 
point average.) 

12.11 Ordinal (rank) variable. 

12.13 Families at the upper end have more children than families at 
the lower end. The relationship is weak and not statistically significant. 

12.15 a. Change gamma to a value of the z-variable and find the p­
value. 

b. If the sample is not too small, the p-value will be small and 
the null hypothesis rejected. 

c. The variables have no relationship in the population of all 
grapes. 

12.17 a. Teams that were good in one season are also good in the 
other season. Teams that were bad in one season are also bad 
in the other season. 
b. Smaller. 

12.19 a. No city could overtake another and the ordering would not 
change. 

b. No city could overtake another and the ordering would not 
change. 

c. Most cities have the same ranking, but a few cities grew more 
than other cities. 

d. Reject the null hypothesis. The orderings did not occur by 
chance alone. 

12.21 a. Table A.16. Since the percentage distributions are different, 
there is a relationship between the two variables in these data. 

407336 - 595409 
b. G = 407336 + 595409 = - 0.19. 
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TableA.16 Percentage distributions for Exercise 12.21a 

Abartion stance 

Anti Mixed Pro Total 

One of the most 38% 12% 11% 14% 

Impartance Important 36 46 44 44 

Not very/not at all 25 42 45 42 

Total 99% 100% 100% 100% 

-0.19 
c. z = = -7.01. 

~4(3 + 1)(3 + 1)/9(2421)(3 - 1)(3 - 1) 

The p-value is very small and we reject the null hypothesis of 
no relationship in the population. 

d. We cannot tell from these data alone whether the relation­
ship is causal. 

12.23 Student project. 

12.25 a. Table A17. 
b. Figure A.17. 

c. The data display a very linear relationship. There is nothing 
left of the bend in the original data. 

d. rs = 0.97, with t = 17.03 on 17 d.f. and p < 0.0001. The re­
lationship is very strong and statistically significant. We do not 
know whether it is causal. 

TableA.17 Ranked years for Exercise 12.25a 

Year 1 2 3 4 5 6 7 8 9 10 

Marriages 1 2 3 4 5 6 9 8 7 10 

Divorces 1 2 3 4 5 6 7 8 9 10 

Year 11 12 13 14 15 16 17 18 19 

Marriages 13 14 15 12 11 16 18 17 19 

Divorces 11 16 13 12 14 15 17 18 19 
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Figure A.17 Scatterplot for Exercise 12.25b 

12.27 Ts = 1.00. The rank on one variable is identical to the rank on 
the other variable. 

b. The probabilities are small. Most women do not get breast 
cancer. 

c. The population has grown and that more women are ex­
posed. 

12.29 a. Figure A.18. 

b. The hours increased for a while and then decreased. Since 
the data may not be linear, we cannot use ordinary regression 
and correlation analyses. 

c. Table A.18. 

d. This relationship occurred by chance alone. Find Ts, change 
that value to t, and find the corresponding p-value. 

e. rs = 0.50, t = 1.29 on 5 dJ., and p = 0.13. We cannot reject 
the null hypothesis. 

f. The variables are both metric variables, and it may be pos­
sible to use correlation and regression analyses in some form. 

TableA.18 Rank of 
years and hours 
worked for Exercise 
12.29c 

Rank Rank hours 
year per year 

1 2 

2 1 

3 5 

4 6 

5 4 

6 7 
7 3 
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Figure A.18 Scatterplot for Exercise 12.29a 

12.31 a. Figure A.19. 

1800 2000 

b. Countries good in one subject are also good in the other 
subject, and countries not as good in one subject are not as 
good in the other subject. Hong Kong, Japan, Austria, Italy, 
and the United States are better in chemistry than they are in 
biology. 

c. Ts = 0.65. 

d. t = 2.S2 on 11 d.f. and p = O.OOS. The relationship could 
not have occurred by chance alone. 

e. We cannot tell about causality. 

12.33 a. Figure A.20 (page 726). 

b. The scatterplot shows little change from one week to the 
next. 

c. Ts = 0.9S. 
d. t = 15.19 on 10 d.f., so P < 0.0001. This does not seem to 
be a pattern that could have occurred by chance alone. 
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Figure A.19 Scatterplot for Exercise 12.31a 

CHAPTER 13 MULTIVARIATE ANALYSIS 

13.1 a. Several independent variables are used to study the depen­
dent variable. 

b. With one independent variable, the residual variable con­
tains the effects of all other variables. By pulling all the inde­
pendent variables out at the same time, we lessen the effect of 
the residual variable. 

13.3 Holding the control variable constant by looking at the rela­
tionship between the dependent and other independent variables 
within subgroups defined by the control variable. 

13.5 a. The coefficient we get when we divide the data into groups 
according to the control variable, compute a phi for each 
group, and average all the phis. 
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FigureA.20 Scatterplot for Exercise 12.33a (page 724) 

b. Divide the data into four groups. Find phi in each group 
and average the phis. 

c. The number of observations in the groups is taken care of 
in the averaging process. 

13.7 Collinearity. 

13.9 a. A variable created from a categorical variable with two cat­
egories such that one numerical value is assigned to all obser­
vations of one category and another numerical value is assigned 
to the observations of the other category. 

b. Vote, with 0 for Democrats and 1 for Republicans. 

c. A categorical variable can be included in a regression anal­
ysis. 

d. The categorical variable can have only two categories. 

13.11 Hypothesis testing or confidence interval estimation. 
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13.13 The combined effect of all variables other than the two cate­
gorical variables used in the analysis. 

13.15 a. The combined effect of the two variables over and beyond 
their separate effects. 

b. Smoking (yes/no) and drinking (yes/no) as the two inde­
pendent variables and life expectancy as the dependent vari­
able. 

13.17 We never know if we have included the proper control varia­
bles. 

13.19 a. Divide the data into Democrats and Republicans and do a 
separate analysis within each group. 

b. Average the two phis from the separate analyses. 

c. The original relationship may still be causal, since the partial 
phi is not equal to zero. 

13.21 Phi does not change with control for party, so the original re­
lationship may be causal. 

13.23 Type has a strong and significant relationship to flavor. The 
chocolate/vanilla variable and the interaction variable have weak and 
nonsignificant relationships to flavor. 

13.25 a. Positive. 

b. Positive. 

c. Large. 

d. Negative. 

e. Negative. 

f. Large. 

13.27 a. Whether a day is a school day or a weekend day, since chil­
dren play more on weekends. 

b. We may find that there is no difference in accidents between 
school days and no differences between weekend days. Thus, 
the original relationship is not causal. 

13.29 The unit for a regression coefficient is in Y per X If Y is miles 
per gallon and Xis horsepower, then the unit for the coefficient is mpg 
per hp. When X is weight, then the unit for the coefficient is mpg per 
thousand pounds. Because the units are different for the two coeffi­
cients, they cannot be compared. 
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13.31 The choice of variables to control for is a nonstatistical ques­
tion, and the choice must come from people who know about the sub­
stantive issue being studied. 

13.33 The null hypothesis rejects the notion that all three regression 
coefficients in the population equal zero. The opposite of three num­
bers being equal to zero is that at least one is different from zero. 

13.35 a. For each car there is a wide variation in scores for different 
features of the car, so the residual variable has a large effect. 
Mercedes has the largest mean score, and maybe VW has the 
lowest mean. Volvo shows the smallest effect of the residual 
variable. 

b. The strength of the relationship between type of car and 
score is a weak R = J 140/4117 = 0.18. There are no statisti­
cally significant differences between the cars because of the 
large p-value. 

c. The differences in the feature scores are not large enough 
to matter. 

13.37 Weight may still have a causal effect on miles per gallon, and 
horsepower has a spurious relationship to miles per gallon. 

13.39 a. Figure A.21. 

80 

70 
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Froz n yogurt 
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30 

-------- Frozen de en 
20~----------------------

Vanilla 
Kind 

Figure A.21 Graph for Exercise 13.39a 
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b. Table 13.15 in Exercise 13.23 shows a significant difference 
between the types, but it does not tell which type is high and 
which is low. The interaction effect does not tell us that ice 
milk is different from the other two. 

13.41 a. $2,500, since that is the coefficient for years of college. 

b. The difference would be the same for two women. 

c. Years of college gives a difference of $2,500 for two people 
who are the same on the other variables and differ by one year, 
while years of service gives a difference of $400 for two people 
who are the same on the other variables and differ by one year. 
Years of college goes from 0 to 4, and the most this variable 
can contribute to the salary is $10,000 for a person with 4 years 
of college. For a person who has worked 40 years, the variable 
years of service contributes $400 * 40 = $16,000 to the overall 
salary. 

13.43 a. Student project. 

b. incorporated = - 1.79 + 0.11 uptake + 0.83 gender 

c. For the separate analyses, the coefficients are 0.10 and 0.14. 
The weighted average of these coefficients in the multiple anal­
ysis is 0.11. 

d. gender = 0 gives incorporated 
= -1.79 + 0.11 uptake + 0.83 * 0 
= - 1.79 + 0.11 uptake gender = 1 gives 

incorporated 
= -1.79 + 0.11 uptake + 0.83 * 1 
= - 0.96 + 0.11 uptake 

e. These two lines are parallel, while the lines in Exercise 10.61 
are not parallel. 

f. 0.83. 

g. Controlling for uptake means keeping uptake constant. For 
a fixed value of uptake, the predicted score for a male rat is 
0.83 higher than the predicted score for a female rat. Thus, the 
effect of gender is 0.83. 

13.45 a. Table A.19. 

b. Phi = 0.72. 

c. Partial phi for the races, controlling for sentence, = 0.70. 

d. The relationship between the races of victims and defen­
dants may be causal. 
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Table A.19 Race of defendant and victim for Exercise 13.45a 

Race of defendant 

Black White Total 

Race of victim 
Black 

White 

Total 

1438 

228 

1666 

64 

745 

809 

1502 

973 

2475 

e. We could look at the relationship between sentence and 
race of the victim, controlling for race of the defendant, and 
the relationship between sentence and race of the defendant, 
controlling for race of the victim. 

13.47 A simple regression analysis gives 

calories = 287 + 19.8 fat r2 = 0.85 

A multiple regression analysis gives 

calories = 688 + 22.2 fat - 17.2 calories + 0.03 sodium R2 = 0.97 

The simple analysis gives a slightly larger value for the regression co­
efficient for these foods. The multiple analysis shows that sodium can 
be dropped. 

- . ~. -- - - - - - - --- -

14.1 Student project. 

14.3 Student project. 

14.5 Student project. 

14.7 Student project. 
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Confidence interval (cont.) 
versus hypothesis testing, 286-
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Confidence level, 239 
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Consumer Price Index, 16 
Contingency table, 346 
Control, 562 
Control group, 46 
Convenience sample, 36 
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Correlation coefficient, 406, 

439 
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D 
Data 

experimental, 45 
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Poisson, 190-191, 214- 21S 
t,196-199 
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F 
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F-ratio, 506 
Fisher, Sir Ronald, 52 
Four questions, 316 

G 
Galton, Francis, 398 
Gamma, 530, 539 
Graphical excellence, 96- 101 
Graphs, 73-101 

H 
Hawthorne effect, 48 
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contingency table, 355-360 
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Misuses, 631-634 
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p 
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Partial phi, 564, 596 
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Pearson, Karl, 406 
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R 
in analysis of variance, 486 
in multiple regression, 572 

r,411 
interpretation of, 417 -422 

R2 
in analysis of variance, 485 
in multiple regression, 574 

Randomness, 9 
Range, 142 
Rank correlation rs, 535, 542 
Rank variable, 324, 526 
Ratio variable, 80 
Regression analysis, 398 
Regression coefficient, 414, 425, 

439 
Regression equation, 414 
Regression line, 412 
Regression sum of squares, 420, 

441 
Relationship, 314 
Residual sum of squares 

in analysis of variance, 483, 
505 

in regression, 420, 441 
Residual value, 483 
Residual variable, 417, 483 
Response errors, 42 

S 
Sample, 32 

convenience, 36 
random, 35 
simple random, 36 

Sampling error, 39 
Scatterplot, 89-94, 402, 407, 478 
Sign test, 501 
Significance level, 279 
Simple regression, 399 
Skewed distribution, 86 

Slope, 414 
Spearman rank correlation, 535, 

542 
Spurious relationship, 317 
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Standard score, 150-152, 161 
Statistic, 233 
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Statistics, 10 
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Surveys, 628-631 
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T 
t-variable, 15, 196-199 
Tables, 101-104 
Test of significance, 232 
Time series plot, 91-94 
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in analysis of variance, 484, 
505 
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Two-sided test, 280 
Two-way analysis of variance, 581, 

596-598 
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Type II error, 270 

U 
Unbiased estimate, 236 
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v; 360, 368 
Value, 14 
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empirical, 14 
metric, 80, 324 
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theoretical, 15 
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from probability distribution, 

216 
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Z 

standard deviation, 143-148, 
160 

standard error, 149 
variance, 148, 160 

z-variable, 15, 194-196 
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